diff --git a/.buildinfo b/.buildinfo
new file mode 100644
index 0000000..e277ebb
--- /dev/null
+++ b/.buildinfo
@@ -0,0 +1,4 @@
+# Sphinx build info version 1
+# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
+config: 40c49e1893dd04507756ebd2c23c7528
+tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle
new file mode 100644
index 0000000..a1a5f54
Binary files /dev/null and b/.doctrees/environment.pickle differ
diff --git a/.doctrees/error_parity.doctree b/.doctrees/error_parity.doctree
new file mode 100644
index 0000000..cb217a6
Binary files /dev/null and b/.doctrees/error_parity.doctree differ
diff --git a/.doctrees/examples/README.doctree b/.doctrees/examples/README.doctree
new file mode 100644
index 0000000..ecf2150
Binary files /dev/null and b/.doctrees/examples/README.doctree differ
diff --git a/.doctrees/examples/brute-force-example_equalized-odds-thresholding.doctree b/.doctrees/examples/brute-force-example_equalized-odds-thresholding.doctree
new file mode 100644
index 0000000..9629073
Binary files /dev/null and b/.doctrees/examples/brute-force-example_equalized-odds-thresholding.doctree differ
diff --git a/.doctrees/examples/example-with-postprocessing-and-inprocessing.doctree b/.doctrees/examples/example-with-postprocessing-and-inprocessing.doctree
new file mode 100644
index 0000000..9ffd6b9
Binary files /dev/null and b/.doctrees/examples/example-with-postprocessing-and-inprocessing.doctree differ
diff --git a/.doctrees/examples/parse-folktables-datasets.doctree b/.doctrees/examples/parse-folktables-datasets.doctree
new file mode 100644
index 0000000..2c72a45
Binary files /dev/null and b/.doctrees/examples/parse-folktables-datasets.doctree differ
diff --git a/.doctrees/examples/relaxed-equalized-odds.usage-example-folktables.doctree b/.doctrees/examples/relaxed-equalized-odds.usage-example-folktables.doctree
new file mode 100644
index 0000000..0a7bd6b
Binary files /dev/null and b/.doctrees/examples/relaxed-equalized-odds.usage-example-folktables.doctree differ
diff --git a/.doctrees/examples/relaxed-equalized-odds.usage-example-synthetic-data.doctree b/.doctrees/examples/relaxed-equalized-odds.usage-example-synthetic-data.doctree
new file mode 100644
index 0000000..ec39ecb
Binary files /dev/null and b/.doctrees/examples/relaxed-equalized-odds.usage-example-synthetic-data.doctree differ
diff --git a/.doctrees/examples/usage-example-for-other-constraints.synthetic-data.doctree b/.doctrees/examples/usage-example-for-other-constraints.synthetic-data.doctree
new file mode 100644
index 0000000..24dcfa3
Binary files /dev/null and b/.doctrees/examples/usage-example-for-other-constraints.synthetic-data.doctree differ
diff --git a/.doctrees/index.doctree b/.doctrees/index.doctree
new file mode 100644
index 0000000..b5d0e71
Binary files /dev/null and b/.doctrees/index.doctree differ
diff --git a/.doctrees/modules.doctree b/.doctrees/modules.doctree
new file mode 100644
index 0000000..126a809
Binary files /dev/null and b/.doctrees/modules.doctree differ
diff --git a/.doctrees/nbsphinx/examples/brute-force-example_equalized-odds-thresholding.ipynb b/.doctrees/nbsphinx/examples/brute-force-example_equalized-odds-thresholding.ipynb
new file mode 100644
index 0000000..70f5d01
--- /dev/null
+++ b/.doctrees/nbsphinx/examples/brute-force-example_equalized-odds-thresholding.ipynb
@@ -0,0 +1,580 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e2b69330",
+ "metadata": {},
+ "source": [
+ "# Comparison between `error-parity`'s LP solver and a brute-force solver\n",
+ "\n",
+ "Out of curiosity, this notebook compares the performance and efficiency of the `error-parity` LP formulation against a baseline brute-force solver.\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with:\n",
+ "```\n",
+ "pip install \"error_parity[dev]\"\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1509e4cf",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%pip install \"error-parity[dev]\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "f2866f8f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.8`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "70b33f87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_synthetic_data(n_samples: int, n_groups: int, prevalence: float, seed: int):\n",
+ " \"\"\"Helper to generate synthetic features/labels/predictions.\"\"\"\n",
+ "\n",
+ " # Construct numpy rng\n",
+ " rng = np.random.default_rng(seed)\n",
+ " \n",
+ " # Different levels of gaussian noise per group (to induce some inequality in error rates)\n",
+ " group_noise = [0.1 + 0.3 * rng.random() / (1+idx) for idx in range(n_groups)]\n",
+ "\n",
+ " # Generate predictions\n",
+ " assert 0 < prevalence < 1\n",
+ " y_score = rng.random(size=n_samples)\n",
+ "\n",
+ " # Generate labels\n",
+ " # - define which samples belong to each group\n",
+ " # - add different noise levels for each group\n",
+ " group = rng.integers(low=0, high=n_groups, size=n_samples)\n",
+ " \n",
+ " y_true = np.zeros(n_samples)\n",
+ " for i in range(n_groups):\n",
+ " group_filter = group == i\n",
+ " y_true_groupwise = ((\n",
+ " y_score[group_filter] +\n",
+ " rng.normal(size=np.sum(group_filter), scale=group_noise[i])\n",
+ " ) > (1-prevalence)).astype(int)\n",
+ "\n",
+ " y_true[group_filter] = y_true_groupwise\n",
+ "\n",
+ " ### Generate features: just use the sample index\n",
+ " # As we already have the y_scores, we can construct the features X\n",
+ " # as the index of each sample, so we can construct a classifier that\n",
+ " # simply maps this index to our pre-generated predictions for this clf.\n",
+ " X = np.arange(len(y_true)).reshape((-1, 1))\n",
+ " \n",
+ " return X, y_true, y_score, group"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "0d326b40",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "N_GROUPS = 2\n",
+ "# N_SAMPLES = 1_000_000\n",
+ "N_SAMPLES = 100_000\n",
+ "\n",
+ "SEED = 23\n",
+ "\n",
+ "X, y_true, y_score, group = generate_synthetic_data(\n",
+ " n_samples=N_SAMPLES,\n",
+ " n_groups=N_GROUPS,\n",
+ " prevalence=0.25,\n",
+ " seed=SEED)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "ba24bcc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual global prevalence: 27.2%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_true) / len(y_true)\n",
+ "print(f\"Actual global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "5615f135",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Example predictor that predicts the synthetically produced scores above\n",
+ "predictor = lambda idx: y_score[idx].ravel()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb54b73d",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "---\n",
+ "# Comparing LP vs brute-force solution"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1dc0899f",
+ "metadata": {},
+ "source": [
+ "## 1. Brute-force solver"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "2cb73fc8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from itertools import product\n",
+ "from collections.abc import Iterable\n",
+ "from error_parity.evaluation import eval_accuracy_and_equalized_odds\n",
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "def binarize_predictions(y_score, group_membership, group_thresholds: dict, seed: int = 42):\n",
+ " \"\"\"Binarizes score predictions using different group thresholds.\"\"\"\n",
+ " # Random number generator\n",
+ " rng = np.random.default_rng(seed)\n",
+ "\n",
+ " # Results array\n",
+ " y_pred_binary = np.zeros_like(group_membership, dtype=int)\n",
+ "\n",
+ " for group_key, group_thrs in group_thresholds.items():\n",
+ " \n",
+ " # Single threshold provided (no randomization)\n",
+ " if not isinstance(group_thrs, Iterable):\n",
+ " low_thr, high_thr = group_thrs, group_thrs\n",
+ " \n",
+ " # Two thresholds provided (partial randomization)\n",
+ " else:\n",
+ " assert len(group_thrs) == 2, f\"Provide exactly 2 thresholds, got {len(group_thrs)}\"\n",
+ " low_thr, high_thr = group_thrs\n",
+ "\n",
+ " # Boolean numpy filter for samples of the current group\n",
+ " group_filter = group_membership == group_key\n",
+ " group_score_preds = y_score[group_filter]\n",
+ "\n",
+ " # Below low_thr -> negative pred.\n",
+ " y_pred_binary[group_filter & (y_score < low_thr)] = 0\n",
+ "\n",
+ " # Above high_thr -> positive pred.\n",
+ " y_pred_binary[group_filter & (y_score > high_thr)] = 1\n",
+ "\n",
+ " # Between low_thr and high_thr -> random uniform prediction\n",
+ " if not np.isclose(low_thr, high_thr):\n",
+ " middle_scores_filter = ((y_score >= low_thr) & (y_score <= high_thr))\n",
+ " y_pred_binary[group_filter & middle_scores_filter] = rng.integers(\n",
+ " low=0, high=2, # sampled in [low, high)\n",
+ " size=np.sum(group_filter & middle_scores_filter),\n",
+ " )\n",
+ "\n",
+ " # Return binarized predictions\n",
+ " return y_pred_binary\n",
+ "\n",
+ "\n",
+ "def solve_brute_force(\n",
+ " *,\n",
+ " predictor,\n",
+ " tolerance: float,\n",
+ " data_tuple: float,\n",
+ " threshold_ticks_step: float = 1e-2,\n",
+ " ) -> dict:\n",
+ " \"\"\"Brute-force solution for equalized odds problem.\"\"\"\n",
+ "\n",
+ " # Unpack data tuple\n",
+ " X_feats, y_labels, s_group = data_tuple\n",
+ "\n",
+ " # Generate unique threshold combinations\n",
+ " unique_groups = np.unique(s_group)\n",
+ " group_threshold_combinations = product(*[\n",
+ " ### Deterministic thresholds\n",
+ " # np.arange(0, 1 + threshold_ticks_step, threshold_ticks_step)\n",
+ "\n",
+ " ### Randomized thresholds (full search)\n",
+ " [\n",
+ " (lo_thr, hi_thr)\n",
+ " for lo_thr, hi_thr in product(\n",
+ " np.arange(0, 1 + threshold_ticks_step, threshold_ticks_step),\n",
+ " np.arange(0, 1 + threshold_ticks_step, threshold_ticks_step),\n",
+ " )\n",
+ " if lo_thr <= hi_thr\n",
+ " ]\n",
+ " for _ in range(N_GROUPS)\n",
+ " ])\n",
+ "\n",
+ " ### Characterizing the best result\n",
+ " ### NOTE: \"best\" is defined as maximizing accuracy constrained by eq_odds <= tolerance\n",
+ "\n",
+ " # Threshold combination of the best result\n",
+ " best_combi: tuple = None\n",
+ " \n",
+ " # Accuracy of the best result\n",
+ " best_accuracy: float = None\n",
+ " \n",
+ " # Constraint violation of the best result\n",
+ " best_eq_odds_violation: float = None\n",
+ "\n",
+ " # Evaluate all threshold combinations\n",
+ " num_determ_thrs = np.ceil(1 / threshold_ticks_step) + 1\n",
+ " total_combinations = int((num_determ_thrs * (num_determ_thrs + 1) / 2) ** len(unique_groups))\n",
+ "\n",
+ " for combi in tqdm(group_threshold_combinations, total=total_combinations):\n",
+ " thrsh_dict = dict(zip(unique_groups, combi))\n",
+ " \n",
+ " # Binarize predictions with this threshold combination\n",
+ " binarized_preds = binarize_predictions(\n",
+ " y_score=y_score,\n",
+ " group_membership=s_group,\n",
+ " group_thresholds=thrsh_dict,\n",
+ " )\n",
+ " \n",
+ " # Evaluate results\n",
+ " curr_result = eval_accuracy_and_equalized_odds(\n",
+ " y_true=y_labels, y_pred_binary=binarized_preds,\n",
+ " sensitive_attr=s_group,\n",
+ " )\n",
+ " \n",
+ " curr_accuracy, curr_eq_odds_violation = curr_result\n",
+ "\n",
+ " if best_combi is None or (\n",
+ " best_accuracy < curr_accuracy\n",
+ " and curr_eq_odds_violation <= tolerance):\n",
+ " \n",
+ " # New best found\n",
+ " best_combi = combi\n",
+ " best_accuracy = curr_accuracy\n",
+ " best_eq_odds_violation = curr_eq_odds_violation\n",
+ "\n",
+ " # Return solution that fulfills target tolerance optimally\n",
+ " return {\n",
+ " \"group_thresholds\": best_combi,\n",
+ " \"accuracy\": best_accuracy,\n",
+ " \"eq_odds_violation\": best_eq_odds_violation,\n",
+ " }"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "670a04f2",
+ "metadata": {},
+ "source": [
+ "Run solver:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "04da756a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "759999d9e0934feebe59c009450e1a91",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/4356 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 3min 56s, sys: 5.15 s, total: 4min 2s\n",
+ "Wall time: 4min 2s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "{'group_thresholds': ((0.7000000000000001, 0.8), (0.7000000000000001, 0.9)),\n",
+ " 'accuracy': 0.80763,\n",
+ " 'eq_odds_violation': 0.04660537497114363}"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "brute_force_solution = solve_brute_force(\n",
+ " predictor=predictor,\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " data_tuple=(X, y_true, group),\n",
+ " threshold_ticks_step=0.1,\n",
+ ")\n",
+ "\n",
+ "brute_force_solution"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "52c03426",
+ "metadata": {},
+ "source": [
+ "## 2. LP solver"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "44ef577c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "def solve_lp(predictor, tolerance: float, data_tuple: tuple):\n",
+ " clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=\"equalized_odds\",\n",
+ " tolerance=tolerance,\n",
+ " max_roc_ticks=None, # use full precision\n",
+ " seed=SEED,\n",
+ " )\n",
+ "\n",
+ " X, y_true, group = data_tuple\n",
+ " clf.fit(X=X, y=y_true, group=group)\n",
+ " return clf"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "2905dbe7",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 111 ms, sys: 3.29 ms, total: 115 ms\n",
+ "Wall time: 114 ms\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "postproc_clf = solve_lp(\n",
+ " predictor=predictor,\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " data_tuple=(X, y_true, group),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "## Compare accuracy and constraint violation\n",
+ "Assumes `FP_cost == FN_cost == 1.0`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "c6488eea",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy for dummy constant classifier: 72.8%\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f\"Accuracy for dummy constant classifier: {max(np.mean(y_true==label) for label in {0, 1}):.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0be46537",
+ "metadata": {},
+ "source": [
+ "Evaluate predictions realized by LP solution."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "67746b4e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Realized LP accuracy: 82.2%\n",
+ "Realized LP eq. odds violation: 5.0%\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred_binary_lp = postproc_clf.predict(X, group=group)\n",
+ "\n",
+ "lp_acc, lp_eq_odds = eval_accuracy_and_equalized_odds(y_true, y_pred_binary_lp, group)\n",
+ "\n",
+ "print(f\"Realized LP accuracy: {lp_acc:.1%}\")\n",
+ "print(f\"Realized LP eq. odds violation: {lp_eq_odds:.1%}\\n\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cce2e2bb",
+ "metadata": {},
+ "source": [
+ "Evaluate predictions realized by brute-force solution."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "6706b353",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Realized BF accuracy: 80.8%\n",
+ "Realized BF eq. odds violation: 4.7%\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred_binary_brute_force = binarize_predictions(\n",
+ " y_score=y_score, group_membership=group,\n",
+ " group_thresholds=dict(zip(range(N_GROUPS), brute_force_solution[\"group_thresholds\"])),\n",
+ ")\n",
+ "\n",
+ "bf_acc, bf_eq_odds = eval_accuracy_and_equalized_odds(y_true, y_pred_binary_brute_force, group)\n",
+ "\n",
+ "print(f\"Realized BF accuracy: {bf_acc:.1%}\")\n",
+ "print(f\"Realized BF eq. odds violation: {bf_eq_odds:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9f926646",
+ "metadata": {},
+ "source": [
+ "**Conclusion:** brute-force solver took 4 minutes to exhaustively search over 4356 combinations while the LP solver took 114ms to achieve a superior solution (because of the finer search grid)."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/.doctrees/nbsphinx/examples/example-with-postprocessing-and-inprocessing.ipynb b/.doctrees/nbsphinx/examples/example-with-postprocessing-and-inprocessing.ipynb
new file mode 100644
index 0000000..602f3db
--- /dev/null
+++ b/.doctrees/nbsphinx/examples/example-with-postprocessing-and-inprocessing.ipynb
@@ -0,0 +1,762 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example usage of `error-parity` with other fairness-constrained classifiers\n",
+ "\n",
+ "Contents:\n",
+ "1. Train a standard (unconstrained) model;\n",
+ "2. Check attainable fairness-accuracy trade-offs via post-processing, with the `error-parity` package;\n",
+ "3. Train fairness-constrained model (in-processing fairness intervention), with the `fairlearn` package;\n",
+ "5. Map results for post-processing + in-processing interventions;\n",
+ "\n",
+ "---\n",
+ "\n",
+ "**NOTE**: This notebook has the following extra requirements: `fairlearn` `lightgbm`.\n",
+ "\n",
+ "Install them with ```pip install fairlearn lightgbm```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "error-parity==0.3.8\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"error-parity=={__version__}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(palette=\"colorblind\", style=\"whitegrid\", rc={\"grid.linestyle\": \"--\", \"figure.dpi\": 200, \"figure.figsize\": (4,3)})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Some useful global constants:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SEED = 2\n",
+ "\n",
+ "TEST_SIZE = 0.3\n",
+ "VALIDATION_SIZE = None\n",
+ "\n",
+ "PERF_METRIC = \"accuracy\"\n",
+ "DISP_METRIC = \"equalized_odds_diff\"\n",
+ "\n",
+ "N_JOBS = max(2, os.cpu_count() - 2)\n",
+ "\n",
+ "np.random.seed(SEED)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Fetch UCI Adult data\n",
+ "\n",
+ "We'll use the `sex` column as the sensitive attribute.\n",
+ "That is, false positive (FP) and false negative (FN) errors should not disproportionately impact individuals based on their sex."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SENSITIVE_COL = \"sex\"\n",
+ "sensitive_col_map = {\"Male\": 0, \"Female\": 1}\n",
+ "\n",
+ "# NOTE: You can also try to run this using the `race` column as sensitive attribute (as commented below).\n",
+ "# SENSITIVE_COL = \"race\"\n",
+ "# sensitive_col_map = {\"White\": 0, \"Black\": 1, \"Asian-Pac-Islander\": 1, \"Amer-Indian-Eskimo\": 1, \"Other\": 1}\n",
+ "\n",
+ "sensitive_col_inverse = {val: key for key, val in sensitive_col_map.items()}\n",
+ "\n",
+ "POS_LABEL = \">50K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Download data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from fairlearn.datasets import fetch_adult\n",
+ "\n",
+ "X, Y = fetch_adult(\n",
+ " as_frame=True,\n",
+ " return_X_y=True,\n",
+ ")\n",
+ "\n",
+ "# Map labels and sensitive column to numeric data\n",
+ "Y = np.array(Y == POS_LABEL, dtype=int)\n",
+ "S = np.array([sensitive_col_map[elem] for elem in X[SENSITIVE_COL]], dtype=int)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Split in train/test/validation data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "X_train, X_other, y_train, y_other, s_train, s_other = train_test_split(\n",
+ " X, Y, S,\n",
+ " test_size=TEST_SIZE + (VALIDATION_SIZE or 0),\n",
+ " stratify=Y, random_state=SEED,\n",
+ ")\n",
+ "\n",
+ "if VALIDATION_SIZE is not None and VALIDATION_SIZE > 0:\n",
+ " X_val, X_test, y_val, y_test, s_val, s_test = train_test_split(\n",
+ " X_other, y_other, s_other,\n",
+ " test_size=TEST_SIZE / (TEST_SIZE + VALIDATION_SIZE),\n",
+ " stratify=y_other, random_state=SEED,\n",
+ " )\n",
+ "else:\n",
+ " X_test, y_test, s_test = X_other, y_other, s_other\n",
+ " X_val, y_val, s_val = X_train, y_train, s_train"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Log the accuracy attainable by a dummy constant classifier."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'train': 0.7607125098715961,\n",
+ " 'test': 0.7607315908005187,\n",
+ " 'validation': 0.7607125098715961}"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "def compute_constant_clf_accuracy(labels: np.ndarray) -> float:\n",
+ " return max((labels == const_pred).mean() for const_pred in np.unique(labels))\n",
+ "\n",
+ "constant_clf_accuracy = {\n",
+ " \"train\": compute_constant_clf_accuracy(y_train),\n",
+ " \"test\": compute_constant_clf_accuracy(y_test),\n",
+ " \"validation\": compute_constant_clf_accuracy(y_val),\n",
+ "}\n",
+ "constant_clf_accuracy"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Train a standard (unconstrained) classifier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
LGBMClassifier(verbosity=-1) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "LGBMClassifier(verbosity=-1)"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from lightgbm import LGBMClassifier\n",
+ "\n",
+ "unconstr_clf = LGBMClassifier(verbosity=-1)\n",
+ "unconstr_clf.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In-processing model: \n",
+ "> accuracy = 0.87\n",
+ "> equalized odds = 0.0673\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import evaluate_predictions_bootstrap\n",
+ "\n",
+ "unconstr_test_results = evaluate_predictions_bootstrap(\n",
+ " y_true=y_test,\n",
+ " y_pred_scores=unconstr_clf.predict(X_test, random_state=SEED).astype(float),\n",
+ " sensitive_attribute=s_test,\n",
+ ")\n",
+ "\n",
+ "print(\n",
+ " f\"In-processing model: \\n\"\n",
+ " f\"> accuracy = {unconstr_test_results['accuracy_mean']:.3}\\n\"\n",
+ " f\"> equalized odds = {unconstr_test_results['equalized_odds_diff_mean']:.3}\\n\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Map attainable fairness-accuracy trade-offs via (relaxed) post-processing\n",
+ "\n",
+ "By varying the tolerance (or slack) of the fairness constraint we can map the different trade-offs attainable by the same model (each trade-off corresponds to a different post-processing intervention).\n",
+ "\n",
+ "**Post-processing** fairness methods intervene on the predictions of an already trained model, using different (possibly randomized) thresholds to binarize predictions of different groups.\n",
+ "\n",
+ "We'll be using the [`error-parity`](https://github.com/socialfoundations/error-parity) package [[Cruz and Hardt, 2023]](https://arxiv.org/abs/2306.07261)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "1da832ca83be43929491a5b6a3123648",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "# Data to fit postprocessing adjustment\n",
+ "fit_data = (X_train, y_train, s_train)\n",
+ "# fit_data = (X_val, y_val, s_val)\n",
+ "\n",
+ "# Common kwargs for the `compute_postprocessing_curve` call\n",
+ "compute_postproc_kwargs = dict(\n",
+ " fit_data=fit_data,\n",
+ " eval_data={\n",
+ " \"validation\": (X_val, y_val, s_val),\n",
+ " \"test\": (X_test, y_test, s_test),\n",
+ " },\n",
+ " fairness_constraint=\"equalized_odds\",\n",
+ " tolerance_ticks=np.hstack((\n",
+ " np.arange(0.0, 0.1, 1e-2),\n",
+ " np.arange(0.1, 1.0, 1e-1),\n",
+ " )),\n",
+ " bootstrap=True,\n",
+ " n_jobs=N_JOBS,\n",
+ " seed=SEED,\n",
+ ")\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=unconstr_clf,\n",
+ " y_fit_pred_scores=unconstr_clf.predict_proba(fit_data[0])[:, -1],\n",
+ " **compute_postproc_kwargs,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot post-processing adjustment frontier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SHOW_RESULTS_ON = \"test\"\n",
+ "# SHOW_RESULTS_ON = \"validation\"\n",
+ "\n",
+ "ax_kwargs = dict(\n",
+ " xlim=(constant_clf_accuracy[SHOW_RESULTS_ON] - 5e-3, 0.885),\n",
+ " ylim=(0.0, 0.3),\n",
+ " title=\"Random Hyperparameter Search (val.)\",\n",
+ " xlabel=PERF_METRIC + r\"$\\rightarrow$\",\n",
+ " ylabel=\"equalized odds (diff.) $\\leftarrow$\" if DISP_METRIC == \"equalized_odds_diff\" else DISP_METRIC,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLUAAAKACAYAAABqokocAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1xT1/8/8FeCQdmI4kLc4sY96t6KolL3rqvW9XFrh7VWbW1dVeuq1j3q1jqqiEK1uMW66kIRlSWiyBYI5P7+4Jv7S0gCARIC8fV8PHx4c++55557z80leecMiSAIAoiIiIiIiIiIiAoRqakLQERERERERERElFMMahERERERERERUaHDoBYRERERERERERU6DGoREREREREREVGhw6AWEREREREREREVOgxqERERERERERFRocOgFhERERERERERFToMahERERERERERUaHDoBYRERERERERERU6DGoREREREREREVGhw6AWEREREREREREVOgxqERERERERERFRocOgFhERERERERERFToMahERERERERERUaHDoBYRERERERERERU6DGoREREREREREVGhw6AWEREREREREREVOgxqERERERERERFRocOgFhGZFblcbuoiEBVogiAgPT3d1MXIEb6v8w+vNRERERUmDGoRmbGjR4+iRo0a2f6rXbs2GjZsiE6dOuGLL77Atm3b8O7dO1MXP0dev36NSZMm4d9//zV1UaiACQ0NFe/1ESNGmLo4RnXv3j3UqVMHn3zyCeLj4zW2P3v2DMOHD0dERIQJSpdzaWlp2Lp1K3766SdTF6VQ++qrr8T3wPXr17WmMfYz9O7du6hZsybatWuH2NhYoxyDiIiIPj4MahER0tPTkZSUhNDQUFy4cAFLly5F586dsXfvXlMXTS9//fUXPDw84Ovra+qiEJlMUlISZs+ejbS0NEyfPh12dnZq27dv3w4vLy8EBASYqIQ58/r1a/Tr1w/Lli1DUlKSqYtj1vLjGVq/fn306dMHr1+/xvfff2+04xAREdHHpYipC0BE+cPV1RVDhgzRuk2hUODDhw+IiIiAj48PEhISkJSUhEWLFkEqlercr6Dw9/fnl1766K1evRovX76Em5sb+vfvr7Hdz8+vUHUte/nyJR4/fmzqYnwU8usZOmPGDHh7e+P06dPw8PBA165djX5MIiIiMm8MahF9JMqWLYuxY8dmm+6rr77C5MmTcfPmTQDAsmXL0LlzZzg7Oxu7iERGUb58eTx58sTUxTCqx48fY8+ePQCAmTNnwsLCwsQlItJUpkwZjBgxAr///juWLFmC1q1bw9ra2tTFIiIiokKM3Q+JSI2DgwPWr18PW1tbABldmo4fP27iUhFRVpYtW4b09HTUqVMHHTp0MHVxiHQaM2YMrKysEBERge3bt5u6OERERFTIMahFRBocHBzg6ekpvr569aoJS0NEWQkICMDly5cBAMOGDTNxaYiy5uTkBA8PDwDAjh07tE5oQERERKQvdj8kIq2qVq0qLr9+/VpnuoSEBBw5cgQXLlxAYGAgYmNjYWNjg/Lly6NVq1YYNGgQXFxcsjyWQqGAj48PTp8+jfv37+Pt27coUqQInJyc4O7ujg4dOqBnz54aXapGjBiBGzduqK0bOXKkuLxr1y40b948J6cNAOjYsSPCwsLQrFkz7N69G2/fvsW2bdvg6+uL169fw8LCAlWqVEHXrl0xdOhQsVVbZkePHsXXX38NADhw4AAqVqyIZcuWwdfXF+np6ahQoQK6du2KiRMnqu2XmpqKEydO4Pz583jw4AHev38PKysrlClTBi1atMDAgQNRvXp1vc7l5cuXOHjwIC5fvoyXL19CLpfD0dERtWvXhqenp9brmtndu3dx9OhRXL9+HW/evEF6ejpKliyJxo0bo3fv3mjdunW25Xj69CkOHTqE69evIyQkBKmpqXB0dESlSpXwySefYMCAAShVqpTO/XN7jwAZsx926tQJAMQ6VaW8jypXrgxvb2+kpqbi0KFDOHPmDJ4/f474+HiUKFECjRs3xoABA9CiRYtsz/fNmzfYvXs3Lly4gJCQEEgkEpQvXx6dOnXCqFGj4OjoiO7duyM4OBguLi7w8/PLNk9dfv/9dwCAjY2NGCxQpbyfVSmvBwD4+vqifPnyGvuZqt5V3zdKx44dw7FjxwAAn376KX7++edsj60tv5y8DwVBwNmzZ3HmzBncu3cP7969g6WlJcqWLYsWLVpg8ODBas9JXS5duoQTJ07g9u3biIyMhEQigZOTkzgT4KeffoqiRYtq7JfdfZtZjRo1ACBH91NOn6Gpqak4efIkzp07h//++w8xMTEoWrQoSpYsiYYNG6Jr167o2LFjtsft378/jh49iri4OOzbtw/jx4/Xq7xEREREmTGoRURaqQYHdAU9zp8/j2+//Rbv379XWx8TE4OYmBj8999/2L59OyZNmqTxhVEpOjoakyZNwu3bt9XWp6amijMynj59Ghs2bMDmzZtRoUKFPJ5Zzty/fx8TJ05EVFSUxvr79+9j165d2LJlC2rWrJllPnK5HOPGjcN///0nrnv48CFcXV3V0gUEBGDu3LkaQQi5XI64uDgEBgZiz549GDp0KL7++msUKaL9Ma5QKLBq1Sps3boV6enpatuioqJw8eJFXLx4Ebt27cKGDRu0BpRSUlIwf/58rd1PQ0NDERoaiuPHj6NNmzZYuXIlHBwctJZlw4YNWLt2LRQKhUY5oqKicPPmTWzevBnz5s3DwIEDNfbPz3skJCQEkyZNQmBgoNr6iIgInDp1CqdOncLgwYPx/fffQyKRaM3D398fU6dO1Rh4OzAwEIGBgTh06BDWrl2b6zKqCgsLwz///AMgI3hliPGJCkq9G4O+78OwsDBMmzYN9+/fV1ufkpKC+Ph4BAYGYu/evRg9ejRmzZoFqVSz4XtycjJmzZqF8+fPa2wLDw9HeHg4/Pz8sH79eqxfvx7u7u4GOkvjCAkJwfjx4/H8+XO19XK5HAkJCXjx4gWOHTuGBg0aYOPGjXByctKZV+PGjVGuXDmEh4fjwIEDGDdunNZrSERERJQdBrWISCvVWce0BQlOnTqF2bNnQxAEAICzszM6duyIcuXKISYmBv7+/nj27BlSU1OxevVqREREYNGiRRr5zJw5UwxWFC9eHB07doSrqyvkcjlevHgBHx8fyOVyBAcHY8yYMTh9+jQsLS0BAEOGDEH79u1x+vRp8Uvq4MGDxfLmNQD29u1bMaBlY2ODbt26oUKFCggPD8fZs2cRGxuLqKgoDB8+HHv27MkysLVp0ya1L9JK3bt3F5dv3LiBsWPHIjU1FQBgb2+Pjh07omLFikhKSsK1a9dw//59KBQK7NmzByEhIfjtt9+0fhmcN28ejh49Kr52c3ND69atYWNjg+DgYJw9exZyuRz379/H6NGjceTIERQrVkxMn5qaitGjR+PWrVsAAJlMhjZt2qB27dqQSCQICgrChQsXkJSUBH9/fwwbNgz79+/XaLV2/PhxrFmzBgAglUrRunVr1K5dG9bW1oiMjMSFCxcQFhaG5ORkzJ8/H+XLl0fLli3V8sjLPZITSUlJGDduHF68eAF7e3t07twZFSpUQFxcHHx9ffHy5UsAwP79+1GrVi0MHjxYI4+LFy9i8uTJ4iyDLi4u6Ny5MxwdHREUFARfX1+8ffsWn3/+uUG+xB8/flwMGrVt21ZrmgkTJiA+Ph779u1DSEiIuM7e3h4A4OjoKKYtCPVer149zJ07F69evcL+/fsBAHXr1kWPHj0AQO9Witro8z4MCQnBkCFDxEC2o6MjOnTogIoVKyI5ORn37t3D1atXkZ6eji1btiAqKgrLli3TyHPx4sViQMvGxgYdOnRA5cqVIZFIEBoairNnzyIxMRFv3rzB2LFj4ePjg+LFi+f63HJD32doamoqJkyYIAa0ypYti/bt26Ns2bJISkpCYGAgLly4AIVCgTt37mDKlCn4448/sjx269atcfDgQYSGhiIgIADNmjUz4pkSERGR2RKIyGwdOXJEcHNzE9zc3IThw4frvV9UVJTQqFEjcd8DBw6obX/+/LlQp04dcfv8+fOFpKQktTQKhULYtWuXUKtWLTHdsWPH1NLcunVL3Obh4SG8f/9eoywvX74UWrVqpTMPQRCEL7/8Utx+7do1vc9Tlw4dOoj5ubm5CX379hVev36tlubdu3fC0KFDxTSDBw/WyEf1+ru5uQkNGjQQjh07JsTHxwuvX78Wtm/fLiQmJgqCIAgxMTFC06ZNxbQTJkzQej1Onz4tuLu7i+nWrVunkebMmTPi9tq1a2vUnyAIwosXL4S2bduK6dauXau2fcmSJeI2Ly8v4eXLlxp5REZGCsOHDxfTzZ07VyNN165dBTc3N6FmzZrC33//rbE9NTVVmD17tpjHiBEj1LYb4h4JCQnJ8n2geg5ubm7CxIkThdjYWLU0aWlpavdZ165dNfJJSkpSu6bz588XUlJSNMri6empdrwOHTpo5KWvvn37ivlERUVlmVb1PENCQrSmKSj1LgiCcO3aNXH7l19+meW5ZSUn78O0tDShX79+YtpZs2YJ8fHxGnnevXtXaNOmjZju8OHDatvDw8OFmjVrCm5ubkKrVq2EV69eaeTx7t07oWfPnjrfg9ndt5lldT9l94zMbvuJEyfUypKcnKz1mjRo0EBMd+PGjSzL+9dff4lplyxZku35EREREWnDtt5EpObly5cYP348EhISAAClSpVCnz591NKsW7dObInStWtXLFq0CFZWVmppJBIJRowYgdmzZ4vrfv31V6SlpYmv7969Ky4PHDhQrcWIUoUKFTBz5kwxz8zdgYzN2dkZW7duRenSpdXWOzk54bfffkOZMmUAAP/++y8uXLiQZV6LFy+Gl5cXbG1tUbp0aYwaNUrsLrZ161bExsYCANzd3bF27Vqt18PDw0OtVciWLVvE/ZSUYywBwKxZs7R27apYsSJWrlwpvj5w4IC4HBkZib1794rnuXXrVq2t3kqVKoWNGzfC2dkZAHDixAm8ePFC3B4TEyO+dnNzQ/v27TXykMlkavdPYGCg2FINyP97pFKlSli9erXYiknJwsIC8+fPh42NDQDgxYsXiIiIUEuze/ducfy51q1bY9GiRRotxsqXL49t27ZpPY+cSkhIwMOHDwEAJUuWRMmSJfOUX0Gqd2PK6n149uxZ8f5p0aIFli1bpnXMPHd3d6xbt07sgrp+/Xq1br7KFpVAxns2c/dGIOMaz58/X3z94MEDw52kgam+Dz/77DOtY4C5u7tjzJgxADJa5927dy/LPGvVqiUuX79+3UAlJSIioo8Nux8SfSQiIiKwdetWrdvkcjnev3+Phw8fIiAgQPwyZmFhgWXLlql9gUlJScG5c+cAZAQQ5s6dm+VxR40ahT179iAsLAxhYWG4evUq2rRpI+avdOfOHZ15eHh4wN3dHa6urlq/TBnTxIkTdQYg7OzsMHr0aPz0008AAB8fH61f4IGMLkzK7lPanDp1SlyePXu2zrGyAKBbt25o3Lgxbt26haSkJJw5c0bsChcZGSl2IypevDiGDx+uM58mTZqgZcuWEAQBlSpVQkJCAmxtbXHs2DExaDlw4MAsx8axtbXFyJEjsXLlSigUCpw6dQpTpkwBALVzCAsLQ1RUlBgIUWVlZYUjR46gePHiGsfK73ukX79+Orsu2tjYoE6dOuLA2lFRUShbtqy43dvbW1yePn26zmM4Ozvjs88+E7vn5ZZq4MTNzS1PeQEoUPVuLNm9Dw8fPiwujx8/Pssuou7u7mjVqhUuXbqEsLAw3Lp1S+xCp3rf3r9/H2lpaVrf002bNsXx48fh6uoqBkwLItXzuX37Njp37qw13ciRI+Hp6QkXF5dsuwBXrFgRxYoVQ3JyMgIDA/HhwweNH0eIiIiIssOgFtFHIiQkROu4L7o4Oztj+fLl+OSTT9TW//vvv0hJSQEA1K5dW2sLBFVSqRRdu3bF9u3bAWQMhK4MaqmOoXLmzBnExcVhwIABaNWqlVpLGSsrK1SrVk3vshtSVl+AgYxZ5JRBrUuXLulMV79+fZ1fkENCQsSB4R0dHfWasdHDw0Mc9+jmzZtiUOvy5ctimlatWmX7xVJZL6pu3rwpLteuXTvbsjRo0EBcVpYJyAh81KpVC48ePUJ8fDz69euHzz77DO3bt9eYNU7XLHL5fY9kN1i3avBFtWXR27dvxZY2pUqVQr169bLMp1u3bnkOagUHB4vLVapUyVNeQMGqd2PJ6n2YlpamNhmBPtegYcOG4vteNajVoEEDyGQyyOVy3L59G4MHD8awYcPQpk0btRZ1Uqk020kmCoKmTZtix44dADJah4aFhaFPnz5o3ry52uQEDg4OOicOyEwqlaJSpUp4/Pgx0tPTERISYpDgLBEREX1cGNQiIlhaWsLW1hbOzs6oU6cOWrZsiW7dumkNiISGhorL+n4ZU02nHKhaub5Pnz7iLGuXL1/G5cuXYWFhgXr16qFNmzZo27Yt6tWrp3OmOWNycXHJduBmV1dXsbXBmzdvdLbIKF++vM48cnNNVbvuqO6v2iUut0GeZ8+eictTp07N0b7h4eFqr2fPno3x48cjPT0dkZGRWLZsGZYtW4Zy5cqhdevWaNOmDVq2bKm1ixeQ//dIdl34VFuSqM7qpxxEHtCv1VTlypVhaWmZpy53qnWtbyAhKwWp3o0lq/dheHi42oyVLVq0yFHeqvVRokQJfP7559iwYQOAjNZaX331FSQSCWrWrInWrVujbdu2aNSoUZatMguKjh07olmzZmIrxTNnzuDMmTOQyWRo1KgRWrdujfbt2+c4KKV630ZERDCoRURERDlW8D9JEZFBNGvWDLt3785zPjExMeKyvl+kVQNDmcd/+uGHH1CiRAns2rVLHG8rPT0dd+7cwZ07d7B27VqULl0avXv3xpgxY3LcTSkhIUFtvCht7OzstI47VaJECb2OYWdnh+TkZAiCgHfv3mmMv6VMo8v79+/FZX2vqWqXSNU6iY6OFpczjwulr8x1lJd9W7dujQ0bNmDBggXieFNARgDh4MGDOHjwICwtLdG+fXuMHj0ajRo10sjT2PeIKtUZILMj/N/MnwDw7t07cTmrulaSSqVwcHAQZ9jLjfj4+BwdMzsFrd6NIavrpPo+yo3M+0+dOhVWVlZYv349kpOTAWTcM48ePcKjR4/w+++/i90hP//8c5QrVy5PxzcmqVSKDRs24IcffsDx48fFe18ul+P69eu4fv06Vq5ciYoVK6Jv374YOXKkWgsuXVTrQ/V+JiIiItIXg1pElCOqX+T1pTqAcmaWlpb48ssvMWrUKJw5cwa+vr64ffu2OLYPkDFO1O+//45Dhw5h69atqFu3rt7HjomJybbbpYuLi9aglr4tKFRb7MhkMq1pDN0aQ/WaqrZQUr1uuaU6mP/48eNzNKi5tvGs2rdvj3PnzuHixYvw8fHBpUuX1IJvqamp8PHxgY+PDyZPnqzRSsjY94ghqLa4Ur0fspKb95KuY+oTQMhOQat3Y8jqfaj6nrKzs8PEiRNzlHfFihXVXkskEowfPx4DBw6Et7c3fH19cePGDTHABWQ8n/744w8cPXoUv/76K9q1a5ejYyrl9V7Sh52dHZYuXYrJkyfjr7/+wt9//602rhuQ0WJx1apVOHjwIHbt2pVlyzhA/b7Nr4kCiIiIyLwwqEVEOaLakkjflg2qLZF0tR5SzkI2atQoJCUl4datW7hy5Qr+/vtvceygmJgYTJs2DT4+PmoDFxuLcgbIrCgUCrGFgUwmy7a7ojaq1ySv11R1ObctHxwcHPD27VsAGWN36TO2UHYsLS3RpUsXdOnSBYIg4MmTJ7h27Rr8/f1x7do1MaCyfv16NGvWTGvXr4J4jyipvi/i4uKyTS8IQp5bpqi2KjNEQKCg1nt+UX3vCIKAsWPHGiRfR0dHDB48GIMHD0Zqairu3LmDq1ev4sKFC+LslcnJyZg5cyb+/vtvrc/I7IJWynEO80OFChUwceJETJw4EXFxcbhx44b4PlR2Qw0LC8NXX32FPXv2ZJmXarlz0kqSiIiISEn3tD5ERFqotkZ48uSJXvs8evRIXM5uYHkg49f7Nm3a4Msvv4S3tzd+/fVXsQVUaGgo/v33X73LW758eTx58iTLf35+flr3ffnypVrrFW2Cg4PFgIKLi0uuxnXKzTV9/PixuKx6TVWXnz9/nm0+f/75J7799lts3rxZTK+ax9OnT7PNIzU1Va8AoJJyXKFRo0Zh69at8PPzQ40aNcTtyvGzsmLIe8QQVMcvUx2bSpeQkJA8ByJUx6NKTEzMU15A4ah3YypXrpzYkishIQGRkZHZ7pOQkJCjgKKlpSWaNWuGadOm4dixY9i7d6/YBS8hIUHtWaQalM3uGHnpxpoX9vb26Ny5M7777jv4+flh/vz54rabN29qjLWWmeoYZgV59kciIiIquBjUIqIcqV+/vhg8ePjwIV69epVleoVCgfPnz4uvVWdM++mnnzBo0CA0bdo0yy+Q3bp1U5uFUXWMHgBGG0Q+JSUF169fzzKNr6+vuNyxY8dcHcfV1VUchysmJgbXrl3Ldh9vb29xWfWaqo5NdOXKlSy7fgLAiRMncOjQIaxcuRJv3rwBADRp0kTcrlp3uuzevRuNGzdG8+bN8d1334nrfX19MXbsWHTo0AGbNm3SuX/p0qUxYcIE8bXqvWCoe8TYypYtKwaFoqKixJkQddEVSM0JFxcXcdkQ51uQ6h0w3vtaFysrK9SpU0d87ePjk+0+s2bNQv369dGuXTscPnxYXL9582YMGzYMLVq0yDLA2qRJE3h6eoqvVetRteWSardNbe7fv59tWbOS1bVOT0/Hl19+ib59+6JVq1Y6A2wSiQTDhw9Xm9Eyu/tSdXt2XRWJiIiItGFQi4hyxMrKCt26dQOQ0SVm+fLlWabftWuXOCuYo6MjWrVqJW4LCQnBnTt3EBcXh5MnT2aZj+qXuswDsUul//9Rpu94RvrauHGjzq4/MTEx2Llzp/jaw8Mj18f59NNPxeWVK1dm2ULs3LlzuH37NoCMMYKU9QEA1atXF2dGjIqKwpEjR3TmExQUJAbQihcvLgbEvLy8xC+558+fR0BAgM483r9/j61btwLIuB6qLW8EQcClS5cQHh6Ov/76K8tzUu1OqVq/hrpH8kPfvn3F5XXr1ulMl5CQgB07duT5eJUrVxaXVWcV1UW15Y+290lBqndA/X2dXXDWULy8vMTlzZs3ZxlMunnzJi5cuACFQoHIyEjUr19f3BYVFYWAgAC8f/8+1/eto6OjOOZUaGio2gybqtLT07Fly5Ysj5GdrJ6hFhYWePz4MR48eIC3b9+qBfIzUygUal2os3ofCoKAsLAwABnPsQoVKuSy9ERERPQxY1CLiHJs4sSJ4sDQPj4++O677/Dhwwe1NIIgYN++fWqDtM+ZM0dtQOl+/fqJy2vWrMHFixe1Hm/Hjh3477//AAClSpVSa5kEqHfDCg0Nzd1J6XDz5k3MmzdPo6vYmzdvMH78eHEMIk9PT7i7u+f6OCNHjhTH47p37x7+97//aR1f69y5c5g7d674evz48ShVqpRamkmTJonLP/74o9YWJxEREZg2bZoYLPjss89gaWkJIKMrXc+ePQFkfEmdPHkyLl++rJFHZGQkJk6cKM78V65cOfTv31/c3rZtWzg7OwPI6Fa5aNEitUGylYKDg9WCQF27dhWXDXWP5Idhw4aJM2b6+flhyZIlGgP3R0dHY8KECWKgNy/q1q0rdpdT7Y6qi+r7RBlMUFWQ6l2f8hpD3759xeDKmzdvMGbMGK2tUW/fvo3p06eLr7t164bq1auLr1Xv23379uHw4cNag+Nnz57FuXPnAGS0zGrbtq24TSKRoFmzZgAynqffffedxnVMSEjArFmzsm0ZmJ3snqGq5/P999/j3r17GmkEQcDSpUvF+6JOnTpqrQkzCw4OFrsf1qlTR+ckG0RERERZ4UDxRJRj1apVw4IFCzBv3jwIgoADBw7Az88PHTt2RLly5RAbGwt/f3+1cXk+/fRTtS++ANCpUye0adMG/v7+SE1Nxfjx49GwYUPUrVsXzs7OiI2Nxc2bN8UvUBKJBF999ZUYfFFS7bayYsUKhIWFQSaToWvXrmpfNHNDJpPhyJEjuHLlCrp06YISJUrg5cuXOHv2rDiOUYUKFfDNN9/k6TglSpTAihUrMGHCBMjlcvj5+aFLly7o1KkTKlasiA8fPuDatWu4e/euuE+LFi0wZcoUjby6du2KIUOGYN++fUhOTsb//vc/NGzYEM2bN4eVlRWCgoJw7tw5MRDZsGFDjUGxFy5ciMePH+PZs2eIiYnBmDFj0LhxYzRt2hQymQzPnz/H+fPnxWBf0aJFsWLFCrWgpaWlJb7++mvMnDkTAMT7pG3btihXrhwAIDAwEBcuXBDzadeuHTp06CDmYah7JD84ODhg8eLFmDJlChQKBXbu3AlfX1907twZxYsXx6tXr+Dj44P4+HhYWVmJ1z+33eysra1Rr1493L59G2/fvkVoaGiWXbhUt33zzTfo168fBEHAoEGDxMBoQal34P+PUScIAm7duoU5c+agevXqKFWqlFqLKkMqVqwY1qxZg+HDhyMxMRGPHj1Cjx490L59e9SsWRMpKSl48OCBWrDPxcUFCxYsUMunZs2aGDRoEA4cOABBEDBv3jzs2rULjRs3RpkyZZCUlITbt2+rdW+eMmWKGBRV+uyzz3DhwgUAwLVr19ClSxd069YNTk5OCAkJwblz5xAfH49y5crB2dlZ7fmQE9k9QwcPHozDhw/jyZMniImJwYABA9CqVSu4ubnByckJ7969w6VLl8Tx5GQyWbbPRNXAWPPmzXNVbiIiIiIGtYgoV/r16wc7OzvMnz8fMTExiIqKwoEDBzTSyWQyzJgxA2PGjNGaz+rVqzFt2jRcunQJQEYLCGXXOlU2Njb4+uuvxZYkqrp37461a9ciNjYWMTEx2Lhxo7hPXoNaq1atwpw5cxAREYFdu3ZpbG/SpAnWrl0LJyenPB0HAFq3bo0dO3Zg9uzZiIiIQFxcHI4dO6aRTiKRYPTo0Zg5c6bOGf4WLFgAR0dH/P7770hLS9N5Xdu3b48VK1ZoBIFsbW2xb98+zJ07F3///TcA4NatW7h165ZGHmXKlMHy5cvRuHFjjW09e/bE+/fv8fPPP0Mul2fZJbJbt25YunSpxnpD3CP5pVOnTvj555/x/fffIykpCaGhoRpdDcuWLYvvvvsOEydOBIA8BeA6deokXovLly9j0KBBOtP27dsXe/bsgVwuR3h4ONauXQsgIwDTpUsXAAWr3u3s7NCzZ0+cOnUKQMb4bwBQo0YNowW1AKB27drYv38/pk+fjqCgIMjlcpw7d05sUaWqYcOGWL16tdb3//z585Gamiq+h5UTU2Qmk8kwadIkfP755xrbWrZsia+++grLly9Heno63rx5g927d6ulqVq1KtauXYuVK1fm9pSzfYZaWlpiy5YtmDhxotgi8vLly1pb8pUsWRI//PCD2hht2qjuq7z/iIiIiHKKQS0iyrWuXbuiZcuWOHjwIC5cuICgoCDExsbC0tISlSpVQps2bTBw4MAsu6DY2tpi69atuHjxIk6dOoX79+8jMjISqampKF68OFxdXdGuXTv07dtXo5udkrOzM/bt24fVq1cjICAAcXFxsLGxydHMbLp06dIFJ0+exO+//45Lly7hzZs3sLW1hbu7O7y8vODh4WHQAa2bNGkCHx8fHD16FH5+fnj06BHev3+PIkWKwNXVFS1atMDAgQOzDdZJJBJMnz4dffr0wf79+3HlyhVEREQgOTkZTk5OaNCgAfr164d27drpzMPe3h6//fYbAgICcOLECdy8eRNv3rxBSkoK7O3tUaNGDXTq1AmffvppljOXDR8+HG3btsXhw4dx/fp1vHjxAgkJCbCysoKzszOaNWuGXr166fwSbIh7JD/16dMHTZs2xd69e3Hx4kWEh4dDoVDA1dUV3bp1w6hRo9QGRVeOm5QbvXv3xi+//AKFQoG///47y6CWm5sbdu3ahfXr1+O///5DQkIC7O3tNbq5FpR6BzImCihfvjzOnDmD169fiy23BEEw6kDybm5uOHnyJM6cOQMfHx/8999/ePfuHRQKBUqWLIl69erB09MTnTt3VhuPSpVMJsPPP/+M/v374/jx47hz5w7CwsLE61iuXDm0adNGrcujNqNHj0br1q2xZ88eXLlyBZGRkbCyskLlypXh4eGBQYMGqQ0qnxv6PENLlSqFgwcPwtvbG2fPnsXDhw/x9u1bpKWlwcnJCZUrV0aHDh3EHzyykpaWJgapK1eunKeu20RERPRxkwi6RkAmIvpIdezYURzDR1vLCqK8unv3LgYOHAggo7VcVrMEZmfSpEnw9fWFTCbDpUuX4OjoaKBSEhnHxYsXMX78eAAZXWE/++wzE5eIiIiICisOFE9ERGQAf/zxB44cOYJbt25lOwtnYGCguKw6i2FuKLv2yuXybGfaIyoIjh49CiBjHLrMYy0SERER5QSDWkRERAbg6+uLb775BkOHDs1ywG6FQoF9+/aJr7Mbeyg7TZo0QcuWLQEAe/bs0TrLHlFB8fr1a5w/fx5ARkA2qy6sRERERNlhUIuIiMgAVGdw+/nnn/H+/XuNNB8+fMC8efPw4MEDAEClSpXQtm3bPB971qxZkEgkePHihdYBzYkKiu3btyMtLQ3Ozs7sdkhERER5xjG1iIgy4ZhalBvx8fHo0aMH3rx5AyBjAPiOHTvC1dUVUqkU4eHh+Pvvv8WB2WUyGfbs2YMGDRoY5PgLFizA/v374ebmhhMnThh1IHWi3IiMjESXLl2QkpKCVatWoUePHqYuEhERERVynP1QB0EQcOrUKRw5cgSPHj1CUlISnJ2d0bRpUwwbNizPM/UoFAqcOnUKx48fx4MHD5CQkIASJUqgVq1a8PLyQrdu3fT6QhIYGIjt27fj+vXrePPmDezs7FC1alV4eXnh008/hYWFRZ7KSURE+rGzs8POnTsxZcoUBAUFISkpCadOndKatmzZslizZg3q169vsOPPnj0bFy9eRGBgII4dO4a+ffsaLG8iQ1izZg1SUlLQoUMHBrSIiIjIINhSS4vk5GRMmzYNFy5c0LrdwsIC06dPF2fuyanY2FhMnjwZN2/e1JmmefPmWLVqFUqUKKEzzaFDh7Bw4ULI5XKt25s0aYL169dzJiyiHGJLLcoLuVyOv/76Cz4+Pnj48CGio6NhYWGBUqVKoWLFiujZsye6deuGYsWKGfzYt27dwsiRI+Ho6Ahvb2/Y2dkZ/BhEuXHv3j0MHDgQzs7OOH78OJycnExdJCIiIjIDDGppMWvWLPHX9apVq2LgwIEoWbIkHjx4gP379yMpKQkAsGzZMvTp0ydHeSsUCgwfPhy3bt0CALi4uKB///5wdXVFREQE/vzzTwQFBQEAGjZsiF27dsHS0lIjH39/f3z++ecQBAFWVlYYPHgw6tati3fv3uHw4cPizFqtWrXCli1bIJVy+DQiIiIiIiIiMh8MamVy+fJlcXr0Fi1aYPPmzShatKi4PSgoCEOHDkVMTAwcHR3h6+sLW1tbvfM/fPgw5s2bByCjNdbmzZvVfq2Xy+WYNm0afH19AQA//fSTRheS1NRUeHh4IDQ0FNbW1tizZw/q1Kmjtn3mzJniYMErV66Ep6dnDq8EEREREREREVHBxeY7mWzbtg0AUKRIEfzwww9qAS0go+XW/PnzAQAxMTE4dOhQjvLfv38/gIwujMuWLdPofiKTybBgwQLx9enTpzXy8PHxQWhoKABg3LhxagEtALC0tMTSpUvFboebNm3KURmJiIiIiIiIiAo6BrVUxMTE4MqVKwCANm3awNXVVWu6Hj16iGNdeXt7651/eno6ypUrh8qVK6Nx48YoU6aM1nSlS5cWx5oIDw/X2K4MdEkkEgwZMkRrHjY2NmILr8DAQAQHB+tdTiIiIiIiIiKigo5BLRUBAQFQKBQAMroe6iKVStG0aVMAwN27dxEbG6tX/hYWFvj111/h7e2N3bt360yXmJiI+Ph4AEDJkiU1tisHmK9Ro0aWA62qnsM///yjVxmJiIiIiIiIiAoDBrVUPH36VFx2c3PLMm21atUAAIIgiIOyG8q6devEGQ27d++uti0yMhJxcXEAgOrVq2eZT9WqVcXlx48fG7SMRERERERERESmVMTUBShIwsLCxGUXF5cs06p2HQwLCxNbbuVGeno63r59i/v372PXrl24fv06AKBZs2bo37+/WlrlWFr6lLF06dKQSqVQKBRauzESERERERERERVWDGqpiI6OFpeLFy+eZVrlIOxAxlhceeHl5aXW2ksikWDYsGGYOXMmLC0t1dK+f/9e7zLKZDJYW1sjISEhz2UkIiIiIiIiIipIGNRSkZycLC5nnvUwM9Vgk+p+uREREaH2WhAEXLt2DRcuXEDPnj3Vtn348EHvMirTJCQk5LmMOZWamqoWSCtatCgsLCzytQxEREREpFt6ejpSUlLE146Ojho/qBIRERVkDGqpSEtLE5ez+4Ouul11v9wc87PPPkOVKlWQnJyMK1eu4PTp03j27BlmzpyJp0+fYvr06WL69PR0vcuomiYvZcyNmJgYhISE5OsxiYiIiChvSpUqZZB8FAoFEhISEBcXh9TUVLXPsERE9PGwsLCApaUl7O3tYWtrC6nUsEO7M6ilolixYuKyXC7PMmiUmpoqLuflF60iRYrgf//7n/i6X79+6N+/P7744gukpKRg48aNaN26NZo0aQJAvXWWcjD5rCjLKZPJcl1GIiIiIiJ9xcfHIywsDIIgmLooRERkYmlpaUhJSUF8fDwkEglcXFxgZ2dnsPwZ1FJhbW0tLqekpOgd1NKnG2BOfPLJJ5g6dSqWL18OANizZ48Y1Mpcxuwo06gG7IiIiIiIjEFbQEsikXAYCiKij1R6err4N0EQBISFhRk0sMWglgp7e3txOSYmJsuLrDpelJOTk8HLMmDAAKxcuRIKhQL//vuv1jLGxsZmmYdcLkdSUpLRypiVzIE+V1dXtYAcFXzPnj1Deno6LCwsUK1aNVMXh/KI9Wk+WJfmg3VpXgpjfSYlJakNF5HXH2oVCoVaQMvW1hZOTk6wtraGRCLJU95ERFQ4CYKApKQkREdHIyEhQQxsubm5GaQrIoNaKipVqiQuR0REwNXVVWfa169fi8vlypUzeFkcHBxQokQJREVFqc3KmLmMWYmMjIRCoTBaGbOS+dc4a2tr2Nra5msZKG+kUinS09MhlUpZd2aA9Wk+WJfmg3VpXsyhPvPamkr5ZQXICGiVL1+ewSwioo+cRCKBjY0NrK2tERoaKv6tSEhIUGu0k1sMaqmoWrWquPz06VM0a9ZMZ9qnT58CyKig6tWr65V/UFAQtmzZgpCQEHz66afo169flumVXQdtbGzEdcWLF0eJEiXw7t07sQy6PHv2TFx2c3PTq4wfM2UEWRV/WSQiIjIvCoUCu3btUlv36aefwsHBwUQlMh9xcXHispOTEz9DERGRSCKRwMnJCQkJCQAy/mYwqGVgDRs2hEwmg1wux/Xr1zFs2DCt6dLT03Hz5k0AQM2aNfWuiPT0dBw9ehRAxq9XWQW1goODxQ8GlStXVtvWtGlTeHt749GjR4iPj9fZTfLatWviclYBOsqQlJSEFStWqK2bPXu2WlCRiIiICjdBEPDy5Uu1dfk9S7S5Uo45K5FIOOwEERFpUDYaEQRBbZzyvGBQS4W9vT1atGgBf39/+Pn5ITw8XGu3vb/++kvsEujh4aF3/tWrV0fZsmUREREBf39/hISE6Ozi+Pvvv4vLnTt3VtvWrVs3eHt7Iy0tDfv27cP48eM19k9ISMCxY8cAZATFatasqXc5iQCgVq1aEASBv7KaCdan+WBdmg/WpXlhfWb8gAtkdGP8mK8DERFpp5w4JC0tTfybkVd5H5XLzIwaNQpAxiDrM2fOFJvGKT179gw//vgjgIxugQMGDNA7b4lEgs8++wxAxi+Cc+bM0cgfAHbu3IkjR44AAJydnTFkyBC17Z07d0b58uUBAOvXr0dAQIDa9tTUVMydO1cczH706NF6l5FISSaTwdLSEjKZzNRFIQNgfZoP1qX5YF2aF9YnERFR/mNLrUxat26Nbt264ezZs7h9+zb69OmDIUOGoGzZsnj48CH27duHxMREAMDcuXM1ZhW8fv06Ro4cCSCjy9/u3bvVtg8fPhznz59HQEAAbt++DU9PTwwaNAiVKlVCdHQ0vL29cePGDQAZH45WrVql0f3N0tIS8+bNw6RJk5CcnIxRo0ZhwIABaNSoEWJiYnDw4EEEBgYCABo1aoT+/fsb5VoRERERFTYSiUSjpT2HGiAiIiqcGNTSYunSpUhMTMSlS5cQGhqK5cuXq22XSCSYMmUKBg8enOO8ZTIZNm7ciBkzZuDSpUuIiIjA6tWrNdKVKFECq1evRtOmTbXm07FjRyxYsAA//vgj5HI5/vjjD/zxxx9qaerVq4cNGzbkeSYbIiIiInMhlUo51igREZGZYFBLCysrK2zZsgUnT57En3/+KQ7I7ujoiMaNG2PkyJFo3LhxrvO3t7fHli1bcP78eRw5cgT3799HbGwsbGxsUKVKFXTq1AlDhgzJ9lfDIUOGoEmTJti5cyeuXLmCqKgoyGQyuLm5oVevXhg4cCCbwFOuRUVFQaFQQCqVwtnZ2dTFoTxifZoP1qX5YF2aF9YnERFR/mNQSweJRILevXujd+/eOdqvefPmePLkiV75d+nSBV26dMltEQFkDD7/ww8/5CkPIm0iIiIgl8shk8n44dwMsD7NB+vSfLAuzQvrk4iIKP9xoHgiIiIiIiIiIip0GNQiIiIiIiIiIqJCh0EtIiIiIiIiKrAEQcAff/yBqKgoUxeF8kGNGjVQo0YNjBgxwtRFMbm0tDRs3rwZvXr1QsOGDVG3bl20bdsWp0+fNvixEhISDJ5nfuCYWkRERET00VAoFNi/f7/aOk9PT9jb25uoRESUlZcvX+Kbb75BQEAA2rZta+riEOWrL7/8EqdOnVJbFxkZaZS/WWvWrMGcOXNgaWlp8LyNiUEtIiIiIvpoCIKAp0+fqq2Ty+UmKg0RZefEiRMICAgwdTGI8l1QUJAY0HJwcMCYMWNQoUIFxMfHo169egY9VlpaGk6cOIHWrVujXbt2Bs3b2BjUIiIiIiIiIqIC4cmTJ6YuQoHw7NkzcXny5Mn47LPPjHas69evIyYmBmfPni10QS2OqUVEREREREREVIB8+PBBXK5WrZpRj+Xj4wMA8PPzQ3p6ulGPZWhsqUVEREREHw2JRILOnTurrbO2tjZRaYiIiLRTKBTicpEixgvdCIIAX19fAMD79+9x48YNfPLJJ0Y7nqExqEX0f4oWLYr+/ftrrPtYFStWDBYWFpDJZKYuChkA69N8sC7NB+vSNKRSKVq1amXwfFmfVBDVqFEDADBhwgTMmDEDPj4+2LVrFwIDA/HhwwdUqFABnTt3xujRo+Ho6Kgzn6SkJBw6dAjnz59HYGAgEhMT4ejoiJo1a8LDwwNeXl6wsLDQuf/r16+xZ88eXLp0CS9fvkRaWhqcnJxQu3ZtdO3aFb1799bYf+3atVi3bp3auk6dOgEAXFxc4Ofnl+/XQpnHtGnTMHDgQCxatAiXLl0CALi6umLcuHHo1auXwa4bAKSmpuLcuXM4evQonj9/jqioKNja2qJOnTro06cPPD09IZXq7oCVnp6OY8eO4cyZM3j8+DFiY2Ph4OCAWrVqwdPTE717985y/9zUXV73VV7nZs2aYffu3Vq3TZs2DZMmTcL169exd+9e3LlzB9HR0ShevDiaNm2KESNGoGHDhlle24iICGzbtg3//PMPwsPDYWVlhRo1amDQoEHw9PTE5s2bsXLlSgC57xKZm3tgxIgRuHHjhtq6kSNHiss//fQT+vbtm6vyaPPvv/+qzSzq4+NTqIJaEkEQBFMXgsxPQkKC2hu/Ro0asLW1NWGJiIiIiEiVoT+vPX36FGlpaShSpAiqV69uiCJSHqkGctLS0rBlyxat6UqVKoXt27dr7eIUEBCAWbNm4fXr1zqP4+bmhg0bNsDV1VVj25UrVzB58mQkJSVlWc7t27ejRIkS4jptQS2lvAa1cnstlHmMHTsWvr6+ePHihdr2zZs3i+MR5fW6AUBoaCgmTZqUZUClefPm2LBhg9b3bmhoKCZOnIjAwECd+9etWxcbN25EqVKlNLbltu7yuq++Qa2UlBRs2rQJ2kIaEokEM2fOxPjx47Ue+/r165g4cSISExO1bu/evTtq1KiBNWvWAMhdUCu394C2oJYqQwe1fvrpJ+zYsUN87ezsDH9/f0gkEoMdQ5Wh/1YwqEVGwaAWERERUcHGoJb5UwYAKleujODgYEilUnh5eeGTTz5BYmIijh8/jtu3bwMAHB0dcfLkSbXgxv379zFy5EgxMNGwYUN4eHjA2dkZYWFhOH78uDibaMmSJXH06FGULl1a3D86Ohrdu3dHbGwsLC0t0a9fP9SvXx9FixZFaGgoDh06hFevXgEA2rVrh82bN4v7BgUFITg4GH/99RdOnz4NAFi0aBFKlCiBYsWKoXXr1vl6LVTzKFq0KFJSUtC6dWv06tULMTExuHjxIrZs2QILC4s8XzfltevVqxfevn0LAKhZsyZ69+6NMmXKICQkBPv27RODJR07dsTGjRvV9n/37h0+/fRTREZGAgAaNGgADw8PlCpVCm/fvsXp06fF861UqRKOHDmi9v7PS93lZV/V65xVUEtZjzY2Nujfvz/c3d2RlJSEU6dO4fr16wAyAltHjhxBnTp11PL477//MGzYMCQnJwPIaAHYsWNHyGQy3LhxA3/++SfS0tJgZ2eH+Ph4ADkPauXlHggICEBMTAyuXbsmnv+0adPg5uYGAKhduzbKlSuXo/JkpWPHjggLC1Nbt2/fPjRq1Mhgx1DFoBYVCgxqERERERVsBSGopdrlxZgsLS3h4OCgdVtsbCxSU1PF19bW1rCxsdGaNjo6Os+DKDs7O+dp/5xQBgCAjEDMhg0b1IJBgiDgxx9/FL849+3bFz/99BOAjG5rPXv2RHBwMABg1qxZGq1e0tLSsGjRIhw4cAAA0Lp1a2zdulXcvmPHDjG/VatWoUePHmr7JycnY+jQoXjw4AEA4Pz58xqtllRbbPn6+qJ8+fL5fi205dG+fXv89ttvGq1ZDHHdAOCrr77CsWPHAADDhg3Dt99+q9ZNMCEhAUOGDBFbYe3atQvNmzcXt0+ZMgXnzp0DAMycORNffPGFxjVR7V43ePBgLFy4UNyWl7rLa73rE9QCMlrs7dq1S+Oe+Prrr3H06FHx2n333Xdq2wcPHozbt29DIpFgyZIlGq2eAgICMH78eLVWXDkJahnqHjh69Ci+/vprAJr1q6/Dhw9jz549WluzARnjdmlryVe6dGkUL15cZ75169bFN998o/NZmRVDB7U4+yEREREREZlEqVKl8uXfuHHjdJZh3LhxammXL1+uM22bNm3yXBZTmTp1qkbrJolEgq+//loMFPz555+Ijo4GkDGujvJLeY8ePbR24ypSpAgWLFgAd3d3AMClS5dw//59cbtyfwBitzxVxYoVw+eff46KFSuidevWeP/+fR7PUj85vRbafP7551q7ZxniukVHR+P48eMAgFq1amHevHka417Z2tqqBaFOnTolLj9//hznz58HAHTt2lVrQAsAxo8fj2bNmgEAjh07pna+eam7/Kr3b775RmuQc9KkSeKy6nUFgGvXrokt1AYMGKC1G1+TJk3w5Zdf5qpMgGHuAUPp378/Jk+ejIiICDx+/Fjjn66uqZGRkVrTP378GE2bNsWCBQtyFdAyBga1iEir4OBgPH36VO2PEhVerE/zwbo0H6xL88L6pILM2toaQ4cO1brNwsJC3KZQKODv7w8AuHjxopgmq6CghYWF2nZlMAWA2oDrW7du1dpaxMPDAz4+Pti6dav4Bd+YcnMtMpPJZDrLaojr9s8//4gz3w0ZMkTnQOyNGjXCtGnT8PPPP2P48OHi+rNnz4rXul+/fjrLoLo9JSUFV65cEdfnpe7yo94tLS3Rvn17rdtcXV3FgEtcXJzatr///ltc/uyzz3Tm/+mnn2Y5eUJWDHEPGFKXLl1w7NgxNGjQIE/5ODg4YP369fj2229haWlpmMIZAGc/JCKt4uPjIZfLOYuTmWB9mg/WpflgXZqGQqHAkSNH1NZ1794ddnZ2ecqX9UkFWcOGDWFtba1ze+PGjcXlu3fvok+fPrhz5w4AwN7eXmNMosxatGghLqu2Nunevbs4kPf69etx+vRpdO3aFW3btkWDBg1QpEj+fx3NzbXIzNXVVeeXekNct//++09czm5cI9VWSarlVgoJCckyWKLaSurBgwfw9PQEkLe6y496r1SpUpb52NraIjExEWlpaWrrb968CQAoXry41skAlCwtLdGoUaMcT0gAGOYeMDQXFxfs3bsXv/zyC7Zt26azO6IuDRs2xC+//GLQsbwMhUEtov+TmJiIFStWqK2bPXt2gWlWSURERHknCAIePnyotq5jx44mKg1R/qhUqVKW28uWLSsuKwcmV3ZF02cMKwcHBzg4OCA2NlbcH8joOjdt2jSsXr0aQEaLxk2bNmHTpk2ws7NDq1at0LVrV3Tq1AnFihXL4Vll37KlUaNGcHJyUluXm2uRmb29vc79DXHdVJdzE0R48+aNuPzDDz/ovd+7d+/E5bzUnbHrHUC24/8pA16ZgzfKa6PPda1QoUKuymaIe8AYihQpgrlz56J58+b48ssv9er2KZFIMHbsWMyYMcMkQWh9FMxSERERERGR2VP98m1MWXWV2bJlCzZs2CC+zqoVj7+/f54HijeF7H6ktbKyEpeVg2Mr/1fdlpVixYohNjYWHz58UFs/ceJENGjQAFu2bMHVq1fF6xcfHw9vb294e3ujePHimD9/Pnr27Kn3OQHA5MmTs9yubXDt3FyLzLK6nwxx3WJjY9W251RCQkKO9wE0zzcvdWfMegeQ6wBLTEwMAP2ua24DboZ67xhLu3btcPz4cXh6emp0z8zsxx9/zLYLq6kxqEVERERERCaRnzMB6qJrVkRtMrf6KSxUZ3fUJikpSVxWjiNkZWWF+Ph4vb9oK/PQFgj45JNP8MknnyA6Ohr//PMPLl++jKtXr4qzX75//x6zZs2Cra2t1oHFDSk31yInDHHdVJeTk5Nz3HNEdf979+6haNGiOdpfVV7qriDVu1LRokUhl8v1qp/k5ORcHcOQ7x1jkcvl2Qa0APXWewUVg1pERERE9NGQSCQaX570/TWdqLB6/fp1lttDQ0PFZeUMjSVLlkR8fLzaNl2io6MRHx8PAChdurTOdE5OTvDy8oKXlxcEQcCdO3ewYcMG/PPPPxAEARs3bsxRcOPJkyd6p1XKzbXICUNctxIlSojLr1+/RtWqVXXm8eDBA0ilUri6uopd8lT3f/PmDVxdXXN8Hpnlpe4MXe95UaZMGTx79gzh4eHZptUnjTbGeO8Ymr6D0p87d07r7I0FCWc/JCIiIqKPhlQqRfv27dX+ZdXdjMgc3LlzJ8uBoQMCAsTlZs2aAQDq1asHIGP2uAcPHmSZ/7Vr18TlGjVqAMgYy+jMmTNYt24dduzYobGPRCJBw4YNsWHDBjF4lJsgVU7l5lrkRF6vGwC1wcVv376dZR7ff/89vLy80KVLF3Gd6myCN27cyLYM06dPx4oVK8Rzz0vdFdR6V6pfvz6AjG6IQUFBOtMpFIpsr70uhrgHjM3Hx0djnba/hffv3882EGxqDGoRERERERGZsdevX+Pvv//Wuk0ul2Pfvn0AMr7UtmzZEgDQqVMnMc2WLVt05p2eno5t27aJrzt06AAgI3ixcuVKrF27Fhs2bNDZ7U8mk4nd67R1s5NIJOJyTmds0yY31yIn8nrdAKBNmzaQSjO+qh86dEjneb98+VKcMe+TTz7RWoZdu3ZBLpfrLMe6detw5swZ/P777+J4U3mpO0PVu7F0795dXN67d6/OdN7e3mI3yZwyxD1gTG/fvtUI2HXr1g0XL17E/Pnz1caMEwRBawCsIGFQi4iIiIiIyMwtWLAAL168UFuXnp6OhQsXii1Wxo4dK46/1KVLF1SsWBEAcPr0aWzevFkjz/T0dCxatEgMrDRv3hxNmjQRtysDCLGxsViyZInW4Mz58+cRHBwMAGr7Kql2D1YdQD0vcnotcsIQ1618+fJiy6s7d+6IswiqSkhIwLx588RrOnToUHGbu7u72Mrs8ePHmD9/vtbA1q+//oqbN28CyJgVUjWokpe6M0S9G0vr1q1Rs2ZNAMC+fftw+vRpjTRPnjzB4sWLc30MQ9wDxnT+/HkoFAoAGWOMfffdd/j1119hb2+P4cOH4+DBg2qzhJ47dy5fypVbHFOLiIiIiIjIjEkkErx58wZ9+/bF4MGDUbduXURHR+Po0aNi96hq1arh888/F/exsLDAihUrMGzYMKSmpmLlypXw8/NDjx49ULJkSURERODPP/9EYGAggIxB1ZcuXap23DFjxuDQoUOIiYnBvn37cPfuXXh4eMDFxQWxsbG4deuWGFQoWrQoJkyYoFH2MmXKiMs//fQThg0bBgDo0aNHvl2LnDDEdQOAb7/9FgEBAXj37h1+++03XL9+HT179kTx4sXx4sULHDhwQJw9tF+/fhoBkZ9++gn9+vVDTEwMjh07htu3b6Nv375wdXXFmzdvcPbsWfz7778AMmYS/PHHH2FhYSHun5e6M0S9G4tUKsWiRYswbNgwyOVyzJgxA2fOnEG7du1QtGhR3LlzB4cOHUJKSgosLCyQnp4utprTl6HuAWNRBqmqVKmCVatWiUE+pVq1auHYsWNYuHAh/vzzT9y6dQvR0dEFdqIMBrWISKuSJUsiPT1d7Y8bFV6sT/PBujQfrEvzwvqkgqxRo0YoXbo0Tp8+ja1bt2psb9iwITZu3KjRMsnd3R3bt2/H9OnTERUVhdu3b2sdZ6hWrVpYu3YtypYtq7beyckJv/32GyZOnIj379/j4cOHePjwocb+9vb2WLp0qcaXawBo2bIlHB0dERMTg4CAAAQEBEAikeR6PLzcXoucyOt1AzIGqd+zZw8mTJiAly9f6syjV69eWLhwocb68uXLY+/evZg8eTJevHiBFy9e4JdfftFIZ2dnh6VLl2oExfJSd4aod2OqX78+Vq1ahblz5yIpKQk+Pj4aXez69++PsLAwXL16Va07nr4McQ8YQ3x8PK5fv46+ffti/vz5Ot9D1tbWWLp0KVq2bInvv/8evr6+GDBgQL6UMacY1CIircqVK2fqIpABsT7NB+vSfLAuzQvrkwoyCwsLrFq1Cu3atcMff/yBp0+fAsj4Qu3l5YW+ffuiSBHtXw2bNGmCs2fP4sCBA/D19cWzZ8+QmJiIUqVKoXr16vDy8kLnzp0hk8m07t+wYUOcPn0a+/fvxz///IPg4GAkJCTA1tYW5cuXR4cOHTB48GCULFlS6/7FixfHzp07sXz5cty7dw9JSUlwcnJCRERElrMCGuNa5ERerxuQ0ZLm1KlTOHToELy9vREYGIjExEQ4ODigfv36GDRoUJazBlarVg0nT57EsWPH4OPjgydPniAmJgaWlpaoVKkS2rZti2HDhsHZ2Vnr/nmpu7zWu7F16dIFJ0+exI4dO+Dv74/Xr1/D0tIStWvXxvDhw9GlSxexVaC9vX2ujmGIe8DQbty4gSVLlqB37956pe/Tpw/q16+PY8eOGblkuScRDDHaHlEmCQkJarNY1KhRQ5xitqBKTEzEihUr1NbNnj07XwcuJCIiIuNSKBQ4ceKE2rrOnTsX+M8pxmDoz2tPnz5FWloaihQpgurVqxuiiJRHytnUmjVrht27d5u4NKbFa0E51b17dwQHB6N+/fo4ePCgqYtjEAqFIsfdKfOynzaG/lvBllpERERE9NEQBAF3795VW9emTZuPMqhFRPSxOX78OE6dOgVXV1d88cUXKF26tNZ0QUFB4mQCtWvXzscSGlduA1OGCmgZA4NaRERERERERGT27O3t8c8//wDI+JFjwYIFGmkyzyzp6emZr2WknGFQi4i0unfvHuRyOWQyGdzd3U1dHMoj1qf5YF2aD9aleWF9EhEVfK1atUL58uURGhqKP/74Aw8fPkTXrl1RpkwZfPjwAc+fP8fx48fx9u1bAMCAAQM0BtGngoVBLSIiIiL6aEgkEnzyySdq64oVK2ai0hARUX6ytLTE+vXrMWHCBERERODOnTu4c+eO1rRDhgzBN998k78FpBxjUIvo/1haWsLDw0NjHREREZkPqVSKrl27mroYRERkIjVr1sSZM2dw+PBh+Pr6IjAwELGxsbCxsUHp0qXRsGFD9O/fn61uCwkGtYj+j0wmQ7NmzUxdDCIiIiIig1Cd3fJjx2tBqqysrDBixAiMGDHC1EWhPCq4Q9gTERERERERERHpwKAWEREREREREREVOgxqERERERERERFRocOgFhERERERERERFTocKJ6IiIiIPhoKhQJnzpxRW9euXTvY2tqaqERERESUWwxqEf2fpKQkrF+/Xm3d5MmTYW1tbaISERERkaEJgoCAgAC1dS1atGBQi4iIqBBiUIvo/wiCgKSkJI11H6vKlStDoVBAKmUvZXPA+jQfrEvzwbo0L6xPIiKi/MegFhFpZWdnZ+oikAGxPs0H69J8sC7NC+uTiIgo/zGoRUREREQfDYlEgiZNmqitK1q0qIlKQ0RERHnBoBYRERERfTSkUil69uxp6mIQERGRATCoRURaxcfHi2ODsEtF4cf6NB+sS/PBujQvrE8iIqL8x6AWEWkVHBwMuVwOmUwGd3d3UxeH8oj1aT5Yl+aDdWleWJ9ERET5r0AEtZKSkqBQKACA0ykTEREREREREVG2CkRQq1+/fnjx4gUkEgkePnxo6uIQEREREREREVEBVyCCWgAgCIKpi0BERERERERERIVEgQlqEREREREZm0KhwPnz59XWtWrVCjY2NiYqEREREeUWg1pERERE9NEQBAFXr15VW9e4cWMGtYjIbKSlpWHbtm04efIkQkNDIZfL4eTkhK+++go9evTIc/41atQAADRr1gy7d+/Oc37aCIKAffv2oUuXLnB2djbKMcg8MKhFRERERET5LioqSpws6mMjlUrz/Yt6UFAQ9u3bhxs3biAiIgLJyckoWbIkatasiZ49e6JHjx6QSqVZ5jFixAjcuHFD72P6+vqifPnyWrfFx8dj8+bN8PHxQXh4OKysrNCgQQOMGzcOzZo1yzbvV69eoVevXkhOTsbmzZvRrl07vctl7r788kucOnVKbV1kZCTs7e1NVKKcefnyJb755hsEBASgbdu2pi4OFXAMahERERERUb5TKBRISkqCXC43dVHylUwmg7W1db4dLz09HatWrcKWLVs0xjEODw9HeHg4/Pz8sHfvXqxevRqlS5c2epmio6MxbNgwPH/+XFyXmpqKixcvwt/fHwsXLsTAgQOzzGPBggVITk5Gjx49GNBSERQUJAa0HBwcMGbMGFSoUAHx8fGoV6+eiUunnxMnTiAgIMDUxaBCgkEtIiIiIvpoSCQS1K9fX21d0aJFTVQaksvlSEhIgIWFhamLki/S09Nha2ubr8dctGgR9u/fDwCwsLCAh4cHWrRoARsbG4SGhuLkyZMIDAzEv//+i7Fjx+KPP/7Qq0XP+vXrs01TokQJret//PFHMaDl4eGBdu3aISoqCjt27MC7d++waNEiNG3aFJUrV9a6/59//okrV67AwcEB8+bNy7YcH5Nnz56Jy5MnT8Znn31m8GM8efLE4HkS5RaDWkT/RyaTafzKI5PJTFQaIiIiMgapVAovLy9TF4NUWFhYfDRj5kRFReXr8S5fviwGtKytrfH777+jSZMmamnGjh2L77//HgcPHsTTp0/xyy+/4Pvvv882786dO+eqTO/fv8eZM2cAAIMGDcKiRYvEbV27doWnpyfkcjkOHDiAr776SmP/6Oho/PzzzwCAOXPmoGTJkrkqh7n68OGDuFytWjUTloQofzCopYMgCDh16hSOHDmCR48eISkpCc7OzmjatCmGDRsGd3f3POfv6+uL48eP4969e4iOjoZMJoOLiwtatWqFkSNHoly5clnm0bFjR4SFhel1vEuXLn00HxZyy9LSEu3btzd1MQqMvN7jVLCwPs0H69J8sC7NC+uTCqIdO3aIy9OmTdMIaAEZQcUFCxbg5s2bCA4OxsGDBzFu3DidY2Hl1X///Yf09HQAwMiRI9W2VapUCR07dsTZs2dx584drfv//PPPeP/+PZo1a4b+/fsbpYyFmeo4dUWK8Os+mT/e5VokJydj2rRpuHDhgtr6sLAwhIWF4eTJk5g+fTrGjx+fq/xjY2MxY8YMXL58WW19amoqAgMDERgYiL1792Lx4sU6f0lMSEhAeHh4ro5PRERERETmTaFQiIO6SySSLFsoFilSBL1798aaNWuQnp6O06dP5/q7Tnbev38vLmsLnLm6umqkU7py5QqOHz8OS0tLLFq0CBKJxChlTE1Nxblz53D06FE8f/4cUVFRsLW1RZ06ddCnTx94enrqHFQ/KSkJhw4dwvnz5xEYGIjExEQ4OjqiZs2a8PDwgJeXl87utspZBadNm4ZJkybh+vXr2Lt3L+7cuYPo6GgUL14cTZs2xYgRI9CwYUO1fbUN4q8aNPzpp5/Qt2/fvFwWjXJqm/0wL+ewdu1arFu3Tm1dp06dAAAuLi7w8/PTKEt6ejqOHTuGM2fO4PHjx4iNjYWDgwNq1aoFT09P9O7dW2ddqZZ14MCBWLRoES5dugQg4z7s0qUL1q5dCyCjy2xWQdSEhAR88sknSE1NRdu2bfH777/rTEuGxaCWFvPmzRMDWlWrVsXAgQNRsmRJPHjwAPv370dSUhJWrlyJ0qVLo0+fPjnKW6FQYPLkybh58yYAoFy5cujXrx+qVKmCxMREXLp0CT4+PkhNTcVXX30Fe3t7dOzYUSOfJ0+eiAM9TpgwIdtB/xwcHHJUTiIiIiIiKrxiYmKQnJwMAHBycoKjo2OW6VXHr/Lz8zNaUEt1kPzY2FgUK1ZMbbsymGVlZaW2Pjk5Gd999x0AYOLEiTrH28qr0NBQTJo0SWPcqPfv3+PSpUu4dOkSDh8+jA0bNmiMjxYQEIBZs2bh9evXauujoqIQFRUFf39/7NixAxs2bBCDd7qsWrUKmzZtUhvc/82bN/jrr79w+vRpzJw502h1ZCjGPofQ0FBMnDgRgYGBauvfvn0Lf39/+Pv7Y/fu3di4cSNKlSqlM5+EhAQMGzYML168ENc9fvwYo0aNgoWFBdLT0+Ht7Z1lUOv8+fNITU0FAHh6eub6nCjnGNTK5PLly+JsES1atMDmzZvFwUM9PT3Rv39/DB06FDExMViyZAk6deqUo8Eejx07Jga0WrRogY0bN6o92AcMGAA/Pz/873//Q1paGr7//nu0atVKYwBT1Yesl5eX0R7qRERERERU+GSe6TAnMgcJtPniiy/w8OFDvH//HlZWVihVqhQaNmwIT09PtGjRQud+VapUEZf9/PwwZMgQ8XVqaqrYm6Vq1apq+61duxYhISGoXr06Pv/885yekl6io6MxaNAgvH37FgBQs2ZN9O7dG2XKlEFISAj27duH169f4/r165gzZw42btwo7nv//n18/vnnSEpKAgA0bNgQHh4ecHZ2RlhYGI4fP46nT58iMDAQgwcPxtGjR3XONHnixAkEBwfDxsYG/fv3h7u7O5KSknDq1Clcv34dgiDgl19+QatWrVCnTh0AGa2NYmJicO3aNbH11LRp0+Dm5gYAqF27tlGumS65OYcePXqgVq1aYtALyJjooESJEhrBz3fv3mHo0KGIjIwEADRo0AAeHh4oVaoU3r59i9OnT+P27dv477//MGLECBw5ckTn9/Y9e/YgJSUFrVu3Rq9evRATE4OLFy+id+/eOHnyJC5fvoxr164hJiZGZ3BYWV4rK6tcjzdHucOgVibbtm0DkNEE94cfftAIJlWtWhXz58/HrFmzEBMTg0OHDmH06NF653/gwAEAGbPsrFixQut0vh07dsTw4cOxY8cOREZG4p9//kGXLl3U0iiDWkWLFkXFihVzdI5E+ggPD0d6ejosLCyyHd+NCj7Wp/lgXZoP1qV5YX1SQePg4ACZTAa5XI7o6GixW5Yuqq1UEhMTERkZqTPoAkBtqBa5XI64uDg8e/YMhw4dQosWLbB8+XKtrWOqVKmCWrVq4dGjR/jll1/g4OCANm3a4N27d1i+fLnYyqlnz57iPo8fP8aOHTsglUqxePFio03mtGzZMjGgNWzYMHz77bdqXdeGDx+OIUOGIDAwEH5+frh+/TqaN2+O9PR0zJkzRwxozZo1S6MF0ujRo7Fo0SIcOHAAb9++xTfffIOtW7dqLUdwcDBcXFywa9cutS6aAwcOxNdff42jR49CEAQcOXJEDAgpx0uLi4sT0zdu3BjNmzc3wJXJudycQ9WqVVG1alU8evRITN+qVSut3VQXLFggBrRmzpyJL774Qm37yJEjsXnzZqxcuRIvXrzA8uXLsXDhQq1lTUlJQfv27fHbb7+JXVpHjRoFAOjVqxcuX74MuVyO8+fPa22tFRsbiytXrgAAOnToABsbG30vExmA9s6lH6mYmBjxZmzTpo3OJqE9evQQp6f19vbWO/+EhATcu3cPANCyZcssB27v3r27uHz37l2N7cqgVrVq1XT2ESbKi7dv3+LNmzfiH3Yq3Fif5oN1aT5Yl6ahUChw4cIFtX/KL6J5wfqkgqZIkSJo0KABgIxWW8ePH9eZNj09HSdOnFBbpxocUeXg4AAPDw/MmTMHK1aswKpVq/DVV1+hXbt2YkDg2rVrGDx4sM7ZHufPnw+ZTIa4uDjMmDEDTZo0Qbdu3XD+/HkAGeMoKYdgUSgU+Pbbb5GWlobBgwdrjMNkKNHR0eI1qlWrFubNm6fxPcvW1lYtMKLs4ePj44Pg4GAAGd8VtXWpK1KkCBYsWCBOKnHp0iXcv39fZ3m++eYbrcGcSZMmictZ7V8QGOscnj9/Lt4rXbt21QhoKY0fPx7NmjUDkNFjKjo6Wmeen3/+udYx2rp06SI2dNH13d/HxwdyuRwAux6aAltqqQgICBBni8iqyaxUKkXTpk3h7e2Nu3fvZvurh9L79+9Rr149REREqDW71UY1v8x/UARBwNOnTwFAbE5Keffhwwds375dbd3o0aM1+vMTERFR4SUIAi5evKi2rl69elpbzxMVdgMHDhSHPlm1ahXq1aunERRSKBRYvHgxnj9/rrY+ISFBI7+ZM2eiTp06sLS01Ng2evRo3L9/H1OnTkV4eDjCwsLwzTffaB0wu3HjxtiyZQsWLFig1kJMJpNh8ODBmDt3rrhu9+7duH//PkqXLo1Zs2aJ6y9evIht27bhwYMHkMvlqFSpEvr27Ythw4blata/f/75R/wuOGTIEJ2DuTdq1AjTpk1D2bJlxS59qs+UcePG6TyGhYUFxo0bh6lTpwLIGIdJ29jIWc3K7urqChsbGyQmJuoMPBYExjyHs2fPit1r+/Xrl2Xafv364caNG0hJScGVK1e0Bp1kMpnOGWxtbW3RoUMHeHt76+yCeObMGQCAo6Mj2rRpk+PzobxhUEuFMlAEZB8sqlatGoCMD0aBgYFo2rRptvm7urri0KFDepUlKChIXM78pgkLCxP/yFSvXh1Axh+dx48fIzExEaVKlYKbm5vOBzFpp1AoNH5NUp0Sl4iIiIioMPH09MTx48dx6dIlJCUlYfjw4fDw8ECLFi1gY2OD0NBQnDx5Ek+ePIGTkxNSUlKQmJgIAFp7g2TXSqpevXrYsmULvLy8kJqain/++Qf37t3TGjBo0aIFzp49i6dPnyI8PBxWVlaoXbu22rhHERERWL16NQDgu+++E7dt27YNS5cuBZAxHIulpSUeP36MJUuW4Pr161i3bl2Oe7P8999/4nKjRo2yTKva0ggA7ty5AwCwt7cXu9Lpotp4QlcrpUqVKmUZmLO1tUViYiLS0tKyPJYpGfMcVHsyhYSEiK22tFGdRfPBgwdag1qurq5aA7VKvXr1gre3t9YuiNHR0bh27RqAjFZjWeVDxpHvQa2goCD8/PPPWLlyJezt7XWmk8vlmDt3LgYPHpxv/YDDwsLEZRcXlyzTlilTRm0/fYJaOXHkyBFxuX79+mrbVAeJl0qlmDJlCvz8/JCeni6ud3R0xPDhw/H5559rDKpHRERERETmTyqVYs2aNfjqq69w7tw5pKWl4eTJkzh58qRaOmdnZ2zYsAFjx44V12X1XS0rVatWRZ8+fcQf8y9cuKCzFQyQ8SO98of6zBYuXIikpCR06dJFHHz7wYMHWLFiBYCMVlHTpk2DTCbDmTNnMHfuXPj6+mLv3r0YMWJEjsqt2nU4p+PiKbu1aetql5mDgwMcHBwQGxurs7tydhORKYNFeZkMwNiMeQ5v3rwRl3/44Qe993v37p3W9dnd623bthXrLPMsiGfPnhW/h7ProWnk62BMz58/x6hRo3Dp0iWMGTNGa5NWAEhLS8P06dNx5swZTJgwAdevX8+X8qn2sS1evHiWaVVbT8XExBi0HP7+/vj7778BACVKlECrVq3UtqsGtX7++WecO3dOLaClLNO6deswYsSILPsOExEREX1MJBIJateurfaPv6yTObO1tcW6deuwfft29OrVC+XLl0exYsVgbW0NNzc3TJ48GadOnUKtWrXEVloSiQQlS5bM9TFVGyWo9kDJidOnT+Pvv/+Gra0t5s+fL67fs2cP0tPTUblyZcyePRuWlpaQSCTo0aMHvLy8AAA7d+7M8fFiY2PF5Zw2ClBeN32HLVHm/+HDB63bc9N9sqAx5jnoiiNkR1lPmWX3N8DS0hLdunUDALELopJy1sMyZcoYvKEL6Sdf3y1FixYVZ6p48OABxowZI842qKRQKDBjxgz4+voCyOh3nF9jGiUnJ6uVNSuqN77qfnkVERGBL7/8Unw9ceJEjYeqalBLJpNh9OjR8PLygqurqzj96Jo1axAVFYV79+5hxowZ2L59OweUJyIioo+eVCrFgAEDTF0MonzXsmVLtGzZUuf2J0+eiD+UV6pUCXZ2drk+lpOTk7gcHx+f4/3j4uKwZMkSABkzCarOwqgcI6xbt24aA3t3794dhw4dQkhISLazN2am+p0rOTk5RzPYWVlZIT4+XmeQKjPl5BTsUZM7qtft3r172X53NwRPT08cPHhQrQtiVFQUAgICAGRMEMDv26aRr0EtFxcX7Ny5EyNHjkRERATu37+PsWPHqgWFZsyYgXPnzgHI+FVh69atWTZXNSTV/rz6RGu17ZcX0dHRGDNmjNgsslWrVhg+fLhGOuXUpUWLFsW2bdvE6VsBoFSpUhgwYADatm2LgQMH4vXr17h27RpOnz5t0uaQz549y/JNbm1tLY5TprqPPrMRlS5dWu0PVnp6Oh48eKBXuapWrZrlH6yHDx9qfUhKpVLUrVtXbV1oaKhereIcHBxQsWJFtXWPHj0SZ8zISvny5dU+JCQnJyMwMDDb/YCMWVxUpz+OiopCRESEzvTK8mi7v4ODg/X6gFKyZEmN5tvKGUCzU7lyZbUPU/Hx8eKsMtnJ/MwIDw/XazYqOzs7VK5cWW1dYGCgXoHrsmXLqs1oKpfL1aYjzoqbm5vaH+fo6GiEhoZmu59MJkOtWrXU1r18+VLtl0bV8ij/v3fvHpycnDSayP/33396jSNXoUIFtdaqiYmJev8KW6dOHbXx/iIjI8VnWlYKyjMiJiYGr169ynY/Yz4jMtelqvx8RigVK1ZMYxxKPiM0aXtGZFWXqvLjGZEZnxG5/xyRXX0CBedzREpKSrb70Mfjxo0b4nJeW5yojmOUm+DY8uXLERUVhYYNG2LIkCFq25TPBG0Bq7Jly4rLr1+/zlFQSzm7vXLfqlWr6kz74MEDSKVSuLq6wtbWFiVLlkR8fLxez+bo6Gjxb2ROykf/n2pdvXnzBq6urkY/ZtOmTVGmTBm8fv0a586dQ//+/eHj4yP+XezVq5fRy0Da5Xu7RldXV+zatQsjRoxAZGSkxh99Hx8fAICNjQ1+//13jfGkjEn1A6NcLs8ysJWamiouG6LJelRUFEaPHi3OOlKxYkWsWLFC67Si+/fvR0JCAuLj49Ue3KpKly6Nb7/9FlOmTAEAHDx40KRBrfT0dI0ukqq0BU7S0tL0+oCmLV999gOy78Mtl8u1BuO0rdO3vNrOVfXLTVYyf5kQBCHX56pQKPTaV9s1yo+6yXyu+pZXVznMsW600adu5HK5znPV5wtr5vLm5Fwzy0vdmOIZoe+55tczIvM6U9yH2iYl4TNCk7a6yZyPLvn9jFCmy4zPCE26Pkdkt39B+RxBpCQIAo4ePSq+zmtrRtXhYzL/GJCdgIAAHDp0CDKZDD/88IPW70OA9q57urqX6aNOnTriOGC3b9/OMqj1/fffiz8SXr16FfXq1UNwcDDi4uLw4MGDLAeLVw4qDgA1atTIdXk/Zu7u7rhy5QqAjGBsVkGta9euYf/+/Shfvjzat2+v1iAkJ6RSKXr27ImtW7fi2rVrSE5Ohre3NwCgSpUq4kyYlP9M0llXNbClHORN+bASBEEMaGU3u4ahqU7lnJKSondQK6/NHV+9eoVx48bh5cuXADJ+Ydi+fbvaL2mZ2draZjv4XseOHWFra4uEhATcvn0bCoXCZE0iLSwssjy2tj7XRYoUUWs1kFXememzHwCdfyRV89GWl7Zz0be82s5V3/JmPq5EIsn1uUql0iz3VX441naN8qNuMp9rduXNrhx5qZusArKq5VNlzLpRLVtmuupG9cuOTCbTea76fOHJXN6cnGtmeakbUzwj9D1XYz4jMtdlVsctaPdhZh/7MyJzPrqYom74jMjb54js9i8onyOIlPbv34+HDx8CAJo1a5annjLBwcE4fvy4+LpDhw5675uamor58+dDEAR8/vnnGi0wgYwf70NCQvDs2TONbarrctoKqk2bNpBKpVAoFDh06BD69eun9T3+8uVLcdbCTz75BADQqVMnnDhxAgCwZcsWrFq1Susx0tPT1Ybfycm1+ZioXndtPx506tQJv/32GwBg165d6N27t87n4Lp168Quqw0aNMhTuXr16oWtW7eKAa1bt24B4ADxpmayEegqVKggBraioqIA/P+A1ubNm7OdRtUYVGc9iImJybKprOrgcFkFn7Jz7949TJgwQexyqOyimd3si/qwsLBAxYoV8eDBA6SmpiImJiZPZc2LatWqZRuE07ZPblhYWBisy2rt2rX17k9fvnx5vWY80SZz9xB9FStWLNfn6uzsrNYVJrPg4GCkpaVp/fCc01/cVOW2vHZ2drnet1y5cjmexUYpc7cqfclkslyX18nJKdfv1cxdUpRU61NX/WXuCqMvGxubXJ9r5m4/OWGKZ4Sjo6Nat6qcMNQzQp+6VDLmMyIrfEZkTyaTwcnJSe+6VGWMZ4Q++IzImp2dXa7qU8kUnyPyYxwaMr07d+7onBBBEAQcPHhQnEHO2toaP/74o9Z8du3ahbp162b5Pe3hw4eYMmWK2LW1devWOep589tvv+H58+eoXLkyJk6cqDVNkyZNEBISgtOnT2P69OniMyI9PR179uwBkPF+Up2tXh/ly5dHly5dcPbsWdy5cwerV6/GjBkz1NIkJCRg3rx5YqBl6NChAIAuXbqgYsWKePnyJU6fPo1atWph/Pjxavump6dj0aJFYkCsefPmuW41ZO5Ux9SOjY3VaInl7u6OZs2a4caNG3j8+DHmz5+PxYsXawS2fv31VzGgValSpTwHEWvVqoVq1arh2bNn+OWXX8Qftdj10LRMOq1CxYoV1QJbVlZW2LRpExo3bmyS8lSqVElcjoiIyLIZ4+vXr8Xl3H4Q9vf3x9SpU8XxHqpVq4Zt27YZtG91bn8ZJcrLl1IqeFif5oN1aT5Yl+aF9UkF1caNG/Hvv/+ibdu2qFevHkqVKgW5XI6QkBD4+PiIk1AVK1YMa9asQYUKFbTmc+3aNfz444+oUKECPvnkE7i5ucHR0RFSqRRv3rzBtWvXcPHiRbFFp4uLizjYuz6CgoKwefNmSCQSLF68WGevmaFDh+L48eNITk7G8OHDMXr0aNjY2ODYsWPieHgjR47MySUSffvttwgICMC7d+/w22+/4fr16+jZsyeKFy+OFy9e4MCBA2JPo379+olBKQsLC6xYsQLDhg1DamoqVq5cCT8/P/To0QMlS5ZEREQE/vzzT3GcS0dHRyxdujRXZcyr69evi9enWbNm2L17t0nKkRXVgORPP/2EYcOGAcgYjF11fb9+/RATE4Njx47h9u3b6Nu3L1xdXfHmzRucPXsW//77L4CMFq4//vij1pa5OeXp6YnVq1eLY7u5u7vrfM8AheN6F3Ymnyu0UqVK+OOPPxAQEICaNWvm+pcmQ1DtN/306VM0a9ZMZ9qnT58CyGgaWb169Rwfy8/PD1OnThW7kdSvXx+bNm1C8eLFs9wvJCQEfn5+ePfuHRo1aoT27dtnmV75ZpPJZHBwcMhxOYmIiIjMiUKhwNWrV9XWNWrUKN9m2yYyhbi4OJw6dQqnTp3Sur1atWpYvHixXr1lXr16le2kKa1bt8aSJUv0/rFeEATMnz8fcrkcAwYMyHKgend3d0ydOhWrV6/Gq1evsHDhQrXtHTp00DrZlj5KlSqFPXv2YMKECXj58iVu376N27dva6Tr1auXxnHd3d2xfft2TJ8+HVFRUTr3rVWrFtauXatzbGTKmKnT0dERMTExCAgIQEBAACQSCdq3by8OGVS+fHns3bsXkydPxosXL/DixQv88ssvGnnZ2dlh6dKlBmsVpwxqqb4m0zJ5UAvIGGMrP2YsyE7Dhg0hk8kgl8tx/fp1MSKcWXp6utiMsWbNmmrdFvVx48YNTJs2TQxotWrVCuvWrVMb00uXN2/eiL94dOzYMcugVnBwsDhzVb169QwSmSYiIiIqzARBwPnz59XW1axZk0EtE0pPTxeHIzF3+ozBZ2jTpk1DvXr1cPPmTYSGhuLdu3eQSCQoUaIE6tSpgy5duqB79+5ah5xQ9dVXX6FDhw64d+8eHj9+jHfv3uH9+/eQy+WwtbWFi4sLGjZsiF69euV4sq8DBw7g1q1bKFmyJObOnZtt+okTJ8LNzQ07duzAw4cPIZfLUalSJfTt2xfDhw/P0/eeKlWq4NSpUzh06BC8vb0RGBiIxMREODg4oH79+hg0aBDatWundd8mTZrg7NmzOHDgAHx9ffHs2TMkJiaiVKlSqF69Ory8vNC5c2f2pslG8eLFsXPnTixfvhz37t1DUlISnJycEBERodYQpVq1ajh58iSOHTsmtjqMiYmBpaUlKlWqhLZt22LYsGG5Hk5BG1dXVzRs2BC3b9+GhYWFWusxMg2JkN30bx+ZcePGwd/fHzKZDD4+Plq7Fp44cQJz5swBAMycORNffPGF3vm/e/cOnp6e4pTNHTp0wK+//qr3DIopKSlo2bIlEhISsiwjAMydO1ccpHHhwoUYPHiw3uXMq4SEBLEpM5Axs0dOx9TKb4mJiVixYoXautmzZ+s9phYREREVfOnp6eL4QUpTpkxRmyL+Y2Hoz2tPnz4VxxXTpydDZGQkkpKScj07ZmElk8lgbW1t0CFHiIgKi5z+rchOgWipVZCMGjUK/v7+kMvlmDlzJrZs2aL2x/3Zs2fi4Ik2NjY5nu528eLFYkDL3d0da9as0TugBWQM6Dlw4EBs27YNcrkcs2bNwu+//67xAWTr1q1iQKtSpUr49NNPc1ROosDAQMjlcshkslwPhEwFB+vTfLAuzQfr0rywPnNOKpXq1VPBHHEmSiIiw2BQK5PWrVujW7duOHv2LG7fvo0+ffpgyJAhKFu2LB4+fIh9+/YhMTERQEZLqMyzD2U1EFxQUBC8vb3F1927d4e/v3+2ZXJ0dFTrAzxp0iT8/fffCA4Oxr///ouePXti0KBBqFSpEt6/f4/Tp08jICAAQEbgbcWKFZzdhnIsOTkZcrncJM3kyfBYn+aDdWk+WJemoW08VEN0BWJ95pwhuwQREdHHiUEtLZYuXYrExERcunQJoaGhWL58udp2iUSCKVOm5Lg7359//gnV3p7Lli3Ta7/MwTE7Ozts374dU6ZMwX///YfXr19jzZo1GvuVLVsWK1euRL169XJUzo9VkSJFNAYQzG5sASIiIipcpFIphg4daupiEBERkQHwG7sWVlZW2LJlC06ePIk///wTjx49Qnx8PBwdHdG4cWOMHDkSjRs3znG+yilcDaFs2bI4cOAATp06hb/++gsPHjxAXFwcbG1tUalSJXTt2hWDBg3ieFA5ULRoUfTs2dPUxSAiIiIiIiIiPTCopYNEIkHv3r3Ru3fvHO3XvHlztQE3VW3atMkQRRMVKVIEXl5e8PLyMmi+REREREREREQFHUcoJCIiIiIiIiKiQodBLSIiIiIiIiIiKnQY1CIiIiIiIiIiokKHY2oRERER0UdDEATcvHlTbZ27uzuKFStmohIRERFRbjGoRfR/kpOTsX//frV1gwcP5odcIiIiMyIIAs6cOaO2rmrVqvx7T0REVAgxqEUfldGjR+PVq1eQSCQ4f/682rb09HS8fPlSY93HqmzZslAoFJBK2UvZHLA+zQfr0nywLs0L65OIiCj/MahFH5XXr18jLCwMEonE1EUp8JydnU1dBDIg1qf5YF2aD9aleWF9EhER5T8GteijUqpUKaSkpJi6GERERGRCFStWVHtdpAg/EhuChYUF0tLSkJ6eDkEQ+CMiERGpEQRB7A1lYWFhkDz5F5w+Kjt37jR1EYiIiMiEpFIpRo0aZepimCVLS0ukpKRAEAQkJSXBxsbG1EUiIqICJCkpCYIgAMj4m2EI7PRPRFrJ5XKkpqZCLpebuihkAKxP88G6NB+sS/PC+gTs7e3F5ejoaPGLCxERkSAIiI6OFl+r/s3IC7bUIrOSmJio8avg69ev8ebNG7i7u5uoVIXTo0ePIJfLIZPJeO3MAOvTfLAuzQfr0rywPgFbW1tIJBIIgoCEhASEhobCyckJ1tbW7IpIRPSRUrbejY6ORkJCAgBAIpHA1tbWIPmbLKgVFxeHgIAA3L17Fy9evEBERATi4+ORmpqKYsWKwdbWFuXLl0flypXRoEEDNG7cGFZWVqYqLhVwR44cwaZNm1C3bl388ssvatv8/PywePFiuLq6Ys6cOejSpYuJSklERERkvqRSKVxcXBAWFiYGthISEiCRSAw2dgoRERUuynEWlSQSCVxcXAw2W3C+BrVSU1Nx+vRpHDt2DLdu3RIHCNPl3r174rKFhQVat26N3r17o0uXLpDJZMYuLhUSP/zwA/bu3QtBEGBtba2xPTQ0FIIg4NWrV5g6dSq+/PJLjqVBREREZAR2dnZqgS0g41f6tLQ0E5eMiIhMTRnQsrOzM1ie+RLUSkxMxI4dO7Br1y7ExcUBQI772KelpeHixYu4ePEiSpYsiREjRmDYsGEcgPIj5+/vjz179gAA6tati88//1wjzf/+9z80a9YMGzZswL1797B8+XI0btwY9erVy+/iEhEREZk9Ozs7uLm5ISEhAXFxcUhNTc32x2wiIjJPFhYWsLS0hL29PWxtbQ3WQkvJqEEtQRDwxx9/4Ndff0VcXJxaIKtq1aqoWbMmatSogSpVqsDR0RG2trawsbFBSkoKkpKSEBERgdDQUDx8+BD37t1DSEgIACAqKgqrVq3Cjh07MGHCBAwfPtzgF4YKhz/++AMA0KpVK/z2229aW/BZWVmhffv2aNOmDUaNGoWbN29i586dWLFiRX4Xl4iIiExMEATcvXtXbV3NmjVRrFgxE5XIPEmlUtjb2xtsIGAiIiJtjBbUevLkCb7++ms8evQIgiBAIpGgZcuW8PT0RKtWrVC6dOls88g8yGZISAguXLiAkydP4t69e4iOjsZPP/2Eo0ePYvHixWx58xG6d+8eJBIJpk6dmm2XVAsLC/zvf//DyJEjcePGjXwqIRERERUkgiDg+PHjautcXV0Z1CIiIiqEjBLU2rZtG1avXo3U1FRYW1tj6NChGDJkCFxcXPKUr6urK0aMGIERI0YgKCgIO3fuxIkTJ/D48WMMGTIE06ZN09r9jMxXbGwsAKBixYp6pa9WrRoA4P3790YrExEREREREREZn1H67C1btgwKhQLDhw/H+fPnMXv27DwHtDKrWrUqFi1ahPPnz4vdDzPPekfmz9nZGQDw+vVrvdIrg1mGmj6UiIiIiIiIiEzDKEGttm3b4uTJk/j222/h5ORkjEOISpYsiW+//RYnT55Eu3btjHosKnhq1KgBADh48KBe6Y8dOwYAqFWrltHKRERERAVbuXLl1P5ZWFiYukhERESUC0bpfrh582ZjZJulihUr4rfffsv345Jp9e3bFxcuXMC+ffvg6uqK0aNH60x78OBBbNu2DRKJBL1799bYbmFhgdq1a2usIyIiIvMhlUo5XAUREZGZkAiqUxISGUhCQgKePHkivq5Ro4ZRuvwJgoBx48bh8uXLkEgkcHV1Rdu2bVG5cmUUK1YMycnJePXqFS5duoTnz59DEAQ0btwYe/bsgUQiMXh5zElycrI4yQMHzy38WJ/mg3VpPliX5qUw1md+fV4jIiIyFga1yCjy80NSXFwcZsyYgcuXLwOA1mCV8jZv3rw51qxZA0dHR6OUhYiIiKiwYFCLiIgKO6N0PyTKT/b29ti6dSvOnz+PkydP4tq1a+KsiABgY2ODhg0bom/fvvDw8GALLSIiIiIiIiIzUGiCWn/++ae47OXlZbJyUMHVuXNndO7cGQCQkpKCmJgYWFtbw87OzsQlIyIiIiIiIiJDKzRBra+++kpsYcOgFmmTkpKCt2/fwsXFBUWLFkXp0qUBAEFBQXjy5Anat28Pa2trE5ey8IiOjoZCoYBUKjX6LKZkfKxP88G6NB+sS/PC+iQiIsp/hSaoBUAcfJNIVXp6OtavX49du3ahZcuW+PXXX9W2X7lyBUuWLIG1tTX+97//YdSoUaYpaCETGhoKuVwOmUzGD+dmgPVpPliX5oN1aRqCIODhw4dq66pVq4aiRYvmKV/WJxERUf4rVEEtIm1mzJiBc+fOQRAEPH/+XGP727dvIQgCEhMTsXTpUkRERODrr7/WSJecnIyTJ0+qrevVq1ehmcGIiIiIsicIAg4fPqy2bsqUKXkOahEREVH+k5q6APp6/PgxHj9+jEePHpm6KFSA/PXXX/Dx8YEgCOjUqROWLFmikWbGjBk4deoUunTpAkEQsGvXLly9elUjXXp6Oh4+fKj2Lz09PT9Og4iIiIiIiIhyyChBrXv37iE8PNwYWROpOXz4MCQSCXr27In169fD3d1da7pq1aph7dq16Nq1KwRBwJ49e/K5pERERERERERkSEYJas2ZMwedOnXC8uXL1daHh4cjPDwciYmJxjgsfYSUY2J8/vnneqUfN24cAOD27dtGKxMREREVbM7Ozmr/LCwsTF0kIiIiygWjjKn15s0bAIC9vb3a+o4dO0IikWDu3LkYPXq0MQ5NH5mkpCQAQNmyZfVKX6FCBQBAXFyc0cpEREREBZdUKsWkSZNMXQwiIiIyAKO01JLL5QD+f8CByFhKly4NAHj58qVe6V+/fg0AcHR0NFaRiIiIiIiIiCgfGCWopZzG2NfXl4EtMqq6desCALZv365XeuVYWvXq1TNamYiIiIiIiIjI+IzS/dDd3R3nz59HUFAQOnTogMqVK8PS0lLcvm/fPvz999+5ylsikWDnzp2GKioVcgMGDIC3tze8vb1RokQJzJo1C1ZWVhrpUlNTsX79enFg+f79+5ugtERERERERERkKEYJan322Wfw8/ODIAiIi4vD3bt3xW2CICAkJAQhISE5zlcQBEgkEkMWlQq5Vq1awcvLC3/++Sf27t2LY8eOoVmzZqhUqRKsrKzw4cMHhISE4ObNm+I4Wl26dEGnTp1MXPKCTyaTqf1PhRvr03ywLs0H69K8sD6JiIjyn1GCWk2bNsXKlSuxfPlyhIeHa2wXBMEYh6WP1KJFi2BpaYlDhw4hMTERFy5c0EijvOe8vLywcOHCfC5h4VSrVi1TF4EMiPVpPliX5oN1aV5Yn0RERPnPKEEtAPDw8ICHhwfi4uKQmJiI9PR0dO7cGRKJBF988QUGDBhgrEPTR8bS0hKLFi3CoEGD8Ndff+HatWuIjIxEbGwsrKysUKZMGTRq1Aj9+vWDu7u7qYtLREREJiQIAp4+faq2rlKlSmpDZRAREVHhYLSglpK9vT3s7e3V1jk4OMDFxcXYh6aPTJ06dVCnTh1TF4OIiIgKMEEQsG/fPrV1U6ZMQYkSJUxUIiIiIsotowS17t27h5IlS6JcuXJq65s2bQoAKFOmjDEOS0REREREREREHwmjBLXmzJmDV69eYcyYMZgzZ464funSpQAyWmoRmUpUVBR8fHwwbNgwUxelQHv58iXS0tJQpEgRVKxY0dTFoTxifZoP1qX5YF2aF9YnERFR/jNKUOvNmzcAoNHtsGPHjpBKpZgzZw5Gjx5tjEPTRygxMRE7d+6Ev78/oqOjkZ6erjEZgSAISE1NRWJiIpKTkyGRSBjUykZsbCzkcjlncTITrE/zwbo0H6xL08n8A6tUKs1znqxPIiKi/GeUoJZcLgcAJCUlaWzjzIdkSB8+fMDQoUMRGBgIQPf9JZFI1LZp+/BqYWGh8cuqhYWFAUtLREREpiaVSjF9+nRTF4OIiIgMwChBLScnJ0RFRcHX1xdffPEFrK2tjXEYIuzfvx9PnjwBAJQuXRr16tXD27dvcefOHdSuXRtVq1bF+/fvcefOHSQkJEAikWDw4MEYP368Rl7FihXDqFGj8vkMiIiIiIiIiCg3jBLUcnd3x/nz5xEUFIQOHTqgcuXKatMk79u3D3///Xeu8pZIJNi5c6ehikqFnK+vLwCgYcOG2L59O4oVK4b79+9jwIABKFWqFJYvXw4ASE5OxsKFC3Hs2DH4+flh5syZpiw2EREREREREeWRUYJan332Gfz8/CAIAuLi4nD37l1xmyAICAkJQUhISI7zFQQBEonEkEWlQi4oKAgSiQQTJ05EsWLFAAC1a9dG0aJFERAQIKYrVqwYlixZgpcvX+L27ds4cOAAxo0bZ6piExEREREREVEe5X1UTC2aNm2KlStXomzZshAEQfynpLouJ/+IMouPjwcAVK9eXVxnYWGBypUrIzExES9evBDXSyQSjB49GoIgiC28iIiIiIiIiKhwMkpLLQDw8PCAh4cH4uLikJiYiPT0dHTu3BkSiQRffPEFBgwYYKxD00fEysoKCQkJKFq0qNr6ihUr4smTJwgKCkKlSpXE9fXq1QMABAcH52cxiYiIiIiIiMjAjBbUUrK3t4e9vb3aOgcHB7i4uBj70PQRKFWqFBISEhAaGgonJydxfYUKFQAAT58+RadOncT1ytkMExIS8regREREVCAIgoCXL1+qrXNxcYFMJjNRiYiIiCi3jB7UUtW0aVMAQJkyZfLzsGTGGjdujKCgIOzatQsrVqwQ11epUgWCIODq1auYMGGCuP7+/fsAII6/pSolJQXnz59XW9e5c2eNVmBERERUeAmCoDHp0JQpU1CiRAkTlYiIiIhyK1+DWrt3787Pw9FHoG/fvjh48CD++usvxMTE4IsvvkDTpk3RvHlzSCQS3LhxAzt37sSgQYPw7Nkz/Pzzz5BIJGpjcCmlpaWpDS4PAO3bt/9og1pOTk5IS0tDkSL5+pggI2F9mg/WpflgXZoX1icREVH+M8pf3fDwcHG5XLlyWtfnhWqe9HFr0KABBgwYgEOHDuHy5csoXrw4mjZtinLlyqFLly7w8fHBzz//jJ9//hnA/59Bs2/fviYuecFXvnx5UxeBDIj1aT5Yl+aDdWleWJ9ERET5zyhBrY4dO0IikUAikeDhw4ca6/Mic55ECxcuRKVKlbB9+3a4urqK6xcvXoywsDA8ePBALX2PHj04UQEREdFHzNraWu11Xj+fEhERkWkYrX20IAg5Wk+UW1KpFGPHjsWYMWOQmJgorndwcMCBAwfg7e2N27dvw8LCAq1bt0bbtm1NWFoiIiIyJalUijlz5pi6GERERGQARglqKQeE13d9QSQIAk6dOoUjR47g0aNHSEpKgrOzM5o2bYphw4bB3d09z/n7+vri+PHjuHfvHqKjoyGTyeDi4oJWrVph5MiRenWzDAwMxPbt23H9+nW8efMGdnZ2qFq1Kry8vPDpp5+Ks/19DCQSCWxtbdXWFSlSBJ6envD09DRRqYiIiIiIiIjIGCQCm05pSE5OxrRp03DhwgWt2y0sLDB9+nSMHz8+V/nHxsZixowZuHz5ss40lpaWWLx4Mby8vHSmOXToEBYuXAi5XK51e5MmTbB+/Xo4Ojrmqpx5kZCQgCdPnoiva9SooRFwKmgSExPVZlAEgNmzZ8PGxsZEJTKt//77D3K5HDKZDHXr1jV1cSiPWJ/mg3VpPliX5qUw1mdh/LxGRESkitOzaDFv3jwxoFW1alUMHDgQJUuWxIMHD7B//34kJSVh5cqVKF26NPr06ZOjvBUKBSZPnoybN28CyBj0vl+/fqhSpQoSExNx6dIl+Pj4IDU1FV999RXs7e3RsWNHjXz8/f0xf/58CIIAKysrDB48GHXr1sW7d+9w+PBhBAYGIiAgADNnzsSWLVsglUrzfF3o46JQKMR/VPixPs0H69J8sC7NC+uTiIgo/zGolcnly5dx6tQpAECLFi2wefNmFC1aFADg6emJ/v37Y+jQoYiJicGSJUvQqVOnHP2idezYMTGg1aJFC2zcuFFtsNIBAwbAz88P//vf/5CWlobvv/8erVq1EssAAKmpqfj+++8hCAKsra2xZ88e1KlTR9w+ZMgQzJw5E+fOncPly5dx+vRpdr8jIiIiIiIiIrPC5juZbNu2DUDGWEw//PCDWjAJyGi5NX/+fABATEwMDh06lKP8Dxw4AAAoWrQoVqxYoTH7DpAxS+Tw4cMBAJGRkfjnn3/Utvv4+CA0NBQAMG7cOLWAFpDRdXHp0qVit8NNmzblqIxERERERERERAWdUVpqhYeHGyNbkT4DqOdGTEwMrly5AgBo06YNXF1dtabr0aMHlixZgnfv3sHb2xujR4/WK/+EhATcu3cPANCyZUs4OzvrTNu9e3fs2LEDAHD37l106dJF3Hb69GkAGQOjDxkyROv+NjY26Nu3L7Zt24bAwEAEBwejcuXKepWTiIiIyFwJgqDxWbV06dIoUoQdGIiIiAobo/z17tixIyQSiTGyhkQiwcOHD42Sd0BAgDgOQosWLXSmk0qlaNq0Kby9vXH37l3ExsbCwcEh2/zfv3+PevXqISIiAlWqVMkyrWp+cXFxatuU3Rdr1KgBJycnnXm0aNFCbHn2zz//MKhFREREHz1BELBlyxa1dVOmTEGJEiVMVCIiIiLKLaP9JFUYJ1V8+vSpuOzm5pZl2mrVqgHIOM/AwEA0bdo02/xdXV317q4YFBQkLqvOXhgZGSkGuapXr55lHlWrVhWXHz9+rNdxiYiIiIiIiIgKA6MEtbIL8AQGBiIuLg6CIEAqlaJ27dpwc3ND8eLFIZPJkJCQgKCgINy5cwcfPnyARCJBxYoV0bZtW2MUVxQWFiYuu7i4ZJm2TJkyavvpE9TKiSNHjojL9evXF5eVY2kB2ZexdOnSkEqlUCgURu8Saipz5syBtbU1Ro4cqRbEIyIiIiIiIiLzZpSg1u7du3VuO3jwoDhzX9++fTFt2jSULl1aa9qEhAT8/vvv+P333/Hy5UsUL14cEydONEaRAQDR0dHicvHixbNMq9p6KiYmxqDl8Pf3x99//w0AKFGiBFq1aiVue//+vd5llMlksLa2RkJCgsHLWFBcvXoV7969Q/v27RnUIiIiIr3IZDJTF4GIiIgMIF9HxHz69CkWL14MQRAwefJk/O9//8syva2tLWbMmIFSpUph8eLFWLt2LZo0aWLwVlFKycnJ4nLmWQ8zs7S01LpfXkVERODLL78UX0+cOBHFihUTX3/48EHvMirTJCQkGLSMBUlsbCwA9dZsuSWVSjUG75dKOUEoERGROZFKpfjmm29MXQwiIiIygHwNau3YsQNyuRxVqlTBlClT9N5v2LBhOHLkCB4+fIidO3caLaiVlpYmLqsGrbRR3a66X15ER0djzJgxePfuHQCgVatWGD58uFqa9PR0vcuomsZQZcytZ8+eZRkgsra2FscpU90nKSkpy3zLli2LkJAQPHnyBJ988gmAjGv04MEDvcpVtWpV2NjYAACsrKwwdOhQvHr1StyuOs6aKqlUirp166qtCw0NVWvtp4uDgwMqVqyotu7Ro0eQy+XZ7lu+fHm1yQGSk5MRGBiY7X4AUKtWLbVfpqOiohAREaEzvUKhgIWFBSwsLDS2BQcHIz4+PttjlixZUmO2UuUMoNmpXLky7OzsxNfx8fEIDg7Wa193d3e11+Hh4Xj79m22+9nZ2WlMqBAYGKhXULhs2bJqQVG5XI5Hjx7pVV43Nze14HV0dLRaV2NdZDIZatWqpbbu5cuXYrBXlbI+FQoF7t27BycnJ5QvX14tzX///SdOlpGVChUqqLVWTUxMVBsHMCt16tRRu6ciIyMRGRmZ7X65fUYAGV2xVVsE5/YZAWS0zFV9RuhizGdE5rpUlZ/PCKVixYppjEPJZ4Qmbc+IrOpSVX48IzLjMyLnz4gKFSogISEBb9++zfY+LiifI1JSUrLdh4iIqCDL16DW1atXIZFI0L59+xzPjtimTRs8fPgQd+/eNVLpoPaBUS6XZxk0Sk1NFZf1CS5lJyoqCqNHj8bz588BABUrVsSKFSs0rpNq6yx9Prwoy2nqZvbp6elqAbnMtAXd0tLSsj3HoUOHYsWKFfjmm2/w008/ibNW6nNtAM0JDQRB0GtfbQE6fcqrTJeZXC7Xa9/MXyb0La8ybea89NlX272j77lqq3N9y5v5XPUtr65ymGPdaKNP3aSnp+s8V32+sOb2faOrLLmtm/y4Dwv6MyLzuZniPtQW+OYzQpO2ulE9/6z+Rub3M0KZLjM+IzSpnqujoyMEQUBkZGSW9QkUnM8RREREhV2+BrWioqIAAPb29jneVxk4MubYUNbW1uJySkqK3kEtfboBZuXVq1cYN24cXr58CSDj19zt27er/ZKmq4zZUaZRDdiZgoWFRZYttYoU0bwVixQpkm0wLiYmBt26dcNff/2F0aNHw8HBATVr1oRUKs022Dhp0iSNoKFEItErAKjtXPQprzJdZvoGHTMfV9/yKtNmzkuffbWl0fdctX3Zze256lteXeXIS91k9+VEWT5VBb1udJ2rPl94cvu+0SYvdZMf9yGfEXxGqOIzgs+IzAr7M4KIiKiwkwiZf04zok8++QQxMTHw8PDAL7/8kqN9x48fj3/++QelSpXCP//8Y5Tyfffddzhw4AAA4Pz583B1ddWZ9tChQ/j2228BACtWrECvXr1ydcx79+5hwoQJYpdDFxcX7Ny5U+exb9++jcGDBwMAJk+ejKlTp+rMWy6Xw93dHQqFAq1atcK2bdtyVcbcSEhIwJMnT8TXNWrUgK2trcGPU7NmTfEDpfJWzq4VoCAIkEgkencNIyIiIjJH+fV5jYiIyFjytaVWnTp1cOnSJfj6+uLFixeoVKmSXvvdvHkT/v7+kEgkaNSokdHKp1qeiIiILINar1+/FpczjweiL39/f0ydOlUc76FatWrYtm2bztkgtZUxK5GRkeIvqrktY0FnrudVECQmJooBQNUxhahwYn2aD9al+WBdmhfWJxERUf7L16CWl5cXLl26hNTUVIwbNw6//fabxqCemV29ehXTp08XPyQMGjTIaOWrWrWquPz06VM0a9ZMZ1rlAOISiQTVq1fP8bH8/PwwdepUcfyD+vXrY9OmTShevHiW+xUvXhwlSpTAu3fvdA5irvTs2TNxOfMgvubCz8/P1EUwW0FBQZDL5ZDJZBqDKlPhw/o0H6xL88G6NA1BEMQhMZScnJy0duvLCdYnERFR/svXoFbPnj2xf/9+BAQEICwsDJ9++ik6duyItm3bomrVquIsRrGxsXjy5AnOnz+Pq1evQqFQQCKRwMvLS5zhzhgaNmwImUwGuVyO69evY9iwYVrTpaen4+bNmwAyur/ldIywGzduYNq0aWJAq1WrVli3bp3aeFlZadq0Kby9vfHo0SPEx8erzf6k6tq1a+JyVgE6ypCamoorV66orWvZsqVBJgIgIiKigkEQBGzcuFFt3ZQpU1CiRAkTlYiIiIhyK1+DWhKJBBs2bMDQoUPx7NkzyOVy+Pj4wMfHR+c+ynGS2rRpgx9++MGo5bO3t0eLFi3g7+8PPz8/hIeHa+3e9tdff4lTLnt4eOToGO/evcO0adPEgeY7dOiAX3/9NUeBk27dusHb2xtpaWnYt28fxo8fr5EmISEBx44dA5Ax7XnNmjVzVM7CShAEPH78GOHh4UhKSoKVlRVcXFzg5uamdSBYVXK5HBcvXlRb17RpUwa1iIiIiIiIiAqgfA1qARmBo0OHDmHjxo3YsWOH2iyC2tjZ2WH69OkYOnRotgOAG8KoUaPg7+8PuVyOmTNnYsuWLWoDZj579gw//vgjAMDGxgYDBgzIUf6LFy8WA2Lu7u5Ys2ZNjoMmnTt3Rvny5REaGor169ejUaNGaNKkibg9NTUVc+fOFWeKHD16dI7yL4wSExOxceNGHDx4EPHx8RrbbWxs4OXlhRkzZnCcCyIiIiIiIiIzkO9BLQCwsrLCzJkzMXbsWPj7++Py5csIDw/Hu3fvIJFIULJkSbi4uKB9+/Zo06YNihYtmm9la926Nbp164azZ8/i9u3b6NOnD4YMGYKyZcvi4cOH2LdvHxITEwEAc+fOhZOTk9r+169fx8iRIwFkdPnbvXu3uC0oKAje3t7i6+7du8Pf3z/bMjk6OqoFrSwtLTFv3jxMmjQJycnJGDVqFAYMGIBGjRohJiYGBw8eRGBgIACgUaNG6N+/f+4vSCEQHh6OsWPH4sWLF9A1mWdCQgL27t0Lf39/bN26FeXLl8/nUhIRERERERGRIZkkqKXk4OAAT09PeHp6mrIYGpYuXYrExERcunQJoaGhWL58udp2iUSCKVOmYPDgwTnK988//1QLuixbtkyv/TIHxwCgY8eOWLBgAX788UfI5XL88ccf+OOPP9TS1KtXDxs2bMi2211hlpaWhgkTJiA4OBhARiu2Hj16oEqVKrC2tkZiYiKePXsGb29v+Pr64tWrV5g+fTr279+f5wFhiYiIqPCRSqVYsGCBqYtBREREBsBv9VpYWVlhy5YtOHnyJP78809xQHZHR0c0btwYI0eOROPGjXOcr7L1lKEMGTIETZo0wc6dO3HlyhVERUVBJpPBzc0NvXr1wsCBAyGTyQx6zILm8OHDCAwMRJEiRfDLL7+ga9euGmlq1aqFXr164fz585g+fToePHiA06dPo3fv3iYoMREREREREREZglGCWt999x1mzpwJR0dHY2SvVWxsLFatWoXvv//eIPlJJBL07t07x4GP5s2b48mTJ1q3bdq0yRBFU1O9enWjD6BfkJ0+fRoSiQRjx47VGtBS1blzZ4wbNw6//fYbjh8/zqAWERERERERUSEmNUamBw8eRLdu3bBt27ZsB4LPq9TUVGzfvh3dunXDgQMHjHosKniUrd/69OmjV3plumfPnhmtTERERERERERkfEYJag0fPhxxcXFYvnw5unbtij/++ANJSUkGPUZMTAw2bdqETp06YdmyZYiJicGgQYMMegwq+BISEgAAJUuW1Cu9cmD/9+/fG61MRERERERERGR8Rul++O2336Jdu3b49ttv8fr1ayxevBgrVqxAz5490aNHDzRp0iRXYz0lJyfj0qVLOHnyJC5cuIDU1FQIgoCSJUtiwYIF6NKlixHOhgqy4sWL4+3bt3jx4gXc3d2zTf/y5UsAGZMUUNbq1Klj6iKQAbE+zQfr0nywLs0L65OIiCj/GW2g+DZt2sDb2xtr167Frl27kJSUhMOHD+Pw4cOwsrJCkyZNULNmTbi5uaFKlSpwcHCAnZ0drK2tkZqaisTERLx+/RohISF49OgR7t69izt37kAulwMABEGATCbD4MGDMW3aNNja2hrrVKgAq1+/Pnx9fbFz506sXLky2/Q7duwQ96OsmfOsmR8j1qf5YF2aD9alaQiCgNjYWLV1dnZ2ea4P1icREVH+M+rsh1ZWVpg79/+xd+fhTVTrH8C/0zbddwpl34rsoCxVFEFuwYsouwJlFa6IChUEEUFwBVFUFH8KqCCCqGwiiKDsiOyCAlUKlCJbWyjdku7NNr8/ejM3aZI2bZPJwvfzPH1IJmdm3nDSdPLmnPfMwujRo7F06VJs27YNWq0WRUVFOHToEA4dOlSl44miCADw9fXFwIED8eyzz6Jhw4aOCJ3cxBNPPIG9e/fi559/Rr169TB9+nSLF5U6nQ4ffvihVFh+6NChToiWiIiInE0URXz88ccm2xISElCrVi0nRURERETV5dCklkGDBg2wcOFCTJ8+HRs3bsSPP/6I69evV/k4MTExGDRoEB5//HFeeBAAoFevXoiLi8P+/fvx5ZdfYtu2bYiLi0NMTAwCAwNRVFSEy5cvY//+/cjMzAQAxMXFIS4uzsmRExEREREREVFNyJLUMqhduzamTJmCKVOmICUlBSdOnEBiYiKuXLmC9PR0FBQUQK1Ww8/PD8HBwWjQoAGaNWuGe+65B/fddx+aNm0qZ7jkJj788ENMnz4dBw4cwO3bty2ugmkY5RcXF4f3339f7hDdUkZGBnQ6Hby9vREdHe3scKiG2J+eg33pOdiXnoX9SUREJD9Zk1rGWrRogRYtWmD06NHOCoE8hL+/P5YvX44DBw5g06ZNOHnyJPLz86XHQ0ND0blzZ4wYMQL/+te/nBipe8nIyIBGo4FCoeDFuQdgf3oO9qXnYF96FvYnERGR/JyW1CKyt3/9619S0qqwsBAFBQUICgqyeREBQRAQGBhoto2IiIg8hyAImDNnjsm26qzKTURERM7HpBa5tU8//RQA8Oyzz8LH538v56CgIAQFBZm1LygowNtvv42ioiKzIrGBgYF46aWXHBswEREROZUgCPD19XV2GERERGQHTGqRW/v0008hCAKeeuopk6SWNaIoYsuWLWYjsoiIiIiIiIjIvTCpRW5BFEXcvHnT6uM3b96Ev79/hcfQaDTYvn07AE4rJCIiIiIiInJ3TGqRWxAEAfPmzcOxY8fMtgPAY489VqVjdejQwa7xEREREREREZG8vJwdAJGtXn/9dSgUCoiiWKOfunXr4pVXXnH20yEiIiIiIiKiGuBILXIbTZo0waZNm6BSqQCUTUl88sknIQgCPv/88wqnHwqCAG9vb4SHh6NJkybw9vaWK2wiIiJyIaIooqioyGRbQEAAvLz4XS8REZG7YVKL3EqrVq0sbo+NjUVAQECNjq3RaHD69GmTbZ06deIy30RERB5EFEV88MEHJtsSEhJQq1YtJ0VERERE1cWkFrm1ffv2AUCFCS21Wg0fH59Kv4FVq9X45ZdfTLa1a9fujk1qBQYGQqvV2rSqJLk+9qfnYF96DvalZ2F/EhERyY9/dcmtNWjQAABw+fJlfPXVVwgPD8fMmTNN2mzfvh0LFizAI488goSEBNSvX98ZobqdFi1aODsEsiP2p+dgX3oO9qVnYX8SERHJj8UDyO1t374dQ4YMwebNm3Hq1Cmzx2/cuIGioiJs2bIFAwYMwO+//+6EKImIiIiIiIjInlxypJYoivjjjz+QkZGB6Oho3H333XfsFDCq2OXLlzFnzhxoNBoEBwejc+fOZm3+/e9/o6SkBJs3b0ZeXh6ef/55bNu2DdHR0U6ImIiIiJxJEASzUd01rctJREREzuGUpJZWq8WOHTvw119/Yd68eSaPJSUlYdq0aUhNTZW21alTB7Nnz0a/fv3kDpVc3JdffgmNRoMmTZpg1apV0nREY23atEGbNm0wduxYjBs3Dmlpafjqq68we/ZsJ0RMREREziQIAoKCgpwdBhEREdmB7NMPb9y4gUcffRSzZ8/Gd999B7VaLT2Wm5uLCRMm4MaNGxBFUfrJyMjAiy++iB9++EHucMnFnThxAoIgYNasWRYTWsbq16+PGTNmQBRFHDhwQKYI3VdKSgouXLiAlJQUZ4dCdsD+9BzsS8/BvvQs7E8iIiL5yZrU0uv1mDRpEq5fvy4lrG7cuCE9vmrVKqhUKgiCAB8fH/Ts2RPt27eX9l24cCGysrLkDJlc3O3btwEAnTp1sql9ly5dAAA3b950WEyeoqioCIWFhSgqKnJ2KGQH7E/Pwb70HOxLz8L+JCIikp+sSa0dO3bgypUrEAQBtWvXxsKFC9GwYUPp8W3btkm3P/zwQ3zxxRf4/vvvpWlihYWFHK1FJkJCQgCUvTZsIYoiAMDX19dhMRERERERERGR48ma1DJM+VIoFPjuu+8wZMgQ+Pn5AQASExORkZEBQRDQrFkz/Pvf/5b2Gz9+PDp27AhRFHHw4EE5QyYX16RJEwDA3r17bWpveA0a9iMiIiIiIiIi9yRrUisxMRGCIODhhx9Go0aNTB777bffpNv/+te/zPaNjY0FAFy/ft2xQZJbeeyxxyCKIj799FOcPXu2wrYXL17EkiVLpNcgERER3XlEUYRarTb5MYzkJiIiIvci6+qHOTk5AIBmzZqZPXb48GHp9gMPPGD2eFhYGICyYvJEBkOGDMGaNWtw48YNjB49GoMGDUKvXr3QtGlT+Pv7o6SkBNevX8ehQ4ewZcsWlJaWIjo6GmPHjnV26EREROQEoijinXfeMdmWkJCAWrVqOSkiIiIiqi5Zk1parRZA2fRDY/n5+fjrr7/KAvLxkYp5G8vMzAQAaboiEQAEBQXh008/xVNPPYWsrCz88MMPVuuuiaKIWrVq4fPPP+dS3kRERERERERuTtbph1FRUQBgsuIhABw5cgQ6nQ6CIKBz587w9/c329eQ9IqOjnZ8oORWWrVqhZ9//hljxoxBrVq1pJU1jX8CAgIQHx+PH3/8Ea1bt3Z2yERERERERERUQ7KO1OrQoQPS09Oxf/9+5OfnSyvXbdq0SWoTFxdntt9vv/2GM2fOQBAEdOjQQbZ4yX2EhoZi3rx5mDt3LpKTk5GRkQGVSoWAgADUq1cPrVu3hre3t7PDJCIiIiIiIiI7kTWp1a9fP+zatQu5ubkYOXIkhg8fjjNnzuDIkSMAAG9vbzz66KNS+9u3b2P79u34+OOPpW2PPfaYnCGTmxEEAa1atUKrVq2cHQoRERG5IEEQMG3aNJNthi9aiYiIyL3ImtTq27cv7rnnHpw5cwaXL1+WinQKggAAGDduHGrXri2179+/P/Lz86UVaR588EH07NlTzpDpDhIUFITXX3/d2WG4jOjoaOh0Oo5w8xDsT8/BvvQc7EvnEAQB4eHhdj8u+5OIiEh+sia1BEHA8uXLMX36dBw/ftzksUGDBmH69Okm25o3b44zZ84AAHr06IElS5bIFCm5ojlz5gAoq8324osvmmyrKkEQsHDhQrvF5olYv86zsD89B/vSc7AvPQv7k4iISH6CaBgGJbPTp0/j7Nmz8Pb2RmxsrMXi3e+++y5u3LiBxx9/3GKtLXJdBQUFuHjxonS/VatWCA4OrtExW7duDUEQ0LhxY+zatctkW1WIoghBEHD+/PkaxUNERETkzhxxvUZERCQnWUdqGevUqRM6depUYZvZs2fLFA25g/r16wMA6tSpY7aNiIiIiIiIiO4sTktqEVXV/v37bdpG9qHT6aTbrA/i/tifnoN96TnYl56F/UlERCQ/hyS10tPTHXFYCUfnEDneuXPnoNFooFAo0LFjR2eHQzXE/vQc7EvPwb70LOxPIiIi+TkkqRUXF1flOke2EgQBSUlJDjk23dm0Wq1JXQmgrLaEjw8HNBIREXkKvV6P+fPnm2xLSEhArVq1nBQRERERVZfDPq07qf48ebCTJ0/a9XixsbEm90tLS/H999+bbJs5cyaTWkREREREREQuyCGf1ssnC8pLTk5GXl4eRFGEl5cX2rZti5YtWyIiIgIKhQIFBQW4fPkyzpw5g+LiYgiCgCZNmqBnz56OCJfcxNixY+02ApAj/oiIiIiIiIjcm0OSWmvXrrX62MaNG/HGG29AFEUMHToU06ZNQ3R0tMW2BQUFWLFiBVasWIFr164hIiICzz33nCNCJjdh6whAb29vBAYGQq1Wo7S0VNouCAIUCoWjwiMiIiIiIiIimcg6r+rSpUuYP38+RFHElClT8Pzzz1fYPjg4GNOnT0edOnUwf/58fPLJJ+jatWulI8HIM+3bt8/i9m+//RarVq1CaGgoJk6ciD59+qBZs2bSqK7MzEwcPHgQy5YtQ0ZGBqZNm4annnpKztCJiIjIRQiCYPYlaVhYmJOiISIiopqQNam1evVqaDQaNG/eHAkJCTbvN3r0aGzevBlJSUlYs2YNk1p3qAYNGpht+/333/HVV18hOjoa3333ncU2tWvXxhNPPIE+ffogPj4eH3zwAZo3b45//etfcoRNRERELkQQBNSpU8fZYRAREZEdeMl5smPHjkEQBPTq1avKtZF69OgBADh79qwjQiM3tWLFCgBlBd0tJbSMhYeHY+bMmRBFEatWrZIjPCIiIiIiIiJyEFmTWpmZmQCA0NDQKu/r6+sLAFAqlfYMidxcYmIiAKB79+42te/SpQsA4Pz58w6LiYiIiIiIiIgcT9akVnBwMICy1Q+ryjBCKyIiwq4xkXvTarUAYFIMviL5+fkAygrJExEREREREZH7krWmVrt27XD48GHs27cPV69eRdOmTW3a7+TJkzh06BAEQUDnzp0dGyS5lSZNmuD8+fPYuXMnJkyYUGn7zZs3AwCaN2/u6NDcXkxMDERRrPJUYXJN7E/Pwb70HOxLz8L+JCIikp+sI7UGDx4MAFCr1Zg4cSJSUlIq3efYsWNISEiAKIoAgBEjRjgyRHIzjz32GERRxP/93//h0KFDFbbdunUrVq5cCUEQ8MQTT8gUofsKCgpCcHAwgoKCnB0K2QH703OwLz0H+9KzsD+JiIjkJ+tIrcceewzr16/HqVOnkJaWhiFDhiAuLg49e/ZETEwMQkJCAAAqlQoXL17E3r17cezYMej1egiCgMGDB+P++++XM2RycfHx8di4cSOuXbuGSZMm4YEHHkDPnj3RpEkT+Pv7o7i4GP/88w/27t2LM2fOQBRFdO7cGYMGDXJ26EREROQEer0e7777rsm2Z555BrVq1XJSRERERFRdsia1BEHAsmXLMGrUKKSkpECj0WD37t3YvXu31X0MI7R69OiBBQsWyBUquYmgoCCsXLkSEydOxLVr13D06FEcPXrUrJ3hdRQbG4tPP/0UPj6yvvSJiIjIhWg0GmeHQERERHYg+yf70NBQbNq0CcuXL8fq1auhVqsrbB8SEoIXXngBo0aNYo0CsqhRo0bYvn07vv32W2zfvh3nzp2TklgA4OXlha5du+Lxxx+XpsBS5ZRKpVQbJDw83NnhUA2xPz0H+9JzsC89C/uTiIhIfk4ZrhIQEIAZM2bgqaeewqFDh3DkyBGkp6cjOzsbgiAgKioKDRo0QK9evdCjRw/4+fk5I0xyIwqFAuPHj8f48eNRUFCAjIwM5OXlISwsDHXr1kVgYKCzQ3Q7169fh0ajgUKh4MW5B2B/eg72pedgX3oW9icREZH8nDoHKywsDP3790f//v2dGQZ5mODgYAQHBzs7DCIiInJBgiBg4sSJJtvCwsKcFA0RERHVBAsLWSGKIrZv347Nmzfj/PnzKCoqQu3atREbG4vRo0ejY8eOdj/n2bNnER8fj3r16mH//v2Vth87dix+//13m469YcMG3HPPPTWM0PUlJibizz//xM2bN1FYWCjVYdu1axc6duyIevXqWd03MDAQM2fONNtGREREnkMQBDRo0MDZYRAREZEdMKllQUlJCaZNm4Zff/3VZHtaWhrS0tLw008/4YUXXsCkSZPsds7CwkLMmzcPer3e5n2Sk5Ptdn53d/r0abz55pu4ePGiyXZDUuujjz5CWloaJk6ciKlTp1qszyYIApfhJiIiIiIiInITDklqpaenO+Kwkvr16zv0+HPnzpUSWjExMRg+fDiioqJw7tw5rF+/HkVFRVi8eDGio6MxaNCgGp9PrVZj8uTJVUpSZWRkQKlUAgCGDx+Ohx56qML2zZo1q0mILm337t2YMWMGdDodRFGEt7c3dDqdSeIqPT0dGo0Gn332GbKzs/HWW285MWIiIiIiIiIiqimHJLXi4uIctlKhIAhISkpyyLEB4MiRI9i+fTsAoFu3bvjiiy+kQvX9+/fHE088gVGjRkGpVGLhwoXo3bt3jeo3ZWdnY9q0aTh58mSV9rtw4YJ0u2/fvnjwwQerHYM7u3XrFmbNmgWtVouOHTti+vTpaNWqFR544AGTdqtXr8aiRYtw9uxZbNq0Cf369cP999/vpKiJiIiIiIiIqKa8HHVgURQd9uNIq1atAgD4+PhgwYIFZisvxsTE4NVXXwVQtnTzpk2bqn2uY8eOYejQoVVOaAEwmWZ31113VTsGd7dq1SqUlJSgQ4cO+Oabb3D//ffD39/frF3nzp3x9ddfS3XF1q9fL3OkRERERERERGRPDhmpFRsbW+HjycnJyMvLgyiK8PLyQtu2bdGyZUtERERAoVCgoKAAly9fxpkzZ1BcXAxBENCkSRP07NnTEeFKlEoljh49CgDo0aMHGjVqZLHdo48+ioULFyI7Oxs7d+7EhAkTqnSenJwcvPrqq9i7d6+07fHHH8fhw4eRkZFh0zEMSa3w8HBER0dX6fye5NChQxAEAc8//zx8fX0rbOvn54eEhARMnDgRZ86ckSdAIiIiIiIiInIIhyS11q5da/WxjRs34o033oAoihg6dCimTZtmNSlTUFCAFStWYMWKFbh27RoiIiLw3HPPOSJkAMCpU6ekQu3dunWz2s7LywuxsbHYuXMnzp49C5VKVaWloC9duiQltIKCgjBnzhwMGzYMcXFxNh/DUH+rZcuWNu/jiW7evAkA6NChg03t27ZtC6AssVieTqfDjRs3TLY1atQI3t7eNYySiIiIXIVer8fixYtNtj311FOIjIx0UkRERERUXbKufnjp0iXMnz8foihiypQpeP755ytsHxwcjOnTp6NOnTqYP38+PvnkE3Tt2rXSkWA1ic+gsmRRixYtAJRNs0xOTq5yTF5eXhg0aBCmT59e5ZFWGo0GV65cAfC/qYfFxcW4cOEC8vLyEBERgdatW1c6cskTGBJOGo3GpvbFxcUAYHGKYklJCdasWWOybebMmXfsioheXl7SD7k/9qfnYF96Dval8xQVFZnct0d5C/YnERGR/GRNaq1evRoajQbNmzdHQkKCzfuNHj0amzdvRlJSEtasWeOwpFZaWpp0u0GDBhW2rVu3rsl+VYmpadOm2LVrFxo3blz1IAFcvnxZSuKEhIRgzpw52LFjB0pLS6U2QUFBGDp0KJ5//vkqjSJzN40aNcLFixfx+++/o3///pW2N6xqaW1qKf1P+/btnR0C2RH703OwLz0H+9KzsD+JiIjkJ+tXSceOHYMgCOjVq1eVV0fs0aMHAODs2bOOCA2A6ZS0iIiICtuGh4dLt5VKZZXOEx0dXe2EFmBaJP6zzz7DDz/8YJLQAoDCwkKsXbsWw4YNM5tS50l69eoFURTx8ccfIy8vr8K2169fxyeffAJBEKTXExERERERERG5J1lHamVmZgIAQkNDq7yvYSpdVRNIVVFSUiLdLr/qobV4yu8nB+OkliAIGD58OEaOHIlmzZqhqKgIx48fx8cff4yrV6/i2rVrePbZZ/H9998jICBA1jjlMH78eKxbtw6pqal4/PHHMWXKFJPVIDUaDVJTU7Fv3z6sWLECKpUKQUFBGDdunBOjJiIiImcRBAFPPvmkybbqXJsSERGR88ma1AoODoZSqZSKnFeFYYRWZSOoakKr1Uq3K6tHZfy48X5yMKyQKAgCPvroI/Tr1096zN/fH48++ih69OiBsWPH4vz580hJScHXX3+NZ555RtY4jaWkpFRYYyIwMFCqU2a8T/maF5a88cYbmDNnDm7cuIE5c+ZI20VRNCsg7+XlhYSEBKSlpSEtLQ0xMTEV1sxKSkqymOD08vIym2aQmppqsQB9eWFhYWjSpInJtvPnz9tUF6xhw4YmhWxLSkps/n1q06YNFAqFdD8zM1MqtF8Rf39/sxpzV65cQX5+fqX7RkVFoX79+ibbEhMTbYq3WbNmCAkJke7n5+dLteQq07FjR5P76enpyMrKqnS/kJAQNGvWzGRbcnKyTYnrevXqoXbt2tJ9jUaD8+fP2xRvy5YtTeq85eTkIDU1tdL9FAoF2rRpY7Lt2rVrUKlUle4bGRmJhg0bmmz7+++/pcUyKtK4cWOT0aqFhYW4fPlypfsBQLt27UwWX8jIyLBp1deavEdER0eb1C7U6XQ4d+6cTfGWf49QKpW4fv16pfvxPYLvEeXxPcK13yOMX/t30ntE+ZH+RERE7kbWpFa7du1w+PBh7Nu3D1evXkXTpk1t2u/kyZM4dOgQBEFA586dHRaf8QWjRqOpMLGlVqul23IXZF+8eDEWLFiArKwsq7WhQkJCsHDhQgwZMgRA2aqTzkxq6XQ66HQ6q49bSgxqtVqbLtDuvvtubNy4EW+++Sb++OMPq+2aNGmC8ePHo2XLltJxKysMq9FoLCbjLG2zNV5Lz1Wj0di0b/kPE6Io2lwkv/xz1ev11TonYPtztdTntsZb/ry2xmstDk/sG0tq+jq05QNr+Xir8lzLq0nfyPE6rO5zvZPeIyytEMv3CHN8j/D894jU1FQUFha61XsEERGRu5M1qTV48GAcPnwYarUaEydOxGeffWb2rVp5x44dwwsvvABRFCEIAkaMGOGw+AIDA6XbpaWlNie1Kpuq6AgBAQGVFjtv27Yt7rrrLly6dAmpqanIyMio8kqL9uLt7V3hSC0fH/OXoo+Pj8k3pxUdu2XLlvj222+RkpKC48eP48yZMygqKoKfnx+ioqLQtm1bxMTEmO1bWW03hUJhMQZLz8XWeC09V1v2s3ReQRBs3rf8c/Xy8qpwX8PFsaUL4Kr0TXnVfa6VxVtZHDXpm4oSssbxGXNk3xjHVp61vjH+sKNQKKw+V1s+8JSPtyrPtbya9I0cr8PqPldHvkeU78uKzutqr8Py7vT3iPLHscYZfcP3iKr/3uTk5Ei/n5Xt7yrXEURERO5OEO2xhrGNRFHE2LFjcerUKQiCAB8fH8TFxaFnz56IiYmRphGoVCpcvHgRe/fuxbFjx6DX6yEIAgYPHox33nnHYfG99tpr2LBhAwBg7969FSaNNm3ahHnz5gEAPvjgAwwYMKDG54+Li0NaWhoaNGiA/fv31/h4ADB16lTs2rULQFnM5adcOEpBQYFJ7a9WrVohODjY7udZvXo16tSpgz59+tR4xFxhYSE++OADk20zZ86scHqiJ0tMTIRGo4FCoZDtdUOOw/70HOxLz8G+9Czu2J9yXa8RERE5iqwjtQRBwLJlyzBq1CikpKRAo9Fg9+7d2L17t9V9DDm3Hj16YMGCBQ6Nz3g65M2bNytMat26dUu6Xb4eiCux9G2eJ1m7di3S09Px1ltvYdiwYc4Oh4iIiIiIiIhkIvsY5NDQUGzatAmTJk2Cr68vRFGs8CckJASvvvoqPv/8c4vDw+3JeHrapUuXKmxreFwQBJPV9hwtJycH33zzDZYsWYKtW7dW2t64uGqdOnUcGJlzGFbUfOihh5wcCRERERERERHJySnDeAICAjBjxgw89dRTOHToEI4cOYL09HRkZ2dDEARERUWhQYMG6NWrF3r06CFbzapOnTpBoVBAo9HgxIkTGD16tMV2Op0OJ0+eBAC0bt1a1mWgNRoN5s+fD6BsiPjgwYOtts3Pz8fff/8NoGxln7p168oRoqwiIyORkZEBlUrlkUk7IiIisi+9Xo//+7//M9n25JNPOnSFbSIiInIMp85NCwsLQ//+/dG/f39nhiEJDQ1Ft27dcOjQIezfvx/p6ekWpxbu2LFDWnK5X79+ssYYHR2Npk2b4urVq7h48SLOnDmDe+65x2LbVatWScuMDxo0SMYo5TN+/Hi8++67WLBgAZYuXco6EERERFQplUplcp+rAhIREbknlyi4dP36ddy4cUO6wAgNDUWjRo3QpEkT2WMZP348Dh06BI1GgxkzZmDlypUmiZKUlBS8/fbbAICgoCCn1HEaO3asNFrr5Zdfxtdff222quGOHTvwxRdfAADCw8Mxfvx4ucOURe/evXH16lWsX78eDz30ELp37442bdogMjKy0hF+FY1yIyIiIiIiIiLX5rSkllKpxOrVq7F582ZkZWVZbBMREYFHH30Uzz33HGrVqiVLXA8++CD69u2LXbt24fTp0xg0aBBGjhyJevXqISkpCevWrUNhYSEAYNasWYiMjDTZ/8SJExg3bhwA4N5778XatWvtHmN8fDx++eUXnDp1ClevXsXAgQMxYsQItG7dGgUFBdi/fz8OHDgAoKxQ/Lvvvivb/5/c/v3vfwMoq21WWFiIPXv2YM+ePZXuZ1hNk4iIiIiIiIjck1OSWidPnsT06dORnZ0N4H8rHJaXk5ODb7/9Fjt37sR7772HBx54QJb4Fi1ahMLCQhw+fBipqal4//33TR4XBAEJCQmIj4+XJZ7yfHx8sHz5ckyfPh2HDx+GUqnE559/btYuPDwcb7/9Nv71r385IUp5lH/tWHstEREREQFl13EjR4402RYSEuKkaIiIiKgmZE9qJSYmYuLEiVCr1VICIjw8HK1bt0Z4eDj0ej1yc3Nx8eJF5OXlQRRFZGVl4dlnn8WGDRvQpk0bh8cYEBCAlStX4qeffsLWrVtx/vx55OfnIzw8HF26dMG4cePQpUsXh8dRkdDQUKxcuRL79u3D1q1bcfbsWeTm5iIwMBANGzZEXFwcRo4c6bEjtAz27dtnt2MFBATgueeeM9t2pwoLC4NWq4WPj0vMUqYaYn96Dval52BfOocgCGjZsqXdj8v+JCIikp8gyji0RaPRoF+/fkhNTQUAtG3bFi+99BLuv/9+i+2PHDmCDz/8EOfOnQMANGnSBNu3b4dCoZArZKqmgoICXLx4UbrfqlUrFnEnIiIiciG8XiMiInfnJefJtm7ditTUVAiCgIceeggbNmywmtACgO7du2PDhg3o1asXgLKC8tu3b5cpWiIiIiIiIiIiclWyjo82TBULCQnBokWLbBpx5ePjg0WLFuHhhx9Gfn4+du3ahSFDhjg6VHJDFy5cwPbt23H06FFkZGQgPz8fERERaNCgAXr16oXHHnsMDRo0cHaYRERERERERGQHsia1zp8/D0EQ0Lt3b4SHh9u8X1hYGHr37o0tW7bg77//dlyA5JZKS0vx+uuvY9u2bRBF0aRYfEZGBjIyMnD69GksXboUkyZNwpQpU5wYLRERERERERHZg6xJrdzcXABltbGqyrCPUqm0Z0jk5nQ6HRISEnD48GGIooiAgADcd999aNq0Kfz9/VFUVIQrV67g5MmTKCkpwaeffor8/HzMnj3b2aG7vPPnz0Oj0UChUMiyQAM5FvvTc7AvPQf70rOwP4mIiOQna1LLz88PGo0GRUVFVd7XsE9gYKC9wyI3tmPHDhw6dAiCIGD06NF48cUXLb5GCgoK8M4772Dz5s1Ys2YNevfujdjYWJM2er0eWVlZJtuioqLg5SVr6TmXodFooNFonB0G2Qn703OwLz0H+9I59Ho9PvvsM5Nto0aNqtIsAkvYn0RERPKTNalVv359XLx4ESdOnKjyvoZ96tata++wyI1t2LABgiBg8ODBePXVV622Cw4Oxttvv42ioiL88ssv+Prrr82SWsXFxVi+fLnJtpkzZyIoKMghsRMREZFzZGZmmtzX6XROioSIiIhqQtYhKPfddx8AIDExEfv377d5v3379uHs2bMQBEE6BhEA/PPPPwCA//znPza1nzRpEoCy1yARERERERERuS9Zk1ojRoyAIAgAgJdeegm//vprpfscOHAAs2bNAgAIgoBhw4Y5MkRyM6WlpQDKpgnaon79+gCAvLw8h8VERERERERERI4n6/TDmJgYjBw5Et999x2Kiorw3HPPITY2Fn379kXr1q2lWga5ubm4ePEidu7ciVOnTkEURQiCgCeeeAItW7aUM2RycS1atMBff/2FP//8E7179660fXJyMgCgWbNmjg6NiIiIXJDhmtJYcHCwk6IhIiKimpA1qQUAs2fPRlpaGg4ePAhBEHDy5EmcPHnSantRFAEADzzwAF577TW5wiQ38eSTT+LFF1/EokWLcM8996BWrVpW22o0Gnz44YdSUXkiIiK68wiCgHbt2jk7DCIiIrID2Zd18/X1xbJlyzBlyhQEBgZCFMUKfwIDAzF58mSsWLECPj6y5+DIxT322GN45plncP36dQwdOhRbt25FSUmJWbtTp05h7NixOHPmDAYOHIjHH3/cCdESERERERERkb04JUvk7e2N559/HmPHjsWBAwdw/PhxpKamQqlUQhRFhIaGomnTpujSpQv69u2L0NBQZ4RJbiA+Ph4AEBAQgIyMDMyZMwfz5s1DgwYNEBoaitLSUqSlpaGoqEjaZ9u2bdi2bZvF44miiJEjR8oSOxERERERERFVn1OHPoWHh2PIkCEYMmSIM8MgN3bmzBmT+6IoQqvV4tq1a84JiIiIiIiIiIhkwfl85NYSEhLsdiy1Wo2jR4/a7XjurmHDhtDr9fDykn2WMjkA+9NzsC89B/vSs7A/iYiI5MekFrk1eya1CgsLkZ+fb7fjubvIyEhnh0B2xP70HOxLz8G+9CzsTyIiIvkxqUVEREREdwy9Xo8vv/zSZNuwYcMQHh7unICIiIio2pjUIiIiIqI7Snp6usl9nU7npEiIiIioJpjUIiKLSkpKIIoiBEGAv7+/s8OhGmJ/eg72pedgX3oW9icREZH8mNQiIouSk5Oh0WigUCjQsWNHZ4dDNcT+9BzsS8/BvvQs7E8iIiL5MalFRERERHcMQRAwaNAgk21BQUFOioaIiIhqgkktov/y9/fHk08+abaNiIiIPIcgCLjnnnucHQYRERHZAZNaRP/l7e2Npk2bOjsMIiIiIiIiIrKBl7MDICIiIiIiIiIiqiomtcitbd26FVu3boVer7epfVFRET799FMsXLjQwZERERERERERkSM5ZPphenq6Iw4rqV+/vkOPT+5j9uzZ8PLyQt++fREQEFBpe51Oh08//RQhISF45ZVXZIiQiIiIiIiIiBzBIUmtuLg4CILgiENDEAQkJSU55NjknkRRtOn1ptVqsWfPHuk2EREREREREbkvhxWKF0XRUYemO5Ber8cTTzyB8+fPm2w3JLM6depk87EEQUCrVq3MtouiiKKiIpNtgYGBDkvQEhERkfz0ej2+/vprk21DhgxBWFiYkyIiIiKi6nJIUis2NrbCx5OTk5GXlwdRFOHl5YW2bduiZcuWiIiIgEKhQEFBAS5fvowzZ86guLgYgiCgSZMm6NmzpyPCJTfg5eWFt956C8OHD7e5fpY1gYGBePHFF822FxUV4YMPPjDZNnPmTAQFBdXofERERORarl27ZnKfI7iJiIjck0OSWmvXrrX62MaNG/HGG29AFEUMHToU06ZNQ3R0tMW2BQUFWLFiBVasWIFr164hIiICzz33nCNCJjfQvn17fP7558jKypK2zZkzB4Ig4I033oCvr6/VfQVBgLe3N8LDw9G+fXtERETIEbJba9Omjc1TO8n1sT89B/vSc7AvPQv7k4iISH4Om35oyaVLlzB//nyIoogpU6bg+eefr7B9cHAwpk+fjjp16mD+/Pn45JNP0LVr10pHgpHn6tGjh8n9OXPmAAAGDhxoU6F4sp1CoXB2CGRH7E/Pwb70HOxLz8L+JCIikp+sSa3Vq1dDo9GgefPmSEhIsHm/0aNHY/PmzUhKSsKaNWuY1CKJoSaGv7+/kyMhIiIidyAIAvr162eyjaUGiIiI3JOsSa1jx45BEAT06tWrykOze/TogaSkJJw9e9ZB0ZE7uvfee50dAhEREbkRQRB4/UBEROQhZE1qZWZmAgBCQ0OrvK+hXpJSqbRnSORBkpKSkJqaiuLiYptW3xw8eLDjg3JjmZmZ0Ov18PLyQu3atZ0dDtUQ+9NzsC89B/vSs7A/iYiI5CdrUis4OBhKpRLJyclV3tcwQosFvqm8EydO4LXXXsP169dt3kcQBCa1KnHz5k1oNBooFApenHsA9qfnYF96DvalZ2F/EhERyc9LzpO1a9cOoihi3759uHr1qs37nTx5EocOHYIgCOjcubPjAiS3888//+Dpp5/G9evXIYpilX6IiIiIiIiIyH3JOlJr8ODBOHz4MNRqNSZOnIjPPvsMLVq0qHCfY8eO4YUXXpCWSB4xYoRM0ZI7WLFiBdRqNXx8fDB+/Hj06tULtWrVkqarEhEREREREZFnkjWp9dhjj2H9+vU4deoU0tLSMGTIEMTFxaFnz56IiYlBSEgIAEClUuHixYvYu3cvjh07Br1eL00Xu//+++UMmVycYfGByZMnY/Lkyc4Oh4iIiIiIiIhkImtSSxAELFu2DKNGjUJKSgo0Gg12796N3bt3W93HME2sR48eWLBggVyhkpvIzs4GwKLvREREZBu9Xo/169ebbOvfv3+1FjIiIiIi55I1qQWUrXy4adMmLF++HKtXr4Zara6wfUhICF544QWMGjUKgiDIFCW5i/DwcGRlZcHf39/ZoRAREZGbuHTpksl9jUbjpEiIiIioJmRPagFAQEAAZsyYgaeeegqHDh3CkSNHkJ6ejuzsbAiCgKioKDRo0AC9evVCjx494Ofn54wwyQ106dIFu3btwp9//ok+ffo4OxwiIiIiIiIikolTkloGYWFh6N+/P/r37+/MMMiN/ec//8GePXvw8ccf44EHHkBgYKCzQyIiIiIiIiIiGTg1qUVUUx07dsRrr72Gt956C4MHD8bo0aNx9913IzIyEj4+Fb+869evL1OURERE5CoEQTAb3c0vxYiIiNyTSyS19Ho9cnJyoFKpEBkZiYiICGm7l5eXk6MjV9a7d28AgLe3N27cuIF3333Xpv0EQUBSUpLJNj8/PzzxxBNm2+5U/v7+8Pb2hkKhcHYoZAfsT8/BvvQc7EvnEAQB3bt3t/tx2Z9ERETyc1pSS6vV4scff8S2bduQmJiIkpISAMCsWbMwYcIEAMCIESPQqFEjPPvss2jZsqWzQiUXlpaWZrdj+fj4oF27dnY7nrvj75xnYX96Dval52Bfehb2JxERkfycktS6ePEipk6diuvXrwMARFEEALPVDVNSUvD3339j9+7dmDlzJsaPHy93qOTi3nnnHWeHQEREREREREROIHtSKzk5GaNHj0ZhYaGUzPL19YVarTZpl5ubi+LiYgiCAK1Wi0WLFkGhUGD06NFyh0wubMiQIc4OgYiIiIiIiIicQNaCVVqtFs8//zwKCgogiiJ69eqFDRs24NSpU2ZtIyIisGnTJtx3330AykZzffDBB7h165acIRMRERERERERkQuSNan1448/4tq1axAEAePGjcNnn32Gu+++G76+vhbbd+jQAatXr0Z8fDwAoKSkBBs3bpQzZPJAOp0OBw8edHYYLu/KlSu4dOkSrly54uxQyA7Yn56Dfek52Jeehf1JREQkP1mnH+7ZswcAUKdOHcycOdPm/WbPno29e/ciOzsbR44cwdSpUx0VIrkhURSxbds2HDp0CLm5udBqtdLUVuM2Go0GhYWFSE1NRWlpqdnqh2QqPz8fGo2Gqzh5CPan52Bfeg72pXPo9Xps3rzZZNsjjzyCkJCQGh2X/UlERCQ/WZNaSUlJEAQBvXr1sjo6yxJ/f3/ExcVh48aNuHr1quMCJLej1Wrx9NNP4/jx42aPWVqAwNqiBABQWFiIDz74wGTbzJkzERQUZM+QiYiIyMnKf7EVFxfnpEiIiIioJmRNauXm5gIAGjRoUOV969evD6As8UBksGXLFhw7dgxAWfKzWbNmKCoqwrVr19CoUSPUrl0bubm5uHr1KkRRhCAI6N+/vzSllYiIiIiIiIjck6w1tQwjXgoKCqq8b05ODgDUeGg4eZadO3cCAO666y7s3bsXW7Zswdtvvw0AaNeuHb777jv88ssvOHDgALp37w5RFJGUlIQOHTo4M2wiIiIiIiIiqiFZR2o1bNgQSqUSJ0+erNJ+oiji4MGDEAQBDRs2dFB05I4uXLgAQRCQkJCAqKgoAEDHjh3h4+NjMiWxbt26WL58OR5//HGkpKRg8+bNGDlypLPCJiIiIicRBAEPPfSQybaAgAAnRUNEREQ1IetIrQcffBAAcObMGWnKmC3WrFmDa9euAQAeeOABh8RWniiK+OmnnzB+/Hjcd9996NChA+Li4vDyyy8jMTHRIec8e/Ys2rRpU6W6DmlpaViwYAH69u2LDh064N5778WwYcOwevVqlJSUOCROV5KXlwcAaNu2rbTN19cXTZs2hUqlQlpamsn2iRMnQhRF/PLLL7LHSkRERM5nqO9q/BMYGOjssIiIiKgaZE1qxcfHw8/PDwAwY8YMnDp1qsL2Op0OX3zxBd5//30AgI+PD4YNG+bwOEtKSvDss89i5syZOHbsGJRKJdRqNdLS0rB161bEx8fjiy++sOs5CwsLMW/ePOj1epv3OXjwIAYMGIC1a9fi6tWrUKvVUKlUSExMxDvvvINhw4YhNTXVrnG6GsOCA8HBwSbbmzRpAgBISUkx2d6lSxcAwOXLl2WIjoiIiIiIiIgcRdbph3Xr1sW0adPw3nvvQalUYuzYsejUqZPJKJvExESsWbMGKSkp+PXXX5GVlSUV+H7qqadkmX44d+5c/PrrrwCAmJgYDB8+HFFRUTh37hzWr1+PoqIiLF68GNHR0Rg0aFCNz6dWqzF58mQkJyfbvM/Fixfx/PPPo7S0FN7e3njiiSfQtWtXFBYW4scff8Tp06eRnJyMyZMnY8OGDR47rD4qKgrXr19HRkYGIiIipO2NGzcGUJbUMp5iYPgmVqVSyRsoEREREREREdmVrCO1AOA///kPnnrqKYiiCFEUcfr0aXz77bcQBAFAWeHvd999F99//72U0AKAgQMH4oUXXnB4fEeOHMH27dsBAN26dcOWLVswfvx49O/fHy+//DK+//57hIeHAwAWLlxYraL3xrKzs/Gf//zHpP6TLd544w0pobV8+XK89dZbGDhwIEaOHIl169ZhzJgxAMqSX19//XWNYnRl99xzDwBg8+bNJtubNWsGURTNRgMaEocKhUKW+IiIiIiIiIjIMWRPagHASy+9hKVLl+Kuu+6SklvWfurWrYu33noLixYtkiW2VatWASib6rhgwQJpuqRBTEwMXn31VQCAUqnEpk2bqn2uY8eOYejQoVUunH/69Gn8+eefAIDBgwebFTsVBAFz585FTEwMgLLnpNFoqh2nK+vfvz9EUcQ333yD1157Df/88w8AoGvXrgCA3377DXv37gVQlkA0TGVt1qyZcwJ2I1FRUahTp45UgJ/cG/vTc7AvPQf70rOwP4mIiOQn6/RDY71790bv3r1x+vRpnDx5EikpKVCpVNBqtQgLC0OjRo3QtWtX3H///fDxkSdMpVKJo0ePAgB69OiBRo0aWWz36KOPYuHChcjOzsbOnTsxYcKEKp0nJycHr776qpRsAYDHH38chw8fRkZGRqX7//zzz9LtUaNGWWzj5eWFUaNGYf78+VAqlTh+/Dh69OhRpTjdQY8ePdCrVy/8+uuv2LRpEwoKCvDhhx+iefPmuO+++3DixAk8//zziIiIgEqlgl6vhyAIeOyxx5wdusurX7++s0MgO2J/eg72pedgX3oW9icREZH8nJbUMujUqRM6derk7DAAAKdOnZIKtXfr1s1qOy8vL8TGxmLnzp04e/YsVCoVwsLCbD7PpUuXpIRWUFAQ5syZg2HDhtm86qFhZFdYWJhJPbLyjJ/DoUOHPDKpBQBLlizBe++9h40bN5rUXHvnnXcwZswYpKenIycnR9oeGxuLJ5980hmhEhERkZPp9Xps27bNZFufPn3MFp0hIiIi1ydrUmvr1q0AgO7du6N27dpV2nfVqlV4//33IQgCkpKSHBBdWbLJoGXLlhW2bdGiBQBAFEUkJycjNja2Sufy8vLCoEGDMH36dERHR9u8n06nk1bui4mJgZeX9RmkzZo1g7e3N3Q6HS5cuFCl+NyJv78/XnvtNcyYMQP5+fnS9vr16+PHH3/Ed999h9OnT8Pb2xsPPvggnnjiCdlG/xEREZHrOXv2rMn9Hj16MKlFRETkhmT9ZD979mwIgoDatWvj008/RceOHau0v6FovKOkpaVJtxs0aFBh27p165rsV5WkVtOmTbFr1y5phb6qyMrKglqttilGb29v1K5dG7du3UJ6enqVz+VugoODzS5IQ0JC8Mwzz5i1VavV8PX1lSs0IiIiIiIiIrIzpwxXuX37NsaMGYM333wTQ4YMcUYIFhlPUYuIiKiwrWEFRKCsFldVVGVkVnlViREom6J469atKsfoLsaNGwdBELBixQqbklRKpRJDhw6Ft7c39uzZI0OE7isxMREajQYKhaLKCWhyPexPz8G+9BzsS8/C/iQiIpKf0+ZgqdVqvPLKK0hKSsKcOXMqnEYnl5KSEul2+VUPyzNOoBjv52jFxcXS7cpiNG4jZ4xy+v333yEIAnQ6nU3t9Xo90tPTbfq/IyIiIs90//33m9z39/d3UiRERERUE05JarVr1w7nz5+HXq/HN998g0uXLmHJkiUmo5+cQavVSrcrG/Vj/Ljxfo5mnLyxZWSSoY2cMVqSkpJSYeIyMDBQqlNmvE9RURGAsmTUkSNHpEL+5f3000/Sc9Xr9SZTSQ20Wq1UZN/X1xeJiYmIiYlBUFCQtK1Xr17Izc2V9klOToa3t7fZsby8vNC+fXuTbampqSYj6awJCwtDkyZNTLadP38eGo2m0n0bNmyIyMhI6X5JSQmSk5Mr3Q8A2rRpA4VCId3PzMzEzZs3rbY3xGPptXPlyhWT+mXWREVFma0GlZiYaFO8zZo1Q0hIiHQ/Pz8fV65csWnf8t+Qp6enIysrq9L9QkJC0KxZM5NtycnJNiWF69WrZ1IrUKPR4Pz58zbF27JlS5MPVDk5OUhNTa10P4VCgTZt2phsu3btGlQqlVlbQ39qNBokJiYiMjLSZGEFAPj777+t/o4Za9y4scn7dWFhoVTrrzLt2rUz+Z3KyMiwadXXyt4jKhIdHW0yQlan0+HcuXM2xWv8HgGUjfa8fv16pfs58j2ifF8ak/M9wsDf39+sDiXfI8xZeo+oqC+NyfEeUZ6nvUd8/fXXWLt2rcV9vb29MXPmTMyYMQNAzd4jgMr7E3Cd64jS0tJK9yEiInJlTklq9e/fH9OmTcOMGTNQWFiIEydOYNiwYVi6dGmlBdodyfiCUaPRVJg0MtS1AmxLLtmL8QgjWy5eDHEaf1BxBp1OV+FoKkuJE61Wa/IcL1y4YHXK4Ouvv25yv7L6a/fccw80Go1JO8N0gX/++UfaptfrLV7AW0rQlY/XGkvP1fjDTUXKxyKKok37GdqWP5Yt+1r6v7T1uVrqc1vjLf9cbY3XWhye2DeW2NI3Go3G6nO15QNr+Xir8lzLq0nfyPE6rO5zles9ovw2Z7wOLSX++R5hzlLflD+ONXK/RxjalefO7xF5eXm4ffu21f3z8vJM7lf398bW/V3lOoKIiMjdOW36Yc+ePbFhwwY8++yzuHHjBm7cuIERI0bg3XffRd++fZ0SU2BgoHS7tLTU5qSWnFPZjL8NtOXbNUMbZw+r9/b2rnCklqXVCH18fEyScWPGjMHJkyct1gezZREBLy8vhISEoF27dvjPf/4DhUIBQRBM2giCYFMC0NJzKR+vNZaeq61Jx/LntTVeQ9vyx6poX8PFcfn9ANufq6UPu9V9rpXFW1kcNekbW6a3ytk3xrGVZ61vjD/sKBQKq8/Vlg881f29saQmfSPH69AV3yPK92VF53W112F5d/p7RPnjWOOMvvG094jQ0FDUqVMHQNmiO3q9Hl5eXoiKioK3tzdCQ0NN9q3u742t+7vKdQQREZG7E0RHLylopHXr1hAEAbNmzcKECRMAACqVCs8//zx+//33soAEAc8++yymTZtmsu+qVavw3nvvQRAEm6f0VNVrr72GDRs2AAD27t2LRo0aWW27adMmzJs3DwDwwQcfYMCAATU+f1xcHNLS0tCgQQPs37/fYpvbt2+jR48eAIDBgwdj0aJFFR7zoYcewq1bt6QVF+VSUFCAixcvSvdbtWrlkKWyDa+pP//8EwEBAXY//p2MBW89C/vTc7AvPQf70jmOHTuG0tJS+Pn5mdXWqgl37E+5rteIiIgcxelf14SFheGrr75CfHw8gLIRN5999hkmT56MwsJCqZ0c3yw1bdpUul1ZHZFbt25Jt8vXA3GkOnXqSKO10tPTK2yr0+mQmZkJQN4Y5VS/fn3Ur1+f3zwSERGRTe6//3706tXLrgktIiIicg6XyAR4e3vjjTfewKuvvioNqT5w4ABGjBghFeSVoyZUTEyMdPvSpUsVtjU8LggC7rrrLofGVZ4hzsqKrv7zzz/SlAhn1ipzpP3792Pfvn1czZCIiIiIiIjoDuMSSS2D0aNH44svvpDqGqSkpGDYsGH4/fffZZla1qlTJyl5duLECavtdDqdtIpe69atzeowOFpsbCwAIDs7u8Lk2/Hjx832udOUlpZi+/bt+PLLL7Fnzx6nrwJJREREzqXX67Fjxw6Tn4KCAmeHRURERNXgtELx1jzwwANSAfmrV69CpVLhqaeewr/+9S+Hnzs0NBTdunXDoUOHsH//fqSnp1uctrdjxw5pyeV+/fo5PK7y+vbtiy+//BIAsHbtWrz11ltmbXQ6Hb777jsAZUuQP/jgg7LGKKfS0lKsWbMGO3bswGeffYZ69eoBKFu2fMKECSZTSevVq4fPPvvM4si1oqIiLF261GTblClTTBYQICIiIvd28eJFnDp1ymRbt27dWEuKiIjIDbnUSC2Dpk2b4vvvv0f37t0BlC1dvGfPHlnOPX78eABlq0vNmDHD7Ju7lJQUvP322wDKViIcNmyYLHEZu/vuu9GpUycAZQXrf/nlF5PHRVHEggUL8M8//wAARo0a5fTVDx1Fr9fj6aefxkcffYTk5GTcuHFDemzu3LlIT0+HKIrST3p6Op566imL38iKooiioiKTHxnXUXA5zZo1Q4sWLdCsWTNnh0J2wP70HOxLz8G+dI5///vfDjku+5OIiEh+LpnUAoDg4GCsWLECY8eOlTWx8OCDD6Jv374AgNOnT2PQoEFYuXIlduzYgffffx/Dhw+HUqkEAMyaNQuRkZEm+584cQKtWrVCq1atMHbsWIfF+eqrr0pLa0+fPh0vvfQSfvzxR2zYsAGjRo2SRmk1bdoUzzzzjMPicLZt27bh999/hyiKuPfee1GrVi0AQHJyMk6dOgVBEDBkyBD8/vvvWL16NaKiopCVlYVvvvnGyZG7vpCQEISFhSEkJMTZoZAdsD89B/vSc7AvPQv7k4iISH6yTj801HWqW7euTe29vLwwd+5ctGzZEm+++aZs9ZAWLVqEwsJCHD58GKmpqXj//fdNHhcEAQkJCdKKjc7Qrl07LFmyBC+99BKKioqwbds2bNu2zaRNkyZNsHLlSmm1RE/0yy+/QBAEDBw4EIsWLZK2G0b2eXt74+WXX5amlk6fPh1z587F/v378eyzzzorbCIiInKS+Ph45Ofnw8/PDw888AAAcMEZIiIiNyVrUmvt2rXV2m/YsGFo27YtkpOT7RyRZQEBAVi5ciV++uknbN26FefPn0d+fj7Cw8PRpUsXjBs3Dl26dJEllor06dMHO3bswFdffYXffvsNt27dgiAIaNasGfr27YuxY8d6dEILAM6dOwcAmDBhgsn2Q4cOASgr/h8eHi5tv/feewGU1dsiIiKiO0/5LyuJiIjIfblcoXhr2rVrh3bt2sl2PsPon4EDB1Zpv/vuuw8XL16s1jn3799f5X3q16+PuXPnYu7cudU6p7tTqVQAIBWHB4C8vDz89ddfEARBqstmYEjyFRYWyhekm8rPz4der4eXlxenUngA9qfnYF96DvalZ2F/EhERyc9tklpElvj5+UGr1SIvLw9hYWEAgCNHjkCn00EQBGlagUFqaiqAspUuqWJXrlyBRqOBQqFAx44dnR0O1RD703OwLz0H+9KzsD+JiIjk55CkVnp6unS7fv36FrfXhPEx6c5211134cyZMzhy5IhU42zHjh0AgFq1apldVK5fvx4A0LJlS3kDJSIiIiIiIiK7ckhSKy4uDoIgQBAEJCUlmW2vifLHpDvbww8/jNOnT+O9996DUqlEVlYW9u7dC0EQ8Oijj0rtLl++jK+//ho//PADBEFAv379nBg1EREROcsjjzyC27dvo06dOti5c6ezwyEiIqIacNj0Q1EUq7SdqDpGjRqFLVu24NKlS/j444+l7RERESarG44aNQp5eXkAgLvvvhvDhg2TPVYiIiJyvr///htpaWlo0KCBs0MhIiKiGnJIUis2NrZK24mqy9/fH9988w0WL16MPXv2QK1WIzY2FrNnz0ZkZKTUrnnz5vjrr78wYMAAzJ07F15eXk6MmoiIiJzFz88PjzzyCIKDg7F7924AQPfu3T1+xWgiIiJP5JCk1tq1a6u0nagmwsLC8NZbb+Gtt96y2uaVV15BvXr1EBUVJWNkRERE5GouXbqE+fPnAwCOHTsGAOjSpQuTWkRERG6Iqx/SHaFDhw7ODoGIiIiIiIiI7IhzsIiIiIiIiIiIyO1wpBa5PVEUsW3bNuzcuROpqakoKSmBXq+vcB9BELB3716ZIiQiIiJXcvfdd5vc9/Pzc1IkREREVBMOSWq1adPGEYcFUJaMSEpKctjxyb3odDo899xzOHToEADbV9cUBMFsm0KhwEMPPWS2jYiIiDzHypUrUVBQgODgYEyaNMnZ4RAREVENOCSpZWtigaimNm3ahN9++w0AEBAQgLvvvhu1atWCr69vlY/l6+uLXr162TlC99WxY0dnh0B2xP70HOxLz8G+dI633noLaWlpaNCggV2TWuxPIiIi+TkkqVW/fn1HHJbIzNatWwEAbdu2xcqVKxEZGencgIiIiIiIiIhIFg5Jau3fv98RhyUyc+nSJQiCgNmzZzOhRURERJX67LPPUFxcjICAAGeHQkRERDXEQvHk1gxTXVu1auXkSIiIiMgd9O/f39khEBERkZ0wqUVurUmTJrhw4QKysrIQFhbm7HA8Snp6OnQ6Hby9vTml2AOwPz0H+9JzsC89C/uTiIhIfm6X1CopKYG/v7+zwyAX0a9fP5w/fx6bN2/GrFmznB2OR8nKyoJGo4FCoeDFuQdgf3oO9qXnYF86hyiKOHjwoMm2e++9F4GBgTU6LvuTiIhIfk5LaqnVavzzzz8oKCiAVqu1uGKiXq+HVqtFcXExlEolzp07hz179uD48eNOiJhc0fjx47F9+3asWbMGDRs2RHx8PLy8vKp1rOLiYnz11Vcm2yZMmMCaG0RERB4kKyvLLKnVoUOHGie1iIiISH6yJ7WKi4uxePFi/PDDDyguLpb79ORhfv75ZwwdOhQff/wx5s+fj08++QRt27ZFZGQkfHysv7wFQcDChQtNtun1emRmZpptIyIiIs/RuXNnTJw40dlhEBERkR3IntSaOnUqDh8+bHFkli28vb3tHBG5s9mzZ0MQBABl0wlyc3Nx9OjRCvcRRdFiUouIiIiIiIiI3IesSa2DBw/i0KFDUhIiNDQUzZs3R2FhIS5dugQfHx906tQJJSUlyMnJQVpamrSvQqHAa6+9hoceekjOkMnFsWYFERERVUWfPn2Qm5sLX19fxMbGAgB8fX2dHBURERFVh6xJrZ9//lm6PWbMGLz88stQKBRITU1Fnz59oNPpMH/+fDRt2hQAkJqainfeeQf79u2DVqvFuXPnMGzYMDlDJhe3f/9+Z4dAREREbqR8/UwiIiJyX9WrqF1NZ86cAVA2uuaVV16BQqEAADRs2BD16tUDABw5ckRq37BhQyxduhR9+/aFKIrYuHEjLly4IGfIRERERERERETkgmRNauXm5kIQBPTs2dNshbo2bdoA+F/iy9ibb74JX19fiKKIzZs3yxEquTGVSoULFy7gzz//xIULF5CXl+fskIiIiIiIiIjIzmSdflhUVAQA0qgsYy1atMD+/ftx8eJFs8fCw8Px0EMPYc+ePUhMTHR4nOR+9Ho9NmzYgHXr1uHSpUtmjzdr1gzDhw/HuHHjzBKqREREREREROR+ZE1qBQcHQ6VSQa/Xmz3WuHFjAMC1a9ek1emMNW/eHABw/fp1xwdKbkWlUmHKlCn4448/rK6q+c8//2DRokXYvXs3li5dioiICJmjdD8hISHQarXw8ZF9kVRyAPan52Bfeg72pXOMHj0aWVlZiIqKwrfffmu347I/iYiI5CfrX93atWtDpVKZrGpoYEhqqdVqXLt2TSoWb2Cov1VQUODwOMm9TJ06FadOnQIAtG3bFo888ghiYmIQGBiIwsJCpKSkYNeuXTh//jxOnz6NWbNmYcWKFU6O2vU1a9bM2SGQHbE/PQf70nOwL53j4MGDSEtLQ4MGDex6XPYnERGR/GRNat1zzz24dOkSfv31V6jVapPlk5s0aSLd/vPPP82SWlevXgUAfvtFJnbs2IETJ05AEAS8/PLLGD9+vFmbPn364Nlnn8WaNWvw7rvv4vDhw9i3bx969+4tf8BERERUKVEUUVJSYnF0vz2O/cADDyA0NBQHDhwAAHTo0AEBAQF2P5cxPz8/XscSERHZmax/WXv16oVNmzYhKysLU6dOxcKFCxEZGQkAiI6ORu3atZGVlYVvvvkGAwYMkEZn3bhxA7t374YgCKhfv76cIZOL27ZtGwRBwIgRIywmtIw9+eSTuHr1KtatW4fNmzczqUVEROSiCgsLkZeXZ7WsQE3s3bsXGzduBAD89ttvAMquQ8PCwux+LmNeXl6Ijo5mbU8iIiI7kjWp1bt3b9x1111ISUnBwYMHERcXh4SEBEycOBEA0L9/f3z11Vc4f/484uPjMWTIEOTm5mLdunVQq9UQBAH333+/nCGTizt37hwAID4+3qb28fHxWLduHS5cuODIsIiIiKgGSktLUVxcDJVKZfdjWxr9lZWVhZKSErufy8DHxwdRUVHQarUmMxWIiIioZmQfA71kyRKMGjUKKpUKpaWlyM/Plx57+umn8cMPPyAvLw9JSUlISkoCAOlbOn9/fzz55JNyh0wuTKlUAoDNI/gMK29mZWU5KiSPkZycDI1GA4VCgZYtWzo7HKoh9qfnYF96DvaldVqtVko+2XsElVarNdsWEhKC0NDQGh33ypUrUqF44/paJSUl0Ol0NTo2ERERWSZ7UismJgbbtm3Dhx9+iF27dqFhw4bSY5GRkVi2bBmmTp2K7Oxsk/38/Pzw/vvvo1GjRnKHTC4sNDQUubm5SE9Pt+liND09HUDZxStVrKSkBBqNhhfiHoL96TnYl56DfWmZKIrQ6XTSqCZ717o6evQokpOT0aVLF4SHhwMoW6HbnucxPpZWq2UfExEROYhTqlVGR0dj0aJFePPNN6HRaEwe69KlC3bs2IFNmzbh7NmzUKvVaN26NYYPH26SACMCgHbt2uHw4cP4/vvvMW/evErbG2potGnTxuwxHx8fdO3a1WwbERERyccwkkqn08Hb29vux1+2bBkOHDiAW7duYe3atXY/PhEREcnHqZ/Y/f394e/vb7Y9PDwcTz/9tBMiInczYMAAHDp0CN999x1iYmIwcuRIq22/++47rFu3DoIgYMCAAWaP+/n54bHHHnNkuERERFQJQ1JLq9XCz8/P7sc/ePAgAODXX3+1+7GJiIhIXhyGQm6tf//+WLduHU6fPo233noLmzdvRt++fRETE4PAwEAUFRXh8uXL2LVrF86dOwdRFHHPPfdg4MCBzg6diIiILDDU09Lr9XYfqXXq1CmpVpder8cff/yBLl262PUcREREJB9Zk1qGekY1ZWtRcPJ8Xl5eWLp0KZ5++mmcO3dO+inPsNhA+/btsWzZMgiCIHeoREREVIEPP/wQeXl58PHxwZgxYwDA7kmtzZs3m913RFLr888/R0FBAYKDgzFq1Ci7H5+IiIjKyJrUiouLq3EyQRAEaVVEIqBsgYH169djw4YN2LRpE5KTk6UkFlD2mrnrrrswYsQIjBgxAgqFwonREhERkSUffvgh0tLSUK9ePamcQFVrW5aWlmLx4sW4fPmy2WN5eXk4evSoybavv/4aly5dsrjYTIsWLTBjxoxqTYH84osvcOvWLdStW5dJLSIiIgeSffqhcbKByF4UCgXGjBmDMWPGQKVSISMjAwUFBQgMDES9evXsvhw4EREROY5Wq4W3t3eVvgwVRRF+fn544YUXMHfuXGlxmMr2KZ/oAoARI0Zg2rRp8PPzgyiKHOFNRETkomRNasXGxtrUrrS0FJmZmbh58yaAspE2ffr0MVuZjsjYzZs3kZ2djfbt25sksf766y8cP34c/fr14wqaRERELi4jIwMPPfQQ3nnnHfTt21fafv36dQwZMgQA0K9fPyxYsMBkvwkTJuCvv/4CAPzxxx946KGH8PLLL6OgoMCknSAIZteUf/31F0pKSuDj44OPP/4YgwcPlh6bMWMGfvvtNwDAnj17EBkZKT22Z88ezJ49GwAQHx9vEi8RERE5nqxJraoum5yVlYXPP/8c3377LQ4ePIghQ4YgLi7OQdGRuyosLMRbb72F7du3o2fPnli+fLnJ43/88Qc+/PBDLFmyBKNGjcLs2bMt1ugoKSnB+vXrTbbFx8dbXKGTiIiIHEOv1yMjIwM6nc5ku06nw61btwAAKpXKbL/s7GzpcQAYPHgwOnfujMmTJ+P06dPSdkEQzFY7/ueff1BSUoIuXbqYJLQAIDc3Vzpu+RkHJSUl0mPFxcVVfKZERERUUy69+mFUVBTmzp2LOnXqYPHixZgzZw5++ukn1KlTx9mhkYvQ6XR4+umncfr0aYiiiKtXr5q1MUxh0Gq1+Oabb5CZmYklS5ZYPNa1a9fMtt2p6tWrB71eDy8vL2eHQnbA/vQc7EvPwb60zMvLC1FRUQgICDDZ7u3tjbp16wKAxbICtWrVkh4HyhJQjRs3xtatW/Hvf/8bFy9etHpOhUKBunXron79+mbTDSMiIqTjlp+G6O/vLz0WHR2NevXqsT+JiIhk5NJJLYOJEydiw4YNSEtLw7fffovp06c7OyRyERs3bsSff/4JQRAwduxYTJw40azNxIkTER8fj08++QRff/01du3ahV27dnGKQCVq167t7BDIjtifnoN96TnYl5bVqVMHO3bsQEREhMn2xo0b448//rC63+rVq03uGxJQPj4+6N27d4VJreHDh+Pll1+2+NhHH31kdb+HH34YDz/8sNXHiYiIyLHc4qskQRDQq1cviKKI/fv3OzscciE//fSTlNCaO3cuoqOjLbYLDg7GnDlzMGzYMIiiiA0bNsgcKREREVVFVVc+rIjx9aNhZLfxz+HDh+12LiIiIpKPW4zUAsqGlANAenq6kyMhV5KcnAygrPaVLUaNGoWNGzfi3LlzjgyLiIiIqmjGjBm4efMmFAoFBEGwWP+yOv755x9cuHBBuu/j44O//voLiYmJ0Gg00vYrV66gWbNmdjnnpEmTUFBQgODgYLscj4iIiCxzm6TW9evXAZjXMqA7m+Fi1HgloooY6l4UFRU5LCZPodFopLoiCoXC2eFQDbE/PQf70nOwL00Zkloqlcok2VRTP//8s3Q7JiYGy5cvR7t27XDu3Dk899xzuHz5stRuypQp1T6PcX8+88wz0vb8/PzqB09EREQVcovph6mpqfjll18gCAIaN27s7HDIhRiSVJcuXbKpvaGQvK1JsDvZ+fPn8ddff+H8+fPODoXsgP3pOdiXnoN9aUqr1UIURWi1WrsWW9+xYweAslHdu3btQrt27QAA7dq1w86dO6XR3oZ21XXp0iVcuHDB5msSIiIiqjmXTWqp1WpkZGTghx9+wOjRo1FSUgIAiIuLc3Jk5Eq6dOkCURSxbNkys2W2Lfniiy8gCAK6dOkiQ3RERERkK8OKwzqdzm71tFJTU3H16lUsX74cixcvNltRMTAwEIsXL8by5ctx5coVpKWl2eW8REREJA9Zpx+2adOmRvuHhoZi7NixdoqGPEF8fDx++OEHHD9+HAkJCXjllVfQoEEDs3a3b9/Ge++9h/3790MQBIwaNcoJ0RIREZE1hpFa9kxqpaenY8+ePWjYsKG0bd68eVCpVAgLC8OCBQsAAAMHDkSnTp2Qnp5u8TqCiIiIXJOsSS1bRtJYExISgk8//RRhYWF2jIjcXceOHfH0009jxYoV2L9/Pw4cOIAWLVqgadOmCAgIQHFxMW7cuIHk5GTo9XoAwOjRo9G1a1cnR05ERETGNBoNtFotANitSPy9995rtu2XX37BrVu3ULduXSmpJYoiGjVqhEaNGtnlvERERCQPWZNa9evXt7mtt7c3/P39Ua9ePXTr1g1Dhw5FeHi444IjtzVjxgwEBwdj2bJlKC0tRXJyskk9C0My1cfHB8888wwSEhKcFSoREdEdz1A3S6PRmPwYtgOw20gta+655x6EhYVJqyg3bdoUvr6+Dj0nERER2Z+sSa39+/fLeTq6QxhWGRoyZAj27NmD48ePIyMjAyqVCgEBAahbty46d+6MQYMGITo62tnhEhER3TFEUTRLXhlWNjQksQwJLsO/Pj4+di0UX97mzZuxZ88eAMDBgwcBAHXq1GFSi4iIyA3JmtQicqQ6depg9OjRGD16tLNDISIiuuPo9Xqz5JVh5JUhuWWcwDLU0ALKRmb5+PggODjYrJi7vXElbSIiIs/BpBYRERERVYlOpzNLYBlWLyyfwDJObgGAQqGAj48PAgIC4OPjA4VCAUEQnPVUiIiIyI0xqUVEREREVlmqf2VYfMUwOqv8CCygrDyAQqGAr68vgoKCpNFYrpDAioqKMrlvr8L0REREJC9Zk1rp6ekOP0dVitFXRBRFbN++HZs3b8b58+dRVFSE2rVrIzY2FqNHj0bHjh1rfI7k5GR89dVXOHHiBG7fvo2QkBDExMRg8ODBGDJkSKUXWHFxcUhLS7PpXIcPH0bt2rVrHLMn8/b2Rtu2bc22ERER3SmME1hqtVoq4A78b3SWcQLLMDqrfALLMBrLFR0/fhwRERHw9fXFAw884OxwiIiIqAYE0XClIoPWrVs79Ns5QRCQlJRU4+OUlJRg2rRp+PXXXy0+7u3tjRdeeAGTJk2q9jk2bdqEN998UyqWWl7Xrl2xdOlSqys+FhQUoGvXrrC1++ROahUUFODixYvS/VatWiE4OFi281PNlZSUQBRFCIIAf39/Z4dDNcT+9BzsS8/hzL6saAVCAGbF27VarTQ6y8vLS5o2aPyvu+jSpQtu3bqFunXr4o8//rDbca31Z35+PkpLSxEVFYWoqCiXKkjP6zUiInJ3sl+ByJhDq7a5c+dKCa2YmBgMHz4cUVFROHfuHNavX4+ioiIsXrwY0dHRGDRoUJWPf+jQIbz66qsQRREBAQGIj49H+/btkZ2dje+//x7Jyck4deoUZsyYgZUrV1pcAejixYvS/+Wzzz6LDh06VHjOsLCwKsdJdzZ+WPYs7E/Pwb70HHL1ZUUrEAIwS14ZJ7e8vb3h4+ODwMBAKYHljqOYP//8c3zxxRcAgNu3b0v/dunSBQAwadIkPPPMMzU6B383iYiI5CdrUmvGjBkAgBMnTuDIkSPS9nbt2qFdu3aoVasWfH19kZ+fj3/++QcnT55EYWEhBEGAn59fpYkbezhy5Ai2b98OAOjWrRu++OIL+Pn5AQD69++PJ554AqNGjYJSqcTChQvRu3fvKn2jpVar8cYbb0AURQQGBuKbb75Bu3btpMdHjhyJGTNmYM+ePThy5Ah+/vln9O/f3+w4xt+qDR48GM2aNavuUyYiIiIPUdkKhIaaV5YSWMYrEBoSWJa+WHNHBQUFuHXrlsk2vV4vbSsoKHBGWERERFRDsia1Jk2ahC1btuD48eMAympCzZ492+rSysXFxfjyyy+xfPlylJaWIjY2FlOnTnVojKtWrQJQdmG3YMECKaFlEBMTg1dffRUvvvgilEolNm3ahAkTJth8/N27dyM1NRUAMHHiRJOEFgD4+vpi0aJFOHnyJJRKJT7//PMKk1p+fn5o0qRJlZ4jERERub+qrEBo+NfAkLTy9/e/I1YgDA4ORt26dSt8nIiIiNyPrEmt5ORkvP7669Dr9Rg5ciRef/31CtsHBAQgISEBderUwWuvvYbPPvsMPXr0QKdOnRwSn1KpxNGjRwEAPXr0QKNGjSy2e/TRR7Fw4UJkZ2dj586dVUpq/fzzzwDK6n+NHDnSYpugoCAMHToUq1atQnJyMq5cuWI2EsuQ1GrRooXHfItKriUnJwd6vR5eXl6IjIx0djhUQ+xPz8G+9BxV6UtDAstQvL0qKxAaRmAFBATcEQksS5555pkaTy+sTG5urlRTKyIiwqHnIiIiojKyJrVWr14NtVqNhg0bYu7cuTbvN3z4cHz//fdITEzEmjVrHJbUOnXqlHSB2K1bN6vtvLy8EBsbi507d+Ls2bNQqVQ216w6efIkgLJCnBVdwHbr1k0aNfbbb7+ZJLVEUcSlS5cAAC1btrTpvERVlZqaCo1GA4VCwQ/OHoD96TnYl57DWl9aKuBuuD6pygqEhmTWnZbAqowoirhy5YrJtoYNG9a4gPvNmzeh1Wrh4+PDpBYREZFMZE1qHT9+HIIg4OGHH67yKjndu3dHYmIiTp065aDoICWKgMqTRS1atABQdmGUnJyM2NjYSo+fkZGBvLw8AMBdd91VYduYmBjp9oULF0weS0tLk2o/GI5TUFCACxcuoLCwEHXq1EHLli3dspCrM5WUlOCnn34y2TZgwAAWfiUiIocwrnGlUqmqtQKh8fRBd1qB0Jl0Oh02bdoEb29veHl5wdvbG2PGjEGtWrWcHRoRERFVkaxXP5mZmQCqtxKfIUGTn59v15iMpaWlSbcbNGhQYVvjugxpaWk2JbUMtbRsOX50dDS8vLyg1+uRnp5u8phxkXgvLy8kJCRg//790je1ABAeHo4xY8bg6aefZlLGRjqdDklJSSbbHn30USdFQ0REnsTSCoRZWVnQaDTw8fGRklrGo7Q8bQVCV6HVavF///d/JtsGDRrEpBYREZEbkjWpFRQUBJVKZTbyyBanT58GANSuXdveYUlycnKk25UNGw8PD5duK5VKm46fm5tr8/EVCgUCAwNRUFBgdnzjpNa7775rcX+lUolPP/0Uv/32Gz7//HNOUSEiIpKJrSsQFhQUoKSkBACQlZUFwLNXIHQVxl8CGnCUGxERkXuS9S94+/btcfjwYezfvx+XL182mWJXkRMnTuDo0aMQBAH33Xefw+IzXFgCMFv1sDzjugvG+1WkuLjY5uMb2hhf8BoYJ7UUCgUmTJiAwYMHo1GjRlAqlTh48CA+/vhjZGZmIjExEdOnT8dXX33Fi2IiIiI7q8kKhGq1Gl5eXvD390dkZCR8fHz4t1oGhgSjMY58IyIick+yJrUGDBiAw4cPQ6PR4Omnn8ayZcvQunXrCvc5duwYXnjhBYiiCC8vL6srBtqD8UVOZcVCjR+3dHFkifE3g7YUIzW0KX/8jIwMAGVJr1WrVqFr167SY3Xq1MGwYcPQs2dPDB8+HLdu3cLx48fx888/o3///jbF6QgpKSkVXqgHBgZKdcqM9ykqKqr02NHR0YiOjpbu63Q6nDt3zqa4YmJiEBQUZPXxpKQkiwlILy8vtG/f3mRbamqqyWg/a8LCwtCkSROTbefPnzf5oGNNw4YNTUbdlZSUIDk5udL9AKBNmzZQKBTS/czMTNy8edNqe0M8ll7fV65csWkqcFRUFOrXr2+yLTEx0aZ4mzVrhpCQEOl+fn6+WWFfazp27GhyPz09XRoFUZGQkBCzlUaTk5NtSlzXq1fPZCSpRqPB+fPnbYq3ZcuWJtOEc3JyTKYrW6NQKNCmTRuTbdeuXYNKpTJra+hPjUaDxMREREZGomHDhiZt/v77b6leT0UaN25sMlq1sLAQly9frnQ/AGjXrp3Jh8eMjAzpPa0irvIeoVQqcf369Ur3c+R7RPm+NCbne4SBv7+/WR1KT32PCAwMRMOGDaXklVqtxqVLl1BaWgq9Xg+dTicVbjdObgmCgLp166JOnTrSCoQAcPv2benYKSkpVs/bvHlzk/eI3Nxcm/pGoVCY1fBMTU2V6ntWJDw83KxvLly4YNN7RIMGDUxKTRQVFeHq1auV7geULaRj/B6RmZkpla+oSEBAgNn795UrV0y+UDSw9B5p/NrX6XQmXyBWpGnTpggMDDTZptVqTcoZFBYWQq1W4/bt24iIiJBG37nCdURpaWml+xAREbky2ZNa69evx+nTp3Hz5k088cQTiIuLQ8+ePdGiRQvp4lSpVOLixYvYu3cvjh07Ji2PPGbMGLMLAHsyvmDUaDQVJp7UarV029bVcoyTI7ZceBjOYXyhBQDr169HQUEB8vPzUa9ePYv7RkdHY968eUhISAAAbNy40alJLZ1OZ3G4v4GlxEn5b7QrOnZ5tuwHQKpXYo1Go7GYjLO0zdZ4LT1XwwekypT/MGEYBWCL8s/VMD2mqvsB8vRN+edqa7zW4vDEvrHElr4xngpVfrstH1jLx1uV51peTfrGGe8Rtj5Xud4jym9zxuvQ0ggXT3iPMEwRNP4JCgpCYGCgyQqEOTk5KCoqkuIRBEGqgWUo3u7t7Y3w8HCTRI/xdYThfNZYeh3a+oVaeYbnUhlLfWNcqL4i9ozXkCi0pZ2t+2o0GoSFhUnXJnq93ux1bGu81q4jjPc3JDqNfy9c5TqCiIjI3cma1PLy8sKyZcsQHx+Pa9euQafTYc+ePdizZ4/VfQwXC48++ijmzJnj0PiMv2krLS21Oally1RCS8evjKGNpULvwcHBCA4OrnD/uLg4BAcHo6CgAKdPn4Zer3fatAbDCkPWWKplYfhAYMuxy7NlPwCVLnOuUCgsHsvSc7E1XkvP1dZ4y5/XsHy7Lco/Vy8vrwr3NVwcW/o/kqNvyj/XyuKtLI6a9E1FCVnj+Iw5sm+MYyvPWt8Yf9ixtkqaQqGw6QNP+Xir8lzLq0nfOOM9wtbn6sj3iPJ9WdF5Xe11WJ4rvEeIogi9Xm+WwDJcfxgeM/y/375922QFQm9vb6mAuyGBZUu85f+/K6rpZOl1aEsNKGt9Y8u+lp6Hj49Ptd8jqluzypAgtKWdrftGRUXh+++/l+7Xrl3brNaprfFau44w3t/w/2b4vbBWJ80Z1xFERETuThArG6riAEVFRfjkk0+wdu3aSr8Jq1WrFhISEhw67dDgtddew4YNGwAAe/fuRaNGjay23bRpE+bNmwcA+OCDDzBgwIBKj3/69GnEx8cDAKZMmYKpU6dabavRaNCxY0fo9Xp0794dq1atqspTkQwdOlSaZnPs2DHZCsYXFBSYDN1v1apVpUk4ZyssLMQHH3xgsm3mzJkVTk/0ZImJidBoNFAoFGZTdcj9sD89B/uy+iytQGicwCpf+8p4ZFL50Vf2WIEwKSkJWq0WPj4+aNu2bY2fHzmXtf7Mz89HaWkpoqKiEBUVZfMIfzm44/UaERGRMacs9RIYGIiXX34ZkyZNwoEDB3D06FFkZGQgOzsbXl5eCA8PR4sWLXDvvfeiT58+sv3xb9q0qXT75s2bFSa1bt26Jd0uX3PC1uNXJCMjQ7qQtvX4llR39ASR4bXD15BnYH96DvalbWxdgdA4iWVIbhkSWEFBQQ5dgZB96VnYn0RERPJz6vrFERERGDp0KIYOHerMMCTGqzFeunQJ9957r9W2ly5dAlA27Lx8EVZrIiIiUKtWLWRnZ0v7W2NcMNa4AO+NGzewf/9+ZGdno3PnzujVq1eFxzEUYFYoFCa1PIgqU74AObk39qfnYF+aM05gqdXqSlcgNB6dZZiOFxwc7NAEliW2Xj+Qe2B/EhERyc+pSS0DvV6PnJwcqFQqREZGSnUN5K4B1alTJygUCmg0Gpw4cQKjR4+22E6n0+HkyZMAgNatWyM0NNTmc8TGxmLnzp04f/488vPzTVZuMnb8+HHptnFy7fbt21i4cCGAsppZFSW1rly5Io0I69ChA5erJiIit2co0m78Y0hgGZJb5RNYwP/qOvn4+EgrECoUikprKxIRERGR63JatUitVovNmzfjySefRJcuXdCjRw/0798fW7duldqMGDECM2bMsHk58poKDQ1Ft27dAAD79+9Henq6xXY7duyQllzu169flc7Rt29fAGXPf926dRbbFBQUYMuWLQDKlixv3bq19Fj79u2lWgeHDh2yGiMALF++XLo9aNCgKsVJRETkbFqtFsXFxcjLy0N2djZu3bqFjIwM5OTkQKlUQqlUQqVSITc3F5mZmbh9+zZyc3NRUFAAvV4PX19fhIWFoVatWqhTpw5q1aqFsLAwBAYGwtfXlwktIiIiIjfnlJFaFy9exNSpU3H9+nUA/1vhsPzFZUpKCv7++2/s3r0bM2fOxPjx4x0e2/jx43Ho0CFoNBrMmDEDK1euNCmYmZKSgrfffhsAEBQUhGHDhlXp+H369EHDhg2RmpqKpUuXonPnzujatav0uFqtxqxZs6BUKgEAEyZMMNnfz88Pw4cPx6pVq6DRaPDiiy9ixYoVZkU9v/zyS/z4448Aymp5DRkypEpxEhERycVQ46r8CCzD9YFhdJZxG+MVCH18fODv729SyJ3ImhMnTuDUqVMICQmRXjuuUgqDiIiIqkb2q77k5GSMHj0ahYWF0sWqr68v1Gq1Sbvc3FwUFxdDEARotVosWrQICoXC6pRAe3nwwQfRt29f7Nq1C6dPn8agQYMwcuRI1KtXD0lJSVi3bh0KCwsBALNmzTJbTfDEiRMYN24cgLJpg2vXrjV53NfXF3PnzsXkyZNRUlKC8ePHY9iwYejcuTOUSiU2btwojUzr3LkznnjiCbMYJ0+ejAMHDuDKlSv4888/8dhjj2HEiBFo2rQpcnNz8fPPP+PUqVMAyhJvH3zwAfz8/Oz+f0We7dq1a9IqTk2aNHF2OFRD7E/P4e59WZMVCL28vKBQKBAYGGi3FQidKTU1VerLhg0bOjucO0JBQQFmzJiBq1evStvq1atnl6QW+5OIiEh+sia1tFotnn/+eRQUFAAAevXqheeeew5t2rQxW5Y8IiICmzZtwuLFi3H8+HGIoogPPvgAvXv3Rt26dR0a56JFi1BYWIjDhw8jNTUV77//vsnjgiAgISEB8fHx1Tp+XFwcXn/9dbz99tvQaDT47rvv8N1335m06dChA5YtW2bxYj0kJARfffUVEhIS8Pfff+PWrVv4+OOPzdrVq1cPixcvRocOHaoVJ93ZVCoVNBoNV3HyEOxPz+FOfanX66HVaqXi7dVZgdBTEliW5OXlSUkQksfrr79uktACYLdRWuxPIiIi+cn6V/fHH3/EtWvXIAgCxo4di1deeaXC9h06dMDq1avxxhtvYP369SgpKcHGjRsxdepUh8YZEBCAlStX4qeffsLWrVulou7h4eHo0qULxo0bhy5dutToHCNHjkTXrl2xZs0aHD16FJmZmVAoFGjZsiUGDBiA4cOHV/iBpV69etiwYQO2b9+OHTt24Ny5c8jLy0NwcDCaNm2Kf//73xgxYgSCgoJqFOedxNvb22zUg6d9gCIichTjFQgtJbBcdQVCurNMnToVf/31F86dOweg7Fpz+vTpTo6KiIiIqkvWpNaePXsAAHXq1MHMmTNt3m/27NnYu3cvsrOzceTIEYcntYCy0VgDBw7EwIEDq7Tffffdh4sXL9rU9q677sKCBQuqEx6Asg8BgwcPxuDBg6t9DPoff39/Weq2ERG5O65ASO6qSZMm+PHHHzFnzhzs2bMHK1asQEBAgLPDIiIiomqSNamVlJQEQRDQq1cv+Pr62ryfv78/4uLisHHjRrMh40REROQ4lgq4G2pcGSew1Go1tFqtlNwSBAEKhQK+vr4ICgqSkllMYJGzBQQE4KOPPkJ6ejoaNGjg7HCIiIioBmRNauXm5gJAtS4g6tevDwBSkXYiIiKyn6quQGicwOIKhORuBEFgQouIiMgDyHrFGRQUBJVKJRWKr4qcnBwAZUXSiYiIqPpqugKhIYGlUCg8soA7EREREbkHWZNaDRs2hFKpxMmTJ6u0nyiKOHjwIARB4BLJREREVVA+gWWYJmh47E5fgZA81+bNm3H8+HHMnz8f/v7+zg6HiIiIHEDWpNaDDz6Iv//+G2fOnMGxY8dw//3327TfmjVrpFUTH3jgAQdHSURE5J64AiFRmaSkJMyaNQslJSX4+++/sWLFCn4xSkRE5IFkTWrFx8fjq6++glqtxowZM/DJJ5+ga9euVtvrdDp8+eWX+PjjjwGUXXAPGzZMrnDpDlNaWoq9e/eabOvTpw/8/PycFBERkXU6nQ4lJSVWVyA0ro9lvAIhAKnmFVcgJE+kUqnw9NNPo6SkBACQmJiIvn37Yv/+/YiOjnZydERERGRPsia16tati2nTpuG9996DUqnE2LFj0alTJ7Rt21Zqk5iYiDVr1iAlJQW//vorsrKyIIoiBEHAU089xW/ZyGG0Wi1OnTplsq1Xr153bFIrMjISWq2WxZ49BPvTvRknqARBgF6vhyiKyMnJMVmBsHwCiysQurbw8HDodDpO6bQjvV6PadOmma2WPXDgQIcntNifRERE8pP9081//vMfZGdn48svvwQAnD59GqdPn5YusHfu3ImdO3dK7Q3TIgYOHIgXXnhB7nCJ7lhMIHsW9qf7KD99sPwKhEFBQfDz84NGo0FmZqY0OsuQwPLz80NQUBBXIHQDhpWdyX4++eQT7Nmzx2Rbp06d8MYbbzj83OxPIiIi+Tnlavell15C586dsWTJEly6dKnCtnXr1sXkyZMxfPhwmaIjIiJyPEORdmsJLFtXIDRMH2QCi+50Bw8exPvvv2+yrVatWvjiiy/u2FHXREREns5pV8C9e/dG7969cfr0aZw8eRIpKSlQqVTQarUICwtDo0aN0LVrV9x///28UCciIrdWfgVCw4/hMa5ASFQzN27cwOTJk6XfG6As+bts2TKOoCIiIvJgTs8WderUCZ06dXJ2GERERHbBFQiJ5FVSUoJJkyZBqVSabJ8zZw4efPBB5wRFREREsnB6UouIXNPff/8NjUYDhUKB9u3bOzscqiH2p2PodDqzBJahxlX5BJZxcguo/gqEFy5ckIr+t27d2mHPjRyPfWkfr776KhITE0229evXD88995yscbA/iYiI5MekFhFZpNfrpR9yf+zPmrNU/8rw/ynnCoTsS8/Bvqy57777Dt99953JtubNm+Ojjz6SfZVP9icREZH8mNQiIiIqxziBpVarzVYgLJ/AKr8CoSGBxQLuRI5z9uxZzJs3z2RbYGAgVq5ciZCQECdFRURERHLilTYREd2xuAIhkXv67bffMGXKFJSWlpps/+CDD9CqVSsnRWWZIelNRERE9serbyIiuiNUtAIhALPaV1yBkMj16HQ6LFmyBB999JHJSocAMHHiRAwaNMhJkVlWUlKCkpIShIaGQhAEJr6JiIjsjH9ZiYjI41S2AqGh5pWlBBZXICRyTVlZWUhISMChQ4fMHrvvvvvMpiI6m06nQ15eHvz8/BAYGIjQ0FC+lxAREdkZk1pEROTWqrICoeFfA0PSyngKodzFpYmocr///juee+453Lp1y+yxvn37YsmSJVAoFE6IzDJRFKFUKiEIAsLCwhAQEICgoCBnh0VERORxmNQiIiK3YUhgGYq3V2UFQsMIrICAACawiNyEKIr47LPP8M4775jVpvL29sYrr7yCZ555xuV+l/Pz86HVahEZGQlfX1+Eh4c7OyQiIiKPxKQWERG5JEsF3A0JrKqsQGhIZrnah14iqphSqcT06dOxe/dus8fq1q2L5cuX495773VCZBUrLS1FUVERQkND4evri4iICL7/EBEROQiTWkT/5eXlhdq1a5ttIyLH4gqERFReYmIiJk2ahBs3bpg91qNHD3z66aeIiopyQmQV0+l0KCgogL+/v1RHy5WmRRIREXkaXvkT/VdAQAAmT57s7DBcRuPGjSGKIr9d9hCu0p+WViDUarVWE1hcgdBcgwYNXKIvqebYl5apVCoMHz4c+fn5JtsFQcCMGTMwbdo0l/zdr1+/PnJychAWFsY6WkRERDJhUouILGL9D8/ijP7kCoSOERYW5uwQyE7Yl5aFhYVhzpw5eOWVV6RtkZGRWLp0KXr27OnEyCrm5eWFoKAgREZGQqFQ8O8oERGRDJjUIiKiGqvpCoSGBJZh+iATWER3tnHjxuHEiRP48ccfERsbi+XLl6NevXrODsuq4uJi1tEiIiJyAia1iIioSsonsNRqNVcgJCK7EgQB7733Htq1a4dJkya5dF0qrVaLvLw8qY5WWFiYS8dLRETkSZjUIiKLCgsLpVovrAni/qrbn1yB0PUUFRVJfRkYGOjscKgG7tS+LCwsRGpqKm7duoVbt25hxIgRFtsFBwdjypQpMkdXNaIoQqVSwdvbGwqFAjqdTppGTURERI7HpBYRWXT58mVoNBooFAp07NjR2eFQDVXWn5WtQFh+dBZXIHSeq1evQqvVwsfHB23btnV2OFQD7t6XGo0GSqUSOTk5yM3NRU5OjvSjUqkwb948i4nsPXv2SMkqQRBQr149l66VVZG8vDxotVpERkbin3/+QUhICHJzc/l3k4iISCb81EH0X2q1GkePHjXZ9sADD8DX19dJERE5RlVXIDROYHEFQiLPpNVqpQSV4ad8ospw3/BvXl5ehcecMWOGxZGhkZGR0m1RFJGQkIBdu3a5dM0sS4qLi1FcXIywsDD4+voiLCyMo7SIiIhkxqQW0X9pNBocPHjQZFtsbCyTWuTWDDWuioqKUFxcDAC4efMmgMpXIDQksAzTB7kCIZF7MExptOTHH3/EgQMHzJJUKpXK7nHk5ORUmtQCgOzsbMycORPffvut3WNwFOM6WgEBAQgLC0NmZqbJIhhERETkeExqmrSpKgAANzRJREFUERF5CEMCy1C83XgFwvz8fJSUlAAAVCqVlMwyJLCMVyBkAovIdRhGUKlUKsTExFhss2/fPixZsgQ5OTlQKpVo2bIltmzZYrHt2bNnsWnTJkeGLMnJyUGjRo3MtkdERAAAwsLCEBERgc6dO2Pq1KmyxGQPoihCqVTC29sbYWFhCAwMvKNqohEREbkSJrWIiNxQ+RpXxgksSysQZmdnQ6fTwcfHR6rhwxUIieSl0+lMalCdPXsWubm5KCgogEKhMJvql5ubC6VSCQBQKBS4cuWKxd/VwsJC/Pnnn9L97OxsqzGUHyVlL6GhoYiMjERERAQiIiIQGRlpdVGK+vXr49q1a25bey8vLw86nQ61atWCQqFAWFiYs0MiIiK6Y7nn1QQR0R2kohUI9Xo91Gp1pSsQBgcHAwD8/PxQq1Ytpz0XIk+TlpaGtLQ0q/WnjO+rVKpq11zSaDQoKChASEiI2WPlE1W5ublWj2MYJVURSwkqw7+GH+P74eHhUCgUNj8XQRDcNqFlXEdLoVAgMjKSXwoQERE5kXteURAReSBbVyA0bmPrCoT+/v7QarX88EVkg8uXL+PkyZNSQqpu3bqYOHGixbYffvgh1q9fL0tcOTk5NiW1lEoldDqdxUUc2rdvj6efftpicsqQxKpKgupOYqijFRAQgICAAISHh7ttco6IiMhT8C8xEZET1GQFQi8vLygUCq5ASGSBXq+HSqUym8ZXfgSVVqvF119/bfEYR48exezZs6X7nTt3tprUctR0PkuUSiWaNGlitr1hw4Z45513TEZSWUtg33333bj77rsdHarHMa6jFRoaisDAQAQEBDg7LCIiojsek1pERA6m1+uh1Wql4u2GJBVg+wqETGDRnciQoCqflLKUpDL8KJVKKQFcEW9vb+j1eosLIpRPVOXk5Fg9ji3T+SwJDg5GcHAwQkJCEB4ejkaNGlU4xS8iIsLqaryhoaEYN25cteIg26hUKqmOlq+vL+toERERuQgmtYiI7Mh4BUJLCazyo6+4AiHdKfR6PfLy8pCTkwNBENCsWTOL7RYtWoRffvlFSljZkqCqDp1Oh7y8PISHh5s9Zmk6nzWGgujlE1HG9agsPebn54ekpCRp4Ya2bdva+RmSvRQXF6OkpESqoxUREcGp3ERERC6CSS0isqhdu3bODsHlVXUFQkNyy1AkWc4VCFu1auWwY5O8XKEvDQkq41FSGo0Gjz76qMX2K1euxFtvvSX9fsTFxWHt2rUW22ZnZ+PSpUsOi91YTk6OxaRWnTp10LFjR5OElCiKFn9HR4wYgfj4+Gqd3xX6kiqm0WhsrqPFv5tERETyY1KLiCziFDdTla1AaEhcGVYitLQCYVBQkJTMkvtbfvan57B3X4qiKI2gsrRin6Wpfrm5udJr3CAiIsJqUiswMNCkvSOm81k7b0UF0S0ltAAgJiYGv/zyi03nqMnvMn8vXZsoilCpVPDx8UFoaCiCgoIqrKPF/iQiIpIfk1pEREaqugKhcQKrshUIiZzh4MGDuHDhgtUkVW5urjSKsCYqWnHPHjWqAgICKqw3ZWmqn7+/f82eFN2x9Hq99Jo21NEKDQ11dlhERERUDj9tEdEdq6YrEBoSWAqFggXcye6sTXcDgAMHDuCXX36RElRdunTBK6+8YrHtN998g59//tmRoQL436gWS6sBlt9WUlJi9Th9+vRBvXr1zJJWXGmO5KLT6aR6bpGRkfD19WUdLSIiIhfFpBYRWZSRkSGNuoiOjnZ2ODVWPoFlmCZoeMzTVyDMzMyU+rN27drODueOI4oiCgoKzKb2VTTVLzw8HL/++qvZsTIzM/H777/j22+/lbb5+flZPbelJJM9+fv7Swmo4uJii23atWuHXbt22ZSgatGiBVq0aOGocF0Kfy9dj1arRW5uLoCy3x0/Pz9ERkbaNOrW0/5uEhERuQMmtYjIooyMDGg0GigUCre7OOcKhOYyMzOlVdb44blmDAkqS0kpa0mq3NxcaDSaKp1HrVZb3J6ZmWn2mqxoOl9VklrGCSpLU/wsTf+zZQRVUFAQ2rdvb3Mcdwr+XroWjUaD3NxceHl5SStU1qpVy+YvMdz57yYREZG7YlKL6L8EQUBgYKDZNnJtla1AaFwfy3gFQgBSzSu5ViAk15WdnY0bN25ISai6deuie/fuFtuOHj0aBw8edHhMKpVK+oBcXlhYmMl9w8gSS1q2bIkHH3yw0uSUrQkqIk9UWloKpVIJhUKB8PBwKaHlCV9qEBEReTImtYj+KzAwEC+99JKzw6AK2LoCYfkElqusQEiOJYoiioqKrI6aCggIQEJCgsV9v/jiC3z66afS/YEDB1pNaslZLFqpVFocwdOwYUMMGDAAMTExiIyMRJ06daweY8iQIRgyZIgjwyRyayUlJVCpVFAoFNIIrcjISCa0iIiI3ACTWkTkksonr2xdgdCQwPLz80NQUBBXIHRToiiiuLi4wql9lqb6lZaWWj1m48aNrSa1yq+4Z6/pfJb4+vqajJCqaIpf+RFZBg0bNsTUqVPRtm3bGsVCdKcrLi6GSqWCv78/wsLCEBAQwKLwREREboSf9IjIqQxF2q0lsGxdgdAwfZAJLNcjiiJ0Op3Vvlm2bBn++usvkySVUqmscIW86qhKoqqitsYJMIVCYZaQqmh6X2RkJAIDA/mBmcgFFBYWIj8/H4GBgQgNDUVAQADCw8P5+0lERORG+OmPiGRTfgVCw4/hMU9fgdBTGEZQqdVqNGvWzGKblStXYuPGjdIoquHDh+Odd96x2PbQoUP47bffHBkyAKCgoAClpaUWVwqMjIw0SVDFxMRYPc6ECRMwYsQIREZGIigoiB+AidxQfn4+CgsLERQUhJCQEAQFBVkdGUlERESui0ktInIIrkDoHgwJKuPpfBVN9cvNzZVGUHXo0AE7d+60eNycnBycO3fO5L41NZ3OZ4mhNk75EVRardZiUisuLg5XrlyxKUEVFRVl93iJSD4qlQrFxcVSMiskJAQhISHODouIiIiqgUktIqqxilYgLJ/AMk5uAVyB0BGSk5Nx69YtKRmVm5uLlJQUKJVK5OfnQ61WS0mqmkzxq2jFPXvWqPLx8TGZyldRDSrD/eDg4Cq9jpg0JfJ8oihCqVSitLRUqp8VFhaGoKAgZ4dGRERE1cSkFtF/aTQanD592mRbp06doFAonBSRa+IKhM5x6tQp/P3331IyKjY2FoMGDbLY9oUXXsDZs2cdHlNVElUVJcB69uyJoKAgq0mqkJAQvk6IqEZEUURubi40Gg3Cw8Ph7++PiIgIBAQEODs0IiIiqgEmtYj+S61W45dffjHZ1q5duzs2qRUYGCiN4snLy4Nara7yCoRMYJUpKSkxm8pnWK3PeJpfkyZN8O6771o8xpYtW7B69WrpvlqttprUcsR0PktKS0tRUlICf39/s8diY2OxZMkSKTFVu3Ztq8d5+OGH8fDDDzsyVI8SEBAAnU7HmnIegH0pD71ej9zcXGi1WkRERMDPzw+RkZEWpyLXRGBgILRaLRcsISIikhH/6hKRxRUIg4KCEBgYCABQKpVcgfC/SkpKLNafKv+v8eNFRUU2Hbtt27ZWHys/na8qU/9s4e3tbTa1r/x0v/LT/kJDQ61O22vcuDEaN25c5TioctaK85P7YV86nk6nQ25uLvR6vZTIioyMhK+vr93P1aJFC7sfk4iIiCrmuZ88iciiilYgBGBW+8qTVyAsLS2VEk9hYWFo0KCBxXYTJ07EX3/9hZycHJsTVNVRUaKq/Oiriqb+1a5dG7Vq1bJYa8pa4qqiBBURkTvSarXS+6ohoVWrVi2P/uKFiIjoTsO/6laIoojt27dj8+bNOH/+PIqKilC7dm3ExsZi9OjR6NixY43PkZycjK+++gonTpzA7du3ERISgpiYGAwePBhDhgyxKVlgj2OQ56psBUJDzStLCSx3W4FQrVabjaAKCQnBQw89ZLH9jBkzsGHDBun+5MmTMXfuXIttb926hdTUVIfEbSw3NxeiKFqcptmkSRPce++9UkKqZcuWVo/z2muv4bXXXnNkqERELk2tVkOpVMLLy0uaclirVi1eFxEREXkYJrUsKCkpwbRp0/Drr7+abE9LS0NaWhp++uknvPDCC5g0aVK1z7Fp0ya8+eabJiNkDB/GT548iS1btmDp0qUIDw936DHIc1RlBULDvwaGpJVhCqGPj49TE1iGBJWlqXzGt43vFxQUmB3n/vvvt5rUCg4ONrlflVFS1SUIgtWRUobb1pJavXv3Ru/eve0SBxGRpxFFEWq1GqWlpVCr1dBqtfD19UV4eLiU0HLlL2aIiIioepjUsmDu3LlSQismJgbDhw9HVFQUzp07h/Xr16OoqAiLFy9GdHS01ULNFTl06BBeffVViKKIgIAAxMfHo3379sjOzsb333+P5ORknDp1CjNmzMDKlSstXoTZ4xjkvgwJLEPx9qqsQGhIWgUEBEjJLEtJlCtXrkgFjO1d92XTpk1IT0+3Wo8qPz/fLuepSt2pqqzkB5T9X4aHh1tdsc9STaqwsDCnjRJwZH+SvNiXnoN9WTN6vR6lpaXSjyiK8Pb2hq+vL4KDg+Hn5yfV0JLjOiglJUUqFM/6WkRERPJgUqucI0eOYPv27QCAbt264YsvvpBWx+nfvz+eeOIJjBo1CkqlEgsXLkTv3r3NRnxURK1W44033oAoiggMDMQ333yDdu3aSY+PHDkSM2bMwJ49e3DkyBH8/PPP6N+/v92PQe6jfAF34wSWI1cgLC4uNlvFydooIgD49ttvceLECWkEVXx8PMaMGWOx7ccff4wrV65U5b+hWmxNagmCYDJyrbwnn3wS/fr1M0lYOTNBVR2W+pPcE/vSc7Avq87whY5hRBYA6e+cn5+ftGKxn58f/P39ERgYKNvKu0VFRdBoNHfsqslERETOwKuoclatWgWgbDrWggULzJZ7jomJwauvvooXX3wRSqUSmzZtwoQJE2w+/u7du6XaPBMnTjRJRgFlF2aLFi3CyZMnoVQq8fnnn5slpOxxDHI9llYgNK5xVX7qYE1XINRoNFAqlVZX7Lty5QqUSiXy8/NRUlKCnJwcPPjgg1ixYoXF4x0/fhw//PCDdP++++6zeu7IyEiHJbUEQUBYWBgiIyMRHR1ttd3AgQPx4IMP2pSg6tSpkyNCJSK6oxj+nlm6b+02UPb3z5DI0ul0EAQBvr6+CAsLg5+fH7y8vODl5SUlsgzbiIiIyPMxqWVEqVTi6NGjAIAePXqgUaNGFts9+uijWLhwIbKzs7Fz584qJbV+/vlnAGUfvEeOHGmxTVBQEIYOHYpVq1YhOTkZV65cMZmWYI9jkHNZWoFQq9XalMCytAKhKIpQKpW4efOmxfpTlqb45eXlVTnu7Oxsq49VZXW+qtSoCg8PN5vOZ22qX1VGUBnaExFVxJbES3WSNYYaUIYRtsXFxbKf39r+jjp/TXh7e0vTCX19faXp9P7+/vD394evr69dzkNERETuhUktI6dOnZISB926dbPazsvLC7Gxsdi5cyfOnj0LlUqFsLAwm85x8uRJAECrVq0q/EDdrVs3adTYb7/9ZpKQsscxSD7VXYEwLS0N2dnZyMvLQ15eHu655x7cc889Fr99vvvuu5GVleXw52KvGlWdOnWCKIqVJqnCwsI4LYeoiuRKfFhLVrjq+at7HkfKy8uTamqpVCqr7Yynz1m7XZV25beX/7c6t6tzflv3MYxGNozQMiSy3GkKOBERETkGPy0auXTpknS7ZcuWFbY1FAAVRRHJycmIjY2t9PgZGRnS6Ji77rqrwrYxMTHS7QsXLtj1GOQ45VcgLC4ulkZKZWdnIzMzE9nZ2cjKykJ2djaaNm0qLTZgqHkVHBwMhUKBWbNmYd++fdKxZ82ahc6dO1s8b3h4uCxJrYoSVbGxsXjmmWekxFTz5s2ttp02bZojwiM35chkhy3JCnskPuQcDZOTkwOtVgtvb29kZGRUemxnqGniw5YkiCAIdk22VLRPVY9la7usrCypplb56dJy1YGyRU3/P6ub/DLua8MoLVf6fyEiIiLnY1LLSFpamnS7QYMGFbatW7euyX62JLUMdbBsOX50dDS8vLyg1+uRnp5u12NQ9eh0Oik5lZWVhdu3byMjIwOZmZnST3Z2tsm0v4q+eQeA3r17Y8KECRZXICw/Cq+iUVI1nUYXGhpqtlKfKIoIDg5GREQE2rVrV+l0ve7du6N79+41isOduNuUoMLCQunDc15ensdMSbIne344t9SmfBKmOucUBAEBAQFSX4aEhNh8/qrEb8/n7yyOSrbYc//Q0FCpsHhYWJjLxkxERETkqpjUMmI8CqX8VKrywsPDpdtKpdKm4xsnJSo7vkKhQGBgIAoKCkyOb49jkO0effRR3Lp1C1lZWcjNzbX7B3GVSmW1DkhVpvMZJ5ssJajK3w8PDzeZ4me8UpPhOZ4/fx4ajQY+Pj5o06aNtF2tVnvUlKSajvJxpqp8aFWr1dDpdFI9N0vtyu/vrClJd+qHdlufQ3BwsJTUMp767uzEhyvt7y4CAwOlpFZVVlImIiIiojJMahkpKSmRbpdf9bA840SE8X4VMS4CW9nxDW0KCgpMjm+PY8hBp9OZ3C8qKpL1/NVRXFxslkgqLS1FQEAAGjVqZHXhgJqoXbu21WmDjRs3xv3334+goCCEhISgbdu2uH37tlk7URTx0ksv4eWXX5aKxxs/VhG9Xm91BFhxcTH0ej20Wq3dpjbac6pPRe0sbS8/SsbWY1Unzoq2W0oU2eP8lYmKipJq9xiP7rEnOZJX1dnf2fvYe3RTRESE1JcBAQFV3t+eXD3x6+oMdTz1ej0KCgqcHA3VlDv2Z/nrs/LXb0RERK6OSS0jhuLdACpdRcf4ceP9KmJ8oWDLKj2GNsbHt8cx5FBaWmpy/8aNG7Kev7rKT5+TYzqdYdRMeY888ggeeeQRk23WLjaNR2vY64OlI5J4/ADsPKGhodLtilaxJPeh0+lw8eJFZ4dBdsC+9Czu3J/lr9+IiIhcnfkyancwf39/6ba1RIOBWq2Wbtu6jLTxyKrKjm98DuOpYfY4BhERERERERGRu2NSy0hgYKB0u7JvqoyTWrZMA6zq8Y3bGCfb7HEMIiIiIiIiIiJ3x+mHRoyn5yiVygrrzhgXXrd15Tnj41e2Kp5Go5HqHJQvAl7TY8jBuJA+UJb48/b2ljUGIiIiIrJOp9OZfEla/vqNiIjI1TGpZaRp06bS7Zs3b1ZYU+jWrVvS7fr161fr+BXJyMiQCo4aH98ex5CDr68v6tSpI+s5iYiIiIiIiOjOwemHRmJiYqTbly5dqrCt4XFBEHDXXXfZdPyIiAjUqlXLpuOnpKRIt1u2bGnXYxARERERERERuTsmtYx06tRJKqh+4sQJq+10Oh1OnjwJAGjdurXJlMDKxMbGAgDOnz+P/Px8q+2OHz8u3b733nvtfgwiIiIiIiIiInfGpJaR0NBQdOvWDQCwf/9+pKenW2y3Y8cO5OTkAAD69etXpXP07dsXAKDVarFu3TqLbQoKCrBlyxYAQLNmzdC6dWu7H4OIiIiIiIiIyJ0xqVXO+PHjAZQVWZ8xYwYKCgpMHk9JScHbb78NAAgKCsKwYcOqdPw+ffqgYcOGAIClS5fi1KlTJo+r1WrMmjVLKkQ/YcIEhxyDiIiIiIiIiMidCaIois4OwtVMnToVu3btAgA0bNgQI0eORL169ZCUlIR169ahsLAQAPDmm28iPj7eZN8TJ05g3LhxAMqm/K1du9bs+Pv378fkyZMhiiIUCgWGDRuGzp07Q6lUYuPGjUhOTgYAdO7cGd98843FVQPtcQwiIiIiIiIiInfFpJYFxcXFSEhIwOHDhy0+LggCEhISkJCQYPaYLUktAFi3bh3efvttaDQai4936NABK1asQEREhNU47XEMIiIiIiIiIiJ3xKSWFaIo4qeffsLWrVulguzh4eHo0qULxo0bhy5duljcz9akFlC2euGaNWtw9OhRZGZmQqFQoGXLlhgwYACGDx8uFa2viD2OQURERERERETkbpjUIiIiIiIiIiIit8NC8URERERERERE5HaY1CIiIiIiIiIiIrfDpBYREREREREREbkdJrWIiIiIiIiIiMjtMKlFRERERERERERuh0ktIiIiIiIiIiJyO0xqERERERERERGR22FSi4iIiIiIiIiI3A6TWkRERERERERE5HaY1CIiIiIiIiIiIrfDpBYREREREREREbkdJrWIiIiIiIiIiMjtMKlFRERERERERERuh0ktIiIiIiIiIiJyOz7ODoCIzImiiO3bt2Pz5s04f/48ioqKULt2bcTGxmL06NHo2LFjlY+ZmpqK3r17Vyueixcv2u0YxuLi4pCWlmbT/ocPH0bt2rWrdW5nc0R/lvfnn3/i22+/xR9//IGsrCz4+fmhSZMmiIuLw5gxYxAeHl7pMZKTk/HVV1/hxIkTuH37NkJCQhATE4PBgwdjyJAh8Pb2luUYrswd+lIURezbtw8//vgjEhMTkZOTA4VCgQYNGqB79+4YN24c6tevX+Ex7oTfTXfoS3v1g6f/XgKu25/8u0lERORYgiiKorODIKL/KSkpwbRp0/Drr79afNzb2xsvvPACJk2aVKXjVvfCWhAEXLhwwW7HMCgoKEDXrl1h61uQu16cO6o/jb333nv48ssvrT5eu3ZtfPLJJ+jUqZPVNps2bcKbb74JjUZj8fGuXbti6dKlFX4It8cxXJk79KVKpcL06dNx5MgRq8fw9fXF/PnzMXjwYIuP3wm/m+7Ql/bqB0//vQRcuz/5d5OIiMixmNQicjEvvvgitm/fDgCIiYnB8OHDERUVhXPnzmH9+vUoKioCUHaBPWjQIJuPW1xcXOEHXWPLli3DuXPnAABTp07FlClT7HYMgz/++AOjRo0CADz77LPo0KFDhcfr2bMnfH19bTq3K3FUfxp8+eWXeO+99wAACoUCw4cPR4cOHZCXl4c9e/bg5MmTAIDQ0FD88MMPaNSokdkxDh06hKeffhqiKCIgIADx8fFo3749srOz8f333yM5ORkA0L17d6xcuRJeXuYz1+1xDFfn6n2p1+sxbtw4qV39+vXx+OOPo3nz5igsLMThw4exe/du6PV6CIKAZcuWIS4uziyOO+F309X7ErBPP9wJv5eAa/cn/24SERE5mEhELuPw4cNiy5YtxZYtW4rjxo37//buPDyq6v7j+GcCCZJg2I0Q9mCIIoS9lrAZLQqIQDVRMIC2YAukomhBW6tiRbAVrWvrBongEzBaKwi4JSxhf2gtgYpaZAlBTJEkQAIx2/z+yDP3N0OSSTK5k8zNvF9/3eGe+d4z9/sc7sw395xrLyoqctl/+PBh+7Bhw+yRkZH2YcOG2c+fP296H9atW2f0Yfbs2fby8nKvxHjnnXeMNkeOHDGj6z7H2/nMz8+3DxgwwB4ZGWkfOnSo/auvvnLZX15ebn/++eeNPixYsKBSjB9//NEeGxtrj4yMtA8YMMB+8ODBSvvnzZtnxFi/fr1XYvg6K+Tyvffec+ljYWFhpTZpaWn2a665xh4ZGWkfOXJkpc9htzf9sWmFXNrt9c+DP4xLu906+awJ100AADxjzT/JAU3UihUrJEnNmzfXU089pRYtWrjsj4iI0B/+8AdJUn5+vlJTU009fk5Ojp588klJUtu2bfX000/LZrN5JYZjrRDHmiRNkbfzuWPHDuMOhFmzZqlPnz4u+202m+677z5169ZNkpSWlqbS0lKXNp9++qmys7ONGH379nXZHxQUpGeeecaYmvTaa69V6ocZMXydFXK5du1aSRVj6tlnn1VwcHCl4zjW/pEqxuq2bdsqtWnqY9MKuZTqnwd/GJeSdfLpDtdNAAA8R1EL8BH5+fnauXOnJGnkyJFVTkeRpPHjx6t9+/aSpI8//tjUPixZskTnzp2TJC1atEgdOnTwWgzHl/PevXtbdsqLOw2RT8cPVkmKioqqsk1AQICuvfZaSRXTYPLy8lz2b9y4UVLFD7OpU6dWGSMkJEQ///nPJVUsOH306FHTY/gyK+SyoKBAmZmZkqThw4e7XUfn5ptvNrb3799faX9THptWyKVDffPQ1MelZK18usN1EwAAz3FFBHzEvn37VF5eLkm67rrrqm0XEBCgoUOHSqr4QXr27FlTjr9r1y598sknkqTBgwdrypQpXotht9v13//+V5IUGRnpYY99W0Pks1WrVsb2iRMnqm333XffSapYLLl169Yu+xxrwfTp00ft2rWrNobzZ7j07h4zYvgyK+QyLy9P/fr1U8eOHdWrVy+3x3J+n+OHtENTH5tWyKVkTh6a+riUrJNPd7huAgBQPxS1AB/h+LIq1fyFtXfv3pIqvuQ6Fvqtr2effdbYfvjhh70a4+TJkyooKJAkXXXVVZIq7jTZt2+ftm7dqkOHDqmsrMyjPviKhsin8yPqV69erR9//LFSm7179xp38AwbNsxl0eCcnByjqOHIQ3UiIiKMbecncpkRw9dZIZddu3ZVamqqtm/froULF7o91rfffmtsX/rEu6Y+Nq2QS6n+efCHcSlZJ5/ucN0EAKB+mjd2BwBUOHnypLEdHh7utu2VV17p8j7HX6A99fnnn+vgwYOSpBtvvNHlS7w3YjimUEgVf0FPTExUenq6yxfyNm3aKCEhQbNnz9Zll11W5/40tobI57XXXqtRo0Zp27ZtOnLkiBISEvTggw+qb9++KiwsVHp6up5//nmVl5erVatW+u1vf+vyfudpNTX1MSwsTAEBASovLzfuSDArhq+zQi7r4v333ze2o6OjXfY19bFplVzWNw/+MC4l6+SzOlw3AQCoP4pagI/Izc01ttu2beu2rfPdFfn5+fU+dlJSkrE9a9Ysr8dw/nK+bNmyKtvk5+fr5Zdf1rZt2/Taa6+5nT7jixoqn3/5y1+0YMECbdmyRZmZmZo5c2alNoMGDdKjjz5aaaFo53VfaupjYGCggoODVVBQ4NJHM2L4OivksrYyMjK0efNmSVL79u0VExPjsr+pj02r5LK+efCHcSlZJ5/V4boJAED9Mf0Q8BFFRUXG9qVPb7qU89QG5/d54quvvjLWXhk4cKAGDhzo9RjOX84DAwN17733auPGjTpw4IAyMjL01FNPGQtdZ2Zm6oEHHjDWTbGKhspnSEiIli1bplGjRlW532azqWfPnpWmmUkVCxrXto/ObZz7aEYMX2eFXNbGqVOntGjRIuP1nDlzKt3N0dTHplVyWd88+MO4lKyTz6pw3QQAwBzcqQX4COdHgNe0Hofz/ro+OvxSb7/9trHt6V1adY2Rk5MjqeJHyIoVKzRkyBBj3xVXXKG4uDiNGjVK8fHx+v7777V7925t3LhRt9xyi0f9awwNlc+NGzfqkUceUVFRkcLCwhQXF6eIiAgVFhYqIyNDn376qd5//319/PHHSkpKcpne4jxtpTZrwDjaOPfRjBi+zgq5rElubq5+8Ytf6MyZM5KkmJgYJSQkVGrX1MemVXJZ3zz4w7iUrJPPqnDdBADAHBS1AB/hfMdESUmJ2y/oxcXFxnZdFqS9VGFhoT766CNJUufOnRUbG9sgMdasWaOCggKdP39enTp1qrJNWFiYHn30USUmJkqS3n33XUt9OW+IfKalpemhhx5SWVmZfvKTn+jVV191eVJXXFyctm/frnnz5qmwsFCzZs3Shg0bjL/mO9/ZUFJSUuPxHP0MDAw0/s2MGL7OCrl05/Tp07rnnnt05MgRSVL37t317LPPymazVWrb1MemVXJZ3zz4w7iUrJPPS3HdBADAPEw/BHxEcHCwsV3V05WcOX85r83UkupkZGQYxxo7dqwCAur+X4KnMVq1alXtF3OH2NhY48fDF198YampFN7Op91u19KlS1VWVqbWrVvrxRdfdPmh5TBixAhj4eKzZ89qxYoVHvXRuY3zD0kzYvg6K+SyOllZWbrrrruMp8R16tRJK1eudLvWTlMem1bKZX3y4A/jUrJWPp1x3QQAwDwUtQAfERoaamzXtIit8/76LASbnp5ubN90002NFqM6zZo1U/fu3SVV/CCx0iLG3s7noUOHdOLECUnShAkT3K7lEh8fr5YtW0qStm7dWmUfz5496/Z4JSUlunDhQqU+mhHD11khl1XJzMzUnXfeqePHj0uqeDrcqlWranxKXG1YdWxaNZfVqS4P/jAuJevmk+smAADmoagF+IgePXoY26dOnXLb9vvvvze2O3fu7NHxysrKjC/eYWFhHi0Qb0aMmlhtOoyDt/N57NgxYzsyMtJt26CgIEVEREiSsrOzPepjTk6O8Rd/5z6aEcPXWSGXl8rIyNDMmTONNbR69+6tlJQUde3atVZ9qg0rjk0r5rImVeXBH8alZM18ct0EAMBcFLUAH+H4MizJmCpUHcd+m82mq666yqPjHTx40PgLbmxsbJXr63gjxokTJ5ScnKznnntOW7ZsqbG9Y3HcwMBAtW7dus59bCwNmc/aTC9yTG9p1qyZ8W9t27ZV+/bta9XHw4cPG9vOP+7MiOHrrJBLZ+np6ZozZ45x9010dLRWr16tsLAwt3H9YWxaIZdm5MEfxqVkjXxeiusmAADmoqgF+IiBAwcaf13ds2dPte3KysqMx4BHRUW5TL+oiy+++MLYjo6ObrAY//vf//T000/rtdde09q1a922PXr0qPHX9379+rn9oeBrvJ1P5wLFwYMH3bYtLS01Fgm/9A6FoUOHSqqYZnP+/PlqY+zevdvYHjZsmOkxfJlVcilJe/fu1fz5843FwWNiYpSUlKS2bdvW2A9/GJtWyKVZeWjq41KyRj4vxXUTAABzUdQCfERoaKiuu+46SRV3Wnz33XdVttuwYYNyc3MlSePGjfP4eAcOHDC2+/bt22Axrr32WmMR24yMjGo/pyT99a9/NbYnTZrkUR8bi7fz2a9fP+M8pqWluZ168+GHH6qgoEBSRZHDmWM9l9LSUqWkpFT5/oKCAn3wwQeSpJ49eyoqKsr0GL7MKrk8c+aM5s+fbyyIff311+tvf/uby2La7vjD2LRCLs3KQ1Mfl5I18nkprpsAAJiLohbgQ+6++25JFQv3LliwwPiC7HD48GEtWbJEkhQSEqK4uDiPj+WYchIYGOgyhcPbMVq0aKH4+HhJFZ/zwQcfrPQ5Jemtt97Shx9+KKli3ZQpU6Z41MfG5M18BgUFKSEhQZJ04cIF3X///caPNmf/+te/9PTTT0uqyNPMmTNd9t94443q0qWLJOmVV17Rvn37XPYXFxdr4cKFxnSZe+65p9IxzIjh66yQyz/+8Y/G+/r3768XXnhBQUFBte6Hv4xNX8+lWXnwh3Ep+X4+L8V1EwAAc9nsdru9sTsB4P/dd999+uSTTyRJXbp00dSpU9WpUyd9+eWXSklJUWFhoSRp8eLFuvPOO13eu2fPHs2YMUNSxTSSVatWVXucgQMH6sKFC+rYsaO2b9/uUV89jXH+/HnFxcXp6NGjkqQrr7xSd9xxh3r06KG8vDxt3LjR+AEWEhKi5ORk9evXz6M+NjZv5vPixYuaNm2avvzyS0kV6+hMmTJFUVFRKisr0+7du7VhwwaVlpZKkp544glNnTq1Uh/T09M1d+5c2e12BQYGKi4uToMGDVJ+fr7effddffPNN5KkQYMGafXq1VVOZzEjhq/z5Vx+++23mjBhghyX9IULFxpPQHOnTZs2GjJkiPHaX8amL+dSMi8P/jAuJd/PpzOumwAAmIuiFuBjLl68qMTExGq/7NpsNiUmJioxMbHSvtoWtQoKCjR48GBJUq9evbRp06Y697O+MU6dOqXExES365R06tRJy5cvN45jRd7OZ25urh544AGXdXEuFRgYqN/97neaNm1atW1SUlK0ZMkSYy2mS/Xr109vvPGG27WZzIjhy3w5l8uXL9frr79el49TbV/8YWz6ci4dzMpDUx+XkjXyKXHdBADAG5o3dgcAuGrZsqXefPNNrV+/Xv/4xz+MRX7btGmjwYMHa8aMGfX+sur4q7Ukjxear2+MTp06ae3atfroo4+0YcMG/ec//9G5c+fUqlUr9ejRQ2PHjtUdd9yhkJAQj/rnK7ydz3bt2ikpKUlpaWlat26d9u/frzNnzigoKEjh4eGKiYnR9OnTFR4e7jbO1KlTNWTIECUnJ2vnzp06ffq0AgMDFRkZqYkTJyo+Pr7Gx8SbEcOX+XIuHXfcmMEfxqYv59LBrDw09XEpWSOfEtdNAAC8gTu1AAAAAAAAYDksFA8AAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy2ne2B0AADQ8u92utLQ0bdmyRf/+9791+vRpFRQUKDg4WO3atVN0dLTGjx+vMWPG1Bjr0KFDSk1N1d69e5Wdna3S0lK1b99e0dHRmjx5smJjY70SIzY2VidPnpQkff31127jT58+XXv37pUkpaWlqUuXLlXGGjFihN566y198skneuWVV3Ts2DG1bdtW0dHRmjt3rqKiooz3mHkO63oOtm7dqnvvvVeSFB4ervT09Brjz549W9u2bZMkpaamqn///rXqV30dOnRIHTp0UMeOHRvkeAAAAPAfNrvdbm/sTgAAGs63336r+++/X998802NbUeOHKkXXnhBISEhlfYVFRVp8eLF+vvf/+42xqhRo/T888+rVatWpsbwVlErPj5e8+fP16WXx/Xr1ysyMlKSeedQ8uwclJWVafTo0Tp9+rQkac2aNRo4cGC1783NzdXIkSNVWlqqXr16adOmTTX22wyZmZn65S9/qfbt2+vtt9/WFVdc0SDHBQAAgH/gTi0A8CM5OTmaNm2a8vPzJUkdO3bU6NGjFR4eroCAAJ06dUoZGRlGsSgjI0PLly/XY4895hKnrKxMc+fO1Y4dO4x/GzhwoIYOHaqgoCB99dVXSk9PV3l5ubZt26Z58+Zp5cqVCggIMDWG2c6ePavHHnusUkErIiLCKGiZdQ4lz89Bs2bNNHHiRK1YsUKStGHDBrdFrQ0bNqi0tFSSNGnSJM9PUB0tXrxY586d07lz5zRjxgwlJycrLCyswY4PAACApo2iFgD4keeee84oxowaNUovvfSSLrvsMpc2paWlWrZsmVatWiVJ+uCDD7Rw4UKXdklJSUYhJjg4WMuXL680RTAzM1N33323CgsLtXv3bn344YeaMmWKqTHMduDAAUnSmDFjtHDhQnXq1ElffvmlcnNzjTZmnUOpfudg0qRJRlFr06ZNeuSRR9SsWbMqP9f69eslSTabTRMnTvTk1Hjk1Vdf1YwZM3Ts2DEdPXpUM2bM0Ntvv01hCwAAAKZgoXgA8BMXL17Uxx9/LElq0aKFli5dWqnIIknNmzfXwoULFRoaKkm6cOGCjhw5YuwvLy/XW2+9ZbxetmxZlWte9e/f3+XupLVr15oaw1siIyP18ssvKyIiQsHBwRoyZIjGjh0rybxzKNX/HERFRRlrfP3www/avXt3lZ8nKytL+/fvlyQNHTpU4eHhtTsRJggLC9Pq1asVEREhSTp27JimT5+unJycBusDAAAAmi6KWgDgJ0pKSvT73/9e9957rxITE9WhQ4dq2wYFBalXr17G68LCQmP7iy++0JkzZyRJffr00U033VRtnPHjx+uaa67RyJEjNWDAAGNanxkxvCUuLk6BgYFV7jPrHErmnAPnu9Y++uijKt+7bt06Y/vWW2+t9hje0rFjR61atUpXXXWVJOn48eNKSEjQ999/3+B9AQAAQNPC9EMA8BOhoaGKj4+vVdvs7GxduHDBeO1Yj0mSdu7caWzX9GS/oKAgffDBB5X+3YwY3jJgwIBq95l1DiVzzsEtt9yiP//5zyotLdVnn32mxYsXKygoyKWNY+phixYtdPPNN9eq71LF2mEzZ86sdfuaOBf1srKylJCQoHfeeYepiAAAAPAYRS0A8GM5OTk6duyYsrKylJWVpcOHD+vQoUM6deqUSzvnu6Oc9/Xu3duj45oRw1sufTJiTTw5h5I556BDhw6KiYnR1q1bdf78eW3btk033nijsT8zM1PHjh2TJN1www26/PLLax27pKRER48e9ahftXHixAkdOHCAohYAAAA8RlELAPzMmTNn9Oabb2r9+vU6ffp0te2aNWumsrKySv/uvGh669atPeqDGTG8xbEOljv1PYeSeedg8uTJ2rp1q6SKKYjORS3nqYcN+dTD2ggNDTXW2gIAAAA8QVELAPzIP//5T82dO9d4ep9DUFCQevToocjISA0YMEAxMTF6/PHHtXfv3koxSkpK6t0PM2LURV3W4Wre3P2l0YxzKJl3Dm644QaFhobq3Llz2rx5swoLCxUSEqKysjJt2rRJktSuXTuNGDGiTnG7dOmir7/+2pQ+FhUVad68edq+fbukiiLeypUr1bNnT1PiAwAAwD9R1AIAP5GXl6ff/OY3RjHm6quvVkJCggYNGqTu3burWbNmLu0vXrxYZRznO5nOnTvnUV/MiOHMbrfLZrNVu//HH3+s9zEk886hZN45aNGihcaNG6e1a9eqqKhI6enpmjhxovbs2aMffvhBkjRhwoQai3XecvHiRc2ZM0e7du2SJLVp00YrV67UNddc0yj9AQAAQNNBUQsA/ERqaqrxtL2+fftqzZo1lRYVd+Y8Pc75TqeuXbsa20eOHKnxuCtXrtTx48fVtWtX3XLLLQoLCzMlRkDA/z/At7i4WC1atKj2/e6mCNaFWedQMuc8OkyaNElr166VJKWlpWnixIlKT0932d8YLly4oF/96lfG3Wpt2rRRUlKSrr766kbpDwAAAJqWgJqbAACagv379xvbkydPdluMyc7O1smTJ43X5eXlxvagQYOM7YyMjBqPu2bNGqWkpOhPf/qTiouLTYvRsmVLY79z8ehSp0+frrRou6fMOoeSOefAYfDgwerWrZsRq7i4WFu2bJEk9erVS/369asxvjfMmTPHpaCVnJxMQQsAAACmoagFAH7CuRCSl5fntu3SpUtdXpeWlhrbw4cPV4cOHSRJBw4c0I4dO6qNs2PHDuPpe5GRkcbdSWbEuPLKK13aVOf111+vdl9dmXUOJXPOgTPH3VgFBQVKSUnRiRMnXP69Mdx1110KDAxU27ZtlZycrKioqEbrCwAAAJoeiloA4CecCwopKSnKysqq1CYvL0/z58/X559/7vLvzmtDBQUFadasWcbrBQsWaN++fZViffPNN1q0aJHxevbs2abGuO6664ztF154wSjiOJSXl+uNN97Q6tWrK8X1lFnnUDLnHDibNGmSsa7Yiy++KEmy2Wy69dZba/pYXjN27Fi99NJLFLQAAADgFTZ7XR4JBQCwrBMnTmjChAnGoulBQUEaO3asevbsqeLiYh05ckRbt2417kYKDAw0ntD3+OOPa9q0aUYsu92uX//618YUN5vNpuHDh2vAgAFq3ry5Dh06pPT0dOPupJtuuskotJgVIy8vTz/72c90/vx5SdJll12mcePGqVu3bsrNzdXmzZuVnZ2twMBAjR492igypaWlqUuXLi59iY2NNaYKunvin5nn0Kzz6Oyuu+5yKYwNGzZMq1atqrY9AAAAYGUUtQDAj3z22Wd66KGHVFRUVG0bm82m+Ph49e3bV4899pgk6fbbb9eSJUtc2hUXF+vJJ5/Ue++9V2kRdGe33XabnnjiiSrXn6pvjL179yoxMVFnz56t8n2hoaFaunSpsrOzjemA9SlqSeaeQ8mc8+iQmpqqRx991Hi9ZMkS3X777W4/DwAAAGBVFLUAwM8cP35cycnJ2rVrl7777juVlZUpJCRE3bp1U3R0tG677TZdffXVysnJ0ZgxY1ReXq7WrVtry5YtCg4OrhTv4MGDSk1N1Z49e5STk6PS0lJ17NhRQ4YM0R133KHBgwfX2Kf6xMjLy9OqVauUnp6urKws2e12hYeH6/rrr1dCQoLCwsKUlJRkWlHLG+fQrPNYUFCgn/70p8bTIHfu3KlWrVrV+D4AAADAiihqAQDQRGRnZ+uGG26QJE2YMEHPPfdcI/cIAAAA8B4WigcAoIlYt26dsT1lypRG7AkAAADgfRS1AABoAkpKSvTee+9Jkjp37qyYmJhG7hEAAADgXRS1AACwoOLiYuPJimfPntXDDz9srAs2bdo0BQRwiQcAAEDT1ryxOwAAAOru6NGjuu222xQaGqr8/HyVlZVJksLDwzVt2rRG7h0AAADgfRS1AACwoM6dO6ukpERnzpwx/q1ly5Z65plnFBIS0og9AwAAABoGcxMAALCgyy+/XMOHD1dwcLBat26t0aNHa/Xq1Ro6dGhjdw0AAABoEDa73W5v7E4AAAAAAAAAdcGdWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsJz/AzZgCcQBIySaAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "\n",
+ "# Plot unconstrained model results with 95% CIs\n",
+ "unconstr_performance = unconstr_test_results[f\"{PERF_METRIC}_mean\"]\n",
+ "unconstr_disparity = unconstr_test_results[f\"{DISP_METRIC}_mean\"]\n",
+ "\n",
+ "sns.scatterplot(\n",
+ " x=[unconstr_performance],\n",
+ " y=[unconstr_disparity],\n",
+ " color=\"black\",\n",
+ " marker=\"*\",\n",
+ " s=100,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_test_results[f\"{PERF_METRIC}_low-percentile\"], unconstr_test_results[f\"{PERF_METRIC}_high-percentile\"]),\n",
+ " (unconstr_disparity, unconstr_disparity),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"|\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_performance, unconstr_performance),\n",
+ " (unconstr_test_results[f\"{DISP_METRIC}_low-percentile\"], unconstr_test_results[f\"{DISP_METRIC}_high-percentile\"]),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"_\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "# Plot postprocessing of unconstrained model\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=PERF_METRIC,\n",
+ " disp_metric=DISP_METRIC,\n",
+ " show_data_type=SHOW_RESULTS_ON,\n",
+ " constant_clf_perf=constant_clf_accuracy[SHOW_RESULTS_ON],\n",
+ " model_name=r\"$\\bigstar$\",\n",
+ ")\n",
+ "\n",
+ "# Vertical line with minimum \"useful\" accuracy on this data\n",
+ "curr_const_clf_acc = constant_clf_accuracy[SHOW_RESULTS_ON]\n",
+ "plt.axvline(\n",
+ " x=curr_const_clf_acc,\n",
+ " ls=\"--\",\n",
+ " color=\"grey\",\n",
+ ")\n",
+ "plt.gca().annotate(\n",
+ " \"constant predictor acc.\",\n",
+ " xy=(curr_const_clf_acc, ax_kwargs[\"ylim\"][1] / 2),\n",
+ " zorder=10,\n",
+ " rotation=90,\n",
+ " horizontalalignment=\"right\",\n",
+ " verticalalignment=\"center\",\n",
+ " fontsize=\"small\",\n",
+ " \n",
+ ")\n",
+ "\n",
+ "# Title and legend\n",
+ "ax_kwargs[\"title\"] = f\"Post-processing ({SHOW_RESULTS_ON} results)\"\n",
+ "ax_kwargs[\"xlim\"] = (curr_const_clf_acc - 1e-2, 0.885)\n",
+ "\n",
+ "plt.legend(\n",
+ " loc=\"upper left\",\n",
+ " bbox_to_anchor=(1.03, 1),\n",
+ " borderaxespad=0)\n",
+ "\n",
+ "plt.gca().set(**ax_kwargs)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Let's train another type of fairness-aware model\n",
+ "\n",
+ "**In-processing** fairness methods introduce fairness criteria during model training.\n",
+ "\n",
+ "_Main disadvantage_: state-of-the-art in-processing methods can be considerably slower to run (e.g., increasing training time by 20-100 times).\n",
+ "\n",
+ "We'll be using the [`fairlearn`](https://github.com/fairlearn/fairlearn) package [[Weerts et al., 2020]](https://arxiv.org/abs/2303.16626)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from fairlearn.reductions import ExponentiatedGradient, EqualizedOdds\n",
+ "\n",
+ "inproc_clf = ExponentiatedGradient(\n",
+ " estimator=unconstr_clf,\n",
+ " constraints=EqualizedOdds(),\n",
+ " max_iter=10,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Fit the `ExponentiatedGradient` [[Agarwal et al., 2018]](https://proceedings.mlr.press/v80/agarwal18a.html) in-processing intervention (**note**: may take a few minutes to fit)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 1min 19s, sys: 1min 21s, total: 2min 40s\n",
+ "Wall time: 39.2 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "ExponentiatedGradient(constraints=<fairlearn.reductions._moments.utility_parity.EqualizedOdds object at 0x11bd3abc0>,\n",
+ " estimator=LGBMClassifier(verbosity=-1), max_iter=10,\n",
+ " nu=0.000851617415307666) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "ExponentiatedGradient(constraints=,\n",
+ " estimator=LGBMClassifier(verbosity=-1), max_iter=10,\n",
+ " nu=0.000851617415307666)"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "inproc_clf.fit(X_train, y_train, sensitive_features=s_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Evaluate in-processing model on test data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In-processing model: \n",
+ "> accuracy = 0.867\n",
+ "> equalized odds = 0.0498\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import evaluate_predictions_bootstrap\n",
+ "\n",
+ "inproc_test_results = evaluate_predictions_bootstrap(\n",
+ " y_true=y_test,\n",
+ " y_pred_scores=inproc_clf.predict(X_test, random_state=SEED).astype(float),\n",
+ " sensitive_attribute=s_test,\n",
+ ")\n",
+ "\n",
+ "print(\n",
+ " f\"In-processing model: \\n\"\n",
+ " f\"> accuracy = {inproc_test_results['accuracy_mean']:.3}\\n\"\n",
+ " f\"> equalized odds = {inproc_test_results['equalized_odds_diff_mean']:.3}\\n\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**We can go one step further and post-process this in-processing model :)**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7f6f6af0fdaf4cdc868d9845219cf4dc",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "inproc_postproc_results_df = compute_postprocessing_curve(\n",
+ " model=inproc_clf,\n",
+ " y_fit_pred_scores=inproc_clf._pmf_predict(fit_data[0])[:, -1],\n",
+ " predict_method=\"_pmf_predict\",\n",
+ " **compute_postproc_kwargs,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLUAAAKACAYAAABqokocAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1hT1/8H8HeCoAwBUcABinujuPdGRVGpe1etWldrtdW2WmvVVuuqtm7rHnVQt0VEwYFaUayKG0VEQFAUggyBAPn9wTf3l5AEAgkrvl/P4+PNveeee3JPCOSTcz5HJJPJZCAiIiIiIiIiIipBxEXdACIiIiIiIiIiorxiUIuIiIiIiIiIiEocBrWIiIiIiIiIiKjEYVCLiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShwGtYiIiIiIiIiIqMRhUIuIiIiIiIiIiEocBrWIiIiIiIiIiKjEYVCLiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShwGtYiIiIiIiIiIqMRhUIuIiIiIiIiIiEocBrWIiIiIiIiIiKjEYVCLiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShwGtYiISgCpVFrUTSAq1mQyGTIyMoq6GXnCn2siIiIi3TCoRUQlztGjR1G3bt1c/zVo0AAuLi7o3r07Pv/8c+zYsQPv3r0r6ubnSXR0NKZNm4b//vuvqJtCxUxERITwWh8zZkxRN6dABQUFoWHDhmjbti0SEhJUjj979gyjR49GVFRUEbQu79LT07F9+3YsW7ZM7fE///wTdevWxeeff17ILSMiIiIqWRjUIiKDlZGRgeTkZERERODixYtYvnw5evTogf379xd107Tyzz//wM3NDb6+vkXdFKIik5ycjG+++Qbp6en46quvULZsWaXjO3fuhIeHBwIDA4uohXkTHR2NQYMGYcWKFUhOTlZb5tNPP0W1atVw8eJF/PXXX4XcQiIiIqKSo1RRN4CISBeOjo4YMWKE2mOZmZn48OEDoqKi4OPjg8TERCQnJ2Px4sUQi8Uazysu/P39NX7oJfpYrF27FmFhYahTpw4GDx6sctzPz69ETeMLCwvD48ePcyxjYmKCb775Bl988QVWrlyJrl27olKlSoXUQiIiIqKSg0EtIirRKlWqhM8++yzXct999x2mT5+OmzdvAgBWrFiBHj16wNbWtqCbSFQgHBwc8OTJk6JuRoF6/Pgx9u3bBwCYPXs2jIyMirhFhadnz55o0qQJ7t69i6VLl2LdunVF3SQiIiKiYofTD4noo2BlZYUNGzbAwsICQNaUphMnThRxq4goJytWrEBGRgYaNmyIrl27FnVzCt306dMBAD4+PiVmeiURERFRYWJQi4g+GlZWVnB3dxce//vvv0XYGiLKSWBgIK5evQoAGDVqVBG3pmh06tQJjo6OAIDff/+9iFtDREREVPxw+iERfVRq1qwpbEdHR2ssl5iYiCNHjuDixYsIDg5GfHw8zM3N4eDggPbt22PYsGGoUqVKjtfKzMyEj48PvLy8cO/ePbx9+xalSpWCjY0NnJ2d0bVrV/Tt21dlStWYMWNw48YNpX1jx44Vtvfs2YPWrVvn5WkDALp164bIyEi0atUKe/fuxdu3b7Fjxw74+voiOjoaRkZGqFGjBnr27ImRI0cKo9qyO3r0KL7//nsAwKFDh1CtWjWsWLECvr6+yMjIQNWqVdGzZ09MnTpV6by0tDScPHkS58+fx4MHDxAXFwdTU1NUrFgRbdq0wdChQ1G7dm2tnktYWBgOHz6Mq1evIiwsDFKpFNbW1mjQoAHc3d3V3tfs7t69i6NHjyIgIABv3rxBRkYGKlSogObNm6N///7o0KFDru14+vQpPD09ERAQgPDwcKSlpcHa2hpOTk5o27YthgwZAjs7O43n5/c1AmStfti9e3cAEPpUkfx1VL16dXh7eyMtLQ2enp44c+YMnj9/joSEBJQvXx7NmzfHkCFD0KZNm1yf75s3b7B3715cvHgR4eHhEIlEcHBwQPfu3TFu3DhYW1ujd+/eCA0NRZUqVeDn55drnZr8+eefAABzc3O4ubmpHJe/nhXJ7wcA+Pr6wsHBQeW8oup3xZ8buWPHjuHYsWMAgE8++QS//vqr0nGRSIRBgwZh7dq1uHHjBu7evYsmTZrk2j4iIiKijwWDWkT0UVEMDmgKepw/fx4//PAD4uLilPZLJBJIJBLcv38fO3fuxLRp01QCN3KxsbGYNm0abt++rbQ/LS1NWJHRy8sLGzduxNatW1G1alUdn1ne3Lt3D1OnTkVMTIzK/nv37mHPnj3Ytm0b6tWrl2M9UqkUEydOxP3794V9Dx8+FEaXyAUGBmLu3LkqQQipVIr3798jODgY+/btw8iRI/H999+jVCn1v54yMzOxZs0abN++HRkZGUrHYmJicOnSJVy6dAl79uzBxo0b1QaUUlNTsWDBArXTTyMiIhAREYETJ06gY8eOWL16NaysrNS2ZePGjVi3bh0yMzNV2hETE4ObN29i69atmD9/PoYOHapyfmG+RsLDwzFt2jQEBwcr7Y+KisLp06dx+vRpDB8+HD/99BNEIpHaOvz9/fHll1+qLF4QHByM4OBgeHp66i3vU2RkJC5fvgwgK3hlZmamc53Fpd/zyt3dHWvXrgUAHDhwgEEtIiIiIgUMahHRR0Vx1TF1QYLTp0/jm2++gUwmAwDY2tqiW7duqFy5MiQSCfz9/fHs2TOkpaVh7dq1iIqKwuLFi1XqmT17thCsKFeuHLp16wZHR0dIpVK8ePECPj4+kEqlCA0NxYQJE+Dl5QUTExMAwIgRI9ClSxd4eXkJwaLhw4cL7dU1APb27VshoGVubo5evXqhatWqePXqFc6ePYv4+HjExMRg9OjR2LdvX46BrS1btigFtOR69+4tbN+4cQOfffYZ0tLSAACWlpbo1q0bqlWrhuTkZFy/fh337t1DZmYm9u3bh/DwcGzevBliseoM+fnz5+Po0aPC4zp16qBDhw4wNzdHaGgozp49C6lUinv37mH8+PE4cuQIypQpI5RPS0vD+PHjcevWLQCAsbExOnbsiAYNGkAkEiEkJAQXL15EcnIy/P39MWrUKBw8eFBl1NqJEyeE6WBisRgdOnRAgwYNYGZmhtevX+PixYuIjIxESkoKFixYAAcHB7Rr106pDl1eI3mRnJyMiRMn4sWLF7C0tESPHj1QtWpVvH//Hr6+vggLCwMAHDx4EPXr18fw4cNV6rh06RKmT58urDJYpUoV9OjRA9bW1ggJCYGvry/evn2LSZMmqe23vDpx4oQQNOrUqZPaMlOmTEFCQgIOHDiA8PBwYZ+lpSUAwNraWihbHPq9cePGmDt3Ll6+fImDBw8CABo1aoQ+ffoAgMZRio6OjnBycsKLFy/g7e2Nn376Sek1TURERPRRkxERlTBHjhyR1alTR1anTh3Z6NGjtT4vJiZG1qxZM+HcQ4cOKR1//vy5rGHDhsLxBQsWyJKTk5XKZGZmyvbs2SOrX7++UO7YsWNKZW7duiUcc3Nzk8XFxam0JSwsTNa+fXuNdchkMtm3334rHL9+/brWz1OTrl27CvXVqVNHNnDgQFl0dLRSmXfv3slGjhwplBk+fLhKPYr3v06dOrKmTZvKjh07JktISJBFR0fLdu7cKUtKSpLJZDKZRCKRtWzZUig7ZcoUtffDy8tL5uzsLJRbv369SpkzZ84Ixxs0aKDSfzKZTPbixQtZp06dhHLr1q1TOr506VLhmIeHhywsLEyljtevX8tGjx4tlJs7d65KmZ49e8rq1Kkjq1evnuzChQsqx9PS0mTffPONUMeYMWOUjuvjNRIeHp7jz4Hic6hTp45s6tSpsvj4eKUy6enpSq+znj17qtSTnJysdE8XLFggS01NVWmLu7u70vW6du2qUpe2Bg4cKNQTExOTY1nF5xkeHq62THHpd5lMJrt+/bpw/Ntvv83xucktXLhQOOf8+fNanUNERET0MWCieCL6KISFhWHy5MlITEwEANjZ2WHAgAFKZdavXy+MROnZsycWL14MU1NTpTIikQhjxozBN998I+z7448/kJ6eLjy+e/eusD106FClESNyVatWxezZs4U67927p9sTzCNbW1ts374d9vb2SvttbGywefNmVKxYEQDw33//4eLFiznWtWTJEnh4eMDCwgL29vYYN26cMF1s+/btiI+PBwA4Oztj3bp1au+Hm5sbVqxYITzetm2bcJ6cPMcSAHz99ddqp3ZVq1YNq1evFh4fOnRI2H79+jX2798vPM/t27erHfVmZ2eHTZs2wdbWFgBw8uRJvHjxQjgukUiEx3Xq1EGXLl1U6jA2NlZ6/QQHBwsj1YDCf404OTlh7dq1wigmOSMjIyxYsADm5uYAgBcvXiAqKkqpzN69e4X8cx06dMDixYtVRow5ODhgx44dap9HXiUmJuLhw4cAgAoVKqBChQo61Vec+j2/6tevL2wHBAToXB8RERGRoeD0QyIq0aKiorB9+3a1x6RSKeLi4vDw4UMEBgYK05mMjIywYsUKlC5dWiibmpqKc+fOAcgKIMydOzfH644bNw779u1DZGQkIiMj8e+//6Jjx45C/XJ37tzRWIebmxucnZ3h6Oio1JbCMHXqVI0BiLJly2L8+PFYtmwZAMDHx0ftB3gga4qXfPqUOqdPnxa2v/nmG425sgCgV69eaN68OW7duoXk5GScOXNGmAr3+vVrYZpjuXLlMHr0aI31tGjRAu3atYNMJoOTkxMSExNhYWGBY8eOCUHLoUOHwsbGRmMdFhYWGDt2LFavXo3MzEycPn0aM2bMAACl5xAZGYmYmBghEKLI1NQUR44cQbly5VSuVdivkUGDBmmcumhubo6GDRsKixPExMSgUqVKwnFvb29h+6uvvtJ4DVtbW3z66ac6r9Inn4oKZAWPdFWc+j2/FO9DUFCQXuokIiIiMgQMahFRiRYeHq40wic3tra2WLlyJdq2bau0/7///kNqaioAoEGDBiqJzrMTi8Xo2bMndu7cCSArEbo8qNWqVSuh3JkzZ/D+/XsMGTIE7du3VxopY2pqilq1amnddn3KKRAFZK0iJw9qXblyRWO5Jk2aaMyhFB4eLiSGt7a21mrFRjc3NyHv0c2bN4Wg1tWrV4Uy7du3zzW3lLxfFN28eVPYbtCgQa5tadq0qbAtbxOQFfioX78+Hj16hISEBAwaNAiffvopunTporS6JgCVx3KF/RpxdnbO8bhi8EVxZNHbt2/x4MEDAFkjmRo3bpxjPb169dI5qBUaGips16hRQ6e6gOLV7/mlWJ/i/SEiIiL62DGoRUQGy8TEBBYWFrC1tUXDhg3Rrl079OrVS21AJCIiQtjObcU/deXkiarl+wcMGCCssnb16lVcvXoVRkZGaNy4MTp27IhOnTqhcePGGleaK0hVqlRBuXLlcizj6OiIMmXKICUlBW/evEF6erraUVYODg4a68jPPVWcZqV4vuKUuPwGeZ49eyZsf/nll3k699WrV0qPv/nmG0yePBkZGRl4/fo1VqxYgRUrVqBy5cro0KEDOnbsiHbt2qkkGpcr7NdIblP4FKfZKq7qJ08iD2g3aqp69eowMTHRacqdYl9rWoEwL4pTv+dX2bJlIRaLkZmZCYlEguTkZL2sCElERERU0jGoRUQlWqtWrbB3716d65FIJMK2th+kFQND2fM//fzzzyhfvjz27Nkj5NvKyMjAnTt3cOfOHaxbtw729vbo378/JkyYkOdpSomJiUr5otQpW7as2rxT5cuX1+oaZcuWRUpKCmQyGd69e6eSf0teRpO4uDhhW9t7qjglUrFPYmNjhe3seaG0lb2PdDm3Q4cO2LhxIxYuXCjkmwKygiCHDx/G4cOHYWJigi5dumD8+PFo1qyZSp0F/RpRlJfV8mT/W/kTAN69eyds59TXcmKxGFZWVoiJiclbAxUkJCTk6Zq5KW79nh8ikQgWFhZ4//49gKyffwa1iIiIiBjUIiICoPxBXlsZGRkaj5mYmODbb7/FuHHjcObMGfj6+uL27dtCbh8gK0/Un3/+CU9PT2zfvh2NGjXS+toSiSTXaZdVqlRRG9TKKa+VIsURO8bGxmrLaFuXthTvqeIIJcX7ll+KyfwnT56cp6Tm6vJZdenSBefOncOlS5fg4+ODK1euKAXf0tLS4OPjAx8fH0yfPl1llFBBv0b0QXHEleLrISf5+VnSdE19BG6KW7/nl5mZmRDU0kfyeSIiIiJDwKAWERGURxIpjhDKieJIJE2jh+SrAY4bNw7Jycm4desWrl27hgsXLgi5cSQSCWbOnAkfHx+lBOIFRb4CZE4yMzOFETPGxsa5TldUR/Ge6HpPFbcVR/LkhZWVFd6+fQsgK3eXNvmVcmNiYgJXV1e4urpCJpPhyZMnuH79Ovz9/XH9+nUhoLJhwwa0atUKbdq0UamjOL5G5BR/LuQBlZzIZLJ894+c4qgyfQRvimu/55U85x+Qt5F3RERERIZMfXZfIqKPTLVq1YTtJ0+eaHXOo0ePhO3cEssDWSMtOnbsiG+//Rbe3t74448/hBFQERER+O+//7Rur4ODA548eZLjPz8/P7XnhoWFKY1eUSc0NFQIKFSpUiVfeZ3yc08fP34sbCveU8Xt58+f51rP8ePH8cMPP2Dr1q1CecU6nj59mmsdaWlpWgUA5UQiEerVq4dx48Zh+/bt8PPzQ926dYXj8vxZOdHna0QfFPOXKeam0iQ8PFwp+JIfivmokpKSdKoLKBn9ro3k5GRhW985u4iIiIhKKga1iIiQtYqfPHjw8OFDvHz5MsfymZmZOH/+vPBYccW0ZcuWYdiwYWjZsiVev36tsY5evXoprcKomKMHQIElkU9NTUVAQECOZXx9fYXtbt265es6jo6OQh4uiUSC69ev53qOt7e3sK14TxVzE127di3HqZ8AcPLkSXh6emL16tV48+YNAKBFixbCccW+02Tv3r1o3rw5WrdujR9//FHY7+vri88++wxdu3bFli1bNJ5vb2+PKVOmCI8VXwv6eo0UtEqVKglBoZiYGGElRE00BVLzokqVKsK2Pp5vcep3IH8/17GxsUKwsEKFChypRURERPQ/DGoRESFr9bdevXoByJpCtXLlyhzL79mzR1ilzdraGu3btxeOhYeH486dO3j//j1OnTqVYz2KuXiyJ2IXi///LVrbfEba2rRpk8bcRxKJBLt37xYeu7m55fs6n3zyibC9evXqHEeInTt3Drdv3waQlatL3h8AULt2bWFlxJiYGBw5ckRjPSEhIUIArVy5ckJAzMPDQwgonD9/HoGBgRrriIuLw/bt2wFk3Q/FkTcymQxXrlzBq1ev8M8//+T4nBSnUyr2r75eI4Vh4MCBwvb69es1lktMTMSuXbt0vl716tWFbcVVRTVRnI6p7uekOPU7oPxznVtwVk5xJVDF+0NERET0sWNQi4jof6ZOnSokhvbx8cGPP/6IDx8+KJWRyWQ4cOCAUpL2OXPmKCWUHjRokLD9+++/49KlS2qvt2vXLty/fx8AYGdnpzQyCVCeYqT4oVYfbt68ifnz56tMFXvz5g0mT54s5CByd3eHs7Nzvq8zduxYIR9XUFAQvvjiC7X5tc6dO4e5c+cKjydPngw7OzulMtOmTRO2f/nlF/j4+KjUExUVhZkzZwrBgk8//RQmJiYAsqbS9e3bF0BW8GP69Om4evWqSh2vX7/G1KlThZX/KleujMGDBwvHO3XqBFtbWwBZ0yoXL16MlJQUlXpCQ0OVgkA9e/YUtvX1GikMo0aNElbM9PPzw9KlS1US98fGxmLKlClCoFcXjRo1EhYgUJyOqoniz0lkZKTK8eLU79q0V52HDx8K20XxGiAiIiIqrpgonojof2rVqoWFCxdi/vz5kMlkOHToEPz8/NCtWzdUrlwZ8fHx8Pf3V8rL88knnyh98AWA7t27o2PHjvD390daWhomT54MFxcXNGrUCLa2toiPj8fNmzcRFBQEIGs60nfffScEX+QcHByE7VWrViEyMhLGxsbo2bMnateurdNzNTY2xpEjR3Dt2jW4urqifPnyCAsLw9mzZ4U8RlWrVsW8efN0uk758uWxatUqTJkyBVKpFH5+fnB1dUX37t1RrVo1fPjwAdevX8fdu3eFc9q0aYMZM2ao1NWzZ0+MGDECBw4cQEpKCr744gu4uLigdevWMDU1RUhICM6dOycEIl1cXPDZZ58p1bFo0SI8fvwYz549g0QiwYQJE9C8eXO0bNkSxsbGeP78Oc6fPy8E+0qXLo1Vq1YpBS1NTEzw/fffY/bs2QAgvE46deqEypUrAwCCg4Nx8eJFoZ7OnTuja9euQh36eo0UBisrKyxZsgQzZsxAZmYmdu/eDV9fX/To0QPlypXDy5cv4ePjg4SEBJiamgr3P7/TZ83MzNC4cWPcvn0bb9++RUREhNLPQnaKx+bNm4dBgwZBJpNh2LBhQmC0uPQ78P856mQyGW7duoU5c+agdu3asLOzg4eHh9rnKH8dAEDr1q21vZVEREREBo9BLSIiBYMGDULZsmWxYMECSCQSxMTE4NChQyrljI2NMWvWLEyYMEFtPWvXrsXMmTNx5coVAMDt27eFqXWKzM3N8f333wsjSRT17t0b69atQ3x8PCQSCTZt2iSco2tQa82aNZgzZw6ioqKwZ88eleMtWrTAunXrYGNjo9N1AKBDhw7YtWsXvvnmG0RFReH9+/c4duyYSjmRSITx48dj9uzZGlf4W7hwIaytrfHnn38iPT1d433t0qULVq1apRIEsrCwwIEDBzB37lxcuHABAHDr1i3cunVLpY6KFSti5cqVaN68ucqxvn37Ii4uDr/++iukUmmOUyJ79eqF5cuXq+zXx2uksHTv3h2//vorfvrpJyQnJyMiIkJlqmGlSpXw448/YurUqQCgUwCue/fuwr24evUqhg0bprHswIEDsW/fPkilUrx69Qrr1q0DANSrVw+urq4Aile/ly1bFn379sXp06cBZOV/A4C6detqDGpdu3YNQFaAkUEtIiIiov/HoBYRUTY9e/ZEu3btcPjwYVy8eBEhISGIj4+HiYkJnJyc0LFjRwwdOlQpoXV2FhYW2L59Oy5duoTTp0/j3r17eP36NdLS0lCuXDk4Ojqic+fOGDhwoMo0OzlbW1scOHAAa9euRWBgIN6/fw9zc/M8rcymiaurK06dOoU///wTV65cwZs3b2BhYQFnZ2d4eHjAzc1Nr4nqW7RoAR8fHxw9ehR+fn549OgR4uLiUKpUKTg6OqJNmzYYOnRorsE6kUiEr776CgMGDMDBgwdx7do1REVFISUlBTY2NmjatCkGDRqEzp07a6zD0tISmzdvRmBgIE6ePImbN2/izZs3SE1NhaWlJerWrYvu3bvjk08+gbm5ucZ6Ro8ejU6dOuHvv/9GQEAAXrx4gcTERJiamsLW1hatWrVCv379lBKVK9LHa6QwDRgwAC1btsT+/ftx6dIlvHr1CpmZmXB0dESvXr0wbtw4paToZmZm+b5W//798dtvvyEzMxMXLlzIMahVp04d7NmzBxs2bMD9+/eRmJgIS0tLlWmuxaXfgayFAhwcHHDmzBlER0cLI7dkMpnKz93jx4+FaZ29e/cuktF6RERERMWVSKYpUzARERmUbt26CTl8njx5UsStIUN09+5dDB06FEDWaLmcVgnMzbRp0+Dr6wtjY2NcuXIF1tbWemplybJy5Ups27YNAHDixAnUq1eviFtEREREVHwwUTwRERFp9Ndff+HIkSO4detWrqtwBgcHC9u6rtInn9orlUpzXSHSUKWnpwvTE9u1a8eAFhEREVE2DGoRERGRRr6+vpg3bx5GjhyplNA/u8zMTBw4cEB4nNP0O220aNEC7dq1AwDs27cPH+PA8rNnz+LNmzcAgC+++KKIW0NERERU/DCoRURERBopJib/9ddfERcXp1Lmw4cPmD9/Ph48eAAAcHJyQqdOnXS+9tdffw2RSIQXL17g3LlzOtdX0mzfvh1A1tThZs2aFXFriIiIiIof5tQiIvpIMKcW5UdCQgL69OkjjBgyMzNDt27d4OjoCLFYjFevXuHChQtCYnZjY2Ps27cPTZs21cv1Fy5ciIMHD6JOnTo4efKkXhcwKM7OnTuHGTNmwNTUFKdOnYKjo2NRN4mIiIio2GFQSwOZTIbTp0/jyJEjePToEZKTk2Fra4uWLVti1KhRcHZ21qn+zMxMnD59GidOnMCDBw+QmJiI8uXLo379+vDw8ECvXr20+sM9ODgYO3fuREBAAN68eYOyZcuiZs2a8PDwwCeffAIjIyOd2klEhoNBLcqv58+fY8aMGQgJCcmxXKVKlfD777+jSZMmert2QkIC+vXrh6ioKCxbtgwDBw7UW93FlVQqRf/+/fH8+XN89913GD9+fFE3iYiIiKhYYlBLjZSUFMycORMXL15Ue9zIyAhfffUVJk+enK/64+PjMX36dNy8eVNjmdatW2PNmjUoX768xjKenp5YtGgRpFKp2uMtWrTAhg0bPtoVo4hIGYNapAupVIp//vkHPj4+ePjwIWJjY2FkZAQ7OztUq1YNffv2Ra9evVCmTBm9X/vWrVsYO3YsrK2t4e3tjbJly+r9GsXJ9u3bsWLFCnTo0AHbtm37aEanEREREeUVg1pqfP311zh9+jQAoGbNmhg6dCgqVKiABw8e4ODBg0hOTgYArFixAgMGDMhT3ZmZmRg9ejRu3boFAKhSpQoGDx4MR0dHREVF4fjx48I34S4uLtizZw9MTExU6vH398ekSZMgk8lgamqK4cOHo1GjRnj37h3+/vtvYQWq9u3bY9u2bRCLmT6NiIiIiIiIiAwHg1rZXL16VVhGvE2bNti6dStKly4tHA8JCcHIkSMhkUhgbW0NX19fWFhYaF3/33//jfnz5wPIGo21detWpW+1pVIpZs6cCV9fXwBQO9UiLS0Nbm5uiIiIgJmZGfbt24eGDRsqHZ89e7aQVHf16tVwd3fP450gIiIiIiIiIiq+OHwnmx07dgAASpUqhZ9//lkpoAVkjdxasGABAEAikcDT0zNP9R88eBBA1hTGFStWqEzTMDY2xsKFC4XHXl5eKnX4+PggIiICADBx4kSlgBYAmJiYYPny5cK0wy1btuSpjURERERERERExR2DWgokEgmuXbsGAOjYsaPGlYb69Okj5Lry9vbWuv6MjAxUrlwZ1atXR/PmzVGxYkW15ezt7WFjYwMAePXqlcpxeaBLJBJhxIgRauswNzcXRngFBwcjNDRU63YSERERERERERV3DGopCAwMRGZmJoCsqYeaiMVitGzZEgBw9+5dxMfHa1W/kZER/vjjD3h7e2Pv3r0ayyUlJSEhIQEAUKFCBZXj8gTzdevWFYJf6ig+h8uXL2vVRiIiIiIiIiKikoBBLQVPnz4VtuvUqZNj2Vq1agEAZDKZkJRdX9avXy+saNi7d2+lY69fv8b79+8BALVr186xnpo1awrbjx8/1msbiYiIiIiIiIiKUqmibkBxIl/qHshalTAnilMHIyMjhZFb+ZGRkYG3b9/i3r172LNnDwICAgAArVq1wuDBg5XKynNpadNGe3t7iMViZGZmqp3GSERERERERERUUjGopSA2NlbYLleuXI5l5UnYgaxcXLrw8PBQGu0lEokwatQozJ49GyYmJkpl4+LitG6jsbExzMzMkJiYqHMbiYiIiIiIiIiKEwa1FKSkpAjb2Vc9zE4x2KR4Xn5ERUUpPZbJZLh+/TouXryIvn37Kh378OGD1m2Ul0lMTNS5jXmVlpamFEgrXbo0jIyMCrUNRERERKRZRkYGUlNThcfW1tYqX6gSEREVZwxqKUhPTxe2c/uFrnhc8bz8XPPTTz9FjRo1kJKSgmvXrsHLywvPnj3D7Nmz8fTpU3z11VdC+YyMDK3bqFhGlzbmh0QiQXh4eKFek4iIiIh0Y2dnp5d6MjMzkZiYiPfv3yMtLU3pb1giIvp4GBkZwcTEBJaWlrCwsIBYrN/U7gxqKShTpoywLZVKcwwapaWlCdu6fKNVqlQpfPHFF8LjQYMGYfDgwfj888+RmpqKTZs2oUOHDmjRogUA5dFZ8mTyOZG309jYON9tJCIiIiLSVkJCAiIjIyGTyYq6KUREVMTS09ORmpqKhIQEiEQiVKlSBWXLltVb/QxqKTAzMxO2U1NTtQ5qaTMNMC/atm2LL7/8EitXrgQA7Nu3TwhqZW9jbuRlFAN2REREREQFQV1ASyQSMQ0FEdFHKiMjQ/idIJPJEBkZqdfAFoNaCiwtLYVtiUSS401WzBdlY2Oj97YMGTIEq1evRmZmJv777z+1bYyPj8+xDqlUiuTk5AJrY06yB/ocHR2VAnJU/D179gwZGRkwMjJCrVq1iro5pCP2p+FgXxoO9qVhKYn9mZycrJQuQtcvajMzM5UCWhYWFrCxsYGZmRlEIpFOdRMRUckkk8mQnJyM2NhYJCYmCoGtOnXq6GUqIoNaCpycnITtqKgoODo6aiwbHR0tbFeuXFnvbbGyskL58uURExOjtCpj9jbm5PXr18jMzCywNuYk+7dxZmZmsLCwKNQ2kG7EYjEyMjIgFovZdwaA/Wk42JeGg31pWAyhP3UdTSX/sAJkBbQcHBwYzCIi+siJRCKYm5vDzMwMERERwu+KxMREpUE7+cWgloKaNWsK20+fPkWrVq00ln369CmArA6qXbu2VvWHhIRg27ZtCA8PxyeffIJBgwblWF4+ddDc3FzYV65cOZQvXx7v3r0T2qDJs2fPhO06depo1caPmTyCrIjfLBIREZVMR44cQUJCgvC4e/fucHR0RGZmJvbs2aNU9pNPPoGVlVVhN9HgvH//Xti2sbHh31BERCQQiUSwsbFBYmIigKzfGQxq6ZmLiwuMjY0hlUoREBCAUaNGqS2XkZGBmzdvAgDq1aundUdkZGTg6NGjALK+vcopqBUaGir8YVC9enWlYy1btoS3tzcePXqEhIQEjdMkr1+/LmznFKCjLMnJyVi1apXSvm+++UYpqEhEREQlQ0REhFK6CPkXVzKZDGFhYUplC3uVaEMlzzkrEomYdoKIiFTIB43IZDKlPOW6YFBLgaWlJdq0aQN/f3/4+fnh1atXaqft/fPPP8KUQDc3N63rr127NipVqoSoqCj4+/sjPDxc4xTHP//8U9ju0aOH0rFevXrB29sb6enpOHDgACZPnqxyfmJiIo4dOwYgKyhWr149rdtJBAD169eHTCbjt6wGgv1pONiXhoN9aVjYn1lf4AJZ0xg/5vtARETqyRcOSU9PF35n6Er3rFwGZty4cQCykqzPnj1bGBon9+zZM/zyyy8AsqYFDhkyROu6RSIRPv30UwBZ3wjOmTNHpX4A2L17N44cOQIAsLW1xYgRI5SO9+jRAw4ODgCADRs2IDAwUOl4Wloa5s6dK3w7OX78eK3bSCRnbGwMExMTGBsbF3VTSA/Yn4aDfWk42JeGhf1JRERU+DhSK5sOHTqgV69eOHv2LG7fvo0BAwZgxIgRqFSpEh4+fIgDBw4gKSkJADB37lyVVQUDAgIwduxYAFlT/vbu3at0fPTo0Th//jwCAwNx+/ZtuLu7Y9iwYXByckJsbCy8vb1x48YNAFl/HK1Zs0Zl+puJiQnmz5+PadOmISUlBePGjcOQIUPQrFkzSCQSHD58GMHBwQCAZs2aYfDgwQVyr4iIiIiKqy5dugj5SQHAzs4OQNaXjNlH2jPVABERUcnEoJYay5cvR1JSEq5cuYKIiAisXLlS6bhIJMKMGTMwfPjwPNdtbGyMTZs2YdasWbhy5QqioqKwdu1alXLly5fH2rVr0bJlS7X1dOvWDQsXLsQvv/wCqVSKv/76C3/99ZdSmcaNG2Pjxo06r2RDREREVNI0adJE7X6xWMxco0RERAaCQS01TE1NsW3bNpw6dQrHjx8XErJbW1ujefPmGDt2LJo3b57v+i0tLbFt2zacP38eR44cwb179xAfHw9zc3PUqFED3bt3x4gRI3L91nDEiBFo0aIFdu/ejWvXriEmJgbGxsaoU6cO+vXrh6FDh3IIPOVbTEwMMjMzIRaLYWtrW9TNIR2xPw0H+9JwsC8NC/uTiIio8DGopYFIJEL//v3Rv3//PJ3XunVrPHnyRKv6XV1d4erqmt8mAshKPv/zzz/rVAeROlFRUZBKpTA2NuYf5waA/Wk42JeGg31pWNifREREhY+J4omIiIiIiIiIqMRhUIuIiIiIiIiIiEocBrWIiIiIiIio2JLJZPjrr78QExNT1E2hQlC3bl3UrVsXY8aMKeqmFLn09HRs3boV/fr1g4uLCxo1aoROnTrBy8tL79dKTEzUe52FgTm1iIiIiMjgnDhxAklJScLjTp06wcHBAZmZmTh48KBSWXd3d1haWhZ2E4lIC2FhYZg3bx4CAwPRqVOnom4OUaH69ttvcfr0aaV9r1+/LpDfWb///jvmzJkDExMTvdddkBjUIiIiIiKD8+LFC0gkEuGxfOVqmUyGp0+fKpWVSqWF2TQiyoOTJ08iMDCwqJtBVOhCQkKEgJaVlRUmTJiAqlWrIiEhAY0bN9brtdLT03Hy5El06NABnTt31mvdBY1BLSIiIiIiIiIqFp48eVLUTSgWnj17JmxPnz4dn376aYFdKyAgABKJBGfPni1xQS3m1CIiIiIiIiIiKkY+fPggbNeqVatAr+Xj4wMA8PPzQ0ZGRoFeS984UouIiIiIDE6HDh2QkpIiPLa1tQUAiEQi9OjRQ6msmZlZobaNiIgoN5mZmcJ2qVIFF7qRyWTw9fUFAMTFxeHGjRto27ZtgV1P3xjUIvqf0qVLY/DgwSr7PlZlypSBkZERjI2Ni7oppAfsT8PBvjQc7MuCJc+hlZ1YLEb79u31fj32JxVHdevWBQBMmTIFs2bNgo+PD/bs2YPg4GB8+PABVatWRY8ePTB+/HhYW1trrCc5ORmenp44f/48goODkZSUBGtra9SrVw9ubm7w8PCAkZGRxvOjo6Oxb98+XLlyBWFhYUhPT4eNjQ0aNGiAnj17on///irnr1u3DuvXr1fa1717dwBAlSpV4OfnV+j3Ql7HzJkzMXToUCxevBhXrlwBADg6OmLixIno16+f3u4bAKSlpeHcuXM4evQonj9/jpiYGFhYWKBhw4YYMGAA3N3dIRZrnoCVkZGBY8eO4cyZM3j8+DHi4+NhZWWF+vXrw93dHf3798/x/Pz0na7nyu9zq1atsHfvXrXHZs6ciWnTpiEgIAD79+/HnTt3EBsbi3LlyqFly5YYM2YMXFxccry3UVFR2LFjBy5fvoxXr17B1NQUdevWxbBhw+Du7o6tW7di9erVAPI/JTI/r4ExY8bgxo0bSvvGjh0rbC9btgwDBw7MV3vU+e+//5RWFvXx8SlRQS2RTCaTFXUjyPAkJiYq/eDXrVsXFhYWRdgiIiIiIlKk77/Xnj59ivT0dJQqVQq1a9fWRxNJR4qBnPT0dGzbtk1tOTs7O+zcuVPtFKfAwEB8/fXXiI6O1nidOnXqYOPGjXB0dFQ5du3aNUyfPh3Jyck5tnPnzp0oX768sE9dUEtO16BWfu+FvI7PPvsMvr6+ePHihdLxrVu3CvmIdL1vABAREYFp06blGFBp3bo1Nm7cqPZnNyIiAlOnTkVwcLDG8xs1aoRNmzbBzs5O5Vh++07Xc7UNaqWmpmLLli1QF9IQiUSYPXs2Jk+erPbaAQEBmDp1qtIquYp69+6NunXr4vfffweQv6BWfl8D6oJaivQd1Fq2bBl27dolPLa1tYW/vz9EIpHerqFI378rGNSiAsGgFhEREVHxxqCW4ZMHAKpXr47Q0FCIxWJ4eHigbdu2SEpKwokTJ3D79m0AgLW1NU6dOqUU3Lh37x7Gjh0rBCZcXFzg5uYGW1tbREZG4sSJE8JqohUqVMDRo0dhb28vnB8bG4vevXsjPj4eJiYmGDRoEJo0aYLSpUsjIiICnp6eePnyJQCgc+fO2Lp1q3BuSEgIQkND8c8//8DLywsAsHjxYpQvXx5lypRBhw4dCvVeKNZRunRppKamokOHDujXrx8kEgkuXbqEbdu2wcjISOf7Jr93/fr1w9u3bwEA9erVQ//+/VGxYkWEh4fjwIEDQrCkW7du2LRpk9L57969wyeffILXr18DAJo2bQo3NzfY2dnh7du38PLyEp6vk5MTjhw5ovTzr0vf6XKu4n3OKagl70dzc3MMHjwYzs7OSE5OxunTpxEQEAAgK7B15MgRNGzYUKmO+/fvY9SoUcIU9e7du6Nbt24wNjbGjRs3cPz4caSnp6Ns2bJISEgAkPegli6vgcDAQEgkEly/fl14/jNnzkSdOnUAAA0aNEDlypXz1J6cdOvWDZGRkUr7Dhw4gGbNmuntGooY1KISgUEtIiIiouKtOAS1FKe8FCQTExNYWVmpPRYfH4+0tDThsZmZGczNzdWWjY2N1TmJsjy/W2GQBwCArEDMxo0blYJBMpkMv/zyi/DBeeDAgVi2bBmArGlrffv2RWhoKADg66+/Vhn1kp6ejsWLF+PQoUMAsnLZbd++XTi+a9cuob41a9agT58+SuenpKRg5MiRePDgAQDg/PnzKqOWFEds+fr6wsHBodDvhbo6unTpgs2bN6uMZtHHfQOA7777DseOHQMAjBo1Cj/88IPSNMHExESMGDFCGIW1Z88etG7dWjg+Y8YMnDt3DgAwe/ZsfP755yr3RHF63fDhw7Fo0SLhmC59p2u/axPUArJG7O3Zs0flNfH999/j6NGjwr378ccflY4PHz4ct2/fhkgkwtKlS1VGPQUGBmLy5MlKo7jyEtTS12vg6NGj+P777wGo9q+2/v77b+zbt0/taDYgK2+XupF89vb2KFeunMZ6GzVqhHnz5ml8r8yJvoNaXP2QiIiIiIiKhJ2dXaH8mzhxosY2TJw4UansypUrNZbt2LGjzm0pKl9++aXK6CaRSITvv/9eCBQcP34csbGxALLy6sg/lPfp00ftNK5SpUph4cKFcHZ2BgBcuXIF9+7dE47LzwcgTMtTVKZMGUyaNAnVqlVDhw4dEBcXp+Oz1E5e74U6kyZNUjs9Sx/3LTY2FidOnAAA1K9fH/Pnz1fJe2VhYaEUhDp9+rSw/fz5c5w/fx4A0LNnT7UBLQCYPHkyWrVqBQA4duyY0vPVpe8Kq9/nzZunNsg5bdo0YVvxvgLA9evXhRFqQ4YMUTuNr0WLFvj222/z1SZAP68BfRk8eDCmT5+OqKgoPH78WOWfpqmpr1+/Vlv+8ePHaNmyJRYuXJivgFZBYFCLiNQKDQ3F06dPlX4pUcnF/jQc7EvDwb40LOxPKs7MzMwwcuRItceMjIyEY5mZmfD39wcAXLp0SSiTU1DQyMhI6bg8mAJAKeH69u3b1Y4WcXNzg4+PD7Zv3y58wC9I+bkX2RkbG2tsqz7u2+XLl4WV70aMGKExEXuzZs0wc+ZM/Prrrxg9erSw/+zZs8K9HjRokMY2KB5PTU3FtWvXhP269F1h9LuJiQm6dOmi9pijo6MQcHn//r3SsQsXLgjbn376qcb6P/nkkxwXT8iJPl4D+uTq6opjx46hadOmOtVjZWWFDRs24IcffoCJiYl+GqcHXP2QiNRKSEiAVCrlKk4Ggv1pONiXhoN9WbD++ecfpQTF7du3R+XKlZGZmYkjR44ole3duzfKli2r0/XYn1Scubi4wMzMTONxxdVC7969iwEDBuDOnTsAAEtLS5WcRNm1adNG2FYcbdK7d28hkfeGDRvg5eWFnj17olOnTmjatClKlSr8j6P5uRfZOTo6avxQr4/7dv/+fWE7t7xGiqOSFNstFx4enmOwRHGU1IMHD+Du7g5At74rjH53cnLKsR4LCwskJSUhPT1daf/NmzcBAOXKlVO7GICciYkJmjVrlucFCQD9vAb0rUqVKti/fz9+++037NixQ+N0RE1cXFzw22+/6TWXl74wqEX0P0lJSVi1apXSvm+++abYDKskIiIi7T179gwSiUR4LB8JIJPJ8PDhQ6Wy3bp1K8ymERU6JyenHI9XqlRJ2JYnJpdPRdMmh5WVlRWsrKwQHx8vnA9kTZ2bOXMm1q5dCyBrROOWLVuwZcsWlC1bFu3bt0fPnj3RvXt3lClTJo/PKveRLc2aNYONjY3Svvzci+wsLS01nq+P+6a4nZ8gwps3b4Ttn3/+Wevz3r17J2zr0ncF3e8Acs3/Jw94ZQ/eyO+NNve1atWq+WqbPl4DBaFUqVKYO3cuWrdujW+//VaraZ8ikQifffYZZs2aVSRBaG0Uz1YREREREZHBU/zwXZBymiqzbds2bNy4UXic0ygef39/nRPFF4XcvqQ1NTUVtuXJseX/Kx7LSZkyZRAfH48PHz4o7Z86dSqaNm2Kbdu24d9//xXuX0JCAry9veHt7Y1y5cphwYIF6Nu3r9bPCQCmT5+e43F1ybXzcy+yy+n1pI/7Fh8fr3Q8rxITE/N8DqD6fHXpu4LsdwD5DrDIv+zQ5r7mN+Cmr5+dgtK5c2ecOHEC7u7uKtMzs/vll19yncJa1BjUIiIiIiKiIlGYKwFqomlVRHWyj/opKRRXd1RHcaquPI+QqakpEhIStP6gLa9DXSCgbdu2aNu2LWJjY3H58mVcvXoV//77r7D6ZVxcHL7++mtYWFioTSyuT/m5F3mhj/umuJ2SkpLnmSOK5wcFBaF06dJ5Ol+RLn1XnPpdrnTp0pBKpVr1T0pKSr6uoc+fnYIilUpzDWgByqP3iisGtYiIiIjI4LRu3VrpA0n58uUBZE2lyP7hSdtv04lKqujo6ByPR0RECNvyFRorVKiAhIQEpWOaxMbGIiEhAQBgb2+vsZyNjQ08PDzg4eEBmUyGO3fuYOPGjbh8+TJkMhk2bdqUp+DGkydPtC4rl597kRf6uG/y9ysgq701a9bUWMeDBw8gFovh6OgoTMlTPP/NmzdwdHTM8/PITpe+03e/66JixYp49uwZXr16lWtZbcqoUxA/O/qmbVL6c+fOqV29sTjh6odEREREZHDatGmDLl26CP8qVKgAABCLxUr7u3TpkuN0MyJDcOfOnRwTQwcGBgrbrVq1AgA0btwYQNbqcQ8ePMix/uvXrwvbdevWBZCVy+jMmTNYv349du3apXKOSCSCi4sLNm7cKASP8hOkyqv83Iu80PW+AVBKLn779u0c6/jpp5/g4eEBV1dXYZ/iaoI3btzItQ1fffUVVq1aJTx3XfquuPa7XJMmTQBkTUMMCQnRWC4zMzPXe6+JPl4DBc3Hx0dln7rfhffu3cs1EFzUGNQiIiIiIiIyYNHR0bhw4YLaY1KpFAcOHACQ9aG2Xbt2AIDu3bsLZbZt26ax7oyMDOzYsUN43LVrVwBZwYvVq1dj3bp12Lhxo8Zpf8bGxsL0OnXT7EQikbCd1xXb1MnPvcgLXe8bAHTs2BFicdZHdU9PT43POywsTFgxr23btmrbsGfPHkilUo3tWL9+Pc6cOYM///xTyDelS9/pq98LSu/evYXt/fv3ayzn7e0tTJPMK328BgrS27dvVQJ2vXr1wqVLl7BgwQKlnHEymUxtAKw4YVCLiIiIiIjIwC1cuBAvXrxQ2peRkYFFixYJI1Y+++wzIf+Sq6srqlWrBgDw8vLC1q1bVerMyMjA4sWLhcBK69at0aJFC+G4PIAQHx+PpUuXqg3OnD9/HqGhoQCgdK6c4vRgxQTqusjrvcgLfdw3BwcHYeTVnTt3hFUEFSUmJmL+/PnCPR05cqRwzNnZWRhl9vjxYyxYsEBtYOuPP/7AzZs3AWStCqkYVNGl7/TR7wWlQ4cOqFevHgDgwIED8PLyUinz5MkTLFmyJN/X0MdroCCdP38emZmZALJyjP3444/4448/YGlpidGjR+Pw4cNKq4SeO3euUNqVX8ypRUREREREZMBEIhHevHmDgQMHYvjw4WjUqBFiY2Nx9OhRYXpUrVq1MGnSJOEcIyMjrFq1CqNGjUJaWhpWr14NPz8/9OnTBxUqVEBUVBSOHz+O4OBgAFlJ1ZcvX6503QkTJsDT0xMSiQQHDhzA3bt34ebmhipVqiA+Ph63bt0SggqlS5fGlClTVNpesWJFYXvZsmUYNWoUAKBPnz6Fdi/yQh/3DQB++OEHBAYG4t27d9i8eTMCAgLQt29flCtXDi9evMChQ4eE1UMHDRqkEhBZtmwZBg0aBIlEgmPHjuH27dsYOHAgHB0d8ebNG5w9exb//fcfgKyVBH/55RcYGRkJ5+vSd/ro94IiFouxePFijBo1ClKpFLNmzcKZM2fQuXNnlC5dGnfu3IGnpydSU1NhZGSEjIwMYdSctvT1Gigo8iBVjRo1sGbNGiHIJ1e/fn0cO3YMixYtwvHjx3Hr1i3ExsYW24UyGNQiIrUqVKiAjIwMpV9uVHKxPw0H+9JwsC8NC/uTirNmzZrB3t4eXl5e2L59u8pxFxcXbNq0SWVkkrOzM3bu3ImvvvoKMTExuH37tto8Q/Xr18e6detQqVIlpf02NjbYvHkzpk6diri4ODx8+BAPHz5UOd/S0hLLly9X+XANAO3atYO1tTUkEgkCAwMRGBgIkUiU73x4+b0XeaHrfQOyktTv27cPU6ZMQVhYmMY6+vXrh0WLFqnsd3BwwP79+zF9+nS8ePECL168wG+//aZSrmzZsli+fLlKUEyXvtNHvxekJk2aYM2aNZg7dy6Sk5Ph4+OjMsVu8ODBiIyMxL///qs0HU9b+ngNFISEhAQEBARg4MCBWLBggcafITMzMyxfvhzt2rXDTz/9BF9fXwwZMqRQ2phXDGoRkVqVK1cu6iaQHrE/DQf70nCwLw0L+5OKMyMjI6xZswadO3fGX3/9hadPnwLI+kDt4eGBgQMHolQp9R8NW7RogbNnz+LQoUPw9fXFs2fPkJSUBDs7O9SuXRseHh7o0aMHjI2N1Z7v4uICLy8vHDx4EJcvX0ZoaCgSExNhYWEBBwcHdO3aFcOHDxcWc8iuXLly2L17N1auXImgoCAkJyfDxsYGUVFROa4KWBD3Ii90vW9A1kia06dPw9PTE97e3ggODkZSUhKsrKzQpEkTDBs2LMdVA2vVqoVTp07h2LFj8PHxwZMnTyCRSGBiYgInJyd06tQJo0aNgq2trdrzdek7Xfu9oLm6uuLUqVPYtWsX/P39ER0dDRMTEzRo0ACjR4+Gq6urMCrQ0tIyX9fQx2tA327cuIGlS5eif//+WpUfMGAAmjRpgmPHjhVwy/JPJNNHtj2ibBITE5VWsahbt66wxGxxlZSUhFWrVint++abbwo1cSERERHph4+PD5KTk4XHrVu3RqVKlZCZmYmTJ08qle3Ro0ex/zulIOj777WnT58iPT0dpUqVQu3atfXRRNKRfDW1Vq1aYe/evUXcmqLFe0F51bt3b4SGhqJJkyY4fPhwUTdHLzIzM/M8nVKX89TR9+8KjtQiIiIiIoPz6NEjYSUvIGsURqVKlSCTyXD37l2lsh07dvwog1pERB+bEydO4PTp03B0dMTnn38Oe3t7teVCQkKExQQaNGhQiC0sWPkNTOkroFUQGNQiIiIiIiIiIoNnaWmJy5cvAwBkMhkWLlyoUib7ypLu7u6F2kbKGwa1iEitoKAgSKVSGBsbw9nZuaibQzpifxoO9qXhYF8aFvYnEVHx1759ezg4OCAiIgJ//fUXHj58iJ49e6JixYr48OEDnj9/jhMnTuDt27cAgCFDhqgk0afihUEtIiIiIjI4zZo1w4cPH4TH8qXIRSIR2rZtq1S2TJkyhdo2IiIqGiYmJtiwYQOmTJmCqKgo3LlzB3fu3FFbdsSIEZg3b17hNpDyjEEtov8xMTGBm5ubyj4iIiIqeTp27Kh2v1gsRs+ePQu5NUREVFzUq1cPZ86cwd9//w1fX18EBwcjPj4e5ubmsLe3h4uLCwYPHsxRtyUEg1pE/2NsbIxWrVoVdTOIiIiIiPRCcXXLjx3vBSkyNTXFmDFjMGbMmKJuCumo+KawJyIiIiIiIiIi0oBBLSIiIiIiIiIiKnEY1CIiIiIiIiIiohKHQS0iIiIiIiIiIipxmCieiIiIiAzOhQsXkJycLDxu0aIF7O3tkZmZiTNnziiV7dy5MywsLAq7iURERKQjBrWI/ic5ORkbNmxQ2jd9+nSYmZkVUYuIiIgov4KCgiCRSITHtWrVgr29PWQyGQIDA5XKtmnThkEtIiKiEohBLaL/kclkSt/oyvd9rKpXr47MzEyIxZylbAjYn4aDfWk42JeGhf1JRERU+BjUIiK1ypYtW9RNID1ifxoO9qXhYF8aFvYnERFR4WNQi4iIiIgMjrOzs9IIbGtrawCASCRCixYtlMqWLl26MJtGREREesKgFhEREREZnK5du6rdLxaL0bdv30JuDRERERUEBrWISK2EhAQhNwinVJR87E/Dwb40HOxLw8L+JCIiKnwMahGRWqGhoZBKpTA2Noazs3NRN4d0xP40HOxLw8G+NCzsTyIiosJXLIJaycnJyMzMBAAup0xERERERERERLkqFkGtQYMG4cWLFxCJRHj48GFRN4eIiIiIiIiIiIq5YhHUAgCZTFbUTSAiIiIiIiIiohKi2AS1iIiIiIj0xd/fHx8+fBAeu7i4wNbWFpmZmTh//rxS2fbt28Pc3Lywm0hEREQ6YlCLiIiIiAzOf//9B4lEIjyuVq0abG1tIZPJ8O+//yqVbd68OYNaRGQw0tPTsWPHDpw6dQoRERGQSqWwsbHBd999hz59+uhcf926dQEArVq1wt69e3WuTx2ZTIYDBw7A1dUVtra2BXINMgwMahERERERUaGLiYkRFov62IjF4kL/oB4SEoIDBw7gxo0biIqKQkpKCipUqIB69eqhb9++6NOnD8RicY51jBkzBjdu3ND6mr6+vnBwcFB7LCEhAVu3boWPjw9evXoFU1NTNG3aFBMnTkSrVq1yrfvly5fo168fUlJSsHXrVnTu3Fnrdhm6b7/9FqdPn1ba9/r1a1haWhZRi/ImLCwM8+bNQ2BgIDp16lTUzaFijkEtIiIiIiIqdJmZmUhOToZUKi3qphQqY2NjmJmZFdr1MjIysGbNGmzbtk0lj/GrV6/w6tUr+Pn5Yf/+/Vi7di3s7e0LvE2xsbEYNWoUnj9/LuxLS0vDpUuX4O/vj0WLFmHo0KE51rFw4UKkpKSgT58+DGgpCAkJEQJaVlZWmDBhAqpWrYqEhAQ0bty4iFunnZMnTyIwMLCom0ElBINaRERERGRw6tevj+TkZOGxfISCSCRCkyZNlMqWLl26UNtG/08qlSIxMRFGRkZF3ZRCkZGRAQsLi0K95uLFi3Hw4EEAgJGREdzc3NCmTRuYm5sjIiICp06dQnBwMP777z989tln+Ouvv7Qa0bNhw4Zcy5QvX17t/l9++UUIaLm5uaFz586IiYnBrl278O7dOyxevBgtW7ZE9erV1Z5//PhxXLt2DVZWVpg/f36u7fiYPHv2TNiePn06Pv30U71f48mTJ3qvkyi/GNQi+h9jY2OVb3mMjY2LqDVERESki549e6rdLxaL4eHhUbiNoRwZGRl9NDlzYmJiCvV6V69eFQJaZmZm+PPPP9GiRQulMp999hl++uknHD58GE+fPsVvv/2Gn376Kde6e/Toka82xcXF4cyZMwCAYcOGYfHixcKxnj17wt3dHVKpFIcOHcJ3332ncn5sbCx+/fVXAMCcOXNQoUKFfLXDUCkukFGrVq0ibAlR4WBQSwOZTIbTp0/jyJEjePToEZKTk2Fra4uWLVti1KhRcHZ21rl+X19fnDhxAkFBQYiNjYWxsTGqVKmC9u3bY+zYsahcuXKOdXTr1g2RkZFaXe/KlSsfzR8L+WViYoIuXboUdTOKDV1f41S8sD8NB/vScLAvDQv7k4qjXbt2CdszZ85UCWgBWUHFhQsX4ubNmwgNDcXhw4cxceJEjbmwdHX//n1kZGQAAMaOHat0zMnJCd26dcPZs2dx584dtef/+uuviIuLQ6tWrTB48OACaWNJppinrlQpftwnw8dXuRopKSmYOXMmLl68qLQ/MjISkZGROHXqFL766itMnjw5X/XHx8dj1qxZuHr1qtL+tLQ0BAcHIzg4GPv378eSJUs0fpOYmJiIV69e5ev6RERERERk2DIzM4Wk7iKRKMcRiqVKlUL//v3x+++/IyMjA15eXvn+rJObuLg4YVtd4MzR0VGlnNy1a9dw4sQJmJiYYPHixRCJRAXSxrS0NJw7dw5Hjx7F8+fPERMTAwsLCzRs2BADBgyAu7u7xqT6ycnJ8PT0xPnz5xEcHIykpCRYW1ujXr16cHNzg4eHh8bptvJVBWfOnIlp06YhICAA+/fvx507dxAbG4ty5cqhZcuWGDNmDFxcXJTOVZfEXzFouGzZMgwcOFCX26LSTnWrH+ryHNatW4f169cr7evevTsAoEqVKvDz81NpS0ZGBo4dO4YzZ87g8ePHiI+Ph5WVFerXrw93d3f0799fY18ptnXo0KFYvHgxrly5AiDrdejq6op169YByJoym1MQNTExEW3btkVaWho6deqEP//8U2NZ0i8GtdSYP3++ENCqWbMmhg4digoVKuDBgwc4ePAgkpOTsXr1atjb22PAgAF5qjszMxPTp0/HzZs3AQCVK1fGoEGDUKNGDSQlJeHKlSvw8fFBWloavvvuO1haWqJbt24q9Tx58kRI9DhlypRck/5ZWVnlqZ1ERERERFRySSQSpKSkAABsbGxgbW2dY3nF/FV+fn4FFtRSTJIfHx+PMmXKKB2XB7NMTU2V9qekpODHH38EAEydOlVjvi1dRUREYNq0aSp5o+Li4nDlyhVcuXIFf//9NzZu3KiSHy0wMBBff/01oqOjlfbHxMQgJiYG/v7+2LVrFzZu3CgE7zRZs2YNtmzZopTc/82bN/jnn3/g5eWF2bNnF1gf6UtBP4eIiAhMnToVwcHBSvvfvn0Lf39/+Pv7Y+/evdi0aRPs7Ow01pOYmIhRo0bhxYsXwr7Hjx9j3LhxMDIyQkZGBry9vXMMap0/fx5paWkAAHd393w/J8o7BrWyuXr1qrBaRJs2bbB161Yheai7uzsGDx6MkSNHQiKRYOnSpejevXuekj0eO3ZMCGi1adMGmzZtUnpjHzJkCPz8/PDFF18gPT0dP/30E9q3b6+SwFTxTdbDw6PA3tSJiIiIiKjkyb7SYV5kDxKo8/nnn+Phw4eIi4uDqakp7Ozs4OLiAnd3d7Rp00bjeTVq1BC2/fz8MGLECOFxWlqaMJulZs2aSuetW7cO4eHhqF27NiZNmpTXp6SV2NhYDBs2DG/fvgUA1KtXD/3790fFihURHh6OAwcOIDo6GgEBAZgzZw42bdoknHvv3j1MmjRJWKDCxcUFbm5usLW1RWRkJE6cOIGnT58iODgYw4cPx9GjRzWuNHny5EmEhobC3NwcgwcPhrOzM5KTk3H69GkEBARAJpPht99+Q/v27dGwYUMAWaONJBIJrl+/LoyemjlzJurUqQMAaNCgQYHcM03y8xz69OmD+vXrC0EvIGuhg/Lly6sEP9+9e4eRI0fi9evXAICmTZvCzc0NdnZ2ePv2Lby8vHD79m3cv38fY8aMwZEjRzR+bt+3bx9SU1PRoUMH9OvXDxKJBJcuXUL//v1x6tQpXL16FdevX4dEItEYHJa319TUNN/55ih/GNTKZseOHQCyhuD+/PPPKsGkmjVrYsGCBfj6668hkUjg6emJ8ePHa13/oUOHAGStsrNq1Sq1y/l269YNo0ePxq5du/D69WtcvnwZrq6uSmXkQa3SpUujWrVqeXqORNp49eoVMjIyYGRklGt+Nyr+2J+Gg31pONiXhoX9ScWNlZUVjI2NIZVKERsbK0zL0kRxlEpSUhJev36tMegCQClVi1Qqxfv37/Hs2TN4enqiTZs2WLlypdrRMTVq1ED9+vXx6NEj/Pbbb7CyskLHjh3x7t07rFy5Uhjl1LdvX+Gcx48fY9euXRCLxViyZEmBLea0YsUKIaA1atQo/PDDD0pT10aPHo0RI0YgODgYfn5+CAgIQOvWrZGRkYE5c+YIAa2vv/5aZQTS+PHjsXjxYhw6dAhv377FvHnzsH37drXtCA0NRZUqVbBnzx6lKZpDhw7F999/j6NHj0Imk+HIkSNCQEieL+39+/dC+ebNm6N169Z6uDN5l5/nULNmTdSsWROPHj0Syrdv317tNNWFCxcKAa3Zs2fj888/Vzo+duxYbN26FatXr8aLFy+wcuVKLFq0SG1bU1NT0aVLF2zevFmY0jpu3DgAQL9+/XD16lVIpVKcP39e7Wit+Ph4XLt2DQDQtWtXmJuba3ubSA/UTy79SEkkEuHF2LFjR41DQvv06SMsT+vt7a11/YmJiQgKCgIAtGvXLsfE7b179xa27969q3JcHtSqVauWxjnCRLp4+/Yt3rx5I/xip5KN/Wk42JeGg31ZsK5fv46LFy8K/+T3OTMzU2n/xYsXhQ+iumB/UnFTqlQpNG3aFEDWqK0TJ05oLJuRkYGTJ08q7VMMjiiysrKCm5sb5syZg1WrVmHNmjX47rvv0LlzZyEgcP36dQwfPlzjao8LFiyAsbEx3r9/j1mzZqFFixbo1asXzp8/DyArj5I8BUtmZiZ++OEHpKenY/jw4Sp5mPQlNjZWuEf169fH/PnzVT5nWVhYKAVG5DN8fHx8EBoaCiDrs6K6KXWlSpXCwoULhUUlrly5gnv37mlsz7x589QGc6ZNmyZs53R+cVBQz+H58+fCa6Vnz54qAS25yZMno1WrVgCyZkzFxsZqrHPSpElqc7S5uroKA100ffb38fGBVCoFwKmHRYEjtRQEBgYKq0XkNGRWLBajZcuW8Pb2xt27d3P91kMuLi4OjRs3RlRUlNKwW3UU68v+C0Umk+Hp06cAIAwnJd19+PABO3fuVNo3fvx4lfn8REREVPwFBARAIpEIjytVqoQKFSpAJpPh0qVLSmUbN26sdvQ8UUk3dOhQIfXJmjVr0LhxY5WgUGZmJpYsWYLnz58r7U9MTFSpb/bs2WjYsCFMTExUjo0fPx737t3Dl19+iVevXiEyMhLz5s1TmzC7efPm2LZtGxYuXKg0QszY2BjDhw/H3LlzhX179+7FvXv3YG9vj6+//lrYf+nSJezYsQMPHjyAVCqFk5MTBg4ciFGjRuVr1b/Lly8LnwVHjBihMZl7s2bNMHPmTFSqVEmY0qf4njJx4kSN1zAyMsLEiRPx5ZdfAsjKw6QuN3JOq7I7OjrC3NwcSUlJGgOPxUFBPoezZ88K02sHDRqUY9lBgwbhxo0bSE1NxbVr19QGnYyNjTWuYGthYYGuXbvC29tb4xTEM2fOAACsra3RsWPHPD8f0g2DWgrkgSIg92BRrVq1AGQFmIKDg9GyZctc63d0dISnp6dWbQkJCRG2s//QREZGCr9kateuDSDrl87jx4+RlJQEOzs71KlTR+MbMamXmZmp8m2S4pK4REREREQlibu7O06cOIErV64gOTkZo0ePhpubG9q0aQNzc3NERETg1KlTePLkCWxsbJCamoqkpCQAUDsbJLdRUo0bN8a2bdvg4eGBtLQ0XL58GUFBQWoDBm3atMHZs2fx9OlTvHr1CqampmjQoIFS3qOoqCisXbsWAPDjjz8Kx3bs2IHly5cDyErHYmJigsePH2Pp0qUICAjA+vXr8zyb5f79+8J2s2bNciyrONIIAO7cuQMAsLS0FKbSaaI4eELTKCUnJ6ccA3MWFhZISkpCenp6jtcqSgX5HBRnMoWHhwujttRRXEXzwYMHaoNajo6OagO1cv369YO3t7faKYixsbG4fv06gKxRYznVQwWj0INaISEh+PXXX7F69WpYWlpqLCeVSjF37lwMHz680OYBR0ZGCttVqlTJsWzFihWVztMmqJUXR44cEbabNGmidEwxSbxYLMaMGTPg5+eHjIwMYb+1tTVGjx6NSZMmqSTVIyIiIiIiwycWi/H777/ju+++w7lz55Ceno5Tp07h1KlTSuVsbW2xceNGfPbZZ8K+nD6r5aRmzZoYMGCA8GX+xYsXNY6CAbK+pJd/UZ/dokWLkJycDFdXVyH59oMHD7Bq1SoAWaOiZs6cCWNjY5w5cwZz586Fr68v9u/fjzFjxuSp3YpTh/OaF08+rU3dVLvsrKysYGVlhfj4eI3TlXNbiEweLNJlMYCCVpDP4c2bN8L2zz//rPV57969U7s/t9d6p06dhD7Lvgri2bNnhc/hnHpYNAo1GdPz588xbtw4XLlyBRMmTFA7pBUA0tPT8dVXX+HMmTOYMmUKAgICCqV9inNsy5Url2NZxdFTikPb9cHf3x8XLlwAAJQvXx7t27dXOq4Y1Pr1119x7tw5pYCWvE3r16/HmDFjcpw7TERERGSIatWqhQYNGgj/ypYtCwAQiURK+xs0aMBv1smgWVhYYP369di5cyf69esHBwcHlClTBmZmZqhTpw6mT5+O06dPo379+sIoLZFIhAoVKuT7moqDEhRnoOSFl5cXLly4AAsLCyxYsEDYv2/fPmRkZKB69er45ptvYGJiApFIhD59+sDDwwMAsHv37jxfLz4+XtjO66AA+X3TNm2JvP4PHz6oPZ6f6ZPFTUE+B01xhNzI+ym73H4HmJiYoFevXgAgTEGUk696WLFiRb0PdCHtFOpPS+nSpYWVKh48eIAJEyYIqw3KZWZmYtasWfD19QWQNe+4sHIapaSkKLU1J4ovfMXzdBUVFYVvv/1WeDx16lSVN1XFoJaxsTHGjx8PDw8PODo6CsuP/v7774iJiUFQUBBmzZqFnTt3MqE8ERERfTQUV05TJBaLMWTIkEJuDVHRa9euHdq1a6fx+JMnT4Qvyp2cnIRAcH7Y2NgI2wkJCXk+//3791i6dCmArJUEFVdhlOcI69Wrl0pi7969e8PT0xPh4eG5rt6YneJnrpSUlDytYGdqaoqEhASNQars5ItTcEZN/ijet6CgoFw/u+uDu7s7Dh8+rDQFMSYmBoGBgQCyFgjg5+2iUahBrSpVqmD37t0YO3YsoqKicO/ePXz22WdKQaFZs2bh3LlzALK+Vdi+fXuOw1X1SXE+rzbRWnXn6SI2NhYTJkwQhkW2b98eo0ePViknX7q0dOnS2LFjh7B8KwDY2dlhyJAh6NSpE4YOHYro6Ghcv34dXl5eRToc8tmzZzn+kJuZmQl5yhTP0WY1Int7e6VfWBkZGXjw4IFW7apZs2aOv7AePnyo9k1SLBajUaNGSvsiIiK0GhVnZWWFatWqKe179OiRsGJGThwcHJT+SEhJSUFwcHCu5wFZq7goLn8cExODqKgojeXl7VH3+g4NDdXqD5QKFSqoDN+WrwCam+rVqyv9MZWQkCCsKpOb7O8Zr1690mo1qrJly6J69epK+4KDg7UKXFeqVElpRVOpVKq0HHFO6tSpo/TLOTY2FhEREbmeZ2xsjPr16yvtCwsLU/qmUbE98v+DgoJgY2OjMkT+/v37WuWRq1q1qtJo1aSkJK2/hW3YsKFSvr/Xr18L72k5KS7vERKJBC9fvsz1vIJ8j8jel4oK8z1CrkyZMip5KPkeoUrde0ROfamoMN4jsuN7RP7/jsitP4Hi83dEampqrufQx+PGjRvCtq4jThTzGOUnOLZy5UrExMTAxcUFI0aMUDomf09QF7CqVKmSsB0dHZ2noJZ8dXv5uTVr1tRY9sGDBxCLxXB0dISFhQUqVKiAhIQErd6bY2Njhd+ReWkf/T/Fvnrz5g0cHR0L/JotW7ZExYoVER0djXPnzmHw4MHw8fERfi/269evwNtA6hX6uEZHR0fs2bMHY8aMwevXr1V+6fv4+AAAzM3N8eeff6rkkypIin8wSqXSHANbaWlpwrY+hqzHxMRg/Pjxwqoj1apVw6pVq9QuK3rw4EEkJiYiISFB6Y1bkb29PX744QfMmDEDAHD48OEiDWplZGSoTJFUpC5wkp6ertUfaOrq1eY8IPc53FKpVG0wTt0+bdur7rkqfrjJSfYPEzKZLN/PNTMzU6tz1d2jwuib7M9V2/Zqaoch9o062vSNVCrV+Fy1+cCavb15ea7Z6dI3RfEeoe1zLaz3iOz7iuJ1qG5REr5HqFLXN9nr0aSw3yPk5bLje4QqTX9H5HZ+cfk7gkhOJpPh6NGjwmNdRzMqpo/J/mVAbgIDA+Hp6QljY2P8/PPPaj8PAeqn7mmaXqaNhg0bCnnAbt++nWNQ66effhK+JPz333/RuHFjhIaG4v3793jw4EGOyeLlScUBoG7duvlu78fM2dkZ165dA5AVjM0pqHX9+nUcPHgQDg4O6NKli9KAkLwQi8Xo27cvtm/fjuvXryMlJQXe3t4AgBo1aggrYVLhK5LJuoqBLXmSN/mblUwmEwJaua2uoW+KSzmnpqZqHdTSdbjjy5cvMXHiRISFhQHI+oZh586dSt+kZWdhYZFr8r1u3brBwsICiYmJuH37NjIzM4tsSKSRkVGO11Y357pUqVJKowZyqjs7bc4DoPGXpGI96upS91y0ba+656pte7NfVyQS5fu5isXiHM+V/3Gs7h4VRt9kf665tTe3dujSNzkFZBXbp6gg+0axbdlp6hvFDzvGxsYan6s2H3iytzcvzzU7XfqmKN4jtH2uBfkekb0vc7pucXsdZvexv0dkr0eTougbvkfo9ndEbucXl78jiOQOHjyIhw8fAgBatWql00yZ0NBQnDhxQnjctWtXrc9NS0vDggULIJPJMGnSJJURmEDWl/fh4eF49uyZyjHFfXkdBdWxY0eIxWJkZmbC09MTgwYNUvszHhYWJqxa2LZtWwBA9+7dcfLkSQDAtm3bsGbNGrXXyMjIUEq/k5d78zFRvO/qvjzo3r07Nm/eDADYs2cP+vfvr/F9cP369cKU1aZNm+rUrn79+mH79u1CQOvWrVsAmCC+qBVZBrqqVasKga2YmBgA/x/Q2rp1a67LqBYExVUPJBJJjkNlFZPD5RR8yk1QUBCmTJkiTDmUT9HMbfVFbRgZGaFatWp48OAB0tLSIJFIdGqrLmrVqpVrEE7dOflhZGSktymrDRo00Ho+vYODg1YrnqiTfXqItsqUKZPv52pra6s0FSa70NBQpKenq/3jOa/fuCnKb3vLli2b73MrV66c51Vs5LJPq9KWsbFxvttrY2OT75/V7FNS5BT7U1P/ZZ8Koy1zc/N8P9fs037yoijeI6ytrZWmVeWFvt4jtOlLuYJ8j8gJ3yNyZ2xsDBsbG637UlFBvEdog+8ROStbtmy++lOuKP6OKIw8NFT07ty5o3FBBJlMhsOHDwsryJmZmeGXX35RW8+ePXvQqFGjHD+nPXz4EDNmzBCmtnbo0CFPM282b96M58+fo3r16pg6daraMi1atEB4eDi8vLzw1VdfCe8RGRkZ2LdvH4CsnyfF1eq14eDgAFdXV5w9exZ37tzB2rVrMWvWLKUyiYmJmD9/vhBoGTlyJADA1dUV1apVQ1hYGLy8vFC/fn1MnjxZ6dyMjAwsXrxYCIi1bt0636OGDJ1iTu34+HiVkVjOzs5o1aoVbty4gcePH2PBggVYsmSJSmDrjz/+EAJaTk5OOgcR69evj1q1auHZs2f47bffhC+1OPWwaBXpsgrVqlVTCmyZmppiy5YtaN68eZG0x8nJSdiOiorKcRhjdHS0sJ3fP4T9/f3x5ZdfCvkeatWqhR07duh1bnV+vxkl0uVDKRU/7E/Dwb40HOxLw8L+pOJq06ZN+O+//9CpUyc0btwYdnZ2kEqlCA8Ph4+Pj7AIVZkyZfD777+jatWqauu5fv06fvnlF1StWhVt27ZFnTp1YG1tDbFYjDdv3uD69eu4dOmSMKKzSpUqQrJ3bYSEhGDr1q0QiURYsmSJxlkzI0eOxIkTJ5CSkoLRo0dj/PjxMDc3x7Fjx4R8eGPHjs3LLRL88MMPCAwMxLt377B582YEBASgb9++KFeuHF68eIFDhw4JM40GDRokBKWMjIywatUqjBo1CmlpaVi9ejX8/PzQp08fVKhQAVFRUTh+/LiQ59La2hrLly/PVxt1FRAQINyfVq1aYe/evUXSjpwoBiSXLVuGUaNGAchKxq64f9CgQZBIJDh27Bhu376NgQMHwtHREW/evMHZs2fx33//Acga4frLL7+oHZmbV+7u7li7dq2Q283Z2VnjzwxQMu53SVfka4U6OTnhr7/+QmBgIOrVq5fvb5r0QXHe9NOnT9GqVSuNZZ8+fQoga2hk7dq183wtPz8/fPnll8I0kiZNmmDLli0oV65cjueFh4fDz88P7969Q7NmzdClS5ccy8t/2IyNjWFlZZXndhIRERGVRLdu3VJK4l+/fn3Y2NggMzMT//77r1LZZs2aFdpq20RF4f379zh9+jROnz6t9nitWrWwZMkSrWbLvHz5MtdFUzp06IClS5dq/WW9TCbDggULIJVKMWTIkBwT1Ts7O+PLL7/E2rVr8fLlSyxatEjpeNeuXdUutqUNOzs77Nu3D1OmTEFYWBhu376N27dvq5Tr16+fynWdnZ2xc+dOfPXVV4iJidF4bv369bFu3TqNuZEpa6VOa2trSCQSBAYGIjAwECKRCF26dBFSBjk4OGD//v2YPn06Xrx4gRcvXuC3335Tqats2bJYvny53kbFyYNaio+paBV5UAvIyrFVGCsW5MbFxQXGxsaQSqUICAgQIsLZZWRkCMMY69WrpzRtURs3btzAzJkzhYBW+/btsX79eqWcXpq8efNG+MajW7duOQa1QkNDhZWrGjdurJfINBEREVFJcOXKFaV0ERUqVICNjQ1kMhnOnz+vVLZevXoMahWhjIwMIR2JodMmB5++zZw5E40bN8bNmzcRERGBd+/eQSQSoXz58mjYsCFcXV3Ru3dvtSknFH333Xfo2rUrgoKC8PjxY7x79w5xcXGQSqWwsLBAlSpV4OLign79+uV5sa9Dhw7h1q1bqFChAubOnZtr+alTp6JOnTrYtWsXHj58CKlUCicnJwwcOBCjR4/W6XNPjRo1cPr0aXh6esLb2xvBwcFISkqClZUVmjRpgmHDhqFz585qz23RogXOnj2LQ4cOwdfXF8+ePUNSUhLs7OxQu3ZteHh4oEePHpxNk4ty5cph9+7dWLlyJYKCgpCcnAwbGxtERUUpDUSpVasWTp06hWPHjgmjDiUSCUxMTODk5IROnTph1KhR+U6noI6joyNcXFxw+/ZtGBkZKY0eo6IhkuW2/NtHZuLEifD394exsTF8fHzUTi08efIk5syZAwCYPXs2Pv/8c63rf/fuHdzd3YUlm7t27Yo//vhD6xUUU1NT0a5dOyQmJubYRgCYO3eukKRx0aJFGD58uNbt1FViYqIwlBnIWtkjrzm1CltSUhJWrVqltO+bb77ROqcWERERFR+///67UlBr+PDhqFu3LjIyMoT8QXIzZsxQWiL+Y6Hvv9eePn0q5BXTZibD69evkZycnO/VMUsqY2NjmJmZ6TXlCBFRSZHX3xW5KRYjtYqTcePGwd/fH1KpFLNnz8a2bduUfrk/e/ZMSJ5obm6e5+VulyxZIgS0nJ2d8fvvv2sd0AKyEnoOHToUO3bsgFQqxddff40///xT5Q+Q7du3CwEtJycnfPLJJ3lqJ1FwcDCkUimMjY3znQiZig/2p+FgXxoO9qVhYX/mnVgs1mqmgiHiSpRERPrBoFY2HTp0QK9evXD27Fncvn0bAwYMwIgRI1CpUiU8fPgQBw4cQFJSEoCskVDZVx/KKRFcSEgIvL29hce9e/eGv79/rm2ytrZWmgM8bdo0XLhwAaGhofjvv//Qt29fDBs2DE5OToiLi4OXlxcCAwMBZAXeVq1axdVtKM9SUlIglUqLZJg86R/703CwLw0H+7JgOTk5CX+zARBGXqvLh6qPqUDsz7zT55QgIiL6ODGopcby5cuRlJSEK1euICIiAitXrlQ6LhKJMGPGjDxP5zt+/DgUZ3uuWLFCq/OyB8fKli2LnTt3YsaMGbh//z6io6Px+++/q5xXqVIlrF69Go0bN85TOz9WpUqVUkkgmFtuASIiIiqeBgwYoHa/WCzGyJEjC7k1REREVBD4iV0NU1NTbNu2DadOncLx48fx6NEjJCQkwNraGs2bN8fYsWPRvHnzPNcrX8JVHypVqoRDhw7h9OnT+Oeff/DgwQO8f/8eFhYWcHJyQs+ePTFs2DDmg8qD0qVLo2/fvkXdDCIiIiIiIiLSAoNaGohEIvTv3x/9+/fP03mtW7dWSripaMuWLfpomqBUqVLw8PCAh4eHXuslIiIiIiIiIirumKGQiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShzm1CIiIiIig3P37l2kpqYKj2vXro1y5cpBJpPh5s2bSmWdnZ1RpkyZwm4iERER6YhBLaL/SUlJwcGDB5X2DR8+nH/kEhERlUAXL16ERCIRHltZWQlBrTNnziiVrVmzJn/fExERlUAMatFHZfz48Xj58iVEIhHOnz+vdCwjIwNhYWEq+z5WlSpVQmZmJsRizlI2BOxPw8G+NBzsS8PC/iQiIip8DGrRRyU6OhqRkZEQiURF3ZRiz9bWtqibQHrE/jQc7EvDwb40LOxPIiKiwsegFn1U7OzslPJrEBERkWFycHCAlZWV8NjMzEzYrlatmlLZUqX4JzEREVFJxN/g9FHZvXt3UTeBiIiICsGgQYPU7heLxRg3blzhNoaIiIgKBINaRKSWVCqFTCaDSCSCsbFxUTeHdMT+NBzsS8PBvjQs7E8iIqLCx6AWGZSkpCSYm5sr7YuOjsabN2/g7OxcRK0qmR49egSpVApjY2PeOwPA/jQc7EvDwb40LOxPIiKiwldkQa33798jMDAQd+/exYsXLxAVFYWEhASkpaWhTJkysLCwgIODA6pXr46mTZuiefPmMDU1LarmUjF35MgRbNmyBY0aNcJvv/2mdMzPzw9LliyBo6Mj5syZA1dX1yJqJRERERERERHpS6EGtdLS0uDl5YVjx47h1q1byMjIyLF8UFCQsG1kZIQOHTqgf//+cHV15bBuEvz888/Yv38/ZDKZUhJYuYiICMhkMrx8+RJffvklvv32W+bSICIiIiIiIirhCiWolZSUhF27dmHPnj14//49AEAmk+WpjvT0dFy6dAmXLl1ChQoVMGbMGIwaNUplqhl9XPz9/bFv3z4AQKNGjTBp0iSVMl988QVatWqFjRs3IigoCCtXrkTz5s3RuHHjwm4uEREREREREelJgQa1ZDIZ/vrrL/zxxx94//69UiCrZs2aqFevHurWrYsaNWrA2toaFhYWMDc3R2pqKpKTkxEVFYWIiAg8fPgQQUFBCA8PBwDExMRgzZo12LVrF6ZMmYLRo0dDLBYX5FOhYuqvv/4CALRv3x6bN29WO4LP1NQUXbp0QceOHTFu3DjcvHkTu3fvxqpVqwq7uURERFRIHj58iLS0NOFx9erVYWVlBZlMhrt37yqVrVevHsqUKVPYTSQiIiIdFVhQ68mTJ/j+++/x6NEjYSWYdu3awd3dHe3bt4e9vX2udWRPshkeHo6LFy/i1KlTCAoKQmxsLJYtW4ajR49iyZIlHHnzEQoKCoJIJMKXX36Z65RUIyMjfPHFFxg7dixu3LhRSC0kIiKionDu3DlIJBLh8fDhw4Wg1okTJ5TKOjo6MqhFRERUAhVIUGvHjh1Yu3Yt0tLSYGZmhpEjR2LEiBGoUqWKTvU6OjpizJgxGDNmDEJCQrB7926cPHkSjx8/xogRIzBz5ky108/IcMXHxwMAqlWrplX5WrVqAQDi4uIKrE1EREREREREVPAKZM7eihUrkJmZidGjR+P8+fP45ptvdA5oZVezZk0sXrwY58+fF6YfZl/1jgyfra0tACA6Olqr8vJgloWFRYG1iYiIiIiIiIgKXoEEtTp16oRTp07hhx9+gI2NTUFcQlChQgX88MMPOHXqFDp37lyg16Lip27dugCAw4cPa1X+2LFjAID69esXWJuIiIio6Nnb26Ny5crCP8XphYr7K1euDCMjoyJsKRHlRp6rOSYmpqibQoWgbt26qFu3LsaMGVPUTSly6enp2Lp1K/r16wcXFxc0atQInTp1gpeXV1E3rdgokOmHW7duLYhqc1StWjVs3ry50K9LRWvgwIG4ePEiDhw4AEdHR4wfP15j2cOHD2PHjh0QiUTo37+/ynEjIyM0aNBAZR8RERGVPMOHD1e7XywWM10FUQkSFhaGefPmITAwEJ06dSrq5hAVqm+//RanT59W2vf69WtYWloWUYuKnwJd/ZCooLm6uqJ9+/a4evUqVqxYgQMHDqBTp06oXr06ypQpg5SUFLx8+RJXrlzB8+fPIZPJ0Lx5cwwYMEClrjJlymDIkCFF8CyKpzp16giLPFDJx/40HOxLw8G+NCzsT6KCcfLkSQQGBhZ1M4gKXUhIiBDQsrKywoQJE1C1alUkJCRwkTwFDGpRiSYSibBmzRrMmjULV69excuXL7F//36VcjKZDADQunVr/P777/yDUwtcBcqwsD8NB/vScLAvDQv7k4hIP548eVLUTSgWnj17JmxPnz4dn376aRG2pvgqkJxaRIXJ0tIS27dvx/r169GrVy9YWlpCJpMJ/8zMzNChQwf89ttv2LVrF6ytrYu6yUREREREREQaffjwQdiuVatWgV1n3bp1Qh6zkqjEjNQ6fvy4sO3h4VFk7aDiq0ePHujRowcAIDU1FRKJBGZmZihbtmwRt4yIiIiIiIhIe5mZmcJ2qVIlJnRT6ErMnfnuu++EKWMMapE6qampePv2LapUqYLSpUvD3t4eQNZc5CdPnqBLly4wMzMr4laWHLGxscjMzIRYLC7wVUyp4LE/DQf70nCwLw0L+5OKI/nIiylTpmDWrFnw8fHBnj17EBwcjA8fPqBq1aro0aMHxo8fn+NshuTkZHh6euL8+fMIDg5GUlISrK2tUa9ePbi5ucHDwyPHBZaio6Oxb98+XLlyBWFhYUhPT4eNjQ0aNGiAnj17on///irnr1u3DuvXr1fa1717dwBAlSpV4OfnV+j3Ql7HzJkzMXToUCxevBhXrlwBADg6OmLixIno16+f3u4bAKSlpeHcuXM4evQonj9/jpiYGFhYWKBhw4YYMGAA3N3dIRZrnoCVkZGBY8eO4cyZM3j8+DHi4+NhZWWF+vXrw93dHf3798/x/Pz0na7nyu9zq1atsHfvXrXHZs6ciWnTpiEgIAD79+/HnTt3EBsbi3LlyqFly5YYM2YMXFxccry3UVFR2LFjBy5fvoxXr17B1NQUdevWxbBhw+Du7o6tW7di9erVAPI/JTI/r4ExY8bgxo0bSvvGjh0rbC9btgwDBw7MV3sMUYkJagFg8k1SKyMjAxs2bMCePXvQrl07/PHHH0rHr127hqVLl8LMzAxffPEFxo0bVzQNLWEiIiIglUphbGzMP84NAPvTcLAvDQf7smA9ffoUaWlpwuOqVauibNmykMlkePjwoVLZWrVqoXTp0jpdj/1Jxd3KlSuxbds2pX3Pnj3Ds2fPcPToUezcuVPtFKfAwEB8/fXXiI6OVtofExODmJgY+Pv7Y9euXdi4cSMcHR1Vzr927RqmT5+O5ORkpf3R0dGIjo6Gn58fdu7ciZ07d6J8+fJ6eKa5y++9kEtMTMSoUaPw4sULYd/jx4+VVqTT9b4BWe8r06ZNUwmoxMXF4cqVK7hy5Qr+/vtvbNy4ERYWFmrPnzp1KoKDg5X2v337Fv7+/vD398fevXuxadMm2NnZqZyvS98VRr+vWbMGW7ZsEfInA8CbN2/wzz//wMvLC7Nnz8bkyZPVnhsQEICpU6ciKSlJ2JeWloYbN27gxo0bOHfunM7T8fTxGqDclaigFpE6s2bNwrlz5yCTyfD8+XOV42/fvoVMJkNSUhKWL1+OqKgofP/99yrlUlJScOrUKaV9/fr1Y+JXIiKiEsjLywsSiUR4PHz4cNStWxcymQx///23UtkZM2boHNQiKs7Onj2L0NBQiMVieHh4oG3btkhKSsKJEydw+/ZtvHnzBqNGjcKpU6eUghv37t3DpEmThMCEi4sL3NzcYGtri8jISJw4cQJPnz5FcHAwhg8fjqNHjwqzJYCsEYxfffUVkpOTYWJigkGDBqFJkyYoXbo0IiIi4OnpiZcvX+LJkyf4/vvvsXXrVuHcPn36oH79+kKAAgAWL16M8uXL6/T3eX7vhaJ9+/YhNTUVHTp0QL9+/SCRSHDp0iV06NBBL/dNfu+GDRuGt2/fAgDq1auH/v37o2LFiggPD8eBAwcQHR2NgIAAzJkzB5s2bVI6/927dxg5ciRev34NAGjatCnc3NxgZ2eHt2/fwsvLC7dv38b9+/cxZswYHDlyRCkwpkvf6XKutk6ePInQ0FCYm5tj8ODBcHZ2RnJyMk6fPo2AgADIZDL89ttvaN++PRo2bKh07v379zF58mSkpKQAyBoB2K1bNxgbG+PGjRs4fvw4vL29cfXq1Ty3S06X18DMmTMhkUhw/fp1YaTazJkzUadOHQBAgwYN8t0uQ1RiglqPHz8u6iZQMfTPP//Ax8cHQNab0eeff65SZtasWejXrx9+//13nDt3Dnv27EGXLl3Qtm1bpXIZGRkq39z26dOn4BpPRERE9LGLiSmc65iYAFZW6o/FxwMKo/pgZgaYm6svGxsLZGTo1hZbW93Oz4fQ0FCULl0aGzduFAIvQFaw95dffsHevXshkUiwZs0aLFu2DEDW38Zz5swRPpR//fXXKqNexo8fj8WLF+PQoUN4+/Yt5s2bh+3btwvHT548ifj4eADA8uXLVf62Hjt2LEaOHIkHDx7g0qVLCA8PF0as1KxZEzVr1sSjR4+E8u3bt4eDg0Oh34vsUlNT0aVLF2zevFmYSSSfDaKP+wYAK1asEAJao0aNwg8//KA0TXD06NEYMWIEgoOD4efnh4CAALRu3Vo4vnDhQiGgNXv2bJXPSWPHjhWm17148QIrV67EokWLhOO69J0u52orNDQUVapUwZ49e5ReE0OHDsX333+Po0ePQiaT4ciRIypBrZ9//hkpKSkQiURYunSp0lS+AQMG4JNPPsHkyZORkJCQpzbJ6foaaNGiBQDg/fv3QvnmzZsr9S/9vwJZ/TAoKAivXr0qiKqJlPz9998QiUTo27cvNmzYAGdnZ7XlatWqhXXr1qFnz56QyWTYt29fIbeUiIiIiFTY2RXOv4kTNbdh4kTlsitXai7bsaPubSkiX375pVIQBwBEIhG+//57YZrV8ePHERsbCwDw8fFBaGgogKwvetVN4ypVqhQWLlwo/A1+5coV3Lt3TzguPx8AOnfurHJ+mTJlMGnSJFSrVg0dOnRAXFycjs9SO3m9F+pMmjRJbWocfdy32NhYnDhxAgBQv359zJ8/XyXvlYWFhVIQ6vTp08L28+fPcf78eQBAz5491X7xDwCTJ09Gq1atAADHjh1Ter669F1h9fu8efPUBjmnTZsmbCveVwC4fv06bt++DQAYMmSI2txULVq0wLfffpuvNgH6eQ2Q9gokqDVnzhx0794dK7P9Qnj16hVevXqlNG+VSBfykVWTJk3SqvzE//1BI38jIyIiIsNUvnx52NraCv9MTEyEY4r7bW1tc03UTFTSmZmZYeTIkWqPGRkZCccyMzPh7+8PALh06ZJQZmIOQUEjIyOl4/JgCgClhOvbt29Xyn0k5+bmBh8fH2zfvl3jF9T6lJ97kZ2xsbHGturjvl2+fFlY+W7EiBEa36OaNWuGmTNn4tdff8Xo0aOF/WfPnhXu9aBBgzS2QfF4amoqrl27JuzXpe8Ko99NTEzQpUsXtcccHR1h/r/RloqjnQDgwoULwvann36qsf5PPvkkx8UTcqKP1wBpr0CmH7558wYAlBLlAUC3bt0gEokwd+5cjB8/viAuTR8Z+ZDOSpUqaVW+atWqAFTf3IiIiMiwKH7AUyQWi5W+xSf6GLi4uOS4Cnjz5s2F7bt372LAgAG4c+cOgKzPdNmnb2XXpk0bYVtxtEnv3r2FRN4bNmyAl5cXevbsiU6dOqFp06YoVarws+Hk515k5+joqBQoV6SP+3b//n1hu1mzZjnWoe797O7du8J2eHh4jsESxVFSDx48gLu7OwDd+q4w+t3JySnHeiwsLJCUlIT09HSl/Tdv3gQAlCtXLsfFAExMTNCsWbM8r7IJ6Oc1oE/qVlPUJLfk+MVx5cUCeReRSqUAoLLSAZG+2dvbIzIyEmFhYVpF+OUrT+Q36k5EREREVNI4OTnleFzxC2J5Hif5VDRtclhZWVnBysoK8fHxwvlA1tS5mTNnYu3atQCypqVt2bIFW7ZsQdmyZdG+fXv07NkT3bt3z1fy99xGtjRr1kxlNdL83Ivssg/eUKSP+6a4Xbly5VzryU4+yATIyh+lrXfv3gnbuvRdQfc7ALWrPSqSB7yyjxKT3xtt7qt8QERe6eM1QNorkKCWjY0NYmJi4Ovri88//zzHSDiRLho1aoTIyEjs3LkTa9asybW8PJdW48aNC7ppRERERJQbhQ/fBUrDqBoAwLZtwMaN//84p88u/v66J4ovAuaaEt//j6mpqbAtTxUj/1/xWE7KlCmD+Ph4fPjwQWn/1KlT0bRpU2zbtg3//vsvMv53/xISEuDt7Q1vb2+UK1cOCxYsQN++fbV+TgAwffr0HI/v2bNHJbl2fu5FdppGaSmeo8t9kydZlx/Pq8TExDyfA6g+X136riD7HUC+R3vJV8XV5r7mN+Cmr58dfZGvpqiJ4gqjGzZsyLGu4rjyYoEEtZydnXH+/HmEhISga9euqF69utIP/oEDB5TmsuaFSCTC7t279dVUKuGGDBkivCmWL18eX3/9tdo3j7S0NGzYsEFILD948OAiaC0RERERKSmClQBVaFoVUZ1so35KijTF1R3VUJxhI5/RYGpqioSEBK0/aMvrUBcIaNu2Ldq2bYvY2FhcvnwZV69exb///ouY/61+GRcXh6+//hoWFhZqE4vrU37uRV7o474pbqekpOQaiMtO8fygoCCULl06T+cr0qXvilO/y5UuXRpSqVSr/klJScnXNfT5s6MP8tUUNVFcYbRHjx4F0oaCVCBBrU8//RR+fn6QyWR4//690pxemUyG8PBwhIeH57lemUymdoUJ+ni1b98eHh4eOH78OPbv349jx46hVatWcHJygqmpKT58+IDw8HDcvHlTyKPl6uqK7t27F3HLiz9jY2Ol/6lkY38aDval4WBfGhb2JxVn8hQcmkRERAjbdv9bobFChQpISEhQOqZJbGwsEhISAGSlB9HExsYGHh4e8PDwgEwmw507d7Bx40ZcvnwZMpkMmzZtylNw48mTJ1qXlcvPvcgLfdy38uXLC9vR0dGoWbOmxjoePHgAsVgMR0dHYUqe4vlv3ryBo6Njnp9Hdrr0nb77XRcVK1bEs2fP8OrVq1zLalNGnYL42SHNCiSo1bJlS6xevRorV65U+0JQt/oBUX4tXrwYJiYm8PT0RFJSEi5evKhSRv6a8/DwUFr6ljSrX79+UTeB9Ij9aTjYl4aDfWlY2J9UnN25cyfHAQKBgYHCdqtWrQBkpesIDQ3F+/fv8eDBgxwTXl+/fl3Yliealslk8Pb2RkhICCwsLDBu3Dilc0QiEVxcXLBx40Z069YNb968yVeQKq/ycy/yQtf7BgANGzaEp6cngKxV23MKav30008ICgqCjY0N/v33XwBZM6fkKxneuHEjx6DW9evXcfDgQTg4OKBLly5o0aKFTn1XXPtdrkmTJnj27BkkEglCQkI03tvMzEzcvn07X9fQx2uAtFdgy024ubnBzc0N79+/R1JSEjIyMtCjRw+IRCJ8/vnnGDJkSEFdmj4yJiYmWLx4MYYNG4Z//vkH169fx+vXrxEfHw9TU1NUrFgRzZo1w6BBgwplmWAiIiIqeqGhocLiRUBWUmALCwvIZDI8ffpUqayTk1OOOXKISrro6GhcuHAB3bp1UzkmlUpx4MABAICZmRnatWsHAOjevTtOnjwJANi2bZvG/LUZGRnYsWOH8Lhr164AsoIXq1evRnh4OKysrDBy5Ei1P2fGxsbC9Dp10+wUg0/6GByRn3uRF7reNwDo2LEjxGIxMjMz4enpiUGDBqkNwoWFhQkr5rVt21apDZs3bwaQlVesf//+GkeRrl+/XlgRsGnTpgB06zt99XtB6d27N44cOQIA2L9/P3788Ue15by9vYVpknmlj9cAaU9c0BewtLREpUqVlDL/W1lZoUqVKvn+R6ROw4YNMXfuXBw9ehRXr17F/fv3cfPmTZw6dQqLFi1iQIuIiOgjcvLkSRw4cED4FxkZCSDrQ7Hi/gMHDghTP4gM2cKFC/HixQulfRkZGVi0aBFCQkIAAJ999pmQf8nV1RXVqlUDAHh5eWHr1q0qdWZkZGDx4sVCYKV169ZK+Xt69+4NICvx+dKlS9UGpc6fP4/Q0FAA6nP/KObLVUygrou83ou80Md9c3BwgKurK4CskWXyVQQVJSYmYv78+cI9HTlypHDM2dlZGGX2+PFjLFiwQCnIL/fHH38IAS0nJyeloIoufaePfi8oHTp0QL169QBk5fqWJ0hX9OTJEyxZsiTf19DHa4C0VyAjtYKCglChQgWVZTJbtmwJIGseKxERERERERU8kUiEN2/eYODAgRg+fDgaNWqE2NhYHD16FA8ePAAA1KpVC5MmTRLOMTIywqpVqzBq1CikpaVh9erV8PPzQ58+fVChQgVERUXh+PHjCA4OBpCVVH358uVK150wYQI8PT0hkUhw4MAB3L17F25ubqhSpQri4+Nx69YtIahQunRpTJkyRaXtip8dly1bhlGjRgEA+vTpU2j3Ii/0cd8A4IcffkBgYCDevXuHzZs3IyAgAH379kW5cuXw4sULHDp0CG/+t3rooEGDVAIiy5Ytw6BBgyCRSHDs2DHcvn0bAwcOhKOjI968eYOzZ8/iv//+A5C1kuAvv/wCIyMj4Xxd+k4f/V5QxGIxFi9ejFGjRkEqlWLWrFk4c+YMOnfujNKlS+POnTvw9PREamoqjIyMkJGRAbE4b2OB9PUaIO0USFBrzpw5ePnyJSZMmIA5c+YI++UdZZWXFUaI9CwmJgY+Pj7CL0RSLywsDOnp6ShVqpTwTQOVXOxPw8G+NBzsS8PC/qTirFmzZrC3t4eXlxe2b9+uctzFxQWbNm1SGZnk7OyMnTt34quvvkJMTAxu376tNs9Q/fr1sW7dOlSqVElpv42NDTZv3oypU6ciLi4ODx8+xMOHD1XOt7S0xPLly4URNIratWsHa2trSCQSBAYGIjAwECKRCF26dIGZmVleb0W+70Ve6HrfgKwk9fv27cOUKVMQFhamsY5+/fqpzRns4OCA/fv3Y/r06Xjx4gVevHiB3377TaVc2bJlsXz5cpWgmC59p49+L0hNmjTBmjVrMHfuXCQnJ8PHxwc+Pj5KZQYPHozIyEj8+++/+Zqero/XAGmnQIJa8oixpaWl0v5u3bpBLBZjzpw5GD9+fEFcmj5CSUlJ2L17N/z9/REbG4uMjAyVIa4ymQxpaWlISkpCSkoKRCIRg1q5iI+Ph1Qq5SpOBoL9aTjYl4aDfVmwLC0tlf4eULzP2b9gzeu38OqwP6k4MzIywpo1a9C5c2f89ddfQl65+vXrw8PDAwMHDkSpUuo/GrZo0QJnz57FoUOH4Ovri2fPniEpKQl2dnaoXbs2PDw80KNHD42vfRcXF3h5eeHgwYO4fPkyQkNDkZiYCAsLCzg4OKBr164YPnw4KlSooPb8cuXKYffu3Vi5ciWCgoKQnJwMGxsbREVF5ZhAvSDuRV7oet8AoEaNGjh9+jQ8PT3h7e2N4OBgJCUlwcrKCk2aNMGwYcNyXDWwVq1aOHXqFI4dOwYfHx88efIEEokEJiYmcHJyQqdOnTBq1CjY2tqqPV+XvtO13wuaq6srTp06hV27dsHf3x/R0dEwMTFBgwYNMHr0aLi6ugqfF7PHNbSlj9cA5U4kK4ClCBs1aoSMjAxMnjwZs2bNEvbXq1cPIpEIc+fOZVDLwCUmJiqtYlG3bl1hiVl9+vDhA4YPHy4M3dT0chaJRErHjIyMhOHFcikpKTh48KDSvuHDh6NMmTJ6bnXJEBQUJPxxznxkJR/703CwLw0H+9KwlMT+1Pffa0+fPhVGq9WuXVsfTSQdyVdTa9WqFfbu3VvErSlavBeUV71790ZoaCiaNGmCw4cPF3VzDIa+f1cUyEgtGxsbxMTEwNfXF59//nm+hoUSaePgwYPCH2P29vZo3Lgx3r59izt37qBBgwaoWbMm4uLicOfOHSQmJkIkEmH48OGYPHmySl1lypRRWXKWiIiIiIiIDMOJEydw+vRpODo64vPPP4e9vb3aciEhIcJiAg0aNCjEFlJeFUhQy9nZGefPn0dISAi6du2K6tWrK81DPXDgAC5cuJCvukUiEXbv3q2vplIJ5+vrCyBreOvOnTtRpkwZ3Lt3D0OGDIGdnR1WrlwJIGsU1qJFi3Ds2DH4+flh9uzZRdlsIiIiIiIiKmSWlpa4fPkygKxZPgsXLlQpk31lSXd390JtI+VNgQS1Pv30U/j5+UEmk+H9+/e4e/eucEwmkyE8PBzh4eF5rlcmk0EkEumzqVTChYSEQCQSYerUqcI0wQYNGqB06dIIDAwUypUpUwZLly4VkiweOnQIEydOLKpmExERERERUSFr3749HBwcEBERgb/++gsPHz5Ez549UbFiRXz48AHPnz/HiRMn8PbtWwDAkCFDVJLoU/FSIEGtli1bYvXq1Vi5ciVevXqlcrwA0njRRyohIQEAlObiGhkZoXr16njy5AlevHgBJycnAFmj/MaPH4///vsPvr6+DGoRERERERF9RExMTLBhwwZMmTIFUVFRuHPnDu7cuaO27IgRIzBv3rzCbSDlWYEEtQDAzc0Nbm5ueP/+PZKSkpCRkYEePXpAJBLh888/x5AhQwrq0vQRMTU1RWJiosqSu9WqVcOTJ08QEhIiBLUAoHHjxgCA0NDQwmwmERERERERFQP16tXDmTNn8Pfff8PX1xfBwcGIj4+Hubk57O3t4eLigsGDB5eYRT8+dgUW1JKztLRUWQLTysoKVapUKehL00fAzs4OiYmJiIiIgI2NjbC/atWqALJWVujevbuw38jICEDWPGkiIiIyXBEREUhPTxce29nZwczMDDKZDGFhYUplq1SpwiXVySAprm75seO9IEWmpqYYM2YMxowZU9RNIR0VeFBLUcuWLQEAFStWLMzLkgFr3rw5QkJCsGfPHqxatUrYX6NGDchkMvz777+YMmWKsP/evXsAIOTfUpSamorz588r7evRo4fKKDAiIiIq/o4ePYq4uDjh8fDhw1G3bl3IZDKVRYdmzJiB8uXLF3YTiYiISEeFGtTau3dvYV6OPgIDBw7E4cOH8c8//0AikeDzzz9Hy5Yt0bp1a4hEIty4cQO7d+/GsGHD8OzZM/z6668QiURKObjk0tPTlZLLA0CXLl0+2qCWjY0N0tPTUapUob5NUAFhfxoO9qXhYF8aFvYnERFR4SuQ37qKyeErV66sdr8uFOukj1vTpk0xZMgQeHp64urVqyhXrhxatmyJypUrw9XVFT4+Pvj111/x66+/Avj/FTQHDhxYxC0v/hwcHIq6CaRH7E/Dwb40HOxLw8L+JCIiKnwFEtTq1q0bRCIRRCIRHj58qLJfF9nrJFq0aBGcnJywc+dOODo6CvuXLFmCyMhIPHjwQKl8nz59uFABERGRgTM1NUVqaqrwWJ5XEwDMzMyUyur69ykREREVjQIbHy2TyfK0nyi/xGIxPvvsM0yYMAFJSUnCfisrKxw6dAje3t64ffs2jIyM0KFDB3Tq1KkIW0tERESFYdKkSWr3i8VizJkzp5BbQ0RERAWhQIJa8oTw2u4vjmQyGU6fPo0jR47g0aNHSE5Ohq2tLVq2bIlRo0bpvLynTCaDr68vTpw4gaCgIMTGxsLY2BhVqlRB+/btMXbsWK2mWQYHB2Pnzp0ICAjAmzdvULZsWdSsWRMeHh745JNPlL6VNHQikQgWFhZK+0qVKgV3d3e4u7sXUauIiIiIiIiIqCAUSFBLU0L4kpIoPiUlBTNnzsTFixeV9kdGRiIyMhKnTp3CV199hcmTJ+er/vj4eMyaNQtXr15V2p+Wlobg4GAEBwdj//79WLJkCTw8PDTW4+npiUWLFkEqlQr7YmNjERsbi5s3b+LYsWPYsGEDrK2t89VO+rjdv38fUqkUxsbGaNSoUVE3h3TE/jQc7EvDwb40LOxPIiKiwsflWdSYP3++ENCqWbMmhg4digoVKuDBgwc4ePAgkpOTsXr1atjb22PAgAF5qjszMxPTp0/HzZs3AWQlvR80aBBq1KiBpKQkXLlyBT4+PkhLS8N3330HS0tLdOvWTaUef39/LFiwADKZDKamphg+fDgaNWqEd+/e4e+//0ZwcDACAwMxe/ZsbNu2DWKxWOf7Qh+XzMxM4R+VfOxPw8G+NBzsS8PC/iQiIip8DGplc/XqVZw+fRoA0KZNG2zduhWlS5cGALi7u2Pw4MEYOXIkJBIJli5diu7du6tMecvJsWPHhIBWmzZtsGnTJqVkpUOGDIGfnx+++OILpKen46effkL79u2FNgBZI7p++uknyGQymJmZYd++fWjYsKFwfMSIEZg9ezbOnTuHq1evwsvLi9PviIiIiIiIiMigcPhONjt27ACQlYvp559/VgomAVkjtxYsWAAAkEgk8PT0zFP9hw4dAgCULl0aq1atUll9B8haJXL06NEAgNevX+Py5ctKx318fBAREQEAmDhxolJACwBMTEywfPlyYdrhli1b8tRGIiIiIiIiIqLirkBGar169aogqhVok0A9PyQSCa5duwYA6NixIxwdHdWW69OnD5YuXYp3797B29sb48eP16r+xMREBAUFAQDatWsHW1tbjWV79+6NXbt2AQDu3r0LV1dX4ZiXlxeArMToI0aMUHu+ubk5Bg4ciB07diA4OBihoaGoXr26Vu0kIiIiKulev36N9PR04XH58uVRpkwZyGQylb9V7e3tUaoUJzAQERGVNAXy27tbt24QiUQFUTVEIhEePnxYIHUHBgYKeRDatGmjsZxYLEbLli3h7e2Nu3fvIj4+HlZWVrnWHxcXh8aNGyMqKgo1atTIsaxife/fv1c6Jp++WLduXdjY2Giso02bNsLIs8uXLzOoRURERB+NQ4cOIS4uTng8fPhw1K1bFzKZDNu2bVMqO2PGDJQvX76wm0hEREQ6KrCvpGQyWUFVXWCePn0qbNepUyfHsrVq1QKQ9TyDg4PRsmXLXOt3dHTUerpiSEiIsK24euHr16+FIFft2rVzrKNmzZrC9uPHj7W6LhERERERERFRSVAgQa3cAjzBwcF4//49ZDIZxGIxGjRogDp16qBcuXIwNjZGYmIiQkJCcOfOHXz48AEikQjVqlVDp06dCqK5gsjISGG7SpUqOZatWLGi0nnaBLXy4siRI8J2kyZNhG15Li0g9zba29tDLBYjMzOzwKeEFpU5c+bAzMwMY8eOVQriEREREREREZFhK5Cg1t69ezUeO3z4sLBy38CBAzFz5kzY29urLZuYmIg///wTf/75J8LCwlCuXDlMnTq1IJoMAIiNjRW2y5Url2NZxdFTEolEr+3w9/fHhQsXAGTlf2jfvr1wTHEYfW5tNDY2hpmZGRITE/XexuLi33//xbt379ClSxcGtYiIiEhQqlQpGBsbC4/F4v9fH0lxPxEREZVchZoR8+nTp1iyZAlkMhmmT5+OL774IsfyFhYWmDVrFuzs7LBkyRKsW7cOLVq00PuoKLmUlBRhO/uqh9mZmJioPU9XUVFR+Pbbb4XHU6dORZkyZYTHHz580LqN8jKJiYl6bWNxEh8fD0B5NFt+icVileT9in8AExERUckxbdo0tfvFYjHmzZtXyK0hIiKiglCoQa1du3ZBKpWiRo0amDFjhtbnjRo1CkeOHMHDhw+xe/fuAgtqKa6Qoxi0UkfxuOJ5uoiNjcWECRPw7t07AED79u0xevRopTIZGRlat1GxjL7amF/Pnj3LMUBkZmYm5ClTPCc5OTnHeitVqoTw8HA8efIEbdu2BZB1jx48eKBVu2rWrAlzc3MAgKmpKUaOHImXL18KxxXzrCkSi8Vo1KiR0r6IiAil0X6aWFlZoVq1akr7Hj16BKlUmuu5Dg4OSosDpKSkIDg4ONfzAKB+/fpK30zHxMQgKipKY/nMzEwYGRnByMhI5VhoaCgSEhJyvWaFChVUViuVrwCam+rVq6Ns2bLC44SEBISGhmp1rrOzs9LjV69e4e3bt7meV7ZsWZUFFYKDg7UKCleqVEkpKCqVSvHo0SOt2lunTh2l4HVsbKzSVGNNjI2NUb9+faV9YWFhQrBXkbw/MzMzERQUBBsbGzg4OCiVuX//vrBYRk6qVq2qNFo1KSlJKQ9gTho2bKj0mnr9+jVev36d63n5fY8AsqZiK44Izu97BJA1MlfxPUKTgnyP+D/27ju8qbL9A/j3JE33prTsVTaCrCqCbBWBMhUoS+EFFRVFUHlBQBAUxYH6igxBBAEFKorsWcWy4ceoslo2baHQvWizzu+PmEPSpm06ctKE7+e6uEhOnnPOnT5penLnee6nYF+akvM9wsjd3b1QHUq+RxRm6T2iuL40Jcd7REF8jyj9e0SdOnWQnZ2N5OTkEl/HleU6Ij8/v8R9bOrePcCK15RTUiiAYlZCJyoPrVaLlStXYuvWrYiPj4dGo0FgYCCmTZuGPn36lPv4TZo0AQA89thjxc7SKg9RFPHzzz/j6aefLjTwgMiUrEmtI0eOQBAEdOvWrdSrI3bu3Bnnz5/H2bNnbRQdzC4YNRpNsUkjtVot3bYmuVSSe/fuYezYsbh69SoAoG7duvj8888L/ZxMR2dZc/FijNPew+x1Op1ZQq4gS0k3rVZb4nMcMWIEPv/8c7z33nv4+OOPpVUrrfnZAIUXNBBF0ap9LSXorInX2K4gjUZj1b4FP0xYG6+xbcFjWbOvpdeOtc/VUp9bG2/B52ptvEXF4Yx9Y4k1faPT6Yp8rtZ8YC3r701RsZS1b+R4HVb294iCz80er0NLiW++RxRmqW9Mn39xfyPlfo8wtiuI7xGFmT5Xf39/iKKIpKSkYvsTqDzXEXan1wO5uUAZXx8OS6UCPD1lP+2VK1fw888/4/jx47h9+zby8vIQFBSEpk2bom/fvujTp0+JsxRGjx6N48ePW33O/fv3F0qQG2VlZeG7777Dnj17kJiYCA8PD7Ru3Rrjx4/HY489VuKxb968iX79+iEvLw/fffcdunbtanVczu6///0vtm3bZrYtKSkJvr6+doqodG7cuIH33nsPJ0+etHldbXJ8sia17t27BwBl+mUyJo5sWRvK0+SPS35+vtVJLWumARbn5s2bGD9+PG7cuAHA8G3uDz/8YPZNWlExlsTYxjRhZw9KpbLYP5IuLoVfigVrYViSnp6OXr16Yfv27Rg7diz8/PzQtGlTKBSKEpONr732WqGkoSAIViUALT0Xa+I1tivI2qRjwfNaG6+xbcFjWbOvpTbWPldLH3bL+lytjbeoOMrTNyV9ODHGZ6qy901Rz9WaDzxl/b2xpDx9I8frkO8RfI8wxfcIvkcU5OjvEZWCRgNkZwMW+sEp6XSAt7fMp9Thyy+/xIoVKwolnRMTE5GYmIioqCisW7cOX331VZH1jitSamoqRo4cKX2hDxg+Xx04cADR0dH44IMPMHTo0GKPMXv2bOTl5aFPnz5MaJm4cuWKlNDy8/PDf/7zH9SpUwdZWVlo2bKlnaOzzpYtW3Dy5El7h0EOQtaklre3N9LT062eCmHKOEKrpOLo5WGabEtPTzeb1lCQaXLNUvLJWjExMZgwYYI05bBmzZpYvXp1kSsbmsZY0vQBjUYjDbsvT4wVoWHDhvAu5R/wgtMILBk6dCgEQYAgCBBFEenp6Th27Fix+4iiCEEQsHTp0kKP+fv7m02ZKI1atWoV+U1USQpOD7GWu7t7oWk01qpatWqZh/IWnH5TGmWN18fHp8z71qhRo9AUJ2sVnFZlLZVKVeZ4AwMDy/w7W3BKSmkUnApjLS8vrzI/14LTfkrDmvcIS5RKZZnj5XuEdfgeUTK+R1iH7xHWKet7RHm/mK0wSuXDMxXv3y/55TR37lysX78egOH13bt3b3To0AFeXl6Ij4/H1q1bERsbi1OnTmHcuHH46aefrBqE8O2335bYpkqVKha3f/TRR1JCq3fv3ujatSvu3buHVatWISUlBXPnzkVYWFiRf082b96Mw4cPw8/PDzNmzCgxjofJ5cuXpduvv/46XnzxxQo/x6VLlyr8mERlJWtSq0WLFjh48CD279+P69evo169elbtd+LECURHR0MQBLRt29Zm8ZnGc/v2bdSuXbvItnfu3JFul/VCODo6Gm+++aaUeGrYsCFWrlxZ7MVbwRiLk5SUJH2jWtYYKztnfV6VQU5OjpQANK0pRI6J/ek82JfOg33pXNifVBkdOnRISmh5enpi+fLlaN++vVmbcePGYc6cOdi4cSPi4uKwcOFCzJkzp8RjP/XUU2WKKS0tDTt37gQADBs2DHPnzpUee+aZZxAeHg6NRoMNGzZg2rRphfZPTU3FJ598AgB49913ERQUVKY4nJXpwmJlTe4TORJZk1oDBw7EwYMHoVarMX78eCxdurTEX7QjR47grbfeki4Shg0bZrP4QkNDpdtxcXHFzuU2FhAXBAGNGjUq9bmioqLw5ptvSvUPHn30USxbtqzEkWgBAQGoUqUKUlJSiixibmSapS/rN8mVXVRUlL1DcFpXrlyBRqMp12gCqjzYn86Dfek82Je2lZKSYjY11M/PD25ubhBFUSqJYRQYGGhxWl9psD+pMlq1apV0e9KkSYUSWoBh9Nbs2bNx4sQJXLt2DRs3bsT48ePLPHKwJP/884/0u/nCCy+YPVavXj306NEDu3fvxpkzZyzu/8knnyAtLQ2PPfYYnn/+eZvE6MhMp4mX932NyBHI+irv27cv1q9fj5MnTyIhIQGDBg1Cjx490KVLF4SGhkrT/TIyMnDp0iXs27cPR44cgV6vhyAIGDhwoLTCnS20adMGKpUKGo0Gx44dw8iRIy220+l0OHHiBACgadOmpa4Rdvz4cUyaNElKaHXq1AmLFi0yq5dVnLCwMOzatQsXLlxAVlZWkdMkjx49Kt22ptjiw06tVuPw4cNm2zp27FghCwEQERGRvNatW4e0tDTpfkREBJo0aQJRFLFkyRKzthMnTixymhSRo9Lr9VJRd+NnqaK4uLigf//++Prrr6HT6bBjxw68/PLLNonL9PfSUuLMOFvGtJ3R4cOH8fvvv8PV1RVz584t9eJj1lKr1di7dy9+/fVXXL16Fffu3YO3tzdatGiBAQMGIDw8vMgadbm5uYiMjMS+ffsQGxuLnJwc+Pv7o2nTpujduzcGDhxosZYf8GBVwUmTJuG1117DsWPHsG7dOpw5cwapqakICAhAWFgYRo8ejTZt2pjta6mIv2nS8OOPP8bgwYPL82MpFKel1Q/L8xy++eYbLFq0yGxbz549ARjK9Fga0KDT6fDbb79h586duHjxIjIyMuDn54dmzZohPDwc/fv3L7KvTGMdOnQo5s6di4MHDwIwvA6ffvppfPPNNwAMU2aLS6JmZ2fjiSeegFqtRpcuXbB8+fIi21LFkjWpJQgCFi9ejBEjRuDy5cvQaDTYs2cP9uzZU+Q+xmKGnTt3xocffmjT+Hx9fdGhQwdER0cjKioKiYmJFqe3bd++XVpyuXfv3qU6R0pKCiZNmiQVmu/evTv+97//lSpx0qtXL+zatQtarRY///yzxT842dnZ+O233wAYaps0bdq0VHE6KlEUcfHiRSQmJiI3NxceHh6oWbMmGjduXOQfDyONRoMDBw6YbQsLC2NSi4iIiIgcTnp6OvLy8gAYRiOWVO/NtH5VVFSUzZJapl/kZ2RkFFrQypjM8vDwMNuel5eH999/HwDw6quvlqt+Y3Hi4+Px2muvFaoblZaWhoMHD+LgwYP45ZdfsHjx4kI1g0+ePIm3337brFQNYFgw7d69e4iOjsaqVauwePHiYkvdAMCXX36JZcuWmRX3v3v3LrZv344dO3ZgypQpNuujimLr5xAfH49XX321UM3u5ORkREdHIzo6GmvWrMGSJUsQHBxc5HGys7MxcuRIXL9+Xdp28eJFjBkzBkqlEjqdDrt27So2qbVv3z7pM354eHiZnxOVnuzjEX19fREZGYklS5Zg1apVZqsIWuLj44O33noLI0aMsFkm3tSYMWMQHR0NjUaDKVOmYMWKFWZvVpcvX8ZHH30EwFD4dMiQIaU6/rx586SEWKtWrfD111+XOmny1FNPoVatWoiPj8e3336Ltm3bmg0lVqvVmDp1qlTMfuzYsaU6viPKycnBkiVLsHHjRmRlZRV63MvLCwMHDsTkyZNZ54KIiIiInF7BlQ5Lw5qFvV555RWcP38eaWlp8PDwQHBwMNq0aYPw8HB06NChyP0aNGgg3Y6KisLw4cOl+2q1GocOHQJgXhoGMIziuXXrFho1aoSXXnqptE/JKqmpqRg2bBiSk5MBGGbl9O/fH9WqVcOtW7fw888/486dOzh27Bjeffdds1Gff//9N1566SWpXnKbNm3Qu3dvVK1aFQkJCfj9998RFxeH2NhYRERE4Ndffy2ylvKWLVtw7do1eHl54fnnn0erVq2Qm5uLbdu24dixYxBFEQsXLkSnTp3QokULAIbRRunp6Th69Kg0emrSpElSGZrmzZvb5GdWlLI8hz59+qBZs2ZS0gswLHRQpUqVQsnPlJQUjBgxAklJSQCA1q1bo3fv3ggODkZycjJ27NiB06dP459//sHo0aOxadOmIhcuW7t2LfLz8/Hkk0+iX79+SE9Px4EDB9C/f39s3boVhw4dwtGjR5Genl5kctgYr4eHR5nrzVHZ2GWSrYeHB6ZMmYJx48YhOjoahw4dQmJiIlJSUiAIAoKCglCzZk1069YNnTt3lnVllieffBK9evXC7t27cfr0aQwYMADDhw9H9erVcf78efz888/IyckBAEydOrXQ6kPHjh2ThnkWHI555coV7Nq1S7r/7LPPIjo6usSY/P39zZJWrq6umDFjBl577TXk5eVhzJgxGDJkCNq2bYv09HRs3LhR+kPUtm1bp59rnpiYiHHjxuH69etF/vHOzs7GunXrEB0dje+//95mNQKIiIiIiCoDPz8/qbRKamqqNC2rKKajVHJycpCUlFTsAlZ//vmndFuj0SAzMxOXL19GZGQkOnTogM8++8zi6JgGDRqgWbNmuHDhAhYuXAg/Pz907twZKSkp+Oyzz6RRTn379pX2uXjxIlatWgWFQoF58+ZBpVKV4idhvU8//VRKaI0cORIzZ840m7o2atQoDB8+HLGxsYiKisKxY8fw+OOPQ6fT4d1335USWm+//XahEUhjx47F3LlzsWHDBiQnJ+O9997D999/bzGOa9euoWbNmvjxxx/NPrcMHToU06dPx6+//gpRFLFp0yYpIWT8vJiZmSm1b9euHR5//PEK+MmUXlmeQ2hoKEJDQ3HhwgWpfadOnSx+dps9e7aU0JoyZQpeeeUVs8dfeOEFfPfdd/jiiy9w/fp1fPbZZ/jggw8sxpqfn49u3bph6dKl0kCaMWPGAAD69euHQ4cOQaPRYN++fRY/W2dkZEhlbLp3785BFDKza+U4Pz8/hIeHV7rheQsWLEBOTg4OHjyI+Ph4fPbZZ2aPC4KAiRMnIiIiolTH3bx5s1nS5dNPP7VqP0tzlXv06IHZs2fjo48+gkajwU8//YSffvrJrE3Lli2xePHiEqfdOTKtVosJEybg2rVrAAyj2Pr06YMGDRrA09MTOTk5uHz5Mnbt2oX9+/fj5s2beOutt7B+/XoWTiQiInJib775psXtCoUCs2fPljkaIvm5uLigdevWOHHiBERRxO+//16oMLuRTqfDli1bzLZlZmZaTGr5+fmhY8eOeOSRRxASEgKlUomkpCQcOXIEf/31F0RRxNGjRxEREYENGzagatWqhY4xa9YsvPjii8jMzMTkyZMLPd6zZ0/06NEDgKE22MyZM6HVajFixIhCdZgqSmpqKn7//XcAQLNmzTBjxoxCtZi8vb3xwQcfSKPLtm3bhscffxx79uyRPo/06dPH4pQ6FxcXzJ49GxcuXEBMTAwOHjyIv//+Gy1btrQYz3vvvWcxmfPaa6/h119/BWAYHVaZ2eo5XL16Ffv27QNgWDGzYELL6OWXX0Z0dDSOHz+O3377DZMmTSo0KMXopZdesjgz7Omnn8bs2bORn59f5BTEPXv2SPWyK1tu42HAT/UWeHh4YMWKFdi6dSs2b94sFWT39/dHu3bt8MILL6Bdu3alPq41w3hLY/jw4Wjfvj1Wr16Nw4cP4969e1CpVGjcuDH69euHoUOH2uxbjMril19+QWxsLFxcXLBw4UI888wzhdo0a9YM/fr1w759+/DWW2/h3Llz2LFjB/r372+HiImIiIiI5DF06FBpgasvv/wSLVu2LJQU0uv1mDdvHq5evWq2PTs7u9DxpkyZghYtWlgsnzJ27Fj8/fffePPNN5GYmIiEhAS89957Fgtmt2vXDitWrMDs2bPNRoipVCpERERg6tSp0rY1a9bg77//RkhICN5++21p+4EDB7By5UqcO3cOGo0G9erVw+DBgzFy5MgyfXn9119/SSsHDh8+vMiBAW3btsWkSZNQvXp1aUqfaV3e8ePHF3kOpVKJ8ePHS0n3ffv2WUxqubq6olu3bhaPUbt2bXh5eSEnJ8dsVFZlY8vnsHv3bmmwyHPPPVds2+eeew7Hjx9Hfn4+Dh8+bDHpVNyqtd7e3ujevTt27dpV5BTEnTt3AjDMsOrcuXOpnw+Vj02SWu+//z6mTJlSYjHCipSRkYEvv/wSc+bMqZDjCYKA/v37lzrx8fjjjxcqKmi0bNmyigjNTKNGjWxeQL8y27FjBwRBwLhx4ywmtEw99dRTGD9+PJYuXYrff/+dSS0iIiIicmrh4eH4/fffcfDgQeTm5mLUqFHo3bs3OnToAC8vL8THx2Pr1q24dOkSAgMDkZ+fL5VasbRiXEmjpFq2bIkVK1Zg4MCBUKvV+OuvvxATE2MxYdChQwfs3r0bcXFxSExMhIeHB5o3b25W9+j27dv46quvABg+YxofW7lyJRYsWAAAcHNzg6urKy5evIj58+fj2LFjWLRoUZEr3hXln3/+kW63bdu22Lavvfaa2f0zZ84AMNSPNk6lK4ppvbGiRinVq1ev2MSct7c3cnJyoNVqiz2XPdnyOZw9e1a6fevWLWnUliWmq2ieO3fOYlKrdu3axda57tevH3bt2mVxCmJqaiqOHj0KwDBqjIuMyc8mSa2NGzdi9+7deOWVVzBq1Cibdqxarca6deuwbNkyZGRkVFhSixyDcfTbgAEDrGo/YMAALF26FJcvX7ZlWEREREREdqdQKPD1119j2rRp2Lt3L7RaLbZu3YqtW7eatatatSoWL16McePGSdt8fX3LdM7Q0FAMGDAAkZGRAAy1t4oaBQMYvqRv1KiRxcc++OAD5Obm4umnn5aKb587dw6ff/45AMOoqEmTJkGlUmHnzp2YOnUq9u/fj3Xr1mH06NGlittYSwsAatSoUap9jQuBWVO318/PD35+fsjIyDA7p6miCpobGZNF5VkMwNZs+Rzu3r0r3S7NAI+UlBSL20t6rXfp0kXqs4JTEHfv3g2dTgeAUw/tpXTpayuNGjUKmZmZ+Oyzz/DMM8/gp59+kormVZT09HQsW7YMPXv2xKeffor09HQMGzasQs9BlZ9xWHRQUJBV7Y1zqE0z9kREREREzsrb2xuLFi3CDz/8gH79+qFWrVpwd3eHp6cnGjdujNdffx3btm1Ds2bNpFFaxsW7ysq0OPmVK1fKdIwdO3bgjz/+gLe3N2bNmiVtX7t2LXQ6HerXr4933nkHrq6uEAQBffr0wcCBAwEAq1evLvX5MjIypNsFV9orifHn5uHhYVV74/Hv379v8XFnqP1ry+dgaWqsNYz9VFBJg3BcXV3Rq1cvAJCmIBoZVz2sVq0awsLCyhQXlY9NXmkzZ85E165dMXPmTNy5cwfz5s3D559/jr59+6JPnz5o3759mWo95eXl4eDBg9i6dSv+/PNPqNVqiKKIoKAgzJ49G08//bQNng1VZgEBAUhOTsb169eL/QbI6MaNGwBQ7MovZFDS0GlyLOxP58G+dB7sS+fC/qTKrmPHjujYsWORj1+6dEkacVKvXj34+PiU+VymxbizsrJKvX9mZibmz58PwLCSoGnBemONsF69ehUq7P3ss88iMjISt27dKnH1xoJME1l5eXmlWsHOw8MDWVlZRSapCjIO+Cht8owMTH9uMTExcHNzs/k5w8PDsXHjRrMpiPfu3cPJkycBGBYIKO2UV6oYNkufdu7cGbt27cI333yDH3/8Ebm5ufjll1/wyy+/wMPDA+3bt0fTpk3RuHFjNGjQAH5+fvDx8YGnpyfUajVycnJw584d3Lp1CxcuXMDZs2dx5swZaVUBURSlQoKTJk0qcXgjOadHH30U+/fvx+rVq/HFF1+U2H7VqlXSflQ8Z14182HE/nQe7Evnwb60rczMTKnoMwB4eXlBpVJBFEWzERkA4OPjU+7+YH+Sozt+/Lh0u7wjTkxnRZQlOfbZZ5/h3r17aNOmjbTSoFFSUhIAWExYVa9eXbp9586dUiW1qlSpYrZvaGhokW3PnTsHhUKB2rVrw9vbG0FBQcjKykJ8fHyJ50lNTZUSfaWJjx4w7au7d++idu3aNj9nWFgYqlWrhjt37mDv3r14/vnnsWfPHunvTL9+/WweA1lm03GNHh4emDp1KkaOHIlvv/0WW7ZsgVarRW5uLqKjoxEdHV2q4xnn27q6uqJ///6YMGGCVfOWyXk9//zz2LdvH3bs2IHq1atj8uTJFi8qdTodFi5cKBWWHzx4sB2iJSIiIrmsWrXK7IN1REQEmjRpAlEU8fXXX5u1nThxotmHJKKHjSiK+PXXX6X7Q4YMKdfxjh07Jt2uX79+qfY9efIkIiMjoVKp8OGHHxYajWVkaVRUUdPLrNGiRQupDtjp06eLTWrNmTMHMTExCAwMxJEjR9CyZUtcu3YNmZmZOHfuXLEjN41FxQGgSZMmZY73YdaqVSscPnwYgCEZW1xS6+jRo1i/fj1q1aqFbt26oX379mU6p0KhQN++ffH999/j6NGjyMvLw65duwAADRo0kFbCJPnJMj6uZs2amD9/Pv744w+88cYbqFOnDkRRLPW/0NBQTJkyBX/88Qc+/PBDJrQI3bp1Q48ePSCKIr7//nt0794dc+bMwZo1a7Bp0yasWbMGc+bMQffu3bFy5UoAQI8ePdCjRw87R05EREREVDmsX78e58+fBwA89thjVpX1KMq1a9fw+++/S/e7d+9u9b5qtRqzZs2CKIp46aWX0LBhw0JtjKObLC38ZLqttKOgOnfuLE0fi4yMLLKA+Y0bN6RVC5944gkAQM+ePaXHV6xYUeQ5dDqd9JkEKN3P5mFimsi01A+mP+8ff/xRms1lyaJFi7Bz504sX77crBZWWRhHYxkTWv/3f/8HgAXi7U3WCnRVq1bF66+/jtdffx2XL1/GsWPHEBMTg2vXriExMRHZ2dlQq9Vwc3ODt7c3atasifr166N169Z4/PHHUa9ePTnDJQexcOFCTJ48GX/88Qfu3r2LDRs2FGpjfDPs0aMHPvvsM7lDdEhJSUnQ6XRQKpUcGu0E2J/Og33pPNiXzoX9SZXVmTNn0Lx5c4vFsEVRxMaNG6UV5Dw9PfHRRx9ZPM6PP/6IRx55BG3bti3yXOfPn8fEiRORn58PAHjyySdLVfZj6dKluHr1KurXr49XX33VYpv27dvj1q1b2LFjB9566y3p902n02Ht2rUADKsQVqtWzerzGvd5+umnsXv3bpw5cwZfffUVJk+ebNYmOzsbM2bMkD5bjBgxAgDw9NNPo27durhx4wZ27NiBZs2a4eWXXzbbV6fTYe7cuVJC7PHHHy/zqCFnZ1pwPyMjo9BIrFatWuGxxx7D8ePHcfHiRcyaNQvz5s0rVLf7f//7n1SDrV69euVOIjZr1gwNGzbE5cuXsXDhQqkGHace2pfdllVo2LAhGjZsiJEjR9orBHIS7u7uWLJkCf744w9ERkbixIkTZgUpfX190bZtWwwbNozfhpRCUlISNBoNVCoVL86dAPvTebAvnQf70rmwP6myWrJkCU6dOoUuXbqgZcuWCA4Ohkajwa1bt7Bnzx5cunQJgOGa+uuvv0adOnUsHufo0aP46KOPUKdOHTzxxBNo3Lgx/P39oVAocPfuXRw9ehQHDhyQagwZZ+tY68qVK/juu+8gCALmzZtX5Ip0I0aMwO+//468vDyMGjUKY8eOhZeXF3777TecO3cOAPDCCy+U5kckmTlzJk6ePImUlBQsXboUx44dQ9++fREQEIDr169jw4YNuHv3LgDgueeek5JSSqUSn3/+OUaOHAm1Wo0vvvgCUVFR6NOnD4KCgnD79m1s3rwZsbGxAAB/f38sWLCgTDGW17Fjx6Sfz2OPPYY1a9bYJY7imCYkP/74Yyln0KdPH7Ptzz33HNLT0/Hbb7/h9OnTGDx4MGrXro27d+9i9+7dOHXqFADDSowfffRRhdQ+DA8Px1dffSXVdmvVqlWRvzOAY/y8HZ3jrxVK9K/u3btLSaucnBxkZ2fDy8vL6kUEBEGAp6dnoW1ERETkeF599VWzaSvG5eUFQcD06dPN2pZlVW4iR5KZmYlt27Zh27ZtFh9v2LAh5s2bV+woLKObN2/i5s2bxbZ58sknMX/+fKsTvKIoYtasWdBoNBgyZEixhepbtWqFN998E1999RVu3ryJDz74wOzx7t27Y9SoUVadt6Dg4GCsXbsWEyZMwI0bN3D69GmcPn26ULt+/foVOm+rVq3www8/4K233sK9e/eK3LdZs2b45ptvzIrak7mOHTvC398f6enpOHnyJE6ePAlBENCtWzfp81qtWrWwbt06vP7667h+/TquX7+OhQsXFjqWj48PFixYUGGj4oxJLdP7ZF9MapFDW7RoEQBgwoQJ0sUqYFjhyNIyvNnZ2fjoo4+Qm5tbqEisp6cn3n33XdsGTERERLIoKlElCEKRI0DITnQ64N49e0chj3+nK8lp0qRJaNmyJU6cOIH4+HikpKRAEARUqVIFLVq0wNNPP41nn33W7FrakmnTpqF79+6IiYnBxYsXkZKSgrS0NGg0Gql0TJs2bdCvX79SrzS+YcMG/N///R+CgoIwderUEtu/+uqraNy4MVatWoXz589Do9GgXr16GDx4MEaNGlWuETkNGjTAtm3bEBkZiV27diE2NhY5OTnw8/PDo48+imHDhqFr164W923fvj12796NDRs2YP/+/bh8+TJycnIQHByMRo0aYeDAgXjqqaeYSC9BQEAAVq9ejc8++wwxMTHIzc1FYGAgbt++bVbAv2HDhti6dSt+++03adRheno6XF1dUa9ePXTp0gUjR45E1apVKyy22rVro02bNjh9+jSUSqXZ6DGyD0EsqgIeUTlkZ2dLQ5kBw8oe1o6YKo2mTZtCEAScOnXKbO51UbKyshAWFgZPT09pOCpZFhMTI02jKE+xUKoc2J/Og33pPNiXzsUR+7Oir9fi4uKg1Wrh4uKCRo0albxDUhKQmwsUU+TZKalUgKcnwGmqRPQQKvXfihJwpBY5BFEUcfv27SIfv337Ntzd3Ys9hkajkYZcc1ohERERkZ0pFIbkzsNIIcsi9ERETo9JLXIIgiBg5syZOHLkSKHtANC3b99SHatly5YVGh8RERERlVIFTgkiIqKHE78iIIcxe/ZsqFQqiKJYrn/VqlXDe++9Z++nQ0RERERERETlwJFa5DDq1q2LyMhIZGRkADBMSXzxxRchCAKWLVtW7PRDQRCgVCrh7++PunXrVshyrkRERFR55ebmmq1+6ObmBhcXF4iiiNzcXLO2Hh4eUHA6GBERkcNhUoscSpMmTSxuDwsLs6pQfHE0Gk2hZXfbtGnD1UmIiIgc0IoVK5CWlibdj4iIQJMmTSCKIj7//HOzthMnTkSVKlXkDpGIiIjKiUktcmj79+8HgGITWmq1Gi4uLiV+A6tWq7Fz506zbS1atHhok1qenp7SqhTk+NifzoN96TzYl86F/UlERCQ//tUlh1azZk0AwJUrV/DDDz/A398f77zzjlmbbdu24cMPP8Szzz6LiRMnokaNGvYI1eE0bNjQ3iFQBWJ/Og/2pfNgXzoX9icREZH8WDyAHN62bdswaNAgbNq0CSdPniz0+K1bt5Cbm4vffvsN/fr1w/Hjx+0QJRERERERERFVpEo5UksURfzf//0fkpKSEBISgkcfffShnQJGxbty5QqmT58OjUYDb29vtG3btlCbZ555Bnl5edi0aRMyMzPxxhtvYMuWLQgJCbFDxERERCSH8ePHFyoUDxgWjyk4qru8dTmJiIjIPuyS1NJqtdi+fTv+/vtvzJw50+yx8+fPY9KkSYiPj5e2BQcHY9q0aejdu7fcoVIl9/3330Oj0aBu3bpYuXKlNB3RVLNmzdCsWTOMHj0aL7zwAhISEvDDDz9g2rRpdoiYiIiI5ODp6WlxuyAI8PLykjkaIiIisgXZpx/eunULffr0wbRp0/DTTz9BrVZLj6WlpWHs2LG4desWRFGU/iUlJeHtt9/Gr7/+Kne4VMkdO3YMgiBg6tSpFhNapmrUqIEpU6ZAFEX88ccfMkXouC5fvoyLFy/i8uXL9g6FKgD703mwL50H+9K5sD+JiIjkJ2tSS6/X4+WXX8bNmzelhNWtW7ekx1euXImMjAwIggAXFxd06dIFjzzyiLTv/PnzkZycLGfIVMndvXsXANCmTRur2rdr1w4AcPv2bZvF5Cxyc3ORk5OD3Nxce4dCFYD96TzYl86Dfelc2J9ERETykzWptX37dly7dg2CIKBq1aqYP38+atWqJT2+ZcsW6fbChQvx3Xff4ZdffpGmieXk5HC0Fpnx8fEBYHhtWMNYW8PV1dVmMRERERE9jJRKJQBAp9OZ1TMjIiICDJ/HdTodgAd/M8pL1qSWccqXSqXCTz/9hEGDBklFO2NiYpCUlARBEFC/fn0888wz0n5jxoxBq1atIIoiDhw4IGfIVMnVrVsXALBv3z6r2htfg8b9iIiIiKhiGL80FEWRI9aIiKiQ3NzcCh9oImtSKyYmBoIg4Omnn0bt2rXNHvvrr7+k2927dy+0b1hYGADg5s2btg2SHErfvn0hiiIWLVqEs2fPFtv20qVL+Oqrr6TXIBERETkvjUYDtVot/dPr9QAMCRfT7Wq1mqOKKoivr690OzU1lT9XIiKSiKKI1NRU6b7p34zykHX1Q+MTqF+/fqHHDh48KN3u2LFjocf9/PwAGIrJExkNGjQIq1evxq1btzBy5EgMGDAA3bp1Q7169eDu7o68vDzcvHkT0dHR+O2335Cfn4+QkBCMHj3a3qETERGRDS1ZssTsujEiIgJNmjSBKIr4+OOPzdpOnDgRVapUkTtEp+Pt7Q1BECCKIrKzsxEfH4/AwEB4enpCEAR7h0dERHZgHL2bmpqK7OxsAIaViL29vSvk+LImtbRaLQDD9ENTWVlZ+Pvvvw0BubhIxbxN3bt3DwCk6YpEAODl5YVFixZh3LhxSE5Oxq+//lpk3TVRFFGlShUsW7aMS3kTERERVTCFQoGaNWsiISFBSmxlZ2dDEIQKq51CRESOpWCdRUEQULNmTSgUFTNxUNakVlBQEG7fvm224iEAHDp0CDqdDoIgoG3btnB3dy+0rzHpFRISIkus5DiaNGmCHTt24H//+x927dplcYVMT09P9O/fHxMnTkRQUJAdoiQiIiJyfj4+PmaJLcDwxaLxy20iInp4GRNaxgXfKoKsSa2WLVsiMTERUVFRyMrKkp5IZGSk1KZHjx6F9vvrr79w5swZCIKAli1byhYvOQ5fX1/MnDkTM2bMQGxsLJKSkpCRkQEPDw9Ur14dTZs25TeERERERDLw8fFB48aNkZ2djczMTKjVamm1KyIiergolUq4urrC19cX3t7eFTZCy0jWpFbv3r2xe/dupKWlYfjw4Rg6dCjOnDmDQ4cOATA82T59+kjt7969i23btuHrr7+WtvXt21fOkMnBCIKAJk2aoEmTJvYOhYiIiOxozJgxUnF4AFLpAUEQMGnSJLO2FfmNMRkoFAr4+vpWWCFgIiIiS2RNavXq1QutW7fGmTNncOXKFalIp7Fw5AsvvICqVatK7cPDw5GVlSUNXX7yySfRpUsXOUOmh4iXlxdmz55t7zAqjZCQEOh0Oo5wcxLsT+fBvnQe7EvbKiqZIggC/P39K/x87E8iIiL5yZrUEgQBS5YsweTJk3H06FGzxwYMGIDJkyebbWvQoAHOnDkDAOjcuTO++uormSKlymj69OkADLXZ3n77bbNtpSUIAubPn19hsTkj1q9zLuxP58G+dB7sS+fC/iQiIpKfIJqWoZfR6dOncfbsWSiVSoSFhaFp06aF2nzyySe4desWnnvuOYu1tqjyys7OxqVLl6T7TZo0KfeSnU2bNoUgCKhTpw52795ttq00RFGEIAi4cOFCueIhIiIicmS2uF4jIiKSk6wjtUy1adMGbdq0KbbNtGnTZIqGHEGNGjUAAMHBwYW2EREREREREdHDxW5JLaLSioqKsmobVQzTVYpYH8TxsT+dB/vSebAvnQv7k4iISH42SWolJiba4rASjs4hsr1z585Bo9FApVKhVatW9g6Hyon96TzYl86Dfelc2J9ERETys0lSq0ePHqWuc2QtQRBw/vx5mxybHm5ardasrgRgqC3h4sIBjURERI7mf//7H9LS0qT7ERERaNKkCfR6PebNm2fWduLEiahSpYrcIRIREVE52ezTup3qz5MTO3HiRIUeLywszOx+fn4+fvnlF7Nt77zzDpNaRERERERERJWQTT6tF0wWFBQbG4vMzEyIogiFQoHmzZujcePGCAgIgEqlQnZ2Nq5cuYIzZ87g/v37EAQBdevWRZcuXWwRLjmI0aNHV9gIQI74IyIiIiIiInJsNklqrVmzpsjHNm7ciDlz5kAURQwePBiTJk1CSEiIxbbZ2dlYvnw5li9fjhs3biAgIACvvvqqLUImB2HtCEClUglPT0+o1Wrk5+dL2wVBgEqlslV4RERERERERCQTWedVxcXFYd68eRBFEa+//jreeOONYtt7e3tj8uTJCA4Oxrx58/DNN9+gffv2JY4EI+e0f/9+i9vXrVuHlStXwtfXF+PHj8dTTz2F+vXrS6O67t27hwMHDmDx4sVISkrCpEmTMG7cODlDJyIiIpmNHDnSbEVCPz8/AIYvuAp+SWp8jIiIiByLrEmtVatWQaPRoEGDBpg4caLV+40cORKbNm3C+fPnsXr1aia1HlI1a9YstO348eP44YcfEBISgp9++slim6pVq+L555/HU089hYiICHz++edo0KABunfvLkfYREREZAdFFX4XBAHBwcEyR0NERES2oJDzZEeOHIEgCOjWrVupayN17twZAHD27FlbhEYOavny5QAMBd0tJbRM+fv745133oEoili5cqUc4RERERERERGRjcia1Lp37x4AwNfXt9T7urq6AgDS09MrMiRycDExMQCATp06WdW+Xbt2AIALFy7YLCYiIiIiIiIisj1Zk1re3t4ADKsflpZxhFZAQECFxkSOTavVAoBZMfjiZGVlATAUkiciIiIiIiIixyVrTa0WLVrg4MGD2L9/P65fv4569epZtd+JEycQHR0NQRDQtm1b2wZJDqVu3bq4cOECdu3ahbFjx5bYftOmTQCABg0a2Do0hxcaGgpRFEs9VZgqJ/an82BfOg/2pXNhfxIREclP1pFaAwcOBACo1WqMHz8ely9fLnGfI0eOYOLEiRBFEQAwbNgwW4ZIDqZv374QRRH/+9//EB0dXWzbzZs3Y8WKFRAEAc8//7xMETouLy8veHt7w8vLy96hUAVgfzoP9qXzYF86F/YnERGR/GQdqdW3b1+sX78eJ0+eREJCAgYNGoQePXqgS5cuCA0NhY+PDwAgIyMDly5dwr59+3DkyBHo9XoIgoCBAwfiiSeekDNkquQiIiKwceNG3LhxAy+//DI6duyILl26oG7dunB3d8f9+/dx9epV7Nu3D2fOnIEoimjbti0GDBhg79CJiIjIhhYvXmxWi3XIkCFo1KgR9Ho9PvnkE7O2r7zySpGrJRIREVHlJWtSSxAELF68GCNGjMDly5eh0WiwZ88e7Nmzp8h9jCO0OnfujA8//FCuUMlBeHl5YcWKFRg/fjxu3LiBw4cP4/Dhw4XaGV9HYWFhWLRoEVxcZH3pExERkcy0Wi00Go10X6/XS7dNtxMREZHjkv2Tva+vLyIjI7FkyRKsWrUKarW62PY+Pj546623MGLECNYoIItq166Nbdu2Yd26ddi2bRvOnTsnJbEAQKFQoH379njuueekKbBUsvT0dKk2iL+/v73DoXJifzoP9qXzYF86F/YnERGR/OwyXMXDwwNTpkzBuHHjEB0djUOHDiExMREpKSkQBAFBQUGoWbMmunXrhs6dO8PNzc0eYZIDUalUGDNmDMaMGYPs7GwkJSUhMzMTfn5+qFatGjw9Pe0dosO5efMmNBoNVCoVL86dAPvTebAvnQf70rmwP4mIiORn1zlYfn5+CA8PR3h4uD3DICfj7e0Nb29ve4dBREREdjRs2DBotVrpvrFmliAIGD9+vFlbPz8/WWMjIiKiisHCQkUQRRHbtm3Dpk2bcOHCBeTm5qJq1aoICwvDyJEj0apVqwo/59mzZxEREYHq1asjKiqqxPajR4/G8ePHrTr2hg0b0Lp163JGWPnFxMTg1KlTuH37NnJycqQ6bLt370arVq1QvXr1Ivf19PTEO++8U2gbEREROZ6QkBCL2wVBQM2aNWWOhoiIiGyBSS0L8vLyMGnSJPz5559m2xMSEpCQkICtW7firbfewssvv1xh58zJycHMmTPNipiWJDY2tsLO7+hOnz6NDz74AJcuXTLbbkxqffnll0hISMD48ePx5ptvWqzPJggCl+EmIiIiIiIichA2SWolJiba4rCSGjVq2PT4M2bMkBJaoaGhGDp0KIKCgnDu3DmsX78eubm5+OKLLxASEoIBAwaU+3xqtRqvvfZaqZJUSUlJ0jLVQ4cORdeuXYttX79+/fKEWKnt2bMHU6ZMgU6ngyiKUCqV0Ol0ZomrxMREaDQaLF26FCkpKZg7d64dIyYiIiIiIiKi8rJJUqtHjx42W6lQEAScP3/eJscGgEOHDmHbtm0AgA4dOuC7776TCtWHh4fj+eefx4gRI5Ceno758+ejZ8+e5arflJKSgkmTJuHEiROl2u/ixYvS7V69euHJJ58scwyO7M6dO5g6dSq0Wi1atWqFyZMno0mTJujYsaNZu1WrVmHBggU4e/YsIiMj0bt3bzzxxBN2ipqIiIiIiIiIykthqwOLomizf7a0cuVKAICLiws+/PDDQisvhoaGYtasWQAMSzdHRkaW+VxHjhzB4MGDS53QAmA2za5Ro0ZljsHRrVy5Enl5eWjZsiXWrl2LJ554Au7u7oXatW3bFj/++KNUV2z9+vUyR0pEREREREREFckmI7XCwsKKfTw2NhaZmZkQRREKhQLNmzdH48aNERAQAJVKhezsbFy5cgVnzpzB/fv3IQgC6tatiy5dutgiXEl6ejoOHz4MAOjcuTNq165tsV2fPn0wf/58pKSkYNeuXRg7dmypzpOamopZs2Zh37590rbnnnsOBw8eRFJSklXHMCa1/P39iyyE+jCIjo6GIAh444034OrqWmxbNzc3TJw4EePHj8eZM2fkCZCIiIiIiIiIbMImSa01a9YU+djGjRsxZ84ciKKIwYMHY9KkSUUmZbKzs7F8+XIsX74cN27cQEBAAF599VVbhAwAOHnypFSovUOHDkW2UygUCAsLw65du3D27FlkZGSUainouLg4KaHl5eWF6dOnY8iQIejRo4fVxzDW32rcuLHV+zij27dvAwBatmxpVfvmzZsDMCQWC9LpdLh165bZttq1a0OpVJYzSiIiIpLb8uXLpfqjADBo0CA0bNgQer0eX3zxhVnbcePGITAwUOYIiYiIqLxkXf0wLi4O8+bNgyiKeP311/HGG28U297b2xuTJ09GcHAw5s2bh2+++Qbt27cvcSRYeeIzKilZ1LBhQwCGaZaxsbGljkmhUGDAgAGYPHlyqUdaaTQaXLt2DcCDqYf379/HxYsXkZmZiYCAADRt2rTEkUvOwJhw0mg0VrW/f/8+AFicopiXl4fVq1ebbXvnnXce2hURFQqF9I8cH/vTebAvnQf70rbu37+P3Nxc6b5Op5Num24HUCHlLdifRERE8pM1qbVq1SpoNBo0aNAAEydOtHq/kSNHYtOmTTh//jxWr15ts6RWQkKCdLtmzZrFtq1WrZrZfqWJqV69eti9ezfq1KlT+iABXLlyRUri+Pj4YPr06di+fTvy8/OlNl5eXhg8eDDeeOONUo0iczS1a9fGpUuXcPz4cYSHh5fY3riqZVFTS+mBRx55xN4hUAVifzoP9qXzYF86F/YnERGR/GT9KunIkSMQBAHdunUr9eqInTt3BgCcPXvWFqEBMJ+SFhAQUGxbf39/6bbp0HZrhISElDmhBZgXiV+6dCl+/fVXs4QWAOTk5GDNmjUYMmRIoSl1zqRbt24QRRFff/01MjMzi2178+ZNfPPNNxAEQXo9EREREREREZFjknWk1r179wAAvr6+pd7XOJWutAmk0sjLy5NuF1z1sKh4Cu4nB9OkliAIGDp0KIYPH4769esjNzcXR48exddff43r16/jxo0bmDBhAn755Rd4eHjIGqccxowZg59//hnx8fF47rnn8Prrr5utBqnRaBAfH4/9+/dj+fLlyMjIgJeXF1544QU7Rk1ERES2NnjwYGi1Wul+cHAwAMO104svvmjWtizXpkRERGR/sia1vL29kZ6eLhU5Lw3jCK2SRlCVh+mFT0n1qEwfN91PDsYVEgVBwJdffonevXtLj7m7u6NPnz7o3LkzRo8ejQsXLuDy5cv48ccf8corr8gap6nLly8XW2PC09NTqlNmuk/BmheWzJkzB9OnT8etW7cwffp0absoioUKyCsUCkycOBEJCQlISEhAaGhosTWzzp8/bzHBqVAoCk0ziI+Pt1iAviA/Pz/UrVvXbNuFCxesqgtWq1Yts0K2eXl5Vv8+NWvWDCqVSrp/7949qdB+cdzd3QvVmLt27RqysrJK3DcoKAg1atQw2xYTE2NVvPXr14ePj490PysrS6olV5JWrVqZ3U9MTERycnKJ+/n4+KB+/fpm22JjY61KXFevXh1Vq1aV7ms0Gly4cMGqeBs3bmxW5y01NRXx8fEl7qdSqdCsWTOzbTdu3EBGRkaJ+wYGBqJWrVpm2/755x9psYzi1KlTx2y0ak5ODq5cuVLifgDQokULs8UXkpKSrFr1tTzvESEhIWa1C3U6Hc6dO2dVvAXfI9LT03Hz5s0S9+N7BN8jCuJ7hPzvEXl5eWbvEUWN6A4JCTF77T9M7xEFR/oTERE5GlmTWi1atMDBgwexf/9+XL9+HfXq1bNqvxMnTiA6OhqCIKBt27Y2i8/0glGj0RSb2FKr1dJtuQuyf/HFF/jwww+RnJxcZG0oHx8fzJ8/H4MGDQJgWHXSnkktnU5nVqC1IEuJQa1Wa9UF2qOPPoqNGzfigw8+wP/93/8V2a5u3boYM2YMGjduLB23pMKwGo3GYjLO0jZr47X0XDUajVX7FvwwIYqi1UXyCz5XvV5fpnMC1j9XS31ubbwFz2ttvEXF4Yx9Y0l5X4fWfGAtGG9pnmtB5ekbOV6HZX2uD9N7hKUVYvkeURjfI5z/PSI+Ph45OTkO9R5BRETk6GRNag0cOBAHDx6EWq3G+PHjsXTp0kLfqhV05MgRvPXWWxBFEYIgYNiwYTaLz9PTU7qdn59vdVKrpKmKtuDh4VFisfPmzZujUaNGiIuLQ3x8PJKSkkq90mJFUSqVxY7UcnEp/FJ0cXEx++a0uGM3btwY69atw+XLl3H06FGcOXMGubm5cHNzQ1BQEJo3b47Q0NBC+5ZU202lUlmMwdJzsTZeS8/Vmv0snVcQBKv3LfhcFQpFsfsaL44tXQCXpm8KKutzLSnekuIoT98Ul5A1jc+ULfvGNLaCiuob0w87KpWqyOdqzQeegvGW5rkWVJ6+keN1WNbnasv3iIJ9Wdx5K9vrsKCH/T2i4HGKYo++4XtE6X9vUlNTpd/PkvavLNcRREREjk4QK2INYyuJoojRo0fj5MmTEAQBLi4u6NGjB7p06YLQ0FBpGkFGRgYuXbqEffv24ciRI9Dr9RAEAQMHDsTHH39ss/jef/99bNiwAQCwb9++YpNGkZGRmDlzJgDg888/R79+/cp9/h49eiAhIQE1a9ZEVFRUuY8HAG+++SZ2794NwBBzwSkXtpKdnW1W+6tJkybw9vau8POsWrUKwcHBeOqpp8o9Yi4nJweff/652bZ33nmn2OmJziwmJgYajQYqlUq21w3ZDvvTebAvnQf70rk4Yn/Kdb1GRERkK7KO1BIEAYsXL8aIESNw+fJlaDQa7NmzB3v27ClyH2POrXPnzvjwww9tGp/pdMjbt28Xm9S6c+eOdLtgPZDKxNK3ec5kzZo1SExMxNy5czFkyBB7h0NEREREREREMpF9DLKvry8iIyPx8ssvw9XVFaIoFvvPx8cHs2bNwrJlyywOD69IptPT4uLiim1rfFwQBLPV9mwtNTUVa9euxVdffYXNmzeX2N60uKpx1R9nYlxRs2vXrnaOhIiIiIiIiIjkZJdhPB4eHpgyZQrGjRuH6OhoHDp0CImJiUhJSYEgCAgKCkLNmjXRrVs3dO7cWbaaVW3atIFKpYJGo8GxY8cwcuRIi+10Oh1OnDgBAGjatKmsy0BrNBrMmzcPgGGI+MCBA4tsm5WVhX/++QeAYWWfatWqyRGirAIDA5GUlISMjAynTNoRERFR2fzwww9mKz32798fDRo0gF6vx//+9z+zti+++KJNV9gmIiIi27Dr3DQ/Pz+Eh4cjPDzcnmFIfH190aFDB0RHRyMqKgqJiYkWpxZu375dWnK5d+/essYYEhKCevXq4fr167h06RLOnDmD1q1bW2y7cuVKaZnxAQMGyBilfMaMGYNPPvkEH374Ib799lvWgSAiIiIAhi/3TJNapossmG4HuCogERGRo6oUBZdu3ryJW7duSRcYvr6+qF27NurWrSt7LGPGjEF0dDQ0Gg2mTJmCFStWmCVKLl++jI8++ggA4OXlZZc6TqNHj5ZGa/33v//Fjz/+WGhVw+3bt+O7774DAPj7+2PMmDFyhymLnj174vr161i/fj26du2KTp06oVmzZggMDCxxhF9xo9yIiIiIiIiIqHKzW1IrPT0dq1atwqZNm5CcnGyxTUBAAPr06YNXX30VVapUkSWuJ598Er169cLu3btx+vRpDBgwAMOHD0f16tVx/vx5/Pzzz8jJyQEATJ06FYGBgWb7Hzt2DC+88AIA4LHHHsOaNWsqPMaIiAjs3LkTJ0+exPXr19G/f38MGzYMTZs2RXZ2NqKiovDHH38AMBSK/+STT2T7+cntmWeeAWCobZaTk4O9e/di7969Je5nXE2TiIiIiIiIiByTXZJaJ06cwOTJk5GSkgLgwQqHBaWmpmLdunXYtWsXPv30U3Ts2FGW+BYsWICcnBwcPHgQ8fHx+Oyzz8weFwQBEydOREREhCzxFOTi4oIlS5Zg8uTJOHjwINLT07Fs2bJC7fz9/fHRRx+he/fudohSHgVfO0W9loiIiOjh0q9fP7Mph8aSEoIgYPjw4WZtfXx8ZI2NiIiIKobsSa2YmBiMHz8earVaSkD4+/ujadOm8Pf3h16vR1paGi5duoTMzEyIoojk5GRMmDABGzZsQLNmzWweo4eHB1asWIGtW7di8+bNuHDhArKysuDv74927drhhRdeQLt27WweR3F8fX2xYsUK7N+/H5s3b8bZs2eRlpYGT09P1KpVCz169MDw4cOddoSW0f79+yvsWB4eHnj11VcLbXtY+fn5QavVwsWlUsxSpnJifzoP9qXzYF/aVv369S1uFwQBjRs3rvDzsT+JiIjkJ4gyDm3RaDTo3bs34uPjAQDNmzfHu+++iyeeeMJi+0OHDmHhwoU4d+4cAKBu3brYtm0bVCqVXCFTGWVnZ+PSpUvS/SZNmrCIOxEREVElwus1IiJydAo5T7Z582bEx8dDEAR07doVGzZsKDKhBQCdOnXChg0b0K1bNwCGgvLbtm2TKVoiIiIiIiIiIqqsZB0fbZwq5uPjgwULFlg14srFxQULFizA008/jaysLOzevRuDBg2ydajkgC5evIht27bh8OHDSEpKQlZWFgICAlCzZk1069YNffv2Rc2aNe0dJhERERERERFVAFmTWhcuXIAgCOjZsyf8/f2t3s/Pzw89e/bEb7/9hn/++cd2AZJDys/Px+zZs7FlyxaIomhWLD4pKQlJSUk4ffo0vv32W7z88st4/fXX7RgtEREREREREVUEWZNaaWlpAAy1sUrLuE96enpFhkQOTqfTYeLEiTh48CBEUYSHhwcef/xx1KtXD+7u7sjNzcW1a9dw4sQJ5OXlYdGiRcjKysK0adPsHXqld+HCBWg0GqhUKlkWaCDbYn86D/al82BfOhf2JxERkfxkTWq5ublBo9EgNze31Psa9/H09KzosMiBbd++HdHR0RAEASNHjsTbb79t8TWSnZ2Njz/+GJs2bcLq1avRs2dPhIWFmbXR6/VITk422xYUFASFQtbSc5WGRqMxWwqdHBv703mwL50H+9K21q5di8zMTOl+7969Ub9+fej1eixdutSs7YgRI0o1i8AS9icREZH8ZE1q1ahRA5cuXcKxY8dKva9xn2rVqlV0WOTANmzYAEEQMHDgQMyaNavIdt7e3vjoo4+Qm5uLnTt34scffyyU1Lp//z6WLFlitu2dd96Bl5eXTWInIiIi20lNTZVmCQCAWq2Wbt+7d8+srU6nky0uIiIiqjiyDkF5/PHHAQAxMTGIioqyer/9+/fj7NmzEARBOgYRAFy9ehUA8J///Meq9i+//DIAw2uQiIiIiIiIiByXrEmtYcOGQRAEAMC7776LP//8s8R9/vjjD0ydOhUAIAgChgwZYssQycHk5+cDMEwTtEaNGjUAwGw6AhERERERERE5HlmnH4aGhmL48OH46aefkJubi1dffRVhYWHo1asXmjZtKtUySEtLw6VLl7Br1y6cPHkSoihCEAQ8//zzaNy4sZwhUyXXsGFD/P333zh16hR69uxZYvvY2FgAQP369W0dGhEREdlR7969zaYcGr/YMl5TmvL29pY1NiIiIqoYsia1AGDatGlISEjAgQMHIAgCTpw4gRMnThTZXhRFAEDHjh3x/vvvyxUmOYgXX3wRb7/9NhYsWIDWrVujSpUqRbbVaDRYuHChVFSeiIiInFejRo0sbhcEAS1atJA5GiIiIrIF2Zd1c3V1xeLFi/H666/D09MToigW+8/T0xOvvfYali9fDhcX2XNwVMn17dsXr7zyCm7evInBgwdj8+bNyMvLK9Tu5MmTGD16NM6cOYP+/fvjueees0O0RERERERERFRR7JIlUiqVeOONNzB69Gj88ccfOHr0KOLj45Geng5RFOHr64t69eqhXbt26NWrF3x9fe0RJjmAiIgIAICHhweSkpIwffp0zJw5EzVr1oSvry/y8/ORkJCA3NxcaZ8tW7Zgy5YtFo8niiKGDx8uS+xEREREREREVHZ2Hfrk7++PQYMGYdCgQfYMgxzYmTNnzO6LogitVosbN27YJyAiIiIiIiIikgXn85FDmzhxYoUdS61W4/DhwxV2PEdXq1Yt6PV6KBSyz1ImG2B/Og/2pfNgXzoX9icREZH8mNQih1aRSa2cnBxkZWVV2PEcXWBgoL1DoArE/nQe7Evnwb50LuxPIiIi+TGpRUREREROZ/369WZfVj3zzDOoW7cu9Ho9vv/+e7O2Q4YMgb+/v8wREhERUXkxqUVERERETufu3btIS0uT7puujpyYmGjWVqfTyRYXERERVRwmtYjIory8PIiiCEEQ4O7ubu9wqJzYn86Dfek82JfOhf1JREQkPya1iMii2NhYaDQaqFQqtGrVyt7hUDmxP50H+9J5sC+dC/uTiIhIfkxqEREREZHTeeqpp6BWq6X71apVAwAIgoABAwaYtfXy8pI1NiIiIqoYTGoR/cvd3R0vvvhioW1ERETkeJo3b25xuyAIaN26tbzBEBERkU0wqUX0L6VSiXr16tk7DCIiIiIiIiKygsLeARAREREREREREZUWk1rk0DZv3ozNmzdDr9db1T43NxeLFi3C/PnzbRwZEREREREREdmSTaYfJiYm2uKwkho1atj0+OQ4pk2bBoVCgV69esHDw6PE9jqdDosWLYKPjw/ee+89GSIkIiIiIiIiIluwSVKrR48eEATBFoeGIAg4f/68TY5NjkkURateb1qtFnv37pVuExEREREREZHjslmheFEUbXVoegjp9Xo8//zzuHDhgtl2YzKrTZs2Vh9LEAQ0adKk0HZRFJGbm2u2zdPT02YJWiIiIrKdTZs2ISsrS7rfs2dP1K5dG3q9Hj/++KNZ20GDBsHPz0/uEImIiKicbJLUCgsLK/bx2NhYZGZmQhRFKBQKNG/eHI0bN0ZAQABUKhWys7Nx5coVnDlzBvfv34cgCKhbty66dOlii3DJASgUCsydOxdDhw61un5WUTw9PfH2228X2p6bm4vPP//cbNs777wDLy+vcp2PiIiI5JeQkIC0tDTpvukXVzdu3DBryxHcREREjskmSa01a9YU+djGjRsxZ84ciKKIwYMHY9KkSQgJCbHYNjs7G8uXL8fy5ctx48YNBAQE4NVXX7VFyOQAHnnkESxbtgzJycnStunTp0MQBMyZMweurq5F7isIApRKJfz9/fHII48gICBAjpAdWrNmzaye2kmVH/vTebAvnQf70rmwP4mIiORns+mHlsTFxWHevHkQRRGvv/463njjjWLbe3t7Y/LkyQgODsa8efPwzTffoH379iWOBCPn1blzZ7P706dPBwD079/fqkLxZD2VSmXvEKgCsT+dB/vSebAvnQv7k4iISH6yJrVWrVoFjUaDBg0aYOLEiVbvN3LkSGzatAnnz5/H6tWrmdQiibEmhru7u50jISIiosqka9euyM/Pl+4HBwcDMIze7t27t1lblhogIiJyTLImtY4cOQJBENCtW7dSD83u3Lkzzp8/j7Nnz9ooOnJEjz32mL1DICIiokro0UcftbhdEARePxARETkJWZNa9+7dAwD4+vqWel9jvaT09PSKDImcyPnz5xEfH4/79+9btfrmwIEDbR+UA7t37x70ej0UCgWqVq1q73ConNifzoN96TzYl86F/UlERCQ/WZNa3t7eSE9PR2xsbKn3NY7QYoFvKujYsWN4//33cfPmTav3EQSBSa0S3L59GxqNBiqVihfnToD96TzYl86Dfelc2J9ERETyU8h5shYtWkAURezfvx/Xr1+3er8TJ04gOjoagiCgbdu2tguQHM7Vq1fx0ksv4ebNmxBFsVT/iIiIiIiIiMhxyTpSa+DAgTh48CDUajXGjx+PpUuXomHDhsXuc+TIEbz11lvSEsnDhg2TKVpyBMuXL4darYaLiwvGjBmDbt26oUqVKtJ0VSIiIiIiIiJyTrImtfr27Yv169fj5MmTSEhIwKBBg9CjRw906dIFoaGh8PHxAQBkZGTg0qVL2LdvH44cOQK9Xi9NF3viiSfkDJkqOePiA6+99hpee+01e4dDRERERERERDKRNaklCAIWL16MESNG4PLly9BoNNizZw/27NlT5D7GaWKdO3fGhx9+KFeo5CBSUlIAsOg7ERERmfv999+Rk5Mj3e/SpQtq1aoFvV6P9evXm7UNDw8v00JGREREZF+yJrUAw8qHkZGRWLJkCVatWgW1Wl1sex8fH7z11lsYMWIEBEGQKUpyFP7+/khOToa7u7u9QyEiIqJK5MaNG0hLS5Put2vXTrodFxdn1laj0cgWFxEREVUc2ZNaAODh4YEpU6Zg3LhxiI6OxqFDh5CYmIiUlBQIgoCgoCDUrFkT3bp1Q+fOneHm5maPMMkBtGvXDrt378apU6fw1FNP2TscIiIiIiIiIpKJXZJaRn5+fggPD0d4eLg9wyAH9p///Ad79+7F119/jY4dO8LT09PeIRERERERERGRDOya1CIqr1atWuH999/H3LlzMXDgQIwcORKPPvooAgMD4eJS/Mu7Ro0aMkVJREREcuvUqRPy8vKk+1WrVgVgqPFacHQ3vxQjIiJyTJUiqaXX65GamoqMjAwEBgYiICBA2q5QKOwcHVVmPXv2BAAolUrcunULn3zyiVX7CYKA8+fPm21zc3PD888/X2jbw8rd3R1KpRIqlcreoVAFYH86D/al82Bf2pZpDS1TgiCgU6dOFX4+9icREZH87JbU0mq1+P3337FlyxbExMRI36RNnToVY8eOBQAMGzYMtWvXxoQJE9C4cWN7hUqVWEJCQoUdy8XFBS1atKiw4zk6/s45F/an82BfOg/2pXNhfxIREcnPLkmtS5cu4c0338TNmzcBAKIoAkCh1Q0vX76Mf/75B3v27ME777yDMWPGyB0qVXIff/yxvUMgIiIiIiIiIjuQPakVGxuLkSNHIicnR0pmubq6Qq1Wm7VLS0vD/fv3IQgCtFotFixYAJVKhZEjR8odMlVigwYNsncIRERERERERGQHshas0mq1eOONN5CdnQ1RFNGtWzds2LABJ0+eLNQ2ICAAkZGRePzxxwEYRnN9/vnnuHPnjpwhExERERERERFRJSRrUuv333/HjRs3IAgCXnjhBSxduhSPPvooXF1dLbZv2bIlVq1ahYiICABAXl4eNm7cKGfI5IR0Oh0OHDhg7zAqvWvXriEuLg7Xrl2zdyhUAdifzoN96TzYl86F/UlERCQ/Wacf7t27FwAQHByMd955x+r9pk2bhn379iElJQWHDh3Cm2++aasQyQGJoogtW7YgOjoaaWlp0Gq10tRW0zYajQY5OTmIj49Hfn5+odUPyVxWVhY0Gg1XcXIS7E/nwb50HuxL29qxYwdycnKk+506dUKNGjWg1+uxadMms7bPPvssfHx8ynU+9icREZH8ZE1qnT9/HoIgoFu3bkWOzrLE3d0dPXr0wMaNG3H9+nXbBUgOR6vV4qWXXsLRo0cLPWZpAYKiFiUAgJycHHz++edm29555x14eXlVZMhEREQkg8uXLyMtLU2636pVK+l2wS+2evToIVtcREREVHFkTWoZLyxq1qxZ6n1r1KgBAGbfuBH99ttvOHLkCABD8rN+/frIzc3FjRs3ULt2bVStWhVpaWm4fv06RFGEIAgIDw+XprQSERERERERkWOStaaWccRLdnZ2qfdNTU0FgHIPDSfnsmvXLgBAo0aNsG/fPvz222/46KOPAAAtWrTATz/9hJ07d+KPP/5Ap06dIIoizp8/j5YtW9ozbCIiIiIiIiIqJ1lHatWqVQvp6ek4ceJEqfYTRREHDhyAIAioVauWjaIjR3Tx4kUIgoCJEyciKCgIgGF6gYuLi9mUxGrVqmHJkiV47rnncPnyZWzatAnDhw+3V9hERERkY4899hjy8vKk+1WqVAFgKEHQtWtXs7YeHh6yxkZEREQVQ9ak1pNPPol//vkHZ86cwZEjR/DEE09Ytd/q1aulVRM7duxo4ygNRFHEtm3bsGnTJly4cAG5ubmoWrUqwsLCMHLkSLO6DBXl7NmziIiIQPXq1REVFWXVPgkJCfjhhx8QHR2NxMREeHh4oG7duujbty8iIiLg7u5e4XFWJpmZmQCA5s2bS9tcXV1Rr149XLlyBQkJCdJ0V1dXV4wfPx7//e9/sXPnTia1iIiInFiHDh0sbjfWdyUiIiLHJ+v0w4iICLi5uQEApkyZgpMnTxbbXqfT4bvvvsNnn30GAHBxccGQIUNsHmdeXh4mTJiAd955B0eOHEF6ejrUajUSEhKwefNmRERE4LvvvqvQc+bk5GDmzJnQ6/VW73PgwAH069cPa9aswfXr16FWq5GRkYGYmBh8/PHHGDJkCOLj4ys0zsrGuOCAt7e32fa6desCMBSJNdWuXTsAwJUrV2SIjoiIiIiIiIhsRdaRWtWqVcOkSZPw6aefIj09HaNHj0abNm3MRtnExMRg9erVuHz5Mv78808kJydLBb7HjRsny/TDGTNm4M8//wQAhIaGYujQoQgKCsK5c+ewfv165Obm4osvvkBISAgGDBhQ7vOp1Wq89tpriI2NtXqfS5cu4Y033kB+fj6USiWef/55tG/fHjk5Ofj9999x+vRpxMbG4rXXXsOGDRucdlh9UFAQbt68iaSkJAQEBEjb69SpA8CQ1DKdYuDp6QkAyMjIkDdQIiIiIiIiIqpQso7UAoD//Oc/GDduHERRhCiKOH36NNatWwdBEAAYCn9/8skn+OWXX6SEFgD0798fb731ls3jO3ToELZt2wbAMGz9t99+w5gxYxAeHo7//ve/+OWXX+Dv7w8AmD9/fpmK3ptKSUnBf/7zH7P6T9aYM2eOlNBasmQJ5s6di/79+2P48OH4+eefMWrUKACG5NePP/5Yrhgrs9atWwMANm3aZLa9fv36EEWx0GhAY+JQpVLJEh8RERERERER2YbsSS0AePfdd/Htt9+iUaNGUnKrqH/VqlXD3LlzsWDBAlliW7lyJQDDVMcPP/xQmi5pFBoailmzZgEA0tPTERkZWeZzHTlyBIMHDy514fzTp0/j1KlTAICBAwcWKnYqCAJmzJiB0NBQAIbnpNFoyhxnZRYeHg5RFLF27Vq8//77uHr1KgCgffv2AIC//voL+/btA2BIIBqnstavX98+ATuQoKAgBAcHSwX4ybGxP50H+9J5sC+dC/uTiIhIfrJOPzTVs2dP9OzZE6dPn8aJEydw+fJlZGRkQKvVws/PD7Vr10b79u3xxBNPwMVFnjDT09Nx+PBhAEDnzp1Ru3Zti+369OmD+fPnIyUlBbt27cLYsWNLdZ7U1FTMmjVLSrYAwHPPPYeDBw8iKSmpxP137Ngh3R4xYoTFNgqFAiNGjMC8efOQnp6Oo0ePonPnzqWK0xF07twZ3bp1w59//onIyEhkZ2dj4cKFaNCgAR5//HEcO3YMb7zxBgICApCRkQG9Xg9BENC3b197h17p1ahRw94hUAVifzoP9qXzYF86F/YnERGR/OyW1DJq06YN2rRpY+8wAAAnT56UCrUXtWIOYEgYhYWFYdeuXTh79iwyMjLg5+dn9Xni4uKkhJaXlxemT5+OIUOGoEePHlbtbxzZ5efnZ1aPrCDT5xAdHe2USS0A+Oqrr/Dpp59i48aNZjXXPv74Y4waNQqJiYlITU2VtoeFheHFF1+0R6hEREQkkz179iA3N1e6//jjj6N69erQ6/XYsmWLWdunnnqq0KIzREREVPnJmtTavHkzAKBTp06oWrVqqfZduXIlPvvsMwiCgPPnz9sgOkOyyahx48bFtm3YsCEAQBRFxMbGIiwsrFTnUigUGDBgACZPnoyQkBCr99PpdNLKfaGhoVAoip5BWr9+fSiVSuh0Oly8eLFU8TkSd3d3vP/++5gyZQqysrKk7TVq1MDvv/+On376CadPn4ZSqcSTTz6J559/XrbRf0RERGQfFy9eRFpamnS/WbNmqF69OgDg7NmzZm07d+7MpBYREZEDkvWT/bRp0yAIAqpWrYpFixahVatWpdrfWDTeVhISEqTbNWvWLLZttWrVzPYrTVKrXr162L17t7RCX2kkJydDrVZbFaNSqUTVqlVx584dJCYmlvpcjsbb27vQBamPjw9eeeWVQm3VajVcXV3lCo2IiIiIiIiIKphdhqvcvXsXo0aNwgcffIBBgwbZIwSLTKeoBQQEFNvWuAIiYKjFVRqlGZlVUGliBAxTFO/cuVPqGB3FCy+8AEEQsHz5cquSVOnp6Rg8eDCUSiX27t0rQ4SOKyYmBhqNBiqVqtQJaKp82J/Og33pPNiXzoX9SUREJD+7zcFSq9V47733cP78eUyfPr3YaXRyycvLk24XXPWwINMEiul+tnb//n3pdkkxmraRM0Y5HT9+HIIgQKfTWdVer9cjMTHRqp8dEREROa62bdua1dQKDAyUbj/xxBNmbd3d3WWLi4iIiCqOXZJaLVq0wIULF6DX67F27VrExcXhq6++Mhv9ZA9arVa6XdKoH9PHTfezNdPkjTUjk4xt5IzRksuXLxebuPT09JTqlJnuY7wY1ev1OHTokFTIv6CtW7dKz1Wv15tNJTXSarVSkX1XV1fExMQgNDQUXl5e0rZu3bqZ1d+IjY2FUqksdCyFQoFHHnnEbFt8fLzZSLqi+Pn5oW7dumbbLly4AI1GU+K+tWrVMrsoz8vLQ2xsbIn7AYZaIiqVSrp/79493L59u8j2xngsvXauXbtmVr+sKEFBQYVWg4qJibEq3vr168PHx0e6n5WVhWvXrlm1b8FvyBMTE5GcnFzifj4+Pqhfv77ZttjYWKuSwtWrVzerFajRaHDhwgWr4m3cuLHZB6rU1FTEx8eXuJ9KpUKzZs3Mtt24cQMZGRmF2hr7U6PRICYmBoGBgWYLKwDAP//8U+TvmKk6deqYvV/n5ORItf5K0qJFC7PfqaSkJKtWfS3pPaI4ISEhZiNkdTodzp07Z1W8pu8RgGG0582bN0vcz5bvEQX70pSc7xFG7u7uhepQ8j2iMEvvEcX1pSk53iMKcob3iGrVqknvET/++CNGjx5tcV+lUol33nkHU6ZMAVC+9wig5P4EKs91RH5+fon7EBERVWZ2SWqFh4dj0qRJmDJlCnJycnDs2DEMGTIE3377bYkF2m3J9IJRo9EUmzQy1rUCrEsuVRTTEUbWXLwY4zT9oGIPOp2u2NFUlhInWq3W7DlevHixyCmDs2fPNrtfUv211q1bQ6PRmLUzThe4evWqtE2v11u8gLeUoCsYb1EsPVfTDzfFKRiLKIpW7WdsW/BY1uxr6Wdp7XO11OfWxlvwuVobb1FxOGPfWGJN32g0miKfqzUfWAvGW5rnWlB5+kaO12FZn6tc7xEFt9njdWgp8c/3iMIs9U3B4xRF7vcIY7uCHPk9IjMzE3fv3i1y/8zMTLP7Zf29sXb/ynIdQURE5OjsNv2wS5cu2LBhAyZMmIBbt27h1q1bGDZsGD755BP06tXLLjF5enpKt/Pz861Oask5lc3020Brvl0ztrH3sHqlUlnsSC1LqxG6uLiYJeNGjRqFEydOWKwPZs0iAgqFAj4+PmjRogX+85//QKVSQRAEszaCIFiVALT0XArGWxRLz9XapGPB81obr7FtwWMVt6/x4rjgfoD1z9XSh92yPteS4i0pjvL0jTXTW+XsG9PYCiqqb0w/7KhUqiKfqzUfeMr6e2NJefpGjtdhZXyPKNiXxZ23sr0OC3rY3yMKHqco9ugbZ3uP8PX1RXBwMADDojt6vR4KhQJBQUFQKpXw9fU127esvzfW7l9ZriOIiIgcnSDaeklBE02bNoUgCJg6dSrGjh0LAMjIyMAbb7yB48ePGwISBEyYMAGTJk0y23flypX49NNPIQiC1VN6Suv999/Hhg0bAAD79u1D7dq1i2wbGRmJmTNnAgA+//xz9OvXr9zn79GjBxISElCzZk1ERUVZbHP37l107twZADBw4EAsWLCg2GN27doVd+7ckVZclEt2djYuXbok3W/SpIlNlso2vqZOnToFDw+PCj/+w4wFb50L+9N5sC+dB/vSPo4cOYL8/Hy4ubkVqq1VHo7Yn3JdrxEREdmK3b+u8fPzww8//ICIiAgAhhE3S5cuxWuvvYacnBypnRzfLNWrV0+6XVIdkTt37ki3C9YDsaXg4GBptFZiYmKxbXU6He7duwdA3hjlVKNGDdSoUYPfPBIREZFVnnjiCXTr1q1CE1pERERkH5UiE6BUKjFnzhzMmjVLGlL9xx9/YNiwYVJBXjlqQoWGhkq34+Liim1rfFwQBDRq1MimcRVkjLOkoqtXr16VpkTYs1aZLUVFRWH//v1czZCIiMiZLVwI1KpV9L+FC+0dIREREdmB3WpqWTJy5EjUr18fkydPRmZmJi5fvowhQ4bgm2++kWVqWZs2baBSqaDRaHDs2DGMHDnSYjudTietote0adNCdRhsLSwsDDExMUhJSUFcXFyRSbWjR4+a7fMwys/Px969e5GUlIQ6deqge/fuFmtREBERUSWWmQlYWNnY7PEC/vjjD7MVUtu3b4+QkBDo9Xrs3LnTrG3Xrl057Y6IiMgBVbpP9x07dpQKyF+/fh0ZGRkYN24cunfvbvNz+/r6okOHDoiOjkZUVBQSExMtTtvbvn27tORy7969bR5XQb169cL3338PAFizZg3mzp1bqI1Op8NPP/0EwLAE+ZNPPilrjHLKz8/H6tWrsX37dixduhTVq1cHYFi2fOzYsWZTSatXr46lS5daHLmWm5uLb7/91mzb66+/braAABEREdmBry9Qs2bxjxfw999/Iy0tTbrfsGFDhISE4NKlSzh58qRZ2w4dOjCpRURE5IAqXVILMNS2+uWXXzBp0iQcOnQIWq0We/fuleXcY8aMQXR0NDQaDaZMmYIVK1aYXeRcvnwZH330EQDDSoRDhgyRJS5Tjz76KNq0aYPTp08jMjISTzzxhFlyTRRFfPjhh7h69SoAYMSIEXZf/dBW9Ho9XnrpJWnk3K1bt6Sk1owZMwrVHUtMTMS4ceOwc+fOQhevoiiafaNr3Pawql+/vrQ6FDk+9qfzYF86D/ZlKUyZYvhXAZ555hmMHz++Qo5liv1JREQkv0r7V9fb2xvLly/H6NGjZU0sPPnkk+jVqxcA4PTp0xgwYABWrFiB7du347PPPsPQoUORnp4OAJg6dSoCAwPN9j927BiaNGmCJk2aYPTo0TaLc9asWdLS2pMnT8a7776L33//HRs2bMCIESOkUVr16tXDK6+8YrM47G3Lli04fvw4RFHEY489hipVqgAAYmNjcfLkSQiCgEGDBuH48eNYtWoVgoKCkJycjLVr19o58srPx8cHfn5+8PHxsXcoVAHYn86Dfek82JfOhf1JREQkP1lHahnrOlWrVs2q9gqFAjNmzEDjxo3xwQcfQKvV2jI8yYIFC5CTk4ODBw8iPj4en332mdnjgiBg4sSJ0oqN9tCiRQt89dVXePfdd5Gbm4stW7Zgy5YtZm3q1q2LFStWSKslOqOdO3dCEAT0798fCxYskLYbR/YplUr897//laaWTp48GTNmzEBUVBQmTJhgr7CJiIiorMaOBVJSgCpVgB9+KLJZy5YtzUZg+/v7AwAiIiKQlZUFNzc3dOzYEQC44AwREZGDkjWptWbNmjLtN2TIEDRv3hyxsbEVHJFlHh4eWLFiBbZu3YrNmzfjwoULyMrKgr+/P9q1a4cXXngB7dq1kyWW4jz11FPYvn07fvjhB/z111+4c+cOBEFA/fr10atXL4wePdqpE1oAcO7cOQDA2LFjzbZHR0cDMBT/N17EAsBjjz0GwFBvi4iIiBzQ3r2GovHF1dgCiqzHWvDLSiIiInJclbKmliUtWrRAixYtZDufcfRP//79S7Xf448/jkuXLpXpnFFRUaXep0aNGpgxYwZmzJhRpnM6uoyMDACQ6mgBQGZmJv7++28IgoBOnTqZtTcm+XJycuQL0kFlZWVJtUE4lcLxsT+dB/vSebAvnQv7k4iISH4Ok9QissTNzQ1arRaZmZnw8/MDABw6dAg6nQ6CIEjTCozi4+MBGFa6pOJdu3YNGo0GKpUKrVq1snc4VE7sT+fBvnQe7MsyOnsW0OuBSlaQnf1JREQkP5sktUxXnKtRo4bF7eVhekx6uDVq1AhnzpzBoUOHpBpn27dvBwBUqVKl0EXl+vXrAQCNGzeWN1AiIiKqGP8uCkNERERkk6RWjx49IAgCBEHA+fPnC20vj4LHpIfb008/jdOnT+PTTz9Feno6kpOTsW/fPgiCgD59+kjtrly5gh9//BG//vorBEFA79697Rg1ERER2cuzzz6Lu3fvIjg4GLt27bJ3OERERFQONpt+KIpiqbYTlcWIESPw22+/IS4uDl9//bW0PSAgwGx1wxEjRiAzMxMA8Oijj2LIkCGyx0pERET2988//yAhIQE1Syg0T0RERJWfTZJaYWFhpdpOVFbu7u5Yu3YtvvjiC+zduxdqtRphYWGYNm0aAgMDpXYNGjTA33//jX79+mHGjBlQVLI6HERERGSlbduA+/cBDw8gPLzIZgcPHkRubq50v02bNqhatSrc3Nzw7LPPwtvbG3v27AEAdOrUyelXjCYiInJGNklqrVmzplTbicrDz88Pc+fOxdy5c4ts895776F69eoICgqSMTIiIiKqcBMmAAkJQM2awL8LwFhy6tQppKWlSffr1q2LqlWrIi4uDvPmzQMAHDlyBADQrl07JrWIiIgcEFc/pIdCy5Yt7R0CEREREREREVUgJrWIiIiISH56veFfac2YAWRnA97egFZbdLuCdVx1OkN7S+fUaos/ljW02sLnJCIiIptiUoscniiK2LJlC3bt2oX4+Hjk5eVBX8JFsiAI2Ldvn0wREhEREUQRUKuB/HwgL6/sSaQBAx7cvnu3yGZN69RBbtWq0n1frdbQXq/Ho40ambV1y8oyJL3KwSU1FaJeD4SElOs4REREZD2bJLWaNWtmi8MCMCQjzp8/b7Pjk2PR6XR49dVXER0dDcD61TUFQSi0TaVSoWvXroW2ERERURlptQ+SWGq1IbGl0z1IbpVlpJaVnimQuAIApKZiRWQksnNz4e3piZeNqyHn5Rn+lYMyKwtaDw8IanW5jkNERETWs0lSy9rEAlF5RUZG4q+//gIAeHh44NFHH0WVKlXg6upa6mO5urqiW7duFRyh42rVqpW9Q6AKxP50HuxL5+GUfanXGxJWeXmGpJVO92CEljGRZRyh5eoKKJWyhzh32TIkJCWhZkgIXo6IqJiDarVoUr8+EBwMmKy+TERERLZlk6RWjRo1bHFYokI2b94MAGjevDlWrFiBQF5IEhERyUujeZDEMo5S0mofJLc0GkNiS6k0JLK8vAA3N0ChsE+8xtHaggD4+VXMMbOzgdzcijkWERERWc0mSa2oqChbHJaokLi4OAiCgGnTpjGhRUREJAe9/sGUQuMUQuMILWNiS6czJI1UKkNBdzc3wKWCLjufeAK4cweoVg04cqTUuy/95BPcz8uDh7t7xcRDREREdsNC8eTQjFNdmzRpYudIiIiInJQomo/G0mgM2zWaB0ks4wgtFxdDAsvV1fC/hRqW5WY8XxlrV4U//XQFB0RERET2wqQWObS6devi4sWLSE5Ohl9FTSEgAEBiYiJ0Oh2USiWnFDsB9qfzYF86j0rdlzrdgyRWfr4hsWUcoWVMZOn1hqSVqyvg62tIYslRI6tpUyAoyPCvErl79y40Gg2EvDzUaNDA3uEQERE9FBwuqZWXlwd3Dhenf/Xu3RsXLlzApk2bMHXqVHuH41SSk5Oh0WigUqkq34ctKjX2p/NgXzqPStWXovggYWUs5m4coWVMYhlHaKlUgIeHIYmlUtlmNFZx1q2zqtnRf/5BXn6+dP+R0FAE+ftDFEUcOHXKrO1jLVrAs5zXl+np6cjT6yEATGoRERHJxG5JLbVajatXryI7Oxtardbiiol6vR5arRb3799Heno6zp07h7179+Lo0aN2iJgqozFjxmDbtm1YvXo1atWqhYiICCjKWHj2/v37+OGHH8y2jR07Fh4eHhURKhERUeWi1ZoXeBdFwwgt09FYomgo6O7qCnh62rfAeykd/+cfpGVlSferBwUhyN8fySkphZJaLUNDy53UIiIiIvnJntS6f/8+vvjiC/z666+4f/++3KcnJ7Njxw4MHjwYX3/9NebNm4dvvvkGzZs3R2BgIFyKKUgrCALmz59vtk2v1+PevXuFthERETkF0+mD+fmGBJZxhJaxRpVWa2hrukqhSmXfuCtY22efxfhXXrF3GERERFQBZE9qvfnmmzh48KDFkVnWUMpRq4EcxrRp0yD8O+1BFEWkpaXh8OHDxe4jiqLFpBYREZHTMa5IaExcAYbElXGbRmNIbCmVhkSWt7fhfwcZjUVEREQPN1mTWgcOHEB0dLSUhPD19UWDBg2Qk5ODuLg4uLi4oE2bNsjLy0NqaioSEhKkfVUqFd5//3107dpVzpCpkrN7DRIiIqLKxHT6YH6+YXSWcYSWcTSWTmeog6VSAT4+hiRWMaObK51584CMDMDPD5g1q8hmDWvXRo7JrAAfT08AwFOdOyMtORmurq4Ie/RRAICrk41GIyIieljIegWzY8cO6faoUaPw3//+FyqVCvHx8Xjqqaeg0+kwb9481KtXDwAQHx+Pjz/+GPv374dWq8W5c+cwZMgQOUOmSi4qKsreIRAREdmPKJqPxjIWczcmsIz/AEPiyt3dkMRydZW/wHtF2bwZuHMHqFat2KRWn06dLG7/4csvbRQYERERyU3WseVnzpwBYBhd895770H177ditWrVQvXq1QEAhw4dktrXqlUL3377LXr16gVRFLFx40ZcvHhRzpCJiIiIKhetFsjJAVJTDcmdlBTDyKXMTCA9Hbh71/BYbq4hceXnB1StCgQFGUZmubk5bkKLiIiIyISsSa20tDQIgoAuXboUWqGuWbNmAB4kvkx98MEHcHV1hSiK2LRpkxyhkgPLyMjAxYsXcerUKVy8eBGZmZn2DomIiKjsRNGwSmFGBpCUZEhapac/SGSlpAD37hnu63SGVQoDA4HgYCAgAPDwMNTMchYbNgBRUYb/iYiI6KEm6/TD3NxcAJBGZZlq2LAhoqKicOnSpUKP+fv7o2vXrti7dy9iYmJsHic5Hr1ejw0bNuDnn39GXFxcocfr16+PoUOH4oUXXiiUUCUiIqp0NBrzAu+iaBihZZxqaNymUBhGXnl6Gv5/GP7GNWxo7wiIiIiokpA1qeXt7Y2MjAzo9fpCj9WpUwcAcOPGDWl1OlMNGjQAANy8edP2gZJDycjIwOuvv47/+7//K3JVzatXr2LBggXYs2cPvv32WwQEBMgcpePx8fGBVquFiyMVD6YisT+dB/vSeZj1pbGYe36+YVSWXm9IWhkTWPn55gXejasUssB5qY2cOBHJqakICgzEukWLKuy4Xl5ecPH2hsLHp8KOSURERMWT9Yq4atWqyMjIMFvV0MiY1FKr1bhx44ZULN7IWH8rOzvb5nGSY3nzzTdx8uRJAEDz5s3x7LPPIjQ0FJ6ensjJycHly5exe/duXLhwAadPn8bUqVOxfPlyO0dd+dWvX9/eIVAFYn86D/al86hfs+aDJNadO4aNGs2DJJZGY0hsKZWGUViurqyHVQEOHDmChDt3ULNatQo9bs2aNQ1TPgMDK/S4REREVDRZk1qtW7dGXFwc/vzzT6jVari6ukqP1a1bV7p96tSpQkmt69evAwC/mSYz27dvx7FjxyAIAv773/9izJgxhdo89dRTmDBhAlavXo1PPvkEBw8exP79+9GzZ0/5AyYiooeXTvcgiaVWG0ZjGUdoGRNZer0haeXqaijq7upqWLXwISOKIvLy8iyOwFacPm34ebm6Qt+mTZHHOBsXh3zjapAAGtWujQAfH4iiiI4dO8LXxwd//vulWMvQUHi4uZU94NxcCPfvQ8zNhejmZujrAtzc3HgdS0REVMFk/cvarVs3REZGIjk5GW+++Sbmz5+PwH+/zQoJCUHVqlWRnJyMtWvXol+/ftLorFu3bmHPnj0QBAE1atSQM2Sq5LZs2QJBEDBs2DCLCS1TL774Iq5fv46ff/4ZmzZtYlKLiIhsSxQfJKvy8gw1sQDDNtPRWIBhGqGHhyGJ5er60I/Gys3NRVZWlsWkVvDEiVDevQtdcDDu7thR5DGO/PMPsv6t5woA7i4uUOj1iFq/HusPHAAAHDh9GgAQ4ucHf2/vMscr5ORAyMuD3tUVekEA3N0LtVEoFAgJCWFtTyIiogoka1KrZ8+eaNSoES5fvowDBw6gR48emDhxIsaPHw8ACA8Pxw8//IALFy4gIiICgwYNQlpaGn7++Weo1WoIgoAnnnhCzpCpkjt37hwAICIiwqr2ERER+Pnnn3Hx4kVbhkVERA8rrdZ8NJYoGkbtqNWGbRqNYTSWQmFIXnl6Gv53ptUJK0B+fj7y8vKQlZVV6LEgvR5KGBaJSU5OLvIY+gKjpTIzM5GsVEJvIVGWlpYGbV5emeNV5OZCyMuDThShVasNo7VMuLi4ICgoCFqt1mymAhEREZWP7GOgv/rqK4wYMQIZGRnIz883u1h56aWX8OuvvyIzMxPnz5/H+fPnAUD6ls7d3R0vvvii3CFTJZaeng4AVo/gM668WdxFMBnExsZCo9FApVKhcePG9g6Hyon96TzYl5WMXv8gYWUs5m4coWUcjWUcoWWaxHJ1xZUrV6RC8aGhofZ9HpWMTqeTFhbyKVB4Pfu55yDk5ED08ir0mCmhwIgoDw8PqTh/QV5eXvDx8ipzvIJCgdtJSbiv10PU6VC3SRPpsby8POgsTEckIiKi8pM9qRUaGootW7Zg4cKF2L17N2rVqiU9FhgYiMWLF+PNN99ESkqK2X5ubm747LPPULt2bblDpkrM19cXaWlpSExMhK+vb4ntExMTARS+QKbC8vLyoNFoeCHuJNifzoN9WQloNA+SWGq1YZtWaz4ay1jg3dUV8PIyFHgvkGTJz8+HVqtlXxYgiiJ0Oh10Oh1UKhXcC0zly3/5Zel24Ul+D9QMCsL9/Hzpvq+3N9zd3XHy5EnciI1Fq5Yt4efnBwDw9vQsdJ7SEAr0oYeHh3SbfUxERGQ7dqlWGRISggULFuCDDz6AxqSAJwC0a9cO27dvR2RkJM6ePQu1Wo2mTZti6NChZgkwIgBo0aIFDh48iF9++QUzZ84ssf3GjRsBAM2aNSv0mIuLC9q3b19oGxERPeSMxdyNiSxjgXfjSCy12jBCSxAMtbG8vQ1JLP4NKRPjSCqdTgdlOaZldmvd2uL2ZT/+iOhDh5DcqRO++9//ynx8IiIisj+7Xm25u7tb/FbM398fL730kh0iIkfTr18/REdH46effkJoaCiGDx9eZNuffvoJP//8MwRBQL9+/Qo97ubmhr59+9oy7m2bkgAAgMhJREFUXCIicgSiaD4ay/gFnEbzIIllHKHl4mJIYLm6Gv5/yAu8VwRjUstW9ad2HzkCDYBdR45U+LGJiIhIXvwKkRxaeHg4fv75Z5w+fRpz587Fpk2b0KtXL4SGhsLT0xO5ubm4cuUKdu/ejXPnzkEURbRu3Rr9+/e3d+hERFSZ6HQPklj5+YbElnGEljGRpdcbklauroCvryGJxQLvFc5YT0sUxXKN1LLk7Nmz0P1bq0un1yMmJgatWrWq0HMQERGRfGRNahnrGZWXtUXByfkpFAp8++23eOmll3Du3DnpX0HGxQYeeeQRLF68GAK/SScieriJ4oOElbGYu3GEljGJZRyhpVIBHh6GJJZKxdFYNrJw2TJkZmdDpVTiheeeAwCLSa0qo0ZBkZICfZUqSFm7tlTn2LFjB3wAiACEf+/bIqm1bNkyZGdnw9vbGyNGjKjw4xMREZGBrEmtHj16lDuZIAiCtCoiEWBYYGD9+vXYsGEDIiMjERsbKyWxAMNrplGjRhg2bBiGDRsGlUplx2iJiMhutFrzAu+iaBihZToaSxQNBd2NKxVaKPBOtrHwu++QcOcOqgcHY+TAgQAsJ7UUKSlQ3r1r8RhqtRrLli3D9evXCz2WnZ2NEydPwtNkW2RkJK5duwZvb+9C7evVq4dXXnmlTFMgv/vuO9y5cwfVqlVjUouIiMiGZJ9+aJpsIKooKpUKo0aNwqhRo5CRkYGkpCRkZ2fD09MT1atXl1Y3IiKih4jp9MH8fEMCyzhCy1gX69/6TWarFPLLD7vTarVQKBQWvwzVV6li9r+RKIpwdXXF+PHjsWDBAmzZurXE84gATpw8WWj7gP79MX78eLi6ukIURY7wJiIiqqRkTWqFhYVZ1S4/Px/37t3D7du3ARhG2jz11FOFVqYjMnX79m2kpKTgkUceMUti/f333zh69Ch69+7NFTSJiJydcUVCY+IKMCSujNs0GkNiS6k0JLK8vQ3/czRWpZGUnIwnn3sOn06fjme6dZO230xIwMDx4wEAvbt3x0dTp5rtN2bKFPx98SIA4NTOnXjkscewc9cuqNVqqAH8ExeH9PR0+AqC2TWlHsCRv/9Gfl4evJRK/G/uXDz77LPS45M/+AB/HTsGANj3888I9PeXHtv711/478cfA6KIF55+Gr369KnYHwYREREVS9ak1po1a0rVPjk5GcuWLcO6detw4MABDBo0CD169LBRdOSocnJyMHfuXGzbtg1dunTBkiVLzB7/v//7PyxcuBBfffUVRowYgWnTplmczpCXl4f169ebbYuIiLC4QicREVUSptMH8/MNo7OMI7SMo7F0OkMdLJUK8PExJLFcuFZOZaXX65GUnCwVdDfS6fW4/e+0w/TMzEL7paSlSY8DgMbNDY89/bR0/85PPyE1PR0QBDxZYLXjs1ev4n5eHlq0amWW0AKAtIwM6bj6AjMO8vLzpcfu5+eX8pkSERFReVXqK7qgoCDMmDEDwcHB+OKLLzB9+nRs3boVwcHB9g6NKgmdToeXXnoJp0+fhiiKFmtoaLVaKJVKaLVarF27Fvfu3cNXX31l8Vg3btwotO1hVb16dej1eig4esEpsD+dx0Pfl6JoPhrLWMzdmMAy/gMMiSt3d0MSy9W10hV4DwkJebj7sggKhQJBgYFwd3Mz265UKFD932tAf1/fQvtVCQiQHgcMUwvNjvvvv8LpMMBVpUK14GBUDwkpNN0wwM9POq6iwGvI3c3N8JgoIqhKFQQHB0MMCLD6uRIREVH5VOqkltH48eOxYcMGJCQkYN26dZg8ebK9Q6JKYuPGjTh16hQEQcDo0aMx/t9pCabGjx+PiIgIfPPNN/jxxx+xe/du7N69G7169bJDxI6jatWq9g6BKhD703k8lH1pOn0wP/9BgXdjckutNozOUigMo7H8/AxJLAujciuTKgVqQpFBcFAQ9vz4Y6F6mHVq1sSpnTuL3G/1l1+a3S+YwvQHEALAUon5seHheOPVVy0e96s5c4o859NduuDpLl0g5ORAuH8f+ipVoDeZnkhERES25RBfDQqCgG7dukEURURFRdk7HKpEtm7dKiW0ZsyYgZCQEIvtvL29MX36dAwZMgSiKGLDhg0yR0pERFYTRcMqhRkZQFIScPcukJ5uuJ+ZCaSkAPfuGe7rdIZVCgMDgeBgICAA8PCo9AktKsa/U/wslQoAAK+VK+H9zTfwWrmy2MMEBwSgepUqqF6lCtLu3EHe/fsAAJUo4sb167hx/ToS//134vjxin0OREREJAuHGKkFPPg2MzEx0c6RUGUSGxsLwFD7yhojRozAxo0bce7cOVuGRUREpaXRmBd4F0XDCC3T0ViiaBiN5eZmSGS5ubHAuxOZ8vLLuHP3LlQuLoAgFJnU8oyMhPLuXeiCg5Hzn/8UebyebdsCAG7evIk5b7whbQ9WKpH4f/+HCxcuQGNc/RLArVu3ULt27Qp5Li+//DKys7Ph7e1dIccjIiIiyxwmqXXz5k0A4JLKZEbzby2VwMBAq9pXq1YNAJCbm2uzmJyFRqOR6oqouLy9w2N/Og+n6UtjMff8fMOoLL3ekLQyJrDy880LvBtXKXTk51yA0/RlBZnyyitISkpCVlaW9Pe9Iuzfv1+6Xa9uXXzyySdo3LgxYmNjMW3aNFz/t57m/v37MWbMmDKfR6PVQq/RQK/R4JVXXpG2Z2VllfmYREREVDyHSGrFx8dj586dEAQBderUsXc4VIlUq1YNN2/eRFxcHMLCwkpsbywkb20S7GF24cIFaDQaqFQqtGrVyt7hUDmxP52HQ/elMVmVl/egwLtG82C7RmNIbCmVhlFYrq6G/530C624uDhotVq4uLigefPm9g7H7rRaLURRhFarLbZ4fvqCBRDUaoiurlYd15jUGjhgAKZOnSqtaty4cWOsW7cOn332GTb//nu5k1q3bt7E/bQ0iAEBaNq6dZmPQ0RERNartEkttVqNtLQ0HDp0CF9//TXy8vIgCAJ69Ohh79CoEmnXrh1u3LiBxYsXY+XKlSWO5Pvuu+8gCALatWsnU4RERA8xne5BEstYzN04QsuYyNLrDUkrV1fAx8fwv0ulvTwhGzKuOKzT6eBWYOVDU5pSJHNv376NW7du4ZOPP8YzzzxT6HEPDw+8//776NChAz766CPcuXNHGtVNRERElZ+sV43NmjUr1/6+vr4YPXp0BUVDziAiIgK//vorjh49iokTJ+K9995DzZo1C7W7e/cuPv30U0RFRUEQBIwYMcIO0RIROTlRNB+NZaxXpFabj8YCDNMIPTwMSSxXV6cdjUXW0+l0EEURer0eLhWU2ExKSsL69etRvXp1aduMTz9FemYm/H198dHUqQCAZ555Bo888giSkpKY1CIiInIgsia1xH9XsykLHx8fLFq0qNDyzvRwa9WqFV566SUsX74cUVFR+OOPP9CwYUPUq1cPHh4euH//Pm7duoXY2Fjo9XoAwMiRI9G+fXs7R05E5CS0WvPRWKJoGKGlVj+YZqjXGwq6u7oaCry7unJ1QipEo9FIo7WKKhJfWq0tTAPc+ccfuH33LqoHB0tJLVEUUaNGDdSoUaNCzktERETykDWpVZoLBaVSCXd3d1SvXh0dOnTA4MGD4e/vb7vgyGFNmTIF3t7eWLx4MfLz8xEbG4u4uDjpcWMy1cXFBa+88gomTpxor1CJiByfXv8gYWUs5m4coWUcjWUcoWWaxLKy/hE5P2PdLK1WC41GI/1v3A4Un9RSXr8OQaeDqFRCV69eke2uJiZC82+SDABqBgXB28MDgCHZ5efjg0u3bgEA6lWrBjcW6yciInI4sia1oqKi5DwdPSQEQcArr7yCQYMGYe/evTh69CiSkpKQkZEBDw8PVKtWDW3btsWAAQMQEhJi73CJiByPRvMgiaVWG7ZpteajsYwF3l1dAS8vQ4H3Yop908NBFEWzxJXxf+NjOp1OSnBptVpotFoolcpiC8UHvvoqlHfvQhccjHs7dxbZ7tiFC8g0We24V1gYvD088Ovy5dh9+jQA4M8zZwAAw7p3Z1KLiIjIAbESKzmN4OBgjBw5EiNHjrR3KEREjs1YzN2YyDIWeDeOxFKrDSO0BMFQG8vb25DEYoH3h5pery+UwDKOvDIdnSX9M47yg2FklouLC7w8PaXVCW2lTo0awL9JLSIiInJsvPokIiJ62Imi+WgsYzF3jeZBEss4QsvFxZDAcnU1/M8C7w8lnU5XKIFlrIdVMIFlWisLMJQDcHFxgbu7u3S7pNWLTeX16gUhMxOir2+FPy8iIiJyLExqERERPYx0ugdJrPx8Q2LLOELLmMjS6w1JK1dXwNfXkMRigfeHTsGpg1qtVlp8Ra/XFxqBJSWwBAEqFxe4urpKySulUlmqBJYlWW+9ZVW7QB8fsymFria3qxZYeEjJqbJEREQOSdakVmJios3PUVGr1oiiiG3btmHTpk24cOECcnNzUbVqVYSFhWHkyJFo1apVuc8RGxuLH374AceOHcPdu3fh4+OD0NBQDBw4EIMGDSpx5Z8ePXogISHBqnMdPHgQVatWLXfMzkypVKJ58+aFthEROQVRfJCwMhZzN47QMiaxjCO0VCrAw8OQxFKpOBrrIVIwgWUs4A6gUP0r0+RWwQSWSqWy+9/QXo89ZnH70VOnEODiAjdXV3TkashEREQOTRCNVyoyaNq0abm/nSuOIAg4f/58uY+Tl5eHSZMm4c8//7T4uFKpxFtvvYWXX365zOeIjIzEBx98IBVLLah9+/b49ttvi1zxMTs7G+3bt4e13Sd3Uis7OxuXLl2S7jdp0gTe3t6ynZ/KLy8vD6IoQhAEm9c3IdtjfzqPUvWlVmte4F0UDSO0TEdjiaKhoLtxOiELvMvGnr+Xxa1ACJhPLzT+Mz4mCII08kquBJZnMbW28vLykGtSEL4kbXv3xu27d1E9OBiniik0XxpCTg40GRnQBgZCDAiAm8lIsKysLOTn5yMoKAhBQUFwrUQrgfJ6jYiIHJ3s0w9lzKGV2YwZM6SEVmhoKIYOHYqgoCCcO3cO69evR25uLr744guEhIRgwIABpT5+dHQ0Zs2aBVEU4eHhgYiICDzyyCNISUnBL7/8gtjYWJw8eRJTpkzBihUrLK4AdOnSJelnOWHCBLRs2bLYc/oVGGZPVBImPpwL+9N5FNuXptMH8/MNCSzjCC1jXax/C3ebrVLIVd/sQq7fy+JWIARQaPSVxjiKD4BCoYCLiws8PDzMphDKzd3dHa5aLXDxovkDTZsC7u4lJrWWrl2L79atAwAkJSdL/7ft3RsA8PLIkZgwalS5YnR1dYWLuzv0bm7lOg4RERFZT9ak1pQpUwAAx44dw6FDh6TtLVq0QIsWLVClShW4uroiKysLV69exYkTJ5CTkwNBEODm5lZi4qYiHDp0CNu2bQMAdOjQAd999x3c/r04CQ8Px/PPP48RI0YgPT0d8+fPR8+ePUv1jZZarcacOXMgiiI8PT2xdu1atGjRQnp8+PDhmDJlCvbu3YtDhw5hx44dCA8PL3Qc02/VBg4ciPr165f1KRMRkSMzrkhoTFwBhsSVcZtGY0hQKJWGRJa3t+F/jsZySiWtQFhwCqFpAst0BUJjAsvSF2t2c/Ei0K+f+batW4FHHilx1+ycHNy+e9dsm16vl7Zl5+RUWJhEREQkH1mTWi+//DJ+++03HD16FIChJtS0adNQp04di+3v37+P77//HkuWLEF+fj7CwsLw5ptv2jTGlStXAjCszPPhhx9KCS2j0NBQzJo1C2+//TbS09MRGRmJsWPHWn38PXv2ID4+HgAwfvx4s4QWYPiWb8GCBThx4gTS09OxbNmyYpNabm5uqFu3bqmeIxEROTDT6YP5+YbRWcYRWsbRWDqdoQ6WSgX4+BiSWC5cG8bZlGYFQtPkFmBIYKlUKri5uZVpBUJH4+3lherBwcU+TkRERI5H1ivc2NhYzJ49G3q9HsOHD8fs2bOLbe/h4YGJEyciODgY77//PpYuXYrOnTujTZs2NokvPT0dhw8fBgB07twZtWvXttiuT58+mD9/PlJSUrBr165SJbV27NgBwFCPYvjw4RbbeHl5YfDgwVi5ciViY2Nx7dq1QiOxjEmthg0bVq5vUclppKamQq/XQ6FQIDAw0N7hUDmxPx2YKJqNxkq7e9dQh0mrRYCn54NEFmBIXLm7G5JYrq4s8F7JpaWlSTW1AgICim1rTGAZ/5VmBUKXf0dgubu7PxQJLEsmjBpV7umFJcnMyoLWxQV6AP7Vqtn0XERERGQga1Jr1apVUKvVqFWrFmbMmGH1fkOHDsUvv/yCmJgYrF692mZJrZMnT0oXiB06dCiynUKhQFhYGHbt2oWzZ88iIyPD6ppVJ06cAGAoxFncB8sOHTpIo8b++usvs6SWKIqIi4sDADRu3Niq8xKVVnx8PDQaDVQqFZMgToD96WBMpw/m5z8o8K5W425cHLS5uVApFAho2tQwGsvPz5DE4oqtDuX27dvQarVwcXExS2oVrH1lmsAqzQqExvpXD1sCy+hmUhI0xuQegGqBgfByd4coirh6+7ZZ29rBwXAt52jG5Hv3cD8vD2JeHpNaREREMpE1qXX06FEIgoCnn34aLqW8cOjUqRNiYmJw8uRJG0UHKVEElJwsatiwIQBDgik2NhZhYWElHj8pKQmZmZkAgEaNGhXbNjQ0VLp9sUBR1ISEBGRnZ5sdJzs7GxcvXkROTg6Cg4PRuHFjuy+l7Wjy8vKwdetWs239+vVjgW0isj1jMff8fMNqhcYC78ZRWGq1oTYWAGi1EN3dofXwAIqZTkWVn+kUwczMzDKtQGicPijHCoSO5tA//yDTpIB8r7AweFWrBp1Oh407d0KpUEChVEKpUOCF8HBUKWLFaSIiIqq8ZE1q3bt3D0DZVuIzXqhlZWVVaEymEhISpNs1a9Ystm01k2/gEhISrEpqGWtpWXP8kJAQKBQK6PV6JCYmmj1mWiReoVBg4sSJiIqKejDVAIC/vz9GjRqFl156iUkZK+l0Opw/f95sW58+fewUDRE5PY3GvMC7KBpGaBmnGhq3KRSGFQo9PQE3N+hSU6HXaqFgjSyHYmkFwtTUVGi1WiiVSmRlZZklsCrjCoTW8Fy7FoqcHOi9vJBbyul+np6eRV6zFPdlqIuLi8URqEWVZ9DqdPjf4sVm2wZ17WoxqVWe50NERES2J+sVsZeXFzIyMgqNPLLG6dOnAQBVq1at6LAkqamp0u2Salv4m1z4pKenW3X8tLQ0q4+vUqng6emJ7OzsQsc3TWp98sknFvdPT0/HokWL8Ndff2HZsmWcbkREZG/GYu7G0Vh6/YMRWsZElmmBd+MqhSqVvSOnUrJ2BcLc3Fzk5eUBeHANUulXICyB17p1UN69C11wcKmTQO7u7nDVag2rHFqyebPFbQoArhaaFzXp0vRLQCNlEUmz8jwfIiIisj1Zk1qPPPIIDh48iKioKFy5csVsil1xjh07hsOHD0MQBDz++OM2i894YQmg0KqHBbm6Prh8Mt2vOPfv37f6+MY22dnZhY5vmtRSqVQYO3YsBg4ciNq1ayM9PR0HDhzA119/jXv37iEmJgaTJ0/GDz/84FAXxURETsGYrMrLezB9UKN5sF2jMSS2lErDaCxXV8P/D2kNJEdUnhUI1Wo1FAoF3Nzc4O/vD6VSyb/VFy8C/fpZ3/777w3/LAhcuBBKPz+pP1T/Jq60FpJaLpV05BsREREVT9akVr9+/XDw4EFoNBq89NJLWLx4MZo2bVrsPkeOHMFbb70FURShUCiKXDGwIpheaJomrSwxfdx0v+KYfjNY0vFN2xQ8flJSEgBD0mvlypVo37699FhwcDCGDBmCLl26YOjQobhz5w6OHj2KHTt2IDw83Ko4beHy5cvFXqh7enpKdcpM98k1qYVRlJCQEISEhEj3dTodzp07Z1VcoaGh8CpmGe/z589bTEAqFAo88sgjZtvi4+PNRvsVxc/PD3Xr1jXbduHCBWiMH3iLUatWLbNRd3l5eYiNjS1xPwBo1qwZVCYjPu7du4fbBQrlmjLGY+n1fe3aNaumAgcFBaFGjRpm22JiYqyKt379+vDx8ZHuZ2Vl4dq1a1bt26pVK7P7iYmJSE5OLnE/Hx+fQiuNxsbGWpW4rl69utlIUo1GgwsXLlgVb+PGjc2m3KSmpppNVy6KSqVCs2bNzLbduHEDGRkZhdoa+1Oj0SAmJgaBgYGoVauWWZt//vnnQcHpYtSpU8dstGpOTg6uXLlS4n4A0KJFC7NpU0lJSdJ7WnEqy3tEeno6bt68WfQOOh0EtRouWi2ahYYaRmP9O0Lr9s2byLp3z3BfEKBXqSCqVBALFHj39fUt1DdxcXGFfie1Wm2hKdPVq1c3Gwmcl5eHq1evWvVcGzVqZPYekZKSYlXfuLm5FfqS6ubNm1Ltx+IEBgaaTecHUOg5FaVOnTrw9vaW7mdnZxffNyaaN29udv/OnTtWvX97eHigevXqUgJLo9Hg2rVryM/PNxuBZRypZfy7LwgCgoODERQUJK1ACMAs/uLe3+rWrWv2tygjI8OqvlGpVIXe027fvm3V+7efn5/Z7w1g+J0r6T0iQKuFEoAiORlVe/dGxrx5yGjRArdu3QIAuN+9i0c/+AAAkNy+Pa6YrCDdunVruM6bV2Js1hq1bRs0KhWOjBmDxkuXImD+fADA6QKLFfUF8Mjo0VAoFMh+6SVkDxggvacZn49Wq7X497Z27drw8PAw21bwdzMnJwdqtRp3795FQEAAVCpVpbmOyM/PL3EfIiKiykz2pNb69etx+vRp3L59G88//zx69OiBLl26oGHDhtIH2PT0dFy6dAn79u3DkSNHpOWuR40aVegCoCKZfqjUaDTFJp7UxuXTYV2CCjAfnWXNhYfxHKoCU0/Wr1+P7OxsZGVloXr16hb3DQkJwcyZMzFx4kQAwMaNG+2a1NLpdBaH+xtZSpwYPzRYc+yCrNkPgFRwtygajcZiMs7SNmvjtfRcjR+OSlLww4SxRos1Cj5X44eu0u4HyNM3BZ+rtfEWFYcz9o0l1vSNcTSJpe3WJLUKxlua51pQefrGHu8RhZ6rKELQaCCo1VCo1RB0OojGc2ZmPhiNBUCfnw+1UgnR3R2iSvVgNJaxlpbJ87IUb1E/g5LitfaLF0uvQ2v2tVTbqeCIpKJY6htr47X0HmHtvpbiKLivccSV8bnodDp4enrCw8PDbHt6ejru378vxSMIglQDy1i8XalUwtfX1yxRX/A1WNzfSEv9Wlz74piOJCuOpTY6na7E9wipkL1eD+Xdu4BabRavXqOBm3GqZXa22XlEUQQsJOXLLCoKLkolhIED4ZKZKZ1Xp9HA39dXujbx02qh+veLD+HfRLnpaDvj/5Z+JkVdR2gL/E4bXzPGfq8s1xFERESOTtaklkKhwOLFixEREYEbN25Ap9Nh79692Lt3b5H7GC8W+vTpg+nTp9s0Pk9PT+l2fn6+1Ukta6YSWjp+SYxtLBVN9fb2NvuG15IePXrA29sb2dnZOH36NPR6vd2mNZQ0pcJSAVjjBwJrjl2QNfsBKHGZc5VKZfFYlp6LtfFaeq7WxlvwvIIglPm5KhSKYvc1Xhxb+hnJ0TcFn2tJ8ZYUR3n6xpoPgHL2jWlsBRXVN6YfdlQqVZHP1ZoPPAXjLc1zLag8fWOP9whBEKAShAdJLOP0Qb3esE2jgaDRQAEAubmG6YSenoCrKwS93qri7iW9R5h+oC3Y1lK81q42bOl1aM2+RfWNNfta6htr47X0HlHalZUBw3WGMflnmqwyTWaYJumSk5PNViBUKBTw8PCQamEV9bfO0nuEqeIKv1vqV2sKxRf1HmHNvpbaKJXKEv9uGh8XFQrog4IMr32TeBUqFfL/HSmk8/Y2O48gCEAZFhMqNh6dDlVjYqD19ZXOGxgYiN+XLZPa1I2Lg27RIkPc/16rGeMyPp+ifuZF/TxMX4suLi7Q6/XSe5ZxpJalfeS+jiAiInJ0si+dFBAQgN9++w3ffPMN1vx/e3ceH0V5/wH8M3tmd5NsTkIuDsGIyn0VxROs1nrgBYogaj1akYqixbZalf7EW1vbamsVkYKiYms9wBPkEkGpKCLIIVfCEUKSzb3X7Pz+mMxk9swm2U12k8/79coruzuzzzy7w7LZzz7P91m8uNVvVbOzszFr1qy4TjtUpKenq5cdDoffN6qBtMXboy3Crm0/1PQgLY/Ho06raW+Rd71ej759++L777+H2+2Gw+HosoLxAwcObDWEC3Wf9tDr9UHTz9rrlFNOiTg9UauoqChoylC0AqeQRSslJaXdjzU3Nzfiwgtbt26Fx+MJ+cdz4HSWtmhvf9PS0tp934KCgqBpkNEqKSlp1/2MRmO7+5uVldXu12rglBSFcj4j9au9I2FtNlu7H2vg1MC26LT/I3w+uQaW04kMlwsZvXvLQZbb3VIbS3kvM5n8fzQ68u/wxBNPVC9v374dXq8XBoMhaBpdoJSUlFb3CSc7OxvZ2dntum+fPn3adT8geGpgtFJTU1u9rzLSrrGx0a+Au8FgQEFBgV99rMBwSwnNtD96vR45OTnt6q9yf1EUodfr2/R/jd1ub9dK0oA8RTXcKO/WRPOaU94zfDk5qPjgAwCABZr/S0tKUN38ZaYegPZRp6SkAK++Gr5Q/NtvAy+/3OZ+99uxA45nnoGyXM8JgTuUlKDioovUq3pNf5XHYzAYoj5HBoMBgzT/Fuvq6uByuZCTk4OcnJywX5p2xd8R0X4xS0RElKi6ZD1wq9WKe++9F7feeis+++wzbNiwAeXl5aisrIROp0NGRgYGDhyIsWPH4rzzzot6el9H9evXT7185MgRFBcXh9336NGj6uVoP6QEth9JeXm5OmKivR+CgOi/uSMKpPzb4b+h7oHns408Hrm4u7IyISAHV83hll+Bd5MJsNnkAu+dMAqC5zI60a5AqPx4vF75nKIlwLLGeQVCnkt/TqcTSEkBtAG7KEL43/9g+PRTCCtWRN2WpNdDGjsW7nPPRe3pp8eht8H0yii4dowYJCIiovbp0nfdzMxMXHHFFbjiiiu6shsqbaHb3bt3Y+zYsWH33b17NwB52Ln2G/RIMjMzkZ2djcrKSvX+4ezZs0e9rP1msLS0FKtWrUJlZSVGjhyJc845J2I7SiFZo9HY7m91qWdq77e+lJh4PlvRXMxdDbKUAu/KSCy3GxBFuQ6W0QikpsohVhd8eI32Pacn0QZYbre79RUIRVENsJRpg7Y4B1ihdGTUa6JqmDYNuoYG+KIc5azV2Ngoj1J3OmH+8kuYV6+Gee1a6KurW78zAMlshuu00+A85xy4zjwTkmZBi/Zqy+Pp26cPfDk58MXguERERBSdhPgqyefzoaqqCjU1NcjKylJXbursGlAjRoyA0WiEx+PBpk2bMG3atJD7iaKIr776CgAwaNAgv2mFrRkzZgw+/PBD7NixA3V1dWGnOG7cuFG9rA3Xjh07hkeaV++ZMGFCxFBr37596oiwIUOGRFVDg4ioR5Ak/9FYSs0xj6clxFJGaBkMcoBlMsm/W6kpRPGlnSKo/FaLkDcXi9f+qDXxBAGG5gBLWYHQYDC0WiOK2qZx+vQO3T/1H/+AdckS6JqaortDWhrE889H7WmnwTVuHBCwEmFHdfTxEBERUXx1Wajl9Xrxzjvv4N1338XWrVvlIecA5s6dixubl3e++uqrUVxcjF/96lftrmvTFunp6Rg3bhzWrVuHVatW4fDhwyGn/i1fvlxdcvnCCy9s0zEuuOACfPjhh/B6vVi6dCluvfXWoH3q6+vx9ttvA5C/xR00aJC6bfDgwWrx93Xr1oXtIwD8/e9/Vy9PmjSpTf0kIup2RLElxHK51ALv6nW3W74uCHKAlZ4uh1j8QqDLaIMr5bcyNT9w+qB2GwQBRoMBJpPJr/4VA6zE57Naow+0AGDxYojDhsHV/HcZERER9SxdEmrt3LkTd9xxBw4ePAgAfqsIae3Zswfbtm3Dxx9/jHvuuQc33HBD3Pt2ww03YN26dfB4PJgzZw5eeuklvwLne/bswfz58wHIxZEnT57cpvbPO+88FBUVoaysDM899xxGjhyJ0aNHq9vdbjfmzp2rFqJXAj6F2WzGlClT8PLLL8Pj8eDuu+/Giy++GFSEfcGCBXjnnXcAyLW8Lr/88jb1k4go6UlSS2ClFHNXRmgpIZYyQstolEd4mM3yZYYfnUo7RVAbYil/HwTVv9JsU1Z4NJvN6upxHJmcoCQJ+v37Yf7iCzROnRrydeY65xzg2WeDbvcNGgTd8OHA66/7b2jHud64ZQs2f/st0lJTYdDrkWI248qf/7zN7RAREVHX6/RQa9euXZg2bRoaGhrUP0hNJhPcyjSPZtXV1WhqaoIgCPB6vXj88cdhNBrDTgmMlTPOOAMXXHABPvroI2zZsgWTJk3C1KlTkZ+fj+3bt2Pp0qVoaGgAII8qC1yhbNOmTZgxYwYAedrg4sWL/babTCbcd999mDlzJpxOJ2644QZMnjwZI0eOhMPhwJtvvoldu3YBAEaOHImrrroqqI8zZ87EZ599hn379uHrr7/GRRddhKuvvhr9+vVDdXU1VqxYgc2bNwOQg7ennnqKq9tQmx04cEBdFSzcinqUPHrM+fR6/Qu8S5I8Qks7GkuS5ILuJhNgtXZagfdYKSsrU89le1dK60rKCoSBBdy1AVa4FQgFQYDRaITFYvEbgZWsjhw5op7L9q5ImBRcLqS+8AJSVq+G4cABAIB75Eh4NSPRFWKfPvAMGADDvn3wDBsG57nnwnX22bAPHQrTtm3BoVYb1Tc04K6HHsL+sjL1toK8vJiEWuXHjsHZ1AQ0NKBQU6eViIiI4qdTQy2v14tf//rXqK+vBwCcc845uO2223DyyScHLa+emZmJZcuW4emnn8bGjRshSRKeeuopTJw4Eb17945rPx9//HE0NDRg/fr1KCsrw5NPPum3XRAEzJo1C9dcc0272p8wYQIefPBBzJ8/Hx6PB6+99hpee+01v32GDBmC559/PuQf62lpaVi4cCFmzZqFbdu24ejRo3g2xLea+fn5ePrppzFkyJB29ZN6tpqaGng8Hq7K1U102/OpnT7ocskBljJCS6mL1bziHUwmucC7ySSPxkpStbW1ahCS6JQaVx6Pp90rEHaXACuUuro6iKIIvV7fvUMtkwkpn34Kw6FD6k0pq1ejPkSoBQA18+bBl5cHX8AXhxg0CHjvveDb2uCBp5/2C7QA4Iqf/axNbYTTUF+PJkGAlMT/vxARESWbTv2L+J133sGBAwcgCAKuu+46/P73v4+4/5AhQ/DKK6/goYcewuuvvw6n04k333wTd9xxR1z7abFY8NJLL+G9997Df//7X7Woe0ZGBkaNGoUZM2Zg1KhRHTrG1KlTMXr0aCxatAgbNmxARUUFjEYjSkpKcMkll2DKlCkRP3zm5+fjjTfewPvvv4/ly5fj+++/R21tLVJTU9GvXz+cf/75uPrqq2Frx+pDPZVerw8awdLdPkARdQvKioRKcAXIwZVym8cjByN6vX+QlUSjsZKRdgXCUAFWoq5ASB0kSdBVVkJfVgYpJSXk6CsIAlznnAPDq6+qN5lXr0b9r34VsklviNVanU4nkJICDB4celuUZv/iF/juhx+wbedOAMCQQYMwJ0R9UyIiIkoOnRpqffLJJwCAXr164Z577on6fr/97W/x6aeforKyEp9//nncQy1AHo116aWX4tJLL23T/X7yk59gZ/MfSq058cQT8fDDD7enewAAg8GAyy67DJdddlm726AWKSkpnVK3jYjaSDt90OWSR2cpI7SU0ViiKNfnMRqBtDQ5xEqCkUzJiisQ9jBeL/Tl5dCXlUFfWgpDWZl8uflHKezuHjoUVQsXhmzCee65sDWHWmKvXnCPGCEH0FGOampsbERjY2OHH0rfoiK8+/LL+O2jj+KTdeuw4MknYUlJ6XC7RERE1DU69S/+7du3QxAEnHPOOTCZTFHfLyUlBRMmTMCbb76J/fv3x6+DRETU9STJfzSWUsxdCbCUH0AOrlJS5BDLZGKB9ziItAKhNsAK3MYVCJOM0wnDoUN+YZWhOcTSHz4MQQkmIzBt3QpdRQV8ublB2zxDh6Lul7+E64wz5JFYXfjvwJKSgj8/9BAOl5ejMM4lLYiIiCi+OjXUqq6uBgAUFha2+b4FBQUAoBZpJyKibkQ7fdDlainwroRbbrc8Oksp8G63y785RThm2roCoTbA4gqEyUGorW0JqwJHXR07FpNjmNeuRdOVVwZv0OvREKNpfvb77oPO4YAvIwM1zStSt5UgCAy0iIiIuoFODbVsNhtqamrUQvFtUVVVBUAukk5ERElOKebucsmrFSr1lbQjsZQRWkajvEqhMhqLOqyjKxAqAZbRaOyWBdy7G+sbbyD1hRegq6mJ2zEkoxFiQQF0DkfcjqEwff019MeOQezVK+7HIiIiosTWqaFWUVERHA4HvvrqqzbdT5IkrFmzBoIgJOXy5UREBDmk0hZ4lyR5hJZ2NJYkyaOxzGY5yDKbWeC9gwIDLOWysq2nr0CYrHSVlTCvXKmOtBKcTlQ//3zIfSWjMSaBls9mg1hUBLGoCN7m32JxMbxFRfD16pVwIyffWrECX/zvf5g/dy5SzOau7g4RERHFQaeGWmeccQa2bduGb775Bl988QVOO+20qO63aNEiddXE008/Pc69JCKimFCKuSujsXy+lhFaSpClLfCurFIYZeFoCsYVCLsHoalJrWvlHjsWUoiVjHUVFbA//rh6XRIE+XUVYjSjWFwc9bHF7OywwZWUkZEQdeuOv/WW/O82Ql+2796N3zz8MJwuF7bt3ImXnnwSxfn5ndhLIiIi6gydGmpdc801WLhwIdxuN+bMmYO//vWvGD16dNj9RVHEggUL8OyzzwKQV/ubPHlyZ3WXehiXy4VPP/3U77bzzjsPZn67SxQ9JaxyOlumD3o8Lbd7PPKHUb1eHoVlMsm/E+CDcrIRfT44nc6wKxAGTiEUNYW+ldCKKxB2EUmCUFODtD17YDpyBLaKCtg1QZb++HF118pXXoFnyJCgJsSAkeuCJEF/6BDE/v2D9vVq9pV0Ooi9e0MsLvYPrpp/JKs1hg80PkKFfFo1dXW46Z574HS5AABbd+zABdOm4bM33kBeiCL2RERElLw6NdTq3bs3Zs+ejSeeeAIOhwPXXXcdRowYgVNOOUXdZ+vWrVi0aBH27NmD1atX4/jx45AkCYIg4KabbuL0Q4obr9eLzZs3+912zjnn9NhQKysrC16vFwZDp/43QXESt/Mpii0hllLMXRmhpQRZPp8cWplMQFqa/Jv/rtpEG1wJggCfzwdBkuBwOPxWIAwKsLgCYdfx+aCrqJALs5eWBq0oqKuvR14UzehLS0OGWlJqKnwZGX41rAxlZSFDLV9eHqr+8hc5yMrP79ajIX0+H+544AHsLyvzu/3Sn/407oFWaloaTHY7JLs9rschIiKiFp3+qeIXv/gFKisrsWDBAgDAli1bsGXLFvUP7A8//BAffvihur9SmPbSSy/FnXfe2dndJeqxGCB3LzE7n0oxdyXIap7aphZ3V0ZjAfIHZ4ulpcA7g5SoBE4fDFyB0Gq1wmQywev1orKyUl2BMDDA4gqEncDjgf7IEf9VBJUQ6/BhCM0jhTpCHxDOaDnPOgtCU5M6RdBTUhJ6R50O7vHjO9yXZPCXhQvx8dq1freNHDwY8+6+O+7H7pWbC19ODnwZGXE/FhEREcm65Kvy3/zmNxg5ciT+/Oc/Y/fu3RH37d27N2bOnIkpU6Z0Uu+IiMiP1+s/GkuS5BFabnfLNEOfTy7objK1rFTIQCUibY2rcAFWNCsQMsDqfMZt22D/3e+gP3oUghIqxoGYkxNxoYTaBx+M27ETmXnVKghOJ6SUFLgmTFBvX/3FF3ji73/32zc7MxMvPvEEzFw5lYiIqFvqsvkfEydOxMSJE7FlyxZ89dVX2LNnD2pqauD1emG321FcXIzRo0fjtNNO4/QnIqLO5PO1BFZKMXdlhJYyGksZoaUNsfihMazAFQiV38o2rkCYAEQRKR991DJFsKwMjvnz4QtRXNyXlgbD4cMdPqSk10PMzw9dmL2wUB7pSEHSn3wS+mPHIPbqhYrmUKv08GHMvO8+NfgF5NfOPx55BAV50Uz0JCIiomTU5WnRiBEjMGLEiK7uBhFRz+bxtIRYbrd8m9frPxpLKfBuMgE2m1zgnavjBeEKhAlIFKE7dgyG0lKIBQVBRdYBADod0h99FLrGRvUmQ2kp3CFCLbGgAJJOF9UoLclsDlpFUC3M3rt3t65v1VmcLhdunjsX1TU1frf/ftYsnDF2bBf1ioiIiDpDl4daRJSYtm3bBo/HA6PRiMGDB3d1d6iDgs6nUsxdCbKUAu/KSCy3Wx6hJQjyh+7UVDnE4shZP9opgoErEAYGWB6PJyYrEO7ZsweiKEKv12PgwIFxe2xJx+2G/tAhv6Ls6qirw4chNI+Mq/v1r9Fwww3B9xcEiMXF0O3cqd6kLysDQoUiRiN8eXnQHzkCAPDZ7UGrCHqbVxf05eSErSfHc9k+9bfdpk4/BID7nngCW3fs8NvnwnPPxcwZMzq1X/v370dTZSWkzEyUDB3aqccmIiLqqfjphIhC8vl86g8lP58oQnK5gKYmoKKipZi7x9MSYikjtAwGOcAym1ngXSNw6qDX61VfH525AqHyuuyJKxgKdXX+YVXzSoKGsjLojh2DoJl6Fk6kwutiURGM2lCrtDTsvjUPPQSfzQaxqAhSWlrbHkiznnwuO6Lp0kvVy6++/TZe++9//bYP6NsXzz70UKc/r8r5lPi+SURE1GkYahERdVeiqI7EMhw/Dng88lS22tqWIMvnk0MrkwlIT5eDLNZrCgqwAgu4BwZYXIEwRiQJuspK/+CqeeSVoawMOoejw4eIFGq5hw6F4HSqo67cw4aF33f06A73hTrmm+3bcd8TT/jdZrVYsODJJ5GWmtpFvSIiIqLOxFCLiKi7kCQ5rFJ+lGLjHg909fXQNzXJ/+nn5MhTCi0WOcQyGnvsaCyuQJggPB5kz5gBfWkpdE1NcTuMz2KJuKBB4/TpaJw+PW7Hp9hZs3EjZt53H1zKCNNmzzzwAE4aMKCLehWadtoxERERxRZDLSKiZOb1+hd4lyR5hJYSbDXfJrhcgF4P0WoFevXqkQXeI61ACAQHWFyBsONMmzfDsHOnOtKq8aqr4Dr77OAdjUboKitjEmiJmZkha1uJRUXwZWX12AC3uxBFEX966SU88+KLfisdAsAt116LSeef30U9C83pdMLpdCI9PV0NwomIiCh2+M5KRJRMlALvyo+ycp62LlbzSnswmeQC7yYTxKoqiF4vBIOhRwRara1AGDiFUBtgcQXC6Ai1tfJUPp0O3kGDQu5jXbwYKevXq9c9p54aOtSCXM9KX1nZ6nElQYAvLy/sioISp511W8erqnD7/ffj1U2b8BSAMgDFzdt+MmIE/nDHHV3Yu2CiKKK2thZmsxlWqxXp6en8v4SIiCjGGGoRESU6ZUVCJbgC5OBKuc3jkQMZvV6eTtgcZPWE8Apo2wqE2nALkAMso9GoTiGMdgXCHkGSoDt+XB5lFWJFQV1NDQDAOX48HH/5S8gmxKIiv+utFWnHt9/KhzYaIRYU+I2yEouK5PCqsDDiFELqnjZt2YJf/e53OFpREbTtgrPPxl/mzYPRaOyCnoUmSRIcDgcEQYDdbofFYoHNZuvqbhEREXU7DLWIiBKNdvqgyyWPzlJGaCmjsURRnkZlNAJpafKH/B4wrUUJsJSftqxAaGgegZWSksIAS+HxQH/0qF8xdm1wJbhcrTZhaC2o0ogUajVMnYqmSy6Bt6gIvl69uGABAZDDob8vXoxH/vY39fX8NYBSAMcBPDB7Nn513XVd+1r2eCA0NUFq/jcrAairq4PX60VWVhZMJhMyMjK6rn9ERETdWPf/BERElOgkyX80llLnSQmwlB9ADq5SUuQQy2Tq1vWBAmtfaQOstqxAqNS/6qkBltDU1DLKqrTUL7jSHz0KoYNFrPWHD8sha4gQyjtgANzDhqmjrLwDB4Ztx3vyyR3qB3U/jtpa3PnQQ/hozRq/2ycB6J2bi388+ihuGzGiazqncLvlUYtGIzypqfAJApw+HxobG5Geng6TyYTMzMwe+/8PERFRvDHUImqm0+mQm5sbdBtRXGinD7pcLQXelXDL7ZZHZ+l0cnhlt8u/u+HoFa5AGB/pf/wjzOvXR1Wnqr0knQ5ibi6E2lpImZlB291jx6Jq7Ni4HZ+6r2937MAtc+ei9PDhoG1n/eQneO7hh5GTldUFPdNwOqGrq4NkNEKy2yE5HHCaTKhvaEBKSopaRyuRpkUSERF1Nwy1iJpZLBbMnDmzq7uRMPr06QNJkvjtcqwoxdxdLnm1QqXAu3YkljJCy2QCrNaW0VgxUFhYmBDnM9QKhNqQiisQRqbfvx8nbdkCQ1kZTEeOACefjIabbgq5r9DQEJNASzKZ/Aqxq7Wtiosh5ufLU2CpXfLz8xPidZloaurqMPmXv0RdQ4Pf7YIg4O5bb8WdN93U5a99oakJQn09JLMZUloapJQU5J50EvTV1bBnZLCOFhERUSdhqEVEIbH+Rwx4PP4F3iVJHqGlHY0lSfJoLLNZDrLM5rgUeLfb7TFvszVcgbCNPB7oDx+GrqoKnjBTqlLWrEGapii7q7Y2bKgVWM8qEl9amn9YpVwuKoIvN7fHLDrQ2dLS0rq6CwnJnpaG+379a/z2scfU27IyMvD8/Pk4e9y4LuyZTGhogNDYCMligZSaKv+226GrrYXNZkNWVhaMRiPfR4mIiDoBQy0iolhRirkro7F8vpYRWkqQpS3wrqxS2A1GunR0BUIlwFKmD3bXAEtobGwpxB6woqD+6FEIPh98ViuOrV0bsl6aNyCoilikvbjY/3pODsTi4uBRV8XFkLog9CSKZMZVV2Hjli3470cfYcywYXjhsceQ36sXACDtiSegq62FLz0ddXPndmq/hLo6CE4nJKsVks0m/6SloampiXW0iIiIugBDLSKijlDCKqezZfqgx9Nyu8cjB1sGgzwKy2SSfyfxh53AAMvj8XAFQoUkQXA45GLsgSsKlpZCX1XVahO6xkboqqvhC1EvKHD0le7YMfnfmdkctK/rJz9B9dNPy8FVYSFgsbT/cRF1MkEQ8OR99+HUkhL8cto0v7pUKZ99Bv2xYxB79eq8UEuS5EDL5WoZnZWWBslmg9frRW1trVpHy263s44WERFRJ2GoRUQhNTQ0qLVeWBNEQxRbQiylmLsyQksJsnw+ObQymYC0NPm3oWv/u21sbFTPp9Vqjfp+XIEwBFGE7tgxv5FW2hUFdQF1gNpDX1YWNtRyn3ACPAUF8qitfv3kf28h+PLz4crP73BfKH6amprU16WlB4WODY2NKDtyBEeOHUN5RQWuvvTSkPul2myYdcMNndu5UCQJQm0tBI8HvrQ0ICVFLgxvsUCSJNTU1ECv18NoNEIURbVGIBEREcUfQy0iCunHH3+Ex+OB0WjE0KFDu7o7XUcp5q4EWcq0OaW4uzIaC5CnEVosLQXeEyjA2b9/P7xeLwwGA0455ZSg7dGsQBiuuHtPWYHQ8p//wLZkCfSHD0NQznkc+Ox2CLW1IbdJNhs2zp8PURSh1+tRUlISt35Q/JWWlib1ufR4PHDU1qLK4UBVTY38u/mnprYWf5g9O2SQ/fHatZh5330A5P8/evfq1aZaWVUvvdSyOmy8+XwQamogiCJ86emA2Qyf3Q6kpAAAamtr4fV6kZWVhb179yItLQ3V1dU9+32TiIioEzHUImrmdruxYcMGv9tOP/10mGK0+hwlEa/XfzSWJMkjtNzulmmGygcq7UqFSRLktHUFQu227rYCoeBwwLR5szrqSvB4UPPHP4be1+OB4cCBmBxXzMvzK8au1LYSi4ogsXg4dQGv1wtHbS0qNcFUteZylcOB6oDgqra+PmKbd996K2whRoZmaQqoS5KE2++/H5+89ppaM6s1YmFhmx5bu2kDLbsdMJngy8hQp/s2NTWhqakJdrsdJpMJdrudo7SIiIg6GUMtomYejwdr1qzxu23MmDEMtXoCn68lsFKKuSsjtJTRWMoILW2IlQT/NpQVCJuamuB0OgEA5eXlAFpfgVAJsKzJugKhJEFXVQV9WRk8gwaFrDtlKC1F5r33ttzFYEDNAw+EnC4aWKQ94qENBogFBX5hlRpiFRSoozyI4kGZ0hjKfz/6CJ9t2BAUUtXU1cW8H1UOR6uhFgBUVldjzh//iKV/+1vM+9BuogidwwEA8GVmAkaj+huAXx0ti8UCu92OiooKeOI4ipOIiIiCMdQiop7J42kJsdxu+Tav1380liTJo69MJsBmk0ORBA51lADL6/XC7Xb7FWlvaGhQQ626ujo5xFLCO/ivQJhUAZbXC315ud8qgtpaV7qmJgDA8VdfhXfQoOC7BwRVQnN7oUaCBBZp91ksclgVYkVBMS+vy+uoUfegjKCqqavDgL59Q+6zcv16/Omll9SgquSEE/DOggUh9/12+3a8+f778eyyqtLhQHFBQdDtmc2rbdrT0pCVkYGRQ4bgjl/8olP6FBWPB7qaGkCnaxmhlZmpvqYlSYLD4YBer4fdbofVam1TrUIiIiKKHf7FTUQ9g1LMXQmylALvykgst1seoSUI8jfxqalyiJWgwUTgCoTaACvUCoRVVVXw+XzQ6/Vqba2kWYHQ6YT+8OHQhdkPHYKgrK4Ygb6sLGSoJWVkwGez+RV315eVhQ61CgrgmDcPYvPIK19WVkLVTaPEJ4oiqptrUFU7HNi2fTuqa2pQ19AAvdEYcqqfo7m+mtFgwIGNG0O+VhsaG/G/775Tr1dWV4ftQ+AoqVhJT01FVkYGMu12ZGVkICsjA6lhgp7C3r1RumkTDO38/9W0ebP8f7bJBPfo0R3pdjAl0NLr/QMtzTTr2tpaiKKI7OxsGI1G2JtDOiIiIup8iflpjYiooyTJfzSWMiXE42kJsZQRWgaDHGCZzQlX4B2IvAKhdnRWpBUIlRUszWYzMjMzu+qhhCXU1vqHVaWlLZePHetw+4bSUrhCHliAe8QICE6nGlaFrddjNMJ58cUd7gt1L4eOHkXZkSNB9aZCXXfU1ra75pLH60V9QwPSUlODtgUGVdU1NWHbyYwigAkVUGU2/1av2+3Ibr6ckZ4OY/O0vGgoi0u0l/0Pf4D+2DGIvXqh4oMP2t1OEJcLutpaeaqh3S4Xhc/I8Buhq62jZTQakZWVldhfChAREXVzDLWIqPsQxZYQy+WSgy1lhJYSZPl8cmhlMgHNK1klSoH3aFcg1O4T7QqEZrNZHcmVKAzff4/0xx+HobRU/iAZJ5LRCKF5GmIojmefjduxKTn9eOAAvvzmGzWQ6p2bi1uuvTbkvk//859Y+s47ndKvKocjdKgVEFQ7mkcShVrEYfCgQbh12jS/cCorIwPZzZczm8OaRGNdsgS2V18FAOiOH1d/5154IQCgYdo0NE6f3v4DOJ3Q1dVBMpkgpadDMpshZWb6fcmh1NGyWCywWCzIyMjoUDhHREREHcd3YiJKXpLUElgpxdyVEVpKiKWM0DIaAYtFDrGMxi4fjdWRFQgFQYDRaEzMFQi9Xpi+/NJv1FXt/ffLU/UCmUwwff99TA7rs9mCirIr1329eiV0LTSKLZ/Ph5q6uvAjphwOVDocEEURi8MEmp9v3ox7H3lEvT5qyJCwoVa8pvOFUl1bi1BVtYp698Zjv/udOnIqKyMj7Oih4aecguGnnBLfjsaBrqEhaNSm4POpt2mnELeV0NQEob4eUkoKpLQ0+bfd7vc+oa2jlZ6eDqvVCovF0u5jEhERUWww1CKi5OL1+hd4lyR5hJZ2NJYkySGGslJhFxd4V2pceTwev6AKiH4FwkQJsISmJujLyuDLzIQvJyd4B50OmXffDUGZ2gmgYcaMkKFW2Gl+YYjZ2f6rCGqKtEsZGV0eVFLsKQFVqGBKvR6wzVFb2zIFNwK9Xg+fzxdyQYTAoKqqeRW8UKKZzhdKqs2GVKsV9tRU2NPTUVxY6DfdLzvE9D9TmBFU6WlpuP6qq9rVj2Ths9kg9uoVcXt7CA0NEBobIVkskFJTIVmtkNLTg/arqalR62iZTCbW0SIiIkoQDLWIKLFppw+6XHKApYzQUupiNQdEMJnkAu8mk7rseud31xdyBBbgP71Q/Um0FQglCUJNTejaVmVl0DdP+6m9+240hhq5otNBLCiAYf9+9SZ9aSk8w4cHH8pqhZidDX1lpXxdp4OYnx8yuBILCyFxdbGk5vP5UFtfjyqHA4IgoH9xccj9Hnv+eaxYtUodZRVNQNUeoiiitr4eGSECjLbUqMrKyIDNag2azhdYd0pblyrTbofZZMKuXbvUaYIlJSWxfojdSuP06R2bXhiCUFcHwemEZLPJYVZqKqQQ0zubmprgdDrVOlqZmZmso0VERJQgGGoRUUinnnpq1x1cWZFQCa4AeRqhcrvHIwdBer08CktZqbCTP2S0dQVCtaaVIMDQHGB11gqEAwYMaLni80FXUSFPEQxcUbC0FLr6+lbb05eVhd3mLSryC7UMEfatnTtXDreKiiDm53dZGJlM/M5lF1ECKnUEVXU13F4vLpowIeT+L772Gub9+c/qa2DC+PF49S9/Cbnv8aoq7N63L25916pyOEKGWnk5ORh68skto6YyMyFJUsjX6DWXXoqpkya16/iJcC57JEmSAy2Xq2W6YXp6yODc4/FEXUerS983iYiIeiiGWkQUUqdOcdNOH3S55NFZyggtZTSWKMqhldEIpKXJo7E6sUBvaysQBhZ4D7UCoXb6YNy/5fd4oD9yJGiklaG0FPrDhyG4Qq4FGLVIQZX3pJPgqaxUR1q5x4wJu6/rvPM61I+eKNavTUmS1BFUftP6QkztU0Ks6uapWFqZdnvYUMtqsfjtH2k6XyxrVFktlpAjqLIyMpBlt4cMtABgQN+++GjJkqiO0ZHXcsLUwutJmkejCl4vfM2LhfjsdrnmYtCuEmpqamAwGJCeng6bzRaxjhbPJxERUedjqEVEnU+S/EdjKcXclQBL+QHk4ColRQ6xTKa4j8Zq6wqE2gCrtRUI487lQuadd8oB1tGjEOI0bQuQ69CEUz9zJupnzozbsaltVn/xBX748cfQRdNralDtcMjTYDso0op7balRlRWmVpElJSUolMoKMbVPG2KlmM0deUjU3YgihNpaCKLoH2ilpATt6vP54GheUECpo5UeJgQlIiKirsNQi4g6h9frPxpLKfCuhFtutzw6SynwbrfLv+MYCnV0BUIlwDIajXEt4G7YuROGH39Upwg2XXwx3GPHBu9oMsG4fXtU0wdbI+n1wfWtmlcW9BYWhhzVQLEVbrobAKzasAEffPaZGk6NHjIE991xR8h9l7z9NpavXBnPrgJoXh2uthbZmZlB2wJDLafTGbadiWecgfy8vKDaVJYQwQNR1Dwe6GpqAEGALyMDMJnU34FEUUR1dTV8Ph+ysrJgMplYR4uIiChBMdQiopDKy8vVURd5eXltb0Ap5u5yyasVKgXRtSOxlBFayiqFymisOAgMsJTLyrYuW4HQ54OuvByCKEIsKgq5S9qf/wzzl1+q1739+oUOtQQBYnExdDt2RHVoyWxuKcZeVARvc2glFhVB7N2b9a1iSJIk1Dc0RDW1T/nJSE/H2rfeCmqrsrISX33zDZb85z/qbeYIr5tYTucLJcVsVsMnZ5hprYNPOgmfvPZaVAHVif3748T+/ePV3YRSWVmprsCYnZ3d1d3ptoSmJgj19ZCMRnllQ6NRDrRC/B/n9XpRXV0NAMjKyoLZbEZWVlbYOlpaHX7fJCIiojZjqEVEIZWXl8Pj8cBoNEb/x7nH41/gXZLkEVra0ViSJI/GMpvlIMtslq/HUMKtQOh2Q3/okP8qgkqtq8OHIXg8cJ57LhxPPRXy7mJREaAJtVor0m7UhFo+ux3eoiI40tPR2KsXXPn5yBk9GmJREXw5OZ1eXL87UAIqJYSqDBNKVQcEVh5llc4ouZUpuAEqKythDPg3GasaVdqAKtRKfqG2WaMYtWezWjH4pJOi7kdPUVlZqYYgDLXiQFsQ3mKRVzc0mSBlZIR83/F4PKiuroZOp0NmZibMZjOys7Oj/hKjXe+bRERE1CEMtYiaCYIAa8DKR5xq0AqlmLsyGsvnaxmhpQRZ2gLvqanySKwYjgBqbQXCwCmE2mLVSmgVixUIhfp6/2LsmhUFdeXlEJpDs3AiBlXFxX7XIxVpb7rqKrgmTFBHYEnNNWB27dqlfni2l5S04ZH1DMerq1F2+LA6eio/NxfjwxS4nzprFtZs3Bj3PtXU1akfkAOlp6b6Xa+uqQnbTkn//jhz7NhWw6loAyqipOD1yoGWKMKXlgakpECy2SClpYXc3eVyweFwwGg0IiMjQw20OvylBhEREcUVQy2iZlarFb/5zW+6uhuJTwmrnM6W6YMeT8vtHo8cbBkM8igsk0n+HYOAMNoVCIMCrFisQChJ0FVW+oVV+ubwylBWBl2EkTLR0JeVyc9biD6JffvC26ePOkXQO2hQ2Hbco0d3qB/JTJIkNDY1tUztq672GyllSUnBr2+8MeR9//nqq/jrwoXq9Unnnx821LKH+VAcD47aWuSGGMFTnJ+PSeedhxP69UNWRgbycnLCtnHFhRfiigsvjGc3iRKLywVdXR2g08GXmQkYDGELwgNyjbeamhoYjUZ1hFZWVhYDLSIioiTAUIuIIhNFoLFRDrGUYu7KCC0lyPL55DDGZALS0uTfUdQfiSQwvIp2BcLAAKujKxCmPfMMTF9+CX1ZGXRNTR16TBEJAoTaWkghVn5znX02XGefHb9jJyBJktDkdLZM7dPWogqzil+VwwFXmCl7ANCnsDBsqBW44l6spvOFYjIao5vil5kJe5jV1voUFGDOTTehhKPuiPwIDQ0QGhvlaYbN70e+jIyw70lNTU2oqalBSkoK7HY7LBYLi8ITERElEYZaROSvuZi7rr4ehoYGGAQBcDhairsro7EAeRqhxdJS4L0dHwK0Na7CBVjRrEDYlgBLd/QojDt3qqOuvP37o2nKlJD76svKYNy9u82PKxQxM7OlEHtxsV+Rdl9WVretb6UU4g9XaPm5RYvw3Q8/BIVU4YqOt1dbgqpI+2ZqAjCjweAXUIWc3tf8O1szxY8fmIlizOeTpxu63ZCsVnmqodks188K83praGhAXV0drFYr0tPTYbFYkJGRwdcnERFREmGoRURyMXdlSmFzMXddfT2kpibofT7g2DF5NJZO579SYRtHQAWuQKj8VrbFagVCobYWuspKiGFWULO8+y7SXnhBve467bSwoVa4FQlDPj5BgC8vTw6rmlcS1AZXUkAdpGSlTPHzeL3oH1DvS/Hia6/hzfffV0Oqqy+5BI/97nch9127aRPWbtoUzy4DAOobGuByu0OuFJiVkeEXUA3o2zdsO7+4+mpcc+mlyMrIgM1q5Qdgoq7m8UBXWwtIkjzNsHmUlmSzhb1LXV0dGhoaYLPZkJaWBpvNBnuIkbJERESU2BhqEfVEPp8cXjmdLcXcm0doKaOxDFVV8u0pKS0hVogwIPwh4rgCoSRBd/x4UFF2tb5VTQ18djuOrVoVsm9iQBATqUh7YKglGY0QCwv9wipvc4AlFhS06TlKBI1NTWGn8oW7roygGjJoED5+9dWQ7VY5HNi2c6ff9XCyOzidLxSjwRByxJTX6w0Zak0YPx4HNm6MKqDKycqKeX+JqJ2cTrl+lsEAX3o6YDTKwZbZHPYuNTU1aGpqUsOstLQ0pHVirTwiIiKKHYZaRD2Fx9MSYil1h7zelnBLKfCu1wMmE8S0NHiVOlmtjDCKtAJhYIDl8XiiW4HQ64X+yBE5rCotlQuza4IroZWpabqaGgh1dSFXugoMqvSHD8vPRYjpca6xY1Fz//3qqCtfr15tHqHW2Xbu3Yvyigq/UOrHffvgqK1FbX09XB5PUEDVHpFW3Mtsw3S+1mpUGfT6oKl8oab6ZWuup9psbRpBxYLQRElGkiDU10NwOiGlpMgjYZX6WWH+j5YkCQ6HAy6XS62fZbfbYYswoouIiIgSG0MtomYejwdbtmzxu23EiBEwGo1d1KMO8vlaQiylmLsyQksJtkRRrjViNMrBldmsBjuS2SwHPQFiugKhxwPjoUN+qwgqIZb+6FEImvCrPfRlZfCefHLwYygqgpid3TLSqqhIDvVChFpiv35o6tevQ/2Ihc1bt/rVnRo7fDgmnX9+yH1nP/ggvt2+Pe59ilWNqrPHjYPNZlNDquyA0CotNZVT/Iiohc8HoaYGgtcLKTUVksUi/6Snh62fJUkSqqur4fF4kJGRgZSUFGRmZsJisXRy54mIiCiWGGoRNXO73fjggw/8bjv11FOTJ9SSJP/RWEoxd4+nJcRSRmgZDHKAZTaHLfBusVjgah7FU1dXB4/H0+4VCJX6V4IgIGX5clj/8x85vDp+PH5Ph04HfUVFyFBLysxExccfx+3YgZwuV8ipfNoV/SodDvQrKsLjv/99yDb+88EHWPjmm+p1t8cTNtTq6Op80XK53XC6XEgJMc1n7LBheHbePHX0VG52dth2fnrWWfjpWWfFs6vdisVigSiKHVrVkxIDz2U7KPWzAHlUlskEKT0dUoRwyufzobq6Gl6vF5mZmTCbzcjKyoI5whTF9rBarfB6vWEXxSAiIqLY47suUTITRf/RWJIkj8ZSrrvd8nVlGmF6uhxkBXyACrUCodVqVb/Brq2tjbgCocnthn3vXqQcOQLz0aPQeb2ou+uukF3WVVXB9M03MXn4ktkMb2Fhy4qC2vpW+fnyCLQYc7pcYYOpKocDVSHqUTU2NUXVdmV1ddhtmQEFjDsynS8UvV6PTLs9uA6VZuRUpt2OrMxM9XJ6amrYaXt9CgvRp7Cwzf2g1hWHKc5PyafbnktJUmsk+v1WLoe7XZIghGtDec9xOuW6Wdr6WRFqGYqiiOrqavh8PjXIysrKgikO9Q8HDhwY8zaJiIgoMoZaRMlEkloCK5dLnh6oLfDudreM0DIaAYtFDrGMRnU0liRJ8LjdIVcgBPzrYykrEApuN4zHjsGbnw9DSkrQCoSmzZuRNXu22oYvJQV1d94ZcgRYW1YTBABfWpp/WKVZUdCXmyuvyNhOLrdbDZ7SU1NRlJ8fcr9f3HOPOvUv2oCqPSLVqGrLdL7crCxkN4dPgbWntHWnog2oiCjBhAmEYhEaBd03xHYh3PFjRfveIQgt1wVBnmZos0EymyFlZER8D/B6vahu/rJACbSys7M5koqIiKgb4bt6GJIk4f3338e///1v7NixA42NjcjNzcWYMWMwbdo0DB06tMPH2LVrFxYuXIhNmzbh2LFjSEtLw4ABA3DZZZfh8ssvj2o6QizaoASnTB9URl5JkjxCK/A2nU7+ttpqlYMsna5lBcLGxpArEGqnEIp1ddAdPAjT4cMwHzmC9KNHYT5yBKYjR2AoL4fg86Hirbcg5uUFddEbMNpA53RCd/y4HDoFCBVqibm5fmGVWFysXpaiXGLd7fH4jZqqrqlBqs2Gc047LeT+d82bh9fffVe9fvv11+P+O+4IuW95RQXKjhyJqh8dUeVwQJKkkPWj+hUVYezw4erIqZIBA8K28+Bdd+HBMCPliCgK8QiNtL9babsrQyP1CxDtfkpw1LxdCmwnMHhqpe2Ix4+CZLOFXAREy+12w+FwQKfTqVMOs7Oz+XcRERFRN8NQKwSn04nZs2dj9erVfrcfOnQIhw4dwnvvvYc777wTt956a7uPsWzZMsybN89vhExVVRWqqqrw1Vdf4e2338Zzzz2HjAjTiGLRBiUg7fRBl0sOsJQRWspoLKWAu7IyockEUadrGXlVUxO8AqHHA9/x49AdPAhd82qCKc2hlfnIERgiTH1TGEpLIfbvH9zl3FxIJhMEpWYX5CLtoUItb1ERau+6q2XUVWGhPKJMQwmoqisqULV7t1pzqjrE1D7lcn1DQ9CxTh81KmyoZbNa/a5Xx3g6XyiCIARN8csOWNEvXKg18YwzMPGMM2LSD6IuF6vQKFQb2u0MjUJv74hIx4uy/61dliLdV68POTpLkiS43W64XC64m0cjm0wmZGRkqIEWR6MSERF1Pwy1QrjvvvvUQGvAgAGYMmUKcnJy8P333+P1119HY2Mjnn76aeTl5WHSpEltbn/dunX4wx/+AEmSYLFYcM0112Dw4MGorKzEW2+9hV27dmHz5s2YM2cOXnrppZB/hMWiDUogyoqESnAFyCO0lNs9HvkDl14PmM0QLRZ4dDp4vF54XC54GxrkIu2iCOHoUeDAAXnUVfOKgsbDh2E6cgT6xsYOdVNfVhZ6g04H78CBgMuljrTyZWaG3tdiwSsZGTj844+o/vpr/5Cq+XddiICqPSLWnQoYAVbZxlBLEARkpKf7TfELnOoXeN2eltZlowRKS0vVgtTdto5PDxHVuWRo5B+sxCo0Crwt0u1RCHkuowiN1McXq9BIuz3S402wVUh9Ph9cLpf6I0mSPCXeZEJqairMZrNaQ6sz/g7as2ePWiie9bWIiIg6B0OtAJ9//jnef/99AMC4cePwz3/+U10d5+KLL8ZVV12Fa6+9Fg6HA4888ggmTpyI1NTUqNt3u9146KGHIEkSrFYrlixZglNPPVXdPnXqVMyZMweffPIJPv/8c6xYsQIXX3xxzNugLqadPuhyyaOzlBFaymgsUQQEAV6dDh6DQf4tSfA6neoqg6IoQvf990h/4QUYDh2C8ehR6DQj92JNd+xY2G3PXn45Nn3zjRxMbdmCqX374rp+/ULvu2AB9h48GKdetoi2RpUgCPAoo99CuGHyZFx47rl+IVVGenpSTWNpamriKmux1NbQKGC7EKkN7f1D7OMtL4fo9ULS66GzWjsnNFJ+hwt+EjQ0Cqm10CbeoZHmck1FBbyiCIPRiMK8vIQLjRKRx+PxG5EFACaTCTabDWazWV2x2Gw2IyUlBVarFaFGv8ZDY/NU/6RZNZmIiKgbYKgV4OWXXwYAGAwGPPzww0HLPQ8YMAB/+MMfcPfdd8PhcGDZsmW48cYbo27/448/RlnzaJebb77ZL4wC5D/MHn/8cXz11VdwOBx44YUXggKpWLRBnUwp5q6EWErwpCnwLrlc8IoivAA8kgRpzx5IZWXQN//U/frXcKekBK1AaKmtRf7GjTHrqiM1FcesVuwTBPwoCNgjSdgtSfi2oQFDDh3CgjD327hlC/69YoV6fdzIkWGPkZWREbdQSzuCqldOTtj9LvnpTzF+zBhkZWS0GlCNGDw4Hl2lSCIFPlEEPx0JjYCAkUYhtndYB0Ijn9EInyBAMBggpaS0ft8Q25M2NAr1+NrTRqLQ6+V/V7F67hOcFPAa0l4PdxmQC74rQZYoihAEASaTCXa7HWazGTqdDjqdTg2ylNuIiIio+2OopeFwOLBhwwYAwJlnnhl2WsfPf/5zPPLII6isrMSHH37YplBrRfOHfkEQMHXq1JD72Gw2XHHFFXj55Zexa9cu7Nu3D/01dYxi0QZ1Aq/XfzSWUuDd7YbU1ARPWRlEQYDHYoFXr4dHECAZjYBeD9HpRMGMGRCaR2QBwOEJE9BUUgKdTgeDwaCuQGg85ZQ2dcsN4KAgYLckYQ+AHzU/+wA46+uB+vqQ9y2IUHerLavztaVGVeAUv3BT+5SfaEdQZWdmIjvcFMmeoCtCo4DtQqRRTh0Vj5FGAW1EFcqE26cDRIsFos8HGAxyseyOhkYhbus2oVEMRBO8tCesUWpAKfUPm8KsrBrP44e7f7yO3xF6vV6dTmgymSAIAgwGA1JSUpCSkgKTyRST4xAREVFyYailsXnzZnVa17hx48Lup9PpMGbMGHz44Yf49ttvUVNTA3uUK7R99dVXAICTTjoJWVlZYfcbN26cOmps7dq1foFULNqgOJCklgDL6ZR/HzoE3+7dEPfsgfTjjxBKSyEcOgTd4cMwOZ2o+c1vUHfVVS2jr5xOeRqcJCEzOxvWigq1+bodO5B32mnB3z6bzXAIAjI0HxzqIYdUgaHVHgClAHzt/JARaTpfZsBrIFKoNWLwYEiSFDqk0gZUaWnJu/R6pJE+XRAaGR0O6L1e6PV66DT/rtqtg6ERgFaDk64KjSIeLwFCI3dVlVq3x9erV1DX4xZ8aEL2UO3F/fgR7h9Nu+09TjzV1taq04JrIvz/qp0+F+5yW/YLvD3wd3sut+f40d5H+TJHGaGlBFmcTk1ERERJ+mkxPnbv3q1eLikpibivUgBUkiTs2rULY8aMabX98vJy1NbWAgBOPPHEiPsOGDBAvfzDDz/EtA2KodpaYNcuYOdOYM8e+Pbtg7R3L4QDByAcOgRBFKEDEG4SxPerViFt4kQA8rfQBoMBNqsVRqMROzwejNLsW/7118i/+eaQ7TyTmYn9VVVqiBW+8lXHRAqqxg4bhl9Nn64GVSf07Rt23ztvuik2HQo30ieWoVGE7Qk10ijwB/6hkS8lBaIoQtLr5dE9yva2hkaBfevI4wsTDmn7rVyWAh6PpJmypb0c2J72fuEeb9DxOzoyRRP+xGM0TFVzqKXX61FeXt5q212ho8FHNCGIIAgxDVsi3aetbUW73/Hjx9WAMi8vL6rjd4WOPp/tDb+051oZpZVIzwsRERF1PYZaGocOHVIvFxYWRty3d+/efveLJtQq06wc11r7eXl50Ol08Pl8OHz4cEzboDZyOIAff4Rv1y40ffcdPNu3Q9i7F6ayMlgCpuO1tYKHb/9+ZGRkqN9Aax2323HA4VBHWTktFgwP085Hffrgy6qqNh69RXpqatB0PkGSkGazISM9HSeXlCDLbpdXDGweSaZqDnPGDx2K8UOG+IdGymqL4YKfZA2N0ByWBIZHQFCgoj1GqLAmbECDDoYgAceoFQSIggC9TodazXEk7X0kKbj/rYRNgZd9YY4f9NzE+nzGQCw/nIfaJzCEac8xBUGAxWJRg5C05oAymuO3pf+xfPxdJV5hSyzvn56erhYWt9vtCdtnIiIiokTFUEujShMKZLZSaydDUxPIEWH0ila1JgBprX2j0Qir1Yr6+nq/9mPRBkWvtqAAtuaRcToAthi3n9PQAKNSKNjn8wtw3j7tNLxw4IC671UpKZjsdKrb1Y8bkoRszQfbdJsNWXa7HE6lp6thVGZamno9My0N2enpyEpPh91mg9FgCAqb9u3bB6/HA73BgP79+6vBh3jsmN++YUesBARFfmENwo+eiRj8tLJPYNuBt4cKm6SAx+03ysb/gfk/zhCPMVyfWg3LAi5rn6ugfTTHFjRT+gRN6BbqQ2u91QpRFGEwGOBsXrE1mhBEe10I2BbvKVFtuX93+NAe7WNITU1VQy3t1PeuDj4S6f7Jwmq1qqFWW1ZSJiIiIiIZQy0NpxIYAEGrHgbSFiTV3i8SbRHY1tpX9qmvr/drPxZtdAZRFP2uNyojdhJYU1NTUFBoOPlk1HfwuWsAUAbgEIDDzb+VH2NODp4KM4quX2EhThs7FqlWK9KsVgwZOBBVx4InFkoAfn/zzbj/l7+E1WKBQa9vCU604QjgH5xAHmnkAORATbOPJAios1ggms3Q6fWoaG4zSIjAJehy4P7KxaBNQvC+2rAm2mNqQx1N8CNpjyEIao0nQXMfCZrgRglytDXMtEFSa/0Pc7t21E447ZkS1ZqcnBy1do92dE8sdUZ41Z77d/V9Yj26KTMzUz2XFoulzfePpa6qRdVdKHU8fT4f6sMs0EHJIxnPZ+DfZ4F/vxERESU6hloaXq9XvdzaKjra7dr7RaL9QyGaVXqUfbTtx6KNzuByufyul5aWdurx22v8+PF+1w8GXO+IwuafwImqDWH2/+nUqfhpwOqWodfGApSPtWLzTyzkaApQd+6/nk4gSfJKlD1Ienq6ermysrILe0KxIooidu7c2dXdoBjguexekvl8Bv79RkRElOjaWgKoW0tJSVEvezyeiPu63W71crTLSGtHVrXWvvYYRqMxpm0QERERERERESU7hloaVqtVvdzaN1XaUCuaaYBtbV+7jzZsi0UbRERERERERETJjtMPNbTTcxwOR8S6M9rC61lZWW1uv6amJuK+Ho9HrXOgbT8WbXQGbSF9QA7+9Hp9p/aBiIiIiMITRdHvS9LAv9+IiIgSHUMtjX79+qmXjxw5guLi4rD7Hj16VL1cUFDQrvYjKS8vVwuOatuPRRudwWQyoZemJhMRERERERERUSxx+qHGgAED1Mu7d++OuK+yXRAEnHjiiVG1n5mZiezs7Kja37Nnj3q5pKQkpm0QERERERERESU7hloaI0aMUAuqb9q0Kex+oijiq6++AgAMGjTIb0pga8aMkde+27FjB+rq6sLut3HjRvXy2LFjY94GEREREREREVEyY6ilkZ6ejnHjxgEAVq1ahcOHD4fcb/ny5aiqqgIAXHjhhW06xgUXXAAA8Hq9WLp0ach96uvr8fbbbwMA+vfvj0GDBsW8DSIiIiIiIiKiZMZQK8ANN9wAQC6yPmfOHNTX1/tt37NnD+bPnw8AsNlsmDx5cpvaP++881BUVAQAeO6557B582a/7W63G3PnzlUL0d94441xaYOIiIiIiIiIKJkJkiRJXd2JRHPHHXfgo48+AgAUFRVh6tSpyM/Px/bt27F06VI0NDQAAObNm4drrrnG776bNm3CjBkzAMhT/hYvXhzU/qpVqzBz5kxIkgSj0YjJkydj5MiRcDgcePPNN7Fr1y4AwMiRI7FkyZKQqwbGog0iIiIiIiIiomTFUCuEpqYmzJo1C+vXrw+5XRAEzJo1C7NmzQraFk2oBQBLly7F/Pnz4fF4Qm4fMmQIXnzxRWRmZobtZyzaICIiIiIiIiJKRgy1wpAkCe+99x7++9//qgXZMzIyMGrUKMyYMQOjRo0Keb9oQy1AXr1w0aJF2LBhAyoqKmA0GlFSUoJLLrkEU6ZMUYvWRxKLNoiIiIiIiIiIkg1DLSIiIiIiIiIiSjosFE9EREREREREREmHoRYRERERERERESUdhlpERERERERERJR0GGoREREREREREVHSYahFRERERERERERJh6EWERERERERERElHYZaRERERERERESUdBhqERERERERERFR0mGoRURERERERERESYehFhERERERERERJR2GWkRERERERERElHQYahERERERERERUdJhqEVEREREREREREmHoRYRERERERERESUdQ1d3gIiCSZKE999/H//+97+xY8cONDY2Ijc3F2PGjMG0adMwdOjQNrdZVlaGiRMntqs/O3fujFkbWhMmTMChQ4eiuv/69euRm5vbrmN3tXicz0Bff/01Xn31Vfzvf//D8ePHYTab0bdvX0yYMAHTp09HRkZGq23s2rULCxcuxKZNm3Ds2DGkpaVhwIABuOyyy3D55ZdDr9d3ShuJLBnOpSRJWLlyJd555x1s3boVVVVVMBqNKCwsxPjx4zFjxgwUFBREbKMnvDaT4VzG6jx099clkLjnk++bRERE8SVIkiR1dSeIqIXT6cTs2bOxevXqkNv1ej3uvPNO3HrrrW1qt71/WAuCgB9++CFmbSjq6+sxevRoRPtfULL+cR6v86n1xBNPYMGCBWG35+bm4q9//StGjBgRdp9ly5Zh3rx58Hg8IbePHj0azz33XMQP4bFoI5Elw7msqanBXXfdhc8//zxsGyaTCf/3f/+Hyy67LOT2nvDaTIZzGavz0N1fl0Bin0++bxIREcUXQy2iBHP33Xfj/fffBwAMGDAAU6ZMQU5ODr7//nu8/vrraGxsBCD/gT1p0qSo221qaor4QVfr+eefx/fffw8AuOOOO3D77bfHrA3F//73P1x77bUAgF/96lcYMmRIxPbOOussmEymqI6dSOJ1PhULFizAE088AQAwGo2YMmUKhgwZgtraWnzyySf46quvAADp6en4z3/+g+Li4qA21q1bh1tuuQWSJMFiseCaa67B4MGDUVlZibfeegu7du0CAIwfPx4vvfQSdLrgmeuxaCPRJfq59Pl8mDFjhrpfQUEBrrzySpxwwgloaGjA+vXr8fHHH8Pn80EQBDz//POYMGFCUD96wmsz0c8lEJvz0BNel0Bin0++bxIREcWZREQJY/369VJJSYlUUlIizZgxQ3I6nX7b9+zZI40dO1YqKSmRxo4dK9XV1cW8D++++67ah1tuuUXy+XxxaePVV19V99m7d28sup5w4n0+HQ6HNHz4cKmkpEQaM2aM9MMPP/ht9/l80p/+9Ce1D3PmzAlqw+VySRMmTJBKSkqk4cOHS9u2bQvafvvtt6ttvPfee3FpI9Elw7l86623/PrY0NAQtM/KlSulU045RSopKZHOPPPMoMchSd3/tZkM51KSOn4eesLrUpKS53y2hu+bRERE7ZOcX8kRdVMvv/wyAMBgMODhhx+G2Wz22z5gwAD84Q9/AAA4HA4sW7YspscvLy/HH//4RwBAZmYmHnnkEQiCEJc2lFohSk2S7ije5/Pzzz9XRyDcfPPNOOmkk/y2C4KAO+64A3369AEArFy5El6v12+fjz/+GGVlZWobp556qt92k8mExx9/XJ2a9MILLwT1IxZtJLpkOJdvvPEGAPk19dRTT8FqtQYdR6n9A8iv1bVr1wbt091fm8lwLoGOn4ee8LoEkud8RsL3TSIiovZjqEWUIBwOBzZs2AAAOPPMM0NORwGAn//858jOzgYAfPjhhzHtw/z581FbWwsAuPfee5GTkxO3NpQ/zgcOHJi0U14i6YzzqXxgBYBBgwaF3Een02Hw4MEA5Gkw1dXVfttXrFgBQP5gNnXq1JBt2Gw2XHHFFQDkgtP79u2LeRuJLBnOZX19PbZu3QoAOP300yPW0fnZz36mXv7222+Dtnfn12YynEtFR89Dd39dAsl1PiPh+yYREVH78R2RKEFs3rwZPp8PADBu3Liw++l0OowZMwaA/IG0pqYmJsf/4osv8NFHHwEARo0ahcsvvzxubUiShN27dwMASkpK2tnjxNYZ5zM1NVW9XFpaGna/w4cPA5CLJdvtdr9tSi2Yk046CVlZWWHb0D6GwNE9sWgjkSXDuayursaQIUOQm5uLE044IeKxtPdTPkgruvtrMxnOJRCb89DdX5dA8pzPSPi+SURE1DEMtYgShPLHKtD6H6wDBw4EIP+RqxT67ainnnpKvfzb3/42rm0cOnQI9fX1AIATTzwRgDzSZPPmzVizZg127NgBURTb1YdE0RnnU7tE/ZIlS+ByuYL2+fLLL9URPGPHjvUrGlxeXq6GGsp5CGfAgAHqZe2KXLFoI9Elw7ksLi7GsmXLsH79esydOzfisX788Uf1cuCKd939tZkM5xLo+HnoCa9LIHnOZyR83yQiIuoYQ1d3gIhkhw4dUi8XFhZG3Ld3795+91O+gW6vTz/9FNu2bQMAnHfeeX5/xMejDWUKBSB/gz5r1iysWrXK7w/yjIwMTJ8+HbfccgtSUlLa3J+u1hnnc/DgwTjrrLOwdu1a7N27F9OnT8fdd9+NU089FQ0NDVi1ahX+9Kc/wefzITU1Fb/5zW/87q+dVtNaH/Py8qDT6eDz+dQRCbFqI9Elw7lsi3//+9/q5WHDhvlt6+6vzWQ5lx09Dz3hdQkkz/kMh++bREREHcdQiyhBVFVVqZczMzMj7qsdXeFwODp87FdeeUW9fPPNN8e9De0f54899ljIfRwOB/72t79h7dq1eOGFFyJOn0lEnXU+//znP2POnDlYvXo1tm7diuuvvz5on5EjR+L+++8PKhStrfvSWh+NRiOsVivq6+v9+hiLNhJdMpzLaK1btw6fffYZACA7Oxvjx4/3297dX5vJci47eh56wusSSJ7zGQ7fN4mIiDqO0w+JEoTT6VQvB67eFEg7tUF7v/b44Ycf1NorI0aMwIgRI+LehvaPc6PRiFtvvRUrVqzAd999h3Xr1uHhhx9WC11v3boVd911l1o3JVl01vm02Wx47LHHcNZZZ4XcLggC+vfvHzTNDJALGkfbR+0+2j7Goo1ElwznMhpHjhzBvffeq16/7bbbgkZzdPfXZrKcy46eh57wugSS53yGwvdNIiKi2OBILaIEoV0CvLV6HNrtbV06PNC//vUv9XJ7R2m1tY3y8nIA8oeQl19+GaNHj1a39erVC5MnT8ZZZ52FKVOm4OjRo9i4cSNWrFiBiy++uF396wqddT5XrFiB3/3ud3A6ncjLy8PkyZMxYMAANDQ0YN26dfj444/x73//Gx9++CFeeeUVv+kt2mkr0dSAUfbR9jEWbSS6ZDiXramqqsIvfvELVFZWAgDGjx+P6dOnB+3X3V+byXIuO3oeesLrEkie8xkK3zeJiIhig6EWUYLQjpjweDwR/0B3u93q5bYUpA3U0NCA999/HwBQUFCACRMmdEobr7/+Ourr61FXV4f8/PyQ++Tl5eH+++/HrFmzAABvvvlmUv1x3hnnc+XKlbjnnnsgiiJ+8pOf4Pnnn/dbqWvy5MlYv349br/9djQ0NODmm2/G8uXL1W/ztSMbPB5Pq8dT+mk0GtXbYtFGokuGcxlJRUUFbrzxRuzduxcA0LdvXzz11FMQBCFo3+7+2kyWc9nR89ATXpdA8pzPQHzfJCIiih1OPyRKEFarVb0canUlLe0f59FMLQln3bp16rHOP/986HRt/y+hvW2kpqaG/cNcMWHCBPXDw5YtW5JqKkW8z6ckSXj00UchiiLsdjv+8pe/+H3QUpxxxhlq4eKamhq8/PLL7eqjdh/tB8lYtJHokuFchnPw4EFMmzZNXSUuPz8fCxcujFhrpzu/NpPpXHbkPPSE1yWQXOdTi++bREREscNQiyhBpKenq5dbK2Kr3d6RQrCrVq1SL19wwQVd1kY4er0effv2BSB/IEmmIsbxPp87duxAaWkpAOCiiy6KWMtlypQpsFgsAIA1a9aE7GNNTU3E43k8HjQ2Ngb1MRZtJLpkOJehbN26Fddccw0OHDgAQF4dbvHixa2uEheNZH1tJuu5DCfceegJr0sgec8n3zeJiIhih6EWUYLo16+fevnIkSMR9z169Kh6uaCgoF3HE0VR/cM7Ly+vXQXiY9FGa5JtOowi3udz//796uWSkpKI+5pMJgwYMAAAUFZW1q4+lpeXq9/4a/sYizYSXTKcy0Dr1q3D9ddfr9bQGjhwIJYuXYri4uKo+hSNZHxtJuO5bE2o89ATXpdAcp5Pvm8SERHFFkMtogSh/DEMQJ0qFI6yXRAEnHjiie063rZt29RvcCdMmBCyvk482igtLcWiRYvwzDPPYPXq1a3urxTHNRqNsNvtbe5jV+nM8xnN9CJleoter1dvy8zMRHZ2dlR93LNnj3pZ++EuFm0kumQ4l1qrVq3Cbbfdpo6+GTZsGJYsWYK8vLyI7faE12YynMtYnIee8LoEkuN8BuL7JhERUWwx1CJKECNGjFC/Xd20aVPY/URRVJcBHzRokN/0i7bYsmWLennYsGGd1saxY8fwyCOP4IUXXsAbb7wRcd99+/ap374PGTIk4geFRBPv86kNKLZt2xZxX6/XqxYJDxyhMGbMGADyNJu6urqwbWzcuFG9PHbs2Ji3kciS5VwCwJdffonZs2erxcHHjx+PV155BZmZma32oye8NpPhXMbqPHT31yWQHOczEN83iYiIYouhFlGCSE9Px7hx4wDIIy0OHz4ccr/ly5ejqqoKAHDhhRe2+3jfffedevnUU0/ttDYGDx6sFrFdt25d2McJAH//+9/Vy5MmTWpXH7tKvM/nkCFD1Odx5cqVEafevPPOO6ivrwcghxxaSj0Xr9eLpUuXhrx/fX093n77bQBA//79MWjQoJi3kciS5VxWVlZi9uzZakHsc889F//4xz/8imlH0hNem8lwLmN1Hrr76xJIjvMZiO+bREREscVQiyiB3HDDDQDkwr1z5sxR/0BW7NmzB/PnzwcA2Gw2TJ48ud3HUqacGI1Gvykc8W7DbDZjypQpAOTHeffddwc9TgBYsGAB3nnnHQBy3ZTLL7+8XX3sSvE8nyaTCdOnTwcANDY24s4771Q/tGl9/fXXeOSRRwDI5+n666/3237eeeehqKgIAPDcc89h8+bNftvdbjfmzp2rTpe58cYbg44RizYSXTKcy//7v/9T7zd06FA8++yzMJlMUfejp7w2E/1cxuo89ITXJZD45zMQ3zeJiIhiS5AkSerqThBRizvuuAMfffQRAKCoqAhTp05Ffn4+tm/fjqVLl6KhoQEAMG/ePFxzzTV+9920aRNmzJgBQJ5Gsnjx4rDHGTFiBBobG5Gbm4v169e3q6/tbaOurg6TJ0/Gvn37AAC9e/fG1VdfjX79+qG6uhorVqxQP4DZbDYsWrQIQ4YMaVcfu1o8z2dTUxOuvfZabN++HYBcR+fyyy/HoEGDIIoiNm7ciOXLl8Pr9QIAHnroIUydOjWoj6tWrcLMmTMhSRKMRiMmT56MkSNHwuFw4M0338SuXbsAACNHjsSSJUtCTmeJRRuJLpHP5Y8//oiLLroIylv63Llz1RXQIsnIyMDo0aPV6z3ltZnI5xKI3XnoCa9LIPHPpxbfN4mIiGKLoRZRgmlqasKsWbPC/rErCAJmzZqFWbNmBW2LNtSqr6/HqFGjAAAnnHACPvjggzb3s6NtHDlyBLNmzYpYpyQ/Px9PP/20epxkFO/zWVVVhbvuusuvLk4go9GI3//+97j22mvD7rN06VLMnz9frcUUaMiQIXjxxRcj1maKRRuJLJHP5dNPP41//vOfbXk4YfvSE16biXwuFbE6D939dQkkx/kE+L5JREQUD4au7gAR+bNYLHjppZfw3nvv4b///a9a5DcjIwOjRo3CjBkzOvzHqvKtNYB2F5rvaBv5+fl444038P7772P58uX4/vvvUVtbi9TUVPTr1w/nn38+rr76athstnb1L1HE+3xmZWXhlVdewcqVK/Huu+/i22+/RWVlJUwmEwoLCzF+/Hhcd911KCwsjNjO1KlTMXr0aCxatAgbNmxARUUFjEYjSkpKcMkll2DKlCmtLhMfizYSWSKfS2XETSz0hNdmIp9LRazOQ3d/XQLJcT4Bvm8SERHFA0dqERERERERERFR0mGheCIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSDkMtIiIiIiIiIiJKOgy1iIiIiIiIiIgo6TDUIiIiIiIiIiKipMNQi4iIiIiIiIiIkg5DLSIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSjqGrO0BERJ1PkiSsXLkSq1evxjfffIOKigrU19fDarUiKysLw4YNw89//nOcc845rba1Y8cOLFu2DF9++SXKysrg9XqRnZ2NYcOG4bLLLsOECRPi0saECRNw6NAhAMDOnTsjtn/dddfhyy+/BACsXLkSRUVFIds644wzsGDBAnz00Ud47rnnsH//fmRmZmLYsGGYOXMmBg0apN4nls9hW5+DNWvW4NZbbwUAFBYWYtWqVa22f8stt2Dt2rUAgGXLlmHo0KFR9aujduzYgZycHOTm5nbK8YiIiIio5xAkSZK6uhNERNR5fvzxR9x5553YtWtXq/ueeeaZePbZZ2Gz2YK2OZ1OzJs3D//5z38itnHWWWfhT3/6E1JTU2PaRrxCrSlTpmD27NkIfHt87733UFJSAiB2zyHQvudAFEWcffbZqKioAAC8/vrrGDFiRNj7VlVV4cwzz4TX68UJJ5yADz74oNV+x8LWrVtx0003ITs7G//617/Qq1evTjkuEREREfUMHKlFRNSDlJeX49prr4XD4QAA5Obm4uyzz0ZhYSF0Oh2OHDmCdevWqWHRunXr8PTTT+OBBx7wa0cURcycOROff/65etuIESMwZswYmEwm/PDDD1i1ahV8Ph/Wrl2L22+/HQsXLoROp4tpG7FWU1ODBx54ICjQGjBggBpoxeo5BNr/HOj1elxyySV4+eWXAQDLly+PGGotX74cXq8XADBp0qT2P0FtNG/ePNTW1qK2thYzZszAokWLkJeX12nHJyIiIqLujaEWEVEP8swzz6hhzFlnnYW//vWvSElJ8dvH6/Xisccew+LFiwEAb7/9NubOneu33yuvvKIGMVarFU8//XTQFMGtW7fihhtuQENDAzZu3Ih33nkHl19+eUzbiLXvvvsOAHDOOedg7ty5yM/Px/bt21FVVaXuE6vnEOjYczBp0iQ11Prggw/wu9/9Dnq9PuTjeu+99wAAgiDgkksuac9T0y7PP/88ZsyYgf3792Pfvn2YMWMG/vWvfzHYIiIiIqKYYKF4IqIeoqmpCR9++CEAwGw249FHHw0KWQDAYDBg7ty5SE9PBwA0NjZi79696nafz4cFCxao1x977LGQNa+GDh3qNzrpjTfeiGkb8VJSUoK//e1vGDBgAKxWK0aPHo3zzz8fQOyeQ6Djz8GgQYPUGl/Hjx/Hxo0bQz6egwcP4ttvvwUAjBkzBoWFhdE9ETGQl5eHJUuWYMCAAQCA/fv347rrrkN5eXmn9YGIiIiIui+GWkREPYTH48F9992HW2+9FbNmzUJOTk7YfU0mE0444QT1ekNDg3p5y5YtqKysBACcdNJJuOCCC8K28/Of/xynnHIKzjzzTAwfPlyd1heLNuJl8uTJMBqNIbfF6jkEYvMcaEetvf/++yHv++6776qXL7300rDHiJfc3FwsXrwYJ554IgDgwIEDmD59Oo4ePdrpfSEiIiKi7oXTD4mIeoj09HRMmTIlqn3LysrQ2NioXlfqMQHAhg0b1MutrexnMpnw9ttvB90eizbiZfjw4WG3xeo5BGLzHFx88cV48skn4fV68cknn2DevHkwmUx++yhTD81mM372s59F1XdArh12/fXXR71/a7Sh3sGDBzF9+nS8+uqrnIpIRERERO3GUIuIqAcrLy/H/v37cfDgQRw8eBB79uzBjh07cOTIEb/9tKOjtNsGDhzYruPGoo14CVwZsTXteQ6B2DwHOTk5GD9+PNasWYO6ujqsXbsW5513nrp969at2L9/PwBg4sSJSEtLi7ptj8eDffv2tatf0SgtLcV3333HUIuIiIiI2o2hFhFRD1NZWYmXXnoJ7733HioqKsLup9frIYpi0O3aoul2u71dfYhFG/Gi1MGKpKPPIRC75+Cyyy7DmjVrAMhTELWhlnbqYWeuehiN9PR0tdYWEREREVF7MNQiIupB/ve//2HmzJnq6n0Kk8mEfv36oaSkBMOHD8f48ePx4IMP4ssvvwxqw+PxdLgfsWijLdpSh8tgiPzWGIvnEIjdczBx4kSkp6ejtrYWn332GRoaGmCz2SCKIj744AMAQFZWFs4444w2tVtUVISdO3fGpI9OpxO333471q9fD0AO8RYuXIj+/fvHpH0iIiIi6pkYahER9RDV1dX49a9/rYYxJ598MqZPn46RI0eib9++0Ov1fvs3NTWFbEc7kqm2trZdfYlFG1qSJEEQhLDbXS5Xh48BxO45BGL3HJjNZlx44YV444034HQ6sWrVKlxyySXYtGkTjh8/DgC46KKLWg3r4qWpqQm33XYbvvjiCwBARkYGFi5ciFNOOaVL+kNERERE3QdDLSKiHmLZsmXqanunnnoqXn/99aCi4lra6XHakU7FxcXq5b1797Z63IULF+LAgQMoLi7GxRdfjLy8vJi0odO1LODrdrthNpvD3j/SFMG2iNVzCMTmeVRMmjQJb7zxBgBg5cqVuOSSS7Bq1Sq/7V2hsbERv/zlL9XRahkZGXjllVdw8sknd0l/iIiIiKh70bW+CxERdQfffvutevmyyy6LGMaUlZXh0KFD6nWfz6deHjlypHp53bp1rR739ddfx9KlS/HEE0/A7XbHrA2LxaJu14ZHgSoqKoKKtrdXrJ5DIDbPgWLUqFHo06eP2pbb7cbq1asBACeccAKGDBnSavvxcNttt/kFWosWLWKgRUREREQxw1CLiKiH0AYh1dXVEfd99NFH/a57vV718umnn46cnBwAwHfffYfPP/88bDuff/65uvpeSUmJOjopFm307t3bb59w/vnPf4bd1laxeg6B2DwHWsporPr6eixduhSlpaV+t3eFadOmwWg0IjMzE4sWLcKgQYO6rC9ERERE1P0w1CIi6iG0gcLSpUtx8ODBoH2qq6sxe/ZsfPrpp363a2tDmUwm3Hzzzer1OXPmYPPmzUFt7dq1C/fee696/ZZbbolpG+PGjVMvP/vss2qIo/D5fHjxxRexZMmSoHbbK1bPIRCb50Br0qRJal2xv/zlLwAAQRBw6aWXtvaw4ub888/HX//6VwZaRERERBQXgtSWJaGIiChplZaW4qKLLlKLpptMJpx//vno378/3G439u7dizVr1qijkYxGo7pC34MPPohrr71WbUuSJPzqV79Sp7gJgoDTTz8dw4cPh8FgwI4dO7Bq1Sp1dNIFF1ygBi2xaqO6uho//elPUVdXBwBISUnBhRdeiD59+qCqqgqfffYZysrKYDQacfbZZ6sh08qVK1FUVOTXlwkTJqhTBSOt+BfL5zBWz6PWtGnT/IKxsWPHYvHixWH3JyIiIiJKZgy1iIh6kE8++QT33HMPnE5n2H0EQcCUKVNw6qmn4oEHHgAAXHXVVZg/f77ffm63G3/84x/x1ltvBRVB17ryyivx0EMPhaw/1dE2vvzyS8yaNQs1NTUh75eeno5HH30UZWVl6nTAjoRaQGyfQyA2z6Ni2bJluP/++9Xr8+fPx1VXXRXx8RARERERJSuGWkREPcyBAwewaNEifPHFFzh8+DBEUYTNZkOfPn0wbNgwXHnllTj55JNRXl6Oc845Bz6fD3a7HatXr4bVag1qb9u2bVi2bBk2bdqE8vJyeL1e5ObmYvTo0bj66qsxatSoVvvUkTaqq6uxePFirFq1CgcPHoQkSSgsLMS5556L6dOnIy8vD6+88krMQq14PIexeh7r6+tx2mmnqatBbtiwAampqa3ej4iIiIgoGTHUIiIi6ibKysowceJEAMBFF12EZ555pot7REREREQUPywUT0RE1E28++676uXLL7+8C3tCRERERBR/DLWIiIi6AY/Hg7feegsAUFBQgPHjx3dxj4iIiIiI4ouhFhERURJyu93qyoo1NTX47W9/q9YFu/baa6HT8S2eiIiIiLo3Q1d3gIiIiNpu3759uPLKK5Geng6HwwFRFAEAhYWFuPbaa7u4d0RERERE8cdQi4iIKAkVFBTA4/GgsrJSvc1iseDxxx+HzWbrwp4REREREXUOzk0gIiJKQmlpaTj99NNhtVpht9tx9tlnY8mSJRgzZkxXd42IiIiIqFMIkiRJXd0JIiIiIiIiIiKituBILSIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSDkMtIiIiIiIiIiJKOgy1iIiIiIiIiIgo6TDUIiIiIiIiIiKipMNQi4iIiIiIiIiIkg5DLSIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSDkMtIiIiIiIiIiJKOv8Ppm7VvylRGj4AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plot unconstrained model results with 95% CIs\n",
+ "sns.scatterplot(\n",
+ " x=[unconstr_performance],\n",
+ " y=[unconstr_disparity],\n",
+ " color=\"black\",\n",
+ " marker=\"*\",\n",
+ " s=100,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_test_results[f\"{PERF_METRIC}_low-percentile\"], unconstr_test_results[f\"{PERF_METRIC}_high-percentile\"]),\n",
+ " (unconstr_disparity, unconstr_disparity),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"|\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_performance, unconstr_performance),\n",
+ " (unconstr_test_results[f\"{DISP_METRIC}_low-percentile\"], unconstr_test_results[f\"{DISP_METRIC}_high-percentile\"]),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"_\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "# Plot postprocessing of unconstrained model\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=PERF_METRIC,\n",
+ " disp_metric=DISP_METRIC,\n",
+ " show_data_type=SHOW_RESULTS_ON,\n",
+ " constant_clf_perf=constant_clf_accuracy[SHOW_RESULTS_ON],\n",
+ " model_name=r\"$\\bigstar$\",\n",
+ ")\n",
+ "\n",
+ "# Plot inprocessing intervention results with 95% CIs\n",
+ "sns.scatterplot(\n",
+ " x=[inproc_test_results[f\"{PERF_METRIC}_mean\"]],\n",
+ " y=[inproc_test_results[f\"{DISP_METRIC}_mean\"]],\n",
+ " color=\"red\",\n",
+ " marker=\"P\",\n",
+ " s=50,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (inproc_test_results[f\"{PERF_METRIC}_low-percentile\"], inproc_test_results[f\"{PERF_METRIC}_high-percentile\"]),\n",
+ " (inproc_test_results[f\"{DISP_METRIC}_mean\"], inproc_test_results[f\"{DISP_METRIC}_mean\"]),\n",
+ " color='red',\n",
+ " ls=\":\",\n",
+ " marker=\"|\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (inproc_test_results[f\"{PERF_METRIC}_mean\"], inproc_test_results[f\"{PERF_METRIC}_mean\"]),\n",
+ " (inproc_test_results[f\"{DISP_METRIC}_low-percentile\"], inproc_test_results[f\"{DISP_METRIC}_high-percentile\"]),\n",
+ " color='red',\n",
+ " ls=\":\",\n",
+ " marker=\"_\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "# Plot postprocessing of inprocessing model\n",
+ "plot_postprocessing_frontier(\n",
+ " inproc_postproc_results_df,\n",
+ " perf_metric=PERF_METRIC,\n",
+ " disp_metric=DISP_METRIC,\n",
+ " show_data_type=SHOW_RESULTS_ON,\n",
+ " constant_clf_perf=constant_clf_accuracy[SHOW_RESULTS_ON],\n",
+ " model_name=r\"$+$\",\n",
+ " color=\"red\",\n",
+ ")\n",
+ "\n",
+ "# Vertical line with minimum \"useful\" accuracy on this data\n",
+ "curr_const_clf_acc = constant_clf_accuracy[SHOW_RESULTS_ON]\n",
+ "plt.axvline(\n",
+ " x=curr_const_clf_acc,\n",
+ " ls=\"--\",\n",
+ " color=\"grey\",\n",
+ ")\n",
+ "plt.gca().annotate(\n",
+ " \"constant predictor acc.\",\n",
+ " xy=(curr_const_clf_acc, ax_kwargs[\"ylim\"][1] / 2),\n",
+ " zorder=10,\n",
+ " rotation=90,\n",
+ " horizontalalignment=\"right\",\n",
+ " verticalalignment=\"center\",\n",
+ " fontsize=\"small\",\n",
+ " \n",
+ ")\n",
+ "\n",
+ "# Title and legend\n",
+ "ax_kwargs[\"title\"] = f\"Post-processing ({SHOW_RESULTS_ON})\"\n",
+ "ax_kwargs[\"xlim\"] = (curr_const_clf_acc - 1e-2, 0.885)\n",
+ "\n",
+ "plt.legend(\n",
+ " loc=\"upper left\",\n",
+ " bbox_to_anchor=(1.03, 1),\n",
+ " borderaxespad=0)\n",
+ "\n",
+ "plt.gca().set(**ax_kwargs)\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/.doctrees/nbsphinx/examples/parse-folktables-datasets.ipynb b/.doctrees/nbsphinx/examples/parse-folktables-datasets.ipynb
new file mode 100644
index 0000000..8f041bc
--- /dev/null
+++ b/.doctrees/nbsphinx/examples/parse-folktables-datasets.ipynb
@@ -0,0 +1,514 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a4d0fb85",
+ "metadata": {},
+ "source": [
+ "# Obtaining parsed folktables datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "5f222039",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys\n",
+ "import logging\n",
+ "from pathlib import Path\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from folktables import ACSDataSource"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "00d4bd71",
+ "metadata": {},
+ "source": [
+ "**NOTE**: use `MAX_SENSITIVE_GROUPS=2` to generate datasets for binary-group experiments."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "811ad844",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Important constants!\n",
+ "TRAIN_SIZE = 0.7\n",
+ "TEST_SIZE = 0.3\n",
+ "VALIDATION_SIZE = None\n",
+ "\n",
+ "MAX_SENSITIVE_GROUPS = None # keep samples from all groups\n",
+ "\n",
+ "SEED = 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "377fc203",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "assert TRAIN_SIZE + TEST_SIZE + (VALIDATION_SIZE or 0.) == 1 # sanity check"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dae0cfba",
+ "metadata": {},
+ "source": [
+ "**Change** these paths according to where you want the data to be saved to."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "60b5f503",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "root_dir = Path(\"~\").expanduser()\n",
+ "data_dir = root_dir / \"data\" / \"folktables\"\n",
+ "data_dir.mkdir(parents=True, exist_ok=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "ae28e462",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# download 2018 ACS data\n",
+ "from folktables.load_acs import state_list\n",
+ "\n",
+ "data_source = ACSDataSource(\n",
+ " survey_year='2018', horizon='1-Year', survey='person',\n",
+ " root_dir=str(data_dir),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "8afe4020",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(3236107, 286)"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# data is 3236107 rows x 286 columns\n",
+ "acs_data = data_source.get_data(states=state_list, download=True) # use download=True if not yet downloaded\n",
+ "acs_data.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6ea8d039",
+ "metadata": {},
+ "source": [
+ "According to the dataset's datasheet, train/test splits should be stratified by state\n",
+ "(at least for ACSIncome, the remaining tasks seem ambiguous)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "c4e23b32",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "STATE_COL = \"ST\"\n",
+ "\n",
+ "ACS_CATEGORICAL_COLS = {\n",
+ " 'COW', # class of worker\n",
+ " 'MAR', # marital status\n",
+ " 'OCCP', # occupation code\n",
+ " 'POBP', # place of birth code\n",
+ " 'RELP', # relationship status\n",
+ " 'SEX',\n",
+ " 'RAC1P', # race code\n",
+ " 'DIS', # disability\n",
+ " 'ESP', # employment status of parents\n",
+ " 'CIT', # citizenship status\n",
+ " 'MIG', # mobility status\n",
+ " 'MIL', # military service\n",
+ " 'ANC', # ancestry\n",
+ " 'NATIVITY',\n",
+ " 'DEAR',\n",
+ " 'DEYE',\n",
+ " 'DREM',\n",
+ " 'ESR',\n",
+ " 'ST',\n",
+ " 'FER',\n",
+ " 'GCL',\n",
+ " 'JWTR',\n",
+ "# 'PUMA',\n",
+ "# 'POWPUMA',\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "a37a6792",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from copy import deepcopy\n",
+ "from typing import Tuple\n",
+ "from functools import reduce\n",
+ "from operator import or_\n",
+ "\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from folktables import BasicProblem\n",
+ "\n",
+ "def split_folktables_task(\n",
+ " acs_data: pd.DataFrame,\n",
+ " acs_task: BasicProblem,\n",
+ " train_size: float,\n",
+ " test_size: float,\n",
+ " validation_size: float = None,\n",
+ " max_sensitive_groups: int = None,\n",
+ " stratify_by_state: bool = True,\n",
+ " save_to_disk: Path = None,\n",
+ " file_prefix: str = \"\",\n",
+ " seed: int = 42,\n",
+ " ) -> Tuple[pd.DataFrame, ...]:\n",
+ " \"\"\"Train/test split a given folktables task (for train/test/validation).\n",
+ " \n",
+ " According to the dataset's datasheet, (at least) the ACSIncome\n",
+ " task should be stratified by state.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " acs_data : pd.DataFrame\n",
+ " acs_task : folktables.BasicProblem\n",
+ " train_size : float\n",
+ " test_size : float\n",
+ " validation_size : float\n",
+ " max_sensitive_groups : int, optional\n",
+ " If the number of protected groups exceeds this, discard samples belonging to\n",
+ " the groups with lowest relative size.\n",
+ " stratify_by_state : bool, optional\n",
+ " Whether to stratify splits by state.\n",
+ " seed : int, optional\n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " (train_data, test_data, validation_data) : Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]\n",
+ " \"\"\"\n",
+ " # Sanity check\n",
+ " assert train_size + test_size + (validation_size or 0.0) == 1\n",
+ " assert all(val is None or 0 <= val <= 1 for val in (train_size, test_size, validation_size))\n",
+ "\n",
+ " # Add State to the feature columns so we can do stratified splits (will be removed later)\n",
+ " remove_state_col_later = False # only remove the state column later if we were the ones adding it\n",
+ " if stratify_by_state:\n",
+ " if STATE_COL not in acs_task.features:\n",
+ " acs_task = deepcopy(acs_task) # we're gonna need to change this task object\n",
+ " acs_task.features.append(STATE_COL)\n",
+ " remove_state_col_later = True\n",
+ " else:\n",
+ " remove_state_col_later = False\n",
+ "\n",
+ " # Pre-process data + select task-specific features\n",
+ " features, label, group = acs_task.df_to_numpy(acs_data)\n",
+ "\n",
+ " # Make a DataFrame with all processed data\n",
+ " df = pd.DataFrame(data=features, columns=acs_task.features)\n",
+ " df[acs_task.target] = label\n",
+ "\n",
+ " # Correct column ordering (1st: label, 2nd: group, 3rd and onwards: features)\n",
+ " cols_order = ([acs_task.target, acs_task.group] +\n",
+ " list(set(acs_task.features) - {acs_task.group}))\n",
+ " if remove_state_col_later:\n",
+ " cols_order = [col for col in cols_order if col != STATE_COL]\n",
+ "\n",
+ " # Save state_col for stratified split\n",
+ " if stratify_by_state:\n",
+ " state_col_data = df[STATE_COL]\n",
+ "\n",
+ " # Enforce correct ordering in df\n",
+ " df = df[cols_order]\n",
+ "\n",
+ " # Drop samples from sensitive groups with low relative size\n",
+ " # (e.g., original paper has only White and Black races)\n",
+ " if max_sensitive_groups is not None and max_sensitive_groups > 0:\n",
+ " group_sizes = df.value_counts(acs_task.group, sort=True, ascending=False)\n",
+ " big_groups = group_sizes.index.to_list()[: max_sensitive_groups]\n",
+ "\n",
+ " big_groups_filter = reduce(\n",
+ " or_,\n",
+ " [(df[acs_task.group].to_numpy() == g) for g in big_groups],\n",
+ " )\n",
+ " \n",
+ " # Keep only big groups\n",
+ " df = df[big_groups_filter]\n",
+ " state_col_data = state_col_data[big_groups_filter]\n",
+ " \n",
+ " # Group values must be sorted, and start at 0\n",
+ " # (e.g., if we deleted group=2 but kept group=3, the later should now have value 2)\n",
+ " if df[acs_task.group].max() > df[acs_task.group].nunique():\n",
+ " map_to_sequential = {g: idx for g, idx in zip(big_groups, range(len(big_groups)))}\n",
+ " df[acs_task.group] = [map_to_sequential[g] for g in df[acs_task.group]]\n",
+ "\n",
+ " logging.warning(f\"Using the following group value mapping: {map_to_sequential}\")\n",
+ " assert df[acs_task.group].max() == df[acs_task.group].nunique() - 1\n",
+ "\n",
+ " ## Try to enforce correct types\n",
+ " # All columns should be encoded as integers, dtype=int\n",
+ " types_dict = {\n",
+ " col: int for col in df.columns\n",
+ " if df.dtypes[col] != \"object\"\n",
+ " }\n",
+ " \n",
+ " df = df.astype(types_dict)\n",
+ " # ^ set int types right-away so that categories don't have floating points\n",
+ " \n",
+ " # Set categorical columns to start at value=0! (necessary for sensitive attributes)\n",
+ " for col in (ACS_CATEGORICAL_COLS & set(df.columns)):\n",
+ " df[col] = df[col] - df[col].min()\n",
+ "\n",
+ " # Set categorical columns to the correct dtype \"category\"\n",
+ " types_dict.update({\n",
+ " col: \"category\" for col in (ACS_CATEGORICAL_COLS & set(df.columns))\n",
+ " # if df[col].nunique() < 10\n",
+ " })\n",
+ "\n",
+ " # Plus the group is definitely categorical\n",
+ " types_dict.update({acs_task.group: \"category\"})\n",
+ " \n",
+ " # And the target is definitely integer\n",
+ " types_dict.update({acs_task.target: int})\n",
+ " \n",
+ " # Set df to correct types\n",
+ " df = df.astype(types_dict)\n",
+ "\n",
+ " # ** Split data in train/test/validation **\n",
+ " train_idx, other_idx = train_test_split(\n",
+ " df.index,\n",
+ " train_size=train_size,\n",
+ " stratify=state_col_data if stratify_by_state else None,\n",
+ " random_state=seed,\n",
+ " shuffle=True)\n",
+ "\n",
+ " train_df, other_df = df.loc[train_idx], df.loc[other_idx]\n",
+ " assert len(set(train_idx) & set(other_idx)) == 0\n",
+ "\n",
+ " # Split validation\n",
+ " if validation_size is not None and validation_size > 0:\n",
+ " new_test_size = test_size / (test_size + validation_size)\n",
+ "\n",
+ " val_idx, test_idx = train_test_split(\n",
+ " other_df.index,\n",
+ " test_size=new_test_size,\n",
+ " stratify=state_col_data.loc[other_idx] if stratify_by_state else None,\n",
+ " random_state=seed,\n",
+ " shuffle=True)\n",
+ "\n",
+ " val_df, test_df = other_df.loc[val_idx], other_df.loc[test_idx]\n",
+ " assert len(train_idx) + len(val_idx) + len(test_idx) == len(df)\n",
+ " assert np.isclose(len(val_df) / len(df), validation_size)\n",
+ "\n",
+ " else:\n",
+ " test_idx = other_idx\n",
+ " test_df = other_df\n",
+ "\n",
+ " assert np.isclose(len(train_df) / len(df), train_size)\n",
+ " assert np.isclose(len(test_df) / len(df), test_size)\n",
+ " \n",
+ " # Optionally, save data to disk\n",
+ " # Warning: depends on global notebook variables\n",
+ " if save_to_disk:\n",
+ " subfolder_name = f\"train={train_size:.2}_test={test_size:.2}\"\n",
+ " if validation_size:\n",
+ " subfolder_name = f\"{subfolder_name}_validation={validation_size:.2}\"\n",
+ " if max_sensitive_groups is not None and max_sensitive_groups > 0:\n",
+ " subfolder_name = f\"{subfolder_name}_max-groups={max_sensitive_groups}\"\n",
+ "\n",
+ " # Create folder\n",
+ " save_to_disk = save_to_disk / subfolder_name\n",
+ " save_to_disk.mkdir(parents=True, exist_ok=True)\n",
+ "\n",
+ " print(f\"Saving data to folder '{str(save_to_disk)}' with prefix '{file_prefix}'.\")\n",
+ " train_df.to_csv(save_to_disk / f\"{file_prefix}.train.csv\", header=True, index_label=\"index\")\n",
+ " test_df.to_csv(save_to_disk / f\"{file_prefix}.test.csv\", header=True, index_label=\"index\")\n",
+ " \n",
+ " if validation_size:\n",
+ " val_df.to_csv(save_to_disk / f\"{file_prefix}.validation.csv\", header=True, index_label=\"index\")\n",
+ "\n",
+ " return (train_df, test_df, val_df) if validation_size else (train_df, test_df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "6d0b1d1b",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/5 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSIncome'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSPublicCoverage'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSMobility'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSEmployment'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSTravelTime'.\n"
+ ]
+ }
+ ],
+ "source": [
+ "import folktables\n",
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "all_acs_tasks = [\n",
+ " 'ACSIncome',\n",
+ " 'ACSPublicCoverage',\n",
+ " 'ACSMobility',\n",
+ " 'ACSEmployment',\n",
+ " 'ACSTravelTime',\n",
+ "]\n",
+ "\n",
+ "const_predictor_acc = {}\n",
+ "\n",
+ "# Generate data and save to disk, for all tasks\n",
+ "for task_name in tqdm(all_acs_tasks):\n",
+ "\n",
+ " # Dynamically import/load task object\n",
+ " task_obj = getattr(folktables, task_name)\n",
+ "\n",
+ " # Process data\n",
+ " data = split_folktables_task(\n",
+ " acs_data,\n",
+ " task_obj,\n",
+ " train_size=TRAIN_SIZE,\n",
+ " test_size=TEST_SIZE,\n",
+ " validation_size=VALIDATION_SIZE,\n",
+ " max_sensitive_groups=MAX_SENSITIVE_GROUPS,\n",
+ " stratify_by_state=True,\n",
+ " seed=SEED,\n",
+ " save_to_disk=data_dir,\n",
+ " file_prefix=task_name,\n",
+ " )\n",
+ " \n",
+ " const_predictor_acc[task_name] = {\n",
+ " curr_type: max(curr_data[task_obj.target].mean(), 1-curr_data[task_obj.target].mean())\n",
+ " for curr_type, curr_data in zip([\"train\", \"test\", \"validation\"], data)\n",
+ " }"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c550577",
+ "metadata": {},
+ "source": [
+ "## Log the constant classifier accuracy for each dataset and data type\n",
+ "The constant classifier always predicts either class 1 or 0 (whichever has highest prevalence in the dataset)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "5bc9927c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{\n",
+ " \"ACSIncome\": {\n",
+ " \"train\": 0.6308792859288503,\n",
+ " \"test\": 0.6315490137178332\n",
+ " },\n",
+ " \"ACSPublicCoverage\": {\n",
+ " \"train\": 0.7028697217125459,\n",
+ " \"test\": 0.7021789994933921\n",
+ " },\n",
+ " \"ACSMobility\": {\n",
+ " \"train\": 0.736245988197536,\n",
+ " \"test\": 0.7358789362364587\n",
+ " },\n",
+ " \"ACSEmployment\": {\n",
+ " \"train\": 0.5450051516946736,\n",
+ " \"test\": 0.5446858522526532\n",
+ " },\n",
+ " \"ACSTravelTime\": {\n",
+ " \"train\": 0.5621626781395467,\n",
+ " \"test\": 0.5626382117978613\n",
+ " }\n",
+ "}\n"
+ ]
+ }
+ ],
+ "source": [
+ "import json\n",
+ "print(json.dumps(const_predictor_acc, indent=2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "714cd7d7",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.16"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/.doctrees/nbsphinx/examples/relaxed-equalized-odds.usage-example-folktables.ipynb b/.doctrees/nbsphinx/examples/relaxed-equalized-odds.usage-example-folktables.ipynb
new file mode 100644
index 0000000..46706d4
--- /dev/null
+++ b/.doctrees/nbsphinx/examples/relaxed-equalized-odds.usage-example-folktables.ipynb
@@ -0,0 +1,960 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "be6d19dc",
+ "metadata": {},
+ "source": [
+ "# Achieving _equalized odds_ on real-world ACS data (ACSIncome)\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with: ```pip install \"error_parity[dev]\"```\n",
+ "\n",
+ "**DATA**: the data used in this notebook can be easily downloaded and parsed using the companion notebook `parse-folktables-datasets.ipynb`;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "from pathlib import Path\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "ba678d67",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.9`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "8ecf4a84",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ACS_TASK = \"ACSIncome\"\n",
+ "SEED = 42\n",
+ "\n",
+ "data_dir = Path(\"~\").expanduser() / \"data\" / \"folktables\" / \"train=0.6_test=0.2_validation=0.2_max-groups=4\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "c617827f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ACS_CATEGORICAL_COLS = {\n",
+ " 'COW', # class of worker\n",
+ " 'MAR', # marital status\n",
+ " 'OCCP', # occupation code\n",
+ " 'POBP', # place of birth code\n",
+ " 'RELP', # relationship status\n",
+ " 'SEX',\n",
+ " 'RAC1P', # race code\n",
+ " 'DIS', # disability\n",
+ " 'ESP', # employment status of parents\n",
+ " 'CIT', # citizenship status\n",
+ " 'MIG', # mobility status\n",
+ " 'MIL', # military service\n",
+ " 'ANC', # ancestry\n",
+ " 'NATIVITY',\n",
+ " 'DEAR',\n",
+ " 'DEYE',\n",
+ " 'DREM',\n",
+ " 'ESR',\n",
+ " 'ST',\n",
+ " 'FER',\n",
+ " 'GCL',\n",
+ " 'JWTR',\n",
+ "# 'PUMA',\n",
+ "# 'POWPUMA',\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "034be8ef",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import folktables\n",
+ "\n",
+ "def split_X_Y_S(data, label_col: str, sensitive_col: str, ignore_cols=None, unawareness=False) -> tuple:\n",
+ " ignore_cols = ignore_cols or []\n",
+ " ignore_cols.append(label_col)\n",
+ " if unawareness:\n",
+ " ignore_cols.append(sensitive_col)\n",
+ " \n",
+ " feature_cols = [c for c in data.columns if c not in ignore_cols]\n",
+ " \n",
+ " return (\n",
+ " data[feature_cols], # X\n",
+ " data[label_col].to_numpy().astype(int), # Y\n",
+ " data[sensitive_col].to_numpy().astype(int), # S\n",
+ " )\n",
+ "\n",
+ "def load_ACS_data(dir_path: str, task_name: str, sensitive_col: str = None) -> pd.DataFrame:\n",
+ " \"\"\"Loads the given ACS task data from pre-generated datasets.\n",
+ "\n",
+ " Returns\n",
+ " -------\n",
+ " dict[str, tuple]\n",
+ " A list of tuples, each tuple composed of (features, label, sensitive_attribute).\n",
+ " The list is sorted as follows\" [, , ].\n",
+ " \"\"\"\n",
+ " # Load task object\n",
+ " task_obj = getattr(folktables, task_name)\n",
+ "\n",
+ " # Load train, test, and validation data\n",
+ " data = dict()\n",
+ " for data_type in ['train', 'test', 'validation']:\n",
+ " # Construct file path\n",
+ " path = Path(dir_path) / f\"{task_name}.{data_type}.csv\"\n",
+ " \n",
+ " if not path.exists():\n",
+ " print(f\"Couldn't find data for '{path.name}' (this is probably expected).\")\n",
+ " continue\n",
+ "\n",
+ " # Read data from disk\n",
+ " df = pd.read_csv(path, index_col=0)\n",
+ "\n",
+ " # Set categorical columns\n",
+ " cat_cols = ACS_CATEGORICAL_COLS & set(df.columns)\n",
+ " df = df.astype({col: \"category\" for col in cat_cols})\n",
+ " \n",
+ " data[data_type] = split_X_Y_S(\n",
+ " df,\n",
+ " label_col=task_obj.target,\n",
+ " sensitive_col=sensitive_col or task_obj.group,\n",
+ " )\n",
+ "\n",
+ " return data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "caaec009",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load and pre-process data\n",
+ "all_data = load_ACS_data(\n",
+ " dir_path=data_dir, task_name=ACS_TASK,\n",
+ ")\n",
+ "\n",
+ "# Unpack into features, label, and group\n",
+ "X_train, y_train, s_train = all_data[\"train\"]\n",
+ "X_test, y_test, s_test = all_data[\"test\"]\n",
+ "if \"validation\" in all_data:\n",
+ " X_val, y_val, s_val = all_data[\"validation\"]\n",
+ "else:\n",
+ " print(\"No validation data.\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "b5206c61",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "n_groups = len(np.unique(s_train))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "4e391ba2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Global prevalence: 37.2%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_train) / len(y_train)\n",
+ "print(f\"Global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "6e709bb8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.ensemble import RandomForestClassifier\n",
+ "\n",
+ "rf_clf = RandomForestClassifier(n_jobs=-2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "0ed640b6",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 2min 7s, sys: 2.08 s, total: 2min 10s\n",
+ "Wall time: 18.5 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "RandomForestClassifier(n_jobs=-2) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "RandomForestClassifier(n_jobs=-2)"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "rf_clf.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "85ba7bf6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "predictor = lambda X: rf_clf.predict_proba(X)[:, -1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6af00a5e",
+ "metadata": {},
+ "source": [
+ "## Construct the fair optimal classifier (derived from the given predictor)\n",
+ "- Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);\n",
+ " - optionally, this constraint can be relaxed by some small tolerance;\n",
+ "- Optimality is measured as minimizing the expected loss,\n",
+ " - parameterized by the given cost of false positive and false negative errors;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "3235a0d0-fd42-4537-ba2d-9e7b4678da5b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "if \"validation\" in all_data:\n",
+ " X_fit, y_fit, s_fit = X_val, y_val, s_val\n",
+ "else:\n",
+ " X_fit, y_fit, s_fit = X_train, y_train, s_train"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "48f713ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "postproc_clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=\"equalized_odds\",\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " false_pos_cost=FALSE_POS_COST,\n",
+ " false_neg_cost=FALSE_NEG_COST,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "3dbca6de",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:ROC convex hull contains 8.7% of the original points.\n",
+ "INFO:root:ROC convex hull contains 9.7% of the original points.\n",
+ "INFO:root:ROC convex hull contains 6.9% of the original points.\n",
+ "INFO:root:ROC convex hull contains 11.0% of the original points.\n",
+ "INFO:root:cvxpy solver took 0.000577791s; status is optimal.\n",
+ "INFO:root:Optimal solution value: 0.20063396358747293\n",
+ "INFO:root:Variable Global ROC point: value [0.14018904 0.69752148]\n",
+ "INFO:root:Variable ROC point for group 0: value [0.14441478 0.70148158]\n",
+ "INFO:root:Variable ROC point for group 1: value [0.12562792 0.65148158]\n",
+ "INFO:root:Variable ROC point for group 2: value [0.10094174 0.70148158]\n",
+ "INFO:root:Variable ROC point for group 3: value [0.14712885 0.65148158]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 16.4 s, sys: 213 ms, total: 16.6 s\n",
+ "Wall time: 2.67 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO, force=True)\n",
+ "postproc_clf.fit(X=X_fit, y=y_fit, group=s_fit)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "599af3ba",
+ "metadata": {},
+ "source": [
+ "## Plot solution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "b5ed8e16",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"whitegrid\", rc={'grid.linestyle': ':'})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "ee9d0214",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "all_groups_name_map = {\n",
+ " 0: \"White\",\n",
+ " 1: \"Black\",\n",
+ " 2: \"American Indian\",\n",
+ " 3: \"Alaska Native\",\n",
+ " 4: \"American Indian\",\n",
+ " 5: \"Asian\",\n",
+ " 6: \"Native Hawaiian\",\n",
+ " 7: \"other single race\",\n",
+ " 8: \"other multiple races\",\n",
+ "}\n",
+ "\n",
+ "largest_groups_name_map = {\n",
+ " 0: \"White\",\n",
+ " 1: \"Black\",\n",
+ " 2: \"Asian\",\n",
+ " 3: \"other\",\n",
+ "}\n",
+ "\n",
+ "group_name_map=all_groups_name_map if len(np.unique(s_fit)) > len(largest_groups_name_map) else largest_groups_name_map"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "5ccb923e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wT9f8H8NdddtK9J7SMskGUqaBMkQ0KKijIEFBk/BQURL8oS4aLISoOBEGW7KkoIChTNhTKhpbSne7s3P3+CDlyTdI2paUF38/Hgwe95O7yyeWTy73v8/m8PwzP8zwIIYQQQgghhJAKwlZ2AQghhBBCCCGEPNoo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEVHkmk6myi/BQoeNFCCF0LiSkqpFWdgEI+a8wGAw4evQo/v77b5w5cwZZWVnIysoCy7Lw9/eHv78/6tevj6eeegpPPvkkfHx8KrW8ixYtwldffSUsX7p0qVLKsX37dqxcuRJr1qxx+fzRo0cxePBgYfnnn39Gy5YtH1TxqhSj0Yjvv/8eGRkZmDZtWmUXxyPx8fFYv349jh8/jjt37sBkMiE4OBjVqlVDly5d0K1bN/j6+lZoGVJTU/Hrr7/i4MGDuHHjBgoLC+Hn54ewsDC0a9cOvXv3RnR0dKn3t2vXLvzf//1fmcoSHx8PqfTR+4mePHkyNm3aBACIjIzE3r17K7lEj45Bgwbh2LFjAIAWLVpgxYoVlVyiynPjxg3MnDkTI0eOdPt70KFDByQnJwMA+vbtizlz5jzIIhLyn/To/aoRUsWYzWb89NNP+PHHH5GTk+NyHZ1Oh+TkZJw/fx7r1q2DQqHACy+8gPHjx8PPz++BlrequHr1KqZNm4Zjx44hMjKysotT5e3btw8zZ87E7du30bdv38ouTqkZDAZMmzYNGzdudHouOTkZycnJOHz4MBYuXIgZM2agU6dOFVKOZcuW4csvv4TBYBA9npGRgYyMDJw7dw7ffvstRo8ejVGjRkEikZS4zwsXLlRIWQkhrhkMBnz99ddYunQpzGYzRo4cWdlFIoQ4oMCTkAqUm5uLUaNG4dSpU07PaTQaeHt7g2EY5ObmQqfTCc8ZjUasWrUKf/zxB7777jvUr1//QRa7Svjhhx+Eu/ekZDNmzBDu3j8sjEYjhg8fjuPHj4se9/LyglqtRmZmJjiOAwBotVq89dZbmD17Np5//vlyLce8efPw448/ih6Ty+UICAiAVqsVuuuZzWYsWLAASUlJmD17don7dQw8vb294e/vX+oyMQxT6nUJITZnzpzBkiVLKrsYhBA3KPAkpILwPI/x48eLgs4GDRpg8ODBePLJJxESEiJaPyUlBfv378dPP/2EmzdvArC1tgwfPhwbNmxARETEgyw+IRVu5syZoqCzRYsWePfdd9G4cWMAQH5+PtavX48FCxZAr9cDAKZOnYqaNWuiSZMm5VKGbdu2iYLOyMhIvP/++2jXrh1kMhksFgv27duH2bNnC4H9xo0bUadOHQwZMqTYfTsGnqNHj8awYcPKpcyEEELIw4iSCxFSQbZs2YLDhw8Lyy+99BLWr1+PPn36OAWdABAeHo6XX34Z27ZtQ/fu3YXHtVotpk+f/kDK/DBq2bIlLl26JPz7r47vfNicOXMGv/76q7Dcvn17LFu2TAg6AVsr4dChQ/Hzzz9DrVYDsLU6lqa1sTQKCgpE47qioqKwbt06dO7cGTKZDAAglUrRuXNnbNiwATVr1hTWXbRoEbRardt9p6SkiJ7/L/ZaIKQq27t3r/C7QeM7CXkwKPAkpIKsXr1a+Ds2NhZTp04Fy5b8lZPL5ZgzZw5q1aolPLZv3z7cuHGjQspJSGX4/vvvwfM8AFvX2tmzZ7sdN9m4cWNMmTJFWD516hQOHjx432XYuHEjMjMzheUZM2YgKCjI5br+/v5YtGiRkPCnoKAAy5cvd7vv+Ph40TIFnoQQQv7rKPAkpAIYDAacO3dOWG7fvr1HGSrlcjmGDx8ueuzQoUPlVj5CKlNubq4om2mfPn1KHP/Yt29fBAcHC8vbtm2773LYs6sCQFxcHJ588sli169ZsyY6duxYqjI4drOtVq1apWepJoQQQiobjfEkpALk5eXBarXe1z6eeuop0XJ6enqptrt58yY2bdqEf//9F4mJicjJyYFKpUJAQACaNGmCZ555Bl26dCmXqRrKMjXCxo0b8f777wvLe/bsQVRUFADnqVHskpOTUadOHWHZMcFMWaZT0ev12LZtG/755x/Ex8dDq9XCarUiICAAsbGxePLJJ9GrVy+EhoaW+H4cy7Vz507UrFkTBoMBO3fuxG+//YarV68iMzMTSqUSYWFheOqpp9CnTx/RdmVVdMobu02bNomCKsdjXFROTg42b96MI0eOICEhAdnZ2WAYBgEBAahduzbatGmDnj17lmt25YMHD4q+H6XJVCuVSvHMM89g/fr1AIA//vgDM2fOLHM9zszMxMWLF4Vlx4CyOB07dsTvv/8OwFYvz549K+oebOcYeFZma+ft27dF7+3s2bNQKBTYuXMnvvvuO9y4cQP+/v6Ii4tD165d0bNnT5fHNDU1FVu3bsU///yDW7duQavVQqFQIDAwEE2aNEG7du3QpUuXUmX79dShQ4dw6NAhnDhxAqmpqcjJyYHZbBYSNjVu3BhPPvkknnvuOcjlcpf7GDdunPC5Ababgd9++22xr3v48GEMHTpUaJmPjo7G5s2b4eXl5XJ9nuexb98+7N27FydPnkRmZiZ0Oh38/PwQHR2Np556Cr169UK1atU8ev9arRYbNmzA/v37ceXKFRQWFiIgIABxcXHo06cPunbtWiHHvai0tDRs2rQJR48exdWrV5GTkwOZTIbAwEDUq1cPbdu2RY8ePaBSqYrdj+M529vbWxjnffXqVaxZswYHDx5EamoqOI5DaGgomjZtij59+qB169Zu9+k4NYojx9+GolPMlGY6FcfztP08WlBQgK1bt2LXrl24desWsrOzERgYiOjoaPTq1Qs9e/aEUqkU7efQoUPYsGEDzp07h9TUVMhkMkRFRaFt27YYNGhQsb81ZZkmpzTToTmu4/j+z5w5gw0bNuD48eNITU0Fy7IIDQ1Fs2bNMGDAANStW1e0H61Wi40bN2L37t1ISkpCfn4+/P390ahRIzz//PPo2LEjJUsjAgo8CakAAQEBkMlkMJvNAGw/WG+//bbbiyJXQkNDsWPHDvj6+sLPz08Yc+ZOTk4OZs6ciR07dgiZQO3MZjPy8vJw8+ZNbNmyBdHR0ZgyZQo6dOjg+Zt7yK1ZswZffvmly6ltUlJSkJKSgkOHDmHRokV45ZVXPP7cTp48icmTJ+PWrVuix41GI3Jzc3Hp0iUsW7YML7/8Mj788MMHcsHoitVqxZIlS/D999+LMirb2acy+euvv7BgwQKMHDkSI0aMKJcLCMfeAAzDuAzcXHnssceEwLOgoABXrlxBvXr1ylwGe0ABAE2bNi11GRydPHnSZfkdu9o2aNCgTGWsKMuWLRONk7XX+/Pnz6N3796idU0mE+bPn4+VK1fCaDQ6PZefny+cV2JjY/HRRx8VGyB44vDhw5gzZw4SEhJcPq/VaqHVanHt2jVs2rQJn3/+OebMmePy9adPn46TJ08iIyMDgG34wo4dO0Tj6R3l5uZi0qRJQh2RSqX44osv3Aadp06dwrRp00Q3M+zsU/KcPHkS33zzDfr374/Jkyc7BSeurFq1Cp999hkKCwtFj6elpSEtLQ1///03VqxYgc8//7zEfZWVXq/H559/jjVr1gi/aXYmkwmFhYVITEzE77//jgULFuDtt9/GCy+84NFr/Pzzz5g3b57T/m/duoVbt25h8+bNePLJJzFnzpxS3RCsKIcOHcLkyZORlpYmetz+HTp27BhWrlyJJUuWICwsDLm5ufjf//4nuukB2H4PEhISkJCQgDVr1mDBggVON5sftMLCQsyaNQsbNmxwei4/Px9Xr17FunXrMHnyZLz22msAgD///BMffPCB0+9peno69uzZgz179qBTp0748ssvPfodJY8u6mpLSAWQSqWiu4K3bt3C2LFjhYue0qpVqxaCg4NLDDoTExPRq1cvbNu2TRR0ymQyhIaGOnXzS0pKwujRo/HNN994VJ6KplQqUa1aNVSrVg0ajUZ4XCqVCo9Xq1bN7cVfcTiOw8SJE/HRRx+JfiQZhoGfnx9CQkJEQaDRaMTSpUsxePDgYpPIODp9+jSGDh0qBJ0syyI4OBgBAQFOZVm1atV9J43y9fUVjoljK5VGoxEdr6L1x2g0YujQoViwYIEo6GRZFkFBQQgKChKNR87Pz8fnn3+O0aNHO81zWRZXrlwR/o6IiBB91sWJjY0VLV+7dq1cygBAlDioOFFRUaLjef36dad1srKyRD0UGjRogNu3b2PhwoUYMGAAWrZsiYYNG6JNmzYYOHAgvv7661L3aLhfV65cwWeffebyufbt24s+99zcXAwdOhQ//vijKOiUyWQICwuDv7+/6EbEjRs38Prrr4vGt5fVli1b8PrrrzsFnb6+voiMjERQUJDTTZDU1FSMGDEC58+fd9qfn58fPvnkE9FjM2fORHZ2tsvX/+ijj0TBxfjx493eINm2bRsGDx7sFHT6+fkhPDwcCoVCeMxisWD16tUYOHAgsrKyXO7Pbt68eZg2bZoo6LSfUxx7IJw+fRqvvfZaqc9TnsjOzsaLL76IFStWiIJCiUSCkJAQp54QGRkZmDJlCqZOnep0A9SdFStWYNasWcL+pVIpQkNDnVpODx06hP79+yMpKclpH5GRkahWrZpT4r6QkBDhPOgqqZ8nDhw4gBEjRgj1gmVZhISEwNvbW7ReQkICxo0bh4KCAgwdOlQIOu2fXdHf4/z8fIwbNw537ty5r/LdD7PZjDfffFMUdKrVaoSFhYl+FzmOwyeffIL9+/dj27ZtGDNmjPB7al+/aI+JP//80+05h/z3UIsnIRVkyJAhmDBhgrD8119/oX379ujYsSM6d+6Mp556yqN5/dzRarUYNmyY6CKpfv36GDduHJ566inhLmNiYiJWr14tXEDwPI/58+cjKCgI/fv3v+9ylIcmTZrgjz/+ACDuxhsaGio8XlazZs0Sjcnz8vLCqFGjRGMHCwsL8eeff2LBggVCF6xTp05h/Pjx+Omnn0rs1vnRRx/BbDbDz88PY8aMQY8ePYTPOC0tDT/99BN++uknYf21a9e67LpUWoMHDxa6kjl2G3v22WfdZmm0T/Nz9OhR4bGgoCCMGTMG3bp1g6+vLwBbC/qOHTvw1VdfCRe0e/fuxf/+9z98+umnZSqvXWpqqvB3WFhYqbcr2tJxPxdqjmVgGKbUrSgSiQRBQUFISUkBAJfd+4oGPuvWrcMff/zh1P3e3hJ24sQJLFmyBCNGjMDo0aNLlYSsrObOnevUqmTn2CWX53lMmDBBNN1N8+bN8cYbb6BFixbCeSUzMxPbt2/HN998g5ycHFgsFkyfPh2RkZF4+umny1TG5ORkfPTRR7BYLABsF7Tjx49Hjx49RMmfCgoKcODAASxYsECYgspsNuOLL77A0qVLnfb79NNPY+DAgVi1ahUA27lz1qxZThfFmzdvxq5du4TlVq1a4fXXX3dZ1uPHj2Py5Mmiso4YMQJ9+/ZFeHg4AFvvglOnTuG7777D/v37AdhaxMePH49ly5a5PK9s375dNM2PWq3G6NGj0b9/fyHYu3nzJn744QesX78et2/fdn9Ay8hgMGDEiBG4fPmy8Fi1atUwfvx4dOjQQcg0be+Cu2TJEuFG1tq1axEQEID/+7//K/Y1dDqd0Pru5+eHt99+G7169YJarQbHcTh69Cjmzp0rBPVpaWkYM2YMfv31V1ELmr37adGhF5999lm5ZTqfOXMmrFYrQkNDMX78eHTv3h1KpRI8z+PYsWN47733hPPKmTNn0LdvXyQmJkKpVOKtt95C//79hd+D+Ph4fPTRR0Lvj4KCAixbtkyURO1B2rVrl3B+6tWrF0aOHInatWsDsN2AWrhwIVauXCms/9FHHyEzMxM8z+OJJ57AO++8g8cffxwsy0Kv12PlypWYP3++8L1YvXo1Ro0ahcDAwAf/5kiVQi2ehFSQbt26OV14mc1m/Pbbb5gwYQJat26NHj16YOrUqdi8ebPLu7ilMX/+fNG2PXr0wLp169C+fXvRD3O1atUwadIk/Pjjj8IFA2DrglaZd1ofhNOnT4t+NMPDw7Fu3TqMHDlSlLBGo9Ggd+/e2Lx5M5544gnh8WPHjrm8kC3KbDYjIiICmzdvxqBBg0Q3FkJDQzF58mTRhRjP89i+fft9vjvP7Ny5E/v27ROW4+LisHnzZgwYMEAIOgHbReArr7yCTZs2iVoDt27dip07d95XGRxbejy5+VK0dcVVd+mylMHb27vEXgXuypGbm+v0vOP4TgD47bffhIs6mUyG8PBwp1Zeg8GARYsW4a233nIbGJYH+1ixQYMGYffu3Th9+jS2bNmCYcOGiZIrrVq1Cn///bewPGzYMKxYsQJt2rQRnVeCgoIwZMgQbNiwAdWrVwdgaxV5//33nbrmltaSJUuEeVsZhsHixYsxZMgQp4zDXl5e6NatG9atWydqzTpy5Ajy8/Nd7vu9994TtZxv27ZNCAYBW9A7Y8YMYdnf3x/z5s1zeTPAZDJhwoQJwsV1SEgINm7ciNGjRwtBJ2C7WdGsWTN89913GD9+vPD4v//+Kzov2RmNRtGNI7VajeXLl2PEiBGiuhcTE4OZM2dW2HRbP//8s6hbfKtWrbBp0yb06NFD9BsSGhqKN954A2vXrhWdT7/99lucPn262NewWq2wWq0ICwvDr7/+ipdfflnYN8uyaN26NdauXYs2bdoI29i7pz5oVqsV0dHRWLduHV544QWhqzTDMGjZsqVTd+fExETIZDIsXboUI0eOFJ3rGjRogJ9++kkUiP31118P5H24Yj8/vfPOO/j000+FoBOw9TL43//+h1atWgmPpaSkwGw2o2PHjvj555/RrFkz4TuiUqkwYsQIUV03mUzlkomcPPwo8CSkgrAsi0WLFqFbt24un+d5HleuXMHatWsxadIkdOrUCe3bt8cHH3yAvXv3luri8/bt26KuMfXq1cPs2bOLvYhu2bIlPvroI2HZZDLh+++/9+CdPXwWLFgg/C2RSDB//vxiu1b6+Pjgq6++El3o/vTTT8LFcHGmTZsmuugsavjw4aKuWWfOnClxn+WF53ksXLhQWFar1fj6669FF4tFhYWF4auvvhKNR/v6669F4yM95di91/ECtiRF1y067u1BlKHo+q7KUDTwBGyZe3/99VecO3cOf/31F06ePIldu3ZhyJAhou/r3r17RYFPRXjjjTfw4Ycfonr16lCpVKhbty4mTZokfMYWiwU//PCDsH6LFi0wadKkYsf3RkVFiS68MzMzhfG4nuA4TtS7oV27diVmG/b19UWfPn2EZavV6rIlGrBdFH/66aeiVsZp06ZBp9OB4zi89957KCgoEJ775JNP3LaGb9q0SdRy/tlnnzl1By9q9OjRaN++vbD8448/wmQyidbZsWOHaFjGxIkTix0H/eKLL6Jv377Fvq6nCgsLRXUgNDQUCxcuLHaYQ1xcHL744guhnvA8j6+//rrE12JZFl988YXbpEsKhQKfffaZKEhbtmzZfZ2Dymry5Mlue2k0a9YM0dHRoscGDRokuonpyNvbG88995ywfOvWrTLfrCkPDRo0wMiRI90+X7SOKZXKYhO89evXT7RcdHgD+W+iwJOQCqRUKvHll1/i66+/LlWCkTt37mD9+vV488030a5dOyxbtqzYAHTv3r3C3XYAGDNmTKkG8Pfp00c0T6irhESPitzcXBw5ckRYbteunVOCGFcCAgIwZMgQYVmr1eKff/4pdpuwsDC0bdu22HXkcrkoIY67MWYV4dKlS0KXRMB2YVD0QsmVGjVqiC46rly54jKJSmk51mlPstJKJBJR8ONY9x9UGYqu76oMjomFZDIZvv76a8ydOxeNGzcWlb9GjRp4//33sWzZMlEwu3btWlEX1/KkVquLvbgEbGPpHHtBuMo07UqjRo1ESZp+++03j8tntVrxxRdfYObMmXjjjTecppVyp2jQ4iphlmM533zzTWE5OTkZixYtwtKlS0XH/dVXXy02AZvjTb86deqUukvnq6++Kvydnp7u1CroeNx8fHxKNRTijTfeKNVrl9aRI0dErfnDhg0T9Yhwp0WLFqJz4IEDB0o8x7Vr185tcGbn7++PAQMGCMvJycmi1tgHISQkpMQM3HFxcaJlxxsirth7Cdi56kHxoLz00kvF3lwqmon96aefdspf4CggIEA0nrUy3xupOijwJOQB6NixIzZu3IitW7di7NixeOyxx0q82M3MzMTs2bPx4osvCuPJinKc21OtVqNdu3alLpNjNsfc3Nz7CiSqsqNHj4qCandZLF3p2bOn076KUzSwcMexhbE8kvWU1uHDh0XLnhyLHj16iJZLOhbFcWypqKw0+xVZhk8//RRz587F2LFj8eWXX5Y4VUuzZs1EvRAAlKqlqCwaN25cYjKnokGvJ1l5H3/8ceHvM2fOOLXmlUQmk6F169bo378/3n77bTRv3rzEbXied+paW9J0Vm+++SaaNGkiLK9YsULUMyIuLg7vvfee2+11Ol2ZMxc//vjjojpn7/4M2N7LiRMnhOXWrVuX6mZiTExMuUzRZFde5wqe5/Hvv/8Wu37R86w7RYM+x+P2IDRq1KjEdRx7s8jlclGXVVeKfhc9/b6Up5Kyixdt7S7NNFGO768y3xupOii5ECEPUJ06dVCnTh2MGTMGhYWFOHnyJI4fP47jx4/jzJkzLls3L1y4gFdeeQXr1693urt448YN4e+6det61HJT9Ef0+vXrVW7ah/LgeIwAoGHDhqXeNiwsDMHBwUK3N1cZTIuuXxqOF5IPsqXZ8VhIJBKP5pds2LAhWJYVylvSsSiOTCYTupR50mpptVpFAaNjttCylMHO05ZTx/VdleGJJ54osQWnqF69euHrr78WMiIfO3YMBQUFwsWe41x+JXE1Z59daS6ei3YVHjRoUKkTHuXl5Ql/G41GpKenu51Dtiyys7Nx+/ZtJCUl4dq1a7h48SLOnDmDzMxM0Xolfa8kEgnmzZuHvn37QqfTic699p4qxdWvK1euiOrBH3/8UeZWasfEQKmpqaKuvkVb0IpTr169Yj97TzieK0JDQ4vtjl+Uq9+W4jjeAChOrVq1RNOU3U9W67KIiIgocR3HGwq+vr4lfm8qMpGYp4obIgI436Arzfj8qvT+SNVAgSchlUSj0aBt27ZCtySDwYCjR4/i999/x7Zt20R3B5OTk/HJJ584ZV90TK7iyYWBq/XvJ1FLVVa0m5enxykoKEgIPEs6RqWdFqSyOB4LHx8fj+ZVUyqV8PLyEgKL+6kvXl5eQuBZmnGzdkXHU5Y0UX1JZbDzpAxFy3E/ZXDEsiyefvppITun2WxGQkICmjVrVi77tyuaoMeVotNy3E/G1JycnDIHnhzH4fDhw/jjjz9w/vx53LhxQxSU3a+YmBhMmjTJqbX5vffeEw1FcKXoMcrPz3eb0Kgkjt+lolNuFdeVsaj7nS7EkeO5oiJ/WxiGKTHgsZPJZPDx8RESg5U0HU158/T8/rDNW+npNGUP2/sjVQPdiiCkilAqlXjmmWfwySefYM+ePaIEFIAtG2nRSasdL8I8/VEsesHs6cX3w8LxGDEM43EiGcfjVNIxcpzvrCpyPBaeHgfAs2NRHMckIZ4EsEXHCJUmiCpNGfLy8krsmumuHOU5PUDR8bYVcWFddM5BV8ozuCturGVxTp48id69e2PYsGFYvXo1zp0757JcMpkMzZs3x7PPPlum13GVOKg0gXZZg0xXHG9kFO2O6MmNjbLMb+zO/ZwrPPltUalUHrWKOSY5e9BdNz0dC/6wedTfH6kaqJYRUgH0ej20Wi2ysrIQGhpa6jkC7UJCQvD111/jtddeE7rXWa1WHDt2TDQeRq1WCy1Qnmb4LM/WI094coFfHhwvmnieh06n8+hCqiJatyqL4/suS0BQXsciMjJSmBswPT291NsVvfHi6feqaBnsOI5DZmZmqfZntVpF3To9mYe0JI4X1fbXKm+lGc/qWI6goKAHPg3C/v37XU4rExoaitq1ayM2NhY1atRAvXr1UK9ePSiVSmzZsgW7d+/26HW0Wi0+/PBDp8eXLVuGDh06FDu+tGj9//jjj0XJb8qqaCuSJ9/T8pyG537OFZ78tnhaZsd9l+Xm2X/Fg/6dJaS0KPAkpJxdv34dXbt2FZaHDRuGSZMmebwflmUxfPhw0biuohfefn5+QuBZtItWSYru635bbko7VrGsLSBlVXTux4yMDKdMgsVxDIw86fZWFTkei7y8PBiNxlKPkywoKBBd9N3PsahZs6Ywl+jt27dhMplK1W2r6FgxT8a/uSpD0X2XJvBMSkoSXSy7Sx5SUFAArVaLyMjIUreEF+0W7jiGyt4F90EoOk8px3EPbKxWdnY23nvvPeEYsyyLoUOHYuDAgcV22S3LNBRTp04V3URQq9XCtCqTJk3C1q1b3bYiFj2vlFd26qJ10JNW7/IcLuH4/u73t6W4c4XZbBaNZS6O0WgUtTSX502fh0VV/Z0lpLSoqy0h5SwkJETUquCYodBTRS+0igYJjhe9Fy9e9ChJStFU9O7mUCuO48VoaS/8HOe9exCKBidnz54t9bZJSUmiC0pPAtaqyLG+WK1WUVbOkpw/f16U2Od+joVjMhGLxVLqcjhOO+Hl5YWYmJgyl6FoBuLS1ouiU18UTaTy1VdfoXHjxnjiiSfQuXNnj4+xHcMw5Zql1BOOQbnZbBZap0sjNzf3vjI1b968WRRAjRs3Du+9916J40SLnldKmuNx48aNovlC+/Xrh6lTpwrLycnJmDlzptvta9SoIVr25HPmeR4ZGRkuyxgaGiqatsST/SYkJJR63ZI4nivS0tKcgsniFP1tKelcUdpyJyQkiFryKuv78aA9DL+zhJQWBZ6ElDMvLy/RPI1nzpxxulgtLcc5FwHn1hXHrmB6vR579+4t1X55nseOHTuEZS8vL9StW9fj8jl2oSrtOLnSXuCX1xQXTzzxhGhfju+7JEXX9TRTaVVTtOvgzp07S71t0WNxP0lvWrduLRpPtGfPnhK3sVgsOHDggLD85JNP3teYJH9/f1GG49KUAYDoO1Z0H4At86XjxaFjmYuTk5Mj6tJat27dSmthL1pPPJmPc+TIkWjSpAlat26NF1980eMg9MyZM6Lll19+uVTbFZ2yo7jAMzk5GbNmzRKWQ0NDMXnyZPTt2xdt2rQRHt+0aZMoOHUUGBgoCtAPHTpU6nGf//zzD9q0aYPGjRvj2WefxerVq0XPt2rVSvj7yJEjokzB7mRnZzsdu/tRXucKhmFKPG/aez+U5PfffxctP/nkk07rVNb0TBXJ8Xe2tC3rD3qOU0JKiwJPQirACy+8IFqePn26x8lYeJ7H0qVLheXg4GCni/3nnntONC3E4sWLS5VwYfPmzaKgtlOnTmW6iHfMXmixWEq88ImPj8fJkydLtW/HC4iSWi+K4+/vL7qY3L9/P06dOlXidlqtFj///LOwrNFo8PTTT5e5HBXN8a64u+NVv3590cXyhg0bkJiYWOK+r127hq1btwrLUVFRHk1LU5S3tzeeeeYZYfnXX38tsZvgpk2bRF3+SpqYvTQc5xs8c+ZMidOVXLt2TRSg9u7d26kL6jPPPCP6Lq1Zs6ZUyXoWLFgg6h43cODAErepKM8884yo1W3VqlWlavHat2+fcJNNq9XCy8vLadxqSYoGb6Xpprxnzx6nz87d2EF7N1rHz2TGjBlC0qXp06eLxg7+73//c5qqxa5Xr17C3zqdDt9++22JZeU4DgsXLgRgS45z69Ytp5a7vn37Cn8bDAb8+OOPJe532bJl5Zpsp23btqLutkuXLi1VV96jR4+K5pdu1qxZiUnANmzY4JQluKiMjAysX79eWH788cedknEBztN33M9vR1Xh+Dt7586dElsz//zzT9y5c6eii0VImVDgSUgFePHFF0VdseLj4/HKK6/g6tWrpdreaDRi8uTJom66b775plNwGB4eLko2lJCQgClTphTb5fbff//FjBkzhGWZTIbXX3+9VOUqynGyeAD45ptv3I5BSU9Px+TJk0s9RsXxLu/9ZtkcNWqU8DfHcXj77bed5vd0VFBQgLFjx4rGV7366qvlmjWyvJXmeDEMg5EjRwrLOp0OY8aMcXthDdi62Y0dO1bUcjVy5Mj7HvM3fPhw4e+cnByMHz/e7YXz2bNn8cknnwjLcXFxTlmfy6Jfv36ii+sJEyYgOTnZ5bo5OTkYO3as8N1SKBQYPHiw03qBgYHo3r27sJyRkVHid3L58uVYtWqVsFyrVq1yCazLSqPRYNCgQcJybm4uRo8eXWxwcPPmTXzwwQeixxzrWmk5Jn0CbEFJcQ4fPowpU6Y4Pe6uLi1dulTUOtq7d2/RTZDIyEhMnDhRWM7OznaZgAiw3RxwzBL8448/lljeuXPninp9NG/e3Ok8+swzz4jm2P3++++LTZy0b98+/PDDD8W+rqdUKpWoDqSnp2P8+PHFJrG7evUqJkyYIAr23njjjRJfKzs7GxMnTnTbOl5YWIi3335blE36zTffdLlu0Rsd5ZmhubI41g+O4/D111+7XffatWuYPn36gygWIWVCgSchFUAul2PRokXw8fERHouPj0evXr0wbtw4bN261SlpBM/zSEhIwA8//IDOnTtj8+bNwnPt2rVz2wIyefJk0finbdu24cUXX8Rff/0luvhKSkrCp59+iqFDh4ouHsaOHes2QUpJHn/8cdGk2gcOHMCYMWNEE3vn5+fjl19+wfPPP4/Lly+XetoXx26GeXl5HnWRLap58+aiICElJQX9+/fH999/L2pF0+l02LZtG/r06SOaDL5evXoYPXp0mV//QXA8XkePHnU7uXrv3r3RqVMnYfnSpUvo06cP1qxZI7qwy83NxapVq9C3b1/Rvtq2bYsXX3zxvsv7xBNPiFqMjhw5ghdffBFHjhwRLlwLCgqwbNkyDB48WGgNlEgkmDp1arGBb4cOHVCnTh3hn7vpMby8vERBRnp6Ovr164fNmzcL3x2r1Yo///wTzz//vOg4vPnmm05Bkt17770nSgz0+++/Y+DAgTh8+LCoO/r58+cxbtw4UVCtUqkwb968Sp8jb9SoUaLxq+fPn0ffvn3x66+/ilol8/Ly8Msvv+Cll14SndP69u0r6jJaWl26dBEtf/bZZ/jiiy9EN0csFgtOnDiB999/H8OGDXPZEucq4EhISMCCBQuE5eDgYJdB68CBA0W9S/bt24e1a9c6refj4yP67Hiex5QpUzBhwgRcuHBB9PjZs2fxxhtvYNmyZcLjKpXKaQ5RwNZqN2PGDKE3i9Vqxf/93//hk08+EbVkpaWl4bPPPsOYMWM8Gt9fWiNHjkTjxo2F5SNHjqBv377Yvn27qHU+IyMD3333HV588UXR+fSll14S9TYpzsGDB/HSSy/hn3/+Eb4jFosFe/fuRf/+/UU3C3r06OG290nRJHnr168v12y/laF9+/aiVvi1a9fiww8/FNWFrKws4TNIS0ur8nNKk/8uympLSAWpVasWVq5cibfeegtJSUkAbBcQv//+uzBWRSaTITAwEGazGbm5uS4vHjp37ozPPvvM7dgVX19fLFmyBCNHjhRaa+Lj4zFq1Chh/waDweXF2fDhw0WtgZ6SSqWYPHkyxo8fLwQLe/bswZ49e4Rudo4XjDKZDIsXL8aQIUNK3HeDBg1Ey++88w7mzJkDABg6dCiGDRvmUVknTZoErVaL7du3A7AFxJ999hk+//xz+Pv7QyaTISsry+kzqFu3Lr777juPuww+aPXr18eRI0cA2N5bz549ERYWBr1ejyVLlggXkAzDYO7cuXjrrbeE9TMyMvDRRx9h2rRpwoVbVlaWU+t069atMX/+/HIbR/Xxxx8jOTlZaNm/ePEiXnvtNajVanh7eyMzM9Np3PD7779f7DQXnurfvz+uXLmC5cuXA7B1EZ00aRI+/PBDBAYGIjs72ymhx3PPPVdsS05QUBB+/PFHDBkyRBifd+bMGQwZMgQqlQr+/v7IyclxyjypVquxZMkSp7pfGeRyORYvXoyRI0cKyV9SU1Px4Ycf4qOPPkJAQABYlkVGRoZTPXnyySfx8ccfl+l1n3rqKXTq1Al//vknAFvwsWTJEixZsgTe3t5QKpUu62aDBg1w4cIF4TxUtDuiyWTCe++9J7oZ99FHHzllpwVs35GZM2eid+/ewmc/Z84ctG7d2ikJ27PPPosPPvgAc+bMEerq9u3bsX37dqjVauGzLtpSqFAo8MUXX7i96dewYUN8+umnmDhxIiwWC6xWK5YvX47ly5cjMDAQDMMgKytLeL+BgYFo06YNtmzZUuzx9YRcLsdXX30lqgO3bt3ChAkTIJVKhd+u7Oxspy6tPXr0ECVrKk5cXBwuX76MhIQEDB8+HCqVCn5+ftBqtU7fvVatWhWb9CksLAyBgYHCTZB9+/ahZcuW8PPzg7+/f4kt0lWRn58fxo0bJ/z+AbbhCb/++qtQfx1/3318fDB37ly3rcKEVCZq8SSkAtWpUwdbt27F6NGjRa2fdmazGampqS4DnsjISMydOxdfffVViUFPrVq1sH79enTt2lUUFNj3XzTojIyMxOLFi/Hee++V/c3d1aVLF8yZM8fp/RUUFIiCzsjISCxduhStW7cu1X6feeYZp7vl6enpSE9PF2X/LC2pVIrPP/8cH3zwgehik+d5aLVapKWliT4DuVwuTF4fEhLi8es9aK+//rqonFarFcnJydBqtaLWF8DW0vfjjz/izTffFHXR5TgOGRkZTsGERqPBhAkT8MMPP5Rrd2ONRoMffvgBffv2FdVbnU6HtLQ0UdDp4+ODTz/9VNT9r7xMmTIF7733nuhY2L87jhe+EokEw4YNwxdffFFi8N2gQQNs2rQJLVq0ED2u1+tx584dp6CzefPmWLdundP6lSk0NBSrV6/GgAEDRGPJrVYrMjIykJaWJqonMpkMo0aNwpIlS+7rRs1nn33m1PIJ2G6oFK2bcrkcb7zxBtasWSPKnlp0zOf8+fNx6dIlYblbt27o3Lmz2zLExsZi7NixwrJOp8N7773nMoHa4MGD8f333ztlutXpdEhOTnYKOuvUqYOVK1eiQ4cObl8fALp27Yrly5c7BbtZWVnIzMwUgr3o6Gh8//33CA8PL3Z/ZeGuDlgsFqSlpUGr1YqCzoCAAMycOROff/55qfMGTJkyBYMGDRK+U3q9HikpKaLvnr1u/fDDD8XOC8owDCZNmiT6fhYWFiI5ORkXLlzwONdCVTF06FC8++67Tpntc3JyRL/vdevWxcqVK+9rqilCKhK1eBJSwdRqNcaPH4833ngDf//9N44dO4aLFy8iOTlZaE1hWRY+Pj6Ijo5Go0aN0K5dO7Ru3brU8/8Bth/8+fPn4/Lly9ixYweOHj2K27dvIycnBxKJBGFhYWjYsCE6d+5c5mRC7vTp0wdPP/00NmzYgH379uHmzZvIy8tDYGAgYmNj0bVrV/To0cOj7j8Mw+Cbb77BsmXLsHPnTty+fRt6vR5eXl73lTBi8ODBeP7557Ft2zb8888/SEhIgFarhdlshq+vL2rXro02bdqgd+/eoqQOVV1gYCA2btyIJUuW4MCBA0hPT4fFYoG/v7/Liy2pVIr/+7//w6BBg7B161YcPHgQ165dg1arhdVqRWBgIOrWrYunn34aPXv2dHnjpDyo1WrMmTMHr776KrZu3YrDhw8jPT0dBQUF8Pb2Ru3atdG2bVv069evQrO8Dh8+HD169MDGjRuxf/9+JCUlIScnB0qlEtWqVUPLli3Rv39/p/k/ixMVFYUVK1bg5MmT2LFjB06cOIGUlBQUFBTAx8dHSBjWuXPnUt+QedDUajU+/vhjjBgxAtu3b8fhw4dx8+ZNZGdng+M4+Pr6olatWmjVqhX69u1bqrlQS6JSqbBw4UIcPXoUmzZtwunTp5GWlgaj0Qi1Wo3AwEDUqlULTZs2Ra9evYQbLp06dRLGOh4+fBiJiYmoVq0ajh8/jp9++knYv7+/P/73v/+VWI5hw4bht99+E250nTp1Ct99953LlqSnnnoKO3bswN69e/HXX3/h9OnTyMjIQEFBAVQqFUJDQ9G4cWN06dIFbdu2LfW5vVmzZti5cyd27NiBXbt2IT4+Hjk5OfD29kb16tXx3HPPoV+/fvDy8ip2HOj9sNeB119/Hdu2bcOhQ4dw69YtIcNqcHAwGjRogPbt26Nbt24e33RgWRYffvghevXqhdWrV+PYsWNIT0+HXC5HbGws2rZti/79+4uGdRTHfu5evnw54uPjkZ2dDblcjtDQUKSmpiI2NtbjY1AVvP766+jatSs2bNiA/fv34/bt29DpdAgODkbt2rXRvXt3PPfcc5DL5W6HFxBS2Rj+UUj5RQghhBBCqryjR4+Kxtz//PPPaNmyZSWWiBDyoFBXW0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYrm8SSEEEIIIYQQUqGoxZMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgipAFartbKLUCEe1fdFCCGkYlHgSQh5aBQWFqJTp07o2LEjTCaT6Lnr169j/PjxeOqpp9CwYUO0adMG06dPv+/XHDRoEOrUqYNBgwbd977IfwPHcVi5ciVmz55dKa/foUMH1KlTB5MnTy73fe/YsQPvvvtuue/3v2jjxo2oU6cO6tSpg9u3b4uesz++aNGiSiqdZ44ePer2vVS2yZMnl/kcfvv2beF9HT169L7LYjKZ0LlzZ3To0AEFBQX3vT9CHjYUeBJCHhqffPIJkpKS8O6770IulwuPZ2VlYcCAAfjtt9+QmZkJs9mMjIwMKJXKSiwt+a969913MWPGjEfuwvLLL7/EO++8g4yMjMouCiEPJblcjvfeew/JycmYNWtWZReHkAdOWtkFIISQ0jh+/DjWr1+Ppk2b4rnnnhM9t3fvXuTk5AAAPvjgA3Tr1g0Mw4iC07IKCQlBtWrVEBISct/7Iv8N6enplfr6kZGRkEgkCAwMLNf9pqWllev+iHvVqlUDAPj6+lZySUh569y5Mx5//HFs3LgRffv2RYsWLSq7SIQ8MBR4EkKqPJ7nMWPGDADA+PHjnZ63t8D4+flh8ODB5fran3/+ebnuj5CKtmLFisouArlPf/zxR2UXgVSgcePGYciQIZgxYwa2bNkClqUOiOS/gWo6IaTK++2335CQkIC4uDi0bt3a6Xl7shONRvOgi0YIIYR4pHXr1qhduzYuX76MXbt2VXZxCHlgqMWTEFLl/fDDDwCAF154QfT45MmTsWnTJmE5OTkZderUAQC0aNFC1PJTUFCA9evX48CBA7h8+TJycnIgk8kQFBSExx9/HK+88goaN27s9NqDBg3CsWPHnPZnf+2ePXti/Pjx+Oijj3DixAnI5XLUqlULCxcuxPXr14UW2EuXLuHatWv44YcfcPjwYWRmZsLX1xfNmjXDsGHD0KRJE7fvPzs7G8uXL8e+ffuQlJQEq9WK8PBwtG3bFsOGDUN4eLjL7fR6PVavXo3du3fjypUrMBqN8PPzQ/369dGtWzf07NkTEonEabucnBysWLEC+/btw40bN2CxWBAQEIDGjRujd+/e6NSpk9uyliQ5ORnr1q3Dvn37kJycDKvViujoaLRv3x7Dhg2Dn5+fy+2OHz+O1atX4+TJk8jIyIBarUZsbCw6deqEV155BWq12mkb+2fUt29fzJkzBzt27MDatWtx6dIl6PV6REZGonPnzhg+fLjLLo08z2PXrl3YvHkzzp8/j9zcXHh5eSE2Nhbt27fHwIED4e3t7fR6dps2bRKWL126BOBefXrjjTfw7LPPYvr06bhw4QLUajUaNmyIb775RugirtVqsWbNGhw8eBA3btxAXl4eFAoFQkJC0KJFCwwePBg1a9Z0KneHDh2QnJwsvO/7PR6LFi3CV199JSwfO3ZM+J7t2bMHUVFRoteNjIzE3r17XX6OJTl16hR++eUXHD9+HFlZWVCpVIiLi0P37t3Rr18/yGQyt9teuHABP/30E06cOIHMzEyEhoaia9eueOONN/Dbb7/h/fffdyrbxo0b8f777zu9F0e3b99Gx44dAQCzZ8/G888/77LcGzduxIkTJ5Ceng6DwQAvLy/UrFkTHTt2xMsvv+yyjrpjP75jxozB2LFjATjXr5K4ej937tzBsmXL8PfffyMlJQUMwwjfvyFDhsDf39/t/rRaLX7++Wfs2bMHt2/fhlKpRPPmzTF69OhSl8kdq9WKHTt2YOvWrYiPj0d+fj58fX3RoEED9OrVC927dwfDMG63P3XqFJYtW4Zz584hMzMT4eHh6Nq1K0aOHFniaxcUFGDt2rXYvn07bt26BalUisaNG2PEiBGIjIwsdtszZ84I9TU9PR0KhQLh4eFo1aoVBg8eLHSZdqVfv36YPXs2fvjhB3Tv3r3EchLyKKDAkxBSpZ0/fx7nz58HAHTp0qVM+zh37hzeeOMNZGZmih43m81ITExEYmIitmzZgpkzZ6Jfv34e7Ts3NxevvfYakpOTAQAGgwHZ2dkIDg7G9evXhfX27t2Lt99+GwaDQXgsMzMTv/32G37//XfMnTsXvXv3dtr/kSNHMG7cOOTm5ooev3HjBm7cuIF169Zh3rx5TscmJycHgwYNwuXLl0WPZ2RkYP/+/di/fz82bNiA7777DiqVSng+KSkJgwYNQkpKimi71NRUpKamYvfu3ejWrRs+//xzj7uH7dq1C1OmTIFOpxM9fvnyZVy+fBkbN27E0qVLERcXJzzHcRw+/vhjrF27VrRNbm4uTp8+jdOnT2PVqlX45ptvULduXZevy/M83nvvPWzZskX0+PXr17FkyRJs374dq1evRmhoqOj5d999F9u2bRM9lpOTg1OnTgkB0s8//4yYmBiPjgNgO86vvfYa8vPzAUDI0mwPOvfv34//+7//czpWZrMZBQUFuH79OjZu3IjFixfj6aef9ui1y3o8KhLHcZg3bx5++ukn0eMmkwn//vsv/v33X6xbtw7ffvuty3KtWrUKM2fOFE31kpiYiCVLlmDv3r0ef69Ly2q14uOPP8a6deucnsvOzsbx48dx/PhxbNq0CatXr4aXl1eFlKMolmWdxrjv2LED77//PoxGo+jxS5cu4dKlS1izZg0WL16MZs2aOe3v/PnzGDlyJLKysoTHdDodfv/9d+zduxcDBw4sc1mzsrIwZswYnDx5UvR4ZmamcK5at24dFi5c6PLG1Ndff40FCxaIHrt58ya++eYb/PHHH4iOjnb72klJSXj99ddx8+ZN0eN///03/vnnHwwdOtTttmvXrsVHH30EnueFx8xmM65cuYIrV65gzZo1mD9/vtsbdV26dMHs2bNx4cIFnD171uWNT0IeNdTVlhBSpe3cuRMAUKtWLaeWvenTp+PkyZMYNWoUACAiIgInT57EyZMn8f333wOw3c1+8803kZmZiaCgIMyaNQu7d+/GkSNHsGXLFowdOxYqlQo8z2PWrFlOF/olOXDgANLT0zF9+nQcPHgQ69atE1pQHL3zzjvw8/PD3LlzceDAARw4cABTp04VXttVFtTLly9j1KhRyM3NRVRUFObNm4cDBw7g8OHD+O6779CwYUMYDAa88847OHHihGjbL774ApcvX4ZarcbUqVPxxx9/4MiRI9i0aRN69eoFwNZytXz5ctF2H3/8MVJSUhAUFIR58+bhzz//xOHDh7FmzRq0adNG+Ex27Njh0XE6efIk3n77beh0OkRHR+Pzzz/H33//jb179+LDDz+ERqNBRkYG3nrrLdFUOZ988okQdLZu3RrLly/H4cOH8ccff2DChAlQq9W4c+cOhgwZgtTUVJev/fvvv2PLli1o164dVq1aJXz29laG5ORkzJ8/X7TN9u3bhaDztddew9atW3HkyBH8/vvvePvttyGVSpGWliaassdeH5944gkAQM+ePYX6WNSOHTvA8zwWLFiAQ4cOYdmyZULL0Z07dzB+/HjodDrExMTgyy+/FD6HDRs2YNCgQZBKpTCZTGWaMsjT4zFq1CicPHkSPXv2BAA88cQTwvtybBGKjo5GbGxssRf67ixcuFAIOp999lmsWrUKR48exZ9//onJkyfDy8sLFy5cwKhRo5wCp4MHD2LatGmwWq2Ii4sTehVs3rwZPXr0wJUrV7Bw4UKPy1Qay5YtE4LO7t27Y+3atTh48CD27t2L7777Dk2bNgVg+y4vW7bsvl7LXr/c/XM874wfP16UEO3gwYOYOHEijEYj6tati8WLF+PQoUP4+++/8eWXXyImJgY5OTkYOXKkUxCWnZ2N4cOHIysrC35+fpgxYwYOHDiA/fv3Y+rUqVAqlU7nkdIymUwYOXIkTp48CYZhMHDgQGzevBlHjx7F5s2b8dJLLwGwTdcyevRoWCwW0fYbN24Ugs5mzZph5cqVOHLkCDZv3oy+ffvi6tWr2Ldvn9vXtgedSqUS7777Lvbu3YuDBw9i3rx5CA4OxtKlS11um5ycjBkzZoDnebRt2xa//PILDh48iH379uHTTz9FcHAwzGYzPvjgA7fZrcPDw1G7dm0AoO625L+DJ4SQKqxHjx58XFwcP2XKFLfrLFy4kI+Li+Pbt2/v9NzKlSv5uLg4Pi4ujj9+/LjL7ZctWyas8/fff4uee/XVV/m4uDj+1VdfFT0+adIkYZsvvvjC5X6PHDkirNOsWTP+zp07Tuv88ssvwjq//fab6LmBAwfycXFxfIcOHXitVuu0rcFg4Pv168fHxcXxPXv2FD3XsmVLPi4ujl+8eLHTdhzH8YMGDeLj4uL4Hj16CI/n5+fzderU4ePi4vjNmzc7bWc0GvkuXbrwcXFx/KhRo1y+Z3d69uzJx8XF8e3ateOzsrKcnt+9e7dwHDZt2sTzPM8nJCQI5Rk/fjxvtVqdtjt58iTfoEEDPi4ujh83bpzoOcfPaOzYsS7LZT9+jz/+OM9xnPD42LFj+bi4OP61115zud2iRYv4uLg4vk6dOk6fjb3OTJo0yWk7+3NxcXH8unXrXO577ty5fFxcHN+gQQM+MTHR5TqzZs0S9nP9+nXRc+3bt3f5+vdzPBy3L/pduF83btzg69aty8fFxfEzZsxwuc6ZM2f4evXq8XFxcfzSpUtFz3Xt2pWPi4vjn332WT4vL89p26lTpwrvu+g5YsOGDcJzSUlJLl87KSlJWGfDhg3C41arlX/yySf5uLg4fujQoU7Hi+d5XqfT8W3btuXj4uL4l156qdSvbX984cKFLstU1L///uv2e2CxWIQ60a9fP95gMDhtn52dLaxT9Ls9Y8YMoT5euHDBadszZ84Ir13ccXRlxYoVwnYrV650uc7SpUtdrqPX64XjP2DAAN5oNDpt6/g9KVpvf/rpJ+G5v/76y2nbpKQkvlmzZsI6R44cEZ6z/6489thjLl/36NGjwna///672/c/ZcoUPi4uju/evbvbdQh5lFCLJyGkyiooKMDVq1cBQNT90hPh4eF45ZVXMGDAAKElqqiWLVsKf2u1Wo9fo2vXriWu07t3b5djMdu3by/87Tjx+pUrV3D8+HEAwOjRo12OvVIoFHj77bcB2LrLnTlzRnjO3mpYtHsxADAMg//9739Yvnw5vv32W+Fxi8UidBtztZ1cLse8efPwyy+/eNTSduXKFWGM47hx4xAQEOC0TufOndG8eXPRZ/Hrr7+C53nI5XJMnTrVZdfepk2bCt38du/eLeoK6OiNN95w+Xi7du0A2Opadna28Lj9+OXk5Di1sgDAwIED8d1332HHjh2icZ6lxTCM267jcXFxeOmllzBixAi3rYeOUzCUpc56ejwq0tq1a8FxHFQqlVCfi2rcuDG6desGAKJurQkJCbh27RoA23hIV5/F5MmTK2RaksLCQvTv3x89evTAqFGjXI5BVKlUaNSoEYCyfU6lcfv2bYwdOxZmsxl169YVjesFbN1G7UMBJkyYAIVC4bQPPz8/vPnmmwCAv/76S8gUzvO80Oukb9++qFevntO2jRs3djnutTTsn2WDBg3wyiuvuFxn6NChqF+/PgBgzZo1wuNHjhwRzlMTJ050OX3WO++8Ax8fH5f7tfdoeOqpp/DMM884PR8VFYURI0a43NZ+frBYLC6/Jy1atMDixYuxadMmoaeIK/YWz2vXrj1y8/4S4gqN8SSEVFk3b94Ex3EAgBo1apRpHx06dECHDh3cPp+ZmYlTp04Jy45jxEpDJpMJFw/FcZc8yHGuRb1eL/x97Ngx4e+4uDgUFha63L5u3bqQSCSwWq04ceKE8DrNmzfHX3/9hV9++QVpaWno3r07nnrqKeECvHbt2k7l9vPzQ+3atXHlyhV8/vnnuHz5Mrp06YJWrVoJiVHKMg7p8OHDwt/2wMaVlStXipb//fdfALaLOFfBql23bt2wfPlycByHEydO4NlnnxU9r1Ao3I7/dDz+juNvmzdvjn379uHixYt48cUX0a9fPzz99NNCspaAgACXF6ulFRUV5faCuE+fPujTp4/bbVNSUnDhwgVh2dM6W5bjUZHsdd3+HXdX15s0aYJt27bh+vXryM7Ohr+/P44cOSI8726sq0qlQvv27bF58+ZyLbe3tzf+7//+z+3zFosFFy9eFG6GuLqBcb8KCwvx5ptvQqvVws/PD4sXLxaN2QZs3VTtijuXNGzYEIAt2Dx58iS6dOmCy5cvC+Uvbixxp06dnMZhlyQnJ0cYg150buaiunbtigsXLuDy5ctOn723tzcef/xxl9splUq0adNGCJ7t8vPzER8fD6D499WxY0eXU2rZx8GaTCa88MILGDBgANq3b4969eoJNyBKk4TNXuc5jsOtW7fQoEGDErch5GFGgSchpMpyHLN3vy0WZrMZ//77L+Lj44WEQtevX0d6erpoPd4hUURp+Pr6uswMW5S7wMnxLr3jayclJQl/lzYximNCoMmTJ+PMmTPIzs7Gn3/+iT///BMSiQSNGjVC27Zt0blzZyFzpqOPP/4Yr7/+OvR6PTZv3ozNmzdDJpPh8ccfxzPPPIPOnTsXm6nRlbS0NAC2wLa4rJlF2T9/V5lbHTk+f+fOHafnfX193SZCcjz+9pscAPDKK6/g999/x5kzZxAfHy9cpMbGxqJNmzbo2LEjWrZsWeb594oLpO0MBgMOHz6MhIQEJCYmIikpCVevXnVqYSlLnfX0eFQke0t/fHy82wCiqNTUVPj7+4vqVnHniLL2mCit5ORkHD16FNevX0diYiJu3bqFGzduOI1HLU/83SRRly9fhlQqxYIFC9xm5bVzNR2VK/ZzieM5uLjvfUnfUVfS0tKEulvSjUXH5+2fvb2MJZ2PXJXN8bWL2z42Nla4seeoUaNGGDRoEFasWIGMjAwsXLgQCxcuRGBgIJ566im0b98e7dq1KzGTsWOypNTUVAo8ySOPAk9CSJXlmOjnfrJB7tq1C7NmzRK6j9kxDIMaNWqgSZMmHk1T4MhVtzVXpFLPTrdl6XbluE1sbCy2b9+Ob7/9Fjt37kRWVhasVquQCXbRokVo1qwZZs2aJcrK2qxZM2zdulXICJmfnw+z2YyjR4/i6NGjmDdvHjp06IAZM2YgKCioVOWyZ+RVKpVlej8lXbw5tvC4Sg5V3BQc7iiVSqxcuRIrVqzA+vXrhQzF9mzCK1asQGRkJD7++GOPs8oCJdeblStXYv78+ULWWzuWZVGvXj3ExMSUOSFJWY5HRbqfum4/PiXVLXety/crJycHU6dOxe7du51uAGg0GrRq1QoZGRmiFuryMn/+fPz5558AbDeaWrVq5XK9+zm+eXl5wmNFW1IdlaW7uWO5SpqD2fEcYG+xLe1n7+q3o7Tvi2VZqNVqp+8hAHz44Ydo3rw5VqxYgRMnToDjOGRlZWHr1q3YunUrNBoN3nrrLQwfPrxUZfM0sR0hDyMKPAkhVZbjmKnStCq6snv3brz99tvgeR4BAQHo3LkzGjZsiBo1aiAuLg4+Pj64detWmQPPiuJ4MXX27NlSB7iOgoKC8OGHH2LKlCk4d+4cDh48iEOHDuHUqVOwWCw4fvw4hgwZgl27dokuvqpVq4bZs2cLWTQPHTqEgwcP4vz58+B5Hnv37kV6ejrWr19f7Nx6dvZ9e9p1U61WIy8vr8QLMseug57MlVgSuVyO4cOHY/jw4bh586Zw/A4fPozCwkIkJydj9OjRWLt2bbm2VCxbtgyzZ88GYMvU3KlTJ9SrVw81a9ZE7dq1oVarcejQoUcmE6ZSqURBQQG6deuGL7/80qNt7Rfujt3UXXHMlOwpd62WZrMZw4cPF6Z7atGiBVq3bo24uDjUqFEDMTExYFkWEydOLPfA035TCQCef/55DBo0yO269nNJUFAQDh486NHrOLYiF/c9LMvxdQw23XX/dfW8/TtuL1tZPvvSvi9329t16dIFXbp0gVarFc4PBw8eRFpaGgoLCzFv3jzI5XK3n49jr4LSnEsJedhR4EkIqbIcL0xKurhw5/PPPwfP84iKisL69etddvV8UElUPBERESH8ffv27WK7svE8X+xFC8uyaNKkCZo0aYLRo0dDq9Vi7ty52Lx5M1JSUvDHH38IU6w4kslkaNmyJVq2bIm3334bKSkp+PDDD/HPP//g/PnzoqlDimNPqpSTk4O8vDy3rU+//fYbbt68iVq1aqFTp06IiIhAXl6ekDzGHXsCKkB83MpTTEwMYmJi8Morr8BkMmH16tWYPXs2zGYzVq9ejZkzZ5bL6xgMBnz11VcAbONpV6xY4bJFpyrW2bKKiIjA5cuXhQQ47riq59WrVwdga1XPysoSjVF1lJiY6PJxxy7HZrPZ5TrujvVvv/0mBJ2TJ092O+djeX9WZ8+exQcffADANu512rRpxa5v/05kZ2dDp9N5dHPGcbqc69evux0b7Dg0oLTCwsLAMAx4nhfNeeyKq++4/X97LgB33ccduxo7vjbLsuA4DtevX0fHjh1dbpuenl6q7tIBAQHo2bMnevbsCZ7ncfDgQbzzzjvIzc3FihUr3AaejnWjpFZfQh4FlNWWEFJlOWaBtY/l8oRWqxXmpHv22Wfdji90TH7zoMa1lcRxEvc9e/a4Xe/kyZNo0qQJunTpIrSAnT17FgMGDECLFi1w5coVp20CAgIwZcoUYdl+bP/66y/069cPLVq0cNm1LDw8HBMmTHDariSO4/b+/vtvt+t9//33+PLLL7F69WoA947BsWPHis0I+ttvvwGwtRg89thjpSpTcfR6PYYPH46nn34av/zyi9Pzcrkcr732mjBusCx1050rV64Ix75Pnz5uuxFWRp2tqBYZ++ccHx/vdi5WAJg6dSpatmyJF154Qeim6ZgF2d7t1JUDBw64fNwxCHNXxxyTj7l73D7fZFF6vR6nT58GUD6fU1paGt566y0YDAYEBwdj0aJFLrO5OrIfX6vVir/++svtetu2bUPTpk3RvXt3IaN2zZo1heCzuPOQu+NbHHsyM+Ded9id33//HYBtCIF9XKS9i7tOp8OhQ4dcbsdxHP755x+nxzUajXBcyvK+Zs6ciS5duuCdd95xeo5hGLRp00a4mVfc+cEx8HSV9ZyQRw0FnoSQKsveVQ1w32JRHMdxle5azRISEvDdd98Jy+5aPR60xo0bC1MXfP/9906TugO21rE5c+bAaDQiOTlZyDgbHh6Os2fPCnfbXbl48aLwtz25RmBgIM6dO4fc3FysWrWq1NuVpEmTJkKL7cKFC12OOduzZ4/QetS9e3cAQP/+/QHYurpNnz7d5YX72bNnhUD1mWeeQUhISKnKVByVSoW0tDSkpaVh7dq1Lls8cnNzhURGRY+Dvd6VpS451lnHVh5HBw8exMaNG4XlB1Vn7d3dy/v1XnzxRQC2rK/Tpk1zmaX3zJkz2LRpE3JycuDn5yd0sa1Ro4YwtnHRokVO47gB4JdffnHbomZvMQXgsuuyVqt1+x1y7P7v6rPiOA7Tp08X6vv9Hjej0Yi33noL6enpUCgUWLx4MUJDQ0vcrmPHjsJ47M8++8xlgK3VarFw4ULodDpkZmaKpk2xT5Wyc+dO0Q0Pu6SkJPz8889lek/2zz4+Pt7lTR4AWL58uXDesZ8TAFvmafvnN3fuXJfnlWXLlrltSX/hhRcA2G4gOH6f7HJycvD111+73JbjONy8eRP79u3DrVu3nJ7neV6YQqq486T9HCKRSERj7Ql5VFHgSQipslQqlXABVJYxUj4+PkIwtn//fsycORPXrl1DdnY2EhISMH/+fLz88suiMT4ljTV6kKZOnQqpVIq8vDy89NJLWLlyJW7fvo2srCz8888/GDJkiDB35/Dhw4WWieDgYOFu+9q1a/H+++/j7Nmz0Gq1SEpKwoYNGzBx4kQAtiDVPpdoo0aNhPkhFyxYgLlz5+LixYvQarW4ceMGli1bhlmzZgGwBZP26RdKYp83lGVZ3Lx5EwMGDMCePXuEFukff/xRKE+9evWEstetW1foorZr1y4MHz4cR48eRXZ2NpKSkvDjjz9iyJAhMJvN8PX1xccff3y/h1xgTwhy6dIlDB06FH///bcQjO7fvx/Dhg1Dfn4+JBKJU2uXvUXm+PHjuHXrlkfzN8bFxQnB85o1a/D1118L+zh79ixmzpyJkSNHioKzB1Vn7e/r0qVLiI+PR3Z2tiiYeu211/Dcc8/htdde82i/9erVE+Zi3bt3LwYPHox//vkHWq0WiYmJWLFiBUaMGAGz2QyFQoF3331XtP3UqVOhUqmQkZGBl156Cbt27RK2/eKLL4rtBl2nTh3hgn/lypX46quvcPv2baSlpWHbtm148cUXodVqXXZPdZyfccKECdizZw/S09OF7uuvvvqqKKC538/JPlabYRjMmTMHTZo0gclkQmFhoct/9rGJcrlc6JqbnJyMfv36YfPmzUJ93r17NwYNGiTc3JswYYKo2+eIESMQExMDjuPw5ptv4ocffsCdO3eQmZmJzZs3Y8CAAWUeCvHSSy8J55EZM2Zg2rRpSEhIQG5uLhISEjBt2jRhvHPTpk1FdYtlWUybNg0Mw+Dy5csYMGAA9u/fj+zsbFy7dg2zZ8/GvHnz3OYH6N27N5o3bw7Alijoiy++EL5rf/75J15++WWkpKS4bOkfNGgQ5HI5dDodhg4dik2bNiExMRFarRZnzpzBhAkThGmC7HXblZMnTwIA6tev73HyNUIeRjTGkxBSpT311FOIj48X5nT01NSpUzF48GDodDqsWLHCZetFv379cPjwYSQnJ7u8e11ZHn/8cSxcuBATJ05ETk4OZsyYgRkzZjit179/f4wbN0702JQpU3D9+nWcPn0aGzdudHlHPygoCN9++62oq96nn36K1157DTdv3sTSpUuxdOlSp+1iYmKwYMECj95L69atMXv2bHz44Ye4fPkyRo8e7bROrVq18O2334pa/SZPngyTyYS1a9fi0KFDLrvURUdHY8GCBeXaVa1v3744c+YMVq9ejRMnTuD11193Wkcmk2HGjBlOU3W0bNkSO3fuRGpqqjCn6J49e1xOdVGURCLB9OnTMWbMGFgsFixYsMDpWLMsi1GjRuGnn36CyWR6YHW2ZcuW+P7776HT6YRWsJ9//lno7pqUlITk5OQyJZqZMmUKTCYT1q9fj+PHj7vMBKrRaPDFF184jTOsWbMmvvnmG4wZMwbJyclOc2uGhYWhevXqovksHU2bNg0jR46E0WjEokWLsGjRIuE5mUyGOXPmYMGCBU69Lp555hl0794dO3bsQGJioss6HRISgg4dOmDNmjXQ6/VIS0srVStlUcnJydi+fTsA242cDz/8EBMnTix2Dte+fftizpw5AGxz3ebl5WHmzJlITk7GpEmTnNZnGAZvvfWW0Appp1Ao8OOPP2LEiBG4fv06Pv30U3z66afC8yzLYtKkSUKA6Am5XI4lS5bgrbfewunTp7Fq1SqXvS3atGmDTz/91Ck7eOvWrTFnzhzhvDJy5EjR85GRkejcuTOWLVvm8v1+9dVXeOONN3Dq1CksWbIES5YsEa0zceJELFy40KlOx8bGYtasWZgyZQqSk5MxefJkl+/v5ZdfxoABA9y+f3vg6XgTg5BHGbV4EkKqNHu3y6SkJJfdTUvSqFEjbNq0Cc8//zzCw8MhlUqhVCoRHR2N7t274+eff8asWbOE+e327dtXZbrbArZucrt378aoUaNQr149eHl5QSaTISQkBF26dMHSpUsxc+ZMp7v63t7e+OWXX/Dxxx+jZcuW8Pf3h1Qqha+vLxo1aoRx48bht99+c7qIDwsLw6ZNmzBx4kQ0bdoUPj4+kEql8Pf3R7NmzfD+++9j69atZQry+vTpg507d+KVV15BTEwMFAoFVCoVGjRogHfffRfr169HWFiYaBupVIrp06dj5cqV6NGjB8LDwyGTyRAYGIgnnngCU6dOxZYtWypk/ruPP/4Y3333HZ599lmEhYVBJpNBrVYjNjYWr776KrZv346+ffs6bffiiy9i7NixiIiIgEwmQ3BwcLFjF4tq37491q5di65duyI4OBhSqRRqtRo1atRAv379sGHDBrzzzjtCYqfdu3eX23suTtu2bTF16lTExMRAJpMhICAAmZmZ5bJvmUyGWbNmCZ9zZGQk5HI5lEolateujWHDhmHnzp1o166dy+1bt26NnTt3YtCgQYiMjIRMJkN4eDgGDRqEzZs3F5t0qlWrVtiyZQteeOEFoX6FhISgR48eWL9+PXr06OF2288//xzTp09H06ZNodFoIJVK4efnh6ZNm2LChAnYvn07Ro0aJQwZ+OOPP8p0fBynauE4DoWFhcUGna68/PLL2LVrFwYNGoRatWpBrVZDJpMhMjISvXv3xrp16zB27FiX29qTs02ePBkNGjSARqOBj48P2rZtixUrVgjn6bIICgrCqlWrMHfuXLRp0wYBAQGQyWSIiIhA+/bt8dVXX+H77793O/dtnz59hM8vOjoacrkcERERGDRoEDZu3Og24RRga8X/+eefMXPmTDRt2hS+vr7C+M/FixdjxIgRbrft1asXNm3ahJdeegmxsbFQKpVCvevevTuWLVtWbOKn69evC13De/bsWcqjRcjDjeE9nXmaEEIesIEDB+LEiRMYN24c3nrrrcouDiHkITN58mRs2rQJkZGR2Lt3b2UXhxB88cUXWLJkCVq0aOF2HDEhjxpq8SSEVHn2LmybN2+uMllnCSGEkLKwWq3C3NFvvvlmJZeGkAeHAk9CSJXXpk0bNG7cGImJidi/f39lF4cQQggps7/++gvp6el47LHH8OSTT1Z2cQh5YCjwJIQ8FCZOnAiGYfDNN99UdlEIIYSQMuF5HosXLwbDMC7nASXkUUaBJyHkodCyZUu88sorOHPmTLETxRNCCCFV1bZt2xAfH4+BAwcKGaEJ+a+gwJMQ8tCYOHEiqlevjrlz55ZpygZCCCGksphMJsyfPx9RUVHC3MWE/JdQVltCCCGEEEIIIRWKWjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoaWUXgFQ+k8mEnJwcYVmhUEAikVRegQghhBBCCCGVwmq1wmg0Cst+fn6Qy+X3vV8KPAlycnKQlJRU2cUghBBCCCGEVEEhISH3vQ/qaksIIYQQQgghpEJR4EkIIYQQQgghpEJRV1sChUIhWo6OjoZara6k0gCJiYmwWq2QSCSoVq1apZWDPDyozhBPUZ0hnqI6QzxFdYZ4qqrUGZ1OJxqGVzRWKCsKPIlTIiG1Wg0vL69KKg1gsVhgNpshk8kqtRzk4UF1hniK6gzxFNUZ4imqM8RTVbXOlFfSUepqS6oclmWFf4SUBtUZ4imqM8RTVGeIp6jOEE896nWG4Xmer+xCkMpVUFCAS5cuCct16tSpUndZCCGEEEIIIQ9GRcUGj2Y4TQghhBBCCCGkyqDAkxBCCCGEEEJIhaLAkxBCCCGEEEJIhaKstqTKSU9PF1JJh4SEVHZxyEOA6gzxFNUZ4imqM8RTVGeIpx71OkOBJ6lyUlNThVTSj+KXjpQ/qjPEU1RniKeozhBPUZ0hnnrU6wx1tSWEEEIIIYQQUqGoxZNUOTExMeA47pGdw4iUP6ozxFNUZ4inqM4QT1GdIZ561OsMBZ6kyvHx8ansIpCHDNUZ4imqM8RTVGeIp6jOEE896nXm0QynCSGEEEIIIYRUGRR4EkIIIYQQQgipUNTVllQ5ZrMZPM+DYRjIZLLKLg55CFCdIZ6iOkM8RXWGeIrqDPHUo15nKPAkVc7FixeFVNKNGzeu7OKQhwDVGeIpqjPEU1RniKeozhBPPep1hrraEkIIIYQQQgipUNTiSaocX19fWCwWSKVUPUnpUJ0hnqI6QzxFdYZ4iuoM8dSjXmcezXdFHmrVq1ev7CKQhwzVGeIpqjPEU1RniKeozhBPPep1hrraEkIIIYQQQgipUBR4EkIIIYQQQgipUBR4FmPatGmoU6cOFi1aVC77S05OxsyZM9GlSxc0atQILVq0QP/+/bFs2TIYDIZyeQ1CCCGEEEIIqWpojKcbhw8fxpo1a8ptf/v378fbb7+NwsJC4TGTyYSzZ8/i7Nmz2LBhA7755htERUWV22s+rK5duyYMrK5Zs2ZlF4c8BKjOEE9RnSGeojpDPEV1hnjqUa8zFHi6cP78eYwZMwYcx5XL/i5duoSxY8fCaDRCIpGgX79+aNasGQoLC7FlyxacOnUKly9fxujRo7F27VqoVKpyed2HVWFhoTCHESGlQXWGeIrqDPEU1RniKaozxFOPep2hrrZF7N+/H0OHDkVBQUG57fPjjz8Wgs5vvvkG06dPR69evTBgwACsXr0ar776KgBbgPrzzz+X2+sSQgghhBBCSFVALZ53mUwmfPvtt/jmm2/KraUTAE6dOoWTJ08CAPr06YNnnnlG9DzDMPjggw9w+PBhXLt2DUuXLsWwYcMe2TsdpdGwYcPKLgJ5yFCdIZ6iOkM8RXWGeIrqDPHUo15nqMUTwKFDh9C1a1csXrwYHMdBrVZj6NCh5bLvnTt3Cn8PHDjQ5TosywrP5eTk4MiRI+Xy2g8rlmWFf4SUBtUZ4imqM8RTVGeIp6jOEE896nXm0XxXHtq6dStu374NwHan4ddff0X79u3LZd///vsvAMDX1xf169d3u16rVq2Ev//+++9yeW1CCCGEEEIIqQqoq+1dAQEBGDNmDF5++WVIJBJkZWXd9z6tViuuXbsGAKhZs2axdy9iY2MhkUhgtVqRkJBw369NCCGEEEIIIVUFBZ4AXnnlFXz88cdQKpXlut/MzEyYTCYAQGRkZLHrSiQSBAcHIzU1FXfu3CnXcjxstFotOI4Dy7IICAio7OKQhwDVGeIpqjPEU1RniKeozhBPPep1hgJPAI0aNaqQ/Wq1WuFvf3//Etf39fVFamoqcnJyKqQ8D4vbt28LqaQfxS8dKX9UZ4inqM4QT1GdIZ76r9QZnueBu/8YiQSc2Qye4wCOE57jLRZYzWbbY1YOYBmwUtnd7TjwHA+AB8/xsBoM4ExGgLM9x3E8YN8fx4PnefCcBYyEhTIs1Pac1QpIpQAYgONgzEiHMSMLPMeBt1jAyngoQ4Jsr2W1AgzASORQhgQi/9pNmLNzbOvyHHiDDhaDHpa8QvCcFRKVLxiZHHI/H/AcB6vVArPVArPFBFPWHUhMFkBvAsvxAMOAkcjA8zwsVgvyrEbozVYYIYWZl0IVEQIJJwdrlcCiCYaVVcNk5pGfr4dMGw+L1QL4y1G/V+9Hss5Q4FmB9Hq98LdCoShxffs6BoOhwspUGlevXkXNmjXh7e0tPGY0GnHp0iUAgJ+fH6pVq+a0jU6nAwA0btxY9FxmZqbQihsdHS0Kwq1WK+Lj4wEA3t7eiI2NFW178+ZN5OXlAQDq168PqfRelc3JyUFiYiIAIDw8HMHBwaJtz507B57noVKpULt2bdFzt2/fFm4MxMXFiVq7CwoKcP36dQBAcHAwwsPDRdtevHhR+CGpV6+e6LmUlBRkZGQAAGrUqAEvLy/hOYPBgMuXLwOwde2OiooSbXvlyhXo9XowDON0MyQjIwMpKSkAgGrVqsHPz094zmKx4MKFCwAAHx8fxMTEiLa9ceMG8vPzAQANGjSARCIRnsvOzkZSUhIAICIiAkFBQaJtz549CwBQq9WoVauW6LnExEThJkmdOnVEdTw/Px83btwAAISGhiI0NFS07YULF2CxWCCXy1G3bl3Rc3fu3EFmZiYAWxd1jUYjPKfX63HlyhUAQGBgoFNPAovFgrNnz4JlWafMcOnp6UhNTQUAxMTEwMfHR3jObDbj4sWLAGw3gKpXry7a9tq1aygsLARgGwfu2G1eq9UKY8SjoqJEPxQcx+H8+fMAAI1G4zQZ9K1bt5CbmwsAqFevniibdV5eHm7evAkACAsLQ0hIiGjb8+fPg+M4KJVKxMXFiZ5LTk4WhgvUrl1bNDdwYWGhMAQgKCgIERERom0TEhJgMpkglUqdxqWnpaUhLS0NgG14wMN+jgBsn/2VK1foHPEfOUdcvnwZBoOhTOcIs9kMwFYni6JzhM2jdI7geR7nTpwAZzBCwQBRwSGw6nSw6HTQ3UpETloa9Lm5gNEEjVoNCcsKAZTFbLa9l/AwsOFhgESCzELd3ec53ElKgv74STBGI5QKBXirBT51a0Ae4IvCgnzoCgrBS6QIrhaNwPq1cfXbXwDw4KxWGA0GwGIGLFawHA+eBxipDKxUCgtsdYoBD7lMDt5iAmc2gjNawFmttiAQthkVAOZu0AfbvjkeUm85VJE+kN09RvLwWmAAFOTno/DCNXDZeQADgAeUQSooA5WwWq2wWi0AI4FMpURgg3Ak7rgIS4EJFc0qByShDJQcDykPyMNrgJUrYTSakJeUCibj3tSIBd4sJAGAt5WD0mHyCk04kHKTAZvF39svGJglSlhYOcysAhZJBiysDBZWAYtEhgDdHTDg4WMUD8vLVobiWmAzmCRKmCUKcAwLjpEAzN3zAQMgxWGDTMetZYjO84KUtwAFQPwvv+KJZs0q7Rxh/50qbxR4ViDHHye5XF7i+vZ1LBZLhZWpNKxWq9OUMjzPF/uja7FYhOeL4jhOeM7VVDX25+zvOyoqSuhmoNVqheftJ0xXZXK3X57nRT8yrspblv2W5r0Wt19Xn7F9v7YfhPLbb3l+No6sVqvbMjnu11V9MZvNsFgsLsc9F7dfd/XQXmfu3LkDs9lc4n6Lq98P8hgWVw9Lcww5jhMFCXZlOYZFy1R0u6L7rcxzhLv9evJdjoqKEgIfV+Wic4Tzfh/mc4Tjfst6jrBzNSyHzhHO+62scwTHceB0eoBlwFutMGZpYczOBqwWGMPCYWWAtD/3wFJQCF12FnQZmYBBj+uFelw3m8GbLeAsVvAWiy0wA1AIQOv0qvfkunlclnYN8msAAx53pAooImxBg7WgEFxiMniTBfbQyJqTCOnd+N9eO3OvAKbTQP7lYl7cDX0xzzl/cjZGox5crgFKKw8WAKP0AcMw4HR6WMwGsEKgCmRYDZDrDfC1cJDefYwz5UF/Ix1GK+Bc68qfiWGQL5ci0GSF3CqH3qKCBRoUmnhkS6UIkKWAAQ+1OQ8mloFFykLJ8ShgQ3BDWg8GRg1TvhImHyk4Hwk4RgKekYBnnM8PjqyMBDLO7BR4WlkZclUhbrYqmYwzQmGxfXJc9r3vQmWcI8pzaklHFHhWIMe7u+5Opo7s40Erew5PiUTi9KPMMIxQLlcVVCqVui03y7LCc65+7O3P2QNEx7vBeXl5wvNFL7Ycy+RuvzzPuyyXY3nLsl/H/9291+L26yoYlslksFgsLi8q72e/5fnZOJJIJG7L5LhfV/VFJpOBYRiP9+uuHtrrjL2FytV7cdxvcfX7QR7D4uphaY4hx3Euy1WWY+hYJo7jSvxsKvMc4W6/nnyXAwICkJycTOcI/DfOEY77tVqt93WOUKvVTtvSOcJ5v56eIyQsC4nJAl5fiLyEBFjyC2DJL4C5oAB5GemwpmeADQtBfmoSTJwZvNUKRqqExaAHfysRpqOnkW6xIv3uBbZXNSUYCQPeaoGM4wCGQeL+n8DAgqx4d6FX+WJ4Hoz9pfh7F/IMw8AKXjS1RKaMhUIK+Fk4iD4R5697hcmXsjDJJYgymiHnYAu8GQYMw8DE8HC85VLIstBLGWis9wJPe1BqZRhI3Ia3AAdGaE20sjIorLaWboVVHC5nK0OR4VUdBqkXjBIlOFYGKyMBx0jBsRLb35AAirtHstBhYzWHWO8zkFmNUOfm3Yu2GcAADe5IY+2F8ThK5hkJOMY5MJNwJV/rl7BjhOVfAwseesW92lEZ54iKms6F4V3dsiI4evQoBg8eDAAYM2YMxo4d6/E+rl27hm7dugEAXnvtNUyZMqXY9Xv16oVLly7Bx8dHmIblQSgoKBC6vwC2LlGO3b8IIYQQQlzheR6cwQCLTgdroQ5WvR6WwkLok+/AUpAPS6EOVp0OrFwOzmyBVVcIS2GhrdtqXi4sOj2sOr1t3F8JlP641yqo9oE8OEooQ9aRi6J1VcGApMj1tEwDSJVAxrlyeeslyg6QgPdjUM1gASRSKKPudWe8c/IS5MZ7rVDJEVLIVAyqG8yQ3L0ylygAVRCQ+oAuCXO8WZhCJIg0mqHgAEV0XTAsCysHJF9KhDzXNhRMyluQGiQF68sgwmiGHkHIZMOgY71gVamQny8Dz0thZaSwslJwjASc/X+GBc/cC4JYzozqOeehsOgQmSdu2r3tUxeXQlqX+f1E5ZyBlDchKi8e2b4S8EEsQkwWGKyROCLrVOb9+hoTIIEJAeZzAHgEmXmoTIBR6o9DgT1K3J4BBwnDQcoCEgkDKQuYDQWIyLgIjTUNnDwPFjmD/kvWlLmM96uiYgNq8axAjmMb7P2vi2Nf51EcTEwIIYSQqoczm2E1GGxdTM1mcGYzzLm50B791xYk6vSw6vUI7dwRvMW2jm1dE7xqxUKXeBPXvl76QMoqairh7gVtDMOAYVlbQhthZRfbcwBTxj6gZglgkrGABJBxPFQ8D9Y+fO9uQ9MdhRQFUhY8Y3t5kw8DpQaQ5lvASgFVRJBQ3uycVGj1tiY6ngF0/iwCZICsgIMMACQSSGRSSL1kSGpgxnXFvf36WnlE6q2obuAhY1ioouuCVcohVatwvPAOThek2oZwMoAvB8QagBomFgbeF3lsIHSMFwy8Apk8kM0DPCQALwMLKaSsDFdlEnC8BFyuDFarLcePJLQZdLGXwUkLYfRKhFwlR31NADRyP2hTQnEhMfDugQLgwSQRvESKf+urYZVKkR0SDC+pAk/710RT32hIU7xx6e+y5z1JbV4DVtaEm7V8oZQo0LHGk4jyjUBhKosjS46Wej8SCQOJlIVUKoFEyqJO885Qe8tQq8FwKBVy+Ci8wbIsjHoL/M+kgGUZWK0cFEoZVCoZlCoZlGopVBo5VEoZWAmLnJwcMAwDX19fAED81u9x+a+rsNVgBgrFoxmiPZrvqooICQmBRqNBYWFhiVOkWK1WYSBv0YH8/zWO/corqqmfPFqozhBPUZ0hnnpY6ozVYIBJmw1jZgZMmVkwZmbBlJ0Nc04uzHl5sOTlw1JYAKtOh9AuXSBRKmxZQq0WW2TGWWHOz0f6n/tF++XybwKcGbzVYluXsyLXm3fsQVrhHF+L58Rj1jgJA8fej2lSFjIZEGzhwLAAw9iCRFYCpITLkK2UwCRjYJIx8OE5BJosqGG0QqJWw6teM8h8vCD388ZP2edxwpwGjrVFlzWtUtRiFOjK+kMiVUDiEwSJ2gesTI5DWedwMC9RKEOsMgCNfKIQFt4UGo0fZEFRYCQSgJVg77kt2H15r7BuTf/qCI9oiJp1OkIlVcJssiIvx4C8XD2yz/+DpMQrkJrlkFjkMMp9YND4IV3iBauFh0XPwZxnhcXCgZfFQut7CUZlIfICUxDpE4bq0U8gtmZbnNhzB8f2XRMdt7tphgSWu/+csFIow8NgkunBRqsRpAlA3WrNEB1UA7p/s4DEeM8+TPvnyDNoX6stWBnQoHUwlFIlAtX+kEtkuBKfAfx93ON9sqwtUHwy9nFovJV4onU1UTfUXKsebTvXBgPAYuGgUEmhUEhtAeLdfyq1DGq1DEqVHBJp6b7vKrUcT7SuXuJ62dnZOHfuHBiGQePGjeHr6wtfiRJhxntHXlKFzzH3gwLPClazZk2cPXtWyBDnzvXr14WBv0UzS/3XnD9/XsgIWTSzHSGuUJ0hnqI6QzxVWXWG53lY9XqYsrJgSEuHMT0DJq0WvNUKc14+zLm59/7l5IIzGku97+yjuyCRcgBngcTLH7IAW4ZmzuwiiUleNtiirYU8nB8rLwxgZQGrhIFZysAsAYz+LFgfBnEGMyQaGbxrx4KVK8Aqldgrz0WSJR9GOQO9gkWEXwBifYLxRGBdsHIFpD5BkCg1YKRyrL+wGScy7nXrrB9UE96hddGwfjenmwqaY3pwN9LvFSs4Ct7hDRBQtzOUUvGMBf6nDIBD4FnIM8g0SXAui0OcJgwF1wtQkG9EQYEJyPFHHNMAOqYAjLcZUb5hiPIJA8uw2Lr2DM78e9thzzKEQ5xBWA9AL6QmukfBStEu5knIvHnENPSFj8ILwZpAqGUqyO+jFY3ngLYxLaDRKNC8TYzoObmi5F59xfFReEPjpUCtQHFGYv8gNR5rEQ0AsJg5yJUSKBRSKJS2IFGhlN5rUVTJbC2KKhmksuIrpa+/Cu2fq3NfZS4re9Bpv5F19uxZNG7cGDqDDMlsA2E9uYtkQI8CCjwrWPPmzXH27FlkZWW5TNlvd+TIEdE2hBBCCHm08RwHq8EIzmiA1WCAzMcHBVeuInX3HzBn58CkzYYpO9ujYNKj1zeYgLtjJnmHC13GRSISV0lYeA5gi+YlYe91Z2UYgJWykHr7QuqjhsxbjQQ+H5msGTlSK3QSHmG8FQFmBo8xcki91JAHhUMRHAKplw8+yzyFK4Z7mUObBNRArcBY1GrcG3Kp+IULVBm4mnxGWA4JDoMsJA6+LoJJ78RAwGG2CNPd1lMTZ4aSFQeTXnKNaNlsNYO5+396UiHSU/KRkZaPgjwDCrL98ERhN1hMPGBhwZl55FkZHIAWB/CPaD8+fkp0atEZoeE+qNdYPCWTUlX2JJM8xyNYEwBfHxUeCxdPWaNQlP0uAWe1zZ9pdTEW1y9AhZp1bFPRWK0c5HIJ5Aop5HeDRLlCCqVSBqXKoVVRLYNaLYdKJYVU7jocCQ33Qa+XmpS5zFVN0aATsPV4TElJQa5BgQvye9f/Gj6/MopY4SjwrGBdunTBjz/+CABYsWIFpk+f7rSO1WrFqlWrANjGhbZp0+aBlrGq0Wg0sFgsLrN3EeIK1RniKaozxFOe1Bl7K6WloADWQh30d1KQvmcvzHl5MOflgzebEd6zOziTSTRw0b/Z49CnJCPr4OGKfCv3yukYQ3BWMFIJWIkEjISFPNAHrIQFI5PCZCmEyUcPVs7Am+fBMABYgJXaWjz/7uSNm95y5MhZcBIGjS1SRElU6KqMgMwvBJp6T4KRysHK5FhzdCkStDdgj2LlYQ0QEBiDGvW7Qlqk+dTvnwwg+V7gaZZIwMiVsHAWyCEOzjRycbZhk9WWYdRVMKmRqsGapVBZNFBxXlCbgmHMU2Pf1UswGTjoC03Q68wwGCyQq4PxSo0h8AqQoladUPir/OAt14BhGOw5chpnj9+GmGPnVfcpaS1m28E3m51btlTqkqfgc8dqsdUni8U5QPT2VSIkzPvuFJ48ZHIp5DIJZAoJ5PJ7gaJCIYVCJYVSKYVSJbcFjGoZ/APUkLloTYypFYSYWkFOj5N7tFqtMG+mo+DgYMTFxeHg8auix61lHYxcxdEvbgVr0qQJmjZtilOnTuHXX39F69at0bVrV+F5nucxc+ZMYTLygQMHupwj7L+k6OS4hJSE6gzxFNUZ4qmaNWvaxk9maZFz9hxMmVkwpKbBkJ4OU1YWTNpshHV9FgzDwlJYKGpBNOfmIvvESdH+Ci+fBGfSgTPowZv04HkOuvObwJvuc0oGB/a561mp7W9WZvtbIrP9LdUAUoUteGS9pPB9oh4YVgJGJsfGmjxuGHOgNevAwRvN2AjEKP3ROSAOEo0fZAERkPoEQqL2hv6fr6HNuHfhzEbFQR0Yi8B6z0EqEV9q+qh8RctGq20qOZPFBKlcJXrOW+Hlel2rCeq7TbVWK4fCfCOCuFDU8Y6DiTNCpZajZkB1NAiJA8uw+PvPK7iakIFcrQ4GgxlmkxL1+S7CfjkAN6DDDSSiKB8/JWrWCkWoygfV/cQtkyp12Vsm7QGn2eQceKo1DvtlAJlMIrQi2gLCu11LVTLIlfbxiVIo7rYmRlX3dxkg1m8SgfpN/tt5RCpDcUFnvXr1bC3yag0c54PhK6wPe+WiwPM+3b59Gx07dgQAREZGYu/evU7r/O9//8NLL70Es9mMt99+G3v37kWbNm1gMBiwefNmnDxp+zGKiYnBqFGjHmj5CSGEkP863mqFKScHpiyt7Z/W9s+YpYUpKwvG9HSYsnNK7PJacO0GZL4aWAtyAJ4DI1OAN5tg1euc1tVdiwdb5CqMYwFJcY1dDMBKGUjUash8vaAI8IZErYBUrYRErYA1JwnWnCTbqndbIxkGYBRqSDV+uOatQZpChjQpg0zGgiaKIIT7hOKxsAaQ+ARCHhAGsFIwDAPt7gvILLh3IWwNrQ4moDq8XbRMOgeId1sbrWanwLPouqa7waTRIZi0axxaD0qJHAVGPZRmDXzNgVDe8MEfJ69Am1GI7CwdTHenJAkI1qBj026IjPVD7Xqhov1oMwqRdENbzIF1r/gA0bOWSZZlILsbQCpVMgQFe0HlYh8NHotAjbhgYSyjRPJoJpr5L3AXdIaEhKBevXpC0qPc1HQA97p121uuHzUUeD4ADRo0wPz58/Huu+9Cp9Nh69at2Lp1q2id6tWr44cffoBGo3GzF0IIIYR4ymowwJCWbgsmHYJKffIdmLTZMOfmwlJQUGSujrLJO/0XZErbfliNL+RBkQBsvZvAMKLXEHVzvZtxFbAFnprwu62S8nutk/bWS4lGA9/m3cCAASNXgJWrwMnkyOWtyNQGIsjUAIG+YZD5BkPiGwxZQDgkCls31MW7Z+N6diJgi/WgCogE5+uLlrGNICkSTAZ7BeJa9i1hudCkAw+gwFQIP6WPaF1vuetg0uQimHyy2hOI8YuC3mKAj8IL4V4hCPcJhbdcA12BCZnpBUhPzUPanTxkppuQkxWA/DwjeI7HHRTCsVXIkaWYANFVcFdaFpP7LrEBgRpEVvcDy7JgGNzNhiqHWiODxksOjbcCGi8FvH2V8PFRQqmSgWHdd78VyquW31d3W1I1ZGVlIT4+vsSgEwDy9QVwDDxdTQf0KKDA8wHp1KkTduzYgZ9++gkHDhxAamoqGIZBbGwsunTpgkGDBlHQSQghhJQSZzbbWiUzMmHMzIRf48awGg3gjMa7CXuM8KpZE9pjx3BlwVcPpEy8QysFbzGBYVmwChkkChm8akaAlUkg1ajAm7LBWtIhUdiCSft0H3Y+1VhIvPwh9Q2C1CcYAAepTwik/qGQBURAGVETjEwBhmEx7+9vcCrlPKx3I9mnopsh2luKPnEtnJLqhGiCbIHnXfZgstCkg4/S22ldRzqzHkqpAiaLyel9d6n1DFpHPw6O5+Cn9EGA2g9ecg1YxrmlrmFwHTQKrQue452CsC1rT+DKhXSnbUrDHnDax046Kq5LLMMwkMlZ0RhH+3QaKrUMGi8F6jUOdzmvYoOmEWjQlLquEmdZWVk4f/687aaTA1dBJwCYeJeT2DxyKPB0o2XLlrh06VKJ60VFRZVqPcA2P+cHH3yADz744H6L90i7deuWkMChevWS50MihOoM8RTVmarNotOj8OZNSFQqMAyEQNKeAdaQmobEX1aLtons9zxYh8Q/vo0bQeqlgTwgoPwLyNwdM8naurTaWyVlXoBcc/cxFQ+/lvcuMH3rxwibm9JvwZBkhETjC6mXPyQ+gVCExkIeUh1S32AczbmBy9qbuJ2bgkydFk9GP4G4oJpoGFoHcok4iJKwEiHoBIBMfTbCfUJRaNY5dWsN8QoULevMegBAnqnAKfB8MvpxVPeNhJSVIMw7GBHeYVBIXbfCxfhHiZZ5jkdutt7WepmSj7SUPFvXWK0O3j5K2xQZPI+WT9cQbRcY7IUrKFvgaTFzYMCA45ybimrWsXVbBQNIJSy8vJXw8lHA20cJtUYGibRixtPReea/yV3QGRoairp16zoFncAj28DphAJPUuXk5uYKc6URUhpUZ4inqM5UPlNuLgqv34QuMRH65GQYUtNgysyEKTsHVp1tTGRwh3ZQhoQ4bcuZnRPwcHoDWG9boMVIpbDk5SHjn3+gu3XVaV23WBYyLyWkGhWk3irAWgiYsmE12VokJQpAqryXpIeV3usiK8IwYBUyW3dXjS8kKi9wMiW0nAkppjzcCfZHaIuOCNIEIswvErIiweSR+E04dvu0sByfcQUsK0GNgGpOgWeIRhxMFppsxy7fVOgUeFbzjUStgBgAgEqqQLRvBGoHxkAtE3eHBYAaAdVRI6D4YEmvMyEroxAZqfm2rrFpBdBmFSIv1wDO6vpSmrPy0OtsraZWKycavxgYXHzPL6mMhVoth9pLDj9/FfyDNPD1VyEi2hdBwd5QKKUuu7JGRPshItqv2H1XBDrP/PdkZmYiPj7eo6ATAFgXN0weRRR4EkIIIaRCWI1G6JOToUu8DcOdO9CnpMKQmgrdrcRSzU1p1RtcPs7KZGCkUvCWe93TzPk54PRZsORlwVqYg5wjRnD6fPB3h+axUocxk/J7YywlCinUtRpAHR4AVWSQ6MLQmHIN+qsnXJaBUagh8wuFzD8UUv8wyPxCwcqVYAMioQyJBlukdfCzg0tEwWTdoJpoGFoXQZoA+DkFk+JurvZgUm82OI2vdFxXwkrA3J3CI99YAHiLk+w8HdMST8e0BMdzLrvBltbhv67h4N5r0BU6d7stiUFvBsdxYFkW+kITvHzuZfIPDPGCRMLCP9A2JtXbVwn/QDWCQrwQGuED/0A11Bo5ZHKJ2wt4QipTVlaWx0EnAHjx4lb3R7V2U+BJqpx69eqB53n6USGlRnWGeIrqTPmy6vXQJSYh/8oVFFy7Dv3tZJi02TBlZd1X0h5X2WABgOesYJUKWAssAMuClTAoiD8EmfremElWAkg0tmQ93lFuWiYBABb4PlELjIvpC6Q+QZD6h0PqHQDWJxBSvzDIw2tCExUHVuWNbH0urmhv4HRKPG5lnUK0bzhCmAL0CImGosi+QtRFWyZt3VxdB5NF1jXfW7eoFlGPoWZAdRSYdAB4+Ci84a3QwFfh7bSuXdGgk+d55OcakH635TI9NR8mowXNn4qBvtCMek3CwTq0JLIStkxBp51eZ4bGSwGdziwKPKvFBuD9OV3BsrYus2wpEvFUZXSe+e+Ji4sDx3FIS0sDAISFhaFOnTol1gG5mx4CjxoKPEmVQ11SiKeozhBPUZ0pO3NuLrT/noAuKQn6pCTokm7DmJ5RIa/FW6wAp4e1IBO8WQdlRCxgNYLnzYh47om704goYcm8CcOts/D4+p5hIVF7Q6L2gcw/DBKlF1ilBqzSC6xSDVZ2L3x0FUCsOrsZB24dFZYtnAWB6gDkGHIR6hUsWjfEq0grptneiql3KlYN/2poU70FLFYzpKwUoV7BiPWPhpdc7bSuv8oX/kXmxnTHaDAjIzUfqXfykJ6Sj6yMAmRn6ZGfa4DVKk7KwzAMQsK9bYkQdUFQe91rwS2pS6ydRMpCrZZB7SWHj58KAYFqBIV6IzzKF14+Cmg04vBcFNw+5EEnQOeZ/yKGYVC3bl3h79IEnQDAPrJtnGIUeBJCCCFExFJQCFapACORwFqogyknG+bsHIBlIVEocHXR4vJ5IYaBVKOBzM8P8kB/yHxUkKoYSKVGwJoFa85FWG7G29ZlJVAE1gbDOCe4YSyBMCY6PWx/FrKAcMhDq0PmHw6pfxhYpRdkgRGQBYaDLTKZpslqxs2cZJy6dRDXtInQyFWo7heFNtWaI0DtJ1o3xj9aFHjmGPKE/50Cz7utmHKJHGqZEgEqPwSo/CAtOpkngLigGogLquH0uKeSE3Nw6mgi0lPzkZGaD6Oh9JkzeZ6HQW+BSi2DTmcqEnjeGztqn0ZErZHDy0cB/0ANAoM1CAn3RmCwBmqNwjb2klr9yH9E0eCzNFiV+x4KjxIKPAkhhJD/OJ7ncePHn1B4/Tp0t5Nhyc1D1Ev9IJErRIl8pBoNQp/t5PH+FaEhUEdFQRkeBmV4OCQqGXhDFhhzBjhDLszaFFiyzwFGAEbAecZEAJwVnC4fEo1z657wGMNC4h0AeUCErUtsXDPIQ6qDlTsnz3Fna8JurDu/XVgOUgcg1CsYOYZc58DTT5zNNc9YAI7jhADUUcOQOlja9zMoJHJIWMl9jbHkeR75eUak3M5Beko+YmoFwqA3o1psABTKe61sBXkGnDziNiIvkb7QBJVaBn2RbrW+/iq8NKw5gkI04Dj+7ryTMlGiIEIedcV1o/b0Rgsr/W+0jlPgSaqcvLw8IfGAj49PyRuQ/zyqM8RT/7U6Y8rJtU1PopBD5ucPq04HS2EhrDqd8HfGXwdgyc8XttHduAVNjVjRfiyFhQDDQBESAmN6kWkv7rZeygP8oQgLg7paNAJbtYQqKhIMb4ElPwv6a6eQe3wTDPnZKMsEAtbCHCHIZBjWljHWyx8SL3+oazSFIrK2qHuso1xDHs6lXcKlzGswWIyoE1QTNQOqI9Y/WrRejF+003Y8zyNZm4oA1ldUZ2L8o6CRqRDmFQI/pQ9i/G0to0FFxmgCgFwqhxyupyNxx2gwIyU5F2l3bC2W2sxC5Gj1KMgzwGK51zW25dOxUCilCAjSiAJPx5bJ0mAlDNRqOTTeCvj6KREe5YuQcB/4+IkDd5ZlUKdBqJu9ELv/2nnmvyQ9PR23bt1C48aNoVC4Pud4QqIsso9HtIMABZ6kyrl586aQfrxx48aVXRzyEKA6Qzz1qNYZq8GAvIRLyL94EQXXbsCQkgJjZhY4gy0pjVdcbfg/3tTltjIfH1Hgac5zbrUDAHNOLvwffwymnFyoo6Ogjo6GKjoKyohwsCwL3qyH1VAAa2EOLHl3UHDqHDjL3ekzCnNgzdd6/L5YpQZS3xAowmtCXbOpLdhU+7hMCOTK4aQT+PLQD8KySqpEsCYQfjofp8Cz6LKZs6DQrMd17Q2oc6WiOuMl12Bp38/vuxup0WBB0k0t0lPzcetaFnKydMjPM8Kgd542xhW9zgSFUgq9Try+f6AaDMuALzJVg1Ilg+buuEv/QDWCQr0QEu6D4BBb11iJlFouy8Ojep75r0tPT8fFixfB8zzOnDmDxx57DHK5ZzeVijJxZjAOmW2Z+0jKVpVR4EkIIYQ8hCw6HQpv3EDhtRvIOXMWhTduwKTNLjaLrMVNMAkAUl8fIDlZWHYMPFm5HHJ/P8j8/CBRKlDzzVH39pmfjcKLh5D57yoYU2/AWpANryYdIfVxbvVj1T6ARApY3Yw1ZCWQB0VBHhoLRVgspAERkAdFQeob7DK443gON7NvIz79Eu7kp6FBSBwC1f6oF1xbtF60T4RoWW8xwGAxuuwSG6Dyg6/CGwqpAr4Kb0T7RaBV1GPIT84BOKfVPQ46eZ4Hx/GibqnZWYVY9f0xj/bjSFdohl8AhPkx7SRSFq2ejoVKLYdMxsLXX4XQSF94+ygglZYuaCeE3OMYdAKATqfD6dOn0bRp0/tKJiVRZyMm+9751yq1AOh/v8WtcijwJFVOWFgYrFYrJBL6USSlQ3WGeOphqzO81YqC6zeQn3AJeRcTUHjtOgypqR7vx5zrPvBUhYeBYVkoQ0OgqlYNXrExkAcGQu7vB4laLQRY5tx05J/7C4bEizAkxsOsTXHalyU/02XgyTAspN4BsOSk27rm+gRBHlwN6trNoQivCVlwlNP8l+7czk3BlD/nwmC5Nx+ot8ILFs7qFHhGeIdCLpHBZL3XIphjyINGpnKa05JhGHzdcxZkRebWTEd6qeuMfXqS5KQc3L6ZjdTkPGSmF+CJVtXASlgEhWhQt1G4sH5AUOmyxBbFsgzUGjk0XnKERTh3iQWAzj3rl2nf5P49bOcZUry0tDRcvHjR6XE/Pz9IpfcXUhmtJsisDnMbS0rX2+FhQ4EnqXJCQkIquwjkIUN1hniqqtcZq9GI/EuXof33OPIvXEThrUTw5vu7EGEkErAKW6Zaqbc3pBo1pBoNJGo1pBo1JGoNZD7eYB26jPE8D1PaTeSf+BeG5EswZyXDklvy1CnWPC0QKX6MlSsh9QmCb6s+kGh8oIppAonSeXoQRwXGQkhZCQrNegSq/UXPhWgCRYEkYAsm1TKVU9IPlmVR3S8Kt3KS4af0Rrh3KBqF1EW9kFouX7do0Am4rzMWixXpKflIuqFFclKuMBbTbHJOkZRyJxeh4T4oyBe3TMoVUvj4KpGX6zxPJwAoVVJ4+Sjh66dCQLAGwaFeCI30QWiYD+QKupSrqqr6eYaUnrugMzIyErVq1brv7vYyqQ7Ruff2n+v9aN6soLMVIYQQUsnMefnIT0hA3oWLyLuQgIJr18BbSj/1RVFSHx8ow0KhjoqCuno1qGNjoKkWDamXF9gSuoNxRj0suenI2vMzDMmXwRt1Hr++tSAbUu9ASH0CIfUOhMQnEKxCXeLFmYWz4tjt0zibdhHnUhOQoctCt7gOCFL7o3tcR9H2cqkckd6hSMq71+Kao89DkDoAerMB6iKZbN9r8wa85V5g2bKPX+Q4HjeuZCLtTh4Sr2ch7U4e8nINxfVuFinMNwHhgK7QBJ7jwTjMVRlRzQ9euQZoNHKoveUIDvFGaIQ3wiP9RFOZEEIerIoOOgGA1RWIl2mMJyGEEELKA8/zsBYWwpilhczHG1cWfIWcU6c93g8jkUBdrRo0NWIg0WjgHVcbvg3qQx4QUOp9cEYdzDnpsORmwJKbAavelmDInJ1a6qCTUagh8w8Tkv8oYxtD4sEUJnYsw+D7E6tQaLr3upmFWqhlKuSbCuGjEGdpjfGPRlJeipAsqGZgdbSKagqpxPnyxlfpWVZRk9ECo9ECbx+l8BgD4Nflx2EyupzwpUSF+baudBzHQaczQeN1L5Pli0OalWmfhJCKk5qaioSEBKfHo6KiULNmzXKbnzaEl6PQYVllocCTEEIIIR7iOQ4F166j8NYtqMLCYMrSwpiVBc5oC0J86tWFT/16pQo8ZX5+8H/icXjXrQOvmjWgrhZdYgtmUSZtCgovHIT+1nmA46Cs3sDlelLfYFiyXY8jZVXeUEbXg6p6Ayij60MeWr3EDLM8zyO9MBPx6VcQ7WPLgBvjFwWJw3Ysw6JeUC0cv3NWeCxDl4VqfpFIL8h0CjxfatQLrzZ5Hv4q57k9S4vneeRm63HrWhYuX0hHcmI2wiJ9ERbpA7lciifb1xTWZVgGIeE+uH0zu1T7lkhYePko4OevQlCoFyKi/VGthj80XgoolHQJRkhV9qCCTgBQWhhR4Ckt272tKo/OeqTKOX/+vJB+vGHDhpVdHPIQoDpDPFWRdYbneVgKCpBz5hySN22GPjEJnMkEVqlERO+eThcrxqws+NSr67wjloUqMgJyf39416uLgGZPwKtmDTAeJirhzEYYkhKgv3EauqunYM5MEp5jZAooqtV3eQEl9bs3Po2RKyEPrgZVTCN4NWgDWVAUGKb0XVbXnNuK/TeOIEtvC9gahNRBveBa8JKrEeoVLFq3fkhtUeCp1edCxkph5pzHuIa4mC+zJBazFcmJObh+JROJ17VIu5PnNG2JUiVDWKQPTCYLTEYL5ArpvTqjdN0FWqmSwsfXNgYzJNwHkdV8ER7pC7WXAiz7iE7KR4pFv00PrwcZdAKA2SJHive9MedShpILEfJAcBwn/COkNKjOEE+VZ53hOQ6m7ByYMjNhzMiAMSMTVoMB5rx8FF69du81DQZYCgog8/YWbW/SZiPwydaQaNTQxMbCp349+DaoD6+4OEjVnndX5TgO5vRb0N88B/2N0zAkXgRvMblclzcbwenyINGIWwxZqQyq6AaQKL2grt0Miqg6YEs5Z2bRxD4AoDPrhaATADILs4DgWkgryHQKPBuG1MFjYfUR7RuBYE0gHgurjxBNUJnHZuZk63DzShZuXM3EncQcaLN0TvNaFmXvEgsAhQVGyBVSob74B8pgrOaH0HBvsBIW4ZE+iIoJQECQmqYoISL02/RwSklJwaVLl5wej46ORo0aNco96AQArVmDC6FthWWV2X0G8ocZBZ6kylEqlZBIJPc1HxL5b6E6Qzx1P3VGn5qG7H//Re65eBRcuw6/xx+DwsWYSqm3F1iFQuhSCwCmjExR4MkqFJAHBIBhWbRcsczj1kw7c74WhecPQHftFIwp18Cb9KXe1pKbDplvEKS+wZD6hkDqGwKJl2+JLZocx+Fmzm2cSDmH82kJ0MjUqB8Sh7jAWMQF1RCtWz+4Nn678pewnKnPBsdzSC/MdNpvjH80pjwzttTld+fAH1dw4vAt5LvJFFscXaEJHMdBKpUK4zntdSauoTd6PB933+Ujjz76bXr4ZGRkPPCgEwAsjDiBGMc8mjexKPAkVU5cHP2gE89QnSGeKm2d4Xkeups3of33BHLj41F4/SYseeI70caUVJeBJ8MwUAQHQ3/7NgBAotFAolHDu04c5AEBUAQFQqLRlOlCxpacKBeW7BTorp5EzqFNADxIRiGRQR4cDWW1+vCq/xQUEbU86joLALuu7MPy0+uFZW+5BjH+0aKWTbt6wfe6kCkkcgRpAsAyLHwU3i5bSEtLX2iC1cohL9cAtUYOv4B707NYLFaPgk6pjIWPnwrBoV7wD1SjSbNoBARqhMyzdJ4hnqI68/Dx8/ODl5cXCgruZZmtVq0aYmNjKyzoBAAzJz7/UuBJCCGEPOJ4joMuMQl5Fy4i68hRFFy5Aquu+NZDY6Zzqx0ASJRKBD3VCoxECr/Hm8KrRmyZWzQBgLeYYc5Jg1mbAnN2CjijrVw8ALAswBWTjYJhoYioBVVsE6hiG0ERURustPgpOniex538NJitZsglMkT4hImerxssngMz31QIg9mALF2O0758lT4Y12ooIr3DYOU5BGkC4Kvw9uhCjrNyuHE1CzeuZOL2rWxkpOaD43i0fDoWABAe6SsKPKOq+7vbFQBA4yWHf5AG4ZG+qFYjAFExfvD2VoKVlH26FULIw00mk6FJkyY4c+YMCgoKHkjQCQCm4s7fjxAKPAkhhPxn8TwPffId5J49Z/t3/jws+QUlb+jAmJkFnuMg9/OFPCgYiuAgKIKDIPXyuu+LFWP6LeSf+hP6G2cgD6kGWVC00zqMROoyA63EOwDqWk9AVaMJVNUbQaLyctq2KIPZgBMp53A48STOp1+ChbOgZ53OCPUKcgo8Y/yioJIqobfca1XM0GmhlCmhM+uhlonHp7ap3sKTtw7ANqVJ/JkUXDh9B0k3tS6nMTEaLFAopcjLEbduOgaeCqUUXt4KBId5IyrGH7G1AhEU4g2Z/NFsVSCElJ09+ExPT0dERESFB50AUGg1ipYfzclUKPAkhBDyH6NPTUXmP4eQe+YsCq9fh6WgsOSNimBkMqgiwuFVqxZ8GzdEQIvmkKrVJW9YCmbtHRQmHEH+uf0wZ96+9wQrcRl4AoAsIByW3AzIg6OhimkETd0nIY+o5XFCnnxTIRYcXip6LPv/2bvr+EbuM3/gnxkxWGCZmZmWGbLZMDfYNE3h2l577RWv/V352iu3ubZXvEIKYWbm5WyWzGtmBsmyGGZ+fziWPZYMsmVLlp93X3515zugr+wnIz3zJccERKwIbq8bEtHMWDURK0JhXA6GLKPQymOQE5uJzcllyNSlQiGWz730klnMDlSf6cXF2kEM9E2A8y78FcxssiM+KQY2qwsej9c3wY9SJcXNH96MhOQYGAwqMCJmTb5AEkLWP4lEgtTU1DV7PTe1eBISHn19ffB6vRCJRGv6Hz1ZvyhmyELc5klM1NZhorYWpvPVcAwGXptyIaxcDmV6GmIKC6DbVAVteTlEsoW7qi4Vz/Nwj/bAevEUrBdPwTXcFfA4j3EQPM8JxmKK5CpI9MlQFmxHwo1fhki+cPLL8zw6Tb1wez2wuW2oShau4RmvMiAlJhH9k0O+siHLKGIVOozYxpESkyg4/j/2fhpS0conTjGOWdFUN4Sas70Y7AtuNsdJsxMZ2bGI0crh9XCCmWVLq1JWXLdpdJ8hwaKYiWxjY2PQ6/XLnjE7lPiobeMUosSTRJyxsTHfuld0oyZLQTFDAhl44SUMvf4GrB2dAB/ch7osIQGakmLIk5OgqyyHuqAA7ArGZ87FcRwcXbWwVL8FR38rPMaBRc/hPS5wFhPk6cWQxCZDEpsMVrG0cZJn+qrxXl81zvTVYNJlxe6MrUiJSUSeIQtqqUpwbEVSsSDxnHROIk2TBCnrn2CGIuk0m+z4zY/eWvLxSpUUcYlqpKTrkJ1vQEZWLGSK1Z81lO4zJFgUM5Grr68PLS0tiIuLQ0lJSdiTT4YST0IIIWR94HkebqMJ9oF+OPoHoMzKgnN0FNb2jiWdL9Hroassh7aiHLqKcsji4xc/aRl1dPQ2wXzmBdg7asHZJ5d0HiOWQpZWCFXhDqhL90KkiFn8pDmeb3oDDSMtvu0hywhSYhIxbBmFOlaYeG5NqcCwZRS5sZkoSchHUVweREtcw3MxdpsLo0MWpGToIHp/Eh+NToHE5BgMDcz/+9DHKZGTH4eKrWlIy9RTl1lCyLL19vaitbUVADA6OoqGhoawJ59agx6YNSE4H6XDzynxJBEnPz9/RdPrk42HYmZjmZp5thvGcxdgaWlF/MH9cAwMwmufmX2WkUigq6xA35NPB7wGI5FAnpYKdVEREvftgaakeFXih+d5eCfH4BrpgXusD47+FlgbTix6nkilhbJgB5QFW6HILAMrkQX1mnPfS2VSyZzEc2om3kHLKHJiMwXHViQVoyKpeMmvtxC7zYW68/1oqBmATCZGUqoGAKBQSRGXMDPZUUFZkiDxZFkG8UkxyC9OQOW2NBjiF58YabXRfYYEi2Im8sxOOqeNjo5idHQUCQkJYaoVIGOEvTbC3/l3dVDiSSKOQqFY/CBCZqGY2Rh4noe1rQ113/k+vNaZCYGkcQa/iX2cwyPQb9sKRiwG7/GAlUqhKSmGtrICmtISqDIzIZIvPZkLBsdx8FrG4R7pgWu0x7fsCQCIdYmASAJ43X7niWIMUBXtgKpoJ+RpRWCW2Mro8rhwqvc8hi2j0Cu0yDdkI0Mn7NZXmVSMh2qf8W17OA/iFHq/MZuhYBq3ofq9XjTVD2Ko3+zr5axUSX2J59iwRZB4FpYm4uzJLhSUJCIr14DcwnioYlbn77NcdJ8hwaKYiSyBkk4AyM7ODmvSCQCSOa2t0fqoghJPQgghEWe6lYDzeOAcGoZ9YACO/gG4JyfBuVyCY51DwxBnZwnP93rhMU0g99OfhDw5GTGFBWAlqzsO0NHfCvPZl2BrOQd5Vjmkcf5juhhWBIkhBe73JxBiFWrIM8uh3XI55JllgomDFjNkGcEzF1/Dsa7TcHickItluKbgUjAM65d4ZunTsT2tCjn6TOTGZqAsoTBk3Wd5nsdAzwSqz/Sg9eIIjGO2gMfZrC7YbS4olFKMDltQwPFg2KmvV8lpWnz5u5eBZaP16xYhJJx6enrQ1tbmV56dnY3MzMwAZ6wtkUoHYGZJFYaJzr62lHgSQggJO4/NDnNDA0znL8B0oRraslLEFBfDOTwM3jszzTzDspAnJsDe2+crcwwNQfV+4ilWq6FISYY8JQXyhHgoUkM3q2nAepvHYGk4jskLr8M9NlMn90hXwMQTABTpxZDGpSOm4hLIsyuWPa7I6XHh9bajvm2Hx4khywgYhoHJPgGdQuvbxzIs/mPPvy7rdQLxejm0NY2g9mwvOlrGYLO6Fj8JwNiwFTkFShjiVfB4OUjeT34ZhgH1RiSErIb5ks6cnBxkZGSEoUb+GLEMsxPPaL0hUuJJIo7VavW1dqhUqsVPIBsexcz643W5MFFTB+PZszDXN8DW0wtwnG8/z/OQ6HQBz5W9n3iKVCrIkxKhKS2BfvMmyJOTIdEsbeKdlcSM12GF9eJJWOqOwtFVj0BLfbvHB8B73GDEU62sIkUMpPHpkMSlQ6TShmTMV4YuFTn6DLQbu31lnaZeJMUkoNPUh6pZiWeoGMdsePvlJrQ0DsNh9+8uHAjDMDAkqHyTAyWnan0tnesJ3WdIsChmwq+7uxvt7e1+5ZGUdG4klHiSiNPW1uabfryioiLc1SHrAMXM+sBzHEaPHUf/cy/A2t4O3jP/gtnO4RHwHAcmQGtgTGEBDDt3QFNSAnliwrK60AYbM163A5aat2FvPQdbRzXg9Sx8AueF1zKOmIpLII3PgEgVfBLYaezBG+3HUWDIgYhlsTm5DHKJXHDMwexdvsQzQRWHkoR87M7YErKxm3MnRpFIRag93xco1xYQi1kkpGiQXxSP8i1p0BuU636CFbrPkGBRzITXeko67ZMTmD2yk/PO//m4nlHiSQghZFV5rFYMv/EWBl58CY6BwSWdw7vdcI0bIYszAABk8fHvd6FNhkQbmhbDxXBeD2yNJzBZ8xYc3Y3gA0wINBcjkUORVQZ11aVQ5m1dVjfa493v4ZnGV9Fp6gUANI22YWtqJWIVOhTF5wmO3ZuxDRaXDTvTN0MjVUEjD36pldl4nsdQvxlWixNuF4fxUSu27c2CRDLVJVYdI0Naph69nUa/c+UKMVLSdSgsTURxZTLUMXK/YwghZC3Ml3Tm5uYiPT09DDVaGOPsRua4aVaBC8DN4arOqqHEk0ScuLg4eL1eiEK4WDuJbhQzkcnW3Y2BF17C8NtHwDkci5/AspAZDJAlJkCVlQlFWhpkcQZoK8ohkoV2htOFYsZrn4RzoA3Wi6cwef61Ra/FSBVQFe2Eung35JmlQS19EsiIddyXdAJAr3kAVcmlaBvvQkFcDthZExCpZSrcUnr1il7P6+XQ3jSCuvP9aG8ZhXXSiZQMHfKKptYyHR+xIjFF4zu+sDTRl3jqDUokp2lRUpGMvJIESKXR+7WC7jMkWBQz4dHV1YWODv81nCM16QQAN+eChJsZK8+zSxvKsN5E7ycEWbdSUlZ3MhASfShmIgfv9WLojbcw/OZbmGy8uOjxEr0eyswMaIoKoS0vhzwxHhKtFqxUuqr1nBszPM/DYxqCs68FrvF+AACr0oKRyMC7nf4XEImhzN0Mddl+KPM2LyvZ9HJeWFxWaOUaQfn+rB14qPYZ8O+vQ+LhvOg1D0KsE2NwchgpmqSgXysQt8uLd4924MRbbX7jNceGLcgtjAPDMBgbsQgSz5LKFEilYhSUJkKr3zjLRdB9hgSLYmbtuVwu9Pb2+pXn5eUhLS0tDDVaGqnYjkxTnW/bLovOlTwp8SSEELJizvFx9D7+JEbfOQqPxbLgsYr0dOg3b0LiFZdDkZIU1rF/XrsFzr5muE1D8NrMgn0Mw0ISnwFXf4uvTBKbDHXlIWg2XQ6RQj33couadFrwcsvbeK+vBttTqyCXSN9fAmXmdxCr0KEqqQTnB+qhlCiQqUtFSVweihPyoVfolv1ep1ktTpx4sw1nT3XB5Qw8jsjp8MA66YJaI8P4qA0cx/uWOtEblNi2N2vF9SCEkFCTSqWorKxEdXU13O6pB2qRnnQCgJdzwKSeSTZdUko8CSGEEAFLaxsGXngJI0eOgvcsMOEOy8KwcweSr70KmpKSsE804xjsgOnYY7C3noM4Nhmqop0Bj5PGZ8A7OQ5l/hZoNl8BWWLW8l7P48Tfzz+Go53vws1N/Z6SY+KRqknGmM2IOFWs4PibS67GNQWXIkWTiBipGjLxyluAx0etOPJqM+ov9MPrXXh2IKlMDIlUhLyiBMQlqGl9TULIuqFWq33JZ2ZmZsQnnQCQkZ6O5sRm37ZIFp0pWnS+K0IIIauG93oxevwkBp5/EZNNTQseK9FqkHj5ZUi68grfREHhwvM8HN0NMJ18Gva2c75y92gPOGclWNlMt1FWLIE0MRvSzdkQX/tvK35tmUiK5tF2X9IJAJ3GXqRqktFj7vdLPAviclb8mtP6uk04+lozmhuHF5yNVqmSIilVg6rt6SgoTYzq8ZqEkOimVquxfft2SJYx63k4qERSGNwznw/ROi6YPlVIxLl48SI8Hg/EYjGKiorCXR2yDlDMrB2e51H79W9hsql5weOkcXFIvOxSpN1807KWOwkl3uOGpeEYJk6/ANeQ/4QT4Hk4B1qhyCqHSBEDWWoBZImZYETLqzfP8+DBCyYBYhgG1xZeij++d7+vbNAyAqfbAafHFegyK+ZyevDQX0+jq218weNi41Wo2paGLbsyoVCu7tja9YzuMyRYFDPhtV6STgCAWwoHl+rbFC2yYtd6RYkniTgulwtutxvcrMXkCVkIxczq89rtmKitg0SrhW7zpoCJJyMWQ52fh+Rrr0Hc7p0B1+BcSx6LEZPnX4P57CvwWk0LHsswDGLKD0CsS1x2N2CzYxJn+2vh5TmkahJRHJ8v2L83czseqnkGFpcVGdpU7M3cjoPZuxAjW52F5aUyMbh5utQyDJCYosHWPVkoq0qBNEq7dYUS3WdIsChmVg/P8+js7ATLssjMzAx3dVZsaFKCU/LLfNsq3oxLw1if1UKfNCTiiMVi8DwPsZjCkywNxczq4TweTDY1wdxwEbzHA1YiQeLlh9H/7HPwWm0AAKkhFklXXoHEyy+DVKcNc40BW2cdTMcfh6OrHuDn/8LHs2JwiXlIv/LjkKfkLvv1BieH8Vj9CzjZcxYMGFxTcClsbjsKDDkQsTPdpaQiCb6w61+QqkmCXhH635Pb5YXV4oQuVukr231JLh752xnftkjEIi1Lhx37c5BflACRODonsFgNdJ8hwaKYWR08z6OjowPd3d2+svWefHpY4brHHENdbQlZEyUlJeGuAllnKGZCi3O7MfzGW5DGx8He2wevzSbYZ+voRMp112L8vTNIu/kmGHbuABMB41EsjSdhOv44XEOdCx4n1idBu+0aqMsPQCRfWWuj0T6BL770PXCzEtxOUw/yDNnoMvUhJzZDcHxZYuGKXm8u84Qd59/tQXKaFkP9ZrAsg537c3wJZUFJIuIS1HA43NixLxu5hfFISNbQZEHLQPcZEiyKmdALlHR2dHSAYRhkZGQscGZk46QKAPaZbTY6U7TofFeEEEKCxrndGHr1dfQ8+jjcJhPUBfnQb97kd5y1oxMp11+H9DtuC/vstDzPw2McgL27EeazLy+YdMozy6Ddfi2UeZvBsKFJlPUKLTYll+Jsf62vrGWsE7mxWeg1D/glnqEy0DeBY6+3oKluCBzHo2xzCmLjVPB6p/alZeoBAAzL4PaPb4VWr4BYHP6HA4QQslyBks5p62o8ZwBWkxnAzHuYb5jEekeJJyGEEHhsNrT+5vcYO3HSV2Zta4emuAgixfuzvTIMVNlZ0JaXQ6xUzHOltcHzHNwjPXD0NMJjnQAAyFIL4RpsFx7IsFCX7oN25/XLXgplmsVlhYgRQSERdom6rvCwL/FkwCA5Jh5VySXIN2Sv6PXm4nkebU0jeOulJgz0Tgj29XYaERun8v07JV3na9U0xAe/3ighhEQSnufR3t6Onp4ev32FhYVITk4OQ61Cx2geB5Do215glMi6RoknIYRsYO6JCZgvNsHW2QVpbOzUrDP81JNW3uuF+WIT9JuqIE9MgG5TFaR6fVjr63XZ4R7thbO3CV6HVbBPpIyBxJAG91gvGIkMqqJd0O+7FRJ90rJfb8Q6hqcbX0H/5BBKEwqQrc/AlpRywTHF8fkoSyhEtj4dO9I3IT82O6QtwRzHo7F6AO+81ozRIUvAY0zjdkyaHdBoFdDqFfB6OLBSauEkhKx/0Z50AoCb94a7CmuCEk8ScYaGhuD1eiESiZCYmLj4CWTDo5gJnnNkFObGi7D39fnKxGoVVNlZsLZPLTkijTNAW1qChEsOQJa4/NleQ4Fzu2A6/gQmzrwIeUYJZEmB17lU5FZBkbcJ+j03Q6SImfd6i8XMuM2Ef1x4HO/2ngP3fiKerk1Bh7EHxfF5UEpmWnwZhsG3D34h5L8ft8uLC+/14MRbbZgw2uc9jmUZJKVqkJ4Vi6KyJMgV67vLWaSi+wwJFsXMyvE8j7a2NvT29vrtKyoqQlLS8h8sRhJuoUWWowglniTiDA0Nwe12QyKR0I2aLAnFzNJ4HA70PfYEXONGyBLiAx6jKSmGx2JF/CUHkHTF5ZAZYte4lkK814OJMy/DdPwxcPap1j5HdwOkCZmCcZoiRQzk6cWQJmQsafzmYjEjF8twYaDel3QCQOtYJ6qSS9E02oZNyWWC40OZdNosLrx3vBOnj3XAbnPPe5xYwiIjOxabd2UivygBEmrhXFV0nyHBophZmY2SdAIANsiSO5R4EkJIlPPY7eh5+FEMvfIavHY7WJkMydddA3bOFP+MSATdpiqk33EbJDHztxauBZ7zwlJ/FMajj8FjHBTuc9rgGuyALCUP4phYyNOLITGkhjT5U0oVuDRnD55vfsNX1mnqRVVyKSSrNNug3ebC2y834fzpHnjc838JkSvEKCpPwv7LC6DVKcI+wRMhhITahko6AWiZOZ/HYarHaqPEk0Sc7OxscBwHNsyLz5P1g2JmfqPHT6Ltj/8Hj3nSV8Y5nbC2tSGmcGppD1YigbogHzEF+RDJ5fNdak3wPAdr40kYjz4K96j/F45pnH0SMWX7INYnLyvxys7OxpjNiEm3FRMOM+xuB5JiEgTHXFVwCV5oeRNSVoIsXTouy9uHHWmbIBNLg369pZBIRGisGZw36VRrZMgrSsDeS3MRG0cTBq01us+QYFHMLA/P82htbUXfrKEg04qLi6Oy9Vi0wMPGaEKJJ4k4MWFuaSHrD8WMP6fRiJZf/QYTF6oD7jc3NkFbUQ5NSQnUuTlgwzwVPc/zsDaegOn4E3ANd817nFiXCP3em6GuOLTslr5OYw+eufgqTvacg16uxcHsXVBJlbi64BKwzMwXxHiVAf+x519REp8PuVgGUYiWYJmPWCLC9n3ZePPFi4JyvUGJrDwDNu3IQGq6DgytwRkWdJ8hwaKYWZ62trYNlXQCgBgb4+EEJZ6EEBJFeJ5H3zPPoeehR8A5HAGPUaSlIvUDNyHh4H4wovCOC5xOOMffftCvS+1sspR8aLZfB1XRDrCi5X90XRxpxXfevMe3PWY3Ytg6hkSGwbBl1K/Vc1tq5bJfKxCvh0NPlxFZuQYAgMfjhUjE+pLoLbsycPT1Fng9HMo2pSA1Uw+tXoHsvDgaw0kI2RA0Gg0YhgE/a4x9NCedAMDKVOGuwpqgxJMQQqKEc2QUzb/6X5jr6gPulyUmIPNDdyJu/96IGBdoaz2Hsdf/DveY/5PtadLEbOgP3AFl3paQ1LkgLgfJ6gQMWIZ9ZS1j7UhUx6HD1OOXeIaK0+HG2ZPdePdoByxmB265ewvcbi9M4zaUVKYgLmGq66xCKcUHPrQJSalaaPUK8DwfEX8rQghZKwkJU/fhhoYGAEBJSYmvLFox4o0xGzklniTiOJ1O35ctmUwW7uqQdWCjxwzPcRh86RV0/vP+gK2cjESCpCsuR+bdH4IoAn4/XpsZ9u56WOuOzZt0SuLTod9/O1SFO8AwwXdB8ng96J7oR6xCC51C6ytnGRbXFB7CX84+7NtWShSQiWTQyELfLW5ywoF3j3bg7MkuOB0eX/nxt1qRVzT1RaqtaQSxBiVY0dT7LCybmTSDks7IsdHvMyR4FDPLl5CQ4PvdRXvSCQBipUJYEKX3fko8ScRpamryTT9eUVER7uqQdWAjx4yttxdtv/sjzA2NAfercrKR9/nPQZ2dtbYVC8BrnYC9pwHu4R7w4CGOTwPbowFnM/uOYRUx0O3+ALTbr1nSsihzjduMeLDmadg9TmTq0pCjz8DWVGFM7M/aiadrX0GBKgt6mQaXbb4ESep4wfjOlRoenMTJt9tQe64PnNd/fbbBXjMycwyQSEWw21zo7TIhIye8S9eQhW3k+wxZHoqZlYnmrrVzuXkvgFmfeXx0rutJiSchhKxDnMeDvqeeQc/Dj4L3ePz2i9VqpN16M1JuuC7srWYe8xgcfc1wj0wlnNMYhoU8swy2xhNg5SrEVF4K3b5bIZIpg36NcbsJTze+gtfbjsLDeSETy5CmSUbPRD+qkkognjUuVC6W4V9zbofH44FEIkFKTGi+3PA8j672cZx8qw0tjcMLHqvWyOB2e33jNm1WV0jqQAgh6wXP87BarVCraZZuXjqGNNOIb5sT+X+uRwNKPEnE0el08Hq9EIV50hOyfmy0mJlsaUXzPb+EYyDwZDwJhy9F9sfuhjjMH+aO/haMvfo3cPZJqEr3BjxGmpAFaWwytDtvgEi+/MkVxmxGvNzytm/b6XGiw9iDPEMWes0DyNKnC47X6/UhixmO43GxdgAn3m5Hf7dpwWPjElRIy9JDq1MiNl4FnV4BvUEJtSa8y9iQxW20+wxZOYqZ+fE8j+bmZgwNDaGsrAyxsRu7x4eHd0PCzTyA9LKUeBKyJjIyMsJdBbLObJSY8Tqd6Pz7fRh86eWA3XDkSYnI/bdPQ1cZ3i5dXrsFoy//CdbGkwA/tTaZxzwGscbgO4YRSSBPzYcstQCsZOVjn/IN2ahILEbN0EyX4+axdmxLrYRc7H/9UMSM2+1F9Xs9OPl2O4xjtnmPY1gGSSkxSMvUQ62RIylVi7RMHRTK1VkPlKyOjXKfIaFDMRMYz/NoamrC4ODUw9O6uroNn3xKpE5kj1/wbU/ERGeKFp3vihBCooypphatv/09nEMBunAyDFJuuA4Zd94R1smDeJ6DpfYIxt+8D16rSbDP0VUHdfmBFSecHM/B5XGBAw+lRDgZw82lV6FmqBEiRoQCQzZuLbsWZYmFK3lLC7JZXHjpqXrwXOCxOGIJi5R0HVLStYjRKpCaoUNymhYSCbV+EEI2prlJJwBwHIf6+nrs3LkTkjCvKR0uXss4Zg+KYWiMJyGEkLXmsVjR+Y9/YujV1wPul2i1yPr4R5Bw8MAa10zI0d+KsVf+Amd/S8D93slxSOPSoMzfuqyEs328Cw/XPgcePArjcpGqScSu9C2CY4rj83F31c3YmbYZcarVf3Ku1StQVpWC2nPCmXllcjHSsvRIStFAF6tEWqYe8UkxYNnonKWQEEKWIlDSCUzN3l1cXLxhk04ASGUUsM7aVgaYlC4aUOJJCCERauzUu2j745/hNhr9d7IstBXlyPjg7dAUrV6r3mI8FiPG33oQlpo3Ax/AsFAWbofh8o9DEmMIfMwCBieH8bfzj+L8wNTapAzDIDUmCT0TAygwGGFQ6gXHX1t4OOjXWIzV4oRSJYXZ5MBArwm5RQm+Vstdl+T6Es/kNC1S0rVQqWSIS1RPjeXUK8I+uRMhhIQbz/O4ePEihoaGBOUMw6C0tBRxcXFhqllkkLo5QeIp9lDiSciaaG1thcfjgVgsRl5eXrirQ9aBaIyZsVPv4uKPfxZwnzIjHSnXX4v4A/vBSsMzTpDzuGB8+yGYz70K3u2/digAKHKqoN93G+Rpy0+M5WIZ6oaafNs8z6NprA2bkstQM9iIg9m7lpXYLRYzPM+j9eIITrzVhqF+Mw5ckQ+7zQ0AUMXIkZ41lfAmpWiw73A+MnMNyM43wDLphEjEQqmi8ZvRJhrvM2R1UcxMWSjpLCsrg8EQ/EPJaMNwUphlM8k3y3rDWJvVQ4kniTg2m8237hUhSxFNMcN7vTBdqIYyIx2q3BxY29p9+1i5HFl3fwhJV10Jhg3dmpPBstQdxdjrf/cbxzlNEpsMw+GPQZm/JeD+YOgUWlyasxcvt77tK+szD6IysRhqmQocz0HEBD9mcr6Y8Xo41F3ox/E3WjE6bPGVtzWNICVdBwAY6DEhLVPnS3gvuWomsY6h2WmjVjTdZ8jaoJiZSjobGxsxPCycn4CSTqFhhxrvpV/n21a4zbgijPVZLZR4EkJIhPDa7Rg9fhLOkRFYu7qR/fGPoe7b3wU4DrrNm5D7mU9BnpAQvvq5HRh84Ptw9jUF3M9I5dDvvRXa7deAES39ixbHceie6EP/5DD0Cg2K4/MF+68vvgyvtR+FUixHviEbl+bsQVF8HmJkoVsuxulw4+zJbpx8uw1Wi/+amr1dJiSnacEwDGw2F0zjNugNy1/+hRBCot18SSfLsigtLaWkcxavSDj3Ac+E7+HyaqLEk0SciorwLgVB1p/1HDM8zwMcB+O587C0tvnKOacT9t5eZNx5B2TxcYg/sD9sYwV5nodrqBP2jmrwfODuP6qy/TAcuhviGH3A/fM50nkKD9Y8A5ZhcTB7F0Zt4ygw5EDEzrRixilj8fV9n0VBXA5kImlIfg/TMTM54cDLT9fh/Ls9cLvm79rEeTg4bG7ExqmQnK6DOoZaNjea9XyfIeGxkWNmoaRzoy+dEojLK0w0vUx0pmjR+a4IIWQdsHV3o/lXv4G2vAwiuX8i4zabEX9wf1hbOT2T47C1noNncgwAIM8og3u4G7xnqlVQpIlD7KEPQ12yJ6iEcNxmwp/PPoiz/bW+shHrGOJVBvRMDCBLnyY4viKpOATvZsbwgBlvvdyE5obheZdDAQCFSoL0rFgUlychPTsWeoOSJgsihJAF8DyPhoYGjIyMCMop6ZyfF9E5mdBclHgSQsga49xudD/4MPqefhbgOLhGx5B4+WEwoplWPpFCgfj9+yCNDa4FMXR1dMLeWQvXQDv4WR+IrEQKeVY5HF310Gy5AvoDd4AVBz+RjkQkxsXRNkFZ40gr4lUGdBi7/RLPUOB5Ht3t4zjxdhtaGgKshzqLRidHdn4cyjalIjVDB7li447RIoSQYAwNDVHSGSSz2y7YjtY0lBJPQghZQ5zLhY6//RODL77kK3NPTMB8sQna0hIAU0ln0pWXB2wFXfX6eVwYf+M+eCbHIE3IDHiMunQP4q74JCS6+GW/ToxMjdvLrsO95x7xlTk9ThTF5aIofnVmf+ztMuEfvz+54DFxCSoUlSehdFMq4hPUYEXROc6GEEJWS2JiIiwWC3p7ewFMJZ3l5eXQ68PzIHU98HDROYvtXJR4kogzOjoKjuPAsuyGX9eJLM16iRlbdw9Gj5+AWK2CRKeF2zTh22fv7oFh505oS4uhzEgXtH6uFWvzexh96U/wWsYBkQRiXQJYqcK3X6SIgTK3CpLYlKCua7JPwOy0IEOXKii/LHcfXms9ArPTgqsLDuG6wsMQi0L7seT1cBCJp5LHtEwdklI0GOw3C45hWAbJqRpU7chAUVkS1DGyQJciG9x6uc+QyLFRY4ZhGOTm5gIA+vv7KelcAi5q2ziFKPEkEae/v983/fhGulGT5Yv0mPFYLDCeOw97Xz8AgGFZxG7fhqHX3gAAaEpLkPnhuxBTmB+W8YO8143xtx/CxKln4evg43XD3n4BqqJdYFgRFJmlkKUWgGGXnhD3m4fwSN1zSI1JhFgkRrzKAIVkphVXxIrwpT2fRKxcB+WsBHelOI7DhNGOnk4jnA4Ptu7OBMMwYBgGuy7JxVMPnAcASKQM4pLlOHxVJTKyY30JKiGBRPp9hkSejRwz08lnSkoKlEpluKsT8XieEk9CCCEr4HU6YWlthbm+EbxX2I1GGhsL3eYq6LdsQdJll4KVBj9OMhRcw90YfubXcA13+u1zj/SArTwMTdUhsLKlf3Hwcl482fASnmx4GV7ei62plcjSpaF26CK2p1UJjk3TJK/wHcwYGZrEO680Y6jfjJKqZF8SbxyzITZuaumTkspknDvVBY2BR0qWFAqFDNn5G+sLISGErAWGYSjpXCJtrBYwzWzza9/paU1Q4kkiTnp6uq9rCiFLEYkx0//Ci+h+4GHE7d0N6TxdjPI+86+QxS9/nORK8JwXE6efx/jbDwJej99+UUwsDJf/C9RFO4O+9s+O/RHnB+p823VDF5Eak4ROUy/yDFmIVehWUnU/TocbLz9dj5ozvZh+aGw2OaDVT7Wi9nSM+xJPkYjFR/5tN4xGY8TFDIlskXifIZEt2mOG4zi0tLQgIyMDCkXoeq1sRDKR8OFzdEYMJZ4kAtE4ABKsSIoZzuNB08/vwfip0wCA8dNnkHjZpWDe/+LBymTQb6qCMiszbMtyuE3DGHnuN3B0N/jvZEWIqboUhss+tqzZagHgkuxdgsTT4XGiZawdt5VdB40sZrnV9sNzPM6c6MKbL12E0yFMnns6jb7E0zLphMvpgVQ285EXSTFD1geKGRKsaI4ZjuNQX1+PsbExjI+Po6qqipLPFZDNGcYSrYt2UeJJCCEh4p6YQP1//Tes7R0zZUYjJpuaoSkphjovF7qK8rB1q+V5HhPvPgvjOw/71uGcTRKfgYTrPw9ZUvaKXmdH2iZsTa3Emb5qMADKE4vwia13Ikkdutbd7o5xPP9oDUaHLQH3G0etYFkGeUUJSEzRQESz0xJCSEjMTjoBwOl04sKFC5R8roBIHgNg5gEqw0TnZxYlnoQQEgKTbW1o/N4P4Z6Y8NvnGh9H4mWHITOEb/0yj3kMQ0/+As6+5gB7GWh3Xgf9gQ8G1crp4bxoHGlBtj4daqlq5moMg09svgOTjkl8uOpmFMTlhOAdTJmccODFJ2vRVDcUcD/DAMnpOhy6qhDZeXFg2Gh9bkwIIWuP4zjU1dVhfHxcUO7xeOByuSjxXCZGpgQwa8Z1SjwJWRveWZOwiMKwpARZf8IdM8PvHEHr//4OvGfOWEmWhWH3LhR85YthHeMzWfsORl/+E3iXw2+fWBuP+Ov+HYrM0iVfj+d5vNp6BE2jbUiKScC4zYT9WTsEXYdjlTr89+GvhqT+AOBxe3HszVaceLMNHg8X8BhDggqHri5CUVnSot2Ywx0zZP2hmCHBiraYmS/pFIlEqKiogFarDVPNyHpBiSeJOPX19b7pxysqKsJdHbIOhCtmeK8XHff+AwPPv+C3T6RQIOvjH50a3xmmsZy81wN7Zy0cXQ3gXU6//YrcTUi86ctBzVhrtE/gN6f+hrrhJohYES7P3Y8hjKLT1ItsfXooqw9gKsltqhvCa881wDhmC3iMQinBtj1Z2HMoDxLp0r7c0X2GBItihgQrmmKGks7V5XEIP984LvAD1vWOEk9CCFkGj8WCpl/8EqbzF/z2SePikPfvn4G+qmrN6zXNYzHC2ngSXvskRJpYyNKL4eyZmkyIkcig23MLdLtvDGocyYTDjC+//H1YXVMfkF7Oi/MDddiTsQ21Q43I0KZAFMQ6n4vhOR4P/vU02i6OBNwvErMoKEnA4WuLoTeoAh5DCCFkZbxeL+rq6mA0GgXlIpEIlZWV0Gg0YapZ9HCaO5AyMSv5ZPznYYgGlHiSiBMTEwOPxwOxmMKTLM1ax4ytuxuNP/wpHIODfvvUeXnI/ffPQJ2VtSZ1mYvneTj7W2HvqAbPzXTzkmeUwGMcgEipRcKNX4Q0PvjWSa1cgx2pVXiz44SvbNAyAqfHiSvzD4Q06QQAhmUQF68OmHimpGtx4IoC5BUmLGscJ91nSLAoZkiwoiFmKOlcGzxckHkp8SRkzWVnr2xGTbLxrGXMjJ16F82//F9wjjnjJVkWsdu3IftfPgp5QsKa1Wc2t3kMju4GuMf7/faxYgnir/ks5DkVYFeQIH646macH6yH0T4BpUSB6woP48biK0KadDodbsjkEgDAgSsKUHuuDzbr1IdwaoYOJZXJ2LIrU7A8SrDoPkOCRTFDgrXeY2a+pFMsFqOiooKSzhASi23IMM5ahkwWnRPjUeJJCCFLwHMceh5+FD2PPOa3T6LToeArX0RMQT5EcnkYagdY6o5g5KX/gzytGLLUfME+sVoPVdFOiJRL/5Jgc9vRPNqBisQiwcRIKqkSn9r6IRzveg8f3XwbNDJ1SOrP8zxsFhe62scwMmTB1l2ZUMXIIFdIcMlVhTj6WgsOX1eM0qqUsI2ZJYSQjYKSzrXFua3wimd6KXHi6Pyco8STEEIW4bHZ0PTz/4Hp3Hm/fer8PBT959cgizOEoWYA5/Vg5PnfwVp3BABg76iGSBsHsXpq4XJ5WiEUWeVgltgi6fV6cV/NkwDPQylVQi6Woig+T3DMlpRybEkpD0n9jWM2vPxUHaRyMeLi1eDBAwC62sdQUpkCANi0IwPlm1NX1MJJCCFkabxeL2pra2EymQTlYrEYlZWViImJCU/FolhKZjpaMlt922yUft5F57sihJAQsff1o+H7P4Bj0H/dyPhLDiLv3/4VrHTpa1+Gktc+iaEn74Gjs3amkOdgu3gS2m3XQl26B5LYlCVfr9vUh3tO/AkDk8PQK3Q4lL0b9cPNSNEkhaxlc5rL6cHbLzfh9LFOcBwPVsRg254syORTH0sjgxZYc51QqWVgWYaSTkIICSNKOleXSiSFzj17+Z3o/MyLzndF1rXOzk7fYPysME3QQtaX1YqZ8ffOounn94BzzlmKhGWR/fGPIPnaa8LW7dM13IXBx34Kj8k/IRbHGKAuPwCJbuljTeuGmvDTo7+H0zs1ltJoN6FlrAMFcTmoG7qI3RlbQ1Jvnudx5kQX3n65CXab21fOeXl0tIyiqDwJwNSMtTaLCyq1LCSvOxfdZ0iwKGZIsNZrzIhEIpSXl/taPSnpXH0KyKDyKHzbInd0pmjR+a7IumY2m33rXhGyFKGOGZ7n0ffEU+i6/0GA5wX7WKkU6R+8HSnXXRuS11oOy8WTGHn2t+DdcyY4YljEbL4Mhss/DpYN7vaeoUuFSqqE0z4zk179cDP2Z+3A1pTQrD/X1jSCl5+qw9iINeB+46gNPAdk5xuQmqmHRLJ6C67TfYYEi2KGBGs9x8x08tnY2IjMzExKOldZr1GC1xS3+bZVvBnbw1if1UKJJyGEzOJ1ONDyv7/D2PETfvskOi3Sbr8VSZcdDkPNAJ7nYHznYZiOP+G3T6TSIe7qT0NVsG1Z19bI1PjS7k/gv978H3h5DmqpCh+u+gD2Z+1YabXBeTm89FQ9zp7sCnwAA6Rl6LHnUC5yC+MhXsWEkxBCyNKIRCKUlZWFuxobAi9WCLeDWGN7PaHEk0SckpIS8DxPM1eSJQtVzDiGhtD4o5/C1umfICmzMpHz6U9BU1QYltj02swYeuIXcHTX++2TpeQj8eavQqxZ+gRHLq8bUpHwKXxhXC4+WHEjuif68InNH4RcsvJurhNGO564/xx6O40B9+sNSuy7LB9lVSlrmnDSfYYEi2KGBGs9xIzH4wHDMBCJ6IFfOLlYGYCZYT1edv21ki8FJZ4k4qznhZZJeIQiZhzDw6j+yv+DZ3JSuINhkPnhDyH5+mshClN3KedINwYf/D68Fv/kTV1xCHFXfRKseGkTHLm9HnSbelEzdBEHsnciVqET7L+u8HDIviRdrB3Es49Uw2F3++2TKyTYeTAHu/ZnQyJd+//m6T5DgkUxQ4IV6THj8XhQU1MDlmVRXl5OyWcYeRzCuSR4LkwVWWWR/V8EIYSsAde4EaNHjsGwayeGXn3NVy5SKVH4lS9Bv2Vz2OpmbX4Pw0//Erx77gRHIhgu+xg0W65ccqI4MDmCnxz5LeJVBhTE5eBk91lclrsP0llJayiSTo/bi9eea8R7xzv99jEMkJFrwC0f3rxqEwcRQghZ2HTSaTabAQC1tbWUfIbR0OgQgETfNufl5z94HYvODsSEELJEHosVI+8cAed2Q5GWCm3F1PqUirQ0VP7ip2FNOp1D3Rh64hd+SScjkSHpjm9Bu/WqJSeKZ/tr8Z+v/ggDlmHUDl3EmM0Iq9uO030XwPOh/YB78oHzAZNOmVyMym3puOzaYko6CSEkTOYmnQBgMpnQ1NQUxlptbG5EaRPnHNTiSSKOyWTyjYnQ6XThrg5ZB5YbM27zJIbfehtex9TssF6bDYmHD0GRkozMj3wYYqVylWq8hLqND8DW+h4UuVWwt5zxlYtUOiTe9nXIU/KWfK3ByWH87NgffAkmDx6nes7hcO4+qKWqkI9B2ntpHpobhgRPbAtKE5GZa0D5phSoNfKQvdZy0X2GBItihgQrEmMmUNIJABKJBJmZmWGqFeGitW/tHJR4kojT3d3tm348Um7UJLItJ2ZcpgmMzEo6p3ksVuR86hNgwtTdiOd5OPtbYG+faomUJeXAa52Aq78F0vgMJH3wWxDHLH0SIQBIiknATcVX4smGl3xlIlaEkvg8VCWXhvotICVdh0uvKcZrzzZALGZx5U2l2LQjA0BouvKGAt1nSLAoZkiwIi1mPB4PqqurMTlnLgOpVIrKykqoVKow1YzwlHgSQkj08VisaP7lryFPSoJYLfyQlWi1iD94IHxJp8cNa8sZuEa6BeWKnEpI49NhuPxfIJIur7XwttJr0TTahvrhZmxKLsPHN9+GRHV8KKoNAPB6OXS2jiEzNxZisQg792XDbLRj084MJCTR+m+EEBJOlHRGNs0GSck2xrsk60pycjI4jgPL0hBksjRLjRnn2Bjqv/M92Hv7II6JQcLhQxDJpsYaSmP1iD94wLe91pyDHXD0NMJrn/TbJ0vIgmrfbWDYpSXEo9Zx6BRaiGcdz7IsvrDz43ivrwaHc/euuOWR53k0XBhAcWUyPG4v6s73wTzhgM3iRNmmVDAsgytuDH1raqjQfYYEi2KGBCtSYsbtdqOmpiZg0llVVQVlGIeVkClil7DFMzL6BoUeJZ4k4sTHh64VhmwMS4kZe38/ar/xbbiNJgCAZ3ISo0eOIf6SA5AnJiDh4AGw0qUtSRJKPM9j/M37MPHuc1CV7IEkNlmwX5FeDHlW+ZISRaPNhNrhJgxZRpCpS8O21ErBeTqFFpfl7VtxnW0WF5555AJaGoaxuy8X6hgZHI6pJVPGRq1obRpGfnHiIlcJL7rPkGBRzJBgRULMUNK5PkiYjfFAixJPQkjU4zkOtu5egBPO3uqxWuG12ZBwyUGwYVijk3M7MfTYT2HvqAYAWC+eQkzVpRApNWDFEigLd0BqSF3Stc711+F/T90LlmFxac5edJp6EafUIyc2tJNFdLaN4an7z2HSPDXT7om32lC5LQ1avcJ3zFD/JNKzYiFXROcC2IQQsh643W5UV1fDYrEIyinpjDysVLH4QVFgY6TXhJANyzkygr6nn4W1owNxB/ZB9P4HrTgmBomHL0XmXXeGJen02iYx8MB/+ZLOqUI3rPXHwMpUiNl0+ZKSTo7n8ET9i/jp0d/D5rbD4rLiXH8teJ7H+YF6mJ2WRa+xFJyXw9uvNOG+P5z0JZ3TLtYOgvNOdROSKyTYtCOdkk5CCAkjSjrXF0ayMZYYoxZPQkjUcplMGHnnKDj3VDdQsVKJ+AP7YbpwAWm33YL4/fvAitf+Nuga68PgIz+Cxzjot0+RuwmarVeCFS2tXl7OizN9NeAx05rbY+5HoikO1xUdRox05RNGmE12PPnAeXS3j/vtk0hFyC9JACtiodEqULYpBVIZfbQQQkg4Xbx40S/plMlkqKyspKQzAokVcyYOjJAZ4EONvh2QiFNbW+ubfry8vDzc1SHrQKCY8djsgqRzmkSnRcGXvwh1fl5Ylvawd9Zi6Imfg3NYhTtYEWIPfgi6XTcEdT2JSIIv7f4E/t+rP4LVbQcApMQk4pbSq0PSzbapfgjPPnwBdpvbb5/OoERRWSKkMjESkmJQWJYEkWh9dKSh+wwJFsUMCVY4YyYvLw8WiwVO51QPFZlMhqqqKigUG6NL57rj932ED3jYekeJJ4k4PM/7fghZirkxM3bqXbiMRnhtNr9jEy+9BLIwTfhgvvA6Rl/6E8B5BeWimFgk3PAFKDLLlnXdBHUcPrP9bvzPiT/j1tJrcFXBJVBKVvblwuPx4o3nL+Ldox3+OxkgK8+A9Cw95Aop8osTYIhXRcwanUtB9xkSLIoZEqxwxoxCoUBVVRUuXLgAAJR0Rji7aBSJkxO+bZ71f9gbDSjxJBFHoVBALBZDEoZxd2R9mo4ZsViM7kceQ8+DD0OZnYXY7dt8yRArlSLlhuvC0rWW47wYe+WvmDz3it8+aVIOkm79T4g1hiVch0Pt8EXo5Vpk6ITjP7enVeHXV/9XSNbmHBux4In7zmGwz+y3TyYXo7giCRqdAsmpWhSUJIJh10/COY3uMyRYFDMkWOGOmenkc/rfJHIxjAtK98xnrlfsCWNtVg8lniTi5Ofnh7sKZJ3Jz88Hz/Po+uf96HnyaQCAraMTrFgM3eZNkMSokXjZ4bAknV6HFYMP/Tec/S1++5QF25FwwxfASuUBzhSqGWzESy1vIVufATErgl6hRYxMLTgmFElnzZlevPBELdwur9++uAQ1CkoTIJaIkJ4Vi5yCuHXVyjkb3WdIsChmSLAiIWYo4VwfWIkDaRMXfduTqvUxbCVYlHgSQtY9nuPQ/qe/YvCllwXllpZWqLKzkXLt1RDJF0/uQs01PojBB/8LnokRv33aXTci9pIPgVlk7S6e5/FC8xu4v/pJcDwPEStChjYVp3rO41DObohYUcjqe+KtNrz+fKNfOcsyyCmMR3KaBgzDIDs/DhnZses26SSEkGjhcrkwODiI9PR0uievY5x9AlKvw7ct5kL32R5JKPEkhKxrvNeL1t/+HsNvvu23T791C9Ju+QAkGs2a18s9MYz+e78GzjlnEiGGQdyVn4Rm8xVLus5fzz6MV9uO+LbP9tdCJ9eCZViM202IVy3eRXepyjal4PibrYKJhOIS1KjYmgqPhwMDBnnFCUjN0IXsNQkhhCyPy+XChQsXYLPZ4HK5kJubS8nnOpUAKVyztuVcdI4lj852XELIhsC53Wj6xS/9k06GQez2bci48w7IExPWvF6eiRFYG05AmpQtrJZYirhrPrvkpBMAsvTpgm0v50WnsQeX5uwJadIJABqdAtffUeXb3rwzA5/80j7sOpgLfawSRRVJlHQSQkgEmJ10AkBvby/a2tpo8qt1Su4UDm+RuKPz70gtniTi9Pb2wuPxQCwWIy0tLdzVIRHK63Si6ae/gPHsOeEOhoFh104kHDoIdW7OmtfLNdwFa9Np8DwHWXoxvPZJuIe7wCpikHjL16DIKAnqeodz96J1vBNvth8HAGxLrcS/7/go5JLV6TpcWJqIvYfzkJikQemmFF95xda0qHqSTvcZEiyKGRKs1YoZp9OJ6upqX9I5bXR0FJmZmTQB1jqkYCQwMjPda6O1ZZASTxJxxsfHfete0Yc7CcRjs+Pij36Cido64Q6WQdzePYjbsxv6LZvXtE48z8PR3QB710ydGIaBMn8rnEoN4q/+NCT6pEWvw/Ec2DnjPj+++XYMWUZwed5+7ErfsuK69nSMIyFZA5l85iPA6ZiaQU8mF+PQVUV+50RT0gnQfYYEj2KGBGs1Yma+pFMul6OqqoqSznWqz6bGO7l3+7YVbjP2hrE+q4UST0LIuuKxWNDw/R9isqlZuINlIa4oQ9zu3VPLqLBr97yQ57ywNZ+Bc7jTb580Lg2xe28FI174ywDHcagfaca4zYR9WdsFyadUJMF3Dn5xxckfx/E4+noLjrzajLLNqbjpzk0AAJvVhdPHOsCyLHYdzIFEEp2TGhBCyHrmdDpx4cIF2O12QblCoUBlZSXkYZhEj4QGJ5r7t4uuh73TKPEkEaegoAA8z0ddCwtZOffEBOq/+9+wdnQIylmFHPrdu6GtqkDsjrVNOt0TIxh85EeQpRVCrNYL9slT8qDI3bTozLVDkyP48dHfYVNyGRQSOeqGmlCRVCw4ZqX/PZgn7HjqgfPoahsHANSe7YMhXg29QYmxEQuA99cJPduHiq2pEIujO/mk+wwJFsUMCVYoY2ahpLOqqgoymWzFr0HCx+kVfuZ62OhsuabEk0QcemJHAnGOjaH+O9+DvbdPUC7WaFD6vW9DGhsLiUazpkmnY6ANgw//AJzNDI9pGDFVl4KVq8CAgSK3CvLUgkWvMWQZwTde/ykmXVY4PS4cyNqJi6Nt0Cu0SNemLHr+UjQ3DOGZhy4IZqsFgCOvNWPLrkwolDMfcOYJO4690YqDVxSG5LUjFd1nSLAoZkiwQhUzlHSSaBGtY1cJIVHEMTSE2q9/yy/plOj1KP/h96HOyYFUp1vbpLO/FQP3fxeczQwA4N0OWOqPguc4qEr3LCnp7J0YwHfevAeTrqklV8bsRlQPNQAA3F73QqcuicfjxctP1eHhv77nl3SCATKyYyFX+D9/zC9e+5mACSGE+HM4HJR0bgAmt/DvG51z2lKLJyEkwtl6e1H/ne/BNTYuKJclxKP0+/8FRfLiE/aEmrO/FYMP/zd4l/CDAl4vlDlVkBpSl3YhBvBwwinUhy2jqEgsRE5s5orqOD5qxcP3vofRIYvfPplcjKKKJGh1Cl8Zy7KI0ciQlWeA3qBa0WsTQghZuemk0+FwCMqVSiUqKysp6YwiHt67+EFRgBJPEnEsFotvTIRarQ53dUgYWTs6Uf/d78E9YRaUSw0G5H/x876kcy1jxtHTiIGHf+iXdIpiYpH8of9aetIJIE2TjG/u/3d87+1fwu52ICUmEV/e/Ulk6JZ+jUBqz/bi+cdr4Xb5f5AZElQoKE2ERCICyzKINagQnxQDQ4Iq6sd1zkb3GRIsihkSrJXEDCWdG4uX58JdhTVBiSeJOO3t7b7pxysqKsJdHRImk03NqP/eD+C1WgXlEp0Wcfv2QBZn8JWtVczY2qsx9NhPwHtcwjolZCLpjm9BEhMb9DVzYjPw9X2fw2P1z+NLuz8BtXT5rY0upwcvPVWH6vd6/fYxLIPcwjikZugQG6dGfFIM4uJVEG/QGWzpPkOCRTFDgrWSmLHb7XC5hJ81SqUSVVVVkEqloawmiQA8H62da4Uo8SSERJyJ2jo0/ODH4OY86ZXGxiLuwD4YdmyHPDFxTetkbTqNoafuAbweQbkiqxyJt/4nWOnik0iM2YwAAINSOPttUXwuvnXg8yua+XCwbwJP3HcOYyNWv30KlQTFFcnYuisThgQ1LZdCCCERTq/Xo6ysDLW1teB5npLOKKfWxACmmW0+SmfhocSTRJz4+HhwHAd2DSeKIZHDePYcLv7k5+DmPOmVxccjbv9e6DdVQVNcJNi32jFjOv0Cxl//OzCnK4wyfysSPvAVsOLFvwg0DLegbrgJUpEEB7N3QSfXCPavJOlsbx7FQ389Da/Hv6tOaoYOxRXJ2LwzA3JFdE7Pvhx0nyHBopghwVppzMTGxqKsrAwdHR2oqKigpDOKyWXCv220rtpEiSeJOMnJyeGuAgmT0RMn0XzPr8B7hK2Kus2bkPmhO+Cx2qApK/U7bzVjxnjscRjfecivXFWyBwnXfx6MaPHb6MO1z+KZxlexN3M74lWxONL5Lg5l74ZatvJJfDiOR1qmDjq9QtDaKZWJce0t5cgvSYRUJqK1B+eg+wwJFsUMCVYoYsZgMCA2Npbu4VFOMWfdzmh9vBWt74sQss6MHD2Opp/f45d0xu7cgeJv/D+o8/Kgq6xY0w/fsTfuC5h0xlQeQsINX1g06eR5Hk82vIQnG16Cl/fiePd7MNon4PA4cXG0dcX1mzQ7cOZEJ0xGO26+ewtE4qlbekq6Fp/68j6UbU6FTC6mLyyEEBLBOG7hiWXoHh79WKlCWMBEZ4oWne+KELKueB0OuMbGIJqz2Hb8wf0o+tpXwErWvouo6cTTmDj1tF+5Mn8b4q75DBh28XGSJ3vO4uHaZ33bHs6Do13vwuFxYnNy+bLrxvM8eruMOP9uN2xWF5rrh6DTK3D59SXYeSAHH/vcHsTG0ZIohBAS6ex2O06fPo3h4eFwV4WEEauYO/wmOlM06mr7Pp7n8fzzz+OJJ55AY2MjbDYb4uPjsW3bNnzoQx8KyQx2586dwwMPPICzZ89idHQUMpkMmZmZOHToEO666y7odLqVvxFC1hmXaQKjR47Ca7cjbv8+jL4z9e/EKy5H7qc/CSYM46kcfc3wumwQ6xLhMQ35ylWFOxH/gS8v+QNhe9ombE2txJm+al9ZgSEHd1bcuKwxP5MTDoyNWjDQa4bT4faVezxeNNYMYOuuTDAsPRknhJD1wG6348KFC3A6nWhoaAAAJCQkhLlWhKweSjwxtVbSF77wBbz99tuC8r6+PvT19eG5557DF7/4RXzqU59a9mv87Gc/w1//+ldBmdvtRn19Perr6/Hwww/jN7/5DTZt2rTs14gWjY2NvunHi4uLw10dsors/f0YO3EKnHsqiZLqdIg7sA8imRxZH7t7yd2LQhkzjr5m2NrOg2FFUJXsgaXuCLzmUajLDyL+us8F1eVJzIrwxV3/gp8e/R1qh5rw0U234oq8AxAtobV0rpbGITz1wHlIZWJUbk3zSzA5jofb7YVURrf1paD7DAkWxQwJ1kIxY7PZUF1dDafTKTheJBLBYDDMvRSJcvycGfP5KF3Xk76hAPjmN7/pSzpzc3Nx2223IS4uzpcQ2mw23HPPPUhMTMQNN9wQ9PX/+te/+pJOiUSC2267DeXl5TCbzXjttdfw3nvvYWRkBJ/61Kfw5JNPIj09PZRvb91xu91wu92LH0jWLZ7nMdnUDNOFamDO2lXyxETE7dkdVIIXqphxDrTB1nbet82IxFCX7gPDMNAfvHNZ42ykIgm+uufTqBtuxtbU4HtOeD0c3njxIk690w4AcNg96GwbQ3Z+nO+Y9KxYZOfHgaXWziWj+wwJFsUMCdZ8MWOz2XDhwgW/dTpVKhU0Go3f8ST6WUZaEGeZST5ZOBc4ev3a8Inn8ePH8fzzzwMAdu7ciT/96U+QyWQAgGuvvRa33HIL7rzzTphMJvzoRz/CpZdeCrVaveTrT0xM4Le//S0AQKvV4r777kNhYaFv/913341f//rX+MMf/gCz2Yxf/epXuOeee0L4Dtcfyfvj+SRhGNdHVh/P8+h56JGAc4VLDQbE79sDkUIR4Mz5hSJmnEOdsLWc9StX5W+BPH1prRuDlhH0m4ewKblUkKTKJfJlJZ3jo1Y8ef859PdMCMp7OozQxSqRmKxBUXkSjedcBrrPkGBRzJBgBYqZ+ZJOtVqNyspKiq8NihU5EeOa9VnPuOY/eB3b8InnvffeCwAQi8X4wQ9+4Es6p+Xm5uLb3/42vvKVr8BkMuGxxx7Dxz72sSVf//jx47DZbACAT3ziE4KkE5iaqezzn/88XnjhBXR3d+ONN96Ax+OBWLxx/zTUhSm6tf3hTxh65VVoqyqgKZpZj1OZmQHDju1gRMF3Q11pzJjPvQaPeRSYM+5SkVW+pKTT4rLiifoXoZQowb//v83JZSuaibDuXB+ef7wWLqfHb58hXoX0LD02bc/wzWRLgkP3GRIsihkSrEDdawMlnTExMaioqKCkcwNjWBuSzTOz3TujdMnWDf2NxWQy4cSJEwCAffv2zdvF9eqrr/b1t3/55ZeDeo3e3l7fv4uKigIew7IsysrKAEwNNDcajUG9BiHrRdd9D2DolVcBABMXajBRUwue56EpLYFh185lJZ0rZXr3OYy+9H+w1B8VjLFQZJRAkVGy+PkOM7752s/wQvObOD9QB57n0TbehfMD9eDndCNeCpfTg2cfqcaTD5z3SzoZhkFuUTyuvqUcW3dnUdJJCCHrBCWdZCGMywKFZ+ZH5rUuftI6tKG/tZw5c8a3dtLOnTvnPY5lWWzbtg0AUF1djYmJiXmPnWt2t9yenp55j+vv7wcAiEQiaLXaJV+fkPVi/NwF9D7+pKDM3HgRbpMJuorysKxTNln7Nsbf+AcAHh7TECx174DzuCBPK4Q8s2zR80et4/jum/dgwDI1DX7reCcaRloAAC6vCzyCSzyH+s34y6+O4cJp/3uFQinBph3p2Hc4H9l5cQHOJoQQEomsVuu8SSd1ryUAEJuehO5cie9nNFe++Enr0IZOPFtaWnz/LigoWPDYvLw8AFPj05qbm5f8GrOXYbn//vsFs5dNO336NGpqagAA27dvh1Qape3rZMNym82wd3VBWyUc52jYuQM5n/pEWOrkGGzH6At/FExu5DWPgXfaoMiuXFIi3GsewLBlVFDWYexGakwitqdVgV3isis8z+PMiU785dfHMDps8dufmBKDzTszULU9HRnZsUu6JiGEkPCzWq2orq6eN+ncyEOryAydVAkdx/l+YqNzUtuNnXj29fX5/p2amrrgsUlJSQHPW0xZWRn2798PAGhvb8ddd92FU6dOYXJyEoODg3jwwQfx2c9+FhzHQa1W46tf/WqQ7yL6DAwMoK+vDwMDA+GuCgkB9+Qkht98G16HA5qiIui3bQEAxO3fh4L/+BLYEHzoBhsz7olhDD3yI/Be4WyDirzNMFzxySW3vlYll+JzOz8KBlPHxyp0+NTWD2F3xtYlJ512mwuP/eMsXnyiDl6P8JNGJGJQWJaIwrIkFJUnIy1Tv6RrksXRfYYEi2KGBKu9vR1HjhzB2NiYoFyj0VDSSQR0YjlSnF7fT7LLG+4qrYoNHfHj4+O+f+v1C3+h0+l0vn+bTKagXudXv/oVvvzlL+Ptt99GTU0NPvKRj/gds3nzZnzrW99CaWlpUNeORiMjI751r5KTk8NdHbICHqt1Kum0231l6txcqPPzkfaBG0OSdALBxYzXbsHgwz+E1yIcSy1LK0Tirf8PLBvc87g9GdtgdzvwUvNb+ObBzyNWoVvyuRNGO/7+uxOYMNr99sXGq5BbEAelSoaC0kQkp1EX/FCi+wwJFsUMCYbb7ca5c+fgcrkgEokQExMDYCrprKiooKSTCHSOiPGa4i7ftgoWlIexPqtlQ7d4OhwO37/nzmY71+zur7PPWwqVSoWf/OQnvpbPuRiGQXZ2tiC5JWS989jsU0nn+7M6T5MaYqeSzjCMaeE8Lgw99hO4R3sF5fKMEiR/8Dtg2YW/CDjcDpgcZr/yw7n78JPLvx5U0gkAGq084FIoO/Zn49P/sR/FFckoLE+ipJMQQtYZiUSC2Fjh0AhKOsl8eIkSXkYy6yc6YyQ639USeTwzM0YuNq5y9v7Z5y3Fiy++iK9//etwOBxITEzErbfeitzcXFitVhw9ehSvvvoqnnjiCbz88sv4+9//LhgXGg6tra3Izc31PZ0DAKfTiaamJgBTrb8ZGRl+50wvGzO3/qOjo77Jk9LT0wWty16vF/X19QCmxjtkZ2cjJycHPM+DYRh0dnbCbJ76ol9SUiK4WZtMJnR3dwMAkpOTER8fL3jd2tqpGVMVCgXy8/MF+3p7e30t3gUFBZDLZwZxWywWtLe3AwDi4+P9nmw3Njb6nnrPnSp9YGAAIyMjAICcnBzB5FIOh8M3Pjg2NhZpaWmCc1taWmC328EwDMrLhc+5RkZGfN27MjIyBA8pPB4PGhoaAEx9qGVlZQnO7ejowOTkJACgtLQUolkzxxqNRt+kVykpKYiLE05aMz32WKlU+sY5T+vu7va1/hcWFgoe3gxdqEHX66+DEYuhUql8vweJTof4A/txsaUFHo8HUqnUb7bn/v5+jI5OjZvMzc2FSjWTmNntdt/YbIPB4OsiPx0zvb29qKmpEcwU7avT0CBML/4ekv5GQbkkPh2GG7+CuotTfxutVovMzEzBMW1tbRiaGEaDuQ3xiQm4NGcP1LKpeo2Pj/tmr05LSxN80eA4DnV1dQCmHkDl5uYKrtvV3YX8Sin6e1g4HRwUSglu+GAVCkoSYTabYbb1w2wDWHESEhISBOfW1dWB4zjI5XK/Mep9fX2+rl35+flQzFoX1Wq1oq2tDQAQFxeHlJQUwbkXL16Ey+WCWCxGSYlwVt+hoSEMDQ0BALKzs8N2j5htufeInJwctLe3g+d5tLS00D1ije8Rk5OT6OjoAAAkJiYiMTFRcG5DQ0NI7xHTmpub4XA4At4jhoeHMTg4CADIysqCRqPx7XO73eB5HmKxGEqlEnO1tbXBap2ahbKsrEzQc2JF94iuLt+EhsXFxYJJaMxmMzo7OwFMDQeie0Ro7xHAyr9HGAwGqFQqTExMQKvVory8HGKxmO4R74u2e0Rj49T3i/m+Ryx0jxgwWgHM1NPDTOUd4bpHTMdgqG3oxHP2TcLtdi+YfM4eFB7M5D9vvPEG/uM//gNerxc7duzA73//e8FN5NZbb8WxY8fw2c9+FlarFZ/4xCfwwgsv+N381pLX6/XN9juN53m43W7f/rk8Ho9v/1wcx/n2zb0uAN++6YR+9u9ncHDQt3/u0hSz6zTfdae/KCxU3+VcdynvdaHrBnp4MX3dQOMLV3LdUP5tZvN6vQHrZO3sQvuPfwrO4wFbVgr+/S9pEq0WCYcOQiSTwe12w+PxBOzWOt91577X2XE4HTPT7yfQdR1H7oekv15QJlLHIvn2b4KTKRd8rycGz+H1/uMojclDjEeLI13v4lD2bsgl8mX/Dl1OD9oujsPusKFylw6DXTw+8KHN0OgUgvcy973Ovi7HcYIvANOW8zucNh0vgZaCmX3dcN4j5rtuMP8tq9VqeDwewTGhuO50fekesXAcLiW+Q3mPmH3d+e4Ri8X39HsM9PsPR3zTPWLGatwjpq+70u8RaWlpyMzMRFxcnO86dI+YEm33iJX8DrkAdZldp6VcN5T3iEB/y1DY0Inn7KeWTqdzyYnnYt1yp/E8jx//+Mfwer3QarX43//9X0FSNW3v3r346le/iv/+7//GxMQE7r33Xvy///f/gngnoSUSifz+g2MYxvcUJVCAisXieacDZ1nWty/Qf8jT+wLd2Gdfd+6NdHad5rsuz/MB67XS687+/9lmv9eFrhvovUokEng8noAfGCu57mr9bUQikV+dnOPjqP/Of4F7vzs6V1sLj1wGcUoKEi45ANH7/+1IJBIwDLPk6wZ6r4HiUCKRwOv1+r2X8bcehLf5pPBaUgWS7vgmxNp435PnQO/19bajeK73TQBAvaUViZ4kMAyDcwP12J2xZUm/Q87Lw26duYmPDlnQ3DAEy4QHDieH1Ew57vxkheAeNPu6871XjuMC/m1X8jsUi8XgOG7Rvw3dI+geMV2n+a67UBwuJb7X8h4x97oLxfda/g4XikO6R8yI9HvE7AkqZ9eX7hF0j5i+ltlsAjDTgur1zCSR4bhHBDvfxVIx/HJWOI8S3/nOd/DII48AAF5//XWkp6fPe+xjjz2Gb33rWwCAX/ziF7juuusWvX5DQwNuuukmAMCdd96J7373u/Me63K5sH37dtjtduTm5uLFF18M5q2siMVi8XV/Aaa6OwRKkAlZiMdiRfVX/x8c/cIZH+Upyaj4xU8hmdXVZS2ZL7yJ0Rd+D8xeU5MVIemOb0KZXbnguUc638Vv3/27oEwr1+DGoitwac5Ui+dijGNWPHH/eVgnnfiXL+xBX5cJA33CtYAlEhG27s6CTL6hnwUSQsi6NDk5CYZh6LsTWbb77/kz2vtnhm2IvQ5841e3hK0+q5UbbOjJhWb3YV9sevTpPt0A/MY7zGe6XzWw+DqhUqnU1297eizIRuVwOGC324OexImEj9fpRMP3f+CXdEp0OpR851urnnTOFzP2zjqMvvRHCJJOALrdNy2adAJAVVIJUjXCJ9UZ2hQczt2zpKSz/kI//vQ/R9HfbcKE0Y77/vgu+ntNfscxDAOHPXAXHLI66D5DgkUxQwKZnJxEdXU1qqurYbEI12GmmCFL5eGjdOHOOTZ04jl7gO70QOP5TO9nGMZvgPlSOJ3ORY+ZbtYO1By+kTQ3N6OhocE3gJ5ENs7jQdPP7sFkk/DvJVarUfT1r0GRnDTPmaETKGZ4zgt7Zy0YkbALiap0L/T771jSdTXyGHz7wBeQoDIAAK4vvAxf3/dZyMQLd7d3u7x4/rEaPHHfOTgdM2MyRgYnMdArnBU3LkGNrbszodUr5l6GrCK6z5BgUcyQuaaTzulxdnOTT4oZslQbpQPqhk48N23a5OvX/O677857nNfrxXvvvQcAKCoqEsxitZDZM3BNz0g1H4/H45slcaktqoSEG89xaP3N72A8c1ZQzsrlyPzIXdAUFYanXjwH68VTAMtCXXUpWMXUf7OytCLEX/fvAce/zCdWqcO3D34BH998O+6q+gDEooW7ww4PmPGXXx3FuVPdfvsUSglitFNJq1gsQmFpEkqrUiCVURdbQghZT2YnndPcbje6urrCWCuyXqk2SEq2ob/taDQa7Ny5E0ePHsWbb76J/v7+gEnfCy+84Jsy+6qrrlry9cvLy6FWq2GxWPDGG29gYGBg3kWnn3nmGd9Tsj179izj3USP2NhYeDweWucqwvE8j457/4GRt48IyhmJBMlXXYGESw6uWV1mxwzP87C3nYfr/bU6RXIV1JWH4BpsQ+LNXwW7QOLYbeqDxWVFSYKwa3yiOh5X5h9csA48z+PcqW688nQ9PB7/LjMJyTHIK06AWDz14bJlVwYUyqXPkE1Ci+4zJFgUM2Sa2WxGTU2N3yyjer1esLQHxQxZKqlb2OK59Mfj68uG/y/hox/9KI4ePQq3240vf/nL+Mtf/iIYPNva2oof/vCHAKbWz7n11luXfG2pVIq77roLf/zjH2Gz2fDFL34Rf/jDH/wWFD537hx+9KMfAZiaYeojH/lICN7Z+jV3XSoSmXoffxIDzz0vKGNEIsQf2IekKy8HO8/sbathdszYuxvg6G8V7BfJVUi88UsQyQOPNeV4Du90nMKobRw8AJYRoSg+N+CxgTjsbjz/WA0aqv3HirMiBvnFCUhMmWp1NcSpUFyZDLF4Y3epDze6z5BgUcwQYCrprK6u9lueQq/Xo6ysTDBcimKGLJWUWjw3hr179+KKK67AK6+8gvPnz+OGG27ABz/4QSQnJ6OhoQEPPfSQb8HXr33ta35J47vvvou7774bALB9+3bcd999gv2f/vSnceTIETQ0NODChQu4+uqrcdNNN6GoqAherxenTp3CCy+84Htq9s1vftNvMVtCIs3gy6+i+/4HBWWMSATDnt2QJyZCnrT64zoDcQ52wN5ZK6wXw0JdugcilTbgORzH4WfH/oBzA3XYnlaFDG0qaoYaIWZFyDNkLfqavV1GPHn/OZjG7X77VDEyFFckQR0jR2qGDulZeupWSwgh61QwSSchwWBEG6MHFH0DAvDTn/4UVqsVx44dQ29vL37+858L9jMMg8997nO4446lTUgym0KhwF//+ld86UtfwqlTp2A0GnHvvff6HSeRSPCNb3wDH/zgB5f9PghZC6PHT6Dtj3/yK8/7/Geh37IZ4jBNJz9+5GE4uhshSy/2jeFkwEBVuAMSXWLAcziOw+9O/wPnBqbGYJ/uvQAGDNK1KbC4bIu+5qkj7Xj9uUZwnP+kACkZOuQVxSElXY/MHAMtlUIIIevYxMQEampq/JLO2NhYlJaWUtJJVoSVK8NdhTVB34QwlRz+5S9/wXPPPYenn34ajY2NmJychE6nw5YtW3D33Xdjy5Yty75+bGws/v73v+ONN97As88+i+rqaoyNjUEqlSI1NRV79uzBhz/8YWrpJBFv7OQpNN/zK2DO7GvZn/wXJBw8EJ5KATBfeAOmo48D4ME5LFDkbQXDslDkVkGakDHveSd6zuBo12lB2Zm+GuzN2IrKpOIFX/Pdox149ZkGv3K5QoL8kgSUVCQjM9cAuWLtuhwTQggJvYWSzrKyMt+qBIQsl0g2p8UzSgd5UuL5PoZhcP311+P6668P6rwdO3YIFlhd6PqHDx/G4cOHl1vFDaOlpQVutxsSiWRZS9eQ1WGqrkHTL34Jfs4Hb/odtyHl2qvDVCvA1n4BIy/+Ecz7a3W6hjrBOe0wXPlJyFMXXj93T8Y2tI514sWWtwAAIkaE28uuw470zQu/psWJM8c7/cozcmJx052boFJLIZbQ0+9IRvcZEiyKmY1pJUknxQxZKmaDtJhT4kkijt1uh9vt9pstjoTPZEsrGn/4E/Bz/iZJV1+J9DtuC1OtALdxEMNP/wrMnIWXZSl5UOZULXo+wzD4yKZbwfE83mg/hq/u/TSqkksXPMfpcOPCe73Yd1k+3j3SgYHeCQDAvsP5OHB5PlgRPfleD+g+Q4JFMbPxrLSlk2KGLJWTMUFvs/q2GcYVxtqsHko8ScRhGMb3Q8LPOTKChv/6b3BOp6BcXViAnE/+S9j+Tl7bJAYf/iE4+6SgXJ5egvjrPx+wXjzPw815IBXNdH9lGAYf23wbLsvbh3Ttwmvoer0c6s73w+XyYHzUg03b0yGTiZFdEId9h+lp9npC9xkSLIqZjae/v98v6TQYDCgtLV1S91qKGbJUjMQBnWPYt+0VR+fDCko8ScQpLy8PdxXI+3ivFxd/eg88768xO02RloaS73wTTJjGtXBuJwYf+zHc4/2CcmliNpLu+EbAtTp5nkft0EX0mQdxMHsXFBK5bx/DMIsmnTzPo7l+CJNmh6/MYnFi294sFJWHZxZfsnx0nyHBopjZeAoLC+H1ejE6OgoguKQToJghS8exdiRYOn3bVmV0PqygxJMQMq/+51+EpaVFUCZLiEfZD/4LkjDNXsvzPEae+y2cvcKx1dKETKR8+PtgpQq/cziOw/3VT0IqloJlWLzdcRIHsndCKfE/dj49HUYMDZgFZQqlFHnFCfQ0mxBCohDLsigpKUF9fT0ABJV0EhIM1mWG2mXybXul0TnmkxJPQkhAjqEhdD/wkKBMnpyE0u9/F1K9Pky1AiZOPgVr4wlBmSjGgKTbvwlW5j8dOc/z+PWpe3Gy5yxSYhKxM20zJl1WHOl8F5fl7oOIXfjmbre58M4rzVOz087KL8ViEco2pUBCkwgRQkjUYlkWpaWlvn8Tshp0EGH2bBVS3n+ZtmhA/wURQvzwPI+23/+f37jOvH//LOQJCWGqFWCufgPjbz0oKGNkSiTf8U2INQa/43mexwM1T+Fkz1kAQP/kEE70nAXHeVEUl7do0ul2e/HAn97F6WOdqK/uB+ed+lhgwKC4IgkqtSxE74wQQkg48Qt80WdZlpJOsqqUNuFYYqkrOhNPavEkEWdkZAQcx4FlWcTHx4e7OhvSyNvvwHShWlCWdOXl0JaWhKlGgKO/DWMv/wXA7Jsxg8SbvowJRgluaMgvZtrGu/DcxdcF1xmyjCBeZUCWPm3B1+O8HB7/x1n090zNWjs2bEXtuX6UViWjoDQJhvjwdDUmoUH3GRIsipnoZTQa0dnZibKyMkgkoVt7mWKGLFWMSIrZs2lIQIknIWtiYGDAt+4V3ajXnss0gfY/3ysok8bGIvPuu8JUI8Brt2DosR+D9winF9ftvw3K3E1orakJGDN5hix8bd9n8OuTf4XD4wQDBndW3IhLc/cu+Ho8z+P5x2rQ0jgsKLfbXNDFKpGeFb6uxiQ06D5DgkUxE52MRiNqa2vBcRxqampQUVERsuSTYoYsVb9NhROZt/i2FR4LdoWxPquF+g0QQgQYEQtFWqqgLPuTH4dYpQpLfXiex+AjP4TXYhSUy1LyodtzyzxnzdiSUo4fXPpVJKri8G/b78YNxZcves4bL17Ehfd6BWUiMYvyzanYtCODJhMihJAoMD4+7ks6AWBychI1NTW07iZZc16RHA5JzMyPODzfuVYbtXiSiJORkQGe5+nLfZi4jUboN1VBkZyMiZpaKDLSoUxPD1t9XANtEGnigIF2gJv6MiBS66cmE3p/zM1iMZOhS8X/XPUdSESLP8U+9U47TrzZJihjWQZlm1JQtT0DIhE9r4sGdJ8hwaKYiS7j4+Ooq6vzJZ3T5HI5RKLQTBpHMUOWyu4RpmQeVhqmmqwuSjxJxNHpdOGuwobFuVwwnj0PAJAnJSKmqADuyUnIkxLDUh+vdQK29guQxqVBpIiBteE4eI8Libf+J0TKGN9x0zHD8RxO915Ali4NCeo4wbWWknTWnu3Fq882+JUXVyRh+95sJKdpV/aGSMSg+wwJFsVM9Jgv6UxISEBxcXHIEkWKGUKEKPEkhPgYz1fD63D4tt2mCcTt2QU2hJMtLBXv9cDSeBI8NzXTm0ilhbrqMGRJ2ZCn5Pkfz/M411+HTlMvuif6UJVUitzYzCV/gWi9OIxnHq72Ky8oTcT+ywsQnxgT4CxCCCHrydjYGOrr61c96SQkGGaPXbAdnVML0RhPQsj77P39sLa3C8oUKSlQhKmbrb29Gl7bhKBMmVmKmNLAEwPdV/0kfnf6HzA7J8HxPM4N1KF26OKSXquv24jH/nEWHCe81WflGXDwykJKOgkhJAqMjY2tSUsnIcFyz4nJaEWJJ4k4Ho8HbrebBvevEc7thnN0DOOnzwjKGZEI+i2bw/JB7BrthWOgVVAmVmmhyKkMePx7PRfwfNPrsLpseLP9BAYnh8EyDJJiFl9zdHTIggf/fBpul3ANrYLSRBy6ughJKZrlvxESseg+Q4JFMbO+TSedc9frTExMXLWkk2KGLJWH9y5+UBSgrrYk4jQ0NPimH6+oqAh3daJe31PPoPeJp6AtL4MqJ9v34StPSoJYvfazqllbz8LacBxi3cy4UoYVQVW0CwzrP+FDz0Q/fn1qZvkXD+fB8e4z+MqeTyFBZVjwtcwmOx7487uw29yC8rJNKbjpzk1gWHr6Ha3oPkOCRTGzfi2UdBYVFa3aA1aKGbJk0dq3dg5q8SRkA7P19qLnkUfBORwwvncGI2+9DffkJAAgbs/aryDlMY9i5OlfwVL7DuztF8C/3/VEmbsZIlXgiX1UEiUMUp2gbH/WDmxLDdw6Oo3neTz2z7OYMArHVeQUxOOGO6oo6SSEkCgwOjoalqSTkGDIVXLBNh+lGVqUvi2ynmk0Gmi1Wmg01MVxNfEch5Zf/w68Z6Z7h3NkFPB6kXj5ZWBCNJ38UnFeDwYf+RE4p22qLn3NsNS8BbE2HtKk7HnPi1Xq8NmyD6NcXwgA2JuxDf+2/e5Fv0wwDIPKbemQK2YmTkpJ1+K2j26BSEy3xmhH9xkSLIqZ9Wd8fBz19fV+SWdSUtKaJJ0UM2SpFAqlYDtan4dQV1sScbKyssJdhQ3BPjgEzukUlMUUFiDh8KWQGWLXvD6mdx6Ga7hLUMZK5VCX7Fn0y0FBbj6+lfMFvNF+HPszty/py0R3+zgsZgfKN6egsXYQMpkYH/zEdkhldFvcCOg+Q4JFMbP+qFQqKBQK2Gw2X1lSUhIKCwvXpKWTYoYslWrOkm/R+vg7Wt8XIWQBXqcTo+8cgWHXDsQd2AeRUgmRSoWkq6+EOi93zetj76iB6eTTgjJGqkDizV8FK5H5He/lvH5PsBmGweHcvZCKF190ubfLiPaWEQCAQiVF6aYUXHJVIVRq/9cihBCyPslkMlRWVkKhUABY26STkGAworkPvaMzRunRPiEbkLm+wfdvRXIyZFddAYBH3O5da/6B7Jk0YviZX0Ewsp5hEHflJyGN91/Khed5vNdXDQ/nxfa0KkhFwa0x2tdtQuvFYUGZTCaGVq+c5wxCCCHrlUwmQ1VVFfr7+5GVlUVJJ4lIIrUBgNm3HWgyxWhAiSchG4zHYoGlRbhUCSuRIPnqK8FKgkviVornOYw89xt4rcL1OmMvuQsx5Qf8ju81D+BY53tg2anOGq+3HcXu9C3QKQJPPDTb8OAkvB4OLY1DfvvyihKQmqFb3psghBAS0WQyGbKz558rgBCyNijxJBGno6MDHo8HYrGYPihWwURtnW+22GnJ11wNiSZm7ety+gXYO6oFZcq8LdDuvN7v2EmnBT9+57cYsY0jLzYbFUlFsLhsONJ1GiWSbPAcP2/M1J7txVMPXkBWngHp2XrBE++cgnikZepD/+ZIRKP7DAkWxUxkM5vNiImJiagWTYoZslxzhxNFC0o8ScSZnJz0rXtFQss5Ng5rp3ACn5jCgrAknY6BNoy/db+gTBQTi/jr/h0MIxx+7uG8+J8Tf8aIbRwA0DregUmXBTvTNmFPxlaMdQ7PGzOtF4fx9MNTyW1n6xhcLg9yC+PBMAyy8uKQkb32EymR8KP7DAkWxUzkGh4eRmNjIxISEiJqiRSKGbJUlqFWaBwzyaaYd4WxNquHEk9CNgje60X9d78HZWYGFKmpYBgGrEQCTWnJmtfF67Rh6JEfAV7PrFIGCdd/HiKlfxJ8rr8W9cPNgjKXx4WiuDykapIwhmG/c4CpSYQe/dsZ8NzMzby/ewK6WCU278hEZg4lnYQQsp4NDQ2hsbHR92+GYWgCIbLusKwVBptppoChxJOQNVFaWhruKkSlwddeh72nF/aeXsji46DbVAX95k0QydZ+JteRZ34Nr9UkKNPuvB6KrPKAx29Pq8K/bb8bfzrzIDycBzq5Bh/fchs2pUzFSqCYGR2y4ME/vwuPR9itODVDh6pt6cjON9AXkw2M7jMkWBQzkWd20jltcHAQer0eiYmJYarVDIoZslQ8Y4PB2uvbdkuoqy0ha0Ikis6ZvMLJ63Cg+/4HfdvOkVGMv/se0m6/dc3rYj7/GmwtZwRlIk0c9AfuWPC8g9m7kByTgP89eS++tPuTyDNkzZw/J2bMJjvu++NJOOweQXl8Ugz2XZbv62pLNi66z5BgUcxElkBJJwCkpqYiISEhDDXyRzFDlkrktULtHPVt22k5FULIetXz6BPwTFoEZXH79kIeF7em9fDYzBh7/e/CQlaEhBu+CHYJ628WxuXi11d/D2K/9a5m2G0u3Pd/pzBpdgrK9QYl9h7KRX5xAiWdhBCyjg0ODuLixYt+5WlpacjNzaV7PFl31Ak6dGfMGgssjc6HFuzihxBC1jPn2Dj6n3lWUCZPSkJ6GFo7nd2NUOZvAyOR+8q0O66DIqPY79jByWEMW0b9yhdKOt0uLx7+63sYG7YKymM0Mhy6pghlm1PpCwkhhKxjlHSSaKRTaqCU8L4ftTQ645haPEnEMRqN4DgOLMtCr6dlLlaq4y9/Be+Z1eWUYZB83dovn+Ia7YVzuBOS2GTEbLkC9pazYMQS6A9+SHCch/PC4rTgRM9ZcDyHzcnlyInNWPDaRqMRHo8XLz3RhJ5Oo2CfQinB/ssKUFKeTF9IiA/dZ0iwKGbCb70lnRQzZKniJUp4Zg0PYqO0bZASTxJxenp6fNOP0416ZSztHRg7cUpQpsrJQcKhS9a0HpzLIRjXyUpkUJfvR0zFIbCs8Ob6t7OP4NxALXakb4ZSosCZ/hqYnRZUJhXP+6Wiu7sbZ4+NorfdLihXx8iw51Auqrang2Ej6wsJCS+6z5BgUcyE18DAAJqamvzK09PTkZOTE3FJJ0AxQ5aub1yEo7JrfdsK2BF4usX1jRJPQqIUz/Po/Ps/BWWMWIzUG6+HWKlc03rYWs6AcwvHXCrztkAcI/wgfrX1HbzWfhQA8Eb7cexO3wKDUg+j3bTgazScm/BLOuUKCe761x1ISNas/E0QQggJm/WYdBISDDergEmkmtnmJ8NYm9VDiSeJOCkpKb6uKWT5jGfPYaK6RlCmKSlG3J5da1oP11AnXGN9gjJpXBqkCZmCsrqhi7j33KO+bafHiWNdp3FL6TXYkb5p3i8Wp95pR0udWVAmFrO44+PbKOkk86L7DAkWxUx49Pf3o7m52a88IyMD2dnZEZ10UsyQpbJzUgAzXW09rGT+g9cxSjxJxIlb45lWoxHv9aLzb8LWTqkhFsXf+jqYNZze3dHbhInTz0FsSPN9OWAlMijztvh9WTAoY5Gkjkf/5JCvbEf6ZlyWtw9KiWLe1/C4vWAYgH9/ySuGZXDz3VuQkRMb+jdEogbdZ0iwKGbWntvtRnt7u1/5ekg6AYoZsnSsWIzZiSciPLaXix7BEBKFBl99HfbeXkFZ5l13QiSTrVkdOI8Lw0//EtbGk7A1ngDncgAAlPlbwUrlfscnxyTgh4e/hsqkqRlubyq+Ev+27cNQS1V+x04b6J2A18ujtCoFItHU7ey6WytQWBr+hcMJIYSsjEQiQXl5uWA9zMzMzHWRdBISjOEBYc8wr5sPU01WF7V4EhJlPDYbeh56WFCmyslG/MEDa1qPsVf/Cs/ECADAPdYHz8Qo9AfugDQubd5zVFIl/nPfZ/FO5ykczN4Flpn/2VhftxEtjcMAgNh4Fcq3pIDngcqt81+fEELI+qLValFRUYGamhqkpaUhKyuLkk4SdRxez+IHRQFKPAmJMn1PPg33hHDMY9bHPgJmDceYOPqaMXnhDUEZK1MgpvKQoMxon4BOrhF8iRCxIhzK2bPg9bs7xtHePCIo0+gUSM3QA/R9hBBCoopWq8W2bdsgk8ko6SRRyc1T4klIWNTU1PimH6+oqAh3ddYVl2kC/c88JyjTVlZAVxGaSbkdPY2QpxcveAzncWHk+d/NDLp8n+HKT0GkUPu2x2xGvNVxAknqBGxLrYRMLF309d1OD+qrB2Ay2gTlQ0ND0BnEsLkcYJiEIN4R2ajoPkOCRTETXnK5/xCNSEcxQ5YsOnvW+qExnoREke4HHwLncs0UMAxSrrsmJNceP/II+v/5LZhOPLXgccZ3HoJ7tNev3DXc6fv3sGUUz158DRzPo39yCK+2HsGwZXTB63o9HP70y6Nom9PSCQDxSXLEJdGTcEIIWa/6+vrQ19e3+IGERCH5Bkk8qcWTRBylUgmPxwOxmMIzGM6xMQy//qagTJ2bA/3mTSu+tqOnEaajU0udjL91PwBAt/sm/+P6mjHx7vMBr2E6+iiU2RWQphbip8f+gN6JAZQmFKAwLhd2jwPD1jEkqOefAfC15xowNmLF2KgVBSWJSEqdWiolrygBDreIYoYEhe4zJFgUM6unt7cXra2tvu3U1NQw1iZ0KGbIUkm8wu1ofYxO/yWQiJOXlxfuKqxLPY8+Dt47687Fski54fqQLJ8iTy9G7CV3+ZLOQMkn73Fj5IXfAzwX8Bqxl9wFeXoxHq17Hj0T/QCAuuEmjNjGcWXeAZQk5M/7+p2tYzh9rPP9FwKa64fA8zz2Hc5HWqYegH7F75FsLHSfIcGimFkdc5POlpYWMAyDlJSUMNYqNChmyFIp+I3RCZUST0KigGNoCMOvCSfzUeflInb71pC9xnSSOV/yaTzxJNwjPQHPjb3kLuh234TWsU48Uf+iYN+k04KtKRXzzmDrsLvxxP1nBWUMAySmaN5POgkhhKxHPT09aGtr8yt3u91hqA0hYcSu3Rrr4bQx0mtColzPw48KWjtZqRQFX/kSRCGejEG3+ybEXnKXb3v8rfthOvEU7N2NMB17POA500knAOToM3BL6dVg3u9EwjIsPr/z40iMiZ/3NZ97pBrWSZegLL8kEQcuK1jp2yGEEBIm8yWdOTk5yMzMDEONCAkfkSIm3FVYE9TiScg6Z+vtxfDbRwRlSVddAUVS4qq8XqCWT1auCtjFdnbSCQAsy+LWsmtRHJ+P/z11L64puBSbU8rmfa3ac71orB0UlGn1Clx5UylEYnpuRggh61F3dzfa29v9ynNycpCRkRGGGhESXoxkY6RkG+NdknWlu7sbXq8XIpGIPoCWoPvBRwBuJulj5XKkfsB/4p9Qmpt8cg6r3zFzk87ZyhILcc+V34ZKqpz3NcwTdrzweK2gTCRmcem1xdDphedRzJBgUcyQYFHMhMZGSjopZshSiSQSYUGUzi5ETQYk4phMJoyPj8NkMoW7KmFnbmhccL+lvQNjx08IylKuuwaO/v7VrBaAqeRTs/3awPv23eZLOjmOg81t9zsmRqaed1wnz/F49uFquJzCad4qtqSitCLZ73iKGRIsihkSLIqZlZsv6czNzY3KxIxihiyVExaonWO+H6XbFO4qrQpKPAmJUN0PPYLar38LvU/Mv25m94MPC7ZFKiUYkQi1X/8Wuh96ZLWrCJHaf3IfRiJH7P7bfdtNY214peUdtIx1gJtnxtu5Th/rQHuzcF3PpBQNLr2mCAwbpY8BCSEkinV1dc2bdKanp4ehRoREDlZmQ7y12/ejdQaerHG9o662JOIUFhaC53kwzMZNMMwNjeh5eGrdzK5/TnVnTbt5qgXR2tEJVXYWXCYTJmpqBOfF5Of7zut5+FHoKiugKSkOWb2cQ52QJWYBANymYdhbz/kdw7sdMJ14CrrdN+HdnvPoNPWAYVicH6hHl6kXW1MroZNr5n2NkcFJvP7CReH70srxoX/dCaVKGvAcihkSLIoZEiyKmeXr6upCR0eHX3m0J50UM2SpPLwNOvvMnBZ2BR/G2qweavEkEUcmk0Eul0Mmk4W7KmGjKSlG5t0zs8d2/fN+9D7xFFxGI+q+/V24jEYwDIOkq69CTHERGJEIjEgE04Vq3zmZd98V0qTTYzFi4IHvwmMxgue8GHv1r3B01/v2M6KZ8Qnjb92P6rf+jl+e/AteaT2CcbsJAGC0TyzY6slzPJ57tAZej/CYG+6ogkodOOkEKGZI8ChmSLAoZpZnvqQzLy8vqpNOgGKGLJ2ItyLWPuj7UbtGFz9pHaIWT0Ii1HQL53SLZ9c/78f4e2fgmbSg98mnocpIh0gmg66yAmAYTM4aD5p5912+80Nl4uTT4OwWTJx6BpzbBVvLGd8+eUYpYg99GI6uOoy/dT/cDPDnnuPgZGJYXFa81X4CJQn5uL7oMsQqdPO+xpmTXejtMgrKduzPRk5BXEjfCyGEkLUhmTtpCqaSzrS0tDDUhpDIpPYI57SQ8NHZ4kmJJyERbG7yOdk41QV18KVXkHz1lRApFDA3Nq560umxGGE+9yoAYOK9FwFu5gYpSy+GqmQPZCm5kKfmAwDur3kKw7KZ2wsPHgwYlCUUzvsakxMOvP6ccDKl2DglDl1dFMq3QgghZA2lpKQAAJqbmwEA+fn5SE1NDWeVCIk4aicP26xtqZsST0LWxOTkJDiOA8uyiInZGAvqLmRu8gkAvNsN88UmiOQyTFTPLDmyGkknMNXayXtcUxuzk860YigySqDK3wrm/RlqdbtvwmG3Fe2db6NXPvWkO1Wixqe33QWJyP/J9zSO55Ceo0dndgR4YwABAABJREFU6xg479QN95pbKiCRiBatH8UMCRbFDAkWxczypaSkgH+/BWcjJZ0UM2SpNJAKEk9JdOadlHiSyNPR0QG32w2JRIKKiopwVyciJBw6iO4HHgLvnUn6LE3NgmNWI+nkOB4eixGms6/6LSklTc6DPK0AstQCiDUGwb6iA3fhG2IFnqh5Bkd1CtzW1gVpzVFgnnU9AaCnw4i0TD3iEtRoaRiGXClBZq5h3uNno5ghwaKYIcGimFmZjZRwTqOYIUs16lTgQvJh37aMs2F3GOuzWijxJGQd6HvyaUHSOddqJJ0utxd/e74epvaLYM2VuF55FhJmZtIfj3kUrEwBRVZ5wPPj9tyM2xkWu995ACqOx/hb90OeXgR5uv+ER5NmB0aHLQAAuUKCss0pyMw1gKWlUwghZF3geR5OpxNyuTzcVSFk3XFAjjFVkm9b4TaHsTarhxJPEnESExPh9XohEi3exXIjcBmNGHz51Xn3i1SqFSWdjp7GgMlgS48JTpsd3cOTSGVF6PbEIVcy7NvPWU1gJXKwkqnZ+sZtJqilSkjFM7PP6t5v4Rx/637o9t0W8HUAoKttTLAtlYqRkR275PdAMUOCRTFDgkUxMz+e59HR0YG+vj5UVFRAq9WGu0oRgWKGLJWDEw5F8rLzD01azyjxJBEnMTEx3FWIKH1PPg3O5Zp3v9dqRe8TTy0r+Rw/8ghMRx9F7CV3+ZLEaXXtozD2dcHJiWFjpGjzJAgSTwCYbDgB7Y7rwHEcTvacBQDsSt+CWKXOd4xu903ztnQCwtbOaWlZeojFS/+gppghwaKYIcGimAlsOuns7u4GANTU1FDy+T6KGbJUPC/s4cX7DXCKDrSOJyERbLHWzmnT63wGw9HTCNPRRwFMtUiaTsycPzxuw/CwCWNjU109zLwCRk6Nca9KWL/+ZliaTuO9vmpY3XZY3Xa82XECLWMdgvU6AyWdHo8X/T0mv9ZOiUSE1AxdUO+FEELI2uN5Hu3t7b6kEwC8Xi9qa2vhdrvDWDNC1her1xnuKqwJavEkJIIt1to52/Sst0tt+ZSnFyP2krsw/tb9OOvMQt8LDZDXMpCn5sPt4WAd6IKNk0DOuGHjZPCwLN52FEM8a5xnqmgchtbj+KOlGbmxmShLKIJEJEaHsRt5sVkLvv6x11tx5LUWpGRokZUXB7F46jlYelZsUK2dhBBC1t500tnT0+O3Lzc3N+D6nYSQwJycR7AdpZPaUuJJSCQwNzRCUyJsFVxqa+dswSafut03wcsBbS+2YMyrBtr7ITEBIk0sJobNYBgxEkUT6PYaMMLFQAbhjdHGS/CKsQmQMGgb70K/eQibU8pxSfYuMMz83USGBydx7M1WAEB/9wTGhq0oLEtEfGIMUjKoexYhhEQynufR1taG3t5ev31FRUVISkoKcBYhZD5ubv4JJKMJJZ4k4jQ0NPimHy8pKQl3dVZd90OPoOfhR/1mpg2mtXO2YJNPvuxKyC4wkPd1YtirhXd0AuyEHWKeQYrIBDHDIUVkwog3BnZeBh6AiOGQIJpAj0yCCV4OBlNdROweBxRiGeJV8y+DwnM8nn+sxrdWJwA4nR6IJaJlt3ZutJghK0cxQ4JFMTOFks6lo5ghRIjGeJKI4/F4fD/RztzQiJ6Hp8ZZzh6n6TIaMfDCS0Fdi5k1a14wYz7jdArcdvthpGRmIU00DgXrAud2Qc9aIWemxujIGTf0rBU8AAXrQppoHLGsFSWaJkjEDt+1CuNy8aHKhRPeMye70NtpFJSlZ+mhj1Uuu7VzI8UMCQ2KGRIsihlKOoNFMUOWSiITdk3no3NuIUo8SeSRSqWQyWSQSqWLH7zOaUqKkXn3Xb7t6YSx/c/3LrhuZyC814uYWd11u/55P8wNjUs6NzVejY989BrkF+UgmTVBxTph5hSCYyY4JVSsE8msCaliI65Q1OIa2wi+1D2OPJsLYjD4zLa7oJIq530d84Qdb7xwUVAmV0iQkROLgtLEZY/t3EgxQ0KDYoYEa6PHDM/zaG1tDZh0FhcXU9IZwEaPGbJ0KrVw8sZozdCoqy2JOEVFReGuwpqa7hI73UW265/3C1ovg2FtbUParTej97EnkH7HbX7jRheilEtw+VV78H/NbZiekNbEKeHiRZAyXjDgwQNgGGCbtN3XGmrwePEv/SYMKeRIYGULvsZLT9bB5RQ++c0vSUB6ViziE2OCeq+zbbSYIStHMUOCtZFjZjrp7Ovr89tXXFxMy4bMYyPHDAmOes73p2idYjFK82lC1pe0m28StHwG29o5jXO5wLlcKP/xD5DxwduDPr/z6MsAz8PJS2DnpRjzqsGBxZhXDTsvhZOf6goyzgmfzDEAkuwOTJx6Zt5rN9YMoKluSFCWmBKDtAw9cgvjg64rIYSQ1cfzPFpaWijpJGQ1sRsjJdsY75KQdSDt5puQduvNK77O4EuvQJ4cfJcnj8WInvoaeHgWXp6FiOGQLDYiSTSBZLERIoaDl2cxyYhwRqaDg/UfgGA++wo8FqNfucPuxktP1QnKJBIR8ooSUVyZDJGIbkWEEBKJhoeH0d/fLyhjGAYlJSWUdBISImKN8AE8w0Znp9SwvCuLxYLXX38d586dQ39/PyYmJnDXXXfhhhtuAAD84Q9/QGlpKfbv3x+O6hESNiK5HCKlAl6bff5jlAqIFIp59wPA8BtvIe2WDwT12paatzDOqeHkxVCwLiSwZqhZB0okfWhwp0EKLwZ5HcYlSvCsHu/GTiBxQo8SyTiYOdfR7Ra+9hsvNMJiFi6OfOjqQmTmGqCOWbh7LiGEkPBJSEiA0WjE4OAggKmks7i4GAkJCWGuGSFkvVnTxJPjOPz+97/H3//+d1itVgBTXTgYhsH4+LjvuAceeABjY2OorKzEz3/+c6Snp69lNUmY9ff3w+v1QiQSISUlJdzVWVNpt3wAabd8AL1PPOUb8zlbxoc/hPQgE8qlY5CCYfQxaigZE1KUbuyQtiBxx+VIP/Ys3nHloVYugUaiQnJVOWyDFTjTD4guy8AVV1bMe9Wu9jGcPdntV263uZGUGpo1OzdyzJDloZghwdqoMcMwDAoLC8HzPIaHh1FSUoL4eBoesRQbNWbIyk3NqhF91izxdLlc+NSnPoV3330XPD//L9PpdGJ0dBQMw+DChQu49dZb8cADDyA3N3etqkrCbHR01Lfu1Ua9URt27fRLPBmpZNWSTtOJpzD+1v3IlwDJIhPG4zehvDgXitQroMzbAlaqwGj9s/CCw4TCgq7eeGjrNgEA3n2tG2qpEnsO5fld1+Px4oXHagO+5pHXWpBTEI+MnNgV159ihgSLYoYEayPHDMMwKCoqQmpqKjQaTbirs25s5JghwbGO9kLuAabzTTGCX8d9PVizgVXf/e53cerUKfA8D7lcjttvvx0/+clP/I7jeR533nknJBIJGIaByWTCF7/4RVoDiWwozff8yq+Md7mXvDZnMKaTzmlxOQWoKMmASCqDImuqJbMrpxC1GjlEGiMYiRs9yn44Mzt857zxwkUcf7PV79pHXm3B6LAl4Oteek1RSJJOQgghq49hGEo6CVklYowj2dyG5Mmpn3hLW7irtCrWpMWzpqYGTz31FBiGQX5+Pv7v//4PycnJAID//M//FBwrl8vxne98B3fffTc+85nPoKOjA62trXj++edx4403rkV1SZjl5ub6umBvRD2PPg5Lq38SB8wsuTK9BMtKzU065VnlkKdPLcEiTy8GI56axfZkzznBeTKOw2HXMXjLMnCibmrS7+n1OadbPt0uD86e7Ar4updeUxSwhXS5NnrMkOBRzJBgRXvM8DyPzs5OpKSkQCajsfehEO0xQ0LHxduhcYz6tj1iLoy1WT1r0uL5+OOPAwDEYjF++9vf+pLOhWRlZeG3v/0tRO+vZ/jyyy+vah1J5FCpVFCr1VCpVIsfHGV6n3gK3Q885Fced2Bmoq2uf94fkpZPR0/jvEknK1NCljKTGP7r1g/hczs+ihjp1N/k6lELMp0e5PT/Ewf2zLRazm75HOyfRNWOdL/Jg0KddAIbO2bI8lDMkGBFc8zwPI+mpiZ0dXXhwoULcDqdi59EFhXNMUNCSwIb4my9vh+tczDcVVoVa5J4nj59GgzDYP/+/cjIyFjyebm5ubjkkkvA8zwaGxtXsYaEhN98Ewop0lKR//nPCtb5DEXyKU8vhm7fbQAAkTYesuSZcdSKzDIw7MzyxQzDYH/WDvzyqu/ijvLrccXmqWVfdPtuw4EP7Mal18wskv3GCxfxxguNaG8ewWDvBCyTM19gDl5REPKkkxBCyPJNJ53Ts9ba7XZUV1dT8knIGpLFyNGXJPb9jCbRcirLNjw8DGBqoeFg5efn4/XXX4fR6L82ICHRYr6kEwDSb7sVrFjs6147fVwout1qt18L08mn4Z0Ygfm9FyFLL4IydzOkiZkBj9fIY/CBkqsAAMqMYl8L6XQyOd3d9vibbRBLWHjcM11Fdh3Mwf7LC5ZdV0IIIaHF8zwuXryIoaEhQbndbofVaqUut4SskXh9LIyqmS7ZIplogaPXrzVJPKdnsZ3uNhuM6X7xEokkpHUikctut/vGRCgWWa8yGiyUdIo1Ghh27/Rthzr5HH/rAcAzNXMa73HB0VGDmPKDYBgWPRP9sLisKIzLBcv4d46YTjqnzU0+Zyedm3am47LrSpZVx6XYaDFDVo5ihgQr2mJmvqSTYRiUlZUhNpYmf1upaIsZsnr0YgUyHG7ftijA965osCaJZ1xcHHp7e9E6z4QpC6mpqfFdg2wMLS0tvunHKyrmXx8yGpgbGgVJJyuVgnPNTKGdcOgg2DkPXQIln5riImhKgutR4LVPwlLzlqBMEp8Bddl+ONwOnO2vhcvrRp95CNtTK6GRxyx6zT2H8vDOq82CpFMiFeHam1f377iRYoaEBsUMCVY0xcz0EKbpHmnTppNOg8EQpppFl2iKGbK6jJNi1Ej2+rblvAtV4avOqlmTdHrr1q3geR5vvvkmxsfHl3xeQ0MDTpw4AYZhsGnTplWsISHhoSkpRvodU+MsDXt2C5JOAEi64rKA56XdfJNvzGf6HbcFnXQCgOnk0+A9wteLveQu8DyPX578CyYckwCAcbsJr7UdxaQz8LIosz1872lB0gkAbpcXJ96OzmnBCSFkvZkv6WRZlpJOQsLE6pWjR5zv++nH0ufEWU/WpMXz2muvxVNPPQWHw4Gvfe1r+P3vfw+pVLrgOd3d3fjc5z4HjuPAMAyuuuqqtagqiQAGgwFer3dZXbPXo4wP3g5dZQU6/vYPQbm2sgKKBRacTrv5pmW1dAKAZ3Ic5vdeFJQpcjZBlb8FTza8jPMD9agbakJ5YjGy9elI0SYiRqZe8JovPlmL5vqZLzJiMQuPZyoJnbvUSqhttJghK0cxQ4IVDTGzWNJJ3WtDKxpihqwNJy8FMPPg3svQ5ELLtmfPHuzZswfHjx/H8ePH8YEPfAAf/ehHUVIyM+aL4zhMTk6ipaUFr732Gh555BHY7XZfa+eBAwfWoqokAqSmpoa7CmtOpFTC0twiKEu87NJFz1tO0gkAxmOPCVs7GRZxV3wcNpcdLza/CQBwcx6cG6jFqG0MNxZfseD1jr/ZijPHhWt2yuRiVFYk4eyJbgCrm3xuxJghK0MxQ4K13mOG53k0NDRgZGREUE5J5+pZ7zFD1pBCAcDq2+RZGuO5Iv/zP/+D22+/HZ2dnWhra8O3v/1tAFPjCXiexy9+8Qv84he/8B0/PSFRQkICfvnLX65VNQkJi4EXXxJss3L5gq2dK+E2DmLywhuCspjKQ5DEpuChC0/A7JwU7NufuQMy8fw9FI6/2epLKmdLTtPiyhvKoNMrfftXu+WTEEKIP47j0NjYSEknIRFqrKcPgM637fXwYavLalqzdFqr1eLRRx/F4cOHwfO87weYmbl2bvmmTZvw6KOPIjExca2qScia89rtGHnrHUGZOjcXyoz0VXk94zsPA5zXt82IpdC/v57ntQWXYk/GVt++8sQiXF98+bzXmi/plEpF2LEvGyIxiz2H8vzW+Tz+ZvATjRFCCAneQklneXk5JZ2ERACbZ866udGZd65diycAaDQa/Pa3v0VNTQ0ef/xxnD59Gl1dXb5EEwDi4+Oxbds23Hjjjdi/f/9aVo+QsBg5etxvUiHD7h1+s9mGgr2rAZb6Y4IyzdYrIdZMTSYRq9ThC7v+BZfm7MX91U/iU1vvnPda8yWdAJCVF4fM3JkJKuYutUItn4QQsjY4joPD4RCUTSeder0+TLUihMzm4j3hrsKaCMvI1YqKCt+00l6vFxMTE/B6vdBqtYtOOkSiX3Nzs2/68YKCgnBXZ9UNvfKqYFuekoyY/PxVea2x1+7F7MdojEwJ3a4P+B1XlliIH1/2n77eCHN1t4/Pm3TK5GJs2Z0JsUQ4mUKg5DM9KxYZOSt/2r7RYoasHMUMCdZ6jRmxWIyKigpUV1fDYrFQ0rmG1mvMELJawj5yVSQSITY2FvHx8QGTTrfbjYsXL+LYsWMBzibRyOFw+H6i3WRLKyytwqVGkq+5GjGFof+AsjafgWuow7fdLxUjpuIgeJkC43aT3/HzJZ0AIJWLsf/ywMlxdl4cMudJJmd3u91/eX5Ikk5gY8UMCQ2KGRKs9RwzEokElZWV0Gq1lHSuofUcM2RtSfgo7Vs7x5oknkVFRSgpKcHf/va3oM/93e9+h5tuugnf+MY3VqFmJBKxLOv7iXZDr7wm2JbGxSH5qoVnkA3GxZGZsZTGo4/6/j0pYvGXVB2YLVei09SLN9qO4Vx/HVxet995c1nMDtz3h5PYsiMDuliFYJ9SLUXl9nRIZfN3pthzKA8f/exuHLyicLlvy89GihkSGhQzJFjrPWYkEgmqqqoo6VxD6z1myNpReIUP++d/9L++rVlXW36ZmbxCoQDP8xgfHw9xjUikKisrC3cV1oTHasXIkaOCsqTLD4MJ0Xpfj9Y9j8frX8CdFTfiSnUmXIMzLavv6JWwiVg81XkECSoDeACt453oNQ/A5DDj+abXcUvpNbit7Fq/6x5/qw12mxvPPV4D07hdsO+KG0qQVxS/aN1C1dI5baPEDAkdihkSrPUQMxw3tQ7gfInOQj1ZSOith5ghkUHGbYyHExH7LnmeR09PD55//nkAgFKpDHONCAmtkbePgHPOmsWMZZFwePG1O5fi4kgrHq9/AQDwYM3TeLb9KFRl+yHSxGNSxOKUZqql8rXWo3il5QjMTgsA4MJAA55veh0A8Hj9C34tnxazA2dPTK3X2doonCExPikGZVWpEIki9rZCCCFRi+M41NfXo76+3peAEkLWh43ySChkLZ4ejwc33XQTWlsDd9HjeR4/+9nP8LOf/SzoazMMQ4OySVTheR4DL74sKDPs2AaZITQtgUXxebiz4kY8WPM0AODxwXPwxuTgispL8OJILTyesal6gMeIbQyvtR5BrEKHMbvRd407K25EUbxw1tnjb7XB4wn8heaSKwvBsBvl1kkIIZGD4zjU1dX5eoc1NDSgpKSEungSsk6wKh0wFu5arL6Q3ZHEYjG+//3vAxCuxzm7i+3c8qX+AMAnP/nJUFWVkLAzX7wIe2+voCzxsstC+ho3Fl+BOytu9G0/NdmOZ8ztOOYx+h3Lg/dLOm8sFo41nd3aOVdymhaFZbTeLiGErLW5SScAjI6OoqmpKYy1IoQEgxWHZphVpAvpGM9NmzbhIx/5CF59Vbg8RH9/PxiGgUajgUqlWvQ6DMNAJBJBrVYjLS0Nt912G/bu3RvKqpIINjw8DK/XC5FIhISEhHBXZ1U4+gYgVqvhsUx1cRWpVBBrNSF/netz98Pe+f/Zu+/oOMpzf+Df2d606r1Yli3ZcpHlhk0LYMAEDDZxgBAgBG5CbkjIpeQmgZCQBJL8TkIIJJRcIAmXEAI39G5jMAY3bOMmy+qyJKv37X12fn+sd7Sj3ZV2pe16Puf4WO/szOy70qPRPPO2E3jD4Bnf+YH59LTHBEo6gWlaOy9fFNexQ3MhZkhkUcyQcCVizARKOgHPigFFRUVxqhXxSsSYIYlJPHlljxTtQBbxyYXuvfde3HvvvYJtixd7lk/47ne/i1tvvTXSb0lSzMDAAL/uVapeqBkRg4JNl8M+OAhT2ykoigqhmV8e8fex97biMnUpwHF4w3hq2v2DJZ1TtXYCQE6eZlb1nK25EDMksihmSLgSLWZYlkV9fT3Gx4W9WMRiMWpqapCenh6nmhGvRIsZkrgcnBUyn4f7Es4Rx9pET8LPaktIqrEPD8M2OASGYaAoKICioACZa1ZHbDZbL9ZhhbW3FQBwmaYMdbYRtDsNQfdfnLMgYNIJTN3aCQA73m3EtTevnl2FCSGEhGSqpHPFihXQaiPfg4YQEj1ipRHFhl6+zEpccaxN9MQk8WxqaorF25AUUV5eDrfbnbKTIuhPNgjKYqUSmor5EX+f0e1/g7XzBBSli2HWZuO00zTl/qfGT0Nn1SNDKXxKPl1rJwC0NgzCZLBBo1XMut4zkeoxQyKPYoaEK1FiJljSKZFIUFNTQ0lnAkmUmCGJz85aoXbo+LKNSc2ZqWPW4klIqFL5j6ZTr4etf0CwTVu9OPKtnRYjzA17wbkcMJ/cg/cKsuHUTP0eDtaJt5t24OaV1wi2T9faCQAupxv7dp3Cxs1LZl33mUjlmCHRQTFDwpUIMUNJZ3KhnwcJlURkRZapky/rmdScbCiuj2A4joPb7Rb8Y1kWTqcTVqsVY2NjOHXqFN555x1861vfimdVCYkIS7dwJluRXA71goqIv8/47n+Dc3nGBxjFIuxXhfar/mH7Z9BZ9Xw5lNZOry/2dcJksIVfWUIIIdNiWRYnTpwImHRS91pCkpvcLrx/ErtTc4hiTFs8P/zwQ/zrX//CyZMnYTabadwnmVNYux2GRmG3c1VZKUSSyP4aul0OmOo/48ufZqrgCnF9zcmtnqG0dnrFu9WTEEJSlTfp1Ol0gu3epDMtLS0+FSOERESmSwyLT1nhSs0cKWaJ56OPPopnnnkGwMwmGornUg0ktpxOJziOA8MwkEql8a5OxAx9/AlO//NfkOflQT2/HMqSYqhKSyL+Pqa6XXDbPOM5jWIRPtcqwzr+w/bPsHnxpZA45SG3dnp9sa8T51xYEfOxnqkaMyR6KGZIuOIZM01NTZR0JiG6zpBQqd0iQeIpTc0hnrFJPFtaWoImnd6EMth2iUSCq666itbxnEMaGxv56cdramriXZ2IGfp4JwDAPjQE+9AQlH2lmHfTDRF9D87NQrf/Db4cTmunl7fVM/90dcitnV7xavVM1Zgh0UMxQ8IVz5iZN28edDodnE4nAEo6kwVdZ0ioTA4lWrPX8GUZZ8c5caxPtMRkjOcrr7zCJ5arV6/GK6+8grq6Orz22mvgOA5isRj79u3DsWPHsHPnTvz2t79FYWEhOI6Dy+XCsmXLcMUVV8SiqoREhX14GKa2dsG2zNUrwUR4pjtTw164dEMAPK2d+8Js7fT68ORefBFma6cXjfUkhJDI0mg0WLFiBaRSKSQSCWpraynpJCSFGN1KnM5czv/rTauKd5WiIiaJ5xdffAHAc+F86qmnsHz5cshkMixduhRarRYsy2Lv3r1QKBQoKirC1q1b8dZbb6Gqqgocx+Hhhx/GyMhILKpKEkB6ejoyMjJSavFrY/spMD7dbBipFLkXfimi78Fxbuj2TbR2vlighTvM1k6vrL75YMNs7fTytnrGUirGDIkuihkSrnjHjDf5rK2thUajiUsdSHjiHTMkeTggE5TdTGouPBKTTzUwMACGYXDhhRf6/fItXboUn3/+OQ4fPoyrrrqK356WloZHHnkEmzdvhs1mw7///W9873vfi0V1SZzNmzcv3lWIOEVODoqv3gxrbx/MnZ2QqDVQlZZG9D0srYfhHD4NAGhQydCplE1zRGAShxxZQ7P7GcR6rGcqxgyJLooZEq5EiBlKOJNLIsQMSQ6sW9hQ4GZSc+3XmCSeRqMRADB//ny/1xYuXIj9+/ejqanJ77XKykqsWbMGhw4dwqFDh6JeT0KigeM4GFtawYjFUJWVQlVWCkVxcURns+U4DuOfvsSXh2QSyDnAzgBKiQJK6UQCyIEDg+AtofKBfLASB8DKIHIL15GSysSQSsUQS6a/IB471IPzLl44g09DCCFzk8vlwvDwMAoLC+NdFUJIDNlYZ7yrEBMxSTyVSiVMJlPAGb3Ky8sBAO3t7X6vAcCyZctw6NChoK8TkuhsAwNw6vWCbWkRXrvT3LgfjqGJMZkX6iy49kvfQm9BCRbnhp/8HWpuwLZnT8F3yq/ieRlYvqoYa84ph2iGXXgJIYQE5nK5UFdXB4PBAIfDQa1lhMwhVrcw8UzNxVRiNMYzIyMDAAKO0yw9093QZDJhaGjI73Vv11z9pBt3QpKFsbFZUJZq06AoiuzT7PG9rwrKIoUGooWrkSbXwO0Of6zm6YM2+E40LRIxKC3PRGV1HiWdhBASYb5JJwB0dHSgq2tmE7wRQpKPw+2KdxViIiYtnkuWLEF3dzf27dvn91pZWRn/dV1dHS655BLB6wMDAwBmtvYnSU7t7e1wuVyQSCRYsGBBvKszK47xcdgGBwXb0hYtiui6tJbOE3AOCW9Q0mouwmnTAE4MNkMulqEsowjlGaXIVE4/wcFgnwEnj/UJti1fXYx5C3KQma2OWL0jKZVihsQGxQwJV7RixuVy4fjx4/ywJK+enh4UFRXR+o9JjK4zhAjFpMXznHM8K9G0tbXhqaeeErw2b948KJWeJR/efvttwWtWqxUfffQRACAnJycGNSWJwGw2w2QywWw2x7sqs6avPykoi+RyqOeXR/Y99r0uKDNSBdyrN6JjvBsAYGcdaB3tRPtYZ0jn+2SbsIVWrpBg4+YlWLQ0PyL1jYZUihkSGxQzJFzRiJlgSadMJkNtbS0lnUmOrjMkVCKJcE4NLkU7l8Uk8dyyZQuysrIAAI8//jiuueYafPzxxwAAhmGwYcMGcByHHTt24Ne//jVaWlpw4MABfPvb38bIyAgYhkFtbW0sqkpIxNjHdWh97HGM7NkHa28fOLcbaZULwYjF0x8cIs7lhKywEop5y8DIPA9w1NXr8fjRl/B/9e+gabgdDpcDAFCeMf0sur2ndWg5KWyhPfvCCihVM5shlxBCSGBOp3PKpFOtTsweJoSQyNOmT1qXNzUntY1NV1uFQoEHH3wQd955J1iWxcmTJ3Ho0CFcfPHFAIDvfOc7+OCDD8BxHF588UW8+OKLfuf4+te/HouqkgSwbNmyeFchIga3fwjO5YK1pwfWnh6IVSoUb7lq+gPDYB/sACMWQ1G2BPKSxXCN9sK04kto2v8/AID6oSY0Drdg48ILkK3KnPZ8uya1dipVUqw7P7ITIUVDqsQMiR2KGRKuSMaM0+lEXV1d0KRTpVJF7L1I/NB1hoRKyQh7N6Ro3hm7z3XJJZfgqaeeQnFxMTiOQ0lJCf/aokWLcP/99wPwjOX0/QcAt912G9auXRurqpI4E4lE/L9kNrp3v6CsKCqEJIJrsHGcG/beFr7MiERQV5+NjwbrBfvJJXKsL1k17bjSrlOjaG8eFmw7d8NCyBWJv4hxqsQMiR2KGRKuSMXMdC2dlHSmDrrOkFCJJ8VIiva0jU2Lp9cFF1yAHTt24NChQ8jPF44Xu/HGG1FVVYVnnnkGx48fh8PhwOLFi3HzzTfjiiuuiGU1CZk129AQLN3dgm05554T0fdwjvaBtQnHjciKFmLgqHDN2y9XXoDqvOmXVPn801OCsjpNjrXnls+6noQQQjy8SafJZBJsp6STkLlNos0BMHFPx4gS/6H/TMT8U4lEIqxbty7ga2vXrqWWTZIS+t/fDt/1SBiJBPkbL5niiPD5tnYCgESTCWl6Hh646C60jXbi/ZadONR7HBsXXhDS+c46dz4sJgf6evRgXW6Uzc+E3e6CVBa5MamEEDJXBUs65XI5VqxYQUknIXMZMzfutZImnR4bG+MnKCKpbWxsDG63GyKRKGl/5mMHDgjKmsqFkEawm63LpINTL+wWKy+u4rvTLswux3+d/R+wOK1QSZXTns/tcuN05xiKyzKQX5SGkSEzCoq0UCiT4xKRCjFDYotihoRrNjEzVdJZW1vLz+5PUgtdZ8hMpeoikklxV/nvf/8bjzzyCA5MupknqamnpwdOpxNSqTQpL9ROoxG2/gHBttwLzo/oe4y89xRYqxGywoUQKzUQyRSQ5frPWhtK0gkAvd3jsFudAACZXIqyiiyUVmRDIkmOJ3DJHjMk9ihmSLhmEzMGg8FvSQ1KOlMfXWdIqMy6IYjdE+M8RW5HHGsTPVFNPMfGxtDe3o7h4WFkZ2ejtrYWcrk85ONbW1vxi1/8AkePHo1iLQmJLGNTs18329wvRS7xdOmHYWk/CpyZXEiSWYjM86+B0WkFOA5aRdr0J/HhdrnR2T52prKAWOK58M2bT38kCSEkErKzs1FdXY2GhgYAlHQSQoQk7CDKdGMTGxhKPEPW3d2NRx99FB9++CFYluW3KxQKfPOb38QPfvADiKdYy9Bms+Hxxx/H888/D5ZlwXHctDNyktRRUlLCd01JRoaGRkE5bVEVJBFcj0237w2Ac/Nll24QiuLFODjYiF7DIEq0BVicsxBZqoyQztfXo4fV7LnAiUQiMAywbGUxGFHy/M4le8yQ2KOYIeGabczk5eUBAE6dOoUVK1ZQ0jkH0HWGhMrhtkPhnOiK7xa74lib6Il44nns2DHcfvvt0Ol0/HIoAMAwDKxWK55++mmcOHECzzzzTMDkc9euXXjwwQfR398vSDi9F2yS+pK9O4rhpDDx1C5dErFzc24Wpsa9gm2K0sXQyaXo7RsEAPQYBtBjGMD6kpUoyygOei4364Zu3IrO9lHPBgaQSETQpCmQnZtcC5cne8yQ2KOYIeGKRMzk5eUhJyeHEpE5gq4zJFRSxoJMYxtftspT8xoR0U/lcDjwwx/+EOPj4/w2mUyGnJwcvsxxHPbt24cnn3xScKzFYsFPf/pT3H777ejr65uooEiEm2++Ge+//34kq0pIVLB2O0xtbYJt2iXVETu/peUQ3Fbh5BRc7UW454MHcbivDnqbZ104mViKwrSpH9bUHe7FU7/bhZPHeuGwuyAWiwAGmFeRRT0MCCFkhnwfugdCSSchZDKRjMNQloT/N56ZHHNshCuiV7/XXnsNvb29YBgGCoUCv/71r/HFF19gz549OHToEO68806IxWJwHIfnnnuOn91tYGAA1157Ld544w2+lZPjONTU1ODVV1/FT3/6U6gj2FWRkGgxNreA8+leDpEIaYsWRez8+sPbBGVZQQX2wAQ760DHeDd2tH+GvacPYUHmPEjF0qDnYV1ufPphC9xuDoN9Rhw91IPBPgPUajly8iM3+y4hhMwlDocDhw8fxujoaLyrQghJIkX5BUAmw/+TZyXF/K9hi+in2rt3ogvgH/7wB1x88cV8WaPR4Pbbb4dWq8VDDz0Em82Gjz/+GOvWrcPXvvY1DA0N8fumpaXh7rvvxvXXXx/TlheO4/Duu+/itddeQ2NjIywWC3Jzc7F27VrceOONqKmpmfV72Gw2vPzyy9i+fTs6OjpgMpmQnZ2N1atX46abbsKqVasi8EmSm9s9MX4x2Z4MTx7fqamYD4kqMuN4HCM9sHWeEGxTrfkydrQLk9E0mRpVORVTnuvowdPQj1v5MufmoFBJUbYgOVs7kzlmSHxQzJBwTRczdrsdx48fh8ViwcmTJ7Fs2TLqajnH0XWGhCpdrECBfWJcpzhF4yWiiWfbmS6GVVVVgqTT19e//nU888wzGBoawuHDh/HGG29gcHCQb+XcuHEjHnjgAUH33Fiw2Wy48847sWvXLsH23t5e9Pb24p133sFdd92F73znOzN+j6amJvzgBz/A6dOnBdsHBgbw3nvv4f3338d3v/td3HXXXTN+j1RQX1/PTz8eiWQ/lkY/Fy75kxbBbraGSa2dIpUWfXmFMDdbBNtvW3Mj5BJZ0PM4nSw+29Eq2KbNUKCoNAN5+eHNiJsokjlmSHxQzJBwTRUzvkkn4Ek46uvrsXz5cmRmZsajuiQB0HWGhMpik6JXtJQvy3x7z6WQiCaeo6OjYBgGa9euDbqPSCTCmjVr8N577+G9997jL9IajQa/+tWvcMUVV0SySiG7//77+aRzwYIFuO6665CTk4OTJ0/i5ZdfhsViwSOPPIL8/Hxs2bIl7PN3d3fj1ltvxdiYZ6rks88+G5deeikyMjJw5MgRvPLKK7Db7fjLX/6CgoICXH/99ZH8eCQGWKcT1u5uwTZ5hB6guO1WGOt2CbZpay9GeeESPHnVb/Bh22fY0b4b5RnFmDfFhEIAcHhfF0wGu2Bb+cJszKvITqqZbAkhJBHY7XYcO3YMVqtVsF0ul0OlUsWpVoSQZDJuk6NBNpE/qTljHGsTPRFNPL0X3elaK0tKSgB4JhTiOA4VFRV4+umnUVpaGsnqhGzv3r149913AQDr16/HM888w683euWVV+Kaa67BDTfcAJ1Oh9/+9re4+OKLodGENw7uV7/6FZ90/vCHPxS0nG7atAlXXXUVbrrpJjidTjz66KPYunUrZLLgrVapTK1Ww+VyQSJJrv7thvqT4FzCJ1RZa1dH5NzGup3gHD43NYwIaas2et5DmYHrl2/G1iWXw2Cb+kLlsLuw52Ph5EcZWUrkF6Ujv0gbkbrGQ7LGDIkfihkSrkAxEyzpVCqVYa9dTlIPXWdIqByccF4OlknNyYUi+pvgcrnAMMy0F1rfiYIKCgrwwgsvIDs7O5JVCcvf//53AIBEIsGvf/1rv/ovWLAAP//5z/HDH/4QOp0Or7zyCm699daQz3/w4EHs3r0bALB169aA3XVra2tx/fXX44UXXoBOp8P+/ftxwQUXzOJTJa8FCxbEuwozMv7FEUFZmpEORWHhrM/LcZxn7U4fqsrVkKYLZ62ViaXIUU89nujA7g5YzMJFicsX5iA7Vw1RErd2JmvMkPihmCHhmhwzlHSS6dB1hoRMpQZg5oucKDUTz7iMXPV98vNf//VfcU06dTod9u3bBwA4//zzg7a6XnHFFXw9t23bFnCfYLytqXK5HHfffXfQ/a655hpcf/31uP322+P6PSEzY+3vE5RV8+ZFZKIec9PnYE3jgm3qJedjwDQMN+cOcpQ/m9WJ/bvaBdsKS9KhzVAgryA5x3YSQkg8UNJJCIkk/cCQoMy6pl6WKVnFve3/wgsvjOv7f/HFF/ysY+vXrw+6n0gkwtq1a7Ft2zYcP34cer0e6enpIb3HRx99BAA455xzkJcXfG3FxYsX41e/+lUYtSeJgnO7YWoRTtiTe8GXInJu/YG3BWWRSgtL6UJ81nkAaTI1FucuxLz04mlnzNu/6xRsVpdg2+VfWQaFSoqMLBqHRAghobDZbDh+/Lhf0qlSqbBixQpKOgkhYTNaTQB8lo5MzbwzPi2evuI921tr60SyUFVVNeW+CxcuBODp+tjS0hLS+YeGhvj1vGpra/ntTqcTjY2N+Oyzz1BfXw+XyxXkDCQZWLp74DKaBNsyapbN+ryO0T7Ye4UJrbr6XDSPdQIAjA4zDvUex67Oz6c8j9lkx4HPTgm2VdcUoqQ8Ezl5tG4nIYSEwmazBWzppKSTEDIbDm5u5AFxb/GM95qBvb29/NfFxVPPBlpQUCA4bqrZe728S8wAnkmVnE4n/ud//gf/+te/+MmGACAjIwO33XYbbr31VojFqdmvO1RdXV38YPx58+bFuzohMTQ0CMry3BzIc3NnfV7HwClIc4rhHO0FOA4QSbC7IAc769/Bwuz5KNTkgWEYlKZPPZZ07852OBwTEx8xDHDhl6d+0JJMkjFmSHxRzJBwtbS0oLW1FU6nExkZGfx2lUqF2traOTshIAmOrjMkVCnawOkn7olnvPkmf9O1vvr+odHpdCGdf2BggP9aJpPhpptuwrFjx/z20+l0ePjhh3Hs2DE8+uijkEqlfvvMFXq9nl/3KlkYGpoEZe2SJbM+J8dxYM06qKvPgdthhWOgA4wyDTt7vsCQeRRD5lFoZCqsKVqB+ZllQc9j1Nvwxd5Owbblq0uQm6RrdgaSjDFD4otihoTD6XSivr4eNptN8HCYkk4yFbrOkFCJ3HMj9ZzziafNZuO/nq6LjO8fFt/jpmI2T8xQ9fvf/x7d3d2orKzEf//3f2Pt2rVgWRa7d+/Gww8/jP7+fuzYsQOPPfYYfvSjH4X5SSKnra0NCxYsQFraRGJit9vR3NwMwJOAl5WV+R3jXZN18iLJIyMj6OvzTLxTWloqSPBZlsXJkycBAGlpaZg/f77g2M7OThgMBgDAkiVLBBNT6XQ6nD59GgBQWFiI3EktjCdOnADHcVAqlaisrBS81tPTwz90qKqqgkKh4F8zmUw4dcrTLTU3NxeFk2ambWxs5P+QVFdXAwCMjY2CfQzpaTCZTIJld2w2G99FOysri19WyKu1tRVWqxUMw2D58uVwjfeDtXnix+Z0wyTPRmNWPoaGJiYIMjksSDfnoqHe8z3UarUoLy8XnPe9Nw7D5ZqYhEgkYnDBxkqcPjWGtEwG3WfWHi0qKvJbCqmurg6A5+bK29Xc6/Tp0/wDmEWLFgl+f4xGIzo6OgAA+fn5yM/PFxzb0NAAl8sFmUyGxYsXC17r6+vDyMgIAM+MgL6zYFutVr57fHZ2tl8vBZfLhbq6OohEIixbJuzqPDQ0xD8IKi8vh1Y7sXyMt+s7AKSnp/s9mW5vb+d/l5ctWyYYTzs2Noaenh4Anl4NWVkTMwt7F5EHPLN5T57hsKurC3q9HgBQXV0tuDkxGAzo7OwE4OltMXl8eH19PdxuNxQKhd8wgd7eXr6Lf2VlJZRKJf+a2WxGe7snhnJyclBUVCQ4tqmpCQ6HAxKJBEsmPUAZHBzE4OAgAGD+/PlJf40APD/71tbWqF8jvPr7+zE8PAwAqKiomNU1wtfw8DD6+/sBAGVlZYIHpS6XCw1nemUEukZ0dHTAaPQsxbR06VJBYjU+Pp5S14iWlhbYbLawrxHevyU2m42fF0KtVmPFihWQyWR0jTgj1a4Rs72PcDqdCISuER6pdI2Y7X2ExCqMFW9/0HhdI7wxGGlRSTzr6+vx5ptvTvm611T7TXb11VfPvFJB+I6tnO6Jpe/roY7J9F5EAaC7uxvV1dX45z//KbiQbNq0CatWrcLWrVsxNjaG//3f/8UNN9wwbdffaGFZlv/D6sVxHH8BZVnW7xiXyxX0Aut2u/nXJp8XAP+a93taXV0NjuPAMAy6urr41zlO+DTIt07BzstxXMD1s3zrO5Pz+n5W29AQ7MMjwnMUFU153kDx4z2vt/u5vb9deKxEiaPmLsExC0dWof0gC2ntOBYs0fidl+M4WIzCn8uiZQU4eawfO99vwtrzSpBXxk75WYPVl2XZoN9D3595oHhxOp1wuVwBJ0Sa6rzB4tAbMy0tLbDb7dOed6r4DvRZIxnfwc47k++h2+0O2DV/Jt/DyXWafNzk88bzGhHsvOH8LldXV/M3lYHqFclrhC/fzzrba0Skzhutn00iXSN8z+t0OsO+RgDgkxKr1SpIOgG6RgQ6b7JfI7znne19RKCHU3SN8Eila8Rsv4cSl//3zrdOoZw3kteIQD/LSIhK4vn+++/j/fffn3If7y/FfffdF9I5GYaJSuLp+4TK6XROmXw6HBPrH4barWZyEDz00EOCpNOrsLAQ//Vf/4Vf/vKXcLlcePPNN/H9738/pPeINLFY7PcLxzAM/xQlUIBKJJKgXUlEIhH/WqBfZO9r3gu773l8zzv5Qupbp2Dn5TguYL1me17f/3VHjwt3kMkgzcuf8ryB/ohJpVJ+LVy3zQznaL/gWCa7FFdrV6NfOoZdPQcw3G2G4pTnj1nTMSNEIjHWnOu/DE9BiQYQsRgfdsBqdsNitmPn+56uwYf29OD8L+chO18R0s/Gl1gsDvo99P2ZB4oXqVQKhmHCPm+wOPRuk8lkcLvdAT+L73mniu9AdYpkfAc770y+h263O2C9ZvI99K2T2+2e9mcTz2tEsPOG87sslUpjdo3w5ftZZ3ONiOR5o/WzSaRrhO95WZad0TVCJpOhqKgIDodDkHQCdI0IdN5kv0Z4zzvba4T3WhOovnSNSK1rxGy+h+Ip5nuNxzViupUSZorhAj2ymqHFixeDYZiAT8Fmi2EYvgk7ku666y588MEHADxLq/h2C5lsx44duOOOOwAAP/3pT/HNb35z2vM///zz+O1vfwvA0yy/ffv2oPuOjY3h7LPPBgCcd955+Nvf/hby55gNk8nEd38BPN0dAiXHJLDWPz+JoY938mVlSQlWPvHYrCbOsnaegPX0xIRFjFiKjPVXgRF7Lg4cx6FxuBUjdRx2fTAx6+3Fmxbj3A0TXVlOd4yhqc6TwDIiBj1d4+juGA+6PyGEEEIIia1tj76Mgz0T995S1ob7HrsmbvWJVm4Q0RbPUGZ5TTS+/bN1Ot2UiafvhEK+YzSm4vtDmjzuYLKsrCxkZGRAp9NhaGhoyn1J4sg6ex3ESgXswyOwD49As6BiVkmn22mH4djHkGTkgRF5nlDJ8+bxSSfgeRCzJK8KuAQQi8T4+D1PC6b3/3M3LITF7EBrwyB/TH+PnpJOQgiZhnepFN9xj4QQEk0iydyYgCqiiecLL7wQydPFhO8A6v7+fpSWlgbd13eG2smD7YOZPPB7Ot6uO9HqW50MDAYD313S98FAojK3tUOi0UCi0UA9vxza6sXTHzQFw9EdMJ/cDUYigyx/PmSFFRDnlwftQupNHn2TT44D5AoJ2DNjBvp69Dh9amIG51RLOpMtZkj8UcyQQKxWKz/zfG1trSD5pJgh4aKYIaESKyZNcBrf1SajJjodeJOI7+xQ3lmugvG+zjCM3+xmwfjOEuW7ZmggLMvyraqTZ++aSzo7O9He3s7PxJXI3AEGisuy/cdZhsNUtwsAwLkcsPc2w9p+FL0uM95t+Qh1A40wOcx+x5y7YSEu3jSR8O58vwn1Rz0zAPZ261I66QSSK2ZIYqCYIZNZLBYcPXoUdrsddrsdx44d41s/AYoZEj6KGRIqh9sJhnP7/EvN5VXmfOK5cuVKflDtgQMHgu7HsiwOHToEwDOWNdQnV5mZmXyS2traKmg1nezkyZP8BEaTpzUmickeYLrp2SSejrEBOAY7BdvUS7+EtrFO2FwONI2044OWT3B8oMHv2MnJZ3fHGL7Y10XdawkhZBoWiwXHjh0TTCJot9v5ZUUIISSaxKpxlI8f5/8VmOunPygJzfnEU6vVYv369QCAnTt38utETfbee+/x6zVdfvnlYb3Hpk2bAHgmhHn22WeD7vfPf/6T/zrc90glBQUFKCoqQkFBQbyrMi1bv/BBgjQjHRLVzMcFmRv2APB5yiWW4FluEId6j8PJnpkuG0CaTB3w+HM3LERmtoov+67fmcpJZzLFDEkMFDPEK1DSCXjWhFy0aBFfppgh4aKYIaGysw5IWTv/T8zZ4l2lqIjKcirJ5pZbbsHu3bvhdDpxzz334K9//atgUqC2tjb85je/AeBZvPXaa68N6/zXX389/vGPf2BsbAwvvfQSampqsGXLFsE+b775Jt566y0AwKpVq7BixYpZfqrkNXmB20Rmm9SCrSoLPkZ4OhzHwVT/mWDbyPwlODLomc355FALyjNKsK6kFuUZgd/HZLRBN271265USVM26QSSK2ZIYqCYIcDUSWdNTY1gmQGKGRIuihkSKqnEglL9xOod+jT/5U9SASWe8Cxdctlll2H79u04evQotmzZgq9//esoLCxEQ0MDXnrpJZjNnnF1P/7xj/1mtD1w4ABuvvlmAMBZZ53lN8lSZmYmHnzwQdx5551gWRY//vGP8cEHH2DDhg2QyWT45JNPsG3bNgCAXC7HQw89FINPTWbL0NiEkX2fQ56bA1l2NkQSCRSzeKpp72uFc1Q4DnhfTjow4kluXW4Xeg39qC28Kej6Sgc+6wDn9h8XYLU4sXdnW0onn4QQEg6z2Yzjx48HTDpXrFgRcM08QgiJBpHFJCyn6BhPuqqe8bvf/Q5msxl79uxBT08PHn74YcHrDMPgjjvuwPXXXz+j81966aV45JFH8LOf/QwmkwmffPIJPvnkE8E+GRkZ+Mtf/oKFCyk5SAbDn+2Bof6kp8AwUM8vR+nXwmsN92U8LowHa1Y+Doy1CbZ9ueoilKUHnlGZc3M4uKdTsI0RMXwi6rvUCiGEzGVmsxnHjh2Dc9IEcZR0EkLiIY+TwXfqSKWLEs+UplQq8de//hXvvPMO3nzzTTQ2NsJoNCIjIwOrV6/GzTffjNWrV8/qPS6//HKsXr0aL774Inbu3Ine3l4wDIPS0lJccskluOGGG0JeH5TEn7GpaaLAcZBmpIMJ0hI5HbfTfmZ854TCZRfh54tW4P2WT3Co7zgkjBibKjcEXSP0rZePwelgBds2fXUZrBZnwHU+CSFkLgqWdGq1WtTU1FDSSQiJOYWLESSeEjborkmNrq4+GIbB5s2bsXnz5rCOW7duHZqbm0PaNy8vD3fffTfuvvvumVRxTqivr4fT6YRUKsWyZcviXZ2A3CwLS3ePYJt22dIZn8/SchBuu8VnCwNtzYXISs/FkrwqDJlG0DbWBa0iLeDxe3e2oe6wsJuuOk2G5auKIZV5fs1TOflMhpghiYViZm6aTdJJMUPCRTFDQuV0ydCfNnFfJmH8l+tLBZR4koTjdrv5f4mKNVugnl8O+8gInOM6gOOQtWrljM+n/+IDQVk5fzkk6bl8OU+TgzxNTsBj9+5s45NJX4uWFvBJpzfJTNXkMxlihiQWipm5x2Qy4fjx4zNu6aSYIeGimCGhGnOq0ZB/Pl9WOg1xrE30UOJJEo5CoYBYLBbMJphoWKsFmWcSTbfTCadOD2XpzGa0dY4PwN4jbDHXLPtSSMcGSzqlUjG+tLFSsC2Vk89kiBmSWChm5p6uri6/pDM9PR3Lly8PqXstxQwJF8UMCZWLkQnKboZmtSUkJqqqquJdhWnZR0b5r0VSKdIWV0E0w3FB+oPvCjeIpahXySDqOYqitHwUaHIhFfv/0Tp9aixg0gkAy1YVQZvuv55ooOSztDwLZRXJPbY4GWKGJBaKmbln8eLFcDqd0Ol0AMJLOgGKGRI+ihkSKqdbOEdIqiaeM5sJhZA5zjE6KijLs7NndB6O42Bu3CfYJi2pRL/DgC5dL/Z3H8FbTTswYBr2O7asIsuvVdNr9dnzgr7nuRsW4uJNiwEAX9pYmfRJJyGEhEIsFmP58uXIyMgIO+kkhJBocrhTdDahSeJyxT19+jTeeecdHDlyBH19fdDr9fj+97+PG2+8EQDwy1/+EosXL8bWrVshk8mmORshscVxnKDFEwBkM0w8rR11YM36iXMD2JGfA8ZmhFqmOvN+bmQq0gMef+Fli3CqZRg9nTp+W2FJOopKM6Z833M3LEyJlk5CCAmHN/n0fk0IIYnAzNoF5dRcTCXGiafFYsFDDz2Et99+mx9ozXEcGIYRLOC8bds2/N///R+effZZPPLII6itrY1lNQmZEms2w20XXiDkOTNLPBmJDOql58Mx2AnnaC86tVpsG2sCxpqQr8nF/MxSrCxYCrkk8AOYsRETert0gm2rzy4L6b0p6SSEzEWUcBJCEo2TWjwjy2Aw4MYbb0RbWxs4LngebzabodPpwDAMent7ccstt+Cvf/0r1qxZE6uqkjjr7e0Fy7IQi8UoLi6Od3X8WAcGBWWRXA6xWh32eTiOg2OoC9KsQkizCuF22nHU0glY+gEAg6ZhWJ1WbKrcEPQcu3e0wffXSSaXYNnKxPueRVuixwxJPBQzqctoNKKrqwvV1dURTTIpZki4KGZIqLiUbeMUitkYzx/+8IdobW0Fx3HIycnBPffcg3/84x9++0mlUvzoRz9CVpanNcZms+HHP/4xrFZrrKpK4mx0dBTDw8MYnTSOMlG0/OFR9L+/DWMHv4C5oxNilRIMw4R9HtY4CtYy0c3WKhbhqG1IsM+Viy5BRVbgFkyO43CqdUSwrXxBNmTyuTdmKdFjhiQeipnUZDQacfz4cYyMjODEiRNg2ci1IlDMkHBRzJBQMZR4Rs7evXuxe/duMAyDs846C9u3b8d3vvMdnHXWWX77ymQyfOtb38K7777Ld7Ht7+/HG2+8EYuqEjIll8UK28AAXAYDzKdOYezAQbgdM1vk197XLihzMgUumn8uVFLPbLQSkQQbKs4NOKMtAOjGrFixthiLlxcgPdNzzJpzg08qRAghqcxgMOD48eNwuVwAAJ1OF/HkkxBCoiE9O1NQ5lJ0REBMmkbefvttAIBSqcQf//hHqEPolpiZmYk//elP2LhxIxwOBz7++GPccMMN0a4qSQCVlZX82N9EY2xpgaBvK8MgfdmSsM/jdtrhGOkWbMsrXYpvl1bjG7VfxefdRzBsGYNWrgl6jvqjvRCJRMgrTENeYRoYMFiwKDfsuqSCRI4ZkpgoZlKLwWBAXV0dn3R6RfLnSzFDwkUxQ0IlZ4SNDKm67EhMEs/Dhw+DYRhcdNFFyMnJCfm4/Px8XHLJJXjvvffQ3NwcxRqSRKJU+q8/mSgMJ+oFZVlmJuS54Sd7jqEucD4DyRlGBFn+fACAXCLDBfPXT3m8y8XCzQq7ZSxYnDtn/7glcsyQxEQxkzq8LZ2TWzYzMzOxbNmyiI3zpJgh4aKYIaGSioSpZqrezcUkoR4Z8YxDW7BgQdjHzp/vuRnX6/XT7ElI9OnrGwRleV4uJJrgrZKBuN0sRrb/zZN8sp6n85LsIohkitDrMW71G4ieX6gNqx6EEJLsgiWdWVlZEU06CSEkmsTqDEGZYVLz2hWTFk/vhd+7hEo4nE7P+DmFIvSbckKigWNZmE+dEmxTlc8Lu5XR0rgfjv42OPrbALEU0twSNGSokN/fgEU5FVBKp4/1kUGT3zapLDUvUoQQEoher0ddXV3QpFMkStXOaoSQVMNI5AB8lupL0R5sMUk88/Ly0NnZicbGxrCP/eKLL/hzkLnBbDbzYyJCGQ8cK+auLrh91psFgLSqqrDPYzj64USBdWLQqoOOAfSjp9A21omKzFLU5FdDIg7868m63BgZEiaeCxbN7d+PRI0ZkrgoZpJbPJJOihkSLooZQoRikniuW7cOHR0d+Oyzz9DT04OSkpKQjtu3bx8/PpTW8Zw72tvb4XQ6IZVKUVNTE+/q8AwNTYKyPDcHGSvCqx/rsMLWIxyv3FO2gG81dXNuDJlHIRYFb718+e+HoB+3oqBEi8xsFRiGQW5+eN19U02ixgxJXBQzySteLZ0UMyRcFDMkVFajHr4jO90pOht3TPqhbN26FQDgcrlw5513QqfTTXvM4cOHcc899/DlzZs3R6t6hITE2ChMPNOXL4M8Jzusc9g66gB2YtbFMbEI/7Kexsen9qJl5BQsTisWZpUH7b5r0FtxqmUYI0Mm1B/pw8HdneDcHBTKwEuuEEJIKtHpdAGTzuzsbOpeSwhJWoz9NOaNHef/Fenq4l2lqIhJi2dNTQ02b96Mt99+Gw0NDdi0aROuu+46LFkysQyFTqdDU1MTWltbsWPHDnz88cdgWZafDXf16tWxqCpJADk5OWBZNqEmheA4DoZJXcXTqheHfR5T4z5BuaWkFIAV41Ydxq06NA634pqlVwQ9/tiBbsFqLi4ni7KK8JLfVJSIMUMSG8VM8tHr9QHX5czOzsbSpUujnnRSzJBwUcyQUDndDkjdE8O5ONHM1ohPdDFJPAHg17/+NXp6enDkyBGMjY3hf/7nfwBMrLH1zDPP4JlnnuH3587cXS9cuBC///3vY1VNkgCKioriXQU/9uFhOEbHBNu01dVhncPttMPS8oVg24k0JWCz8uWVhcugkQUeB8K5ORz5/LRgW25BGopK08OqRypKxJghiY1iJvnIZDJIJBJB4hmrpBOgmCHho5ghoZJJrJinm1iyzypPzd4bMftUMpkMzz//PL75zW9CLBaD4zg+ufTybvMOxN60aRNeeuklaMJcroKQSDM2CsdlStI0UBaH9wfF0n4EnNPGl20iMYbcdsE+F1WcE/T4U60jMOhtgm0LFuVCqZKFVQ9CCElGSqUStbW1kMvlADytSbFKOgkhJJpYtw06jYj/Z1Sn5nUtZi2eACCVSnHffffhP/7jP/Dmm2/i4MGDaG9vh16vh8vlQnp6OkpKSrB27VpcffXVM1r3k5Bo8Otmu3gxmDBvdswNewXljLIleHrLz1E/2Ix93V+gYagFK/KDt6Ie3t8lKKvTZFiwODesOhBCSDLzJp/d3d1YuHAhJZ2EkJRQVlqKlvwWviyWxzRFi5m4fKr8/Hz853/+J/7zP/8zHm9PSNgMkyYW0iwM76GI22GDpfWw8BzV50AiEqO2cAlqC5fAzbkhYgLfRJmMdrScHBRsKyxOR16BNqx6EEJIslMqlaiawVJWhBCSqNRiGbKdE5NPpuq44JgkngMDAygoKIjFW5EU0NTUBJfLBYlEgsWLw5/AJ9JcZjMsXcKxlfahIbB2O8RnunxNx3h8JziXzxqgjAj64gqIHRaoZSoACJp0AsDxQ91wuye6pkskIqw5txwqNXWzBRIvZkjio5hJbBaLBUqlMugM3/FAMUPCRTFDQuaUweYu5oti1xT7JrGYJJ4bNmzAWWedhS1btmDjxo20iC6ZksPhgNPphNvtjndVAADG5hYIppIViaAsKws56QQA06RutpbiCqikMj7pnArHcTh6oFuwbUltEaqW5If8/qku0WKGJD6KmcQ1NjaG+vp6FBUVYcGCBQmTfFLMkHBRzJBQDRql+FxxKV9WcwZcHMf6REtMEk+3240DBw7gwIED+NWvfoWLL74Ymzdvxvnnn0/jM4gfiUQCjuMgkSRG//bJ3WxlWZlQFoSe9LmdDtj72wXbRvKK4NZ1o1PnSSgL0/JQnVsZ8Piu9lGMjZgF21atKwv5/eeCRIsZkvgoZhKTN+l0u93o6ekBgIRJPilmSLgoZkioXCKFoOxmqKvtjOXn52Nw0DM+zWaz4f3338f777+PrKwsXHnlldi8eTOWLl0ai6qQJOC7vmsiME5KPOV5eZDn5IR8vLlpP8BOrMfEAdDlFcNhGee3aeVpQY+fvIRKTr4GpfMzQ37/uSDRYoYkPoqZxOObdHr19PQgLS0N+fnx7+FBMUPCRTFDQuWWKQFMLK/nFqXmw4qYNDd++umneOGFF/C1r30NGRkZ/JIpo6Oj+Mc//oFrrrkGV155JZ599lkMDAzEokqEhMTtcnm62voo3nIV1PPLQz6HuXG/oHw4Pw8njL0w2SdaMRflVAQ81mpxoPGE8Hdi1bqyhHj6TwghkTI6OuqXdAJAXl4e8vLy4lQrQgiJDbPOICi7WS7InsktZv1c165di1/96lfYs2cPnn76aVx55ZVQKpV8Etre3o4//vGP2LBhA775zW/ijTfegNlsnv7EhESRuaMTbodDsE27pBpMGLONKcqXQ730fMgKFoCRKXAwXYkTg03Y1rYLO9o+w6hlHBpZ4HHPB3d3gHVN3IiJxSLUrC6Z2YchhJAEFCzpzM/PR3V1NT1oI4SkvHHDmKDMpeiw4Ji340okElxwwQW44IILYLPZsHPnTrzzzjvYs2cPnE4nOI7DwYMHcfDgQRoPSuLO0CBcv1NZUgypNvQlTFirCW6bCdKsQkizCqF3LUP38EQLqN5uRFFafsAbK47jcGTSpEIVi3Kg0tBMtoSQ1OBNOjlO+HQ/Pz8fixcvpqSTEDInODk23lWIibh2IFYoFLjiiitwxRVXwGAwYPv27Xjvvfdw6NAhsCwrGA+anZ2NPXv2xLO6JEYGBwfBsizEYnHcx/VMHt+ZFuZ06M6xPkG5ntXD9/ZKLpHj8qqLAh6r19mQnqmEzeKE0+m5IFVU5Yb1/nNFIsUMSQ4UM/E3MjKCkydPJk3SSTFDwkUxQ0LlRmp2rZ0sYUauarVaXHvttbj22msxNjaG119/HU899RSsVis/HpTMDYODg3A6nZBKpXG9UHMcB0OTMPHULgkv8XQMCycGmp+zAJdkZuNQzzHo7UasKlwGmVga8NiRQSMqqnJQvjAbo0Mm6MasWE2z2QaUKDFDkgfFTHwFSzoLCgqwaNGihEs6AYoZEj6KGRKyObLkTsIkngDQ3d2Njz76CDt37sTRo0fBsnOj2ZkkJtvAIJzjOsE2bXXoiafbYQM7qc9+VdkKLMsuxrdXXY+W0VOQiYN3mzXoPLObiUQMcgvSsHJdGSSy1JxemxAydyRj0kkIIdGUzghTslS9CsY98RwaGuK70544cYLf7v2DlJ+fj6uuugpXX311nGpIYm3+/Plwu91xH9M7uZutWKkERKEnfs7xAXA+XScYsQTSzAIAgEgkwuLchUGPtVmdMOhtgm1ZOYEnICKJEzMkeVDMxMfw8DAaGhqSMumkmCHhopghoRI7qcUzasbHx/nxnIcPH+b/AHn/VyqV2LhxI7Zs2YKzzz47of8QkchLSwu+pmUsGVuEy6jIsrPCikXd/jfAuZyQZBZAJJVDmpEPJsTEdWTIJChLJGJkZKlCfu+5JlFihiQPipnYczqdaGpq8ks6CwsLUVVVlfB/6ylmSLgoZkioJLFbaCSuYpZ4mkwmfPTRR3jvvfewf/9+vhut9w+QSCTC+vXrsWXLFlx22WVQKpWxqhohAeVfthFgGNiHR+AYGYG8oADynOyQjmWtJpgb9p2ZD5uBWJuNwfVfBnqOoSKrDNnKzClvskYGhYlnTp4aIlFi35QRQshUpFIpli5dKlg6JVmSTkIIiSaRfG70aotJ4nnHHXdg9+7dcJxZD9H3aWdlZSU2b96MzZs308BrklDsA4OQarWe5VMWVEBZXBTy+p2mhj0+izBxcBjH0CMFXLoedOp6kKFIw6qi5chRZfkd2940hOEBI6TyiffKyaOnpoSQ5JeVlYVly5bhxIkTKCgooKSTEEIAMJLAE02mmpgknh999BEYhuETzqysLGzatAlXX301li5dGosqkCRit9vBcRwYhoFcLo9LHTiOg21gQLBNUVAQ8vGW5oOCcndePlw+FxWdzQiFxP+zuVk3Xn/xKKxWJ7Jy1Cgo1iI3Pw2ZOdTNdiqJEDMkuVDMxE9WVhZWr14NtVqdVEknxQwJF8UMCZVENamnZxJdG8MRs662MpkMF110Ea6++mqcf/75EIfYckTmnubmZn768ZqamrjUwanXg7UJJ/cJNfHkODfsgx182QXgb2luKNs+RbG2AMXaQizKroBG5t+toq15GFaLEwAwNmzG2LAZl16ZAbF4bvT9n6lEiBmSXChm4kuj0cS7CmGjmCHhopghoXJyLACf3IhLzXU9Y5J4PvTQQ/jyl79Mg6xJ0rD1C1s7JWo1JGmh3SjZ+9rhthj48imVDE5wcNpNMAy3oXG4DeeWrQl47JHPhet+pqUrULEoN8zaE0JIfA0ODgIADaEhhJAQcLJRlOiG+bJb7IpjbaInJonntddeG4u3ISkiIyMDLMvGtVXc3NklKCsKC0LuEmZp+0JQbsjOAjAxTXZ5Rgmqc/yXUjEb7WhrHBJsKyjWIjt3bgw4n41EiBmSXChmomdwcBCNjY0AAIZhkJeXF+caRQbFDAkXxQwJlYtzQup28GVWRIknITFRVlYW1/c3trdjdN9+yHNzIMvKAiMWhze+s+2IoNyjUgCshS+fN29twDW96g73wO2e6FohEjGoWpIPiZT+YE0n3jFDkg/FTHT4Jp0A0NDQAAApkXxSzJBwUcyQUElldswfO8aX9WmpmaJF9FPdfPPNADxPOJ9//nm/7bMx+ZyERMvwzl3Q153wFEQiqOeVoeSrXwnpWJdxDI6BU4JtD625FT0aJQ70HMPBnqM4q7jW7ziO43D0YLdgW06+BoUl6TP6DIQQEmsDAwNoamry224wGFIi8SSEkGhhTWPw7VfH0BjP6R08eDBgd8Rg20PlnRGMkFgwtbZNFNxuQCSCSCYL6djJrZ0iuQqq0sVYJJZgUc4CfGPF1oCx3Hta57d2Z2FJOnLykm8CDkLI3BMs6SwpKcGCBQviUCNCCEkexYwSZp+yiqXEMyTBkkQuRTN3klo4joO5SzjBT0btipCPNzXsEZSVC1aCEU/8mgV7gHJsUmtnZrYKl15VDZk8NbtaEEJSx3RJJz04JoSQqcmcbkHiKXGlZt4U0bvajz/+OKzthATS1tYGl8sFiUSChQv9J+GJJqfRCFVpCezDI3DqdACArDWBZ6CdjHXaYeueGNvkAmAsnIdctzvgmE7+PR0s6o/2CbbVnlUKlZrW/ApVPGOGJCeKmcjo7+9Hc3Oz3/bS0lJUVFSkVNJJMUPCRTFDQsW4ZTDIc/iySMTGsTbRE9HEs7i4OKzthARisVj4da9izaU3IHP1KgCA2+GAU6eHpiq0PxaWpgMAOzEL2YhMjC6xAyeaPkSxtgAl2gIUaf0nKWqs64fD7jN7GQOsWFMyuw8yx8QzZkhyopiZvbmUdAIUMyR8FDMkVEM2DQ6VXsWXlU4DLotjfaIl4VeldzqdaGpqwp49e6bfmZBZsg9NLGciksmQXrMMIkloz2fMzfsF5ZM52RAr0+B0u9Cp60H72OmAx02eVGjBolxoM5Rh1pwQQmInWNJZVlaWkkknIYREEysW9nLjmIRP0WYkJgPIFi9eDJFIhB/96Ee49dZbwzr2ySefxNNPP43c3Fx89tlnUaohSSQ1NTVxe2/bkHAdTXmIMzFyHAfb6YlutgNSMU6pVSi36pGh0IJhGBRr/RdSHx02oat9VLBt5VmlM6j53BbPmCHJiWJm5vr6+tDS0uK3vaysDPPnz0/ZpJNihoSLYoaEysEKE02WSc05PmL2qWY6uZBSqQTHcRgbG4twjQgRYu12OHV6wTZFiImn226BcuFquMb64Bzrx3GlG+2cBe2n9kAlVWJ+Zhm2LN7od9zuHW2CslIlRdVS/wSVEEISwVxNOgkhJJpYpOZkQpMlbDrNcRx6enrw7rvvAgBUKlWca0RSnbVXOMEPIxZDlpUZ0rGu8QFIM/IgzciDsqIWbUOHANYzP5nFaQUDQC4RLsnidrvR0jAo2FZclgGJRDzzD0EIIVHkcrn8ts2bNw/l5eWUdBJCyAwZnFZBOVXT0Iglni6XC1/5ylfQ1tYW8HWO4/D73/8ev//978M+N8MwqKqqmm0VCZkSN+mGihGJwIhDSwKdYxNJ64jLim7WLHh965Iv+x1jNNiwpLYQw/1GDA0YYbe5sGwVTcRFCElcZWVl4DgOHR0dACjpJISQSHC5U3MW28kilnhKJBI8+OCDuOGGG4J2q51pd1uGYXDbbbfNpnokiYyMjMB9ZgmSnJyc6Q+IkNMvvgRrby+k6emQZmRAURBal1eOdcE5PtFyKWYYXFF6Fg6PncKgeQQamRrVuZV+x40MmqFJk0OTJkd5ZTaMBjuWrSyK2OeZS+IVMyR5UczM3Lx58wB4/qaXl5fHtzIxRDFDwkUxQ0LlTtk2TqGIdrVduXIlvvnNb+LDDz8UbO/r6wPDMNBqtVCr1dOeh2EYiMViaDQalJSU4LrrrsN5550XyaqSBNbX18dPPx7LC7W5sxNOnR724REAQNFXtoR0nEs/BM7nSVWWWImb127BNyUydOl6MWQegVgkbDnlOA7Dg0a+zDAMltUWT7neJwkuXjFDkhfFzOx4k8+5hGKGhItihoRqpo1zySbiYzzvvfde3HvvvYJtixcvBgB897vfDXtWW0JigbVa/SYW0ixYENKxztF+QVmszYZI6pkWuzyzBOWZ/mtymgx22KxOwbbcAk04VSaEkKii9QcJISQ20rPSAd1EmUvR6T4SflZbMveUlpbyXVNixXSqQ7iBYZBWtXDa49ysC8b6TyHWZEEk96y9Kcuevrvs0IBRUFaqZNCkyYPsTaYTj5ghyY1iZmo9PT3o6urCihUroNHQQzGAYoaEj2KGhEouFk5AmaoRE5PEs6mpKRZvQ1JEZmZoM8lGkrFZuDyAJE0DWXb2tMfZOupgbtgLABBrMtGWlQ1pfj7KxjUoSsuHbNJMtoDnIczIoDDxzM3X0OQcsxCPmCHJjWImuO7ubrS3twMAjh8/TsnnGRQzJFwUMyRU8klDslL1jjBVE2pCwmI+dUpQlmdnQySZ/rmMqWk//7XLNI4e2xgGHEYc7D2Ot5t34LSu1++YhmP9aGkYgs020dU2tyBtFrUnhJDI8E06AU932+PHj8PpdE5xFCGEkNkQK4T3gQyTmilaRFs8+/omlpQoKioKuH02fM9JSCTZBoTraSpCjDVb10n+60GpGC5tFnCm5dLNcchUpvsdc3BPB7o7x9HROgJthgILFudRN1tCSNydPn0apyY9hAM83QVprCchhEQPI1cBMPhsoMRzWhs2bADDMGAYBg0NDX7bZ2PyOUnqYtmJGWLFIa6jORscx8HaJ5wgKOe8c6Y9jjXr4dIN8eU38tIwJLKguL8BxdoCVGSWIk0u7J5mszrRe1rHlw06G2QyMXWznaVYxwxJfhQzQsGSzoqKCpSVlcWhRomHYoaEi2KGEKGIj/GM9BqeZO45efIkP5tiTU1N1N/PMTIK1mwWbNMsnH5GW2tHHXBm3SUHA/TJpXC6XWgb60DbWAcyFP7dZ49/0Q23e+J3gWGA2rWls/sAJOYxQ5IfxcyEYEnnggULUFpK1ycvihkSLooZEiqXzSIou93uONUkuiKaeK5duzas7YQkAnNXl6AsVqkgz82d9jjLqaP81y0qGZyiiVZLESPClxde4HdM3RfCMZ85+WnIK6TxnYSQ+Ojq6kJHR4ffdko6CSEkduyGDhTpfZJPxhG/ykRRRBPPF154IazthASSlpYGl8sFSQiT+0SCpVOYeKrmlU3b9ZXj3LCeOsaXO5XC2WuX5FYiW50l2GYy2NDfI1wrtLI6j7rZRkCsY4YkP4qZ4EnnwoULUVLiv/7wXEcxQ8JFMUNCxcEBOUuJJyExN3/+/Ji+n7mzU1BWl8+b9hjHQCdY80QSuWnEhCsv/yEOG07jYM8xnFVS63fMyWPCSbZEYga1Z1GLQiTEOmZI8pvrMUNJZ/jmesyQ8FHMkFBJJBaUjdfzZZs8NRslKPEkc57Zr8Vz+sTT0n5EUJZlFaG0rAYVqMG1y66Em/Pvm18/KfGcX5mD7Fz1DGpMCCEz19nZic5JD9wASjoJISRe3E4zWMnEZFRuCSWeEROs28HBgwfx1ltvYWBgAPn5+bjssstwwQX+4+QIiRS30wlrj3DcpbJ4+qVULK1fCI9ZUCsoiyZNgz0+akZvl06w7azzyqmbLSEkpoaGhgImnZWVlSguLo59hQghhKBoXila57XxZZE8NdsGY/qp9u/fj6effhqtra3Yu3ev4LUnnngCTz75pGDbG2+8gQsuuAB/+tOfIJfTOock8oytbcCkGZenm1jIZTXC3j9xceiTSaAtWTTlMfVHha2dSpUUFVXTT2BECCGRlJOTg5ycHIyMjPDbKOkkhJD4UotlyHD6Lr9DieesvPLKK3jggQfAcRwYhoFOp0NGRgYA4OjRo3jiiScCHvfpp5/i3nvvxaOPPhqrqpI46+zs5FvFy8vLo/pehpPCtWElGg0UBflTHmNp2McnqyYRg5MaBXqs/cg7tRcl2kIsyJoHsUi4XtfkxHPJiiKIxam5OHA8xDJmSGqYqzEjEomwZMkSnDx5EqOjo6iqqkJR0fS9PMjcjRkycxQzJFRKyKF2Kfmy2EmJ54wNDw/jN7/5DV9WKBQYGxvjE8/nnnsOAMAwDKqqqvDd734XY2NjePLJJzE2NoZt27bhpptuwurVq2NRXRJnBoOBX/cq2syT1q6T5+VO2/3V3HqI/3pIJoFYqYFIrsSIZRxmhxWV2cLJBEaGTBgeMAq2LVtJN3qRFMuYIalhLseMSCTC0qVLMT4+juzs7HhXJ2nM5ZghM0MxQ0LVMy7FDuV1fFnNGXBWHOsTLTFpcnnllVdgs9kAAJs3b8b+/ftRUVEBADCbzdi1axcAQCwW49lnn8Xll1+OG2+8ES+++CLfxfbdd9+NRVXJHOMymQVl9YKKKffnOA723hbP1wB2ZaqgT8sAd6YFtFhb4Je41n3RIyhr0uQomy9caoUQQmJJJBJR0kkIIQmCkyiFZSY1e8XFpMVz//79AICioiL8v//3/yAWT3RD3LdvHxwOBxiGwfr165GXl8e/Nn/+fFx44YXYvn07Dh48GIuqkgSwZMkSvkt2tFm6hUlhZu2KKfdnzTpIc0vhGhtAh8uEFrUccI3hWPNHKErLxzll/q3yjSf6BeWi0gwwIppUKJJiGTMkNaR6zHAch97eXuTn51NrS4SkesyQyKOYIaFyiOQA7HyZFaXmdTsm6XRHRwcYhsFFF10kSDoBYPfu3fzX559/vt+xlZWVADzddcncIJFIIJVKo77gstNghHN8XLBNVVY25TGsYRTK8hqkrdqI9qpl/HY764DOZkChJk+wv8lgw+iQsFW1dH7mLGtOJotVzJDUkcoxw3EcTp06hba2Nhw/fhxOpzPeVUoJqRwzJDooZkioXDa7oBxgVb6UEJPEU6/XA4CgNdNrz549/Ndnn3223+vep0QWiyVKtSNzleX0aUGZkUigKCqc8hjn2ETr5XGHTvDa+eXr/CYVUqplWHtuOeYtzIYmTQ6xRISqpVNPXkQIITPlTTq7u7sBACaTiZJPQghJcIMjg4Kym+WC7JncYvIIRiaTweVywWq1CrafOnUKfX19YBgGWVlZqKqq8ju2r88zG6hGo4lFVckcYukSJp6q0hKIpngqyblZOPVDAAAX50aNIhtSqNFt9rTGryup9TvGbLRDqZZiXkUW5lVkwelkkZmlityHIISQMziOQ3t7O3p6hEMITCYT9Ho9cnJy4lQzQgghU3EiRZs4J4lJ4llaWorm5mY0NAiXrvBOKgQA5513nt9xdrsdn332GRiGoWmo5xCdTsePifDOfBwN5smJ53TdbE3j4FgXAEDCiLBVuwAZ67dgzGXBiYEmLMia53eMQW8TlDMyVJBIxX77kdmJVcyQ1JFqMRMs6QSAxYsXU9IZAakWMyT6KGZIqNyp2rd2kpgknuvWrUNTUxP27NmDzz77DF/60pcwMjKC559/nt/n0ksvFRzjdrvx29/+FsPDw2AYBuvWrYtFVUkCOH36ND/9eFQTz44OQVk1b+rE06kTdoOQqNMhkimQI1PgoopzAh5j0Alb+bUZihnUlEwnVjFDUkcqxcx0SWdBQUEcapV6UilmSGxQzJBQcZR4Rs61116LF154AW63G7fffjuqqqrQ29sLo9EIhmFQUFCACy+8kN//mWeewfvvv4/m5mYAgFQqxTXXXBOLqpI5guM4WLq6BNtEyqmTQsdwt6AsSfcfszyZXids8dRmKIPsSQgh4eM4Dm1tbejt7fV7rbq6Gvn5NKacEEISnTY2KVncxeRTLly4EHfccQf+/Oc/g2VZNDU1AfD8wRSLxfjlL38pmPHr5ZdfRn9/P7824k9+8hOUlpbGoqokARQWFsLtdkMkit7cV46REbjtDsE2ZUHwiYVYixGj2/8KkVILQ2YOOjRKzM8vQqlVjwyFNuBU6TarE3abcEKPdEo8oyIWMUNSSyrEDCWdsZUKMUNii2KGhEriELZ4puoCPDFLr7/3ve+huLgYTz31FLrOtDRVV1fjv//7v3HuuecK9q2oqEBfXx9ycnLw05/+FFdccUWsqkkSQG5ubvTfhGGQsXIFnDo9HHo9WIsVqvLgXW3NzQcAjoPbokcfZ8WAVQarZRhN7btRoMnFl8qFXcG7To3ixOFeiMQMVGoZAEAqFUOpTs11meItJjFDUkqyxwzHcWhtbeUn4PNFSWd0JHvMkNijmCGhkjJz4+FETNt1t2zZgi1btkCv10MsFgedqfaGG27A9ddfjwsuuIAWvibRwQFpixb5FiFLTw+6u/XUUX6/EakYYqUaIqknocxSZvjtf+xgN44f8oy3UqqkKCnPxLLaIlpEmhAya8GSToZhUF1dHXDpMkIIIYlLJJsbPeLi0qE4fYobfADYsGFDjGpC5iqnwSAoy7RaMOLgs83a+08BALrlEmzPViNPIkOJYQB56hwUpAmfaLpZN5pPTkxEZLU44WbdSEuniYUIIbNDSSchhKQeRiqPdxViIu4jWZ1OJ/R6PRiGQVpaGmQyWbyrROYAp14vKEvTtUH3Zc16uM6s39mhlMIuFqGbs6O7+zA0MhW+XrNZsH9XxxhsFuHYzuw8DYpKMyJTeULInOVyuaDT6QTbKOkkhJDkJpk8wWWK9pCLS+K5f/9+vPrqq/jiiy8wNDQkeC03Nxe1tbXYtGkTLrvssnhUj8TZiRMn+OnHly9fHpX3mNziKdEGTzytXfX8120q4ROpNUUrIJrUL7/hmLAlQpMmx6KlBZDJ4/6cJ2XFImZIaknWmJFKpVixYgWOHz8Oi8UChmGwZMkSGksWA8kaMyR+KGZIyPwSTS4u1Yi2mN4Jj42N4Yc//CE+//xzfpt35lqv4eFh7NixAzt27MC6devw+9//np7izjEcx/H/osWpFyae0qnGd3Z6Ek8HA3QohGOOVxUtE5Q5jkNTvXC9z5x8DYrLMmZRWzKdWMQMSS3JHDNyuRwrVqxAXV0dysvLKemMkWSOGRIfFDMkVFbxCPKNE73xOJFzir2TV8wSz9HRUVx33XXo6+sT/AJKJBJotVqwLAuTyQSWZfnXPv/8c1x33XV4/fXXkZWVFauqkjhTKpWQSCRRm1jKaTLBZTKB8ZnefKquttbOOs8+HPCDnjF0rzgHzTIGLSOnsDx/sWDf/h49zEa7YNui5dTaGW3RjhmSepI9ZuRyOdasWUMTlsVQsscMiT2KGRIqhnFA5ZxoFGElrjjWJnpidjd8zz338GuNaTQafOMb38Dll1+OyspK/g+ny+VCa2srtm3bhhdffBEmkwkDAwP4yU9+gmeffTZWVSVxVllZGdXzn/7Xyxjc9iEk6VpI09OhLC6GNC0t4L4u/TBc4wMAPGsq5TtYrFq+GfLCCjhZJ6Ri4R+TpvoBQTkjS4UVq0ui8jnIhGjHDEk9yRAz3oe0wZJLSjpjKxlihiQWihkSKpHUhhJ9E182qlNzeZWYJJ67d+/GgQMHwDAMSktL8fe//x0lJf434xKJBNXV1aiursZ1112H//iP/0BXVxf27NmDvXv3+q33SchMmJpbwbEsnGPjcI6NQ6JWB53R1nd8JwCIFBrICsoBwC/pBIDmE8LEs7qmAAolPekkhISH4zg0NzeD4zgsXryYkkxCCElhbqseMtbGlyXu4CstJLOYpNPvvvsuAEAsFuPJJ58MmHROVlxcjCeeeAISiSc3fvvtt6NaRzJ32EeGBWVFQfCF1k0ndwMAnAxgETFQzFsKJsgiv2MjZgwPmgTbFi0rmGVtCSFzDcdxaGpqwsDAAAYHB9HU1ERjxAghJIXlQbiqh8Kdmtf8mCSeR44cAcMwOP/888PqdlBZWYnzzz8fHMfhyJEjUawhmStcNhucOuFSKtrq6oD7chwHe18bAGBYKsHeDBX2yN041n8SQ6YRv/2bJ3WzVWtkKJmXGaGaE0LmAm/SOTg4MUnZ4OAgWlpa4lgrQggh0aSws4Ky1JmaiWdMutqOjHhu0pcuXRr2sUuXLsUnn3wi+CNMUltPTw9cLhckEklIrePh4Fg3iq7eDKdOD6deD6dOj/SamoD7OgZOwW0zAwDGpZ5nNI7MXLSMdsDstCBPkyPYv/mkMEarluRDJKLucbEQzZghqSkRYyZQ0gl4xnLm5OQEOYrESiLGDElsFDMkVEpGinFmonttao7wjNM6njMhDjIGj6SesbExft2rSF+oXTodxAoFxAUKKAryIZJKIc/NDrivueUQAM9KSh0KKWQiCcRaz7IFeWrhTaDF5EB3x5hg26Ll1M02VqIZMyQ1JVrMcByHxsZGv7WtRSIRli5diuzswNcpEjuJFjMk8VHMkFD1WjT4dMHNfFnpNOC8ONYnWmKSUHvXGDt58mTYx3qPoXXKSCQ4dOOCsjQjPeikHY6hLgBAr0yMPZlqfKqVY2/3YTSPtCNLmSHYt+nkAHyHYInFDHLzNRGtOyEkNU2VdC5btoySTkIISXFusWLSltTsMReTFs/a2lqcPn0au3fvxqlTp1BRURHSce3t7di9ezcYhsHKlSujXEuSKKqqqsBxXFRmcXSM6QRlaUZG0H2V5cshySzAwHgb4B4BywADpiGYHRZkKtIF+5482icoZ2arkaadfBEh0RLNmCGpKVFiZrqkk9awThyJEjMkeVDMkFDZWWHPTpcoNVdEiEmL59VXXw0AYFkWd9xxR0jjNQcHB/H9738fLpdnAdUrrrgimlUkCUShUECpVEKhiHzi5pzU4inLCjz5j9thA2s1QiRToF040RhWFS2DSCT81Vm+qhgVi3KQnqkEAJSUZ0Aipe7hsRLNmCGpKRFixu12o6GhgZLOJJEIMUOSC8UMIUIxafE855xzcNZZZ+HgwYPo6OjA5s2bcfPNN2Pjxo1YuHAh/ySI4zi0tbVh+/bt+Mc//gGj0QiGYbBq1SpccMEFsagqSWFuhwMuk1mwTZYROPF0GSZmrTW6nYLXluZV+e3vdLIomZeJknmZcDpYlC+krnGEkODcbjcaGxsxPCxc3kkkEmH58uXIzKQZsQkhZK7QOa2CcmrOaRvDyYUefvhhfP3rX0dfXx8MBgOeeOIJfp3OtLQ0AIDRaORbOL1rlhUUFODRRx+NVTVJCjO2tcPS0wNpejokajVEEgmk6dqA+7r0EzeD/529EpY0Lbqyc3BysAXL8hcJ9rXbXDCb7HxZKhMjryDweQkhhJJOQgghvlwcO/1OKSBmiWd+fj7+/e9/4+6778ahQ4f47U6nE+Pjnu6PkxfIXrt2Lf7whz8gLy8vVtUkCcBkMvFjIjSayE3Qozt8BKN79gEAGLEYqvJylH7t2oD7+iaeAJCdXYaSsqU4t2yt/3nHLYKyRCKGNp261cRStGKGpK54xkxLSwslnUmIrjMkXBQzJFQs5453FWIipsup5OTk4IUXXsDevXvx7rvv4vPPP0d/f78g4SwqKsLq1avxla98Beecc04sq0cSxKlTp/jpx2uCrLE5E+au0/zXHMtCJA0c/m6XA6xJJ9gmSQ8+q/LIgElQTs9UgqH1O2MqWjFDUlc8Y6aoqAjDw8NgWc8TbpFIhJqaGmRMMdkZiT+6zpBwUcyQUE1ufEtVcVnH89xzz8W5554LwDPhkF6vB8dx0Gq1kEpTcxYnEn+2/n5BWVlcFHA/c+M+WE4dgyQ9F91KObIVWqRrgowFdbEYHRGOG83Jo6eahJDgtFotampqUFdXB47jKOkkhJA5TqNNA3QTZS4m07/GXlwST19isZhm7iMCubm5cLvdfjPHzpZ9ZERQVs8vD7ifuekA7L3N0PW34HCGCpL0XGQ15yBXnYWzimshk3imueU4Dh+/1wSH3QWNVg6GYSASMcih9TtjLloxQ1JXvGMmPT0dNTU14DiOks4kEe+YIcmHYoaESiEXLqGQqivwRD3xHBkZwcDAACQSCUpKSqiPO5lWYWFhxM9pHxmB22YXbNNUVQbed6AdADAu8SyHIlao4XS7MGrRQSqeaJEfGTLhwGcdAACZXIzsXA3WnDMPUlpGJeaiETMktSVCzKSnp0+/E0kYiRAzJLlQzJBQKSet25mqjyqiknhyHId//etfePnll9HW1sZvF4lEqK2txXe+8x1aHoXElLG1XVBmxGJo5lf47ecy68AaRgEAn6crYBGJUKzNAQDkqrMFi0A31k103XXYWYwOm1FYQjeShBAPt9uNsbEx5OTkxLsqhBBCEphIphRuYFIz9Yz4pzKbzbjxxhvx61//Gm1tbeA4jv/HsiyOHDmC7373u7j//vvnzEBaEn/OsTFBWV6QD5HMfzyxvbcVAMACOJqmRH2aAttHG7Gj7TO4WJdg34bjwjGjOXka6mZLCAHgSTrr6+tRX1+P3t7eeFeHEEJIAhMphcvwMZR4hua///u/ceTIEQCBZ2jyJqGvv/46/vjHP0b67QkJyNLdLSinLVwYcD9bdyMAoFcugdNnZlq93YjK7Pl82WSwYajfKDh2fmUOJBLqZkvIXOdNOsfOPPBqbW2l5JMQQsicF9GutkePHsUnn3wChmHAcRw2b96Mm266CRUVFRCLxWhqasI//vEPfPDBB+A4Ds899xxuuukm5OfnR7IaJMk1Njby049XV1dH5JyW08LEU1VWGnA/b+LZrhIO8i7RFqJQO7GebOOJAcHrYrEIS2oKIlFVMgPRiBmS2qIVMyzLor6+nl+f2qujowO5ubmQyWRBjiSJjq4zJFwUMyRU3KRedVyKrusZ0cTzww8/5L++9957ccsttwheX7lyJVauXImioiL87W9/A8uyeOutt/Cd73wnktUgSc7pdMLpdEb0nNaeHkFZWVrit4/bYYO93zMWNNvBospsR1eaGna3C0vzqgT7tjYOCcrZuWrkFQq7SZDYiUbMkNQWjZgJlnSKxWLU1NRQ0pnk6DpDwkUxQ0JlGm5Fjmki+RTBPsXeySviLZ4AUFlZ6Zd0+rrzzjvx6quvwmAw4NixY5GsAkkB3rVcI7Wmq9NohFNvEGxTlfgnnvbeFsDtWdC9xmxHjcWJkhv+jA7TINQyFb+fw+5CR6twaZb1F1ZALEnN/vjJINIxQ1JfpGMmWNIpkUhQU1MDrZYeTCU7us6QcFHMkFCJxHakOfQTGxhH/CoTRRFNPHt6esAwDM4555wp95PJZDj77LOxbds2tLa2RrIKJAVEujuKtbdPUGbEYsjz8/z2s/UJY1FeUAGZQoNFCuGEQe3Nw2BdE10gRCIGi5dRN9t4oi5MJFyR7l574sQJ6HQ6wXZKOlMLXWdIuChmSKgYkQWFhomVQOwp2kEmoomn0eiZbCUzM3PafcvLywEABoNh6h0JmSVjU4ugrCgogEjiH/re8Z1e8uLA63w21wvHd85bkA2Fkp5mEjIXTZV0rlixAmlpafGpGIkYt9sNk8kEg8EAh8MBlmXjXSVCSJSJxWLIZDJotVpoNBqIRNHt1cY4TFC6TD4VYILvnMQimng6HJ5m4VC6FGg0nlYks9kcySoQ4sfU3iYoixTygPvZez0JartSChfDoFylRprLAblk4rGTm3X7je9ctIwmxyJkLqKkM/UZjUb09vbS8m+EzDEulwt2ux1GoxEMw6C4uDiq1/Ss0gK0L5i4X2XkEU3REkZEPxXHcWAYBgwzfZbufXJATw5JtNn6hS2UigCzKDv1I3DbzOAA9MkksIlFGIcZJ5o+xLqSWszL8IwJPd0xBqtFOFHAoqXUzZaQuYaSztQXKOlkGAZiMS2bRUiqY1mW/93nOA69vb1RTT4zZCpkuCeGcYlTc1LbyCaehERCf38/3G43RCIRCgsLZ30++7BwIiBlqf9SKrbOOs//IgY2sQhgRBBrcwAAmYp0fr8v9nUJjiso1iI9UznrOpLZiXTMkNQ3m5hhWRZ1dXXQ6/WC7ZR0pg632y1IOjUaDdLS0qBUKsEwDM1QTELi7QkIgGImyXAcB4vFgrGxMZhMJj75rKqqikq32wyJAkX2icY4EZOaDXOUeJKEMzw8zK97Ndskwu1ywTlpHLF6/jy//axnxnfuS1fipFoOLSMBazMgX5ODNPnE5EKnWoYFxxWXTT+emURfJGOGzA2ziZnx8fGASWdtbS0/jIQkN++NJuBJOktKSmC1WuFyuSjxJCFzuVx8b0CKmeTCMAzUajVUKhV6enr4a4LJZIrKhHGdwxLsUN7El9UwYXnE3yX+aP0HktJsA4OAW9hfIX2J/yxzEnUmZPnl6FUpMSCXoEUG7Orcj5NDLXzX8eFBE2xW4QK/ZRVZ0as8ISQh5eTkoKpqYm1fqVRKSWeK8Z34MCsrK6QhRISQ1MMwDLKyJu71ojUpKidVgWWkPv9Ss20wNT8VSWoVFRX8E8LZsvb2CsrSjAxI09P99hOnZUJVdRaGhj4HWBu/fX3JyolzWRyYtyALBp0NRr1nn+rlNL4zEUQyZsjcMNuYKSoqAgB0dHRgxYoVlHSmGG8XSYZhoFJ51nGWywNPTEdIMBQzqUGlUoFhGHAcJ+g+HUk2yABMnNvFpGYLeVQST71ej76+vmn38erv7w9pxjjvH3qS2iJ5A2ftESaeypJiv304lxNuixEmtxMjPkknAFTlLOC/Zl1uzFuQ7TmG4yCTSSCR0iQTiYBu+km4IhEzRUVFyMvLgyTA8kwkuXknPhSLxfzDCZpUiISLYiY1eCcVc7lc0ZsUlUvR2YQmicpfy6effhpPP/10SPtyHIcNGzZMux/DMGhoaJht1cgcY530AERZ7P/wwmUaBwcOYjD4urYSp10mdEtFGDKPoCR9YuyX0TCRlDIMg4Ji/5ZTQkhqma5VlJJOQgghszUw2A8gly+zrtRcwilqfzGna8H0XXZlqn29TduEzIRtYFBQVhT4d41ljWMAAKVIggvUxZBoMqFdtREu1gWJyPO0kuM4vnutV1q6Ikq1JoQkApfLhZMnT6K8vBzpAbroE0IIIZHgdLum3ykFRDzxDDVJjPR+s8VxHN5991289tpraGxshMViQW5uLtauXYsbb7wRNTU1UXnfX/3qV/jXv/4FAGhubo7KeyQbm83GtzIoFLNL7vwTT/81PF3GUUFZkubpTisRT/x62KxOOJ3C7hVaSjwTRiRjhswN08WMy+XC8ePHYTQaYTAYUFNTQ8nnHOf2maguGsspkNRDMUNC5aKutuFramqK5Olixmaz4c4778SuXbsE23t7e9Hb24t33nkHd911F77zne9E9H0///xzvPTSSxE9ZypoaWnhlzmYTcLPOhxwjAjX8JRnZwvKHMfBqRfuI07zn6l2cmunVCqGXEFd7BJFpGKGzB1TxYxv0glMrNtJyefc5vuwwjvhECFToZghoZorvTvpzhnA/fffzyedCxYswHXXXYecnBycPHkSL7/8MiwWCx555BHk5+djy5YtEXlPs9mM+++/f84EWjxYu7v9tkmzhUmlY6AD47teBKfOwOcZKmQqtJg3bxFyzaPIUWVCxHieUI4MmQRjvbTpCppBlZAU5HQ6UVdXxyedXmKxGFKpNE61IoQQksrUc2SFy7nxKaewd+9evPvuuwCA9evX44033sAtt9yCK6+8Ej/5yU/w6quvIiMjAwDw29/+FiaTKSLv+4c//AE9PT0ROVeqycrKQnZ2tmDdpJmwdAkTT5Fc5tfiae2sA9wsDJZxmMxj6NH1oN7Qjc86Pxc8FHj3lRM48GkHTh7rQ3fHGESSOf+rk1AiFTNk7ggUM8GSTplMhtraWmqxmOMkEgn/j8TO448/jkWLFmHRokX429/+Nu3+L774Ir//okWL8P777097zK9//Wt+/w8//BAHDhzgy48//viM6n3gwAGsXLkSq1atwjPPPBNwn7GxMbzwwgszOj9JLTKnsCEqVZs25vzd89///ncAnj8ov/71r/3WXFqwYAF+/vOfAwB0Oh1eeeWVWb+nbxfbtLS0WZ8v1ZSUlKC8vBwlJSWzOo9qfjmKtlyFvIs3IGvdWchcs8avldLe2wIAMIk9vwoihRoMw0AjU0N8ZmIh/ZgFNqsTDgeL0SEzOlpHIZPRFOmJJFIxQ+aOyTHjdDoF3Wu9KOkkXjKZDHK5HDJZaq6vl6jWrVvHf338+PFp99+3b5+gvH///mmPOXz4MADPOEzf94uUQMuqvP3227j88svx4YcfRvz9SPKRzZGUbG58yiB0Oh1/gTr//PNRWloacL8rrrgC2WdayrZt2zar9/TtYrtlyxZUV1fP6nwkONZigViphDw3B+r55chau9pvH8eoZ53Pd3I0OKRVoFkhQaeuByKfZ02NJwYEx0gkIpSVU8saIanCm3RO7tFCSSdJFvbBznhXIWpqa2v5RoFjx45NuS/Lsjhw4ACAicl89u7dO+UxZrOZn9yxuro6ZuO4H3vsMeh0upi8F0l8jHhuPNCa04nnF198wc84tn79+qD7iUQirF27FoDnaZter5/xe3q72Obm5uKnP/3pjM9DpucymQVliVotKHNuFi79MABgRCaGQSJGF2fDF73HMW4z8Pt1d44JjkvPUkKupLFehKSCYEmnXC6npJMkBZdpHP0v/gIu03i8qxIV3gdAADA4OIiBgYGg+544cYLvtbBx40YAnokiu7q6gh5z7NgxsKxn1vqzzz47QrX2tNQ2NzejubkZP/jBDyJ2XpKaRIq58bdmTieera2t/NdVVVVT7rtw4UIAnlmnWlpaZvR+vl1sf/GLX/BjR0l0sOZJiadGIyg7R3rBOe0wiEUwSYTdYM6ft5b/eqDXIHhNm6GMcE0JIfFASSdJBfr9b8JtNUH/+VvxrkrUnHXWWfzXU7V6els35XI5vvWtb/HbJ3e/9XXkyBH+66kaIQiJJrF8Uotnig7ynNOJZ29vL/91cXHxlPsWFBQEPC5Uvl1sL7/8clx66aVhn2OuaG1tRUNDg+DBwEzYBoVreIontXjaB9oBAD1y4UQRSqkCBWl5AACXi4VeZxW8vqSmcFb1IpEXqZghc0djYyO2bdvm1xLiTTqVSnrARIRsNhusVitsNtv0O8eIyzQOwxHPGEHD4e0p2+rpmxBOlXh6x3OuXLkSy5cv54dJTZV4esd3SqVSrFmzJgK1nZCIMUMSExNgHHAqmtNTs42NTXShzMzMnHJf39bJmfTJ93axzczMxAMPPBD28XOJ1WqF0+mEy+Wa8Tm4M91mfE3uamvv9ySeFVYnvtU7jsGS+RgqLodMJOWXUenvMcDN+sw0xgBLVlDimWgiETNk7nC5XGhubobFYhFM+kFJJ5mK2+0WLKuVCPT73wTncgAAOJcD+s/fQvYlt8S3UlFQU1MDhUIBm80WNPG0WCz8a2effTYYhsH69evx3nvv4fPPPwfLsn6T/LAsy09YNNXvPsdxeOutt/D666+jubkZNpsNBQUFuOiii3DzzTejqKjI75gDBw7g5ptvBgD853/+J+655x4AwIYNGwQNGAcPHsSiRYsAAHfccUfAbrnbt2/H22+/jbq6OoyPj0Oj0aCyshKXXXYZrrvuOprwKgXYGR0yLRM99RjGEcfaRM+cTjx9n0BNns12Mt9f6nCfXPl2sf35z39OSz5Mg2EY/t9M2QaHYO3vh1ipgkSlBCOVQjyp25y9/xQAQMFxqLQ6cVbRamSee41gn54u4dPj3Pw0KFV0gU80kYgZMneIxWIolUpYrRO9GSjpJMnGt7XTy3B4O9LXb4FEM/XD9GQjk8mwcuVK7N+/Hw0NDXA6nX7r6h46dAhOpxMAcM455wDwJKDvvfceDAYD6uvrsWLFCsExjY2NsFgsAIJ3s7VYLPiP//gPv1bTzs5OPPfcc3jjjTfwl7/8BatWrYrIZ/Wl0+nwgx/8AAcPHhRsHx8fx8GDB3Hw4EH84x//wF/+8hcsWLAg4u9PYoeR2pBhG+LLrCQ1H6TP6cTTt3VkuqdFvq+H06ri28X24osvxqZNm8KvaIy1tbVhwYIFgqVe7HY7P+tbRkYGysrK/I7xXrxramoEr42MjKCvrw8AUFpaKmhdZlkWJ0+eBOBZWmb+/PlYvnw5/3pnZycMBs8YyyVLlgjWT9PpdDh9+jQAoLCwELm5ufxr+vqTGPl0N1+WaLUo+/rX+HL36S44+tsFXejlhZ6LtslkwqlTnqS0rUm4tELJvAw0Njbyf/Qmz0rc39+P4WHPhEUVFRXQ+Iwrtdls/PjgrKwsv6U/WltbYbVawTCM4HsAAMPDw+jv7wcAlJWVCVrgXS4XGhoaAABarRbl5eWCYzs6OvjJFpYuXSp44js+Po7ubs96p0VFRcjJyREcW1dXBwBQqVT8OGev06dP863/ixYtEjy8MRqN6OjoAADk5+cjPz9fcGxDQwNcLhdkMhkWL14seK2vrw8jIyMAPMsZqX1aqq1WK9+dNjs7m+8i7/1+tbS0oK6uDiKRCMuWLROcd2hoiJ+Uory8HFqtln/N6XSisbERAJCeno558+YJjm1vb4f5zJjhZcuW8bMlAp6eE941eUtKSgQPltxuN+rr6wEAarXa78agq6uLn6ysurpacCNlMBjQ2dkJwNPVPy8vT3BsfX093G43FAqF3xj13t5ejI6OAgAqKysFyZTZbEZ7u6e1Pycnx+9JfVNTExwOByQSCZYsWSJ4bXBwEINnurDPnz8/btcIXzO5RjAMg40bN+LDDz+ETqeD0WjEunXrBN+nnp4evldMVVUVFAoF/5rvNSI3NxeFhcJeEHSN8Eika4RXS0sLbDbbtNeIyUmNdyJChmECLo1hs9n4fZRKpeAhmMvlgsPhab2QyWSCGOU4jn8AIhKJBHEGeH6vvBPfKBQKwbVnfN8bfGsnfz6fVk+r1QqO4wKe1+Fw8Pcyk8/LsizsdjsAz1Jzk++PvOdlGMbvQY3T6eSTP7lcLvheud1u/sG9WCz2e+Dv+z2cPL7a6XTyiafdbkdjYyN/HfF+Dz/99FMAnhj3/mx9k8lPP/0UNTU1gp/NoUOH+K+9k0hO9vzzz4NlWeTm5uLaa69FRUUF+vv78X//93/o6emBTqfDj370I7z//vv8Z/L9HgLCeHrwwQeh1+vx0EMPYXx8HJWVlbjrrrsAeK6r3p+NzWbDLbfcwl9XKysrcdVVVyE/Px96vR6fffYZ9uzZg66uLtx444148803kZGRMeX30PuzmSoOA/1sfONwqviWSqV+vzve63648e37PQx03qni0De+p4rDQPHtjcNA52VZFlarFXV1dRG/j9CZBpFn6uS3mVUMX9943Ed4/05F2pxOPH1/AZxO55TJp/eXCpg+SfXl7WKbnp6OX/7ylzOqZ6yxLMtfuLw4juMvWGyAbqwul4t/fTK3282/Nvm8APjXAiX0vuflOOHiur51mnxe+9CQoCxWKAQXSufwaTBuz/u54RnsLC+o8DvvUJ9w0pGSeZlwOnUhfdap6hvos3r/KARqtZvNeaP1s2FZNmidfM8bKF683WJ9L7yhnHe6OPR+D6c771TxHcvv4VTxHcr30O12B7wJns330FunycdNPm+yXyMYhkFOTg44jkNBQYHfDcZMz+utL10jkvsaMfkm1/e9Av1uTLd9qmODHTf5WF8u0zhMRwOv/+ht9eRE8qDHz6ZOU70ejc/q5Tv+8tixY4IHWBzH8cuorFu3jv/5lpaWori4GL29vfj8889xxx13CH5/jh49CsCTpE1+mOPFsixWrVqFZ555RvCw7ZprrsHNN9+M1tZW9PT0YO/evdiwYcO0n/W8886DxWLBww8/DMAz1OuSSy7hX3c4HOA4Dk888QSfdN5www342c9+BoZh+ATx+uuvx/bt2/GTn/wE4+Pj+NnPfobHH3982u9xsO3T/dxmcl7f16LxezNV1/doflbv399A24GZXWdFTiM0Dh2/jfVZLz4e9xGBrveRMKcnF/J9GuT7ZCoQ38Rzum65Xr5dbO+9916/Jw2JSiwW+/1RZhiGf+IUKEAlEknAJ1KA5ymX97VAf+y9r/k+fQt03skXF986TT6vfWRU+B7aNEFZPOJ50u4G8GmmCp9naXFkvAPtY11wuV2QSqVwORiYTcKLREl5Jv+e033Wqeob6LNG67zR+tmIxeKgdfI9b6B4mel5p4vDqb6HvuedKr5j+T2cKr5D/R5O91nD/R5O9VlD/R4mwzUC8DxELCoqErSYReK8dI3wSOZrRCDTdekP9prvcVO9Hs57esZ2Br6J9bZ6hvKeM6nTVK9H47N6LVu2jG8w8I7L9BodHUVbWxsA/yVR1q1bB8DTOu/bvR6YSDxXrlwZ9OculUrx29/+VpB0AoBGo8FNN93El729Cnw/TzDTDQsxGo147bXXAHg+9wMPPMDHs+/3afPmzbj66qsBALt370ZbW1tUYzTc887m2HjH6FT1jcZ9RKZbeL2S+SSR8biPCHS9j4S4tHhyHIfDhw/j8OHD6Ovrg16vx+bNm/knRa+//jpWrFgR9f7qvk3kOp3O76Liy3dCoVDGaPp2sT3//POxdevWWdU1lhYuXCjo/gV4ku3J3eMmHxNMTk6OX/csL7FYPOV5J3cJ85WRkRF0SRqOZSGSy+H2dtOYtCC0wjwEMwCzWAQXw8Ci1qBD14MOXQ+2LN6Impoa1B/pBdA3cYxSipxcDXLzhV3nfBUWFvp1u+OPVyim/KyVlZVBX8vNzRV0JfYlkUimPO/krom+MjMzp5xYa6rzlpWV+XWn9EpLS5vy2MldOH0VFRUFnKgB8HTxmeq8Uy2LlJeXF/Thj1QqnfK8U12LsrKygl4TRCLRlOed3BXHl1arnfLYyd0EfRUXFwedqVutVk953sndGn0F6hLplajXCG9LZqAHhsFaOABPt+nJXV29NBrNlHWa3L3WF10jPBL9GtHa2ipoXRCJRFMurzO5C6EviUQS8IYR8NysTnXeQHEbaGznZNON9ZTJZEF7b4nF4inrNNU46KkS99l8D6VSKdLT07F69Wrs3btXMMEQwzB8Agn4J57nn38+Xn/9dTidTnzxxRe44IILAADd3d0YOtM76rzzzgta75UrVwb8HfFdXxQQdk0M1F3Vl1KpDHpjL5PJcPDgQb476NatW/mEItD38Ktf/Spef/11AJ7Ze4Nd16Z7qBJuHHpNFd+Af5ffUM87mzicKr5nE4disRhpaWkBr8WzvY/Il6rg28dO5uD4+sbjPiI3N1cwCWukxDzxfOONN/Dkk0/6LUniO+D7z3/+M4aGhvDlL38ZDzzwQNTWu/S9Yenv70dpaWnQfX0XLA72B89XfX09P+5r9+7d/IxlU/HuU1xcjJ07d067f6oaHh72dDsQiYLeSE0n90vnQVlUCI5lwVqtUE/6o+EY8oz7GpCJwQEQqzyJqUamglziuVi1Nwv7t2flqMCIaPKaRBSJmCGpx2634/jx4+A4DrW1tYKbHIoZEi7fbnLBbuBjwXcm22BSdYbbs846C3v37kVPTw9GR0f9lkspLCxERUWF4Jj169eDYRhwHIeDBw/yiad3GRXAP1n1NdVDM9/eEr494yYL1M1xKt6x04DnWvXRRx8F3dfss2a5dzw8ST5pYpkg8ZRi6u7uySpmiSfHcbjvvvvw1ltv8WUvwdg7pxNDQ0PgOA4ffPABTpw4gX/+859Bn7LPhu/Th9bWVsECxZN5JytgGGbKp85k9vr7+/mJOWZ6Q8haPU8KGbEYEo0GivyJli7OzcI5PggOwAuF6eDAIIOxInuwGeeXT0wu0NetE5wzLT34UzASX5GIGZJa7HY7jh07xnetO3bsmCD5pJgh4fKOffZ2qYuHUFo7vVJxhltvt1nA003WOzbSu35noAQyKysLVVVVaG5uxhdffMFvP3LkCABPz4ipenr49o6bzPf+dapxgeGOlxv0WYf8L3/5S8jHeSeVI8mnz6LGvnkTKysoXSYEfxySvGKWeD7yyCN48803AXh+Uc877zzU1tbiiSeeEOzncDhw/vnn49NPPwXDMOju7sbdd9+Nf/3rXxGvk7dPv9PpxIEDB3DjjTcG3I9lWX7ms8WLF095EfKqrKzEk08+Oe1+jz32GJ/UevefqpmfhIadtOSNyOd7yrnd0K7aiH7DIBxuz2yNwy4Lhkfa8JXqywAAbtaN8TGL4ByFJcLuuoSQxDQ56QQ8MyC2tLRM2b2WkEQXSmunVyq2ei5fvhwqlQoWiwXHjx/HJZdcgra2Nj5RC9ZyefbZZ6O5uRknT56E1WqFUqnkE89169ZNOVZwqm6k0WIymabfKQDf1k+SXFixAjbpxJA/hlo8Z+7UqVN47rnnwDAM8vPz8ec//5nvczw58VSr1Xj66adx6NAh3H333RgZGcHRo0fx0UcfCWb9igStVov169dj9+7d2LlzJ/r6+gJ2o33vvff4fs6XX355SOfOysoKqb7PP/88/3WkP1+yKisrm/Ui3e5JiadYOZF4ui16iJQa9MMC6Cb20co1qC1cCgAQiUW4eNNiDPYZYNDZYNDbUDaf1l9NVJGIGZIaAiWdgGc8kO/4PooZEq5wZrSPhnBaO71SrdVTIpFg1apV2LNnD98d1dvaCUydeP7v//4vnE4njh07hqVLlwadjCgaAk3sMhXfBoj333+f1uicA6wuYUrmEqXmmvExmdX25ZdfBsuyYBgGjz/++JQDXb3Wrl2Lxx9/nC+/8847UanbLbfcAsDTheaee+7xe8rU1taG3/zmNwA8SfG1114blXqQCRkZGcjMzJzx2F6O4+Ca9NRPrJgYhO4yeh4i9DiFP+sFWfP4m1C3m4Pd5oI2Q4mS8kwsWVGIzGz/mS9JYphtzJDUYLPZgiadk8d4UsyQcHknUYlHCxgQXmunl7fVM5V4u9t610z0dp+trKwM2m1+zZo1/M+tvr4ex44d47vGxiLxDHeGUO/YVSB66ykSEg8xSTz3798PhmFw9tlnh9XNaeXKlTj33HPBcRxOnDgRlbqdd955uOwyT/fKo0ePYsuWLfjrX/+K9957Dw8//DCuu+46fkbbH//4x36zVx44cACLFi3CokWL8I1vfCMqdSThYS0Wv21in6eHLqNnDMSWtPl4KHcdbi+/EJsXX4qzS1fz+1gtDrjdwm4OKk1qPn0iJBUESzpVKpVf0klIsplJa6eX4fB2uEzjEa5R/HgTT71ej+7ubn6SoKkSSI1Gw99/tra28suxFBYWTjkzdrz4NtAcPHhwyn3b2trwgx/8AL/73e+wa9euKNeMRIvBJfzblZodbWPU1dY7I2woLZ2TLV26FHv37o3qgOnf/e53MJvN2LNnD3p6evhFfb0YhsEdd9yB66+/Pmp1IJGjr6uHvv4kxCoVJColJBoNxKqJFk/2TIsnwzDIlShRXrYG8kJhNxazSfhUWa6QQioNr6sMISQ2vEmnbVIXe5VKhRUrVlDSSZLeTFo7vVJtrOfSpUuhVqthNpvx4Ycf8i2C55xzzpTHnX322Th69ChaW1v5BoX169dHu7pBTfSw8p946IILLoBEIoHL5cK///1v3HrrrUGX/HvmmWfw4YeehxLRmIiTxIYzzAmoklVMWjy9U0zPZNIc75iKaC1kCni6Yf31r3/Fww8/jHPPPRdZWVn8TIdf/vKX8eKLL+KOO+6I2vsTIZfLBafTKVhDLRy6ujoY6k9i/OAhDO/6DLpjx8GciR+30w7WKuxiK07zH7t5qkXYtUVNrZ0JbbYxQ5LXVEnnVC2dFDMkXBzHwe12Tzl7aTTMprXTK5VaPSUSCVav9vRQ8k48KZFIsHbt2qkO41tE29vb+V50sUo8A8WMdx1Kg8Hg91p+fj42b94MwNPV9q677go4cdCrr77KrxaRnp6Or371q5GsNokhFxfekjvJKiYtntnZ2ejv70dnZ2fYxzY3NwNA0AXaI4VhGGzevJn/RQ/VunXr+DrOxAsvvDDjY1NVQ0MDv8zBTFrJ7SPC1nFpxsRstLauk3DqBsGoM2ATi6ARyyFW+c9SLJq0XqdKTYlnIpttzJDkNF3SOdVkMBQzJFxWq5WfkGqqBegjzVT3CURKTUTOk3HO1gjUKP7OOussfPbZZ/x66cuXL4dGM/X3qLa2FkqlElarFXa7HUBsxncCCPiAKz8/H62trWhpacGjjz6K6upqFBUV8dej++67D4cOHUJ3dzf27NmDyy+/HNdccw0WLlyI8fFxfPrpp/j000/58z3wwANBW0VJEkjVvrWTxCTxrKmpQV9fHz755BNYLJaQL9jd3d3YtWsXGIahKfBJyJxnZiD2kvlMHmI49jEszZ/DIBbhYHY6FBn5KO0sRqYyAysKqsEwDE4c7sGp5mGkpSug0sjAMAwUyvgtFk4I8Rcs6VSr1VixYkXcZyAlJFIyztmaMgljpPiu5wlM380W8PSgW716Nfbs2QMAqKioiGvX1E2bNvF1+Z//+R8AnpUTHnvsMQCelRdefPFFfP/738eJEycwODgYcJk+uVyO+++/H1deeWXM6k4iT6FWCFZa4GLSJzX2YvKxvEuQ6PV6/OpXvwrpGJ1Oh//6r/+C0+kEAGzcuDFq9SOJRavVIj09PaT1UgNxnBm74SXzaS13Dp8GABgkInAuB1iRCMOWMfQbB/nxFvs/PYWWhiEc3n8a+z45hcE+AwqKZ1YXEhuzjRmSfNrb22eVdFLMkHCJxWL+H4mvpUuXClo4Q0k8AWHX2liO7wy0bNPWrVvxi1/8AgsXLoRcLodCofC7puXn5+OVV17BH//4R1xyySXIz8+HVCqFSqVCVVUVbrnlFrz77rv42te+FquPQqJEqRQ2yqXqSl8xafG87LLLsGzZMtTX1+Ptt9/G8PAwbrvtNixZssRv36GhIezYsQPPPPMMhoaGwDAMFixYEPL6mST5zWaGOY7j4NQLx0vIzkxLzrlZOPVDcANoUcrgZABVmue1TKWnO67LyWKo38gfy7rc0KTJIZHQjUYiS8RZCUl0LVq0CDabDUaj5/c13JZOihkSLpqkKnGIxWJ+Nttw3Hbbbbjtttum3S/UYVQlJSVB9wvlHDfccANuuOGGKfdhGAabNm3Cpk2bpq0PSV5qsbBnXYo2eMYm8QSAP/3pT/ja176GkZER7N+/X7DgLwD85S9/wVNPPSVYR5PjOGg0Gjz22GO0yDcJCWuxgDvTSu4lz8sDADjH+gHWhWGZGB/meJ6Uqo1dyOoxYkmuZ2H5/l6D3zIqRaUZ0a84ISQsEokENTU1OH78ODiOo+61hBBCkhYjnpySpWbeE7OEuri4GC+99BKWLVsGjuP4f96E0mg0wmg0Cl4rKyvDCy+8gIULF8aqmiTJOQIsu5O5qhYA4BzpBQD0yCeeKpldNhhsRpRoPeM8erqEs/6p1DJkZsduEglCSOikUilWrFgx7URChBBCSCITa7IFZUaUmj3tYtbiCQClpaX497//jW3btuG1117DkSNH/Bb7lkgkWLp0Ka6++mps3bqVuraQsPjNaJuuhfjMMj6OM+M7e+TCsF+UuwAZZ7ra9nQKE09thgLqNIpBQhKVVEoTfxFCCCHJIKaJJ+BZj/OKK67AFVdcAZZl0dfXB51OB5ZlodVqUVRUNKP1Pknq6OjogMvlgkQiwfz588M6dnKLp3d8JwA4RroBAE4RAzHHgT3T2r4gcx6/z+QWzwWLcqFNV4ZVBxJ7s4kZktgsFgu6u7tRWVkZ0fWcKWZIuOx2O99Tix6Kk1BQzJCZivV6wbES88TTl1gsRmlpKUpLS+NZDZJgjEYjv75euOyjk5ZS8U08z7R4XjNkxNVDRtgv+hoG8wtRlV0BANCPW2HUC2eUq1lTArkirr8mJASziRmSuCwWC44dOwaHwwGHw4GlS5dGLPmkmCHhYllWMESIkOlQzJBQmQbboLVNJJsSzhHH2kQP3VGTlDK5xVOe7VlKhWOdcI728dslAMpKa7C8dDG/bXJrp0IpRU7u7BftJoSEzzfpBIDR0VGcPHkyosknIYQQkghEIjOyLbqJDQwlnjPW19c3/U4hKCoqish5SGJbunTpjI8N1tXWOdYPuFnBa9JcYUv75MSzeF4GGBE9pUwGs4kZkngmJ51eDocDbrc7IoknxQwJl1JJwy5IeChmSKg4xoJscw9fdkqpq+2MbdiwYdbdDBiGQUNDQ4RqRBLZbBbntpzuEZRFZ7rRWTvqAACDMjHcAHJkaRAr1IJ9J08sVDIvc8b1ILFFC7qnDrPZjOPHj/slnWlpaVixYgUkksj82aKYIeGi7pIkXBQzJFRi1gyNfYQvW1N0OZWYdbVN1UGyJLE4DQZB2XVm1mT7YAcAz1IqY1IxxColOlp3oaagGkVp+XC5WAz0Co+lxJOQ2DKbzTh27Bick9bijXTSSQghhCQSTV4GTpf5zDkgS82HozH5K7527dqQ9rPb7RgeHkZ/fz8Az5OiSy65BGvWrIlm9UiKYO12uO12wTbxmVnkvGt4msWeJ0gihQYGuwluzg0A6O8xgGXdEwcyQMm8jOhXmhACIHjSqdVqUVNTQ0knIYSQlJWh0mLEp3utSEYtnjP2wgsvhLX/yMgInn76abz44ov49NNP8ZWvfAUbNmyIUu1IohkfH+fHcWVmht7qOHl8JwCk1ywHALh0Q9CJGXQqZNCwbmSptAAArcwzedDk8Z1qtQwDvQbMWyBc0JckppnGDEkM8Ug6KWZIuFwuF/81PQghoaCYIaHKlargsk7EiwipOYleQv4W5OTk4P7770deXh4eeeQR3HfffXjnnXeQl5cX76qRGOju7uaXOQjnhtA+Ikw8RXI55Lm5cLNOuF0OdChlaNB4WkAZSzeyO8y4ZskVnvfsEC7DkpaugFItm+UnIbEy05gh8WcymXD8+PGYt3RSzJBwORwOfmkMSiJIKChmSKh6x8TYLb+SLythxfI41idaEjqd/va3v42SkhIYDAa8+OKL8a4OSXCTWzwV+XmQZaSDs1uRvu4qWOZPzGLJAchUaPnZMbNz1MjIUkJ8pitueqYSWdmqmNWdkLkoXkknIYQQkkicIiV04lz+nwGp+UA0of+qMwyDCy+8EP/85z+xc+dO3H333fGuEomBoqKiGS2Z4BgVtlp6l1JhzToAQB8nHP+5IKuc/7qkPBNiqQgcx8FiciCvUAuJNDUHdqeimcYMiZ9gSWd6ejqWL18e9aSTYoaESyqVTr8TIT4oZkiorG4ZgImuti5RasZOQieeAJB9JnmI1FqgJPHl5OTM6LjJXW0nEk89AEArkiFbrMAoawMAlGV41oXlOA6jw2YAnocd6jQ5CkvSZ1QHEh8zjRkSP4GWGYhV0glQzJDwURJBwkUxQ0Ilkkjgm3giRZfiSfjE8/Tp0wBoLSQyvcldbeU5ZxJPi2eZlK+lV+JrqARXUI7RrFzkqT2vm4x2OBwuwbHZucI1PgkhkaVWq7FixQq+1TM9PR01NTW0viYhhJA5Z6i/F8DEhJasMzWXoUzoxLOnpwcffPABGIZBWVlZvKtDEpw9aFdbvWC7RpuH7Jz5fNmgswleV6pkUKpoYiFCok2j0WDFihXo6urC4sWLKekkhBAyJ9lY1/Q7pYCESzwdDgfGx8exd+9e/OlPf4LNZgPDMLScCpmWY3REUJbnZINjXXBbTYLtYrWwG61RL0w8temK6FSQEOJHo9Fg6dKl0+9ICCGEpCgnR4lnxFRXV8/qeK1Wi2984xsRqg1JdHV1dfwyBzU1NSEd43Y64dQJWzadOh1svS2wdJ2ASamGUaFAujIDKpmCD3y3m/NLPNMo8Uw6M4kZEjt2ux1yuTze1RCgmCHhslgs/NIYKhXNek6mRzFDQpaaPWv9xCTx5LiZfzfT0tLwxBNPID2dJnshwTnGxv22iWQyWLvqYT/dgC6lFB1KGURSBdLzc1CWXoT1pauwf1c79nzUhrQMBbQZCmRkqajFk5AIMhgMqKurQ0lJCcrLy+NdHUIIISThKCjxjJyioqKQ9xWLxVAoFCgsLMT69euxdetWZGRkRK9yJOGoVCq4XK6wZrZ06nSCMiMWQ5KRDnvLfgCAWexZMkEkVwIAlFJPctnVPgq73QX7oAkjgyYUlqRDk5ZYLTNkejOJGRJ9BoMBx48fB8uy6OzsBMMwmDdvXryrBYBihoRPJBLxrVeEhIJihoRKygrLqRoxMfmLu3Pnzli8DUkRCxcuDPsYTVUlSq67BqzVCtZqhdvhgEShhGl8ECyAYxoFJByHDLkSas6NNJkGANDXLeyem5uvgUhM6/olm5nEDIku36TTq6OjAwqFAvn5+XGsmQfFDAmXQkG9YeLpG9/4Bg4ePBj0dZFIhPT0dGRnZ2PNmjW48sorsXbt2oD73nvvvXjjjTcAAB9//DFKSkqiUueZxMzjjz+OJ554AgDwj3/8A+vWrYt0tUgCUnJz494zJolnc3MzxGIx/aEnUeO22cCIRJCo1ZCoPUuhSDRquG0mjEnFaNScacXk9GAatuGc0tXQj1thMTsE5ykuz4x11QlJOXq9HnV1dYKkEwCysrJo/UxCoqBzvAflmdFJnpKF2+3G+Pg4xsfH0dbWhpdffhlbt27FQw89RD0bSOITzY1Z3WPym/jkk09ix44dWLhwIe68805ccsklsXhbMoe4LBa/bbLsLLgMoxhWCH+Z1TIVirUFaD4xKNgukYhQMo8ST0JmY6qkc9myZRCJ5sZTXUJiRWfV48Fdj+GPX/45MpRzYz6MBx98ENnZ2YJtDocDOp0OLS0teOutt2CxWPD6669Do9Hg/vvvj1NNCQmNWJkW7yrEREwSz7q6OnAch7a2NmRm0o09iTzWbBaUJRo1XIZhwM1iWCYcs1maXgixSIzuTuGERNoMJdLTlVGvKyGpipJOQmLvraYdMDnMeLtpB25eeU28qxMT55577pTdY7/1rW/hmmuugU6nwwsvvIAbbrgB8+fPD7o/IfHGSOdGq3xM7gLGxydu8Gm9NjKd06dPo6OjA6dPnw75GJdZ2OIpUavhHOkFAGhYNyosDmhYz5RhRWkFAICeLmHiuWxVMZRq6WyqTuJkJjFDIitY0pmdnZ2QSSfFDAmX3W7n/yUKnVWPD9s/AwB82P4ZdFb9NEfMDaWlpfjWt74FwLOywptvvhmXeiRizJDEJJZOuv9M0dmFYpJel5eXo7m5GQDQ399PT53IlHQ6Hb++XllZWUjHuCa1eIpVKjjH+gAAq402rDbaoCithvaa++BiXXC5WAz0GATHlJZn0sxzSWomMUMiR6fT4cSJEwGTzqVLlyZc0glQzJDwsSybcDOUvtW0A07WCQBwsM451eo5nbPPPpv/ur29PS51SMSYIYnJDhM0Pg8oxHDGsTbRE5PE83vf+x7uuusuAMDvf/97PPHEExCL58YgWhJ9HMtidP8BuB0OiFVKSFQqT+J5ulewnzS7GBqZZ+Kh7s5xsKx74kUGKJmXEcNaE5IakjHpJCQV+LZ2en3Y/hk2L750zoz1nIpSObuhM2azGa+99hr27NmD5uZm6M4s25aeno4lS5Zg48aN2Lx587QTFx0+fBhvvPEGGhoa0N/fD6lUioqKClx66aW44YYboNFowqqXyWTCN77xDTQ0NAAAbrjhBvziF7+Y0WckiUMktyDXPHHfykpccaxN9MQk8bzsssvwpz/9CQ888AB27dqFr3zlK7juuutQW1uLkpISaLVaujkhvEWLFoX1hNCh02Hoo48F29JrV8Ax4p94ek3uZpuXnwa5grrZJqtwY4ZEhk6nQ11dHdxut2B7Tk4OlixZktDXdYoZEq5EW07Ft7XTi1o9J5w6dYr/etGiRWEdu2fPHvzwhz/kk01fNpsNg4OD+OSTT/Dyyy/jr3/9K7Rard9+VqsVP/3pT/HBBx8IttvtdtTV1aGurg4vvfQSnn322ZBXfbDb7bj99tv5pHPr1q144IEHwvpsJDG5OAsyrAN82ark4lib6IlJ4nnbbbcB8PS51+l0aG1txW9+85uwzsEwDP+LRlKbXC6fficf9pER4QaRCIq8POiGOmFnGJxWSKBiOYjlMqhYJ2RiKXomTSxUTK2dSS3cmCGz53Q6UV9fn5RJJ0AxQ8KXSDEdqLXTi1o9Pdenv//97wAAqVSKr371qyEf29bWhu9+97twOp0Qi8W4+OKLcdZZZyE7OxvDw8M4fvw4PvjgA7jdbhw/fhx//vOf8bOf/czvPLfffjv2798PwHNdvOaaa1BZWYnx8XG8++67OHbsGPr6+vDtb38b77zzDtLSpp7VlGVZ3HPPPfxappdffjl+85vf0MOzFCHmzND6JJ76FO0ZGpPEc/fu3fwvhvd/jkvNTJ7Enn1wSFAWK5UA4wDntMMoFaNTKQMAdFsHoWrZiS2LN/q1eNIyKoSERyqVoqqqCo2Njfz1PFmSTkKSXaDWTq+52urpdruh0+nQ0NCAv/zlLzh69CgA4L777kNRUVHI5/nTn/4Ep9PzvX300Udx2WWX+e1z7bXX4tZbbwXHcXj33Xf9Es/XX3+dTzpXrlyJZ555RtAqetNNN+GnP/0pXn/9dfT39+N///d/8YMf/GDKej3wwAP46KOPAAAXXXQRHn74YbrWphCNSzhcRZqieVJMEs9wfuEJCRfnckGamQnWaoXbZoNYpQSr80wsZBZ7nwQyEGsyoJVrYNTbYNTbhOfgADfrhkhMF3FCQpWXlwcAaGxsRE5ODqqrq+lGiJAom6q10yvVWz0vvvjiafdRq9X45S9/ic2bN4d8XqvVik8//RQAsGbNmoBJJ+CZuKi2thZHjx7F+Pg4dDodMjIy+Nefe+45AJ7u2Y899phfV1yGYfCLX/wCO3bsgNFoxLvvvjtl4vmHP/wBr776KgDgnHPOwZ///GdIJ8+CSpKaxs7Bd30GmZMSzxnbuXNnLN6GpAij0Qi32w2RSDRt1xMA0FRWouCySwF4JhpipFI4h7sBAIfSlNBJRdBAAqnThnKZyq+1UyIRwWyygxFRd5VkFW7MkMjJy8uDTCZLurH6FDMkXL4zlMZzgsSpWju95mqrpy+r1YqPPvoI1dXVqKysDOkYpVKJnTt34vTp09NO+lNcXMy3qtpsEw+z+/v70dLSAsCTIOfk5IBlWb+YUSgU+NnPfgaLxYKKioqg7/Pcc8/h2WefBQCsXr0aTz31FGQyWUifhyQPLWSCxFOamnlnZBPP++67DwCwadMmnHfeeZE8NZlDOjo6+GUOampqpt3fdykVRiyGPDsbHDsIkToDTWoJTJIzN8Ntu6BVaJDWKbxgp6UrkJGppHESSSzcmCGR5fukP1lQzJBw2e12PvFUqVRxqUMorZ1eqdzq+eCDDyI7O1uwzeVywWg0oqenB5999hkaGhqwfft27N27F88++yxWrVoV0rlzcnKQk5MT8DWz2Yzm5mYcPnyYTzoBCGb1PnHiBP/18uXLYbfbg8bM1VdfPWVd3nrrLbz++ut8+Uc/+tGsZ+sliWnErsSxwkv4stxtwTlxrE+0RDTxfOONN8AwDKqqqijxJDFjaGgUlCVqFeSZ8yGr3QDT4B7Ba6sKlqFkYTE4jsPQgBFGnQ0ZWUqkZ8XnJoKQZDA2NgaO4/xu9AghsRVKa6dXKrd6nnvuuSgpKQn6+l133YW//e1vePjhh2EymfC9730P27dvR3p66En40NAQPvroIzQ2NqKzsxNdXV0YGhoKOEeJ77YRnwkPCwsLQ36/QF577TVB+eGHH8aLL75ID8pTkA0KjKoL+LLSaZhi7+QVk662hIQjPz8/YLeUYCQqFRw+i+6KZDKw1lEMsVbBfgwYlKQXgnMBCqUUZfOz+NcyKfFMauHGDAnd2NgY6uvrwXEcli1bljLJJ8UMCZdUKo3rEjzhtHZ6pXKr51QYhsG3v/1tfP7559i9ezfGx8fx5ptv4pvf/Oa0x7pcLvzhD3/ACy+8AJfLfy1FpVKJdevWYXh4GCdPnvR7Xa/X81+r1WpIpdJZxcy8efOQlZWFo0eP4vDhw3j11Vdx7bXXzvh8JDHZ3MIxu6woNcfwUuJJEk5+fv6sjne73WDsRkghwrnKAgy4LBiEEyqZCjKJDIPDwqdIEokYmjRaWiGZzTZmSGCjo6M4efIkv2RKfX09li9fjqysrGmOTHwUMyRc8Z7MJZzWTq9UbvUMxeWXX47du3cDAA4fPhxS4nnvvffinXfeAeD5ma9ZswbLly9HZWUlqqqqsHDhQkgkEvzoRz8KmHj6doV1uVyzGo9ZXFyM559/HmazGVdffTWcTif+8Ic/4OKLL06J6zCZwHHChxMcUrNVmxJPkvRcFougrMjPhb2zHYVSNb6RsRgAoF1zORxnbhp0o8L90zOVNLEQIZOMjo7yLZ1eHMdhaGiIbngIibGZtHZ6zdVWT2Bi5m3AMz5zOkeOHOGTztLSUjz33HMoLS0NuK/RaAy43ff62N/fP+X79fT0YHh4GGVlZQF7k/zyl7/ku+t+4xvfwN///nfodDr8v//3//Dwww9P+3lI8jCz9ul3SgHJMwUhIQFY+/sxsmcv9PUnYWo/BWtfP0SMcC0khhFBrNRAJfU8hdSNC7vgZlA3W0IEAiWdgKeVcNGiRXGqFSFz10xaO728rZ5zke94y1CGCezatYv/+vvf/37QpBPwLCPl5XutXLp0Kf/1sWPHpny/l156Cddffz3OOecctLa2+r0ul0/0xrrjjjv4nhpvv/02v04oSQ12t7Bbd4pOakuJJ0lu5s4umNtPwVB/EuOHvsDYgYPgOOEvr0ihBsN4Qt1uc8JqcQhez8iiGeII8RoZGQmadC5evJgmtSAkxmbT2un1Yftn0Fn10++YYrZv385/vXr16mn31+l0/NdTzVy8bds2DAwM8GXfsaAVFRUoKysDAHz00UcYGxsLeA6Xy4Vt27YB8LTMLly4cMq6qdXq/8/encdHUd//A3/N7JXNfRCuEK6QhBtUQFQ8Kp6Icih+VaxXrd/a1uLx06/VVq1ttVqvitZqrWc98QDEW0QFUUC5IZBwQwi5r032mOv3x7qTnWQ32YVs9sjr+XjwYGdn9rOfTd6Znfd8Ltx555369n333QePx9PJKyieSKrS9UEJgIknxZzt27dj06ZN2L59e5fHuiurDNumZDscW1egtewHrDu0CVtrduGQpxn1zkY0Nzmx7tv9aG3x6BfVHN+ZGMKJGQqupqYG27Zt6xVJJ2OGwuV0OtHa2gqn09n1wd3oq33fI82agmx75lH/S7Wm4Kt93/dovaPt3XffxYoVKwAAaWlpOO+887p8TV5env540aJFAWewXb16Ne655x7Dc26/CQ4FQdDHkra0tOCWW27pkHyqqopHHnkEhw4dAgBcdtllIZ1fZ8yYgZNP9i6ysW/fPvzrX//q8jVEsSQiYzzfeOMN/Y+9uwiCgJdffrlby6TYJMsyZFkO6STsrq4xbJtTUuA+VILWmoPYl5UCNAJWzY2U3SkY7hyFLz/a4T3OIiK7TwqmnjY8oS6me6twYoYCC5Z09u/fH8XFxQn3s2XMULg0TQuYiETa7FHnYvaoc3v8fWPZt99+G7DrrCRJqKqqwooVKwxdUW+99daQllKZMWMGFi5cCEmSsHLlSsybNw8XXnghcnNzUVVVha+//hrfffddhzhwOByG7SuuuAKffvop1q5di++//x5z587FpZdeiqFDh+LIkSP46KOP9PU+R4wYgeuvvz7kz/6HP/wBs2bNgiRJeO655zBz5kwMHz485NdTbLLYjJOXaQn61RSRxPPgwYM4ePBgt5UXzenLqedZrVaIogizuevw9NTVGrYt6elQmg+gxdTWmG9KToMoCKgpb7tLLUsqJI+C5NSjn22OYkc4MUMdVVdXY/v27b0m6QQYMxQ+QRAS8m8hHrVvcQzGarViwYIFuOKKK0I6Pj8/H/feey/uvfdeKIqCLVu26Amiv0mTJmHmzJm47777AAA7d+7EpEmT9P2iKOKZZ57BggULsGrVKlRUVOAf//hHh3JGjx6NZ555xjCWsysFBQW45ppr8O9//xuSJOHee+/Fq6++GvLrKTalpKYYn0jQPqkR+caNxh1BShwjR44M+VhPfYNh25yWBtXVgg2ZydiRbEWyoqKPWUCqIKJ8v/HY9MwkpKSym20iCCdmyChY0jlgwAAUFRUl7IU2Y4bC5b9MBsUeQRCQlJSE9PR0FBQUYPLkyZg1a5ah+2wo5s2bh+LiYrz00kv48ccfUVtbC7PZjJycHIwePRqzZs3CmWeeiebmZvz1r3+FJEn4+OOPMX/+fEM5qamp+M9//oPly5dj8eLF2LhxI+rr62G321FUVISZM2fi4osvPqrlVn79619j2bJlqKiowNq1a/Hee+9h7ty5YZdDsSNVNF6PJuoK0xFJPC+44AJMmzYtEkUTGajtBtZbc9KBGqDCZkZ5krfbQlndbjQLFojlxoH73sSTLZ7Ue/XWpJOI4k93tur97W9/w9/+9reg+8ePH4/HHnus0zIyMjKwdevWLt9r+vTpmD59esh1u+mmm3DTTTd1ekxycrJhBl5KAGKCNnG2E5HEc+zYsZgzZ04kiiYykBqbDNv23DS4aoAGs/FeUaFlJMraTUWflsEWT+rdmpubmXQSERFFmTk9F0DbNa0gJuYwkN6RXlNC0lQVUn294TkBbmgAqq3GxNPSmGrYzspJxtCCPrBYE7UzA1HXhg0bhkGDBunbAwcOZNJJREREEZGY6TTFtcOHD0NRFJhMJgwcODDocVJTMzSl3bpHcjNUAKc1tKLaYkJtZjaqRA2uauOF9NARORgxsm8Eak/REGrMkJEgCCgoKADgnd6/sLCw1ySdjBkKl/+aiUczLo96H8YMHS0NiTlfDhNPijk1NTWQJAkWi6XTC8L2M9pCFKE6a2EC8LP6VgBA9tjZyJg6C0/8ebnh0EFDsrq72hRFocYMdeSffPaWpBNgzFD4ZFnWZ9lnEkGhYMxQqFpqDiFJBnz5phmeTo+PV0w8KW556ozdbC0ZGZAbjhifyxqApgYXmhtdhucHDWXiSb2Lr3UvkN6UcBIREcUaM+owoMnvulZg4knUIwoKCkJau9VTU2PYtmZlQnHsNTxnyR6AffuNCWqS3YI+ucYxnxTfQo2Z3qqyshJ79uzBxIkTuSTETxgzFK5w1lokAhgzFDqP5kS6q+26VjarUaxN5HR74sk1POlYpaSkdH0QgNYDBw3bqsfbqrkvyYJWUYBN06CoTuzZ3Wo4Lm9IJgSRF5uJJNSY6Y0qKytRUlICANi4cSOTz58wZihcwXoMEAXDmKFQWdCKrNZD+rbTlpjzv3Zr4vnKK68AAAYPHtydxRIF5G7X1VYQvHeHaiwm1FtMEEwW1FeX4siuJMNxHN9JvcWRI0ewY8cOfdvtdmPjxo044YQTON6IiIgoRtjSklDevy0tU5l4dm3KlCndWRxRp9ovpSKava3t7p9aM0WrDYosoLHabTyOrZ3UC7RPOn369u0Li8UShRoRERFRILlZ2ahPabs+NdkSs7WcYzwp5jidTn3sVWddAqXGJsO2IMpoFQWsTbfDpmpItlmQuqcOmpZtOK7/wPSI1JuiJ9SY6S0qKiqwc+fODs/n5+dj+PDhHNcIxgyFT1VVPWZEMTFbI6h7MWYoVFlmOwa7JH3bJCRmvDDxpJhTVlamL3Mwfvz4oMcpTqdh256Xi6o0CyptvnHGHmQdPoSi9P5odUjQVA32FAuGFvaJYO0pGkKNmd6ASWdoGDMULpfLpScRycnJ0a4OxQHGDIWqvtmMzZZp+naS5sHE6FUnYph4UlzSFAVSY6PhubTiUThobQTqt+nP2VPNOKFoCFRVg7PFA4vVDIslMbsvEAVLOgcPHoxhw4Yx6SQiIopBLUoSDpoL9e0UrTmKtYkcJp4Uc3JycjpdcxAAPA0NQLsZlE0WDXWKcTxnupAJwDuuMyXNhqEj2NqZiEKJmUR3+PBhlJaWdnieSWdgjBkKl9ls5hI8FBbGDIXKrVkBtC2hogiJmaIl5qeiuJaXl9flMZ72M9qaTBCTrBgipeHclMGoU1xoSk5FzhFjopmayjW1ElEoMZPIgiWdQ4YMwdChQ3nRE0BvjxkKH2eCpnAxZihkdjuAFn1TS9AxwUw8KS55amsN25bMdAiCgAJrBgqsGRAtNtiPuwDffb3HcFxqOhNPSizl5eUoKyvr8DyTTiIiovhQe7AcQKa+rcha0GPjWWKm05Tw2rd4WtJTDdtiUioczcZut2azCbYk3muhxFFTU8Okk4iIKM61ysZrViRm3snEk+KTu6bGsG1OMc4WZ7KnoaXZY3guJdXKC3FKKFlZWcjMzDQ8N3ToUI7pJCIiiiMeTY52FXoEm38o5pSWlurLHBQVFQU8xnW4wrDtLN+P5q2N2JGaBFhsyLaZsGGNE6oHSMuwIzXNhr4D0nqi+hQFocRMIjKZTBg3bhy2bNmChoYGDB06FEOHDo12teJCb40ZOnr+S2MkJSVFuzoUBxgzREZMPCnmuFwuSJIERVGCHuOpN3a1heqBUn8Eh7VkeEQBR+pyUHkwCZoKVFU4AAD9B6ZHstoURaHETKLyJZ/V1dXo379/tKsTN3pzzNDRUVWVM5RSWBgzFCqLlqB9a9th4kkxRxRF/V8wqkcybAuCChmAR/Se3BU1G5pqfE3+sOzurirFiFBiJpGZTCYmnWHq7TFD4fMlD0wiKFSMGQqVXTHGSKJGDBNPijljx47t8pghP78CTSU7oLhc8NRWQipfh82pNmxJtSFJ0ZBeacw6rTYTu9omsFBiJt5VVVUhJyeH6052k94QM9S97HZ7tKtAAcyYMQO7d+8GAMycOROPPvpoRN9v4cKFeOqppwAAr7zyCk488cSgxzJmKFQ2tXfcBO0dn5ISjuJ0QRBFmJOTYU6xwWwDqqxmVFnNOGC3oL7SOLFQRqYdZjMv2Ck+HTx4ENu3b8fmzZvZNZSI6CdbtmzRk04A+Pzzz9HU1BTFGhEdnURt4WyPiSfFJcXZqj9WXa0QTIDD3BbOFrfxLmO/vIweqxtRdzpw4IB+YdXY2IgtW7Yw+SQig5a9+6JdhahYsmQJAKBPnz4AALfbjaVLl0azSkRHRUzJjHYVegQTT4pLitOpP1ZdDggmoMHXoqkBSa3GiYRGjx/Qk9Uj6hYHDhzAnj17DM81NDSgtrY2SjUioljjqa/H1j/e23HSvQQnyzI+/PBDAMB5552nz+j9zjvvRPR9b7rpJuzcuRM7d+7stJstUTjEXtIrj4knxZyqqipUVFSgqqoq4H5N06A4Xfq26mqBKAKTm5w4o74FJ2AgzIrV8JoBg9jimci6ipl4FCjpBICCggL07ds3CjVKLIkYMxRZkiTB4/FAkqSuD+5B5e8thtzsQPn7S6JdlR61cuVK1NXVAQBOOOEEnHXWWQCAkpISbN26NZpV08VqzFDsMVmN162J2veWiSfFnCNHjuDw4cM4cuRIwP2qxwPNr6uh6mqBYAImONw4r7YFZydNNhxvT7YgPZPrZyWyrmIm3uzfvz9o0pmfnx+FGiWeRIsZijxJkvR/scJTX48jn3wGADjy8ae9qtVz8eLFAACz2YxTTjkF5557rr4v0q2eoYrFmKHY5NGcsMot+j+L4uz6RXGIs9pS3Kn74Uc4du2GyW6HyW6H0uKA4NegWdOaDKBtcoH+eRmcypzixv79+7F3794Oz48YMQKDBg2KQo2IKFaVv7cYqsc7mZ7q8aD8/SUYdt010a1UD2hubsaKFSsAeFs7MzIyMH78eAwePBgHDhzAsmXLcOeddyIpKfhNZ1mWsXjxYnz88cfYtm0bmpubkZaWhkGDBmHatGm44oorAvYuCWVWW4/Hg6VLl2L58uXYsWMHGhoaIMsyMjIyUFhYiJ/97Ge49NJLA9bvzjvvxPvvv4/Bgwfj888/R01NDV566SV8+eWXOHz4MCwWC0aMGIELL7wQl156KcxmXsonApO9GXlN5fq2YpajWJvIYbRSzBk6dChUVQ26vl7N19+g/ocf9W1LKpCW17a/qsF4PLvZJr6uYiZe7Nu3D/v27evwPJPO7pcoMUM9x2azQdO0mLmR6d/a6XPk40+RN2cWrFlZUapVz/j444/hdrsBeJdT8bnwwgvx9NNPo7m5GZ988glmz54d8PVNTU345S9/iY0bNxqer6+vR319PbZs2YIXX3wRf//733HOOeeEVbeSkhL8+te/xuHDhzvsq66uRnV1NVavXo3//ve/eOmllzBw4MCgZW3YsAG//vWv9S7FAOB0OrF+/XqsX78e77//Pl588UWkpqaGVUeKPW7FiRRPg77tEtTgB8cxJp4Uc9LT0zvd766uMWyLFqDJJKI02Qq7quHQYYdh/wDOaJvwuoqZeMCks2clQsxQz4q1NXT9Wzt9ekurp282W4vFgvPPP19/3pd4At7utsESz/vvv19POqdMmYJzzz0Xffr0QX19PVatWoUvvvgCLpcLt912Gz7//HP0798/pHrV1dXh6quvRmNjIwDg5JNPxumnn47c3Fw0NDSgpKQEixcvhiRJ2L9/P/785z/jmWeeCVhWU1OTnnSedtppmD59OlJSUrBp0ya8/fbbcLvd2Lx5M5544gn84Q9/CKl+FLvMohPZjn36dqMQW+eb7sLEk+JO+zEsJgvQahJQbzGhVkuFx2m8S2RPaTdgmyjGBEs6CwsLkZeX1/EFRNSrBWrt9En0Vs9Dhw7hxx+9vZ5OO+00ZGS03VweNmwYxo4di61bt2LdunXYt2+fPtutT11dHT766CMAwOmnn45nn33W0Ip9+eWX49///jceeeQReDwevP322/jd734XUt2ee+45Pem88847ce2113Y45uqrr8Yll1wCl8uFb775Ru/i215DQwMA4IEHHsDFF1+sP3/hhRfirLPOwjXXXANN07BkyRLceeed7HIb52xul2HbpGpRqklksY8RxZ2kvn1hzc6Gye5dq1MwAc6fustJHuN4DJNJQN/+7IJCsUnTNOzdu5dJJxGFJVBrp4+v1TNRLVmyBJrmvSi/8MILO+y/6KKL9MeBJhk6ePCgvhbyaaedFrDr9NVXX40hQ4bguOOOg91u77A/mE8//RQAkJeXh6uvvjrgMYWFhfoMvLIs48CBA0HLO+usswxJp8/UqVMxadIkAN6W0f3794dcR4pNWbKxhTNJTszEk7dHKOZIkqSPo7FYLB329zl1GmSHtztt8/ZvYZLLsSrDjmqbGRlNObD5HZuanoSUVFuHMiixdBUzsUqW5YCzqjLpjLx4jRmKHlVt600TzbHBnbV2+iRyq+fSpUsBAKmpqTjzzDM77J85cyYeeughKIqCxYsX4+abbza0BmZmZuqP3333XcyYMQPZ2dmGMqxWKz77rPOfcSDvvfceDh48CMAbI8Fixn/4hNMZfPbSzsaXFhcXY926dQC8ySfFtxRVRKvftiUxh3gy8aTYU1JSAkmSYLFYMH78eMM+7xqebSdpU1IqkjLyUWt3o8oMeJKbkJVai0wxG4LbgqycZAhibEwEQZHTWczEMovFgokTJ2Ljxo36RBlFRUWdTjZB3SNeY4aix+Vy6TcrkpOTo1aPzlo7fRJ1rOfGjRv1HiLnnHMObLaON5ZzcnJw8sknY+XKlaiursZXX32ltzACwJAhQzBq1CiUlJRg+/btOPvss3HmmWfijDPOwMknn4ysY0jWs7KyDK/3jxmTyYTS0lJs3LgRX375pX6Mf3LaXkFBQdB9/hMKyXJizoDamzg8dpTlTNK3rZobJ0exPpHCxJPiSvs1PE3J6UgpHgVHwzpAlaBYJLSk1+K4IQXon5aLfgM6jpsgiiV2u11PPocMGcKkk4iCCqW10ycRWz19kwoB3iVLnnvuuYDH+bdwvvPOO4bEEwAeeughXHXVVWhoaIDD4cDSpUuxdOlSiKKICRMm4Mwzz8SMGTOOemK3xsZGfPHFF9i4cSP279+PgwcP4siRIwGTTF+34UACjf308f+MnSWvFB+aVTsOZA3Xt+1SYrZiM/GkmJORkQFZlgMOlFdaW9s9IUE2i3Co3sWZzZL37mey1TsmIy0j9LEZFL86i5l4YLfbMWXKlJibNTORxXvMUM8zmUxRX04llNZOn0Rr9ZQkSZ8UCACWLVuGZcuWdfm6b775BlVVVYY1OYuLi7Fs2TI888wz+PDDD/WJfFRVxYYNG7BhwwY89thjuPjii/HHP/6x0/VA23vuuefwz3/+M2AXWovFguOPPx6apmHt2rVdlsXvhN7DA+NEmKqQmN9NifmpKK4NGTIk6D6lte1ErmkaBBGAIODy9ELUym7UJg2G0ywh2ez9kkhN4/jO3qCzmIkVvrvawS5aeYHRs+IhZii2BOrW2ZPCae30SaRWz6+//lpPEMOhKAref/99/O///q/h+dzcXNxzzz2466678MMPP2DlypVYvXo1SkpKoGkaNE3DO++8g9bWVjz++OMhvdfjjz+Of/3rXwC8YzonTpyICRMmoKioCCNGjMDIkSNhtVrxxBNPhJR4Uu+hqMZrA1VIzPlfmXhSXJH9WzxVGYLVBJtowukpeWh1A2UDx0Lwa8FIYeJJMUDTNOzZsweqqmLEiBExswA9EcWPcFo7fRKp1dO/m+0rr7yCE088sdPjv/32W1x33XUAvJMI3XDDDQHPvWazGVOnTsXUqVMBAJWVlXjvvffw1FNPQZZlfPTRR/jd736HYcOGdfp+FRUV+Pe//w3AO4HRiy++iNGjRwc8trm5udOyqPdxKVK0q9AjEjOdpoRV+dnnqFu7Do1btsJRtguqu+0P1eUxQTC1JZ22JAssFrYiUXT5ks6DBw+ivLwcu3fv7nRMDxFRe0fT2ulz5ONPO6x/HW8aGxuxYsUKAN6WysmTJ3f5mpNOOknvXrt//369hXHbtm14+eWXce+998Lx0wz5/vr164cbb7zRsBxKaWlpl+/3zTff6Mu0/PznPw+adALeyc18+H1AAOBUjYlnokYFE0+KK007dqJlz140bduOho1b4Glo+9JodCUBfjczU1KsAUog6jmapmH37t369PqAd/HzPXv2RLFWRBRvjqa10ycR1vX86KOPIEneC/PzzjsvpOVsRFHEzJkz9e1FixYBAL766is88MADePPNN7Fq1aqgr/dfdiWUWYz9uwF3dvzmzZuxYcMGfZsz0hIAeNTeEQdMPCnm7N69Gzt37sTu3bs77JMbjbN8KU3lKN25Eit2rcOHq4HVK3Zh4w8HsG9XLcxWhndv0VnMRIsv6Tx06FCHfSkpKVGoEfmLxZih2OZyufR/PelYWjt94r3V07+b7QUXXBDy62bNmqU//uyzz9DU1ITzzjtPf+6hhx5CbW1th9c1NDTg7bffBgAkJSVh7NixXb6X/9rLS5Ysgcfj6RAz27dvx4IFCwyz0PqW0iLqDTjGk2JOS0uLvr6eP03TILe0GJ4TBTfqHbU4rA0AAMiShqY6N5rr3Zh+wageqzNFV7CYiRZN07Br1y6Ul5d32Ddq1Cj069cvCrUif7EWMxT7VFWNyqy2VctXwJyW2vWBIZQz6JK53VCjnnXgwAG9hTAvLw8TJ04M+bUjR45EcXExdu7cCbfbjQ8++ADz58/H7NmzsXjxYhw+fBjnnnsu5s2bh4KCApjNZuzduxeLFi3SE9JrrrkmpLU9zzjjDGRmZqKhoQE7duzARRddhNmzZ6Nv375oaGjA+vXrsWLFig4tnBzvSQAgmo1Dw7QEnQqCiSfFDbmlBVq7E7bJBrgFAZLT+KWQnGpFRmbo058TdRcmnUTUnQZdMjcuE8bu4t/aed5554Wd+M+aNQsPP/wwAO+anvPnz8e9996LmpoarFq1Cs3NzXjhhRcCvvbSSy/FggULQnqf1NRUPPzww/jd734Hl8uFvXv3BpwNt6ioCDfeeCNuueUWAMDOnTvD+jyUmNIz0oBqvycStNMeE0+KOcG6tLirqjs8JyYBn+SkILu5L/zTzNQ0G5JTOcaztwilG1RPYNIZP2IlZih+2O1cFzoali5dqj+eMWNG2K+fOXMmHn30USiKgu3bt2Pbtm0YM2YMnn/+eXzyySdYtmwZtm3bhtraWphMJuTm5mLSpEm4+OKLMWnSpLDe6/TTT8d7772HF154Ad9//z0qKyshiiKys7NRXFyM888/HzNmzNDfp7q6Gp999hluv/32kMatUuKyC8beN4kaDYLG6bR6PYfDYbjjVlxcjNTUY+/W090aNm3Gtnv+pG8LJgFJk4G/Dc/FiM2nIcmVpu8bObY/Lr02vC8MomOhaRrKyspw+PDhDvtGjx5tWLyciGJbWVkZZFmG2WxGYWFhtKtDRFEW6XPC8ucW4dudbTe3rHDhzkcv6fb3CVWkcoNETagpAXnq6gzbJquGRqsJgirC5jJO1lI4mhf51HOCJZ2CIDDpJCIiok6Z0/sYtgUxMTulMvGkuOGpbzBsixagwWxCUmsaBP9QFoAxEwf2bOWo1+os6Rw1ahSTTiIiIuqc0DvWnU/MdJriWl1dHVRV1cdF+MhNxqVURAswyCVjaovNMB47p08KrDaGdm8SLGZ6wq5du4K2dObm5vZoXSh00YwZik+yLOuz2prN/I6hrjFm6Ggl6jhI/hVQzDl06JC+zIH/BaHU7DAcJ5qBLFlBRku6IfEcMCijh2pKsSJYzPSEnJwcVFRU6OuyMemMD9GMGYpPHo+HSQSFhTFDoWppqIJJbeu9J6qeKNYmcvhXQHFDdnRMPAGgSTEmmv0GpvdUlYiQnZ2NsWPHYuvWrdA0jUknERERhcWsVGJwg99cJgITT6IeMWjQIL0LnL/2kwsJP+1uUoyJZp++sTcjL0VWsJjpKb7kU1VV9OnTp+sXUNRFO2Yo/litVr31iigUjBkKlUd1I0lqa2BRTXInR8cvJp4Uc4J1e/PU1Bq2NRXYZbXDpSUbnk/LSAL1LrHQVTIW6kCh4++LwsWukhQuxgyFyiK0Iqt5l77ttCXmTVH+RVDcUFwuw7ZoBqq1jt1qk1MsHZ4jOlaapqGpqQkZGRxDTERERN1HtGqoym5Ly2RrYraSJ2Y6TQlH0zQo7naJpwVwKFmG5yw2Eckptp6sGvUCmqZhx44d2LBhAyorK6NdHSIiIkogA/v1B7IE/Z8tOzHbBhPzU1Fc880OCkAff6V6PICiGo47kmJCqSkH/u1PSXYzLJbesRYStQkUM91F0zSUlJSgqqoKAFBSUgJBELg+Z5yLZMxQYtK0tgUOOGaPQsGYoVBlmJLQ3902rtOUoN9LTDwp5mzdulVf5mD8+PEAALndUioAUDeoL2rEKqhSMsyKBUlaMvoOHApB5Mm9twkUM92hfdLps2PHDmRmZsJqtXbbe1HPilTMUOJyOp36RDHJycldv4B6PcYMharVZUG5OEbftipKFGsTOUw8KS7Izc0dnmsaMBBadSOkpFZIALLTk1E8akDPV44SUrCkUxRFjB07lkknERERdYt6lw3brZP17RSt43VvImDiSTEnJSUFsiwbZoOT2iWepiQr6lQ3RLWtW22yxQ6rlSHdGwWKmWOhaRq2b9+O6upqw/O+pJMzosa/7o4ZSnzskk3hYsxQqDyacWJMRUjMYWP8xqWYU1BQ0OE52WHsamuyW/GzlDz0bdJQZ7PCk5SMnORMWG2J+YdKnQsUM0dLVVWUlJQw6Uxw3Rkz1DskJXGpLgoPY4ZClpwCoEXf1MTEvJ5l4klxoX3iKSZZMcyaAadmRv9UO2wDvBeRScns/khHr7Okc9y4ccjKygrySiIiIqKj03ikCkCKvq3IWvCD4xj7AFBckJrad7W1QVGBFrcAwdTWPSEj097TVaMEoapq0O61TDqJiIgoUpqd7SbRTMy8k4knxQfHrl2GbdEk4kitCKe7rTuCIAhIz2C3FgqfL+msqakxPM+kk4iIiCLNo8ldH5QA2NWWYs7+/fv1ST+GDBkCAJAdLYZjXJVH8PVmB5yOXGBvC6xJuzG8uC9MZt5L6Y0CxUyoOks6x48fj8zMzG6sKcWKY4kZ6p3cbre+NIbNZot2dSgOMGYoVAnawNkBE0+KOY2Njfr6ej6aJBmOUaHA4/adxAV4XCqsViadvVWgmAlVbW0tk85e6FhihnonRVH0JIIoFIwZCpWo9o7Uk1fqFBdUt9u4nSxAlY3jOfv2T+/JKlGCyM3NxfDhw/Vtk8nEpJOIiIh6TKpmnMU2UW9VsMWTYs6oUaM63CEcOHsWnIcOQfG40fjdMqwelAKt0dhS0a9/Rk9XlWJEoJgJx+DBg6FpGg4cOIBx48Yx6ewFjjVmqPfh0hiJQdM0vPHGGzj77LORm5tr2Ldw4UI89dRTAIBXXnkFJ5544jG9F2OGQmVVekeLJxNPijmBur5psgTBZIIgAqIZaLS2n+xFQ/+8tJ6pIMWc7uguOWTIEPTr148XCr0Eu9hSuESRncTi3f79+3HXXXfhhx9+wGmnnRbx92PMUKjEhG3jNOJfBMUF9acxnprk7XLrQqphvy3NhORUDtynY8Okk4ji0ZHDTdGuQlxYunQpfvjhh2hXg6gD0d47Gk+YeFJcUD0/JZ4eFzQALtU4njMjO4ld5qhTvtlrHQ5H1wcTEcUJR5MLrz7zHRxNrmhXhYiOkmjuHb1w2NX2J5qmYdmyZXj33XdRUlKC1tZW5ObmYvLkyZg/fz7Gjx9/zOUvX74cS5YswebNm1FXVweLxYK8vDyccsopuOqqqzBw4MBu+jTxrampCaqqQhRFpKd7E0zfrLaq5P1iHeKwodbvNX37cmKh3ixQzPhTFAVbt25FfX096urqMHHiRKSmpgYoiXqLrmKGqD3/GUpNJlPXL+gh367YDWerhNVf7cE5F42OdnXIT6zGDMUeU1K7XnsJ2pbCxBOAy+XCggUL8NVXXxmeLy8vR3l5OT744APcfPPNuOGGG46q/MbGRtxyyy349ttvDc97PB6UlpaitLQUr732Gv785z9j9uzZR/kpEse+ffv0ZQ7Gjx8PTdOgyt6FdTWPGwIAQTImDQMGZEehphQr2seMP/+kEwBkWcamTZswYcIEJp+9WGcxQxSI/5qMycnJ0a4OAG9r54+r9wMAfli9DyefMRyp6RwyECtiMWYoNnlUCYLfzLaClpiTDTHxBHD33XfrSWdBQQEuvfRS9OnTB9u2bcObb76J1tZWPProo+jXrx9mzZoVVtmqquI3v/kN1q1bBwAYOHAgLr74YgwfPhwtLS1YtWoVPvvsM3g8Htx5551IT0/HmWee2d0fMa7Jzc1o2bsPosUMT20dFA/QrBlbKLJzeEKnjtonnT6qqkJV1SjVioioe3y7Yjdk2XsukyW1V7R6tra2YtGiRfjiiy9QWlqKlpYWZGZmYuTIkTj//PMxe/bsDq2L/rPV+kyfPh0AkJeXhy+//DLoe7388sv49NNPsX//fpjNZuTn5+OCCy7AFVdcAbvdHvB1Pvv378ebb76JNWvWoLKyEgAwYMAAvadbfn5+wNf56msymbB9+3a8//77ePbZZ3Ho0CFkZWVh3LhxeOSRR5jMJhBTcj2G1pfr24pZBjAvehWKkF6feH777bdYtmwZAGDq1Kl47rnnYLN5m7tnzpyJSy65BFdccQUaGhrwwAMPYPr06WG1krz//vt60jl16lQ888wzhhPFvHnz8OWXX+Kmm26CLMu47777cMopp+h16I369+8PRVH0Lw7nkUrUfb9G3y8LFrgzjSf77NyUHq0jxZb2MQMETzrNZjPGjx/P7pW9XKCYIeqMxWKJqSV4/Fs7fRK91fOHH37AbbfdhiNHjhier66uRnV1NVauXImXXnoJ//znP4MmdaHau3cvfv/736O8vNzw/LZt27Bt2zYsWbIEL774InJycgK+/rnnnsM//vEPyD/12PLZvXs3du/ejTfeeAO///3vMX/+/E7r8cYbb+C+++7Tt6uqqlBVVcWkM8G4FQ8sit+a9SYpepWJoF6feL7wwgsAvBejf/nLXzokfAUFBfjjH/+I2267DQ0NDVi0aBGuvfbakMt/6623AAA2my3o3akzzzwTV155JV566SVUVlbim2++wdlnn30Mnyq+9e3b17CtOJoN201J7brVCkBGVud3HSmxdYgZRcGWLVvQ0NBgeN5sNmPChAlIS+sds8dRcO1jhqgrsbYEj39rp08it3pu2bIFv/zlL9Ha2goAOO6443D++ecjNzcX5eXlWLJkCcrKylBaWorLLrsM7733Hvr16wcAmDFjBkaNGoUPP/wQH330EQDg/vvvR05OTtDZzO+//34oioJRo0Zh1qxZyMnJ0YdGtba2YufOnXjggQfw6KOPdnjtM888gyeeeAIAkJycjLlz52L8+PEQBAFbtmzBu+++i5aWFtx///0QRRGXX355wDqoqooHHngA6enpuOaaazBo0CD8+OOPGDdu3LH+OCnGWMytyG8s0bcb0xLzpmivTjwbGhqwevVqAMCpp54a9O7YjBkz8MADD6C2thaffPJJyImnw+HA5s2bAQAnn3xyh4WK/Z133nl46aWXAACbNm3q1Ylne1KTcRZSh824hqfZKsBiScw/UAofk04iSnSBWjt9ErHVU1EU3H777XrSedttt3WYd+Paa6/F/fffj7feegs1NTW466678J///AeAtxGhoKAAJSVtF/annHIKBg0a1Ol7Xn311fj9739vaOWeM2cOLr74YjidTnz88ce45557kJGRoe/ftm0bFi5cCAAYOnQo/vOf/xje56KLLsK1116La6+9Fvv27cODDz6I0047DXl5eR3qoGkaJEnCq6++iokTJwJA2EO+KD6IrcZrXTFBx3j26uVUfvjhB32c19SpU4MeJ4oiJk+eDMCbFDY2NoZUfn19PcaNG4fc3FwMHz6802P9T1pNTVyPy0iDJTMDppQUQAQctkzDXnuKOWa6PlF0Mekkot4gUGunj6/VM5F89tln2Lt3LwBvY0CgyR7NZjPuvfdefbKwVatWYcuWLUf9noWFhfi///u/DtcXBQUFOO+88wB4v3N27txp2P/CCy9AURQIgoB//OMfAZPbgQMH4s9//jMA7wREr776atB6TJ06VU86KXH11ayGbbvMxDPhlJWV6Y+Lioo6PXbEiBEAvHefSktLQyo/Pz8fixYtwqpVq3DHHXd0euzu3bv1x5mZmSGV31ukDh+G/uediwEXnI/U/kBlprHF05ag3REoPIqiYPPmzUw6iSihddba6fPD6n0Jta7n119/rT++/vrrgx5nMpkM+7/44oujfs9zzz036BjwUaNG6Y9ramr0x7IsY/ny5QCAMWPGYOTIkUHLnzJlit7TbsWKFUGPmzRpUlj1pviUJBtvcJiVKFUkwnp1V1v/AeOBujj469+/v+F1vhbQ7vLuu+/qjydMmNCtZcebrVu36sscjB07FqrHO8BaU2UIGTlQLAdQl+qESbbCJFswdljijWWh8GzevBl79+6F2+02jN0zm81cs5MCan+eIeqK0+nUJxfqajbTSOqstdMn0cZ6bty4EQCQnp6OMWPGdHqsfw+2Y2nx9DU4BOL/neJ2t00Is3PnTjidTgDeMcEffvihvi/QpJGZmZk4ePAg9u3bB4fDEfC7qqsec5QYJNmKirS2mDMLnFwo4dTV1emPs7KyOjnS2ArZvkXlWK1cuVK/25WTk4NTTjmlW8uPN76lLnzdoFXppz8+TYOcngPVbYFilqCYvc8fP44n5d5MURTs27cPLS0thrvTFouFa3VSUO3PM0Rd0TQNWpTHXYXS2umTSGM9fddrnY3J9MnIyEBGRgYaGxsNrZHh6mzmc//ut/4x4VsyBQA2bNiADRs2hPx+9fX1Ab+v2Fund6iTUrC936n6tl1KzGF3vbqrrcvV1g2lq+VLrNa2vtf+rztWFRUV+L//+z99+8Ybbww6w1pvkZSUpP8D/BJPVUGrIkPz6wdvNpmRlcGTcm/ma30wm80wm7330ph0Ulfan2eIuiKKov4vWkJp7fRJpLGeLS0tABByS7Pv79rX+ng0fN8n4XA4HF0fFITvM7bnf/1JiUsWjL9nVUjMYWS9usXTf22lrv6w/fe3X5PpaNXV1eG6665DbW0tAO8Ma1deeWW3lH0sdu3ahYKCAsNdNrfbrQ+gz8zMxODBgzu8xjfbnG9gv09NTQ0OHz4MwDvu1b91WVEUbNu2DYD3rt6wYcMM42337duHurIyKJWVyE5Ngl20o8CWhYE2G1pUGZLFjt17diJ/cF6HWYO3bNkCTdNgt9tRWFho2Hfo0CH9DmpRUZHh4tPhcGDPHu+XdW5uLgYMGGB4bUlJid5Fz3+cB+C9kVBdXQ3A2z3GP/FxuVz6+ODs7OwOd27LysrgdDohCEKHqdKrq6tRUVEBABg8eLChBV6WZWzfvh2A9w7t0KFDDa/du3cvmpu9S9KMGTPG0CpYX1+PgwcPAvBOdtCnTx/Da32zMicnJ3fodnTgwAG99b+4uNhw86a5uVmfCKJfv376lPY+27dvhyzLsFqtHcbAHD58WL9LXVBQgJSUtjVanU6nPjY7JycHeXl5EEUR06dPx/bt27Fz507U1NRg6NChHZLOqqoqfe23oUOHGu5mS5Kkz3aYkZGBIUOGGF67e/du/aJg7NixhgvPuro6HDp0CID3bnx2dttyP6qqYuvWrQCAlJQUFBQUGMrdv3+/PlnZqFGjDMs1NDU1Yd++fQC8Xf3bL/+xdetWqKqKpKSkDmPUy8vL9fNKYWGh4WKtpaVFH1Pep08fDBw40PDaHTt2wOPxwGw2Y/RoYze9yspK/Y7+sGHDonaO8Ldv3z59QrbRo0cbLhYbGhpw4MABAN5F2/3PEUVFRdiyZQtcLhfKysp4jkjgc4S/0tJSuFwuiKLYoYu1/zmi/dIp/q3jgRJPl8ul77fb7YYWMVmW4fF4AHivJfxjVNM0PTkSRbHDjRC32w1F8Q72kj1CyK2dPj+s3ofjT8pDn9wMw/Mej0e/lklKSjJ8JkVR9O6jZrO5w/VRZ12OJUmC9NPNYpvNZoglVVX1G/cmk6nDDX//n2H7pefsdjuam5vR0tICWZaD/gx95frONUlJSYafYfsWa//fTaDlcnzlBPrd+Hg8HqiqClEUDT+Pa665BgsWLAj7Z+jxePSfYXv+P8NA5Xb2M/T/3XQWh4F+N/4/w87i22KxdPg5dvYz9C+3szgMVG5XP0NffHcWh539DAOVqygKnE4nNm/e3O3XEQ0OY6OWL/GM1nWE73uqu/XqxNP/D0CSpE6TT98fFdA9d5+qq6tx7bXX6hcvQ4YMwSOPPBITs7MqitKh+5lvSm/f/vZkWe70ROnbF6hbm29foIRelmXILhdURYGmyACsyLQkoa81FQpMaEnKhKrJQcvVNC3gXUv/+rb/IvL/rMHKDeWzdlZuoM/qKzdQDBxLuZH63SiKErRO/uUGihdJkiDLcsALuM7KDRaHoihi9OjRqKioQEpKSsAJIfzL7Sy+e/Jn2FkchvIzVFW1y88a6s+wfZ0CdSkM9WfY0+eIY/lb5jmid5wj/MuVJKnLcgMlIb73CtbdtrPnO3ttZ913/V/73Vd7Qm7t9JElFWtX7seMucabPcdSp872d9dnba9Pnz5obm42zM0RqFxN01BXV6ffSOnXr1+XXaRD2Rfq6/1vPNbU1IT0c+rOOh1tuaH83iL1MzzWOgW7bo7kZ/V9/wZ6HjjK86wavFErGtcRkRqG0qsTT/+7QW63O+TEs6tuuV05cOAArr/+euzf771zOWDAALz44ouGE1Y0mUymDl/KgiDoX8SBAtRsNgddXFsURX1foC97375AF39msxnann3QamrQYjPDIZmhZnv/8ASTCUl2792qYOVqmhawXv71bX/S8v+sndU3ULn+n7WzcgN9VovFAlmWA55Ej6XcSP1uTCZT0Dr5lxsoXiwWCwRBCLvczuJQFEUMGTJEb83orNzO4rsnf4adxWEoP0NVVQPW62h/hr46qara5e8mls4Rx/K3zHNE7zlH+MpVFKXLc0QgvvcKdqHb2fOdvbazG86+17Y0u/HjdweCHteZjWsP4bSzigxjPY+lTu1fH+z5o/2sgYwZM0Zvmd++fXuHXhP+7/n999/rzxcXF3dabih1CvUYoK3XhSzLWL9+fZev+fOf/wyLxYJBgwbhuuuu0+P9aOt0tJ81lN9bpH6Gkfi7OdZyO/u8vvNSd19HODVjUumfQkbjOiJSQwoELdoj5aPonnvuwVtvvQXAO+W2b1rrQBYtWoQ//OEPAIBHHnkEF1544VG95+bNm/GrX/1K7waXl5eHl19+udP3jjSHw2FYh6q4uDimxsat/83v4Dzkvct5ML0Y7oEFyBicBXt6GvLGjsbY4zqfkZgShyzLQRMFIqLuUlZWpnfpbN8NOxo+XbINa77Ze9Svn3r68Lie4faTTz7BggULAHjX8Xz88ccDHqcoCv7nf/5Hn832tddeMyxH8tRTT2HhwoUAAl/3LVy4EE899RQA4JVXXsGJJ54Y8H3ee+89/P73vwcAPPjgg5g7d66+75e//CW++eYbAMATTzyB888/P2AZ3333Ha655hoAwMiRI7FkyZKw60E9J9LnhFf+8jT21bd1zzUrLtz1xCXd/j6hilRu0KsnF/If5+IbGxOMb9wHgA5jokK1cuVKXH311XrSOWLECLzxxhtRTTpjUXl5OQ4cOKB3qVH9piqvSC/EfrkfNu+xYs1GFzZvDW+8C8UvWZaxadMmbNq0qUN3lfYxQ9QVxgyFy+PxwO12G3pA9YRwZrINJt7X9Tz77LP1MXMfffQRnnvuuQ7HKIqC+++/X086TzzxxA5rYPqP2fONi+tu/uuI3nPPPVi3bl2HmDl8+LBhYslrr702InWh+KGhd7QD9uqutv4DdMvKyjBlypSgx/omKxAE4ajudHz55Zf43e9+p18wT5gwAc8++2yXy7j0RrW1tfrEHHl5eVDcbSdsj8l/oLcACyek7BUkScLmzZv1cTubNm3ChAkT9JbP9jFD1BXGDIXL1+NCEIQenWl047pDsKcc+/ttXHcI06YHX5sylplMJjzyyCOYP38+PB4PHn30UXz55ZeYMWMG+vTpg4qKCixevFifnCszMxMPPfRQh3L812R/8MEHMX/+fADeVtTucuKJJ+Kaa67BSy+9hKamJlxzzTU499xzMW3aNIiiiJKSErz99tv6pDunnnoqZs2a1W3vT/FJYOKZ+I477jhYLBZIkoQ1a9boJ6D2FEXBunXrAHi7Q3S2tlMga9euxYIFC/Sk85RTTsFTTz3VYcYxCkz1u1MomYyZZkYOM89E1z7pBLxdQHbs2NFhZk8iokQzbfqIuE0Yu9P48ePx4osv4uabb0Z1dXXQdTJHjRqFhQsXdphtGgBOPvlkZGZmoqGhAT/88AN++OEHCIKAM844o1uvye68807YbDb8+9//hizL+PDDD/Hhhx92OO5nP/sZHnvssZiYWJKiKyMnC6hv29YSczWV3p14pqenY+rUqVi5ciW+/PJLHD58OGA32g8//FCfVj9YX/1gamtrsWDBAr2bxc9+9jM8+eSTXJepE4WFhYaZyrSfEnZJsEAVjSGbnMmxfolMkiRs2rSpw9poVqvV0GOhfcwQdYUxQ+FKSkpizETZpEmT8Omnn+Ktt97C8uXLsWvXLrS0tKBv374oLCzE7NmzcdZZZwWdByArKwsvv/wy/v73v2Pz5s1obW1FdnY2KioqOixTcSwEQcCtt96KCy64AG+++SbWrFmDI0eOwOPxIDs7GxMmTMCcOXNw5plndtt7UnyzCcaYTdSxkL16ciEAWLVqFX7xi18A8LaAPv/884bBs7t27cL8+fPR0NCAlJQUfPHFF2HNPnvzzTfj448/BuC9W/ff//73mGfF7W6xPLmQKkn47pLLAADN1iysHTzbsP/qO07AkH4d72pS/Oss6Zw4cSJ7DBBRxMTa5EJEFF2RPicsf24Rvt3ZNpzMChfufDTxJhfq1S2eADBt2jSce+65+PTTT7FhwwbMmjULl19+OQYMGIDt27fjjTfe0Bd8veOOOzoknWvWrMFVV10FAJgyZQpeffVVfd/u3bvxySef6NvnnXceVq5c2WWdMjMzOwyI760UZ9tkCG6zMdGQzW4M7tu//UsoAQRLOm02GyZMmMCkk4iIiBKGKSUTQNtkmoKQmH1te33iCQAPPfQQWlpasGrVKhw6dAh///vfDfsFQcBvf/tbXHbZZWGVu3jxYsNirg8//HBIr2ufwPZmitOpP3aZjXda1CQPuzwloM6SzokTJxpmJSQiIiKKd4LZBv/EEwl6fcvEE97ptZ9//nl88MEHWLx4MUpKStDc3IzMzEyccMIJuOqqq3DCCSeEXa5vdjUKT0tLS9s4Gmer/rzLnGI4rk9OWk9XjSJMkiRs3LhR72Xg01XS6R8zKSkpAY8h8seYoXApiqI/DrQYO1F7jBkiIyaePxEEARdddBEuuuiisF534oknGvpA+3v22We7o2q9zu7du/VlDoaa2wZbuy3GFs9RQ4b1dNUogjweDzZt2hR20gkYY2b8+PGRriolAMYMhcvtdus3K9jdn0LBmKFQOZsbAbS1cqp+Ny0SCRNPimnGrrbGVomMLHa5TBTBks6kpCRMmDCB3WuJiIgoYQnuAxhS1+D3hAfAxdGqTsQw8aSY06dPHyiKApPJBE/JDv359mM8MzKZjCSKsrKygEnnxIkTkZTU9Vqt/jFDFArGDIXLbOYlE4WHMUOhklQPLGrbuvWaKEWxNpHDvwiKOf5rqR742jsLsAoBrnaz2u6tLccocCmVRFBYWIiWlha0tnrH9IaTdAIIuP4uUWcYMxQurr9N4WLMUKisZieGNGzVt522xFzJMzE/FSUM+adWMI85GRCM4epSWgO9hOKQ1WrVl0kJN+kkIiIiimeK6kJDqqj/a05JzBSNLZ4U05RW7xjP9uM7IajIyGFX20TiW6NT0zQmnURERNRrDM7PR2m/ttUwTLbETNES81NRwlAlb393p9m4dIpqkmFL4disRGOz2aJdBSIiIqIelWKyIkeS9e1EnX+AiSfFnB07dkCWZZjNZpis3kQk01WJIXWbUJGdjKpsOzQAg3OnRreiFDa3243y8nIMGzbMu05rN/GPmZEjR3ZbuZS4GDMULqffLOucaZtCwZihkElWuNQ8fdMkd3JsHGPiSTHH4/FAkiSoqgqr0zuO02OyQ4QKzeSGJ0mDZpOQn8mJheKJ2+3Gxo0b4XQ64Xa7MXLkyG5LPv1jhigUjBkKl6Zp+pqMRKFgzFCoKpst+D7pbH07RWvC9CjWJ1KYeFLMMZvN0DQNZrMZitMFAPCYvGP+VNF78rbZRZ7I44h/0gkAlZWVANBtyad/zBCFgjFD4fKdq/jdQ6FizFCoZNE4t4UqsKstUY8YPXq0/nhz638BALLJOyV5P1sKUq3JyB6YEZW6UfhcLhc2bdpk6HIEAE1NTZBlGRaL5Zjfwz9miELBmKFwsaskhYsxQ6FSrXYAbddJqpiYKVpifipKGMpPyYosehPPPtYU5NkyMKFwcjSrRSFyuVzYuHEjXC6X4fnk5GRMmDChW5JOIiIionjW0tAEoO2aSFW06FUmghJzkRhKGIrTBQ1tiadg8oasPTU5irWiUHSVdHIGWyIiIiKgvqnOsK0l6PQDbPGkmKa0tqLVnIZmWzbMqgc2RYBFA+xpTDxjWWdJ58SJE2G1WqNUMyIiIqLYImlKtKvQI5h4UsyprKyEoigwmUxQ3G402IeiOnUoAKCiDhAbZIx0V2N4yuDoVpQCikbS6R8z/fr16/byKfEwZihckiTpM5RymACFgjFDoVKRmF1r22PiSTGnsrISkiTBYrFAk2U4LamG/YLJgxapNUq1o84ESzpTUlIwYcKEiLV0+scMkwgKBWOGwsUkgsLFmKGQ9ZKlvZh4UszSFAXQNHhMxm61gsmDFAu72sYap9OJjRs3wu12G56PdNJJREREFM8yBGNKlqgL8DDxpJgzbNgwfVH32gsvwJYdgH8PBKdFhsg1sWJKtJNOX8yIIudLo9AwZihcNptNb72i+FRcXAwAmDJlCl599dVuLfvQoUOYPn06AGDOnDn429/+FpWYCVQPin0miS2eRFGRlpYGwNvi2ZiSAlV0AX5jrpuTWpGVlB6l2lEgkiRBlmXDcz3Z0umLGaJQMWYoXCZTYi7oTpHDmKFQmXvJQiO941NSXFJ/SmQ8mvHELac0IcOeEY0qURDp6emYMGGC/iWbmprK2WuJiIiIQiDaUqJdhR7BxJNilqZ4ux24VeOAfIutd3RHiDfp6ekYP348MjIyMGHCBE6kQERERBQCwdw7rpnY1ZZijtvthqZpUJyt0DRAQpJh//E5nIEyVmVkZGDixIk9PgbKFzOCIMBms/Xoe1N8YsxQuFS/WSdjaWywqrZNgiCKHH8aS2I1Zij2mJPtxicSdCw5E0+KOTt37oQkSTC5PUhVARXGrrZnDh4VpZoRAMiyDLM5+KkjGhNv+GLGYrFg/PjxPf7+FH8YMxQul8ul36xITo6NmdU9koIXl22D0yXDnmTGtTPHwGrhuMJYEYsxQ7FJ0hTA/3pXS8x1PZl4UszSWlvRVN0IwNjvPTWbEwtFS2trKzZu3IghQ4YgLy8v2tUhIurVyg42QJJUHKxqxrABGSg72IAxw3OiXa2IqqiowAsvvIBvvvkGhw8fht1uR3FxMf7nf/4HM2fOxHPPPYdHH30UgPcGU7jq6+vxxhtv4Ouvv8bevXvR2tqK7OxsjB8/HhdeeCHOPffckMv64IMP8M4772D37t0QRRHDhg3DjBkzcPnllyMpKanT15aVleG9997DmjVrUFFRgebmZiQlJSE3NxeTJk3CZZddhjFjxoT9+Sg2adZaDGqo1rdVk9zJ0fGLiSfFnMzMTCiKAmfZLuz5fiMwaKC+zwwJ9nQmntHgSzo9Hg/KysoAIGaST1/McAZBChVjhsIVi7GydU8Nmp0etLpkNDs92LanNqETzzVr1uDGG29ES0uL/pzH48HatWuxdu1afP755/qSKUfj888/x1133YWmpibD85WVlfj888/x+eefY/LkyXjyySeRnZ0dtBxFUXDzzTfj448/Njy/efNmbN68Ga+99hqef/55DB06tMNrVVXFAw88gNdee83QVRfwziDf3NyMPXv24O2338Ytt9yCX/3qV0f9eSl2yJoEi+rRtxWRiSdRjxg8eDAAoHzrdrhNxj7vmqigtOYwxuYOjkbVeq2WlhZs2rQJHk/bSbGsrAwWiwV9+/aNYs28fDFDFCrGDIUr1sYCV9W1orreifom7/rJ9U1uVCW3oqquFX2zE69b59atW3HDDTfA5XIBAKZPn44zzzwTFosFa9euxeLFi/HJJ5/g22+/ParyV6xYgQULFkBRvOu3TZs2DdOnT0dmZib27NmD9957D+Xl5Vi3bh2uvPJKLFq0CCkpgWci/fjjjyFJEpKTk3HZZZdh7NixqKmpwTvvvIPS0lIcPHgQ1157LT744AOkpqYaXvuPf/xDX2M0Ozsbc+bMwbBhw2Cz2VBeXo6PPvoIpaWlAIAnnngC06ZNw9ixY4/qM1PssFjdGFa3Ud9uTEvMFC0xPxUlBNXlgsds/PLUBAWyNba+/BNdoKQT8K6D2NkdXyIi6j5frz+EvYcb9W1JViHLKhytHiQnmeFo9UCWVSz5Zjcs5raJbIYNzMDpxw+KRpW71V/+8he4XC4IgoAHHngAc+fO1ffNmjULc+bMwQ033IDm5uawy3Y4HLjzzjv1XhAPPvggZs2aZTjmF7/4BW655RasWLECu3fvxkMPPYT7778/YHmSJCE3Nxevvvoqhg0bpj9/xRVX4LbbbsOnn36Kw4cP4+mnn8b//d//6fvr6urwwgsvAPD2KHr33XeRlZVlKPt///d/cffdd+O9996Dpmn48MMPmXgmAMVRB/8ZMoQEHePJKbYoZmmqCrfFeDdREBUkpXLh957S0tKid6/151u3s7NJhoiIqHsoiopte2qx93CT/u9QlQOHa1ogiAIG9U2DIAo4XNOCQ1UOw3Hb9tZCUeJ7GbLvv/8eGzZsAADMmzfPkHT6TJo0yZDEhePNN99EQ0MDAOC6667rkHQCgN1ux2OPPaYPMXnvvfdQWVkZtMwHH3zQkHQCgMViwQMPPIDc3FwAwLvvvgu3263vX7Fihf59++tf/7pD0gl4Z8e94YYb9O29e/eG+CkpluUJxh5+yQoTT6IelT35BIgDjWMIXWYFda6G6FSol/ElnZIkGZ73rdfJpJOIqGfUN7uhAUhOMqOuyYWq+lZUN7RCkhUM6Z8Gi1nEkP5pkGQF1Q2tqKpvRV2TC8lJZmia9/XxbMWKFfrjq6++Ouhxc+bMQWZmZtjlf/311wAAs9mMa6+9NuhxycnJuPLKKwF4WzW/+eabgMcVFhbi1FNPDbgvNTUVc+bMAQA0NjZi/fr1+r6LLroIn332GZ5//nmcd955QesxaFBbC7av6zHFN6tkvDlklhMz8eSVI8WcXbt2QZZlaIcrMD6zFoddR6DCDMlsQWO6CrOJYRtpDocDmzZtipuk0xczZrMZI0aMiHZ1KA4wZihc/ktjdDUjaXfrk2nH7NML8On3+2GzmnCoyoEWp4TcrGQkJ3kXnk9OsiA3KxkHK5uRYrdgUN9UZKTYcM7UIeiTae/iHWLbunXrAABZWVmd/r1arVYcf/zx+PLLL8Mqf9OmTQCAESNGICen88mZTjrpJP3x5s2bMW/evA7HTJkyBUDwmDn++OMNZfjKtFgsGDJkCIYMGRLwvY8cOYKtW7fi+++/15/zjUml+CaoVjTZ+ujbopiYv9fYunokgnf2VEmSILa2QrClQBNqIUCBZpYgWYHclMSdsS8WBEs6MzIyMG7cuJhLOoG2mLFYLNGuCsUJxgyFS1VVPYmIhrzcVFx2dhE+X3sAZpOIg5XNqGtyIT3Fqh9T1+jdzu+Xhvx+aTh7ymA9MY1nVVVVAICBAwd2cWT4E4c5HA69u2t+fn6Xx/sfU1NTE/AYX3fcYDHj/zmqq6sRyPr167F69Wrs3r0b+/fvx/79++FwOLqsH8WnKlcq1uVfqG/bpSaEvnBP/Ii9K0iin2iqCo/UNp20BkATVaRaE2+2vlgRj0knEVFvkZxkwc9OyMcrH23X15evbXTC5VGQZDUBQtu68z87IT8hkk4A+vjLUFqaw22N9l+axW7vumXYv3yn03lUdfB/H/8xnoB3zOadd96JjRs3BnztwIEDccYZZ+D111/vsq4UPxSTceJMTUjM0ZC8iqSYM378eABAg9mCraWHMMCcAgUaJKsJORnJSLOldlECHQ2Hw4GNGzdClo1rR8VD0umLGaJQMWYoXMnJsXHTs7q+FQDgdMtQVBUtTgnpKVYcqW2FIAAmUdSP828NjWc2mw2SJAVN9PyFO+bRPwkMpfzW1lb9cbAE0zdBULCY8S/DfzmVqqoqXHHFFairqwMA5OTk4KSTTsLIkSNRWFiIkSNHon///lAUhYlngvEoxkRTEWL3mutYJOanooSgKQokxYQ0k7eLitlsx/C8EUgyczmV7ibLMjZt2hQw6Rw/fnxMLpxORNQbVdU7IcsqZEWF2SRiUN9UpNgtaHFKOFTlgKx4l1mpqneiYFBmtKvbLfr3749du3bh8OHDXR4byjH+0tLSYLPZ4Ha7cfDgwS6P37dvn/64X79+AY/xdQ0Oxv99+vfvrz9euHChnnT+z//8D/74xz8GHA7Q1NTUZT0pvihIzMmE2kvMdlxKCM1lu9Bc64Dc6obs9ECVZSQnyN3bWGM2mztM+56Zmcmkk4goxlTXt8LpkZFit6BgUAb6ZiXjtOPykJuVjIJBGUixW+D0yKhuaO26sDgxYcIEAN4ut7t37w56nKqq+rIroRIEQV8Hc9euXaitre30eP+JfYqLiwMes3nz5k7LWLNmjf7Y99mAttl7k5KScNdddwUdg75jxw79sZag6z32Nk2SsbU9UX+rTDwpZpWv3YTDDSY0NSloqXfB1eREcipbOyNl4MCBKCoqAuBNOseNG8ekk4goxgwdmI6UJAuGDkjHsIEZ+J+zizB+RC4uO7sIwwZmYOiAtv2Jwn9pkddeey3ocZ988knQyXo6M336dADe3j8vvvhi0ONaWlrwxhtvAPCup3n66acHPG79+vXYuXNnwH11dXVYunQpAGDAgAEYN26cvs83ltVsNsNmC3698/LLL+uP2/dUovgkq4k5i217TDwp5tTU1KCqqgoVnlRUpRWgIr0IhzJHY48yANvqtka7eglt4MCBGDt2bNwlnb6YCTbDIFF7jBkKlyRJ+r9oGj8iF1dfMBpnHD8IF5063LCcyoXThuP04wfh6gtGY/yI3KjWsztNmzYNI0eOBAC88cYb+Oijjzocs3PnTvz5z38+qvLnzZuHjIwMAMALL7ygJ4b+XC4X/t//+396V97Zs2frs9e2p6oqbr31VlRUVBhiprW1FbfccgsaGxsBANdcc43hu9ZXnsPhCPgZZVnGgw8+aFjXtP3kRBSf1IRt4zTiGE+KOYcPH4YkSWhQjbPLiZDQJDdEp1K9SJ8+fbo+KMb4YsZiscRl/annMWYoXJIk6UtjRHsZnoxUGzIC9AASRQHjChIvnkVRxP3334/58+dDkiTccsst+Pjjj3H66afDZrNh48aNWLRoEdxuN0wmExRFgSiG3raSnp6OBx54ADfddBMURcHtt9+OpUuXYvr06cjIyMC+ffvwzjvvoLy8HAAwZMgQ3H333UHLy87Oxq5du3DJJZdg7ty5GDZsGGpra/HWW2/p4zunTJmCq666yvC6OXPm4PHHHwcA3HHHHVi9ejWOO+44mM1m7N27Fx988IFeB5/m5uaQPyfFrt7SZZqJJ8UsVTN+aQhQYLWlRKk2iaOpqQmqqiIzMzPaVSEiIgrJhAkT8Pjjj+OOO+5Aa2srPvvsM3z22WeGYy655BKUl5fju+++g9Ua3pwQZ511Fv7xj3/g97//PRwOB1auXImVK1d2OO6kk07CY489ZpiNtr3rrrsO3377Lb777js899xzHfafcsopePLJJzskx9dddx3WrVuHVatWQZZlvPPOO3jnnXcMx5hMJvz6179GSUkJvvjiCxw+fBgOh6PT+lDsy8jOABratrX46XQWFiaeFHPy8/Ohqip+ENYanldFGeUSF08+Fk1NTdi0aRMA73ISvq5F8c4XM+Hc4abejTFD4Qo3kaHud/bZZ+ODDz7ASy+9hJUrV+LIkSOwWq0YPXo0rrzySpx99tmYP38+AG8rZrjOOeccTJo0Ca+//jq++uorHDhwAC6XC/3798fIkSNxySWX4NRTT4UgCJ2WY7FY8J///Acvv/wy3n//fRw4cAA2m00v48ILLwxYhtVqxXPPPYdFixZh6dKlKC0tRWtrK1JSUjBo0CBMmjQJl112GQoKCvDaa6/hiy++gKIo+PTTT3HxxReH/XkpdthMxvNLon4zCVpvaduloBwOh2EQfHFxcUzcOXv+t8/gsC1f35aT9mHA+Um4cdr1UaxV/GpsbMTmzZuhKN4B7CaTKaGSTyKi7lJWVgZZlmE2m1FYWBjt6lAYzjvvPOzduxcTJkzA22+/He3qUIKI9Dlh+XOL8O3OtiFmVrhw56OXdPv7hCpSuUGiJtSUABTNeDdQtrowMHtQlGoT39onnQCgKAoOHToUxVoRERF1bcmSJfjlL3+J+++/H5WVlUGP2717t77O5ujRo3uodkTHzpSUZtgWhMRM0djVlmKWBGMHd8UsI63dHyZ1LVDSCXgnPxg1alSUakVERBSa9PR0fPPNNwC8k7Dce++9HY5xOBy4++679UlaZs6c2aN1JDoWgi0ZQJPfE0w8iXqEL0GS24XnINWDoZn5gV5CQXSWdI4dOzZhxrf5f754WgaGoocxQ+HyH5nU1Rg/6l6nnHIKBg0ahEOHDuH111/H9u3bcc4556B///5wOp3Ys2cPlixZoi+PNG/ePEyaNCnKtWbMELXHxJNizrZt2+BxuSCLxunqx0LD8OzBUapV/GloaMCWLVs6JJ05OTkYM2ZMwiSdgDdmfEtjjB8/PtrVoTjAmKFwOZ1OfTmV5OTkaFenV7FarXj66afxq1/9ChUVFdi4cSM2btwY8NjLL78cd911V89WMAjGDIVKdrUatlVVjVJNIouJJ8UmWYYsGmf4stkZrqHqTUknERElvpEjR+Ljjz/GO++8g+XLl6O0tBSNjY1ISUlBv379cNxxx+GSSy7hjSSKS+6mvRjY6Jd8Cp7oVSaCeCVPMSctLQ1uSeqQeCYlMVxD0dDQgM2bN3e4W5bISWdaWpo+2xxRKBgzFC6TyaS3XlF02O12/PznP8fPf/7zaFclJIwZCpUGD2wKE0+iHjds2DA0my1QxQrD8zs9rRjhakY6JxgKqr6+Hlu2bOmQdPbp0wejR49OyKQT8MYMUTgYMxQum80W7SpQnGHMUKjM5lYMrt+qb7tsiXmzgoknxSRnY2uH5xrtGhQtMfu8d4femnQSERERxTNVaoFibhsepZqZeBL1mNamjomnOVmDzWQNcDQBQE1NDZNOIiIiojgzcEg+yobs0rdFW2KmaIn5qSjutTQ6jU9oKvab3LCamXgGM2LECCiKgiNHjgAAcnNzMWrUKCadRERERDEsxWRFpuS/zFdipmiJ+akoru3btw9udy3y67dAFUxQBRM8ZhN2WlSYRa63F4wgCCguLgbgXaOwNyWd+/bt0yeKGTp0aLSrQ3GAMUPhcrvd+kQxHLtHoWDMUKjssCFFtuvbJikxU7TE/FQU15qamtDa6IBZkwFN9j4pCsjN7BvdisUB/+SzN82i19TUpK/JSBQKxgyFS1EUzlBKYWHMUKgO1Vvwuf1SfTtFa8KUKNYnUnpHcwjFHVWWDduaqCHVZg9ydO+jaVrQfYIg8EuOiIiIKE5oZuM1riYkZorGFk+KOaNHj8buPUewH3v152yiiKK+xVGsVeyoq6vD7t27MX78eHbd+cno0aN5V5nCwpihcNntdsYMhYUxQ6HyiDYAbn1bEROzN05iptMU18xmM1S/AdYAkGIyYVr+pCjVKHbU1tZiy5YtaGlpwcaNG+F2u7t+US9gNpthsVhgNvNeGoWGMUPhEgQBoigyiaCQMWYoVLLLeD2XqKsHMvGkmCS5XIZtkwkQzIl59ydUtbW12Lp1q97N1ul0YuPGjZAkKco1IyIiIqKjVVlTadhWleBDquIZb/VSTKquccJlToGoKRBVBQIAoRcvpVJTU4Nt27Z1GNuZnp7OFhsiIiKiOCYhQZs42+EVK8WchoYGlFQIqEsv0p9zuvej1t2EXEtuFGsWHcGSzn79+mHkyJHswgNvzPjG0WRmZka7OhQHGDMULtlv0jve8KNQMGYoVGqi9q1th38FFHMOHDgAjwzAL58SNRckVQn6mkQVLOns378/iouLmXT+5MCBA/rSGEwiKBSMGQqXx+PRb1YwiaBQMGYoVBoTT6LoUTSTIfE0wQ1rL+tqW11dje3btzPpJCIiIkpg6b0kJesdn5LiyoABA6Cad8G/u3tzigJV7R13g4DgSeeAAQNQVFTEpLOdAQMGQFVViCLnS6PQMGYoXBZL757gjsLHmKFQmT3Ga9xEvcpj4kkxJzc3FxAFQ+JZk+5BssUe/EUJhEln+HJze9/YXzo2jBkKF5MIClcoMXPnnXfi/fffBwDs3Lkz0lWKS/4/o+XLl2PQoEEdjvn000/xyiuvYNeuXXA4HEhLS8Ps2bNx55139nR1j4pF6B03QZl4UkxSVGNypZlcSLEmR6k2PaeqqgolJSVMOomIiIhC8NZbb+Gee+4xPFdfXw+rNX6GaInW3tG4wsSTYpKiGu/8mE1awpAQ8xwAAFxPSURBVCdddXV1AZPOgQMHorCwMOE/PxEREVG4Fi5cCAAQBAFXXnklJk6cCLfbjXHjxkW5ZqETLLZoV6FHMPGkmKPIKjQYE88RtsRv7UxPT0dqaiqam5v155h0EhEREQVWX1+P6upqAMD06dPxhz/8Ico1Ojpme5LxiQS97mPiSTFn48bNHZ47KT3xx2OZzWZMmDABmzZtQnNzM5POMGzZskVfGiOe7nBS9DBmKFytra360hjJyYl/M5SOHWMm8pxOp/54xIgRUazJMepwracFPCzeMfGkmCN5Os5ea7HFTz/9Y2E2mzF+/HgcOXIEgwYNYtIZIk3T9H9EoWDMEBHFP/8VD+J5rVSnqQb9mhv1bU2UolibyInf3xAlLHOA9Trl2oaer0iUWCwW5OfnR7saccVut8NsNnPWSQoZY4bCJYqi3npFPa+4uBgAsGDBAlx66aW4//77sWrVKgBAfn4+rr/+elx44YX68S0tLXj33XexatUq7Ny5Ew0NDQCAjIwMjB49Gueccw4uuuiigMnKz3/+c6xduxYnnXQSXnrpJRw4cAAvvfQSVq5cicrKStjtdowePRpz587FzJkzg8aEKIpoamrC66+/ji+//BL79u2D1WpFYWEhLr/8clx00UUhfXZVVfH5559j6dKl2Lx5M+rr65GSkoIhQ4bgjDPOwJVXXon09PSAr/V9lmnTpuE///kPdu/ejRdeeAHfffcdqqurkZOTgylTpuB///d/UVBQAABwuVx45ZVX8MEHH+DgwYMwmUwYPXo0rr32Wpx55pkh1bmzz/LNN99g0aJF2Llzp/7zLCoqwvnnn4958+aFNCnQwoUL8dRTTxmee+qpp/Tn5syZg7/97W/HVNeeJAgeJEtN+rZilqNYm8hh4kkxJzdnAIB9+ragqah0O1AYtRp1v/r6emRkZHANwW5SWJhI0UE9gTFD4UpKSur6IIo4h8OB+fPnY9++ffpzO3bsMCReq1atwm233aYnm/5cLhcqKyuxYsUKvPnmm3j++eeDJm0A8MUXX+D2229Ha2ur/pzb7cbq1auxevVqfPjhh1i4cGHAm1jl5eW47rrrcOTIEcNr169fj/Xr1+Orr77qspXuyJEjuOWWW7B+/XrD8w0NDWhoaMCmTZvw8ssv4+9//ztOO+20TstatmwZ7rrrLrjdbv25iooKLFmyBMuXL8eLL76I/v374/rrr++wtMvatWuxdu1a3H333bjqqqs6fZ9g6uvrsWDBAqxZs8bwvMfjwbp167Bu3Tr9d9KvX7+jeo94JVpcGNS4Q99uTknM60MmnhRzJI9i2BY0FR5z4vwBHjlyBDt27EBOTg7GjBnD5JOIKAF4PJ6jfq3JZILJZAq4T5Kko+4SHqlyRVGMWrfG//73v3C73Zg2bRouvPBCNDQ04Ouvv8a0adMAALt27cKvfvUrSJIEk8mE6dOnY8qUKcjJyUF1dTU2bdqEjz/+GKqqYtOmTXjyySeDTkizf/9+3HbbbfB4PJgxYwamTZsGs9mMNWvW4P3334eqqlixYgVee+01XHPNNYbXVlVV4YorrtCT38mTJ+OCCy5AWloatm3bhjfffBMffvhhp617jY2NuPbaa7Fnzx4AQF5eHubOnYvhw4ejsbERX3zxBVatWoWGhgbceOON+Ne//oVTTz01YFm7d+/W17ScO3cuTjzxRDQ2NuKdd95BaWkpHA4H7rvvPphMJuzcuRMnnXQSzj//fNjtdqxcuRJLly4FADz88MO44IILkJOTE/LvDPD+fVx55ZXYtWsXAG8r9dy5czFkyBBUVlZi0aJF2LNnD0pLS3HjjTfi7bff7jTGZsyYgVGjRqG2tlZfSmXGjBm44IILAHiXoYsnqrMRVsWlb5vVwH+38Y6JJ8Uct9vYr13QVJiTE2OMpy/pBIDa2lps27aNyScRUQJYvXr1Ub+2sLAQeXl5AfetXbsWknR0472GDh2KoUOHBty3YcMGQyteOAYOHIiioqKjeu2xcrvdOOOMM/Cvf/1L7+Lqn/T94x//0H9ejz/+OM4999wOZcybNw/XXnstNE3DsmXLgiaehw8fhsViwb///W89sQWAWbNmYfLkyXoi984773RIPB9//HE96fzVr36FW265Rd83c+ZMXHrppfj5z3+uz8gayN///nc96TzrrLPw6KOPGlreL7/8crz//vu46667IMsy7rjjDnz++edITU3tUFZFRQUsFguee+45nHzyyfrzF198Mc455xz9miRQfS+66CL06dMHL7zwAiRJwpdffol58+YFrXcgzz77rJ50nnXWWXj88ccNSffPf/5z3HDDDVi9ejW2bduGpUuXYu7cuUHLKygoQEFBAQ4dOqQ/N3z4cJx11llh1StW9IUV/reuktTEnH+AV7sUc5xOY792TVRRkxn/47AqKir0pNOntrYWVVVVUaoRERFR/PnlL38ZcFyl0+nE119/DQCYNGlSwKQTAE466SRMnDgRgLf7Z6AuuT5XXHGFIen0mTNnjn6zoKysDC5XW2tVXV0dFi9eDAAYP348br755g6vHzZsGP76178Gfd/Kykq9jEGDBuGRRx4J2N17zpw5etJbV1eHt956K2iZ8+bNMySdAJCamqq3EgLemxULFizo8NpLLrlEf+xLIEOlKApeffVVAEBubi4eeuihDi29FosFDz74oH4jftmyZWG9R7xLcht7+1mkxEw82eJJMcea5IZd3AUPBHjvjSiQk+N7Yd2KiooO4yUAb1eT3jaOIRIOHToEWZZhNpsxaNCgaFeH4gBjhsLl8Xj0yYVCmfyEIsNisWD8+PEB99ntdnz55Zc4cOBAwFY/f3l5ediwYQMAGJLG9s4555yg+4qKilBeXg4AaGpq0hPDVatW6bOtXnzxxZAkKWDMnH766Rg6dKhhvKrPt99+q7fcXnnllbDb7UHr8Ytf/AKvvPIKZFnGF198gV/84hcBj/NPMP35nwN/9rOfBeyF5d911X+98VBs2LABjY3eGVvnzp0b9HfTv39//P73v9cnG+pN7IIF9UJb99pEbRlk4kkxp9nRDEH0QNS8J21BkNA3N/CXTDwIlnQOHjwYw4YN4wyJ3aCurk5fk5FJBIWCMUPhkmWZiWcMyM/P7/Tn36dPH/Tp0yfgvpaWFuzcuRM//vijnnQC3ha5YHwzvQbin0DJcltvrU2bNumPx4wZA1mWg9Z50qRJARPPjRs36o+nTp0atA6A9zOPGDECO3bswJYtW4LOvjxs2LCAr09LS9MfB5tV3z/x9V/CJBRbtmzRHx9//PGdHnu0ExfFu/LWVHxd0PbZ7VITOrazxz8mnhRzVFltN+GBgiRbStTqcywOHz6M0tLSDs8z6SQiSiztuzCGI9gEQAAwZcqUY5pcKJjjjjvumCYXipbOZqD1V1VVhS+++AIlJSXYt28f9u/fj6qqqoCfubOfg39S1p7/5Df+yVhNTY3+uH///p3Wc/DgwQGfr6ur0x+HssRafn4+duzYAUmS0NTUhIyMjA7HBHquvWAtq8dyveL/8xg4cOBRl5PIVFP7btSJeX3IxJNizsD+A5BtSoICDSoAk6iiX0bfaFcrbEw6e05RURHX16OwMGYoXF0tpxKpVtBIrTUbr2vYdvVzlmUZjzzyCF599VVDK6SP3W7HiSeeiOrqan0ync4czey9/l1RMzMzO70BkJIS+MZ6S0uL/rizbrY+/vHpdDoDJpnRmonY180W4LJEwbgVY4zIYnz+fXaFiSfFHFHTkGluG9OZagIGZcdXV7hgSeeQIUMwdOhQXux2M36RUbgYMxQuzj4eH+6880588MEHALzJ9aRJkzBu3DgUFhaiqKgII0aMgNlsxu233x5S4nk0/Ftl3W53p+NNgy3D459sOp3OLses+s9QHGvnN//6dDaelhIfE0+KOe7GZiguCRAECAIgmCUIlvgZT1NeXo6ysrIOzzPpJCIiipz169frSWd+fj5efPHFoN1Uw50gJxy5ubn640OHDmHkyJFBjw02s73/ONWDBw9i1KhRnb7n/v37AXiTvMzMzDBqG3n+a35WVFR0OnHQ7t270dLSgsGDB8fc54ikBslp2E7MOW0Td9IkimPVe8rhqHOipcaBluomtO4/AtESH7PaBks6hw4dyu61REREEfTVV1/pj3/zm990OjaypKREf3y0Y12DOeGEE/THa9as6fTY9evXB3x+3Lhx+uPvv/++0zIqKyv19T5jcTbYMWPG6I/9J00KZOHChZg3bx5OOukkOByOCNcsdsha8AmuEgkTT4o5m3Y4cChzNA5mjcWBrPGoSs6HHAeRKsuyfsfRX2cLeFP3cDgcaG5u7lVfUnRsGDMULkVR9H8Um/zX40xOTg563CeffIIjR47o24HGgh6L0047DTab94b566+/DqfTGfC4rVu3GmbA9Xf66afr43Bfe+21oGUAwIsvvqhPbnTGGWccQ80jY9KkSXpX4SVLlsDtdgc8rqmpCd988w0A7/qnXXUvTiSKFt5MwfEqDi7nqbfxeCTDtqjJEONgdi+z2YwJEyYYJmxg0tkz9uzZg9LSUv2OL1FXGDMULrfbDZfLFfSimaIvLy9Pf7xo0aKALZmrV6/GPffcY3iuu3+nycnJ+rIg+/btw913390hua2ursbtt98etIy+ffviwgsvBODtanv77bcHHB+5ePFivPzyywC8XVovv/zy7voY3SY5ORmXXnopAG/PsHvuuafDz8Pj8eCee+7RJ1WKxc8RSd3d6h6rOMaTYo6iGpNMUfPAJAafES6WpKSkYMKECdi0aRMGDRqEIUOGRLtKREREvcKMGTOwcOFCSJKElStXYt68ebjwwguRm5uLqqoqfP311/juu+86XORHoufDb37zG3zxxRfYu3cvPvzwQ5SVleGSSy5Bbm4uSktL8cYbb6ChoQE5OTmora0NWMbvf/97rFu3DgcPHsTnn3+OGTNm4OKLL8awYcPQ1NSEL774AitXrgTgnfzqr3/9K7Kzs7v9s3SHm266CV999RX27NmDxYsXY9u2bZgzZw4GDBiAgwcP4r333tPXMz3ppJMwa9asbnvvhQsX4qmnngIA/Pa3v8VNN93UbWV3l9T0NKChbVtL0KZBJp4Uc2TNmHgKkONqbGRqaiomT57MBcZ7UG5uLlRV5ayTFDLGDIUrWktRUOjy8/Nx77334t5774WiKNiyZQu2bNnS4bhJkyZh5syZuO+++wAAO3fuxKRJk7q1Lna7HS+++CJ+/etfY/v27SgtLcUDDzxgOGbatGmYMmUKHnvssYBlpKen47XXXsNvf/tbbN68GeXl5XjyySc7HJeZmYnHHnsMp5xySrd+hu6UnJyMV155BTfeeCO2bNmCsrIyPPzwwx2OO/nkk7Fw4cK4uu7rDkk24zVjon58nkUp5ggCDNN5CULwcQ2xiklnzxowYEC0q0BxhjFD4eJ5PT7MmzcPxcXFeOmll/Djjz+itrYWZrMZOTk5GD16NGbNmoUzzzwTzc3N+Otf/wpJkvDxxx9j/vz53V6XAQMG4K233sKiRYuwdOlSfZm1oUOHYs6cOZg/fz5eeumlTsvo168f3n77bXz00Uf48MMPsWXLFtTX1yMzMxP5+fk4//zzMXv2bMMSLrEqNzcXb7/9NpYuXYply5ahpKQEjY2NSElJwdixYzFnzhzMmDGjV94QtLdbtzNRfwKC1ls6FVNQDocDO3fu1LeLi4ujOqD7gdvfg6y2fcEPb12OK595PGr1CeTgwYNQFIXjN4mIElBZWRlkWYbZbEZhYWG0q0NEURbpc8KKl5ZhpV/jvFXw4M5H5nb7+4QqUrkBWzwp5qiq8T6PKMbWTF8HDhwwTEjC5JOIiIiIjpZoTwfQpG8LQmK2eSbmp6K4pWkaVBgnEko1xU5H9/ZJ5759+wIuoUJERERERG3Y4kkxRVU0oN3SKX0slsAH97D9+/dj7969HZ7vjWMRYk1JSQkkSYLFYsGoUaOiXR2KA4wZCpfT6YSmaRAEAXa7PdrVoTjAmKFQaYpxeRktQdf1ZOJJMUWWOy7MbbZEfymVYElnQUEB8vPzo1Aj8idJEiRJ6vpAop8wZihcmqb1mrX2qHswZihUjuoy9HG0JZ8iEnO9YCaeFFMkqeMdHos1uonnvn379LWl/I0YMQKDBg3q+QpRB5afWsUtMdI6TrGPMUPh8i3v0NuWeaCjx5ihUIkmN9I8jW1PCJ7oVSaCmHhSTHG7OrZANDc1R6EmXkw64wO7SlK4GDMULnaVpHAxZihUgtiKAU279G13gq7exMSTYkqgFk+YotNNJVjSWVhYiLy8vJ6vEBERERElHMHjgF12tD0RQxNrdicmnhRTZKnjGE+TqWfDVNO0oLPVMukkIiIiou6Und8fuwvaWjwFW2KmaIn5qShutU88BU2Faum5uz5MOomIiIioJ2Vak5GptvX6MyXmpLZMPCm2ZOWkIMO9G0keQIMAQADy0nrs/YMlnUVFRRg4cGCP1YPCU1FRAVVVIYoiBgwYEO3qUBxgzFC4PJ62yT6s1gQdgEXdijFDoco0J2Ggu63xRRQ69gBMBEw8KaaYzAKsigPJfmM9MwcN77H3T01NhSAIhunPmXTGvurqan1NRiYRFArGDIVLlmV9TUYmERQKxgyFal+1GZ/br9S3U+DAuCjWJ1LEaFeAyJ9b9kBsN5eQ1Z7cY++fm5uLUaNG6VOfFxcXM+kkIuplTCbvMl6KonAdRqJeTtM0KIq3BdJ3buj297AkQxEsfv8Ss20wMT8VxTEBNs1vTKcGpKT0XFdbAOjbty8A7wUHW0Liw/Dhw/W7ykShYMxQZ6xWK9xuNzRNQ2trK1JSUmCz2aJdLYozjJnE0Nraqt+AilTLtQtWAG1ds2UhMVvImXhSTDHDBIsmwNfRVoQKe3LPJp5AW/JJ8SE1NTXaVaA4w5ihzqSnp6O52buGdF1dHZKTkyPW0kGJizET/zRNQ11dnb6dnp4eoTdK0NmE2mFXW4opqixDU9u6NQmaCjEpqdvfR9M0tLS0dHu5REQU/3zj/QHA4XDg0KFDaGlpYbdbol7Cd5146NAhOBze9TUFQYjYTcsjlRWGbUVOzHMNWzwppricHsiaAAEiBKgQoEG0dG93A03TsHv3bpSXl2Ps2LHIycnp1vKJiCi+iaKIvLw8lJeXQ9M0OBwOOBwOCILAViyiXqD9+G5BEJCXlwdRjEybnaTKESk31jDxpJjyw/elOJDZNo+X3dMIxe3p5BXh8SWdhw4dAgBs3bqVyWcCcLlc+ni9pAi0kFPiYcxQV9LS0gzJp6qqEARB/5+oK+0TF4pPvqQzLS1yQ7/kXtLVloknxRSno9mwLWgaTHZ7t5StaRp27dqF8vJyw3Pbtm3D1KlTOdV5HCstLdWXxhg/fny0q0NxgDFDoUhLS0NRUREcDgd2796tJ52RvAClxNHc3Kzf4GLMxBeTyQSr1Yr09HSkpqZGrKXTp7d042fiSTFFckmGbREKTMkpx1xuoKTTp7i4mEknEREFJIoi0tPTYTKZoKoqzGYzCgsLo10tigObN2+GJEmMGepSSi+ZdoeJJ8WURrcTQFsLpypqsBzjXUJN01BWVobDhw932Ddq1Cj069fvmMqn6MvOzoYsyzCbeUqj0DBmKFyMGQoXY4ZCZZWMLZ6J2jGbfwkUUxRRMWzLVjfMqUff4hks6RQEAaNGjeKyKQli0KBB0a4CxRnGDIWLMUPhYsxQqKy9pMWzd3xKihuiaLzHY4ELwlH2q2fSSURERESxTjD1jiFfbPGkmKJIxlm9REGFcBRdVDRNQ2lpKSoqjOsiMekkIiIiolgiJiVHuwo9gi2eFFOSYbzjY0f409Z3lnSOHj2aSScRERERxQyTrV2LZ4IO8mSLJ8WUFMH4h5cV5uzSXSWdubm5x1pFikFlZWX60hicOZBCwZihcDFmKFyMGQqVYDJFuwo9goknxRRZUgG0/fGZwmyTr6mpYdLZCzmdTkiSBFmWo10VihOMGQoXY4bCxZihULmFBmS1tujbguCJYm0ih4knxRR3sxNAqr4tNzrDen2fPn2Qn5+PgwcPAvAmnWPGjEGfPn26s5oUYwRB0P8RhYIxQ+FizFC4GDMUKsHiQqarSt9WzIl5s4KJJ8WUJpdx26mFN8uXIAgYPnw4AODQoUNMOnuJcePGRbsKFGcYMxQuxgyFizFDoVJFJ/o69unbLcmJebOCiSfFFKXDmE410GGd8iWf/fv3R0rK0a8BSkREREQUaaKnCameBn1bsSbmmE/OaksxRdWMISkeReIJeJNPJp1EREREFOsyYUw0rVqYs2vGCSaeFFNkk7FrgZwe+I6PpmnYtWsXWltbe6JaREREREQRkdyqGLatnsRMPNnV9ieapmHZsmV49913UVJSgtbWVuTm5mLy5MmYP38+xo8ff8zvUVpaihdffBFr1qxBVVUV0tLSUFBQgNmzZ2POnDkw9ZKplDujJh+ByWH5aUuAkNrS4RhN01BSUoKqqipUV1dj4sSJsNvtPVtRiinV1dVQVRWiKHL2YgoJY4bCxZihcDFmKFRpJiscftsWMPFMWC6XCwsWLMBXX31leL68vBzl5eX44IMPcPPNN+OGG2446vdYtGgR/vSnP0GSJP25uro61NXVYd26dXj//ffx9NNPIzMz86jfIxGYbS7AbzrpjDTj5EL+SScAuN1ubNy4kclnL1dRUaGvlcYvdwoFY4bCxZihcDFmKFSHW1Owesgl+rZdduCkKNYnUph4Arj77rv1pLOgoACXXnop+vTpg23btuHNN99Ea2srHn30UfTr1w+zZs0Ku/yVK1fij3/8IzRNg91ux2WXXYaxY8eitrYW77zzDkpLS/HDDz/g1ltvxfPPPw9R7MU9oNtNOW5KTdcfa5qG7du3o7q62nCMJElwuVxMPImIiIgo7iimJLgsafq2wBbPxPTtt99i2bJlAICpU6fiueeeg81mAwDMnDkTl1xyCa644go0NDTggQcewPTp05GamtpZkQYejwf33XcfNE1DcnIy/vvf/2LMmDH6/ssvvxy33norPv/8c3z77bf46KOPMHPmzO79kHGkjzkFbtE7blMDkGb1ThCkqipKSko6JJ2iKGLs2LHIysrq6apSDBk8eDA0TeNaaRQyxgyFizFD4WLMUKicsjElk8XwlhOMF724ac3rhRdeAACYzWb85S9/0ZNOn4KCAvzxj38EADQ0NGDRokVhlf/ZZ5/h0KFDAIDrr7/ekHQCgNVqxUMPPaR3sX322WeP5mMkDK2lP2Q1H7KaD0XNhw05nSad48aNQ3Z2dpRqS7EiMzMTWVlZvb6rOoWOMUPhYsxQuBgzREa9OvFsaGjA6tWrAQCnnnoq8vPzAx43Y8YM5OTkAAA++eSTsN7jo48+AuBd3uPyyy8PeExKSgrmzp0LwDsB0d69e8N6j0RS3yKiSUnW/7V6ELB7rS/pZEsnEREREcWzJtlp2E7Mjra9PPH84YcfoKredSKnTp0a9DhRFDF58mQAwKZNm9DY2Bjye6xbtw4AUFxc3GnLnP/7f/PNNyGXn2g0WW57DA0Vh/ehpqbGcAyTTiIiIiJKFJJ6dOvWx5tenXiWlZXpj4uKijo9dsSIEQC8E9yUlpaGVH5lZSWampoAAIWFhZ0eW1BQoD/esWNHSOUnIt96uRo0wFyPVkE27BdFEePHj2fSSQayLEOSJMiy3PXBRGDMUPgYMxQuxgyFStaUrg9KAL16cqHy8nL9cV5eXqfH9u/f3/A6XwtoZ3xjO0Mpv1+/fhBFEaqq4vDhw12WnbA0TU86YXJBVdtO1r6kk2MlqL3t27frU9Z3x5q7lPgYMxQuxgyFizFDIUvUvrXt9OrEs66uTn/cVQuaf7LT0NAQUvn19fUhl2+xWJCcnAyHwxFy+YnIP+kEgAZ3Mr7/5EeYICLZk4zS90pg1dzoJx9GtnIETgtQawM8ZgtcyIEo2NGqDYYoWKHKCqCq0GQJGjQoogBJBBQAAgARAiyiCanZaRDcLtjgRj9zLQbYq1ABCTX1LbDWS2g1ZQNiChy2ITCnta3DpbQ2QoMGFzTIbhlQvGcNEYAJAswQYYICm+ZGhlKLQfJ+tJhUNNpFtJpMcAuZEIQ0uLX+0IRUaIr60z8PoAGyoEE2CfCl3iIEWAQBaVnpgCwjCU6kownFqYdxAG7Ut7ogVjjhMWVAFtPhtPSHmNk2bll1OaCpCpxQIUsKIKl6fUUIsECEAA12OJGktKBQ2gmHoMKRYkKTCEimdKjIgqRlQxWyoakaNFmBpsiApkIWNCgmAZJeX8AEEekZqdCgIVlzwqI6MTF9Hw5DQr3sgbq/CbIpFR4xG24hE1rOCH32P9XdCk2R4IYKWVGhuhRA8P7uBAA2mAAASXACioTRzvVoETR8nmZFrUmDak6FpOVARipUYQCgaVAlBZoqA6oKBRoUswCPX30FCEhPTYFoFmFTXRAUN45P24MG0YN6yGjdUw+ISXCKuZCFZMiZIyGavadRVXJBk9zwQIOsqVBaJUAQOtTXBjdMqoQiTwk0OOFKMqHSrAIWO1xaX2iwwYPBECFAlWRomgIoClR4f75uQfuppt7fW4o9CdYkKyyyC6LqxqiUg1DNDjRCQfXBetgUE5qF/oBoRWvaKFhsSd6/NUWC6m6FDA0SNMitbWsMiwAsEH+KCw8smoTB0h7Y1Qa4rQKOWFVoliQ4tVyIsKAVw2ESRO/PV1MAWYYKDaoowC1q0Pzqm2S1wJ6WDNHjglVzY4jtCFJtDaiBhOrKRthagRYxF4JoQ1NyMazJ3unlNU2B6nRAgQYPNEguCYLaVl/v35sAM+SQzhGqYoKmKICqYbW2hueIBD9HiKqMcZ5NaIWK1mTTUZ0jhJ8iOSXJhh+XlPAckeDniO64jqisbYK1XoZTzMI2SzrPEQl+jjiW64i65hz40xK0T2qvTjxdLpf+uP1stu1ZrW3TGvu/rjNOZ9tA4a7K9x3jcDhCLj8RaQAgtN32kU1JkDU7IGXDKdjw0zkCYmM9UuubYQLQ96djK9Ky4LSIqM1Ig2xKaiu0syhXgboaAPAeL0s1SFX2osFmgeDQ0KdSRlVKDhw2G2oz0uExTHdtPEn46hZIP6eKPpVbYAKQ/dO/muRkNCWJaEhNQas1I6RyoAH1+v2SNOQqEvKO7EaD3QKPG8gvl1CflIr65CQ0pqTDUe9f38yQ65sq1yKvYh1EAOk//WuymVGTkgOH3Y5Ge4j1BdA2JDoVSWoLRlQtR1OSGS2agMHlElosFlSmJaHFloa6BovfK9ONBXXyexREFYUHVsEEILnKiWQALrOCw+l94bEmoTrVr74iOh1k0OzwPfIu5VNYvQKNVgVNZhH9DkvQoOBg5mC4zak44h9nSP3pX9f1hQkYcHgjkiUHrADyAShCK/ZnDYTbZEVlRqbfh+u8rGYnACcAJAMA+tWuh2iqQYPZhPQjCtKcKpqyhkEWrThiSgVa/Svot/ZtF7/H9Oq9sLR4/+a8/Tcc2J/ZD7Iooiq73Y21zurrAVAL/b3ttbuhYh8arGbYalX0aVDgSh8Ij9mGKjEdmttXMTMAv/Oo0HmdQzpHdFEGAJ4jgojHc0TB/pUAvH8px3KOcLgAuACeI4wS8hwRQn07O0eYHRr6VcqoSsnlOQK95xxxdNcRaYYyEnUFnl6dePr3ufdPLAPx3x9qX31Faeuv3VX5/sdEeyzArl27UFBQgLS0tj8Ct9uNnTt3AvC2/g4ePLjDa1pbvd9W7buT1NTU6N2H8/PzDa2/iqJg27ZtAIC0tDSIJgWQsgFLHSC6AU0ApBwIWmKuZ0RERERE5M8Mb2uyqqrYunUrAO8qGP5zwgDA/v379UlPR40aBYulLfFuamrCvn37AHiHDPbt29fw2q1bt0JVVSQlJXWY66b9ahLdpVcnnklJbXezJEnqNDn0eDz641CSSMDYyilJUidHGt/DP2iiQVEUfbZfH03T9M/gn1D7+AbQB6Kqqr6vfblA289GlmVMKLTghzIBmpTt7XKrpDLpJCIiIqJeY0Cq3vXAcJ3cnv/1t6YZB4r6X38HunaXJAmqqsJk6tjkHOh6vTv06sQzOTlZf+x2u0NOPEPpNhuo/K74jvFPiKPBZDJBFI19CARB0BPiQAFqNpuDJsyiKOr72pcLtCXaZrMZ5/1yNrIXL8f3q/dCcwuA5oQAAWYAZsGkj83ITXHCkpQKh6iiLkmAZLHCI4gQBRU5WjNEwQ3J7QFUDYIqAwIMYzMADSIEmAUR6VnpECT3T2MzBCTbhsAuO9GQ5EKVWYHLrMEsupFja4I5zQaP5IGmaRA8rRBFwTA2Q9O85ZoAWAQRJqjesRnWetgGpKEZChrtApxmMySTFYKgIlNrQYYgQPZI0FQVUGSIgtBubIb2U28qAWmZ6RBV9aexGU6kpA6H3eOA5PSgSvVAMptgEl3IsDQhKzMDkuw9sQgeJ0yiYBybobX9LKyCCBHwjs0QWpA8IB2NquQdm2ESoFqSoUFFquZEstAIRZKhKgqgKhChQRZgGJsh/FRuWloKRFHUx2akDipAkqcFTkVClasVisUGk+hCitCM5EwJiqpAURQIshuipsIjaG1jM2CsrwBBH5uRPCAdzaqMVruAOrMAWNOhagqscGGA0AhFUaFKEqCqEKBCBQKO30pLtsNstehjM9L6D0Gr4oBNk1HjbIZgskMUnbAJAvLSXNBEwftlIEswaTIkAYbxW9C85VohQBREffxWWh8bFDUZTpuAKgsgWpOhQIYJHvRDA6ABiscDaCoETYUGtBu/5S3XbrXCnmLXx29l982FS7PArkloVJrhUs0QBCcsooL+yQ6YrFbvF5EqwyR7vH8X/uO3fqqvBQJMgqiP38rM1CCmpcBpBqptGjSrHR6oEKGiL+phguj9m9NUCKoCTYBh/Jb+ezOZkJqZpo/f6puTApt5EOyKGw1iK6pTAcUkwSyK6JvUBEtyqvf8q6kQJe/P2zB+66f68hzBcwTPETxH8BzBc0TcnyMgY0CuFef+5oqA18nt+V9/C+365/pffwe6drdYLFBVNeD1e6Dr9e7QqxPP9PS2vt8NDQ2GrqXt+U/409l6nMHK72rtT0mS9K6qoZYfKSNGjEBqaqrhOZvN1umMbL7lZgLp06cP+vTpE3CfyWTqUO7Ui8/B1IvDqHAEjInu24ct+E8/NhV0fUhMKY52BSjm8BwRWTxHULzjOSKyess5wreiQzBDhgwJui89Pb3T144dOzbovtzcXMMkrN2lVyeeQ4cO1R9XVFQgPz8/6LFHjhzRHw8cOPCoyu9MZWWl3qwdavmJau/evZBlGWazGcOGDYt2dSgOMGYoXIwZChdjhsLFmKFwJXrM9OrE03+AbllZGaZMmRL02LKyMgDeZuzCwsKQys/KykJOTg5qa2v11weza9cu/XH7Ab69TXNzs77uFVEoGDMULsYMhYsxQ+FizFC4Ej1mEnSVmNAcd9xx+i92zZo1QY9TFAXr1q0DAIwcOdLQhbYrkydPBgCUlJSgubk56HHff/+9/rizBJiIiIiIiCje9OoWz/T0dEydOhUrV67El19+icOHDwfs5vrhhx/q/ZzPP//8sN7j3HPPxSeffAJZlvHGG2/ghhtu6HCMw+HA+++/DwAYNmwYRo4ceRSfJnGMGRNvIyMo2hgzFC7GDIWLMUPhYsxQuBI9Znp1iycAXHPNNQC8k/vceuutcDgchv27du3CX//6VwDe9XPmzZsXVvlnnXUWBg0aBAB4+umn8cMPPxj2ezwe3HHHHfrkRddee+1RfIrEYjKZ9H9EoWDMULgYMxQuxgyFizFD4Ur0mOnVLZ4AMG3aNJx77rn49NNPsWHDBsyaNQuXX345BgwYgO3bt+ONN95AS0sLAOCOO+7oMOPsmjVrcNVVVwHwdpF99dVXDfutVivuvvtu/PrXv4bL5cI111yDefPm4fjjj0dDQwPefvttlJaWAgCOP/54XHLJJT3wqYmIiIiIiHpOr088AeChhx5CS0sLVq1ahUOHDuHvf/+7Yb8gCPjtb3+Lyy677KjKP/PMM3Hvvffir3/9KyRJwuuvv47XX3/dcMy4cePwz3/+M2HvcBARERERUe/FxBOA3W7H888/jw8++ACLFy/WJwLKzMzECSecgKuuugonnHDCMb3H5ZdfjkmTJuHll1/G6tWrUV1dDYvFgqKiIlx44YW49NJLE3YGq3DV19dDVVWIooisrKxoV4fiAGOGwsWYoXAxZihcjBkKV6LHDBPPnwiCgIsuuggXXXRRWK878cQTsXPnzpCOLSwsxF/+8pejqV6vcvDgQX0q6UT8o6Pux5ihcDFmKFyMGQoXY4bClegx0+snFyIiIiIiIqLIYosnxZyBAwfq3QyIQsGYoXAxZihcjBkKF2OGwpXoMcPEk2JOnz59ol0FijOMGQoXY4bCxZihcDFmKFyJHjOJmU4TERERERFRzGDiSURERERERBHFxJOIiIiIiIgiimM8KeZs3rxZn0p6/Pjx0a4OxQHGDIWLMUPhYsxQuBgzFK5Ejxm2eBIREREREVFEscWTYk5ycjJkWYbZzPCk0DBmKFyMGQoXY4bCxZihcCV6zAiapmnRrgRFl8PhwM6dO/Xt4uJipKamRrFGREREREQUDZHKDdjVloiIiIiIiCKKiScRERERERFFFBNPIiIiIiIiiqjEHLlKce3AgQNQFAUmkwmDBw+OdnUoDjBmKFyMGQoXY4bCxZihcCV6zLDFk2JOQ0MD6urq0NDQEO2qUJxgzFC4GDMULsYMhYsxQ+FK9Jhh4klEREREREQRxa62FHOKi4uhaRoEQYh2VShOMGYoXIwZChdjhsLFmKFwJXrMMPGkmGOz2aJdBYozjBkKF2OGwsWYoXAxZihciR4z7GpLREREREREEcXEk4iIiIiIiCKKXW0p5jQ3N0NVVYiiiLS0tGhXh+IAY4bCxZihcDFmKFyMGQpXoscME0+CoiiG7dbW1ijVxGv37t36GkYjRoyIal0oPjBmKFyMGQoXY4bCxZihcMVKzLTPBdrnCkdL0DRN65aSKG5VVVXh4MGD0a4GERERERHFmPz8fPTt2/eYy+EYTyIiIiIiIoooJp5EREREREQUURzjScjMzDRs22w2mEym6FSGiIiIiIiiRlEUuN1ufbt9rnC0OMaTiIiIiIiIIopdbYmIiIiIiCiimHgSERERERFRRDHxJCIiIiIioohi4klEREREREQRxcSTiIiIiIiIIoqJJxEREREREUUUE08iIiIiIiKKKCaeREREREREFFFMPImIiIiIiCiimHgSERERERFRRDHxJCIiIiIioohi4klEREREREQRxcSTiIiIiIiIIoqJJxEREREREUUUE08iIiIiIiKKKCaeREREREREFFFMPImIiIiIiCiimHgSERERERFRRDHxJCIiIiIioohi4klEREREREQRxcSTiIiIiIiIIoqJJxEREREREUWUOdoVoMSjaRqWLVuGd999FyUlJWhtbUVubi4mT56M+fPnY/z48cf8HqWlpXjxxRexZs0aVFVVIS0tDQUFBZg9ezbmzJkDk8nUDZ+EekqkY0bTNCxfvhxLlizB5s2bUVdXB4vFgry8PJxyyim46qqrMHDgwG76NNQTeuI8E8if/vQnvP766wCAnTt3RuQ9KDJ6ImZcLhfefPNNfPrpp9i7dy8cDgdycnJwwgkn4Morr8Txxx/fDZ+EekpPxMz69evx2muv4ccff0RNTQ1sNhuGDBmCM888E1deeSUyMzOP/YNQVPm+N37729/ipptuOubyysvL8eKLL2LlypU4fPgw7HY7hgwZggsuuACXXXYZkpKSuqHWkSFomqZFuxKUOFwuFxYsWICvvvoq4H6TyYSbb74ZN9xww1G/x6JFi/CnP/0JkiQF3D9p0iQ8/fTTPFnHiUjHTGNjI2655RZ8++23QY+xWq3485//jNmzZx/Ve1DP6onzTCDff/89rrnmGvi+Npl4xo+eiJkdO3bgpptuwoEDBwLuFwQBv/rVr3DzzTcf9XtQz+mJmHn44Yfxn//8J+j+3NxcLFy4EMcdd9xRvwdF13fffYfrrrsOqqp2S+L59ddf45ZbbkFLS0vA/UVFRXjmmWcwaNCgY3qfSGHiSd3qtttuw7JlywAABQUFuPTSS9GnTx9s27YNb775JlpbWwF4T7azZs0Ku/yVK1fil7/8JTRNg91ux2WXXYaxY8eitrYW77zzDkpLSwEAp5xyCp5//nmIInuTx7pIxoyqqrjqqquwbt06AMDAgQNx8cUXY/jw4WhpacGqVavw2WefQVVVCIKAf/7znzjzzDO79wNSt4v0eSaQlpYWXHTRRTh06JD+HBPP+BHpmDl48CAuvfRS1NXVAQBOOukknH322cjMzMT69euxaNEiuN1uAN7Wj8suu6ybPhlFSqRj5j//+Q8efvhhAIDFYsGll16KcePGoampCZ9//rn+vZWeno733nsP+fn53fTJqKds3boVV199NRwOBwAcc+K5c+dOzJs3D263GyaTCZdccgkmTZqElpYWLFmyBBs2bAAAFBcX46233oLdbu+Wz9GtNKJusmrVKq2oqEgrKirSrrrqKs3lchn279q1S5syZYpWVFSkTZkyRWtubg6rfLfbrZ155plaUVGRNnHiRG3r1q0d9v/mN7/R6/DBBx8c82eiyIp0zLzzzjuG8ltaWjocs3z5cm306NFaUVGRduqpp3aoA8WWSMdMMPfdd5/+vr5/FB96ImZ+8Ytf6O/x7LPPdti/YcMGbcyYMfp7uN3uo/48FHmRjpmGhgZt4sSJWlFRkTZ58mRtx44dhv2qqmqPP/64Xodbb731mD8T9ayvvvpKmzRpkuE748knnzymMi+77DKtqKhIGzVqlPbVV18Z9qmqqt1///36e/3rX/86pveKFDYHUbd54YUXAABmsxl/+ctfYLPZDPsLCgrwxz/+EQDQ0NCARYsWhVX+Z599prc2XH/99RgzZoxhv9VqxUMPPaR3sX322WeP5mNQD4p0zLz11lsAAJvNhkceeQTJyckdjvGNowGAyspKfPPNN2F/Duo5kY6ZQL7//nu88cYbAIC0tLRjLo96VqRjZu3atVi5ciUAYO7cuQG7Xk6cOFFv5WxoaMB3330X9uegnhPpmPn222/1FtPrr78excXFhv2CIOB3v/sdBg8eDABYvnw5ZFk+qs9CPcvj8eDJJ5/Er371KzQ1NXVbuRs2bMD69esBALNnz8bpp59u2C8IAu6++24UFBQA8MZwsCFp0cTEk7pFQ0MDVq9eDQA49dRTg3YJmTFjBnJycgAAn3zySVjv8dFHHwHw/nFdfvnlAY9JSUnB3LlzAXgnINq7d29Y70E9J9Ix43A4sHnzZgDAySefjNzc3KDHnnfeefrjTZs2hfwe1LN64jzTXktLC+6++25omoZZs2Zh1KhRx1Qe9ayeiBlfd0ybzYZbbrkl6HGXXHIJLrvsMtx44436e1Hs6YmY8e+yP3LkyIDHiKKIsWPHAgCcTifq6+vDeg/qeatXr8b555+Pp59+GqqqIjk5Gddee223lO27BgaAK664IuAxoijq+xoaGvD99993y3t3Jyae1C1++OEHqKoKAJg6dWrQ40RRxOTJkwF4L/AbGxtDfg/feIfi4mJkZ2cHPc7//dl6FbsiHTP19fUYN24ccnNzMXz48E6PzcjI0B935x1K6l49cZ5p75FHHsGhQ4eQm5uLu+6666jLoejoiZj54osvAHhvcPXt2zfocSNHjsSf/vQn3HzzzXpCQbGnJ2ImNTVVf3zw4MGgxx0+fBiAdyIj/+8pik1Lly7VbyqMHTsWixYtws9+9rNuKdt3DZyRkYHRo0cHPc4/Zn09MWIJE0/qFmVlZfrjoqKiTo8dMWIEAO805b7JgLpSWVmpJwSFhYWdHuvrZgB4Zxmk2BTpmMnPz8eiRYuwatUq3HHHHZ0eu3v3bv0xZ0OOXZGOmfb8u9jee++9jI04FOmYqaqqQm1tLQBvd1ofSZJQUlKCb775Blu3bmU3yTjSE+cZ/2VY/vvf/+oTT/lbu3at3mtnypQpsFqtIZdP0ZOdnY177rkHb7/9th4fx0pRFP06paCgoNOJM4cNG6YvKRiL18BMPKlblJeX64/z8vI6PbZ///4BX9cZ/24pXZXfr18//Y/Sd7eQYk+kYyYc7777rv54woQJ3V4+dY+ejBn/Lrbnn38+zj777LDLoOiLdMzs2rVLfzxo0CBIkoSFCxfitNNOw+zZs/HLX/4SF198sT7TuqIoYX4C6mk9cZ4ZO3YsTjvtNADAnj17cOWVV+L7779Hc3Mzjhw5gtdffx2/+c1voKoqUlNTcfvtt4f5KSga5s+fjxUrVmD+/Pndup58TU0NPB4PgK5j0mQy6UOLYvEa2BztClBi8E0hDwBZWVmdHuvfatDQ0BBS+f5jG7oq32KxIDk5GQ6HI+TyqedFOmZCtXLlSqxYsQIAkJOTg1NOOaVby6fu05Mx4+tim5WVhXvuuSfs11NsiHTMHDlyRH9stVpx5ZVXYuPGjR2Oa2howN///nds3LgRjz/+OCwWS0jlU8/rqfPME088gVtvvRVfffUVNm/ejKuvvrrDMccffzz+8Ic/dJhMkWLTuHHjIlJuODEJeLvjHjlyJCavgdniSd3C5XLpj9vP/taef3cR/9d1xul0hly+/zGhlk89L9IxE4qKigr83//9n7594403IikpqdvKp+7VUzHj38X2j3/8Y6djyim2RTpm/Bdxf/jhh7Fx40YUFhbi2Wefxfr167Fu3To89thjGDBgAADg888/xxNPPBHGJ6Ce1lPnmZSUFPztb3/TWz7bEwQBw4YNYxd/SqhrYCae1C38x690NQ7Bf3+o4178uyeFMs7BdwzH1cSuSMdMV+rq6nDdddfp47NOOeUUfVkVik09ETP+XWynT5+OCy64IPyKUsyIdMz4lsQAvJPEjBo1Cm+++SbOOOMMpKSkID09HRdccAHeeOMN/QbGSy+9FJEhA9Q9euq76aOPPsIZZ5yBb775Bv369cNvf/tbPP744/jLX/6Cc889F4B3GMiFF16oj/Wk3imRroGZeFK38G8l6mrdIF8/dSC0PyDAeIcnlHWJfO/B7kyxK9Ix05nq6mpcddVV2LNnDwBgyJAheOSRRyAIwjGXTZHTEzHj62KbkZGB++67L+w6UmyJdMxommbY/vOf/2yYsdRnwIAB+N3vfgfAezG4ePHikMqnntcT55nly5fj//2//weXy4UTTzwRH330EW666SbMmDED8+bNw5NPPonnn38eSUlJaGlpwfXXX4/q6urwPwwlhES6BmbiSd0iOTlZfxxodjZ//ifqULoMhFu+/zHsNhm7Ih0zwRw4cADz58/XZy4cMGAAXnzxRXanjAORjhn/LrZ33nlnp0tjUHyIdMzY7Xb98dChQzsd4+VrxQKgLwRPsSfSMaNpGh588EEoioKMjAw8+eSTAW9WTJs2TZ9UqLGxES+88EJI5VPiSUlJ0R/H+zUwE0/qFunp6frjrgYz++8P9WLfv/yu1sqSJEnv/sRkInZFOmYC2bx5My677DLs378fgHd2uFdffbXLWeIoNkQyZvy72J566qmYO3fu0VaTYkikzzP+CcOwYcM6PTY7O1sfr1dVVRVS+dTzIh0zJSUl+tqdF1xwQadjOC+99FL95sbXX38dUvmUeNLS0vTHoawX6zsmFq+BOastdYuhQ4fqjysqKpCfnx/0WP9ZAAcOHHhU5XemsrJSX/w51PKp50U6ZtpbuXIlfve73+k3JUaMGIEXXngB/fr1O6ryqOdFMma2bt2qL9u0cuVKFBcXd/ka3zF5eXn48ssvuzyeel6kzzODBg0Kqz6+7pi+7yiKPZGOmX379umPu1on1Gq1oqCgwHB+ot6nb9++SElJQUtLS5dLpCiKonfLjsVrYLZ4UrcoKCjQH/svvhyIb78gCCgsLAyp/KysLOTk5IRUvv+6al2d1Cl6Ih0z/r788kvceOONetI5YcIE/Pe//2XSGWd6MmYoMUQ6Zvy/Y7qaMEhRFL2FjOee2NWT55lQuk361iXvznUhKf744nL37t2dHrdnzx59MqJYvAZmiyd1i+OOOw4WiwWSJGHNmjWYP39+wOMURcG6desAACNHjjR0aenK5MmT8cknn6CkpATNzc2Grgf+vv/+e/3xlClTwvgU1JN6ImYAYO3atViwYIE+IP+UU07BU089ZRjHQ/EhkjFTWFiIp59+usvjnnjiCf1i03d8LI6jIa9In2eysrJQWFiIsrIylJWV4ciRI+jfv3/AY7dt26aPCYzFC0LyinTM+N902Lp1a6fHyrKsT4IXi61X1HMmT56MzZs3o7a2FmVlZUFvdPhfA0+ePLmnqhcytnhSt0hPT8fUqVMBeFuXgnUF+PDDD/WFcM8///yw3sM3MYMsy/oEIO05HA68//77ALzjbUaOHBnWe1DP6YmYqa2txYIFC/SLvZ/97Gf417/+xaQzTkUyZrKzs3HWWWd1+c9/8W7fc9OmTTvGT0aR0hPnGd+SO5qm4d///nfQ4/773//qj8N9D+o5kY6ZcePG6WODly9f3unwoSVLlsDhcADw3jSl3st/crL/3979x9V0P34Af4V7S5L8mh8xTAhhlWlUVJiZNazl1yZse5i2/NoMs/nVxpSZ0LKtzOZ3tVFIyXSZWAn5EUN+JBW66NbqVvem+/3jPjrfe3dvdVM3Pryef90f73PP+9xzTt3Xeb/P+71161a9ZR49eoQdO3YAUN8X+jT+b2LwpDozdepUAOrBfT799FPhj2WFa9euYcWKFQDUI3R5e3vX6POHDRsm3E/zww8/4NSpU1rvKxQKzJ8/X+jKNG3atMfYCqpPxj5mvv76a+GHQd++fbFu3bo6mY6FnhxjHzP07DH2MTNhwgRhEI+dO3ciOjpap0xUVJTwuoODA/r161fTzaB6ZMxjRiwWC3NGy+VyzJkzR/g/penMmTNYuXIlAPW0GFOmTHmcTaFnRL9+/WBvbw8AiIyMRGxsrNb7KpUK33zzjdBCPmnSpKeyN46J6r+TUBHVwqxZs3Dw4EEA6kEXJk6ciHbt2uHSpUvYuXMnioqKAADLly/HhAkTtJZNTk6Gj48PAHUXWX1XdBISEvDxxx9DpVJBJBLB29sbDg4OkMlkiIiIwNWrVwGo/7Fv27aN90T8DzDWMXP9+nWMGjVKmGdv/vz56NSpU7X1sbKyQv/+/etk28g4jP13piqTJ0/GyZMnAQBXrlyp7aZQPTH2MXPo0CHMnj1buLfK3d0dHh4eEIvFkEgkiIuLA6CecmP37t2wsbEx2rZS3TDmMVNcXIxJkybh0qVLANRdtseOHQtbW1s8evQISUlJiImJQVlZGQBg2bJlmDhxolG3l4xD81jw8/PDzJkz9ZbLysrC0KFDAVQ+YN3Fixcxfvx4KJVKmJiYwNPTEy4uLigpKUFUVJQwTVPnzp2xe/durWlYnha8x5PqVEBAAIqKipCYmIisrCysXr1a630TExP4+fnp/JE2lIeHB5YuXYoVK1ZAqVRix44dQreCCn369EFISAhD5/8IYx0zUVFRWpO7BwYGGrTc44QRql/G/jtDzx5jHzPDhw/HmjVr8NVXX6GwsBASiQQSiUSrjJWVFTZu3MjQ+T/CmMdM48aNsWnTJsydOxdJSUnIy8vTO0+nSCTCokWLGDoJANC7d28EBQXh888/h1wux969e7F3716tMp06dUJYWNhTGToBBk+qY40bN0ZYWBj27duHqKgoYSAgKysrODo6wsfHB46OjrVax8SJE9G/f3/89ttvOHHiBKRSKUQiEbp37w5PT0+MGzcOIpGojraIjM1Yx0xF6zc9e+rj7ww9W+rjmBk5ciQcHR2xfft2JCQkIDs7GyYmJujYsSOGDRuGSZMmPZXz6pF+xj5mWrRogV9//RWHDx/G3r17ce7cOTx48ABisRjW1tZwdnbG5MmTOc80aRk2bBhiYmKwefNm/PXXX7h79y5MTEzQpUsXjBgxApMnT35qQyfArrZERERERERkZBxciIiIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiOqcUql80lWgKnD/EFF9a/SkK0BERMaTnJwMHx+fx17e2toaCQkJdVij/+fh4YHs7GwAwJUrV4yyjvq0YcMGBAcHV1uuUaNGMDMzQ6tWrdCjRw84OTlh9OjRsLCwqIda1o7m8TR27FisWrVKp0xJSQmCg4PRpEkT+Pr66ry/cOFC7NmzBwCwZcsWODk5GbfSRlaTc8zExARisRiWlpawtrZGnz59MHbsWPTu3dvItfx/1e0fIiJjYYsnERFRPSorK0NhYSEyMjJw8OBB+Pv7Y+jQoYiPj3/SVau1K1euYNSoUQgNDUVZWdmTrs5TR6VSobS0FFKpFGfPnsXWrVvh5eWFJUuWoLy83Ojr5/4hoieJLZ5ERM+JZs2a4aOPPqrRMk2bNjVSbZ5tdnZ2eOONN/S+9+jRI8jlcty+fRvx8fFQKBSQyWSYPXs2Nm7cCDc3t/qtbB26ePEisrKynnQ1npjqzrHy8nIUFhbi+vXrSExMRHFxMVQqFcLDw2FmZoZFixYZtX7P+/4hoieLwZOI6DlhYWGBDz744ElX47nQrVs3g77ru3fv4v3338f169dRXl6OpUuXIj4+HqampvVQy5pzcnKqdbfoVatW6e2i+yyoyTkmk8mwcOFCSCQSAOpux+PGjYONjY0xq0hE9MSwqy0REdET0rZtW/zwww9o0ED97/ju3btGu6eWni5WVlZYv349XnzxRQDqbri7du16wrUiIjIeBk8iIqInqEuXLnB2dhae//3330+wNlSfxGIx3nrrLeH5szDIFhFRZdjVloiIHsuNGzewd+9epKSkIDMzE/n5+TAxMYGlpSW6desGV1dXeHt712q01vT0dERGRiI5ORm3b9+GQqGAlZUVOnfujIEDB8Lb2xsvvPBCtZ9z584d7Nq1C4mJicjKykJRURGaN2+OXr16Yfjw4Rg9ejREItFj17O2unbtimPHjgFQt3pW5uHDhwgPD8exY8dw48YNFBYWwtLSEp06dYKrqysmTJiAFi1aVLkuhUKBffv24dChQ0hLS4NMJoOpqSlatWoFe3t7vPbaa/Dw8NC7bGWj2uob0Tc4OFh4zc/PDzNnzgSgf1Tb8vJyuLu7C9seFRWFnj17VrkdERERWLx4MQDAy8sLK1eu1ClTXFyMyMhIJCQk4Nq1a5DJZLCwsEDnzp0xZMgQTJw4EVZWVlWux9hatWolPM7Nza2y7IULF3DgwAGcOnUKd+7cgUwmg0gkQrNmzWBrawt3d3eMHTsWYrFYa7ma7B9NeXl5CA8Px9GjR3Hr1i0UFBSgWbNmsLGxgYeHB8aNG4fGjRs/7qYT0XOGwZOIiGpEqVTi66+/RmRkpN6ROEtKSpCbm4vjx4/j559/RkhICOzt7Wu8npCQEGzYsEFnHVKpFFKpFCkpKfj555/x5ZdfYty4cZV+zi+//IKgoCCUlpZqvZ6bm4vc3FwcOXIEoaGhWL9+PXr06FHjetaFiq62ANCwYUO9ZcLDw7Fq1SrI5XKt1x88eIAHDx7gzJkzCAsLw6JFi/DOO+/o/Yzbt29j+vTpuHHjhtbrSqVSGGl3z549ePnll7Fx48ZqQ2xdadCgATw9PREaGgoAiImJqTZ47tu3T3g8ZswYnfdPnDiB+fPnQyqVar2el5eHvLw8pKamYtOmTVi+fDlGjRpV+414TLdu3RIea4ZQTYWFhVi4cCEOHTqk855SqYRcLsedO3cgkUgQGhqK0NBQdOnSpVb12rdvH/z9/VFQUKD1+v3793H//n0kJSUhNDQU3333HV599dVarYuIng8MnkREVCMLFixATEwMAPWclC4uLrC1tUWTJk1QUFCAc+fOISUlBSqVCg8fPsTMmTMRFxdXo5bP6OhorFu3DoA6lLi4uKBXr14wNzfHvXv3cOTIEWRnZ6OkpASLFy9Ghw4dMGjQIJ3PWb16NcLCwoTn9vb26N+/PywsLJCTkwOJRILc3FxkZGRg4sSJ2LFjB2xtbWv5DdWcZhfLinv+NP38889Ys2aN8LxDhw5wd3dHq1atIJVKIZFIkJ2djaKiInz55Zd4+PAhpk+frvUZCoUCM2bMEEJnu3bt4Obmhnbt2kEul+Pq1as4cuQIysvLcfbsWfj5+WHHjh0G1d/Z2Rnm5uZIS0vDgQMHhNcquhAbcuFhzJgxQvA8cOAA5s2bV2nZe/fu4dSpUwDUc82+8sorWu8fPnwYs2fPhlKpBAB06tQJgwcPRuvWrSGTyZCYmIirV6/i33//xWeffQa5XA5vb2+DtrUuFRQUIDo6WniuL8CVl5fjww8/RGpqKgDAzMwMQ4YMgY2NDczMzJCXl4eTJ08iLS0NgPriwuzZsxEVFSVc0Kjp/tm+fTv8/f2F5z169MCgQYPQvHlzSKVSHD16FJmZmZBKpfjwww+xceNGuLq61uE3Q0TPIgZPIiIyWFJSkhA6LS0tsWXLFr0tU8nJyfjoo49QXFwMqVSKP//8U2+rVGVCQkIAqEOnvilGvvjiCyxatAh79+4FAPz44486wfPw4cNC6LSyssL333+vdS8lAJSWlmL16tXYunUrioqKMGvWLOzfv1+nq6IxpaenIykpSXg+ePBgrfeTkpK0QufMmTMxY8YMNGr0///CFy5ciA0bNuCnn34CAKxduxb9+vWDk5OTUObgwYO4du0aAGDAgAEICwvTGT33/PnzmDJlCuRyOU6fPo2UlBSdUKePg4MDHBwcsHv3biHY2Nvb12gUZRsbG/Tu3RsXL15EdnY2zp49i5dffllv2QMHDggt4Z6enjAxMRHey8nJwcKFC6FUKtGgQQMsWLAAPj4+Wq3KCxYswO7du7FkyRIolUr4+/vDwcEBXbt2Nbi+tZWZmYn58+fj4cOHANRTF7377rs65fbs2SOETmtra2zZsgUdOnTQKRcTE4N58+ahvLwcV65cwenTp4V9V5P9k5aWhm+//RYAYGpqipUrV+LNN9/UKvPFF19g06ZN+P7776FUKjFv3jzExsbWWws5Ef1vYvAkInpOFBYWYtOmTQaXHz9+vE4rZcW9eYA6AFXWHdLJyQljx44VWszS0tIMDp4ymQwZGRkAgO7du+ud11IkEsHf3x+HDh1CcXExrl69CoVCIQRGlUqFtWvXCuXXr1+vFcIqmJqa4quvvsLt27dx5MgR3Lp1C9HR0fXW+pWWloY5c+bg0aNHAIDevXvrhOOgoCDh8bRp0+Dn56fzOSKRCJ9++imKioqwbds2lJeXIygoCDt37hTKnDt3Tng8ZcoUvVO29O3bF++//z6Cg4PRoEEDnD9/3qDgWVfGjBmDixcvAgD2799fafDcv3+/8FhzcB5A3Tpc0T30k08+wdSpU/V+xttvv428vDwEBgZCoVDgxx9/xOrVq2tV/+rOseLiYshkMly6dAnnz58XWmTFYjHWrFmjN7hpnnNffvml3tAJAKNGjUJ0dDSOHj0KQD1n5+Psu3Xr1gn1Wr58uU7oBNTdwadPn467d+9i+/btkMlk2LJlC+bMmVPj9RHR84PBk4joOZGfn4/AwECDy48YMUIneL7++uvo0qULsrKydH7w/5fm/ZJFRUUGr1ezJS87OxtSqRStW7fWKde4cWP88ccfaN68uc4P9tTUVKSnpwNQt+zoC52afH19ceTIEQDA3r17ax0809PTKw0gpaWlePDgAc6fP4/z588Lr5ubm+vsn6ysLKG1y9zcXG/o1DR37lzs3r0bcrkcZ86cwY0bN/DSSy8B0L53NDU1FcOGDdP7GT4+PnjzzTdhbW1dry2/APDmm28iICAAZWVliIuLw6JFi7RaKgEgIyND6FZqZ2en1UqpUCiErqtisRjTpk2rcn0+Pj4IDg6GXC5HXFwcVqxYUattruk5BqjD/uLFi9G3b1+970+YMAGvvvoqcnNz9V6E0dSjRw8heBYWFtaoHoC6C3PFIFdt27at9mKRr68vtm/fDkB93jB4ElFVGDyJiMhg7u7ucHd3r7acXC5HVlaW8LysrMzgdVhYWKBnz574559/8O+//8LLywtTpkyBm5ubTlfIyrpGpqSkCI979+5d7Tp79eoFsVgMhUKB8+fPo6ysTCsA11RaWpoQjgzRuXNnBAUFwcbGRut1zS64Li4u1d4na2FhARcXF8THxwMATp06JQTPV155Bb/++isAICwsDNnZ2Rg9ejScnJxgbm4ufEazZs3QrFkzg+tel1q0aAFXV1dIJBJIpVKcPHlS575HzdbO0aNHa7138eJFYfClzp07o0mTJlWuTyQSwc7ODidPnoRCocCFCxfg6OhYR1tTOXt7ezg7O8PNzQ19+vSpsqy+Fkd98vPzce/ePeF5Tc65ChX3ZgNAz549tbow69O6dWtYW1sjOzsb2dnZuHfvHtq0aVPj9RLR84HBk4joOWFtbY2EhIQ6/cyioiLcvHkTmZmZuH37Nm7evInLly8jPT1d64dvxY9ZQ82bNw/Tp0/Ho0ePcO/ePQQGBiIwMBDt27eHi4sLXF1dMWjQoEqDWMW9jACwbds2bNu2zeB1l5SU4OHDhwZN0/I4zMzMYGFhgbZt26J3795wc3ODm5ubTsseAK3wbuigR7a2tkLwvH37tvC6h4cHBgwYgJMnTwIAYmNjERsbC5FIBAcHB7i4uMDNzQ3du3evzebV2ujRoyGRSACo71usLHg2atRIZzRazf1+9erVGo9SfOfOncepskDfOVZSUoJr167h119/FUbiTU9Ph6enZ7WhU5/8/HxkZGQgMzMTmZmZuHHjBi5fvozr169rnWc1PecA7e9PIpHU+PvLyclh8CSiSjF4EhFRjZSXlyM6Oho7duxAWlqa3ilVAHXXzop7F2vKxcUFISEhWLp0qda8ljk5OYiIiEBERATEYjHc3Nwwbdo0ODg4aC2fn5//WOvVXL42wVNzjsvakMlkwmND55vULKf5PTRo0AAhISH45ptvEB0dLQQTpVKJ5ORkJCcnY82aNejUqRPefvtt+Pj4aLWE1pehQ4fC0tISBQUFiI+Px5IlS4Q5Vi9evIibN28CUB8jLVu21Fq2LvZ7XTMzM4OdnR2+++472NnZ4dtvv0VhYSH8/f0hlUoN6p6qUCiwa9cuREZG4urVq5WWq805Bzyd3x8RPTsYPImIyGBFRUXw8/PDiRMntF43MTFB27ZtYWNjAzs7OwwYMABZWVlYvHjxY6/Lzc0Nhw4dwtGjRxEfH4/ExERhBFBA/WM8Pj4e8fHx+OSTTzBr1izhPc0f36+//nql989V5r+B5kl5nFaryi4EAOqRUwMCAvDJJ58gJiYGEokEFy5c0Frm1q1bWLt2LSIiIiodQdWYxGIxRo4cifDwcMhkMpw4cQJDhgwBUHU3W0B7v/fu3bvG83NWNphRXZk6dSpu374ttMBv3LgR7du3r3Ie2oopSy5fvqz1eoMGDWBtbY1u3bqhT58+cHJyQmJiojAi9OPQ/P4GDhxY4ylSajt3KBE92xg8iYjIYCtWrBBCZ5MmTeDj4wNXV1dhHk9NFYOO1IZYLMbw4cMxfPhwqFQqXLlyBUlJSTh27BiSkpKE7rw//PADBgwYIHTLtLS0FD7D3t6+0pFNn3aa91rm5eUZtIxmOc3vQdOLL74IX19f+Pr6oqCgACdPnsSJEycgkUiQk5MDQD2w08KFC2vUTbmuvPXWWwgPDweg7m47ZMgQqFQqxMbGAlAH6KFDh+osp7m9bdq0qdF0LvVlwYIFSElJEeZuXbFiBRwdHSu9X3nevHlC6GzZsiWmTp2KQYMGoVu3bjojEx8+fLhWddP8/mxsbJ7K74+I/nfp3lBCRESkx7179xAVFQVA3cK5efNmzJkzB46OjnoHcdEMQI/TcvdfJiYmsLW1xdSpU7Fp0yYkJCRo3YNWMZopAHTs2FF4XDG6bXU0W1OfFp06dRIeVwSV6vzzzz/CY83voTKWlpYYNmwYlixZgoSEBK1W6pSUFCGI1qf+/fsLdZdIJCgrK8Pp06eFezBHjBihdzoYze3VvF+xKvn5+VW2Etc1sViMVatWCYNXlZSUYMGCBXrrcO7cOWGAKXNzc4SHh2P69Omws7PTu/2GXpyozON8f3l5eXVyfhPRs4/Bk4iIDHLhwgWhK17Pnj3Rr1+/KssnJycLj2vyw/Tw4cP44IMP4O7ujp9++qnScm3atMGMGTOE55ojevbv3194fPToUWFewspcuHABAwcOhL29Pby8vB5rRFBj0NyOxMTEaqfI+Pfff/H3338Lzyu6jj569AgLFizA22+/DWdnZygUCr3Lm5iY4L333tNqfdO8x7Y61Y2CWhMVXWkLCgqQkpKCuLg4nff+y97eXgh0mZmZ1Yb10tJSjBgxAn379sVrr72m053VWHr16qU11cuFCxeEOW81nT17Vnjs7Oxc5YUElUolDBwF6O9yXd3+0TzeTp8+Xe3FmNzcXLi6uqJfv34YOXLkU3nxhoieHgyeRERkEM2wojnojT5//vmn1o/gmgQ5lUqFxMRE5OTkICYmpsplNVt4NEfTHDhwINq2bQtAfY9cZXNqVqxvzZo1ANTTwHTo0KFWU6nUpU6dOsHe3h6Aum7BwcFVll+3bh2Ki4sBAN26dRNahBs2bIjLly/j4sWLuH//fpVdMsvLy7X2b01GKdUcmbc2g9wA2uHy8OHD+PPPPwGoR4595ZVX9C7TpEkTDB8+XHgeGBhY5UWPsLAw5OXlQalUQi6X60xnY0x+fn6wtrYWnq9duxa5ublaZTTPuepaM7ds2VLtFEbV7Z+uXbsK90MrFAqsXbu2ynUGBQVBqVSitLQUTZo00ZlPl4hIE4MnEREZRHM6j5ycHPz22286ZcrLyxEZGYnPPvtM6/WKMGSIwYMHo3Xr1gDU3Uv9/f1RUlKiU+7mzZtaQey1114THotEInz88cfC83Xr1mHz5s06rUDFxcVYvny50ErYqFEj+Pr6GlzX+jB79myhpWrz5s0IDg7WCRVlZWVYv349tm7dCkDdsrVo0SKtMl5eXsLjZcuW4fz58zrrUqlUCAgIwIMHDwCoB+jRDEfV0ZzeJjs72+Dl9HnxxReF0P3HH38I3Ww9PT2rbLnz9fWFWCwGoG4l/vzzz3VailUqFSIjI7UG4vH19a3XCw5mZmZYsmSJ8LywsBArV67UKqN5zp0+fRqHDh3S+RyFQoEff/wRAQEBWq/rO+cM2T+zZs0Svt+IiAgEBATotJCXlZUhJCQEf/zxh/DazJkz9X4eEVGFp+OSLhERPfVeeukluLi4IDExEQCwcuVKxMbGwt7eHhYWFrh37x7++usvISCIRCKhi2t1LaSaxGIxvvjiC3z66acAgPDwcCQkJGDw4MFo3749APUcjUeOHEFpaSkAYMiQIXB3d9f6nPHjx+PUqVPYu3cvysvLsWrVKuzatQuDBw9GixYtkJOTA4lEAqlUKizz2WefGTxfZn0ZOHAg/Pz8sGHDBgDAhg0bsGfPHri7u6NVq1a4f/8+JBKJVmvXxx9/jEGDBml9zoQJE/D777/jypUrkMlk8Pb2hrOzM7p3744WLVrgwYMHSExMFO7tE4lEOuG1Opoj4O7btw9NmzZFmzZt0K1bN3h4eNR428eMGYPU1FTI5XLhtbfeeqvKZXr06IElS5Zg8eLFUKlU2LdvH44dO4ahQ4eiY8eOePjwIZKTk7W64bq7u2PSpEk1rl9tubm5Yfjw4UKgjI2NhZeXlzCabMUgQunp6VCpVPDz84OLiwt69eoFU1NTZGdnQyKRCK2h1Z1zhuwfV1dXzJgxAxs3bgQA/PLLLzhw4ADc3d3Rpk0b5Obm4tixY1pzxL733nvCyMNERJVh8CQiIoMFBgZi2rRpwo/21NRUpKam6pTr3r07Vq1ahfHjx0OpVCI9PR0KhUJoiarOqFGjkJeXh1WrVkGpVEIqlWq1rmgaMWKETmtPhYCAALRv3x6bNm2CUqlERkYGMjIydMqZmZlh3rx5mDx5skH1q29+fn5o3rw5vvvuO8jlcmRlZQmtm5rMzc2xbNkyvfdAisVihIWFwdfXF2lpaQCA48eP4/jx4zplW7VqhW+++Ubrnj9DdO/eHfb29khNTYVKpRJGNvbw8His4PnGG29gxYoVQoubnZ1dpaO/avL29kbTpk2xdOlSyGQyyGSySo8fLy8vLFu2rE7vT62Jr776CsePHxfCtb+/P/bv3w9TU1M0bNgQGzZswPvvvy8M8pSYmChc/NHUv39/zJ07F++++y4A9Zyn/2Xo/pkzZw5atmyJNWvWoLi4GHfv3sXOnTt1Pq9hw4b48MMPMXfu3Np/EUT0zGPwJCIig7Vs2RKRkZEIDw9HXFwcrl27hsLCQpiZmaF169awtbXFsGHDMHLkSDRq1Aivvvoqjh07huLiYhw8eBCenp4Gr+u9997D4MGD8fvvvyM5ORkZGRkoLCxE48aN0bp1awwYMACenp5VhqMGDRpg7ty5eOeddxAREYETJ04gKysLhYWFMDc3R+fOnTFo0CCMHz9eaE19Wr377rsYMWIEdu3ahcTERNy6dQsFBQUwNzdH165d4ebmhnHjxlV5n90LL7yAiIgIxMXF4eDBg7h06RLu37+PsrIytGjRAl26dIG7uzu8vLzQtGnTGtfRxMQEoaGhCAoKQkJCAqRSqVYrXE1ZWlrC3d0dBw8eBFD5oEL6vP7663BxcUFkZCT++usvpKenQyaTQSQSoV27dnB0dIS3t3eN53ita23btsXMmTOFiyeZmZkICQkRwlyXLl0QHR2Nbdu2ISEhATdv3kRxcTEaN26Mdu3aoWfPnnjjjTfg5uYGExMTvPTSS7hx4wYyMzNx5swZODg4COuqyf6ZPHmyMJ/q8ePHkZGRgfz8fJiamqJjx45wcnLC+PHjDboQQEQEACYqjoFNRERERERERsTBhYiIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqP4PkpRIwAOMKVMAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=postproc_clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ " group_name_map=group_name_map,\n",
+ ")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0e66e388",
+ "metadata": {},
+ "source": [
+ "#### Theoretical results:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "eed1f839",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Maximum fairness violation is between group=1 (p=[0.12562792 0.65148158]) and group=2 (p=[0.10094174 0.70148158]);\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy: 79.9%\n",
+ "Unfairness: 5.0% <= 5.0%\n"
+ ]
+ }
+ ],
+ "source": [
+ "acc_val = 1 - postproc_clf.cost(1.0, 1.0)\n",
+ "unf_val = postproc_clf.constraint_violation()\n",
+ "\n",
+ "print(f\"Accuracy: {acc_val:.1%}\")\n",
+ "print(f\"Unfairness: {unf_val:.1%} <= {EPSILON_TOLERANCE:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "493d213c",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Plot realized ROC points\n",
+ "> realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "fcd2aaf9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set group-wise colors and global color\n",
+ "palette = sns.color_palette(n_colors=n_groups + 1)\n",
+ "global_color = palette[0]\n",
+ "all_group_colors = palette[1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "4c70252e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8wAAAPbCAYAAACJ+wJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1xT1/sH8E8mEFbYSxAcOFDce++6pXVUrdZRR62jrVat9at11VWt27pn3QrujXtgFUVFcStDmWHIDsn9/cGP21ySMAMh8LxfL19yT+5Nntyc3NznnnPP4TEMw4AQQgghhBBCCCEcfH0HQAghhBBCCCGElEWUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEIIIYQQQogGlDATQgghhBBCCCEaUMJMCCGEEEIIIYRoQAkzIYQQQgghhBCiASXMhBBCCCGEEEKIBpQwE0IIIYQQQgghGlDCTAghhBBCCCGEaEAJMyGEEEIIIYQQogElzIQQQgghhBBCiAaUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEIIIYQQQogGlDATQgghhBBCCCEaUMJMCKkQMjMz9R2CQaH9RQghdCwkhABCfQdACCm49PR0BAQE4MaNGwgKCkJcXBzi4uLA5/NhZWUFKysr1K5dG61atULLli1hYWGh13jXrl2LdevWscsvXrzQSxynTp3C3r17ceDAAY2PBwQEYPjw4ezy7t270axZs9IKr0zJyMjAli1bEBMTg3nz5uk7nEIJDg7GkSNHcP/+fXz8+BGZmZmws7ODm5sbunXrhh49esDS0rJEY4iMjMThw4dx69YtvHv3DikpKZBKpXB0dET79u3Rt29fuLq6Fvj5zp49ix9//LFIsQQHB0MoLH8/8zNnzoSvry8AwMXFBf7+/nqOqPwYNmwY7t27BwBo2rQp9uzZo+eI9Ofdu3dYuHAhxo4dq/X3oGPHjoiIiAAA+Pj4YMmSJaUZIiGklJS/X1JCyiG5XI4dO3Zg27ZtSEhI0LhOamoqIiIi8PTpUxw6dAhGRkb46quvMGXKFEil0lKNt6x4/fo15s2bh3v37sHFxUXf4ZR5V65cwcKFCxEeHg4fHx99h1Ng6enpmDdvHo4dO6b2WEREBCIiInDnzh2sWbMGCxYsQOfOnUskjp07d+Kvv/5Ceno6pzwmJgYxMTF48uQJ/v77b0yYMAHjxo2DQCDI9zmfPXtWIrESQjRLT0/Hhg0bsH37dsjlcowdO1bfIRFC9IwSZkLKuMTERIwbNw4PHz5Ue8zU1BTm5ubg8XhITExEamoq+1hGRgb27duHixcvYvPmzahdu3Zphl0mbN26lW0tIflbsGAB21piKDIyMjB69Gjcv3+fU25mZgaJRILY2FgolUoAgEwmww8//IDFixfjyy+/1Gkcy5Ytw7Zt2zhlYrEY1tbWkMlkbLdOuVyO1atXIywsDIsXL873eVUTZnNzc1hZWRU4Jh6PV+B1CSHZgoKCsGnTJn2HQQgpQyhhJqQMYxgGU6ZM4STLXl5eGD58OFq2bAl7e3vO+p8+fcK1a9ewY8cOvH//HkB269bo0aNx9OhRODs7l2b4hJS4hQsXcpLlpk2b4pdffoG3tzcA4PPnzzhy5AhWr16NtLQ0AMCcOXNQtWpV1KtXTycxnDx5kpMsu7i44Ndff0X79u0hEomQlZWFK1euYPHixewFiWPHjqFGjRoYMWJEns+tmjBPmDABo0aN0knMhBBCCCkYGvSLkDLs+PHjuHPnDrs8aNAgHDlyBP369VNLlgHAyckJX3/9NU6ePImePXuy5TKZDPPnzy+VmA1Rs2bN8OLFC/ZfRb1/2dAEBQXh8OHD7HKHDh2wc+dONlkGsltlR44cid27d0MikQDIbuUtSOtuQSQnJ3PuW6xUqRIOHTqELl26QCQSAQCEQiG6dOmCo0ePomrVquy6a9euhUwm0/rcnz594jxeEXuJEFKW+fv7s78bdP8yIeUXJcyElGH79+9n//bw8MCcOXPA5+f/tRWLxViyZAmqVavGll25cgXv3r0rkTgJ0YctW7aAYRgA2V2wFy9erPW+YG9vb8yaNYtdfvjwIW7dulXsGI4dO4bY2Fh2ecGCBbC1tdW4rpWVFdauXcsOxJWcnIxdu3Zpfe7g4GDOMiXMhBBCSOmjhJmQMio9PR1Pnjxhlzt06FCoEW/FYjFGjx7NKbt9+7bO4iNEnxITEzmjI/fr1y/f+3t9fHxgZ2fHLp88ebLYceSM1gwAnp6eaNmyZZ7rV61aFZ06dSpQDKrdsd3c3PQ+6j0hhBBSEdE9zISUUUlJSVAoFMV6jlatWnGWo6OjC7Td+/fv4evri3///RehoaFISEiAiYkJrK2tUa9ePbRr1w7dunXTyZQ1RZki5tixY/j111/Z5cuXL6NSpUoA1KeIyhEREYEaNWqwy6oDPxVlWqm0tDScPHkSN2/eRHBwMGQyGRQKBaytreHh4YGWLVuiT58+cHBwyPf9qMZ15swZVK1aFenp6Thz5gzOnTuH169fIzY2FsbGxnB0dESrVq3Qr18/znZFlXvqrxy+vr6cZFB1H+eWkJAAPz8/3L17FyEhIYiPjwePx4O1tTWqV6+O1q1bo3fv3jodrf3WrVuc70dBRr4WCoVo164djhw5AgC4ePEiFi5cWOR6HBsbi+fPn7PLqolwXjp16oTz588DyK6Xjx8/5nQjz6GaMOuzdTk8PJzz3h4/fgwjIyOcOXMGmzdvxrt372BlZQVPT090794dvXv31rhPIyMjceLECdy8eRMfPnyATCaDkZERbGxsUK9ePbRv3x7dunUr0OjhhXX79m3cvn0bDx48QGRkJBISEiCXy9mB1Ly9vdGyZUt88cUXEIvFGp9j8uTJ7OcGZF/E/Pvvv/N83Tt37mDkyJFsTwhXV1f4+fnBzMxM4/oMw+DKlSvw9/dHYGAgYmNjkZqaCqlUCldXV7Rq1Qp9+vSBm5tbod6/TCbD0aNHce3aNbx69QopKSmwtraGp6cn+vXrh+7du5fIfs8tKioKvr6+CAgIwOvXr5GQkACRSAQbGxvUqlULbdq0Qa9evWBiYpLn86ges83NzdlxDF6/fo0DBw7g1q1biIyMhFKphIODAxo0aIB+/fqhRYsWWp9TdYooVaq/Dbmn2irItFKqx+mc42hycjJOnDiBs2fP4sOHD4iPj4eNjQ1cXV3Rp08f9O7dG8bGxpznuX37No4ePYonT54gMjISIpEIlSpVQps2bTBs2LA8f2uKMl1YQaaFVF1H9f0HBQXh6NGjuH//PiIjI8Hn8+Hg4IDGjRtj8ODBqFmzJud5ZDIZjh07hgsXLiAsLAyfP3+GlZUV6tatiy+//BKdOnWiQQyJXlHCTEgZZW1tDZFIBLlcDiD7h/ann37SejKniYODA06fPg1LS0tIpVL2nkptEhISsHDhQpw+fZodWTiHXC5HUlIS3r9/j+PHj8PV1RWzZs1Cx44dC//mDNyBAwfw119/aZzi69OnT/j06RNu376NtWvXYujQoYX+3AIDAzFz5kx8+PCBU56RkYHExES8ePECO3fuxNdff43Zs2eXyomuJgqFAps2bcKWLVs4I7TnyJnS6erVq1i9ejXGjh2LMWPG6OTER7X3BY/H05hwalK/fn02YU5OTsarV69Qq1atIseQkwgBQIMGDQocg6rAwECN8at2yfby8ipSjCVl586dnPvAc+r906dP0bdvX866mZmZWLVqFfbu3YuMjAy1xz5//sweVzw8PDB37tw8E5vCuHPnDpYsWYKQkBCNj8tkMshkMrx58wa+vr5YsWIFlixZovH158+fj8DAQMTExADIvs3l9OnTnPEiVCUmJmLGjBlsHREKhVi5cqXWZPnhw4eYN28e5yJMjpypyQIDA7Fx40YMGDAAM2fOVEuqNNm3bx/+/PNPpKSkcMqjoqIQFRWFGzduYM+ePVixYkW+z1VUaWlpWLFiBQ4cOMD+puXIzMxESkoKQkNDcf78eaxevRo//fQTvvrqq0K9xu7du7Fs2TK15//w4QM+fPgAPz8/tGzZEkuWLCnQhcyScvv2bcycORNRUVGc8pzv0L1797B3715s2rQJjo6OSExMxP/+9z/OxRog+/cgJCQEISEhOHDgAFavXq12kby0paSkYNGiRTh69KjaY58/f8br169x6NAhzJw5E99++y0A4NKlS/jtt9/Ufk+jo6Nx+fJlXL58GZ07d8Zff/1VqN9RQnSJumQTUkYJhULOVdgPHz5g0qRJ7MlaQVWrVg12dnb5JsuhoaHo06cPTp48yUmWRSIRHBwc1LqDhoWFYcKECdi4cWOh4ilpxsbGcHNzg5ubG0xNTdlyoVDIlru5uWk9ac2LUqnEtGnTMHfuXM6PO4/Hg1Qqhb29PSd5zcjIwPbt2zF8+PA8B3dS9ejRI4wcOZJNlvl8Puzs7GBtba0Wy759+4o9mJulpSW7T1RbBU1NTTn7K3f9ycjIwMiRI7F69WpOsszn82FrawtbW1vO/fafP3/GihUrMGHCBLV5iovi1atX7N/Ozs6czzovHh4enOU3b97oJAYAnAG98lKpUiXO/nz79q3aOnFxcZweIV5eXggPD8eaNWswePBgNGvWDHXq1EHr1q0xZMgQbNiwocA9SIrr1atX+PPPPzU+1qFDB87nnpiYiJEjR2Lbtm2cZFkkEsHR0RFWVlacCyjv3r3Dd999xxm/oaiOHz+O7777Ti1ZtrS0hIuLC2xtbdUu3kRGRmLMmDF4+vSp2vNJpVL88ccfnLKFCxciPj5e4+vPnTuXkxRNmTJF64WdkydPYvjw4WrJslQqhZOTE4yMjNiyrKws7N+/H0OGDEFcXJzG58uxbNkyzJs3j5Ms5xxTVHt8PHr0CN9++22Bj1OFER8fj4EDB2LPnj2cZFYgEMDe3l6t50lMTAxmzZqFOXPmqF241WbPnj1YtGgR+/xCoRAODg5qLdW3b9/GgAEDEBYWpvYcLi4ucHNzUxtQ097enj0OahpsszCuX7+OMWPGsPWCz+fD3t4e5ubmnPVCQkIwefJkJCcnY+TIkWyynPPZ5f49/vz5MyZPnoyPHz8WK77ikMvl+P777znJskQigaOjI+d3UalU4o8//sC1a9dw8uRJTJw4kf09zVk/dw+VS5cuaT3mEFIaqIWZkDJsxIgRmDp1Krt89epVdOjQAZ06dUKXLl3QqlWrQs3Lqo1MJsOoUaM4J3e1a9fG5MmT0apVK/aqbmhoKPbv38+e+DAMg1WrVsHW1hYDBgwodhy6UK9ePVy8eBEAt7u3g4MDW15UixYt4txzamZmhnHjxnHujU1JScGlS5ewevVqtqvew4cPMWXKFOzYsSPf7r9z586FXC6HVCrFxIkT0atXL/YzjoqKwo4dO7Bjxw52/YMHD2rs4lZQw4cPZ7scqnYv7Nq1q9ZRX3OmOwsICGDLbG1tMXHiRPTo0QOWlpYAsnssnD59GuvWrWNPxP39/fG///0Py5cvL1K8OSIjI9m/HR0dC7xd7pal4pxgqsbA4/EK3GolEAhga2uLT58+AYDGbqC5E7ZDhw7h4sWLardp5LQ8PnjwAJs2bcKYMWMwYcKEAg0OWFRLly5Va8XLodp1m2EYTJ06lTPtV5MmTTB+/Hg0bdqUPa7Exsbi1KlT2LhxIxISEpCVlYX58+fDxcUFbdu2LVKMERERmDt3LrKysgBkn4hPmTIFvXr14gzKlpycjOvXr2P16tXsVHxyuRwrV67E9u3b1Z63bdu2GDJkCPbt2wcg+9i5aNEitZN5Pz8/nD17ll1u3rw5vvvuO42x3r9/HzNnzuTEOmbMGPj4+MDJyQlAdm+Ohw8fYvPmzbh27RqA7B4IU6ZMwc6dOzUeV06dOsWZ7kwikWDChAkYMGAAm6S+f/8eW7duxZEjRxAeHq59hxZReno6xowZg5cvX7Jlbm5umDJlCjp27MiOXJ/TVXvTpk3sBbiDBw/C2toaP/74Y56vkZqayvZ2kEql+Omnn9CnTx9IJBIolUoEBARg6dKl7MWIqKgoTJw4EYcPH+a0WOZ0U859i86ff/6ps5kTFi5cCIVCAQcHB0yZMgU9e/aEsbExGIbBvXv3MH36dPa4EhQUBB8fH4SGhsLY2Bg//PADBgwYwP4eBAcHY+7cuWxvm+TkZOzcuZMzuGFpOnv2LHt86tOnD8aOHYvq1asDyL5wtmbNGuzdu5ddf+7cuYiNjQXDMGjUqBF+/vlnNGzYEHw+H2lpadi7dy9WrVrFfi/279+PcePGwcbGpvTfHKnwqIWZkDKsR48eaieMcrkc586dw9SpU9GiRQv06tULc+bMgZ+fn8ar5gWxatUqzra9evXCoUOH0KFDB84JhZubG2bMmIFt27axJzpAdldFfV7ZLg2PHj3i/Ng7OTnh0KFDGDt2LGcgKVNTU/Tt2xd+fn5o1KgRW37v3j2NJ+C5yeVyODs7w8/PD8OGDeNcEHFwcMDMmTM5J5AMw+DUqVPFfHeFc+bMGVy5coVd9vT0hJ+fHwYPHswmy0D2yevQoUPh6+vLaX09ceIEzpw5U6wYVFvWCnPRKHdrlqZu9UWJwdzcPN9eHNriSExMVHtc9f5lADh37hx7MioSieDk5KTWqp6eno61a9fihx9+0JrQ6kLOvZDDhg3DhQsX8OjRIxw/fhyjRo3iDHq2b98+3Lhxg10eNWoU9uzZg9atW3OOK7a2thgxYgSOHj2KypUrA8huhfr111/VunAX1KZNm9h5t3k8HtavX48RI0aojWBuZmaGHj164NChQ5zWw7t37+Lz588an3v69OmcngonT55kk1ggO1lfsGABu2xlZYVly5ZpvIiRmZmJqVOnskmBvb09jh07hgkTJrDJMpB9kaVx48bYvHkzpkyZwpb/+++/nONSjoyMDM4FL4lEgl27dmHMmDGcuufu7o6FCxeW2LSDu3fv5tw+0bx5c/j6+qJXr16c3xAHBweMHz8eBw8e5BxP//77bzx69CjP11AoFFAoFHB0dMThw4fx9ddfs8/N5/PRokULHDx4EK1bt2a3yenGXNoUCgVcXV1x6NAhfPXVV2yXeh6Ph2bNmql1iw8NDYVIJML27dsxduxYzrHOy8sLO3bs4CSQV69eLZX3oUnO8ennn3/G8uXL2WQZyO7V8b///Q/Nmzdnyz59+gS5XI5OnTph9+7daNy4MfsdMTExwZgxYzh1PTMzUyczGxBSFJQwE1KG8fl8rF27Fj169ND4OMMwePXqFQ4ePIgZM2agc+fO6NChA3777Tf4+/sX6KQ5PDyc04WqVq1aWLx4cZ4n/82aNcPcuXPZ5czMTGzZsqUQ78zwrF69mv1bIBBg1apVeXbBtbCwwLp16zgn6Dt27GBP4vMyb948zslybqNHj+Z04QsKCsr3OXWFYRisWbOGXZZIJNiwYQPnJDc3R0dHrFu3jnO/5YYNGzj3/xaWajdw1RPv/OReN/d9naURQ+71NcWQO2EGskcCP3z4MJ48eYKrV68iMDAQZ8+exYgRIzjfV39/f07CVhLGjx+P2bNno3LlyjAxMUHNmjUxY8YM9jPOysrC1q1b2fWbNm2KGTNm5Hn/eqVKlTgJQ2xsLHu/eWEolUpOb5L27dvnO3q5paUl+vXrxy4rFAqNLf9A9sn88uXLOa268+bNQ2pqKpRKJaZPn47k5GT2sT/++ENr7wNfX19OT4U///xT7baB3CZMmIAOHTqwy9u2bUNmZiZnndOnT3Nu35k2bVqe9/kPHDgQPj4+eb5uYaWkpHDqgIODA9asWZPn7TCenp5YuXIlW08YhsGGDRvyfS0+n4+VK1dqHQzNyMgIf/75Jye53LlzZ7GOQUU1c+ZMrb1iGjduDFdXV07ZsGHDOBdfVZmbm+OLL75glz98+FDki0y64OXlhbFjx2p9PHcdMzY2znPgxf79+3OWc98GQ0hpoYSZkDLO2NgYf/31FzZs2FCggX8+fvyII0eO4Pvvv0f79u2xc+fOPBNnf39/tnUDACZOnFiggTX69evHmedZ00Bh5UViYiLu3r3LLrdv315t4CZNrK2tMWLECHZZJpPh5s2beW7j6OiINm3a5LmOWCzmDFSl7R7KkvDixQu26yqQfUKT+wRPkypVqnBOll69eqVxcKOCUq3ThRnlWiAQcJI21bpfWjHkXl9TDKoDfolEImzYsAFLly6Ft7c3J/4qVarg119/xc6dOzlJ+MGDBzldoXVJIpHkeVIMZN8rqtrrRNPI9ZrUrVuXM3jauXPnCh2fQqHAypUrsXDhQowfP15tej1tcidbmgayU43z+++/Z5cjIiKwdu1abN++nbPfv/nmmzwHRlS9WFmjRo0Cd/395ptv2L+jo6PVWmFV95uFhUWBbpkZP358gV67oO7evcvpPTFq1ChODxRtmjZtyjkGXr9+Pd9jXPv27bUmlTmsrKwwePBgdjkiIoLT+l0a7O3t8x3R39PTk7OseiFHk5xeGTk09VgpLYMGDcrzoljumR3atm2rNj6HKmtra8792vp8b6Rio4SZEAPRqVMnHDt2DCdOnMCkSZNQv379fE/SY2NjsXjxYgwcOJC9XzI31bmZJRIJ2rdvX+CYVEeHTUxMLFYCVJYFBARwLgZoGxVXk969e6s9V15yJ0TaqLbo6mIQrYK6c+cOZ7kw+6JXr16c5fz2RV5UW4b0Nd1IScawfPlyLF26FJMmTcJff/2V75RVjRs35vT6AFCglrmi8Pb2zneQtdzJemFG+W7YsCH7d1BQkFrraX5EIhFatGiBAQMG4KeffkKTJk3y3YZhGLUu2PlN6/f999+jXr167PKePXs4PVE8PT0xffp0rdunpqYWeST0hg0bcupcTjd5IPu9PHjwgF1u0aJFgS6Curu762Squhy6OlYwDIN///03z/VzH2e1yZ2squ630lC3bt1811HtPSQWizldmzXJ/V0s7PdFl/KbrSB374KCTJen+v70+d5IxUaDfhFiYGrUqIEaNWpg4sSJSElJQWBgIO7fv4/79+8jKChIY2vys2fPMHToUBw5ckTtau67d+/Yv2vWrFmolrLcP/5v374tc9Pf6ILqPgKAOnXqFHhbR0dH2NnZsd0jNY2InHv9glA9AS7Nln3VfSEQCAo1P3CdOnXA5/PZePPbF3kRiURs18PCtBIrFApOoqs6+nBRYshR2JZq1fU1xdCoUaN8W8xy69OnDzZs2MCOsH7v3j0kJyezJ6mqc7HmR9OcqzkKctKfu0v5sGHDCjwQWVJSEvt3RkYGoqOjtc4BXhTx8fEIDw9HWFgY3rx5g+fPnyMoKAixsbGc9fL7XgkEAixbtgw+Pj5ITU3lHHtzegblVb9evXrFqQcXL14scq8A1QG7IiMjOV3Cc7dY5qVWrVp5fvaFoXqscHBwyPO2jdw0/bbkRfXCRV6qVavGma6xOKPkF4Wzs3O+66heCLG0tMz3e1OSA/wVVl63EgHqFxYLMv5EWXp/pOKihJkQA2Zqaoo2bdqw3dfS09MREBCA8+fP4+TJk5yrsREREfjjjz/URnNVHfSoMCc0mtYvzgBKZVnu7oCF3U+2trZswpzfPiro9Ej6orovLCwsCjUvprGxMczMzNiEqDj1xczMjE2YC3JfeI7c9wvnnnamsDHkKEwMueMoTgyq+Hw+2rZty472K5fLERISgsaNG+vk+XPkHjhLk9zTExVnBOaEhIQiJ8xKpRJ37tzBxYsX8fTpU7x7946TTBaXu7s7ZsyYoda6P336dM4tK5rk3kefP3/WOtBYflS/S7mnHsyry2tuxZ02SZXqsaIkf1t4PF6+iVoOkUgECwsLdsC+/Kbl0rXCHt8Nbd7hwk7XaGjvj1RcdNmGkHLE2NgY7dq1wx9//IHLly9zBoYBskc3Vp06CgDn5LGwP+a5T/QLmzQYCtV9xOPxCj3Ak+p+ym8fqc5XWRap7ovC7gegcPsiL6qD9xQm8c59D1xBkr+CxJCUlJRvF15tcehympTc95OXREKQe85YTXSZlOZ1L3FeAgMD0bdvX4waNQr79+/HkydPNMYlEonQpEkTdO3atUivo2lAr4JcIChqcqyJ6gWY3N1WC3NBpijz02tTnGNFYX5bTExMCtUKqTr4YGl38S3sWAeGpry/P1JxUc0mpIxKS0uDTCZDXFwcHBwcCjzHaw57e3ts2LAB3377LdsNU6FQ4N69e5z7vSQSCdviV9gRg3XZWlcYhUlMdEH1ZI9hGKSmphbqBLAkWhP1RfV9FyWR0dW+cHFxYed2jY6OLvB2uS8YFfZ7lTuGHEqlErGxsQV6PoVCwen+W5h5pPOjmgzkvJauFeR+bdU4bG1tS306mGvXrmmcXsvBwQHVq1eHh4cHqlSpglq1aqFWrVowNjbG8ePHceHChUK9jkwmw+zZs9XKd+7ciY4dO+Z5/3Tu+v/7779zBqUqqtytdoX5nupyOrLiHCsK89tS2JhVn7soF/0qitL+nSWkLKOEmZAy6O3bt+jevTu7PGrUKMyYMaPQz8Pn8zF69GjOfYu5EwapVMomzLm78uUn93MVt6WsoPfiFrXFqahyz90bExOjNjJpXlQTusJ0jyyLVPdFUlISMjIyCnwfcHJyMudktTj7omrVquxc0OHh4cjMzCxQ977c90IW5v5OTTHkfu6CJMxhYWGck3xtg/okJydDJpPBxcWlwD0Pct8+oHqPYE5X7dKQe55ppVJZavcixsfHY/r06ew+5vP5GDlyJIYMGZJn1+6iTMczZ84czsUPiUTCTi81Y8YMnDhxQmurbe7jiq5Gu89dBwvTy0CXt9Wovr/i/rbkdayQy+Wce/XzkpGRwWnZ1+XFKkNRVn9nCSnLqEs2IWWQvb09pxVHdcTTwsp9gpg7uVE9WX/+/HmhBi/KPSWHtjkw86J6El3QE1bVeUtLQ+6k6vHjxwXeNiwsjHMiXJhEuyxSrS8KhYIzym9+nj59yhlwqzj7QnWQn6ysrALHoTr9jpmZGdzd3YscQ+4RzQtaL3JPAZR7gKN169bB29sbjRo1QpcuXQq9j3PweDydjnpcGKoXE+RyOdsboCASExOLNfK7n58fJ/GbPHkypk+fnu990LmPK/nN0Xvs2DHOfM/9+/fHnDlz2OWIiAgsXLhQ6/ZVqlThLBfmc2YYBjExMRpjdHBw4EzfVJjnDQkJKfC6+VE9VkRFRaklwXnJ/duS37GioHGHhIRwWk719f0obYbwO0tIWUYJMyFlkJmZGWee3aCgILWT7IJSnTMXUG/NUu0ymJaWBn9//wI9L8MwOH36NLtsZmaGmjVrFjo+1a52Bb0PtKCJia6m+mnUqBHnuVTfd35yr1vYkY/LmtxdTM+cOVPgbXPvi+IMRtWiRQvO/XKXL1/Od5usrCxcv36dXW7ZsmWx7rmzsrLijJhekBgAcL5juZ8DyB5JV/WkVjXmvCQkJHC6PtesWVNvPRpy15PCzKc8duxY1KtXDy1atMDAgQMLnTwHBQVxlr/++usCbZd76qK8EuaIiAgsWrSIXXZwcMDMmTPh4+OD1q1bs+W+vr6cpFqVjY0N58LC7du3C3xf882bN9G6dWt4e3uja9eu2L9/P+fx5s2bs3/fvXuXM/K4NvHx8Wr7rjh0dazg8Xj5Hjdzepvk5/z585zlli1bqq2jr2nqSpLq72xBezKU9hzVhJRllDATUkZ99dVXnOX58+cXepAkhmGwfft2dtnOzk4tSfniiy840+OsX7++QAOh+Pn5cZLxzp07Fyn5UB0NNSsrK98TtuDgYAQGBhbouVVPfPJrLcqLlZUV5yT42rVrePjwYb7byWQy7N69m102NTVF27ZtixxHSVNthdC2v2rXrs05yT969ChCQ0Pzfe43b97gxIkT7HKlSpUKNT1Xbubm5mjXrh27fPjw4Xy7k/r6+nK6hvbr16/Ir59Ddb7YoKCgfKdtevPmDSex7tu3r1pX5Xbt2nG+SwcOHCjQIFqrV6/mdKMcMmRIvtuUlHbt2nFaOfft21egFsYrV66wFwdlMhnMzMzU7svOT+6ksyDd2S9fvqz22Wm7Nzanu7XqZ7JgwQJ2MLT58+dz7o393//+pzZlVY4+ffqwf6empuLvv//ON1alUok1a9YAyB606sOHD2otpT4+Puzf6enp2LZtW77Pu3PnTp0OgtWmTRtOt+zt27cXqMt3QEAAbt++zS43btw438H5jh49qjbqeG4xMTE4cuQIu9ywYUO1QfIA9WmMivPbUVao/s5+/Pgx39bjS5cu4ePHjyUdFiEGgxJmQsqogQMHcrrsBQcHY+jQoXj9+nWBts/IyMDMmTM53bm///57taTWycmJMwhYSEgIZs2alWfX7H///RcLFixgl0UiEb777rsCxZVbw4YNOcsbN27Ueo9VdHQ0Zs6cWeB7sFSvqhd31N5x48axfyuVSvz0009q8zOrSk5OxqRJkzj3D37zzTc6HYVW1wqyv3g8HsaOHcsup6amYuLEiVoTAiC7O+akSZM4LYVjx44t9j2to0ePZv9OSEjAlClTtJ7wP378GH/88Qe77OnpqTaKfFH079+fkxRMnToVERERGtdNSEjApEmT2O+WkZERhg8frraejY0NevbsyS7HxMTk+53ctWsX9u3bxy5Xq1ZNJxcEisrU1BTDhg1jlxMTEzFhwoQ8k5r379/jt99+45Sp1rWCUh2MDchOpvJy584dzJo1S61cW13avn07pzW6b9++nIs3Li4umDZtGrscHx+vcWAwIPuihuqo49u2bcs33qVLl3J62TRp0kTtONquXTvOHOlbtmzJc0CzK1euYOvWrXm+bmGZmJhw6kB0dDSmTJmS5+CSr1+/xtSpUzlJ6vjx4/N9rfj4eEybNk1rb4SUlBT89NNPnNHpv//+e43r5r5Ao8sR3/VFtX4olUps2LBB67pv3rzB/PnzSyMsQgwGJcyElFFisRhr166FhYUFWxYcHIw+ffpg8uTJOHHihNpgLgzDICQkBFu3bkWXLl3g5+fHPta+fXutLU4zZ87k3N938uRJDBw4EFevXuWcNIaFhWH58uUYOXIk56Rn0qRJWgcuyk/Dhg3h7OzMLl+/fh0TJ07Emzdv2LLPnz/jn3/+wZdffomXL18WePor1e6oSUlJhepKnVuTJk04yc2nT58wYMAAbNmyhdNqmZqaipMnT6Jfv364f/8+W16rVi1MmDChyK9fGlT3V0BAAOczUNW3b1907tyZXX7x4gX69euHAwcOcE5IExMTsW/fPvj4+HCeq02bNhg4cGCx423UqBGnhe7u3bsYOHAg7t69y55wJycnY+fOnRg+fDjb+ioQCDBnzpw8E/aOHTuiRo0a7D9t0wSZmZlxkqPo6Gj0798ffn5+7HdHoVDg0qVL+PLLLzn74fvvv1dL7nJMnz6dM2DX+fPnMWTIENy5c4dz28LTp08xefJkzsUAExMTLFu2TO9znI4bN45zf/bTp0/h4+ODw4cPc1qBk5KS8M8//2DQoEGcY5qPjw+na3FBdevWjbP8559/YuXKlZyLOllZWXjw4AF+/fVXjBo1SmPLp6ZEKSQkBKtXr2aX7ezsNCbbQ4YM4fTmuXLlCg4ePKi2noWFBeezYxgGs2bNwtSpU/Hs2TNO+ePHjzF+/Hjs3LmTLTcxMVGbAxrIbiVdsGAB23tIoVDgxx9/xB9//MFpOYyKisKff/6JiRMnFmr8ioIaO3YsvL292eW7d+/Cx8cHp06d4vSGiImJwebNmzFw4EDO8XTQoEGc3j15uXXrFgYNGoSbN2+y35GsrCz4+/tjwIABnIscvXr10trbJ/fglUeOHNHp6OH60KFDB06vh4MHD2L27NmcuhAXF8d+BlFRUYWeZpKQ8oxGySakDKtWrRr27t2LH374AWFhYQCyT3zOnz/P3oslEolgY2MDuVyOxMREjSc9Xbp0wZ9//qn13ixLS0ts2rQJY8eOZVvHgoODMW7cOPb509PTNZ5Ujh49mtP6WlhCoRAzZ87ElClT2CTn8uXLuHz5MtsdU/VEVyQSYf369RgxYkS+z+3l5cVZ/vnnn7FkyRIAwMiRIzFq1KhCxTpjxgzIZDKcOnUKQHYi/+eff2LFihWwsrKCSCRCXFyc2mdQs2ZNbN68udBdS0tb7dq1cffuXQDZ7613795wdHREWloaNm3axJ748ng8LF26FD/88AO7fkxMDObOnYt58+axJ5xxcXFqvQFatGiBVatW6ew+wd9//x0RERFsT4rnz5/j22+/hUQigbm5OWJjY9Xui//111/znO6nsAYMGIBXr15h165dALK7Es+YMQOzZ8+GjY0N4uPj1Qba+eKLL/JsObO1tcW2bdswYsQI9v7ToKAgjBgxAiYmJrCyskJCQoLaSLYSiQSbNm1Sq/v6IBaLsX79eowdO5YdlCkyMhKzZ8/G3LlzYW1tDT6fj5iYGLV60rJlS/z+++9Fet1WrVqhc+fOuHTpEoDspGnTpk3YtGkTzM3NYWxsrLFuenl54dmzZ+xxKHe31czMTEyfPp1zEXHu3Llqo10D2d+RhQsXom/fvuxnv2TJErRo0UJtcMSuXbvit99+w5IlS9i6eurUKZw6dQoSiYT9rHO3zBoZGWHlypVaL1bWqVMHy5cvx7Rp05CVlQWFQoFdu3Zh165dsLGxAY/HQ1xcHPt+bWxs0Lp1axw/fjzP/VsYYrEY69at49SBDx8+YOrUqRAKhexvV3x8vFrX5169enEGUcuLp6cnXr58iZCQEIwePRomJiaQSqWQyWRq373mzZvnORibo6MjbGxs2Is3V65cQbNmzSCVSmFlZZVvD4CySCqVYvLkyezvH5B9G8vhw4fZ+qv6+25hYYGlS5dqbYUnpKKhFmZCyrgaNWrgxIkTmDBhAqe1OYdcLkdkZKTGRM3FxQVLly7FunXr8k3WqlWrhiNHjqB79+6cZCbn+XMnyy4uLli/fj2mT59e9Df3/7p164YlS5aovb/k5GROsuzi4oLt27ejRYsWBXredu3aqbVOREdHIzo6mjOacEEJhUKsWLECv/32G+ckmWEYyGQyREVFcT4DsViMUaNGYf/+/bC3ty/065W27777jhOnQqFAREQEZDIZp7ULyG5Z3bZtG77//ntOV26lUomYmBi1JMjU1BRTp07F1q1bddot3dTUFFu3boWPjw+n3qampiIqKoqTLFtYWGD58uWcbqK6MmvWLEyfPp2zL3K+O6on7AKBAKNGjcLKlSvzvWjg5eUFX19fNG3alFOelpaGjx8/qiXLTZo0waFDh9TW1ycHBwfs378fgwcP5oyVoFAoEBMTg6ioKE49EYlEGDduHDZt2lSsC0x//vmnWkszkH0hKHfdFIvFGD9+PA4cOMAZjTn3Pc2rVq3Cixcv2OUePXqgS5cuWmPw8PDApEmT2OXU1FRMnz5d48CGw4cPx5YtW9RGzk5NTUVERIRaslyjRg3s3bsXHTt21Pr6ANC9e3fs2rVLLUmPi4tDbGwsm6S6urpiy5YtcHJyyvP5ikJbHcjKykJUVBRkMhknWba2tsbChQuxYsWKAo+LMWvWLAwbNoz9TqWlpeHTp0+c715O3dq6dWue8zrzeDzMmDGD8/1MSUlBREQEnj17VuixRMqKkSNH4pdfflGbKSMhIYHz+16zZk3s3bu3WFPuEVLeUAszIQZAIpFgypQpGD9+PG7cuIF79+7h+fPniIiIYFuv+Hw+LCws4Orqirp166J9+/Zo0aJFgedvBbJPVFatWoWXL1/i9OnTCAgIQHh4OBISEiAQCODo6Ig6deqgS5cuRR7kS5t+/fqhbdu2OHr0KK5cuYL3798jKSkJNjY28PDwQPfu3dGrV69CdRPj8XjYuHEjdu7ciTNnziA8PBxpaWkwMzMr1kAuw4cPx5dffomTJ0/i5s2bCAkJgUwmg1wuh6WlJapXr47WrVujb9++nMFWyjobGxscO3YMmzZtwvXr1xEdHY2srCxYWVlpPEkUCoX48ccfMWzYMJw4cQK3bt3CmzdvIJPJoFAoYGNjg5o1a6Jt27bo3bu3xgs+uiCRSLBkyRJ88803OHHiBO7cuYPo6GgkJyfD3Nwc1atXR5s2bdC/f/8SHTV69OjR6NWrF44dO4Zr164hLCwMCQkJMDY2hpubG5o1a4YBAwaozd+cl0qVKmHPnj0IDAzE6dOn8eDBA3z69AnJycmwsLBgB/Lr0qVLgS8klTaJRILff/8dY8aMwalTp3Dnzh28f/8e8fHxUCqVsLS0RLVq1dC8eXP4+PgUaC7r/JiYmGDNmjUICAiAr68vHj16hKioKGRkZEAikcDGxgbVqlVDgwYN0KdPH/ZCUefOndl7ee/cuYPQ0FC4ubnh/v372LFjB/v8VlZW+N///pdvHKNGjcK5c+fYC3QPHz7E5s2bNbbctWrVCqdPn4a/vz+uXr2KR48eISYmBsnJyTAxMYGDgwO8vb3RrVs3tGnTpsDH9saNG+PMmTM4ffo0zp49i+DgYCQkJMDc3ByVK1fGF198gf79+8PMzCzP+5yLI6cOfPfddzh58iRu376NDx8+sCM229nZwcvLCx06dECPHj0KfbGEz+dj9uzZ6NOnD/bv34979+4hOjoaYrEYHh4eaNOmDQYMGMC5/ScvOcfuXbt2ITg4GPHx8RCLxXBwcEBkZCQ8PDwKvQ/Kgu+++w7du3fH0aNHce3aNYSHhyM1NRV2dnaoXr06evbsiS+++AJisVjrbSiEVEQ8pjwM/0cIIYQQQiqEgIAAzpgSu3fvRrNmzfQYESGkPKMu2YQQQgghhBBCiAaUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEIIIYQQQogGlDATQgghhBBCCCEaUMJMCCGEEEIIIYRoQPMwE0IIIYQQQgghGlALMyGEEEIIIYQQogElzIQQQgghhBBCiAaUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEJIGaVQKPQdQokor++LEEJI+UMJMyGkQklJSUHnzp3RqVMnZGZmch57+/YtpkyZglatWqFOnTpo3bo15s+fX+zXHDZsGGrUqIFhw4YV+7lIxaBUKrF3714sXrxYL6/fsWNH1KhRAzNnztT5c58+fRq//PKLzp+3Ijp27Bhq1KiBGjVqIDw8nPNYTvnatWv1FF3hBAQEaH0v+jZz5swiH8PDw8PZ9xUQEFDsWDIzM9GlSxd07NgRycnJxX4+Qkj+KGEmhFQof/zxB8LCwvDLL79ALBaz5XFxcRg8eDDOnTuH2NhYyOVyxMTEwNjYWI/Rkorql19+wYIFC8rdCfFff/2Fn3/+GTExMfoOhRCDJBaLMX36dERERGDRokX6DoeQCkGo7wAIIaS03L9/H0eOHEGDBg3wxRdfcB7z9/dHQkICAOC3335Djx49wOPxOEl1Udnb28PNzQ329vbFfi5SMURHR+v19V1cXCAQCGBjY6PT542KitLp8xHt3NzcAACWlpZ6joToWpcuXdCwYUMcO3YMPj4+aNq0qb5DIqRco4SZEFIhMAyDBQsWAACmTJmi9nhOi5dUKsXw4cN1+torVqzQ6fMRUtL27Nmj7xBIMV28eFHfIZASNHnyZIwYMQILFizA8ePHwedTp1FCSgp9uwghFcK5c+cQEhICT09PtGjRQu3xnEGITE1NSzs0QgghpFBatGiB6tWr4+XLlzh79qy+wyGkXKMWZkJIhbB161YAwFdffcUpnzlzJnx9fdnliIgI1KhRAwDQtGlTTktbcnIyjhw5guvXr+Ply5dISEiASCSCra0tGjZsiKFDh8Lb21vttYcNG4Z79+6pPV/Oa/fu3RtTpkzB3Llz8eDBA4jFYlSrVg1r1qzB27dv2RbvFy9e4M2bN9i6dSvu3LmD2NhYWFpaonHjxhg1ahTq1aun9f3Hx8dj165duHLlCsLCwqBQKODk5IQ2bdpg1KhRcHJy0rhdWloa9u/fjwsXLuDVq1fIyMiAVCpF7dq10aNHD/Tu3RsCgUBtu4SEBOzZswdXrlzBu3fvkJWVBWtra3h7e6Nv377o3Lmz1ljzExERgUOHDuHKlSuIiIiAQqGAq6srOnTogFGjRkEqlWrc7v79+9i/fz8CAwMRExMDiUQCDw8PdO7cGUOHDoVEIlHbJucz8vHxwZIlS3D69GkcPHgQL168QFpaGlxcXNClSxeMHj1aY9dXhmFw9uxZ+Pn54enTp0hMTISZmRk8PDzQoUMHDBkyBObm5mqvl8PX15ddfvHiBYD/6tP48ePRtWtXzJ8/H8+ePYNEIkGdOnWwceNG9lYCmUyGAwcO4NatW3j37h2SkpJgZGQEe3t7NG3aFMOHD0fVqlXV4u7YsSMiIiLY913c/bF27VqsW7eOXb537x77Pbt8+TIqVarEeV0XFxf4+/tr/Bzz8/DhQ/zzzz+4f/8+4uLiYGJiAk9PT/Ts2RP9+/eHSCTSuu2zZ8+wY8cOPHjwALGxsXBwcED37t0xfvx4nDt3Dr/++qtabMeOHcOvv/6q9l5UhYeHo1OnTgCAxYsX48svv9QY97Fjx/DgwQNER0cjPT0dZmZmqFq1Kjp16oSvv/5aYx3VJmf/Tpw4EZMmTQKgXr/yo+n9fPz4ETt37sSNGzfw6dMn8Hg89vs3YsQIWFlZaX0+mUyG3bt34/LlywgPD4exsTGaNGmCCRMmFDgmbRQKBU6fPo0TJ04gODgYnz9/hqWlJby8vNCnTx/07NkTPB5P6/YPHz7Ezp078eTJE8TGxsLJyQndu3fH2LFj833t5ORkHDx4EKdOncKHDx8gFArh7e2NMWPGwMXFJc9tg4KC2PoaHR0NIyMjODk5oXnz5hg+fDjbtV6T/v37Y/Hixdi6dSt69uyZb5yEkKKhhJkQUu49ffoUT58+BQB069atSM/x5MkTjB8/HrGxsZxyuVyO0NBQhIaG4vjx41i4cCH69+9fqOdOTEzEt99+i4iICABAeno64uPjYWdnh7dv37Lr+fv746effkJ6ejpbFhsbi3PnzuH8+fNYunQp+vbtq/b8d+/exeTJk5GYmMgpf/fuHd69e4dDhw5h2bJlavsmISEBw4YNw8uXLznlMTExuHbtGq5du4ajR49i8+bNMDExYR8PCwvDsGHD8OnTJ852kZGRiIyMxIULF9CjRw+sWLGi0N0Iz549i1mzZiE1NZVT/vLlS7x8+RLHjh3D9u3b4enpyT6mVCrx+++/4+DBg5xtEhMT8ejRIzx69Aj79u3Dxo0bUbNmTY2vyzAMpk+fjuPHj3PK3759i02bNuHUqVPYv38/HBwcOI//8ssvOHnyJKcsISEBDx8+ZBO73bt3w93dvVD7Acjez99++y0+f/4MAOyo7znJ8rVr1/Djjz+q7Su5XI7k5GS8ffsWx44dw/r169G2bdtCvXZR90dJUiqVWLZsGXbs2MEpz8zMxL///ot///0Xhw4dwt9//60xrn379mHhwoWcKa9CQ0OxadMm+Pv7F/p7XVAKhQK///47Dh06pPZYfHw87t+/j/v378PX1xf79++HmZlZicSRG5/PVxvD4fTp0/j111+RkZHBKX/x4gVevHiBAwcOYP369WjcuLHa8z19+hRjx45FXFwcW5aamorz58/D398fQ4YMKXKscXFxmDhxIgIDAznlsbGx7LHq0KFDWLNmjcYLahs2bMDq1as5Ze/fv8fGjRtx8eJFuLq6an3tsLAwfPfdd3j//j2n/MaNG7h58yZGjhypdduDBw9i7ty5YBiGLZPL5Xj16hVevXqFAwcOYNWqVVovMHbr1g2LFy/Gs2fP8PjxY40XbAkhxUddsgkh5d6ZM2cAANWqVVNrSZ0/fz4CAwMxbtw4AICzszMCAwMRGBiILVu2AMhuPfj+++8RGxsLW1tbLFq0CBcuXMDdu3dx/PhxTJo0CSYmJmAYBosWLVJLUPJz/fp1REdHY/78+bh16xYOHTrEtlip+vnnnyGVSrF06VJcv34d169fx5w5c9jX1jSq8suXLzFu3DgkJiaiUqVKWLZsGa5fv447d+5g8+bNqFOnDtLT0/Hzzz/jwYMHnG1XrlyJly9fQiKRYM6cObh48SLu3r0LX19f9OnTB0B2S+GuXbs42/3+++/49OkTbG1tsWzZMly6dAl37tzBgQMH0Lp1a/YzOX36dKH2U2BgIH766SekpqbC1dUVK1aswI0bN+Dv74/Zs2fD1NQUMTEx+OGHHzhThv3xxx9sstyiRQvs2rULd+7cwcWLFzF16lRIJBJ8/PgRI0aMQGRkpMbXPn/+PI4fP4727dtj37597Gef06oTERGBVatWcbY5deoUmyx/++23OHHiBO7evYvz58/jp59+glAoRFRUFGfqspz62KhRIwBA79692fqY2+nTp8EwDFavXo3bt29j586dbEvdx48fMWXKFKSmpsLd3R1//fUX+zkcPXoUw4YNg1AoRGZmZpGmTivs/hg3bhwCAwPRu3dvAECjRo3Y96XaAufq6goPD488ExRt1qxZwybLXbt2xb59+xAQEIBLly5h5syZMDMzw7NnzzBu3Di1hO/WrVuYN28eFAoFPD092V4cfn5+6NWrF169eoU1a9YUOqaC2LlzJ5ss9+zZEwcPHsStW7fg7++PzZs3o0GDBgCyv8s7d+4s1mvl1C9t/1SPO1OmTOEMVHjr1i1MmzYNGRkZqFmzJtavX4/bt2/jxo0b+Ouvv+Du7o6EhASMHTtWLXmMj4/H6NGjERcXB6lUigULFuD69eu4du0a5syZA2NjY7XjSEFlZmZi7NixCAwMBI/Hw5AhQ+Dn54eAgAD4+flh0KBBALKnrZowYQKysrI42x87doxNlhs3boy9e/fi7t278PPzg4+PD16/fo0rV65ofe2cZNnY2Bi//PIL/P39cevWLSxbtgx2dnbYvn27xm0jIiKwYMECMAyDNm3a4J9//sGtW7dw5coVLF++HHZ2dpDL5fjtt9+0jpbv5OSE6tWrAwB1yyakJDGEEFLO9erVi/H09GRmzZqldZ01a9Ywnp6eTIcOHdQe27t3L+Pp6cl4enoy9+/f17j9zp072XVu3LjBeeybb75hPD09mW+++YZTPmPGDHablStXanzeu3fvsus0btyY+fjxo9o6//zzD7vOuXPnOI8NGTKE8fT0ZDp27MjIZDK1bdPT05n+/fsznp6eTO/evTmPNWvWjPH09GTWr1+vtp1SqWSGDRvGeHp6Mr169WLLP3/+zNSoUYPx9PRk/Pz81LbLyMhgunXrxnh6ejLjxo3T+J616d27N+Pp6cm0b9+eiYuLU3v8woUL7H7w9fVlGIZhQkJC2HimTJnCKBQKte0CAwMZLy8vxtPTk5k8eTLnMdXPaNKkSRrjytl/DRs2ZJRKJVs+adIkxtPTk/n22281brd27VrG09OTqVGjhtpnk1NnZsyYobZdzmOenp7MoUOHND730qVLGU9PT8bLy4sJDQ3VuM6iRYvY53n79i3nsQ4dOmh8/eLsD9Xtc38Xiuvdu3dMzZo1GU9PT2bBggUa1wkKCmJq1arFeHp6Mtu3b+c81r17d8bT05Pp2rUrk5SUpLbtnDlz2Ped+xhx9OhR9rGwsDCNrx0WFsauc/ToUbZcoVAwLVu2ZDw9PZmRI0eq7S+GYZjU1FSmTZs2jKenJzNo0KACv3ZO+Zo1azTGlNu///6r9XuQlZXF1on+/fsz6enpatvHx8ez6+T+bi9YsICtj8+ePVPbNigoiH3tvPajJnv27GG327t3r8Z1tm/frnGdtLQ0dv8PHjyYycjIUNtW9XuSu97u2LGDfezq1atq24aFhTGNGzdm17l79y77WM7vSv369TW+bkBAALvd+fPntb7/WbNmMZ6enkzPnj21rkMIKR5qYSaElGvJycl4/fo1AHC66RaGk5MThg4disGDB7Mtf7k1a9aM/VsmkxX6Nbp3757vOn379tV4r3GHDh3Yv8PDw9m/X716hfv37wMAJkyYoPHeQiMjI/z0008AsrtVBgUFsY/ltNLm7oYOADweD//73/+wa9cu/P3332x5VlYW271Q03ZisRjLli3DP//8U6iWzVevXrH38E6ePBnW1tZq63Tp0gVNmjThfBaHDx8GwzAQi8WYM2eOxi7gDRo0YLuDXrhwgdNlVNX48eM1lrdv3x5Adl2Lj49ny3P2X0JCglqrFgAMGTIEmzdvxunTpzn3MRcUj8fTeouBp6cnBg0ahDFjxmhtrVWdiqYodbaw+6MkHTx4EEqlEiYmJmx9zs3b2xs9evQAAE7355CQELx58wZA9v2+mj6LmTNnlsj0TCkpKRgwYAB69eqFcePGabzH1sTEBHXr1gVQtM+pIMLDwzFp0iTI5XLUrFmTc986kN29OOeWkalTp8LIyEjtOaRSKb7//nsAwNWrV9mZBxiGYXv5+Pj4oFatWmrbent7a7yvuyByPksvLy8MHTpU4zojR45E7dq1AQAHDhxgy+/evcsep6ZNm6ZxGsGff/4ZFhYWGp83pwdJq1at0K5dO7XHK1WqhDFjxmjcNuf4kJWVpfF70rRpU6xfvx6+vr5szxxNclqY37x5U+7mbSekrKB7mAkh5dr79++hVCoBAFWqVCnSc3Ts2BEdO3bU+nhsbCwePnzILqveA1kQIpGIPenJi7ZBvVTnyk1LS2P/vnfvHvu3p6cnUlJSNG5fs2ZNCAQCKBQKPHjwgH2dJk2a4OrVq/jnn38QFRWFnj17olWrVmziUL16dbW4pVIpqlevjlevXmHFihV4+fIlunXrhubNm7MDFhXlPrs7d+6wf+ckZJrs3buXs/zvv/8CyD751JRk5+jRowd27doFpVKJBw8eoGvXrpzHjYyMtN7frLr/Ve8vb9KkCa5cuYLnz59j4MCB6N+/P9q2bcsOomRtba3xJLugKlWqpPVEvl+/fujXr5/WbT99+oRnz56xy4Wts0XZHyUpp67nfMe11fV69erh5MmTePv2LeLj42FlZYW7d++yj2u7l9vExAQdOnSAn5+fTuM2NzfHjz/+qPXxrKwsPH/+nL2Io+nCS3GlpKTg+++/h0wmg1Qqxfr16zljEgDZ3Zlz5HUsqVOnDoDsJDkwMBDdunXDy5cv2fjzule+c+fOauMM5CchIYEdY+GLL77Ic93u3bvj2bNnePnypdpnb25ujoYNG2rcztjYGK1bt2aT/hyfP39GcHAwgLzfV6dOnTROLZhzn3dmZia++uorDB48GB06dECtWrXYCycFGRwxp84rlUp8+PABXl5e+W5DCCkcSpgJIeWa6j2pxW0hksvl+PfffxEcHMwO9PX27VtER0dz1mNUBnApCEtLS40jTeemLeFTbRVRfe2wsDD274IOWKQ6UNfMmTMRFBSE+Ph4XLp0CZcuXYJAIEDdunXRpk0bdOnShR2JV9Xvv/+O7777DmlpafDz84Ofnx9EIhEaNmyIdu3aoUuXLnmO/KpJVFQUgOyEPK9ReHPL+fw1jQStSvXxjx8/qj1uaWmpdYAy1f2fc3EGAIYOHYrz588jKCgIwcHB7Mm1h4cHWrdujU6dOqFZs2ZFnj81rwsAOdLT03Hnzh2EhIQgNDQUYWFheP36tVqLVlHqbGH3R0nK6VkRHBysNfHJLTIyElZWVpy6ldcxoqg9VAoqIiICAQEBePv2LUJDQ/Hhwwe8e/dO7X5rXWL+f/C2ly9fQigUYvXq1VpH+c6haVo+TXKOJarH4Ly+9/l9RzWJiopi625+F0RVH8/57HNizO94pCk21dfOa3sPDw/2gqSqunXrYtiwYdizZw9iYmKwZs0arFmzBjY2NmjVqhU6dOiA9u3b5zsyuuogZpGRkZQwE1ICKGEmhJRrqgNwFWd02bNnz2LRokVsN8McPB4PVapUQb169Qo1XYsqTd0bNREKC3fILkr3PNVtPDw8cOrUKfz99984c+YM4uLioFAo2JGl165di8aNG2PRokWcUZ4bN26MEydOsCPMfv78GXK5HAEBAQgICMCyZcvQsWNHLFiwALa2tgWKK2eEb2Nj4yK9n/xOOlVb1DQN2pbXVETaGBsbY+/evdizZw+OHDnCjnieMzr5nj174OLigt9//73Qo1QD+debvXv3YtWqVewo2jn4fD5q1aoFd3f3Ig8UVJT9UZKKU9dz9k9+dUtba35xJSQkYM6cObhw4YLahQtTU1M0b94cMTExnB4BurJq1SpcunQJQPYFsubNm2tcrzj7NykpiS3L3XKtqii3JajGZWpqmue6qseAnBbygn72mn47Cvq++Hw+JBKJ2vcQAGbPno0mTZpgz549ePDgAZRKJeLi4nDixAmcOHECpqam+OGHHzB69OgCxVbYAScJIQVDCTMhpFxTvSewIK24mly4cAE//fQTGIaBtbU1unTpgjp16qBKlSrw9PSEhYUFPnz4UOSEuaSongQ+fvy4wIm5KltbW8yePRuzZs3CkydPcOvWLdy+fRsPHz5EVlYW7t+/jxEjRuDs2bOck0Y3NzcsXryYHZX39u3buHXrFp4+fQqGYeDv74/o6GgcOXIkz7lRc+Q8d2G7+EokEiQlJeV7IqnaxbQwc93mRywWY/To0Rg9ejTev3/P7r87d+4gJSUFERERmDBhAg4ePKjTlqGdO3di8eLFALJHfu/cuTNq1aqFqlWronr16pBIJLh9+3a5GVnX2NgYycnJ6NGjB/76669CbZuTcKjezqCJ6sjrhaWtlVgul2P06NHstHdNmzZFixYt4OnpiSpVqsDd3R18Ph/Tpk3TecKcczEMAL788ksMGzZM67o5xxJbW1vcunWrUK+j2mqf1/ewKPtXNUnW1k1c0+M53/Gc2Iry2Rf0fWnbPke3bt3QrVs3yGQy9vhw69YtREVFISUlBcuWLYNYLNb6+aj24ijIsZQQUniUMBNCyjXVE6r8Toq0WbFiBRiGQaVKlXDkyBGNXYJLa3CjwnB2dmb/Dg8Pz7PLI8MweZ5s8fl81KtXD/Xq1cOECRMgk8mwdOlS+Pn54dOnT7h48SI71ZQqkUiEZs2aoVmzZvjpp5/w6dMnzJ49Gzdv3sTTp085UyjlJWews4SEBCQlJWlt7Tt37hzev3+PatWqoXPnznB2dkZSUhI7qJM2OQPDAdz9pkvu7u5wd3fH0KFDkZmZif3792Px4sWQy+XYv38/Fi5cqJPXSU9Px7p16wBk3y++Z88ejS1oZbHOFpWzszNevnzJDkyljaZ6XrlyZQDZvRji4uI492CrCg0N1Viu2jVdLpdrXEfbvj537hybLM+cOVPrnL26/qweP36M3377DUD2fd3z5s3Lc/2c70R8fDxSU1MLdVFJddqwt2/far33XfUWkoJydHQEj8cDwzCcOes10fQdz/k/Z6wLbbcZqHZJV31tPp8PpVKJt2/folOnThq3jY6OLlC3emtra/Tu3Ru9e/cGwzC4desWfv75ZyQmJmLPnj1aE2bVupFfKzshpGholGxCSLmmOqp0zr2KhSGTydg5Rbt27ar1/lnVQalK677N/OQMKgMAly9f1rpeYGAg6tWrh27durEtjo8fP8bgwYPRtGlTvHr1Sm0ba2trzJo1i13O2bdXr15F//790bRpU41dEJ2cnDB16lS17fKjel/qjRs3tK63ZcsW/PXXX9i/fz+A//bBvXv38hxh+Ny5cwCyW2jq169foJjykpaWhtGjR6Nt27b4559/1B4Xi8X49ttv2ftii1I3tXn16hW77/v166e1u6k+6mxJtYDlfM7BwcFa59IGgDlz5qBZs2b46quv2O68qqOq53RP1uT69esay1WTR211THVQQG3lOfMF55aWloZHjx4B0M3nFBUVhR9++AHp6emws7PD2rVrNY4OrSpn/yoUCly9elXreidPnkSDBg3Qs2dPdoT+qlWrsklzXschbfs3LzmDDAL/fYe1OX/+PIDsW01y7vvNuRUiNTUVt2/f1ridUqnEzZs31cpNTU3Z/VKU97Vw4UJ069YNP//8s9pjPB4PrVu3Zi9C5nV8UE2YNc2iQAgpPkqYCSHlWk6XRkB7C1FeVO8b1tZKGRISgs2bN7PL2lqZSpu3tzc7hcuWLVvYxF9Veno6lixZgoyMDERERLAjWDs5OeHx48ds64Ymz58/Z//OGfTGxsYGT548QWJiIvbt21fg7fJTr149toV8zZo1Gu+pvHz5Mtta17NnTwDAgAEDAGR3iZw/f77GhOPx48dsgt2uXTvY29sXKKa8mJiYICoqClFRUTh48KDGFqbExER2gLHc+yGn3hWlLqnWWdVWNVW3bt3CsWPH2OXSqrM5t0Xo+vUGDhwIIHsU6Xnz5mkc9TsoKAi+vr5ISEiAVCplu2JXqVKFvXd37dq1auMUAMA///yjtQUzp4UagMYu7jKZTOt3SPU2EU2flVKpxPz589n6Xtz9lpGRgR9++AHR0dEwMjLC+vXr4eDgkO92nTp1Yscb+PPPPzVeGJDJZFizZg1SU1MRGxvLmT4qZ8qoM2fOcC7U5AgLC8Pu3buL9J5yPvvg4GCNF6cAYNeuXexxJ+eYAGSPZJ/z+S1dulTjcWXnzp1aey589dVXALIvfKh+n3IkJCRgw4YNGrdVKpV4//49rly5gg8fPqg9zjAMO5VeXsfJnGOIQCDgjCVBCNEdSpgJIeWaiYkJe+JWlHsALSws2CTy2rVrWLhwId68eYP4+HiEhIRg1apV+Prrrzn3sOV3L11pmjNnDoRCIZKSkjBo0CDs3bsX4eHhiIuLw82bNzFixAh27uXRo0ezLUF2dnZs68bBgwfx66+/4vHjx5DJZAgLC8PRo0cxbdo0ANnJdc5c0HXr1mXn9129ejWWLl2K58+fQyaT4d27d9i5cycWLVoEIDsJzpmGJj858z7z+Xy8f/8egwcPxuXLl9keANu2bWPjqVWrFht7zZo12a6MZ8+exejRoxEQEID4+HiEhYVh27ZtGDFiBORyOSwtLfH7778Xd5ezcgbqefHiBUaOHIkbN26wSfS1a9cwatQofP78GQKBQK11MacF7P79+/jw4UOh5t/19PRkk/4DBw5gw4YN7HM8fvwYCxcuxNixYzlJZWnV2Zz39eLFCwQHByM+Pp6TBH777bf44osv8O233xbqeWvVqsXOpe3v74/hw4fj5s2bkMlkCA0NxZ49ezBmzBjI5XIYGRnhl19+4Ww/Z84cmJiYICYmBoMGDcLZs2fZbVeuXJlnd/kaNWqwicrevXuxbt06hIeHIyoqCidPnsTAgQMhk8k0dmNWnV936tSpuHz5MqKjo9nbHL755htOIlbczylnLAIej4clS5agXr16yMzMREpKisZ/OffeisVitgt3REQE+vfvDz8/P7Y+X7hwAcOGDWMvSk6dOpXTPXjMmDFwd3eHUqnE999/j61bt+Ljx4+IjY2Fn58fBg8eXORbZgYNGsQeRxYsWIB58+YhJCQEiYmJCAkJwbx589j7+Rs0aMCpW3w+H/PmzQOPx8PLly8xePBgXLt2DfHx8Xjz5g0WL16MZcuWaR3/om/fvmjSpAmA7AG8Vq5cyX7XLl26hK+//hqfPn3S2LNi2LBhEIvFSE1NxciRI+Hr64vQ0FDIZDIEBQVh6tSp7HRpOXVbk8DAQABA7dq1Cz0oIiGkYOgeZkJIudeqVSsEBwezc/IW1pw5czB8+HCkpqZiz549GluL+vfvjzt37iAiIkJja4G+NGzYEGvWrMG0adOQkJCABQsWYMGCBWrrDRgwAJMnT+aUzZo1C2/fvsWjR49w7NgxjS0otra2+PvvvzldOpcvX45vv/0W79+/x/bt27F9+3a17dzd3bF69epCvZcWLVpg8eLFmD17Nl6+fIkJEyaorVOtWjX8/fffnFbWmTNnIjMzEwcPHsTt27c1dr10dXXF6tWrddql0cfHB0FBQdi/fz8ePHiA7777Tm0dkUiEBQsWqE1Z1KxZM5w5cwaRkZHsnNCXL1/WOOVPbgKBAPPnz8fEiRORlZWF1atXq+1rPp+PcePGYceOHcjMzCy1OtusWTNs2bIFqampbKvj7t272W7RYWFhiIiIKNIAULNmzUJmZiaOHDmC+/fvaxxZ2NTUFCtXrlS7j7Zq1arYuHEjJk6ciIiICLW5kR0dHVG5cmXOfMSq5s2bh7FjxyIjIwNr167F2rVr2cdEIhGWLFmC1atXq/VyadeuHXr27InTp08jNDRUY522t7dHx44dceDAAaSlpSEqKqpArcK5RURE4NSpUwCyL0DNnj0b06ZNy3MObh8fHyxZsgRA9lzlSUlJWLhwISIiIjBjxgy19Xk8Hn744Qe21TeHkZERtm3bhjFjxuDt27dYvnw5li9fzj7O5/MxY8YMNrEtDLFYjE2bNuGHH37Ao0ePsG/fPo29W1q3bo3ly5erzTbQokULLFmyhD2ujB07lvO4i4sLunTpgp07d2p8v+vWrcP48ePx8OFDbNq0CZs2beKsM23aNKxZs0atTnt4eGDRokWYNWsWIiIiMHPmTI3v7+uvv8bgwYO1vv+chFn14gshRLeohZkQUu7ldM8NCwvT2C05P3Xr1oWvry++/PJLODk5QSgUwtjYGK6urujZsyd2796NRYsWsfOTXrlypcx0ywayu1NeuHAB48aNQ61atWBmZgaRSAR7e3t069YN27dvx8KFC9VaUczNzfHPP//g999/R7NmzWBlZQWhUAhLS0vUrVsXkydPxrlz59SSD0dHR/j6+mLatGlo0KABLCwsIBQKYWVlhcaNG+PXX3/FiRMnipSc9uvXD2fOnMHQoUPh7u4OIyMjmJiYwMvLC7/88guOHDkCR0dHzjZCoRDz58/H3r170atXLzg5OUEkEsHGxgaNGjXCnDlzcPz48RKZv/T333/H5s2b0bVrVzg6OkIkEkEikcDDwwPffPMNTp06BR8fH7XtBg4ciEmTJsHZ2RkikQh2dnZ53pubW4cOHXDw4EF0794ddnZ2EAqFkEgkqFKlCvr374+jR4/i559/Zgdcu3Dhgs7ec17atGmDOXPmwN3dHSKRCNbW1oiNjdXJc4tEIixatIj9nF1cXCAWi2FsbIzq1atj1KhROHPmDNq3b69x+xYtWuDMmTMYNmwYXFxcIBKJ4OTkhGHDhsHPzy/PweCaN2+O48eP46uvvmLrl729PXr16oUjR46gV69eWrddsWIF5s+fjwYNGsDU1BRCoRBSqRQNGjTA1KlTcerUKYwbN469teTixYtF2j+qU1YplUqkpKTkmSxr8vXXX+Ps2bMYNmwYqlWrBolEApFIBBcXF/Tt2xeHDh3CpEmTNG6bM2jizJkz4eXlBVNTU1hYWKBNmzbYs2cPe5wuCltbW+zbtw9Lly5F69atYW1tDZFIBGdnZ3To0AHr1q3Dli1btM5d3q9fP/bzc3V1hVgshrOzM4YNG4Zjx45pHQgOyO41sXv3bixcuBANGjSApaUle3/z+vXrMWbMGK3b9unTB76+vhg0aBA8PDxgbGzM1ruePXti586deQ7I9vbtW/YWgt69exdwbxFCCovH5J70jxBCyqEhQ4bgwYMHmDx5Mn744Qd9h0MIMTAzZ86Er68vXFxc4O/vr+9wCMHKlSuxadMmNG3aVOt98oSQ4qMWZkJIhZDT1dHPz6/MjGJNCCGEFIVCoYCvry8A4Pvvv9dzNISUb5QwE0IqhNatW8Pb2xuhoaG4du2avsMhhBBCiuzq1auIjo5G/fr10bJlS32HQ0i5RgkzIaTCmDZtGng8HjZu3KjvUAghhJAiYRgG69evB4/H0ziPMyFEtyhhJoRUGM2aNcPQoUMRFBSES5cu6TscQgghpNBOnjyJ4OBgDBkyhB1hnhBScmhaqf/HMAxOnTqFo0eP4vnz50hNTYWdnR2aNGmCoUOHsvOwFkZ4eDg6depUpHhyJqtX1bFjR0RERBRo+5s3b8LOzq5Ir01IeTZt2jTcuHEDS5cuRdu2bTnTIRFCCCFlWWZmJlatWoVKlSqxc88TQkoWjZINID09HVOmTMHVq1c1Pi4QCPDjjz+qzc2Xn6ImzDweDyEhIZyy5ORkNG7cGAX9uChhJoQQQgghhJDioRZmAL/99hubLFetWhUDBw6Era0tgoODceDAAaSmpmLFihVwcHBA3759C/y8NjY2WL9+fYHW3bBhA4KDgwFA4xyGL168YJPl8ePHo27dunk+n6WlZYHjJIQQQgghhBCirsK3MN+6dQujRo0CADRv3hybN2+GkZER+/ibN28wZMgQJCQkQCqV4vLlyzAzM9NpDCdPnmS71bRr1w6bNm0Cj8fjrLNv3z528vpz587Bw8NDpzEQQgghhBBCCOGq8IN+bd++HQAgFAqxcOFCTrIMZLc4/+9//wMAJCQk4PDhwzp9/aioKMyfPx8AYGVlhT/++EMtWQb+u6fZyMgIlStX1mkMhBBCCCGEEELUVeiEOSEhAbdv3wYAtGnTBq6urhrX69GjB2xsbABkt+7q0qJFi5CUlAQAmDFjBmxtbTWul5MwV6tWDXx+hf7YCCGEEEIIIaRUVOjM6/79+1AqlQCyu2Nrw+fz0aRJEwBAUFAQEhMTdfL6d+7cwfnz5wEAjRo1go+Pj8b1GIbBq1evAACenp46eW1CCCGEEEIIIXmr0AlzThIK5J+IVqtWDUB28vry5UudvP6ff/7J/j1z5kyt60VERCA5ORkAUL16dQDZo2bfv38f165dw/Pnz6FQKHQSEyGEEEIIIYSQbBV6lGzVOY1dXFzyXNfR0ZGzXU6Lc1FdunQJT58+BQB07tw5z3meVedk5vP5mDhxIvz9/TlJslQqxTfffIMxY8bA2Ni4WLERQgghhBBCCKngCbNMJmP/trKyynNdqVTK/p2QkFDs1965cyf793fffZfnuqoJ85IlSzSuk5CQgHXr1uH69evYtGkTrK2tix1jYSgUCqSlpbHLJiYmEAgEpRoDIYQQQgghRP/KU25QoRPm9PR09u/co2PnJhaLNW5XFCEhIfj3338BAA0aNECDBg3yXF81YRaJRBg5ciT69esHV1dXJCQk4Nq1a1i9ejViYmLw+PFj/PTTT9ixY0epDg6WnJyM169fs8uurq6QSCSl9vqEEEIIIYSQsiE1NRVhYWHscrVq1WBpaanHiIquQifMWVlZ7N+qCbEmqo+rblcUu3fvZv/Or3UZyJ56CshO6rdv347GjRuzj9nb22PAgAFo27YtBg4ciMjISNy9exdnzpxBr169ihVnYWRkZHCWVb8ghBBCCCGEkIord65gSCr0oF+q9/rK5fI8183MzGT/zi+5zktKSgpOnToFAHB2dkbHjh3z3ebAgQN48OABzp8/z0mWVTk4OGD27Nns8qFDh4ocIyGEEEIIIYSQCp4wq3YZzu+qh2rCnF/37bzcuHGDfa2uXbsWuNu0mZkZnJyc8lynY8eOMDMzAwA8fPiQnTKLEEIIIYQQQkjhVegu2RYWFuzfCQkJMDc317qu6kBfxRlQy9/fn/27W7duRX4eTQQCASpXrozg4GBkZmYiISGh1Ab/yn0RoTTvYQ4NDYVCoYBAIICbm1upvCYp36hOFUzo/gNICHrCKas8bCgsvWrrKaKyi+pU/jKi3iHuwnaAc7GXB4vmfWBWo6ne4iqO5IwUXH1/ByKBGCJ+9mA3zSo1gKm4+L+PZaFOMQyDR/+G4dE97m1Y1ram6PlVXQhF/w3wo1QyYBgGAkGFbqsp08pCnSLlR+57mIvT4KhvFTphdnd3Z//+9OkTXF1dta4bGRnJ/u3s7Fyk11MoFLh27RqA7C7U+Q32VRQikUjnz1kQuUe9k0gkbGt3ScvKyoJcLodIJCq11yTlG9Wp/Mn+vY/4U2c5ZTatWsClmWEmNiWN6lTespJiEev3J4TpyZxy84bdYNco/1uXyiozMzP0NOuMa+8D4GRuj0bOdXX23PquUwzD4NKp57hz9a3aY3Ub2MFSagEej1fqcZGi03edIuWboY6QDVTwhLlq1ars369evULTptpP9F69egUA4PF4qF69epFe7+nTp2xLdceOHQv0QxIWFgZ/f3/ExcWhYcOGaN++fZ7r5wwQJhKJDHYkusLi8/nsP0J0gepU3rJSU/Fm4yZOmdDMDFXG5j+IYUVFdUo7ZVYmPv0zD8pcybJxZS/YdButp6gKLl2ejlR5OqwlUo2PmxuZoWvVNhAJdHtBW591ilEyOOv7FPdvf1B7rG2X6mjfrUapx0SKj45ThGhWoRPmBg0aQCQSQS6XIyAgAEOHDtW4nkKhYKeBqlmzJqcrd2E8fPiQ/btevXoF2iY6Ohp//PEHgOwkO6+E+d27d/j06RMAoG7dugZ9Jacw6tSpo+8QSDlDdSpvH3bvRWacjFPmPupbiFXmqydcVKc0YxgGUUeWQy77yCkXSh3gMGAm+Pyy/TuWmZWJpTc3Ijo5FnM6/AgHMzuN64mFRR8sVBt91SmlQokThx7j8f1wtceq1bKDkYkI6WlyGJvop8cbKTo6ThGiWYW+hGRhYYHmzZsDyL63+OPHjxrXO336NGSy7JPD7t27F/n1njz5714/Ly+vAm1Tp04dtlvMjRs3tMYIABs3bmT/7tu3bxGjJIQQ7RKDnyHy7HlOmWnVKrBp0VxPERFDlvr6AdLePuKU8Y0kcBz0GwRGpTMORlHJFXKsuL0ZwdEvEZMqw+xLyxGRFJn/hgZMkaXE0b0PNSbLnl4OcHaVIiNdjuBHH8EwjB4iJIQQ3avQCTMAjBgxAkD2tFI///wzkpO5XcJev36NRYsWAQBMTU0xYMCAIr/W69evAWR3l1btDp4XIyMjDBw4kI1x6tSpajECwLZt23D8+HEA2fdm+/j4FDlOQgjRRJmZidfrNnLKeAIBLGrVhCIlRU9REUOVlRyPzKj3MKvXATzx/0/zyBfAru9kiG1d9BtcAex/cgIPPwWzy4kZn7HsxkYomfI5Q4VcrsDBnffx/PEnTjmPB9TydoSjS3bvO6FQgGo17en+ZUJIuVGhu2QDQOvWrdGtWzecP38eDx8+RN++fTF48GA4OTnh2bNn2L9/P1L+/0Rw+vTpaqNOBwQEYPjw4QCApk2bYs+ePVpfKzQ0FAAglUoL1V16woQJuHLlCt69e4fAwED07NkTgwYNgru7O+Lj43HmzBncv38fQHZS/+effxr0SHSEkLIp7OBhpOfq5WLpXQdCMzOIbW31FBUxRMrMdCQH3wSjVEBobgPz+l2Q8vwWLBp1h2n1JvoOr0D61eyKx5HPEJqY/Z0Q8YWo61ATkZ+j4WzhqOfodCszIwsHtv+L96/jOOU8Pg9e9ZxgbWcKALC2MUW1WvaQmOq+CzohhOhLhU+YAWDp0qVISUnBzZs3ER4ejuXLl3Me5/F4mDhxIr7++usiv0ZycjJSU1MBIM/pqzQxNzfHjh07MHHiRDx9+hSRkZFYvXq12npOTk5YsWIF6tbV3SichiA6OpqdBsHe3l7f4ZBygOqUupR37xHhe5xTJra2hln16rBp0Zxak/JBdeo/jFKB5Ge3oMxIZcv4Riaw6ToapjWa6TGywrEwNodPrS+wJ+gYkjI+o3XlprAwNsdr2Qc4mTuU+HeitOpUepoc+7bcQ/iHeE45X8BDnQbOkFpLIBDwUaeBC6xsynY3epI3Ok4RohklzABMTEywdetWnDx5En5+fnj+/Dk+f/4MqVSKRo0aYfjw4WjUqFGxXiNFpbtiUQYNc3JywsGDB3Hq1CmcPn0awcHBSEpKgpmZGdzd3dG1a1cMGjQIpqamxYrTEEVGRrLTINABnugC1SkuRqHAq7UbwCgU/xXyeLBq2hgmTk6QVKb5OvNDdeo/aW8fISspllMmtLCFqWcTg7vw0sK1ERSMAs9iXsPaRApbiRVaujYqlfdRWnXq8unnasmyQMhH3YbOsJCaQCDgo25DF0itKVk2dHScIkQzSpj/H4/HQ58+fdCnT59CbdesWTO8ePEi3/UcHBwKtF5ehEIh+vXrh379+hXreQghpDA+njiFlDdvOGUWtWvByNoaVo0bGlySQ/QnMyYMYgcPZMZFQJmRBiB7kC+z2i3BK+MjYmvC5/PRunJTGAuNkZie3cosFJSvU6tOPWvhY2gCPkUkAQBEIgHqNnKGmYUxJcuEkAqhfB3VSYXk7u4OpVJJ8wYSnaE69Z+0T5EI3XeAUya0sIBF7Vowr1UToiJOs1fRUJ0CPj+5ipgT62DV7mtYNOmBlGe3oUhJgFnt1uCLTfQdXp5CEyLgJtU8EBmfx0cTl3qQK7Mg1vFcy3kprTolEgvQoLkbEs+/RJZcgbqNXGBqZgSBgA/vRpVgaVW2PztScHScIkQzSpiJwSvqvNiEaEN1KhvDMHiz4W8oMzM55dZNG0NkmZ00k4Kp6HUqPeIlYk//DYBB/LX9yIwJhW2P8WAy0iA0t9J3eHk6GXIJe4OO4btGg9GlWhuN6/B4vFJNloHSqVMMwyD40Uckf86AdyMXKBRKmEjEEAoFqNvQhZLlcqaiH6cI0YYuIRFCCNEo+tJlJD5+wikzq14NRra2sGrUEHwhXXMl+ctKikPUkWVgFHK2LOXZLaS9fQShhY0eI8vf+VfXsCfoKBgw2PJgH06FXNJ3SKWKx+PB1t4MACA2ErLJsncjSpYJIRUHJcyEEELUZMri8W7HLk6ZQCKBpXddmFSqBBNnZz1FRgyJMisTUUeWQZHMHTTKonEPmNVqqaeoCuaN7AO2BXJvR9gddBRvZO/1E1AJ+xiWgKN7ApElV3DKnV2l8KztACB7jmXvxi6wkFKyTAipOKh5gBg8uVwOhmHA4/EgEpVulzhSPlGdAt5u3gJFSiqnzKpxIwhMTGDVsL5+gjJgFbFOMQyDqMNLkfHpNafcxL0ubLqM0E9QhVDFyg1f1e6Bo8/OsGXeDrUQmxoPDys38Hn6bXPQZZ0KfSvDvq33kJmRhSy5Av2/bQSB4L/35+wqBQCYWxjD3NK4WK9Fyq6KeJwipCAoYSYG7/nz5+w0CN7e3voOh5QDFb1Oxd25i7g7AZwySWU3mDg7wbKOF4QVcPq64qqIdSr++gGkvX3EKRNaOcLeZ6pBjIjN4/HQqWorvIp7i8dRIaht5wlP2yr4mBSFZLtUWBiZ6TU+XdWpNy9icHDHv8iSKwEAL4KjcHz/I/Qb0gB8/n8j4OckzaT8qojHKUIKghJmQgghrKzkZLzZtIVTxjcygrRhA4gsLWHuWV1PkRFDkvLqPhJuHeUWCoRw+OoXCCTm+gmqCGwl1hjRcCBOvbgMK2NLCPkCtHFvqvdkWVdePI3Ekd2BUCiUnPLUlEwoFErwDeDCBiGElDRKmInBs7S0RFZWFoQ0ABHRkYpcp97t2A15fAKnTNqgPgRGRrBu0gg8AZ1AF0VFqlPy+E+I9vsLYBhOuVWbgTBycNdPUMVQycIJ/Wp2xd3wh2jh2hC2Emt9hwSg+HXq6cMI+O57BEbJ/ZyqeNri61FNIBTRd72iqUjHKUIKg74RxOBVrlxZ3yGQcqai1qmEx08Qfekyp8zYyQmSym4wreIBIzs7PUVm+CpKnVJkpuPT/gVgMtM55ZIazSBt+aWeospfaEIEHM3sIBaKNT7uaG6Pnp4dISrlqaPyUpw69TAgFCcPPwa4uTLsHM3g6mGNlORMGgW7AqooxylCCotGySaEEAJFRgberN/IKeMJhbBq3BACIyNI69fTU2TEUDAMg+hjK5AVH8UpF9lWgn3fKeDxeFq21K/38WGY678CS25sQLo8Xet6ZSlZLo6A629x8pB6suzoYoGadR3BMAxePI1Ua3kmhJCKihJmQgghUKanw8S1EqfMsl5dCE1NIa1fDwIjIz1FRgxF/M3DSHsTyCnjm5jDccCv4IvKZv0JT/yEBdfWIEWehqfRL/A//xVIzUzTd1gl5salVzh//JlaubObFNVr24PH40EsFsKrgTN4/LJ5gYMQQkobJcyEEEIgsrREtUkTYdOiOfhGRhDb2sKsWjUY2drAtIqHvsMjZVxm3Eck3DjMLRQIYdfrB4isHfUTVD6USiVW3N6MzxnJbNmHhHDse+Knv6BKCMMwuHwmBFfOvlB7zNXDClVr2ILH48HISIj6TVxhalY2L3AQQog+0D3MxOC9efOGHaSiatWq+g6HlAMVrU4xSiUiz56DPOkzJJXdYOToAEaeBR6fD6smjctsV1pDUp7rFKNUID3sGUxrt0Lqi7tgsuQAAGnLL2Hq2UTP0WnH5/MxufkoLLy2hk2a7STWsJVYIzI5Bo5mZfue/YLWKUbJ4PzxYNy7+V7tMfdqNnCrkj2ImZGREPWauEJiqvk+blL+lefjFCHFQS3MxOClpKQgOTkZKSkp+g6FlBMVrU4lBT+DPOkzuywwMoLQzBTmntUhlkr1F1g5Up7rVNrbR8hKioPI2glm9TuDL7GApHoTWLUZoO/Q8uVh5YrZ7SbBWGgEaxMpWro1QaZCjuvvA/LfWM8KWqcunwnRmCxXrWH3X7JsLKJkmZTr4xQhxUEJMyGEVHAiqRROPbtzygQmJrCsW0dPERFDkRH1HukfX7PLAhNzSJv3gV3fKeDxDOMUw8PKDbPbT0EHj5YQCbI73rV0baTnqHSnflNXmJpxE2FPL3u4VJYCyE6W6zepRMkyIYRoQV2yicGrU4dO6oluVYQ6xSiVUKSnQyiRwMTFGYrUVM7jtq1agi8qH6MClwXlsU5lfY5H6qv7nDIeXwCzOu0hMDKsKYk8bTwgNbbA1Xd3YG9qg0qWTvoOKV8FrVO29mYYNLIJ9vx9F/IsBWrWcYS9kzkAwNhYhHpNKsFEQskyKZ/HKUJ0gRJmYvD4fMNoxSCGoyLUqcjzFxB++CiqjBsLm2bc+0xdfPpCYGysp8jKp/JWp5TyDDAKOXh8ARilgi2XVG8MobmVHiPTLE2ejqjkWLhbVdK6jr2pDXp5doJEbBjJfkHrVEZ6Fj6GJ8CroTPkGVmwsTcDABibiFC/iSuMTejCGMlW3o5ThOgKfTMIIaSCyYiNw4dde5EZJ0PIH0sQsmwF5MkpsPCqDZd+fShZJnnKSopF2MZJSHsXBPOGXSE0y06QjZ2rwcjBXb/BaZCRlYklN9Zjrv8KBEe/zHNdQ0mWC+NjeAJSUzJhYWnMJssmlCwTQkiBUcJMCCEVCMMwePP3JijS/ptrNu7WbWRERkLqXRcCk/KXMBDdUcozEHVkGRSf4xB75m/I/PfCrE5bmLjXhUmV+voOT02mQo7lN//G85jXSMtKx6Jra3D9/V19h1UiUlMyce/GOzAMwyl3r2oDR2dLdtnEJHuAL0qWCSGkYKhLNjF4MpkMSqUSfD4f1tbW+g6HlAPluU4pMzKgzJRzyuw7dYS0fj09RVQxlIc6xTAMYs9tRsanN2zZ54cXIDAxhXWHb/QYmXYnQi7icdRzdjlLqcD2wEOoaVsd9mY2eoys+FTrlFgowd5NAYiO/Iy0NDnadfVk1+PxeKjh5QCAQWJCOuo3qQQjY0qWibrycJwipCRQwkwMXnh4OORyOUQiER3giU6U5zrFZCkgrV8PFjVr4NOZs+AJhPAY9a2+wyr3ykOdSrp/FsmPr3LKRNZOsGzho5+ACqBPzS4IiXnNJs0igQgt3RrjbnggOlZpCTOxqZ4jLLqcOiXP4OH+tQTIYrMH7rt2/iXEYgFatP9vHl0en4caXo6QyxUQG9GpH9GsPBynCCkJ1CWbEEIqCIZhILt3D8qMDIDHQ6VBA1B9ykQIzcz0HRop41LfBSHu4g5OGU9sDIf+MyAwLrtJp1ggwvQ236O6jQeEfCHaVG4KqbEFLIzMIBYY/sjQKZ+zcONcFJss57h38z0y0rM4ZTw+j5JlQggpAjpyEoNXqVIltgsRIbpQXutU8us3SI+KZpcVySlglEo9RlRxGHKdkifGIOrocoDh1hX73pMgtnPVU1QFJxaIMLf9jzj18jKylApUsnBCs0r1IeAL9B1asZgYWeOCfzDSUhSccompGN9OaAEjYzrFI4VjyMcpQkoSHU2JwaNuQ0TXymudUqSkcJYFEgmk3nX1FE3FYqh1SinPQOT+BWAy0jjlFs36wLRmcz1FVXhioRi9anTGW9kHeNpWAZ9n2AnBp/BE+O0NRloqdzwCiakYzdp6QJ6p0LIlIdoZ6nGKkJJm2L8YhBBC8qXMyu6aKa1fD/Yd20Nomt2F1qZZE/DFht8tlZQMhmEQdXQ55HERnHKRtTOkLfrpJ6g8PI0KURshWpVYIEJNu2oGnyyHvZNh98Y7asmymbkR6jWpBIVCiVfPo7VsTQghpLAM+1eDEEJInpJCXiBwwiTEBz4EABg7OMCxezfYtGgOY0dHPUdHyjKZ/x6kvXnIKeObmMG+3xQITS21bKUfx59fwPyrq7Hy9mYolOW3dfXty1js3Rygdn+yhdQY3o1dIBJndzPnC3j6CI8QQsolSpiJwVMqlew/QnShvNQppVyO1+s2ICMqGs/mLcTLv1ZDnpQEvkgEU/fK+g6vQjG0OpUSEoDEgBPcQoEQNl1Hw8ipmn6C0uLcq6v457EvACAg/BGW3thYLpPml8+isH/bPbXu1lJrE9Rt6AKh6L97sm3taSA/UniGdpwipLTQPczE4D19+pSdBsHb21vf4ZByoLzUqfAjx5AWFs4ux1y9DtMqVeDSt7ceo6qYDKlOZcZHIfrkWiBX92Zp6/4wr9NWT1Fp9ulzNHYEHuKUPYoMxrlXV9GzRic9RaV7wY8+wvefh1AquZ+JqbkAdi5CCIT/tX9UqmyFqp52pR0iKQcM6ThFSGmiFmZCCCmHUkNDEX7kKKfMtGoVOPfqoaeIiCFQKrIQdWAhmEzuIF+mtVrCqlV/PUWlnZO5PYbX/wo8/NcFuZ5jbQCAXCHXtplBCfo3DMf2Bqoly+aWQji5GYPPz37vIpEA9Zu4olpNe/D41CWbEEJ0hVqYicEzNTVFVlYWhEKqzkQ3DL1OMQoFXq5aCyZLpesmn49qEyeAJzDsqXQMlaHUqYzwFxDZVoI8IQr4/27NIltX2PWdDB6vbCZhPWt0Ao/Hw65HR1DbzhNNXLzRpnIziAQifYemEyamYvB4PM6AZg7O5rBzEoNhGPD5fEhMxajb0AUmEhrEjxSdoRynCClt9I0gBq9q1ar6DoGUM4Zepz6eOoOUN285ZU69esCsioeeIiKGUKfk8ZFI/xAMsYM7+KaWSH12G+ABjoNmgV/Gk88enh1hZWyJDEUmWro1hriMx1sYnrUd0HdwffjuewgwgLOrJarWtGMvYFjbmKJ2PSfOPcyEFIUhHKcI0QdKmAkhpBxJj4rGhz3/cMqE5mY03zLJkzIjFSkhd8EguxVTaGYF84ZdYOLhDZHUXs/RFUwLt0ZQMkqDnzZKE5GID8/aDkhLzYR7NRs2WXZxk6JaDeqCTQghJYkSZkIIKScYhsGrNevAyLn3btq2awtpg/r6CYqUeYxSgeTnt6GUZ3DKTas3gbFrTT1Fpe5V7DtIxCZwsdA+HVp5TJYBwL2aLWSxqcjMzJ5OisfjoVpNO7i4Wek5MkIIKf/K5y8LIYRUQNGXryDpaTCnzLRaVVTy6Qc+3ZNGtFCkJEGRksQpE9u4wKhSDT1FpO5V7DvMu/oX5vqvQFjiR32HUyKUSgbhH+I1PmZsIoJXfWfw+TwIhQLUbehCyTIhhJQSOoMiBu/Dhw/sIBWVK9PcsqT4DLFOZSYk4t3W7ZwygYkJXAd8BSNbGz1FRXKU1TqVEHASIitHWDTogpTnt5CVkgiBsSkkNZqWmUG+Xse9x/xrq5GpkCNTIcdc/5WY13EqXC2d9B2azigVShw/EISnjz5i4LeNUKOOeiu6pZUJank7wdTUCBIzcZmtU8RwUZ0iRDNKmInBS0xMZOcNJEQXDLFOvVm/EYo07lRAtm1aw7pJYz1FRFSVxTqV+vYRZJd2AWAgbdUf0lZfIe1dEIycqoEvLBujLTMMg/UBu5CR9V938eTMFGx9sA+/d/i5zCT1xZGVpcDRPYF48TQKAHBkdyC+Ht0EVWuoz6Vs52DO/l0W6xQxbFSnCNGMumQTQoiBi75yFbJ7/3LKTNxc4fr1AJpGimgkT4hGtN9fwP8P8pVw6wiiji6HpHojCM3LTldfHo+HGW0nwNLIgi1zMLPD902GlYtkWZ6pwMHt99lkGQAUCiWO7nmA9LTyMY80IYQYOmphJgavVq1aYBimXJw8kbLBkOqUIj0dbzdt5ZTxxWK4DR4EIxvqil1WlKU6pZRnIOrocijTkjnlJm61wSuDg2Y5mtlhQaepmOu/EiKBEHPa/wg7U2t9h1VsGely7N/2L0LfyjjlfD4PbTpXh7FJ3q18ZalOkfKB6hQhmlHCTAwedR0iumZIdSr0wCG1rtjSBvVh06ypniIimpSVOsUwDGJOb0RmJHeebkmNZrBs0U8/QRWAo7k95nb8GcYCMawlUn2HU2xpqZn4Z8s9fAxN4JQLBDx4NXBBZoYCsdHJsLU30/ocZaVOkfKD6hQhmlHCTAghBio1PAKfTpzilBk52MO+Uwfqik00Srx7HCnBNzhlIhtn2PeeWOZblZzNDWM+6Pwkf87AP5vuIurTZ065UMhHnUYusLA0hpGJECb5tDATQggpHZQwE0KIAWIYBu+2bAOjUPxXyOfDqlFDWDVqqL/ASJmVFhoM2ZV/OGU8kREcvpoOvpFET1FxxaTEwUZiVW7nU05KSMOev+8iLiaFUy4SC1C3kQvMzI1gKTWBV31niI3oFI0QQsoCOhoTg5eUlASlUgk+nw8LC4v8NyAkH4ZQp2R3A5DwKIhTZu5ZHdJ63jTnchmk7zqVlZyAqMPLAEbJKbds1htiO9dSj0eTgLCHWH13O7pWbYtv6vlAKChf9Tg+LgV7/r6LBBn3FgqxkRDejV0gMRXD0dkCnrUdwBfkf8FA33WKlD9UpwjRrHz9GpEK6f379+w0CN7e3voOh5QDZb1OKTIy8G7bDk6ZwMQEFnW8YOFVW09Rkbzos04xSgUiDy6EMj3XIF9V6sOqzcBSjUWbN7L3WHN3O7KUWTjzyh+xqTJ832QYTMtIy3dxxUR9xt6/7+JzUgan3NhEhLqNXCCRiOFR3RauHlYF7hpf1o9TxPBQnSJEs/LZ54kQQsqx8MNHkRETyymTNqgHc8/qEJmba9mKVFSx57YiM/Idp0wodYB9vx/B4+v/Xvf4tEQsurYOcmUWW3Yv4hGOBJ/WY1S6ExmRiF3r76glyyamItRrUglm5kbwqu8MtyrWZf4+ckIIqYiohZkYPEdHRygUCghokCOiI2W5TqV9/IgI3+OcMiN7e5i4ucGSWpfLLH3Vqc9PruHzwwucMp7YBPb9foLApGxcXDE3MoO3Yy3cDr3PlnlIXfGlV3c9RqUbqcmZuHbhFVJTMjnlpuZGqNvQGeaWJqjbwBlmFsaFfu6yfJwihonqFCGaUcJMDJ69ffkYOZWUHWW1TjEMg7dbtoPJ+q8lDjwerBo1gFmVKhCaaZ+ChuiXPupU+sdXiDm9gVvI48O64zcwdqle6vFoI+QLMKX5KDib2ePIszOwk9jgxxbfwdzI8Ovz21cxsHcyQ2qKFcLexQMAzC2NUaehM2xsTeFV3wVGxkU7FSurxyliuKhOEaIZJcyEEGIgZAH3kBD4kFNm5lkdIqmUWpcJB8MwSLx3GlBkccrN6raDRcNueopKOx6Ph4F1e8PV0hn2pjZwsigfJ+7u1Wzh5mGNhs3ccPHkc0SEJsCrgTOcK1miRh1HCAowuBchhBD9ooSZEEIMRNQlf84y39gYlnW8YFbFA0IzUz1FRcoieVwERNZOMK3TDqkv7oKRZ8DIuTpsun1Xpu+TbeHWSN8h6JSZuREA4HNSOhxdLGBjb4oq1e3ofmVCCDEgdGmTEEIMRK1fp8Oha2fwRCIAgLR+PQiMjGhkbMKhzExD6utAAIDIygHmDbtC7FQVDgNmQiAu/L2ypPiMjIRo3NIdbTt7onJVG0qWCSHEgFALMzF4T58+ZadBqFOnjr7DIeVAWa1TiowMGNnawqnHF0h5+w6Sym4wreIBoSm1Lpd1pVWnGEaJlJC7UGb+N9cvX2wCmw7fQGgmLbHXLagXsW9xNPgMvmv8NexNbfUdjs59Ck+ElY0ExiYiTrnYSPenW2X1OEUMF9UpQjSjFmZi8JRKJfuPEF0oq3Uq6dlzMEpl9pzLXrXBFwhgUbuWvsMiBVBadSo9LATyhGhOmcjKAcbu+j/5jUqOwZLr6/AoMhjzr6zCy9i3+g5JpxLj0/DPlgBsWXkDURFJJf56ZfU4RQwX1SlCNKOEmRg8Y2Nj9h8hulAW65QyMxMpb7lz6ZpWrUKtywaipOsUwzCQJ0TByMEdQgsbtpxvZALTGs3B4+n35z45IwULrq5Gijy75Ts6JQ5Lb2zA/YjHeo1LV+SZChzc8S9SkzMRL0vFtjU38SQwokRfsywep4hhozpFiGbUJZsYPE9PT32HQMqZslin+GIxHLt3Q1LwM6S8/wAen0+tywakpOtU8uMriDm7CTadR8K8QWekf3iKjIiXMKvZAvwycN9yaOJHyNISOWWmYkm56JbNMAxOHgpCpEqrclaWEjcuvkKlylJY2ZTMRa2yeJwiho3qFCGaUQszIYSUUdH+V/D51Wt2WWRuDpvmzeDUozusmzaGUCLRY3SkrMiMDkXsuS2AIgtx57cgxm8VjJ2rw6JxDwgt7fQdHgCgtn11LOg4Fabi7DpraWSOUQ2/hpvUWc+RFd/tK2/w9OFHTpmJRARPL3uEv4/XU1SEEEJ0hRJmQggpg9KjovBm42Y8/mUmXm/4G/Kkz+xjIgtzmLq76y84UmYoM9MQdexPMFmZbFlKyB2kfQiGwMRMj5Gpq2rjjmVdZ6GatTsGe/dFPUfD7yHxOiQal8+EcMoEQj68GjjD3NIENb2d9BQZIYQQXaEu2YQQUga927YDyszsJCjq/EXI7gag4d/rqVWZsBiGQey5LZDHce+VtWj0BUxrNNVTVHmzM7XBH11mgGEYg59aKS4mGUf3BAIMt7xWXUeYWxijTgNniEQC/QRHCCFEZyhhJgYvIiICCoUCAoEALi4u+g6HlAP6rlMJj4IgC/iXU2bbuhUlywasJOpU0v2zSH5yjVMmdqwC687f6uT5S5KhJ8sZ6XIc3HEfGelZnHL3ajawtjNFLW8nmJoZlWgM+j5OkfKH6hQhmlGXbGLw4uLiEBMTg7i4OH2HQsoJfdcpC6/aqDz8G/CNsk+4RZYWcBsyWC+xEN3QdZ3KiHyLuEs7OWU8IwkcvpwKvlCsk9coqoikSDyPeQWGYfJf2QAxSga++x4hNiqZU27nYAZXDyt4VLOFrX3Jd4fX93GKlD9UpwjRjFqYCSGkjOGLRKj0lQ94QiGi/a/CumljCEyMy0U3VlJ8ioxURB5aDCgVnHKbDkMhsnLUU1TZEtOTsPDaGiSlJ+PL2l/Ap9YX4PPL17X5axde4mVwFKfM1FwMTy8H2DtawK2KtZ4iI4QQUhIoYSYGr3r16pRIEJ0qO3WKgU3zpmAYBh9PnYZVg/qQuLnpOSZSFLqqUwzDINr3Lyg+yzjlxm61YV6/c7Geu7gyszIx/+pqxKVmjwx9KPgUolPiMKrhIBjpudVbV54//oTrF19xyoQiPrzqO8PSygQ16ziW2nGj7BynSHlBdYoQzShhJgbPxMRE3yGQcqYs1CllVhYUqWkAsu/3VKSmQZGRmc9WpKzSVZ1KvHcKaW8COWUCM2vY9/0RPIF+f9J3PTqCsMT/pldiGAaPIoPxKu4d6jjU0GNkuhH9KQl++x9xC3lA7XpOMLcwhld9ZwiEpdeaXhaOU6R8oTpFiGblq58UIYSUE1nJyRDkOnkxdnDQUzSkJKWHPS/Yep/eQOa/h1soEMGu1/cQWtiUQGSFM8S7H7wd/psqSiIywZe1vkBt++p6jEp3rl98BXkmtxt8VU87WNmYonY9Z5hIykcrOiGEEC5KmAkhRM+UcjlSQ0M5ZWKpFE49u8PCqzZ4AgGM7O0gNC9b8+qS4pNdP4iPu2cj4bZvnuspMlIRdWiJ2n3LRk5VIanasCRDLDBTsQSz2k2ET60vYCw0whfV2qNjlVbg88rHqUbfwfXh6m7FLjs4m8PZzRLVatrByoZGsCeEkPKKumQTg5eSksLec2NqaqrvcEg5UNp16uPxk/jwz3449ewOt8GDIPz/1+SLRJB614VZFQ8wSrqvzJBpqlPpYc+RcOMQAEB2ZS8AQNrSR+P20b4roUiWqZVnhIcgPew5jF1radiq9PF5fPSu0Rk1bKvAy74GRAKRvkPSGZFIgG/GN8OpQ0/w4W0cqteyh3MlKZxdpXqJh377iK5RnSJEM0qYicF78+YN5HI5RCIRvL299R0OKQdKs05lxMQi7NARQKnEp5OnEXv9JqpN/gHWjRux6wjNqGXZ0GmqU8autWDd4Rs2WdaWNGclxYInFAN8IaDkzvtr3eGbMpMs5zAzMkVD57r6DqNEiERC9BtSH29fxSIpPg3Va9nr7UIW/fYRXaM6RYhmlDATQogevduxE8qMDHZZnpQEkaWlHiMipSknOdaWNCsz05H8/DbE9pWRlRyPzIiX7LbWHb7R2iJdGirqaLo8Hg9VPe2gVDLg8yve+yeEkIqGEmZi8GxtbaFQKCAQCPQdCiknSqtOJTwKQtytO5wyh66dYV69Wom+Lil9edUpbUmzZYu+SHlxF8qMNKSHPS9TyfKxZ2fxRvYBg+r0gZvUWW9xlJTU5EyIxAKIxNqPAfpOlum3j+ga1SlCNKOEmRg8Z+fyd7JG9Ks06pRSLsfbLds4ZXwTY7j49Cvx1yalL786pSlplifGQGBqifSw50h//4Rd16rDUL0my4Efn+LAkxMAgIikSAzw6olmlRpAqOdprXRFkaXEwZ33kZmRhYEjGpfZAb3ot4/oGtUpQjQrH0NXEkKIgfl48jTSwiM4ZZZeXoi9cRMJQY+hlMv1FBnRF2lLH1h3+IZd/hx4Hol3/LjJcttBsGr5pT7CAwB8+hyNVXe2sssfP0dhx8PDuB0WmMdWhuWc31OEvZMh6mMSNq24jjch0foOiRBCiB5RwkwIIaUsIy4OYQcPc8rE1tYwreIBRqFA0rPniL//QE/REX2StvSBRbPe7DKTlcn+bdmiH6zaDNRHWKyXsW+RoRITAHhYVUJ9x7I18FhRPbjzAQ/u/DfFW2ZGFnz3PUJCfKoeoyKEEKJPlDATQkgpe79jF5Tp6ZwyaaMG4PH//5DM48GidvlIQEjhMAo50j88VSvniU1g03GYHiLiaufRHLPaTYJEZAIAqGThhEF1+sDC2FzPkRVf6FsZzh7j7ns+n4eadR3w+nk0GIbRU2SEEEL0qXzccEQqtJCQEGRlZUEoFKJmzZr6DoeUAyVZpxIeP0HsjVucMtMqHjCysWGXzT2r00jZ5UxB65Ts2gFkRr5TK2cy05Bw21ev9y7nqOdYC8u6zsLeoGNo79ECVa0r6zukYkuMT8PhXfehVHKTYk8vB1haSVDL26nMjQhOv31E16hOEaIZJczE4GVmZkIul0OpVOo7FFJOlFSdUmZl4e3mrZwyvlgMS+//5qzlGxnBwqu2Tl+X6F9B6lTa+ydIvOPHLeTxgP9v2dQ2T7M+2JvZ4udWY/Udhk7I5Qoc2nkfKcncruaV3K1g72SOWt5OMDUz0lN02tFvH9E1qlOEaEZdsonBEwqF7D9CdKGk6tSn02eQFhbOKbOoWwcCY2N22bJuHQiMyt7JOSme/OpUVkoSIg8v5Rby+HAZ/SdnIDDZlb1IuO1bkqFWKAzD4NThx/gUnsgpt7KRwKO6DTyq2cLW3kxP0eWNfvuIrlGdIkQz+kYQg1e7NrXGEd0qiTqVKYtH2P5DnDKxtTXMqlZhl0WWlpxlUn7kVacYhsHHnTPAZKZxyq07DYeRgzuMHNwBqM/TXNItzanyNGQpFTAXm5a57si6cvf6Ozx5wB2t3lgiQk1vR9g7WsCtirWeIssf/fYRXaM6RYhmlDATQkgpeL9zNxRp3IRI2rD+fwN9AbDKtUwqhshDi5GVwJ26yMSjHiyb9mSXNc3TrFqua0pGiXUBu/Am7j06V22Nnp6dIBGblMhr6cubFzG4dPIZp0wg4MOrvhOsrCWoWcex3F4oIIQQUnCUMBNCSAlLDA5GzLXrnDKJhzuMbG3ZZRMXFxg7OpZ2aETPYi/uQNpr7hRiPKEY1p2Gg8fjXjwpzaT52LOzuB8RxP4dkRSF/nV6oJKFk85fSx9ksSk4uicQuQe+rlnXAVIrCbzqO0MgpItXhBBC6B5mQggpUYxCgbebcg30ZSSGtJ43u8zj8yFtUK+0QyN6lvb+CZLunVIrt2zel+2GnZu0pY/aPc3pYc91Glfgx6c49PS/uBSMEvc/BuHqu7uQpSbo9LX0ISM9Cwd33Ed6mpxTXrmqNWwdzFG7njNMJGI9RUcIIaSsoRZmYvCioqKgUCggEAjg4OCg73BIOaDLOvXpzFmkfgjllFl4eXEG+jKv4QmRueHPY0u001Snkp/fVlvPyLUmrFr3z/O5VFuapW0GwthVt3N2V7FyRTVrd7yWvWfLmlVqCE8bD1hLpDp9LX24eu4FYiI/c8ps7U3hVsUa1WrawcpGoqfICod++4iuUZ0iRDNKmInBi4qKglwuh0gkogM80Qld1anM+HiE7jvIKRNJLWFWrSq7LDA2pmmkKoDcdSr1zSN8DrzAWYdvYgG7XpPAE+T/0yxt6QNj15o6T5YBQGpiifkdp2Jb4AFcfnsL3g61UNXaDQ2cvHT+WvrQrpsn4mJT8Pp59n3jEjMxatRxhHMlKZxdpfoNrhDot4/oGtUpQjSjhJkQQkrI+117oUhN5ZRZNWrIGdjLsl5d8EWi0g6N6JEi7TOij//FLeTxYNNpGMTWBb+PvSSS5RxCgRDjmnyDFq6NYCY2hdTEAiJB+ainxiYifD2qCY7tDcTLZ1Hwqu8Ea1tTVK9lT4N8EUIIUUMJMzF4Hh4eUCqV4NPowkRHdFGnkp6HIObKVU6ZxL0yjOzsOGWmHh5Ffg1iOFTrVLTvX1CmJXMeN63ZAmbe7fUTXB68HUsuKdcnPp+Hek0qwcLKGJZSCWrXcwZfYFi/IfTbR3SN6hQhmlHCTAyeOd37SXSsuHUqe6CvLZwynkjEGegLAFy+7EctWhVETp1SZqQhzcwKPJExGHk6AEBo5Qib7mPVRsUmJcve0QKWVhJY20ggFAn0HU6h0W8f0TWqU4RoRgkzIYToWOS580h5955TZlnHCwKT7HlsJW6usGnZgpLlCoZhGCQ/vw2+iTlM67RD+vsgKD7LYPvFWAhN9HOiGp70Cc+jX6OVW2OIBSIIC3D/dHlhaVW+5pUmhBBSMirOLyMhhJSCzIREfPhnP6dMZGkJs+rVAADS+vVgUaumPkIjepYe8RKZseEAAL5IDEnN5hBZ2sHEwzufLUtGSmYqlt/4G5+So3H9fQAG1OmJatbukIjLTyIZHfkZV86GoEX7qnB1t6KLVIQQQgqNEmZi8DIyMsAwDHg8HoyMjPQdDikHilOnkoKDoUzP4JRJ/3+gL5NKlWBes4YuQyUGIlUWjeTnd8EosiAQCMDj8yGQWMLcu4Nekjglo8TauzvwKTl7pOgXcW+w4d5utHJrDDdLF9R1qGnwU0jJ5Qoc3f0AMVHJeP86Dk1auaNJK3eYWxrnv7EBoN8+omtUpwjRjBJmYvBevHjBToPg7a2flhpSvhSnTtm2agmeWIx3m7chIzoakspuMLa3g9DMFDbNmlALVwX1LuAyeHGR4Av4sLWzA08ogmmNpuCL9HNS+jTqBQI/PeWUMQwDIV+IVHkazMSGMRdxXi4cD0ZMVPbgahnpWbjl/xpJCWno0L1mueiOTb99RNeoThGiGY0wQgghOqSUy5EWFg67Du1g07IFpPXrgcfnw6ZlS/DFYn2HR0qZIi0ZSYEXoLSqBLlVJQA88IRiGFeqCZFVwaeQ0jVvx1r4scV3MBJk10kjgRgtXBvB0tgcHaq0hFho2HX1WdBHPLgTyimTmInhUtkKFtLy0cJMCCGkdFALMzF4UqkUCoUCAoHhjXJKyqbi1Cm+SASbFs0QdycAEjfX7OdrUB9GNta6DpOUcQzDIPbM30gJuQNTR0+gQS/wXavDSJCpt/uWVbV0awQXCwesvL0F7dxbQMDjo03lpjAWGnZXzARZKk4eeswp4/N5qOXthBpeDuWmlwf99hFdozpFiGaUMBOD5+bmpu8QSDmjWqeSnj2HRe3CzUVr4uQEU/fKyJTJIDAxYQf8IhVL8uMrSAm5k70Q+RL8a1vh0H8GTFzLzqBvlaWVsPKLOeDz+EiTpxv8gF8KhRJH9wYiIz2LU16tlj2qVLeFhdSw358q+u0jukZ1ihDNqEs2IYRoEbr/IJ78OhvhR30LtV34UV88m7cQ6dExsG5K9y1XRHLZJ8Se38otVCohsrTTT0B5EPAF4PF4Bp8sA8DVcy8Q8SGBU2bvZA5nV0t4VC97+54QQkjZRwkzIYRokPTsOcIOHAIAfNi9V2vS/PnVa4QdPAxlZiaA7GT5w+692X8fPIzkV69LJ2BSZjCKLET5/QVGzh0t3a7nBAgtbPQSU5ZSgfSsjPxXNGBvXsTglv8bTpmxRIRqtexRuaoNjIypUx0hhJDCo18PQgjRwKJ2LVQe/g2b/Ob8X+krH3YdRqnE201bkPzqNaL9r8K8di3E+F9hH688/JtCd+cmhk92/SAyP3ETN/P6nWFas5le4rkbFohDT0+hkXMd1HWohboONctdr4fkzxnw2/+IU8bjAbW8HWFmbgTXylb6CYwQQojBo4SZGLzXr18jKysLQqEQ1arRvaKk+Ng6Va9unklz1KXLbAtyemQk0iMj2eeoPPwbTnJNKoa00GAk3j7GKRNaOyGxajvEhYSU+nEqNCEC6wN2IUORiajkGMSlJSItKx1NnOuBzy8fncwYJQO/fY+Q8pnbgu7haQtzC2NUrWEHvqB8vFdV9NtHdI3qFCGaUcJMDF5qaio7byAhuqBap6r9f9KbO2l27t2T/Ts3SpYrJkVaMqJ9/+IW8niwqN8FoZlZpX6cSs5IwbKbfyNDkX27gFyZhZsf7sFIIIapyAR1HMrO4GPFcfvqG7x9GcMps7aVwMVNCitrCWztzfQUWcmi3z6ia1SnCNGs/F1yJYQQHav0lQ8qD/+GXf6wey/CjhyDXds2EEgknHXdhg2lZLkCYhgGMac3QJEczyk3cfeGWZ02eokpLSsdRrnmU3aXVoK7tBJq2FbVS0y6Fv4hHlfOvuCUiY0E8KzjAD6Pj6o17ctd93NCCCGli1qYicHz9tb/fKakfNFUpyrlamkOP3gYfLGYHewLAJx69YBr/y9LJ0hSpnx+fBWpLwI4ZUJLO0jbDoTQ3Bre3qU/D7edqQ0WdfoF6+/tRkD4Q1ibSNHKrQnaujeDSFA+WpBuXnoNpZLhlNWs6wixWAgnV0uYmRv2nNJ5od8+omtUpwjRjBJmQggpoNxJs2qybNe+HTy+G6WXuIh+yWWfEHduM6eMJxTBslkfGLvU0FNU2YxFxvi55RicfnkZteyqw05iDRPR/7F33+FxVOf+wL8z26tWvfcu2bJlWzbYmGJswPTeQwuQkAZpXAg3994kl9wkhFTKD0JCCBCqC9jGvWDj3i3LltV7Lytppe0zvz+EVhppZbXZqvfzPH6sPTt75kh6dXbfOWfOUfq0TWK646EF2PbZORw/WAsASEoLgyFMDalUgtSMCB+3jhBCSDCgKdmEEDIFCXfcBqlWeE8kq1Qi43tP0dTPWYh3OtC69mXwDpugXJO7DLp5K/wiJhiGwY3ZK5Eelgy9Uufr5ohKJpPghjvn4s5vLEBSahjSswf3Wk7JCIdMLvFx6wghhAQDGmEmhJApqF+zFg6TSVDGWSxo+nwj3bs8C3Xt+xi21mpBmTw6FaGX3w1W7v2RXJ7n/SJJ97a8+XHImx8Hu92Jxjoj4hINvm4SIYSQIEEJMwl4HR0d4DgOLMsiIoKm4JGZGy+m6j76BPX//tD1WKrVwGHqB+B+n2YS3HieB6tQg1WHgBvoAQCwSi1Cr7gXMkO04FhP91NOzokjDadgdlhxaeKCoJp2PRUymQQp6eG+boZX0HsfERvFFCHuUcJMAl5TU5NrGwTq4IkY3MVUw5p1gmQ5/o7bkXT/PWj6bMO4+zSTwMbzHJrefg6c1QxWoULco78BwwzfyWRtroDTZIQm7zJYGy/A1lIF3cJroc5YMKYuT/dT75z8FFsq9iA7Ih0m2wCuTFkSdNOvAYDjeLDs7BtBd4fe+4jYKKYIcY8SZkIImUDV3/6B5o2bBGXGkycRffVVYxYCo6Q5eNja6mBtrhQ8VkSnAAAcJiMGLhwBADAsC1XKHKhT5sJwyS2CpNob9lQfxJaKPQCACx2VMFp6YbGbcU3mFTAo9V5tiyeVnGrCwT2VuP3BBQiL0Pi6OYQQQmYJSphJwEtMTHRNISJEDImJiXA6HKh98Tc43N4x5p5lALA0t0AaMpiMUNIcnCy1ZwWPB8qPQhGdAt7pgOnsXnAOO4DBRbUYiQza/MvAKt0ncp7qpzr6u/DW8Q8EZW39HeDBQycPnqSyu3MAGz85A6vFgTf/sA8rrs9GztwY6ENUvm6az9B7HxEbxRQh7tFfBAl4oaGhCA8PR2hoqK+bQoJEaGgoVKZ+WKpr3CbLAKBJT0P3sROuxwl33Ibkhx50Pa7913toWLPO420lnmOuLRE87juzBwBg62iAo6/LVc5IZVDGZUIekTBuXZ7qp8LVoXho/h2QjBjVXpq4ELflrYaEDY5Vop1ODmvfOwGrxQEAsFkd2LKuBLs3X0BpcYurfLah9z4iNoopQtyjEeav8TyPjRs3Ys2aNTh//jwGBgYQGRmJoqIiPPDAA9PazL2hoQFXX331tNpz4cIFt+VlZWV4++23cfjwYbS1tUGn0yE9PR233norbrvtNkgkwfEBiRBfa92xc9znGKkUuqxMaFKSBOXuRpr1uTnQ5+V6rqHEI3ieg6XunKDM0d2Czj0fQD9/JTQ5l8BceRI874RUFwZV+nyftJNhGFyTcQWSQuLx8v43kRKaiCcW3g+5ROaT9njC7s0X0FhnFJRFxeqgNyjR0tSD9tY+FC5Jglan8E0DCSGEBDVKmAFYLBY8/fTT2LNnj6C8sbERjY2N2LBhA5555hk8+eSTXmnPeFuCfPLJJ/jFL34Bu93uKuvq6kJXVxeOHj2KdevW4dVXX4XBYPBKOwkJZtb2jnGf02ZmQBERAXVS0pjnRibNiffeTclygLK11YGzjJ1d0LP/UwyUHkT4dU9AN38FrI1lUKUUgPHxaG5OZAZ+e+3PoJNrIAuiZLnyQjsO7K4UlKnUMmTkRrneK9UaOTQauS+aRwghZBaghBnACy+84EqW09PTcffddyMiIgIlJSX48MMPMTAwgJdffhnR0dG45ZZbJl1veHg4Xn311Ukd+9prr6GkZHD63/e///0xz+/btw8///nPwfM8VCoV7r33XsyZMwednZ349NNPUVZWhmPHjuFHP/oR3nrrrVl1/4nT6XR9TSPsRAwOux09xWfdP8my0GVnIWTuHDDj/J0l3HEbjSwHuNH3L49k72xEy4f/i8jrn4Ku4MpJ1eeNfipMZfBIvb5i6rVg/b9PCspYlkFOQQyk0uG/vYycKDCzcOVseu8jYqOYIsQ9hud53teN8KX9+/fjscceAwBccsklePPNN6FQDE/rqqysxP333w+j0QiDwYCdO3dCq9WK2oYNGzbgJz/5CQDgiiuuwBtvvCEYZbbZbFi9ejUaGhqgVqvx3nvvIT8/X/D8j370I2zfvh0A8PLLL+PGG28UtY0TMZlMgmnk2dnZov+cxnPmzBnXNgjTmTpPyGgnt27DwGtvuH1OFhqKpHvvRvS1q8adDUL8X+f2t2E6f2Dc5zlLP3i79aJ1sGo9GInwurM2bxnCVz4y5lgx+ymO58B6eSVub+M5Hu+9eRjV5cKZHunZkYhPNrgeR8XokDcvzsut8w/03kfERjFFxOTL3EBswf2OOwn/+Mc/AABSqRT/+7//K0iWgcER55///OcAAKPRiE8++UTU87e2tuKXv/wlgMHFFn7961+P+RC+bds2NDQ0AAAef/xxQbIMAHK5HL/97W9dU7HfeMP9B31CyOQ4SsvGf663B+qkJEqWAxjP8zCVHoSzr2vcfxMlywDADfSOeV1/6SGPtZvjOawp+QL7ao7gSMMp2Bw2j53L1/bvrhyTLEfH6RGXFOJ6LJGwSMuK9HbTCCGEzDKzekq20WjEgQODIwzLly9HYmKi2+Ouv/56/PrXv0ZnZye2bNmCRx99VLQ2vPjii+jt7QUA/Md//IfbjeK/+OILAIP3Nt93331u69FoNLj99tvxj3/8A2VlZaiurkZqaqpo7fRnOp0ODocDUumsDmcyBdV/fxsd+8cfXbR1G8d9jndyKPnFryDVqMc8F3HZMqQ+9ogILSSexJn74Ozv8UjdDlM3nAO9kKiF+x+L0U99XrodH53dAJVMiSUJhWg1dWBRfAFidVEzbbZfqa/pxu4twoUvNVo50rIiBBeqElNCoVQFz/3aU0XvfURsFFOEuDer/yKOHTsGjuMADE7HHg/LsigqKsKWLVtw+vRp9PT0ICQkZNzjJ+vgwYPYunUrAGDhwoW47Tb3e7YePXoUwOBUhrCwsHHru+SSS1wj5nv37p01CfNs+T6JOHieR8eBg7B1dk188Dg4iwU2i2VMeeeBQ5Qw+zGO4/Hjv+yF2eKAUvoE/iPjJMwXxBsR1uRcirCrvzEmWQZm3k+VdVThw+LPAQBmuwVfVh/CvJg8OHknrs9aETSrYlvMdqx97wR4bvhuMYYB8ubFQiYfvqdSqZQhMXX898PZgN77iNgopghxb1YnzOXl5a6vs7KyLnpsRkYGgMEP22VlZSgqKprx+X//+9+7vn7uuefcHtPa2uoagc7MzLxofenp6a6vS0tLZ9w+QoKRo68PdqNnRhdt3d2w9/ZCph+bMBHfq23pRUW90fXYcv+TiC26Hp3b34attXra9cqjUxG+6lGokvMnPngaeJ7H2yc+Bsdzw2XgoVfqMD8mL2iSZZ7nseHj0+jpNgvKCxYlQDVqFey0rAhIJLP+rjJCCCFeMKvfbRobG11fx8fHX/TYmJgYt6+brh07duDs2cFVWFeuXDnu4gpD9y5Ppo3R0dGu1bGbmppm3EZCgpFMr8eCV/+M8EvHn1UyHeFLL8WC1/5CybIfK64Q3hNbXNkBVXI+4h/7LSJueAoSzdRnDoVd/TDiH/utx5JlYPB2nJ9e9m3kRw1f2M2NzMT8mFwkGxI8dl5vO3GoDufPtAjKElNCYQgT3v4QYlAhMkbnzaYRQgiZxWb1CHNX1/CUzNDQ0IseO3JvY6PROONz//Of/3R9/fjjj497XHd3t+vridook8mgVqthMplEaSMhwUoZE4Oc536KnrMlqH7rbfRXT390UZOaitTHH0XIHM8lTEQcxZWjEuaKDty8PB0MK4F+/kowDIv2jZPbCnCI09TllT2Yw9QG/PyKp7H2/BaUtF3AAwW3I14fHTSLz/E8j6oy4e9HpZZhXlEienuGR5wZMIPbSAXJ900IIcT/zeqE2TLiHsTRq2OPJpcPTwezuLl3cSpKS0td9yUXFhaisLBw3GPN5uEPChO1cegYk8k04zbOVEVFBdLT06HTDY8CWK1W1/LyBoMBSUlJY14zMDAAAGNG3Ds6Olyj5omJiYKLB9XV1eju7gbDMDAYDGPuwampqXFNa8/LyxMsZmE0GlFXVwcAiI2NRWSkcMXV4uJi197Xo6fENzQ0uC66ZGVlQalUup4zmUyoqqoCAERGRiI2Nlbw2vPnz7u2bsjNFe7V29zcjPb2dgBAWlqaYAl+i8WCsrLBFZzDwsKQkCAcXSovL4fZbAbDMJg7d67gufb2djQ3NwMAkpKSBBeBHA4Hzp07BwDQ6/VISUkRvLa6uhp9fX0AgPz8fMH+jN3d3aivrwcAxMXFjVm47syZMwAAtVrturVhSF1dneviTnZ2tiDG+/r6UP11IhsdHY3o6GjBa8+dOweHwwG5XI6cnBzBc01NTejoGPzwnZ6eDo1G43rObDa7bscIDw/HvJd/i7Zdu1Hzr/fg6O3DVDASCXJ//jwU4eGw2+04f/48ACAkJATJycmCYysrK9Hf3w8AmDNnjmCv9K6uLtdskoSEBMFaBRzHuWajaDQawa0XAFBbW4uensEp5rm5uZDJhqfn9vb2oqamBsDgLJmoKOHiUGfPngXHcVAqlWNuS2lsbERnZyeAwdtBVCqV67n+/n5UVlYCACIiIhAXJ9zWp7S0FDabDVKpFHl5eYLnWltb0draCmDwfjlv9BFOpxPFZ8/idFmb4DXHS9tgsTrQ0tyA3t5eqA5swFRTX+OxzWjSZ0EZGnnRPkKj0YDneUilUqSkpEyrj2BZFnfmX49LQ+ehs7ET5Y09QdVHzF+qR2JKKHZsOg/OyWPVTbmorWlxvZ9FhEcgITkMupDBvtZbfcTo2V1lZWWwWCxgWRZz5swRPNfW1oaWlsFR8pSUFOhHzDgRu4+oqamBw+GARCJx/eypj5h+H1FSUgJgcOGr2fo5oqamBj09PeA4DlKp1O/6CH/9HOGvfcQQX32OGIrBYDCrE2aHw+H6emRC7M7I50e+bjr+9a9/ub6+2OgyINxEfqI2jjxmpm2cKafT6VpQbQjP87Db7a7nR3M4HK7nR+M4zvXc6Hp7e3vB8zx4nnf7fY+sd/S24yPbNLpeYLDzGvqQK3a9k/leL1avu+91qF53oy8zqXe6v5uhNo1Xr9PpHLdNI+t1Fy92ux0Oh0PwhjGZekfHISORIHrVSnR8dQDGU6fdfo/j4Z1ONH22AamPPeKzn+HF4nAyP0OO4wQfXIZM5Wc4XptGv250vd7qIwCgsX0AZpuw3O7g8NXpJqSEOeDs7QDbVee27othnA5IyvfBXnjTRdtrMpngcDhcH0Rm0keAR1D2EXK5HJdckYmktDBUl3dAIpWA53hwzsHXSKQMUjMj3NbryT7CXb12u33Cei8W32L8DHt7e2G32yGVSl31UR/h/X42mD5H9Pb2usrc1e3rPsJfP0e4q9cf+ojRbZpMvWL2Ee7aEahmdcI88kqe3W6/aEJqsw3vdzmZxHU8/f392LhxI4DBq2grVqy46PEjr5SN++FphKF2jrw65AsSiWRMR8EwjKtd7v6wpFLpuO1mWdb1nLsOaGQdF6t39IfEkW1yV69MJgPP827bNdN6R/4/0sjv9WL1uvteZTIZHA6H2w/DM6l3Jr+bi9UrkUjGbdPIet3Fi0wmA8MwU67XXRzaurthPH3G7fc3kZbNWxF/2y1gtFqf/AwvFoeT+RlyHOe2XVP9GY5u09AIxcXq9WYfUd/h/iLi/jNNyFgZA1XDKUx3kq+i7gS4uasu2t7RH0KojxC2aWS9cYkGxCUaYLc70WcyoqHWBp7nkZgaBrlC6rZeT/cRo+t1Op1uv5fJxjf1Ef7XR0z3ZxhsnyNG1y9WvcH+OWJ0vdRHXPzzeqBheHeX92aJZ555Bps3bwYwuMXUyGk/o23fvh3f+973AAA/+9nP8PDDD0/rnFu2bMHTTz8NAHjkkUfw/PPPX/T4L7/8Ek8++eSkz7tw4UKYTCbk5uZi/fr102rjdJhMJtc0KWBwWszIKUCe5HA4wPP8uJ0eIRMp/+uraNuxa9qvj7vlJtpOysfe+uwsvjo9/oKMJrMdVtvYq+MSloFeIwfX3w24eTssVNTgNvXxCc8fsuQmhK98ZNznp9JPHao/AZNtADq5BjG6SCSFxM/qe3b7TVY01HQjMy8aLDt7fw6j0XsfERvFFBGTL3MDsc3qv4aR9w0YjcaLJswjF9G62F7IE9m1a/hD+bXXXjvh8SPbOHR/wXjsdrvr3p2ZtDHQUKdOZsLW3Y323V/OqI6hUWb5BAvzEc/geR77zzShs2fqazc4OR7dfVYAarfPn7YlTyph7j2+FSGX3AKp1n0MTLafajN14PWj78JstyBBH4uFcXOREtqMhbFzoZQpJ64gQDgdHKxWB9SaiWdsabQKZM+JmfC42Ybe+4jYKKYIcS94xsqnYeSCBEOLGIxn6AZ9AGMWr5gsp9OJL78c/GAeHR190cW+ptPG1tZW1/0C020jIbNN645dbu+jAwAwDCQaDTDetCKWhSwsFFKdFm07d3uukeSievttMPZZPVJ3H6eCWR0NiS4MEl0YGKUGGDV5m5EpwKq0MJ2ZWQw4OCf+dPDvMNsHE/+G3mbsqNyHqq567Kk5NH6cBqBdm0vxxst7UVvZ6eumEEIIIRc1qy8ljVwlrry8HIsXLx732KHV8BiGGbPK4WSdPXvWNVK9YsWKSU2xCw0NRXh4ODo7O11tGE9FRYXr69Er1RFC3AvJzwPcLEyhjIlB/q9+AWVUBBwDA6h6429o37NXeBDHIefZn0CfmzPm9cR7QrQKvP4fK/D2xhIcOHPxC4tTsawgDo/cmIeY8NsF5XZjG9o++zOsDaVgVTpE3/5jqFLmjlPL5J1oKkZFV42gLFwdBoVUjjnR2UEzLbuitA0H9wyu/vuv1w/i8lVZWL4qEzarA0qVb9ffIIQQQkab1SPMhYWFrpvUDx8+PO5xTqfTtQ1UTk6OYJr0VJw8edL19bx58yb9uqKiIgCDWwgMLcnvzqFDh1xfXyz5DzZGoxHd3d209zSZllY39y6zGg0i7rkLFvngNUWpWo2sHz6NrB89A4laOHWXRpb9Q0y4Bs8/vBi//s4ypMWFzKiu+DA5fv2dZXju4SLEhGvGPC8zRCHuG79E+DXfRMITf5hUsjyZfmpxwnz8ZNm3oJEPxphOrkFh7BwkG+KRoI8d93WBpK/XgvUfnHI95nngq50VuHC2GUe+qkZL48VvPSLD6L2PiI1iihD3ZnXCrNfrcckllwAYvLd4aH++0TZt2uTaJ2/16tXTPl9xcbHr6/z8/Em/buheZ4fDgQ8++MDtMSaTCevWrQMwuG/h6P3kglldXR2qqqpc+yASMhUyw9jkik1PQ7uEGRNTkVcsx/w/vQzd1yPKUp0OEZdf5pV2ksmZmx6BP/zwCnz/7vkwaCfeu34kpYTHw0tUeOW5azE3PeKixzKsBCFF10Oqm9x6EZPtpxYnzMdL17yAOVHZ+Oll30ZOZDoKYyb/fuHPeI7H+n+fwoDJJii/7OoMtLeawHE8Ss+2oKK0DTwXPNPPPYXe+4jYKKYIcW9WJ8zA4ErVwOCCWT/60Y9gMpkEz1dUVODFF18EMLjZ91133TXtcw1NmZbJZGM2Db+YlStXujaWf/XVV3Hs2DHB8zabDc8++6zriuCjjz467TYSMtt0HT4ieCwLCwUTFgpoxo4sAoAyOgpzX/wl0p78Jub/+Q8wFMx8Ki4Rl4RlcM2SZDx8Q96UXnff0nDcfuvlkEp8+9YYoQnDf131DHIiM7Awbi7k0ulvZehP9u+uRHV5h6AsIycSUhkLbkSC3FDbja7Ofm83jxBCCHFrVt/DDACXXXYZrr32WmzduhUnT57ELbfcgvvuuw+xsbE4d+4cPvjgA/T3D75xP/vss2NWnz58+DAeeughAIPToN99991xzzV0xc5gMLjdy2w8crkcL7zwAr7zne/AYrHgkUcewV133YUFCxbAaDTi448/RllZGQBgwYIFuPPOO6f0Mwh0sbGx4DguqPZ7I94Te9ONaN22HQM1teCdToTk50G1ZDEUiYnjxhQjkSD2huu93FIyEUv9eSgTc12P95yon9Lr99dyuF3umZWoZ3s/VV/dhd1bLgjKdCFKpGZGwGoV7pGdkByK8MjA3HrEm2Z7TBHxUUwR4t6sT5gB4Le//S36+/vx1VdfoaGhAS+99JLgeYZh8L3vfQ/33nvvtM9hMplcWz5dbPuq8axYsQL//d//jRdffBF2ux3//ve/8e9//1twzNy5c/Haa69NKRkPBpGRkb5uAglQPMchfHERtOlpMJ4+g57iszAUFiJ66aW+bhqZoq69H8G472OEXfUgDEtvQ1vXAM5UdEz8whHK6oxo6x5AVKj7LaZmYjb3U+YBG9a+f1IwzZphgAWXJI5JlsPCNUjPmr0/q6mYzTFFPINiihD3KGEGoFKp8NZbb2HDhg1Yv369a3Etg8GAhQsX4qGHHsLChQtndI6hUWoA01407L777sOiRYvwzjvv4MCBA2hvb4dMJkNWVhZuuukm3H333a5FzAghE3NaLOB5HvKwMMSuvhZRV10JeRjtpRxoLPXnYdz3MQCga/d7AIDd/XmYzi5Mu4/X456V2WI2zy2TrR+vHXkXDxTcio6BLqSHJkOrcH8bQCDjeR4bPj6Dnm6zoLxgUcKY349KLUfuvFgwbHCsBk4IISQ4MHwwbexIfMZkMuHCheHpdtnZ2dBqaUod8V88x8Fu7AHP82AYBrIQPZhZNjsjmBgPrHMlyzwP/Nr2DbT1j0281IwFq1WnsMeSj05u7Gyf2AgN3njuao9u4cTzPP5w4G843HAScokM82LykB6WjILoXKSHJQfN9lEAcOxALb5YUywoi0sMQXpOpOD7lEolKFySCM0UF2ojhBDin4IpN6ARZkLIrOS0WDF0vZBVyClZDnCGpbcBGBxhrnJEuU2WcxSteES1CyrWjsWKanzSvxjHbMIFGJs7+nG+pgt5qeEea+uOyq9wuGFwm0Gb046jjadhcVjh4JzoMhuxOGG+x87tTa1Nvdj6WYmgTKmSITk9XJAsM2CQWxBDyTIhhBC/RAkzCXjFxcWw2+2QyWSYO5dWLCYTc5jN4KwW12OJUrjQE8VUYBpKmj/YWCkoVyuluC+6AgV9e11lSsaOb2j3oyg9Fe8UyzFgGb6XdufRetET5qGYkkgl2NnyleA5uUSGxJA4AECyIV7U8/qKzerAmvdOwOngBOW5BTGQyYUXp9KyImiRr2mgfoqIjWKKEPdoGTwS8Hied/0jZCI9xWdx7NEn0LB2PRymfkgUijGjyxRTgcuw9DZcuTgdGmbwgkiqtA3/mVUiSJaHhF5xL66/9zb85cdXITdlcAcEvUaOywvFT1qH4okBg1+s+DGuThvev3tR/DyoZSpkhCUjWhsci+5sXV+CjlbhNo1pWRHQhQgvTsXE6ZGQQusGTAf1U0RsFFOEuEcjzCTgqVQqSKVSWvCMTErNv96D02xG8+cb0bplGxLvuxsJt98mOIZiKrAtu/U2xOnW4cs9h7FMUQZJw9gPf/qFqxF62V0AgOgwNf7vO8uw+WANLp0bi/AQlehtGhlTCqkc3yp6AHOjs1HX04grU5eitL0CBdG5E1cUAHiOh1wp/HgRGq5GXFKIoEwfokJWXnRQ3bPtTdRPEbFRTBHiHiXMJOBlZmb6ugkkQPScL4WprNz1mLPZYGluHXMcxVTgS736NhiUHLr3XBjznCp1HiKue1xQJpGwuPGyNI+1x11MLU1ahKVYBACICZKRZQBgWAbX3pKP1MwIfPbBKTgcHDJyIgV7uyoUUuTPjwMroYlu00X9FBEbxRQh7lHCTAiZNTq+3Cd4zCoViLvlRh+1hngaZzaNLWQliLnv595vDACO58CAmTUjqll50fjWTy5HW3MftHolykpawXEcWJbFnMJ4KJT0EYQQQoj/o0u7hJBZI/raVYi58Xoo4wfvUQ1btAjqhAQft4p4gqW5Ej2HPx/7BOdEz8H1XmvH0L2AraZ27KzcP+vuDdSHqJCRE4WYOD3mFyVAoZAie070mHuZCSGEEH9Fl3cJIbMCz/OQhxoQf9utCF+yGD1nihF5xeW+bhbxkJ5Dn4373NB+zUOranvS+2fWg+M5KCUKgAGqjfVID0t27f89m+gNKhRdlgKplLZwI4QQEjgoYSYBr6GhAQ6HA1KpFAk0WkjGwdls4J0cGIaBJiUFIXPnjJuwUEwFtq7d76P/3H7XY0amhDJlDpQJ2eje/f7Xx3g+aT7VXILPS7cBAPRyHeaEZsHWb4E0W4JQlQF6RXBspdTXa4HV7EBE9MTfDyXL4qF+ioiNYooQ92hKNgl4XV1d6OzsRFdXl6+bQnyk99z5CY9xmkfsu6xSgmGYcV9HMRW4uvevgfHAWtdjZcpchFx6CyKvfwqhS29H2FUPup7r2v0ejAfWeaYd5h68cvifrse9tj4cbTuNjr4uHG44BZ1c45HzehvH8Vj3/kn87U/7cOpIPXieh83qmPiFZMaonyJio5gixD1KmAkhAa3ug49Q/Px/omHN+ImP02oF73QCAFiZDKxMhoY161D8/H+i7oOPvNVU4mHGA+vQveffrsfKlLlQJuZCnVIAqdYAYHBE2RtJc3lnNQbsFkFZgjIGclaG6zKvDJrp2Pt3VaCmohN2mxOff3QaH/z9CA7srhyzBzMhhBASqGhKNgl4WVlZs/J+QDI4slz/4ccAgNp/DU6xTbhDOMW293wp5JGRrviQqJRoWLPOdXz9hx/DMK8A+rzhPXAppgKP8cA61zRrYDhZlmpCoIgXbpUyNA176HhPTM9enDAfL658Fn868BaaTW3Ii8hEXkQmFsYVBM1U7LrqLuzZWiYoq6/uRmS0DmdPNSI1IwJJaWH0d+Qh1E8RsVFMEeIeJcwk4CmVtNrqbKXPy0XyQw+6kt/RSbO5sQnFP/s55AYDYm+8AZFXLkfT5xtdxwFA8kMPCpJlgGIq0FjqzwuSZU3+ZZCFxYEBA3XmIjDs2Ptm3SXNysQcKBNzxxw7XamhifjNNc/jo7MbcEfeaigkcsilctHq9yXzgA3r3j8JnhOu+p0zNwYy+eDPu7qiA7oQJcIigmP6ub+hfoqIjWKKEPcoYSaEBLSh5Nhd0lzzr3cBjoOtqwu1/3oXDWvWwtnf73pt8kMPjhmRJoFHmZgLZWoBLNVnoM5chKibfwCHsRWOvm5I9RHjvm5k0mxYfreoyfIQlUyJRwrvEr1eX+J5Hhs+PoOebrOgPDk9DCGhKtfjuEQDQsPV3m4eIYQQIipKmAkhAc9d0mw3mdB15JjgOEqWg5OjtwPWhsGpwQPlx9D49vOIvPE7UCXnT/haw9LbRB9ZDnbHDtSitLhFUBYSqkJSWpjrsSFUjYycKJraSQghJOBRwkwCnslkct1zo9UGx72BZOpGJ81Na9ePe+xEyTLFVGDp2PYP8CMW2LK1VIF32Cb9ejGSZSfnRJ+tH6XtFVgYNxcyiUzwfLDEVGtTL7Z9fk5QJpWxyJkb40qOlSoZ8ubFgmUpWfakYIkp4j8opghxjxJmEvCqqqpgt9shk8lQUFDg6+YQHxqdNLszmZFliqnA0V9+DAMXDgvKdIUroYzP8lobao0N+N2+/4cFcXOgU2jRbe7BsqRF0Ct1rmOCIaZsVgfWvHsCTgcnKM+eEwOFcvDjhETCYk5hPOQK+njhacEQU8S/UEwR4h5tK0UICSoJd9wGbWaG2+doGnZwcdrM6Nj0uqCMVesRdtUDXmuDxWHFnw7+He0Dndha8SXOtl5Aj7UPO6q+QteA0Wvt8IYt60vQ0SbcLio+2YDwyOFFvXLmxkCrU3i7aYQQQojH0CVgEvAiIyPBcRxYlq7/EMBpNsPc0DimXKrTTjpZppgKDJ1b/w5nv1FQFn71w5CodO5f4AH/PPExGnuH7+ct7aiAQirHJQmFCBkxwhzoMVV8ohGnjtQLyrR6BVIzw12PUzMiEBntvZ/9bBfoMUX8D8UUIe5RwkwCXmxsrK+bQPxIy7YdcJrNY8odfSY0rFk3qaSZYsr/WRorYCreIyiTRSZBO/cKr7XB7rSjy2wUlBmUeuRFZuDSpIWQjNjOKpBjqqujH5s+LRaUSSQMcgtiXB+sQ8PUgkW/iOcFckwR/0QxRYh7dAmJEBI0OLsd9R9+JCwcsUpv7b/eQ8OadV5uFREbz/No3/hXgB+xBzDDInzlw15dlVkmkeG5y7+LB+fdDgnDQilV4M7867EseTHUMtXEFQQAp5PD2vdOwGZ1CMoz8qKgUg/vKZ2cHk4rYhNCCAlKNMJMCAkaZX/4M5wDwtHlqKuvglSjQdNnGwAI92kmgann0OewdzQIytRZi6FOm+/1trAMi5tzViEvMhNdZiMWJ3i/DZ7EsgzmL05Ea3Ofa7Gv6DgdomP1rmPSs6NgCKP9lgkhhAQnSpgJIUGh/tO16DxwUFCmiIyANi0NMddfB1lIiGCfZoCS5kDkMBnRvU84i4BVahCx+kkftWhQRniKT8/vKQzDYNHSFCSmhGHNeyfAcTwWL0tBT48FKrUcC5YkQSaXTFwRIYQQEqAoYSYB7/z5865tEHJzZ76fKgk8DWvWoe7d98eU63Jzoc/PBcMwY7aculjSTDHlvzo2vQbebhWUhS6/B1JNiNfaYHPaIR+1z/JEAj2mouP0ePzpy9BvssIQqkZVeQdiE0IoWfahQI8p4n8opghxjxJmEvDsdjvsdruvm0F8pGHNOrf7LstCQqDNSIc6KclVNtmkmWLKPw2UH8dAxXFBmTw6Ffqi671yfovdgj5rP/bXH0NhbD6SDQmTfm0wxJRcIXXtr5yeHenj1pBgiCniXyimCHGPEmYS8GQymeB/Mnv0njvvNlkGAF1uDvR5uWBGbY/hLmnWf33sEIop/8NxHDq2viUsZKWIvPG7XllsiuM4/Gbfa+i1mrAgdg4ON5xCl9mIedF5k9qChWKKiI1iioiNYooQ9yhhJgGPpg3NXvq8XCTeezfqP/xYUC7RaKDLyoQ2LdXt60YmzYn33i1IlgGKKX9kb6uFKr0QAxXH4eztAADo5l0FRYz737HY1p3fgnPt5QCATnM3lsQXAgD0Ch3Sw5InfH2gxFR9dRfsdifiEg2or+lCelYkWAltqOGPAiWmSOCgmCLEPUqYCSEBLWzJ4jEJsy4na3B0WTL+/ZUJd9w2ZmSZ+CfOboW5+jQkmhBoC66Cra0Gjo4GhK98xCvnL22vxCclm1yPzXYLjjSewsPz70RqaKJX2uAN5gEb1rx7Ar29FqRlRiAuyQBTrxVzCuPpXmVCCCGzFl02JoQEtMa1wn2VWYUCuqwsaDPSJ3wtJcuBwVx9BtzXC30xDANFdCqi7noerFzplfPbnDZo5MPbJjEALk9ejKVJi8AywfE2yvM8Pv/wNHp7LAAPVJV14PTRBnS0mXDicB3MAzZfN5EQQgjxieB4pyeEzErm5hZ0fHVAUKbNyoQ+Lxcs3YMVFBy9nbC2VAnK5BEJUETEe60NBTG5eOnaFzAnKhsAcFP2KtyWtxoKqdxrbfC0Y/trcaGkVVDGsgykMhYMA0hlNMJMCCFkdqIp2STgNTc3g+M4sCyL2NhYXzeHeFHTZ58DPO96zEil0OfkQJedNaN6Kab8h90oTOIYiRTq9EKvtyNMZcB/XvED7K09jMuTl0xqoa+R/DmmWhp7sO3zc4IymUyCnLkxUChkmLsgHjJKmP2OP8cUCUwUU4S4RwkzCXjt7e2ufQOpg589bEYjWnfsEpRp09Ogz8uBRKGYUd0UU/7BXFcCZVwWZIYoDJQfh6PfCFVyPliFeuIXewDLsrgy9dJpvdZfY8pmdWDNuyfgdHKC8uw50VCp5ZhTGAeVOnhG0oOJv8YUCVwUU4S4RwkzISQgNW/YBH7kfpEsC11uDnQ52b5rFBGNvasJLf/+FaQhkQi/7nHoFqyCrbUW8qikiV8sEp7nvbJllS9tXncWne39grKEZAPCI7XInRsDvUHlo5YRQggh/oESZhLw0tLSZsUHWzLM0d+P5k2bBWWa5GSE5OdBqp756CPFlG/xPI+OrX8H77R/nTj/Eto5lyPy5h945XfSNWAEBw4WuxVyyfC98JGa8Gmf3x9jqvh4A04fbRCUafUKpGRGIC0rApExOh+1jEyGP8YUCWwUU4S4RwkzCXhardbXTSBe1rJ1O5xms6BMl5cDXW6OKPVTTPlWf+khmKtOCcokmhCvfIj7qvYIXj/yHhbGz0W8LsZ1TqVUgZuyV067Xn+Lqa6Ofmz6tFhQJpGwyC2IQUJyKBJSQn3UMjJZ/hZTJPBRTBHiHq2STQgJKDzPo33Pl4IyVUI8QubkQ6ajEbFAx1nN6Nz+D0GZRBuG0OX3ePzcLX1t+NuxD2Dn7DhUfwKHG07C7hyc9p8amhg0oy4OhxOf/us4bDanoDwzLwrxSaHIzIkKmu+VEEIImSlKmAkhAYVhGOS88DzCl14KydfTr3W5ObSncpDo2PImnH1dgrLwax4Fq/DsvbQOpwN/Ovh3mB0WV1lDbzNaTR2IUIchP3JmK697Q11V18QHAdi5qRQtjb2Csuh4PdKyIpA3LxYMS8kyIYQQMoSmZJOAZ7FYXPfcKJVKXzeHeIEqOgrZz/4YA7V1aN2+HbrsbMgNBtHqp5jyDUtjGUwl+wRlqrR50ORMb2XqqeDBIysiDVXdda6y7PA0ZEWkYmnigilvIzWap2Nqz9YL2LutHFffkINlKzLGPa7sXCsO760eU65SDW4fJZXS9lGBgvopIjaKKULco4SZBLyysjLXNggFBQW+bg7xEoZhoElJRurj3wTvcIhaN8WU9/E8j/YNrwr21QbDIvTy+7wyPVgmkeGxBfdgbnQOXjvyL4QodHju8u+C4zkoZTP/4OjJmKqr6sLebeUABkePAbhNmm1WBzZ8dNptHTUVnWht6kNSWpiobSOeQ/0UERvFFCHu0ZRsQkhAYxgGrEw28YHEr/Uc3gB7p3DFZk3OEijjM73ajqL4eXjp2hfwk2Xfgkauhk7h/4vgJKWF4eobhhe827mpFPt3VYw5Tq6Q4tb7C6HRjd2n/OobcihZJoQQQtygEWYS8MLCwuBwOCCVUjgTcVBMeZdjoAfd+z4SlLFKLcKvfcIn7YlQi584ejqmhkaUh0aYxxtpTs+OROGSRHy1YzihnmgaN/FP1E8RsVFMEeIe/UWQgJeQkODrJhAvsPf0QBYS4pVzUUx5V8cXb4C3WQRlhsvugFTj+d/3ubYyRGkjPJIkj+SNmJpM0rx/VwUly0GC+ikiNoopQtyjKdmEEL/XV16Bo489gbI/v4KB+oaJX0AChrn2LAYuHBaUyaNTELL4Ro+et6m3BeUdNTjbVoY91YdQ1VXr0fN5y7IVGeNOz96/q8KVRAOULBNCCCGTQSPMhBC/17h2PXiHE+27dqN9126ELSlC+neegtzgnRFn4hk850T7xteEhawE4dc9AYbx3PXcPqsJv9j9J/DgsSShEDqFFseaitFj7UNh7ByPnddb3I00H9hdCfOA3XUMJcuEEELI5NAIMyHEr5kbm9B58JCgzGmxYKA2OEYEZ7O+M7vgMLYKyrR5l0GVkDPOK2aO53m8fvQ9dFt6YLT0YkfVV6g1Ds5aCFUGzwWYZSsykD8/zvWYkmVCCCFkemiEmQS88vJy1zYImZneXVGXeJ6pshKMROLaOoqRyaBNT4cqPt5j56SY8jye58A7HNDkLcNA5Unw1gGw6hCEX/OoR8+7teJLHGsc3lrJyTlRY2zA1WnLkBKa6LHzejumbFYHqsrax5Sr1DJKloME9VNEbBRThLhHCTMJeGazGXa7HQ6R9+Il/iHy8uVQxsai4dO16D5+AtqMdLByORQR4R47J8WU51mbKuAc6IUsPB56QzQs9eegzV8OiUrn0fPmRWYiQR+Lht5mAIBGrsaNWSsxPybfo+f1dkzt21khGFV2tWPAjv27KihpDgLUTxGxUUwR4h4lzCTgMQzj+keCky4zA7nPPwtrewe6T55C2OIij56PYsqzOKsZ5pqzrseMRApd/nLoFlzj8XMnGeLxf6uewz9PfoKdVV/hB5c8ivkx+R7/XXszpjrbTTgwah9mhgF4fvDr8bacIoGF+ikiNoopQtxjeH7oLZSQ6TOZTLhw4YLrcXZ2NrRarQ9bRAjxV/2lh2BtE96Drp+3AtKQSK+2o9bYgGRDcG2jwvM8Xv3NHnR19AvKFy1Nht3uxOmjw6vM073MhBBCPCWYcgNa9IsQQojX8JwTToswmVNEp3g0WXY4HXB3bTjYkmUAWP/BqTHJckKyAWqtHMtXZo675RQhhBBC3KOEmRBCiFfYe9rQX3YE2oKroMlaDFamACuVQZVa4LFzchyHvbVHcLjhJBzO4L4vb+/2MhQfbxSUyRUSJKWHwxCqRmi4+qL7NBNCCCFkLLqHmRDid0yVVVDGREOq0fi6KUREndvexkDZEajSChFx7TehX7Qazv4esHKVR85nd9qx8cJO2LnBRLnX2oelSYuglQdfXO3fVYE9W8rGlKdlRUIqZZGeHem6L9HdPs0jywkhhBAyjEaYScBrb29Ha2sr2tvHbqFCAg/vdKL0ty/h6GNPovyvr8La3uH1NlBMia+//BgGyo4AAMxVJ9Hw5g9hrimGzBDlsXO+fuRdfFD8Gc60nAfHcTBa+nCw7oTb6dme5smYqqvqciW9I4WEqhAZo0V0rB66EKXgOXcjzXVVXaK3jXgO9VNEbBRThLhHI8wk4DU3N7v2DYyM9O6iQUR8HfsPwNraBgBo27ELbbv2IOO7TyH8kiWQar0zMkgxJS7ObkXntr8LyhiFCsqEnHFeMXPHGs/gq7qjAICyziq0D3RiaeJCrEpf7pMVYD0ZU0lpYQiLUKOrY2C4kAEyciIhkbBIzYxw+7qRI82XX5OJpLQwUdtFPIv6KSI2iilC3KOEmRDiN3ieR+Pa9YIyucEAS1sbrJ2dXkuYibiMB9bCYWwTlIVf/RAkKs+sltlr6cPrR/4lKOux9CE7Ih2hqhCPnNOXLpS0CpNlAPGJBmh0CsQnhUKpko372mUrMpCYEkbJMiGEEDIOSphJwEtKSgLP87RvYBAwnjyF/uoaQZkuLwcSpRLqhHivtYNiSjy2jkYYD6wTlCkTc6Gde6XHzqlTaHFn/g149/RaOL6+f/mWnGtwSeICj51zIp6KKbvdia3rzwrKZHIJktPDIJNJJpUIU7IcmKifImKjmCLEPUqYScAzGAy+bgIRScMaYWIl1emgio+HNi0VjETitXZQTImD53m0b/gLwDmHCxkWEdc94dEPZAzDYHXWVciJzMCfDr6FxJA43Dv3Zo+dbzI8FVMHdlfC2GUWlKVlRUAqkyA5PRwymff+boh3UT9FxEYxRYh7lDATQvxCb+kF9J4tEZTpcrPBMAw06Wk+ahWZCVPxHlibhFsWKZPzIYtM8sr5U0MT8dtVz8PJc0E5YsI5ORSfEG4jZQhTISpWB5VKhrhEg28aRgghhAQRSpgJIX6hca1wdFmiUkGTnAxldDRkOp2PWkWmi7MOoHP724IyRq5C+MpHPJK88jyPjoEuRGrCBeVKmXKcVwQ+hmXw4BNLcGhvFY4frAXH8bjroYVwOHmoVDKwbPBdJCCEEEK8jRJmEvAcDofrnhuplEI6EA3UN6Dr8FFBmS47C4xEAm1GutfbQzE1cx3b/gHO0i8o0xeugiI6xSPnK++sxqmWc0gLTcS8mDzIJOMvdOULnogpu80JiZTFshUZmLsgHq3NvYilUeVZg/opIjaKKULco78GEvDOnTvn2gahoKDA180h0zB6ZWxGJoMmPQ0SpRKq+Divt4diamaszZUwFe8RlMnCYmFYfrdHzlfSegFnWkshYSWo6q5HW38nliQUIlwd6pHzTYfYMcVxPKxWh+txTEII4pP95/slnkf9FBEbxRQh7lHCTAjxKWt7B9q/3Cso02VmgJXJoPHyYl9k5nieQ9vnfwF4friQYRG24iFIFCrRz2ey9uP3+98Ex3NYFD8P0doImGwDcI5caCwIWS124OsfsUwugUTC+rZBhBBCSJCihJkEPL1eD4fDQdOHAlTjZxvAO4eTG0YigTYrE2AYaH202BfF1PT1HPkC9o4GQZk6YyHUWUUeOd87pz5Fv31wD+J9tYeREZaCO/KuR5Q2wiPnmy4xY8rhcMJh52AesEGtkUOhoDidjaifImKjmCLEPfqLIAEvJSXF100g02Tv7UPr9h2CMk1aKiRKJZQx0ZBqtT5pF8XU9HAch94TWwVlrFKL8Gu/6ZGFvo40nMKXNYcEZf22ARTE5Ih+rpkSK6b276pAclo4JFIWxScaERWjQ2ZeFDRahSj1k8BB/RQRG8UUIe5RwkwI8ZnmLzaDs1iGCxgGuuxsAIA23fuLfZGZsbdUQZN7KayN5bDUlQCcEyGX3AJZSKRHzpcWloS50dkobr0AAFDJlPjpZd/2uwW/xFJV1o6dm0ohkTBITg9HRLQWxu4BHNtfi4SUUKRne+bnTAghhMxmdNMTIcQnnBYLmjd+IShTJyVCqtVAolJBFRfro5aR6eBsZphrzoBhJVAm5kC/8Dqos4pguORmj50zQh2GF674AR4pvAsyiQyPFd6DhJDgjBung8PmdWcHv3byqCrrwLlTzeB5Hjx4SGX0dk4IIYR4Ao0wE0J8onX7Tjj6+gRlutzBqbS02FfgGag8Bc5hdz1mlRqEFz0CRuLZtxmWYXF91gosTpiPcFXwrhJ9eF81OtuE23TFJoaAYRgolDIk0ArZhBBCiEdQwkwCXnV1tWuRitTUVF83h0wC53Cg6bPPBWXKuFjIDQafLvY1hGJqauxdzbC11wnKFFHJkIXGiH4ui90CDjzUMuGK2xHqMNHPJaaZxFRvjxlfbisTlGn1CsTE6wEAqRnhtEr2LET9FBEbxRQh7lHCTAJeX1+fa99AEhg69n0Fa3uHoEz/9eiyMioSUo3GF81yoZiaGkauglQXBkdfFwCAlcqhSpsv+nl4nseRxtPoMhuxMG4uEkO8v0f3dM0kprZ/fh52m3CbrIzcKDAMA61OiehYvVjNJAGE+ikiNoopQtyjS9KEEK/iOQ6Na9cLyuQR4VBEDi5YFDJ3jg9aRaare/8aOPuN0M2/Gur0BWAkMqjS5oGVK0U/14G642jua4PNacfB+hM43HASNqd94hcGsJqKDpScahKUxcTroQ8Z/PmmZUWAYcVfgZwQQgghg2iEmQS8/Px8XzeBTEH3seMYqKsXlOlzc11fyyN8v38uxdTkmGuK0b3n3+j+8kPoi65H2OX3QB6ZAEYmfrJ8tvUC/nr4H4jVRWNB7FwopHK0mTrB87zo5/KE6cSU08lh89qzgjKplEVKZjgAICxCg7AI387GIL5D/RQRG8UUIe7RCDMJeBKJxPWP+Dee59Hw6TpBmTRED+XXK2Lr8/M8sl/vVFFMTYx32tGx5W9fP+DQe2QjGv/5PBiZQvTfoc1pxz9OfASO59HY24LtlXvR3NeKovgCKKRyUc/lKdOJqaNf1aC91SQoS8kIh1wuBQMGaVm0jdRsRv0UERvFFCHuUcJMCPGa3nPn0XfhgqBMn5MDhmHAKhSu+5iJ/+s5vAH2zkZBWcii1WAY8d9WPir+HA29za7HFocVTo5DjC5K9HP5i75eC/ZsFS70pdEpEJsYAmBwWrZWp/BF0wghhJBZhRJmQojXjL53WaJWQ52cBADQZWeCpYVGAoKtsxHd+z4RlCli06ErXOWR82VFpEEnH556nBgSh+8secgj5/IXOzeeh83qEJRl5EaCYRhIJCxSMsJ91DJCCCFkdqF7mEnA6+7uBsdxYFkWoaG0F6m/6q+pQfex44IyXU4WGJYFK5NBl5npo5aNRTF1cW2f/QW8wzaihEHEdU+CYT0zjW9JQiGyw9Pw+tH3UNxaiqcveQxKaWCNrk4lpuqqunDmuHD0PjpOhxDD4FZaCcmhUCjp4tJsR/0UERvFFCHuUcJMAl59fb1rGwTq4P1X+5f7BI9ZuRyatMH9lrWZGWDl/nMvKsXU+HpPbIOtuUJQpitcCUVchkfPa1CF4Lnl30F9TxOSDPEePZcnTDamOCeHL9YWC8okUhapmYOL4cnlUiSmUkwS6qeI+CimCHGPpmQTQrwi+aEHkfvzn0GbNTiSrM3KBCuVgpFIoMvO8nHryGRwdiu69vxbUMbIFDBcdpfo5zJZ+8esgM0wTEAmy1PR0tSL7o4BQVlaZgTkisHr28np4ZBKaUEeQgghxFtohJkEvLi4ONcUIuK/GIZB2KKFCFu0EL3nSyFRKtFfWwuZXg+JUvxtiGaCYsq97n0fgzP3CcoMl94KmV7c+2ktDit2Ve+HXqFDUfw8aORqUev3hcnGVHSsHg9951Ls3VaG8vNtiIrR4db75qOuphu9RjNiE0K81GLi76ifImKjmCLEPYYPlE0siV8zmUy4MGL14+zsbGi1Wh+2iAQKnuPA0Juz33MM9KH+lW+Bt1tdZVJDNBKeekXUD1c8z+PD4s8gYQev58pYKRbEzUFSSLxfbDnmaf0mKzjn4NtyU70RGp0CCcmDUyM5JwdWQn8rhBBC/F8w5Qb0zksI8SlKlgND1653BckyAIRefo/oIxG7qw9iw4WdqO6uA8/zsHMOVHfXi3oOf2WzOlzJMithkD0nxpUsD5bR3wohhBDibfTuSwgh5KJsXc0wndktKJNHpUCbf5mo5zFaevHuqU/h4Bw43lSMr2qPYMBmRkF0btCPLvMcL9hGSkmrYBNCCCF+gRJmQojH2Ht6fN0EIoLOrW8BPDdcwLAIvfI+0beR+sfxj9BvN7set/Z3wME5EKY2iHoef2S1OsDzg1PSpTIWEim9PRNCCCH+gBb9IgHvzJkzrm0QCgoKfN0c8jXObsepZ34CZVwsIpYthX7uHKgTAuM+VIqpYfaeNphrhNscKZPyoM5YKOp5HJwTcqlwVLUofh4eX3SfqOfxlfFiasBkw4E9FZi/OAkKhRQVF9qh0yuRkhEOmYxWwybjo36KiI1iihD3KGEmhHhE+5d7Yevqgq2rC71nSyAzGBB/260IXTAPqoQEunc5QNg7m6BftBqW2rOwtdYAEhnCVj4s+oUPKSvB95Y8gqWJC/HGsffhcDrwxKL7RT2HP9q1uRQnDtXh1NEGFC1Lgd3mQK/RjLbmXiSlhSM+MYTuXSaEEEJ8iBJmEvDUajUcDgekUgpnf8FzHBrXrheUsTIZnOYBdOw/iJjV10Fu8N/tcSimBjnNJlgby8Eq1FBnLYYiPguMVA5lTJrHzrkgbi7+cN1/obG3BQal3mPn8TZ3MdVYZ8SJw3UABkeav9xahuS0MCRnhMNud6KuqhMx8XqIPPOdBAnqp4jYKKYIcY/+IkjAy8jI8HUTyCiW1jY4zRZBmS4vBwCgio/z62QZoJgaYq45A37EvctSbRj0i64T9Rw8z6PP1g+9YnirCY1cjawIzyXlvjA6pniOx+a1xcCIjR1ZCYOYhOGLBElpNC2bjI/6KSI2iilC3KN5XoQQ0aliY7DwzdeQ/t2noIiKhDw8DMqYGACAPi/Px60jk+HoaYetXbidkyIuAxKVTtTz1PU0Ymv5HhS3lsLJOUWt25+dPFKPpnrhonjJaWFQjFgdOz7Rvy8sEUIIIbMBjTATQjyClckQc81KRK9cAWtnJzizGZa2digiwn3dNDIJnMMGVq4EZxucKcBK5VAmiXuxY8BmxsnmEvAAzrdXoLmvFYvj58OgCu5E0Txgw85N5wVlKrUM8SP2XE7LjKR7lwkhhBA/QO/GhBCPYlgWyshIqJOSELZI3JWViWcMVJ+GVGNASNH1UCXlgWElUCbng5UpRDvH8cYzeH7Hb9A50O0qM1r6YLINiHYOf7V78wWYB+yCsozcSLDs8EJqoRFqbzeLEEIIIW7QCDMJeHV1dXA6nZBIJEhKSvJ1c0gQmM0x5ejrQusnvwUjUyD0srugX7AKith0MCImywM2M/52/AN0mY1oM3UgLyoLWeFpSDbEIyEkVrTz+JOhmDJ2WnHsYK3guchoLULDNYIyrVa8nzcJTrO5nyKeQTFFiHs0wkwCntFoRFdXF4xGo6+bQoLEbI6p7r0fgbdbwQ30onPb39Hwtx8DEikYEZdq/tepT9FlNgIAnDyH4tZStPd3ojB2jmjn8DdGoxGdnZ34akedYKEviYRFalaE4NgFS5LAsP6/XznxrdncTxHPoJgixD1KmAkhorB2dsLc3AzHgBkNn66Ftb3D100iU2Rrr0Pf6V2CMmViLlipXLRzDNjNKGkvF5QVROfiwXm3QSHiefxRQ7UZ3e02QVlyehiUquGFvqJj9dAbVN5uGiGEEELGQVOyScDLzs4Gz/NgGBqR8aWGjz9Fy7btUMXHIyQ/D2AD93rcbI2pzp3vAiO2kWJkCoRefq+o51DLVHjp2hfw4ZnPsLl8DxRSOb5d9GDQL/SVnJSGrZ/uF5Tp9ArEJQ1/3wwYJKWFebtpJEDN1n6KeA7FFCHuUcJMAp5CQff6+ZqtuxutO3cDHA9zfQPM9Q2wdnQibEkRVHFxCJmT7+smTslsjClT6SGYK08IykKW3AypLnScV0yfUqrAIwvuxiWJC9BlNiJCE/xJ4sE9NTD3Cxf6SsuKBDviwlJkjBYauneZTNJs7KeIZ1FMEeIeJcyEkBlr2rAJvH1EMsCyUMXHwdbZBV1mpu8aRiaF5zl07finoIzVhMBw6S0inoOHk3NCKhl+28mJzBCtfn/W2tSLo1/VCMoSUkIREjY89ZoBg+R02nKNEEII8TeBO2eSEOIXHP39aNm8VVCmSUmGRKWCJiUFmtQU3zSMTFrP4Y1w9LQLyrRzLgcrF+9e2vLOamyt+BJtptl3b3tFaRv4EQt9SaUslq3IgEIxfPGARpcJIYQQ/0QjzCTg9fX1geM4sCwLnU7n6+bMOi1btsE5INw7V5eTAwAILQrMfZdnU0w57RYY968RlLHqEIRdId69y71WE4pbS+HkOeypOYTM8BTMjcoRjDYHCp7j8fe/fAWrxQGFUopv/uCyCVe0XrQ0GWqtBPt3VaOrfQDLVmQgOz8aTmckmht6UF/TjeQ0Gl0mUzOb+iniHRRThLgXeJ9WCBmluroadrsdMpkMBQUFvm7OrMLZbGjasFFQpkpMgEyvQ+SVl4OVBmYXM5tiqnvX++AsJkGZYdntYGVKUeovabuADaU7kWJIcN2vW95ZgwR9LCI1gZcktrb0oam+x/W4raUP0XH6cY/nnBxsVidsXDfmL9Ogq0WBpSvSAQxuKZWQHIr4RANtI0WmbDb1U8Q7KKYIcY+mZBNCpq1t9x7Yu42CMn1uDpTR0VDGxPimUWTSHH1d6Du1XVAmDY2FftFqUeq3Omz4f0few4nmYuys+grd5sFEMzM8JSCTZQCorRBOKa+p7Lzo8RaLw/W1TMYiJVsHmUy4pzUly4QQQoj/CszhH0JGiI6OhtPphEQimfhgIhre6UTj2s8EZYroKMjDwmCYPy+gt6WYLTHVsfUt8A7hys3hV38DLCvO9/1R8edo7R9MMHusfdhVtR+rM6/E3OhcUer3hdEJcm1lJ5YsT3V7rN3uhNMxuE1XVFQU5AoG0gCddUH8z2zpp4j3UEwR4h69c5OAFx0d7esmzEqdBw/B0tIiKNPn5kKTkgx5mPhbEXnTbIgpa3MVBsqOCMoU8dnQZC+ZUj0cz+GF7b+D2WGBSqrEi6ueBcuw6DIbsaXiS8GxaWFJuClnFaQiJeTexnM8aiu7BGW1lZ3gOX7MKDHP87COGF1OTIyFVBaY3zfxT7OhnyLeRTFFiHs0JZsQMmU8z6Nh7XpBmSw0FMrYGITMneubRpEp6dj6FgRLNzMsIq755pTrqTM2obK7Fk19rajsrkV9TxMAIExlwIsrn0WyIQEAIGOl+N6SRxCuDtyLKa0tfbCYhSPy5gE72lr60NLU6yorLW7GkX3VrtFlqYwFGKD8fCvMAzavtpkQQgghM0MJMyFkynpOn0F/ZZWgTJ+bA11WJqRajY9aRSbLYeqGPCIBEt3wfcTqrCIo4tIv+rrS9ooxZefaywSPS9qGH6eGJuL/Vv4HrkpdivsKbkG8PrDvax99//KQCyUtePf1gzD1WmC1OLB57Vls/ewcPvj7ETQ39kChkKKxzojGOiOOfFWD0uIWSpwJIYSQAEFTsgkhU9bw6VrBY6lWC01qCvT5eT5qEZkKc/VpSPTh0M5bAXtnI6wNFxA+wejyx2c34tOSTbi/4Fbcmnutq3xkgjz0+PqsFa7HG8t2Ynf1AdyZf4O434QHbP2sBOdON4/7/OjR5SF7t5WD43i88n+7AQA2mxMA0Nbchw//fhT5hbGIiQsBMDg7o6WpB04Hh/zCOJG/A0IIIYSIjRLmr/E8j40bN2LNmjU4f/48BgYGEBkZiaKiIjzwwAOiLK9vsVjw4YcfYuvWraiurobJZEJ4eDgWLlyIBx98EAsWLBj3tXa7HYWFhbDb3X9gG0kul6O4uHjG7Q0U586dc22DkJdHCZun9ZWVo6f4rKBMl5uNkDn5kCgUPmqVuII5puzdLbB3twIAGIaBPCIBIYtWQ6Yff9Xq0vYKfFqyCQDw7zPrAQC35l4LjufGJMzFraU4WHccC+LmYnP5btfxn5ZsQkF0DnIiM8T/pkTA8zzOn2lGX49lyq/luMGp7UOJ8mg15Z3gYAbn5MBKWERGRiIpPWxG7SUkmPsp4hsUU4S4RwkzBhPZp59+Gnv27BGUNzY2orGxERs2bMAzzzyDJ598ctrnKC0txfe//33U1dUJyltaWrBp0yZ88cUX+Pa3v41nnnnG7eurqqomlSzPRg6HAw6HI6BXZQ4kDWvWCR6zSiX0ebnQZmX6qEXiC9aY4nke5uozgjJWroIyPuuir8uJzMD9Bbe6kt+h/+fH5GPAbhYca3FYUdx2AXtqDuJkc4mr/P6CW/02WQYAc78d/X2emSY9MGCHzeYAywBggIgoLXR6cfa5JrNXsPZTxHcopghxjxJmAC+88IIrWU5PT8fdd9+NiIgIlJSU4MMPP8TAwABefvllREdH45Zbbply/fX19Xj00UfR1TW4uuqll16KVatWwWAw4MSJE/jkk09gtVrx+uuvIyYmBvfee++YOi5cuCBob1zc+FP5WHZ23Zoul8vBsixt1+IFAw2N6DosXFlZl50Fw/z5YIPo5x+sMeU0dcPZbxSUqZLngJFM/H0OTcMemTSfbS11e+yZlnNo6x/efmn0NG5/pNbK8Z3/uAI7Np7H+TMtE79gkpLTwxEVq0P/QA84jgPLskhOD8w9qIl/CdZ+ivgOxRQh7jE8P3KZ1Nln//79eOyxxwAAl1xyCd58800oRkwrraysxP333w+j0QiDwYCdO3dCq9VO6RyPP/449u3bBwD48Y9/PGak+tSpU3jwwQdht9thMBiwb98+yOVywTEvvfQS3nrrLbAsi5MnT0Kp9K/RCZPJJEjqs7Ozp/xzIv6v/C+voG3nbtdjRiZD8jfuR9xNN4KZZRdqAg3vsAMsC846AHPNWdja6yBR66FfeC0Yxv3v7p2Tn+Jg/XFBmdlhgdk++WnLKpkSKqmwv1qauBAPFd459W/CS2oqO7FtfYlg5eupYlkGdz+yEO2tJtjtw1O1IyK1mLMgXoxmEkIIIX4rmHKDWf8J9x//+AcAQCqV4n//938FyTIwOOL885//HABgNBrxySefTKn+I0eOuJLl22+/3e207vnz57tGlY1GIw4ePDjmmKGAS0pK8rtkmcwO1s5OtO/ZKyjTZqQjrGgRJcsBoHv/GjT+/VlYm6ugzb0U+vkroclcNG6yzPM8DtWfQJfZKPg3lWQZAMx2y5g6DjWcFONb8piU9HA8/sPluOnuAmi08olf4MZ1t+VDqZYLkmUANLpMCCGEBJhZ/SnXaDTiwIEDAIDly5cjMTHR7XHXX389wsMHP+Rs2bJlSufYuHEjAEChUOCHP/zhuMfdeeeduPfee/HUU0+5zjXSUMKclXXxew0J8ZTGtZ+Bd4748M+yiFi2FMrYWN81ikyKo68bPYc/h62tBi0f/BLNH/wSnN0CaUjkuK/ps/Wjx9rnkfYYLb3otZo8UrdYWJZB4ZIkXH1D7rRe39FqQkNNt6AsPFILXQhd8CSEEEICiU9uUjCZTNixYwdOnDiBpqYm9PT04MEHH3TdH/z6668jPz8fl19+uUfbcezYMXAcB2BwOvZ4WJZFUVERtmzZgtOnT6OnpwchISGTOseOHTsAAEuXLkVUVNS4x+Xk5OAXv/iF2+e6u7vR1tYGgBJm4hsOkwmt27YLyjRpqQhfeiktDhIAuvd+CN5udT02VxcDX/d949ErtPjj6v/Ce6fX4bCII8KXJCzAg/Nug14RGNOyik80Tut1xw/VoWhZMuSK4bfZZFoZmxBCCAk4Xk2YOY7Da6+9hn/+85/o7+8HMDjtj2EY14JYAPD++++js7MT8+bNw0svvTTuyO9MlZeXu76eKBHNyMhwtbesrAxFRUUT1t/W1obOzsGFb+bPn+8qt9vtqKioQHt7O8LCwpCTk3PRBRbKyoa3bcnMHFyJuKurC2VlZbDb7YiJiUFGRsasTVyamprgdDohkUguuhgamb76T9eCs41YQZhhELXiKijCgzMBCKaYsrXXo+/0LkGZbt4KyCMn7lejtZH48bInca6tDP88+QlqjA3TbkeKIQGPFN6FvKjAuehn7BpAdUXHtF7rdHCor+lGevbgKD4rtaOntwOm/sCPKeIfgqmfIv6BYooQ97yWMNtsNjz55JM4fPgwLrbOmNVqRUdHBxiGwalTp3DXXXfh/fffR3p6uuhtamwcHjmIj7/4IiwxMTGC100mYa6oqHB9nZCQALvdjv/3//4f/v3vfwsuEBgMBjzxxBN49NFHIZFIxtQz8oZ5k8mERx55BIcOHRL8HKOjo/H444/jgQcecFtHMOvo6HDtG0gdvPgcFgtavhDeiqBOSkTUFct91CLPC6aY6tj6FsAPjyYzMgVCL79nSnXkRWXhN6uex56ag3j/9Hr02SY/nVqv0OL+gltxZcqlAbeC/5njjcAMlsVsru9BYkoo5AopFGob2tragiKmiH8Ipn6K+AeKKULc89qnl//+7/92JXlKpRL33HMPfvOb34w5jud53H///ZDJZGAYBkajEc888wwcDofobRqZtIaGhl70WIPB4PraaDROqv6WluGtSeRyOR588EG88sorgvMO1ffSSy/h6aefdrvX8ugtpQ4ePDjmokNraytefPFFfOc734HFMrVFeQi5mJZNX4CzWgVlMdddA2mArnQ4m/RfOAJL7VlBWciSmyDVTX1mAMuyWJG2DKmhU5vxk2pIxIq0ZQGXLPM8j9NH62dUB8fxqK/pRliEBioNbdNCCCGEBCKvvIOfOXMG69atA8MwyMzMxBtvvIHYrxcKeu655wTHKpVK/Nd//RceeughPPXUU6iurkZFRQU2btyIW2+9VdR2jUwsR6+OPdrIbZ4mm5AOTTsHgN/97neor69HZmYmfvKTn6CoqAhOpxP79u3DSy+9hObmZmzfvh1/+tOf8NOf/lRQz8iEWaPR4Nvf/jZWr16N6OhotLe3Y9u2bXj11VfR19eHPXv24H/+53/cXozwpoqKCqSnp0On07nKrFar63sxGAxISkoa85qBgQEAQEFBgeC5jo4ONDU1AQASExMFFzhSUlJQXV0NnudRXV2N1NRUwWtramrQ2zu4PUxeXp5g+rvRaERdXR0AIDY2FpGRwkWQiouLwfM8VCqVazr8kIaGBtfFj6ysLMHq5SaTCVVVVQCAyMhIV7wPOX/+vOsqbm6ucFGh5uZmtLe3AwDS0tIES/BbLBbXFP2wsDAkJCQIXlteXg6z2QyGYTB37lzBc+3t7WhubgYwuNr6yItADocD586dAwDo9XqkpKQAAHinEy1btgnqUcREI+rqFa7H3d3dqK8fTCzi4uIQEREhOP7MmTMAALVa7bq1YUhdXZ3rAlR2drbg77Cvrw/V1dUABmdQREdHC1577tw5OBwOyOVy5OTkCJ5rampCR8fgVNr09HRoNBrXc2az2XU7Rnh4+JjZJWVlZeB5HnK5HGlpaYLn2traXBfCUlJSoNfrXc/Z7XacP38eABASEoLk5GTBaysrK119wpw5cwQJZFdXFxoaBqc7JyQkICxsOKHlOA5nzw4mvRqNZsxsm9raWvT09AAAcnNzIZPJAAwmfO3b/iE4lpErEbJkeC/5s2fPguM4KJXKMbelNDY2um4pyczMhEqlgtHcg+Jx9l4ez5nWUhjNPTCoBtd9aG1tRWtrKwAgNTXVK32E0+lESUkJAECn002qj6iv7kZ358CY74dhgKlsxthUZ4RxbjPmzEuHXC533ToTLH3EkOrqavT1DS4Sl5+fL5jpFIx9hMViAcuymDNnjuA5b/YR6enp4HkePM+7foZT6SMAoLe3FzU1NQAGZ9KNXmtlqn3EkP7+flRWVgIAIiIixoxWlpaWwmazQSqVIi8vT/BcoPQRQ4Lpc0R6ejrq6upgs9lQXFxMfUSA9xFDpvs5AphZHzEUg8HAKwnzp59+OngyqRSvvPLKmD96d1JSUvDKK6/g5ptvBsdx2LJli+gJ88hR69H7Ho828vnJjnYPddoAUF9fj9zcXLz33nuCjuuGG27AggULcPvtt6Orqwv//Oc/cf/99wv++IYW/DIYDPjggw8EH+Lj4+Px6KOPYtmyZbj33nvR39+PdevW4Z577kFhYeGk2ukJTqfTtaDaEJ7nXSPoTqdzzGscDofbEXZg8I996LnR9Wo0GtfvxN3vZmS9o0fmR7ZpdL3AYOfF87zbe8xnWu9kvteL1evuex2q19397NOpt6fkHKxtwg7PUDgPkhFvSBf73Qy1abz2Op3Ocds0sl538WK32+FwONyOXF6s3onicGS9I98gR9d7sfieKA5Hm8nPcLw47D22GVyv8Henm3c1JEq1oF6O49zexuHuZ/hB8efgpzhHmQePj4o34FuLHxxTr7f6CGDqP8PRo8tSGYPYBB3qq6e2NzPPA7UVJhRdohIkFMHSRwzx1O/GX/sIu90+Yb2e7iOG+qeRz031PXAyP8Op9BHuvteL/S27u0UvUPoId20K9M8RGo0GPM/D4XBQHxEEfcToNk2mXjH7CHftCFRemSN35MgRMAyDyy+/fMzVwItJT0/HVVddBZ7nXVdcxDTySt54ATjENmLBo4mS6yGjg+5Xv/qV2w27Y2Nj8YMf/ADAYNCuX79e8PzevXtx+PBhbNiwYcyI15CsrCxXHQDw8ccfT6qNniKRSMZ0FAzDQCaTQSaTuf3DkkqlrudHY1nW9Zy7DmjoOXdvSCPrHf0GMLJNF6vXXZs8Ve/I7/Vi9br7XsWu11AwFwW//y1UixYCEgkYQwgS7rtv3Hqn+ruRSCTjtmlkve7iZbr1ThSHF/sZjqz3YvE9URyOJnZ8c3YbuveN6gOUWoRdIfzdTfZ7ZRgGRnMP9lSP3SN+MnZVH4DR3DOmXn/uI+YsiIdKM3iesCgFll4Thab66W2zVVc+gH6TTVAWLH3EEE/9bqiPGPu9ivkeONmf4WT6iPG+16n+LQdKH+GuTfQ5gvqIkfXO9j4i0G7FuhiGv9gKXCJZsGABzGYzvvvd7+J73/ue4LmcnBwwDINnn30Wjz766JjX/vnPf8brr78OuVzumpIhlmeeeQabN28GMLjF1MhpP6Nt377d1faf/exnePjhhyes/5133sGvf/1rAIMj5lu3bh332K6uLlx66aUAgMsuuwx///vfJ/19uKsjOTkZ27Ztm+AV4jGZTIKp49nZ2W4vDpDAZTP2wN7dDU1qiq+bQibQuetd9BxcLygLXfENhF5667Tr/PmOl3Chs2rar88OT8OvVv504gP9SF+PBeeLm7Ho0mRs33geh/dWT7uuS65IwzU35018ICGEEBIEgik38ErqP5STT2f15qErHe6uXMzUyPsGJlrIa+TzI+8LuJiRQTH6fpjRwsLCXPeCDE3Bniox6ghEZrMZAwMDMJvNvm5KUJMbQmZNshzIMeUY6EXvsc2CMqkhCiGLb5x2nUcbTs8oWQaAC51VONpwekZ1eJsuRInFl6VioN+G4wdqZ1TXsQM1aG/tDsiYIv4pkPsp4p8opghxzyv3MEdERKChoUGwzdJkDY0qj14AQAwjFyRobm6+6H7PI1e8nuxS+6MXW5nI0FTvmcz598SFBX9XXl7uWvhi9CIfhExHIMdU1453wNuFq5qHXn4fWMn0u/vGvhZIGBZOXtg3MWAQ+vViXiNZHTYM2AcEdztLGBaNfS0owrxpt8NXTh1tgEojB3hesOAXw469x288drsdu7aeQe780ICLKeKfArmfIv6JYooQ97ySMC9atAj19fXYtWsXurq6Jj1Ce+7cORw4cAAMw3hkAauRq8SVl5dj8eLF4x47tBre0ErfkzFytbiRez6743Q6XaPYI1fxKy0txcGDB9HR0YGVK1de9Odgs9lcdYxepZGQqbJ1dUMWanC78AfxT/auZphK9gnK5NGp0M6Z2Z7Zt+Zei4ywZPx+/xsYsFsgYSRw8k786uqfICvC/boKbf2d+Ouht3GhoxJqmQo/WfYk5kTnuD3W3112dQbMAzYkJIciIXlwZV2lSgaZfHDWlMPhhLHLjPBIzbh/L2fOnJlwrQxCCCGE+B+vJMw33ngj1q1bB4vFgmeffRavvfbahAtn1dXV4Xvf+x44jgPDMFi9erXo7SosLIRMJoPdbsfhw4fxwAMPuD3O6XTi6NGjAAbvuR45lftiQkNDkZmZifLycpSXl6OlpQUxMTFujy0pKXEtLDYy0S4rK3NtEWW1Wi+aMB85csT1gWzevMAbxZmu8PBwOJ3OaU35J2PxPA97Xx9atm6DVKOBOikR6pQUyA1jRxKDVaDGVH/5MTBSOXjb19PpGAZhKx8W5aLHnOgc/GH1f+NIwylcllSEM63nx02WASBKE47/ueqH2F65D4sT5iNMZZhxG3ylorQNB/cMTknPzo/GlddlQxcyuGik08Hhq50VSEgOdd1+ZAhTQyYTxk6gxhTxXxRTRGwUU4S455V7mJctW4Zly5aB53ns378ft99+Oz799FPXfm3A4DTkvr4+nDhxAr/97W9x6623orm52TW6fMUVV4jeLr1ej0suuQQAsGvXLtf+fKNt2rTJtU/eVBP3G264AcBgEvK3v/1t3OPee+8919cjz7FkyRLXKnObNm2CyWRy+3qe5/HGG2+4Ht9yyy1ujwtG8fHxSEpKGrMPHpke44mTOPPT52CqqIStpwe950vRtms3eDfbCQSrQIwpzmoGb7dCv2g1lClzAYkUqpQCqFPmTvzii+B5Hk29LeB5HmEqA67LvBJahQZLkxZN+FoJK8F1mVcGdLLscDixZX2J6/GFklZ89PZRcNxgclxxYXDrrobabpScakLJqSZYzGNHkgMxpoh/o5giYqOYIsQ9r633/Yc//AEpKSngeR6VlZX4+c9/jjvuuAMMw4Dnefz+97/H4sWL8cADD+Cf//wnBgYGwPM8IiMj8cc//tFj7XrkkUcADN5f9qMf/WhMQlpRUYEXX3wRwOD+dHfdddeU6r/33ntdU9A/+OADfPbZZ2OOWb9+vat8wYIFgtHh6OhorFq1CsDgKtjPP/+8YIsrYPBiw4svvogjR44AAIqKinDZZZdNqZ2EDGna+AWsLa3oPnYcTZ9tQF9ZGdRJiWDoirNfM9eeBc85wUikUCbmImTRDQi/5pszrre+pwlf1R3Dzqr96BzoFqGlgeXQl9Xoau8XlC1fmQmWZdDRZkJzg1HwnFQqgUarACGEEEKCg1e2lRrS29uLn/3sZ9ixY8dwA0ZMFRzdlMLCQvzxj38cdxqzWH7wgx+4tnxKSEjAfffdh9jYWJw7dw4ffPAB+vsHPyz94he/wL333it47eHDh/HQQw8BABYvXox33313TP3bt2/H008/7drw+6qrrsKKFSsgl8uxe/dubNmyBQCgUCiwdu1aZGRkCF7f1NSEu+66Cx0dHQCAtLQ03HnnnYiLi0NLSwvWr1+P0tJSAIP3Ln/wwQcXXcDME4Jp6fjZzNzUhBNPfV9QFlq0EOnfegIKui/ebzkHetF7fIugD1XEpEGTVTSjeh1OB7ZU7MGA3eIqy43MwNwAvRd5qnq6zXjtt3tgtw/ProhLNOCbP1gGu92JYwdqYbM5BK+ZUxiPiCjq+wghhMxuwZQbeOUe5iF6vR6vvPIKzpw5g08//RRHjhxBbW2t4ENeZGQkioqKcOutt+Lyyy/3Srt++9vfor+/H1999RUaGhrw0ksvCZ5nGAbf+973xiTLk7Vq1Sq8/PLL+M///E+YTCbs3r0bu3fvFhxjMBjw+uuvj0mWgcFVuf/xj3/g+9//Pmpra1FVVYXf/e53Y47LzMzEn//8Z68nyyR4tO/9SvBYolIidOECyD2wSj0Rj7n6jKAfZVgJVMlzZlzvZ6XbMGC3QCEdXnMikKdXT9W2z88JkmUwwPV3zAEYoOxc65hkOTs/hpJlQgghJMh4NWEeUlBQ4Fqu3ul0oqenB06nEyEhIRMuBuYJKpUKb731FjZs2ID169fj/Pnz6Ovrg8FgwMKFC/HQQw9h4cKFMzrH6tWrsXDhQrz//vvYtWsXGhsbwTAMEhMTsXLlStx///0XXT08Ozsbn3/+OdasWYMtW7agrKwM/f39MBgMyMjIwOrVq3Hbbbf55Ofna2VlZa5tEEYumEamLvHuO6HLykTzxi/QfeIkoq+9BrGrr/N1s7wu0GJKEZcBztIPR78RAKCMzwKrUM2ozjZTB9ac2wyWYZEXmYm0sCTEaqMQp4ue+MVBoKqsHefPNAvKFixJQlyiAc0NPehoE96+ExGlRUz8+AtCBlpMEf9HMUXERjFFiHtenZI9HXa7HZWVlejo6KD7cv2YL6ddDG3XQvsGisvc3AyJQgl5WKivm+J1gRJTnMOGzu1vw7DkZkhDY2Brq4W1sQzagivBSmd28ez3+9/AkYZTrsehyhD836r/QJg6+OPB6eDw/17+Ep1tw/cuq9QyfPe5q8AwwLEDtXA6h/eklsulWLQ0GXLF+NegAyWmSOCgmCJio5giYgqmKdleWfQrJycHeXl5ePvtt6f82ldffRW33XYbfvazn3mgZSQYsCzr+kfEo4qNnZXJMhA4MdV79Av0ndiG+jeeQef2f0CqDYWucNWMk+WzraWCZBkAFicUzopkGQAO76sWJMsAsOL6HKhUMpQWtwiSZQDIyo++aLIMBE5MkcBBMUXERjFFiHtem5I93YFslUoFnudd2zoRMtqcOTO/V5OQkQIhppwDfTDuXzP4gHOg9+gXcHS3IuaemV9cjNFFYWnSIhyoOwYA0Mk1uGfujTOuNxD09Viwd1uZoCw2IQSFS5JQX9ONHqNZ+Fx8yKTuWw6EmCKBhWKKiI1iihD3fHIP82TwPI+GhgZs3LgRAKBWq33cIkKCG+900tZRAcS4/1Nw1gFBmWH53aLUHaEOwzOXfhPXZlyOt098jJXpy6GVa0Sp299t23AONptwz/HVt89Bv8mKmsoOQblKJUN6Dq0eTwghhAQz0RJmh8OB2267DRUVFW6f53kev/vd79yu7jwRhmFo8QFCPGQoUe48eAgOUz/UyUlQJydBShep/Jatqxk9x7YIyjR5y6CMG7vK/kzkRmbiN6ueF7VOf1ZT0YGSk02CsvmLExGXEILjB+vAcSNWIgeDnLmxkErpIhMhhBASzERLmKVSKX75y1/i/vvvH3f69XSnZTMMgyeeeGImzSOEjKP23ffRW3oBiohwKGNjYevuhvH0GURctgzqhHhfN4+40bH5DYAbsaURK0XYVQ/MuN7TLecgYSTIiUiHVDL49jBb7mVzOjlsXlciKFOqpLj6hhxUlXegv98qeC4xNQwhoTNbiZwQQggh/k/UKdmFhYV4+OGHsW3bNkF5U1MTGIaBXq+HRjPxtD6GYSCRSKDVapGQkIC7776bVsgm42pra4PT6YREIkFUVJSvmxNQnFYrWrfvhMNkQh8AiUqFsMVFUMXHQRE5e/de9ueYMtedg6WmWFCmm381ZIaZbfdktPSirKMKPIAaYz0KonORGBIHhmFmVG+gMHYNwDxgE5RddV0ONFoF1Bo5JBLWtdiXTq9ESkb4lOr355gigYliioiNYooQ90S/h/m5557Dc889JyjLyckBAHz729/Go48+KvYpySzX0tLi2gaBOvip6di7Dw7T8H6yTrMZEo0GythYSBQKH7bMt/w1pnieR8eWvwnKGIkM+kXXz6hejuNwsukshuYADdgtONp4GpGacKhkyhnVHSgMoWo8/J1LcWRfDY4frEVkjA4LlyYDAOISDTCEqlF6thmmPhty5saAZad2IcFfY4oELoopIjaKKULc8/tVsgkhnsHzPJo3bRaUKWNiINProElJ8lGryMWYSr6Cvb1OUKbJWwpFZMKM6t1Tcwjrzm/BvJhc6BU6AEBOZMasSZYBwGKxQy6X4rKrMzB/cQIYlhUkxWqtHPMXJ8HUa4FGO3svJhFCCCGzjVcS5tLSUm+chsxSKSkp4Dhu1txrKZbec+fRX10jKNNmZYCRSqGMi/NNo/yEP8YUzznRtetdQRmrUCNsxTdmVK/NYcOac1+gvb8TOyo7kBaagkVxc5EdkT6jegOJzeoA5xy8qMtKGMQmGNwex7IM9Ibp3bfsjzFFAhvFFBEbxRQh7vnttlKETJZer/d1EwJS86YvBI+lWi2UsbFQJySAlc7ursEfY6rn8AY4+zoFZbrCayDVhs6o3g0XdqC9f7BejudR0VWNy5IXQcrOjtWfeY6HzTq8gJpSKfPIefwxpkhgo5giYqOYIsQ9n15C4nkeHMcJ/jmdTtjtdpjNZnR1daGqqgobNmzAN7/5TV82lZCgYu3oROfBw4IybWY6GIaBOiXZR60i43FazTDuXyMok2hDYVh+54zqtTls2FK+R1CWG5mJ1ZlXzajeQGK1OjB0x5BMLgErYdDXY/FtowghhBDiN7w6jLRt2zb8+9//RklJCfr7++m+ZkJ8pGXLVoDjXI8ZiQSa1FSwcjmU0bTQh7/p/vIDcNYBQVnIpbdCIp/ZtkZyqRwvX/dzfH5hB7aW74GNs+PRwrtmxcrY/SYrtqwrweLlKTCEqgEGUCikaKo3ovx8GxKSQ5GWGQFWQlMTCSGEkNnMawnzH//4R7z55psAprcA2Gz4AEemx263g+d5MAwDmcwz0ymDCWe3o3XbdkGZOiUZrFwOhmXB0L1LfhVTTrsFfad3Cspk4fEIWbRalPr1Sh0enHcbbs5eiZL2MqSEJopSr7/buakUJaeaUFrcgqJlyVh2dQbMA3ZUXugAADTUdqO7YwC5BTHQ6me++Jk/xRQJDhRTRGwUU4S455WEuaysbNxkeSgRHq9cKpXipptuon2YybjOnz/v2gahoKDA183xex1f7Ye9p1dQps3MBADo5+T7okl+x59iytHRBN28q2GuLYG9rQYAEHr5vWBEvsdYr9Th0sSFotbprxpqu3HqSD0AwOnkcGhvNZwcj6gYHbgRMy/6+62w2ZyinNOfYooEB4opIjaKKULc80rC/Mknn7iuWC1cuBDPPfccsrOzUV5ejjvuuANSqRR79+6FWq1GV1cXDh06hFdeeQVNTU1wOByYM2cOrr9+ZvuMEkIGjd5KShEVBbkhBACgio3xRZPIOHinA+bas2CVGmiyF8MZnwXO3AdN7qUzrtvJOVHeWQ3JiMQ7UR8LZZBvJcVxPDavPSsok8slSEoLQ3tLn6A8PikUYREabzaPEEIIIX7GKwnzsWPHAABarRavvfYaQkIGP5zn5+dDr9ejr68P+/fvx0033YS4uDjcfvvtWLVqFR544AGUlZXhpZdewjXXXIOIiAhvNJcEmJCQEDgcDkhn+crOk9F3oQym8gpBmTYrY/D/jHRItVpfNMvv+EtMWRrLwNnMrscSrQGGS28R5RaV+p5mnGkVbvkXrw/+CyYnD9ehuaFHULbk8lR0tJgEZWqNHGlZ4r3n+EtMkeBBMUXERjFFiHte+YtoaWkBwzC48sorXcnykPz8fBw6dAjHjx/HTTfd5CrX6XR4+eWXcfPNN8NiseDjjz/Gd77zHW80lwSY5GRa1XmyRo8uS9RqqOLiINPrEbpwgY9a5X/8IaY4uxWWemFCKzNEQxY6s6TW7rRDwkhQ3lktKI/ShEMtm9kiYv5uoN+GXV8If6bhURoo1XJYLXZXGcMwyJ0bC4mIC375Q0yR4EIxRcRGMUWIe15Z3aevb3CaW2pq6pjnMjIywPM8SktLxzyXmZmJRYsWged5HD161OPtJCSY2bq70bH/gKBMm5kOhmURMm8uLfblZ5wDPWN+J6rUeTOu993Ta/HCzt+hsqtGsHZEZvjY/jnY7N5cCvOAXVA2d2GCIFkGgJT0cOhCgntqOiGEEEImxyufkFWqwVELdyvupaSkAAAqKyvdvnbOnDkXfZ4QMjktW7eDdzhcjxmJBJq0NCgiI6CKj/dhy8hotrY6SJRahBTdAFVSHhhWAnlUEqS60BnV2zVgxM7Kr1DZVYtd1QdwrPE0OJ6DVq5GrC64txNrqjfi+KE6QVl6diQ4Jyco04eokJQa5s2mEUIIIcSPeWVKtsFggMlkQkdHx5jnEhMHtzAxmUxoa2tDVJTwQ9vQFO6enp4xryWETA7ncKBlyzZBmTopCRKFAoZ5BbRtmx/hnQ60rvkdnJZ+hC6/G/rCVVDEZohS9/rzW2Hnhi+aNPS14NnUp6BTaMAywTvDgB9a6GvEZgxSGYuYeL3gOImERW5BDBiW/h4IIYQQMsgrCXNeXh7q6+tx4MCBMc8lJSW5vj5z5gxWrlwpeL6lpQXA9PZuJrNDZWWla5GK9PR0XzfHL3UePAx7d7egTJuVAVV8PBSRkT5qlf/yZUz1ntwBe1czAKBz61voPboJsQ/8AlJ9+IzqdXJOFLcJb31ZkboUkdqZ1RsITh2tR2OdUVCWkBIKiVR4kSA9OxIqtdwjbaB+ioiNYoqIjWKKEPe8MqSwdOlSAEBFRQVee+01wXPJycmuKduff/654Dmz2YwdO3YAAK2QTcbV398Pk8mE/v5+XzfFbzVv+kLwWB4RAXlYGAzz5vqoRf7NVzHFWc3o3veRoIxVaCDRzXyKsISV4KVr/xNPFX0DUZpwSFgJbsu9bsb1+jvzgA07NwkvFKjUMiQkGwRl4ZFaxCYIF6UUE/VTRGwUU0RsFFOEuOeVhPmWW25BWNjgB76//vWvuPPOO7Fz504Ag6uRrlixAjzPY/v27fjf//1flJWV4fDhw3j88cfR0dEBhmEwf/58bzSVkKBjqqpC33lhwqDLyoAmNRWyEM8lCGTqjIfWgxvoFZSFXf2QaFPmpawEV6UtxZ+u/wX+56ofIkIT/Pfq7tlyAQP9NkFZek4k2BELqslkEmTnR9OtCYQQQggZwytTspVKJX75y1/i6aefhtPpRElJCY4ePYqrr74aAPDkk09i8+bN4Hke77//Pt5///0xddx3333eaCoJQEMLwxH3mjeO2kpKpYI6ORkhc/N91CL/54uYsvd2oOfgZ4IydeYiqJLF+T3xPA8ePFiGhZSVIDsi+KfbtTT24NiBWkFZVn40ChYmoLHO6LrVJ29eHOQKz74dUj9FxEYxRcRGMUWIe15b5WXlypV47bXXEB8fD57nkZCQ4HouOzsbL7zwAoCvP9SN+AcATzzxBIqKirzVVBJgWJZ1/SNCjAB5EAABAABJREFU9t5etH+5V1CmSU+DPicbUrXaR63yf76IqY7Nb4J3jtjeiGEQdtWDotXf3NeKLeV7UNZRBZvTPvELgkBrU69gL2WplMV1t+YjIycKRUtTEBqmxmVXZyA03PN/C9RPEbFRTBGxUUwR4p5XRpiHXHHFFdi+fTuOHj2K6OhowXMPPPAAsrKy8Oabb+L06dOw2WzIycnBQw89hOuvv96bzSQkaLRs3yHYSgosC31uDnS5Ob5rFBnD0lQBc8UJQZkyMRfyyETRzlHWWQ2TbQCnWs6hpK0M+VFZyIpIE61+f5Q9JwbhUVrs3VaGitJ2XLYyA4awweRYrZVjXpF4P19CCCGEBCevJszA4NWrJUuWuH2uqKiIRpIJEQnvdKJl81ZBmToxEaELF0CiUPioVcSdrp3vQLDnEStB2NUPzbhek60fclaGAYcFbf2drnI754BcIptx/f7M6eRgtzkRYlDhpnvmobWpDynpwX/PNiGEEELE5fWEebq6urpcC4cRMlJXVxc4jgPLshQjI3QdOQZbu3Dvc0PhPOiyMn3UosDhzZiyNJbDUndOUKbJWgxl3Mx/Tx8Wf44jDaewJKEQapkKElYCAFBK5UgMiZtx/f7Mah6eWSGXS5GR49vt06ifImKjmCJio5gixL2ASJg//vhjvPzyyzh8+LCvm0L8UENDA+x2O2QyGXXwI9j7eiHRaOD8ensIbWYGUh7+Bhi6N2lC3oyprl3/EjxmJDKErZj5vcsdA13YVXUADs6BrRVfIkShw8r05WAZBulhKa7kORjZ7U44ndzg1zYHZHLff6/UTxGxUUwRsVFMEeKeRxPmrq4uVFZWor29HeHh4Zg/fz4UU5gKWl5ejv/+7//GyZMnPdhKQoJTzDWrEHn5crR/uRfNmzYj9obVlCz7GUtz5ZjRZXVWEWShMTOue/35rXBww6Os/XYzVqZfBqVUASkbENdKp4XneVgtw993fU03enssSEoNQ0JKqGARMEIIIYSQiXjkU1N9fT3++Mc/Ytu2bXA6na5ypVKJhx9+GN///vchkYx/xd9iseCvf/0r3nnnHTidTvA8T/tjknElJCS4phARIYlSiZhrr0H0NasAjvN1cwKGt2Kqa8c7wgKJDKFXPjDjenmeR+dAt6BsZdplCFeHzrhuf1Zysgn1NV0oWpYCuUIKU58F3V0DAIDqig40N/QgvzAOOr3S622jfoqIjWKKiI1iihD3RE+YT506haeeegpG4/AelwDAMAzMZjPeeOMNFBcX480333SbNO/Zswe//OUv0dzcLEiUo6KixG4qCRI0bWgs3umEtaMDiogIMBLJ4N/RRS5SESFvxNTg6HKJoEyTtQjysJmPLjMMg/9Y/h1c6KjEJ2c34Xx7OW7NvXbG9fozq8WOrZ+VwNRnRcnpZixflQGMukbEcTxUat8sdkb9FBEbxRQRG8UUIe6JegnJZrPhxz/+Mbq7h0c25HI5IiIiXI95nseBAwfw6quvCl47MDCAn/3sZ3jqqafQ1NQ03ECWxUMPPYQvvvhCzKYSErR4nkfbni/hMPWDczjgtFrBj5jpQfyDteECWI1huECk0eWRsiPS8Z9X/gB/vP5/EKY2THh8IPtyWzlMfVYAQH+fFVvWlqCpwSg4JjUzAlIpXTgihBBCyOSJOsK8Zs0aNDY2gmEYKJVKvPDCC7j55pshl8thMpnw7rvv4pVXXoHT6cTbb7+Nxx57DFqtFi0tLfjmN7+Jqqoq16gyz/MoKCjAL37xC+Tm5orZTEKCmqWlBda2dljb2oEjRwEAUVddAWXMzEcuiTg4uxWczQJd4SrYO5tgrSsZ3Hc5LNYj54vShHukXn/R3tKHI/uqBWXhkRqEhKpcj7U6BWLi9N5uGiGEEEICnKgJ8/79+11f//73v8fVV1/teqzVavHUU09Br9fjV7/6FSwWC3bu3IklS5bgnnvuQVtbm+tYnU6HH/7wh7j33nvp3mUyIW7Evbmz/b4bW3c3es6cHVMuCw3ue1fF5umYsjaWgXfawTAM5BHxkIfHQ1+4UtRzHGk4BSkrRWZ4CnQKrah1+xOe57F53Vlw3PAtQCzLIC07QvD+kZ4dCYb13fsJ9VNEbBRTRGwUU4S4J2rCXFFRAQDIysoSJMsj3XfffXjzzTfR1taG48ePY926dWhtbXWNKl9zzTX4r//6L8E0bkIu5uzZs65tEAoKCnzdHJ+q+/dHaNu5C6rEBGjT0yCPiIA2NQWSKaxOTzwbU5zdCktjuaBMHp0EqV68UWCTrR+1xgbwACq6ahCni0Jh7Bxo5GrRzuEvzp1uRk1Fp6AsISUUKrXc9TgiUovQcI23myZA/RQRG8UUERvFFCHuiXr5qLOzEwzDoKioaPwTsiwWLVoEnuexadMm197KWq0Wf/jDH/CXv/yFkmVCpsFpsaDjq/3gnU4M1NSibedu9FdWIXTRQl83jYwwNLo8hAEDVWLejOs1mnvQ0d8FAKjorAU/4rn2/i7IJb5Z7MqTbFYHtn0u3JZLpZYhMWV4RgXDMEjLjvR20wghhBASJEQdYTabzQAwYcKbkJAAYHChL57nkZaWhjfeeAOJiYliNofMEhqNBg6HA1Jp8O4tOxkd+w/AOTAwXMAwSLz/HrCy4EuUPM2TMSWLSIRzoBe2jobBx5GJkGhCZlzvxyWbsLv6AFakLoVapoJsRIKcGpooeBws9u0oR1+PRVCWkhkOiXT4WnB8kgFqjXz0S72O+ikiNoopIjaKKULcE/UvwuFwgGEYKCaY/qnRDE+Ni4mJwbvvvovw8OBelIZ4Tnp6uq+b4Bes7R1gpFLwDgcAIHRBIXT0s5kWT8WU8eB6KBOyoc1bBmd/D8x1JVAlzXx0ub2/E7urD8DJObG9ch8kjAS35F4DpVQBu9OOjLCUmTfez3S0mXDwyypBWUSUFhFRw/dry2QSJKf7x3sL9VNEbBRTRGwUU4S455NLSCOvXP3gBz+gZJkQESTdezdirrsW7bv3oGXbdkRfI+4iUmRmbB0N6Nr9PsBzUKXMhWH53dDmLhWl7nXntsDJDW8dxjIMrsm4HHq5Fm0DndAqfHv/rth4nseWdWfBOYULfaVkhgsW+kpOD4dMRttIEUIIIWT6fD7n4sorr/R1EwgJGnJDCOJvuwVxt94M8PzELyBeY9y/BuAHVyA11xTD0lSB5B+8CVYxs4W4eJ6HUqaEjJXCzg3OLliZvhxhKgMAIE4XPaP6/VFpcQuqyjoEZUlpYYKp12qNHHGJBi+3jBBCCCHBxudrxofSdjeEzBjvdAoeMwwDhraE8Bu2zkaYSr4SlIUUXT/jZBkY/F0/NP8O/PWGX+G6zCuhkalwa+61M67XX9ltTmz9rERQptbIEJ9kEJSlZ0eC9eE2UoQQQggJDj4fYaZ9lslM1dbWuhapSE5O9nVzvM7R34+WrduhSUmGNjMDMp3O100KeGLHlPGrT12jywDAyJUIWXzTjOsdKUxtwGML7sH9BbdCKQ3ebcS+2lmBXqNwoa+rrs+BXCZBZ0c/ACA0XIOwCP+ahj7b+ykiPoopIjaKKULc83nCTMhM9fT0uPYNnI1MlVXgrFb0XShD34UyqJMSEb70UroYNQNixpStrRams/sEZSGLrodELe6FjV6rCSyYoLtfeSSe59FrNAvKUtLDsWBJEhiGQVdHP6rK2pGeHel38T/b+ykiPoopIjaKKULcozmbhAQwe08P+i6UCcpYhcLvkoXZrHPnO8CIXZEZmQIhS24W9Rx9VhO2lO9BfW8T+CC/d/3qG3Nx18MLERGlBcsyuO72Oa54D4vQYOGlydDqgneEnRBCCCHe5ZER5rNnz2L9+vUXfX7IxY4b7dZbb51+o0jQys3NBc/zszJJrH77HXTuPwh1SjK06WmQhYRAl5nh62YFPLFiytZWC3PVGUGZKnWe6KPLm8v3AACKWy+g1tiIZEM8ciMzRT2HP7BZneA5HgnJoXjoqUvQ2dGPqBjhz9Jf+4HZ3E8Rz6CYImKjmCLEPY8kzF988QW++OKLix4z9Mf4/PPPT6pOhmEoYSZuzdapQ5zdjs6Dh8HZbDCVlcNUVo7IK5ZDFhLi66YFPLFiavToMiRShF5534zrbe/vRHt/J/KismBxWAXP9VpNKG69EHQJM8fxsNkcrsdqjRxavdKHLZqa2dpPEc+hmCJio5gixD2PJMzBPiWQEH/Qun0nOItw8aOIKy73UWvIaLb2ujGjy+r0Qigik2Zc95qSL7Cr+gDyo7JwY/ZKxGgj0WJqdz0fqQ6b8Tn8jdVid117kMrobiJCCCGEeIeoCXNRUZGY1RFCLqJly1bBY2VMDEIL5/umMWSMzh2jRpdZKUKvuH/G9baa2vFlzSEAQElbGUrayvDYgntwecoS7K05DAC4IuWSGZ/HnzjsTjjsg6uMO50cSs+2oN9kRd68OERGa2n6ICGEEEI8RtSE+d133xWzOkImpbe3FxzHgWVZ6PV6XzfHK/qrqzFQWycoi7xiOe29LJKZxpStox7m6tOCMnX6fCiiZj66vO7cFjhHbFEll8hwSUIhDKoQ3JG3Ghw/2O5g8flHpxEVo0PevFjwPI+yc60Y6LcBAM6dbkKIQYXMvGi/X+hrNvZTxLMopojYKKYIcY+2lSIBr6amxrUNQkFBga+b4xUNa9cLHrNyOWJvusE3jQlCM42pji1vAfyo0eUrZz66DAAZ4Sk41XIOXWYjAOCa9MthUA3ety5hJZBAIsp5/EH5+VacOlIPADhzrAEFixJgsdgFx/QYzeA4zt3L/cps7KeIZ1FMEbFRTBHiHiXMhAQYp8WKriPHBGUh8wog04m78jKZHktzJSy1JYIyddp8KKKSRal/ZfpyXJFyCXZVHcAXZbtwc84qUer1Nw6HE1vWD/8cW5p60bX1AhYvTxGMoMfGh0AfovJFEwkhhBAyC1DCTAJeTEwMnE4nJJLgGVm7mJZt28cs9hV/i7j7+s52M4kpR2czFIk5sDZVAE67qKPLQ2QSGa7NvALXZFwetPfvHtxThe6OAUFZSkaEIFmOiNIiMy/a202bltnWTxHPo5giYqOYIsQ9SphJwIuKivJ1E7yqY99XgseKyEiEzM33UWuC03RjirNZYDe2QJUyF4qEbNiaKsAq1FBEizO6DABOzoni1gvICk+FWh6cI6vGrgHs21EuKNOHKBEdNzyLIjpWj9yCWG83bdpmWz9FPI9iioiNYooQ9yhhJiSA8E7nmMW+VAnxPmoNGc3aVA6ecwIAWKkcyqQ8GJbcJOo5KrtqUdZZhcquGmSGpyInMgNySXDtnbnt83OuVbEBAAyQkRvpGk1nWRapmRE+ah0hhBBCZpPgWUqVkFnAVFEJzmoVlMXeSIt9+QPeaR+chj2CIjoVrEIt2jlsDhvOtQ+OvDp5DqUdlTjScEq0+v1B5YV2lBa3CMpiE0Kg1StdjxNTQqFUBddFAkIIIYT4J0qYCQkgHQcPCR5LdToYCub4qDVkJFtbHTiHTVCmTMiecb0tpnZsr9gHh9OB0o5K2JzCVaJzIzNmfA5/4XRw2LLurKBMJpcgJSPc9VgulyIxNdTbTSOEEELILEVTsknAO3v2rGsbhDlzgjt57Dl1RvBYnZwEVi73UWuC13RiSh6TCkamgKW+FI6+TsjD4yDRhMy4LWvPbcae6oNYd34LbspeiVRDImp7GsDxPJJC4hCuDp7k8dDeKnS29wvKUjLCIZMNL0CTmhkBqTTwFqSZTf0U8Q6KKSI2iilC3KOEmQQ8juNc/4KZY2AA/bW1gjJterqPWhPcphpTxoPrwVlMCFl8E3Tzr4ajtx2MZOYXMlr62rC35jAAoGOgC2+f/Bh3z7kR12ZcgeLWC5gTPfMRbH/RazRj7/ZRC30ZlIiJ17sea3UKxMTpR780IMyWfop4D8UUERvFFCHuUcJMAp5SqYREIoFMFtz3NPYUnwVGvomxLNTJib5rUBCbSkxxln4Y968BZx1Az5FN0BWugmHpbZBqDTNux9pzW8Dxw79zhUSOVenLoVNosTRp4Yzr9yfbNpyD3eYUlKVnRwq2zUrPjgTDBuY2WrOlnyLeQzFFxEYxRYh7lDCTgJeVleXrJniF8eQpwWNFRAQU4eHuDyYzMpWY6jm+BZx1cL9g3mFD79EvoC9cBWhnPlX68pQlaDG1obSjEgBwbeYVCFEG5gjrxVRXdODcqWZBWXJaGHQhwwt9hUdqERqu8XbTRDNb+iniPRRTRGwUU4S4RwkzIQGi+/hJwWNlbAxU8XE+ag0BBvdd7jmyUVCmybkE8khxRv7nRGcjPyoLZ9su4LPz23Bz9ipR6vUnTieHzWuFC32p1DLc+fBCmPqsqC7rgNXqQFoWbSNFCCGEEO/zScJcV1eHDRs24MSJE2hqakJPTw+++93v4oEHHgAA/M///A9ycnJw++23Q04LGhECc3MLrG1tgjJ1UiLkNMLsU70ntoIb6BWUGZbdLlr9HM+BAYO50TmYG50jWr3+pN9khUwm3LDhqtU50GgV0GgViIjSoqfbDI1W4aMWEkIIIWQ282rCPDAwgF/96lf4/PPPXQsK8DwPhmFgsw1vx7JlyxZ89NFH+Nvf/oaXX34Z8+fP92YzCfE7o6djs0ol9Pl5YFjaGc5XOIcNxv1rBGXqjIVQxKSJdo6qrjrUGhswLyYPEZow0er1JxqNAvc8WoSzJ5vw1c4KGMJUWHBJkut5iYRFWETgTsUmhBBCSGDzWsLc29uLBx54ABUVFeB5ftzj+vv7YTQawTAMGhsb8cgjj+Ctt97CokWLvNVUEmAaGxvhdDohkUgQHx/v6+Z4RPfxE4LHyphoqBMSfNSa4DeZmOo9+gU4i3ALJP3C60Rrg81pR0lbGaxOG3ZVH0CCPgYF0bnQKoIrebRY7GAYBnMXxCN/fiwcDg5sgC7sdTGzoZ8i3kUxRcRGMUWIe14bnvrxj3+M8vJy8DyPiIgI/OhHP8K//vWvMcfJZDL89Kc/RVjY4GiKxWLBs88+C7PZ7K2mkgDT2dmJ9vZ2dHZ2+ropHsHZ7YMrZI+gio2FMibaRy0KfhPFFO90wHjoM0GZNDQGqpS5orWhtL0CVufwzJuG3haYHRbR6vcHNqsDnHPwAiorYRASqkZ4pNbHrfKMYO+niPdRTBGxUUwR4p5XEub9+/dj3759YBgGixcvxtatW/Hkk09i8eLFY46Vy+X45je/iY0bN7qmYjc3N2PdunXeaCohfqevrAyc1Soo0xfMAUvbPvhM78kdY+5d1i24Box0Zr+Tpr5W/PPkJ+gc6EaLSXjPerw+GpGa4Llnned4WK0O1+OebjO6Owd82CJCCCGEkLG8MiX7888/BwCoVCr84Q9/gEYz8ZTC0NBQ/PnPf8Y111wDm82GnTt34v777/d0U0kAyszMdN0LH4yMJ04JHstCDdBlZvqmMbPExWKK55wwHhDeuyzRRwxuJTVDa0s2Y2/tYWyv3IdVactREJOD+p5m2Dk75kbnzrh+f2K1OoCv787hwaOqrAMOhxMRkVqkZUdCrQmuBR+DvZ8i3kcxRcRGMUWIe15JmI8fPw6GYXDVVVchImLyW4NER0dj5cqV2LRpEy5cuODBFpJAplKpfN0Ej+o+eVrwOGL5ZVAnibNtEXHvYjFlOvsVnH1dgjJdwVWQKNQzOmdTXyv21R0BANiddnxRvgtyqQx35t+A9v5O6BXBMVXZ1GfFJ+8cwyWXpyEhORQMAzTX98LhcAIAOtpN6Orsx5LlqVAog2cWRbD3U8T7KKaI2CimCHHPKwlzR0cHACA9PX3Kr01NTQUA9PT0iNomQgKBvacH/VVVgrKwokWQKGiLHV/geQ7d+z4SlEm0odAvun7Gda89t1mwIKJCqsCN2Sshl8gQr4+Zcf3+Yuem86iv7kZ99XHkzI3B0ivT0dwo7N8jo3VBlSwTQgghJHB55R5miUQCAK6tpKbCbrcDAJRKpahtIiQQcHYHYq5dBUV0FICvt5PKDc79eANB/4XDcBhbBWXa/Msg1ehnXPfd+TdiRdoySJjBbnl15pVBM6o8pL6mG6ePNrgelxa3YOcXpYILBSzLIjVz8jORCCGEEEI8ySsjzFFRUaipqcH58+en/Npjx4656iDEnf7+ftc9N5O5Pz6QKCLCkf7Ut8DzPCzNzTA3NNJiX17gLqZ4nkf3lx8KjmPVeuiLbhDlnFHaCHy76EHcnnsdPivdhhuzV4pSr7/gOB6b1xYLymRyCWIShBcbElNCoVQFX4wHcz9FfINiioiNYooQ97ySMC9ZsgTV1dXYu3cvGhoakDDJ/WMPHDjguv+Z9mEm46msrITdbodMJkNBQYGvm+MRDMNAFRcHVVycr5syK4wXU6q0QvCcE46uZgCAJnsJZCGRopyz29wDnUKLKG0EnlgUfAscHj9Yi5ZG4criGTmRUCiG34bkcimSUsO83TSvmA39FPEuiikiNoopQtzzypTs22+/HQDgcDjw9NNPw2g0Tvia48eP40c/+pHr8c033+yp5hHit/pramHv6/N1MwgAe1cTWIUK2vzl0Baugjw2AyGLxRldtjvt2Fd7BFvKd6Omux4cP/XbV/xZv8mK3ZtLBWWh4WqERwmnnKdmRkAi9crbEiGEEELIpHhlhLmgoAA333wzPv/8c5w7dw433HAD7r77buTl5bmOMRqNKC0tRXl5ObZv346dO3fC6XS6VtdeuHChN5pKAlBERAScTqfrXvlg4bRY0HnoMMDzkOn1UMXHQZebQwt+eYG7mLLUD99SItWGQlGQAln45GbLTORCRxUsjsG9to80nkZZZxWuTF0KuSQ4pibv+qIUFrNDUJaaGQGWHd66RKtTICZu5veC+6tg7aeI71BMEbFRTBHiHsOPXG3Fg2w2Gx555BGcOHFiUvu7DTUrMzMTH3zwAbTa4Fr8JtiYTCbB1l/Z2dn0O5shU1U1ug4fcT1mpFIk3H4rGHoj8zpHTzt6T+8SlGmyl0ARnTLjum1OOzZe2AEH53SVxWqjsDxl8Yzr9geNdd34+1/2u/ZcBoDk9HAkpwunXs9blIDQcLpnjhBCCAkGwZQbeG3um1wuxzvvvIOHH34YEokEPM9jdK4+VDa04MANN9xAyTKZlTi7HaZK4XZSypgYSpZ9xNJYJnjMKtSQR85sL+zG3hb8395Xcba1FEqpcNZAQUxwrITOcTy+WHNWkCzL5BLEJYYIjguP1FKyTAghhBC/5JUp2UNkMhmef/55PPbYY1i/fj2OHDmCyspK9PT0wOFwICQkBAkJCSgqKsKtt946rX2bCQkGPWeKUfnq61BEREARHQVlbAzClgTHiGOg4Xke6sxFkGgNsDaWg7NboUzIBsPO7OLFpyWbcLL5LE42n8X8mHxck7EcPACz3YIQZXBMTT55uA7NDcI9lnPnxkAmH/7ZMQyD9CxxFk4jhBBCCBGbVxPmIdHR0fjWt76Fb33rW744PSF+r/vkKYDnYW1vh7W9HY7eXqgef8zXzZp1rC1VaPv8rwhdejs0eUuhjM+GrbUG8ujkGdXb0NuMA3XHXY9PtZQgLSwR9869ZczMm0A10G/Dri/GLvSlD1UJyuISQ6DWyr3ZNEIIIYSQSfNKwtzS0oKYmBhvnIrMQqWlpXA4HJBKpcjJCY6prMaTpwWPIy5bBolS6aPWzD5DMaU89gnY9jq0ffYnSPd+iLAr7oM2/7IZ17/pwi7wI+Ypq6RK3Jg1uO/yZNZ4CAS7N1+AecAuKMufHydY6EsqlSAlPcLbTfOJYOyniG9RTBGxUUwR4p5X7mFesWIFHnnkEaxbtw79/f3eOCWZRWw2G6xWK2w2m6+bIgp7by+sbW2CMkPhfN80Zpay2WywdzaCaTzrKnN0t8De3SJK/Q8X3olvzLsDesXg+gyrs66CVhE89/A21Rtx/FCtoCy3IAZXXJOFlPRwSCSDbz3JaWGC6dnBLNj6KeJ7FFNEbBRThLjnlRFmjuNw+PBhHD58GL/4xS9w9dVX4+abb8by5cvBsrTnJpkZqVQKnuchlfrkDgPRyfT6/8/efce3Vd3/439dbdmWLE95x/F24jh7JwRCBiQQAiWUhtHS0v5oSz8FuqCle3y+LeXTsgu0pRQoqwRCQgaE7L2XnTi2Y8d7W7Jka9/7+0PoWteWh+xrybLez8eDB7pHusdHytvXOvec8z6Y9+a/0FVSCsOZszBdKUdUdlawmxVWZDIZlFVH4T3WK1FGIHrOzaLUr5IpcWvBCqzMWYrPKg7ghskLRal3vOgx2xEZqUC32f2lSy6XYtW6qZDKJMjMiUdyWjTqrhmQmqELbkMDaKJdp0jwUUwRsVFMEeJbQLaVWrZsGZqbm3t/6BdTDmNjY3HLLbdg3bp1mDp16lg3g4yhiZQ6nhBHZxNqX/oewLF8mW7xnYi9/iui1G+2d6O9pxMZ0akTZgq2N6vFgW6TDUf3V+HMsRpcf1M+ltyYE+xmEUIIISRAJlLfIGD7MJ84cQJbt27Fzp07YTAYehvwxZfF7Oxs3Hbbbbj11ltpvXMImki/FMHm6DJBGqGGhO7wBk3L5mdhvriPP2bkKmQ8/BKkEeJkrz5aexo1xgbEqKIxLakASVETJ0u0y8Wi54uRZTCApceB2PgIyGThMfWaEEIIIROrbxCwDrOH0+nEoUOHsGXLFnz++eewWCzuhnzRcWYYht9WatWqVYiMnDjr+iayifRLEWyN23fAaTJDmZgIdXISIjLSIVWrhz6RiMLZ1Yaa578tGF2OyF+ApDt/JEr9HT0G7Lp6UFA2O2UasmNHl3l7vOgx2+FyuT87pUoGhZJu/BBCCCHhZiL1DQL+TUYmk2HZsmVYtmwZrFYrdu/ejS1btuDgwYNwOBzgOA7Hjx/H8ePHab0zCTvOnh44DO59a62NjbA2NkIRG0Md5gDqPPBfQWcZjASRU0a/xthzb/J88yVBuUIqR7o2edT1jwcOh4vvLEskDGRyCWqqOiCTSZCSrgtu4wghhBBCRiCot/5VKhXWrFmDNWvWoKurCzt37sQnn3yCEydOwOVywWq1Ytu2bdi2bRvi4uJw8ODBoSslYae5uRkulwtSqRR6vT7YzRkVa6MwC7NELociLi5IrQk/TrMBpvN7BGXK5GxE5s4dVb21xgb8+dDLuL3wJmTHTILVaUOXzQwAKIjPgUIW2vsQcxwHcIDN0ruNlFItQ2d7D+qqOzE5Nx5N9e4bQfpkLRjJxFu3PZSJdJ0i4wPFFBEbxRQhvo2buXJarRYbNmzAhg0b0NHRgU2bNuHFF1+ExWIBx3Fob28PdhPJONXc3AyHwwG5XB7SF3in2Yyrf/8n5BoNVMlJkKpUUCUngaGZFQFjOPQBwDr5Yw4MtHPXQCJXjqreD0q2odHUgheP/xvJUYn48rRbkReXharOGuTGZY6y1cF34VQ9Ss42YOnKXETr1JDJJZDJpDB32WC3O1FW0nsjSJ8izjrwUDNRrlNk/KCYImKjmCLEt3HTYQaA2tpa7Nq1C7t378aZM2fgcrmC3SRCAsZw9hxMpb3TdRVxcSj42eNBbFF4cVlMMJ39TFDGRichMn/+qOqtNTbgSO1p/rjR3IK6riYsypiDyTHpIZ8l22px4LMtpeg223G1vA3zlmRi2ao8cCyHqoq2fq8P9fdLCCGEkPAS9A5zS0sLP+36woULfLlnvZ9er8ett96K9evXB6mFZLybPHkyWJYN+TXu7UePC44lchkiUibG2tZQYDj8ITinQ1AWPXftqEeXD1w7Dg69uRUj5GqszVsOYGJ0Hvd9eoXfb9nlZHFk71VMzo2HTN4/K3ZcfPgmcZwo1ykyflBMEbFRTBHiW1A6zJ2dnfx65VOnTvGdY8//1Wo1Vq1ahdtuuw0LFy6cEF8qydjRaDTBbsKocRwH4/kLgrLIrCxK9hUgrK0HXad2CMoUiZmIn7V81HV/ZdptyI/PxvsXt+JqZw3W5C1HpCJi1PWOB82NXTh+sFpQlluYiMRkDc4cq+33+oSk0P9dHamJcJ0i4wvFFBEbxRQhvgWsw2w2m7Fr1y588sknOHLkCD/d2tNJlkgkWLBgAW677TasXr0aauookDBiqa+Hw2gUlOlmzghOY8KQ8cQ2cA6boEwz56ZRjy4D7lHk2SnTMCu5CKcaLqAwIWfUdY4HHMdhx6aL4Nje0XOpTIKVtxbi8vkm9N2xMDM7Dkmp0YFuJiGEEELIqASkw/zwww/jwIEDsNvd0/a8v0jl5uZi3bp1WLduHSUYIGGr4/gJwbFUrYZuRnGQWhN+5LEpUOfOga32ElhrN+Tx6dAUXSdK3ReaL4MBg/z4LMxJnTj/piVnGnDtaoegbNEN2eho70FPj11Qnpkdh8yc+EA2jxBCCCFEFAHpMO/atQsMw/Ad5djYWKxduxbr16/H1KlTA9EEMoHZbDZwHAeGYaBUjn5EMBg6jp8UHKtSkqGMpw5GILh6THC01UGZlAWFPhOO1lrIM6bB7uLAsLZRxZTZ3o2ytqtgORZXO69hSkIesmIyQn59mM3qxGdbSgVl0TFqFBYn4fIF4dZo2mgVMrJoa7SJcJ0i4wvFFBEbxRQhvgVsSrZCocANN9yA9evXY+nSpZBK+yeEIWQkysrK+G0QiotDbwSPdThgLq8QlGmnFNJ2UgFirSnlk3IxjATK5GzUyhLhKCkZdUxdbC4Dy7Hun+O042xTKZI1iSG/hnn/Z1dg6hJOYb9xbQGulgmzYkulEhRMS4YkDPdd7ivUr1Nk/KGYImKjmCLEt4B0mH/729/ipptuomQChPhgvFgCzukUlMXOnxek1oQXV48J9pZrgjJVSi5gAuBw+D5pGKxOG1iWRV1Xo6A8JzYz5DvLrU0mHNtfJSjLyosHOMBuF8Zxdn4CIiIVgWweIYQQQoioAtJh3rBhQyB+DAlTOp0OLpcrZGcttB85JjhWxMZCk5MdpNaEF6exRXDMSGVQpuVD19g84piqMdTj57v/jJtyrsd1mfNQ1VmHBlMzFFJ5yCf84jgOOz66CNYr0ZdEymDO4kloqu8SvDYuPhLJaZTkyyPUr1Nk/KGYImKjmCLEt6Dvw0zIaGVkZAS7CaNiPHdOcBw5OZO2kwoA1mmHMjkbsuhEWGtKYW+5BlVKLiRy5ahi6v2ST2BxWPHhpR3YXr4Hd0y5GTdMXgiLwwqlLLRHWy+db0RVebugbN7iTLQ1dwvK5HIp8ouSaEtAL6F+nSLjD8UUERvFFCG+idphvv/++wG4t1F5/fXX+5WPRt86CZkI7J2dsDY1C8qip9O6obHGsS7U/+NHUCROgm7RHYgsmA9VxhQw8tF1aK8Z6nCs7gx/bHXa4GSdSIgM/aRXdpsTOzcLE31pdSosW52H5kYTqiva+JHnvKl6KJR0P5YQQgghoU/UbzTHjx/3OaIwUPlweTL2ETLRtB8TbifFyGSInTc3SK0JH92Xj8LRVgdHWx26Sw8hIm8uEm/93qj3Xb7UWiHYESBSrsaa3OViNDnoDuwqh8loFZStWjcFSpUcGZNjERsXgUsXmqCNViFBT/kqCCGEEDIxiD4EMFDn1nvvZUKIW8ex44JjVXISVPrEILUmPHAcC8Oh/wrKnMY2MMrRJ+O6Kfd6TNMX4IPS7ThUcwJr81cgQjExptfL5FJIpRK4XO6s35Nz41BYnMw/H6VVYfaCDNClnhBCCCETiagd5s8//9yvckLEUFFRAafTCZlMhpyc0EmqxLEsTJcuC8o0Bfm0ndQY6yk/BXtLjaBMt+RLght9I40pm9OOVG0S/mfBA/jSlJsRo5oYSa84jsPshZOQlRePfTuvoLqiHTfdXtTv5qhESrE7kFC9TpHxi2KKiI1iihDfRO0wp6am+lVOiBh6enr4fQNDibmiEi6LRVAWO4+2kxpLHMehc9/bgjJ5fBoi8+cLykYSUzanHdvL90AfFY9piQVI1SaJ0ubxwG5zgWM56GIicMe9s9DTbUd8YlSwmxVSQvU6RcYviikiNoopQnwb98MBDocDly9fxsGDB4PdFEJE1X74qOBYFhUF3bSpQWpNeOi+fLTfvsu6RXeAYUZ/KbzUWgG7y4FaYyN2VOzD2caSCbEUhXWxgv2VrRYH5HLacoQQQggh4SEgaUwLCgogkUjwox/9CA888IBf577wwgt4+eWXkZCQgP37949RC90jT1u3bsUHH3yAS5cuoaenBwkJCZg7dy7uueceFBePPnOx1WrFO++8g507d6KqqgpmsxlxcXGYPXs27r33XsyaNWvIOk6fPo1///vfOHXqFDo7O6HT6VBQUIANGzZg9erVo25jKBLj3yYYOk+fFhxHZE6i7aTGWOf+dwXHErUGkVMW9XudvzFltnejoqOaP2Y5FlanbUIkK7TZnMAX/X5GApSVNMNudSIjKxaTsuMgkYT+ewyEUL1OkfGLYoqIjWKKEN8Ctu/HSEda1Go1OI5DR0eHyC3qZbVa8f3vfx979+4VlNfX16O+vh5btmzBI488gm9961sj/hmXL1/G9773PdTUCNdONjU14ZNPPsG2bdvw0EMP4ZFHHhmwjueffx7PP/+84LNsbW1Fa2srDhw4gFWrVuHpp5+GQhHae72GA2d3N3pq6wRl0cXTgtSa8NBTeQaOtlpBmWbaMkiko5t61tLdjjpjA1iO5cskjARF+vxR1RtsHMfB5WThdLjfFyNhcK2yHTarAwBw7Wo7Otq6UTw7DXIFjTgTQgghZGIatxtlchyHuro6bN26FQAQETH6DLYD+dnPfsZ3lrOzs3HXXXchPj4eJSUleOedd9DT04Onn34aer0et912m9/119bW4oEHHuA7/QsXLsTKlSuh0+lw+vRpvP/++7DZbHjppZeQlJSEu+++u18d7733Hp577jkAgE6nw8aNG5GTk4P6+nq88847qK+vx6effopf//rX+P3vfz/yD4MERPvR4wDb28ECwyB+0YLgNSgMdO5/T3DMKNTQLdkwqjqrOmvx+Kf/iyJ9Pq7PXIhkjTvDOcMwiFJEjqruYHv/9VPQaFWYtzQTCoUMRoMFrc0mwWvkcilk8nG/socQQgghZMQYTqRFdk6nE7fffjsqKir6Pef5EaOZnjh79my8+eabIz5/IIcOHcLXv/51AMCCBQvwyiuvQKns3Yu1srISGzduhMFggE6nw+eff46oKP+S3Tz44IM4cOAAAOAHP/hBv5Hqs2fP4t5774XD4YBOp8OBAwcEo8SdnZ1YsWIFzGYzEhIS8O677woSqZnNZjz44IM4c+YMAOCdd97BzJkz/fsgRslsNqOsrIw/zs/P9/tzCidXnnkOrbv38sfKhATMfvkFMFIaqRsL1oYKNLz2E0GZZsYKJKz99qjqferg33Ci/hx/fGPWEvx/c+8By7GQiLAuOliulDbjnX+49wiP0iqxZHkObDYnv6UU4O4sz1k0CUoVJYchhBBCiNBE6huI9o1OJpPhN7/5DQB3B9n7P4++5cP9DwC++c1vitVUgX/+8598+3/3u98JOsuAe8T55z//OQDAYDDg/fff96v+48eP853lO+64w+e07hkzZvCjygaDAUeOHBE8/95778FsNgMAfvjDH/bLOh4VFYX/+7//47Mavvzyy361MdS1tbWhpaUFbW1twW7KsHWVlAqOVUl66iyPoc69/xEcM1I5Yq67a8DXDyemqjprBZ1lAEiIjAWAkO4sOx0u7PiwhD82d9mwZ0eZey2zl9wpeuos+yEUr1NkfKOYImKjmCLEN1GnZM+cORNf/epX8emnnwrKGxoawDAMtFotIiOHnqbIMAykUimioqKQlpaGu+66C0uWLBGzqQDcndPDhw8DAJYuXYr09HSfr1uzZg3+8Ic/oL29HTt27PArcZlnSrlSqcSjjz464OvuvPNOOBwOxMTEIC4uTvDctm3bAABarRa33nqrz/NTUlKwfPly7Ny5E4cOHYLZbA7Zuzj+amho4LdBiI+PD3ZzhmRrbYWtuUVQpi2i7Nhjxd7RCEv1BUFZRN5cyDRxA5wxvJhqNrciUq5Gt8O9NViUIhI35V4vWruD5dCeShg6egRlmTlxkMl6bwLok7VITNIEumkhLdSuU2T8o5giYqOYIsQ30dcwP/7443j88ccFZQUFBQCAhx56yO8s2WPp5MmTYL9YR7pgwcDrRyUSCebOnYsdO3bg3LlzMBqNiI6OHtbP2LVrFwBg0aJFSExMHPB1BQUF+PWvf92v3Gg08tMZ5s6dC+kgo5Dz58/Hzp07YbfbcfToUaxYsWJYbSSBZTgrHJWURUUiZd0tQWrNxNe5922A814vLkHMdf3zBPhrQfosFOsLsb18D7aW7cIt+TciQh7aWc4NHT049LlwWY1Wp0Zicm/nWKWSI7dw4GsZIYQQQshEMu6zZI+l8vJy/nFeXt6gr83JyQHgfh9XrlzB3Llzh6y/paUF7e3tANzTrj0cDgcqKirQ2tqK2NhYFBQUQCbz/U9RUVHBf3a5ubnDaiPgzsodLh3m9PR0sCwLiSQ0psEazp4XHEdPL4ZsDJPahTOXrRs95ScEZerJ06CITx3gDLfhxFStsQEAcPuUm3Bz7g0hE3+D2bm5BE4nKyjLKUzg808wYFAwLQky2ofZb6F2nSLjH8UUERvFFCG+BaTDfPny5UD8GL/V19fzj/uuC+4rKSlJcN5wOszeCdDS0tLgcDjwt7/9Df/5z38E22TpdDp885vfxAMPPNBvBNm7jWlpaYP+vOTkZP5xQ0PDkO2bKGJiYoLdhGHjWBaGc8IOs87rZgoRl6OtHlEzV8JWXwZ7UxXAsoi57itDnjdUTLEsi3NNpehxWBGliEBBfDYm6Qb//RzvKi63oOxis6AsJT0aUZrevA5pmTHQxdLNnZEIpesUCQ0UU0RsFFOE+DZut5UKBO9O61AXCZ1Oxz82GAzDqr+pqYl/rFAocO+99+Ls2bP9XmcwGPDUU0/h7Nmz+Mtf/sIn7/K3jd7TxIfbRhJYjESCGc88DcPZczCcPQ/juXPQzSgOdrMmJI51wVpXBqkqEhHZs6BKnwLO5YAqdfCZGsNRY6xHj8MKADDbe3Cy4QK0Kg3iI2JHXXcwOJ0ubP/woqBMLpciM6d3nXeURonJOQOv+yaEEEIImYhE7TB7j2qmpKT4LB8N7zrFYLVa+cd9s2P35b3Nk/d5g+nu7uYf/+lPf0JtbS1yc3Pxwx/+EHPnzoXL5cKBAwfw1FNPobGxEZ999hn++te/4kc/+pHPn+XdBl+838Nw2zhWKioqkJ2dDY2md+2jzWbj12PrdDpkZGT0O6enx51sqLhY2Ilsa2vj4yg9PV1w88DlcqGkxJ3VV6PRYPLkyYJzq6ur0dXVBQCYMmWKYPq7wWBATU0NAPcIfUJCguDcCxcugOM4qNXqflPi6+rq+BsaeXl5UKlU/HNmsxlXr14FACQkJAhG/5VxcehISYYjIR5RN62Eqs/a9sbGRrS2tgIAsrKyBMnbrFYrrly5AgCIjY3tN+ugvLwcFosFDMNg2rRpgudaW1vR2NgIAMjIyBDcBHI6nSgtdWfu1mq1yMzMFJxbVVUFk8m9B+/UqVMFMyE6OztRW1sLwP072jdRyPnz7hH1iIgIwbIBAKipqeFv7uTn5wti2GQyoaqqCgCg1+uh1+sF55aWlsLpdEKhUPB5EjwaGhrQUXkRsqYqxMTEQK5QQKJQQTP9ZlgsFn45RlxcXL/ZJVeuXIHVaoVEIkFRUZHguZaWFjQ2NuJUZwnkGiXf3oSIWETLNfx7jY6OxqRJkwTnVlZW8teEoqIiwZS3jo4O1NXVAXDPJImN7e14syyLixfdndnIyEhkZ2cL6r127RqMRiMAoLCwUHDDraurC9XV1QDcs2T65lG4ePEiWJbF1Us96GwTJvpKTo9Ee4c7U2p8fDwKpiVDInW3ubu7G5WVlfxzfa/Nly9fht1uh0wmw5QpUwTPNTc3o7nZPZI9efJkukag/zUCAC5dusQn3yksLBQ8R9cIt9FeIzyZgLOzswUJSUd7jfDcLM/MzIRWq+WfczgcuHTpEoDQu0aoVKp+S9fq6+v5ZWe5ublQq3tzONA1ohddI9zoGuEWTtcITwxOBKJ2mJcvXw6GYcAwDP9L410+Gn3rFIPT2btNylCdUe/nvc8bjOeiDQC1tbUoLCzEm2++KbhwrV27FrNmzcIdd9yBjo4O/Otf/8LGjRv5X76xbuNYcblcfEI1D47j4HA4+Of7cjqd/PN9sSzLP9e3XpfLxT/n631719t3Lb13m/rWC7gvXhzH+VxjPpJ6OY6Dq7sHdrt9wH8j7/c6WL2+znc4HHA4HD5/30ZT70j/bTxtGqhe73+7vm3yrtdXvDgcDjidTp9rrZxOJ9BWDZfLBU+tMm0cZNoEOCyWIet1OByQSCRwuVyCP+pXOq5CaZciRZEIm8IFG9z1FCTkBO0zHCwOh/MZdpscKDndLijXRKugi1fC0uPOAJ6RFSOYmj3c32VfuSu8/80DdY3wvFdPHYPVO1bXCKfTyb8nqVQ6rHqH817pGjGya8Rg9Q4Vh97XiMHqHSy+xfgMPW3zfm4srhEsy/pMODqaz5CuEeLUK/Y1wvPZ0zViYlwj+rZpOPWKeY3w1Y5QJfqU7IGSe43HpF/ed/IcDsegHVK73c4/Hqrj6tH3Pf/2t7/1udVTcnIy/ud//ge/+tWv4HQ68dFHH+G73/2uzzYOxruN3neHgkEqlfa7UDAMw7fL1y+WTCYbsN0SiYR/rm+9nrtxnjoGq7fvHwDvNvm6sMnlcnAc57NdI6nXYTSiaftOuEwmICoSTFwcuGnTBOd7v9fB6vX1XuVyOZxOp88/dKOpd6T/Np42DVSvVCodsE3e9fqKF7lcDoZhfNfLOiCVMGCkUnhqVaUX8jf0hqrXarWCZVmUlJTwoxRXO2rw7LnXkaCMwdL4uVidfj3sMidqjY1IikqA0+kMymc4WBwO5zO8fLYDLqfwWlUwLQlOpxUSqQQRUTKkZgh3BRjO7zLLskP+mwfqGuF5r546Bqt3rK4RlZWVfIwUFxcPq17v/w/0XukaMcJrxCD1Duca4XK5fL6X4ca3GJ9hSUkJHA6H4LyxuEawLOuzXaP5DOkaIU693v/3NtLfZU9MiV1v3/c6WL10jQi97xEDXSMmUvI4hhOxJ3vffffxj9944w2f5aPhXacYHnnkEWzfvh2Ae4sp72k/fX322Wd4+OGHAQA//elP8dWvfnXI+l9//XX84Q9/AOCedrFz584BX9vR0YGFCxcCAJYsWYJ//OMfAID//Oc//HZTL7zwwqCZr41GI+bNmwcAWLFiBV544YUh2ygWs9nMT5MC3NNiArUP9Pnz5/lpSX2nYI03pvIKdJ48xR/LImlLKbFxHAfO5QAjlcHR3gBrTSk4loV29uphz3TxFVN/PPAiTjX07uc8NTEPv7j+kVHPngmmq1da8ebLxwRlsxdOwspbC1F2sQlGgxVzFk2CSh3cG3ATQShdp0hooJgiYqOYImIKZt9AbKKOMA/UoRW7oysW73UDBoNh0A6zdxIt73UBg/EOir7rYfqKjY2FTqeDwWBAS0uLzzZ61hcMxPv54bZxItBoNHA6nQNuzTWe2L9YD+OhTIgf4JVkpCxXz6J1y/PQzl0L7ezV0MxcCc5h86tj2zemrnZcE3SWAWB60pSQ7iy7nGy/RF/qCDluuDkfCqUMRbNSYelxUGdZJKF0nSKhgWKKiI1iihDfwvo3wjshQWNjI9LT0wd8rXfG6+EmHxtqG6i+PFO9vef8923jYLyfFztB2ng21M2I8aJu00ewd3ZAqlSB+WJaiyKeOsxiMxz5EK5uAzr3vgXD4U2IXXY3ouf5N4rfN6bsLgfSo1P4vZc1yijclLNMtDYHg8PhQoJeg/aW3uSEy9cUICLSfR1iGIZ/TEYvVK5TJHRQTBGxUUwR4ltYd5i9s8SVl5fz05l98WTDYximX5bDgXhni/PeT9kXl8vFj2J7Z/HLysoCwzDgOI5vw0C8933um6mOBJetrR3XXnfPtJAoFIicnAn9TaugSkwY4kziD2v9FVivlfDHnN0CRqEa5IzhKUjIwVOrf4ZjdWfw34uf4LrMBVDJR19vMMnkEtx8exGKZqRgz44yKJQyzJyfMfSJhBBCCCFhJCgd5oGmexw/fhybN29GU1MT9Ho9Vq9ejWXLxm4UZ+bMmZDL5XA4HDh27Bjuuecen69zuVw4ceIEAKCgoEAwTXowMTExyM3NRXl5OcrLy9HU1ISkpCSfry0pKeGTdnl3diMiIlBUVIQLFy7g5MmTYFl2wEX0R48eBeBeZD9nzpxhtZEEhuHcOf4xa7ejp64eicuu40eaiTgMRz4SHEujYqEpGv01pNveg2uGesxOnob5aTNDPvMjx3GwWdyZMtMyY7Duy9OhjVFDIgndKeaEEEIIIWMhoOnLjhw5gq997Ws+O8HPP/88vvrVr2LTpk04fPgwPvzwQzz00EN46KGHYLPZxqQ9Wq0WCxYsAADs3r17wP2iP/nkE36fvJtvvtmvn7F27VoA7i+or7766oCve/PNN/nHfX/GqlWrALj3EPQkKeurrq4Oe/bsAQAsWrQI0dHRPl9HgsNw9pzgWFc8jTrLIrM2VKCn7LigLHr+LWBko1+DW9Z2FRdbyrD1yue40HwZdnbwjPXjncPuAsu68z3WVneg8kor6q91wuUM7RsBhBBCCCFiC1iH+f3338fXv/51HD16FB0dHYIkWmfOnMHzzz/vzm7b5799+/bh8ccfH7N2fe1rXwPg3rLpscceg9lsFjxfUVGB3//+9wDcm31v2LDBr/rvvvtuPgHX22+/jc2bN/d7zUcffcSXz5o1C9OnTxc8f+edd/IJyX7729+isrJS8LzZbMZjjz3GbwXwwAMP+NXGUFddXY2Kigp+Y/XxKCo7G1G5ucAXswN0M6cPcQbxV+fe/wDoTfovUUVCO3PliOryjimr04ZqQy0AwMm6UNZ2FVfarorR5KBgWQ42m3t0ubXZhJZGEwCgpcmEM8drYOmxD3Y6GaFQuE6R0EIxRcRGMUWIbwGZkt3a2sp3OgH33sIdHR3Q6XQAgNdeew2Ae31wXl4eHnroIXR0dOCFF15AR0cHduzYgXvvvRezZ88WvW1LlizB6tWrsXPnTpw5cwa33XYbvvKVryA5ORmlpaV4++230d3tTorz4x//uF/26WPHjuH+++8HAMybN69fRvCYmBj85je/wfe//324XC78+Mc/xvbt27F8+XIoFArs2bMHO3bsAAAolUr89re/7dfG2NhYPPLII/jtb3+Lzs5ObNiwARs3bkRhYSEaGxvx9ttvo66uDoB7RHvJkiWif07jWVdXF78NwniVun4dUtevg8NkgvH8RWgLC4LdpAnF3l4PS7Uwi3VE7lxIlBEjqs87psztNjhZF/+chGGQF5c1qvYGC8dysFkdAAeYTTZUV7RDIu2dht3TbYfD7oJ6ZB8bGUQoXKdIaKGYImKjmCLEt4B0mN9//31YrVYwDIN169bhN7/5DVQqd8Kc7u5u7N27F4B7Q+xXX30ViYmJANxTi9evXw+73Y6tW7eOSYcZAP74xz+iu7sbBw8eRF1dHZ566inB8wzD4OGHH8bdd989ovpXrlyJp59+Gk8++STMZjP27NnDT5/20Ol0eOmll5CTk+OzjnvvvRetra14+eWX0d3d7XN697Jly/h9n8n4JNdoEL94YbCbMeF07n0b4LymE0ukiFly56jqLDFVoCA6C3naSTDbu1FrbAAHICM6FREK9egaHASmLiv+9fxhzF2cidwpiSgvbe63Zjm3UA+tLvTeGyGEEELIWAlIh/nIkSMA3Fsd/e///i+kXms3Dx8+DLvdDoZhsGDBAr6zDLjT219//fXYuXMnjh8/3q9esajVavz973/Hli1b8NFHH+HSpUswmUzQ6XSYPXs27r///lF31m+++WbMnj0bb731Fnbv3o36+nowDIP09HSsWLECGzduHHLv5EcffRTLli3DW2+9hZMnT6K9vR1qtRqFhYX40pe+hHXr1oX0vrAjNWXKFHAcN67fe09NLZxmM5QJ8VDExtL6ZRE5zZ3oLj8hKFNnFkMemzziOhVJEdh6aS/2dBzHLYobcXPeDShKzMeV9qvIjp002iYHxa6tl9DZ3oNPPy7FsQNVyMyJQ3RMb+c4JV2H5DTKfTBWQuE6RUILxRQRG8UUIb4FpMNcVVUFhmFwww03CDrLAHDgwAH+8dKlS/udm5ubi507d6K1tXVM2+gZ/V63bp1f582fPx9lZWXDem1iYiIeffRRPProoyNpIgD3GudZs2aN+PyJyFfG9fGmu6oali+SyjESCaKLp9G0bJF07n8XcDm9ShjELBvZbBCPDy/vBAB0O3rw7sUtOHDtOP7v5l9gVsq0UdUbLNeutuPCqd6t7YydFjTVG/kOc7ROjZyCxIFOJyIIhesUCS0UU0RsFFOE+BaQpF9GoxEABKPHHgcPHuQfL1zYf6qq5y5XT0/PGLWOkLHFcRxsbW29xywLqZqmvYrBZbPAfPGAoEyZlgdViu+lDcNR0V6NM40XBWXLsxZDwgR0UwHRsC4W2zcJ349UJsHk3HgAgFIpw9QZKbSlFCGEEEKIDwH5BqhQKAAAFotFUH716lU0NDSAYRjExsYK9h/28Gz1FBUVNfYNJURkzh4LnF1dYO3CzMPKhPggtWhiMRz6AJzDKiiLWeJfJvu+IuQqzE+byR9rlVFYlXPdqOoMppOHr/GZsD0ys+OgUMogkTCYOiMFCiWNKhBCCCGE+BKQb0np6ekoKytDaWmpoNyT7AuAz8zONpsN+/fvB8MwyMzMHONWklBlMBj4NTeezOvjxYXHfwpndw8UMTqo9Hoo9YmQR2shi4wMdtNCHutywHT2M0GZPCEDEdkzBzhjeFK0SfjG1LuwMn0JPqncjaLkAqhkylHVGSzdJhv27BAuGYmMUiAl3b1WmZJ8Bc54vk6R0EQxRcRGMUWIbwHpMM+fPx+XL1/GwYMHsX//flx33XVoa2vD66+/zr9m5Urhfqksy+IPf/gDWltbwTAM5s+fH4imkhBUU1PDb4Mwni7w9o5O9FyrcT9ua4O5vAKJK5YjKjs7yC2bGExndoG1CPdN1y26fdT1chyHA5eOIloShbVx12FafmiuWwaAzz+5DJvVKSjLKUwEI2EoyVeAjdfrFAldFFNEbBRThPgWkA7zhg0b8MYbb4BlWXz7299GXl4e6uvrYTKZwDAMkpKScP311/Ovf+WVV7Bt2zY+mZZcLsedd45uixhCAs1w9pzgmJHLoYiNhTI+LkgtmlgYmQKRRdfBVnsZTmMLZNGJiJwy+j3I23o6UN1TD9blQoI9DimWNMRHDJ7Bfjyqre7E2RO1grLEZA2iY9SU5IsQQgghZJgC0mHOycnBww8/jGeffRYulwuXL18G4B7JkUql+NWvfiXIzPfOO++gsbERHMcBAH7yk58gPT09EE0lISg5ORksy0IiGV9Jmfp2mFX6RDASCZQJCUFq0cTh6jbC2dUGeUwS5DFJcJo6oEovFCUGLrdWQhMVBY7jYGecOFp7BmvybhhXSb9qrnYgI2vgTjzLcti+6YKgTCplEK+PglIpw5TplOQr0MbrdYqELoopIjaKKUJ8C1iml+985ztITU3Fiy++iGvXrgEACgsL8cMf/hCLFy8WvDYrKwsNDQ2Ij4/HT3/6U6xZsyZQzSQhKGEcdkA5lu3fYU7SAwDkMbogtGhisTaUC44VscnQFPXfls5fBmsXGs0tiPBaY54fnzWuOst7d5Zh/6fluHFtARYv950N/PTRGjTVdwnKomPUKD3bCI1GBaWKknwF2ni8TpHQRjFFxEYxRYhvAf3WdNttt+G2226D0WiEVCodMPP1xo0bcffdd2PZsmWQy+WBbCIhoui5VgPHF9upeaj0SdBOncJvlUZGhnXaYW+5JihTJmeDkUgHOGNomy99irmpxTDaTJB51SOXyDE5JmPE9Yqt5moH9n/qvlnw+SfumTp9O809Zjt2b7ssKIuIVKCjzb0137EDVSgsTh50hJoQQgghhLgFZZghOnrwRDPLly8PUEsIGRudZ84KjqWRkZBpoqArDt0EUuOFq6sdYFn+mGEYKJNHnkjtSttVvHX+Q/znwkdYnDEXd065GSnaJACA3eUQdKCDLSMrFjeuLeA7y746zbu3X4bV4hCc19Pdu63ZjWsLqLNMCCGEEDJMQZ9n6HA40NbWhvb2dtj77FVLSKjyNR07dv7cILVm4uA4DvLYZETPvwXqzCJIlGrI41IhUUaMuM73S7bydR+8dhy/3vtXuFgXAEAhHX8zXBYvz8GNawv4488/uYxDuysAAPU1Bpw+VjPguYNN4yaEEEIIIf0FZYT5yJEj+O9//4uTJ0+ipaVF8FxCQgJmzJiBtWvXYvXq1cFoHgkxFy5c4LdBmDYt+CO4LpsNXSXCPcdVyclQp6QEqUUTR9epHegpOwbt3LWIyJ0NVXohOMfIb7SVtVXiXNMlQdmt+StRWlI6rmKqL0+nt+9Ic2qGDvokDZobTf3Ooc5ycI236xQJfRRTRGwUU4T4FtAOc0dHB37wgx/g6NGjfJknE7ZHa2srPvvsM3z22WeYP38+/vSnPyExkbY/IQPjOI7/bzwwXboMzum19y3DQFuYD6lKFbxGTQAcx6LrxCdwdDTCUn0BspgkxK/8OiJyZ4+4zhSNHrcX3oTt5XtgddoQrdJiZfZSlJVeHlcx5YuvTnNmThwWXJeFi2fqUXmljX8tdZaDb7xdp0joo5giYqOYIsS3gHWY29vbcdddd6GhoUHwiyiTyaDVauFyuWA2m+Fyufjnjh49irvuugubNm1CbCytuSO+qdVqyGSycZMgru/6ZUVsLKKysoLTmAnEUnEGjo5G/tjZ2QRGrhhVnRplFDZMXYvlWYvw+dVDSIiIg1KmGHcxNZC+nebqinbUVXfC6exd402d5fEhVGKKhA6KKSI2iilCfAtYh/mxxx5DfX09ACAqKgr33Xcfbr75ZuTm5vJZg51OJ8rLy7Fjxw689dZbMJvNaGpqwk9+8hO8+uqrgWoqCTG5ubnBboJA56nTgmNVkh7qVJqOPVrGE58IjhWJk6CaVDTqei+0XEZ1Zx3mp81E1hcZscdbTA1m8fIcGDp6cOqIe+0ydZbHp1CKKRIaKKaI2CimCPEtIEm/Dhw4gGPHjoFhGGRkZOCjjz7C97//feTl5Qm22JHJZCgsLMSjjz6KzZs3Y9KkSQCAgwcP4tChQ4FoKiGjYu/shKW2TlAWOTkTMq02SC2aGGzN1bBUCROpaeeuHfUWXW09Hahor4aDdeJUwwXsrToCs617VHUGQ3pmLGRy4eVcHSGnzjIhhBBCyCgFpMO8das7C61UKsULL7yAtLS0Ic9JTU3F888/D5nMPQj+8ccfj2kbCRGD4dx5wTEjk0E3YzrtvTxKnQffFxxLIrSIKlo6qjpdrAsn68/De6VWh8UwqjqDpeRcA5wOVlBm6XHw2bMJIYQQQsjIBKTDfPr0aTAMg6VLl/o13SM3NxdLly4Fx3E4ffr00CcQEmSdJ08JjlX6RERkpAepNRODq8eEnisnBWURk6dDIhvd+mWWYxEXESMom5qYjyhl5KjqDSSnw4VX/3IA5aW9uw14jzR7bzlFCCGEEEL8F5A1zG1t7mytU6dO9fvcqVOnYs+ePWhubha7WWSCqKurg9PphEwmG9bshbHCcRwMZ4UjzOrUFCjj44PUoonBcHQzwAqzjmtmrhxxff86/R6mJRViVnIR5qZOR0Z0Ck41XIBcIkde/GQA4yemhrLprTNorDPyx8lpWhQWp4DjWOzZfgVAb0Iwmp4dXKESUyR0UEwRsVFMEeJbUPZhHgmpVBrsJpBxqqOjg983MJgX+J5rNXCahPvfRk+fDoZid8Q4lxOms7sEZQr9ZKgyCkdU3+XWCmwr34Nt5XuQHTMJG4rWYmZyEVZlXwebyw4J4x6dHS8xNZiDn1fg8oUmQZmlx4GUdB2y8uIhkUj67dNMnebgCYWYIqGFYoqIjWKKEN8CMiU7ISEBAFBSUuL3uZ5zPHUQMl71zY4tjYiAtsj/WRWkl7nkAFiL8CaEZuZKMMzILl3vl/Rm2q7svIaXT7wFB+uETCpDpCJiVG0NpEO7K7B72+V+5RlZcUibpAPg7hzfuLaAf46mZxNCCCGE+C8gI8wzZsxATU0NDhw4gKtXryJrmHvSVlZW4sCBA2AYBjNnzhzjVpJQlZeXB47jgp5Yq+OEcJ2tKjkJESnJQWrNxGA4ullwLNXGQVN03YjqutJ2FReahZ3M9YWroZD2329yvMSUL4d2V/Ajxt6iNEoUFidBoey9rPfdp5lGmoNnPMcUCU0UU0RsFFOE+BaQEeb169cDAFwuFx5++OFhrUdubm7Gd7/7XTid7rWLa9asGcsmkhCmUqmgVquhUqmC1gbWboe5XDh6p8nPh0QxusRU4cxaXwZHa62gLKpwMSSKkf07Z8Vk4Dvz7kdSlHu2SowqGjdmL/H52vEQU77UXO3w2VkGgIzJsciYHNuv3NdIc83VjjFrI/FtvMYUCV0UU0RsFFOE+BaQDvOiRYswb948cByHqqoqrFu3Di+88ALKy8vBcb2bunAch/Lycjz//PO49dZbce3aNTAMg1mzZmHZsmWBaCohI2IsvQTO6RSUxc6bE6TWTAydBz8QHDMKNbSzbxpxfbVdjXCxLvz6hsfw3XlfxX0z7vA5ujyeZWTF4rpV/XcaUEXIUVicBHWE7xs03p3m61blIiOrf8eaEEIIIYT0F7CkX0899RS+8pWvoKGhAV1dXXj++ef5fZY1Gg0AwGQy8SPKno50UlIS/vKXvwSqmYSMiLHP/svKhHhocmna60g5TR2wVJ4RlKkzp0Eeox9RfVaHFeeaSmF3OfB51WEUJuSgMD40/31yC/XY/2m5oCw9MwYZWXGDnrd4eQ7SM2Ops0wIIYQQ4oeAjDADgF6vx3vvvYe5c+eC4zj+P4fDgc7OTnR2dsLhcPDlADB37ly8++67SExMDFQzSQgym80wmUwwm81Ba4PhzDnBccL1yyCLigpSa0If57RDNWkqGIXaXSCRQjt37YjrO91YArvLAcC9/3JJyxW09rQP+PrxEFMD6Zu4S6GQIr8oCZrooafQUWc5eMZzTJHQRDFFxEYxRYhvAd1WKj4+Hm+88QYOHTqErVu34ujRo2hsbBRMy05JScHs2bNx++23Y9GiRYFsHglRV69e5bdBKC4uDvjPtxuM6K6qEpTpZk4PeDsmEkd7A1TphVCm5sPRVgfO5YB6hFtJ2Z12GKxGQVlGdAr0UQNn3g92TA2krcWMyxeFW0mlTtJhcs7go8sk+MZrTJHQRTFFxEYxRYhvQdmHefHixVi8eDEAdyIwo9EIjuOg1Wohl4fWmkJC+k7HlqhU0OTlBak1oY9zOmBrrgYAMBIJFIkZUKUXgJGMbD9rhUyBVTnLUNpyBVfar0IukWNGcmhu93VkTyXQe38RSpUMC6/Phi42dLbEIoQQQggJJUHpMHuTSqWIjaVpgmTkEhISwLIsJJKArTAQYB0OKOLjYW9rAwBET5sKCd34GTFbyzVwX0yfBgAGDJTJI1tv/NfDf0dW7CSsyrkOxUmFSI9OgdVpg0qmHPS8YMeUL11GC86dqhOUzVmciZwCWrISCsZjTJHQRjFFxEYxRYhvY95hbmtrQ1NTE2QyGdLS0hBF6zqJyJKTg7vXsX7FciTeeAMs9Q0wnjsHJa25HzGO42BrECa0ksclQ6qK9Luu0pZyHK49hcO1p7Dl8mdYV7AKq3OXIUYdPeS5wY4pX47trwLr6h1elsokmL90chBbRPwxHmOKhDaKKSI2iilCfBuTDjPHcfjPf/6Dd955BxUVvQlqJBIJZsyYgW9961u0TRSZEFw2GzpPnIQqJQXqlGQkr6X9wkcrMncOrA0VcLTVguM4KFP6b6M0HB9e2sE/NtpM+OTK51idG5rXHUuPHaeOXBOUzZibjijN4CPlhBBCCCFkdETvMHd3d+Ob3/wmzpxxbwnjndDL5XLh9OnTeOihh3DHHXfgd7/7HRiGEbsJhASMtbERPbV16KmtAxgGKn0iEq5fRnE9Ao7OJhhPfILoOWsQVbgQrG0G7G21kOn830qqvqsJ55pKBWXrC1eH3L7LHizLYfqcNJw5VgunkwXDAAuvzwp2swghhBBCJjzRO8w//OEPcfr0aTAMI+gse3jKNm3ahNjYWPzgBz8QuwmEBIylvqH3gOPASKXUWR4h44lt6DqxDV0ntiMiZxaiF9wG9aSRJeeKVevw5LL/wSdXPseZxhJolVFYPjl0s+5LJAziEqPw5a/PwbXKDlh6HIiN93+aOiGEEEII8Y+oHeYzZ85gz549fGd53bp1uPfee5GVlQWpVIrLly/j3//+N7Zv3w6O4/Daa6/h3nvvhV7v/wgSIR6XLl3it0EoLBzZ1kMjwblcsDYKt/hRp6YG7OdPJKytB6Zzu7844tBTcQryuJQRd5jPN19Co6kFK7Ovw5rc5bC7HFDIFMM+P1gxNZDa6k70dNvR022HSi1H3lS6Zoaa8RZTJPRRTBGxUUwR4puoHeZPP/2Uf/z444/ja1/7muD5mTNnYubMmUhJScE//vEPuFwubN68Gd/61rfEbAYJMw6HAw6HY+gXisxlsUKm6U1ix7Ec1CmUMGMkTOd2g7NbegsYCbRzbh5RXU6XE/VdTXCyLlztrAEAzE6Z5lcdwYopX+w2J5rqu3qP7U7YrM4gtoiMxHiKKTIxUEwRsVFMEeKbqHnjPeuWc3Nz+3WWvX3/+99HdLQ7U+3Zs2fFbAIJQ3K5nP8vkBq2foLW/QfhMHYhMjMT+pU3QqpWB7QNEwHHumA8uV1QFpE3F/IRrF0GgAZTM5ysiz+WMAxSNf7VFayY8qW+xgCWZfljiYRB2iRd8BpERmQ8xRSZGCimiNgopgjxTdQR5rq6OjAMg0WLBl8rqFAosHDhQuzYsQPl5eWDvpaQoQRr2lDnyVMwl1eg62IJat56G2l33YlJ93wlKG0JZd3lJ+HsFE5tj563dsT1GaxdguPEyHio5Cq/6hgvU9GcThfqawyCMn2yFkoVfZkJNeMlpsjEQTFFxEYxRYhvonaYTSYTACAmJmbI12ZmZgIAurq6Bn8hIeOQ02yGuaJSUBY9rShIrQltxsMfCo5luiQoU/NHXF9xUiGyYyehxliPa4Z6ZESH5rryq1facOlCI5RKKWRyKV+eljn09ZUQQgghhIhD1A6z3W4HgGFN5YiKcq/97O7uFrMJhASE4fwFwCsLvEShgLZg5J28cGVrroatQTjLRJVRCInU/0vT0drTuNxWibV5y5EQGYfChFwUxOeI1dSA2/fpFdRWdUAqkyAlLRqpk3RISdchMor2XiaEEEIICRRRO8wcx4FhmGFtqyORuJdPu1yuIV5JyPgTM3MGCp98Aoaz52A4dx7KuDhIFMPPwkzcjEc+EhwzciW0s2/yux6O4/BB6XZcM9RhR/leLEyfhTum3Iz06BSRWhpYNVUdqK3qAAC4nCxqqzuhjlRg/lLae5kQQgghJJBE34eZkEBrbGwEy7KQSCRITg5MlmqpWg11agp004shUSjAfjG7ggyfq9sI86XDgjJlaj6USZP9rutC82VcM9QBAFiOxaGak1iYPnvEHeZgxJS3Q7srBMcKpQx5hYmIjqGkcqEq2DFFJh6KKSI2iilCfKMOMwl5ra2t/L6BgbrAO81mtO47ADAMlHGxUOr10E4phERGv1LD1XVqJ+CVzRqMBNqZK8FIpAOfNICtZbsEx8lRiZiTWjzitgUjpjxaGrtQXtoiKEvL1GFSTlxA20HEFcyYIhMTxRQRG8UUIb6Juq0UIeHC2tTsfsBxsLW1w1xRCUbqf0cvXHEuB4wntwnKFAkZiMiaPqL6Hpz9FdycewOUUve0+FvyV0DChObl7dAeYTI5mVyCnIIExMZHBqlFhBBCCCHhi4bDSMjLysri188HirVJuA2SSq8P6M8PdeZLR8BaTIKyyKmLIVGNrFMol8pRkJCNJRlzUdp6Bcsy54+qfcGIKQAwdPSg5EyDoCwlXYfJOQkUXyEuWDFFJi6KKSI2iilCfBuTDrPRaERDQ8OQr/FobGwE55VxeCApKaGZwIeMLU/G9UDhWBbWZuGUWVWyPqBtCGUcx/VL9iXVxiNqyuIR13nNUIdaYyNqjY1QSOWo6LiGKYm5I64v0DHl8fknl8GyXtnXJQyycuORkKQJSnuIeIIVU2TiopgiYqOYIsS3Mekwv/zyy3j55ZeH9VqO47B8+fIhX8cwDEpLS0fbNEJGxdrUhM4z5+AwmSBV9m7vo9JTh3m4OKcdjEINMBKAYwEA6snTIYtOHFF9LMeixth7g87ucoD9ot5Q0mO2o+yicOZCUlo0svITIJHQ3X5CCCGEkGAYsynZQ40Ye28/NdhrGYYZ1ugzIYHQdugIrv37TQCAPEaHyMxJiJkzB7JIWl86bC4nIiZPhzI1F7aGSjg7m6CZvnzEU8BautthddoEZRm6VDFaGlDHD1XB6ezt6DMMMDknHsmp0UFsFSGEEEJIeBO9wzzczq3YryPhy2q18mtuVCrVmP4sw7nz/GNHpwHOuDiokmh02R+2xkpw4CBRqKHOLAKyZkCVnD3i+mJV0ZiVXIQaYz3aejoRq46GVjm6aWWBjCkAsNucOHGwWlCWnhmLuYsnQSoLzeRlRCjQMUUmPoopIjaKKUJ8E7XDfPnyZTGrI2RYrly5wm+DUFw88q2EhuKy2dBVeklQpkxKog6zHzjWBVvTVUGZKikTjEzuVz1O1oWXT7yJGyYvRGFCLnLiMpETlwmzvRs25+j3xA5UTHmcOV4LS49DULbmS0XQ6mjf5Yki0DFFJj6KKSI2iilCfKMs2YQMk+nSZXAOr04Nw0ClT4QqcWRrb8ORvbUWrEM4fVqZnON3PYdrTmJf9VHsqz6K7JhJuLVgBRamz0aUIhJRitCaHu9ysTi6T3gTIbcwEYnJ2iC1iBBCCCGEeFCHmYS82NhYOJ1OyGRjG87e07EBQBEbC3VyEiQKxZj+3ImEkcogjYiGq8edJV+u00Ma6d8aXY7jsOXyZ/xxZec1bC/fi0UZc0RrZ6BiCgBKzjTA2GkRlC1aPvIp6mR8CmRMkfBAMUXERjFFiG/0G0FCXlpaWkB+Tt8Os0qfCCVlxx4WjuNgLjmAyPz50M5eDaexFbbGCigSJ/ld14Xmy7hmrBeUrStYKVZTAQQupgCgp9uG1Awd6msM7p89KQYZk2MD9vNJYAQypkh4oJgiYqOYIsQ36jATMgyOri50X60SlCmTkqBOTgpSi0KLpeo8Wjc/g3Z1FLQzV0I7+2ZEFS4aUV158Vn4+qwvY2vZLrR0tyNZk4jZKdNEbnFgdBkssFqdyC5IQGZOHBpqjZi7OHPEGcMJIYQQQoi4qMNMyDAYz18AvDK2MzIZ1El6KGJpJHA4jMe3AgBYixmGwx+ip+IUUh/8vxF1DFUyJW7KvR5FifmoNtRBKVNAwoRmJuna6k7+sVQmQU5hIvKm0qwFQgghhJDxIjS/ZRISYIazwunYyoQEqJKTwEilQWpR6LC3N8BSeVpQpp1106hGUc32bhyuPYWW7ja4WBcaTM1gOXboE8cRS48dbc1mQVlqhg4SCY0uE0IIIYSMFzTCTEJeeXk5vw1Cbm6u6PVzHAfD2XOCMlVSIlS0fnlYuk5uExxLVJGImrZsVHXWGBoAuLeXqjE2oMncinX5KwGR+ppjHVMAUHetExx6Zy3IZFKkpPmXAI2EjkDEFAkvFFNEbBRThPhGHWYS8iwWCxwOB5xO55jUb21qgq21VVCm1NP+y8PhsnbDdG63oEwzcyUkCtWI6+Q4DjV9kn5lRKdAIhFvwsxYx5TD7kJTfZegLDktGjI5zViYqMY6pkj4oZgiYqOYIsQ3mpJNQh7DMPx/Y6HvdGyJSgVVsh4yLe2TOxTTuc/Bee+7zEignblqVHU6WSci5RGQeP17Z0SnjqrOvsY6pj7dUoqWJhO4L9bFMwyD1AzdmPwsMj6MdUyR8EMxRcRGMUWIbzTCTELetGljmyHZeK7PdGy9HuqkJPqDMgSOdcF4/BNBmTwuBazdMsAZA9tffQwOlwNLM+dDIZVjaeY8WJ021Bkb0dLdhriIGLGaDWBsY8rQ0YPTR66B44CIKAXSM2NQNDMVKrV8zH4mCb6xvk6R8EMxRcRGMUWIb9RhJmQQnMsFw/mLgjJVkp6mYw9Dz5WTcHW1CcpUGVOhSEj3qx6ny4n/nP8IHRYD3rnwMW7KvR6rc5YhShmJnLhM5MRlitjqsbdnRxmfcL3HbMeV0hZcvzovuI0ihBBCCCE+0ZRsQgZhrrwKV3e3oEypp4Rfw2E4/rHgWBoVg4j8eWAk/q3TPVx7Ch0WAwDAaDPh3Ytb0GhuEauZAdXTbUfpuUZB2aSsWOhTKNkXIYQQQsh4FJQRZo7jcOrUKZw6dQoNDQ0wGo1Yt24dli9fDgDYtGkTpk+fjuzs7GA0jxCe4Zxw/bJMq4U6JRlStTpILQoNtqYq2GovC8qUqflQp+b7VQ/Hcdhy+TNBWUF8NnLjJo+6jcFw4LNyuJzC7a+WrqBMpIQQQggh41XAO8wffvghXnjhBdTXC7PcTp8+nX/87LPPoqWlBTfddBN+8YtfQKfTBbiVJJS0traCZVlIJBIkJCSIWnf/7aT0UCUlifozJiLjsS2CY0auQlTRUkiU/t9ouGf6HdhS9ikuNJcBANYVrBSljYMZi5hyOFw4c7xWUJacFo3MnDhR6ifj21hep0h4opgiYqOYIsS3gHWYOY7DE088gc2bN/PHHt7JkxwOB1paWsBxHLZv344LFy7gzTffhJ6mwJIBNDY28vsGinmBd1mtMF0SjpKq9HqoEhNF+xkTkdNsgLn0oKBMmZIDdcYUv+tiGAYzkqdgRvIUHKk9hUutFZiVMvZJScYipo7tvwq7TbhVx8Lrsyl5XJgYq+sUCV8UU0RsFFOE+BawNcxPP/00PvroI76jvGTJEjz88MP9Xme327F06VL+dbW1tXj00UcD1UxCeF2ll8C5XL0FDANlYgJkUZHBa1QI6Dq9E2C9PzcJoqYugTRi5NtwdVlNqO9qQowqGhXt1WBZduiTxhGW5XDsQLWgLDYhElOmJwenQYQQQgghZFgCMsJ89epVvPbaa2AYBnq9Hs8++yyKi4sBAM8//7zgtZGRkXj55Zdx4sQJPProo2hra8OZM2ewa9curFixIhDNJSEmIyMDHMeJPlLXdzq2Ii4OErmc9l8egqVKuO5bkZiBiOxZI66P4zicbSoFy3FgOSfONpWi2lCLFdlLIWHG5p6f2DFVeq4B3SaboGzuokmQSGh0OVyM1XWKhC+KKSI2iilCfAtIh/mdd96By+WCRCLBc889N6x93ubOnYvnnnsOX/nKVwAAW7ZsoQ4z8Wms1rj3TfgVlTUZMbNm0h+SQXAch8gpiyGPTYat/goc7Q2IzJ8PmXbk63QbzS1oMrcKylI0+jHrLAPixhTHcTiy96qgLDpGjVkLMkT7GWT8o1wcRGwUU0RsFFOE+BaQKdlHjhwBwzBYuHChX5uiz5w5E4sXLwbHcbhw4cIYtpAQIbvBgJ7qa4Ky1DvWQ5NP++UOxtHRANZigiw6AZFTFkM7/xZETlkyqjpjVNHI1KXxx2qZCgXxOaNtasBUlbehsc4oKFt5ayHkiqBsUkAIIYQQQvwQkA5zU1MTAPDTsP0xdepUAEB7e7uobSJkMMZzwhs0UrUaUbmh00kLFmufraTkuiTIY/1bp9tjt+Dt85vR0WMAAKjlKsxLm4EbsxYjVq3DNH0BZNLQ6Wwe2l0pOI6Nj0DBNFq7TAghhBASCgLyrdNutwMAVCqV3+cqFAoAgEQSsPxkJMQ4nU5+zY1MJk5I912/rC2aColIdU9UTmMrnF1tgjJVeoHfU9h3XT2ADy/twMdln2FJxlzcmr8CGbpUxEXE4MasxWI2eUBixVRDrQFV5cLPZOH12bR2OQyNxXWKhDeKKSI2iilCfAvIb0NcXBwaGxtRXV3t97llZe69V2NjY0VuFZkoSktL+W0QRjKLoS+O4/qtX9bNmD7Aq4kHa7dAIleCdbiTW0mUEVAkpPtVh9PlxLYrewAALtaFfdVHYXXa8IPF3wKAgK0fFyumDu8Rji5HapSYPidtgFeTiUzs6xQhFFNEbBRThPgWkGHb4uJicByHPXv2oKenZ9jn1dbWYu/evWAYxq+1z4SMCssi/e4NiFu8CDKNBgCgm05/OAbjNLZCHp+O6Hm3ICJ7FqSqSKjS8sFIpH7Vc7j2FDosBkHZuoKVIrY0cDiOQ0SUAlEaJV82f+lkyOT+fSaEEEIIISR4AjLCfPPNN2PHjh0wGo349a9/jT/+8Y9DnmMwGPA///M/cDgcYBgGq1atCkBLSSjSarVwOp2iTR9ipFLoV65AZGYmJt1/D5zGLqjTUkWpeyJi7RbUvfoYZDHJiJ63BlFTFkOZkg18sZe6P/Lis7Ayeyn2Vh+Fw+VAYUIOcuMmj0GrBydGTF272oGISAVmLkiHpduB2upOzFk0ScRWklAi9nWKEIopIjaKKUJ8C8hvxOrVq1FUVISLFy/i448/RmtrK775zW9iypQp/V7b0tKCzz77DK+88gpaWlrAMAyys7Nx8803B6KpJARlZmaKXqerpwedp067DxgGpvIK6FfeCKlSOfiJYch0fh9YWw/sTZVo/fg5dOx+C+kPPQuJUu13XUlRCbgp93qkapPQ1tOJYn3hGLR4aKONKZeTRXWFe+0ywzCIiFJg9sJJUKroS0i4GovrFAlvFFNEbBRThPgWsG9vzzzzDL785S+jra0NR44cwZEjRwTPv/TSS3jxxRdhNpv5Mo7jEBUVhb/+9a+09y0JKHtnZ+8Bx4G1WiH5IgEd6cVxLLpOfCIoUyZnjaizDABO1oVzTZfQ47BALVOC5VywOe1QykLrs2/os40UAKRnxtB1jBBCCCEkxAQs9XRqairefvttFBUVgeM4/j/PF0iTyQSTySR4LiMjA2+88QZycmg7HxJY9o5OwbEiljo7vlgqz8LR0SAoi567dsT1XWmrRI/DAgDgAFR0XENrT+htKXe1rLVfWUKSJggtIYQQQgghoxHQ+YHp6el47733sGPHDnzwwQc4ffo0LBaLsEEyGaZOnYr169fjjjvugJKmwJIgkCqVkOt0cBiNAMdBHhMT7CaNS4bDmwTH8oQMqDJHlqCP5VjUGIWd78TIOKRqkkbcvmDh0H/9Nm0lRQghhBASegK+oE4ikWDNmjVYs2YNXC4XGhoaYDAY4HK5oNVqkZKSMqL9mkn4qqqq4pNUTJ48ugRR5qtViEhPgyY/D5r8PHAuF+wGIyQKuUitnThsLddgrb0kKIueu3bEI/ESRoIV2UtR1laJsrZKuFgXZiRNCcrI/khjinWx2LvzCliWFWTDjo2LHItmkhAi5nWKEIBiioiPYooQ34KagUYqlSI9PR3p6f7t1UqIN5PJxO8bOBrOHgvO//AnYORyRBdNhW56MRJXLIcyjvYA98Ww/z3BMSNTQJ090+969lUdRbImEXnxWZBJpJiamIfJunQ0d7dBp44Wq7l+GWlMXbrQhIOfVwAA4vVRSMuMgTZahcl58WPRTBJCxLpOEeJBMUXERjFFiG+UspWQL3SVlIBzucC5XOg8eQqGs+egX7Ui2M0al5w9RnSXnxCUqTOLIdfG+VVPt70H/zj9DqxOG/LjsnBrwUrMSS1GhEKNyYrQupHGcRyO7K3kj9uazbBaHFiyPEewFzMhhBBCCAkdAekwNzQ0DP2iYUhJSRGlHjKxTJ06VZR6DOfOC441BfmQ0vIAn4yHPgRYV28BwyB60e1+1/P51YOwOm0AgLL2q7hy+BU8t+Y3SIwK7ojsSGLqWmU7GmqF2bHTM2OQnBZNCeOIaNcpQjwopojYKKYI8S0gHebly5eP+gsjwzAoLS0VqUVkIpFKpUO/aBj6ZsbWTS8Wpd6JhnU5YTq/R1CmSMqCKi3fr3qcLie2XRHWMz9tZtA7y8DIYurI3quCY5VahgS9BvoUrVjNIiFMrOsUIR4UU0RsFFOE+BawKdkc1z9rLCHjScGPfwCH8UEYzl+E4ew5xMyZFewmjUumM5+BtZoFZdHzbvX7phgLDtdPXoh9VUfRbnHfrLg1PzSnwLc2mVB+qUVQljopBvH6KCiUtPKFEBKanE4nv+2n0+mEy+Ua+iRCSMiSSqWQyWTQaDTQaDSQyeg7DBCgDvPcuXOH9TqbzYbW1lY0NjYCcI8qr1ixAnPmzBnL5hHCkyiVcFl6ELdgHsBysLV30B7MfRhPfCI4lkUnIGrqYr/rsTvtkElkWJu/HCzLotHcity40MzK2Xd0WSaXIClFi6TU4CQtI4SQ0WBZFo2Njejq6gp2UwghAeR0OmGz2dDd3Y2mpiZotVokJydDIpEEu2lBFZAO8xtvvOHX69va2vDyyy/jrbfewr59+3D77bdj+fLlY9Q6Euo6OzvBsiwkEgliRrlfsr2zE/b2DtjbOwAAjFSKtDvvAKjDDADorjwDZ0ejoEwzYwUYxv8L6bnmUrAcix6HFQAwNTEXHMeNi5sT/sSUqcuK86frBGUp6TqoIxSIjaftpIibmNcpQoCxiymWZVFXV4fu7m5BOcMwNGV3gvOeDToe/haTwHO5XII46OrqgsvlQlpaWlh3msflOHt8fDx+9rOfITExEU8//TSeeOIJbNmyBYmJicFuGhmHamtr+W0QRt1h7rOOWRGjAxPGF4i+jEc3C44ZZQSi593idz1dVhNSNElo6+6EzWUHAEQposbNH2h/Yur4gSqwLq8vGRIGKenR0KdoIZGMj/dDgk/M6xQhwNjFVGNjI99Z9nTGtVotlErluLlGk7HR09PD37iOiIgIdnNIEHAcB5vNhq6uLv6mXHd3NxobG5Gamhrs5gXNuO4JPPjgg0hLS0NXVxfeeuutYDeHhAFHp7DDLKcvtjyOY6HKmAp11gxIItyJrKIKFkKi8D+TuFalweSYdH7gXiVTYEpirpjNDQib1YmTh68JyopnpSJ/ahKS02g6NiEktDidTn4atkQiQXp6OhITE6FSqaizTEgYYBgGKpUKiYmJSE9P50eVu7q64HQ6g9y64BmXI8weDMPg+uuvx5tvvondu3fj0UcfDXaTyDiUkpLCT0sbrX4jzLGxo65zonB2NgMcC2VqHhQpuXCZ2hG94DZR6i5KzIdCKhelLjEMN6bOHKuBzer1B4QBFt+Yg/jEqDFuIQk1Yl6nCAHGJqZMJhP/OCYmhkYZw4xcPn7+DpPgi4iIQExMDNrb2wG4rw/hOkNqXHeYASAuLg6AeHs5k4knPn502xBdfeXvgEQC7dQpsBsMkHj9wVDEhueFwRdbU29iK4ZhoErJhSLev+k5dpcDpS3lKNYXQCKRgIEEWTEZyIxJF7u5ozKcmHK5WBw7UCUoy5+ip84y8Wm01ylC+hqLmPLuMGu1tCVeuKEOM+lLq9VShxkh0GGuqakBQMkHyNhgHQ40f74HrNWKxi2fAAyDhGVLoUpKAiOVQq7RBLuJ4wJrt8DRXi8oUyRl+V3PifqzeObIPxEfEYsbJi/EdZkLoB8H+y6PROm5Rhg7LYKyhTdkB6k1hBAyep4plwzDQKlUBrk1hJBg8+Qu4DgurKdkj+u5YXV1ddi+fTsYhkFGRkawm0MmINOVK2Ct1t4CjoNcpwMAyHXRYCgjKADA0dkszJ4pkUKR6P/v5O6rhwAAbT0deL/kE7x84k3R2hhIHMfhyJ5KQVnqJB3SM8PzzishZGLw7LMslUppoIIQIsiOH877sI+7EWa73Y7Ozk4cOnQIzzzzDKxWKxiGoW2lyJgwnD0vOJbrdJCq3EmsFGE67cQXpT4TsqgY2JqrYG+uhjw2GRKZwq86msytuNBcJihbnuX//s3jgcPuQmKyBi1NJrCs+0bCouuz6QsmIYQQQsgEE5AOc2Fh4ajO12q1uO+++0RqDZlozp8/z2+tUVxc7Ne5xnPCDrMqSc8/pg6zm7nkIKy1l6CZcSMismZAnTkNnNPhdz2NXc1I1SahvqsJABCpiMC8tBkit1YcQ8WUQinD+o0zMSkrDmeO18BosEKukMLSY4c6wr8bCSQ8jOY6RYgvFFNEbLStFCG+BaTD7D2V018ajQbPP/88oqNpixYiLqe5G6byCkGZSt/bYaYtpdyMJ7bBVl+GrlM7oEjKQuyyryAiZ5bf9bg4Fxamz0a3vQfN5lYka/TjKjO2v1xOFmazDVn5CeA4DnXXOiFXSDEpKy7YTSOEEEIIISIJSIc5JSVl2K+VSqVQqVRITk7GggULcMcdd0D3xZpSQnyJiIiA0+mETOZfOBsvXgRYtrdAIoEiwZ2AipFIoNDRTRp7ay1s9b3TqO1NV8G5/B9ddrgcqDG6M91HKiKQFTsJ0/T5orVTbMOJqdZmE1wud/wwDAMGDJJSKGaIbyO9ThEyEIopIjaJRMKPMBNCegXkKrt79+5A/BgSpnJyckZ0Xt/1y8qEeEi++OIhj6aEXwBgOve54FgaqUNEzmy/66k1NsLJ9iaLYABk6sbXVlLehhNTTfVdguPYhEgoVfTFlfg20usUIQOhmCJiU32Rw4UQIhSQLNllZWWoqKgY+oWEBJCh7/plmo4twDrsMJ3fJyiLKr4ejNT/TmGEXIWEiFj+OFmjh1oeun+Ye7rtMHT2CMqSUmnPUkIIIeJ57rnnkJ+fj/z8fPzjH/8Y8vVvvfUW//r8/Hxs27ZtyHN+97vf8a//9NNPcezYMf74ueeeG1G7h1NHR0cH3njjjRHVT0igBaTD/MILL+DWW2/Frbfeil27dgXiRxIyKFtrK6wNDYIy74RfskhKdmG+sBesRTiKqp1x44jqStIk4oasRbgp93oUxGcjJy5z9A0MMKvFgZOHr8HhcKGp3ih4Ti6XIi4hKkgtI4QQMhHNnz+ff3zu3LkhX3/48GHB8ZEjR4Y859SpUwDc07G9f95Y+vjjj3HzzTfj008/DcjPI2S0AjJ/8Pz58+A4DhUVFYihkTsyDvQdXZYoFPz+ywAgUSoD3KLxp+u08A+ZPCEd8tjh5yMAAJZjYXc5oJK5P0+tMgrFSaPLmh8sp4/WYNfWS9i7owxJqVokpmigULgvofoULSQSWvNFCCGBZGuuhlKfGexmjJkZM2ZAqVTCZrPh7Nmzg77W5XLh2LFjANydX5ZlcejQoUHP6e7uRlmZO09JYWFhwBLs/vWvf4XBYAjIzyJEDAEZYe7s7OQfT506NRA/koSRmpoaVFVVoaamZtjnGM4K79Qq9YlgJL2/DpGZk0RrXyiydzTA3lwlKIvInet3PReby/D/bX4cr5z8Dyo7ro0qY34g9Y0pl5PFsQPuz6On246rV9pQebmVf31yKiX7IoMbyXWKkMGEe0w5zZ1ofOuXcJo7h35xiFIoFJgxYwYAoLm5GU1NTQO+9sKFCzCZTACAVatWAQDq6+tx7dq1Ac85e/YsXC53fpGFCxfCZrPB4fA/sWdf8+fPR1lZGcrKyvC9731v1PUREmwB6TBnZmbyjxsbGwPxI0kYMRgM6OjoGPbdSo5lYTx/QVDmvX4ZACTy0N3uSAzGox8LjhmpHNFzbva7nt1XD8HitGJX5QE88dn/w7NH/ylWE8dU35i6eLYBJqNV8JrUDB0AQButQqSGZiSQwfl7nSJkKOEeU8YjH4G1mGE8ujnYTRlT8+bN4x8PNsrsGU1WKpX4xje+wZf3nabt7fTp0/zjBQsWwOVy8R1oQkivgHSYv/Od7/Ap6v/0pz/RLyMJqu7qa3AYhWtzvdcvhzuOdaH7knDdkzK9EDJN7ABn+NZlM+N4vXAkPy8ua9TtCzSO43Bkb6WgTKtTQatTAwCSaHSZEEICymnu5JcNdZ3aOaFHmRcsWMA/HqzD7FmvPHPmTEybNg1xcXEABu8we9Yvy+VyzJkzR4TWEjIxBWQN8+rVq/HMM8/gF7/4Bfbu3Yvbb78dd911F2bMmIG0tDRotVpIJAHpu5MJKD8/3699A4191i/LY2Igi+pN2BTunefuS0fAWs2CMu2sVX7Xc6HpElxeW0nJJTIsnTRvkDPGD++YqixrRUujSfB8eqY7F4NEIkFikiYYTSQhxt/rFCFDCeeYMh75CJzTDgDgnHYYj25G3IqvBbdRY6S4uBgqlQpWq3XADnNPTw//3MKFC8EwDBYsWIBPPvkER48ehcvlgrTPVpkul4tPJDZjxgyo1WqwLAtlnxwuHMdh8+bN2LRpE8rKymC1WpGUlIQbbrgB999/P1JS+uc2OXbsGO6//34AwMMPP8xPy16+fDnq6+v51x0/fhz5+fn9Xudt586d+Pjjj3H+/Hl0dnYiKioKubm5WL16Ne666y4oFIphfIqEjE5AOszf/OY3AQDp6ekwGAwoLy/H73//e7/qYBgGpaWlY9E8EuL6XtyH0nf9sio5SXCs+OKubLgyntohOJZqYhGZ739HV6eOxi15N6Ld0onLbZUoTMhFlDJSrGaOKe+YOrL3quA5dYQcsQnu95Ggj4JMTvt1k6H5e50iZCjhGlPeo8seXad2InrBbZBFTbzEsgqFAjNnzsSRI0dQWloKh8MBeZ9lYydOnODXHi9atAiAu+P8ySefoKurCxcvXsT06dMF51y6dAk9Pe7tET2j2BKJRHADpqenB1//+tf7jVJXV1fjtddew4cffoiXXnoJs2bNEvdNw73k4Hvf+x6OHz8uKO/s7MTx48dx/Phx/Pvf/8ZLL72E7Oxs0X8+Id4C0mE+cOAA/wvo+X+oJP8hEwtrt6Or9JKgTNEnc3s4jzA7TR2w1ZUJyiLz54OR+NcpZDkWVZ21UMqVSJEnIVmjR1ZMhphNDYjGOiOqytsEZWmZMfx1jKZjE0JIYHmPLntM9FHmefPm4ciRI7DZbLh06RKKi4sFz3vWL2u1WhQVFQEQTuU+fPhwvw6zZzo24O5c+/L666/D5XIhISEBGzZsQFZWFhobG/Hee++htrYWBoMBP/rRj7Bt27Zh3cD5zW9+A6vVip///Ofo6OhAbm4uHnnkEQDA5MmT+ddZrVbcf//9fAbv3NxcrFu3DmlpaTAajdi9ezf279+Pa9eu4Z577sFHH32EpKQkXz+SEFEEpMPsa7oGIcHQdbkMrN3rDy3DQJmYwB9K5HIow3iE2XhsC8CxvQUSKaLn3uJ3PS3mNvQ4LPwxwzAhufdy37XLcoUU+mT3FGy1Wg5drDoYzSKEkLDka3TZYyKPMnvvj3z27Nl+HWbP+uX58+fzSxzT09ORlpaGuro6HD58GN/+9rcF53gSfkVERPSrz8PlcmHOnDn429/+Bo2md/nRxo0bsXHjRpSVlaGurg6HDh3C8uXLh3wfS5YsAQD84Q9/AADExMRgxYoV/V73l7/8he8sb9y4EU8++aRgSvlXvvIVfPzxx/jJT36Czs5OPPnkk/j73/8+5M8nZKQC0mHevXt3IH7MqHAch61bt+KDDz7gp6kkJCRg7ty5uOeeewa8mAxX33Ubgzl48CASEhL6lYtRx0RkMpnAsiwkEonggu5Lv+nYSXpIve6KKhMTwUjDd4qto6MRkEiBL9YeK5NzII/1/65tl80MCSMB+0XnW6fSIkYdOqOxJpMJho4elJxtEJTPWpCBxGQt2lu7kZQaHZZrB8nI+HOdImQ4wjGmfI0ue0zkUebi4mKo1WpYLBZ+3bFHa2srrly5AqD/SPHChQvx/vvv48yZM+jp6UFERAT/nKfDPGfOHH6Kd98s2XK5HE899VS/+IqKisLXvvY1PPHEEwCA0tLSYXWYh8NoNOLdd98FABQVFeEXv/iFz7+169atw5EjR7Bp0yYcOHAAZWVl/HpoQsQmaqatJ554Ak888QQOHjwoZrVjzmq14qGHHsIPf/hDHDlyBAaDAXa7HfX19fjoo49w991345VXXhlx/WazGQ0NDUO/cIzrmKiqqqpQUVGBqqqqIV/bN+GXIj5ecNx3PXM4cVnMUCRNhnb+rVBnz4I0KgaaGTeOqK68+Czcmr8CM5KmQKuMCrnp2FVVVdi7sxTeK0fkCimWrshF0cxULFyWhZQvtpUiZDj8uU4RMhzhFlODjS57TNSM2XK5nF8n3Dfxl/f64r4dZs96ZofDgRMnTvDltbW1aGlp6XdO332YZ86cOeAs0SlTpvCPW1tb/Xk7g9q3bx8sFvcMtTvuuGPQG9Nf+tKX+Md79+4VrQ2E9CXqCPOHH34IhmGQl5fHT7sIBT/72c/4X7Ts7GzcddddiI+PR0lJCd555x309PTg6aefhl6vx2233eZ3/WVlZfya7YceegjTpk0b9PXR0f1H4sSoI9w5ukwwVwoTOEVPnQKJUgnWZgMAqMO4w2xvdn/pksgUUKbkQJ1RiKii60Zcn1KmQF58FnLjJoNDaOUssNtY1FT2CMpmzktHRKQ7G6dCGZDJOYQQQr4w2Oiyx0QeZZ43bx4OHTqEuro6tLe399s2Kjk5GVlZwq0bFyxYAIZhwHEcjh8/jmXLlgEY3vplAMjJyRnwucjI3iSedvvg/y7+OH++d2CjtbUVu3btGvC13d3d/OOSkhLR2kBIX2H/re/QoUPYunUrAPeF5ZVXXuETF9xyyy248847sXHjRhgMBvzhD3/AjTfeiCivLYiGw7MOAwDWr18vSGwQyDomKr1e73PLhL6MFy7Ce8hQolAg7c47wMhksHd0wt7eLtheKpxwHAtbk3CUQpGYCYlMPsAZvlV31uHdix/jxqzFmJlcBKlECoZhwCC0pi63NQAuZ2+sMAww/7rQ20OajB/DvU4RMlzhFFPDGV32mKhrmb3XMZ85c4Zf++tZv+yr4xsbG4u8vDyUlZXh5MmTfLlnOrZOp0NBQQFfLpfLIZP1dg20Wu2A7fEe+RUzkW9zczP/+KWXXhr2ee3t7aK1gZC+wn7z43/+858AAJlMht/97nf9svxlZ2fj5z//OQB3ivv333/f75/h6ewqlUpMmjRpRO0Uo46JSq/XIyUlBXr94NmtDX3W/WinToFELgfDMFDGxUKTlzuWzRzXHB2NYO0WQZkiyf8O4u6rh3Cq4QL+dPBv+M6Wn2Fr2ediNTFgnE4XSs8Ip5cVFicjJi5igDMIGdpwr1OEDFc4xdRwRpc9PKPME820adP4NciedcwVFRV8B3OgkWJPeUlJCT/V2dNhnj9/vqDj27fD7P04UMxm84jO8x5tJkRsYd1hNhgM/FSWpUuXIj093efr1qxZw0992bFjh8/XDMbT2c3JyeGzFwajjnDXd/2ybsb0AV4ZfhiZHHJdIn8s08RCFqXzqw67044D147xx51WI7rtPYOcMT6ZjDZoolWCslnzQ2sNNiGETBT+jC57TMS1zDKZjF/H7Jm27BldBobuMDscDpw9exZdXV2oqKgY9JxgUql6//5u27YNZWVlw/rvo48+Cl6jyYQX1j2vkydPgmXdWXy996vrSyKRYO7cuQDcd/WMRuOwfwbHcSgvLwcA5OXljaidYtQR7qxNTbA2NQvKdNNHl/l8onB1GyFVa6ApvgHRc9dAnV4IVar/mSaP1p1Gt/dWUmBwQ9YiMZsaEDFxEXjwkSW45/+bj7iESMQlREITrQLrYoc+mRBCiKj8GV32mKijzJ5p2ZcuXQIAfpp1bm7ugDujzJkzhx8pvnjxIs6ePctPoR6PHeY4r609xUwmRshohHWH2dMJBYbuiHoSH3Acx6fvH476+np+eklurnvKr9lsxsmTJ7Fv3z5cunRJkMJ/rOoId8aLpYJjeXQ0IibRqCEAdB76L6498yBaP3kJjo5GqDKnQZHo/2eTGBmP6zMXIiM6FQBQnFSAxMjQ3NOaYRgolTJMnZmCwuIklJxrwJF9V1F3bWKNWBBCyHg2ktFlj4k4yuzpMBuNRtTW1vLJuwbr+EZFRfGJYsvLy/np3MnJycjMzBzbBo+A9zaux48fH/S1FRUV+N73voc//vGPlCWbjKmwTvrlvadxamrqoK9NSurNnlxfX8+POA/FO1mXRCLBww8/jN27dws6uDqdDvfeey+++c1vCqaiiFnHRFZaWgqHwwG5XC7Y5sBb4o03ICo3B8Zz52E4ew6K2BgwNLUdrNMO84X94OxWmM7ugunsLsSu+Cp089f5XVd9VxPiI2MRHxmLosQ8ZMeG7lr7C+cvouxCJziO4e/aOxwuaLTh9btFxDOc6xQh/giHmBrJ6LLHRMyYPXXqVERGRqK7uxuffvopPwLr2T5qIAsXLsSZM2dQXl4Og8EAwPfMSovFAtsXu4aMJc+6ac8sT2/Lli2DTCaD0+nEe++9hwceeGDAfcZfeeUVfPqp+4ZKOKzlJ8EzJh3mt99+G3v27BG1ToZh8Prrr4taZ0dHB/84JmbwbIo6nY5/7LnYDId3Z/f//b//5/M1BoMBzz//PPbv34+XX34ZsbGxotcxkTmdTjidzkH36mMYBpGTMhA5KQMJNyxD0/adaNm7D6qkJKiTkyDTagc9f6LqKTsG1ipMsBGZN8/veozWLrRbDPxxhCIipDvMzQ3dcNhdkEh7b6oUzUxFdIw6iK0ioWw41ylC/DHRY2o0o8seEy1jtkwmw+zZs7F//3785z//4cuGGsRZuHAhXnzxRVRWVqKpqQmA7w4zx3GiZrweiFrt/lva1dXV7zm9Xo9169Zh06ZNaG1txSOPPIJnn31WsI0VAPz3v//F5s3uaffR0dGCPZkJEduYdJhra2tRW1srWn0cx43JHwSr1co/7psduy+FQuHzvKF4d3blcjkeeOABrF+/Hunp6TAYDNi3bx+eeeYZtLa24vz583j00Ufx2muvCRJ7iVFHoFVUVCA7O1twV9Bms/HvRafTISMjo985PT3uJFHeU3IAoK2tDQ0NDQCA9PR0wQ0OuVwOh8MBp9OJqqqqfltuVVdX8xflKVOmwNrYBM7lgrWxCYaqanRZLJAvXoiUlJR+a4AuXLgAjuOgVqv56fAedXV1/E2XvLw8wci+2WzG1avuPZ8TEhKQnJwsOPfSpUv8yEBhYaHgucbGRv6ucVZWlmAbM6vVyi8JiI2NRVpamuDc8vJyWCwWMAzTb6/u1tZWNDY2AgAyMjKg0+lgOie8seWMn4x6oxWZfb5bVFVVwWQyAXDf4fbexqSzsxP7Lh9Bc08zNBoNIiIioJIpkaRxJxHzJCeJiIjot6djTU0NfwMqPz9f8HtoMplQVeXe6kqv1/e7e1xaWgqn0wmFQiHYFgMAGhoa0NbWBsCd6d77D63FYuGXY8TFxfWbXXLxwiW0N1sBBvz7TEjUID4xCi0tLfyXjczMTMGWGw6Hg19XFh0d3S+bfWVlJZ/Fs6ioSPD72dHRgbq6OgBAWlqa4IYXy7K4ePEiAPe+l9nZ2YJ6r127xudVKCwshFzeuxVYV1cXqqurAbhnySQmJgrOvXjxIliWhUql6rcspb6+nt+mIzc3l/+CA7izkVZWVgIA4uPjkZKSIjj38uXLsNvtkMlk/Ua+mpub+ayukydPDsg1wuVy8Xt0ajSaIa8R3plhDQYDampqALinMI70GiGTySCRSPi6Q+Ua4eF0OlFa6l7aotVq+03lHOoa4flOkJKSgvj4eMG5oXaNuHLlCqxWKyQSCYqKigTPBfIaoVAoIJFIIJVK+c9wtNeIviwWCziOg0Qi6Td7zW63w+l0AnAnavJur8vl4kcqZTKZ4DuUd70MwwiuLZ7PyeFwwHzyU0jU/bd67O3QMej71dC7s+f53mg+vwe6RXfw9QLu73Tev+ccx/EZpKVSab/vhDabjZ/Vp1arBd9JnU4nvw+xXC4XfL4A+GuWWJ/hvHnzsH//fj4epk6d2m+7U+96lUolZsyYAbVaLRhBnjFjBux2u+DfZqjv2t6fYd+lgN6foec13rw/Q71ej/Lycly5cgV/+ctfkJeXh4SEBBQVFUEul+OJJ57AiRMnUFtbi4MHD+Kmm27C+vXrkZ2dje7ubuzbtw/79u3j6/7JT34CqVQKlmUH/Ax9/dsMFod9P0PvaxrLsnxfwFd8W61WsCw7aHwPVa+vOPTUCwweh4PFt6849P638RWHLpcLdrvd54yAwb5HTKQ16GPSYQ7E3SkxeH4RAPQL9r68n/c+byieL4ZKpRL//Oc/MWfOHP65xMREbNiwAddddx3uuusuNDU14ejRo9i2bRtuueUWUesINJfL1e8Xi+O4AS+0gPtz9XWRBdwXEc9zfevNy8vjk1j4+rfxrpfjOFi/+DLjOWajtXA6nT4vBA6HAxzH+dxaoW+9A73XgeodznsdrF5f79VTr68/en3rdXQ2w1ItzBxuTSmGZIjP0Fe9qfIEqNRyOFQcLLAjU5cGCSPh2zRQe10u14Dv1bu9vuLFc5PE142hwer1FYfGTgsMHT3IyIpFQ40JLOv+AxofHw+GYTA5L75fvYPF91Bx2Ndg8e15r8OpdySfIcuyPvdx9fcz9NUmX38LhvsZinmNAEb+GQ7nd3k414i+Nx1C4RrhT71j9W8zXq4Rfet1OBxD1jvW1wjPTQCWZXHmzJlh1evvZ+gZcfT1u+xdPtDzgxnoeU+9kXNvQeySLwl+t1iW5b/4y2Syfh0Ki8XCfz59RySHatNQ78X7+b6/P2LUO9i53rz3Y/Z17OtchUKB2bNn4+DBgwDcN3MSEhL61d+3EzbcNnnKh/te16xZw7flb3/7GwBg5cqV+OMf/wjAfVPurbfewne/+11cuHABLS0teOWVV/rVqVQq8ZOf/AQ33XTTiGN0sEE5Md7rSM4d6mePpt6hzh3sPF+vGex7hK/rfagakw7z2rVrsWTJkrGoWlTed1gcDsegnWbPXRtg6M61t3feeQdmsxkmk6nfCIKHXq/Hk08+iYcffhgA8N577wk6u2LUEWhSqbTflwmGYfi7e75+sWQyWb+7fx4SiYR/zteXFM9zvr60CurlONhaeu94MQwDeUICpHL5gPVyHOezXd719r3Yer/Xwdrrq17v9zpYvb7eq1wuH3CKXt96jSe2A94XQqkCSJ069Gfoo16lQokUhXtPUJVWDRnT++87WHulUumA79W7vb7iRf7FHtr+1usrDo/srcTxg9VIStFCpmIREcXw/24p6TpERCr61TtYfI/kMxQjvkfyGbIs67Nd/n6GfdvEsuyQ/zbj8Roxkt/liXqN8Kfesfq3GS/XiL71ulwun+9lol0jPK/3FS8Mwwz5/GC8zxer3oHqHO65g/3M0bRpOPUOt72eEWVPMtiBdnnpe+6CBQv4Tuq8efMG/fwHM9Dzw/mMPOV33HEHbDYb3nrrLdTW1oJhGNhsNsF5er0e77//PrZt24YtW7agpKQEnZ2dkMvlSEtLw6JFi3DPPfdAr9cPmPhWjBgdzXsdTSwN9rNH2qaBDBaH3uW+XjPY94iJtA0uw4k4HFxQUACGYfDjH/8YDzzwgFjVjplHHnkE27dvB+BOzT9QUgEA+Oyzz/jO6E9/+lN89atfFbUtLpcL8+bNg9lshkKhwLlz5/wONDHqGCmz2SyYOp6fn99vitB44bLZYGtuhqWxGdamJiStXglpmCVKA4Ca5x+C09h780CVMQUp9/3WrzraejpwuuEilkyaiwh5aK7v7em245nffQ6HvfcP7qTsWEzKjoNMJsX8pZMhV/T/IkkIIRNNeXk5nE4nZDJZvyUGhJDwNNLrQij1DYYycbr+I+C9tmioRF7ez49FQi2pVMqvZ7Lb7X4lFhOzjonGVF6Bug8+hLnyKrgvpoZIlUpEZGQgbv5cpKy7JSw7y9aGCkFnGQCiipb5Xc/eqqP4+6m38f9tfhwvHvs3yturxGpiwJw8fE3QWQYD6FPc14aMybHUWSaEEEIICWNhva2Ud9KSxsZGpKenD/jaJq91r30T3IhloKlYga4j1DQ0NMDlckEqlfb7t2k/dBj1H27GtX+/CZlGg+Q1NyFj49388xM1u+hQuk7tEBwzCjWiipb6VQfHcdhffRQAYHPZsbf6CGRSGXLjJg9x5vjhdLhw4qCwk5+g18DhtAJWOyTy0LwTSsafwa5ThIwExRQR20iXHxIy0YV1h9k7k2R5eTnmzRt4Ox1PxkyGYYY9HaG2tha7d+9Ge3s7Zs2aheuvv37Q13uSe8nlckRHR4tWx0TX1tbGZ5Pt+6XBcLY3qZXTZAqZhHRjieNY9JSfEJSpJ02FRD54pvi+rrRfRZNZOEp9fabvtVTj1flTdeg2C/f4TM/UobvHiMQUBTo625GWPvge7YQMx2DXKUJGgmKKiM3pdPJJsKjDTEivsO4wz5w5k9+S6NixY7jnnnt8vs7lcuHECXcHo6CgQDCVezAtLS34wx/+AABYvnz5oJ3dqqoqfjuPadOm8ck3xKgjXDmMRnRXCUcPdTOmB6k144el8ixYi3Dv5ajiG/yup8NiRKYuDTXGerAch2RNYkiNLnMshyN7rwrKdLFqRGlVcMEMjS6sL4+EEEIIIQRh3mHWarVYsGABDhw4gN27d6OhocHnXdpPPvmE30vz5ptvHnb9RUVFfCbDAwcODFg/ALz00kv849tuu03UOia67Oxsn9sCsA4nkm6+CYZz52BtaIREpYImj5KYdJ3+VHAsjYxGRO6cAV49MCkjwZzU6SjSF6DW2IBUbVJITXG/UtqM9tZuQVnaFxtQz12YD61OFVLvh4xvA12nCBkpiikitr7bdBFC3ERP+hVqU16/9rWvAXBvK/XYY4/xafo9Kioq8Pvf/x6Ae0+/DRs2DLtupVKJu+66i6//Bz/4Qb/6AeAf//gHNm/eDMC9rvr2228XtY6JLjIyElFRUf32XFTGxyH7oW9i9kvPY9YrLyHtzjtgbW4GO8A+l+GAddphqTonKFNPng6J1L97ZyzHotHUAgBQyZTIjZuMJRlzRWtnIBzuM7ocqVEiJi4CcfGRSEmL9xlThIzUQNcpQkaKYoqITSqV8v8RQnqJOsL873//GwCQkZEhZrVjasmSJVi9ejV27tyJM2fO4LbbbsNXvvIVJCcno7S0FG+//Ta6u92jUD/+8Y/7Zcg+duwY7r//fgDufe3eeOMNwfPf+c53sGfPHlRVVeH06dNYu3YtvvzlLyMzMxOdnZ3Ytm0bTp48CcD9x+/Pf/5zvzt8YtQR7qQKOTinE20HDgEMA2V8PBKWLYUkzJKkdZceAucUrtnVzFzpdz0dFgNsLmE9yZrEUbUtkOqudaK2qkNQdsNN+dBEq5CSFh5r/wkhhBBCyNBE7TAPljRrPPvjH/+I7u5uHDx4EHV1dXjqqacEzzMMg4cffhh33333ADUMTKPR4LXXXsPDDz+MixcvoqmpCc8880y/1yUnJ+Ppp5/GtGnTxqSOcGdtau494Di4LD1h11kGAI51QZ6YCUd7HeByQqbTQ5Ve4Hc9WqUGC9JmotHcgkZTC9QyFSIVEWPQ4rFxeE+l4FgTrcL0OWmQysJ6pz1CCCGEENJHWK9h9lCr1fj73/+OLVu24KOPPsKlS5dgMpmg0+kwe/Zs3H///Zg9e/aI609OTsa7776LrVu34pNPPkFJSQm6uroQFRWFzMxMrFq1Cl/+8pcHnVYlRh0TlcVi4ddxqdVqn69xWSyCY2V8QiCaNu5wTici8+eBc82Co70BSn0mGMb/TqJCKkeGLhUZulSwHAurwzYGrR0bHW3duHyxSVA2f+lkQWd5ODFFiD8opojYKKaI2FiW5WNKIqEbyIR4UIf5CwzDYN26dVi3bp1f582fPx9lZWVDvk4mk2H9+vVYv379CFsoTh0TUXl5Ob+1RnFxcb/nOY6DqeyKoIyRht8fAle3Ea4eIwCAkcqgSMxAVPEyv+vpspqgVWn4YwkjQYQidL6sHd13FfBKtaBQyjBrgXAZyVAxRYi/KKaI2CimiNisVivfYY6ICJ1ZY4SMNeowkwmHc7ngslggi4oCAJgrKvu9hgnDhBb21hrBsUSphkzr30j7NUMdfvzpHzAjaQqWZS7AnJRiKGShs1djt9mGs8drBWWzF2ZApQ6/6fmEEEIIIWRo1GEmIS8uLg4ul4vP6miuqMT5x3+GqOxs6GYUw2W1QRYpvFOqSkkORlODhuO4fh1mRXy639uR7Ks+Bo7jcKaxBGcaS5AenYKnb/q5mE0dUy1NJkilEjidLABAImEwf2n/vaP7xhQho0UxRcRGMUXEJpPJaKsyQnygDjMJeampqYJjw7nzAMvCXF4Oc3k5ZFotktfcxD8vj46GKikp0M0MMg6q9Cmwt9bAaWgGx3FQJE7yqwYX68KBa8cFZbNTQivBXMbkWCy+MQfXrrajrroTMXER6DbbodUJp5T3jSlCRotiioiNYoqITaEInRljhAQSdZjJhGM4d15wrErSC46TVq8Mq7unHMeh+/IxRGTNgDJpMli7FY6ORkijYvyqp66rEVaHVVB2XeZ8MZs65uqudcLpdCE1Q4eUtGg4XSwUShqdIYQQQgghvlGHmUwoLosFpsvCJGwqfW+HOTIrK+zWL9ubq9Cy6c9gZApE5M2FpmgZ1Dkz/b5pMEmXhu/O/yoOXjuO+q5mgHFvLxUq7DYnaqs6+WNGwiAxQYvY+PDLLE8IIYQQQoaHOsxkQukqvQTO6ewtYBgoE3sTW6lTU4LQquAyX9wPAOCcdnSXHoKtvhzpOS/4XQ/HcWjv6USGLg0ZujS4WBfquxqhTcgVu8ljorqyHU6niz9mwCArLz6sZhsQQgghhBD/UIeZhLwrV67wW2vIz54TPKeIi4NE7s6AzEil/aZnT3Qc64L54gFBWVTR0hHtvdxlM6Hb0buftVQiRbImND7PHrMdjXVGQZk+RQONVuXz9d4xlZeXF4gmkgmOYoqIjWKKiM17WymVyvffR0LCEXWYScizWq1wOBxwuVzoHmT9sipJD4ksvELeUn0Rrm6DoCyq6LoR1WWyd0MmkcLJukdpI+RqRIfAlOyOtm5UlrWC43o3X5ZIJMjMiR/wHO+YIkQMFFNEbBRTRGwsy1KWbEJ8CK/eA5mQJBIJJBIJ0N2NnmvCrZO8O8zqtPDLKGo6u0twrEjKgiI+bUR1pWmTkVyQiNaeDjSamqGUKkLij+q2Dy6gqrwNiclapGXqEBmlRNqkmEH3XvbElETi/0g8Ib5QTBGxUUwRsXn+pofC33ZCAok6zCTkFRUVAQBa9u6DyauckcmgiI394oCBOiW81i+zdit6yk8IyiJy54yqTqlEiqSoBCRFJQz94nGgtdmEq1faAADNDV1obujCtFmpWLI8Z9DzPDFFiFgopojYKKaI2NRq9dAvIiQMUYeZTBjGPtOxlfpEMF/ceVfGxUIaZutxusuOgXM6vEoYKJOy/KqD5Vj836FXUaTPx+KMOdAoo8Rt5Bjbu0OYMV0qk2DG/DTI5OGVKZ0QQkhouu+++3D8+PEBn5dIJIiOjkZcXBzmzJmDW265BXPnzvX52scffxwffvghAODzzz9HWtrIZpyNheeeew7PP/88AODf//435s8PrW0rycRGHWYyIXAcB8PZPuuX9d7TscfPH4VA6TsdW6ZLhHrSVL/quNxaieP1Z3G8/ixeP/tfzE6ehofnfxUq+fi/+dBlsKDsYrOgLGNyLCZlDbx2mRBCCAklLMuis7MTnZ2dqKiowDvvvIM77rgDv/3tbyELs7wthIwV+k0iE4Klrh72jg5BmWD9cphtJ+U0G2CtvSQoU2dOg0QZ4Vc9+6uP8o9drAsNpmYoZUpR2jjW9mwvA8v2JvpiGOC6lbmQSGhtFiGETATVnXXIjAmfG+K/+c1vEBcXJyiz2+0wGAy4cuUKNm/ejJ6eHmzatAlRUVH42c9+FqSWEjKxUIeZhLyWlhZ07BdunSRVqyHTuDM4yzQayLXaYDQtaLpO7wC8skJDIkWkn9mxbU47jtSeFpQty1wQEslAHHYXSs81CsrSJsUgIyt2WOe3tLTA5XJBKpUiMTFxLJpIwgzFFBFbuMeUwWLEb/b+Ff9308+hU0cHuzkBsXjx4kGnUX/jG9/AnXfeCYPBgDfeeAMbN27E5MmTh12/w+Hgs2TL5QMnxiQk3FBqRRLympqa0Nln/2VVkp7v2EWEYXbs7pKDgmNFQjpUqbl+1SGTSPH9hd9AcVIhZBIpGDBYkuF7XdR4c/ZELRwO4VYri5fnDLuz39TUhIaGBjQ1NY1F80gYopgiYgv3mNp8+TOY7d34+PJnwW7KuJGeno5vfOMbANxL1T766CO/znc4HPx/hJBe1GEmIY9zucBWXxOUKfXhOx3b3t4AR4dwdDUyfwEkMoVf9UglUsxKKcK81OlYk3cjFmbMxrH6M2joGt9fzjiWw/EDVYIyfYoWk7LjBjiDEEJIKDFYjPi0cj8A4NPK/TBYjEFu0fixcOFC/nFlZWUQW0LIxEFTsknIS3S6YLbbBWWe9csSpRKKuPDqKHWd/lRwzMgU0M5aNaK6euwWGKwmKKRypGj0MNt7oJD61/EOtIqyFrS3dgvKVtxSCKVq+Je7zMxMsCxL+5sS0VBMEbGFc0xtvvwZHC73KKjd5cDHlz/D/TPvDHKrxofRbA2lVCphNpvx4Ycf4vDhwygrK4PBYAAAREdHY8qUKVi1ahXWrVs3ZEKxEydO4N1338WFCxfQ2NgIuVyOrKwsrFy5Ehs3bkRUlH+7bpjNZtx3330oLS0FAGzcuBG//OUvR/Q+CfEXdZhJyHNUCO+gynXR/BZS6tQUfmupcNFTdlRwrEzJgTRyZOu7Gs0tgmOFVI7YCN1ImxYQR/cJR5cTkzTIyvMvM7Y2zNa8k7FHMUXEFq4x5T267PFp5X6sK1gZNmuZB3P16lX+cX5+vl/nHjlyBD/4wQ/4TrI3q9WK5uZm7NmzB++88w7+/ve/+4xBi8WCn/70p9i2bZug3Gaz4fz58zh//jzefvttvPrqq8jJyRlWu2w2G7797W/zneU77rgDv/jFL/x6b4SMBnWYScgz9F2/nJzMPw636dis0wHV5OmwN1fB0VYHzmFDZOHiEdenU2mRFZOBRlMLLE4rkqISIGHG7w2I5oYuVJW3CcrmXzc5JBKVEUIIGZr36LIHjTK7ORwO/POf/wQAyOVyfOlLXxr2uRUVFXjooYfgcDgglUpx4403Yt68eYiLi0NrayvOnTuH7du3g2VZnDt3Ds8++yyefPLJfvV8+9vfxpEjRwAA8fHxuPPOO5Gbm4vOzk5s3boVZ8+eRUNDAx588EFs2bIFmi8StA7E5XLhscce4/eivvnmm/H73/+e/q6TgKIOMwlpzp4emK6UC8o0ee7kVoxUKtiLORw4O5sg08RCpokFlz0TLkMbooqWjri+uIgYxEXEuPe5tnaN+z9Qx/YLR5cjoxSYNiv8kr4RQshE5Gt02SNcR5lZloXBYEBpaSleeuklnDlzBgDwxBNPICVl+IMGzzzzDJ/s6y9/+QtWr17d7zUbNmzAAw88AI7jsHXr1n4d5k2bNvGd5ZkzZ+KVV14RjELfe++9+OlPf4pNmzahsbER//rXv/C9731v0Hb94he/wK5duwAAN9xwA5566qmwXIZAgos6zCSkGS+UACzLHzMyGdSpKbB3dEKl10MSZtsi2Ntq+ccMI4F6chGkqki/6jjbWIIUjR6JUb3TmBmGQcw4/xJiNtlw4XS9oGzOokzI5FK/66KtNYjYKKaI2MIxpnyNLnuEwyjzjTfeOORrIiMj8atf/Qrr1q0bdr0WiwX79u0DAMyePRsrV670+bqFCxdixowZOHPmDDo7O2EwGKDT6fjnX3vtNQCASqXCX//6135TthmGwS9/+Ut89tlnMJlM2Lp166Ad5j//+c/473//CwBYtGgRnn322bCJdTK+UIeZhDTjufOCY01BPt9Jjsob3tqYiYJzOeBobxCUKRIy/KrD6XLiuWP/gslmRmFCLpZlzsei9NlQyVViNnVMXL3SCper9+aJVCrB7IX+vX+PS5cuweFwQC6Xo7i4WKwmkjBGMUXEFm4xNdjoske4jjJ7s1gs2LVrFwoLC5GbO7ztJNVqNXbv3o0rV64gMjISVqsVERERPl+bmprKj2JbrVa+vLGxEVeuXAEArFixAklJST7PV6lUePLJJ9HT04OsrKwB2/Taa6/h1VdfBeDuxL/44otQKMZ30lEycVGHmYQ0wznh+mXdjOlQ6hMRlZMNtdda5nDg6GgEx/buPcwwDOTxaX7VcbapBCabGQBwqbUcl1rLMSUhF0kh0GEunp0GhUKGA7vK0dzQhfikKJSca8ScRZMgldL0LUIICWWDjS57TPRR5t/85jeI67Pzh9PphMlkQl1dHfbv34/S0lLs3LkThw4dwquvvopZs2YNq+74+HhERESA47h+z3V3d6OsrAynTp3iO8uAe32xx4ULF/jHQ/3M9evXD/r85s2bsWnTJv74Rz/60aiyfxMyWtRhJiHL1tYOS51wCq5uejG/hjncyOPToJm2DPbWWjja6iDVxEIiV/pVx95qYYbt/PhsJGkSxWzmmLLZnMidkojMnDiwLAeVWj6iznJ0dDScTueQ22YQMlwUU0Rs4RRTwxld9pjIo8yLFy9GWtrAN8IfeeQR/OMf/8BTTz0Fs9mM73znO9i5cyeio4f3WUilUrS0tGDPnj0oLy9HdXU1rl27hpaWFp8dae+ytrbehJv+rJ325YMPPhAcP/XUU3jrrbfGfR4VMnFN/KssmbD6ji5LIyMRlT3w9J6JzN5aA2vtZUQWLEBk3lxwObPAOexDn+iF4zgkRMQhUhGBbnsPAGBZ5vyxaO6YsFocMLS72y1XuNctJ6WObNuVSZMmidYuQgCKKSK+cIqp4Ywue0z0UebBMAyDBx98EEePHsWBAwfQ2dmJjz76CF/96leHPNfpdOIvf/kL3njjDTidzn7Pq9VqzJ8/H62trSgpKen3vNFo5B+rVKOflTZp0iTExsbizJkzOHXqFP773/9iw4YNo66XkJGgeYokZBnOCtcv64qLwEj9T/A0EZjO7Ubb9pdx7a/fQOPbv0NP+SlIlP5NX2IYBl+deSf+tPKnWJg+C6maJLhYFs3mVp93lsebpoYucOhtp0wmRXxiVBBbRAghZLT8GV32+LRyPwwW49AvnKBuvvlm/vGpU6eGdc7jjz+O1157DU6nE3K5HAsXLsS3vvUtPPXUU9i8eTNOnjyJl19+GdnZ2T7P954y7b22eSRSU1Px+uuv43e/+x2f5OvPf/4zOjo6RlUvISNFHWYSsqRqFaSRvUkpVMkpcPZYgtii4OA4FubSQ18csLBcPQNbY8WI66vsvIZUbTIWZsyG0WbC0dozcHHs0CcGEcdxaK4XfjlKTNbQ2mVCCAlx/owue3hGmcNVYmLvUqru7u4hX3/69Gls2bIFAJCeno7t27fjX//6F37wgx9g3bp1KCgo4Kf+m0wmn3XExsbyjxsbGwf9eXV1dThz5gza29t9Pv+rX/0KycnJyMnJwX333QcAMBgM+N///d8h3wshY4G+TZKQlfOdhzD75ReRuPJGaKcVgXXY0fDxFtha24Y+eQKx1ZXBZRLedY2asmREdZlt3ag1CjNt58ZNhkwyPkfurRYHWBcLY6cFFovwC9VIp2MTQggZH0YyuuwRzqPM3uuJ+yYJ82Xv3r384+9+97tIT08f8LWXLl3iH3vPPps6dSr/+OzZs4P+vLfffht33303Fi1ahPLy8n7PK5W9+Vcefvhh6PV6AMDHH3/M7/NMSCBRh5mENGtTM7oZBg59IrpsNkhkMihiY4LdrIAylxwUHMvj06BIHNl2SkqZAtP0hVDJ3H+sZBIpcmLH7zq5XVsv4bn/3YO9O8vgdPRm64yMVEKjHfkaqsrKSpSVlaGyslKMZhJCMUVEFw4xNZLRZY9wHmXeuXMn/3j27NlDvt5gMPCP5XL5gFOqd+zYgaamJv7Ye61zVlYWMjLc3z127do14PRpp9OJHTt2AHCPhOfkDL4FaGRkJB5//HH++Fe/+hXsdv9ytBAyWtRhJiHNUl8Ph8MBu90Oh8MBVUpyWK1j5lgXzCUHBGUjHV0GALlUjoKEbKzNW47ZKdMwNTEPCtn43Pewx2zH+ZN1MHZacP5kPY7tr0J7q3tLrKRU7aiyaXZ3d8NsNg9rKhshw0ExRcQ20WNqNKPLHuE4yvzBBx9gz549AACNRoObbrppyHNSU1MF53tvF+Vx+PBh/OIXvxCU2Ww2/jHDMHxyse7ubvzwhz+ExSJcJseyLP785z+jrq4OAHD33XcP62/1mjVrsGjRIgBAdXU1/va3vw15DiFioizZJKTFL16EeocDXFMTYDAiYpDtFiainsrTYK3CL0sR2TP9qsPmtEMhlQv+aEklUmSP45FlADh55Bqczt611SzLIUqjAsMw0KfQdGxCCAlle6uPQqOIFKWe9YWrRWhR8B06dMjnFGuHw8FvB+U9Zfmxxx4b1pZSa9aswXPPPQeHw4HDhw/jvvvuw2233YaEhAS0tLRg3759OHLkSL8EoGazWXC8ceNG7Ny5E8ePH8ehQ4ewdu1a3HnnncjMzERTUxO2bdvG79eck5ODBx98cNjv/cknn8Rtt90Gh8OBV155BbfccguyssJzZxQSeNRhJiFNIpdj+o3LAQCcywWJJLwmTZjOfC44lkbFQKHP9KuOV0/+B1c7a7AscwGWZs5DrFonXgPHiNPpwslD1YKyhCQNlCoZ4uIjoVCO7tJWVFQ0qvMJ6YtiiohtosfU+sLVE6ajK5a+I7wDUSgU+P73v4+NGzcO6/Xp6en45S9/iV/+8pdwuVwoKSnxuXXUnDlzcMstt+BXv/oVAKCsrAxz5szhn5dIJHjppZfw2GOPYd++faivr8czzzzTr54pU6bgpZdeEqxVHkp2dja+9rWv4dVXX4XD4cAvf/lLvPHGG8M+n5DRCK/eBZmQJBIJJBIJpHJ5eE3HdjlgqRZuraXKnAZGOvzOotVhxbG6M6jrasRb5z/Et7f8FEdqh7cFRTCVnG2E2WQTlKVN0gEA9CIk+/LEVLjdgCFjh2KKiI1iigDuqdBqtRp6vR6LFi3C97//fezYscOv0VsA2LBhA9555x2sXbsWSUlJkMvlUKvVSEtLw6pVq/DCCy/gjTfewJo1a/itnrZv396vnqioKLzyyit48cUXsWrVKiQmJkIul0Or1WLOnDn41a9+hXfffRdJSUl+v9fvfOc7SE5OBgAcP34cmzZt8rsOQkaC4UJhg1Uy7pnNZpSVlfHH+fn5iIoamz1wS375G0iUCuimT0f09GKoU1NGtV41VJkvHUbLpqcFZUkbf4mIycXDrmNf1VG8cPx1/ljCSPC3df8LnWr8TmnmOA6v/t8BNDV08WXRMWpMn5sGuVyKhddnQyIJv3gghJDRKi8vh9PphEwmQ25ubrCbQwgZB0Z6XQhk32Cs0ZRsElKcZjMM5y8ALIuOYycAAEW/+zWip03sqWm+mM7tFhxLtfFQT5o6wKt9O9dUKjiekTRlXHeWAaC6sl3QWQa8RpdTtNRZJoQQQgghoqEOMwkpxgsXAbY30ZNEoYAjMQFtbW2QSCSIjY0NYusCh3XaYb12UVAWMbkYjJ/7JX9n/v2IVESgrK0S9V1NyIvPgpN1jdt9lwHg2L4qwbE6Qo7YBHdimKTUoZObDEdHRwdYlg2rmCJji2KKiI1iiojN6XSC4zgwDAOZjLoIhHjQbwMJKYZzwjW7moJ8NDQ3w+FwQC6Xh82Xhu5LR8A5hXtTaqYv97ue+q4maJRRmJM6HTOSi2B3OtDR04nEqHixmiqq9lYzrlxqFpQtXZmLybnxMHZaEKUZfgKRwdTV1YVdTJGxRTFFxEYxRcRmt9upw0yID/TbQEJK+pc3QJmUhNY9+2BrbgYjkcBxoQRcfnittTKd3yM4lun0UKbm+VUHx3G43FrZW4dEili1DgmR/besGC+OH6gCvLIuqNRyzJqfAYVSBn3y+J5KTgghhBBCQg91mElIUcTEICI1BXEL5rn3A2RZqCIiEJ2ZGTaZQlmHDdbaS4IyddYMv6djA0CRPh+XWivQYTEAAAoTcsZtAjVLjx1nT9QJymYtyBj1FlK+pKWl8VMdCREDxRQRG8UUEZtCoeBHmAkhvajDTEIKx7Kw1NUDcG+lAKkUCQX50MaPzynEY4G126ApXg57aw0crbVgbT3QzPB/OjbDMEjVJiFFo0drdztqjPVI0ejHoMXiOH20Bg67iz9mJAzmLs4ck59F0xuJ2CimiNgopojYaBo2Ib7RbwYJKfb2drisVkGZOjU1SK0JDkdbLaRROqijdFBlTgOcdiiTskZcH8MwSIyKH7frlgHA5WJx/GC1oGzq9GREx6iD0yBCCCGEEBIWaB4PCSk9X4wue8ijoyHXaoLUmuCwt9bwjxmGgXrSVDDM8H+VzzaW4M1zm1BrbBiL5o2JKyXNMBmFN0rmXzfymwSEEEIIIYQMB40wk5DBcRwsdcI1rOq0VLDe20xN8LVcTrMBrh7hHsSKhAy/6thZsQ+nGi7g48ufYXJMOr40ZQ3mpc0QsZXiyy9Kwl1fm4Oj+6+i5moHtDoVjJ09UEfIERMbAUbkvZfDKaZIYFBMEbFRTBGxcVxvVk1ax0xIL+owk5BgvHAR9s5O2A1GSLzW2ESkpeHixYv81hrFxcVBbOXYc5k7wDAM/0dNolRDqh3+VGqjtQtnG0v446rOWpjtPaK3U2wSCYOCaUmIS4zE0f1XwbFAS5MJLU0mzFsyGRGRClF/XjjFFAkMiikiNoopIjaLxcIn/YqIiAh2cwgZN6jDTEJC3X83wXD2HCCRQBkfD01hATQ52ZDH6IC62mA3L2CUSVmQ6fSw1V6GrbkKSv1kv+4CH6o5CRfXOyqhkMqxIH3mWDR1TDTXd0GjVfHH0Tq16J1lQgghhBBCPKjDTMY91m5HV+kX2yixLGwtLYjKzYE6LRUMwyAyMhJOp3PCZ3fsvnICjo4GRBUuQkTubKgypgB+TsMr0hcgLy4LtV0NsDisSNUmwWg1IUI+/pNn2W1OtP//7N13eFvV/T/wt/b0trxnvBJn74RMEmYIZEBCIGGEb6HQQinwo2WU0lJIS8tsoIxCwl4JkIQkjIQsJyF7O44dz3hv2ZYsa97fH6pudG1Jlm1N+/N6Hh50j849OlI+vtK5ZzVpOWlxiWFeea2hElPEdyimiKdRTBFPo6H9hDhGV1kS8NoLLsBiMFxO4PEgjY2BPDkJAJCRkeGnmvlW+9Ft0JWfRcvPH0GSmIOImTdDnjmxb4UwDMbEjcDo2OGo1zZBKhBDEQSNZQCor2nnzK8SCPhQxSm98lpDJaaI71BMEU+jmCKeJpVKe89EyBBEDWYS8NSnTnOOxREREIaEQBwV5aca+Z5Jo4au4vLcY311ISxGfZ/LKVdbF03j8XiIU6oAAKHSwFxl3DaPyva4rpq72JkqNgRCocAfVSOEEEIIIUMENZhJwFOfPss5lsbFQp6UCN4QGjqkvXAIsJt7zBNJ+967DCApNA5GsxHNOjUAYFpS4M5fPrSvDCUXGjB19jDExCuh1XJvEMQlhvqpZoQQQgghZKigBjMJaMb2DmhLSzlpkthYyP43HHuo0BYc4BzLsyaCL5L0uZxhkakYFpmK9q4OVLRVIyE0zlNV9CiL2YIjeWVoa9WhtKgJoWFSpGZGIiJKAQCQyUQIiwiOoeSEEEIIISR4UYOZBLS2s2cB+30BBQLI4uMgjYlh0yoqKtiFT1JTU/1RTa8yNNeg69J5Tpoyd+aAygyVhmC0dPiAyvCmC+fq0NaqY4/b27rAF1weURCbGObVPSIHe0wR36OYIp5GMUU8Ta/Xs9OhJJK+35QnZLCiBjMJaOqT3PnLkhgVZMlJ4Akuz11ta2tj96IcjDpO/Mg55gnFkA0b5/b5nUYdylsrMVyVCT4vOIaxH9pbxjkOCZUgNMy6GAkPPMQleHc49mCPKeJ7FFPE0yimiKeZzWbO+iGEECtqMJOA1nLsGOdYGhsLyRBa7AsAtBePco4lCZngi9zfe/hQ5Qm8ffQTqBRRmJ06FXPSpiIuJKb3E/2kqqIVVRWtnLTE1Aj2Czw8Sg6pjH4gEkIIIYQQ76MGMwlYuto6GFvVnDRJXCwksbGctBEjRgzaO6KGxkqYWus5aYo+DsfeW34IANCobcbX57ejoq0af5h5v8fq6GmH9nLnrIslQkTHXt4+yheLfQ3mmCL+QTFFPI1iingabStFiGPUYCYBq+30Gc4xXyqFKCwM4vAwTvpgHo7WfuInzjFPKEbI6Dlun1+vaURBYzEnbW7aNI/UzRvaWnUoOFvHSUtMCQefb/1BKBIJEB3jnb2X7Q3mmCL+QTFFPI1iingafwjtPkJIX9BfBglY3fdflsbGIGzUSD/Vxj86uw/HTsoBX+z+HeBWXTsiZJdvMMhFMoyLy/VY/TztyP4yMJbLi7wJBHzEJ13uUU5Jj4RAQJctQgghZMGCBcjJyUFOTg4ee+wxr7/e2rVr2dc7fPiw11+PkEBBvzxJQGLMZqjPdNt/OTYW0m7DsQczfV0ZTG2NnDTlyL4Nx04Oi8f89BmYN2wGMiPTkBKWiIbOZk9W02P0XSacOHSJkzZhWjJGT0yCRCpCVLQCyemRfqodIYSQQKMtK/d3Ffzm7NmzKCkpYY937NiB9vZ2P9aIkMGLGswkIGlKy2DWajlpsuQkSFTRPfK2t7dDrVYPui+KHsOxRRIoR83uUxkV6iqAx0OkLBzj4kdiQsIoxCsDc8GvU0croe8yXU7gAVNnD0NsfCimzkpHzijf7Rk9WGOK+A/FFPG0oR5ThtZWnHvmWRhaW3vPPAht3rwZABAdbf1dpNfrsWXLlgGVaTabYTKZYDabB1w/QgYTajCTgNR9/rIwNATKzAzwHMyvKS8vR0lJCcrLy31UO9/oLD7OOZYmjwBf6P7q2ADQZTKAb7cgTEpYAgR8gYsz/MNiYXAkj7uVVE5uLCKjFQAAPp8HscR3Sy4M1pgi/kMxRTxtqMdU9TebYOrQoPrbzf6uis+ZTCZs27YNAHDdddchLS0NALBx48YBlavX69n/HHnooYdQWFiIwsJCTJ06dUCvRUgwoQYzCUitJ09xjqWxsZAlJvqnMn6gry+HuYM7dFo5alafy5mQMAoLs+djbNwIhElCkBae7KkqelRRfj1amzs5aVPnDPNTbQghhAQyQ2sr6n6wjsKq+/7HIdfLnJeXh5aWFgDAxIkTcdVVVwEACgoKcO7cOX9WjZBBiVbJJgHHrNej48IFTpo0Lg6yeMdDcuPi4mA2myEQBF7PaX8xJgNCJi2AsakShsZLYIwGKEbM6FdZUpEUOdEZyI4K3AbooX3craTiEkOROsx/85UHY0wR/6KYIp42lGOq+ptNsBgMAACLwYDqbzcj/Z67/VspH9q0aRMAQCgUYsaMGUhKSsJ7770HwNrLPGrUqH6VKxKJaKsyQhygBjMJOO3558GY7ObP8HgIHZkLvtjxcOSYmMCckzsQhsZKCGRKCJJHQJo8AqKwWPCF7m8hYrFYemwPEahfgLVVbbhU2sJJmzZnmF/rOxhjivgXxRTxtKEaU/a9yzZ13/+IxCWLII6I8FOtfKejowO7d+8GYO1dDgsLw5gxY5CSkoJLly5h69ateOKJJ1zuqWwymbBp0yZ8//33yM/PR0dHB0JCQpCUlISZM2fi9ttvdxhfa9euxRtvvAEA+OijjxwOyzYYDNiyZQv27t2L/Px8tLa2wmQyISwsDFlZWbjyyiuxfPlyh/V74okn8O233yIlJQU7duxAU1MTPvjgA+zatQs1NTUQiUTIzMzEjTfeiOXLl0MopGYM8Q2KNBJw1N3mLyszMxA5ZbKfauN7Fn0nTO1NnDRJUrbb57fq2vCHH1/A1OTxmJs2HRmRqQHbWAaA8EgZrrw+B0fyyqDVGCCWCMBYGGjau6AMdX8LLUIIIYOffe+yzVDqZf7+++/ZOcYLFixg02+88Ua8+eab6OjowA8//IDFixc7PL+9vR333nsvTp06xUlvbW1Fa2srzp49i/Xr1+Nf//oXrrnmmj7VraCgAL/5zW9QU1PT47nGxkY0Njbi4MGD+OSTT/DBBx8gISHBaVknT57Eb37zG3boOQDodDqcOHECJ06cwLfffov169dDqVT2qY6E9Ac1mEnA6b7gV8TECZBEDZ3thAyNlZxjvlAEUYT722nlVRxBm74DPxXvw0/F+5ARkYo1V/8xYBvNMrkYs67KQmiYFBfO1QEAWls6cepoFabPGQaBkJZaIIQQ4rh32Wao9DLbVscWiUS4/vrr2XRbgxmwDst21mB+7rnn2MbylClTcO211yI6Ohqtra3Yv38/du7cia6uLjz22GPYsWMH4uLc26GipaUFd911F9ra2gAAV1xxBebMmQOVSgW1Wo2CggJs2rQJRqMRFRUV+Nvf/oa33nrLYVnt7e1sY3n27NmYP38+FAoFTp8+ja+++gp6vR5nzpzBa6+9hj/96U9u1Y+QgaAGMwkoBnVbj30Vw8eO8U9l/MSsVXOORVGJ4Lm5sjXDMNhbfoiTlhQWH7CNZZu2Vh1aWzoRmxDKpiWlRVBjmRBCCMtR77LNUOhlrqqqwvHj1h00Zs+ejbCwMPa59PR0jBo1CufOncPRo0dRXl7Orp5t09LSgu3btwMA5syZg3feeYfz++C2227Df//7X7z00kswGAz46quv8Lvf/c6tur377rtsY/mJJ57A6tWre+S56667cMstt6Crqwv79u1jh4J3p1arAQBr1qzBzTffzKbfeOONuOqqq3D33XeDYRhs3rwZTzzxBA3NJl5Hv0ZJQGk7w+1d5kulUGZnuTzn3LlzOHny5KBZGVKRMxVhkxZAljYKQkUYxCr3V7au1TSgso07FGpO2jRPV9GjGIZB2UXuEHSxWIik1HD/VAiDL6aI/1FMEU8bajHlqnfZZrCvmL1582YwDAPA2njs7qabbmIfO9piqrKykt1jefbs2T1uput0OixfvhzJyckYP348ZDKZ23X78ccfAQCJiYm46667HObJyspiV/Q2mUy4dOmS0/KuuuoqTmPZZtq0aZg0aRIAa090RUWF23UkpL+owUwCSvf5y2GjR4Lfy51Di8XC/hfs2o5sRcvez2HWtkKWMhKhE6+DMCLe7fPjlTFYOuI65KqyoBDJIRfJoBQrvFjjgWtt7oS6lbulVMqwSAiF/lv5dTDFFAkMFFPE04ZaTLnqXbax9TIPVlu2bAEAKJVKzJs3r8fzCxcuZFdN37RpE0wmE+f58PBw9vHXX3/NmR8MWG9gC4VCbNmyBV988QXuvfdet+v2zTffYMOGDXjttdd6LDpqLykpiX2s0+mc5nM1fzonJ4d93N7e7nYdCekvGsNAAgbDMFCfOMVJCx87ttfzpFIpBAIBRCL3V5EORAzDoO3IVpjaGqHevxEiVTKir/k/yNJGu11GY2cL+HwBcmOyMUKVBZ2pC6HSwF0Qw1HvslQqQkJSmJMzfGOwxBQJHBRTxNOGUky507tsM1jnMp86dQrl5eUArI1JiUTSI09UVBSuuOIK5OXlobGxEXv27GF7dAEgNTUVI0aMQEFBAc6fP4+rr74a8+bNw9y5c3HFFVdAJpP1e1upiIgIRDj5zPV6PYqKinDq1Cns2rWLTXd1sycjI8Ppc/YLfXW/KUCIN1CDmQSMrppaGLrd7VRmOb9g2mRnu7+CdCDT11yEqa2RPTY2VoIv6zm3x5VL6ir2MY/HQ7wyBhFS/zY+HSkpbERxQQMyh6vQ0d7FeS41Iwp8gX8HvwyWmCKBg2KKeNpQiil3epdtButcZttiX4B166Z3333XYT77+bwbN27kNJgB4MUXX8Sdd94JtVoNjUaDLVu2YMuWLeDz+Rg7dizmzZuHBQsWcHqC+6KtrQ07d+7EuXPnUF5ejoqKCtTW1jpsHNuGlzviaG6zjf17HCojLIh/UYOZBAyeWITwcWOhq62DoakJfLEYgj7Mnwl2mvMHOMeiqASIY1L7VMa4uJGIlkehXF2JBm0z0iKSAnLBrwO7ilFe3IzDeWWIilEgJT0SIWFSyBVixNkt/EUIIWRo60vvss1g62U2Go3sYl0AsHXrVmzdurXX8/bt24eGhgbOnso5OTnYunUr3nrrLWzbto1dYMtiseDkyZM4efIkXnnlFdx888145plnXO7n3N27776L//znPw6HWotEIkyYMAEMw+DIkSO9lmUbWk5IIKAGMwkYli49QobnIGR4DhizGSZtJ2Tx7s/fDWYMY4H2/EFOmiJ3Zp8bu0KBEGkRSUiLSILW0AkRP/D+xOtq2lFe3MweNzdoEaVSICRMirTMaPD4gdfAJ4QQ4h996V22GWy9zHv37mUbtn1hNpvx7bff4te//jUnXaVS4c9//jOeeuopHDt2DHl5eTh48CAKCgrAMAwYhsHGjRvR2dmJV1991a3XevXVV/H2228DAPh8PsaNG4exY8ciOzsbmZmZGD58OMRiMV577TW3GsyEBJLA+zVNhixzVxf4IhEsRiN4AgFCsjLBF4v9XS2f6Cw+AbOm23D03BkDKlMhlg/ofG85vLeUcywSCxATF4KQUClUsYE735oQQohv9ad32WYw9TLbD8f+6KOPMHXqVJf5Dxw4gHvuuQeAdXGv++67z+ENeKFQiGnTpmHaNOtuGvX19fjmm2/wxhtvwGQyYfv27fjd736H9PR0l69XW1uL//73vwCsC4utX78eubm5DvN2dHS4LIuQQESrZJOAEZKVicQlixAzby5CcrKhGJbm1nnV1dW4dOkSqqurvVtBL+o4vYtzLAiJgjja/flDX5zdghM152C2mD1dNY/StHfh3EnutlcJyWHgC/hIz4oOmOHjgyGmSGChmCKeNhRiqj+9yzaDZcXstrY27N69G4C1Z3jy5Mm9njN9+nR2GHZFRQXbo5ufn48PP/wQzz77LDQaTY/zIiIicM899+COO+5g04qKinp9vX379rHbVd1xxx1OG8sAUFBQwD52NYeZkEBCPcwkoPAEAkhjYyGNjXX7nObmZhiNRohEIiQmJnqxdt7BWMzQlXG305KmjnT7/JqOenxz/nsAQJg0FLNSJuOWkTdALg68+d9HD1bAbL68QAePz0N8UhjCI+SIiAqcHvFgjykSeCimiKcN9pgaSO+yzWDoZd6+fTuMRiMA4LrrrnO5ZZMNn8/HwoULsW7dOgDAhg0bMHXqVOzZswf//ve/AVgb1ddddx3nPJPJBIZhOKtQy+W9fzfbDxd3lf/MmTM4efIk5/UICQbUw0yIn2mLjoExcBfICBnbc39FZ/aVH2Yft3W1Y1/FYYiFgTeU3Wg04/jBCk5abHwIxBJhQPUuE0II8b+Gn3dDGKKEOCqy3/8JQ5Ro+Hm3v9/KgNgPx77hhhvcPm/RokXs459++gnt7e2cBvKLL76I5ubmHue1tbXh22+/BWDdumzUqFG9vpb9DZvNmzfD4GBUwPnz5/Hwww9zVrXW6/XuvRlC/Ix6mInfmfV6dNXWQp6a2q9GU1ZWVr/3DQwEPYdjR0LmZg+zhbFgdxl3sbCZKZMh5Afe6pJnj1ejU8v9Ek1MCUeUSomwiMDqDQ/2mCKBh2KKeNpgj6mkW5Yi6Zal/q6GX126dIntkU1MTMS4cePcPnf48OHIyclBYWEh9Ho9vvvuO6xcuRKLFy/Gpk2bUFNTg2uvvRbLli1DRkYGhEIhSktLsXHjRrYhfffddzvdW9ne3LlzER4eDrVajQsXLuCmm27CsmXLEB8fj5aWFhw6dAi7d+/u0aNM85lJsKAGM/G7trPnUPC3NRCFhyN87BiETxiPmLmz3T5fFsRbTzFmE7oqznLSZOljweO5N/jDYrFgfNxInKw7j1adGgCQEdm3rah8gWEYHN7HXewrLTMKOaPiAnIbqWCOKRKYKKaIp1FMDX72vcvXXXddn2+OLFq0CP/85z8BWPdkXrlyJZ599lk0NTVh//796OjoYIdtd7d8+XI8/PDDbr2OUqnEP//5T/zud79DV1cXysrK2Ne1l52djQceeACPPPIIAKCwsLBP74cQf6EGM/E79anTAACjWo3Gvfugb2rqU4M5mGkvHAJj5A5JChk73+3zLYwFKkUU5g+bgXZ9B+o6GhGrVHm6mgNWUtiIxnruAiPT52Ygc3iMkzMIIYSQoW3Lli3s4wULFvT5/IULF+Lll1+G2WzG+fPnkZ+fj5EjR+K9997DDz/8gK1btyI/Px/Nzc0QCARQqVSYNGkSbr75ZkyaNKlPrzVnzhx88803WLduHQ4dOoT6+nrw+XxERkYiJycH119/PRYsWMC+TmNjI3766Sc8/vjjbs3LJsSfeAwtUUc8QKPRcO4U5uTkcBaNcOXoPffBYDePJuX2FUi+dZnH6xiIaj//G3Slp9hjQWg0Uh58y+0e5ovNZThZm88e83l83JhzFSQBNof503cPo6SwkT2OjlXigf83h/ZcJoSQAHLx4kWYTCYIhUJkZWX5uzqEkADQ3+vCQNoGgYZ6mIlfGTs6YO7q4qTJktzfTgkAtFotO49LoVB4snpexZiM6Lp0npMmHzbO7cYyAKSGJ4EHHspaK9Ha1YbE0NiAayw31HVwGssAMHVWekA3loM1pkjgopginkYxRTzNtjUUAAgEgbcWCiH+Qg1m4lfGVjXiFy6AWaNFV3099I1NiJg4vk9llJSUsFtrjBkzxks19bzOstNgTEZOmnKc+6tjA4BYIEJmVBoyo9Kg1rUF5OIvv+wu4RzL5CKMmdS3myK+FqwxRQIXxRTxNIop4ml6vZ69CePOdlKEDBXUYCZ+pautBY/HgzBECWWIEtEzr4BAKvV3tXyCL5YidOpCGJuqYGisBI8vgDQhu9/lhcvCPFg7z2hr7cTZE9WctIlXpEIkojvXhBBCCCEk8FGDmfiVWavlHEtjY/tcRnR0NMxmc9ANHzI0VoIvlkGSkGX9Ly7D7R7iyrYaqBRRkAolXq7lwFRdUiMiWo7mRi3AADwekJjS+xYV/hasMUUCF8UU8TSKKeJpQiE1CwhxhP4yiF911Tdwjnn9+OJPSEjwVHV8xqxtg7mznZMmiUtz61yGYfDKgf+iSdeKaUnjMSdtGnJjssDvw9xnX2AYBp0dBowclwB9lwl11W0wmxnI5CJ/V61XwRhTJLBRTBFPo5giniYWB9YaKIQEisD6hU2GlK66up6JATgH1xsMjZc4x3yJDIKQKLfOLWmpQHVHHfQmPfaWH8Jze15DUVOZN6o5IB1tXdBqrVtmSaRCpGZEYdrsdCSnBX4PMyGEEEIIIQA1mIkftV/ouWG9KDzw5uF6g0XfCR4u3xwQRye7PRz759L9nONYRTRyood5tH6eUFvN7UGXycUYMSY+IBcmI4QQQgghxBEakk38pnFvHhizGeLISIgjI8AXiSBRqfxdLZ9Q5EyFLG0MDE2VMDRWQqxKcfvcBm0z53hy0tiAa4SazRY01nVw0uISQgOunoQQQgghhLhCDWbiF2a9HuqTpwCGYdOyHvldvxpUFy5cYDdUHz58uAdr6R2N378DnkAEZe4MSBKzIU10f2VsC2PB+PiRSAlLRGVbDSrUVUgKjfdibfunsV4Dk+nyfo488BCXGOrHGvVNsMUUCXwUU8TTKKaIp+l0OvaxTCbzY00ICSzUYCZ+0VFYyGksA0Bo7sh+lWUwGGA0GmGxWDxRNa+ydGnRcXoXYDah/eg2CEOjEXvz45AkZLp1fr2mCZ3GLshEUmRHD0N29DBMiB/l5Vr3jcXC4MShCkhlIvD51hsgEdFySKSBv9iXTTDFFAkOFFPE0yimiKcxDMPuw0wIuYwazMQv2s6d5xwLQ0MhUbm36FV3QqEQDMMExXYI2qKjgNnEHpu0aggj3e8hFgmEiFfGoE7TAAZApCws4PZfLjhTg2MHKiASCRCXGIq4pFDEJwbXaq7BFFMkOFBMEU+jmCKeZmsoU4OZEC66yhK/0Fws5hxL4+P6fYHOzc31RJV8QnP+AOdYPmwcBFKF2+dHyyMxK20KOo06lLdWQSmWe7qKA3Y4rxwAYDSaUVneCnVLJ669qX+jB/wlmGKKBAeKKeJpFFPE02gYNiGOUYOZ+EVnBXdbJXmK+4teBSuTth26stOcNEXujH6VJRfJkBuT5YlqeVRbSyeqyls5acPHxIMvoAX5CSGEEEJI8KFfscTnTJ06GJq5Kz2HZAde48/TNGd2Axa7hbCEYiiyJrt1LtNtvnegOri3lHMsEPAwdVa6n2pDCCGEEELIwFAPM/E5TTF3ODZ4PISOyPFPZXxIk5/HORZFJ4EvcW/405fnvkO5ugpz0qZiYsIYiAWBt4CWxWzBuRPVnLTE1AhERrs/5JwQQgghhJBAQg1m4nPt+dwFv0ThYZBER/e7vPr6epjNZggEAsTGxg60el5h0qhhqC/npMkzJ7h1rsViwe6yg2jVteFEzVkoRDL8evIqTEt273xfKSpogK7TyEkbPzU4h9oHQ0yR4EIxRTyNYop4mtFoZFfJFokC78Y8If5CDWbicx2FRZxjiUoFwQAWmqivr4fRaIRIJArYHw0dp38GYDesmi+EcsyVbp17uv48WnVt7LHWqENCSOC9zxOHuPPSQ8OlGDk28PaIdkcwxBQJLhRTxNMopoinUYOZEMdoDjPxOW15OedYnpzkn4r4UPfVscUxKRCFu/cD56fifZzjtPBkpIQneqxunqBu6UTxhQZO2pxrsiEUCfxUI0IIIYQQQgaOepiJTxnb2mBsVXPSlBkZAyozPT0dFosFfH5g3v8xtjfD2FDBSVNkT3Z7G62xcSPBAw8VbdVo1DYjLTzwbjCcOHyJ04EukQoxclxw7b1sL9BjigQfiiniaRRTxNMkEgnbw0wIuYwazMSnNMUlnGOeQABl5sAazCEhIQM639s6Tv3MTRCIoBzt3nDsdr0G7foOpEUkIy0iGVpDJ2amureytq+YzRacOlzJSRszMRFiSfBeXgI9pkjwoZginkYxRTxNIKBRYYQ4QrcliU91FF3kHIsiwiGOjPRTbXxD22M4diqEYe4tctbW1Q4h//IXWJQ8HBkRqR6t30AV5ddD06HnpE2YHlh1JIQQQoYyhmHw2WefobGxscdza9euRU5ODnJycnD48GE/1I6QwBa8XUAkKLVfKOQciyMjIQoP81NtvM+oboCxuYqTpsiZ4vZwp+SwBMQpVahqr0NZ6yVEySMCbvjd0QPlnOOktAjExof6pzKEEEII4aioqMBTTz2FY8eOYfbs2f6uDiFBhxrMxGcYhoG2pJSTJo2PA3+AKzHq9Xp2zo1EIhlQWZ6mKz0F8PgAYwEA8IRihIye26cyRAIR0iOSkR6RDMv/ygkULU1alBc3c9ImDoLe5UCOKRKcKKaIp1FMAXU17YhLoBu0vdmyZQuOHTvmVl6GYWhuPCHdUIOZ+IyhqRmmjg5OmiI9fcDlFhYWsltrjBkzZsDleZIwTIWwaYtgbK6GoakSAkU4hKFR/S6PzwusL7DTR7lzl4VCPhKTg3/EQCDHFAlOFFPE04Z6TGnau/DxW7/ggcfnQBkq9Xd1Bg29Xo+uri7I5XJ/V4WQgBFYv77JoKYpLuYc80QiKFKDvzfSGYtRD31dKXhCEcSxaVCOnIWIWcvdOre8tRI/Fe+FxqD1ci0HJjUzCqMnJiA6RgnwgPjkMERGK/xdLUIIIYPcgd0l0HUacXBPae+ZCSFkAKiH+X8YhsHWrVvx9ddfo6CgAJ2dnVCpVJg8eTJWrlw54Lu38+bNQ3V1tVt59+/fD5VK5fC5oqIirF+/HocPH0ZDQwNCQkKQkZGBxYsXY8mSJQG9wmHHRW6DWZGWCnlq8oDLDQ8Ph9lsDrj3bmyqAmM2scc88CCJc69H/aeSPOwsycMHJzdiUsIYXJs1ByNjsr1V1X5hLAwaajoQEaVARJQCer0J8Ylh4AuC/z5coMYUCV4UU8TThnJMadq7cPygdbvGYwfLccXcYdTL7CECgWBIxhQhrlCDGUBXVxcefvhh7Nmzh5NeXV2N6upqfPfdd/j973+P++67r1/lazQa1NTUDLieGzZswF//+lcYjUY2raWlBS0tLTh69Ci+/fZbvPnmmwgPDx/wa3mDpluDOWzMaEii+j882SYlJWXAZXiDoZl7g0QUnQiBrPdtQAxmI365ZJ1rZLKYcKjqBNIikgKuwdza0omursuxKJEIMSzLvdW/A12gxhQJXhRTxNOGckwd2F0Ck8m6pofJaMHBPaW45qZcP9fKuzo7O7Fhwwbs3LkTRUVF0Gq1CA8Px/Dhw3H99ddj8eLFPRq6a9euxRtvvMFJmz9/PgAgMTERu3bt6vE6IpEIZrMZb731Fn788UdUVFRAKBQiOTkZN9xwA26//XbIZDKXdS0rK8Onn36KAwcOoK6uDgAQHx+PGTNm4M4770RysuPOElt9BQIBzp8/j2+//RbvvPMOqqqqEBERgdGjR+Oll16i4eLE56jBDODpp59mG8sZGRlYvnw5oqOjkZ+fjy+++AKdnZ14+eWXERsbi0WLFvW5/MLCQjAMAwC4//77MXr0aJf5w8J6zgHNy8vDM888A4ZhIJPJsGLFCowaNQrNzc3YuHEjioqKcOzYMTz66KN47733Am6xBsZigaaEuwdzSFamn2rjfdaFWPjg8fhg/rdQlzg6ya1zj1WfgdaoY4954GF26lSv1HMg6qrbOMchoVK6w08IIcSr7HuXbQZ7L/OxY8fw2GOPsY1Pm8bGRjQ2NiIvLw8ffPAB/vOf/zhtjLqrrKwMTz75ZI9Rkfn5+cjPz8fmzZuxfv16RDnp8Hj33Xfx73//m9O5AwAlJSUoKSnB559/jieffBIrV650WY/PP/8cf/nLX9jjhoYGNDQ0UGOZ+MWQbzAfOHAAW7duBQBMmzYN7777Lrva5MKFC3HLLbfg9ttvh1qtxpo1azB//nwolco+vUZh4eWtlBYvXoz0Pi50ZTAY8Je//AUMw0Aul+OTTz7ByJEj2edvu+02PProo9ixYwcOHDiA7du3Y+HChX16DW/rqq2DWdvJSVNmDt4GM4/Hg3LkTDAmI4yttTA210AYGe/WuUIeH4mhcajtaICFsSA+JAahkr7FnLcZDWY0NWg4aXGJtFIpIYQQ77LvXbYZzL3MZ8+exb333ovOTutvqPHjx+P666+HSqVCdXU1Nm/ejIsXL6KoqAgrVqzAN998g9jYWADAggULMGLECGzbtg3bt28HADz33HOIioqCVOr45sJzzz0Hs9mMESNGYNGiRYiKikJRURE+/fRTdHZ2orCwEGvWrMHLL7/c49y33noLr732GgBALpdj6dKlGDNmDHg8Hs6ePYuvv/4aWq0Wzz33HPh8Pm677TaHdbBYLFizZg1CQ0Nx9913IykpCcePH++1w4kQbxnyDeZ169YBAIRCIZ5//vkeWzNkZGTgmWeewWOPPQa1Wo0NGzZg9erVfXoNW4NZIpEgtR+LXP3000+oqrLu5furX/2K01gGALFYjBdffBFHjx6FWq3GO++8E3AN5u7zl0Xh4RBHD3w4dqCq++rvECjCoRg+DbK0URCr+jB0jsfD9OSJMJiNqGyrQYwiEiLBwLbe8iSGYVBf2w6LhWHT+Hw+YmjvZUIIIV7kqHfZZjD2MpvNZjz++ONsY/mxxx7rMT1w9erVeO655/Dll1+iqakJTz31FN5//30A1t+wGRkZKCgoYPPPmDEDSUnOR7yZzWbcddddePLJJ8Hj8dj0JUuW4Oabb4ZOp8P333+PP//5z5wRkfn5+Vi7di0AIC0tDe+//z7ndW666SasXr0aq1evRnl5Of7+979j9uzZSExM7FEHhmFgNBrx8ccfY9y4cQDQrxGehHhKYI3b9TG1Wo2DBw8CAGbNmuV0GMuCBQvYoSc//PBDn1/H1mDOzMzs11Bp211BHo/n9G6cQqHA0qVLAVgXBisrK+vz63hT9xWylVkZnAvxQBQXF+PChQso7vYa/mJqb0bnxWPoOLUTdV88j4rX/g/6+nK3zjVbzKhqrwUAiAUiZESmYmbqFI99Vp5w7mQNNn12Cg217bBYrHf5o2MUEIkGzyIhgRZTJPhRTBFPG4ox5ah32cbWyzyY/PTTT+zvuQULFjhcS0coFOLZZ59lF6fdv38/zp492+/XzMjIwMMPP9zjd0dGRgauu+46ANZGtf3oScDaAWU2m8Hj8fD66687bJQnJCTgb3/7GwDr9lUff/yx03pMmzaNbSwT4m9DusF87Ngx9gf/tGnTnObj8/mYPHkyAOD06dNoa2tzmrc7hmFw8eJFAEB2dv8WbTp69CgAICcnB5GRkU7z2b+Hffv29eu1vKX7gl/KjAyPld3Z2QmtVsvegfU3beFhbgLDQBzd8w6qIwK+AFcNm4nh0RmQi6TgAUgJc+9cXzmSV4aWJi0unK3Hob1lqK1qQ1xi8O+9bC/QYooEP4op4mlDLaZc9S7bHDtYDk17l49q5H179+5lH//qV79ymk8gEHCe37lzZ79fc/78+U5v0o8YMYJ93NTUxD42mUz4+eefAQAjR47E8OHDnZY/ZcoUtoNq9+7dTvNNmjSpT/UmxJuG9JBsW0MW6L0xm/m/+bYMw6CoqIhtQPemuroaGo11rmdWVhYA66rZFy5cgFarRUxMDLKzs50u4V9fX4/29nbO+c5k2DVCL1y44Fb9fIExm6Et5fZ462rrYNJoIOzjfPBgoL3wC+dYnj0ZvD4MqQ6VhmBM3AiMis1BW1cHZKLAGV7WWNeB6ktq9thktEAmFyMiihbhIIQQ4j2uepdtBttc5lOnTgEAQkNDe0zH686+02SgPczO2K/ho9fr2ceFhYXQ6ayLlYpEol4b7OHh4aisrER5eTk0Go3DtYGGDRvW16oT4jVDusFsvwKgozkU9uLi4jjnudtgth+ywufz8eCDD2LXrl0wm81senh4OFatWoV77723xyIMtrnL7tQxNjYWfD4fFovFI9tYeYpZb4Bq7myoT52GoaUVjMkESXQ0BB5a6XCge2R7kqmjFV2XCjhpihznoxdc4fP4iJAFVs/tsW5390ViAUZPSAioIeOeEEgxRQYHiiniaUMpptzpXbYZTHOZW1paAMDlnGObsLAwhIWFoa2tjdP721cqlcrpStT23/W23V8Aa+eOzcmTJ/Hb3/7W7ddrbW112GAOCel9G05CfGVIN5htFyIAiIiIcJnXfm9jtVrt9mvYN5j/8Y9/OMyjVqvxxhtvYN++fXjnnXc4w65bW1vdrqNIJIJcLodGo+lTHb1NKJch9qr5EEdGgmEYmDo0kMaowAuwra88oePcXgCXv0R4Yilkw8b2ep7ZYkaLTg2VInAXQjMazDhzvIqTFpcYisQU13FJCCGEDIQ7vcs2g6mXWavVAkCv+x7bSKVStLW1sb29/SEU9r1pYBtJ2R+299idWCzud5mEeNqQbjB3dV2e59J9dezu7P9w7c/rjX2DWSQSYfXq1Vi8eDGSk5OhVquxd+9evP7662hsbMSZM2fwyCOPYP369eziYPYXvd7qaMuj0Wj6VEdvKC4uRkZGBnuHUCCXQ6iKRk1xMZguPYxGA+IcnGObi9X9znlTUxPba56cnMy5eWA2m5Gfnw/Aekey+7Zd5eXl7LD23NxczpeBWq3GpUuXAADx8fFQqVScc8+ePcvufd19SHxVVRV70yU7OxtSqRTa8wc4eUyyCNQ3tSA+nrulVEFBAYxGI0QiEUaMGIHTdQX4R96bGBmTjbHhw5EIFSQCMYYNG8a589rV1YWioiIAQGRkZI+7zhcvXoROpwOPx+ux/UJjYyNqa60LiqWkpHBuAplMJpw/fx6AdehXWloa59yysjKcO1kLfZeJk56ZEwNdlwZFFysBWBf0iI6O5uQ5c+YMAOsWE5ndthK7dOkSe3MnJyeHE+MdHR3sYiexsbHsNhk258+fh8lkglgs7jFfqqamhr3DnpGRAYVCwT6n0+nY6RhRUVE9Rm4UFRWhq6sLfD4fo0aN4jzX0NDA7oOZlpaG0NDLK4MbjUZ2JdKwsLAeK+KXlJSwPwxGjRrFWQCwpaWFHU2SlJTEuWlmsVhw7tw5ANbF/boPl6uoqGDXVRgxYgREosvD/9vb21FeXg7AOkomJiaGc+65c+dgsVgglUp7TEuprq5Gc3MzAOt0EPsfbFqtFiX/21c9OjoaCQkJnHMvXLgAg8EAoVCI3Fzuj9b6+nq2NyI9PZ3Ti6DX69lrZnh4OFJSuKvLD4ZrhI1Go0FpqXWBIpVK1es1wl5tbS0aGxsBIKCuER0dHQCscxjtpxm1traispKuEcFwjehOp9OBYRjw+fweI+AMBgNMJut3glQq5dTXbDazQ3aFQmGPxo+tXB6P16MxaDQa2T18JRIJdFqj273LNo56me3LFYvFnL9zhmHY31sCgaDH7y29Xs+ODJTJZJyeVpPJBIPBAMD6O8/+8wXAXrP68xlKpVJoNBqH89QdfYa2fBKJhPPYHsMw7HOO/m0MBgP7fPeeZvvRkfaP7f8N7777bjz66KP9+gy7791s4+oztC/XVRw6+rdxFYf2/zYSiYRzTbNYLOzvbEefYVdXFywWi1vx7axcR3FoKxdwHYeu4rs/n6HZbIbBYGBf256r3xG276nBYEg3mG1/CEDvd7Lsn7c/rze2H4YSiQTr1q3jLGIQExODZcuWYfbs2Vi+fDnq6upw6NAhzj7K9hckd+622fL0pY7eYDabOX9Y8uQk8FXRqI0IB0wmiEJ7bkFkMpmcXiwtFgv7nKM/WNtzjt63fbn2Q4hsx72VyzCMwzuu3cs1d3bAUM+dq22ISndarv173Vt+CACQ31CE/IYiJEvjcHvSQpf1dfRebeU6GiJt/xn2tVyTyYSyCx2ctIgoOSKi5AP6tzGbzU7rZF+u/d+Bfbkmk8nhyvOuyrV/r87KNRqNvZbb/b268xn6Or7d+QwtFovDNRQG8hna6tT9vO7luvoMXZXrSDBcI/parjvvNZCuEd74t6FrBNiy/HGNYBiG/c/Zc47KdZbmzvPdy+1L77KNs15mV3Xq7b3YP9/978cT5ToSHR0NjUbDmZ7n7NyWlhb2plVMTIzX6uSI/Q2cpqamfpXr6nlX9e0t3Z336mxa2UDL7e+5vb32QMrt7VxX5znK4+p3hKNrVbAa0g1m+zssRqPRZYPUdtcG6NswkS+++AIajQYdHR09ehBsYmNj8ac//QkPPvggAOCrr75iG8z2d5ecfZE6qmf3u2i+JhAIevyY4PF41nqJRBDZ3c23EQqFTuvN5/PZ57qX29zczP6hOvrRal9u94siWycH5QLWz5FhGIf16l6uJn8/YH9h4fFhSR7jtFzb/7WGThytPsV5fmRYFkQikcv6OnqvIpEIJpPJ4cXf/jPsa7ntahPUzdz4Gz8tBRHRCvD5TK+fobNyBQKB0zrZ19fRhdj2+fS1XPv36qxcW4OiqamJ0xtmX67T+HbyXvsb37Y6uVNufz5Di8XisF4D+QyFQiEsFkuv/zauPkNn5fr6M/TUNUKtVqOjowN8Ph/R0dFulWv/f2fvNVCuEd76twnUa4TZbHb4Xnx5jWhqamJ7sbx1jbDldxQvPB6v1+ddsT/fWbpWY+hz77KNo15mV3Xy1nt1t1xHRo4cifLycnR0dCA/P5+z8Ff3cg8dOsQ+l52d3e86uUp3xjYyx2Qy4cSJE07LtJX7zDPPgM/nIykpCffcc0+P5z1VX0/EaH/LdSe+XdXJl+/Vnc/eWRmufkf0ZyvdQDWkG8z2Q030er3bDWZ3hkbbUyqVDhc0sDdv3jwolUpoNBqcPHkSFosFfD6/Rx17Y8vTfbiFr2VmZvZ4zxKJxOUiJd2H4tmLjo7uMYzPpq6uDmazGSKRqMdQSwA9hg7aCw8P5ww77K77kEV7SUlJnOGOzfn7Oc+LoxIxbMZ88Hg9Lxj2QyzPNxSBz+MDsN7d5/P4uHHStVApe85nlkqlLj9DVyupq1SqHsNJbYRCocty6y9xey2UoRJMnzMMAoH1vbmaX++q3JSUlB7Dbm1CQkJcntt9qK+9hISEHsOEbWQymctys7OzcebMGRiNRtTU1HDiLiYmpsewZhuRSOSyXFcrj0ZGRjrdMo7P57sst/uwTnuhoaEuz+0+nNReYmKi04UGFQqFy3JdbSniaOisjbeuEQKBwGW5vrhG2GJKJBIhOjoaSqXSZZ26D8O2Fx8f7/QGrL+uEY6uvTYRERGD7hrhjC+vETU1NWxMeeoa0X3bTFdzZ8VisdPfTQKBwOnCUb2Vaz909scd+X3uXbbp3svsaEiuDY/Hc1lfV7/7hEKhy3m/rsrt7TO85pprsG3bNgDAe++9h1dffZV93v4zNJvNWLduHXt81VVXcV63e0PHVZ1svYiO8tjfVLF/LJPJcMUVV2Dfvn2oqanB7t27cf3113POtX2Gv/zyCzZs2ADA+l1h21va1Q2j/v7bDCQOXf3bdP993p2r3+Cu4nAg5bqKw4HEt0AggEAg6DHM28bV7wiVSsVZLyqYDZ6mfz/Yzy3qbZEs++dd7YXcXwKBgP1SMxgM7OvZ17G3/Z+NRiM7z8MbdewPxsEQr8HI0qWFvrqIkyZLH+OwsdxdhCwcN2TPx7SkCYhXxiAhJBYSUd9uyniTQW/CmePVnLTxU1PYxjIhhBDiaX1ZGduZYN+X+eqrr2Z/G27fvh3vvvtujzxmsxnPPfccu5XU1KlTe+xhbN8w7O23ZH/Z7wP97LPP4vTp0z3y1NTU4I9//CN7vHr1aq/UhRBPG9I9zPa9CrW1texG6o7YFvEA4PSu9EA5uuPUvY6u1NfXs/MFvFXHvip+4z9oP18AZWYmlFmZiJg4AfLk3rdH6Ivk5GS2R95fNIWHAcbuLjiPD+XImW6dW6GugoAvQFJYPJLC4hEhDUOoJHD2pz53shoG/eUeZh4PmDDVcY/PYBEIMUUGF4op4mmDPaZOHa2CTDHwlZJPHa3CzPnOR6cEMoFAgJdeegkrV66EwWDAyy+/jF27dmHBggWIjo5GbW0tNm3axC70Fx4ejhdffLFHOfYLuv3973/HypUrAQALFizokVckEvVrheqpU6fi7rvvxgcffIC2tjbcfvvtuOGGGzBt2jTw+XwUFBTgq6++Yjt2Zs2ahUWLFvX5dQjxhyHdYLYf/nTx4kVMmTLFaV7bipk8Hs/lkDZ7lZWV2LVrF5qbmzFhwgTMnTvXZX7bAmEikQhhYdb9dyMiIhAVFYXm5ma2Ds4UFxezj10NGfOljqJidNXVo6uuHk37D4AvEnq8wdzbdlu+oDm3j3MsioiDJM75EEV7UfIItHV1oE1vXawjPcL5jRt/OP7LJc5x5vAYhEW4t8VFsAqEmCKDC8UU8bTBHlMz52cGbUPXk8aMGYP169fj97//PRobG3Hy5EmcPHmyR74RI0Zg7dq1DqdrXHHFFQgPD4darcaxY8dw7Ngx8Hg8zJ07t8dQXYFA0K+tpQDgiSeegEQiwX//+1+YTCZs3rwZmzdv7pHvyiuvxCuvvNLnudKE+MvgvC3ppvHjx7O9uocPH3aaz2w24+jRowCs8y1CHazw7EhDQwPWrFmDd955B19++aXLvGVlZWwP8ujRozlzQyZPngzAus2IbQVER+wXfHDV+PcVU2cndNXcobwWkwlddhvcDwYWgw5dlwo4adKUXPAE7i28lhWVjmsyZ+PqjFnIjkpHclhgjA4AgJpKNWqruMO3Jl7hfD4cIYQQQjxr0qRJ+PHHH/HHP/4RkyZNQnh4OEQiERITEzF37ly89tpr2LBhg9ORkhEREfjwww8xc+ZMhIaGQigUQqVS9Tpysa94PB4effRRbNmyBatWrWK3bBOJRIiNjcU111yDt956C2+//bbLObWEBJoh3cMcGhqKadOmIS8vD7t27UJNTY3Doczbtm1jJ613X8TAlVGjRrELeeXl5TktHwDeeust9nH3ISrXXnstfvjhB5hMJnz++efsAgn2NBoNvv32WwDWxVdcLbrjK5riEs6q0eDxYOrQQFddA6mTRX+Ckb6+HLC/ScrjuT0c+/IpPETIwhAhC/No3Qbq+C/c+WNyhRixCe7dMCKEEEKIZygUCtxzzz3sqtJ9NXz4cLz//vsOn3vooYfw0EMP9VrG0qVLsXTp0l7zZWVl4ZlnnulzHd2tByG+NqR7mAHrBuuAdcGsRx99FBqNhvN8cXExXnjhBQDWi9WyZcvcLlsikWD58uVs+Y899liP8gHg/fffZ4espKWlYcmSJZznr7rqKnal1TfffBPHjh3jPG8wGPCHP/yBXSgsUBZRCM0dgTH/+gcip0yGYtgwyFOSwRMIII3zbGPZtqm6oz0kfUGoCEfY1JugyJ0BUUwqRFFJkCQMjmFkcQlhUIRcXoBMFadEaeHg2YjeGX/HFBl8KKaIp1FMEU9zte82IUPZkO5hBoCZM2fi2muvxY8//oiTJ09i0aJFuO222xAfH4/z58/j888/h1arBQD84Q9/6LH69OHDh3HnnXcCsA6D/vjjjznP/+Y3v8Hu3btRVlaGEydO4IYbbsCtt96KtLQ0tLa2Yvv27WwDWKFQ4KWXXuqxvLtYLMbTTz+N3/zmN+jq6sLdd9+NZcuWYcKECVCr1fjqq6/YBR8mTJiAW265xSufVV/xhUIIlQoohqVDMex/83l5PEicbFvSX/n5+W5treEtxuYa8ARCiKISIYpKhDAkCnyx6zm+epMBf9vzOqYkjcOs1CkB17NsM3piIrQaPVpbOlFX1Ya4xDDEJQZmXT3J3zFFBh+KKeJpFFPE03Q6HRiG6XUbIkKGmiHfYAaAF198EVqtFvv370dVVRX+9a9/cZ7n8Xh48MEHsWLFij6XHRISgvXr1+PBBx/EuXPnUFdXh9dff71Hvvj4eLz88stO9/ScN28enn32WbzwwgswGo347LPP8Nlnn3HyjB49Gv/5z38485/9rau+gXMsiY4C38n+c8GIYRgYmrnztMXRjveutXe0+hSKmktR1FyKT898i/FxI/H4zPsh4AfOvx0A1Fa3ATwgIkqOiCg5hEIBYuJC/F0tQgghhBBCfIIazLDuT/fee+/hu+++w6ZNm9jFtcLDwzFx4kTceeedmDhxYr/Lj4+Px5dffomtW7di27ZtyM/PR3t7O5RKJdLS0nDNNdfg1ltvhUKhcFnObbfdhkmTJuHDDz/EwYMH0djYCJFIhOzsbNx4441Yvny5083Q/aWrjrvAlzfmLoeEhMBkMvV7VceBMHe0wGLQcdJEkb0v2rW77Bf2McMwMDPmgGssMxYGddXtnLSY+BAIhIN/Joc/Y4oMThRTxNMopoinCQQCtoeZEHIZXWX/h8fj4aabbsJNN93Up/OmTp2KwsLCXvMJhUIsXrwYixcv7mcNrbKysvD8888PqAxfMXd1wfi/edU2np6/DFgXOfMXS5cGPIEQjNm6T7FAFgK+3PWiWC06Nc7Vc2NmVupUr9Wxv1qatdB3GTlpCUmDfzg24N+YIoMTxRTxNIop4mndpwQSQqyowUy8Rt/AHY7NEwoh7jYHPNiJY1Ihik6CSV0PQ1M1BDJlr3dmQ8QKzBt2BYpbKlDVXgserHsxB5raSu52UqFhUihDpX6qDSGEEEIIIb5HDWbiFe3nC8BU14Axm8H735xqiUrFPh4Mmn5aB7OmFYrh0yDPnACFG0OxAaBe04QIWTgmJ4ZjfPxIqLvakRae5OXauq+8pBlCIQ/NjVpOenxSuH8qRAghhBBCiJ9Qg5l4RdU3m2AsuADw+RCFhSFi0kSEjx/n72p5DGMxQ3NuHyy6DmgLDoInFCNm8e+hyOl9aHVr1+WeWyFfiFxVFhTiwFiNkmEYfP/1WTTWaxAaLkV8UhiiY5UQi4W02BchhBBCCBlyqMFMvMJk22/aYoGxtRV8sQjS2BivvFZ5eTm78ElaWppXXqO7rop8WHQd7DFjMkAc6958stGxwzEsIgUV6mpUqKuQGkC9y5VlrWist/7btau70K7uglgiRO7YhCGx2JeNP2KKDG4UU8TTKKaIp+n1enbRL5rPTMhl1GAmXscTiSCOioIoPNwr5be3t7N7UfqK9sIhzrE4LgOicPdvCCjEcuTGZGGEKhMMGE9Xr9+OH6rgHMvkIoRHyobMYl82/ogpMrhRTBFPo5ginmY2m2mVbEIcoAYz8TpxZCRkcXGD5gLMWMzQFh7mpCmGT+tXWTweDzwExufSqTXg/OlaTlpcUhhCw2QICaPFvgghhBBCyNBDDWbideLICK8NxwaA3Nxcn94R7aq8ALNWzUlzp8G8r/wwhkWmICk03ks1G5jTx6pgNlnYYx6Ph7iEUMQPsd5lwPcxRQY/iiniaRRTxNNkMhnFFCEOUIOZeJ04KtIr+y/bCIW+DWPNub2cY4EiHIJe9l7u0Gvw1tGPYbaYkRGZijlp0zA3bRqkosDouWUYBid+4Q7Hjo5VQioTISZ+6C325euYIoMfxRTxNIop4mk8Ho8ay4Q4QFdb4nXy5CQIlUp/V8MjGMYCbdFRTpo4Lh18qcLleT+XHoDZYgYAlLRU4JK6GrNSp3itnn1VXtLcYxuppNRwxMSFQCgcPFuBEUIIIYQQ0hfUYCZexZdKIU9zb/XoYNBVfRGWznZOmiJnWq93ZH8uPcA5Hp8wKmC2kgKAE79c4hxHxypx3eKRsFicnEAIIYQQQsgQQA1m4lXiyEjI4uO8+hpqtZqdcxPupZW4bTRnucOx+bIQyDImuDyn06BDmCQEbV3t6DLpAQC50Vleq2NfaTv0KDjLXexr4rQUiMRD9/Lgy5giQwPFFPE0iiniaSaTiX1MQ/4JuYz+GohXeXvBLwC4dOkSu7WGN380MAyDzqIjnDRJXDqEIREuz6vpqMeYuBEYFZuDek0TajvqceWwK7xWz746dbQSFvPlra2EQj7GTAqcvaH9wVcxRYYOiiniaRRTxNMMBgN7E4YazIRcRn8NxKvkKckQSANjYauB0teVwqxp5aTJc6b2Ohybx+NBLpKi09iF+JAYTE0aB1mgLPZlYXDiEHc4du64BMjkYj/ViBBCCCGEkMBBDWbiVaEjc73+GvHx8bBYLODz+V59nR7DsaUKyLN6X7grIzIV6RHJaNQ2o0JdjZTwRG9Vsc9KLzahtbmTkzZxWoqfahM4fBVTZOigmCKeRjFFPE0kEvm7CoQEJGowE68RKBRQDvP+gl8qlcrrr8EwDLSFhzhp4tjeh2Pb8Hl8xCpViFV6v659ceIQdyspVVwIktLce0+DmS9iigwtFFPE0yimiKdRg5kQx+i2JPEacVQkJIPkC92sUcOi4267JM+eEtT7FRr0JpQUNnLSwiNlqCht8VONCCGEEOJpOTk5yMnJwR133OHxsquqqtjyn3jiCY+XH2z1IIMTNZiJ18iTk8EfLHcreUDo1IVQjJ4LcXwmBCGRUAyf6vKUDr0GDMO4zONPYokQDzw+BxnDVZDJReDzeVDFKiEU0mWBEEIIIYQQgIZkEy8KHZ7j7yp4jLGxEjweH6LwGIjCYyCQKiAMiXJ5zqsH30Ojthmz06ZiTto0xCijfVRb95iMZpQUNiExJRwJyWHQdRohlogQmxDq76oRQgghhBASEKjBTLyDx0PYuDE+eamzZ8+yW2uMHj3a4+UzDANDUxUnTRSd7HI4doOmCfkNRWDAYEP+NmzI34Y/zfkdxsSN8Hj9+kPXacCxgxUwmy0A/reSt0IMVawSIpHAz7XzP2/HFBl6KKaIp1FMEU/r7Oxkt5WSy+X+rg4hAYMazMQrxBERkCf6ZjVohmHY/7zBrG2DWdfBSRNHu96neGvhz2BwuT5ykQzDVZleqV9/VJS0sI1le/FJYX6oTeDxdkyRoYdiinjaUI8pi+Xy++bzg3c9EUJI4KMGM/EKRXoaeALf9FTKZDIIhUKvre7IGDrBl8hg0esAAAKpAoKQSJfnXGgq5hxnRw2DWBAY87kZhkFrS2eP9NAwKcIiZH6oUeDxdkyRoYdiinjaUI4pg9GM9VvzoesyQSYVYvXCkRDT6KgB4/P5bA8zIeQyajATr5Al+W6v4aysLK+WL4pMQNiUG2HuaIahsRJ8sczll0mnUYdJCWMwLCIVFW1VqGyrwcyUSV6tY1/oOo3Qdxk5aaFhMuSOjacvyf/xdkyRoYdiinjaUI6pi5VqGI0WVDZ0ID0+DBcr1Rg5zPW6IsGutrYW69atw759+1BTUwOZTIacnBzceuutWLhwId599128/PLLAIDCwsI+l9/a2orPP/8ce/fuRVlZGTo7OxEZGYkxY8bgxhtvxLXXXut2WZs2bcIXX3yBoqIi8Pl8pKenY8GCBbjtttsglUpdnnvx4kV88803OHz4MGpra9HR0QGpVAqVSoVJkyZhxYoVGDlyZJ/fHyEDQQ1m4hW+Go7tbW1Ht6Oz+AQUw6dBkTMF8ozxvZ5T29EA8HiIlIcjUh6OifGjMT2AGswbPzoOo9GM2PhQKELEkEpFGD/V9ZxsQgghJFCcK21Ch86Azi4TOnQG5Jc2D+oG8+HDh/HAAw9Aq728vaXBYMCRI0dw5MgR7NixAzk5/V9odceOHXjqqafQ3t7OSa+vr8eOHTuwY8cOTJ48Gf/+978RGel8hJ3ZbMbvf/97fP/995z0M2fO4MyZM/j000/x3nvvIS0trce5FosFa9aswaeffgqLhTtlzGg0oqOjA6Wlpfjqq6/wyCOP4P777+/3+yWkr6jBTLxCGh/n7yp4hOb8fuirCqErPYmm799B5JUrET59sctzhkWkIFIWjgp1FS61VSMhJBYiQWD8qbU2a1Fe3AwAqK5QQ64UY87V2dRYJoQQEhQaWjrR2KpDa7seANDarkeDvBMNLZ2IiRx8C1WdO3cO9913H7q6ugAA8+fPx7x58yASiXDkyBFs2rQJP/zwAw4cONCv8nfv3o2HH34YZrMZADBz5kzMnz8f4eHhKC0txTfffIPq6mocPXoUq1atwoYNG6BQKByW9f3338NoNEIul2PFihUYNWoUmpqasHHjRhQVFaGyshKrV6/Gd999B6VSyTn39ddfx8cffwwAiIyMxJIlS5Ceng6JRILq6mps374dRUVFAIDXXnsNM2fOxKhRo/r1ngnpq8D4FU8GncGw/7KpvRn6KrthTYwFYlVKr+fxeDxEyMIQIQvDmNgRMFlMXqxl35w5Vs05NuhNiE+mhb4IIYQEpr0nqlBW08YeG00WmEwWaDoNkEuF0HQaYDJZsHlfCURCPpsvPSEMcya4XqAzGDz//PPo6uoCj8fDmjVrsHTpUva5RYsWYcmSJbjvvvvQ0dHhohTHNBoNnnjiCZjNZggEAvz973/HokWLOHn+7//+D4888gh2796NkpISvPjii3juuecclmc0GqFSqfDxxx8jPT2dTb/99tvx2GOP4ccff0RNTQ3efPNN/PGPf2Sfb2lpwbp16wAAiYmJ+PrrrxEREcEp+9e//jWefvppfPPNN2AYBtu2baMGM/EZfu9ZCOk7U2fPRaW8paqqCuXl5aiqquo9cx9oCw9zjvkSOWTpfdu6g8/nQywUe7Ja/cYwDE4fq+SkxcSFIDpG6eSMoctbMUWGLoop4mlDIabMZgvyS5tRVtPO/lfVoEFNkxY8Pg9JMSHg8XmoadKiqkHDyZdf1uxwN4hgcujQIZw8eRIAsGzZMk5j2WbSpEmcxmdffPHFF1Cr1QCAe+65B9dffz30ej0MBgObRyaT4ZVXXkHi/6baffPNN6ivr3da5t///ndOYxkARCIR1qxZA5VKBQD4+uuvodfr2ed3797NvuZvfvObHo1lwPp76r777mOPy8rK+vhuCek/ajCToNfS0oLm5ma0tLR4tFzthUOcY3nWJPACZKXr/qiqUEPdouOkJadHQioL3vfkLd6KKTJ0UUwRTxsKMdXaoQcDQC4VoqW9Cw2tnWhUd8JoMiM1LgQiIR+pcSEwmsxoVHeiobUTLe1dkEuFYBjr+cFs9+7d7OO77rrLab4lS5YgPDy8z+Xv3bsXACAUCrF69WqYTCb2P3tyuRyrVq0CYO1F3rdvn8PysrKyMGvWLIfPKZVKLFmyBADQ1taGEydOsM/ddNNN+Omnn/Dee+/huuuuc1rfpKTLIwZsQ9QJ8QVqMBOvEAb5hvdmbRu6Lp3npCmGT3d5zu7Sg1h34kuUtFQE5L6YZ49zeyFkchFSMwbvIimEEEKCW3S4DIvnZEAVIUdGUhgUMhEYBlBFyCGXWm/2yqUiqCLkYBhAIRMhIykMMRFyLJ6Tgejw4N4q8ejRowCAiIgIZGZmOs0nFosxYcKEPpd/+vRpAEBmZiaiolz/Hpg+/fJvoDNnzjjMM2XKFJdl2NfRvgyRSITU1FTMmjWrx9xmAKirq8POnTvx4osvsmm2OdeE+ALNYSZBLzs72+P7Bnac3QPArtHLF0IUm+bynB+K96CstRI/XNyDpNB4rBy7BBMT+jaE21vMJgvyT9Vw0kaOS0BCEs1fdsQbMUWGNoop4mlDJaYSVUqsuDobO45cglDAR2V9B1rauxCquDzdqaXNepwcG4Lk2BBcPSWFbVAHs4aGBgBAQkJCr3lTUnpfY8WeRqNhh0UnJycDgMstn2x5AKCpqclhnsRedkixfx+NjY0O85w4cQIHDx5ESUkJKioqUFFRAY1G47JcQryNGswk6PW2p19/aM5zV5sUq5IgClM5zV/SXI6y1svzg6vaayHkCzxer/66WNAAXSd37+XpczMQGuR3373FGzFFhjaKKeJpQymm5FIRrpyYjI+2n4dtAFdzmw5dBjOkYgHAA5t+5cTkQdFYBsDOL3bn37qv8WC/RZVMZv0twOc7H3hqX75Op+s1jyO21wHAmcMMWOckP/HEEzh16pTDcxMSEjB37lx89tlnLl+DEG+gBjMh3Zh1HTDUlXLS5BkTXN7F335xN+c4VKLE6JjhXqlff5zpNhw7ZVgkIqKCe9g8IYSQoaOx1bqYqE5vgtligVZnRKhCjLrmTvB4gOB/jb3G1k5O73Mwk0gkMBqNThuo9vo6p9e+8epO+Z12i7k6axjbLxbWWxn2Q68bGhpw++23s/Pxo6KiMH36dAwfPhxZWVkYPnw44uLiYDabqcFM/IIazIR0ozm77/KtagDgC6AcNdvlOYkhcRihykKFugqdRh2yo4e5vFPrS7pOA4rOc1e0HDPR9bApQgghJJA0tOpgMllgMlsgFPCRFKOEQiaCVmdEVYMGJrN1u6mGVh0yksL9XV2PiIuLQ3FxMWpqanrN604eeyEhIZBIJNDr9aisrOw1f3l5Ofs4NjbWYR7bEHJn7F8nLi6Ofbx27Vq2sXzrrbfimWeegcjB9qTt7e291pMQbwiMX/SEDIBGo0FHR4fH5rhozu/nHIuiEiCKdr6XY7teAxNjxsiYbFyfdSXmpE3Dgux5HqmLJ+SfqoXFfPkGgEDIR+7Y3udDDWWejilCKKaIpw21mGps7YTOYOIs7DV7fCJnQTCdwYRGte+2tfS2sWPHArAOzS4pKXGaz2KxsNtPuYvH47H7GBcXF6O5uRlms5n9r7tDhy7vHJKTk+OwTGeLgdkcPnx5u07bewMurwYulUrx1FNPOWwsA8CFCxfYx4G4uCoZvKjBTIJeaWkpioqKUFpa2nvmXlj0ndDXFHPS5MNcD8cWC0QYFZODELECPB4PyWHxyI3OGnBdPKX7cOzs3FjaSqoXnowpQgCKKeJ5Qy2m0hJCoZCKkBYfivSEMNx6dTbGZKqw4upspCeEIS3+8vODhf0WS59++qnTfD/88IPTRbRcmT9/PgDAZDJh/fr10Ov16Orq6jG/WKvV4vPPPwdgnec8Z84ch+WdOHEChYWFDp9raWnBli1bAADx8fEYPfryoqi2udpCoRASicRpfT/88EP2cfetrwjxJmowE2JHk58HMJbLCTw+lGMcfzHYSIUS5MZk4bqsuZg/bAYmxI8OmOHYLU1aVJW3ctIyclSwmC1OziCEEEICz5hMFe66IRdzJyThplnDONtK3ThzGOZMSMJdN+RiTKbzBTqDzcyZMzF8uHU9lM8//xzbt2/vkaewsBB/+9vf+lX+smXLEBZm3S1j3bp1Dsvv6urC//t//48d8r148WKnq2FbLBY8+uijPVbR7uzsxCOPPIK2tjYAwN133w2B4PLCqLbyNBqNwzqYTCb8/e9/5+xL3b1RT4g30RxmEvRUKhUsFotHGqkdZ/dxjkWR8RCr3NuqgcfjIUoeMeA6eNLZ49WcY5FIAHVrJ8pLWjAsO9pPtQp8nowpQgCKKeJ5QzGmwpQShCl79kDy+TyMzhh832l8Ph/PPfccVq5cCaPRiEceeQTff/895syZA4lEglOnTmHDhg3Q6/UQCAQwm819iofQ0FCsWbMGDz30EMxmM55++mls374d8+bNQ2RkJMrLy7Fx40ZUV1t/S6SmpuLpp592Wl5kZCSKi4uxePFi3HrrrRg2bBhqamrw5ZdfsvOXp0yZgjvvvJNz3pIlS/Dqq68CAP7whz/g4MGDGD9+PIRCIcrKyvDdd9+xdbDp6Ohw+30SMlDUYCZBLz4+3iPlWMxGGFtqOWmyYeODeo/Lri4jBAIezP+bw6yKU4LP5yEiiraTcsVTMUWIDcUU8TSKqaFh7NixePXVV/GHP/wBnZ2d+Omnn/DTTz9x8txyyy2orq7GL7/8ArG4byuEX3XVVXj99dfx5JNPQqPR4MCBAzhw4ECPfNOnT8crr7zCWd26u3vuuQcHDhzAL7/8gjfeeKPH8zNmzMC///3vHo36e+65B0ePHsX+/fthMpmwceNGbNy4kZNHIBDgN7/5DQoKCrBz507U1NRAo9G4rA8hnkINZkL+x6RuRMiEa2DWtMLYXAVjUw1CJ17rNH9zZysq22oxJnZ4wN7hv3bRSIwcl4C8nRdRX9OOmIRQ8Pl82n+ZEEIICRJXX301vvvuO3zwwQfIy8tDXV0dxGIxcnNzsWrVKlx99dVYuXIlAGuvcV9dc801mDRpEj777DPs2bMHly5dQldXF+Li4jB8+HDccsstmDVrVq8dCCKRCO+//z4+/vhjfPPNN6ioqIBEImHLuPHGGx2WIRaL8e6772LDhg3YsmULioqK0NnZCYVCgaSkJEyaNAkrVqxARkYGPv30U+zcuRNmsxk//vgjbr755j6/X0L6isfQMnPEAzQaDWehh5ycnKC766e9eAz62surUApDoxE6br7T/BvObcWG/G2IkIZhVtoUzE2bjqSwwLvjf7GgAdWXLs9jjoiUY+zkZD/WiBBCSCC6ePEiTCYThEIhsrICZ/FK0rvrrrsOZWVlGDt2LL766it/V4cMIv29LgyGtoFNYHaLEeJjDMPA2MLdw1Ac5XyvYoZhsK/cuj1Ca1cbtlzYgR+L93q1jv2lbuFusREeKfdTTQghhBDirs2bN+Pee+/Fc889h3vb2GwAAF19SURBVPr6eqf5SkpK2H2Sc3NzfVQ7QoYOGpJNgl5BQQGMRiNEIhFGjBjRrzLMWjUseh0nTRTpvLe4rLUS9VruKpAzUyf367W9yaA3QavhriRJDebeeSKmCLFHMUU8jWJq8AsNDcW+fdbFSBmGwbPPPtsjj0ajwdNPP83uS7xw4cJ+v55OpwPDMODxeJDJaOoWITbUYCZBz2g0wmg0DqgMxtAFgVQBc5cWACCQKcGXO58HVNFWhVCJEu16DQBALpIhNSxpQHXwhtZuvctCoQChYVI/1SZ4eCKmCLFHMUU8jWJq8JsxYwaSkpJQVVWFzz77DOfPn8c111yDuLg46HQ6lJaWYvPmzew2TsuWLcOkSZP6/XoMw4BmahLSEzWYSdATiUSc//erjMh4hE6+AZbOdutK2XyBy8Ut5CIZrsmcg/auDlS11yJCFgapqOdWF/5gNJrBAyAUCaBu5jaYwyJk4PGDd9VvX/FETBFij2KKeBrF1OAnFovx5ptv4v7770dtbS1OnTqFU6dOOcx722234amnnhrQ69l+9wTz7iCEeAM1mEnQG+hQNKO6Hk3b3oI8axLkWZMgTR7uMj/DMNDorT3RodIQ5EpDMCF+1IDq4EmnjlRi9/eFyB0bD6GQD4lMyH750XBs99DwRuJpFFPE0yimhobhw4fj+++/x8aNG/Hzzz+jqKgIbW1tUCgUiI2Nxfjx43HLLbdgzJgxA34tGoZNiGPUYCZDXufF49CVn4Wu/Cyad6yHNGUkEu54zml+Ho+H+Rkz/9e7XIfq9jokhsb5sMaunTlehS6dEScOXQIAxCeHIWtEDAAgIooazIQQQkgwkclkuOOOO3DHHXf4uyqEDEnUYCZDXufFY5xjYbjKrfNsvcu5MYGz9UZzowbVFWpOWmS0tZEsEgmgUIr9UCtCCCGEEEKCE20rRYY0i14HXUU+J02e1f8FM/ztzPFqzrFIJEBElAKAtXeZ5iURQgghhBDiPuphJkGvtrYWFosFfD4f8fHOt4JypLP0FGAxXU7gCyFPH+vZCvoIwzA4263BrIpXgs+n+ct9NZCYIsQRiiniaRRTxNMMBgP7WCymEWmE2FCDmQS9xsZGdi/Kvv5o6DjxE+dYmpoLvsR5w/Kvu19FQkgspidPwAhVFgR8Qb/q7A2VZa1Qd9tGKjb+8tZYNH/ZfQOJKUIcoZginkYxRTzNZDKx+zBTg5mQy6jBTIYsi8WMruoiTppYleI0f1VbLfIbipDfUIQdJXkIlSix5qo/IkYZ7e2quuXM8SrOcaRKgUlXpELdooOu0wipjLYeIYQQQgghpC+owUyC3rBhw9g7on3RVXoajLGLk6bMnek0/66yA5xjIV+IaEVkn17TW0xGM86fruWkjZ2UhPikcMQnhfunUkGsvzFFiDMUU8TTKKaIp0kkEn9XgZCARA1mEvSUSmW/ztOc3885FijCIUnIdJr/cOVJznFWVDr4vMBYN6/ofD26dEZO2ugJiX6qTfDrb0wR4gzFFPE0iiniaQJB4EwzIySQBMavfUL8QFd+jnMsTR7u9E49wzCYlTYVo2JyEC61zgseoXLeuPa17qtjp2ZE0SJfhBBCCCGEDBD1MJMhydBcDXNHMydNMXy60/xtXe3g8/gYrsrEcFUmNAYtpiaN93Y13dKpMaC4oIGTNmYi9S4TQgghhBAyUNRgJkGvq6uLnccllUrdOqfjzB7OMU8ohjxnitP8EqEEo2NzUN1ehxZdG+KUKkTKwgdQa8/JP1UDi4Vhj4VCPnLH0oqpA9GfmCLEFYop4mkUU8TTLBYL+5jPp0GohNhQg5kEvaKiInZrjTFjxrh1jq6EOx9ZHDcMfKHzLRRkIilGqLIwQpUFraETnUZdwCy0crrb6tiJqRHo1BohEgnAF9AXXn/0J6YIcYViingaxRTxNPubMHI5TesixIYazGTIMXdpYWio4KTJMye6fb5CLIdCHBhfJE0NGtRcUnPSQkIlOH2sEnw+H2ERMoyZkAgePzAa94QQQgghhAQTajCToBcZGQmTyQSh0L1w1l44BDCXhx2Bx4Ny1Gwv1c67eDzr9lEFZ2th0JshlYkQEWVtzFssFpiMZmos90NfY4qQ3lBMEU+jmCKeJhQKaasyQhygqywJeklJSX3KL1BGIGTCtTC21MDYUgu+SAJRWLTDvE2dLahsq8HomOEQCgLvzyVKpcSi28bh+qWjUHiuDiWFjZwGMq2U3T99jSlCekMxRTyNYop4mljsfGoaIUNZ4LUACPEihmFgaq2FQBEGgSIM0uQRkCaPcJp/b9khfHnuOyjEckxOGIvZaVMxKjbHhzV2j1giRO7YBLQ0d4JhLi8AFh4p82OtCCGEEEJ6euKJJ/Dtt98CAAoLC/1cm8Bk/xn9/PPPDm+S/fjjj/joo49QXFwMjUaDkJAQLF68GE888YSvqzuoUYOZDCkWXQfMOg0nTRyd7DT/wUvHAABaQyf2lP8CiVAckA1mAKiuVHMayzweD+ER1MNMCCGEEDLYfPnll/jzn//MSWttbaWRAl5ADWYypBhbajjHfLEMAmW4w7w1HfWobK/lpE1JGuelmg2MxWxBaVEjJ00iFUIgpFWyCSGEEEIGm7Vr1wKwdpCsWrUK48aNg16vx+jRo/1cs8GHGswk6F28eJHdWiMrK8tlXrO2nXMsiox3urhFS6cakbJwtOjUAKx7MQfK3svd1VS19UiTyekOY3/1JaYIcQfFFPE0iiniabS3d/BobW1FY6O1o2T+/Pn405/+5OcaDW7UYCZBT6fTwWg0wmQy9ZpXkTMF0tSRMDbXwNhSA3F0otO8UqEE84bNQKdRh+r2OvB5fMQpVZ6ser+VFjUiMSUCEqkQZpMFl0pbeuQZlu14ITPSu77EFCHuoJginkYxRTzNYrHQKtlBQqfTsY8zMzP9WJOhgRrMJOjxeDz2P1e0RUdhaLwEeeZESBIyIU10fUe+XW+d6ywXyZAVlY6UsAQI+AKP1bu/tBo9PvvvEfAFPAwfFYe4xFDou0yc1bHHT0lBSCjdHe4vd2OKEHdRTBFPo5giZOiyWC5vj0pby3kffcIk6Lk7V6Pj5A50Fh9H657PIAyNRsTsWxEydp7T/BMSRmF4dAaqO+pQ3V6H5LAET1V5QPJP1sBiYWCxMDh3sgbnT9di2txhEP6vwRylUiIsglbHHgia/0M8jWKKeBrF1NCQk2NdaPThhx/G8uXL8dxzz2H//v0AgOTkZPzqV7/CjTfeyObXarX4+uuvsX//fhQWFkKtVgMAwsLCkJubi2uuuQY33XSTw0bWr3/9axw5cgTTp0/HBx98gEuXLuGDDz5AXl4e6uvrIZPJkJubi6VLl2LhwoUub9Z0dHTgww8/xE8//YTy8nKIxWJkZWXhtttuw0033eTWe7dYLNixYwe2bNmCM2fOoLW1FQqFAqmpqZg7dy5WrVqF0NBQh+fecccdOHLkCGbOnIn3338fJSUlWLduHX755Rc0NjYiKioKU6ZMwa9//WtkZGQAsA5J/+ijj/Ddd9+hsrISAoEAubm5WL16NebNc/570d33sm/fPmzYsAGFhYXs55mdnY3rr78ey5Ytc2uxrrVr1+KNN97gpL3xxhts2pIlS/CPf/xjQHUlPVGDmQwJFqMeuvKz7LGpvQk8gajX8+Ria+9yVlS6N6vXJ2eOV3GOo2IUENot7pWeGeXrKhFCCCHEizQaDVauXIny8nI27cKFC5wG4/79+/HYY4+xjWR7XV1dqK+vx+7du/HFF1/gvffec9rYBICdO3fi8ccfR2dnJ5um1+tx8OBBHDx4ENu2bcPatWshEvX8LVVSUoJ77rkHdXV1nHNPnDiBEydOYM+ePb32itbV1eGRRx7BiRMnOOlqtRpqtRqnT5/Ghx9+iH/961+YPXu2y7K2bt2Kp556Cnq9nk2rra3F5s2b8fPPP2P9+vWIi4vDr371qx5bXB05cgRHjhzB008/jTvvvNPl6zjT2tqKhx9+GIcPH+akGwwGHD16FEePHmX/TWJjY/v1GsS7qMFMhgRd+VkwJsPlBB4fsoxxfqtPfzU1aFBTyV3gKzY+lPNYSUOxCSGEkEHlk08+gV6vx8yZM3HjjTdCrVZj7969mDlzJgCguLgY999/P4xGIwQCAebPn48pU6YgKioKjY2NOH36NL7//ntYLBacPn0a//73v50uFFVRUYHHHnsMBoMBCxYswMyZMyEUCnH48GF8++23sFgs2L17Nz799FPcfffdnHMbGhpw++23s432yZMn44YbbkBISAjy8/PxxRdfYNu2bS57U9va2rB69WqUlpYCABITE7F06VIMGzYMbW1t2LlzJ/bv3w+1Wo0HHngAb7/9NmbNmuWwrJKSEnZP4qVLl2Lq1Kloa2vDxo0bUVRUBI1Gg7/85S8QCAQoLCzE9OnTcf3110MmkyEvLw9btmwBAPzzn//EDTfcgKiovnVKGAwGrFq1CsXFxQCsowKWLl2K1NRU1NfXY8OGDSgtLUVRUREeeOABfPXVVy5vJixYsAAjRoxAc3Mzu6XUggULcMMNNwAA4uPj+1Q/4h5qMJMhofPicc6xNHk4BLIQP9Wm/7r3LovEAkREWfda5vF4SKPeZUIIIT5mMBh6z+SEQCCAQOB4fRCj0QiGYQKqXD6f75c5o3q9HnPnzsXbb7/NDoW2b6y+/vrrMBqNAIBXX30V1157bY8yli1bhtWrV4NhGGzdutVpg7mmpgYikQj//e9/2QY5ACxatAiTJ09mG6AbN27s0WB+9dVX2cby/fffj0ceeYR9buHChVi+fDnuuOMOdoVnR/71r3+xjeWrrroKL7/8MmfV7ttuuw3ffvstnnrqKZhMJvzhD3/Ajh07oFQqe5RVW1sLkUiEd999F1dccQWbfvPNN+Oaa65Bc3Mz8vPzHdb3pptuQnR0NNatWwej0Yhdu3Zh2bJlTuvtyDvvvMM2lq+66iq8+uqrnJsFd9xxB+677z4cPHgQ+fn52LJlC5YuXeq0vIyMDGRkZKCq6vLvwWHDhuGqq67qU71I31CDmQS9xsZGWCwW8Pl8qFQ9V7FmGAbagoOcNHnmRKfl/X3fG1CIFZiWNB7j4nIhFgbG9kyMhcHZ49WctFHjExCpUqK1WYv4pDDaSspDeospQvqKYop4WiDF1MGDB3vP5ERWVhYSEx3vWHHkyBG2EdhXaWlpSEtLc/jcyZMnOUON+yIhIQHZ2dn9Oneg7r33XofzhnU6Hfbu3QsAmDRpksPGMgBMnz4d48aNw8mTJ9Ha2gq1Wo3w8HD2efuFpG6//XZOY9lmyZIlWLt2Laqrq3Hx4kV0dXWxjdmWlhZs2rQJADBmzBj8/ve/73F+eno6XnjhBdx3330O61hfX8+WkZSUhJdeesnhFldLlixBUVER1q1bh5aWFnz55Zf4v//7P4dlLlu2jNNYBgClUokbbrgBH330EQBrvDz88MM9zr3llluwbt06AGAbvu4ym834+OOPAQAqlQovvvhij551kUiEv//977jyyithsViwdetWlw1m4h/UYCZBr7a2lt2L0tGPhq5L52Hp0nDSpEkjHJbV0qnGyVrrncb9FUcgEYjx3Pz/h/SIZM9XvI8qylrQ1qrjpE26Ig3xSWFobdZCrpD4qWaDT28xRUhfUUwRT6OYGlpEIhHGjBnj8DmZTIZdu3bh0qVLDntZ7SUmJuLkyZMArPOa7dn3ul9zzTVOy8jOzkZ1tfUGfnt7O9ug3b9/P9vovvXWW50uCjZnzhykpaVx5mPbHDhwgL1JsmrVKshkzhcx/b//+z989NFHMJlM2Llzp9MGs224cndJSUns4yuvvBJ8Pr9HHvshzh0dHU7r4sjJkyfR1madRrd06VKn/zZxcXF48skn2UXASOChBjMZ9DT5eZxjvkwJcaLjPesOVXIXlxDwBUgODYz5IGePcYdjq+JCEJdonb8cEaXwR5UIIYQQ4gPJycku5/1GR0cjOjra4XNarRaFhYU4fvw421gGrD2gzthWjnbEvuFnvw/46dOn2cfjx493ej5g7Ql31GA+deoU+3jatGkuy4iOjkZmZiYuXLiAs2fPOt1DOj3d8cKtISGXp+YlJzvuGLFvsNv3wLvj7NnLi81OmDDBZd7+LihGfIMazCTopaSkOL1IAoCu7AznWJKYDb6T/ZT3XzrKOVYpAmNOsNFoxvkztZy0MRMTaf9NL+ktpgjpK4op4mkUU0OLqxWt7TU0NGDnzp0oKChAeXk5Kioq0NDQ4HDOdvc0+x5W+8Zkd/ZzuO0bkU1NTezjuLg4l/VMSUlxmN7S0sI+dtaItZecnIwLFy7AaDSivb0dYWFhPfI4SuvOWU/2QP6+7D+PhITA2JqU9A81mEnQs59/052xvRkmdT0nTZ412Wn+uenToBQrUN1Rh0ZtM0aqsiAU+P/PpOhcPfRdl+/iggeMnuB4zhcZOFcxRUh/UEwRTwukmOo+P7QvnC3MBQBTpkwZ0KJfzowfP35Ai375Q2979JpMJrz00kv4+OOPOb2+NjKZDFOnTkVjYyO7yFV39o3D/ixsZj9k2dG8Y3sKheORcVqtln3saji2o9fR6XQOG8f+WKQNADscG+j98yCBzf8tAUK8SHN2DzdBIIIyd4bDvGaLGVqDDplRaciMSoPepMfUJNdDinyl++rYaRlRCA3v/YuEEEII8bbeGnP95WiP30Au15+eeOIJfPfddwCs72/SpEkYPXo0srKykJ2djczMTAiFQjz++ONOG8wDZd8LrtPpXM6ndrayun0jubcyAHAWbwu0Rql9fbrPFyfBhRrMZFDrvHiMcyyOSYFA6viupoAvwA0581HTXofKtlo0djYjNTzJYV5f0nboUVzI3X5hWLaKhuIRQgghBCdOnGAby8nJyVi/fr3T4cx9XbiqL+wXn6uqqsLw4cOd5m1oaHCYbj8Pu7KyEiNGOF6k1aaiogKAtXEaSKMuAHD2bK6trXW5oFdJSQm0Wi1SUlIC7n0QwD/jSgjxIJPJBKPR2GMIktmoh762lJMmSx/rsiyxQIS0iGTMSpuCm3KuhiQAtpQ6d6oGjOXy0DE+n4euLiMKus1pJp7jLKYI6S+KKeJpFFPEZs+ePezj3/72ty7n/hYUFLCPuw9L7+8wdZuJEy9v2Xn48GGXeU+cOOEwffTo0ezjQ4cOuSyjvr6e3a85EFeXHjlyJPvYfjEzR9auXYtly5Zh+vTp0Gg0LvMS36MGMwl658+fx5kzZ3D+/HlOuu7iMcDC/SGhHDnL7XIDYe4yAJzptjp2VIwSQiEfkSrXw5RI/zmLKUL6i2KKeBrFFLFRq9XsY7lc7jTfDz/8gLq6Ova4+82Wvq4C3d3s2bMhkVi3uPzss8+cDrs+d+4cZ0Vte3PmzGGHzH/66afQ6XQO8wHA+vXr2TrPnTt3ADX3jkmTJrFDyjdv3gy9Xu8wX3t7O/bt2wfAun91b8PQie9Rg5kMWprzBzjHwjAVxCr/76fcV9cuHonktAgIRdY/19iEECiUEsTGOV/BkhBCCCFDQ2Li5UVAN2zY4LCn+ODBg/jzn//MSXPWgOsvuVzObo9UXl6OP/3pTz0a5Y2NjXj88cedlhETE4Mbb7wRgHVI9uOPP+5w/u+mTZvw4YcfArAOfb7ttts89TY8Ri6XY/ny5QCA6upq/PnPf+7xeRgMBvz5z39mFzsLxPdBaA4zGQRCQ0NhMpl6rIIoTRoOxmSAsaUWJnUDpMm5Duf8dhm7cLIuH+PjR0EqlPiq2m4TCPhIz45GamYUWpu0iIiUIz0rGjw+zV/2FmcxRUh/UUwRT6OYIjYLFizA2rVrYTQakZeXh2XLluHGG2+ESqVCQ0MD9u7di19++aVHQ7r70F9PrIvy29/+Fj///DNKS0uxefNmFBQU4JZbboFKpUJRURE+//xzqNVqREVFobm52WEZTz75JI4ePYrKykrs2LEDCxYswM0334z09HS0t7dj586dyMvLA2BdtfyFF15AZGTkgOvuDQ899BD27NmD0tJSbNq0Cfn5+ViyZAni4+NRWVmJb775ht2Pevr06Vi0aJHHXnvt2rV44403AAAPPvggHnroIY+VPdTQVZYEvbS0tB5pjMkIxqiHJCELkoQsMGYjFNlTHJ5/si4frx58DyKBCOPicjEjZRKuSJnk5Vq7x2yyoKLE+oXC5/MQFaNEWLgMUSrHC5cRz3AUU4QMBMUU8TSKKWKTnJyMZ599Fs8++yzMZjPOnj2Ls2fP9sg3adIkLFy4EH/5y18AAIWFhZg06fLvHU9smSWTyfDJJ5/g3nvvRX5+PoqKirBmzRpOnpkzZ2LKlCl45ZVXHJYRGhqKTz/9FA8++CDOnDmD6upq/Pvf/+6RLzw8HK+88gpmzHC8+0kgkMvl+Oijj/DAAw/g7NmzuHjxIv75z3/2yHfFFVdg7dq1tJhrgKIGMxmUjOp6MMzluTh8oQSS2HSHefeWWReVMJqNOFp9GgazIWAazNWX1DAYuMN30rOi6YJKCCGEENayZcuQk5ODDz74AMePH0dzczOEQiGioqKQm5uLRYsWYd68eejo6MALL7wAo9GI77//HitXrvR4XaKiovDFF19gw4YN2LJlC4qKigBYb/IsWbIEK1euxAcffOCyjNjYWHz11VfYvn07tm3bhrNnz6K1tRXh4eFITk7G9ddfj8WLF3O2sgpUKpUKX331FbZs2YKtW7eioKAAbW1tUCgUGDVqFJYsWYIFCxb4bY9v0jseM9Al8QiBdVhPYWEhe5yTk+PXRQu0RUehr7u8QrYoPBYhY+b2yGcwG7H6m0dhtFsc7NZRN+LmkQt8UU2XjEYzDu8rg8lkZtMioxUYM9H/W10RQggZfC5evMgO887KyvJ3dQghAaC/14VAaxsMBN3KIIMOwzAwtnK3XBJFxjvM29TZgkhZOHi43GObHTXMq/VzV2VZC6exDFh7lwkhhBBCCCG+QUOySdArKytj73ylp6eDx+MhdPzVMLbUwdhSA2NrvdMGs8FkxKy0qdCbDKjtqIfG0IkcVYaP30FPhefqcOLwJUTHKCESCwAAMXEhCAmV+rlmQ0P3mCJkoCimiKdRTBFP0+v1YBgGPB6P3R6KEEINZjIIdHR0wGg0svv2ac7lQRgeA0lCJiRx6WAsZoDneDCFQixDUmgcajsakBaRjISQWIgFIl9W36F9Oy6itqoNxQUNiIhWIDktAlNm0A8iX+keU4QMFMUU8TSKKeJpZrOZbTATQi6jBjMZVBizEY3fvwPGoANfHgp55gREzLoVovAYh/lViiioFFEwmo2o7WiAVOT/Htw2tQ611W0AAIYBWhq1yBoeA7lS7OeaEUIIIYQQMrRQg5kEvZEjR7KPdZfOgTHoAACWznZozuxB5JV39FqGSCBCSnii1+rYF2eOVQF2S/Hx+TxMnxsY86qHCvuYIsQTKKaIp1FMEU+TyWT+rgIhAYkazCToCQQC9nHnxWOc5yQJWRAqw31co4EpOMNdsCw6VomQMP/3fA8l9jFFiCdQTBFPo5ginkZDsQlxjFbJJoMGwzA9GszyrMDYT9ldzY0a1FW3c9ImTk/1U20IIYQQQggZ2qiHmQwahsZLMKkbOGnyzIkO835y+htUt9dhatJ4TEocA6VY4Ysq9ursiWrOsVwpxsRpKXTXlxBCCCGEED+gBjMJeq2trbBYLNAf38lJ58uUEKmSe+S3MBbkVRxBq64Nx2vOQsDj44Epd2J22lRfVdkhhmFwrluDedS4BPAFNBDE12wxxefzERER4e/qkEGAYop4GsUU8TSTycQ+FgqpiUCIDf01kKBXWVkJo9GI0IvHYD+jSxSdDL6gZ4gXNBSjVdfGHpsZC4ZFpPigpq5VX1KjpamTkzZqQmAsRDbU2GJKJBLRD1HiERRTxNMopoinGQwGdlspajATchl1XZFBgWfoBL+DOxxblj7WYd6thdye6FCJEvEhjred8qXuvcuR0XIkpoT7pzKEEEIIIYQQ6mEmwS8hIQH688XQ2yfyBVDkTneYPzEsHnw+H9XtdajTNCInehgEfP+uNmo2W3DuVA0nbdSERJq77CcJCQnsUEdCPIFiingaxRTxNJFI5O8qkADEMEzvmQY5ajCToBcdHY3aqnOcNFFEHMSRCT3yWhgLpEIxclVZSA1PgslsQpxS5auqOlVa1IROjYGTNmJ0vJ9qQ6Kjo/1dBTLIUEwRT/NGTAkEAphMJpjNZnZoLhk6qMFMurNYLLBYLACG9lZ2dFuSBD3GbEJX1QVOmjQlFzxez/Dm8/i4ZeQNWJA9D+PiciEUCDEpyfHQbV/qPhw7JFSCksJGuqtHCCHEZyQSCQBrj1JHR4efa0MI8TeNRsP+FrVdH4YiajCToKerOAfGyBmQDcVwx8Ox7clEUoyPH4lQidJbVXOLQW/ChXN1nLSY+FBERivo7j4hhBCfCQ8PZx83NTVxVk0mhAwtJpMJTU1N7LH99WGooSHZJOhpzu7lHAuUEZAmZbs8h8fjITms55Btfyi72ASjwXw5gQeo4pSIjvFvQ54QQsjQIpfLIRKJYDQaodfrUV5ejsjISCiVSojFYn9XjxDiAwaDARqNBi0tLTAajQCsw/Xlcrmfa+Y/1GAmQa+96DhnqIQkMRt8scxv9emrnFFxuPmOCTiSV4aGug7IFWLI5GJERA/dC5O/nTlzht2uZcyYMf6uDhkEKKaIp3kjpng8HpKSklBZWQmTyQSj0Yj6+nrU19eDz+fTAmODnNl8+eb9UJ6vOpTZz1m2EQqFSEpKGtKjHqnBTIKaWa+DOTwBjLYZfF0beBYzlLkzHOYtaalAvDIG8gBsTFssDNKzo5GWFQWT0YLIKAUEAvphQgghxLekUinS0tJQVVWFrq4uNt3RD2kyuBgMlxcfpREFBLBeD5KSkob8gnDUYCZBzdzeCKEqFZaoZIAHKEU8yHOm9MhnYSz4R95/oNFrMFyVifHxozA3bRpCpSF+qDWXyWRGa3MnAOvdfZFYgOhYGo7tT3K5HCaTCUIhXSKJZ1BMEU/zZkyJRCKkpaVBr9dDq9VCq9XCaDRSg3mQMxgM7OrodK0amvh8PkQiERQKBRQKBSQSyZDuWbahvwYS1Iyt9YiIjGSPRRFx4At63gXLry9EW1e79XFDEfIbijA5cWxANJhbmjo5P0J4PB4iVQo/1ohkZmb6uwpkkKGYIp7m7Zji8XiQSqWQSqWIiory6msRQkggozGfJGgxDANjK3d1aVFEnMO8By4d4xyHSpSID4nxWt36orlBwzmOiJRDJKK5Q4QQQgghhPgb9TD/D8Mw2Lp1K77++msUFBSgs7MTKpUKkydPxsqVK722SMtf//pXfPbZZwCAwsJCl3nnzZuH6upql3ls9u/fD5VKNeD6BTJLZzss+k5OmrMGc1NnK/g8PiyMtSc3Kyrd6/Vzh8XCoLlRy0mLotWxCSGEEEIICQjUYAbQ1dWFhx9+GHv27OGkV1dXo7q6Gt999x1+//vf47777vPo6x46dAiff/65W3k1Gg1qamo8+vrBji+RQzliOowtdTCqrT3NfHloj3xGsxHDVZkYFpGCBm0TajUNuCJloq+ry8EwDL764BgioxUwWyyQSi8PI6ftpAghhBBCCAkM1GAG8PTTT7ON5YyMDCxfvhzR0dHIz8/HF198gc7OTrz88suIjY3FokWLPPKaWq0WTz/9NBiGcSt/YWEhm/f+++/H6NGjXeYPCwsbcB0DnaHxEsSxaajTASZRNASMGeEOFiYQ8oWYl34FajUNqO2oR3JYAqYlTfBDjS+rqWxD4bl69jgsQobcsfGIUikhkdKfpb9dunQJZrMZAoEAKSkp/q4OGQQopoinUUwRT6OYIsSxIf/L/MCBA9i6dSsAYNq0aXj33XchkUgAAAsXLsQtt9yC22+/HWq1GmvWrMH8+fOhVA68B/Cll15CVVWV2/nth2svXrwY6emBMaTYX0wdrahe9wfwJHIYI1Khj0oDk+q4Eczj8RApD0ekPBwjY7JhMBshcrAwmC+dO8EdWq/vMkEo4lPvcoBQq9Xs/qb0o4F4AsUU8TSKKeJpFFOEODbkF/1at24dAOum3M8//zzbWLbJyMjAM888A8B6IdmwYcOAX9N+KHZIiHurNNsazBKJBKmpqQOuQ7DTlZ0CADD6TgjrCiAv3AW4uey92M+NZYvZgnMnuQ3mmPgQ8Hg82k6KEEIIIYSQADKke5jVajUOHjwIAJg1axaSk5Md5luwYAHWrFmD5uZm/PDDD1i9enW/X9N+KPaiRYtQW1uLI0eO9HqercGcmZkJPn/I3+dAZ+kpzrEsbTSSRuT6pzJ9VHqxCVqNgZMWEx8ChUICuULsp1oRezk5OexelIR4AsUU8TSKKeJpFFOEODakW17Hjh1j97+dNm2a03x8Ph+TJ08GAJw+fRptbW39fk3bUGyVSoWnnnrKrXMYhsHFixcBANnZ2f1+7cGCsZihKz3NSVNmTewxOiBQne02HDs2IRTDR8UhIWXwzzsPFhKJBFKpNGhiigQ+iiniaRRTxNMopghxbEj3MNsaoUDvDdHMzEwA1sZrUVER24DuC/uh2M8++yzCw8PdOq+6uhoajXWv3qysLADWVbMvXLgArVaLmJgYZGdnQyAYGnv3dlUVwqLr4KTJMsY5zPvusc+QFp6ECfGjEK2I9EHtXDPoTbhwlrt39LjJSRiWPbi3ACOEEEIIISQYDekGs/2exomJiS7zxsVd3t+3urq6zw1m+6HY119/Pa6++mq3z7Vf8IvP5+PBBx/Erl27YDab2fTw8HCsWrUK9957L6RSaZ/qFmw05w9wjoWhKojCYnrkq2yrwc6SPPY4JSwRT815EJGycG9X0anC/HoYDZf/3Xg8YOS4BL/VhxBCCCGEEOLckG4wt7S0sI8jIiJc5rXvDVar1X1+LdtQ7IiICPz5z3/u07n2DeZ//OMfDvOo1Wq88cYb2LdvH9555x1ERvq/N9VbusrPco55EXFoa2sDn8/nLKK2t+wwJ1+LTo1wac99mn2p+3DsYdkqKEMH9w2OYNTR0QGLxdIjpgjpL4op4mkUU8TTKKYIcWxIN5i7urrYx73N1xCLLy/GZH+eO+yHYj/zzDN9bszaN5hFIhFWr16NxYsXIzk5GWq1Gnv37sXrr7+OxsZGnDlzBo888gjWr1/v08XB7Hu7Aetw98TERMjlcjbNYDDg0qVLAKyrg8fGxnLOqaqqYj9b2xB4G7VajaamJsCkh9zMB8KT2Oe0kVloKC5my01IsPbYVjfXIFF6+TViJVFob2uHUHg57Ds6OlBfb90POSoqqseNk5KSEjAMA4lE0mNRuIaGBrS3twMAkpOTOTHU2dmJmpoaANabLdHR0dB1GtDSrEaE6vIq3bEpPHa4vU1TUxN7UyYhIYHzGer1elRWVgIAQkNDERPD7VmvrKyEXq8Hj8dDRkYG57nW1lY0NzdbXzc2lvNlaDKZUF5eDgBQKBSIj4/nnFtTU4POzk4AQHp6Omf4v/1nGB0d3WOqQfH//m2kUimSkpI4z9XX16Ojwzq8PiUlhfN3Zv8ZRkZG9vi7KSsrg9lshkgk6rFyvP1nmJiYCJlMxj5n/xmGhYVBpeIOh7906RJ0Oh0AQCAQcGLR/jOMj4+HQqFgn7P/DJVKJWdUCmAdmWIrd9iwYZy/z/b2djQ0NAAAYmJiEBp6+caOxWJBaWkpAEAmk/UYDVNXV8fGUFpaGie+tVotamtrATiO79LSUlgsFojF4h5biDQ2NrLrNXSPb51Ox47QscW3vYqKChiNRggEgh5b4LW0tLA3K7vHt0euEegZ32azGWVlZQAAuVzOXiNsamtrodVqAfT8DD11jbDVwxZTjq4R9srLy2EymSAUCpGWlsZ5jq4RVv68RhgMBvD5fAwbNozznC+vESUlJWxM2dA1InivEe78jrDnjWuELaYA6+4xdI1QAwjea4SNv35H2D57m+5thWDCYxiG8Xcl/OXOO+/E4cPWXsgLFy64XBXwl19+wd133w0AeOihh/Dggw+69RparRY33XQTqqqqMH/+fPznP//hPH/HHXewq2TbN4ztrVixAidPnoREIsG6deswadKkHnnq6+uxfPly1NVZ58e+/PLLWLhwoVt19ISGhgb24kEIIYQQQgghNsnJyT1u4gaLIb1Ktv1cX6PR6DKvwXB5GyD7u1e9sQ3FDgsLw1/+8pc+1xEAvvjiCxw/fhw//vijw8YyYL3T96c//Yk9/uqrr/r1WoQQQgghhBBCrIZ0g7n7EBVX7BvM7i63bz8U+4knnhjQXRWlUtljeEt38+bNg1KpBACcPHmS3TLLF2gLAkIIIYQQQogjwdxWGNJzmO3H96vVapcLHNgv9OXOHGT7VbFnzZqFpUuXDqiu7hAIBEhNTUV+fj4MBgPUarXPFv9SKpXIycnxyWsRQgghhBBCgof9PPBgM6QbzPaLJNTW1vZYjMGebW4wgB6LQThy7tw5VFVVAQDy8vLcakza8iQmJmLXrl295ndEJBL1nskLBAIB27tNCCGEEEIIIYPBkG4w26/+d/HiRUyZMsVp3osXLwIAeDwesrKyvF43m8rKSuzatQvNzc2YMGEC5s6d6zK/bZVBkUiEsLAwH9SQEEIIIYQQQganId1gHj9+PEQiEYxGIw4fPoyVK1c6zGc2m3H06FEAwPDhwzlDuZ3JysrCm2++2Wu+1157jW2M2/LbL0bW0NCANWvWALDOUXbVYC4rK2OXfh89ejRnyX5CCCGEEEIIIX0zpBvMoaGhmDZtGvLy8rBr1y7U1NQ4HG69bds2dk/A66+/3q2yIyMjcdVVV/Wa78MPP2QfO8o/atQoKJVKaDQa5OXlOa0jALz11lvs40WLFrlVT0IIIYQQQgghjg3pVbIBsHsrG41GPProo+zG3TbFxcV44YUXAFg3Yl+2bJlP6yeRSLB8+XK2jo899liPOgLA+++/j82bNwOwzs1esmSJT+tJCCGEEEIIIYMNj2EYxt+V8Lff/e53+PHHHwEASUlJuO222xAfH4/z58/j888/h1arBQD89a9/xYoVKzjnHj58GHfeeScAYMqUKfj444/79Np33HEHjhw5AgAoLCx0mKejowPLli1DWVkZACAuLg633nor0tLS0Nraiu3bt+PYsWMArI36Dz/8EKNHj+5TPQghhBBCCCGEcA3pIdk2L774IrRaLfbv34+qqir861//4jzP4/Hw4IMP9mgs+0pISAjWr1+PBx98EOfOnUNdXR1ef/31Hvni4+Px8ssvU2OZEEIIIYQQQjyAGsyw7gv23nvv4bvvvsOmTZtQUFCAjo4OhIeHY+LEibjzzjsxceJEv9YxPj4eX375JbZu3Ypt27YhPz8f7e3tUCqVSEtLwzXXXINbb70VCoXCr/UkhBBCCCGEkMGChmQTQgghhBBCCCEODPlFvwghhBBCCCGEEEeowUwIIYQQQgghhDhADWZCCCGEEEIIIcQBajATQgghhBBCCCEOUIOZEEIIIYQQQghxgBrMhBBCCCGEEEKIA9RgJoQQQgghhBBCHKAGMyGEEEIIIYQQ4gA1mAkhhBBCCCGEEAeowUwIIYQQQgghhDhADWZCCCGEEEIIIcQBajATQgghhBBCCCEOUIOZEEIIIYQQQghxgBrMhBBCCCGEEEKIA0J/V4AMbgzDYOvWrfj6669RUFCAzs5OqFQqTJ48GStXrsSYMWMG/BpFRUVYv349Dh8+jIaGBoSEhCAjIwOLFy/GkiVLIBAIXJ4/b948VFdXu/Va+/fvh0qlGnCdSf/5Iqa6O336NFasWIH4+Hjs2rXLrXOqq6uxfv165OXloaamBjKZDKmpqbjhhhuwYsUKSKVSj9eT9E8wxNQdd9yBI0eOuFX2l19+iXHjxg2whmQgvB1TDMPg559/xubNm3HmzBm0tLRAJBIhMTERM2bMwJ133omEhIReyxno9yfxnWCIKfo9FVy8HVMWiwVbt27F5s2bkZ+fD41Gg6ioKIwYMQKLFy/GtddeCx6P12s5gXCd4jEMw3j9VciQ1NXVhYcffhh79uxx+LxAIMDvf/973Hffff1+jQ0bNuCvf/0rjEajw+cnTZqEN998E+Hh4Q6f12g0mDRpEtz9M6ALvH/5Iqa602q1WLFiBYqKipCYmOhW42bv3r145JFHoNVqHT6fnZ2Nt956C0lJSR6rJ+mfYImpqVOnQq1Wu1U+NZj9y9sx1dbWhkceeQQHDhxwmkcsFuNvf/sbFi9e7DTPQL8/ie8EQ0zR76ng4ouY+u1vf4ujR486zTN16lS8+uqriIqKcponUK5T1GAmXvPYY49h69atAICMjAwsX74c0dHRyM/PxxdffIHOzk4AwD//+U8sWrSoz+Xn5eXh3nvvBcMwkMlkWLFiBUaNGoXm5mZs3LgRRUVFAIAZM2bgvffeA5/fcwbC8ePHcfvttwMA7r//fowePdrla86ePRtisbjPdSWe4e2Y6s5gMODee+/FoUOHAMCtxk1hYSGWLVsGvV4PgUCAW265BZMmTYJWq8XmzZtx8uRJAEBOTg6+/PJLyGSyAdeT9F8wxFR9fT1mz54NAFi+fDnmzJnjMv/kyZMRFhY24LqS/vFmTFksFtx5553sj9CEhATcfPPNGDZsGLRaLfbv34+ffvoJFosFPB4P//nPfzBv3rwe5Xji+5P4TjDEFP2eCi7ejqlVq1bh+PHjAKzfc7fccguSk5NRW1uLTZs2oaSkBAAwfvx4fPTRRw5jIaCuUwwhXrB//34mOzubyc7OZu68806mq6uL83xxcTEzZcoUJjs7m5kyZQrT0dHRp/L1ej0zb948Jjs7mxk3bhxz7ty5Hs//9re/Zevw3XffOSzn008/ZfOUlpb27U0Sn/J2THXX1NTErFy5kn3N7Oxs5sorr+z1vBUrVjDZ2dnMiBEjmD179nCes1gszHPPPceW9/bbbw+ojmRggiWm9uzZw+bPy8sbUB2Id3k7pjZu3MgpX6vV9sjz888/M7m5uUx2djYza9asHnXw1Pcn8Y1giCmGod9TwcTbMbVhwwa2/DvuuIPR6XSc5w0GA/PAAw+web7++useZQTadYpuGRKvWLduHQBAKBTi+eefh0Qi4TyfkZGBZ555BgCgVquxYcOGPpX/008/oaqqCgDwq1/9CiNHjuQ8LxaL8eKLL7JDNN555x2H5RQWFgIAJBIJUlNT+1QH4lvejil7v/zyC5YuXepyKJEjJ0+exIkTJwAAixcv7tETyOPx8PTTTyMjIwOA9T05G2ZEvC8YYgq4fJ0CgKysrH7XgXift2Pqyy+/BGD9znrppZcgl8t75Jk3bx5WrVoFwDo6Yd++fZznPfX9SXwjGGIKoN9TwcTbMfXFF18AsA7r/uc//9ljzRaRSIRnn32WPd6+fXuPMgLtOkUNZuJxarUaBw8eBADMmjULycnJDvMtWLCAnbfwww8/9Ok1bH9cPB4Pt912m8M8CoUCS5cuBWBdMKCsrKxHHtsFPjMzk4acBTBfxBQAtLS04Le//S3uvvtu1NXVAQBuvvlmxMbGunW+/UXfNjStOz6fzz6nVqvZobnEt4IlpoDL16nw8PA+nUd8y9sxpdFocObMGQDAFVdc4XL+53XXXcc+Pn36NOc5T31/Eu8LlpgC6PdUsPB2TJnNZiQkJCA9PR0TJ05EXFycw3yxsbGIjIwEANTU1PR4PtCuUxTRxOOOHTsGi8UCAJg2bZrTfHw+H5MnTwZgvfi2tbW5/Rq2XpqcnBz2D84R+9fvfkeUYRhcvHgRgHURJhK4fBFTAHDx4kXs3LkTgPVC/Pzzz2PNmjUQCt3bUMAWl2FhYcjNzXWaz/495OXl9amOxDOCJaYAsPO06DoV2LwdU62trRg9ejRUKhWGDRvmMq/9HPb29nbOc574/iS+ESwxRb+ngoe3Y0ogEODf//43fvjhB3z88cdO82m1WnR0dAAAoqOjezwfaNcp2laKeJztogn0fuHMzMwEYL3YFhUVsX+crtTX17MX696GJ9qGvgLAhQsXOM9VV1dDo9FwytFoNLhw4QK0Wi1iYmKQnZ1N22oEAG/HlD0+n49FixbhkUce6VNvntlsZhexyMjIcHmHPT09HQKBAGazuUdcEt8IhpgCAKPRyN41t12ndDodLly4gPb2dkRERGD48OG0eE4A8HZMJScnuz000nYtAsBZPdZT35/EN4IhpgD6PRVMfPnd58obb7zBTkmzH70ABOZ1ihrMxOPs9+BLTEx0mdd+qEZ1dbVbf4y2OQ3ulB8bGws+nw+LxdJjyIf9vEA+n48HH3wQu3btgtlsZtPDw8OxatUq3HvvvbRvrh95O6Zs0tLS8OOPPyIlJaXPdWxqaoLBYHCrjgKBACqVCnV1dQ6HIhHvC4aYAqw/Um0/KkJCQvDkk09i27Zt0Ov1bB7bsLSHHnqIVsf2I1/FlDu+/vpr9vHYsWPZx576/iS+EQwxBdDvqWDir5gym81oamrC2bNn8dFHH+Hw4cMAgClTpuCWW27h5A3E6xQ1mInHtbS0sI8jIiJc5rW/S+nuHqOtra1uly8SiSCXy6HRaHqUb3+B/8c//uHwfLVajTfeeAP79u3DO++843JYCPEeb8eUzUDmh/aljoB1eFtdXV2f60g8IxhiCuBep95++22HebRaLT7++GPs27cP77//vtM5acS7fBVTvcnLy8Pu3bsBAFFRUZgxYwb7nKe+P4lvBENMAfR7Kpj4K6YWL17MTi8CrHOTV65ciUcffbTHCKlAvE7RHGbicV1dXezj7ivvdWf/R2J/nis6nc7t8u3zdC/f/gIvEolw3333Yfv27Th79izy8vLw/PPPswtgnDlzBo888gg774P4lrdjyhM8FZfEN4IhpgDudYrH4+HWW2/Fpk2bcPr0afzyyy949dVXkZaWBgCoqKjA/fffz4lF4juBEFO1tbX44x//yB4/8MADnN48uk4Fl2CIKYB+TwUTf8VUbW0t55hhGBw6dAh79uzpkTcQr1PUYCYeZzKZ2Me9zauzf97+PFfsh/i4M2/Plqd7+fX19QCsf2gffPABHnvsMWRkZEAsFiMmJgbLli3D119/zQ5JOXTokMOl74n3eTumPMFTcUl8IxhiCrh8neLxeHj11Vfx3HPPYcSIEZBKpYiMjMSCBQuwceNGjBgxAgBQXFyMjz76yKd1JFb+jqmWlhbcc889aG5uBgDMmDGD3QrIhq5TwSUYYgqg31PBxB8xZTKZcNddd+GVV17BmjVrsHDhQvD5fBQXF+PRRx/Fa6+9xskfiNcpajATj7O/89jbHrO2OZ+Ae38UAPdukzt72NpeQyQScdK/+OILHD9+HD/++CMmTZrk8NzY2Fj86U9/Yo+/+uort+pIPMvbMeUJnopL4hvBEFMA8PLLL+PUqVPYsWMHrr/+eod5QkJCsGbNGvaYrlP+4c+YamxsxJ133onS0lIAQGpqKl566SXweDxOPrpOBZdgiCmAfk8FE3/ElFAoxEMPPYQbbrgBN998M15++WWsW7eOvR699dZbOHbsGJs/EK9T1GAmHme/6b39wjSO2P8xujPsoq/l2+dxtMiEUqlEfHy8y/PnzZsHpVIJADh58iQNI/IDb8eUJygUCvbxQOOSeF8wxJSNTCbrdV5ybm4uu5poVVUV2+NDfMdfMXXp0iWsXLmSXf02Pj4e69evdzhH1JPfn8T7giGmbOj3VHAIlO++6dOn43e/+x17/Mknn7CPA/E6RQ1m4nGhoaHs494m4Ns/7+4CEPbl97YvnNFoRGdnZ5/K704gECA1NRWA9eJBi5/4nrdjyhNCQkLYx+7sV2jLQwuf+EcwxFRf2e+jSg1m3/NHTJ05cwYrVqxARUUFAOuKsh9//LHTlWV9/f1JBiYYYqov6PeU/wXSd9+yZcvYLThPnDjBpgfidYoazMTjbAvQAD0n+XdXV1fHPk5ISPB4+fX19ewdTHfLd4SGo/mXt2PKE2JiYthe5t62NjCbzWhsbATg2zqSy4IhpvpKKKSNL/zJ1zGVl5eHu+66i51fmpmZic8//9zlaAR/fH+S/guGmOor+j3lX4H03RcWFoaoqCgA3NW7A/E6RQ1m4nH2m4jbb5DuiO15Ho/X6+bkNhEREewfWG/lFxcXs4/tN2ivrKzEhx9+iFdeecXhCn3d2XprRCIR7XPqB96OKU+x1bOkpMRlvtLSUnZRC/u4JL4TDDHV0tKCTz75BK+99ho2bdrUa377XuWYmBgv1ow44suY2rVrFx544AG2Z2Xs2LH45JNPet3GzBPfn8R3giGm6PdUcPF2TJWUlODJJ5/EqlWrOHt3O2MbTm0/rS0Qr1PUYCYeN378ePYOom1jckfMZjOOHj0KABg+fDhnCEZvbJunFxQUoKOjw2m+Q4cOsY+nTJnCPm5oaMCaNWvwzjvv4Msvv3T5WmVlZewdrtGjR0MgELhdT+IZvogpT7DFZXNzs8uLvH1c2s4hvhUMMWU0GvG3v/0Nb731FtatW+cyb0dHB86dOwfAuriObTVa4ju+iqkjR47g4YcfZhfDmTFjBj744AO39n8HBv79SXwnGGKKfk8FF2/HlNlsxjfffIOjR49ix44dLvOWlZWhvb0dAJCens55LtCuU9RgJh4XGhqKadOmAbDesXQ2PHXbtm3sEAxnq786c+211wKwLiH/+eefO8yj0Wjw7bffArD+IQ4fPpx9btSoUezCE3l5eS6H0L711lvs40WLFvWpnsQzfBFTnmCLSwD4+OOPHeYxm8347LPPAFjnPc+cOdMndSNcwRBTsbGx7NC0wsJCnDp1ymnedevWsXtQ0nXKP3wRU83NzXj44YfZxXiuvPJKvP3225xFcnoz0O9P4jvBEFP0eyq4eDumsrKy2MXf8vLyUFlZ6TTvf//7X/bxVVddxXku0K5T1GAmXnH33XcDsPaQPProo9BoNJzni4uL8cILLwCwDsNYtmxZn8q/6qqrkJSUBAB48803OcvRA9bFJP7whz+wCxasXr2a87xEIsHy5cvZOj722GM96ggA77//PjZv3gzAOqdiyZIlfaon8Rxvx5QnjB07FuPHjwcAbNiwAd9//z3neYZh8Pzzz7PbdNx+++20+qwfBUNM3XHHHezjP/7xjw4X89q2bRveffddAEB4eDj7vojveTum/va3v7E/YseMGYPXX3/9/7d352FRlQsYwF9UFgERFxLEEhUVFSvQJBUUcKuM1AiRW6FWj0nhVpZmaclNQ4tEJazATLMUyAUVRVRGE01EQ1lKxQXZFEZhQNYZZO4f83DuTHNYRhax3t9fs5wz55uzwLzn23Se7qWp/z+pdbX1c4q/px49LXlO6enpYebMmQBUYfeDDz4QPR+2bt0qNNm2sLCAj4+Pxvtt7e+UnlKpVLboFuhfa/78+Th8+DAAoFevXvDx8YGVlRX+/PNP7NixA2VlZQCAlStXYsaMGRrrJiYmwtfXF4CqiYVYbV18fDzeeecdKJVK6Ovrw8vLC46OjpDJZIiMjMSVK1cAAI6Ojti+fbtW05979+7By8sLN27cAABYWlrC29sbNjY2KCoqwsGDB4UL1MTEBFu3bsXQoUObcQ+Rrlr6nKqLu7s7cnNzYW1tjfj4+HqXTU9Ph7e3NxQKBfT09ODh4QFnZ2dUVlZi7969wkiQNjY22L17t0a/HWp9bf2cqq6uxsyZM4W/Rebm5vD29oadnR1KS0sRHx8PiUQCQDXoV0hICNzc3Bq/A6jZtdQ5de3aNUyePBm1P9s+/PBDYcTh+pibm2vNjdvU/5/Uutr6OcXfU4+elvzfp1AoMGvWLOGYW1lZCedDYWEhYmNjcfbsWQCqvuxbtmwR7Z7Wlv5OMTBTi6moqIC/vz8SEhJE39fT04O/vz/8/f213mvsD9EdO3Zg1apVdU5sPnToUISFhdXZD+fWrVvw9/cX+v6JsbKyQlBQEIYNG1bnMtQ6WuOcEqNLYAaAo0eP4oMPPhAGT/m73r17Y/Pmzc068ig9mEfhnCopKcGiRYvqLCOg+gG7atUqrWZt1Ppa6pwKCgoSWhLooq5zs6n/P6n1PArnFH9PPVpa+n9fY/5vdevWDcHBwfX2PW4rf6c4BwW1mI4dOyI8PBz79+/H3r17hY775ubmGDZsGHx9fZv8R9PHxwfDhw/H1q1bcfr0aUilUujr62PAgAHw8PDA9OnT653CwMrKChEREThw4ABiYmKQnp6OkpISmJqawsbGBhMnToS3tzdrAduI1jinmsP48eMRExODLVu24LfffsPt27ehp6eHPn36YNKkSXj99dd5TrURj8I5ZWZmhvDwcBw7dgx79+7FxYsXUVRUBGNjY/Tq1Qvu7u7w8fERRhWlh6ulzqna2pTm0tT/n9R6HoVzir+nHi0t/b+v9v/W0aNHsWvXLqSmpqK4uBgmJibo27cvxo0bBx8fnwbPh7byd4o1zEREREREREQiOOgXERERERERkQgGZiIiIiIiIiIRDMxEREREREREIhiYiYiIiIiIiEQwMBMRERERERGJYGAmIiIiIiIiEsHATERERERERCSCgZmIiIiIiIhIBAMzERERERERkQgGZiIiIiIiIiIRDMxEREREREREIhiYiYiIiIiIiEQwMBMRERERERGJYGAmIiIiIiIiEsHATERERERERCSCgZmIiIjaJIVC8bCLQPXg8SGif4MOD7sARETUtiUmJsLX1/eB17e2tkZ8fHwzluj/3N3dkZubCwC4fPlyi2yjNW3cuBEhISENLtehQwcYGRmhe/fuGDhwIJycnDBlyhSYmpq2QimbRv18mjZtGgIDA7WWqaysREhICExMTODn56f1/tKlS7Fnzx4AwLZt2+Dk5NSyhW5hulxjenp6MDAwgJmZGaytrTF06FBMmzYNQ4YMaeFS/l9Dx4eI6J+ENcxERESPmOrqapSWliIzMxOHDx9GQEAAxo0bh7i4uIddtCa7fPkyJk+ejLCwMFRXVz/s4rQ5SqUSVVVVkEqluHDhAn766Sd4enpixYoVqKmpafHt8/gQ0b8Na5iJiKjROnfujLffflundTp16tRCpflns7e3xwsvvCD63v3791FeXo7s7GzExcVBLpdDJpNhwYIF2LRpE1xdXVu3sM0oPT0dOTk5D7sYD01D11hNTQ1KS0tx7do1JCQkoKKiAkqlEhERETAyMsKyZctatHz/9uNDRP8+DMxERNRopqamePPNNx92Mf4V+vfv36h9ffv2bbzxxhu4du0aampq8OmnnyIuLg6GhoatUErdOTk5Nbn5fGBgoGhT7n8CXa4xmUyGpUuXQiKRAFA1T58+fTpsbW1bsohERP8qbJJNRET0CLO0tMQ333yDdu1U/9Jv377dYn3GqW0xNzfHhg0b8MQTTwBQNdfeuXPnQy4VEdE/CwMzERHRI65Pnz4YPXq08Pz3339/iKWh1mRgYICXXnpJeP5PGPyOiKgtYZNsIiJ6aK5fv459+/YhKSkJWVlZKC4uhp6eHszMzNC/f3+4uLjAy8urSaM/Z2RkICoqComJicjOzoZcLoe5uTlsbGwwcuRIeHl54bHHHmvwc27duoWdO3ciISEBOTk5KCsrQ5cuXTB48GBMmDABU6ZMgb6+/gOXs6n69euHkydPAlDVMtelsLAQEREROHnyJK5fv47S0lKYmZmhd+/ecHFxwYwZM9C1a9d6tyWXy7F//34cOXIEaWlpkMlkMDQ0RPfu3eHg4ICJEyfC3d1ddN26RskWGyE8JCREeM3f3x/z5s0DID5Kdk1NDdzc3ITvvnfvXgwaNKje7xEZGYnly5cDADw9PbF69WqtZSoqKhAVFYX4+HhcvXoVMpkMpqamsLGxwdixY+Hj4wNzc/N6t9PSunfvLjwuKCiod9nU1FQcPHgQ586dw61btyCTyaCvr4/OnTvDzs4Obm5umDZtGgwMDDTW0+X4qCsqKkJERAROnDiBmzdvoqSkBJ07d4atrS3c3d0xffp0dOzY8UG/OhFRi2NgJiKiVqdQKPDf//4XUVFRoiP7VlZWoqCgAKdOncL333+P0NBQODg46Lyd0NBQbNy4UWsbUqkUUqkUSUlJ+P777/Hxxx9j+vTpdX7ODz/8gODgYFRVVWm8XlBQgIKCAhw/fhxhYWHYsGEDBg4cqHM5m0Ntk2wAaN++vegyERERCAwMRHl5ucbrd+/exd27d/HHH38gPDwcy5YtwyuvvCL6GdnZ2ZgzZw6uX7+u8bpCoRBG7t6zZw+efvppbNq0qcHw3VzatWsHDw8PhIWFAQBiYmIaDMz79+8XHk+dOlXr/dOnT+PDDz+EVCrVeL2oqAhFRUVITk7G5s2bsXLlSkyePLnpX+IB3bx5U3isHp7VlZaWYunSpThy5IjWewqFAuXl5bh16xYkEgnCwsIQFhaGPn36NKlc+/fvR0BAAEpKSjRev3PnDu7cuYMzZ84gLCwMX331FZ599tkmbYuIqKUwMBMRUatbsmQJYmJiAKjmFHZ2doadnR1MTExQUlKCixcvIikpCUqlEoWFhZg3bx5iY2N1qmmOjo7G+vXrAajClLOzMwYPHgxjY2Pk5+fj+PHjyM3NRWVlJZYvX45evXph1KhRWp/z5ZdfIjw8XHju4OCA4cOHw9TUFHl5eZBIJCgoKEBmZiZ8fHzwyy+/wM7Orol7SHfqTXFr+7Sq+/777xEUFCQ879WrF9zc3NC9e3dIpVJIJBLk5uairKwMH3/8MQoLCzFnzhyNz5DL5Zg7d64Qlq2srODq6gorKyuUl5fjypUrOH78OGpqanDhwgX4+/vjl19+aVT5R48eDWNjY6SlpeHgwYPCa7VNzRtzw2Tq1KlCYD548CAWL15c57L5+fk4d+4cANVc4c8884zG+8eOHcOCBQugUCgAAL1798aYMWNgYWEBmUyGhIQEXLlyBffu3cP777+P8vJyeHl5Neq7NqeSkhJER0cLz8WCZ01NDd566y0kJycDAIyMjDB27FjY2trCyMgIRUVFOHv2LNLS0gCoboosWLAAe/fuFW7E6Hp8fv75ZwQEBAjPBw4ciFGjRqFLly6QSqU4ceIEsrKyIJVK8dZbb2HTpk1wcXFpxj1DRNQ8GJiJiKhVnTlzRgjLZmZm2LZtm2hNYGJiIt5++21UVFRAKpXi6NGjorWAdQkNDQWgCstiUy199NFHWLZsGfbt2wcA+Pbbb7UC87Fjx4SwbG5ujq+//lqjrzAAVFVV4csvv8RPP/2EsrIyzJ8/HwcOHNBq0tqSMjIycObMGeH5mDFjNN4/c+aMRlieN28e5s6diw4d/v8zYOnSpdi4cSO+++47AMC6devw1FNPwcnJSVjm8OHDuHr1KgBgxIgRCA8P1xqNOyUlBTNnzkR5eTnOnz+PpKQkrTAqxtHREY6Ojti9e7cQyBwcHHQald3W1hZDhgxBeno6cnNzceHCBTz99NOiyx48eFBoeeDh4QE9PT3hvby8PCxduhQKhQLt2rXDkiVL4Ovrq1GLv2TJEuzevRsrVqyAQqFAQEAAHB0d0a9fv0aXt6mysrLw4YcforCwEIBqCrdXX31Va7k9e/YIYdna2hrbtm1Dr169tJaLiYnB4sWLUVNTg8uXL+P8+fPCsdPl+KSlpeGLL74AABgaGmL16tV48cUXNZb56KOPsHnzZnz99ddQKBRYvHgxDh061GotEoiIGouBmYiIGq20tBSbN29u9PLe3t5atcK1fU8BVXCrq9msk5MTpk2bJtRQpqWlNTowy2QyZGZmAgAGDBggOi+xvr4+AgICcOTIEVRUVODKlSuQy+VC0FUqlVi3bp2w/IYNGzTCYy1DQ0N88sknyM7OxvHjx3Hz5k1ER0e3Wm1jWloaFi5ciPv37wMAhgwZohXqg4ODhcezZ8+Gv7+/1ufo6+vjvffeQ1lZGbZv346amhoEBwdjx44dwjIXL14UHs+cOVN06qonn3wSb7zxBkJCQtCuXTukpKQ0KjA3l6lTpyI9PR0AcODAgToD84EDB4TH6oNmAara+NpmxO+++y5mzZol+hkvv/wyioqKsHbtWsjlcnz77bf48ssvm1T+hq6xiooKyGQy/Pnnn0hJSRFqwA0MDBAUFCQaONWvuY8//lg0LAPA5MmTER0djRMnTgBQzbn8IMdu/fr1QrlWrlypFZYBVbeBOXPm4Pbt2/j5558hk8mwbds2LFy4UOftERG1JAZmIiJqtOLiYqxdu7bRy0+aNEkrMD/33HPo06cPcnJytILK36n3By4rK2v0dtVrTnNzcyGVSmFhYaG1XMeOHbFr1y506dJFK2gkJycjIyMDgKomTSwsq/Pz88Px48cBAPv27WtyYM7IyKgzOFVVVeHu3btISUlBSkqK8LqxsbHW8cnJyRFqF42NjUXDsrpFixZh9+7dKC8vxx9//IHr16+jb9++ADT7RicnJ2P8+PGin+Hr64sXX3wR1tbWrVrTDgAvvvgi1qxZg+rqasTGxmLZsmUaNcMAkJmZKTQ/tre316gVlsvlQhNnAwMDzJ49u97t+fr6IiQkBOXl5YiNjcWqVaua9J11vcYA1U2K5cuX48knnxR9f8aMGXj22WdRUFAgevNI3cCBA4XAXFpaqlM5AFVT99rB5ywtLRu8yeXn54eff/4ZgOq6YWAmoraGgZmIiFqVm5sb3NzcGlyuvLwcOTk5wvPq6upGb8PU1BSDBg3CX3/9hXv37sHT0xMzZ86Eq6urVpPZuprQJiUlCY+HDBnS4DYHDx4MAwMDyOVypKSkoLq6WiO46yotLU0IdY1hY2OD4OBg2Nraaryu3lTb2dm5wX7gpqamcHZ2RlxcHADg3LlzQmB+5pln8OOPPwIAwsPDkZubiylTpsDJyQnGxsbCZ3Tu3BmdO3dudNmbU9euXeHi4gKJRAKpVIqzZ89q9etVr12eMmWKxnvp6enCoGg2NjYwMTGpd3v6+vqwt7fH2bNnIZfLkZqaimHDhjXTt6mbg4MDRo8eDVdXVwwdOrTeZcVqeMUUFxcjPz9feK7LNVerduwBABg0aJBGU3cxFhYWsLa2Rm5uLnJzc5Gfn48ePXrovF0iopbCwExERI1mbW2N+Pj4Zv3MsrIy3LhxA1lZWcjOzsaNGzdw6dIlZGRkaPxgr/0R3liLFy/GnDlzcP/+feTn52Pt2rVYu3YtevbsCWdnZ7i4uGDUqFF1BsjavroAsH37dmzfvr3R266srERhYWGjpqt6EEZGRjA1NYWlpSWGDBkCV1dXuLq6atWkAtC46dDYwcjs7OyEwJydnS287u7ujhEjRuDs2bMAgEOHDuHQoUPQ19eHo6MjnJ2d4erqigEDBjTl6zXZlClTIJFIAKj65dYVmDt06KA1urX6cb9y5YrOo57funXrQYosELvGKisrcfXqVfz444/CyN4ZGRnw8PBoMCyLKS4uRmZmJrKyspCVlYXr16/j0qVLuHbtmsZ1pus1B2juP4lEovP+y8vLY2AmojaFgZmIiFpdTU0NoqOj8csvvyAtLU10ailA1QS4tm+urpydnREaGopPP/1UY17ivLw8REZGIjIyEgYGBnB1dcXs2bPh6OiosX5xcfEDbVd9/aYEZvU5iptCJpMJjxs7X7D6cur7oV27dggNDcXnn3+O6OhoIVApFAokJiYiMTERQUFB6N27N15++WX4+vpq1Dy3lnHjxsHMzAwlJSWIi4vDihUrhDmy09PTcePGDQCqc6Rbt24a6zbHcW9uRkZGsLe3x1dffQV7e3t88cUXKC0tRUBAAKRSaaOaMcvlcuzcuRNRUVG4cuVKncs15ZoD2ub+IyJqCgZmIiJqVWVlZfD398fp06c1XtfT04OlpSVsbW1hb2+PESNGICcnB8uXL3/gbbm6uuLIkSM4ceIE4uLikJCQIIwoDKhCRFxcHOLi4vDuu+9i/vz5wnvqoeG5556rs39oXf4exB6WB6klrOsGBqAaiXnNmjV49913ERMTA4lEgtTUVI11bt68iXXr1iEyMrLOEZlbkoGBAZ5//nlERERAJpPh9OnTGDt2LID6m2MDmsd9yJAhOs+vXNcgY81l1qxZyM7OFlo8bNq0CT179qx3HvHaqZsuXbqk8Xq7du1gbW2N/v37Y+jQoXByckJCQoIwwvyDUN9/I0eO1HmqqKbO/UxE1NwYmImIqFWtWrVKCMsmJibw9fWFi4uLMA+zutrBgJrCwMAAEyZMwIQJE6BUKnH58mWcOXMGJ0+exJkzZ4Rm39988w1GjBghNN81MzMTPsPBwaHOkZLbOvW+xEVFRY1aR3059f2g7oknnoCfnx/8/PxQUlKCs2fP4vTp05BIJMjLywOgGnBt6dKlOjVnby4vvfQSIiIiAKiaZY8dOxZKpRKHDh0CoAr+48aN01pP/fv26NFDp2mtWsuSJUuQlJQkzL29atUqDBs2rM7++IsXLxbCcrdu3TBr1iyMGjUK/fv31xrp/NixY00qm/r+s7W1bZP7j4hIF9qdnYiIiFpIfn4+9u7dC0BVo7xlyxYsXLgQw4YNEx1cST24PUhN6d/p6enBzs4Os2bNwubNmxEfH6/Rx7J2dGQAePzxx4XHtaNlN0S99rqt6N27t/C4NmA15K+//hIeq++HupiZmWH8+PFYsWIF4uPjNVoFJCUlCQG6NQ0fPlwou0QiQXV1Nc6fPy/0MZ40aZLotFjq31e9P259iouL662Vb24GBgYIDAwUBpWrrKzEkiVLRMtw8eJFYeA3Y2NjREREYM6cObC3txf9/o29qVKXB9l/RUVFzXJ9ExG1BAZmIiJqNampqUKTzUGDBuGpp56qd/nExEThsS4/qI8dO4Y333wTbm5u+O677+pcrkePHpg7d67wXH2E4OHDhwuPT5w4IcwrW5fU1FSMHDkSDg4O8PT0fKARhluC+vdISEhocKqge/fu4ffffxee1zYxvn//PpYsWYKXX34Zo0ePhlwuF11fT08Pr732mkZtp3of8oY0NKqyLmqbXJeUlCApKQmxsbFa7/2dg4ODEESzsrIavMlQVVWFSZMm4cknn8TEiRO1mj23lMGDB2tMeZWamirMWa7uwoULwuPRo0fXewNEqVQKA7oB4k3zGzo+6ufb+fPnG7yJVFBQABcXFzz11FN4/vnn2+RNJyL6d2NgJiKiVqMestQHoxJz9OhRjR/vugRQpVKJhIQE5OXlISYmpt511WvU1EfnHTlyJCwtLQGo+oDWNSdy7faCgoIAqKbD6tWrV5OmlGpOvXv3hoODAwBV2UJCQupdfv369aioqAAA9O/fX6iBb9++PS5duoT09HTcuXOn3qa7NTU1GsdXl1GP1Uf6bsrgU4BmKD527BiOHj0KQDUS9TPPPCO6jomJCSZMmCA8X7t2bb03a8LDw1FUVASFQoHy8nKtab1akr+/P6ytrYXn69atQ0FBgcYy6tdcQ7XH27Zta3Aqt4aOT79+/YT+/nK5HOvWrat3m8HBwVAoFKiqqoKJiYnWfOhERA8bAzMREbUa9WmN8vLysHXrVq1lampqEBUVhffff1/j9doQ1xhjxoyBhYUFAFUz5ICAAFRWVmotd+PGDY0AOXHiROGxvr4+3nnnHeH5+vXrsWXLFq1at4qKCqxcuVKole3QoQP8/PwaXdbWsGDBAqFmcMuWLQgJCdEKQ9XV1diwYQN++uknAKqaxGXLlmks4+npKTz+7LPPkJKSorUtpVKJNWvW4O7duwBUA2eph7qGqE/zlZub2+j1xDzxxBPCzYJdu3YJzbE9PDzqrSn18/ODgYEBAFWt/AcffKBVM69UKhEVFaUxQJafn1+r3igxMjLCihUrhOelpaVYvXq1xjLq19z58+dx5MgRrc+Ry+X49ttvsWbNGo3Xxa65xhyf+fPnC/s3MjISa9as0WqRUF1djdDQUOzatUt4bd68eaKfR0T0MLWN299ERPSv0LdvXzg7OyMhIQEAsHr1ahw6dAgODg4wNTVFfn4+fvvtNyHY6OvrC02hG6qRVmdgYICPPvoI7733HgAgIiIC8fHxGDNmDHr27AlANcfu8ePHUVVVBQAYO3Ys3NzcND7H29sb586dw759+1BTU4PAwEDs3LkTY8aMQdeuXZGXlweJRAKpVCqs8/777zd6vuPWMnLkSPj7+2Pjxo0AgI0bN2LPnj1wc3ND9+7dcefOHUgkEo3axXfeeQejRo3S+JwZM2bg119/xeXLlyGTyeDl5YXRo0djwIAB6Nq1K+7evYuEhASh76q+vr5W6G6I+oja+/fvR6dOndCjRw/0798f7u7uOn/3qVOnIjk5GeXl5cJrL730Ur3rDBw4ECtWrMDy5cuhVCqxf/9+nDx5EuPGjcPjjz+OwsJCJCYmajTXdnNzw3/+8x+dy9dUrq6umDBhghCEDx06BE9PT2F06trBvTIyMqBUKuHv7w9nZ2cMHjwYhoaGyM3NhUQiEWqfG7rmGnN8XFxcMHfuXGzatAkA8MMPP+DgwYNwc3NDjx49UFBQgJMnT2rM8f3aa68JI5kTEbUlDMxERNSq1q5di9mzZwthIzk5GcnJyVrLDRgwAIGBgfD29oZCoUBGRgbkcrlQ89eQyZMno6ioCIGBgVAoFJBKpRq1WeomTZqkVbtWa82aNejZsyc2b94MhUKBzMxMZGZmai1nZGSExYsX4/XXX29U+Vqbv78/unTpgq+++grl5eXIyckRapPVGRsb47PPPhPt42tgYIDw8HD4+fkhLS0NAHDq1CmcOnVKa9nu3bvj888/1+jT2hgDBgyAg4MDkpOToVQqhZHS3d3dHygwv/DCC1i1apVQw2lvb1/naNLqvLy80KlTJ3z66aeQyWSQyWR1nj+enp747LPPmrX/tS4++eQTnDp1SrgpEBAQgAMHDsDQ0BDt27fHxo0b8cYbbwiDryUkJAg3rdQNHz4cixYtwquvvgpANWf13zX2+CxcuBDdunVDUFAQKioqcPv2bezYsUPr89q3b4+33noLixYtavqOICJqAQzMRETUqrp164aoqChEREQgNjYWV69eRWlpKYyMjGBhYQE7OzuMHz8ezz//PDp06IBnn30WJ0+eREVFBQ4fPgwPD49Gb+u1117DmDFj8OuvvyIxMRGZmZkoLS1Fx44dYWFhgREjRsDDw6PeUNeuXTssWrQIr7zyCiIjI3H69Gnk5OSgtLQUxsbGsLGxwahRo+Dt7S3UXrdVr776KiZNmoSdO3ciISEBN2/eRElJCYyNjdGvXz+4urpi+vTp9fYjfeyxxxAZGYnY2FgcPnwYf/75J+7cuYPq6mp07doVffr0gZubGzw9PdGpUyedy6inp4ewsDAEBwcjPj4eUqlUo9ZTV2ZmZnBzc8Phw4cB1D3Yl5jnnnsOzs7OiIqKwm+//YaMjAzIZDLo6+vDysoKw4YNg5eXl85zdDc3S0tLzJs3T7jpk5WVhdDQUCGE9unTB9HR0di+fTvi4+Nx48YNVFRUoGPHjrCyssKgQYPwwgsvwNXVFXp6eujbty+uX7+OrKws/PHHH3B0dBS2pcvxef3114X5sE+dOoXMzEwUFxfD0NAQjz/+OJycnODt7d2oGxhERA+LnpLj+BMRERERERFp4aBfRERERERERCIYmImIiIiIiIhEMDATERERERERiWBgJiIiIiIiIhLBwExEREREREQkgoGZiIiIiIiISAQDMxEREREREZEIBmYiIiIiIiIiEQzMRERERERERCIYmImIiIiIiIhEMDATERERERERiWBgJiIiIiIiIhLBwExEREREREQkgoGZiIiIiIiISAQDMxEREREREZEIBmYiIiIiIiIiEQzMRERERERERCIYmImIiIiIiIhEMDATERERERERiWBgJiIiIiIiIhLBwExEREREREQkgoGZiIiIiIiISAQDMxEREREREZEIBmYiIiIiIiIiEQzMRERERERERCIYmImIiIiIiIhE/A9DdjAveKCl1wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.roc_utils import compute_roc_point_from_predictions\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=postproc_clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ " group_name_map=group_name_map,\n",
+ ")\n",
+ "\n",
+ "# Compute predictions\n",
+ "y_fit_preds = postproc_clf(X_fit, group=s_fit)\n",
+ "\n",
+ "# Plot the group-wise points found\n",
+ "realized_roc_points = list()\n",
+ "for idx in range(n_groups):\n",
+ "\n",
+ " # Evaluate triangulation of target point as a randomized clf\n",
+ " group_filter = s_fit == idx\n",
+ "\n",
+ " curr_realized_roc_point = compute_roc_point_from_predictions(y_fit[group_filter], y_fit_preds[group_filter])\n",
+ " realized_roc_points.append(curr_realized_roc_point)\n",
+ "\n",
+ " plt.plot(\n",
+ " curr_realized_roc_point[0], curr_realized_roc_point[1],\n",
+ " color=all_group_colors[idx],\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ " )\n",
+ "\n",
+ "realized_roc_points = np.vstack(realized_roc_points)\n",
+ "\n",
+ "# Plot actual global classifier performance\n",
+ "global_clf_realized_roc_point = compute_roc_point_from_predictions(y_fit, y_fit_preds)\n",
+ "plt.plot(\n",
+ " global_clf_realized_roc_point[0], global_clf_realized_roc_point[1],\n",
+ " color=global_color,\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ ")\n",
+ "\n",
+ "plt.xlim(0.04, 0.3)\n",
+ "plt.ylim(0.45, 0.75)\n",
+ "plt.legend()\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8db9a56",
+ "metadata": {},
+ "source": [
+ "### Compute distances between theorized ROC points and empirical ROC points"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "be73972d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Group 0: l2 distance from target to realized point := 0.034% (size=259521)\n",
+ "Group 1: l2 distance from target to realized point := 0.000% (size=29518)\n",
+ "Group 2: l2 distance from target to realized point := 0.060% (size=19386)\n",
+ "Group 3: l2 distance from target to realized point := 0.227% (size=12570)\n",
+ "Global l2 distance from target to realized point := 0.034%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Distances to group-wise targets:\n",
+ "for i, (target_point, actual_point) in enumerate(zip(postproc_clf.groupwise_roc_points, realized_roc_points)):\n",
+ " dist = np.linalg.norm(target_point - actual_point, ord=2)\n",
+ " print(f\"Group {i}: l2 distance from target to realized point := {dist:.3%} (size={np.sum(s_fit==i)})\")\n",
+ "\n",
+ "# Distance to global target point:\n",
+ "dist = np.linalg.norm(postproc_clf.global_roc_point - global_clf_realized_roc_point, ord=2)\n",
+ "print(f\"Global l2 distance from target to realized point := {dist:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "### Compute performance differences\n",
+ "> assumes FP_cost == FN_cost == 1.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "6991bf75",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual accuracy: \t\t79.955%\n",
+ "Actual error rate (1 - Acc.):\t20.045%\n",
+ "Theoretical error rate:\t\t20.063%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "from error_parity.roc_utils import calc_cost_of_point\n",
+ "\n",
+ "# Empirical accuracy\n",
+ "accuracy_fit = accuracy_score(y_fit, y_fit_preds)\n",
+ "\n",
+ "print(f\"Actual accuracy: \\t\\t{accuracy_fit:.3%}\")\n",
+ "print(f\"Actual error rate (1 - Acc.):\\t{1 - accuracy_fit:.3%}\")\n",
+ "print(f\"Theoretical error rate:\\t\\t{postproc_clf.cost(1.0, 1.0):.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "485d5b1f",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "148524a8",
+ "metadata": {},
+ "source": [
+ "### Best non-fairness-constrained single-threshold solution --- RESULTS ON *TEST DATA*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "790f18c6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "08708f36f2c54a43aa7f7b5196963b60",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/50 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Best (train) unfair accuracy is 80.198%, with threshold t=0.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "# Compute prediction scores\n",
+ "y_test_scores = predictor(X_test)\n",
+ "\n",
+ "acc_unfair_best, acc_unfair_threshold = max((accuracy_score(y_test, y_test_scores >= t), t) for t in tqdm(np.arange(0, 1, 2e-2)))\n",
+ "print(f\"Best (train) unfair accuracy is {acc_unfair_best:.3%}, with threshold t={acc_unfair_threshold}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "5f28c70a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Best (unconstrained) single-threshold classifier:\n",
+ "\tAccuracy: 80.20%\n",
+ "\tUnfairness: 36.11%\n",
+ "Best (constrained) multi-threshold classifier:\n",
+ "\tAccuracy: 79.85%\n",
+ "\tUnfairness: 7.30%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import eval_accuracy_and_equalized_odds\n",
+ "print(\"Best (unconstrained) single-threshold classifier:\")\n",
+ "\n",
+ "eval_accuracy_and_equalized_odds(\n",
+ " y_true=y_test,\n",
+ " y_pred_binary=predictor(X_test) >= acc_unfair_threshold,\n",
+ " sensitive_attr=s_test,\n",
+ " display=True,\n",
+ ")\n",
+ "\n",
+ "print(\"Best (constrained) multi-threshold classifier:\")\n",
+ "eval_accuracy_and_equalized_odds(\n",
+ " y_true=y_test,\n",
+ " y_pred_binary=postproc_clf(X_test, group=s_test),\n",
+ " sensitive_attr=s_test,\n",
+ " display=True,\n",
+ ");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ed71b0f1",
+ "metadata": {},
+ "source": [
+ "# Fairness vs Performance trade-off\n",
+ "\n",
+ "Plotting the entire Pareto frontier **may take a few minutes...**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "57bb076e-5c6c-45b1-94b4-322a82492378",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Using `n_jobs=9` to compute adjustment curve.\n",
+ "INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4\n",
+ " 0.5 0.6 0.7 0.8 0.9 ].\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "48a318097ae848f69d244d5843b403ae",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=rf_clf,\n",
+ " fit_data=(X_fit, y_fit, s_fit),\n",
+ " eval_data={\n",
+ " \"test\": (X_test, y_test, s_test),\n",
+ " },\n",
+ " fairness_constraint=\"equalized_odds\",\n",
+ " tolerance_ticks=np.hstack((\n",
+ " np.arange(0.0, 0.1, 1e-2),\n",
+ " np.arange(0.1, 1.0, 1e-1),\n",
+ " )),\n",
+ " y_fit_pred_scores=predictor(X_fit),\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "6f80437c-3b14-48e7-9dc4-9385d9cc952a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVi0lEQVR4nO2deXxTVfr/P0mapaWlC7QUKDsUyr4vCgqMMu4CosKIgjOogIgjooL7NoAL4sIXFAbGFZ1x3EZRFFcEgbIIZUn3jdJ9b7Pd5Ob8/ujvXpMmLU2TNAnneb9evGjvPbk57yf33jw959xzFIwxBoIgCIIgCI5QBroCBEEQBEEQHQ0lQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcEdYoCsQjPz+++9gjEGtVge6KgRBEARBtBGr1QqFQoExY8ZcsCy1ALmBMQZfTZAtiqJPjhOqkD/58wrP7gD5k39g/D35/qYWIDdILT8jRozw6jhWqxXV1dWIi4vjsjWJ/MmfV3+e3QHyJ//A+Z86darNZRW0FpgrUgC9TYAIgiAIgug4PPn+pi4wPyKKIurr67ltCiV/8ufVn2d3gPzJPzT8KQHyIxaLBVlZWbBYLIGuSkAgf/Ln1Z9nd4D8yT80/KkLzA2+6gKz2+2wWq1Qq9VQKvnLNcmf/Hn159kdIH/yD5y/J9/fNAjaS0RRhNVqbbWMIAgdVJvghPwvfn+1Wg2VSuW0TalUQqvVBqhGgYVnd4D8yT80/CkBaieMMZSWlqK2trbVMqIoQqVSQaFQdFzlggTy58s/JiYGiYmJsqsgCCgtLUViYiI0Gk2Aa9ex8OwOkD/5h4Y/JUDtREp+EhISEBER4fYLzm63QxAEaDQabptByf/i92eMwWg0ory8HADQvXt3AE2to42NjUE/ENIf8OwOkD/5h4Y/jQFyw4X6EEVRRGZmJhISEtClS5eOrBpBBC1VVVUoLy9HcnKyS3cYQRBER0CPwfsZacxPREREgGtCEMGDdD1caEwcQRBEMBD0CdBbb72F22+/vdUyNTU1ePDBBzFhwgRMnDgRzzzzDEwmk9/rdqFxHaIowmg0Bn0zoL8gf778m18PRqMRJ0+ehNFoDFCNAgfP7gD5k39o+Af1GKAPPvgAr776KsaPH99quZUrV8JkMuHtt99GfX09HnvsMRiNRrzwwgsdVFP3KBQKhIWFcTEA1h3kz7e/Wq1GQkICl0sB8OwOkD/5h4Z/UCZAZWVleOqpp3D48GH07du31bK///47UlNT8fXXX2PAgAEAgGeffRZLlizBqlWr0K1btw6osXuUSmVQj4D3N+TPt79arZYHRPMGz+4A+ZN/aPgHZRfYmTNnoFar8b///Q+jRo1qtezRo0cRHx8vJz8AMHHiRCgUChw7dszfVW0V6TFoXseZkz/f/qHyJIg/4NkdIH/yDw3/oEyAZs6ciTfeeAO9evW6YNmysjKXTFOj0SAmJgYlJSVe1cNxHJHJZJIntLPb7bDb7fIXm91ud/qgpf12ux1ms9npS7ClsoDrF2bz39tbFmg6IVt6rTdlW6uTKIowm83y/tbKehIXf5VtS1w8jbfk3xHx9rSsv2IoXTcWiwUZGRloaGiQ9xmNRthsNgCAzWaD0WiUX2uxWGA2m+X3MRqN8oBqT8pKY6+kOgqC4HQte1K2+XXvOKbLarW2WNZkMiEjI0MeA2G1Wp3GQ5jNZnmZACkujse9UNnWYuhJ2QvFsL3xrq+vR0ZGBiwWC0wmk8/i7RgXT8q2FkNv4908LjabTT73a2tr2x3D9p7f7uLii3ibzeY2l3X8/FuKoa/i3fwe4QlBmQB5gslkctvNoNVqvVqHRBRFZGVlyb/n5eWhtLQUQNOHbbPZ5JNKFEWn97JYLLBarVAqldDpdLBYLPKJIiUFEoIgOD01IyVMQNMH2rys46zCZrNZPlGaH9dqtbqUbV4H6aSyWq0u9ZfKSl/iLZV1rIPjF770u0KhQGlpKXbv3g2LxSKXZYw5lZVuGs1j6K5sS/F2LNtavC8UF1/E22KxwG63Y+zYsfj0008vGO/mMZTKNo9La/Fufr5Ixz116hSuueYajBo1Chs2bGhTvI8cOSLfKJvHu7Vz1m63Izc3FwCg0+kQGRmJyspK+bh6vR51dXUAmm6Ser1ern9RURHOnTsnH1ev18sTjTY2NkKv18vuJSUlyM/Pl8tmZGSguroaAGAwGKDX6+U6lpaWIi8vTy6blZUl18lkMkGv18t+5eXlyMnJkcvm5OSgoqJC9tTr9XKMKyoqWrxHSNMASG5VVVXIzMyUy+bn58t/oNlsNuj1ejQ2NgJoeqgjPT1dLltYWIjz58/Lx9Pr9XJSWVtbC71eL5c9d+5cizFsaGhwivf58+dRWFgol01PT0dNTU2b4p2ZmYmqqioATV9Cer1ePv9LS0tRXFyMoUOHQqfTISsrq9UYNo+3NJ+UxWKBXq+Xz8PKyspW78l6vR4GgwEAUF1djYyMjDbF210Mi4qKnOJdX18PAKirq4Ner5evz5bOWZ1Oh6SkJOTn58vXRnFxMQoKCuSyGRkZrcb7QuesFO+ysjL5mgOA7OzsVuOdnZ0tl83NzUVZWRmApuv6QvFu7Zx1jHd5eTmio6Oh0+kgiiL0ej327t2Lb7/9FufPn28x3r64R3hC0M8DtGbNGpw/fx7vvfee2/3PPfcc0tLS8PHHHzttnzJlCu655x4sXrzY4/eU5hEYOHAgwsPDATSddCqVChqNBkajEXl5eejfvz/Cw8Pl1qDmNz2lUgnGGOx2O5RKJRQKhUdl3b22PWWBpi8xhULRYp3aW/ZCrgCwaNEi9OzZE+vWrfNJXAIRbykunsa7qqoKkZGR8mSIHRHv5mVXrlyJwsJCvPbaa4iOjkZcXNwF4/L444/jyiuvxPTp09scQ4vFgtzcXHTv3h2xsbEAmm7ACoUCWq1Wbh3SaDQICwuDzWaDIAgIDw+HQqGQ/1rU6XQAmr5Y1Wo11Gq1R2WlhE2n00GpVEIQBIiiKF/LnpR1vO6lhFOr1UKlUsl/CLW1rNVqlacKcBcXT8q2FkMAXsdbiosv4m0ymRAWFuaTeDvGxdt4S3HxNt7N4+JNvB3jYrfb2x3v5nHxRbzNZrM8rrE98d6yZQsMBgPuuusuxMTE+Czeze8RUkLNxVpgiYmJ+P777522CYIgz9LsDdJJ0vxnpVIpf+lIvzvi+AVks9mcngRqqSzQ9NSQ4wRyzX9vb1kAfivbWp2Apr8UpBy7tbKeHNdfZX0dQ7vdjujoaISFhTnt91e8WypbV1eHlJQU9OvXr03HFUUR33//PURRxPTp0z2OoXStCIKAyspK+TpUKBROc2eFhYUhLOyPW1DztYPaW1alUjn93ryF2JOyza97x7LSjdddWZvNhurqaiQkJEClUrmUlW7ggGtcPCnbWly8iXfzuHgab0EQUFRUhISEBKe4+CveFyrbEfEG/oiLIAgoLy9HQkKCfO8PhnPWm3g7xuVCZZVKpeyv0WgQERGBCRMmQBAEREVFOb3WF/F2V7YthHwX2IQJE1BaWurUtJiamgoAGDduXIfXx2AwOP2rr6932db8n9TsCTTdOA0Gg8s8Rhc6hjcMHjwYH3zwAW655RaMGDEC119/PX744Qd5f21tLZ555hlcfvnlGDlyJObPn4/Dhw/L+3/55RfMnTsXo0aNwpQpU7BmzRq5CXPx4sU4cuQIPvvsM8ycObPddZDKvP7665gxYwamTp2K/Pz8C9bNYDDgueeew9SpUzFmzBgsXLgQp0+flvc3NDTgiSeewOTJkzFu3DjccccdcgtgW/xa2wc0/RXy2WefyfX/73//i8WLF2PkyJGYOnUqNm/e7PRe1dXVeOCBBzB+/HhMmjQJL7/8Mu644w688cYbbuN2If+ZM2ciNTUVn3/+OQYPHiw3NbfGwYMHUVtbix9++MGrhVxFUURtbW3QD4T0Bzy7A+RP/q7+l19+Oa688kpERUUFsGbNYEHOI488whYuXCj/brPZWHl5OTOZTIwxxux2O5s/fz6bM2cOO3nyJDt48CCbMWMGW7NmTbvfMy0tjaWlpbW432QysbNnz8p1cASAx//+85//yK//z3/+wwCwyy+/3Om4Xbt2bfUY3pCcnMxGjx7N3n//fZaTk8NeeuklNmTIEHbs2DFms9nYnDlz2HXXXccOHz7MsrKy2BNPPMGGDRvGTp48yaqqqtjw4cPZ+++/z4qKitjRo0fZzJkz2aOPPsoYY6ympobdeuut7P7772dVVVXtqoNjmUmTJrG0tDT2+++/X7BujDG2ZMkSdsUVV7B9+/ax/Px8tmbNGjZhwgRWW1vL7HY7u/XWW9miRYvYiRMnWHZ2Ntu4cSMbNmwYO3PmDGOMtep3IXepzp988on88/jx49nnn3/OCgsL2datW1lycjJLTU1ljDEmiiKbN28emzNnDvv999/Z6dOn2W233cYGDx7MXn/9dZeYtcW/qqpKjn95eTmz2Wwux/nss8/YsmXL5H9XXXUVS05OZsnJyez222+Xt99///0sMzOzxc+wteuCIAiiI7jQ97cjIdcFVlJSgj/96U9Yv3495s6dC4VCgc2bN+OZZ57BokWLoNVqcdVVV2Ht2rWBrmpIMXfuXNx2220AgNWrVyM1NRXvv/8+GhoacObMGXz55ZdITk4GADzzzDM4deoUduzYgaVLl0IQBPTo0QM9e/ZEz5498eabb8qZf0xMDNRqNXQ6HeLi4tpVh7Fjx8plbrzxRrlv95dffmm1bvfffz/27duHHTt2YOrUqQCAp59+Gp07d0ZNTQ3Onj2LEydO4NChQ4iJiQEArFq1CsePH8e7776LDRs2oKysrEW/1va1xOzZs3HjjTcCAJYuXYodO3bg+PHjmDBhAlJTU5GWloZvvvkG/fv3BwC8+uqrLbac7d+/v1X/1157DXFxcXL84+PjW6yTyWTChg0bnAZRA5Bbk/r374+NGzdi0KBBLboRBEG0hNTToVKpgmZy2KBPgKSnViSSkpKcRpsDQJcuXfD66693ZLVaRBoVDzSNAbJYLNBqta2uBu7Yrzlnzhw0Nja6lHd8AsMfTJo0yen3MWPG4MCBA8jMzERUVJT8BQs09dOOHz8e+/fvR0pKCq677josXboU8fHxuPTSSzF9+nRceeWVsj9zGGf/5ptv4q233pJ/v/766/Hss8+2WgdH+vTpI/98obpJT92MHj1a3q/VauXk+PvvvwdjDDNmzHB6D0EQ5MGkrfmFhYW1uA/4Y7Cwo7/jfFUAEBUVJT+tdPbsWURHR8vJDwB07drVaeyOIxfy94QFCxZg4sSJeOCBB1yur5tvvhmPPfaY03iBtmAymZCTk4MBAwZ4/NpQh2d3gPzJ39X/1VdfhcFgwNKlSwM6QbEjQZ8AhRqdOnWSf7bb7dBqtS6DYFujpYFcjsf1B83fU3riyfHL2xHGmPyajRs34t5778W+ffvw22+/4aGHHsK4cePwr3/9y2VQ9Pz583H11VfLv0dGRl6wDo44Dpi7UN0uNCDObrcjMjISn376qcs+x8GCLfm98847re5zh7spGyQPaeB0W2nLZ+MJAwYMwKhRo1wSoKuuuqpdN3GVSoXY2FguV4bn2R0gf/IPDf+QHwQdzEiPDLY1+QkkzQf+/v777xg2bBgGDx6MhoYGpzlMGGM4duwYBg4ciJMnT2LdunXo378/Fi9ejG3btmHdunU4dOgQampqoNFonJo7Y2Ji0KdPH/lfly5dLliHlrhQ3aTWFsfj2mw2zJw5E3v27EFycjIaGxthtVqd6rR9+3Z5AHZrfq3tq6qqkj/3tjb3DhkyBA0NDU7zotTU1DgN8PfE31NEUcTevXsBAJMnT5YnGP3mm288PhbQlOz17NmTy+VAeHYHyJ/8Xf3vu+8+rFmzpsWu+EAQ/N/MIQwLoaUQ3nnnHXz55ZfIy8vDCy+8gIyMDCxatAhTp05FSkoKHnzwQaSmpiInJwfPPvssMjMzsWjRIkRGRmLXrl146aWXUFBQgMzMTHz99dfo27cvYmJiIIoiIiIicP78eXnSMk/r0BIXqlu/fv0wa9YsPPPMMzh06BDy8vLwxBNPwGKxYOLEiZg2bRpSUlLwwAMP4NChQygoKMD69evx6aefyslTa34REREt7ouNjXWaHbktTJo0CaNGjcLDDz+MEydOID09HatXr4bJZHKbRF3I31MOHz4Mg8GAtWvX4u2338YXX3yBq6++Gt9//73Tk4ptpfkstDzBsztA/uTv6q/Vai84HKSjCZ6aXIQ0n6k3mJk/fz7efvtt3HDDDTh69Ch27NiBIUOGQKVSYefOnRg6dChWrFiBm266CVlZWXj77bcxevRoDBgwAG+88QYOHTqE2bNnY8GCBVCpVNi+fTuApkmubr31VmRmZuKGG25odYBwS3VoiQvVDQDWrVuHCRMm4P7778fcuXNRUlKCHTt2IC4uTn798OHD8fe//x033HADjhw5gs2bN2PKlCkA0KrfoEGDWtynVCrdjgG6EG+88QYSExOxePFiLFq0CCNHjkSPHj3crqrcFn9PyMnJwccff4zFixdDoVAgOjoar776Kh555BGkpaV5fLzms9DyBM/uAPmTf2j4B/1M0IFA6jJpaSZJs9mMvLw89OvXz2lMSnNYs5l6g5XBgwfLT9X5Ek/8/VWHQOLp519dXY2TJ09i6tSpcsIjCAImTZqEp556CrNnz/Zzjb2j+XUhLRei0+mCfiyAr+HZHSB/8nf1P3DgAARBwIQJE5zGfvqaC31/O0KDoP2Iu5mReYL8PfMPCwvDAw88gPnz52PBggWwWq3YsWMHNBoNLrvsMj/W1D+oVCq/D94PVnh2B8if/F39Dx48CIPBgKFDh/o1AfIE6gLzI3a7XV7ThUfI3zP/zp07480338SJEycwe/Zs3HrrraisrMS77757wTmUghGr1Yri4mKnhVN5gWd3gPzJ39V/zJgxmDBhgtPyFYGGWoD8jLQWWDDT/LFnX9JWf3/WIZB4+vlPnjwZH330kR9r1HHYbDZUVlYiNjbW7Rimixme3QHyJ39X/z/96U8BrpUrwf3NHOI0XzCON8ifb//w8HCMHDky0NUICDy7A+RP/qHhT11gBEEQBEFwByVAfsRut8NkMnE9Bob8+fU3mUw4e/YsTCZToKvS4fDsDpA/+bv6b9y4Ec8++yzKysoCWDNnKAHygrbMIBBMkz4FAvLnx7/59aBSqRAZGcnlk4A8uwPkT/6u/oyxoJsUmMYAtQNpUOuFZsdVKpVOC53yBvnz5S9dD9L1odFo0Lt370BWKWDw7A6QP/m7+i9duhSMsaAaF8nPn6c+RKVSQaVSob6+vtVy0kR4wZb1dhTkz5d/fX29fG0AoTUTuq/h2R0gf/J39Y+MjERUVFRQtYpRC1A7UCgUSEhIQElJCbRaLTp16uR2pl9RFGGxWKDVaoPqQ+8oyJ8Pf8YYDAYD6uvr0b17d/lakKbDT0lJCaq/+joCnt0B8if/0PCnBKidREdHw2QyobKyEhUVFW7LSH2eCoUiqJfC8Bfkz4+/QqFATEwMoqOj5W1arRbJyclcdQNK8OwOkD/5u/qnpqZCEASMGTMmaGbJpgSonSgUCnTv3h0JCQnczvZJEBJqtdqllUulUiEqKipANQosPLsD5E/+rv779u2DwWDAoEGDKAG6WHAc89Acq9WKqqoqdOnShcvZQMmf/Hn159kdIH/yd/UfPnw4LBYLwsPDA1y7P6BB0H7EarWitLSU2xYi8id/Xv15dgfIn/xd/a+66irceOON6Ny5cwBr5oyC8fKIigecOnUKADBixIgA14QgCIIgiLbiyfc3tQARBEEQBMEdlAD5EbPZjPT0dJjN5kBXJSCQP/nz6s+zO0D+5O/q//rrr2P9+vUoLy8PYM2coQTIjygUCuh0uov+EeiWIH/y59WfZ3eA/Mnf1V8QBAiCEFQTw9IYIDfQGCCCIAiC8B21tbWw2+3o3LmzvFyOP6AxQEECYwxWqzWoMt6OhPzJn1d/nt0B8id/V/+YmBjExcX5NfnxFEqA/IjJZEJaWhpMJlOgqxIQyJ/8efXn2R0gf/IPDf/gScUuQrRaLQYOHMj1dOjkT/48+vPsDpA/+bv6Hz9+HFarFSNGjAia9cEoAfIjKpXKaW0k3iB/8ufVn2d3gPzJ39X/xx9/hMFgQN++fYMmAaIuMD9itVpRXl7O9Wyg5E/+PPrz7A6QP/m7+g8ePBjDhg2DTqcLYM2coRYgP2K1WlFUVITIyEhu14Mhf/Ln0Z9nd4D8yd/V//rrrw9wrVyhx+DdQI/BEwRBEEToQY/BEwRBEARBtAIlQH7EbDYjMzOT6+nQyZ/8efTn2R0gf/J39d+6dSs2btyIioqKANbMGRoD5EcUCgXCwsK4ng6d/MmfR3+e3QHyJ39Xf4PBAIPBALvdHsCaOUNjgNxAY4AIgiAIwndUVFTAbrcjLi7OrwPDPfn+phYgP8IYg91uh1Kp5PIvAfInf179eXYHyJ/8Xf3j4+MDXCtXaAyQHzGZTDhx4kTQTwfuL8if/Hn159kdIH/yDw1/agHyIxqNBv3794dGowl0VQIC+ZM/r/48uwPkT/6u/qdOnYLNZsOQIUMQHh4ewNr9ASVAfiQsLAyxsbGBrkbAIH/y59WfZ3eA/Mnf1f/bb7+FwWBAjx49giYBoi4wP2Kz2VBZWQmbzRboqgQE8id/Xv15dgfIn/xd/QcMGIDk5OSgWiCWWoD8iCAIKCgoQEREBMLC+As1+ZM/r/48uwPkT/6u/nPmzAlwrVyhx+Dd4KvH4B1Dy+uTABLkT/48wbM7QP7kHzh/egw+SODxxHeE/MmfV3h2B8if/EPDn8YA+RGLxYLs7GxYLJZAVyUgkD/58+rPsztA/uTv6v/Pf/4Tr7/+OiorKwNYM2eoBYggCIIgCL9SW1sLg8EAURQDXRUZGgPkBloKgyAIgiB8R3FxMURRRLdu3fw6PxKNAQoSaCAc+UuQP1/+PLsD5E/+rv49evQIVHVahMYA+RGTyYTjx48H/XTg/oL8yZ9Xf57dAfIn/9DwpxYgP6LRaNCnTx+up0Mnf/Ln0Z9nd4D8yd/VPz09HTabDQMHDoROpwtg7f6AEiA/EhYWhq5duwa6GgGD/MmfV3+e3QHyJ39X/6+++goGgwFLly4NmgSIusD8iM1mQ01NDdfToZM/+fPoz7M7QP7k7+rfu3dv9O3bN6haxSgB8iOCICA3NxeCIAS6KgGB/MmfV3+e3QHyJ39X/1tuuQWLFi0KqkVi6TF4N/hyKQy73Q6lUsntkwDkT/48+vPsDpA/+QfOnx6DDxIUCgVUKlWgqxEwyJ/8efXn2R0gf/IPDX/qAvMjFosFubm5XE+HTv7kz6M/z+4A+ZO/q/8777yDrVu3oqqqKoA1c4ZagPwIYww2mw289jKSP/nz6s+zO0D+5O/qX1FRAYPBEFQDw4NyDJDdbsfmzZvx8ccfo6GhARMmTMCTTz6JXr16uS1fVVWFdevW4cCBA2CM4ZJLLsGaNWvQrVu3dr0/LYVBEARBEL6joKAAoigiKSkpaJbCCMousC1btmDXrl147rnn8NFHH8Fut2PJkiUtjqj/+9//juLiYvzrX//Cv/71LxQXF+Pee+/t4FoTBEEQBOGOPn36oH///vQYfGsIgoCdO3di5cqVmD59OoYMGYJNmzahtLQU3333nUv5+vp6pKam4q677kJKSgqGDh2Ku+++G6dOnUJtbW3HCzhgNBpx/PhxGI3GgNYjUJA/+fPqz7M7QP7kHxr+QZcApaenw2AwYMqUKfK2zp07Y+jQoThy5IhLeZ1Oh06dOuHzzz9HY2MjGhsb8cUXX6Bfv37o3LlzR1bdBbVajaSkJKjV6oDWI1CQP/nz6s+zO0D+5O/qn5OTg4yMjKAaGB50CVBpaSkAoHv37k7bExIS5H2OaDQabNiwAampqRg/fjwmTJiAkydPYvv27VAqvdNzXMjNZDLJXXB2ux1GoxGiKAIArFarU6ZrNpthsVigVqsRHx8Pq9V6wbJA08Axo9EoDxKz2WwwGo3yQDKLxeJRWbPZLL+P0WiE1WoFAIii6HFZu90OoKmFrnlcWirLGENUVJR8EXgSw/bE211cvI1387h4UhZoOm+VSqVLDL2Jd/O4eFK2tRj6It5SXICmm2Dnzp2dzof2nrPtOb9biou38XaMS0tlVSoVIiMj5XtQW2J4Md0jbDYbEhISoFarW71HeHPOBvM9Qq1WIy4uDlartd0xDOV7hCiKiI6OhlqtlmP42Wef4aOPPkJVVZVP4938HuEJQZcASR9O835CrVbrNnNkjEGv12PMmDH44IMP8M4776BHjx5Yvnw5Ghsb210PURSRlZUl/56XlycnYIIgQK/Xy8GuqqpCZmamXDY/Px8lJSUQRRHV1dXQ6/VyXWpqapCeni6XLSwsxPnz5wE0nVR6vR4NDQ0AgNraWuj1ernsuXPncO7cOfl3vV4vd/M1NDRAr9fLJ/r58+dRWFgol01PT0dNTQ0AoLGxEXq9Xj7JSkpKkJ+fL5fNzMyUH1U0Go3Q6/XyiV9aWoq8vDy5bFZWFioqKgA0nch6vV4+QcvKypCVlSVfJDk5OSgvLwfQdCLr9Xr5866srGwx3larFXq9HgaDAQBQXV2NjIwMl3gDTReBY7zdxbCoqMgp3vX19QCAuro66PV6+WIrKiq6YLwlt+LiYhQUFMhlMzIyUFVVhbq6OtTX17vEu3kMKysrATSd/47xLisrQ25urlw2Ozu7xXhXVFQgOztbLpubm4uysjIAf5yzrcW7pRjW1NQ4xbugoADFxcUAmq6Tls5ZURSRl5cnx1C6Vuvq6gBAjot0zrYW7wudsxkZGaiurgYAGAwG6PV6+cbo7pxtHm/p3lJeXo6cnBy5bE5OTqvxbumclcpKcWnpHtFSvEP9HpGbm4u6ujr5PtpaDJvH+2K4R4iiiLKysgveI1qLdyjfI/Lz85Gfnw9RFOV7RNeuXdGzZ0/5fHEXb1/cIzyCBRl79uxhycnJzGQyOW1fuXIlW7p0qUv53bt3s/Hjx7OGhgZ5W21tLRszZgz717/+1a46pKWlsbS0NGY0GuVtRqORWSwWxhhjoigyg8HAbDYbY4wxQRCYwWCQy5pMJmY2m5nBYGBHjx5llZWVFyzLGGN2u50ZDAZmtVoZY4xZrVZmMBiY3W5njDFmNps9KusYQ4PBwARBYIwxZrPZPC4riiJjjDGLxeISl5bK1tbWsqNHj8q+nsSwPfF2Fxdv4908Lp6UraurY0ePHmX19fUuMfQm3s3j4knZ1mLoi3hLcZG8jh49ympqatodbyku7Tm/W4qLt/F2jEtLZRsaGuTPvq0xvJjuEdXV1fK139o9wptzNpjvEY73/vbGMJTvEY6ff2v3CF/Eu/k9Qvr+bgtB9xh8Wloabr75Zuzduxe9e/eWty9YsACDBw/G008/7VT+2WefxenTp/Gf//zHaftNN92EkSNH4qmnnvK4Dr5cCsNmsyEsLIzb6dDJn/x59OfZHSB/8g+cf4c/Bi8IAlJSUvD55597fawhQ4YgMjIShw8flrfV19fj7NmzmDBhgkv5xMREFBQUOHWPGY1GFBUVoW/fvl7XxxsUCgXUajWXFwBA/uTPrz/P7gD5k39o+PtsDJCvGpI0Gg0WLlyIl19+GT/88APS09PxwAMPIDExEbNmzYIoiqioqJD7NGfPng2gaS6g9PR0pKenY9WqVdBqtZg7d65P6tReLBYL8vPzg2rUe0dC/uTPqz/P7gD5k7+r/65du7Bjxw55rF4wEHSDoAFg5cqVmDdvHh5//HEsWLAAKpUKO3bsgFqtRklJCaZOnYqvv/4aQNNTNrt27QJjDIsWLcKdd94JtVqNXbt2ISoqKqAejDGYzWaup0Mnf/Ln0Z9nd4D8yd/Vv7i4GEVFRfLDCcGAT8YACYKAkSNHYsOGDXKLTChDS2EQBEEQhO/Izs6GKIro27cvtFqt397Hk+9vWgyVIAiCIAi/MnDgwEBXwYWg7AK7WDAajThx4kTQTwfuL8if/Hn159kdIH/yDw1/agHyI2q1GomJiVxPh07+5M+jP8/uAPmTv6t/YWEhRFFEz549g2ZBVEqA/Ih0EvAK+ZM/r/48uwPkT/6u/v/5z39gMBiwdOlSdOvWLUA1c8arLrC33noLGzdudNp29OhR3H333UHf9NURiKKIhoYGeSp03iB/8ufVn2d3gPzJ39W/a9euSEhIQFhY8LS7eJUAabVabN++HevWrYNCocChQ4dw1113QRAErxcivRiwWCzIzMzkei4I8id/Hv15dgfIn/xd/RcvXoxly5ahS5cuAayZM14/Bv/BBx/g+eefl3+/5JJLsGXLFr8+5uZvfPUYvN1uhyAI0Gg0XCaE5E/+vPrz7A6QP/kHzr9DH4O/7bbboFar8dRTT+Hyyy/H66+/HjQDnAKNUqmETqcLdDUCBvmTP6/+PLsD5E/+oeHvk9TslltuwXfffYc33niDkh8HBEFAYWEhBEEIdFUCAvmTP6/+PLsD5E/+rv7/+c9/8O6776KmpiaANXPGZ6ORevXq5atDXTSIoojGxkauB8KRP/nz6M+zO0D+5O/qX1hYCIPBEFRJoU+WwrjYoKUwCIIgCMJ36PV62Gw2DBo0yK/dY7QUBkEQBEEQQUNKSkqgq+ACf8PTOxCTyYS0tDSYTKZAVyUgkD/58+rPsztA/uQfGv7UAuRHwsLC0LVr16Ca+KkjIX/y59WfZ3eA/Mnf1b+kpASiKKJbt25Bs0QIjQFyA40BIgiCIAjf8fLLL3fIUhiefH9TF5gfEUURBoOB6ycByJ/8efTn2R0gf/J39Y+OjkZMTAxUKlUAa+YMJUB+xGKxID09nevp0Mmf/Hn059kdIH/yd/W/6667cP/996Nr164BrJkzPukCq6urg8lkgt1ud9nXo0cPbw/f4fhyKQyz2QydTsftdOjkT/48+vPsDpA/+QfOv8Megy8oKMAjjzyCkydPtlhGr9d78xYhjVKpRERERKCrETDIn/x59efZHSB/8g8Nf68SoOeeew75+flYsWIFEhMTucx0W0MQBFRUVCA+Pp7LJULIn/x59efZHSB/8nf1/+yzz2A2m3H11VcjJiYmsBX8/3iVAB05cgT/+Mc/cN111/mqPhcVoiiipqYGcXFxga5KQCB/8ufVn2d3gPzJ39U/JycHBoMBM2fODGDNnPFqDNCll16KDRs2YNq0ab6sU8Chx+AJgiAIwnecOnUKVqsVKSkpCA8P9+v7AB3wGPyNN96IDz74ADSVEEEQBEEQLTFixAiMHTvWr8mPp3jVBRYeHo5jx47hyiuvxIgRI1wWOFMoFFi3bp1XFQxlTCYTcnJyMGDAgKD60DsK8id/Xv15dgfIn/xDw9+rBOizzz5DVFQU7Ha72yfBFAqFN4cPeVQqVdBN/NSRkD/58+rPsztA/uTv6l9RUQG73Y4uXboEzRIhtBSGG2gMEEEQBEH4DloKgzPsdnuLE0TyAPmTP6/+PLsD5E/+rv4RERHo1KlTUE2X45N2qH379iE1NRX19fWIjY3FuHHjcNlll/ni0CGN2WyGXq9HSkpKSEwK5WvIn/x59efZHSB/8nf1X758eYBr5YpXXWCCIGD58uXYv38/VCoVYmNjUVNTA7vdjsmTJ+Ott94KyUmgfNUFJooiTCYTwsPDuewLJn/y59WfZ3eA/Mk/cP4d1gX2xhtv4NixY3jxxReRlpaG/fv34+TJk1i/fj1OnDiBrVu3enP4kEelUiEyMpLLCwAgf/Ln159nd4D8yT80/L1KgL766iusWLECN9xwgywaFhaG2bNnY8WKFfjyyy99UslQxWq1oqSkBFarNdBVCQjkT/68+vPsDpA/+bv6f/XVV/jkk09QV1cXwJo541UCVF1djaFDh7rdN3ToUJSVlXlz+JDHarWivLyc64uA/MmfR3+e3QHyJ39X//T0dJw+fRpmszmANXPGq0HQvXv3xrFjxzBlyhSXfUeOHEH37t29OXzIExERgVGjRgW6GgGD/MmfV3+e3QHyJ39X/5kzZ8JqtSIqKipAtXLFqwRo/vz52LBhA3Q6Ha699lp07doVlZWV+Oqrr7B9+3asWLHCV/UkCIIgCCJEGTt2bKCr4IJXCdCCBQtw9uxZvPzyy9i4caO8nTGGOXPm4O677/a6gqGMyWRCXl4e+vXrF9TTgfsL8id/Xv15dgfIn/xDw9+rBEipVOIf//gH/vrXvyI1NRV1dXWIjo7GxIkTMWDAAF/VMWQJlZHw/oL8yZ9Xf57dAfInf1f/2tpaMMbQuXPnoImLx/MArV27FsuXL0evXr2wdu3a1g8eoouh0lIYBEEQBOE7gnEpDI9bgA4fPoxFixbJP7cG74uh2u12WK1WqNXqoJr+u6Mgf/Ln1Z9nd4D8yd/VX6PRwGq1BlVeQIuhusFXLUBGo5Hr6dDJn/x59efZHSB/8g+cf4fNBH3kyBEYDAa3++rr67F7925vDh/yaLVaDBo0CFqtNtBVCQjkT/68+vPsDpA/+YeGv1cJ0B133IGcnBy3+86ePXvBMUIXOyqVKqgGfHU05E/+vPrz7A6QP/mHhr/HY4AeeeQRlJSUAGh63P3pp59GZGSkS7n8/Hx07drV+xqGMFarFdXV1YiLi4NarQ50dToc8id/Xv15dgfIn/xd/ffs2QOLxYLp06cjOjo6wDVswuMWoD//+c9gjMFx6JD0u/RPqVRi9OjRWL9+vU8rG2pYrVYUFxdzPR06+ZM/j/48uwPkT/6u/qdPn8aJEyeCaikMrwZB33777Xj66acvujl/6DF4giAIgvAdhw8fhiAIGDt2LDp16uS39/HrY/COvPfeewCAqqoqCIIgtwrZ7XaYTCYcPXoUCxYs8OYtCIIgCIIIcSZNmhToKrjgVQKUnp6O1atXtzgQWqFQcJ0Amc1m5Ofno2/fvtDpdIGuTodD/uTPqz/P7gD5k39o+HuVAL344ouoq6vDI488gp9++gkajQYzZszAvn37sG/fPrz77ru+qmdIolAooNPpgmrip46E/MmfV3+e3QHyJ39Xf4PBAMYYwsPDg+bpMK/GAI0bNw5r167FvHnz8O9//xtffvkl3n//fQDAypUroVAo8Nprr/mssh0FjQEiCIIgCN8RjEtheDUPkCAI6Nu3LwCgb9++SE9Pl/fNnTsXJ06c8ObwIQ9jDFarFbxOtk3+5M+rP8/uAPmTv6t/MLaGeZUA9ejRA+fOnQPQlAA1NjaiqKgIQNO6H3V1dd7XMIQxmUxIS0uDyWQKdFUCAvmTP6/+PLsD5E/+rv4PPvggnnrqKb+2/niKVwnQrFmzsHHjRnz77bfo1q0b+vfvj1dffRUZGRnYuXMnevXq5at6hiQajQYDBgyARqMJdFUCAvmTP6/+PLsD5E/+oeHv1Rggi8WChx56CCaTCdu3b8evv/6KFStWQBAEqFQqvPLKK5g1a5Yv69sh0BgggiAIggg9PPn+9slq8NKy9wBw7tw5nD59GsOGDUPv3r29PXRA8FUCZLVaUVtbi5iYGG6nQyd/8ufRn2d3gPzJ39X/hx9+gCAIuPTSS9G5c2e/vXeHDYKWcPyAe/Xqhauvvjpkkx9fYrVaUVhYyPV06ORP/jz68+wOkD/5u/r//vvvSE1NDapxUR63AG3evLntB1cocO+993pcqUBDXWAEQRAE4Tv2798PQRAwceJEtwuo+wq/doENGTKkzWUVCgX0er0nhwfQtJTG5s2b8fHHH6OhoQETJkzAk08+2eKgaqvVitdffx2ff/45GhoaMHz4cDz22GNISUnx+L0BSoAIgiAIIhTx61pgjnP9+IstW7Zg165d2LBhAxITE/HSSy9hyZIl+PLLL92OKn/66afx888/Y8OGDejRowdee+013HXXXfjmm28QFRXl9/q2hNlsxrlz59CrV6+gng7cX5A/+fPqz7M7QP7kHxr+Xi2FIbFv3z6kpqaivr4ecXFxGDduHKZNm9auYwmCgJ07d2L16tWYPn06AGDTpk2YNm0avvvuO1x33XVO5c+dO4dPPvkEb775pvyezz//PGbPno3Tp09jypQpXrl5g0KhgFKpDMoJoDoC8id/Xv15dgfIn/xd/aUF09VqNZRKnww/9hqvngITBAHLly/H/v37oVKpEBsbi5qaGtjtdkyePBlvvfWWx/MApKWl4eabb8aePXvQr18/efuCBQuQnJyMZ555xqn8Rx99hI0bN+Lw4cM+Cyp1gREEQRCE77jolsJ44403cOzYMbz44otIS0vD/v37cfLkSaxfvx4nTpzA1q1bPT5maWkpAKB79+5O2xMSEuR9juTl5aFXr1747rvvMHfuXFx66aW46667Wlyh3hMcR6ubTCYIggCgaYyS0WiEKIoAmsYgGY1GuazZbIbFYgFjDDabDQaD4YJlgabpw41GI2w2GwDAZrPBaDTK04lbLBaPyprNZvl9jEajPCJfFEWPy9rtdgBNSW/zuLRU1mKxoLGxUX4fT2LYnni7i4u38W4eF0/KCoIAURTlso4x9CbezePiSdnWYuiLeEuujvskV2/O2fac3y3Fxdt4O8alpbKiKKKhocGj8/BiukdIPoyxVu8R3pyzwXyPYIzBYrHIC4C2J4ahfI8wmUxynKQYSjjeI3wR7+b3CE/wKgH66quvsGLFCtxwww3y6q5hYWGYPXs2VqxYgS+//NLjY0ofTvOWI61WKwfJkcbGRhQUFGDLli1YtWoVtm7dirCwMPzlL39BVVVVO6yaEEURWVlZ8u95eXlyAiYIAvR6vRzsqqoqZGZmymXz8/NRUlICk8mEkydPIj09HY2NjQCAmpoap3FUhYWFOH/+PICmk0qv16OhoQEAUFtb6zSI/Ny5c/LSIwCg1+tRW1sLAGhoaIBer5dP9PPnz6OwsFAum56ejpqaGjlmer1ePslKSkqQn58vl83MzJRjZzQaodfr5RO/tLQUeXl5ctmsrCxUVFQAaDqR9Xq9fIKWlJQgIyND/kxzcnJQXl4OoOlE1uv18r7KysoW4221WqHX62EwGAAA1dXVyMjIcIk30HQR6PV6Od7uYigt1yLFu76+HgBQV1cHvV4vX2xFRUUXjLd0AyguLkZBQYFcNiMjA+Xl5Thx4gSqq6td4t08hpWVlQCazn/HeJeVlSE3N1cum52d3WK8KyoqkJ2dLZfNzc1FWVkZgD/O2dbi3VIMa2pqnOJdUFCA4uJiAE3XSUvnrOQinYeMMej1enmJnPr6eqdztrV4X+iczcjIQHV1NYCmVaf1er18Y3R3zjaPt3RvKS8vd/rjKScnp9V4t3TONjQ0IDMzU77mWrpHtBTvUL9H5Obm4sSJEzCZTK3eIyoqKlzifTHcI0wmE06fPo309PRW7xGtxTuU7xH5+fnysaR7xKJFi/Doo49Co9G0GG9f3CM8gnnByJEj2W+//eZ232+//caGDx/u8TH37NnDkpOTmclkctq+cuVKtnTpUpfyTz75JEtOTmbZ2dnyNpPJxCZOnMi2b9/u8fszxlhaWhpLS0tjRqNR3mY0GpnFYmGMMSaKIjMYDMxmszHGGBMEgRkMBqf3N5vNzGq1ssrKSlZXV3fBsowxZrfbmcFgYFarlTHGmNVqZQaDgdntdsYYY2az2aOyjjE0GAxMEATGGGM2m83jsqIoMsYYs1gsLnFpqazRaGQlJSVyHT2JYXvi7S4u3sa7eVw8KWs0GllVVRUzm80uMfQm3s3j4knZ1mLoi3hLcZF+Li0tZY2Nje2OtxSX9pzfLcXF23g7xqWlshaLhRUXF8txaksML6Z7RENDA6uqqmJWq7XVe4Q352ww3yOsVisrLy9ndXV17Y5hKN8jGhsbWWlpKbNara3eI3wR7+b3COn7uy14NQbo+uuvx5///GesWLHCZd/rr7+Or776Ct99951Hx5TGAO3du9dpMsUFCxZg8ODBePrpp53Kb926FZs3b8aZM2ects+bNw/Dhw93Kd8WaAwQQRAEQYQeHTYGaP78+Xjrrbfwz3/+EyUlJbBarSgpKcH27duxfft23HTTTR4fc8iQIYiMjMThw4flbfX19Th79iwmTJjgUn7ChAmw2WyyNPDHI3h9+vRpn5iPsNlsqKqqkps1eYP8yZ9Xf57dAfInf1f/ffv24fvvv5e7b4MBrxKgBQsW4IYbbsDLL7+MmTNnYuTIkZg5cyY2btyI6667DnfffbfHx9RoNFi4cCFefvll/PDDD0hPT8cDDzyAxMREzJo1C6IooqKiQu7THD9+PC655BI88sgjOHr0KLKzs/Hwww9DpVLhxhtv9EbPawRBQH5+vtxXyxvkT/68+vPsDpA/+bv6p6am4sCBAx4PVPYnPlkMNTs7W54HKDo6GhMnTsSAAQPafTxRFPHKK6/g008/hdlslmeCTkpKQlFREf70pz9h/fr1mDt3LoCmwU8vv/wy9uzZA7PZjLFjx+LRRx/FwIED2/X+vuoCY/9/BLxCoeByPgjyJ39e/Xl2B8if/F39f/rpJwiCgEsuucSvExR3+GrwFxs0BoggCIIgQg+/LoWxdu1aLF++HL169cLatWtbLatQKLBu3TpP3+KiwWKxoKioCElJSdBqtYGuTodD/uTPqz/P7gD5k39o+HucAB0+fBiLFi2Sf24NHpv+HGGMwW63g9dGNvInf179eXYHyJ/8Xf0dfw6W3MCrLjBRFOUJEC8mqAuMIAiCIHzHRbcUxtSpU/H88887PYJOEARBEAQR7HiVAF133XX49ttvccstt+Cqq67Cm2++KU/ZTjRNEX/s2LGgeuyvIyF/8ufVn2d3gPzJ39X/3nvvxUMPPYT4+PgA1swZr58CY4zh0KFD2L17N/bu3YuGhgaMHTsWN954I6666iq/Pu7mL3zVBWaz2VBbW4uYmBiEhXk83CrkIX/y59WfZ3eA/Mk/cP4BewzearXiwIED2L17N7755huEhYXhxIkTvjp8h0FjgAiCIAgi9OiwMUCO2Gw27N+/H19//TX27dsHAJgyZYqvDh+S2Gw21NTUcD0dOvmTP4/+PLsD5E/+rv4HDx7EL7/8Iq8gHwx4lQAxxnDw4EE8/vjjuPTSS7Fs2TLk5+dj5cqV+PXXX7F161Zf1TMkEQQBubm5XE+HTv7kz6M/z+4A+ZO/q/+BAwfw888/w2AwBLBmznjVBTZ16lRUVVWhR48euOGGG3DjjTeib9++PqxeYPDlUhjSVAHBMu9BR0L+5M+rP8/uAPmTv6v/d999B4vFgssvvxydO3f223v7dSZoR2bOnIkbbrgB48eP9+YwFy0KhYLLAXAS5E/+vPrz7A6QP/m7+s+aNStAtWkZr7rAnn32WUp+WsFisSAvLw8WiyXQVQkI5E/+vPrz7A6QP/mHhr/PBkETrjDGIAgC19Ohkz/58+jPsztA/uQfGv60Grwb6DF4giAIgvAdr776KgwGA5YsWXJxLIVBEARBEARxIWw2W9BNC0AJkB8xGo34/fffuZ4OnfzJn0d/nt0B8id/V/+7774bf//739G1a9cA1swZr4epNzY2wmAwoFu3brBarXjvvfdQXFyMP//5z5gwYYIv6hiyqNVq9OzZE2q1OtBVCQjkT/68+vPsDpA/+bv6+/PR9/biVQvQyZMnMWPGDLz//vsAgOeffx4vvvgi/ve//2HRokX44YcffFLJUEWtViMhIYHri4D8yZ9Hf57dAfIn/9Dw9yoBevXVVzFgwADccsstMJlM+OKLL/CXv/wFqampmDdvHt58801f1TMkEUURdXV1EEUx0FUJCORP/rz68+wOkD/5u/ofPXoUBw8eDKqZoL1uAVq2bBl69eqFAwcOwGKx4MYbbwQAXHPNNcjKyvJJJUMVi8WC7OzsoJ8LwV+QP/nz6s+zO0D+5O/q//PPP+O7774LqrXAvBoDpFQqodVqAQC//vorOnfujJEjRwJoGhuk0+m8r2EIo9PpMGLECG5nBCV/8ufVn2d3gPzJ39V/6NChsFgsQZUXePXpDB8+HB9//DF0Oh327NmD6dOnQ6FQoKqqCtu3b8fw4cN9Vc+QRKlUQqPRBLoaAYP8yZ9Xf57dAfInf1f/a665JkC1aRmvusBWr16N3377DfPnz4dKpcKyZcsAANdddx3y8/Px97//3Rd1DFkEQUBBQQHXKwKTP/nz6M+zO0D+5B8a/l63AO3duxc5OTkYNGgQIiIiAABPP/00xo4di/j4eJ9UMlSx2+0wGo2w2+2BrkpAIH/y59WfZ3eA/Mk/NPw9XgqjuLjYozfo0aOHR+WDAVoKgyAIgiB8x//93//BYDBg8eLFSEhI8Nv7ePL97XEL0MyZM6FQKNpcXq/Xe/oWBEEQBEFcRJhMJphMpqBaINXjBGjdunVyAlRXV4eXX34ZU6ZMwdVXX434+HjU1tbixx9/xM8//4w1a9b4vMKhhNFoRFZWllP3IE+QP/nz6s+zO0D+5O/qf+edd8JutyM2NjbAtfsDjxOguXPnyj/fe++9mD17Np5//nmnMtdffz3+8Y9/4JtvvsGtt97qfS1DlFCZDdNfkD/58+rPsztA/uTv6t+lS5cA1sg9Xj0FduDAAVx99dVu902fPh2///67N4cPedRqNbp37871RUD+5M+jP8/uAPmTf2j4e5UAxcbGIi0tze2+Q4cOoVu3bt4cPuQRRRGNjY1cT4dO/uTPoz/P7gD5k7+r/8mTJ3H06FGnFeIDjVcJ0M0334z/+7//w6ZNm/D7778jPz8fR48exfPPP4+dO3di0aJFvqpnSGKxWJCRkcH1dOjkT/48+vPsDpA/+bv67927F7t370ZDQ0MAa+aMx4/BO8IYw4svvoj33ntPzvQYY9DpdFi+fDnuvvtun1W0I/HVY/B2ux2CIECj0UCp9CrXDEnIn/x59efZHSB/8nf1/+KLL2A2m/HnP/8ZMTExfntvT76/vUqAJBoaGnDixAnU1dUhNjYWY8aMCemR7zQPEEEQBEGEHn6dB6iliRAHDBgg/1xbW4va2loAoTkRoq8QBAFlZWXo1q0bl+vCkD/58+rPsztA/uQfGv40EaIfEUUR9fX16Nq1a6CrEhDIn/x59efZHSB/8g8Nf4+7wD799FOPJkIMxXmAqAuMIAiCIHzHtm3bYDAYsHDhQr+uE+rXLjCaCJEgCIIgCE+or6+HwWAIqgVSaSJEP2IymXDq1CmYTKZAVyUgkD/58+rPsztA/uTv6r9w4ULcddddiIuLC2DNnKGJEP2ISqVCXFwcVCpVoKsSEMif/Hn159kdIH/yd/VPTExEjx49gmp2aI+7wByRJkI0m82YPn06YmNjUVlZiT179uDDDz/Eo48+6qt6hiQajQY9e/YMdDUCBvmTP6/+PLsD5E/+oeHvVQK0bNkyNDQ0YMeOHdi2bRuAPyZCvP/++3Hbbbf5pJKhit1uh9lshk6n43YyLPInfx79eXYHyJ/8Xf3PnDkDm82G5ORkhIeHB7iGTXj1ySgUCjzyyCM4ePAgtm3bhpdeegk7duzAb7/9FrKzQPsSs9kMvV4Ps9kc6KoEBPInf179eXYHyJ/8Xf2/+eYbfP7556ivrw9gzZzxyUzQFxu+XAqD/gogf/Lnz59nd4D8yd/V/7///S/MZjOuvfZaxMbG+u29/foYvDv27duH1NRU1NfXIzY2FuPGjcNll13mi0OHNEqlMqSXBPEW8id/Xv15dgfIn/xd/efNmxeg2rSMVwmQIAhYvnw59u/fD5VKhdjYWNTU1GDbtm2YPHky3nrrraCeBtvfCIKAiooKxMfHcxkH8id/Xv15dgfIn/xDw9+rtrk33ngDx44dw4svvoi0tDTs378fJ0+exPr163HixAls3brVV/UMSURRRHV1NURRDHRVAgL5kz+v/jy7A+RP/qHh79UYoBkzZmDhwoX429/+5rJvx44d+PDDD/H99997VcFAQEthEARBEITv+Ne//gWj0Yhbb73Vr2uEddgYoOrqagwdOtTtvqFDh6KsrMybwxMEQRAEcRFQVVUFg8EQVK1CXnWB9e7dG8eOHXO778iRI+jevbs3hw95TCYTzpw5w/V06ORP/jz68+wOkD/5u/rfeuutWLx4sV+fAPMUr1qA5s+fjw0bNkCn0+Haa69F165dUVlZia+++grbt2/HihUrfFXPkESlUqFz585cT4dO/uTPoz/P7gD5k7+rf69evQJYI/d4NQbIbrfjiSeewCeffAKFQiFvZ4xhzpw5WLdundP2UIHGABEEQRBE6OHJ97dPJkLMyclBamoq6urqEB0djYkTJ2LAgAHeHjZg+HIiREEQoNFouJ0Mi/zJn0d/nt0B8if/P/yBpkaRrKwsiKKIvn37QqfTAWiaL8jXjSQdPhHigAEDQjrh8RfSdOApKSlcTopF/uTPqz/P7gD5k3+Tf3JyMqqqqmCz2fDFF1/AbDbjmmuukccBxcbGokuXLgGrp08SIMI9Wq0WgwcPhlarDXRVAgL5kz+v/jy7A+RP/k3+YWFhEAQBCoUCXbt2lVuFVCoV6uvr0blz54DWkxIgP6JSqRAZGRnoagQM8id/Xv15dgfIn/yb/AVBAGMMOp0OV199tVOZYJghOig7J+12O15//XVMmzYNo0ePxl133YVz58616bX/+9//MHjwYBQVFfm5lhfGarWipKQEVqs10FUJCORP/rz68+wOkD/5h4Z/UCZAW7Zswa5du/Dcc8/ho48+gt1ux5IlSyAIQquvO3/+PJ599tkOquWFsVqtKC8vD/qTwF+QP/nz6s+zO0D+5N/kf6Hv7EDj8VNgxcXFHr1Bjx49PCovCAImT56M1atX4y9/+QsAoL6+HtOmTcM//vEPXHfddW5fZ7fbsXDhQqjVahw6dAg//PADkpKSPHpvCXoMniAIgiC8w2KxIC8vD506dcK3334Li8WCmTNnIjo6GnV1dejSpQsSEhJ8+p5+fQps5syZHj22ptfrPTp+eno6DAYDpkyZIm/r3Lkzhg4diiNHjrSYAL355puwWq1YsWIFDh065NF7EgRBEAThP8rLy2GxWIKqVczjLrB169bJ/x555BGoVCpMnToV//jHP7Bt2za8+OKLuOqqq6DT6fD00097XKHS0lIAcFlGIyEhQd7XnLS0NOzcuRMvvfSST2fedJzG22Qyyc15drsdRqNRXtPEarXCaDTKZc1mMywWC8xmM86ePYuampoLlgWa5kowGo2w2WwAAJvNBqPRCKmRzmKxeFTWbDbL72M0GuUTTxRFj8va7XYATS10zePSUtmGhgacOXNGPrYnMWxPvN3Fxdt4N4+LJ2UbGxuh1+thMBhcYuhNvJvHxZOyrcXQF/GW4iKVO3PmDOrr69sdbyku7Tm/W4qLt/F2jEtLZY1GI86cOQODwdDmGF5M94ja2lro9XqYzeZW7xHenLPBfI9wvPe3N4ahfI+oq6uTl8Kw2+0wm83YuHEjnn32WZSVlTnVwdt4N79HeILHCdDcuXMxZ84czJkzB0eOHMHs2bOxfft2zJ07F9OmTcP111+PTZs2Yd68efjmm288PbwcmOYjxLVarRwkR4xGI1avXo3Vq1ejb9++Hr9fS4iiiKysLPn3vLw8OQETBAF6vV4OdlVVFTIzM+Wy+fn5KCkpgVKpRHh4OHJzc9HY2AgAqKmpQXp6uly2sLAQ58+fB9B0Uun1ejQ0NACAfBOROHfunNNgcL1ej9raWgBNyYZer5dP9PPnz6OwsFAum56ejpqaGgCQv5ilk6ykpAT5+fly2czMTFRVVQFoiq9er5dP/NLSUuTl5clls7KyUFFRAeCPuR+kE7SmpgaCIMgTgeXk5KC8vBxA04ms1+vlz7uysrLFeFutVjmRAJoW4c3IyHCJN9B0Eej1ejne7mIoDZCX4i19QdfV1UGv18sXW1FR0QXjLd0AiouLUVBQIJfNyMhAfX09IiIi5Lg4xrt5DCsrKwE0nf+O8S4rK0Nubq5cNjs7u8V4V1RUIDs7Wy6bm5srL0gsnbOtxbulGNbU1DjFu6CgQO4KF0WxxXNWqVRCFEW5Dowx6PV61NXVAWjq2nY8Z1uL94XO2YyMDFRXVwMADAYD9Hq9fGN0d842j7d0bykvL0dOTo5cNicnp9V4t3TOiqLodGNv6R7RUrxD/R5x/vx5REREQKlUtnqPqKiocIn3xXCPUCqVCAsLQ25ubqv3iNbiHcr3iJKSEjDGoFQqYbfbkZWVJbuZTCan4zrG2xf3CI9gXjBq1Ci2f/9+t/v279/PRo4c6fEx9+zZw5KTk5nJZHLavnLlSrZ06VKX8mvXrmV33323/PuhQ4dYcnIyO3funMfvLZGWlsbS0tKY0WiUtxmNRmaxWBhjjImiyAwGA7PZbIwxxgRBYAaDQS5rMpmY2WxmjDFmt9s9Lmu1WhljjFmtVmYwGJjdbmeMMWY2mz0q6xhDg8HABEFgjDFms9k8LiuKImOMMYvF4hIXT8q2NYbexluKi7fxbh4Xb+LtGBdv4t08Lr6It8lk8km8pbj4Kt5SXLyNt2NcvI23Y1zoHkH3CLpHtBxDk8nEzpw5wzIzM1lkZCQDwH755ReWnZ3Nzp49y8rKynx+j5C+v9uCV0thzJgxA7fccguWLVvmsm/jxo349ttv8d1333l0zLS0NNx8883Yu3cvevfuLW9fsGABBg8e7NKtNnjwYGg0GoSFNQ1nEkURFosF4eHhWLp0KZYuXeqxly+XwrDZbAgLC+N2OnTyJ38e/Xl2B8if/Jv8rVYrCgoKEB0djUGDBsFkMuHQoUPo1atXaA6CduTmm2/G//3f/8FsNmP69OmIjY1FZWUl9uzZgw8//BCPPvqox8ccMmQIIiMjcfjwYTkBqq+vx9mzZ7Fw4UKX8s0TrJMnT+Khhx7Ctm3bkJyc3D4xH0HToZM/+fPpz7M7QP7k3+TvOCxF6goMpoTQqwRo2bJlaGhowI4dO7Bt2zYAkGd9vP/++3Hbbbd5fEyNRoOFCxfi5ZdfRlxcHHr27ImXXnoJiYmJmDVrFkRRRHV1NaKioqDT6dCnTx+n10t9wj169EBMTIw3el6j1WoxcOBArqdDJ3/y59GfZ3eA/Mm/yV+pVMrjpe68805YrVZERUUFuHZ/4FUCpFAo8Mgjj2D58uU4ceIE6urqEBsbizFjxniV9a5cuRI2mw2PP/44zGYzJkyYgB07dkCtVqOoqAh/+tOfsH79esydO9eb6vsdlUqF6OjoQFcjYJA/+fPqz7M7QP7k3+QvPSikUCjw5JNPBrhWrng1BkgiJycHBw4cQHl5OW6//XacO3dO7soKRXw1BshqtaKmpgaxsbFQq9W+qFpIQf7kz6s/z+4A+ZN/k79Wq0VRUZG8+rsjIT8GyG6348knn8Qnn3wCxhgUCgWuvvpqbNmyBYWFhXj//feRmJjozVuENFarFefPn0dkZCS3FwH5kz+P/jy7A+RP/k3+0moMjDEUFxcjLCwM8fHxQTMOyKsWoM2bN2P79u148sknMX36dFx66aX45JNPoFQqce+992LChAl44YUXfFnfDoGWwiAIgiAI7zAYDMjPz4dWq8WgQYMANM1pFBERgdraWnTt2jWgLUBepWGffPIJVq5ciZtuuslpwHFKSgpWrlyJAwcOeHN4giAIgiBCFKl9RRRFaDQaKJVKp9afQLcEefXulZWVSElJcbuvW7du8uyZvGI2m5GRkeE0dTdPkD/58+rPsztA/uTv7B8VFYW8vDycO3cOOp0uwLX7A68SoD59+uCXX35xuy81NdXlEXXeUCgU0Gg0Hi0eezFB/uTPqz/P7gD5k39o+Hs1CHrRokV48sknYbVaMWPGDCgUChQUFODw4cPYuXMn1qxZ46t6hiRarRb9+vULdDUCBvmTP6/+PLsD5E/+Tf4NDQ1oaZix9OBUIPF6Jujq6mps3boVH374IRhjWLVqFdRqNZYsWYIFCxb4qp4hCWMMoihCpVIF/IMOBORP/rz68+wOkD/5N/lLSU5VVRUefPBB6HQ6vPnmm3K5QMfGqwQIAO655x7cdttt+P3331FbW4vOnTtj1KhRAZ+FORiQVu3ldTp08id/Xv15dgfIn/yb/JOSksAYg8FgwN69e4MuFl6NAbrjjjvw1VdfITIyEtOmTcP111+Pyy+/HDExMTh58mSLA6R5QaPRoH///tBoNIGuSkAgf/Ln1Z9nd4D8yb/JX61WQ6FQwGazAWiaITqY8KoFKDU1FUeOHMGZM2fw8MMPB7w5K9gICwtzOwMmL5A/+fPqz7M7QP7k3+QvPQlut9sBBF8C5PVD+AsXLsSuXbvwt7/9DXV1db6o00WDzWZDZWWlnP3yBvmTP6/+PLsD5E/+Tf5WqxWMsRZbgALdaOJ1AnT99dfj3XffRWZmJubNm4eMjAwAgRcLBgRBQEFBAQRBCHRVAgL5kz+v/jy7A+RP/n/4O3aBhYV5PezYp/hkGsZRo0bhv//9L6KiojB//nx8/fXXXK5/0pyIiAiMGzcu6AZ+dRTkT/68+vPsDpA/+Tv7u+sC88E67F7js3moExMTsWvXLlx22WV48MEHsWPHDl8dmiAIgiCIEENKctx1gSkUioD3FPl0IQ6dTofXXnsNy5cvx+7du3156JDEbDYjKyuL6+nQyZ/8efTn2R0gf/J39hdFEUDwDYL2qkPu3XffRf/+/V2233fffRg8eDB++uknbw4f8igUCiiVyoBnuYGC/MmfV3+e3QHyJ3+FvNCpNCkiEHwJkIIFQ0dckHHq1CkAwIgRIwJcE4IgCIIITWpqalBcXIwzZ87g1ltvxeDBg/Hjjz8CAKqrq5GUlOTzSZM9+f72uAVo7dq1WL58OXr16oW1a9e2WlahUGDdunWevsVFA2NMngqcx78EyJ/8efXn2R0gf/Jv8pcGP7trAQqG2HicAB0+fBiLFi2Sf26NQMsFGpoOnfzJn09/nt0B8if/Jv/4+HgoFIqg7QLzOAGSmq+a/0y4otFo0LdvX66nQyd/8ufRn2d3gPzJv8nfZDJBoVAgISEBc+bMQVJSUqCr5gSNAXIDjQEiCIIgCO8oLi5GfX09Onfu7LKvuroavXr1QnR0tE/f069jgDZv3tzmsgqFAvfee6+nb3HRYLPZ5A8/2GbA7AjIn/x59efZHSB/8m/yFwRBfhqsOSE5BogSoLYjCALy8vKQkpLC5UVA/uTPqz/P7gD5k3+Tf2RkJJRKJQRBgN1uh1arDXjS4wh1gbnBV11g0ih4XueDIH/y59WfZ3eA/Mm/yb+wsBCiKOLLL7/EqlWr8Kc//QnvvvsugKYusN69e7vtHvMGv3aBuaOqqgqCIMjTXtvtdphMJhw7dgzz58/3xVuEJAqFIuhGvXck5E/+vPrz7A6QP/k3+UtTARgMBgBAeHh4gGvmjFcJUHp6OlavXo2cnBy3+xUKBdcJkMViQVFREZKSkqDVagNdnQ6H/MmfV3+e3QHyJ38Lzp07B6vVCo1Gg0WLFuHmm292WgA1JMcAOfLiiy+irq4OjzzyCH766SdoNBrMmDED+/btw759++SmLl6RmgF57WUkf/Ln1Z9nd4D8yb9p+Qu73S63BkVFRQW6Wi54NQZo3LhxWLt2LebNm4d///vf+PLLL/H+++8DAFauXAmFQoHXXnvNZ5XtKOgxeIIgCIJoP6IoIi8vDyqVym0rWHV1Nfr06ePzxMiT72+vVoMXBAF9+/YFAPTt2xfp6enyvrlz5+LEiRPeHJ4gCIIgiBDEbrfLLUAffPABVq9ejV9++UXeHwxdYF4lQD169MC5c+cANCVAjY2NKCoqAtA0E2RdXZ33NQxhjEYjjh07BqPRGOiqBATyJ39e/Xl2B8if/P/wVygU+O233/Dhhx8iIyMj0FVzwqsEaNasWdi4cSO+/fZbdOvWDf3798err76KjIwM7Ny5E7169fJVPUMStVqN3r17Q61WB7oqAYH8yZ9Xf57dAfInfzWSkpIQFhYGpVIpPwXWqVOnANfMGa8SoBUrVmDs2LH473//C6Bppfi9e/di9uzZOHToEO677z6fVDJUUavViI+P5/oiIH/y59GfZ3eA/Mlfja5du0KlUkGhUMgtYc0Xhg10F5hXT4FptVq8/vrrsFqtAIBp06bhyy+/xJkzZzBs2DD07t3bJ5UMVWw2GxobGxEZGcnlbKDkT/68+vPsDpA/+dtQU1MDm83mlABJLUDSs1eBToC8agGScMxye/fujauvvpr75AdoGiSek5MDQRACXZWAQP7kz6s/z+4A+ZO/gNzcXFgsFqcESJoIkTEGpVLZ4jphHYVXqemQIUMumMHp9Xpv3iKkCQ8Px8iRI7n8CwAgf/Ln159nd4D8yT8cw4YNkx+KctcCFAxPgXn16dx7770uAgaDAcePH0dhYSFWr17tVeVCHYVCwW0fMED+5M+vP8/uAPmTvwJhYWFyfiANgpbGAEnrpIV0C1Brg5wffvhhnD59GjfddJM3bxHSWCwWlJSUoHv37txOh07+5M+jP8/uAPmTvwX5+flyF2CwtgD5Lf2aM2cOvv76a38dPiRgjMFsNnM9HTr5kz+P/jy7A+RP/gwmk0leEsNsNgO4yFqAWqOwsBA2m81fhw8JdDodhgwZEuhqBAzyJ39e/Xl2B8if/HUYNGgQioqKYDKZ5O1SAhQsT4F5lQBt3rzZZZvdbkdpaSm+/vprzJgxw5vDEwRBEAQRgkjdXNL4H4VCAZ1OJ+9zHCMUKHyeAAFAZGQkrrjiCqxdu9abw4c8RqMRGRkZGDx4sMsEUDxA/uTPqz/P7gD5k78RJ0+eRFRUlNz91alTJznhkR6DDzReJUCOi58SrqjVavTo0YPbpwHIn/x59efZHSB/8lcjISEBNpsNoijiyiuvhEajkffb7fagmCJAwbwYpVVcXOxR+R49erT3rTqUU6dOAQBGjBgR4JoQBEEQROhRXl6OqqoqREdHu+yrr69HTEwMEhMTff6+nnx/e5WCzZw506M+PN4mRRRFEQaDAZ06dYJKpQp0dToc8id/Xv15dgfIn/xF1NXVwW63u90fLC1AXtXg1VdfxVNPPYVhw4bhhhtuQLdu3VBTU4Mff/wR33zzDZYtW4aePXv6qq4hh8ViQVZWFlJSUrjsByZ/8ufVn2d3gPzJ34Ls7Gx0795dHgztiPQYfKDxqgts2bJliI6OxoYNG1z2rV+/HllZWdi5c6dXFQwEvuoCs9vtsFqtUKvVQfFhdzTkT/68+vPsDpA/+duRm5sLm82Gb7/9Fg8//DCuuOIKbN++HQBQU1ODnj17IiYmxufv7cn3t1efzMGDB3Hddde53XfZZZfh2LFj3hw+5FEqldBqtVxeAAD5kz+//jy7A+RP/k2THKrVahiNRpdFYd21CgUCrz6d2NhYnDx50u2+gwcPolu3bt4cPuQRBAGFhYVcrwhM/uTPoz/P7gD58+5vMplQVFQEm82GW265BampqXjuuefk/QqFIiiSQ6/GAM2bNw9bt26FyWTCzJkzERcXh8rKSuzZswcffvghnnjiCV/VMyQRRRGNjY0QRTHQVQkI5E/+vPrz7A6QP+/+VqsVjY2NSEhIQHh4uMtY4GBpAfJqDBBjDC+88ALef/99+YNmjCE8PBz33nsvlixZ4rOKdiT0GDxBEARBtA+z2Yy8vDxERka6fQqupqYG/fr188sA8Q57DF6hUGDNmjVYvnw5Tpw4gbq6OsTGxmL06NGIjIz05tAEQRAEQYQgdrtdftLrs88+Q1paGq688kpccsklQbMSPOCj1eArKiqQn5+PjIwMDBo0COnp6WhsbPTFoUMaaTpwo9EY6KoEBPInf179eXYHyJ93/4aGBqSnp8NsNuPHH3/Etm3bkJaWBiB4VoIHvGwBstvtePLJJ/HJJ5/IWd3VV1+NLVu2oLCwEO+//75fZnoMFaTpwHmfDp38yZ83eHYHyJ93f5VKhS5duiAsLAz19fUAgKioKAC4eFqAtmzZgi+//BLPP/88Dhw4IC9x/9BDD8Fut2PTpk0+qWSoolar0b17d24vAvInf179eXYHyJ93f6VSifj4eKjVapSVlQGA/FR4MLUAeVWDTz75BCtXrsRNN93kNKFRSkoKVq5ciQMHDnhbv5CG9ycByJ/8efXn2R0gf979LRYLzGYzRFGUEyCpN8hut18cLUCVlZVISUlxu69bt25y05en2O12vP7665g2bRpGjx6Nu+66C+fOnWuxfFZWFu6++25MmjQJU6ZMwcqVKz1eqNUfWCwWZGRkwGKxBLoqAYH8yZ9Xf57dAfLn3d9gMCA/Px8GgwEVFRUA/mgBkrrAQr4FqE+fPvjll1/c7ktNTUWfPn3addwtW7Zg165deO655/DRRx/BbrdjyZIlbieVqqmpwZ133gmdTof33nsP27dvR3V1NZYsWRLwk0+n02Ho0KHQ6XQBrUegIH/y59WfZ3eA/Hn3VyqVSE5ORkNDAxhj8pggILjGAHk1CHrRokV48sknYbVaMWPGDCgUChQUFODw4cPYuXMn1qxZ4/ExBUHAzp07sXr1akyfPh0AsGnTJkybNg3fffedy9Ib33//PYxGI1588UX5ZHvppZcwffp0HD9+HFOmTPFG0SuUSiXCw8MD9v6BhvzJn1d/nt0B8ufZ3263gzGGiIgIFBYWAgASEhLkFh/GWFCsBA94mQDdfPPNqK6uxtatW/Hhhx+CMYZVq1ZBrVZjyZIlWLBggcfHTE9Ph8FgcEpcOnfujKFDh+LIkSMuCdCUKVOwZcsWp0xbCnR7u+B8hSAIKC8vR0JCAjQaTUDrEgjIn/x59efZHSB/nv3tdjvMZjPq6+tx/vx5AHB6GjxYVoIHfDAP0D333IP9+/dj27ZteOmll/DWW2/h119/xf3339+u45WWlgIAunfv7rQ9ISFB3udIUlISJk+e7LRt27Zt0Ol0mDBhQrvqIGEymZx+lrrg7HY7jEajPMDNarU6zfdgNpthsVggiiJqamqcBsO1VBZoyoyNRiNsNhsAwGazwWg0yk/XWSwWj8qazWb5fYxGI6xWK4CmAXqelrXb7QCaLuzmcWmprNlsRnV1tezuSQzbE293cfE23s3j4klZi8WC2tpaCILgEkNv4t08Lp6UbS2Gvoi3FBfJpaamRq6TN+dse87vluLibbwd49JSWavViurqaqffLxTDi+keYTQaUVtbC1EUW71HeHPOBvM9wvHe394Yhuo9QqpfQ0MDSkpKAADx8fFO8ZZcfBHv5vcIT/BJGhYZGYlp06bh+uuvx+WXX+7VEvfSh9M8a9ZqtW0a0/Pee+/h/fffx+rVqxEXF9fueoiiiKysLPn3vLw8OQETBAF6vV4OdlVVFTIzM+Wy+fn5KCkpQXh4OIYMGYK8vDx5Ysiamhqkp6fLZQsLC+Us2W63Q6/Xo6GhAQBQW1sLvV4vlz137pzTYHC9Xo/a2loATRNP6fV6+UQ/f/683PwINLWs1dTUAAAaGxuh1+vlk6ykpAT5+fly2czMTFRVVQFoOsH0er184peWliIvL08um5WVJQ9yM5vN0Ov18gna0NDg1BSck5OD8vJyAE0nsl6vlz/vysrKFuNttVqh1+thMBgAANXV1cjIyHCJN9B0Eej1ejne7mJYVFTkFG+ppbCurg56vV6+2IqKii4Yb+kGUFxcjIKCArlsRkYGTCYThg8fDlEUXeLdPIaVlZUAms5/x3iXlZUhNzdXLpudnd1ivCsqKpCdnS2Xzc3NlZ/AkM7Z1uLdUgxramqc4l1QUCA/ZCC5uTtnw8PDodPpZDfGGPR6Perq6gA0tdA6nrOtxftC52xGRgaqq6sBNA3A1Ov18o3R3TnbPN7SvaW8vBw5OTly2ZycnFbj3dI5q1KpYLVa5XOppXtES/EO9XtEcXExhg8fjvDw8FbvERUVFS7xvhjuEeHh4UhKSkJeXl6r94jW4h2q9wi73Y7y8nJERUXJ16RWq5XL1tXVOX3mjvH2xT3CI1iQsWfPHpacnMxMJpPT9pUrV7KlS5e2+Dq73c42bdrEkpOT2aZNm7yqQ1paGktLS2NGo1HeZjQamcViYYwxJooiMxgMzGazMcYYEwSBGQwGuazJZGJms1mul6dlrVYrY4wxq9XKDAYDs9vtjDHGzGazR2UdY2gwGJggCIwxxmw2m8dlRVFkjDFmsVhc4uJJ2bbG0Nt4S3HxNt7N4+JNvB3j4k28m8fFF/E2mUw+ibcUF1/FW4qLt/F2jIu38XaMC90j6B5B9wjnsg0NDezYsWMsNzeX3XrrrQwAW7VqFSsoKGDnz59nJ0+eZOfPn/dZvJvfI6Tv77bg1WKo/iAtLQ0333wz9u7di969e8vbFyxYgMGDB+Ppp592eY3VasXatWvx1VdfYc2aNVi8eLFXdfDVYqgmkwk5OTkYMGAAlwPiyJ/8efXn2R0gf5796+vrkZWVhbq6Ojz99NP49ddf8corr+DWW28F0NQ617t3b3Tu3Nkv799hi6H6gyFDhiAyMhKHDx+WE6D6+nqcPXsWCxcudPuahx9+GHv37sXGjRtx7bXXdmR1W0WlUiE2Ntbtarg8QP7kz6s/z+4A+fPsL4oiVCoVoqOjMWzYMNhsNvTr10/er1AogiYuQZcAaTQaLFy4EC+//DLi4uLQs2dPvPTSS0hMTMSsWbMgiiKqq6sRFRUFnU6HTz/9FF9//TUefvhhTJw4Ue77BCCXCaRLz549A/b+gYb8yZ9Xf57dAfLn2V8URWg0GsTExOCJJ55w2hdMy2AAPhoE7WtWrlyJefPm4fHHH8eCBQugUqmwY8cOqNVqlJSUYOrUqfj6668BAF999RUA4MUXX8TUqVOd/kllAkXzEfi8Qf7kz6s/z+4A+fPsLz18YDKZXPylBChYWoCCbgxQMOCrMUDS0xEpKSmIiIjwRdVCCvInf179eXYHyJ9n/8LCQtTW1uLcuXMYOHCgvAo8AHl6mH79+vktCfLk+zsoW4AuFrRaLYYMGQKtVhvoqgQE8id/Xv15dgfIn1d/xhhsNht0Oh0MBgOGDh2K66+/Xt4vLYQaLF1gQTcG6GJCpVKhU6dOga5GwCB/8ufVn2d3gPx59bfb7bDb7VCr1aitrYXdbnda9sJut0Or1QbFOmAAtQD5FavViuLiYqdZL3mC/MmfV3+e3QHy59VfSoBEUcSYMWOQmpqK1157Td4viiLUanUAa+gMJUB+xGazobKyUp7dkzfIn/x59efZHSB/Xv1FUYQoimCMoa6uDnFxcU7z+QVbAkSDoN3gq0HQBEEQBMELRqMReXl5iI2Ndbu/pqYGPXv29Gq5rAsR0hMhEgRBEAQRekitPwDw6quvora2Fn/5y1+QnJwMoGmQdLAMgAaoC8yvmEwmnD171mn1XZ4gf/Ln1Z9nd4D8efWXnvIymUz497//je3btztNThxMs0ADlAD5FZVKhcjIyKD6wDsS8id/Xv15dgfIn1d/qQVIpVKhqqoKANCtWzcAwTcJIkBdYH5Fo9E4DQDjDfInf179eXYHyJ9Xf5vNBpVKBavVCoPBAABITEwEEHzLYADUAuRX7HY7zGYzl9OhA+RP/vz68+wOkD+v/oIgQKlUorS0FADQqVMnREZGAvhjkdRgagGiBMiPmM1mnDlzBmazOdBVCQjkT/68+vPsDpA/r/5SC1BhYSEAICEhQd5HLUCcodVqkZyczN106BLkT/68+vPsDpA/j/7SBIgKhQLV1dUA/uj+kvaHhYUFzSzQAI0B8isqlcppITjeIH/y59WfZ3eA/Hn0d1wGQ3ryyzEBEkURGo0mUNVzC7UA+RGr1YrS0lLupkOXIH/y59WfZ3eA/Hn0l2aBViqVKC4uBuDcBSaKotO6YMEAJUB+hMeLwBHyJ39e/Xl2B8ifR3+pBUilUsmDoLt27epUJtgSoOCqzUVGREQERo8eHehqBAzyJ39e/Xl2B8ifR39pDiCFQoHKykoAQFJSklOZYBoADVALEEEQBEEQXiKKovyz1AIkTYIoEUyPwAOUAPkVs9mM9PR07h6FlCB/8ufVn2d3gPx59Je6++x2O0pKSgD80QUWjLNAA9QF5lcUCgV0Ol1QPfbXkZA/+fPqz7M7QP48+lutVqhUKpjNZlxzzTUoKCiQW4CkwdHB1gWmYNLSrYTMqVOnAAAjRowIcE0IgiAIIvjJz8+H1WpFp06dXPZZLBaIooh+/fr5vRXIk+/v4ErHLjIYY7BareA1xyR/8ufVn2d3gPx585cmQZRaeJr7B+Ms0AAlQH7FZDIhLS0NJpMp0FUJCORP/rz68+wOkD9v/tIcQCqVCg0NDWhoaIBer5fHQAXjLNAAJUB+RavVYuDAgVxNh+4I+ZM/r/48uwPkz5u/YwK0fv16DBs2DHv37pVnfg7GWaABGgTtV1QqFaKjowNdjYBB/uTPqz/P7gD58+YvCIKcAJWWlsJutyMxMVEe7xOMs0AD1ALkV6xWK8rLy7maDdQR8id/Xv15dgfInzd/g8EgJzv//Oc/kZqaiksuucTJnxIgzrBarSgqKuLmImgO+ZM/r/48uwPkz5O/zWaDwWCQu/uUSiXi4uLQ2NgIm80mlwu2OYAAegzeLfQYPEEQBEFcmMbGRhQUFCAmJqbFQc41NTXo168fIiIi/F4fegyeIAiCIAi/YzQaATRN/nj27FncddddeOONN+T90tigYGwBogTIj5jNZmRmZnI1Hboj5E/+vPrz7A6QPy/+drsdDQ0N0Ol0AIAzZ87g66+/xk8//YScnByYzWY5AQq2OYAASoD8ikKhCMq5DzoK8id/Xv15dgfInxd/s9kMi8Uij//57bffAACjRo2S/aUJEoOxBSj4hmVfRGi1WvTv3z/Q1QgY5E/+vPrz7A6QPy/+JpNJnuWZMYZ9+/YBAGbMmIE+ffoAaOoiCwsLoxYg3mCMQRRFbqZDbw75kz+v/jy7A+TPg7/NZkNdXZ3c/ZWdnY3S0lJotVqMHz9e9g/WSRABSoD8islkwokTJ7iZDr055E/+vPrz7A6QPw/+tbW1MBqNCA8PBwC59WfixIlQKBQ4c+aMPAaIEiAO0Wg06N+/f9B++P6G/MmfV3+e3QHyv9j9zWYzqqurERERIY9zkhKgyy67DGq1Gr1794ZarQZjLCjH/wA0BsivhIWFITY2NtDVCBjkT/68+vPsDpD/xezPGEN1dTWsVisiIyMBNE38ePDgQQBNCVBYWBhiYmLk8sGaAFELkB+x2WyorKx0mg2TJ8if/Hn159kdIP+L2d9gMKCmpgZRUVHytuPHj8NgMKBLly4YOnQobDYbqqurYbPZoFAoKAHiEUEQUFBQAEEQAl2VgED+5M+rP8/uAPlfrP6iKKKyshJhYWFOa3vt3r0bADB16lQolUp5KRCj0Qi1Wg21Wh2oKrcKLYXhBl8theEY2ot9Pgh3kD/5S/Dmz7M7QP4Xq391dTWKi4sRGxsre2VlZeGKK66AzWbDe++9h5kzZ8r+BoMBGo0Gffr06bA4ePL9TWOA/MjFdOK3B/Inf17h2R0g/4vRXxAEVFdXIzw8XPZjjOHxxx+HzWbDFVdcgZkzZwL4w99qtSIuLi5o40FdYH7EYrEgOzsbFosl0FUJCORP/rz68+wOkP/F6F9TUwOz2Sw/9g40PQpfX18PrVaLZ599Vt5usViQm5sLQRDkeYKCEWoBIgiCIAiiRQwGA6qrq50GPgNAbGwsvvrqK5w5c0ae+VnCZrNBrVbLy2QEIzQGyA2+GgNEEARBEKGM3W5HUVERDAYDoqOj2/y6xsZG6HQ69O7d24+1c4XGAAUJF+tAuLZC/uQvwZs/z+4A+Qezv91uv+A/m83m9M9oNMrz+gBNy1589tlnWLFihVOXmARjDIIgoEuXLh1o5jmUAPkRk8kEvV6PlJQUREREBLo6HQ75kz+v/jy7A+TfUf7tSWYYYy5lgKakRUrWpLl7FAoFlEolOnfuLC9myhjDE088gX379qGsrAwvv/yyS72MRiPOnj2Lbt26+c3dF1AC5Eekx/8u1unQLwT5kz+v/jy7A+TfHn9fJjOOKJVKp38KhQJqtdrpd09bqRYuXIhz585hxYoVbvebzWYMHjzYoy6zQEBjgNxAY4AIgiCI5jDGfPLPXULT3mSm+e8d1eVmt9vlViFHzGYzrFYrevfu7bZ7zN/QGKAgwWazoaGhAVFRUU6zZvIC+ZM/r/48uwMd7+/rxKSlf1J7wYWOI4oiDAYDOnXq5HYZCClRaa1lxl1y0dEwxtDQ0IDy8nJUVFRAp9NhzJgxAOC2fna7HUajEfHx8TCbzVCr1UF9/gdvzS4CBEFAbm4uUlJSgvok8BfkT/68+vPsDjj7q1SqNiUegGtiISUd7pITURQ9TkwckX53bDGREpOW/kllHFtb3P0zmUwoLi5GQkJCQFpB2oIoikhLS0NFRYWc4JSVlTn9XlFRAbPZLL8mJiYGjz32GBYsWOC2pamxsRFRUVGIiIhAZmZm0J//1AXmBl8uhSE1EwbbkwAdAfmTP6/+oeDuz1YTURRdFgL1JDlxR1uTE8fWFXf7O4JAfP6iKKKmpkZOXkaMGIG4uDgAwN69e/HWW29hzJgxeOyxxwA0Jan9+vVr07GjoqIQHx+PhIQETJ06FX//+99dvARBgMlkQu/evRERERGw85+6wIKEYF4FtyMgf/Ln1d8b92DrzmmLqy9aTS4mfHnu2+125OXlObXMOLbQSD9XVlZCFEX5de+88w6uuOIKAEB9fT0OHjzoVCeNRoOhQ4dCq9UiPj5eTnDc/X+hVizGGBobG5GQkIBOnToBQEhc+5QA+RGLxYLz58+jZ8+eQT0bpr8gf/K/2Pxb66Jx/Gc2m3H+/Hl0794dGo2Gu8TEYrGgtLQUiYmJF81nfyEYYzAajbBarWhsbERxcTFiYmKgUChgtVphtVohCAKsVitsNpv885gxY5CYmAgA+PXXX/H2229j6NChePDBBwE0JUCXX355mz/zLl26ID4+3mmMzqRJk/B///d/LrM179271yfu0ngnqcUpVK59SoD8CGNMHt3PI+RP/h3lHwytJo7JkJQAWK1Wly+ACyUmLXXhhFKLiS8+e2kgsWOyIAgCbDabUzLRfNv06dMRGRkJADh69CiOHz+OoUOHYurUqQCaWkM2bdrU4vEc/zkmLJs2bZK7Vd577z2sX78eV111FV555RUATQt/Jicne+y5Y8cOXHXVVQCAyspK7NmzB/X19fL+sLAw9O7dG0ql0m0LjfQvPj4eXbp0cTvmJikpCUlJSR7XrS1Iserevbv83qFy76MEyI/odLp2XRAXC+RP/oMGDQJjTU/F8Nad0717d/8Ftx1YrVYYDIY2fdk77r/hhhvkY3z//ffIzs7G1KlTMXz4cABAbm4u3n77bZfjOSYYjseTtn322Wfy7MLPPPMMdu3ahRUrVuC+++4DAGRkZODKK6/02PPnn3/GoEGD5J83bdqExYsXywmQxWLBtm3bPD5uQ0OD/LMoiqirq0NjY6O8Ta1WO5XXarUICwuDWq2GRqOBWq12+idtc1xfa+zYsVi3bp3L2JzffvvN4/p2FI2NjYiLi5OTTiB07n2UABEEhwRDi0modOe0hNlshtFobDGZaP7Fb7VaodPp8Kc//Uk+xscff4yKigrccMMN8l/oqamp+N///udR60RERAT+97//yce944478Ntvv+G1117DtddeCwDYs2cPli5d6rHnddddJ3en/Pe//8WXX36J559/Xk6AysrKsGPHDo+PKwiC/LPNZkNjYyNMJpO8zXESwbCwMISFhTklEhqNxmWb9E8iJSUFc+bMwciRI+VtkZGRuPfee12SE+l4LSUsQ4cOlY9x4403Ytq0aejcubO8TaFQIDs7G2q1Wp5F2VP69OmDRYsWefw6f9P8qTvpn9VqRXh4OLp06RL0rZLuoATIjxiNRqSnp2PIkCFcTgdP/u3z9zYhaSk5ac9jw+6SE8cbXWvJhtlsRm5uLgYOHIjw8PALJiYGgwEmk6nVL/vm2xISEjB58mS5Ptu2bYMgCFi8eLH8F+nu3buxf/9+twmJu24Qm82GlJQU/N///Z983EsvvRQlJSXYvXs3UlJSAABvvvkmXnrpJQ/OCKBfv35OCdBbb70FvV6P4cOHywlQRkYG/vWvf3l0XMcvYqCptcdkMsFiscjbHBODtrZOhIWFQRRFOQGaPHkyNBoN+vfvLx8rKSkJ9913n9NrAaCmpgY9evRAp06d3CYsjrMEr1y5En/9618RGxsrb+vfvz9yc3PluXHaw7XXXisngBLh4eF49NFH23U8idjYWKe6Oh4baFoKIzs7Wz73gxGpZVa6Nzj+3nwSRmleIimxczx/IiIiXGa8DpV7f1AmQHa7HZs3b8bHH3+MhoYGTJgwAU8++SR69erltnxNTQ2ef/557Nu3DwqFAtdeey0efvjhgJ94arUaSUlJLk2jvHCx+XuajAiCgOjoaLmVoKNbTRoaGpxaCZr/c9wuJQMDBw7EiBEjoFAoUF9fj48++ggKhcKp5eDtt9+GXq9vsWtD+lkQBFgsFoiiiGuuuQZr1qwB0DQGY9y4cbBarcjIyJDHyKxZswaffvqpR5/JlVde6ZQArV+/HoIgYM6cOXICdOTIEbz77rseHbf5TVtysVqt8jbpvFapVC6JRFhYGFQqFbRardP2nj17utR/+PDhiI+Pl7eNHDkS999//wVbORxbLHQ6ndNxX3nlFVitVnTt2tXpvQoKCtrdOgEAixcvxuLFi5229erVS/5sJaxWK+rq6hAdHd2m6196CskRpVIZ1ANoWyMsLMxpTExH4Xh/aZ7USE+IMcbkPzxUKpWc3ISFhUGn08nnleM+6Wfp/wudP6Fy7w/KBGjLli3YtWsXNmzYgMTERLz00ktYsmQJvvzyS7drq6xcuRImkwlvv/026uvr8dhjj8FoNOKFF14IQO3/QK1WIyEhIaB1CCQd5d9R3TmVlZXyF7vjAEzHn5u3LowaNQq9e/cGABQWFuK7775DXFwc5s2bJ9+EXn31VVRVVcnJiJRIOCYmzf8tXboUCxcuBACcPHkSc+fORWJiIg4cOCDH5S9/+QvS0tI8iuWyZcswevRoAE0J1PPPP4/w8HCnBOiHH37Ajz/+6NFxS0tL5Z/VajWMRiOApq4P6UtO+rJo7Uu/eaIxePBgp/e56aabwBhzSgguv/xyREZGurRsOHZ9NN/WfA2jTz/9FAqFwul8Xrp0KZYtW+bVjL2PPPKIy7ZRo0Zh1KhR7T4m4H78UUc+lqxWq52SL97wtb+7VlzHJEdKagA4JSsKhcIpqQkLC3NKZJr/7CtC5bsv6BIgQRCwc+dOrF69GtOnTwcAbNq0CdOmTcN3332H6667zqn877//jtTUVHz99dcYMGAAAODZZ5/FkiVLsGrVqoCuRiuKIhobGxEZGRkScyL4GlEU0dDQgE6dOkGpVDrN9mqz2VBWVgZBEGA2m50SC4vF4vK7tG3GjBmIjY2F3W7H8ePH8euvv2LgwIGYNWsWGGt6+ua5555rtZvD8Z+07amnnsIll1wChUKBr776Co899himTJmCf/7zn3KiMmPGDPmLu60899xzGD58OFQqFU6cOIFXX30VI0aMwN/+9je5zDfffIOCggKPjltdXS3/rFKpYDabnWZsBSD/FddS14a7BMPxMdnIyEjcfPPNLq0Lc+bMwdixYy84FkOlUkEURXTu3Fl+zBdoGiD522+/Qa1WO7XSvvzyy3jllVe8GkvgbmXqGTNmYMaMGe0+JgC3rc+tXdMXWgohlHHX+th8m3Tvc+ffltf7Y5s7PHmtJ+8tiiKMRiMiIiLkmbC9ee/mXVDNWxvdtdJIPweCUPnuC7oEKD09HQaDAVOmTJG3de7cGUOHDsWRI0dcEqCjR48iPj5eTn4AYOLEiVAoFDh27BiuueaaDqt7cywWC7Kzs5GSkuLzflDpQpG+LCwWCyoqKlxaJlpqqZASigULFkCtVoMxhq+//hrHjx/HtGnTcOmll4IxhsLCQmzYsMHtMVpq/RAEAbt27UJcXByys7Px9ddf45///CfuuOMOrF27FowxlJSUtOtL6YMPPsC4ceOgUChw5MgRvPLKK7jhhhvw5z//GUqlEhqNBv/+97/bFVPpiZROnTrBarXCbrfLk3oBTS0TNputza0TUtInCALCw8PRo0cPzJ8/3+Vx1CVLlqChoaHNrRMajcbpGIMGDcLhw4ddWke/+OILr/6qi4mJwaZNmwA435hnz57tUtbdjdtoNDqNg3B8LLZHjx4A4DJjsGMzfVveo7Xt7X2tt19WjDXNA5STk4MBAwa02I3jyZd086TQ19s8xd3rHbeZTCbk5uZiwIABLkMRLvRaT7e1tv1C5aSB8+7KuSvb1m1msxlFRUXo2rWr0/i35rh7b2mbu6SmrV1Qgcaf332+JOgSIKmpvHkTbkJCglMzukRZWZlLWY1Gg5iYGJSUlHhVF5PJ5DSoTaVSQaPRwG63w2w2Q6vVQqVSyV/80gdtNpuhUCgQHh6OESNGwGq1QhRFqFQqHDx4EG+++aY8RsRkMsn7pdYQx0TCYrHAbrcjIyMDZrMZjDH87W9/w2effYYXX3wRf/vb36BSqfDDDz9g7ty5HjuOGDEC4eHhYIzhww8/xL///W8sXboUCQkJUKlUSE9PxzvvvOPxcevq6tC5c2f06tULYWFhcsxEUYRGo4FOp4NKpZLHMDT/km8+QFMaDyAlKVarFUOGDMEtt9yCoUOHyp8HACxfvhw6nQ5arVbu546IiJC7WKSWh7CwMDDGEB4ejoEDB6K2thaCIGDy5Mn4+eefoVQq5QUAGWP48ccf5bpJLUfSe0hjfKQkxGw2y3+tGQwG1NbWomvXrnj88cdhtVpRUlIit6xcddVVcouJ1Iql0+nk49rtdrms2WyWE73q6mqYzWbodDpERES4HFeqg5TgSjFSKBQQRVF+gqO1siqVSnaVygqCIP8VKpWVWoGal+3evbs8EFdyax5DnU4HpVIpl5M+R7PZLJ8HjsdVKBSwWCxOXV0mk0k+rpR0SjGUri/ptc3LSp+jUqmUyzpey9K5J9Vfo9HIcZGOK9VBpVJBp9NBFEV5TSRpIHHze4RSqZTPLZPJ5BLvlupgMpnk60LqMpXcpCerHMtKA1Ydy0rxdoyh0WiUjyuKIiwWS4tlpRi6Kyu1tg4aNAhqtdrpc5Tuc9JnLgiCy2cj3Webn4eOT7w5xrstZaV7smO8pXO2pft383g3j6G781CKoUqlQmJiIux2OyIiIlos2zyGjnFxvO6NRiNUKpXcqtq8rLvz0PG7ypOyrX2vSfeeC5VVKBQYMmSI/N3iLoa+ircUQ6msJwRdAiQ9Btn8r1mtVou6ujq35d2NC9JqtU5PQHiKKIrIysqSH5/My8tDZGQkevfuDUEQoNfrkZycjKioKFRVVaG0tFQeO5Gfnw+dToe+fftCoVAgPT0dAwcORHR0NNLS0jwekAkABQUFKCgokE8QxhjS09Oh1+sRExOD0tJSp+4OKbnQarVQq9Ww2+0IDw+XLwSbzYbo6GhYrVbU1NRAEASMHTsWjDHExsaitrYW8fHxiIqKwvz589GtWzeEh4fDYDCAMYaePXtCrVajvLwcMTExiI+PhyiKqKioQJ8+fZCUlIS6ujrU19fjr3/9K+bPn4+SkhJUVFSge/fu6NSpEz7++GP069cPkZGRKC8vR1VVlfyETXZ2NiIiItCzZ09YLBZkZWWhb9++iIyMRGVlJcrKynDJJZfg0ksvRU5ODiorK5GUlATGGP785z+jb9++6Ny5M6qqqlBcXIwRI0ZAqVQiLy8PCoUCffv2hSiK0Ov16N27N2JiYlBTUyOXTUxMRH5+PhoaGhAfHw+FQoGCggIkJSUhJiYGtbW1KC4uxvDhwxEWFoaCggJYrVb07NkTCoUCaWlp6N69O+Lj49HQ0IC8vDwMHToUGo0G586dgyAI8pM0p0+fRqdOnZCYmAiDwYDs7GwkJSVBp9OhqKgIjY2NGDhwIADgzJkziI2NRc+ePWE0GpGRkYGkpCRERESguLgYtbW18vwber0eERER6NWrF8xmM/R6PZKSkhAZGSkveti3b18ATS2vOp1OPr/PnDmDnj17IiYmBuXl5SguLpYfA87KyoJGo0Hfvn1hs9mQlpaGHj16IDY2FpWVlSgsLJTLZmdnQ6lUol+/frDb7Thx4gS6deuGLl26oLq6Gvn5+Rg8eDDCwsKQk5MDu90uz4Fy/Phx9O7dG/Hx8aitrUVOTg6Sk5OhVquRn58Ps9mMfv36QaFQ4Pfff0fXrl3RrVs31NfXyy1PWq0WhYWFaGxslI978uRJxMTEoHv37mhsbERGRgZ69+6N8PBwFBUVOcXw9OnTTvHW6/UYMmQIOnXqJMdbOu7Zs2cRGRmJhIQEmM1mFBcXo1u3boiKikJpaSmqq6vl8WBSvHv06AGr1Yr8/Hz5HlFeXo6ysjKMHTsWAJCZmYmwsDB069YNoigiNzcX/fv3R3R0NCorK1FcXIyxY8fKj2EDwMCBA8EYQ3Z2Nvr06YPY2FjU1NSgqKgIo0ePhkqlQnl5OWw2m+yamZkpn991dXUoLCzEyJEj5evcbDZjyJAhctnExEQkJiaioaEB+fn5GDZsGHQ6HcrLy9HY2CifA5mZmejatSt69OgBg8GAnJwcpKSkQKfToaKiAjU1NfIj9RkZGYiJiUFSUhJMJhOysrIwePBgaLVaedkHaXxUYWGhfE+2WCzIyMjAoEGD0LlzZ/n6lFYuLygokO/JNpsNer0eAwYMkK/lwsJCjBs3DgBw7tw5KJVKDBgwAHa7HXq9Hv369UNcXBzq6uqQn5+PMWPGQKFQoKioCHa7XZ53SK/Xo0+fPujatav8FOSoUaMQFhaG4uJiCIIgj1vLyMhAz549kZCQgMbGRmRnZ2PEiBHQaDQoKSmB0WiU74dZWVlISEhA9+7dYTKZkJGRIce7rKwM9fX1GDZsmHzNxcXFoWfPnvJ1L7XEVFRUoLq6Wp7QMTc3V/5DVfpeGzx4sHyfdYx3Xl4eIiIi0KdPHzmG0jlbU1OD8+fPy/EuLCyERqNBv3795LL9+/eXv1sKCgrcxpsxBr1ej759+6JLly6or69HXl6efM66i7d0j2hsbEROTo7bfKAlgm4x1G+//RYrV67EyZMnncYe3H///RAEAVu3bnUq/9xzzyEtLQ0ff/yx0/YpU6bgnnvucXlioS1Ii6k5PsLYnhYgACguLkZsbCyioqLkcSD//ve/ERERIWe8Go1GfpRQapGQ/ppSKBSIiorCmDFj5OxWmh01LCwM0dHRLn95O2bKUv2b/7XRPKsG4JJVazSaFv8ycYyL1HLTvKzBYEBpaSl69eoFrVbrVNYxhi39FeYu3u7KWiyWFv+C8Mdfd20tyxhDRUWFPBiwtb/uWvtLMNj+umtLDCMiImCxWFBUVISEhARERUX55K+7tpS9UAy9jXfzVgZ3ZU0mE86fP48ePXrIrXMXiqE38W5+LXv717Rjq0574m0ymVBTU4Pu3bvDbrc7tQB5E2/HuLTnntxR9whRFHH+/HnExcUhOjraJy1AoXSPqK+vR0VFBZKSkuTroaNagHJycgCE6GKoUndWeXm5/NeS9HvzJz4AIDExEd9//73TNkEQUFtb6/UodMe+a8eflUqlU7+m9AFIOHZBSCeqNBBs9OjRcktRe2n+uKg7HGflBOA0lqU5zftom/fZO762+YDY5uMbHF9rt9uhUCicurkccczUpa4Dd++pVCqdfDQajdNrHV+nUCja9Nm4Kys9JdGSm6dlpYHJUleHO+/mx5W661oq29p56EnZ1uLiSdnWYsgYg9VqlV/r73hLXCiGvop387g4llUoFLDZbPJ4Dk9i6Ktz1pt4N4+Lp/GWviAd/whrqawj7Y23N+esP+4R0pex1A3bWlmg487ZjrpHaDQaWK1WebxZazH01z25LfjuuTcfMWTIEERGRuLw4cPytvr6epw9exYTJkxwKT9hwgSUlpY6PUWTmpoKAHITW6DQ6XQYMmSIS9LAC+RP/rz68+wOkD/5h4Z/0LUAaTQaLFy4EC+//LLcj/nSSy8hMTERs2bNgiiKqK6uRlRUFHQ6HUaNGoWxY8figQcewNNPPw2j0Ygnn3wSs2fPDugj8ARBEARBBC9B1wIENE1sOG/ePDz++ONYsGABVCoVduzYAbVajZKSEkydOhVff/01gKYms82bNyMpKQmLFi3C3//+d1x22WV4+umnAyuBpv7JEydOeDx3zMUC+ZM/r/48uwPkT/6h4R90g6CDAWkQdFsGUbWG1WpFVVUVunTpEvRTgvsD8id/Xv15dgfIn/wD5+/J9zclQG7wVQJEEARBEETH4cn3d1B2gV0sSEtBSLPb8gb5kz+v/jy7A+RP/qHhTwmQH7FYLMjMzPRqQsZQhvzJn1d/nt0B8if/0PCnLjA3+KoLTJqSX6PR+HSl3VCB/MmfV3+e3QHyJ//A+Xvy/R10j8FfTDSfAI83yJ/8efXn2R0gf/IPDX/+UtMORBAEFBYWerxA28UC+ZM/r/48uwPkT/6h4U8JkB8RRRGNjY1BPxDMX5A/+fPqz7M7QP7kHxr+NAbIDfQYPEEQBEGEHvQYPEEQBEEQRCvQIGg3SKvYSplke3FcDVtaEZgnyJ/8efXn2R0gf/IPnL8gCG1+T0qA3OCrD0yhUECj0fjkWKEI+ZM/r/48uwPkT/6B81coFG3+DqcxQARBEARBcAeNASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoAWoFu92O119/HdOmTcPo0aNx11134dy5cy2Wt1qt2Lhxo1x+4cKF0Ov1TmU++eQTXH/99Rg9ejRmzZqFbdu2QRRFef///vc/DB482OVfUVGR3zzd4Q/3O++808Xr9ttvl/dbLBY888wzmDJlCsaMGYMHH3wQ1dXVfnNsDV/7z5w50+3nOnjwYBw5cgQAUFZW5nb/p59+6nff5nji/8Ybb7TotnbtWrncwYMHMXfuXIwaNQpXXXUVdu/e7XScUP382+ofKtc+4B//ULn+fe1+MV/7AFBVVYUHH3wQkydPxqRJk/DAAw+grKzMqcw333yDa665BiNHjsTs2bNx8OBBp/01NTV48MEHMWHCBEycOBHPPPMMTCaTX/ycYESLvPHGG2zSpEnsp59+Ynq9nv31r39ls2bNYhaLxW35Rx99lF1yySVs3759LDs7m913333s0ksvZfX19Ywxxr744gs2bNgw9tFHH7GCggK2e/duNnbsWPbGG2/Ix3jxxRfZwoULWXl5udM/m83WIc4SvnZnjLEpU6awXbt2OXnV1NTI+9esWcOuuOIKduTIEXby5Ek2e/Zsdtttt/lb1S2+9q+qqnLyLioqYrNmzWJ33HEHs1qtjDHGfv75ZzZixAhWVlbmVNZkMnWYt4Qn/o2NjS7n6wsvvMBGjx7N0tPTGWOMZWdnsxEjRrBXXnmFZWdns3/+859s6NCh7LfffpOPE6qff1v8Q+naZ8z3/oyFzvXva/eL+dpnjLGFCxey+fPns7Nnz7IzZ86wW265hd10003y/oMHD7Jhw4axd955h2VnZ7MNGzaw4cOHs+zsbKdj3HTTTez06dPst99+YzNmzGAPP/yw310pAWoBi8XCxowZwz744AN5W11dHRs5ciT78ssvXcoXFhaywYMHs59++smp/IwZM+Sb/Pz589ljjz3m9LrNmzezyy+/XP59yZIl7LnnnvOtjIf4w72yspIlJyezM2fOuH3P0tJSNmTIEPbzzz/L23Jzc1lycjI7fvy4j8zahj/8m7NhwwY2efJkVlVVJW/btm0bu/76630n0k489W/OmTNn2LBhw9inn34qb3viiSfYvHnznMqtWrWK/fWvf2WMhfbn3xx3/qFy7TPmH/9Quf794d6ci+nar6urY8nJyeyHH36Qt33//fcsOTlZTm7/+te/svvvv9/pdbfeeit74oknGGOMHT9+nCUnJzslRL/++isbPHgwKy0t9aGdK9QF1gLp6ekwGAyYMmWKvK1z584YOnSo3GzpyIEDBxAVFYXLLrvMqfyPP/4oH2P16tX429/+5vQ6pVKJuro6+feMjAwMGDDA1zoe4Q/3jIwMKBQK9OvXz+17Hjt2DAAwefJkeVu/fv3QrVs3t+/pT/zh70h2djbeffddrFmzBnFxcfL2YPjsAc/9m/Pss89i/PjxmDNnjrzt6NGjLrGYPHkyjh07BsZYSH/+zXHnHyrXPuAf/1C5/v3h7sjFdu3rdDp06tQJn3/+ORobG9HY2IgvvvgC/fr1Q+fOnWG323H8+HGXa3/SpEny8Y4ePYr4+Hgn/4kTJ0KhUMjnhb8I8+vRQ5jS0lIAQPfu3Z22JyQkyPscycvLQ69evfDdd99h27ZtKCsrw9ChQ7FmzRr5gx03bpzTaxoaGvDhhx9i2rRpAIC6ujqUlZXh6NGj2LVrF2pqajBy5Eg89NBDLd44/IE/3DMzMxEVFYVnn30WBw4cQEREBK666iosX74cGo0GZWVliI2NhVarbdN7+hN/+Dvy+uuvIzk5GTfeeKPT9szMTMTGxuK2225DXl4e+vTpg2XLljklVh2Bp/6O/PTTT/j999/x+eefuxwzMTHR5Xgmkwk1NTUh/fk70pJ/qFz7gH/8Q+X694e7Ixfbta/RaLBhwwY8+eSTGD9+PBQKBRISEvD+++9DqVSitrYWRqPR7bUvHa+srMzl/TQaDWJiYlBSUuJLPReoBagFpAFYGo3GabtWq4XFYnEp39jYiIKCAmzZsgWrVq3C1q1bERYWhr/85S+oqqpyKW8wGLB8+XJYLBY8/PDDAICsrCwAAGMM69evx6uvvgqLxYK//OUvqKys9LVii/jDPTMzExaLBSNHjsQ///lPLFu2DB9//DEef/xx+T2bv19r7+lP/PnZnzt3Dnv37sWyZcuctttsNuTm5qKurg733Xcftm3bhtGjR+Puu+92GTDobzz1d+Rf//oXZsyYgZSUFKftZrPZ5XjS74IghPTn70hL/o4E87UP+Mc/VK5/f372F+O1zxiDXq/HmDFj8MEHH+Cdd95Bjx49sHz5cjQ2NsJsNl/weIH87KkFqAV0Oh2Appuz9DPQ9KRCeHi4S/mwsDA0NjZi06ZN8l/9mzZtwuWXX47PPvsMS5YskctWVFTgnnvuQVFREXbs2IGkpCQAwPjx43Hw4EHExsZCoVAAADZv3ozp06fj008/xd133+03X0f84f7ss8/ikUceQXR0NAAgOTkZarUaDzzwAB5++GHodDoIguBy7Jbe05/487P/3//+hy5duuCKK65wOcbhw4ehUqnk9xw+fDiysrKwY8cOt11p/sJTf4ni4mIcPnwY27Ztc9mn1WpdPl/p9/Dw8JD+/CVa85cI9msf8I9/qFz//vzsL8Zr/5tvvsH777+Pn376CZGRkQCAN998EzNmzMB///tfuaWr+WfreLzWPvuIiAjfiLUAtQC1gNQkV15e7rS9vLwc3bp1cymfmJiIsLAwpy4PnU6HXr16OT3GmpOTg1tuuQVVVVX44IMPMGLECKfjxMXFyTdAoOnLISkpyeWxQn/iD/ewsDD55icxaNAgAH90j9TW1rpcCC29pz/x12cPAN9//z2uvfZaKJWul16nTp2cbjpAU4w68rMHPPeX+P777xEXF4dLL73U7THdHS8iIgJRUVEh/flLtOYPhMa1D/jHP1Suf3999lKZi+3aP3r0KPr16ycnPwAQHR2Nfv36oaCgADExMYiIiGj1eImJiS77BUFAbW0tEhISfOLVEpQAtcCQIUMQGRmJw4cPy9vq6+tx9uxZTJgwwaX8hAkTYLPZcOrUKXmb2WzGuXPn0KdPHwBNTaCLFi1CeHg4PvroI/kGIPHvf/8bkyZNgtFolLc1NjYiPz8fAwcO9LVii/jD/fbbb3eaEwQATp06BbVajb59+2LcuHGw2+1Og97y8vJQVlbm9j39iT/8gabPUq/X45JLLnE5RlZWFsaOHev0ngBw+vTpDv3sAc/9JY4ePYqJEyciLMy1YXn8+PFITU112nbo0CGMHTsWSqUypD9/idb8Q+XaB/zjHyrXvz/cgYv32k9MTERBQYFTV5XRaERRURH69u0LhUKBsWPHulz7hw8fxvjx4wE03T9LS0tRUFAg75fKNx8753P8+oxZiPPKK6+wiRMnsu+//95pPgRBEJjNZnOZp2Hx4sXs6quvZkeOHGFZWVnsvvvuY1OmTJEfd1y4cCGbMGEC0+v1LnNHMMZYcXExGz9+PLv33ntZZmYmS0tLY4sXL2ZXXHEFM5vNIe3+3nvvsZSUFLZr1y5WWFjIdu/ezSZNmsReeeUV+RirVq1iM2fOZIcOHZLnAVm4cGGHekv42p8xxo4cOcKSk5PdPtopiiK76aab2DXXXMOOHDnCsrOz2bp169jw4cNZRkZGhzg74qk/Y4z96U9/Ylu2bHF7vMzMTDZs2DD20ksvsezsbLZjxw6XeYBC+fNnrHX/ULr2GfO9fyhd/752Z+zivfbLysrYxIkT2dKlS5ler2d6vZ7dc889bNq0afIcaL/++itLSUlhO3fuZNnZ2eyFF15gI0eOlB97t9vtbP78+WzOnDns5MmT7ODBg2zGjBlszZo1fnelBKgVbDYbe/HFF9nkyZPZ6NGj2V133cXOnTvHGGPs3LlzLDk5mX3yySdy+YaGBvbUU0+xSZMmsVGjRrE777yTZWVlMcaa5rlITk5u8Z/E6dOn2Z133snGjRvHxo4dy+677z5WXFzcseLMt+4S77//Prv66qvZ8OHD2YwZM9jWrVuZKIryfoPBwB577DE2fvx4Nn78eLZq1SpWXV3dMcLN8If/7t27WXJycotfaBUVFWzNmjXs0ksvZSNGjGC33norO3LkiP8kW8FTf8YYGzlyJNu1a1eLx/zll1/Yddddx4YPH86uuuoqtnv3bqf9ofz5M9ayf6hd+4z55/MPlevfH+4X87WfnZ3N7rnnHjZx4kQ2efJktmLFCrm8xGeffcauvPJKNmLECDZnzhyX+dEqKyvZfffdx0aPHs0mTZrEnnrqqQ5J/BWMMebfNiaCIAiCIIjggsYAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQThE8xmMzZu3IhZs2Zh+PDhGDt2LO68807o9Xq5DGMMb7/9Nq6++mqMHDkSV155JXbs2AFpQvoL7R88eDDeeOMNp/d94403MHjwYKdtM2fOxLp167Bo0SKMHDkSjz32mE/q98ILL2DkyJFoaGhwer8tW7Zg3LhxMJlMXsfx1VdfxX/+8x+vj0MQROu4X7qWIAjCQx5++GEcPXoUq1atQu/evVFQUIDXXnsNDz74IHbv3g2FQoEXX3wR77zzDu68805ceumlOHXqFF5++WXYbDbcc889F9zvCR988AHuvPNO3HXXXejUqZNP6jdv3jzs3LkTe/bswc033yy/1xdffIFrrrkG4eHhXsexsbERTz75JMLCwjB37lyvj0cQhHsoASIIwmsEQYDBYMDjjz+Oa665BgAwceJENDY2YsOGDaisrIRWq8W7776LhQsX4qGHHgIAXHLJJaioqMCRI0ewYMGCVvd7mgD16NEDq1ev9ln97rnnHgwYMABjxozBF198ISdAx48fR35+PjZs2NCmelksllb3P/TQQzAYDHjsscegVqtx/fXXe+RNEETboASIIAiv0Wg02LFjBwCgrKwMeXl5yM/Px08//QSgKQHR6/Ww2WyYNWuW02sff/xxAMC+ffta3e8pKSkpPq2fxE033YQnnngC58+fR8+ePfHZZ5+hX79+GDNmzAXrZDAYMHbs2DY7PPLII5g8eTLi4+Pb/BqCINoGJUAEQfiEX3/9FevWrUNubi46deqEIUOGICIiAkDT2Jra2loAQFxcnNvXX2i/p0jv7av6SVxzzTVYt24dvvjiC/ztb3/DN998g7vvvrtNddJqtVi/fv0Fy+3fvx+7d+/GlVde6bN4EAThDCVABEF4TWFhIe69915cccUVeOutt9CrVy8oFAp88MEH+PXXXwEAnTt3BgBUV1ejf//+8muLi4tRWFgoJyMt7R83bhwAQBRFp/c2Go0dUr9x48ZBrVajU6dOuOqqq/DNN98gOTkZRqMRN954Y5vi1JZxPQcOHMDevXtxxRVXYOPGjVCpVG06NkEQnkFPgREE4TWnT5+GxWLB3Xffjd69e0OhUACAnFwwxjBy5Eio1Wq520li586dWLVqFcaMGdPqfpVKhcjISJSVlTntP378eIfUzzERmTdvHjIzM/HOO+/gkksuQbdu3doSpjaxdetWXHLJJdi0aRPCwuhvVILwF3R1EQThNcOGDUNYWBheeukl/PWvf4UgCPj000/x888/A2hqpenVqxfuuOMOvP3229BoNJg4cSJOnjyJDz/8EA8//DC6dOnS6n6lUonp06dj9+7dGDVqFPr06YNPP/0UBQUFHVI/pfKPvxfHjRuHfv36ITU1FZs2bfJpLLds2QKdTgeNRuPT4xIE4YyCSRNcEARBeMGePXuwefNmFBYWIjo6GqNHj8Ydd9yB22+/HU888QRuu+02MMawc+dOfPTRRygtLUVSUhIWLVqE+fPnA8AF91dWVuK5557Dvn37EBYWhmuuuQbDhw/H448/joyMDLkuM2fOxMSJE52ezPJF/RzZsGEDPv30U+zfv5+SFYIIQSgBIgiC8BDGGK699lpMnToVjz76aKCrQxBEO6AuMIIgiDbS2NiIt99+G6dOncK5c+dw++23B7pKBEG0E0qACIIg2ohOp8NHH30Eu92OdevWoVevXoGuEkEQ7YS6wAiCIAiC4A56DJ4gCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO74fx4v94AaXOP5AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=\"equalized_odds_diff\",\n",
+ " show_data_type=\"test\",\n",
+ " constant_clf_perf=max((y_test == const_pred).mean() for const_pred in {0, 1}),\n",
+ " model_name=r\"$\\bigstar$\",\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(r\"equalized odds violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8e7b0885",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "# Fit and plot similar example but using \"Equal Opportunity\" fairness metric\n",
+ "> equal opportunity is achieved by setting `fairness_constraint=\"true_positive_rate_parity\"`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "727e485b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "89156406259543afb1e7efc03b5a2b8f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=rf_clf,\n",
+ " fit_data=(X_fit, y_fit, s_fit),\n",
+ " eval_data={\n",
+ " \"test\": (X_test, y_test, s_test),\n",
+ " },\n",
+ " fairness_constraint=\"true_positive_rate_parity\",\n",
+ " tolerance_ticks=np.hstack((\n",
+ " np.arange(0.0, 0.1, 1e-2),\n",
+ " np.arange(0.1, 1.0, 1e-1),\n",
+ " )),\n",
+ " y_fit_pred_scores=predictor(X_fit),\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "84c57e54",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYPklEQVR4nOy9eXxTVf7//8ratLSUFihlK3tbyr7KIiqojCKjbPoBxQUGQRFREUVccQNkEQW+MIDgMso447giKu6DMMgqLUtaui9039vsuTm/P/q71yRNS0OSJul5Px+PPqD3nt6c5zv33rxzzrnnyBhjDARBEARBEBwh93cFCIIgCIIgWhtKgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A6lvysQiPzxxx9gjEGlUvm7KgRBEARBtBCLxQKZTIYRI0ZcsSy1ALmAMQZvTZAtCIJXjhOskD+//jy7A+RP/uTvD9z5/KYWIBeILT9Dhgzx6DgWiwWVlZWIjo7msjWJ/Pn159kdIH/yJ39/+Z87d67FZWW0FlhjxAB6mgARBEEQBNF6uPP5TV1gPkQQBNTW1nLbFEr+/Prz7A6QP/mTfzD4UwLkQ0wmE9LT02EymfxdFb9A/vz68+wOkD/5k38w+FMXmAu81QVms9lgsVigUqkgl/OXa5I/v/48uwPkT/7k7y9/dz6/aRC0hwiCAIvF0mwZs9ncSrUJTMjfN/4qlQoKhcInx/YUuVyOkJAQf1fDb5A/+ZN/4PtTAnSVMMZQXFyM6urqZssIggCFQgGZTNZ6lQsQyN/3/h06dEBsbGzAxddsNqO4uBixsbFQq9X+rk6rQ/7kT/6B708J0FUiJj8xMTEICwtz+QFks9lgNpuhVqu5bQYlf9/4M8ag1+tRWloKAOjatatXj+8pgiCgvr4+4AdB+gryJ3/yD3x/GgPkgiv1IQqCgEuXLiEmJgYdO3ZszaoRhAMVFRUoLS1FfHx8wHaHEQRBtBb0GLyPEcf8hIWF+bkmBO+I5+CVxqERBEEQjgR8ArRr1y7ce++9zZapqqrCk08+iTFjxmDs2LF4+eWXYTAYfF63K427EAQBer0+4JsBfQX5+94/0Mb+iOj1eiQnJ0Ov1/u7Kn6B/Mmf/APfP6DHAH300Ud46623MHr06GbLLV++HAaDAe+99x5qa2vx3HPPQa/X44033milmrpGJpNBqVQG7IeUryF/fv1VKhViYmK4XAYAIH/yJ/9g8A/IBKikpAQvvfQSjh8/jt69ezdb9o8//sCJEyfwzTffoF+/fgCAV155BYsWLcKKFSvQpUuXVqixa+RyeUCPgPc15M+vv0qlCriB2a0J+ZM/+Qe+f0B2gV24cAEqlQpfffUVhg0b1mzZU6dOoXPnzlLyAwBjx46FTCbD6dOnfV3VZhEfg+Z1nLnof/r0aZw6dcrf1Wl1fv/9dyQkJCA/P9/fVWl1guUpEF9B/uRP/oHvH5AJ0JQpU7Bt2zb07NnzimVLSkoaZZpqtRodOnRAUVGRR/WwH0dkMBikCe1sNhtsNpuU2NhsNoc3Wtxvs9lgNBodkqCmygKNEybn36+2LNBwQjb1t56Uba5OgiDAaDTi7rvvRl5eXrNl3YmLr8q2JC7ulB02bBi+//57dOnSpVXibTabmz1n7ccjWSwWh/55o9HoVllxinvxcXyr1QoAsFqt0Ov1MJlMSEtLQ11d3RXLivU3mUwwGo3S6+j1emlwtztlxbFXYpyc4+JO2SvFsKmyBoMBaWlpUtxaEkNP4m0fF2/EW4zL1ca7trYWaWlpMJlMMBgMXou3fVzcPb+bioun8XaOi9Vqlc7/6urqq47h1Z7fruLijXi7c4+wf/+biqG34u18j3CHgEyA3MFgMLjsZggJCfFoHRJBEJCeni79np2djeLiYgANb7bVapVOKkEQHF7LZDLBYrFALpdDo9HAZDJJJ4qYFIiYzWaHJ3jEhAloeEOdy9rPKmw0GqUTxfm4FoulUVnnOognlcViaVR/sayYxDVV1r4OYlkxLjabzWH8i8lkksoyxhzKijcN5xi6KttUvO3LNhfvK8XFG/E2mUxQKpXo2bMn5HL5FePtHEOxrHNcnOMt3mAAoKysDBkZGVLZrKwslJSUSC5arVa6+ZWXlzc6v8UvDFarFVqtFvX19QAaHjJIS0uTyubm5qKwsFCKg1arRV1dHQCguroaWq0WGo0GSUlJKCsrQ0FBgfTeaLVa1NTUAGi4SWq1Wul9LSgocGgt02q10kSj9fX10Gq1kntRURFycnKksmlpaaisrAQA6HQ6aLVa6ZwoLi5Gdna2VDY9PR3l5eUAGu4fWq1WinFpaSkyMzOlspmZmSgrK5Nir9Vqpfe9rKysyXuEOCWB6FZRUYFLly5JZXNycpqNd2pqqlQ2Ly8Ply9flo7nKt4i+fn5Tcawrq7OId6XL19GXl6eVDY1NRVVVVUtivelS5dQUVEBoOFDSKvVSud/cXExCgsLkZSUBI1Gg/T09GZj6BxvcW4rk8l0xXPW/p6s1Wqh0+kAAJWVlQ7nbHPxdhVD8ZwV411bWwsAqKmpgVarla65ps5ZjUaDHj16ICcnR7q/FBYWIjc3VyqblpbWbLyvdM6K8S4pKUFWVpZUNiMjo9l4t8Y9orS0FJGRkdBoNNI94ocffsChQ4dQWFjYZLy9cY9wCxbgrFq1is2fP7/J/a+88gqbM2dOo+3jxo1j77777lW9ZkpKCktJSWF6vV7aptfrmclkYowxptPp2Pnz56X9giAwq9XKGGOsvr6e1dbWstraWlZfX8/q6upYTU0Nq6urk/bV1NSw+vp66XfxuDabjRmNRlZXV8f0ej2z2WzMarUym812xePalxXrJAiCVH+r1Sr9bl82Pj6effDBB2zOnDls8ODBbPr06ez77793KPvTTz+xO++8kw0fPpxNmDCBvf7668xgMEiv88svv7CZM2eyoUOHsnHjxrGnn36aVVdXM0EQWHx8vPTz9NNPu6wDY0yqx5133skGDx7MbrvtNvbDDz9IZd966y129913s8cff5yNGDGCrVmzhjHG2JkzZ9i9997LRo4cycaOHctWrVrFysvLpeMajUa2ZcsWdsMNN7ChQ4eymTNnssOHD0vHTUtLY4sWLWLDhw9nEydOZE888QQrKSmR3DIzM9nChQvZyJEj2fDhw9mCBQtYamqqVP9ff/3VwX3VqlWsurqaWa1WduzYMRYfH8/y8vKY1WplN9xwA3vnnXfYI488woYPH87Gjh3LXn31VWY0GqW4HD58mN1xxx1SDD755BMWHx/P8vPzG72v4nlx4cIFZjAYmMlkavKcFQSB6XQ66Tw1m81Mp9NJZcW/b2lZo9Eo1UGn0zGLxcIYY8xisbhd1v69Es8r8Tozm81ul7VarUyn00lxco6LO2WvFENP4u0cF0/ibR8Xb8RbjIs34q3X670Wb/u4eBpvMS6exts5Lp7E2z4unsTbOS7eiLen94g33niDrVmzhhUVFfn0HiF+freEoE+Adu/eza677jqHbSaTiSUmJrKDBw9e1WteKYAGg4FdvHjR4Y0QAeD2z7///W/p7//9738zAOz66693OG6nTp2aPcbVEh8fz4YPH84+/PBDlpmZyTZu3MgSExPZ6dOnGWOMff/99ywxMZH9v//3/1hWVhb78ccf2bXXXssefvhhxhhjFRUVbPDgwezDDz9kBQUF7NSpU2zKlCns2WefZYIgsMuXL7P4+Hj23nvvsdra2quux9atW1l8fDx77bXXWF5eHsvOzmbJycls0KBB7JVXXmEZGRns2LFj7NZbb2UzZ86ULsyXXnqJjRs3jn377bcsNzeXvfnmm2zw4MEsMzOTFRcXS0lIRkYGO3fuHFu8eDGbPHmydIHOnDmTrV69mmVnZ7P09HS2aNEidtNNN13RnTHmkAAxxtjkyZPZkCFD2Pvvv8/y8vLYf/7zH5aQkMA+//xzxhhjFy9eZElJSeyNN95gmZmZ7Ouvv2ZjxoxxSICcae5c9Ccmk4nl5+dLN0zeIH/yJ39H/19++YV9//33rL6+3qev7U4CFJBPgbnDmDFjsGnTJuTm5qJXr14AgBMnTgAARo0a5c+qBQ2zZs3CPffcAwBYuXIlTpw4gQ8//BAjR47E7t27cfPNN2Pp0qUAgD59+oAxhkceeQQZGRlS10+3bt3QvXt3dO/eHX//+9+lZt+oqCgAQEREBCIiIq66HiLLly+XjvP4448jISEBL7zwAgCgX79+ePPNN3HHHXfgyJEjGDVqFP7zn//ghRdewC233AIAeOKJJ8AYQ319Pb766ivExsbi+eefl47/1ltvYdy4cfjuu+8wa9Ys5OXlYcKECejevTtUKhXWrl2LrKws2Gw2lJSUNOvuimuvvRb33XcfAKBnz574xz/+gTNnzmDGjBl47733MHjwYDz99NMAgL59+6KiogKvv/56S97GgEIQBFRXV3M7Uzr5kz/5O/rfcMMN/qtQEwRdAiQIAiorKxEREQGNRoNhw4Zh5MiReOKJJ7BmzRro9Xq8+OKLmDFjhl8egRf7RN3BftXcmTNnor6+vtHaUfb9797mmmuucfh9xIgROHr0KICGvv7bbrvNYf/YsWOlfdOmTcP06dPx0EMPoXPnzpg4cSJuuOEG3HzzzZDL5QgNDXX42xdffBEHDhyQfl+yZAkeeuihK9YDADp27OiQRF26dAkTJ050+JvExEREREQgLS0N0dHRsFgsjZ4kXLFiBQBg+/btSE9Px4gRIxz2m0wmaVzCE088gbVr12L//v0YO3YsJk2ahOnTp0Mul2PgwIFNugN/TlJoPw7K/mlFoCExFMeqXLx4ERMmTHDYP2bMGAQjoaGhGDx4sL+r4TfIn/zJP/D9gy4BKioqwo033oh169Zh1qxZkMlk2L59O15++WXcf//9CAkJwS233ILVq1f7pX7t2rXz6O+VSiWUysZvi6fHvdJr2iMIgpSAMReP8IsD0sS/27x5Mx555BEcPnwY//vf//DUU09h1KhReP/99xv97WOPPYa//e1v0u+RkZEtqgcAaDQah/2u6iZuV6lUV5yEy2azYdy4cXjppZca7RMTrXvuuQe33HIL/vvf/+LYsWPYunUrdu7ciS+++AKdOnVyyx2AywH7oodCoXB44osgCKKtIA7wVigUATM5bMAnQOvXr3f4vUePHg6jzYGGloGtW7e2ZrVahPiUTkhISECvhn7u3DlMmTJF+v2PP/7AoEGDAAAJCQk4c+YMHnjgAWm/OKdPv379kJycjIMHD+LZZ59F37598cADD+Crr77CU089hbKyMoSHhzu8VseOHZtsFm6uHq5ISEhoNNdTamoq6uvr0a9fP/Tq1QsqlQrnzp1DYmKiVOauu+7CtGnTMGDAAHzzzTfo2rWrlJhUV1dj1apVWLBgAQYMGID/9//+HxYvXoxZs2Zh1qxZKCkpwXXXXYcTJ06ge/fuTbpXVFQ4PDLfEhITE5GSkuKw7Y8//mjR3wYaBoMBmZmZ6NevX6NWQB4gf/Inf0f/N998EwaDAUuXLkXnzp39XMMGAj4BCnaCYYXu999/H3379sXgwYPx73//G2lpadK4k0WLFuGxxx7Djh07cOuttyInJwevvvoqJk+ejH79+iEzMxP79++HSqXCXXfdBZPJhG+++Qa9e/dGVFQUbDYbwsLCkJmZiaqqKmlMkLv1cMWCBQtw991349VXX8Xdd9+N8vJyvPrqq0hKSsL48eOhUqkwf/58vP3224iOjsaAAQPwn//8B5cuXcL69euhUqnwr3/9CytXrpTGOL3xxhtIS0tDfHw82rdvj19//RV5eXl48sknER4ejs8++wwqlQqDBw+GxWJp1t1dFi5ciBkzZmDTpk2YPXs2MjIypMQ+UL4xtRSFQoGoqKigOP99AfmTP/kHvj8lQD4kWJZCmDt3Lt577z1cunQJiYmJ2Lt3r9Ri8pe//AVvvvkmdu7ciR07diA6OhrTp0/H8uXLATS0Am3btg3bt2/H/v37IZfLMW7cOOzZs0fq0lq4cCHeeecdZGZm4u9///tV1cMVw4YNwzvvvIO33noLM2bMQHh4OG666SY8+eSTUvfXihUroFAo8NJLL6Gurg6JiYnYvXs3+vbtCwD48MMPsXnzZsybNw8KhQIjR47EBx98gOjoaADAnj178MYbb+CBBx6AwWDAwIEDsXv3bsTFxQFAk+5yudzlGKDmiI+Px/bt2/Hmm2/ivffeQ58+fTB//nxs27Yt4NfUcUatVqN79+7+robfIH/yJ39H/8ceewwAAupeJmMtbZ/niHPnzgEAhgwZ4nK/0WhEdnY2+vTp02hcij2MMdhsNocPw0AjISFBGk/lbdzx92U9/IW7739KSgqUSiWSkpKkbQcOHMCzzz6LP/74w+XYsJaei62NOKGjRqMJ6O5fX0H+5E/+/vG/0ue3Pfy9M62I88zIvEH+7vlrtVrcd999+Omnn1BYWIhjx45h27ZtuO2221wmP4GM8wy0vEH+5E/+ge8fXHfVIENcCoPHbwAA+bvrf9ddd6GsrAxr165FSUkJOnbsiNtuu03qbgwmQkJCkJiY6DDFA0+QP/mTv6P/kSNHYLFYMHbsWJ8+1ewOlAD5EJlMFvCDwJyfqPMm7vj7sh7+wt33XyaTYdmyZVi2bJkPa9U6KBSKgLnJ+QPyJ3/yd/T/3//+B4PBgMGDBwdMbPj8at5K2Gw2mM1mrruAyJ9Pf4vFgsLCQoeFfnmC/Mmf/B39R44ciTFjxgTUtACUAHlAS8aPi5M/8Qr5+9Y/UJ9hsFqtKC8v5/b9J3/yJ39H/5tuugnTpk1rNDecP6EusKtAHJB6pZNbLpcjLCysNaoUkJC/7/3FczDQBkmHhoZi6NCh/q6G3yB/8if/wPenFqCrQKFQQKFQoLa21t9VITintrZWOh8JgiCIlhNYXxuDBJlMhpiYGBQVFSEkJATt2rVzOc+LOAZErVZz+SQU+fvOnzEGnU6H2tpadO3aNeDmmTIYDNL8RIHU599akD/5k7+j/8aNG2EwGPDwww/TUhjBTmRkJAwGA8rLy1FWVuayDGMMgiAE1OJvrQn5+9ZfJpOhQ4cODgvKBgoKhQLh4eHctkyRP/mTv6M/YyzgxizSTNAucGcmSUEQuB3pT/gXlUrF7Q2WIIjgor6+HowxhIWF+fS+5c7nN7UAeUhz4y+oC4j8efXn2R0gf/Inf2f/QHr6S4S/d6YVMRqNuHDhQsBPB+4ryJ9ff57dAfInf/IPBn/qAnOBO01ozSEIAvR6vc+b/AIV8ufXn2d3gPzJn/yd/Y8fPw6LxYKRI0f6dHoQ6gILEBQKBSIiIvxdDb9B/vz68+wOkD/5k7+z/3//+18YDAYkJCQEzPxw1AXmQywWC4qLi7kdJE3+/Prz7A6QP/mTv7P/kCFDMHz4cGg0Gj/WzBFKgHwIXQTkz6s/z+4A+ZM/+Tv733rrrbjjjjsCqmWMxgC5wFtjgAiCIAiCaD3c+fymFiCCIAiCILiDEiAfYjQakZqaGvCPAvoK8ufXn2d3gPzJn/yd/d966y2sW7cO5eXlfqyZI5QA+RCZTAaNRsPlMhAA+fPsz7M7QP7kT/7O/mazGWazOaCWw6AxQC6gMUAEQRAE4T2qqqrAGENkZGTALIVBLUA+hDEGi8USUBlva0L+/Prz7A6QP/mTv7N/VFQUoqOjA2piSEqAfIjBYEBKSgoMBoO/q+IXyJ9ff57dAfInf/IPBn+aCdqHhISEoH///ggJCfF3VfwC+fPrz7M7QP7kT/7O/qdPn4bVasXQoUMRGhrqx9r9CSVAPkShUCAyMtLf1fAb5M+vP8/uAPmTP/k7+//0008wGAzo27dvwCRA1AXmQywWC0pLS7meDZT8+fTn2R0gf/Inf2f/xMREDBo0KKBaxagFyIdYLBYUFBQgPDwcKpXK39VpdcifX3+e3QHyJ3/yd/a//fbb/VyrxtBj8C6gx+AJgiAIIvigx+AJgiAIgiCagRIgH2I0GnHp0iWup0Mnfz79eXYHyJ/8yd/Zf8eOHdi8eTMqKir8WDNHaAyQD5HJZFAqlVxPh07+fPrz7A6QP/mTv7N/fX09DAYDbDabH2vmCI0BcgGNASIIgiAI71FaWgrGGDp27Ail0ndtL+58flMLkA9hjMFms0Eul3P5TYD8+fXn2R0gf/Inf2f/mJgYP9eqMTQGyIcYDAacPXs24KcD9xXkz68/z+4A+ZM/+QeDP7UA+RC1Wo2+fftCrVb7uyp+gfz59efZHSB/8id/Z/+UlBQIgoCBAwdCo9H4sXZ/4pUWILPZjIEDB+KLL77wxuHaDEqlElFRUT7t7wxkyJ9ff57dAfInf/J39v/uu+/w1Vdfoa6uzo81c8RrXWA0lroxVqsV5eXlsFqt/q6KXyB/fv15dgfIn/zJ39m/X79+iI+PD6hWMT7T01bCbDYjNzcXYWFhXH4TIH9+/Xl2B8if/Mnf2X/27Nl+rlVjvPIYvNlsxtChQ7F+/XrMmDHDC9XyL956DN4+tLw+CSBC/nz58+wOkD/5k79Ia/vTY/ABAo8nvj3kz68/z+4A+ZM/+QcD9Bi8DzGZTMjIyIDJZPJ3VfwC+fPrz7M7QP7kT/7O/rt378bWrVtRWVnpx5o5Qi1ABEEQBEH4lOrqahgMBgiC4O+qSFAC5ENCQkLQv39/f1fDb5A/v/48uwPkT/7k7+x/zz33wGazoUOHDv6plAs86gLbtWsXNm/e7LDt1KlTWLx4MfR6vUcVawswxqQfHiF/fv15dgfIn/zJ39m/e/fu6NmzJ1QqlR9r5ohHCVBISAj27NmDtWvXQiaT4ffff8eDDz4Is9kMuZyGFxkMBpw5cybgpwP3FeTPrz/P7gD5kz/5B4O/R11gDzzwAFQqFV577TUAwJdffokJEyZgx44dCAkJ8UoFgxm1Wo1evXoF1MRPrQn58+vPsztA/uRP/s7+Wq0WgiBgwIABAZMfeNxMc8899+Dll18GAFx//fXYuXNnwMj5G6VSiU6dOnE5ERZA/jz78+wOkD/5k7+z/4EDB/Dpp5+itrbWjzVzxCvvzl133YXx48cjNjY2oPr3/I3VakVdXR0iIiK4vBDIn19/nt0B8id/8nf2j4uLg8lkCqgcwWsDdQJtcFMgYDabkZWVBbPZ7O+q+AXy59efZ3eA/Mmf/J39586di/vvvz+gngLzylIYbQ1vLoVhs9kgl8uDZmZMb0L+/Prz7A6QP/mTv7/8aSmMAEEmk0GhUPi7Gn6D/Pn159kdIH/yJ/9g8Kdn1X2IyWRCVlYW19Ohkz+f/jy7A+RP/uTv7P/uu+9i586dqKqq8mPNHKEWIB/CGIPVauV6Mizy59OfZ3eA/Mmf/J39y8rKYDAYYLVa/VgzRwJyDJDNZsP27dvxySefoK6uDmPGjMGLL76Inj17uixfUVGBtWvX4ujRo2CMYcKECXjmmWfQpUuXq3p9b40BIgiCIAgCyM3NhSAI6NGjh0/nR3Ln8zsgu8B27NiB/fv349VXX8XHH38Mm82GRYsWNTmi/vHHH0dhYSHeffddvPvuuygsLMQjjzzSyrUmCIIgCMIVvXr1Qt++fQNqcsiAS4DMZjP27duH5cuX44YbbkBiYiK2bNmC4uJifP/9943K19bW4sSJE3jwwQcxcOBAJCUlYfHixTh37hyqq6tbX8AOvV6PM2fOcLsuGvnz68+zO0D+5E/+weDvlTFANTU1MBgMsNlsjfZ169bNrWOlpqZCp9Nh/Pjx0rb27dsjKSkJJ0+exPTp0x3KazQatGvXDl988QXGjh0LoGFJjj59+qB9+/ZXYeM9VCoVevTowe38SOTPrz/P7gD5kz/5O/tnZGRAEAT07t07YFaL8KgFKDc3F3PnzsW4ceMwefJk3HjjjY1+3KW4uBgA0LVrV4ftMTEx0j571Go11q9fjxMnTmD06NEYM2YMkpOTsWfPHo8XZLVfyM1gMEhdcDabDXq9HoIgAAAsFotDpms0GqUZLzt37gyLxXLFskDDwDG9Xi8NErNardDr9dJAMpPJ5FZZo9EovY5er4fFYgEACILgdlkxuTWbzY3i0lRZxhgiIiKki8CdGF5NvF3FxdN4O8fFnbJAw3krl8sbxdCTeDvHxZ2yzcXQG/EW46JSqRATEwNBELxyzl7N+d1UXDyNt31cmiqrUCgQHh4u3YNaEsO2dI+wWq2IiYmBSqVq9h7hyTkbyPcIlUqF6OhoWCyWq45hMN8jBEFAZGQkVCqVFMPPPvsMH3/8Maqqqrwab+d7hDt4lCG8+uqryMnJwbJly/Daa69h7dq1jX7cRXxznPsJQ0JCXD5SyBiDVqvFiBEj8NFHH+H9999Ht27dsHTpUtTX11+dGBrewPT0dOn37OxsKQEzm83QarVSsCsqKnDp0iWpbE5ODoqKiiAIAiorK6HVaqW6VFVVITU1VSqbl5eHy5cvA2g4qbRaLerq6gAA1dXV0Gq1Utn8/Hzk5+dLv2u1Wqmbr66uDlqtVjrRL1++jLy8PKlsamqq9PhhfX09tFqtdJIVFRUhJydHKnvp0iVUVFQAaDjBtFqtdOIXFxcjOztbKpueno6ysjIADSeyVquVTtCSkhKkp6dLF0lmZiZKS0sBNJzIWq1Wer/Ly8ubjLfFYoFWq4VOpwMAVFZWIi0trVG8gYaLwD7ermJYUFDgEG9xbZqamhpotVrpYisoKLhivEW3wsJC5ObmSmXT0tJQUVGBmpoa1NbWNoq3cwzLy8sBNJz/9vEuKSlBVlaWVDYjI6PJeJeVlSEjI0Mqm5WVhZKSEgB/nrPNxbupGFZVVTnEOzc3F4WFhQAarhNX56wgCKipqXGIt3it1tTUAIAUF/GcbS7eVzpn09LSUFlZCQDQ6XTQarXSjdHVOescb/HeUlpaiszMTKlsZmZms/Fu6pwVy4pxaeoe0VS8g/0ekZWVhZqaGuk+2lwMnePdFu4RgiCgpKTkiveI5uIdzPeInJwc5OTkQBAE6R7RqVMndO/eXTpfXMXbG/cIt2AeMHToUHbgwAFPDtGI7777jsXHxzODweCwffny5eyhhx5qVP7gwYNs9OjRrK6uTtpWXV3NRowYwd59992rqkNKSgpLSUlher1e2qbX65nJZGKMMSYIAtPpdMxqtTLGGDObzUyn00llDQYDMxqNTKfTsVOnTrHy8vIrlmWMMZvNxnQ6HbNYLIwxxiwWC9PpdMxmszHGGDMajW6VtY+hTqdjZrOZMcaY1Wp1u6wgCIwxxkwmU6O4NFW2urqanTp1SvJ1J4ZXE29XcfE03s5xcadsTU0NO3XqFKutrW0UQ0/i7RwXd8o2F0NvxFuMi3juV1VVeeWcvZrzu6m4eBpv+7g0Vbaurk5671saw7Z0j6isrJSu/ebuEZ6cs4F8j7C/919tDIP5HmH//jcVQ2/F2/keIX5+twSPHoOfOHEi1q9fj0mTJl3tIRqRkpKCO++8Ez/88APi4uKk7fPmzUNCQgLWrFnjUP6VV17B+fPn8e9//9th++zZszF06FC89NJLbtfBm0thWK1WKJVKbqdDJ38+/Xl2B8if/MnfX/6t9hj8HXfcgY8++sirkz0lJiYiPDwcx48fl7bV1tbi4sWLGDNmTKPysbGxyM3Ndege0+v1KCgoQO/evb1Wr6tBJpNBpVJxeQEA5M+zP8/uAPmTP/kHg79HT4GFhobi9OnTuPnmmzFkyBBoNBqH/TKZzO1xQGq1GvPnz8emTZsQHR2N7t27Y+PGjYiNjcXUqVOlcTURERHQaDSYMWMG9u7di8cffxyPPfYYAOCtt95CSEgIZs2a5Ymex5hMJhQVFaFr164BM+q9NSF/fv15dgfIn/zJ39n/ww8/hMlkwuzZswNmRXiPEqDPP/8cERERsNlsSE5ObrT/arO/5cuXw2q14vnnn4fRaMSYMWOwd+9eqFQqFBQU4MYbb8S6deswa9YsxMTEYP/+/di4cSPuv/9+yOVyjB49Gvv370dERIQneh7DGIPRaOR6OnTy59OfZ3eA/Mmf/J39CwsLHZ4IDAQCcikMf0NLYRAEQRCE92iteYDc+fymxVAJgiAIgvAp/fv393cVGuGVpTAOHz6MTZs24cUXX8SWLVtw+PBhbxw26NHr9Th79mzATwfuK8ifX3+e3QHyJ3/yDwZ/j1qAzGYzli5diiNHjkChUCAqKgpVVVXYvXs3xo0bh127dgXUwmetjUqlQmxsLNfToZM/n/48uwPkT/7k7+yfm5sLm82G7t27B0xe4FEL0LZt23D69Gls2LABKSkpOHLkCJKTk7Fu3TqcPXsWO3fu9FY9gxK6CMifV3+e3QHyJ3/yd/b/17/+hQ8++ECa5TkQ8CgB+vrrr7Fs2TLcfvvtUCgUAAClUokZM2Zg2bJlOHDggFcqGawIgoC6ujppKnTeIH9+/Xl2B8if/Mnf2b9z586IiYmBUhk4Q489SoAqKyuRlJTkcl9SUpK0xgivmEwmXLp0yeUaZjxA/vz68+wOkD/5k7+z/4IFC/Dwww8jKirKjzVzxKMEKC4uDqdPn3a57+TJk41WdOcNjUaDQYMGNZogkhfIn19/nt0B8id/8g8Gf4/aoubOnYv169dDo9HgtttuQ6dOnVBeXo6vv/4ae/bswbJly7xVz6BELpcH/AngS8ifX3+e3QHyJ3/yDwZ/jxKgefPm4eLFi9i0aRM2b94sbWeMYebMmVi8eLHHFQxmzGYziouLERsbGzCj3lsT8ufXn2d3gPzJn/yd/f/1r3/BZDLh9ttvbxtLYcjlcrz++utYuHAhTpw4gZqaGkRGRmLs2LHo16+ft+oYtAiCgPr6eq4HwpE/n/48uwPkT/7k7+yfm5sb/EthrF69GkuXLkXPnj2xevXq5g9+FYuhBgK0FAZBEARBeI+LFy9CEAQMGDDAp91jPl0K4/jx47j//vul/zfH1S6GShAEQRBE26GpJ8b9idsJ0M8//+zy/0RjDAYD0tPTMWDAAISGhvq7Oq0O+fPrz7M7QP7kT/7B4O/RY/AnT56ETqdzua+2thYHDx705PBBj1KpRKdOnQJq4qfWhPz59efZHSB/8id/Z//CwkIUFBQE1BggjxKg++67D5mZmS73Xbx48YpjhNo6KpUK3bp143o6dPLn059nd4D8yZ/8nf0//PBD7N27F9XV1f6rmBNup6erVq1CUVERgIbH3desWYPw8PBG5XJyctCpUyfPaxjECIIAo9EIjUYjLRXCE+TPrz/P7gD5kz/5O/t36NABISEhARUPt1uA/vKXv4AxBvuHx8TfxR+5XI7hw4dj3bp1Xq1ssGEymZCamsr1dOjkz6c/z+4A+ZM/+Tv7L168GI899hiio6P9WDNH3H4M3p57770Xa9asaXNz/njrMXibzSZlwXK5R72NQQn58+vPsztA/uRP/v7yd+fz26MESKSiogJms1lqFbLZbDAYDDh16hTmzZvn6eFbHZoHiCAIgiCCD5/OA2RPamoqVq5c2eRAaJlMFpQJkLcwm80oKytD586duZ0Onfz59OfZHSB/8id/Z//PPvsMJpMJ06ZNQ2RkpJ9r2IBHbVMbNmxATU0NVq1ahbFjx+Laa6/FCy+8gOuvvx4ymQwffPCBt+oZlAiCgKqqKq6nQyd/Pv15dgfIn/zJ39k/IyMDly5dgtls9mPNHPGoC2zUqFFYvXo15syZg3/96184cOAAPvzwQwDA8uXLIZPJ8Pbbb3utsq0FdYERBEEQhPdISUmB1WpFUlJSwCyF4VELkNlsRu/evQEAvXv3RmpqqrRv1qxZOHv2rCeHJwiCIAiiDTB06FCMHDnSp8mPu3iUAHXr1g35+fkAGhKg+vp6FBQUAADUajVqamo8r2EQYzAYcP78eRgMBn9XxS+QP7/+PLsD5E/+5B8M/h4lQFOnTsXmzZtx6NAhdOnSBX379sVbb72FtLQ07Nu3Dz179vRWPYMShUKBDh06BNTET60J+fPrz7M7QP7kT/7O/mVlZSgpKYHVavVjzRzxaAyQyWTCU089BYPBgD179uC3337DsmXLYDaboVAo8Oabb2Lq1KnerG+rQGOACIIgCMJ7bNiwAQaDAUuXLkXnzp199jqt9hh8SEgItm7dKi1uNmnSJHz99dc4f/48Bg0ahLi4OE8OH/TYbDaYTCaEhIRwOxkW+fPpz7M7QP7kT/7O/u3atYNcLg+oeHilJvYLnvXs2RO33nor98kPABiNRly8eBFGo9HfVfEL5M+vP8/uAPmTP/k7+z/yyCNYuXIlOnbs6MeaOeJ2F9j27dtbfnCZDI888ojblfI33uoCEwQBBoMBoaGhXPYFkz+//jy7A+RP/uTvL3+fLoWRmJjY4rIymQxardadwwcENAaIIAiCIIIPn44Bsp/rh2gei8WC8vJydOrUyaGbkBfIn19/nt0B8id/8nf2P3DgAMxmM26++Wa0b9/ezzVswKNB0CKHDx/GiRMnUFtbi+joaIwaNQqTJk3yxqGDGovFgtLSUkRGRnJ7EZA/n/48uwPkT/7k7+yv1WphMBhw3XXX+bl2f+LRY/BmsxlLly7FkSNHoFAoEBUVhaqqKthsNowbNw67du0KyoXgqAuMIAiCILzH6dOnYbVaMXToUISGhvrsdVptKYxt27bh9OnT2LBhA1JSUnDkyBEkJydj3bp1OHv2LHbu3OnJ4QmCIAiCaAOMGjUK11xzjU+TH3fxKAH6+uuvsWzZMtx+++3SSG+lUokZM2Zg2bJlOHDggFcqGawYDAZcvHgx4KcD9xXkz68/z+4A+ZM/+QeDv0djgCorK5GUlORyX1JSEkpKSjw5fNCjUCgQHh7O5WOQAPnz7M+zO0D+5E/+zv7V1dVgjKF9+/YBExePWoDi4uJw+vRpl/tOnjyJrl27enL4oEetViMuLi4ox0F5A/Ln159nd4D8yZ/8nf13796NrVu3orKy0o81c8SjBGju3LnYtWsX3nnnHRQVFcFisaCoqAh79uzBnj17MHv2bG/VMygRpwO32Wz+ropfIH9+/Xl2B8if/Mnf2V+tVkOtVkMmk/mxZo549BSYzWbDCy+8gE8//dRBijGGmTNnYu3atQEl21K89RSYXq+HVqvFwIEDERYW5o2qBRXkz68/z+4A+ZM/+fvL36czQbsiIyNDmgcoMjISY8eORb9+/Tw9rN/w5lIYOp0O7dq1C5g+z9aE/Pn159kdIH/yJ39/+bd6AtTWoHmACIIgCCL48OlSGKtXr8bSpUvRs2dPrF69utmyMpkMa9eudfcl2gwWiwWVlZWIjo7mdjZQ8ufTn2d3gPzJn/yd/b/99luYzWZMmTIFERERfq5hA24nQMePH8f9998v/b85gnH8jzexWCwoLCxEREQEtxcB+fPpz7M7QP7kT/7O/ufOnYPBYMCECRMCJgHyqAtMEIQ22b9JXWAEQRAE4T1+//13WCwWjBo1yqcDo33aBWbPtddei9tuuw133HEHJQsEQRAEQbhk3Lhx/q5CIzyaB2j69Ok4dOgQ7rrrLtxyyy34+9//jsuXL3urbkGP0WhEamoqjEajv6viF8ifX3+e3QHyJ3/yDwZ/jxKg5557DocPH8a+ffswevRovPvuu7j55psxf/58fPLJJ6irq/NWPYMSmUwGjUbD7Vgo8ufXn2d3gPzJn/yd/XU6Herr6wNqckivPgZvsVhw9OhRHDx4EN9++y2USiXOnj3rrcO3GjQGiCAIgiC8x4YNG2AwGLB06VJ07tzZZ6/jzue3Ry1A9litVhw5cgTffPMNDh8+DAAYP368tw4flDDGYLFYwOtUS+TPrz/P7gD5kz/5O/sHYmuYR4OgGWP4/fffcfDgQfzwww+oqanB0KFDsXz5ckybNg1RUVHeqmdQYjAYuJ4Onfz59efZHSB/8id/Z/+nnnrKz7VqjEcJ0KRJk1BRUYFu3brh7rvvxh133IHevXt7qWrBj1qtRr9+/bheEZj8+fTn2R0gf/In/2Dw9ygBmjJlCm6//XaMHj3aW/VpUyiVSnTo0MHf1fAb5M+vP8/uAPmTP/kHg79HY4BeeeUVSn6awWKxoKysDBaLxd9V8Qvkz68/z+4A+ZM/+Tv7//jjj/j2229RX1/vx5o54rVB0ERjLBYL8vLyuL4IyJ9Pf57dAfInf/J39j9z5gxOnDgBg8Hgx5o5QqvBu4AegycIgiAI7/Hbb7/BYrHgmmuuQbt27Xz2On55DN6b2Gw2bN26FZMmTcLw4cPx4IMPIj8/v8nyFosFmzdvlsrPnz8fWq22FWtMEARBEERTTJo0CVOmTPFp8uMuHiVAJpPJW/VwYMeOHdi/fz9effVVfPzxx7DZbFi0aBHMZrPL8mvWrMFnn32GtWvX4tNPP0V0dDQefPBBv89EbTQakZ6eHvDTgfsK8ufXn2d3gPzJn/yDwd+jBGjixIl46aWXkJKS4q36wGw2Y9++fVi+fDluuOEGJCYmYsuWLSguLsb333/fqHx+fj4+/fRTvP7665g0aRL69euH1157DWq1GufPn/dava4GmUwGuVwekBNAtQbkz68/z+4A+ZM/+Tv7m81mmEymgFoKw6MEaOHChfj999/xf//3f5g2bRreeecdlJWVeVSh1NRU6HQ6h1mk27dvj6SkJJw8ebJR+aNHjyIiIgLXXXedQ/mff/7Z7zNRh4SEoF+/fggJCfFrPfwF+fPrz7M7QP7kT/7O/m+99RbWr1+PiooKP9bMEY8SoKVLl+LQoUP46KOPMGrUKOzatQuTJ0/G4sWLcejQoasaAV9cXAwA6Nq1q8P2mJgYaZ892dnZ6NmzJ77//nvMmjULEydOxIMPPojMzMyrk7LDfrS6wWCQuuBsNhv0ej0EQQDQMAZJr9dLZY1GI0wmExhjsFqt0Ol0VywLNMysrdfrYbVaATQsL6LX66XpxE0mk1tl7Zsf9Xq99H4IguB2WTFrN5vNjeLSVFmTyYT6+nrpddyJ4dXE21VcPI23c1zcKWs2myEIglTWPoaexNs5Lu6UbS6G3oi3fVwEQYDBYPDKOXs153dTcfE03vZxaaqsIAioq6tz6zxsS/cI0Ycx1uw9wpNzNpDvEYwxmEwm6HS6q45hMN8jDAaDFCcxhiJiDL0Vb+d7hDt4ZRD0yJEj8eqrr+Lo0aN4++23YTAY8Pjjj+Paa6/FG2+8gcuXL7f4WOKb4zyDZEhIiMsxR/X19cjNzcWOHTuwYsUK7Ny5E0qlEnfffbdHmaYgCEhPT5d+z87OlhIws9kMrVYrBbuiogKXLl2Syubk5KCoqAgGgwHJyclITU2V5j6oqqpCamqqVDYvL0+Kj81mg1arlcYuVVdXOwzmzs/PdxgMrtVqUV1dDQCoq6uDVquVTvTLly8jLy9PKpuamoqqqiopZlqtVjrJioqKkJOTI5W9dOmSFDu9Xg+tViud+MXFxcjOzpbKpqenS61+RqMRWq1WOkGLioqQlpYmvaeZmZkoLS0F0HAia7VaaV95eXmT8bZYLNBqtdDpdACAyspKpKWlNYo30HARaLVaKd6uYlhQUOAQ79raWgBATU0NtFqtdLEVFBRcMd7iDaCwsBC5ublS2bS0NJSWluLs2bOorKxsFG/nGJaXlwP4cwp5Md4lJSXIysqSymZkZDQZ77KyMmRkZEhls7KyUFJSAuDPc7a5eDcVw6qqKod45+bmorCwEEDDdeLqnDUYDDh79ixyc3OleDPGoNVqUVNTAwCora11OGebi/eVztm0tDRUVlYCaFh1WqvVSjdGV+esc7zFe0tpaanDl6fMzMxm493UOVtXV4dLly5J11xT94im4h3s94isrCycPXsWBoOh2XtEWVlZo3i3hXuEwWDA+fPnkZqa2uw9orl4B/M9IicnRzqWeI9YsGABnn32WSiVyibj7Y17hFswL1FYWMh27tzJbr/9dpaQkMBuueUWtn79ejZt2jQ2dOhQdvDgwRYd57vvvmPx8fHMYDA4bF++fDl76KGHGpV/8cUXWXx8PMvIyJC2GQwGNnbsWLZnz56rcklJSWEpKSlMr9dL2/R6PTOZTIwxxgRBYDqdjlmtVsYYY2azmel0OofXNxqNzGKxsPLyclZTU3PFsowxZrPZmE6nYxaLhTHGmMViYTqdjtlsNsYYY0aj0a2y9jHU6XTMbDYzxhizWq1ulxUEgTHGmMlkahSXpsrq9XpWVFQk1dGdGF5NvF3FxdN4O8fFnbJ6vZ5VVFQwo9HYKIaexNs5Lu6UbS6G3oi3GBeLxcIqKipYfX29V87Zqzm/m4qLp/G2j0tTZU0mEyssLJTcWxLDtnSPqKurYxUVFcxisTR7j/DknA3ke4TFYmGlpaWspqbmqmMYzPeI+vp6VlxczCwWS5Mx9Fa8ne8R4ud3S/BoHqD6+nocOnQIX3zxBU6fPg2NRoNbbrkFc+bMwciRI6VyS5YswYULF3DkyJErHjMlJQV33nknfvjhB8TFxUnb582bh4SEBKxZs8ah/M6dO7F9+3ZcuHDBYfucOXMwePDgRuVbAs0DRBAEQRDBR6vNAzRx4kQ8//zzsFgseOWVV3DkyBGsXbvWIfkRK9LS0fCJiYkIDw/H8ePHpW21tbW4ePEixowZ06j8mDFjYLVaJWmgodkvPz8fvXr1ukoz72C1WlFRUSE1a/IG+fPrz7M7QP7kT/7O/v/973/x448/tp2lMO655x4cPHgQH3/8MebMmSMte+/MggUL8Ouvv7bomGq1GvPnz8emTZvw008/ITU1FU888QRiY2MxdepUCIKAsrIyqU9z9OjRmDBhAlatWoVTp04hIyMDTz/9NBQKBe644w5P9DzGbDYjJyenyfmL2jrkz68/z+4A+ZM/+Tv7Hz9+HEePHm07S2GcPHkSSUlJLmd2rK2txW+//YbbbrvN7eMKgoA333wTn332GYxGI8aMGYMXX3wRPXr0QEFBAW688UasW7cOs2bNAtDQFbdp0yZ89913MBqNGDlyJJ599ln079//qry81QXG/v8R8DKZjMv5IMifX3+e3QHyJ3/yd/b/+eefYbFYMHHiRISHh/vstd35/PYoARo4cCD+9a9/YejQoY32/f7771i8eLFXJ0lsLWgMEEEQBEEEH+58fivdPfiqVaukR+EYY1izZo3LbC4nJwedOnVy9/BtCpPJhIKCAvTo0YPLCbHIn19/nt0B8id/8g8Gf7fHAE2dOlVq3hIRfxd/5HI5hg8fjnXr1nm1ssEGYww2mw0eNLIFNeTPrz/P7gD5kz/5O/vb5wiBgkddYPfeey/WrFmDfv36ebNOfoe6wAiCIAjCe2zYsAEGgwFLly5F586dffY6Pu0CW716NZYuXYqePXuiR48eeOedd5osK5PJsHbtWndfgiAIgiAIwqe4nQAdP34c999/v/T/5uBx9Ls94hTxAwcObHKKgLYM+fPrz7M7QP7kT/7O/o8++igYY9BoNH6u3Z+4nQD9/PPPLv9PNEatVqNXr16N1jXjBfLn159nd4D8yZ/8nf1DQ0P9WCPXeDQGqK1CY4AIgiAIIvjw6RggV9TU1MBgMEgrttrTrVs3b7xEUGK1WlFXV4eIiAgolV4JdVBB/vz68+wOkD/5k7+z///+9z9YLBaMHj3a5eTJ/sCjdyY3NxerVq1CcnJyk2XcXp6+DWE2m5GVlYWBAwdyeRGQP7/+PLsD5E/+5O/sf+TIERgMhiZXj/AHHnWBLVq0COfPn8e9996L2NhYyOWNpxWaOXOmRxX0B95cCkMQBCgUCi4HhJM/v/48uwPkT/7k7+x/6NAhmM1m3HDDDYiIiPDZa7daF9jJkyfx+uuvY/r06Z4cps0ik8m4zP5FyJ9ff57dAfInf/J39v/LX/7ip9o0jUerwYeHhyMyMtJbdWlzmEwmZGdnw2Qy+bsqfoH8+fXn2R0gf/In/2Dw9ygBuuOOO/DRRx8F1NTWgQRjDGazmdv4kD+//jy7A+RP/uQfDP4ejQHatm0bPvjgA0RGRmLIkCGNJjgK1pmg6TF4giAIgvAeb775JgwGAxYvXhy8S2HY8/nnnyMiIgI2m83lk2A8Dv4iCIIgCMIRq9UKq9Xq72o44FECRDNBN49er0daWhoSEhK4nQ6d/Pn059kdIH/yJ39n/4ceegiMMYSHh/u5dn/C7zD1VkClUqF79+5QqVT+ropfIH9+/Xl2B8if/Mnf2b99+/Z+rJFrPBoDlJiYeMVurmCcCJHGABEEQRBE8NFqY4AeeeSRRgmQTqfDmTNnkJeXh5UrV3py+KBHEATU19cjPDwcCoXC39VpdcifX3+e3QHyJ3/yd/Y/efIkrFYrhg0bFjDdgh4lQI8++miT+55++mmcP38es2fP9uQlghqTyYSMjAwMHDgwYN7w1oT8+fXn2R0gf/Inf2f/X375BQaDAf379w+YmPhsNfhjx47h8ccfx/Hjx31xeJ/irS4wm80Gq9UKpVLpcpmQtg758+vPsztA/uRP/s7+X3/9NSwWC2688Uafjgdq9dXgXZGXlxdwj7y1NnK5HGq12t/V8Bvkz68/z+4A+ZM/+Tv7B+KSWR4lQNu3b2+0zWazobi4GN988w0mT57syeGDHrPZjKKiInTt2pXLi4H8+fXn2R0gf/In/2Dw93oCBDSsEXbTTTdh9erVnhw+6LHZbNDr9bDZbP6uil8gf379eXYHyJ/8yT8Y/H02BiiYocfgCYIgCMJ7bNu2DQaDAQsXLkSnTp189jrufH57NDrr5MmT0Ol0LvfV1tbi4MGDnhyeIAiCIIg2gMFggMFgCKgFUj1KgO677z5kZma63Hfx4kXuu8D0ej2Sk5Oh1+v9XRW/QP78+vPsDpA/+ZO/s//f/vY3LF26FFFRUX6smSNujwFatWoVioqKADQseb9mzRqXa3vk5OT4tJkrGFCpVIiJieF6OnTy59OfZ3eA/Mmf/J39O3bs6McaucbtFqC//OUvYIw5NGOJv4s/crkcw4cPx7p167xa2WBDpVKha9euXF8E5M+nP8/uAPmTP/kHg7/bLUBTpkzBlClTAABTp07FCy+8gBEjRni9Ym0BQRBgMBgQGhrK7XTo5M+nP8/uAPmTP/k7+589exZWqxWDBg1CaGion2vYgEdjgEpKSmAwGLxVlzaHyWRCWloaTCaTv6viF8ifX3+e3QHyJ3/yd/b//vvvcfDgQdTX1/uxZo54lACNGDECv//+u7fq0ubQaDQYNGgQNBqNv6viF8ifX3+e3QHyJ3/yd/aPj49HYmJiQE2M6NFEiAkJCdi3bx8OHTqExMTERgucyWQyrF271qMKBjNyuZzbCwAgf579eXYHyJ/8yd/Zf8aMGf6pTDN4lAD98MMPiImJgcVikSYfskcmk3ly+KDHbDajpKQEXbp0Caist7Ugf379eXYHyJ/8yT8Y/D1KgH7++Wdv1aNNIggCamtruZ0OgPz59efZHSB/8if/YPD3ylIYhw8fxokTJ1BbW4vo6GiMGjUKkyZN8kb9/AIthUEQBEEQ3uPvf/87DAYD7rvvPp/OCeTO57dHLUBmsxlLly7FkSNHoFAoEBUVhaqqKuzatQvjxo3Drl27Arr5iyAIgiAI31NbWwuDwRBQC6R69BTYtm3bcPr0aWzYsAEpKSk4cuQIkpOTsW7dOpw9exY7d+70Vj2DEoPBgHPnznE7VQD58+vPsztA/uRP/s7+9913Hx588EF06NDBfxVzwqME6Ouvv8ayZctw++23S5MdKZVKzJgxA8uWLcOBAwe8UslgRaFQIDo6msuJsADy59mfZ3eA/Mmf/J39Y2Nj0a1bt4CaHdqjLrDKykokJSW53JeUlISSkhJPDh/0qNVqdO/e3d/V8Bvkz68/z+4A+ZM/+QeDv0ctQHFxcTh9+rTLfSdPnkTXrl09OXzQY7PZoNfrA6rPszUhf379eXYHyJ/8yd/Z/8KFC0hOTobRaPRjzRzxKAGaO3cudu3ahXfeeQdFRUWwWCwoKirCnj17sGfPHsyePdtb9QxKjEYjtFptQL3hrQn58+vPsztA/uRP/s7+Bw8exBdffIG6ujo/1swRjx6Dt9lseOGFF/Dpp586THrIGMPMmTOxdu3aoJwM0VuPwdtsNhiNRmg0GsjlHuWaQQn58+vPsztA/uRP/s7+n3zyCUwmE6ZPn+7TgdDufH57ZR6gzMxMHD9+HLW1tYiMjMTYsWPRr18/Tw/rN2geIIIgCIIIPlptHiCRfv36BXXC4yvMZjPKysrQuXNnLudDIn9+/Xl2B8if/Mk/GPy9kgAdOXIEJ0+eRHV1NTp27IgJEyZg9OjR3jh0UCMIAiorKxEdHe3vqvgF8ufXn2d3gPzJn/yDwd+jLrCamhosWbIEZ8+ehVKpRIcOHVBdXQ1BEHDddddh27ZtAZ39NQV1gREEQRCE99i7dy+MRiPmzZvn08TInc9vj0ZnrV27FtnZ2di+fTvOnTuHI0eOICUlBW+//TbOnj2LLVu2eHJ4giAIgiDaABUVFSgvL4cgCP6uioRHCdCvv/6KlStX4qabbpKe9pLL5Zg6dSqeeOIJ7meCNhgMuHDhAtfToZM/n/48uwPkT/7k7+w/b948PPDAA4iMjPRjzRzxaAwQY6zJ5e67du0KvV7vyeGDHoVCgfbt23M9HTr58+nPsztA/uRP/s7+PXv29GONXONRC9DMmTOxc+dO6HQ6h+1WqxUffvghZs6c6VHlgh21Wo2ePXsG5Tgob0D+/Prz7A6QP/mTfzD4e9QCFBoaipycHNx444248cYb0aVLF1RVVeG///0viouLERkZidWrVwMAZDIZ1q5d65VKBws2mw1msxlqtZrbybDIn09/nt0B8id/8hf9GWNgjCE9PR2CIKBPnz4ICQkB0NBS5M/Jkj1KgL766iuEh4cDAI4dO+awLzY2FmfOnJF+D8YZoT1FnA584MCBCAsL83d1Wh3y59efZ3eA/Mmf/LVaLQYMGIDKykpYLBZ8+eWXMJlMuO2226RxQFFRUU0Oo2kNPEqAfv75Z2/Vo00SEhKChIQEKdvlDfLn159nd4D8yZ/8ExISoFAoYDabIZfL0blzZ5jNZmg0GqhUKmnlCH/i9YkQO3XqhPHjx9NEiGho3hNbyHiE/Pn159kdIH/yJ//w8HCYzWYwxqBWq3Hrrbc6lFGpVH6q3Z941DlZU1ODuXPnYtGiRdi7dy9++ukn7Nq1C/feey+WLFkCs9l8Vce12WzYunUrJk2ahOHDh+PBBx9Efn5+i/72q6++QkJCAgoKCq7qtb2JxWJBUVERLBaLv6viF8ifX3+e3QHyJ3/yDwb/gJwIcceOHdi/fz9effVVfPzxx7DZbFi0aNEVE6rLly/jlVdeuarX9AUWiwWlpaUBfxL4CvLn159nd4D8yZ/8S0tLpRagQB0D7NFSGNdccw1WrlyJO++8s9G+jz/+GNu3b8eRI0fcOqbZbMa4ceOwcuVK3H333QCA2tpaTJo0Ca+//jqmT5/u8u9sNhvmz58PlUqF33//HT/99BN69OjhvhRoKQyCIAiC8BSTyYTs7Gy0a9cO3333HcxmM2688Ua0b98eNTU16NixI2JiYrz6mq22FIYvJkJMTU2FTqfD+PHjpW3t27dHUlISTp482eTf/f3vf4fFYsGSJUvcfk2CIAiCIHxHcXExiouLr3pojC8IuIkQi4uLATQkUPbExMRI+5xJSUnBvn37sHHjRq/OvGk/jbfBYJDeOJvNBr1eL61pYrFYHJI9o9EIk8kEo9GIixcvoqqq6oplgYaEUq/Xw2q1AmiIo16vh9hIZzKZ3CprNBql19Hr9VJzrCAIbpe12WwAGlronOPSVNm6ujpcuHBBOrY7MbyaeLuKi6fxdo6LO2Xr6+uh1Wqh0+kaxdCTeDvHxZ2yzcXQG/EW4yI+BltTU+OVc/Zqzu+m4uJpvO3j0lRZvV6PCxcuSPfGlsSwLd0jqqurodVqYTQam71HeHLOBvI9wv7ef7UxDOZ7RE1NjbQUhs1mg9FoxKZNm/Daa6+hoqLCoQ6extv5HuEOHiVA9hMhPvfcc9i6dStefvllTJ06FUePHkVNTQ1Wr16N1atX49lnn23RMcXAOM8gGRISIgXJHr1ej5UrV2LlypXo3bu3JzoOCIKA9PR06ffs7GwpATObzdBqtVKwKyoqcOnSJalsTk4OioqKIJfLERoaiqysLNTX1wMAqqqqkJqaKpXNy8vD5cuXATScVFqtFnV1dQAg3URE8vPzHQaDa7VaVFdXA2hINrRarXSiX758GXl5eVLZ1NRUVFVVAYD0wSyeZEVFRcjJyZHKXrp0CRUVFQAa4qvVaqUTv7i4GNnZ2VLZ9PR0lJWVAfhz7gfxBK2qqpIegQSAzMxMlJaWAmg4kbVarfR+l5eXNxlvi8UiJRIAUFlZibS0tEbxBhouAq1WK8XbVQzFAfJivGtrawE0XLRarVa62AoKCq4Yb/EGUFhYiNzcXKlsWloaamtrERYWJsXFPt7OMSwvLwfQcP7bx7ukpARZWVlS2YyMjCbjXVZWhoyMDKlsVlYWSkpKAPx5zjYX76ZiWFVV5RDv3NxcFBYWAmi4Tlyds3K5HGFhYSgpKZHizRiTkiKgoWvb/pxtLt5XOmfT0tJQWVkJANDpdNBqtdKN0dU56xxv8d5SWlqKzMxMqWxmZmaz8W7qnBUEweHG3tQ9oql4B/s94vLlywgLC4NcLm/2HlFWVtYo3m3hHiGXy6FUKpGVldXsPaK5eAfzPaKoqAiMMcjlcthsNqSnp0tuBoPB4bj28fbGPcIdPBoDNGXKlJa/kEyGn3766YrlDh06hOXLlyM5ORkajUba/thjj8FsNmPnzp0O5Z999llUVFRg165dAIDjx4/jvvvu88oYoP79+yM0NBRAw5umUCigVquljDYkJAQKhQIWiwUWi0Wa8MpoNEImkyEkJASMMRgMBrfKqtVqKJVKWK1WmM1mhIaGQiaTSTfTlpZljEkx1Ov1UKlUUKlUEAQBJpPJrbIajQZyuRxmsxmCIDjERalUtrhsS2PoabzFuHgab+e4eBJv+7jYbLarjrdzXLwRb6PRCLlc7nG8xbh4K95iXDyNt31cPI23fVysVivdI+geQfeIJmJos9mQlZWFkJAQDBkyBEajEUeOHEFsbCzMZjM6duyI9u3be/UeISbULRkD5FEC5AtSUlJw55134ocffkBcXJy0fd68eUhISMCaNWscyickJEjBAuBw4T700EN46KGH3K6DtwZB22w2WK1WKJVKbqdDJ38+/Xl2B8if/MnfarXCYrEgNzcXkZGR6NOnDywWC06ePIlu3boFxCBor0yEePjwYZw4cQK1tbWIjo7GqFGjMGnSpKs6VmJiIsLDw3H8+HEpAaqtrcXFixcxf/78RuW///57h9+Tk5Px1FNPYffu3YiPj7+qOngLmg6d/Hn159kdIH/yJ3+tVuswLEXsAhMbKwIBj2piNpuxdOlSHDlyBAqFAlFRUaiqqsKuXbswbtw47Nq1y+3VYNVqNebPn49NmzYhOjoa3bt3x8aNGxEbG4upU6dCEARUVlYiIiICGo0GvXr1cvh7sU+4W7du6NChgyd6HhMSEoL+/ftzPR06+fPpz7M7QP7kT/79+/eHXC6XFkMVO5u8+aCSp3jUNrdt2zacPn0aGzZsQEpKCo4cOYLk5GSsW7cOZ8+ebTRep6UsX74cc+bMwfPPP4958+ZBoVBg7969UKlUKCoqwrXXXotvvvnGk6q3CgqFApGRkQH1hrcm5M+vP8/uAPmTP/nb+4sDwcV9gYJHY4AmT56M+fPn429/+1ujfXv37sU///lP/Pjjjx5V0B94awyQxWJBVVUVoqKiAmLdk9aG/Pn159kdIH/yJ/+qqiqo1WoUFBQgNDQU/fv3B9Dw9Ft4eHhAjAHyqAWosrISSUlJLvclJSVJj9fxisViweXLl7meDp38+fTn2R0gf/Inf9FffBpMJJBagDwaAxQXF4fTp087zNoscvLkyUaTGfJGWFgYRowY4e9q+A3y59efZ3eA/Mmf/EeMGCHNyyQOgAb+TIACYY0wjxKguXPnYv369dBoNLjtttvQqVMnlJeX4+uvv8aePXuwbNkyb9WTIAiCIIggQhxhExYWhv3790tTA4gEdQI0b948XLx4EZs2bcLmzZul7YwxzJw5E4sXL/a4gsGM0WhEbm4uevXq5TCpIy+QP7/+PLsD5E/+5J+bm4uOHTsCAFQqFa6//no/16oxHiVAcrkcr7/+OhYuXIgTJ06gpqYGkZGRGDt2LPr16+etOgYtMpkMarXa71muvyB/fv15dgfIn/zJX5wCp6nnrAJhDuaAmwk6EPDWU2AEQRAEwSt1dXXIy8uDSqXCl19+CbVajTvvvBNAw/phXbt2RXR0tFdfs9VngiZcwxiDIAhQKBRcfhMgf379eXYHyJ/8yV8QBKmVp6KiAk8//TTatWsnJUCBAH+LlLQiBoMBycnJ0uq6vEH+/Prz7A6QP/mTf3JyMvR6PRhjCAkJwdSpUzF58mR/V80Bt1uATCYTt9N7u4tarUbfvn3dXg6krUD+/Prz7A6QP/mTf9++faVH3WNjY/Huu+86lAmE0TdutwBNmTIFf/zxBwBg+/bt3E922BxKpRJRUVEBtfhba0L+/Prz7A6QP/mTv+jfVKIjk8n83j3odgJUV1eH0tJSAMD/+3//jxKgZrBarSgvL3eYBIonyJ9ff57dAfInf/IvLy+XZoIOVNxOT4cMGYInn3wSb7zxBhhjeOSRR5ps5pPJZEG5Fpi3MJvNyM3NRVhYGJffBMifX3+e3QHyJ3/yz83NRbdu3QAAycnJuOOOO9CzZ0/89ttvfq7dn7j9zrz55pt47733UF1djS+++AJJSUlef4ytrRAWFoZRo0b5uxp+g/z59efZHSB/8if/UaNGobq6GowxWK1WWCwWh1XhAwG3E6AuXbpg1apVAIDjx4/jiSeeQGJiotcrRhAEQRBEcCOTyaTERy6XN9rnTzx6DP7nn3+m5KcZjEYj0tPTYTQa/V0Vv0D+/Prz7A6QP/mTv72/OBYq0LoDvVKbw4cP48SJE6itrUVUVBRGjRqF6667zhuHDmpkMhnkcrnfs1x/Qf78+vPsDpA/+ZO/fWuP2AJknwAFwmPwHiVAZrMZS5cuxZEjR6BQKBAVFYWqqirs3r0b48aNw65du7idBwEAQkJCuF4Tjfz59efZHSB/8if/fv36oaqqCsCfCZBCoZDKBOVj8PZs27YNp0+fxoYNG5CSkoIjR44gOTkZ69atw9mzZ7Fz505v1TMoYYzBZrMFRKbrD8ifX3+e3QHyJ3/yt9lsUteX+K99AhQIeJQAff3111i2bBluv/12SUypVGLGjBlYtmwZDhw44JVKBisGgwF//PEH19Ohkz+f/jy7A+RP/uT/xx9/QKfTQSaTwWazAWhjCVBlZSWSkpJc7ktKSuJ+kkS1Wo3evXtz2w1I/vz68+wOkD/5k3/v3r2hVCohl8tdDoIOhNYxjxKguLg4nD592uW+kydPomvXrp4cPuhRKpXo2LFjwI18by3In19/nt0B8id/8u/YsaM0ENxVF1jQjwGaO3cudu3ahXfeeQdFRUWwWCwoKirCnj17sGfPHsyePdtb9QxKrFYrKisruZ4Onfz59OfZHSB/8if/yspKmM1mh3mA2lQX2Lx583D77bdj06ZNmDJlCoYOHYopU6Zg8+bNmD59OhYvXuytegYlZrMZ2dnZMJvN/q6KXyB/fv15dgfIn/zJPzs7GwaDockEKBC6wGTMC7XIzMzEiRMnUFNTg8jISIwdOzaoHwE8d+4cgIZ1zzxBHAnP63wQ5M+vP8/uAPmTP/nbbDbk5OQAAD799FOsWrUKt9xyC/bu3QsAqKqqQlxcHCIiIrz62u58fnulg7Jfv35BnfD4CplMFnBNfq0J+fPrz7M7QP7kT/72EyFOnDgRW7duRZcuXfxYq8Z41AVGNI/JZEJmZiZMJpO/q+IXyJ9ff57dAfInf/LPyMiAyWSCTCZDnz59MHv2bFx77bX+rpoDlAD5EJoMi/x59efZHSB/8id/QRBgs9ma7AIMhNh4ZQxQW8NbY4AIgiAIgkcsFguys7OhVqtx8eJFlJSUICEhAb179wbQMAaoV69eCA8P9+rruvP57VELEK/NewRBEARBNA1jDIwxyOVyvPvuu1i4cCG+/fZbf1fLAY8SoIkTJ+Kll15CSkqKt+rTptDr9Th9+jT0er2/q+IXyJ9ff57dAfInf/IX/WUyGXr37o2RI0eiW7du/q6aAx4lQAsXLsTvv/+O//u//8O0adPwzjvvoKyszFt1C3pUKhXi4uKgUqn8XRW/QP78+vPsDpA/+ZN/jx49oFQqIZPJ8MQTT+DAgQO44447/F01B7wyBujMmTP4/PPP8d1338FgMGDChAmYPXs2pkyZEpQnAI0BIgiCIIirR6/XIzs7Gx06dHA5ELqqqgq9e/dGu3btvPq6rTYGSGTkyJF49dVXcfToUbz99tswGAx4/PHHce211+KNN97A5cuXvfEyQYfVakV1dTXX06GTP5/+PLsD5E/+5F9VVQVBEFwmP2K7i78nifTaY/BFRUXYt28ftm7dipMnT6J3796YNWsWDh8+jGnTpuGbb77x1ksFDWazGZmZmVxPh07+fPrz7A6QP/mTf1ZWluQ/bdo0jB49WhovLA6Otp8s0R941AVWX1+PQ4cO4YsvvsDp06eh0Whwyy23YM6cORg5cqRUbsmSJbhw4QKOHDnilUr7Gm8uhWG1WqV+UN4gf379eXYHyJ/8yb+qqgqFhYWIjo7GyJEjUVJSgkOHDmHw4MEQBAE6nQ59+vRBSEiIV1+71ZbCmDhxIsxmM4YNG4ZXXnkF06ZNQ1hYWKNyQ4YMwcWLFz15qaBEJpMF5Rgob0H+/Prz7A6QP/mTv33yp9PpAEAa7yNOkOjv5NCj9qcBAwbgiy++wMcff4w5c+Y4JD+1tbU4ePAgAGDBggX49ddfPapoMGIymZCTk8PtfEnkz68/z+4A+ZM/+Yv+jDEpARJzhEDpAvPo1S9cuNDkG3zx4kWsXr0aQEPWx+PCcIwxGI3GgJjy2x+QP7/+PLsD5E/+5G8wGADAIQ5iCxBjLCBagNweA7Rq1SoUFRUBAE6cOIGkpCSXU1nn5ORAqVTi559/9k5NWxF6DJ4gCIIgrp7KykoUFRXBZrNh6NChAIC8vDwoFAopKerTp4/XW4F8+hj8X/7yF2mKaxHxd/upr4cPH45169a5e3iCIAiCIIIccZyP2P2l0WiknqBAaQFyexD0lClTMGXKFADAvffeizVr1qBfv35er1hbQK/XIy0tDQkJCS4Hh7d1yJ9ff57dAfInf/I/e/YsOnbsKC0HYj/hIWMMCoUi+BIge/7xj394qx5tEpVKhW7dunH7NAD58+vPsztA/uRP/p07d4ZcLm80ABr4cxC0v3E7AVq9ejWWLl2Knj17SoOcm0Imk2Ht2rVXXblgR6VSoUuXLv6uht8gf379eXYHyJ/8yV9s/XF+BB5o6B4LhAej3E6Ajh8/jvvvv1/6f3P4u3nL34iTPfH6FBz58+vPsztA/uRP/jU1NVAoFNLTYM4tQIEQF7cTIPunuoLxCa/WxGQyIT09HQMHDuSyH5j8+fXn2R0gf/In/6ysLPTu3bttdYERLUej0WDw4MHc9gOTP7/+PLsD5E/+fPuHhISgf//+UCqVLgdB22y24EyAtm/f3uKyMpkMjzzyiLsv0WaQy+VeX+ckmCB/fv15dgfIn/z59gcaxgEpFAqMGTMGr7/+Orp37+6wPyi7wCgBajlmsxnFxcWIjY2FWq32d3VaHfLn159nd4D8yZ9vf6PRiIKCAnTv3h0JCQlISEhoVCYQxgi7nQClpqb6oh5tEkEQUF9fD0EQ/F0Vv0D+/Prz7A6QP/nz7W82m1FXV9fkUiDiRIj+xu2lMFxRUVEBs9ksydpsNhgMBpw+fRpz5871uJKtDS2FQRAEQRBXh16vR3Z2NqKiopCWlobKykr07t0bXbt2BdCwTEZcXBzat2/v9dd25/Pbo0HQqampWLlyJTIzM13ul8lkQZkAEQRBEARxdQiCIDWI7Ny5E5988gmee+45LF26FEBDbhAIg6A9qsGGDRtQU1ODVatWYezYsbj22mvxwgsv4Prrr4dMJsMHH3zgrXoGJXq9HsnJydIoeN4gf379eXYHyJ/8+favr69HWloaDAYDOnfujAEDBqBz584OZQKhC8yjBCg5ORmPPfYYHnjgAUybNg0GgwF33303/v73v+Omm27ifqkMlUqFmJgYbh+FJH9+/Xl2B8if/Pn2VygU6NixI5RKJZ577jn8+uuvuPPOOwFAahkK+gTIbDajd+/eAIDevXs7DJCeNWsWzp4968nhgx6VSoWuXbtyexGQP7/+PLsD5E/+fPsDaDIBFCdBDPousG7duiE/Px9AQwJUX1+PgoICAIBarUZNTY3nNQxieH8SgPz59efZHSB/8ufb32QywWQyufQXnwAL+hagqVOnYvPmzTh06BC6dOmCvn374q233kJaWhr27duHnj17XtVxbTYbtm7dikmTJmH48OF48MEHpUTLFenp6Vi8eDGuueYajB8/HsuXL0dhYeHVankNk8mEtLQ0mEwmf1fFL5A/v/48uwPkT/58++t0OuTk5KCmpgbDhw/HX/7yF2lNMJvN1jYSoGXLlmHkyJH4z3/+A6BhpfgffvgBM2bMwO+//45HH330qo67Y8cO7N+/H6+++io+/vhj2Gw2LFq0CGazuVHZqqoqLFiwABqNBv/4xz+wZ88eVFZWYtGiRX4/+TQaDZKSkqDRaPxaD39B/vz68+wOkD/58+vPGINSqUR8fDyqq6tRVlaGzMxMKRaB1AXm0WPwISEh2Lp1KywWCwBg0qRJOHDgAC5cuIBBgwYhLi7O7WOazWbs27cPK1euxA033AAA2LJlCyZNmoTvv/8e06dPdyj/448/Qq/XY8OGDVKAN27ciBtuuAFnzpzB+PHjPVH0CLlcjtDQUL+9vr8hf379eXYHyJ/8+fW32WwAGhY/vXTpEgCgS5cuUotPm+kCE7Ef6BQXF4dbb731qpIfoGFuIZ1O55C4tG/fHklJSTh58mSj8uPHj8eOHTscMm0xs6ytrb2qOngLs9mMgoICly1XPED+/Prz7A6QP/nz6y8IAoxGI0pKSnD58mUAQGxsrLS/zSRAiYmJGDhwYLM/7lJcXAwA0oyRIjExMdI+e3r06IFx48Y5bNu9ezc0Gg3GjBnj9uvbI/ZZiv8XT2abzQa9Xi8N8LJYLA7zPRiNRmkAWFVVlcNguKbKAg0nhl6vh9VqBQBYrVbo9XrpsUFxYFlLyxqNRul19Hq91FInCILbZcWs3mw2N4pLU2WNRiMqKysld3dieDXxdhUXT+PtHBd3yppMJlRXV8NsNjeKoSfxdo6LO2Wbi6E34i3GRRAEVFdXw2AweOWcvZrzu6m4eBpv+7g0VdZisaCystLh9yvFsC3dI/R6PaqrqyEIQrP3CE/O2UC+R9jf+682hsF6jxD31dXVoaioCADQsWNHh3gbjUYpAfI03s73CHfwKAF65JFHGv088MADGDp0KDp06IDXXnvN7WOKb47zAnIhISEtGtPzj3/8Ax9++CFWrlyJ6Ohot19fRBAEpKenS79nZ2dLCZjZbIZWq5WCXVFRITX1AUBOTg6KiooQGhqKxMREZGdno76+HkDDmCX76QLy8vKkLNlms0Gr1aKurg4AUF1dDa1WK5XNz893GAyu1WpRXV0NAKirq4NWq5VO9MuXLyMvL08qm5qaiqqqKgANk1RptVrpJCsqKkJOTo5U9tKlS6ioqADQcIJptVrpxC8uLkZ2drZUNj09HWVlZQAaTmStViudoHV1dQ5NwZmZmSgtLQXQcCJrtVrp/S4vL28y3haLBVqtFjqdDkDDNOppaWmN4g00XARarVaKt6sYik8qivEWWwpramqg1Wqli62goOCK8RZvAIWFhcjNzZXKipOADR48GIIgNIq3cwzLy8sBNJz/9vEuKSlBVlaWVDYjI6PJeJeVlSEjI0Mqm5WVhZKSEgB/nrPNxbupGFZVVTnEOzc3V3rIQHRzPmdDQ0MxePBglJaWSvFmjEGr1UpPh9bW1jqcs83F+0rnrDjdPtAwAFOr1Uo3RlfnrHO8xXtLaWmpw8z2mZmZzca7qXNWoVDAYrFI51JT94im4h3s94jCwkIMHjwYoaGhzd4jxPEh9vFuC/eI0NBQ9OjRA9nZ2c3eI5qLd7DeI2w2G0pLSxERESFdk2q1WipbU1OD7OxsKQGyj7c37hFuwXzEU089xdasWeP233333XcsPj6eGQwGh+3Lly9nDz30UJN/Z7PZ2JYtW1h8fDzbsmWL269rT0pKCktJSWF6vV7aptfrmclkYowxJggC0+l0zGq1MsYYM5vNTKfTSWUNBgMzGo1Svdwta7FYGGOMWSwWptPpmM1mY4wxZjQa3SprH0OdTsfMZjNjjDGr1ep2WUEQGGOMmUymRnFxp2xLY+hpvMW4eBpv57h4Em/7uHgSb+e4eCPeBoPBK/EW4+KteItx8TTe9nHxNN72caF7BN0j6B7hWLa2tpadOnWKZWVlsZkzZzIA7JlnnmG5ubns8uXL7Ny5cywjI8Nr8Xa+R4if3y3BK4uhuuLYsWN4/PHHcfz4cbf+LiUlBXfeeSd++OEHh3FE8+bNQ0JCAtasWdPobywWC1avXo2vv/4azzzzDB544AGP6u6txVANBgMyMzPRr18/LgfEkT+//jy7A+RP/vz619TUICMjAzU1NXj22Wdx/PhxbN++HTNnzgTQ0FrUpUsXdOrUySev787nt8+eQ8vLy5Oa89whMTER4eHhDolTbW0tLl682OSYnqeffhrfffcdNm/e7HHy400UCgWioqKgUCj8XRW/QP78+vPsDpA/+fPrLwgCFAoFIiMjpe7MLl26OJRRKj16AN1reFSL7du3N9pms9lQXFyMb775BpMnT3b7mGq1GvPnz8emTZsQHR2N7t27Y+PGjYiNjcXUqVMhCAIqKysREREBjUaDzz77DN988w2efvppjB07Vur7BCCV8RdqtRrdu3f32+v7G/Ln159nd4D8yZ9ff6vVCrVajQ4dOjSZAAVKYuj1BAgAwsPDcdNNN2H16tVXddzly5fDarXi+eefh9FoxJgxY7B3716oVCoUFBTgxhtvxLp16zBr1ix8/fXXABpWpt+wYYPDccQy/sJms8FoNEKj0QTEpE+tDfnz68+zO0D+5M+vv9VqhUwmQ1lZmTQo3TkBCpSY+GwMUDDjrTFA4tMRAwcORFhYmDeqFlSQP7/+PLsD5E/+/Prn5OSgtrYWJ06cwIMPPojw8HDpCTFxjbQ+ffr4rHfGnc9vj1qA3F1vq1u3bp68XNAREhKCxMREhISE+LsqfoH8+fXn2R0gf/Ln058xBkEQEBoaKg3+tm/9EccHtYkusClTprg1m6Pbz+gHOQqFAu3atfN3NfwG+fPrz7M7QP7kz6e/zWaT1gJLTEzEhg0bHAY822y2tpMAvfXWW3jppZcwaNAg3H777ejSpQuqqqrw888/49tvv8XDDz/M7UAwoOHx/LKyMnTu3NlhuRBeIH9+/Xl2B8if/Pn0FwQBgiBIS13cddddDv42mw1KpTJgxgB5lAB9+eWXmDx5MtavX++wfdq0aejYsSPOnDmDZcuWeVTBYMZqtaK8vBxRUVFcXQQi5M+vP8/uAPmTP5/+NptN+qmsrERkZKSDv9g9Fih4lIYdO3as0ersItdddx1Onz7tyeGDntDQUAwdOjSg3vDWhPz59efZHSB/8ufTX2wBateuHerr63HmzBlpOQxxfyAlhB4lQFFRUUhOTna579ixY40efSMIgiAIom1is9mkccHr16/HXXfdhSNHjjjsD6QEyKMusDlz5mDnzp0wGAyYMmUKoqOjUV5eju+++w7//Oc/8cILL3irnkGJwWBAdnY2+vTpw903AYD8efbn2R0gf/Ln019ctNRgMCAyMhL9+vVzGAcsk8kCZgA04GECtHTpUtTV1eG9997D3r17ATQ8BhcaGoonnngCc+fO9UolgxWFQoHw8PCAesNbE/Ln159nd4D8yZ9Pf0EQwBiDQqHAa6+9hs6dO0OtVjuUCaSYeGUixNraWpw9exY1NTWIiorC8OHDER4e7o36+QVvTYRIEARBELxQWlqKiooKREZGNtpns9lQV1fn00kQAT8shlpWVoacnBykpaVhwIABSE1NRX19vTcOHdSI06GLzYK8Qf78+vPsDpA/+fPpb7FYIJfLXfoLggC5XB4wj8ADHiZANpsNzz//PKZPn461a9di7969KC8vx44dOzBjxgwUFxd7q55BidFoxIULF2A0Gv1dFb9A/vz68+wOkD/58+lvsVigUCjwyy+/YOTIkVi0aJG0L9BmgQY8TIB27NiBAwcO4LXXXsPRo0ch9qY99dRTsNls2LJli1cqGayEhIQgPj6eu+nQRcifX3+e3QHyJ3/+/MVlMGQyGcrLy1FTUwO9Xi/tt9lskMvlbScB+vTTT7F8+XLMnj0bHTp0kLYPHDgQy5cvx9GjRz2tX1CjUCgQERERUG94a0L+/Prz7A6QP/nz5y8IgpTklJWVAQBiY2Ol/TabrdGAaH/jUQJUXl6OgQMHutzXpUsX1NbWenL4oMdisaC4uBgWi8XfVfEL5M+vP8/uAPmTP3/+4gzQCoUCRUVFAIDOnTtL+wVBaFsJUK9evfDf//7X5b4TJ06gV69enhw+6OHxIrCH/Pn159kdIH/y589fTIDkcrmUAHXq1Mlhv/3CqIGAR7W5//778eKLL8JisWDy5MmQyWTIzc3F8ePHsW/fPjzzzDPeqmdQEhYWhuHDh/u7Gn6D/Pn159kdIH/y58/fvgusvLwcANCzZ09pvzg/UCDhUQJ05513orKyEjt37sQ///lPMMawYsUKqFQqLFq0CPPmzfNWPQmCIAiCCFAEQZD+X1JSAgCIiYlxKNOmEiAAWLJkCe655x788ccfqK6uRvv27TFs2DCHQdG8YjQakZOTg969e/t04qdAhfz59efZHSB/8ufPX0yABEGQpsCJjo4G0ND6E2hPgAFeSIAAIDw8HJMmTfLGodoUMpkMGo1GWhyON8ifX3+e3QHyJ3/+/MVJEEtKSmC1WqFQKKSnwAJxDiDASwkQ4ZqQkBD07t3b39XwG+TPrz/P7gD5kz9//iaTCQqFApcvXwYAdOvWDWFhYQD+TIACaRZowEtLYRCuYYzBYrHAC8utBSXkz68/z+4A+ZM/X/6ir0KhQEFBAYCGBEj0t9lsAbcSPEAJkE8xGAxISUmBwWDwd1X8Avnz68+zO0D+5M+XvyAI0lpfYgIUHh4uLQUiCAJUKlXAdQlSAuRDQkJC0L9/f66mQ7eH/Pn159kdIH/y58tfTIDsW4AGDBggTXwYiLNAAzQGyKcoFApERkb6uxp+g/z59efZHSB/8ufL32q1SgnQ/PnzMWzYMAwaNEjq8hJbgAINagHyIRaLBaWlpVzNBmoP+fPrz7M7QP7kz5e/2NUnk8kwZMgQ3HnnnejevbuDf6DNAg1QAuRTLBYLCgoKuLkInCF/fv15dgfIn/z58bfZbKirq3Po7rNarSgqKoLVagXw5zxAgYaM8TJM3Q3OnTsHABgyZIifa0IQBEEQgYvBYEBOTg7Cw8Oh1+vxzTffoFevXhg3bhyAhuSnuroaffr0kR6L9yXufH4HXpsUQRAEQRBBgdFolMb/ZGRkYMWKFYiNjcXp06cBQFohPtAegQeoC8ynGI1GXLp0SXoUkDfIn19/nt0B8id/PvwZY6irq5Oe8JLL5bjuuuswduxYZGZmOiRHgZgAUQuQD5HJZFAqlQE390FrQf78+vPsDpA/+fPhbzabYTAYpPXOhg0bhn/+858wmUwoLi6GTCaT5gcKxASIxgC5gMYAEQRBEETz1NTUID8/X1r01BU6nQ4qlarVlgZx5/ObusB8CGMMgiBwMx26M+TPrz/P7gD5kz8f/vX19dLj7RUVFcjPzwfg6C8IQkBOgghQAuRTDAYDzp49y8106M6QP7/+PLsD5E/+bd/fYrFAr9dLj79/8sknGDduHJ566ikYjUZcuHABRqMxYGeBBigB8ilqtRp9+/YN2Dff15A/v/48uwPkT/5t399oNMJkMkmOP//8MwAgMTERKpUKcXFxUKlUYIwF5CSIAA2C9ilKpRJRUVH+robfIH9+/Xl2B8if/Nu+v16vh1wuh0wmg06nw4kTJwAAN9xwA5RKJTp06CCVDcQB0AC1APkUq9WK8vJyaTZM3iB/fv15dgfIn/zbtr8gCKivr5e6v44ePQqLxYJevXqhb9++sFqtqKyshNVqDdhZoAFKgHyK2WxGbm4uzGazv6viF8ifX3+e3QHyJ/+27W8ymWA0GqUESOz+mjx5MmQymbQUiF6vh0qlCtguMHoM3gXeegzePrRtfT4IV5A/v/48uwPkT/5t27+iogJFRUWIjo4GYwzjxo1DQUEB3n//fdx0002Sf319PTQaDeLi4lotDrQURoDQFk98dyB/fv15dgfIn/zbrr84+7PY+pOZmYmCggKo1WpMmDABwJ/+FosFnTp1Cth4UBeYDzGZTMjIyIDJZPJ3VfwC+fPrz7M7QP7k33b9m+r+GjdunLTYqclkQmZmJqxWK0JDQ/1W1ytBCRBBEARBEC3CaDTCarVK43p++eUXAA3jf+yxWCxQq9VSohSI0BggF9BSGARBEATRmPz8fOj1ekRERECv12PQoEEwm8349ddfMWDAAKlcTU0NoqKiEBsb26r1ozFAAUJbHwh3JcifX3+e3QHyJ/+26S8ufiq26vzvf/+D2WxGjx490L9/f6mcuARGIHd/AdQF5lMMBgPOnDnTpqdDbw7y59efZ3eA/Mm/bfobjUaYzWZp9mf77i/7RK+urg5paWkBvxYaJUA+RK1Wo1evXm16OvTmIH9+/Xl2B8if/Numv06nc5jVOTo6Gl27dsWUKVMcytlsNvTt2xft2rVr7Sq6BY0BcgGNASIIgiDaKowxlz/N7bNYLCgqKkK7du2gUqkaHct+tueqqip07doV0dHRre5GY4ACBKvVirq6OkRERATsTJi+hPz59efZHSB/8m+5f1MJx5USkqbK2Gw2hx9xm/0+V3/X3GuJaDQah+QHaBjjZN/9Jb6GwWBweFosEAncmrUBzGYzsrKyMHDgwIA+CXwF+fPrz7M7QP7B6H+1CYerH71ej7S0NPTv3x8ajcZlUmKfmLg6ZlPb7OsKNB5kbZ+QiP93/mlun6uyrsjIyECfPn0aLXRqMpkgk8lw+fJlREVFBfT7T11gLvDmUhg2m01aMZc3yJ9ff57dAfL31N+dZMOdcs6JiP2PeIwrHcu+nH19RWQymUO3kBiDphIP522uylwpGWltDAYDBg8eDI1Gg59++snhUffq6mpERUUhJibGL+c/dYEFCDKZrFF2zBPkz68/z+5A2/L3RreMcxJypYTEubXjSq/VXN2BlreEiL/bJy3NJS68kpmZCbVajbCwMHTp0sVhn81mQ7t27YLi/KcEyIeYTCZcvnwZ3bt3D+jZMH0F+fPrz7M74Dt/b44VcU5AmkpKnP/2Sq8lk8lgNptRUlKCLl26ODwJJe6/UpdLc8mIq6Qk0DCZTCguLkZsbGzQn/+MNczpY7FYpDE9gwcPxrlz53D58mWH+IuzP8tkMmRlZQX89U8JkA9hjMFqtV7xW0pbhfz59efBvbkkwGg0QqfTQa/XQxCEFiUk3h68Km4XaSpRaOkYkKYSEVeJi9FoRH19PSIjI6HRaLwc+cDHZrPBaDTCYDDAbDZLyYPzv1arFT169ECHDh0AAKWlpTh37hzat2+PMWPGSMf79NNPodPpXB7D1TEtFgtmzZqFSZMmAQAuXLiA119/Hd26dcOmTZuk4y5cuFBas6u549rz5JNPYsWKFVAqlejVq5fDPpPJJA2UDobrnxIgH6LRaBAfH+/vavgN8ufXvzXdvdEt41zmSmNFmhu8Km5XKpUoKipq1J0j0tTg1ebGgYjbxUeOr2bwamug0WjQr18/t/7GftwM0PAkVWVlZZMf8OKP84f19ddfj/bt2wMAzp49i9OnTyM+Pl5KBvR6Pd5+++0rJhLO/7788ssYOnQoAODzzz/Hpk2bcN1112HdunVS/ePj46V6tZQdO3bgjjvuAAAcP34cDz30EK655hp89tlnUpmXX34ZFRUVbsVzyJAhknNdXR3++9//NnpPcnNzkZGR4dZxrVZrk/ssFgs6d+4cNPc+SoAIgvAa7iQb7pTz1eBV520tHajqqovGVRlfJyNiS5vFYnFYdqCsrAw6nQ6dOnVCeHg4gIa5WdLT093+4F+6dKmUlHz66adITk7GLbfcggkTJgBoeBpo48aNLWqVsP/30KFD6Ny5MwDgpZdewjvvvIPHHnsMTz/9NAAgJycH119/vdsx+f777zFo0CAADTMVb9q0Cffcc4+UDJhMJmzfvt3t41ZVVUn/1+l0yMnJQUJCgrRN7PprKkGQyWRQqVRQKpUO/9p3EUZHR2Po0KGNEpUpU6agvr6+0d8qlUqX21QqFUaPHi39ff/+/fH2229LiaHIxo0bYTKZmjxGU/+6wmazQSaTBXSXlzOUAPkQvV6P1NRUJCYmIiwszN/VaXXI37/+V5NoNFfOuQWkucGrBoMBmZmZ6NOnDzQaTZOv1VzdgSu3cFzN4FUxaWjuA1ulUjk07588eRJ6vR4jR45EREQEACA1NRUpKSku/95gMKC0tFQqK+7r0KEDVq1aJR13zZo1yMrKwlNPPSU9tfLdd99hy5YtLe7uAICIiAikpqZKx3300Ufx22+/Ydu2bZg1axYA4MSJE1i4cKEbZ1ADDz74oPSh9uuvv+Kzzz5D9+7dpQSouroaX3/9tdvHNZvN0v/F98o+eVAqlU0mDc198Nt3uSUmJuKvf/2r1HIDAKGhoVi0aJHL4zX3wZ+UlCQdY+rUqUhISGg00d9vv/0GhUIBQRCQn5+PAQMGICIiAmq1ukWDgidOnIhvv/220fa33nrrygFthk6dOmHOnDmNto8cOdKj49pjMpkQEhKCkJAQv9/7WkpAJkA2mw3bt2/HJ598grq6OowZMwYvvvgievbs6bJ8VVUVXnvtNRw+fBgymQy33XYbnn76ab8vxKZSqdCjR48mM+a2Dvn/6e+NbpmmWkSaG0Ni/7dXei2g6XEijP05eFUc12C1WiEIAgRBkD6MxR+TyYTa2lpUVlYCALp06YIhQ4ZI35L/85//QBAE3HPPPdI8Id99912TCUVT/w4bNgzPPPOMVM9bb70VOp0O//73v6VHczds2IB9+/Y1ShqaY8SIEQ4f6kuXLkVhYSG++eYbDBs2DADw008/Ye3atS08Gxro2bOnQwJ0/PhxpKSk4P7775e21dTU4Pz5824d17nLJSwsrNEHT3h4OHr37u3WN33nOVxuvvlmdOvWDSNGjJC2xcXF4bXXXnP4G5lMBovFgvbt20Oj0bg8rtj6AwArVqzAI4884rB0Qq9evVBQUOBWHJy59dZbceuttzps02g0ePnllz06bkxMDGJiYhptj4uLA9DwfoSFhSEyMpKb+5/JZELHjh2hUCiC5t4fkAnQjh07sH//fqxfvx6xsbHYuHEjFi1ahAMHDrhcW2X58uUwGAx47733UFtbi+eeew56vR5vvPGGH2r/JyqVyuVFwguB6u+tcSLNdc+I2wVBQH19PRhjMJlMqKqqgkwmQ6dOnaTjpKWlQa/XNzmmwTnBsFgsGDFihJRQlJSUYP/+/WjXrh2WLl0qJSpbt25FdnZ2o+TEPhFw/n3u3LlYvnw5AKCgoADXX3891Go1tFqtFL9HH30UP//8s1sxnzNnDt5++23JWUwC5syZI33IHjp0CP/+97/dOq7zt+qMjAzo9XqYTCZpm8ViQV1dXbPHcW5pcF7DKD4+Hh06dHC4//Tq1QuTJ09uUauE+G9UVJTDcR977DFUV1cjMTFR2jZp0iT84x//aPIY4k9z3RL79u1r5Dhx4kQcPXq02Thcidtvvx233367w7aYmBgsWLDAo+M6d80Awb2Kukqlkq5xHhDvd2KjQ6De+50JuATIbDZj3759WLlyJW644QYAwJYtWzBp0iR8//33mD59ukP5P/74AydOnMA333wj9Zu+8sorWLRoEVasWNFojoLWRPzwCw8PD4o5EbzNlfybSibMZrPDj/gBbTabERsbK3WpFBYWIisrC9HR0UhISABjDevVfPXVVw5/K/7rauCk+P85c+ZIg/ZOnjyJDz/8EAMGDMDDDz8s1XHx4sWor69vcTIhCAJeeOEFzJ8/HwqFAsePH8fChQsxaNAgfP3111KismzZMuTn57sV22eeeUYa05CXl4c9e/YgNjYWTz31lFTmyJEjOHPmjFvHLS8vl/4vl8thNBobtZiICYtcLm+2W0IulyMkJAQqlcqh9ValUuHmm2+GSqVy+JC79tprERYW5lbrRNeuXR3q9v7770MulzvcfJcsWYK5c+c2e6wrXZ8fffRRo23Tp09vdD8SEQQBOp3uivOh3HLLLY22devWDd26dWu2PoFOS/1bi6a6XH21XfQPCwtr9t7n6XZvHMMb261WK8LCwqQEKFg++wIuAUpNTYVOp8P48eOlbe3bt0dSUhJOnjzZ6IZz6tQpdO7c2WHQ2NixYyGTyXD69GlMmzat1erujMlkQkZGBgYOHOjzflBx7RXnD/or/UyZMkXqojl27BhSU1MxbNgwDBs2DIwxFBcX47333oPFYoHJZGrxcbds2YL27dsjLS0Nx44dwyeffILbb78dS5Ysgc1mQ3FxMf7617+6TBqa44MPPpD6rT/44ANs2LABt956KzZu3Aig4dv+4sWL3Y7fxIkTMXz4cMhkMlRXV+P777+HXq93+MZ+8eJF1NTUuHXcqqoqKBQKhIaGIiwsDHK5HAqFwqEloXv37gDg1gd///79pb/v3LkzFi1aJD1KK/K3v/0Nf/3rX5s9lvM2+xldY2Ji8PvvvzfqBtm9ezcUCoXD4ofOGAwGpKenY8CAAY26opVKJd577z0Ajt1zs2bNksaruHPzFR8zBxqufRHxMdzIyEhERkY2eRyxG8/d121uu8FgQEZGBvr37y/5++ODydvbXbXKuNoujgHr16+fw/vfVFdrc9tb+prNbXd1bF9ut/dv6t7v7vFbWra5wfe+2i6Xy9GhQwepJbI1P/s8IeASoOLiYgBo9M0uJiZG2mdPSUlJo7JqtRodOnRAUVGRR3UxGAzSxWswGKQPLnGOh5CQECgUCulDX3yjjUYjZDIZQkNDMWTIEKkbQ6FQ4NixY9i1a5fUWiF+wxYnmjKZTA7jKMxmMxhjSElJgdFoBGMMDz/8MA4cOIBXXnkFCxYsgEKhwE8//YQZM2a47XjmzBmEhoZK467++c9/YunSpXjkkUegVCpx8eJFvPjii24fNyMjAz179kT79u1RWFiI8+fPIykpCVVVVVCr1TCbzQ6tDc0hl8ulD2mxRcFqtaJLly7o3bs3OnfuLL03ISEhGD16NNRqtfTNXqFQICQkxGFQpfg7AISEhCAuLk7qhkpMTMRLL72Ezp07o6KiQhpU+dprr0mtGuLFHxYWJiWQCoVCasEQBAFqtRoREREwGo2oq6vD4MGDceHCBZjNZpSVlSEkJASMMezYsUPqNxcEAWazGWq1GnK5XDp3xFYvo9Eola2oqJDKPv7449JqzWJ9x44dK8VN/Fux7uL5Jp7fRqMRcrkcarUalZWVUtl27drBarWisLBQKit2L4lJnNFolAZ5ii11oaGh6Nq1K6qrq1FbWyvdGO3Liq4ajQZyuVw618UBtwaDAWq1WornlcqKCZ1YNiQkRIqhzWaT4mIwGKBUKqFWqxuVFY8rlrWPi9iNKdZfTNztYyi+NyEhIejTp48Ub/snteRyubReknhco9EIjUYjxdD+vbFYLI3Kiue3WFaj0Ujjq8QnccSyznEJDQ2FTCaT3kfxdfR6vVRWbIm1LyvGRSaTOZQVBAEmk0lyE8eH9erVCyqVCkajUToPXZUVBKFRDJ3vs0qlstF91v59dL4ni3GxvyeL1y5jzOHcclVWJpNJ15yrss3FRTw/+vTpI82K7FzW1TkrzqGjUChgNpsdzlnxuM5l7e8RzX1W2V83Vyrb3OeaeC00VVa8J8hkMiQmJiI0NNRlDM1mc6N4N/XeNHUeOp+zYll3CLgEyGAwAIDDN2Sg4UPK1bdvMVjOhISEOIwDcBdBEJCeni49PZCdnY3w8HDExcXBbDZDq9UiPj4eERERqKioQHFxMYYPHw6g4fFNjUaD3r17QyaTITU1Ff3790dkZCSSk5Px/vvvu12fnJwc5OXlgTGGqqoq1NXV4fz589BqtS6TPfukQfygV6vV0sUpXpg6nQ5lZWUwmUzo06cPJk2aBKVSibKyMnTq1AlqtRqTJ09GdHS0FFPGGDp37gylUonq6mpERESgQ4cOYIyhuroasbGx6Nq1K+rr61FTU4MZM2Zg9OjRsFgs0v527dph8+bN6NWrFyIiIlBTU4O6ujoMHDgQKpUKubm5aN++PeLi4mCxWJCeno7evXsjIiICZWVlKC0tlcYjZGVloaSkBD169IDVasXzzz+Pnj17IjIyEpWVlSgsLMTgwYOlOCoUCsTFxcFms+HChQvo2bMnOnTogJqaGhQUFGDQoEEYMGAAcnNzUVFRgb59+wIA+vTpg+7duyM6Oho1NTXIz89HUlISlEol8vLyYDabMWDAAMhkMpw7dw7R0dHo1KkTamtrpbJqtRr5+fkwGAyIj4+HTCbDhQsX0LlzZ3Ts2BE6nQ5FRUXSzePy5cvQ6/XS4EqtVouoqCh07doVer0ely5dQnx8PMLCwlBUVASdTifVV6vVIiQkBN27d4fRaERqaipiY2MRHh6OkpIS1NXVYcCAAQCAtLQ0qNVq9OzZE2azGRcuXECXLl0QGRmJsrIyFBUVSY/8Xrp0CWq1Gr169YIgCDh37hy6dOmCqKgolJeXS65AQyIsl8ulD4OUlBR06dIFHTt2RGVlJXJzc5GQkAClUomsrCzYbDb06dMHQENyHhMTg86dO6O6uhpZWVkYMGCAdH6I5yzQMN9Lx44dERsbi9raWmRkZKBfv34ICQlBXl4edDqdVDY5ORlRUVHo1q0b6uvrkZaWhj59+iA0NBQFBQWoqamRyp4/fx7t27dH9+7dYTAYoNVq0atXL7Rr1w6FhYUoLy+X4n3x4kWEhoYiLi4ORqMRFy9eRGxsLCIiIlBcXIzi4mLp8ezU1FSEhISgd+/esFgsSElJQbdu3RAZGYnS0lIUFBQ4xFupVKJHjx4QBAFnz55F3759pXjn5uZi5MiRkMlk0pwuvXr1AmMMZ86cQa9evdCpUydUVVWhqKgIw4cPh0KhQFZWFqxWq9Q9eebMGfTo0QOdOnWSzu+hQ4dCpVIhJycHRqNR6prLzc1FbGwsoqKiUFdXh9zcXAwaNAgajQZ5eXmor6+XzoGUlBR06tQJnTp1gk6nQ3Z2ttQycPnyZVRVVUnXZ15eHjp06ICOHTtKrWgJCQkIDw9HUVERSktLpUHoeXl50j3ZZDLh0qVLGDBgANq1a4eSkhIUFhZKg7Xz8vKke7LFYoFWq0W/fv2k+0leXh5GjRoFAMjPz4dcLke/fv0gCAIuXLiAPn36oF27dqivr0dOTg5GjBgBuVyO/Px82Gw26TrKyMiQ4q3T6ZCVlYVhw4ZBqVQiPz8fZrNZel8zMjLQvXt3xMTEoL6+HhkZGRgyZAjkcjlKSkqg1+sxcOBAAA1LT8TExKBr164wGo1IS0uT4l1SUoLa2lrp3MrIyEB0dLR03Wu1WineZWVlqKyslJ44zMrKQvv27aXrXqvVSvEuLy93iHd2djbCwsLQq1cvWK1WaLVa6XOtqqoKly9fdoi3Wq1Gnz59pLLiOVtdXY3c3FyX8WaMQavVonfv3ujYsSNqa2uRnZ0tnbMFBQUO8dZqtYiLi0Pnzp1RX18vLdHRUgJuMdRDhw5h+fLlSE5Odnic8bHHHoPZbMbOnTsdyr/66qtISUnBJ5984rB9/PjxWLJkCR544AG36yAupmbffH01LUAAUFhYiKioKEREREChUOCPP/7Av/71L4SGhkpvlEqlQmhoKJRKJRhjCA0Nlb6RAkC7du0wceJE6UmPyspK6PV6tGvXTkpExFaG9u3bQ6VSSWVdZco2m036FmafVTf1TdD+24b4DcL5W5j9N0yxbH19PYqLi9GzZ09oNJomv5k4x1B80qglZYE/Vx92/gYhxsGdb4JX+rbhTlnGGMrKyqTxKPYxdP525+qbYEu/sbXWtzt3vrEpFAoUFRVJibO3vt21pOyVYuhpvO3jYt8CZF/WYDDg8uXL6NatG8LCwloUQ0/i7dyq42m87VtqribeBoMBVVVV6Nq1K2w2W6MWIG+cs1dzT3YVF0/j7eoeIQgCLl++jOjoaERGRl5VDIP5HlFbW4uysjL06NFDuh5aqwUoMzMTQJAuhip2Z5WWlkrfesXf7SedEomNjcWPP/7osM1sNqO6utrjUej2fdf2/5fL5Q79muIbIGLffG7frAk0PF5r/wjp1WD/+KhIRESEy+0i4mRornB+4sXV47MizuM5nKe5tz+W2C0ktjw5Z+b2f+v8FIs4f4qI/d8qFAqHv22uvs6va19/mUzm8LfiIF4R5wm93C1rNBqlm4Z9fZ3jYH9csRutqbLNnYfulG3qnHW3bFMxFN3Fbsnmyop4Gm+RK8XQW/F2jovzuWW1WqUvMe7E8GriLWIfF0/i7RwXd+MtfkDaf7Fqqqw9VxtvT85Zb8Ub+DMu4oex2DXWXFmg9c7Z1rpHqNVqWCwWaUxWczH0RrxdlW0JTY9i9BOJiYkIDw/H8ePHpW21tbW4ePGiw9ooImPGjEFxcTFyc3OlbSdOnAAAqYnNX2g0GiQmJnK5Fg5A/jz78+wOkD/5k38w+AdcC5Barcb8+fOxadMmqR9z48aNiI2NxdSpUyEIAiorKxEREQGNRoNhw4Zh5MiReOKJJ7BmzRro9Xq8+OKLmDFjhl8fgScIgiAIInAJuBYgoGFiwzlz5uD555/HvHnzoFAosHfvXqhUKhQVFeHaa6/FN998A6ChyWz79u3o0aMH7r//fjz++OO47rrrsGbNGv9KoKF/8uzZs9Dr9f6uil8gf379eXYHyJ/8yT8Y/ANuEHQgIA6CbskgquawWCyoqKhAx44dA35KcF9A/vz68+wOkD/5k7+//N35/KYEyAXeSoAIgiAIgmg93Pn8DsgusLaCIAioq6u74uzGbRXy59efZ3eA/Mmf/IPBnxIgHyJOzuXJhIzBDPnz68+zO0D+5E/+weBPXWAu8FYXmDidvLisAW+QP7/+PLsD5E/+5O8vf3c+vwPuMfi2hPMEeLxB/vz68+wOkD/5k38w+POXmrYiZrNZWiOKR8ifX3+e3QHyJ3/yDwZ/SoB8iCAIqK+vD/iBYL6C/Pn159kdIH/yJ/9g8KcxQC6gx+AJgiAIIvigx+AJgiAIgiCagQZBu0BcxVbMJK8WxhgsFgtUKpW0IjBPkD+//jy7A+RP/uTvL3+z2dzi16QEyAXeesNkMhnUarVXjhWMkD+//jy7A+RP/uTvL3+ZTNbiz3AaA0QQBEEQBHfQGCCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEqBmsNls2Lp1KyZNmoThw4fjwQcfRH5+fpPlLRYLNm/eLJWfP38+tFqtQ5lPP/0Uf/3rXzF8+HBMnToVu3fvhiAI0v6vvvoKCQkJjX4KCgp85ukKX7gvWLCgkde9994r7TeZTHj55Zcxfvx4jBgxAk8++SQqKyt95tgc3vafMmWKy/c1ISEBJ0+eBACUlJS43P/ZZ5/53NcZd/y3bdvWpNvq1aulcseOHcOsWbMwbNgw3HLLLTh48KDDcYL1/W+pf7Bc+4Bv/IPl+ve2e1u+9gGgoqICTz75JMaNG4drrrkGTzzxBEpKShzKfPvtt5g2bRqGDh2KGTNm4NixYw77q6qq8OSTT2LMmDEYO3YsXn75ZRgMBp/4OcCIJtm2bRu75ppr2C+//MK0Wi1buHAhmzp1KjOZTC7LP/vss2zChAns8OHDLCMjgz366KNs4sSJrLa2ljHG2JdffskGDRrEPv74Y5abm8sOHjzIRo4cybZt2yYdY8OGDWz+/PmstLTU4cdqtbaKs4i33RljbPz48Wz//v0OXlVVVdL+Z555ht10003s5MmTLDk5mc2YMYPdc889vlZ1ibf9KyoqHLwLCgrY1KlT2X333ccsFgtjjLFff/2VDRkyhJWUlDiUNRgMreYt4o5/fX19o/P1jTfeYMOHD2epqamMMcYyMjLYkCFD2JtvvskyMjLYO++8w5KSktj//vc/6TjB+v63xD+Yrn3GvO/PWPBc/952b8vXPmOMzZ8/n82dO5ddvHiRXbhwgd11111s9uzZ0v5jx46xQYMGsffff59lZGSw9evXs8GDB7OMjAyHY8yePZudP3+e/e9//2OTJ09mTz/9tM9dKQFqApPJxEaMGME++ugjaVtNTQ0bOnQoO3DgQKPyeXl5LCEhgf3yyy8O5SdPnizd5OfOncuee+45h7/bvn07u/7666XfFy1axF599VXvyriJL9zLy8tZfHw8u3DhgsvXLC4uZomJiezXX3+VtmVlZbH4+Hh25swZL5m1DF/4O7N+/Xo2btw4VlFRIW3bvXs3++tf/+o9kavEXX9nLly4wAYNGsQ+++wzadsLL7zA5syZ41BuxYoVbOHChYyx4H7/nXHlHyzXPmO+8Q+W698X7s60pWu/pqaGxcfHs59++kna9uOPP7L4+HgpuV24cCF77LHHHP7u//7v/9gLL7zAGGPszJkzLD4+3iEh+u2331hCQgIrLi72ol1jqAusCVJTU6HT6TB+/HhpW/v27ZGUlCQ1W9pz9OhRRERE4LrrrnMo//PPP0vHWLlyJf72t785/J1cLkdNTY30e1paGvr16+dtHbfwhXtaWhpkMhn69Onj8jVPnz4NABg3bpy0rU+fPujSpYvL1/QlvvC3JyMjAx988AGeeeYZREdHS9sD4b0H3Pd35pVXXsHo0aMxc+ZMadupU6caxWLcuHE4ffo0GGNB/f4748o/WK59wDf+wXL9+8LdnrZ27Ws0GrRr1w5ffPEF6uvrUV9fjy+//BJ9+vRB+/btYbPZcObMmUbX/jXXXCMd79SpU+jcubOD/9ixYyGTyaTzwlcofXr0IKa4uBgA0LVrV4ftMTEx0j57srOz0bNnT3z//ffYvXs3SkpKkJSUhGeeeUZ6Y0eNGuXwN3V1dfjnP/+JSZMmAQBqampQUlKCU6dOYf/+/aiqqsLQoUPx1FNPNXnj8AW+cL906RIiIiLwyiuv4OjRowgLC8Mtt9yCpUuXQq1Wo6SkBFFRUQgJCWnRa/oSX/jbs3XrVsTHx+OOO+5w2H7p0iVERUXhnnvuQXZ2Nnr16oWHH37YIbFqDdz1t+eXX37BH3/8gS+++KLRMWNjYxsdz2AwoKqqKqjff3ua8g+Wax/wjX+wXP++cLenrV37arUa69evx4svvojRo0dDJpMhJiYGH374IeRyOaqrq6HX611e++LxSkpKGr2eWq1Ghw4dUFRU5E29RlALUBOIA7DUarXD9pCQEJhMpkbl6+vrkZubix07dmDFihXYuXMnlEol7r77blRUVDQqr9PpsHTpUphMJjz99NMAgPT0dAAAYwzr1q3DW2+9BZPJhLvvvhvl5eXeVmwSX7hfunQJJpMJQ4cOxTvvvIOHH34Yn3zyCZ5//nnpNZ1fr7nX9CW+fO/z8/Pxww8/4OGHH3bYbrVakZWVhZqaGjz66KPYvXs3hg8fjsWLFzcaMOhr3PW3591338XkyZMxcOBAh+1Go7HR8cTfzWZzUL//9jTlb08gX/uAb/yD5fr35XvfFq99xhi0Wi1GjBiBjz76CO+//z66deuGpUuXor6+Hkaj8YrH8+d7Ty1ATaDRaAA03JzF/wMNTyqEhoY2Kq9UKlFfX48tW7ZI3/q3bNmC66+/Hp9//jkWLVoklS0rK8OSJUtQUFCAvXv3okePHgCA0aNH49ixY4iKioJMJgMAbN++HTfccAM+++wzLF682Ge+9vjC/ZVXXsGqVasQGRkJAIiPj4dKpcITTzyBp59+GhqNBmazudGxm3pNX+LL9/6rr75Cx44dcdNNNzU6xvHjx6FQKKTXHDx4MNLT07F3716XXWm+wl1/kcLCQhw/fhy7d+9utC8kJKTR+yv+HhoaGtTvv0hz/iKBfu0DvvEPluvfl+99W7z2v/32W3z44Yf45ZdfEB4eDgD4+9//jsmTJ+M///mP1NLl/N7aH6+59z4sLMw7Yk1ALUBNIDbJlZaWOmwvLS1Fly5dGpWPjY2FUql06PLQaDTo2bOnw2OsmZmZuOuuu1BRUYGPPvoIQ4YMcThOdHS0dAMEGj4cevTo0eixQl/iC3elUind/EQGDBgA4M/ukerq6kYXQlOv6Ut89d4DwI8//ojbbrsNcnnjS69du3YONx2gIUat+d4D7vuL/Pjjj4iOjsbEiRNdHtPV8cLCwhARERHU779Ic/5AcFz7gG/8g+X699V7L5Zpa9f+qVOn0KdPHyn5AYDIyEj06dMHubm56NChA8LCwpo9XmxsbKP9ZrMZ1dXViImJ8YpXU1AC1ASJiYkIDw/H8ePHpW21tbW4ePEixowZ06j8mDFjYLVace7cOWmb0WhEfn4+evXqBaChCfT+++9HaGgoPv74Y+kGIPKvf/0L11xzDfR6vbStvr4eOTk56N+/v7cVm8QX7vfee6/DnCAAcO7cOahUKvTu3RujRo2CzWZzGPSWnZ2NkpISl6/pS3zhDzS8l1qtFhMmTGh0jPT0dIwcOdLhNQHg/PnzrfreA+77i5w6dQpjx46FUtm4YXn06NE4ceKEw7bff/8dI0eOhFwuD+r3X6Q5/2C59gHf+AfL9e8Ld6DtXvuxsbHIzc116KrS6/UoKChA7969IZPJMHLkyEbX/vHjxzF69GgADffP4uJi5ObmSvvF8s5j57yOT58xC3LefPNNNnbsWPbjjz86zIdgNpuZ1WptNE/DAw88wG699VZ28uRJlp6ezh599FE2fvx46XHH+fPnszFjxjCtVtto7gjGGCssLGSjR49mjzzyCLt06RJLSUlhDzzwALvpppuY0WgMavd//OMfbODAgWz//v0sLy+PHTx4kF1zzTXszTfflI6xYsUKNmXKFPb7779L84DMnz+/Vb1FvO3PGGMnT55k8fHxLh/tFASBzZ49m02bNo2dPHmSZWRksLVr17LBgweztLS0VnG2x11/xhi78cYb2Y4dO1we79KlS2zQoEFs48aNLCMjg+3du7fRPEDB/P4z1rx/MF37jHnfP5iuf2+7M9Z2r/2SkhI2duxY9tBDDzGtVsu0Wi1bsmQJmzRpkjQH2m+//cYGDhzI9u3bxzIyMtgbb7zBhg4dKj32brPZ2Ny5c9nMmTNZcnIyO3bsGJs8eTJ75plnfO5KCVAzWK1WtmHDBjZu3Dg2fPhw9uCDD7L8/HzGGGP5+fksPj6effrpp1L5uro69tJLL7FrrrmGDRs2jC1YsIClp6czxhrmuYiPj2/yR+T8+fNswYIFbNSoUWzkyJHs0UcfZYWFha0rzrzrLvLhhx+yW2+9lQ0ePJhNnjyZ7dy5kwmCIO3X6XTsueeeY6NHj2ajR49mK1asYJWVla0j7IQv/A8ePMji4+Ob/EArKytjzzzzDJs4cSIbMmQI+7//+z928uRJ30k2g7v+jDE2dOhQtn///iaP+d///pdNnz6dDR48mN1yyy3s4MGDDvuD+f1nrGn/YLv2GfPN+x8s178v3NvytZ+RkcGWLFnCxo4dy8aNG8eWLVsmlRf5/PPP2c0338yGDBnCZs6c2Wh+tPLycvboo4+y4cOHs2uuuYa99NJLrZL4yxhjzLdtTARBEARBEIEFjQEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCMIrGI1GbN68GVOnTsXgwYMxcuRILFiwAFqtVirDGMN7772HW2+9FUOHDsXNN9+MvXv3QpyQ/kr7ExISsG3bNofX3bZtGxISEhy2TZkyBWvXrsX999+PoUOH4rnnnvNK/d544w0MHToUdXV1Dq+3Y8cOjBo1CgaDweM4vvXWW/j3v//t8XEIgmge10vXEgRBuMnTTz+NU6dOYcWKFYiLi0Nubi7efvttPPnkkzh48CBkMhk2bNiA999/HwsWLMDEiRNx7tw5bNq0CVarFUuWLLnifnf46KOPsGDBAjz44INo166dV+o3Z84c7Nu3D9999x3uvPNO6bW+/PJLTJs2DaGhoR7Hsb6+Hi+++CKUSiVmzZrl8fEIgnANJUAEQXiM2WyGTqfD888/j2nTpgEAxo4di/r6eqxfvx7l5eUICQnBBx98gPnz5+Opp54CAEyYMAFlZWU4efIk5s2b1+x+dxOgbt26YeXKlV6r35IlS9CvXz+MGDECX375pZQAnTlzBjk5OVi/fn2L6mUymZrd/9RTT0Gn0+G5556DSqXCX//6V7e8CYJoGZQAEQThMWq1Gnv37gUAlJSUIDs7Gzk5Ofjll18ANCQgWq0WVqsVU6dOdfjb559/HgBw+PDhZve7y8CBA71aP5HZs2fjhRdewOXLl9G9e3d8/vnn6NOnD0aMGHHFOul0OowcObLFDqtWrcK4cePQuXPnFv8NQRAtgxIggiC8wm+//Ya1a9ciKysL7dq1Q2JiIsLCwgA0jK2prq4GAERHR7v8+yvtdxfxtb1VP5Fp06Zh7dq1+PLLL/G3v/0N3377LRYvXtyiOoWEhGDdunVXLHfkyBEcPHgQN998s9fiQRCEI5QAEQThMXl5eXjkkUdw0003YdeuXejZsydkMhk++ugj/PbbbwCA9u3bAwAqKyvRt29f6W8LCwuRl5cnJSNN7R81ahQAQBAEh9fW6/WtUr9Ro0ZBpVKhXbt2uOWWW/Dtt98iPj4eer0ed9xxR4vi1JJxPUePHsUPP/yAm266CZs3b4ZCoWjRsQmCcA96CowgCI85f/48TCYTFi9ejLi4OMhkMgCQkgvGGIYOHQqVSiV1O4ns27cPK1aswIgRI5rdr1AoEB4ejpKSEof9Z86caZX62Scic+bMwaVLl/D+++9jwoQJ6NKlS0vC1CJ27tyJCRMmYMuWLVAq6TsqQfgKuroIgvCYQYMGQalUYuPGjVi4cCHMZjM+++wz/PrrrwAaWml69uyJ++67D++99x7UajXGjh2L5ORk/POf/8T/1879sigQxHEY/94iss1gVcQuKAgmgxj1DQiy+i4MoklYbFvEKMZN2wSzmKwmo1oMRrNz6f5Y7jxvOTnm+dSB4cemZxhme72e0un0l+uO46hWq2mxWKhYLCqXyymKIu33+z+Zz3E+zovlcln5fF6bzUZBEMT6LafTqVzXVTKZjHVfALdezNsPLgDgF5bLpSaTiQ6Hg1KplEqlkjqdjjzP03A4VLvdljFGs9lMYRjqdDopk8mo2+2q1WpJ0rfr5/NZo9FIq9VKiURCjUZDhUJBg8FAu93ufZZ6va5KpXLzMiuO+T4bj8eKokjr9ZpYAf4hAggAfsgYo2azqWq1qn6//+xxADyAKzAAuNPlctF8Ptd2u9XxeJTnec8eCcCDCCAAuJPrugrDUNfrVb7vK5vNPnskAA/iCgwAAFiHZ/AAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACs8wreRPaSbONdtgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=\"tpr_diff\",\n",
+ " show_data_type=\"test\",\n",
+ " constant_clf_perf=max((y_test == const_pred).mean() for const_pred in {0, 1}),\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(r\"equality of opportunity violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/.doctrees/nbsphinx/examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb b/.doctrees/nbsphinx/examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb
new file mode 100644
index 0000000..65fc284
--- /dev/null
+++ b/.doctrees/nbsphinx/examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb
@@ -0,0 +1,627 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e2b69330",
+ "metadata": {},
+ "source": [
+ "# Achieving _equalized odds_ on synthetic data\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with:\n",
+ "```\n",
+ "pip install \"error_parity[dev]\"\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "da92fdab",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.9`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "70b33f87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_synthetic_data(n_samples: int, n_groups: int, prevalence: float, seed: int):\n",
+ " \"\"\"Helper to generate synthetic features/labels/predictions.\"\"\"\n",
+ "\n",
+ " # Construct numpy rng\n",
+ " rng = np.random.default_rng(seed)\n",
+ " \n",
+ " # Different levels of gaussian noise per group (to induce some inequality in error rates)\n",
+ " group_noise = [0.1 + 0.3 * rng.random() / (1+idx) for idx in range(n_groups)]\n",
+ "\n",
+ " # Generate predictions\n",
+ " assert 0 < prevalence < 1\n",
+ " y_score = rng.random(size=n_samples)\n",
+ "\n",
+ " # Generate labels\n",
+ " # - define which samples belong to each group\n",
+ " # - add different noise levels for each group\n",
+ " group = rng.integers(low=0, high=n_groups, size=n_samples)\n",
+ " \n",
+ " y_true = np.zeros(n_samples)\n",
+ " for i in range(n_groups):\n",
+ " group_filter = group == i\n",
+ " y_true_groupwise = ((\n",
+ " y_score[group_filter] +\n",
+ " rng.normal(size=np.sum(group_filter), scale=group_noise[i])\n",
+ " ) > (1-prevalence)).astype(int)\n",
+ "\n",
+ " y_true[group_filter] = y_true_groupwise\n",
+ "\n",
+ " ### Generate features: just use the sample index\n",
+ " # As we already have the y_scores, we can construct the features X\n",
+ " # as the index of each sample, so we can construct a classifier that\n",
+ " # simply maps this index to our pre-generated predictions for this clf.\n",
+ " X = np.arange(len(y_true)).reshape((-1, 1))\n",
+ " \n",
+ " return X, y_true, y_score, group"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "0d326b40",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# N_GROUPS = 4\n",
+ "N_GROUPS = 3\n",
+ "\n",
+ "# N_SAMPLES = 1_000_000\n",
+ "N_SAMPLES = 100_000\n",
+ "\n",
+ "SEED = 23\n",
+ "\n",
+ "X, y_true, y_score, group = generate_synthetic_data(\n",
+ " n_samples=N_SAMPLES,\n",
+ " n_groups=N_GROUPS,\n",
+ " prevalence=0.25,\n",
+ " seed=SEED)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "ba24bcc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual global prevalence: 26.6%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_true) / len(y_true)\n",
+ "print(f\"Actual global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "5615f135",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Example predictor that predicts the synthetically produced scores above\n",
+ "predictor = lambda idx: y_score[idx]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6af00a5e",
+ "metadata": {},
+ "source": [
+ "## Construct the fair optimal classifier (derived from the given predictor)\n",
+ "- Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);\n",
+ " - optionally, this constraint can be relaxed by some small tolerance;\n",
+ "- Optimality is measured as minimizing the expected loss,\n",
+ " - parameterized by the given cost of false positive and false negative errors;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "48f713ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=\"equalized_odds\",\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " false_pos_cost=FALSE_POS_COST,\n",
+ " false_neg_cost=FALSE_NEG_COST,\n",
+ " max_roc_ticks=None,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "3dbca6de",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:ROC convex hull contains 0.8% of the original points.\n",
+ "INFO:root:ROC convex hull contains 1.1% of the original points.\n",
+ "INFO:root:ROC convex hull contains 1.7% of the original points.\n",
+ "INFO:root:cvxpy solver took 0.000423541s; status is optimal.\n",
+ "INFO:root:Optimal solution value: 0.16804655919862382\n",
+ "INFO:root:Variable Global ROC point: value [0.07881903 0.58530983]\n",
+ "INFO:root:Variable ROC point for group 0: value [0.1126535 0.55350038]\n",
+ "INFO:root:Variable ROC point for group 1: value [0.0626535 0.60350038]\n",
+ "INFO:root:Variable ROC point for group 2: value [0.0626535 0.60350038]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 185 ms, sys: 6.64 ms, total: 191 ms\n",
+ "Wall time: 190 ms\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO, force=True)\n",
+ "clf.fit(X=X, y=y_true, group=group)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "599af3ba",
+ "metadata": {},
+ "source": [
+ "## Plot solution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "eb901f92",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"whitegrid\", rc={'grid.linestyle': ':'})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "5ccb923e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wT9f8H8NdlNUn3bumAMsoGkb1ki2xQUEFBhoAi46egIPpFWTJcDFFxIAqyZG8HIHsIhQKFsjvpTnfarLvfH2muuYy2KV3A+/n48rW3P7l8cnfv+yyG4zgOhBBCCCGEEEJIJRFVdwIIIYQQQgghhDzZKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhNR4Wq22upPwWKHzRQghdC0kpKaRVHcCCHlaFBYW4vz58zh58iQiIyORkZGBjIwMiEQieHp6wtPTE02aNEHnzp3RqVMnuLm5VWt6V69ejW+++YafvnXrVrWkY//+/di4cSO2bNlic/n58+cxZswYfvq3335D+/btqyp5NYpGo8GPP/6ItLQ0zJ8/v7qT45CoqChs374dFy9exMOHD6HVauHr64vQ0FD07dsX/fv3h7u7e6WmITk5GX/88QdOnz6NBw8eID8/Hx4eHggICED37t0xZMgQhISElHl/hw4dwv/93/+VKy1RUVGQSJ68W/ScOXOwa9cuAEBQUBCOHj1azSl6cowePRoXLlwAALRr1w4bNmyo5hRVnwcPHmDRokWYNGmS3ftBz549kZiYCAAYNmwYli5dWpVJJOSp9OTd1QipYXQ6HX755Rf8/PPPyMrKsrmOWq1GYmIirl+/jm3btsHJyQkvvfQSZsyYAQ8PjypNb01x9+5dzJ8/HxcuXEBQUFB1J6fGO3bsGBYtWoSEhAQMGzasupNTZoWFhZg/fz527txptSwxMRGJiYk4e/YsVq1ahYULF6J3796Vko7169fj66+/RmFhoWB+Wloa0tLScO3aNXz//feYMmUKJk+eDLFYXOo+b9y4USlpJYTYVlhYiG+//Rbr1q2DTqfDpEmTqjtJhBAzFHgSUomys7MxefJkXL582WqZs7MzXF1dwTAMsrOzoVar+WUajQabNm3C33//jR9++AFNmjSpymTXCD/99BP/9p6UbuHChfzb+8eFRqPBhAkTcPHiRcF8FxcXKJVKpKeng2VZAIBKpcI777yDJUuW4MUXX6zQdCxfvhw///yzYJ5MJoOXlxdUKhVfXU+n02HlypWIj4/HkiVLSt2veeDp6uoKT0/PMqeJYZgyr0sIMYqMjMTatWurOxmEEDso8CSkknAchxkzZgiCzqZNm2LMmDHo1KkT/Pz8BOsnJSXh+PHj+OWXXxATEwPAWNoyYcIE7NixA7Vq1arK5BNS6RYtWiQIOtu1a4f3338fLVq0AADk5uZi+/btWLlyJQoKCgAA8+bNQ7169dCyZcsKScO+ffsEQWdQUBA+/PBDdO/eHVKpFHq9HseOHcOSJUv4wH7nzp1o2LAhxo4dW+K+zQPPKVOmYPz48RWSZkIIIeRxRJ0LEVJJ9uzZg7Nnz/LTr7zyCrZv346hQ4daBZ0AEBgYiFdffRX79u3DgAED+PkqlQoLFiyokjQ/jtq3b49bt27x/57W9p2Pm8jISPzxxx/8dI8ePbB+/Xo+6ASMpYTjxo3Db7/9BqVSCcBY6liW0sayyMvLE7TrCg4OxrZt29CnTx9IpVIAgEQiQZ8+fbBjxw7Uq1ePX3f16tVQqVR2952UlCRY/jTWWiCkJjt69Ch/36D2nYRUDQo8Cakkmzdv5v8OCwvDvHnzIBKV/pOTyWRYunQp6tevz887duwYHjx4UCnpJKQ6/Pjjj+A4DoCxau2SJUvstpts0aIF5s6dy09fvnwZp0+ffuQ07Ny5E+np6fz0woUL4ePjY3NdT09PrF69mu/wJy8vD7/++qvdfUdFRQmmKfAkhBDytKPAk5BKUFhYiGvXrvHTPXr0cKiHSplMhgkTJgjmnTlzpsLSR0h1ys7OFvRmOnTo0FLbPw4bNgy+vr789L59+x45HabeVQEgPDwcnTp1KnH9evXqoVevXmVKg3k129DQ0GrvpZoQQgipbtTGk5BKkJOTA4PB8Ej76Ny5s2A6NTW1TNvFxMRg165d+O+//xAXF4esrCwoFAp4eXmhZcuW6NatG/r27VshQzWUZ2iEnTt34sMPP+Snjxw5guDgYADWQ6OYJCYmomHDhvy0eQcz5RlOpaCgAPv27cOpU6cQFRUFlUoFg8EALy8vhIWFoVOnThg8eDD8/f1L/Tzm6Tp48CDq1auHwsJCHDx4EIcPH8bdu3eRnp4OuVyOgIAAdO7cGUOHDhVsV16WQ96Y7Nq1SxBUmZ9jS1lZWdi9ezfOnTuH6OhoZGZmgmEYeHl5oUGDBujSpQsGDRpUob0rnz59WvD7KEtPtRKJBN26dcP27dsBAH///TcWLVpU7nycnp6Omzdv8tPmAWVJevXqhT///BOAMV9evXpVUD3YxDzwrM7SzoSEBMFnu3r1KpycnHDw4EH88MMPePDgATw9PREeHo5+/fph0KBBNs9pcnIy9u7di1OnTiE2NhYqlQpOTk7w9vZGy5Yt0b17d/Tt27dMvf066syZMzhz5gwuXbqE5ORkZGVlQafT8R02tWjRAp06dcILL7wAmUxmcx/Tp0/nvzfA+DLw+++/L/G4Z8+exbhx4/iS+ZCQEOzevRsuLi421+c4DseOHcPRo0cRERGB9PR0qNVqeHh4ICQkBJ07d8bgwYMRGhrq0OdXqVTYsWMHjh8/jjt37iA/Px9eXl4IDw/H0KFD0a9fv0o575ZSUlKwa9cunD9/Hnfv3kVWVhakUim8vb3RuHFjdO3aFQMHDoRCoShxP+bXbFdXV76d9927d7FlyxacPn0aycnJYFkW/v7+aNWqFYYOHYqOHTva3af50CjmzO8NlkPMlGU4FfPrtOk6mpeXh7179+LQoUOIjY1FZmYmvL29ERISgsGDB2PQoEGQy+WC/Zw5cwY7duzAtWvXkJycDKlUiuDgYHTt2hWjR48u8V5TnmFyyjIcmvk65p8/MjISO3bswMWLF5GcnAyRSAR/f3+0adMGI0eORKNGjQT7UalU2LlzJ/766y/Ex8cjNzcXnp6eaN68OV588UX06tWLOksjPAo8CakEXl5ekEql0Ol0AIw3rHfffdfuQ5Et/v7+OHDgANzd3eHh4cG3ObMnKysLixYtwoEDB/ieQE10Oh1ycnIQExODPXv2ICQkBHPnzkXPnj0d/3CPuS1btuDrr7+2ObRNUlISkpKScObMGaxevRqvvfaaw99bREQE5syZg9jYWMF8jUaD7Oxs3Lp1C+vXr8err76Kjz/+uEoeGG0xGAxYu3YtfvzxR0GPyiamoUz+/fdfrFy5EpMmTcLEiRMr5AHCvDYAwzA2AzdbnnnmGT7wzMvLw507d9C4ceNyp8EUUABAq1atypwGcxERETbTb17VtmnTpuVKY2VZv369oJ2sKd9fv34dQ4YMEayr1WqxYsUKbNy4ERqNxmpZbm4uf10JCwvDJ598UmKA4IizZ89i6dKliI6OtrlcpVJBpVLh3r172LVrF7788kssXbrU5vEXLFiAiIgIpKWlATA2Xzhw4ICgPb257OxszJ49m88jEokEX331ld2g8/Lly5g/f77gZYaJaUieiIgIfPfddxgxYgTmzJljFZzYsmnTJnzxxRfIz88XzE9JSUFKSgpOnjyJDRs24Msvvyx1X+VVUFCAL7/8Elu2bOHvaSZarRb5+fmIi4vDn3/+iZUrV+Ldd9/FSy+95NAxfvvtNyxfvtxq/7GxsYiNjcXu3bvRqVMnLF26tEwvBCvLmTNnMGfOHKSkpAjmm35DFy5cwMaNG7F27VoEBAQgOzsb//vf/wQvPQDj/SA6OhrR0dHYsmULVq5cafWyuarl5+dj8eLF2LFjh9Wy3Nxc3L17F9u2bcOcOXPwxhtvAAD++ecffPTRR1b309TUVBw5cgRHjhxB79698fXXXzt0HyVPLqpqS0glkEgkgreCsbGxmDZtGv/QU1b169eHr69vqUFnXFwcBg8ejH379gmCTqlUCn9/f6tqfvHx8ZgyZQq+++47h9JT2eRyOUJDQxEaGgpnZ2d+vkQi4eeHhobaffgrCcuymDVrFj755BPBTZJhGHh4eMDPz08QBGo0Gqxbtw5jxowpsRMZc1euXMG4ceP4oFMkEsHX1xdeXl5Wadm0adMjdxrl7u7OnxPzUipnZ2fB+bLMPxqNBuPGjcPKlSsFQadIJIKPjw98fHwE7ZFzc3Px5ZdfYsqUKVbjXJbHnTt3+L9r1aol+K5LEhYWJpi+d+9ehaQBgKDjoJIEBwcLzuf9+/et1snIyBDUUGjatCkSEhKwatUqjBw5Eu3bt0ezZs3QpUsXjBo1Ct9++22ZazQ8qjt37uCLL76wuaxHjx6C7z07Oxvjxo3Dzz//LAg6pVIpAgIC4OnpKXgR8eDBA7z55puC9u3ltWfPHrz55ptWQae7uzuCgoLg4+Nj9RIkOTkZEydOxPXr16325+Hhgc8++0wwb9GiRcjMzLR5/E8++UQQXMyYMcPuC5J9+/ZhzJgxVkGnh4cHAgMD4eTkxM/T6/XYvHkzRo0ahYyMDJv7M1m+fDnmz58vCDpN1xTzGghXrlzBG2+8UebrlCMyMzPx8ssvY8OGDYKgUCwWw8/Pz6omRFpaGubOnYt58+ZZvQC1Z8OGDVi8eDG/f4lEAn9/f6uS0zNnzmDEiBGIj4+32kdQUBBCQ0OtOu7z8/Pjr4O2OvVzxIkTJzBx4kQ+X4hEIvj5+cHV1VWwXnR0NKZPn468vDyMGzeODzpN353l/Tg3NxfTp0/Hw4cPHyl9j0Kn0+Htt98WBJ1KpRIBAQGC+yLLsvjss89w/Phx7Nu3D1OnTuXvp6b1LWtM/PPPP3avOeTpQyWehFSSsWPHYubMmfz0v//+ix49eqBXr17o06cPOnfu7NC4fvaoVCqMHz9e8JDUpEkTTJ8+HZ07d+bfMsbFxWHz5s38AwTHcVixYgV8fHwwYsSIR05HRWjZsiX+/vtvAMJqvP7+/vz88lq8eLGgTZ6LiwsmT54saDuYn5+Pf/75BytXruSrYF2+fBkzZszAL7/8Umq1zk8++QQ6nQ4eHh6YOnUqBg4cyH/HKSkp+OWXX/DLL7/w62/dutVm1aWyGjNmDF+VzLza2PPPP2+3l0bTMD/nz5/n5/n4+GDq1Kno378/3N3dARhL0A8cOIBvvvmGf6A9evQo/ve//+Hzzz8vV3pNkpOT+b8DAgLKvJ1lScejPKiZp4FhmDKXoojFYvj4+CApKQkAbFbvswx8tm3bhr///tuq+r2pJOzSpUtYu3YtJk6ciClTppSpE7LyWrZsmVWpkol5lVyO4zBz5kzBcDdt27bFW2+9hXbt2vHXlfT0dOzfvx/fffcdsrKyoNfrsWDBAgQFBeG5554rVxoTExPxySefQK/XAzA+0M6YMQMDBw4UdP6Ul5eHEydOYOXKlfwQVDqdDl999RXWrVtntd/nnnsOo0aNwqZNmwAYr52LFy+2eijevXs3Dh06xE936NABb775ps20Xrx4EXPmzBGkdeLEiRg2bBgCAwMBGGsXXL58GT/88AOOHz8OwFgiPmPGDKxfv97mdWX//v2CYX6USiWmTJmCESNG8MFeTEwMfvrpJ2zfvh0JCQn2T2g5FRYWYuLEibh9+zY/LzQ0FDNmzEDPnj35nqZNVXDXrl3Lv8jaunUrvLy88H//938lHkOtVvOl7x4eHnj33XcxePBgKJVKsCyL8+fPY9myZXxQn5KSgqlTp+KPP/4QlKCZqp9aNr344osvKqyn80WLFsFgMMDf3x8zZszAgAEDIJfLwXEcLly4gA8++IC/rkRGRmLYsGGIi4uDXC7HO++8gxEjRvD3g6ioKHzyySd87Y+8vDysX79e0IlaVTp06BB/fRo8eDAmTZqEBg0aADC+gFq1ahU2btzIr//JJ58gPT0dHMehdevWeO+99/Dss89CJBKhoKAAGzduxIoVK/jfxebNmzF58mR4e3tX/YcjNQqVeBJSSfr372/14KXT6XD48GHMnDkTHTt2xMCBAzFv3jzs3r3b5lvcslixYoVg24EDB2Lbtm3o0aOH4MYcGhqK2bNn4+eff+YfGABjFbTqfNNaFa5cuSK4aQYGBmLbtm2YNGmSoMMaZ2dnDBkyBLt370br1q35+RcuXLD5IGtJp9OhVq1a2L17N0aPHi14seDv7485c+YIHsQ4jsP+/fsf8dM55uDBgzh27Bg/HR4ejt27d2PkyJF80AkYHwJfe+017Nq1S1AauHfvXhw8ePCR0mBe0uPIyxfL0hVb1aXLkwZXV9dSaxXYS0d2drbVcvP2nQBw+PBh/qFOKpUiMDDQqpS3sLAQq1evxjvvvGM3MKwIprZio0ePxl9//YUrV65gz549GD9+vKBzpU2bNuHkyZP89Pjx47FhwwZ06dJFcF3x8fHB2LFjsWPHDtSuXRuAsVTkww8/tKqaW1Zr167lx21lGAZr1qzB2LFjrXocdnFxQf/+/bFt2zZBada5c+eQm5trc98ffPCBoOR83759fDAIGIPehQsX8tOenp5Yvny5zZcBWq0WM2fO5B+u/fz8sHPnTkyZMoUPOgHjy4o2bdrghx9+wIwZM/j5//33n+C6ZKLRaAQvjpRKJX799VdMnDhRkPfq1KmDRYsWVdpwW7/99pugWnyHDh2wa9cuDBw4UHAP8ff3x1tvvYWtW7cKrqfff/89rly5UuIxDAYDDAYDAgIC8Mcff+DVV1/l9y0SidCxY0ds3boVXbp04bcxVU+tagaDASEhIdi2bRteeuklvqo0wzBo3769VXXnuLg4SKVSrFu3DpMmTRJc65o2bYpffvlFEIj9+++/VfI5bDFdn9577z18/vnnfNAJGGsZ/O9//0OHDh34eUlJSdDpdOjVqxd+++03tGnThv+NKBQKTJw4UZDXtVpthfRETh5/FHgSUklEIhFWr16N/v3721zOcRzu3LmDrVu3Yvbs2ejduzd69OiBjz76CEePHi3Tw2dCQoKgakzjxo2xZMmSEh+i27dvj08++YSf1mq1+PHHHx34ZI+flStX8n+LxWKsWLGixKqVbm5u+OabbwQPur/88gv/MFyS+fPnCx46LU2YMEFQNSsyMrLUfVYUjuOwatUqflqpVOLbb78VPCxaCggIwDfffCNoj/btt98K2kc6yrx6r/kDbGks17Vs91YVabBc31YaLANPwNhz7x9//IFr167h33//RUREBA4dOoSxY8cKfq9Hjx4VBD6V4a233sLHH3+M2rVrQ6FQoFGjRpg9ezb/Hev1evz000/8+u3atcPs2bNLbN8bHBwsePBOT0/n2+M6gmVZQe2G7t27l9rbsLu7O4YOHcpPGwwGmyXRgPGh+PPPPxeUMs6fPx9qtRosy+KDDz5AXl4ev+yzzz6zWxq+a9cuQcn5F198YVUd3NKUKVPQo0cPfvrnn3+GVqsVrHPgwAFBs4xZs2aV2A765ZdfxrBhw0o8rqPy8/MFecDf3x+rVq0qsZlDeHg4vvrqKz6fcByHb7/9ttRjiUQifPXVV3Y7XXJycsIXX3whCNLWr1//SNeg8pozZ47dWhpt2rRBSEiIYN7o0aMFLzHNubq64oUXXuCnY2Njy/2ypiI0bdoUkyZNsrvcMo/J5fISO3gbPny4YNqyeQN5OlHgSUglksvl+Prrr/Htt9+WqYORhw8fYvv27Xj77bfRvXt3rF+/vsQA9OjRo/zbdgCYOnVqmRrwDx06VDBOqK0OiZ4U2dnZOHfuHD/dvXt3qw5ibPHy8sLYsWP5aZVKhVOnTpW4TUBAALp27VriOjKZTNAhjr02ZpXh1q1bfJVEwPhgYPmgZEvdunUFDx137tyx2YlKWZnnaUd6pRWLxYLgxzzvV1UaLNe3lQbzjoWkUim+/fZbLFu2DC1atBCkv27duvjwww+xfv16QTC7detWQRXXiqRUKkt8uASMbenMa0HY6mnalubNmws6aTp8+LDD6TMYDPjqq6+waNEivPXWW1bDStljGbTY6jDLPJ1vv/02P52YmIjVq1dj3bp1gvP++uuvl9gBm/lLv4YNG5a5Sufrr7/O/52ammpVKmh+3tzc3MrUFOKtt94q07HL6ty5c4LS/PHjxwtqRNjTrl07wTXwxIkTpV7junfvbjc4M/H09MTIkSP56cTEREFpbFXw8/MrtQfu8PBwwbT5CxFbTLUETGzVoKgqr7zySokvlyx7Yn/uuees+i8w5+XlJWjPWp2fjdQcFHgSUgV69eqFnTt3Yu/evZg2bRqeeeaZUh9209PTsWTJErz88st8ezJL5mN7KpVKdO/evcxpMu/NMTs7+5ECiZrs/PnzgqDaXi+WtgwaNMhqXyWxDCzsMS9hrIjOesrq7NmzgmlHzsXAgQMF06Wdi5KYl1RUVzf7lZmGzz//HMuWLcO0adPw9ddflzpUS5s2bQS1EACUqaSoPFq0aFFqZ06WQa8jvfI+++yz/N+RkZFWpXmlkUql6NixI0aMGIF3330Xbdu2LXUbjuOsqtaWNpzV22+/jZYtW/LTGzZsENSMCA8PxwcffGB3e7VaXe6ei5999llBnjNVfwaMn+XSpUv8dMeOHcv0MrFOnToVMkSTSUVdKziOw3///Vfi+pbXWXssgz7z81YVmjdvXuo65rVZZDKZoMqqLZa/RUd/LxWptN7FLUu7yzJMlPnnq87PRmoO6lyIkCrUsGFDNGzYEFOnTkV+fj4iIiJw8eJFXLx4EZGRkTZLN2/cuIHXXnsN27dvt3q7+ODBA/7vRo0aOVRyY3kTvX//fo0b9qEimJ8jAGjWrFmZtw0ICICvry9f7c1WD6aW65eF+YNkVZY0m58LsVjs0PiSzZo1g0gk4tNb2rkoiVQq5auUOVJqaTAYBAGjeW+h5UmDiaMlp+br20pD69atSy3BsTR48GB8++23fI/IFy5cQF5eHv+wZz6WX2lsjdlnUpaHZ8uqwqNHjy5zh0c5OTn83xqNBqmpqXbHkC2PzMxMJCQkID4+Hvfu3cPNmzcRGRmJ9PR0wXql/a7EYjGWL1+OYcOGQa1WC669ppoqJeWvO3fuCPLB33//Xe5SavOOgZKTkwVVfS1L0ErSuHHjEr97R5hfK/z9/Uusjm/J1r2lJOYvAEpSv359wTBlj9KrdXnUqlWr1HXMXyi4u7uX+rupzI7EHFVSExHA+gVdWdrn16TPR2oGCjwJqSbOzs7o2rUrXy2psLAQ58+fx59//ol9+/YJ3g4mJibis88+s+p90bxzFUceDGyt/ygdtdRkltW8HD1PPj4+fOBZ2jkq67Ag1cX8XLi5uTk0rppcLoeLiwsfWDxKfnFxceEDz7K0mzWxbE9Z2kD1paXBxJE0WKbjUdJgTiQS4bnnnuN759TpdIiOjkabNm0qZP8mlh302GI5LMej9JialZVV7sCTZVmcPXsWf//9N65fv44HDx4IgrJHVadOHcyePduqtPmDDz4QNEWwxfIc5ebm2u3QqDTmvyXLIbdKqspo6VGHCzFnfq2ozHsLwzClBjwmUqkUbm5ufMdgpQ1HU9Ecvb4/buNWOjpM2eP2+UjNQK8iCKkh5HI5unXrhs8++wxHjhwRdEABGHsjtRy02vwhzNGbouUDs6MP348L83PEMIzDHcmYn6fSzpH5eGc1kfm5cPQ8AI6di5KYdxLiSABr2UaoLEFUWdKQk5NTatVMe+moyOEBLNvbVsaDteWYg7ZUZHBXUlvLkkRERGDIkCEYP348Nm/ejGvXrtlMl1QqRdu2bfH888+X6zi2Og4qS6Bd3iDTFvMXGZbVER15sVGe8Y3teZRrhSP3FoVC4VCpmHknZ1VdddPRtuCPmyf985GagXIZIZWgoKAAKpUKGRkZ8Pf3L/MYgSZ+fn749ttv8cYbb/DV6wwGAy5cuCBoD6NUKvkSKEd7+KzI0iNHOPKAXxHMH5o4joNarXboQaoySreqi/nnLk9AUFHnIigoiB8bMDU1tczbWb54cfR3ZZkGE5ZlkZ6eXqb9GQwGQbVOR8YhLY35Q7XpWBWtLO1ZzdPh4+NT5cMgHD9+3OawMv7+/mjQoAHCwsJQt25dNG7cGI0bN4ZcLseePXvw119/OXQclUqFjz/+2Gr++vXr0bNnzxLbl1rm/08//VTQ+U15WZYiOfI7rchheB7lWuHIvcXRNJvvuzwvz54WVX2fJaSsKPAkpILdv38f/fr146fHjx+P2bNnO7wfkUiECRMmCNp1WT54e3h48IGnZRWt0lju61FLbsraVrG8JSDlZTn2Y1pamlVPgiUxD4wcqfZWE5mfi5ycHGg0mjK3k8zLyxM89D3KuahXrx4/lmhCQgK0Wm2Zqm1ZthVzpP2brTRY7rssgWd8fLzgYdle5yF5eXlQqVQICgoqc0m4ZbVw8zZUpiq4VcFynFKWZausrVZmZiY++OAD/hyLRCKMGzcOo0aNKrHKbnmGoZg3b57gJYJSqeSHVZk9ezb27t1rtxTR8rpSUb1TW+ZBR0q9K7K5hPnne9R7S0nXCp1OJ2jLXBKNRiMoaa7Ilz6Pi5p6nyWkrKiqLSEVzM/PT1CqYN5DoaMsH7QsgwTzh96bN2861EmKZVf09sZQK4n5w2hZH/zMx72rCpbBydWrV8u8bXx8vOCB0pGAtSYyzy8Gg0HQK2dprl+/LujY51HOhXlnInq9vszpMB92wsXFBXXq1Cl3Gix7IC5rvrAc+sKyI5VvvvkGLVq0QOvWrdGnTx+Hz7EJwzAV2kupI8yDcp1Ox5dOl0V2dvYj9dS8e/duQQA1ffp0fPDBB6W2E7W8rpQ2xuPOnTsF44UOHz4c8+bN46cTExOxaNEiu9vXrVtXMO3I98xxHNLS0mym0d/fXzBsiSP7jY6OLvO6pTG/VqSkpFgFkyWxvLeUdq0oa7qjo6MFJXnV9fuoao/DfZaQsqLAk5AK5uLiIhinMTIy0uphtazMx1wErEtXzKuCFRQU4OjRo2XaL8dxOHDgAD/t4uKCRo0aOZw+8ypUZW0nV9YH/Ioa4qJ169aCfZl/7tJYrutoT6U1jWXVwYMHD5Z5W8tz8Sid3nTs2FHQnujIkSOlbqPX63HixAl+ulOnTo/UJsnT01PQw3FZ0gBA8Buz3Adg7PnS/OHQPM0lycrKElRpbdSoUbWVsFvmE0fG45w0aRJatmyJjh074uWXX3Y4CI2MjBRMv/rqq2XaznLIjpICz8TERCxevJif9vf3x5w5czBs2DB06dKFn79r1y5BcGrO29tbEKCfOXOmzO0+T506hS5duqBFixZ4/vnnsXnzZsHyDh068H+fO3dO0FOwPZmZmVbn7lFU1LWCYZhSr5um2g+l+fPPPwXTnTp1slqnuoZnqkzm99mylqxX9RinhJQVBZ6EVIKXXnpJML1gwQKHO2PhOA7r1q3jp319fa0e9l944QXBsBBr1qwpU4cLu3fvFgS1vXv3LtdDvHnvhXq9vtQHn6ioKERERJRp3+YPEKWVXpTE09NT8DB5/PhxXL58udTtVCoVfvvtN37a2dkZzz33XLnTUdnM34rbO19NmjQRPCzv2LEDcXFxpe773r172Lt3Lz8dHBzs0LA0llxdXdGtWzd++o8//ii1muCuXbsEVf5KG5i9LMzHG4yMjCx1uJJ79+4JAtQhQ4ZYVUHt1q2b4Le0ZcuWMnXWs3LlSkH1uFGjRpW6TWXp1q2boNRt06ZNZSrxOnbsGP+STaVSwcXFxardamksg7eyVFM+cuSI1Xdnr+2gqRqt+XeycOFCvtOlBQsWCNoO/u9//7MaqsVk8ODB/N9qtRrff/99qWllWRarVq0CYOwcJzY21qrkbtiwYfzfhYWF+Pnnn0vd7/r16yu0s52uXbsKqtuuW7euTFV5z58/Lxhfuk2bNqV2ArZjxw6rXoItpaWlYfv27fz0s88+a9UZF2A9fMej3DtqCvP77MOHD0stzfznn3/w8OHDyk4WIeVCgSchleDll18WVMWKiorCa6+9hrt375Zpe41Ggzlz5giq6b799ttWwWFgYKCgs6Ho6GjMnTu3xCq3//33HxYuXMhPS6VSvPnmm2VKlyXzweIB4LvvvrPbBiU1NRVz5swpcxsV87e8j9rL5uTJk/m/WZbFu+++azW+p7m8vDxMmzZN0L7q9ddfr9BeIytaWc4XwzCYNGkSP61WqzF16lS7D9aAsZrdtGnTBCVXkyZNeuQ2fxMmTOD/zsrKwowZM+w+OF+9ehWfffYZPx0eHm7V63N5DB8+XPBwPXPmTCQmJtpcNysrC9OmTeN/W05OThgzZozVet7e3hgwYAA/nZaWVupv8tdff8WmTZv46fr161dIYF1ezs7OGD16ND+dnZ2NKVOmlBgcxMTE4KOPPhLMM89rZWXe6RNgDEpKcvbsWcydO9dqvr28tG7dOkHp6JAhQwQvQYKCgjBr1ix+OjMz02YHRIDx5YB5L8E///xzqeldtmyZoNZH27Ztra6j3bp1E4yx++OPP5bYcdKxY8fw008/lXhcRykUCkEeSE1NxYwZM0rsxO7u3buYOXOmINh76623Sj1WZmYmZs2aZbd0PD8/H++++66gN+m3337b5rqWLzoqsofm6mKeP1iWxbfffmt33Xv37mHBggVVkSxCyoUCT0IqgUwmw+rVq+Hm5sbPi4qKwuDBgzF9+nTs3bvXqtMIjuMQHR2Nn376CX369MHu3bv5Zd27d7dbAjJnzhxB+6d9+/bh5Zdfxr///it4+IqPj8fnn3+OcePGCR4epk2bZreDlNI8++yzgkG1T5w4galTpwoG9s7NzcXvv/+OF198Ebdv3y7zsC/m1QxzcnIcqiJrqW3btoIgISkpCSNGjMCPP/4oKEVTq9XYt28fhg4dKhgMvnHjxpgyZUq5j18VzM/X+fPn7Q6uPmTIEPTu3ZufvnXrFoYOHYotW7YIHuyys7OxadMmDBs2TLCvrl274uWXX37k9LZu3VpQYnTu3Dm8/PLLOHfuHP/gmpeXh/Xr12PMmDF8aaBYLMa8efNKDHx79uyJhg0b8v/sDY/h4uIiCDJSU1MxfPhw7N69m//tGAwG/PPPP3jxxRcF5+Htt9+2CpJMPvjgA0HHQH/++SdGjRqFs2fPCqqjX79+HdOnTxcE1QqFAsuXL6/2MfImT54saL96/fp1DBs2DH/88YegVDInJwe///47XnnlFcE1bdiwYYIqo2XVt29fwfQXX3yBr776SvByRK/X49KlS/jwww8xfvx4myVxtgKO6OhorFy5kp/29fW1GbSOGjVKULvk2LFj2Lp1q9V6bm5ugu+O4zjMnTsXM2fOxI0bNwTzr169irfeegvr16/n5ysUCqsxRAFjqd3ChQv52iwGgwH/93//h88++0xQkpWSkoIvvvgCU6dOdah9f1lNmjQJLVq04KfPnTuHYcOGYf/+/YLS+bS0NPzwww94+eWXBdfTV155RVDbpCSnT5/GK6+8glOnTvG/Eb1ej6NHj2LEiBGClwUDBw60W/vEspO87du3V2hvv9WhR48eglL4rVu34uOPPxbkhYyMDP47SElJqfFjSpOnF/VqS0glqV+/PjZu3Ih33nkH8fHxAIwPEH/++SffVkUqlcLb2xs6nQ7Z2dk2Hx769OmDL774wm7bFXd3d6xduxaTJk3iS2uioqIwefJkfv+FhYU2H84mTJggKA10lEQiwZw5czBjxgw+WDhy5AiOHDnCV7Mzf2CUSqVYs2YNxo4dW+q+mzZtKph+7733sHTpUgDAuHHjMH78eIfSOnv2bKhUKuzfvx+AMSD+4osv8OWXX8LT0xNSqRQZGRlW30GjRo3www8/OFxlsKo1adIE586dA2D8bIMGDUJAQAAKCgqwdu1a/gGSYRgsW7YM77zzDr9+WloaPvnkE8yfP59/cMvIyLAqne7YsSNWrFhRYe2oPv30UyQmJvIl+zdv3sQbb7wBpVIJV1dXpKenW7Ub/vDDD0sc5sJRI0aMwJ07d/Drr78CMFYRnT17Nj7++GN4e3sjMzPTqkOPF154ocSSHB8fH/z8888YO3Ys3z4vMjISY8eOhUKhgKenJ7Kysqx6nlQqlVi7dq1V3q8OMpkMa9aswaRJk/jOX5KTk/Hxxx/jk08+gZeXF0QiEdLS0qzySadOnfDpp5+W67idO3dG79698c8//wAwBh9r167F2rVr4erqCrlcbjNvNm3aFDdu3OCvQ5bVEbVaLT744APBy7hPPvnEqndawPgbWbRoEYYMGcJ/90uXLkXHjh2tOmF7/vnn8dFHH2Hp0qV8Xt2/fz/2798PpVLJf9eWJYVOTk746quv7L70a9asGT7//HPMmjULer0eBoMBv/76K3799Vd4e3uDYRhkZGTwn9fb2xtdunTBnj17Sjy/jpDJZPjmm28EeSA2NhYzZ86ERCLh712ZmZlWVVoHDhwo6KypJOHh4bh9+zaio6MxYcIEKBQKeHh4QKVSWf32OnToUGKnTwEBAfD29uZfghw7dgzt27eHh4cHPD09Sy2Rrok8PDwwffp0/v4HGJsn/PHHH3z+Nb+/u7m5YdmyZXZLhQmpTlTiSUglatiwIfbu3YspU6YISj9NdDodkpOTbQY8QUFBWLZsGb755ptSg5769etj+/bt6NevnyAoMO3fMugMCgrCmjVr8MEHH5T/wxXp27cvli5davX58vLyBEFnUFAQ1q1bh44dO5Zpv926dbN6W56amorU1FRB759lJZFI8OWXX+Kjjz4SPGxyHAeVSoWUlBTBdyCTyfjB6/38/Bw+XlV78803Bek0GAxITEyESqUSlL4AxpK+n3/+GW+//bagii7LskhLS7MKJpydnTFz5kz89NNPFVrd2NnZGT/99BOGDRsmyLdqtRopKSmCoNPNzQ2ff/65oPpfRZk7dy4++OADwbkw/XbMH3zFYjHGjx+Pr776qtTgu2nTpti1axfatWsnmF9QUICHDx9aBZ1t27bFtm3brNavTv7+/ti8eTNGjhwpaEtuMBiQlpaGlJQUQT6RSqWYPHky1q5d+0gvar744gurkk/A+ELFMm/KZDK89dZb2LJli6D3VMs2nytWrMCtW7f46f79+6NPnz520xAWFoZp06bx02q1Gh988IHNDtTGjBmDH3/80aqnW7VajcTERKugs2HDhti4cSN69uxp9/gA0K9fP/z6669WwW5GRgbS09P5YC8kJAQ//vgjAgMDS9xfedjLA3q9HikpKVCpVIKg08vLC4sWLcKXX35Z5n4D5s6di9GjR/O/qYKCAiQlJQl+e6a89dNPP5U4LijDMJg9e7bg95mfn4/ExETcuHHD4b4Waopx48bh/ffft+rZPisrS3B/b9SoETZu3PhIQ00RUpmoxJOQSqZUKjFjxgy89dZbOHnyJC5cuICbN28iMTGRL00RiURwc3NDSEgImjdvju7du6Njx45lHv8PMN7wV6xYgdu3b+PAgQM4f/48EhISkJWVBbFYjICAADRr1gx9+vQpd2dC9gwdOhTPPfccduzYgWPHjiEmJgY5OTnw9vZGWFgY+vXrh4EDBzpU/YdhGHz33XdYv349Dh48iISEBBQUFMDFxeWROowYM2YMXnzxRezbtw+nTp1CdHQ0VCoVdDod3N3d0aBBA3Tp0gVDhgwRdOpQ03l7e2Pnzp1Yu3YtTpw4gdTUVOj1enh6etp82JJIJPi///s/jB49Gnv37sXp06dx7949qFQqGAwGeHt7o1GjRnjuuecwaNAgmy9OKoJSqcTSpUvx+uuvY+/evTh79ixSU1ORl5cHV1dXNGjQAF27dsXw4cMrtZfXCRMmYODAgdi5cyeOHz+O+Ph4ZGVlQS6XIzQ0FO3bt8eIESOsxv8sSXBwMDZs2ICIiAgcOHAAly5dQlJSEvLy8uDm5sZ3GNanT58yv5CpakqlEp9++ikmTpyI/fv34+zZs4iJiUFmZiZYloW7uzvq16+PDh06YNiwYWUaC7U0CoUCq1atwvnz57Fr1y5cuXIFKSkp0Gg0UCqV8Pb2Rv369dGqVSsMHjyYf+HSu3dvvq3j2bNnERcXh9DQUFy8eBG//PILv39PT0/873//KzUd48ePx+HDh/kXXZcvX8YPP/xgsySpc+fOOHDgAI4ePYp///0XV65cQVpaGvLy8qBQKODv748WLVqgb9++6Nq1a5mv7W3atMHBgwdx4MABHDp0CFFRUcjKyoKrqytq166NF154AcOHD4eLi0uJ7UAfhSkPvPnmm9i3bx/OnDmD2NhYvodVX19fNG3aFD169ED//v0dfukgEonw8ccfY/Dgwdi8eTMuXLiA1NRUyGQyhIWFoWvXrhgxYoSgWUdJTNfuX3/9FVFRUcjMzIRMJoO/vz+Sk5MRFhbm8DmoCd58803069cPO3bswPHjx5GQkAC1Wg1fX180aNAAAwYMwAsvvACZTGa3eQEh1Y3hnoQuvwghhBBCSI13/vx5QZv73377De3bt6/GFBFCqgpVtSWEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqloHE9CCCGEEEIIIZWKSjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYSQSmAwGKo7CZXiSf1chBBCKhcFnoSQx0Z+fj569+6NXr16QavVCpbdv38fM2bMQOfOndGsWTN06dIFCxYseORjjh49Gg0bNsTo0aMfeV/k6cCyLDZu3IglS5ZUy/F79uyJhg0bYs6cORW+7wMHDuD999+v8P0+jXbu3ImGDRuiYcOGSEhIECwzzV+9enU1pc4x58+ft/tZqtucOXPKfQ1PSEjgP9f58+cfOS1arRZ9+vRBz549kZeX98j7I+RxQ4EnIeSx8dlnnyE+Ph7vv/8+ZDIZPz8jIwMjR47E4cOHkZ6eDp1Oh7S0NMjl8mpMLXlavf/++1i4cOET92D59ddf47333kNaWlp1J4WQx5JMJsMHH3yAxMRELF68uLqTQ0iVk1R3AgghpCwuXryI7du3o1WrVnjhhRcEy44ePYqsrCwAwEcffYT+/fuDYRhBcFpefn5+CA0NhZ+f3yPvizwdUlNTq/X4QUFBEIvF8Pb2rtD9pqSkVOj+iH2hoaEAAHd392pOCaloffr0wbPPPoudO3di2LBhaNeuXXUniZAqQ4EnIaTG4zgOCxcuBADMmDHDarmpBMbDwwNjxoyp0GN/+eWXFbo/Qirbhg0bqjsJ5BH9/fff1Z0EUommT5+OsWPHYuHChdizZw9EIqqASJ4OlNMJITXe4cOHER0djfDwcHTs2NFquamzE2dn56pOGiGEEOKQjh07okGDBrh9+zYOHTpU3ckhpMpQiSchpMb76aefAAAvvfSSYP6cOXOwa9cufjoxMRENGzYEALRr105Q8pOXl4ft27fjxIkTuH37NrKysiCVSuHj44Nnn30Wr732Glq0aGF17NGjR+PChQtW+zMde9CgQZgxYwY++eQTXLp0CTKZDPXr18eqVatw//59vgT21q1buHfvHn766SecPXsW6enpcHd3R5s2bTB+/Hi0bNnS7ufPzMzEr7/+imPHjiE+Ph4GgwGBgYHo2rUrxo8fj8DAQJvbFRQUYPPmzfjrr79w584daDQaeHh4oEmTJujfvz8GDRoEsVhstV1WVhY2bNiAY8eO4cGDB9Dr9fDy8kKLFi0wZMgQ9O7d225aS5OYmIht27bh2LFjSExMhMFgQEhICHr06IHx48fDw8PD5nYXL17E5s2bERERgbS0NCiVSoSFhaF379547bXXoFQqrbYxfUfDhg3D0qVLceDAAWzduhW3bt1CQUEBgoKC0KdPH0yYMMFmlUaO43Do0CHs3r0b169fR3Z2NlxcXBAWFoYePXpg1KhRcHV1tTqeya5du/jpW7duASjOT2+99Raef/55LFiwADdu3IBSqUSzZs3w3Xff8VXEVSoVtmzZgtOnT+PBgwfIycmBk5MT/Pz80K5dO4wZMwb16tWzSnfPnj2RmJjIf+5HPR+rV6/GN998w09fuHCB/50dOXIEwcHBguMGBQXh6NGjNr/H0ly+fBm///47Ll68iIyMDCgUCoSHh2PAgAEYPnw4pFKp3W1v3LiBX375BZcuXUJ6ejr8/f3Rr18/vPXWWzh8+DA+/PBDq7Tt3LkTH374odVnMZeQkIBevXoBAJYsWYIXX3zRZrp37tyJS5cuITU1FYWFhXBxcUG9evXQq1cvvPrqqzbzqD2m8zt16lRMmzYNgHX+Ko2tz/Pw4UOsX78eJ0+eRFJSEhiG4X9/Y8eOhaenp939qVQq/Pbbbzhy5AgSEhIgl8vRtm1bTJkypcxpssdgMODAgQPYu3cvoqKikJubC3d3dzRt2hSDBw/GgAEDwDCM3e0vX76M9evX49q1a0hPT0dgYCD69euHSZMmlXrsvLw8bN26Ffv370dsbCwkEglatGiBiRMnIigoqMRtIyMj+fyampoKJycnBAYGokOHDhgzZgxfZdqW4cOHY8mSJfjpp58wYMCAUtNJyJOAAk9CSI12/fp1XL9+HQDQt2/fcu3j2rVreOutt5Ceni6Yr9PpEBcXh7i4OOzZsweLFi3C8OHDHdp3dnY23njjDSQmJgIACgsLkZmZCV9fX9y/f59f7+jRo3j33XdRWFjIz0tPT8fhw4fx559/YtmyZRgyZIjV/s+dO4fp06cjOztbMP/Bgwd48OABtm3bhuXLl1udm6ysLIwePRq3b98WzE9LS8Px48dx/Phx7NixAz/88AMUCgW/PD4+HqNHj0ZSUpJgu+TkZCQnJ+Ovv/5C//798eWXXzpcPezQoUOYO3cu1Gq1YP7t27dx+/Zt7Ny5E+vWrUN4eDi/jGVZfPrpp9i6datgm+zsbFy5cgVXrlzBpk2b8N1336FRo0Y2j8txHD744APs2bNHMP/+/ftYu3Yt9u/fj82bN8Pf31+w/P3338e+ffsE87KysnD58mU+QPrtt99Qp04dh84DYDzPb7zxBnJzcwGA76XZFHQeP34c//d//2d1rnQ6HfLy8nD//n3s3LkTa9aswXPPPefQsct7PioTy7JYvnw5fvnlF8F8rVaL//77D//99x+2bduG77//3ma6Nm3ahEWLFgmGeomLi8PatWtx9OhRh3/XZWUwGPDpp59i27ZtVssyMzNx8eJFXLx4Ebt27cLmzZvh4uJSKemwJBKJrNq4HzhwAB9++CE0Go1g/q1bt3Dr1i1s2bIFa9asQZs2baz2d/36dUyaNAkZGRn8PLVajT///BNHjx7FqFGjyp3WjIwMTJ06FREREYL56enp/LVq27ZtWLVqlc0XU99++y1WrlwpmBcTE4PvvvsOf//9N0JCQuweOz4+Hm+++SZiYmIE80+ePIlTp05h3LhxdrfdunUrPvnkE3Acx8/T6XS4c+cO7ty5gy1btmDFihV2X9T17dsXS5YswY0bN3D16lWbLz4JedJQVVtCSI128OBBAED9+vWtSvYWLFiAiIgITJ48GQBQq1YtREREICIiAj/++CMA49vst99+G+np6fDx8cHixYvx119/4dy5c9izZw+mTZsGhUIBjuOwePFiqwf90pw4cQKpqalYsGABTp8+jW3btvElKObee+89eHh4YNmyZThx4gROnDiBefPm8ce21Qvq7du3MXnyZGRnZyM4OBjLly/HiRMncPbsWfzwww9o1qwZCgsL8d577+HSpUuCbb/66ivcvn0bSqUS8+bNw99//41z585h165dGDx4MABjydWvv/4q2O7TTz9FUlISfHx8sHz5cvzzzz84e/YstmzZgi5duvDfyYEDBxw6TxEREXj33XehVqsREhKCL7/8EidPnsTRo0fx8ccfw9nZGWlpaXjnnXcEQ+V89tlnfNDZsWNH/Prrrzh79iz+/vtvzJw5E0qlEg8fPsTYsWORnJxs89h//vkn9uzZg+7du2PTpk38d28qZUhMTMSKFSsE2+zfv58POt944w3s3bsX586dw59//ol3330XEokEKSkpgiF7TPmxdevWAIBBgwbx+dHSgQMHwHEcVq5ciTNnzmD9+vV8ydHDhw8xY8YMqNVq1KlTB19//TX/PezYsQOjR4+GRCKBVqst15BBjp6PyZMnIyIiAoMGDQIAtG7dmv9c5iVCISEhCAsLK/FB355Vq1bxQefzzz+PTZs24fz58/jnn38wZ84cuLi44MaNG5g8ebJV4HT69GnMnz8fBoMB4eHhfK2C3bt3Y+DAgbhz5w5WrVrlcJrKYv369XzQOWDAAGzduhWnT5/G0aNH8cMPP6BVq1YAjL/l9evXP9KxTPnL3j/z686MGTMEHaKdPn0as2bNgkajQaNGjbBmzRqcOXMGJ0+exNdff406deogKysLkyZNsgrCMjMzMWHCBGRkZMDDwwMLFy7EiRMncPz4ccybNw9yudzqOlJWWq0WkyZNQkREBBiGwahRo7B7926cP38eu3fvxiuvvALAOFzLlClToNfrBdvv3LmTDzrbtGmDjRs34ty5c9i9ezeGDRuGu3fv4tixY3aPbQo65XI53n//fRw9ehSnT5/G8uXL4evri3Xr1tncNjExEQsXLgTHcejatSt+//13nD59GseOHcPnn38OX19f6HQ6fPTRR3Z7tw4MDESDBg0AgKrbkqcHRwghNdjAgQO58PBwbu7cuXbXWbVqFRceHs716NHDatnGjRu58PBwLjw8nLt48aLN7devX8+vc/LkScGy119/nQsPD+def/11wfzZs2fz23z11Vc293vu3Dl+nTZt2nAPHz60Wuf333/n1zl8+LBg2ahRo7jw8HCuZ8+enEqlstq2sLCQGz58OBceHs4NGjRIsKx9+/ZceHg4t2bNGqvtWJblRo8ezYWHh3MDBw7k5+fm5nINGzbkwsPDud27d1ttp9FouL59+3Lh4eHc5MmTbX5mewYNGsSFh4dz3bt35zIyMqyW//XXX/x52LVrF8dxHBcdHc2nZ8aMGZzBYLDaLiIigmvatCkXHh7OTZ8+XbDM/DuaNm2azXSZzt+zzz7LsSzLz582bRoXHh7OvfHGGza3W716NRceHs41bNjQ6rsx5ZnZs2dbbWdaFh4ezm3bts3mvpctW8aFh4dzTZs25eLi4myus3jxYn4/9+/fFyzr0aOHzeM/yvkw397yt/CoHjx4wDVq1IgLDw/nFi5caHOdyMhIrnHjxlx4eDi3bt06wbJ+/fpx4eHh3PPPP8/l5ORYbTtv3jz+c1teI3bs2MEvi4+Pt3ns+Ph4fp0dO3bw8w0GA9epUycuPDycGzdunNX54jiOU6vVXNeuXbnw8HDulVdeKfOxTfNXrVplM02W/vvvP7u/A71ez+eJ4cOHc4WFhVbbZ2Zm8utY/rYXLlzI58cbN25YbRsZGckfu6TzaMuGDRv47TZu3GhznXXr1tlcp6CggD//I0eO5DQajdW25r8Ty3z7yy+/8Mv+/fdfq23j4+O5Nm3a8OucO3eOX2a6rzzzzDM2j3v+/Hl+uz///NPu5587dy4XHh7ODRgwwO46hDxJqMSTEFJj5eXl4e7duwAgqH7piMDAQLz22msYOXIkXxJlqX379vzfKpXK4WP069ev1HWGDBlisy1mjx49+L/NB16/c+cOLl68CACYMmWKzbZXTk5OePfddwEYq8tFRkbyy0ylhpbViwGAYRj873//w6+//orvv/+en6/X6/lqY7a2k8lkWL58OX7//XeHStru3LnDt3GcPn06vLy8rNbp06cP2rZtK/gu/vjjD3AcB5lMhnnz5tms2tuqVSu+mt9ff/0lqApo7q233rI5v3v37gCMeS0zM5Ofbzp/WVlZVqUsADBq1Cj88MMPOHDggKCdZ1kxDGO36nh4eDheeeUVTJw40W7pofkQDOXJs46ej8q0detWsCwLhULB52dLLVq0QP/+/QFAUK01Ojoa9+7dA2BsD2nru5gzZ06lDEuSn5+PESNGYODAgZg8ebLNNogKhQLNmzcHUL7vqSwSEhIwbdo06HQ6NGrUSNCuFzBWGzU1BZg5cyacnJys9uHh4YG3334bAPDvv//yPYVzHMfXOhk2bBgaN25stW2LFi1stnstC9N32bRpU7z22ms21xk3bhyaNGkCANiyZQs//9y5c/x1atasWTaHz3rvvffg5uZmc7+mGg2dO3dGt27drJYHBwdj4sSJNrc1XR/0er3N30m7du2wZs0a7Nq1i68pYoupxPPevXtP3Li/hNhCbTwJITVWTEwMWJYFANStW7dc++jZsyd69uxpd3l6ejouX77MT5u3ESsLqVTKPzyUxF7nQeZjLRYUFPB/X7hwgf87PDwc+fn5Nrdv1KgRxGIxDAYDLl26xB+nbdu2+Pfff/H7778jJSUFAwYMQOfOnfkH8AYNGlil28PDAw0aNMCdO3fw5Zdf4vbt2+jbty86dOjAd4xSnnZIZ8+e5f82BTa2bNy4UTD933//ATA+xNkKVk369++PX3/9FSzL4tKlS3j++ecFy52cnOy2/zQ//+btb9u2bYtjx47h5s2bePnllzF8+HA899xzfGctXl5eNh9Wyyo4ONjuA/HQoUMxdOhQu9smJSXhxo0b/LSjebY856MymfK66TduL6+3bNkS+/btw/3795GZmQlPT0+cO3eOX26vratCoUCPHj2we/fuCk23q6sr/u///s/ucr1ej5s3b/IvQ2y9wHhU+fn5ePvtt6FSqeDh4YE1a9YI2mwDxmqqJiVdS5o1awbAGGxGRESgb9++uH37Np/+ktoS9+7d26oddmmysrL4NuiWYzNb6tevH27cuIHbt29bffeurq549tlnbW4nl8vRpUsXPng2yc3NRVRUFICSP1evXr1sDqllager1Wrx0ksvYeTIkejRowcaN27Mv4AoSydspjzPsixiY2PRtGnTUrch5HFGgSchpMYyb7P3qCUWOp0O//33H6KiovgOhe7fv4/U1FTBepxZRxFl4e7ubrNnWEv2Aifzt/Tmx46Pj+f/LmvHKOYdAs2ZMweRkZHIzMzEP//8g3/++QdisRjNmzdH165d0adPH77nTHOffvop3nzzTRQUFGD37t3YvXs3pFIpnn32WXTr1g19+vQpsadGW1JSUgAYA9uSes20ZPr+bfXcas58+cOHD62Wu7u72+0Iyfz8m15yAMBrr72GP//8E5GRkYiKiuIfUsPCwtClSxf06tUL7du3L/f4eyUF0iaFhYU4e/YsoqOjERcXh/j4eNy9e9eqhKU8edbR81GZTCX9UVFRdgMIS8nJyfD09BTkrZKuEeWtMVFWiYmJOH/+PO7fv4+4uDjExsbiwYMHVu1RKxJX1EnU7du3IZFIsHLlSru98prYGo7KFtO1xPwaXNLvvrTfqC0pKSl83i3txaL5ctN3b0pjadcjW2kzP3ZJ24eFhfEv9sw1b94co0ePxoYNG5CWloZVq1Zh1apV8Pb2RufOndGjRw9079691J6MzTtLSk5OpsCTPPEo8CSE1FjmHf08Sm+Qhw4dwuLFi/nqYyYMw6Bu3bpo2bKlQ8MUmLNVbc0WicSxy215ql2ZbxMWFob9+/fj+++/x8GDB5GRkQGDwcD3BLt69Wq0adMGixcvFvTK2qZNG+zdu5fvETI3Nxc6nQ7nz5/H+fPnsXz5cvTs2RMLFy6Ej49PmdJl6pFXLpeX6/OU9vBmXsJjq3OokobgsEcul2Pjxo3YsGEDtm/fzvdQbOpNeMOGDQgKCsKnn37qcK+yQOn5ZuPGjVixYgXf662JSCRC48aNUadOnXJ3SFKe81GZHiWvm85PaXnLXunyo8rKysK8efPw119/Wb0AcHZ2RocOHZCWliYooa4oK1aswD///APA+KKpQ4cONtd7lPObk5PDz7MsSTVXnurm5ukqbQxm82uAqcS2rN+9rXtHWT+XSCSCUqm0+h0CwMcff4y2bdtiw4YNuHTpEliWRUZGBvbu3Yu9e/fC2dkZ77zzDiZMmFCmtDnasR0hjyMKPAkhNZZ5m6mylCra8tdff+Hdd98Fx3Hw8vJCnz590KxZM9StWxfh4eFwc3NDbGxsuQPPymL+MHX16tUyB7jmfHx88PHHH2Pu3Lm4du0aTp8+jTNnzuDy5cvQ6/W4ePEixo4di0OHDgkevkJDQ7FkyRK+F80zZ87g9OnTuH79OjiOw9GjR5Gamort27eXOLaeiWnfjlbdVCqVyMnJKfWBzLzqoCNjJZZGJpNhwoQJmDBhAmJiYvjzd/bsWeTn5yMxMRFTpkzB1q1bK7SkYv369ViyZAkAY0/NvXv3RuPGjVGvXj00aNAASqUSZ86ceWJ6wpTL5cjLy0P//v3x9ddfO7St6cHdvJq6LeY9JTvKXqmlTqfDhAkT+OGe2rVrh44dOyI8PBx169ZFnTp1IBKJMGvWrAoPPE0vlQDgxRdfxOjRo+2ua7qW+Pj44PTp0w4dx7wUuaTfYXnOr3mwaa/6r63lpt+4KW3l+e7L+rnsbW/St29f9O3bFyqVir8+nD59GikpKcjPz8fy5cshk8nsfj/mtQrKci0l5HFHgSchpMYyfzAp7eHCni+//BIcxyE4OBjbt2+3WdWzqjpRcUStWrX4vxMSEkqsysZxXIkPLSKRCC1btkTLli0xZcoUqFQqLFu2DLt370ZSUhL+/vtvfogVc1KpFO3bt0f79u3x7rvvIikpCR9//DFOnTqF69evC4YOKYmpU6WsrCzk5OTYLX06fPgwYmJiUL9+ffTu3Ru1atVCTk4O33mMPaYOqADheatIderUQZ06dfDaa69Bq9Vi8+bNWLJkCXQ6HTZv3oxFixZVyHEKCwvxzTffADC2p92wYYPNEp2amGfLq1atWrh9+zbfAY49tvJ57dq1ARhL1TMyMgRtVM3FxcXZnG9e5Vin09lcx965Pnz4MB90zpkzx+6YjxX9XV29ehUfffQRAGO71/nz55e4vuk3kZmZCbVa7dDLGfPhcu7fv2+3bbB504CyCggIAMMw4DhOMOaxLbZ+46b/mvoCsFd93LyqsfmxRSIRWJbF/fv30atXL5vbpqamlqm6tJeXFwYNGoRBgwaB4zicPn0a7733HrKzs7Fhwwa7gad53iit1JeQJwH1aksIqbHMe4E1teVyhEql4seke/755+22LzTv/Kaq2rWVxnwQ9yNHjthdLyIiAi1btkTfvn35ErCrV69i5MiRaNeuHe7cuWO1jZeXF+bOnctPm87tv//+i+HDh6Ndu3Y2q5YFBgZi5syZVtuVxrzd3smTJ+2u9+OPP+Lrr7/G5s2bARSfgwsXLpTYI+jhw4cBGEsMnnnmmTKlqSQFBQWYMGECnnvuOfz+++9Wy2UyGd544w2+3WB58qY9d+7c4c/90KFD7VYjrI48W1klMqbvOSoqyu5YrAAwb948tG/fHi+99BJfTdO8F2RTtVNbTpw4YXO+eRBmL4+Zdz5mb75pvElLBQUFuHLlCoCK+Z5SUlLwzjvvoLCwEL6+vli9erXN3lzNmc6vwWDAv//+a3e9ffv2oVWrVhgwYADfo3a9evX44LOk65C981sSU2dmQPFv2J4///wTgLEJgaldpKmKu1qtxpkzZ2xux7IsTp06ZTXf2dmZPy/l+VyLFi1C37598d5771ktYxgGXbp04V/mlXR9MA88bfV6TsiThgJPQkiNZaqqBtgvsSiJebtKe6Vm0dHR+OGHH/hpe6UeVa1Fixb80AU//vij1aDugLF0bOnSpdBoNEhMTOR7nA0MDMTVq1f5t+223Lx5k//b1LmGt7c3rl27huzsbGzatKnM25WmZcuWfIntqlWrbLY5O3LkCF96NGDAAADAiBEjABirui1YsMDmg/vVq1f5QLVbt27w8/MrU5pKolAokJKSgpSUFGzdutVmiUd2djbfkZHleTDlu/LkJfM8a17KY+706dPYuXMnP11VedZU3b2ij/fyyy8DMPb6On/+fJu99EZGRmLXrl3IysqCh4cHX8W2bt26fNvG1atXW7XjBoDff//dbomaqcQUgM2qyyqVyu5vyLz6v63vimVZLFiwgM/vj3reNBoN3nnnHaSmpsLJyQlr1qyBv79/qdv16tWLb4/9xRdf2AywVSoVVq1aBbVajfT0dMGwKaahUg4ePCh44WESHx+P3377rVyfyfTdR0VF2XzJAwC//vorf90xXRMAY8/Tpu9v2bJlNq8r69evt1uS/tJLLwEwvkAw/z2ZZGVl4dtvv7W5LcuyiImJwbFjxxAbG2u1nOM4fgipkq6TpmuIWCwWtLUn5ElFgSchpMZSKBT8A1B52ki5ubnxwdjx48exaNEi3Lt3D5mZmYiOjsaKFSvw6quvCtr4lNbWqCrNmzcPEokEOTk5eOWVV7Bx40YkJCQgIyMDp06dwtixY/mxOydMmMCXTPj6+vJv27du3YoPP/wQV69ehUqlQnx8PHbs2IFZs2YBMAapprFEmzdvzo8PuXLlSixbtgw3b96ESqXCgwcPsH79eixevBiAMZg0Db9QGtO4oSKRCDExMRg5ciSOHDnCl0j//PPPfHoaN27Mp71Ro0Z8FbVDhw5hwoQJOH/+PDIzMxEfH4+ff/4ZY8eOhU6ng7u7Oz799NNHPeU8U4cgt27dwrhx43Dy5Ek+GD1+/DjGjx+P3NxciMViq9IuU4nMxYsXERsb69D4jeHh4XzwvGXLFnz77bf8Pq5evYpFixZh0qRJguCsqvKs6XPdunULUVFRyMzMFARTb7zxBl544QW88cYbDu23cePG/FisR48exZgxY3Dq1CmoVCrExcVhw4YNmDhxInQ6HZycnPD+++8Ltp83bx4UCgXS0tLwyiuv4NChQ/y2X331VYnVoBs2bMg/8G/cuBHffPMNEhISkJKSgn379uHll1+GSqWyWT3VfHzGmTNn4siRI0hNTeWrr7/++uuCgOZRvydTW22GYbB06VK0bNkSWq0W+fn5Nv+Z2ibKZDK+am5iYiKGDx+O3bt38/n5r7/+wujRo/mXezNnzhRU+5w4cSLq1KkDlmXx9ttv46effsLDhw+Rnp6O3bt3Y+TIkeVuCvHKK6/w15GFCxdi/vz5iI6ORnZ2NqKjozF//ny+vXOrVq0EeUskEmH+/PlgGAa3b9/GyJEjcfz4cWRmZuLevXtYsmQJli9fbrd/gCFDhqBt27YAjB0FffXVV/xv7Z9//sGrr76KpKQkmyX9o0ePhkwmg1qtxrhx47Br1y7ExcVBpVIhMjISM2fO5IcJMuVtWyIiIgAATZo0cbjzNUIeR9TGkxBSo3Xu3BlRUVH8mI6OmjdvHsaMGQO1Wo0NGzbYLL0YPnw4zp49i8TERJtvr6vLs88+i1WrVmHWrFnIysrCwoULsXDhQqv1RowYgenTpwvmzZ07F/fv38eVK1ewc+dOm2/0fXx88P333wuq6n3++ed44403EBMTg3Xr1mHdunVW29WpUwcrV6506LN07NgRS5Yswccff4zbt29jypQpVuvUr18f33//vaDUb86cOdBqtdi6dSvOnDljs0pdSEgIVq5cWaFV1YYNG4bIyEhs3rwZly5dwptvvmm1jlQqxcKFC62G6mjfvj0OHjyI5ORkfkzRI0eO2BzqwpJYLMaCBQswdepU6PV6rFy50upci0QiTJ48Gb/88gu0Wm2V5dn27dvjxx9/hFqt5kvBfvvtN766a3x8PBITE8vV0czcuXOh1Wqxfft2XLx40WZPoM7Ozvjqq6+s2hnWq1cP3333HaZOnYrExESrsTUDAgJQu3ZtwXiW5ubPn49JkyZBo9Fg9erVWL16Nb9MKpVi6dKlWLlypVWti27dumHAgAE4cOAA4uLibOZpPz8/9OzZE1u2bEFBQQFSUlLKVEppKTExEfv37wdgfJHz8ccfY9asWSWO4Tps2DAsXboUgHGs25ycHCxatAiJiYmYPXu21foMw+Cdd97hSyFNnJyc8PPPP2PixIm4f/8+Pv/8c3z++ef8cpFIhNmzZ/MBoiNkMhnWrl2Ld955B1euXMGmTZts1rbo0qULPv/8c6vewTt27IilS5fy15VJkyYJlgcFBaFPnz5Yv369zc/7zTff4K233sLly5exdu1arF27VrDOrFmzsGrVKqs8HRYWhsWLF2Pu3LlITEzEnDlzbH6+V199FSNHjrT7+U2Bp/lLDEKeZFTiSQip0UzVLuPj421WNy1N8+bNsWvXLrz44osIDAyERCKBXC5HSEgIBgwYgN9++w2LFy/mx7c7duxYjaluCxiryf3111+YPHkyGjduDBcXF0ilUvj5+aFv375Yt24dFi1aZPVW39XVFb///js+/fRTtG/fHp6enpBIJHB3d0fz5s0xffp0HD582OohPiAgALt27cKsWbPQqlUruLm5QSKRwNPTE23atMGHH36IvXv3livIGzp0KA4ePIjXXnsNderUgZOTExQKBZo2bYr3338f27dvR0BAgGAbiUSCBQsWYOPGjRg4cCACAwMhlUrh7e2N1q1bY968edizZ0+ljH/36aef4ocffsDzzz+PgIAASKVSKJVKhIWF4fXXX8f+/fsxbNgwq+1efvllTJs2DbVq1YJUKoWvr2+JbRct9ejRA1u3bkW/fv3g6+sLiUQCpVKJunXrYvjw4dixYwfee+89vmOnv/76q8I+c0m6du2KefPmoU6dOpBKpfDy8kJ6enqF7FsqlWLx4sX89xwUFASZTAa5XI4GDRpg/PjxOHjwILp3725z+44dO+LgwYMYPXo0goKCIJVKERgYiNGjR2P37t0ldjrVoUMH7NmzBy+99BKfv/z8/DBw4EBs374dAwcOtLvtl19+iQULFqBVq1ZwdnaGRCKBh4cHWrVqhZkzZ2L//v2YPHky32Tg77//Ltf5MR+qhWVZ5Ofnlxh02vLqq6/i0KFDGD16NOrXrw+lUgmpVIqgoCAMGTIE27Ztw7Rp02xua+qcbc6cOWjatCmcnZ3h5uaGrl27YsOGDfx1ujx8fHywadMmLFu2DF26dIGXlxekUilq1aqFHj164JtvvsGPP/5od+zboUOH8t9fSEgIZDIZatWqhdGjR2Pnzp12O5wCjKX4v/32GxYtWoRWrVrB3d2db/+5Zs0aTJw40e62gwcPxq5du/DKK68gLCwMcrmcz3cDBgzA+vXrS+z46f79+3zV8EGDBpXxbBHyeGM4R0eeJoSQKjZq1ChcunQJ06dPxzvvvFPdySGEPGbmzJmDXbt2ISgoCEePHq3u5BCCr776CmvXrkW7du3stiMm5ElDJZ6EkBrPVIVt9+7dNabXWUIIIaQ8DAYDP3b022+/Xc2pIaTqUOBJCKnxunTpghYtWiAuLg7Hjx+v7uQQQggh5fbvv/8iNTUVzzzzDDp16lTdySGkylDgSQh5LMyaNQsMw+C7776r7qQQQggh5cJxHNasWQOGYWyOA0rIk4wCT0LIY6F9+/Z47bXXEBkZWeJA8YQQQkhNtW/fPkRFRWHUqFF8j9CEPC0o8CSEPDZmzZqF2rVrY9myZeUasoEQQgipLlqtFitWrEBwcDA/djEhTxPq1ZYQQgghhBBCSKWiEk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZVKUt0JINVPq9UiKyuLn3ZycoJYLK6+BBFCCCGEEEKqhcFggEaj4ac9PDwgk8keeb8UeBJkZWUhPj6+upNBCCGEEEIIqYH8/PweeR9U1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiqrYETk5OgumQkBAolcpqSg0QFxcHg8EAsViM0NDQaksHeXxQniGOojxDHEV5hjiK8gxxVE3JM2q1WtAMzzJWKC8KPIlVR0JKpRIuLi7VlBpAr9dDp9NBKpVWazrI44PyDHEU5RniKMozxFGUZ4ijamqeqahOR6mqLalxRCIR/4+QsqA8QxxFeYY4ivIMcRTlGeKoJz3PMBzHcdWdCFK98vLycOvWLX66YcOGNeotCyGEEEIIIaRqVFZs8GSG04QQQgghhBBCagwKPAkhhBBCCCGEVCoKPAkhhBBCCCGEVCrq1ZbUOKmpqXxX0n5+ftWdHPIYoDxDHEV5hjiK8gxxFOUZ4qgnPc9Q4ElqnOTkZL4r6SfxR0cqHuUZ4ijKM8RRlGeIoyjPEEc96XmGqtoSQgghhBBCCKlUVOJJapw6deqAZdkndgwjUvEozxBHUZ4hjqI8QxxFeYY46knPMxR4khrHzc2tupNAHjOUZ4ijKM8QR1GeIY6iPEMc9aTnmScznCaEEEIIIYQQUmNQ4EkIIYQQQgghpFJRVVtS4+h0OnAcB4ZhIJVKqzs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHAk9Q4N2/e5LuSbtGiRXUnhzwGKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiEk9S47i7u0Ov10MioexJyobyDHEU5RniKMozxFGUZ4ijnvQ882R+KvJYq127dnUngTxmKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiwLME8+fPR8OGDbF69eoK2V9iYiIWLVqEvn37onnz5mjXrh1GjBiB9evXo7CwsEKOQQghhBBCCCE1DbXxtOPs2bPYsmVLhe3v+PHjePfdd5Gfn8/P02q1uHr1Kq5evYodO3bgu+++Q3BwcIUd83F17949vmF1vXr1qjs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHA04br169j6tSpYFm2QvZ369YtTJs2DRqNBmKxGMOHD0ebNm2Qn5+PPXv24PLly7h9+zamTJmCrVu3QqFQVMhxH1f5+fn8GEaElAXlGeIoyjPEUZRniKMozxBHPel5hqraWjh+/DjGjRuHvLy8Ctvnp59+yged3333HRYsWIDBgwdj5MiR2Lx5M15//XUAxgD1t99+q7DjEkIIIYQQQkhNQCWeRbRaLb7//nt89913FVbSCQCXL19GREQEAGDo0KHo1q2bYDnDMPjoo49w9uxZ3Lt3D+vWrcP48eOf2DcdZdGsWbPqTgJ5zFCeIY6iPEMcRXmGOIryDHHUk55nqMQTwJkzZ9CvXz+sWbMGLMtCqVRi3LhxFbLvgwcP8n+PGjXK5joikYhflpWVhXPnzlXIsR9XIpGI/0dIWVCeIY6iPEMcRXmGOIryDHHUk55nnsxP5aC9e/ciISEBgPFNwx9//IEePXpUyL7/++8/AIC7uzuaNGlid70OHTrwf588ebJCjk0IIYQQQgghNQFVtS3i5eWFqVOn4tVXX4VYLEZGRsYj79NgMODevXsAgHr16pX49iIsLAxisRgGgwHR0dGPfGxCCCGEEEIIqSko8ATw2muv4dNPP4VcLq/Q/aanp0Or1QIAgoKCSlxXLBbD19cXycnJePjwYYWm43GjUqnAsixEIhG8vLyqOznkMUB5hjiK8gxxFOUZ4ijKM8RRT3qeocATQPPmzStlvyqViv/b09Oz1PXd3d2RnJyMrKysSknP4yIhIYHvSvpJ/NGRikd5hrB6PfR5+QDLgivqIM7Jx1uwnC0sBKs3QJeTg5hLETAwgFgkgjgsDJxpO5aFLjcXrFYLjmXBFhSC41iAg3EdAwtwpnU54zIAxhUAcBy4okmAg0eL5pAKrv+cMT06HdJPnobMwwMcxwEch8CBAyBRGofT0qoyoSmqeaNVZSLryhVIXFyKdmFc3/gnB21mFjidtmgWxx+76FAAuDIsM3Jr2hgudevaPMepR45CrFDy04ED+kEZYhx7WpORgYJE40tTVqtF6tFjkLq529yPPj8fhsJCm8scpQwNgUfLFjaXZZw7D05vAFNU28i7Uwd4tDDe7/V5+cgrqpEEAClHjkKidLa5H0NhIfT5ecjJyQHHcmBEDNzc3MqVXpmHJ3y6dLK5LDvqBrQZGRBJZQAA10YN4df9OQDG/JtzPcrss10Ax7L8ZzPH6nTQZWeXK32WRFIJAvo+b3NZzoMHyLl/DyK5E8ABEj8fhL/8avHnuR4FTq83pvfqVWSnJoGRSoz5HYC73BUAA45joc0ofl7Ss3rkavJhlknhIXcHwzBWaTCweqgKTJ+VA8Cg4YChcHJ2sVo3OyUJd08fBaswnl9GJkXnGbOhlBp/c7l37kJfNKJB1oO7uH3lHFiZ8TGZYRjU9giGTGzcVqvKMF4LABg4Ax7mpIIzS2+Aqy9kIilycs3yjKsbDByLxJxksBwLDhwYMKjXrTf8gsOs0puek4bog3ugURSlAQxaTZyCusHhAAB1fAI0aWnG7yI1GdeOH0KhjOHXDfMMgbvcmE912dlgiwpCDKwBibnJ0BmM3w0YwN/ZBy4y6/xvXDcFOoMWppUDW7RCvRbtrNbVGfS4tGcT8iTFHXSGDR6KNq17AgA0aWlQx8Ub/9YUIHLvH8hxKl43yC0A/s6+AAB9Xh4MBWoAxkvdw9wUFOqLrxmecg94Ka2vL6Z1C3TF67rXqYPmXfparQsA/x3ejhxNHlCUtzw7tEPv/q+DYw3Q56uRe+s2v27Eni3IZDTgDHpwrAGeUgVCZO4Ax8JQqIE+P994MgGksxrks0XnjAOUIin8pEqAYyE2pbsou6QVZiNHrwZYAzi9DiKZBLUbhQMdBzyRzzMUeFaigoIC/m8nJ6dS1zetU1hBN+Tyunv3LurVqwdXV1d+nkajwa1btwAAHh4eCA0NtdpGrTZeJFq0ED4EpKen86W4ISEhgiDcYDAgKsp4M3V1dUVYmPDiGxMTg5ycHABAkyZNIJEUZ9msrCzExcUBAAIDA+Hr6yvY9tq1a+A4DgqFAg0aNBAsS0hI4F8MhIeHC0q78/LycP/+fQCAr68vAgMDBdvevHmTD3IaN24sWJaUlIS0ohtB3bp14eJSfPMrLCzE7dvGi5iXlxeCg4MF2965cwcFBQVgGMbqZUhaWhqSkpIAAKGhofDw8OCX6fV63LhxAwDg5uaGOnXqCLZ98OABcnNzAQBNmzaFWCzml2VmZiI+3ngjqFWrFnx8fATbXr16FQCgVCpRv359wbK4uDj+JUnDhg0FeTw3NxcPHjwAAPj7+8Pf31+w7Y0bN6DX6yGTydCoUSPBsocPHyI9PR2AsYq6s3PxzbCgoAB37twBAHh7e1vVJNDr9bh69SpEIpFVz3CpqalITk4GANSpU0fw4KjT6XDz5k0AxhdAtWvXFmx779495OfnAzC2AzevNq9Sqfg24sHBwYIbBcuyuH79OgDA2dnZajDo2NhYZBc9IDZu3FjQm3VOTg5iYmIAAAEBAfDz8xNse/36dbAsC7lcjvDwcMGyxMREvrlAgwYNBGMD5+fn800AfHx8UKtWLcG20dHR0Gq1ELMs6gbWMgZgOi1EUhlyZVKkpKQAAEL9AyDTFILjgOxr15AbE4vs/HxAp4OUEUEhlYLVasFqtdDn5qIwLw+swQBwHGQSqTFgKwrcWL0BrF4PjuMg4jgwTFFcxXHFAWFRsBU68hWIFYqih1cOqgwVCnNywGZmQX8lkv8cElcXNPxmJX+NkF64yOel3Dt3UXApovhcovLosrIgDwjgp3Nzc6FWq8HpdNCdOiNY171LZ8TcNeZvZYYKsmTjudakpSH1yLFKTGUxVqsFW1B8DyooKOCvwfpzF8Ca3Z+82rfF3UzjdVSaoYJzUXpZrRYZp89WSXoLU1MhMrsv6HQ6/trOXrsOfXpxsxlFrUCkyp2M99jsHHgkJPLLMi9chMHsnl2azHKmV+sqh8yr+B7IcRxSU1MBAPm3b0CamMYvi0y8htZhtZGdnQ1Op4PbzVv89Tv5wjkgI6ucqSg7vQhQWtzv09PTYTAYkBV3B8p7xTW0knykcO/Wg79GuNyIhqQoyEy+9B8QkyjYT9nPNpBVwjLLB1lVnetwcSs+x1lZWdBoNMjNSIbi6n1+vkbKIGFkIgozjM8uyvsxkBXlgYzoKLhEPhDuF7dhj2WYm48k5FvMM+UZV4v5Wd7XocjX8dO5ublQ5WYiuyALXreSBesmpSUgT2X8DSqSkuGkMu41Oykenjcsz2+83XNsmQYd0u3mact1cyXRyJUXn1/TNULH6iG/lQg3XXEwmdTqLq5Kjc8V5tcITYEaLjfjBeeNQyKEn7aYsuhfsQy76bVcNy8zBw+TYoruIQawOl3R6BUcmHQdauUXp/eW4RDuXd4NTukOjXcTSJJy+Jd80psxqKUTjnqhQrzNNCiK/pnL41OcJJgvA2D+5KVWaAHdZYjys4BWrartOcL0LFvRKPCsRAaDgf9bJpOVur5pHX3RG8LqYjAYrIaU4TgOOp2OX25Jr9fzyy2xLMsvszVUjWmZ6XMHBwfz1QxUKhW/nDN/LW+RJnv75ThOEKzaSm959luWz1rSfm19x6b92nqr+yj7rcjvxpzBYLCbJvP92sovOp0Oer3eZrvnkvZrLx+a8szDhw+h0+lK3W9J+bsqz2FJ+bAs55BlWcGLBINGA01qKnIjr6EwLQ2cVovkm9EQGViwBQXQpKdDm5ePvJwcQK+HVqGA04jhKIiPB6vXQ+rqiry7d41pfZiEiLvFJULuLZrD6+1JfJo0GenIibwGAFD9dxH594of6HQA1DbPlpGmhGWlDWalz8/nSzQBwFBQAIPBYFbyaMSxLP+9clot5B7ugM74Hdj6jVUazmKS44zptZFXOM7ed16F6bVgSi9g9VEAFOdvkaF67lssZ50qU3p1Bp2gB8Wz8RGoFxYMg84A6IW/Zx2rq5LeFnWs7WspYCwxMh9ILacwl79GcBbXH5Zjq613SJZli35zts+9rWsaA9v5pyrw6bXxm2PNrv22Pk914DgOYDm4iZU2l5nSK7NxX6gqxloaLDiDHqxGDbYgFxyrg+W3rE1PhEh3AqzCDQZZAPR5WWA1+dAbKm7YwlLTyhpgyBH228JfUTmLayvHgQEHzmAAq9cBXNWl00RZwEEjBsS3ioPaqnyOMN+2MlDgWYnMS4DsPbSaM7UHre4xPMVisdWDO8MwfLpsZVCJRGI33SKRiF9mKyAwLTMFiOYlRjk5Ofxyy4dF8zTZ2y/HcTbTZZ7e8uzX/L/2PmtJ+7UVDEulUuj1epsPxY+y34r8bsyJxWK7aTLfr638IpVKwTCMw/u1lw9NecZU0mHrs5jvt6T8XZXnsKR8aNovx3Lg1Grkx8RAq8qELisL2sws6CIjwWZlQ6dW47xGA0NBodXDKQCU1GJcK5Mi/75ZwJiTA5FIBLFYDNYivaxGa3EOi88/Y+M7riwcK7yx8ukVi4VBK8vx3ysnkcApMBAoquaFKgw8LR9lGYaBWCwGx3JWQTYD2P7dVF/cyacXKKpJbLG8OL3V8ziRrlZBWpANT0VxtTuxWAyO41Bo0AhKPtLyM1BPXPRbl1j+nqvvJJvOr61sabpGWIVE1ZgnTL85EVPydZbhqy5ULQ62rxG2rs8MA5vX4Ko8vZaniGEYyKVyaGw8+DMMA6nE/r21KugyEpF18g/BPDkAHQNoLT6L5uEdKFOuQ+9TF6w4CboMY1VmfRmeiasTwxkgFlXP+QUAXR5g0BQHio/6HAHYfxZjWdbu82xloMCzEplXEdRoSnrHL1ynojs5clT9+vUFVUQBYxBtWYXWcht7fHx8rKpwmojF4hL3a1lt1JyHh4egyqmlktruBgcHW1V1NXFxcSkxTZbVa80FBgZaVc01kcvlJe7XsjqwOV9fX6uqxCYSiaTE/VpWXzbn6elZYvvjkvYbGhpqVeXaxNXVtcRtSxpaqFatWlbVP00UCkWJ+7WsKmLOz8/PqpqJiVQqLXG/llVbzHl5edlthyESiUrcr2WVXgDIvHwF8Vu2QZORAbagEIbCQuRVUi0ITm/9BtT0W81XF0BlNp/VagXVptUJiXw1rqoMPC3fQJuuARqJBKmC1VjBNSLnxk1kFQWejEgERiqFSCo1tpETiYzziv5mtVrjcRgGjOnhmmHASMTGaYYBREzRTZ4pekpliv5XdOMvmufk4yOoWunt5QlvhgGr0yE1KQmyorzDMAwUrq5oUVR9PO/+A+QXvaFmJBK4NWsKmel6x6AoSjGmQVtUFZPHFKeBMX+E5ucL/8vw/we4hIdDGRrCb6IEYGopm5CfC72zE/I0+dAatLiueQgm0BedQ9tAk5KCvKJaO6xOh/xGQUgUqaEz6MByLDzk7ghw8UGIexB0OTkwqE3ttzjcz4xFrra4YqJSqoSP0hNeCg+Y07MGxGc/RLYmh59n8FHA09cVSq/ia5F7vXrQ6LVQZSfgas5DcCLjh8vykiGsbhicxDKIC7TINsu3mgZBuK1JMUuDHJ1D20LEiGBQq6HLKT5mcl4akvOKc5tMJEU9r9pwklg0qWGA5FzhuqyzAq3rCH/3LmF1AACXDZmIUhRALzamNztQwV8jWJ0Omdri79hQLwTXPe7xn00qlqBnWGfjulottJnFFRFV6kzEZRe/ghIxIrQIsH0fy1RnITa7uMomK2bQzOI+7Fw0He3M4aYhHVqp8TeS4yLGcLNrRKZOD7YozeKMBESKMvjPxgDoVa8LxIwYHMvybRUBIFeTh/uZcfx6YBg09Q23GQiodQW4p4otXhcMaoWFwdmsqq3pSSw5KQaRuQ+hkRv3w0rFaO7hBd8gYw7Pkcr47zmf1eBWfiJ0RZ9NxIjwTGATKKXGVxmatDS+BFVr0CEmMx4sOD4NtT2CILfMDzCWasdmJxhLk4p+nw0a1odzSPF92pTevPxsXE59gDw5A6lYChGAVm4eCPXwgUjqBI2bOwqTk8EW5kErNiAm3A8FTgxYTQHA6hGqA5wNxlJJQ6Ger06iB5AmE0NvFqR46wxQshzELh6Q+YdBpzJWB2XBIUmvho5jwRl0AMvCQ8FCaqsSHwPk+IqR72T2UlhkPKizlIFz07bIvmFsDiHRaRFX2x25CgacXgtOr4efVg9vvXF9Vg9wRbcnDkCqTASt2YsON4MB7noOjFQGiWcAOL4GA4dkvRqFnAEw6MEZDFDIOUjttHYrFImR4cuAKzoX7kVtTkXg4BvoDzVXHCYVhnggS1ZUyqvXwt3AIUjHAQyDosPx50ElEUPNFEfhSojhWxRyiVw8BNfldF0+cg0auCfnQaqzflFTnucI/jy5uZW4rWWTJHO+vr6CvmoqCgWelci8jWR2GRr6m9Z5EhsTE/K0YnU66PPykH7qNHJv30VhUhJYnQ4+nToi5JURgnU5jkNu9C3osrOhTUuvgsSx4AwGm4EjI7Eo0bR4+ymSSiF1cwUYERRBQeAMLJTBQRA5ySCSmf1zkkGfmwdWozEGeIwIEBcHeuaBH0QiiMTGB1GIGEhdXACRGIxYZEwDI4I8wB9imUwQfAEAZ9AjsN8LcPLzLd6vGZcG9eEcVgciubxqq9qWoNaA/naXudQNg0vd4ofRkBEvVUoaLj28hsScJKTkpeNhbgqa+rqijqcLarn6oZZbgGDdn9griHh4jZ9uWnALjXOND2rygABBW9a7ilj8G3MWKKo82sA7FG6hbVAvvKdgn9mFOThzbT/+uV88fnUdjxD0D++BpmEdBevma9W4Gf0P9tw8xM8LdgtEo+aN4RP8jPVn89fiWOROftrfWY60fBX0rAGNfOvBp1Px/gu91fj3ynZ+2lvpiVH9xkEmsX7CTr5/GqeuH+BLBNyd3DC89/s281VewmU8uHsSDMOAAQMfpRe823awWg8AAut6Ier+KTBgIBIxCJIVP0OIpFJ4dyzernajIDx4cAYMw0AEERRSBeo1G2Bzv8m5qchMvAIGIiilcigkcjSt3cbmutkF2ZCrYorSIIZUJIG3f0Ob6z7bpiVC1SMgYhiIGBHEjPA64tn6Wf5vt3at0cyghajoZQnDiOBk49ya2D5DtrUt43reaI+mw16xu9ytcXF/A97t26Hxa2PKnIZWZV4TeKbov4UJ0dDnZoItzAerSQJbmA9DYT7YglwY8rMhystEqxA9OIMOnF4HTq8FtixGAgC3Nv3g0XEoNHExEIsArwAxugzqDgDIu3oM+uwcO0c38oPtarrK+vXgP2I2Mk8V/xbqFP03/9Z56FJj7e5TDqC5hwGwsW+OZeHSuAVYTfELho6NjHsuiLkKTXzJwwh6gwMjk0IkdQIjlYGRyMCIpZC4+8C1eQ8YCnL4+0G9ot+hOuY6DHkqiJyUYEQSMGIJIBaDEUvAsQYwIjGC/GpD4uYDRiwFI5EU/VcGRmI8licYfr9BI4ryrpPCuN4j3keysrLAMAxauBtra1xctRCaI1f45dqacZuqcBR4ViI/Pz84OzsjPz+/1CFSDAYD35DXXmnP08K8XnllFfWTJ0t15xm9Wg11bBx0ubnQ5+ZCk5oGkVQK1qwUKvvqNeTcuMlP51l0uAQAXFEJl1hh2S2BYxixmC/RE0mlRTdsKURFJVIiqRQyH29IlEq4hDeASCoFOA6sRgNFSDBMLbLqjHkdUk9PiG10jib390NgCYFTTSOSSgGz6kTVnWcq0/WUaDzMTcHDnBTcVcWigXcY6nvXhlQkRTuLAO3vuycQkVTcvRIDBiw4yCUyq8DTRSpsc6Y1FLUrAgedQQ8xI+JLpeQWRQx6g95me0x3uRvc5MLeNPWs3mZ7O2eZEgqp3Gpd1k47rFqu/qjrGQodq4dSKoefsy/UugI0sxFIdQ5tg2C3ADhJZJCLnSCXOEFiUX3YlGd61OmIXnU72zympfbBrdA+uGxhSVP/cDT1t19rw1yYZwjCPO0HUeYCXP0wuJHtnmktuSvc0SaoZZnWVUjlCHEv2/OKVCyBtJqqY1cUjmPBaQpg0OSDLVSDLcwzBo2F+WA1ahgK8ozzNGp+ubJxJ7i1fgH6nHRoYq+DM+gBjoU+Pxs5EX+Bzc8qV1rYwnxoU+PgHN4W+bf/EyxjSgjoS92vrhCwUYUagDFwKwkjAiOWQCR3gchJAUbqVBQoyiH1DoRlBWaxwgViVy+InBSQBzUExGLAYIDY2QNSr0BALIHE1RtipStETs58b89l5dqyZ+krVZPMzExcu3bNGHi2aAF3d3fks1pBUFa9vb1Unsf7KvAYqFevHq5evcr3ImnP/fv3+Ya/JVUXfBpcv36d7zW2pCoChJhUVZ7hDAYUJqcgPyYWOVFRyL1zDwWJiTAU9XgrdXdHQD9jt+2sRRsWsVL40K5JTQOr0xkDoiIiiQRipdJ24MkwkLq5QeblCamHBxixGPr8fIjlckg93OFSty7Ezs5wbVAfTv5+NoNFUuxxu86o1FlIzc9AhlqFe5lxkItlqONprBIb4OKLUI/iHp533TyMaym3+GkniQwKqRxyGw+klkMoaIqGTcjXWfeH6SIT5mFdUeCpNehwJSlKEGBZVjPUswZo9LabnPg5+yLUPQiFeg0kIjH8XXytq60W6RzaBp4Kd9xVxSDMMwQKiRy1XK1f4gBAm6AWaBNUtu/WU+EuaCdqy+OWZ4gQx3Hg9FqwBXkwFOaBVeeC1RWCLcyHzDcETgF1i9ZjkX/jDCASQySVIePIBuiz08DpNHC0i6QcsQvuwQfy3CTUDvCBLru4xE8kkZbamZo9bGE+FPVawZBjXTOGsWq/bIPYWLondnaHxMXTWCook0PmGwqGYSDzC+Wrg+qyUiHzC4XEzQdsoXHoEZFMAZHcBRIXTzByBUQSp6LAlIHY2Q2M2DoNHMfCs/NLpQewTzhT0Gl6kXX16tWn6nrydH/7VaBt27a4evUqMjIycOfOHbvt+M6dOyfYhhBSvfR5eciPjUX+g1jk3ryJvLv3oElPt9ku0kSXk2O36qrYWfjQXpicDMZGRwGKWoHwaNUSMi8vyDw94NWhPeQB/pAVBZvkyaI16KAqyEJGvgrOMiVkEhkKdRqoCrLQKrApX4K4+vwviEotHs6hhX9jvo2mXOKEUBQHnp5yD8ExCosCvkK9FpbsBZPGcRQt1nVyNpYEisSQiCSQS+Rwc3JBTGY8mvg2EFQ96xLaFrU9gpFdmAO52AneSk9BcGyuZ91O6FnX9tiWlnycvfCcc3s8V6d9mdYnTzZWrwWnLQQ4DtkXD8GQq4KhMB+GPJWxLV5RaaSxHaH9Xko9ugznA09DrgrajOJ2roaCXHC68g1zx+iMvz2Ddx2IZMJ7x6OVTGqMvzeR8B4ikikgC6wPiZsPIJEBHAeppx/ECjew2kLIgxpC7OYFsdIdIicFRHYaP7o06mhz/qMwNbN4mlkGnYCxxmNSUlK19fpc1SjwrGR9+/bFzz//DADYsGEDFixYYLWOwWDApk2bABjbhXbp0qVK01jTODs7Q6/X2+y9ixBbHiXPcAYDCpKSkP8gFuqYGOTHxiLnRjRfiunYzjjocnIgs9Fhk9TVFYrgIEjd3SFxc4N3O9svmLzatoFXW9vtr0jFqYrrTKGuEByMVRJzNHlIyUuDh9wNvs7GzkyWn/oeFxOLxx5t4d8Y4T51+elm/g35wNNbIcxTarMH4TytcPAay5K7ghIemkM9gtAyoAkYMDBwBvgoveAiU6KhWTpMXmrSH8Ob2m5HaGu/9gLNxxXdmyoHxxqgz8+GITcD+swU6DKToU2LMwaOBcaqqxyrB6vOhedzr8Dt2eJqw9rUOKjvXgIAZP93AJympIGc7GMLi7djLIKxRymZlHA6uLi5QyKRQCQTvvhhnJQQKVzAiI1tCk1tCwV/Fy1zbtQRMt9giJycIZY786WaYmc3eHQYDJHs0ZpnkMqnUqn4cTPN+fr6Ijw8HOlHhM0IntAmnhR4VraWLVuiVatWuHz5Mv744w907NgR/fr145dzHIdFixbhftGQBqNGjar2Xm2rW0k9iBJiS1nzDMdxKExNg+rsOeTevg1thgr59x8YezF9VEVVYdmisSLBMPDp1AESV1eIlUqIZLIa06kNqbjrjIE1QM8au96XiMTYdHU3Lj28hgx1JtS6Agxv0l8wTka4dxgfeColwmu92iJA1LN6aA0iSEUSeCk9BMsK9MVVYXM0uYJlQW4BaOAdBk+FOwp0hZBLnOAiU6Kel3Xvhz3rdkbPMrZXfNrzL92bHg2rLYQm+QFUxzbCoM4Bp1GD1RY6VJpoyMsSTAuGQJHIHiHwzOP/FitcwTAM387YdskkIwwSxcV/y4MbQlxUfVXqXQvKusY2xfq8TDipcyHx8AMjEsGlSWdwBj3EClfjNcKsF22R3LlMVVIZkRgMBZ01XklBZ+PGjSESieDfriVOFhb3A6G0aPv+pKDA8xElJCSgV69eAICgoCAcPXrUap3//e9/eOWVV6DT6fDuu+/i6NGj6NKlCwoLC7F7925EREQAMA4dMnny5CpNPyFPA9XFS0g6eBg5UTfAFpavypQ5kZMTpB4ekHm4Q+rhAZd6deES3gAyLy9IXV0Fw2eQx9+/D87iVvp9pKszkKHOQsuAJgjzDEFyXnF7rXZBz6COZzBUBVmINxu6Ii77oaDkr9CsnaNlMGnZfiw1Lx3Zmly0CmwGb4UnZGIpvBWecJO7QMwYb99uTi5o7t9IsF33sI7oHlbxVeUIMcdqC6HLSYdelQSd6iF0qmQYCnLBFubBve0AOIcX1+ooiI1CQayxEytt8gNwdtr7lsagthwhwDzwdHAMdLEUIielsZ2jm7dgkdQ7CJxOA31eFtxa9wWn04FxkkMkkYE16I1tIEUSMAwDVqeBxMUDjFQORiyFSK4EY2PoF4mLJyQN2zmWRvLYsxd0+vn5oXHjxvzLE0YmhU5ZXBXZ4PRkNq2hwLMKNG3aFCtWrMD7778PtVqNvXv3Yu/evYJ1ateujZ9++kkw9ichxHGcwQBDYSEk5uPopqUj61KE4zsTiSB1c4PUwx1SD3fIPDzgXK8uvFq3hkguh9TNVdA5EHk8mUotnSQypOZnIDk3FdHp9xDg4ovn6rTHmbiLuJJ8g1+/nldtZBYIH4DZokHnLKvEGjhhu6647Ieo6xkKPxcfwbqWvbUCxjEKw72NVV571+uC5+s/99SXOpKqo0mLhzb5PrSpscahPvKzoM9OgyE/C6ymwDi8hx2K2s34wJMzGIcEcQqoC03yfYicFDBUVOBp9nuQevhDJFOAkUghVrqBYw3GYM/NB5xBD4mHLySuPnxPqhIXT7tVVF2alK0WACElycjIQFRUVKlB59OEAs8q0rt3bxw4cAC//PILTpw4geTkZDAMg7CwMPTt2xejR4+moJOQcmB1OqQdPwHV+f/gXDTuoTzAH349uvPruNQvvYqc1NMTznVqwzmsjjHQ9PSEzNMTcn8/iGQySN3crMaGJI8fjuOgM+gQkXQdEUnXEZeViPicJLzY+AXU966DW+n3+XWT89LAcixqewQLAs9CvQbB7oH8wPUAEJ+dhLpeteFtUYqZVZADWBSAm9pgdgx5Fk39w+Gl8IBSqkChXgMnse0q2WIbJSiEOIrjOHAaNfS5GdDnZEDi4Q+Zdy2LdVjkR59D2r5vinpydZw+p7g2ACOWQFn3Gegyk6FJvg/GSQnYHEaEASN1AiOTQySTg5HKIXZSQuLpD6eAupB6BULi4SfYQuZfGzL/2sZtn8KHeFJzZWRk4Pr161ZDQ9kLOv2c3NAts7hvCYmHS5Wks6pR4GlH+/btcevWrVLXCw4OLtN6gHF8zo8++ggfffTRoybviRYbG8t34FC7tnWbJEIAIDvqJu6v/QEFiQ/B6Y3tKjVOTvAKqgWDWtjOx6VuGEQyGd+WUySTGXuN9fZCrSGD4NqwIWQeJQ+lQB4/HMeBYRg8zE3Bqdjise5kYikepMThbEpxKfiDrHh0C+uA+OyHgraWuZo8+DkLq+FlqDMhZoSBoKuT8cVhM/9GeKfdG/BWesBL6QkPJzfkavPAAfBWeEBqNsyAm9wVbnJXftpyCBJSs9T0exPHccaSyaKgUp+bAX1WGvS56dCpkqHPSQerzgFnKB7qyblxJ/i/OFOwH116grH00EkJQ7kDzwyreabqpzLfkKKSSC9IfUKM/9y8IVJ6QKxQGttMlvFFC2NnzMmaoqbnGVI57AWd/v7+aNSoke2Xi4wIMvPVS+hB/3FGgSepcbKzs/mx0ggxp8/Lw8P9BwGOM46pmZTMB50AUJiYCATVgi4nF9rMTGMppVgMRixG6OujIHFWQpOWDo9Wz8C1YTi9IX+CcByHmMx43M54gHuqWNzLjEUT3wYY0vh5QdAJABKRGF6Mq2BefPZD+Ci94KlwFwSef949gVYBTdCtTgfUcvWHt9ITAS6+8FJ4wEPuBheZEkqZAjKxsQOSWq7+VuNKKqnzjydCTb03pez8EoUJ0TCocwGDrvQNzOhtjAMp9Q4CGJEx8MzLLHUfjEQGRqYwDs/hpITUwx8uzZ6zWk/s6gXPLsPLHFQ+CWpqniGVJz09HVFRUQ4FnQAARgSpdxAKNRrjM46MSjwJIaTK6bKzkX39BtRxcYL5jFgMRUgw8u8VV41k04ofovLvP4Bn62f56aAhgyo/saTKRTy8jruqGADAnYwHiDSrEisVScCAwdDGffHPvZP8sCNqXSHcpMLAMzk3DRq9Fi6y4iYPLjIlWgU2Q6CrHxrYGF7Ex9mrEj4ReRqxOg00D+9Cl5UMQ64K+rxMGHIzYchTQZ+dDqeghnBp3BEuzbpabatTPYQhV1Wu4xrUOXzNABNTYChSuBiDSidlUVDpDKm7H0QKF4AB5LXCIfUNhsTFC2IXj1IDyqcp4CRPr4yMDMeDTgDxubm4VCiBVsOCAwcZgPBKTmt1oMCT1DiNGze2uhGSp4tBo0Hijl1IOXIMYrkTfLrY7uhBGRrKB54yH2/Ig4IgdnaGV9s2UAQGVGWSSSViORYJ2Um4kXYHBtaAAQ2NPYnHZz/kg04AcJcLg8nY7ES4OblAKpbCReYsGO/SN9APHblnUc+rNup6hSLUIxhOEhma+DZAc/9GENXwKnyk6j3qvYnjOBhyVdCmJ6Aw8Ra0yQ+gTY2FoSC31GFA9Dmp0KmSbC4Tu3gBKTEOp4eROIERS+x+Hp/+b0Hs5Ayxqxfdj8uJnmeePuHh4WBZFikpKQCAgIAANGzYsNQ8kHHlKuocK+43oNBJBPxfZaa0elDgSWocqpLy9MqPiUXi7j1IP3UGnK6oyphIBINGA7GTdfs3J18feLZpjYB+feHZ+lm6uT9hOI7D8QfnsO7yVn4YEg+5G/qH9wTDMJCKJPBz9kZqvrE9madc2E7XwBoQm5WI+t514Ofsg+S8NDTxbYDaHkFwkTmjS1hbq2Oat8EkxJwj9yaOY63aHyb8+B50aXF2tigZqykABw6sTgNOr4NYUVwNT+rhhwKL9RmpHCInBRgnBUQyJV8NViRTgHFSQhnWApxBB6lnoN1jOvmGliutpBg9zzx9GIZBo0aN+L/LEnQ+TSjwJIRUK726APFbtiH91GloM6w7pADLoiA+wapnWmXtUHi1aQ2RzNbg3uRxYmANgl5bWZbFqbj/kJyXhlxNvmDsy6zCHCTlpaKWqz8CXP0Qn5MEFAWeUrEUAS5+qO9dB/W9aqO+Vx3ULhpDs5FvPTTyLb13Y0LKiuM46HPSURBzDdqke9CmxYORyeEUaMxnnp1eFIwtKXZ2hy7N3t5KxmqMoaUm4RbEbt6CwNOleTcwMjkYiQycQQdFSBOweg0krt4Qu3hALHcFxGKIJHStJKQqWAafZWJRPfdJRYEnIaTaJO7ei/itf1j1QmupMCmJDzz9e/eEk69vVSSPVBI9a8CN1Nu4nnoLt9LvISYzAWsHL4G8aCzLmKwE5GmN3cq7yJSQS5wEwefN1Dt8Bz4uMiW8FB5QFWShhX8jDG/an6rJkgrHGfQojI9Gwf0rUMdcM45lqc4Gpxd25iPxrsUHnobCfEhcPPhlMr9QFMZcK/E4fCc9cheI5M4QOTlDrHAGRBIwYikk7j6QegmHP5EHhUMe9CS2BiOkZiupGrXDpZwSMVjzW5fkybyPUeBJapycnBywLAuRSAQ3N7fqTg6pBLqcHNxd8z1U586XuJ48IADO9eoiaNhguDZoYHc9yjOPj/uqWJxLuIw9N/8Ch+I3vLczHqBFQGMAQKhHELwU7vjr3kkwDAMfpRcScpLgLndDy4DGCHQtHsuvsW8DNPa1nzfsoTxD7OEMemjT4qFJvgfNw7tQ370EQ14WwLGlbsvm5/B/a1MeQJ/tDKfAemBEYsi8gwEYe4EVyZ0hUrhCrHCF1DMAEq8AODfsAKlXIFXLe4LQdebJlZqaitjYWLRo0QJONpoCOSqox3M47quGQW8AB07Q0d2ThAJPUuPExMTw3Y+3aNGiupNDKhDHcUg7fhIPfv4F+pwcm+uI5HK41A2Dc90w1Bo8EHJ/f5vrmaM8U/Mk5abCXe4KpbR4KJFCvQbp6kxIRBJ4KtyhKsjil91Iu8MHnhKRWDCmZVO/cLTwb4wRzQbAWaaskPRRniEmrEYNVqOGSOkGkUSGtH3fIC/qZPn2VZgHzqAHI5agMPE2lGEt+N5cnRt3grJ+azByZ3DaQkFpKHky0XXmyZSamoqbN2+C4zhERkbimWeegewRm/3os1Ohz0qBTqsFB6BQ9GSO60yBJyGkSmjS0nD327XIirhsc7nMxweujRoioG9vuIaHQyyXV3EKyaNKy8vAtqj9uJp8E5mF2ZjWfhy61mnHL5cwYjwT0AQxWQnwdfYWBJ430+4K9iWTyNDEtz5cZC6o5eoHGbVPIxWA1WmgvnUBBfE3IHb2ECxzbd4NIs8AyALCAEcCT7EEYqUbxEp3SD0DIPMJgVjhAqegcEFbTLHCBTBNy+j6RsjjyDzoBAC1Wo0rV66gVatWj9SZlD43E/qcDDBA0T/LLsOeDBR4khonICAABoMBYjGN+fUk4DgOcZu3InHn7uKeas2IlUq4NW2CelMmw8mrfOMiUp6pfleSovDdfxuRaRZMRqbcQJfabfmqgxKxBGxRdUVfZ2+k5qXDx9kLwxr3RSOf+oL9iRgRmvk3qrT0Up55OrB6LTSJt6G+G4G8G6eN411yLBiZHG7tBgmqtXIGPTiOg1OA9ZitPJkCjNIdcu9AyPzqQB7cCPKQhhDJna16sSWErjNPlpSUFNy8edNqvoeHBySSRwupfKXO6JxV3N+FyImq2hJSJfz8/EpfiTwW8mNicPOz5dAUjWdlybtTR9SdOAEyL89HOg7lmeql1hbgdsYDhLgFCgLPK0k3cCXpBlrVasrPEzEiPBPQBDpWjzEtX4RSpoSsGoYwoTzzZOIMOhQm3kFBzHUUxlxF4cM7gEFvvZ62EGxBLsTK4nZ3BfevQCR3Lgo8GUg8/OAUWBcihStEMgVkfrXh3LA9RFRaScqIrjNPDntBZ1BQEOrXr//IbbMljAhKtrjfgye1kzwKPAkhFY5jWTw8cBCx6zeA01s/9Mm8vFB38pvw7tC+GlJHykOtLcDxmHOIz36IdsHP4JnA4mBSKVNgeJP+uJV+D1dTim/MhXoNDKz19x/uU0KJEiEO4Ax6aJLuoiA2CoWx11EYHw1Ory3TtvrsVEHgyel1EDt7gGEY1Jn5K0TyJ7PEgRDimMoOOp8mFHgSQipUYXIy7qz+FjnXo2wud2vWFOEz/6/c1WpJ1XqYm4K1/23ErfT7YDkWEpEErk4uaBHQWPBGViQSobFfAzTza4g8rRoh7oF445nhcJO7VmPqyZPKUJCHgvgbSNu9Epyu0MGtGYhdPcGIZZC4+UAe0ghSzwC+EyAAFHQSQgAAycnJiI6OtpofHByMevXqVVjQGRsfi7tpZuP+yrSoUyF7rlko8CSEVAiOZfFw/wHEbdwMVqOxWi5WKODZrg3qTpwAqSsFI48LhhN2/KNn9UjOS4POoIeTRYc/HMfhvU4T4SxT0htgUiE41gBDfjb0uSroMhKhy0wWLONYQxn2wkDs4gGJu5+x+mytcLi37gOmGqp4E0IeH1UVdAJAZtxD+D8o7gejUGZdW+hJQIEnqXGuX7/Odz/erFmz6k4OKYP82DjcXPgZNGlpNpe7NmqEoJeGwrtd20o5PuWZR6M36AGGgZ7VI6cwF34uPvwyd7kbmvg2wI20O/y8+OyHuPTwKjqGtBbceBmGgctj0iEC5ZmaieNYFNy/CvWdC1A/uAZDThrkYS1tdvjDiMRwqlUfmnjrKnBiZw9I3H0h8fCD2N0XIokMUndfODftAlE5e0imPEMcRXnm8VWVQefThAJPUuOwLMv/IzVf2slTuL/2R+hz86yWOfn6oP7UKfB4pmWlpoHyjOMMrAE30u7geMw5nIuPwLOBzRHsHohAFz9B4KmUKdA5tC1upN0BwzAIcPFDsHsg6nnVfqxvvJRnagaO46BNT0DeteNQ3/4P+uxUqzaa+uw0uz3Nip3dAQBS31AoajeDonYzyEObQJeZBJHcGVIPfzDiinnUoTxDHEV55vGUlJSEW7duWc0PCQlB3bp1H+t7X3WjwJPUOHK5HGKx+JHGQyJVI+dmNAoSEuHZujXS/j0uWBbwwvOo/cYYSJSKSk8H5RnHrTy7DucSIvjp+JyHCHYPRLpaBQNrgIFj+d5m24e0go7VQcyI0T2so1UV28cR5Znqw2rUUN+7DPXt/1AQcw2G/KwS19dnpYLjOJsPezLvIPhM/xESV2GbcbGy4qvzU54hjqI88/hJS0urnqBTKryvPqmhLQWepMYJDw+v7iSQUhg0GmRHXkXevfsAAHmAP1wahiPv1m2InZ1R+7WRCBzQr8rSQ3mmZAbWgNisRChlCgS4+AIAWgY0FgSeyblpkIkk0LJ6HLrzL9S6ArzcbCAAwM3JBf3De1ZL2isL5ZmqpctVIS/yCNT3I6GxM8SJPZy2AGxhPsQKFzBM0TAnAfUg9Qmq0rEzKc8QR1Geefx4eHjAxcUFeXnFtbhCQ0MRFhZWqSWdnhJn5JpNP6kB2pP6uQghlYDjODzcsw+GggKrZR4tmkMkkyF4+IvwrOSqtaR0qoIs7Ln5F5xlSn5eHY9gPvBsH9wKP13aDANnrAJm4AyIzX6IQFc/qHUF6FOva7WkmzxZOIMemad3QH33ErRJ98q8nUjuDIm7H5yCGkDmVxuuzbtBJKv82hOEkKebVCpFy5YtERkZiby8vCoJOp8mFHgSQsok8/IVxG3aAo9Wz9i8ADNiMRp9MAtSN+qxtjplqDOx++af+OfeKTAMg4ENe0EiMl7q09UqAMbOhFycnNEyoAmyCnPQIeRZuMqcwTAitApsCk+Fe3V+BPKY4jgOAAf1rQvQpMYKlkm9g0oMPMUunhAp3SDx8IPMJxQeHYdATEOaEEKqgSn4TE1NRa1atSjorEAUeBJCSnX765VIO3EKYFlIXV3h0qC+1TpujRtR0FnNHuamYNbhRdCzRdUYOaBAV4hm/g0Rm5WIPK0a0Wl3oZQqEOoRhPc6T+LbcRJSHqxei8KYa8i5/A8KYq7B9dnnIZI6Wa0ncfcFxFLAUDRcgEgCRZ1mUDZoC2XdlhB7+EMkqrpqs4QQUhKpVIqgoKAqO56zRCasastV2aGrFAWepMZJTEyEwWCAWCyu0h89sS368y+RceoMP511JRJO/n6Qurnx8/x6dIM8IKA6kgeA8kxqfgZkYikCXfxQzzMUtzLu88seZMajjkcwP52vK0BDn3oA8FQHnU97nnkUhoI8qO9FIPfKERQmRAvaa+pVSZD517HahhGJIfMNAWfQwe2ZPnBt2QMiJ6XVejUZ5RniKMozNVtGRgY8PT1rxEsvsUV79Se1jJUCT1LjZGRk8ONe0YW6emnSM8AWFgrmcQYDcm9Gw6t9O4S8+nKNqILyNOeZbdf3AwBGNB0AhmEwotlALDq+CgAgFokR4h6IABdfdAxtDaWU2siZPM15pjz0OenIv/0f1LcvoCA2CmANNtfTZSTaDDwBQNmgDTy71oxrRnlQniGOojxTcyUmJuLOnTvw8fFBkyZNqj/45CwnH8/rZGko8CSE2JQVeRU5N27CpX596HLzkHfrNgDApWE4wmdMhYJuov/P3n3Hx1Gf+QP/zPamVe9dclGX3I0xmGKaMb0TH4RLv+QS0ntyCQmXhHDJLyEh4ZIchBIwGEyxqTZgY2NjsCVZxVa1eq/bd3Zmfn/IWmmkVVlpd2fL8369eKH5zuzss/Kj2X12vkUSHM+hY6wHObEZeKf5AwCAjGHw2tkDAAC7y4GChHxkx2TghsIrkaCLm+90hHgkCALYgXZYGk7AcvYjOHsXNzEQO9ILgefAyOQAAF1uGRSxqZDro0O24CSEhJfOzk40NTUBAAYHB1FXVyd58WlWiXsgsVIXwn5ChScJOitXrpxzzTbif4IgoOPZ3aK2mPIycFYrtGlpWPnVr0BhCK5JPyIhZwRBwMfd1Ximei+GbaN45NoHkKSPhyAIGLGPweaaujP900u/Dvn5D/7Es0jImaUaPfYKxj95A67RvkU/Rm5MgDI+Dcq4dBhWb4YqJfxmgaScId6inAk+04vOSYODgxgcHERSUpJEUQFjToto2wVeokj8iwpPEnS0WuoOKBWB59Hx3POz2hmZDPFbLoA+Jzvoik4g/HOG5Vg88N7/w5nBqbtOL9W9gXvW3Ir3Wj8UHXt9wRVUdC5CuOfMUvAOG5xDXbCcPbZg0cnIldBkF0Ouj4YyNhX6oi1QGBM8TiwULihniLcoZ4KLp6ITAHJzcyUtOiMJFZ6EEABA4/97BALPQ5OS7HF/3Lq1iFpNi2FLweS0wDVjTN0bTe/jmlWXiiYImhznSch8OKsJ9s4z0K/aAEHg4eg8C2trtXu/Mj4djs6zsx4nU+ugzV8LfeFm6PIqaF1NQkjI6OjoQHPz7CEDubm5yM7OliCiyESFJyERThAE1P74vzB2ugaMUonk7ZdBGS1exzHlmquhiqG1HQPt7GAzqnrrAQAXZK5D62gHuPMFaKYxFRanDRdkrqNikyyIHe2HteEjWBo+gr29HhB4GDfu9DizrDwqHoxSA4G1g1Hr3F1oVUlZMFZsh1xrkOAVEELI0sxVdObl5SErK0uCiGbjeB7T+yoxNLkQIYFhsVjcYyL0+uDr1hlOBEFA25NPY+x0zcQ2y2Lg0AdIvuJyyDUaAEDWXXdIGeKihEvOODnWfQfT4XLCytrc+7RKDUqTVqN1pAPXF16Ja1ddBhkTnpMPBEK45MxcBEGAs691Yibasx/B2X9u1jHsUBfUaStntTMMA93KdWDUOsj1Me4vNozll0V00RnuOUN8j3JGeu3t7WhpaZnVHkxFJwDEaaIwNm1bEaZfKFPhSYJOc3Oze/rxsrIyqcMJW4IgoP2pZ9C15yVRO2exwN7Ti6TLL0X8po0SReedUM8ZJ8fijcb38PKZt/DTS+5HVkw61AoVKlKK0WcexLjDjGHbKLJjMpEXm41N6RVUdC5TqOeMJzzngvn0IZhrD8HZ0wzeYZ33eHao22PhCQDanFLIDbHQrVgLhnINQHjmDPEvyhlphUrRCQC8XTy5kMDT5EKEkDAxWXR2vvDirH2xG9ah4HvfBhOmU3kHmw/aPsLjp57HuMMMAHimei++d/GXAUzceYpS6937lHIFsqLTkGRIkCxeEnycg10Yfu9p2FqrIThtCz8AAGRyMArlrBk3DYVboEzIoO7bhJCQNlfRmZ+fj8zMTAkimh9nM4u2GUGY48jQRoUnCToJCQngOA5yOc3M6S/n/u8JdL/8qriRYZD9b7uQfvMNIfehM1RzpmOsG+80H3EXlgBwsqcGdf0NKEqamMgpNzYLibp4rIjPobucPhSqOTMdzzrQ/cQP4Ow7t6jjZdoo6FauhyI6EQLnAiNXQJ2UDWVCBpTxaXRncwHhkDMksChnpNHW1obW1tZZ7cFadAKAXq7E9D4qclDhSUhApKWlSR1CWGv537+j57X94kaGwYqvfAnJ2y+XJqhlCsWcGbQM48OOk1gVn4vm4XNwcE73vppphWdaVDIQJVWU4SsUc2YSZzNh7MTE3zCzwPIlcn0MtCvWIqrsEmgyCsDQUjtLFso5Q6RBORN4TqcTnZ2ds9pXrFiBjIwMCSJaHMWML/5kNLkQISTUDbx/OOyKzlDFQ8COVZdif8O7KEpaiVM9tUjQxeE/NvwbSlIKpA6PBBHeboFMMzExyfCh50T7VMm5s5Y+kemjoYrPgK5gM/SrN0NpjAtYrIQQIiWVSoXy8nJUVVWBZVkAwV90RhIqPAmJEKNV1Wj4/R9mtceuXUNFpx/ZXQ48d/pVrEktQllKkbs9SR8PQRAgYxjkxmbBoNIjJyYDqxPzJYyWBAuBc8HadBKmqoOwtpxCym3fhb2rcdZxcp0RcmM8eKsJyqRsqFPyELftTsh1RgmiJoQQ6RkMBnfxmZ2dHRJFp2larycAYCWKw9+o8CQkApibmlH/4K+BGbOkGUuKUfC9b0sUVfh74tTzeLf1Q1hZG073ncGvr1wN+bSujgzDQKPQwMra8G/lNyNGS2ulRjrnQAdM1QdhPv0+OMvU5PqjH74MTVaRx8foVm+GKi4NxjXbwcjpbZ0QQgwGAzZu3AilUil1KIsyytlFRRkbnj1tqfAkwefMmTNwuVxQKBQoKKAuh8tl6+5G3c9/Ad5uF7UbVq5A6s4dkKlUEkXmO8GYMw998Bec6Kpyb7ePdeGZ6r3YseoyxOti3e3XrLxEVIySwAimnOEdVpjrjsBUdRCOrgaPx7jGB6GMTwc71CVqV6fkTay5SRMD+V0w5QwJDZQz0gqVojOSUOFJgo7T6QTLsuDDdA2jQHIMDaP2pw+AHRsXtWszM5Fw0VYkXLBZosh8K9hyxuywIMOYijMDTTA5p9bmerPpfcRqo7Fz9XZ3GxWd0pA6ZwSBh62tFmPHXoattRrguXmP58wjEJziL4/iLr7DnyGSGaTOGRJ6KGf8RxAEnDt3DjKZDNnZ2VKHQxaJCk8SdBQKBQRBgEJB6bkcLrMFdT97AI7+flF7dFkpVn3r61BFh0+3zmDLGbVChSvyL0J2TDr+34f/gAABifp4rEktxtUrLpE6PALpcsY1PojxygMYP7Fv1oLhnqgzViOq/DIYCi+Ea3wQtnOnEVV2CWRqXQCiJdMF23WGBD/KGf8QBAGtra1ob293t4V68SkoxHdnw7SnLRWeJPgUFXkex0QWj3M4UPeLB2Ftaxe16/PzUfD970Kh00oUmX9InTOjtjFYWBvSjSkAAKVciQR9HOJ0MajqrYOVteE/Nt4LrVIjaZxkSiBzRhAE2JpPYrzyAKxnjy94PKPUQLdyHXSrNiKqeKu7XZWYCVVicK5BFwmkvs6Q0EM543ueis7W1lYwDIOsrCwJI1uelNIiVPadcW+rNOH5eYEKT0LCjMBxOPvQ/8BUf0bUrk5KQuH3vxN2RaeUxu0m/OaDv6A4aRUyjKnuwnMSAwZf2LALMhp/F7HsnWdhbakEAMiN8XMfyDBQxqVBlZwLRWwKGJkMutyywARJCCEhwFPROSnUx3MqYqIwljZVlhnUVHgSQoKcIAhoeuRRjJz4WNQu02gQt3EDZKrQvjAHk+Odp/DI8SfgcDnAMAzitDEAAF7g3YUmwzBgwrbDDPFEEASAd4GRK+HoO+cuOgFArjFAEZ0E19hU93eZzghVci5USdlQJ2VBnZIPRUwSZKrw/NBBCCFLIQgCWlpa0NHRMWvf6tWrkZqaKkFUxFtUeBISRs793xPoP/iuqI1RKpF4ycVQGPRQhtG4Tim9ULsPu2tec2+fHWxGVnQauk19GLQMoyylUMLoiBR4hxWm0+9j/JM3EFV6CWK23ASFIRbGiu0Yr3zHfZwqJRcu88hEt9mUXGgyCxFVegkYhr6gIIQQTyKh6IxT6rFu3ObeVkUbJIzGf6jwJEGnr68PHMdBLpcjOTlZ6nBCRuMf/4T+dw6K2hi5HIkXb4UqJgZZd4XvDJiBzpmN6RXYU/s6OGFqJtKT3TWI1hhxY+FVfn9+sny+yhnnQDtGDu2GpfEEwLkAAOMn30T05ush10dDEHjIFCrwronFwZUJGUguvhiq1FwoohNpGZQQQu9NxFuUM8snCAKam5vR2dk5a19BQQFSUlI8PCr0qOVKxLmmZj9m2PCcCZkKTxJ0+vr6wLIslEolXagXqelPj84qOsEwiN9yAdSJiUi/+UZJ4gqUQOXMZDfarJh03FZyLZ49/QoAIDUqCWtTS3Fb8bV05ypELCdnBM4Fy9njGPngebADs7+Bd40NwNp8CvqV68EwMiiiE+Ac6oaxYjsU843zJEGN3puItyhnlidSik5gYn4ORqEEzwsAAJ6jwpMQEoRGqqrQN7PoBBC3YT206WnIvPN2KoaWQRAEvHb2AGwuO64vuAIahRoAcEPBlajrb0Rh4gqUJK3GqoQ8+j2HOZdpGOOfvImxE6/NWlNzJuvZj6BfuR4AYCi+KBDhEUJI2IikohMAhpVqVOeUwWo2g+cFqFVarJA6KD+gwpMEndzcXPA8D5mMuqAtxshHn0AVFwvn4JC7Lbq8DPEXXoCkS7ZJGFng+CNneIHHmYFm1PSfBQCsiMsBy7HuwlMuk+OH2/6Tis0QtdicEQQB9vY6jH+8H5azxwFBmOdoBsr4NMRf+Rloc0t9GzCRHL03EW9RziyNIAhoampCV1fXrH2FhYVhefe449BhJLzyiXvbrpYB90oYkJ9Q4UmCTlRUlNQhhIz2fz0HhUGPpMsuxXhdPcZr62BYkY+C738HCm3kLJvi65wZs4/jkeNPoKq3DttyNiNRH4+m4XNoGj4HAFifVoq8uGwqOkPYQjkjCALGP3kDY8dehmtsYN5jGaUaqpQ8qFPyEHvhLZDraRKvcETvTcRblDNL09zcHFFFZyShwpOQEDVWW+v+mZHJEF1SDE1qChK2bomootPXWobb8NAHf8WQbQQAUNVbh4tzNkMln1qKJjM6TarwSIC4RvswduyVeYtOuTEe6tQVUCZkwFixHcqYpABGSAgh4cloNIJhmInlqc6jojM8UOFJSAhix8YwVl0zq10dH4/YiorABxRG3j933F10AsCofRwnu09jc+ZaAMCtxTvc63SS8GVpOAFV2grRmpsAAJkcqqQsqFJXQJOci6i1V9Kdb0II8aGkpIkv8erq6gAARUVF7rZw5eJ5UVEWrmuAU+FJgo7D4YAgCGAYBmq1WupwglLP/jc8tmfeeXuAIwkOvsiZk92nkWJIxL+V34xzo52oH2gEAMRqopEbm4n8uGysS6Nxe+HC4XDAZRqGtfYQjAWboE7OEe2P3rADcq0RtuZTEJw2yLQGqFJXQJWcA1VMMqLWXEEFZ4Sh9ybiLcqZpUtKSnL/7sK96ASAzG1b8aHBBEHgIQDQqXVSh+QXVHiSoHP27Fn39ONlZWVShxN0+g99MDHttlwuak+/+caI/SC8nJxxciz21r8JYOLuZmpUMr655XP4/tu/QoI+Ht/Y8llEa4z+CJtIQBAE2Npr0bn/75APd4CBAGGkB0k33i86jpHJIVNpoM2rAKNQQhGTDGP5ZdSdNoLRexPxFuXM8kRS11reZYNDZnN/WcEJ88+cHqqo8CQkhNh6e9H8xz9BptUgftMmqOJiAQCGFfmQ07epXnPxnLvoBIBB6wi6TL2IVkfhJ5d+HfG6WChk8nnOQEIF57Bg7NirGD/5FnjrmOjNz97dCIHnAEwUnJPU6SuhiE2GKjFT1E4IIWT5BEGAxWKBwWCQOhTJuUZ6wQ53Y3IgjyxMS7TwfFUkpMXExIDjOMjl9EFvOkEQUPezX4B3OsE7neh7+x0Yi4tgLC5C3Ib1UocnqaXkTNtoJ/QqPUqTV6N+oAmu84XH0fZPoFdqce3qy/0VLgkga/MpjH64F/bOswDHejzGNdKLkQ/2QJWUCUPBBe52RVQcFFFxgQqVBDl6byLeopyZmyAIaGhoQF9fH0pKShAXF9nX2liFFhWmqbuccmV4ThJJhScJOllZWVKHEJRaHvs77N09Uw2CANf4OJIuvUSqkIKGtzlztP1j/On4E7g4ZxM+v/5T0Co0+Kiryr3/qhWRsf5pOHP0t6F/7+/BDrTPf6BMDlViFji7Gbr8tYEJjoQkem8i3qKc8UwQBJw9exa9vb0AgJqamogvPjUyBRJZzr0tU4bnJIZUeBISAgSOA+9wQGE0wjU+DgCQaTRIv+lGaFNTJI4udAiCgD11r2N3zasAgAMtR5AWlYKdqy/HR11VUMtVuKHwSomjJMvBjvSib89DcPa1ARDmPE6mMUCVmg9N+kpEb7oeco0+cEESQkiEmll0AgDP86itrcXmzZuhVCrneTQJdVR4EhIChj48BnViAlKuugKmM2cxXlePuA3rkHTZJVKHFlLeajqEl+peF7U9VfUiVsRn47biayN2cqZwwNstGDn6IsaOvwrw3JzHKeLSoE5bAVVyLqLXXw2ZQhXAKAkhJHJ5KjoBgGEYFBYWRnTR2T80iAbzVJdshcuFHOnC8RsqPAkJAaqEBAgC4DKbYSwugj4vF1l33yl1WCFDEAQ8X7sPAPCFDbvwyPHH3fuuyL8Iq+LzqOgMcbyLxfjHb3guOuUKqFPzEVWyDbrVm6AwxAQ8PkIIiWSCIODMmTPo6+sTtTMMg+LiYiQkJEgUWXDoPtOImLqp9y+7yiZhNP5DhScJOk1NTXC5XFAoFFixYoXU4QQFY8FqoGA1AGC0+jTA85BrNBJHFTzmy5npy6UAQK95ABUpxajqrcXdZTfh+gJajzGUCTwHRiaHwhCD6M3XY/Tw7qmdMgXU6SsRVXYJjBXbRY+j6wzxFuUM8RblzIT5is6SkhLEx8dLFBkJNCo8SdCxWq3uda+ImMBx0OfkQGmMkjqUoDJfztT1N85qy4/LRrwulsZzhjBB4DFy+Hmok3KgL9gEAIjZdD1MJ98CZzNBm10CfeEWRFVc7vGLBbrOEG9RzhBvUc5MFJ319fXo7+8XtVPRGZmo8CQkSLEmExR6PRjZ1MxmjFxOReci2Vk7NEoNVsbnICc2AwDg4l042HIUDMPgc+vukjhC4i2Bc2H81DuQKdVgxyY+xKhT8+AaGwAAyHRGJF7/n1BEJ0EVnyZlqIQQEvHmKjplMhmKi4up6JyGkysioiiLhNdIQkxZWZnUIUhOEASc/fVvwZpMyP3MpxFDv5N5zcyZ184ewL6GA3jgsm8hQT8xPTsv8Dh07jhSDUm4KGejFGGSZbC116L/5T+AGx+EOrMQ2pxSAMB41UH3MdHrd0CXV7Go89F1hniLcoZ4K5JzZr6iM9KXTvEkQRUF07TtcL1HHp6LxBAS4gbefR9jp2tgPdeG2p8+gHNPPAnO4ZA6rKAnCAL+Vb0X/6x8AUPWEfzi/T9g3D5xKed5Hluy1lPRGWJcphH0vfgwep78CbjxQQCAo/MsOJtp1rFyHfUGIIQQqQmCgLq6Oio6ySxUeBISZNjxcbT+4/GpBp5H75tvo/vVfZLFFCpeOfM2Xpo2kVC3qQ8PHnoETo6FQq6ASh6u3yGGH4FzYfT4K+h49Muw1B+dsZOHrfmUqCnu4jsCGB0hhJC59PX1YWBgQNRGRScBqKstIUHn3ONPwmUS382JXbsGAstKFFFocHEujDvMMKoNGHeY3e2bM9dSwRlibG01GHj1T3CN9XvcL9fHQJNVBACI2XwDZCqa4ZkQQoJFcnIyzGYzOjs7AUwUnaWlpYiNjZU4suClkStFXW3lgmSh+BUVniToDA4Ogud5yGSyiFvXaex0DfoPHBS1aTMzoE1PQ/pNN0gUVfAbHBzEJ701WB2VAz6bx7utR2FjbdiavRGX5V0odXhkkVymYQy98wQsdR94PkCuhDanBKrUfMRecCNkKu2SnyuSrzNkaShniLciNWcYhkF+fj4AoLu7m4rORVDJ5KLtcO2SSoUnCTrd3d3u6ccj6ULNsyyaH/2rqI1RKhG7dg0A0Lqd8+ju7kacUw+5i4FWqcFF2RthcpiRbEiEUW2QOjyyAIFzYezEfowcfg6C0+7xGFVyDjQ5ZdCkrYChaPlfJkTqdYYsHeUM8VYk58xk8ZmWlgadTid1OEFP4HnxtkRx+BsVnoQEic49L8HW1S1qiykvg1yrRdZdNH5tITJm6vvBKLUBUWoDbi/ZKWFEZDFs505j8M2/gR3s9Lhfro+BdsVaKIwJiN6wA3ItTSBECCGhgGEYKjoXyaER9+DhZtwBDRdUeJKgk5mZ6e6aEilsXd3ofH6PqM2wciUKf/BdMPLwvPgsR9d4L16qewM3Fl2FDGOqO2cECGCcSqRGJSPFkCh1mGQBptPvY+CVP3jcxyg10GQVQZWaB0PBBVAlZYNhGJ89dyReZ8jyUM4Qb4V7zvA8j8bGRmRlZUGrXfrQBwIMOcRzezjBz3FkaKPCkwSdSBsHIAgC6h/8NQSXa6pRJkP+f3yBik4P6gea8Mv3/wAnx8Kg0uHTa28X5UwCIqs7UyhyDnXBXDsxjlOZkDHrbmdU+WUwVFwO8By0WcV+iSHSrjNk+ShniLfCOWd4nkdtbS2GhoYwPDyMiooKKj7JgqjwJERiHc89D1un+IN32nXXwpCXK1FEwauqtw6/PvxnuHgOAPB643soSS5AiiERGdGpEkdHFiIIPEYOPy9q0+ZVwDU2AIF1QJWSh4SrPwdN+iqJIiSEELKQ6UUnADgcDlRWVlLxSRZEhSchEnKOjaFrz0uiNoXBgLgLNksUUXA71nHSXXQCgAAB/3fyOdxZegMVnkHMZRqBc6gT9va6Wftkah20eRUQXCxSbv8emDAd10IIIeGA53nU1NRgeHhY1O5yueB0OqnwXCKWd2H6wm++G1gSXKjwJEGH46YKC3mYdzWt++nPwTudoraYNRWIWpEvUUTB7bNr74JWqcVrZ98BACTpE3Bx9iZsyVznzptwz5lQwrucGHz9f2GuOQTdirVQJed4PE6VlI3YC28JaNEZSdcZ4huUM8Rb4ZYzcxWdcrkcZWVliI6Oliiy0JegicbYtG0FE/r54gkVniTo1NbWuqcfLysrkzocvxn88BgsredEbdrMDOR94bOQKZWeHxTh5HI5/q38ZjQPt8HkMGNL5jrcWnItqqurIyJnQom9uwm9ux8Eb5l4K7W1VkMZnwZGoRIdp8sthyazIODxRcp1hvgO5QzxVjjlDBWd/sWzDtG2INDkQoQQHxF4Hi2P/U3UxigUiF27BsooWi5ikpW1QS1XQT7tThjDMLit+FrIGBmKklZKGB3xROBc6NvzEKxNnwDC1EpkAmuHra0Wuvw17rbYrbdS11pCCAlyHMehpqYGIyMjona5XI7y8nIYjUaJIgsfnHlUtM3wVHgSEhBRUVFwuVxQKMI3PQfePwx2WHwBjy4rQe6/f1qagIKMIAg42VOD5uE23Fh4FeQQFyclyatF25GQM6HA2d+Gnmd+Ds4y6vkAgYcgCIjZdB3kGn1AY5uJcoZ4i3KGeCsccoaKzsDQypWwTtuWQ5jz2FAWun8JJGzl5ob3bK6cw4GWv/1d1KaIikLKlVdIFFFw4XgO//Xu/2DENo4Ls9bjYMsRZEWnIysmDQaV52Il3HMm2Ak8h7FjL2P4/WeBaZM/TZLpoqFbtR7xl+6CXBccH1IoZ4i3KGeIt0I9Z+YqOhUKBcrKyqjo9CEVI17rVRam0wtR4UlIgDU/+hg4s0XUFlNRjrjNmySKKLj87ujfcHawBQDwYcdJbMlch3GHGTX9Z3F7yU6JoyMzOYe6MfDqH+HoavCwl4E6sxBR5ZfCWH5ZwGMjhBCyNFR0En+gwpOQALJ2dGDw0GFRmzo5GXGbNoBhwvPbLW/sO3sAH3VVurd7zf043nUKmzPWYufqy6ULjMwiCDxGj+zB6Ad7IHDsrP0ynRG6VRuRePXnwMjprYYQQkIFx3E4ffo0RkdHRe0KhQLl5eWIorkofM7Ou0Tbs/sOhQf6NEBIADX+4U8QOPHlJGZNORIu3CJRRMElQR8HpVwJ9nwhw4BBhjEVV63cBr1KJ3F0ZBI71o/e5/4b7ED77J2MDNGbr0fs1tsgU2kCHxwhhBCfo6LTvwZcVlFR5gjTexFUeJKgc+7cOfdg/JycHKnD8Rnn6CgszS2iNn1eLrJ33Q1GJpvjUZFlU8Ya/PSSaPz6g0dhcphxS/E1uK1454J3g8M1Z4IRzzrR/fgPwJlHZu1TRCci6cb7ockI/PIo3qKcId6inCHeCtWckcvlKC0tdd/1pKKT+AoVniTojI+Pu9e9CieNv/+j+G6nTIaUa66O+OVTeJ7H643vYn16GZINiViVkIdfXv5tnO47iytWXLSoc4RrzgQbR3cTLE2fQJtbDvPp90T7VKkrkHzzN6GMSZIkNm9RzhBvUc4Qb4VyzkwWn/X19cjOzqaik/gEFZ6EBIDLbsd4Xb2oTZeVheQrInvcoiAIeKFuPwCgbbQLyYZEAEBKVBJSokKjgIkEgiBg5PBu97YiJgnqtJVwdDeCUeugW7kBsRfeHDJFJyGEkIXJ5XKUlJRIHUZEcMnkEVGURcJrJCGmqKgIgiCE1WQ77U8+A97hELXFbaYJhZ6v3ef+uWOsG+UpRXByTkSpDV6dJxxzJhjwThtGj73icZ8mpxSQy6HJKED0+h1QGOMDHN3yUM4Qb1HOEG+FQs64XC4wDAO5XL7wwcRvUletRGPz1A0KuUYtYTT+Q4UnCTqhvNDyXHinE7rsLFg7OgGehzo5GVl33C51WJLheR6PffIMMqJSYHXZAQCcwOPlM2/hgsy1Xhee4ZgzUhs9sR+mynegW7XR44cmRq6AoWgrjGuuCMlZaylniLcoZ4i3gj1nXC4XqqurIZPJUFpaSsWnhFSpCegtmCo2DV5+DgoVwf0XQUgY4Gw2qOJiEX/BZsSsdcB67hyU0TERPaHQszWv4GDLEUSpDbh6xSUQILj3ZUanSRgZ4R029L/yR1gbjgMAnFFxUKetnHVc9MadkGv0gQ6PEEKID0wWnePj4wCA06dPU/FJ/I4KT0L8rOf1N90/y9VqRK1ejejSyB0zUd1bj5fr3wIAmBxm7K1/A+vTy5FuTMHtJTslji6y2dprMfDKH+EaG5hqa62GIiYZct3UYuGxW24Gowi9yTIIIYTMLjoBYHR0FGfPnkVRUZGEkUUuo0KLAsvUkCy1jO54EhIQo6Oj7jERMTExUoezbDPHdgKAsTgyL+yCIODJqhdFdzh5QUBebCauL7hyyecNt5wJNN7lxMj7/8LYsVeBaf82Ezs5OPvOQZtbhpgLboRMGR7jTihniLcoZ4i3gjFnPBWdAKBUKpGdnS1RVESvUCPT4XJvyzTCPEeHLio8SdBpb293Tz8eLBfqpbJ2ds1q06alBfVEA/5kc9nxg4u+jEc+egKn+84AAD5VfiN2rt6+rPOGU84EmqO3Ff2v/D+wAx2z9jFKDTQ5JYi7dBfUiZkSROc/lDPEW5QzxFvBljMulwtVVVUwmUyidpVKhfLycuj1NHxCKoLAi7ZdLCtRJP5FhSchfjRWVT2rLXbdGgkikd6ZgWacGWzCjYVX4Yfb/hOvnHkbDYMt2LHqMqlDi0gCz2H44FMY++g1YMYbHgBoMgsRd+VnoE7OBsNE7nhkQggJB1R0Bjer1oDeiq0wjY6B53koVTqskDooP6DCkwSd1NRU8DwPWYhPvmPt7AKjVCC6tBTm5iZwVhsAQGEIz37787GzdlT3TUwTfrDlCKI1RqyKz8P1q6+AzAdFTbjkTKA4+9vR8+wvwJmGZu+UKxB3yacQvfFaMLLwnWSCcoZ4i3KGeCtYcoZlWVRXV3ssOisqKqDT6SSKjExqfO892F894i7MnBo5cIekIfkFFZ4k6CQmJkodgk/0vvEmel7dB7lOh4SLt0KdkIDEiy+SOixJvHL2HffPg9YRDFpHAABFSbNnS12KcMmZQBh88+8YP/kmwHOz9sn1MUi65dvQZhZIEFlgUc4Qb1HOEG8FQ85Q0RkiXBw07LRxnbLZPZHCAX1tR4gf8CyLgfcOAQA4qxV9b7wF58goNMlJEkcmjVRDEi7Pu1DUtmPlpRJFE5k4pw2df/smxj/e76HoZKDOLETstjuhyVgtSXyEEEJ8i2XZObvXUtFJpEB3PAnxg+GPPoZrxoU+7bodEkUjncPnPoLNZcf2vK1gGAYquRJOjoVCJodBTeNJAoVnHRg98iJcppFZ+2QaA3SrNyJm406okmhGQ0IICQeTRafZbBa1U9EZnJwcC5XUQQQAFZ6E+IHcoIexpBjjtXWAIMBYUgxtaqrUYQVUt6kPj33yDBwuB6r76vHF9bvg5CZmabup8GqJo4scptPvgR3pAyNXQF94AUyn3gH4iSnbVSl5iNl0PQwlkdkFnBBCwtWZM2dmFZ1qtRrl5eVUdAahzPUbUGXrc2+rNeH55TwVniTonD592j39eGlpqdTheE3gOLhGx1D4w++Ds5jRf/A96HIi604Sy7H4fx/+HQ7XxBqmH3VWonm4DQ9c/i3Ea2N9vpxMqOeMvwwfek60LdcZoVu5DtamT6BbuR5J1381bNbl9BblDPEW5QzxlpQ5s2LFCpjNZjjOryWuVqtRUVEBrVYb0DjI4siiNBjP1MNut0EQBOgUtI4nIQEhCIL7v1A0fuYMbN3dcL79DhR6PXRZmYjbsF7qsALqRFc1WkfE60KWpxQhQRfnl+cL9ZzxB2vTSY/tqqRsKGKSEX/5PRG7nixAOUO8RzlDvCVlzmi1WlRUVKCyshIAqOgMcs7+Njj7Wt2T78jCtEQLz1dFQppWq4VCoYBSqZQ6FI/G6+phLCqcc//Y6VoAE5MKcVYrHANA/AWbF3xcOJExDG4ouBIHW47A5LQg3ZiC+9bc7rfnC/acCSTOOo6xj1+HIAgeC0ttVhG0OXS3hnKGeItyhnhL6pyZLD4nfybBK0quxkqr072tkIfn/K9UeJKgs3Klb5bY8If2fz2Hjmd3I/ueXci45aZZ+wWOA2Z8s6k0GtG55yW0/fMpZN55O7LuCsOFmaYRBAHtY91QypXYlrMZH3dX48Ks9VAr/DdsPphzJpCcQ93ofe6XcI30wrjhWhhKLoZzuBvscA8AIOaCGyO2a+1MlDPEW5QzxFvBkDNUcIYGg1yFHDvr3pbpwvPfLTzLaUL8YLyuHh3P7gYAtP3zKXTueWnWMZzDiahVK6FOiAcjlwMA7H19aPvnUwCAjmd3Y7yuPnBBS+Cl+jfcP2uUGmzN3oi82Mga4yoFW1stuh//PlwjvQCA8RP74OhrhTolDwAQu+VmKjoJISTMOJ1OtLe3UxdwEhKo8CRkkYxFhci+Z5d7e2bx6bLaYKqvR0xFOZKv2I7UHdfA1NCI7pdfdR+Tfc+usO9uW5ZciK1Z4jGtFalFEkUTGUzV76HnmZ+Bt4tnMBw9+iLk0QmIu/gOMArqHkgIIeHE6XSisrISLS0taG5upuIzhJlsVnTxMvd/3SwvdUh+QV1tCfHCZPfayTuYk//PuOUmDH5wBM1/ehSq+DgkXnoJ2LExjJ485X7sXN1zw82K+BzYWLt7O0qlh4yh77j8QRAEjLz/LEaPvDBrnyolDym3fx9ypUaCyAghhPjTZNFptVoBAJ2dnQCA/Pz8iJ44LlQ1n6yC4uOpYtOmskgYjf9Q4UmCTmdnJ1wuFxQKBTIyMqQOZ5a5is/h4ycAAM6hYXS98KLoMeFcdFqdNjxy/HHcXX4jMowTa5VqpxU7V6+8xO8xBHvO+APvcqL/xYdhbfx41j5tbhmSb/0uZCoqOucSiTlDlodyhnjLXznjcDhQVVXlLjonDQ4OIjs7mybAIkGLCk8SdIaHh93rXgXrm/tcxacn4Vx0CoKAxz5+Gh93V6O6rx73rbkdl+VdCIZhcGvxjoDd6QyFnPEldqQX3U/9BNz40Kx96vRViN58IxWdC4i0nCHLRzlDvOWPnJmr6NRoNKioqKCikwQ1KjwJWaKZxacn4Vx0AsBbTYdwtOMTAICTY/HXj5/GqH0ctwSw6Iw09q6z6H32l+DtM7vhMNDmr4E6bQW0uWWSxEYIIcR/HA4HKisrYbPZRO1arRbl5eXQaOgLx1DFMkxEFGWR8BpJiFm1atWcaxAGm4xbboLA82h/6plZ+8K96OQFXjSDLQDolFpcnL0p4LGEUs4sx9jHr2P4wBMQXKx4h1wBfcEFUMalIvai28L+9+ALkZIzxHcoZ4i3fJkz8xWdFRUVUKtp1vJQlqSJgWnadrjet6bCkwSdUPvGTpeZOatNplKFddEJAC/U7se2nM2o7q1H80gbAKAspRAJ+riAxxJqObMUI0f2YOT9ZwFBPNMdo9bBULwVhuKt0GYVSxRd6ImEnCG+RTlDvOWrnKGik4QLKjwJWaaWv/1jVhvvdKJzz0thW3zy54sfuUyONWklSDIkYMg6gstyL6S7AX4wXnUQI4efn1V0yg2xMK67GrFbb5UoMkIIIf5kt9tRVVVFRScJC1R4ErIMHXtehHNgwOO+6UuthBsGDG4rvhZmpwV95kEAQLoxhdbr9APLmeNwjQ1AX3QhLDWH3MWnMj4d8dd8Ebps+p0TQkg4stvtqKyshN1uF7XrdDqUl5dT0RlGVDJxSRaus2SE6+siIcxsNsNkMsFsNksdyrw697yE9n8+PavdWFri/rntn0+hc89LgQwrIBiGAcMwiFIb0GueKLxvLrxasnhCJWe8JQg8HP3nAADKmCToCjYDYKBKXYHkO35ARecyhGvOEP+hnCHeWk7OUNEZWTRyceEpFyQKxM/ojicJOi0tLe7px8vKgnN2zs49L3mczVau02HVN76GgXffn7XUSjjc+fQ0ScLmzLVQyOQSRTQhFHJmaRgYK7aDHe2Fa6QPACBbsx0xm66DKjZF4thCW/jmDPEXyhnireXkjM1mg9PpFLXpdDpUVFRApVL5MkwSBIQZhWaY1p10x5MQb81VdAKAJjUFCq0WGbfchOx7drnbw+HO598/eRYPHnoENqd4nInURWc4YxgGCmM8tFnF0OaWAwASrrgPqvh0iSMjhBDiT7GxsSgpKXF/2UtFZ3jjVeI72EKYfraiO54k6CQmJoLnechkwfe9yHxFJzBReE6auc5nKN/5rOyuxVtNhyBAwI8O/hZf2/zvyIoJnuInmHPGWwLHgh3pgypharFxQRDA2UyI3XIzGEW4TrIeWOGUMyQwKGeIt5abM3FxcSgpKUFrayvKysqo6AxjvU6TaNsOfo4jQxsVniTopKamSh2CR+N19aKi01hagvHTNe5tmUoFfV6e6DGeik9jYQGMRYUBiNg3zA4Lfn/s7xDOd/zoGOvG99/+Fb64YRcuygn8mp2eBGvOeEsQBAzs/wvMtUeQdMNXYSjcAmDizqc6OUfa4MJMuOQMCRzKGeItX+RMfHw84uLiaMZ4EhboaztCFslYVIjMO28HAGTfswuOvn7RfnVSEuI3bpj1uOndbjPvvD2kik4A+KD9Y9hdDlHbyvhcbEgvlyii8DXy3jMwV78HcCz6X3wYIx88D2HmwA9CCCFhhefnv7tFRScJF3THkxAvZN11B2LKy6BOTJzV5VadnAS5TuvxcRm33BRydzonFSetxGfX3YkX697AoHUYCbo4XLPqUmiUtJi6L1mbPsHoUfE44JHDz0OVnAf9ynUSRUUIIcSfbDYbqqqqkJeXh6SkJKnDIRJxcE5EwjzFVHieJwgCXnvtNezZswf19fWwWq1ITEzEhg0b8KlPfconM9idPHkSTz/9ND755BMMDg5CrVYjOzsbl112GXbt2oWYmJjlvxDid8aiQrQ9KS46GYUCUYXzF5WhWHQCQGZ0GjKj03BR9ib87N3fY1VCLjZlrJE6rLDiHGhH7wu/wcx57HSrN0GTvkqaoAghhPiVzWZDZWUlHA4H6urqAICKzwiVqInB+LRtJUOTC4Utu92Or33ta3jvvfdE7V1dXejq6sKrr76K+++/H5///OeX/By/+c1v8Pe//13UxrIsamtrUVtbi2effRZ//OMfsWYNfaCvr693Tz9euEAxJ5XBo8dE2+rkZEQXh/eaigqZHF+94D4k6xOkDmWWUMiZuXDWcXT/80cA5xK1a7JLEFV0IeS6KIkiC2+hnDNEGpQzxFvz5YzVakVVVRUcDofoeLlcjvj4+ECHSqQ2o7u1INDkQmHrhz/8obvozM/Px+23346EhAR3QWi1WvHwww8jOTkZN9xwg9fn//vf/+4uOpVKJW6//XaUlpZifHwcb7/9Nk6cOIGBgQF8/vOfx4svvojMzExfvryQw7IsWJaVNIbxuvo571Cy4+Owd/eI2jQpyZCpVDA1NCJ2TUUAIgw8uUyOFEOi1GF4FAw5sxQCx6LnqZ+Ct1tE7crELKgzC6Ev2CxRZOEvVHOGSIdyhnhrrpyxWq2orKyctU6nXq+H0WgMVHgkiLjGB0XbzALjfkNVxE8udOTIEbz22msAgM2bN+Oll17Cpz/9aezcuRPf/e538cILL7i7wD744IMwm81enX9sbAyPPPIIACA6Ohp79uzBT37yE9x0002499578eSTT+JLX/oSAGB8fBy///3vffbaQpVSqXT/J4X2fz2H09//0Zzrbg4cOizaZuRyxKypQP/Bd3H2Vw+h4/k9gQjTr8xOC3pM/QsfGCSkzpmlEAQBvc89COdAu6hdHhUH3cr1iLv4DokiiwyhmDNEWpQzxFuecmauotNgMKC8vJzyK0Kp5eKutTKE58SCEX/H8x//+AcAQKFQ4Be/+AXUavHQ3vz8fPz4xz/GN7/5TYyOjuL555/Hfffdt+jzHzlyBFarFQDw2c9+FqtXrxbtZxgGX/3qV7Fv3z60t7fjwIEDcLlcUCgi959Gyi5M43X16Hh2N4C5193see110bY6KRG2jk70vfkWAKDrhRcRt25tyI7prOypw/HOU7g09wIoZHIYVHpoFOqgnlUvFLu9Db7xGGyt1aI2RqWFvuhCxF18R1D/vsNBKOYMkRblDPGWp+61norOqKgolJWVUdEZwTSM+HO/HOH5GSCi73iOjo7i6NGjAICLLrpozi6uO3bscPe3f+ONN7x6js7OTvfPBQUFHo+RyWQoKSkBMDHQfGRkxKvnIL5jLCp0L30CTBSf0+98uqxW2Pv6xA9iZO6iEwAy774zZItOi9OKh4/8FQdaPsDjp57HW02H8OrZd/BJ92mpQwsrlrMfwXTyLXGjTA598VbEXngLGHnkfvFECCHhiIpOQiK88Pz444/daydt3jz3WCqZTIYNGybWZ6yqqsLY2Niin8NgMLh/7ujomPO47u5uAIBcLkd0dPSiz098b/q6m4C4+Oze+8qsAeD28/92AJB+681Iv+G6wATqB09XvQQHN/Gm2DR8Dm82vQ87a8fqhDyJIwsfzv529L308Kx23epNiL3wZsi1NJkQIYSEE4vFMmfRSd1rCQC4ZkwmFJ4dbSO88GxsbHT/vGrV/EsWrFixAsDEuKyGhoZFP8f0ZVieeuop0exlkz766CNUV090udu4cSNUKtWiz0/8Y67ic+ZsttOlXLsDqTuuDkR4ftEy3IYDLUdEbbGaaKgVakSpDXM8iniDs4yhd/d/e5zBNvmGr0IZTdPoE0JIOLFYLKiqqpqz6IzkoVVkSg8rnkPGFp49bSO78Ozq6nL/nJ6ePu+xKSkpHh+3kJKSElx88cUAgJaWFuzatQvHjh2DyWRCb28vnnnmGXz5y18Gz/MwGAz49re/7eWrCD89PT3o6upCT0/Pwgf7kafi0zbHv33aTTcg6bJLAxWaX2RGp+G2kp1QyibeBOWMDBWpxbijNPjv4AZLzizEVHMIrjHxpE2TM9gycvrGO5BCJWdI8KCcId5qaWnBoUOHMDQ0JGo3Go1UdJKIFNEZPzw87P45NjZ23mMnZ7YFJsaGeuP3v/89vvGNb+C9995DdXU17r333lnHrF27Fj/60Y9QXFzs1bnD0cDAgHvdq9TUVEljmZxYaHKioZndbIGJ7rXJ2y+Hy2INZGg+p5QrcWvxDmzNWo+/ffIs1AoVbineIXVYixJMOTOf6I07wTAMht55AhB4KOJSoVu1AbEXeL9ME1meUMkZEjwoZ4g3WJbFyZMn4XQ6IZfLERU1MYzCaDSirKyMik4SkSL6jqfdbnf/PHM225mmd3+d/rjF0Ov1+NWvfuW+8zkTwzDIzc0VFbckeMy88zld+s03IXXHNRCE8OmNnxKVhB9u+098c8vnYaQutj7FMAyiN+5Eyh0/gDIxC9EbdsJQuAUylVbq0AghhPiQUqlEXFycqI2KTjIXdsZM9uHzqVIsojPf5ZoaZ7XQuMrp+6c/bjH279+P73//+7Db7UhOTsZtt92G/Px8WCwWHD58GG+99Rb27NmDN954A48//rhoXKgUmpqakJ+f7/52DgAcDgfOnj0LYOLub1ZW1qzHTC4bMzP+wcFB9+RJmZmZorvLHMehtrYWwMR4h9zcXOTl5UEQBDAMg3PnzmF8fBwAUFRUJLpYj46Oor19Yg3E1NRUJCYmip739OnTEAQBWq0WK1euFO3r7Ox03/FetWoVNBqNe5/ZbEZLSwsAIDExEampqci45SZ07H4B/PQvHRRypO4U3xHs7+/HsMUCRqVCXl6eaHIpu93uHh8cFxeHjIwM0WMbGxths9nAMAxKS0tF+wYGBtzdu7KyskRfUrhcLtTV1QGYeFPLyckRPba1tRUmkwkAUFxcDPm0taJGRkbQ3NYCXuCRm5Hj/h0yDAOGYdxjj3U6nXuc86T29nb33f/Vq1eLvrwxmUxobW0FACQnJyM5OVn02Lq6OrhcLqhUqlmzPXd3d2NwcGIh5fz8fOj1evc+m83mHpsdHx/v7iI/mTOdnZ2orq4WzRQ9qb+/H729vQCAnJwc0SLdLMuivr4ewMR6u9nZ2aLHNjc3w2KxAJjoPi+TTX1nNzw87J69OiMjQ/RBg+d51NTUADwPPWdG3totYBgZdPlroMktRXtLC8b7xoG+ahQWFoommBgfH8e5c+cATHT1T0oSj/+sqakBz/PQaDSzxqh3dXW5u3atXLkSWu1UYWuxWNDc3AwASEhIQFpamuixZ86cgdPphEKhQFFRkWhfX18f+s7P6pybmyvZNWK6pV4j8vLy0NLSAkEQ0NjYuOxrxHT19fXuO2Mzl1Po6enBwMCAO4ZQuEZMToyXlpaGhIQE0WND5RoxqaGhAXa7fUnXCEEQoFAooNPpMNOyrxGY+JI6Pz9fdN62tjb3hIZ0jQjsNQJY/ueI+Ph46PV6jI2NITo6GqWlpVAoFHSNOC/crhHL+Rwh1+oxHj/tfqB24m9dqmvEZA76WkQXntMvEizLzlt8Th8U7s3kPwcOHMC3vvUtcByHTZs24c9//rPoInLbbbfhgw8+wJe//GVYLBZ89rOfxb59+2Zd/AKJ4zj3bL+TBEEAy7Lu/TO5XC73/pl4nnfvm3leAO59kwX99N9Pb2+ve//Mu4rTY5rrvJMfFOaLdzHn7dzzkrjoBAAXh579ryN1xzXTXuvEYxmGmfe8nr68YFnW/diZpv8OvT3vfP82HMfhSP8nUMoUiEmIhZ41QCNXuy+I852X47g5Y5oer6d8YVkWLpdLdOFdzHnnysPJnJl83oXOO19+e/s7XDC/bWZoWo+DV6nAF5W7Z62VyRTgGPmyfoc8z4s+AHh6rYv9Hc58rZ7u4i/2d+jva8Rc5/XmGmEwGOByuUTH+OK8k/Eu5rWGwjViOf82wXSNmH7epV4jJl+jp9+/FPlN14gp/rhGTJ53uZ8jMjIykJ2djYSEBPd56BoxIdyuEcv5HQqp8WjfMPUFkGFajzMprhGe/i19IaILz+nfWjocjkUXngt1y50kCAL++7//GxzHITo6Gn/4wx9ERdWkrVu34tvf/jYeeOABjI2N4R//+Ae++93vevFKfEsul8/6g2MYxv0tiqcEVSgUc04HLpPJ3Ps8/SFP7vN0YZ9+3pkX0ukxzXVeQRA8xuXNeTv3vDQ1xhMAo9FAOF+Edr3wIgAg6fLLzh8/8VhGqZz3vJ5eq1KphMvl8viGMf136O155/u3OdLzCWRyOTgIONpzErqxM7g4ZxNSDInumOY6r1wunzOm6fF6yhfl+d+Pt+ddKA+VSiU4jvOYD9PPO19+e/s7nCu/OcsYXHYL9O0fA+f/pjirCTKNwf265svDxfwOeZ73GNdyfocKhQI8zy/4b0PXiIXj9XTe5fwtS3GNWM6/DV0j4D6XP/KbrhFTgv0aMX2Cyunx0jWCrhGT5/IUy/SYFnNeX14jPL1+X2CEcBqc5qWf/OQneO655wAA77zzDjIzM+c89vnnn8ePfvQjAMBvf/tbXHfdwjN91tXV4aabJianufvuu/HTn/50zmOdTic2btwIm82G/Px87N+/35uXsixms9nd/QWY6O7gqUCORDOLzozbbkHiJdvQ+/qb6Hltn7s97cYbkHDRVqhiY6Aw6CFf5JcTUrK7HPjRO79BXlw2EnRTXb9uKboGctncF0CyMMHFovvpn8LZ2wp94RYoYia6t2hzSgGem/g/IYSQsGAymcAwDH12IkvWXfMuKt9+zL2t0cfiss//WbJ4/FUbRPTkQtP7sC80Pfpkn24As8Y7zGWyXzWw8DqhKpXK3W97cixIpLLb7bDZbF5P4uRrM4vO7Ht2IfXaawAwSLr8MqTferN7X/fel9F/8F0Joly6gy1H0D7WjfdaP8S7rUfRY5oYlxOKRWew5Aww0dNhYP+jcHSeheBywlzzPhy9E+MBbedOg7OMSRwhAYIrZ0hooJwhnphMJlRVVaGqqgpms3gtRsoZsljRSh0KrE73f/mee+WGvIguPKcP0J0caDyXyf0Mw8waYL4YDodjwWMmb2vPd7s9EjQ0NKCurs49gF4KM4vO2HVrEbNuDTCtG0PqjmtExWfvvv3o2f96QONcKo7nsK/hoHt7yDqC5uE2XLXC88zLwS4YcmbS6JE9MJ9+f6pBEGBvr4PATbyLGIq3ShQZmS6YcoaEBsoZMtNk0Tk5zm5m8Uk5Q5ZqrvGgoS6iC881a9a4+zUfP358zuM4jsOJEycAAAUFBaJZrOYzfQauyRmp5uJyudyzJC72jirxj5lFpzImBiOfnETV/d9C3QMPYvzMGfe+mcVn1wsvomvvKwGNdyk+7DiJAYt4QesLMtchWrO43CaeWc4ex8j7/xI3yhQwFG8FI1ci9qLbpQmMEEKIT00vOiexLIu2tjYJoyKhStAawJRehLGMUgynFcOUnL/wg0JQRBeeRqMRmzdvBgAcPHjQPVX3TPv27XNPmX3NNdd4PMaT0tJSd3/oAwcOzNud9+WXX3Z/S3bhhRcu+jnCUVxcHOLj42etfxUI43X1oqIz/eYbwZ6f6huCAEtTM8br6jF9haXUHdcg7cYb3Nsdzzx7/pjgtS6tFPdU3Ip47cSU9CvicnBn6fUSR7V0UubMJEffOfS9+D+z2vUFmyDXxyD2ots9TvhApBEMOUNCC+UMmTQ+Pj6r6ASA2NhY0dIelDNksao+/ADVLxxF+4E6dL17Bi3vVksdkl9E9Ky2APDpT38ahw8fBsuy+MY3voG//e1vosGzTU1N+OUvfwlgYv2c2267bdHnVqlU2LVrF/7yl7/AarXi/vvvx6OPPjrrAnTy5Ek8+OCDACZmmLr33nt98MpC18x1qQLJWFSIzDtvR8ezu5F9zy4wM2b6kqlUUEVHz3pc8lVXgGdZ9O7bj/Rbb4axqHDWMcFEq9Rg5+rLcfWKbfig/QTitDEhXRRJmTMA4DKPoPfZXwC8+EOIJrcM2uwSGNdeKVFkZC5S5wwJPZQzBJgqOmcuTxEbG4uSkhLRcCnKGbJoZhsSxqZyym4Pz7lfI77w3Lp1K6666iq8+eabOHXqFG644QbcddddSE1NRV1dHf71r3+5F3z9zne+M6toPH78OO655x4AwMaNG/Hkk0+K9n/xi1/EoUOHUFdXh8rKSuzYsQM33XQTCgoKwHEcjh07hn379rm/NfvhD384azFbElhZd92BmPIyGIsK0fv2AeiyMmHr7oHgckGdkgxDfq7HxyVddimiS0sQu7YisAF7adxhxhuN7+G61duhVWpwSe4FUocU0niXE30v/AaceUTUrkzKgTp9NRWdhBASJrwpOgkhs0V84QkAv/71r2GxWPDBBx+gs7MTDz30kGg/wzD4yle+gjvvvNPrc2u1Wvz973/H17/+dRw7dgwjIyP4xz/+Mes4pVKJH/zgB7jrrruW/DqI70zesYzfvBG6jHTY+/sxXlcP3u6ALjsb/ByDvqNWeT/xVKC90fgeAKBxqBUGlQ4J+ngY1TQF/FIIgoDBfY/C0SWeOEJuTIBu5TrEb/P+mkEIIST4jI2Nobq6elbRGRcXh+LiYio6ybI4ORYqqYMIACo8MVEc/u1vf8Orr76KvXv3or6+HiaTCTExMVi3bh3uuecerFu3bsnnj4uLw+OPP44DBw7glVdeQVVVFYaGhqBSqZCeno4LL7wQ//Zv/0Z3OoOQMioKysICGAsLkHDBZpiamsHIZAjV5W87x6bGGZ8ZbAYApBqScFHORqlCCmmjR1+CueaQqE2m1kNfuAWGgs0SRUUIIcSX5is6S0pK3KsSELJUyYWFaGxrdm/L9ToJo/EfKjzPYxgG119/Pa6/3rsJVjZt2iRaYHW+82/fvh3bt29faogRo7GxESzLQqlULmnpGn9hlEpoUlPB22xSh7JkxzpPzWorTy2SIBLfkiJnLGeOYeS9p0VtjEINffFWyFQaqFPyAhIHWZpgvc6Q4EU5E5mWU3RSzpDF0makYXRzFmw2GwRBgF5JhSchAWGz2cCy7KzZ4qTGMAxkMgb8PPuD2d76NzFoGUZWdBrkMjnGHCYACItutoHOGUdvC/pf+cOMVgYJV38OrrEBxF5My6YEu2C9zpDgRTkTeZZ7p5NyhiyWo7sR9s4zYABMfJoMzxItPF8VCWkMw7j/I74xah/H8zWvgeVdiNfG4qqV2+DiXNiQUS51aD4R6JwxVR2EwDpEbXGX3wND2SWUtyGCrjPEW5Qzkae7u3tW0RkfH4/i4uJFda+lnCGLpZUpkeqYmj9EKQ/P7ttUeJKgU1paKnUIcAwNYeTkKSRsuQAKvX72ASE2xPONxnfBnl/qY8g2gudOv4JvXfhFrIjLkTYwHwl0zugKNoEd7YOt6SQAwFB2GaI3XUcfLkJIMFxnSGihnIk8q1evBsdxGBwcBOBd0QlQzpDFi1FoUGJxurdlOo2E0fgPFZ6EeFDz4/+Cc2AQfW+9A8OKfCRsvRDRxefHQoZYceF0OfF202FR28U5m7Eund4Ql8LWVgt7Wx2i114NXf46WBqOI/Gaz1PRSQghYUYmk6GoqAi1tbUA4FXRSQiZjQpPQmbgOQ7OgUHwTifMDY0wNzRCplBMFJ4hWFzIGBmuXnkJqnvrcXaoBQBw3Wqa5Gop2JFe2NpqAAD2niYAgDp9NVzmYShjkqUMjRBCiB/IZDIUFxe7fybEHzieBzutN50sRFdPWAgVnoTMYD7bCN7pFLVFnV/XMxS9WP8GAOALG3bBwTlR03cWGdGpEkcVegSeg+n0+7PaGYaBIjpJgogIIYT4iiAIc/ZcoYKT+Nvpj07AVTmVf061BeE4DzIVniToDAwMgOd5yGQyJCYmBvz5R06eFG3L9XrEb94067j53qSChYufmhShdaQDF+VsRKIuTsKI/MOfOePsb4NMa8T4qbc87jdWbA/6PCCzSX2dIaGHciZ8jYyM4Ny5cygpKYFSqfTZeSlnyKJxPDTTb3mG6ccKKjxJ0Onp6XGveyXFhXq0skq0rU5KDNnC4sW6190/95r7sbvmNRQmrkCppkDCqHzPXznjMo2g59lfgHfYoC/eCoUhVrTfULgFCmO8z56PBI7U1xkSeihnwtPIyAhOnz4NnudRXV2NsrIynxWflDOEiFHfAUKmEQQB1o5OUZsuM2PaVmgWoMDURLzFSaskjSNU8KwDfc//CpxpGILTBnPVQTgHu9z7FVFxUCVmShghIYSQ5RgeHnYXnQBgMplQXV1N626SgHOF8OdLb9AdTxJ0srKyJOvGauvsBG+3i9qU0TELPzAIB4ELgoBLcy8Ay7vgdDnxUdfEnVwZE37fN/k6ZwRBwMBrf4Lj/ARCAACeg7O7Acr4NDAMA+OaK3zyXEQaUl5nSGiinAkvw8PDqKmpcRedkzQaDeRyuU+eg3KGLFaMJgrTP32Ga4EWrq+LhLCYmBjJnnv4oxOibZlajeSr5pgBVhCCdpZbi9OKN5vex/a8rUjUx6OuvxEAcFvxtRJH5h++zpnRD16Ape6IqE2m0UNXuAUMwyDmght9+nwk8KS8zpDQRDkTPuYqOpOSklBYWOizQpFyhiyWkpGLCs/g/HS5fFR4EjLNaNVp0bY6MRH6THF3yiCtNUXebT2KZ0+/gj21+3FR9kZcuWIbbi/ZKXVYIcFcfxQjh54VN8qV0BdthUypRuxFt9O314QQEqKGhoZQW1vr96KTEDJb+PW5I2QZLC2tom19Xq74gPnej4LkvYrnebze+B4AgOVdONh6FC+f8TwjKxFz9DRj4JU/zmhloC/YDLk+GtHrr6EPJYQQEqKGhoYCcqeTEG8pZizZE66ZSHc8SdBxuVzuMREKReBS1Dk8ApfJJGpTJ3i/9IjUb1wfd1djwDIkart21WUSRRMYvsgZl2kYvbt/BcElXsNVk1cOZVwqtJmFkOuMvgiXBAGprjMkdFHOhLbJolOYMSdDcnIyCgoK/PLeTTlDFksnV2Fk2rYi+KYO8Qn6KyBBp66uzj39eFlZWcCed6y2TrTNKJWILi0N2PP7yqmeWmQaU9Ft6gcncMiNzcTK+NyFHxjClpsz7hlszcOidm3+WqhS88EwDLS5gctF4n9SXWdI6KKcCV1SFJ0A5QxZujCtO6nwJGTSWPWM8Z0J8dDn5c0+MIi74giCgFhtNDZlroXd5UD7aBd0Sq3kd2GDmSAIGHj1ETh6mkXtmqxiJN3wNTj726DJKpIoOkIIIcsxODiI2tragBedhHiDUarFDTLfzKwcbKjwJEHHaDTC5XIFvFvKaFWVaFudmAhltLhrZbC/QZ3uO+P+WaNQY1VCHnJjw3+tyeXkzMj7/4Kl/qioTRGbguRbvg251gBtdrGvwiRBRKrrDAldlDOhZ3h42GPRmZKSgtWrV/v9PZ1yhixWp1M81MsGfo4jQxv9JZCgk5OTE/DndJnNcPT1i9q06WlBX2jOZGVts9rWp4V/956l5oy57ghGj+wRtTFqHZJv+y7kuigfREaClRTXGRLaKGdCj16vh1arhdVqdbcFqugEKGcImYlmtSUEwHj9GXGDTAaFwSBNMMuwKWMNrl11GS7MWg8AMKh0IVc8B4ogCLOXTWEYGNdcCVVC+N8lJoSQcKdWq1FeXg6tVgsgsEUnIWQ2uuNJCICRk5WibXV8PBK2bpn/QULwDf1mGAZ6lQ5apQa3Fu2gN9d5jJ/YB13BFtiaT8LZ2wIA0OaWQ5Oxin5vhBASJtRqNSoqKtDd3Y2cnBy6vpOgxPIslFIHEQBUeBICYLRy5vjOBOgyPd31Cs43LBtrx7jDhGRDIgBAxsiCNdSgYO84A85uASOTQbtiHeS6aHC2cajSVkK/epPU4RFCCPEhtVqN3Nzwnt2dhLZopR7WadsKJjw7pVLhSYJOa2urezB+IN4oOIcD9p4eUZs6MRGM3IsZxSS++Xm47Tj+9smzKE1ejcvyLsSG9Aqo5JHw3dkEb3LG3tUAa+vUFw0Mw0CdvhIAEHvRbX6NkwSPQF9nSOijnAlu4+PjiIqKCqo7mpQzZLGUMz6zMcHXqc4nqPAkQcdkMrnXvQrI851tEHebZRioEuID8ty+8k7zBwCA031ncbrvLC7O3oSvbP60tEEF0GJzxmUagbX5lMd9sRfdBiZMv2EkswX6OkNCH+VM8Orv70d9fT2SkpKCaokUyhmyWOyoeIJL8Jw0gfgZFZ4k4o3X1Iq2lbExiC4tmfsB59/QBEEIit6szUPncG60U9S2JWudRNEEL2tLFaznqiFTqGbtM669iopOQggJQX19faivr3f/zDAMTSBEQo5iRr6Ga/ZS4UmCTnFxYNdNHP7kpGhbnZiIqNWrPB8835VAoqtEVW89lHIlWI4FAGiVGhQkrpAmGIkslDP2rgb0PvsLyDR66Iu3Qq6dWirFULwVCkOMnyMkwSbQ1xkS+ihngs/0onNSb28vYmNjkZycLFFUUyhnyGLpZUqMT9sO1wItXF8XCWFyb8ZWLhPvcsF6rk3Upk5MhEKnW/pJA/wtq0vgsHPV5ega70XraAcSdHHQKbUBjUFq8+WMa3wQPU//DBB48DYTzJUHoCvcAmVMEvQr10MVnx7ASEmwCOR1hoQHypng4qnoBID09HQkJSVJENFslDOEiFHhSSKapbkFgsslatOmp0kUjfdc3ETscpkcWTHpyIpJD8plXqTCO+3ofe6/IbB2d5vgcoId7IQyJgnq1HwJoyOEELIUvb29OHPmzKz2jIwM5OfnUzdbQoIUFZ4koo3Xib8tVRiNiFo5fzfVYHpDkzEyXJa7BWanFRbWitr+BlySe4HUYQUFQeDR/8of4Ow/J2pXxCRBm1eB2ItulyYwQgghS0ZFJwlHnU4Tpt8ft4ZpGlPhSYLOyMgIeJ6HTCZDbGysX5/L3i+eRUydmABjYcHcDwiyNzSZTIYEfRwS9HEYso6A5VxIMiRIHVbAecqZkfefhfXscdFxiugk6Aq2IG7bnfThJMIF8jpDwgPljPRCreiknCGLJUi9Ll+AUOFJgk5HR4d7+nF/X6jzv/A5ZN11J8brz2D01CnErKmAwmDw63P6gyAIUMtVKE8plDoUSczMGXPNYYwe2SM6RqbRI2HHF6HNKQm6Dyck8AJ5nSHhgXJGWj09PTh79uys9szMTOTl5QXldZ1yhhAxKjxJxFMaoxC/aQPiN23w7oESjqXkBR4MGPcbLcMwMKj1ksUTTGydZ9D/6h/FjYwMSTd/E7rccmmCIoQQsmShWHQS4g0XmIgoyiLhNZIQk5aW5u6aQjz7uKsa/zj5HHJiMvAfm+6FUR16d2l9aTJnBMsIep/5+ayFl+Ov/AwVnUSErjPEW5Qz0uju7kZDQ8Os9qysLOTm5gZ10Uk5QxYrJj4BI7qpXObU4TkjMhWeJOgkJARmjCLvdMLS1g5Dfh6YRb8pBMcb3N76NzFsG8WwbRRfeOV7uLnwatxWslPqsCSTkJAA3mlD5/P/JZrBFgDUmQWIXn+1RJGRYBWo6wwJH5QzgceyLFpaWma1h0LRCVDOkMWLLluNj80fu7cNYXpDgb6CIRGrc89LGPn4E/AsC2HZ3WYD1+120DqMpuFz7m2O5yBjIvtPWRB4dD3+fbhG+0TtiphkGNftkCgqQgghy6FUKlFaWipaDzM7Ozskik5CyGx0x5NEJM5mc//c9eJeMDIZostK55/RNki803xYtK2UKeBwOSWKJjj0Pf9rsAMdojaZNgq6ggsQVXyhRFERQghZrujoaJSVlaG6uhoZGRnIycmhopOEHaVMgVh2apiQTilhMH5EhSeJSH3vHMRoVTVU8XFQxcVBodNBFRuzuAdL/IaXqIvHxTmbcW6kA53jPciITsOO1ZdJGpOUzA0nYO8Qr8fKKFTQF29FzAa620kIIaEuOjoaGzZsgFqtpqKThKUElQHrTVNDhRSKGOmC8SMqPEnQqa6udk8/XlZW5pfnGK2sgql+ai0wXU42su66Y8HHzf9+F5g3w3XpZciNzcS4w4Ka/rPgeA4xGmNAnjvYCDwHZ28L7OkVkPeegdwyBDAMdIUXIGbDtVAY46UOkQSpQFxnSHihnJGWRqOROgSvUc6QpXI6w7MnGxWeJCI5R0ZF2+oQmgAgRmNEjMYIXuBhcphRkrxa6pAkYzl7fOIHuQLO5AIozf2IMhiQdO1/gJHT5Y0QQkJFV1cXACA9PV3iSAgJPEajh77gAoyOjULgBSBMl8ijT2Yk6Oh0OrhcLigU/klPgeNg6xCPB0zcdpFfnsufnByLdWml0Km0UociCUEQ4Dw/rlOpVEIul0OmzUbyNZ+mopMsyN/XGRJ+KGf8p7OzE01NTe7tcCk+KWfIYp2uPoWWA6cACBPTVaqVKPg3iYPyA/pLIEFnxYoVfj0/53AidecOmJuaYW5qBme1IqaiYvEnmOxvu+yZcJdHo1BL+vxSGzm82/1zbFyc+2eZOjILceIdf19nSPihnPGPmUVnY2MjGIZBWlqahFH5BuUMWSxX/xCyuqbGeNrVrITR+A8VniTiKHRa5Nw78TWSwPNw9PdDaYxa3IMlnNTAxtrRNd6LvLisiF8+xWUa9tgevf6aAEdCCCFkqTo6OtDc3DyrnWXD80M3IZEusj+9kojlMpsh8DwYmQyalBSpw1lQ83Abfvn+H/H+uWOBXDI0KLlMwxh45Q/g2dkD7+W6yJxkiRBCQs1cRWdeXh6ys7MliIgQ6bC8S+oQAoLueJKIY2psglytgs5gkDqURXuhdh8ahlrQMNSC+oFG3Fl6PSpSiqGIwLGMQ2//H2znTsPRdw7GdVeDUaohuJyIveh2qUMjhBCyCO3t7WhpaZnVnpeXh6ysLAkiIkRa0enp6E6f+lwq6MJzOFXkfWolQa+9vR0cx0Eul/vlDWjk40+gTkoEz7ogU6uhTkyAXO39H7gQoDGeNtaOqt6pdSrbx7qxv+FdFCSugCHCCk9r8ylY6o8CAHibCaMfPA/j+mtgydmMsXPn/JYzJPz4+zpDwg/ljG9EUtFJOUMWK7a4ENVCGxx2BwRBgF6lkzokv4isT60kJIyOjrrXvfL1hZodHwcAOPoH4OgfAAAkX7l98YUnwyBQ63VOOtr+MVzTumAwYJAdkwGDKjyn2p4Lzzow+Mb/itpkGgOMG3agu3MQrHnYLzlDwpM/rzMkPFHOLN9cRWd+fj4yMzMliMi/KGfIYjl6W+DoaoQgCBAggGeUUofkFzTGk0QUy7m2WW2qaTOiLpU/734WJa7EtpzN0ConFs9OjUrC1Su3+e35gtXoBy/ANdonaou7/B6o4kJ/5kNCCAl3bW1tEVV0EuINBccjymGH0elAtNMJfZhOsEV3PEnQWb16NQRBAOOHGWS7XnoZ5qYmKKOjoYyJgSY5yS/P40upxmR8edO9+AL3KXzcXQ21XIVEfbzUYQWUc7ATox/uFbVpMgsRVX4pAP/mDAlPlDPEW5QzS9fW1obW1tZZ7eFedFLOkMVKUOqwaXxqORWZNjzveFLhSYKOegnjLRfL3tcH17gJrnETbB2dENjVfnsuX1PIFdicuVbqMAJOEAT0PvsLQOCnGhkZorfcDOb8sjL+zBkSnihniLcoZ5ZmrqJzxYoVyMjIkCCiwKGcIUsWpl9WUFdbElHY0THRtiZ1aUup0LeXgWOqfAeusQFRmzp9FVQJ6RJFRAghZLGUytl3biKh6CSEzEZ3PEnEcNls4CwWUZs+N8dn5/dHLcoLPGRM5H4/5DKPYOjt/xO1MWodNFlFUMYkSxQVIYSQxUpLmxiH39DQAABYuXIl0tPpi0NCpquprMLomanPey6VFTnSheM3VHiSoGMymcDzPGQyGaKionx33jNnZrUlXHihz87v5qMKtHu8F0Z1FAzqyJq9drre5x6EwDpEbbr8tYi75G5Rm79yhoQvyhniLcqZpUtLS3NPwhdJRSflDFksl8WKmPGpIUV2VWCW7As0KjxJ0GltbXVPP15WVuaz85rONIi2FQYDVHGxSz+hH2ey7TH148X6N5Goi0OiPh5Z0WnIjE6DWqHy23MGG2tbLZy94hkQlfHpiN6wY1ZXZ3/lDAlflDPEW5QzyxNJBeckyhlCxKjwJBHD3Ngk2lZEG8HIvOvG6i54/DzE87GPn0ZtfwMMKh1yYjKRHZOB7flbkW5c2pjUUCPwHAZe+h9xo0wBbV4FNBmhMyEUIYRECkEQ4HA4oNFopA6FkJDDgYmIoiwSXiMJMcnJyeA4DnK53KfntfX0ira1aak+Pb+v8DyPluF2AIDZaUVN/1nYXQ7cU3GLxJEFzsiRF8FZRkVtmuwixF/xaY/H+ytnSPiinCHeopyZmyAIaG1tRVdXF8rKyhAdHS11SEGBcoYsll6th2vadrhmDBWeJOgkJ/tn0hh2TDyjrSp2Gd1s/ai6rx42l13UVpFSFDEz6QqCAFvzKVGbTBcN49qr3MunzOSvnCHhi3KGeItyxrPJorO9feIL0+rqaio+z6OcIYullSlhmrYdrtNKhuvrIkSEczhmzWirSVlmt1U/DfF08S6kRiW5t1MMibi56Br/PFkQGv/4dWjzymEovxxyfQwAQLdiHQwFm6UNjBBCiIggCGhpaXEXnQDAcRxOnz4NlmUljIwQEozojieJCNaOzlltsWvXeH+iAIzxXJ9ejnVpZWgcasV7544hPzYLCnlk/KkKAg/ONvGdn8IYD8Oa7XCN9iN647USR0YIIWS6yaKzo6Nj1r78/HyP63cSQjyb2astXPu4RcanWRLxxuvqRNtyvR7q5KQ5jpYewzBYlZCHVQl5UocSUJxpGFFll8By9jh4hw0MI4MyNgXq5BypQyOEEHKeIAhobm5GZ+fsL3ULCgqQstweRYREmCiFGuPTthXhuZoKFZ4k+NTV1bmnHy8qKvLJOW3t4m9kldFGKHQ6n5zbl3iBhyAIkMvCdVj5/OSGWDAyOVSJWbB3ngUAxG69dcHH+SNnSHijnCHeopyZQEXn4lHOkKUK07qTxniS4ONyudz/+Yq5pVW0rTQafXBW314WWI7F0faP4XA5fXreUMKcL7hVidkAAG1OqbttPv7IGRLeKGeItyhnqOj0FuUMWSxm5jrtc0ymGOrojicJOiqVCjKZDAqF79LT0d8v2takLncpFQ+975c56+xbTYdgYW3QKBoQp41FjNaIOG3Mss4ZCgRBQN+eh6DNLoZx3dVgZHLIDTEwFF4AZULmos7hj5wh4Y1yhngr0nNGEAQ0NTWhq6tr1r7CwkKawdWDSM8Zsnh9nHg1A0eYDvKkvwQSdAoKCnx6Pt7phMs8Y0bbpESfPsd0S1n2hBd4mJwWyBgZWkY60DIy0TX49pKdvg4v6JiqD8J69jisZ4/DVPUuEq75AjTpK6FKzFr0OXydMyT8Uc4Qb0VyzlDRuTSRnDPEOywvvivOh2ln2/C8j0vINNauLkAQ/wFrsxZ3Jy1QjrZ/jH1nD6Cypxajton1Ro1qg8RR+R9nM2PozX+4t519reh/6WEIHHVLIoSQYCAIAhobG6noJIQsGxWeJOxZmlpE23KdDsbC5X8LKQi++zbqSPvHcHBONA2fwzstH+BYx0lsywn/dSt7n30AAivuXhK3/V4wEbJ8DCGEBLv+/n50d3eL2hiGQVFRERWdhPgIx/NShxAQkny6M5vNeOedd3Dy5El0d3djbGwMu3btwg033AAAePTRR1FcXIyLL75YivBImBmrFS+loow2QhUbu7STne9Gu8zhnCJ2lwO1/Q2itlhtNLRKje+eJAhZzn4ER3ezqE0Zlwbdyg0SRUQIIWSmpKQkjIyMoLe3F8BE0VlYWIikpOBdkoyQUKNVqDB9akk5TS60fDzP489//jMef/xxWCwTY+4EQQDDMBgeHnYf9/TTT2NoaAjl5eV46KGHkJkZXN0iiX91d3eD4zjI5XKkpaUt+3z2nh7RtsJoBCMLnj/ouv4G2F0O9zYDBp9Ze6eEEfkfz7kw+MZjEM0MLJNDt3ojZEu42+nrnCHhj3KGeCtSc4ZhGKxevRqCIKC/vx9FRUVITPTfPAnhJFJzhnhPq1CLCs/g+ZTqWwErPJ1OJz7/+c/j+PHj83ZRdDgcGBwcBMMwqKysxG233Yann34a+fn5gQqVSGxwcNC97pUvLtS2GV2EfLOUiu+sTSvF73f8Fw6dO4ZD5z5ChjEFacbw7r40/M4T4MwjojZNZiHiLt21pPP5OmdI+KOcId6K5JxhGAYFBQVIT0+HMcjeQ4NZJOcM8Q5rGhZtCzwnUST+FbCC+qc//SmOHTsGQRCg0Whwxx134Fe/+tWs4wRBwN133w2lUgmGYTA6Oor777+f1kAiS8I5nXCZzKK2mPJSiaLxjOM5JGhjcWfpDXhk5wP4yub7pA7Jrzi7Faaqg6I2mTYKidf+x5JmBCaEEOJ/DMNQ0UmIn8hmTKrIhOektoG541ldXY2XXnoJDMNg5cqV+Otf/4rU8+sofu973xMdq9Fo8JOf/AT33HMPvvSlL6G1tRVNTU147bXXcOONNwYiXCKx/Px8dxfs5bL39M6a0dawcuWSz+eOyUcFktlhQcNQK8pTCgEAMkYW9rPZ9u5+cNaEQtr8NVDGLv0ury9zhkQGyhnirXDPGUEQcO7cOaSlpUGtVksdTlgI95whvhMlV2H6bRKlZJH4V0DueL7wwgsAAIVCgUceecRddM4nJycHjzzyCORyOQDgjTfe8GuMJHjo9XoYDAbo9fpln8vW2SnaVkRFwViwetnnnWWJM9weaDmCPvMABixDMDst4IXwntWMHemBo0s8kZIiNhWJ13xhWef1Zc6QyEA5Q7wVzjkjCALOnj2LtrY2VFZWwuFwLPwgsqBwzhlCliIghedHH30EhmFw8cUXIytr8YvC5+fn49JLL4UgCKivr/djhCRcWTvEhachP0+iSGYTBAEOzgmT04JDbR9hf8O7ONldI3VYftX7wkOAaNwCA21uGWSq8J7BlxBCgtVk0Tk5a63NZkNVVRUVn4QQnwtI4dnf3w9gYqFhb6083y1yZGRkgSMJmc3a3iHa1mZm+O7ky1zH81TP7CIzLSp8p6e3tlSC7W8TtalS85Bw1WckiogQQiKbIAg4c+aMu+icZLPZ3KsPEEL8r88p/nuzh2nv7ICM8ZycxXay26w3JvvFK5Xh2tuZzGSz2dxjIrRa7bLOlbjtIqgTE2Dr6IS1oxO6LF8tzePpirD4q4QgCNjXcBCx2mgk6uLdeZ4aFZ6z2QqCgIF9j4ob5UpElV0KRub9dWEmX+YMiQyUM8Rb4ZYzk0VnX1+fqJ1hGJSUlCAuLk6iyMJHuOUM8R8nOFFRFq4DrwJSeCYkJKCzsxNNTU1eP7a6utp9DhIZGhsb3dOPl5WVLetcSqMRaTuvhTpxIn/mW8onkNpGO3G67wwAIEZjRJI+HkVJq8J2AgKXaWhGF1tAk1UI47qrfXJ+X+YMiQyUM8Rb4ZQzk0OYJnukTZosOuPj4yWKLLyEU84Q4gsB6Wq7fv16CIKAgwcPYnh4eOEHnFdXV4ejR4+CYRisWbPGjxGScCRwHEYrq9D3zgEIXHCth/RB+wn3z6P2cXSb+nFL0TUSRuRfcrUemV95FPFX3AdGpYVMrZ+42xmmhTYhhASruYpOmUxGRSchEuG96DUXygJyx3Pnzp146aWXYLfb8Z3vfAd//vOfoVKp5n1Me3s7vvKVr4DneTAMg2uuCd8P5UQsPj4eHMctqWv2dLaubvfPI6cqoc/NgTIqCswCubdoS7x5KggCjndWitq252+FWhG+09fL1BNdjPQFm+GyjIG3W2AoutBn5/dVzpDIQTlDvBUOObNQ0Unda30rHHKGBIZWawA7rfZkZOFZiAak8Lzwwgtx4YUX4siRIzhy5AhuvvlmfPrTn0ZRUZH7GJ7nYTKZ0NjYiLfffhvPPfccbDab+27ntm3bAhEqCQLp6ek+OY+tq8v9s7mxCebGJmTeefvyTupexxNLLjw5nsMFmWvxSVc1OsZ7AACbM9YuL64QwciVUEYnIuqi230ytnOSr3KGRA7KGeKtUM8ZQRBQV1eHgYEBUTsVnf4T6jlDAidhczkO8FOTThrCdE33gBSeAPA///M/uOOOO3Du3Dk0Nzfjxz/+MYCJ8QSCIOC3v/0tfvvb37qPnxyLl5SUhN/97neBCpOEEdZkmtUWDF075TI5SpMLsHP1dlhZG6p765Ab66tJj4KbXB8N49orpQ6DEEIiCs/zqK+vp6KTECKpgIzxBIDo6Gjs3r0b27dvhyAI7v+AqWJgZvuaNWuwe/duJCeH50yfxL+0aWnQ5+ZAd34JFU1KcOTR8c5T6DUNwKDUIcWQiCtXbAuKgtgfHL2tcI0PSh0GIYRErPmKztLSUio6CQkCDCODihfc/ymDYy5MnwvYHU8AMBqNeOSRR1BdXY0XXngBH330Edra2kQzjSYmJmLDhg248cYbcfHFFwcyPBJGBEFA/YO/gtJohCYlBYooAxK2+m5M4flnWdKj2scmxp6+3vguVHIVkg0JKEvxfo3bYNfz7C8g18fAuPYq8E47ZBo9FIZYqcMihJCIwvM87Ha7qG2y6IyNpWsyIcEgRW3EtlGre1sRa5QwGv8JaOE5qayszD2tNMdxGBsbA8dxiI6OXnDSIRL+Ghoa3NOPr1q1aknncA4Pg7NYwVmssPdMLIydc+89yw/u/J3JyS7i3hq2jbp/trA2WFjb8mMKQtaWStiaTwEAHF0N0OSWQRWXhugNO/zyfL7IGRJZKGeIt0I1ZxQKBcrKylBVVQWz2UxFZwCFas4Q6bEsK3UIfiFJ4TmdXC6ft5sHy7Jobm7G4OAgtm7dGsDIiFTsdjtYlgW3jCVQps9oCwAytRqqeD92J1pkDVrX3zCr7aLsDT4ORloCz2HglT+6t9mhLrhMw4i75FN+e05f5AyJLJQzxFuhnDNKpRLl5eWoqalBTk4OFZ0BEso5QwKLUaigyS6F2WyauLGhocmFlqygoAAymQzf/va3cd9993n12D/96U/461//isTERBw6dMhPEZJgIpPJ3P8tlb27R7StTUuTfBwlz/PIicmEQWWA3WV3d7nVKDWSxuVrg2/+HZxlVNSmySqCcf3VfntOX+QMiSyUM8RboZ4zSqUSFRUVkr8XRpJQzxkSOA0dbThd3wmO5yFAgEJlxWqpg/KDgN3xXEq3RADQarUQBAHDw8M+jogEq5KSkmWfI+GiC6GMNoI1W+Do74fSGOWDyMS8zemTPafxvx//C+vSSrEmtQRx2hhsyqjweVxS4l1OmGsPi9pkOiOiyi7z64cdX+QMiSyUM8RboZAzPM8DwJyFDhWdgRUKOUOCg6X5HPJqRtzbdnV4flkheVfbuQiCgM7OTrz22msAAJ1OJ3FEJJSYG5vgGBxCylVXQObDccNTb9oe3rwXeD//uKsaI/YxvNPyAd5p+QBlyYXYnh9e3cdH3vsXBIdV1KbNLYehcLNEERFCSGTgeR61tbUAgOLiYrrLRggJOj4rPF0uF2666SY0NTV53C8IAn7zm9/gN7/5jdfnZhiGBmUTr4zXnwEAdL/yGmQaDbSpKYhdtzYwT+7hG2Ve4PFJ92lRW0VqcWDiCRDeacf4yTdFbYroRCTu/LJEERFCSGTgeR41NTXu3mF1dXUoKiqi4pOQEMHxPORSBxEAPrsiKRQK/PznPwcgXo9zenfEme2L/Q8APve5z/kqVBLmpuccz7JwmUywdXfP8wj/OzfSgTGHSdS2Pr1Momj8Y/i9pyGwDlGbJqcUMoVSoogIIST8zSw6AWBwcBBnz56VMCpCiDc0MUZYDUr3f2y0VuqQ/MKnXW3XrFmDe++9F2+99Zaovbu7GwzDwGg0Qq/XL3gehmEgl8thMBiQkZGB22+/nWa0jSD9/f3gOA5yuRxJSUleP553OGa1xW1Y74vQxLwY4plkSMD3L/oy2se68En3aVhZO1IMib6PSSKc3QLTqbdFbYrYVMRtuysgz7/cnCGRh3KGeCsYc8ZT0QlMrBiQlpYmUVRkUjDmDAlOSRvXo143CNbJQhAE6FXhOcTQ52M8v/e97+F73/ueqK2goAAA8MUvftHrWW1J5Ont7XWve7WUC7XLYp3VpkpI8EVoAM6P8/Ryfob9De8i1ZCEtWmluDR3CzQKtc/iCQYj7z0NwSVec0qTUwJFlB+XsJlmuTlDIg/lDPFWsOUMx3GoqanByMiIqF0ul6OsrAzR0dESRUYmBVvOkODlHOyEc6AdnIsDIICV+W5+kmAS9LPaEuIta0cH2LExyHU6yJQT3TwZuXQ9522sHQDQY+5Hj7kfAJCsT8C23PCYcMdlHsV45QFRmzIhAzGbrpcoIkIICW/zFZ3l5eUwGo0SRUYIWQrBbgVjNbkLMznDznt8qApI4XnmzJlAPA0JEzk5OeB5fsmTIgx9cBR9b78DAJCpVNBlZyHrrjt8GaJXOsd7ZrUVJa2UIBL/GHn/XwDnmtbCQJNdAlV84Lp5LTdnSOShnCHeCpacmavoVCgUKCsro6IziARLzpDgl6Iy4LKRqR57jMYgYTT+E7TLqZDItdw3Tee0N2Pe6YRwfl0z31vcXfwotQE3FlyJN5sOweaauPuZqI/3U0yB5Rofgun0e6I2ZVIWYrfcHNA46IMW8RblDPFWMOQMFZ2hhf49yFIxYfplhaSvShAE8Dwv+o/jOLAsC5vNhuHhYbS0tODVV1/FZz7zGSlDJSHE3tMr2takpPjhWRY/yDPFkAiVQoXS5NV+iENaox/uFd/tlMmRcOVnoDCGR2FNCCHBguM4nD592mPRSd1rCSGhIKB3PN966y0888wzqK2thcVioXGfxC9Ys3jZElW8jye48Vhzes7lpqFzsLBWFCeuQkZ0Gj7qqsL2/PCZoTn24tshU6kxdmI/BNaBqIrLoc0Or/VJCSFEapNF5+joqKh9suiMioqSJjBCiE80nD2DzrZpZZnKjhzJovGfgBWev/vd7/DYY48BWNpEQwzj5TSiJGSx7MRU0gzDQKn0bg1IQRDAmS2iNrlauhlkXznzNo51noRWoUF5ahGuyr8YcdoYyeLxNZnGgLhLd8G44VqMfrhXsgmFlpMzJDJRzhBvSZkzZ86coaIzBNF1hiyWdXAESX1TPcjsqvCsewJSeDY0NMxZdE4WlHO1KxQKXHfddbSOZwSpr693Tz9eVlbm1WOdo2MQOE7Upl+R78vwpizw/QnLsajsrQUA2Fx2HOs4iYqUIhQj9LvcCoIAy9lj0KSthMKYAIUhFglXSLdU0nJyhkQmyhniLSlzJjs7G6Ojo2DZiZkuqegMDXSdIUQsIGM8n3/+eXdhuW7dOjz//POorq7Gnj17IAgC5HI5jh49isrKShw8eBAPPvggUlNTIQgCXC4XSkpKsGPHjkCESkKc9dw5cQPDQJ+d5Ydnmv1N1My78rX9jbC7HNMewWBtWqkfYgk8W9NJOPvbwVnHIfDcwg8ghBCyZAaDAeXl5VAqlVAoFKioqKCik5Aw4q9pMINNQArPjz/+GMDEhfPPf/4zSktLoVKpUFxcDKPRCI7jcOTIEWg0GqSlpeHmm2/Gyy+/jFWrVkEQBDz00EMYHBwMRKgkCERHRyMmJmZJi1/burpE23KtFprkZF+FNmGhbt/n9/eZ+xGvjXU3r4jPQYwm9Cd/EAQB9p4mAICl4QRGP9yL4UPPSRrTcnKGRCbKGeItqXNmsvisqKiAwRCeSy2EG6lzhoQOtUor2g7POW0D1NW2t7cXDMPgkksumfXHV1xcjGPHjuGTTz7Bdddd526PiorCww8/jOuvvx52ux27d+/Gf/zHfwQiXCKx7OzsJT/W2tYu2pbrdJJNST3mMOPSvC2IVhvQZx5CRrQ/ZtcNPHZA/DsWRGt4SmM5OUMiE+UM8VYw5AwVnKElGHKGhAaDXIPpU2PKJYvEvwLyidxkmvhV5ubmztq3YsUKCIKAM2fOzNq3cuVKrF+/HoIg4MSJE36Pk4Q+x9CwaFth0Pvx2eYe5MlyrPvnMYcZGqUaKYZEP8YSGIIgoP/l/wd7ex14dqobsbHicgmjIoSQ8OByudDT0yN1GIQQ4hcBKTy12onbx55m9MrJyQEANDc3e3xsSUnJvPsJmY4dFheeco3GL8+zUG/bE13Vs9oyotP8Eksg2dtq4Oxvg72tBuMf7YO1+SQEFwuFMUHq0AghJKS5XC5UV1fj7NmzaGtrkzocQgjxuYAUnjExMQDgcZxmZmYmAMBsNqO/v3/W/smuuWNjY/4LkIQN1mQWbaviYuc4cjkWnuJaq1RDo1CJjjSqQ7+L1Oixl6c2eBdcw71Qp/pp1mBCCIkQk0Xn+Pg4AKC1tZWKT0IiSJRCfKNE6f3KkyEhIGM8i4qK0NHRgaNHj87al5U1NeNodXU1tm/fLtrf29sLYGlrf5LQ1NzcDJfLBYVCgfx874oazmYTbWtSpBlXuSa1BGtSS+DiOexvOIhEfZwkcfiSs78dtuZTojZ1+iqoEjMlimjKcnKGW0bSWAABAABJREFURCbKGeItf+WMy+VCVVWVe1jSpM7OTqSlpdH6jyGMrjNksWb2pAvXqicgdzy3bNkCAGhqasKf//xn0b7s7Gx3V9xXXnlFtM9ms+Gdd94BACQkUFe+SGGxWGA2m2GxWLx6nMDzswvPVP8Vnov5MkQhk+OqFdtwQeY6v8URKCNHXxRtMwoVVMk5UMZL34V4qTlDIhflDPGWP3JmrqJTpVKhoqKCis4QR9cZsliMTD6zQZpA/Cwgr+qGG25AXNzEHZ8//vGPuPXWW3HgwAEAE2sfXnbZZRAEAW+//TZ+8YtfoKGhAcePH8dnP/tZDA4OgmEYVFRUBCJUEsLYsTGAF6+EpE7004Q+8wzyfL3hXfzloydxtP0TmBxmqBUq/8QQQC7TCCx1R0RtqtQVYOQKMGF6cSSEEH9iWXbeolOv9+fkeISQYDLMiD+/Ohce1RWSAtLVVqPR4Oc//zm+9rWvgeM41NbW4sSJE7j88omZMD//+c/j9ddfhyAIePrpp/H000/POsddd90ViFBJEJicUMpbjsEhcQPD+OWOp6eaUxAEMOdHdH7QfgJNw+dwsPUoGDC4p+IWXLs6tGd9HTv+MiBMuygyMqjTViBm407pgppmqTlDIhflDPGWL3OGZVlUV1fPWXTqdDqfPReRDl1nyGJZXQ7RNhemnW0Ddqti+/bt+POf/4z09HQIgoCMjAz3vtWrV+OHP/whgIkP8NP/A4DPfe5z2LBhQ6BCJRKTyWTu/7xhPz8eeJJcq4UiwG/eFtaG5pGpCSEECMgM8dlseacN45+8IWpTJedAv2oDZJrg+EZ+qTlDIhflDPGWr3JmoTudVHSGD7rOECIWkDuek7Zt24a3334bJ06cQHJysmjfpz71KaxatQqPPfYYqqqq4HQ6UVBQgHvuuQc7duwIZJgkRNl7+0Tbcp0WCn92VfLwZVTtcJNo7KdSrkRB4gr/xRAAw4d2Q3CxojZ1+ipos4okiogQQkLTZNFpNs+YgZ2KTkIiGs/zgbsbKKGAFp7AxLc/mzZt8rhvw4YNdGeTLJljYEC0LdfqwMjlcxy9THOM8Ryyj6MsuRBD1hH0WQaQFpUMlTx0J4cQeA6WmkOiNkVcGvQr1koUESGEhKa5ik61Wo3y8nIqOgmJYAqZHNNHecoWWjA+RAW88Fyq4eFh9wRFJLwNDw9PfPMjk3n1b+4cHhFtKwx+uts558WAgYxhsCo+F0jIA8/z4ATOPzEEiOXMMXCWUVGbJmM1dCuCa5bepeYMiVyUM8Rby8mZ+YrOiooK9+z+JLzQdYYsVpRKh7Fp2/JFrBkfikKi8Ny9ezcefvhhHD9+XOpQSAB0dnaCZVkolUqvLtTcjOnK5RrNHEf6j4W1Qa6c+AAhk8mgkoXw3U5BwNgx8RJHyvh0JFzzeYkimttSc4ZELsoZ4q3l5Mz4+PisJTWo6Ax/dJ0hi8VZxkXbwoxVGsKFXwvP4eFhNDc3Y2BgAPHx8aioqIBarV704xsbG/HTn/4Up06dWvhgEvGcw8Oi7ehS/88mJwgCmPN3QDmBR6zGCLsccHITYyI3Z6zxewz+4ug8A0dPk6gtdtudkIXB8jCEEBJI8fHxKCwsRF1dHQAqOgkhYrxTvA49s4i14kORXwrPjo4O/O53v8Nbb70FjpvqaqjRaHDvvffiP//zPyGfZ+yd3W7HH//4RzzxxBPgOE704Z6Ev4yMDHfXlMUSBGHWcirRJcW+Dg1nBpqQr07yuE/OyHBp+gao4+PgcDnRY+pDoj7e/bhQm2Ro9Pirom1FdBL0qz2Pz5baUnKGRDbKGeKt5eZMUtLEe0dLSwvKy8up6IwAdJ0hi2WUq2Gdtq0I0+VUfF54VlZW4ktf+hJGR0dFs3syDAObzYa//vWvOH36NB577DGPxed7772Hn//85+jp6REVnJMXbBL+ltIdxTU+DsHlErWp4uN9FRIAYHfNa3ihdh/uXHUNrknZOO+xaoUKaVHJUMqV2Fv/Jp6p3otbi6/F7SXBse7lYqiTc+EaH4SzpxkAEL3xWjAyP03WtEzUhYl4i3KGeMsXOZOUlISEhAQqRCIEXWfIYs28v8aE6RhPn175nE4nvvnNb2JkZGqSF5VKhYSEBPe2IAg4evQo/vSnP4kea7Va8YMf/ABf+tKX0N3dPRWgTIZ77rkH+/fv92WoJMw4hsR3OyGTQRUb47Pznxlowgu1+wAAzza8jn0dH4j22zknXLx4IiGVQuUuOgHghdp9ODMg7roarJz97RAEHjFbbkLCji9Ct2ojDGWXSh0WIYQEPWGBLnJUdBJCIpVP73ju2bMHXV1dYBgGGo0GP/zhD3H99ddDpVLBbDbjySefxCOPPAKO4/B///d/+Pd//3cYDAb09vbiM5/5DFpaWtx3OQVBQFlZGX72s5+hsLDQl2GSMOQYEBeeqtgYny6lUpC4AneX3eguIne3HgDnZHFD9BUAw2D/ydfwFlpREJuLiswyrEktxomuKvfxAHB32Y0h093WfOZDABMFKABoMgsg1/hxTVRCCAkDTqcT1dXVyM3NRbyPe90QQsLXsMsu2naG5w1P3xaeR44ccf/829/+Fpdffrl722Aw4Etf+hKMRiMeeOAB2O12HDhwAJs2bcIdd9yB/v5+97FRUVH4+te/jjvvvDOgYzsFQcBrr72GPXv2oL6+HlarFYmJidiwYQM+9alPoaysbNnPYbfb8eyzz+LNN99Ea2srzGYz4uPjsW7dOuzatQtr19L6iPy0mbwW+82wLisTqdfthComGs7RUchUvp8A58bCqwDAXUzu6ToEuUaNC/Qrkb77CBTXxqGab0D1UAM+bP8EjcOt7sfeXXaj+/HBztO39bzT7uHI4LGUnCGRjXKGeGuhnHE4HKiqqoLVakVtbS1KSkqoq2WEo+sMWSwL7xQVZa45jwxtPi08m5omuhGuWrVKVHROd9ddd+Gxxx5Df38/PvnkE7z00kvo6+tz3+W88sor8ZOf/ETUPTcQ7HY7vva1r+G9994TtXd1daGrqwuvvvoq7r//fnz+80tfSuLMmTP4z//8T7S3t4vae3t7sW/fPuzfvx9f/OIXcf/99y/5OcJBTU2Ne/rxxRb7vNMJhV4HnmWhNBrBKPwzYfONhVeBdzjw7NnXAQC7m9+GveZt5DoFrKu34vDaKAAI2aITAEyVB2a1aXP8P0PwciwlZ0hko5wh3povZ6YXncBEwVFTU4PS0lLExsZKES4JAnSdIUTMp5/Oh4aGwDAMNmzYMOcxMpkM69evx759+7Bv3z73RdpgMOBnP/sZduzY4cuQFu2HP/yhu+jMz8/H7bffjoSEBNTW1uLZZ5+F1WrFww8/jOTkZNxwww1en7+jowP33Xcfhs8v+XHBBRfgiiuuQExMDE6ePInnn38eDocDjz76KFJSUnDnnXf68uWFPd4+dUdO4DgIHDfP0ctzXf6l4J1O7G49AJ2NQ2btRDff0kYbPinUwaqd6uIbakWnIPBwmYZmtWsyqbs7IYR44nA4UFlZCZtNvByCWq2GTqeTKCpCSCgJzzlsZ/Np4Tl50V3obmVGRgaAiQmFBEFAXl4e/vrXvyIzM9OX4SzakSNH8NprrwEANm/ejMcee8y93ujOnTtx66234u6778bo6CgefPBBXH755TAYDF49x89+9jN30fnNb35TdOf02muvxXXXXYddu3aBZVn87ne/w8033wyVH7qLhgK9Xg+XywWFF3ctzU3Nom1lTLSvwxLZmbUVnJNF/yv7oDhf4yo5iO56hl7RKaB3968hU2mgiEt1d3OX64xgmODuIrSUnCGRjXKGeMtTzsxVdGq1Wq/XLifhh64zZLEUSo1oO0yHePq28HS5XGAYZsELrV4/NUlJSkoKnnzySUkH4f/jH/8AACgUCvziF7+YFX9+fj5+/OMf45vf/CZGR0fx/PPP47777lv0+T/66CMcPnwYAHDzzTd77K5bUVGBO++8E08++SRGR0fx4YcfYtu2bct4VaErPz/f68eoExPAO53gHA5AEPwyxlOEYbBZlY1zTeIPG5N3PW/cdEtIFZ0AYO+oh63pYwCATGuAOm0VVCm5MK67WuLIFraUnCGRjXKGeGtmzlDRSRZC1xmyWMkby3HYXu/e1oXphI6SfAUz/Zufr371q5IWnaOjozh69CgA4KKLLprzruuOHTvw4IMPYmhoCG+88YZXhefk3VS1Wo2vf/3rcx536623gmVZxMbG0mx4XorbONG9WxAEjNfV+fW5Ju8EVu3fg/gZPXqVHLC+3oYbPx1aRScAjB55wf0zbzPD0XUWqtS8gE7wRQghoYCKTkKILzEqJVjdVO8yTh2c66Yvl+T95y655BJJn//jjz92zzq2efPmOY+TyWTusatVVVUYGxtb9HO88847AIAtW7YgKSlpzuMKCgrws5/9DPfffz9KSoJ7MpdgInAcXBYLBEEAOzoKdnQMxqIivz7n4EA3oqvPedxX0mjF7iPP+vX5fY0d7oGtpUrUpk5bCf3KucdrE0JIJLLb7R6LTp1OR0UnIYTMQ/JO51LP9tbY2Oj+edWqVfMeu2LFxBqMgiCgoaFh3kmUJvX392NoaGKyloqKCnc7y7JoamrCwMAA4uLiUFBQQGMAlsja0YHKr30TMo0G6oR4qBMSEH/BZsCPd+pOvfQM4uaYv0jJAX2vvIa9cbEh09127KPXxA1yJVTJuVCnUjchQgiZNFl02u3iJaZ0Oh3Ky8up6CSELEmS2ohtIxb3tiLGu7lkQoXklY7U3fi6urrcP6enp897bEpKiuhxiyk8J5eYASYmVWJZFn/5y1/wzDPPuCcbAoCYmBh87nOfw3333Qe5PDxvry9WW1ubezB+dnb2gsc7BicKe95uh62zCy6LBYwf18sa7OuE8VTLvMeUNtrw+PE9ABD0xSdnM2O88h1RmzolD/pV6yX/+1wsb3OGEMoZ4q2GhgY0NjaCZVnExMS42yfvdEbqhIBkbnSdIYslZ2RQTZ/a1uW/1RmkJHnhKbXpxd9Cd1+nv9GMjo4u6vy9vb3un1UqFXbt2oXKyspZx42OjuKhhx5CZWUlfve730GpVC7q/OFobGzMve7VYjgHxct/qP28Buw7T/wRuQtcDyZnuH1GuxdAcBefplNvA9z0pYoZqNNWQJ2+WrKYvOVtzhBCOUO8wbIsampqYLfbRV8OU9FJ5kPXGbJojAzK+HTYz0+SKajojmdYmt5dZqEuMtPfWGZ2s5mLxTJ12/w3v/kNOjo6sHLlSnzrW9/Chg0bwHEcDh8+jIceegg9PT14++238fvf/x7f/va3vXwlvtPU1IT8/HxERUW52xwOB86ePQtgogDPysqa9ZjJNVlnLpI8ODiI7u5uAEBmZqaowOc4DrW1tQCAqKgo5Obmih577tw5jI+PAwCKiopE3ZFHR0fR3t4O+4zJhFTnJ2Y6ffo0BEGAVqvFypUrRcd0dna6v3RYtWoVNJqpaazNZjNaWibuaCYmJiI1NdW9b/eRZ5FZ04vFmJzh9pnqvQCAq3O3oaGhAQAQFxfnXlZoUmNjI2w2GxiGQWlpqWjfwMAAenp6AABZWVmiL0FcLhfqzv8OjEYjcnJyRI9tbW2FyWQCABQXF4s+NA0PDmD46F7RYG9lYgYUhhgwDIPq6moAEx+uJruaT2pvb3d/AbN69WrR34/JZEJraysAIDk5GcnJyaLH1tXVweVyQaVSoaCgQLSvu7sbg4ODACZmBJw+C7bNZnN3j4+Pj5/VS8HlcqG6uhoymWzWOOn+/n73F0E5OTkwGo3ufSzLor5+Yja56OjoWd9MNzc3u/+WS0pKIJt2R314eBidnZ0AJno1xMXFufdNLiIPTMzmPXOGw7a2Nvd48cLCQtGHk/HxcZw7dw7ARG+LmePDa2pqwPM8NBrNrGECXV1d7i7+K1euhFarde+zWCxobp5YfighIQFpaWmix545cwZOpxMKhQJFM8ZK9/X1oa+vDwCQm5sbMtcIAEhNTUViYiJmYlkWjY2NPrtGAEB9fb37w2ZhoXgN3J6eHgwMDAAA8vLyREtz2e32oLtGjIyMoKOjAwCQlpY2a7m0ULtGNDQ0wG63e32NmHwvsdvt7nkh9Ho9ysvLoVKp6BpxXrhdI5b7OYJlWXhC14gJ4XSNWO7niJP1Z9AxxgNQQoAAFYBVkO4aMZmDvuaXwrOmpgZ79+6dd/+k+Y6b6cYbb1x6UHNwuabu9Cz0jeX0/dMfN5/JiygAdHR0oLCwEE899ZToQnLttddi7dq1uPnmmzE8PIzHH38cd99994Jdf/2F4zj3G+skQRDcF1COm327z+VyzXmB5XnevW/meQG4903+TgsLCyEIAhiGQVtbm3u/IIiX152MidfpEH35ZYhOSQZns0GTmuI+ryAIHsfOTo93rvPOjHdv/Zvoe/k1pC+y98P0dT2fqd4LF8sil00VvdaZvweWZT12b53+O5wvXk/nne/fxtF4AjKHWdSmTl8F48ad7pjmOi/HcXPGND1eT/nCsixcLpfowruY886Vh5M509DQAIfDseB558tvb3+H3ub3XOddyu+Q53mPXfOX8jucGdPMx808r5TXiLnOu9i/ZWAiZyY/VHqKa6nnnYx3Ma/V279lKa4Ry/m3CaZrxPTzsizr9TUCgLsosdlsoqIToGuEp/OG+jVi8rzL/Rzh6cspukZMCKdrxHJ/h/bGRqw62uNus6tlwP1TMS3mvL68Rnj6t/QFvxSe+/fvx/79++c9ZvKP4vvf//6izskwjF8Kz+nfULEsO2/x6XQ63T8vtlvNzCR44IEHREXnpNTUVHz1q1/Ff/3Xf8HlcmHv3r348pe/vKjn8DW5XD7rD45hGPe3KJ4SVKFQzNmVRCaTufd5+kOe3Dd5YZ9+nunnnXkhnYxJgAC5TguB4yBTqcDI5O7zCILgMa7FnHd6vGcGmrD3+B7cN2PdzoVM3vW0auXYXb8P92TfiCxdqsc3MaVS6V4Ld6bpv8P54vV03rn+bQRBgPP02+IYErMQvX4HZAqVO6a5ziuXy+eMaXq8nvJFqVSCYRivzztXHk62qVQq8DzvMc+mn3e+/PbmdzjztS4mv+c671J+hzzPe4xrKb/D6THxPL/gv42U14i5zruYv+Xp5/TlNcJTvJ7Ou5y/5UBfI2ae19t/m2C6Rkw/L8dxS7pGqFQqpKWlwel0iopOgK4Rns4b6teIyfMu9xoxea3xFC9dI8LrGrGc3yHDzD2/ixTXCE+v3xcYwdNXVktUUFAAhmE8fgu2XAzDuG9h+9L999+P119/HcDE0irTu4XM9Pbbb+MrX/kKAOAHP/gB7r333gXP/8QTT+DBBx8EMHFb/s0335zz2OHhYVxwwQUAgK1bt+Lvf//7ol/HcpjNZnf3F2Ciu4On4jhY9b7xFpwjI+5tdWIikrdf5vPneeonX0Zu1eK62U53bk0qXi7kcGvxtbi9ZKfP41oqW3sdep78sagt6ZZvw1Aw97JChBBCCCHEt4787XfAqx+4t+1qGS7f/bxk8firNvDpHc/FzPIabKb3zx4dHZ238Jw+odD0MRrzmf6PNHPcwUxxcXGIiYnB6Ogo+vv7F3V+AlHRCQD63ByfP8dAT/uix3bOlF7di2/d9nVsLL4QAMDzU1/MyGTSzRo7duxl0bYiJhn6VaH3N0wIIb40uT7n9HGPhBDiVwo5+Ok3GRX+W51BSj4tPJ988klfni4gpg+g7unpQWZm5pzHTp+hduZg+7nMHPi9kMmuO/7qWx0KxsfH3d0lp38xsFgyte9nF/zo8b8gZokzWys5AQOv7gOKL4ST5fB/r9XCZndBq1Hgvp3FUCkDv3wOOzYAa+Mnojbj+mvc3ZRDzXJzhkQeyhniic1mc888X1FRISo+KWeItyhnyGKlX3ox3k+0gnNxECDAoNIv/KAQFJ7ltBemzw41OcvVXCb3Mwwza3azuUyfJWr6mqGecBznvqs6c/auSHLu3Dk0Nze7Z+KaD+9hoDXD+C6tzww0YaCnHYYTZxc+eB76jxow0NOOxo5RsCyPjn4TWJZHY8eobwL10tCBJwBM6xIvV8JQuk2SWHzBm5whBKCcIbNZrVacOnUKDocDDocDlZWV7rufAOUM8R7lDFks11g/XKN9cA53wzncA3t/h9Qh+UXEF55r1qxxD6o9fvz4nMdxHIcTJ04AmBjLuthvrmJjY91FamNjo+iu6Uy1tbXuCYxmTmtMPLP398Pe1w92bBy80wlBEKCKX1w36IXsrnkNPzn4MN546g9wqBWw6Kb/J5/zP7NODpNWBrNO7j7eqZbj5N5/oaZlECabE1a7CyabE7UtQwsH4geCww5GNTWxlioxEwodfRtLCIlMVqsVlZWVokkEHQ6He1kRQgjxJ5dpBK7xITB2E2R2ExjrqNQh+UXEr+NpNBqxefNmHD58GAcPHkR3d7fHbrT79u1zr9d0zTXXePUc1157LX7/+99DEAT87//+L3784x97PO6pp55y/+ztc4STlJQUcBzncQaumcZOVWLg3ffc24ooA7LuumPZMZwZaMILtfsAAK9mWXD3zn/HjYVXAQBcVits42MYH+qD3KCHVq2H3OaETKnE6/0n8Fzj1ARSP7/smyhInFi3qn/Yit0HGjAy7gAAjIw70K+zon/YiqQ43bJjXiyBY6FOXwlVaj7YoS44upugTlux8AODmDc5QwhAOUOmeCo6gYk1IVevXu3eppwh3qKcIYuVqNTjwtGpJRhl6vDsahvxhScAfPrTn8bhw4fBsiy+8Y1v4G9/+5toUqCmpib88pe/BDCxeOttt93m1fnvvPNO/POf/8Tw8DD+9a9/oaysDDfccIPomL179+Lllycme1m7di3Ky8uX+apC18wFbufDmsRrUDIKpcdpxL1VkLgCd5fdiGeq9wKA+/+TxSfHn+/iKwDy81NO7+s8iufbDrrPsUl/HY4dd+AYJha2Zl08XC4eZqsTOo0CZqsTLhePlw81QzltEHluWjS2rfVubLA3bK0TizkzMhlUiZlQJWYiet3Vfnu+QPAmZwgBKGfIhPmKzrKyMtEyA5QzxFuUM2SxFIwMuumTT/pw2FgwocITE0uXXHXVVXjzzTdx6tQp3HDDDbjrrruQmpqKuro6/Otf/4LFYgEAfOc735k1o+3x48dxzz33AAA2btw4a5Kl2NhY/PznP8fXvvY1cByH73znO3j99ddx2WWXQaVS4d1338Ubb7wBAFCr1XjggQcC8KrDg8ssLjzlPpxYaLLInFl8JqticLavESsVicjV5UAhU+CV7mN4ofN992PvLLkBvfWpaB0eF53T5nCBkTHISIpCU+cougct0KrFf4ZWhwtby9Mgly/tomPvqIcms3Du/d1Ns9rk+ugFH0cIIeHEYrGgqqrKY9FZXl7ucc08QgghS0dX1fN+/etfw2Kx4IMPPkBnZyceeugh0X6GYfCVr3wFd95555LOf8UVV+Dhhx/Gj370I5jNZrz77rt49913RcfExMTg0UcfxYoVod3tMZAc/QOibcU8y+EshafiM0Ebi0HbxBIumnYVimLzcHLwjPsxd5fdiK2pF+O5+gboNAp09pvh4ngwDKBWypGdEgWlQobslCj0DFpgtjkhCIBCLkNGkgGCAIyYHEiI8X4q/+FDz2H08G7EXboLMVtumrWfHfO8TM/o0Zcw/O5TiLnodsRdvPyuyoQQEswsFgsqKyvBsqyonYpOQogU2jra0DQw1cNCrnIiR7pw/IaurOdptVr87W9/w6uvvoq9e/eivr4eJpMJMTExWLduHe655x6sW7duWc9xzTXXYN26dXj66adx8OBBdHV1gWEYZGZmYvv27bj77rsXvT4omeAymUTbjB/GUcwsPieLTgCwc05R0XnHyqvcx9+4LR9vHmuDWiVHZ78ZFhuLxFgddJqJC4tOo0RirA4dfSbotUpkJBkQrVfjys3ZSyo67R31GD28GwAw/O7EeOGZxaep6t1Zj+OdNvfjRg/vhi63jO58EkLC1lxFp9FoRFlZGRWdhJCAG2nvRnLr1DXJrpq9akM4oKvrNAzD4Prrr8f111/v1eM2bdqEs2cXt9xGUlISvv71r+PrX//6UkKMCDU1NWBZFkqlEiUlJfMey02b6h4A5BrNHEcuz8zi05Pbsi/DdblTS5KkJxpw5xWr8PZH7VDIZejoM2F43A6jfqo78PDYxHZmchQyk6NwxcYsd2HqLU1mIeIu3eUuOmcWn7b2WnB2C+SaqQHr9o562M+ddm/HXborJItOb3KGEIByJlItp+iknCHeopwhRIwKTxJ0eJ53/7cQdsYYT4UfF2i+sfAqdI714FDb7GV3bs3Yhmsztsxq12mUuHRdJv65vw7C+THjQ2M22J0cNCo5wMDdfum6zCUXnZMmi8yZxWf0BTegb89vwVvHoYhLhTptJTjzyKyi01P33FDgTc4QAlDORCKz2Yyqqqol3+mknCHeopwhRIwKTxJ0NBoN5HK5aDbBufAO8aQQyuhof4UFAPj3tXfgZPdpmNmpKa8NSi12pG6e8zEDIxPH2hwucDwPi42FUa9C75AVDDM1K+7AiFV0N3SpPBWfzsEO8NaJiY5cwz1wDfeIHhPKRSfgXc4QAlDORKK2trZZRWd0dDRKS0sX1b2WcoZ4i3KGLJpS/Plv+eszBCcqPEnQWbVq1aKP5R0O0bY6KdHX4Yi81XxIVHQCgJm1YX/PMezMvsjjY/pHbHC5eLg43j2BkF6rhMXGuicecrl49I/YkJ8R45M4Zxaf5tPvz3lsqBedgHc5QwhAOROJCgoKwLIsRkdHAXhXdAKUM8R7lDNksWIVekyftSRcC7TwXCSGRARBEMDPmAZfFRfrt+fbW/+maIynVq52//xC5/vY13nU4+MGRqywOV3Qa5XIz4hGUqwOF69JR2KsDvkZ0dBrlbA5XRgYtXp8/FLFbLkJcZfumveYcCg6CSFkMeRyOUpLSxETE+N10UkIIWT5JLnitre349VXX8XJkyfR3d2NsbExfPnLX8anPvUpAP+fvTuPj6o+9wf+OXNmn2Qy2XcIW0IgBFRAFCiKdQFlVbAutNpWra3XXu2vrm1dqr3eut161artrbVWrVoVFRUBRQVEQZGwJIEkBMi+T5LJ7Oec3x9hDnNmy0wye5736xXN2b8JT86c53w34P7778f06dOxdu1aKJXhm5eRJBduyHy6g+QpquzI1Hh6Jp1XTr0IF6XNxse9+/BG4ycAgDdPfAqZUoHL01dLji0p0ON42wBStUrJAEJTiwziwEM8L6AkP/z9Uw3nroHpyNewt9Z5baOkkxAy3riST9f3hBBCoieqiafZbMbvf/97vPfee2JHa0EQwDCMZALnzZs34/XXX8df/vIXPP7445gzZ040i0kShH2g32udMt0Q9ut4Jp1XzbgMywsWwN7Xj0uLF4Fh5Xi9/mMAwOt1H4PVaMRRcAGgcmo2Jubp0dQxiJmTM8Ewwy33tWoFViyajMONPZiQm4q0FBXCTeA5cAPdXutlmhRKOgkh4xIlnISQeKOTK6VNbQW/uya0qCWeAwMDuOaaa1BfXw9B8P/bHBoagtFoBMMwaGlpwXXXXYe//vWvmDt3brSKSmKspaUFHMeBZVkUFhb63c/e3SNdIZOB1YQ+/2Ugnknn1ZWrsWLSEjiHhsR1l5V8D5zVin83D/ejdO3vnnympah8JpYyGYNZU7LCWmZ35rpvwZn6vNbzFhOMX76TNMlnsDFDiAvFTPIaHBzEiRMnUF5eHtYkk2KGhIpihgSLZaS9H5N1cKGo9fH81a9+hbq6OgiCgKysLNx+++34xz/+4bWfQqHAr3/9a2RkZAAArFYr7rjjDlg85mskyaunpwddXV3o6ekJuJ+1vV2yzKpUkGu1YSuHZ9I5NaMEQ3YzvmrZjw5zj+QFyvL8BVg3cam4/OqBjdhY83HYyjJaPdtflq5wu7H1bv8njF++E+USRUawMUOIC8VMchocHERVVRW6u7tx8OBBcBwXtnNTzJBQUcyQoAmei8mZekYl8dy1axd27NgBhmEwf/58fPzxx7jxxhsxf/58r32VSiV+8pOfYNOmTWIT27a2NrzzTnI8IJPwcfQPSJZlKiWYML3dru2ql/bprFiBY30n8W7tFvzpm5fw/758Ert7DkuSz0uLFuLKaZeIy68e2IjarvqwlGc0ere/AmdPq2Rd1vKbJAMOJVPySQgZ3wYGBlBVVQWn0wkAMBqNYU8+CSEkEkxK6ZQ7Dllyjv8alaa27733HgBAo9HgiSeegE6nG/GY9PR0/OlPf8JFF10Eu92OTz75BFdffXWki0riwLRp08S+v4E4B02SZVYTvtrO6dlTccXMS/Hvwx/g6srVqMgpw+uH3pfsw3m+ngKwYvISsBo1Xj2wEVfMvBTTs6eGrUyhMH75Doxfvi1ZxyjVSJmxEDLlcHNk93k+ASR0s9tgY4YQF4qZ5DIwMIADBw6ISadLOP99KWZIqChmSLD67UOSZSf4GJUksqKSeH777bdgGAbnn38+srKC78+Wm5uL73//+/jggw9w5MiRCJaQxBNNkP00bR5NV1htePt3rq+4DJW50zE9eyq21u+QbEtRaMH6+SBZXX4xpmdNiWnS6Uom3WlKKsWk03Oez0RPPoONGUJcKGaSh6um07NmMz09HRUVFWHr50kxQ0JFMUOIVFTqcbu7h0fVnDJlSsjHTpo0CQDQ3+89gikZ3wSHQ7IsUyj87Dl6ruRxUnoxyrKmIDclG0pWAYMyFTrW/wdKvCWdACDTSqdr8Zznk5rdEkISjb+kMyMjI6xJJyGEkLGLSo2n68bvmkIlFI5TyYVarQ5rmUji46xW6YoINmWZnDEBt537U9icdpzsPomjHfWYklIQseuNhrWpxm/SyeoMUKTnea33VfOpLp4OdXF55ApKCCFh0N/fjwMHDvhNOmVJ2keKEJJ8OJ6H+2syhgYXGr2cnBwAQE1NTcjHfvPNN5JzkOQ3NDQEk8mEoaGhgPsxHg8VqdPLIlYmGSNDhsaA/NQcpCi1WJBXiVSFe5/S2E+4pC4uh/7sFT63KfMmQTvlDJ/b3Gs+DYvXJ2TSGWzMEOJCMZPYYpF0UsyQUFHMkGBlqFMly/Ik7RcclRrPs88+G42Njfjiiy/Q3NyMoqKioI778ssvxf6hNI/n+NHQ0ACHwwGFQoHKykq/+3nWeKqj9HJietYUOE1DcBjjr/k34zlHrmz4/ZkiZyJUuSV+jzOcuyahazqDjRlCXChmElesajopZkioKGZIsHir9OWEMIpWookgKjWea9euBQA4nU788pe/hNFoHPGYb7/9Frfffru4vHLlykgVjyQop0k6qq08JSX6hfBM9GLIaerDwL4tHmsFaGcshM5Pbae7RE06CSHjh9Fo9Jl0ZmZmUvNaQkjC4izSZ1qvioQkEZUaz8rKSqxcuRLvvfceqqurcemll2L9+vWYMWOGuI/RaERtbS3q6uqwdetWfPLJJ+A4ThwN96yzzopGUUkcyMrKAsdxIw4K4TRJ3w7JU0aepme0BEGAk3dCwfofwCjWrSL6d2+E4LRLV/I8uL52aCZWxKZQURJszBDiQjGTePr7+33Oy5mZmYmZM2dGPOmkmCGhopghwdKxCpjdltk46MIVCVFJPAHgoYceQnNzM/bt24fe3l4899xzAE7PsfXCCy/ghRdeEPcXTmX6U6dOxR//+MdoFZPEgYKC4AbtiVaNp8k2hA/rtmP5tPOhYBWn5+OKo+b3vms7h9k7GuE09UGekh7lUkVPsDFDiAvFTOJRKpWQy+WSxDNaSSdAMUNCRzFDgiVnpPcwWTw9ZIZR1NqkKJVKvPTSS/jRj34ElmUhCIKYXLq41rkm27300kvx2muvISUWTShJXONsNq/pVCJR48nzPP7zowewt6UK/zr0HrbV70DnUE+AI2Jzo/BZ23mK4HSg/6t3o1wiQggJL41Ggzlz5kClUgEYrk2KVtJJCCFk7KJW4wkACoUCd999N3784x9j48aN2LNnDxoaGtDf3w+n04m0tDQUFRVh3rx5WL169ajm/STjg3Nw0GsdG4GJmlsG2zFgG8SAbRAnjM0AgPXly7GicGHYrzVagWo7XQa+/RhpC1Ylda0nIST5uZLPpqYmTJ06lZJOQkhSGOSklQcOP/sluqgmni65ubm46aabcNNNN8Xi8iQJMHI50ufPg2C3g7fbwTscYCLQh2JvS5VkWS1X4cy8madXxEET/EC1nS6C047+r95F5vevi06hCCEkQjQaDUpLS2NdDEIICRsjZ5UkZY7kbGkbncSzvb0deXnek9cT4kttbS2cTifkcjmmT5/ucx9GJkPK5EmSdZGo8azpqpcsp2vSUJJeDMfAYFz08QymttMlmWs9g4kZQtxRzMQ3s9kMjUZzuk99HKCYIaGimCFEKiptVJYuXYrrrrsO77zzDk2iS0Zkt9ths9lgt/uvxePMZq91MoX/EWdH6/oz1uOGuVdjSckC5OqykKmJTdJmbarxuT6Y2k4XV61nMgomZghxRzETv3p7e/HNN9+goaHBayyIWKKYIaGimCFEKio1njzP4+uvv8bXX3+NBx54ABdccAFWrlyJxYsXU/8M4kUul0MQBMjl/sOTUSihTE+HwHFwDA5GbD7NAn0uCvS5WFKyAAfaqzE9e2pErhNI7xevw7jjDWScfy0M564R14dS2+mSrLWewcQMIe4oZuJTb28vDh06BJ7n0dw83K9+ypQpcVHzSTFDQkUxQ4IlyKWVJ7G/40VGVP4ScnNz0dHRAQCwWq348MMP8eGHHyIjIwOXXXYZVq5ciZkzZ45wFjJeuM/v6o8qMwN5l1wEQRAwWHsECr0+omWSMyzmFs4GAPCS0XQj+zbe2lQD4443AAC92/8JAGLyGUptp0uy9vUMJmYIcUcxE3/ck06X5uZmpKamIjc3N4YlG0YxQ0JFMUOClTdrBvZ31IrLSrU6hqWJnKhUN37++ed4+eWXceWVV8JgMIhTpvT09OAf//gHrrjiClx22WX4y1/+gvb29mgUiSQLQUBq6TRoCiM7V5bvmvnT76Mi1RxMXVyOjPOvFZd7t/8Txi/fGVVtp8vAtx/DaeoLVxEJIWTMenp6vJJOAMjJyUFOTk6MSkUIIdEhN6Siv0AuflnyKfEck3nz5uGBBx7Azp078fzzz+Oyyy6DRqMRk9CGhgY88cQTWLp0KX70ox9Rf1ASkCvRY2SyiIxmG08M567xSj4733os5NpOl2Tu60kISTz+ks7c3FyUl5fHRTNbQgghYxf1RudyuRxLlizBkiVLYLVa8emnn+L999/Hzp074XA4IAgC9uzZgz179lB/UOJX3f/8L3r37IU8RQe5LgW5F1+I/GUXh/UarYMdyNJmQMmGf9CiULma17qa21qbawPtPqJk7etJCEksrqTTs9VIbm4upk+fTkknIWRcyFDocNaARVxWpqXEsDSRE9Pezmq1GsuXL8fy5csxMDCAjz/+GB988AH27t0LjuMk/UEzMzOxc+fOWBaXRElHRwc4jgPLsn779ThNJnBmMzizGTZ0wTk4GNYyCIKALxq/hkwmw3mTzkGOLhOCIHg9BEVzxEXP5DMQRqmBTBV4ehnTge0wnLs2LGWLtWBihhB3FDOx193djcOHDydM0kkxQ0JFMUOCpWIVyHCebvXBOPgAeyeuuBlmS6/XY926dVi3bh16e3vx9ttv49lnn4XFYhH7g5LxoaOjAw6HAwqFImDi6U6eEt43Q32Wfmys/Rh6VQq+aalCaeZkrCq/GNm6DODUw5DXM1EUHpKCST49R78dD4KJGULcUczElr+kMy8vD2VlZXGXdAIUMyR0FDMkWALHgZErwPPD90Seo8Qz4pqamrBt2zZ8+umn+O6778BxXKyLROKUtU06CJXgdIb1/A19J8ALPIzWARitA2geaMfqGeFtyjtagZLP9POuHndJJyEksSRi0kkIIZHUq1DhQEklzCYTeF6ASqlB9Cfwi7yYJ56dnZ1ic9qDBw+K610fSLm5uVixYgVWr14doxKSaJs0aRJ4ng/Ypzdr8UJwFgt4ux283QFFuiGsZWjoPSFZTlOnQqfQjnhctJ6XtGVneyeeMjnSF14enQLEmWBihhB3FDOx0dXVherq6oRMOilmSKgoZkiwmr7Ygaz3vhWXrSoZ8KMYFihCYpJ49vX1if05v/32W/EDyPV/jUaDiy66CKtWrcI555wT1x9EJPxSU1NH3EeekiJpXqsO83D7Tf2tkuVMjQEqVhnWa4xF58YnvVfyThi/fGdc1ngGEzOEuKOYiT6Hw4Ha2lqvpDM/Px+lpaVx/1lPMUNCRTFDiFTUEk+TyYRt27bhgw8+wO7du8VmtK4PIJlMhgULFmDVqlW4+OKLodEEHhiFEHcyZXiTwp/P/yFOGJtx3NiM6s46lGVNFt9Yig9HMXpI6vvybdjbj/nc5qoFHY/JJyEkvikUCsycOVMydUqiJJ2EEELGLiqJ5y233IIdO3bAbh+ed9D9bee0adOwcuVKrFy5kjpek6AIPvr+yvXhfauoU2oxI6cU5dnTcNHUJZDL4mOuUOOX76Bv+yte61VFZbA1HwFAySchJH5lZGSgoqICBw8eRF5eHiWdhBACwMnzkqSMQXLeF6OSeG7btg0Mw4gJZ0ZGBi699FKsXr0aM2fOjEYRSAKx2Wzi1CUqlcprO2e1eq1jI1RDzjAM5Ez8JJ3u/TpVRdPByJVwDnQha/nNsNR9I24fb8nnSDFDiCeKmdjJyMjAWWedBZ1Ol1BJJ8UMCRXFDAlW8ZJF2J0yCEHgIQDQqkYeVyQRRa2prVKpxPnnn4/Vq1dj8eLFYNn4eJgn8efIkSPi8OOVlZVe233VeLJqdTSK5i1K83h6Jp3qkllQF5efWpoOZVYRVNnFADAuk8+RYoYQTxQzsZUS5imwooFihoSKYoYEi3daYJNZxJcVnOBdyZIMopJ4/v73v8cll1xCnaxJWNiNRjgGBiBTKiFTKsGwLJiYjBjn9qY+gvln4KTzVElO1Rp4TrUynpJPQkj86OjoAADqQkMIIUFw9rXD0dsK19OsLPYTj0REVH6qdevWReMyJEkYDAZwHOe3Vrzv2+/Q/uFmcVmVnYUJP1gftus7eQ4dpi7kp+TEfAh0a1ONJOlMO2c1GLl0ICVNSYVk2VfyqS6e7pWsJpORYoYQTxQzkdPR0YGamhoAwy/FcsI86nisUMyQUFHMkGClyzWYM3i6lpNVJOcgq8mZTpOENmHChIDbuaEhyTLDhi+MOZ7DP/e/BY1Cg3SNHipWhQJ9LqZlTgrbNUKhLi6HYfF6GHe8gYzzrwWbkg6HsUO6T2Gp13Huyadh8fqkTjqBkWOGEE8UM5HhnnQCQHV1NQAkRfJJMUNCRTFDgqWWyZHtON2VTKZIzrlfw5p4/vCHPwQw/IbzpZde8lo/Fp7nJOOXY9AkWZaFscN+y0A7PqzbDrlMDoNaD4Najx/MWuH/gCh08cz43pXQTqqEIqMAxm8+8hqMg2EVPo8znLsm6Ws6CSHxo729HbW1tV7rBwYGkiLxJIQQMjZhTTz37Nnjc4Q6f+uD5RoRjBAAcPYbJcusOnyJZ2Nf0/A1eCe6zb0wOyzI0WVJdxLn8YQ08YxgjKqLy9H6yv2wtx+DMm8ylDkTIVNpocwqGvE4QgiJNH9JZ1FREaZMmRKDEhFCSOLo7OnGUdPpJtlypxMlsStOxIS9qa2/JFGI0uifJPk5BgYjdu4j3Q2SZYNajxSVLvgTRCj5dA70wHr8EAAB1uMHYT1+EIaFl0M75YyIXI8QQoI1UtJJL44JISSw1to6GKpPN7W1Ki0xLE3khDXx/OSTT0JaT4gv9fX1cDqdkMvlmDp1qtd2z3k8wzmHp9E6IFlOU+uhU8R+LiXT4R1wr15llBqknnkxZEk6z1OoRooZQjxRzIRHW1sbjhw54rW+uLgYkydPTqqkk2KGhIpihhCpsCaehYWFIa0nxBez2SzOe+ULZ5EmnvLU8M0H9+tFP0OfpR/H+k5i18m9OKf4rBEenKJTk2869LlkOaX8HCj0mVG5diIYKWYI8UQxM3bjKekEKGZI6ChmCJGK+1FtHQ4HGhoa0N3djUWLFsW6OCQOcGazZFmdnx+2czMMgwytARlaA+YW+pns+dTDFMMwUWlCbus4DnvnScm6lFlLIn5dQgjxx1/SOWHCBEyaNCnpkk5CCIkkjpXHf1IWBlH5GadPnw6ZTIZf//rXuP7660M69plnnsHzzz+P7OxsfPHFFxEqIYknlZV+Er5TPJvaKjMyIlmcmDMd2C5ZZlMzoZ4wI0aliU8jxQwhnihmRq+1tRVHjx71Wp/sSSfFDAkVxQwJVpYyFe4jmCRrHXnUJokZbc2QRqOBIAjo7e0Nc4lIohIcDskyG8bpVARBgJNzhu18YyXwHAb2S/tIa0pmYXhIXUIIia7xmnQSQggZu7idnVQQBDQ1NWHTpk0AAK2WBlEhAG+3Q+A4yTplVnj6Og7ZzXir+iM4+OATz0g3tbUcPwTBLh3ZjFGo6OGOEBITTqf3/XHixImUdBJCCBlR2JraOp1OrFmzBvX19T63C4KAP/7xj/jjH/8Y8rkZhkFpaelYi0iSgK+pVOSpqWE59wdHPwUA1HTVQ8nKkanNQH6q96Tnpx+uIv+Q1fPJPyTLrM4AVpcW8esSQogvEyZMgCAIaGxsBDCcdJaUlFDSSQghY6BmFZKmtmySzkIZtsRTLpfjwQcfxNVXX+23Fmi0tUMMw+CGG24YS/FIAunu7gbP85DJZMjKypJss/f1ee2vzEgf8zWtDivaTV0wqPWo7z0OACjS5/lMPD1FqtaTs1vh6GmWrFPkTITh3DURuV4iCxQzhPhCMTN6EydOBDB87yspKYltYaKIYoaEimKGBEspYyXLcdskdYzCOrjQGWecgR/96EfYsmWLZH1raysYhoFer4dOpxvxPAzDgGVZpKSkoKioCOvXr6cRbceR1tZWcfhxr8Szp0eyzMjlUKSMfTqVQ51HsPPEHgCAWq5ChsaAn5z5gzGfdywGvvkIkPQ3ZaDMngCZXBmzMsWrQDFDiC8UM2PjSj7HE4oZEiqKGRIsgeelyzEqR6SFfVTbu+66C3fddZdk3fTp0wEAP/vZz0Ie1ZYQd07TkGRZplCAYVk/ewfvcOfpwTKsThvMDgvKc6aNfGAE7wyDVdJBheSGHGR+/0eRuyAhhLih+QcJISQ6bGqNZJmTjf3ZNh5FbcqYaMx3SJJDcXGx2DTFk627W7LMKMPzUNRvk/YdzdJmQB7gj55hmIh28eSG+uHsa5esU+ZMpH5UfgSKGUJ8oZgJrLm5GSdOnMDs2bOREoZWJcmAYoaEimKGBKvH4znUDt7PnoktKolnbW1tNC5DkkR6uv8+m4JDOqKiTBGeZqcyRgYVq4SNswMAzp0wd5RnCk9iOLD/E8D9ZY2MhXbqaMuU/ALFDCG+UMz419TUhIaGBgBAVVUVJZ+nUMyQUFHMECIVtRpPQsLBOWSSLMvCVON5y9nX4efzfoh2UycajU2YklESlvOOlr2nGfKMAjj72gBBgCKzEKlzzo9pmQghyc896QSGm9tWVVVh/vz51OyWEELImIQ18WxtbRW/Lygo8Ll+LNzPScYnzxbb6tzcsJ1bJpOhQJ+HAn1eKCUK2/VdOIsJCkMuFIZc8A4bHF1NYFMMYBhqqkMIiZyTJ0/i2LFjXuuLi4sp6SSEkAhy8E6432WTtWNVWBPPpUuXgmEYMAyD6upqr/Vj4XlOkrw4jhO/Zz0HDuI5yaKmID8aRfIjMreF/r0fiN/LFCqoCqZCN42a2QYSMGYI8YFiRspf0jl58mRMmDAhBiWKPxQzJFQUMyRYWeo09Lsty5nkjJewN7UN9xyeZPw5fPiwOJpiZWWlZJtzSDqqLRvE9DwREeVXUar8KdG9YIIJFDOE+EIxc5q/pHPKlCkoLi6OQYniE8UMCRXFDAkW77BJlgWBBhca0bx580JaT0iouCGzZFkehsSz09QNi9MKBauAnGGhUaiRqordQBoyhUpyA6KRbAkhkXLixAk0NjZ6raekkxBCooczGSXLDE+J54hefvnlkNYT4ktqaiqcTifkcu/w9KzxlOu0Y75eVXsN+qynGziUGIowv2hOcAdHoCLfcM5qCDwHe+cJDB3di7QFq8J/kSQTKGYI8YVixn/SOXXqVBQVFcWgRPGNYoaEimKGBEvDKuBetcJGcqL4GKK/BBJ3Jk2a5HdbuJvaWh1W7Gs7CL0qFXpVChSsAlqFOsijw18Tae88CUV2ERgZC1XeZChzS2hQoSAEihlCfBnvMUNJZ+jGe8yQ0FHMkGApPZ71ZEk6vBAlniShOAekE+yOtantcWMzvm09KC5rFRrML5w98oHuzV/D1H+ZMw+g+a+/AqvVQzttLnSl86GZPBtgKfEkhITP8ePHcfz4ca/1lHQSQgiJpJgknv6aHezZswfvvvsu2tvbkZubi4svvhhLliyJQQlJPBIEwavGk7dZx3TOk8YWyTIrY5GTkjWmc46Wuf5bQODBDRkxuH8bTId3YOJtL4Jh6f0QISQ8Ojs7fSad06ZNQ2FhYfQLRAghBFbeKVnm/OyX6KL6RLt79248//zzqKurw65duyTbnn76aTzzzDOSde+88w6WLFmCP/3pT1CpVNEsKolHPA/D7ErwDgd4ux28wwFWN7ZBgNpNXZLlqRkl0Co0IZzhdG3nWMcAGqr9WrKsmTwHMgXFPSEkfLKyspCVlYXu7m5xHSWdhBASW11OsyQpsyVnS9voJZ5vvvkmfve730EQBDAMA6PRCIPBAAD47rvv8PTTT/s87vPPP8ddd92FJ598MlpFJTF2/PhxsVa8pKREXC9wHFKnl0n21RaPrVlYikqHwtQ8tJk6wQs8JqcHP19dOAeb5R02mBv2SdZpae7OoPmLGUL8Ga8xI5PJMGPGDBw+fBg9PT0oLS1FQUFBrIuVEMZrzJDRo5ghRCoqiWdXVxcefvhhcVmtVqO3t1dMPF988UUAw9NGlJaW4mc/+xl6e3vxzDPPoLe3F5s3b8a1116Ls846KxrFJTE2MDAgznvljnc4vPZl1cEOBOTb2hnLsHbGMjg4B9oGO0Oo7fSTdY4yGTUfqwJ494YVDOSG3NGdbBzyFzOE+DOeY0Ymk2HmzJno6+tDZmZmrIuTMMZzzJDRoZghRCoqieebb74Jq9UKhmGwcuVKPPjgg1CfShiGhobw2WefAQBYlsVf/vIX5OTkAADOPfdcrF69Gna7HZs2baLEc5xjtVoUrbscAsfBfPwEFIY0MGG6mStYBSYYYtfUbKh6p2RZnpYFZXpejEpDCEl2MpmMkk5CCIkTThk7LkZ8jcrPuHv3bgBAQUEB/uu//gssy4rbvvzyS9jtdjAMgwULFohJJzA8DPV5552Hjz/+GHv27IlGUUkcmDFjhtgk2x3DMGDkckAuR2pZaViuZbQOoLarHmcXneF1vWAIYRjRVuA5mOu+kayTZxaCTTGM+dzjhb+YIcSfZI8ZQRDQ0tKC3Nxcqm0Jk2SPGRJ+FDMkWPml01DXUCMus+rkHOMjKvM0NDY2gmEYnH/++ZKkEwB27Nghfr948WKvY6dNmwZguLkuGR/kcjkUCkXEJ1wWBAFb6r9ASXrx6D4UwvRBYm2qheCwSdYpMgvAyFg/RxBP0YoZkjySOWYEQcCxY8dQX1+PqqoqOHx0UyChS+aYIZFBMUOCpczPQvt0lfjVXza2wTPjVVT+Evr7+wFAUpvpsnPn6SaG55xzjtd2V0JgNpsjVDoyXnWZewEA+1oPQiNXQwBwbvGZUCtG7jcazpeXpmrpCM8yXRrkOkP4LkAIGTdcSWdTUxMAwGQyoaqqCrNnz6aaT0IIITEVlcRTqVTC6XTCYrFI1h87dgytra1gGAYZGRkoLfVuPtna2goASElJzsyfBK/l3ffQtukjyHU6sDot0s+Yg6Ir1o76fMd6TwAATHYzTPbhFxsqeXSbNgiCAHPdXsk6RWYhDOesjmo5CCGJTxAENDQ0oLm5WbLeZDKhv78fWVmxmaOYEEJIYHq5BtOHTrd+U8mSM++JSuJZXFyMI0eOoLq6WrLeNagQACxatMjrOJvNhi+++AIMw9Aw1OOI0WgU+0S4Rj4GAHtvH2ydnXD9Waqys8d0nY/rP4dWoYFelQq9KgWsjA29ye0Yu3g6uprADfZK1ikyC6mZbYj8xQwh/iRbzPhLOgFg+vTplHSGQbLFDIk8ihkSLJ1chWKbU1yWqcc+hkg8ikriefbZZ6O2thY7d+7EF198ge9973vo7u7GSy+9JO5z4YUXSo7heR5/+MMf0NXVBYZhcPbZZ0ejqCQOnDx5Uhx+3P1GbevqluzHyEbfRXnIbsbhzqOSdctLlwZ/AoYJS3tb05GvpadVacFSM9uQ+YsZQvxJppgZKenMy6MRssMhmWKGRAfFDAmWIPCSZWeS9s2PSuK5bt06vPzyy+B5HjfffDNKS0vR0tKCwcFBMAyDvLw8nHfeeeL+L7zwAj788EMcOXIEAKBQKHDFFVdEo6gkjplPNkmWOY+m26FoHmiTLDNgcNHU7436fKNlOrhdsqzIKIA6d1LUy0EISUyCIKC+vh4tLS1e28rLy5GbS/MBE0JIvDNrUtA+ZxEGjf3geR4KpRZTY12oCIhK4jl16lTccssteOqpp8BxHGprawEMf2CyLIv7779fMuLXv/71L7S1tYlTVdx5550oLi6ORlFJHMjPzwfP85B51GhmnrsA1taJ4O128A4HNEWjn3ezqV+aeOalZKMgNboPaM6BHjj7OiTrFJmF0JbNi2o5koG/mCHEn2SIGUo6oysZYoZEF8UMCVbdZ5/B+v4uMTGzq1ngypgWKSKiNr7zz3/+cxQWFuLZZ5/FiRPDg7qUl5fj//2//4eFCxdK9p08eTJaW1uRlZWFe+65B8uXL49WMUkcyPbTd1Ou00JTWHB6OTV11NcwqPU4s2AWmvtb0TnUg4npRaM+lyjEprf27mYoMgvh6GsHeA6MXAF5WjYYhj6gQuUvZgjxJ9FjRhAE1NXViQPwuaOkMzISPWZI9FHMkKA5Oagdbv06Zbz/fRNYVCcWWrVqFVatWoX+/n6wLOt3pNqrr74aP/jBD7BkyRIa/p2IOLO0aW3K1CmjPtfcwkrMLawEAFidNlgd1tEXTBhdB3Bbax10MxZC4JxwGjvBO6xIO+uS0ZeDEDIu+Es6GYZBeXm5z6nLCCGEkFiLyYy2aWlpAbcvXRrCIC9k3BLG0PGaF3h0DvUgV5cFtVwFdcjTqPiu3QxlVFzN5Dlw9rbBYeyAInO4Jleemh5iOQgh4wklnYQQknzsnAPKWBciCmKSeLpzOBzo7+8HwzBITU2FUjkefu0kHOR6/aiPre48CrVcjVxd7KYYUBdMBQqmghvqR/+3m6EpqYhZWQghicHpdMJoNErWUdJJCCGJrXjuPFRZTo/7oVLrYliayIlJ4rl79278+9//xjfffIPOzk7JtuzsbMyZMweXXnopLr744lgUj8TYwYMHxeHHZ82a5Xc/uZ+m2iMRBAHVXfUAgF6LESq5ElMzSqBTakd9vjFhZEgpPxeKrDD0Mx2ngo0ZQlwSNWYUCgVmz56NqqoqmM1mMAyDGTNmUF+yKEjUmCGxQzFDgiVLVWOgWAer1QJBEKCV0zyeY9bb24tf/epX+Oqrr8R1ng/tXV1d2Lp1K7Zu3Yqzzz4bf/zjH+kt7jgjCIL45cLb7eCsVsgUCjAsCwBgZKObR7PH0id+f9w4PO/dlIyJIZ8nDNN4AgBYbSpY7egHSiK+Y4aQQBI5ZlQqFWbPno0DBw6gpKSEks4oSeSYIbFBMUOCZe88AXtHI1zDS8pi3yg1IqL2U/X09GD9+vVobW2V/AHK5XLo9XpwHAeTyQSO48RtX331FdavX4+3334bGRkZ0SoqiTGNRgO5XC4ZWMrUeAKtG98DADAsC5lSiYKVl43q/D3mPq91OkWItZ1jSDp56xDAysHIZGBYGjwrHHzFDCGBJHrMqFQqzJ07N6R+5WRsEj1mSPRRzJBgpbIqTDPbxWU5m5wzHEQt8bz99tvFucZSUlKwYcMGLFu2DNOmTRM/OJ1OJ+rq6rB582a88sorMJlMaG9vx5133om//OUv0SoqibFp06Z5rXMODorfCxwH3umETBXqgEDDtjbsQNdQL9JUqdCrUpCi0kX14a17298xVP0ltNPOgnbaXGgnn0E1nmPkK2YICSQRYsb1ktbf/YmSzuhKhJgh8YVihgQrhVWixHp60EyZVhPD0kROVBLPHTt24OuvvwbDMCguLsbf/vY3FBV592eTy+UoLy9HeXk51q9fjx//+Mc4ceIEdu7ciV27dnnN90nGD/fEE4CkyW2oqtqq0W87fb7l06I3irIgCDAf2QPBYcVQ9S4MVe+CYeHlyDjv6qiVgRAS/wRBwJEjRyAIAqZPn05JJiGEkIQXlXrcTZs2AQBYlsUzzzzjM+n0VFhYiKeffhpy+XBu/N5770W0jCS+OQcHJMsypXJUD2Im25Ak6QSA8yefO7pCjeL69u4m8FaTZJ1cT/2zCCGnCYKA2tpatLe3o6OjA7W1tdRHjBBCktigxYwWXiZ+tTr4WBcpIqKSeO7btw8Mw2Dx4sUhNTuYNm0aFi9eDEEQsG/fvgiWkMQ7R79Hjecom9k2DUjnvmNlLAr1eSGfR5L0hvBAaKraLj2PUgPdjFEmvoSQpONKOjs6Tg+r39HRgaNHj8awVIQQQiKpYV8VZN/w4pdl71CsixQRUWlq293dDQCYOXNmyMfOnDkT27dvl3wIk+TW3NwMp9MJuVwu1o7bensl+7Aa9ajOnapKwfJp56NpoA3N/W1IUekgl42uye5oDB35WrKsyMgHm6RzNUWTr5ghJJB4jBlfSScw/KIrKyt2cw6TYfEYMyS+UcwQIpUwY/Wyo+zPRxJPb2+vOO+V60bNDUnf/LDq0SWeRfp8XHfmenHZ7rQH2Du8nOZBOI3SeWsVGQVRu34y8xUzhAQSbzEjCAJqamq85raWyWSYOXMmMjMzY1Qy4hJvMUPiH8UMIVJRaWrrmmPs8OHDIR/rOobmKRvfBF7a1p13Okd9Lt7tXEq5ctTnCZVp/ycA3JrlyljoSudF7fqEkPgUKOmsqKigpJMQQpKcY5wMIBeVGs85c+bg5MmT2LFjB44dO4bJkycHdVxDQwN27NgBhmFwxhlnRLiUJF6UlpZCEARJP0reZpPsoxrlg9ihjiOwOK0ozZwEFauEklVCJhvN+xd/Nwj/Nw5z/TeSZXlaDnTl54zi2sSTr5ghJJB4iZmRkk6awzp+xEvMkMRBMUOClaM2wH00k2Sd+TUqNZ6rV68GAHAch1tuuSWo/podHR34xS9+Aeepmq3ly5dHsogkjqjVamg0GqjdmtM6jEbJPqMdXKi6qw6NfU34uP4LvHdkG+p7j4+hpMETeA62tgbJOkVmPpgo9i9NZr5ihpBA4iFmeJ5HdXU1JZ0JIh5ihiQWihlCpKKSeJ577rmYP38+BEFAY2MjVq5ciWeeeQZ1dXWSIeIFQUBdXR2efvpprFixAidOnADDMDjzzDOxZMmSaBSVxCneLu2LyYyiltLXdAQyJgx/AkGMamtpqoXg0Z9UV7Zg7NcmhCQknudRU1ODrq4uyXqZTIZZs2ZR0kkIISTpRG1woUcffRRXXXUVWltbMTAwgKefflqcpzM1NRUAMDg4KNZwupKEvLw8PPnkk9EqJolT4ZjCzuK0eq3LTRnDSJEhNJ3p371RsizTGaAuLB39tQkhCWukpDM9PT1GJSOEEBILSpk0JYtKzWAMRO3nys3NxRtvvIF58+ZBEATxy+FwoK+vD319fXA4HOJ6AJg3bx5ef/115OTkRKuYJA6YTCYMDg7CZDKdXslzkn0UafqQz/vBkU9wqKMWJ4zNaB3ogMVhhU6pHV0hQ+yuYW8/JllWZORDkUUj3IWLz5ghJIBYxszRo0cp6UxAdJ8hoaKYIcFSs9LEkw1DhUs8iup0KllZWXj55Zexa9cubNq0CV999RXa2tokTSALCgpw1llnYc2aNTj33HOjWTwSJ44dOyYOP15ZWQnAexRbRVpayOet7qpDbffpfpbrZl4anqa2I3D0tYMbMkrWKTIKaLCBMPIVM4QEEsuYKSgoQFdXFzhu+IWaTCZDZWUlDAZDVMtBQkP3GRIqihkSLM+WfUmad8ZmHs+FCxdi4cKFAIYHHOrv74cgCNDr9VAoknUcJzIWglNa48mMIk6a+lslyxMN4alx9NV31N3Atx9LlhmFCumLLg/LtQkhiUev16OyshIHDhyAIAiUdBJCyDjHK6WDZgpJOvhkTBJPdyzL0iAKRCI7Oxs8z0umORE8ajxZZWjzb/ZbBzBgkzZ1KU4rGH0hgaBrLB09LWDkCghOB4DhZrbyNJqXNpx8xQwhgcQ6ZtLS0lBZWQlBECjpTBCxjhmSeChmSLDa7YOSZSt4P3smtognnt3d3Whvb4dcLkdRURFSUlIifUmS4PLz873WeTa1ZUJMPOUyOX585pVo6m9F80AbOkzdyNVFZ2Ch3HV3grMMwtJ4AAPfbIY8PQ9MFJr4jie+YoaQQOIhZtJG0WWAxE48xAxJLBQzhEhFJPEUBAGvvvoq/vWvf6G+vl5cL5PJMGfOHNx44400PQoJicBJm9qyqtCa2uqUWlw8dUlM+lUyMhZynQEp5edCplBDPaE86mUghEQfz/Po7e1FVtYYXnIRQgghSSLsiefQ0BBuuOEGfPfddwCk/d84jsO+ffvws5/9DGvXrsVDDz1EA6yQEQkcB/DSJgfK7NBGOh6ym8EwDLQKTTiLFhKB56CddhaYJG23Twg5jed5HDp0CL29vZg2bRoKCwtjXSRCCCFxysbZoRp5t4QX9sTz//2//4d9+/aBYRifg6641r399tvIyMjAr371q3AXgSQZ3uHwWqcMcTqVD45+CgDI0BigVaiRrcvEtMxJYSmfOBQZwwScZkWmGA+3FEKIe9IJAHV1dQBAySchhBCfstUGDLgtK5jkrKQIa+L53XffYfv27WLSuXLlSlx77bWYPHkyWJZFbW0t/vGPf+Cjjz6CIAh48cUXce211yI3NzecxSAJrqamRhx+vLy8HLzd7rWPLMQ+ni69FiN6LYCdc4wx8Qyupp532CjhjALPmCFkJJGKGY7jcOjQIfT19UnWNzY2Ijs7G8pR3rtI7NF9hoSKYoYEzaNlnyDQ4EIj2rJli/j9XXfdheuuu06y/YwzzsAZZ5yBgoIC/N///R84jsO7776LG2+8MZzFIAnO4XDA4VbLydu9azxliuAf3uyc9/EZGsOoyhYKS1MtZKwciox8MCoNDSgUQZ4xQ8hIIhEz/pJOlmVRWVlJSWeCo/sMCRXFDAmWc6BbsszwlHiOyNWvc9q0aV5Jp7tf/vKX+Pe//42BgQHs378/nEUgScA1l6vr/7zd5rWPTBX8A5zVYfVaV549dZSl88HPNJ5d7/4JOJV4KjMLoSqYipQZC8N3XSLyjBlCRhLumPGXdMrlclRWVkKvD617AIk/dJ8hoaKYIcFSsSzMbssyfw+XCS6siWdzczMYhsG5554bcD+lUolzzjkHmzdvFvu+EOLi2RzFq6ktw4CRBx+6J4wtqOtpRIYmDTqlFvkpuVCwYfgQCDAwlqO/E87+TgCAs7cVlvpvkbZgFSWeEUJNmEiowt289uDBgzAajZL1lHQmF7rPkFBRzJBgqRnpcy0bZJeuRBPWxHNwcHjy0/T09BH3LSkpAQAMDAwE3pGMe7xNmngycjk4sxlynS6o45sGWlHVXi0ul2VNwYVTF4+pTCMNxmw+sle6v1wJ3fTAL2QIIYknUNI5e/ZspKamxqZghBBCSJwJa6cz+6maqWCaFKSkpAAYnn6FkEA4jxpPhmHgDCFuus3Spm+Z2pFfjITGuzmEqXqHZFmekQ9FBg2iRUgyoaSTEEJIODg9BhNKzoa2Ya7xFAQBDMMENTenTDac83IcF84ikCQk16ihmzwJAsdB4DgwcnnQtZ0A0OOReGZpM8JdRAneboGttUGyTpFRAFZDD6GEJAtKOgkhhIRLm8MkScosydnSNvzzeBIyVm1tbeB5HjKZDPn5+VDl5iJj/jzJPqxaHfT5zpu0AMX6fHSb+9Br6cOk9KLwFNTPCxZL40HA/c0Vw0CVF6Y5Q4lPnjFDyEjGEjMcx+HAgQPo7++XrKekM7nRfYaEimKGEClKPEnc6erqEue9ys/Ph0wuR2rpNAg8D4Hnh+c6CqJW3WVKRgkYyLBmxiVgZWGakNft+oIgbRAxVLtbsizXZ0M7eU54rkt88owZQkYylpjp6+vzmXTOmTNH7EZCkg/dZ0ioKGYIkaLEk8Q9VqNB+llnjvr4pv5W5Ogy0Gfph5JVQK1QQxmOUW19EAQe5rpvJevkmflQ5pZE5HqEkOjLyspCaWkpjh49CmB4XIPZs2dT0kkIIWRUHAwjScqojychUTJ58mSxv3A4HO48Kj1/+gTMLawMy7ndMQwDe+dx8DbpwEeKjAIw4appJT6FO2ZI8htrzBQUFAAAGhsbKekcJ+g+Q0JFMUOClVs0Ac2ZNadXaJJz7teIJJ79/f1obW0dcR+XtrY2r+aKvrg+6Elyi/QDXFbYRrX1/iCxHNsvWZZpUqFIjexgRiTyMUOSTzhipqCgADk5OZCHMK8wSVx0nyGhopghwdJMLcbJeRpxOUWVnLETkU/L559/Hs8//3xQ+wqCgKVLl464H8MwqK6uHnE/QjwpZHI4eKe4zAfxkmNE/gYWOrZPeu2MfGgmzRn79QghMTFSbQUlnYQQQkhwIvaJOVINpvu0K4H2ZRgmqNpQkrzat2xFz67dkCmVkCmV0FfMRP6yi4M+Pk2th5N3wGgdBABkaNIiUk5uyAhH10nJOnlGAZQ5xRG5HiEkspxOJw4fPoySkhKkpUXmvkEIIYRoWSWKrQ5xWZ2kPbTCnngGmySGe7+xEgQBmzZtwltvvYWamhqYzWZkZ2dj3rx5uOaaa1BZGf4+gQDwwAMP4NVXXwUAHDlyJCLXSDRWq1WsZVCr1bA0NcO4v0rcLlOpgCATz3eqN6O2ux6ZmnRk6TIwM6cUhnAnnqdi1HryoHQ9q4BcnwUmQgMZkdM8Y4aQkYwUM06nE1VVVRgcHMTAwAAqKysp+Rzn6D5DQkUxQ4KVptBiutkuLrPKGBYmgsKaeNbW1obzdFFjtVrxy1/+Ep999plkfUtLC1paWvD+++/jP//zP3HjjTeG9bpfffUVXnvttbCeMxkcPXpUHH68srIS9t4+yXaHxzQGAc/VcwzftR0Wl6+YuRxlWVPCVlb3JnieiaciPQ+sJjnb6Mcbz5ghZCSBYsY96QROz9tJyef4RvcZEiqKGTJaDodj5J0SEHVOAXDvvfeKSeeUKVOwfv16ZGVl4fDhw/jXv/4Fs9mMxx9/HLm5uVi1alVYrjk0NIR7772XmhEHgbNaJcsCxwV9bI9ZmrRmasI1sJCUIPBw9LVJ1ikyC6A/86KIXI8QEhkOhwMHDhwQk04XlmWhUFDrBUIIIeEnaFLAzFoMY58RHM+DVWtjXaSIGPeJ565du7Bp0yYAwIIFC/DCCy9ApVIBAC677DJcccUVuPrqq2E0GvGHP/wBF1xwQVhGKXvsscfQ3Nw85vMko4yMDDidTnHQDn3FTPBOJ8BxEDgO2gnB95n0TDyzdBEYYVYAGEaG3CsfAD/UDVvTYQwd+QqZF14HmUIV/usRL54xQ8hIfMWMv6RTqVRizpw50GqT80GABIfuMyRUFDMkWFW7d6L7gy/FZadajjOuimGBImTc/yX87W9/AzA8MuFDDz0kJp0uU6ZMwW9/+1v86le/gtFoxJtvvonrr79+TNd0b2Kbmprq9ZAz3hUVFUmWlenp0E8vE5eDTTwFQcAP51yBzqEe9Fr60GPuQ25KdljL6o5hZFDmToJ20kykf299xK5DvHnGDCEj8YwZh8OBqqoqmEwmyXpKOokL3WdIqChmSNBMFmT1n27RZ7UmZ4tIWawLEEtGoxFffjn8dmHx4sUoLvad0CxfvhyZmZkAgM2bN4/pmu5NbFetWoXy8vIxnW88EJxOyTIT5JtDhmEwI2caZuWW4ca51+CeJf+BvAglnoLTAc4yEJFzE0Iii5JOQgghJPLGdeL5zTffgOd5AMPNbP2RyWSYN28eAKCqqgr9IQxu48nVxDY7Oxv33HPPqM8znrBajWTZ3tMb9LHbG3fjQEctqtqrcbT7GAZtppEPCoI4qBADCE47bK2HIVNqAh9ECIk7/pJOlUpFSSchhJCosHPJOZiQp3Hd1Laurk78vrS0NOC+U6dOBTDcfPPo0aNiIhoK9ya29913HwwGQ8jnGI/MJ6RzY2qLQ2+6crSnUfw+VRXekWYd3cfBDXTCVLUVbEoaFOnZSJmxMKzXIISE30hJp0ZDL5MIIYREXm55OepONIjLrC45X3qO68SzpaVF/L6wsDDgvnl5eZLjQk083ZvYLlu2DBdeeGFohR1H6urqxOHHp02bBnlqKpxu/WCDHdXW6rR5rUsP9xyeGB7RFgAEngNnNUHo9r4uiSzPmCFkJDU1Naivr4fdbhe7UgCUdBL/6D5DQkUxQ4KlKSqAccEEWCwWCIIAnYISz6TT23u6yWZ6euBpNtxrJ41GY8jXcjWxTU9Px+9+97uQjx9PLBYLHA4HnKf6djpHOfiS2WHxWpeuMYylaD6ZvvsAjEoHGHLAKjIgT80c+SASVp4xQ0ggTqcTR44cgdlsBsuy4npKOkkgdJ8hoaKYIcGytdbB2lwLBsBwZ67kTNGS86cKktVtfkjP0Ww9KZVKn8cFw72J7W9/+1tkZERgSo8kwjCM+AUA7R9vBW+1gpGzYGQsFBkZMARxHr0yBd+bOB82zo6arnqY7GawTJi6NZ8qG2fuhbO3CQDgaKsFI1dCs+KW8FyDBM0zZggJhGVZaDQaWCynX05R0klGQvcZEiqKGRIsjUyBfNvpfp4KNjmH4RnXiaf7Gyj3xNIX9+2hvLlyb2J7wQUX4NJLLw29oFFWX1+PKVOmIDU1VVxns9lw5MgRAMO1vxMmTPA6xmw2AwAqKysl27q7u9Ha2goAKC4ultQucxyHw4cPAxieWmbSpEmYNWuWuP348eNwmEyA4/Qfo+zUJO5GoxEnTw73/8zPz0d2tnTE2vs3Pw5O4JCuNiDdYMCiCfPEm39zc7NY411aWgq1Wi0eZzKZcOzYMQBAdnY28vPzJeetqamB3WKB3OFAzkCjZJsgCDjR2gHOeQCTJ0+WzPlqtVpx9OhRAMNze3kOs15XVweLxQKGYSS/AwDo6upCW1sbAGDChAmSGnin04nq6moAgF6vR0lJieTYxsZGccqemTNnSmp4+vr60NQ0nDgXFBQgKytLcuyBAwcAAFqtVuzn7HLy5Emx9r+srEzy8mZwcBCNjcO/m9zcXOTm5kqOra6uhtPphFKpxPTp0yXbWltb0d3dDWB4OiOdTidus1gsYt/szMxMsYm86/d19OhRHDhwADKZDBUVFZLzdnZ2or29HQBQUlICvV4vbnM4HKipqQEApKWlYeLEiZJjGxoaMDQ0BACoqKiATHb6A6G3t1eck7eoqEjyYonneRw6dAgAoNPpMGXKFMl5T5w4IQ5WVl5eDsWp2AaAgYEBHD9+HMBwU/+cnBzJsYcOHQLP81Cr1V591FtaWtDT0wMAmDZtmiSZGhoaQkPDcD+SrKwsFBQUSI6tra2F3W6HXC7HjBkzJNs6OjrQ0dEBAJg0aVLM7hHujh8/joGB4RGlZ8yYIZkvz989gmEYXHTRRdiyZQuMRiMGBwdx9tlnS35PY71HuJrXeY5c3tbWhq6uLgCge0QU7xEuR48ehdVqHdU9QhAEyOVyyXoXukcMS5Z7hMvBgwchCAI0Go1XU9lg7xH5+fl0j8D4uEeM5TliqKMXFUN2cZ1MOxxPsbpHuGIw3MZ14ul+k3A4HAGTT7v9dDCMlKS6czWxTUtLw/333z+qckYbx3HiaL8ugiDAcSr543z0sXQ6neJ2TzzPi9s8zwtA3OYroXc6nYDH9eQatVeZfJW3cagZDsEJDDUBPcDCCXN9llcQBK9jRyqvw+GA4HDC2lQl3ag1wJqaB5x6SPF3Xl8/q+u8vt6Muv8OQz1vpP5tOI7zWyb38/qKF1fTI/cbbzDnHSkOXb/Dkc4bKL6j+TsMFIfB/A55npc8ALiM5XfoKpPncZ7njad7xGj+lhmGQVZWFgRBQF5enldNZzjuESP9rHSPoHuEq0zBnJfuEdG9R7jO63rhEO7z0j2C7hEuPM+D4/2PXxKLe4Svf8twGNeJp/sw+TabLejEc6RmuS7uTWzvuusurzcN8YplWa8/OIZhxLcovgJULpdL3rK4k8lk4jZff8iubb5u7CzLAh7BL1OqvMrked4hh3k46XSTpT39ltm9vJ436EDndZVXcDohB+DsbZEeqzNAoUkZ8by+flaFQgGn0+nzA8P9dxjqeSP5b+OvTO7n9RUvCoUCDMOEfN6R4lChUIDjOJ8/i/t5A8V3NH+HgeIwmN8hz/M+yzWW36FcLgfP8yP+28TLPWIsf8tKpRIFBQU+m9eO9R7h/n93Y/lbpnvEyOele4T0vHSPCMPnvSD4LBfdI7zPS/eI0f8OAQYOt7xR5pZExuIe4evnDwdG8PXKKsIEQcC3336Lb7/9Fq2trejv78fKlSuxdOlSAMDbb7+N2bNne1Unh9vvfvc7vP766wCAbdu2obi42O++b775Jn7zm98AGK7FXLFiRcBzDw0NYeXKlWhubsbixYvx17/+1ed+GzZswJ49ewBAbIISbSaTSXLtsrIySdOOWOIdDuy+4geSdTMfegCGWRV+jhh2vK8Zd2x5WFxmwOCVK56CnA3Puxbe4YC1oxXtL90uWa+rWILcVbeG5RqEkLGz2YZHmQ72hSEhhBASbZ//731wfn5YXLarGCx75c2YlSdSuUHUazzfeecdPPPMM5KpTABg9uzZ4vdPPfUUOjs7cckll+B3v/tdxOa7dG/D3tbWFjDxdLXpBuDV38GXQ4cOiX06duzYgbKyshGPce1TWFiITz/9dMT9k1VXVxd4nodMJkO6xns4aVY58gNkhtaAn8//ITpM3ei3DsDstIYt6XSxtR6VrpCx0Ew6I6zXIMFxjxnPPjpk/LLZbKiqqoIgCJgzZ44k+aSYIaGimCGhopghQeN4qN2rPJN0PKqoJZ6CIODuu+/Gu+++Ky67uFcNOxwOdHZ2QhAEfPTRRzh48CD++c9/enUqDgf3GtW6ujrMnz/f776ujsgMw9BcTBHW1tYmdrrXFxZ5bZepRu5jq1VoIGNkOG/SAmTrMiEL12i2bmwtNZJlVmeAuqjcz94kktxjhj7cCTCcdO7fv18cuXb//v2S5JNihoSKYoaEimKGEKmoJZ6PP/44Nm7cCGA4eVu0aBHmzJmDp59+WrKf3W7H4sWL8fnnn4NhGDQ1NeG2227Dq6++GvYynXHGGVAoFHA4HPj6669xzTXX+NyP4zjs3bsXADB9+nSfI9p5mjZtGp555pkR9/uf//kfMal17e8+6NF4x1m85+JkghjcqWuoB+2mLrSbhkfl0sjVWDH9+2Etm62lVrLMpmSAUdFUDITEmmfSCQyPZHj06FGvkR4JIYSQWHOCGRcD70TlZzx27BhefPFFMAyD3NxcPPXUU+JQ2Z6Jp06nw/PPP4+9e/fitttuQ3d3N7777jts27YN3/9+eBMHvV6PBQsWYMeOHfj000/R2trqsxntBx98IA6ZvWzZsqDOnZGREVR5X3rpJfH7cP98iWrChAkQBAEMw4A7Ndy7O0UQiT8vSAcksjhDm3t1xPPbreD6OyTr2JQMMBGoWSUjc48ZMr75SjoBQKPRSIaLp5ghoaKYIaGimCHBMqhT4f6kmqxJaFSekv/1r3+B4zgwDIP//d//9ZqfyZd58+bhf//3f8Xl999/PyJlu+666wAMN/G9/fbbYTKZJNvr6+vx8MPDg9TodDqsW7cuIuUgpxkMBqSnp8NgMIAzmaUbZTKwQTS1/bb1YIRKN8za4jEQFMOA1aX73plEnHvMkPHLarX6TTo9+3hSzJBQUcyQUFHMkGApGOmos8n6qiIqiefu3bvBMAzOOeeckJo5nXHGGVi4cCEEQcDBg5FJJBYtWoSLL74YAPDdd99h1apV+Otf/4oPPvgAjz76KNavXy9ObnvHHXdIJn4GgK+//hplZWUoKyvDhg0bIlLG8YyzSWsqGZYF42M4aU9F+nykKnVQsUowkE6lEg7WxgOSZZlaD0Wmd39UQkh0+Es6tVqtV9JJCCGEkOiLSk2ua0TYYGo6Pc2cORO7du1Cj48ml+Hy3//93xgaGsLOnTvR3NyMRx99VLKdYRjccsst+MEPfuDnDCRSeLf5U4FTiWcQTVbOLDg93UpNVx2sTltYy2XraJQsy7QGaCafGdZrEEKC40o6rVbpiyqtVovZs2dT0kkIISSuyT3nBY1ROSItKomn/VTyMJpBc5SnBpKJ1ESmwHAzrL/+9a94//33sXHjRtTU1GBwcBAGgwFnnXUWfvjDH+Kss86K2PWJlNPpFPtE8DbvxHMk/dYB/OHzp2HQpEGrUMPOOfAfZ18XtvIJTgfsbXWSdaoJc8DIWFA3jthwjxlfEyyT5BUo6ZwzZ474GeKJYoaEimKGhIpihgRLyyrR57YsF/zumtCi8leQmZmJtrY2HD9+PORjXZOXejZxDTeGYbBy5UqsXLkypOPOPvtsyQSroXr55ZdHfWyyqq6uPj38uGeNp3zkxLPX0o9GYxNgbBo+hmGgYBVhK5+tvQGC0yFZp55ItZ2x5B4zo2lZQRLTaJNOgGKGhI5ihoSKYoaMVpLmndHp41lZWQlBELB9+3aYzeaRDzilqakJn332GRiGoSHwxyneo4+njB35XUmfxShZNqj0YGUjJ6zBYlPSYVi0DqrCcoBVgk3Lg0ylDdv5CSEj85d06nS6EZNOQgghJJ4wCo8uIWF8bo0nUanxXLZsGTZv3oz+/n488MAD+O///u8RjzEajbj11lvhcDjAMAwuuuiiKJSUxAO9Xg+n0wm5XA7O7DGPp2zktqx9ln7JcromLZzFg8KQi/RF66CruAiOASOcg30jH0Qiyj1myPjQ0NDgM+mcPXt2UEknxQwJFcUMCRXFDAlWs31QsmwB72fPxBaVv4SLL74YFRUVOHToEN577z10dXXhhhtuwIwZM7z27ezsxNatW/HCCy+gs7MTDMNgypQpQc+fSRJfSUmJ+P2JnV9KtgXTx7NAn4eV0y+ERq5Gn6UfGVpDWMtna28EZHKA1YGRyYenUUnWNhEJwj1myPhQVlYGq9WKwcHhD+tQkk6AYoaEjmKGhIpihhCpqL2C+dOf/oQrr7wS3d3d2L17N3bv3i3Z/uc//xnPPvusZB5NQRCQkpKC//mf/6HJd8cpQZBmdPLU1BGPcXAOKFklpmVOQmVeOXg+fG+NOIsJQ0f3ADwPsBoIPAN5zlTIFJqwXYMQMjK5XI7KykpUVVVBEISQkk5CCCGERF9U+ngCQGFhIV577TVUVFRAEATxy5VQDg4OYnBwULJtwoQJePnllzF16tRoFZPEGZlHDac6J2fEY450NwAAarsb0NB7Ai2D7WErj+X46fk7uSEjnP0dYGThG7iIEBI8hUKB2bNnU59OQgghCc3BO0beKQlEtdF5cXEx3njjDWzevBlvvfUW9u3b5zXZt1wux8yZM7F69WqsXbuW5l8b5zzn8ZQF8XDpXkf6betBTM2YiOK0grCUx97V5LWOCWLAI0JIZCgU9OKHEEJIYktT6OA+/KqciVrdYFRF/YlZJpNh+fLlWL58OTiOQ2trK4xGIziOg16vR0FBwajm+yTJo7GxUeyML3gmnqqRE08Vq4SNO32cnQvPWyRBEMBbh8CotKebflML8LjgHjOTJk2KdXFIGJnNZjQ1NWHatGlhnc+ZYoaEimKGhIpihgTLc9o/JknHDolpVQ3LsiguLkZxcXEsi0HizODgoDjvldYuTRplQdRuTM6YAJvTDqO1H72WfhTq88JSLkd3Mwb2fgBGqYFcnwmZxgD1tHPDcm4yNu4xQ5KH2WzG/v37YbfbYbfbMXPmzLAlnxQzJFQUMyRUFDMkWA5jp3QFz8WmIBFGbQRJXBtNU9tZudMBAMf7mqFg5WFLPM0N3wEABLsFju5mMGwHUs+5KiznJoRIuSedANDT04PDhw+HNfkkhBBC4oHcYxDVZG1QF5XEs7W1NSznKSgITz89Et9mzpwpfn/0g82SbbIR+vw29bfi6a/+DoMmDQa1HplaA9ZXrAhLuWxtDdKy6NLBqrTg7c7hFTTycsy4xwxJfJ5Jp4vdbgfP82FJPClmSKgoZkioKGZIsHQyBQbclpO1ZjAqP9fSpUvHPB0KwzCorq4OU4lIPGPdRrJ1GI2SbZ7LnrrNvWg0NgHG4UGADGp92BJPe+dxybLckOcd15R8xgQbxPyuJDEMDQ2hqqrKK+lMTU3F7NmzwzYRO8UMCRbP8zCZTBgYGIDdbgfHJWcTOELIaSzLQqlUQq/XIyUlhVrahEnUEmrP+RgJCQZvswVc9tRnGZAsp6vTwlIOQeDh6OuQrJMpaMRlQsJpaGgI+/fvh8Mh7dsd7qSTkGANDg6ipaWFnmEIGWecTidsNhsGBwfBMAwKCwuRGsRc8iSwqHyKz5s3L6j9bDYburq60NbWBmC4lvP73/8+5s6dG8nikTimysmBY9AEgeMgcBzkI/zRGy39kmWDRh+Wcjj72gGP0XHlGYVhOTchxH/SqdfrUVlZSUkniTpfSSfDMFRbTsg4wHGc+LcvCAJaWloimnw22wfhfmcxJ2kDuqh8kr/88ssh7d/d3Y3nn38er7zyCj7//HOsWbMGS5cujVDpSLzp6+sT+3HlXXIRBo8cFbfpJgcejnyCoQBnFcyCRq6GTqlFkT4/LGWyNB+RLDMKNRSZRWE5Nxk795hJT0+PdXFIiGKRdFLMkEB4npcknSkpKUhLS4NGowHDMPQihATF6XSK31PMJBZBEGA2m9Hb2wuTySQmn6WlpRFpditgfLSqiMu/gqysLNx7773IycnB448/jrvvvhvvv/8+cnJyYl00EgVNTU3i8ONlxUWQ63QAAIHnoTAEbjprtA5iUvoETE6fgLMKZmHANhiWMlmPH5Iss6npUBWWQXDwYTk/GRv3mKEkIrGYTCZUVVVFvaaTYoYE4nrQBIaTzqKiIlgsFtjtdko8SdDsdjsEQaCYSUAMw0Cn00Gr1aK5uVm8J5hMJuj14WlNNx7FdU/Zn/70pygqKsLAwABeeeWVWBeHxIAqOxupZaVILSuFvnw6NPmBazB7LUYAACuT4WBHLRr7msNSDlv7Mckym5IOmUIdlnMTMl7FKukkZCQDA6fHC8jIyBjzAImEkMTEMAwyMjLEZfd7Qzg5k3YCFam4/lRnGAbnnXce/vnPf+LTTz/FbbfdFusikSgoKCgY9ZQJDAABQGNfE5w8hxxd5pjLIwg8nH1tknXylAw/e5NYGEvMkNjwl3SmpaVh1qxZEU86KWZIIK5RlRmGgVarBQAoFIpYFokkIIqZ5KDVasEwDARB8BpxPVwMmVno055OPjlVcvYlj+vEEwAyM4cTh3DNBUriX1ZW1qiPdbWQd/LDw92Ho4+no7cdglP6cKwtDW7ALBIdY4kZEhu+apCilXQCFDMkMNeUKSzLirFKSQQJFcVMcnANKuZ0OiM2nVJaZRm+MX0jLqeoUiJynViL+8Tz5MmTAHw/pBDiaemkc2Hn7Oi19KPfNgCDeuzt8O1tDZJlVmeArnQenINmjJOWEYSEnU6nw+zZs8Vaz7S0NFRWVtKIoYQQQkiSiuvEs7m5GR999BEYhsGECRNiXRwSZQLHoeHPL8BpsUCVlQlWo0H+pcugCDCUdZZuuAmsWq4GICBTO/ZBQ2zt0sRTlT/l1Bye5jGfm5DxLCUlBbNnz8aJEycwffp0SjoJIYSMSwqZHOmO07Wp2iStLI+7xNNut6Ovrw+7du3Cn/70J1itVjAMQ9OpjEO83Y6Ordsk63KWnuc38TzafQz/9+2/YNDokabSIy81GxW508dcDptHjacyf8qYz0kIGZaSkoKZM2fGuhiEEEJIzGQpUzB30Couy+WG2BUmgqKSeJaXl4/peL1ejw0bNoSpNCTeHThwAA6HA6yPDtxDx09C7WdanW5zLxqNTYBxeDk/NQdrZywbU1kEgYet47hknSpvsp+9qd1trLhiRqFQoLKyMtbFIR5sNhtUKlWsiyFBMUNCZTabxakxXAMOERIIxQwZrUgNYhRrUUk8XXNhjUZqaiqefvpppKUFnr+RJCGH02sVq1L63b3fKp2zMxz9OxlGhgm/+DMsJw7BaeyAra0BqoKppzaK/yGE+DEwMIADBw6gqKgIJSUlsS4OIYQQEncYtQ666efA2G+EwAuAShfrIkVEVBLPgoKCoPdlWRZqtRr5+flYsGAB1q5dC4PBELnCkbij1WrhdDohY+Vgpk2FwHGnvngoAkza22+TJp5pqrEnnoIgYPC7rVDmTYKudD5SZiwCqw1wXhoEKyZcMUPzPsaXgYEBVFVVgeM4HD9+HAzDYOLEibEuFgCKGRI6mUwm1l4REgyKGRKsgwe+w7FPvgMgDM/QoFJgehI29ozKJ+6nn34ajcuQJDF16lTx+5M1tdKNAebcO7twDlKUOgzZzbA4LJhoKBpzWXibGbzTDmvzEVibjwAA0uZfBladnG+iEpV7zJD44J50ujQ2NkKtViM3NzeGJRtGMUNCpVarY10EkmASLWYcDgfeeOMNvP/++6irq4PD4UBeXh4WLlyIDRs2YPJkf12NyFg5O3swoeV0H0+ryhFg78QVlcTzyJEjYFmWPujJmDGs/8SzzdQJs8MCBSuHRmFAahiaKTi6mrzWyZSJ9UFCSLT19/fjwIEDXvOdZWRk0PyZhESAreM4VLklsS4GSWB9fX244YYbcPDgQcn6EydO4MSJE3j77bfxwAMPYPXq1bEpIEkK/p/iw+iZZ57BihUrsGLFCmzbtm3kAwgBwDt99PFUa0Y8zslzsDrtsDptYy6DubHKax0jc5/ygZrPEOIuUNJZUVFBU6YQEmZOUx/aXrkPTlNfrItCEhTHcbjlllvEpHP27Nm477778Oijj+IHP/gBFAoFrFYr7r33Xnz99dcxLm1ycvDez7zJKCo1ngcOHIAgCKivr0d6+tjnVSTjA2/zThzlOv+jwilZ6cBDPWbjmK4vCLz3NbLd5pOlPhuESIyUdMoCNJUnhIxO/+6N4C0m9H/1LjK/f12si0MS0FtvvYVvvvkGALBy5Ur893//t3i/XrlyJS677DL85Cc/gc1mwwMPPIBNmzbR/TzM0goL0VqYIi4L2vgaCT5copJ49vWdfgtH87WRkZw8eXL4wdVqhWfdiEzpf1TbU92xRWPt42mu/xb2zhNgU9Ih06SCYRioC6eN6ZwkMlwxw7IsJkyYMPIBJOz8JZ2ZmZmYOXNm3D2kUMyQUNncXobGy/RATlMfBvZtAQAMfPsx0hasgjyFXvDHi3iMGV/+9re/AQDS0tJw3333ed2v582bh1/84hd44okn0NDQgG3btuGiiy6KRVGTVvrMchwQTsBmtUEQBOiUyTn9TlSeBNyH0G9ra4vGJUkCMxqN6O3tRX93t/fGAA+vs3KnY9m083DJ1CW4aMpilGZNGlM5BvdthfnI1xj8djP6d78Dy/GDkOupf1o8csWM0WiMdVHGJaPRmFBJJ0AxQ0LHcRycTqdXnMdS/+6NEJzD8/0JTjv6v3o3xiUi7uIxZjzV1NSgsbERALBixQqkpKT43O+qq64Su0ps3rw5auUbL2ztx2BrqYPQfQJCzwnw7fWxLlJEROVp4Oc//7k4lPQf//jHuP4DJPHDWVePjm2fonP75+jasRP9Bw4GHJJcLVchVZUCvToVBk0atIqR+4MGYncfWIhzgmG8/1yotS0Z74xGIw4ePJhQSSchycC9ttNl4NuPk76vZ1tbGx5++GFcfPHFmDVrFubPn48NGzZg06ZNAIAXXngBZWVlKCsr8zrWtf7ZZ59Fd3c3br31Vpx55pk488wzsWrVKrz//vuS/Xmex8cff4xf/OIXWLx4MSoqKnD22Wdj/fr1ePbZZzEwMOC3nBs2bMAZZ5yBM888M+DPc9ddd4nlam5u9rnte9/7HoDhlhp33303lixZgoqKCixatAi33XYbqqq8x6MI1p49e8TvzznnHL/76fV6zJgxAwCwc+fOUV+P+CbneKTarNDbbUiz26Fz0Ki2o3bxxRfjT3/6E373u9/hs88+w5o1a7B+/XrMmTMHRUVF0Ov19HBCRGVlZRAEAc37D6DDrdZTsPv/IzxpbMGze/6BNHUq9KpUpGvScHXl6lGXQeA5OAd7JevYVM/mS5R1xgtXzNBcadHlqunkeWl/6KysLMyYMSOu7+sUMyRU8TY1hnttp4ur1jNZ+3p+/fXXuPnmmzE0NCSus9vt2LNnD/bs2YOtW7f6TDg9mUwmXHPNNTh+/Li4rra2Fnq3ucLb29tx2223Yd++fZJjjUYjjEYjqqqq8NJLL+HRRx8VE0N/whE7+/btw0033SRJdru6uvDhhx/io48+wp133onrr78+5PPW1dWJ30+bFrg70dSpU3Hw4EH09/ejtbUVBQUFIV+P+Jal0OLsgdPTqcg0ihiWJnKiknjecMMNAIDi4mIYjUbU1dXh4YcfDukcDMOguro6EsUjccbVD4LhpA+zjNL/H2GPpQ/H+k6Ky+nqsSWe9p5WwGOEMfXEilGfj0RWPPedSVYOhwOHDh1KyKQToJghoYunmPZV2+mSrH09Dx06hBtvvBFW6/DD+QUXXIClS5dCoVBgz5492LhxIzZv3oxdu3aNeK5//vOfsNlsWLRoEVasWAGj0YjPP/8cixYtAjDcZ/3666/HsWPHAACFhYVYu3YtJk+ejP7+fmzbtg07d+6E0WjEzTffjOeeew6LFy/2e72xxo7ZbMatt96KgYEBzJw5E5dffjn0ej327t2Lt956C06nE4888gi0Wi2uvPLKkM7d0tIiljE/Pz/gvnl5eeL3lHhGWJK+FI1K4rljxw7xrbLr/4IgBDqEEAgO6ZtcmcJ/4tlvHZQsp6lTx3Rta6N0HitGqYGmuNzv/lRrQsYbhUKB0tJS1NTUiPfzREk6CUl0vmo7XZK11vOhhx6C1WoFwzD4wx/+gLVr14rbVq1ahTVr1uDGG2/E4OBggLMMs9lsOO+88/Dcc8+Jn9/XXXeduP3RRx8Vk87vf//7ePzxxyW1lldddRXeeecd3HPPPXA6nbjjjjuwdetWv/0jx2pwcBCDg4NYt24dHnjgAbGvpWuqwhtuuAEWiwVPPPEEli1bJqm5HUlv73DrLp1OB2WAARwBwGAwiN9T/3gyGlF5OigoKEB+fr7kq6CgIKSvkd7CkOTjNA1JlmUBaigGbGFOPFtqJctsajoUmYXeO1LCScaxnJwclJeXg2EYZGdnU9JJSBQEqu10Sba+nl999RW+++47AMC6deskSafL3LlzceeddwZ9zhtuuMHnS+OOjg5s3LgRAFBUVITHHnvMZ1PZNWvWiMlqb28vXn/99aCvPRplZWW4//77veZCnjdvHm655RYAw8ng22+/HdJ5XTXIwbQCcU9MLRZLSNchgR3aX4WaWpn4VXXIHOsiRURUajw//fTTaFyGJInBwUHwPA+71SpZLwsw8Xx51jQsKDoTWdp0WJ02FKTmjqkM9o5GybI8Jd3rA4pyzvjhihmZTIbU1LG9dCChycnJgVKpTLi++hQzJFQcx4n9gj0f/qMpUG2nS7LVem7fvl38/kc/+pHf/dasWYMnnnhixNo4hUKByspKn9t27doFx6mBXa699lpoNP4HKvzJT36Cf/zjH3A6ndi2bRt+8pOf+NzPNXXTWFx//fWQy30/tl955ZX405/+BLvdjs8++0xSezsSp3O4W9FItZ2e+9BAoeHlHDLDMHC664pVmZwtQ8P6lHD33Xfj7rvvptGuyJg0Njaivr4eZo/mMnyAwYWUcgWK0vKhVqhh0KTBzo9+NDCB5+Do65Csk6fSNCrxzBUzriHhSXQZDIaESjoBihkSOpvNJn7FSjC1nS7JVOu5d+9eAEB6ejqmTp3qdz+lUjniKLLA8Jgj/hKt/fv3i98vWLAg4HmysrLE8hw8eNBvN7JwxMy5557rd1tqaipKS0sBIOQRbl21uY4gRlG120+/8FAE6P5EiD9hfVJ45513sHHjRskIWYSMluDRjEOZ4X+gBM97vZMf/Zs4R08L4HG8qsD/Bx0hya63txc9PT2xLgYh414wtZ0uyTSvZ2dnJwAENZjNhAkTRtwnUB9IV59HYDhBHYlrH4fDEXB6lbHQarXIzQ3cksv1uzGbzTCbg2+mqdVqAQSXHLsnnjRAW3hx42SmhKg0tSUkFLm5ueA4Dm0aDdwb2/IB3sY5PGo4DergO9Z7srUdkywzSg10ZfO9d2QYam8bJ1wxE8vmb8mqt7cXhw4dgiAIqKioQGZmZqyLFBYUMyRUCoUiplPwhFLb6ZIsI9y6ms4GMy1JMPsEalbqPlVLoGa2vq5nsViQlpbmtc9Yawd1Ol1I5TCZTGJCORJXEm4ymeB0Ov025wWkAwplZGQEdX4SHJ1KB/e5FJL1kymx2kaRcSE3NxcFBQWQezTdk6f4v/GyjAypSh20Cg3UciVSlMHdcH2xtTdIltXF0yHXU1PbeOaKmZHeCJPQ9PT0iFOmCIKAQ4cOSWoDEhnFDAmVQqGAUqmMWRPDUGo7XZKl1tNVuxbMgDZWj/EhQuWebAZzPffaRX9Jb6CYCbWmcaRyMAwjGX12JCUlJQAAnufR0dERcN/29nbx+8JCHwMuklHTyKQxkqwJGtV4krgleNxoZSr/bzEnZ0zE5IyJp48dw3Q9tjaPxLNo+qjPRUiiciWd7n9LgiCgs7OT3nQTEmWjqe10SYZaz7y8PNTX16O1tXXEfYPZJ5CsrNMvmpuamlBe7n8qNQA4ceIEgOGk0z3hc68ZD1STGMz0LwMDAxgaGgpY89nc3AxguM99MAMFuUyZMkX8vr6+PmBC6epKl5aWRi/tyKgka0JNkgBn8RjVNoS3zKNtCiXwHOwdxyXrVHmTR3UuQhKVr6QTGK4lLCsri1GpCBm/RlPb6ZIMtZ6zZ88GMNzUs6Ghwe9+PM+L066M1qxZs8Tvv/rqq4D7dnR0iPN9ugb3cXFP/kwmk99z1NfXj1gmQRACDhrk/nuZP99H16AA3PcP9PMODAygpqYGwPAULiS8vGZOiFE5Io0STxK3GLm0hbu/Pp6dpm7cueUP+MPn/4unv/47Xt7/Fnie97nvSBzdLRAc0mYvqvwpfvYmJPl0d3f7TTqnT58es/5thIxXY6ntdEn0EW4vueQS8ftXXnnF736bN29GV1fXmK61ZMkSsWnsK6+8ErC57Ysvvig+b5x33nmSbe794V0Jm6f9+/ejra0tqHK99tprfre9+uqr4qi0F1xwQVDnc5k6dSomTx5+wf7OO+9I+ri6e+WVV8QpVJYtWxbSNcjIUuXSwZrkyTmbCiWeJP5UV1ejqqoKNrP0Zq9ITfG5f6+lH419TdjfXo0vjn+NLQ07Rj21g9PUB1afCUY+/KHD6rPA6rwHChhGD+DxwhUz1dXVsS5KQuvu7sbhw4fHRdJJMUNCZbFYYDabg+r3F06mA9sh06SATc0Y9ZdMkwLTge0jXyxOLVq0CNOnD3d7ee211/Dhhx967XPkyBH8/ve/H/O1cnJysGLFCgDDTW1//etf++w3unHjRrz00ksAhpPMq666SrLdveb0mWeeEefLdGlvb8c999wTdLm2bNniM+netWsX/vznPwMY7q85mqTw+uuvBwD09fXhrrvu8upTunfvXvEahYWFuOiii0K+BglNkuadkenj+dprr0km+w0HhmHEP3CS3JxOJ5xOJwSPKU0Ype+huwds0v4RBtXoJ4N3DnQjdfYFYBQqwOmgUWsThCtmkikxijZ/SWdeXh7KysqS7ndLMUNCJQjCmMYPGC3DuWthOHdt1K8bT2QyGR588EFcc801cDgcuO222/DRRx9hyZIlUKlU2L9/P958803YbDawLAuO48Y0t/Ddd9+NvXv3oqmpCVu3bsXy5ctx+eWXY9KkSRgYGMC2bduwY8cOsWwPP/ywV9/3ZcuW4bHHHoPFYsHevXuxfv16XH755UhNTUV1dTX+/e9/Y3BwELNmzcLBgwdHLBPDMHjwwQexY8cOXHjhhZDL5di9ezfeffdd8DwPhUKB+++/P6T+nS5XXHEF3nzzTRw4cABbtmzBFVdcgXXr1sFgMGDfvn1488034XA4wDDMqK9BAmPkHr9TJjnrBiOSeDY1NaGpqSls54vl8OUk+pRKJWQyGWy89ANepvTdx7PP0i9Z1qtHn3i65u8Um9sG+4xB4RlTrpgJNAw88a+rqwvV1dXjJukEKGZI6BiGScq/hUQxe/ZsPPnkk7jjjjtgNpuxZcsWbNkibYJ8xRVXoKWlBbt37x5TcqTX6/HKK6/glltuwYEDB9DS0oKnnnrKaz+DwYAnnngCCxcu9NqWmZmJ3//+97jnnntgt9tx+PBhHD58WLLPD3/4Q8yZMwe33377iGW644478OSTT2L79u1elTs6nQ5PPfUUzjnnnBB/0mEymQzPP/88fvrTn+Lw4cM4cuQIHnroIck+CoUC9913H773ve+N6hoksA5OWqtuS9JbTUQ+cWPxRpAkD1dzmj0MA/denZ59Pl0K9Xm4rPQC2DgHbE4bsnWjH3HTsw+MXB94zkLPZxB6KIkNV8yQ0PlLOvPz81FaWpq0MU0xQ0IVzJyOJLIuvPBCvP/++/j73/+OHTt2oL29HUqlEjNmzMC1116LCy+8ENdccw2A0/NTjlZubi7eeOMNfPjhh/jggw9w8OBB9PX1wWAwoLi4GMuWLcPq1asDXmfFihWYNWsW/va3v2HXrl3o7OyEXq/HrFmzcO2112LRokX44IMPgirPRRddhEWLFuG5557D119/jf7+fhQUFOD888/Hj3/84zGPMpuRkYE33ngDr7/+OjZt2oSGhgaYzWZkZ2fj7LPPxvXXX0+Dy0WQg5c2xeaTtLFtRBLPSy+9FIsWLYrEqck4wnhM7K7yM4WDVqGG+tQXMPraToHzHrxImVUUoICjvhQhcWG8Jp2EkMRVVFSE3/zmN3639/T0ABi+j3k6cuRISNdiGAaXXnopLr300tAK6aakpAQPPvig3+2hnL+0tBRPPPHEqMsyErlcjmuuuUZM3gkJt4gknhUVFVizZk0kTk3GEUGQjkyr8PNW8WS/dM6uDI1hVNdzDnqP+KfIoAmSSfIaHBykpJMQEvfeffddbNq0CcXFxbjpppv81u41NDTg+PHjAIAZM2ZEsYSEjA3H8/Ddri+5UOcWErcEh7TZAaPwHa5ahcZjWT2q69navOfSYrVj6C9KSJybNGkSeJ4XJx4vKCjAtGnTKOkkhMQVvV6PL774AsBwd6777rvPax+TyYR7771XfJl22WWXRbWMhIyFRq6E+1jCLA0uREh0tLa2guM4cA7pcN4yue/BhTI0BsgYBpzA44SxBWr56BLP/q/eA++0Q56SDjYlA4pM72Y6XugBPS64YoZlWRQUFMS6OAmDYRhMmTI8Ty3P8+Mq6aSYIaFyn2KCRvWMroULF6KoqAjNzc149dVXUV1djYsuugh5eXmwWCw4duwY3n33XXR3dwMA1q1bh7lz58a41BQzJHgauUqSeCZn2kmJJ4lD3d3dcDgcQdd4Ts0sAQBYnTbMzC6FTqkN+ZoCz8HWfgzgOTg6TwAAdBWBR24bLw/oicAVMwqFgpKIELknn+MppilmSKicTqc4yj4lEdGlVCrxzDPP4Gc/+xna2tqwf/9+7N+/3+e+V111VUjzY0YSxQwJlmOwV7LsOaVgsqDEk8QlQRAAXtrH01+Np4targLkvuf6HIm966Q4lYqLbupZozoXIfHIVbvny3hKOAkhiWn69On46KOP8O9//xuffPIJjh49iv7+fuh0OuTm5uKMM87AFVdcgcrKylgXlZCQyTiPypbkHNSWEk8Sf6ZMmQLOZoPndMq+ajwHrIN4+Iv/RZoqFXp1KvSqVFxZsQIqz4l4R2A9WSO9lkoLdXF5qEUnMTJlyhSa7zeAjo4OHDt2DHPmzKEpIU6hmCGhUqlG92KThI9Go8GGDRuwYcOGWBclKGONmUceeQSPPPJImEpD4lkqq4TJbTlwVUviCnviSXN4krHS6XRw+ljvMBqh8Rge3WgdQGNfk7jMgME1latDvqa5/hvJsjwlA2zq6OcDJdGl0+liXYS41dHRgZqa4Rcr+/fvp+TzFIoZEip/LQYI8YdihhCpsCae//jHPwAAEyZMCOdpyTjEO7xTT0buHa79tkHJcopKB1YW+o3e3tUkWVak5wVRE0I1JSS+tbe3o7a2Vly22WzYv38/zjrrLOpvRAghhJCoCmviOX/+/HCejoxnPA+ZWg3wPIRTX4yPPp79VmnimaYKffoTgXOCG+qXrJOn+54jjJBE4Zl0uuTk5EChSNZGPIQQQkji6bAPSZatSVq3QX08SdyxWCwQ1CrkXLpM8oAs13mPVluQmou5BZUAGDAMRjWira2ryWtgIW3Z2SGfh8SOxWIR++tRM1Kgra0NR44c8VpfXFyMyZMnU79GUMyQ0PE8L8aMTJaskx2QcKKYIcGyg5MkZbzfPRMbJZ4k7tTV1cHhcEBeOhUzysshCAJsHZ2Qa737ZMllLErSi8VlJRt6TY69vUGyLFPpoM4tCe5g1wM847FMosoVMwqFYtyPaEhJZ3AoZkiorFarmERotaG/5CTjD8UMIVL0+oXELUarhSItDYLDAc5igTzFO/H07ONp5xwhX8fe3ihZVhWVQaYOYuARen4nccZf0jlhwgRKOgkhhJA4xY+Th0qq8SRxJzMzUzLnoMJggCo72+e+o6nh9GRrk9Z4aibQNCqJxjNmxqPW1lYcPXrUa/2ECRMwadIkSjo9UMyQUMnlcpqCh4SEYoYES6NJgcMtTBhZcsYMJZ4k7hQWFkqWZQEGQsnVZeHM/Ao4eQ41XXXI1mWGdC2Bc8LecVyyTpk3JaRzkNjzjJnxxl/SOXHiRJSUlNBDjw/jPWZI6GgkaBIqihkSrKwFs/EJf0hcTlGlxLA0kUOJJ0loBk0aDJo0ODgHCvW5SA3xD9Xe3QzBo3muKm9y0MfTAz2JtZaWFtTV1Xmtp6STEEIIIfGEEk8Sl6zt7ejd+w0YuQIyhRzylBRkLvA/0qyCVUAxima3ns1s5Wk5YLVBTslCD/Qkxrq7uynpJIQQQhIcw8ig5AVxWSEE2DmBUeJJ4tJgwzE0/vVFcVmdl4uMs+dLHqTtTjt++8lj0KtToFelIk2VirUzlyFFGcTAQKfYWqQDsSizJ4y98IRESXp6OgwGA4xGo7iupKQEJSUlMSsTIYQQQkKTp9JjidEsLsvT9TEsTeRQ4kniztGjR2E6Iu2v5rRYAJ4H3AYC6bcNotHYJNnv8pnLQ7qWMncS1BNmwmnqA2fqg8A7R19wEjNHjx4Vp8YoLS2NdXGihmVZzJo1CwcPHoTRaKSkMwTjNWbI6LlPjaFWq2NdHJIAKGbIaDkcoc/SkAgo8SRxx2q1wmE2S9YxLAvGY/TJfqt0KhW5TA6tIrSJ4DnzANQTZ56+joIGAkhEVqsVDocDHMfFuihR50o+u7q6kJeXF+viJIzxHDNkdHiepxFKSUgoZkiwGLkS6omzYDINQhAEQE2DCxESFTKZDIxcDibdAAUrB3geinSD1369ZqNkOU2VOuabu+Cwh7A3fZDEC5lMJn6NRyzLUtIZovEeMyR0rs8XSiJIsChmSLCONp3AwZpmcDwPAQLkSjPKYl2oCKDEk8SdiooKDKWkoictLeB+Dt6JuQWVsHF2cDwHtVw15mvLU9LHfA4SfRUVFbEuQsR1dnYiMzOT5p0Mk/EQMyS8NJrQWtQQkgwxc9NNN+Gzzz7Df/3Xf2Ht2rWxLk7SGmo4jsmH+sRlqyo5X4pS4kkSllapRkl68aiPdw70eJ9z2tyxFImQiGhqakJDQwPS0tJQWVlJySchhJCIe/vtt/HZZ5/FuhgkiSRnOk0SHm+XNnlVZmZ47WNxWMd0DWtzrdc6NsUQ2knE5jPUjIZExsmTJ9HQMDztT39/Pw4ePEj9EgkhEsf7mmNdBJJkPv/8c/zud7+LdTHGDY7nY12EqKDEk8Qlx8CAZNlX/wi1XDpCHMsEH84Cz8HacnS4A7fkOsGfg7pskEg7efIkjh07JllnNBrR0+NdW08IGZ+Mln48+Nn/wGjpj3VRSJJ4++23ccsttyTtyKrxSG3Qw5yiEL8caYnfTNsXampL4k5nZyeGLBZYh4ag0w3PyWnr9n7QnpM/A5W502F2WFDfewLl2VODvoajuxkDezaBUajApqSDTUlHauX5YfsZSHR1dnaC4ziwLIucnJxYFycsfCWdADBlypSk+RljKRljhkSWw+EQRyhVKBSxLo7o3dqtMNmH8F7tVvzwjCtiXRziJl5jxp/BwUE8+uijeP3112NdlHEnZ/5c1Gi74bAPx4xOqY11kSKCajxJ3Glvb0fXiRMwmUziOlVWptd+MkYGOSuHXp2KMwsqoFEEP0eWtbUeACA4bHD2tcPeeQLKrKKxF57ERHt7O1pbW9He3h7rooTFiRMn/CadxcWj79dMTku2mCGR53A4xK94YbT0Y0vDFwCALQ1fUK1nnInHmPFn06ZNuPjii8WkMyMjAz/4wQ9iXKrxw97dDHvXSTh7msH1NsPReTzWRYoISjxJXOKPn4DzyFH0fbsPxv1VMDe1hPX8Q7VfSZblKelQZBaEfiJqb0vC7MSJE2hsbPRaP3XqVEo6CSES79ZuhYMbTmrsnAPv1W6NcYkir62tDQ8//DAuvvhizJo1C/Pnz8eGDRuwadMmAMALL7yAsrIylJV5T0bhWv/ss8+iu7sbt956K84880yceeaZWLVqFd5//33J/jzP4+OPP8YvfvELLF68GBUVFTj77LOxfv16PPvssxjw6BbkbsOGDTjjjDNw5plnBvx57rrrLrFczc3NPrd973vfAzDcEubuu+/GkiVLUFFRgUWLFuG2225DVVVVUL+7QF5//XWxG8eiRYvwzjvvYPbs2WM+LwmOYDWDMQ9CbjdDbreAtQ3FukgRQU1tSdwpKSnBMasNQ61tcNV5evbFFAQBd299BKkqHfSqVKSpUrGy/CIY1PqgruHobpIssynpYDWpoRWUks64UVJSAp7nE35OxuPHj+P48eNe66dOnYqiIqqRD6dkiRkSPSqVSmw2GQ/caztdtjR8gZXTL4RBE3g6skT19ddf4+abb8bQ0OmHcrvdjj179mDPnj3YunWrz4TTk8lkwjXXXCO539bW1kKvP/0M0d7ejttuuw379u2THGs0GmE0GlFVVYWXXnoJjz76qJgY+qNSjX26t3379uGmm26SJLtdXV348MMP8dFHH+HOO+/E9ddfP6ZrFBYW4le/+hUuvfTSsRaXhChPmYKlfWZxmVGnxLA0kUOJJ4k7er0eco8PdmW6QbI85DDjWN9JybrlZUuDOr/Ac3AO9krWsaneo+aSxOH+sJCoKOmMrmSIGRJd8TaNkXttp4ur1jMZ+3oeOnQIN954I6zW4RHtL7jgAixduhQKhQJ79uzBxo0bsXnzZuzatWvEc/3zn/+EzWbDokWLsGLFChiNRnz++edYtGgRgOERxK+//nqxy0NhYSHWrl2LyZMno7+/H9u2bcPOnTthNBpx880347nnnsPixYv9Xm+ssWM2m3HrrbdiYGAAM2fOxOWXXw69Xo+9e/firbfegtPpxCOPPAKtVosrr7xyVNe4/fbbMWvWLMjllBrEAyZJX4pSdJG4JDidkmWGlYZqv3XQ6xi9KrgaS1v7MYCXTkeRNn9FiCUkJHz8JZ3Tpk1DYWFh9AtECIlrvmo7XZK11vOhhx6C1WoFwzD4wx/+gLVr14rbVq1ahTVr1uDGG2/E4KD384Enm82G8847D88995xYg33dddeJ2x999FEx6fz+97+Pxx9/HGr16XEkrrrqKrzzzju455574HQ6cccdd2Dr1q1ISYlMLdXg4CAGBwexbt06PPDAA2Iiu2LFCqxYsQI33HADLBYLnnjiCSxbtmxUL9bOOOOMcBebEC/JmU6ThMc7pYmhzOMNXK/HAAoauRpKNrgR42zt0kFbGJUWqpzR9p2LjyZXJDEJgoDGxkZKOgkhIfFV2+mSjH09v/rqK3z33XcAgHXr1kmSTpe5c+fizjvvDPqcN9xwg89m0x0dHdi4cSMAoKioCI899pgk6XRZs2aNmKz29vZGfCTYsrIy3H///V61p/PmzcMtt9wCYLgZ8Ntvvx3RcpDIOHqkFlUn5OLXdw1jm6s+XlHiSeKOw+EAZzFL1jFy6Y02Xa3H3MLZmJU7HaWZk1GUlg+7nw9hr/N3Sft3qnJLwASZtEoLRUlnvHA4HLDb7QkxcqA7p9Ppc1RVSjojL1FjhsQOz/PiVywFqu10SbYRbrdv3y5+/6Mf/cjvfmvWrIHBYBjxfAqFApWVlT637dq1S7wvXHvttdBo/M+n+JOf/ERsmrpt2za/+4UjZq6//nq/zWCvvPJKKJVKAMBnn3025muR6DN39yGnwyl+6TuS87OJEk8Sd2pqamAdko7mxXjcbBmGQYmhCGVZU1CZV47ZeTOgkAXXctzWJq3x1EyiUdsSXU1NDQ4ePIiamppYFyUkCoUCc+bMkQw8UVpaSklnFCRqzJDYsVqtsFgsYh/DWAlU2+mSbLWee/fuBQCkp6dj6lT/c3YrlcoRR5EFgOLiYjFR87R//37x+wULFgQ8T1ZWlliegwcPeg2E6BKOmDn33HP9bktNTUVpaSkAhGWEW0IihRJPEpcEj6a2vM0uWe4wdXsdE8xIgwLPwe4xN5Iqf0roBSQkTDQajZh8lpaWoqBgFNP6EELGhWBqO12Sqdazs7MTAIK6P06YMGHEfQL1geztPT34YDBTWLn2cTgcAadXGQutVovc3NyA+7h+N2azGWazOeC+JP7Eth1F9FDiSeJOWloaWI+mtfIUnWQ5U2tAhsYAvSq0jvxOYycEh02yTpk7aXQFPYVhmNOtbqn5bUykpaXBYDAgLS0xB9PQaDSYP38+JZ1RlOgxQ6KPZVnxK1aCqe10SaZaT6PRCAA++1p6CmYff7WdACRTtQRqZuvrehaLxec+Y40ZnU434j7u5TCZTAH2JPFIpZTGWrImaDSqLYk7EydORCfLwr3Ok/W4+U80FGGioQhOzomNtR9j8cT5QZ3b1nlCsizT6sHq6MEz0U2cODHWRRiRqwmWv5r5eJuqIdklQsyQ+BKOuRjHIpTaTpdkGeFWpVLB4XD4TezcjbVZq3uyabFYRhyp1r120V/SGyh2bDab320udrt9xH1c5WAYJqh+riS+pLBquI/HnKxPBMmaUJNEx0v7SchUft5OMgzWli9Dbkp2UKe1NUn7cymziuNmMnCSvARBwLFjx1BfX++3DxAhhAQSSm2nS7LUeubl5QEAWltbR9w3mH0CycrKEr9vamoKsOewEyeGX2ir1WpJwuf+bOH0mCLOXTDTvwwMDEhqYn1pbm4GABgMhoA1uoTEEiWeJC4JHvNsMjLf737kMhayECbZNTcekJ5XPorRbAkJgSvpbGpqQktLCxoaGij5JISEZDS1nS7J0Ndz9uzhQQCNRiMaGhr87sfzvDjtymjNmjVL/P6rr74KuG9HR4c436drcB8X9+QvUNPX+vr6EcskCELAQYPcfy/z5wfXAoyQWKDEk8Qnj6HHPUe1ve/TJ/DQZ0/hqa9exEvf/RvdQ70IBmeWdvxnUzPGVk6ApvIkfgmCgIaGBslb8+bmZvFBhRBCgjGa2k6XZKj1vOSSS8TvX3nlFb/7bd68GV1dXWO61pIlS6BQKMRrBWre++KLL4pTpZx33nmSbZmZmeL3/kbP3r9/P9ra2oIq12uvveZ326uvvipOAXPBBRcEdT4SX1Ll0mbaiiR9P02JJ4k7DQ0NcHrMrce49X9z8hxquupwoKMGO0/swQdHP4HFGVyfjpRZS5BSeT40U8+CqmAaFOn5oy4nNdGNHw0NDThy5EjAN+HR5ko6Xc2f3AUzUASJrHiMGRLfrFar+BVNY6ntdEn0Ws9FixZh+vTpAIYTsA8//NBrnyNHjuD3v//9mK+Vk5ODFStWABhuavvrX//a57/5xo0b8dJLLwEYTjKvuuoqyXb3mtNnnnnGq7lte3s77rnnnqDLtWXLFp9J965du/DnP/8ZAFBSUoJly5YFfU4SPzwfKZM076TBhUj8GRoaguBZ48mefkcyYPPuD5GmSh3xvIIgQKZQQZaWDXnacJ/QlJkLx1haEg+GhobgcDjEt9SxJggC6uvr0dLS4rWtvLx8xGHxSeTFW8yQ+MfzPARBiPpLx8+Of4VU5dhfVn12/CusLr84DCWKPplMhgcffBDXXHMNHA4HbrvtNnz00UdYsmQJVCoV9u/fjzfffBM2mw0sy4LjuJC64Xi6++67sXfvXjQ1NWHr1q1Yvnw5Lr/8ckyaNAkDAwPYtm0bduzYIZbt4YcfRkaGtAXVsmXL8Nhjj8FisWDv3r1Yv349Lr/8cqSmpqK6uhr//ve/MTg4iFmzZuHgwYMjlolhGDz44IPYsWMHLrzwQsjlcuzevRvvvvsueJ6HQqHA/fffT/07E5RXlzImOesGKfEk8cljcCH3P8hej7e2DBio5UGMNsh5d+5nZPQnQMKLkk5CSDitLr84YRPGcJo9ezaefPJJ3HHHHTCbzdiyZQu2bNki2eeKK65AS0sLdu/ePaYETK/X45VXXsEtt9yCAwcOoKWlBU899ZTXfgaDAU888QQWLvR+iZ2ZmYkHH3wQ9957L+x2Ow4fPozDhw9L9vnhD3+IOXPm4Pbbbx+xTHfccQeefPJJbN++Hdu3b5ds0+l0eOqpp3DOOeeE+JOSeNHLSCtc7EnaqI6eukncqaiowNcMI5lM172Pp16pw7zC2bA6bbA57eB4DnwQjRJ4u3dTGZkmtHlASXyqqKiIdREAUNKZSOIlZkjiCGZORxJZF154Id5//338/e9/x44dO9De3g6lUokZM2bg2muvxYUXXohrrrkGwHDyOBa5ubl444038OGHH+KDDz7AwYMH0dfXB4PBgOLiYixbtgyrV68OeJ0VK1Zg1qxZePHFF7Fr1y50dnZCr9dj1qxZuPbaa7Fo0SJ88MEHQZXnoosuwqJFi/Dcc8/h66+/Rn9/PwoKCnD++efjxz/+MX2+JDizUzqtDpekjW0p8SRxx1fzGKVbJ32lXImJhiLJdnkQNZe8zXsockY+hiYpruZWSfpWKpGMpUlVuAiCgLq6Op9D+c+YMQM5OTkxKBXxJx5ihiQW6tcfH4qKivCb3/zG7/aenh4AQH6+9xgOR44cCelaDMPg0ksvxaWXXhpaId2OnzRpEh588EG/+4Ry/tLSUjzxxBOjKstorF27FmvXro3a9Ujyo8STxCeP6SbkOq34Pe/R/xMA2GDawgvex9GDBAkHf0knwzAoLy+npJMQQsbg3XffxaZNm1BcXIybbrrJb+1eQ0MDjh8/DmD4hR8hiYLn+XEx4islniQu8R6jv8ncmtoqWDlKDEVw8hyaB9ogl7EjJpCCIGDw4BfgzP2QaVLBBHFMSE6dixLZ8YeSTkIIiSy9Xo8vvhge2VcQBNx3331e+5hMJtx7773iPMmXXXZZVMtIyFjIZayki5ksSZ8nKfEkcaenp8d7Hk+3UW1TVSmYXzQnpHNypj4Yd77pOhtkGh3SF68fY0lJvOjt7R1+WyiTeY0sGGn19fU+k84ZM2YgOzs7qmUhwYtlzJDE5HQ6xVFt5XJ6fIqmhQsXoqioCM3NzXj11VdRXV2Niy66CHl5ebBYLDh27BjeffdddHd3AwDWrVuHuXPnxrjUFDMkeKlKLdyHzmSTtB8X/RWQuNN84qTXOoYdW6g6ut3nUhTA2yzgrOYxnfO05Lw5JJLm5mZxaoxoJxGZmZloa2sTm4BT0pkYYhkzJDHZ7XZKImJEqVTimWeewc9+9jO0tbVh//792L9/v899r7rqqpDmx4wkihkSLG5oQLLsOa1gsqC/AhJ/fPyxMXLWx47Bs0sST4DV6qFMzxvTOQkBgIyMDFRUVODQoUMQBIGSTkIIiYDp06fjo48+wr///W988sknOHr0KPr7+6HT6ZCbm4szzjgDV1xxBSorK2NdVEJCxtstkmVGoFFtCYmKgrxcHPVc6TZ40H998TScPIc0VSr06lRcPHUJ8lMD96NzeCSeMq0ecgMlB8miqKhIbDYZC67kk+d5ZGVlxaQMJDSxjhmSeJRKpVh7RWJDo9Fgw4YN2LBhQ6yLEpSxxswjjzyCRx55JMylIvFIz6rg3g5PTtOpEBIdBh9zYjmMfVDnDCeK1Z11sHF2cdu5xWeNmHjau5sky6wmFXI9JQjJIh6aSsZDGUjw6N+LhIqaSpJQUcyQYHm+m2CStBsXveolcUdwcl7rXH08rQ6rJOkEAL06dcRzOnpaJMsyrR4y7dgmlz49ku3YTkMSgyAI6O/vH3lHQgghhBDihRJPEncEzjvxlCmGE89+26DXNmaE1gicZRDckDRh0JXNh0yuHH0hybgiCAJqa2vx3XffoaOjI9bFIYQQQkgS6XVaJcv2JK3UoDYAJO7I0w0oWncFOLsNDIZH9pKp1ACAFKUOC4rPxJDdDJvTDjtnh513BDyfo1ta2wkZC13ZggiVnsQC7zYgVbj77AmCgJqaGnR2dgIAampqwDAMzc+Z4CIZMyQ5CW6DfVA/TxIMihkSrCHeLknKnH73TGyUeJK4c7i6Gvapk6CQy1ExcyYEQQCrUgEAdEotJqYVghNOPzTqFNqA5/Mc0VaRkQ+ZXBG+AtOHScwdOnRInBojnCMaeiadLrW1tTAYDFAqqdY8UUUqZkjyslgs4kAxWm3gzx1CAIoZQjxR4kniEqNQgFEowGo0kvWCIEiSTmDk2gpHjzTxVGYVhaeMlHAmNX9Jp0wmQ0VFBSWdhBBCCAmL5BzD1hslniTu6HQ6OJ1On6PBCYKAhRPmwuKwwuK0wuKwQiNXBzyfV41nZngSTxI/AsXMaAiCgOrqanR1dUnWu5JOGhE18YU7ZkjyoybZJFQUMyRYcoX0WTZZqzboE5fEnSlTpvjdJpPJUKjPE5eDmR/L3t4oWQ5XjadUst4iEkOgmAkVz/OoqamhpDPJhTNmyPigVgd+yUmIJ4oZEqzc+bOxw1ojLmvVuhiWJnIo8SQJbaSkk7dbwQ0ZJeucpr4IlogkskBJ56xZs5Cenh6jkhFCCCEkWTFKBRza0zXknIqNYWkihxJPEnccg4MYajgGhmXByOWQKRRImTq62gm7x/ydAACPPqJjR7WdyYDneVRXV6O7u1uynpJOQgghhJCxo8STxJ3Bo3WoefBhcVmemor5//gbGJkMT+z6C4YcQ9CrUpGmSsXSyQsxwVDo91z2zhOAjAX44blBZWoddNNpKhUiRUknIYQQQmIlR6XHkr4hcVluSIlhaSKHEk8Sd9pPnpQsC87TsxnVdtfDaB0Ql+fkVwRMPGVKDdLOXQvBZgZnHoDAc5AbcsNfaBJTJ06cEAeKmThxYkjHBko6KysrYTAYwlhSEi/GEjNkfLLZbOK4AqpTU3wREgjFDAkWy8igdB/a1snFrCyRRIkniTvmgUHpCpkMYBjwAo8Bm0myKU2dGvBc9q6TYBgGjFoH2amO2jQNSvLp7+8X52QMVU9PDyWd49BYYoaMTxzHBTWgHSEuFDMkaIwMisxCWG02QBAgKKnGk5AoEQClAhAEMGAgUyjAMAwGbUPgPfpnDtmH/JzDN5kyjCPMuT5IGIyfCZiSUHZ2NiZPnoxjx44BAFiWxaxZsyjpJIQQQkhUNA0O4lurHHYbDwEClABKY12oCKDEk8SdsvPPRzc7HJosy0J2qnmKklVgXuFs2Jx22Dg7bE4b5LLQaiuUOSXhLi6JA+Xl5WN6qzxhwgQIgoCTJ09S0jlOjDVmyPhDU2OQUCVazHR0dODVV1/Fjh070NTUBIvFAoPBgIqKCqxYsQLLli2juUkjpGf/AZRsPyEuW1Uy4D9jV55IocSTxB2WYcCyp4eRlimGw1QtV6EsazIM6jR0m3vh5DkEembkHTavdYp06t+ZjMLRXHLixInIzc1NuAcFMjrUxJaEih64SagSKWY++OAD/OY3v4HZbJas7+rqwvbt27F9+3a89tpreOqpp2g+azJqifMXQcYNR3+/ZJlxu3HnpmRj4YS5cJ4apVav8t/H0znQ7bVOrs8KUylJMqKkkxCSiIYaj8e6CCSB7dixA7/+9a9hNpvBMAwuvvhiPPTQQ3jyySdx6623orBweBDHvXv34uc//zkcDkeMS5yEhPHRZ4sSTxJ3WK1WsuxwG2xoXuFssLLTtaGBBhcyHd4Ja/MROHrbwFlNw83q2DBW8p+qbqWmeonBNXqtyWQaeWdCCEkQ9r4+HPrtfbD39cW6KCQBORwOPPjgg+A4DizL4s9//jOeeuoprFu3DsuXL8cvfvELvP/++1iwYHgquu+++w7/+te/YlzqJCRnwcsgfkGenCkaNbU9RRAEbNq0CW+99RZqampgNpuRnZ2NefPm4ZprrkFlZeWYz//JJ5/g3XffxYEDB9Db2wuFQoHCwkIsXLgQP/zhD1FQUBCmnyaxDZkGYbVaxeHHZW5N4mTM8B+iklUgNyULWoXG73nMdXthb28Ul5UF04AlP4hcwUnMDAwMgOd5yGQy6PV6r+0cx+HQoUPo6+tDb28v5syZg5SU5BwxjgRnpJghxJP7CKXu3UFireXtjXAOmtDyzruY9OPrYl0c4iZeY8bd7t27cfLUNHbXXnstzj//fK99dDodHn/8cVxwwQWwWq148803sWHDhmgXNakVnv89fJ5tBufkIEBAilIX6yJFBCWeAKxWK375y1/is88+k6xvaWlBS0sL3n//ffznf/4nbrzxxlGdv7+/H7fddht27dolWW+323H06FEcPXoUr7zyCn7/+99j9erVo/wpkkdrSytsvb1gWRa5ublQGNK89lk8cT7SNd7r3XGD0re/8tTMsJaTxI/jx4+LU2N4viRyTzoBwOl0oqqqCrNnz6bkcxwLFDOE+OI+J6PWo2VOrNj7+tC+eQsAoP2jj1G4ZhWU6ekxLhVxiceY8bR7927x+1WrVvndLysrC3PnzsXOnTtx5MgRWK1W6p4SRs7+TjiNHXDY7RAAWGXJOe8rJZ4A7r33XjHpnDJlCtavX4+srCwcPnwY//rXv2A2m/H4448jNzc34B+lLzzP4xe/+AX27t0LACgoKMDll1+OyZMnY2hoCDt37sSWLVtgt9tx1113Qa/XY+nSpeH+ERMK19EBvqUFkLEwDZrAWSxe+2RqA3+wCgIPziKdD1Suj2Di6WptS81u44pn0unC8zx4nvdzFCGEJIaWtzeCt9sBALzdPi5qPdva2vC3v/0NX3zxBVpbW6HRaFBWVoYrr7wSl112GV544QU8/vjjAIAjR45Iji0rKwMA/PKXv8T69evx4IMPYufOnQCA4uJi/PSnP8WKFSvE/Xmex9atW/Hee+/hwIED6Ovrg06nw8SJE3Heeefh2muv9dtiYsOGDdizZw+A4eap/tx111145513AACffPIJioqKvLbl5ubiiy++wMmTJ/HnP/8ZX375JXp6emAwGDBv3jxcd911mD17dqi/SgDDYxtMmjQJ7e3tKCkpCbhvWtrpF/4DAwOUeIaRc7APzoEeMMCpL+9n32Qw7hPPXbt2YdOmTQCABQsW4IUXXoDq1PQdl112Ga644gpcffXVMBqN+MMf/oALLrggpFqSd955R0w6FyxYgD//+c+St17r1q3Dp59+iv/4j/+A0+nE/fffj4ULF4plGI8UzS2wNTSCA9AHwNbdAwB4+uu/o9dshF6dijRVKr5XcjamZEz0eQ6HsQM4NQCRi65sfljLebpvJ03kGWt5eXli/xQXf0mnXC5HZWUlNa8c53zFDCGBKBSKuJqCx7220yXZaz2//vpr3HzzzRgaOj2Ht91ux549e7Bnzx5s3bpVTC4DMZlMuOaaa3D8+HFxXW1treRzob29Hbfddhv27dsnOdZoNMJoNKKqqgovvfQSHn30UXzve98LeL1wjKK9b98+3HTTTRgYGBDXdXV14cMPP8RHH32EO++8E9dff33I5/3lL3+JX/7yl0HtW19fD2D4+YemHQuvbIUOC42nRxSWqaipbVL629/+BmD4YfShhx7ySvimTJmC3/72t/jVr34Fo9GIN998M6Q/7Ndffx0AoFKp8Nhjj/lsarF06VJce+21+Pvf/46Ojg588cUXuPDCC8fwUyU2rT4N7sO/CE4nAKCuuxFtpk5x/fTsKX4TT2dPq2SZkSuhzJ8a9rKS+JCTkyNZ5jgOBw8ehNFolKyXy+WYPXs2UlP9D0pFxgfPmCFkJPE2BY97badLMtd6Hjp0CDfeeCOsVisA4IILLsDSpUuhUCiwZ88ebNy4EZs3b/bq1uTLP//5T9hsNixatAgrVqyA0WjE559/jkWLFgEY7iJ1/fXX49ixYwCAwsJCrF27FpMnT0Z/fz+2bduGnTt3wmg04uabb8Zzzz2HxYsX+73eWGPHbDbj1ltvxcDAAGbOnInLL78cer0ee/fuxVtvvQWn04lHHnkEWq0WV1555Ziu5c+hQ4fEGuTy8nIolcqIXGe8kjMyaPnTlRiuMU2STXL+VEEyGo348ssvAQCLFy9GcXGxz/2WL1+OzMzhZpqbN28O+vwmkwkHDhwAAJx77rnIzs72u+8ll1wifl9VVRX0NZKSx5DSDDscpr0Wo2R9WoCpVOzdLZJlRVYRWCU1CRkPKOkkhCQ7X7WdLu0ffZyUI9w+9NBD4sCD//Vf/4Vnn30WV1xxBVatWoWHH34YL730EnQ6HQYHB0c8l81mw3nnnYe//vWvWL16Na677jq8+OKLYguIRx99VEw6v//97+PDDz/ELbfcguXLl+Oqq67C//3f/+GRRx6BTCaD0+nEHXfcEdER0wcHB9HV1YV169bhzTffxDXXXIMVK1bgwQcfxN///ndoNMMDLT7xxBOSGtFw4XkeDz/8sLjs3hyZkFCM68Tzm2++Eft5uYaJ9kUmk2HevHkAhpPCfo95Jv3p6+vDrFmzkJ2djcmTJwfc17Pd/HgmeDSRZdVqODgHbJz0za6dc/o9h6O7SbKsyp0UvgKSuEVJJyFkPPBV2+niqvVMJl999ZXYT3LdunVYu3at1z5z587FnXfeGfQ5b7jhBp/Npjs6OrBx40YAQFFRER577DGffRnXrFmD6667DgDQ29srtnCLlLKyMtx///1e3QPmzZuHW265BcBwhcrbb78d9ms/+eSTYpPjvLw8XH311WG/xnh3oukE9ncpxK+qNt9/34luXCeedXV14velpaUB9506dbiZpiAIOHr0aFDnLy4uxptvvomdO3fijjvuCLhvQ0OD+P14bzcvcB6DvshksDsdmF84B5W55SjLmoISQxEytQa/5/BV4xkJDMOcHliIxBTHcThw4AAlnYSQpBaottMl2Wo9t2/fLn7/ox/9yO9+a9asCeoZKtBo1rt27YLD4QAwPL2IqzbRl5/85CeQy4d7rW3btm3E647F9ddfL17L05VXXik2ffWcoWGsXn75ZbzwwgsAAJZl8eijj9KgQhHQd7IVuY0O8Sul0RbrIkXEuE48W1pOJyeFhYUB983Ly/N5XLi89dZb4vejHZksWfQbpR+WDCuDQ3BigqEQpVmTMSt3OuYWzkZ+aq7P4wVBgKOnWbJOmRX435cktgMHDmDTpk2Sl0nAcNI5Z84cSjqJl0OHDuG7777DoUOHYl0UkiAsFgvMZjMsPkZaj6ZAtZ0uyVbr6RqkMT09XawI8EWpVOLMM88c8XzFxcV++yju379f/D5QazhgeIoRV3kOHjwIQfA90GA4Yubcc8/1uy01NVWsQAlnd61//OMfkia2d9xxB+bPD+9AjWR8GdeJZ29vr/h9+ggjwLm/QfOsURmrHTt2iG/zMjMzsXDhwrCeP9HwHjWezKkO1nIZC5lbsxi5zPdolNyQEbx1SLIuUjWeJPY4jsPx48cxNDQk+dBXKBSYM2cOzdVJfHJNqUPT6pBgCYIgfsVKMLWdLslU69nZOTywYEFBwYj7TpgwYcR9Ao1q7v5s6G/sD3eufRwOh9+uUmONGa1Wi9xc3y/bXVy/G7PZDLPZHHDfYDz99NN4+OGHxbL//Oc/F5sWEzJa43pUW9fIaABGnL7E/c2Y+3Fj1dbWJumTcPPNN4/7Jgwsw0DSy1Mmg0Gtx9oZyyAIAhr7mpCbkuX3eOvJaskywyrARnIOTxJTDMNAo9HAarWKfV8UCgVmz55NSSfxS61Wg2XZuBuplMQvmUwW8+lUgqntdEmmEW5dL/yDeT4KZp9AI7K6T9USqJmtr+tZLBbJmB0uMtnY6nl0upGn1nAvh8lk8jmLQjA4jsN9992HN998U1x3yy234D/+4z9GdT4SJIU0JpO1F9e4TjydztOD04w0LLT7dvfjxqK3txc//vGP0dMzPE/lwoULce2114bl3GNRX1+PKVOmSJon2mw2cRhtg8Hg9Uaxvr5efMPm2W+iu7sbra3D05sUFxdLapc5jsPhw4cBDDcVmTRpErQqNdw/Vk1DQzhw4ABmzJgBuVyOyRnD1zYajTh58iQAID8/Xxw12Fz/reT6vEINmUwa6s3NzeJbzdLSUq8btms0u+zsbOTn50uOrampgcPhgEKhwJS8PLjfHtra2tB96t9z8uTJksTHarWK/YMzMjIkk0QDw32OLRYLGIbBrFmzJNu6urrQ1tYGYPhtrnsNvNPpRHX1cLKt1+u9JoBubGwUR/mbOXOmZGCCvr4+NDUND8RUUFCArCxpQu8alVmr1Xo1bzp58qT4MFBWViZ5eTM4OIjGxkYAQG5urteb2urqajidTiiVSkyfPl2yrbW1Fd3d3QCGpzNy/8C1WCxic9rMzEwUFhZCJpPhggsuQHV1NY4cOYLu7m6UlJR4JZ2dnZ1ob28HAJSUlEjeeDscDtTU1AAYHuhr4kTpND0NDQ3iw0hFRYXkIaK3txfNzcNNu4uKipCRkSFu43lebMqp0+kwZcoUyXlPnDghDlZWXl4uSYIGBgbEOeby8vK8pv84dOgQeJ6HWq326qPe0tIi3lemTZsmeXgaGhoS+5RnZWV51SDU1tbCbrdDLpdjxowZkm0dHR3o6OgAAEyaNClm9wh3x48fF2sZXPcIF3/3CGD47/7gwYOwWq2oq6vDtGnTJOcN1z2ivLxcsq2trQ1dXV0A6B4RrXuEu6NHj8JqtUImk6GiokKyzf0e4flCwr123FcSYbVaxe0ajUaSnDqdTthPJYtKpVISo4IgiM0wZTKZV9Jks9nAccOvYmUWS9C1nS5tH32MrOWXINWtuxAwPPel61lGrVZLfiaO42CzDfcvk8vlXs9HFotFTMA9EzOHwyH2j1SpVJJY4nlefHHPsqzXC3/336Fn0qRSqeBwODA0NASn0+n3d8iyrFflgPvv0JP7v41CoYBCoZD8TD09PUhJSfH5b+P6HbqPouvah+M4yTU9j3X/Hbp+157ndf1srnWA9Hfo+W/jur8yDOOzMsX938ZfHNpsNtxxxx344osvxHPdeeeduPrqq8XzB4pv1+/Qneu4keI7UBz6Om+gOHT/HQaKQ1/x7YpDX+flOA4WiwUHDhwI+3MEM+SQ7O/614nVc4TrcyrcxnXi6f4H4HA4Aiafdrc3jOGYu6irq0syR9TEiRPx2GOPxcXE1BzHeTU/EwRBvGH5uoE7nU5xuyee58Vtvpq1uba5bhKcWdpMVji1j2dTFfcyuZ/XYZT+sQhK77d+7uUN9rzu5Q3mZw10Xl8vL1zn9RUDYzlvOP9t3HEc57dM7uf1FS8OhwNOp9PnA1yg8/qLQ5lMhhkzZqCtrQ06nc5r1D/P8waK72j+DgPFYTC/Q57nR/xZg/0depbJV9OwYH+Hkb5H+DvvaP6WBUHwOWAH3SO8z5vI9wj38zocjhHP66sm3HUtf80mA60PdGygZpjux7a+827QtZ3i8XY72t/bhNQbfxq2MgXaHq6f1VNubi5MJpP4csXfeQVBEF9iBXNeX2Vyf7nS3NyMsrIyvz+LIAjiyy21Wi154eOZnHkmeq5z+pr+xfN6AwMDGBoagub/t3ff4U2V7R/Av9lJdymlhVKgQEvZG0SKMkQFRGQKgjhef76iKOKeqDhexYGCWxQXIEPZQ7YUkKHs2bLbAm1pm7bpyDy/P0IPSZu0CTRNmn4/18VFTvLk5El65+Tc51kajdPPt+wCaGhoqNNJiCr7u5WUlGDKlCnieFq5XI63334bI0aMQGlpqVufoaPHPPG9qawHwo3u15myY0x1n0dYLBY4HkDmnfMITw1DqdOJp+0VNb1e73LiWVW33KpcuHABjzzyCM6fPw/AeiV+7ty5di0l3iSTySr8KEskEvGH2FGAyuVyp13WpFKp+JijH/uyx8oOlNJyV8QkJhMUCkWFg4ttneyukhVesX8BVcUuKrb1dXW/5evr6P3avtfK9uvoR0GhUMBkMjk8iN7Ifqvzb2PLtpti+TrZ7tdRvJT9Pd3db2VxKJVK0bRpU7E1o7L9VhbfNfkZVhaHrnyGFovFYb2u9zMsq5PFYqnyb+PNY4Sz/V7Pd1kQBIf14jGi4n5r+zGibL9ms7nKY4QjZa/l7ES3svsre25lF5zLnmvUanH5T/daO8tkb9iEpqNHQmnTk+BG6lT++c7uv9736kiHDh1w+vRp5Ofn4/Tp02jVqpXD/QqCIC674sp+HdWpffv24tIoe/fuRWJiotP3kp2dLbYolW8xsj2n1Ol0DpNSiUSCU6dOVVknQRBw8OBB3HTTTQ4/X61WK/Zk6dq1q9sxarFY8OKLL4pJp0qlwsyZMzFgwADxee58ho4eq8nvzY3ut7L3W3Zcqu7ziMq6Y3vjPOJGu4c7IxG8OUrey6ZNmyYeXDZu3FjpIPLFixfjtddeAwB89NFH17147qFDh/DYY4+J3eBiYmLw008/uTSA3VN0Op3YRQ6wdony5ti4I6+/gfxD12aaDO/eDRljk7A34wACFBpoFBq0bRCPpKaOZ1ZL//55mPKzYSnRARAQ0nMo6t/2oEfqasjLg6moGBAskAUEQlkv3Cdarf2VyWRymigQEVWX1NRUsZWqfDdsbzj7/VxcXLHqup/faNjQWj3Wc9u2bfi///s/AMD48eMxbdo0h+XWrFmDqVOnitu25zYAxIS1R48e+OWXXxzuIysrC/3794fRaERsbCxWrlzpdKzn+++/j7lz5wIAnnrqKTzxxBPiYy+++KK4HuiPP/6IXr16VXj+gQMHcO+994rbmzZtsuti/9JLL2Hp0qUAgNtvvx2zZ892WI8vv/wSn332GQBgxowZGDZsmMNyzsyePRuff/45AGvL7VdffVXpLLp1kaePCae//xyXV1xbNkiikODmJUuq/XVc5ancoE7Pams7zsVZ940yZeM+ANdmVXMkOTkZDzzwgJh0tmzZEgsWLPBq0umLSkvsx2dIFQqc16bjwOVj2Jn2Lzad2Y5j2RWvEJYJiO+GkG6DENp7BIK73IGA5p09XGMmmjXBZDLh4MGDOHjwYIXuKhkZGbhw4YJHljoi/8SYIXcZDAbo9Xq7HlA18rpuzGTrTG2f4TYpKUkc67tgwQKsWbOmQpmTJ0/i7bffvuHXatCggdi4kJaWhueff97hpJLLli3DTz/9BMA6nnjcuHF2j9uOw/7yyy8rdJO8fPkyXnnlFZfrtX79esybN6/C/Tt27MBXX30FwHpeO2jQIJf3CVg/t6+//hqAtcVsxowZTDq9QCYp14LqpXp4Wp3uams7QDc1NbXStYnKJiuQSCTXdaVj8+bNeOqpp8QT5o4dO+Kbb76pchmXushY7kddIpUirzTf7j6lzHGLl2C51oddIpVBFhgKZYOmDstWC7Zu1gij0YhDhw6JY2EOHjyIjh07ii2fOTk54mQuVa3JSwQwZsh9ZT0uJBJJtcz14KqsTVsgD77xloasTVvQeNSIaqhRzZNKpZg+fTrGjx8Po9GIqVOnYu3atbj11luhUqlw4MABLF68GHq9HjKZzGl3ale9/PLL2Lt3L9LS0rBhwwYMHjwYI0eORFxcHAoKCrBx40YkJyeLdXv33XcrDJcaNGgQPvroI5SUlGDPnj0YM2YMRo4cieDgYBw7dgxLlixBYWEh2rdvj8OHD1dZJ4lEgunTpyM5ORkDBw6EXC7H33//jeXLl4vdJd988023Y/Obb74Rk+I2bdpAJpNh48aNVT6vS5cuPjNEzC8I5Tf98/yyTieenTt3hkKhgNFoxO7duzF+/HiH5cxms9jvPTExsdL1nxzZs2cPpkyZIiadvXv3xueff37dU137PUu5b59UiosFmXZ36fT2ExCVKU07UeE+qarq6dDJd5VPOgFrF5ATJ05UmNmTiMjfNB41otYmjNWpY8eOmDlzJl544QUUFxdj/fr1WL/eviV41KhRyMjIwN9//31DFwdCQkIwb948TJ48GYcOHUJGRgZmzZpVoVxYWBg++eQTh+uvR0REYPr06Xj11VdhMBhw9OhRcYbuMhMnTkSnTp3wzDPPVFmnF154ATNnzsSWLVvEtd/LBAYGYtasWQ6781amqKjI7jM8evSoXXfhyvz888/o2bOnW69HzumU9g0qRg+NsfS2Op14hoSE4KabbkJycjI2b96MixcvOuxGu3r1anFafXe7MOTk5GDKlCli15x+/fph1qxZNXq1tLZRq5SwXfpYIpOiW0wH1MsLg9FshNFiQqg62OFzDVnnKtwnVdzYZFDkPUajEQcPHoROp7O7X6lU2vVYiI+P9/r6elS7MGbIXWq1mjHjZQMHDsTKlSvx448/Ijk5GZcvX4ZSqUSbNm0wYcIEDBw4UGxEcLeRoLyoqCgsWrQIa9aswerVq3H48GHk5eUhLCwMsbGxGDRoEO65555KX+euu+5C27Zt8dNPP2HHjh3IyspCSEgI2rdvjwkTJiApKQmrV692qT633347kpKS8PXXX2P37t3Iz89Ho0aN0K9fPzz88MMVliRyxZkzZ5zOtEo1K99g36BigmdmlfW2Op14AsCDDz6I5ORkGI1GPPPMM5gzZ47d4NlTp07h3XffBWC9ojR69Gi39v/222+LSWuHDh3w2WefMemsgjI42C7xVEVEoGlYDBQ23Wubhzep+EQA5hKdw/s9SSIB6u4UXZ5TWdLZqVMnux4DrizyTWSLMUPu8tQsj+Sexo0bi5M9OlI2j0b59XWBipMNVUUikWDIkCEYMmSIe5W8SiqVokWLFpg+fbrTMu7sPyEhAZ988sl11cWR9u3bu/2ZEN2IOp94JiUl4Y477sCff/6J/fv3Y9iwYRg3bhwaNmyIY8eOYcGCBeKCry+88EKF/uy7d+/GxIkTAVScJe306dNYt26duH3nnXeKYwIqExYWhm7dulXH26uVJOWmfJZpNFDLVQhWBqLEZF1LKkTleLyLPLgeTIW54rYiPNphuerDK9+e4CzpVKlU6NixI7upExHVIcuXL8eqVasQGxuL//73v05b906fPi0ub9KmTZsarCERuaLOJ54A8MEHH6CoqAjbt29Heno6PvzwQ7vHJRIJJk+ejLFjx7q132XLltkt5jpjxgyXnlfZNN91gVBu0VqJTIZuMR3t7nO0sK1gMUO7ewVk6iBINUGQqoOhatTSo3Wl6ldZ0tmpUye2VBER1TEhISHYtm0bAOualm+88UaFMjqdDq+++qp43nXXXXfVaB2JboTZYoFts4vETxs2mHjC2uVqzpw5WLlyJZYtW4bjx4+jsLAQYWFh6Nq1KyZOnIiuXbu6vd+UlBQP1Nb/mcuPN3DQvclRlydTQQ5MORdhO2F5cIe+1Vs58iij0YgDBw6IvQzKVJV0FhUViWOvAgMDa6KqVMsxZshdZvO1WdMdLcZOntO7d280btwY6enpmD9/Po4dO4bbb78d0dHRKCkpwZkzZ7B8+XJcuXIFADB69Gif6DnGmCFX1VMHw3b9BrmfjiVn4nmVRCLB3Xffjbvvvtut5/Xs2dNp//hvvvmmOqpW5xSXa+kq3/XWGWNuufX4ZArIgmpguRo/PTjUNIPBgIMHD7qddALW7lVlS2N06NDB01UlP8CYIXfp9XrxYgW7+9cspVKJL774Ao899hguXbqEAwcO4MCBAw7Ljhs3zq31MT2JMUOuspTan/uU7/3nL5h4ku8pN1OPxMUJHQxZaXbbMk0Q5IFh1VUrh5hzVg9nSadarUbHjh3ZvZaIqI5LTEzE2rVrsWTJEmzatAkpKSnIz89HYGAgoqKi0LlzZ4waNYoXkqhWKj85psRPZ61k4kk+Ry6RwGyzXajX4cdtn0MjVyNAoUGAUoPxHYZXmNLeVJBtv5/gCEg17EJXG6SmpjpMOjt16gS1Wl3l8+vXrw+z2cyuTOQyxgy5Sy7nKZO3aTQa3H///bj//vu9XRWX3GjMvP/++3j//ferqTbkywJlCrsVHWRg4klUIyQlJXbbuuxM7DdcW3RZJVdhQseKi2kbcy7ZbasaJ0Aiqanp761JMNd3uz7x8fEoKipCcbH1sOtO0gnA4fq7RJVhzJC7uBQauYsxQ66Slztflfrp5EJclIp8jmCxv8pTYtLbbatkjg/kxtyLdtvqmITqrZgjEgn721YDpVIpLpPibtJJRERERL6PLZ7kewT7AdUlFvvEUxAcLKViMsKUb9/VVlGPLRq1SdkanYIgMOkkIiKiOqPQbLDbNjopV9sx8SSf02BAf5RmZVknGRKA7OZRaKfRwGgxwWQxQSVTVXiOUZtZIWFV1GtYU1WmaqJSVfzbEhEREfkzrbnULikz+mlnOiae5HOK2reFyRAPuVyOhIQECNo0JF65tmRNgKJia5gxx76brSwwDFIVpy73NXq9HhkZGYiLi6vW8bAnTpyAyWSCXC5HYmJite2X/BdjhtxVYjP/AGfaJlcwZojsMfEkn2O0WGAUBAgAZGo1woLCEGOIgsUiILdEi2JjaYXnGLIv2G1LA0IgmIyQyBUerq2fXpLyAL1ejwMHDqCkpAR6vR6JiYnVlnwaDAYYjUZY/HTdK6p+jBlylyAI4pqMRK5gzBDZY+JJPkcul0MQBHEa8qigSEQFRcJkMSM9/yKahMVUeE7J2YN22xIpl0jwJbZJJwBkZmYCQLUln+VjhqgqjBlyV9mxikkEuYoxQ64SyjWU+GvE8BeXfE6bNm0c3i+XytAsPNbhY6bCXLttqSa4Blo7yRWlpaU4ePCgXZcjACgoKIDJZIJCceN/J2cxQ+QMY4bcxa6S5C7GDLkqun0bHMg8IW4r/XSSRSae5BfMRVq7bakm2DsVITulpaU4cOAASkvtu0cHBASgY8eO1ZJ0EhEREdVm8rBg5De6lpYFqZh4EtUIg1YLAJBIpZBIpZCq1ZBW0h3Ooi+BYLBPbNQNm3uyinYkEkCoulidU1XSyRlsiYiIiOoOJp7kcw5MeRbGq8knAGSNuxUXmgZCI1dDrVDj5tiuaBnRTHxcMBmgbNgClpJCmEt0EPQlUEbF1Uxl/bUT/g2qLOns1KkTlEqll2pGRERE5FvqKQLRteDakCRlaJAXa+M5TDzJ55jKJSuXLp7FDsm1+5qENrJLPC36YgS07CpuCxYzFBE1vIYnE1CRN5LOzMxMmM1myGQyREVFVfv+yf8wZshdRqNRnKGUwwTIFYwZcpVKpkA907VZ1iVG/5xxnYkn+Ryh3PIGJeWWTzFbzPbbJYV22xKpDPKQ+p6pHFXKWdIZGBiIjh07eqylMzMzE0ajEQqFgkkEuYQxQ+5iEkHuYsyQqwSzGRK5AhaLdfCWxczEk6hmCPYjJkstRgDXDtjlE09TfnaFXUgkUo9UzSFOlw7AulD2gQMHoNfr7e73dNJJREREVJvlKlQ41KwDinU6WCwCVEoNWnq7Uh7AxJN8TsMxo2DIzYUEgFKpRHBABlrVV8FkMcFkNiFEbT9jrURmH8aKsAY1Vte6nmyW8XbSGRcXB4vFAqm0Bi84UK3GmCF3qVQqsfWKaqdWrVoBAHr06IFffvmlWvednp6OAQMGAACGDx+O999/3ysx46ge5PvStiWj/op/xe1SlRR4wIsV8hAmnuRzAkJDIDdfa9WMj2qB6Mhrg6yjg+wTS7Muz367KN+zFaQKjEYjTCaT3X012dIZHMzlc8g9jBlyl0wm83YVqJZhzBDZ46Ve8nmNgqPQsl5ThKqCEaYORrgmxO5xS7mlVJSRTWqyegQgJCQEHTt2FH9kg4KCOHstEREREYnY4km+p9yimC0j4hDYqJnDovrLZ6HdvRIydRCkmiBINcFQhEd7vo5UQUhICDp06IAzZ86gXbt2nEiBiIiIyAUmi8UuKZP46XIJTDzJ55hMJrHbplxeeYgactJhKdLCUqQFAEjVgQjrOdTTVbThnweG6xUaGopOnTrV+BgovV4vjqNRqVQ1+tpUOzFmyF0WmxnXfWlscNksmAAglfI3yZf4asyQ74m9NQl/BxVCECwQAASoArxdJY9g4kk+53JGBkw63bX19Sr5HTVeSbfblqqDoIiI8XAN6zaTyVTpBQFvTLxx8uRJcWmMDh061PjrU+3DmCF3lZaWihcrAgJ846TQYDRj7qqjKCk1QaOW46G72kKp4LhCX+GLMUO+yWIqgV5aIl4UNQulVT+pFmLiST5FEASYMy5CsFhgkcmgl0phMRicljcVXLHbVkTEQB4U5uFa1l3FxcU4cOAAmjZtipgYJvhERN6UmqaF0WhBWlYh4hqGIjVNi7bNI7xdLY+6dOkSfvjhB2zbtg0XL16ERqNBq1atcO+99+Kuu+7Ct99+i48//hiA9QKTu/Ly8rBgwQL89ddfOHv2LIqLi1GvXj106NABQ4cOxR133OHyvlauXIklS5bg9OnTkEqliIuLw+DBgzFu3Dio1epKn5uamoo//vgDu3fvxqVLl1BYWAi1Wo3IyEh069YNY8eORdu2bd1+f+SbTHmXYcy9KE6+I/XTFM0/3xXVXhYLTAcPWW8CyAKwKyAPJQUtoJGrEBkYgTvj+4rFjbmX7Z6uiWtfc3UFrK2xdWRq/bKk02AwIDU1FQB8JvkMCwuD2WzmDILkMsYMucsXY+XImSsoLDGguNSEwhIDjp7J8evEc/fu3Zg0aRKKiorE+wwGA/bs2YM9e/Zgw4YN4pIp12PDhg145ZVXUFBQYHd/ZmYmNmzYgA0bNqB79+6YNWsW6tWr53Q/ZrMZTz/9NNauXWt3/6FDh3Do0CHMmzcPc+bMQbNmzSo812Kx4L333sO8efPsuuoC1hnkCwsLcebMGSxatAhTp07FY489dt3vl3xHuFyDToXXWjllCo0Xa+M5TDzJpwjlDrIAcCT/DM6evggAaBrW2C7xNOXZJ56K8IYerV9dVVRUhIMHD8Jg0/qcmpoKhUKBBg1qbt1UZ5o04UzG5B7GDLnL18YCZ+UWIzuvBHkF1vWT8wr0yAooRlZuMRrU879unUeOHMGjjz6K0lLryfmAAQPQv39/KBQK7NmzB8uWLcO6deuwY8eO69r/li1bMGXKFJivLueWlJSEAQMGICwsDGfOnMEff/yBjIwM7N27FxMmTMDixYsRGBjocF9r166F0WhEQEAAxo4di3bt2uHKlStYsmQJUlJSkJaWhoceeggrV65EUFCQ3XM/++wzcY3RevXqYfjw4YiLi4NKpUJGRgbWrFmDlJQUAMCnn36KpKQktGvX7rreM/kOtVSOSOO1pQSlCv8cE8zEk3yKo8TTJLvWoigI1yZRsOiLYb46qVAZRT1vJZ7+2+rpKOkErOsgVnbFl4iIqs9f+9Jx9uK1daqNJgtMJgt0xQYEqOXQFRtgMlmwfNtpKOTXTlrjGoXi1i6NvVHlavXOO++gtLQUEokE7733HkaMGCE+NmzYMAwfPhyPPvooCgsL3d63TqfDSy+9JPaC+N///odhw4bZlfnPf/6DqVOnYsuWLTh9+jQ++OADTJ8+3eH+jEYjIiMj8csvvyAuLk68/7777sOzzz6LP//8ExcvXsQXX3yBF198UXw8NzcXP/zwAwBrj6Lff/8d4eHhdvv+73//i1dffRV//PEHBEHA6tWrmXhSreGf6TTVXg4ST4tNTicI1x43lmvtBCSQh3m/9c2fFBUVid1rbZWt21nVrMNERHTjzGYLjp7JwdmLBeK/9CwdLl4pgkQqQeMGwZBIJbh4pQjpWTq7ckfP5sBsrvjbWpvs2rUL+/fvBwCMHj3aLuks061bN7skzh2//fYbtFotAODhhx+ukHQCgEajwSeffCIOMfnjjz+QmZnpdJ//+9//7JJOAFAoFHjvvfcQGRkJAPj999+h1+vFx7ds2SL+3j7++OMVkk7AOjvuo48+Km6fPXvWxXdJviwr5wqO62Tiv5MFJm9XySOYeJJPcdTiGRsWgxbhTdEkNAZhmlDxfkO5GW3lofUhlSs9XsfyxFlc/azRsyzpNBqNdveXrdfJpJOIqGbkFeqtSyyo5cgtKEVWXjGytcUwmsxoGh0MhVyKptHBMJrMyNYWIyuvGLkFpQhQyyEI1ufXZlu2bBFvP/DAA07LDR8+HGFhYW7v/6+//gJgXcLtoYceclouICAAEyZMAGBt1dy2bZvDcvHx8ejTp4/Dx4KCgjB8+HAAQH5+Pvbt2yc+dvfdd2P9+vWYM2cO7rzzTqf1aNz4Wgt2Wddjqt0unkhF2DGz+E9+pMTbVfIInjmSb7HpSlumeURTNG4UDQBoFHytRbM07YRdOYkXkk5/nVhIp9Ph4MGDtSbpPHXqlLjMS8uWLb1dHaoFGDPkLtulMaqakbS61Q/T4J5bW+DPXeehUsqQnqVDUYkRkeEBCFArAAABagUiwwOQllmIQI0CjRsEITRQhdtvaor6YbV7opK9e/cCAMLDwyv9viqVSnTp0gWbN292a/8HDx4EALRs2RIREZVPztSrVy/x9qFDhzB69OgKZXr06AHAecx06dLFbh9l+1QoFGjatCmaNm3q8LUvX76MI0eOYNeuXeJ9ZWNSiWoD3zp7pDrPUYtny/rNIY9qCotghtFyretB+YmFJArfmvihtnKWdIaGhqJ9+/Y+l3QC1hl3y9ZkJHIFY4bcZbFYxCTCG2IigzB2YAI27LkAuUyKtMxC5BaUIiTw2kXX3HzrdmxUMGKjgjGwRxMxMa3NsrKyAACNGjWqsqy7E4fpdDqxu2tsbGyV5W3LXLlyxWGZsu64zmLG9n1kZ2c73Me+ffuwc+dOnD59GufPn8f58+eh0+mqrB+RL/O9M0iq0xwlnk3rNUZg/TgcvHwMzcOv/aAYtVl25eTBnOjmRtXGpJOIqK4IUCvQr2ssfl5zTOwglJNfglKDGWqlDJBc6zjUr2usXySdAMTxl660NLvbGm27NItGU3XLsO3+S0ocd4esqg62r2M7xhOwjtl86aWXcODAAYfPbdSoEfr27Yv58+dXWVeqPcwyeZ1IyurCe6RaRHA0AYJUBpPZhLYNWkEpu/YjWn5GW2WDZp6tnJ/T6XQ4cOAATCb7Ae21Iens0KGDt6tAtQxjhtwVEOAbS5Rk5xUDAEr0JpgtFhSVGBESqMTlnGJIJIBMKhXL2baG1mYqlQpGo9FpomfL3TGPtkmgK/svLi4WbztLMMsmCHIWM7b7sF1OJSsrC/fddx9yc3MBABEREejVqxcSExMRHx+PxMREREdHw2w2M/H0M/WVwbCdj9k/LhlV5LtnklQ3OWjxlEilUJYbv2kxlEIw2P9AyELre7RqjvnHGE+TyYSDBw86TDo7dOjgkwunExHVRVl5JTCZLDCZLZDLpGjcIAiBGgWKSoxIz9LBZLYus5KVV4IWjcO8Xd1qER0djVOnTuHixYtVlnWljK3g4GCoVCro9XqkpaVVWf7cuXPi7aioKIdlyroGO2P7OtHR0eLt2bNni0nnvffei9dff93hcICCgoIq60nkizirLfkUR11tJdKKyZ0x71KF+9TRzT1Sp7pALpdXmPY9LCyMSScRkY/JzitGicGEQI0CLRqHokF4AG7pHIPI8AC0aByKQI0CJQYTsrXFVe+slujYsSMAa5fb06dPOy1nsVjEZVdcJZFIxHUwT506hZycnErL207s06pVK4dlDh06VOk+du/eLd4ue2/Atdl71Wo1XnnlFadj0E+cuDa5ouBgUkYiX8XEk3yLUDHxXHJ8LX458Ad+P7oGmTrrIHyL0Qh1s/ZQRsVBFlIfsqBwruF5gxo1aoSEhAQA1qSzffv2TDqJiHxMs0YhCFQr0KxhCOIaheLegQno0DISYwcmIK5RKJo1vPa4v7BdWmTevHlOy61bt87pZD2VGTBgAABr75+5c+c6LVdUVIQFCxYAsK6neeuttzost2/fPpw8edLhY7m5uVixYgUAoGHDhmjfvr34WNlYVrlcDpXK+YSJP/30k3i7fE8lqp3UMvuLDDI/vZ7ArrbkUxy1eO5I3wdtgTVUEyNbIiooEoK+COrY1nblpOqgCs+tEX60pEqjRo2gVCoRHh5eq5LOK1euwGKxQCqVon59b3S5ptqGMUPusp10zZuzIXdoGYmm0SFIyyxE2+YR4oypAWoFhiY1x9GzOWgSFYzQIP+Z6T0pKQmJiYk4ceIEFixYgG7dumHw4MF2ZU6ePIm33377uvY/evRofPPNN8jPz8cPP/yAhIQE3H333XZlSktL8dxzz4ldee+55x5x9tryLBYLnnnmGcyZM0c8vigUChQXF2Pq1KnIz88HADz44IN2v7UxMTE4d+4cdDod1qxZgyFDhtjt12Qy4cMPP7Rb17T85ERUOyml9udc/toyyMSTfIqjxNNik9cVGaxdh0wFFbvCeGOKez/KOUW18ST84sWL4tIYtbH+VPMYM+Quo9EoLo3h7WV4QoNUDhNLqVSC9i38L56lUimmT5+O8ePHw2g0YurUqVi7di1uvfVWqFQqHDhwAIsXL4Zer4dMJoPZbIZU6vqpe0hICN577z08+eSTMJvNeP7557FixQoMGDAAoaGhOHfuHJYsWYKMjAwAQNOmTfHqq6863V+9evVw6tQpjBo1CiNGjEBcXBxycnKwcOFCcXxnjx49MHHiRLvnDR8+HDNnzgQAvPDCC9i5cyc6d+4MuVyOs2fPYuXKlWIdyhQWFoJqv/Lnv37a4MnEk3yMg8TT9stXqLeuYVV+Rlt5ULgHK+VfCgoKYLFYEBYW5u2qEBERuaRjx46YOXMmXnjhBRQXF2P9+vVYv369XZlRo0YhIyMDf//9N5RK92b0ve222/DZZ5/h5Zdfhk6nQ3JyMpKTkyuU69WrFz755BO72WjLe/jhh7Fjxw78/fff+Pbbbys83rt3b8yaNatCcvzwww9j79692L59O0wmE5YsWYIlS5bYlZHJZHj88cdx/PhxbNy4ERcvXoROp6u0PuT79Gr7pXzM0trT68wdTDzJpzi64tMkLAaFQTIYLWY0Co66Ws5sV06qCa6pKjpRO5o+CwoKcPDgQQDW5SRCQ0O9XKPqERsbK3abJHIFY4bc5W4iQ9Vv4MCBWLlyJX788UckJyfj8uXLUCqVaNOmDSZMmICBAwdi/PjxAKytmO66/fbb0a1bN8yfPx9bt27FhQsXUFpaiujoaCQmJmLUqFHo06dPlT2sFAoFvv/+e/z0009YunQpLly4AJVKJe5j6NChDvehVCrx7bffYvHixVixYgVSUlJQXFyMwMBANG7cGN26dcPYsWPRokULzJs3Dxs3boTZbMaff/6JkSNHuv1+yXfk6O1brg1wsLygH5AInA6rztPpdHaD4Fu1auW1K2e6M2dwcOrz4rYgkeDyy2NhCbSulZXUpBsahUQjd9tCu+cFtOgCdUx8jdYVAMwlJTAVF8Ncooc8KABKH25FzM/Px6FDh2A2W5N2mUzmV8knEVF1SU1NhclkglwuR3x8zf+20PW78847cfbsWXTs2BGLFi3ydnXIT3j6mLDj+0+BFdda2EtVUgxYtLjaX8dVnsoN2OJJPkUw21/hkUiluKl1b5jMJuSW5EMtV1do7QQAqdpLC3vXkkGe5ZNOADCbzUhPT2fiSUREPm358uVYtWoVYmNj8d///tfp+pmnT58W19ls06ZNDdaQiFzBxJN8S7kGeKlcjsYhDaEtLUBuiRbhmlAUn9qH/L+XQ6oOgFQdCGlACMJuGualCvs+R0knYJ38oHXr1k6eRURE5BtCQkKwbds2ANZ1K994440KZXQ6HV599VVxXcu77rqrRutIdCOMFhNspyyrHc0a7mPiST6l/BhPydXxV2qZEp0btoNEIoG5MAeCSQ+zTg+zLg9STQgkCo69caSypLNdu3Z+M77N9v3VpmVgyHsYM+Qu25FJ3phFvS7r3bs3GjdujPT0dMyfPx/Hjh3D7bffjujoaJSUlODMmTNYvnw5rly5AsC6PEq3bt28XGvGDLmuvjoU+Tbbcol//i4x8STfUn5WW6n1QK1WqMW7ys9oq2rUAhKJNxMo3/wx0Wq1OHz4cIWkMyIiAm3btvWbpBMAjh49Ki6N0aFDB29Xh2oBxgy5q6SkRFxOJSDAS8M76iilUokvvvgCjz32GC5duoQDBw7gwIEDDsuOGzcOr7zySs1W0AnGDLnKYrRfj1UQ/HNyISae5FOctXjaMmqz7bYVYY7HetQIH72CWZeSTiIi8n+JiYlYu3YtlixZgk2bNiElJQX5+fkIDAxEVFQUOnfujFGjRvFCEtVKZp3WblviYHlBf8DEk3yKUC5RKjUbMe/gUmgUajQOaYgejTvBlJ9lV0YeGlmTVfR5Wq0Whw4dgqXcQcufk87g4GBxtjkiVzBmyF0ymUxsvSLv0Gg0uP/++3H//fd7uyouYcyQqzQyBYpttmXwz0VH+ItLPsWst+9qYDEYsObwOhgVUnRr1MGaeGrLJZ5hDWqyig75ym9KXl4eDh8+XCHprF+/Ptq0aeOXSScAxMXFebsKVMswZshdKpXK21WgWoYxQ65SlhsyJvXRYVw3yj/PQqn2KtfiKcC6licAFOh1ECxmmAqu2JWRh3o/8fQFdTXpJCIiIiLfxzNR8inlx3hCArvOBqbCHKDcgGuFD7R4+oIrV64w6SQiIiKqZUotJrvtiivW+wd2tSWfomkcg/BuXSEIAjLyL6HAVIzGYQ1hkFgQpAyAISvN/gkyOQRf6I7gA31tW7ZsCbPZjMuXLwMAIiMj0bp1ayadRERERD4s21Rsl5TpvX9a6RFMPMmnBDRuDNWIYTAbTZAWXwSkOnQPUIvLqugvptqVl6oCIFNpvFFVnyORSNCqVSsA1jUK61LSee7cOXGimGbNmnm7OlQLMGbIXXq9XpwohmP3yBWMGSJ7TDzJp0hkMhSZzTCaTQgPaIBuib1RatLjWFYK2kUlwpAy1668VB0IicxXwtj7l6dsk8+6NIteQUGBuCYjkSsYM+Qus9nMGUrJLYwZInu+csZOVIFCqkCYOgQAEB1kXTIlozDProxUFVjj9bIl/pjU8I9KZT9k/IEjIiIiqj1MUlmdSMrqwnukWqZNmzZOEytTQY7dtiI8qqaq5TNyc3Nx+vRpdOjQgV13rqosZogcYcyQuzQaDWOG3MKYIVc1TIhH6unj4rZM7Z/nd0w8yedUtqC7RV9kty0LDPd0dXxKTk4Ojhw5AkEQcODAAXTq1InJJyqPGSJHGDPkLolEwgSC3MKYIVcpG9bH5cRr53NBqiAv1sZz6sbMI+QXBIsZgr7E7j5ldN1ZBN426QSAkpISHDhwAEaj0cs1IyIiIiKqHC/5kk/J3LQZZ+fMBaQS6C1G6KPCoPu/u6FRqNG7YQdo4rvCoi+GoC+GpbQY6kbx3q1wDV3JvHLlCo4ePSomnWVCQkLYckNERERUi4XINUgs0ovbKql/tnjyjJV8iiEnB+biYgDW4CzOvILfjqwAAHQKawZVdHO78vLQ+jVdxRrnLOmMiopCYmIiu/EA0Gq14jiasLAwb1eHagHGDLnLZLq2wDsv+JErGDPkqkC5CrH6a/EiVQuVlK69+C0gnyKYzfbbNjmVTl+I8qMZpQrfGN/oqdzPWdIZHR2NVq1aMem86sKFC+LSGEwiyBWMGXKXwWAQL1YwiSBXMGbIVYJgsds2+ekwKn4LyKcIZvsEyzbxVAt1K8nKzs7GsWPHmHQSERER+bFiTRAud0pCoTYfFosFCmUAWnq7Uh7AxJN8Smj7dsjPyECJsQSn886hJEiJ6KAGMAtmqHT5dmWlqgAv1dLznCWdDRs2REJCApPOcho2bAiLxQKplPOlkWsYM+QuhULh7SpQLcOYIVelbt2K0pU7xMTMoJYB93q1Sh7BxJN8iiI0GGFNYhFgMiAvWAJTkBpJTRMBANLcS3ZlLfpib1TRsWpMBJl0ui8yMtLbVaBahjFD7mISQe5yJWZeeuklLF26FABw8uRJT1epVrL9jDZt2oTGjRtXKPPnn3/i559/xqlTp6DT6RAcHIx77rkHL730Uk1X9/qYzFAbbc77pBbnZWsxJp7kW65+55RyJdo0iIciPAxFDVshWBUIyb+bAZucSx7kf2t4ZmVl4fjx40w6iYiIiFywcOFCTJs2ze6+vLw8KJVKL9WInGHiST6lfMIlkUjQMqIZBEHAuV3LAKkMUpUGUlUAQroN8U4lnbjRnDA3N9dh0tmoUSPEx8cz6SQiIiIqZ/bs2QCs54wTJkxAp06doNfr0b59ey/XzHUGsxF1IU1m4kk+ptz00VeTLUtpEQSTAQBgNpTAXJgLTXMfOKBUYzIYEhKCoKAgFBYWivcx6SQiIiJyLC8vD9nZ2QCAAQMG4LXXXvNyja5PbLfuOFiSKW6r1IFerI3nMPEk3yIAmZmZ4qQfsRERAABTfna5ghIoQvxrDU+5XI6OHTvi4MGDKCwsZNLphsOHD4tLY9SmK5zkPYwZcldxcbG4NEZAgP9ObkfVhzHjeSUlJeLtli1r7zyw0mA1CmIDUVpaAkEQECDnOp5EHqfPzYWg18NisUAil0MwWdcxMhVcsSsnCw6HROZ/Ez3I5XJ06NABly9fRuPGjZl0ukgQBPEfkSsYM0REtZ/Fcm0Sntq8Vqoh6zwMmWdRNs+61E9TNP98V1Rr5WzfAePOXQAAC4CTZ07iQEs16l9OR4RNOXmIj81IWY0JokKhQGxsbLXtry7QaDSQy+WcdZJcxpghd0mlUrH1impeq1atAABTpkzBmDFjMH36dGzfvh0AEBsbi0ceeQRDhw4VyxcVFeH333/H9u3bcfLkSWi1WgBAaGgo2rRpg9tvvx133323w2Tl/vvvx549e9CrVy/8+OOPuHDhAn788UckJycjMzMTGo0Gbdq0wYgRI3DXXXc5jQmpVIqCggLMnz8fmzdvxrlz56BUKhEfH49x48bh7rvvdum9WywWbNiwAStWrMChQ4eQl5eHwMBANG3aFH379sWECRMQEhLi8Lll7yUpKQnff/89Tp8+jR9++AF///03srOzERERgR49euC///0vWrRoAQAoLS3Fzz//jJUrVyItLQ0ymQxt2rTBQw89hP79+7tU58rey7Zt27B48WKcPHlS/DwTEhIwaNAgjB492qVJgWbPno3PP//c7r7PP/9cvG/48OF4//33b6iuNSlYpkJ8sUHclsv8c6kvJp7kUyRSmd12gU6LX/cvws2qSNgenuWhvtHN9npPQPLy8hAaGso1BKtJfHy8t6tAtQxjhtylVqu9XQUCoNPpMH78eJw7d06878SJE3aJ1/bt2/Hss8+Kyaat0tJSZGZmYsuWLfjtt98wZ84cp0kbAGzcuBHPP/88iouvLeGm1+uxc+dO7Ny5E6tXr8bs2bMdXsTKyMjAww8/jMuXL9s9d9++fdi3bx+2bt1aZSvd5cuXMXXqVOzbt8/ufq1WC61Wi4MHD+Knn37Chx9+iFtuuaXSfa1atQqvvPIK9Hq9eN+lS5ewfPlybNq0CXPnzkV0dDQeeeSRCku77NmzB3v27MGrr76KiRMnVvo6zuTl5WHKlCnYvXu33f0GgwF79+7F3r17xb9JVFTUdb1GbRUkU6JZqVHclgZovFgbz2HiST5FsNivW2RQWBO7QoP9mp3yUB9r8XTD5cuXceLECURERKBt27ZMPomI/IDBYKi6kBMymQwymczhY0aj8bq7hHtqv1Kp1GvdGn/99Vfo9XokJSVh6NCh0Gq1+Ouvv5CUlAQAOHXqFB577DEYjUbIZDIMGDAAPXr0QEREBLKzs3Hw4EGsXbsWFosFBw8exKxZs5xOSHP+/Hk8++yzMBgMGDx4MJKSkiCXy7F7924sXboUFosFW7Zswbx58/Dggw/aPTcrKwv33XefmPx2794dQ4YMQXBwMI4ePYrffvsNq1evrrR1Lz8/Hw899BDOnDkDAIiJicGIESPQvHlz5OfnY+PGjdi+fTu0Wi0mTZqEr7/+Gn369HG4r9OnT4trWo4YMQI9e/ZEfn4+lixZgpSUFOh0Orz55puQyWQ4efIkevXqhUGDBkGj0SA5ORkrVqwAAMyYMQNDhgxBRESEw9dxxmAwYMKECTh16hQAayv1iBEj0LRpU2RmZmLx4sU4c+YMUlJSMGnSJCxatKjSGBs8eDBat26NnJwccSmVwYMHY8gQ64oHDRs2dKt+VDOYeJJPKZ94Wq62KEr1JfYFLb61sK6rLZ9lSScA5OTk4OjRo0w+iYj8wM6dO6/7ufHx8YiJiXH42J49e2A0Gh0+VpVmzZqhWbNmDh/bv3+/XSueOxo1aoSEhITreu6N0uv16Nu3L77++mvxt9c26fvss8/Ez2vmzJm44447Kuxj9OjReOihhyAIAlatWuU08bx48SIUCgW+++47MbEFgGHDhqF79+5iIrdkyZIKiefMmTPFpPOxxx7D1KlTxcfuuusujBkzBvfff784I6sjH374oZh03nbbbfj444/tWt7HjRuHpUuX4pVXXoHJZMILL7yADRs2ICgoqMK+Ll26BIVCgW+//RY333yzeP/IkSNx++23i+ckjup79913o379+vjhhx9gNBqxefNmjB492mm9Hfnmm2/EpPO2227DzJkz7ZLu+++/H48++ih27tyJo0ePYsWKFRgxYoTT/bVo0QItWrRAenq6eF/z5s1x2223uVUvX1FYUowMy7VzQZnRgmbeq47H8GyXfEu5hFIhVyAyoB4UhlK7+yXy2rfa0aVLl8Sks0xOTg6ysrK8VCMiIqLa5//+7/8cXvAtKSnBX3/9BQDo1q2bw6QTAHr16oVOnToBsHb/dNQlt8x9991nl3SWGT58uHixIDU1FaWl185TcnNzsWzZMgBAhw4d8PTTT1d4flxcHN59912nr5uZmSnuo3Hjxvjoo48cdvcePny4mPTm5uZi4cKFTvc5evRou6QTAIKCgsRWQsB6sWLKlCkVnjtq1CjxdlkC6Sqz2YxffvkFABAZGYkPPvigQkuvQqHA//73P/FC/KpVq9x6jdru9L6DkP5jEf+V7C3ydpU8gi2e5FPMNuMOACBEE4Jbm/ZAvZQFdvfLw2pXV9tLly5VGC8BWLua1LVxDJ6Qnp4Ok8kEuVyOxo0be7s6VAswZshdBoNBnFzIlclPyDMUCgU6dOjg8DGNRoPNmzfjwoULDlv9bMXExGD//v0AYJc0lnf77bc7fSwhIQEZGRkAgIKCAjEx3L59uzjb6siRI2E0Gh3GzK233opmzZrZjVcts2PHDrHldsKECdBonI/5+89//oOff/4ZJpMJGzduxH/+8x+H5WwTTFu2x8B+/fo57IVl23XVdr1xV+zfvx/5+fkArN18nf1toqOj8fLLL4uTDZH/YeJJPkUwmey2GwTVR+uIeFwyme3ul9eiNTydJZ1NmjRBXFwcZ0isBrm5ueKajEwiyBWMGXKXyWRi4ukDYmNjK/3869evj/r1HZ8jFBUV4eTJk/j333/FpBOwtsg5UzbTqyO2CZTJ5vzl4MGD4u22bdvCZDI5rXO3bt0cJp4HDhwQb990001O6wBY33PLli1x4sQJHD582Onsy3FxcQ6fHxwcLN52Nqu+beJrcXO40+HDh8XbXbp0qbTs9U5cRLUDE0/yKZJyA8mNRTpcTj+OMJPNQU6mgDqmVQ3XzAUODvIXL15ESkpKhfuZdBIR+ZfyXRjd4WwCIADo0aPHDU0u5Eznzp1vaHIhb6lsBlpbWVlZ2LhxI44fP45z587h/PnzyMrKcvieK/scbJOy8mwnv7FNxq5cubb2eHR0dKX1bNKkicP7c3NzxduuLLEWGxuLEydOwGg0oqCgAKGhoRXKOLqvPGctqzdyvmL7eTRq1Oi69+PPjBJJnUjK6sJ7pNqk3MFfFRqG6EId8m3uk6o0kChrflr7gmPHEdKmtcvly5JOfXY2VJHXugYz6ax+CQkJXF+P3MKYIXdVtZyKp1pBPbXWbG1dw7aqz9lkMuGjjz7CL7/8YtcKWUaj0aBnz57Izs4WJ9OpzPXM3mvbFTUsLKzSCwCBgYEO7y8qujbGr7JutmVs47OkpMRhkumtmYjLutkCXJbImQbqMNh2YK6d386qMfEk3yLYd9+QSKUw6XLt7pOqAmr8ZPHCgoVI+20Rmk6cgMYjh9tUUGL//1VlSWfBsePQHjqM0LZtENq+HZo2bYpmzZrxZLea8YeM3MWYIXdx9vHa4aWXXsLKlSsBWJPrbt26oX379oiPj0dCQgJatmwJuVyO559/3qXE83rYtsrq9fpKx5s6W4bHNtksKSmpcsyq7QzFvnZ8s61PZeNpyf8x8SSfIljKdXeRSmEpKrC/SxVQgzWytnSm/bYIAHD+518BwD75LCcjIwOpqali0gkA+UePoWX79kw6iYiIPGTfvn1i0hkbG4u5c+c67abq7gQ57oi06eWUnp6OxMREp2WdzWxvO041LS0NrVtX3uPq/PnzAKxJXlhYmBu19TzbNT8vXbpU6cRBp0+fRlFREZo0aeJz74NuHC/fkU8pP84iuzgHewPlkLbsAlWTNlBGxUERUbPjA0LatEbTiRPE7fM//4r035c6LOso6QSA1r16oW3fW5l0EhERecjWrVvF20888USlYyOPHz8u3r7esa7OdO3aVby9e/fuSsvu27fP4f3t27cXb+/atavSfWRmZorrffribLBt27YVb9tOmuTI7NmzMXr0aPTq1Qs6nc7DNfMdSql9W6C/Jmj++r6otip38D+Xn4Ff9ekwRMZA07QdAhK6I7hDvxqvVuORwytPPiUSmEwmnD9/3mHS2f2B+2uyunWOTqdDYWFhnfqRohvDmCF3mc1m8R/5Jtv1OAMCnPeOWrduHS5fvixuOxoLeiNuueUWqFQqAMD8+fNRUlLisNyRI0fsZsC1deutt4rjcOfNm+d0HwAwd+5ccXKjvn373kDNPaNbt25iV+Hly5dDX27pvDIFBQXYtm0bAOv6p1V1L/Ynapl94imr3mshPoOJJ/mWclN0C1cbCM02Yz8Fg+MDlqc5TD6XLhO35XI5ItMyULj/2o9I65uZdNaEM2fOICUlRbziS1QVxgy5S6/Xo7S01OlJM3lfTEyMeHvx4sUOWzJ37tyJadOm2d1X3X/TgIAAcVmQc+fO4dVXX62Q3GZnZ+P55593uo8GDRpg6NChAKxdbZ9//nmH4yOXLVuGn376CYC1S+u4ceOq621Um4CAAIwZMwaAtWfYtGnTKnweBoMB06ZNEydV8sX34UnlQ9VP806O8STfUv5HQoA189TYdEFQ1GsIbykb21k21vPCz/NgLi5Bw8F34uKq1chauAQN5XJcighHQlJvdJ/IpJOIiKgmDB48GLNnz4bRaERycjJGjx6NoUOHIjIyEllZWfjrr7/w999/VzjX8ETPhyeeeAIbN27E2bNnsXr1aqSmpmLUqFGIjIxESkoKFixYAK1Wi4iICOTk5Djcx8svv4y9e/ciLS0NGzZswODBgzFy5EjExcWhoKAAGzduRHJyMgDr5Ffvvvsu6tWrV+3vpTo8+eST2Lp1K86cOYNly5bh6NGjGD58OBo2bIi0tDT88ccf4nqmvXr1wrBhw6rttWfPno3PP/8cADB58mQ8+eST1bbv6mJRquy2BanzmZBrMyae5FvK/RgoFUqESZVQSK59AWVB4TVdKzvlk8+MJX/g8to/Yb56lU5lMuHmgQMRN3qk1+pY10RGRsJisXDWSXIZY4bc5a2lKMh1sbGxeOONN/DGG2/AbDbj8OHDOHz4cIVy3bp1w1133YU333wTAHDy5El069atWuui0Wgwd+5cPP744zh27BhSUlLw3nvv2ZVJSkpCjx498MknnzjcR0hICObNm4fJkyfj0KFDyMjIwKxZsyqUCwsLwyeffILevXtX63uoTgEBAfj5558xadIkHD58GKmpqZgxY0aFcjfffDNmz55d5+bEuGywn+yqFBYnJWs3HkXJp8jLrWcVUT8avQPCIJdcOzmUemENz/LKJ59mm/W2Kiy5Qh7XsKH3WsGpdmLMkLs8tU4nVa/Ro0ejVatW+PHHH/Hvv/8iJycHcrkcERERaNOmDYYNG4b+/fujsLAQ7777LoxGI9auXYvx48dXe10aNmyIhQsXYvHixVixYgVSUlIAAM2aNcPw4cMxfvx4/Pjjj5XuIyoqCosWLcKaNWuwevVqHD58GHl5eQgLC0NsbCwGDRqEe+65x24JF18VGRmJRYsWYcWKFVi1ahWOHz+O/Px8BAYGol27dhg+fDgGDx7MC4J+TCJU91ReVOvodDqcPHlS3G7VqpXXBnSf/PATXNm+Q9yOHHIbIttGARaT2DWm3i33eqVuttLS0mA2m5H52hswFV7roiMPDkLPX3/yYs2IiOhGpaamwmQyQS6XIz4+3tvVISIv8/QxYcf3nwIrksXtUpUUAxYtrvbXcZWncgO2eJJPEYRyXQvyMpG3dRNkgaGQqgOhbtrOOxWzceHCBZw5cwYFx45DKgiw7fhrKtQh/felbPEkIiIiIpfozQaoqi5W67Etm3yLxb4B3mIsASDAXKSFMScDgsm7swnaJp3aQ4eRGxyEvKBAyIOvXQWqbJ1PIiIiIiJbkeowu23buU38CVs8yceUSzz1JYDNkE55cEQN1+ea8+fP4+zZsxXW6Wx45+3oev8EpP++VBzzWfY/Wz5rxvHjx2E0GqFQKNC6dWtvV4dqAcYMuaukpASCIEAikUCj0Xi7OlQLMGbIZeWXEyzfA9BPMPEkn1JhHSND+cTTO9OEO0s62/a+GV3vt67tWX7CISafNcdoNMJoNHq7GlSLMGbIXYIgOFwXksgZxgy5ylRwxW5bYmHiSeR55a7wpFtKoFbJEau3LjQs80KL57lz53Du3LkKSWe73jejy9WkswyTT+9QKBR2/xNVhTFD7ipb3qGuLfNA148xQ65SyWQottmWwj8vWDDxJJ9iyMm12z5rFpATFoBxmQUAAHlIzSaezpPO3uhyv+Op15l81jx2lSR3MWbIXewqSe5izJCr1BL7lEwG/7xYwcmFyKeU75IiAVAguxamElnNtU6UJZ367Gy7pLN9JUlnmcYjh6PpxGutoed//hUFx457rK5ERERERL6MiSf5lnKJp0UCqMruk0ghSDwfsoIg4OzZszh37hwAQBUZidC2bQBYk87OVSSdZWyTz9ixYxDShi0sRERERGTPVG6omX92tGVXW/Ixgc3jcLnoCgxmIwSLBSUBUoQbzQAAqUoDuebGF6+tjCAIOHfuHM6fP293f2j7dmjduTMSknq7tb/GI4cjpHUik04iIiIicuiSUWeXlJX4Z09bJp7kW+IeegCZxxKRV5oPy4VDCM85hfBS68yTEqUG0oBgj76+o6QTABISEtCoUaPr2ieTTs+7dOkSLBYLpFIpGjZs6O3qUC3AmCF3GQwG8bZSqfRiTai2YMwQ2WPiST5FHhSEEHUkNLIwyPR7EWQyodnVxFOq0kDi4a62QUFBkEgkdmNNbyTppJqRnZ0trsnIJIJcwZghd5lMJnFNRiYR5ArGDJE9jvEknxVYlIfmpUYxSBWhDTz+mpGRkWjdurU49XmrVq2YdBIR1TEymQwAYDabuQ4jUR0nCALMZuuwr7JjQ3Uzlltyx1+POmzxJJ/TvHlzCIKA3F1SmG0fkNVMuDZoYE1wzWYzW0JqibKY4Vpp5CrGDFVGqVRCr9dDEAQUFxcjMDAQKpXK29WiWoYx4x+Ki4vFC1CearmOatwE6RE2qx9o/HONaSae5HOCgqwTCOWUFtndrwiPrrE6lCWfVDuUxQyRqxgzVJmQkBAUFhYCAHJzcxEQEOCxlg7yX4yZ2k8QBOTmXltjPiQkxCOvo2kZiwvdr637GqTyz98odrUlnyQIAiz6Yrv7lJFNqnX/RUVFVRckIqI6p2y8PwDodDqkp6ejqKiI3W6J6oiy88T09HTodDoAgEQi4UXLG8QWT/Ipp776BunHDkIqkcJSooYpPhwtGoZCYSiFPDyqWl5DEAScPn0aGRkZaNeuHSIiIqplv0RE5B+kUiliYmKQkZEBQRCg0+mg0+kgkUjYikVUB5Qf3y2RSBATEwOp1DNtdgEyJWKvTqYJAGo/Pcww8SSfoj18BIqMTACADMDhcAGNunZCqCIQirAbTzzLks709HQAwJEjR5h8+oHS0lJxvJ5arfZ2dagWYMxQVYKDg+2ST4vFAolEIv5PVJXyiQvVTmVJZ3Cw55b0C1UEILH42vI7Mj+dBJmJJ/kUi2Cxv0Ny7WAtVWkcPMN1giDg1KlTyMjIsLvv6NGjuOmmmzjVeS2WkpIiLo3RoUMHb1eHagHGDLkiODgYCQkJ0Ol0OH36tJh0evIElPxHYWGheIGLMVO7yGQyKJVKhISEICgoyGMtnc4YjcaqC9VCTDzJp1gsdvPYQoAEgVJrmEoU198q4SjpLNOqVSsmnURE5JBUKkVISAhkMhksFgvkcjni4+O9XS2qBQ4dOgSj0ciYoSoJmiBI2veBNk8Ls8UCmTrA21XyCCae5FNUHdogRb4XsFggCBYUhCuhvhqm19tNRRAEpKam4uLFixUea926NaKiqmfsKHlPvXr1YDKZIJfzkEauYcyQuxgz5C7GDLnq4N/bcWX1TnHbpJaj8zgvVshD+E0gnxLZqjX0csBUeAV5RXlo0yAcshsYF+Es6ZRIJGjdujWXTfETjRs39nYVqJZhzJC7GDPkLsYMuUxXgvr513r9lZb65wzaTDzJpyhlCjQKiYJZEYiY8CYIbZMAqSQfsgD3101i0klERERE5BuYeJJvuXqBR3c0GZbiQhjTt0EdGYyIAQ+4txtBQEpKCi5dumR3P5NOIiIiIvIlBrMRdWG2ESae5JMshhLr/6VFMOUVQerGIOvKks42bdogMjKyWutKRERERHS9olq3Rur50+K2LJCTCxHViJzsLEhNJrv75MGurbPJpLNuSk1NFZfG4MyB5ArGDLmLMUPuYsyQqzSNG0F7UxOUlJRAEAQEKph4EtUAAUVFeVBJAaXNkp6y4HouPfvKlStMOuugkpISGI1GmMpdsCByhjFD7mLMkLsYM+Qq/cVUlKafgASAdUpN/0zR/PNdUa11etFCWLJyoBcAPYACuQSxkYGQKlQuPb9+/fqIjY1FWloaAGvS2bZtW9SvX9+DtSZvk0gk4j8iVzBmyF2MGXIXY4ZcpZEq0FBvFLcVMqkXa+M5TDzJpxgKCyE3X2vqPKFRollgGATBAomk6i+hRCJB8+bNAQDp6elMOuuI9u3be7sKVMswZshdjBlyF2OGXBUmV6NdkUHclgaovVgbz2HiST7FDMEuKAVBAsFsAgShrO9BlcqSz+joaAQGBnqknkRERERE5DomnuRbyiWXMgiQqgIgkcrc241EwqSTiIiIiHye2WKBUbi2LRUE54VrMSae5FOk5TJPiwyQKjUVygmCgNOnT6NRo0YICPDPmb+IiIiIyP8d3rMXpgPXzoENqiL44zzITDyvEgQBq1atwu+//47jx4+juLgYkZGR6N69O8aPH48OHTrc8GukpKRg7ty52L17N7KyshAcHIwWLVrgnnvuwfDhwyGTudeq54/UchXMKBW3WxcZIA+xn9FWEAQcP34cWVlZyM7ORqdOnaDRVExOqe7Izs6GxWKBVCrl7MXkEsYMuYsxQ+5izJDLzBaobZs8/XQ+KiaeAEpLSzFlyhRs3brV7v6MjAxkZGRg5cqVePrpp/Hoo49e92ssXrwYb731FozGazNW5ebmIjc3F3v37sXSpUvxxRdfICws7Lpfwx9IIYXZZjvYIkCqChK3bZNOANDr9Thw4ACTzzru0qVL4lpp/HEnVzBmyF2MGXIXY4bIHhNPAK+++qqYdLZo0QJjxoxB/fr1cfToUfz2228oLi7Gxx9/jKioKAwbNszt/ScnJ+P111+HIAjQaDQYO3Ys2rVrh5ycHCxZsgQpKSn4559/8Mwzz2DOnDmQSv1zCmWXlO/TLgE0zdpffUjAsWPHkJ2dbVfEaDSitLSUiScRERER1TomSOpEUlYX3mOlduzYgVWrVgEAbrrpJnz77bdQqaxrRt51110YNWoU7rvvPmi1Wrz33nsYMGAAgoKCKtulHYPBgDfffBOCICAgIAC//vor2rZtKz4+btw4PPPMM9iwYQN27NiBNWvW4K677qreN1mLCBZzhftkweGwWCw4fvx4haRTKpWiXbt2CA8Pr6kqkg9q0qQJBEHgWmnkMsYMuYsxQ+5izJCrwtTBNgPN/DdBq8NNa1Y//PADAEAul+Odd94Rk84yLVq0wOuvvw4A0Gq1WLx4sVv7X79+PdLT0wEAjzzyiF3SCQBKpRIffPCB2MX2m2++uZ634T/KJ54SCeSRTZwmne3bt0e9evZjQKnuCQsLQ3h4eJ3vqk6uY8yQuxgz5C7GDLlKIbGf58VfL1XU6cRTq9Vi586dAIA+ffogNjbWYbnBgwcjIiICALBu3Tq3XmPNmjUArMt7jBs3zmGZwMBAjBgxAoB1AqKzZ8+69Rr+RLBY7O+QK3Ai5ZTTpJMtnUREREREvq9OJ57//PMPLFcTnZtuuslpOalUiu7duwMADh48iPz8fJdfY+/evQCAViKgHYMAAEClSURBVK1aVdoyZ/v627Ztc3n//sa2vVMAcD60Ia5cuWJXhkknEREREfkLebn5Xdji6YdSU1PF2wkJCZWWbdmyJQDrBDcpKSku7T8zMxMFBQUAgPj4ylfjadGihXj7xIkTLu3fH5VarLP+CgAyw0NxUaG2e1wqlaJDhw5MOsmOyWSC0WiEyWTydlWolmDMkLsYM+Quxgy5KkCmtNuWC04K1nL+OnbVJRkZGeLtmJiYSstGR0fbPa+sBbQyZWM7Xdl/VFQUpFIpLBYLLl68WOW+/ZUgCFeTzjAUqVUQbK4AlSWdHCtB5R07dkycsr461twl/8eYIXcxZshdjBm6Xn6ad9btxDM3N1e8XVULmm2yo9VqXdp/Xl6ey/tXKBQICAiATqdzef/+qizpBADVJS3Or1kBCQRElxZh928GmASzuOyKrFEwOiU0BgBYIOA4SiENrgdVVBwKlm6BpbBYnE1O2q0VujeNhaXY2gp9xJhv/WJbBBg3HIPBbILk6n5VkCDC5utRCAsgk0GmDkSJ2QiDxSTuVyWVIwJyCCYDAEAnmFA2UtUgWFBqubZfIVyFbh2bi/tNRSmMSjXUTdpAt2kPjBnZkF7dr6lFNPr06A6TNhMAcMqkQ4lg7Yxs2paCUl0JpGWfAySIsqlvMSwwSySQBQTDIJhRbNJDKrEm8VJIEC3XQDBY508rFswwXT3EmQUBOotR3K9ZLUOPm671BrgAAwolAjQtOqP03xMoPnoKsqv7La0fiL6D7oD5ivWCS5q5GNqrLdiWf86jOEsr7hcAoqEQu1yUwgIjBMgCQmABkG8qEfcLANHyAEiu1rcUFhiEq5+wAGgtBkgtZus7kEigSYpHsFxhjSUYcQUmqJq0hSQ9D7nJ/0AutQ7gN2kU6DhqCDTZ6ZBIpMgylyLTogcASE5movDMZUgt1+pbH3Ior3Z+MUCAHhZI1UGQyGTQGovFzxcA6isCINeXQnK1bKlwrRN5gcUAic1+ozo3RuPQYACAFmZkwABlwxaQGuXIX/HXtdkQJUDsfXcjKisNErkC+RYjLpiLrQ9laFF06AJgM0Y6DDIEXP2ETRBQAgskKg2kciUKTLZz5wFhCg00ev3VskCxcO3qvM5ispttOjC+PhJjrOvRlcCCM9BDUa8RZGFRKJz/JwSbv3HInTejlRyA2YRSwYxUk876QGEpSrenwiKYxV/XQEgRCuvfxgKgCGZIFCpIlWroTAZYYEZZ56NAmQohZgtw9e9eaFPfEovZpWOEFgGQbtkPSYkeGVfjhccI/z1GyMr2KwESere8rmNEYc4lZAsGSKRS5K7/hceIq/z1GFEd5xEhZgACYJYA22RSHiPg38eIGzmPKMrJQSBsSO0nG/IXdTrxLC29dmAtP5tteUrltSZw2+dVpqSkxOX9l5XR6XQu799fWWw6tssMFkhLixGdp4XGYKxQNlNqRLEsy/o8AKfqBUKm10IBA2JPXYaq9NqP4dmIUyix5EKffhIAkBIeAEEigcQioG1asf0XHkCxze1rX/98aACUXzFUZ3NbYlO+fNmcUgOKg/aJ2+dCNShRB0ClkiEyNQ1h2ddi5pxEj9KGgShOsY4TPhOiQaHcehBNOF+Menr762HFsGetQyGUAJTlHtM5LGv933YkcpFaguLT1+qbHqRCtlIBdVAAwk6dQf3z2mtlCwugz0hB8RHrGOULgSpcVlkPMc3OlaCe1n7iqFKU2G1b61AEKYDyl2mKkeugrFWEzW2LBMg7fwSyqz+AmRoFzmqUUKmVCD2ThwYXro3PLlJLkXMpBaGHtgMALqoVOB1g/aQanSlFvQz7GZZNV/+Vry8AhJWrrwG5MDipb/n3diXyLOpdse45RynDqSA1FDIBGp0ETc5fu3hlkQAZl1IQcMQ6IVq2QoaUYGtX9HrnDWiUUfH7UTGGrfUNKVfOIj5Ssb6h5cpmBV1CcWkaAKBAJsWpUA3klhLIS7VoeTbHrmz6hRQ0NuTCXHAFRVIJUsICAAAarRktMioe55zV19ECVs7qW76ss2OEOag+WqblQc1jBI8RLh4jStQKZF49Rkh5jBD56zGiOs4jbD9xHiOs/PkYcSPnEeVjpwQW+KM6nXja9rm3TSwdsX3c1b76ZvO1gKtq/7ZlvD0W4NSpU2jRogWCg4PF+/R6PU6etB5ow8LC0KRJkwrPKS62HrLKdye5cuWK2H04NjbWrvXXbDbj6NGjAIDg4GAEBoVAlaPF5XrhKFEpIbVY0DBXC7Wx4g9mVYRa1lFBEGrXQUYwV1xz1ZdZall9a9vnW2FGah+nVqtR2zoz8RjhWTxGeFZtO0YAPI/wtNoWwzV5jBCk1lYYi8WCI0eOALCugmE7JwwAnD9/Xpz0tHXr1lAoFOJjBQUFOHfuHADrkMEGDRrYPffIkSOwWCxQq9UV5ropv5pEdanTkwtZTzysjFUkNgbDtWuTriSRgH0rZ1X7t30N26DxBrPZLM72W0YQBBiNRhiNRruEukzZAHpH79NisYiPld8vAPExk8mERv0HQAogOjcPgaWl15101kq16/cNQm2rby37gGtXbWtffWulWvYh8xjhWbWrtrWvvrVSLfuQeYxwztQsSrxte55coZzN+bdQ7gO1Pf92dO5e9pizc3dPqNMtngEBAeJtvV5faUJpm3i60m3W0f6rUlbGNiH2BplMBmn5aZ0lEjEhlskq9juXy+VOE2apVCo+Vn6/wLVEWy6Xo8l9Y6FuGI3MtcsRrC+FURMojs2Qy2QoESw2YzMEKOprYGpQHyq1CmqFAi1txmZcaXIORcWlkEqkkMlkiIxrCU3TWKii4qDT6RBtyIMAIEgdgKLYk3ZjMxQWAWGC1PpcqdRu/FahvuTq2Awp5HKZ3dgMk9mMQosRwtX6GiDYjc2whMhhahANhUIBjVqNZmVjM6Ja4UrTLFxR50IqkUAulyOkeTTUsW0gD45ASUkJ6hXnIFAiQKPWwNT0LHQ2YzMkgoD6FimkEglkUpnd2IwSgx5FZsPV/coghVQcm2GxWFBoNsAMQCaVwiKR2I3NMCokMDWIgUwmQ2BAABrDgFCJAE1UK+Q1LcYVvVn8fGWRQVDFJECuCoDBYEBI4RVAYoZKqYK82WXk2ozNEAQLIi0ySAHIZXK7sRkGsxn5xmLIru5XIpGIYzMEAdCZ9DBCgFQigVQqsxubYYGAmPoNYZLKERIcjCgYIYMJqgbx0BcEITujwLpfqQzmQCUiGiZAIw+AIACavExES0xQyBUIaF6AXFwbmyFAQLhZCgUAhUxuNzbDAgnyDEVX6yOFVCoVx28BQLFRDz0ESCQSyGQyu/FbAgSE1KsPU5AGQUFBiJBY0BIGKBu0gCnQjJyYS5CU7VcmRWzDBATLNJDIFcjNyUK0RA+ZVIYgiRHagmvjtwQICDFLoIYEcpkMZkAcvwWZAlp90dXvo/UztB2/VWo0ohhma1cvudxu/JYAAQH1QmCKDIUmQINQmRQtr47fkgTVR27sGUAQIJFa47BxkwQElo3fys9DtNnaOSskVImCtGvjtwQICLBIECRIIJNKAYlUHL8lUaiRry+CxeYztB2/ZTSZeIzgMYLHCB4jeIzgMcI/jhEyGQLimmLA5BdRxvY8uTzb829xvPdVtuffjs7dFQoFLBaLw/N3R+fr1UEilE+P65Bp06Zh4cKFAICNGzciNjbWadnFixfjtddeAwB89NFHGDp0aJX7379/P8aOHQsAeOKJJ/DUU085LWs0GtGhQwdYLBb07t0bP/zwgztv5YbodDqxGy1gXXM0KMjRiAkiIiIiIvJnnsoN6nSLZ7NmzcTbly5dqjTxvHz5sni7UaNG17X/ymRmZorN2q7u31+dPXsWJpMJcrkccXFx3q4O1QKMGXIXY4bcxZghdzFmyF3+HjN1OvG0HaCbmpqKHj16OC2bmpoKwNqMHR8f79L+w8PDERERgZycHPH5zpw6dUq8XX6Ab11TWFgorntF5ArGDLmLMUPuYsyQuxgz5C5/j5k6PblQ586dxT/s7t27nZYzm83Yu9c6FXViYiJCQspPNO5c9+7dAQDHjx9HYWGh03K7du0Sb1eWABMREREREdU2dbrFMyQkBDfddBOSk5OxefNmXLx40WE319WrVyM317r+z6BBg9x6jTvuuAPr1q2DyWTCggUL8Oijj1Yoo9PpsHTpUgBAXFwcEhMTr+Pd+I+2bdt6uwpUyzBmyF2MGXIXY4bcxZghd/l7zNTpFk8AePDBBwFYJ/d55plnoNPZL4l76tQpvPvuuwCs6+eMHj3arf3fdtttaNy4MQDgiy++wD///GP3uMFgwAsvvACtVgsAeOihh67jXfgXmUwm/iNyBWOG3MWYIXcxZshdjBlyl7/HTJ1u8QSApKQk3HHHHfjzzz+xf/9+DBs2DOPGjUPDhg1x7NgxLFiwAEVF1mnFX3jhBdSrV8/u+bt378bEiRMBWLvI/vLLL3aPK5VKvPrqq3j88cdRWlqKBx98EKNHj0aXLl2g1WqxaNEipKSkAAC6dOmCUaNG1cC7JiIiIiIiqjl1PvEEgA8++ABFRUXYvn070tPT8eGHH9o9LpFIMHnyZHFpFHf1798fb7zxBt59910YjUbMnz8f8+fPtyvTvn17fPnll357hYOIiIiIiOouJp4ANBoN5syZg5UrV2LZsmXiREBhYWHo2rUrJk6ciK5du97Qa4wbNw7dunXDTz/9hJ07dyI7OxsKhQIJCQkYOnQoxowZ47czWLkrLy8PFosFUqkU4eHh3q4O1QKMGXIXY4bcxZghdzFmyF3+HjNMPK+SSCS4++67cffdd7v1vJ49e9otsFqZ+Ph4vPPOO9dTvTolLS1NnEraH790VP0YM+Quxgy5izFD7mLMkLv8PWbq/ORCRERERERE5Fls8SSf06hRI7GbAZErGDPkLsYMuYsxQ+5izJC7/D1mmHiSz6lfv763q0C1DGOG3MWYIXcxZshdjBlyl7/HjH+m00REREREROQzmHgSERERERGRRzHxJCIiIiIiIo/iGE/yOYcOHRKnku7QoYO3q0O1AGOG3MWYIXcxZshdjBlyl7/HDFs8iYiIiIiIyKPY4kk+JyAgACaTCXI5w5Ncw5ghdzFmyF2MGXIXY4bc5e8xIxEEQfB2Jci7dDodTp48KW63atUKQUFBXqwRERERERF5g6dyA3a1JSIiIiIiIo9i4klEREREREQexcSTiIiIiIiIPMo/R65SrXbhwgWYzWbIZDI0adLE29WhWoAxQ+5izJC7GDPkLsYMucvfY4YtnuRztFotcnNzodVqvV0VqiUYM+Quxgy5izFD7mLMkLv8PWaYeBIREREREZFHsast+ZxWrVpBEARIJBJvV4VqCcYMuYsxQ+5izJC7GDPkLn+PGSae5HNUKpW3q0C1DGOG3MWYIXcxZshdjBlyl7/HDLvaEhERERERkUcx8SQiIiIiIiKPYldb8jmFhYWwWCyQSqUIDg72dnWoFmDMkLsYM+Quxgy5izFD7vL3mGHiSTCbzXbbxcXFXqqJ1enTp8U1jFq2bOnVulDtwJghdzFmyF2MGXIXY4bc5SsxUz4XKJ8rXC+JIAhCteyJaq2srCykpaV5uxpERERERORjYmNj0aBBgxveD8d4EhERERERkUcx8SQiIiIiIiKP4hhPQlhYmN22SqWCTCbzTmWIiIiIiMhrzGYz9Hq9uF0+V7heHONJREREREREHsWutkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDxK7u0KkP8RBAGrVq3C77//juPHj6O4uBiRkZHo3r07xo8fjw4dOtzwa6SkpGDu3LnYvXs3srKyEBwcjBYtWuCee+7B8OHDIZPJquGdUE3xdMwIgoBNmzZh+fLlOHToEHJzc6FQKBATE4PevXtj4sSJaNSoUTW9G6oJNXGcceStt97C/PnzAQAnT570yGuQZ9REzJSWluK3337Dn3/+ibNnz0Kn0yEiIgJdu3bFhAkT0KVLl2p4J1RTaiJm9u3bh3nz5uHff//FlStXoFKp0LRpU/Tv3x8TJkxAWFjYjb8R8qqy343JkyfjySefvOH9ZWRkYO7cuUhOTsbFixeh0WjQtGlTDBkyBGPHjoVara6GWnuGRBAEwduVIP9RWlqKKVOmYOvWrQ4fl8lkePrpp/Hoo49e92ssXrwYb731FoxGo8PHu3Xrhi+++IIH61rC0zGTn5+PqVOnYseOHU7LKJVKvP3227jnnnuu6zWoZtXEccaRXbt24cEHH0TZzyYTz9qjJmLmxIkTePLJJ3HhwgWHj0skEjz22GN4+umnr/s1qObURMzMmDED33//vdPHIyMjMXv2bHTu3Pm6X4O86++//8bDDz8Mi8VSLYnnX3/9halTp6KoqMjh4wkJCfjqq6/QuHHjG3odT2HiSdXq2WefxapVqwAALVq0wJgxY1C/fn0cPXoUv/32G4qLiwFYD7bDhg1ze//Jycn4v//7PwiCAI1Gg7Fjx6Jdu3bIycnBkiVLkJKSAgDo3bs35syZA6mUvcl9nSdjxmKxYOLEidi7dy8AoFGjRhg5ciSaN2+OoqIibN++HevXr4fFYoFEIsGXX36J/v37V+8bpGrn6eOMI0VFRbj77ruRnp4u3sfEs/bwdMykpaVhzJgxyM3NBQD06tULAwcORFhYGPbt24fFixdDr9cDsLZ+jB07tpreGXmKp2Pm+++/x4wZMwAACoUCY8aMQfv27VFQUIANGzaIv1shISH4448/EBsbW03vjGrKkSNH8MADD0Cn0wHADSeeJ0+exOjRo6HX6yGTyTBq1Ch069YNRUVFWL58Ofbv3w8AaNWqFRYuXAiNRlMt76NaCUTVZPv27UJCQoKQkJAgTJw4USgtLbV7/NSpU0KPHj2EhIQEoUePHkJhYaFb+9fr9UL//v2FhIQEoVOnTsKRI0cqPP7EE0+IdVi5cuUNvyfyLE/HzJIlS+z2X1RUVKHMpk2bhDZt2ggJCQlCnz59KtSBfIunY8aZN998U3zdsn9UO9REzPznP/8RX+Obb76p8Pj+/fuFtm3biq+h1+uv+/2Q53k6ZrRardCpUychISFB6N69u3DixAm7xy0WizBz5kyxDs8888wNvyeqWVu3bhW6detm95sxa9asG9rn2LFjhYSEBKF169bC1q1b7R6zWCzC9OnTxdf6+uuvb+i1PIXNQVRtfvjhBwCAXC7HO++8A5VKZfd4ixYt8PrrrwMAtFotFi9e7Nb+169fL7Y2PPLII2jbtq3d40qlEh988IHYxfabb765nrdBNcjTMbNw4UIAgEqlwkcffYSAgIAKZcrG0QBAZmYmtm3b5vb7oJrj6ZhxZNeuXViwYAEAIDg4+Ib3RzXL0zGzZ88eJCcnAwBGjBjhsOtlp06dxFZOrVaLv//+2+33QTXH0zGzY8cOscX0kUceQatWrewel0gkeOqpp9CkSRMAwKZNm2Ayma7rvVDNMhgMmDVrFh577DEUFBRU237379+Pffv2AQDuuece3HrrrXaPSyQSvPrqq2jRogUAaww7G5LmTUw8qVpotVrs3LkTANCnTx+nXUIGDx6MiIgIAMC6devceo01a9YAsH65xo0b57BMYGAgRowYAcA6AdHZs2fdeg2qOZ6OGZ1Oh0OHDgEAbr75ZkRGRjote+edd4q3Dx486PJrUM2qieNMeUVFRXj11VchCAKGDRuG1q1b39D+qGbVRMyUdcdUqVSYOnWq03KjRo3C2LFjMWnSJPG1yPfURMzYdtlPTEx0WEYqlaJdu3YAgJKSEuTl5bn1GlTzdu7ciUGDBuGLL76AxWJBQEAAHnrooWrZd9k5MADcd999DstIpVLxMa1Wi127dlXLa1cnJp5ULf755x9YLBYAwE033eS0nFQqRffu3QFYT/Dz8/Ndfo2y8Q6tWrVCvXr1nJazfX22XvkuT8dMXl4e2rdvj8jISDRv3rzSsqGhoeLt6rxCSdWrJo4z5X300UdIT09HZGQkXnnlleveD3lHTcTMxo0bAVgvcDVo0MBpucTERLz11lt4+umnxYSCfE9NxExQUJB4Oy0tzWm5ixcvArBOZGT7O0W+acWKFeJFhXbt2mHx4sXo169ftey77Bw4NDQUbdq0cVrONmbLemL4EiaeVC1SU1PF2wkJCZWWbdmyJQDrNOVlkwFVJTMzU0wI4uPjKy1b1s0AsM4ySL7J0zETGxuLxYsXY/v27XjhhRcqLXv69GnxNmdD9l2ejpnybLvYvvHGG4yNWsjTMZOVlYWcnBwA1u60ZYxGI44fP45t27bhyJEj7CZZi9TEccZ2GZZff/1VnHjK1p49e8ReOz169IBSqXR5/+Q99erVw7Rp07Bo0SIxPm6U2WwWz1NatGhR6cSZcXFx4pKCvngOzMSTqkVGRoZ4OyYmptKy0dHRDp9XGdtuKVXtPyoqSvxSll0tJN/j6Zhxx++//y7e7tixY7Xvn6pHTcaMbRfbQYMGYeDAgW7vg7zP0zFz6tQp8Xbjxo1hNBoxe/Zs3HLLLbjnnnvwf//3fxg5cqQ407rZbHbzHVBNq4njTLt27XDLLbcAAM6cOYMJEyZg165dKCwsxOXLlzF//nw88cQTsFgsCAoKwvPPP+/muyBvGD9+PLZs2YLx48dX63ryV65cgcFgAFB1TMpkMnFokS+eA8u9XQHyD2VTyANAeHh4pWVtWw20Wq1L+7cd21DV/hUKBQICAqDT6VzeP9U8T8eMq5KTk7FlyxYAQEREBHr37l2t+6fqU5MxU9bFNjw8HNOmTXP7+eQbPB0zly9fFm8rlUpMmDABBw4cqFBOq9Xiww8/xIEDBzBz5kwoFAqX9k81r6aOM59++imeeeYZbN26FYcOHcIDDzxQoUyXLl3w2muvVZhMkXxT+/btPbJfd2ISsHbHvXz5sk+eA7PFk6pFaWmpeLv87G/l2XYXsX1eZUpKSlzev20ZV/dPNc/TMeOKS5cu4cUXXxS3J02aBLVaXW37p+pVUzFj28X29ddfr3RMOfk2T8eM7SLuM2bMwIEDBxAfH49vvvkG+/btw969e/HJJ5+gYcOGAIANGzbg008/deMdUE2rqeNMYGAg3n//fbHlszyJRIK4uDh28Se/Ogdm4knVwnb8SlXjEGwfd3Xci233JFfGOZSV4bga3+XpmKlKbm4uHn74YXF8Vu/evcVlVcg31UTM2HaxHTBgAIYMGeJ+RclneDpmypbEAKyTxLRu3Rq//fYb+vbti8DAQISEhGDIkCFYsGCBeAHjxx9/9MiQAaoeNfXbtGbNGvTt2xfbtm1DVFQUJk+ejJkzZ+Kdd97BHXfcAcA6DGTo0KHiWE+qm/zpHJiJJ1UL21aiqtYNKuunDrj2BQLsr/C4si5R2WuwO5Pv8nTMVCY7OxsTJ07EmTNnAABNmzbFRx99BIlEcsP7Js+piZgp62IbGhqKN9980+06km/xdMwIgmC3/fbbb9vNWFqmYcOGeOqppwBYTwaXLVvm0v6p5tXEcWbTpk147rnnUFpaip49e2LNmjV48sknMXjwYIwePRqzZs3CnDlzoFarUVRUhEceeQTZ2dnuvxnyC/50DszEk6pFQECAeNvR7Gy2bA/UrnQZcHf/tmXYbdJ3eTpmnLlw4QLGjx8vzlzYsGFDzJ07l90pawFPx4xtF9uXXnqp0qUxqHbwdMxoNBrxdrNmzSod41XWigVAXAiefI+nY0YQBPzvf/+D2WxGaGgoZs2a5fBiRVJSkjipUH5+Pn744QeX9k/+JzAwULxd28+BmXhStQgJCRFvVzWY2fZxV0/2bfdf1VpZRqNR7P7EZMJ3eTpmHDl06BDGjh2L8+fPA7DODvfLL79UOUsc+QZPxoxtF9s+ffpgxIgR11tN8iGePs7YJgxxcXGVlq1Xr544Xi8rK8ul/VPN83TMHD9+XFy7c8iQIZWO4RwzZox4ceOvv/5yaf/kf4KDg8XbrqwXW1bGF8+BOastVYtmzZqJty9duoTY2FinZW1nAWzUqNF17b8ymZmZ4uLPru6fap6nY6a85ORkPPXUU+JFiZYtW+KHH35AVFTUde2Pap4nY+bIkSPisk3Jyclo1apVlc8pKxMTE4PNmzdXWZ5qnqePM40bN3arPmXdMct+o8j3eDpmzp07J96uap1QpVKJFi1a2B2fqO5p0KABAgMDUVRUVOUSKWazWeyW7YvnwGzxpGrRokUL8bbt4suOlD0ukUgQHx/v0v7Dw8MRERHh0v5t11Wr6qBO3uPpmLG1efNmTJo0SUw6O3bsiF9//ZVJZy1TkzFD/sHTMWP7G1PVhEFms1lsIeOxx3fV5HHGlW6TZeuSV+e6kFT7lMXl6dOnKy135swZcTIiXzwHZosnVYvOnTtDoVDAaDRi9+7dGD9+vMNyZrMZe/fuBQAkJibadWmpSvfu3bFu3TocP34chYWFdl0PbO3atUu83aNHDzfeBdWkmogZANizZw+mTJkiDsjv3bs3Pv/8c7txPFQ7eDJm4uPj8cUXX1RZ7tNPPxVPNsvK++I4GrLy9HEmPDwc8fHxSE1NRWpqKi5fvozo6GiHZY8ePSqOCfTFE0Ky8nTM2F50OHLkSKVlTSaTOAmeL7ZeUc3p3r07Dh06hJycHKSmpjq90GF7Dty9e/eaqp7L2OJJ1SIkJAQ33XQTAGvrkrOuAKtXrxYXwh00aJBbr1E2MYPJZBInAClPp9Nh6dKlAKzjbRITE916Dao5NREzOTk5mDJliniy169fP3z99ddMOmspT8ZMvXr1cNttt1X5z3bx7rL7kpKSbvCdkafUxHGmbMkdQRDw3XffOS3366+/irfdfQ2qOZ6Omfbt24tjgzdt2lTp8KHly5dDp9MBsF40pbrLdnKyX375xWEZs9mM+fPnA7COC/XF3yYmnlRtHnzwQQDWyX2eeeYZ8WBZ5tSpU3j33XcBWGfoGj16tFv7v+2228TxNF988QX++ecfu8cNBgNeeOEFsSvTQw89dB3vgmqSp2Pm7bffFk8MOnTogM8++6xalmMh7/F0zJD/8XTMjB07VpzEY8GCBVi+fHmFMsuWLRPv79KlCzp27Oju26Aa5MmYUSqV4prRxcXFePrpp8XfKVv79u3De++9B8C6LMYDDzxwPW+F/ETHjh3RuXNnAMDixYuxdu1au8cFQcA777wjtpDfd999PtkbRyKUX4SK6AY89dRT+PPPPwFYJ10YN24cGjZsiGPHjmHBggUoKioCALz11lsYO3as3XN3796NiRMnArB2kXV0RWfz5s14/PHHIQgCFAoFRo8ejS5dukCr1WLRokVISUkBYP1h//XXXzkmohbwVMycPn0aQ4YMEdfZe+GFF9C0adMq6xMWFoZu3bpVy3sjz/D0caYy999/P/bs2QMAOHny5I2+Faohno6ZDRs2YMqUKeLYqn79+qF///5QKpXYsmUL1q1bB8C65MYff/yBli1beuy9UvXwZMyUlJTgvvvuw7FjxwBYu2wPHz4ciYmJMJvN2LVrF1avXg2TyQQAePPNNzFu3DiPvl/yDNtYmDx5Mp588kmH5dLT0zFgwAAAziesO3r0KO69914YjUZIJBIMHToUSUlJKC0txbJly8Rlmpo1a4Y//vjDbhkWX8ExnlStPvjgAxQVFWH79u1IT0/Hhx9+aPe4RCLB5MmTKxykXdW/f3+88cYbePfdd2E0GjF//nyxW0GZ9u3b48svv2TSWUt4KmaWLVtmt7j7jBkzXHre9SQjVLM8fZwh/+PpmBk4cCA+/vhjvPbaa9DpdNiyZQu2bNliVyYsLAxfffUVk85awpMxo9Fo8P3332Pq1KnYtWsX8vLyHK7TqVAo8MorrzDpJABA27Zt8emnn+L5559HcXExVqxYgRUrVtiVadq0KebMmeOTSSfAxJOqmUajwZw5c7By5UosW7ZMnAgoLCwMXbt2xcSJE9G1a9cbeo1x48ahW7du+Omnn7Bz505kZ2dDoVAgISEBQ4cOxZgxY6BQKKrpHZGneSpmylq/yf/UxHGG/EtNxMygQYPQtWtXzJs3D5s3b0ZGRgYkEgliY2Nx22234b777vPJdfXIMU/HTL169fDjjz9i06ZNWLFiBQ4ePIicnBwolUrExMSgd+/euP/++7nONNm57bbbsHr1asydOxfbtm3D5cuXIZFIEBcXhzvuuAP333+/zyadALvaEhERERERkYdxciEiIiIiIiLyKCaeRERERERE5FFMPImIiIiIiMijmHgSERERERGRRzHxJCIiIiIiIo9i4klEREREREQexcSTiIiIiIiIPIqJJxEREREREXkUE08iIiIiIiLyKCaeRERERERE5FFMPImIiIiIiMijmHgSERERERGRRzHxJCIiIiIiIo9i4klEREREREQexcSTiIiIiIiIPIqJJxEREVU7o9Ho7SpQJfj3IaKaJvd2BYiIyHN2796NiRMnXvfzY2JisHnz5mqs0TX9+/dHRkYGAODkyZMeeY2aNHv2bHz++edVlpPL5VCr1ahfvz5atWqFnj17YtiwYQgKCqqBWt4Y23gaPnw43n///QplSktL8fnnnyMwMBCTJk2q8PhLL72EpUuXAgB+/vln9OzZ07OV9jB3vmMSiQRKpRIhISGIiYlB+/btMXz4cLRt29bDtbymqr8PEZGnsMWTiIioBplMJuh0Opw7dw5//vknpk+fjgEDBmD9+vXertoNO3nyJIYMGYLvvvsOJpPJ29XxOYIgQK/XIzs7GwcOHMAvv/yCkSNHYtq0abBYLB5/ff59iMib2OJJRFRHhIaG4r///a9bzwkODvZQbfxbu3btMHjwYIePmc1mFBcXIy0tDevXr4fBYIBWq8WUKVPw1VdfoW/fvjVb2Wp09OhRpKene7saXlPVd8xisUCn0+H06dPYvn07SkpKIAgCFi5cCLVajVdeecWj9avrfx8i8i4mnkREdURQUBD+85//eLsadUJ8fLxLn/Xly5fx8MMP4/Tp07BYLHjjjTewfv16qFSqGqil+3r27HnD3aLff/99h110/YE73zGtVouXXnoJW7ZsAWDtdjxmzBi0bNnSk1UkIvIadrUlIiLykujoaHzxxReQSq0/x5cvX/bYmFryLWFhYZg1axaaNGkCwNoN97fffvNyrYiIPIeJJxERkRfFxcWhd+/e4vbff//txdpQTVIqlbj77rvFbX+YZIuIyBl2tSUiouty5swZrFixAnv37sWFCxeQn58PiUSCkJAQxMfHo0+fPhg9evQNzdaampqKxYsXY/fu3UhLS4PBYEBYWBiaNWuGXr16YfTo0WjQoEGV+7l06RJ+++03bN++Henp6SgqKkJ4eDjatGmDgQMHYtiwYVAoFNddzxvVokULJCcnA7C2ejqTm5uLhQsXIjk5GWfOnIFOp0NISAiaNm2KPn36YOzYsahXr16lr2UwGLBy5Ups2LABR44cgVarhUqlQv369dG5c2fcfvvt6N+/v8PnOpvV1tGMvp9//rl43+TJk/Hkk08CcDyrrcViQb9+/cT3vmzZMrRu3brS97Fo0SK8/vrrAICRI0fivffeq1CmpKQEixcvxubNm3Hq1ClotVoEBQWhWbNmuPXWWzFu3DiEhYVV+jqeVr9+ffF2VlZWpWUPHz6MNWvW4J9//sGlS5eg1WqhUCgQGhqKxMRE9OvXD8OHD4dSqbR7njt/H1t5eXlYuHAh/vrrL5w/fx4FBQUIDQ1Fy5Yt0b9/f4wZMwYajeZ63zoR1TFMPImIyC1GoxFvv/02Fi9e7HAmztLSUmRlZWHHjh349ttv8eWXX6Jz585uv86XX36J2bNnV3iN7OxsZGdnY+/evfj222/x6quvYsyYMU7388MPP+DTTz+FXq+3uz8rKwtZWVnYunUrvvvuO8yaNQutWrVyu57VoayrLQDIZDKHZRYuXIj3338fxcXFdvfn5OQgJycH+/btw5w5c/DKK69g1KhRDveRlpaGRx99FGfOnLG732g0ijPtLl26FJ06dcJXX31VZRJbXaRSKYYOHYrvvvsOALB69eoqE8+VK1eKt++5554Kj+/cuRMvvPACsrOz7e7Py8tDXl4e9u/fj++//x5vvfUWhgwZcuNv4jqdP39evG2bhNrS6XR46aWXsGHDhgqPGY1GFBcX49KlS9iyZQu+++47fPfdd4iLi7uheq1cuRLTp09HQUGB3f1XrlzBlStXsGvXLnz33Xf46KOPcNNNN93QaxFR3cDEk4iI3PLiiy9i9erVAKxrUiYlJSExMRGBgYEoKCjAwYMHsXfvXgiCgNzcXDz55JNYt26dWy2fy5cvx2effQbAmpQkJSWhTZs2CAgIQGZmJrZu3YqMjAyUlpbi9ddfR+PGjXHzzTdX2M+HH36IOXPmiNudO3dGt27dEBQUhIsXL2LLli3IysrCuXPnMG7cOMyfPx+JiYk3+Am5z7aLZdmYP1vffvstPv74Y3G7cePG6NevH+rXr4/s7Gxs2bIFGRkZKCoqwquvvorc3Fw8+uijdvswGAx47LHHxKSzYcOG6Nu3Lxo2bIji4mKkpKRg69atsFgsOHDgACZPnoz58+e7VP/evXsjICAAR44cwZo1a8T7yroQu3Lh4Z577hETzzVr1uC5555zWjYzMxP//PMPAOtas927d7d7fNOmTZgyZQqMRiMAoGnTprjlllsQGRkJrVaL7du3IyUlBYWFhXj22WdRXFyM0aNHu/Req1NBQQGWL18ubjtK4CwWCx555BHs378fAKBWq3HrrbeiZcuWUKvVyMvLw549e3DkyBEA1osLU6ZMwbJly8QLGu7+febNm4fp06eL261atcLNN9+M8PBwZGdn46+//sKFCxeQnZ2NRx55BF999RX69OlTjZ8MEfkjJp5EROSyXbt2iUlnSEgIfv75Z4ctU7t378Z///tflJSUIDs7Gxs3bnTYKuXMl19+CcCadDpaYuTll1/GK6+8ghUrVgAAvv766wqJ56ZNm8SkMywsDJ988ondWEoA0Ov1+PDDD/HLL7+gqKgITz31FFatWlWhq6InpaamYteuXeL2LbfcYvf4rl277JLOJ598Eo899hjk8ms/4S+99BJmz56Nb775BgAwc+ZMdOzYET179hTL/Pnnnzh16hQAoEePHpgzZ06F2XMPHTqEBx54AMXFxfj333+xd+/eCkmdI126dEGXLl3wxx9/iIlN586d3ZpFuWXLlmjbti2OHj2KjIwMHDhwAJ06dXJYds2aNWJL+NChQyGRSMTHLl68iJdeeglGoxFSqRQvvvgiJk6caNeq/OKLL+KPP/7AtGnTYDQaMX36dHTp0gUtWrRwub436sKFC3jhhReQm5sLwLp00fjx4yuUW7p0qZh0xsTE4Oeff0bjxo0rlFu9ejWee+45WCwWnDx5Ev/++6/4t3Pn73PkyBH873//AwCoVCq89957uOuuu+zKvPzyy/j+++/xySefwGg04rnnnsPatWtrrIWciGonJp5ERHWETqfD999/73L5e++9t0IrZdnYPMCaADnrDtmzZ08MHz5cbDE7cuSIy4mnVqvFuXPnAAAJCQkO17VUKBSYPn06NmzYgJKSEqSkpMBgMIgJoyAImDlzplh+1qxZdklYGZVKhddeew1paWnYunUrzp8/j+XLl9dY69eRI0fw9NNPw2w2AwDatm1bITn+9NNPxdsPPfQQJk+eXGE/CoUCzzzzDIqKivDrr7/CYrHg008/xYIFC8QyBw8eFG8/8MADDpds6dChAx5++GF8/vnnkEqlOHTokEuJZ3W55557cPToUQDAqlWrnCaeq1atEm/bTs4DWFuHy7qHPvHEE3jwwQcd7mPEiBHIy8vDjBkzYDAY8PXXX+PDDz+8ofpX9R0rKSmBVqvFsWPHcOjQIbFFVqlU4uOPP3aYuNl+51599VWHSScADBkyBMuXL8dff/0FwLpm5/X87T777DOxXm+99VaFpBOwdgd/9NFHcfnyZcybNw9arRY///wznn76abdfj4jqDiaeRER1RH5+PmbMmOFy+TvuuKNC4nnnnXciLi4O6enpFU74y7MdL1lUVOTy69q25GVkZCA7OxuRkZEVymk0Gvz+++8IDw+vcMK+f/9+pKamArC27DhKOm1NmjQJW7duBQCsWLHihhPP1NRUpwmIXq9HTk4ODh06hEOHDon3BwQEVPj7pKeni61dAQEBDpNOW1OnTsUff/yB4uJi7Nu3D2fOnEHz5s0B2I8d3b9/P2677TaH+5g4cSLuuusuxMTE1GjLLwDcdddd+OCDD2AymbBu3Tq88sordi2VAHDu3DmxW2m7du3sWikNBoPYdVWpVOKhhx6q9PUmTpyIzz//HMXFxVi3bh3efffdG3rP7n7HAGuy//rrr6NDhw4OHx87dixuuukmZGVlObwIY6tVq1Zi4qnT6dyqB2Dtwlw2yVV0dHSVF4smTZqEefPmAbB+b5h4ElFlmHgSEZHL+vXrh379+lVZrri4GOnp6eK2yWRy+TWCgoLQunVrHD9+HIWFhRg5ciQeeOAB9O3bt0JXSGddI/fu3Svebtu2bZWv2aZNGyiVShgMBhw6dAgmk8kuAXbXkSNHxOTIFc2aNcOnn36Kli1b2t1v2wU3KSmpynGyQUFBSEpKwvr16wEA//zzj5h4du/eHT/++CMAYM6cOcjIyMCwYcPQs2dPBAQEiPsIDQ1FaGioy3WvTvXq1UOfPn2wZcsWZGdnY8+ePRXGPdq2dg4bNszusaNHj4qTLzVr1gyBgYGVvp5CoUC7du2wZ88eGAwGHD58GF27dq2md+Nc586d0bt3b/Tt2xft27evtKyjFkdH8vPzkZmZKW67850rUzY2GwBat25t14XZkcjISMTExCAjIwMZGRnIzMxEVFSU269LRHUDE08iojoiJiYGmzdvrtZ9FhUV4ezZs7hw4QLS0tJw9uxZnDhxAqmpqXYnvmUns6567rnn8Oijj8JsNiMzMxMzZszAjBkz0KhRIyQlJaFPnz64+eabnSZiZWMZAeDXX3/Fr7/+6vJrl5aWIjc316VlWq6HWq1GUFAQoqOj0bZtW/Tt2xd9+/at0LIHwC55d3XSo8TERDHxTEtLE+/v378/evTogT179gAA1q5di7Vr10KhUKBLly5ISkpC3759kZCQcCNv74YNGzYMW7ZsAWAdt+gs8ZTL5RVmo7X9u6ekpLg9S/GlS5eup8oiR9+x0tJSnDp1Cj/++KM4E29qaiqGDh1aZdLpSH5+Ps6dO4cLFy7gwoULOHPmDE6cOIHTp0/bfc/c/c4B9p/fli1b3P78Ll68yMSTiJxi4klERG6xWCxYvnw55s+fjyNHjjhcUgWwdu0sG7vorqSkJHz55Zd444037Na1vHjxIhYtWoRFixZBqVSib9++eOihh9ClSxe75+fn51/X69o+/0YST9s1Lm+EVqsVb7u63qRtOdvPQSqV4ssvv8Q777yD5cuXi4mJ0WjE7t27sXv3bnz88cdo2rQpRowYgYkTJ9q1hNaUAQMGICQkBAUFBVi/fj2mTZsmrrF69OhRnD17FoA1RiIiIuyeWx1/9+qmVqvRrl07fPTRR2jXrh3+97//QafTYfr06cjOznape6rBYMBvv/2GxYsXIyUlxWm5G/nOAb75+RGR/2DiSURELisqKsLkyZOxc+dOu/slEgmio6PRsmVLtGvXDj169EB6ejpef/31636tvn37YsOGDfjrr7+wfv16bN++XZwBFLCejK9fvx7r16/HE088gaeeekp8zPbk+84773Q6fs6Z8gmNt1xPq5WzCwGAdebUDz74AE888QRWr16NLVu24PDhw3bPOX/+PGbOnIlFixY5nUHVk5RKJQYNGoSFCxdCq9Vi586duPXWWwFU3s0WsP+7t23b1u31OZ1NZlRdHnzwQaSlpYkt8F999RUaNWpU6Tq0ZUuWnDhxwu5+qVSKmJgYxMfHo3379ujZsye2b98uzgh9PWw/v169erm9RMqNrh1KRP6NiScREbns3XffFZPOwMBATJw4EX369BHX8bRVNunIjVAqlRg4cCAGDhwIQRBw8uRJ7Nq1C8nJydi1a5fYnfeLL75Ajx49xG6ZISEh4j46d+7sdGZTX2c71jIvL8+l59iWs/0cbDVp0gSTJk3CpEmTUFBQgD179mDnzp3YsmULLl68CMA6sdNLL73kVjfl6nL33Xdj4cKFAKzdbW+99VYIgoC1a9cCsCbQAwYMqPA82/cbFRXl1nIuNeXFF1/E3r17xbVb3333XXTt2tXpeOXnnntOTDojIiLw4IMP4uabb0Z8fHyFmYk3bdp0Q3Wz/fxatmzpk58fEdVeFQeUEBEROZCZmYlly5YBsLZwzp07F08//TS6du3qcBIX2wToelruypNIJEhMTMSDDz6I77//Hps3b7Ybg1Y2mykAxMbGirfLZretim1rqq9o2rSpeLssUanK8ePHxdu2n4MzISEhuO222zBt2jRs3rzZrpV67969YiJak7p16ybWfcuWLTCZTPj333/FMZh33HGHw+VgbN+v7XjFyuTn51faSlzdlEol3n//fXHyqtLSUrz44osO63Dw4EFxgqmAgAAsXLgQjz76KNq1a+fw/bt6ccKZ6/n88vLyquX7TUT+j4knERG55PDhw2JXvNatW6Njx46Vlt+9e7d4250T002bNuE///kP+vXrh2+++cZpuaioKDz22GPitu2Mnt26dRNv//XXX+K6hM4cPnwYvXr1QufOnTFy5MjrmhHUE2zfx/bt26tcIqOwsBB///23uF3WddRsNuPFF1/EiBEj0Lt3bxgMBofPl0gkmDBhgl3rm+0Y26pUNQuqO8q60hYUFGDv3r1Yt25dhcfK69y5s5jQXbhwocpkXa/X44477kCHDh1w++23V+jO6ilt2rSxW+rl8OHD4pq3tg4cOCDe7t27d6UXEgRBECeOAhx3ua7q72Mbb//++2+VF2OysrLQp08fdOzYEYMGDfLJizdE5DuYeBIRkUtskxXbSW8c2bhxo91JsDuJnCAI2L59Oy5evIjVq1dX+lzbFh7b2TR79eqF6OhoANYxcs7W1Cx7vY8//hiAdRmYxo0b39BSKtWpadOm6Ny5MwBr3T7//PNKy3/22WcoKSkBAMTHx4stwjKZDCdOnMDRo0dx5cqVSrtkWiwWu7+vO7OU2s7MeyOT3AD2yeWmTZuwceNGANaZY7t37+7wOYGBgRg4cKC4PWPGjEovesyZMwd5eXkwGo0oLi6usJyNJ02ePBkxMTHi9syZM5GVlWVXxvY7V1Vr5s8//1zlEkZV/X1atGghjoc2GAyYOXNmpa/56aefwmg0Qq/XIzAwsMJ6ukREtph4EhGRS2yX87h48SJ++umnCmUsFgsWL16MZ5991u7+smTIFbfccgsiIyMBWLuXTp8+HaWlpRXKnT171i4Ru/3228XbCoUCjz/+uLj92WefYe7cuRVagUpKSvDWW2+JrYRyuRyTJk1yua41YcqUKWJL1dy5c/H5559XSCpMJhNmzZqFX375BYC1ZeuVV16xKzNy5Ejx9ptvvolDhw5VeC1BEPDBBx8gJycHgHWCHtvkqCq2y9tkZGS4/DxHmjRpIibdv//+u9jNdujQoZW23E2aNAlKpRKAtZX4+eefr9BSLAgCFi9ebDcRz6RJk2r0goNarca0adPEbZ1Oh/fee8+ujO137t9//8WGDRsq7MdgMODrr7/GBx98YHe/o++cK3+fp556Svx8Fy1ahA8++KBCC7nJZMKXX36J33//XbzvySefdLg/IqIyvnFJl4iIfF7z5s2RlJSE7du3AwDee+89rF27Fp07d0ZQUBAyMzOxbds2MUFQKBRiF9eqWkhtKZVKvPzyy3jmmWcAAAsXLsTmzZtxyy23oFGjRgCsazRu3boVer0eAHDrrbeiX79+dvu599578c8//2DFihWwWCx4//338dtvv+GWW25BvXr1cPHiRWzZsgXZ2dnic5599lmX18usKb169cLkyZMxe/ZsAMDs2bOxdOlS9OvXD/Xr18eVK1ewZcsWu9auxx9/HDfffLPdfsaOHYslS5bg5MmT0Gq1GD16NHr37o2EhATUq1cPOTk52L59uzi2T6FQVEheq2I7A+7KlSsRHByMqKgoxMfHo3///m6/93vuuQf79+9HcXGxeN/dd99d6XNatWqFadOm4fXXX4cgCFi5ciWSk5MxYMAAxMbGIjc3F7t377brhtuvXz/cd999btfvRvXt2xcDBw4UE8q1a9di5MiR4myyZZMIpaamQhAETJ48GUlJSWjTpg1UKhUyMjKwZcsWsTW0qu+cK3+fPn364LHHHsNXX30FAPjhhx+wZs0a9OvXD1FRUcjKykJycrLdGrETJkwQZx4mInKGiScREblsxowZeOihh8ST9v3792P//v0VyiUkJOD999/HvffeC6PRiNTUVBgMBrElqipDhgxBXl4e3n//fRiNRmRnZ9u1rti64447KrT2lPnggw/QqFEjfP/99zAajTh37hzOnTtXoZxarcZzzz2H+++/36X61bTJkycjPDwcH330EYqLi5Geni62btoKCAjAm2++6XAMpFKpxJw5czBp0iQcOXIEALBjxw7s2LGjQtn69evjnXfesRvz54qEhAR07twZ+/fvhyAI4szG/fv3v67Ec/DgwXj33XfFFrd27do5nf3V1ujRoxEcHIw33ngDWq0WWq3WafyMHDkSb775ZrWOT3XHa6+9hh07dojJ9fTp07Fq1SqoVCrIZDLMnj0bDz/8sDjJ0/bt28WLP7a6deuGqVOnYvz48QCsa56W5+rf5+mnn0ZERAQ+/vhjlJSU4PLly1iwYEGF/clkMjzyyCOYOnXqjX8QROT3mHgSEZHLIiIisHjxYixcuBDr1q3DqVOnoNPpoFarERkZicTERNx2220YNGgQ5HI5brrpJiQnJ6OkpAR//vknhg4d6vJrTZgwAbfccguWLFmC3bt349y5c9DpdNBoNIiMjESPHj0wdOjQSpMjqVSKqVOnYtSoUVi0aBF27tyJ9PR06HQ6BAQEoFmzZrj55ptx7733iq2pvmr8+PG444478Ntvv2H79u04f/48CgoKEBAQgBYtWqBv374YM2ZMpePsGjRogEWLFmHdunX4888/cezYMVy5cgUmkwn16tVDXFwc+vXrh5EjRyI4ONjtOkokEnz33Xf49NNPsXnzZmRnZ9u1wrkrJCQE/fr1w59//gnA+aRCjtx5551ISkrC4sWLsW3bNqSmpkKr1UKhUKBhw4bo2rUrRo8e7fYar9UtOjoaTz75pHjx5MKFC/jyyy/FZC4uLg7Lly/Hr7/+is2bN+Ps2bMoKSmBRqNBw4YN0bp1awwePBh9+/aFRCJB8+bNcebMGVy4cAH79u1Dly5dxNdy5+9z//33i+up7tixA+fOnUN+fj5UKhViY2PRs2dP3HvvvS5dCCAiAgCJwDmwiYiIiIiIyIM4uRARERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8qj/B8SuBXxdadAxAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ ")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "493d213c",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Plot realized ROC points\n",
+ "> realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "fcd2aaf9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set group-wise colors and global color\n",
+ "palette = sns.color_palette(n_colors=N_GROUPS + 1)\n",
+ "global_color = palette[0]\n",
+ "all_group_colors = palette[1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "4c70252e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wT9f8H8NdlNUn3bumAMsoGkb1ki2xQUEFBhoAi46egIPpFWTJcDFFxIAqyZG8HIHsIhQKFsjvpTnfarLvfH2muuYy2KV3A+/n48rW3P7l8cnfv+yyG4zgOhBBCCCGEEEJIJRFVdwIIIYQQQgghhDzZKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhNR4Wq22upPwWKHzRQghdC0kpKaRVHcCCHlaFBYW4vz58zh58iQiIyORkZGBjIwMiEQieHp6wtPTE02aNEHnzp3RqVMnuLm5VWt6V69ejW+++YafvnXrVrWkY//+/di4cSO2bNlic/n58+cxZswYfvq3335D+/btqyp5NYpGo8GPP/6ItLQ0zJ8/v7qT45CoqChs374dFy9exMOHD6HVauHr64vQ0FD07dsX/fv3h7u7e6WmITk5GX/88QdOnz6NBw8eID8/Hx4eHggICED37t0xZMgQhISElHl/hw4dwv/93/+VKy1RUVGQSJ68W/ScOXOwa9cuAEBQUBCOHj1azSl6cowePRoXLlwAALRr1w4bNmyo5hRVnwcPHmDRokWYNGmS3ftBz549kZiYCAAYNmwYli5dWpVJJOSp9OTd1QipYXQ6HX755Rf8/PPPyMrKsrmOWq1GYmIirl+/jm3btsHJyQkvvfQSZsyYAQ8PjypNb01x9+5dzJ8/HxcuXEBQUFB1J6fGO3bsGBYtWoSEhAQMGzasupNTZoWFhZg/fz527txptSwxMRGJiYk4e/YsVq1ahYULF6J3796Vko7169fj66+/RmFhoWB+Wloa0tLScO3aNXz//feYMmUKJk+eDLFYXOo+b9y4USlpJYTYVlhYiG+//Rbr1q2DTqfDpEmTqjtJhBAzFHgSUomys7MxefJkXL582WqZs7MzXF1dwTAMsrOzoVar+WUajQabNm3C33//jR9++AFNmjSpymTXCD/99BP/9p6UbuHChfzb+8eFRqPBhAkTcPHiRcF8FxcXKJVKpKeng2VZAIBKpcI777yDJUuW4MUXX6zQdCxfvhw///yzYJ5MJoOXlxdUKhVfXU+n02HlypWIj4/HkiVLSt2veeDp6uoKT0/PMqeJYZgyr0sIMYqMjMTatWurOxmEEDso8CSkknAchxkzZgiCzqZNm2LMmDHo1KkT/Pz8BOsnJSXh+PHj+OWXXxATEwPAWNoyYcIE7NixA7Vq1arK5BNS6RYtWiQIOtu1a4f3338fLVq0AADk5uZi+/btWLlyJQoKCgAA8+bNQ7169dCyZcsKScO+ffsEQWdQUBA+/PBDdO/eHVKpFHq9HseOHcOSJUv4wH7nzp1o2LAhxo4dW+K+zQPPKVOmYPz48RWSZkIIIeRxRJ0LEVJJ9uzZg7Nnz/LTr7zyCrZv346hQ4daBZ0AEBgYiFdffRX79u3DgAED+PkqlQoLFiyokjQ/jtq3b49bt27x/57W9p2Pm8jISPzxxx/8dI8ePbB+/Xo+6ASMpYTjxo3Db7/9BqVSCcBY6liW0sayyMvLE7TrCg4OxrZt29CnTx9IpVIAgEQiQZ8+fbBjxw7Uq1ePX3f16tVQqVR2952UlCRY/jTWWiCkJjt69Ch/36D2nYRUDQo8Cakkmzdv5v8OCwvDvHnzIBKV/pOTyWRYunQp6tevz887duwYHjx4UCnpJKQ6/Pjjj+A4DoCxau2SJUvstpts0aIF5s6dy09fvnwZp0+ffuQ07Ny5E+np6fz0woUL4ePjY3NdT09PrF69mu/wJy8vD7/++qvdfUdFRQmmKfAkhBDytKPAk5BKUFhYiGvXrvHTPXr0cKiHSplMhgkTJgjmnTlzpsLSR0h1ys7OFvRmOnTo0FLbPw4bNgy+vr789L59+x45HabeVQEgPDwcnTp1KnH9evXqoVevXmVKg3k129DQ0GrvpZoQQgipbtTGk5BKkJOTA4PB8Ej76Ny5s2A6NTW1TNvFxMRg165d+O+//xAXF4esrCwoFAp4eXmhZcuW6NatG/r27VshQzWUZ2iEnTt34sMPP+Snjxw5guDgYADWQ6OYJCYmomHDhvy0eQcz5RlOpaCgAPv27cOpU6cQFRUFlUoFg8EALy8vhIWFoVOnThg8eDD8/f1L/Tzm6Tp48CDq1auHwsJCHDx4EIcPH8bdu3eRnp4OuVyOgIAAdO7cGUOHDhVsV16WQ96Y7Nq1SxBUmZ9jS1lZWdi9ezfOnTuH6OhoZGZmgmEYeHl5oUGDBujSpQsGDRpUob0rnz59WvD7KEtPtRKJBN26dcP27dsBAH///TcWLVpU7nycnp6Omzdv8tPmAWVJevXqhT///BOAMV9evXpVUD3YxDzwrM7SzoSEBMFnu3r1KpycnHDw4EH88MMPePDgATw9PREeHo5+/fph0KBBNs9pcnIy9u7di1OnTiE2NhYqlQpOTk7w9vZGy5Yt0b17d/Tt27dMvf066syZMzhz5gwuXbqE5ORkZGVlQafT8R02tWjRAp06dcILL7wAmUxmcx/Tp0/nvzfA+DLw+++/L/G4Z8+exbhx4/iS+ZCQEOzevRsuLi421+c4DseOHcPRo0cRERGB9PR0qNVqeHh4ICQkBJ07d8bgwYMRGhrq0OdXqVTYsWMHjh8/jjt37iA/Px9eXl4IDw/H0KFD0a9fv0o575ZSUlKwa9cunD9/Hnfv3kVWVhakUim8vb3RuHFjdO3aFQMHDoRCoShxP+bXbFdXV76d9927d7FlyxacPn0aycnJYFkW/v7+aNWqFYYOHYqOHTva3af50CjmzO8NlkPMlGU4FfPrtOk6mpeXh7179+LQoUOIjY1FZmYmvL29ERISgsGDB2PQoEGQy+WC/Zw5cwY7duzAtWvXkJycDKlUiuDgYHTt2hWjR48u8V5TnmFyyjIcmvk65p8/MjISO3bswMWLF5GcnAyRSAR/f3+0adMGI0eORKNGjQT7UalU2LlzJ/766y/Ex8cjNzcXnp6eaN68OV588UX06tWLOksjPAo8CakEXl5ekEql0Ol0AIw3rHfffdfuQ5Et/v7+OHDgANzd3eHh4cG3ObMnKysLixYtwoEDB/ieQE10Oh1ycnIQExODPXv2ICQkBHPnzkXPnj0d/3CPuS1btuDrr7+2ObRNUlISkpKScObMGaxevRqvvfaaw99bREQE5syZg9jYWMF8jUaD7Oxs3Lp1C+vXr8err76Kjz/+uEoeGG0xGAxYu3YtfvzxR0GPyiamoUz+/fdfrFy5EpMmTcLEiRMr5AHCvDYAwzA2AzdbnnnmGT7wzMvLw507d9C4ceNyp8EUUABAq1atypwGcxERETbTb17VtmnTpuVKY2VZv369oJ2sKd9fv34dQ4YMEayr1WqxYsUKbNy4ERqNxmpZbm4uf10JCwvDJ598UmKA4IizZ89i6dKliI6OtrlcpVJBpVLh3r172LVrF7788kssXbrU5vEXLFiAiIgIpKWlATA2Xzhw4ICgPb257OxszJ49m88jEokEX331ld2g8/Lly5g/f77gZYaJaUieiIgIfPfddxgxYgTmzJljFZzYsmnTJnzxxRfIz88XzE9JSUFKSgpOnjyJDRs24Msvvyx1X+VVUFCAL7/8Elu2bOHvaSZarRb5+fmIi4vDn3/+iZUrV+Ldd9/FSy+95NAxfvvtNyxfvtxq/7GxsYiNjcXu3bvRqVMnLF26tEwvBCvLmTNnMGfOHKSkpAjmm35DFy5cwMaNG7F27VoEBAQgOzsb//vf/wQvPQDj/SA6OhrR0dHYsmULVq5cafWyuarl5+dj8eLF2LFjh9Wy3Nxc3L17F9u2bcOcOXPwxhtvAAD++ecffPTRR1b309TUVBw5cgRHjhxB79698fXXXzt0HyVPLqpqS0glkEgkgreCsbGxmDZtGv/QU1b169eHr69vqUFnXFwcBg8ejH379gmCTqlUCn9/f6tqfvHx8ZgyZQq+++47h9JT2eRyOUJDQxEaGgpnZ2d+vkQi4eeHhobaffgrCcuymDVrFj755BPBTZJhGHh4eMDPz08QBGo0Gqxbtw5jxowpsRMZc1euXMG4ceP4oFMkEsHX1xdeXl5Wadm0adMjdxrl7u7OnxPzUipnZ2fB+bLMPxqNBuPGjcPKlSsFQadIJIKPjw98fHwE7ZFzc3Px5ZdfYsqUKVbjXJbHnTt3+L9r1aol+K5LEhYWJpi+d+9ehaQBgKDjoJIEBwcLzuf9+/et1snIyBDUUGjatCkSEhKwatUqjBw5Eu3bt0ezZs3QpUsXjBo1Ct9++22ZazQ8qjt37uCLL76wuaxHjx6C7z07Oxvjxo3Dzz//LAg6pVIpAgIC4OnpKXgR8eDBA7z55puC9u3ltWfPHrz55ptWQae7uzuCgoLg4+Nj9RIkOTkZEydOxPXr16325+Hhgc8++0wwb9GiRcjMzLR5/E8++UQQXMyYMcPuC5J9+/ZhzJgxVkGnh4cHAgMD4eTkxM/T6/XYvHkzRo0ahYyMDJv7M1m+fDnmz58vCDpN1xTzGghXrlzBG2+8UebrlCMyMzPx8ssvY8OGDYKgUCwWw8/Pz6omRFpaGubOnYt58+ZZvQC1Z8OGDVi8eDG/f4lEAn9/f6uS0zNnzmDEiBGIj4+32kdQUBBCQ0OtOu7z8/Pjr4O2OvVzxIkTJzBx4kQ+X4hEIvj5+cHV1VWwXnR0NKZPn468vDyMGzeODzpN353l/Tg3NxfTp0/Hw4cPHyl9j0Kn0+Htt98WBJ1KpRIBAQGC+yLLsvjss89w/Phx7Nu3D1OnTuXvp6b1LWtM/PPPP3avOeTpQyWehFSSsWPHYubMmfz0v//+ix49eqBXr17o06cPOnfu7NC4fvaoVCqMHz9e8JDUpEkTTJ8+HZ07d+bfMsbFxWHz5s38AwTHcVixYgV8fHwwYsSIR05HRWjZsiX+/vtvAMJqvP7+/vz88lq8eLGgTZ6LiwsmT54saDuYn5+Pf/75BytXruSrYF2+fBkzZszAL7/8Umq1zk8++QQ6nQ4eHh6YOnUqBg4cyH/HKSkp+OWXX/DLL7/w62/dutVm1aWyGjNmDF+VzLza2PPPP2+3l0bTMD/nz5/n5/n4+GDq1Kno378/3N3dARhL0A8cOIBvvvmGf6A9evQo/ve//+Hzzz8vV3pNkpOT+b8DAgLKvJ1lScejPKiZp4FhmDKXoojFYvj4+CApKQkAbFbvswx8tm3bhr///tuq+r2pJOzSpUtYu3YtJk6ciClTppSpE7LyWrZsmVWpkol5lVyO4zBz5kzBcDdt27bFW2+9hXbt2vHXlfT0dOzfvx/fffcdsrKyoNfrsWDBAgQFBeG5554rVxoTExPxySefQK/XAzA+0M6YMQMDBw4UdP6Ul5eHEydOYOXKlfwQVDqdDl999RXWrVtntd/nnnsOo0aNwqZNmwAYr52LFy+2eijevXs3Dh06xE936NABb775ps20Xrx4EXPmzBGkdeLEiRg2bBgCAwMBGGsXXL58GT/88AOOHz8OwFgiPmPGDKxfv97mdWX//v2CYX6USiWmTJmCESNG8MFeTEwMfvrpJ2zfvh0JCQn2T2g5FRYWYuLEibh9+zY/LzQ0FDNmzEDPnj35nqZNVXDXrl3Lv8jaunUrvLy88H//938lHkOtVvOl7x4eHnj33XcxePBgKJVKsCyL8+fPY9myZXxQn5KSgqlTp+KPP/4QlKCZqp9aNr344osvKqyn80WLFsFgMMDf3x8zZszAgAEDIJfLwXEcLly4gA8++IC/rkRGRmLYsGGIi4uDXC7HO++8gxEjRvD3g6ioKHzyySd87Y+8vDysX79e0IlaVTp06BB/fRo8eDAmTZqEBg0aADC+gFq1ahU2btzIr//JJ58gPT0dHMehdevWeO+99/Dss89CJBKhoKAAGzduxIoVK/jfxebNmzF58mR4e3tX/YcjNQqVeBJSSfr372/14KXT6XD48GHMnDkTHTt2xMCBAzFv3jzs3r3b5lvcslixYoVg24EDB2Lbtm3o0aOH4MYcGhqK2bNn4+eff+YfGABjFbTqfNNaFa5cuSK4aQYGBmLbtm2YNGmSoMMaZ2dnDBkyBLt370br1q35+RcuXLD5IGtJp9OhVq1a2L17N0aPHi14seDv7485c+YIHsQ4jsP+/fsf8dM55uDBgzh27Bg/HR4ejt27d2PkyJF80AkYHwJfe+017Nq1S1AauHfvXhw8ePCR0mBe0uPIyxfL0hVb1aXLkwZXV9dSaxXYS0d2drbVcvP2nQBw+PBh/qFOKpUiMDDQqpS3sLAQq1evxjvvvGM3MKwIprZio0ePxl9//YUrV65gz549GD9+vKBzpU2bNuHkyZP89Pjx47FhwwZ06dJFcF3x8fHB2LFjsWPHDtSuXRuAsVTkww8/tKqaW1Zr167lx21lGAZr1qzB2LFjrXocdnFxQf/+/bFt2zZBada5c+eQm5trc98ffPCBoOR83759fDAIGIPehQsX8tOenp5Yvny5zZcBWq0WM2fO5B+u/fz8sHPnTkyZMoUPOgHjy4o2bdrghx9+wIwZM/j5//33n+C6ZKLRaAQvjpRKJX799VdMnDhRkPfq1KmDRYsWVdpwW7/99pugWnyHDh2wa9cuDBw4UHAP8ff3x1tvvYWtW7cKrqfff/89rly5UuIxDAYDDAYDAgIC8Mcff+DVV1/l9y0SidCxY0ds3boVXbp04bcxVU+tagaDASEhIdi2bRteeuklvqo0wzBo3769VXXnuLg4SKVSrFu3DpMmTRJc65o2bYpffvlFEIj9+++/VfI5bDFdn9577z18/vnnfNAJGGsZ/O9//0OHDh34eUlJSdDpdOjVqxd+++03tGnThv+NKBQKTJw4UZDXtVpthfRETh5/FHgSUklEIhFWr16N/v3721zOcRzu3LmDrVu3Yvbs2ejduzd69OiBjz76CEePHi3Tw2dCQoKgakzjxo2xZMmSEh+i27dvj08++YSf1mq1+PHHHx34ZI+flStX8n+LxWKsWLGixKqVbm5u+OabbwQPur/88gv/MFyS+fPnCx46LU2YMEFQNSsyMrLUfVYUjuOwatUqflqpVOLbb78VPCxaCggIwDfffCNoj/btt98K2kc6yrx6r/kDbGks17Vs91YVabBc31YaLANPwNhz7x9//IFr167h33//RUREBA4dOoSxY8cKfq9Hjx4VBD6V4a233sLHH3+M2rVrQ6FQoFGjRpg9ezb/Hev1evz000/8+u3atcPs2bNLbN8bHBwsePBOT0/n2+M6gmVZQe2G7t27l9rbsLu7O4YOHcpPGwwGmyXRgPGh+PPPPxeUMs6fPx9qtRosy+KDDz5AXl4ev+yzzz6zWxq+a9cuQcn5F198YVUd3NKUKVPQo0cPfvrnn3+GVqsVrHPgwAFBs4xZs2aV2A765ZdfxrBhw0o8rqPy8/MFecDf3x+rVq0qsZlDeHg4vvrqKz6fcByHb7/9ttRjiUQifPXVV3Y7XXJycsIXX3whCNLWr1//SNeg8pozZ47dWhpt2rRBSEiIYN7o0aMFLzHNubq64oUXXuCnY2Njy/2ypiI0bdoUkyZNsrvcMo/J5fISO3gbPny4YNqyeQN5OlHgSUglksvl+Prrr/Htt9+WqYORhw8fYvv27Xj77bfRvXt3rF+/vsQA9OjRo/zbdgCYOnVqmRrwDx06VDBOqK0OiZ4U2dnZOHfuHD/dvXt3qw5ibPHy8sLYsWP5aZVKhVOnTpW4TUBAALp27VriOjKZTNAhjr02ZpXh1q1bfJVEwPhgYPmgZEvdunUFDx137tyx2YlKWZnnaUd6pRWLxYLgxzzvV1UaLNe3lQbzjoWkUim+/fZbLFu2DC1atBCkv27duvjwww+xfv16QTC7detWQRXXiqRUKkt8uASMbenMa0HY6mnalubNmws6aTp8+LDD6TMYDPjqq6+waNEivPXWW1bDStljGbTY6jDLPJ1vv/02P52YmIjVq1dj3bp1gvP++uuvl9gBm/lLv4YNG5a5Sufrr7/O/52ammpVKmh+3tzc3MrUFOKtt94q07HL6ty5c4LS/PHjxwtqRNjTrl07wTXwxIkTpV7junfvbjc4M/H09MTIkSP56cTEREFpbFXw8/MrtQfu8PBwwbT5CxFbTLUETGzVoKgqr7zySokvlyx7Yn/uuees+i8w5+XlJWjPWp2fjdQcFHgSUgV69eqFnTt3Yu/evZg2bRqeeeaZUh9209PTsWTJErz88st8ezJL5mN7KpVKdO/evcxpMu/NMTs7+5ECiZrs/PnzgqDaXi+WtgwaNMhqXyWxDCzsMS9hrIjOesrq7NmzgmlHzsXAgQMF06Wdi5KYl1RUVzf7lZmGzz//HMuWLcO0adPw9ddflzpUS5s2bQS1EACUqaSoPFq0aFFqZ06WQa8jvfI+++yz/N+RkZFWpXmlkUql6NixI0aMGIF3330Xbdu2LXUbjuOsqtaWNpzV22+/jZYtW/LTGzZsENSMCA8PxwcffGB3e7VaXe6ei5999llBnjNVfwaMn+XSpUv8dMeOHcv0MrFOnToVMkSTSUVdKziOw3///Vfi+pbXWXssgz7z81YVmjdvXuo65rVZZDKZoMqqLZa/RUd/LxWptN7FLUu7yzJMlPnnq87PRmoO6lyIkCrUsGFDNGzYEFOnTkV+fj4iIiJw8eJFXLx4EZGRkTZLN2/cuIHXXnsN27dvt3q7+ODBA/7vRo0aOVRyY3kTvX//fo0b9qEimJ8jAGjWrFmZtw0ICICvry9f7c1WD6aW65eF+YNkVZY0m58LsVjs0PiSzZo1g0gk4tNb2rkoiVQq5auUOVJqaTAYBAGjeW+h5UmDiaMlp+br20pD69atSy3BsTR48GB8++23fI/IFy5cQF5eHv+wZz6WX2lsjdlnUpaHZ8uqwqNHjy5zh0c5OTn83xqNBqmpqXbHkC2PzMxMJCQkID4+Hvfu3cPNmzcRGRmJ9PR0wXql/a7EYjGWL1+OYcOGQa1WC669ppoqJeWvO3fuCPLB33//Xe5SavOOgZKTkwVVfS1L0ErSuHHjEr97R5hfK/z9/Uusjm/J1r2lJOYvAEpSv359wTBlj9KrdXnUqlWr1HXMXyi4u7uX+rupzI7EHFVSExHA+gVdWdrn16TPR2oGCjwJqSbOzs7o2rUrXy2psLAQ58+fx59//ol9+/YJ3g4mJibis88+s+p90bxzFUceDGyt/ygdtdRkltW8HD1PPj4+fOBZ2jkq67Ag1cX8XLi5uTk0rppcLoeLiwsfWDxKfnFxceEDz7K0mzWxbE9Z2kD1paXBxJE0WKbjUdJgTiQS4bnnnuN759TpdIiOjkabNm0qZP8mlh302GI5LMej9JialZVV7sCTZVmcPXsWf//9N65fv44HDx4IgrJHVadOHcyePduqtPmDDz4QNEWwxfIc5ebm2u3QqDTmvyXLIbdKqspo6VGHCzFnfq2ozHsLwzClBjwmUqkUbm5ufMdgpQ1HU9Ecvb4/buNWOjpM2eP2+UjNQK8iCKkh5HI5unXrhs8++wxHjhwRdEABGHsjtRy02vwhzNGbouUDs6MP348L83PEMIzDHcmYn6fSzpH5eGc1kfm5cPQ8AI6di5KYdxLiSABr2UaoLEFUWdKQk5NTatVMe+moyOEBLNvbVsaDteWYg7ZUZHBXUlvLkkRERGDIkCEYP348Nm/ejGvXrtlMl1QqRdu2bfH888+X6zi2Og4qS6Bd3iDTFvMXGZbVER15sVGe8Y3teZRrhSP3FoVC4VCpmHknZ1VdddPRtuCPmyf985GagXIZIZWgoKAAKpUKGRkZ8Pf3L/MYgSZ+fn749ttv8cYbb/DV6wwGAy5cuCBoD6NUKvkSKEd7+KzI0iNHOPKAXxHMH5o4joNarXboQaoySreqi/nnLk9AUFHnIigoiB8bMDU1tczbWb54cfR3ZZkGE5ZlkZ6eXqb9GQwGQbVOR8YhLY35Q7XpWBWtLO1ZzdPh4+NT5cMgHD9+3OawMv7+/mjQoAHCwsJQt25dNG7cGI0bN4ZcLseePXvw119/OXQclUqFjz/+2Gr++vXr0bNnzxLbl1rm/08//VTQ+U15WZYiOfI7rchheB7lWuHIvcXRNJvvuzwvz54WVX2fJaSsKPAkpILdv38f/fr146fHjx+P2bNnO7wfkUiECRMmCNp1WT54e3h48IGnZRWt0lju61FLbsraVrG8JSDlZTn2Y1pamlVPgiUxD4wcqfZWE5mfi5ycHGg0mjK3k8zLyxM89D3KuahXrx4/lmhCQgK0Wm2Zqm1ZthVzpP2brTRY7rssgWd8fLzgYdle5yF5eXlQqVQICgoqc0m4ZbVw8zZUpiq4VcFynFKWZausrVZmZiY++OAD/hyLRCKMGzcOo0aNKrHKbnmGoZg3b57gJYJSqeSHVZk9ezb27t1rtxTR8rpSUb1TW+ZBR0q9K7K5hPnne9R7S0nXCp1OJ2jLXBKNRiMoaa7Ilz6Pi5p6nyWkrKiqLSEVzM/PT1CqYN5DoaMsH7QsgwTzh96bN2861EmKZVf09sZQK4n5w2hZH/zMx72rCpbBydWrV8u8bXx8vOCB0pGAtSYyzy8Gg0HQK2dprl+/LujY51HOhXlnInq9vszpMB92wsXFBXXq1Cl3Gix7IC5rvrAc+sKyI5VvvvkGLVq0QOvWrdGnTx+Hz7EJwzAV2kupI8yDcp1Ox5dOl0V2dvYj9dS8e/duQQA1ffp0fPDBB6W2E7W8rpQ2xuPOnTsF44UOHz4c8+bN46cTExOxaNEiu9vXrVtXMO3I98xxHNLS0mym0d/fXzBsiSP7jY6OLvO6pTG/VqSkpFgFkyWxvLeUdq0oa7qjo6MFJXnV9fuoao/DfZaQsqLAk5AK5uLiIhinMTIy0uphtazMx1wErEtXzKuCFRQU4OjRo2XaL8dxOHDgAD/t4uKCRo0aOZw+8ypUZW0nV9YH/Ioa4qJ169aCfZl/7tJYrutoT6U1jWXVwYMHD5Z5W8tz8Sid3nTs2FHQnujIkSOlbqPX63HixAl+ulOnTo/UJsnT01PQw3FZ0gBA8Buz3Adg7PnS/OHQPM0lycrKElRpbdSoUbWVsFvmE0fG45w0aRJatmyJjh074uWXX3Y4CI2MjBRMv/rqq2XaznLIjpICz8TERCxevJif9vf3x5w5czBs2DB06dKFn79r1y5BcGrO29tbEKCfOXOmzO0+T506hS5duqBFixZ4/vnnsXnzZsHyDh068H+fO3dO0FOwPZmZmVbn7lFU1LWCYZhSr5um2g+l+fPPPwXTnTp1slqnuoZnqkzm99mylqxX9RinhJQVBZ6EVIKXXnpJML1gwQKHO2PhOA7r1q3jp319fa0e9l944QXBsBBr1qwpU4cLu3fvFgS1vXv3LtdDvHnvhXq9vtQHn6ioKERERJRp3+YPEKWVXpTE09NT8DB5/PhxXL58udTtVCoVfvvtN37a2dkZzz33XLnTUdnM34rbO19NmjQRPCzv2LEDcXFxpe773r172Lt3Lz8dHBzs0LA0llxdXdGtWzd++o8//ii1muCuXbsEVf5KG5i9LMzHG4yMjCx1uJJ79+4JAtQhQ4ZYVUHt1q2b4Le0ZcuWMnXWs3LlSkH1uFGjRpW6TWXp1q2boNRt06ZNZSrxOnbsGP+STaVSwcXFxardamksg7eyVFM+cuSI1Xdnr+2gqRqt+XeycOFCvtOlBQsWCNoO/u9//7MaqsVk8ODB/N9qtRrff/99qWllWRarVq0CYOwcJzY21qrkbtiwYfzfhYWF+Pnnn0vd7/r16yu0s52uXbsKqtuuW7euTFV5z58/Lxhfuk2bNqV2ArZjxw6rXoItpaWlYfv27fz0s88+a9UZF2A9fMej3DtqCvP77MOHD0stzfznn3/w8OHDyk4WIeVCgSchleDll18WVMWKiorCa6+9hrt375Zpe41Ggzlz5giq6b799ttWwWFgYKCgs6Ho6GjMnTu3xCq3//33HxYuXMhPS6VSvPnmm2VKlyXzweIB4LvvvrPbBiU1NRVz5swpcxsV87e8j9rL5uTJk/m/WZbFu+++azW+p7m8vDxMmzZN0L7q9ddfr9BeIytaWc4XwzCYNGkSP61WqzF16lS7D9aAsZrdtGnTBCVXkyZNeuQ2fxMmTOD/zsrKwowZM+w+OF+9ehWfffYZPx0eHm7V63N5DB8+XPBwPXPmTCQmJtpcNysrC9OmTeN/W05OThgzZozVet7e3hgwYAA/nZaWVupv8tdff8WmTZv46fr161dIYF1ezs7OGD16ND+dnZ2NKVOmlBgcxMTE4KOPPhLMM89rZWXe6RNgDEpKcvbsWcydO9dqvr28tG7dOkHp6JAhQwQvQYKCgjBr1ix+OjMz02YHRIDx5YB5L8E///xzqeldtmyZoNZH27Ztra6j3bp1E4yx++OPP5bYcdKxY8fw008/lXhcRykUCkEeSE1NxYwZM0rsxO7u3buYOXOmINh76623Sj1WZmYmZs2aZbd0PD8/H++++66gN+m3337b5rqWLzoqsofm6mKeP1iWxbfffmt33Xv37mHBggVVkSxCyoUCT0IqgUwmw+rVq+Hm5sbPi4qKwuDBgzF9+nTs3bvXqtMIjuMQHR2Nn376CX369MHu3bv5Zd27d7dbAjJnzhxB+6d9+/bh5Zdfxr///it4+IqPj8fnn3+OcePGCR4epk2bZreDlNI8++yzgkG1T5w4galTpwoG9s7NzcXvv/+OF198Ebdv3y7zsC/m1QxzcnIcqiJrqW3btoIgISkpCSNGjMCPP/4oKEVTq9XYt28fhg4dKhgMvnHjxpgyZUq5j18VzM/X+fPn7Q6uPmTIEPTu3ZufvnXrFoYOHYotW7YIHuyys7OxadMmDBs2TLCvrl274uWXX37k9LZu3VpQYnTu3Dm8/PLLOHfuHP/gmpeXh/Xr12PMmDF8aaBYLMa8efNKDHx79uyJhg0b8v/sDY/h4uIiCDJSU1MxfPhw7N69m//tGAwG/PPPP3jxxRcF5+Htt9+2CpJMPvjgA0HHQH/++SdGjRqFs2fPCqqjX79+HdOnTxcE1QqFAsuXL6/2MfImT54saL96/fp1DBs2DH/88YegVDInJwe///47XnnlFcE1bdiwYYIqo2XVt29fwfQXX3yBr776SvByRK/X49KlS/jwww8xfvx4myVxtgKO6OhorFy5kp/29fW1GbSOGjVKULvk2LFj2Lp1q9V6bm5ugu+O4zjMnTsXM2fOxI0bNwTzr169irfeegvr16/n5ysUCqsxRAFjqd3ChQv52iwGgwH/93//h88++0xQkpWSkoIvvvgCU6dOdah9f1lNmjQJLVq04KfPnTuHYcOGYf/+/YLS+bS0NPzwww94+eWXBdfTV155RVDbpCSnT5/GK6+8glOnTvG/Eb1ej6NHj2LEiBGClwUDBw60W/vEspO87du3V2hvv9WhR48eglL4rVu34uOPPxbkhYyMDP47SElJqfFjSpOnF/VqS0glqV+/PjZu3Ih33nkH8fHxAIwPEH/++SffVkUqlcLb2xs6nQ7Z2dk2Hx769OmDL774wm7bFXd3d6xduxaTJk3iS2uioqIwefJkfv+FhYU2H84mTJggKA10lEQiwZw5czBjxgw+WDhy5AiOHDnCV7Mzf2CUSqVYs2YNxo4dW+q+mzZtKph+7733sHTpUgDAuHHjMH78eIfSOnv2bKhUKuzfvx+AMSD+4osv8OWXX8LT0xNSqRQZGRlW30GjRo3www8/OFxlsKo1adIE586dA2D8bIMGDUJAQAAKCgqwdu1a/gGSYRgsW7YM77zzDr9+WloaPvnkE8yfP59/cMvIyLAqne7YsSNWrFhRYe2oPv30UyQmJvIl+zdv3sQbb7wBpVIJV1dXpKenW7Ub/vDDD0sc5sJRI0aMwJ07d/Drr78CMFYRnT17Nj7++GN4e3sjMzPTqkOPF154ocSSHB8fH/z8888YO3Ys3z4vMjISY8eOhUKhgKenJ7Kysqx6nlQqlVi7dq1V3q8OMpkMa9aswaRJk/jOX5KTk/Hxxx/jk08+gZeXF0QiEdLS0qzySadOnfDpp5+W67idO3dG79698c8//wAwBh9r167F2rVr4erqCrlcbjNvNm3aFDdu3OCvQ5bVEbVaLT744APBy7hPPvnEqndawPgbWbRoEYYMGcJ/90uXLkXHjh2tOmF7/vnn8dFHH2Hp0qV8Xt2/fz/2798PpVLJf9eWJYVOTk746quv7L70a9asGT7//HPMmjULer0eBoMBv/76K3799Vd4e3uDYRhkZGTwn9fb2xtdunTBnj17Sjy/jpDJZPjmm28EeSA2NhYzZ86ERCLh712ZmZlWVVoHDhwo6KypJOHh4bh9+zaio6MxYcIEKBQKeHh4QKVSWf32OnToUGKnTwEBAfD29uZfghw7dgzt27eHh4cHPD09Sy2Rrok8PDwwffp0/v4HGJsn/PHHH3z+Nb+/u7m5YdmyZXZLhQmpTlTiSUglatiwIfbu3YspU6YISj9NdDodkpOTbQY8QUFBWLZsGb755ptSg5769etj+/bt6NevnyAoMO3fMugMCgrCmjVr8MEHH5T/wxXp27cvli5davX58vLyBEFnUFAQ1q1bh44dO5Zpv926dbN6W56amorU1FRB759lJZFI8OWXX+Kjjz4SPGxyHAeVSoWUlBTBdyCTyfjB6/38/Bw+XlV78803Bek0GAxITEyESqUSlL4AxpK+n3/+GW+//bagii7LskhLS7MKJpydnTFz5kz89NNPFVrd2NnZGT/99BOGDRsmyLdqtRopKSmCoNPNzQ2ff/65oPpfRZk7dy4++OADwbkw/XbMH3zFYjHGjx+Pr776qtTgu2nTpti1axfatWsnmF9QUICHDx9aBZ1t27bFtm3brNavTv7+/ti8eTNGjhwpaEtuMBiQlpaGlJQUQT6RSqWYPHky1q5d+0gvar744gurkk/A+ELFMm/KZDK89dZb2LJli6D3VMs2nytWrMCtW7f46f79+6NPnz520xAWFoZp06bx02q1Gh988IHNDtTGjBmDH3/80aqnW7VajcTERKugs2HDhti4cSN69uxp9/gA0K9fP/z6669WwW5GRgbS09P5YC8kJAQ//vgjAgMDS9xfedjLA3q9HikpKVCpVIKg08vLC4sWLcKXX35Z5n4D5s6di9GjR/O/qYKCAiQlJQl+e6a89dNPP5U4LijDMJg9e7bg95mfn4/ExETcuHHD4b4Waopx48bh/ffft+rZPisrS3B/b9SoETZu3PhIQ00RUpmoxJOQSqZUKjFjxgy89dZbOHnyJC5cuICbN28iMTGRL00RiURwc3NDSEgImjdvju7du6Njx45lHv8PMN7wV6xYgdu3b+PAgQM4f/48EhISkJWVBbFYjICAADRr1gx9+vQpd2dC9gwdOhTPPfccduzYgWPHjiEmJgY5OTnw9vZGWFgY+vXrh4EDBzpU/YdhGHz33XdYv349Dh48iISEBBQUFMDFxeWROowYM2YMXnzxRezbtw+nTp1CdHQ0VCoVdDod3N3d0aBBA3Tp0gVDhgwRdOpQ03l7e2Pnzp1Yu3YtTpw4gdTUVOj1enh6etp82JJIJPi///s/jB49Gnv37sXp06dx7949qFQqGAwGeHt7o1GjRnjuuecwaNAgmy9OKoJSqcTSpUvx+uuvY+/evTh79ixSU1ORl5cHV1dXNGjQAF27dsXw4cMrtZfXCRMmYODAgdi5cyeOHz+O+Ph4ZGVlQS6XIzQ0FO3bt8eIESOsxv8sSXBwMDZs2ICIiAgcOHAAly5dQlJSEvLy8uDm5sZ3GNanT58yv5CpakqlEp9++ikmTpyI/fv34+zZs4iJiUFmZiZYloW7uzvq16+PDh06YNiwYWUaC7U0CoUCq1atwvnz57Fr1y5cuXIFKSkp0Gg0UCqV8Pb2Rv369dGqVSsMHjyYf+HSu3dvvq3j2bNnERcXh9DQUFy8eBG//PILv39PT0/873//KzUd48ePx+HDh/kXXZcvX8YPP/xgsySpc+fOOHDgAI4ePYp///0XV65cQVpaGvLy8qBQKODv748WLVqgb9++6Nq1a5mv7W3atMHBgwdx4MABHDp0CFFRUcjKyoKrqytq166NF154AcOHD4eLi0uJ7UAfhSkPvPnmm9i3bx/OnDmD2NhYvodVX19fNG3aFD169ED//v0dfukgEonw8ccfY/Dgwdi8eTMuXLiA1NRUyGQyhIWFoWvXrhgxYoSgWUdJTNfuX3/9FVFRUcjMzIRMJoO/vz+Sk5MRFhbm8DmoCd58803069cPO3bswPHjx5GQkAC1Wg1fX180aNAAAwYMwAsvvACZTGa3eQEh1Y3hnoQuvwghhBBCSI13/vx5QZv73377De3bt6/GFBFCqgpVtSWEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqloHE9CCCGEEEIIIZWKSjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYSQSmAwGKo7CZXiSf1chBBCKhcFnoSQx0Z+fj569+6NXr16QavVCpbdv38fM2bMQOfOndGsWTN06dIFCxYseORjjh49Gg0bNsTo0aMfeV/k6cCyLDZu3IglS5ZUy/F79uyJhg0bYs6cORW+7wMHDuD999+v8P0+jXbu3ImGDRuiYcOGSEhIECwzzV+9enU1pc4x58+ft/tZqtucOXPKfQ1PSEjgP9f58+cfOS1arRZ9+vRBz549kZeX98j7I+RxQ4EnIeSx8dlnnyE+Ph7vv/8+ZDIZPz8jIwMjR47E4cOHkZ6eDp1Oh7S0NMjl8mpMLXlavf/++1i4cOET92D59ddf47333kNaWlp1J4WQx5JMJsMHH3yAxMRELF68uLqTQ0iVk1R3AgghpCwuXryI7du3o1WrVnjhhRcEy44ePYqsrCwAwEcffYT+/fuDYRhBcFpefn5+CA0NhZ+f3yPvizwdUlNTq/X4QUFBEIvF8Pb2rtD9pqSkVOj+iH2hoaEAAHd392pOCaloffr0wbPPPoudO3di2LBhaNeuXXUniZAqQ4EnIaTG4zgOCxcuBADMmDHDarmpBMbDwwNjxoyp0GN/+eWXFbo/Qirbhg0bqjsJ5BH9/fff1Z0EUommT5+OsWPHYuHChdizZw9EIqqASJ4OlNMJITXe4cOHER0djfDwcHTs2NFquamzE2dn56pOGiGEEOKQjh07okGDBrh9+zYOHTpU3ckhpMpQiSchpMb76aefAAAvvfSSYP6cOXOwa9cufjoxMRENGzYEALRr105Q8pOXl4ft27fjxIkTuH37NrKysiCVSuHj44Nnn30Wr732Glq0aGF17NGjR+PChQtW+zMde9CgQZgxYwY++eQTXLp0CTKZDPXr18eqVatw//59vgT21q1buHfvHn766SecPXsW6enpcHd3R5s2bTB+/Hi0bNnS7ufPzMzEr7/+imPHjiE+Ph4GgwGBgYHo2rUrxo8fj8DAQJvbFRQUYPPmzfjrr79w584daDQaeHh4oEmTJujfvz8GDRoEsVhstV1WVhY2bNiAY8eO4cGDB9Dr9fDy8kKLFi0wZMgQ9O7d225aS5OYmIht27bh2LFjSExMhMFgQEhICHr06IHx48fDw8PD5nYXL17E5s2bERERgbS0NCiVSoSFhaF379547bXXoFQqrbYxfUfDhg3D0qVLceDAAWzduhW3bt1CQUEBgoKC0KdPH0yYMMFmlUaO43Do0CHs3r0b169fR3Z2NlxcXBAWFoYePXpg1KhRcHV1tTqeya5du/jpW7duASjOT2+99Raef/55LFiwADdu3IBSqUSzZs3w3Xff8VXEVSoVtmzZgtOnT+PBgwfIycmBk5MT/Pz80K5dO4wZMwb16tWzSnfPnj2RmJjIf+5HPR+rV6/GN998w09fuHCB/50dOXIEwcHBguMGBQXh6NGjNr/H0ly+fBm///47Ll68iIyMDCgUCoSHh2PAgAEYPnw4pFKp3W1v3LiBX375BZcuXUJ6ejr8/f3Rr18/vPXWWzh8+DA+/PBDq7Tt3LkTH374odVnMZeQkIBevXoBAJYsWYIXX3zRZrp37tyJS5cuITU1FYWFhXBxcUG9evXQq1cvvPrqqzbzqD2m8zt16lRMmzYNgHX+Ko2tz/Pw4UOsX78eJ0+eRFJSEhiG4X9/Y8eOhaenp939qVQq/Pbbbzhy5AgSEhIgl8vRtm1bTJkypcxpssdgMODAgQPYu3cvoqKikJubC3d3dzRt2hSDBw/GgAEDwDCM3e0vX76M9evX49q1a0hPT0dgYCD69euHSZMmlXrsvLw8bN26Ffv370dsbCwkEglatGiBiRMnIigoqMRtIyMj+fyampoKJycnBAYGokOHDhgzZgxfZdqW4cOHY8mSJfjpp58wYMCAUtNJyJOAAk9CSI12/fp1XL9+HQDQt2/fcu3j2rVreOutt5Ceni6Yr9PpEBcXh7i4OOzZsweLFi3C8OHDHdp3dnY23njjDSQmJgIACgsLkZmZCV9fX9y/f59f7+jRo3j33XdRWFjIz0tPT8fhw4fx559/YtmyZRgyZIjV/s+dO4fp06cjOztbMP/Bgwd48OABtm3bhuXLl1udm6ysLIwePRq3b98WzE9LS8Px48dx/Phx7NixAz/88AMUCgW/PD4+HqNHj0ZSUpJgu+TkZCQnJ+Ovv/5C//798eWXXzpcPezQoUOYO3cu1Gq1YP7t27dx+/Zt7Ny5E+vWrUN4eDi/jGVZfPrpp9i6datgm+zsbFy5cgVXrlzBpk2b8N1336FRo0Y2j8txHD744APs2bNHMP/+/ftYu3Yt9u/fj82bN8Pf31+w/P3338e+ffsE87KysnD58mU+QPrtt99Qp04dh84DYDzPb7zxBnJzcwGA76XZFHQeP34c//d//2d1rnQ6HfLy8nD//n3s3LkTa9aswXPPPefQsct7PioTy7JYvnw5fvnlF8F8rVaL//77D//99x+2bduG77//3ma6Nm3ahEWLFgmGeomLi8PatWtx9OhRh3/XZWUwGPDpp59i27ZtVssyMzNx8eJFXLx4Ebt27cLmzZvh4uJSKemwJBKJrNq4HzhwAB9++CE0Go1g/q1bt3Dr1i1s2bIFa9asQZs2baz2d/36dUyaNAkZGRn8PLVajT///BNHjx7FqFGjyp3WjIwMTJ06FREREYL56enp/LVq27ZtWLVqlc0XU99++y1WrlwpmBcTE4PvvvsOf//9N0JCQuweOz4+Hm+++SZiYmIE80+ePIlTp05h3LhxdrfdunUrPvnkE3Acx8/T6XS4c+cO7ty5gy1btmDFihV2X9T17dsXS5YswY0bN3D16lWbLz4JedJQVVtCSI128OBBAED9+vWtSvYWLFiAiIgITJ48GQBQq1YtREREICIiAj/++CMA49vst99+G+np6fDx8cHixYvx119/4dy5c9izZw+mTZsGhUIBjuOwePFiqwf90pw4cQKpqalYsGABTp8+jW3btvElKObee+89eHh4YNmyZThx4gROnDiBefPm8ce21Qvq7du3MXnyZGRnZyM4OBjLly/HiRMncPbsWfzwww9o1qwZCgsL8d577+HSpUuCbb/66ivcvn0bSqUS8+bNw99//41z585h165dGDx4MABjydWvv/4q2O7TTz9FUlISfHx8sHz5cvzzzz84e/YstmzZgi5duvDfyYEDBxw6TxEREXj33XehVqsREhKCL7/8EidPnsTRo0fx8ccfw9nZGWlpaXjnnXcEQ+V89tlnfNDZsWNH/Prrrzh79iz+/vtvzJw5E0qlEg8fPsTYsWORnJxs89h//vkn9uzZg+7du2PTpk38d28qZUhMTMSKFSsE2+zfv58POt944w3s3bsX586dw59//ol3330XEokEKSkpgiF7TPmxdevWAIBBgwbx+dHSgQMHwHEcVq5ciTNnzmD9+vV8ydHDhw8xY8YMqNVq1KlTB19//TX/PezYsQOjR4+GRCKBVqst15BBjp6PyZMnIyIiAoMGDQIAtG7dmv9c5iVCISEhCAsLK/FB355Vq1bxQefzzz+PTZs24fz58/jnn38wZ84cuLi44MaNG5g8ebJV4HT69GnMnz8fBoMB4eHhfK2C3bt3Y+DAgbhz5w5WrVrlcJrKYv369XzQOWDAAGzduhWnT5/G0aNH8cMPP6BVq1YAjL/l9evXP9KxTPnL3j/z686MGTMEHaKdPn0as2bNgkajQaNGjbBmzRqcOXMGJ0+exNdff406deogKysLkyZNsgrCMjMzMWHCBGRkZMDDwwMLFy7EiRMncPz4ccybNw9yudzqOlJWWq0WkyZNQkREBBiGwahRo7B7926cP38eu3fvxiuvvALAOFzLlClToNfrBdvv3LmTDzrbtGmDjRs34ty5c9i9ezeGDRuGu3fv4tixY3aPbQo65XI53n//fRw9ehSnT5/G8uXL4evri3Xr1tncNjExEQsXLgTHcejatSt+//13nD59GseOHcPnn38OX19f6HQ6fPTRR3Z7tw4MDESDBg0AgKrbkqcHRwghNdjAgQO58PBwbu7cuXbXWbVqFRceHs716NHDatnGjRu58PBwLjw8nLt48aLN7devX8+vc/LkScGy119/nQsPD+def/11wfzZs2fz23z11Vc293vu3Dl+nTZt2nAPHz60Wuf333/n1zl8+LBg2ahRo7jw8HCuZ8+enEqlstq2sLCQGz58OBceHs4NGjRIsKx9+/ZceHg4t2bNGqvtWJblRo8ezYWHh3MDBw7k5+fm5nINGzbkwsPDud27d1ttp9FouL59+3Lh4eHc5MmTbX5mewYNGsSFh4dz3bt35zIyMqyW//XXX/x52LVrF8dxHBcdHc2nZ8aMGZzBYLDaLiIigmvatCkXHh7OTZ8+XbDM/DuaNm2azXSZzt+zzz7LsSzLz582bRoXHh7OvfHGGza3W716NRceHs41bNjQ6rsx5ZnZs2dbbWdaFh4ezm3bts3mvpctW8aFh4dzTZs25eLi4myus3jxYn4/9+/fFyzr0aOHzeM/yvkw397yt/CoHjx4wDVq1IgLDw/nFi5caHOdyMhIrnHjxlx4eDi3bt06wbJ+/fpx4eHh3PPPP8/l5ORYbTtv3jz+c1teI3bs2MEvi4+Pt3ns+Ph4fp0dO3bw8w0GA9epUycuPDycGzdunNX54jiOU6vVXNeuXbnw8HDulVdeKfOxTfNXrVplM02W/vvvP7u/A71ez+eJ4cOHc4WFhVbbZ2Zm8utY/rYXLlzI58cbN25YbRsZGckfu6TzaMuGDRv47TZu3GhznXXr1tlcp6CggD//I0eO5DQajdW25r8Ty3z7yy+/8Mv+/fdfq23j4+O5Nm3a8OucO3eOX2a6rzzzzDM2j3v+/Hl+uz///NPu5587dy4XHh7ODRgwwO46hDxJqMSTEFJj5eXl4e7duwAgqH7piMDAQLz22msYOXIkXxJlqX379vzfKpXK4WP069ev1HWGDBlisy1mjx49+L/NB16/c+cOLl68CACYMmWKzbZXTk5OePfddwEYq8tFRkbyy0ylhpbViwGAYRj873//w6+//orvv/+en6/X6/lqY7a2k8lkWL58OX7//XeHStru3LnDt3GcPn06vLy8rNbp06cP2rZtK/gu/vjjD3AcB5lMhnnz5tms2tuqVSu+mt9ff/0lqApo7q233rI5v3v37gCMeS0zM5Ofbzp/WVlZVqUsADBq1Cj88MMPOHDggKCdZ1kxDGO36nh4eDheeeUVTJw40W7pofkQDOXJs46ej8q0detWsCwLhULB52dLLVq0QP/+/QFAUK01Ojoa9+7dA2BsD2nru5gzZ06lDEuSn5+PESNGYODAgZg8ebLNNogKhQLNmzcHUL7vqSwSEhIwbdo06HQ6NGrUSNCuFzBWGzU1BZg5cyacnJys9uHh4YG3334bAPDvv//yPYVzHMfXOhk2bBgaN25stW2LFi1stnstC9N32bRpU7z22ms21xk3bhyaNGkCANiyZQs//9y5c/x1atasWTaHz3rvvffg5uZmc7+mGg2dO3dGt27drJYHBwdj4sSJNrc1XR/0er3N30m7du2wZs0a7Nq1i68pYoupxPPevXtP3Li/hNhCbTwJITVWTEwMWJYFANStW7dc++jZsyd69uxpd3l6ejouX77MT5u3ESsLqVTKPzyUxF7nQeZjLRYUFPB/X7hwgf87PDwc+fn5Nrdv1KgRxGIxDAYDLl26xB+nbdu2+Pfff/H7778jJSUFAwYMQOfOnfkH8AYNGlil28PDAw0aNMCdO3fw5Zdf4vbt2+jbty86dOjAd4xSnnZIZ8+e5f82BTa2bNy4UTD933//ATA+xNkKVk369++PX3/9FSzL4tKlS3j++ecFy52cnOy2/zQ//+btb9u2bYtjx47h5s2bePnllzF8+HA899xzfGctXl5eNh9Wyyo4ONjuA/HQoUMxdOhQu9smJSXhxo0b/LSjebY856MymfK66TduL6+3bNkS+/btw/3795GZmQlPT0+cO3eOX26vratCoUCPHj2we/fuCk23q6sr/u///s/ucr1ej5s3b/IvQ2y9wHhU+fn5ePvtt6FSqeDh4YE1a9YI2mwDxmqqJiVdS5o1awbAGGxGRESgb9++uH37Np/+ktoS9+7d26oddmmysrL4NuiWYzNb6tevH27cuIHbt29bffeurq549tlnbW4nl8vRpUsXPng2yc3NRVRUFICSP1evXr1sDqllager1Wrx0ksvYeTIkejRowcaN27Mv4AoSydspjzPsixiY2PRtGnTUrch5HFGgSchpMYyb7P3qCUWOp0O//33H6KiovgOhe7fv4/U1FTBepxZRxFl4e7ubrNnWEv2Aifzt/Tmx46Pj+f/LmvHKOYdAs2ZMweRkZHIzMzEP//8g3/++QdisRjNmzdH165d0adPH77nTHOffvop3nzzTRQUFGD37t3YvXs3pFIpnn32WXTr1g19+vQpsadGW1JSUgAYA9uSes20ZPr+bfXcas58+cOHD62Wu7u72+0Iyfz8m15yAMBrr72GP//8E5GRkYiKiuIfUsPCwtClSxf06tUL7du3L/f4eyUF0iaFhYU4e/YsoqOjERcXh/j4eNy9e9eqhKU8edbR81GZTCX9UVFRdgMIS8nJyfD09BTkrZKuEeWtMVFWiYmJOH/+PO7fv4+4uDjExsbiwYMHVu1RKxJX1EnU7du3IZFIsHLlSru98prYGo7KFtO1xPwaXNLvvrTfqC0pKSl83i3txaL5ctN3b0pjadcjW2kzP3ZJ24eFhfEv9sw1b94co0ePxoYNG5CWloZVq1Zh1apV8Pb2RufOndGjRw9079691J6MzTtLSk5OpsCTPPEo8CSE1FjmHf08Sm+Qhw4dwuLFi/nqYyYMw6Bu3bpo2bKlQ8MUmLNVbc0WicSxy215ql2ZbxMWFob9+/fj+++/x8GDB5GRkQGDwcD3BLt69Wq0adMGixcvFvTK2qZNG+zdu5fvETI3Nxc6nQ7nz5/H+fPnsXz5cvTs2RMLFy6Ej49PmdJl6pFXLpeX6/OU9vBmXsJjq3OokobgsEcul2Pjxo3YsGEDtm/fzvdQbOpNeMOGDQgKCsKnn37qcK+yQOn5ZuPGjVixYgXf662JSCRC48aNUadOnXJ3SFKe81GZHiWvm85PaXnLXunyo8rKysK8efPw119/Wb0AcHZ2RocOHZCWliYooa4oK1aswD///APA+KKpQ4cONtd7lPObk5PDz7MsSTVXnurm5ukqbQxm82uAqcS2rN+9rXtHWT+XSCSCUqm0+h0CwMcff4y2bdtiw4YNuHTpEliWRUZGBvbu3Yu9e/fC2dkZ77zzDiZMmFCmtDnasR0hjyMKPAkhNZZ5m6mylCra8tdff+Hdd98Fx3Hw8vJCnz590KxZM9StWxfh4eFwc3NDbGxsuQPPymL+MHX16tUyB7jmfHx88PHHH2Pu3Lm4du0aTp8+jTNnzuDy5cvQ6/W4ePEixo4di0OHDgkevkJDQ7FkyRK+F80zZ87g9OnTuH79OjiOw9GjR5Gamort27eXOLaeiWnfjlbdVCqVyMnJKfWBzLzqoCNjJZZGJpNhwoQJmDBhAmJiYvjzd/bsWeTn5yMxMRFTpkzB1q1bK7SkYv369ViyZAkAY0/NvXv3RuPGjVGvXj00aNAASqUSZ86ceWJ6wpTL5cjLy0P//v3x9ddfO7St6cHdvJq6LeY9JTvKXqmlTqfDhAkT+OGe2rVrh44dOyI8PBx169ZFnTp1IBKJMGvWrAoPPE0vlQDgxRdfxOjRo+2ua7qW+Pj44PTp0w4dx7wUuaTfYXnOr3mwaa/6r63lpt+4KW3l+e7L+rnsbW/St29f9O3bFyqVir8+nD59GikpKcjPz8fy5cshk8nsfj/mtQrKci0l5HFHgSchpMYyfzAp7eHCni+//BIcxyE4OBjbt2+3WdWzqjpRcUStWrX4vxMSEkqsysZxXIkPLSKRCC1btkTLli0xZcoUqFQqLFu2DLt370ZSUhL+/vtvfogVc1KpFO3bt0f79u3x7rvvIikpCR9//DFOnTqF69evC4YOKYmpU6WsrCzk5OTYLX06fPgwYmJiUL9+ffTu3Ru1atVCTk4O33mMPaYOqADheatIderUQZ06dfDaa69Bq9Vi8+bNWLJkCXQ6HTZv3oxFixZVyHEKCwvxzTffADC2p92wYYPNEp2amGfLq1atWrh9+zbfAY49tvJ57dq1ARhL1TMyMgRtVM3FxcXZnG9e5Vin09lcx965Pnz4MB90zpkzx+6YjxX9XV29ehUfffQRAGO71/nz55e4vuk3kZmZCbVa7dDLGfPhcu7fv2+3bbB504CyCggIAMMw4DhOMOaxLbZ+46b/mvoCsFd93LyqsfmxRSIRWJbF/fv30atXL5vbpqamlqm6tJeXFwYNGoRBgwaB4zicPn0a7733HrKzs7Fhwwa7gad53iit1JeQJwH1aksIqbHMe4E1teVyhEql4seke/755+22LzTv/Kaq2rWVxnwQ9yNHjthdLyIiAi1btkTfvn35ErCrV69i5MiRaNeuHe7cuWO1jZeXF+bOnctPm87tv//+i+HDh6Ndu3Y2q5YFBgZi5syZVtuVxrzd3smTJ+2u9+OPP+Lrr7/G5s2bARSfgwsXLpTYI+jhw4cBGEsMnnnmmTKlqSQFBQWYMGECnnvuOfz+++9Wy2UyGd544w2+3WB58qY9d+7c4c/90KFD7VYjrI48W1klMqbvOSoqyu5YrAAwb948tG/fHi+99BJfTdO8F2RTtVNbTpw4YXO+eRBmL4+Zdz5mb75pvElLBQUFuHLlCoCK+Z5SUlLwzjvvoLCwEL6+vli9erXN3lzNmc6vwWDAv//+a3e9ffv2oVWrVhgwYADfo3a9evX44LOk65C981sSU2dmQPFv2J4///wTgLEJgaldpKmKu1qtxpkzZ2xux7IsTp06ZTXf2dmZPy/l+VyLFi1C37598d5771ktYxgGXbp04V/mlXR9MA88bfV6TsiThgJPQkiNZaqqBtgvsSiJebtKe6Vm0dHR+OGHH/hpe6UeVa1Fixb80AU//vij1aDugLF0bOnSpdBoNEhMTOR7nA0MDMTVq1f5t+223Lx5k//b1LmGt7c3rl27huzsbGzatKnM25WmZcuWfIntqlWrbLY5O3LkCF96NGDAAADAiBEjABirui1YsMDmg/vVq1f5QLVbt27w8/MrU5pKolAokJKSgpSUFGzdutVmiUd2djbfkZHleTDlu/LkJfM8a17KY+706dPYuXMnP11VedZU3b2ij/fyyy8DMPb6On/+fJu99EZGRmLXrl3IysqCh4cHX8W2bt26fNvG1atXW7XjBoDff//dbomaqcQUgM2qyyqVyu5vyLz6v63vimVZLFiwgM/vj3reNBoN3nnnHaSmpsLJyQlr1qyBv79/qdv16tWLb4/9xRdf2AywVSoVVq1aBbVajfT0dMGwKaahUg4ePCh44WESHx+P3377rVyfyfTdR0VF2XzJAwC//vorf90xXRMAY8/Tpu9v2bJlNq8r69evt1uS/tJLLwEwvkAw/z2ZZGVl4dtvv7W5LcuyiImJwbFjxxAbG2u1nOM4fgipkq6TpmuIWCwWtLUn5ElFgSchpMZSKBT8A1B52ki5ubnxwdjx48exaNEi3Lt3D5mZmYiOjsaKFSvw6quvCtr4lNbWqCrNmzcPEokEOTk5eOWVV7Bx40YkJCQgIyMDp06dwtixY/mxOydMmMCXTPj6+vJv27du3YoPP/wQV69ehUqlQnx8PHbs2IFZs2YBMAapprFEmzdvzo8PuXLlSixbtgw3b96ESqXCgwcPsH79eixevBiAMZg0Db9QGtO4oSKRCDExMRg5ciSOHDnCl0j//PPPfHoaN27Mp71Ro0Z8FbVDhw5hwoQJOH/+PDIzMxEfH4+ff/4ZY8eOhU6ng7u7Oz799NNHPeU8U4cgt27dwrhx43Dy5Ek+GD1+/DjGjx+P3NxciMViq9IuU4nMxYsXERsb69D4jeHh4XzwvGXLFnz77bf8Pq5evYpFixZh0qRJguCsqvKs6XPdunULUVFRyMzMFARTb7zxBl544QW88cYbDu23cePG/FisR48exZgxY3Dq1CmoVCrExcVhw4YNmDhxInQ6HZycnPD+++8Ltp83bx4UCgXS0tLwyiuv4NChQ/y2X331VYnVoBs2bMg/8G/cuBHffPMNEhISkJKSgn379uHll1+GSqWyWT3VfHzGmTNn4siRI0hNTeWrr7/++uuCgOZRvydTW22GYbB06VK0bNkSWq0W+fn5Nv+Z2ibKZDK+am5iYiKGDx+O3bt38/n5r7/+wujRo/mXezNnzhRU+5w4cSLq1KkDlmXx9ttv46effsLDhw+Rnp6O3bt3Y+TIkeVuCvHKK6/w15GFCxdi/vz5iI6ORnZ2NqKjozF//ny+vXOrVq0EeUskEmH+/PlgGAa3b9/GyJEjcfz4cWRmZuLevXtYsmQJli9fbrd/gCFDhqBt27YAjB0FffXVV/xv7Z9//sGrr76KpKQkmyX9o0ePhkwmg1qtxrhx47Br1y7ExcVBpVIhMjISM2fO5IcJMuVtWyIiIgAATZo0cbjzNUIeR9TGkxBSo3Xu3BlRUVH8mI6OmjdvHsaMGQO1Wo0NGzbYLL0YPnw4zp49i8TERJtvr6vLs88+i1WrVmHWrFnIysrCwoULsXDhQqv1RowYgenTpwvmzZ07F/fv38eVK1ewc+dOm2/0fXx88P333wuq6n3++ed44403EBMTg3Xr1mHdunVW29WpUwcrV6506LN07NgRS5Yswccff4zbt29jypQpVuvUr18f33//vaDUb86cOdBqtdi6dSvOnDljs0pdSEgIVq5cWaFV1YYNG4bIyEhs3rwZly5dwptvvmm1jlQqxcKFC62G6mjfvj0OHjyI5ORkfkzRI0eO2BzqwpJYLMaCBQswdepU6PV6rFy50upci0QiTJ48Gb/88gu0Wm2V5dn27dvjxx9/hFqt5kvBfvvtN766a3x8PBITE8vV0czcuXOh1Wqxfft2XLx40WZPoM7Ozvjqq6+s2hnWq1cP3333HaZOnYrExESrsTUDAgJQu3ZtwXiW5ubPn49JkyZBo9Fg9erVWL16Nb9MKpVi6dKlWLlypVWti27dumHAgAE4cOAA4uLibOZpPz8/9OzZE1u2bEFBQQFSUlLKVEppKTExEfv37wdgfJHz8ccfY9asWSWO4Tps2DAsXboUgHGs25ycHCxatAiJiYmYPXu21foMw+Cdd97hSyFNnJyc8PPPP2PixIm4f/8+Pv/8c3z++ef8cpFIhNmzZ/MBoiNkMhnWrl2Ld955B1euXMGmTZts1rbo0qULPv/8c6vewTt27IilS5fy15VJkyYJlgcFBaFPnz5Yv369zc/7zTff4K233sLly5exdu1arF27VrDOrFmzsGrVKqs8HRYWhsWLF2Pu3LlITEzEnDlzbH6+V199FSNHjrT7+U2Bp/lLDEKeZFTiSQip0UzVLuPj421WNy1N8+bNsWvXLrz44osIDAyERCKBXC5HSEgIBgwYgN9++w2LFy/mx7c7duxYjaluCxiryf3111+YPHkyGjduDBcXF0ilUvj5+aFv375Yt24dFi1aZPVW39XVFb///js+/fRTtG/fHp6enpBIJHB3d0fz5s0xffp0HD582OohPiAgALt27cKsWbPQqlUruLm5QSKRwNPTE23atMGHH36IvXv3livIGzp0KA4ePIjXXnsNderUgZOTExQKBZo2bYr3338f27dvR0BAgGAbiUSCBQsWYOPGjRg4cCACAwMhlUrh7e2N1q1bY968edizZ0+ljH/36aef4ocffsDzzz+PgIAASKVSKJVKhIWF4fXXX8f+/fsxbNgwq+1efvllTJs2DbVq1YJUKoWvr2+JbRct9ejRA1u3bkW/fv3g6+sLiUQCpVKJunXrYvjw4dixYwfee+89vmOnv/76q8I+c0m6du2KefPmoU6dOpBKpfDy8kJ6enqF7FsqlWLx4sX89xwUFASZTAa5XI4GDRpg/PjxOHjwILp3725z+44dO+LgwYMYPXo0goKCIJVKERgYiNGjR2P37t0ldjrVoUMH7NmzBy+99BKfv/z8/DBw4EBs374dAwcOtLvtl19+iQULFqBVq1ZwdnaGRCKBh4cHWrVqhZkzZ2L//v2YPHky32Tg77//Ltf5MR+qhWVZ5Ofnlxh02vLqq6/i0KFDGD16NOrXrw+lUgmpVIqgoCAMGTIE27Ztw7Rp02xua+qcbc6cOWjatCmcnZ3h5uaGrl27YsOGDfx1ujx8fHywadMmLFu2DF26dIGXlxekUilq1aqFHj164JtvvsGPP/5od+zboUOH8t9fSEgIZDIZatWqhdGjR2Pnzp12O5wCjKX4v/32GxYtWoRWrVrB3d2db/+5Zs0aTJw40e62gwcPxq5du/DKK68gLCwMcrmcz3cDBgzA+vXrS+z46f79+3zV8EGDBpXxbBHyeGM4R0eeJoSQKjZq1ChcunQJ06dPxzvvvFPdySGEPGbmzJmDXbt2ISgoCEePHq3u5BCCr776CmvXrkW7du3stiMm5ElDJZ6EkBrPVIVt9+7dNabXWUIIIaQ8DAYDP3b022+/Xc2pIaTqUOBJCKnxunTpghYtWiAuLg7Hjx+v7uQQQggh5fbvv/8iNTUVzzzzDDp16lTdySGkylDgSQh5LMyaNQsMw+C7776r7qQQQggh5cJxHNasWQOGYWyOA0rIk4wCT0LIY6F9+/Z47bXXEBkZWeJA8YQQQkhNtW/fPkRFRWHUqFF8j9CEPC0o8CSEPDZmzZqF2rVrY9myZeUasoEQQgipLlqtFitWrEBwcDA/djEhTxPq1ZYQQgghhBBCSKWiEk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZVKUt0JINVPq9UiKyuLn3ZycoJYLK6+BBFCCCGEEEKqhcFggEaj4ac9PDwgk8keeb8UeBJkZWUhPj6+upNBCCGEEEIIqYH8/PweeR9U1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiqrYETk5OgumQkBAolcpqSg0QFxcHg8EAsViM0NDQaksHeXxQniGOojxDHEV5hjiK8gxxVE3JM2q1WtAMzzJWKC8KPIlVR0JKpRIuLi7VlBpAr9dDp9NBKpVWazrI44PyDHEU5RniKMozxFGUZ4ijamqeqahOR6mqLalxRCIR/4+QsqA8QxxFeYY4ivIMcRTlGeKoJz3PMBzHcdWdCFK98vLycOvWLX66YcOGNeotCyGEEEIIIaRqVFZs8GSG04QQQgghhBBCagwKPAkhhBBCCCGEVCoKPAkhhBBCCCGEVCrq1ZbUOKmpqXxX0n5+ftWdHPIYoDxDHEV5hjiK8gxxFOUZ4qgnPc9Q4ElqnOTkZL4r6SfxR0cqHuUZ4ijKM8RRlGeIoyjPEEc96XmGqtoSQgghhBBCCKlUVOJJapw6deqAZdkndgwjUvEozxBHUZ4hjqI8QxxFeYY46knPMxR4khrHzc2tupNAHjOUZ4ijKM8QR1GeIY6iPEMc9aTnmScznCaEEEIIIYQQUmNQ4EkIIYQQQgghpFJRVVtS4+h0OnAcB4ZhIJVKqzs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHAk9Q4N2/e5LuSbtGiRXUnhzwGKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiEk9S47i7u0Ov10MioexJyobyDHEU5RniKMozxFGUZ4ijnvQ882R+KvJYq127dnUngTxmKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiwLME8+fPR8OGDbF69eoK2V9iYiIWLVqEvn37onnz5mjXrh1GjBiB9evXo7CwsEKOQQghhBBCCCE1DbXxtOPs2bPYsmVLhe3v+PHjePfdd5Gfn8/P02q1uHr1Kq5evYodO3bgu+++Q3BwcIUd83F17949vmF1vXr1qjs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHA04br169j6tSpYFm2QvZ369YtTJs2DRqNBmKxGMOHD0ebNm2Qn5+PPXv24PLly7h9+zamTJmCrVu3QqFQVMhxH1f5+fn8GEaElAXlGeIoyjPEUZRniKMozxBHPel5hqraWjh+/DjGjRuHvLy8Ctvnp59+yged3333HRYsWIDBgwdj5MiR2Lx5M15//XUAxgD1t99+q7DjEkIIIYQQQkhNQCWeRbRaLb7//nt89913FVbSCQCXL19GREQEAGDo0KHo1q2bYDnDMPjoo49w9uxZ3Lt3D+vWrcP48eOf2DcdZdGsWbPqTgJ5zFCeIY6iPEMcRXmGOIryDHHUk55nqMQTwJkzZ9CvXz+sWbMGLMtCqVRi3LhxFbLvgwcP8n+PGjXK5joikYhflpWVhXPnzlXIsR9XIpGI/0dIWVCeIY6iPEMcRXmGOIryDHHUk55nnsxP5aC9e/ciISEBgPFNwx9//IEePXpUyL7/++8/AIC7uzuaNGlid70OHTrwf588ebJCjk0IIYQQQgghNQFVtS3i5eWFqVOn4tVXX4VYLEZGRsYj79NgMODevXsAgHr16pX49iIsLAxisRgGgwHR0dGPfGxCCCGEEEIIqSko8ATw2muv4dNPP4VcLq/Q/aanp0Or1QIAgoKCSlxXLBbD19cXycnJePjwYYWm43GjUqnAsixEIhG8vLyqOznkMUB5hjiK8gxxFOUZ4ijKM8RRT3qeocATQPPmzStlvyqViv/b09Oz1PXd3d2RnJyMrKysSknP4yIhIYHvSvpJ/NGRikd5hrB6PfR5+QDLgivqIM7Jx1uwnC0sBKs3QJeTg5hLETAwgFgkgjgsDJxpO5aFLjcXrFYLjmXBFhSC41iAg3EdAwtwpnU54zIAxhUAcBy4okmAg0eL5pAKrv+cMT06HdJPnobMwwMcxwEch8CBAyBRGofT0qoyoSmqeaNVZSLryhVIXFyKdmFc3/gnB21mFjidtmgWxx+76FAAuDIsM3Jr2hgudevaPMepR45CrFDy04ED+kEZYhx7WpORgYJE40tTVqtF6tFjkLq529yPPj8fhsJCm8scpQwNgUfLFjaXZZw7D05vAFNU28i7Uwd4tDDe7/V5+cgrqpEEAClHjkKidLa5H0NhIfT5ecjJyQHHcmBEDNzc3MqVXpmHJ3y6dLK5LDvqBrQZGRBJZQAA10YN4df9OQDG/JtzPcrss10Ax7L8ZzPH6nTQZWeXK32WRFIJAvo+b3NZzoMHyLl/DyK5E8ABEj8fhL/8avHnuR4FTq83pvfqVWSnJoGRSoz5HYC73BUAA45joc0ofl7Ss3rkavJhlknhIXcHwzBWaTCweqgKTJ+VA8Cg4YChcHJ2sVo3OyUJd08fBaswnl9GJkXnGbOhlBp/c7l37kJfNKJB1oO7uH3lHFiZ8TGZYRjU9giGTGzcVqvKMF4LABg4Ax7mpIIzS2+Aqy9kIilycs3yjKsbDByLxJxksBwLDhwYMKjXrTf8gsOs0puek4bog3ugURSlAQxaTZyCusHhAAB1fAI0aWnG7yI1GdeOH0KhjOHXDfMMgbvcmE912dlgiwpCDKwBibnJ0BmM3w0YwN/ZBy4y6/xvXDcFOoMWppUDW7RCvRbtrNbVGfS4tGcT8iTFHXSGDR6KNq17AgA0aWlQx8Ub/9YUIHLvH8hxKl43yC0A/s6+AAB9Xh4MBWoAxkvdw9wUFOqLrxmecg94Ka2vL6Z1C3TF67rXqYPmXfparQsA/x3ejhxNHlCUtzw7tEPv/q+DYw3Q56uRe+s2v27Eni3IZDTgDHpwrAGeUgVCZO4Ax8JQqIE+P994MgGksxrks0XnjAOUIin8pEqAYyE2pbsou6QVZiNHrwZYAzi9DiKZBLUbhQMdBzyRzzMUeFaigoIC/m8nJ6dS1zetU1hBN+Tyunv3LurVqwdXV1d+nkajwa1btwAAHh4eCA0NtdpGrTZeJFq0ED4EpKen86W4ISEhgiDcYDAgKsp4M3V1dUVYmPDiGxMTg5ycHABAkyZNIJEUZ9msrCzExcUBAAIDA+Hr6yvY9tq1a+A4DgqFAg0aNBAsS0hI4F8MhIeHC0q78/LycP/+fQCAr68vAgMDBdvevHmTD3IaN24sWJaUlIS0ohtB3bp14eJSfPMrLCzE7dvGi5iXlxeCg4MF2965cwcFBQVgGMbqZUhaWhqSkpIAAKGhofDw8OCX6fV63LhxAwDg5uaGOnXqCLZ98OABcnNzAQBNmzaFWCzml2VmZiI+3ngjqFWrFnx8fATbXr16FQCgVCpRv359wbK4uDj+JUnDhg0FeTw3NxcPHjwAAPj7+8Pf31+w7Y0bN6DX6yGTydCoUSPBsocPHyI9PR2AsYq6s3PxzbCgoAB37twBAHh7e1vVJNDr9bh69SpEIpFVz3CpqalITk4GANSpU0fw4KjT6XDz5k0AxhdAtWvXFmx779495OfnAzC2AzevNq9Sqfg24sHBwYIbBcuyuH79OgDA2dnZajDo2NhYZBc9IDZu3FjQm3VOTg5iYmIAAAEBAfDz8xNse/36dbAsC7lcjvDwcMGyxMREvrlAgwYNBGMD5+fn800AfHx8UKtWLcG20dHR0Gq1ELMs6gbWMgZgOi1EUhlyZVKkpKQAAEL9AyDTFILjgOxr15AbE4vs/HxAp4OUEUEhlYLVasFqtdDn5qIwLw+swQBwHGQSqTFgKwrcWL0BrF4PjuMg4jgwTFFcxXHFAWFRsBU68hWIFYqih1cOqgwVCnNywGZmQX8lkv8cElcXNPxmJX+NkF64yOel3Dt3UXApovhcovLosrIgDwjgp3Nzc6FWq8HpdNCdOiNY171LZ8TcNeZvZYYKsmTjudakpSH1yLFKTGUxVqsFW1B8DyooKOCvwfpzF8Ca3Z+82rfF3UzjdVSaoYJzUXpZrRYZp89WSXoLU1MhMrsv6HQ6/trOXrsOfXpxsxlFrUCkyp2M99jsHHgkJPLLMi9chMHsnl2azHKmV+sqh8yr+B7IcRxSU1MBAPm3b0CamMYvi0y8htZhtZGdnQ1Op4PbzVv89Tv5wjkgI6ucqSg7vQhQWtzv09PTYTAYkBV3B8p7xTW0knykcO/Wg79GuNyIhqQoyEy+9B8QkyjYT9nPNpBVwjLLB1lVnetwcSs+x1lZWdBoNMjNSIbi6n1+vkbKIGFkIgozjM8uyvsxkBXlgYzoKLhEPhDuF7dhj2WYm48k5FvMM+UZV4v5Wd7XocjX8dO5ublQ5WYiuyALXreSBesmpSUgT2X8DSqSkuGkMu41Oykenjcsz2+83XNsmQYd0u3mact1cyXRyJUXn1/TNULH6iG/lQg3XXEwmdTqLq5Kjc8V5tcITYEaLjfjBeeNQyKEn7aYsuhfsQy76bVcNy8zBw+TYoruIQawOl3R6BUcmHQdauUXp/eW4RDuXd4NTukOjXcTSJJy+Jd80psxqKUTjnqhQrzNNCiK/pnL41OcJJgvA2D+5KVWaAHdZYjys4BWrartOcL0LFvRKPCsRAaDgf9bJpOVur5pHX3RG8LqYjAYrIaU4TgOOp2OX25Jr9fzyy2xLMsvszVUjWmZ6XMHBwfz1QxUKhW/nDN/LW+RJnv75ThOEKzaSm959luWz1rSfm19x6b92nqr+yj7rcjvxpzBYLCbJvP92sovOp0Oer3eZrvnkvZrLx+a8szDhw+h0+lK3W9J+bsqz2FJ+bAs55BlWcGLBINGA01qKnIjr6EwLQ2cVovkm9EQGViwBQXQpKdDm5ePvJwcQK+HVqGA04jhKIiPB6vXQ+rqiry7d41pfZiEiLvFJULuLZrD6+1JfJo0GenIibwGAFD9dxH594of6HQA1DbPlpGmhGWlDWalz8/nSzQBwFBQAIPBYFbyaMSxLP+9clot5B7ugM74Hdj6jVUazmKS44zptZFXOM7ed16F6bVgSi9g9VEAFOdvkaF67lssZ50qU3p1Bp2gB8Wz8RGoFxYMg84A6IW/Zx2rq5LeFnWs7WspYCwxMh9ILacwl79GcBbXH5Zjq613SJZli35zts+9rWsaA9v5pyrw6bXxm2PNrv22Pk914DgOYDm4iZU2l5nSK7NxX6gqxloaLDiDHqxGDbYgFxyrg+W3rE1PhEh3AqzCDQZZAPR5WWA1+dAbKm7YwlLTyhpgyBH228JfUTmLayvHgQEHzmAAq9cBXNWl00RZwEEjBsS3ioPaqnyOMN+2MlDgWYnMS4DsPbSaM7UHre4xPMVisdWDO8MwfLpsZVCJRGI33SKRiF9mKyAwLTMFiOYlRjk5Ofxyy4dF8zTZ2y/HcTbTZZ7e8uzX/L/2PmtJ+7UVDEulUuj1epsPxY+y34r8bsyJxWK7aTLfr638IpVKwTCMw/u1lw9NecZU0mHrs5jvt6T8XZXnsKR8aNovx3Lg1Grkx8RAq8qELisL2sws6CIjwWZlQ6dW47xGA0NBodXDKQCU1GJcK5Mi/75ZwJiTA5FIBLFYDNYivaxGa3EOi88/Y+M7riwcK7yx8ukVi4VBK8vx3ysnkcApMBAoquaFKgw8LR9lGYaBWCwGx3JWQTYD2P7dVF/cyacXKKpJbLG8OL3V8ziRrlZBWpANT0VxtTuxWAyO41Bo0AhKPtLyM1BPXPRbl1j+nqvvJJvOr61sabpGWIVE1ZgnTL85EVPydZbhqy5ULQ62rxG2rs8MA5vX4Ko8vZaniGEYyKVyaGw8+DMMA6nE/r21KugyEpF18g/BPDkAHQNoLT6L5uEdKFOuQ+9TF6w4CboMY1VmfRmeiasTwxkgFlXP+QUAXR5g0BQHio/6HAHYfxZjWdbu82xloMCzEplXEdRoSnrHL1ynojs5clT9+vUFVUQBYxBtWYXWcht7fHx8rKpwmojF4hL3a1lt1JyHh4egyqmlktruBgcHW1V1NXFxcSkxTZbVa80FBgZaVc01kcvlJe7XsjqwOV9fX6uqxCYSiaTE/VpWXzbn6elZYvvjkvYbGhpqVeXaxNXVtcRtSxpaqFatWlbVP00UCkWJ+7WsKmLOz8/PqpqJiVQqLXG/llVbzHl5edlthyESiUrcr2WVXgDIvHwF8Vu2QZORAbagEIbCQuRVUi0ITm/9BtT0W81XF0BlNp/VagXVptUJiXw1rqoMPC3fQJuuARqJBKmC1VjBNSLnxk1kFQWejEgERiqFSCo1tpETiYzziv5mtVrjcRgGjOnhmmHASMTGaYYBREzRTZ4pekpliv5XdOMvmufk4yOoWunt5QlvhgGr0yE1KQmyorzDMAwUrq5oUVR9PO/+A+QXvaFmJBK4NWsKmel6x6AoSjGmQVtUFZPHFKeBMX+E5ucL/8vw/we4hIdDGRrCb6IEYGopm5CfC72zE/I0+dAatLiueQgm0BedQ9tAk5KCvKJaO6xOh/xGQUgUqaEz6MByLDzk7ghw8UGIexB0OTkwqE3ttzjcz4xFrra4YqJSqoSP0hNeCg+Y07MGxGc/RLYmh59n8FHA09cVSq/ia5F7vXrQ6LVQZSfgas5DcCLjh8vykiGsbhicxDKIC7TINsu3mgZBuK1JMUuDHJ1D20LEiGBQq6HLKT5mcl4akvOKc5tMJEU9r9pwklg0qWGA5FzhuqyzAq3rCH/3LmF1AACXDZmIUhRALzamNztQwV8jWJ0Omdri79hQLwTXPe7xn00qlqBnWGfjulottJnFFRFV6kzEZRe/ghIxIrQIsH0fy1RnITa7uMomK2bQzOI+7Fw0He3M4aYhHVqp8TeS4yLGcLNrRKZOD7YozeKMBESKMvjPxgDoVa8LxIwYHMvybRUBIFeTh/uZcfx6YBg09Q23GQiodQW4p4otXhcMaoWFwdmsqq3pSSw5KQaRuQ+hkRv3w0rFaO7hBd8gYw7Pkcr47zmf1eBWfiJ0RZ9NxIjwTGATKKXGVxmatDS+BFVr0CEmMx4sOD4NtT2CILfMDzCWasdmJxhLk4p+nw0a1odzSPF92pTevPxsXE59gDw5A6lYChGAVm4eCPXwgUjqBI2bOwqTk8EW5kErNiAm3A8FTgxYTQHA6hGqA5wNxlJJQ6Ger06iB5AmE0NvFqR46wxQshzELh6Q+YdBpzJWB2XBIUmvho5jwRl0AMvCQ8FCaqsSHwPk+IqR72T2UlhkPKizlIFz07bIvmFsDiHRaRFX2x25CgacXgtOr4efVg9vvXF9Vg9wRbcnDkCqTASt2YsON4MB7noOjFQGiWcAOL4GA4dkvRqFnAEw6MEZDFDIOUjttHYrFImR4cuAKzoX7kVtTkXg4BvoDzVXHCYVhnggS1ZUyqvXwt3AIUjHAQyDosPx50ElEUPNFEfhSojhWxRyiVw8BNfldF0+cg0auCfnQaqzflFTnucI/jy5uZW4rWWTJHO+vr6CvmoqCgWelci8jWR2GRr6m9Z5EhsTE/K0YnU66PPykH7qNHJv30VhUhJYnQ4+nToi5JURgnU5jkNu9C3osrOhTUuvgsSx4AwGm4EjI7Eo0bR4+ymSSiF1cwUYERRBQeAMLJTBQRA5ySCSmf1zkkGfmwdWozEGeIwIEBcHeuaBH0QiiMTGB1GIGEhdXACRGIxYZEwDI4I8wB9imUwQfAEAZ9AjsN8LcPLzLd6vGZcG9eEcVgciubxqq9qWoNaA/naXudQNg0vd4ofRkBEvVUoaLj28hsScJKTkpeNhbgqa+rqijqcLarn6oZZbgGDdn9griHh4jZ9uWnALjXOND2rygABBW9a7ilj8G3MWKKo82sA7FG6hbVAvvKdgn9mFOThzbT/+uV88fnUdjxD0D++BpmEdBevma9W4Gf0P9tw8xM8LdgtEo+aN4RP8jPVn89fiWOROftrfWY60fBX0rAGNfOvBp1Px/gu91fj3ynZ+2lvpiVH9xkEmsX7CTr5/GqeuH+BLBNyd3DC89/s281VewmU8uHsSDMOAAQMfpRe823awWg8AAut6Ier+KTBgIBIxCJIVP0OIpFJ4dyzernajIDx4cAYMw0AEERRSBeo1G2Bzv8m5qchMvAIGIiilcigkcjSt3cbmutkF2ZCrYorSIIZUJIG3f0Ob6z7bpiVC1SMgYhiIGBHEjPA64tn6Wf5vt3at0cyghajoZQnDiOBk49ya2D5DtrUt43reaI+mw16xu9ytcXF/A97t26Hxa2PKnIZWZV4TeKbov4UJ0dDnZoItzAerSQJbmA9DYT7YglwY8rMhystEqxA9OIMOnF4HTq8FtixGAgC3Nv3g0XEoNHExEIsArwAxugzqDgDIu3oM+uwcO0c38oPtarrK+vXgP2I2Mk8V/xbqFP03/9Z56FJj7e5TDqC5hwGwsW+OZeHSuAVYTfELho6NjHsuiLkKTXzJwwh6gwMjk0IkdQIjlYGRyMCIpZC4+8C1eQ8YCnL4+0G9ot+hOuY6DHkqiJyUYEQSMGIJIBaDEUvAsQYwIjGC/GpD4uYDRiwFI5EU/VcGRmI8licYfr9BI4ryrpPCuN4j3keysrLAMAxauBtra1xctRCaI1f45dqacZuqcBR4ViI/Pz84OzsjPz+/1CFSDAYD35DXXmnP08K8XnllFfWTJ0t15xm9Wg11bBx0ubnQ5+ZCk5oGkVQK1qwUKvvqNeTcuMlP51l0uAQAXFEJl1hh2S2BYxixmC/RE0mlRTdsKURFJVIiqRQyH29IlEq4hDeASCoFOA6sRgNFSDBMLbLqjHkdUk9PiG10jib390NgCYFTTSOSSgGz6kTVnWcq0/WUaDzMTcHDnBTcVcWigXcY6nvXhlQkRTuLAO3vuycQkVTcvRIDBiw4yCUyq8DTRSpsc6Y1FLUrAgedQQ8xI+JLpeQWRQx6g95me0x3uRvc5MLeNPWs3mZ7O2eZEgqp3Gpd1k47rFqu/qjrGQodq4dSKoefsy/UugI0sxFIdQ5tg2C3ADhJZJCLnSCXOEFiUX3YlGd61OmIXnU72zympfbBrdA+uGxhSVP/cDT1t19rw1yYZwjCPO0HUeYCXP0wuJHtnmktuSvc0SaoZZnWVUjlCHEv2/OKVCyBtJqqY1cUjmPBaQpg0OSDLVSDLcwzBo2F+WA1ahgK8ozzNGp+ubJxJ7i1fgH6nHRoYq+DM+gBjoU+Pxs5EX+Bzc8qV1rYwnxoU+PgHN4W+bf/EyxjSgjoS92vrhCwUYUagDFwKwkjAiOWQCR3gchJAUbqVBQoyiH1DoRlBWaxwgViVy+InBSQBzUExGLAYIDY2QNSr0BALIHE1RtipStETs58b89l5dqyZ+krVZPMzExcu3bNGHi2aAF3d3fks1pBUFa9vb1Unsf7KvAYqFevHq5evcr3ImnP/fv3+Ya/JVUXfBpcv36d7zW2pCoChJhUVZ7hDAYUJqcgPyYWOVFRyL1zDwWJiTAU9XgrdXdHQD9jt+2sRRsWsVL40K5JTQOr0xkDoiIiiQRipdJ24MkwkLq5QeblCamHBxixGPr8fIjlckg93OFSty7Ezs5wbVAfTv5+NoNFUuxxu86o1FlIzc9AhlqFe5lxkItlqONprBIb4OKLUI/iHp533TyMaym3+GkniQwKqRxyGw+klkMoaIqGTcjXWfeH6SIT5mFdUeCpNehwJSlKEGBZVjPUswZo9LabnPg5+yLUPQiFeg0kIjH8XXytq60W6RzaBp4Kd9xVxSDMMwQKiRy1XK1f4gBAm6AWaBNUtu/WU+EuaCdqy+OWZ4gQx3Hg9FqwBXkwFOaBVeeC1RWCLcyHzDcETgF1i9ZjkX/jDCASQySVIePIBuiz08DpNHC0i6QcsQvuwQfy3CTUDvCBLru4xE8kkZbamZo9bGE+FPVawZBjXTOGsWq/bIPYWLondnaHxMXTWCook0PmGwqGYSDzC+Wrg+qyUiHzC4XEzQdsoXHoEZFMAZHcBRIXTzByBUQSp6LAlIHY2Q2M2DoNHMfCs/NLpQewTzhT0Gl6kXX16tWn6nrydH/7VaBt27a4evUqMjIycOfOHbvt+M6dOyfYhhBSvfR5eciPjUX+g1jk3ryJvLv3oElPt9ku0kSXk2O36qrYWfjQXpicDMZGRwGKWoHwaNUSMi8vyDw94NWhPeQB/pAVBZvkyaI16KAqyEJGvgrOMiVkEhkKdRqoCrLQKrApX4K4+vwviEotHs6hhX9jvo2mXOKEUBQHnp5yD8ExCosCvkK9FpbsBZPGcRQt1nVyNpYEisSQiCSQS+Rwc3JBTGY8mvg2EFQ96xLaFrU9gpFdmAO52AneSk9BcGyuZ91O6FnX9tiWlnycvfCcc3s8V6d9mdYnTzZWrwWnLQQ4DtkXD8GQq4KhMB+GPJWxLV5RaaSxHaH9Xko9ugznA09DrgrajOJ2roaCXHC68g1zx+iMvz2Ddx2IZMJ7x6OVTGqMvzeR8B4ikikgC6wPiZsPIJEBHAeppx/ECjew2kLIgxpC7OYFsdIdIicFRHYaP7o06mhz/qMwNbN4mlkGnYCxxmNSUlK19fpc1SjwrGR9+/bFzz//DADYsGEDFixYYLWOwWDApk2bABjbhXbp0qVK01jTODs7Q6/X2+y9ixBbHiXPcAYDCpKSkP8gFuqYGOTHxiLnRjRfiunYzjjocnIgs9Fhk9TVFYrgIEjd3SFxc4N3O9svmLzatoFXW9vtr0jFqYrrTKGuEByMVRJzNHlIyUuDh9wNvs7GzkyWn/oeFxOLxx5t4d8Y4T51+elm/g35wNNbIcxTarMH4TytcPAay5K7ghIemkM9gtAyoAkYMDBwBvgoveAiU6KhWTpMXmrSH8Ob2m5HaGu/9gLNxxXdmyoHxxqgz8+GITcD+swU6DKToU2LMwaOBcaqqxyrB6vOhedzr8Dt2eJqw9rUOKjvXgIAZP93AJympIGc7GMLi7djLIKxRymZlHA6uLi5QyKRQCQTvvhhnJQQKVzAiI1tCk1tCwV/Fy1zbtQRMt9giJycIZY786WaYmc3eHQYDJHs0ZpnkMqnUqn4cTPN+fr6Ijw8HOlHhM0IntAmnhR4VraWLVuiVatWuHz5Mv744w907NgR/fr145dzHIdFixbhftGQBqNGjar2Xm2rW0k9iBJiS1nzDMdxKExNg+rsOeTevg1thgr59x8YezF9VEVVYdmisSLBMPDp1AESV1eIlUqIZLIa06kNqbjrjIE1QM8au96XiMTYdHU3Lj28hgx1JtS6Agxv0l8wTka4dxgfeColwmu92iJA1LN6aA0iSEUSeCk9BMsK9MVVYXM0uYJlQW4BaOAdBk+FOwp0hZBLnOAiU6Kel3Xvhz3rdkbPMrZXfNrzL92bHg2rLYQm+QFUxzbCoM4Bp1GD1RY6VJpoyMsSTAuGQJHIHiHwzOP/FitcwTAM387YdskkIwwSxcV/y4MbQlxUfVXqXQvKusY2xfq8TDipcyHx8AMjEsGlSWdwBj3EClfjNcKsF22R3LlMVVIZkRgMBZ01XklBZ+PGjSESieDfriVOFhb3A6G0aPv+pKDA8xElJCSgV69eAICgoCAcPXrUap3//e9/eOWVV6DT6fDuu+/i6NGj6NKlCwoLC7F7925EREQAMA4dMnny5CpNPyFPA9XFS0g6eBg5UTfAFpavypQ5kZMTpB4ekHm4Q+rhAZd6deES3gAyLy9IXV0Fw2eQx9+/D87iVvp9pKszkKHOQsuAJgjzDEFyXnF7rXZBz6COZzBUBVmINxu6Ii77oaDkr9CsnaNlMGnZfiw1Lx3Zmly0CmwGb4UnZGIpvBWecJO7QMwYb99uTi5o7t9IsF33sI7oHlbxVeUIMcdqC6HLSYdelQSd6iF0qmQYCnLBFubBve0AOIcX1+ooiI1CQayxEytt8gNwdtr7lsagthwhwDzwdHAMdLEUIielsZ2jm7dgkdQ7CJxOA31eFtxa9wWn04FxkkMkkYE16I1tIEUSMAwDVqeBxMUDjFQORiyFSK4EY2PoF4mLJyQN2zmWRvLYsxd0+vn5oXHjxvzLE0YmhU5ZXBXZ4PRkNq2hwLMKNG3aFCtWrMD7778PtVqNvXv3Yu/evYJ1ateujZ9++kkw9ichxHGcwQBDYSEk5uPopqUj61KE4zsTiSB1c4PUwx1SD3fIPDzgXK8uvFq3hkguh9TNVdA5EHk8mUotnSQypOZnIDk3FdHp9xDg4ovn6rTHmbiLuJJ8g1+/nldtZBYIH4DZokHnLKvEGjhhu6647Ieo6xkKPxcfwbqWvbUCxjEKw72NVV571+uC5+s/99SXOpKqo0mLhzb5PrSpscahPvKzoM9OgyE/C6ymwDi8hx2K2s34wJMzGIcEcQqoC03yfYicFDBUVOBp9nuQevhDJFOAkUghVrqBYw3GYM/NB5xBD4mHLySuPnxPqhIXT7tVVF2alK0WACElycjIQFRUVKlB59OEAs8q0rt3bxw4cAC//PILTpw4geTkZDAMg7CwMPTt2xejR4+moJOQcmB1OqQdPwHV+f/gXDTuoTzAH349uvPruNQvvYqc1NMTznVqwzmsjjHQ9PSEzNMTcn8/iGQySN3crMaGJI8fjuOgM+gQkXQdEUnXEZeViPicJLzY+AXU966DW+n3+XWT89LAcixqewQLAs9CvQbB7oH8wPUAEJ+dhLpeteFtUYqZVZADWBSAm9pgdgx5Fk39w+Gl8IBSqkChXgMnse0q2WIbJSiEOIrjOHAaNfS5GdDnZEDi4Q+Zdy2LdVjkR59D2r5vinpydZw+p7g2ACOWQFn3Gegyk6FJvg/GSQnYHEaEASN1AiOTQySTg5HKIXZSQuLpD6eAupB6BULi4SfYQuZfGzL/2sZtn8KHeFJzZWRk4Pr161ZDQ9kLOv2c3NAts7hvCYmHS5Wks6pR4GlH+/btcevWrVLXCw4OLtN6gHF8zo8++ggfffTRoybviRYbG8t34FC7tnWbJEIAIDvqJu6v/QEFiQ/B6Y3tKjVOTvAKqgWDWtjOx6VuGEQyGd+WUySTGXuN9fZCrSGD4NqwIWQeJQ+lQB4/HMeBYRg8zE3Bqdjise5kYikepMThbEpxKfiDrHh0C+uA+OyHgraWuZo8+DkLq+FlqDMhZoSBoKuT8cVhM/9GeKfdG/BWesBL6QkPJzfkavPAAfBWeEBqNsyAm9wVbnJXftpyCBJSs9T0exPHccaSyaKgUp+bAX1WGvS56dCpkqHPSQerzgFnKB7qyblxJ/i/OFOwH116grH00EkJQ7kDzwyreabqpzLfkKKSSC9IfUKM/9y8IVJ6QKxQGttMlvFFC2NnzMmaoqbnGVI57AWd/v7+aNSoke2Xi4wIMvPVS+hB/3FGgSepcbKzs/mx0ggxp8/Lw8P9BwGOM46pmZTMB50AUJiYCATVgi4nF9rMTGMppVgMRixG6OujIHFWQpOWDo9Wz8C1YTi9IX+CcByHmMx43M54gHuqWNzLjEUT3wYY0vh5QdAJABKRGF6Mq2BefPZD+Ci94KlwFwSef949gVYBTdCtTgfUcvWHt9ITAS6+8FJ4wEPuBheZEkqZAjKxsQOSWq7+VuNKKqnzjydCTb03pez8EoUJ0TCocwGDrvQNzOhtjAMp9Q4CGJEx8MzLLHUfjEQGRqYwDs/hpITUwx8uzZ6zWk/s6gXPLsPLHFQ+CWpqniGVJz09HVFRUQ4FnQAARgSpdxAKNRrjM46MSjwJIaTK6bKzkX39BtRxcYL5jFgMRUgw8u8VV41k04ofovLvP4Bn62f56aAhgyo/saTKRTy8jruqGADAnYwHiDSrEisVScCAwdDGffHPvZP8sCNqXSHcpMLAMzk3DRq9Fi6y4iYPLjIlWgU2Q6CrHxrYGF7Ex9mrEj4ReRqxOg00D+9Cl5UMQ64K+rxMGHIzYchTQZ+dDqeghnBp3BEuzbpabatTPYQhV1Wu4xrUOXzNABNTYChSuBiDSidlUVDpDKm7H0QKF4AB5LXCIfUNhsTFC2IXj1IDyqcp4CRPr4yMDMeDTgDxubm4VCiBVsOCAwcZgPBKTmt1oMCT1DiNGze2uhGSp4tBo0Hijl1IOXIMYrkTfLrY7uhBGRrKB54yH2/Ig4IgdnaGV9s2UAQGVGWSSSViORYJ2Um4kXYHBtaAAQ2NPYnHZz/kg04AcJcLg8nY7ES4OblAKpbCReYsGO/SN9APHblnUc+rNup6hSLUIxhOEhma+DZAc/9GENXwKnyk6j3qvYnjOBhyVdCmJ6Aw8Ra0yQ+gTY2FoSC31GFA9Dmp0KmSbC4Tu3gBKTEOp4eROIERS+x+Hp/+b0Hs5Ayxqxfdj8uJnmeePuHh4WBZFikpKQCAgIAANGzYsNQ8kHHlKuocK+43oNBJBPxfZaa0elDgSWocqpLy9MqPiUXi7j1IP3UGnK6oyphIBINGA7GTdfs3J18feLZpjYB+feHZ+lm6uT9hOI7D8QfnsO7yVn4YEg+5G/qH9wTDMJCKJPBz9kZqvrE9madc2E7XwBoQm5WI+t514Ofsg+S8NDTxbYDaHkFwkTmjS1hbq2Oat8EkxJwj9yaOY63aHyb8+B50aXF2tigZqykABw6sTgNOr4NYUVwNT+rhhwKL9RmpHCInBRgnBUQyJV8NViRTgHFSQhnWApxBB6lnoN1jOvmGliutpBg9zzx9GIZBo0aN+L/LEnQ+TSjwJIRUK726APFbtiH91GloM6w7pADLoiA+wapnWmXtUHi1aQ2RzNbg3uRxYmANgl5bWZbFqbj/kJyXhlxNvmDsy6zCHCTlpaKWqz8CXP0Qn5MEFAWeUrEUAS5+qO9dB/W9aqO+Vx3ULhpDs5FvPTTyLb13Y0LKiuM46HPSURBzDdqke9CmxYORyeEUaMxnnp1eFIwtKXZ2hy7N3t5KxmqMoaUm4RbEbt6CwNOleTcwMjkYiQycQQdFSBOweg0krt4Qu3hALHcFxGKIJHStJKQqWAafZWJRPfdJRYEnIaTaJO7ei/itf1j1QmupMCmJDzz9e/eEk69vVSSPVBI9a8CN1Nu4nnoLt9LvISYzAWsHL4G8aCzLmKwE5GmN3cq7yJSQS5wEwefN1Dt8Bz4uMiW8FB5QFWShhX8jDG/an6rJkgrHGfQojI9Gwf0rUMdcM45lqc4Gpxd25iPxrsUHnobCfEhcPPhlMr9QFMZcK/E4fCc9cheI5M4QOTlDrHAGRBIwYikk7j6QegmHP5EHhUMe9CS2BiOkZiupGrXDpZwSMVjzW5fkybyPUeBJapycnBywLAuRSAQ3N7fqTg6pBLqcHNxd8z1U586XuJ48IADO9eoiaNhguDZoYHc9yjOPj/uqWJxLuIw9N/8Ch+I3vLczHqBFQGMAQKhHELwU7vjr3kkwDAMfpRcScpLgLndDy4DGCHQtHsuvsW8DNPa1nzfsoTxD7OEMemjT4qFJvgfNw7tQ370EQ14WwLGlbsvm5/B/a1MeQJ/tDKfAemBEYsi8gwEYe4EVyZ0hUrhCrHCF1DMAEq8AODfsAKlXIFXLe4LQdebJlZqaitjYWLRo0QJONpoCOSqox3M47quGQW8AB07Q0d2ThAJPUuPExMTw3Y+3aNGiupNDKhDHcUg7fhIPfv4F+pwcm+uI5HK41A2Dc90w1Bo8EHJ/f5vrmaM8U/Mk5abCXe4KpbR4KJFCvQbp6kxIRBJ4KtyhKsjil91Iu8MHnhKRWDCmZVO/cLTwb4wRzQbAWaaskPRRniEmrEYNVqOGSOkGkUSGtH3fIC/qZPn2VZgHzqAHI5agMPE2lGEt+N5cnRt3grJ+azByZ3DaQkFpKHky0XXmyZSamoqbN2+C4zhERkbimWeegewRm/3os1Ohz0qBTqsFB6BQ9GSO60yBJyGkSmjS0nD327XIirhsc7nMxweujRoioG9vuIaHQyyXV3EKyaNKy8vAtqj9uJp8E5mF2ZjWfhy61mnHL5cwYjwT0AQxWQnwdfYWBJ430+4K9iWTyNDEtz5cZC6o5eoHGbVPIxWA1WmgvnUBBfE3IHb2ECxzbd4NIs8AyALCAEcCT7EEYqUbxEp3SD0DIPMJgVjhAqegcEFbTLHCBTBNy+j6RsjjyDzoBAC1Wo0rV66gVatWj9SZlD43E/qcDDBA0T/LLsOeDBR4khonICAABoMBYjGN+fUk4DgOcZu3InHn7uKeas2IlUq4NW2CelMmw8mrfOMiUp6pfleSovDdfxuRaRZMRqbcQJfabfmqgxKxBGxRdUVfZ2+k5qXDx9kLwxr3RSOf+oL9iRgRmvk3qrT0Up55OrB6LTSJt6G+G4G8G6eN411yLBiZHG7tBgmqtXIGPTiOg1OA9ZitPJkCjNIdcu9AyPzqQB7cCPKQhhDJna16sSWErjNPlpSUFNy8edNqvoeHBySSRwupfKXO6JxV3N+FyImq2hJSJfz8/EpfiTwW8mNicPOz5dAUjWdlybtTR9SdOAEyL89HOg7lmeql1hbgdsYDhLgFCgLPK0k3cCXpBlrVasrPEzEiPBPQBDpWjzEtX4RSpoSsGoYwoTzzZOIMOhQm3kFBzHUUxlxF4cM7gEFvvZ62EGxBLsTK4nZ3BfevQCR3Lgo8GUg8/OAUWBcihStEMgVkfrXh3LA9RFRaScqIrjNPDntBZ1BQEOrXr//IbbMljAhKtrjfgye1kzwKPAkhFY5jWTw8cBCx6zeA01s/9Mm8vFB38pvw7tC+GlJHykOtLcDxmHOIz36IdsHP4JnA4mBSKVNgeJP+uJV+D1dTim/MhXoNDKz19x/uU0KJEiEO4Ax6aJLuoiA2CoWx11EYHw1Ory3TtvrsVEHgyel1EDt7gGEY1Jn5K0TyJ7PEgRDimMoOOp8mFHgSQipUYXIy7qz+FjnXo2wud2vWFOEz/6/c1WpJ1XqYm4K1/23ErfT7YDkWEpEErk4uaBHQWPBGViQSobFfAzTza4g8rRoh7oF445nhcJO7VmPqyZPKUJCHgvgbSNu9Epyu0MGtGYhdPcGIZZC4+UAe0ghSzwC+EyAAFHQSQgAAycnJiI6OtpofHByMevXqVVjQGRsfi7tpZuP+yrSoUyF7rlko8CSEVAiOZfFw/wHEbdwMVqOxWi5WKODZrg3qTpwAqSsFI48LhhN2/KNn9UjOS4POoIeTRYc/HMfhvU4T4SxT0htgUiE41gBDfjb0uSroMhKhy0wWLONYQxn2wkDs4gGJu5+x+mytcLi37gOmGqp4E0IeH1UVdAJAZtxD+D8o7gejUGZdW+hJQIEnqXGuX7/Odz/erFmz6k4OKYP82DjcXPgZNGlpNpe7NmqEoJeGwrtd20o5PuWZR6M36AGGgZ7VI6cwF34uPvwyd7kbmvg2wI20O/y8+OyHuPTwKjqGtBbceBmGgctj0iEC5ZmaieNYFNy/CvWdC1A/uAZDThrkYS1tdvjDiMRwqlUfmnjrKnBiZw9I3H0h8fCD2N0XIokMUndfODftAlE5e0imPEMcRXnm8VWVQefThAJPUuOwLMv/IzVf2slTuL/2R+hz86yWOfn6oP7UKfB4pmWlpoHyjOMMrAE30u7geMw5nIuPwLOBzRHsHohAFz9B4KmUKdA5tC1upN0BwzAIcPFDsHsg6nnVfqxvvJRnagaO46BNT0DeteNQ3/4P+uxUqzaa+uw0uz3Nip3dAQBS31AoajeDonYzyEObQJeZBJHcGVIPfzDiinnUoTxDHEV55vGUlJSEW7duWc0PCQlB3bp1H+t7X3WjwJPUOHK5HGKx+JHGQyJVI+dmNAoSEuHZujXS/j0uWBbwwvOo/cYYSJSKSk8H5RnHrTy7DucSIvjp+JyHCHYPRLpaBQNrgIFj+d5m24e0go7VQcyI0T2so1UV28cR5Znqw2rUUN+7DPXt/1AQcw2G/KwS19dnpYLjOJsPezLvIPhM/xESV2GbcbGy4qvzU54hjqI88/hJS0urnqBTKryvPqmhLQWepMYJDw+v7iSQUhg0GmRHXkXevfsAAHmAP1wahiPv1m2InZ1R+7WRCBzQr8rSQ3mmZAbWgNisRChlCgS4+AIAWgY0FgSeyblpkIkk0LJ6HLrzL9S6ArzcbCAAwM3JBf3De1ZL2isL5ZmqpctVIS/yCNT3I6GxM8SJPZy2AGxhPsQKFzBM0TAnAfUg9Qmq0rEzKc8QR1Geefx4eHjAxcUFeXnFtbhCQ0MRFhZWqSWdnhJn5JpNP6kB2pP6uQghlYDjODzcsw+GggKrZR4tmkMkkyF4+IvwrOSqtaR0qoIs7Ln5F5xlSn5eHY9gPvBsH9wKP13aDANnrAJm4AyIzX6IQFc/qHUF6FOva7WkmzxZOIMemad3QH33ErRJ98q8nUjuDIm7H5yCGkDmVxuuzbtBJKv82hOEkKebVCpFy5YtERkZiby8vCoJOp8mFHgSQsok8/IVxG3aAo9Wz9i8ADNiMRp9MAtSN+qxtjplqDOx++af+OfeKTAMg4ENe0EiMl7q09UqAMbOhFycnNEyoAmyCnPQIeRZuMqcwTAitApsCk+Fe3V+BPKY4jgOAAf1rQvQpMYKlkm9g0oMPMUunhAp3SDx8IPMJxQeHYdATEOaEEKqgSn4TE1NRa1atSjorEAUeBJCSnX765VIO3EKYFlIXV3h0qC+1TpujRtR0FnNHuamYNbhRdCzRdUYOaBAV4hm/g0Rm5WIPK0a0Wl3oZQqEOoRhPc6T+LbcRJSHqxei8KYa8i5/A8KYq7B9dnnIZI6Wa0ncfcFxFLAUDRcgEgCRZ1mUDZoC2XdlhB7+EMkqrpqs4QQUhKpVIqgoKAqO56zRCasastV2aGrFAWepMZJTEyEwWCAWCyu0h89sS368y+RceoMP511JRJO/n6Qurnx8/x6dIM8IKA6kgeA8kxqfgZkYikCXfxQzzMUtzLu88seZMajjkcwP52vK0BDn3oA8FQHnU97nnkUhoI8qO9FIPfKERQmRAvaa+pVSZD517HahhGJIfMNAWfQwe2ZPnBt2QMiJ6XVejUZ5RniKMozNVtGRgY8PT1rxEsvsUV79Se1jJUCT1LjZGRk8ONe0YW6emnSM8AWFgrmcQYDcm9Gw6t9O4S8+nKNqILyNOeZbdf3AwBGNB0AhmEwotlALDq+CgAgFokR4h6IABdfdAxtDaWU2siZPM15pjz0OenIv/0f1LcvoCA2CmANNtfTZSTaDDwBQNmgDTy71oxrRnlQniGOojxTcyUmJuLOnTvw8fFBkyZNqj/45CwnH8/rZGko8CSE2JQVeRU5N27CpX596HLzkHfrNgDApWE4wmdMhYJuov/P3n3Hx1Gf+QP/zPamXfXe5aIuuRvbYIppxtTQ44Pkl37JJaT35BIIl4RwySUkXDhIIxCa6Tam2IDBxsZNktWr1XvdXmbm94eslUZalZV2d7Y879eLF5rvzM4+Kz+a3WfnW0TBciw6x3uRHZOOd1o+BABIGAavNxwCANhcduTH5yErOh03FlyFeE3sQqcjxCOe5+Ec7IC58STMDR/D0be0iYGco33gORaMRAoA0OSUQhaTAqnWELIFJyEkvHR1daG5uRkAMDQ0hNraWtGLT5NC2APJKXYh7CdUeJKgs3r16nnXbCP+x/M8Op95TtAWXVYK1mKBOjUVq7/6Fch0wTXpRyTkDM/zONVThaerXsaIdQyPXHc/ErVx4Hkeo7ZxWF3Td6Z/etnXIb3wwZ94Fgk5s1xjx1/FxOmDcI31L/kxUn085HGpkMemQbd2KxTJ4TcLJOUM8RblTPCZWXROGRoawtDQEBITE0WKChh3mAXbLnAiReJfVHiSoKNWU3dAsfAch85nn5/TzkgkiNt2EbTZWUFXdALhnzNO1on73/sf1A9N33V6qfYg7ll3K95r+0hw7A35V1LRuQThnjPLwdmtcAx3w9xwfNGik5HKocoqglRrgDwmBdrCbZDp4z1OLBQuKGeItyhngounohMAcnJyRC06IwkVnoQQAEDT/zwCnuOgSk7yuD92w3pEraXFsMVgdJjhmjWm7mDz+7h2zWWCCYKmxnkSshDWYoStqx7aNZvA8xzsXQ2wtFW598vj0mDvapjzOIlSA3XeemgLtkKTW07rahJCQkZnZydaWuYOGcjJyUFWVpYIEUUmKjwJiXA8z6Pmx/+J8XPVYORyJO26HHKDcB3H5GuvgSKa1nYMtIahFlT21QEALsrYgLaxTrAXCtAMfQrMDisuythAxSZZlHNsAJbGj2Fu/Bi2jjqA56DfvMfjzLLSqDgwchV4pw2MUuPuQqtIzIS+fBekap0Ir4AQQpZnvqIzNzcXmZmZIkQ0F8txmNlXiaHJhQgJDLPZ7B4TodUGX7fOcMLzPNqffArj56ont51ODB75EElXXgGpSgUAyLzrDjFDXJJwyRkH63TfwbS7HLA4re59arkKJYlr0TbaiRsKrsJ1ay6HhAnPyQcCIVxyZj48z8PR3zY5E23Dx3AMnJ9zjHO4G8rU1XPaGYaBZvUGMEoNpNpo9xcb+rLLI7roDPecIb5HOSO+jo4OtLa2zmkPpqITAGJVURifsS0L0y+UqfAkQaelpcU9/XhpaanY4YQtnufR8c+n0b3vJUE7azbD1tuHxCsuQ9yWzSJF551QzxkH68TBpvfwSv1b+Oml9yEzOg1KmQLlyUXoNw1hwm7CiHUMWdEZyI3Jwpa0cio6VyjUc8YTjnXBdO4ITDVH4OhtAWe3LHi8c7jHY+EJAOrsEkh1MdCsWg+Gcg1AeOYM8S/KGXGFStEJAJxNOLkQz9HkQoSQMDFVdHa98OKcfTGbNiD/e98GE6ZTeQebD9s/xt/OPo8JuwkA8HTVy/jeJV8GMHnnKUqpde+TS2XINKQiURcvWrwk+DiGujHy3lOwtlWBd1gXfwAASKRgZPI5M27qCrZBHp9O3bcJISFtvqIzLy8PGRkZIkS0MNZqEmwzPD/PkaGNCk8SdOLj48GyLKRSmpnTX87/9e/oeeU1YSPDIOvf9iLtlhtD7kNnqOZM53gP3mk56i4sAeBMbzVqBxpRmDg5kVNOTCYSNHFYFZdNdzl9KFRzZibOaUfP338AR//5JR0vUUdBs3ojZIYE8KwLjFQGZWIW5PHpkMel0p3NRYRDzpDAopwRR3t7O9ra2ua0B2vRCQBaqRwz+6hIQYUnIQGRmpoqdghhrfX/nkDv6weEjQyDVV/5EpJ2XSFOUCsUijkzZB7BR51nsCYuBy0j52FnHe591TMKz9SoJCBKrCjDVyjmzBTWasT4ycm/YWaR5Uuk2mioV61HVOmlUKXng6GldpYtlHOGiINyJvAcDge6urrmtK9atQrp6ekiRLQ0sllf/ElociFCSKgbfP+DsCs6QxUHHrvXXIYDje+iMHE1zvbWIF4Ti3/f9G8oTs4XOzwSRDibGRLV5MQkI0eeFexTJOXMWfpEojVAEZcOTf5WaNduhVwfG7BYCSFETAqFAmVlZaisrITT6QQQ/EVnJKHCk5AIMVZZhcbf/X5Oe8z6dVR0+pHNZcez517DupRClCYXutsTtXHgeR4ShkFOTCZ0Ci2yo9OxNiFPxGhJsOBZFyzNZ2CsPAxL61kk3/Zd2Lqb5hwn1egh1ceBsxghT8yCMjkXsTvvhFSjFyFqQggRn06ncxefWVlZIVF0Gmf0egIAp0hx+BsVnoREAFNzC+oe/BUwa5Y0fXER8r/3bZGiCn9/P/s83m37CBanFef66/Grq9ZCOqOrI8MwUMlUsDit+LeyWxCtprVSI51jsBPGqsMwnXsfrHl6cv2xj16BKrPQ42M0a7dCEZsK/bpdYKT0tk4IITqdDps3b4ZcLhc7lCUZY22CoswZnj1tqfAkwae+vh4ulwsymQz5+dTlcKWsPT2o/fkD4Gw2Qbtu9Sqk7NkNiUIhUmS+E4w589CH/4uT3ZXu7Y7xbjxd9TJ2r7kccZoYd/u1qy8VFKMkMIIpZzi7BabaozBWHoa9u9HjMa6JIcjj0uAc7ha0K5NzJ9fcpImB/C6YcoaEBsoZcYVK0RlJqPAkQcfhcMDpdIIL0zWMAsk+PIKan94P5/iEoF2dkYH4i3cg/qKtIkXmW8GWMya7Gen6FNQPNsPomF6b683m9xGjNmDP2l3uNio6xSF2zvA8B2t7DcaPvwJrWxXAsQsez5pGwTuEXx7FXnKHP0Mks4idMyT0UM74D8/zOH/+PCQSCbKyssQOhywRFZ4k6MhkMvA8D5mM0nMlXCYzan92P+wDA4J2Q2kJ1nzr61AYwqdbZ7DljFKmwJV5FyMrOg3/89FfwINHgjYO61KKcM2qS8UOj0C8nHFNDGGi4hAmTu6fs2C4J8r0tYgquxy6gu1wTQzBev4cokovhUSpCUC0ZKZgu86Q4Ec54x88z6OtrQ0dHR3utlAvPnmZ8O5smPa0pcKTBJ/CQs/jmMjSsXY7ah94EJb2DkG7Ni8P+d//LmQatUiR+YfYOTNmHYfZaUWaPhkAIJfKEa+NRawmGpV9tbA4rfj3zfdCLVeJGieZFsic4Xke1pYzmKg4BEvDiUWPZ+QqaFZvgGbNZkQV7XC3KxIyoEgIzjXoIoHY1xkSeihnfM9T0dnW1gaGYZCZmSliZCuTXFKIiv5697ZCFZ6fF6jwJCTM8CyLhof+G8a6ekG7MjERBd//TtgVnWKasBnx6w//F0WJa5CuT3EXnlMYMPjCpr2Q0Pi7iGXraoCltQIAINXHzX8gw0AemwpFUg5kMclgJBJockoDEyQhhIQAT0XnlFAfzymLjsJ46nRZplNS4UkICXI8z6P5kUcxevKUoF2iUiF28yZIFKF9YQ4mJ7rO4pETf4fdZQfDMIhVRwMAOJ5zF5oMw4AJ2w4zxBOe5wHOBUYqh73/vLvoBACpSgeZIRGu8enu7xKNHoqkHCgSs6BMzIQyOQ+y6ERIFOH5oYMQQpaD53m0trais7Nzzr61a9ciJSVFhKiIt6jwJCSMnP/r3zFw+F1BGyOXI+HSSyDTaSEPo3GdYnqhZj+eq37dvd0w1IJMQyp6jP0YMo+gNLlAxOiIGDi7BcZz72Pi9EFElVyK6G03Q6aLgb58FyYq3nEfp0jOgcs0OtltNjkHqowCRJVcCoahLygIIcSTSCg6Y+VabJiwurcVBp2I0fgPFZ4k6PT394NlWUilUiQlJYkdTsho+sMfMfDOYUEbI5Ui4ZIdUERHI/Ou8J0BM9A5szmtHPtq3gDLT89EeqanGgaVHjcVXO335ycr56uccQx2YPTIczA3nQRYFwBg4sybMGy9AVKtATzPQSJTgHNNLg4uj09HUtElUKTkQGZIoGVQQgi9NxFvUc6sHM/zaGlpQVdX15x9+fn5SE5O9vCo0KOUyhHrmp79mHGG50zIVHiSoNPf3w+n0wm5XE4X6iVq/uOjc4pOMAzitl0EZUIC0m65SZS4AiVQOTPVjTYzOg23FV+HZ869CgBIiUrE+pQS3FZ0Hd25ChEryRmedcHccAKjHz4P5+Dcb+Bd44OwtJyFdvVGMIwEMkM8HMM90JfvgmyhcZ4kqNF7E/EW5czKRErRCUzOz8HI5OA4HgDAsVR4EkKC0GhlJfpnF50AYjdthDotFRl33k7F0ArwPI/XGw7B6rLhhvwroZIpAQA35l+F2oEmFCSsQnHiWqyJz6Xfc5hzGUcwcfpNjJ98fc6amrNZGj6GdvVGAICu6OJAhEcIIWEjkopOABiRK1GVXQqLyQSO46FUqLFK7KD8gApPEnRycnLAcRwkEuqCthSjH5+GIjYGjqFhd5uhrBRx2y9C4qU7RYwscPyRMxzPoX6wBdUDDQCAVbHZcLJOd+EplUjxw53/QcVmiFpqzvA8D1tHLSZOHYC54QTA8wsczUAel4q4qz4DdU6JbwMmoqP3JuItypnl4Xkezc3N6O7unrOvoKAgLO8edx75APGvnnZv25QS4F4RA/ITKjxJ0ImKihI7hJDR8a9nIdNpkXj5ZZiorcNETS10q/KQ//3vQKaOnGVTfJ0z47YJPHLi76jsq8XO7K1I0MaheeQ8mkfOAwA2ppYgNzaLis4QtljO8DyPidMHMX78FbjGBxc8lpEroUjOhTI5FzHbPwGplibxCkf03kS8RTmzPC0tLRFVdEYSKjwJCVHjNTXunxmJBIbiIqhSkhG/Y1tEFZ2+1jrSjoc+/DOGraMAgMq+WlySvRUK6fRSNBmGVLHCIwHiGuvH+PFXFyw6pfo4KFNWQR6fDn35LsijEwMYISGEhCe9Xg+GYSaXp7qAis7wQIUnISHIOT6O8arqOe3KuDjElJcHPqAw8v75E+6iEwDGbBM403MOWzPWAwBuLdrtXqeThC9z40koUlcJ1twEAEikUCRmQpGyCqqkHEStv4rufBNCiA8lJk5+iVdbWwsAKCwsdLeFKxfHCYqycF0DnApPEnTsdjt4ngfDMFAqlWKHE5R6Dxz02J5x5+0BjiQ4+CJnzvScQ7IuAf9WdgvOj3WhbrAJABCjMiAnJgN5sVnYkErj9sKF3W6HyzgCS80R6PO3QJmULdhv2LQbUrUe1paz4B1WSNQ6KFJWQZGUDUV0EqLWXUkFZ4Sh9ybiLcqZ5UtMTHT/7sK96ASAjJ078JHOCJ7nwAPQKDVih+QXVHiSoNPQ0OCefry0tFTscILOwJEPJ6fdlkoF7Wm33BSxH4RXkjMO1omX694EMHl3MyUqCd/c9jl8/+1fIl4bh29s+ywMKr0/wiYi4Hke1o4adB14AtKRTjDgwY/2IvGm+wTHMRIpJAoV1LnlYGRyyKKToC+7nLrTRjB6byLeopxZmUjqWsu5rLBLrO4vK1h+4ZnTQxUVnoSEEGtfH1r+8EdI1CrEbdkCRWwMAEC3Kg9S+jbVay6OdRedADBkGUW3sQ8GZRR+ctnXEaeJgUwiXeAMJFSwdjPGj7+GiTNvgbOMC978bD1N4DkWwGTBOUWZthqymCQoEjIE7YQQQlaO53mYzWbodDqxQxGda7QPzpEeTA3kkYRpiRaer4qEtOjoaLAsC6mUPujNxPM8an/2ADiHA5zDgf6334G+qBD6okLEbtoodniiWk7OtI91QavQoiRpLeoGm+G6UHgc6zgNrVyN69Ze4a9wSQBZWs5i7KOXYetqAFinx2Nco30Y/XAfFIkZ0OVf5G6XRcVCFhUbqFBJkKP3JuItypn58TyPxsZG9Pf3o7i4GLGxkX2tjZGpUW6cvssplYfnJJFUeJKgk5mZKXYIQan1sSdg6+mdbuB5uCYmkHjZpWKFFDS8zZljHafwxxN/xyXZW/D5jZ+EWqbCx92V7v1Xr4qM9U/DmX2gHQMv/w7OwY6FD5RIoUjIBGszQZO3PjDBkZBE703EW5QznvE8j4aGBvT19QEAqqurI774VElkSHCy7m2JPDwnMaTCk5AQwLMsOLsdMr0erokJAIBEpULazTdBnZIscnShg+d57Kt9A89VvwYAONR6FKlRydiz9gp83F0JpVSBGwuuEjlKshLO0T7073sIjv52APy8x0lUOihS8qBKWw3DlhsgVWkDFyQhhESo2UUnAHAch5qaGmzduhVyuXyBR5NQR4UnISFg+KPjUCbEI/nqK2Gsb8BEbR1iN21A4uWXih1aSHmr+Qheqn1D0PbPyhexKi4LtxVdF7GTM4UDzmbG6LEXMX7iNYBj5z1OFpsKZeoqKJJyYNh4DSQyRQCjJISQyOWp6AQAhmFQUFAQ0UXnwPAQGk3TXbJlLheyxQvHb6jwJCQEKOLjwfOAy2SCvqgQ2twcZN59p9hhhQye5/F8zX4AwBc27cUjJ/7m3ndl3sVYE5dLRWeI41xOTJw66LnolMqgTMlDVPFOaNZugUwXHfD4CCEkkvE8j/r6evT39wvaGYZBUVER4uPjRYosOPTUNyG6dvr9y6awihiN/1DhSYJOc3MzXC4XZDIZVq1aJXY4QUGfvxbIXwsAGKs6B3AcpCqVyFEFj4VyZuZyKQDQZxpEeXIRKvtqcHfpzbghn9ZjDGU8x4KRSCHTRcOw9QaMffDc9E6JDMq01YgqvRT68l2Cx9F1hniLcoZ4i3Jm0kJFZ3FxMeLi4kSKjAQaFZ4k6FgsFve6V0SIZ1los7Mh10eJHUpQWShnagea5rTlxWYhThND4zlDGM9zGP3geSgTs6HN3wIAiN5yA4xn3gJrNUKdVQxtwTZElV/h8YsFus4Qb1HOEG9RzkwWnXV1dRgYGBC0U9EZmajwJCRIOY1GyLRaMJLpmc0YqZSKziWyOW1QyVVYHZeN7Jh0AICLc+Fw6zEwDIPPbbhL5AiJt3jWhYmz70AiV8I5PvkhRpmSC9f4IABAotEj4Yb/gMyQCEVcqpihEkJIxJuv6JRIJCgqKqKicwZWKouIoiwSXiMJMaWlpWKHIDqe59Hwq9/AaTQi5zOfQjT9ThY0O2debziE/Y2HcP/l30K8dnJ6do7ncOT8CaToEnFx9mYxwiQrYO2owcArvwc7MQRlRgHU2SUAgInKw+5jDBt3Q5NbvqTz0XWGeItyhngrknNmoaIz0pdO8SReEQXjjO1wvUcenovEEBLiBt99H+PnqmE5346an96P839/EqzdLnZYQY/nefyr6mX8o+IFDFtG8cD7v8eEbfJSznEctmVupKIzxLiMo+h/8WH0PvkTsBNDAAB7VwNYq3HOsVIN9QYghBCx8TyP2tpaKjrJHFR4EhJknBMTaPvL36YbOA59b76Nntf2ixZTqHi1/m28NGMioR5jPx488ggcrBMyqQwKabh+hxh+eNaFsROvovPRL8Ncd2zWTg7WlrOCpthL7ghgdIQQQubT39+PwcFBQRsVnQSgrraEBJ3zf3sSLqPwbk7M+nXgnU6RIgoNLtaFCbsJeqUOE3aTu31rxnoqOEOMtb0ag6/9Ea7xAY/7pdpoqDILAQDRW2+EREEzPBNCSLBISkqCyWRCV1cXgMmis6SkBDExMSJHFrxUUrmgq62UFy0Uv6LCkwSdoaEhcBwHiUQSces6jZ+rxsChw4I2dUY61GmpSLv5RpGiCn5DQ0M43VeNtVHZ4LI4vNt2DFanFTuyNuPy3O1ih0eWyGUcwfA7f4e59kPPB0jlUGcXQ5GSh5iLboJEoV72c0XydYYsD+UM8Vak5gzDMMjLywMA9PT0UNG5BAqJVLAdrl1SqfAkQaenp8c9/XgkXag5pxMtj/5Z0MbI5YhZvw4AaN3OBfT09CDWoYXUxUAtV+HirM0w2k1I0iVAr9SJHR5ZBM+6MH7yAEY/eBa8w+bxGEVSNlTZpVClroKucOVfJkTqdYYsH+UM8VYk58xU8ZmamgqNRiN2OEGP5zjhtkhx+BsVnoQEia59L8Ha3SNoiy4rhVStRuZdNH5tMRJm+vvBKKUOUUodbi/eI2JEZCms589h6M3H4Rzq8rhfqo2GetV6yPTxMGzaDamaJhAihJBQwDAMFZ1LZFcJe/Cws+6AhgsqPEnQycjIcHdNiRTW7h50Pb9P0KZbvRoFP/guGGl4XnxWonuiDy/VHsRNhVcjXZ/izhkePBiHHClRSUjWJYgdJlmE8dz7GHz19x73MXIVVJmFUKTkQpd/ERSJWWAYxmfPHYnXGbIylDPEW+GeMxzHoampCZmZmVCrlz/0gQDDduHcHg5w8xwZ2qjwJEEn0sYB8DyPugd/Bd7lmm6USJD371+gotODusFm/OL938PBOqFTaPCp9bcLciYekdWdKRQ5hrthqpkcxymPT59ztzOq7HLoyq8AOBbqzCK/xBBp1xmycpQzxFvhnDMcx6GmpgbDw8MYGRlBeXk5FZ9kUVR4EiKyzmefh7VL+ME79frroMvNESmi4FXZV4tfffAnuDgWAPBG03soTspHsi4B6YYUkaMji+F5DqMfPC9oU+eWwzU+CN5phyI5F/HXfA6qtDUiRUgIIWQxM4tOALDb7aioqKDikyyKCk9CROQYH0f3vpcEbTKdDrEXbRUpouB2vPOMu+gEAB48/nrmWdxZciMVnkHMZRyFY7gLto7aOfskSg3UueXgXU4k3/49MGE6roUQQsIBx3Gorq7GyMiIoN3lcsHhcFDhuUxOzoWZC7/5bmBJcKHCkwQdlp0uLKRh3tW09qc/B+dwCNqi15UjalWeSBEFt8+uvwtquRqvN7wDAEjUxuOSrC3YlrHBnTfhnjOhhHM5MPTG/8FUfQSaVeuhSMr2eJwiMQsx2z8R0KIzkq4zxDcoZ4i3wi1n5is6pVIpSktLYTAYRIos9MWrDBifsS1jQj9fPKHCkwSdmpoa9/TjpaWlYofjN0MfHYe57bygTZ2RjtwvfBYSudzzgyKcVCrFv5XdgpaRdhjtJmzL2IBbi69DVVVVRORMKLH1NKPvuQfBmSffSq1tVZDHpYKRKQTHaXLKoMrID3h8kXKdIb5DOUO8FU45Q0Wnf3FOu2Cb52lyIUKIj/Ach9bHHhe0MTIZYtavgzyKlouYYnFaoZQqIJ1xJ4xhGNxWdB0kjASFiatFjI54wrMu9O97CJbm0wA/vRIZ77TB2l4DTd46d1vMjlupay0hhAQ5lmVRXV2N0dFRQbtUKkVZWRn0er1IkYUP1jQm2GY4KjwJCYioqCi4XC7IZOGbnoPvfwDniPACbigtRs7/+5Q4AQUZnudxprcaLSPtuKngakghLE6Kk9YKtiMhZ0KBY6AdvU//HKx5zPMBPAee5xG95XpIVdqAxjYb5QzxFuUM8VY45AwVnYGhlsphmbEtBT/vsaEsdP8SSNjKyQnv2VxZux2tjz8haJNFRSH5qitFiii4sByL/3z3vzFqncD2zI043HoUmYY0ZEanQqfwXKyEe84EO55jMX78FYy8/wwwY/KnKRKNAZo1GxF32V5INcHxIYVyhniLcoZ4K9RzZr6iUyaTobS0lIpOH1IwwrVeJWE6vRAVnoQEWMujj4E1mQVt0eVliN26RaSIgstvjz2OhqFWAMBHnWewLWMDJuwmVA804PbiPSJHR2ZzDPdg8LU/wN7d6GEvA2VGAaLKLoO+7PKAx0YIIWR5qOgk/kCFJyEBZOnsxNCRDwRtyqQkxG7ZBIYJz2+3vLG/4RA+7q5wb/eZBnCi+yy2pq/HnrVXiBcYmYPnOYwd3YexD/eBZ51z9ks0emjWbEbCNZ8DI6W3GkIICRUsy+LcuXMYGxsTtMtkMpSVlSGK5qLwORvnEmzP7TsUHujTACEB1PT7P4JnhZeT6HVliN++TaSIgku8NhZyqRzOC4UMAwbp+hRcvXontAqNyNGRKc7xAfQ9+19wDnbM3clIYNh6A2J23AaJQhX44AghhPgcFZ3+NeiyCIoye5jei6DCkwSd8+fPuwfjZ2dnix2OzzjGxmBuaRW0aXNzkLX3bjASyTyPiixb0tfhp5ca8KsPH4XRbsIniq7FbUV7Fr0bHK45E4w4pwM9f/sBWNPonH0yQwISb7oPqvTAL4/iLcoZ4i3KGeKtUM0ZqVSKkpIS911PKjqJr1DhSYLOxMSEe92rcNL0uz8I73ZKJEi+9pqIXz6F4zi80fQuNqaVIkmXgDXxufjFFd/Guf4GXLnq4iWdI1xzJtjYe5phbj4NdU4ZTOfeE+xTpKxC0i3fhDw6UZTYvEU5Q7xFOUO8Fco5M1V81tXVISsri4pO4hNUeBISAC6bDRO1dYI2TWYmkq6M7HGLPM/jhdoDAID2sW4k6RIAAMlRiUiOCo0CJhLwPI/RD55zb8uiE6FMXQ17TxMYpQaa1ZsQs/2WkCk6CSGELE4qlaK4uFjsMCKCSyKNiKIsEl4jCTGFhYXgeT6sJtvpePJpcHa7oC12K00o9HzNfvfPneM9KEsuhIN1IEqp8+o84ZgzwYBzWDF2/FWP+1TZJYBUClV6Pgwbd0OmjwtwdCtDOUO8RTlDvBUKOeNyucAwDKRS6eIHE79JWbMaTS3TNyikKqWI0fgPFZ4k6ITyQsvz4RwOaLIyYensAjgOyqQkZN5xu9hhiYbjODx2+mmkRyXD4rIBAFiewyv1b+GijPVeF57hmDNiGzt5AMaKd6BZs9njhyZGKoOucAf0664MyVlrKWeItyhniLeCPWdcLheqqqogkUhQUlJCxaeIFCnx6MufLjZ1Xn4OChXB/RdBSBhgrVYoYmMQd9FWRK+3w3L+POSG6IieUOiZ6ldxuPUoopQ6XLPqUvDg3fsyDKkiRkY4uxUDr/4BlsYTAABHVCyUqavnHGfYvAdSlTbQ4RFCCPGBqaJzYmICAHDu3DkqPonfUeFJiJ/1vvGm+2epUomotWthKIncMRNVfXV4pe4tAIDRbsLLdQexMa0Mafpk3F68R+ToIpu1owaDr/4BrvHB6ba2KsiikyDVTC8WHrPtFjCy0JssgxBCyNyiEwDGxsbQ0NCAwsJCESOLXHqZGvnm6SFZSgnd8SQkIMbGxtxjIqKjo8UOZ8Vmj+0EAH1RZF7YeZ7Hk5UvCu5wcjyP3JgM3JB/1bLPG245E2icy4HR9/+F8eOvATP+bSZ3snD0n4c6pxTRF90EiTw8xp1QzhBvUc4QbwVjzngqOgFALpcjKytLpKiIVqZEht3l3pao+AWODl1UeJKg09HR4Z5+PFgu1Mtl6eqe06ZOTQ3qiQb8yeqy4QcXfxmPfPx3nOuvBwB8suwm7Fm7a0XnDaecCTR7XxsGXv0fOAc75+xj5CqososRe9leKBMyRIjOfyhniLcoZ4i3gi1nXC4XKisrYTQaBe0KhQJlZWXQamn4hFh4nhNsu5xOkSLxLyo8CfGj8cqqOW0xG9aJEIn46gdbUD/UjJsKrsYPd/4HXq1/G41Drdi95nKxQ4tIPMdi5PA/Mf7x68CsNzwAUGUUIPaqz0CZlAWGidzxyIQQEg6o6AxuFrUOfeU7YBwbB8dxkCs0WCV2UH5AhScJOikpKeA4DpIQn3zH0tUNRi6DoaQEppZmsBYrAECmC89++wuxOW2o6p+cJvxw61EYVHqsicvFDWuvhMQHRU245EygOAY60PvMA2CNw3N3SmWIvfSTMGy+DowkfCeZoJwh3qKcId4KlpxxOp2oqqryWHSWl5dDo9GIFBmZ0vTee7C9dtRdmDlUUuAOUUPyCyo8SdBJSEgQOwSf6Dv4Jnpf2w+pRoP4S3ZAGR+PhEsuFjssUbza8I775yHLKIYsowCAwsS5s6UuR7jkTCAMvfkEJs68CXDsnH1SbTQSP/FtqDPyRYgssChniLcoZ4i3giFnqOgMES4WKueMcZ2SuT2RwgF9bUeIH3BOJwbfOwIAYC0W9B98C47RMaiSEkWOTBwpukRckbtd0LZ79WUiRROZWIcVXY9/ExOnDngoOhkoMwoQs/NOqNLXihIfIYQQ33I6nfN2r6Wik4iB7ngS4gcjH5+Ca9aFPvX63SJFI54Pzn8Mq8uGXbk7wDAMFFI5HKwTMokUOiWNJwkUzmnH2NEX4TKOztknUemgWbsZ0Zv3QJFIMxoSQkg4mCo6TSaToJ2KzuDkYJ1QiB1EAFDhSYgfSHVa6IuLMFFTC/A89MVFUKekiB1WQPUY+/HY6adhd9lR1V+HL27cCwc7OUvbzQXXiBxd5DCeew/O0X4wUhm0BRfBePYdgJucsl2RnIvoLTdAVxyZXcAJISRc1dfXzyk6lUolysrKqOgMQhkbN6HS2u/eVqrC88t5KjxJ0Dl37px7+vGSkhKxw/Eaz7JwjY2j4IffB2s2YeDwe9BkR9adJCfrxP989ATsrsk1TD/uqkDLSDvuv+JbiFPH+Hw5mVDPGX8ZOfKsYFuq0UOzegMszaehWb0RiTd8NWzW5fQW5QzxFuUM8ZaYObNq1SqYTCbYL6wlrlQqUV5eDrVaHdA4yNJIolSYyNDCZrOC53loZLSOJyEBwfO8+79QNFFfD2tPDxxvvwOZVgtNZgZiN20UO6yAOtldhbZR4bqQZcmFiNfE+uX5Qj1n/MHSfMZjuyIxC7LoJMRdcU/EricLUM4Q71HOEG+JmTNqtRrl5eWoqKgAACo6g5xjoB2O/jb35DuSMC3RwvNVkZCmVqshk8kgl8vFDsWjido66AsL5t0/fq4GwOSkQqzFAvsgEHfR1kUfF04kDIMb86/C4dajMDrMSNMn49Prbvfb8wV7zgQSa5nA+Kk3wPO8x8JSnVkIdTbdraGcId6inCHeEjtnporPqZ9J8IqSKrHa4nBvy6ThOf8rFZ4k6Kxe7ZslNvyh41/PovOZ55B1z16kf+LmOft5lgVmfbMp1+vRte8ltP/jn8i483Zk3hWGCzPNwPM8OsZ7IJfKsTN7K071VGF75kYoZf4bNh/MORNIjuEe9D37C7hG+6DfdB10xZfAMdID50gvACD6opsitmvtbJQzxFuUM8RbwZAzVHCGBp1UgWyb070t0YTnv1t4ltOE+MFEbR06n3kOAND+j3+ia99Lc45h7Q5ErVkNZXwcGKkUAGDr70f7P/4JAOh85jlM1NYFLmgRvFR30P2zSq7CjqzNyI2JrDGuYrC216Dnb9+Ha7QPADBxcj/s/W1QJucCAGK23UJFJyGEhBmHw4GOjg7qAk5CAhWehCyRvrAAWffsdW/PLj5dFiuMdXWILi9D0pW7kLL7Whgbm9DzymvuY7Lu2Rv23W1LkwqwI1M4prU8pVCkaCKDseo99D79M3A24QyGY8dehNQQj9hL7gAjo+6BhBASThwOByoqKtDa2oqWlhYqPkOY0WpBNydx/9fj5MQOyS+oqy0hXpjqXjt1B3Pq/+mfuBlDHx5Fyx8fhSIuFgmXXQrn+DjGzpx1P3a+7rnhZlVcNqxOm3s7SqGFhKHvuPyB53mMvv8Mxo6+MGefIjkXybd/H1K5SoTICCGE+NNU0WmxWAAAXV1dAIC8vLyInjguVLWcqYTs1HSxaVWYRYzGf6jwJEGnq6sLLpcLMpkM6enpYoczx3zF58iJkwAAx/AIul94UfCYcC46LQ4rHjnxN9xddhPS9ZNrlapnFDvXrL7U7zEEe874A+dyYODFh2FpOjVnnzqnFEm3fhcSBRWd84nEnCErQzlDvOWvnLHb7aisrHQXnVOGhoaQlZVFE2CRoEWFJwk6IyMj7nWvgvXNfb7i05NwLjp5nsdjp57CqZ4qVPXX4dPrbsfludvBMAxuLdodsDudoZAzvuQc7UPPP38CdmJ4zj5l2hoYtt5EReciIi1nyMpRzhBv+SNn5is6VSoVysvLqegkQY0KT0KWaXbx6Uk4F50A8FbzERzrPA0AcLBO/PnUUxizTeATASw6I42tuwF9z/wCnG12NxwG6rx1UKaugjqnVJTYCCGE+I/dbkdFRQWsVqugXa1Wo6ysDCoVfeEYqpwMExFFWSS8RhJi1qxZM+8ahMEm/RM3g+c4dPzz6Tn7wr3o5HhOMIMtAGjkalyStSXgsYRSzqzE+Kk3MHLo7+BdTuEOqQza/Isgj01BzMW3hf3vwRciJWeI71DOEG/5MmcWKjrLy8uhVNKs5aEsURUN44ztcL1vTYUnCTqh9o2dJiNjTptEoQjrohMAXqg5gJ3ZW1HVV4eW0XYAQGlyAeK1sQGPJdRyZjlGj+7D6PvPALxwpjtGqYGuaAd0RTugziwSKbrQEwk5Q3yLcoZ4y1c5Q0UnCRdUeBKyQq2P/2VOG+dwoGvfS2FbfHIXih+pRIp1qcVI1MVj2DKKy3O2090AP5ioPIzRD56fU3RKdTHQb7gGMTtuFSkyQggh/mSz2VBZWUlFJwkLVHgSsgKd+16EY3DQ476ZS62EGwYMbiu6DiaHGf2mIQBAmj6Z1uv0A3P9CbjGB6Et3A5z9RF38SmPS0PctV+EJot+54QQEo5sNhsqKipgs9kE7RqNBmVlZVR0hhGFRFiShessGeH6ukgIM5lMMBqNMJlMYoeyoK59L6HjH0/NadeXFLt/bv/HP9G176VAhhUQDMOAYRhEKXXoM00W3rcUXCNaPKGSM97ieQ72gfMAAHl0IjT5WwEwUKSsQtIdP6CicwXCNWeI/1DOEG+tJGeo6IwsKqmw8JTyIgXiZ3THkwSd1tZW9/TjpaXBOTtn176XPM5mK9VosOYbX8Pgu+/PWWolHO58epokYWvGesgkUpEimhQKObM8DPTlu+Ac64NrtB8AIFm3C9FbrociJlnk2EJb+OYM8RfKGeKtleSM1WqFw+EQtGk0GpSXl0OhUPgyTBIE+FmFZpjWnXTHkxBvzVd0AoAqJRkytRrpn7gZWffsdbeHw53PJ04/gwePPAKrQzjOROyiM5wxDAOZPg7qzCKoc8oAAPFXfhqKuDSRIyOEEOJPMTExKC4udn/ZS0VneOMUwjvYfJh+tqI7niToJCQkgOM4SCTB973IQkUnMFl4Tpm9zmco3/ms6KnBW81HwIPHjw7/Bl/b+v+QGR08xU8w54y3eNYJ52g/FPHTi43zPA/WakTMtlvAyMJ1kvXACqecIYFBOUO8tdKciY2NRXFxMdra2lBaWkpFZxjrcxgF2zZw8xwZ2qjwJEEnJSVF7BA8mqitExSd+pJiTJyrdm9LFApoc3MFj/FUfOoL8qEvLAhAxL5hspvxu+NPgL/Q8aNzvAfff/uX+OKmvbg4O/BrdnoSrDnjLZ7nMXjgf2GqOYrEG78KXcE2AJN3PpVJ2eIGF2bCJWdI4FDOEG/5Imfi4uIQGxtLM8aTsEBf2xGyRPrCAmTceTsAIOuevbD3Dwj2KxMTEbd505zHzex2m3Hn7SFVdALAhx2nYHPZBW2r43KwKa1MpIjC1+h7T8NU9R7AOjHw4sMY/fB58LMHfhBCCAkrHLfw3S0qOkm4oDuehHgh8647EF1WCmVCwpwut8qkREg1ao+PS//EzSF3p3NKUeJqfHbDnXix9iCGLCOI18Ti2jWXQSWnxdR9ydJ8GmPHhOOARz94HoqkXGhXbxApKkIIIf5ktVpRWVmJ3NxcJCYmih0OEYmddSAS5immwvMCnufx+uuvY9++fairq4PFYkFCQgI2bdqET37ykz6Zwe7MmTN46qmncPr0aQwNDUGpVCIrKwuXX3459u7di+jo6JW/EOJ3+sICtD8pLDoZmQxRBQsXlaFYdAJAhiEVGYZUXJy1BT9793dYE5+DLenrxA4rrDgGO9D3wq8xex47zdotUKWtEScoQgghfmW1WlFRUQG73Y7a2loAoOIzQiWoojExY1vO0ORCYctms+FrX/sa3nvvPUF7d3c3uru78dprr+G+++7D5z//+WU/x69//Ws88cQTgjan04mamhrU1NTgmWeewR/+8AesW0cf6Ovq6tzTjxcsUsyJZejYccG2MikJhqLwXlNRJpHiqxd9GknaeLFDmSMUcmY+rGUCPf/4EcC6BO2qrGJEFW6HVBMlUmThLZRzhoiDcoZ4a6GcsVgsqKyshN1uFxwvlUoRFxcX6FCJ2GZ1t+Z5mlwobP3whz90F515eXm4/fbbER8f7y4ILRYLHn74YSQlJeHGG2/0+vxPPPGEu+iUy+W4/fbbUVJSgomJCbz99ts4efIkBgcH8fnPfx4vvvgiMjIyfPnyQo7T6YTT6RQ1honaunnvUDonJmDr6RW0qZKTIFEoYGxsQsy68gBEGHhSiRTJugSxw/AoGHJmOXjWid5//hSczSxolydkQplRAG3+VpEiC3+hmjNEPJQzxFvz5YzFYkFFRcWcdTq1Wi30en2gwiNBxDUxJNhmFhn3G6oifnKho0eP4vXXXwcAbN26FS+99BI+9alPYc+ePfjud7+LF154wd0F9sEHH4TJZPLq/OPj43jkkUcAAAaDAfv27cNPfvIT3Hzzzbj33nvx5JNP4ktf+hIAYGJiAr/73e989tpClVwud/8nho5/PYtz3//RvOtuDh75QLDNSKWIXleOgcPvouGXD6Hz+X2BCNOvTA4zeo0Dix8YJMTOmeXgeR59zz4Ix2CHoF0aFQvN6o2IveQOkSKLDKGYM0RclDPEW55yZr6iU6fToaysjPIrQimlwq61EoTnxIIRf8fzL3/5CwBAJpPhgQcegFIpHNqbl5eHH//4x/jmN7+JsbExPP/88/j0pz+95PMfPXoUFosFAPDZz34Wa9euFexnGAZf/epXsX//fnR0dODQoUNwuVyQySL3n0bMLkwTtXXofOY5APOvu9n7+huCbWViAqydXeh/8y0AQPcLLyJ2w/qQHdNZ0VuLE11ncVnORZBJpNAptFDJlEE9q14odnsbOvgYrG1VgjZGoYa2cDtiL7kjqH/f4SAUc4aIi3KGeMtT91pPRWdUVBRKS0up6IxgKkb4uV+K8PwMENF3PMfGxnDs2DEAwMUXXzxvF9fdu3e7+9sfPHjQq+fo6upy/5yfn+/xGIlEguLiYgCTA81HR0e9eg7iO/rCAvfSJ8Bk8TnzzqfLYoGtv1/4IEbiLjoBIOPuO0O26DQ7LHj46J9xqPVD/O3s83ir+Qhea3gHp3vOiR1aWDE3fAzjmbeEjRIptEU7ELP9E2CkkfvFEyGEhCMqOgmJ8MLz1KlT7rWTtm6dfyyVRCLBpk2T6zNWVlZifHx8yc+h0+ncP3d2ds57XE9PDwBAKpXCYDAs+fzE92auuwkIi8+el1+dMwDcduHfDgDSbr0FaTdeH5hA/eCpypdgZyffFJtHzuPN5vdhc9qwNj5X5MjCh2OgA/0vPTynXbN2C2K23wKpmiYTIoSQcGI2m+ctOql7LQEA16zJhMKzo22EF55NTU3un9esWXjJglWrVgGYHJfV2Ni45OeYuQzLP//5T8HsZVM+/vhjVFVNdrnbvHkzFArFks9P/GO+4nP2bLYzJV+3Gym7rwlEeH7ROtKOQ61HBW0xKgOUMiWilLp5HkW8wZrH0ffcf3mcwTbpxq9CbqBp9AkhJJyYzWZUVlbOW3RG8tAqMq3XKZxDxhqePW0ju/Ds7u52/5yWlrbgscnJyR4ft5ji4mJccsklAIDW1lbs3bsXx48fh9FoRF9fH55++ml8+ctfBsdx0Ol0+Pa3v+3lqwg/vb296O7uRm9v7+IH+5Gn4tM6z7996s03IvHyywIVml9kGFJxW/EeyCWTb4JSRoLylCLcURL8d3CDJWcWY6w+Ate4cNKmqRlsGSl94x1IoZIzJHhQzhBvtba24siRIxgeHha06/V6KjpJRIrojB8ZGXH/HBMTs+CxUzPbApNjQ73xu9/9Dt/4xjfw3nvvoaqqCvfee++cY9avX48f/ehHKCoq8urc4WhwcNC97lVKSoqosUxNLDQ10dDsbrbAZPfapF1XwGW2BDI0n5NL5bi1aDd2ZG7E46efgVKmwCeKdosd1pIEU84sxLB5DxiGwfA7fwd4DrLYFGjWbELMRd4v00RWJlRyhgQPyhniDafTiTNnzsDhcEAqlSIqanIYhV6vR2lpKRWdJCJF9B1Pm83m/nn2bLazzez+OvNxS6HVavHLX/7SfedzNoZhkJOTIyhuSfCYfedzprRbbkbK7mvB8+HTGz85KhE/3Pkf+Oa2z0NPXWx9imEYGDbvQfIdP4A8IROGTXugK9gGiUItdmiEEEJ8SC6XIzY2VtBGRSeZj3PWTPbh86lSKKIz3+WaHme12LjKmftnPm4pDhw4gO9///uw2WxISkrCbbfdhry8PJjNZnzwwQd46623sG/fPhw8eBB/+9vfBONCxdDc3Iy8vDz3t3MAYLfb0dDQAGDy7m9mZuacx0wtGzM7/qGhIffkSRkZGYK7yyzLoqamBsDkeIecnBzk5uaC53kwDIPz589jYmICAFBYWCi4WI+NjaGjY3INxJSUFCQkJAie99y5c+B5Hmq1GqtXrxbs6+rqct/xXrNmDVQqlXufyWRCa2srACAhIQEpKSlI/8TN6HzuBXAzv3SQSZGyR3hHcGBgACNmMxiFArm5uYLJpWw2m3t8cGxsLNLT0wWPbWpqgtVqBcMwKCkpEewbHBx0d+/KzMwUfEnhcrlQW1sLYPJNLTs7W/DYtrY2GI1GAEBRURGkM9aKGh0dRUt7KzieQ056tvt3yDAMGIZxjz3WaDTucc5TOjo63Hf/165dK/jyxmg0oq2tDQCQlJSEpKQkwWNra2vhcrmgUCjmzPbc09ODoaHJhZTz8vKg1Wrd+6xWq3tsdlxcnLuL/FTOdHV1oaqqSjBT9JSBgQH09fUBALKzswWLdDudTtTV1QGYXG83KytL8NiWlhaYzWYAk93nJZLp7+xGRkbcs1enp6cLPmhwHIfq6mqA46BlTchdvw0MI4Embx1UOSXoaG3FRP8E0F+FgoICwQQTExMTOH/+PIDJrv6JicLxn9XV1eA4DiqVas4Y9e7ubnfXrtWrV0Otni5szWYzWlpaAADx8fFITU0VPLa+vh4OhwMymQyFhYWCff39/ei/MKtzTk6OaNeImZZ7jcjNzUVrayt4nkdTU9OKrxEz1dXVue+MzV5Oobe3F4ODg+4YQuEaMTUxXmpqKuLj4wWPDZVrxJTGxkbYbLZlXSN4nodMJoNGo8FsK75GYPJL6ry8PMF529vb3RMa0jUisNcIYOWfI+Li4qDVajE+Pg6DwYCSkhLIZDK6RlwQbteIlXyOkKq1mIibcT9QPfm3LtY1YioHfS2iC8+ZFwmn07lg8TlzULg3k/8cOnQI3/rWt8CyLLZs2YI//elPgovIbbfdhg8//BBf/vKXYTab8dnPfhb79++fc/ELJJZl3bP9TuF5Hk6n071/NpfL5d4/G8dx7n2zzwvAvW+qoJ/5++nr63Pvn31XcWZM85136oPCQvEu5bxd+14SFp0A4GLRe+ANpOy+dsZrnXwswzALntfTlxdOp9P92Nlm/g69Pe9C/zYsy+LowGnIJTJEx8dA69RBJVW6L4gLnZdl2Xljmhmvp3xxOp1wuVyCC+9SzjtfHk7lzNTzLnbehfLb29/hovltNUHVdgKcQgGusMw9a61EIgPLSFf0O+Q4TvABwNNrXervcPZr9XQXf6m/Q39fI+Y7rzfXCJ1OB5fLJTjGF+edincprzUUrhEr+bcJpmvEzPMu9xox9Ro9/f7FyG+6RkzzxzVi6rwr/RyRnp6OrKwsxMfHu89D14hJ4XaNWMnvkE+JQ8em6S+AdDN6nIlxjfD0b+kLEV14zvzW0m63L7nwXKxb7hSe5/Ff//VfYFkWBoMBv//97wVF1ZQdO3bg29/+Nu6//36Mj4/jL3/5C7773e968Up8SyqVzvmDYxjG/S2KpwSVyWTzTgcukUjc+zz9IU/t83Rhn3ne2RfSmTHNd16e5z3G5c15u/a9ND3GEwCjUoG/UIR2v/AiACDxissvHD/5WEYuX/C8nl6rXC6Hy+Xy+IYx83fo7XkX+rc52nsaEqkULHgc6z0DzXg9LsnegmRdgjum+c4rlUrnjWlmvJ7yRX7h9+PteRfLQ7lcDpZlPebDzPMulN/e/g7ny2/WPA6XzQxtxyngwt8UazFCotK5X9dCebiU3yHHcR7jWsnvUCaTgeO4Rf9t6BqxeLyezruSv2UxrhEr+behawTc5/JHftM1YlqwXyNmTlA5M166RtA1YupcnmKZGdNSzuvLa4Sn1+8LDB9Og9O89JOf/ATPPvssAOCdd95BRkbGvMc+//zz+NGPfgQA+M1vfoPrr198ps/a2lrcfPPk5DR33303fvrTn857rMPhwObNm2G1WpGXl4cDBw5481JWxGQyubu/AJPdHTwVyJFodtGZftsnkHDpTvS98SZ6X9/vbk+96UbEX7wDiphoyHRaSJf45YSYbC47fvTOr5Ebm4V4zXTXr08UXgupZP4LIFkc73Ki56mfwtHXBm3BNsiiJ7u3qLNLAI6d/D8hhJCwYDQawTAMfXYiy9ZT/S4q3n7Mva3SxuDyz/9JtHj8VRtE9ORCM/uwLzY9+lSfbgBzxjvMZ6pfNbD4OqEKhcLdb3tqLEikstlssFqtXk/i5Guzi86se/Yi5bprATBIvOJypN16i3tfz8uvYODwuyJEuXyHW4+iY7wH77V9hHfbjqHXODkuJxSLzmDJGWCyp8PggUdh72oA73LAVP0+7H2T4wGt58+BNY+LHCEBgitnSGignCGeGI1GVFZWorKyEiaTcC1GyhmyVAa5BvkWh/u/PM+9ckNeRBeeMwfoTg00ns/UfoZh5gwwXwq73b7oMVO3tRe63R4JGhsbUVtb6x5AL4bZRWfMhvWI3rAOmNGNIWX3tYLis2//AfQeeCOgcS4Xy7HY33jYvT1sGUXLSDuuXuV55uVgFww5M2Xs6D6Yzr0/3cDzsHXUgmcn30V0RTtEiozMFEw5Q0ID5QyZbaronBpnN7v4pJwhyzXfeNBQF9GF57p169z9mk+cODHvcSzL4uTJkwCA/Px8wSxWC5k5A9fUjFTzcblc7lkSl3pHlfjH7KJTHh2N0dNnUHnft1B7/4OYqK9375tdfHa/8CK6X341oPEux0edZzBoFi5ofVHGBhhUS8tt4pm54QRG3/+XsFEig65oBxipHDEX3y5OYIQQQnxqZtE5xel0or29XcSoSKji1TowJRdjPL0EI6lFMCblLf6gEBTRhader8fWrVsBAIcPH3ZP1T3b/v373VNmX3vttR6P8aSkpMTdH/rQoUMLdud95ZVX3N+Sbd++fcnPEY5iY2MRFxc3Z/2rQJiorRMUnWm33ATnham+wfMwN7dgorYOM1dYStl9LVJvutG93fn0MxeOCV4bUktwT/mtiFNPTkm/KjYbd5bcIHJUyydmzkyx959H/4v/Paddm78FUm00Yi6+3eOED0QcwZAzJLRQzpApExMTc4pOAIiJiREs7UE5Q5aq8qMPUfXCMXQcqkX3u/VofbdK7JD8IqJntQWAT33qU/jggw/gdDrxjW98A48//rhg8GxzczN+8YtfAJhcP+e2225b8rkVCgX27t2L//3f/4XFYsF9992HRx99dM4F6MyZM3jwwQcBTM4wde+99/rglYWu2etSBZK+sAAZd96OzmeeQ9Y9e8HMmulLolBAYTDMeVzS1VeCczrRt/8A0m69BfrCgjnHBBO1XIU9a6/ANat24sOOk4hVR4d0USRmzgCAyzSKvmceADjhhxBVTinUWcXQr79KpMjIfMTOGRJ6KGcIMF10zl6eIiYmBsXFxYLhUpQzZMlMVsSPT+eUzRaec79GfOG5Y8cOXH311XjzzTdx9uxZ3HjjjbjrrruQkpKC2tpa/Otf/3Iv+Pqd73xnTtF44sQJ3HPPPQCAzZs348knnxTs/+IXv4gjR46gtrYWFRUV2L17N26++Wbk5+eDZVkcP34c+/fvd39r9sMf/nDOYrYksDLvugPRZaXQFxag7+1D0GRmwNrTC97lgjI5Cbq8HI+PS7z8MhhKihGzvjywAXtpwm7Cwab3cP3aXVDLVbg05yKxQwppnMuB/hd+DdY0KmiXJ2ZDmbaWik5CCAkT3hSdhJC5Ir7wBIBf/epXMJvN+PDDD9HV1YWHHnpIsJ9hGHzlK1/BnXfe6fW51Wo1nnjiCXz961/H8ePHMTo6ir/85S9zjpPL5fjBD36Au+66a9mvg/jO1B3LuK2boUlPg21gABO1deBsdmiyssDNM+g7ao33E08F2sGm9wAATcNt0Ck0iNfGQa+kKeCXg+d5DO1/FPZu4cQRUn08NKs3IG6n99cMQgghwWd8fBxVVVVzis7Y2FgUFRVR0UlWxME6oRA7iACgwhOTxeHjjz+O1157DS+//DLq6upgNBoRHR2NDRs24J577sGGDRuWff7Y2Fj87W9/w6FDh/Dqq6+isrISw8PDUCgUSEtLw/bt2/Fv//ZvdKczCMmjoiAvyIe+IB/xF22FsbkFjESCUF3+tmt8epxx/VALACBFl4iLszeLFVJIGzv2EkzVRwRtEqUW2oJt0OVvFSkqQgghvrRQ0VlcXOxelYCQ5UoqKEBTe4t7W6rViBiN/1DheQHDMLjhhhtwww3eTbCyZcsWwQKrC51/165d2LVr13JDjBhNTU1wOp2Qy+XLWrrGXxi5HKqUFHBWq9ihLNvxrrNz2spSCkWIxLfEyBlz/XGMvveUoI2RKaEt2gGJQgVlcm5A4iDLE6zXGRK8KGci00qKTsoZslTq9FSMbc2E1WoFz/PQyqnwJCQgrFYrnE7nnNnixMYwDCQSBtwC+4PZy3VvYsg8gkxDKqQSKcbtRgAIi262gc4Ze18rBl79/axWBvHXfA6u8UHEXELLpgS7YL3OkOBFORN5Vnqnk3KGLJW9pwm2rnowACY/TYZniRaer4qENIZh3P8R3xizTeD56tfh5FyIU8fg6tU74WJd2JReJnZoPhHonDFWHgbvtAvaYq+4B7rSSylvQwRdZ4i3KGciT09Pz5yiMy4uDkVFRUvqXks5Q5ZKLZEjxT49f4hcGp7dt6nwJEGnpKRE7BBgHx7G6JmziN92EWRa7dwDQmyI58Gmd+G8sNTHsHUUz557Fd/a/kWsis0WNzAfCXTOaPK3wDnWD2vzGQCArvRyGLZcTx8uQkgwXGdIaKGciTxr164Fy7IYGhoC4F3RCVDOkKWLlqlQbHa4tyUalYjR+A8VnoR4UP3j/4RjcAj9b70D3ao8xO/YDkPRhbGQIVZcOFwOvN38gaDtkuyt2JBGb4jLYW2vga29Fob110CTtwHmxhNIuPbzVHQSQkiYkUgkKCwsRE1NDQB4VXQSQuaiwpOQWTiWhWNwCJzDAVNjE0yNTZDIZJOFZwgWFxJGgmtWX4qqvjo0DLcCAK5fS5NcLYdztA/W9moAgK23GQCgTFsLl2kE8ugkMUMjhBDiBxKJBEVFRe6fCfEHluPgnNGbThKiqycshgpPQmYxNTSBczgEbVEX1vUMRS/WHQQAfGHTXthZB6r7G5BuSBE5qtDDcyyM596f084wDGSGRBEiIoQQ4is8z8/bc4UKTuJv5z4+CVfFdP45lGaE4zzIVHiSoDM4OAiO4yCRSJCQkBDw5x89c0awLdVqEbd1y5zjFnqTChYubnpShLbRTlycvRkJmlgRI/IPf+aMY6AdErUeE2ff8rhfX74r6POAzCX2dYaEHsqZ8DU6Oorz58+juLgYcrncZ+elnCFLxnJQzbzlGaYfK6jwJEGnt7fXve6VGBfqsYpKwbYyMSFkC4sXa99w/9xnGsBz1a+jIGEVSlT5Ikble/7KGZdxFL3PPADOboW2aAdkuhjBfl3BNsj0cT57PhI4Yl9nSOihnAlPo6OjOHfuHDiOQ1VVFUpLS31WfFLOECJEfQcImYHneVg6uwRtmoz0GVuhWYAC0xPxFiWuETWOUME57eh//pdgjSPgHVaYKg/DMdTt3i+LioUiIUPECAkhhKzEyMiIu+gEAKPRiKqqKlp3kwScK4Q/X3qD7niSoJOZmSlaN1ZrVxc4m03QJjdEL/7AIBwEzvM8Lsu5CE7OBYfLgY+7J+/kSpjw+77J1znD8zwGX/8j7BcmEAIAcCwcPY2Qx6WCYRjo113pk+ci4hDzOkNCE+VMeBkZGUF1dbW76JyiUqkglUp98hyUM2SpolVRmPnpM1wLtHB9XSSERUdHi/bcIx+fFGxLlEokXT3PDLA8H7Sz3JodFrzZ/D525e5AgjYOtQNNAIDbiq4TOTL/8HXOjH34Asy1RwVtEpUWmoJtYBgG0Rfd5NPnI4En5nWGhCbKmfAxX9GZmJiIgoICnxWKlDNkqeSMVFB4Bueny5WjwpOQGcYqzwm2lQkJ0GYIu1MGaa0p8G7bMTxz7lXsqzmAi7M246pVO3F78R6xwwoJprpjGD3yjLBRKoe2cAckciViLr6dvr0mhJAQNTw8jJqaGr8XnYSQucKvzx0hK2BubRNsa3NzhAcs9H4UJO9VHMfhjab3AABOzoXDbcfwSr3nGVmJkL23BYOv/mFWKwNt/lZItQYYNl5LH0oIISREDQ8PB+ROJyHeks1asidcM5HueJKg43K53GMiZLLApahjZBQuo1HQpoz3fukRsd+4TvVUYdA8LGi7bs3lIkUTGL7IGZdxBH3P/RK8S7iGqyq3DPLYFKgzCiDV6H0RLgkCYl1nSOiinAltU0UnP2tOhqSkJOTn5/vlvZtyhiyVRqrA6IxtWfBNHeIT9FdAgk5tba17+vHS0tKAPe94Ta1gm5HLYSgpCdjz+8rZ3hpk6FPQYxwAy7PIicnA6ricxR8YwlaaM+4ZbE0jgnZ13nooUvLAMAzUOYHLReJ/Yl1nSOiinAldYhSdAOUMWb4wrTup8CRkynjVrPGd8XHQ5ubOPTCIu+LwPI8YtQFbMtbD5rKjY6wbGrla9LuwwYzneQy+9gjsvS2CdlVmERJv/BocA+1QZRaKFB0hhJCVGBoaQk1NTcCLTkK8wciVwgaJb2ZWDjZUeJKgo9fr4XK5At4tZayyUrCtTEiA3CDsWhnsb1Dn+uvdP6tkSqyJz0VOTPivNbmSnBl9/18w1x0TtMlikpH0iW9DqtZBnVXkqzBJEBHrOkNCF+VM6BkZGfFYdCYnJ2Pt2rV+f0+nnCFL1eUQDvWygpvnyNBGfwkk6GRnZwf8OV0mE+z9A4I2dVpq0Beas1mc1jltG1PDv3vPcnPGVHsUY0f3CdoYpQZJt30XUk2UDyIjwUqM6wwJbZQzoUer1UKtVsNisbjbAlV0ApQzhMxGs9oSAmCirl7YIJFAptOJE8wKbElfh+vWXI7tmRsBADqFJuSK50DheX7usikMA/26q6CID/+7xIQQEu6USiXKysqgVqsBBLboJITMRXc8CQEweqZCsK2Mi0P8jm0LP4gPvqHfDMNAq9BALVfh1sLd9Oa6gImT+6HJ3wZryxk4+loBAOqcMqjS19DvjRBCwoRSqUR5eTl6enqQnZ1N13cSlJycE3KxgwgAKjwJATBWMXt8Zzw0GZ7uegXnG5bVacOE3YgkXQIAQMJIgjXUoGDrrAdrM4ORSKBetQFSjQGsdQKK1NXQrt0idniEEEJ8SKlUIicnvGd3J6HNINfCMmNbxoRnp1QqPEnQaWtrcw/GD8QbBWu3w9bbK2hTJiSAkXoxo5jINz8/aD+Bx08/g5Kktbg8dzs2pZVDIY2E784meZMztu5GWNqmv2hgGAbKtNUAgJiLb/NrnCR4BPo6Q0If5Uxwm5iYQFRUVFDd0aScIUsln/WZjQm+TnU+QYUnCTpGo9G97lVAnq+hUdhtlmGgiI8LyHP7yjstHwIAzvU34Fx/Ay7J2oKvbP2UuEEF0FJzxmUchaXlrMd9MRffBiZMv2EkcwX6OkNCH+VM8BoYGEBdXR0SExODaokUyhmyVM4x4QSX4FhxAvEzKjxJxJuorhFsy2OiYSgpnv8BF97QeJ4Pit6sLcPncX6sS9C2LXODSNEEL0trJSznqyCRKebs06+/mopOQggJQf39/airq3P/zDAMTSBEQo5sVr6Ga/ZS4UmCTlFRYNdNHDl9RrCtTEhA1No1ng9e6Eog0lWisq8OcqkcTtYJAFDLVchPWCVOMCJZLGds3Y3oe+YBSFRaaIt2QKqeXipFV7QDMl20nyMkwSbQ1xkS+ihngs/MonNKX18fYmJikJSUJFJU0yhnyFJpJXJMzNgO1wItXF8XCWFSb8ZWrhDncsFyvl3QpkxIgEyjWf5JA/wtq4tnsWfNFeie6EPbWCfiNbHQyNUBjUFsC+WMa2IIvU/9DOA5cFYjTBWHoCnYBnl0IrSrN0IRlxbASEmwCOR1hoQHypng4qnoBIC0tDQkJiaKENFclDOECFHhSSKauaUVvMslaFOnpYoUjfdc7GTsUokUmdFpyIxOC8plXsTCOWzoe/a/wDtt7jbe5YBzqAvy6EQoU/JEjI4QQshy9PX1ob6+fk57eno68vLyqJstIUGKCk8S0SZqhd+WyvR6RK1euJtqML2hSRgJLs/ZBpPDArPTgpqBRlyac5HYYQUFnucw8Orv4Rg4L2iXRSdCnVuOmItvFycwQgghy0ZFJwlHXQ4jZt4ft4RpGlPhSYLO6OgoOI6DRCJBTEyMX5/LNiCcRUyZEA99Qf78DwiyNzSJRIJ4bSzitbEYtozCybqQqIsXO6yA85Qzo+8/A0vDCcFxMkMiNPnbELvzTvpwEuECeZ0h4YFyRnyhVnRSzpCl4sVely9AqPAkQaezs9M9/bi/L9R5X/gcMu+6ExN19Rg7exbR68oh0+n8+pz+wPM8lFIFypILxA5FFLNzxlT9AcaO7hMcI1FpEb/7i1BnFwfdhxMSeIG8zpDwQDkjrt7eXjQ0NMxpz8jIQG5ublBe1ylnCBGiwpNEPLk+CnFbNiFuyybvHijiWEqO58CAcb/RMgwDnVIrWjzBxNpVj4HX/iBsZCRIvOWb0OSUiRMUIYSQZQvFopMQb7jARERRFgmvkYSY1NRUd9cU4tmp7ir85cyzyI5Ox79vuRd6ZejdpfWlqZzhzaPoe/rncxZejrvqM1R0EgG6zhBvUc6Io6enB42NjXPaMzMzkZOTE9RFJ+UMWarouHiMaqZzmVWG54zIVHiSoBMfH5gxipzDAXN7B3R5uWCW/KYQHG9wL9e9iRHrGEasY/jCq9/DLQXX4LbiPWKHJZr4+HhwDiu6nv9PwQy2AKDMyIdh4zUiRUaCVaCuMyR8UM4EntPpRGtr65z2UCg6AcoZsnSG0rU4ZTrl3taF6Q0F+gqGRKyufS9h9NRpcE4n+BV3mw1ct9shywiaR867t1mOhYSJ7D9lnufQ/bfvwzXWL2iXRSdBv2G3SFERQghZCblcjpKSEsF6mFlZWSFRdBJC5qI7niQisVar++fuF18GI5HAUFqy8Iy2QeKdlg8E23KJDHaXQ6RogkP/87+Cc7BT0CZRR0GTfxGiiraLFBUhhJCVMhgMKC0tRVVVFdLT05GdnU1FJwk7cokMMc7pYUIauYjB+BEVniQi9b9zGGOVVVDExUIRGwuZRgNFTPTSHizyG16CJg6XZG/F+dFOdE30It2Qit1rLxc1JjGZGk/C1ilcj5WRKaAt2oHoTXS3kxBCQp3BYMCmTZugVCqp6CRhKV6hw0bj9FAhmSxavGD8iApPEnSqqqrc04+Xlpb65TnGKiphrJteC0yTnYXMu+5Y9HELv98F5s1wQ1opcmIyMGE3o3qgASzHIlqlD8hzBxueY+Hoa4UtrRzSvnpIzcMAw0BTcBGiN10HmT5O7BBJkArEdYaEF8oZcalUKrFD8BrlDFkuhyM8e7JR4UkikmN0TLCtDKEJAKJVekSr9OB4Dka7CcVJa8UOSTTmhhOTP0hlcCTlQ24aQJROh8Tr/h2MlC5vhBASKrq7uwEAaWlpIkdCSOAxKi20+RdhbHwMPMcDYbpEHn0yI0FHo9HA5XJBJvNPevIsC2uncDxgws6L/fJc/uRgndiQWgKNQi12KKLgeR6OC+M65XI5pFIpJOosJF37KSo6yaL8fZ0h4Ydyxn+6urrQ3Nzs3g6X4pNyhizVuaqzaD10FgA/OV2lUo78fxM5KD+gvwQSdFatWuXX87N2B1L27IapuQWm5hawFguiy8uXfoKp/rYrngl3ZVQypajPL7bRD55z/xwTG+v+WaKMzEKceMff1xkSfihn/GN20dnU1ASGYZCamipiVL5BOUOWyjUwjMzu6TGeNqVTxGj8hwpPEnFkGjWy7538GonnONgHBiDXRy3twSJOamB12tA90Yfc2MyIXz7FZRzx2G7YeG2AIyGEELJcnZ2daGlpmdPudIbnh25CIl1kf3olEctlMoHnODASCVTJyWKHs6iWkXb84v0/4P3zxwO5ZGhQchlHMPjq78E55w68l2oic5IlQggJNfMVnbm5ucjKyhIhIkLE4+RcYocQEHTHk0QcY1MzpEoFNDqd2KEs2Qs1+9E43IrG4VbUDTbhzpIbUJ5cBFkEjmUcfvuvsJ4/B3v/eeg3XANGrgTvciDm4tvFDo0QQsgSdHR0oLW1dU57bm4uMjMzRYiIEHEZ0tLQkzb9uZTXhOdwqsj71EqCXkdHB1iWhVQq9csb0Oip01AmJoBzuiBRKqFMiIdU6f0fOB+gMZ5Wpw2VfdPrVHaM9+BA47vIT1gFXYQVnpaWszDXHQMAcFYjxj58HvqN18KcvRXj58/7LWdI+PH3dYaEH8oZ34ikopNyhixVTFEBqvh22G128DwPrUIjdkh+EVmfWklIGBsbc6975esLtXNiAgBgHxiEfWAQAJB01a6lF54Mg0Ct1znlWMcpuGZ0wWDAICs6HTpFeE61PR/OacfQwf8TtElUOug37UZP1xCcphG/5AwJT/68zpDwRDmzcvMVnXl5ecjIyBAhIv+inCFLZe9rhb27CTzPgwcPjpGLHZJf0BhPElHM59vntClmzIi6XP68+1mYsBo7s7dCLZ9cPDslKhHXrN7pt+cLVmMfvgDXWL+gLfaKe6CIDf2ZDwkhJNy1t7dHVNFJiDdkLIcouw16hx0GhwPaMJ1gi+54kqCzdu1a8DwPxg8zyHa/9ApMzc2QGwyQR0dDlZTol+fxpRR9Er685V58gf0kTvVUQSlVIEEbJ3ZYAeUY6sLYRy8L2lQZBYgquwyAf3OGhCfKGeItypnla29vR1tb25z2cC86KWfIUsXLNdgyMb2cikQdnnc8qfAkQUe5jPGWS2Xr74drwgjXhBHWzi7wzrV+ey5fk0ll2JqxXuwwAo7nefQ98wDAc9ONjASGbbeAubCsjD9zhoQnyhniLcqZ5Zmv6Fy1ahXS09NFiChwKGfIsoXplxXU1ZZEFOfYuGBblbK8pVTo28vAMVa8A9f4oKBNmbYGivg0kSIihBCyVHL53Ds3kVB0EkLmojueJGK4rFawZrOgTZuT7bPz+6MW5XgOEiZyvx9ymUYx/PZfBW2MUgNVZiHk0UkiRUUIIWSpUlMnx+E3NjYCAFavXo20NPrikJCZqisqMVY//XnPpbAgW7xw/IYKTxJ0jEYjOI6DRCJBVFSU785bXz+nLX77dp+d381HFWjPRB/0yijolJE1e+1Mfc8+CN5pF7Rp8tYj9tK7BW3+yhkSvihniLcoZ5YvNTXVPQlfJBWdlDNkqVxmC6InpocU2RSBWbIv0KjwJEGnra3NPf14aWmpz85rrG8UbMt0OihiY5Z/Qj/OZNtrHMCLdW8iQROLBG0cMg2pyDCkQilT+O05g42lvQaOPuEMiPK4NBg27Z7T1dlfOUPCF+UM8RblzMpEUsE5hXKGECEqPEnEMDU1C7ZlBj0YiXfdWN0Fj5+HeD526inUDDRCp9AgOzoDWdHp2JW3A2n65Y1JDTU8x2Lwpf8WNkpkUOeWQ5UeOhNCEUJIpOB5Hna7HSqVSuxQCAk5LJiIKMoi4TWSEJOUlASWZSGVSn16Xmtvn2BbnZri0/P7CsdxaB3pAACYHBZUDzTA5rLjnvJPiBxZ4IwefRGseUzQpsoqRNyVn/J4vL9yhoQvyhniLcqZ+fE8j7a2NnR3d6O0tBQGg0HskIIC5QxZKq1SC9eM7XDNGCo8SdBJSvLPpDHOceGMtoqYFXSz9aOq/jpYXTZBW3lyYcTMpMvzPKwtZwVtEo0B+vVXu5dPmc1fOUPCF+UM8RbljGdTRWdHx+QXplVVVVR8XkA5Q5ZKLZHDOGM7XKeVDNfXRYgAa7fPmdFWlbzCbqt+GuLp4lxIiUp0byfrEnBL4bX+ebIgNHHqDahzy6AruwJSbTQAQLNqA3T5W8UNjBBCiADP82htbXUXnQDAsizOnTsHp9MpYmSEkGBEdzxJRLB0ds1pi1m/zvsTBWCM58a0MmxILUXTcBveO38ceTGZkEkj40+V5zmw1snv/GT6OOjW7YJrbACGzdeJHBkhhJCZporOzs7OOfvy8vI8rt9JCPFsdq+2cO3jFhmfZknEm6itFWxLtVookxLnOVp8DMNgTXwu1sTnih1KQLHGEUSVXgpzwwlwdisYRgJ5TDKUSdlih0YIIeQCnufR0tKCrq65X+rm5+cjeaU9igiJMFEyJSZmbMvCczUVKjxJ8KmtrXVPP15YWOiTc1o7hN/Iyg16yDQan5zblzieA8/zkErCdVj5wqS6GDASKRQJmbB1NQAAYnbcuujj/JEzJLxRzhBvUc5MoqJz6ShnyHKFad1JYzxJ8HG5XO7/fMXU2ibYluv1Pjirby8LTtaJYx2nYHc5fHreUMJcKLgVCVkAAHV2ibttIf7IGRLeKGeItyhnqOj0FuUMWSpm9jrt80ymGOrojicJOgqFAhKJBDKZ79LTPjAg2FalrHQpFQ+971c46+xbzUdgdlqhkjUiVh2DaLUeseroFZ0zFPA8j/59D0GdVQT9hmvASKSQ6qKhK7gI8viMJZ3DHzlDwhvlDPFWpOcMz/Nobm5Gd3f3nH0FBQU0g6sHkZ4zZOn6WeFqBvYwHeRJfwkk6OTn5/v0fJzDAZdp1oy2iQk+fY6ZlrPsCcdzMDrMkDAStI52onV0smvw7cV7fB1e0DFWHYal4QQsDSdgrHwX8dd+Aaq01VAkZC75HL7OGRL+KGeItyI5Z6joXJ5IzhniHScnvCvOhWln2/C8j0vIDJbuboAX/gGrM5d2Jy1QjnWcwv6GQ6jorcGYdXK9Ub1SJ3JU/sdaTRh+8y/ubUd/GwZeehg8S92SCCEkGPA8j6amJio6CSErRoUnCXvm5lbBtlSjgb5g5d9C8rzvvo062nEKdtaB5pHzeKf1QxzvPIOd2eG/bmXfM/eDdwq7l8TuuhdMhCwfQwghwW5gYAA9PT2CNoZhUFhYSEUnIT7CcpzYIQSEKJ/uTCYT3nnnHZw5cwY9PT0YHx/H3r17ceONNwIAHn30URQVFeGSSy4RIzwSZsZrhEupyA16KGJilneyC91oVzicU8DmsqNmoFHQFqM2QC1X+e5JgpC54WPYe1oEbfLYVGhWbxIpIkIIIbMlJiZidHQUfX19ACaLzoKCAiQmBu+SZISEGrVMgZlTS0ppcqGV4zgOf/rTn/C3v/0NZvPkmDue58EwDEZGRtzHPfXUUxgeHkZZWRkeeughZGQEV7dI4l89PT1gWRZSqRSpqakrPp+tt1ewLdPrwUiC5w+6dqARNpfdvc2AwWfW3yliRP7HsS4MHXwMgpmBJVJo1m6GZBl3O32dMyT8Uc4Qb0VqzjAMg7Vr14LneQwMDKCwsBAJCf6bJyGcRGrOEO+pZUpB4Rk8n1J9K2CFp8PhwOc//3mcOHFiwS6KdrsdQ0NDYBgGFRUVuO222/DUU08hLy8vUKESkQ0NDbnXvfLFhdo6q4uQb5ZS8Z31qSX43e7/xJHzx3Hk/MdI1ycjVR/e3ZdG3vk7WNOooE2VUYDYy/Yu63y+zhkS/ihniLciOWcYhkF+fj7S0tKgD7L30GAWyTlDvOM0jgi2eY4VKRL/ClhB/dOf/hTHjx8Hz/NQqVS444478Mtf/nLOcTzP4+6774ZcLgfDMBgbG8N9991HayCRZWEdDriMJkFbdFmJSNF4xnIs4tUxuLPkRjyy5358ZeunxQ7Jr1ibBcbKw4I2iToKCdf9+7JmBCaEEOJ/DMNQ0UmIn0hmTarIhOektoG541lVVYWXXnoJDMNg9erV+POf/4yUC+sofu973xMcq1Kp8JOf/AT33HMPvvSlL6GtrQ3Nzc14/fXXcdNNNwUiXCKyvLw8dxfslbL19s2Z0Va3evWyz+eOyUcFksluRuNwG8qSCwAAEkYS9rPZ9j334JwJhdR56yCPWf5dXl/mDIkMlDPEW+GeMzzP4/z580hNTYVSqRQ7nLAQ7jlDfCdKqsDM2yRy0SLxr4Dc8XzhhRcAADKZDI888oi76FxIdnY2HnnkEUilUgDAwYMH/RojCR5arRY6nQ5arXbF57J2dQm2ZVFR0OevXfF551jmDLeHWo+i3zSIQfMwTA4zOD68ZzVzjvbC3i2cSEkWk4KEa7+wovP6MmdIZKCcId4K55zheR4NDQ1ob29HRUUF7Hb74g8iiwrnnCFkOQJSeH788cdgGAaXXHIJMjOXvih8Xl4eLrvsMvA8j7q6Oj9GSMKVpVNYeOryckWKZC6e52FnHTA6zDjS/jEONL6LMz3VYoflV30vPAQIxi0wUOeUQqII7xl8CSEkWE0VnVOz1lqtVlRWVlLxSQjxuYAUngMDAwAmFxr21uoL3SJHR0cXOZKQuSwdnYJtdUa6706+wnU8z/bOLTJTo8J3enpLawWcA+2CNkVKLuKv/oxIERFCSGTjeR719fXuonOK1Wp1rz5ACPG/fofw780Wpr2zAzLGc2oW26lus96Y6hcvl4drb2cym9VqdY+JUKvVKzpXws6LoUyIh7WzC5bOLmgyfbU0j6crwtKvEjzPY3/jYcSoDUjQxLnzPCUqPGez5Xkeg/sfFTZK5YgqvQyMxPvrwmy+zBkSGShniLfCLWemis7+/n5BO8MwKC4uRmxsrEiRhY9wyxniPw6wgqIsXAdeBaTwjI+PR1dXF5qbm71+bFVVlfscJDI0NTW5px8vLS1d0bnkej1S91wHZcJk/iy0lE8gtY914Vx/PQAgWqVHojYOhYlrwnYCApdxeFYXW0CVWQD9hmt8cn5f5gyJDJQzxFvhlDNTQ5imeqRNmSo64+LiRIosvIRTzhDiCwHpartx40bwPI/Dhw9jZGRk8QdcUFtbi2PHjoFhGKxbt86PEZJwxLMsxioq0f/OIfBscK2H9GHHSffPY7YJ9BgH8InCa0WMyL+kSi0yvvIo4q78NBiFGhKldvJuZ5gW2oQQEqzmKzolEgkVnYSIhPOi11woC8gdzz179uCll16CzWbDd77zHfzpT3+CQqFY8DEdHR34yle+Ao7jwDAMrr02fD+UE6G4uDiwLLusrtkzWbt73D+Pnq2ANicb8qgoMIvk3pIt8+Ypz/M40VUhaNuVtwNKWfhOXy9RTnYx0uZvhcs8Ds5mhq5wu8/O76ucIZGDcoZ4KxxyZrGik7rX+lY45AwJDLVaB+eM2pORhGchGpDCc/v27di+fTuOHj2Ko0eP4pZbbsGnPvUpFBYWuo/hOA5GoxFNTU14++238eyzz8Jqtbrvdu7cuTMQoZIgkJaW5pPzWLu73T+bmpphampGxp23r+yk7nU8sezCk+VYXJSxHqe7q9A50QsA2Jq+fmVxhQhGKofckICoi2/3ydjOKb7KGRI5KGeIt0I9Z3ieR21tLQYHBwXtVHT6T6jnDAmc+K1lOMRNTzqpC9M13QNSeALAf//3f+OOO+7A+fPn0dLSgh//+McAJscT8DyP3/zmN/jNb37jPn5qLF5iYiJ++9vfBipMEkacRuOctmDo2imVSFGSlI89a3fB4rSiqq8WOTG+mvQouEm1BujXXyV2GIQQElE4jkNdXR0VnYQQUQVkjCcAGAwGPPfcc9i1axd4nnf/B0wXA7Pb161bh+eeew5JSeE50yfxL3VqKrQ52dBcWEJFlRwceXSi6yz6jIPQyTVI1iXgqlU7g6Ig9gd7XxtcE0Nih0EIIRFroaKzpKSEik5CggDDSKDgePd/8uCYC9PnAnbHEwD0ej0eeeQRVFVV4YUXXsDHH3+M9vZ2wUyjCQkJ2LRpE2666SZccsklgQyPhBGe51H34C8h1+uhSk6GLEqH+B2+G1N44VmW9aiO8cmxp280vQuFVIEkXTxKk71f4zbY9T7zAKTaaOjXXw3OYYNEpYVMFyN2WIQQElE4joPNZhO0TRWdMTF0TSYkGCQr9dg5ZnFvy2L0IkbjPwEtPKeUlpa6p5VmWRbj4+NgWRYGg2HRSYdI+GtsbHRPP75mzZplncMxMgLWbAFrtsDWO7kwdva996w8uAt3Jqe6iHtrxDrm/tnstMLstK48piBkaa2AteUsAMDe3QhVTikUsakwbNrtl+fzRc6QyEI5Q7wVqjkjk8lQWlqKyspKmEwmKjoDKFRzhojP6XSKHYJfiFJ4ziSVShfs5uF0OtHS0oKhoSHs2LEjgJERsdhsNjidTrArWAJl5oy2ACBRKqGI82N3oiXWoLUDjXPaLs7a5ONgxMVzLAZf/YN72zncDZdxBLGXftJvz+mLnCGRhXKGeCuUc0Yul6OsrAzV1dXIzs6mojNAQjlnSGAxMgVUWSUwmYyTNzZUNLnQsuXn50MikeDb3/42Pv3pT3v12D/+8Y/485//jISEBBw5csRPEZJgIpFI3P8tl62nV7CtTk0VfRwlx3HIjs6ATqGDzWVzd7lVyVWixuVrQ28+AdY8JmhTZRZCv/Eavz2nL3KGRBbKGeKtUM8ZuVyO8vJy0d8LI0mo5wwJnMbOdpyr6wLLceDBQ6awYK3YQflBwO54LqdbIgCo1WrwPI+RkREfR0SCVXFx8YrPEX/xdsgNejhNZtgHBiDXR/kgMiFvc/pM7zn836l/YUNqCdalFCNWHY0t6eU+j0tMnMsBU80HgjaJRo+o0sv9+mHHFzlDIgvlDPFWKOQMx3EAMG+hQ0VnYIVCzpDgYG45j9zqUfe2TRmeX1aI3tV2PjzPo6urC6+//joAQKPRiBwRCSWmpmbYh4aRfPWVkPhw3PD0m7aHN+9F3s9PdVdh1DaOd1o/xDutH6I0qQC78sKr+/joe/8Cb7cI2tQ5ZdAVbBUpIkIIiQwcx6GmpgYAUFRURHfZCCFBx2eFp8vlws0334zm5maP+3mex69//Wv8+te/9vrcDMPQoGzilYm6egBAz6uvQ6JSQZ2SjJgN6wPz5B6+UeZ4Dqd7zgnaylOKAhNPgHAOGybOvClokxkSkLDnyyJFRAghkYHjOFRXV7t7h9XW1qKwsJCKT0JCBMtxkIodRAD47Iokk8nw85//HIBwPc6Z3RFnty/1PwD43Oc+56tQSZibmXOc0wmX0QhrT88Cj/C/86OdGLcbBW0b00pFisY/Rt57CrzTLmhTZZdAIpOLFBEhhIS/2UUnAAwNDaGhoUHEqAgh3lBF62HRyd3/OQ1qsUPyC592tV23bh3uvfdevPXWW4L2np4eMAwDvV4PrVa76HkYhoFUKoVOp0N6ejpuv/12mtE2ggwMDIBlWUilUiQmJnr9eM5un9MWu2mjL0IT8mKIZ6IuHt+/+MvoGO/G6Z5zsDhtSNYl+D4mkbA2M4xn3xa0yWJSELvzroA8/0pzhkQeyhnirWDMGU9FJzC5YkBqaqpIUZEpwZgzJDglbt6IOs0QnA4neJ6HVhGeQwx9Psbze9/7Hr73ve8J2vLz8wEAX/ziF72e1ZZEnr6+Pve6V8u5ULvMljltivh4X4QG4MI4Ty/nZzjQ+C5SdIlYn1qCy3K2QSVT+iyeYDD63lPgXcI1p1TZxZBF+XEJmxlWmjMk8lDOEG8FW86wLIvq6mqMjo4K2qVSKUpLS2EwGESKjEwJtpwhwcsx1AXHYAdYFwuAh1Piu/lJgknQz2pLiLcsnZ1wjo9DqtFAIp/s5slIxes5b3XaAAC9pgH0mgYAAEnaeOzMCY8Jd1ymMUxUHBK0yePTEb3lBpEiIoSQ8LZQ0VlWVga9Xi9SZISQ5eBtFjAWo7swkzLOBY8PVQEpPOvr6wPxNCRMZGdng+O4ZU+KMPzhMfS//Q4AQKJQQJOVicy77vBliF7pmuid01aYuFqESPxj9P1/AaxrRgsDVVYxFHGB6+a10pwhkYdyhngrWHJmvqJTJpOhtLSUis4gEiw5Q4JfskKHy0ene+wxKp2I0fhP0C6nQiLXSt80HTPejDmHA/yFdc18b2l38aOUOtyUfxXebD4Cq2vy7meCNs5PMQWWa2IYxnPvCdrkiZmI2XZLQOOgD1rEW5QzxFvBkDNUdIYW+vcgy8WE6ZcVor4qnufBcZzgP5Zl4XQ6YbVaMTIygtbWVrz22mv4zGc+I2aoJITYevsE26rkZD88y9IHeSbrEqCQKVCStNYPcYhr7KOXhXc7JVLEX/UZyPThUVgTQkiwYFkW586d81h0UvdaQkgoCOgdz7feegtPP/00ampqYDabadwn8QunSbhsiSLOxxPceKw5Pedy8/B5mJ0WFCWsQbohFR93V2JXXvjM0Bxzye2QKJQYP3kAvNOOqPIroM4Kr/VJCSFEbFNF59jYmKB9quiMiooSJzBCiE80NtSjq31GWaawIVu0aPwnYIXnb3/7Wzz22GMAljfREMN4OY0oCVlO5+RU0gzDQC73bg1InufBmsyCNqlSvBlkX61/G8e7zkAtU6EspRBX512CWHW0aPH4mkSlQ+xle6HfdB3GPnpZtAmFVpIzJDJRzhBviZkz9fX1VHSGILrOkKWyDI0isX+6B5lNEZ51T0AKz8bGxnmLzqmCcr52mUyG66+/ntbxjCB1dXXu6cdLS0u9eqxjbBw8ywratKvyfBnetEW+P3GyTlT01QAArC4bjneeQXlyIYoQ+l1ueZ6HueE4VKmrIdPHQ6aLQfyV4i2VtJKcIZGJcoZ4S8ycycrKwtjYGJzOyZkuqegMDXSdIUQoIGM8n3/+eXdhuWHDBjz//POoqqrCvn37wPM8pFIpjh07hoqKChw+fBgPPvggUlJSwPM8XC4XiouLsXv37kCESkKc5fx5YQPDQJuV6YdnmvtN1Oy78jUDTbC57DMewWB9aokfYgk8a/MZOAY6wFomwHPs4g8ghBCybDqdDmVlZZDL5ZDJZCgvL6eik5Aw4q9pMINNQArPU6dOAZi8cP7pT39CSUkJFAoFioqKoNfrwbIsjh49CpVKhdTUVNxyyy145ZVXsGbNGvA8j4ceeghDQ0OBCJUEAYPBgOjo6GUtfm3t7hZsS9VqqJKSfBXapMW6fV/Y328aQJw6xt28Ki4b0arQn/yB53nYepsBAObGkxj76GWMHHlW1JhWkjMkMlHOEG+JnTNTxWd5eTl0uvBcaiHciJ0zJHQoFWrBdnjOaRugrrZ9fX1gGAaXXnrpnD++oqIiHD9+HKdPn8b111/vbo+KisLDDz+MG264ATabDc899xz+/d//PRDhEpFlZWUt+7GW9g7BtlSjEW1K6nG7CZflboNBqUO/aRjpBn/Mrht4zkHh75gXrOEpjpXkDIlMlDPEW8GQM1RwhpZgyBkSGnRSFWZOjSkVLRL/CsgncqNx8leZk5MzZ9+qVavA8zzq6+vn7Fu9ejU2btwInudx8uRJv8dJQp99eESwLdNp/fhs8w/ydLJO98/jdhNUciWSdQl+jCUweJ7HwCv/A1tHLTjndDdiffkVIkZFCCHhweVyobe3V+wwCCHELwJSeKrVk7ePPc3olZ2dDQBoaWnx+Nji4uIF9xMyk3NEWHhKVSq/PM9ivW1PdlfNaUs3pPollkCytVfDMdAOW3s1Jj7eD0vLGfAuJ2T6eLFDI4SQkOZyuVBVVYWGhga0t7eLHQ4hhPhcQArP6OhoAPA4TjMjIwMAYDKZMDAwMGf/VNfc8fFx/wVIwobTaBJsK2Jj5jlyJRaf4lotV0IlUwiO1CtDv4vU2PFXpjc4F1wjfVCm+GnWYEIIiRBTRefExAQAoK2tjYpPQiJIlEx4o0Tu/cqTISEgYzwLCwvR2dmJY8eOzdmXmTk942hVVRV27dol2N/X1wdgeWt/ktDU0tICl8sFmUyGvDzvihrWahVsq5LFGVe5LqUY61KK4eJYHGg8jARtrChx+JJjoAPWlrOCNmXaGigSMkSKaNpKcoZEJsoZ4i1/5YzL5UJlaSAcogABAABJREFUZaV7WNKUrq4upKam0vqPIYyuM2SpZvekC9eqJyB3PLdt2wYAaG5uxp/+9CfBvqysLHdX3FdffVWwz2q14p133gEAxMdTV75IYTabYTKZYDabvXocz3FzC88U/xWeS/kyRCaR4upVO3FRxga/xREoo8deFGwzMgUUSdmQx4nfhXi5OUMiF+UM8ZY/cma+olOhUKC8vJyKzhBH1xmyVIxEOrtBnED8LCCv6sYbb0Rs7OQdnz/84Q+49dZbcejQIQCTax9efvnl4Hkeb7/9Nh544AE0NjbixIkT+OxnP4uhoSEwDIPy8vJAhEpCmHN8HOCEKyEpE/w0oc8CgzzfaHwX//vxkzjWcRpGuwlKmcI/MQSQyzgKc+1RQZsiZRUYqQxMmF4cCSHEn5xO54JFp1brz8nxCCHBZIQRfn51LD6qKyQFpKutSqXCz3/+c3zta18Dy7KoqanByZMnccUVkzNhfv7zn8cbb7wBnufx1FNP4amnnppzjrvuuisQoZIgMDWhlLfsQ8PCBobxyx1PTzUnz/NgLozo/LDjJJpHzuNw2zEwYHBP+Sdw3drQnvV1/MQrAD/joshIoExdhejNe8QLaobl5gyJXJQzxFu+zBmn04mqqqp5i06NRuOz5yLioesMWSqLyy7YZsO0s23AblXs2rULf/rTn5CWlgae55Genu7et3btWvzwhz8EMPkBfuZ/APC5z30OmzZtClSoRGQSicT9nzdsF8YDT5Gq1ZAF+M3b7LSiZXR6QggePDJCfDZbzmHFxOmDgjZFUja0azZBogqOb+SXmzMkclHOEG/5KmcWu9NJRWf4oOsMIUIBueM5ZefOnXj77bdx8uRJJCUlCfZ98pOfxJo1a/DYY4+hsrISDocD+fn5uOeee7B79+5AhklClK2vX7At1agh82dXJQ9fRtWMNAvGfsqlcuQnrPJfDAEwcuQ58C6noE2ZtgbqzEKRIiKEkNA0VXSaTLNmYKeik5CIxnFc4O4GiiighScw+e3Pli1bPO7btGkT3dkky2YfHBRsS9UaMFLpPEev0DxjPIdtEyhNKsCwZRT95kGkRiVBIQ3dySF4joW5+oigTRabCu2q9SJFRAghoWm+olOpVKKsrIyKTkIimEwixcxRnpLFFowPUQEvPJdrZGTEPUERCW8jIyOT3/xIJF79mztGRgXbMp2f7nbOezFgIGEYrInLAeJzwXEcWJ71TwwBYq4/DtY8JmhTpa+FZlVwzdK73JwhkYtyhnhrJTmzUNFZXl7unt2fhBe6zpClilJoMD5jW7qENeNDUUgUns899xwefvhhnDhxQuxQSAB0dXXB6XRCLpd7daFmZ01XLlWp5jnSf8xOK6TyyQ8QEokECkkI3+3keYwfFy5xJI9LQ/y1nxcpovktN2dI5KKcId5aSc5MTEzMWVKDis7wR9cZslSseUKwzc9apSFc+LXwHBkZQUtLCwYHBxEXF4fy8nIolcolP76pqQk//elPcfbs2cUPJhHPMTIi2DaU+H82OZ7nwVy4A8ryHGJUetikgIOdHBO5NX2d32PwF3tXPey9zYK2mJ13QhIGy8MQQkggxcXFoaCgALW1tQCo6CSECHEO4Tr0zBLWig9Ffik8Ozs78dvf/hZvvfUWWHa6q6FKpcK9996L//iP/4B0gbF3NpsNf/jDH/D3v/8dLMsKPtyT8Jeenu7umrJUPM/PWU7FUFzk69BQP9iMPGWix31SRoLL0jZBGRcLu8uBXmM/ErRx7seF2iRDYydeE2zLDInQrvU8Pltsy8kZEtkoZ4i3VpoziYmT7x2tra0oKyujojMC0HWGLJVeqoRlxrYsTJdT8XnhWVFRgS996UsYGxsTzO7JMAysViv+/Oc/49y5c3jsscc8Fp/vvfcefv7zn6O3t1dQcE5dsEn4W053FNfEBHiXS9CmiIvzVUgAgOeqX8cLNftx55prcW3yZgCTXSHqfvFfYC0WSFUqFPzkRwAApUyB1KgkyKVyvFz3Jp6uehm3Fl2H24uDY93LpVAm5cA1MQRHbwsAwLD5OjASP03WtELUhYl4i3KGeMsXOZOYmIj4+HgqRCIEXWfIUs2+v8aE6RhPn175HA4HvvnNb2J0dHqSF4VCgfj4ePc2z/M4duwY/vjHPwoea7FY8IMf/ABf+tKX0NPTMx2gRIJ77rkHBw4c8GWoJMzYh4V3OyGRQBET7bPz1w8244Wa/QCAZxrfwP7ODwEA1u5uWM63wz4wCEtHJ6zd07mrkCncRScAvFCzH/WDzXPOHYwcAx3geQ7R225G/O4vQrNmM3Sll4kdFiGEBD1+kS5yVHQSQiKVT69++/btQ3d3NxiGgUqlwgMPPIBTp07hww8/xMmTJ/G1r30NUqkUPM/jr3/9q3t2t76+Ptx222146aWX3Hc5eZ5HaWkpXnjhBfzgBz+A1p/rMZKQZx8UFp6KmGifLqWSn7AKd5fe5N5+ru0QDvSdgLG+QXDcy4eexOsNh9A90ScoOgHg7tKbQqa7ran+IwCTBajLOAJVRj6kKvobJISQhTgcDpw+fRrDs78MJYSQBYy4bIJtR3je8PRtV9ujR4+6f/7Nb36DK664wr2t0+nwpS99CXq9Hvfffz9sNhsOHTqELVu24I477sDAwID72KioKHz961/HnXfeGdCxnTzP4/XXX8e+fftQV1cHi8WChIQEbNq0CZ/85CdRWlq64uew2Wx45pln8Oabb6KtrQ0mkwlxcXHYsGED9u7di/XraX1EbsZMXkv9ZliTmYGU6/dAEW2AY2wMEoXvJ8C5qeBqAHAXk/u6jyD+rAIz586VtHbjHxUv4KOO02gaaXO33116k/vxwc7Tt/Wcw+bhyOCxnJwhkY1yhnhrsZyx2+2orKyExWJBTU0NiouLqatlhKPrDFkqM+cQFGWueY8MbT4tPJubJ7sRrlmzRlB0znTXXXfhsccew8DAAE6fPo2XXnoJ/f397rucV111FX7yk58IuucGgs1mw9e+9jW89957gvbu7m50d3fjtddew3333YfPf375S0nU19fjP/7jP9DR0SFo7+vrw/79+3HgwAF88YtfxH333bfs5wgH1dXV7unHl1rscw4HZFoNOKcTcr0ejMw/EzbfVHA1OLsdzzS8AfA80NYt2J824AB4PmSLTgAwVhya06bO9v8MwSuxnJwhkY1yhnhroZyZWXQCkwVHdXU1SkpKEBMTI0a4JAjQdYYQIZ9+Oh8eHgbDMNi0adO8x0gkEmzcuBH79+/H/v373RdpnU6Hn/3sZ9i9e7cvQ1qyH/7wh+6iMy8vD7fffjvi4+NRU1ODZ555BhaLBQ8//DCSkpJw4403en3+zs5OfPrTn8bIhSU/LrroIlx55ZWIjo7GmTNn8Pzzz8Nut+PRRx9FcnIy7rzzTl++vLDH2abvyPEsC37GbMq+dn3eZeAcDhw+cxAqh/DuoNrBI36MxVDM5J9WqBWdPM/BZZzbRUyVUSBCNIQQEvzsdjsqKipgtQqXQ1AqldBoNCJFRQgJJeE5h+1cPi08py66i92tTE9PBzA5oRDP88jNzcWf//xnZGRk+DKcJTt69Chef/11AMDWrVvx2GOPudcb3bNnD2699VbcfffdGBsbw4MPPogrrrgCOp3Oq+f42c9+5i46v/nNbwrunF533XW4/vrrsXfvXjidTvz2t7/FLbfcAoUfuouGAq1WC5fLBZkXdy1NzS2CbXm0wddhCezJ3AH1R7UARufsSxtwYChGFoJFJ4++534FiUIFWWyKu5u7VKMHwwR3F6Hl5AyJbJQzxFuecma+olOtVnu9djkJP3SdIUslk6sE22E6xNO3hafL5QLDMIteaGdOFJScnIwnn3wScT5e+sIbf/nLXwAAMpkMDzzwwJz48/Ly8OMf/xjf/OY3MTY2hueffx6f/vSnl3z+jz/+GB988AEA4JZbbvHYXbe8vBx33nknnnzySYyNjeGjjz7Czp07V/CqQldeXp7Xj1EmxINzOMDa7QDP+2SMZ9sTf8XQ0WNz2nmOB3geMWaTx2+otlWacHETD/WbL+AkXpizP37HduT8v0+tOD5fs3XWwdp8CgAgUeugTF0DRXIO9BuuETmyxS0nZ0hko5wh3pqdM1R0ksXQdYYsVdLmMnxgq3Nva8J0QkdRvoKZ+c3PV7/6VVGLzrGxMRw7NllcXHzxxfPedd29ezcefPBBDA8P4+DBg14VnlN3U5VKJb7+9a/Pe9ytt94Kp9OJmJgYUX8noSh282T3bp7nMVFbu+Lz8TyPoWMfwTE84vVjFS4AE2Y4YPa4f/jY8aAsPMeOThfJnNUEe3cDFCm5AZ3gixBCQgEVnYQQX2IUcjg1073LWGVwrpu+UqLf+7/00ktFff5Tp065Zx3bunXrvMdJJBJs2rQJBw8eRGVlJcbHx2EwLK075zvvvAMA2LZtGxITE+c9Lj8/Hz/72c+8iJ4Ak2M6WZsNUo0GzrExOMfGEbftohWd02U0wjk27qMIhRyjo3BOTECu1/vl/MvhHOmFtbVS0KZMXQ3t6vnHaxNCSCSy2WyorKycU3RqNBqUlZVR0UkIIfMQvfAUe7a3pqYm989r1qxZ8NhVqybXYOR5Ho2NjQtOojRlYGDAvZ5XeXm5u93pdKK5uRmDg4OIjY1Ffn4+jQFYJktnJyq+9k1IVCoo4+OgjI9H3EVbgRXcqZPr9Vj/x//B+7/7JXR1nT6LtT1bhzObE9Dc8hbuWXerz867UuMfvy5skMqhSMqBMoW6CRFCyBSbzYaKigrYbMIlpqjoJISsRKJSj52j0z3lZNHezSUTKkSvdMTuxtfdPb0cRlpa2oLHJicnCx63lMJzaokZYHJSJafTif/93//F008/7Z5sCACio6Pxuc99Dp/+9KchlYbn7fWlam9vdw/Gz8rKWvR4+9BkYc/ZbLB2dcNlNoPxwXpZyqQkvLxNA1VqNC45Y0Li6PJXVRqIkeHIeh26kxQAzLB0nQ2awpO1mjBR8Y6gTZmcC+2ajaL/fS6VtzlDCOUM8VZjYyOamprgdDoRHR3tbtdoNCgvL4/YCQHJ/Og6Q5ZKykigmDlxiMt/qzOISfTCU2wzi7/F7r7OfKMZGxtb0vn7+vrcPysUCuzduxcVFRVzjhsbG8NDDz2EiooK/Pa3v4VcLl/S+cPR+Pi4e92rpXAMCZf/UPpoDVijw4xxuxHDSQo8c3UMCtts2FZpgsa29EmvzSoJPirTojZHBV4yXcSN2SYwYTdBrxT/Gy3j2bcBdmZRzUCZugrKtLWixeQtb3OGEMoZ4g2n04nq6mrYbDbBl8NUdJKF0HWGLBkjgTwuDbYLk2TyCvE/H/pDxBeeM7vLLNZFZuYby+xuNvMxm6dvm//6179GZ2cnVq9ejW9961vYtGkTWJbFBx98gIceegi9vb14++238bvf/Q7f/va3vXwlvtPc3Iy8vDxERUW52+x2OxoaGgBMFuCZmZlzHjO1JuvsRZKHhobQ09MDAMjIyBAU+CzLoqamBgAQFRWFnJwcwWPPnz+PiYkJAEBhYaGgO/LY2Bg6OjpgmzWZkOLCxEznzp0Dz/NQq9VYvXq14Jiuri73lw5r1qyBSjU9jbXJZEJraysA4PsbvoS3ej/Eia6zqMlTg2OAq44b5/nNzXW0XIu6XLWgrSAqF7esuXZO0dnU1ASr1QqGYVBSUiLYNzg4iN7eXgBAZmam4EsQl8uF2gu/A71ej+zsbMFj29raYDROxlxUVCT40DQyNIiRYy9j5v1heUI6ZLpoMAyDqqoqAJMfrqa6mk/p6OhwfwGzdu1awd+P0WhEW1sbACApKQlJSUmCx9bW1sLlckGhUCA/P1+wr6enB0NDQwAmZwScOQu21Wp1d4+Pi4ub00vB5XKhqqoKEokExcXFgn0DAwPuL4Kys7OhnzHG1ul0oq5ucjY5g8Ew55vplpYW999ycXExJDPuqI+MjKCrqwvAZK+G2NhY976pReSBydm8Z89w2N7ejvHxybHEBQUFgg8nExMTOH/+PIDJ3hazx4dXV1eD4zioVKo5wwS6u7vdXfxXr14NtXo6B81mM1paJpcfio+PR2pqquCx9fX1cDgckMlkKCwsFOzr7+9Hf38/ACAnJydkrhEAkJKSgoSEBMzmdDrR1NS07GtEQkICUlJSBI+tq6tzf9gsKBCugdvb24vBwUEAQG5urmBpLpvNhsbGRgBAbGyse+mxKWJcI0ZHR9HZOTncIDU1dc5yaaF2jWhsbITNZvP6GjH1XmKz2dzzQmi1WpSVlUGhUNA14oJwu0as9HOE0+mEJ3SNmBRO14iVfo44U1ePznEOgBw8eCgArIF414ipHPQ1vxSe1dXVePnllxfcP2Wh42a76aablh/UPFyu6Ts9i31jOXP/zMctZOoiCgCdnZ0oKCjAP//5T8GF5LrrrsP69etxyy23YGRkBH/7299w9913L9r1119YlnW/sU7hed59AWXZubf/XS7XvBdYjuPc+2afF4B739TvtKCgADzPg2EYtLe3u/fzvPBO41RMnEYDwxWXw5CcBNZqhSol2X1enuc9jp2dGe985wWAZGUcvrn986gdaMT/fPQX5LfNXbdzIfnnbe7CM1qpxzVxO/DmESl+f7oL+qhhPPzVSyC5cCfU6XTC6XR67N4683e4ULye8nKhfxt700lI7CZBmzJtDfSb97hjmu+8LMvOG9PMeD3li9PphMvlElx4l3Le+fJwKmcaGxtht9sXPe9C+e3t79Db/J7vvMv5HXIc57Fr/nJ+h7Njmv242ecV8xox33kXeq2zz1tQUOD+UOkpruWedyrepbxWb/+WxbhGrOTfJpiuETPP63Q6vb5GAHAXJVarVVB0AnSN8HTeUL9GTJ13pZ8jPH05RdeISeF0jVjp79DW1IQ1x3rdbTalBLhvOqalnNeX1whP/5a+4JfC88CBAzhw4MCCx0z9UXz/+99f0jkZhvFL4TnzGyqn07lg8elwONw/L7VbzewkuP/++wVF55SUlBR89atfxX/+53/C5XLh5Zdfxpe//OUlPYevSaXSOX9wDMO4v0XxlKAymWzeriQSicS9z9Mf8tS+qQv7zPPMPO/sC+lUTDx4SDVq8CwLiUIBRiJ1n4fneY9xLeW8M+OVMBLIugeR0e/5ojGfjD4nokwuGHUyjNknYDTL0DMymUcDY3a0900gJ9XgjndqLdzZZv4OF4rX05vjfP82PM/Dce5tQZs8IROGjbshkSncMc13XqlUOm9MM+P1lC9yuRwMw3h93vnycKpNoVCA4ziPeTbzvAvltze/w9mvdSn5Pd95l/M75DjOY1zL+R3OjInjuEX/bcS8Rsx33qX8Lc88py+vEZ7i9XTelfwtB/oaMfu83v7bBNM1YuZ5WZZd1jVCoVAgNTUVDodDUHQCdI3wdN5Qv0ZMnXel14ipa42neOkaEV7XiJX8Dhlm/vldxLhGeHr9vsDwnr6yWqb8/HwwDOPxW7CVYhjGfQvbl+677z688cYbACaXVpnZLWS2t99+G1/5ylcAAD/4wQ9w7733Lnr+v//973jwwQcBTN6Wf/PNN+c9dmRkBBddNLkMyI4dO/DEE08s+XWshMlkcnd/ASa7O3gqjoNV38G34BidvhOpTEhA0q7Lff48r3/hXsT0mRY/cJa2HC1evUiLW4uug2qkAP/3yvQd/8/dVIwbLhZn5lhrRy16n/yxoC3xE9+GLn/+ZYUIIYQQQohvHX38t8BrH7q3bUoJrnjuedHi8Vdt4NM7nkuZ5TXYzOyfPTY2tmDhOXNCoZljNBYy8x9p9riD2WJjYxEdHY2xsTEMDAws6fwEgqITALQ52T5/joGedkTPU3SOayU4WazFpmozDGYP3bP6rPhm0eexpXgHfvHXE4J91S3DohWe48dfEWzLopOgXRN6f8OEEOJLU+tzzhz3SAghfiWTgpt5k1HmnzuOYvNp4fnkk0/68nQBMXMAdW9vLzIyMuY9duYMtbMH289n9sDvxUx13fFX3+pQMDEx4e4uOfOLgaWSKH0/u+CZP/wWnr6SqMtW4b1NOjjkEjRlKnHpSSMKztsFx+isHHqefR5c4XZUtwhn4D3XMgSO493jPAPFOT4IS9NpQZt+47XubsqhZqU5QyIP5QzxxGq1umeeLy8vFxSflDPEW5QzZKnSLrsE7ydYwLpY8OChU2gXf1AIivhZbWfODtXU1ITNmzfPe+zULFgMw8yZ3Ww+M2eJmrlmqCcsy7rvqs6evSuSnD9/3j3b2+yZ7WbjPAy0ZhjffUtUP9iMOJcC2rpOQbtdzuDwpig0Zk+PEXbIJXhrmwHtqTZcdtIIpXO6yznf2Yez5xpgsgrHiJosTsE4z0AZPvR3ADO6xEvl0JXsDGgMvuRNzhACUM6QuSwWCyoqKtzzOVRUVAiKT8oZ4i3KGbJUrvEBuMb64XQ4wAOwSRZeaSNUhed9XC+sW7fOPaj2xIkT8x7HsixOnjwJYHIs61K/uYqJiXEXqU1NTYK7prPV1NS43/BmT2tMPLMNDMDWPwDn+AQ4hwM8z0MRt7Ru0It5rvp1/OTwwzj4z9/DrpC4y7SeBDmeujZWUHRGmVlcfNaEKDOLhmwVnro2Fj0Jk3llVTI4m6/BOwfe9/g851qGfBKvN3i7DYxiOn5FQgZkGvo2lhASmWYXncDk8h9Ty4oQQog/uYyjcE0Mg7EZIbEZwVjGxA7JLyL+jqder8fWrVvxwQcf4PDhw+jp6fHYjXb//v3u9ZquvfZar57juuuuw+9+9zvwPI//+7//w49//GOPx/3zn/90/+ztc4ST5ORksCzrcQau2cbPVmDw3ffc27IoHTLvumPFMdQPNuOFmv0AgNcyzbh7z2eRKkvAi//6H5xbrQY/o2vs1qQS/Fv6FdinHIWxrg9Wlx1WAE/GA7JoHqwU4MYYyHk1BHcZL/jH/jq8+G7zvLFcXJ6Gz9xQPO9+b/GsE8q01VCk5ME53A17TzOUqasWf2AQ8yZnCAEoZ8g0T0UnMLkm5Nq1a93blDPEW5QzZKkS5FpsH5teglGipK62YetTn/oUPvjgAzidTnzjG9/A448/LpgUqLm5Gb/4xS8ATC7eetttt3l1/jvvvBP/+Mc/MDIygn/9618oLS3FjTfeKDjm5ZdfxiuvTE72sn79epSVla3wVYWu2QvcLsRpFE74w8jkHqcR91Z+wircXXoTnq56GQDwdNXLyIvJQstajfsYlUSBO3J2YWfmJvAmK96t64PVygCYvJPIA3ACwIXewE4PRScA2J0s7ONz11eacrSqx6eFp7VtcjFnRiKBIiEDioQMGDZc47Pzi8GbnCEEoJwhkxYqOktLSwXLDFDOEG9RzpClkjESaLjpz4kSHw4bCyZUeGJy6ZKrr74ab775Js6ePYsbb7wRd911F1JSUlBbW4t//etfMJvNAIDvfOc7c2a0PXHiBO655x4AwObNm+dMshQTE4Of//zn+NrXvgaWZfGd73wHb7zxBi6//HIoFAq8++67OHjwIABAqVTi/vvvD8CrDg8uk7DwlPpwYqGbCq4GAHfx2TLaDqVUATvrQIwiCjclbkVZ3BrIJDI8d/4ELDYlAN9PEjQ6Yce4yQ6Dbmn9/W2ddVBlFMy/v2fu3VWp1rDo4wghJJyYzWZUVlZ6LDrLyso8rplHCCFk+eiqesGvfvUrmM1mfPjhh+jq6sJDDz0k2M8wDL7yla/gzjvvXNb5r7zySjz88MP40Y9+BJPJhHfffRfvvvuu4Jjo6Gg8+uijWLUqtLs9BpJ9YFCwLVtgOZzlmF182lkHtHI1Rh1G/LXrbah630dhTC7ODNVDWaKGs3MtuNFknz3/9tJUfGpP4ZKLzpEjz2Lsg+cQe9leRG+7ec5+57jnZXrGjr2EkXf/ieiLb0fsJSvvqkwIIcHMbDajoqICTqdwwjcqOgkhYmjvbEfz4HQPC6nCgWzxwvEburJeoFar8fjjj+O1117Dyy+/jLq6OhiNRkRHR2PDhg245557sGHDhhU9x7XXXosNGzbgqaeewuHDh9Hd3Q2GYZCRkYFdu3bh7rvvXvL6oGSSy2gUbDN+GEcxu/g0O63ufTbWgTND9QAAicqKe3YnYY1hOx5/uRqtPePLfs7cVAM+e1MxSvLil/wYW2cdxj54DgAw8u7keOHZxaex8t05j+McVvfjxj54DpqcUrrzSQgJW/MVnXq9HqWlpVR0EkICbrSjB0lt09ckm2Luqg3hgK6uMzAMgxtuuAE33HCDV4/bsmULGhoalnRsYmIivv71r+PrX//6ckKMCNXV1e7px4uLFx7byFqtgm2pSjXPkSszu/j05Lasy3F9zk4oYmLw31/fiUMnO/CP/bUYNzvmfcxsBp0C9+wuxBWbMiH1cm1PVUYBYi/b6y46Zxef1o4asDYzpKrpAeu2zjrYzp9zb8detjcki05vcoYQgHImUq2k6KScId6inCFEiApPEnQ4jnP/txjnrDGeMj8u0HxTwdXoGu/Fkfa5y+7cmr4T16Vvc29LJQyu2pIFCcPgf549u+Tn+NR1Rdi1OXPZMU4VmbOLT8NFN6J/32/AWSYgi02BMnU1WNPonKLTU/fcUOBNzhACUM5EIpPJhMrKymXf6aScId6inCFEiApPEnRUKhWkUqlgNsH5cHbh3US5weCvsAAA/2/9HTjTcw4m5/SU1zq5GrtTtno8/r0znV6d//0zXSsqPAHPxadjqBOcZQIA4BrphWukV/CYUC46Ae9yhhCAciYStbe3zyk6DQYDSkpKltS9lnKGeItyhiyZXDg5pu+nqgwOVHiSoLNmzZolH8vZ7YJtZWKCr8MReKvliKDoBACT04oDvcexJ+tiQfvAiAVVzUNenb+yeRADoxYkxmgWP3gBs4tP07n35z021ItOwLucIQSgnIlE+fn5cDqdGBsbA+Bd0QlQzhDvUc6QpYqRaTFz1pJwLdDCc5EYEhF4ngc3axp8RWyM357v5bo3BWM81dLpmWZf6Hof+7uOCY5/93QneM9Ld86L5ycf5wvR225G7GV7FzwmHIpOQghZCqlUipKSEkRHR3tddBJCCFk5UQrPjo4O/PGPf8T/Z+/O46Mq7/2Bf86c2SeZTPaQBcKWEAgBFRBZRHErKKuCdaHVetXaeu21/dWltnWptt5a9dbr3t5aa91qVVRUFBQVEAVFwpIEkpBA9n2yzX7O+f0R5jBntsxk9sn3/XqlzTlz5pwn+M3JfM/zPN/nhhtuwIoVK7Bo0SK8/PLL4uv33XcfXnvtNY+1tQhxxQ2b4J7ZqbIj0+PpnnReOe1iPDn3NmycfIG4740Tn+K9hpGeRUEQ8Mk+7wlkTroG/7lxLnLSNV5f/2RfE4RgM1YfDIvWQZk/3etrlHQSQsYbZ/JJ1WsJIST6onrXNZlM+N3vfod3331XnGgtCAIYhpEkmVu3bsXrr7+Ov/zlL3j00Ucxd+7caDaTJAjbgOdyJcp0Q9iv4550XjXzMqzMXwhbXz8uLVoChpXj9bqPAACv134EVqPBdNU8tPUMe5zr/LMK8eP1FdCqFVgyJx/PvHkQn+1vlhzT1j2M6sZezJycGXLbBZ4DN+A53FemSaGkkxAyLrERWHaLEEJCoZMrpUNtw9P/EHeilngODAzgmmuuQV1dnd/enOHhYRiNRjAMg5aWFlx33XX461//innz5kWrqSTGWlpawHEcWJZFQUGBz+Ns3T3SHTIZWI33XsSxck86r65Yi1WTl8ExfDqpvKz4XHAWC/7dPNLb+crBzSgySgtYaNVy/OTyOVh2ZqHLPgV+cc1ZOKssF8+8WQmT5fSaTZ/sawpL4mmq/RbcUJ/Hft48BOOXbydN8hlozBDiRDGTvAYHB3HixAmUlZWFNcmkmCHBopghgWIZ6SDUZC0uFLWhtr/4xS9QW1sLQRCQlZWFn//85/jHP/7hcZxCocAvf/lLZGRkAAAsFgvuuOMOmN3WayTJq6enB11dXejp6fF7nKW9XbLNqlSQa0MryuPKPemcllGMYZsJX7UcQIepR/IAZeWEhdgwabm43SjbA9WpKaBlxRl44hfnS5JOV+edWYgnfnE+yopHYl6vU+LcM8LzB6pnx0vSHS43tt4d/4Txy7fDcp1YCzRmCHGimElOg4ODqKysRHd3Nw4dOgSO48J2booZEiyKGRIwwX0zOVPPqPR47t69Gzt37gTDMJg/fz6eeeYZ6HQ6r8cqlUrccMMNWL9+PW655RYcOHAAbW1tePvtt3H11VdHo7kkQdj7ByTbMpUSTJiebtd01UnndJavwhtH3kddb6O474ZJK7BUN1/cvrRwMWRKJV6v3QpW3wuhbAfWZl+F6y6aD5b1/4wnN0OLP/xkMT7c04hzZk9AZtrYem4FgUfrC3eBt5rBW03gho2S17NW3gzeNOixzmey9HwSQsavgYEBHDx4EA7HyOgRo9GIQ4cOYfbs2TS8lhAS14aU0iV37LLkrP8alcTz3XffBQBoNBo89thjPpNOV+np6fjzn/+Miy++GDabDZ988gklnuPE9OnTxbm//jgGhyTbrCZ8vZ0zsqfhilmX4t9H3sfVFWtRnlOK1w+/JzmGc388BWDVlGVgNWq8cnAzNpxxITaWnx3wNVlWhsuWTAmp3bbOk7C21Xt9jVGqkTJzMWTKkaQ2mZLPQGOGECeKmeTinnQ6hfO/L8UMCRbFDAlUv01aF8QBPkYtiayoJJ7ffvstGIbB+eefj6ysrIDfl5ubiwsvvBDvv/8+jh49GsEWkniiCXCeptVt6AqrDe/8zo3ll6EidwZmZE/DtrqdktdSFFqwPv6QrC27BDOypmJG9rSwticQlhOHfb6mKa4Qk073dT4TPfkMNGYIcaKYSR4DAwOorKz0GFabnp6O8vLysPV2UsyQYFHMECIVlX7c7u6RqppTp04N+r2TJ08GAPT3e1YwJeObYJcW8JEpFD6OHDtn8jg5vQilWVORm5INJauAQZkKHev7D0oskk4AGPhuu8/XZFq9ZNt9nc9kmvNJCBkffCWdGRkZYU06CSGEhC4qPZ7OG79zCZVg2E8lF2q1OqxtIomPs1ikOyI4lGVKxkTcvug/YHXYcLL7JI511GFqSn7ErjcW5pNHYO/2vnYoqzNAkZ7nsd9bz6e6aAbURWWRayghhIRBf38/Dh486DPplCXpHClCSPLheB6uj8kYKi40djk5OWhsbER1dXXQ7/3mm2/Ec5DxYXh4WJwT4W8+MOP2oSJ1RmnE2iRjZMjQGAAAvQPdWJhXgVTOtccz9gsuyVS+/62UeZOhnXqG19dck0/D0o0JmXQGGjOEOFHMJLZYJJ0UMyRYFDMkUBnqVLiO7ZQn6bzgqCSeZ599NhoaGvDFF1+gubkZhYXel5Vw9+WXX4rzQ2kdz/Gjvr4edrsdCoUCFRUVPo9z7/FUR+nhxIysqXAMDcNujK/h3z7ndzIMFDmToMot9vlew6J1Cd3TGWjMEOJEMZO4YtXTSTFDgkUxQwLFW6TFhYQxjBJNBFFJPNevX4/XXnsNDocDP/vZz/B///d/MBgMft/z7bff4uc//7m4vXr16gi3kiQax5C0qq08JSX6jRCi19PZs+0FDFV/6fN13jzk/QWGwVDlpxg+/IXXl1NmLkbmhdclbNJJCBk/nEukuCedmZmZmDVrFg2vJYQkJM7tMxwTxc+X0RSVxLOiogKrV6/Gu+++i6qqKlx66aXYuHEjZs6cKR5jNBpRU1OD2tpabNu2DZ988gk4jhOr4Z511lnRaCqJA1lZWeA4btSiEI4h6dMheUrkhrEIggAH74CC9V3AKJKjIgRBwFDNHnCDvcG/mefBmwZ8vjxc8xUyL7xu7I2LA4HGDCFOFDOJp7+/P6ZJJ8UMCRbFDAmUjlXA5LLNxsEUrkiISuIJAA8++CCam5uxf/9+9Pb24tlnnwVweo2t559/Hs8//7x4vHAq0582bRr++Mc/RquZJA7k5wdWtCdaPZ5D1mF8ULsDK6efDwWrOL0eVxSH3/PmQXDDkRna6xjqA2caAOtW9TaRBBozhDhRzCQepVIJuVwuSTyj2dNJMUOCRTFDAiVnpPcwWZIWF4ramBSlUokXX3wRP/zhD8GyLARBEJNLJ+c+50TsSy+9FK+++ipSYjGEksQ1zmr1WE4lEj2ePM/jvz68H/taKvHa4XexvW4nOod7/LwjMjcKVqtH0c1/hm7GwrCeVzfjHBT9+ImETjoJIeODRqPB3LlzoVKpAIz0JtHwWkIISRxR6/EEAIVCgbvvvhs/+tGPsHnzZuzduxf19fXo7++Hw+FAWloaCgsLMX/+fKxdu3ZM636S8cExOOixj43AQs0tg+0YsA5iwDqIE8ZmAMDGspVYVbA47NcajSI9D7mX/xLmE0fQs+0F2DoaxnwuZe5kZF50PTSTZoWxhYQQElnO5LOpqQnTpk2jpJMQkhQGOZtk2+7juEQX1cTTKTc3FzfffDNuvvnmWFyeJAFGLkf6gvkQbDbwNht4ux1MBOZQ7GuplGyr5SqcmeeSrMVgCL5m0iwU/Oi/MXhwB/o+eyWoIbiszoD0865CasX5YGQ054QQkng0Gg1KSkpi3QxCCAkbI2eRJGX25BxpG53Es729HXl5novXE+JNTU0NHA4H5HI5ZsyY4fUYRiZDypTJkn2R6PGs7qqTbKdr0lCcXgT7wGBU53i6Y2Qs9HMvBG+zoHfbCwG/L23ROujnXhjBlsVGIDFDiCuKmfhmMpmg0WhOz6mPAxQzJFgUM4RIRWWMyvLly3Hdddfh7bffxvDw8OhvIOOazWaD1WqFzWbzeQxnMnnskyl8V5wdq+vP2Igb512NZcULkavLQqYmPezXCISlqdrr/v6v3wvqPANBHp8oAokZQlxRzMSv3t5efPPNN6ivr/eoBRFLFDMkWBQzhEhFpceT53l8/fXX+Prrr3H//ffjggsuwOrVq7F06VKan0E8yOVyCIIAudx3eDIKJZTp6RA4DvbBwYitp5mvz0W+PhfLihfiYHsVZmRPi8h1/On94nUYd/4LGedfC8OideJ+S2sduIHuoM7lGOiGpbUO6vzo/xyRFEjMEOKKYiY+9fb24vDhw+B5Hs3NI/Pqp06dGhc9nxQzJFgUMyRQglzaeRL7O15kROU3ITc3Fx0dHQAAi8WCDz74AB988AEyMjJw2WWXYfXq1Zg1i4qckBGu67v6osrMQN73LoYgCBisOQqFPrJVWeUMi3kFcwAAvKSabmSfxluaqmHc+S8AQO+OfwKAmHz2fPy3MZ2zZ9vfUPDD34engXEikJghxBXFTPxxTTqdmpubkZqaitzc3Bi2bATFDAkWxQwJVN7smTjQUSNuK9XqGLYmcqLS3fj555/jpZdewpVXXgmDwSAumdLT04N//OMfuOKKK3DZZZfhL3/5C9rb26PRJJIsBAGpJdOhKYjsWlnee+ZPP4+K1HAwdVEZMs6/Vtzu3fFPGL98G/bBXlhbjo7pnNbmo7AP9oariYQQErKenh6PpBMAcnJykJOTE6NWEUJIdMgNqejPl4tf5gmUeIZk/vz5uP/++7Fr1y4899xzuOyyy6DRaMQktL6+Ho899hiWL1+OH/7whzQflPjlTPQYmSwi1WzjiWHROo/ks+PV34V0zt7tfw+xVYQQEh6+ks7c3FyUlZXFxTBbQgghoYv6oHO5XI5ly5Zh2bJlsFgs+PTTT/Hee+9h165dsNvtEAQBe/fuxd69e2k+KPGp9n/+F71790GeooNcl4LcSy7ChBWXhPUarYMdyNJmQMmGv2hRsJzDa53DbW1dJ0M633D1Hjgu6oM8JTbFkgghBDiddLqPGsnNzcWMGTMo6SSEjAsZCh3OGjCL28q0lBi2JnJiOttZrVZj5cqVWLlyJQYGBvDRRx/h/fffx759+8BxnGQ+aGZmJnbt2hXL5pIo6ejoAMdxYFnW57wex9AQOJMJnMkEK7rgGBwMaxsEQcAXDV9DJpPhvMnnIEeXCUEQPD4ERbPionvy6Q+j1ECmOr28jMBz4C3DAOcAwECm1mHo4A4YFq2PVHOjKpCYIcQVxUzsdXd348iRIwmTdFLMkGBRzJBAqVgFMhynR30wdt7P0Ykrbsps6fV6bNiwARs2bEBvby/eeustPP300zCbzeJ8UDI+dHR0wG63Q6FQ+E08XclTwvtkqM/cj801H0GvSsE3LZUoyZyCNWWXIFuXAZz6MOTxmSgKH5ICST7dq986CTyHgW8/gm7GQshTMyLWxlgIJGYIcUUxE1u+ks68vDyUlpbGXdIJUMyQ4FHMkEAJHAdGrgDPj9wTeY4Sz4hramrC9u3b8emnn+K7774Dx3GxbhKJU5Y2aREqweEI6/nr+06AF3gYLQMwWgbQPNCOtTPDO5R3rPwln+nnXe016QQARsYibf7KiLaNEEJGk4hJJyGERFKvQoWDxRUwDQ2B5wWolBok18J3I2KeeHZ2dorDaQ8dOiTud/5Bys3NxapVq7B27doYtZBE2+TJk8HzvN85vVlLF4Mzm8HbbOBtdijSDWFtQ33vCcl2mjoVOoV21PdF6/OStvRsz8RTJkf64suj04A4E0jMEOKKYiY2urq6UFVVlZBJJ8UMCRbFDAlU0xc7kfXut+K2RSUDfhjDBkVITBLPvr4+cT7nt99+K/4Bcv6/RqPBxRdfjDVr1uCcc86J6z9EJPxSU1NHPUaekiIZXqsOc7n9pv5WyXamxgAVqwzrNULRuflxz528A8Yv3/bZ45nMAokZQlxRzESf3W5HTU2NR9I5YcIElJSUxP3feooZEiyKGUKkopZ4Dg0NYfv27Xj//fexZ88ecRit8w+QTCbDwoULsWbNGlxyySXQaDT+TkeIhEwZ3qTwJwt+gBPGZjQam1HVWYvSrCniE0vxw1GMPiT1ffkWbO3Hvb7m7AUdj8knISS+KRQKzJo1S7J0SqIknYQQQkIXlcTz1ltvxc6dO2Gz2QBIK4FOnz4dq1evxurVq2niNQmI4GXur1wf3qeKOqUWM3NKUJY9HRdPWwa5LD7WCjV++Tb6drzssV9VWApr81EAlHwSQuJXRkYGysvLcejQIeTl5VHSSQghABw8L0nKGCTnfTEqief27dvBMIyYcGZkZODSSy/F2rVrMWvWrGg0gSQQq9UqLl2iUqk8XucsFo99bIR6yBmGgZyJn6TTdV6nqnAGGLkSjoEuZK28Bebab8TXx1vyOVrMEOKOYiZ2MjIycNZZZ0Gn0yVU0kkxQ4JFMUMCVbRsCfakDEIQeAgAtKrR64okoqgNtVUqlTj//POxdu1aLF26FCwbHx/mSfw5evSoWH68oqLC43VvPZ6sWh2NpnmK0jqe7kmnung21EVlp7ZmQJlVCFV2EQCMy+RztJghxB3FTGylhHkJrGigmCHBopghgeIdZlhlZvFhBSd4drIkg6gknr/73e/wve99jyZZk7CwGY2wDwxAplRCplSCYVkwMakY5/KkPoL5p/+k81RLTvUauC+1Mp6ST0JI/Ojo6AAAmkJDCCEBcPS1w97bCuenWVnsFx6JiKj8VBs2bIjGZUiSMBgM4DjOZ69437ffof2DreK2KjsLE7+/MWzXd/AcOoa6MCElJ+Yl0C1N1ZKkM+2ctWDk0kJKmuJyyba35FNdNMMjWU0mo8UMIe4oZiKno6MD1dXVAEYeiuWEuep4rFDMkGBRzJBApcs1mDt4upeTVSRnkdXkTKdJQps4caLf17nhYck2w4YvjDmewz8PvAmNQoN0jR4qVoV8fS6mZ04O2zWCoS4qg2HpRhh3/gsZ518LNiUddmOH9JiCEo/3uSafhqUbkzrpBEaPGULcUcxEhmvSCQBVVVUAkBTJJ8UMCRbFDAmUWiZHtv30VDKZIjnXfg1r4vmDH/wAwMgTzhdffNFjfyjcz0nGL/vgkGRbFsYJ+y0D7figdgfkMjkMaj0Maj2+P3uV7zdEYYpnxrlXQju5AoqMfBi/+dCjGAfDKry+z7BoXdL3dBJC4kd7eztqamo89g8MDCRF4kkIISQ0YU089+7d67VCna/9gXJWBCMEABz9Rsk2qw5f4tnQ1zRyDd6BblMvTHYzcnRZ0oPEdTwhTTwjGKPqojK0vnwfbO3HocybAmXOJMhUWiizCkd9HyGERJqvpLOwsBBTp06NQYsIISRxdPZ049jQ6SHZcocDxbFrTsSEfaitryRRiFL1T5L87AODETv30e56ybZBrUeKShf4CSKUfDoGemBpPAxAgKXxECyNh2BYfDm0U8+IyPUIISRQoyWd9OCYEEL8a62phaHq9FBbi9Icw9ZETlgTz08++SSo/YR4U1dXB4fDAblcjmnTpnm87r6OZzjX8DRaBiTbaWo9dIrYr6U0dGQnXLtXGaUGqWdeAlmSrvMUrNFihhB3FDPh0dbWhqNHj3rsLyoqwpQpU5Iq6aSYIcGimCFEKqyJZ0FBQVD7CfHGZDKJ6155w5mliac8NXzrwf1yyY/RZ+7H8b6T2H1yH84pOmuUD07R6ckfOvy5ZDul7Bwo9JlRuXYiGC1mCHFHMRO68ZR0AhQzJHgUM4RIxX1VW7vdjvr6enR3d2PJkiWxbg6JA5zJJNlWT5gQtnMzDIMMrQEZWgPmFfhY7PnUhymGYaIyhNza0Qhb50nJvpTZyyJ+XUII8cVX0jlx4kRMnjw56ZJOQgiJJI6Vx39SFgZR+RlnzJgBmUyGX/7yl7j++uuDeu9TTz2F5557DtnZ2fjiiy8i1EISTyoqfCR8p7gPtVVmZESyOTE3dHCHZJtNzYR64swYtSY+jRYzhLijmBm71tZWHDt2zGN/siedFDMkWBQzJFBZylS4VjBJ1j7yqC0SM9aeIY1GA0EQ0NvbG+YWkUQl2O2SbTaMy6kIggAH5wjb+UIl8BwGDkjnSGuKZ2OkpC4hhETXeE06CSGEhC5uVycVBAFNTU3YsmULAECrpSIqBOBtNggcJ9mnzArPXMdhmwlvVn0IOx944hnpobbmxsMQbNLKZoxCRR/uCCEx4XB43h8nTZpESSchhJBRhW2orcPhwLp161BXV+f1dUEQ8Mc//hF//OMfgz43wzAoKSkJtYkkCXhbSkWemhqWc79/7FMAQHVXHZSsHJnaDExI9Vz0/PSHq8h/yOr55B+SbVZnAKtLi/h1CSHEm4kTJ0IQBDQ0NAAYSTqLi4sp6SSEkBCoWYVkqC2bpKtQhi3xlMvleOCBB3D11Vf77AUaa+8QwzC48cYbQ2keSSDd3d3geR4ymQxZWVmS12x9fR7HKzPSQ76mxW5B+1AXDGo96nobAQCF+jyviae7SPV6cjYL7D3Nkn2KnEkwLFoXkeslMn8xQ4g3FDNjN2nSJAAj977i4uLYNiaKKGZIsChmSKCUMlayHbdDUkMU1uJCZ5xxBn74wx/i448/luxvbW0FwzDQ6/XQ6XSjnodhGLAsi5SUFBQWFmLjxo1U0XYcaW1tFcuPeySePT2SbUYuhyIl9OVUDncexa4TewEAarkKGRoDbjjz+yGfNxQD33wISOabMlBmT4RMroxZm+KVv5ghxBuKmdA4k8/xhGKGBItihgRK4HnpdozaEWlhr2p711134a677pLsmzFjBgDgxz/+cdBVbQlx5RgalmzLFAowLOvj6MAd6TxdLMPisMJkN6MsZ/rob4zgnWGwUlpUSG7IQeaFP4zcBQkhxAWtP0gIIdFhVWsk25ws9M+28ShqS8ZEY71DkhyKiorEoSnurN3dkm1GGZ4PRf1W6dzRLG0G5H5+6RmGiegUT264H46+dsk+Zc4kmkflg7+YIcQbihn/mpubceLECcyZMwcpYRhVkgwoZkiwKGZIoHrcPofawPs4MrFFJfGsqamJxmVIkkhP9z1nU7BLKyrKFOEZdipjZFCxSlg5GwBg0cR5YzxTeBLDgQOfAK4Pa2QstNPG2qbk5y9mCPGGYsa3pqYm1NfXAwAqKysp+TyFYoYEi2KGEKmo9XgSEg6O4SHJtixMPZ63nn0dfjL/B2gf6kSDsQlTM4rDct6xsvU0Q56RD0dfGyAIUGQWIHXu+TFtEyEk+bkmncDIcNvKykosWLCAht0SQggJSVgTz9bWVvH7/Px8r/tD4XpOMj65j9hW5+aG7dwymQz5+jzk6/OCaVHYru/EmYegMORCYcgFb7fC3tUENsUAhqGhOoSQyDl58iSOHz/usb+oqIiSTkIIiSA774DrXTZZJ1aFNfFcvnw5GIYBwzCoqqry2B8K93OS5MVxnPg96144iOckm5r8CdFokg+RuS3073tf/F6mUEGVPw266TTM1h+/MUOIFxQzUr6SzilTpmDixIkxaFH8oZghwaKYIYHKUqeh32VbziRnvIR9qG241/Ak48+RI0fEaooVFRWS1xzD0qq2bADL80RElB9FqSZMje4FE4y/mCHEG4qZ03wlnVOnTkVRUVEMWhSfKGZIsChmSKB4u1WyLQhUXGhU8+fPD2o/IcHihk2SbXkYEs/OoW6YHRYoWAXkDAuNQo1UVewKacgUKskNiCrZEkIi5cSJE2hoaPDYT0knIYREDzdklGwzPCWeo3rppZeC2k+IN6mpqXA4HJDLPcPTvcdTrtOGfL3K9mr0WU4PcCg2FGJB4dzA3hyBjnzDOWsh8BxsnScwfGwf0hauCf9Fkoy/mCHEG4oZ30nntGnTUFhYGIMWxTeKGRIsihkSKA2rgGvXChvJheJjiH4TSNyZPHmyz9fCPdTWYrdgf9sh6FWp0KtSoGAV0CrUAb47/D2Rts6TUGQXgpGxUOVNgTK3mIoKBcBfzBDizXiPGUo6gzfeY4YEj2KGBErp9llPlqTlhSjxJAnFMSBdYDfUobaNxmZ823pI3NYqNFhQMGf0N7oOfw3T/GXONIDmv/4CrFYP7fR50JUsgGbKHIClxJMQEj6NjY1obGz02E9JJyGEkEiKSeLpa9jB3r178c4776C9vR25ubm45JJLsGzZshi0kMQjQRA8ejx5qyWkc540tki2WRmLnJSskM45Vqa6bwGBBzdsxOCB7Rg6shOTbn8BDEvPhwgh4dHZ2ek16Zw+fToKCgqi3yBCCCGw8A7JNufjuEQX1U+0e/bswXPPPYfa2lrs3r1b8tqTTz6Jp556SrLv7bffxrJly/DnP/8ZKpUqmk0l8YjnYZhTAd5uB2+zgbfbwepCKwLUPtQl2Z6WUQytQhPEGU73doZaA2i45mvJtmbKXMgUFPeEkPDJyspCVlYWuru7xX2UdBJCSGx1OUySpMyanCNto5d4vvHGG/jtb38LQRDAMAyMRiMMBgMA4LvvvsOTTz7p9X2ff/457rrrLjz++OPRaiqJscbGRrFXvLi4WNwvcBxSZ5RKjtUWhTYsLEWlQ0FqHtqGOsELPKakB75eXTiLzfJ2K0z1+yX7tLR2Z8B8xQwhvozXmJHJZJg5cyaOHDmCnp4elJSUID8/P9bNSgjjNWbI2FHMECIVlcSzq6sLDz30kLitVqvR29srJp4vvPACgJFlI0pKSvDjH/8Yvb29eOqpp9Db24utW7fi2muvxVlnnRWN5pIYGxgYENe9csXb7R7HsupACwF5t37mCqyfuQJ2zo62wc4gejt9ZJ1jTEZNxysB3nVgBQO5IXdsJxuHfMUMIb6M55iRyWSYNWsW+vr6kJmZGevmJIzxHDNkbChmCJGKSuL5xhtvwGKxgGEYrF69Gg888ADUpxKG4eFhfPbZZwAAlmXxl7/8BTk5OQCARYsWYe3atbDZbNiyZQslnuMcq9WicMPlEDgOpsYTUBjSwITpZq5gFZhoiN1Qs+GqXZJteVoWlOl5MWoNISTZyWQySjoJISROOGTsuKj4GpWfcc+ePQCA/Px8/OEPfwDLsuJrX375JWw2GxiGwcKFC8WkExgpQ33eeefho48+wt69e6PRVBIHZs6cKQ7JdsUwDBi5HJDLkVpaEpZrGS0DqOmqw9mFZ3hcLxBCGCraCjwHU+03kn3yzAKwKYaQzz1e+IoZQnxJ9pgRBAEtLS3Izc2l3pYwSfaYIeFHMUMCNaFkOmrrq8VtVp2cNT6isk5DQ0MDGIbB+eefL0k6AWDnzp3i90uXLvV47/Tp0wGMDNcl44NcLodCoYj4gsuCIODjui9QnF40tj8KYfpDYmmqgWC3SvYpMvPByFgf7yDuohUzJHkkc8wIgoDjx4+jrq4OlZWVsHuZpkCCl8wxQyKDYoYESjkhC+0zVOJXf2loxTPjVVR+E/r7+wFA0pvptGvX6SGG55xzjsfrzoTAZDJFqHVkvOoy9QIA9rcegkauhgBgUdGZUCtGnzcazoeXQ1XSCs8yXRrkOkP4LkAIGTecSWdTUxMAYGhoCJWVlZgzZw71fBJCCImpqCSeSqUSDocDZrNZsv/48eNobW0FwzDIyMhASYnn8MnW1lYAQEpKcmb+JHAt77yLti0fQq7TgdVpkX7GXBResX7M5zveewIAMGQzYcg28mBDJY/u0AZBEGCq3SfZp8gsgOGctVFtByEk8QmCgPr6ejQ3N0v2Dw0Nob+/H1lZsVmjmBBCiH96uQYzhk+PflPJkjPviUriWVRUhKNHj6Kqqkqy31lUCACWLFni8T6r1YovvvgCDMNQGepxxGg0inMinJWPAcDW2wdrZyecv5aq7OyQrvNR3efQKjTQq1KhV6WAlbHBD7kNcYqnvasJ3GCvZJ8is4CG2QbJV8wQ4kuyxYyvpBMAZsyYQUlnGCRbzJDIo5ghgdLJVSiyOsRtmTr0GiLxKCqJ59lnn42amhrs2rULX3zxBc4991x0d3fjxRdfFI+56KKLJO/heR6///3v0dXVBYZhcPbZZ0ejqSQOnDx5Uiw/7nqjtnZ1S45jZGOfojxsM+FI5zHJvpUlywM/AcOEZbzt0NGvpadVacHSMNug+YoZQnxJppgZLenMy6MK2eGQTDFDooNihgRKEHjJtiNJ5+ZHJfHcsGEDXnrpJfA8j1tuuQUlJSVoaWnB4OAgGIZBXl4ezjvvPPH4559/Hh988AGOHj0KAFAoFLjiiiui0VQSx0wnmyTbnNvQ7WA0D7RJthkwuHjauWM+31gNHdoh2VZk5EOdOznq7SCEJCZBEFBXV4eWlhaP18rKypCbS+sBE0JIvDNpUtA+dwkGjf3geR4KpRbTYt2oCIhK4jlt2jTceuuteOKJJ8BxHGpqagCM/MFkWRb33XefpOLXa6+9hra2NnGpijvvvBNFRUXRaCqJAxMmTADP85C59WhmLloIS+sk8DYbeLsdmsKxr7vZ1C9NPPNSspGfGt0PaI6BHjj6OiT7FJkF0JbOj2o7koGvmCHEl2SIGUo6oysZYoZEF8UMCVTtZ5/B8t5uMTGzqVngypg2KSKiVt/5Jz/5CQoKCvD000/jxImRoi5lZWX4f//v/2Hx4sWSY6dMmYLW1lZkZWXhV7/6FVauXBmtZpI4kO1j7qZcp4WmIP/0dmrqmK9hUOtxZv5sNPe3onO4B5PSC8d8LlGQQ29t3c1QZBbA3tcO8BwYuQLytGwwDP2BCpavmCHEl0SPGUEQUFtbKxbgc0VJZ2QkesyQ6KOYIQFzcFDbXeZ1ynjfxyawqC4stGbNGqxZswb9/f1gWdZnpdqrr74a3//+97Fs2TIq/05EnEk6tDZl2tQxn2teQQXmFVQAACwOKyx2y9gbJoxtAri1tRa6mYshcA44jJ3g7RaknfW9sbeDEDIu+Eo6GYZBWVmZ16XLCCGEkFiLyYq2aWlpfl9fvjyIIi9k3BJCmHjNCzw6h3uQq8uCWq6COuhlVLz3bgZTFVczZS4cvW2wGzugyBzpyZWnpgfZDkLIeEJJJyGEJB8bZ4cy1o2Igpgknq7sdjv6+/vBMAxSU1OhVI6Hf3YSDnK9fszvreo8BrVcjVxd7JYYUOdPA/KngRvuR/+3W6EpLo9ZWwghicHhcMBoNEr2UdJJCCGJrWjefFSaT9f9UKl1MWxN5MQk8dyzZw/+/e9/45tvvkFnZ6fktezsbMydOxeXXnopLrnkklg0j8TYoUOHxPLjs2fP9nmc3MdQ7dEIgoCqrjoAQK/ZCJVciWkZxdAptWM+X0gYGVLKFkGRFYZ5puNUoDFDiFOixoxCocCcOXNQWVkJk8kEhmEwc+ZMmksWBYkaMyR2KGZIoGSpagwU6WCxmCEIArRyWsczZL29vfjFL36Br776Stzn/qG9q6sL27Ztw7Zt23D22Wfjj3/8Iz3FHWcEQRC/nHibDZzFAplCAYZlAQCMbGzraPaY+8TvG40j695NzZgU9HnCsIwnAIDVpoLVjr1QEvEeM4T4k8gxo1KpMGfOHBw8eBDFxcWUdEZJIscMiQ2KGRIoW+cJ2Doa4CwvKYv9oNSIiNpP1dPTg40bN6K1tVXyCyiXy6HX68FxHIaGhsBxnPjaV199hY0bN+Ktt95CRkZGtJpKYkyj0UAul0sKSw01nEDr5ncBAAzLQqZUIn/1ZWM6f4+pz2OfThFkb2cISSdvGQZYORiZDAxLxbPCwVvMEOJPoseMSqXCvHnzgppXTkKT6DFDoo9ihgQqlVVhuskmbsvZ5FzhIGqJ589//nNxrbGUlBRs2rQJK1aswPTp08U/nA6HA7W1tdi6dStefvllDA0Nob29HXfeeSf+8pe/RKupJMamT5/usc8xOCh+L3AceIcDMlWwBYFGbKvfia7hXqSpUqFXpSBFpYvqh7fu7X/HcNWX0E4/C9rp86Cdcgb1eIbIW8wQ4k8ixIzzIa2v+xMlndGVCDFD4gvFDAlUCqtEseV00UyZVhPD1kROVBLPnTt34uuvvwbDMCgqKsLf/vY3FBZ6zmeTy+UoKytDWVkZNm7ciB/96Ec4ceIEdu3ahd27d3us90nGD9fEE4BkyG2wKtuq0G89fb6V06NXRVkQBJiO7oVgt2C4ajeGq3bDsPhyZJx3ddTaQAiJf4Ig4OjRoxAEATNmzKAkkxBCSMKLSj/uli1bAAAsy+Kpp57ymnS6KygowJNPPgm5fCQ3fvfddyPaRhLfHIMDkm2ZUjmmD2JD1mFJ0gkA509ZNLZGjeH6tu4m8JYhyT65nuZnEUJOEwQBNTU1aG9vR0dHB2pqamiOGCGEJLFBswktvEz8arXzsW5SREQl8dy/fz8YhsHSpUuDGnYwffp0LF26FIIgYP/+/RFsIYl39n63Hs8xDrNtGpCufcfKWBTo84I+jyTpDeID4VDlDul5lBroZo4x8SWEJB1n0tnRcbqsfkdHB44dOxbDVhFCCImk+v2VkH3Di1/mfcOxblJERGWobXd3NwBg1qxZQb931qxZ2LFjh+SPMEluzc3NcDgckMvlYu+4tbdXcgyrUY/p3KmqFKycfj6aBtrQ3N+GFJUOctnYhuyOxfDRryXbiowJYJN0raZo8hYzhPgTjzHjLekERh50ZWXFbs1hMiIeY4bEN4oZQqQSplYvO8b5fCTx9Pb2iuteOW/U3LD0yQ+rHlviWaifgOvO3Chu2xw2P0eHl8M0CIdRum6tIiM/atdPZt5ihhB/4i1mBEFAdXW1x9rWMpkMs2bNQmZmZoxaRpziLWZI/KOYIUQqKkNtnWuMHTlyJOj3Ot9D65SNbwIvHevOOxxjPhfvci6lXDnm8wRr6MAnAFyG5cpY6ErmR+36hJD45C/pLC8vp6STEEKSnH2cFJCLSo/n3LlzcfLkSezcuRPHjx/HlClTAnpffX09du7cCYZhcMYZZ0S4lSRelJSUQBAEyTxK3mqVHKMa4wexwx1HYXZYUJI5GSpWCSWrhEw2lucvvm4Qvm8cprpvJNvytBzoys4Zw7WJO28xQ4g/8RIzoyWdtIZ1/IiXmCGJg2KGBCpHbYBrNZNkXfk1Kj2ea9euBQBwHIdbb701oPmaHR0d+OlPfwrHqZ6tlStXRrKJJI6o1WpoNBqoXYbT2o1GyTFjLS5U1VWLhr4mfFT3Bd49uh11vY0htDRwAs/B2lYv2afInAAmivNLk5m3mCHEn3iIGZ7nUVVVRUlngoiHmCGJhWKGEKmoJJ6LFi3CggULIAgCGhoasHr1ajz11FOora2VlIgXBAG1tbV48sknsWrVKpw4cQIMw+DMM8/EsmXLotFUEqd4m3QuJjOGXkpvyxHImDD8CgRQ1dbcVAPBbT6prnRh6NcmhCQknudRXV2Nrq4uyX6ZTIbZs2dT0kkIISTpRK240COPPIKrrroKra2tGBgYwJNPPimu05mamgoAGBwcFHs4nUlCXl4eHn/88Wg1k8SpcCxhZ3ZYPPblpoRQKTKIoTP9ezZLtmU6A9QFJWO/NiEkYY2WdKanp8eoZYQQQmJBKZOmZFHpGYyBqP1cubm5+Ne//oX58+dDEATxy263o6+vD319fbDb7eJ+AJg/fz5ef/115OTkRKuZJA4MDQ1hcHAQQ0NDp3fynOQYRZo+6PO+f/QTHO6owQljM1oHOmC2W6BTasfWyCCna9jaj0u2FRkToMiiCnfh4jVmCPEjljFz7NgxSjoTEN1nSLAoZkig1Kw08WTD0OESj6K6nEpWVhZeeukl7N69G1u2bMFXX32FtrY2yRDI/Px8nHXWWVi3bh0WLVoUzeaROHH8+HGx/HhFRQUAzyq2irS0oM9b1VWLmu7T8yw3zLo0PENtR2Hvawc3bJTsU2TkU7GBMPIWM4T4E8uYyc/PR1dXFzhu5IGaTCZDRUUFDAZDVNtBgkP3GRIsihkSKPeRfUmad8ZmHc/Fixdj8eLFAEYKDvX390MQBOj1eigUyVrHiYRCcEh7PJkxxElTf6tke5IhPD2O3uaOuhr49iPJNqNQIX3J5WG5NiEk8ej1elRUVODgwYMQBIGSTkIIGed4pbRoppCkxSdjkni6YlmWiigQiezsbPA8L1nmRHDr8WSVwa2/2W8ZwIBVOtSlKC1/7I0EAu6xtPe0gJErIDjsAEaG2crTaF3acPIWM4T4E+uYSUtLQ0VFBQRBoKQzQcQ6ZkjioZghgWq3DUq2LeB9HJnYIp54dnd3o729HXK5HIWFhUhJSYn0JUmCmzBhgsc+96G2TJCJp1wmx4/OvBJN/a1oHmhDx1A3cnXRKSyUu+FOcOZBmBsOYuCbrZCn54GJwhDf8cRbzBDiTzzETNoYpgyQ2ImHmCGJhWKGEKmIJJ6CIOCVV17Ba6+9hrq6OnG/TCbD3LlzcdNNN9HyKCQoAicdasuqghtqq1Nqccm0ZTGZV8nIWMh1BqSULYJMoYZ6YlnU20AIiT6e59Hb24usrBAechFCCCFJIuyJ5/DwMG688UZ89913AKTz3ziOw/79+/HjH/8Y69evx4MPPkgFVsioBI4DeOmQA2V2cJWOh20mMAwDrUITzqYFReA5aKefBSZJx+0TQk7jeR6HDx9Gb28vpk+fjoKCglg3iRBCSJyycjaoRj8s4YU98fx//+//Yf/+/WAYxmvRFee+t956CxkZGfjFL34R7iaQJMPb7R77lEEup/L+sU8BABkaA7QKNbJ1mZieOTks7RNLkTGM32VWZIrxcEshhLgmnQBQW1sLAJR8EkII8SpbbcCAy7aCSc5OirAmnt999x127NghJp2rV6/GtddeiylTpoBlWdTU1OAf//gHPvzwQwiCgBdeeAHXXnstcnNzw9kMkuCqq6vF8uNlZWXgbTaPY2RBzvF06jUb0WsGbJw9xMQzsJ563m6lhDMK3GOGkNFEKmY4jsPhw4fR19cn2d/Q0IDs7Gwox3jvIrFH9xkSLIoZEjC3kX2CQMWFRvXxxx+L399111247rrrJK+fccYZOOOMM5Cfn4//+7//A8dxeOedd3DTTTeFsxkkwdntdthdejl5m2ePp0wR+Ic3G+f5/gyNYUxtC4a5qQYyVg5FxgQwKg0VFIog95ghZDSRiBlfSSfLsqioqKCkM8HRfYYEi2KGBMox0C3ZZnhKPEflnNc5ffp0j6TT1c9+9jP8+9//xsDAAA4cOBDOJpAk4FzL1fn/vM3qcYxMFfgHOIvd4rGvLHvaGFvnhY9lPLve+TNwKvFUZhZAlT8NKTMXh++6ROQeM4SMJtwx4yvplMvlqKiogF4f3PQAEn/oPkOCRTFDAqViWZhctmW+PlwmuLAmns3NzWAYBosWLfJ7nFKpxDnnnIOtW7eKc18IcXIfjuIx1JZhwMgDD90TxhbU9jQgQ5MGnVKLCSm5ULBh+CPgpzCWvb8Tjv5OAICjtxXmum+RtnANJZ4RQkOYSLDCPbz20KFDMBqNkv2UdCYXus+QYFHMkECpGennWjbAKV2JJqyJ5+DgyOKn6enpox5bXFwMABgYGPB/IBn3eKs08WTkcnAmE+Q6XUDvbxpoRWV7lbhdmjUVF01bGlKbRivGbDq6T3q8XAndDP8PZAghicdf0jlnzhykpqbGpmGEEEJInAnrpDPbqZ6pQIYUpKSkABhZfoUQfzi3Hk+GYeAIIm66TdKhb5na0R+MBMdzOMRQ1U7JtjxjAhQZVESLkGRCSSchhJBwcLgVE0rOgbZh7vEUBAEMwwS0NqdMNpLzchwXziaQJCTXqKGbMhkCx0HgODByecC9nQDQ45Z4Zmkzwt1ECd5mhrW1XrJPkZEPVkMfQglJFpR0EkIICZc2+5AkKTMn50jb8K/jSUio2trawPM8ZDIZJkyYAFVuLjIWzJccw6rVAZ/vvMkLUaSfgG5TH3rNfZicXhiehvp4wGJuOAS4PrliGKjywrRmKPHKPWYIGU0oMcNxHA4ePIj+/n7Jfko6kxvdZ0iwKGYIkaLEk8Sdrq4ucd2rCRMmQCaXI7VkOgSeh8DzI2sdBdCr7jQ1oxgMZFg383tgZWFakNfl+oIgHRAxXLNHsi3XZ0M7ZW54rku8co8ZQkYTSsz09fV5TTrnzp0rTiMhyYfuMyRYFDOESFHiSeIeq9Eg/awzx/z+pv5W5Ogy0Gfuh5JVQK1QQxmOqrZeCAIPU+23kn3yzAlQ5hZH5HqEkOjLyspCSUkJjh07BmCkrsGcOXMo6SSEEDImdoaRJGU0x5OQKJkyZYo4XzgcjnQek54/fSLmFVSE5dyuGIaBrbMRvFVa+EiRkQ8mXD2txKtwxwxJfqHGTH5+PgCgoaGBks5xgu4zJFgUMyRQuYUT0ZxZfXqHJjnXfo1I4tnf34/W1tZRj3Fqa2vzGK7ojfMPPUlukf4AlxW2qraef0jMxw9ItmWaVChSI1vMiEQ+ZkjyCUfM5OfnIycnB/Ig1hUmiYvuMyRYFDMkUJppRTg5XyNup6iSM3Yi8tfyueeew3PPPRfQsYIgYPny5aMexzAMqqqqRj2OEHcKmRx23iFu8wE85BiVr8JCx/dLr50xAZrJc0O/HiEkJkbrraCkkxBCCAlMxP5ijtaD6brsir9jGYYJqDeUJK/2j7ehZ/ceyJRKyJRK6MtnYcKKSwJ+f5paDwdvh9EyCADI0KRFpJ3csBH2rpOSffKMfChziiJyPUJIZDkcDhw5cgTFxcVIS4vMfYMQQgjRskoUWezitjpJZ2iFPfEMNEkM93GhEgQBW7ZswZtvvonq6mqYTCZkZ2dj/vz5uOaaa1BREf45gQBw//3345VXXgEAHD16NCLXSDQWi0XsZVCr1TA3NcN4oFJ8XaZSAQEmnm9XbUVNdx0yNenI0mVgVk4JDOFOPE/FqOXkIel+VgG5PgtMhAoZkdPcY4aQ0YwWMw6HA5WVlRgcHMTAwAAqKioo+Rzn6D5DgkUxQwKVptBihskmbrPKGDYmgsKaeNbU1ITzdFFjsVjws5/9DJ999plkf0tLC1paWvDee+/hv/7rv3DTTTeF9bpfffUVXn311bCeMxkcO3ZMLD9eUVEBW2+f5HW72zIGfs/VcxzftR0Rt6+YtRKlWVPD1lbXIXjuiaciPQ+sJjnH6Mcb95ghZDT+YsY16QROr9tJyef4RvcZEiyKGTJWdrt99IMSEE1OAXDPPfeISefUqVOxceNGZGVl4ciRI3jttddgMpnw6KOPIjc3F2vWrAnLNYeHh3HPPffQMOIAcBaLZFvguIDf22OSJq2ZmnAVFpISBB72vjbJPkVmPvRnXhyR6xFCIsNut+PgwYNi0unEsiwUChq9QAghJPwETQqY2Uth7DOC43mwam2smxQR4z7x3L17N7Zs2QIAWLhwIZ5//nmoVCoAwGWXXYYrrrgCV199NYxGI37/+9/jggsuCEuVsj/96U9obm4O+TzJKCMjAw6HQyzaoS+fBd7hADgOAsdBOzHwOZPuiWeWLgIVZgWAYWTIvfJ+8MPdsDYdwfDRr5B50XWQKVThvx7x4B4zhIzGW8z4SjqVSiXmzp0LrTY5PwiQwNB9hgSLYoYEqnLPLnS//6W47VDLccZVMWxQhIz734S//e1vAEYqEz744INi0uk0depU/OY3v8EvfvELGI1GvPHGG7j++utDuqbrENvU1FSPDznjXWFhoWRbmZ4O/YxScTvQxFMQBPxg7hXoHO5Br7kPPaY+5KZkh7WtrhhGBmXuZGgnz0L6uRsjdh3iyT1mCBmNe8zY7XZUVlZiaGhIsp+STuJE9xkSLIoZErAhM7L6T4/os1iSc0SkLNYNiCWj0Ygvvxx5urB06VIUFXlPaFauXInMzEwAwNatW0O6pusQ2zVr1qCsrCyk840HgsMh2WYCfHLIMAxm5kzH7NxS3DTvGvxq2X8iL0KJp+CwgzMPROTchJDIoqSTEEIIibxxnXh+88034HkewMgwW19kMhnmz58PAKisrER/EMVt3DmH2GZnZ+NXv/rVmM8znrBajWTb1tMb8Ht3NOzBwY4aVLZX4Vj3cQxah0Z/UwDEokIMIDhssLYegUyp8f8mQkjc8ZV0qlQqSjoJIYREhY1LzmJC7sb1UNva2lrx+5KSEr/HTps2DcDI8M1jx46JiWgwXIfY3nvvvTAYDEGfYzwynZCujaktCn7oyrGeBvH7VFV4K83auxvBDXRiqHIb2JQ0KNKzkTJzcVivQQgJv9GSTo2GHiYRQgiJvNyyMtSeqBe3WV1yPvQc14lnS0uL+H1BQYHfY/Py8iTvCzbxdB1iu2LFClx00UXBNXYcqa2tFcuPT58+HfLUVDhc5sEGWtXW4rB67EsP9xqeGKloCwACz4GzDEHo9rwuiSz3mCFkNNXV1airq4PNZhOnUgCUdBLf6D5DgkUxQwKlKcyHceFEmM1mCIIAnYISz6TT23t6yGZ6uv9lNlx7J41GY9DXcg6xTU9Px29/+9ug3z+emM1m2O12OE7N7XSMsfiSyW722JeuMYTSNK+GvnsfjEoHGHLAKjIgT80c/U0krNxjhhB/HA4Hjh49CpPJBJZlxf2UdBJ/6D5DgkUxQwJlba2FpbkGDICRyVzJmaIl508VIIvL+pDu1WzdKZVKr+8LhOsQ29/85jfIyIjAkh5JhGEY8QsA2j/aBt5iASNnwchYKDIyYAjgPHplCs6dtABWzobqrjoM2UxgmTBNaz7VNs7UC0dvEwDA3lYDRq6EZtWt4bkGCZh7zBDiD8uy0Gg0MJtPP5yipJOMhu4zJFgUMyRQGpkCE6yn53kq2OQswzOuE0/XJ1CuiaU3rq8H8+TKdYjtBRdcgEsvvTT4hkZZXV0dpk6ditTUVHGf1WrF0aNHAYz0/k6cONHjPSaTCQBQUVEhea27uxutra0AgKKiIknvMsdxOHLkCICRpWUmT56M2bNni683NjbCPjQE2E//MspOLeJuNBpx8uTI/M8JEyYgO1tasfa+rY+CEzikqw1INxiwZOJ88ebf3Nws9niXlJRArVaL7xsaGsLx48cBANnZ2ZgwYYLkvNXV1bCZzZDb7cgZaJC8JggCTrR2gHMcxJQpUyRrvlosFhw7dgzAyNpe7mXWa2trYTabwTCM5N8AALq6utDW1gYAmDhxoqQH3uFwoKqqCgCg1+tRXFwseW9DQ4O4ZM+sWbMkPTx9fX1oahpJnPPz85GVlSV578GDBwEAWq1WnOfsdPLkSbH3v7S0VPLwZnBwEA0NI/82ubm5yM3Nlby3qqoKDocDSqUSM2bMkLzW2tqK7u5uACPLGel0OvE1s9kszs3OzMwUh8g7/72OHTuGgwcPQiaToby8XHLezs5OtLe3AwCKi4uh1+vF1+x2O6qrqwEAaWlpmDRpkuS99fX1GB4eBgCUl5dDJjv9B6G3t1dck7ewsFDyYInneRw+fBgAoNPpMHXqVMl5T5w4IRYrKysrg+JUbAPAwMAAGhsbAYwM9c/JyZG89/Dhw+B5Hmq12mOOektLC3p6egAA06dPlyRTw8PDqK8fmUeSlZWF/Px8yXtrampgs9kgl8sxc+ZMyWsdHR3o6OgAAEyePDlm9whXjY2NGBgYqSg9c+ZMyXp5vu4RDMPg4osvxscffwyj0YjBwUGcffbZkn+nUO8RzuF17pXL29ra0NXVBQB0j4jiPcLp2LFjsFgsY7pHCIIAuVwu2e9E94gRyXKPcDp06BAEQYBGo/EYKhvoPWLChAl0j8D4uEeE8jliuKMX5cM2cZ9MOxJPsbpHOGMw3MZ14ul6k7Db7X6TT5vtdDCMlqS6cg6xTUtLw3333TemdkYbx3FitV8nQRBgP5X8cV7mWDocDvF1dzzPi6+5nxeA+Jq3hN7hcABu15Nr1B5t8tbehuFm2AUHMNwE9ACLJ87z2l5BEDzeO1p77XY7BLsDlqZK6YtaAyypecCpDym+zuvtZ3We19uTUdd/w2DPG6n/NhzH+WyT63m9xYtz6JHrjTeQ844Wh85/w9HO6y++o/lv6C8OA/k35Hle8gHAKZR/Q2eb3N/nft54ukeM5XeZYRhkZWVBEATk5eV59HSG4x4x2s9K9wi6RzjbFMh56R4R3XuE87zOBw7hPi/dI+ge4cTzPDjed/2SWNwjvP23DIdxnXi6lsm3Wq0BJ56jDct1ch1ie9ddd3k8aYhXLMt6/MIxDCM+RfEWoHK5XPKUxZVMJhNf8/aL7HzN242dZVnALfhlSpVHm9zPO2w3jSSdLrK0p58yu7bX/Qbt77zO9goOB+QAHL0t0vfqDFBoUkY9r7efVaFQwOFweP2D4fpvGOx5I/nfxlebXM/rLV4UCgUYhgn6vKPFoUKhAMdxXn8W1/P6i+9o/hv6i8NA/g15nvfarlD+DeVyOXieH/W/TbzcI0L5XVYqlcjPz/c6vDbUe4Tr/7sK5XeZ7hGjn5fuEdLz0j0iDH/vBcFru+ge4XleukeM/d8QYGB3yRtlLklkLO4R3n7+cGAEb4+sIkwQBHz77bf49ttv0draiv7+fqxevRrLly8HALz11luYM2eOR3dyuP32t7/F66+/DgDYvn07ioqKfB77xhtv4Ne//jWAkV7MVatW+T338PAwVq9ejebmZixduhR//etfvR63adMm7N27FwDEISjRNjQ0JLl2aWmpZGhHLPF2O/Zc8X3JvlkP3g/D7HIf7xjR2NeMOz5+SNxmwODlK56AnA3PsxbeboeloxXtL/5csl9Xvgy5a24LyzUIIaGzWkeqTAf6wJAQQgiJts//9144Pj8ibttUDFa8/EbM2hOp3CDqPZ5vv/02nnrqKclSJgAwZ84c8fsnnngCnZ2d+N73voff/va3EVvv0nUMe1tbm9/E0zmmG4DHfAdvDh8+LM7p2LlzJ0pLS0d9j/OYgoICfPrpp6Men6y6urrA8zxkMhnSNZ7lpFnl6B8gM7QG/GTBD9Ax1I1+ywBMDkvYkk4na+sx6Q4ZC83kM8J6DRIY15hxn6NDxi+r1YrKykoIgoC5c+dKkk+KGRIsihkSLIoZEjCOh9q1yzNJ61FFLfEUBAF333033nnnHXHbybVr2G63o7OzE4Ig4MMPP8ShQ4fwz3/+02NScTi49qjW1tZiwYIFPo91TkRmGIbWYoqwtrY2cdK9vqDQ43WZavQ5tlqFBjJGhvMmL0S2LhOycFWzdWFtqZZsszoD1IVlPo4mkeQaM/THnQAjSeeBAwfEyrUHDhyQJJ8UMyRYFDMkWBQzhEhFLfF89NFHsXnzZgAjyduSJUswd+5cPPnkk5LjbDYbli5dis8//xwMw6CpqQm33347XnnllbC36YwzzoBCoYDdbsfXX3+Na665xutxHMdh3759AIAZM2Z4rWjnbvr06XjqqadGPe5//ud/xKTWebxr0aPxjjN7rsXJBFDcqWu4B+1DXWgfGqnKpZGrsWrGhWFtm7WlRrLNpmSAUdFSDITEmnvSCYxUMjx27JhHpUdCCCEk1hxgxkXhnaj8jMePH8cLL7wAhmGQm5uLJ554QiyV7Z546nQ6PPfcc9i3bx9uv/12dHd347vvvsP27dtx4YXhTRz0ej0WLlyInTt34tNPP0Vra6vXYbTvv/++WDJ7xYoVAZ07IyMjoPa++OKL4vfh/vkS1cSJEyEIAhiGAXeq3LsrRQCJPy9ICxKZHcGtvTrq+W0WcP0dkn1sSgaYCPSsktG5xgwZ37wlnQCg0Wgk5eIpZkiwKGZIsChmSKAM6lS4flJN1iQ0Kp+SX3vtNXAcB4Zh8L//+78e6zN5M3/+fPzv//6vuP3ee+9FpG3XXXcdgJEhvj//+c8xNDQkeb2urg4PPTRSpEan02HDhg0RaQc5zWAwID09HQaDAdyQSfqiTAY2gKG237YeilDrRlha3ApBMQxYXbr3g0nEucYMGb8sFovPpNN9jifFDAkWxQwJFsUMCZSCkVadTdZHFVFJPPfs2QOGYXDOOecENczpjDPOwOLFiyEIAg4dikwisWTJElxyySUAgO+++w5r1qzBX//6V7z//vt45JFHsHHjRnFx2zvuuEOy8DMAfP311ygtLUVpaSk2bdoUkTaOZ5xV2lPJsCwYL+Wk3RXqJyBVqYOKVYKBdCmVcLA0HJRsy9R6KDI956MSQqLDV9Kp1Wo9kk5CCCGERF9UenKdFWED6el0N2vWLOzevRs9XoZchst///d/Y3h4GLt27UJzczMeeeQRyesMw+DWW2/F97//fR9nIJHCu6yfCpxKPAMYsnJm/unlVqq7amFxWMPaLmtHg2RbpjVAM+XMsF6DEBIYZ9JpsUgfVGm1WsyZM4eSTkIIIXFN7r4uaIzaEWlRSTxtp5KHsRTNUZ4qJBOphUyBkWFYf/3rX/Hee+9h8+bNqK6uxuDgIAwGA8466yz84Ac/wFlnnRWx6xMph8MhzongrZ6J52j6LQP4/edPwqBJg1ahho2z4z/Pvi5s7RMcdtjaaiX7VBPngpGxoGkcseEaM94WWCbJy1/SOXfuXPFviDuKGRIsihkSLIoZEigtq0Sfy7Zc8HloQovKb0FmZiba2trQ2NgY9Hudi5e6D3ENN4ZhsHr1aqxevTqo95199tmSBVaD9dJLL435vcmqqqrqdPlx9x5P+eiJZ6+5Hw3GJsDYNPIehoGCVYStfdb2eggOu2SfehL1dsaSa8yMZWQFSUxjTToBihkSPIoZEiyKGTJWSZp3RmeOZ0VFBQRBwI4dO2AymUZ/wylNTU347LPPwDAMlcAfp3i3OZ4ydvRnJX1mo2TboNKDlY2esAaKTUmHYckGqArKAFYJNi0PMpU2bOcnhIzOV9Kp0+lGTToJIYSQeMIo3KaEhPFzazyJSo/nihUrsHXrVvT39+P+++/Hf//3f4/6HqPRiNtuuw12ux0Mw+Diiy+OQktJPNDr9XA4HJDL5eBMbut4ykYfy9pn7pdsp2vSwtk8KAy5SF+yAbryi2EfMMIx2Df6m0hEucYMGR/q6+u9Jp1z5swJKOmkmCHBopghwaKYIYFqtg1Kts3gfRyZ2KLym3DJJZegvLwchw8fxrvvvouuri7ceOONmDlzpsexnZ2d2LZtG55//nl0dnaCYRhMnTo14PUzSeIrLi4Wvz+x60vJa4HM8czX52H1jIugkavRZ+5HhtYQ1vZZ2xsAmRxgdWBk8pFlVJJ1TESCcI0ZMj6UlpbCYrFgcHDkj3UwSSdAMUOCRzFDgkUxQ4hU1B7B/PnPf8aVV16J7u5u7NmzB3v27JG8/swzz+Dpp5+WrKMpCAJSUlLwP//zP7T47jglCNKMTp6aOup77JwdSlaJ6ZmTUZFXBp4P31MjzjyE4WN7AZ4HWA0EnoE8ZxpkCk3YrkEIGZ1cLkdFRQUqKyshCEJQSSchhBBCoi8qczwBoKCgAK+++irKy8shCIL45UwoBwcHMTg4KHlt4sSJeOmllzBt2rRoNZPEGZlbD6c6J2fU9xztrgcA1HTXo773BFoG28PWHnPj6fU7uWEjHP0dYGThK1xECAmcQqHAnDlzaE4nIYSQhGbn7aMflASiOui8qKgI//rXv7B161a8+eab2L9/v8di33K5HLNmzcLatWuxfv16Wn9tnHNfx1MWwIdL1z7Sb1sPYVrGJBSl5YelPbauJo99TAAFjwghkaFQ0IMfQgghiS1NoYNr+VU5E7W+waiK+idmmUyGlStXYuXKleA4Dq2trTAajeA4Dnq9Hvn5+WNa75Mkj4aGBnEyvuCeeKpGTzxVrBJW7vT7bFx4niIJggDeMgxGpT099JtGgMcF15iZPHlyrJtDwshkMqGpqQnTp08P63rOFDMkWBQzJFgUMyRQ7sv+MUlaOySmXTUsy6KoqAhFRUWxbAaJM4ODg+K6V1qbNGmUBdC7MSVjIqwOG4yWfvSa+1GgzwtLu+zdzRjY9z4YpQZyfSZkGgPU0xeF5dwkNK4xQ5KHyWTCgQMHYLPZYLPZMGvWrLAlnxQzJFgUMyRYFDMkUHZjp3QHz8WmIRFGYwRJXBvLUNvZuTMAAI19zVCw8rAlnqb67wAAgs0Me3czGLYDqedcFZZzE0KkXJNOAOjp6cGRI0fCmnwSQggh8UDuVkQ1WQfURSXxbG1tDct58vPDM0+PxLdZs2aJ3x97f6vkNdkoc36b+lvx5Fd/h0GTBoNaj0ytARvLV4WlXda2emlbdOlgVVrwNsfIDqq8HDOuMUMSn3vS6WSz2cDzfFgST4oZEiyKGRIsihkSKJ1MgQGX7WTtGYzKz7V8+fKQl0NhGAZVVVVhahGJZ6xLJVu70Sh5zX3bXbepFw3GJsA4UgTIoNaHLfG0dTZKtuWGPM+4puQzJtgA1ncliWF4eBiVlZUeSWdqairmzJkTtoXYKWZIoHiex9DQEAYGBmCz2cBxyTkEjhByGsuyUCqV0Ov1SElJoZE2YRK1hNp9PUZCAsFbrX633fWZByTb6eq0sLRDEHjY+zok+2QKqrhMSDgNDw/jwIEDsNulc7vDnXQSEqjBwUG0tLTQZxhCxhmHwwGr1YrBwUEwDIOCggKkBrCWPPEvKn/F58+fH9BxVqsVXV1daGtrAzDSy3nhhRdi3rx5kWweiWOqnBzYB4cgcBwEjoN8lF96o7lfsm3Q6MPSDkdfO+BWHVeeURCWcxNCfCeder0eFRUVlHSSqPOWdDIMQ73lhIwDHMeJv/uCIKClpSWiyWezbRCudxZTkg6gi8pf8pdeeimo47u7u/Hcc8/h5Zdfxueff45169Zh+fLlEWodiTd9fX3iPK68712MwaPHxNd0U/yXI59oyMdZ+bOhkauhU2pRqJ8QljaZm49KthmFGorMwrCcm4TONWbS09Nj3RwSpFgknRQzxB+e5yVJZ0pKCtLS0qDRaMAwDD0IIQFxOBzi9xQziUUQBJhMJvT29mJoaEhMPktKSiIy7FbA+BhVEZe/BVlZWbjnnnuQk5ODRx99FHfffTfee+895OTkxLppJAqamprE8uOlRYWQ63QAAIHnoTD4HzprtAxicvpETEmfiLPyZ2PAOhiWNlkaD0u22dR0qApKIdj5sJyfhMY1ZiiJSCxDQ0OorKyMek8nxQzxx/lBExhJOgsLC2E2m2Gz2SjxJAGz2WwQBIFiJgExDAOdTgetVovm5mbxnjA0NAS9Pjyj6cajuJ4p+x//8R8oLCzEwMAAXn755Vg3h8SAKjsbqaUlSC0tgb5sBjQT/Pdg9pqNAABWJsOhjho09DWHpR3W9uOSbTYlHTKFOiznJmS8ilXSSchoBgZO1wvIyMgIuUAiISQxMQyDjIwMcdv13hBOjqRdQEUqrv+qMwyD8847D//85z/x6aef4vbbb491k0gU5Ofnj3nJBAaAAKChrwkOnkOOLjPk9ggCD0dfm2SfPCXDx9EkFkKJGRIbvpLOtLQ0zJ49O+JJJ8UM8cdZVZlhGGi1WgCAQqGIZZNIAqKYSQ5arRYMw0AQBI+K6+FiyMxCn/Z08smpknMueVwnngCQmTmSOIRrLVAS/7Kyssb8XucIeQc/Uu4+HHM87b3tEBzSD8faksAKZpHoCCVmSGx460GKVtIJUMwQ/5xLprAsK8YqJREkWBQzycFZVMzhcERsOaW0ilJ8M/SNuJ2iSonIdWIt7hPPkydPAvD+IYUQd8snL4KNs6HX3I9+6wAM6tDH4dva6iXbrM4AXcl8OAZNGCcjIwgJO51Ohzlz5oi9nmlpaaioqKCKoYQQQkiSiuvEs7m5GR9++CEYhsHEiRNj3RwSZQLHof6Z5+Ewm6HKygSr0WDCpSug8FPKOks3MgRWLVcDEJCpDb1oiLVdmniqJkw9tYanKeRzEzKepaSkYM6cOThx4gRmzJhBSSchhJBxSSGTI91+ujdVm6Sd5XGXeNpsNvT19WH37t3485//DIvFAoZhaDmVcYi32dCxbbtkX87y83wmnse6j+P/vn0NBo0eaSo98lKzUZ47I+R2WN16PJUTpoZ8TkLIiJSUFMyaNSvWzSCEEEJiJkuZgnmDFnFbLjfErjERFJXEs6ysLKT36/V6bNq0KUytIfHu4MGDsNvtYL1M4B5uPAm1j2V1uk29aDA2AcaR7QmpOVg/c0VIbREEHtaORsk+Vd4UH0fTuNtYccaMQqFARUVFrJtD3FitVqhUqlg3Q4JihgTLZDKJS2M4Cw4R4g/FDBmrSBUxirWoJJ7OtbDGIjU1FU8++STS0vyv30iSkN3hsYtVKX0e3m+RrtkZjvmdDCPDxJ8+A/OJw3AYO2Btq4cqf9qpF8X/IYT4MDAwgIMHD6KwsBDFxcWxbg4hhBASdxi1DroZ58DYb4TAC4BKF+smRURUEs/8/PyAj2VZFmq1GhMmTMDChQuxfv16GAyGyDWOxB2tVguHwwEZKwczfRoEjjv1xUPhZ9Hefqs08UxThZ54CoKAwe+2QZk3GbqSBUiZuQSs1s95qQhWTDhjhtZ9jC8DAwOorKwEx3FobGwEwzCYNGlSrJsFgGKGBE8mk4m9V4QEgmKGBOrQwe9w/JPvAAgjKzSoFJiRhIM9o/IX99NPP43GZUiSmDZtmvj9yeoa6Yt+1tw7u2AuUpQ6DNtMMNvNmGQoDLktvNUE3mGDpfkoLM1HAQBpCy4Dq07OJ1GJyjVmSHxwTTqdGhoaoFarkZubG8OWjaCYIcFSq9WxbgJJMIkWM3a7Hf/617/w3nvvoba2Fna7HXl5eVi8eDE2bdqEKVN8TTUioXJ09mBiy+k5nhaV3c/RiSsqiefRo0fBsiz9oSchY1jfiWfbUCdMdjMUrBwahQGpYRimYO9q8tgnUybWHxJCoq2/vx8HDx70WO8sIyOD1s8kJAKsHY1Q5RbHuhkkgfX19eHGG2/EoUOHJPtPnDiBEydO4K233sL999+PtWvXxqaBJCn4/hQfRk899RRWrVqFVatWYfv27aO/gRAAvMPLHE+1ZtT3OXgOFocNFoc15DaYGio99jEy1yUfaPgMIa78JZ3l5eW0ZAohYeYY6kPby/fCMdQX66aQBMVxHG699VYx6ZwzZw7uvfdePPLII/j+978PhUIBi8WCe+65B19//XWMW5uc7LznZ95kFJUez4MHD0IQBNTV1SE9PfR1Fcn4wFs9E0e5zndVOCUrLTzUYzKGdH1B4D2vke2ynizN2SBEYrSkU+ZnqDwhZGz692wGbx5C/1fvIPPC62LdHJKA3nzzTXzzzTcAgNWrV+O///u/xfv16tWrcdlll+GGG26A1WrF/fffjy1bttD9PMzSCgrQWpAibgva+KoEHy5RSTz7+k4/haP12shoTp48OfLB1WKBe9+ITOm7qu2p6diiUOd4muq+ha3zBNiUdMg0qWAYBuqC6SGdk0SGM2ZYlsXEiRNHfwMJO19JZ2ZmJmbNmhV3H1IoZkiwrC4PQ+NleSDHUB8G9n8MABj49iOkLVwDeQo94I8X8Rgz3vztb38DAKSlpeHee+/1uF/Pnz8fP/3pT/HYY4+hvr4e27dvx8UXXxyLpiat9FllOCicgNVihSAI0CmTc/mdqHwScC2h39bWFo1LkgRmNBrR29uL/u5uzxf9fHidnTsDK6afh+9NW4aLpy5FSdbkkNoxuH8bTEe/xuC3W9G/522YGw9Brqf5afHIGTNGozHWTRmXjEZjQiWdAMUMCR7HcXA4HB5xHkv9ezZDcIys9yc4bOj/6p0Yt4i4iseYcVddXY2GhgYAwKpVq5CSkuL1uKuuukqcKrF169aotW+8sLYfh7WlFkL3CQg9J8C318W6SRERlU8DP/nJT8RS0n/84x/j+heQxA9HbR06tn+Kzh2fo2vnLvQfPOS3JLlarkKqKgV6dSoMmjRoFaPPB/XH5lpYiHOAYTx/XWi0LRnvjEYjDh06lFBJJyHJwLW302ng24+Sfq5nW1sbHnroIVxyySWYPXs2FixYgE2bNmHLli0AgOeffx6lpaUoLS31eK9z/9NPP43u7m7cdtttOPPMM3HmmWdizZo1eO+99yTH8zyPjz76CD/96U+xdOlSlJeX4+yzz8bGjRvx9NNPY2BgwGc7N23ahDPOOANnnnmm35/nrrvuEtvV3Nzs9bVzzz0XwMhIjbvvvhvLli1DeXk5lixZgttvvx2VlZ71KAK1d+9e8ftzzjnH53F6vR4zZ84EAOzatWvM1yPeyTkeqVYL9DYr0mw26OxU1XbMLrnkEvz5z3/Gb3/7W3z22WdYt24dNm7ciLlz56KwsBB6vZ4+nBBRaWkpBEFA84GD6HDp9RRsvn8JTxpb8PTefyBNnQq9KhXpmjRcXbF2zG0QeA6OwV7JPjbVffgSZZ3xwhkztFZadDl7OnleOh86KysLM2fOjOv7OsUMCVa8LY3h2tvp5Oz1TNa5nl9//TVuueUWDA8Pi/tsNhv27t2LvXv3Ytu2bV4TTndDQ0O45ppr0NjYKO6rqamB3mWt8Pb2dtx+++3Yv3+/5L1GoxFGoxGVlZV48cUX8cgjj4iJoS/hiJ39+/fj5ptvliS7XV1d+OCDD/Dhhx/izjvvxPXXXx/0eWtra8Xvp0/3P51o2rRpOHToEPr7+9Ha2or8/Pygr0e8y1JocfbA6eVUZBpFDFsTOVFJPG+88UYAQFFREYxGI2pra/HQQw8FdQ6GYVBVVRWJ5pE445wHwXDSD7OM0vcvYY+5D8f7Torb6erQEk9bTyvgVmFMPal8zOcjkRXPc2eSld1ux+HDhxMy6QQoZkjw4immvfV2OiXrXM/Dhw/jpptugsUy8uH8ggsuwPLly6FQKLB3715s3rwZW7duxe7du0c91z//+U9YrVYsWbIEq1atgtFoxOeff44lS5YAGJmzfv311+P48eMAgIKCAqxfvx5TpkxBf38/tm/fjl27dsFoNOKWW27Bs88+i6VLl/q8XqixYzKZcNttt2FgYACzZs3C5ZdfDr1ej3379uHNN9+Ew+HAww8/DK1WiyuvvDKoc7e0tIhtnDBhgt9j8/LyxO8p8YywJH0oGpXEc+fOneJTZef/C4Lg7y2EQLBLn+TKFL4Tz37LoGQ7TZ0a0rUtDdJ1rBilBpqiMp/HU68JGW8UCgVKSkpQXV0t3s8TJekkJNF56+10StZezwcffBAWiwUMw+D3v/891q9fL762Zs0arFu3DjfddBMGBwf9nGWE1WrFeeedh2effVb8+33dddeJrz/yyCNi0nnhhRfi0UcflfRaXnXVVXj77bfxq1/9Cg6HA3fccQe2bdvmc35kqAYHBzE4OIgNGzbg/vvvF+daOpcqvPHGG2E2m/HYY49hxYoVkp7b0fT2jozu0ul0UPop4AgABoNB/J7mx5OxiMqng/z8fEyYMEHylZ+fH9TXaE9hSPJxDA1LtmV+eigGrGFOPFtqJNtsajoUmQWeB1LCScaxnJwclJWVgWEYZGdnU9JJSBT46+10Sra5nl999RW+++47AMCGDRskSafTvHnzcOeddwZ8zhtvvNHrQ+OOjg5s3rwZAFBYWIg//elPXofKrlu3TkxWe3t78frrrwd87bEoLS3Ffffd57EW8vz583HrrbcCGEkG33rrraDO6+xBDmQUiGtiajabg7oO8e/wgUpU18jEr8rDplg3KSKi0uP56aefRuMyJEkMDg6C53nYLBbJfpmfhefLsqZjYeGZyNKmw+KwIj81N6Q22DoaJNvylHSPP1CUc8YPZ8zIZDKkpob20IEEJycnB0qlMuHm6lPMkGBxHCfOC3b/8B9N/no7nZKt13PHjh3i9z/84Q99Hrdu3To89thjo/bGKRQKVFRUeH1t9+7dsJ8q7HLttddCo/FdqPCGG27AP/7xDzgcDmzfvh033HCD1+OcSzeF4vrrr4dc7v1j+5VXXok///nPsNls+OyzzyS9t6NxOEamFY3W2+l+DBUKDS/HsAmGgdNTVyzK5BwZGtZPCXfffTfuvvtuqnZFQtLQ0IC6ujqY3IbL8H6KCynlChSmTYBaoYZBkwYbP/ZqYALPwd7XIdknT6VlVOKZM2acJeFJdBkMhoRKOgGKGRI8q9UqfsVKIL2dTsnU67lv3z4AQHp6OqZNm+bzOKVSOWoVWWCk5oivROvAgQPi9wsXLvR7nqysLLE9hw4d8jmNLBwxs2jRIp+vpaamoqSkBACCrnDr7M21B1BF1WY7/cBD4Wf6EyG+hPWTwttvv43NmzdLKmQRMlaC2zAOZYbvQgnu93oHP/YncfaeFsDt/ap833/oCEl2vb296OnpiXUzCBn3AuntdEqmdT07OzsBIKBiNhMnThz1GH9zIJ1zHoGRBHU0zmPsdrvf5VVCodVqkZvrfySX89/GZDLBZAp8mKZWqwUQWHLsmnhSgbbw4sbJSglRGWpLSDByc3PBcRzaNBq4Drbl/TyNs7v1cBrUgU+sd2dtOy7ZZpQa6EoXeB7IMDTeNk44YyaWw9+SVW9vLw4fPgxBEFBeXo7MzMxYNyksKGZIsBQKRUyX4Ammt9MpWSrcOofOBrIsSSDH+BtW6rpUi79htt6uZzabkZaW5nFMqL2DOp0uqHYMDQ2JCeVonEn40NAQHA6Hz+G8gLSgUEZGRkDnJ4HRqXRwXUshWf8yJdbYKDIu5ObmIj8/H3K3oXvyFN83XpaRIVWpg1ahgVquRIoysBuuN9b2esm2umgG5HoaahvPnDEz2hNhEpyenh5xyRRBEHD48GFJb0Aio5ghwVIoFFAqlTEbYhhMb6dTsvR6OnvXAiloY3GrDxEs12QzkOu59i76Snr9xUywPY2jtYNhGEn12dEUFxcDAHieR0dHh99j29vbxe8LCrwUXCRjppFJYyRZEzTq8SRxS3C70cpUvp9iTsmYhCkZk06/N4Tleqxtboln4Ywxn4uQROVMOl1/lwRBQGdnJz3pJiTKxtLb6ZQMvZ55eXmoq6tDa2vrqMcGcow/WVmnHzQ3NTWhrMz3UmoAcOLECQAjSadrwufaM+6vJzGQ5V8GBgYwPDzst+ezubkZwMic+0AKBTlNnTpV/L6urs5vQumcSpeWlkYP7ciYJGtCTZIAZ3arahvEU+axDoUSeA62jkbJPlXelDGdi5BE5S3pBEZ6CUtLS2PUKkLGr7H0djolQ6/nnDlzAIwM9ayvr/d5HM/z4rIrYzV79mzx+6+++srvsR0dHeJ6n87iPk6uyd/Q0JDPc9TV1Y3aJkEQ/BYNcv13WbDAy9QgP1yP9/fzDgwMoLq6GsDIEi4kvDxWTohROyKNEk8Stxi5dIS7rzmenUPduPPj3+P3n/8vnvz673jpwJvged7rsaOxd7dAsEuHvagmTPVxNCHJp7u722fSOWPGjJjNbyNkvAqlt9Mp0Svcfu973xO/f/nll30et3XrVnR1dYV0rWXLlolDY19++WW/w21feOEF8fPGeeedJ3nNdT68M2Fzd+DAAbS1tQXUrldffdXna6+88opYlfaCCy4I6HxO06ZNw5QpIw/Y3377bckcV1cvv/yyuITKihUrgroGGV2qXFqsSZ6cq6lQ4kniT1VVFSorK2E1SW/2itQUr8f3mvvR0NeEA+1V+KLxa3xcv3PMSzs4hvrA6jPByEf+6LD6LLA6z0IBI+gDeLxwxkxVVVWsm5LQuru7ceTIkXGRdFLMkGCZzWaYTKaA5v2F09DBHZBpUsCmZoz5S6ZJwdDBHaNfLE4tWbIEM2aMTHt59dVX8cEHH3gcc/ToUfzud78L+Vo5OTlYtWoVgJGhtr/85S+9zhvdvHkzXnzxRQAjSeZVV10led215/Spp54S18t0am9vx69+9auA2/Xxxx97Tbp3796NZ555BsDIfM2xJIXXX389AKCvrw933XWXx5zSffv2idcoKCjAxRdfHPQ1SHCSNO+MzBzPV199VbLYbzgwDCP+gpPk5nA44HA4ILgtacIovZfuHrBK50cYVGNfDN4x0I3UOReAUagAh52q1iYIZ8wkU2IUbb6Szry8PJSWlibdvy3FDAmWIAgh1Q8YK8Oi9TAsWh/168YTmUyGBx54ANdccw3sdjtuv/12fPjhh1i2bBlUKhUOHDiAN954A1arFSzLguO4kNYWvvvuu7Fv3z40NTVh27ZtWLlyJS6//HJMnjwZAwMD2L59O3bu3Cm27aGHHvKY+75ixQr86U9/gtlsxr59+7Bx40ZcfvnlSE1NRVVVFf79739jcHAQs2fPxqFDh0ZtE8MweOCBB7Bz505cdNFFkMvl2LNnD9555x3wPA+FQoH77rsvqPmdTldccQXeeOMNHDx4EB9//DGuuOIKbNiwAQaDAfv378cbb7wBu90OhmHGfA3iHyN3+zdlkrNvMCKJZ1NTE5qamsJ2vliWLyfRp1QqIZPJYOWlf+BlSu9zPPvM/ZJtvXrsiadz/U5xuG2gnzEoPGPKGTP+ysAT37q6ulBVVTVukk6AYoYEj2GYpPxdSBRz5szB448/jjvuuAMmkwkff/wxPv5YOgT5iiuuQEtLC/bs2RNScqTX6/Hyyy/j1ltvxcGDB9HS0oInnnjC4ziDwYDHHnsMixcv9ngtMzMTv/vd7/CrX/0KNpsNR44cwZEjRyTH/OAHP8DcuXPx85//fNQ23XHHHXj88cexY8cOj84dnU6HJ554Auecc06QP+kImUyG5557Dv/xH/+BI0eO4OjRo3jwwQclxygUCtx7770499xzx3QN4l8HJ+1VtybprSYif3Fj8USQJA/ncJq9DAPXWZ3ucz6dCvR5uKzkAlg5O6wOK7J1Y6+46T4HRq73v2ah+2cQ+lASG86YIcHzlXROmDABJSUlSRvTFDMkWIGs6Ugi66KLLsJ7772Hv//979i5cyfa29uhVCoxc+ZMXHvttbjoootwzTXXADi9PuVY5ebm4l//+hc++OADvP/++zh06BD6+vpgMBhQVFSEFStWYO3atX6vs2rVKsyePRt/+9vfsHv3bnR2dkKv12P27Nm49tprsWTJErz//vsBtefiiy/GkiVL8Oyzz+Lrr79Gf38/8vPzcf755+NHP/pRyFVmMzIy8K9//Quvv/46tmzZgvr6ephMJmRnZ+Pss8/G9ddfT8XlIsjOS4di80k62DYiieell16KJUuWROLUZBxh3BZ2V/lYwkGrUEN96gsYe2+nwHkWL1JmFfpp4JgvRUhcGK9JJyEkcRUWFuLXv/61z9d7enoAjNzH3B09ejSoazEMg0svvRSXXnppcI10UVxcjAceeMDn68Gcv6SkBI899tiY2zIauVyOa665RkzeCQm3iCSe5eXlWLduXSROTcYRQZBWplX4eKp4sl+6ZleGxjCm6zkGPSv+KTJogWSSvAYHBynpJITEvXfeeQdbtmxBUVERbr75Zp+9e/X19WhsbAQAzJw5M4otJCQ0HM/D+7i+5EKTW0jcEuzSYQeMwnu4ahUat231mK5nbfNcS4vVhjBflJA4N3nyZPA8Ly48np+fj+nTp1PSSQiJK3q9Hl988QWAkelc9957r8cxQ0NDuOeee8SHaZdddllU20hIKDRyJVxrCbNUXIiQ6GhtbQXHceDs0nLeMrn34kIZGgNkDANO4HHC2AK1fGyJZ/9X74J32CBPSQebkgFFpucwHQ/0AT0uOGOGZVnk5+fHujkJg2EYTJ06sk4tz/PjKumkmCHBcl1igqp6RtfixYtRWFiI5uZmvPLKK6iqqsLFF1+MvLw8mM1mHD9+HO+88w66u7sBABs2bMC8efNi3GqKGRI4jVwlSTyTM+2kxJPEoe7ubtjt9oB7PKdlFgMALA4rZmWXQKfUBn1NgedgbT8O8BzsnScAALpy/5XbxssH9ETgjBmFQkFJRJBck8/xFNMUMyRYDodDrLJPSUR0KZVKPPXUU/jxj3+MtrY2HDhwAAcOHPB67FVXXRXU+piRRDFDAmUf7JVsuy8pmCwo8SRxSRAEgJfO8fTV4+mklqsAufe1Pkdj6zopLqXipJt21pjORUg8cvbueTOeEk5CSGKaMWMGPvzwQ/z73//GJ598gmPHjqG/vx86nQ65ubk444wzcMUVV6CioiLWTSUkaDLOrbMlOYvaUuJJ4s/UqVPBWa1wX07ZW4/ngGUQD33xv0hTpUKvToVelYory1dB5b4Q7ygsJ6ul11JpoS4qC7bpJEamTp1K6/360dHRgePHj2Pu3Lm0JMQpFDMkWCrV2B5skvDRaDTYtGkTNm3aFOumBCTUmHn44Yfx8MMPh6k1JJ6lskoMuWz772pJXGFPPGkNTxIqnU4Hh5f9dqMRGrfy6EbLABr6msRtBgyuqVgb9DVNdd9ItuUpGWBTx74eKIkunU4X6ybErY6ODlRXjzxYOXDgACWfp1DMkGD5GjFAiC8UM4RIhTXx/Mc//gEAmDhxYjhPS8Yh3u6ZejJyz3Dttw5KtlNUOrCy4G/0tq4mybYiPS+AnhDqKSHxrb29HTU1NeK21WrFgQMHcNZZZ9F8I0IIIYREVVgTzwULFoTzdGQ843nI1GqA5yGc+mK8zPHst0gTzzRV8MufCJwD3HC/ZJ883fsaYYQkCvek0yknJwcKRbIO4iGEEEIST4dtWLJtSdK+DZrjSeKO2WyGoFYh59IVkg/Icp1ntdr81FzMy68AwIBhMKaKttauJo/CQtrSs4M+D4kds9ksztejYaRAW1sbjh496rG/qKgIU6ZMoXmNoJghweN5XowZmSxZFzsg4UQxQwJlAydJynifRyY2SjxJ3KmtrYXdboe8ZBpmlpVBEARYOzoh13rOyZLLWBSnF4nbSjb4nhxbe71kW6bSQZ1bHNibnR/gGbdtElXOmFEoFOO+oiElnYGhmCHBslgsYhKh1Qb/kJOMPxQzhEjR4xcStxitFoq0NAh2OzizGfIUz8TTfY6njbMHfR1be4NkW1VYCpk6gMIj9PmdxBlfSefEiRMp6SSEEELiFD9OPlRSjyeJO5mZmZI1BxUGA1TZ2V6PHUsPpztrm7THUzORllFJNO4xMx61trbi2LFjHvsnTpyIyZMnU9LphmKGBEsul9MSPCQoFDMkUBpNCuwuYcLIkjNmKPEkcaegoECyLfNTCCVXl4UzJ5TDwXOo7qpFti4zqGsJnAO2jkbJPmXe1KDOQWLPPWbGG19J56RJk1BcXEwferwY7zFDgkeVoEmwKGZIoLIWzsEn/GFxO0WVEsPWRA4lniShGTRpMGjSYOfsKNDnIjXIX1RbdzMEt+G5qrwpAb+fPtCTWGtpaUFtba3Hfko6CSGEEBJPKPEkccnS3o7efd+AkSsgU8ghT0lB5kLflWYVrAKKMQy7dR9mK0/LAasNcEkW+kBPYqy7u5uSTkIIISTBMYwMSl4QtxWCn4MTGCWeJC4N1h9Hw19fELfVebnIOHuB5IO0zWHDbz75E/TqFOhVqUhTpWL9rBVIUQZQGOgUa4u0EIsye2LojSckStLT02EwGGA0GsV9xcXFKC4ujlmbCCGEEBKcPJUey4wmcVuero9hayKHEk8Sd44dO4aho9L5ag6zGeB5wKUQSL91EA3GJslxl89aGdS1lLmToZ44C46hPnBDfRB4x9gbTmLm2LFj4tIYJSUlsW5O1LAsi9mzZ+PQoUMwGo2UdAZhvMYMGTvXpTHUanWsm0MSAMUMGSu7PfhVGhIBJZ4k7lgsFthNJsk+hmXBuFWf7LdIl1KRy+TQKoJbCJ4zDUA9adbp6yioEEAislgssNvt4Dgu1k2JOmfy2dXVhby8vFg3J2GM55ghY8PzPFUoJUGhmCGBYuRKqCfNxtDQIARBANRUXIiQqJDJZGDkcjDpBihYOcDzUKQbPI7rNRkl22mq1JBv7oLdFsTR9IckXshkMvFrPGJZlpLOII33mCHBc/59oSSCBIpihgTqWNMJHKpuBsfzECBArjShNNaNigBKPEncKS8vx3BKKnrS0vweZ+cdmJdfAStnA8dzUMtVIV9bnpIe8jlI9JWXl8e6CRHX2dmJzMxMWncyTMZDzJDw0miCG1FDSDLEzM0334zPPvsMf/jDH7B+/fpYNydpDdc3YsrhPnHbokrOh6KUeJKEpVWqUZxeNOb3OwZ6PM85fV4oTSIkIpqamlBfX4+0tDRUVFRQ8kkIISTi3nrrLXz22WexbgZJIsmZTpOEx9ukQ16VmRkex5jtlpCuYWmu8djHphiCO4k4fIaG0ZDIOHnyJOrrR5b96e/vx6FDh2heIiFEorGvOdZNIEnm888/x29/+9tYN2Pc4Hg+1k2ICko8SVyyDwxItr3Nj1DLpRXiWCbwcBZ4DpaWYyMTuCXXCfwcNGWDRNrJkydx/PhxyT6j0YieHs/eekLI+GQ09+OBz/4HRnN/rJtCksRbb72FW2+9NWkrq8YjtUEPU4pC/LKnJf4wbW9oqC2JO52dnRg2m2EZHoZON7Imp7Xb84P23AkzUZE7Aya7GXW9J1CWPS3ga9i7mzGwdwsYhQpsSjrYlHSkVpwftp+BRFdnZyc4jgPLssjJyYl1c8LCW9IJAFOnTk2anzGWkjFmSGTZ7XaxQqlCoYh1c0Tv1GzDkG0Y79Zsww/OuCLWzSEu4jVmfBkcHMQjjzyC119/PdZNGXdyFsxDtbYbdttIzOiU2lg3KSKox5PEnfb2dnSdOIGhoSFxnyor0+M4GSODnJVDr07Fmfnl0CgCXyPL0loHABDsVjj62mHrPAFlVmHojScx0d7ejtbWVrS3t8e6KWFx4sQJn0lnUdHY5zWT05ItZkjk2e128SteGM39+Lj+CwDAx/VfUK9nnInHmPFly5YtuOSSS8SkMyMjA9///vdj3Krxw9bdDFvXSTh6msH1NsPe2RjrJkUEJZ4kLvGNJ+A4egx93+6H8UAlTE0tYT3/cM1Xkm15SjoUmfnBn4jG25IwO3HiBBoaGjz2T5s2jZJOQojEOzXbYOdGkhobZ8e7Ndti3KLIa2trw0MPPYRLLrkEs2fPxoIFC7Bp0yZs2bIFAPD888+jtLQUpaWei1E49z/99NPo7u7GbbfdhjPPPBNnnnkm1qxZg/fee09yPM/z+Oijj/DTn/4US5cuRXl5Oc4++2xs3LgRTz/9NAbcpgW52rRpE8444wyceeaZfn+eu+66S2xXc3Oz19fOPfdcACMjYe6++24sW7YM5eXlWLJkCW6//XZUVlYG9G/nz+uvvy5O41iyZAnefvttzJkzJ+TzksAIFhMY0yDkNhPkNjNY63CsmxQRNNSWxJ3i4mIct1gx3NoGZ5+n+1xMQRBw97aHkarSQa9KRZoqFavLLoZBrQ/oGvbuJsk2m5IOVpMaXEMp6YwbxcXF4Hk+4ddkbGxsRGNjo8f+adOmobCQeuTDKVlihkSPSqUSh03GA9feTqeP67/A6hkXwaDxvxxZovr6669xyy23YHj49Idym82GvXv3Yu/evdi2bZvXhNPd0NAQrrnmGsn9tqamBnr96c8Q7e3tuP3227F//37Je41GI4xGIyorK/Hiiy/ikUceERNDX1Sq0Jd7279/P26++WZJstvV1YUPPvgAH374Ie68805cf/31IV2joKAAv/jFL3DppZeG2lwSpDxlCpb3mcRtRp0Sw9ZEDiWeJO7o9XrI3f6wK9MNku1huwnH+05K9q0sXR7Q+QWeg2OwV7KPTfWsmksSh+uHhURFSWd0JUPMkOiKt2WMXHs7nZy9nsk41/Pw4cO46aabYLGMVLS/4IILsHz5cigUCuzduxebN2/G1q1bsXv37lHP9c9//hNWqxVLlizBqlWrYDQa8fnnn2PJkiUARiqIX3/99eKUh4KCAqxfvx5TpkxBf38/tm/fjl27dsFoNOKWW27Bs88+i6VLl/q8XqixYzKZcNttt2FgYACzZs3C5ZdfDr1ej3379uHNN9+Ew+HAww8/DK1WiyuvvHJM1/j5z3+O2bNnQy6n1CAeMEn6UJSii8QlweGQbDOsNFT7LYMe79GrAuuxtLYfB3jpchRpC1YF2UJCwsdX0jl9+nQUFBREv0GEkLjmrbfTKVl7PR988EFYLBYwDIPf//73WL9+vfjamjVrsG7dOtx0000YHPT8fODOarXivPPOw7PPPiv2YF933XXi64888oiYdF544YV49NFHoVafriNx1VVX4e2338avfvUrOBwO3HHHHdi2bRtSUiLTSzU4OIjBwUFs2LAB999/v5jIrlq1CqtWrcKNN94Is9mMxx57DCtWrBjTg7Uzzjgj3M0mxENyptMk4fEOaWIoc3sC1+tWQEEjV0PJBlYxztouLdrCqLRQ5Yx17lx8DLkiiUkQBDQ0NFDSSQgJirfeTqdknOv51Vdf4bvvvgMAbNiwQZJ0Os2bNw933nlnwOe88cYbvQ6b7ujowObNmwEAhYWF+NOf/iRJOp3WrVsnJqu9vb0RrwRbWlqK++67z6P3dP78+bj11lsBjAwDfuuttyLaDhIZx47WoPKEXPz6rj60terjFSWeJO7Y7XZwZpNkHyOX3mjT1XrMK5iD2bkzUJI5BYVpE2Dz8UfY4/xd0vmdqtxiMAEmrdJGUdIZL+x2O2w2W0JUDnTlcDi8VlWlpDPyEjVmSOzwPC9+xZK/3k6nZKtwu2PHDvH7H/7whz6PW7duHQwGw6jnUygUqKio8Pra7t27xfvCtddeC43G93qKN9xwgzg0dfv27T6PC0fMXH/99T6HwV555ZVQKpUAgM8++yzka5HoM3X3IafDIX7pO5LzbxMlniTuVFdXwzIsrebFuN1sGYZBsaEQpVlTUZFXhjl5M6GQBTZy3Nom7fHUTKaqbYmuuroahw4dQnV1daybEhSFQoG5c+dKCk+UlJRQ0hkFiRozJHYsFgvMZrM4xzBW/PV2OiVbr+e+ffsAAOnp6Zg2zfea3UqlctQqsgBQVFQkJmruDhw4IH6/cOFCv+fJysoS23Po0CGPQohO4YiZRYsW+XwtNTUVJSUlABCWCreERAolniQuCW5DbXmrTbLdMdTt8Z5AKg0KPAeb29pIqglTg28gIWGi0WjE5LOkpAT5+WNY1ocQMi4E0tvplEy9np2dnQAQ0P1x4sSJox7jbw5kb+/p4oOBLGHlPMZut/tdXiUUWq0Wubm5fo9x/tuYTCaYTCa/x5L4E9txFNFDiSeJO2lpaWDdhtbKU3SS7UytARkaA/Sq4CbyO4ydEOxWyT5l7uSxNfQUhmFOj7ql4bcxkZaWBoPBgLS0xCymodFosGDBAko6oyjRY4ZEH8uy4lesBNLb6ZRMvZ5GoxEAvM61dBfIMb56OwFIlmrxN8zW2/XMZrPXY0KNGZ1ON+oxru0YGhrycySJRyqlNNaSNUGjqrYk7kyaNAmdLAvXPk/W7eY/yVCISYZCODgHNtd8hKWTFgR0bmvnCcm2TKsHq6MPnolu0qRJsW7CqJxDsHz1zMfbUg3JLhFihsSXcKzFGIpgejudkqXCrUqlgt1u95nYuQp1WKtrsmk2m0etVOvau+gr6fUXO1ar1edrTjabbdRjnO1gGCagea4kvqSwarjWY07WTwTJmlCTRMdL50nIVD6eTjIM1petQG5KdkCntTZJ53Mps4riZjFwkrwEQcDx48dRV1fncw4QIYT4E0xvp1Oy9Hrm5eUBAFpbW0c9NpBj/MnKyhK/b2pq8nPkiBMnRh5oq9VqScLn+tnC4bZEnKtAln8ZGBiQ9MR609zcDAAwGAx+e3QJiSVKPElcEtzW2WRk3p/9yGUsZEEssmtqOCg9r3wM1WwJCYIz6WxqakJLSwvq6+sp+SSEBGUsvZ1OyTDXc86ckSKARqMR9fX1Po/jeV5cdmWsZs+eLX7/1Vdf+T22o6NDXO/TWdzHyTX58zf0ta6ubtQ2CYLgt2iQ67/LggWBjQAjJBYo8STxya30uHtV23s/fQwPfvYEnvjqBbz43b/RPdyLQHAm6cR/NjUjtHYCtJQn8UkQBNTX10uemjc3N4sfVAghJBBj6e10SoZez+9973vi9y+//LLP47Zu3Yqurq6QrrVs2TIoFArxWv6G977wwgviUinnnXee5LXMzEzxe1/Vsw8cOIC2traA2vXqq6/6fO2VV14Rl4C54IILAjofiS+pcukwbUWSPp+mxJPEnfr6ejjc1tZjXOa/OXgO1V21ONhRjV0n9uL9Y5/A7AhsTkfK7GVIqTgfmmlnQZU/HYr0CWNuJw3RjR/19fU4evSo3yfh0eZMOp3Dn1wFUiiCRFY8xgyJbxaLRfyKplB6O50SvddzyZIlmDFjBoCRBOyDDz7wOObo0aP43e9+F/K1cnJysGrVKgAjQ21/+ctfev1vvnnzZrz44osARpLMq666SvK6a8/pU0895THctr29Hb/61a8CbtfHH3/sNenevXs3nnnmGQBAcXExVqxYEfA5Sfxw/0iZpHknFRci8Wd4eBiCe48ne/oZyYDVcz5Emip11PMKggCZQgVZWjbkaSNzQlNmLQ6xtSQeDA8Pw263i0+pY00QBNTV1aGlpcXjtbKyslHL4pPIi7eYIfGP53kIghD1h46fNX6FVGXoD6s+a/wKa8suCUOLok8mk+GBBx7ANddcA7vdjttvvx0ffvghli1bBpVKhQMHDuCNN96A1WoFy7LgOC6oaTju7r77buzbtw9NTU3Ytm0bVq5cicsvvxyTJ0/GwMAAtm/fjp07d4pte+ihh5CRIR1BtWLFCvzpT3+C2WzGvn37sHHjRlx++eVITU1FVVUV/v3vf2NwcBCzZ8/GoUOHRm0TwzB44IEHsHPnTlx00UWQy+XYs2cP3nnnHfA8D4VCgfvuu4/mdyYojyllTHL2DVLiSeKTW3Eh11/IXrentgwYqOUBVBvkPCf3MzL6FSDhRUknISSc1pZdkrAJYzjNmTMHjz/+OO644w6YTCZ8/PHH+PjjjyXHXHHFFWhpacGePXtCSsD0ej1efvll3HrrrTh48CBaWlrwxBNPeBxnMBjw2GOPYfFiz4fYmZmZeOCBB3DPPffAZrPhyJEjOHLkiOSYH/zgB5g7dy5+/vOfj9qmO+64A48//jh27NiBHTt2SF7T6XR44okncM455wT5k5J40ctIO1xsSTqojj51k7hTXl6OrxlGspiu6xxPvVKH+QVzYHFYYXXYwPEc+AAGJfA2z6EyMk1w64CS+FReXh7rJgCgpDORxEvMkMQRyJqOJLIuuugivPfee/j73/+OnTt3or29HUqlEjNnzsS1116Liy66CNdccw2AkeQxFLm5ufjXv/6FDz74AO+//z4OHTqEvr4+GAwGFBUVYcWKFVi7dq3f66xatQqzZ8/GCy+8gN27d6OzsxN6vR6zZ8/GtddeiyVLluD9998PqD0XX3wxlixZgmeffRZff/01+vv7kZ+fj/PPPx8/+tGP6O9LgjM5pMvqcEk62JYSTxJ3vA2PUbpM0lfKlZhkKJS8Lg+g55K3epYiZ+QhDElxDrdK0qdSiSSUIVXhIggCamtrvZbynzlzJnJycmLQKuJLPMQMSSw0rz8+FBYW4te//rXP13t6egAAEyZ41nA4evRoUNdiGAaXXnopLr300uAa6fL+yZMn44EHHvB5TDDnLykpwWOPPTamtozF+vXrsX79+qhdjyQ/SjxJfHJbbkKu04rf827zPwGADWQsvOD5PvogQcLBV9LJMAzKysoo6SSEkBC888472LJlC4qKinDzzTf77N2rr69HY2MjgJEHfoQkCp7nx0XFV0o8SVzi3aq/yVyG2ipYOYoNhXDwHJoH2iCXsaMmkIIgYPDQF+BM/ZBpUsEE8J6gnDoXJbLjDyWdhBASWXq9Hl98MVLZVxAE3HvvvR7HDA0N4Z577hHXSb7sssui2kZCQiGXsZIpZrIk/TxJiSeJOz09PZ7reLpUtU1VpWBB4dygzskN9cG46w3n2SDT6JC+dGOILSXxore3d+RpoUzmUVkw0urq6rwmnTNnzkR2dnZU20ICF8uYIYnJ4XCIVW3lcvr4FE2LFy9GYWEhmpub8corr6CqqgoXX3wx8vLyYDabcfz4cbzzzjvo7u4GAGzYsAHz5s2LcaspZkjgUpVauJbOZJN0Hhf9FpC403zipMc+hg0tVO3drmspCuCtZnAWU0jnPC05bw6JpLm5WVwaI9pJRGZmJtra2sQh4JR0JoZYxgxJTDabjZKIGFEqlXjqqafw4x//GG1tbThw4AAOHDjg9dirrroqqPUxI4lihgSKGx6QbLsvK5gs6LeAxB8vv2yMnPVyYOBsksQTYLV6KNPzQjonIQCQkZGB8vJyHD58GIIgUNJJCCERMGPGDHz44Yf497//jU8++QTHjh1Df38/dDodcnNzccYZZ+CKK65ARUVFrJtKSNB4m1myzQhU1ZaQqMjPy8Ux950uxYP+8MWTcPAc0lSp0KtTccm0ZZiQ6n8end0t8ZRp9ZAbKDlIFoWFheKwyVhwJp88zyMrKysmbSDBiXXMkMSjVCrF3isSGxqNBps2bcKmTZti3ZSAhBozDz/8MB5++OEwt4rEIz2rgus4PDktp0JIdBi8rIllN/ZBnTOSKFZ11sLK2cTXFhWdNWriaetukmyzmlTI9ZQgJIt4GCoZD20ggaP/XiRYNFSSBItihgTK/dkEk6TTuOhRL4k7goPz2Oec42mxWyRJJwDo1amjntPe0yLZlmn1kGlDW1z6dCXb0E5DEoMgCOjv7x/9QEIIIYQQ4oESTxJ3BM4z8ZQpRhLPfuugx2vMKKMROPMguGFpwqArXQCZXDn2RpJxRRAE1NTU4LvvvkNHR0esm0MIIYSQJNLrsEi2bUnaqUFjAEjckacbULjhCnA2KxiMVPaSqdQAgBSlDguLzsSwzQSrwwYbZ4ONt/s9n71b2tsJGQtd6cIItZ7EAu9SkCrcc/YEQUB1dTU6OzsBANXV1WAYhtbnTHCRjBmSnASXYh80z5MEgmKGBGqYt0mSMofPIxMbJZ4k7hypqoJt2mQo5HKUz5oFQRDAqlQAAJ1Si0lpBeCE0x8adQqt3/O5V7RVZEyATK4IX4Ppj0nMHT58WFwaI5wVDd2TTqeamhoYDAYoldRrnqgiFTMkeZnNZrFQjFbr/+8OIQDFDCHuKPEkcYlRKMAoFGA1Gsl+QRAkSScwem+FvUeaeCqzCsPTRko4k5qvpFMmk6G8vJySTkIIIYSERXLWsPVEiSeJOzqdDg6Hw2s1OEEQsHjiPJjtFpgdFpjtFmjkar/n8+jxzAxP4knih7+YGQtBEFBVVYWuri7JfmfSSRVRE1+4Y4YkPxqSTYJFMUMCJVdIP8sma9cG/cUlcWfq1Kk+X5PJZCjQ54nbgayPZWtvkGyHq8dTKllvEYnBX8wEi+d5VFdXU9KZ5MIZM2R8UKv9P+QkxB3FDAlU7oI52GmpFre1al0MWxM5lHiShDZa0snbLOCGjZJ9jqG+CLaIJDJ/Sefs2bORnp4eo5YRQgghJFkxSgXs2tM95JyKjWFrIocSTxJ37IODGK4/DoZlwcjlkCkUSJk2tt4Jm9v6nQAAtzmioaPezmTA8zyqqqrQ3d0t2U9JJyGEEEJI6CjxJHFn8Fgtqh94SNyWp6ZiwT/+BkYmw2O7/4Jh+zD0qlSkqVKxfMpiTDQU+DyXrfMEIGMBfmRtUJlaB90MWkqFSFHSSQghhJBYyVHpsaxvWNyWG1Ji2JrIocSTxJ32kycl24Lj9GpGNd11MFoGxO25E8r9Jp4ypQZpi9ZDsJrAmQYg8BzkhtzwN5rE1IkTJ8RCMZMmTQrqvf6SzoqKChgMhjC2lMSLUGKGjE9Wq1WsK6A6tcQXIf5QzJBAsYwMStfStg4uZm2JJEo8SdwxDQxKd8hkAMOAF3gMWIckL6WpU/2ey9Z1EgzDgFHrIDs1UZuWQUk+/f394pqMwerp6aGkcxwKJWbI+MRxXEAF7QhxopghAWNkUGQWwGK1AoIAQUk9noREiQAoFYAggAEDmUIBhmEwaB0G7zY/c9g27OMc3smUYaww5/xDwmD8LMCUhLKzszFlyhQcP34cAMCyLGbPnk1JJyGEEEKiomlwEN9a5LBZeQgQoARQEutGRQAlniTulJ5/PrrZkdBkWRayU8NTlKwC8wvmwOqwwcrZYHVYIZcF11uhzCkOd3NJHCgrKwvpqfLEiRMhCAJOnjxJSec4EWrMkPGHlsYgwUq0mOno6MArr7yCnTt3oqmpCWazGQaDAeXl5Vi1ahVWrFhBa5NGSM+BgyjecULctqhkwH/Frj2RQokniTssw4BlT5eRlilGwlQtV6E0awoM6jR0m3rh4Dn4+8zI260e+xTpNL8zGYVjuOSkSZOQm5ubcB8UyNjQEFsSLPrATYKVSDHz/vvv49e//jVMJpNkf1dXF3bs2IEdO3bg1VdfxRNPPEHrWZMxS5zfCDJu2Pv7JduMy407NyUbiyfOg+NUlVq9yvccT8dAt8c+uT4rTK0kyYiSTkJIIhpuaIx1E0gC27lzJ375y1/CZDKBYRhccsklePDBB/H444/jtttuQ0HBSBHHffv24Sc/+QnsdnuMW5yEhPExZ4sSTxJ3WK1Wsm13KTY0v2AOWNnp3lB/xYWGjuyCpfko7L1t4CxDI8Pq2DB28p/qbqWheonBWb12aGho9IMJISRB2Pr6cPg398LW1xfrppAEZLfb8cADD4DjOLAsi2eeeQZPPPEENmzYgJUrV+KnP/0p3nvvPSxcOLIU3XfffYfXXnstxq1OQnIWvAziF+TJmaLRUNtTBEHAli1b8Oabb6K6uhomkwnZ2dmYP38+rrnmGlRUVIR8/k8++QTvvPMODh48iN7eXigUChQUFGDx4sX4wQ9+gPz8/DD9NIlteGgQFotFLD8ucxkSJ2NGfhGVrAK5KVnQKjQ+z2Oq3Qdbe4O4rcyfDiz7fuQaTmJmYGAAPM9DJpNBr9d7vM5xHA4fPoy+vj709vZi7ty5SElJzopxJDCjxQwh7lwrlLpOB4m1lrc2wzE4hJa338HkH10X6+YQF/EaM6727NmDk6eWsbv22mtx/vnnexyj0+nw6KOP4oILLoDFYsEbb7yBTZs2RbupSa3g/HPxebYJnIODAAEpSl2smxQRlHgCsFgs+NnPfobPPvtMsr+lpQUtLS1477338F//9V+46aabxnT+/v5+3H777di9e7dkv81mw7Fjx3Ds2DG8/PLL+N3vfoe1a9eO8adIHq0trbD29oJlWeTm5kJhSPM4ZumkBUjXeO53xQ1Kn/7KUzPD2k4SPxobG8WlMdwfErkmnQDgcDhQWVmJOXPmUPI5jvmLGUK8cV2TUes2MidWbH19aN/6MQCg/cOPULBuDZTp6TFuFXGKx5hxt2fPHvH7NWvW+DwuKysL8+bNw65du3D06FFYLBaanhJGjv5OOIwdsNtsEABYZMm57islngDuueceMemcOnUqNm7ciKysLBw5cgSvvfYaTCYTHn30UeTm5vr9pfSG53n89Kc/xb59+wAA+fn5uPzyyzFlyhQMDw9j165d+Pjjj2Gz2XDXXXdBr9dj+fLl4f4REwrX0QG+pQWQsRgaHAJnNnsck6n1/4dVEHhwZul6oHJ9BBNP52hbGnYbV9yTTiee58HzvI93EUJIYmh5azN4mw0AwNts46LXs62tDX/729/wxRdfoLW1FRqNBqWlpbjyyitx2WWX4fnnn8ejjz4KADh69KjkvaWlpQCAn/3sZ9i4cSMeeOAB7Nq1CwBQVFSE//iP/8CqVavE43mex7Zt2/Duu+/i4MGD6Ovrg06nw6RJk3Deeefh2muv9TliYtOmTdi7dy+AkeGpvtx11114++23AQCffPIJCgsLPV7Lzc3FF198gZMnT+KZZ57Bl19+iZ6eHhgMBsyfPx/XXXcd5syZE+w/JYCR2gaTJ09Ge3s7iouL/R6blnb6gf/AwAAlnmHkGOyDY6AHDHDqy/OzbzIY94nn7t27sWXLFgDAwoUL8fzzz0N1avmOyy67DFdccQWuvvpqGI1G/P73v8cFF1wQVC/J22+/LSadCxcuxDPPPCN56rVhwwZ8+umn+M///E84HA7cd999WLx4sdiG8UjR3AJrfQM4AH0ArN09AIAnv/47ek1G6NWpSFOl4tziszE1Y5LXc9iNHcCpAkROutIFYW3n6bmdtJBnrOXl5YnzU5x8JZ1yuRwVFRU0vHKc8xYzhPijUCjiagke195Op2Tv9fz6669xyy23YHj49BreNpsNe/fuxd69e7Ft2zYxufRnaGgI11xzDRobG8V9NTU1kr8L7e3tuP3227F//37Je41GI4xGIyorK/Hiiy/ikUcewbnnnuv3euGoor1//37cfPPNGBgYEPd1dXXhgw8+wIcffog777wT119/fdDn/dnPfoaf/exnAR1bV1cHYOTzDy07Fl7ZCh0WG09XFJapaKhtUvrb3/4GYOTD6IMPPuiR8E2dOhW/+c1v8Itf/AJGoxFvvPFGUL/Yr7/+OgBApVLhT3/6k9ehFsuXL8e1116Lv//97+jo6MAXX3yBiy66KISfKrFp9WlwLf8iOBwAgNruBrQNdYr7Z2RP9Zl4OnpaJduMXAnlhGlhbyuJDzk5OZJtjuNw6NAhGI1GyX65XI45c+YgNdV3USoyPrjHDCGjibcleFx7O52Sudfz8OHDuOmmm2CxWAAAF1xwAZYvXw6FQoG9e/di8+bN2Lp1q8e0Jm/++c9/wmq1YsmSJVi1ahWMRiM+//xzLFmyBMDIFKnrr78ex48fBwAUFBRg/fr1mDJlCvr7+7F9+3bs2rULRqMRt9xyC5599lksXbrU5/VCjR2TyYTbbrsNAwMDmDVrFi6//HLo9Xrs27cPb775JhwOBx5++GFotVpceeWVIV3Ll8OHD4s9yGVlZVAqlRG5znglZ2TQ8qc7MZw1TZJNcv5UATIajfjyyy8BAEuXLkVRUZHX41auXInMzJFhmlu3bg34/ENDQzh48CAAYNGiRcjOzvZ57Pe+9z3x+8rKyoCvkZTcSkoz7EiY9pqNkv1pfpZSsXW3SLYVWYVglTQkZDygpJMQkuy89XY6tX/4UVJWuH3wwQfFwoN/+MMf8PTTT+OKK67AmjVr8NBDD+HFF1+ETqfD4ODgqOeyWq0477zz8Ne//hVr167FddddhxdeeEEcAfHII4+ISeeFF16IDz74ALfeeitWrlyJq666Cv/3f/+Hhx9+GDKZDA6HA3fccUdEK6YPDg6iq6sLGzZswBtvvIFrrrkGq1atwgMPPIC///3v0GhGCi0+9thjkh7RcOF5Hg899JC47TocmZBgjOvE85tvvhHneTnLRHsjk8kwf/58ACNJYb/bOpO+9PX1Yfbs2cjOzsaUKVP8Hus+bn48E9yGyLJqNeycHVZO+mTXxjl8nsPe3STZVuVODl8DSdyipJMQMh546+10cvZ6JpOvvvpKnCe5YcMGrF+/3uOYefPm4c477wz4nDfeeKPXYdMdHR3YvHkzAKCwsBB/+tOfvM5lXLduHa677joAQG9vrzjCLVJKS0tx3333eUwPmD9/Pm699VYAIx0qb731Vtiv/fjjj4tDjvPy8nD11VeH/Rrj3YmmEzjQpRC/Ktu8/34nunGdeNbW1orfl5SU+D122rSRYZqCIODYsWMBnb+oqAhvvPEGdu3ahTvuuMPvsfX19eL3433cvMC5FX2RyWBz2LGgYC4qcstQmjUVxYZCZGoNPs/hrcczEhiGOV1YiMQUx3E4ePAgJZ2EkKTmr7fTKdl6PXfs2CF+/8Mf/tDncevWrQvoM5S/ata7d++G3W4HMLK8iLM30ZsbbrgBcvnIrLXt27ePet1QXH/99eK13F155ZXi0Ff3FRpC9dJLL+H5558HALAsi0ceeYSKCkVA38lW5DbYxa+UBmusmxQR4zrxbGk5nZwUFBT4PTYvL8/r+8LlzTffFL8fa2WyZNFvlP6xZFgZ7IIDEw0FKMmagtm5MzCvYA4mpOZ6fb8gCLD3NEv2KbP8//clie3gwYPYsmWL5GESMJJ0zp07l5JO4uHw4cP47rvvcPjw4Vg3hSQIs9kMk8kEs5dK69Hkr7fTKdl6PZ1FGtPT08WOAG+USiXOPPPMUc9XVFTkc47igQMHxO/9jYYDRpYYcbbn0KFDEATvhQbDETOLFi3y+VpqaqrYgRLO6Vr/+Mc/JENs77jjDixYEN5CjWR8GdeJZ29vr/h9+igV4FyfoLn3qIRq586d4tO8zMxMLF68OKznTzS8W48nc2qCtVzGQuYyLEYu816Nkhs2grcMS/ZFqseTxB7HcWhsbMTw8LDkj75CocDcuXNprU7ilXNJHVpWhwRKEATxK1YC6e10SqZez87OkcKC+fn5ox47ceLEUY/xV9Xc9bOhr9ofrpzH2O12n1OlQo0ZrVaL3FzvD9udnP82JpMJJpPJ77GBePLJJ/HQQw+Jbf/JT34iDi0mZKzGdVVbZ2U0AKMuX+L6ZMz1faFqa2uTzEm45ZZbxv0QBpZhIJnlKZPBoNZj/cwVEAQBDX1NyE3J8vl+y8kqyTbDKsBGcg1PElMMw0Cj0cBisYhzXxQKBebMmUNJJ/FJrVaDZdm4q1RK4pdMJov5ciqB9HY6JVOFW+cD/0A+HwVyjL+KrK5LtfgbZuvtemazWVKzw0kmC62fR6cbfWkN13YMDQ15XUUhEBzH4d5778Ubb7wh7rv11lvxn//5n2M6HwmQQhqTyTqLa1wnng7H6eI0o5WFdn3d9X2h6O3txY9+9CP09IysU7l48WJce+21YTl3KOrq6jB16lTJ8ESr1SqW0TYYDB5PFOvq6sQnbO7zJrq7u9HaOrK8SVFRkaR3meM4HDlyBMDIUJHJkydDq1LD9c/q0PAwDh48iJkzZ0Iul2NKxsi1jUYjTp48CQCYMGGCWDXYVPet5Pq8Qg2ZTBrqzc3N4lPNkpISjxu2s5pddnY2JkyYIHlvdXU17HY7FAoFpublwfX20NbWhu5T/z2nTJkiSXwsFos4PzgjI0OySDQwMufYbDaDYRjMnj1b8lpXVxfa2toAjDzNde2BdzgcqKoaSbb1er3HAtANDQ1ilb9Zs2ZJChP09fWhqWmkEFN+fj6ysqQJvbMqs1ar9RjedPLkSfHDQGlpqeThzeDgIBoaGgAAubm5Hk9qq6qq4HA4oFQqMWPGDMlrra2t6O7uBjCynJHrH1yz2SwOp83MzERBQQFkMhkuuOACVFVV4ejRo+ju7kZxcbFH0tnZ2Yn29nYAQHFxseSJt91uR3V1NYCRQl+TJkmX6amvrxc/jJSXl0s+RPT29qK5eWRod2FhITIyMsTXeJ4Xh3LqdDpMnTpVct4TJ06IxcrKysokSdDAwIC4xlxeXp7H8h+HDx8Gz/NQq9Uec9RbWlrE+8r06dMlH56Gh4fFOeVZWVkePQg1NTWw2WyQy+WYOXOm5LWOjg50dHQAACZPnhyze4SrxsZGsZfBeY9w8nWPAEZ+7w8dOgSLxYLa2lpMnz5dct5w3SPKysokr7W1taGrqwsA3SOidY9wdezYMVgsFshkMpSXl0tec71HuD+QcO0d95ZEWCwW8XWNRiNJTh0OB2ynkkWlUimJUUEQxGGYMpnMI2myWq3guJFHsTKzOeDeTqe2Dz9C1srvIdVluhAwsval87OMWq2W/Ewcx8FqHZlfJpfLPT4fmc1mMQF3T8zsdrs4P1KlUkliied58cE9y7IeD/xd/w3dkyaVSgW73Y7h4WE4HA6f/4Ysy3p0Drj+G7pz/W+jUCj+f3v3Hd5U2f4B/JuddJdSWihlt5S9QaQoQ1RARKYgiOP15yuKIu6JiuNVHCi4RXEBMpQ9ZMuSoYyyWzYt0Ja2aZuOzPP7I+SQtEmbQNOk6fdzXVxkPHnyJL17eu7zLCgUCofPlJOTg5CQEKc/G9t3aL+Krq2M2Wx2eM+yr7X/Dm3fddl6bZ/N9hjg+B2W/dnYjq8SicRpZ4r9z8ZVHOr1erzwwgvYunWrWNeLL76I++67T6y/ovi2fYf2bK+rLL4rikNn9VYUh/bfYUVx6Cy+bXHorF6z2YySkhKkpKRU+XmEpMjoUN720/HVeYTt71RVq9WJp/0vgNForDD5NNhdYayKvYuys7Md9ohq3LgxPvroI7/YmNpsNpcbfiYIgnjAcnYAN5lM4vNlWSwW8Tlnw9psz9kOEuZix2GywtUyZYeq2LfJvl6j1vGXRVCWv+pn315367VvrzuftaJ6nV28sNXrLAZupN6q/NnYM5vNLttkX6+zeDEajTCZTE5P4Cqq11UcSqVStG7dGpcuXUJwcHC5Vf/K1ltRfFfnd1hRHLrzHVoslko/q7vfYdk2ORsa5u536O1jhKt6r+d3WRAEpwt28BhRvt6afIywr9doNFZar7OecNt7uRo2WdHjFb22omGY9q+9uGSZ272d4usNBlxevhKhjz5SZW2q6Pmq+qxlxcTEQKfTiRdXXNUrCIJ4Ecudep21yf7iSnp6Olq2bOnyswiCIF7cUqvVDhd8yiZnZRM9W53Otn8p+34FBQUoKiqCRqNx+f3aLoCGh4e7XISoop9bSUkJJk+eLM6nlcvlePvttzF8+HCUlpZ69B06e84bvzcVjUC40XpdsR1jqvo8wmKxwPkEMt+cR3hrGkqtTjztr6jp9Xq3E8/KhuVW5vz583jkkUdw7tw5ANYr8XPmzHHoKfElmUxW7o+yRCIR/xA7C1C5XO5yyJpUKhWfc/bH3vac7UApLXNFTGIyQaFQlDu42LfJ4SpZ4RXHN1CVH6Ji31536y3bXmef1/6zVlSvsz8KCoUCJpPJ6UH0Ruqtyp+NPfthimXbZF+vs3ix/Tw9rbeiOJRKpWjcuLHYm1FRvRXFd3V+hxXFoTvfocVicdqu6/0ObW2yWCyV/mx8eYxwVe/1/C4LguC0XTxGlK+3ph8jbPWazeZKjxHO2N7L1YluRY9X9NqKLjjbXmvUanH5T896O22y129E41EjoLQbSXAjbSr7elePX+9ndaZ9+/Y4deoU8vPzcerUKbRs2dJpvYIgiNuuuFOvsza1a9dO3Bpl7969SEpKcvlZsrOzxR6lsj1G9ueUOp3OaVIqkUhw8uTJStskCAIOHjyIm266yen3q9VqxZEsXbp08ThGLRYLXnzxRTHpVKlUmDFjBvr37y++zpPv0Nlz1fl7c6P1VvR5bcelqj6PqGg4ti/OI250eLgrEsGXs+R9bOrUqeLBZcOGDRVOIl+0aBFee+01AMBHH3103ZvnpqSk4LHHHhOHwcXFxeGnn35yawK7t+h0OnGIHGAdEuXLuXGHX38D+SnXVpqM7NYVGWOSsTfjAIIUGmgUGrSpl4Dkxs5XVkv//nmY8rNhKdEBEBDWYwjq3vagV9pqyMuDqagYECyQBQVDWSfSL3qtA5XJZHKZKBARVZW0tDSxl6rsMGxfOPP9HFxcvvK6X99g6JAaPddz69at+L//+z8AwLhx4zB16lSn5VavXo0pU6aI9+3PbQCICWv37t3xyy+/OK0jKysL/fr1g9FoRHx8PFasWOFyruf777+POXPmAACeeuopPPHEE+JzL774orgf6I8//oiePXuWe/2BAwdw7733ivc3btzoMMT+pZdewpIlSwAAt99+O2bNmuW0HV9++SU+++wzAMD06dMxdOhQp+VcmTVrFj7//HMA1p7br776qsJVdGsjbx8TTn3/OS4vv7ZtkEQhwc2LF1f5+7jLW7lBrV7V1n6ei6vhGza2eR+Ae6uqObNt2zY88MADYtLZokULzJ8/36dJpz8qLXGcnyFVKHBOm44Dl49i54V/sfH0dhzNLn+F0CYooSvCug5EeK/hCO18B4KadfJyi5loVgeTyYSDBw/i4MGD5YarZGRk4Pz5817Z6ogCE2OGPGUwGKDX6x1GQFXL+3qwkq0rNX2F2+TkZHGu7/z587F69epyZU6cOIG33377ht+rXr16YufChQsX8PzzzztdVHLp0qX46aefAFjnE48dO9bheft52F9++WW5YZKXL1/GK6+84na71q1bh7lz55Z7fMeOHfjqq68AWM9rBw4c6HadgPV7+/rrrwFYe8ymT5/OpNMHZJIyPag+aoe31eqhtvYTdNPS0ircm8i2WIFEIrmuKx2bNm3CU089JZ4wd+jQAd98802l27jURsYyf9QlUinySvMdHlPKnPd4CZZrY9glUhlkweFQ1mvstGyVYO9mtTAajUhJSRHnwhw8eBAdOnQQez5zcnLExVwq25OXCGDMkOdsIy4kEkmVrPXgrqyNmyEPvfGehqyNm9Fw5PAqaFH1k0qlmDZtGsaNGwej0YgpU6ZgzZo1uPXWW6FSqXDgwAEsWrQIer0eMpnM5XBqd7388svYu3cvLly4gPXr12PQoEEYMWIEmjZtioKCAmzYsAHbtm0T2/buu++Wmy41cOBAfPTRRygpKcGePXswevRojBgxAqGhoTh69CgWL16MwsJCtGvXDocOHaq0TRKJBNOmTcO2bdswYMAAyOVy/P3331i2bJk4XPLNN9/0ODa/+eYbMSlu3bo1ZDIZNmzYUOnrOnfu7DdTxAKCUPZuYJ5f1urEs1OnTlAoFDAajdi9ezfGjRvntJzZbBbHvSclJVW4/5Mze/bsweTJk8Wks1evXvj888+ve6nrgGcp89snleJiQabDQzq94wJENqUXjpd7TKqqfDl08l9lk07AOgTk+PHj5Vb2JCIKNA1HDq+xCWNV6tChA2bMmIEXXngBxcXFWLduHdatc+wJHjlyJDIyMvD333/f0MWBsLAwzJ07F5MmTUJKSgoyMjIwc+bMcuUiIiLwySefON1/PSoqCtOmTcOrr74Kg8GAI0eOiCt020yYMAEdO3bEM888U2mbXnjhBcyYMQObN28W9363CQ4OxsyZM50O561IUVGRw3d45MgRh+HCFfn555/Ro0cPj96PXNMpHTtUjF6aY+lrtTrxDAsLw0033YRt27Zh06ZNuHjxotNhtKtWrRKX1fd0CENOTg4mT54sDs3p27cvZs6cWa1XS2satUoJ+62PJTIpusa1R528CBjNRhgtJoSrQ52+1pB1ttxjUsWNLQZFvmM0GnHw4EHodDqHx5VKpcOIhYSEBJ/vr0c1C2OGPKVWqxkzPjZgwACsWLECP/74I7Zt24bLly9DqVSidevWGD9+PAYMGCB2InjaSVBWTEwMFi5ciNWrV2PVqlU4dOgQ8vLyEBERgfj4eAwcOBD33HNPhe9z1113oU2bNvjpp5+wY8cOZGVlISwsDO3atcP48eORnJyMVatWudWe22+/HcnJyfj666+xe/du5Ofno0GDBujbty8efvjhclsSueP06dMuV1ql6pVvcOxQMcE7q8r6Wq1OPAHgwQcfxLZt22A0GvHMM89g9uzZDpNnT548iXfffReA9YrSqFGjPKr/7bffFpPW9u3b47PPPmPSWQllaKhD4qmKikLjiDgo7IbXNotsVP6FAMwlOqePe5NEAtTeJbq8p6Kks2PHjg4jBtzZ5JvIHmOGPOWtVR7JMw0bNhQXe3TGto5G2f11gfKLDVVGIpFg8ODBGDx4sGeNvEoqlaJ58+aYNm2ayzKe1J+YmIhPPvnkutriTLt27Tz+TohuRK1PPJOTk3HHHXfgzz//xP79+zF06FCMHTsW9evXx9GjRzF//nxxw9cXXnih3Hj23bt3Y8KECQDKr5J26tQprF27Vrx/5513inMCKhIREYGuXbtWxcerkSRllnyWaTRQy1UIVQajxGTdSypM5Xy+izy0DkyFueJ9RWSs03JVh1e+vcFV0qlSqdChQwcOUyciqkWWLVuGlStXIj4+Hv/9739d9u6dOnVK3N6kdevW1dhCInJHrU88AeCDDz5AUVERtm/fjvT0dHz44YcOz0skEkyaNAljxozxqN6lS5c6bOY6ffp0t15X0TLftYFQZtNaiUyGrnEdHB5ztrGtYDFDu3s5ZOoQSDUhkKpDoWrQwqttpapXUdLZsWNH9lQREdUyYWFh2Lp1KwDrnpZvvPFGuTI6nQ6vvvqqeN511113VWsbiW6E2WKBfbeLJEA7Nph4wjrkavbs2VixYgWWLl2KY8eOobCwEBEREejSpQsmTJiALl26eFxvamqqF1ob+Mxl5xs4Gd7kbMiTqSAHppyLsF+wPLR9n6ptHHmV0WjEgQMHxFEGNpUlnUVFReLcq+Dg4OpoKtVwjBnylNl8bdV0Z5uxk/f06tULDRs2RHp6OubNm4ejR4/i9ttvR2xsLEpKSnD69GksW7YMV65cAQCMGjXKL0aOMWbIXXXUobDfv0EeoHPJmXheJZFIcPfdd+Puu+/26HU9evRwOT7+m2++qYqm1TrFZXq6yg69dcWYW2Y/PpkCspBq2K4mQA8O1c1gMODgwYMeJ52AdXiVbWuM9u3be7upFAAYM+QpvV4vXqzgcP/qpVQq8cUXX+Cxxx7DpUuXcODAARw4cMBp2bFjx3q0P6Y3MWbIXZZSx3OfsqP/AgUTT/I/ZVbqkbi5oIMh64LDfZkmBPLgiKpqlVPMOauGq6RTrVajQ4cOHF5LRFTLJSUlYc2aNVi8eDE2btyI1NRU5OfnIzg4GDExMejUqRNGjhzJC0lUI5VdHFMSoKtWMvEkvyOXSGC2u1+o1+HHrZ9DI1cjSKFBkFKDce2HlVvS3lSQ7VhPaBSkGg6hqwnS0tKcJp0dO3aEWq2u9PV169aF2WzmUCZyG2OGPCWX85TJ1zQaDe6//37cf//9vm6KW240Zt5//328//77VdQa8mfBMoXDjg4yMPEkqhaSkhKH+7rsTOw3XNt0WSVXYXyH8ptpG3MuOdxXNUyERFJdy99bk2Du73Z9EhISUFRUhOJi62HXk6QTgNP9d4kqwpghT3ErNPIUY4bcJS9zvioN0MWFuCkV+R3B4niVp8Skd7ivkjk/kBtzLzrcV8clVm3DnJFION62CiiVSnGbFE+TTiIiIiLyf+zxJP8jOE6oLrE4Jp6C4GQrFZMRpnzHobaKOuzRqElse3QKgsCkk4iIiGqNQrPB4b7RRbmajokn+Z16/fuhNCvLusiQAGQ3i0FbjQZGiwkmiwkqmarca4zazHIJq6JO/epqMlURlar8z5aIiIgokGnNpQ5JmTFAB9Mx8SS/U9SuDUyGBMjlciQmJkLQXkDSlWtb1gQpyveGGXMch9nKgiMgVXHpcn+j1+uRkZGBpk2bVul82OPHj8NkMkEulyMpKanK6qXAxZghT5XYrT/AlbbJHYwZIkdMPMnvGC0WGAUBAgCZWo2IkAjEGWJgsQjILdGi2Fha7jWG7PMO96VBYRBMRkjkCi+3NkAvSXmBXq/HgQMHUFJSAr1ej6SkpCpLPg0GA4xGIywBuu8VVT3GDHlKEARxT0YidzBmiBwx8SS/I5fLIQiCuAx5TEg0YkKiYbKYkZ5/EY0i4sq9puTMQYf7Eim3SPAn9kknAGRmZgJAlSWfZWOGqDKMGfKU7VjFJILcxZghdwllOkoCNWL4F5f8TuvWrZ0+LpfK0CQy3ulzpsJch/tSTWg19HaSO0pLS3Hw4EGHIUcAUFBQAJPJBIXixn9OrmKGyBXGDHmKQyXJU4wZcldsu9Y4kHlcvK8M0EUWmXhSQDAXaR3uSzWhvmkIOSgtLcWBAwdQWuo4PDooKAgdOnSokqSTiIiIqCaTR4Qiv8G1tCxExcSTqFoYtFoAgEQqhUQqhVSthrSC4XAWfQkEg2Nio67fzJtNdCCRAELlxWqdypJOrmBLREREVHsw8SS/c2DyszBeTT4BIGvsrTjfOBgauRpqhRo3x3dBi6gm4vOCyQBl/eawlBTCXKKDoC+BMqZp9TQ2UAfh36CKks6OHTtCqVT6qGVERERE/qWOIhhdCq5NSVKGh/iwNd7DxJP8jqlMsnLp4hnskFx7rFF4A4fE06IvRlCLLuJ9wWKGIqqa9/BkAiryRdKZmZkJs9kMmUyGmJiYKq+fAg9jhjxlNBrFFUo5TYDcwZghd6lkCtQxXVtlXWIMzBXXmXiS3xHKbG9QUmb7FLPF7Hi/pNDhvkQqgzysrncaRxVylXQGBwejQ4cOXuvpzMzMhNFohEKhYBJBbmHMkKeYRJCnGDPkLsFshkSugMVinbxlMTPxJKoeguOMyVKLEcC1A3bZxNOUn12uColE6pWmOcXl0gFYN8o+cOAA9Hq9w+PeTjqJiIiIarJchQopTdqjWKeDxSJApdSgha8b5QVMPMnv1B89EobcXEgAKJVKhAZloGVdFUwWE0xmE8LUjivWSmSOYayIqFdtba3tyaaNr5POpk2bwmKxQCqtxgsOVKMxZshTKpVK7L2imqlly5YAgO7du+OXX36p0rrT09PRv39/AMCwYcPw/vvv+yRmnLWD/N+FrdtQd/m/4v1SlRR4wIcN8hImnuR3gsLDIDdf69VMiGmO2Ohrk6xjQxwTS7Muz/F+Ub53G0jlGI1GmEwmh8eqs6czNJTb55BnGDPkKZlM5usmUA3DmCFyxEu95PcahMagRZ3GCFeFIkIdikhNmMPzljJbqSijG1Vn8whAWFgYOnToIP6RDQkJ4eq1RERERCRijyf5nzKbYraIaorgBk2cFtVfPgPt7hWQqUMg1YRAqgmFIjLW+22kcsLCwtC+fXucPn0abdu25UIKRERERG4wWSwOSZkkQLdLYOJJfsdkMonDNuXyikPUkJMOS5EWliItAECqDkZEjyHebqKdwDwwXK/w8HB07Nix2udA6fV6cR6NSqWq1vemmokxQ56y2K247k9zg22rYAKAVMq/Sf7EX2OG/E/8rcn4O6QQgmCBACBIFeTrJnkFE0/yO5czMmDS6a7tr1fB31HjlXSH+1J1CBRRcV5uYe1mMpkqvCDgi4U3Tpw4IW6N0b59+2p/f6p5GDPkqdLSUvFiRVCQf5wUGoxmzFl5BCWlJmjUcjx0VxsoFZxX6C/8MWbIP1lMJdBLS8SLomahtPIX1UBMPMmvCIIAc8ZFCBYLLDIZ9FIpLAaDy/KmgisO9xVRcZCHRHi5lbVXcXExDhw4gMaNGyMujgk+EZEvpV3Qwmi04EJWIZrWD0faBS3aNIvydbO86tKlS/jhhx+wdetWXLx4ERqNBi1btsS9996Lu+66C99++y0+/vhjANYLTJ7Ky8vD/Pnz8ddff+HMmTMoLi5GnTp10L59ewwZMgR33HGH23WtWLECixcvxqlTpyCVStG0aVMMGjQIY8eOhVqtrvC1aWlp+OOPP7B7925cunQJhYWFUKvViI6ORteuXTFmzBi0adPG489H/smUdxnG3Ivi4jvSAE3RAvNTUc1lscB0MMV6E0AWgF1BeSgpaA6NXIXo4CjcmdBHLG7Mvezwck3TdtXXVsDaG1tLlta3JZ0GgwFpaWkA4DfJZ0REBMxmM1cQJLcxZshT/hgrh09fQWGJAcWlJhSWGHDkdE5AJ567d+/GxIkTUVRUJD5mMBiwZ88e7NmzB+vXrxe3TLke69evxyuvvIKCggKHxzMzM7F+/XqsX78e3bp1w8yZM1GnTh2X9ZjNZjz99NNYs2aNw+MpKSlISUnB3LlzMXv2bDRp0qTcay0WC9577z3MnTvXYaguYF1BvrCwEKdPn8bChQsxZcoUPPbYY9f9ecl/RMo16Fh4rZdTptD4sDXew8ST/IpQ5iALAIfzT+PMqYsAgMYRDR0ST1OeY+KpiKzv1fbVVkVFRTh48CAMdr3PaWlpUCgUqFev+vZNdaVRI65kTJ5hzJCn/G0ucFZuMbLzSpBXYN0/Oa9Aj6ygYmTlFqNencAb1nn48GE8+uijKC21npz3798f/fr1g0KhwJ49e7B06VKsXbsWO3bsuK76N2/ejMmTJ8N8dTu35ORk9O/fHxERETh9+jT++OMPZGRkYO/evRg/fjwWLVqE4OBgp3WtWbMGRqMRQUFBGDNmDNq2bYsrV65g8eLFSE1NxYULF/DQQw9hxYoVCAkJcXjtZ599Ju4xWqdOHQwbNgxNmzaFSqVCRkYGVq9ejdTUVADAp59+iuTkZLRt2/a6PjP5D7VUjmjjta0EpYrAnBPMxJP8irPE0yS71qMoCNcWUbDoi2G+uqiQjaKOrxLPwO31dJZ0AtZ9ECu64ktERFXnr33pOHPx2j7VRpMFJpMFumIDgtRy6IoNMJksWLb1FBTyayetTRuE49bODX3R5Cr1zjvvoLS0FBKJBO+99x6GDx8uPjd06FAMGzYMjz76KAoLCz2uW6fT4aWXXhJHQfzvf//D0KFDHcr85z//wZQpU7B582acOnUKH3zwAaZNm+a0PqPRiOjoaPzyyy9o2rSp+Ph9992HZ599Fn/++ScuXryIL774Ai+++KL4fG5uLn744QcA1hFFv//+OyIjIx3q/u9//4tXX30Vf/zxBwRBwKpVq5h4Uo0RmOk01VxOEk+LXU4nCNeeN5bp7QQkkEf4vvctkBQVFYnDa+3Z9u2sbNVhIiK6cWazBUdO5+DMxQLxX3qWDhevFEEilaBhvVBIpBJcvFKE9CydQ7kjZ3JgNpf/21qT7Nq1C/v37wcAjBo1yiHptOnatatDEueJ3377DVqtFgDw8MMPl0s6AUCj0eCTTz4Rp5j88ccfyMzMdFnn//73P4ekEwAUCgXee+89REdHAwB+//136PV68fnNmzeLf28ff/zxckknYF0d99FHHxXvnzlzxs1PSf4sK+cKjulk4r8TBSZfN8krmHiSX3HW4xkfEYfmkY3RKDwOEZpw8XFDmRVt5eF1IZUrvd7GssRVXAOs09OWdBqNRofHbft1MukkIqoeeYV66xYLajlyC0qRlVeMbG0xjCYzGseGQiGXonFsKIwmM7K1xcjKK0ZuQSmC1HIIgvX1NdnmzZvF2w888IDLcsOGDUNERITH9f/1118ArFu4PfTQQy7LBQUFYfz48QCsvZpbt251Wi4hIQG9e/d2+lxISAiGDRsGAMjPz8e+ffvE5+6++26sW7cOs2fPxp133umyHQ0bXuvBtg09pprt4vE0RBw1i//kh0t83SSv4Jkj+Re7obQ2zaIao2GDWABAg9BrPZqlF447lJP4IOkM1IWFdDodDh48WGOSzpMnT4rbvLRo0cLXzaEagDFDnrLfGqOyFUmrWt0IDe65tTn+3HUOKqUM6Vk6FJUYER0ZhCC1AgAQpFYgOjIIFzILEaxRoGG9EIQHq3D7TY1RN6JmL1Syd+9eAEBkZGSFv69KpRKdO3fGpk2bPKr/4MGDAIAWLVogKqrixZl69uwp3k5JScGoUaPKlenevTsA1zHTuXNnhzpsdSoUCjRu3BiNGzd2+t6XL1/G4cOHsWvXLvEx25xUoprAv84eqdZz1uPZom4zyGMawyKYYbRcG3pQdmEhicK/Fn6oqVwlneHh4WjXrp3fJZ2AdcVd256MRO5gzJCnLBaLmET4Qlx0CMYMSMT6Pechl0lxIbMQuQWlCAu+dtE1N996Pz4mFPExoRjQvZGYmNZkWVlZAIAGDRpUWtbThcN0Op043DU+Pr7S8vZlrly54rSMbTiuq5ix/xzZ2dlO69i3bx927tyJU6dO4dy5czh37hx0Ol2l7SPyZ/53Bkm1mrPEs3Gdhgiu2xQHLx9Fs8hrf1CM2iyHcvJQLnRzo2pi0klEVFsEqRXo2yUeP68+Kg4QyskvQanBDLVSBkiuDRzq2yU+IJJOAOL8S3d6mj3tjbbfmkWjqbxn2L7+khLnwyEra4P9+9jP8QSsczZfeuklHDhwwOlrGzRogD59+mDevHmVtpVqDrNMXiuSstrwGakGEZwtgCCVwWQ2oU29llDKrv0RLbuirbJeE+82LsDpdDocOHAAJpPjhPaakHS2b9/e102gGoYxQ54KCvKPLUqy84oBACV6E8wWC4pKjAgLVuJyTjEkEkAmlYrl7HtDazKVSgWj0egy0bPn6ZxH+yTQnfqLi4vF264STNsCQa5ixr4O++1UsrKycN999yE3NxcAEBUVhZ49eyIpKQkJCQlISkpCbGwszGYzE88AU1cZCvv1mAPjklF5/nsmSbWTkx5PiVQKZZn5mxZDKQSD4x8IWXhdrzbNucCY42kymXDw4EGnSWf79u39cuN0IqLaKCuvBCaTBSazBXKZFA3rhSBYo0BRiRHpWTqYzNZtVrLyStC8YYSvm1slYmNjcfLkSVy8eLHSsu6UsRcaGgqVSgW9Xo8LFy5UWv7s2bPi7ZiYGKdlbEODXbF/n9jYWPH2rFmzxKTz3nvvxeuvv+50OkBBQUGl7STyR1zVlvyKs6G2Emn55M6Yd6ncY+rYZl5pU20gl8vLLfseERHBpJOIyM9k5xWjxGBCsEaB5g3DUS8yCLd0ikN0ZBCaNwxHsEaBEoMJ2driyiurITp06ADAOuT21KlTLstZLBZx2xV3SSQScR/MkydPIicnp8Ly9gv7tGzZ0mmZlJSUCuvYvXu3eNv22YBrq/eq1Wq88sorLuegHz9+bXFFwcmijET+iokn+RehfOK5+Nga/HLgD/x+ZDUyddZJ+BajEeom7aCMaQpZWF3IQiK5h+cNatCgARITEwFYk8527dox6SQi8jNNGoQhWK1Ak/phaNogHPcOSET7FtEYMyARTRuEo0n9a88HCvutRebOneuy3Nq1a10u1lOR/v37A7CO/pkzZ47LckVFRZg/fz4A636at956q9Ny+/btw4kTJ5w+l5ubi+XLlwMA6tevj3bt2onP2eayyuVyqFSuF0z86aefxNtlRypRzaSWOV5kkAXo9QQOtSW/4qzHc0f6PmgLrKGaFN0CMSHREPRFUMe3cignVYeUe221CKAtVRo0aAClUonIyMgalXReuXIFFosFUqkUdev6Ysg11TSMGfKU/aJrvlwNuX2LaDSODcOFzEK0aRYlrpgapFZgSHIzHDmTg0YxoQgPCZyV3pOTk5GUlITjx49j/vz56Nq1KwYNGuRQ5sSJE3j77bevq/5Ro0bhm2++QX5+Pn744QckJibi7rvvdihTWlqK5557ThzKe88994ir15ZlsVjwzDPPYPbs2eLxRaFQoLi4GFOmTEF+fj4A4MEHH3T4WxsXF4ezZ89Cp9Nh9erVGDx4sEO9JpMJH374ocO+pmUXJ6KaSSl1POcK1J5BJp7kV5wlnha7vK7IYB06ZCooPxTGF0vcB1DOKaqJJ+EXL14Ut8aoie2n6seYIU8ZjUZxawxfb8MTHqJymlhKpRK0ax548SyVSjFt2jSMGzcORqMRU6ZMwZo1a3DrrbdCpVLhwIEDWLRoEfR6PWQyGcxmM6RS90/dw8LC8N577+HJJ5+E2WzG888/j+XLl6N///4IDw/H2bNnsXjxYmRkZAAAGjdujFdffdVlfXXq1MHJkycxcuRIDB8+HE2bNkVOTg4WLFggzu/s3r07JkyY4PC6YcOGYcaMGQCAF154ATt37kSnTp0gl8tx5swZrFixQmyDTWFhIajmK3v+G6Adnkw8yc84STztf/kK9dY9rMquaCsPifRiowJLQUEBLBYLIiIifN0UIiIit3To0AEzZszACy+8gOLiYqxbtw7r1q1zKDNy5EhkZGTg77//hlLp2Yq+t912Gz777DO8/PLL0Ol02LZtG7Zt21auXM+ePfHJJ584rEZb1sMPP4wdO3bg77//xrffflvu+V69emHmzJnlkuOHH34Ye/fuxfbt22EymbB48WIsXrzYoYxMJsPjjz+OY8eOYcOGDbh48SJ0Ol2F7SH/p1c7buVjltacUWeeYOJJfsXZFZ9GEXEoDJHBaDGjQWjM1XJmh3JSTWh1NdGFmtH1WVBQgIMHDwKwbicRHh7u4xZVjfj4eHHYJJE7GDPkKU8TGap6AwYMwIoVK/Djjz9i27ZtuHz5MpRKJVq3bo3x48djwIABGDduHABrL6anbr/9dnTt2hXz5s3Dli1bcP78eZSWliI2NhZJSUkYOXIkevfuXekIK4VCge+//x4//fQTlixZgvPnz0OlUol1DBkyxGkdSqUS3377LRYtWoTly5cjNTUVxcXFCA4ORsOGDdG1a1eMGTMGzZs3x9y5c7FhwwaYzWb8+eefGDFihMefl/xHjt6x59oAJ9sLBgCJwOWwaj2dTucwCb5ly5Y+u3KmO30aB6c8L94XJBJcfnkMLMHWvbKSG3VFg7BY5G5d4PC6oOadoY5LqNa2AoC5pASm4mKYS/SQhwRB6ce9iPn5+UhJSYHZbE3aZTJZQCWfRERVJS0tDSaTCXK5HAkJ1f+3ha7fnXfeiTNnzqBDhw5YuHChr5tDAcLbx4Qd338KLL/Ww16qkqL/wkVV/j7u8lZuwB5P8iuC2fEKj0QqxU2tesFkNiG3JB9qubpcbycASNU+2ti7hkzyLJt0AoDZbEZ6ejoTTyIi8mvLli3DypUrER8fj//+978u9888deqUuM9m69atq7GFROQOJp7kX8p0wEvlcjQMqw9taQFyS7SI1ISj+OQ+5P+9DFJ1EKTqYEiDwhBx01AfNdj/OUs6AeviB61atXLxKiIiIv8QFhaGrVu3ArDuW/nGG2+UK6PT6fDqq6+K+1redddd1dpGohthtJhgv2RZzejW8BwTT/IrZed4Sq7Ov1LLlOhUvy0kEgnMhTkQTHqYdXqYdXmQasIgUXDujTMVJZ1t27YNmPlt9p+vJm0DQ77DmCFP2c9M8sUq6rVZr1690LBhQ6Snp2PevHk4evQobr/9dsTGxqKkpASnT5/GsmXLcOXKFQDW7VG6du3q41YzZsh9ddXhyLe7L5cE5t8lJp7kX8quaiu1HqjVCrX4UNkVbVUNmkMi8WUC5Z9/TLRaLQ4dOlQu6YyKikKbNm0CJukEgCNHjohbY7Rv397XzaEagDFDniopKRG3UwkK8tH0jlpKqVTiiy++wGOPPYZLly7hwIEDOHDggNOyY8eOxSuvvFK9DXSBMUPushgd92MVhMBcXIiJJ/kVVz2e9ozabIf7igjncz2qhZ9ewaxNSScREQW+pKQkrFmzBosXL8bGjRuRmpqK/Px8BAcHIyYmBp06dcLIkSN5IYlqJLNO63Bf4mR7wUDAxJP8ilAmUSo1GzH34BJoFGo0DKuP7g07wpSf5VBGHh5dnU30e1qtFikpKbCUOWgFctIZGhoqrjZH5A7GDHlKJpOJvVfkGxqNBvfffz/uv/9+XzfFLYwZcpdGpkCx3X0ZAnPTEf7FJb9i1jsONbAYDFh9aC2MCim6NmhvTTy1ZRLPiHrV2USn/OVvSl5eHg4dOlQu6axbty5at24dkEknADRt2tTXTaAahjFDnlKpVL5uAtUwjBlyl7LMlDGpn07julGBeRZKNVeZHk8B1r08AaBAr4NgMcNUcMWhjDzc94mnP6itSScRERER+T+eiZJfKTvHExI4DDYwFeYAZSZcK/ygx9MfXLlyhUknERERUQ1TajE53C+/Y31g4FBb8iuahnGI7NoFgiAgI/8SCkzFaBhRHwaJBSHKIBiyLji+QCaH4A/DEfxgrG2LFi1gNptx+fJlAEB0dDRatWrFpJOIiIjIj2Wbih2SMr3vTyu9gokn+ZWghg2hGj4UZqMJ0uKLgFSHbkFqcVsV/cU0h/JSVRBkKo0vmup3JBIJWrZsCcC6R2FtSjrPnj0rLhTTpEkTXzeHagDGDHlKr9eLC8Vw7h65gzFD5IiJJ/kViUyGIrMZRrMJkUH10DWpF0pNehzNSkXbmCQYUuc4lJeqgyGR+UsY+/7ylH3yWZtW0SsoKBD3ZCRyB2OGPGU2m7lCKXmEMUPkyF/O2InKUUgViFCHAQBiQ6xbpmQU5jmUkaqCq71d9sQ/JtX8R6WiP2T8A0dERERUc5ikslqRlNWGz0g1TOvWrV0mVqaCHIf7isiY6mqW38jNzcWpU6fQvn17Dt25qqKYIXKGMUOe0mg0jBnyCGOG3FU/MQFpp46J92XqwDy/Y+JJfqeiDd0t+iKH+7LgSG83x6/k5OTg8OHDEAQBBw4cQMeOHZl8ouKYIXKGMUOekkgkTCDII4wZcpeyfl1cTrp2PheiCvFha7yndqw8QgFBsJgh6EscHlPG1p5N4O2TTgAoKSnBgQMHYDQafdwyIiIiIqKK8ZIv+ZXMjZtwZvYcQCqB3mKEPiYCuv+7GxqFGr3qt4cmoQss+mII+mJYSouhbpDg2wZX05XMK1eu4MiRI2LSaRMWFsaeGyIiIqIaLEyuQVKRXryvkgZmjyfPWMmvGHJyYC4uBmANzuLMK/jt8HIAQMeIJlDFNnMoLw+vW91NrHauks6YmBgkJSVxGA8ArVYrzqOJiIjwdXOoBmDMkKdMpmsbvPOCH7mDMUPuCparEK+/Fi9StVBB6ZqLvwXkVwSz2fG+XU6l0xei7GxGqcI/5jd6K/dzlXTGxsaiZcuWTDqvOn/+vLg1BpMIcgdjhjxlMBjEixVMIsgdjBlylyBYHO6bAnQaFX8LyK8IZscEyz7xVAu1K8nKzs7G0aNHmXQSERERBbBiTQgud0xGoTYfFosFCmUQWvi6UV7AxJP8Sni7tsjPyECJsQSn8s6iJESJ2JB6MAtmqHT5DmWlqiAftdL7XCWd9evXR2JiIpPOMurXrw+LxQKplOulkXsYM+QphULh6yZQDcOYIXelbdmC0hU7xMTMoJYB9/q0SV7BxJP8iiI8FBGN4hFkMiAvVAJTiBrJjZMAANLcSw5lLfpiXzTRuSpMBJl0ei46OtrXTaAahjFDnmISQZ5yJ2ZeeuklLFmyBABw4sQJbzepRrL/jjZu3IiGDRuWK/Pnn3/i559/xsmTJ6HT6RAaGop77rkHL730UnU39/qYzFAb7c77pBbXZWswJp7kX67+zinlSrSulwBFZASK6rdEqCoYkn83AXY5lzwk8PbwzMrKwrFjx5h0EhEREblhwYIFmDp1qsNjeXl5UCqVPmoRucLEk/xK2YRLIpGgRVQTCIKAs7uWAlIZpCoNpKoghHUd7JtGunCjOWFubq7TpLNBgwZISEhg0klERERUxqxZswBYzxnHjx+Pjh07Qq/Xo127dj5umfsMZiNqQ5rMxJP8TJnlo68mW5bSIggmAwDAbCiBuTAXmmZ+cECpwmQwLCwMISEhKCwsFB9j0klERETkXF5eHrKzswEA/fv3x2uvvebjFl2f+K7dcLAkU7yvUgf7sDXew8ST/IsAZGZmiot+xEdFAQBM+dllCkqgCAusPTzlcjk6dOiAgwcPorCwkEmnBw4dOiRujVGTrnCS7zBmyFPFxcXi1hhBQYG7uB1VHcaM95WUlIi3W7SouevASkPVKIgPRmlpCQRBQJCc+3gSeZ0+NxeCXg+LxQKJXA7BZN3HyFRwxaGcLDQSElngLfQgl8vRvn17XL58GQ0bNmTS6SZBEMR/RO5gzBAR1XwWy7VFeGryXqmGrHMwZJ6BbZ11aYCmaIH5qajGytm+A8aduwAAFgAnTp/AgRZq1L2cjii7cvIwP1uRsgoTRIVCgfj4+CqrrzbQaDSQy+VcdZLcxpghT0mlUrH3iqpfy5YtAQCTJ0/G6NGjMW3aNGzfvh0AEB8fj0ceeQRDhgwRyxcVFeH333/H9u3bceLECWi1WgBAeHg4Wrdujdtvvx13332302Tl/vvvx549e9CzZ0/8+OOPOH/+PH788Uds27YNmZmZ0Gg0aN26NYYPH4677rrLZUxIpVIUFBRg3rx52LRpE86ePQulUomEhASMHTsWd999t1uf3WKxYP369Vi+fDlSUlKQl5eH4OBgNG7cGH369MH48eMRFhbm9LW2z5KcnIzvv/8ep06dwg8//IC///4b2dnZiIqKQvfu3fHf//4XzZs3BwCUlpbi559/xooVK3DhwgXIZDK0bt0aDz30EPr16+dWmyv6LFu3bsWiRYtw4sQJ8ftMTEzEwIEDMWrUKLcWBZo1axY+//xzh8c+//xz8bFhw4bh/fffv6G2VqdQmQoJxQbxvlwWmFt9MfEkvyKRyhzuF+i0+HX/Qtysiob94Vke7h/DbK/3BCQvLw/h4eHcQ7CKJCQk+LoJVMMwZshTarXa100gADqdDuPGjcPZs2fFx44fP+6QeG3fvh3PPvusmGzaKy0tRWZmJjZv3ozffvsNs2fPdpm0AcCGDRvw/PPPo7j42hZuer0eO3fuxM6dO7Fq1SrMmjXL6UWsjIwMPPzww7h8+bLDa/ft24d9+/Zhy5YtlfbSXb58GVOmTMG+ffscHtdqtdBqtTh48CB++uknfPjhh7jlllsqrGvlypV45ZVXoNfrxccuXbqEZcuWYePGjZgzZw5iY2PxyCOPlNvaZc+ePdizZw9effVVTJgwocL3cSUvLw+TJ0/G7t27HR43GAzYu3cv9u7dK/5MYmJirus9aqoQmRJNSo3ifWmQxoet8R4mnuRXBIvjvkUGhTWxKzQ47tkpD/ezHk8PXL58GcePH0dUVBTatGnD5JOIKAAYDIbKC7kgk8kgk8mcPmc0Gq97SLi36pVKpT4b1vjrr79Cr9cjOTkZQ4YMgVarxV9//YXk5GQAwMmTJ/HYY4/BaDRCJpOhf//+6N69O6KiopCdnY2DBw9izZo1sFgsOHjwIGbOnOlyQZpz587h2WefhcFgwKBBg5CcnAy5XI7du3djyZIlsFgs2Lx5M+bOnYsHH3zQ4bVZWVm47777xOS3W7duGDx4MEJDQ3HkyBH89ttvWLVqVYW9e/n5+XjooYdw+vRpAEBcXByGDx+OZs2aIT8/Hxs2bMD27duh1WoxceJEfP311+jdu7fTuk6dOiXuaTl8+HD06NED+fn5WLx4MVJTU6HT6fDmm29CJpPhxIkT6NmzJwYOHAiNRoNt27Zh+fLlAIDp06dj8ODBiIqKcvo+rhgMBowfPx4nT54EYO2lHj58OBo3bozMzEwsWrQIp0+fRmpqKiZOnIiFCxdWGGODBg1Cq1atkJOTI26lMmjQIAwebN3xoH79+h61j6oHE0/yK2UTT8vVHkWpvsSxoMW/NtZ1t+fTlnQCQE5ODo4cOcLkk4goAOzcufO6X5uQkIC4uDinz+3ZswdGo9Hpc5Vp0qQJmjRp4vS5/fv3O/TieaJBgwZITEy8rtfeKL1ejz59+uDrr78W//baJ32fffaZ+H3NmDEDd9xxR7k6Ro0ahYceegiCIGDlypUuE8+LFy9CoVDgu+++ExNbABg6dCi6desmJnKLFy8ul3jOmDFDTDofe+wxTJkyRXzurrvuwujRo3H//feLK7I68+GHH4pJ52233YaPP/7Yoed97NixWLJkCV555RWYTCa88MILWL9+PUJCQsrVdenSJSgUCnz77be4+eabxcdHjBiB22+/XTwncdbeu+++G3Xr1sUPP/wAo9GITZs2YdSoUS7b7cw333wjJp233XYbZsyY4ZB033///Xj00Uexc+dOHDlyBMuXL8fw4cNd1te8eXM0b94c6enp4mPNmjXDbbfd5lG7/EVhSTEyLNfOBWVGC5r4rjlew7Nd8i9lEkqFXIHooDpQGEodHpfIa95uR5cuXRKTTpucnBxkZWX5qEVEREQ1z//93/85veBbUlKCv/76CwDQtWtXp0knAPTs2RMdO3YEYB3+6WxIrs19993nkHTaDBs2TLxYkJaWhtLSa+cpubm5WLp0KQCgffv2ePrpp8u9vmnTpnj33Xddvm9mZqZYR8OGDfHRRx85He49bNgwMenNzc3FggULXNY5atQoh6QTAEJCQsReQsB6sWLy5MnlXjty5Ejxti2BdJfZbMYvv/wCAIiOjsYHH3xQrqdXoVDgf//7n3ghfuXKlR69R013at9BSP+xiP9K9hb5uklewR5P8itmu3kHABCmCcOtjbujTup8h8flETVrqO2lS5fKzZcArENNats8Bm9IT0+HyWSCXC5Hw4YNfd0cqgEYM+Qpg8EgLi7kzuIn5B0KhQLt27d3+pxGo8GmTZtw/vx5p71+9uLi4rB//34AcEgay7r99ttdPpeYmIiMjAwAQEFBgZgYbt++XVxtdcSIETAajU5j5tZbb0WTJk0c5qva7NixQ+y5HT9+PDQa13P+/vOf/+Dnn3+GyWTChg0b8J///MdpOfsE0579MbBv375OR2HZD12132/cHfv370d+fj4A6zBfVz+b2NhYvPzyy+JiQxR4mHiSXxFMJof79ULqolVUAi6ZzA6Py2vQHp6uks5GjRqhadOmXCGxCuTm5op7MjKJIHcwZshTJpOJiacfiI+Pr/D7r1u3LurWdX6OUFRUhBMnTuDff/8Vk07A2iPnim2lV2fsEyiT3fnLwYMHxdtt2rSByWRy2eauXbs6TTwPHDgg3r7ppptctgGwfuYWLVrg+PHjOHTokMvVl5s2ber09aGhoeJtV6vq2ye+Fg+nOx06dEi83blz5wrLXu/CRVQzMPEkvyIpM5HcWKTD5fRjiDDZHeRkCqjjWlZzy9zg5CB/8eJFpKamlnucSScRUWApO4TRE64WAAKA7t2739DiQq506tTphhYX8pWKVqC1l5WVhQ0bNuDYsWM4e/Yszp07h6ysLKefuaLvwT4pK8t+8Rv7ZOzKlWt7j8fGxlbYzkaNGjl9PDc3V7ztzhZr8fHxOH78OIxGIwoKChAeHl6ujLPHynLVs3oj5yv230eDBg2uu55AZpRIakVSVhs+I9UkZQ7+qvAIxBbqkG/3mFSlgURZ/cvaFxw9hrDWrdwub0s69dnZUEVfGxrMpLPqJSYmcn898ghjhjxV2XYq3uoF9dZeszV1D9vKvmeTyYSPPvoIv/zyi0MvpI1Go0GPHj2QnZ0tLqZTketZvdd+KGpERESFFwCCg4OdPl5UdG2OX0XDbG3s47OkpMRpkumrlYhtw2wBbkvkSj11BOwHMNfM387KMfEk/yI4Dt+QSKUw6XIdHpOqgqr9ZPH8/AW48NtCNJ4wHg1HDLNroMTx/6tsSWfB0WPQphxCeJvWCG/XFo0bN0aTJk14slvF+IeMPMWYIU9x9fGa4aWXXsKKFSsAWJPrrl27ol27dkhISEBiYiJatGgBuVyO559/3q3E83rY98rq9foK55u62obHPtksKSmpdM6q/QrF/nZ8s29PRfNpKfAx8SS/IljKDHeRSmEpKnB8SBVUjS2y9nRe+G0hAODcz78CgGPyWUZGRgbS0tLEpBMA8o8cRYt27Zh0EhERecm+ffvEpDM+Ph5z5sxxOUzV0wVyPBFtN8opPT0dSUlJLsu6Wtnefp7qhQsX0KpVxSOuzp07B8Ca5EVERHjQWu+z3/Pz0qVLFS4cdOrUKRQVFaFRo0Z+9znoxvHyHfmVsvMssotzsDdYDmmLzlA1ag1lTFMooqp3fkBY61ZoPGG8eP/cz78i/fclTss6SzoBoFXPnmjT51YmnURERF6yZcsW8fYTTzxR4dzIY8eOibevd66rK126dBFv7969u8Ky+/btc/p4u3btxNu7du2qsI7MzExxv09/XA22TZs24m37RZOcmTVrFkaNGoWePXtCp9N5uWX+Qyl17AsM1AQtUD8X1VRlDv5n8zPwqz4dhug4aBq3RVBiN4S271vtzWo4YljFyadEApPJhHPnzjlNOrs9cH91NrfW0el0KCwsrFV/pOjGMGbIU2azWfxH/sl+P86gINejo9auXYvLly+L953NBb0Rt9xyC1QqFQBg3rx5KCkpcVru8OHDDivg2rv11lvFebhz5851WQcAzJkzR1zcqE+fPjfQcu/o2rWrOFR42bJl0JfZOs+moKAAW7duBWDd/7Sy4cWBRC1zTDxlVXstxG8w8ST/UmaJbuFqB6HZbu6nYHB+wPI2p8nnkqXifblcjugLGSjcf+2PSKubmXRWh9OnTyM1NVW84ktUGcYMeUqv16O0tNTlSTP5XlxcnHh70aJFTnsyd+7cialTpzo8VtU/06CgIHFbkLNnz+LVV18tl9xmZ2fj+eefd1lHvXr1MGTIEADWobbPP/+80/mRS5cuxU8//QTAOqR17NixVfUxqkxQUBBGjx4NwDoybOrUqeW+D4PBgKlTp4qLKvnj5/CmsqEaoHkn53iSfyn7R0KANfPU2A1BUNSpD1+xze20zfU8//NcmItLUH/Qnbi4chWyFixGfbkcl6IikZjcC90mMOkkIiKqDoMGDcKsWbNgNBqxbds2jBo1CkOGDEF0dDSysrLw119/4e+//y53ruGNkQ9PPPEENmzYgDNnzmDVqlVIS0vDyJEjER0djdTUVMyfPx9arRZRUVHIyclxWsfLL7+MvXv34sKFC1i/fj0GDRqEESNGoGnTpigoKMCGDRuwbds2ANbFr959913UqVOnyj9LVXjyySexZcsWnD59GkuXLsWRI0cwbNgw1K9fHxcuXMAff/wh7mfas2dPDB06tMree9asWfj8888BAJMmTcKTTz5ZZXVXFYtS5XBfkLpeCbkmY+JJ/qXMHwOlQokIqRIKybVfQFlIZHW3ykHZ5DNj8R+4vOZPmK9epVOZTLh5wAA0HTXCZ22sbaKjo2GxWLjqJLmNMUOe8tVWFOS++Ph4vPHGG3jjjTdgNptx6NAhHDp0qFy5rl274q677sKbb74JADhx4gS6du1apW3RaDSYM2cOHn/8cRw9ehSpqal47733HMokJyeje/fu+OSTT5zWERYWhrlz52LSpElISUlBRkYGZs6cWa5cREQEPvnkE/Tq1atKP0NVCgoKws8//4yJEyfi0KFDSEtLw/Tp08uVu/nmmzFr1qxatybGZYPjYlelsLgoWbPxKEp+RV5mP6uourHoFRQBueTayaHUB3t4llU2+TTb7bdVbssV8rr69X3XC041E2OGPOWtfTqpao0aNQotW7bEjz/+iH///Rc5OTmQy+WIiopC69atMXToUPTr1w+FhYV49913YTQasWbNGowbN67K21K/fn0sWLAAixYtwvLly5GamgoAaNKkCYYNG4Zx48bhxx9/rLCOmJgYLFy4EKtXr8aqVatw6NAh5OXlISIiAvHx8Rg4cCDuuecehy1c/FV0dDQWLlyI5cuXY+XKlTh27Bjy8/MRHByMtm3bYtiwYRg0aBAvCAYwiVDVS3lRjaPT6XDixAnxfsuWLX02ofvEh5/gyvYd4v3owbchuk0MYDGJQ2Pq3HKvT9pm78KFCzCbzch87Q2YCq8N0ZGHhqDHrz/5sGVERHSj0tLSYDKZIJfLkZCQ4OvmEJGPefuYsOP7T4Hl28T7pSop+i9cVOXv4y5v5Qbs8SS/IghlhhbkZSJvy0bIgsMhVQdD3bitbxpm5/z58zh9+jQKjh6DVBBgP/DXVKhD+u9L2ONJRERERG7Rmw1QVV6sxmNfNvkXi2MHvMVYAkCAuUgLY04GBJNvVxO0Tzq1KYeQGxqCvJBgyEOvXQWqaJ9PIiIiIiJ70eoIh/v2a5sEEvZ4kp8pk3jqSwC7KZ3y0Khqbs81586dw5kzZ8rt01n/ztvR5f7xSP99iTjn0/Y/ez6rx7Fjx2A0GqFQKNCqVStfN4dqAMYMeaqkpASCIEAikUCj0fi6OVQDMGbIbWW3Eyw7AjBAMPEkv1JuHyND2cTTN8uEu0o62/S6GV3ut+7tWXbBISaf1cdoNMJoNPq6GVSDMGbIU4IgON0XksgVxgy5y1RwxeG+xMLEk8j7ylzhSbeUQK2SI15v3WhY5oMez7Nnz+Ls2bPlks62vW5G56tJpw2TT99QKBQO/xNVhjFDnrJt71Dbtnmg68eYIXepZDIU292XIjAvWDDxJL9iyMl1uH/GLCAnIghjMwsAAPKw6k08XSedvdD5fudLrzP5rH4cKkmeYsyQpzhUkjzFmCF3qSWOKZkMgXmxgosLkV8pOyRFAqBAdi1MJbLq652wJZ367GyHpLNdBUmnTcMRw9B4wrXe0HM//4qCo8e81lYiIiIiIn/GxJP8S5nE0yIBVLbHJFIIEu+HrCAIOHPmDM6ePQsAUEVHI7xNawDWpLNTJUmnjX3yGT9mNMJas4eFiIiIiByZykw1C8yBthxqS34muFlTXC66AoPZCMFiQUmQFJFGMwBAqtJArrnxzWsrIggCzp49i3Pnzjk8Ht6uLVp16oTE5F4e1ddwxDCEtUpi0klERERETl0y6hySspLAHGnLxJP8S9OHHkDm0STklebDcj4FkTknEVlqXXlSotRAGhTq1fd3lnQCQGJiIho0aHBddTLp9L5Lly7BYrFAKpWifv36vm4O1QCMGfKUwWAQbyuVSh+2hGoKxgyRIyae5FfkISEIU0dDI4uATL8XISYTmlxNPKUqDSReHmobEhICiUTiMNf0RpJOqh7Z2dninoxMIsgdjBnylMlkEvdkZBJB7mDMEDniHE/yW8FFeWhWahSDVBFez+vvGR0djVatWolLn7ds2ZJJJxFRLSOTyQAAZrOZ+zAS1XKCIMBstk77sh0bqpqxzJY7gXrUYY8n+Z1mzZpBEATk7pLCbP+ErHrCtV49a4JrNpvZE1JD2GKGe6WRuxgzVBGlUgm9Xg9BEFBcXIzg4GCoVCpfN4tqGMZMYCguLhYvQHmr5zqmYSOkR9ntfqAJzD2mmXiS3wkJsS4glFNa5PC4IjK22tpgSz6pZrDFDJG7GDNUkbCwMBQWFgIAcnNzERQU5LWeDgpcjJmaTxAE5OZe22M+LCzMK++jaRGP892u7fsaogrMv1Ecakt+SRAEWPTFDo8poxtVaf1FRUWVFyQiolrHNt8fAHQ6HdLT01FUVMRht0S1hO08MT09HTqdDgAgkUh40fIGsceT/MrJr75B+tGDkEqksJSoYUqIRPP64VAYSiGPjKmS9xAEAadOnUJGRgbatm2LqKioKqmXiIgCg1QqRVxcHDIyMiAIAnQ6HXQ6HSQSCXuxiGqBsvO7JRIJ4uLiIJV6p88uSKZE/NXFNAFAHaCHGSae5Fe0hw5DkZEJAJABOBQpoEGXjghXBEMRceOJpy3pTE9PBwAcPnyYyWcAKC0tFefrqdVqXzeHagDGDFUmNDTUIfm0WCyQSCTi/0SVKZu4UM1kSzpDQ723pV+4IghJxde235EF6CLITDzJr1gEi+MDkmsHa6lK4+QV7hMEASdPnkRGRobDY0eOHMFNN93Epc5rsNTUVHFrjPbt2/u6OVQDMGbIHaGhoUhMTIROp8OpU6fEpNObJ6AUOAoLC8ULXIyZmkUmk0GpVCIsLAwhISFe6+l0xWg0Vl6oBmLiSX7FYnFYxxYCJAiWWsNUorj+XglnSadNy5YtmXQSEZFTUqkUYWFhkMlksFgskMvlSEhI8HWzqAZISUmB0WhkzFClBE0IJO16Q5unhdligUwd5OsmeQUTT/IrqvatkSrfC1gsEAQLCiKVUF8N0+sdpiIIAtLS0nDx4sVyz7Vq1QoxMVUzd5R8p06dOjCZTJDLeUgj9zBmyFOMGfIUY4bcdfDv7biyaqd436SWo9NYHzbIS/ibQH4lumUr6OWAqfAK8ory0LpeJGQ3MC/CVdIpkUjQqlUrbpsSIBo2bOjrJlANw5ghTzFmyFOMGXKbrgR186+N+istDcwVtJl4kl9RyhRoEBYDsyIYcZGNEN46EVJJPmRBnu+bxKSTiIiIiMg/MPEk/3L1Ao/uyDZYigthTN8KdXQoovo/4Fk1goDU1FRcunTJ4XEmnURERETkTwxmI2rDaiNMPMkvWQwl1v9Li2DKK4LUg0nWFSWdrVu3RnR0dJW2lYiIiIjoesW0aoW0c6fE+7JgLi5EVC1ysrMgNZkcHpOHurfPJpPO2iktLU3cGoMrB5I7GDPkKcYMeYoxQ+7SNGwA7U2NUFJSAkEQEKxg4klUDQQUFeVBJQWUdlt6ykLruPXqK1euMOmshUpKSmA0GmEqc8GCyBXGDHmKMUOeYsyQu/QX01CafhwSANYlNQMzRQvMT0U11qmFC2DJyoFeAPQACuQSxEcHQ6pQufX6unXrIj4+HhcuXABgTTrbtGmDunXrerHV5GsSiUT8R+QOxgx5ijFDnmLMkLs0UgXq643ifYVM6sPWeA8TT/IrhsJCyM3XujqPa5RoEhwBQbBAIqn8l1AikaBZs2YAgPT0dCadtUS7du183QSqYRgz5CnGDHmKMUPuipCr0bbIIN6XBql92BrvYeJJfsUMwSEoBUECwWwCBME29qBStuQzNjYWwcHBXmknERERERG5j4kn+ZcyyaUMAqSqIEikMs+qkUiYdBIRERGR3zNbLDAK1+5LBcF14RqMiSf5FWmZzNMiA6RKTblygiDg1KlTaNCgAYKCAnPlLyIiIiIKfIf27IXpwLVzYIOqCIG4DjITz6sEQcDKlSvx+++/49ixYyguLkZ0dDS6deuGcePGoX379jf8HqmpqZgzZw52796NrKwshIaGonnz5rjnnnswbNgwyGSe9eoFIrVcBTNKxfutigyQhzmuaCsIAo4dO4asrCxkZ2ejY8eO0GjKJ6dUe2RnZ8NisUAqlXL1YnILY4Y8xZghTzFmyG1mC9T2XZ4Buh4VE08ApaWlmDx5MrZs2eLweEZGBjIyMrBixQo8/fTTePTRR6/7PRYtWoS33noLRuO1Fatyc3ORm5uLvXv3YsmSJfjiiy8QERFx3e8RCKSQwmx3P9QiQKoKEe/bJ50AoNfrceDAASaftdylS5fEvdL4x53cwZghTzFmyFOMGSJHTDwBvPrqq2LS2bx5c4wePRp169bFkSNH8Ntvv6G4uBgff/wxYmJiMHToUI/r37ZtG15//XUIggCNRoMxY8agbdu2yMnJweLFi5Gamop//vkHzzzzDGbPng2pNDCXUHZL2THtEkDTpN3VpwQcPXoU2dnZDkWMRiNKS0uZeBIRERFRjWOCpFYkZbXhM1Zox44dWLlyJQDgpptuwrfffguVyrpn5F133YWRI0fivvvug1arxXvvvYf+/fsjJCSkoiodGAwGvPnmmxAEAUFBQfj111/Rpk0b8fmxY8fimWeewfr167Fjxw6sXr/LH8AAAEHuSURBVL0ad911V9V+yBpEsJjLPSYLjYTFYsGxY8fKJZ1SqRRt27ZFZGRkdTWR/FCjRo0gCAL3SiO3MWbIU4wZ8hRjhtwVoQ61m2gWuAlaLe5as/rhhx8AAHK5HO+8846YdNo0b94cr7/+OgBAq9Vi0aJFHtW/bt06pKenAwAeeeQRh6QTAJRKJT744ANxiO0333xzPR8jcJRNPCUSyKMbuUw627Vrhzp1HOeAUu0TERGByMjIWj9UndzHmCFPMWbIU4wZcpdC4rjOS6BeqqjViadWq8XOnTsBAL1790Z8fLzTcoMGDUJUVBQAYO3atR69x+rVqwFYt/cYO3as0zLBwcEYPnw4AOsCRGfOnPHoPQKJYLE4PiBX4HjqSZdJJ3s6iYiIiIj8X61OPP/55x9YriY6N910k8tyUqkU3bp1AwAcPHgQ+fn5br/H3r17AQAtW7assGfO/v23bt3qdv2Bxr6/UwBwLrw+rly54lCGSScRERERBQp5mfVd2OMZgNLS0sTbiYmJFZZt0aIFAOsCN6mpqW7Vn5mZiYKCAgBAQkLFu/E0b95cvH38+HG36g9EpRbrqr8CgMzIcFxUqB2el0qlaN++PZNOcmAymWA0GmEymXzdFKohGDPkKcYMeYoxQ+4Kkikd7ssFFwVruECdu+qWjIwM8XZcXFyFZWNjYx1eZ+sBrYhtbqc79cfExEAqlcJiseDixYuV1h2oBEG4mnRGoEitgmB3BciWdHKuBJV19OhRccn6qthzlwIfY4Y8xZghTzFm6HoFaN5ZuxPP3Nxc8XZlPWj2yY5Wq3Wr/ry8PLfrVygUCAoKgk6nc7v+QGVLOgFAdUmLc6uXQwIBsaVF2P2bASbBLG67ImsQio6JDQEAFgg4hlJIQ+tAFdMUBUs2w1JYLK4mJ+3aEt0ax8NSbO2FPmzMt/5iWwQY1x+FwWyC5Gq9KkgQZffrUQgLIJNBpg5GidkIg8Uk1quSyhEFOQSTAQCgE0ywzVQ1CBaUWq7VK0Sq0LVDM7HeNJTCqFRD3ag1dBv3wJiRDenVek3NY9G7ezeYtJkAgJMmHUoE62Bk09ZUlOpKILV9D5Agxq69xbDALJFAFhQKg2BGsUkPqcSaxEshQaxcA8FgXT+tWDDDdPUQZxYE6CxGsV6zWobuN10bDXAeBhRKBGiad0Lpv8dRfOQkZFfrLa0bjD4D74D5ivWCywVzMbRXe7At/5xDcZZWrBcAYqEQh1yUwgIjBMiCwmABkG8qEesFgFh5ECRX21sKCwzC1W9YALQWA6QWs/UTSCTQJCcgVK6wxhKMuAITVI3aQJKeh9xt/0AutU7gN2kU6DByMDTZ6ZBIpMgylyLTogcASE5kovD0ZUgt19pbF3Iorw5+MUCAHhZI1SGQyGTQGovF7xcA6iqCINeXQnK1bKlwbRB5gcUAiV29MZ0aomF4KABACzMyYICyfnNIjXLkL//r2mqIEiD+vrsRk3UBErkC+RYjzpuLrU9laFGUch6wmyMdARmCrn7DJggogQUSlQZSuRIFJvu184AIhQYavf5qWaBYuHZ1XmcxOaw2HZxQF0lx1v3oSmDBaeihqNMAsogYFM77E4LdzzjszpvRUg7AbEKpYEaaSWd9orAUpdvTYBHM4l/XYEgRDuvPxgKgCGZIFCpIlWroTAZYYIZt8FGwTIUwswW4+nMvtGtvicXs1jFCiyBIN++HpESPjKvxwmNE4B4jZLZ6JUBirxbXdYwozLmEbMEAiVSK3HW/8BhxVaAeI6riPCLMDEAAzBJgq0zKYwQC+xhxI+cRRTk5CIYdqeNiQ4GiVieepaXXDqxlV7MtS6m81gVu/7qKlJSUuF2/rYxOp3O7/kBlsRvYLjNYIC0tRmyeFhqDsVzZTKkRxbIs6+sAnKwTDJleCwUMiD95GarSa38Mz0SdRIklF/r0EwCA1MggCBIJJBYBbS4UO/7CAyi2u33t1z8fGgBldwzV2d2W2JUvWzan1IDikH3i/bPhGpSog6BSyRCddgER2ddi5qxEj9L6wShOtc4TPh2mQaHcehBNPFeMOnrH62HFcGRtQyGUAJRlntM5LWv9334mcpFaguJT19qbHqJCtlIBdUgQIk6eRt1z2mtlCwugz0hF8WHrHOXzwSpcVlkPMU3OlqCO1nHhqFKUONy3tqEIUgBlL9MUI9dJWasou9sWCZB37jBkV/8AZmoUOKNRQqVWIvx0HuqdvzY/u0gtRc6lVISnbAcAXFQrcCrI+k01OF2KOhmOKyybrv4r214AiCjTXgNyYXDR3rKf7Ur0GdS5Yq05RynDyRA1FDIBGp0Ejc5du3hlkQAZl1IRdNi6IFq2QobUUOtQ9DrnDGiQUf73o3wMW9sbVqacRXymfHvDy5TNCrmE4tILAIACmRQnwzWQW0ogL9WixZkch7Lp51PR0JALc8EVFEklSI0IAgBotGY0zyh/nHPVXmcbWLlqb9myro4R5pC6aHEhD2oeI3iMcPMYUaJWIPPqMULKY4QoUI8RVXEeYf+N8xhhFcjHiBs5jygbOyWwIBDV6sTTfsy9fWLpjP3z7o7VN5uvBVxl9duX8fVcgJMnT6J58+YIDQ0VH9Pr9ThxwnqgjYiIQKNGjcq9prjYesgqO5zkypUr4vDh+Ph4h95fs9mMI0eOAABCQ0MRHBIGVY4Wl+tEokSlhNRiQf1cLdTG8n8wKyPUsIEKglCzDjKCufyeq/7MUsPaW9O+33IrUvs5tVqNmjaYiccI7+Ixwrtq2jEC4HmEt9W0GK7OY4QgtfbCWCwWHD58GIB1Fwz7NWEA4Ny5c+Kip61atYJCoRCfKygowNmzZwFYpwzWq1fP4bWHDx+GxWKBWq0ut9ZN2d0kqkqtXlzIeuJhZawksTEYrl2bdCeJBBx7OSur3/497IPGF8xms7jar40gCDAajTAajQ4JtY1tAr2zz2mxWMTnytYLQHzOZDKhQb/+kAKIzc1DcGnpdSedNVLN+vsGoaa1t4Z9wTWrtTWvvTVSDfuSeYzwrprV2prX3hqphn3JPEa4ZmoSI962P08uV87u/Fso84Xan387O3e3Pefq3N0banWPZ1BQkHhbr9dXmFDaJ57uDJt1Vn9lbGXsE2JfkMlkkJZd1lkiERNimaz8uHO5XO4yYZZKpeJzZesFriXacrkcje4bA3X9WGSuWYZQfSmMmmBxboZcJkOJYLGbmyFAUVcDU726UKlVUCsUaGE3N+NKo7MoKi6FVCKFTCZDdNMW0DSOhyqmKXQ6HWINeRAAhKiDUBR/wmFuhsIiIEKQWl8rlTrM3yrUl1ydmyGFXC5zmJthMptRaDFCuNpeAwSHuRmWMDlM9WKhUCigUavRxDY3I6YlrjTOwhV1LqQSCeRyOcKaxUId3xry0CiUlJSgTnEOgiUCNGoNTI3PQGc3N0MiCKhrkUIqkUAmlTnMzSgx6FFkNlytVwYppOLcDIvFgkKzAWYAMqkUFonEYW6GUSGBqV4cZDIZgoOC0BAGhEsEaGJaIq9xMa7ozeL3K4sOgSouEXJVEAwGA8IKrwASM1RKFeRNLiPXbm6GIFgQbZFBCkAukzvMzTCYzcg3FkN2tV6JRCLOzRAEQGfSwwgBUokEUqnMYW6GBQLi6taHSSpHWGgoYmCEDCao6iVAXxCC7IwCa71SGczBSkTVT4RGHgRBADR5mYiVmKCQKxDUrAC5uDY3Q4CASLMUCgAKmdxhboYFEuQZiq62RwqpVCrO3wKAYqMeegiQSCSQyWQO87cECAirUxemEA1CQkIQJbGgBQxQ1msOU7AZOXGXILHVK5Mivn4iQmUaSOQK5OZkIVaih0wqQ4jECG3BtflbAgSEmSVQQwK5TAYzIM7fgkwBrb7o6u+j9Tu0n79VajSiGGbrUC+53GH+lgABQXXCYIoOhyZIg3CZFC2uzt+ShNRFbvxpQBAgkVrjsGGjRATb5m/l5yHWbB2cFRauRMGFa/O3BAgIskgQIkggk0oBiVScvyVRqJGvL4LF7ju0n79lNJl4jOAxgscIHiN4jOAxIjCOETIZgpo2Rv9JL8LG/jy5LPvzb3G+91X259/Ozt0VCgUsFovT83dn5+tVQSKUTY9rkalTp2LBggUAgA0bNiA+Pt5l2UWLFuG1114DAHz00UcYMmRIpfXv378fY8aMAQA88cQTeOqpp1yWNRqNaN++PSwWC3r16oUffvjBk49yQ3Q6nTiMFrDuORoS4mzGBBERERERBTJv5Qa1usezSZMm4u1Lly5VmHhevnxZvN2gQYPrqr8imZmZYre2u/UHqjNnzsBkMkEul6Np06a+bg7VAIwZ8hRjhjzFmCFPMWbIU4EeM7U68bSfoJuWlobu3bu7LJuWlgbA2o2dkJDgVv2RkZGIiopCTk6O+HpXTp48Kd4uO8G3tiksLBT3vSJyB2OGPMWYIU8xZshTjBnyVKDHTK1eXKhTp07iD3b37t0uy5nNZuzda12KOikpCWFhZRcad61bt24AgGPHjqGwsNBluV27dom3K0qAiYiIiIiIappa3eMZFhaGm266Cdu2bcOmTZtw8eJFp8NcV61ahdxc6/4/AwcO9Og97rjjDqxduxYmkwnz58/Ho48+Wq6MTqfDkiVLAABNmzZFUlLSdXyawNGmTRtfN4FqGMYMeYoxQ55izJCnGDPkqUCPmVrd4wkADz74IADr4j7PPPMMdDrHLXFPnjyJd999F4B1/5xRo0Z5VP9tt92Ghg0bAgC++OIL/PPPPw7PGwwGvPDCC9BqtQCAhx566Do+RWCRyWTiPyJ3MGbIU4wZ8hRjhjzFmCFPBXrM1OoeTwBITk7GHXfcgT///BP79+/H0KFDMXbsWNSvXx9Hjx7F/PnzUVRkXVb8hRdeQJ06dRxev3v3bkyYMAGAdYjsL7/84vC8UqnEq6++iscffxylpaV48MEHMWrUKHTu3BlarRYLFy5EamoqAKBz584YOXJkNXxqIiIiIiKi6lPrE08A+OCDD1BUVITt27cjPT0dH374ocPzEokEkyZNErdG8VS/fv3wxhtv4N1334XRaMS8efMwb948hzLt2rXDl19+GbBXOIiIiIiIqPZi4glAo9Fg9uzZWLFiBZYuXSouBBQREYEuXbpgwoQJ6NKlyw29x9ixY9G1a1f89NNP2LlzJ7Kzs6FQKJCYmIghQ4Zg9OjRAbuClafy8vJgsVgglUoRGRnp6+ZQDcCYIU8xZshTjBnyFGOGPBXoMcPE8yqJRIK7774bd999t0ev69Gjh8MGqxVJSEjAO++8cz3Nq1UuXLggLiUdiL90VPUYM+Qpxgx5ijFDnmLMkKcCPWZq/eJCRERERERE5F3s8SS/06BBA3GYAZE7GDPkKcYMeYoxQ55izJCnAj1mmHiS36lbt66vm0A1DGOGPMWYIU8xZshTjBnyVKDHTGCm00REREREROQ3mHgSERERERGRVzHxJCIiIiIiIq/iHE/yOykpKeJS0u3bt/d1c6gGYMyQpxgz5CnGDHmKMUOeCvSYYY8nEREREREReRV7PMnvBAUFwWQyQS5neJJ7GDPkKcYMeYoxQ55izJCnAj1mJIIgCL5uBPmWTqfDiRMnxPstW7ZESEiID1tERERERES+4K3cgENtiYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIirwrMmatUo50/fx5msxkymQyNGjXydXOoBmDMkKcYM+Qpxgx5ijFDngr0mGGPJ/kdrVaL3NxcaLVaXzeFagjGDHmKMUOeYsyQpxgz5KlAjxkmnkRERERERORVHGpLfqdly5YQBAESicTXTaEagjFDnmLMkKcYM+Qpxgx5KtBjhokn+R2VSuXrJlANw5ghTzFmyFOMGfIUY4Y8Fegxw6G2RERERERE5FVMPImIiIiIiMirONSW/E5hYSEsFgukUilCQ0N93RyqARgz5CnGDHmKMUOeYsyQpwI9Zph4Esxms8P94uJiH7XE6tSpU+IeRi1atPBpW6hmYMyQpxgz5CnGDHmKMUOe8peYKZsLlM0VrpdEEAShSmqiGisrKwsXLlzwdTOIiIiIiMjPxMfHo169ejdcD+d4EhERERERkVcx8SQiIiIiIiKv4hxPQkREhMN9lUoFmUzmm8YQEREREZHPmM1m6PV68X7ZXOF6cY4nEREREREReRWH2hIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqua8bQIFHEASsXLkSv//+O44dO4bi4mJER0ejW7duGDduHNq3b3/D75Gamoo5c+Zg9+7dyMrKQmhoKJo3b4577rkHw4YNg0wmq4JPQtXF2zEjCAI2btyIZcuWISUlBbm5uVAoFIiLi0OvXr0wYcIENGjQoIo+DVWH6jjOOPPWW29h3rx5AIATJ0545T3IO6ojZkpLS/Hbb7/hzz//xJkzZ6DT6RAVFYUuXbpg/Pjx6Ny5cxV8Eqou1REz+/btw9y5c/Hvv//iypUrUKlUaNy4Mfr164fx48cjIiLixj8I+ZTt78akSZPw5JNP3nB9GRkZmDNnDrZt24aLFy9Co9GgcePGGDx4MMaMGQO1Wl0FrfYOiSAIgq8bQYGjtLQUkydPxpYtW5w+L5PJ8PTTT+PRRx+97vdYtGgR3nrrLRiNRqfPd+3aFV988QUP1jWEt2MmPz8fU6ZMwY4dO1yWUSqVePvtt3HPPfdc13tQ9aqO44wzu3btwoMPPgjbn00mnjVHdcTM8ePH8eSTT+L8+fNOn5dIJHjsscfw9NNPX/d7UPWpjpiZPn06vv/+e5fPR0dHY9asWejUqdN1vwf51t9//42HH34YFoulShLPv/76C1OmTEFRUZHT5xMTE/HVV1+hYcOGN/Q+3sLEk6rUs88+i5UrVwIAmjdvjtGjR6Nu3bo4cuQIfvvtNxQXFwOwHmyHDh3qcf3btm3D//3f/0EQBGg0GowZMwZt27ZFTk4OFi9ejNTUVABAr169MHv2bEilHE3u77wZMxaLBRMmTMDevXsBAA0aNMCIESPQrFkzFBUVYfv27Vi3bh0sFgskEgm+/PJL9OvXr2o/IFU5bx9nnCkqKsLdd9+N9PR08TEmnjWHt2PmwoULGD16NHJzcwEAPXv2xIABAxAREYF9+/Zh0aJF0Ov1AKy9H2PGjKmiT0be4u2Y+f777zF9+nQAgEKhwOjRo9GuXTsUFBRg/fr14t+tsLAw/PHHH4iPj6+iT0bV5fDhw3jggQeg0+kA4IYTzxMnTmDUqFHQ6/WQyWQYOXIkunbtiqKiIixbtgz79+8HALRs2RILFiyARqOpks9RpQSiKrJ9+3YhMTFRSExMFCZMmCCUlpY6PH/y5Emhe/fuQmJiotC9e3ehsLDQo/r1er3Qr18/ITExUejYsaNw+PDhcs8/8cQTYhtWrFhxw5+JvMvbMbN48WKH+ouKisqV2bhxo9C6dWshMTFR6N27d7k2kH/xdsy48uabb4rva/tHNUN1xMx//vMf8T2++eabcs/v379faNOmjfgeer3+uj8PeZ+3Y0ar1QodO3YUEhMThW7dugnHjx93eN5isQgzZswQ2/DMM8/c8Gei6rVlyxaha9euDn8zZs6ceUN1jhkzRkhMTBRatWolbNmyxeE5i8UiTJs2TXyvr7/++obey1vYHURV5ocffgAAyOVyvPPOO1CpVA7PN2/eHK+//joAQKvVYtGiRR7Vv27dOrG34ZFHHkGbNm0cnlcqlfjggw/EIbbffPPN9XwMqkbejpkFCxYAAFQqFT766CMEBQWVK2ObRwMAmZmZ2Lp1q8efg6qPt2PGmV27dmH+/PkAgNDQ0Buuj6qXt2Nmz5492LZtGwBg+PDhTodeduzYUezl1Gq1+Pvvvz3+HFR9vB0zO3bsEHtMH3nkEbRs2dLheYlEgqeeegqNGjUCAGzcuBEmk+m6PgtVL4PBgJkzZ+Kxxx5DQUFBldW7f/9+7Nu3DwBwzz334NZbb3V4XiKR4NVXX0Xz5s0BWGPY1ZQ0X2LiSVVCq9Vi586dAIDevXu7HBIyaNAgREVFAQDWrl3r0XusXr0agPWXa+zYsU7LBAcHY/jw4QCsCxCdOXPGo/eg6uPtmNHpdEhJSQEA3HzzzYiOjnZZ9s477xRvHzx40O33oOpVHceZsoqKivDqq69CEAQMHToUrVq1uqH6qHpVR8zYhmOqVCpMmTLFZbmRI0dizJgxmDhxovhe5H+qI2bsh+wnJSU5LSOVStG2bVsAQElJCfLy8jx6D6p+O3fuxMCBA/HFF1/AYrEgKCgIDz30UJXUbTsHBoD77rvPaRmpVCo+p9VqsWvXrip576rExJOqxD///AOLxQIAuOmmm1yWk0ql6NatGwDrCX5+fr7b72Gb79CyZUvUqVPHZTn792fvlf/ydszk5eWhXbt2iI6ORrNmzSosGx4eLt6uyiuUVLWq4zhT1kcffYT09HRER0fjlVdeue56yDeqI2Y2bNgAwHqBq169ei7LJSUl4a233sLTTz8tJhTkf6ojZkJCQsTbFy5ccFnu4sWLAKwLGdn/nSL/tHz5cvGiQtu2bbFo0SL07du3Suq2nQOHh4ejdevWLsvZx6xtJIY/YeJJVSItLU28nZiYWGHZFi1aALAuU25bDKgymZmZYkKQkJBQYVnbMAPAusog+Sdvx0x8fDwWLVqE7du344UXXqiw7KlTp8TbXA3Zf3k7ZsqyH2L7xhtvMDZqIG/HTFZWFnJycgBYh9PaGI1GHDt2DFu3bsXhw4c5TLIGqY7jjP02LL/++qu48JS9PXv2iKN2unfvDqVS6Xb95Dt16tTB1KlTsXDhQjE+bpTZbBbPU5o3b17hwplNmzYVtxT0x3NgJp5UJTIyMsTbcXFxFZaNjY11+rqK2A9Lqaz+mJgY8ZfSdrWQ/I+3Y8YTv//+u3i7Q4cOVV4/VY3qjBn7IbYDBw7EgAEDPK6DfM/bMXPy5EnxdsOGDWE0GjFr1izccsstuOeee/B///d/GDFihLjSutls9vATUHWrjuNM27ZtccsttwAATp8+jfHjx2PXrl0oLCzE5cuXMW/ePDzxxBOwWCwICQnB888/7+GnIF8YN24cNm/ejHHjxlXpfvJXrlyBwWAAUHlMymQycWqRP54Dy33dAAoMtiXkASAyMrLCsva9Blqt1q367ec2VFa/QqFAUFAQdDqd2/VT9fN2zLhr27Zt2Lx5MwAgKioKvXr1qtL6qepUZ8zYhthGRkZi6tSpHr+e/IO3Y+by5cvibaVSifHjx+PAgQPlymm1Wnz44Yc4cOAAZsyYAYVC4Vb9VP2q6zjz6aef4plnnsGWLVuQkpKCBx54oFyZzp0747XXXiu3mCL5p3bt2nmlXk9iErAOx718+bJfngOzx5OqRGlpqXi77OpvZdkPF7F/XUVKSkrcrt++jLv1U/Xzdsy449KlS3jxxRfF+xMnToRara6y+qlqVVfM2A+xff311yucU07+zdsxY7+J+/Tp03HgwAEkJCTgm2++wb59+7B371588sknqF+/PgBg/fr1+PTTTz34BFTdqus4ExwcjPfff1/s+SxLIpGgadOmHOJPAXUOzMSTqoT9/JXK5iHYP+/uvBf74UnuzHOwleG8Gv/l7ZipTG5uLh5++GFxflavXr3EbVXIP1VHzNgPse3fvz8GDx7seUPJb3g7ZmxbYgDWRWJatWqF3377DX369EFwcDDCwsIwePBgzJ8/X7yA8eOPP3plygBVjer627R69Wr06dMHW7duRUxMDCZNmoQZM2bgnXfewR133AHAOg1kyJAh4lxPqp0C6RyYiSdVCfteosr2DbKNUwfc+wUCHK/wuLMvke09OJzJf3k7ZiqSnZ2NCRMm4PTp0wCAxo0b46OPPoJEIrnhusl7qiNmbENsw8PD8eabb3rcRvIv3o4ZQRAc7r/99tsOK5ba1K9fH0899RQA68ng0qVL3aqfql91HGc2btyI5557DqWlpejRowdWr16NJ598EoMGDcKoUaMwc+ZMzJ49G2q1GkVFRXjkkUeQnZ3t+YehgBBI58BMPKlKBAUFibedrc5mz/5A7c6QAU/rty/DYZP+y9sx48r58+cxbtw4ceXC+vXrY86cORxOWQN4O2bsh9i+9NJLFW6NQTWDt2NGo9GIt5s0aVLhHC9bLxYAcSN48j/ejhlBEPC///0PZrMZ4eHhmDlzptOLFcnJyeKiQvn5+fjhhx/cqp8CT3BwsHi7pp8DM/GkKhEWFibermwys/3z7p7s29df2V5ZRqNRHP7EZMJ/eTtmnElJScGYMWNw7tw5ANbV4X755ZdKV4kj/+DNmLEfYtu7d28MHz78eptJfsTbxxn7hKFp06YVlq1Tp444Xy8rK8ut+qn6eTtmjh07Ju7dOXjw4ArncI4ePVq8uPHXX3+5VT8FntDQUPG2O/vF2sr44zkwV7WlKtGkSRPx9qVLlxAfH++yrP0qgA0aNLiu+iuSmZkpbv7sbv1U/bwdM2Vt27YNTz31lHhRokWLFvjhhx8QExNzXfVR9fNmzBw+fFjctmnbtm1o2bJlpa+xlYmLi8OmTZsqLU/Vz9vHmYYNG3rUHttwTNvfKPI/3o6Zs2fPircr2ydUqVSiefPmDscnqn3q1auH4OBgFBUVVbpFitlsFodl++M5MHs8qUo0b95cvG2/+bIztuclEgkSEhLcqj8yMhJRUVFu1W+/r1plB3XyHW/HjL1NmzZh4sSJYtLZoUMH/Prrr0w6a5jqjBkKDN6OGfu/MZUtGGQ2m8UeMh57/Fd1HmfcGTZp25e8KveFpJrHFpenTp2qsNzp06fFxYj88RyYPZ5UJTp16gSFQgGj0Yjdu3dj3LhxTsuZzWbs3bsXAJCUlOQwpKUy3bp1w9q1a3Hs2DEUFhY6DD2wt2vXLvF29+7dPfgUVJ2qI2YAYM+ePZg8ebI4Ib9Xr174/PPPHebxUM3gzZhJSEjAF198UWm5Tz/9VDzZtJX3x3k0ZOXt40xkZCQSEhKQlpaGtLQ0XL58GbGxsU7LHjlyRJwT6I8nhGTl7Zixv+hw+PDhCsuaTCZxETx/7L2i6tOtWzekpKQgJycHaWlpLi902J8Dd+vWrbqa5zb2eFKVCAsLw0033QTA2rvkaijAqlWrxI1wBw4c6NF72BZmMJlM4gIgZel0OixZsgSAdb5NUlKSR+9B1ac6YiYnJweTJ08WT/b69u2Lr7/+mklnDeXNmKlTpw5uu+22Sv/Zb95teyw5OfkGPxl5S3UcZ2xb7giCgO+++85luV9//VW87el7UPXxdsy0a9dOnBu8cePGCqcPLVu2DDqdDoD1oinVXvaLk/3yyy9Oy5jNZsybNw+AdV6oP/5tYuJJVebBBx8EYF3c55lnnhEPljYnT57Eu+++C8C6QteoUaM8qv+2224T59N88cUX+OeffxyeNxgMeOGFF8ShTA899NB1fAqqTt6Ombfffls8MWjfvj0+++yzKtmOhXzH2zFDgcfbMTNmzBhxEY/58+dj2bJl5cosXbpUfLxz587o0KGDpx+DqpE3Y0apVIp7RhcXF+Ppp58W/07Z27dvH9577z0A1m0xHnjggev5KBQgOnTogE6dOgEAFi1ahDVr1jg8LwgC3nnnHbGH/L777vPL0TgSoewmVEQ34KmnnsKff/4JwLrowtixY1G/fn0cPXoU8+fPR1FREQDgrbfewpgxYxxeu3v3bkyYMAGAdYissys6mzZtwuOPPw5BEKBQKDBq1Ch07twZWq0WCxcuRGpqKgDrH/Zff/2VcyJqAG/FzKlTpzB48GBxn70XXngBjRs3rrQ9ERER6Nq1a5V8NvIObx9nKnL//fdjz549AIATJ07c6EehauLtmFm/fj0mT54szq3q27cv+vXrB6VSic2bN2Pt2rUArFtu/PHHH2jRooXXPitVDW/GTElJCe677z4cPXoUgHXI9rBhw5CUlASz2Yxdu3Zh1apVMJlMAIA333wTY8eO9ernJe+wj4VJkybhySefdFouPT0d/fv3B+B6wbojR47g3nvvhdFohEQiwZAhQ5CcnIzS0lIsXbpU3KapSZMm+OOPPxy2YfEXnONJVeqDDz5AUVERtm/fjvT0dHz44YcOz0skEkyaNKncQdpd/fr1wxtvvIF3330XRqMR8+bNE4cV2LRr1w5ffvklk84awlsxs3TpUofN3adPn+7W664nGaHq5e3jDAUeb8fMgAED8PHHH+O1116DTqfD5s2bsXnzZocyERER+Oqrr5h01hDejBmNRoPvv/8eU6ZMwa5du5CXl+d0n06FQoFXXnmFSScBANq0aYNPP/0Uzz//PIqLi7F8+XIsX77coUzjxo0xe/Zsv0w6ASaeVMU0Gg1mz56NFStWYOnSpeJCQBEREejSpQsmTJiALl263NB7jB07Fl27dsVPP/2EnTt3Ijs7GwqFAomJiRgyZAhGjx4NhUJRRZ+IvM1bMWPr/abAUx3HGQos1REzAwcORJcuXTB37lxs2rQJGRkZkEgkiI+Px2233Yb77rvPL/fVI+e8HTN16tTBjz/+iI0bN2L58uU4ePAgcnJyoFQqERcXh169euH+++/nPtPk4LbbbsOqVaswZ84cbN26FZcvX4ZEIkHTpk1xxx134P777/fbpBPgUFsiIiIiIiLyMi4uRERERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiKiKmc0Gn3dBKoAfz5EVN3kvm4AERF5z+7duzFhwoTrfn1cXBw2bdpUhS26pl+/fsjIyAAAnDhxwivvUZ1mzZqFzz//vNJycrkcarUadevWRcuWLdGjRw8MHToUISEh1dDKG2MfT8OGDcP7779frkxpaSk+//xzBAcHY+LEieWef+mll7BkyRIAwM8//4wePXp4t9Fe5snvmEQigVKpRFhYGOLi4tCuXTsMGzYMbdq08XIrr6ns50NE5C3s8SQiIqpGJpMJOp0OZ8+exZ9//olp06ahf//+WLduna+bdsNOnDiBwYMH47vvvoPJZPJ1c/yOIAjQ6/XIzs7GgQMH8Msvv2DEiBGYOnUqLBaL19+fPx8i8iX2eBIR1RLh4eH473//69FrQkNDvdSawNa2bVsMGjTI6XNmsxnFxcW4cOEC1q1bB4PBAK1Wi8mTJ+Orr75Cnz59qrexVejIkSNIT0/3dTN8prLfMYvFAp1Oh1OnTmH79u0oKSmBIAhYsGAB1Go1XnnlFa+2r7b/fIjIt5h4EhHVEiEhIfjPf/7j62bUCgkJCW5915cvX8bDDz+MU6dOwWKx4I033sC6deugUqmqoZWe69Gjxw0Pi37//fedDtENBJ78jmm1Wrz00kvYvHkzAOuw49GjR6NFixbebCIRkc9wqC0REZGPxMbG4osvvoBUav1zfPnyZa/NqSX/EhERgZkzZ6JRo0YArMNwf/vtNx+3iojIe5h4EhER+VDTpk3Rq1cv8f7ff//tw9ZQdVIqlbj77rvF+4GwyBYRkSscaktERNfl9OnTWL58Ofbu3Yvz588jPz8fEokEYWFhSEhIQO/evTFq1KgbWq01LS0NixYtwu7du3HhwgUYDAZERESgSZMm6NmzJ0aNGoV69epVWs+lS5fw22+/Yfv27UhPT0dRUREiIyPRunVrDBgwAEOHDoVCobjudt6o5s2bY9u2bQCsvZ6u5ObmYsGCBdi2bRtOnz4NnU6HsLAwNG7cGL1798aYMWNQp06dCt/LYDBgxYoVWL9+PQ4fPgytVguVSoW6deuiU6dOuP3229GvXz+nr3W1qq2zFX0///xz8bFJkybhySefBOB8VVuLxYK+ffuKn33p0qVo1apVhZ9j4cKFeP311wEAI0aMwHvvvVeuTElJCRYtWoRNmzbh5MmT0Gq1CAkJQZMmTXDrrbdi7NixiIiIqPB9vK1u3bri7aysrArLHjp0CKtXr8Y///yDS5cuQavVQqFQIDw8HElJSejbty+GDRsGpVLp8DpPfj728vLysGDBAvz11184d+4cCgoKEB4ejhYtWqBfv34YPXo0NBrN9X50IqplmHgSEZFHjEYj3n77bSxatMjpSpylpaXIysrCjh078O233+LLL79Ep06dPH6fL7/8ErNmzSr3HtnZ2cjOzsbevXvx7bff4tVXX8Xo0aNd1vPDDz/g008/hV6vd3g8KysLWVlZ2LJlC7777jvMnDkTLVu29LidVcE21BYAZDKZ0zILFizA+++/j+LiYofHc3JykJOTg3379mH27Nl45ZVXMHLkSKd1XLhwAY8++ihOnz7t8LjRaBRX2l2yZAk6duyIr776qtIktqpIpVIMGTIE3333HQBg1apVlSaeK1asEG/fc8895Z7fuXMnXnjhBWRnZzs8npeXh7y8POzfvx/ff/893nrrLQwePPjGP8R1OnfunHjbPgm1p9Pp8NJLL2H9+vXlnjMajSguLsalS5ewefNmfPfdd/juu+/QtGnTG2rXihUrMG3aNBQUFDg8fuXKFVy5cgW7du3Cd999h48++gg33XTTDb0XEdUOTDyJiMgjL774IlatWgXAuidlcnIykpKSEBwcjIKCAhw8eBB79+6FIAjIzc3Fk08+ibVr13rU87ls2TJ89tlnAKxJSXJyMlq3bo2goCBkZmZiy5YtyMjIQGlpKV5//XU0bNgQN998c7l6PvzwQ8yePVu836lTJ3Tt2hUhISG4ePEiNm/ejKysLJw9exZjx47FvHnzkJSUdIPfkOfsh1ja5vzZ+/bbb/Hxxx+L9xs2bIi+ffuibt26yM7OxubNm5GRkYGioiK8+uqryM3NxaOPPupQh8FgwGOPPSYmnfXr10efPn1Qv359FBcXIzU1FVu2bIHFYsGBAwcwadIkzJs3z6329+rVC0FBQTh8+DBWr14tPmYbQuzOhYd77rlHTDxXr16N5557zmXZzMxM/PPPPwCse81269bN4fmNGzdi8uTJMBqNAIDGjRvjlltuQXR0NLRaLbZv347U1FQUFhbi2WefRXFxMUaNGuXWZ61KBQUFWLZsmXjfWQJnsVjwyCOPYP/+/QAAtVqNW2+9FS1atIBarUZeXh727NmDw4cPA7BeXJg8eTKWLl0qXtDw9Oczd+5cTJs2TbzfsmVL3HzzzYiMjER2djb++usvnD9/HtnZ2XjkkUfw1VdfoXfv3lX4zRBRIGLiSUREbtu1a5eYdIaFheHnn3922jO1e/du/Pe//0VJSQmys7OxYcMGp71Srnz55ZcArEmnsy1GXn75ZbzyyitYvnw5AODrr78ul3hu3LhRTDojIiLwySefOMylBAC9Xo8PP/wQv/zyC4qKivDUU09h5cqV5YYqelNaWhp27dol3r/lllscnt+1a5dD0vnkk0/iscceg1x+7U/4Sy+9hFmzZuGbb74BAMyYMQMdOnRAjx49xDJ//vknTp48CQDo3r07Zs+eXW713JSUFDzwwAMoLi7Gv//+i71795ZL6pzp3LkzOnfujD/++ENMbDp16uTRKsotWrRAmzZtcOTIEWRkZODAgQPo2LGj07KrV68We8KHDBkCiUQiPnfx4kW89NJLMBqNkEqlePHFFzFhwgSHXuUXX3wRf/zxB6ZOnQqj0Yhp06ahc+fOaN68udvtvVHnz5/HCy+8gNzcXADWrYvGjRtXrtySJUvEpDMuLg4///wzGjZsWK7cqlWr8Nxzz8FiseDEiRP4999/xZ+dJz+fw4cP43//+x8AQKVS4b333sNdd93lUObll1/G999/j08++QRGoxHPPfcc1qxZU2095ERUMzHxJCKqJXQ6Hb7//nu3y997773leiltc/MAawLkajhkjx49MGzYMLHH7PDhw24nnlqtFmfPngUAJCYmOt3XUqFQYNq0aVi/fj1KSkqQmpoKg8EgJoyCIGDGjBli+ZkzZzokYTYqlQqvvfYaLly4gC1btuDcuXNYtmxZtfV+HT58GE8//TTMZjMAoE2bNuWS408//VS8/dBDD2HSpEnl6lEoFHjmmWdQVFSEX3/9FRaLBZ9++inmz58vljl48KB4+4EHHnC6ZUv79u3x8MMP4/PPP4dUKkVKSopbiWdVueeee3DkyBEAwMqVK10mnitXrhRv2y/OA1h7h23DQ5944gk8+OCDTusYPnw48vLyMH36dBgMBnz99df48MMPb6j9lf2OlZSUQKvV4ujRo0hJSRF7ZJVKJT7++GOniZv979yrr77qNOkEgMGDB2PZsmX466+/AFj37Lyen91nn30mtuutt94ql3QC1uHgjz76KC5fvoy5c+dCq9Xi559/xtNPP+3x+xFR7cHEk4iolsjPz8f06dPdLn/HHXeUSzzvvPNONG3aFOnp6eVO+Muyny9ZVFTk9vva9+RlZGQgOzsb0dHR5cppNBr8/vvviIyMLHfCvn//fqSlpQGw9uw4SzrtTZw4EVu2bAEALF++/IYTz7S0NJcJiF6vR05ODlJSUpCSkiI+HhQUVO7nk56eLvZ2BQUFOU067U2ZMgV//PEHiouLsW/fPpw+fRrNmjUD4Dh3dP/+/bjtttuc1jFhwgTcddddiIuLq9aeXwC466678MEHH8BkMmHt2rV45ZVXHHoqAeDs2bPisNK2bds69FIaDAZx6KpSqcRDDz1U4ftNmDABn3/+OYqLi7F27Vq8++67N/SZPf0dA6zJ/uuvv4727ds7fX7MmDG46aabkJWV5fQijL2WLVuKiadOp/OoHYB1CLNtkavY2NhKLxZNnDgRc+fOBWD9vWHiSUQVYeJJRERu69u3L/r27VtpueLiYqSnp4v3TSaT2+8REhKCVq1a4dixYygsLMSIESPwwAMPoE+fPuWGQroaGrl3717xdps2bSp9z9atW0OpVMJgMCAlJQUmk8khAfbU4cOHxeTIHU2aNMGnn36KFi1aODxuPwQ3OTm50nmyISEhSE5Oxrp16wAA//zzj5h4duvWDT/++CMAYPbs2cjIyMDQoUPRo0cPBAUFiXWEh4cjPDzc7bZXpTp16qB3797YvHkzsrOzsWfPnnLzHu17O4cOHerw3JEjR8TFl5o0aYLg4OAK30+hUKBt27bYs2cPDAYDDh06hC5dulTRp3GtU6dO6NWrF/r06YN27dpVWNZZj6Mz+fn5yMzMFO978jtnY5ubDQCtWrVyGMLsTHR0NOLi4pCRkYGMjAxkZmYiJibG4/clotqBiScRUS0RFxeHTZs2VWmdRUVFOHPmDM6fP48LFy7gzJkzOH78ONLS0hxOfG0ns+567rnn8Oijj8JsNiMzMxPTp0/H9OnT0aBBAyQnJ6N37964+eabXSZitrmMAPDrr7/i119/dfu9S0tLkZub69Y2LddDrVYjJCQEsbGxaNOmDfr06YM+ffqU69kD4JC8u7voUVJSkph4XrhwQXy8X79+6N69O/bs2QMAWLNmDdasWQOFQoHOnTsjOTkZffr0QWJi4o18vBs2dOhQbN68GYB13qKrxFMul5dbjdb+556amurxKsWXLl26niaLnP2OlZaW4uTJk/jxxx/FlXjT0tIwZMiQSpNOZ/Lz83H27FmcP38e58+fx+nTp3H8+HGcOnXK4ffM0985wPH727x5s8ff38WLF5l4EpFLTDyJiMgjFosFy5Ytw7x583D48GGnW6oA1qGdtrmLnkpOTsaXX36JN954w2Ffy4sXL2LhwoVYuHAhlEol+vTpg4ceegidO3d2eH1+fv51va/9628k8bTf4/JGaLVa8ba7+03al7P/HqRSKb788ku88847WLZsmZiYGI1G7N69G7t378bHH3+Mxo0bY/jw4ZgwYYJDT2h16d+/P8LCwlBQUIB169Zh6tSp4h6rR44cwZkzZwBYYyQqKsrhtVXxc69qarUabdu2xUcffYS2bdvif//7H3Q6HaZNm4bs7Gy3hqcaDAb89ttvWLRoEVJTU12Wu5HfOcA/vz8iChxMPImIyG1FRUWYNGkSdu7c6fC4RCJBbGwsWrRogbZt26J79+5IT0/H66+/ft3v1adPH6xfvx5//fUX1q1bh+3bt4srgALWk/F169Zh3bp1eOKJJ/DUU0+Jz9mffN95550u58+5Ujah8ZXr6bVydSEAsK6c+sEHH+CJJ57AqlWrsHnzZhw6dMjhNefOncOMGTOwcOFClyuoepNSqcTAgQOxYMECaLVa7Ny5E7feeiuAiofZAo4/9zZt2ni8P6erxYyqyoMPPogLFy6IPfBfffUVGjRoUOE+tLYtS44fP+7wuFQqRVxcHBISEtCuXTv06NED27dvF1eEvh7231/Pnj093iLlRvcOJaLAxsSTiIjc9u6774pJZ3BwMCZMmIDevXuL+3jasy06ciOUSiUGDBiAAQMGQBAEnDhxArt27cK2bduwa9cucTjvF198ge7du4vDMsPCwsQ6OnXq5HJlU39nP9cyLy/PrdfYl7P/Huw1atQIEydOxMSJE1FQUIA9e/Zg586d2Lx5My5evAjAurDTSy+95NEw5apy9913Y8GCBQCsw21vvfVWCIKANWvWALAm0P379y/3OvvPGxMT49F2LtXlxRdfxN69e8W9W99991106dLF5Xzl5557Tkw6o6Ki8OCDD+Lmm29GQkJCuZWJN27ceENts//+WrRo4ZffHxHVXOUnlBARETmRmZmJpUuXArD2cM6ZMwdPP/00unTp4nQRF/sE6Hp67sqSSCRISkrCgw8+iO+//x6bNm1ymINmW80UAOLj48XbttVtK2Pfm+ovGjduLN62JSqVOXbsmHjb/ntwJSwsDLfddhumTp2KTZs2OfRS7927V0xEq1PXrl3Ftm/evBkmkwn//vuvOAfzjjvucLodjP3ntZ+vWJH8/PwKe4mrmlKpxPvvvy8uXlVaWooXX3zRaRsOHjwoLjAVFBSEBQsW4NFHH0Xbtm2dfn53L064cj3fX15eXpX8fhNR4GPiSUREbjl06JA4FK9Vq1bo0KFDheV3794t3vbkxHTjxo34z3/+g759++Kbb75xWS4mJgaPPfaYeN9+Rc+uXbuKt//66y9xX0JXDh06hJ49e6JTp04YMWLEda0I6g32n2P79u2VbpFRWFiIv//+W7xvGzpqNpvx4osvYvjw4ejVqxcMBoPT10skEowfP96h981+jm1lKlsF1RO2obQFBQXYu3cv1q5dW+65sjp16iQmdOfPn680Wdfr9bjjjjvQvn173H777eWGs3pL69atHbZ6OXTokLjnrb0DBw6It3v16lXhhQRBEMSFowDnQ64r+/nYx9u///5b6cWYrKws9O7dGx06dMDAgQP98uINEfkPJp5EROQW+2TFftEbZzZs2OBwEuxJIicIArZv346LFy9i1apVFb7WvofHfjXNnj17IjY2FoB1jpyrPTVt7/fxxx8DsG4D07BhwxvaSqUqNW7cGJ06dQJgbdvnn39eYfnPPvsMJSUlAICEhASxR1gmk+H48eM4cuQIrly5UuGQTIvF4vDz9WSVUvuVeW9kkRvAMbncuHEjNmzYAMC6cmy3bt2cviY4OBgDBgwQ70+fPr3Cix6zZ89GXl4ejEYjiouLy21n402TJk1CXFyceH/GjBnIyspyKGP/O1dZb+bPP/9c6RZGlf18mjdvLs6HNhgMmDFjRoXv+emnn8JoNEKv1yM4OLjcfrpERPaYeBIRkVvst/O4ePEifvrpp3JlLBYLFi1ahGeffdbhcVsy5I5bbrkF0dHRAKzDS6dNm4bS0tJy5c6cOeOQiN1+++3ibYVCgccff1y8/9lnn2HOnDnleoFKSkrw1ltvib2EcrkcEydOdLut1WHy5MliT9WcOXPw+eefl0sqTCYTZs6ciV9++QWAtWfrlVdecSgzYsQI8fabb76JlJSUcu8lCAI++OAD5OTkALAu0GOfHFXGfnubjIwMt1/nTKNGjcSk+/fffxeH2Q4ZMqTCnruJEydCqVQCsPYSP//88+V6igVBwKJFixwW4pk4cWK1XnBQq9WYOnWqeF+n0+G9995zKGP/O/fvv/9i/fr15eoxGAz4+uuv8cEHHzg87ux3zp2fz1NPPSV+vwsXLsQHH3xQrofcZDLhyy+/xO+//y4+9uSTTzqtj4jIxj8u6RIRkd9r1qwZkpOTsX37dgDAe++9hzVr1qBTp04ICQlBZmYmtm7dKiYICoVCHOJaWQ+pPaVSiZdffhnPPPMMAGDBggXYtGkTbrnlFjRo0ACAdY/GLVu2QK/XAwBuvfVW9O3b16Gee++9F//88w+WL18Oi8WC999/H7/99htuueUW1KlTBxcvXsTmzZuRnZ0tvubZZ591e7/M6tKzZ09MmjQJs2bNAgDMmjULS5YsQd++fVG3bl1cuXIFmzdvdujtevzxx3HzzTc71DNmzBgsXrwYJ06cgFarxahRo9CrVy8kJiaiTp06yMnJwfbt28W5fQqFolzyWhn7FXBXrFiB0NBQxMTEICEhAf369fP4s99zzz3Yv38/iouLxcfuvvvuCl/TsmVLTJ06Fa+//joEQcCKFSuwbds29O/fH/Hx8cjNzcXu3bsdhuH27dsX9913n8ftu1F9+vTBgAEDxIRyzZo1GDFihLiarG0RobS0NAiCgEmTJiE5ORmtW7eGSqVCRkYGNm/eLPaGVvY7587Pp3fv3njsscfw1VdfAQB++OEHrF69Gn379kVMTAyysrKwbds2hz1ix48fL648TETkChNPIiJy2/Tp0/HQQw+JJ+379+/H/v37y5VLTEzE+++/j3vvvRdGoxFpaWkwGAxiT1RlBg8ejLy8PLz//vswGo3Izs526F2xd8cdd5Tr7bH54IMP0KBBA3z//fcwGo04e/Yszp49W66cWq3Gc889h/vvv9+t9lW3SZMmITIyEh999BGKi4uRnp4u9m7aCwoKwptvvul0DqRSqcTs2bMxceJEHD58GACwY8cO7Nixo1zZunXr4p133nGY8+eOxMREdOrUCfv374cgCOLKxv369buuxHPQoEF49913xR63tm3bulz91d6oUaMQGhqKN954A1qtFlqt1mX8jBgxAm+++WaVzk/1xGuvvYYdO3aIyfW0adOwcuVKqFQqyGQyzJo1Cw8//LC4yNP27dvFiz/2unbtiilTpmDcuHEArHueluXuz+fpp59GVFQUPv74Y5SUlODy5cuYP39+ufpkMhkeeeQRTJky5ca/CCIKeEw8iYjIbVFRUVi0aBEWLFiAtWvX4uTJk9DpdFCr1YiOjkZSUhJuu+02DBw4EHK5HDfddBO2bduGkpIS/PnnnxgyZIjb7zV+/HjccsstWLx4MXbv3o2zZ89Cp9NBo9EgOjoa3bt3x5AhQypMjqRSKaZMmYKRI0di4cKF2LlzJ9LT06HT6RAUFIQmTZrg5ptvxr333iv2pvqrcePG4Y477sBvv/2G7du349y5cygoKEBQUBCaN2+OPn36YPTo0RXOs6tXrx4WLlyItWvX4s8//8TRo0dx5coVmEwm1KlTB02bNkXfvn0xYsQIhIaGetxGiUSC7777Dp9++ik2bdqE7Oxsh144T4WFhaFv3774888/AbheVMiZO++8E8nJyVi0aBG2bt2KtLQ0aLVaKBQK1K9fH126dMGoUaM83uO1qsXGxuLJJ58UL56cP38eX375pZjMNW3aFMuWLcOvv/6KTZs24cyZMygpKYFGo0H9+vXRqlUrDBo0CH369IFEIkGzZs1w+vRpnD9/Hvv27UPnzp3F9/Lk53P//feL+6nu2LEDZ8+eRX5+PlQqFeLj49GjRw/ce++9bl0IICICAInANbCJiIiIiIjIi7i4EBEREREREXkVE08iIiIiIiLyKiaeRERERERE5FVMPImIiIiIiMirmHgSERERERGRVzHxJCIiIiIiIq9i4klERERERERexcSTiIiIiIiIvIqJJxEREREREXkVE08iIiIiIiLyKiaeRERERERE5FVMPImIiIiIiMirmHgSERERERGRVzHxJCIiIiIiIq9i4klERERERERexcSTiIiIiIiIvIqJJxEREREREXkVE08iIiIiIiLyKiaeRERERERE5FVMPImIiIiIiMirmHgSERERERGRVzHxJCIiIiIiIq9i4klERERERERexcSTiIiIiIiIvIqJJxEREREREXkVE08iIiIiIiLyqv8HOS4AGpqTF6cAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.roc_utils import compute_roc_point_from_predictions\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ ")\n",
+ "\n",
+ "# Compute predictions\n",
+ "y_pred_binary = clf(X, group=group)\n",
+ "\n",
+ "# Plot the group-wise points found\n",
+ "realized_roc_points = list()\n",
+ "for idx in range(N_GROUPS):\n",
+ "\n",
+ " # Evaluate triangulation of target point as a randomized clf\n",
+ " group_filter = group == idx\n",
+ "\n",
+ " curr_realized_roc_point = compute_roc_point_from_predictions(y_true[group_filter], y_pred_binary[group_filter])\n",
+ " realized_roc_points.append(curr_realized_roc_point)\n",
+ "\n",
+ " plt.plot(\n",
+ " curr_realized_roc_point[0], curr_realized_roc_point[1],\n",
+ " color=all_group_colors[idx],\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ " )\n",
+ "\n",
+ "realized_roc_points = np.vstack(realized_roc_points)\n",
+ "\n",
+ "# Plot actual global classifier performance\n",
+ "global_clf_realized_roc_point = compute_roc_point_from_predictions(y_true, y_pred_binary)\n",
+ "plt.plot(\n",
+ " global_clf_realized_roc_point[0], global_clf_realized_roc_point[1],\n",
+ " color=global_color,\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ ")\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8db9a56",
+ "metadata": {},
+ "source": [
+ "### Compute distances between theorized ROC points and empirical ROC points"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "be73972d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Group 0: l2 distance from target to realized point := 0.091%\n",
+ "Group 1: l2 distance from target to realized point := 0.219%\n",
+ "Group 2: l2 distance from target to realized point := 0.098%\n",
+ "Global l2 distance from target to realized point := 0.021%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Distances to group-wise targets:\n",
+ "for i, (target_point, actual_point) in enumerate(zip(clf.groupwise_roc_points, realized_roc_points)):\n",
+ " dist = np.linalg.norm(target_point - actual_point, ord=2)\n",
+ " print(f\"Group {i}: l2 distance from target to realized point := {dist:.3%}\")\n",
+ "\n",
+ "# Distance to global target point:\n",
+ "dist = np.linalg.norm(clf.global_roc_point - global_clf_realized_roc_point, ord=2)\n",
+ "print(f\"Global l2 distance from target to realized point := {dist:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "### Compute performance differences\n",
+ "> assumes FP_cost == FN_cost == 1.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "6991bf75",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual accuracy: \t\t\t83.179%\n",
+ "Actual error rate (1 - Acc.):\t\t16.821%\n",
+ "Theoretical cost of solution found:\t16.805%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "from error_parity.roc_utils import calc_cost_of_point\n",
+ "\n",
+ "# Empirical\n",
+ "accuracy_val = accuracy_score(y_true, y_pred_binary)\n",
+ "\n",
+ "# Theoretical\n",
+ "theoretical_global_cost = calc_cost_of_point(\n",
+ " fpr=clf.global_roc_point[0],\n",
+ " fnr=1 - clf.global_roc_point[1],\n",
+ " prevalence=y_true.sum() / len(y_true),\n",
+ ")\n",
+ "\n",
+ "print(f\"Actual accuracy: \\t\\t\\t{accuracy_val:.3%}\")\n",
+ "print(f\"Actual error rate (1 - Acc.):\\t\\t{1 - accuracy_val:.3%}\")\n",
+ "print(f\"Theoretical cost of solution found:\\t{theoretical_global_cost:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "f2259911",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy for dummy constant classifier: 73.4%\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f\"Accuracy for dummy constant classifier: {max(np.mean(y_true==label) for label in {0, 1}):.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "b05ebc45",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Realized LP accuracy:\t 83.2%\n",
+ "Realized LP eq. odds violation: 5.0%\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import eval_accuracy_and_equalized_odds\n",
+ "lp_acc, lp_eq_odds = eval_accuracy_and_equalized_odds(y_true, y_pred_binary, group)\n",
+ "\n",
+ "print(f\"Realized LP accuracy:\\t {lp_acc:.1%}\")\n",
+ "print(f\"Realized LP eq. odds violation: {lp_eq_odds:.1%}\\n\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d590d262",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "---\n",
+ "# Plot postprocessing Pareto frontier\n",
+ "> i.e., all attainable optimal trade-offs for this predictor"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "dcf828fd",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Using `n_jobs=9` to compute adjustment curve.\n",
+ "INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13\n",
+ " 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ].\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "2aa8e5bce1c9479d935fffe7b86b2be6",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/28 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=predictor,\n",
+ " fit_data=(X, y_true, group),\n",
+ " eval_data={\n",
+ " \"fit\": (X, y_true, group),\n",
+ " },\n",
+ " fairness_constraint=\"equalized_odds\",\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ " y_fit_pred_scores=predictor(X),\n",
+ " predict_method=\"__call__\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "a789ef9f",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSgElEQVR4nO3dd3gU1f4/8Pdma3pCCQESqoQAkSoICgpcxYJYEPyKol4VUZSLDUUsyLUgYlcuFgQbYq8IIupVEVQ6BGETkpDee7K9nd8f+c3c3ZTNHHaTnQmf1/PkUXZPZs++M5n95MyZMyrGGAMhhBBCyGkkLNQdIIQQQgjpbFQAEUIIIeS0QwUQIYQQQk47VAARQggh5LRDBRAhhBBCTjtUABFCCCHktEMFECGEEEJOO1QAEUIIIeS0owl1B+To0KFDYIxBq9WGuiuEEEIIkcjpdEKlUmHMmDHttqURoFYwxqC0BbLdbneou6AolBcfyks6yooP5cWH8vKP5/ObRoBaIYz8nHnmmSHuiTROpxM1NTXo1q0bjVpJQHnxobyko6z4UF58KK/2HT16VHJbKoC6AK1Wi169eoW6G4pBefGhvKSjrPhQXnwor+CiU2BdgNvtRkNDAw2NSkR58aG8pKOs+FBefCiv4KICqAuw2+3IysqC3W4PdVcUgfLiQ3lJR1nxobz4UF7BpWJKm+3bCYRziEqZA+TxeOB0OqHVahEWRjVteygvPpSXdJQVH8qLD+XVPp7Pb5oDFCC32w2n0xnqbgAAHA5HqLugKErPS6vVQq1Wd/jrhIWFQa/Xd/jrdAWUFR/Kiw/lFVxUAJ0ixhjKyspQV1cX6q6AMQa32w21Wg2VShXq7sheV8orLi4OiYmJHfo+HA4HysrKkJiYCJ1O12Gv0xVQVnwoLz6UV3BRAXSKhOInISEBERERIf0g9Xg8cDgc0Ol0NCwqQVfIizEGi8WCiooKAEDv3r077LXcbjdMJhNNvJSAsuJDefGhvIKLCqBT4Ha7xeKne/fuoe4OACAiIiLUXVCUrpBXeHg4AKCiogIJCQkddjosPDwcw4cP75BtdzWUFR/Kiw/lFVzK/PM3xIQ5P13hQ5Qom7APymUeGiGEKIXsC6A333wTN9xwg982tbW1uP/++zF+/HhMmDAB//73v2G1Wju8b3KZP+J2u2GxWGhYVKKulFdn7IMWiwVHjhyBxWLp8NdSOsqKD+XFh/IKLlmfAvvwww/x8ssv46yzzvLbbsmSJbBarXj33XfR0NCARx55BBaLBc8++2wn9TS0VCoVNBqNbAoyuaO8+Gi1WiQkJNDS+xJQVnwoLz6UV3DJsgAqLy/H448/jj179mDAgAF+2x46dAh79+7Ftm3bMHjwYADAE088gQULFuC+++47LZYNDwsLoysCOFBefLRabYdOsu5KKCs+lBcfyiu4ZHkK7NixY9Bqtfj2228xatQov23379+Pnj17isUPAEyYMAEqlQoHDhzo6K7KgnBZt1zXtDxw4AD2798f6m6IOiuvPXv2YOjQoSgqKurQ1+lodOWJdJQVH8qLD+UVXLIsgKZPn47XXnsNycnJ7bYtLy9vURHrdDrExcWhtLQ0oH54zyOyWq3iwnkejwcej0f8APV4PD47pPA80PLDlqdta9/bWluPxwObzdZmW6DpF8dfn061bXvv1ePx4LrrrkNBQUHQcgm0rdvths1mE/9fSt5CLjxtR40ahV27diExMbFT8nY4HH73We95T06n02cegc1ma7Ot2WxGZmamuPy+zWYT/1+4HN/lcgEAXC5Xi+2211bov91uh81mE7/XYrGIk7t52gpzvIScmufC07a9DJu3NZlMyMzMhNVqbTfv5rnwtPWXYTDyFnIJRt5Wq7XNtkJeQp959lne/butXALNu3kugeTtnWFrbe12OzIzM1FXV8e1z57q/i31GHEqGQYr7+bHCB6yLIB4WK3WVk9n6PX6gO6X4na7kZWVJf47NzcXZWVlAJp+2C6XS9yp3G63z2vZ7Xbxh8IYE4sToa33D9DhcPhcwePd1uVytWjrvXqxzWaDy+UST+l498HpdLZo27wPwk4l/GJ5919oKxRXbbUV+uDdVsjF5XK12K7QVsjFX9vmGQYrb5fLhfDwcKhUqnbbtpZ3a22b522326FWq9GzZ0/xe/3l3TxDoW3zXJrnbbfbxbaVlZXIzs4W2548eRLl5eXiezEajeLBr6qqqsX+LfzB4HK5YDQaYTKZADQdZFQqFQwGAwAgPz8fJSUlYg5GoxGNjY0AgLq6OhiNRnG7hYWF4ggYYwxGoxH19fUAgIaGBhiNRvHnWlRUhMLCQvF7jUajuNCoyWSC0WgU33tpaSny8vLEtpmZmaipqQHQVLAZjUZxnygrK0Nubq7YNisrC1VVVQCajh9Go1HMuKKiAjk5OWLbnJwcVFZWitkbjUbx515ZWdkiw/r6egwfPhxqtRpGo1E8IFdXV+PEiRNi27y8vDbzrq2tRUZGhti2oKAAxcXFAJp+5u3l3VaGjY2NPnkXFxejoKBAbJuRkYHa2lpJeZ84cQLV1dUAmvYPo9Eo7v+t5d1Who2NjdBqteK+lZOTI65tZbfb291nvY/JRqMRZrMZAFBTU4PMzExJefvbZ4W8GxoaAAD19fUwGo3i75y/fVbIWzi+lJSUID8/X2ybmZnpN+/W9lmDwYABAwYgLy9PzLu8vBwnT54U22ZnZ/vdZzviGFFbW+uT9/Hjx/Htt99i586dnX6M4MJkbtmyZWz+/PltPv/EE0+wOXPmtHh84sSJ7J133jml10xPT2fp6enMYrGIj1ksFma32xljjJnNZvb333+Lz7vdbuZyuRhjjJlMJtbQ0MAaGhqYyWRijY2NrL6+njU2NorP1dfXM5PJJP5b2K7H42E2m401NjYyi8XCPB4Pc7lczOPxtLtd77ZCn9xut9h/l8sl/tu7bUpKCnv//ffZnDlzWFpaGrvsssvYjh07fNr+/PPPbO7cuWz06NHsnHPOYU8//TSzWq3i6/zyyy/sqquuYiNHjmQTJ05kDz74IKurq2Nut5ulpKSIXw8++GCrfWCMif2YO3cuS0tLYzNnzmQ//vij2Pbll19m1113HbvnnnvYmDFj2MqVKxljjB08eJDdcMMNbOzYsWzChAls2bJlrKqqStyuzWZjL730Eps6dSobOXIku+qqq9jOnTvF7WZmZrIFCxaw0aNHs3PPPZfde++9rLy8XHxvOTk57JZbbmFjx45lo0ePZjfffDPLyMgQ+//rr7/6vPdly5axuro65nK52J9//slSUlJYQUEBc7lcbOrUqeztt99md911Fxs9ejSbMGECe/LJJ5nNZhNz2blzJ7viiivEDD777DOWkpLCCgsLW/xchf3i2LFjzGq1Mrvd3uY+63a7mdlsFvdTh8PBzGaz2Fb4fqltbTab2Aez2cycTidjjDGn08nd1vtnJexXwu+Zw+HgbutyuZjZbBZzap4LT9v2Mgwk7+a5BJK3dy7ByFvIJRh5WyyWoOXtnUugeQu5BJp381wCyds7l0Dybp5LMPLmOUacPHmSrVy5kr300kudfowQPr+lUHwB9NZbb7HzzjvP5zG73c5SU1PZ1q1bT+k12wvQarWy48eP+/wgBAC4vz799FPx+z/99FMGgJ1//vk+2+3Ro4ffbdjtdp+CR6qUlBQ2evRotmnTJpaTk8Oee+45lpqayg4cOMAYY2zHjh0sNTWV/ec//2EnT55kP/30E5s8eTJbtGgRY4yx6upqlpaWxjZt2sSKiorY/v372fTp09nDDz/MGGOsoqKCpaSksHfffZc1NDSccj9effVVlpKSwp566ilWUFDAcnNz2ZEjR9iIESPYE088wbKzs9mff/7JLrnkEnbVVVeJv5iPP/44mzhxIvv+++9Zfn4+e/HFF1laWhrLyMhgpaWlYhGSnZ3Njh49yhYuXMimTZsm/oJeddVVbPny5Sw3N5dlZWWxBQsWsAsuuEDSe//rr798ipdp06axM888k7333nusoKCAff7552zo0KHsq6++Yowxdvz4cTZ8+HD27LPPspycHPbdd9+x8ePH+2yjOX/7YrDY7XZWWFgoHvxI2ygrPpQXH6XkVVdXx3bs2MF+//33Tn9tngJIlleB8Rg/fjyef/555Ofno3///gCAvXv3AgDGjRsXyq51KrfbDY3m1H6cs2fPxvXXXw8AWLp0Kfbu3YtNmzZh7NixeOutt3DhhRfizjvvBAAMHDgQjDHcddddyM7OFk/99OnTB3379kXfvn3xxhtviMO+wimg6OhoREdHn3I/BEuWLBG3c88992Do0KF47LHHAACDBw/Giy++iCuuuAK7du3CuHHj8Pnnn+Oxxx7DxRdfDAC499574fF40NDQgG3btiExMRGPPvqouP2XX34ZEydOxPbt2zF79mwUFBTgnHPOQd++faHVarFq1SqcPHkSHo8H5eXlft97ayZPnowbb7wRAJCcnIwPPvgABw8exJVXXol3330XaWlpePDBBwEAgwYNQnV1NZ5++mkpP8YOI6x8LpdVz+WMsuJDefFRSl6xsbG48MILQ92NdimuAHK73aipqUF0dDQMBgNGjRqFsWPH4t5778XKlSthsViwYsUKXHnllSG5BF44J8rD++6+V111FUwmU4t7VHmff2+NcFuEU3H22Wf7/HvMmDHYvXs3gKZz/TNnzvR5fsKECeJzl156KS677DLccccd6NmzJ84991xMnTq1zZ1/xYoV2LJli/jv22+/HXfccUe7/QCA7t27+xRRJ06cwLnnnuvzPampqYiOjkZmZia6desGp9PZ4krC+++/HwCwfv16ZGVlYcyYMT7P2+12cR7Ivffei1WrVmHz5s2YMGECpkyZgssuuwxhYWEYNmwY13sH4HO1ItBUGApzVY4fP45zzjnH5/nx48e3ua3OEh4ejrS0tFB3QxEoKz6UFx/KK7gUVwCVlpbiH//4B5555hnMnj0bKpUKa9euxb///W/cdNNN0Ov1uPjii7F8+fKQ9C8yMjKg79doNK2O5AS63fZe05vb7RYLMNbKpeLChDTh+1544QXcdddd2LlzJ/744w888MADGDduHN57770W33v33Xfj1ltvFf8dGxsrqR8AxImSgtb6Jjyu1WrbXSzM4/Fg4sSJePzxx1s8JxRa119/PS6++GL89ttv+PPPP/Hqq6/i9ddfx9dff40ePXpwvXcArU7YF96HWq32ueKLEEKUiP3/K1SBlsd1OZFvz/6/1atX+/w7KSnJZ7Y50DQy8Oqrr3Zmt2RFuBpIr9ef0t3Njx49iunTp4v/PnToEEaMGAEAGDp0KA4ePIh//vOf4vPCmj6DBw/GkSNHsHXrVjz88MMYNGgQ/vnPf+Lbb7/FAw88gOrq6hZDtd27d29z+NZfP1ozdOjQFms9ZWRkwGQyYfDgwejfvz+0Wi2OHj2K1NRUsc3cuXNx4YUXYsiQIdi2bRt69+4tFiZ1dXVYtmwZbr75ZgwZMgT/+c9/sHDhQsyePRuzZ89GeXk5zjvvPOzduxd9+/b1+955paamIj093eexQ4cOcW8n2KxWK3JycjB48OCARhpPB5QVH8qLj1LyKikpwdtvv43Y2Fjcc889oe5Om2RfABFpArkT+HvvvYdBgwYhLS0Nn376KTIzM8V5JwsWLMDdd9+NdevW4ZJLLkFeXh6efPJJTJs2DYMHD0ZOTg42b94MrVaLa665Bna7Hdu2bcOAAQMQHx8PoOmGnTk5OaitrRUf4+1Ha26++WZcd911ePLJJ3HdddehqqoKTz75JIYPH45JkyZBq9Vi/vz5eOWVV9CtWzcMGTIEn3/+ObKysvDUU08hPDwcn3zyCZYuXSrOcXr22WeRmZmJlJQUxMTE4Ndff0VBQQHuv/9+REVF4csvv4RWq0VaWhqcTme7753HLbfcgiuvvBLPP/88rr76amRnZ4uFfShv26FWqxEfH99hd5vvSigrPpQXH8oruKgA6gICvbXDtddei3fffRcnTpxAamoqNmzYII6YXHTRRXjxxRfx+uuvY926dejWrRsuu+wyLFmyBEDTKNBrr72GtWvXYvPmzQgLC8PEiROxfv16cTTqlltuwdtvv42cnBy88cYbp9SP1owaNQpvv/02Xn75ZVx55ZWIiorCBRdcgPvvv188/XXfffdBrVbj8ccfR2NjI1JTU/HWW29h6NChAIBNmzbhhRdewLx586BWqzF27Fi8//776NatG4CmeULPPvss/vnPf8JqtWLYsGF466230K9fPwBo973zSElJwdq1a/Hiiy/i3XffxcCBAzF//ny89tprIb33j06nQ9++fUP2+kpCWfGhvPgoJa/evXvjoYceCnU32qVibU2kOI0dPXoUAHDmmWe2+rzNZkNubi4GDhzYYl5KKLD/vxp0WFgY90jB0KFDxflUodSZ/Qgkr46Unp4OjUaD4cOHi49t2bIFDz/8MA4dOtTqufTO2BeFxRkNBsMpFXanE8qKD+XFh/JqX3uf394owS6g+QrMxD+55mU0GnHjjTfi559/RklJCf7880+89tprmDlzZkgnEjZfTZa0jbLiQ3nxobyCi06BdQFhYWH0FwEHueZ1zTXXoLKyEqtWrUJ5eTm6d++OmTNniqcbQ0Wv1yM1NdVnuQbSOsqKD+XFRyl5NTQ04MCBAzAYDJg0aVKou9MmKoC6AJVKdcqT4ppfURcqndmPQPLqSCqVCosXL8bixYtD3RUfarW6Q5dh6EooKz6UFx+l5NXY2IidO3ciNjZW1gWQvP4EJqfE4/HA4XDI7pSOXFFefJxOJ0pKSnxu2ktaR1nxobz4KCWvyMhIjB8/vsUitHJDBVAA5DR/XLiLMJGmq+TVGfugy+VCVVVVl8msI1FWfCgvPkrJKy4uDpdeeimmTZsW6q74RafAToEwIVUuO2FYWBgiIiJC3Q3F6Ep5CftgR06SDg8Px8iRIzts+10JZcWH8uJDeQUXjQCdArVaDbVajYaGhlB3hZzmGhoaxP2REEKIdDQCdApUKhUSEhJQWloKvV6PyMjIkK4nI8xp0el0sruySY66Ql6MMZjNZjQ0NKB3794duv9ZrVZxrSE5L78vB5QVH8qLj1LyKi4uxoYNGxAbG4u777471N1pExVApyg2NhZWqxVVVVWorKwMaV+EG8+p1WpZLewnV10lL5VKhbi4OJ8bynYEtVqNqKgoGmWSgLLiQ3nxUVJejDFZzZNtDa0E3QqelSTdbrfsZ+STrkmr1SriQEgIOb243W5YLBaEhYV1+mX7PJ/fNAIUIDnMv+gKp3Q6E+XFh/KSjrLiQ3nxUUpearUa0dHRoe5Gu+SbIJHMZrPh2LFjtDy6RJQXH8pLOsqKD+XFh/IKLhoB6gL0ej1SUlJkvzy6XFBefCgv6SgrPpQXH6Xk1djYiCNHjkCv12P8+PGh7k6bqADqApQy3CgXlBcfyks6yooP5cVHKXk1NDTg559/RmxsrKwLIDoF1gU4nU6UlZXRZGyJKC8+lJd0lBUfyouPUvKKiIjA6NGjMXz48FB3xS8qgLoApfxSyAXlxYfyko6y4kN58VFKXvHx8bjiiiswY8aMUHfFL7oMvhU8l9ERQgghRB54Pr9pBIgQQgghpx0qgLoAm82GjIwMujRSIsqLD+UlHWXFh/Lio5S8SkpK8Mwzz2DdunWh7opfVAB1ASqVCgaDQdG3dehMlBcfyks6yooP5cVHKXkxxuBwOOBwOELdFb9oDlAraA4QIYQQcmpcLhcaGhoQFhaGuLi4Tn1tmgN0mmGMwel0yv7Gc3JBefGhvKSjrPhQXnyUkpdGo0G3bt06vfjhRQVQF2C1WpGeng6r1RrqrigC5cWH8pKOsuJDefGhvIKLVoLuAvR6Pc444wzZL48uF5QXH8pLOsqKD+XFRyl5mUwmHDt2DHq9HqNHjw51d9pEBVAXoFarERsbG+puKAblxYfyko6y4kN58VFKXvX19di+fTtiY2NlXQDRKbAuwOl0oqKiQvarg8oF5cWH8pKOsuJDefFRSl7h4eEYMWIEUlJSQt0Vv2gEqAtwOp0oKipCVFQUtFptqLsje5QXH8pLOsqKD+XFRyl5devWDXPmzAl1N9pFl8G3gi6DJ4QQQpSHLoMnhBBCCPGDCqAuwGaz4cSJE7JfHl0uKC8+lJd0lBUfyouPUvIqKyvDCy+8gPXr14e6K37RHKAuQKVSQaPRyH55dLmgvPhQXtJRVnwoLz5KycvtdsNkMkGtVoe6K37RHKBW0BwgQggh5NQ4nU7U1NQgLCwMPXv27NTX5vn8phGgLoAxBo/Hg7CwMNn/ZSAHlBcfyks6yooP5cVHKXlptVr06tUr1N1oF80B6gKsVisOHz5My6NLRHnxobyko6z4UF58KK/gohGgLkCn02HQoEHQ6XSh7ooiUF58KC/pKCs+lBcfpeRlNptx4sQJ6HQ6jBgxItTdaRMVQF2ARqNBfHx8qLuhGJQXH8pLOsqKD+XFRyl51dXV4dtvv0VsbKysCyA6BdYFuFwuVFVVweVyhborikB58aG8pKOs+FBefJSSl8FgQEpKCgYOHBjqrvhFI0BdgMPhQH5+PiIiIqDR0I+0PZQXH8pLOsqKD+XFRyl5de/eHfPmzQt1N9pFl8G3QmmXwXv/COV8ZYBcUF58KC/pKCs+lBcfyqt9dBn8aYZ+EfhQXnwoL+koKz6UFx/KK7hoDlAXYLfbkZ2dDbvdHuquKALlxYfyko6y4kN58VFKXuXl5Xj11VfxzjvvhLorftEIECGEEEKCxuVyoba2Fh6PJ9Rd8YvmALVCaXOACCGEELlwOBwoLy+HRqNB7969O/W1aQ7QaYYmxvGhvPhQXtJRVnwoLz5KyUun0yE5OTnU3WgXzQHqAqxWKw4ePEjLo0tEefGhvKSjrPhQXnwor+CiEaAuQKfToX///rJfHl0uKC8+lJd0lBUfyouPUvKyWCw4efIktFothg4dGurutIkKoC5Ao9GgR48eoe6GYlBefCgv6SgrPpQXH6XkVVtbiy+++AKxsbGyLoDoFFgXIMy4l/vy6HJBefGhvKSjrPhQXnyUkpder8eAAQNkPw+ICqAuwOFw4OTJk3A4HKHuiiJQXnwoL+koKz6UFx+l5NWjRw/cdNNNuPrqq0PdFb/oMvhWKO0yeMYYPB4PwsLCZH1lgFxQXnwoL+koKz6UFx/Kq310GfxpRqVSQa1Wh7obikF58aG8pKOs+FBefCiv4KJTYF2A3W7HyZMnZb88ulxQXnwoL+koKz6UFx+l5FVRUYHXX38dmzZtCnVX/KIRoC6AMQaXywU6mykN5cWH8pKOsuJDefFRSl5OpxMVFRWyL9RkOQfI4/Fg7dq1+Oyzz9DY2Ijx48djxYoVbc4or66uxqpVq7B7924wxnDOOefgoYceQq9evU7p9ZU2B4gQQgiRC7vdjuLiYmg0GvTr169TX5vn81uWp8DWrVuHzZs348knn8THH38Mj8eDBQsWtDnz/Z577kFJSQneeecdvPPOOygpKcFdd93Vyb0mhBBCiF6vx6BBgzq9+OEluwLI4XBg48aNWLJkCaZOnYrU1FS89NJLKCsrw44dO1q0b2howN69e3Hbbbdh2LBhGD58OBYuXIijR4+irq6u899ACFgsFhw8eBAWiyXUXVEEyosP5SUdZcWH8uJDeQWX7AqgjIwMmM1mTJo0SXwsJiYGw4cPx759+1q0NxgMiIyMxNdffw2TyQSTyYRvvvkGAwcORExMTGd2PWS0Wi2SkpKg1WpD3RVFoLz4UF7SUVZ8KC8+SsnLZrMhMzMTJ0+eDHVX/JJdAVRWVgYA6N27t8/jCQkJ4nPedDodVq9ejb179+Kss87C+PHjceTIEaxfvx5hYYG9Pe8bzlmtVvEUnMfjgcVigdvtBtA04cu7IrfZbOLkL8YYd1thlU+XywWLxSJOeLPb7a221Wq16NatG5xOp09bm80mvo7FYoHT6QQAuN3uFtttr63H4wHQNELXPBeetlIzDDRvIcPW2no8HiQkJECj0bSbd/NceNr6yyWQvJvnEoy8bTZbm20BICoqSjzoStlnpfxseDIMNG/vXALN2zvD5m0ZY0hISIBarZbVMeJUM+zoYwRjDNHR0eK+JZdjRCAZduQxQqvVonv37nA6nbI6RjRvW1paio8//hjffvttpx8jeMiuABJ+OM1v9qbX61udUc4Yg9FoxJgxY/Dhhx/ivffeQ58+fXDnnXfCZDKdcj/cbjeysrLEf+fm5ooFmMPhgNFoFMOurq7GiRMnxLZ5eXkoLS0F0PRDMRqNYl9qa2uRkZEhti0oKEBxcTGApp3KaDSisbERAFBXVwej0Si2LSwsRGFhofhvo9GIuro6uN1ulJeXw2g0ijt6cXExCgoKxLYZGRmora0FAJhMJhiNRnEnKy0tRV5entj2xIkTqK6uBtC0gxmNRnHHLysrQ25urtg2KysLlZWVAJp2ZKPRKO6glZWVyMnJEdvm5OSgoqICQNOObDQaxZ93VVVVm3k7nU4YjUaYzWYAQE1NDTIzMyXl3VaG9fX14nYbGhoAAPX19TAajeIvW1FRUat5A0BjYyOMRqN4ACgpKUF+fr7YNjMz02/ezTOsqqoC0LT/e+ddXl7u81dUdna237yzs7PFtidPnkR5eTmA/+2z/vJuK8Pq6mpkZGSI7zU/Px8lJSUAmn5P2ttni4qKAPzvd7W+vh5A0+lr733WX97t7bOZmZmoqakBAJjNZhiNRvHA2No+2zxv4dhSUVHRYp/1l3drGdbX14tt5XKMAP63z8rpGFFeXo6srCxx35LLMULYZ4W85XKMcLvdqKyslN0xora21ifvyspK9OjRA4mJiZ1+jODCZGb79u0sJSWFWa1Wn8eXLFnC7rjjjhbtt27dys466yzW2NgoPlZXV8fGjBnD3nnnnVPqQ3p6OktPT2cWi0V8zGKxMLvdzhhjzO12M7PZzFwuF2OMMYfDwcxms9jWarUym83GGGPM4/Fwt3U6nYwxxpxOJzObzczj8TDGGLPZbK22NZvNbP/+/ayqqsqnrXeGZrOZORwOxhhjLperxXbba+t2uxljjNnt9ha58LSVmmGgeQsZtta2traW7d+/n5lMpnbzbp4LT1t/uQSSd/NcgpG31Wpts219fT3bv3+/2F7KPivlZ8OTYaB5e+cSaN7eGTZvW1dXx/bv388aGxtldYw41Qw7+hgh5CW8X7kcIwLJsCOPEd7HejkdI04lw2Dl3fwYIXx+SyG7y+DT09Mxd+5c/Pjjjz4zyOfNm4ehQ4di5cqVPu2feOIJ/P333/j00099Hr/66qsxcuRIPP7449x9UNpl8Oz/rw2h0WhoeXQJKC8+lJd0lBUfyosP5dW+Tr8M3uFwYNiwYfj6668D3lZqaiqioqKwZ88e8bGGhgYcP34c48ePb9E+MTER+fn5PqfHLBYLioqKMGDAgID7owQqlQparZZ+ISSivPhQXtJRVnwoLz6UV3AFbQ5QsAaSdDod5s+fj+effx4///wzMjIycO+99yIxMREzZswQz4EK5zSvvPJKAE1rAWVkZCAjIwP33Xcf9Ho9Zs+eHZQ+yZ3dbkdeXp7sV92UC8qLD+UlHWXFh/Lio5S8KisrsWHDBnzyySeh7opfspsEDQBLlizBnDlz8Oijj2LevHlQq9XYsGEDtFotSktLMXnyZGzbtg1A09VhmzdvBmMMN910E26++WZotVps3rwZ0dHRIX4nnYMxBpvNJvvl0eWC8uJDeUlHWfGhvPgoJS+Hw4GioiJx0rRcBWUOkMPhwMiRI7F69WpxREbJlDYHiBBCCJELq9WKgoICaDQaDB48uFNfm+fzm26GSgghhJCgCQ8Px9ChQ0PdjXbJ8hQY4WOxWHD48GFaHl0iyosP5SUdZcWH8uJDeQUXjQB1AVqtFomJibJfHl0uKC8+lJd0lBUfyouPUvKy2+0oKSmBRqNBcnJyqLvTJhoB6gKU8kshF5QXH8pLOsqKD+XFRyl5VVVV4f3338cXX3wR6q74FVAB9Oabb+KFF17weWz//v1YuHAhDdF1IrfbjcbGRp97N5G2UV58KC/pKCs+lBcfpeSl1WqRkJCAHj16hLorfgVUAOn1eqxfvx6rVq2CSqXCX3/9hdtuuw0OhyPgG5ES6ex2O06cOCH7tSHkgvLiQ3lJR1nxobz4KCWvhIQELFq0CPPnzw91V/wK+DL4Dz/8EE899ZT473POOQfr1q2DXq8PuHOhorTL4D0eDxwOB3Q6HRWeElBefCgv6SgrPpQXH8qrfZ16Gfz1118PrVaLxx9/HOeffz5effXVFndyJx0rLCwMBoMh1N1QDMqLD+UlHWXFh/LiQ3kFV1BKyGuuuQY7duzAa6+9RsVPCDgcDhQUFMDhcIS6K4pAefGhvKSjrPhQXnyUkpdSJkEH7TJ4OV/q1tW53W6YTCbZT4yTC8qLD+UlHWXFh/Lio5S87HY7cnNzERsbG+qu+BWUW2F0NUqbA0QIIYTIhcViQU5ODnQ6XaevCE23wiCEEEJISERERChiAIGmkXcBVqsV6enpsFqtoe6KIlBefCgv6SgrPpQXH8oruGgEqAvQaDTo0aMHNBr6cUpBefGhvKSjrPhQXnyUkpfD4UBFRQXUajV69+4d6u60iUaAugCtVos+ffrIfnl0uaC8+FBe0lFWfCgvPkrJq7KyEhs2bMAnn3wS6q74RQVQF+B2u2E2m2V/ZYBcUF58KC/pKCs+lBcfpeSl0WgQFxcn+6vAqADqAux2OzIyMmS/PLpcUF58KC/pKCs+lBcfpeTVq1cv3H333bj55ptD3RW/gnIZfH19PaxWKzweT4vn+vTpE+jmO53SLoP3eDyw2WwwGAy0PLoElBcfyks6yooP5cWH8mpfp10Gn5+fj2XLluHIkSNttjEajYG8BJEgLCwMERERoe6GYlBefCgv6SgrPpQXH8oruAIqgJ588knk5eVh8eLFSExMpIo0RBwOByorK9GzZ0+6FYkElBcfyks6yooP5cVHKXlVV1djx44diIyMxOWXXx7q7rQpoAJo3759ePrpp3HZZZcFqz/kFLjdbtTW1qJbt26h7ooiUF58KC/pKCs+lBcfpeRls9lw4sQJ2U+CDqgAioqKkv0bPB2Eh4cjLS0t1N1QDMqLD+UlHWXFh/Lio5S84uLiMGvWLFmPUgEBXgV2xRVX4MMPPwTdTowQQgghABAZGYmxY8fKvlgLaAQoPDwcBw4cwIUXXogzzzwTBoPB53mVSoVVq1YF1EHSPqvVipycHAwePBjh4eGh7o7sUV58KC/pKCs+lBcfyiu4AiqAvvrqK0RHR8Pj8bR6JZhKpQpk80QitVqNuLg4qNXqUHdFESgvPpSXdJQVH8qLj1LycjqdqKmpgVqtRo8ePULdnTYFZR2grkZp6wARQgghclFcXIy3334bsbGxuOeeezr1tXk+v+m69S7A4/G0uRAlaYny4kN5SUdZ8aG8+Cglr7CwMERGRsp+zaKg3FJ2586d2Lt3LxoaGhAfH49x48bhvPPOC8amiQQ2mw1GoxHDhg2T/Q4nB5QXH8pLOsqKD+XFRyl59e7dG0uXLg11N9oV0Ckwh8OBO++8E7t27YJarUZ8fDxqa2vh8XgwceJEvPnmm7K/DK41SjsF5na7YbVaER4eLvtzw3JAefGhvKSjrPhQXnwor/Z12imw1157DQcOHMCaNWuQnp6OXbt24ciRI3jmmWdw+PBhvP7664FsnkikVqsRFRVFvxASUV58KC/pKCs+lBcfyiu4AiqAvvvuOyxevBiXX365+APRaDS48sorsXjxYmzZsiUonST+OZ1OlJaWwul0hrorikB58aG8pKOs+FBefJSSV01NDb744gts27Yt1F3xK6ACqKamBsOHD2/1ueHDh6O8vDyQzROJnE4nKioqZP9LIReUFx/KSzrKig/lxUcpeVmtVvz99984ceJEqLviV0CToPv164cDBw5g0qRJLZ7bt28fevfuHcjmiUQREREYNWpUqLuhGJQXH8pLOsqKD+XFRyl5xcbG4uKLL5b9HOCACqBrr70Wq1evhsFgwMyZM9GjRw9UVVXhu+++w/r167F48eJg9ZMQQgghChAVFYWzzz471N1oV0AF0Lx583D8+HE8//zzeOGFF8THGWO46qqrsHDhwoA7SNpntVqRm5uLgQMH0vLoElBefCgv6SgrPpQXH8oruAIqgMLCwvD000/jlltuwd69e1FfX4/Y2FhMmDABgwcPDlYfSTvoygA+lBcfyks6yooP5cVHKXm5XC40NjYiLCwMsbGxoe5Om7jXAVq+fDnuvPNOJCcnY/ny5f43rtCboSptHSBCCCFELpRyKwzuEaA9e/bgpptuEv/fH7oZaufweDxwOp3QarUIC6O7m7SH8uJDeUlHWfGhvPgoJS+VSgWdTgetVhvqrvhFN0NthdJGgCwWiyKWR5cLyosP5SUdZcWH8uJDebWv01aC3rdvH8xmc6vPNTQ0YOvWrYFsnkik1+sxZMgQ6PX6UHdFESgvPpSXdJQVH8qLD+UVXAEVQDfeeCNycnJafe748ePtzhEiwaFWqxETEyP7iXFyQXnxobyko6z4UF58KK/g4p4DtGzZMpSWlgJoutx95cqViIqKatEuLy8PPXr0CLyHpF1OpxM1NTXo1q2b7M+5ygHlxYfyko6y4kN58VFKXrW1tdi5cyciIiJw4YUXhro7beIeAbrooovAGIP31CHh38JXWFgYRo8ejWeeeSaonSWtczqdKCkpkf3y6HJBefGhvKSjrPhQXnyUkpfFYsHhw4dx7NixUHfFr4AmQd9www1YuXJll1vzR2mToAkhhBC5aGxsxOHDh6HX6zFhwoROfe0OvQze2wcffAAAqK6uhsPhEEeFPB4PrFYr9u/fj3nz5gXyEoQQQghRkOjoaEyZMiXU3WhXQAVQRkYGli5d2uZEaJVKRQVQJ7DZbMjLy8OAAQNgMBhC3R3Zo7z4UF7SUVZ8KC8+lFdwBVQArVmzBvX19Vi2bBl++eUX6HQ6TJs2DTt37sTOnTvx/vvvB6ufxA+VSgWDwUALT0pEefGhvKSjrPhQXnyUkpfb7YbVaoVKpUJkZGSou9OmgOYAjRs3DsuXL8ecOXPwySefYMuWLdi0aRMAYMmSJVCpVHjllVeC1tnOQnOACCGEkFOjlFthBLQOkMPhwIABAwAAAwYMQEZGhvjc7Nmzcfjw4UA2TyRijMHpdIIW9ZaG8uJDeUlHWfGhvPhQXsEVUAHUp08fFBYWAmgqgEwmE4qKigAAOp0O9fX1gfeQtMtqtSI9PR1WqzXUXVEEyosP5SUdZcWH8uKjlLz69u2Lxx9/vNNHf3gFVADNmDEDL7zwAn744Qf06tULgwYNwssvv4zMzExs3LgRycnJweon8UOn02Hw4MHQ6XSh7ooiUF58KC/pKCs+lBcfyiu4ApoDZLfb8cADD8BqtWL9+vX4/fffsXjxYjgcDqjVarz44ouYMWNGMPvbKWgOECGEEKI8PJ/fQbkbvNPpFJflLiwsxN9//40RI0agX79+gW46JJRWADmdTtTV1SEuLk7Wy6PLBeXFh/KSjrLiQ3nxUUpedXV1+PPPP2EwGDBt2rROfe1OmwQt8P5BJCcn45JLLlFs8aNETqcTBQUFsl8eXS4oLz6Ul3SUFR/Ki49S8jKbzdi7dy+OHDkS6q74xT0CtHbtWukbV6lw1113cXcq1JQ2AkQIIYTIRUNDA/bv3w+DwYBzzjmnU1+7Q0+BpaamSm6rUqlgNBp5Ng+g6VYaa9euxWeffYbGxkaMHz8eK1asaHNStdPpxKuvvoqvv/4ajY2NSEtLwyOPPIJhw4ZxvzZABRAhhBCiRB16LzDvtX46yrp167B582asXr0aiYmJeO6557BgwQJs2bKl1dnvK1euxK+//orVq1ejT58+eOWVV3Dbbbfh+++/R3R0dIf3N9RsNhsKCwuRnJxMy6NLQHnxobyko6z4UF58KK/gCuhWGIKdO3di7969aGhoQLdu3TBu3LhTvhGaw+HAxo0bsXTpUkydOhUA8NJLL2HKlCnYsWMHLrvsMp/2hYWF+OKLL/DGG2+Ir/nUU0/hyiuvxN9//41JkyYF9N6UQKVSISwsTPbLo8sF5cWH8pKOsuJDefFRSl4ejwdOpxMqlUrWl+wHVAA5HA7ceeed2LVrF9RqNeLj41FbW4s333wTEydOxJtvvsn95jMyMmA2m30Kl5iYGAwfPhz79u1rUQDt3r0b0dHROO+883za//e//w3krSmKXq/H4MGDQ90NxaC8+FBe0lFWfCgvPkrJq7S0NGS3wuAR0FVgr732Gg4cOIA1a9YgPT0du3btwpEjR/DMM8/g8OHDeP3117m3WVZWBgDo3bu3z+MJCQnic95yc3ORnJyMHTt2YPbs2Tj33HNx2223tXmHeh7eq21arVY4HA4ATdWtxWKB2+0G0DQHyWKxiG1tNhvsdjuApqXLedu6XC4AgMvlgsViEZc9t9vtrbZljMFut8NsNvu0tdls4utYLBbxygG3291iu+219Xg8AJqK3ua58LSVmmGgeQsZttbWZrPB7XaL2/WXd/NceNr6yyWQvJvnEoy8bTZbm20dDgcaGxvF9ypln5Xys+HJMNC8vXMJNG/vDJu3tdvtcLvd4nblcow41Qw7+hhht9thMpnE15HLMSKQDDvyGMEYg8PhgNlsltUxonlboZ2/DIOVd/NjBI+ACqDvvvsOixcvxuWXXw61Wg0A0Gg0uPLKK7F48WJs2bKFe5vCD6f5yJFerxdD8mYymZCfn49169bhvvvuw+uvvw6NRoPrrrsO1dXVp/CumrjdbmRlZYn/zs3NFQswh8MBo9Eohl1dXY0TJ06IbfPy8lBaWgqg6YdiNBphMpkAALW1tT7zqAoKClBcXAygaacyGo1obGwE0LSWgvck8sLCQvHWIwBgNBpRV1cHq9WKv//+GxkZGeKOXlxcjIKCArFtRkYGamtrxcyMRqO4k5WWliIvL09se+LECTE7i8UCo9Eo7tBlZWXIzc0V22ZlZaGyshJA045sNBrFHbSystKnEM3JyUFFRQWAph3ZaDSKP++qqqo283Y6nTAajTCbzQCAmpoaZGZmSsq7tQwLCgpw+PBh8b01NDQAAOrr62E0GsVftqKiolbzBoDGxkYYjUbxAFBSUoL8/HyxbWZmpt+8m2dYVVUFoGn/9867vLwcJ0+eFNtmZ2f7zTs7O1tse/LkSZSXlwP43z7rL++2MqyoqMCJEyfE783Pz0dJSQmApt+T9vZZ4fY4jDEYjUbxFjkNDQ0wGo3iPusv7/b22czMTNTU1ABougTXaDSKB8bW9tnmeQvHloqKihb7rL+8m2dYXFyMw4cPi/uHXI4RwP/2WTkdI0pLS5GZmSnuW3I5Rgj7rJC3XI4RVqsVR48eRUZGhqyOEbW1tT552+12XHfddVi8eHGnHyO4sACMHDmS/fHHH60+98cff7C0tDTubW7fvp2lpKQwq9Xq8/iSJUvYHXfc0aL9ihUrWEpKCsvOzhYfs1qtbMKECWz9+vXcr88YY+np6Sw9PZ1ZLBbxMYvFwux2O2OMMbfbzcxmM3O5XIwxxhwOBzObzT6vb7PZGGOMeTwe7rZOp5MxxpjT6WRms5l5PB7GGGM2m63Vtk6nk1VUVLD6+nqftt4Zms1m5nA4GGOMuVyuFtttr63b7WaMMWa321vkwtNWaoaB5i1k2Fpbk8nEqqurxef85d08F562/nIJJO/muQQjb6vV2mZbi8XCSkpKxPcuZZ+V8rPhyTDQvL1zCTRv7wybtzWbzay6uprZ7XZZHSNONcOOPkZYLBZWWloq9lEux4hAMuzIY4TT6WSVlZWsvr5eVseIU8kwWHk3P0YIn99SBLQS9KxZs3DRRRdh8eLFLZ579dVX8d1332HHjh1c20xPT8fcuXPx448/+iymOG/ePAwdOhQrV670af/6669j7dq1OHbsmM/jc+bMQVpaWov2UtBl8IQQQojydNpK0Ndeey3efPNNvP322ygtLYXT6URpaSnWr1+P9evX4+qrr+beZmpqKqKiorBnzx7xsYaGBhw/fhzjx49v0X78+PFwuVzimwb+d6lg//79T+2NKYzL5UJ1dbU4fEr8o7z4UF7SUVZ8KC8+SsmroaEBP/30E3bt2hXqrvgVUAE0b948XH755Xj++ecxffp0jBw5EtOnT8cLL7yAyy67DAsXLuTepk6nw/z58/H888/j559/RkZGBu69914kJiZixowZcLvdqKysFM9pnnXWWTjnnHOwbNky7N+/H9nZ2XjwwQehVqtxxRVXBPL2FMPhcCAvL89n4hlpG+XFh/KSjrLiQ3nxUUpejY2N2L17N/bv3x/qrvgVlJuhZmdni+sAxcbGYsKECQFdqud2u/Hiiy/iyy+/hM1mE1eCTkpKQlFREf7xj3/gmWeewezZswE0TX56/vnnsX37dthsNowdOxYPP/wwzjjjjFN6faWdAmOMgTEGlUol+/Uh5IDy4kN5SUdZ8aG8+Cglr/r6evz1118wGAw4//zzO/W1O/1u8F2N0gogQgghhHTwrTCWL1+OO++8E8nJyVi+fLnftiqVCqtWreJ9CcLJbrejqKgISUlJ0Ov1oe6O7FFefCgv6SgrPpQXH8oruLgLoD179uCmm24S/98fOQ/RdSWMMXg8HtBgnjSUFx/KSzrKig/lxUcpeXn3T851QECnwNxut7gAYldCp8AIIYSQU1NcXByyW2F02mXwkydPxlNPPeVzCTohhBBCiNwFVABddtll+OGHH3DNNdfg4osvxhtvvCEu2U46j8ViwYEDB7jvg3K6orz4UF7SUVZ8KC8+Ssmrd+/eeOCBB3D77beHuit+BXwVGGMMf/31F7Zu3Yoff/wRjY2NGDt2LK644gpcfPHFiI6ODlZfO43SToG5XC7U1dUhLi4OGg33tK7TDuXFh/KSjrLiQ3nxobzaF7LL4J1OJ3bv3o2tW7fi+++/h0ajweHDh4O1+U6jtAKIEEIIIZ04B8iby+XCrl27sG3bNuzcuRMAMGnSpGBtnvjhcrlQW1sr++XR5YLy4kN5SUdZ8aG8+Cglr8bGRvz222/tXikeagEVQIwx/Pnnn3j00Udx7rnnYtGiRcjLy8OSJUvw+++/4/XXXw9WP4kfDocDJ0+elP3y6HJBefGhvKSjrPhQXnyUkldDQwN+/fVX/Pnnn6Huil8BnQKbPHkyqqur0adPH1x++eW44oorMGDAgCB2LzSUdgqMMSYuSSDnNRfkgvLiQ3lJR1nxobz4KCWvuro6/P777wgPD8cFF1zQqa/doStBe5s+fTouv/xynHXWWYFshgRIpVLRhDgOlBcfyks6yooP5cVHKXnFxcVh1qxZoe5GuwI6BfbEE09Q8SMDdrsdubm5sNvtoe6KIlBefCgv6SgrPpQXH8oruII2CZqEDmMMDodD9sujywXlxYfyko6y4kN58aG8govuBt8Kpc0BIoQQQuSipKQE77zzDmJiYvCvf/2rU187JJfBE0IIIYQwxuByueB2u0PdFb+oAOoCLBYLDh06JPvl0eWC8uJDeUlHWfGhvPgoJa9evXrhnnvuwS233BLqrvgV8HRyk8kEs9mMXr16wel04oMPPkBJSQkuuugijB8/Phh9JO3QarXo27cvtFptqLuiCJQXH8pLOsqKD+XFRyl5aTQaxMbGhrob7QpoBOjIkSOYNm0aNm3aBAB46qmnsGbNGnz77be46aab8PPPPwelk8Q/rVaLhIQE2f9SyAXlxYfyko6y4kN58aG8giugAujll1/G4MGDcc0118BqteKbb77Bddddh71792LOnDl44403gtVP4ofb7UZ9fb3sz7fKBeXFh/KSjrLiQ3nxUUpeJpMJf/75Jw4cOBDqrvgV8AjQokWLkJycjN27d8Nut+OKK64AAFx66aXIysoKSieJf3a7HdnZ2bQ2hESUFx/KSzrKig/lxUcpedXX12PHjh34/fffQ90VvwKaAxQWFga9Xg8A+P333xETE4ORI0cCaKoADQZD4D0k7TIYDDjzzDMVsUKoHFBefCgv6SgrPpQXH6XkFRERgZEjRyI8PDzUXfEroBTT0tLw2WefwWAwYPv27Zg6dSpUKhWqq6uxfv16pKWlBaufxI+wsDDodLpQd0MxKC8+lJd0lBUfyouPUvKKj4/HVVddFeputCugU2BLly7FH3/8gWuvvRZqtRqLFi0CAFx22WXIy8vDPffcE4w+knY4HA7k5+fL/g7BckF58aG8pKOs+FBefCiv4Ap4BOjHH39ETk4OhgwZgoiICADAypUrMXbsWPTs2TMonST+eTweWCwWeDyeUHdFESgvPpSXdJQVH8qLD+UVXNy3wigpKeF6gT59+nC1lwO6FQYhhBByakpLS/HBBx8gJiYGd9xxR6e+Ns/nN/cI0PTp06FSqSS3NxqNvC9BCCGEEIXyeDywWq2yn6/EXQCtWrVKLIDq6+vx/PPPY9KkSbjkkkvQs2dP1NXV4b///S9+/fVXPPTQQ0HvMGnJYrEgKyvL5zQkaRvlxYfyko6y4kN58VFKXgkJCbjzzjsRFibvu21xF0CzZ88W//+uu+7ClVdeiaeeesqnzaxZs/D000/j+++/x//93/8F3kviF60Oyofy4kN5SUdZ8aG8+CglL61Wq4g5wAGVZ7t378Yll1zS6nNTp07FoUOHAtk8kUir1aJ3796y/6WQC8qLD+UlHWXFh/LiQ3kFV0AFUHx8PNLT01t97q+//kKvXr0C2TyRyO12w2QyyX55dLmgvPhQXtJRVnwoLz5KyctsNmP//v1t1gdyEVABNHfuXPznP//BSy+9hEOHDiEvLw/79+/HU089hY0bN+Kmm24KVj+JH3a7HZmZmbJfHl0uKC8+lJd0lBUfyouPUvKqq6vD1q1b8d///jfUXfGL+zJ4b4wxrFmzBh988IFYkTLGYDAYcOedd2LhwoVB62hnUtpl8B6PBw6HAzqdTvaTzuSA8uJDeUlHWfGhvPgoJa/q6mr89NNPiIiIwKxZszr1tXk+vwMqgASNjY04fPgw6uvrER8fjzFjxsh6hnp7lFYAEUIIIaSD1wFqayHEwYMHi/9fV1eHuro6AMpcCFFpHA4HysvL0atXL9mvuyAHlBcfyks6yooP5cWH8gouWgixC3C73WhoaECPHj1C3RVFoLz4UF7SUVZ8KC8+lFdwcZ8C+/LLL7kWQlTiOkB0CowQQgg5NWVlZfjoo48QExODW2+9tVNfu0NPgdFCiIQQQghpizBSxXO2KBRoIcQuwGq14ujRo7BaraHuiiJQXnwoL+koKz6UFx+l5NWzZ0/cdtttmDdvXqi74hcthNgFqNVqdOvWDWq1OtRdUQTKiw/lJR1lxYfy4qOUvHQ6Hfr06SP7GoD7FJg3YSFEm82GqVOnIj4+HlVVVdi+fTs++ugjPPzww8HqJ/FDp9Ohb9++oe6GYlBefCgv6SgrPpQXH8oruAIqgBYtWoTGxkZs2LABb731FoD/LYR499134/rrrw9KJ4l/Ho8HNpsNBoNB1otjyQXlxYfyko6y4kN58VFKXsJd63U6HYYNGxbq7rQpoAJIpVJh2bJluPPOO7vUQohKY7PZYDQaMWzYMMpdAsqLD+UlHWXFh/Lio5S8amtr8fXXXyM2NrbrFkCC6OhoTJkyJRibIqfAYDBg2LBhMBgMoe6KIlBefCgv6SgrPpQXH6XkpdfrMXjwYERGRoa6K34F5VYYO3fuxN69e9HQ0ID4+HiMGzcO5513XjD6FxK0DhAhhBCiPB26DpA3h8OBO++8E7t27YJarUZ8fDxqa2vx1ltvYeLEiXjzzTdpue5O4HA4UFlZiZ49e1LeElBefCgv6SgrPpQXH8oruAKaRfXaa6/hwIEDWLNmDdLT07Fr1y4cOXIEzzzzDA4fPozXX389WP0kfrjdbtTU1MDtdoe6K4pAefGhvKSjrPhQXnwor+AK6BTYtGnTMH/+/FaXut6wYQM++ugj/PTTTwF1MBToFBghhBByasrLy/H5558jOjoaN954Y6e+dqedAqupqcHw4cNbfW748OEoLy8PZPOEEEIIURiXy4Wqqio4nc5Qd8WvgE6B9evXDwcOHGj1uX379qF3796BbJ5IZLVacezYMdkvjy4XlBcfyks6yooP5cVHKXn16NED//znPzFnzpxQd8WvgEaArr32WqxevRoGgwEzZ85Ejx49UFVVhe+++w7r16/H4sWLg9VP4odarUZMTIzsl0eXC8qLD+UlHWXFh/Lio5S89Ho9+vfvH+putCugOUAejwePPfYYvvjiC5+7vjLGcNVVV2HVqlWyvxtsa2gOECGEEKI8PJ/fQVkHKCcnB3v37kV9fT1iY2MxYcIEDB48ONDNhozSCiCPxwOHwwGdTifr5dHlgvLiQ3lJR1nxobz4KCUvq9WKvLw8aDQaDBkypFNfm+fzOygJDh48GPPmzcMdd9yBefPmKbr4USKbzYZjx47BZrOFuiuKQHnxobyko6z4UF58lJJXTU0NPv30U2zdujXUXfErKLfCIKGl1+sxdOhQ6PX6UHdFESgvPpSXdJQVH8qLj1Ly0ul06Nev3+lxK4yuRmmnwAghhBASglNgwebxePDqq69iypQpGD16NG677TYUFhZK+t5vv/0WQ4cORVFRUQf3Uj6cTidKS0tlv+aCXFBefCgv6SgrPpQXH8oruGRZAK1btw6bN2/Gk08+iY8//hgejwcLFiyAw+Hw+33FxcV44oknOqmX8uF0OlFRUUG/FBJRXnwoL+koKz6UFx/KK7i4T4GVlJRwvUCfPn242jscDkycOBFLly7FddddBwBoaGjAlClT8PTTT+Oyyy5r9fs8Hg/mz58PrVaLv/76Cz///DOSkpK4XltAp8AIIYSQU1NZWYmvvvoKUVFR4ud4Z+nQW2FMnz6da20fo9HItf2MjAyYzWZMmjRJfCwmJgbDhw/Hvn372iyA3njjDTidTixevBh//fUX12sSQgghJDiEU3WxsbGh7opf3KfAVq1aJX4tW7YMarUakydPxtNPP4233noLa9aswcUXXwyDwYCVK1dyd6isrAwAWtxGIyEhQXyuufT0dGzcuBHPPfdcUFfI9F5u3Gq1iqfgPB4PLBaLeEdep9MJi8UitrXZbLDb7QCaFoXkbetyuQA03U/FYrFAGKSz2+2ttrXZbDh+/Dhqa2t92npfKmmxWMRhU7fb3WK77bX1eDwAmkbomufC01ZqhoHmLWTYWtuGhgYYjUZYrdZ2826eC09bf7kEknfzXIKRt81ma7OtyWTyufRWyj4r5WfDk2GgeXvnEmje3hk2b9vY2Aij0QiLxSKrY8SpZtjRx4jGxkaffUsux4hAMuzIY4T3sV5Ox4jmbSMjIzF37lxcccUVnX6M4MFdAM2ePRtXXXUVrrrqKuzbtw9XXnkl1q9fj9mzZ2PKlCmYNWsWXnrpJcyZMwfff/897+bFH45Op/N5XK/XiyF5s1gsWLp0KZYuXYoBAwZwv15b3G43srKyxH/n5uaKBZjD4RAPcgBQXV2NEydOiG3z8vJQWloKoOmHYjQaYTKZAAC1tbXIyMgQ2xYUFKC4uBhA005lNBrR2NgIAKirq/MZQSssLPSZDG40GlFXV4ewsDBoNBqcPHlS3NGLi4tRUFAgts3IyEBtbS2Apg80o9Eo7mSlpaXIy8sT2544cQLV1dUAmvI1Go3ijl9WVobc3FyxbVZWFiorKwE07chGo1HcQSsrK5GTkyO2zcnJQUVFBYCmHVkoQgCgqqqqzbydTieMRiPMZjOApjUmMjMzJeXdWobl5eWIiIiASqWC0WhEQ0MDAKC+vh5Go1H8ZSsqKmo1bwDiB51wACgpKUF+fr7YNjMz02/ezTOsqqoC0LT/e+ddXl6OkydPim2zs7P95p2dnS22PXnypHhDYmGf9Zd3Wxk2NDTAZrOJC6/l5+eLp8Ldbne7+6xwQQJjDEajEfX19eJ2jUajuM/6y7u9fTYzMxM1NTUAALPZDKPRKB4YW9tnm+ctHFsqKipa7LP+8m6eYXV1NSIiIsRc5HKMAP63z8rpGFFbWwuHwyHuW3I5Rgj7rJC3XI4RYWFh0Ol0OHnypKyOEbW1tT55l5WVITw8HAMHDuz0YwQXFoBRo0axXbt2tfrcrl272MiRI7m3uX37dpaSksKsVqvP40uWLGF33HFHi/bLly9nCxcuFP/9119/sZSUFFZYWMj92oL09HSWnp7OLBaL+JjFYmF2u50xxpjb7WZms5m5XC7GGGMOh4OZzWaxrdVqZTabjTHGmMfj4W7rdDoZY4w5nU5mNpuZx+NhjDFms9m42npnaDabmcPhYIwx5nK5uNu63W7GGGN2u71FLjxtpWYYaN5CLoHm3TyXQPL2ziWQvJvnEoy8rVZrUPIWcglW3kIugebtnUugeXvnQscIOkbQMUJexwjh81uKgNYBmjZtGq655hosWrSoxXMvvPACfvjhB+zYsYNrm+np6Zg7dy5+/PFH9OvXT3x83rx5GDp0aIvTakOHDoVOp4NG0zSdye12w263Izw8HHfccQfuuOMO7veltEnQHo8HLpcLGo1G1sujywXlxYfyko6y4kN58VFKXjabDUVFRdBoNEE9MyNFh06C9jZ37lz85z//gc1mw9SpUxEfH4+qqips374dH330ER5++GHubaampiIqKgp79uwRC6CGhgYcP34c8+fPb9G+eYF15MgRPPDAA3jrrbeQkpJyam9MYYRhzmHDhiEiIiLU3ZE9yosP5SUdZcWH8uKjlLxqamrw4YcfIjY2Fvfcc0+ou9OmgAqgRYsWobGxERs2bMBbb70FoOkcnsFgwN13343rr7+ee5s6nQ7z58/H888/j27duqFv37547rnnkJiYiBkzZsDtdqOmpgbR0dEwGAzo37+/z/cL54T79OmDuLi4QN6eYuj1epxxxhmyXx5dLigvPpSXdJQVH8qLj1Ly0mq1SExMRFRUVKi74ldQboXR2NiIw4cPo76+HvHx8RgzZkxA1anb7caLL76IL7/8EjabDePHj8eKFSuQlJSEoqIi/OMf/8AzzzyD2bNnt/jePXv24MYbb6R1gAghhJDTDM/nd1AKoJycHOzevRsVFRW44YYbUFhYKJ7KUiKlFUBOpxO1tbWIj4+HVqsNdXdkj/LiQ3lJR1nxobz4UF7t67Q5QB6PBytWrMAXX3wBxhhUKhUuueQSrFu3DgUFBdi0aRMSExMDeQkigdPpRHFxMaKiouiXQgLKiw/lJR1lxYfy4kN5BVdAI0Br167F+vXrsWLFCkydOhXnnnsuvvjiC4SFheGuu+7C+PHj8eyzzwazv51CaSNAhBBCiFxUVVVhy5YtiIqKwty5czv1tTvtbvBffPEFlixZgquvvtpnwvGwYcOwZMkS7N69O5DNE0IIIURhHA6HzwKechVQAVRVVYVhw4a1+lyvXr3E1TNJx7LZbMjMzPRZIpy0jfLiQ3lJR1nxobz4KCWv+Ph4zJ07FzNnzgx1V/wKqADq378/fvvtt1af27t3b4tL1EnHUKlU0Ol0XDepPZ1RXnwoL+koKz6UFx+l5BUeHo7hw4djyJAhoe6KXwFNgr7pppuwYsUKOJ1OTJs2DSqVCvn5+dizZw82btyIhx56KFj9JH7o9XoMHDgw1N1QDMqLD+UlHWXFh/LiQ3kFV8ArQdfU1OD111/HRx99BMYY7rvvPmi1WixYsADz5s0LVj+JH4wxuN1uqNVq2f9lIAeUFx/KSzrKig/lxUcpedntdpSVlUGj0aBv376h7k6bAiqAAOD222/H9ddfj0OHDqGurg4xMTEYNWrUabMKsxwId7SW+/LockF58aG8pKOs+FBefJSSV3V1Nd59913Z3wojoDlAN954I7777jtERUVhypQpmDVrFs4//3zExcXhyJEjbU6QJsGl0+kwaNAg6HS6UHdFESgvPpSXdJQVH8qLj1LyUqvV6N69O+Lj40PdFb8CGgHau3cv9u3bh2PHjuHBBx+U9ZBcV6bRaGS/o8kJ5cWH8pKOsuJDefFRSl69evXC4sWLQ92NdgU0AgQA8+fPx+bNm3Hrrbeivr4+GH0inFwuF6qqquByuULdFUWgvPhQXtJRVnwoLz6UV3AFXADNmjUL77//Pk6cOIE5c+YgMzMTAGg0qBM5HA7k5+fD4XCEuiuKQHnxobyko6z4UF58KK/gCrgAAoBRo0bh888/R3R0NK699lps27aN7lPSiSIiIjBu3DhZT4qTE8qLD+UlHWXFh/Lio5S8qqur8eGHH+Lrr78OdVf8CkoBBACJiYnYvHkzzjvvPNx///3YsGFDsDZNCCGEEIWw2+3Izs5GXl5eqLviV9AKIAAwGAx45ZVXcOedd2Lr1q3B3DTxw2azISsrS/bLo8sF5cWH8pKOsuJDefFRSl5xcXG48sorMWPGjFB3xa+ArgJ7//33MWjQoBaP/+tf/8LQoUPxyy+/BLJ5IpFKpUJYWBjNu5KI8uJDeUlHWfGhvPgoJa+IiAiMGjUq1N1ol4oxxkLdCbk5evQoAODMM88McU8IIYQQIhXP5zf3CNDy5ctx5513Ijk5GcuXL/fbVqVSYdWqVbwvQTgxxsAYg0qlkv1fBnJAefGhvKSjrPhQXnyUkpfD4UB1dTXUajUSEhJC3Z02cRdAe/bswU033ST+vz9y/gF1JUpZHl0uKC8+lJd0lBUfyouPUvKqqqrC+vXrZX8rDO4C6L///W+r/09CR6fTYcCAAbJfHl0uKC8+lJd0lBUfyouPUvIKCwtDTEwMoqKiQt0Vv2gOUCtoDhAhhBCiPB06B2jt2rWS26pUKtx11128L0E4uVwuNDQ0ICYmBhpNQBf2nRYoLz6Ul3SUFR/Kiw/lFVxUAHUBDocDubm5GDZsGP1SSEB58aG8pKOs+FBefCiv4KJTYK1Q2ikwxhg8Ho8i1oeQA8qLD+UlHWXFh/Lio5S8ampq8NNPPyE8PByzZs3q1Nfu0FNgramurobD4YBQS3k8HlitVhw4cADXXnttMF6C+KFSqaBWq0PdDcWgvPhQXtJRVnwoLz5Kyctms8FoNCI2NjbUXfEroAIoIyMDS5cuRU5OTqvPq1QqKoA6gd1uR1FREZKSkqDX60PdHdmjvPhQXtJRVnwoLz5KySs2NhaXXnqp7K9WC6gAWrNmDerr67Fs2TL88ssv0Ol0mDZtGnbu3ImdO3fi/fffD1Y/iR/CsCidzZSG8uJDeUlHWfGhvPgoJa/IyEiMHz8+1N1oV0BzgMaNG4fly5djzpw5+OSTT7BlyxZs2rQJALBkyRKoVCq88sorQetsZ1HaHCBCCCGE8H1+B3Q3eIfDgQEDBgAABgwYgIyMDPG52bNn4/Dhw4FsnhBCCCEK43K5UFVVhZqamlB3xa+ACqA+ffqgsLAQQFMBZDKZUFRUBKBpxcr6+vrAe0jaZbFYcODAAVgsllB3RREoLz6Ul3SUFR/Ki49S8qqoqMB//vMf2U+DCagAmjFjBl544QX88MMP6NWrFwYNGoSXX34ZmZmZ2LhxI5KTk4PVT+KHVqtFv379oNVqQ90VRaC8+FBe0lFWfCgvPkrJS6VSwWAwyHqiNhDgHCC73Y4HHngAVqsV69evx++//47FixfD4XBArVbjxRdfxIwZM4LZ305Bc4AIIYQQ5eH5/A7KQohOp1OsSAsKCnDs2DGMGDEC/fr1C3TTIaG0AsjlcsFkMiEqKopWB5WA8uJDeUlHWfGhvPhQXu3rtEnQAu/huH79+uGSSy5RbPGjRA6HAzk5OXA4HKHuiiJQXnwoL+koKz6UFx/KK7gCGgFKTU1tdzluo9F4qpsPGaWNADHG4HK5oNFoZL08ulxQXnwoL+koKz6UFx+l5FVbW4tff/0V4eHhuPjiizv1tTvtVhh33XVXix+C2WzGwYMHUVBQgKVLlwayeSKRSqWS/aQ4OaG8+FBe0lFWfCgvPkrJy2q1Ij09HbGxsZ1eAPEIqAD617/+1eZzDz74IP7++29cffXVgbwEkcBut6O0tBS9e/eW/ax7OaC8+FBe0lFWfCgvPkrJKyYmBhdeeKGs+wgEaQ5Qa6666ips27atozZPvDDGYLPZZL88ulxQXnwoL+koKz6UFx+l5BUVFYVzzjkH48aNC3VX/OqwaeQFBQVwuVwdtXnixWAwIDU1NdTdUAzKiw/lJR1lxYfy4kN5BVdABdDatWtbPObxeFBWVoZt27Zh2rRpgWyeEEIIIQrjdrthMpkQFhaG6OjoUHenTUEvgICm4a8LLrgAy5cvD2TzRCKLxYLMzEwMHToUERERoe6O7FFefCgv6SgrPpQXH6XkVV5ejvXr1yM2Nhb33HNPqLvTpoAKIO+bn5LQ0Wq16NOnjyKuDpADyosP5SUdZcWH8uKjpLzUajXUanWou+FXQOsAlZSUcLXv06fPqb5Up1LaOkCEEEII6cR1gKZPn861GJMSF0VUArfbDbPZjMjISNlX3HJAefGhvKSjrPhQXnwor+AKqAB6+eWX8fjjj2PEiBG4/PLL0atXL9TW1uK///0vvv/+eyxatAh9+/YNVl9JG+x2O7KysjBs2DBZnxeWC8qLD+UlHWXFh/LiQ3kFV0CnwBYtWoTY2FisXr26xXPPPPMMsrKysHHjxoA6GApKOwXm8XjEG9KGhXXY0k5dBuXFh/KSjrLiQ3nxUUpedXV12LVrF8LDw/GPf/yjU1+7026G+ueff+Kyyy5r9bnzzjsPBw4cCGTzRKKwsDDo9XpZ/0LICeXFh/KSjrLiQ3nxUUpeFosFBw4cEIsRuQooxfj4eBw5cqTV5/7880/06tUrkM0TiRwOBwoKCugOwRJRXnwoL+koKz6UFx+l5BUfH4+5c+di5syZoe6KXwHNAZozZw5ef/11WK1WTJ8+Hd26dUNVVRW2b9+Ojz76CI899liw+kn8EBadcrvdoe6KIlBefCgv6SgrPpQXH6XkFR4ejuHDh4e6G+0KaA4QYwzPPvssNm3aJP5AGGMIDw/HXXfdhQULFgSto51JaXOACCGEEML3+R1QASRoaGjA4cOHUV9fj/j4eIwePRpRUVGBbjZkqAAihBBCTs3u3buxfPlyjBw5ss07RnSUTpsELaisrEReXh4yMzMxZMgQZGRkwGQyBWPTRAKLxYIjR47AYrGEuiuKQHnxobyko6z4UF58lJJXWVkZfv/9dxw+fDjUXfEroDlAHo8HK1aswBdffAHGGFQqFS655BKsW7cOBQUF2LRpExITE4PVV9IGrVaLhIQERSyPLgeUFx/KSzrKig/lxUcpeZ199tn49NNPER8fH+qu+BXQCNC6deuwZcsWPPXUU9i9ezeEs2kPPPAAPB4PXnrppaB0kvin1WrRu3dv2f9SyAXlxYfyko6y4kN58VFKXklJSZg7dy4uuOCCUHfFr4AKoC+++AJLlizB1Vdfjbi4OPHxYcOGYcmSJdi9e3eg/SMSKOXKALmgvPhQXtJRVnwoLz6UV3AFVABVVVVh2LBhrT7Xq1cvNDQ0nNJ2PR4PXn31VUyZMgWjR4/GbbfdhsLCwjbbZ2VlYeHChTj77LMxadIkLFmyhPtGrUpmt9uRmZkJu90e6q4oAuXFh/KSjrLiQ3nxUUpeGRkZ+PTTT7F///5Qd8WvgAqg/v3747fffmv1ub1796J///6ntN1169Zh8+bNePLJJ/Hxxx/D4/FgwYIFrS7+VFtbi5tvvhkGgwEffPAB1q9fj5qaGixYsED2O0mwGAwGDB8+HAaDIdRdUQTKiw/lJR1lxYfy4qOUvL799lv83//9X6dfAcYroEnQN910E1asWAGn04lp06ZBpVIhPz8fe/bswcaNG/HQQw9xb9PhcGDjxo1YunQppk6dCgB46aWXMGXKFOzYsaPFrTd++uknWCwWrFmzRtwpnnvuOUydOhUHDx7EpEmTAnmLihAWFobw8PBQd0MxKC8+lJd0lBUfyouPUvISBh/0en2Ie+JfQAXQ3LlzUVNTg9dffx0fffQRGGO47777oNVqsWDBAsybN497mxkZGTCbzT6FS0xMDIYPH459+/a1KIAmTZqEdevW+VTEwn1STvUUnNI4HA5UVFQgISEBOp0u1N2RPcqLD+UlHWXFh/Lio5S8lFIABbwO0O23345du3bhrbfewnPPPYc333wTv//+O+6+++5T2l5ZWRkAoHfv3j6PJyQkiM95S0pKwsSJE30ee+utt2AwGDB+/PhT6oPAarX6/L9wCs7j8cBisYgT0ZxOp8+6DDabTdwBGGPcbV0uFwDA5XLBYrGIV9fZ7fZW27rdbtTW1sJkMvm0tdls4utYLBY4nU4ATRPpmm+3vbYejwdA0y9g81x42krNMNC8hQxba2u1WlFXVyfm6y/v5rnwtPWXSyB5N88lGHnbbLY229rtdtTU1Ij/lrLPSvnZ8GQYaN7euQSat3eGzdvabDbU1dWJ+crlGHGqGXb0McJms/nsW3I5RgSSYUceI7yP9XI6RjRvazabATQVQJ19jOARlIUQo6KiMGXKFMyaNQvnn3++zxVhvIQfTvPqVq/XS5rT88EHH2DTpk1YunQpunXrdsr9cLvdyMrKEv+dm5srFmAOhwNGo1EMu7q6GidOnBDb5uXlobS0FEDTD8VoNIoLQ9bW1iIjI0NsW1BQgOLiYgBNO5XRaERjYyMAoK6uDkajUWxbWFjoMxncaDSirq4O4eHhSEpKQm5urrijFxcXo6CgQGybkZGB2tpaAIDJZILRaBR3stLSUuTl5YltT5w4gerqagBNO5jRaBR3/LKyMuTm5opts7KyUFlZCaBpRzYajeIOWllZiZycHLFtTk4OKioqADTtyEajUfx5V1VVtZm30+mE0WgUf6lqamqQmZkpKe/WMqyqqkJaWhr0ej2MRqM4UlhfXw+j0Sj+shUVFbWaNwA0NjbCaDSKB4CSkhLk5+eLbTMzM/3m3TzDqqoqAE37v3fe5eXlOHnypNg2Ozvbb97Z2dli25MnT6K8vBzA//ZZf3m3laHVaoXb7RaH3vPz88WLDNxud7v7bFFREYCmg5vRaER9fT2AphFao9Eo7rP+8m5vn83MzERNTQ2ApoOv0WgUD4yt7bPN8xaOLRUVFS32WX95N8+wrq4OaWlpUKvVsjpGAP/bZ+V0jGhsbPQ5rSOXY4Swzwp5y+UYER4ejoEDByI3N1dWx4ja2lqfvIXfL71e3+nHCC5MZrZv385SUlKY1Wr1eXzJkiXsjjvuaPP7PB4Pe+mll1hKSgp76aWXAupDeno6S09PZxaLRXzMYrEwu93OGGPM7XYzs9nMXC4XY4wxh8PBzGaz2NZqtTKbzSb2i7et0+lkjDHmdDqZ2WxmHo+HMcaYzWbjauudodlsZg6HgzHGmMvl4m7rdrsZY4zZ7fYWufC0lZphoHkLuQSad/NcAsnbO5dA8m6eSzDytlqtQclbyCVYeQu5BJq3dy6B5u2dCx0j6BhBx4iWbW+99VYGgD3xxBOdfowQPr+lCMq9wIIpPT0dc+fOxY8//oh+/fqJj8+bNw9Dhw7FypUrW3yP0+nE8uXL8d133+Ghhx7CP//5z4D6oLR7gVmtVuTk5GDw4MGKmCAXapQXH8pLOsqKD+XFR055NT8F7G3RokXYvHkz/v3vf+Oee+5pcxs6nS7oV7TxfH4HNAm6I6SmpiIqKgp79uwRC6CGhgYcP34c8+fPb/V7HnzwQfz444944YUXMHPmzM7sriyo1WrEx8dDrVaHuiuKQHnxobyko6z4UF585JSXyWRCcXExVCpVi+eEU3sWi6XNNfzcbjcSExNDekm/7AognU6H+fPn4/nnn0e3bt3Qt29fPPfcc0hMTMSMGTPgdrtRU1OD6OhoGAwGfPnll9i2bRsefPBBTJgwQTz3CUBs09XpdDr07ds31N1QDMqLD+UlHWXFh/LiI6e8HA4H1Go1YmNj22wTFxfX5v3AhHk+oRSUSdDBtmTJEsyZMwePPvoo5s2bB7VajQ0bNkCr1aK0tBSTJ0/Gtm3bAADfffcdAGDNmjWYPHmyz5fQpqtrPtOf+Ed58aG8pKOs+FBefOSUl81mg0bT+hiKUi6Dl90IENA0zPfAAw/ggQceaPFcUlKSz2zzjRs3dmbXZEmY6T9s2DBERESEujuyR3nxobyko6z4UF585JKX2+2Gy+Vq81ScUAD5W6vI4/GIa/aFiixHgAgfvV6P1NRU2VfbckF58aG8pKOs+FBefOSSl8vlgsvlanMESFiSwt/pMQAhL4BkOQJE+KjVakRGRoa6G4pBefGhvKSjrPhQXnzkkpdQALU1AiRcHeZ9JXdrQl0A0QhQF+B0OlFSUiIu/Eb8o7z4UF7SUVZ8KC8+cslLWLCxtSvAAGD37t3IysrCwIED/W6nre/vLFQAdQEulwtVVVXiTkn8o7z4UF7SUVZ8KC8+cslLSgEWERHR7uX6oS6AZLcQohwobSFEQgghpLMUFxfDZDIhOjr6lLdRW1uLfv36BbSN1vB8ftMIECGEEEIkYYzBbre3OQH6/fffx7XXXotPPvmk3W3RHCASMKvViuPHj7e5LDnxRXnxobyko6z4UF585JCXy+WC2+1u8/RWeno6fv/9d/GGya0RLoEP9YrWdBVYF6BWqxEVFRXynUkpKC8+lJd0lBUfyouPHPISrgBr615kN998MyZMmIARI0a0uQ23242wsLCQjwDRHKBW0BwgQgghpKXGxkYUFBS0eYsLKWw2GzweDwYOHBj0Yo7mAJ1mPB6PuEOR9lFefCgv6SgrPpQXHznkFYwr0BhjsjgFRgVQF2Cz2XDs2DHYbLZQd0URKC8+lJd0lBUfyouPHPJyOBxtnrqqqqrCpk2b8Mcff/jdhtvt9nubjM5Cc4C6AL1ej5SUlJAvj64UlBcfyks6yooP5cVHDnn5uwnqsWPHsGzZMqSkpOCXX35pcxtUAJGgUavVQV9LoSujvPhQXtJRVnwoLz6hzqu9m6Dm5+cDaP8WGB6Pp80iqjPRKbAuwOl0oqysLOTLoysF5cWH8pKOsuJDefEJdV7t3QS1oKAAANC/f3+/22GMhXz+D0AFUJcQ6l8KpaG8+FBe0lFWfCgvPqHOq72boAoFUHsjQCqVShYFUOjHoEjAIiIiMHr06FB3QzEoLz6Ul3SUFR/Ki0+o82rvJqhSCiDGmGwKIBoBIoQQQki7bDab3xuYSjkFJqwiTQUQCQqbzYaMjAy6lFQiyosP5SUdZcWH8uITyrxcLhcaGxthMBhafb6urg719fUA/I8ACQVQqFeBBqgA6hJUKhUMBoPfypz8D+XFh/KSjrLiQ3nxCWVeNpsNdru9zUvwhdGfhISENm+TATRdASaXU2A0B6gL0Ov1GDBgQKi7oRiUFx/KSzrKig/lxSdUeVksFtTW1kKlUrVZfJ04cQIAkJyc7HdbbrdbNkUvFUBdAGNMvDRRDjuV3FFefCgv6SgrPpQXn87Oy+l0ora2FjU1NfB4PIiJiWmz7aeffgoAmDx5st9tejweWSyCCNApsC7BarUiPT0dVqs11F1RBMqLD+UlHWXFh/Li01l5OZ1O1NXVoaCgABUVFdDr9YiLi2tz3s6JEyewe/duhIWF4frrr/e7bbmsAg3QCFCXoNfrccYZZ9By8hJRXnwoL+koKz6UF5+OyosxBofDAZvNBpPJBIvFArvdDoPBgG7durX7/Y888ggA4IILLkDfvn3bbS+H+T8AFUBdglqtRmxsbKi7oRiUFx/KSzrKig/lxSeYeQl3lrfZbGhoaIDdbofT6YRGo4Fer0dERITk02yPPfYYHnjgAaxcuVJSezlcAQZQAdQlCOdp4+PjodVqQ90d2aO8+FBe0lFWfCgvPoHm5XK5YLPZYLFY0NjYCLvdDsYYdDodwsPDJd9n7Ndff0VBQQFuvPFGAMDIkSOxffv2dgsmi8UCrVYrm581FUBdgNPpRFFREaKiomSzY8kZ5cWH8pKOsuJDefHhzcvj8cBut8PhcMBsNountlQqFfR6PWJiYiSNxgirNwNAZWUlrr/+emi1WkyYMAGpqakA2l4dGgDsdjvMZjP0ej0SExPbXEuos6kYYyzUnZCbo0ePAgDOPPPMEPeEEEIIkYYxJhY8FosFZrMZDocDbrcbGo0GOp0Oer2+3ZEaxhiysrLw66+/4rfffoPBYMCGDRvE52fMmIGzzz4bDz/8sN81fxwOB0wmE3Q6HWJjYxEXF9fh8714Pr9pBIgQQghRIGHyssPhgNVqhclkgsPhEG9YqtPpEBUVJWnScV1dHX7//Xf89ttv+PXXX1FaWio+ZzAYYLVaxWLnu+++83sll91uh8VigUajQc+ePREbGyubUR9vVAB1ATabDQUFBejXr58sdzK5obz4UF7SUVZ8KC8+VqsVOTk56NWrF1QqFUwmkzh5OSwsDDqdDhEREdBo2v9od7lcOHToEHbu3Ilff/0Vhw8fhsfjEZ/X6/WYOHEizj//fEydOtXn59Na8SNcReZyuaDT6dCjRw/ZFj4CKoC6AJVKRQuJcaC8+FBe0lFWfCgv/zwejzjCY7PZUFNTg9LSUjidTuh0Ouh0OhgMBsmTlwGgtLQUK1aswO7du8V7dwmGDBmCqVOnYurUqTj77LP9nt4CmkZ67Ha7WPRER0cjKioK4eHhslnrxx+aA9QKmgNECCGks7ndbrHgsVgssFgscDqdcLlc4giPTqeTNMIDAGazGX/88QcYY5gxYwaAplGk4cOHw+FwIC4uDlOmTMH555+P8847T9IaPs2LnsjISERHR8NgMMii6KE5QKcZxhg8Hg/CwsLoLykJKC8+lJd0lBWf0z0vl8vlM2nZarXC4XDA4/GIc3giIyPFOTxCXt5XZXkzm81wuVziWkE7duzA4sWLMXz4cLEACg8Px5o1azB48GCMGjWq3flBLpcLDocDdrsdAMSRHjkVPaeKCqAuwGq1wmg0YtiwYYiIiAh1d2SP8uJDeUlHWfE5nfJijMHpdIrFhNlsFosfxpi4Po6/S9NtNhuysrIwZMgQhIeHo6amBnv37sWePXuwd+9eHD16FPfffz/uvvtuAMB5552H/v37Y9y4cXC73WKxM3fu3Db7KYxC2e12eDweaLVa6HQ69OzZE+Hh4TAYDF1myQIqgLoAnU6HQYMGKboS70yUFx/KSzrKik9Xzqv5/B2LxSL+W6VSiQUPz4rLFRUVSE9Px6ZNm7Bv3z7xDuzesrOzxf/v3r07/vjjD7/b9D7tJlwur9Vq0b17d4SHh0Ov10On03XJEToqgLoAjUaD+Pj4UHdDMSgvPpSXdJQVn66Sl3CXdqfTCafTCavVCrPZ3GL+jl6vR1RUlOTtFhQUYOfOndizZw/27NmD4uLiFm2GDBmCs88+W/xqbx6Pd2Hmfbl8fHy8T8Ejl9tVdCQqgLoAl8uFuro6xMXFSZ4cdzqjvPhQXtJRVnyUmJdwKkv4stlssFqt4r8ZY2JRIfWSdKApi+PHj2Pw4MGIjIwEAHz00Ud49dVXxTZqtRqpqamYNGkSJk2ahAkTJrR7s1JhcUShf2FhYeIq0JGRkWJhdjoUPM0pY48jfjkcDuTn53P9sp3OKC8+lJd0lBUfuefVWrFjsVjE0R6h2BHmyURGRko+VeRyuXze86xZs5Ceno53330XF154IQDg3HPPxb59+8TRneHDh6OkpEScA9RWnx0Oh9hnAOLIk3fBI5c7soeS/PY4wi08PBxjx44NdTcUg/LiQ3lJR1nxkUtejDG43W643e5Wix2Xy+UzsqPX67mKHcYYCgsLcejQIRw4cACHDh3CyZMncfjwYXFCcVpaGvLz81FdXS1+3+TJkzF58mSf7XTv3r3FtoXJ1ULBI9zctGfPnuIpLTkWmKFG6wC1gtYBIoSQrkUoclwul/hfoXCw2WxiAeR2uwFAHNnRaDTcizU2NDTg8OHDOHToEA4dOoSDBw/6FDaCbdu2YdSoUQCAxsZGREZGSjoVJfTb4XAAALRaLQwGAyIjI2EwGKDX60/bgofWATrN2O12FBYWIjk5ucNvNNcVUF58KC/pKCs+wc7Lu8gRCh2n0yku3udd5Ahr6Wg0GqjVamg0GhgMhlM6NWSxWPDll1/i4MGDOHToELKystB8bEGr1WLEiBEYM2YMxowZg3HjxqF///7i8/5WcxbW4mlsbERZWRmSkpIQHR2N+Ph4seDpKpemdyYqgAghhCiGcMWVd6Hjcrlgs9nES7mF54VRG2EUJ5AiR1BXV4c///wTYWFhuOiiiwA03dLjkUcegcvlEtslJydjzJgxGDt2LMaMGYO0tDRJ98VqPu/Iey2eHj16QKVSYcCAAYiKiuqSl6Z3JjoF1go6BUYIIaEjFDnehY5wyqf5SA4AhIWFiaM4wn9P9aomh8OBgoIC5OfnIy8vD/n5+Zg1axbGjx8PAPjhhx9wyy23YNSoUdi2bZv4fQ899BDi4uLEgqdnz56SXs/78nmXyyWuESRcRSaM8HTVtXiCjU6BnWa8a1j6BWkf5cWH8pKOspLO4/H4jOAI69PYbDY4nU6x8BEy9T5dJUzqPdUix2KxIC8vTyxwcnNzxYKnpKTE567oANCrVy+xABo4cCCGDRuGMWPG+NySYvXq1e2+rvcka+G9CfOMYmNjER4eLhY/rc07ov0ruKgA6gJOp+Xkg4Hy4kN5SUdZ+RKKHO/TVcIVVk6nEyaTCSdOnMCAAQPEFZGFIkev1yMiIuKUixybzYaMjAzU19fj/PPPFx+//PLLceDAAb/fGx4ejgEDBohf3leqpaSk4Keffmr39YXL0YXRK++ryCIjIxEREQGdTicWPFIKGtq/gosKoC5Ap9Ohf//+XXI5+Y5AefGhvKQ7HbNqfmWV2+32uWO48BhjTCwChNGbqKgoDB069JQWQmSMoaKiQhzJycvLw7hx43DBBRcAaLolxMyZM9GtWzfxtAjwv8nGcXFxYoHTv39/n4KnZ8+ekgoSj8fj876bn5YTbncRFxcnnsbSarWnPAfpdNy/OhIVQF2ARqNBjx49Qt0NxaC8+FBe0nXFrJpPOhZO4winq7xHeYRTQmFhYWKRYzAY/F5G3taCfkBTcVVcXOxzusr7v1ar1af9jTfeKBZAAwYMQK9evTBgwADY7XbxKrM1a9YgIiJC8i04vN+fv9NyBoNBvFGo96TrYF6d1RX3r1CiAqgLcLlcaGxsRHR09Gm79gMPyosP5SWdUrNq61SVcLdy4XnvuTHCB79wWketVnPPS3G5XKivr0dFRQXKy8sxdepU8bm7774b33zzjbi4X2vCwsKQlJQkjuJ4LxoYFRWFgwcPtvie1u6V1VqR4/F4xGJOeJ/e98oSRrKEHDrjVhJK3b/kihLsAhwOB06ePIlhw4bRL4UElBcfyks6uWblvdJx8yurhEUAhceFD37v0Q2tVovw8PBT+pB3Op0oKSlBQUEBCgsLUVhYiAEDBuD//u//4HQ6kZmZiblz5wIAsrKyxLkter0eTqdTPO3T/DRV//79kZSUJPl0kPcpKn+n5SIiIsR1dbyvKuNdDLEjyHX/Uiq6DL4VSrsMnjEGj8eDsLCwkP+CKgHlxYfyki6UWTWfi+K90rGwPo73HBUA4siG8HUqH/JutxtlZWUoLCz0KXKEr9LS0hZXVU2fPh0ffPCBmNekSZMQFxeHd955RxyhEe583rt3b8mFV2sZCKflvN+nXq8Xi5zmIzly3sfpd7F9dBn8aUb45SbSUF58KC/pOjKr1kYwvBcA9D6N492fYKx0DDSdJvrmm29QUFCAhQsXinN3li9fjg8//NDv9xoMBiQlJSE5ORnJyckYPXq02D+1Wo29e/e2+J7WTlV5j2R55yBoPpIjTDr2zkDuRY4/9LsYXFQAdQF2ux3FxcXo27cvLb8vAeXFh/KS7lSy8ng8Lb68P+CFERzvkQ3v01TeH+ynMheHMYbq6mpxxKaoqAhFRUXiLSpWrVoFoOnDd/ny5WhsbMSll16KIUOGAGgqVDQaDfr27Yvk5GT069cPSUlJ6Nevn1jw9OzZs9VRHLvdjrKyMiQmJop5eV9Z5T33yHskRxixEU5XeU86FkZ5lFrk+EO/i8FFBVAXIFylQWczpaG8+FBe0glrvwgTd9sqbpovhte8jTfvSbanOtkYAPLy8nDkyBGxwBGKnMLCQthstla/Z+jQoeL/q1QqzJw5E26322f+ycKFC7F48WLJIxPeozhmsxn19fXiKSnhdbzXAoqOjoZer/c5TSc8f7qh38XgojlArVDaHCBCSPAJE2RbK1CEUZjmqxk3L2i8R2sEwpVFwpcwquH9GG8/GxsbERMTIz725JNPIjMzE0899RQGDBgAAHj55Zfx3HPPtboNlUqFXr16iSM2SUlJSEpKwqBBgzBp0iTu7JpfVSXk0HwUJywsTCx+vAubzryyinQtNAeIEKJ4QvHh/f/eX609LuUxYYSleVHTvNjx/t7m7YTHgf/dh8q7oNFqtadc0AiXhtfV1aG+vl78av7v8vJyFBQUoLi4GAMHDvRZnfi3336D0WhEbm6uWAClpqZiwoQJPnNxhP/v06cP1+J63ndd9z5lJTznPeHY+15Wze/XdTqO4hD5oAKoC7BYLMjIyEBqaiotjy4B5SWNUBCYzWZkZGRg6NChCA8PD7gwaa3Y8D7107zQaG973o+19h5aO10kzJ8Rvtp6DPjfir7eBU5brFYrsrKyMHDgQDgcjhaFi0ajwcyZM8X2Dz30ELKzs/Hkk09i2LBhAIANGzbgiSeeaOen46u4uNjnvS5atAgOh8PnFNbFF1+Miy++WNL2mk82Fr68FwD0PiXlPeHYu7hpbxSHfhf5UF7BJcsCyOPxYO3atfjss8/Q2NiI8ePHY8WKFUhOTm61fW1tLZ566ins3LlTPE/94IMP+l1htCvRarVISkoK6oqjXZlS8grWiEfzx9sa8WhehAjfI1xCXVRUBI1G0+brtPUeALQ4BST8118R0nwycGv/NhgM6NOnj/j9Bw4cgNPpxOjRo2EwGAAAGRkZyMnJaXGqyntVY+8FAF0uFxISEvDPf/5T7PMzzzyDqqoq3H333ejXrx8A4Pvvv8cnn3wCt9sNm83mU+yYTKZW8xgwYIBPAXTw4EEcO3YMZWVlYgEUFxcHoGkhv9jYWPErPj7e5989e/YUR3J69+7tk/HVV1/d6ut7/1zaKnAYYz6L/4WFhYkLADYfvRG+TpVSfhflgvIKLlkWQOvWrcPmzZuxevVqJCYm4rnnnsOCBQuwZcuWVodplyxZAqvVinfffRcNDQ145JFHYLFY8Oyzz4ag951Pq9UiISEh1N1QDCl5tfUBH8ipGOFxf6ddvB9rbTvCB7YwURRoujKkqqoKAJCYmCh+EObk5MBsNvt82Hsvdud0OltccTNkyBCcddZZUKlUaGxsxPvvvw8A+Ne//iUWJps3b4bRaPTZbluFhPD41KlTcd999wFoGiW54IIL4Ha78d///lf8S/bhhx/Gp59+6tOf9kydOtXnEuxrr70WFosFf/zxB/r37w8A+OKLL7Bu3bp2t+XtzDPP9CmAtmzZgvz8fMybN08sgPLz8/Hjjz/63U5kZKRYsMTFxbX4I+7++++HzWbD8OHDxcdmz56Nq6+++pQXums+B0mYOOtd4HhPNG6twGle5HQUOnbxobyCS3YFkMPhwMaNG7F06VJxWfSXXnoJU6ZMwY4dO3DZZZf5tD906BD27t2Lbdu2YfDgwQCAJ554AgsWLMB9992HXr16dfZb6HRutxsmkwlRUVFd5py61IJDOMir1Wrx3xUVFeIVNsLVNt5X3djtdjQ0NECtVosf0GlpaejRowc8Hg/y8vKwd+9e9OjRA+eff774Wu+++y6sVqvPrQKa3x+p+Rotc+fOxcSJE8EYw7Fjx/DCCy8gOTkZTz31lFioLFy4EEVFRa0WE80LCsGDDz6IxYsXQ6VSIT8/H5dccgkSExN97nL973//u9VbAfhz66234rzzzgMA1NXV4aWXXoJWq8XChQsRGRkJtVqNX3/9FTt27ODarlA0AE1rteTl5QFo+n0XCiCXy9Xi3k6t8T7N0vxS4MGDB8NqtfqcdunXrx/OPvtsnyuI2voSVj3u06ePz3YXLlyIxsZGn8fPP/98xMTEQKPRQKfTITY2FtHR0dBqtejduzfi4+Pb/Uv9oosuavX9Ndd8AnbzIkcgjN40/4qMjPRZ+K+zCpz2dMVjV0eivIJLdgVQRkYGzGazz5UHMTExGD58OPbt29eiANq/fz969uwpFj8AMGHCBKhUKhw4cACXXnppp/U9VOx2O7KzszFs2DCEh4eLf917f1B7f4h6/3v48OHiX5qZmZkoKirCwIEDMXDgQDDGUFtbi++//75FQdHa/3v/95577hFv2vfNN99g27ZtOO+883DNNdcAAKqqqrBo0SKxvffKtc1HLLwLjDfffBOjRo0CYwzvv/8+nnnmGVx66aVYs2YNgKZl98eMGcOd4dq1azFjxgyoVCocPHgQy5Ytw6RJkzB16lRx3sfatWvR0NDAtd2pU6f63HRx3759MJlMiI2NFR8rLi5Gbm4u13Y9Ho94ANRqteIkU2+JiYno169fqx/8wge99wehVqtFamqq+P2RkZG4/vrroVKpkJeXhyFDhiA8PByXX3450tLSWly101ZBIawRI9Bqtfj666+h0WgQFRUlPi4UdUJfWtt2e3Nwtm/f3uKxG264ATfccANXvs15jwYJhg0bJp62EghzgIRCqC2tnXpsXuQ0n4fk/dVa1sJzza8ok/Oqwd7HLprT0j7KK7hkVwCVlZUBaFr+3FtCQoL4nLfy8vIWbXU6HeLi4lBaWhpQX6xWqziPyGq1iguNeTwe2Gw2cW0KoRAQdkibzQaVSgW9Xg/GGKxWq9j2zz//xFtvvSUOS9vtdp8Fv7zvriwsYw8Ae/fuhc1mA2MM9957L7Zt24ZHH30UN9xwA8LCwlBUVISJEyf6jBJIcfToUURERMDtduOpp57Cpk2bcNddd+Ff//oXNBoNjh8/fkofHhdeeCGSk5Ph8Xjwxx9/iHMlJk2aBJ1Oh6qqKvz666/c23W5XOL8EGGOh8fjgU6ng16vF/8abv6XbvN/e39oaLVaxMXFQaVSwel0ok+fPpg6dSqGDBkCh8Mh/hwvu+wyOBwO6HQ68UNF+KsagHjFizAapdVqMWrUKJjNZjgcDvTr1w+vvPIKIiMjUVdXJ45ePPXUU+J7CAsLA2MM4eHh0Gq14umKyMhIaDQa8d5IUVFRMJlMsNvtSE5Oxt9//y2eChP22WeeecZnn7Xb7WIOQqEptLXZbGIW9fX1sNvt0Ol0eOyxx8SF+IT9fPLkyZg8ebKYi91uF/MU9lvhZ2O326FSqaDT6VBXVye2HTJkCNxuN6qqqqDX68WfqXchZ7PZoNFo4PF4YLVa4XQ6xbZ2ux2MMfF1rFarWDQJv58GgwEqlUosoJu3VavV8Hg8cDgcYlth5E342dhsNjFDxpj4ex8WFiZmKHyvkGHv3r1hsVhQU1MjthUKeGESucPhEFdmFt6PMEojjDhGR0cjLCwMDocDarUaERERYlvhDuvCQonh4eHicwB8jj06na7Ntt4ZWiwWaLVaaLVauN1u2O12rrYGg0Hsr9vt9jl2Cr+Dzduq1WqkpKSc0nE20GOykAtPWykZBpK3d4bexzihbXh4OEaMGCGexm4r7+a5+PvZ8GQorEUVSN5CLsHKW8hQaMtDdgWQMATe/K9ZvV6P+vr6Vtu3Ni9Ir9eLB4NT4Xa7kZWVhZEjRwIAcnNzERUVhX79+sHhcMBoNCIlJQXR0dGorq5GWVmZuLx7Xl4eDAYDBgwYAJfLBaPRiDPOOAOxsbE4cuQI3n33Xe7+5ObmoqCgAIwxlJSUoLS0FAcPHsS4ceMQFxeHsrIyv8WPcM7f+9JTvV6P6upqFBcXw263Iz4+HkOGDIHNZkNJSQl69uwJt9uNESNGICYmBlqtVpx/EhsbC7VaDYvFgvDwcPEveZPJhO7duyM2Nha1tbVobGzEueeei5iYGERFRaG2thaJiYnQ6XS466670KtXL0RFRcFsNsNisWDAgAFQq9UoLy9HZGQkevXqJb7npKQkDBkyBBUVFaioqMCsWbNwwQUXoLS0FAUFBUhKSoLT6cRnn32G/v37IyYmBjU1NSgpKUFaWpo4kqFSqdC/f3+43W4YjUYkJSUhLi4ONTU1KC4uxpgxY/DWW28hPz8fBQUFGDhwIABgzpw56Nu3L7p164a6ujoUFRUhNTUVGo0GhYWFcDqd4kjk33//jcTERPTo0QMNDQ0oKChASkoKZs6cieLiYhQVFYlto6Oj0b17dyQkJMBqtSInJweDBg2CXq9HSUkJzGazWORnZmYiLi4OERERsFqtyMvLwxlnnCEWlfX19UhNTRVPjUVFRaFPnz6w2+0oLCzEoEGDYDAY0NDQgOrqaowYMQJA0yhUeHg4kpKS4HA4kJubi0GDBiE6OhpVVVWoqqoS+5CdnQ29Xo+EhAS43W4UFBSgf//+iIuLQ3V1NSoqKjBq1CiEhYXh5MmTUKlU6N27NzweD44ePYrk5GQxw/Lycpx55plQq9XIzc2Fx+MR58kcPnwY/fr1Q48ePVBfX4/c3FyMGDECWq0WBQUFsNlsGDhwIFQqFdLT05GYmIiEhAQ0NDSgqqoKycnJ0Ov1KCoqgs1mE/M+evQooqKikJiYCJPJhJycHCQlJSE8PBzFxcWor6/HGWecAQA4fvw4IiMj0bdvX1gsFmRmZqJv376IjIxEaWkpqqurkZKSApVKhYyMDISHhyM5ORk2mw1GoxF9+/ZFdHS0eLdzYYQtKysLer0eAwcOhNvtxt9//43k5GTExsaioqICRUVFSEpKAgCcOHECGo0GcXFxcLvdyMzMxKBBgxAfH4+6ujrk5+dj7NixAIDCwkIAEPtvNBrRv39/9OjRA42NjTh58iRGjx4NtVqN4uJiuFwupKSkAGgafU9KSkJCQgJMJhOys7MxcuRIaLValJaWwmazif0/ceIEEhMTkZiYCIvFghMnTmDEiBEwGAwoKyuDyWQS5zVlZWWhR48e6NOnD2w2GzIyMsQRjKqqKtTW1iItLQ1A07y1uLg4JCUlwW63w2g0YujQoYiKikJVVZW4bwnHROGY7HQ6YTQaMWTIEJ/fe2E0uLVj8uDBgxEXF4e6ujoUFBRg3LhxYoZhYWEYPHgwPB4PjEYjBg4ciG7duqG+vh55eXkYM2YMVCoVioqKxLlzbeU9atQoaDQalJSU+FyZJ+xL3nmfeeaZ0Ol0KC0thcViEUcYs7KykJCQgN69e8PlciEzM1PMu7y8HA0NDeLvcnZ2Nrp164a+ffuK+6GQd2VlJWpqasQ1ck6ePImYmBgkJyeLn2v+8o6IiED//v1bfK7V1taKx06gaX6cTqcT92+j0dhin20tb8YYjEYjBgwYgO7du6OhoQG5ubniPtta3v369UPPnj3F32We5RxktxDiDz/8gCVLluDIkSNilQcAd999NxwOB15//XWf9k8++STS09Px2Wef+Tw+adIk3H777a0OXbdHWEjpjDPOCPoI0KFDh/DJJ58gPDxcPPWk0WgQHh4u/kUqrJshTDqNiIjAtGnTxNVlS0pK0NDQgG7duqFPnz5wu93Iy8sDY0ycdyD8dRAVFQWtVgubzdbmX3cOh0PSX4L+/rrT6XR+/xJUqVR+MxRGDvz9dSeMrrSVt8FgaPevO7vdDqfTierqaiQmJoojLxqNBm63u92/NoSJom39ZSLk4u+vO2HycVt5CyMScvnrzmw2o7S0VCwoQvnXXTBGJHhHL/xl6D2KJswPq66uFgv3UzlGBDoiAShnBMhkMqGsrEzct2gEyP8IkMfjQUlJCeLj4xETEyObY4ScRoBycnIASFsIUXYFUHp6OubOnYsff/zRZ+LkvHnzMHToUKxcudKn/fr167Fp0yb89ttv4mMOhwOjRo3CCy+8cEpzgJS2ErTNZkNeXh4GDBjgUzSS1lFefCgv6SgrPpQXH8qrfTyf37JbZzw1NRVRUVHYs2eP+FhDQwOOHz+O8ePHt2g/fvx4lJWVIT8/X3xMuLOwMMTW1RkMBqSmptIvhESUFx/KSzrKig/lxYfyCi7ZzQHS6XSYP38+nn/+efE85nPPPYfExETMmDEDbrcbNTU1iI6OhsFgwKhRozB27Fjce++9WLlyJSwWC1asWIErr7zytLgEnhBCCCH8ZDcCBDQtbDhnzhw8+uijmDdvHtRqNTZs2CBOxps8eTK2bdsGAOLlyUlJSbjppptwzz334Lzzzmtxqqwrs1gsOHz4MCwWS6i7ogiUFx/KSzrKig/lxYfyCi7ZzQGSA6XNARIm9Xbv3p2WSJeA8uJDeUlHWfGhvPhQXu2ju8GfZrRaLRITE0PdDcWgvPhQXtJRVnwoLz6UV3DJ8hQY4eN2u9HY2OizJD5pG+XFh/KSjrLiQ3nxobyCiwqgLsBut+PEiRMBLfx4OqG8+FBe0lFWfCgvPpRXcNEcoFYobQ6QsJy/cCsF4h/lxYfyko6y4kN58aG82kdzgE4zYWFhtC4EB8qLD+UlHWXFh/LiQ3kFF5WQXYDD4UBBQQH3jeBOV5QXH8pLOsqKD+XFh/IKLiqAugC32w2TyUQT4ySivPhQXtJRVnwoLz6UV3DRHKBWKG0OECGEEEIUfi8wQgghhJCORpOgW+F0OsEYEytJuWOMwel0QqvVQqVShbo7skd58aG8pKOs+FBefCiv9jkcDsnZUAHUCqXtWCqVCjqdLtTdUAzKiw/lJR1lxYfy4kN5tU+lUkn+DKc5QIQQQgg57dAcIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGmHCiBCCCGEnHaoACKEEELIaYcKIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGmHCiBCCCGEnHaoACKEEELIaYcKIBnyeDx49dVXMWXKFIwePRq33XYbCgsLW2372muvYejQoa1+LV++vEV7xhhuvfVW3HDDDR39NjpFR2SVm5uLhQsXYsyYMTj33HPxxBNPwGq1dtZb6lAdkdcff/yBq6++GqNHj8YFF1yADRs2dNbb6XA8eQFAdXU17r//fkycOBFnn3027r33XpSXl/u0+f7773HppZdi5MiRuPLKK/Hnn3929NvoNMHOy+Px4O2338ZFF12E0aNHY+bMmfjss8864610io7YvwQOhwOzZs3CQw891FHdVz5GZOe1115jZ599Nvvll1+Y0Whkt9xyC5sxYwaz2+0t2ppMJlZRUeHz9eyzz7LRo0ezjIyMFu3feecdlpKSwubPn98Zb6XDBTurmpoads4557BFixaxrKwstnv3bjZ58mT2+OOPd/I76xjBzisnJ4elpaWx1157jRUUFLCtW7eykSNHsk2bNnX2W+sQPHkxxtj8+fPZtddey44fP86OHTvGrrnmGnb11VeLz//5559sxIgR7L333mPZ2dls9erVLC0tjWVnZ3fWW+pQwc5r3bp17KyzzmJbt25l+fn57OOPP2bDhw9nX331VSe9o44V7Ly8PfnkkywlJYUtW7asI9+ColEBJDN2u52NGTOGffjhh+Jj9fX1bOTIkWzLli3tfv+xY8fYiBEj2JdfftniuYyMDHbWWWexa665pksUQB2R1auvvsrOO+88ZrPZxMc+/fRTdtVVVzGPxxPcN9DJOiKvd955h02YMMGn3V133cVuv/324HU8RHjzqq+vZykpKeznn38WH/vpp59YSkoKq62tZYwxdsstt7C7777b5/v+7//+jz322GMd8h46U0fkNWXKFLZu3Tqf71u+fDm77rrrOuZNdKKOyEuwc+dOds4557CZM2dSAeQHnQKTmYyMDJjNZkyaNEl8LCYmBsOHD8e+ffva/f4nnngCZ511Fq666iqfx+12O5YuXYolS5Zg4MCBQe93KHREVrt27cKFF14IvV4vPjZ37lx8+eWXUKlUwX0Dnawj8urevTvq6urw3XffgTGGzMxMHDhwAKNGjeqQ99CZePMyGAyIjIzE119/DZPJBJPJhG+++QYDBw5ETEwMPB4PDh486LM9ADj77LMl5S93HZHXs88+2+JYFhYWhoaGhg5/Px0t2HkJampqsHz5cjz55JOIj4/vlPeiVFQAyUxZWRkAoHfv3j6PJyQkiM+15ZdffsGhQ4ewbNmyFs8999xzSEhIwPz584PX2RDriKxyc3ORkJCAZ555BlOnTsWFF16INWvWwG63B7fzIdAReV1yySWYO3cuHnjgAYwYMQKXX345zj33XNxxxx3B7XwI8Oal0+mwevVq7N27F2eddRbGjx+PI0eOYP369eKHtsViQWJioqTtKU2w8woLC8OkSZN88iopKcHWrVsxefLkjn0znSDYeQkeeeQRTJs2DdOnT+/YN9AFUAEkM8JkW51O5/O4Xq9v90P4nXfewbRp0zBs2DCfx3fu3IktW7Zg1apVih/F8NYRWZlMJqxfvx52ux1r167FAw88gC1btuDRRx8NbudDoCPyqq6uRnFxMZYsWYLPP/8cTz/9NH777Te89tprwe18CPDmxRiD0WjEmDFj8OGHH+K9995Dnz59cOedd8JkMsFms3FtT2mCnVdzVVVVuO2229C9e3csWrSoY95EJ+qIvD7++GPk5OS0egEMaUkT6g4QXwaDAUDTDH7h/4GmU1jh4eFtfl9JSQn27NmDt956y+fxmpoaPPzww1i5ciV69erVMZ0OkWBnBQAajQYDBw7EypUrAQBpaWlwu92455578NBDD6F79+7BfROdqCPyeuSRR9C7d2/xA2n48OFgjGHlypWYP38+unXrFuR30Xl48/r++++xadMm/PLLL4iKigIAvPHGG5g2bRo+//xzXHHFFeL2vLWXv1IEO69//vOfYtuTJ09i4cKFcLvdeP/9931O+ShVsPM677zz8Nxzz2HDhg2IiIjonDehcDQCJDPCcGhFRYXP4xUVFX4LmJ9++gndunXDueee6/P4b7/9hsrKSjz88MMYM2YMxowZgy1btmD//v0YM2YMSkpKgv8mOkmwswKAxMREDBkyxOcx4d/FxcWBdjmkOiKvAwcO4Mwzz/R5bPTo0XC5XCgqKgpCr0OHN6/9+/dj4MCB4ocTAMTGxmLgwIHIz89HXFwcIiIiuPNXimDnJThw4ACuvfZahIeH4+OPP0ZycnIHvYPOFey8tm3bBrPZjJtvvlk81u/fvx9btmzBmDFjOvbNKBQVQDKTmpqKqKgo7NmzR3ysoaEBx48fx/jx49v8vv3792PChAnQaHwH9S688ELs2LEDX3/9tfg1ffp0pKWl4euvv0ZCQkKHvZeOFuysAGD8+PFIT08HY0x87MSJE1Cr1UhKSgruG+hkHZFXr169kJmZ6fNYZmYmVCoV+vfvH7zOhwBvXomJicjPz/c5fWGxWFBUVIQBAwZApVJh7Nix2Lt3r8/37dmzB2eddVbHvZFOEuy8ACA9PR0LFizAkCFD8OGHH3aJQlEQ7Lzmz5+PH374wedYn5aWhunTp+Prr7/ujLekOFQAyYxOp8P8+fPx/PPP4+eff0ZGRgbuvfdeJCYmYsaMGXC73aisrBTnEwiOHz+O1NTUFtuLiopC//79fb4iIyNhMBjQv3//Vj/UlCLYWQHArbfeisLCQjz++OPIzc3F77//jmeffRZXXHGFok/nAB2T180334zPPvsM77//PgoLC/HTTz9h9erVuO666xAbG9sZb6vD8OZ15ZVXAgDuueceZGRkICMjA/fddx/0ej1mz54NoCmvrVu34p133kFOTg7WrFkDo9GIm266KVRvM2iCnZfL5cLSpUvRvXt3rF69Gna7HZWVlaisrERNTU0I32lwBDuvuLi4Fsd64coxpf8x0mFCeQ0+aZ3L5WJr1qxhEydOZKNHj2a33XYbKywsZIwxVlhYyFJSUtgXX3zh8z0jR45kmzdvlrT9ZcuWdYl1gBjrmKyOHDnCrr/+enbmmWeyc845h61evbrNhcmUpiPy+uqrr9jll1/ORo0axWbMmMH+85//MIfD0aHvo7Pw5pWdnc1uv/12NmHCBDZx4kS2ePFisb3gq6++YhdeeCE788wz2VVXXcX++OOPTn1PHSmYeR04cIClpKS0+jVt2rSQvL9g64j9y9v8+fNpHSA/VIx5jfUTQgghhJwG6BQYIYQQQk47VAARQggh5LRDBRAhhBBCTjtUABFCCCHktEMFECGEEEJOO1QAEUIIIeS0QwUQIYQQQk47VAARQggh5LRDBRAhhBBCTjtUABFCgsJms+GFF17AjBkzkJaWhrFjx+Lmm2+G0WgU2zDG8O677+KSSy7ByJEjceGFF2LDhg3izWfbe37o0KF47bXXfF73tddew9ChQ30emz59OlatWoWbbroJI0eOxCOPPBKU/j377LMYOXIkGhsbfV5v3bp1GDduHKxWa8A5vvzyy/j0008D3g4hxD/l3gmTECIrDz74IPbv34/77rsP/fr1Q35+Pl555RXcf//92Lp1K1QqFdasWYP33nsPN998M84991wcPXoUzz//PFwuF26//fZ2n+fx4Ycf4uabb8Ztt92GyMjIoPRvzpw52LhxI7Zv3465c+eKr/XNN9/g0ksvRXh4eMA5mkwmrFixAhqNRryJKiEk+KgAIoQEzOFwwGw249FHH8Wll14KAJgwYQJMJhNWr16Nqqoq6PV6vP/++5g/fz4eeOABAMA555yDyspK7Nu3D/PmzfP7PG8B1KdPHyxdujRo/bv99tsxePBgjBkzBt98841YAB08eBB5eXlYvXq1pH7Z7Xa/zz/wwAMwm8145JFHoNVqMWvWLK73TQiRhgogQkjAdDodNmzYAAAoLy9Hbm4u8vLy8MsvvwBoKkCMRiNcLhdmzJjh872PPvooAGDnzp1+n+c1bNiwoPZPcPXVV+Oxxx5DcXEx+vbti6+++goDBw7EmDFj2u2T2WzG2LFjJb+HZcuWYeLEiejZs6fk7yGESEMFECEkKH7//XesWrUKJ0+eRGRkJFJTUxEREQGgaW5NXV0dAKBbt26tfn97z/MSXjtY/RNceumlWLVqFb755hvceuut+P7777Fw4UJJfdLr9XjmmWfabbdr1y5s3boVF154YdDyIIT4ogKIEBKwgoIC3HXXXbjgggvw5ptvIjk5GSqVCh9++CF+//13AEBMTAwAoKamBoMGDRK/t6SkBAUFBWIx0tbz48aNAwC43W6f17ZYLJ3Sv3HjxkGr1SIyMhIXX3wxvv/+e6SkpMBiseCKK66QlJOUeT27d+/Gjz/+iAsuuAAvvPAC1Gq1pG0TQvjQVWCEkID9/fffsNvtWLhwIfr16weVSgUAYnHBGMPIkSOh1WrF006CjRs34r777sOYMWP8Pq9WqxEVFYXy8nKf5w8ePNgp/fMuRObMmYMTJ07gvffewznnnINevXpJiUmS119/Heeccw5eeuklaDT0NyohHYV+uwghARsxYgQ0Gg2ee+453HLLLXA4HPjyyy/x66+/AmgapUlOTsaNN96Id999FzqdDhMmTMCRI0fw0Ucf4cEHH0T37t39Ph8WFoapU6di69atGDVqFPr3748vv/wS+fn5ndK/sLD//b04btw4DBw4EHv37sVLL70U1CzXrVsHg8EAnU4X1O0SQnypmLDABSGEBGD79u1Yu3YtCgoKEBsbi9GjR+PGG2/EDTfcgMceewzXX389GGPYuHEjPv74Y5SVlSEpKQk33XQTrr32WgBo9/mqqio8+eST2LlzJzQaDS699FKkpaXh0UcfRWZmptiX6dOnY8KECT5XZgWjf95Wr16NL7/8Ert27aJihRAFogKIEEI4McYwc+ZMTJ48GQ8//HCou0MIOQV0CowQQiQymUx49913cfToURQWFuKGG24IdZcIIaeICiBCCJHIYDDg448/hsfjwapVq5CcnBzqLhFCThGdAiOEEELIaYcugyeEEELIaYcKIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGmHCiBCCCGEnHaoACKEEELIaYcKIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGnn/wHnf1lG6g2ewAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=\"equalized_odds_diff\",\n",
+ " show_data_type=\"fit\",\n",
+ " constant_clf_perf=max((y_true == const_pred).mean() for const_pred in {0, 1}),\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(r\"equalized odds violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/.doctrees/nbsphinx/examples/usage-example-for-other-constraints.synthetic-data.ipynb b/.doctrees/nbsphinx/examples/usage-example-for-other-constraints.synthetic-data.ipynb
new file mode 100644
index 0000000..0de190f
--- /dev/null
+++ b/.doctrees/nbsphinx/examples/usage-example-for-other-constraints.synthetic-data.ipynb
@@ -0,0 +1,690 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e2b69330",
+ "metadata": {},
+ "source": [
+ "# Achieving different fairness constraints on synthetic data\n",
+ "\n",
+ "Any of: `equalized_odds`, `demographic_parity`, `true_positive_rate_parity`, `false_positive_rate_parity`.\n",
+ "\n",
+ "---\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with:\n",
+ "```\n",
+ "pip install \"error_parity[dev]\"\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "c3fc96e4",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.9`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a881f9d7",
+ "metadata": {},
+ "source": [
+ "## **NOTE:** change the `FAIRNESS_CONSTRAINT` to your target fairness constraint."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "284b51f0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "FAIRNESS_CONSTRAINT = \"true_positive_rate_parity\"\n",
+ "# FAIRNESS_CONSTRAINT = \"false_positive_rate_parity\"\n",
+ "# FAIRNESS_CONSTRAINT = \"demographic_parity\"\n",
+ "# FAIRNESS_CONSTRAINT = \"equalized_odds\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "70b33f87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_synthetic_data(n_samples: int, n_groups: int, prevalence: float, seed: int):\n",
+ " \"\"\"Helper to generate synthetic features/labels/predictions.\"\"\"\n",
+ "\n",
+ " # Construct numpy rng\n",
+ " rng = np.random.default_rng(seed)\n",
+ " \n",
+ " # Different levels of gaussian noise per group (to induce some inequality in error rates)\n",
+ " group_noise = [0.1 + 0.4 * rng.random() / (1+idx) for idx in range(n_groups)]\n",
+ "\n",
+ " # Generate predictions\n",
+ " assert 0 < prevalence < 1\n",
+ " y_score = rng.random(size=n_samples)\n",
+ "\n",
+ " # Generate labels\n",
+ " # - define which samples belong to each group\n",
+ " # - add different noise levels for each group\n",
+ " group = rng.integers(low=0, high=n_groups, size=n_samples)\n",
+ " \n",
+ " y_true = np.zeros(n_samples)\n",
+ " for i in range(n_groups):\n",
+ " group_filter = group == i\n",
+ " y_true_groupwise = ((\n",
+ " y_score[group_filter] +\n",
+ " rng.normal(size=np.sum(group_filter), scale=group_noise[i])\n",
+ " ) > (1-prevalence)).astype(int)\n",
+ "\n",
+ " y_true[group_filter] = y_true_groupwise\n",
+ "\n",
+ " ### Generate features: just use the sample index\n",
+ " # As we already have the y_scores, we can construct the features X\n",
+ " # as the index of each sample, so we can construct a classifier that\n",
+ " # simply maps this index to our pre-generated predictions for this clf.\n",
+ " X = np.arange(len(y_true)).reshape((-1, 1))\n",
+ " \n",
+ " return X, y_true, y_score, group"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eded764d",
+ "metadata": {},
+ "source": [
+ "Generate synthetic data and synthetic predictions (there's no need to train a predictor, the predictor is seen as a black-box that outputs scores)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "0d326b40",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "N_GROUPS = 4\n",
+ "# N_GROUPS = 3\n",
+ "\n",
+ "# N_SAMPLES = 1_000_000\n",
+ "N_SAMPLES = 100_000\n",
+ "\n",
+ "SEED = 23\n",
+ "\n",
+ "X, y_true, y_score, group = generate_synthetic_data(\n",
+ " n_samples=N_SAMPLES,\n",
+ " n_groups=N_GROUPS,\n",
+ " prevalence=0.25,\n",
+ " seed=SEED)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "ba24bcc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual global prevalence: 26.9%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_true) / len(y_true)\n",
+ "print(f\"Actual global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "5615f135",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Example predictor that predicts the synthetically produced scores above\n",
+ "predictor = lambda idx: y_score[idx].ravel()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6af00a5e",
+ "metadata": {},
+ "source": [
+ "## Construct the fair optimal classifier (derived from the given predictor)\n",
+ "- Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);\n",
+ " - optionally, this constraint can be relaxed by some small tolerance;\n",
+ "- Optimality is measured as minimizing the expected loss,\n",
+ " - parameterized by the given cost of false positive and false negative errors;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "48f713ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=FAIRNESS_CONSTRAINT,\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " false_pos_cost=FALSE_POS_COST,\n",
+ " false_neg_cost=FALSE_NEG_COST,\n",
+ " max_roc_ticks=100,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "3dbca6de",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:ROC convex hull contains 36.6% of the original points.\n",
+ "INFO:root:ROC convex hull contains 41.6% of the original points.\n",
+ "INFO:root:ROC convex hull contains 36.6% of the original points.\n",
+ "INFO:root:ROC convex hull contains 38.6% of the original points.\n",
+ "INFO:root:cvxpy solver took 0.00032425s; status is optimal.\n",
+ "INFO:root:Optimal solution value: 0.15335531408011688\n",
+ "INFO:root:Variable Global ROC point: value [0.10552007 0.71687162]\n",
+ "INFO:root:Variable ROC point for group 0: value [0.23852472 0.69338557]\n",
+ "INFO:root:Variable ROC point for group 1: value [0.11605835 0.69338557]\n",
+ "INFO:root:Variable ROC point for group 2: value [0.04159198 0.74338557]\n",
+ "INFO:root:Variable ROC point for group 3: value [0.03632111 0.74338557]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 144 ms, sys: 6.76 ms, total: 151 ms\n",
+ "Wall time: 149 ms\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO, force=True)\n",
+ "clf.fit(X=X, y=y_true, group=group)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "599af3ba",
+ "metadata": {},
+ "source": [
+ "## Plot solution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "41a84db6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"whitegrid\", rc={'grid.linestyle': ':'})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "5ccb923e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydd3gUVReHfzNbkmx6T0gCCSV0kN6liyBVAQVEKQqKlA9BQVREQAE7YAOkI71DaEqXKr1IbymkJ5u2fWe+P5YddrYkuynU8z4Pmpm5986d2TMz99xz7jkMz/M8CIIgCIIgCIIgCKKMYB93BwiCIAiCIAiCIIhnG1I8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIcWTIAiCIAiCIAiCKFNI8SQIgiAIgiAIgiDKFFI8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiCeeHQ63ePuwlMF3S+CIAh6FxLEk4b0cXeAIJ4XNBoNTpw4gcOHD+P8+fPIzMxEZmYmWJaFv78//P39UaNGDbRo0QLNmzeHj4/PY+3v3Llz8fPPPwvb165deyz92L59O1asWIHVq1fbPX7ixAm89dZbwvayZcvQpEmTR9W9JwqtVosFCxYgPT0dX3755ePujktcvnwZ69evx6lTp3D//n3odDoEBwejfPny6NSpE7p06QJfX98y7UNKSgrWrVuHI0eO4M6dOygoKICfnx/CwsLQpk0b9OjRA1FRUU63t3PnTvzvf/8rVl8uX74MqfTZ+0RPnDgRmzZtAgBERERg3759j7lHzw4DBw7EyZMnAQCNGzfG8uXLH3OPHh937tzB9OnTMWzYMIffg3bt2iEpKQkA0KtXL8ycOfNRdpEgnkueva8aQTxh6PV6LF68GAsXLoRSqbRbRqVSISkpCZcuXcLatWvh5uaG1157DWPGjIGfn98j7e+Tws2bN/Hll1/i5MmTiIiIeNzdeeLZv38/pk+fjsTERPTq1etxd8dpNBoNvvzyS2zcuNHmWFJSEpKSknDs2DHMmTMH06ZNQ4cOHcqkH0uWLMGPP/4IjUYj2p+eno709HRcvHgRv//+O0aMGIHhw4dDIpEU2eZ///1XJn0lCMI+Go0Gv/76KxYtWgS9Xo9hw4Y97i4RBGEBKZ4EUYbk5ORg+PDhOHv2rM0xT09PeHt7g2EY5OTkQKVSCce0Wi1WrlyJv/76C/Pnz0eNGjUeZbefCP744w9h9p4ommnTpgmz908LWq0WQ4cOxalTp0T7vby8oFAokJGRAY7jAABZWVn44IMPMGPGDLz66qul2o9vvvkGCxcuFO2Ty+UICAhAVlaW4K6n1+sxe/ZsJCQkYMaMGUW2a6l4ent7w9/f3+k+MQzjdFmCIEycP38e8+bNe9zdIAjCAaR4EkQZwfM8xowZI1I6a9asibfeegvNmzdHSEiIqHxycjIOHjyIxYsX4+7duwBM1pahQ4diw4YNKFeu3KPsPkGUOdOnTxcpnY0bN8ZHH32EOnXqAADy8vKwfv16zJ49G2q1GgAwefJkVKpUCXXr1i2VPmzbtk2kdEZEROCTTz5BmzZtIJPJYDAYsH//fsyYMUNQ7Ddu3IiqVati0KBBhbZtqXiOGDECQ4YMKZU+EwRBEMTTCAUXIogyYsuWLTh27Jiw/frrr2P9+vXo2bOnjdIJAOHh4XjjjTewbds2vPLKK8L+rKwsTJ069ZH0+WmkSZMmuHbtmvDveV3f+bRx/vx5rFu3Tthu27YtlixZIiidgMlKOHjwYCxbtgwKhQKAyerojLXRGfLz80XruiIjI7F27Vp07NgRMpkMACCVStGxY0ds2LABlSpVEsrOnTsXWVlZDttOTk4WHX8evRYI4klm3759wneD1ncSxKOBFE+CKCNWrVol/B0TE4PJkyeDZYt+5ORyOWbOnInKlSsL+/bv3487d+6UST8J4nGwYMEC8DwPwORaO2PGDIfrJuvUqYNJkyYJ22fPnsWRI0dK3IeNGzciIyND2J42bRqCgoLslvX398fcuXOFgD/5+flYunSpw7YvX74s2ibFkyAIgnjeIcWTIMoAjUaDixcvCttt27Z1KUKlXC7H0KFDRfuOHj1aav0jiMdJTk6OKJppz549i1z/2KtXLwQHBwvb27ZtK3E/zNFVASA2NhbNmzcvtHylSpXQvn17p/pg6WZbvnz5xx6lmiAIgiAeN7TGkyDKgNzcXBiNxhK10aJFC9F2WlqaU/Xu3r2LTZs24d9//0V8fDyUSiU8PDwQEBCAunXronXr1ujUqVOppGooTmqEjRs34pNPPhG29+7di8jISAC2qVHMJCUloWrVqsK2ZYCZ4qRTUavV2LZtG/755x9cvnwZWVlZMBqNCAgIQExMDJo3b47u3bsjNDS0yOux7NeOHTtQqVIlaDQa7NixA7t27cLNmzeRkZEBd3d3hIWFoUWLFujZs6eoXnGxTnljZtOmTSKlyvIeW6NUKrF582YcP34cV69eRXZ2NhiGQUBAAKpUqYKWLVuiW7dupRpd+ciRI6Lnw5lItVKpFK1bt8b69esBAH/99RemT59ebDnOyMjAlStXhG1LhbIw2rdvj927dwMwyeWFCxdE7sFmLBXPx2ntTExMFF3bhQsX4Obmhh07dmD+/Pm4c+cO/P39ERsbi86dO6Nbt25272lKSgq2bt2Kf/75B/fu3UNWVhbc3NwQGBiIunXrok2bNujUqZNT0X5d5ejRozh69ChOnz6NlJQUKJVK6PV6IWBTnTp10Lx5c7z88suQy+V22xg9erTwuwGmycDff/+90PMeO3YMgwcPFizzUVFR2Lx5M7y8vOyW53ke+/fvx759+3DmzBlkZGRApVLBz88PUVFRaNGiBbp3747y5cu7dP1ZWVnYsGEDDh48iBs3bqCgoAABAQGIjY1Fz5490blz5zK579akpqZi06ZNOHHiBG7evAmlUgmZTIbAwEBUr14drVq1QteuXeHh4VFoO5bvbG9vb2Gd982bN7F69WocOXIEKSkp4DgOoaGhqFevHnr27IlmzZo5bNMyNYollt8G6xQzzqRTsXxPm9+j+fn52Lp1K3bu3Il79+4hOzsbgYGBiIqKQvfu3dGtWze4u7uL2jl69Cg2bNiAixcvIiUlBTKZDJGRkWjVqhUGDhxY6LemOGlynEmHZlnG8vrPnz+PDRs24NSpU0hJSQHLsggNDUXDhg3Rr18/VKtWTdROVlYWNm7ciD179iAhIQF5eXnw9/dH7dq18eqrr6J9+/YULI0QIMWTIMqAgIAAyGQy6PV6AKYP1tixYx0OiuwRGhqKuLg4+Pr6ws/PT1hz5gilUonp06cjLi5OiARqRq/XIzc3F3fv3sWWLVsQFRWFSZMmoV27dq5f3FPO6tWr8eOPP9pNbZOcnIzk5GQcPXoUc+fOxYABA1z+3c6cOYOJEyfi3r17ov1arRY5OTm4du0alixZgjfeeAOfffbZIxkw2sNoNGLevHlYsGCBKKKyGXMqkwMHDmD27NkYNmwY3n333VIZQFh6AzAMY1dxs8cLL7wgKJ75+fm4ceMGqlevXuw+mBUKAKhXr57TfbDkzJkzdvtv6Wpbs2bNYvWxrFiyZIlonaxZ7i9duoQePXqIyup0Ovz0009YsWIFtFqtzbG8vDzhvRITE4MvvviiUAXBFY4dO4aZM2fi6tWrdo9nZWUhKysLt27dwqZNm/D9999j5syZds8/depUnDlzBunp6QBMyxfi4uJE6+ktycnJwYQJEwQZkUql+OGHHxwqnWfPnsWXX34pmswwY07Jc+bMGfz222/o06cPJk6caKOc2GPlypX47rvvUFBQINqfmpqK1NRUHD58GMuXL8f3339fZFvFRa1W4/vvv8fq1auFb5oZnU6HgoICxMfHY/fu3Zg9ezbGjh2L1157zaVzLFu2DN98841N+/fu3cO9e/ewefNmNG/eHDNnznRqQrCsOHr0KCZOnIjU1FTRfvMzdPLkSaxYsQLz5s1DWFgYcnJy8Pnnn4smPQDT9+Dq1au4evUqVq9ejdmzZ9tMNj9qCgoK8NVXX2HDhg02x/Ly8nDz5k2sXbsWEydOxNtvvw0A+Pvvv/Hpp5/afE/T0tKwd+9e7N27Fx06dMCPP/7o0neUeHYhV1uCKAOkUqloVvDevXsYNWqUMOhxlsqVKyM4OLhIpTM+Ph7du3fHtm3bREqnTCZDaGiojZtfQkICRowYgd9++82l/pQ17u7uKF++PMqXLw9PT09hv1QqFfaXL1/e4eCvMDiOw/jx4/HFF1+IPpIMw8DPzw8hISEiJVCr1WLRokV46623Cg0iY8m5c+cwePBgQelkWRbBwcEICAiw6cvKlStLHDTK19dXuCeWVipPT0/R/bKWH61Wi8GDB2P27NkipZNlWQQFBSEoKEi0HjkvLw/ff/89RowYYZPnsjjcuHFD+LtcuXKi37owYmJiRNu3bt0qlT4AEAUOKozIyEjR/bx9+7ZNmczMTJGHQs2aNZGYmIg5c+agX79+aNKkCWrVqoWWLVuif//++PXXX532aCgpN27cwHfffWf3WNu2bUW/e05ODgYPHoyFCxeKlE6ZTIawsDD4+/uLJiLu3LmDd955R7S+vbhs2bIF77zzjo3S6evri4iICAQFBdlMgqSkpODdd9/FpUuXbNrz8/PD119/Ldo3ffp0ZGdn2z3/F198IVIuxowZ43CCZNu2bXjrrbdslE4/Pz+Eh4fDzc1N2GcwGLBq1Sr0798fmZmZdtsz88033+DLL78UKZ3md4qlB8K5c+fw9ttvO/2ecoXs7Gz07dsXy5cvFymFEokEISEhNp4Q6enpmDRpEiZPnmwzAeqI5cuX46uvvhLal0qlCA0NtbGcHj16FH369EFCQoJNGxEREShfvrxN4L6QkBDhPWgvqJ8rHDp0CO+++64gFyzLIiQkBN7e3qJyV69exejRo5Gfn4/BgwcLSqf5t7P+Hufl5WH06NG4f/9+ifpXEvR6Pd5//32R0qlQKBAWFib6LnIch6+//hoHDx7Etm3bMHLkSOF7ai5v7THx999/O3znEM8fZPEkiDJi0KBBGDdunLB94MABtG3bFu3bt0fHjh3RokULl/L6OSIrKwtDhgwRDZJq1KiB0aNHo0WLFsIsY3x8PFatWiUMIHiex08//YSgoCD06dOnxP0oDerWrYu//voLgNiNNzQ0VNhfXL766ivRmjwvLy8MHz5ctHawoKAAf//9N2bPni24YJ09exZjxozB4sWLi3Tr/OKLL6DX6+Hn54eRI0eia9euwm+cmpqKxYsXY/HixUL5NWvW2HVdcpa33npLcCWzdBt76aWXHEZpNKf5OXHihLAvKCgII0eORJcuXeDr6wvAZEGPi4vDzz//LAxo9+3bh88//xzffvttsfprJiUlRfg7LCzM6XrWlo6SDNQs+8AwjNNWFIlEgqCgICQnJwOAXfc+a8Vn7dq1+Ouvv2zc782WsNOnT2PevHl49913MWLECKeCkBWXWbNm2ViVzFi65PI8j3HjxonS3TRq1AjvvfceGjduLLxXMjIysH37dvz2229QKpUwGAyYOnUqIiIi8OKLLxarj0lJSfjiiy9gMBgAmAa0Y8aMQdeuXUXBn/Lz83Ho0CHMnj1bSEGl1+vxww8/YNGiRTbtvvjii+jfvz9WrlwJwPTu/Oqrr2wGxZs3b8bOnTuF7aZNm+Kdd96x29dTp05h4sSJor6+++676NWrF8LDwwGYvAvOnj2L+fPn4+DBgwBMFvExY8ZgyZIldt8r27dvF6X5USgUGDFiBPr06SMoe3fv3sUff/yB9evXIzEx0fENLSYajQbvvvsurl+/LuwrX748xowZg3bt2gmRps0uuPPmzRMmstasWYOAgAD873//K/QcKpVKsL77+flh7Nix6N69OxQKBTiOw4kTJzBr1ixBqU9NTcXIkSOxbt06kQXN7H5qvfTiu+++K7VI59OnT4fRaERoaCjGjBmDV155Be7u7uB5HidPnsTHH38svFfOnz+PXr16IT4+Hu7u7vjggw/Qp08f4Xtw+fJlfPHFF4L3R35+PpYsWSIKovYo2blzp/B+6t69O4YNG4YqVaoAME1AzZkzBytWrBDKf/HFF8jIyADP82jQoAE+/PBD1K9fHyzLQq1WY8WKFfjpp5+E52LVqlUYPnw4AgMDH/3FEU8UZPEkiDKiS5cuNgMvvV6PXbt2Ydy4cWjWrBm6du2KyZMnY/PmzXZncZ3hp59+EtXt2rUr1q5di7Zt24o+zOXLl8eECROwcOFCYcAAmFzQHudM66Pg3Llzoo9meHg41q5di2HDhokC1nh6eqJHjx7YvHkzGjRoIOw/efKk3YGsNXq9HuXKlcPmzZsxcOBA0cRCaGgoJk6cKBqI8TyP7du3l/DqXGPHjh3Yv3+/sB0bG4vNmzejX79+gtIJmAaBAwYMwKZNm0TWwK1bt2LHjh0l6oOlpceVyRdr64o9d+ni9MHb27tIrwJH/cjJybE5brm+EwB27dolDOpkMhnCw8NtrLwajQZz587FBx984FAxLA3Ma8UGDhyIPXv24Ny5c9iyZQuGDBkiCq60cuVKHD58WNgeMmQIli9fjpYtW4reK0FBQRg0aBA2bNiAChUqADBZRT755BMb11xnmTdvnpC3lWEY/PLLLxg0aJBNxGEvLy906dIFa9euFVmzjh8/jry8PLttf/zxxyLL+bZt2wRlEDApvdOmTRO2/f398c0339idDNDpdBg3bpwwuA4JCcHGjRsxYsQIQekETJMVDRs2xPz58zFmzBhh/7///it6L5nRarWiiSOFQoGlS5fi3XffFcledHQ0pk+fXmbptpYtWyZyi2/atCk2bdqErl27ir4hoaGheO+997BmzRrR+/T333/HuXPnCj2H0WiE0WhEWFgY1q1bhzfeeENom2VZNGvWDGvWrEHLli2FOmb31EeN0WhEVFQU1q5di9dee01wlWYYBk2aNLFxd46Pj4dMJsOiRYswbNgw0buuZs2aWLx4sUgRO3DgwCO5DnuY308ffvghvv32W0HpBExeBp9//jmaNm0q7EtOToZer0f79u2xbNkyNGzYUHhGPDw88O6774pkXafTlUokcuLphxRPgigjWJbF3Llz0aVLF7vHeZ7HjRs3sGbNGkyYMAEdOnRA27Zt8emnn2Lfvn1ODT4TExNFrjHVq1fHjBkzCh1EN2nSBF988YWwrdPpsGDBAheu7Olj9uzZwt8SiQQ//fRToa6VPj4++Pnnn0UD3cWLFwuD4cL48ssvRYNOa4YOHSpyzTp//nyRbZYWPM9jzpw5wrZCocCvv/4qGixaExYWhp9//lm0Hu3XX38VrY90FUv3XssBbFFYl7Ve9/Yo+mBd3l4frBVPwBS5d926dbh48SIOHDiAM2fOYOfOnRg0aJDoed23b59I8SkL3nvvPXz22WeoUKECPDw8UK1aNUyYMEH4jQ0GA/744w+hfOPGjTFhwoRC1/dGRkaKBt4ZGRnCelxX4DhO5N3Qpk2bIqMN+/r6omfPnsK20Wi0a4kGTIPib7/9VmRl/PLLL6FSqcBxHD7++GPk5+cLx77++muH1vBNmzaJLOffffedjTu4NSNGjEDbtm2F7YULF0Kn04nKxMXFiZZljB8/vtB10H379kWvXr0KPa+rFBQUiGQgNDQUc+bMKXSZQ2xsLH744QdBTniex6+//lrkuViWxQ8//OAw6JKbmxu+++47kZK2ZMmSEr2DisvEiRMdemk0bNgQUVFRon0DBw4UTWJa4u3tjZdfflnYvnfvXrEna0qDmjVrYtiwYQ6PW8uYu7t7oQHeevfuLdq2Xt5APJ+Q4kkQZYi7uzt+/PFH/Prrr04FGLl//z7Wr1+P999/H23atMGSJUsKVUD37dsnzLYDwMiRI51awN+zZ09RnlB7AYmeFXJycnD8+HFhu02bNjYBYuwREBCAQYMGCdtZWVn4559/Cq0TFhaGVq1aFVpGLpeLAuI4WmNWFly7dk1wSQRMAwPrgZI9KlasKBp03Lhxw24QFWexlGlXotJKJBKR8mMp+4+qD9bl7fXBMrCQTCbDr7/+ilmzZqFOnTqi/lesWBGffPIJlixZIlJm16xZI3JxLU0UCkWhg0vAtJbO0gvCXqRpe9SuXVsUpGnXrl0u989oNOKHH37A9OnT8d5779mklXKEtdJiL2CWZT/ff/99YTspKQlz587FokWLRPf9zTffLDQAm+WkX9WqVZ126XzzzTeFv9PS0mysgpb3zcfHx6mlEO+9955T53aW48ePi6z5Q4YMEXlEOKJx48aid+ChQ4eKfMe1adPGoXJmxt/fH/369RO2k5KSRNbYR0FISEiREbhjY2NF25YTIvYwewmYsedB8ah4/fXXC51cso7E/uKLL9rEL7AkICBAtJ71cV4b8eRAiidBPALat2+PjRs3YuvWrRg1ahReeOGFIge7GRkZmDFjBvr27SusJ7PGMrenQqFAmzZtnO6TZTTHnJycEikSTzInTpwQKdWOoljao1u3bjZtFYa1YuEISwtjaQTrcZZjx46Jtl25F127dhVtF3UvCsPSUvG4wuyXZR++/fZbzJo1C6NGjcKPP/5YZKqWhg0birwQADhlKSoOderUKTKYk7XS60pU3vr16wt/nz9/3saaVxQymQzNmjVDnz59MHbsWDRq1KjIOjzP27jWFpXO6v3330fdunWF7eXLl4s8I2JjY/Hxxx87rK9SqYodubh+/foimTO7PwOmazl9+rSw3axZM6cmE6Ojo0slRZOZ0npX8DyPf//9t9Dy1u9ZR1grfZb37VFQu3btIstYerPI5XKRy6o9rJ9FV5+X0qSo6OLW1m5n0kRZXt/jvDbiyYGCCxHEI6Rq1aqoWrUqRo4ciYKCApw5cwanTp3CqVOncP78ebvWzf/++w8DBgzA+vXrbWYX79y5I/xdrVo1lyw31h/R27dvP3FpH0oDy3sEALVq1XK6blhYGIKDgwW3N3sRTK3LO4PlQPJRWpot74VEInEpv2StWrXAsqzQ36LuRWHIZDLBpcwVq6XRaBQpjJbRQovTBzOuWk4ty9vrQ4MGDYq04FjTvXt3/Prrr0JE5JMnTyI/P18Y7Fnm8isKezn7zDgzeLZ2FR44cKDTAY9yc3OFv7VaLdLS0hzmkC0O2dnZSExMREJCAm7duoUrV67g/PnzyMjIEJUr6rmSSCT45ptv0KtXL6hUKtG71+ypUph83bhxQyQHf/31V7Gt1JaBgVJSUkSuvtYWtMKoXr16ob+9K1i+K0JDQwt1x7fG3relMCwnAAqjcuXKojRlJYlqXRzKlStXZBnLCQVfX98in5uyDCTmKoUtEQFsJ+icWZ//JF0f8WRAiidBPCY8PT3RqlUrwS1Jo9HgxIkT2L17N7Zt2yaaHUxKSsLXX39tE33RMriKKwMDe+VLEqjlScbazcvV+xQUFCQonkXdI2fTgjwuLO+Fj4+PS3nV3N3d4eXlJSgWJZEXLy8vQfF0Zt2sGev1lEUlqi+qD2Zc6YN1P0rSB0tYlsWLL74oROfU6/W4evUqGjZsWCrtm7EO0GMP67QcJYmYqlQqi614chyHY8eO4a+//sKlS5dw584dkVJWUqKjozFhwgQba/PHH38sWopgD+t7lJeX5zCgUVFYPkvWKbcKc2W0pqTpQiyxfFeU5beFYZgiFR4zMpkMPj4+QmCwotLRlDauvt+ftryVrqYpe9quj3gyoKkIgnhCcHd3R+vWrfH1119j7969ogAUgCkaqXXSastBmKsfResBs6uD76cFy3vEMIzLgWQs71NR98gy39mTiOW9cPU+AK7di8KwDBLiigJrvUbIGSXKmT7k5uYW6ZrpqB+lmR7Aer1tWQysrXMO2qM0lbvC1loWxpkzZ9CjRw8MGTIEq1atwsWLF+32SyaToVGjRnjppZeKdR57gYOcUbSLq2Taw3Iiw9od0ZWJjeLkN3ZESd4VrnxbPDw8XLKKWQY5e9Sum66uBX/aeNavj3gyICkjiDJArVYjKysLmZmZCA0NdTpHoJmQkBD8+uuvePvttwX3OqPRiJMnT4rWwygUCsEC5WqEz9K0HrmCKwP80sBy0MTzPFQqlUsDqbKwbj0uLK+7OApBad2LiIgIITdgWlqa0/WsJ15cfa6s+2CG4zhkZGQ41Z7RaBS5dbqSh7QoLAfV5nOVNs6sZ7XsR1BQ0CNPg3Dw4EG7aWVCQ0NRpUoVxMTEoGLFiqhevTqqV68Od3d3bNmyBXv27HHpPFlZWfjss89s9i9ZsgTt2rUrdH2ptfxPmTJFFPymuFhbkVx5TkszDU9J3hWufFtc7bNl28WZPHteeNTfWYJwFlI8CaKUuX37Njp37ixsDxkyBBMmTHC5HZZlMXToUNG6LuuBt5+fn6B4WrtoFYV1WyW13Di7VrG4FpDiYp37MT093SaSYGFYKkauuL09iVjei9zcXGi1WqfXSebn54sGfSW5F5UqVRJyiSYmJkKn0znltmW9VsyV9W/2+mDdtjOKZ0JCgmiw7Ch4SH5+PrKyshAREeG0JdzaLdxyDZXZBfdRYJ2nlOO4R7ZWKzs7Gx9//LFwj1mWxeDBg9G/f/9CXXaLk4Zi8uTJokkEhUIhpFWZMGECtm7d6tCKaP1eKa3o1NYy6IrVuzSXS1heX0m/LYW9K/R6vWgtc2FotVqRpbk0J32eFp7U7yxBOAu52hJEKRMSEiKyKlhGKHQV64GWtZJgOei9cuWKS0FSrEPRO8qhVhiWg1FnB36Wee8eBdbKyYULF5yum5CQIBpQuqKwPolYyovRaBRF5SyKS5cuiQL7lOReWAYTMRgMTvfDMu2El5cXoqOji90H6wjEzsqFdeoL60AqP//8M+rUqYMGDRqgY8eOLt9jMwzDlGqUUlewVMr1er1gnXaGnJycEkVq3rx5s0iBGj16ND7++OMi14lav1eKyvG4ceNGUb7Q3r17Y/LkycJ2UlISpk+f7rB+xYoVRduu/M48zyM9Pd1uH0NDQ0VpS1xp9+rVq06XLQrLd0VqaqqNMlkY1t+Wot4Vzvb76tWrIkve43o+HjVPw3eWIJyFFE+CKGW8vLxEeRrPnz9vM1h1Fsuci4CtdcXSFUytVmPfvn1OtcvzPOLi4oRtLy8vVKtWzeX+WbpQObtOztkBfmmluGjQoIGoLcvrLgrrsq5GKn3SsHYd3LFjh9N1re9FSYLeNGvWTLSeaO/evUXWMRgMOHTokLDdvHnzEq1J8vf3F0U4dqYPAETPmHUbgCnypeXg0LLPhaFUKkUurdWqVXtsFnZrOXElH+ewYcNQt25dNGvWDH379nVZCT1//rxo+4033nCqnnXKjsIUz6SkJHz11VfCdmhoKCZOnIhevXqhZcuWwv5NmzaJlFNLAgMDRQr60aNHnV73+c8//6Bly5aoU6cOXnrpJaxatUp0vGnTpsLfx48fF0UKdkR2drbNvSsJpfWuYBimyPem2fuhKHbv3i3abt68uU2Zx5WeqSyx/M46a1l/1DlOCcJZSPEkiDLgtddeE21PnTrV5WAsPM9j0aJFwnZwcLDNYP/ll18WpYX45ZdfnAq4sHnzZpFS26FDh2IN4i2jFxoMhiIHPpcvX8aZM2ecattyAFGU9aIw/P39RYPJgwcP4uzZs0XWy8rKwrJly4RtT09PvPjii8XuR1ljOSvu6H7VqFFDNFjesGED4uPji2z71q1b2Lp1q7AdGRnpUloaa7y9vdG6dWthe926dUW6CW7atEnk8ldUYnZnsMw3eP78+SLTldy6dUukoPbo0cPGBbV169aiZ2n16tVOBeuZPXu2yD2uf//+RdYpK1q3bi2yuq1cudIpi9f+/fuFSbasrCx4eXnZrFstCmvlzRk35b1799r8do7WDprdaC1/k2nTpglBl6ZOnSpaO/j555/bpGox0717d+FvlUqF33//vci+chyHOXPmADAFx7l3756N5a5Xr17C3xqNBgsXLiyy3SVLlpRqsJ1WrVqJ3G0XLVrklCvviRMnRPmlGzZsWGQQsA0bNthECbYmPT0d69evF7br169vE4wLsE3fUZJvx5OC5Xf2/v37RVoz//77b9y/f7+su0UQxYIUT4IoA/r27Styxbp8+TIGDBiAmzdvOlVfq9Vi4sSJIjfd999/30Y5DA8PFwUbunr1KiZNmlSoy+2///6LadOmCdsymQzvvPOOU/2yxjJZPAD89ttvDtegpKWlYeLEiU6vUbGc5S1plM3hw4cLf3Mch7Fjx9rk97QkPz8fo0aNEq2vevPNN0s1amRp48z9YhgGw4YNE7ZVKhVGjhzpcGANmNzsRo0aJbJcDRs2rMRr/oYOHSr8rVQqMWbMGIcD5wsXLuDrr78WtmNjY22iPheH3r17iwbX48aNQ1JSkt2ySqUSo0aNEp4tNzc3vPXWWzblAgMD8corrwjb6enpRT6TS5cuxcqVK4XtypUrl4piXVw8PT0xcOBAYTsnJwcjRowoVDm4e/cuPv30U9E+S1lzFsugT4BJKSmMY8eOYdKkSTb7HcnSokWLRNbRHj16iCZBIiIiMH78eGE7OzvbbgAiwDQ5YBkleOHChUX2d9asWSKvj0aNGtm8R1u3bi3KsbtgwYJCAyft378ff/zxR6HndRUPDw+RDKSlpWHMmDGFBrG7efMmxo0bJ1L23nvvvSLPlZ2djfHjxzu0jhcUFGDs2LGiaNLvv/++3bLWEx2lGaH5cWEpHxzH4ddff3VY9tatW5g6deqj6BZBFAtSPAmiDJDL5Zg7dy58fHyEfZcvX0b37t0xevRobN261SZoBM/zuHr1Kv744w907NgRmzdvFo61adPGoQVk4sSJovVP27ZtQ9++fXHgwAHR4CshIQHffvstBg8eLBo8jBo1ymGAlKKoX7++KKn2oUOHMHLkSFFi77y8PPz555949dVXcf36dafTvli6Gebm5rrkImtNo0aNREpCcnIy+vTpgwULFoisaCqVCtu2bUPPnj1FyeCrV6+OESNGFPv8jwLL+3XixAmHydV79OiBDh06CNvXrl1Dz549sXr1atHALicnBytXrkSvXr1EbbVq1Qp9+/YtcX8bNGggshgdP34cffv2xfHjx4WBa35+PpYsWYK33npLsAZKJBJMnjy5UMW3Xbt2qFq1qvDPUXoMLy8vkZKRlpaG3r17Y/PmzcKzYzQa8ffff+PVV18V3Yf333/fRkky8/HHH4sCA+3evRv9+/fHsWPHRO7oly5dwujRo0VKtYeHB7755pvHniNv+PDhovWrly5dQq9evbBu3TqRVTI3Nxd//vknXn/9ddE7rVevXiKXUWfp1KmTaPu7777DDz/8IJocMRgMOH36ND755BMMGTLEriXOnsJx9epVzJ49W9gODg62q7T2799f5F2yf/9+rFmzxqacj4+P6LfjeR6TJk3CuHHj8N9//4n2X7hwAe+99x6WLFki7Pfw8LDJIQqYrHbTpk0TvFmMRiP+97//4euvvxZZslJTU/Hdd99h5MiRLq3vd5Zhw4ahTp06wvbx48fRq1cvbN++XWSdT09Px/z589G3b1/R+/T1118XeZsUxpEjR/D666/jn3/+EZ4Rg8GAffv2oU+fPqLJgq5duzr0PrEOkrd+/fpSjfb7OGjbtq3ICr9mzRp89tlnIlnIzMwUfoPU1NQnPqc08fxCUW0JooyoXLkyVqxYgQ8++AAJCQkATAOI3bt3C2tVZDIZAgMDodfrkZOTY3fw0LFjR3z33XcO1674+vpi3rx5GDZsmGCtuXz5MoYPHy60r9Fo7A7Ohg4dKrIGuopUKsXEiRMxZswYQVnYu3cv9u7dK7jZWQ4YZTIZfvnlFwwaNKjItmvWrCna/vDDDzFz5kwAwODBgzFkyBCX+jphwgRkZWVh+/btAEwK8XfffYfvv/8e/v7+kMlkyMzMtPkNqlWrhvnz57vsMvioqVGjBo4fPw7AdG3dunVDWFgY1Go15s2bJwwgGYbBrFmz8MEHHwjl09PT8cUXX+DLL78UBm6ZmZk21ulmzZrhp59+KrV1VFOmTEFSUpJg2b9y5QrefvttKBQKeHt7IyMjw2bd8CeffFJomgtX6dOnD27cuIGlS5cCMLmITpgwAZ999hkCAwORnZ1tE9Dj5ZdfLtSSExQUhIULF2LQoEHC+rzz589j0KBB8PDwgL+/P5RKpU3kSYVCgXnz5tnI/uNALpfjl19+wbBhw4TgLykpKfjss8/wxRdfICAgACzLIj093UZOmjdvjilTphTrvC1atECHDh3w999/AzApH/PmzcO8efPg7e0Nd3d3u7JZs2ZN/Pfff8J7yNodUafT4eOPPxZNxn3xxRc20WkB0zMyffp09OjRQ/jtZ86ciWbNmtkEYXvppZfw6aefYubMmYKsbt++Hdu3b4dCoRB+a2tLoZubG3744QeHk361atXCt99+i/Hjx8NgMMBoNGLp0qVYunQpAgMDwTAMMjMzhesNDAxEy5YtsWXLlkLvryvI5XL8/PPPIhm4d+8exo0bB6lUKny7srOzbVxau3btKgrWVBixsbG4fv06rl69iqFDh8LDwwN+fn7IysqyefaaNm1aaNCnsLAwBAYGCpMg+/fvR5MmTeDn5wd/f/8iLdJPIn5+fhg9erTw/QNMyxPWrVsnyK/l993HxwezZs1yaBUmiMcJWTwJogypWrUqtm7dihEjRoisn2b0ej1SUlLsKjwRERGYNWsWfv755yKVnsqVK2P9+vXo3LmzSCkwt2+tdEZEROCXX37Bxx9/XPyLe0CnTp0wc+ZMm+vLz88XKZ0RERFYtGgRmjVr5lS7rVu3tpktT0tLQ1pamij6p7NIpVJ8//33+PTTT0WDTZ7nkZWVhdTUVNFvIJfLheT1ISEhLp/vUfPOO++I+mk0GpGUlISsrCyR9QUwWfoWLlyI999/X+Siy3Ec0tPTbZQJT09PjBs3Dn/88Uepuht7enrijz/+QK9evURyq1KpkJqaKlI6fXx88O2334rc/0qLSZMm4eOPPxbdC/OzYznwlUgkGDJkCH744Ycile+aNWti06ZNaNy4sWi/Wq3G/fv3bZTORo0aYe3atTblHyehoaFYtWoV+vXrJ1pLbjQakZ6ejtTUVJGcyGQyDB8+HPPmzSvRRM13331nY/kETBMq1rIpl8vx3nvvYfXq1aLoqdZrPn/66Sdcu3ZN2O7SpQs6duzosA8xMTEYNWqUsK1SqfDxxx/bDaD21ltvYcGCBTaRblUqFZKSkmyUzqpVq2LFihVo166dw/MDQOfOnbF06VIbZTczMxMZGRmCshcVFYUFCxYgPDy80PaKgyMZMBgMSE1NRVZWlkjpDAgIwPTp0/H99987HTdg0qRJGDhwoPBMqdVqJCcni549s2z98ccfheYFZRgGEyZMED2fBQUFSEpKwn///edyrIUnhcGDB+Ojjz6yiWyvVCpF3/dq1aphxYoVJUo1RRBlCVk8CaKMUSgUGDNmDN577z0cPnwYJ0+exJUrV5CUlCRYU1iWhY+PD6KiolC7dm20adMGzZo1czr/H2D64P/000+4fv064uLicOLECSQmJkKpVEIikSAsLAy1atVCx44dix1MyBE9e/bEiy++iA0bNmD//v24e/cucnNzERgYiJiYGHTu3Bldu3Z1yf2HYRj89ttvWLJkCXbs2IHExESo1Wp4eXmVKGDEW2+9hVdffRXbtm3DP//8g6tXryIrKwt6vR6+vr6oUqUKWrZsiR49eoiCOjzpBAYGYuPGjZg3bx4OHTqEtLQ0GAwG+Pv72x1sSaVS/O9//8PAgQOxdetWHDlyBLdu3UJWVhaMRiMCAwNRrVo1vPjii+jWrZvdiZPSQKFQYObMmXjzzTexdetWHDt2DGlpacjPz4e3tzeqVKmCVq1aoXfv3mUa5XXo0KHo2rUrNm7ciIMHDyIhIQFKpRLu7u4oX748mjRpgj59+tjk/yyMyMhILF++HGfOnEFcXBxOnz6N5ORk5Ofnw8fHRwgY1rFjR6cnZB41CoUCU6ZMwbvvvovt27fj2LFjuHv3LrKzs8FxHHx9fVG5cmU0bdoUvXr1cioXalF4eHhgzpw5OHHiBDZt2oRz584hNTUVWq0WCoUCgYGBqFy5MurVq4fu3bsLEy4dOnQQ1joeO3YM8fHxKF++PE6dOoXFixcL7fv7++Pzzz8vsh9DhgzBrl27hImus2fPYv78+XYtSS1atEBcXBz27duHAwcO4Ny5c0hPT0d+fj48PDwQGhqKOnXqoFOnTmjVqpXT7/aGDRtix44diIuLw86dO3H58mUolUp4e3ujQoUKePnll9G7d294eXkVug60JJhl4J133sG2bdtw9OhR3Lt3T4iwGhwcjJo1a6Jt27bo0qWLy5MOLMvis88+Q/fu3bFq1SqcPHkSaWlpkMvliImJQatWrdCnTx/Rso7CML+7ly5disuXLyM7OxtyuRyhoaFISUlBTEyMy/fgSeCdd95B586dsWHDBhw8eBCJiYlQqVQIDg5GlSpV8Morr+Dll1+GXC53uLyAIB43DP8shPwiCIIgCIIgnnhOnDghWnO/bNkyNGnS5DH2iCCIRwW52hIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQRAEQRAEQZQppHgSBEEQBEEQBEEQZQopngRBEARBEARBEESZQoonQRAEQRAEQRAEUaZQHk+CIAiCIAiCIAiiTCGLJ0EQBEEQBEEQBFGmkOJJEARBEARBEARBlCmkeBIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQTyxGI3Gx92FMqEsr+tZvWfPIvRbOQ/dq+LBcdzj7gJBCJDiSRDPGQUFBejQoQPat28PnU4nOnb79m2MGTMGLVq0QK1atdCyZUtMnTq1xOccOHAgqlatioEDB5a4LeL5gOM4rFixAjNmzHgs52/Xrh2qVq2KiRMnlnrbcXFx+Oijj0q93bJum3CNwmQoPT0dY8eOxenTp22OVa1aFVWrVsXcuXMfRTefCo4ePYp33nnncXfjiaMwWbl37x4GDx6M+/fvl8q5bt26hZo1a2L06NGl0h7xfEKKJ0E8Z3z99ddISEjARx99BLlcLuzPzMxEv379sGvXLmRkZECv1yM9PR3u7u6PsbfE88pHH32EadOmIT8//3F3pVT58ccf8eGHHyI9Pf2papsoPbKystClSxfs2LEDlEq9aNasWYPBgwfj3r17j7srTw1Xr15Ft27dcPTo0VJrs1KlSujXrx92796NzZs3l1q7xPOF9HF3gCCIR8epU6ewfv161KtXDy+//LLo2L59+6BUKgEAn376Kbp06QKGYUTKaXEJCQlB+fLlERISUuK2iOeDtLS0x3r+iIgISCQSBAYGlmq7qamppdreo2qbcB1HMqRSqZCbm+uwXvny5QEAvr6+Zdq/p4XH/S54knEkKzk5OdBqtaV+vg8++ACbNm3CjBkz0Lp1a/j7+5f6OYhnG1I8CeI5ged5TJs2DQAwZswYm+NmK4mfnx/eeuutUj33999/X6rtEURZs3z58sfdBeIpp7gy9Ndff5VyT4hnlUctK/7+/hg4cCB+++03zJkzB1988cUjPT/x9EOutgTxnLBr1y5cvXoVsbGxaNasmc1xc+AGT0/PR901giAIgiCeAvr37w+pVIp169aV2vpR4vmB4WmBAUE8F7z22mu4dOkSPvnkEwwaNEjYP3HiRGzatMluncaNG4tm7fPz87F+/XocOnQI169fh1KphEwmQ1BQEOrXr48BAwagTp06Nu0MHDgQJ0+etGnPfO5u3bphzJgx+OKLL3D69GnI5XJUrlwZc+bMwe3btwUL7LVr13Dr1i388ccfOHbsGDIyMuDr64uGDRtiyJAhqFu3rsPrz87OxtKlS7F//34kJCTAaDQiPDwcrVq1wpAhQxAeHm63nlqtxqpVq7Bnzx7cuHEDWq0Wfn5+qFGjBrp06YJu3bpBIpHY1FMqlVi+fDn279+PO3fuwGAwICAgAHXq1EGPHj3QoUMHh30tiqSkJKxduxb79+9HUlISjEYjoqKi0LZtWwwZMgR+fn526506dQqrVq3CmTNnkJ6eDoVCgZiYGHTo0AEDBgyAQqGwqWP+jXr16oWZM2ciLi4Oa9aswbVr16BWqxEREYGOHTti6NChdl0DeZ7Hzp07sXnzZly6dAk5OTnw8vJCTEwM2rZti/79+8Pb29vmfPa4du0agIfy9N577+Gll17C1KlT8d9//0GhUKBWrVr47bffBBfxrKwsrF69GkeOHMGdO3eQm5sLNzc3hISEoHHjxnjrrbdQqVIlm3O1a9cOSUlJwnWX9H7MnTsXP//8s93r2rt3LyIjI0XnjYiIwL59++yWt8aZtp151g4fPoxPPvnEpk+WJCYmon379gCAGTNm4NVXX7UpU9xnrTDM/e/SpQt++OEHrFy5EmvXrsW9e/fg5eWF2NhYvPnmm2jXrl2h7Rw4cADr1q3D+fPnoVQq4enpidjYWHTp0gW9e/eGTCazW+/WrVtYtmwZjh8/jvv370MqlSIkJASNGjXCgAEDUL16dZs69mSoatWqdtu3V2bkyJEYNWoU0tPT0bp1axiNRowbNw7Dhg1zeH1vvvkm/v33XzRt2hRLly4VHbt//z6WLFmCw4cPIzk5GQzDCO+NQYMGFctt0nyN06dPR3h4OL755hvcvn0bvr6+aNq0qcjbJSkpCatXr8axY8eQmJiIvLw8KBQKlCtXDs2bN8fbb7+NsLAwofzGjRsFebRm2bJlaNKkibDN8zzi4uKwZcsWXL58Gbm5ufDz80PdunXRt29ftG7d2uVrO3HihPDtuXDhAq5du4Zff/0VZ8+ehU6nQ1RUFDp37owBAwbAx8fHYTtnz57Fxo0bcfr0aaSlpUGj0cDLywuVKlVC+/bt8cYbb9i8e83XHhoait27d2PGjBnYuXMn9Ho9oqKiMGnSJDRr1sxGViyfT2tGjhyJqKgoTJgwwe49tESj0aBZs2ZQqVQ2YwYAeP/997Fv3z4MGjTI4W9EEPYgV1uCeA64dOkSLl26BADo1KlTsdq4ePEi3nvvPWRkZIj26/V6xMfHIz4+Hlu2bMH06dPRu3dvl9rOycnB22+/jaSkJACmj152djaCg4Nx+/Ztody+ffswduxYaDQaYV9GRgZ27dqF3bt3Y9asWejRo4dN+8ePH8fo0aORk5Mj2n/nzh3cuXMHa9euxTfffGNzb5RKJQYOHIjr16+L9qenp+PgwYM4ePAgNmzYgPnz58PDw0M4npCQgIEDByI5OVlULyUlBSkpKdizZw+6dOmC77//HizrmuPJzp07MWnSJKhUKtH+69ev4/r169i4cSMWLVqE2NhY4RjHcZgyZQrWrFkjqpOTk4Nz587h3LlzWLlyJX777TdUq1bN7nl5nsfHH3+MLVu2iPbfvn0b8+bNw/bt27Fq1SqEhoaKjn/00UfYtm2baJ9SqcTZs2dx9uxZ/Pnnn1i2bBmio6Ndug+A6T6//fbbyMvLAwAhSrNZ6Tx48CD+97//2dwrvV6P/Px83L59Gxs3bsQvv/yCF1980aVzF/d+PG4Ke9ZKg+I+a64wfvx4bN++XdhWq9VIT0/HkSNH8Oqrr2L69Ok2k0FqtRrjxo3D3r17RfuVSiVOnjyJkydPYuXKlfj9998REREhKnPgwAGMGjVKFAVcp9Ph7t27uHv3LtavX4/PPvsMb775ZrGvqTCCg4PRrFkz/PPPP4iLi3OoeKakpODUqVMAYPMejIuLwyeffGKz7u/atWu4du0aVq9ejV9++QUNGzYsVh/PnTuHL7/8Enq9HoDpvWzpPbNu3TrRcTO5ubnIzc3F1atXsX79eixduhQ1atRw6dy5ubkYOXIkTpw4Idqfnp6Ov//+G3///Te6d++Or776qtgxC/bv34/x48eL+m++d+vXr8eiRYtQoUIFUR2j0YgpU6Zg7dq1Nu1lZ2fj1KlTOHXqFDZt2oRVq1bBy8vLphzP8xg7diz2798v7Lt58yZiYmKKdR0vvfQSvvzyS6hUKsTFxTlUPPft2weVSgWJRIJXXnnF5ninTp2wb98+bNq0CR9++CHc3NyK1R/i+YNcbQniOWDHjh0AgMqVK9tYG6ZOnYozZ85g+PDhAIBy5crhzJkzOHPmDBYsWADAZOl8//33kZGRgaCgIHz11VfYs2cPjh8/ji1btmDUqFHw8PAAz/P46quvbAb6RXHo0CGkpaVh6tSpOHLkCNauXWt3FvXDDz+En58fZs2ahUOHDuHQoUOYPHmycG57UVCvX7+O4cOHIycnB5GRkfjmm29w6NAhHDt2DPPnz0etWrWg0Wjw4Ycf2qQ2+OGHH3D9+nUoFApMnjwZf/31F44fP45Nmzahe/fuAICTJ0/aWBamTJmC5ORkBAUF4ZtvvsHff/+NY8eOYfXq1WjZsqXwm8TFxbl0n86cOYOxY8dCpVIhKioK33//PQ4fPox9+/bhs88+g6enJ9LT0/HBBx+IBslff/21oHQ2a9YMS5cuxbFjx/DXX39h3LhxUCgUuH//PgYNGoSUlBS75969eze2bNmCNm3aYOXKlcJvbx6UJCUl4aeffhLV2b59u6B0vv3229i6dSuOHz+O3bt3Y+zYsZBKpUhNTRWl7DHLY4MGDQAA3bp1E+TRmri4OPA8j9mzZ+Po0aNYsmQJRowYAcBk3RkzZgxUKhWio6Px448/Cr/Dhg0bMHDgQEilUuh0umKlDHL1fgwfPhxnzpxBt27dAAANGjQQrstS0YmKikJMTAyioqKc7ouzbQPOP2vFoSTPmrMcOHAA27dvR/Xq1bF48WIcP34c69atEyxaGzdutGv9/fDDDwWls3PnzlizZg1OnDiBHTt2YNiwYZBKpbh+/TqGDBkieoeoVCpMmDABOp0OderUwaJFi3Do0CEcPnwYv/76K6Kjo8HzPGbOnInExMQi+3/mzBnRcz9//nycOXOmSBk0K5JXr17FrVu37JbZvn07eJ6Hu7s7XnrpJWH/kSNHMH78eGi1WlSrVg2//PILjh49isOHD+PHH39EdHQ0lEolhg0bhrt37xZ5DfZYv349AgMDsWjRIhw9ehS//vqrkD7rwoUL+Pzzz6HX61GrVi3MmzcP+/fvx5EjR7B69Wr07NkTgEmBtPQu6N69u8Nvk1lBNhqN+OCDD3DixAlIpVK8++672L59O06cOIEtW7bgzTffBMMw2Lp1K6ZPn16sawOATz75BDKZDJ988gkOHTokTILKZDIkJibi3XfftUlPtmTJEkHpfOWVV7BmzRocOXIE+/btw/z581GvXj0ApudmyZIlds+blpaG/fv3Y8CAAdi/fz927dqFr7/+WmQZtiQiIgJnzpzB/PnzhX1xcXHCfVQoFIK3ze7du2EwGOy2Y35vN2vWzO6kVKtWrcAwDHJycko1ci7xHMATBPHM07VrVz42NpafNGmSwzJz5szhY2Nj+bZt29ocW7FiBR8bG8vHxsbyp06dslt/yZIlQpnDhw+Ljr355pt8bGws/+abb4r2T5gwQajzww8/2G33+PHjQpmGDRvy9+/ftynz559/CmV27dolOta/f38+NjaWb9euHZ+VlWVTV6PR8L179+ZjY2P5bt26iY41adKEj42N5X/55RebehzH8QMHDuRjY2P5rl27Cvvz8vL4qlWr8rGxsfzmzZtt6mm1Wr5Tp058bGwsP3z4cLvX7Ihu3brxsbGxfJs2bfjMzEyb43v27BHuw6ZNm3ie5/mrV68K/RkzZgxvNBpt6p05c4avWbMmHxsby48ePVp0zPI3GjVqlN1+me9f/fr1eY7jhP2jRo3iY2Nj+bfffttuvblz5/KxsbF81apVbX4bs8xMmDDBpp75WGxsLL927Vq7bc+aNYuPjY3la9asycfHx9st89VXXwnt3L59W3Ssbdu2ds9fkvthWd/6WSgNCmvbmWdtw4YNQpmEhAS7ZRISEoQyGzZsEB0rybPm7LWZn7f8/HzRcaPRyA8fPpyPjY3l69Spw6empgrH9u3bJ9SdOXOm3fZ37dollJk1a5awf//+/cL+5ORkm3rx8fF8tWrV+NjYWH7RokWiY45kyPIeHj9+3KZN87E5c+YI+1QqFf/CCy/Y7LekZ8+efGxsLP/hhx8K+wwGg9CP3r178xqNxqZedna2UMbVd5K5XmxsLH/kyBG7ZUaPHs3HxsbyTZs25ZVKpd0yI0aM4GNjY/lq1arxarVadKywb9O6deuE8+/evdtu24sWLRLKXLp0yelrs/z2VKtWjT927JhNmR07dghlFi9eLOw3Go188+bN+djYWH7w4ME27wGeN/2mrVq14mNjY/nXX39ddMzyWezXr5/DPtqTFeu+Wz/Lhw8fFo4dOHDApk2lUil8D8zfEXt06NCBj42N5b/88kuHZQjCGrJ4EsQzTn5+Pm7evAkAIvdLVwgPD8eAAQPQr18/wRJljaXLTlZWlsvn6Ny5c5FlevToYXd9WNu2bYW/La0ON27cEFzPRowYYXcNk5ubG8aOHQvA5Dp1/vx54Zh5BtvavRgAGIbB559/jqVLl+L3338X9hsMBiE3n716crkc33zzDf7880+XLG03btwQ1jiOHj0aAQEBNmU6duyIRo0aiX6LdevWged5yOVyTJ482a5rb7169dC/f38AwJ49e5CZmWm3D++9957d/W3atAFgkrXs7Gxhv/n+KZVKuzPr/fv3x/z58xEXFyda5+ksDMM4dNmMjY3F66+/jnfffdeh9bBx48bC38WRWVfvx5OCM8+aq5T0WXMFs3XfEpZl8emnn4JhGGg0GlG0T7PVKTg4GB9++KHdNjt16iRYgtauXSsEW7O0YtnLjxoVFYX58+dj3bp1Li8xcAUPDw9B1u15Sty6dQv//fcfAAjeGABw+PBhwa163Lhxdl0i/fz88P777wMwWZSLkwfWz8/PbtA6AKhfvz569+6NDz74wGGKGPOzyHGcjZt2YaxatQoA0KhRI5GV15K33npLsPzbc3t1hh49eqBp06Y2+zt37iz03dL9u6CgAH369EHXrl0xfPhwMAxjU9fDwwO1a9cGUPj7xzr1WUmxtGLak6U9e/ZAr9fDw8MDHTt2dNhOlSpVAKDYzzHxfEJrPAniGefu3bvgOA4AULFixWK10a5du0KDdmRkZODs2bPCtnnQ5iwymUz4iBWGo+BBlnny1Gq18PfJkyeFv2NjY1FQUGC3frVq1SCRSGA0GnH69GnhPI0aNcKBAwfw559/IjU1Fa+88gpatGghDJ6qVKli028/Pz9UqVIFN27cwPfff4/r16+jU6dOaNq0qRBAwl4ApqI4duyY8LdZsbHHihUrRNv//vsvANPAzp6yaqZLly5YunQpOI7D6dOnbQZxbm5uDtd/Wt5/y/W3jRo1wv79+3HlyhX07dsXvXv3xosvvigErQkICChW0A8zkZGRDoN69OzZU3Dhs0dycrIwUAdcl9ni3I8nAWefNVcp6bPmLMHBwQ7XpUVFRaFKlSq4fv06jh07hgEDBgB4+Ay0a9fOYfAgwPQM/P3338jLy8PVq1dRs2ZNvPDCC5DJZNDr9Rg8eDDeeOMNtG3bFi+88IKwjrRVq1YuXUNx6dGjBzZt2oQ7d+7gv//+E62FNCs9gYGBaNGihbDfct1jYb9LrVq1AJjWFJ45c8blNbjVqlWzq1wBJjf7wrh7967IfdiR+6c1+fn5wjNco0YNh9cGALVr10ZSUpJdl31n6NKli8Njbdu2xcmTJ3Hp0iXk5ubCx8cH3t7e+N///uewjsFgwJUrV4RJvsKu2dU1r0UhkUjQrVs3LFq0CHv37oVWqxVNSJjdbDt06FBolPuKFSti7969uHPnTqn2j3i2IcWTIJ5xLNfslTQhuV6vx7///ovLly8LAYVu375tk+CbdzFYtq+vr93IsNY4UpwsA0ZYnjshIUH421lrhGVAoIkTJ+L8+fPIzs4WglRIJBLUrl0brVq1QseOHe1GqZwyZQreeecdqNVqbN68GZs3b4ZMJkP9+vXRunVrdOzYUUj87SypqakATIqtK9Enzb+/vcitllgetxci39fX12EgJMv7b57kAIABAwZg9+7dOH/+PC5fvozLly8DAGJiYtCyZUu0b98eTZo0cTnAkpnCFGkzGo0Gx44dw9WrVxEfH4+EhATcvHnTxhJZHJl19X48CTj7rLlKSZ81ZylKaa5QoQKuX78uyH1+fr4QfMqVZyA5ORk1a9ZESEgIxo0bh5kzZyIvLw8LFizAggUL4OPjg2bNmqF169Zo3769w0jSpUmTJk0QFhaGlJQUxMXFiRQSs+XqlVdegVT6cGhn6QHiyCJpTXF+F2eexby8PBw9ehTXr18XnsVbt24hNzdXVM7ZZzEpKUl4vpYuXWqz1t4exbk2wHE0YgBCUCGe55GWlmYzGZaUlIQTJ07g9u3biI+Px71793Dnzh2bQE+OKE604aLo0aMHFi1ahPz8fBw4cECYaEhNTRUmaiwt5/YwjycKCgqQn59vNzgSQVhDiidBPONYBvopyYdh586d+Oqrr2zcsBiGQcWKFVG3bl2HaTCKwtmIeJYDKmewDjTkap2YmBhs374dv//+O3bs2IHMzEwYjUYhEuzcuXPRsGFDfPXVV6KorA0bNsTWrVvx22+/4a+//kJeXh70ej1OnDiBEydO4JtvvkG7du0wbdo0BAUFOdUvs/uZu7t7sa7HXqoUSyyj8toLDlWYpcgR7u7uWLFiBZYvX47169cLEYrNEU6XL1+OiIgITJkyxeWoskDRcrNixQr89NNPguJhhmVZVK9eHdHR0di5c6fL5wWKdz+eBMoq+mRJnzVnKcol2/x8mH9zSyuYK8+AZb3BgwejevXqWLhwIY4dOwa9Xo/c3Fzs3r0bu3fvhkwmw8CBAzF+/PgyUerNsCyLbt26YcGCBdi5cyfGjx8PhmFw4cIF3Lt3D4BtNNtH9bsUJlccx2Hu3LlYuHChjbIlk8lQr149+Pj44ODBg2Xez+LUAQqXO0u5sXzXKJVKTJ48GXv27LFRpj09PdG0aVOkp6eLPC/sURbPbLVq1RAbG4vr168jLi5OUDx37NgBjuMQFBQkspzbw/KeFBQUkOJJOAUpngTxjGPp/lTcQdGePXswduxY8DyPgIAAdOzYEbVq1ULFihURGxsLHx8f3Lt3r9iKZ1lhqaRduHChWB/woKAgfPbZZ5g0aRIuXryII0eO4OjRozh79iwMBgNOnTqFQYMGYefOnaIBSPny5TFjxgwhSuvRo0dx5MgRXLp0CTzPY9++fUhLS8P69esduqhZYm7bVddNhUKB3NzcIiMNuzJAdwW5XI6hQ4di6NChuHv3rnD/jh07hoKCAiQlJWHEiBFYs2YNatasWWrnXbJkCWbMmAHAFA2zQ4cOqF69OipVqoQqVapAoVDg6NGjxVY8n1ccWWlK41lzBuvIodaY5dxsJbKU5ZI8A02bNkXTpk2Rn58vyO8///yD+Ph46PV6LFq0CDzPY+LEiS5dj6v06NEDCxYsQFJSEs6ePYv69esLbraVKlUSXGbNmH+XoKAgHDlypEz75ogZM2Zg2bJlAEzume3atUPVqlWFZ1Eul2PdunUuK56W79spU6agX79+pdpvS7RarcP3oqVcmeVOr9dj6NChQhqzxo0bo1mzZoiNjUXFihURHR0NlmUxfvz4IhXPsqJHjx749ttvceDAARQUFMDT01OwnHfp0qXI8YLl8gRnvmEEAZDiSRDPPJZrNCzXP7rC999/D57nERkZifXr19t1/XkSg6iUK1dO+DsxMbFQVzue5wv9eLIsi7p166Ju3boYMWIEsrKyMGvWLGzevBnJycn466+/7LomyWQyNGnSBE2aNMHYsWORnJyMzz77DP/88w8uXbokSh1SGOagSkqlUlhHZI9du3bh7t27qFy5Mjp06IBy5cohNzfXYQoGM+YAVID4vpUm0dHRiI6OxoABA6DT6bBq1SrMmDEDer0eq1atKlG6A0s0Go2QUqNOnTpYvny5XUvxkyizjxNL12HrfItmHN2z0nzWCsPSpdce5vVm5mAyXl5e8PHxKbVnwMvLCy+99JKwBvrChQv43//+h6SkJKxcuRLjx4932TPDFapUqYKaNWvi8uXL2LNnD+rVqydMnth7/5ivIzs7GyqVqlQnlZwhOTlZWHfesWNHzJ49265CU5xn0TKliDmAkiNKInOASe4cubyaPTlkMpmQt3fXrl2C0jlx4kQMHjzYbt3H+Q7q1q0bvv/+e2i1Whw5cgR169bFxYsXARTtZguI+17YWlCCsISi2hLEM45lFFjzOkFXyMrKEnK7vfTSSw4/vpbBb56UdW2WydCtE8dbcubMGdStWxedOnUSBnEXLlxAv3790LhxY9y4ccOmTkBAACZNmiRsm+/tgQMH0Lt3bzRu3NjGxRMw/R7jxo2zqVcU9evXF/4+fPiww3ILFizAjz/+KER7NN+DkydPFho5cdeuXQBMM9cvvPCCU30qDLVajaFDh+LFF1/En3/+aXNcLpfj7bffFiItF0c2HXHjxg3h3vfs2dOhe/LjkNmytAyUtG1LpcSRrFgGEbOkJM+aK9y6dcthvsw7d+4ISoA5ABfDMMLEzr59+xwq1MDDZ8DT01OQy3nz5qFr164OrWl16tTBW2+9BcBkFXMmImtJfyezUrB//36cPn0aaWlpYBhGyONqiWW+ywMHDjhsc9u2bahXrx5eeeUVITpxaXD+/Hnh2erdu7dDK5rls2jtlurofgUEBKBy5coATL+to7WhHMfhlVdeQatWrfDRRx+5fA2AKf+tI/bt2wfAZNU0W2Etn5PXX3/dbj21Wo1z584JfSxNnJGx0NBQIVLv/v37sX//fgAmq7Q52m5hKJVKAKa1nqR4Es5CiidBPOOYXXoAID4+3uX6lrP3jiwGV69eFSWsLmxw9yipU6cOqlevDsCkkNlLjq7RaDBz5kxotVokJSUJEWfDw8Nx4cIF5OTkYPny5Xbbv3LlivC3OVhQYGAgLl68iJycHKxcudLpekVRt25dwYo0Z84cu2uV9u7dK8yyv/LKKwCAPn36ADC5KE6dOtXuAOfChQuCotq6dWuEhIQ41afC8PDwQGpqKlJTU7FmzRq7Lpo5OTlCICPr+2CWu+LIkqXMWlqxLDly5Ag2btwobD8qmTUPvMvifCVt2xwkBYBdpTArK8vhs1CSZ80VeJ7HN998Y6NkGAwGwWLu5+cnSrHUt29fAKZ0KD/88IPddv/++29BYe7Zs6ewhlcqleLGjRs4e/asw4io5ufZy8vLqSA7lvJZnN+qa9eukEqluHv3Lv744w8ApgjSZiuvJe3btxfWkX/33Xd2JxSysrIwZ84cqFQqZGRkCL9jaeDMs7hhwwYcPXpU2LZ2pzbLtT03a/P77datW1i4cKHd9pctW4Zbt24hLS1NUFRdZenSpXatqlu2bBGUzF69etn0GbB/3RzHYerUqcJ7vLTfB5bnL6xt85rggwcPCgq0M9ZO4KGVubjR8onnE1I8CeIZx8PDQxhIFGctiY+PjzBAPHjwIKZPn45bt24hOzsbV69exU8//YQ33nhDtM6lsLD2j5rJkydDKpUiNzcXr7/+OlasWIHExERkZmbin3/+waBBg4Q8ZEOHDhUGb8HBwcIHeM2aNfjkk09w4cIFZGVlISEhARs2bMD48eMBmJRU80C3du3aQl632bNnY9asWbhy5QqysrJw584dLFmyBF999RUAkzJpvSbLEea8oSzL4u7du+jXrx/27t0rWKQXLlwo9Kd69epC36tVq4aBAwcCMCkTQ4cOxYkTJ5CdnY2EhAQsXLgQgwYNgl6vh6+vL6ZMmVLSWy4wdOhQAKacjYMHD8bhw4cFZfTgwYMYMmQI8vLyIJFIbKwC5iihp06dwr1791zKsxkbGysoz6tXr8avv/4qtHHhwgVMnz4dw4YNE61RelQya76ua9eu4fLly8jOzhYNDN9++228/PLLRaagKE7bRVG1alUhSNaKFSvw888/IzExEampqdi2bRv69u2LrKwsh+6axX3WXGX37t14//33ceHCBSiVSpw5cwbvvPMO/vnnHwDAhAkTRIFOLNNBLVq0CGPHjsX58+ehVCpx+/Zt/PTTT0Lqi6ioKFGuz9deew1+fn7geR4jRozAihUrcPv2bWRlZeHq1auYNm0aNm/eDADo16+fU5Ymy+jiu3btglKpdCl3pWXgF7OVypGyIJfL8emnnwIwKQq9e/fG5s2bhedwz549GDhwoDApOW7cuFK1XjVo0EDwOPj555/x559/IjExERkZGfj3338xYcIEkecIYPssmuU6IyMDR44cQU5OjjCR1b9/fyG677fffotJkybh0qVLUCqVuHbtGmbMmIGZM2cCME3Cmt+FrpKbm4v+/fsjLi5O+AbMnTtX6Hvjxo1FFueWLVsKf48bNw579+5FWlqasCzjzTffFE18lfb7xzLKclxcHHJzc+1OVnbs2BEeHh7IzMzEoUOHHFrO7WG21lp64xBEUdAaT4J4DmjRogUuX74shEl3lcmTJ+Ott96CSqXC8uXL7Vo9evfujWPHjiEpKUmIsPgkUL9+fcyZMwfjx4+HUqnEtGnTMG3aNJtyffr0wejRo0X7Jk2ahNu3b+PcuXPYuHGjaKBgJigoCL///rsohca3336Lt99+G3fv3sWiRYuwaNEim3rR0dGYPXu2S9fSrFkzzJgxA5999hmuX7+OESNG2JSpXLkyfv/9d5GlYeLEidDpdFizZg2OHj0qsi6YiYqKwuzZs0Wu2SWlV69eOH/+PFatWoXTp0/jnXfesSkjk8kwbdo0wbXRTJMmTbBjxw6kpKQI6+n27t0r5AAtDIlEgqlTp2LkyJEwGAyYPXu2zb1mWRbDhw/H4sWLodPpHpnMNmnSBAsWLIBKpcKrr74KwGSRMeemTEhIQFJSUpFBdIrTtjN8+eWXGDZsGLRaLebOnYu5c+cKx2QyGWbOnInZs2fb9Z4oybPmLMHBwahUqZLINdAMwzD46KOPhGu35LvvvsP48eOxb98+7NixAzt27LApU7NmTcyePVuktPr5+eGnn37CiBEjkJ2dbfd6AFMuR2evyd3dHS+88ALOnTuHdevWYd26dWjcuLFDa7I9evToIQTjcXNzw8svv+ywbJcuXZCbm4vp06cjKSkJEyZMsCnDMAw++OADwTpcWvj7+2PixIn48ssvoVarMXXqVJsycrkcQ4YMwe+//w4AuHfvnsga3qhRIyH365AhQwCYAha9+uqrkMvlmD9/PkaMGIELFy5gw4YN2LBhg805oqOjsWDBgmKvce3atSvi4uJEkxJmGjduLKwpN9O6dWu88soriIuLQ3x8vN13dUhICNq1a4fVq1dDrVYjNTVVWCNaUipUqIDw8HAkJycLz3GvXr0EJdyMp6cnOnTogG3btoHneTRo0MCpd6x58gV4dHlsiWcDsngSxHOA2e0yISHBrgtcUdSuXRubNm3Cq6++ivDwcEilUri7uyMqKgqvvPIKli1bhq+++krIE7d///4nxt0WMLmb7dmzB8OHD0f16tXh5eUFmUyGkJAQdOrUCYsWLcL06dNt1h95e3vjzz//xJQpU9CkSRP4+/tDKpXC19cXtWvXxujRo7Fr1y5Uq1ZNVC8sLAybNm3C+PHjhVQBUqkU/v7+aNiwIT755BNs3bq1WEpez549sWPHDgwYMADR0dFwc3ODh4cHatasiY8++gjr168XBd0ATO5uU6dOxYoVK9C1a1eEh4dDJpMhMDAQDRo0wOTJk7Fly5ZSjSprZsqUKZg/fz5eeuklhIWFQSaTQaFQICYmBm+++Sa2b98uclEz07dvX4waNQrlypWDTCZDcHCwKCdtUbRt2xZr1qxB586dERwcDKlUCoVCgYoVK6J3797YsGEDPvzwQ2H93549e0rtmgujVatWmDx5MqKjoyGTyRAQEICMjIwnpu2mTZtiy5YteO211wQ5CQkJQdeuXbF+/Xp07dq10PrFfdacRS6XY+HChfjoo49QqVIluLm5ISIiAl27dsWGDRsEK7s1np6e+O233/DLL7+gffv2CA4OFvrVvHlzzJo1C6tXr0ZUVJRN3WbNmiEuLg6DBg1CbGwsFAqFULddu3aYM2eOzeRTUfz4449o164dvL294ebmVmTEXWvat28vKMht27YtMs3MG2+8gZ07d2LgwIGoXLmycA0RERHo0aMH1q5di1GjRrnUB2fp168fFi9ejDZt2sDf3x8SiURYRztw4EBs27YNY8eOFVy9//rrL1H9ypUr44cffkBsbCzc3Nzg6+srCmwTHByM1atXY9asWWjVqhUCAwMhlUrh5eWFevXqYeLEidiyZYvLuZMt6du3L5YtW4aWLVvCy8sLvr6+aNCgAWbOnIlFixbZzZH9/fffY+rUqahXrx48PT0hlUrh5+eHevXqYdy4cdi+fTuGDx8uLIWxvu6SIJVK8fvvv6NJkyZQKBRQKBQOraqWKXicdbM9efIkANO9d2ViiyAY3tWs2QRBPJX0798fp0+fxujRo/HBBx887u4QBEE4zcSJE7Fp0yZEREQIa9EIoiw5ceKEEDjKVc+Bp4kjR45gyJAhkMlkOHLkiF0l2po33ngDZ8+exahRozBy5MhH0EviWYEsngTxnGB29dm8efMTE3WWIAiCIIjHx7Zt2wCY1kI7o3TevHkTZ8+ehaenZ7HXzBLPL6R4EsRzQsuWLVGnTh3Ex8e7nKibIAiCIIhni7t37wpphMwRgoti3bp1AExeVM4oqgRhCQUXIojniPHjx+Ptt9/Gb7/9Jko3QBAEQRDEs8++fftw/fp1aLVarF27Fmq1GtWqVRNF4nVEWloa1qxZg4CAACHQE0G4AimeBPEc0aRJEwwYMAArVqzA33//jQ4dOjzuLhEEQRAE8YhITk7Gjz/+KGzL5XJMmzbNqVRAc+bMgVqtxsyZM53KWUsQ1pCrLUE8Z4wfPx4VKlTArFmzipWygSAIgiCIp5OqVasiJCQE7u7uqFevHhYvXixKX+OIW7duYePGjejcuXOh6XsIojAoqi1BEARBEARBEARRppDFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMkT7uDhCPH51OB6VSKWy7ublBIpE8vg4RBEEQBEEQBPFYMBqN0Gq1wrafnx/kcnmJ2yXFk4BSqURCQsLj7gZBEARBEARBEE8gISEhJW6DXG0JgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIVdbAm5ubqLtqKgoKBSKx9QbID4+HkajERKJBOXLl39s/SCeHkhmCFchmSFchWSGcBWSGcJVnhSZUalUomV41rpCcSHFk7AJJKRQKODl5fWYegMYDAbo9XrIZLLH2g/i6YFkhnAVkhnCVUhmCFchmSFc5UmVmdIKOkqutsQTB8uywj+CcAaSGcJVSGYIVyGZIVyFZIZwlWddZhie5/nH3Qni8ZKfn49r164J21WrVn2iZlkIgiAIgiAIgng0lJVu8Gyq0wRBEARBEARBEMQTAymeBEEQBEEQBEEQRJlCiidBEARBEARBEARRplBUW+KJIy0tTQglHRIS8ri7QzwFkMwQrkIyQ7gKyQzhKiQzhKs86zJDiifxxJGSkiKEkn4WHzqi9CGZIVyFZIZwFZIZwlVIZghXedZlhlxtCYIgCIIgCIIgiDKFLJ7EE0d0dDQ4jntmcxgRpQ/JDOEqJDOEq5DMEK5CMkO4yrMuM6R4Ek8cPj4+j7sLxFMGyQzhKiQzhKuQzBCuQjJDuMqzLjPPpjpNEARBEARBEARBPDGQ4kkQBEEQBEEQBEGUKeRqSzxx6PV68DwPhmEgk8ked3eIpwCSGcJVSGYIVyGZIVyFZIZwlWddZkjxJJ44rly5IoSSrlOnzuPuDvEUQDJDuArJDOEqJDOEq5DMEK7yrMsMudoSBEEQBEEQBEEQZQpZPIknDl9fXxgMBkilJJ6Ec5DMEK5CMkO4CskM4SokM4SrPOsy82xeFfFUU6FChcfdBeIpg2SGcBWSGcJVSGYIVyGZIVzlWZcZcrUlCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRTPQvjyyy9RtWpVzJ07t1TaS0pKwvTp09GpUyfUrl0bjRs3Rp8+fbBkyRJoNJpSOQdBEARBEARBEMSTBq3xdMCxY8ewevXqUmvv4MGDGDt2LAoKCoR9Op0OFy5cwIULF7Bhwwb89ttviIyMLLVzPq3cunVLWFhdqVKlx90d4imAZIZwFZIZwlVIZghXIZkhXOVZlxlSPO1w6dIljBw5EhzHlUp7165dw6hRo6DVaiGRSNC7d280bNgQBQUF2LJlC86ePYvr169jxIgRWLNmDTw8PErlvE8rBQUFQg4jgnAGkhnCVUhmCFchmSFchWSGcJVnXWbI1daKgwcPYvDgwcjPzy+1NqdMmSIonb/99humTp2K7t27o1+/fli1ahXefPNNACYFddmyZaV2XoIgCIIgCIIgiCcBsng+QKfT4ffff8dvv/1WapZOADh79izOnDkDAOjZsydat24tOs4wDD799FMcO3YMt27dwqJFizBkyJBndqbDGWrVqvW4u0A8ZZDMEK5CMkO4CskM4SokM4SrPOsyQxZPAEePHkXnzp3xyy+/gOM4KBQKDB48uFTa3rFjh/B3//797ZZhWVY4plQqcfz48VI599MKy7LCP4JwBpIZwlVIZghXIZkhXIVkhnCVZ11mns2rcpGtW7ciMTERgGmmYd26dWjbtm2ptP3vv/8CAHx9fVGjRg2H5Zo2bSr8ffjw4VI5N0EQBEEQBEEQxJMAudo+ICAgACNHjsQbb7wBiUSCzMzMErdpNBpx69YtAEClSpUKnb2IiYmBRCKB0WjE1atXS3xugiAIgiAIgiCIJwVSPAEMGDAAU6ZMgbu7e6m2m5GRAZ1OBwCIiIgotKxEIkFwcDBSUlJw//79Uu3H00ZWVhY4jgPLsggICHjc3SGeAkhmCFchmSFchWSGcBWSGcJVnnWZIcUTQO3atcuk3aysLOFvf3//Isv7+voiJSUFSqWyTPrztJCYmCiEkn4WHzqi9CGZIVyFZIZwFZIZwlWeJ5nhOA7gAZ7jwfEAz3HgABgNRoDnIZMwAMOAkUoB3lRHJpdAo9ZDq9ZBl5sHTqcDZ+Sg1xkBD0+wbm7gOYDnOfAcwPE8jHo91MmpMOr1kICHv4/EdE4j/6AcD293ICffgNx8A3iOB8/z4DkOOj0Pjc4InuOBB+1xHA/wPHge4B6chwWHcF8Ocv8A+NevB543ddg3xA2pyTmIv5WJ3Os3wOXmg+EZGIwA/ELgHhpmOhfPI0eTD51BC6PeAH1SCiR6DlJIEOGWCTdWCt5gAG/QgzfqweiSkG1wQwYbBQPPw11RgHqvvfxMygwpnmWIWq0W/nZzcyuyvLmMRqMpsz45w82bN1GpUiV4e3sL+7RaLa5duwYA8PPzQ/ny5W3qqFQqAECdOnVExzIyMgQrblRUlEgJNxqNuHz5MgDA29sbMTExorp3795Fbm4uAKBGjRqQSh+KrFKpRHx8PAAgPDwcwcHBoroXL14Ez/Pw8PBAlSpVRMcSExOFiYHY2FiRtTs/Px+3b98GAAQHByM8PFxU98qVK8KHpHr16qJjycnJSE9PBwBUrFgRXl5ewjGNRoPr168DMLl2R0ZGiureuHEDarUaDMPYTIakp6cjOTkZAFC+fHn4+fkJxwwGA/777z8AgI+PD6Kjo0V179y5g7y8PABAzZo1IZFIhGPZ2dlISEgAAJQrVw5BQUGiuhcuXAAAKBQKVK5cWXQsPj5emCSpWrWqSMbz8vJw584dAEBoaChCQ0NFdf/77z8YDAbI5XJUq1ZNdOz+/fvIyMgAYHJR9/T0FI6p1WrcuHEDABAYGGjjSWAwGHDhwgWwLGsTGS4tLQ0pKSkAgOjoaPj4+AjH9Ho9rly5AsA0AVShQgVR3Vu3bqGgoACAaR24pdt8VlaWsEY8MjJS9KHgOA6XLl0CAHh6etokg7537x5ycnIAANWrVxdFs87NzcXdu3cBAGFhYQgJCRHVvXTpEjiOg7u7O2JjY0XHkpKShOUCVapUEeUGLigoEJYABAUFoVy5cqK6V69ehU6ng1QqtVmXnpqaitTUVACm5QFP+zsCMP32N27coHfEc/KOuH79OjQaTbHeEXq9HoBJJq15Ft8RPM8jMDAI5cLDwfMAz/MwGDhcu3YdWq0OUokElavEmgbxDwbw6RkZSE/PgEQKVIypAG+Le8hxBty4eQMFuQZ4ursjyNsHHMeBN3JQq41Iyc+DTqMFzwMVKkSDf9CmPicXytRU5ObkwtOdR3iIPxQeHiZlg+Mhl3JIvZ+A1GwGMpkMPt4+grKRrzIiLy8fOp0e4AFPLy8wwANlhodOp4dGo4GPXItgfw+ENWoEmb8/wPPw9HZDUvJt3LiUA+gMkKamg+MB8DzUnBQGvwDoOQ48D3h5eYFlWfA8oM/NhSolDQaDAd5MPnyYAjAMg4wtR8HzgDtrgEyViiv6KOh5GSQykyLG84CWl0BvZMA9UHQYhgUYBg82wT+QGR8uF0FQIqhhQ3hXjQX/oL+MLBdH9yYiJ10N5OSCM5qyNBggBe/hCY5hAAAsKwHDMCYlyWiEQW0ad3oachCiuQ+GZWE+qdSoRbn8m7gQ0ByZ7uXAw9QGGAY8GNG2I9z1uQjPuwX38HIIbt0SACCTSeAdpcHxPUlIua13WLcw5AYVInKv2eyPyTqHWwH1cS+grostmp5bCWdAeeVlSDw9Uc7t4fv97wtbkXmTR3h8DZhUKL+HVbO0wO17Dtp98MzzHOQpd22ORuQowXiUQ1rYg++QHtD9uQ8NGjV6bO8I83eqtCHFswyx/DjJ5fIiy5vLGAyGMuuTMxiNRpuUMjzPF/rRNRgMwnFrOI4TjtlLVWM+Zr7uyMhIwc0gKytLOG6ecbLXJ0ft8jwvGoja629x2nXmWgtr195vbG6XsfPyLkm7pfnbWGI0Gh32ybJde/Ki1+thMBjsrnsurF1HcmiWmfv370Ov1xfZbmHy/SjvYWFy6Mw95DhOpCSYKc49tO6TdT3rdh/nO8JRu648y5GRkYLiY69fz9o7QqfTCe0LM/wW16pR68BxPNQqHVhWYlIy9Byy0guQlakCOEDG5sOglT2Y0Qc4jkfa/QKwEiAgiEV+nlZol4FJDnKy1dCojXDn7kPCsOA5DlqNHrlqA9KycsDzQGYycN9PC47jwRkM0GYrkXo/GQyMCPKXQJauBjgOPGeyZhh1WUhNykWeikHG2VRIpVLwHA+9nkOeSo/c3DyAB2QyGdzd3ASlieMAVUEBwBsQ5qmB8WYmfGvVNN0HHpC565F6vwCpiRrc2J8AXq0x3QcjA52bF9QsCx6AhGVx+d8TJmXLaIQ2PQNalRo8xyFKmoY0r5OmBh8oN/58FtIKgHtcOCTsRTCsSZHgwEDDSWE0cqZ7xjBgmDMPxvsM+Ae/Hc/ziDLcw13PQyjX9RXgQf2wKA+k3i/AheNKMNo74LTaB6dlYJTIwVtYllj21sP29AbT/wFEFdzEJWanSRnjTcVD1AkwcsDJ0JcBJAA4a1eWTcTb3Rueex03DAUIe/klyB5MgpSv6IeCPC32bkkrpD0TJ5BhZy+DkLw7uK8/L9rrp06FnzoVpyu//WBPgVU9+YN/ANKt32syADIEFmQj92oClAiAooJp0qxclB/0ej2uns+BQc8D8BBXzbTM966yatc0oWRQqcBrTMeUD/ql0OUgLP8O0spXh1ruA+jsXupDrLvMAhKdGu4qHdgUJYwhpvZ5nke27D4yMgtQoHzQB8tPoZa3aMzqvcU+GH/yEhgMnPi40QheowHHAUa2pKn+Hl4MzwNzLi6FV14MAlC+kDqF4VjZdXzE+XZ5gw6qW+fA67XgDTogKAFA4UvnnGnX3n6tVCHaU8A9nBR+HOOI0kwtaQkpnmWI5eyuo0GIJeb1oI87h6dEIrEZuDMMI/TLnoBKpVKH/WZZVjhmTyEwHzMriJazwbm5ucJx68GWZZ8ctcvzvN1+Wfa3OO1a/t/RtRbWrj1lWCaTwWAw2B1UlqTd0vxtLJFIJA77ZNmuPXmRyWRgGMbldh3JoVlmzBYqe9di2W5h8v0o72FhcljUPZRIJGDAgGUl0OuMJremB25OOg0Ho4GFVAIY9Ca3JfMHieN4SFgpNGojVPkGZGeqhMGtWqWHMlMPnc4IlgXu3MgwDdh5HjwHZGfnITtLD08fKQrydACnFtplJRxYVorMFA00ubnQZt0Fx5ncm/LydMjIzRWsDtrcWwBM7liGAhXys7KRn5cPP28e0nQtshQeJuWI4+AuB/iUeNxNZiGXShF/LOmB2xSPPJUBBQVqGPQG8ABuHEwTXKZM1hkjNFot/N11yA+4i6y6dSDz9QXPA75+7pDL5bhwMgu8LgcXtlwTFCq1UQKDwhMGzjQSP/fPKeH3MajU0ObkwGjg4CfJR4r7KVyWyQSFS8Hq4a5OwXlNBah5N/wjuSIMtXScBAbu4dBrL+6arAQW1gye5+HD5SKYycatOnXhVSkGPABvb3fIvWT4Z08ystM0+OvPTYJVhAMLXiIV2mCQ8kCZMl0PeB5gGHgachCqTcJJs6zxgIzTIjL/Gs77tUC6RyT2rE+1I+Vm7CkDgLs+D+F5N3EjPBzBrVs9kG0JyleR4/YVFe7dKMAxZNmtayIH9hQYuUGHgtyruGel+MRknUNyQH3cDagLQPvgnyWWAzjrwZMCEk4Pyd1byLqjRDmPMOFI5Ro+yFcacfuKWXGx9FSy/oarLf6WAPACeB5+GbeQhzxRSUnONag9wpEeVgswwvTPksKUDMb0T1ughyFfA+88jckaBYDnPMBAgoI8o6kPjOJhWzwAvWVjlidlhXKcwQgjJ9Z8OHUpel1ZXU/ZjW9sJ8qK1YrFwF2r1yJRlwq+BG0XVpMphT5b9tfAGTDv5mrE6JrBEwGF1CqMslXkYKUYSVgJSvLbOa7JlKhdoX2DHtqk68K2xEdTSpJmS65boPjcePjdL6txhEwmA8dxDsezZQEpnmWIpfuPVmv9YbTFXKa0gxy5SuXKlUXuX4BJibZ2j7Ou44igoCAb9ywzEomk0HatXcIs8fPzE7mTWVPY2t3IyEgbNzYzXl5ehfbJ2nXOkvDwcBu3OzPu7u6Ftmvt6mdJcHCwXTdBwPTSKaxda9dES/z9/Qtdf1xYu+XLl7dxpzTj7e1daN3CUguVK1fOxv3TjIeHR6HtWruKWBISEmLjZmJGJpMV2q61a4slAQEBDtdhsCxbaLvWLr1mjEYO3l7eKBdaETevpeHsnXTkKuORk62GMksNVYH1FPlNu+3UreWH1HMnYVCrYFRrwGk0CONSYchX4QBfD8B9AJcd9g9Itrs3PPcG7hh2IaxTR8j8/QAAlauFoHKlqti24u8HpRIctnoJSrv7Q/JuI10vVjJM1owU/Fd50IM9+Va1JA/+AbYjehaAB/Qp6dBcu4183hue0aZ7zhl9Ubt2bexcsxsatR4my4cFOZaDb+v3t+kdzeYrIUkVW2/M1gxl+SpQyX2AohxY7CgaOj0PjaoAeenZkJQzvafc3KSoWaUK/pGmQ6tVm/prOcaw0K9sBsrmwYiRA6/Vio5yRi34AhXgbTsb7jJWpy1fvjyCgpS4d8PaAlWs5iwonUGldRvBwUGIiNDg4r/KUmi78HOVRjNeXl6oVKkijv5VtAXRieZE+0qmZDxs11IWVQYN1H5l49FVciXOVjHKVCmxIn4rqnEdIUXRXmuFtmuXkihctv1lzOZNpnRVI140m1HCtqyacJe5gXdB2MzyxPD8gzkZHgzP2fz+BhZgoIfMoDLbLsGABw8GHCMRrogR2jTP/pnalfAGSKCGG8NDwZrdnk1rPw1yDfK9M+Gfp4eHlgMLHjxYcFI5pHKAkUgg8w9DpioLKk4PluehKDBAbuTBgoebJBtuvIVayQD6AEDKiL9t5j4WdxwBmJZWFFbXermBJcHBwaJYNaUFKZ5liOX6J7P/dWGYyzyLi4kJgjBhNHDIzlIhIzUPmekFyFVqULVWKDRqPTRqAzRqPXQ6Axq3iMH9BCX2bPmv2OfK+Oco5JxYacrNv2f6oJWvV+x2zR9qy0GlyahW0uGq/fplMagUjpSoy49uUGn+s8S32NG5SkMxEvXXPFgr5Q7DrBiVgpXExiUZJdO4CrnWspDhBGUSbiYnlU67NpRWfx/uuaNMwMpb61AdHR8c480OxQAYMBIJwDxUBgycaTKE5XlIOFNDEt4ACac3tc4wYACwDA8jC3jocmCWaLOyYWRl4MFYXCX/QDZ54TdhGAZuUMNDboSfvwe8Az1NVuYHuma+XzrcNSxCM3WQsaY+GlkPeESVh9TNzaQ4cHrcyLwDMIC71gjffCPkrARe8jz4ugPuMvcHrtQMJJAgPisRHvwtyHUmq7pC7gGWYcAz7pDKPIRr4AGkqzJgft8yADzdFPDw1SIgxA0VG1SAT2woGAaQylkgAUgPv4U8v3hEpeoQ7uYPqUQKVuKBiJoNIffzNbXNMlh2fh0MnBEyA4ewDD1CvQKgcGPh5xmISkHRYFgGLMOClTBYezUNat1VgL8NngGi/SPh6eYJGeuOSkEVTWVZFiwYbLi6A3l6FcDw4BigUlAFBHj5QqGoiBdrtYbUXQquIBvG/Eysu6lGStR/SI24Ag8th1qMJ0I4BqxBh8Y6I1hdPhQV68KrRjP8fm0HUo0qMDygMepR2yMYIekp4PMyUTdf/J37x9cD2bK7UPB3kC9lEa3WI0xnBAOgvEYPFoA8rCKCXhqKc1cPIo/TgQGg4gwIkXrAM/ke9Mk34WPgRN7K4RkMjEwOWLeLgByQ8TxkeODRzEog8fCG1DcYIa++BG3SDTBSOViZGxiZHIzUDUatCrymFiRe/sjjpJB6+cLf3zTmj/t2Ae6nPDwXx5SNxfFxQ4pnGRISEgJPT08UFBQUmSLFaDQKC3kdWXueFyz9ysvK1E88WzwpMsPzPDRqPXKy1cjKUCHlfg6UWSrkKjXIz9WiIF8LrcZ2xl/uJoFEKu63RqOHj7+HTVnXeHSDSvB8qStFplOUQaMwuRxzHFcyxchuVdNOxo6S6zKiNh7Ouhe7uULqlkp/wT8YXAMsazqZRMpCLpeY1h9yRgj2NKkcrFwKwFTedF0MwHEwqlUAx0Fm1EBm1MJaChiJBG6cBj5ak+uvWYHgwcLwYA2apaInKBgwKy9G+Ej1kHl6IjjUW7inZ1Mv4bYmDT6VAMm9ZLgVaMEyDDiwgF8wPKMiAYYBywBpBZnI0+WD54xQpOXCTc9DwrLw8tbD64ESAYYBwzLQeftBpStAkPYcePCQSaRwk7qBBwOpzBcSlhGUqFxtHgr0qgf3iYdMKoWHzAPe5fQIDyqHmNphYGVSMAD+Tt6PbfH74Fk5AMFZOkTlS+Cv8AMA+AXHIKx+AzBgwLDA6fsXcTTxFAAgNFOHIL0Mwd6B8CjPIiaoCrzdvcAwLBiWwU2lP44nngbH7QLPMFC4KVApoAIgASK9y8Nf4QNWwoJhWVzPvI2D946DY03TUJ7uCtQOqwpW6oNqEQ0RW+sFsG5yMACOJebCeE+HS43iINVxCIE7WsU0BcCgZrnqqFqxjvA8nrl/ETMP/2r63YwcFDIPdK7aDmBjUTu0KqoHP/QQupx2HV/u/xHAPwAAuUSO7tVMym314MqoHfowONXNzLuY9PcsYZtlWLxaozMAH1QOjMEL4TWFY4k5ycB/QGKlc6a6AF6r0QUMw6CifxQaRtQVymYUZGHE9tWip6FHtU6QsiEI8g1H08j6wrcpT5uPoZs/AvBQy+ga2x7uMneU8w5FywqNhP06ox5vrh8tavflym3g4eYJT89AVI9pLDomY6XQBSphYFj8F8kjsnI9+Hv4wt/DD82tJhv38Z4wckZwPIcCvRrlomsiSBEAT5kHqoWKA3pVr8JDb9SD4znk61SoHVoNAW4+kBr0KCf1gFGdB1auAOvmgW7lX4TRoAVv0EOj0yCYdQOuHIfhbiKyzm0Utfs+A7C8SXFz+OXW5EDi5o6h/raeUqr0HOjybT0KW+aobfZZw6lywUjliHXzszmmdcuCRuIG1t0DrJsHWDcFWA8veLl7gVX4QKLwgcTTF/KQ8pAofCFR+ICRe4i+JzJf+x5WgClo25WLF8EwiahTpw58fX0hgTgIKcc8myras3lVTxCVKlXChQsXhCiSjrh9+7aw8Lcwd8HngUuXLgkRIQtzESAIM49SZnieh15nhEajh1ZtgF+AAgl3s7Br82XkZKtNYeBdJGHn35AZ1Ijo0R14MGDXqPXwK6ni6Ugx4p0MGiAoI5YDfx4sbwTLGSGVMJDJTNERWQkDlmXg7eMGTquFIT9fGOgbGSlkvj6mj/KDATYYk6XBWJAPo1oDBjzcDAVwMxQ89BRjABmvA8OyCFAnA5YKBA/oJW7gGVbYZhj7yoYfnwcfqRYhwe7wifAFAKRmJEJ19j4iYtzhyXhCeeas4Galk7jDs1p1yDw98FAxMv1fl5mJgtu3wTAMfDzy4efBCtfCMICM8YGPpDqqG7OgZ3ItrhXQQQoOJjcv5sF/WObhcRYAGBYKPz185YEIaBwNv1qmQBZSqckxq2O3GijIykXW8RPgNBowDAMDI4VXrVrwCA6CKQgm++D/DIwFBcg5cxZgeMilXvB0rwOGZR6WYVm4yVsgQs/ACAYMa1IoWJYBzzAwRTIxrcViJSzAsGCkDCQMC0bCQiJhwEhYMJLacA8Kgkf4wzWTANCpR0281LUatJmZ4HQGMBLTBct8fSBViINpADCtVdbpTfeEZQE7MQfsYeCM0Bl1UMjEz8yemwdxT5mEbHUO7uelomZwLEK9w2DgQtG9+suigeLU/WtxKfMaEAggEKgRXAU1Qkzf425VO+DGlevCeyZLnY4Ld4+bKkYDsYEVUSesOvQoh6ZV2sDb7eFylT9Or8Kem4cAmKyTFf3Lo345U7svVWoFPw9foeyK8xvx99W/hO3yvhFoHFkdRkQjNqY5gjwfekTJs6QwynTIDUhBbgCg8Q5Ds/KmdutVaIww74cD3/ir15CrNrnO5wYCuV7BiKgQDSOAkPINEOnzcInIrZuHcPn0ZZhd1wMVElSMMS2rCI94AdH+D5epJN+V4C5zRNj2c2dRq1IYjADcwqMgUzxcOiSTPHQPN7ixyJXLYPQ3eYYxvl6i38K09s8EL2FhZAE8kAPOep0gI167xlm83zird52UFQ97LddIWpeVSaTwdfOG5EGwLSPPwVvuCZlEBg8rOXOXuqFxxAuQshJojTpoDTpUDCiP5IQkKPOycEl5Sfg2uUvd8NYLr0HCSKAz6qE16vBCaA24y9xs5FfGSvFVh48hZaXgOCOM4BHiGQC5RA4pY7tm788+c232OeKTFz94eB84I3i9Dtq0eBjS06C8ewNcQQ4M6lxwqjw01hSA0+SD06rBG3TgDXHgtCpwABIftOFZvTm8ar2ICiL3TBaAHgU6HfQ6WwVR7sR8l1GVB1ZqPzME42C/CFYCiacfJB7ekCi8wXp4mxRH7wBI/YLhWbXJA6uk6R8rlQMSaZl4awAmpfPixYvChPmFCxeeq7EuKZ5lTKNGjXDhwgVkZmbaDdlv5vjx46I6BEE8elQFOmSk5SMzvQDZGQVQZquRl6N+YK3UoXm7SuCMnCnwzQPqNIgEK2GRkWq99tB5tDojJHotjBoNJArTwEOj1iO0nA/KVwyALDcDhusX4W4ogLuhABLeiFrTJoOVSsAKCoRJ8Ulcsx5ZR4+C4QGZUQWJhIXEwx0SDwWkXp6QR0VB5uuDGJ9MyAP8IFV4ACwLlmVNypCENblXSSUmJYRhTQM+QVlhwbDRYOUyeFaqBIlVqqixX3SEoaAA2owMgJWYFCq5HG5BQUJQFEuMWi04g/GBUsM4VDZaFPvuOrjnF9Kg1+tRs4Gf6aM/qHTPUDbZoU2RNhHlB9R1NgpkMFAvuox64xyMRAJ3B+urbcqyLIxSFjqjFkYjB73OIFK2AGDVhS24nX0P2epcZKiyUCesOiJ9wsEyLF6r0Vk0YDyReBYXUx+mWwhSBMDXw5Tiw8AZTMrQAyyVRaBwBcZSMbI+bh1Z0lrZ4UTKjnVZcbuFKUY2CpfFQl/OyqtBYvU8ia6NK1w54wrpg3V/OZ574P5q+6wrZB4o5x0KKSuFzqiDu9QdwYoAMAwDD6k4tkWgwh/tYppDwkqg0qvBMiyqBVUCy7AIVojlIdw7GO83GggpK4XaoAHPc6gdVh0sw8LTSpGL8AnF7C5fCsokwzDwc/cxvfOsFI1Qr2As6PmNzXXYw8vNE+NbDrfZfyFbahNcUiaRoWvVDk61yzAMqgQ6jtPgCE6vhbEgB5xWBaMqB1xBLoyqHBgLciAPqQCJdwD0WffB67XgdFrwRlMf8y8ehEFZWICxQs6pzgMjs78WlpE5oSA6wGjRLsNKTMrhA/dV3miExM0DrMIbEg+TFdL0LwBSbz9IfALBunkWqkRKPLwdHittrJVOwOTxmJycDMgeb3yXRwUpnmVMp06dsHDhQgDA8uXLMXXqVJsyRqMRK1euBGBaF9qyZctH2scnDU9PTxgMBrvRuwjCHq7ITH6eFvG3M5GVoUKuUo3sTBXSknOhVukfhJF3TG62Ggov8YdVo9bD1891yyTDGyEzaiEzaqDQ5sJXm46oQCCwegTcPWRwd5dBImEx6IPmSD9yFNePnxHqsm5yRIS6Q2aRI8+Md8920DStCbfgYLiHhkDyIL/co0Tq6QmpRXC1wpC4uUFS/DFJsaH3zKOD4zhkqLPBPXDrM3BGlPcTpyT4+cQSXM+4jRxNHtQGDRpG1EW0X6RdZfJm1l1cTL0qbKt0Jrc6U9tWyqRcrExqjTrR32LFUyyznNWaVUuZkepdsbJZK5OFKLQPlEmWYU0KHMvCTSIX1gdaEqjwR5XAGEhZKVQ6FUI8gxDhEwoGLNytHqqK/hXQrWoHSFkpcrV58HHzRp3Q6mAZRmRxBYDaoVXxUcv3IGUlUOk1cJPIEe0f+UCRE1upG0bUxR89v4WUlYAFAwkrEd1TS2qFVsVPXabYPWZNpE843ms80Kmyvu4+aFuxuVNlZRIZwr2dmwQpDUrrPcPzHHi9zqQo6jVQ3zkPfWaySZlU5YJT58GoKQCnUYHXmaySDvtUowW8araCITfT5pgjxdEZjKo8sA4UTLvtSqRgZe5g3TzAyD0gcfeEPDQGEoXPA6ukt8lK6ekLWVAk5MHlwUie3vd1VlaWkDfTkuDgYMTGxiL+r+LHc3iaeHp/waeEunXrol69ejh79izWrVuHZs2aoXPnzsJxnucxffp0IRl5//79H3tU28dNYRFECcIehckMZ+SQo9TA188dp4/HY+fGS8U+j0ajh8JLDt7IQa9UQpuZiRsn98Ij/hLg3fnhAjyeh5tRBQlngJTTQW5Qwd1QAA99Hjz0ufDUKeFmUEFilerBj8tFYLCXzXl9a1RH5VEj4FGuHDyiIiHzdjxD61WxIrwqViz2NT4v0Hum9NAb9dAadPCyUtzmHl+MG5l3kKnKhp4zoGlU/QeWSQZRvuVEilS2Ogcp+Q8TlmsNJrc8jueg5wyQF2KZLFyZFJfVWQzIdQY9LIOVVvCNRO3QanCXukGpyUWlgPKC8itlJSKZyUvWItDDH1JWimy1EmFeIagcGA2WYW3cMDtUaoUG5WpDwkig1qvh5eaFYM9AsGDgYWXleK1GF7xWs4tdi6E1L0Y3wYvRTYosBwDVgiuhWrBzMh/sGYhgz8CiCwKQS2Si34YQ4+g9w3EcjPnZMOZmwKjKAzgDjAU5giJpLMiBe1Q1yPzDoUuPNymdFlbsklgmjapcxwqiM66rdmDdFGDk7pAofCALCAcrfRBQRyYHK3WDe7kqMNbvBImnH6TeAZB6B4CVPz9j3cKUzurVq4NlWSg1uQAeZoAoq7QtjxtSPEtIYmIi2rdvDwCIiIjAvn37bMp8/vnneP3116HX6zF27Fjs27cPLVu2hEajwebNm3HmjMmSER0djeHDbV01CIJwDY1aj4y0fGRnqqDMUsFo5FC3YSTCInyLrlwIWf/dhK4gBfrcPIAzQsrpwWgzIdWkolbBAciNarg/WKfIFvLZYOVyyEKDIff3h1tQINxCQ+BRLhx+L9S1W17u74/QDu1L1HeCKA323DyEu8pEpOSnIyknGXXCqiPYMxAyVopeNV4Wlc1QZYmUyYeWSb5IZVJnfOieqDPoRGV95M4rk9WDq8DIc/Bx84TOqEekTzhqBFeBXCqHj5t4Aqdj5VboWLmVU/fhhfAaeCHccVooS8K8ghHmZT8dljUUUO/phOd5wGgAp9c8cF/VgNfrkH/lCPSZ92FU54JTF4DTFpjWSeo1dqNsW7UKqW8IOL3t2sgSua4W5IBxoPSxMjcwUjkYuTtY+YOgOu6eYD28IHH3MrmxKnwhC42GVOEN1sMHEg8vkSVSFvB8B8i0xpHSGRISgurVqwsTcJxNzuFnE1I8HwE1a9bETz/9hI8++ggqlQpbt27F1q1bRWUqVKiAP/74Q5T7kyAI58nOVOHU0bu4djkV1WqFQioTu7dlZagQUzkQbu5Su5FlLZG7SeChkMPTSw42JwOIvwE3fT58tRnw0OdByukg4Q2i2D2hBXfttsVIJJAHBkIRFQnvqlXhW7cOvKpUAmsnmTNBPA7uZCcgJT8NyXlpuJV1DzH+UfBz94XeqEfn2LaiskfiT+FK+g1hO1udg2DPQOg5A3RGvUhBDLRai6c2PMyNWpQyqX2gTMolMhg48fPaMKIOgjz94S33goE3ItwrBBX8IuAmkdu4eTYv3wDNyzdw5XYQhEN4gx76rGToMhKgS0+APiMRiioNwcjk0KXb5i4uuHKsZJZJBwqi84onY1r/qPAxRV/19IHMPxxS3xAoKjcwKZpytwcWSjegZW+wLH2bSovMzExcvny5SKUTgCh2xLMMKZ6PiA4dOiAuLg6LFy/GoUOHkJKSAoZhEBMTg06dOmHgwIGkdBKEi+TnanH62F38dyEZ6SkPg/tkpOXbWDezM1WoVDUYFWODcOtaOiLK+8PX3wNu6mxok+8jsmUjhEQFIjDEC+4eMuGDkLLnL9w6c8K5DjEMZH5+cAsOgmdMDHxqVIdvrRqQBwaWWYQ8gigKlV6NPG0B9EY9NAYtKgdGi47//u9y3Ml+OGjWGnSIDTK5a9sqk/6iupbKpFqvFpUNsiqr0quhkLnDXepmE/ymTUxT1AipAh83U1qPYM8ABHj42XU5rRNWHXXCqjt59QThOkadGtqkG9Al34QuLR76rGQYCpQw5mXZRAVn3TygqGrf5bnElkk79VmpHDK/EHDqfEjcPYX1kKynL6Se/pB4+0PqHQipT5ApuI6DdZFSL79i940omszMTFy6dMkm2Jg9pRMADHzhE+LPCqR4OqBJkya4du1akeUiIyOdKgeY8nN++umn+PTTT0vavWeae/fuCYvxK1So8Li7QzxhqFU6nDkej//OJyMlKceut1Jaiq3iyTCm9Z5dXq0N5GcjccWfUP5zAYa8fHgBiOlUHf7RtlGnPaKiwLqZUoRYI/X2hjwwAB4R5eBdpTK8a9SAR7lwSL28SNF8wnnW3zObr+zGpdRrSMpNQaY6G/XDa6NiQHkwAKL9o0QBb8K9Q0WKp0rvmjIplDVoYfnUNYtqgAp+EQhSBMBLpkCIV5DDwDMVAyqgYsCT/Ts86zLzPMIb9TCq8pB/5Ri0SddMCmZuBjhVHpxdZafLSIRXrRftHtM74z0pkUHqHSC4sZpzREp9gyELjIC3wudBJFd307pJskg+8ThSOkNDQ1GtWjW74wPryM7P6giCFE/iiSMnJ0fIlUYQgGn9zN1bmTj81w3E38kCZyx8QKDMVIHjeJSL9IV/kCf8AxSQu5led57ebshNVCL79FkY1Q8HzXnXb8C/fj2btuR+fpAHBkCvzIE8wB/u4WHwrBANr6pVoIiMgDww0CalCPHk8zS+Z3ieR7YmB0k5ybicdh0+7t7wcfNGvq4AHSu1EqX4uJ0VjwupV4TtPJ3JI4AHkK8rgJ/7w4jI5ayifKoND58LlV4DX4uy1YIqoV3FFghSBEDCsIj0CUO14MrwkHnYRG+N8Y9CjH9UqVz7k8DTKDOECU6rBqctAM8Zoc9KNkWCVeXCqCkAABT8dwT6zKRita3LSAQsgvIwrASs3B2MzA067zAwPAO4eSKwXHlIvPxNAXZ8AiH1DoTELxgSeeFR0SXu5A33NJGRkYHLly+7pHQCgJtRDblBJWzLOI3dck87pHgSBPHEYjRwuHzuPo4fvI2U+7lFlmdYIKqCP2rVj0TdhhGQye2/4hQVysOjfBTyr10X9uVdte+5IA/wR5X/jYJbUBBkPj5gadBJPALMOQYtmX1sIY4mnBa2qwZVQu3QagCAAp0KPu4Pg+VYp4zI1xU8/FsrVjwjfMIQ4hloUiZZCaJ8wtGgXG14yNwR4OEnaqd+udqoX66sspQSRMkxqvOgTbkNXfJtaFNuQZt8GwZlKjxi6sK3WQ9oEm3f9azCB3BB8ZR4B0IeHAlZUBTkQZGQB0dCHlgOrNwNjIVV/64kVJisCKpTp1Suj3iyyczMdFnpBAB/aT4ich8GY5PAcUqcpxlSPIknjurVq9sddBHPF5fP3sfurZeRn2vr4moJwzIIDfdGtdqheKFxFHx8FdDn5iF12zYY8gsQ/fabNnWkCgX86tQWFE+pjzc8Y6Ltti9xc4NP1aolvh7iyeJJe8+odCqcSb4MvVEPmUSGLLUSL1dpI3JztU5xkad9uK45T1dQuOKpLYBC5g4vuafIMgoALco3QovyjUrzcp5JnjSZIUy5IzX3b0Bz7zK0929Al5EATmV/klKXkQCJwn5kc4nCNicyALDuXpD6BkHqHw55cBQ8omvDLTQarJvCbnlrSGaeP2JjY8FxHFJTTUGlwsLCULVq1SJlICAoAPGyh5MfcsmzKTOkeBJPHOTG9PzCcTzSU/Lg6+8BubvUsdLJACGh3qhWJwwNmlWAt49pbUTejZu4vngHMg4fAW8wgJFKEdGrO2Q+toOKwBbNoc3IRPCLreD7Qh1KY/Cc8aS8Z/be+ge7bh5EvDIJPHjE+EehQTmTZSRbrUSoRRqOcO9QUV2RFdPibwCIDaqI12t1Q7h3KPw9fBHlE26TZ5NwjSdFZp5ntKl3UXDtBLSJV6FNuweuIMfpusa8LFHaDzMMGMgCy0EeVhGygDDIgyvALbwS3MpVhsTDcc5kZyCZef5gGAbVqlUT/nZG6QQARWQoFMEPFU93N3khpZ9eSPEkCOKxYzAYkZyYi6R72dBo9Iis4I/KVYMRFOqFjNSHVh3/QAVeaBSF2vUj4BdomnHmdDqk7TuA+9vjUHDrtqhd3mBAyu6/ENXnNZtzesVEI/Z/o8r2wggCAMdzUGpykZafgWi/SLjLHgaRUBu0uKdMFLazVErh70yVWPE0r8WUS2Twd/eFv4cvqgdXhrfc0ybabDnvULxWs0sZXRFBPBp4ngenzoMhJwOG3AzkXTwA1TUno4xbw7DgtCrIAyMgUfiANacYUXibFNK2tt4xBFEcrJVP4iGkeBIE8VgwGIw4ezweWq1R2DaTnJiD6EqBaNIqBnHrL6JCpQA0fbEiqtQIBcuaXuKa1FTc374DaX/vg1GlsnsOAEiO24nIV3uCobyZxCOC53kk56fhUupVHLx7AhzPoV54LQCAh8wdFfwihbKxgTGiujnaPOiNBsgkUmSps0XHKgZUwK9dv0KAwn6aEYJ4GjHkZUObcgu6lNvQJt+GPisJ4W99Dc3tczDkZYLTP/R8cdbFFawUbqHRkIdXhFtYJbiFV4QsKBKsVA5ExJbRlRDPG4W5UZPCaR9SPIknjtzcXHAcB5Zl4WPHRZJ4usnP0+DIvls4dzIBWo0Bvv4eqNsoUlTGaORwPyEHdRpGIjzSF+Wi/AAAPMch88S/uL95K3L/u2KndQtYFoqoSAS1agWQGy1hRVm+Z47E/4s5xxcL2zKJDC+E1QTDMEjNzxApntH+UZCwEhg5I1iGRYCHH0I9g1AlKNrGiimXyBDkGVCqfSWch75NJceQlwVt8i1o79+EJuk69OnxMBYobcvlpkOXdd9mv8TTz7ZRVgKJpy9k/mGQh0TDPao6PKJrOVy3+SghmXl2SUtLw71791CnTh24lUJk+zRZJg5UvSds+3EMOpe41ScPUjyJJ467d+8KUeDqUBS4Z4a05Fwc2nMDVy+lgOMeRnzLyVYjL1cjrNMEAF8/D3j5uEEmk6BclB90OTm4v2Ub0vbuh16pLPQ8Eg8PeFWuhMAWzRHQsAHcgoPK6pKIp5iSvmcKdAXI0eYjLT8Dfu4+iLZIG1ItuLKorN6oh1KTC38PX6QVZIhmyeUSGd5r+CZCvYIQ418ebtJnc13PswB9m5yH53kYHyiZmqRr0CbdgC79Hjh1ftGVAejTE8C6KcBpxd4sjFQGWVAUWLk75CHl4VYuFu5R1SD1CzFZM58wSGaeTdLS0nDlyhXwPI/z5//P3n3Hx3GX+QP/zMz2XUmr3rtkq9iSXGM7jtOc3jsJSWgJPzg4Djg4ONrdAUfn4A4udC5AEiCFFNITp7jFcYslW8VW720l7a6275TfH4pGGjWr7mx53q+XX9Z8Z2b1yH40u8/Mt9SipqYGOt3K8s9mFyEOTs0Y7mYXnlgxUlHhSQhZM5IkobVpCAdeb0F3x9i8x/V22lG+MRMpaRbkFCQiIXFiXbOxU3Xoe+ZZOOpOQxKEec8HAFit0OTlovjaa5BQUQZtwtyzFxKyHJIkocvRi/f663G46wS6Hb24fv1eaDkt0s0pisIzxZSEzLg09I8PyW0TTzqzkWZOgSCJ0DBTXb8vLtwR0p+FkLUgSSJEzzgEtx2+vhbYXnho2a/lH2iDIasEgfcLT1ZnnJhdNj4F8ZuuAGdOAMPS8AkSetOLTgDweDw4deoUNm3atKLJpFxOBqkDxfI2r1vcTZpIQ4UnCTsZGRkQBAEcjcmLWHxQwOmTvTjwejPso94Fj7Umm1BRnYXtuwtgME5ctMdOnUL7b/8P3u6eBc9ltFqYiwph2FQNQ9l6GDIykJKZuWo/B4leS73OeHkfvvzqdyFIotw27B5BVnwGbJ5R8KIAzbQPwhvTy+AL+rEhfT2y4tKxM3cLsuLT53ppEiHovWniBgzvHJ5YI7O/FeaKCyG4xsA7bRDcDkii8P5xIsBqAJFf1OsyWgP0GYXQZRRBn1kEQ04ZIEnQpuRCk5AKVm+KyDFzlDPRZXBwEI2Ns4f5WK1WaDQrK6n4QTuAqSWzjD5x3mMjGRWeJOykpaWd/yASlvy+II683Y7jhzvgds2/+DHDAJk5Cdh+USEqq7PAaSbGYLq7utD2y9/AWd+w4PfRWhOQuG0r0q+8ApbCArA0ZT1ZormuM4IoYMQ7Bpt7DO6gB9uyq+V9Jq0R61OK0TDcLLcNvV94CpKIEc+oYgba+6pvw8c2fyAiPyyTucXae5MkSQjaB+HrakRgsB3BkR74+9sgesflY1hTPFidAfz4qOJchmHBWawQnLbZL8xpwJkToYlLhDY1D9YLboA2KTMqn2DGWs5Es/mKzuzsbJSUlKz4Wh8nKksy7jydvCIVFZ6EkFVx5mQvXn2uAa7x+cclaLQs8ouSsfPSIhQWp4B5f4Za/+goOn73MGyHDgOSNPfJLAtLUSHSr9iLlEv2QGMwzH0cIUvgDnhQO9CId3vew3v9Z1CZtg6FiXkAgA1p62GctvRJTWalovAc9owizZyMNHMKzDrlbJs0VpNEEkmSEBzpha+rAb6ecwgMtSM42g8puPA4s8BAG8zlu2YVngDAWRIhuB3QWKzg4pKhTc6GPrMYuoxCaOOSJrrLcnTTkIS/tS46AUDHKkuyaL1lSYUnIWRFBF4Ep2HRcnZ43qLTaNKitDwd2y4qQFZOgnyRDrrd6PrTYxh87XVI/NxdsjiTEck7LkDWzTfBnJ+3Zj8HiU2/OvYojvSclLcHxoflwnPQNawYu1mTUYnXWw+gJrMSZcnFqMmshEVvDnnMhKyUGPBCcNkhuB0YeetRBPpaIPHz91KZj7+/FfHbrlO0sTojOIsViZnFE+MyLUlgjRYwtAQQiUADAwNoamqa1Z6Tk4Pi4uJV69UiiMrfDzFKf1+o8CSELNtAnxOtTUOo2pqDvdeX4+yZAfh9UwVkYWkKqrZkY11FOoxm5RMgwe/H6S/+K7y9vXO+NqPVIu2Si5H/4fuhtdCHe7J8QYHHsGcEA+NDKEkuRLzeIu/blFmpKDwH3TaIkgiWYdHvGlIUnvnWbPzsum9R91kSMSRJAu8YghT0QxJFBIY6ILgdEAM++RjR7Vhy0ckaLNBnFkGfWQJNQipMRdXgzFZwZitYHfVGIdEhVEUnABiT0oCBqW2Ji84SLTp/KhLRzpw5I08/vmHDBrXDIXMQeBHNjUMY6HMAABpr+7F5Zx4uu6YMLz19BiVlqbjsunJkZM2/bhmr0yGhpmp24cmySNxUg8IHPwrjIicKopwhM414xnCstxZvtR+GJ+jD7vztAACT1oT4VIucM0Yox5XxIg8/70dVRjmy4zIU+6jgjG2RcJ3hx0cRGOyYWCezrxn+/haIHidMJVuQsONGBMcGZ53DWRIRHJn7BiAAMBoduLhkmEo2w5BbDn1mETQJaYrfB42ZZhGfSyTkDJlbKItOANAmxgNwy9sMF53vN1R4krAjiqL8h4Qfj9uP+vf64XZPdav1eAJobhjC5p15SEo1o2hdynkvygzDIPP66zB29Dj8w8MAwyBuXSny7rsHCRs2LOmiTjlDpjvV34Dv7P+ZvM2AQUAIQsdp0T8+iLLUYjlfTFojylKKYdDoUZVRjvKUUhQn56sYPQlX4XadEXxu+Drq4O1sgH+gDcGRXsXEP9P5+pqRaJq7OOQsifLXjEYPTUIKtMnZ0GUWwZBTDn16AViDmW68LEO45QxZnP7+fpw9e3ZWe25uLoqKitbkd4HVmTG98JSicLItgApPEoYMBgM4jlvRekhkbRw92I533mrDhs1Z4Djl+AOWY8EyDIrXpyrax5tbwGo1MBcUzHo9Y2YGUi/dg9EjR5F7zweQfMF2MOzSxzVQzsQmSZIw5nOAF3ikWVLk9nUphdCwGvDvL+UgQcKgaxi5CVkY8Y4hIAQVOfPvl30ebJSOpyGrR83rjCSJ8Pe3wdN8HP6+ZgSGuyGMjwKYZzK2GUSPExCU4+gZlgNntk5M+pNeAENeBXTpBWBpYqxVQ+9NkWd4eDjkRScAcAblkCKGjc4SLTp/KhLR1q1bp3YIZAZBEPH3v9ai7sREd6yWxiGsq0wHwzDQaDisq0hDWqayW623vx+df3oUI4feQVzZemz83n/OumAzDIPsW25B3gfuArOCdc4oZ2KHIAo40XcGb7UfRmFiHiRIsBricWXJHvkYk9aIjelleK//jNw24BrG5swNyIxLAySJcoYsWahzRvR7EbB1IzjSC358FL7uRnhb31vWa7GmeAh+D4x5FeDMCeDMiWCNZprwZ43RdSbyWK1WWCwWuFwuuS0vLw+FhYVr+tR/wKnsBu+Xgmv2vdREhSchZEHjTh/+/NujGOh1ym2DfeOItxpRWp6OyppMGE3KO+SjJ06i8dvfBd7vXjTedBajx08gedvWWa+vMRnX9gcgUePhk4/jQOdRjAcmuiOJkoiipHzYfU64Am5YdFN3jLdnV+OcrRWbszaiJLkQO7JrkGiyqhQ5Iec3uaQJqzfB23YKvMMGadoTTS4uaXEvxGlhyCqBPqsE+qxS6LNKZo3JJITMTavVorq6GrW1tXC5XCEpOgHALyon+BLnW1ouwlHhSQiZV0eLDU/84QS8ntl33nhexKbtueA0s++YW4qKwBkMEDweua39t79H0uZNK3qySWJHUAhCw2oUb/Z2n1MuOgGgd3wQRUkT4zH7nINYl1Ik77uo4AJcXLgTmigdJ0OigyQK8HU1wH3uKDxnj4J32pD94E8RdAzPOpYzWwGGBaTp4wUZcHGJ0KXkQp9VAkP+BhjyysHS+piELNtk8Tk0NISsrKyQ3LQRgzOWlIvOupMKT0LIbJIk4a2Xz+LgvhbMvOnGsAy27srH1TdXznsx1iVakXzhLgy99vrEOVotjBkZ4L1eaC2WOc8hZMhlQ8tIBwRJxKDbhr3Fu2E1THXh3p5Tg8PdJ6aOd9sQFIJINCbMKjB19MGbhCkx6J8oNJtPwNv2HkSvS7Hf39MIjdkK3m1XtDMsB11qLhitHvrMYhjyymEsqAJnjAth9ITEBq1Wi+zs7JB9v0DvIID0qe8fjM4JqajwJGGnt7cXgiCA47iQ/tKTCV53AH/5/TF0d4zN2qc3aHDp1euxbXcBGIYB73JBM08hmXHVFbCfPAl9aioSt21F2sV71qzopJyJXN6gDwc638WhruNoGm5BkjERlxbtAgD0OgcUhWdNZqU8aVBufCZKkgtwaeFOZMalL/mONOUMWaqV5IzgccLVcBjuhkPw9Z4DRH7eY91nj8J64a3g3XYwnBa65GxoU7KhiU9B0p67VvpjkBCi60x4GxkZQWJiIthlTGq42oyS8uYpS088CQmNkZERed0rulCHlscdwMP/exi2QdesfYnJJuy9vhxlGzMgeL1o/93DsB04iE0/+ykM6Wmzjjfn56HwgY/CXFgIQ3rasmarXSzKmci1r+0Q/njqSXl7xDsGX9AHg9aAXucAKtOmJucwaY347M6PoSAxF2nm5BV9X8oZslRLzZnA2CBcp9+C5+y7CAx1YbF953jnMHQpOeDMCdAmZoCh7uIRi64z4au3txfNzc1ISUlBRUWF6sWnXgyAE6bGeXIzxnxGCyo8CSEAgHGHD4/8+t05i86S8lRce+tGJCQa0f/CS+h69M/y+M3WX/wSlf/+jVnnsDodUnbtXPO4SeSQJAkBIQj9tOUaLi3cib+efg7+aW+4fe+P3XT6XXIROml7Tk0oQyZkSSSBR9A+BNsLv4Cvu2HR5+kyimBetx3m9duhTc0DwzDgTPHnP5EQsmQ9PT1oaWkBANhsNjQ0NKhefCZqHMhzTM1sy4EKT0JCorS0FJIk0Qx8ITTu8OHh/z2MsRGPol2jZXHp1etxwZ4iuJpb8N7Xfw5vT4/iGPt7tbC9cwQpO3eEMmQFypnw5gp40OccQPtYN3ScVu5KCwBmnQkXF+zAq637AQAaloNBa8COnE3IiEtbs7GalDNkqebLGTHgRXCkH8HRXgTHBiGJAqTzphUDjTUNlopdiN98FTQJqec7gUQgus6En+lF5ySbzQabzYa0tNm9t0IljtMB8Mnb0drPgQpPEnaMRlpeI5Q87gAe+dWRWUVnvNWAO+7fgszcBHQ98ij6nnkOkiDMfgGWhaPutKqFJ+VMeBpy2fBs06t4q+MIajIqkG/NAQCMeR1INCbIx1297hKMeu24rGgXNqaVQa/Vr3lslDNkqSZzZmJyoGPw956DpeoSuOoPzjpWm5wNf9eMJ54sB21SFowFG2Gp3A19ZjEYjj6GRTO6zoSXuYpOACgsLFS16IwldMUjJMbZRz1wOnyKtqQUM+77xA4Y4UfdP38J7ra2Oc815mQj74N3I/mC7aEIlUSQx888j6fqX5TXIWwZ6UBeQjYYhkHzSLuiy2xOfCb+5aJPqhQpIecneMfhaT4B97mj8LadghT0AwDMFReCAaNYbxOYWPqE0ZsAgYcuLR/G4k0wV1wIXXIWGEb9iUwIiTXd3d1obW2d1V5YWIj8/HwVIopNVHgSEqMkSUJn6wgyshNw/yd34tHfvAuPK4DkVDM+9A87wbntqP3qNxAYGZl1Lmc2I+e2W5B54/XgtLRsBZmtwJqj+DA+5nNg1GtHsikRdp8DoiSCpQ/gJIwFRnoxXvsGPC0nEbT1zFg/c4K3vRZcfDJ4p01uY8BAa01F6nWfhCG3AhqLNYRRE0Jmmq/oLCoqQl5engoRxS4qPEnYcbvd8pgIs9msdjhRSRIlnGsYRH+vA4N9TtRsz8WHP7ULf/9rLW69dzNg60fdv30TvNM561zrls1Y97nPQBsXPmvHUc6oR5IktI11IdlohXVa99ktWRuRakrCsGdUbgsIAezJ3450S6rqY54oZ8hMkiTB190I1+m34G2vA+8YPu857rNHkXzZfRDcDmiTMqBNyoI2KRNsCLqLk/BH1xn1dXV1oW2OXlvhVnT6YEf+WL28HdBF57hgKjxJ2GltbZWnH6+qqlI7nKgjSRKazgxgsH+iqPR6g6g93oOabbn48Kd3wdnQgDPf+i4Er1dxHmvQo/BjH0HGlVeoEfaCKGdCT5IkHOo6Dm/QizGfE0lGKy4r2iU/xeRYDleVXoynGl7CpYW7cGnhTnmMZzignCHARB57zh7BeP1B+DrrIXrHF3ciw8KQVw7z+h3QZRZBn11Ky56QWeg6o65IKToBwB7kMJZQLm9LDM1qSwiJcJIkoaVpSC46J3k9QYw7fWA6z+Ls938EMaC84Gni4lDx719HXElxKMMlYapttAu/PfFntIx2YHPmRhQl5WHUa0f7WDeKk6bGylxZvAdXFO+BcdpyKISoTZIkCK4xBIa7EBjuhuOdZyC47ec/j9UgmFIEMasc6y+9mZY7ISSMzVd0FhcXIzc3V4WIFuYOGtGSUiNvG4Kze5xFAyo8SdhJSUmBIAjgOLp7vNqe/cspuF0BZOdZ5TaWZVBRnQWx4T00/8/PIPHKmWt1yUmo/NZ/wJSdFeJoF49yJnSeqn8Rj595Xh6/WT90FrkJmdByWpwebEJuQpa8BIohjAtOypnYI3hdCAy2IzDcDWHak01tau68hSej0UGfWQzTuu1wpa6HTmcCx3FUdJJFoeuMOjo7O9He3j6rPVyLTgAISNL5D4oCVHiSsJOVFb4FTiTb90Ij6o73AgD4oIC8oiRwHIvKmiwEjh1E229+B4jKyTMMmRnY8J1vQZ+UpEbIi0Y5EzrrUooUkwb5hQCabK3YlbsFm7M2rNm6m6uNciY2BO1DcDcchH+gDdZdt8E7c4kTALrUPPg6TsvbrMEMQ245TGW7YCnfIY/XtIYqaBI16DoTeoFAAD0z1hsHgJKSEuTkhM9wj5nMuthYeocKT0JiwNGD7Tj0xtSMbp2toxB4CdffWQXPGy+h67G/zDrHlJ+HDd/5FrQWSyhDJWFGFEWw7NTssxvTy7AlayNO9E18UI/XW1CVXoYrS/aAozFuJAzwLjvcjYfgqj8If+85uT1h581gWA6SqOzVwRrM0GeVQpucBUvlRTAUVitynhASOXQ6Haqrq1FbW4tgMAgg/ItOANCzypIsOqcWosKTkKjX0zGGV5+bfZc/vzgJruefQP/fX5i1L279OlT8xzegocWvY5af96N5pB0d9h5cWbwHOo1O3ndf9a04a2vDjWVX4JqSS6CnGTyJysSgH+PvvY7x028hMNgx59InnqZ3oUsvQMA28TSEM5ihS82DNjUPiRfdqfpMy4SQ1WGxWOTiMz8/P+yLTgAQReX1R4rS6xEVnoREMZ83iMcfPg5RUI4dqNqcjbzWN9C/741Z5yTUVKP8q18Gp9PN2keiX69zAL8+/hgACZVp6wEATbZWVGVMzbaXFZ+BX9zwHeg1lCNEXZ7WWjhPvARvRx2koH/BY10NB5FRdQlYvQm61DxwcUlUbBISpSwWC7Zv3w5thKw1zkA5J4LAREbcS0WFJwk7TU1N4HkeGo0GZWVlaocTsSRJwlN/OgnXuPLDWH5xEtZ17cPQkXdmnZO8ayfW/fNnwWoi69JAObNyLr8bT9S/gFdb3oYgiWAZFvnWHFh0ZjSPtKM4KR9mnUk+PtKLTsqZyBW0D8Fx9Hm4m45AGB857/Gs0QJz2U5YKi6ENikLuuTsZX1fyhmyVJQz6oqUohOI3q61M0XWp0sSEwKBAILBIERxdlcpsnhH3m5D61nlAuhx8Xps6HkNY/V1s45P23s5Sj71CTAROLaJcmblXAE3Xm3dD+H9LoqiJOL0YBN25m6BBAnD7hFF4RnpKGciiyQKCI72Y/SNP8HTcgI4zwyQDKeFuXwnLBW7YSyqArMKk15RzpClopxZO5IkoaOjAyzLIj8///wnhDtN5BTJK0GFJwk7Go0GkiRBE2FP3cJJb+cYXn+hSdHGcQwqbe/A1zWj6GQYZFxzNYoe/GhEFp0A5cxqyIhLwzUll+D5c/vkNpt7FImGBFyQU4N4Q5yK0a0+ypnIILgd8A+0ITDUCTHohyTwCxad2qRMmCt3I2HLNeDMCasaC+UMWSrKmbUhSRLa29vR1dUlt0V68cmG8fJjq4l+E0jYqaioUDuEiOb1BPDEH09AEpUfzrZfmI/Ut9+Ce1obw3HIvO4aFHz4/ogtOgHKmaXyBn1oGG5GSVI+EgxT6xHeWnkN3uo4Aj/vx1WlF+OSgp3Isy6vW2K4o5wJX2LAB4kPwH32KPgZXWm1afnwttcpJg9i9WaYSrcgftt1MGSVrFlclDNkqShnVt9cRWd7ezsYhkFeXp6Kka3MuG8cQHgvXbcaqPAkJIpIooRnHjsFp92naC8oScYl15ZD3P1lnPnqN+DrHwCj1SLn9luRc9stYGhx65jQ7xzCC+f2IclkBS8K8AZ92J2/Td5v0ZnxmR0fRVZ8OtLMySpGSmKNJEnw95yF89TrcDceRuYH/wOC2z7rOFarhzYpE8GxARiy1yFu016YKy8CS0v5EBL15io6J0XSeM65BCVesb3wYILIRYUnIVHk0JutaG4cUrSlZ8XjhruqoNVyQHIySj7zj2h96BfIvfN2pFy0m2Z1jAG+oA/PNr2GZ5teBS/y2FNwAdLMKegbH4TNM4oU09Rd1ppMukNPQocfH4PrzNsYr92H4Eif3O468zaMBRvhH+xQHK+JT0bS5R+CPqsYGrM1tMESQlQjSRLa2trQ3d09a9/69euRmZmpQlSrZ44VoKISFZ6ERImOFhvefEk5rtNs0eGeB7YjLmFq7EB8+XpUff870JjNoQ6RqCAoBPGFV76NIfdUl8W6gUZcXjRx06FhqBl7Ci5QMUISa0QhiPHaN+E6tQ/+gbY5P3G5zhxAwtZr4R/sAKszQpeeD316EThTdI01JoScX7QXnQAQlIJqhxASVHiSsDM4OAhBEMBxHNLT09UOJ2IM9o8ru2YwwC0f3KwoOgGAYZioKzopZ+an5bTYW3wRHqt7Rm6z+5zocvTi0sJdqEgrVS84FVHOhB7vHMbYwafgbjgE0e9Z8FjR70FwfBRxGy+GxpoGhlF/DDrlDFkqypmVkyQJra2t6OnpmbWvrKwMGRkZKkS1+vRcZC9RtlhUeJKwMzg4iGAwCK1WSxfqRZAkCa1nh1G+MQOp6Rb87dH34HEFUJPuQ0Hh6s7qGK4oZ6ZIkgRBFKDhpi7vN6zfi3e6T6B9rBsMGNRkVOCeqpuRHR8db9jLQTkTGpIkwdt5BvZDT8HXWX/e/mTapEzEVV8OS9Ul0FgSQxTl4lDOkKWinFmZWCk6AUAvCmCmT5oWpX1vqfAkJMIN9DrR0zmGwT4nNl2Qhwc/dxFe+s8/Iungq6jtPoTyr38VhtQUtcMkIeAL+nCy/wyCwsQ4zsnxuxzL4ZPb7sdfTj+LD1bfgtyELJUjJbHA29WA4b//HLx9cOEDWQ0sG3YjrvpyGHLLadw5ISSmik4ASNKMoWCsX97mEABwp3oBrREqPEnYKSwshCiKYCN4eY9Q8XoCaGmamEwoGBRw+mQvklsPI/fcqwAAT2cXTv3jZ1H25S/CWlOtZqhrKtZzRpIk/K3hJQy7R5FksgIA2se6UJQ0ta5ZQWIOvrznUypFGH5iPWfWkuB2wNfTBF/PWfCO4XmP0ySkwlKxG/EXXB8REwVRzpClopxZHkmS0NLSgt7e3ln7ysvLo/LpcbzZAjBTKxJwUZoyVHiSsBMXR5NHLIYkSTjXMARBmOqO4bLZ4XzpTZimHycIYCJ8mvHzieWcGXaP4JdHH8HpoSYYtQZcWbwHWk6L2oFGZFjSYNIZ1Q4xLMVyzqwFSRLBjw3C39+CwPuz0zJaPbSpuQgOdU4dyHIw5KyHdcdNMJVuVSna5aGcIUtFObM8ra2tMVV0AkBCaR4s3TZ526DXqxjN2qHCk5AIxPMC2s7aMDbiVrRnFaYg/u4b0P34UxDcE/ty774LCZW0REY06nH04yuvfx8+3g8A8AZ9OD3YhM1ZG8EyLFxBDxWeZM0InnGM1+4DJAn6rBJ4uxpmHaPPLEFwqBOswQxT6TZYd90KXUq2CtESQiJFfHw8GIaBJE1NmRjNRWcsocKTkAj02nMNOH64C8XrU5CZmwCGYWAwaFG6IQuamlzEb9iAlv/+GQxZWci++Ua1wyVrJDs+AyVJBTgzdFZuaxvrwu68bdhbchEMmui8Y0rU5etrgfPES3DXH4IkBMHqTch+4MfAHIWnJiEViZd8EHGbroCGlkIhhCxCWloaAKChYeKaUlFRIbeRyEaFJwk7fr8fkiSBYRjoo7SrwUrUv9eHY4cmuq61NA3DYfeitCIdBSXJ0Gg4AEBcSTGqfvR9SDwPJgbGlsRKzkiSBAkS2PeXlmAYBv9v2wfxhZe/Db8QQKIxAbeWX4MrS/bQBC3nESs5s1qEoA/jx1+Gq+EQAgNtin2i3wNv2yloLIngXWMAAFajgz6rBPqsUrA6w1wvGXEoZ8hSUc4sX1pamvxvFwtF55jGgfrcqYmULCyHa1SMZ61Q4UnCztmzZ+Xpx6uqqtQOJ6zYhlz4+xO1iraRITfWVQDpmfGKdk6vB2LkjS4WcsYVcONk3xkkmxJRmbZObk+3pOKeqpvR6ejF/dW3UdfaRYqFnFkNgaFOjB16Cp7m45CC/nmPc554GcnXfAIAoMsogj49HwwXXWPLKWfIUlHOrEwsda0dcvvRxefK22YEVYxm7VDhSUiECAYEPPmHEwj4BUV7SXkqqrbmgGHpCVc0CghB/OnUUzBqDdCwGgy5R5Abn4l4w1S3xWvWXapihCTaiKIId9M7cL77HPx9rQCk+Q9mNbBU7EL8lquhyyqBMWfd/McSQsg0kiTB7XbDYrGoHYrqxh1a5LTXyNu83qVeMGuICk8SdqxWKwRBAMdxaocSNiRJwvNP1GFoYFzRHic4kDTmQnLyZpUiCw/RmjODrmF8d///om98EDnxmdiRuxmiJOJE32lcUriTutOuQLTmzEoIfi8c7z6L8VNvQBgfWfBYLi4Z8ZuvRFzNXmgs1tAEqDLKGbJUlDPzkyQJ586dw+DgIDZs2ICkpCS1Q1KVf2gMgFXeNvgWuOEXwajwJGEnLy9P7RDCzjtvteL0SeXU4nomiCRHO9juZtT1nkD51/4V+hi9cEdjztQONOC/Dv8G3uDEul49zn70OvuRHZ8JV8ADd9ADi86scpSRKxpzZrlEvwf+vhaMvPkIAv2tCx6rTc5G/PbrEF+zFwwbWx+mKWfIUlHOzE2SJJw9exYDAwMAgDNnzsR88WmZMZJBw1PhSQhRQUerDW+8eFbRxjJA6lgzEr2DMPIuuFtdaPjmf2LTT3+sUpRktaVbUmf1cHyvvx4X5m1DTWYldFE2fo6EliRJEJw2+PqaEbT1QJIk6FLz5y48OQ1MhdVI2HkzjHm0NBMhZPlmFp3ARPf++vp67NixA9ooX3d8PgZOp9iO1v5MVHgSEsZ83iCefvQURFFZgaS52pHtPAtLwA4AYDgORQ9+TIUIyVrJsKTi49vuwX+/83sAQKYlDR/ZfBdqMumDP1k+SRQgBvxwNx4CPz6q2MfFJ4OzJEKYnJnWGAfLxoth3XULNGarCtESQqLJXEUnMDFDe3l5ecwWnQAgispSU4rS0pMKT0LClCRJeO6vtRh3+BTtqYwD6wcPQSNOzXiWffutSKikgiTaXJi3DacHmhAUeTyw5W4YtdGxLAUJPTHoh+v027AfeRZJl9wDiMKsYxiGgT6rFMGxfsRvvRZxNZeDjbHutISQtSFJEpqamjA4OKhoZxgGlZWVSElJUSmy8KCxKLsZC1Haq4kKTxJ2WlpawPM8NBoNSkpK1A5HNUf2t6PptPKuYIIJqKh7Dhrwcpu5sAC5H7gz1OGFlUjOmYAQhI7TQpREnLW1oigxH3rNVJebB7feA44+/K+6SM6ZpRC843CeeAXO4y9CcDsAAPZ3nkXKdZ8Ef+6ofBzDctCnFyJ+81UxM1nQUsVKzpDVQzkzYaGic8OGDUhOTlYpsvBhTE8GWtzyNquhJ56EhITH45HXvYpV3e2j2Pd8o6LNYNRgY+tTiqKT0WlR+vl/AsuyoQ4xrERqzrSMdOCn7/wWd1ZeDxEShtwjGHaPYnf+NrDMxP8pFZ1rI1JzZrECQ50YO/gUPC0nIAWVvSYCA60QPU6wetP7TzlLoEsvBKuNjXV/lyvac4asPsqZiaKzsbERQ0NDinYqOpVYTgdgqvBElM5aT4UnIWEm4Ofx5J9OKsd1MsBmsRF6t3JMVvbNN8FMs+ZFHFES8fzZffhz3TMQJBG/Ov4Y9hbvhllnwoBrGE3DLahIo/UQydJ5O+sxtv8v8HU1YqH1Nz3Nx5B40V1gjWYwTGzfuCKErI35ik6WZVFZWUlF5zRcfDKAMXlbmjHZULSgwpOEnaqqKrVDUI0kSfB6grji+nL8/Yk6BAMT47A2FXIwvnpQcawpPx+5d92hRphhJ9Jypm6gEY/U/k3eDopBvNvzHi4p3AmWYdE43IKCxFyYtEYVo4xukZYzC5EkCe6mI7AfehKBwY4FjzUWVcO642YYCjbSOrBLFE05Q0IjlnNmoaIz1pdOmYvNqeyGzEv8PEdGNio8CQkjnW2j6GixoaQsDQ98djee/MMJmAwskvf/WvHsgtXpUPLpT4LV0K9wJKrOqMDu/O042DltjB3DICgEkWhMwI7czVR0kvOSRAHO916H451nwDuG5j+QYWGpuBAJO26CPqMwdAESQmKSJEloaGjA8PCwop2Kzvm5g17FNi+JKkWytuhTKyFhYmzEg86WEQBAS9MQ8gqT8NHPXIi6f/s2Aj7lBSnjmqsRt65UjTDJKmAYBg9uuRstI+0YdNlwS8VV2JhWgRHvKLbn1MCgobF2ZH6SJIF3DGHgr99F0NY9/4EsB1PxZiRecg/0adQlnxASGoODg1R0LpEkRGehORMVnoSEAb+PR2NdP6RpzzW7O8ag6WtFoOmM4lhzUSHy7/9gqEMkK2T3OhCvj5MngjJqDfjszgfgCrhRlVEOSZIgQZInFSJkJkkSEbT1wtdzFvz4CDQJqXMWnoxWD3P5LiTuuQvahFQVIiWExLL09HS4XC709PQAmCg6N27ciMTERJUjC1++/kEAU9drbSA6C1EqPEnYsdlsEEURLMvGxLpOkiihsa4fgYCyP39BcRKGvv8TRRur02H9Fz9PXWxnCNecOd5bhwxLKvpdQ+gY60Z5aik2pK+X9xclTT2FYhgGTJQuGB2OwjVn5iIJPPwDbfD3noPgm5r1UJdeAF9nPSTeDwBgjXGwVF0C64W3Q2O0qBVu1IqknCHhIVZzhmEYFBcXAwD6+vqo6FwEQ1A5GRwz/9xwEY0+vZKw09fXJ08/HgsX6mf/WotgkEdqepzclpxiBld3GP5B5bit9CsuhzErK9Qhhr1wy5mgEMQjtU/jpeY3kWpKwkUFF4BlWDTZWpAdn4FEY4LaIca8cMuZufj722A/8gysO2+Gr7MeIh9Q7Gc4DfRZJQiODSB+85VIuOAGWhJlDUVCzpDwEss5M1l8ZmVlwWQyqR1O2DPMeMAZrbehqfAkREV1x7tRd3yiK4ozz4fCdSkwmXQoLoxD3Q8fVxyrTYhH3r33qBEmWYJh9wh+dPBXaLdPdIEc9oyicbgFlWnrIEoSjvacwt7i3bQ+J5mTJEnwttfBceQZeNvrAACMRou4DRfD261c25czmJF06QehyywGy9HbOSEkvDAMQ0XnIlm5EeSP9svbHAIAblcvoDVC71Qk7OTm5spdU6KZzxfEK89NfZDs7bLDNe7Hhz+1Ez0P/xaCVzmhUPatt0BDF/A5hVPOmLRGuAJuRVvjcDOy4zOQYkpEnpWeWIeDcMoZABCFIMbfex3jp/YhMNiu2Oc6cwDWnbeAYVhIkgiNJRH67HXQpeaCoRsYIRNuOUPCX7TnjCiKaG5uRl5eHoxGmol9JSycBix88rYGgorRrB0qPEnYiZVxAC8+eRpet7LrXNnGDGicwxjef0DRbsrLRdYN14UyvIgSTjlj1pnwTzs/hm+88WOIkggtq8WWrI3YlFGBjellMGgNaodIED45Iwb9sB9+Gs4TL0H0uuY5SMB47Rswl+0EZ0mAJj6V1uBUQbjkDIkc0Zwzoiiivr4eIyMjGB0dRU1NDRWfK8DNmFgwWud8oMKTEBV0tY2g/lSfoi0xxYQrri/HmX/9KiBO6+zPMCh88GNgOHqyEY48AS/6xgdRklwgt61LKcIHNt6ItzuO4HM7H0BWXDo01BWSTCMXnMdfguibp+AEwJmtiN92HeI3XwmOJgwihISB6UUnAPj9fpw6dYqKT3Je9EmIkBATRRHPP3ka0rQZyxgGuPHOaowdO4bxs+cUxydu3Qxr1cYQR0nOR5IktI91o3agAUGRR5zejHTL1FToN5ZdgWtKL4Veo1MxShJuFltwapMykbDjJlg2XgyWcogQEiZEUcSZM2cwOjqqaOd5HoFAgApPsiAqPEnYEYSpfu1cFD7lO3qgA7ZB5QfOiuos5BVYcfw7v1e0s3o9ih78WCjDi0ihzhlBEPCjw7+CQaNHZlw6gImlU64s2QMtpwUAsAxLRWcYC3XOSKKAsYNPwnnsxQULTo01DYkX3QXLhoto/GaYifb3JrL6oi1n5is6OY5DVVUVEhJoxvblCmIcmc4WeVvURud6KlR4krBTX18vTz9eVVWldjirKhjgceD1ZkWbwajBtbdtQPeTTyFgsyn2pe+9DIb09FCGGJFCmTO8wONn7z6ME32nwTIs9uRfgBRzEtxBLxqHW1CVUb6m35+sjlDljCSJCAx2wtdVD/fZo/MWnRprOhIvugPmDRdH7UQkkS6a35vI2oimnKGic205BBEenVXeFjiaXIgQskIHXm+B1xNUtO3eWwou4EXvU88o2rWJibR8SpgJ8AH88NAvUTswMRuxKIk41HUMFxfuxKbMSpSllqgcIQkXkiQhONoPb3sdBI8DAGDIK0dwqBPA1J1sKjgJIeFOEAScOXMGY2NjinaO41BdXY34+HiVIoseTr8F9Vmb5W1D0KliNGuHCk8SduLi4sDzPDSa6EpPnzeIE+90KtoSk03YsacQnQ//EaLfr9iXe+fttHzKIoUqZzScBgkG5RusIInIic/AtuzqNf3eZHWtZc6IfADu+oMIOoYV7ZwxDtq0fASHOiYKzt13wLyRCs5IEa3vTWTtREPOUNEZGn6RVzuEkIjc3wQStQoLC9UOYU0c3Df7aefe68vBsizy7r0HnMmE/r+/AN7lgrmoEBlXX6lSpJEnVDnDMiw+se0+uAMenOg7Db1Gjy9c+P9QTd1rI85a5ExwtB+jbz0KY8nWeSfCt1ReCM3266ngjEDR+t5E1k6k58x8RadGo0FVVRUVnatIr4uNSZmo8CQkBBxjXrx7QLkofHlVBsqrMgEAnE6HvA/cibTLL0Pnw39A5g3Xg6EPpWFBkiTFmokalsPndj6A/znyf7i5/CrFMiokNgluB8YOPA7ne68BogB/bzMyP/gfCDrelo/RmK0wFlZBk5hBa3ASQsIeFZ2hZeaUkxFG67sEFZ6EhMChN1og8FNrc7Isg8uuLZt1nCE1Beu/+M+hDI0sQJIkvNd/BgaNHuWppXLBoNPo8IXd/0/l6IjaBL8XzuMvwn74aUgBr9zOO21wn3sXupQc8OOjMBZshC4tnwpOQkhEEAQBp0+fht1uV7RrNBpUV1cjLi5OncCimDRjEtvonNOWCk9C1lzAz6PuRK+ibcvOPCSn0mLw4ax9tAsO/zhaRifG5QYEHtUZ5VQ8EIiiAMfhZ+A48ixEv3vOY5wnX0X2R38IVqenZVEIIRGPis61JUkGxbbARudybFR4krDT0dEhD8YvKChQO5wV0+o43PeJC3DicBfOnOqFwIvYdSnNfrqaVjtnjvXW4ieHf4Ps+ExszaoCwzA4N9IGURKwOWvjygMmqltuzozXH8TYG38C77TNuZ/htIjffh2sO28BZ6DJwaJJtL03kbUXqTnDcRw2btwoP/WkonPtsVHbuVaJCk8SdpxOp7zuVTRobhwCHxSw67JiXH5dGXo6x2DWiRg9dhxJ27aqHV5UWM2cebPtMH55/BFIkoROew90nBZV6eVgGQZp5pRViJaEg6XmjK/nHGyv/AaBgbZ5jmBgqboYSRffDU085Uk0irb3JrL2IjlnJovPxsZG5OfnU9G51pjYmNeDCk9C1pDPG8RArwOiKGFoYBwaDYeK6ky0/+5hDO17A5bSEhT9vwcRV0pPQMPBmNeB35/8K6Rpgy2aR9qRbEzErRVXIychU8XoiBoEtwPDLzwET8uJ2YNw3qdNzUPajf8IfUZRiKMjhJC1w3EcNmzYoHYYMYE1xUZhT4UnCTsVFRWzZhKNVD2dYxDFqQ+roiiBdY9i+K2J2S5dzS2o+8KXkHPHbci/9x61wox4q5UzicYEfG7XA/jBwV9ClCYmg6rOqMAN6/eiIDF3NUIlYWIxOeNtP43Bp34A0e+Zcz9nToB1zwcQV7OXlkaJAdH03kRCIxJyhud5MAwDjqOx6GryeMcBWNUOY81R4UnCTiQvtDwdHxTQ3+NQtGXmxKPntw9BEoSpRoZB/IaKEEcXXVYzZzZnbcQ/bL8fP3/3YdxUdiXuqbo5rD80kOU5X874Bzvg7Twz58yCjFaP+K3XIPGiO8Fq9WsTIAk70fLeREIn3HOG53nU1dWBZVls3LiRik8V+cSAYptmtSWELIlt2A1BmFpChWEYZOcloj87B+PNLRC9PgCAtboKiTU1KkUZ2yRJwllbG/ISsmCatnjznoILkBOfgaKkfBWjI2qQBB6e1vfgH2gDWBam0q1wn9k/sZNhYS7fieQrPwqN2apqnIQQshKTRafT6QQAnD59mopPsuao8CRkjbzyTD10eg6pGRZoNBySU8wwmXUo/sSDyLr5BnT+4U+wn6pF0SceVDvUmCRJEs4MnUXjcAvaxjpxccEOmHVTs5BS0Rl7BO843A2Hwbvtcps2MQO69AJIPI/Um/8JBhrHSQiJcDOLTgCw2+04e/YsKiqoB5YaAgKvdgghQYUnCTt2u10eE2G1WtUOZ1n6usbQ2ToCAGhtGkZqhgVFt0wN0DdmZKDsS19EwOGALiFBrTCjxlJzxul34fv7H0JRUh7i9Ba4Ah682f4OLinYAYvevPYBE9VN5gwAaLproc9ZD8+5oxADvlnHWnffAVPpVrAcvWXGsmh4byKhFY45M1fRCQBarRb5+XTDVS1aJjaeNNO7KAk7XV1d8vTj4XKhXqp33p5ackEUJYyNeJCRFT/rOCo6V8dScsbmHsW33v5v9I8PoXd8AJcU7oRJa4Q36MWYz0GFZ4zo6uoC77TB0vAKNMMtMBZVI/HieyZmr30fw3IwlW6FPr1AvUBJ2IiG9yYSWuGWMzzPo7a2FuPj44p2nU6H6upqmM30/qcWI5QT1EXrzBJUeBKyyviAgHMNQ4q2wpIU6AyRt45XtBlwDeM/3vgJRrxjAABP0IsDnUdxScFO7M7fhtyELJUjJKEgSSI0HcdgbngdjDAxoYO3rRbm8guhTyuAf6gDnCkelvJd4Mx0c4gQEvmo6AxvCewIcuxTnx05BBY4OnJR4UnCTmZmJkRRjNjlCU4c6UIwICjaLthTqFI0sWGxOZOgj4PVGC8XnsBEEbIupQiFtFxKTAiM9GH4hYdg6G6ctW903x+Q84n/Bqs3wpBXDoajm0VkSqS/N5HQC5ecCQaDqKurm7PorKmpgclkmudMEirxBj20ol3e1lLhSUhopKamqh3CitQd71FsJyYZEHjhL/DdfScMaWkqRRXdFpszRq0B/7rn0/jGvh+hb3wQ2fEZ+MpFn0aqJXmNIyRqk0QBYwefgP3Q04A4exIHzpKIlGv+HzTmRGgKE1WIkIS7SH9vIqEXDjlDRWdksK4rgLnvlLxt0EfnUl1UeBKyipx2Lwb6lGt3ZktDGH7jTQy/9TYSt2xG3j0fgKWInoCGii/og0FrkLfj9RZ87ZLP4A/vPYmPb70HcXqLitGRUPAPtGHo6Z8gONo35/646suQtPfD4AzU1YwQEj2CwSBqa2vhcrkU7VR0hh9Ww4KZ9mCcidKOFVR4ErKKjh3qgDRt1V+WZZBU//rEhihi7NhxCD4fNn77P9QJMMYMuUdwsPMoqjMqUDxteZQUUxL++cKPqxgZCQVJ4DH61mNwvPt3QBJn7dfEpyDlun+AqahahegIIWTtUNFJwhEVnoSsoobafsV2spGH1jPjCeiNN4QypJjVZe/F8b468KKAE32nIYgC1qXQGoyxwtffgqGnfwJ+bGDO/YbccqTe8I/QJqaHODJCCFl7TU1Ns4pOvV6P6upqKjrDkJtzYyB16v3KGKXLd0XnT0Ui2unTp+Xpxzdu3Kh2OItmG3RhbMSjaEsdblBsG3NzkLhtSyjDigkzc6Z+8By+e+DnqM6oQL41BwBwaqABFp0JWfEZKkdL1trIG4/AceQZKLofvI81xiHxojvQpcvGQHsvtD1DEXWdIeqJ1Pcmoh41c6akpAQulwt+vx/ARNFZU1MDo9EY0jjI4vQHXHgnLk7eThB5fFi9cNYMFZ4k7EiSJP+JJHUnlJMK6XUMUlprFW2Z11wNhonW1ZnUMz1nOsZ68KPDv0JACOJYby0EUURRUh5y4jOREUeTO0UzSZIQ6G9FYKBtjqKTgbGoGinX/QO08cmQ6uogSULEXWeIeiL1vYmoR82cMRqNqKmpwalTpwCAis4w5xjRoaRht7zN610LHB25qPAkYcdoNEKj0UCrjZylDCRRwumTvYq2HL4PWikob2ssFqRfsTfUocWEyZzxSD58Z//P4A5MPXk+2X8aWXFp2JGzCWy0jtYnEHxueM4dQ9A+CF12KQLDXRBcE8vmsKYEJO65C/GbrwDzfg5E4nWGqItyhiyV2jkzWXxOfk3Cl2/MAcAqb+sC0XmDiwpPEnZKS0vVDmHJOttG4BjzKtqSO48pt3fvAqujDyxrYTJneIFHjfsM3mp/R963LrkId2y4XvV11MjakCQJ/v5WeNtrIQkTy6QwDAtT6TaM1+6DsbAKKVc9OGssZyReZ4i6KGfIUoVDzlDBGRkM48plvqjwJITMq+6E8mlngjYAi39E3mY4Djm33BziqGKPhtPgk9vuQ4YlFX85/RzKU0vxlT2fhl6jUzs0sspEvwfejtPQxKfA03Ji1n7OYkXaDf8Ic/kOMBzd8CGERKdAIICBgQHk5ubSUJ4IZtEYFNvR+j9JhSchKyRJEob6nYq2NFuD4qIRX1kBQwbNnhkKDMPg1oprkJeQhbLUEio6o5Cn5QSGX/wVBNcYsj70n+BM8RA8U7+DrN4Ic+k2aJMyVYySEELWViAQwKlTp+DxeBAIBFBcXEzFZ6SKzgecs1DhScgKuV0BfOBj2+AY86LueA9OH+1A2uhZxTHZt92iUnTRz88H0OXoRXFSvmIM59ZsWpsx2giecYy89nu4zuyX22wv/gLpt38ZrtNvQ4IEfUYRTEU1YDT0lJMQEr2mF50A0NMzMcEhFZ+RSdLGKbZ5NjpvmlPhScJOT08PeJ6HRqNBTk6O2uGcV0ezDbZhFxKsRtRsz0PagT/CJ0xNbmPIykRiDRVBa8HPB/B2xxF0DfXglPY0alIrUFpQonZYZA24zhzAyOv/B8GtXBc3MNQFV/0BGIuqwZkToE1c3HI5kXadIeqjnCFLtVY54/f7UVtbKxedk2w2G/Lz82kCrAhkyc0EutzyNquNzpsHVHiSsDM6OiqvexXub+58UMCIbeJC4bB7Mdo7gkCvA/HTjkm5aPfcJ5MVOTN4Fo+feR4VqaXwer1wu1ywjY8iLiUBGZZUtcMjqyToHMHwc/8NX2f9nPuNhdWwbNgDrXVpS+VE0nWGhAfKGbJUa5Ez8xWdBoMBNTU1VHSSsEaFJyErYB/1Ktbncre1ItE/Jm8zWi3SLrtEhcii25DLhp8c/i3GAy6MeMdQos8FCwYahoNFZ1I7PLIKJEmC48hzGNv/V0i8f9Z+Vm9C8hUfgaXqUupWRgiJCX6/H6dOnYLXq5xF32g0orq6GgaDYZ4zSbjTJeUAmBqmJWmi8/+SCk8SdtatWwdJkiLiw+TY6FS3CEiA0NIIFqLcZC4sgCGdJhVaTZ6AF9898L8YD0wsrjzsHoEv6MPegt24sngPLDqzyhGSlQrahzD45PcRGOyYc79p3TakXP1xaOKSlv09Iuk6Q8ID5QxZqtXMmYWKzpqaGuj1+hV/D6Ieu3NIsS1I/DxHRjYqPEnYiZQ7dpIkYWxkqquLf3gY2rF+xTHJF2ynDymrrHWsE0Mum6LNakzAdeWXI94QN89ZJFJ4uxow+MT3IPrcs/YxGj3it12LpEs/uOLfq0i5zpDwQTlDlmq1coaKzuhnD4wrtoOSoFIka4tWVCdkmd54sQmH32xFb5cdAT8PV3MrTMGpJR008XFI3LZVxQij08b0MvzHZf+MREMCACAvIRvfuvwLVHRGAeepfeh/9D/mLDp1mcXI+vB/Ivmye+lmDiEkZvh8Pio6SdSgJ56ELNPpk71w2n1w2n1oPTuMFJcH6cLUG0PculKYcrJVjDB6lSQX4LtXfBm/Pv4oPrblAzBpjWqHRFbI19sM24u/BCRR0c7ojEi86E4kXHADFZyEkJgyWXT6fD5Fu8lkQnV1NRWdUcTfPwwgUd7WBMX5D45gVHiSsONyueQxERaLRe1w5tTVNgKnfdobgQQkuXsgfyxmGKRedikYjlMjvJiQZLLiy3s+BSAycobMLzjaD297LYzFm+BtOSG3a6zpyLz769AmZa7696ScIUtFOUOWaiU5Q0VnbNF4AoptNjrrTio8Sfhpa2uTpx+vqqpSO5w5HTvcqdjWSDwyx5vlbUMmrd25miRJwllbK9IsKUgyWmftj4ScIXPzD3bAc+4oJEmCPrMYgtuOQH8r9LllyLjzK+AMazNZFOUMWSrKGbJUK8kZr9eLQEBZjJhMJtTU1ECn061mmCQMmFjlg4po7d9DhSchSyQKIlqbhhVtie5uaKYNBE/cVA2NmWZXXSkf78e4z4VuZz9aRjuAQSA3IROVaesRr6cnDpFMEgV42+vg6z2naDcWbYIhez2SLr8PrIY+XBFCYlNiYiI2bNiA06dPQ5IkKjqjXBxGkOUYkbc5BBY4OnJR4UnCTmpqKkRRBMuG59xXzY1D8HmDirYsx9SHZ1avR/KFu0IdVtQRJREPvftH1A02Ynt2DVLME0tndDv60T8+hOvX74WOm1goO9xzhigFhrsACbOKTgDQZxTAvG47GHZtu6lTzpClopwhS7XSnElKSsKGDRvQ3t6OqqoqKjqjWJyGhV5wydtaKjwJCY3MzNUfz7Wa3nu3S7GtE31I8vbJ26b8PJgL8kMdVtR5qv5FHOk5CQDY33kEmzI3oDAxDwyArVlVctEJhH/OkAmSwGPk9YfhPPEK0u/6CnSpeRNF6PsM2etgLKoJySRClDNkqShnyFKtRs4kJycjKSmJJleLclpGeXMiWv+36bYdIUvABwW0t4wo2pJc3YpfJOumGupmu0In+07jifoX5G1RklA30ISAEMCO3M3Is9JswZFG8I6j/y/fhvP4S4AkYviZn0CXkgXOlACG5WAu3QZT8Sb6cEUIiTmiuPBMMnRdJNGCCk9CluD0yV4EA8pFfbMdTfLX2sREJG/fFuqwok5ZSgk2ZW6QtxmGwUc334nLCnchNyFLxcjIcgSGu9H7f1+Gr+O03Cb63Bh86scwr9+OuKpLoc8sUjFCQghRh9frxdGjRzE0NKR2KISsOepq+z5JkvD888/jqaeeQmNjIzweD1JTU7Ft2zZ88IMfXJUZ7E6ePIlHH30UJ06cgM1mg16vR35+Pi677DLce++9sFqtK/9ByJpqb7YptuNMLHJyE+BqGwVEEXGlxTDl56kUXfQw6Yz40u5P4rHTz+C5ptfwoZrbcXnxbrXDIsswfuYAbC/+ElJQuSQAw2lhvfA2aOKSVIqMEELU5fV6cerUKfj9fjQ0NAAA0tLSVI6KqEGADynunqkGLjrXU6HCExNrJf3TP/0T3nrrLUV7b28vent78fe//x2f/exn8fGPf3zZ3+MHP/gBfve73ynagsEg6uvrUV9fj7/85S/42c9+hk2bNi37e0SLxsZGefrx8vJytcOR8byA5kblHclNu4tRfdW1cLV1oPeZZ5G0bQtYrXaeVyALkSQJfiEAg2ZibTKWZXFv9a3YmlWN9SkLPw0L15yJZZIkYWTfH+B89++z9nGWRKTf/iUYsktViGwC5QxZKsoZslQL5YzH40FtbS38fr/ieI7jkJycHOpQicqcogdawStvB6K0TyoVngC++tWvykVncXEx7rzzTqSkpMgFocfjwY9//GOkp6fjpptuWvLr/+53v5OLTq1WizvvvBMbN26E0+nEa6+9hmPHjmF4eBgf//jH8be//Q25ubmr+eNFnGAwiGAweP4DQ6z1rA1+Hz/VwABbdkxMImQpKsD6z/8TpPOM0yDzqx1oQI9zAJcU7IBFPzVGtiy1+LznhmvOxCrB78XgE9+Dr/PMrH36zBKk3/4v0MSr+8GKcoYsFeUMWar5csbj8eDUqVOz1uk0m82Ij48PVXgkjIz5ElBfcKe8bQg6ca2K8ayVmC88Dx06hOeffx4AsGPHDvz617+GXj/xxOX666/H7bffjnvuuQd2ux3f+c53cPnll8NiWfz6gQ6HAz//+c8BAAkJCfjTn/6E9evXy/vvv/9+/Pd//zd+8YtfwOl04qc//Sl+/OMfr+JPGHm07z8x1IbZk8OG2j7Fdl5hEuISDIo2hqbZX5aB8SGcG2kHALzZ/g4uLtyxpHU6wzVnYlHA1ouBv3wbvGP2eCVDQRUy7vwyWK1ehciUKGfIUlHOkKWaK2fmKzotFguqq6spv2JUIEYeXMR84fn73/8eAKDRaPDtb39bLjonFRcX4+tf/zr++Z//GXa7HU888QQ+8pGPLPr1Dx06BI/HAwB44IEHFEUnMDFpymc+8xm88MIL6Orqwr59+8DzPDSa2P2vCccuTHxQwLn6QUVbRTVNrb8axv1uvNq6HwbNRBHv5X3Y33EEV5deCs0i13IMx5yJRe6W9zD09I8hBbyz9lk27EHKdZ8EqwmPdegoZ8hSUc6QpZqre+1cRWdcXByqqqqo6IxhsfK5P6Yfz9jtdhw+fBgAcNFFF83bxfXaa6+V+9u//PLLS/oePT1TA4XLysrmPIZlWWzYMDGDp9frxdjY2JK+B1l7DrtX+XSTAcqrqPBcDQ+/9zieP7sPx3pOwc9PvBmvSy5adNFJwoPj2AsYfOK7s4tOToOkvR9G6o2fCZuikxBCQo2KTrKQOK1RsR2tC+jERnk9j+PHj8trJ+3YsWPe41iWxbZt2/Dyyy+jtrYWDocDCQkJi/oe07vldnd3z3tcX99EN06O4xb92iR0WJbFhz65Ey6XHydeOAan3QuTPlovC6HTONyMA51HAQCdjl70u4ZwccFOlCQVqBsYWRLX2Xcx8urvZ7Wzxjik3/oFGAs2zHEWIYTEBrfbjdra2jmLzurq6ph52kVITD/xbG5ulr9et27dgseWlJQAmJip8dy5c4v+HtOXYXnkkUcUs5dNOnr0KOrq6gAA27dvh05HTwXCTUvjEI4d7kBHywh0zSeRcehRHL3vI2j64Y/h7uhUO7yIFBSC+PWxxxRtDBhclL8NLI2VjQiSJMHbVY/AYAcM+ZWKfdrkLGQ/8CMqOgkhMY2KTrIYgqgc6sez0fkEPKY/3fX29spfZ2dnL3hsRkbGnOedz4YNG7Bnzx4AQFtbG+69914cOXIE4+PjGBgYwGOPPYZPfepTEEURFosFX/ziF5f4U0Sf/v5+9Pb2or+/X+1QAACucT/c7okbBl6XHwMjPARGA9Hvx8jBwxh+e7/KEUYmjuVwzbpLYdROdWG+u+omlKWWLPm1wi1nYoEkifA0H4e3Y2LmWn1uBbSpE8MVjIVVyP7oD6GNT1EzxAVRzpClopwhS9XW1ob9+/djZGRE0R4fH09FJ1HgZpVk0dmrLqYzfnR0VP46MTFxwWOtVqv8td1uX9L3+elPf4rPf/7zeOutt1BXV4cPfehDs47ZvHkzvva1r6GysnKOV4gtw8PD8rpXmZnqj6Ps73HIX/ttNnBBL/SCR25LumC7GmFFPJZhcWXJHmzNrsL/nXwcNvcori65ZFmvFW45E+0kgYe78R0ERqdmemYYBqbSbUDJFiRe8sGwf2pNOUOWinKGLEUwGMTJkycRCATAcRzi4uIATBSdVVVVVHSSmBTenwzWmM/nk7+eOZvtTNO7v04/bzHMZjO+973vyU8+Z2IYBoWFhYriloQHURAx1O+UtwWvF1atX74PpbUmwFJcpE5wUSLJaMU/X/hxfOPSz4Z9sUIA3mmDr6dJUXQCE92kzeu2Ifmy++j/kRAS87RaLZKSkhRtVHSS+bDm2JjfJaYzn+d5+evzjaucvn/6eYvx4osv4l//9V/h8/mQnp6OO+64A8XFxXC73Thw4ABeffVVPPXUU3j55Zfx8MMPK8aFqqGlpQXFxcXy3TkA8Pv9OHv2LICJp795eXmzzplcNmZm/DabTZ48KTc3V/F0WRAE1NfXA5gY71BYWIiioiJIkgSGYdDR0QGnc6Lwq6ioUFys7XY7urq6AACZmZlITU1VfN/Tp09DkiQYjUaUlpYq9vX09MhPvNetWweDYaq7p8vlQltbGwBAy1kQDAryPlN+Hqyb7oY42APxbAtSkpPATpuJrr+/H8PDwwCAoqIixeRSPp9PHh+clJSEnJwcRUzNzc3wer1gGAYbN25U7BseHpa7d+Xl5SluUvA8j4aGBgATb2oFBQWKc9vb2zE+Pg4AqKysBMdNzRY7NjYmT3qVlZWFlBRl18jJsccmk0ke5zypq6tLfvq/fv16xc2b8fFxtLdPrMuZnp6O9PR0eZ8kSdj/3iFYuTjo9Xp5tufJLrd9fX2w2WwAJpYzMpvN8rler1cem52cnCx3kZ/MmZ6eHtTV1Slmip40NDSEgYEBAEBBQYFike5gMIjGxkYAE+vt5ufnK85tbW2F2+0GMNF9fnphNTo6Ks9enZOTo/igIYoizpyZ6IpqNptRXFyseN3Ozk44HBNP1MvLyxWzGjqdTnR0dACY6OqflpamOPfMmTMQRREGg2HWGPXe3l65a1dpaSmMxqnZ8txuN1pbWwEAKSkpyMrKUpzb1NSEQCAAjUaDiooKuV2SRPS8+DsE6l6Hd+f9SDfFg/NN/G4yLAdt4SacG3EDI3Vrfo2YbrnXiKKiIrS1tUGSJDQ3Ny/7GpGamjrr6VdjY6P8ZGzmcgp0jZiw0DUCABoaGsDzPHQ63awZ4ZdzjZh07tw5+Hy+ZV0jJEmCRqOByWTCTHSNmDA4OIjBwYmlxwoLC1X7HDGdmp8jkpOTYTab5UkpN27cCI1GQ9eI90XbNWIlnyNGRoYAzO5JodY1YjIHV1tMF57TLxLBYHDB4nP6oPClTP6zb98+fOELX4AgCLjgggvw0EMPKS4id9xxBw4ePIhPfepTcLvdeOCBB/DCCy/MuviFkiAI8my/kyRJQjAYlPfPxPO8vH8mURTlfTNfF4C8b7Kgn/7vMzAwIO+XJGnemOZ73ckPCgvFu9DrnjzYA/tIAEkpZiSlmpGVkwBW74eQmQldXh4KZrw5Tv9ZF3rduW5eBINBBINBMMzsfv0red3V/L+ZThCEeWOa/roz86XT3oO60SaYORMqE5Vv5Od73fnycDJnJr/vXE/cpr/uQvkdyn/DhfJwoX/DydcVRVHxAWDScv4NZ8Y0/Twx4MPQc/+D4Nl3wQAwHH8c3B1fg8bWBtHvgaVyN3h9HIID9ed93bms1b/hQtcIi8UCnucVx6zG607Gu5ifla4RC+c3z/Pn/V1ean5P/hsu5xox+TPO9e8f69eIuV5Xzc8R872uGp8jcnJykJ+fj5SUFPl16BoxIdquESv5N/SKyslHp0etxjVirv/L1RDThef0u5Z+v3/Rhef5uuVOkiQJ3/3udyEIAhISEvA///M/iqJq0u7du/HFL34R3/rWt+BwOPD73/8eX/rSl5bwk6wujuNm/cIxDCPfRZkrQTUazbxrULEsK++b6xd5ct9cF/bprzvzQjo9pvleV5KkOeNazOtKkoTBXjf8PgFOuw8dLSPgLixAQblWEfd8P+tC8c71s2q1WvA8P+cbxkped63+bziOmzem6a87PV9snlG8118PluPgFr14z9GApJEUlCYXLup1z5eHWq0WgiDM+bNMf92F8juU/4YL5eF8/4bTX1cUxTnjWsm/oUajgSiKcry804aBx7+HwGD7VGx+F1yv/ALZ9/0HIIrgzAkQ/P6Yu0acL166Riz9GjH9dRmGWfLr0jVC+bqhuEbM97r0OWLqdadPUDk9XrpG0DVi8rWYBSYTUuMasVZDZhhprltWMeIb3/gG/vrXvwIAXn/9deTm5s577BNPPIGvfe1rAIAf/ehHuOGGG877+g0NDbjlllsAAPfccw/+7d/+bd5jA4EAtm/fDq/Xi+LiYrz44otL+VFWxOVyyd1fgInuDnMVyLGmu2MU//ezw4q2ez9xAYpK1XsaHclO9p3Bf7/zO2xML0NuQpZ8gdyVtwU58TRRRzjy9pzF4BPfg+hxKncwLJKv/BgStl6tTmCEEBJGxsfHwTAMfXYiy/an7/0a7cNT3do1gg9f+entqsWzVrVBTM8AMb0P+/mmR5/s0w1g1niH+Uz2qwbOv06oTqeT+21PjgWJVT6fD16vd8mTOK22+veUk6foDRoUFCerFE1k8wV9+N2JP8PL+3C09xQOdh6FK+BBYWLuqhSd4ZIz0cT53mvo/9PXZxWdrMGCzLu/HvFFJ+UMWSrKGTKX8fFx1NbWora2Fi6XS7GPcoYsFhuly6fMFNNdbacP0G1ubsb27fMvizE5EJlhmFkDzBfD7/ef95jJx9pzPQ6PJefOnZMH3as50VJbs02xnZ1npdk6l+nxM89j2DO1fNGg24Zx/zhqMioWOGvxwiVnooEkibC99BuMv/fqrH3a5Cxk3Pmv0CYt7uZbOKOcIUtFOUNmmiw6J8fe1dbWorq6Wn4yRDlDFsvMKYf7RWsZGtOfojdt2iT3a3733XfnPU4QBBw7dgwAUFZWppjFaiHTZ+CanJFqPjzPy7MkLvaJKlk7HncAI0PKO5e6U2/i3E/+B6PHTkBc4szGsUyURIx47Yq2yrR1+OS2+6Dl5h7vQNQh+Nzo+8PX5iw6dZklyPrw96Ki6CSEkJWaWXQCE5O1dHZ2qhgViVRmaQTp463yn1R3+/lPikAx/cQzPj4eO3bswIEDB/DGG2+gr69vzqLvhRdekKfMvuaaaxb9+hs3boTFYoHL5cK+ffvQ398/76LTzz77rNxF48ILL1zGTxM9kpKSwPO8qutcNdb1Y/roZ0YSkTxYj+E+L4bfehtpey9H6T/+g2rxRRKWYfG5XQ9gd+82/O7EXzDud+HBrfdAp1n87NDnEw45E+kCth70P/ZNCOMjs/bpc8qRev0nwRnMc5wZmShnyFJRzpBJTqcTdXV1s2YZTUxMVCztQTlDFivBwMEUnBraokVggaMjV8z/Jnz4wx/GgQMHEAwG8fnPfx6//e1vFYNnW1pa8J//+Z8AJtbPueOOOxb92jqdDvfeey9++ctfwuPx4LOf/Sx+8YtfzFpQ+OTJk/jOd74DYGKGqQ996EOr8JNFrpnrUqnhbP2gYtsYcMIgeOXtpG1bQh1SxNuWXY3KtHU4Z2tHVlz6+U9YgnDImUgWHBtE35++AdHjUO5gGMRVXYbkKz8KVmeY++QIRTlDlopyhgATRWdtbe2s5SkSExOxYcMGxXApyhmyWElFuTB21cvbhiUs3RhJYr7w3L17N6666iq88soreO+993DTTTfh7rvvRmZmJhoaGvDnP/9ZXvD1X/7lX2YVje+++y7uv/9+AMD27dvxpz/9SbH/E5/4BPbv34+GhgacOnUK1157LW655RaUlZVBEAQcOXIEL7zwgnzX7Ktf/eqsxWxJaImihO72UUVbgm9I/pozGmHdsjnUYUWcAB+A0+9Cinnqd8akNaImc3XGdZLVwbvG0Penr80qOhmNDkmX34/4LVfPOTU/IYTEmqUUnYQsBWfUg5u2WiOnj8733ZgvPAHg+9//PtxuNw4ePIienh788Ic/VOxnGAaf/vSn8YEPfGDJr200GvG73/0On/vc53DkyBGMjY3h97///azjtFotvvKVr+Duu+9e9s9BVkdvlx1+n7L7TLJnaqZhc1EhuHnWYiJTTvafQbejD+tTilGZtg4cS2/I4UYSeHjOHQOjVa5NzJrikX77l2DMLZvnTEIIiS0OhwN1dXWzis6kpCRUVlZS0UnIIlDhiYni8Le//S3+/ve/45lnnkFjYyPGx8dhtVqxZcsW3H///diyZfldK5OSkvDwww9j3759eO6551BbW4uRkRHodDpkZ2fjwgsvxH333UdPOsNEc6Oym60p4ECyZ2pplYRqmpnufLodfehyTPybNdlaMeAaxs7czYjT0xpn4UISBbgb3wHvGoO5/EJ4zh5B0NYD1hiHrPu+BV0KdREjhBBg4aJzw4YNNOM9WbEA54c3bmo1BVEXnQ84qPB8H8MwuPHGG3HjjTcu6bwLLrhAscDqQq+/d+9e7N27d7khxozm5mZ5+vHlLF2zUi0NQ4rtVHcXNFJwYoNlkbxj/mV3COD0u/DQ0T9iXXIRzDoTAMAT9ELDrt3lRu2ciTSSJMJz7hgCoxM3BxiWhalsB/xdDUje+5GYKDopZ8hSUc7EppUUnZQzZLH6xDE8mzfV2y6JD+A2FeNZK1R4krDj9XoRDAZnzRYXCk6HFwN9TkVbsrtb/lqfmgoTTRawoCfOPI/W0U50jHWjPLUU65KLsDlnA4zatZucRs2ciTSSJMFz7jj8Q8op/zmtHmm3fB4aS6JKkYUW5QxZKsqZ2LPSJ52UM2SxRgb1qDwxtXIGr3ctcHTkor4BJOwwDCP/CbWWRuXTTo0YUEwsFLe+FAyN45hX+1g3Xm3dDwAQJBFnhs7i3EgbchPWdu1HNXMmkkiiAME7Dn5cOXkWw3KwVF4UM0UnQDlDlo5yJvb09fXNKjqTk5MX3b2WcoYslv/9iUwncbw0z5GRjZ54krCzceNG1b73QK/yaWeSuwcspn75Uy66KNQhRZS/nvk7pGkLoGo5LT62+a41f9NVM2cihSSJGH7+IQRtPUi77YvwthwH73aAYVhYKi6EJiFV7RBDinKGLBXlTOxZv349BEGAzTYx9i45ORmVlZWLHtNJOUMWSzOsLDyNvugsPOmJJyHTXHRFKf7hSxfj6lsqkWn0Ic3dJe/TWCxI3FyjXnAR4NMXfAhXFu8Bg4lC89byq5GdkKlyVESSJNhe/g1cp9+Cv78Fg49/B8bizdDEJcNcsQvaJPo/IoSQmViWRUVFBZKTk5dcdBKyFAk6s2I7Wp+R0xNPQt4niRLOvNcHPiggNd2CcvsxwNUu748rWw9WQ78yC7HozHhg6924pHAn/n72ddxYdoXaIcU8SZIwuu+PGD/5qtwWGOrE4JM/QNZHvgeWo5wmhJD5sCyLyspK+WtCyPLRbxAh77OPeeD3BSEIIvo7R9HuiUOAm5oQx7p5k4rRhbfp3WsBoCS5AJ/b9QC0XHROBx5JHEeehePd55SNrAZJl9xNRSchhLxv5vvYdCzLUtFJ1pTIGBXbAhudn5/oUwcJO8PDwxBFESzLIjU1dOPOhgenZhDz9PZCF/RAL/gmGhgGyTsvCFkskcTudeBIz3vYnLkBaZYUVWJQK2fCnf3o8xh940/KRoZF2i2fhalk+WsTRwPKGbJUlDPRa2xsDB0dHdiwYQO02tX7wE85QxYrLjcb6PXK24w2Om90UOFJwk5/f7+87lWoLtSSJGFk2sBuX/8ALIExeVufkgJ9UlJIYokkoiTieF8dnH4X3uo4gsLEXFSnl0On0YU0DjVyJty5z76L0df/MKs99YZPwVK2U4WIwgvlDFkqypnoNDY2htOnT0MURdTV1aGqqmrVik/KGbJoXHQWmjPFxk9JyHm4xv3w+4LydmBkBKaAQ962lJaoEVbYO9B5FCMeu7zdPtaN1rHO+U8gIeHra8bQMz8BJFHRnnjJPYjbeIk6QRFCSJgZHR2Vi04AGB8fR11dHa27SUJOa1VO8idp9CpFsrboiScJO3l5eZAkKaTrXr3w5Gn4vEEkpZhgNnJgnKPQin55v7WmOmSxRIph9wh+dexRxOnM2JS1AUlGK+L1FqxLLgp5LGrkTLgK2ocw8OdvQeKDinZj8SYk7LxFpajCD+UMWSrKmegyOjqKM2fOyEXnJIPBAG6V1uumnCGL5fE4FNuSJMxzZGSjwpOEHavVGtLv5/MG0dwwCEkCutpGoeGAIlGcmsqaZZG4dXNIY4oEf3jvSfAijzGfA2+0HUJxUj4+t/MBcOzqvGEvRahzJlwJPjf6H/kGRJ9yPTBdeiHSb/siTY4xDeUMWSrKmegxX9GZlpaG8vLyVSsUKWfIYg37xhTbfio8CYlODbX9mD6ZnSBISPT2y9v61FToaHynwsm+0zjae0rRlmxMVG1yIQJIfBD9j/0HeMewol2TkIqMD3wNrDY6u+0QQshSjIyMoL6+fs2LTkLIbHT7m8S8+lN9im2T4II5OG18Z3ERvRHNYNaZkB2fIW/H6S34xLZ7VYwotkmSiMGn/wuB/lZFO2uMQ/od/wqNxapOYIQQEkZGRkZC8qSTkKXyjyifeHL8/Mv7RDIqPEnY4XkewWAwJIP7RUFET6fylz1xvBvT33riN1aueRyRZn1KMX545VdxT9XN0HFa3Fd9Kyx6s2rxhDJnwlFwdAC+rnpFG6M1IPXGf4Q+PV+lqMJbrOcMWTrKmcg2WXTOXK8zPT19zYpOyhmyWMzYuGKbE6Kz8KSutiTsNDQ0yNOPV1VVren36u4cQzCg7Eef4WyRv2Y0GiRuofGdc9FwGtxcfhUuyt+OJKNV1VhCmTPhRhIF+LoaYKm+DO4zByC47QCrQdKlH4Q5xtfqXEgs5wxZHsqZyLVQ0VlWVrZmTzopZ8hixWkMiu1offZOhSeJac0NQ4ptLSMgPjAibxvS02CgtbdkDp8TcTqLYpKaZFOiihHFNkmS4Gk+Dn58BKzOCEvVpXCfPQJz6TbEb71a7fAIIUR1NpsN9fX1IS86CVkKkzCCFNfUU0+N5F/g6MhFhScJO/Hx8eB5HhrN2qdnV9uIYtviH1XcZTKXlIChmUABALwo4O2Od8ExLMpTS1FgzQmbWVJDmTPhxNfVAP9gh7zNaLSI33wV4jdfCYYJj/+bcBWrOUOWj3Im8oyOjs5ZdGZkZGD9+vVrXnRSzpDFitdJiAuMytsaBFSMZu3QbwIJOwUFBav6el1to8grmj0rrSRKGOh1KtriXVMTDdkNaVi3jboqTmod7YCPn7gDd7yvDk22Fuwt2g2dRqdyZKufM5HAP9AOb+cZRRvDaRC3YQ/NYLsIsZgzZGUoZyKP2WyG0WiEx+OR20JVdAKUM2Tx9IxyKbpovXUcrT8XIQCAt145i4f/9zAOvTE1btPZ0AgAaG+2geeVM9slu3sAAB3WjTiRcx1OOxJnnReL7F4Hnm18DYI4NR7WojOHRdEZa3jXGMYOPgnWaFEUmAwYmNdfAM6coGJ0hBASPvR6Paqrq2E0GgGEtugkhMxGTzxJ1OpqG8X+V5sBAPteaAIA5A6eQPdfHkf+/ffiwGCG4nijRkCCfxiDG69GqzcTAHDwzXaUVGSCfe9tdP7xEeR+4E7k3X1XaH+QMPC3xldwvK8WDcPnUJ5ainxrNjakrVc7rJgj+r0Y+Ot3EBhoQ2CoA8lXfATupiMQvC4YizdBl5KjdoiEEBJW9Ho9ampq0NfXh4KCAio6CVERFZ4kauUVJeHy68rkonPfC00otjWiAMC5R59CV+FdmD5vWKK9A13WDXLRCQCXX1cmF50A0P2Xx2GtrkJ8RXkIfxJ1jXkdeKPtIADAE/TiRF8dRElAksmqbmAxRhJ4DP7tRwgMtAEA3I3vQHA7kHrTZyG4xmDIKlE5QkIICU96vR6FhYVqh0HIvCQmiHifTd5mWWGBoyMXFZ4k7LS3t8uD8Vf6RpFboCw+W1O2AgACGgOkGZNV8xIj7wcmis78sdNy0QkA+fffG1NFJwA83fAyAkJQ3mYZFvfV3K5iRLOtZs6EI0mSMPzir+BtO6Vo550jYFiOis5liPacIauPcia8OZ1OxMXFhdUTTcoZsljjkgMpnh5526cLnzxeTVR4krAzPj4ur3u1Em+9chb7X23G5deVzS4+RXHW8UNxRYpt24la4OBj8nb+/fci57ZbVhRTJNqZtxmdjh40Dk+Mk720cBdy4jPOc1ZorVbOhKux/X+Fq+4NRRtrjEPGB74GjcWqTlARLtpzhqw+ypnwNTQ0hMbGRqSlpYXVEimUM2SxbF4rmorulbf1/DguVzGetUKTC5GoNNf4zsuvK5s6YBHLgNQO6GE3pAGI3aITAMpTS/Hvl34eX9nzj1ifUozbKq9RO6SY4nzvNdgPPqFoYzQ6ZNz1FeiSs1SKihBCwsPg4CAaGhogSRIGBwdx9uzZWcunEBLueFGCwGrlPyITnc8Go/OnIhGtsrJyxa8x1/jOy68rw+7LS3BwX8t5zp5QbDsOq28opovOSQzDoCazAjWZFWqHMqfVyJlw5G4+AdtLv1I2MgzSbvk8DNnr1AkqSkRrzpC1QzkTfgYHB9HYqJxxfmBgAImJiUhPT1cpqimUM2SxpBhZe5sKTxJ2OI47/0GLcOFlE+PephefuYWJC50iK7YdR4H9NOIqymO26BzzOmDUGmDQhP+akKuVM+HE19eCob/9EJhx5z6u+nKY121TKaroEY05Q9YW5Ux4mavoBIDs7GykpaWpENFslDNksax6s2I7PDqLrz4qPElUm1l8drePnfecgtFTKLCfBgC4W1oRGBuDLnFxBWu0ECUR7/a8B0/Qi5KkAqxLKYqIAjRaBMcGMPDnb0Hig4p2Q245rBfeqlJUhBASHgYGBtDU1DSrPScnB8XFxWEzxpMQohQbz3VJTLvwshLl+M7zmN6vXgwE0Pv0s2sRVljrcfTD6XeBFwU02Vrx4rk34PA51Q4rJghuB/of/XeIPpeiXZuWj+SrHoTWqn73MUIIUQsVnSQaCaJyAiohSsd4UuFJws7Y2BhGRkYwNnb+p5OLVb01B4t9L+pJKIOfM8rb/S+8hMAqxhLuztpa8buTf4E36JPbLDoT4vVxKka1sLXIGTWIQT/6//wt8I5hRbvGmo6UKz8KfXq+SpFFn2jJGRI6lDPqi7Sik3KGLBY3oxNqtI75jM5ymkS07u5uefrxxFXq4vryL1+CJC1uOnOR1aDLugGlI8cAABLPo/G7P0D1D767KrGEu7/UPYfG4Racs7WhOKkA61OKUZG2Luze0Kdbi5xRw9AzP0VgsF3RxpoTkHT5/TDk0SQVqylacoaEDuWMuvr7+3H27NlZ7bm5uSgqKgrL9yjKGUKUorOcJmSa/uOn0di/tFTvTihXPPV0nT2HkXePrnZoYef0YBPqh88BAARJxLmRNtg8I8iOC691O6OR4HWBi08Go9HJbYzehKSL74F5/QVh+aGKEEJCIRKLTkKWgjWGb6+y1URPPEnYycrKgiiKYBex1uZivHzECYld2sxyEsvhTPol2NL3ktzmrG9A8gXbVyWmcPVU/YuK7SSjFZ/cdn/Yv6mvds6slK+7EYbc8kUfLwa8cJ15G1LAB0v15XDX74fEB5C46zbEVV8a9v/+kSjccoaEP8oZdfT19eHcuXOz2vPy8lBYWBjW10fKGbJYPO8HsLieeZGMCk8SdlJSUlbttd54sWlRM9nOxW7KQGvSJhSPvgcA6H/+RWTfclNUz3D76Qs+jCcbXsRb7e9AlETcXnktDNrwn812NXNmpUb3/xX2A48j6dJ7Yd11/qV4RD4A1+n9cJ87Bl/HaejzKmCpvhwMp0XCBdeDWeJNE7I44ZQzJDJQzoReMBhEW1vbrPZIKDoByhmyeM6gB4BF3pbmPzSi0S0YErW62kZxcF/Lil6jI6kGdsPEemCSIKDpBz9ejdDCVoo5CZ/Ydi9+cs2/4drSS3FJ4S61Q4oovu5G2A88DgAYffMR2A8/veDxkhCE68wBuJrega9jYgkff1cDGEhIvOh2MBzdGySExC6tVouNGzcq1sPMz8+PiKKTEDIbFZ4kaiWlmBY9k+28JBHG4Li8Od7QGBNjPTPj0vDhzXdCQ0/blsSQW46kS++VtxcqPkW/F4LbAXfDIbnoBABT6VYk7rkL7LSxnoQQEqsSEhJQVVUFjuOQn5+PgoICKjpJ1OEFQe0QQoIKTxK1Th3rgVY/44mRpOy8oBH80PNucEJA0c6JAWhFP/SSH0PpVeBMExMNsUYDvN09axq3GuoGGjHksqkdRlSw7rrlvMUn7xhG968+g+EXfwlve63cbizejNQb/hGszghCCCETEhISsG3bNio6SdQSIaodQkhQPy4Sdurq6uTpx6uqqpb9OgwDBHy8vL3r0iIcflM5VqS671VY/RMFV4d1I1pTtgIABFaHS64rw4WXlcjHOhsaEV+x+AljIsWQewRNtlY02VqRFZeOqoxyxOst5z8xjKxWzqyWybGdo28+ovjbuusWCF4X+v/ybQjjo/COj8rnmEq2IOW6fwBnjKx/+0gVbjlDwh/ljLoMBoPaISwZ5QxZrHitWbEdrbdXqPAkUamrbRT7XphaZPry68qQnKr8pWYhwhR0ytsF9tNg9To0x028Oex7oQm5BUnIK0oCgKgsOgVRQG1/g7zdNz6IMa8D1627jGbhW6G5ik9JFOBtr0XQpnxqbiyoQvodX6KJhAghMau3txcAkJ2drXIkhISegbch0eOWtzWSX8Vo1g4VniTsmEwm8DwPjWb56ZlXlIQ9V5Zi/6vNuPz9J5dvvaJcA0wn+qERg8rzBk8gobISx7s47LmyVC46w5UoTnUdZtml3x97/MzzONR1DJVp65Fsmpittzy1JOKKztXImbUws/gce/vPs45hTfFIu/XzVHSGWLjmDAlflDNrp6enBy0tU5MBRkvxSTlDFitBJ8LqG5K3NQgscHTkot8EEnZKSkrOf9AiXHLVehSVpsrF41D/uGK/LuACO8eE1Qlv/BHX3nwftl61flXiWCuBoID/e74eXh8Po0GDj1xfCZ128cWLj/fjjfZDcPjGMdR+GJlx6diZuxlFSXlrGPXaWK2cWQszi8/pGJ0R2R/9PrgYWTg6nIRzzpDwRDmzNmYWnc3NzWAYBllZWSpGtTooZ8hiJedno7tzar1avTY6S7TIeqxByBJNf2JpH/Uo9hkDDsV2yp7d8tf+Z/6EnqcWXgpDbc3ddgSDIrqHxhEMimjuti/p/NdaDsDhmyrG+8cHkROfCZahy8Jq02evm7M9675vQZuQFuJoCCEkPHR3dyuKzknBYHCOowmJXtoEC7RmyH90cdHZC4o+YZKYIEkSRm1uRVvmeKtiO/++DyL//qnZSDv/+EhYF59n2mwY9wbg8fEY9wZQ3zay6HMlScJb7YcVbTUZFdidv221w4x5YtCPgce/O+c+b9up0AZDCCFhoru7G62trbPai4qKkJ+fr0JEhJC1RoUniQlOuw8Bv3KNJHPALn/N6vXQp6Yi57ZbIqL4HBr1YHjMizHnxODzMacfQ2MeDM14qjsfhmHw7b3/gg9W3YIE/UQ3zzs2XL9m8cayvj9+DVLAO+e+hdb5JISQaNXV1TVv0ZmXF3nDPQhZKYkVwOqd8h9G7z7/SREoOjsQk4jW1dUFQRDAcdyqvQE1PPUKpqe7Bjz0wlSRpktOktcGy7ltYkxe5x8fUfw92a6Gt0/2oL1vqmtwkBfB8yJcngBMBg1cngB4XsSz+1uh1UzdTyrMSsDFm3PmfE2j1oCbyq/E1aWX4L3+MyhNLlzzn2OtrEXOrIahv/8cgQHlEj5cXBLiavbCfuBxAMqlVkjohGvOkPBFObM6urq60NbWNqs9GotOyhmyWF3MMB5d75K3k4MirlYxnrVChScJO3a7XV73ajUu1M6GRrQfOAmkbJfb4lmfYo0kQ5pynN1cxWd8eZkqS6oIgoj6thEMznia6fXzYFgGOWlxaOmxo8/mhlGv/JX2+Hnsrs4Cx83fuUGv0WFH7uY1iT1UVjtnVsPo23+Bq+5NZSPLIXnvR2Cp2AVWo5tznU8SGuGYMyS8Uc6s3HxFZ3FxMXJzc1WIaG1RzpDFGh3SYd2pS+VtSbe4HmyRhgpPEvXiK8rBlG0CbFNtJt+o4hjDHFO3Ty8+cz9wp2rreI6N+yEBMBk06BlygRdEMAyg13LIz4iDVsMiPyMO/TY3XN4AJAnQcCxy0iyQpInzU6xG+fVs7lEIkoA0c4r8lJesrrHDf4P94BOz2s1lO2Au3wFg7nU+p7cTQkg06ezsRHt7+6z2aC06CVkKnzcIXSBR3hZFUcVo1g4VniTsrF+/HpIkrWpRdPNnr0PPsQZ4TSkYGhiH669vKfab8+e+E5lz2y2qPemclGI14uaLi/HKkU7odRx6hlxwe4NITTTBZNACAEwGLVITTegeHIfZqEVOmgUJZj2u3JGvKDpFUcSJvtNw+Mdh1hpRmJiLgsRcmLTG+b59RFiLnFku++GnMfbmo7PaNdZ0JF12P5hpswZT8amecMoZEhkoZ5YvVotOyhmyWEy/HcBU7zujjwpPQkJCr9ev+ms2nOqHj7fAJIjISGQx5B5Q7DeXFM97rppF56TsVAs+cMU6vHa0CxqORffgOEadPsSbdfIxo46J7dz0OOSmx+GK7XlyYQoAoiTi7EgrHP6JJVTcQS/ODJ2DRWdGnjWyF+tei5xZDl9349zrdWp0sO6+HdqElFn75io+DbllMOSqn3fRLFxyhkQOypnlma/oLCkpQU7O3HMQRAvKGbJYVq1Zsc3OXmY+KtCstiTqSZIEjzuAYFCAw+5FV2MPRGZqfSRGo4EpN/zf/EwGLS7dMnFnWHr/gjTi8KJ32IURhxdgptov3ZKrKDoB4GDHUfz40G/Qae+BKE3cSbMa4pGTkBmynyHaGXLLkbDrNgCANr0QrHFixmDz+h2wlO+a9zzrrluQdOnEbMrWi+6kopMQEjW0Wu2stlgoOglZilh5Jk5PPEnU8/t4CMJUl4Wg3QGz4Je3tQnx4HS6uU4NO8NjE4PNvX4egijC7Q0i3qzDwIgHDANwLCsfN/1pqCiJeLbpVTj94zjWW4vG4WZUZVTg8qILwTJ0/2k16dLzYSrfBU1cMgAJvMOGhJ03gdUZFjzPuusWetJJCIk6WVlZAIBz584BAEpLS5E9x7wKhMQyEcqn4wITnSVadP5UJKKNj49DFEWwLIu4uLgVv57HHVBsi047OCkob+uSk1b8PUJlaMwLnhfBC6I8gZDZqIXbG5QnHuJ5EUNjXhTnWOXzjvacQrezX952BTzIjstAsilxju8SeVY7Z5YrMNoHf2/z+0UnwOoMMK/fBl3a4hZDp6IzdMIlZ0jkoJxZvqysLEjvd8mJpaKTcoYsljkrC+ib+rzKaLkFjo5cVHiSsNPe3i5PP15VVbXi13ON+xXbjHNkwaVUwtnwmAfeAK+YQGhLeRqONw7JEw95AzyG7cppuN/qOKLYzkvIxm2V14Qy9DW12jmzHKIQhLvxHXmb0WjBcFqYSrbSxBJhKBxyhkQWypmViaWCcxLlDFksVq8FMO1BSZR+bKDCk0S95oZBuN0BmM06cBoWnH1Ysd+QGTljHAuy4tHR70ScSaeYQKgkxypPPCSKEgoy4wEAHWM9KEjMwRcu/H842vMeXm5+C022VtxScRV1sV0B/2AH9OkF8jbvGAbvtkP0TkzcxLAsGE4DY8FGcEaLSlESQkjoSJIEv98Pg2HhYQWEkNm08akA3PK2xEXGELClosKThJ309HQIggCOW3k3A0mS8O7+dvD8xBhPvZ5DcVB5jCmCpnKvKklFfkY8ugfHUVmUDIZh0DTcgrLUEtywuwj17SPIS49DgkUPu9eBb771U/zX1V+H1ZiAXXlbsStvKzrGepCbkCmfFw1WM2fOh3eNof/Rf0POx38KjSUR3o7T6P/ztxC/5SpYNl4CX3cjRK8Lmrgk6LNL1zwesjyhzBkSHShn5idJEtrb29Hb24uqqiokJCSoHVJYoJwhixUMKnvngYnOaW2p8CRhJz09fdVey/H+mMhJfr8AU9A5dQDLwpgTWd1/Eix6JFgmBqE/fuZ5PFn/Au6puhk3l1+FjcVTy3U82/QaXAE3nmt6Dfdvul1uL0jMwTONr+Cxumdwe+V1uHPD9SH/GVbbaubM+TjeeQai1wXHkWdh3X0Hhv7+M0AU4Dz2Inyd9Ui54dNgOS1YY5xizU4SXkKZMyQ6UM7MbbLo7OrqAgDU1dVR8fk+yhmyWH1uZW88n8irFMnaok9FJKr1dtkV2ywDmAOj8rYmzgJNXGR2hWwabsGT9S8AAB6rewbPNL4i77N7HXi1dT8A4JWWtzEwPiTvmyw6AeDJ+hfQNNwSuqAjHO8ag/PkqwAA54lXMPz8QxCcI/L+wFAnfJ310KXmQmOxqhQlIYSEhiRJaGtrk4tOABAEAadPn0YwGFzgTEJILKLCk0S1gV6HYtvA8tBIgrytjY+HNkLvypalluCeqpvl7enF57NNryEoTLzpB0UeP3/3DzjYeQyP1v5NLjoB4J6qm6Omu20oON55BhI/Mfhf4gPwnFVO2mTI34CE7depERohhITUZNHZ3d09a19xcfGc63cSQubmH3cptlmRaTp4iQABAABJREFUutoSEnGGBsYV2wZBOdurLjkZnF65dlIkubn8KgCQi8nH6p6BL+iTn3ZOah3twKstb6PJ1iq3TXbPJYsz/WnnXFi9CWk3/iN1ryWERD1JktDa2oqenp5Z+8rKypCRkaFCVIREsMERAFNDvzRBKjwJCYmGhgZ5+vGKiooVvdaoza3YNnhHFdvG9xe2jmQzi8+/Nb486xhBEqO66FzNnJnP9Kedc0m5+uPQxKfMu5+El1DkDIkulDMTqOhcPMoZsljxWrNiO0pXU6HCk4QfnufB8/yK1z6UJAmOMa+izeQeUmybC/NX9D3CxczicyHRVnQCq5cz877+eZ52GvI3wly5e02+N1kba50zJPpQzlDRuVSUM2SxdMFRxHunZrbVSv4Fjo5cVHiSsKPT6cCyLDSalaWn0+EDHxQVbRbfiHK7pHhF3yOc3Fx+FU72nVY82ZypLKU46opOYPVyZj7ne9opBjzw9zTBkFu+Jt+frL61zhkSfWI9ZyRJQktLC3p7e2ftKy8vpxlc5xDrOUMWL1EXRLK3T97WYP7PHJGMfhNI2CkrK1uV1+nvtiu2WQawBMbkbc5shj41dVW+Vziwex1oHeta8Ji2sS7YvQ5YjZE5odJ8Vitn5nK+p50AEBjsAGuMW7MYyOpby5wh0SmWc4aKzuWJ5ZwhS2NglSVZtM4WEa0/FyGwjyq72cbFaZF35SVI2LgB+vQ06FNToLFE5lIqc5k+k+18AkIQzzW9FqKIosP5nnYCAEQB46deD01AhBASQpIkobm5mYpOQsiK0RNPErWGB5Uz2hasT0fJB6a6mUqiGDXjLqav23k+r7bux41lV0TdU8+1sJinnZOcJ15Bwo6boLEkrnFUhBASOkNDQ+jr61O0MQyD8vJypKWlqRQVISQSqfLE0+Vy4ZlnnsE3vvENPPDAA7jjjjvw7LPPyvt/8YtfYP/+xX2IJmQ+wwPKNZFS05VdIRk2eh74L+Zp5yR66rl4i3ra+T6JD8Bx5NnzH0gIIREkLS1NMWkQFZ2ErD6GEWAIuuQ/et59/pMiUEifeIqiiIceeggPP/ww3O6Jf1BJksAwDEZHp5a5ePTRRzEyMoLq6mr88Ic/RG5ubijDJCrr6+uDIAjgOA5Zy1zuRJKkWU88UzOip1vtdEt52jkp2p56rkbOzLSUp52T6Kln5FiLnCHRLVZzhmEYrF+/HpIkYWhoCBUVFUiNovkR1lKs5gxZOoc0hqzxFnnbp4uOHnkzhazwDAQC+PjHP453330XkjT/oqh+vx82mw0Mw+DUqVO444478Oijj6K4OHpmHyULs9ls8rpXy71Qe91B+H28om3mE89osZSnnZMmn3rev+n2NYoqtFYjZ2ZaytPOSZNPPZP3fnhVYiBrZy1yhkS3WM4ZhmFQVlaG7OxsxMfHqx1OxIjlnCFLY/fFoT3nenlbK7pxuYrxrJWQ9TX8t3/7Nxw5cgSSJMFgMOCuu+7C9773vVnHSZKEe+65B1qtFgzDwG6347Of/Sx4np/jVQmZm2vch+nDNxkGiE8wqBfQGrF7HXip+c1lnftS85uwex2rHFF0WM7TzknOE6+Ad42d/0BCCIkgDMNQ0UnIGvELLJyGVPmPW5ukdkhrIiRPPOvq6vD000+DYRiUlpbiV7/6FTIzMwEAX/7ylxXHGgwGfOMb38D999+PT37yk2hvb0dLSwuef/553HzzzaEIl6isuLhY7oK9XClpFnzxW1fB7+PhGvdhfNQFho2+bgv/dfg3ECXx/AfOQZBE/Nfh3+Cbl39hlaMKvdXImemW87RzEj31jAyrnTMk+kV7zkiShI6ODmRlZUGv16sdTlSI9pwhq0eIkRwJSeH55JNPTnwzjQY///nP5aJzIQUFBfj5z3+OG2+8EaIo4uWXX6bCM0aYzeYVv4bT4cOpY90AAI5jYX/7TYx+ax90SYnQp6Yi6YLtyL7phhV/HzUd66lFk611Ra/RZGvFsZ5abMupXqWo1LEaOTNp4mnnKyt6DRrrGf5WM2dIbIjmnJEkCWfPnsXAwACGhoZQU1NDxecqiOacIasrQWdSbEdrGRqSwvPo0aNgGAZ79uxBXl7eos8rLi7GpZdeitdffx2NjY1rGCGJNnxw6imgIIjw2x2QeB7+oWH4h4ahS478Lgy94wMwaPTw8X7oOC0CM8Z5xust0LBz/4p7gz54eR8MGj16xwewDZFdeK4m58lXwRoskIIBSKIw0cgwYBgWjFa/6HcDV92bsO66de0CJYSQVTC96AQAr9eL2tpaVFdXU/FJSIiwTPSstLCQkBSeQ0NDACYWGl6q0tJSvP766xgbozFTZPF4XpjakCSITuVYRsMinrqHu5vLr8LN5VehabgFL557E0d6Tsr71icX4Vt7v7jg+U3DLShLLVnrMCOKJPDwtJyAPqsE1ovvQXCwAwFbNzhTHOKrLwdroLvXhJDoIUkSmpqaMDg4qGj3er1wu91UeBISIoKoLMkEhlMpkrUVksJzchZbjlv6P+Jkv3itVruqMZHw5fV65TERRqNxWa/B81NPPHm3B+yMp4Gm3JwVxRhOylJLcLS3FnE6M8YDE8sUXVRwwaLOixarkTMAMHboKQT6WxHob4W/txlJVz4A87pt0FrTqeiMMquVMyR2RFvOzFd0MgyDDRs2ICkp8nsGqS3acoasHQ7KOkeiwnP5UlJS0NPTg5aWlvMfPENdXZ38GiQ2NDc3y9OPV1VVLes1+ODUE0+N2Yyij9yLbAzD3d4BX/8AzEWFqxVuWLi/5jbcs/EmvDdQjwMdR7Erd4vaIYXUauSMr/cc7AeflLcFtx32/X9Gzsd/AoaNzjeAWLYaOUNiSzTljCRJaGxslHukTZosOpOTk1WKLLpEU84QshpCUnhu3boV3d3deOONNzA6Orrou2gNDQ04fPgwGIbBpk2b1jhKEk2aTg/A7fJDZ9BAr9fAlJ2C9I0b1Q5rTWk4DbZlV2NbNo3XXCox4MPQs/8DTJ8hmOWQeuNnqOgkhESV+YpOlmVRWVlJRSchKmBipFdVSArP66+/Hk8//TR8Ph/+5V/+BQ899BB0Ot2C53R1deHTn/40RFEEwzC45pprQhEqCQPJyckQBGFZXbMBwO8L4ujBDkVbakbcKkQWfkRJBAMm5qdqX2nO2F7+DfixfkVb4u47YMiKnu7IRGmlOUNiTzTkzEJFJ3WvXX3RkDMkNCRIaocQEiEpPC+88EJceOGFOHToEA4dOoRbb70VH/7wh1FRUSEfI4oixsfH0dzcjNdeew1//etf4fV65aedF198cShCJWEgOzt7Rec77b5ZbXHxhhW9ZrjqGOvBuZE25MRnIi8hC/GG6Cywz2clOeNqfAeu028p2vTZpbBeSDPSRrOVXmdI7In0nJEkCQ0NDRgeHla0U9G5diI9Z0jo2H1OAFOfVaO1DA1J4QkA//Vf/4W77roLHR0daG1txde//nUAE+MJJEnCj370I/zoRz+Sj5+ckCgtLQ0/+clPQhUmiQJOh7Lw1GhZGIzROTlVt6MPTr8LDcPNaBhuxrrkItRkVpz/RAIA4F12DL/wkKKN4bRIvYG62BJCoocoimhsbKSikxCiqpAtGpOQkIDHH38ce/fuhSRJ8h9gaubame2bNm3C448/jvT09FCFSaLA+IzCU2/QQG8I2T2WkLF7nRh0KT9EpJgSVYom8kiShKFnfgLJ71G0WzbugTYp8pfbIYQQYOGic+PGjVR0EhIGBFE8/0FRIKSfxuPj4/Hzn/8cdXV1ePLJJ3H06FF0dnbKhSYApKamYtu2bbj55puxZ8+eUIZHooRjzKvY5oJ+BHu6ICavB6uJngL0NyceQ5OtFfkJ2cizZiNeb0FGXJraYUUM54lX4Os8o2jTJmcjae9HYn7MLCEkeoiiCJ9PeUN2suhMTKSblYSEA0ESzn9QFFDlU3hVVZU8rbQgCHA4HBAEAQkJCeeddIhEv3PnzsnTj69bt27J59tHlU+wJPsIWr71CNoZEfFl67Hxu99erVBVE+ADODN4Fl7ehzNDZ3Fm6CyuX3c5NDHaPXSpORMYHcDo6w8r2hitHinXfgKcntZaiwUrvc6Q2BOpOaPRaFBVVYXa2lq4XC4qOkMoUnOGhJ5Za1JsR+vtb9Uf/3Act2A3j2AwiNbWVthsNuzevTuEkRG1+Hw+BINBCMLy7v447MonnhrRD1biAQmQlvma4eZYXy28/NQdbAYM9hZfpGJE6lpKzkiigKG//RCSEFS0x2+9BsY8Gh8bK1Z6nSGxJ5JzRqvVorq6GmfOnEFBQQEVnSESyTlDQsvAO2DxT3W31Yh+FaNZOyEpPMvKysCyLL74xS/iIx/5yJLO/d///V/86le/QmpqKvbv379GEZJwwrKs/Gc5Zo7x1PE++c6RPiM6xgvX9jcqtjekr0dWfHT8bMuxlJwZO/gkAoMdijZ9ZgkSL7pzjaIj4Wil1xkSeyI9Z7RaLWpqamgoQQhFes6Q0EnU+pHqHpO3NQioGM3aCdkTz+njOJfCaDRCkiSMjo6uckQkXG3YsGFF57vGlXeJ9IJb/tqUnbOi1w4Xn9x+Hy4r2oW3Oo7gne4TuLhgh9ohqWqxOSMKPMZr31C0sQYzkq9+EKxWvxahkTC10usMiT2RkDPi+xOUzFfoUNEZWpGQMyQ8JGWlo6u1Xd7WaaJz6JTqXW3nI0kSenp68PzzzwMATCbTec4gBAgGBfh9vKLN6p1aKNuUnxvqkNYEwzAoSy1BWWoJPrrpTvowsUiBgTaY1m+Hv6sRgcGJC3zCBTfCkFWicmSEELIyoiiivr4eAFBZWUlP2QiJIPrUROitU4WnQR+2JdqKrNpPxfM8brnlFrS0tMy5X5Ik/OAHP8APfvCDJb82wzA0KJssysxutgCQ6B2QvzaXFIcynJDQaWhCrsUQPE54zh0Dw3Aw5G+ANikTEh9AwgU3qB0aIYSsiCiKOHPmjNw7rKGhARUVFVR8EkLCyqpdkTQaDb75zW8CUK7HOb2L7cz2xf4BgAcffHC1QiVRzDmj8OTEADTSxCQyrE4HQ0qKGmGtGlEScc7WBrvPuezu67FIEgW46g9C5N+fUIhhoE3ORvLeD1EXW0JIRJtZdAKAzWbD2bNnVYyKELIUHAsYWJ/8R8/RGM/z2rRpEz70oQ/h1VdfVbT39fWBYRjEx8fDbDaf93UYhgHHcbBYLMjJycGdd95JM9rGkKGhIQiCAI7jkJa2tHUpx2fMaKvnp5ZW0VqtqxGeqsa8DpwaaAAAGDUGZMSlYkvmxpi9q+3rboQht/y8OePtOIOgfarLtehxwFR+IbRJWaEMl4SRlVxnSGwKx5yZq+gEJlYMyMqi65vawjFnSHhqZwbxh8oReTuZl3CZivGslVXvQPzlL38ZX/7ylxVtZWVlAIBPfOITS57VlsSegYEBed2rpV6oZz7xNPBTEwvpEq2rEZ6qBl3D8tde3ocRz1jMFp2j+/8K+4HHkXTpvRiwFM+ZM5IkQRR48E6b3BYYaIWvqwGa+FSYSreoEToJAyu5zpDYFG45IwgCzpw5g7GxMUU7x3GoqqpCQkKCSpGRSeGWMyR8OUY1yDm3Td7WaGYPHYsGIfvESt0CSSgE/AIYdmqiHf20wlMb4euWjXjG8Pezr8PhG5fbMiyx+Ubm626E/cDjAIDRNx+BtuXgnMe56g+g/w9fhSYxE6aSzQgMtMPXNfHE2H7oSfi6G+c8jxBCwtlCRWd1dTUVnYREGLdLQLwjXf6jdyarHdKaCMmUSU1NTaH4NiRKFBQUQBTFZT3Ju/jKUmy/qADBgICT3/gu+LFeeZ8uKWk1wwy5d7pO4ETfaQBAvN6CwsQ87MnfrnJU6jDkliPp0nsx+uYjAAB94z5YrVaYt14vH8M7hjHy8m8g+j0Y/Mu3YMirgK/rjLw/6dJ7YcgtD3nsJDys5DpDYlO45Mx8RadGo0FVVRXi4+NViozMFC45Q8KfOGgHkCpvG32iarGspeicq5dEtJW8abrdAZx4pxMAMMhbwJiyYHI4wADQp0R44dlzUv7a6XeBY1ikmKPzjthiWHfdAgBy8el95ykYDUZg1y2QJBFDz/0Mon9ijK/EB+BtOyWfm3TpvfL5JDbRh3OyVOGQM1R0Rhb6/yCLZWUMim0uOutOdQvPmbPeTraJogie5+H1emG321FfX49nnnkGv/vd71SKlESK6Wt48kEeHMNhsuOtPoLHVwy7R9A80q5ou7r0EmjY6FxgeLFmFp+Tf4Pj4Ouqn/McKjoJIZFIEAScPn0adrtd0a7RaFBdXY24uDh1AiOErBjHxMZT8ZAWnq+++ioee+wx1NfXw+1207hPsup83onlMkR/ABBFaAW/vM+Qka5WWCvGMAyuXXcZjnSfxKjXDrPOhA3pZWqHFRbmLD7nuYBT0UkIiURUdBIS3URR+SBBZKLzwULICs+f/OQn+PWvfw1geRMNMQxz/oNIVAgGg5AkCQzDQKvVLulcr2di3SPeNTEBj0acXnhmrl6QIZZiSsKHN92B+2tuwzlbG2ye0Zh/2jmdedv14AUBzv1/nmiQZvdRoaKTTLeS6wyJTWrmTFNTExWdEYiuM2SxTOlZwMDUZxdJE52jIUPyU507d27eonOyoJyvXaPR4IYbbqB1PGNIY2OjPP14VVXVks71eSaeePKuibF9WnGiEGV1Omgs519DNtyxDIuy1BK1wwg7jY2NCJoKEWfNhsbeO2s/FZ1kppVcZ0hsUjNn8vPzYbfbEQxOvMdR0RkZ6DpDFouzGAFMrcQQrT1vQ/JjPfHEE3JhuWXLFjzxxBOoq6vDU089BUmSwHEcDh8+jFOnTuGNN97Ad77zHWRmZkKSJPA8jw0bNuDaa68NRagkgg32O3G2fhAjQy44x9wQGA6a97vaciYTPTWPcozLBs4xMKudNVio6CSERDSLxYLq6mpotVpoNBrU1NRQ0UlIFNGYrYptiYvOJ54hKTyPHz8OYOLC+dBDD2Hjxo3Q6XSorKxEfHw8BEHAoUOHYDAYkJWVhVtvvRXPPvss1q1bB0mS8MMf/hA2m+0834VEi4SEBFit1iWvQ9Z+zoaG2n7Un+rHuSEOQ5ZC+YmnJs6yFqGGhCfgxUvn3sSp/noMuoYhilE61dkKJCQkIKHxFTCSMGuf6HPBfvhpFaIi4Wy51xkSu9TOmcnis6amBhZL5L6nxRK1c4ZEDmbG8CkmSh95huSnGhgYAMMwuOSSS2b98lVWVgIATpw4oWiPi4vDj3/8YzAMA5/Ph8cffzwUoZIwkJ+fj+LiYuTn5y/pvLFRj2KbE4PyE09tBE9p3jbWhfGAG+dG2vF2x7t4qflNmphrhiRnB5iRTmXjtIv46JuPUPFJFJZ7nSGxKxxyxmKxUNEZQcIhZ0hk6HIqe2x5xaBKkaytkBSe4+MTE70UFhbO2ldSUgJJktDU1DRrX2lpKbZu3QpJknDs2LE1j5NENseMwlMjBsBJE8uraCP0buOo146WkQ5FW7olhboNTyMG/bC99GtlI8sh9x/+F0mX3is3UfFJCAl3PM+jv79f7TAIISEmzTEpYjQKSeFpNBoBYM4ZvQoKCgAAra2tc567YcOGBfcTMsnp8Cm2dbxXXsNTl5gY+oBWwbff+h88d/ZVnB5sgt3rgCRJKE2efQMnlvU/+u+Qgsr/e+sFN0KbkArrrluo+CSERASe51FXV4ezZ8+is7Pz/CcQQqIG7/crtpko7dgWksLTarUCwJzjNHNzcwEALpcLQ0NDs/ZPds11OBxrFyCJCi6n8pdWL3jlr3XJSaEOZ8X6xgfR4+yHK+DBWVsrXm87CEBCgiFyuw2vNtvrD8Pfe07RpolPgfXiu+RtKj4JIeFusuh0Op0AgPb2dio+CYkhQvegYlsbiM4noCGZMqmiogLd3d04fPjwrH15eXny13V1ddi7d69i/8DARJ9nGtMWO1pbW8HzPDQaDYqLixd1jiRK8LgDijYDPzUttT41ZVVjDIV3upTjnhP0cbhu/eUqRRN+7IefhvPdv89qT77qAbCcsnfF5Ky2o28+ovibZruNXcu5zpDYtlY5w/M8amtr5WFJk3p6epCVlUXrP0Ywus6QxTJrDIrtaB1QFZInnrt27QIAtLS04KGHHlLsy8/Pl7viPvfcc4p9Xq8Xr7/+OgAgJSXyCgeyPG63Gy6XC263+/wHy+cEIIrKmxOG4NSbuD4tbdXiC5Xm0Q7F9o7czbDoIn8t0tXg626Ui0cA4BNzIZiTwacUwbxu25znzPXk09fduOaxkvC0nOsMiW1rkTPzFZ06nQ41NTVUdEY4us6QxdLxLhgDjqk/QafaIa2JkBSeN910E5KSJro6/uxnP8Ptt9+Offv2AQAYhsFll10GSZLw2muv4dvf/jbOnTuHd999Fw888ABsNhsYhkFNTU0oQiURymn3KhskCQbeNfE1w8CQkR76oFboS7s/ie9d8WXcWHYFUk1J2Jm7Re2QwoY+Zz2MxZsBAIaCjRBTi+DP3gjfljsWPG968Wm96E4YcsvXPFZCCJlLMBhcsOg0m+lGIyGxIknrQYarTf6T5mlXO6Q1EZKutgaDAd/85jfxT//0TxAEAfX19Th27Bguv3yi2+DHP/5xvPTSS5AkCY8++igeffTRWa9x9913hyJUEgYmJ5RaivEZEwtxYhBaYaLrLWcwQBuBC20zDIOipHwUJeXjg1XUJXQ6f38b9Fkl4MwJ0CSkQi9JMBVtgj679LznWnfdAkNuGRWdMW451xkS21YzZ4LBIOrq6uYtOk0m06p9L6Ieus6QxTJxWgBTD1G4+Q+NaCFbnXTv3r146KGHkJ2dDUmSkJOTI+9bv349vvrVrwKYGMs5/Q8APPjgg9i2be7ucyT6sCwr/1ksp11ZeMZbDSi67XqkXXE5knftBMNF9q8wwzC0hMr7JD4IX8dpAIAmIXXib7MVhpzSRecMFZ1kOdcZEttWK2fO96STis7oQdcZQpRC8sRz0sUXX4zXXnsNx44dQ3q6suvjBz/4Qaxbtw6//vWvUVtbi0AggLKyMtx///249tprQxkmiUBOp7LwzChMR/E9kdk1lRd4nOw/g5z4DKRbUsGxkV00rzbR74G5bAc8re9B8E58cDOVbALD0Bs7ISS8TRadLpdL0U5FJyEkFoS08AQm7v5ccMEFc+7btm0bPdkkyzI+Y4xnvNUwz5Hhr298EB32HnTYe6BlNchJyMTWrCp64gnA39eCvj9+DfHbr4N15y0I2nogeJzQWiNvDC8hJLbMV3Tq9XpUV1dT0UlIDGMggRN5eZtl+AWOjlwhLzyXa3R0VJ6giES30dFRiKIIlmUX/X/unDHGMy4+cgvPLkev/HVQ5OEN+qjoBCBJ/5+9O4+Por7/B/6a2Xs3901IIFxJIJAAyqGCeCsgoKh4W22/2tpaW/VXz1ar1tZq1dZqrfa01qPeByACigqIgEII4QwhQC5yb3Y3e83OzO+PdSc7ySbZTXZ3djfv5+Phw8zs7Mw74Z3JvudzCWhf/w+IPIfube/DtvcLZF7wfSRNPX1YOUNGN8oZEqqR5MxgRefMmTOl2f1JYqH7DAlWDzox3rxP2nZpE/NzX1wUnm+++SaeeuopbN++XelQSBQ0NDSA4zhoNJrgC88AYzzjUW3ncXxc8zkKUsYgw5AGhmEwLjVf6bBigq3qc7gaD0vbvK0Lni7vOr/DyRkyulHOkFCNJGcsFku/JTWo6Ex8dJ8hwepyG9Ccs0DaZuEc5Oj4FdHCs7OzE7W1tWhra0NmZiZmzpwJnU4X9Ptramrw0EMPYffu3RGMkiQCVsWAZRlpLc+U1Pj8Q769fjdqOupQ01EHo8aAKZlFuHTqhUqHpTjB2SNbtxMANBljkDp3mUIREUJI8DIzMzF16lTs378fABWdhBA5B6dFc0rvzPz6BF3HMyKFZ319PZ555hmsX78ePM9L+/V6Pb73ve/hpz/9KVSDzDLqdDrx5z//GS+//DJ4nocoitTVcBQpKCiQuqYE66rvz4Faw4L38OisbUBWRvwtui2KIrY39D5ksXMOpBtSoVHF3/cSbp1f/g98T7dsX+b5N4FRe382w8kZMrpRzpBQjTRncnJyAABHjx5FRUUFFZ2jAN1nSLA4iEqHEBVhLzwrKytx6623wmw2S8uhAN7lIBwOB1588UXs3bsXL730UsDi8/PPP8cjjzyC5uZmWcHpu2GTxBdqdxRRFLGvsgk8L4B3ONDy3nvIs9ZCz3qgMhhQ/uTjMOTF/uQzx80NaLa1yvZdMGmRQtHEDlfrCVi+WSvbZ5xyKoyTe2ctpi5MJFSUMyRU4ciZnJwcZGVlUSEyStB9hgQrRTs6JhcL653P7XbjrrvuQldXl7RPq9UiKytL2hZFEV999RWef/552Xvtdjvuv/9+3HrrrWhqauoNkGVxww03YO1a+QdPQnzcLh48LwAAPDY7eFYNleCByHHwWCzQpCQrHGFwUnTJuLxsCfKTvUVytjEDkzLGKxyVskRRRPvaFwC/h1hgVUg/61rlgiKEkEH4P3QPhIpOQkhf6j5L5yVqP8+wtni+8847aGxsBMMw0Ov1eOCBB7B8+XJotVrYbDa88soreO6558DzPP71r3/h+9//PpKSknDy5En84Ac/wNGjR6VWTlEUUV5ejocffhhTp9Ji72RgDrtb+pq328GIAlQiBwBgtVqo4qQ7U4YxDaumL8MVZRejvrsJnY7uUd/FvGf/FtmEQgCgH1cGbdZYhSIihJCBud1uVFVVYcKECcjMzFQ6HEJInOAF+QMpIUHXJg9r4bl161bp6z/84Q8499xzpe2kpCTceuutSElJwaOPPgqn04lPP/0U8+bNw5VXXonW1t4uhsnJybjjjjtw1VVXRfWDtyiKWL16Nd555x0cOHAAdrsd2dnZmDNnDq699lqUl5eP+BpOpxNvvPEGPvnkE9TV1cFmsyEzMxOnnHIKrrvuOsyePTsM30l8EwRB+jqYJ8MOOyd9zTsc0PBu6UmRymiIu+KNYRiMSxuLcWmju7gS3E60r/+nbB+jMyL9zCvB9HkyGGrOEEI5Q0I1VM64XC7s2bMHdrsd+/btw/Tp06mr5ShH9xkSLBXkk68KTFwsPBKysH5XR44cAQAUFxfLik5/V199NV566SW0trbi22+/xXvvvYeWlhaplfOCCy7Agw8+KOueGw1OpxM/+9nP8Pnnn8v2NzY2orGxER999BF+/vOf45Zbbhn2NQ4ePIif/vSnOHHihGz/yZMnsWbNGqxduxY/+tGP8POf/3zY10gE1dXV0vTjwRT7Tkdv4ZlUPAUFs6ZgYjbgbmuHKPCDvDN2uDxuaFRqsAn6hGs4Oj9/HYJdPqtbctlC6AtK+h0bas4QQjlDQjVYzvgXnYC34KiursaMGTOQnp6uRLgkBtB9hhC5sBaeHR0dYBgGc+bMGfAYlmVx6qmnYs2aNVizZo10k05KSsLDDz+MJUuWhDOkoD3wwANS0Tlp0iSsWrUKWVlZ2LdvH9544w3Y7XY89dRTyM3NxYoVK0I+f319PW666SZ0dnYCAE477TScf/75SEtLw65du/DWW2/B5XLhhRdeQF5eHq666qpwfnsJ7UBVM8yddmj1auh0auSNzUHq1DFAHPXQ/rapCq09HcgxZSEvKRv5yTnQa+JzLdJwcHc29ZtQSJ2ag7Qzr4y7FmxCSGJzuVyorKyEw+GQ7dfpdDAaR8eEIYSQERoln/nCWnj6brpDtVYWFBQA8E4oJIoiJk6ciBdffBGFhYXhDCdoW7duxerVqwEA8+fPx0svvSStN3rxxRfj8ssvxzXXXAOz2Yzf/va3OPfcc5GUlBTSNR5++GGp6LzrrrtkLadLly7FsmXLcN1114HjODzzzDNYuXIltFptmL7D+GIymeDxeKBWB5eeh6pPwmpxSdtJKXpMLR8TqfDCThAFtPZ0wM1zaLA0o8HSjLljK1CUrszvQyxo++h5QBT89jBIW7gKalNqwONDzRlCKGdIqALlzEBFp8FgCHntcpJ46D5DgsWqRkeOhPW79Hg8YBhmyButyWSSvs7Ly8Mrr7yi6CD8f/7TO45MrVbjN7/5Tb/4J02ahF/96le46667YDab8dZbb+Gmm24K+vw7duzA5s2bAQArV64M2F135syZuOqqq/DKK6/AbDZj27ZtWLRodC6lMWnSpJCOd/h1tQWAtIz4mEzIp8nSApfHLWvJy03KVjAiZdn2bYWr4aBsn358GZJnnDnge0LNGUIoZ0io+uYMFZ1kKHSfIcEyOy0A/FYBUS6UiFJkQJn/k5/bb79d0aLTbDbjq6++AgAsXLhwwFbXJUuWSHGuW7cupGv4WlN1Oh3uuOOOAY+7/PLLcdVVV+HWW2+l2fCC5HRw8HCCbF9GlmmAo2PTfyrfxsc1m7C7qRrN1lYkaY0wjJIuF32JogiPvRua7HHSPkajQ9aF/9dvQiFCCFEKFZ2EkHASIAx9UAJQvF33rLPOUvT633zzjTTr2Pz58wc8jmVZzJkzB+vWrcOePXvQ3d2N1NTA3f762rhxIwDg9NNPR05OzoDHlZaW4uGHHw4hetLRauu3LysntG7QShIEAbWdx2HnHKjtOo7aruNI1cXHuqORwLU3QHBYYSqdD8+YSbDX7kLStIXQZo/ebseEkNjidDqxZ8+efkWn0WhERUUFFZ2EkJAJQqK2ccopPoWm0rO91dTUSF8XFxcPeuzkyZMBeFtlDh8+POixPq2trejo6ADg7U7rw3EcDhw4gC+//BLV1dXweDwhRk4AoKO9R7atYkXYd++E5dBhuM3mIRfyVlpNZx2sbvn3sKTkHIWiUZbo4WCv3S1tq1OzkTp3OdLPvlrBqAghpJfT6QzY0klFJyFkJDzi6KgDFG/xVHqGysbGRunrsWMHXzcxLy9P9r7BZu/18S0xA3gnVeI4Dn/961/x2muvSZMNAUBaWhpuvvlm3HTTTVCpRneXwuPHj0uD8cePHz/osd1d8j/+KrcDh//wb2m74o9/QNKECZEIMyz2tcofYBSm5iPHNDq7WTuO7YXglv97mqbMhiqIbseh5AwhAOUMCd3hw4dRU1MDjuOQlpYm7TcajZg5c+aonRCQDIzuMyRYBrX8s06izt+veOGpNP/ib6jWV/8/NGazOajznzx5Uvpaq9XiuuuuQ2VlZb/jzGYznnzySVRWVuKZZ56BRqMJ6vyJqLu7W1r3aijWbqdsW8O7ZNu67NiepOfSqRfh1Pxy7GquxrdNe1GWM0XpkBTB93TD1XREtk+TngdNVnBdbEPJGUIAyhkSGo7jUF1dDafTKXs4TEUnGQzdZ0iwdLwDWo9d2tYIzkGOjl+jvvB0Onv/YYfqIuP/h8X/fYPp6entRvnEE0+gvr4eU6ZMwf/7f/8Pc+bMAc/z2Lx5M5588kk0Nzdjw4YN+OMf/4hf/OIXIX4n4XPkyBFMmjQJycm9Yw1dLhcOHToEwFuAjxs3rt97fGuy9l0kub29HU1NTQCAwsJCWYHP8zz27dsHAEhOTsaEPq2Tx44dg8ViAQBMmzZNNjGV2WxGY32r7HgN7/fvotFgf20tjEYjpkyRF3QNDQ3SQ4fi4mLo9b1Pmmw2G44ePQoAyM7Oxpgx8qVZDhw4IP0hmTpVvlhoc3Mz2traAAATJ06ULbvjdDqlLtoZGRkoKCgAwzAYlzYW49LGokw9EXa7HXv37sWMGTNk521ra0NzczMAYNy4cbKHIB6PB/v37wcApKSkoKioSPbeuro6WK1WAEBZWZnsQ1NXVxfq6+sBAPn5+f2WQqqqqgLg/XDl62ruc+LECekBTElJiez3x2q1oq6uDgCQm5uL3Nxc2Xv3798Pj8cDrVaLkuIpEFkVjMWnwnF0D7q7OmB3OMEZizDJbpfNgu1wOKTu8ZmZmf16KXg8HlRVVYFlWUyfPl32Wmtrq/QgqKioCCkpKdJrvq7vAJCamtrvyXRtba30uzx9+nSwbO8ohc7OTjQ0NADw9mrIyMiQXvMtIg94Z/PuO8Ph8ePH0d3dDQCYOnWq7MOJxWLBsWPHAHh7W/QdH15dXQ1BEKDX6/sNE2hsbJS6+E+ZMgUGQ+9Mzz09PaitrQXgXfoqPz9f9t6DBw/C7XZDrVZj2rRpstdaWlrQ0tICAJgwYUJc3CNOnDgBABgzZgyyAzyI4jgONTU1MXuP8FdTUwOHwwGGYUbVPaK0tFT2WlNTE9rb2wF4Zw0N5R5x+PBhOJ3OkO8RoijCYDDA6XRK80KYTCZUVFRAq9XSPeI7iXaP2Lt3r/RvP5x7BMfJZ933oXuEVyLdI0b6OULrasFYS5u0TwU3AOXuEb4cDLeIFJ7V1dV4//33B33dZ7Dj+rrkkkuGH9QA/MdWDvXE0v/1YMdk+m6iAFBfX4+pU6fiv//9r+xGsnTpUsyePRsrV65EZ2cn/v3vf+Oaa64ZsutvpPA8L/1h9RFFUbqB8jzf7z0ej2fAG6wgCNJrfc8LQHrN9zOdOnUqRFEEwzA4fvy49Hrf8ZqiKMLpkP87aP0LT612wLj89wc671DxBvO9DnbeQPnDcZy0JFE4zxvOfxt/PM8PGJP/eQPli+97ZVkWll3r0bX5TWScfS2ST7kQ3d9sglvrhodRD/q9+p/XlzOHDx+Gy+WS3dADxTtYfkfzZzhYHgbzMxQEIWDX/MH+bYL9XQ40PjrYn2Gk7xEDnTeU3+WpU6dKHyrj6R7Bcdyou0eEct6h8tD3Mwz1HgFAKkocDoes6AToHhHovPF+j/CdVxTFgOtwBnveQA+n6B7hlUj3iJH+DI1JSWA1vTWDVtX7b6jEPSLQv2U4RKTwXLt2LdauXTvoMb5fivvuuy+oczIME5HC0/8JFcdxgxafbrdb+jrYbjV9k+DRRx+VFZ0+Y8aMwe23345f//rX8Hg8eP/99/GTn/wkqGuEm0ql6vcLxzCM9BQlUIKq1eoBu5KwLCu9FugX2fea78bufx7/8/a9kTIM0+98JndX73X1emg0moBxDXXeYOINdF7/73Ww86rVapwwe8cX5yXnQKvyxjlQ4RnKeQf7Xgc7bzD/Nv5UKtWAMfmfN1C+aDQaMAwDtcCh68s3IDhsaF/zAqy7NkA1ZyWYJD00DDPo9+p/Xt8+rVYLQRACfi/+8Q6W39H8GQ6Wh8H8DAVBCBjXYP82wfwuC4Iw5L+5kveIgc4byu+y794gimLM3iMCnXfU3SNCPO9QeajRaMDz/LDuEVqtFvn5+XC73bKiE6B7RKDzxvs9wnfekd4jAn0OoXuEV6LdI0byM9TmZcDY0Vt46nW99xcl7hGBvv9wYMQwTvtZWloKhmEiMpMowzBSE3Y4/fznP8fHH38MwLu0in+3kL42bNiA2267DQBw//3343vf+96Q53/55Zfx29/+FoC3Wf6TTz4Z8NjOzk6cdtppAIAFCxbgH//4R9Dfx0jYbDap+wvg7e4QqDiORc/9bhM6/Wa2nX5yE3JtxwAASVOmoOIPjysU2eBEUcTHNZtgc9vBMgyyjBmYkVuKTKOyszxHW/v6f8Kyc41s35jrHoFhfJlCERFCCCGERFfdp2tQ+dkuaVuvY7D4wV8qFk+kaoOwtngGM8trrPHvn202mwctPP0nFPIfozEY/3+kvuMO+srIyEBaWhrMZjNaW1sHPZZ42azysbZaT++sqOpkU9/DY4bV3QOb2/tkSxBFtPZ0gGUUX90oqtztDbB8u062z1R6GhWdhBBF+ZZK8R/3SAghZOTCWni+8sor4TxdVPgPoG5ubkZh4cCzaPrPUNt3sP1A+g78Hoqv606k+lbHA4vFInWX9H8w0Jfb5YHbJe+zruN7uymoB3mIoLSNRzajtacDWcZ0sAwLg1qPNP3A32si6vz0P4DQ++/HqDTIOPf6YZ0r2JwhxIdyhgTicDikmednzpwpKz4pZ0ioKGdIsFo1Hfi85Li0nSYwWKxgPJEy6me19Z8dqqamBnPnzh3wWN8sWAzD9JvdbCD+s0T5rxkaCM/zUqtq39m7RpNjx45Js731ndnOn9XSf2ZhnV+LpyY1NSLxjZQgClhb8xksLhs0rBq5Sdm4YPJCxde0jSZ77W7Yj3wr25c6bxk0acPL+2BzhhAfyhnSl91uR2VlpTSfQ2Vlpaz4pJwhoaKcIcFqNwsQWnpnIu5hXYMcHb9GV9++AGbNmiUNqt2+ffuAx/E8j507dwLwjmUN9slVenq6VKTW1NTIWk372rdvn/QHr++0xqQ/t4tHSqoeLOst2FQCB5XYO+OXJi02C8+6rnpYXDYAACd40GBpRlHauCHelThEgUfH+n/K9rE6E1LmLFEoIkLIaNe36AS8y3/4lhUhhJBIslkYZJ+cJP1nbE/Mz4WjvsUzJSUF8+fPx+bNm/HZZ5+hqakpYDfaNWvWSOs1LV4cWuP30qVL8cc//hGiKOJvf/sbfvWrXwU87r///a/0dajXSCR5eXngeT7gDFz+0jONuOHHp0GrUYHjOOy49eey17WpaZELcgS+bdor2x6TnIPS7EkDHJ14LN9+Aq6zSbbPMKEcKsPwB60HmzOE+FDOEJ9ARSfgXROypKRE2qacIaGinCHB8rSYAWRK2wZnYg65G/UtngBw4403AvAup3LnnXfCZrPJXj9y5Agee+wxAN7FW6+44oqQzn/VVVdJkxG9/vrr+OCDD/od8/7770v7Z8+ejYqKilC/jYSRk5ODMWPG9Fvotq/2Vhuqvm3AN18fx66tR2HVyRct1mYGNwFUtGUa0jAxvfdJ1iljZgxydGLhHTZ0ffG6bJ/KlIbkWeeDUQWeZjwYweYMIT6UMwQYvOgsLy+XLTNAOUNCRTlDgpUsyNsCVf2X3UwIo77FE/AuXXLhhRfik08+we7du7FixQpcffXVGDNmDPbv34/XX38dPT3eJTvuvvvufjPabt++HTfccAMAYO7cuf0mWUpPT8cjjzyCn/3sZ+B5HnfffTc+/vhjnHPOOdBqtdi0aRPWrfPO7qnT6fDoo49G4buOf25Xb7dawekEK8gX1tWmx+bSJOdOWoBzJy1Ap8OMXU3VmJxRpHRIUdP1xRsQXHbZPmPJPOjHTVUoIkLIaNXT04M9e/YELDorKioCrplHCCGRoGXl95tEnfWD7qrf+f3vf4+enh5s2bIFDQ0NePLJJ2WvMwyD2267DVddddWwzn/++efjqaeewi9/+UvYbDZs2rQJmzZtkh2TlpaGF154AZMnTx729zGa+BeevNMFtchJ26xOB1WMT4WfYUjDeZMWKB1G1LjbG2DZJV/HVpNVgNRTF4NVawd4FyGEhF9PTw8qKyvBcZxsPxWdhBAl8IK8E6qQoEvs0Z31OwaDAX//+9/x0Ucf4f3338eBAwdgtVqRlpaGU045BTfccANOOeWUEV1j8eLFOOWUU/Dqq6/is88+Q2NjIxiGQWFhIc477zxcc801Qa8PSgC3u7cfAm93QCX0foBQ6fVQ6XVKhEUG0L7ub4DoN2aBYZEy83xoskJbcogQQkZioKIzJSUF5eXlVHQSQqLOkJED+M0/KqoS8z6UmN/VMDEMg+XLl2P58uUhvW/evHk4dOhQUMfm5OTgjjvuwB133DGcEEeF6upqafrx6dOnD3gc5194OhzQ+nW1ZfU6sLrYKzz3thyEnXMg05CODGMa0nQpYNnEfKrlr+fIt3Aer5bt0xeWIrni7LAsIxNszhDiQzkzOo2k6KScIaGinCHB0qSnAOiRthlVYna2pcKTxBxBEKT/BnPkYCt4XoBGq4Kz2+U3F5i3xZPVxl73zUbLSVhcNhw3e9d0nT1mOiZnFikbVBR4utugSkoHb+sCADAaPdIWXAFWbwrL+YPNGUJ8KGdGH5vNhj179gy7pZNyhoSKcoYEi9Wa4F94imxizoRMhSeJOXq9HiqVSjabYCA1B1oh8OJ3WyYkaZIAt3fJG5XJBCbGWhLdHre0fqdPhjFNmWCiiLdbINitSJp5Htytx+Cs2wtTyTwYisL39DfYnCHEh3Jm9Dl+/Hi/ojM1NRUzZswIqnst5QwJFeUMCZaqz4N4hk3MEi0xvysS14qLi4c8xung/IpOLz3XO1uqJmn4a0JGgiiKuG/j78EyLMYk5SA3KQt6tQ5puhSlQ4soURRhr/kGoiiAYRjocidAl1WI5NkXgQnjwPlgcoYQf5Qzo09paSk4joPZbAYQWtEJUM6Q0FHOkGCdtLTItl0iN8CR8Y0KTxKXLGZHv31avrc1UZ0SWwVdfXcT6rubAADHzQ1gGRZXz1iR8OM73S3HwHW3yfbpx5dBk5o5wDsIISQyVCoVZsyYgb1790IUxZCKTkIIiSSXIF/WSRDFAY6Mb4rccU+cOIGPPvoIu3btQlNTE7q7u/GTn/wE1157LQDg17/+NUpLS7Fy5UpoY3CcHlGexeKU7xBFaPnefZrU1ChHNLhvmqpk25mGNFxcfK5C0USHwLngqNsj28fqjDCML1MoIkLIaOcrPn1fE0JILBA4+Vr0SMy6M7qFp91ux6OPPooPP/xQGmgtiiIYhpEt4Lxu3Tr873//w9/+9jc89dRTmDlzZjTDJHHA2i0vPFWiB/5th9q02Co8dzXJZ3Q9Jb888T/0sCx0Y4vhPLEfouCdgdg4+RQwKhrrQghRTsLfewkhccfd2AIgV9rWcIk5IVXU+vlZLBZceeWVeP/998HzPERRhBigGbmnp0caf9HY2Igbb7wR33zzTbTCJDGgsbERJ06cQGNj44DH9Fhdsm3/NTwBQJMZW+uh/nT+jbhp1ipU5E2FmlVjdv4MpUOKKPvRSjT9+wEwDIOUUy6EJj0X2qwCaDPzI3K9YHKGEH+UM4nLarWiuroaPM8PfXAIKGdIqChnSLAMovyBGJugLZ5RKzzvuusu1NTUQBRFZGVl4c4778R//vOffsdpNBr84he/QEaGt3BwOp24++674XD0H9NHElNHRwfa2trQ0dEx4DH2HnlfeHWfwlOflRWR2IYrNykbi4vPxgOLbsc/LnkS03NLlA4pYkRRROdn/4X7ZC2a/vNLtH/8EnQFU2EqmRexawaTM4T4o5xJTFarFXv27EF7ezv27t0b1uKTcoaEinKGBEsnuKHi/f7rM+YzUUSl8Ny6dSs2b94MhmEwd+5cfPLJJ7jlllswd+7cfsdqtVr84Ac/wOrVq6Uuts3NzXjvvfeiESqJE44eeaHp/wvK6nQxN7mQP4NGD3WCrs8EAPYj38LdUidt9xz4Cs5je8GoaBIPQkjkWCwW7NmzBx6Pd6yU2WwOe/FJCCGRkK7uxrjufdJ/BdYDSocUEVH5JPjhhx8CAAwGA55++mmYTEMvGp+eno4//elPuOCCC+B2u/Hpp5/immuuiXSoJAZMmTJFGvs7EKdDXnj6t3iq9Hqog8ixaHHzHERRhE6d+BNliaII8+Y3Zfs0GflIrjg7otcNJmcI8Uc5k1gsFguqqqqkotMnnP++lDMkVJQzJFjJKi2A3vlLErV5IiqF57fffguGYXD22WcjK4QukLm5uTjvvPOwZs0aHDp0KIIRklhiMBiGPEalljfW55dNwPjzroO7owOiCKhNxkiFF7IT5kbsbq5GuiEVuUnZGJOcgyxjbI1BDRdH7W64mmtl+9IWXAYmwi28weQMIf4oZxKHr6Wzb8tmeno6pk+fHrbJhChnSKgoZwiRi0rh2d7eDgCYNGlSyO+dMGECAKC7uzusMZH45nTIn2rnTZuAgnMmKxTN4BotJyEC6HR0o9PRDQfnTMjCUxRFdHz6smyfOj0PSWULFYqIEJLoBio6MzIyUFZWRjPYEkJIDIlK4em78fuWUAkFx3m7UOr1+rDGROKb0yEfdG00xV43VlEUse3Et2iytkDl1+KXl5StYFSRYz+8E1x7g2xf6vwVEW/tJISMTt3d3aiqqgpYdE6fPh0sG7X5EwkhhAQhKoVnTk4Ojh07hgMHQh8o61tKJScnJ9xhkRjV09MjjYkYaDywvc/kQgZj7K0N2WxtwR+//gdUrAo5xkyMSc5BafYkjE3JUzq0sBNFEZ1fvCbbx+pNSCo9LSrXDyZnCPFHORPflCg6KWdIqChnSLCcMGN81z5p261NzHHBUSk8582bh7q6Onz55ZdoaGhAQUFBUO/76quvpPGhp556aoSjJLGitrYWHMdBo9GgvLw84DEOu7zF02CMvRbPb5uqAQC8wKPZ1gqLy4ZlJefJWj8ThePoHnBt9bJ9SWULoTImR+X6weQMIf4oZ+KXUi2dlDMkVJQzJFhmToWu1KnStsjQcirDtnLlSgCAx+PBz372M5jN5iHf8+233+LOO++UtpcvXx6p8EicEQQRajULhu19GmSIwa62u5r3yrbnF87GtJxihaKJrM5Nr8i2GZ0RqaddqlA0hJBEZTabAxadmZmZ1L2WEBK3ejgDjmTNkf5rTJmhdEgREZUWz/Lycixfvhwffvgh9u/fj6VLl2LVqlWYNm2adIzZbMbBgwdRU1ODDRs24NNPPwXP89JsuKeccko0QiUxICsrCzzPDzgpBMsyuOWuM8EwAM950HXkOJK1sbVOm288M8MwEEURAHBK/vSEnFLdfrQS7pZjsn2mkvnQpAY/g/VIDZUzhPRFORN/uru7A67LmZmZibKysogXnZQzJFSUMyRY7u8+Kya6qK3o/pvf/AYNDQ3YtWsXOjs78de//hVA7xpbL730El566SXpeN+H9cmTJ+OJJ56IVpgkBuTn5w95TOWOevC8AL7HjqaPViPfUgOD6ITKaETFHx6HPk/ZcZQsy+Khs++AzdWDypP7sKt5H6bnlioaU6R0fta/tTN9weVRjSGYnCHEH+VM/NFqtVCr1bLCM1pFJ0A5Q0JHOUOCZdKOjqV3otYnRavV4uWXX8b3vvc9qFQqiKIoFZc+vn2+gdhLly7F66+/jqSkpGiFSeKAKIjgeW+LoqenBwDAijxEnofHZoM6NVXJ8GSSdCYsGD8Xt8+/CXq1Tulwwi5ga2fpfGjSc5UJiBCSsAwGA2bOnAmdznsvzcrKilrRSQghkaRj5W2Bidc/zitqLZ4AoNFocN999+H73/8+3n//fezYsQO1tbXo7u6Gx+NBamoqCgoKMGfOHFxyySXDWveTJD5f0QkAnh47AG/hCQCsTgsVLb0TNV1fvCHbZrQGZCy8UqFoCCGJzld81tfXY/LkyVR0EkISgiDIS00xAYdmAVEuPH1yc3Pxwx/+ED/84Q+VuDyJcx5Pb+HJOxwAAEb07lMZjIqPo+R4DltPfIMsYwayTRnINKRDrVLkVy2iBJcd+vHTAVYFV9MRQPAgaerpUEdxbCchZPQxGAwoLk7MidoIIaMTA3mjCc/E3jKB4RCVT8MnT55EnsJj7kj8OHjwIDweD9RqNUpL+4+L5Lje8T0p00qRNHkSZpZeDXdrG0Re+UmGOuxdaO3pQGtPB9AGqFkVLim9MOGezDvrD4JRa2CYUA5dQQnczbVIO/MqRWIZKmcI6YtyJrbZ7XYYDAbFHyT6o5whoaKcIcGKnTtdZEWl8DznnHMwd+5crFixAhdccAEtoksG5Xa7wXGcNDNsX8ePtKOpvhsaDQu1RoXkFB1SpkwGpkyOcqSBtdk7Zdtp+tSEKzoFlwOuk0elbVajQ+q8ZdCkZCgSz1A5Q0hflDOxq7OzE9XV1cjPz8ekSZNipviknCGhopwhQVMnZgtnX1EpPAVBwPbt27F9+3Y8/PDDOPfcc7F8+XIsXLgw4T6Qk5FTq9UQRRFqdeD0PFjdgiMHWqXtwgnp0QotKBuObAYAZBnTodfokWWMrfjCwdlwEKLQ27rMMAz0hVMHeUdkDZUzhPRFORObfEWnIAhoaGgAgJgpPilnSKgoZ0iwWM3omJ8kKr8Jubm5aGlpAQA4nU6sXbsWa9euRUZGBi6++GIsX74cZWVl0QiFxAH/9V0Dcdg52bZeHztPiZweF3Y0VkL4bsxpktaEKRlFygYVZgLngqu5VrZPmzsBKr1yPRmGyhlC+qKciT3+RadPQ0MDkpOTkZur/EzZlDMkVJQzJFhWpxWAMr3GoikqzY1ffPEFXnnlFVx55ZVIS0uTlkzp6OjAf/7zH1x++eW4+OKL8be//Q0nT56MRkgkjjnsbtm23hA7hWdNR51UdAKAnXOgOGuighGFnygISJp2BtQpmQCUb+0khMS/jo6OfkUnAOTk5CAnJ0ehqAghJDo40SPbFgc4Lt5FrZ/rnDlz8PDDD2PLli148cUXcfHFF8NgMEhFaG1tLZ5++mmcc845+N73vof33nsPPd+t0UiIP6dD/stpMMZO4XmgrUa2PTF9HExao0LRhJ/r5FGc+PMtsFZtgnHKXCSXnwXDhHKoDLTWLiFkeAYqOnNzczF16tSY6GZLCCGRJI6SYcBR73SuVquxaNEiLFq0CE6nE5999hk++ugjbNmyBRzHQRRF7NixAzt27KDxoCQgt0ve1VZob4Z5L6BNS4U+NxesVqtQZMDYlDzMGlOGg221cHicmJodGxMehUvXlrchuuwwb30H3TvXIP2My5B2+kqlwyKExClf0SmK8uf7ubm5KC0tpaKTEDIqcCI39EEJQNHRznq9HkuWLMGSJUtgsVjwySefYM2aNdi5cyd4npeNB83MzMSWLVuUDJdESUtLC3ieh0qlCjiux+WUL5li+XIT9q0+BACY/puHkTpjelTiDOSMcXNwxrg54AUex82NMGoNisUSbq6WY7Af2i5ti25nvw+LShkqZwjpi3JGee3t7di3b1/cFJ2UMyRUlDMkWDqVco0m0RQz02ylpKTgiiuuwBVXXIHOzk68++67+Mtf/gKHwyGNByWjQ0tLCziOg0aj6Xej9nA8eF7eH0HLO6WvNelp0QhxSCpWhYkZ45QOI6zMW9+WbbP6JKSeulihaOQGyxlCAqGcUdZARWdeXh5KSkpirugEKGdI6ChnSLB0Ag/Gr78tm6B9b2Om8ASA+vp6bNy4EZ999hl2794NnueHfhMZVfrOaAsAWt4hfa1JS4tiNHIegYeaVSl2/UhynaxDz4GvZftS514MVpc441cJIdERj0UnIYREUoa6C0VdzdK2Cm4Aq5QLKEIULzxbW1ul7rR79+6V9vv+IOXm5mLZsmW45JJLFIqQRNuECRMgCELAMb32PjPaAoDOYwcAMGo11EblCqFtJ76FxWVFtikTWcYMjEnOgSFB1mXq2PBP+M+xxuqMSJmzRLmA+hgsZwgJhHJGGW1tbdi/f39cFp2UMyRUlDMkWCmmJIDp7cGnStCUUaTw7OrqksZzfvvtt9IfIN//DQYDLrjgAqxYsQKnnXZaTP8hIuGXnJw84Gt9WzxVghu677rasjotGIVu7oIooN3eCU7woMfcgGPmBswvmIVxaWMViSecnE1H4DyxX7YveeZ5iq7b2ddgOUNIIJQz0cdxHA4ePNiv6BwzZgyKi4tj/m895QwJFeUMCVbqlHFIqm+XtvU6nYLRRE7UCk+bzYaNGzdizZo12LZtm9SN1vcHiGVZzJ8/HytWrMCFF14IgyFxJmUh4ePokbd4aj1OqL5b+0ilU651sdtpBSfIl3nJNmUqFE14dX76H/kOlRrJMTK2kxASPzQaDcrKymRLp8RL0UkIIWTkolJ43nbbbdi8eTPcbm/R4P+0c8qUKVi+fDmWL19OA6/JkBx9utpqBJf0tUrBhxXrajbh6/rdyDJlIMuYgcLUMQnRzTZQa6epeC60abSgOyEkdBkZGZg+fTr27t2LvLw8KjoJIWQUiUrhuXHjRjAMIxWcGRkZWLp0KS655BKUlZVFIwQSR1wuF0RRBMMw0PXpatC3q62G9y88lSv0Giwn0WxrRbOtFQAwa8x0XFxynmLxhEvnZ6/Af2wnVGpknHO9YvEMZLCcISQQyhnlZGRk4JRTToHJZIqropNyhoSKcoYEq0vdjX2FDdJ2EqtCIvYti1pXW61Wi7PPPhuXXHIJFi5cCJUqMWf/JCN36NAhafrx8vJy2Wv2nkFaPE3KjDkURAEH247I9p1eeIoisYQT13UyYGunJgZbOwfLGUICoZxRVlJSktIhhIxyhoSKcoYEq7XHhROeQmnbhP6rOCSCqBSejz76KC666CIaZE1GTOBFMCwDUfC2wqn9WjzVChWejZaTsLp7ZPum5kxRJJZw6tryFuC/jhTDIuPs65QLiBASN1paWgCAhtAQQkgQrN0aFNTNlLY9OptywURQVArPK664IhqXIQkiLS0NPM8HbBVfdGExTj9nEkRBxJ4HfwOu67j0mlqhJ+jp+lT8eO4NqOmow+GOOtg5B7KNGYrEEi6C29lv3U79+DJo0mPzQ+RgOUNIIJQzkdPS0oIDBw4AABiGQU5O7PWSGA7KGRIqyhkSLFdrF4A0aVvvFAc8Np4pvo4nIX2NGzduwNea6rtxoq7D+7WQCYPegZweb/GpTlGmRT1JZ8JZE07DWRNOAwB4BD6uxi0FYtn1CUTOKduXdvplCkUztMFyhpBAKGciw7/oBID9+73d9ROh+KScIaGinCHBSnLJt9UeKjyHdMMNNwDwPuF8+eWX++0fib7nJKMTx/HS1yLnASv2bmtSUpQIqR81G99PNkVRBKPRwzT9TLiaauDpbIYmcyyME2YoHRohJIadPHkSBw8e7LffYrEkROFJCCGRoldpZdvx3XwxsLAWnjt27AjY0jPQ/mD5ZgQjxO3qXStT8HigEnoHX2tSo194CqIAq8uGZF0SWIaN+vUjwWNpA99jhiY9D5r0PPB2KwxF05UOixASwwYqOgsKCjBp0iQFIiKEkPghCPI6R0zQ0jPsXW0HKhL91+4kZLhcTm/hKQoCIPBQywrPtKjHY3P14JMjX0LNqpCqS0a6IRUz88rAsvFbhLoaa2Tb2ow8mErmKhQNISTWDVV00oNjQggZnDpJPjcIr9IoFElkhbXw/PTTT0PaT0ggR44cgcfjgVqtxuTJk2WvuZzeQlNweZdV8W/x1GakRS1GH7PTAsA7rrPDYYadc2J2fvx2SRWcPeDaG2X7dGOLwcR4a+5gOUNIIJQz4dHc3IxDhw71219YWIiJEycmVNFJOUNCRTlDgmXIzQSO9K6QwKoT597pL6yF59ixY0PaT0ggdrtdWvdKtt/mwvGjHdBoVIDTDpfKAJXQu66nJj092qGi3d4p2043xMY40+FyNh+BiN7eCYxKDW1ukXIBBWmgnCFkIJQzIzeaik6AcoaEjnKGBItVaQH4Lc2XYPdPn5if1ZbjONTW1qK9vR0LFixQOhyioNaTVhw50Na7I6UEU9p3AAAYtRpqozGq8QiigD9t+yd0ai0yDGnIMKZjYnr8zmAniiL0Y4vBsGq4mmshuB3Q5RaBVWuHfjMhZFQZqOgcN24cJkyYkHBFJyGERJIqJRNAl7QtqhLzs1dUCs/S0lKwLItf/OIXuOmmm0J67/PPP48XX3wR2dnZ+PLLLyMUIYkl5eXlAfdbuuXLe7CiB6rvZrVldVowUV4n66S1FQ6PEw6PE2anBUe7TmDl1IuiGkM4WXeth7X6S6TOXYqUUy+Cp/MkVMnRb0UejoFyhpCBUM4MX1NTEw4fPtxvf6IXnZQzJFSUMyRY7ZYW2bZH9AxwZHyLWovncCcXMhgMEEURnZ2dQx9MEprd5pZtqwSPNOeXSqeP+oedwx11su10QyomZYyPagzhIooiur9ZC669Aa0NB6FKzkTmBTchKSd+W3AJIeE3WotOQgiJpB7OIdv2iIJCkURWzHa1FUURDQ0NWL16NQDAGOVulCT2OBycbFvl9zSI1euiHU6/wrM4M37HNDnqqsC1N0jbvLUDrNagYESEkFjk8fR/Cj9+/HgUFRXF7f2PEEKUJvKJWWj2FbbC0+Px4NJLL8WRI0cCvi6KIp544gk88cQTIZ+bYRgUFxePNEQS53wz2vqohN4PQCpD9Iuk7828HAvHz0FNRx0Ot9ehIm9a1GMIF8vONbJtTVYBDBMqFIqGEBKrxo0bB1EUUVfnffBGRSchhIycs7kFQLa0rXEnZiEatsJTrVbjkUcewTXXXDNgt9rhdrdlGAY333zzSMIjcaS9vR2CIIBlWWRlZUn7XQ75k3b/Fk+VMfqFp06txdTsKZiaPSXq1w4nrrMJ9iPfyvalnrokrj5IDpQzhAyEcmb4xo/3DikQRRFFRUXKBhNFlDMkVJQzJFh6Tl4jMcMrmWJeWLvazpo1C9/73vewfv162f6mpiYwDIOUlBSYTKYhz8MwDFQqFZKSklBQUIBVq1bRjLajSFNTkzT9uKzwdPUpPP3W8FQbh84rEljHZ/+VbbN6E5JmLFIomuEZKGcIGQjlzMj4is/RhHKGhIpyhgRL36eBM34e/Ycm7GM87733Xtx7772yfaWlpQCAH/3oRyHPakuIj3uwwjOIBxrhZHFaYXZakGlMh1FjiKvWQX+8vbtfa2dS2UKwWr1CERFCYgWtP0gIIdGRpurA+M5maVsFN4DLlQsoQmJ+Vlsy+hQWFkpdU/z1Lzx7t9VJ0S086y3N2NfqndlRr9ZhQnohZuSWRjWGcOja+i7A+/9cGSTPOk+xeIZroJwhZCCUM4NraGjA8ePHUVFRgaSkJKXDiQmUMyRUlDMkWEkqNVj0LhuoBq9gNJETlcLz4MGD0bgMSRDp6YHXjtRo5et0jplWhPzT0+GxWZFaEd2JcDrsvYv8Oj0u8EL8DQIXeA9se7+Q7dONmQRd7gSFIhq+gXKGkIFQzgysvr4etbW1AIA9e/ZQ8fkdyhkSKsoZEiwVI384wSRoZ9uYXU6FkL64PjN8jZ0/ExNOi/44I5urB3VdJ6BX964dmmlMi3ocI2Xb8ykEh1W2L2X+MoWiIYTEAv+iE/B2t92zZw/mzp1L3W4JIYSMSFgLz6amJunr/Pz8gPtHwv+cZPTpO7mQTqfMc5OdTXuw5vBn0LBqZBjSkJuUjYuLz1UklpHo3rlWtq1KzoCp9HSFoiGEKO3EiRM4evRov/2FhYVUdBJCCBmxsH5yP+ecc8AwDBiGwf79+/vtH4m+5ySJi+d7+7WrVL3da/uu46nVK1N4Hu08AQDgBA9aetqRZcqAQRNfk/E4TuwH194g25dccV7cjkMZKGcIGQjljNxARefEiRMxbtw4BSKKPZQzJFSUMyRYHKwYYzkibQuaxJwbJ+yf3MO9hicZffbt2yfNplheXi7tdzljo8WzpqNOtl2eOzXuZrU1f/WubJvR6JAax91sB8oZQgZCOdNroKJz0qRJKCwsVCCi2EQ5Q0JFOUOC1c0LsGvTpG1eRZMLDWnOnDkh7SckFJxb/kuoVaDw5AUePW67bN+UzPiajMdjt8BRVyXbZyqeC5XOqFBEhBClHD9+HHV1df32U9FJCCHRY3ElYV/+bGlbz1kUjCZywvrJ/ZVXXglpPyGBJCcnw+PxQK3uTU9RFPGzX50L3iOAczjBOdzIyDJEPTYVq8KfL34UnXYzDnccxeGOOkzOiK+F1HlrB/Tjp8PdfASCswcAg9TTVyod1ogEyhlCBkM5M3DROXnyZBQUFCgQUWyjnCGhopwhwXIJnqEPSgD0m0BizoQJ/VsQeV7At9uOAwBsNUfQ9e0uFFoOQK9hoR+Th/Infgc2ipNfZBjTMN84G/MLZw99cIzhuk5CX1AC3dgp8HSdhOjhoMuJ7zFcgXKGkMGM9pyhojN0oz1nSOgoZ0iwdNroN6YogQpPEhcEvneMMO90AQBYngfvccHTYwdDTxODIvIcuPZGAADDsNBk5MM4aZbCURFCounYsWM4duxYv/1UdBJCiDJMKq1sO75mDgmeIp/WB+p2sGPHDnzwwQc4efIkcnNzceGFF2LRokUKREhijSD0Fp6Cy1t4MqJ3XU+VXh+1yX2qTh4Ay7DIMWUiw5gONRtfs9S52xshCr1jZRmGgTY7vls7CSHBa21tDVh0TpkyBWPHjo1+QIQQQtB3DtZEnZI1qoXntm3b8OKLL6KmpgZbt26Vvfbcc8/h+eefl+177733sGjRIvzpT3+CTqeLZqgkxvi3eEqFJ74rPI3R6Z4giAKOdB6DR+Cxv60GLMNi4fg5yE3Kjsr1w8Hdely2rU7LBauNr6VgCCHDl5WVhaysLLS3t0v7qOgkhBBliaL8sxjPagc4Mr5FrfB866238OCDD0IURTAMA7PZjLS0NADA7t278dxzzwV83xdffIF7770XzzzzTLRCJQo7duyY1CpeVFQEAOAFQXo9fc4pSCmbimmTloAzm6FOTY1KXGaHBR6/1kJBFJCqS47KtcNBFAUAIhgwEL97lqbNia+JkQYSKGcIGcxozRmWZTFt2jTs27cPHR0dKC4uRn5+vtJhxYXRmjNk+ChnSLDYhO1cKxeVwrOtrQ2PPfaYtK3X69HZ2SkVnv/6178AeLv9FRcX40c/+hE6Ozvx/PPPo7OzE+vWrcN1112HU045JRrhEoVZLBZp3Ssfa7cTHa02sCoWKhUDnT4JGaeWRTWuLcd3osnagkxDGnRqHVJ0SdBr4qO1UOBc6Pr8NSTPOh+m4rlwt52Au70B2qzEaOUIlDOEDGY05wzLsigrK0NXVxcyMzOVDidujOacIcNDOUOCxrBKRxAVUSk833rrLTidTjAMg+XLl+ORRx6BXu/9wN7T04PPP/8cAKBSqfC3v/0NOTk5AIDTTz8dl1xyCdxuN1avXk2F5yjW3GDGvspmadtg1ODCFdEtPL+q/wZHu04AAJK0Rpw/6cyoXn8kbPu2oHvHanTvWA190QyknroYKTPPUzosQohCWJalopMQQmIEa4yfHnQjEZXCc9u2bQCA/Px8/O53v4NK1Tshy1dffQW32w2GYTB//nyp6AS801CfddZZ+OSTT7Bjx45ohEpiwLRp06Qu2T5uNy87RqWO7pMhjudwortJ2ra57XGzfqcoirB887G07Ty2FwyrgqlknoJRhVegnCFkMImeM6IoorGxEbm5udTaEiaJnjMk/ChnSLDsDiuANKXDiLiofHqvq6sDwzA4++yzZUUnAGzevFn6euHChf3eO2XKFADe7rpkdFCr1dBoNLKZj92uPoWnKrqF5zFzAzx9FvedllMc1RiGy9V4CO4W+Xp9KacuViiayAiUM4QMJpFzRhRFHD16FEeOHMGePXvAcZzSISWERM4ZEhmUMyRYTsEt207UWW2j8um9u7sbAGStmT5btmyRvj7ttNP6ve57SmS32yMUHYkHXJ8WT3WUWzx5QcC07CnQfbfOUkHKGJi0xqjGMFyWb9bJttVpObR2JyEJyld01tfXAwBsNhsVn4QQQmJCVB7BaLVaeDweOBwO2f6jR4+iqakJDMMgIyMDxcX9W5CamrzdG5OSkqIRKolRbpe8tZHxuNFzoh7ajHSoTaaId2MpzZ6EX59zJ3iBR313E2zu+HgQwlk7YDvwlWxfyikXgYmz9UcJIUMTRRG1tbVoaGiQ7bfZbOju7kZWVpZCkRFCCBmMm/cMfVACiErhWVhYiEOHDmH//v2y/b5JhQBgwYIF/d7ncrnw5ZdfgmEYmoZ6FDGbzdKYCN/Mxxwnb/F0Nzei8qcvAQBmPfdHGAsLoxKbilWhKD061woH89Z3Ab8lYBi1BskV5ygYUWQEyhlCBpNoOTNQ0QkApaWlVHSGQaLlDIk8yhkSLA0zOhoEolJ4zps3DwcPHsSWLVvw5Zdf4swzz0R7eztefvll6Zjzzz9f9h5BEPDb3/4WbW1tYBgG8+YlzkQoZHAnTpyQph+XCs8+XW3Z74opRqOBSm+IaDzxOjGA4OFgq/5Stk83ZjJUhsSbOS1QzhAymETKmaGKzry8PAWiSjyJlDMkOihnSLAMfUY/xt+nzuBEpfC84oor8Morr0AQBNx6660oLi5GY2MjrFYrGIZBXl4ezjrrLOn4l156CWvXrsWhQ4cAABqNBpdffnk0QiUxqm+LJyt6t1mtFqxOG9FrN1lbUHXyADKN6cgyZiDLlIEUXex3/bZWboDokncJTpl7sULREEIiQRRFHDlyBI2Njf1emzp1KnJzcxWIihBCSChS2Q4UmFulbRXcgxwdv6JSeE6ePBm33XYbnn32WfA8j4MHDwLw/sFUqVT49a9/LZvx64033kBzczNE0Tun0z333IPCKHWlJMobM2YMBEEAy/Y+/enX4il6+8KzWi1YbWQLz06HGVZ3D6zuHhwzNyDHlImzJvSfCCvWBJpUKJGWUPEXKGcIGUwi5AwVndGVCDlDootyhgQrRa+DRjBL2xoqPEfmxz/+McaOHYu//OUvOH78OADvH8b/9//+H8444wzZsRMnTkRTUxOysrJw//33Y8mSJdEKk8SA7Ozsfvs0GnnfdwNnA/Bd4RnhNeosLqtsO8OQFtHrhYPjxH5wHfIPo8nl58Rll+FgBMoZQgYT7zkjiiJqamqkCfj8UdEZGfGeMyT6KGdIsNKKi2BqqpS29TqdcsFEUFQXFlqxYgVWrFiB7u5uqFSqAWeqveaaa3DVVVdh0aJFtPA1AQAIgnxFIx3vnSFZpdeBUUV2QPbnR7dBxaqQok9Gqi45LrrZmr96T7bNaPVInUfdbAlJBAMVnQzDYOrUqQGXLiOEEBK7WDULxq9hnEnQRnJFVrRNTU0d9PVzzkm8WTfJyPQd46kSvF1tVYbIrqVp5xzY03JAtq88b2pErzlSHpsZjro9sn3GKXPAaiM7CRMhJPKo6CSEEBKvFCk8/XEch+7ubjAMg+TkZGgjPF6PxKe+YzxV343xVBkjW0w1dDfLtlmGRWnWpIhec6TM296TLaECMEg74zLF4iGEhI/H44HZbJbto6KTEELiW4+qByezT0rbBpXiJVpEKPJdbdu2DW+//Ta++eYbtLa2yl7Lzs7GzJkzsXTpUlx44YVKhEcUtnfvXmn68RkzZgAItJyKt/BUm0wRjeVEt7xVYUxyDjSq2O3+LYoiuPYGbx8NUQAA6PInQ5ed2JNzBcoZQgYTrzmj0WhQUVGBPXv2wG63g2EYTJs2jcaSRUG85gxRDuUMCVaz24Ztyb3L3aUKHtyoXDgRE9XCs7OzE3fddRe+/vpraZ9v5lqftrY2bNiwARs2bMC8efPwxBNP0FPcUUYURek/H7fbIzvG1+KpTo7smpTZpgycXngK6rub0GRtwbjUsRG93kh5LG3QjS2GJnsc3C11cDXXImXuUqXDirhAOUPIYOI5Z3Q6HSoqKlBVVYWioiIqOqMknnOGKINyhgSru0OLyfsXSNsenU3BaCInaoVnR0cHVq1ahaamJtkvoFqtRkpKCnieh81mA8/3tmx9/fXXWLVqFd59911kZGREK1SiMIPBALVaLZtY6qbbTofHI2D3L+6H2+6CkbMAADQpkS08K/KmoSJvGgDAw3tg9zgjer2R4lrrAQCsVg994VQYp8yBaeoZQ7wr/gXKGUIGE+85o9PpcOqppybsTNWxKN5zhkQf5QwJlrOrG0CatK11J+bDiqgVnnfeeae01lhSUhKuv/56LF68GFOmTJH+cHo8HtTU1GDdunV49dVXYbPZcPLkSdxzzz3429/+Fq1QicKmTJnSb9+h6hbY7W40q/LAGDmobW5oBDc0qSlRi0utUiNFFbsz2oqiAHd7vWyfLm/CqFg/LFDOEDKYeMgZ30PagYpLKjqjKx5yhsQWyhkSLL1V3rOPCs8R2Lx5M7Zv3w6GYVBYWIh//vOfKCgo6B+MWo2pU6di6tSpWLVqFb7//e/j+PHj2LJlC7Zu3dpvvU8yevCCCJEXAIGHyLBg4P2F1KSlKRtYDPGYWyFwLtk+bYKP7SQkUYmiiEOHDkEURZSWllKRSQghCSxJrZdtJ+odPypNIatXrwYAqFQqPP/88wGLzr7Gjh2L5557Dmq1tzb+8MMPIxojiW0CL0Bwu6Vt5ruJczTp6RG7ps3dg48ObsTndduwq6kaRzqOQfjuurGI62iUbauT0qEyRLYrMiEk/ERRxMGDB3Hy5Em0tLTg4MGDNEaMEEIS2Si5xUel8Ny1axcYhsHChQtD6nYwZcoULFy4EKIoYteuXRGMkMQ6nhchuHpb81jfjK0RHPtrcVrh8DjR2tOBI53HUN16CEyMPoMSeQ76CeVInrEIutwJYNUaaHPGKR0WISREvqKzpaVF2tfS0oLDhw8rGBUhhJBIEjXyhgIPm5jLS0alq217ezsAoKysLOT3lpWVYdOmTbI/wiSxNTQ0wOPxQK1Wo6CgAKIoQhAE8M7eiX0YUQCj0UBtMkYsDotLPqNYii45Zru72ao3o3PTq0gqW4Ck6WfCMHm21B15NOibM4QMJRZzJlDRCXjHcmZlZSkUFfGJxZwhsY1yhgQrqXAMcKJH2mY1sfl5c6TiZnVSlUqldAgkSjo7O6V1rwoKCuC0czB3OuDussPN6sBAAAMRrFYLVqeLWBzvH/gENrcdqfpkpOiSMT4tdpdSsVV/Cb7HjO4dq9G9YzVSZl+IrMW3KB1W1PTNGUKGEms5I4oiDhw40G9ta5ZlUVZWhszMTIUiIz6xljMk9lHOECIXlcIzOzsb9fX12LdvX8jv9b2H1ikbvVpPWlH1TYN3I20aGFHA5I7dUOl0YCM0RbkgCtjXehguvndc6cT02Jyox2PthONYtWyffnzovQsIIcoYrOicPn06LSdGCCEJTptRAOCQtC32mWwoUUSl8Jw5cyZOnDiBzZs34+jRo5g4cWJQ76utrcXmzZvBMAxmzZoV4ShJrCguLoYoilK3VpdLPsU0IwpgRAGsIXK/lG09HbKiEwBOHVsRseuNhG3/FviPSme0BhinnKpcQAromzOEDCVWcoaKzvgRKzlD4gflDAmW2SL/G8CLngGOjG9RmVzokksuAQDwPI/bbrstqPGaLS0t+MlPfgKPx/uDX7JkSSRDJDFEr9fDYDBAr/cWli4nJ3udEQUwEKDSGyIWQ313k2w7SWtCmj56a4aGwla9WbZtKp0HVhO5LsixqG/OEDKUWMgZQRCwf/9+KjrjRCzkDIkvlDMkWGa3VbbNibxCkURWVArP008/HXPnzoUoiqirq8Py5cvx/PPPo6amRjZFvCiKqKmpwXPPPYdly5bh+PHjYBgGs2fPxqJFi6IRKolBbpf8l4+FAAaA2hi5wjM3KRsrp12EU8dWINeUhfFpY2PyiaWrrQHuk0dl+5LKzlQoGkJIsARBwIEDB9DW1ibbz7IsZsyYQUUnIYSQhBO1yYWefPJJXH311WhqaoLFYsFzzz0nrdOZnOydQthqtUotnL6CNC8vD88880y0wiQxyN2vq623EFWZTBG7ZmFqPq6asULaFoTYXL/Tunu9bJvVGaEvKFUoGkJIMIYqOtMjuD4xIYSQ2ONqbgPQe+9Xc7H5uXOkotLiCQC5ubl48803MWfOHIiiKP3HcRy6urrQ1dUFjuOk/QAwZ84c/O9//0NOTk60wiQxwGazwWq1wmbzLmfidvdp8fxuDU91BAvPvlg2ar8qQRNFET0HvpLt0+ZOAKsdXd1sgf45Q8hQlMyZw4cPU9EZh+g+Q0JFOUOCpbbL5xVhE7PujO5yKllZWXjllVewdetWrF69Gl9//TWam5tl3W3z8/Nxyimn4NJLL8Xpp58ezfBIjDh69Kg0/Xh5eXm/Fk/2uxZPdXJSxGLwCDzUbGwv4eNqPAze1iXbZyqdp1A0yuqbM4QMRcmcyc/PR1tbG3jeey9jWRbl5eVIS0uLahwkNHSfIaGinCHBMvb5zBl7g7vCQ5F1PM844wycccYZALwTDnV3d0MURaSkpEAToeUxSPzq1+IpeLc133XRDjdBFPDBgU+gU+uQoktCqj4ZJZkTodfE1uQA1j2bZNusIRmGyacoFA0hJFgpKSkoLy9HVVUVRFGkopMQQka5ZHQgv7tD2lbBPcjR8UuRwtOfSqWiSRSITHZ2NgRBkLq3cn0nF/puiml1SmRmmbW57eBFAXbOATvnwElbG0qyJkXkWsMl8h70HOzfzVaTOjrXu+2bM4QMRemcSU1NRXl5OURRpKIzTiidMyT+UM6QYCWrWej43i7ZGio8h6e9vR0nT56EWq1GQUEBkpIi1z2SJIYxY8bItlVqeYeD1MwkZBTOg2nChIhcv9tpkW3r1Tro1bE1btJRtweCs0e2z1h8KpgY7x4cKX1zhpChxELOpKamKh0CCUEs5AyJL5QzJFgaRv5wgrrahkAURbz22mt44403cOTIEWk/y7KYOXMmbrnlFloehQTNbwgwACD/1OmYuuLKiF3v9ar30WRtRao+GSm6ZEzLnhKxaw2Xde+Xsm1VcgYM48oUioYQEoggCOjs7ERWVpbSoRBCCCGKC3vh2dPTg5tvvhm7d+8GANnEQTzPY9euXfjRj36ElStX4je/+U1Mro1IYgvXZ4ynRhvZVr3j3U1o6+lAk7UFAFCUVhjR64VKcDtgP7xDtk+bPR6a9DyFIiKE9CUIAqqrq9HZ2YkpU6Zg7NixSodECCGEKCrshef/+3//D7t27QLDMLKi08e3791330VGRgbuuuuucIdAEkzfwlOrjVwPcQfnRFtPh2zfKfnTI3a94RCcPdDmjIeruRYQBQAMjJNmgtXG1uRHhIxW/kUnANTU1AAAFZ+EEEIC4uFEVk9D7w5VYq6nEtZP8Lt378amTZukonP58uW47rrrMHHiRKhUKhw8eBD/+c9/8PHHH0MURfzrX//Cddddh9zc3HCGQeLcgQMHpOnHp06dCrdbvpyKRhO5QfoNlmbZNsuwyE+JrZZElSkNxuI50I0vA9feAMFpg66gVOmwFNU3ZwgZSqRyhud5VFdXo6tLvtRRXV0dsrOzodVqw3YtEl10nyGhopwhwbIIdmh4h7TtTtD5qMJaeK5fv176+t5778WNN94oe33WrFmYNWsW8vPz8Y9//AM8z+ODDz7ALbfcEs4wSJzjOA4cx/lt9+1qG7kWzxxTJn489wac6G5CfXcjPAIPrSq2lvjhOpsh8h6wai10eRPBgIE2q0DpsBTVN2cIGUokcmagolOlUqG8vJyKzjhH9xkSKsoZEqwuZyr2Fa2StvWcBUsUjCdSwt7iCQBTpkzpV3T6+9nPfoa3334bFosFlZWV4QyBJADfWq6+/1969UzYrXbwAgMPD2TlRG5m5FR9Cs6acFrEzh8O7rYTsm11Ws6o72bbN2cIGUq4c2agolOtVqO8vBwpEVr+iUQP3WdIqChnSLDcQmJ2re0rrIVnQ0MDGIbB6aefPuhxWq0Wp512GtatWyeNfSHEp293lNrD7ajf+CUcdXVQqRjkih3Inz4RJXf+TKEIlSPyHLhOeXdgbXZsTX6kBOrCREIV7u61e/fuhdlslu2nojOx0H2GhIpyhgRLrY74CpcxIazfpdVqBQCkp6cPeWxRUREAwGKxDH4gGfV4jwDe5YbAsBAEwGO1wBOhvDE7upGkNUGtis0bANfVAlHo7XrMMAw0o7ybLSFKGqzorKioQHJysjKBkbARBAE2mw0WiwVutxs8zw/9JkJIXFOpVNBqtUhJSUFSUhJYNrKDLpM1Btl2oq75EdZP1263G0BwXQqSkrzdJXt6esIZAklAPC9A+C63AIARBagj8GGOF3hsPLoFoigiSWtCmiEFFXnTYOxzM1CKu6MJ6tQcpMw8D+72erjb6qEyJoPV6JQOjZBRiYrOxGe1WtHY2Bhwln5CSOLyeDxwuVywWq1gGAZjx46le3oYhLXwFEURDMMEtTan78kBPTkkQ/F4BAh+g/NZkYcmJfy//BaXDcJ3Hy6s7h5Y3T04Nb887NcZDlEU0fLW4+B7zDCVnoak6QuRMmcJwHuGfjMhJOyo6Ex8gYpOhmGgUkV2LWlCiPJ4npd+90VRRGNjY0SLT16QNyJ42MQcFxyb/QnJqNbc3AxBEMCyLHJz8yCKIjLnzwNvd0Dg3CjKmYXs8vCPmzA75d13k7RGaGJkRlv3yTpwHY0AAGvlRlgrNyL/e7+FvqBE4chig3/OjBkzRulwSBwYSc7wPI+qqip0d3fL9lPRmTgEQZAVnUlJSUhOTobBYADDMDRDMQmK26+3FuVMfBFFEXa7HZ2dnbDZbFLxWVxcHJFutyr0PWdidralwpPEnLa2Nmndq4z0LNisLqj0JrCmZGhYBmPOmQyDMfw38Lf3rcGh9qNI1ScjRZeMirzYWRvTtu9L2bY6NQe6scUKRRN7/HOGCk8SjJHkTFdXV8Cic+bMmdIwEhLffB80AW/RWVBQAIfDAY/HQ4UnCZrH45F6A1LOxBeGYWAymWA0GtHQ0CDdE2w2G00YNwJUeJKYZu12Ytc2+fIhcxdORCRGXZod3bC4rLC4vJNkTc4YH4GrhE4UeNj2bZHtSypbEFSXdkJI+GVlZaG4uBiHDx8G4J3XoKKigorOBOI/8WFGRgbdbwkZpRiGQUZGBmw2GwDvvSEShSdrSg37OWMRFZ4k5kycOFF6Qmju6L/wsl4f/vE1giig3iJfpqQsJza6sTqP7wNvk68NmDT9TIWiiU3+OUNIMEaaM/n5+QCAuro6KjoTkK+LJMMwMBqNAACdjiZyI6GhnEkMRqMRDMNAFEVZ9+lwcrl6ACR+S2pECs/u7m40NTUNeYxPc3NzUDPG+f7Qk8Tm/wGutalN/iIDqDXhLzzbezrh9Lhk+8alxUa+Wau/kG1rcyfQ2p190Id+Eqpw5Ex+fj5ycnJGzfpro4lv4kOVSiU9nKBJhUioKGcSg29SMY/HE7FJUXs8TvgXnok6j3ZE/lq++OKLePHFF4M6VhRFnHPOOUMexzAM9u/fP9LQSJxxOeWztqpUbEQGdafqU/Crs36GJksLmqwtaLd3Il2vfLcHweNGz4GvZfu0WQUQBR4MS3/QCIm0oVpFqegkhBBCghOxv5hDtWD6L7sy2LG+pm0yOrlcfQpPloHg5sBqwzvbrE6txYzcUszIjZ0JhQDAXvMtRM4p26cdM4mKTkKiwOPxYN++fSgqKkJqqvIPogghhCQmbpQsjxf2piNRFIMqFH3HDXVstIpOURTx0Ucf4cYbb8S8efMwY8YMnHPOObjnnntQVVUVses+/PDDKCkpQUlJbIwnjAVOpxMOhwNOpxPuPoWn6OjBtiuuAvfdIO9EZ93zmWxbnZoD44TYWFs0lvjnDCHBGCpnPB4P9uzZg66uroBLp5DRRxAE6T9CgkE5Q4LFJujyKX2FtcXz4MGD4Txd1DidTvzsZz/D559/Ltvf2NiIxsZGfPTRR/j5z3+OW265JazX/frrr/H666+H9ZyJ4PDhw9IyB263UfYaIwoAw0BlNA7w7uFpt3dCp9LCpDFGpCvvcPAOGxx1e2T7dHkTockcq1BEscs/Z8rLqTAnQxssZ3xFp9XqneHat25neXk5tXyOYk6nU+p6bQzz3yCSmChnSLBMKvlyO4lahtLgFAAPPPCAVHROmjQJq1atQlZWFvbt24c33ngDdrsdTz31FHJzc7FixYqwXLOnpwcPPPAAdSMeAtenxZMVPWDU6rAXh9tO7ILD4wTLMDBpjJhTUIEsY0ZYrxEq277NgOA3iJ1hYZpxJhgV/doSEikcx6GqqkoqOn1UKhU0mvB28SeEEEIAwCR2INdqlrZVYmRmz1XaqP8Eu3XrVqxevRoAMH/+fLz00kvS9NcXX3wxLr/8clxzzTUwm8347W9/i3PPPTcssyH+4Q9/QENDw4jPk4gyMjLg8XigVqvRXCfv3saKAlhNeNOW4zk4PN7udoIowurugYZV/lfDWvmpbFuTmQ9j0QyFoolt/jlDSDAC5cxARadWq8XMmTOpxWKUU6vVtGwTCUm85QzHcXjzzTfx0UcfoaamBhzHIS8vD2eccQauv/56TJw4UekQE1aqXgUj17t+sAZUeCakf/7znwC8N4ff/OY3/dZcmjRpEn71q1/hrrvugtlsxltvvYWbbrppRNf072KbnJzc70POaFdQUCB9fbhKPpZTyzvBarR93zIiFpdN9oeBAZCkNYX1GqHizC1wt9TJ9hkmzQarow++gfjnDCHB6JszHMdhz5490iLhPlR0Eh+tNrx/e0jii6ec6erqws0334y9e/fK9h8/fhzHjx/Hu+++i4cffhiXXHKJMgEmuIyJhTCc2Cdt6+Mod0IRG4PZFGI2m/HVV18BABYuXIjCwsBrIy5ZsgSZmZkAgHXr1o3omv5dbFesWIGpU6eO6HwJr89DQq3HEfYZbbec2IkPD27Ap0e3YkdDJRq6m6FSeNZYy8618h0qDVJnX6hMMIQkOCo6SbxztRxTOgQSx3iex2233SYVnRUVFXjooYfw5JNP4qqrroJGo4HT6cQDDzyA7du3KxxtYlIZdFDp0PufPj5ayUM1qgvPb775RpppbP78+QMex7Is5syZAwDYs2fPiGY39HWxzc7Oxv333z/s84wWnFu+UK9K5MBqdQMcPTw9bjs4gUOXw4wT3Y2wuGNgxlyVBpqcIuC78Zy6/EnQZOQpGxMhCWigolOn01HRSeKCx9aF5lcfgsfWpXQoJE698847+OabbwAAy5cvxxtvvIFrrrkGy5cvx8MPP4x//etf0Ol08Hg8ePjhh2mWXjJso7rwrKmpkb4uLi4e9NjJkycD8C67cvjw4WFdz7+L7UMPPYS0tLRhnWc08XDymxsr8mDD3P2gydoi256YPi6s5w8Vb7eAUWtgKpmL1HnLYSw9DalzLlY0JkISERWdJBF0b3sfgsOG7q8/UDoUEqd8w85SU1Px0EMP9ZvAcc6cOfjJT34CAKitrcXGjRujHmOic6tccCS3S//Zk8xKhxQRo7rwbGxslL4eO3bwJSry8npbm/zfFyz/LraLFy/G+eefH/I5Rouamhrs378fNTU14D19C08BrC68hWezRV545ifnhvX8oXK310tfMyo19GOnwFQ6T8GIYp9/zhASjAMHDmDdunU4fvy4bL+v6DQYDApFRmJVLK4X7LF1wbJrPQDA8u0n1OoZY2IxZ/o6cOAA6uq8c0osW7ZswAk0r776aqhU3mFIIx12RvprErrwwTiP9N/GrB6lQ4qIUT25UGdnp/R1enr6oMf6t06azeaQr+XrYpueno4HH3ww5PePJg6HAxzHwePxgOcDtHjq9WG93r1n/gSNlhY0WU+iydKCyZlFYT1/qLh2+YMNbWYBGGZUPyMakn/OEDIUj8eDQ4cOwW63Sx+kACo6yeAEQYi5GUq7t70P0eOd/VL0uNH99QfIPO9GZYOKsObmZvzzn//El19+iaamJhgMBpSUlODKK6/ExRdfjJdeeglPPfUUAODQoUOy95aUlAAAfvazn2HVqlV45JFHsGXLFgBAYWEh/u///g/Lli2TjhcEARs2bMCHH36IqqoqdHV1wWQyYfz48TjrrLNw3XXXISUlJWCc119/PXbs2AEA2L1794Dfz7333ov33nsPAPDpp5/KJj7zvZabm4svv/wSJ06cwAsvvICvvvoKHR0dSEtLw5w5c3DjjTeioqIi1B8lAEgxAsBpp5024HEpKSmYNm0a9u7dK/3MSPh0tOhQ9u1iaduji4FhXxEwqgtP/ydQfWez7ct/ZrJQn1z5d7H91a9+hYwMZdeHjHUMw0j/LTh3MlL3fQZr3QmIDAsDZ4FKN3i36FBlmzKRbcrEzDHTwnre4eAdtn5PrDXZNGPrUPxzhpChqFQqGAwGOBwOaR8VnSTe+Ld2+li+/QSp81dAnTT4w/R4tX37dtx6663o6eltDXK73dixYwd27NiBDRs2SMXlYGw2G6699locO3ZM2nfw4EFZEXny5Enccccd2LVrl+y9ZrMZZrMZe/bswcsvv4wnn3wSZ5555si/uSHs2rULP/zhD2Gx9C650dbWhrVr1+Ljjz/GPffcM6xVF/x7Ck2ZMmXQYydPnoy9e/eiu7sbTU1NyM/PD/l6JDBXTw+ANGlb5REViyWSRnXh6d86MtSU1/6vh9Kq4t/F9txzz8XSpUtDDzTKjhw5gkmTJiE5OVna53K5pCeHaWlpGDduXL/32O12AEB5ebnstfb2djQ1NQHwPlH0b13meR779nmnj05OTsaECRMwY0bvWpWbN1WhxcYAGu8fA63HAZXB2+JpNptx4sQJAMCYMWOQnZ0tu+7evXshiiIMBkO/m2lDQ4PU4l1cXAy9XyuqzWbD0aNHAQDZ2dkYM2aM7L0HDhwAx3HQaDT9ZiVubm5GW1sbAGDixImyLitOp1MaH5yRkdFvOYeamho4O1ug7rYjN9U7tozV6KBOzUZbWxuam5sBAOPGjZO1wHs8Huzfvx+A94lkUVGR7Lx1dXXSkj1lZWWyFp6uri7U13u79ubn5yMrK0v23qqqKgCA0WiUxjn7nDhxQmr9LykpkT28sVqtUted3Nxc5ObKuy/v378fHo8HWq0WpaWlsteamprQ3t4OwLuckcnUu7SNw+GQ/khmZmZKXeR9OXP48GFUVVWBZVlMnz5ddt7W1lacPHkSAFBUVCT7gMFxHA4cOADAO8Zl/PjxsvfW1tZKH3SmT58uG//S2dkprclbUFAge7AkCAKqq6sBACaTCZMmTZKd9/jx49JkZVOnToVG0ztjs8VikT4U5eXlIScnR/be6upqCIIAvV7fb4x6Y2MjOjo6AHg/SPgXUz09PaitrQUAZGVl9fvgcPDgQbjdbqjVakybJn8Y09LSgpYWb9f0CRMmKHaP8Hfs2DHpg9i0adNk63IOdI9gGAYXXHAB1q9fD7PZDKvVinnz5sl+TrF6j3A4HGAYRnafBED3iO8MdI/wOXz4MJxO55D3CP/fRQDSZCoMw8h+Pj5Op1M6xmAwyB6CeTweuN3eVkmtVivLUVEUpQcgLMvK8gzw/l7xvHeSPb1eL7v3dH31ntTaKZ3Pr9XT4XBAFMWA53W73dJnmb7n5XkeLpcLgHepub6fj3znZRim34MajuPAcRwA78Mc/5+VIAjSg3uVStXvgb//z7Dv+GrfeOxbbrlFOse5556Lc845BxqNBl999RVWr16NdevWYevWrQP+DH3++9//wuVy4fTTT8dFF10Ei8WCLVu2YMGCBQCA7u5u3HTTTdLveX5+Pi677DJMnDgR3d3d2LhxI7Zs2QKz2Yxbb70VL7zwgqz45Hleds2+34//z7Av/38bUfQWH3a7HbfffjssFgumTp2KFStWIC0tDbt378Y777wDj8eDxx9/HBqNBitXrhzwZ+j7t/HPQ9/wMZZlkZaWBpfL1e/fxvcz9K3wAEAqPP3zW6PR9Pvd8d33Q81v/zwMdN7B8tD/ZzhYHgbKb18eBjovz/NwOByoqqoK++cIvqELQO/9yuAUpXiV+Bzh+zsVbqO68PT/BeA4btDi0/dLBYS2LpOvi21qaip+/etfDyvOaON5vt+MZaIoSjesvjdwwPuH1fd6X4IgSK8FmgnN91qggt7t8sAjAFB5f+YCq4LquxuBf0wDnVcURdkf+b7x2nkHTlpbkcVmwqgxgGXYoM4bzPfq+4Ph43/eQN8rx3EQulvgyJuG1BnTwbU3AKIIhmFHdN5I/dvwPD9gTP7nDZQvvm6xfScwGOq8Q+Wh799mqPMOlt/R/Bn6n3c4P0NBEAJ+CB7Jz9AXU9/39T1vrNwjBvsZDva7zDAMsrKyIIoi8vLy+n3AGO55ffFG6h7BcVzAD6t0j4C0HY57RN8Puf7XCvS7MdT+wd470Pv6vtefx9YF2+71Ad7R2+opsroB3z+SmAZ7PRLfq88TTzwBp9MJhmHw29/+ViqwRFHEeeedh2XLluH222/vtzZ6oPO6XC6cddZZeO6556TPdzfeeKN0P33yySelovPss8/G7373O9kDsauvvhpvvvkmHnroIXg8Htxzzz3YsGHDgOMjQ/1e+75mtVphtVpx+eWX45577oFKpYJarcall16KZcuW4eabb4bD4cCf//xnnHfeebKHgoOdF+gddmY0GqFWqwfNF/9Cy3/YWTDfSyR+bwbr+j7S8w7Ed48J9+cIIyO/5/h/V0p8jojUzMWjeuCY/9Mg31OVgfgXnkN1y/Xx72J777339nvSEKtUKlW/P8oMw0hPnAIlqFqtDvhECvA+5fK9FuiPve+1QAUiy7KAf/KLIlR6Q7+YBjtvoJh88XbyFnzVuAtrD2/Cu/vXYVfT3hGd1/977Xsz9D9voO9Vw9mRvPM1pH76DNrX/AWe7lbo8ieN+LyR+rdRqVQDxuR/3kD5MtzzDpWHg/3b+J93sPyO5s/Q/7zD/RkO9b2G+jMc7HsN9mcYzXvEYD/DoX6XtVot8vPzZS1m4ThvxO4RETov3SP6nzeQobr0D/Sa//sGez2Ua3rHdgb+EOtr9QzmmsOJabDXI/G9At5xiHv27AEAXHbZZVLR6f/e2bNn46677gr6vDfffHPA11paWvD+++8D8E48+dhjjwXsgn/JJZfguuuuA+At3v73v/8F/L5C/V79X/dXUlKChx56CGq1Wvb6nDlzcNtttwHwFoMffvhhSOf1tf7pdLoh/938P//6D1UY7r/rYO9VOkcHizcSnyMG+16U+BwR6H4fDow41GOtCBBFEd9++y2+/fZbNDU1obu7G8uXL8c555wDAHj33XdRUVHRrzk53B588EHpRrFx40YUFhYOeOxbb72FX/7ylwC8rZj+g88D6enpwfLly9HQ0ICFCxfi73//e8Dj/Aef9x0EHy02m0127ZKSkqCf2kXa3m8bsPcf/wPv8HbVyLA3ofyyc1G46vKwnP+rE9+iwdIsbZdkTURFnjJjPbt3rkXH+n9I26zOiPF3/BOMKvCHIELI0HwPFYN9YEgI4O3W7PF4oFarhxz3Fm0eWxfqn/9xv262/hi1FoU/+UvCjPX83e9+h3//+98AgDVr1vTr1u3jdruxcOFCqTVuoMmFNBoNdu3aFbAH27vvvov77rsPgLfRYLBxk+3t7Vi0aBE8Hg9mz54tNTYAwX++C2ZyIQB4/PHHcemllwY8h9Vqxemnnw63243TTjtN+lkF49xzz0VDQwPy8/OxadOmQY99++238cADDwAAfv/73+OSSy4J+jrxLtL3hLVP/wffNPYO1dHyDtz7xyvCfp1gRao2iHpX2/feew/PP/98vyVJ/GfjevbZZ9Ha2oqLLroIDz74YMTWu/Qf59Lc3Dxo4ekb9wEgqMHU1dXV0rivzZs3BzXY3XfM2LFj8dlnnw15fKJqa2uDIAhgWRaiCIh+3QMYiFCFcW29DnunbDtZ27/lI1p6Dn4t2zYWz6GiM0j+OdN3rC8ZvVwuF/bs2QNRFDFz5kxZ8Uk5Q0Ll301uoFbRaPCfyXYgiTbD7c6dOwF4VyAYqOgEvL0YZs+ePeRnqMLCwgGHTVVWVkpfz58/f9DzZGVlYfLkyTh48KA0r0SglivfmO+ROP300wd8LTk5GcXFxaiurpZahoPlG3Y2UDdQf/69/5T8HUhEyYVjgUa/VmRNYnZKjdp3JYoi7r33Xtx///1obGyU+lD3bXDlOA6tra0QRREff/wxrrjiCmkyi3Dzb1Edav0/3+sMw8Tc089E09zcjIaGBjQ3N8Pl5OARRAhgIcKbRypTeApPu9uBV/a8i48ObsCmo1/hm8Y9YBVatoR3WOGsPyDbZyoZ/A8e6eWfM4QA3qKzsrISdrsdDocDlZWVsiEVlDMkVBzHwe12B/UBPVICzWQ7kERa17O1tRVAcA/++05sFshAS6AA8qX2BmuQ6HsMx3GyGWf9jTRnjEZjvwm4+vL9bOx2uzShT7DnBoYecgYMb9gZCZIqMQvNvqLW4vnUU09JfeYZhsGCBQswc+ZMPPfcc7LjfN0kvvjiCzAMg/r6etxxxx147bXXwh7TrFmzoNFowHEctm/fjmuvvTbgcTzPS0/bSktLB71h+UyZMgXPP//8kMf98Y9/lIpa3/F9Z/0azTZ/egS2lDJpWyXwUBvD0yrZZPU+0HDxbrgcbnQ5u5GblDXEuyLDUbcXEHvHsjJqLQwTh7cmFyGjna/o9B+D5HA4cPjw4X6zwRIST4Jp7fRJpFZPX9fZYD4fBXPMYJNE+i/VEszySv7XczgcSE1NHfI9oQo0Dn2wOGw2W79ZbQfi+0xrs9mkrqQD8Z9QiJYGDC9N2hgAR6RtUZ2YhX1UCs+jR4/iX//6FxiGQW5uLp599llpOv2+hafJZMKLL76InTt34o477kB7ezt2796NjRs34rzzzgtrXCkpKZg/fz42b96Mzz77bMA1idasWSM9AVu8eHG/1wPJyMgIKt6XX35Z+jrc31+8GjdunNRdReDlrRGMyEMdxA04GL7C0yfHlAmDRpk1/KxV8m5B+sKpYDWJedOJBP+cIaNboKIT8H6A9J8unnKGhCqUGe0jIZTWTp9EWddTp9OB47h+v9eBhLrWel/+xabD4RhyXJt/6+JARe9guRNqS+NQcTAME9IQtaKiImzZsgWCIKClpaXfEkT+/IedDXYcCZ3d3i3bFsX+s9Amgqi0677xxhvgeR4Mw+DPf/5zvzXcApkzZw7+/Oc/S9sfffRRRGK78cYbAXi7Qdx5552w2Wyy148cOYLHHnsMgLcovuIK5Qb6jhZpaWlIT09HWloaBF7eFZsVBaiTIlN45qfkheW8oRJFEa5GeVdvdcaYAY4mgfjnDBm9nE7ngEVn3zGelDMkVGq1WvpPCaG0dvr4Wj3jXV6e9++zb73fwQRzzGD816r1rWE7mOPHjwPwFp3+95NgH2r1Xf4lEIvFImuJDcQ3r0haWlpID0n8h50dOXJkkCN7h52lpqYO2fWXhKbNKe8W76LCc/i2bdsGhmFw2mmnhdTNadasWTjjjDMgiiL27t0bkdgWLFiACy+8EACwe/durFixAn//+9+xZs0aPPnkk1i1apXUteDuu+/u17Vg+/btKCkpQUlJCa6//vqIxDia8bx8HSFW5KFODs+Mu1eULcWfljyMexb+GNdXXIZFRfPCct5QuVvqIDjlDzxMxXMViYWQeDVQ0Wk0GvsVnYTEm+G0dvokwlhP3wSUZrMZtbW1Ax4nCAJ27949omv5f079+uuvBznSu/SKb71P/x4VgLyVs2+jhr+hij3A+4B6sEmD/H8uc+eG9vnB//jBvl+LxYIDB7xzUcyZMyekaxDiE5XC09c0H0xLZ19lZd7xfR0dHWGNyd/vf/97LFiwAID3idGTTz6JO++8E3//+9/R09MDhmHw05/+FFdddVXEYiCBiULfFk8ealN4Ck8Vq8KY5Byckj8Dy0rPw2mFp4TlvKHqObBNts1oDdCPLxvgaEJIX76is28XO6PRiIqKCio6SdwbTmunTyK0el500UXS16+++uqAx61btw5tbW0jutaiRYukGVtfffXVQbv3/utf/4Lw3VrjZ511luy1zMxM6WtfwdZXZWVl0BOc+S/V0tdrr70mTWB07rnnBnU+n8mTJ2PixIkAvCtPDNSy+uqrr4L/bpWBYIedkeC5OuQPh1SeqK92GRVRKTx9fdOHM2mO74lRpBYyBbzdsP7+97/jySefxBlnnIGMjAxoNBpkZ2fjoosuwquvviotzksiz+PxgOM4eDweCH0KT4YRodIn1odIR12VbFubWwRWpUxXrnjlnzNkdBms6ByspZNyhoRKFEUIgtBvNv5IG0lrp0+8t3ouWLAApaWlALwF2Nq1a/sdc+jQITz66KMjvlZOTo60Vnt9fT1+8YtfBBw3+v7770vzdGRmZuLqq6+Wve7fcvrCCy/0u9ecPHkS999/f9BxrV+/PmDRvXXrVrzwwgsAvOM1h1MU+tYq7erqwr333ttvTOnOnTula4wdOxYXXHBByNcgg2O65F2uVXxiFp5R+XSbmZmJ5uZmHDt2LOT3+hYvjfTsWQzDYPny5Vi+fHlI75s3b96gCwMP5ZVXXhn2exPV/v37pTWv+tSdUIdpHhBBEHC06wSSdCakaJNg0OgVmWRE9HBwtRyT7TMWhd4zYLTzz5nh9Kwg8WmoonOwcU6UMyRUDodDmpAq2BlDw8FWtQmsYeQ9fWxVm5B2+sowRBR9LMvikUcewbXXXguO43DHHXfg448/xqJFi6DT6VBZWYm33noLLpcLKpUKPM+PqMHivvvuw86dO1FfX48NGzZgyZIluOyyyzBhwgRYLBZs3LgRmzdvlmJ77LHH+n1OXbx4Mf7whz/A4XBg+/btWLVqFS677DIkJydj//79ePvtt2G1WjFjxoyghpMxDINHHnkEmzdvxvnnnw+1Wo1t27bhgw8+gCAI0Gg0+PWvfz2sSbAuv/xyvPXWW6iqqsL69etx+eWX44orrkBaWhp27dqFt956CxzHgWGYYV+DDC5ZLW+cS9Rp76JSeJaXl6OpqQmbNm2C3W4P+oZdX1+Pzz//HAzD0BT4o1DfbrYAwIap8uzh7NjVXC1tq1kVlpWcB40qugsi2+uqAEH+FNRYQuM7CRnKQEWnyWRCRUUFfTAiCSPt9JVxWzCGU0VFBZ555hncfffdsNvtWL9+Pdavl7cEX3755WhsbMS2bdtGdA9ISUmRertVVVWhsbERzz77bL/j0tLS8PTTT+OMM87o91pmZiYeeeQRPPDAA3C73di3bx/27dsnO+aGG27AzJkzceeddw4Z0913341nnnkGmzZtwqZNm2SvmUwmPPvsszjttNNC/E69WJbFiy++iP/7v//Dvn37cOjQIfzmN7+RHaPRaPDQQw/hzDPPHNY1yOCMfAeybL2tnmpx6NmO41FUCs/Fixdj3bp16O7uxsMPP4zf//73Q77HbDbj9ttvl56wULP+6JGSkvJdl5T+TyvVYVpg1+qSD/RXs6qoF50AYD+8XbatSs6ANmfoxa+JnC9nlJptkkRfbW3tiIpOyhkSKpVKRUvwKOz888/HRx99hH//+9/YvHkzTp48Ca1Wi2nTpuG6667D+eefL63JHsya64PJzc3Fm2++ibVr12LNmjXYu3cvurq6kJaWhsLCQixevBiXXHLJoNe58MILUVJSgldeeQXbtm1Da2srUlJSMGPGDFx33XVYsGAB1qxZE1Q8F1xwARYsWIC//vWv2L59O7q7u5Gfn4+zzz4b3//+90c8y2xGRgbefPNN/O9//8Pq1atRW1sLu92O7OxszJs3DzfddBNKSkpGdA0ysBStiGR3p7StxvDGdMe6qPzFvfDCCzF9+nRUV1fjww8/RFtbG26++WZMmzat37Gtra3YsGEDXnrpJbS2toJhGEyaNIkGMo8iRUVFAACngwOwX/ZaVumk/m8YhvruJrh5Dtrvis0kbXgmLAqV47j86acubxIYJipDrxOKL2fI6FFSUgKn0yktRRBqSyflDAkVTVIVGwoKCvDLX/5ywNd9k1GOGdN/WbJQh0YxDIOlS5di6dKloQX5HZ1Oh5KSkn6th/5COX9xcTGefvrpYcUSDLVajWuvvVYq3kn06BiVbDtRPwlG7VHvn/70J1x55ZVob2/Htm3bsG2bfCbPF154AX/5y19kU06LooikpCT88Y9/pCeMoxDvEfrtm/aj74Xl3O8e+AR1XSegV+uQpDXhrKL5YTlvKESBB6s3gVFrpdkKDRNorBkhwVCr1SgvL8eePXsgiiJ1ryUkgX3wwQdYvXo1CgsL8cMf/nDA1r3a2lppPpFAjRuEEGVFrfAcO3YsXn/9ddxxxx2oru4dW+crKK1Wa7+Z4saNG4c//elPmDx5crTCJDGk7xqeAKAKU1fbLocZAOD0uOD0uJCXnBOW84ZC5D0wTj4F4qTZ4G1d8JhbYJyszJIuhMQjjUYjre/nW/6AEJJ4UlJS8OWXXwLwNko89NBD/Y6x2Wx44IEHpM+SF198cVRjJIQMLaqDWwoLC/Hmm29i3bp1eOedd7Br165+6yOp1WqUlZXhkksuwcqVK6lryyjmCdDiqVaPvPC0cw6YnRbZvonp0R9X6bG0A/A+fFEnZ0CTmg11albU4yAknlHBSUjiO+OMM1BQUICGhga89tpr2L9/Py644ALk5eXB4XDg6NGj+OCDD9De7v27esUVV+DUU09VOGpCgicyHFKc7dI2y/IKRhM5UZ9VgWVZLFmyBEuWLAHP82hqaoLZbAbP80hJSUF+fv6w1vskiaOurg4ejwc9lv6/dGwYWjzbejrAMiwE0VvYMgyD3KToF3yebvki1+qUTDCsaoCjyWB8OaNWqzFhwgSlwyFhZLfbUV9fjylTpoR1PWfKGRIql8slTS5ED8WjS6vV4vnnn8ePfvQjNDc3o7KyEpWVlQGPvfrqq0NaHzOSKGdIsKxiN7LsDdK2U5uYQwwVnc5PpVKhsLAQhYWFSoZBYozVagXHceixyrteMywDlh35L+L4tAL897I/4WRPG5osLehydCsyo62nu122rU6h1s7h8uUMtX4lFrvdjsrKSrjdbrjdbpSVlYWt+KScIaHieZ5mtVVQaWkpPv74Y7z99tv49NNPcfjwYXR3d8NkMiE3NxezZs3C5ZdfHlPr8lLOkGC1O9JwcOJ10rbOY8W5CsYTKTSPPIlZRpMal98wG7xHAM+LEAKs6zlcapUaBSljUJDSf9a7aBB5D3hbp2yfOjVbkVgIiUX+RSfgnaly3759YS0+CSHxxWAw4Prrr8f111+vdChR8fjjj+Pxxx9XOgwSBR5BBM/2PggVmMQs0aLyXTU1NYXlPPn5+WE5D4ltZWVlAACBF7DhydfgqG8AwzJgWBbGqjyU3nKjsgGGgQgg5dTF8HS3w9PdBo+lHeqUTKXDilu+nCGJoW/R6eN2uyEIQlgKT8oZEiqDwaB0CCTOUM6QYImjZCm9qBSe55xzzoi7GTAMg/379w99IIl7KpV3nKMoAjarCy6Xb5IhHq7WtoHfGKTj5gbwAo8krQlJOhMMan1Uu8EIHjdOPHsLdPmTYZw4E4YJFTAWz6GuOCPgyxkS/3p6erBnz55+RWdycjIqKiqgVofnzxblDAkV3aNJqChnSLDSdCbZdqJmTtTacfsulULIUEQRQJ8lVVSakadsTUcdOh3d0vbsMdMxObNoxOcNlrP+AASHFY7a3XDU7gYYFuPv+CdUhuSoxUBILOrp6UFlZSU4jpPtD3fRSQghhJDoi8pf8Tlz5gR1nMvlQltbG5qbmwF4nxSdd955NCX2KCUKIkRBXniyIyw8RVGEzW2X7UvSGkd0zlA5ju6RbevGTKKik4x6AxWdKSkpKC8vp6KTEEJIwuIF+UR3PI3xHL5XXnklpOPb29vx4osv4tVXX8UXX3yBSy+9FOecc06EoiOxpqurC4IgwMMJSJ5aCo/VCpHnIfI8suYXjejcJ21taLG1I1lrglrlTf+kPt0bIs1xtFK2bZhYEdXrJyJfzrAsi/T0dKXDISFSouiknCGh8ng80tf0IIQEg3KGBEvVpyRL1DGfMflbkJWVhQceeAA5OTl46qmncN999+Gjjz5CTk6O0qGRKKivrwfHcRAFFoaCfNkYiYy5k0d07q/rd+HTo1sAAAaNHmOTx+DysiUjOmcoPNYuuFuPy/YZJ86M2vUTlS9nNBoNFRFxxmazYc+ePVFv6aScIaFyu93S0hhURJBgUM4QIhfT5fT//d//oaCgABaLBa+++qrS4ZAoqz9qx+YNR7B5Qw22fHoEVd80jHigfru9dwkTB+dEblIm2Cg+VXIck3ezZbQG6PKnRO36hMQSpYpOQgghJJawo2TIVUwXngzD4KyzzoIoivjss8+UDodESX5+PgoLC5Fk8v4SiiIgfLeOJzvCwrPJ2iLbLkyN7hI99ppvZNuajHyIAh/VGBKRL2doyaX4MVDRmZqaGpWik3KGhEqj0UCr1UKj0Qx9MCGgnCHB83hcSocQFTH/ODkz07u2YbjWAiWxLysrCwCg05pl+1mWBcOOrPB08xwYMBDhnWU5Pzl3ROcLhSgKcNTtle1Tp2aBUWujFkOi8uUMiR+Bei+kpqZixowZUWnppJwhoaLigYSKcoYEy8LZASRJ24m6FkjMF54nTpwAQGshjUYeT58ZbVUjz4HHzrsbbo8bzbZWNFlbUJo1acTnDJa75TgEp022zzChnHKbjEomkwkVFRVSq6evpZPW1ySEEEISU0wXng0NDfj444/BMAzGjRundDgkyvi+hecIWzt9tGotxqcVYHxaQVjOFyx77S7ZNqs3wTBuWlRjICSWJCUloaKiAsePH0dpaSkVnYQQQkYlDz86hl3F3BhPt9uNlpYWvPvuu7j22mvhdDoBgJZTGYU8HvkvobO+Hm1fbFYompHrN74zPQ/q9DyFoiEkNiQlJaGsrIyKTkIIIaOWAGHogxJAVFo8p06dOqL3p6Sk4Prrrw9TNCTWVVVVgeM4tLZaZPsZgQdG0OjZaDmJ1p52pOqSkapPQaouWVrLM9IEzgVXc61sn25sMVga3xkWvpzRaDQoLy9XOhzSh8vlgk6nUzoMGcoZEiq73S4tjWE0GpUOh8QByhkSrBSNfE35RB2EFZVP3aI4/CGyycnJeO6555CamhrGiEg8EHh53jCiAHYEH16bra042nVC2h6fNhbzCmYN+3yhcByvBmSz1zIwTjk1KtcmREkWiwVVVVUoKChAUVGR0uEQQgghMUfvaUe6vUfaVouJOcttVArPUKarV6lU0Ov1GDNmDObPn4+VK1ciLS0tcsGRmGM0GuHxeMDAKtvPigJY7fALz26nvAU1VZcy7HOFyn5ou2xblZIJXV70JjZKdL6coXUfY4vFYsGePXvA8zyOHTsGhmEwfvx4pcMCQDlDQseyrNR6RUgwKGdIsFK1AtKcrdK2Gm4Fo4mcqPzFpTU4SSgmT54MAKjebgXQOwusRnCC1Q6vayov8NjbeggmjQFJWhNUrApp+ugt1utsOiLb1maPg8o4OhYLjgZfzpDY4V90+tTV1UGv1yM3N3rLGA2EcoaESq/XKx0CiTOJkDM//OEP8fnnn+N3v/sdVq5cqXQ4CStz/FjUHz8sbes0iflQNCrf1aFDh6BSqegPPQlJ35mvjJwVKt3wCs9WWwe+OtE7uY9JY8TZE04fQXShSa44F1xHA7iuk/B0tcA4OTpdfAlRQnd3N6qqqmRFJwBkZGTQ+pmERMCxrgYUpUd3pnaS+N599118/vnnSocxKmhSk+A/zFOrS8wJ96Iyq+3zzz+PZcuWYdmyZdi4cWM0LkkSgIfzyLYZkQczzDGe7Y5O2bYgCsgypg87tlDwdgsEpw0qUxr0BaVImrEIpuJ5Ubk2IdE2WNE5ffp0mr2WkDAzO7rxyOd/hNnRrXQoJIF88cUXePDBB5UOgySYqBSeVVVVEEURR44cQXp6dD7sk/jHc/IPrqwoQDXMwvOktU22nZuUFbUxF1xHk2yb1RqgSs6IyrUJiaahik6WjbkVvAiJex8c3ACbuwcfHtygdCgkQbz77ru47bbbwHGc0qGMGiLLg9VZpP8YXc/Qb4pDUelq29XVJX1dVlYWjUuSOHbixAnwPI8em/yXjhV5sPrhFZ68yCNNnwLzdxMM5SXljDjOYLk7GmTbmsx8mmggzHw5o1KpMG7cOKXDGZUGKjozMzNRVlYWc0Un5QwJlcvVO8tkrCwPZHZ0Y33tlwCA9bVfYnnp+Ugz0CoAsSIWc2YwVqsVTz75JP73v/8pHcqoc4Jpw6slvfOaZHICLlIwnkiJSuFZVFSEQ4cOAQCam5sxYcKEaFyWxCmz2QyO4+B2yZ+0MRDBqjXDOudFU87CRVPOgpNzoqWnHSwTnQ/BgtsB3iLv5qvNDH6WZxIcX85oNBoqIhRgNpuxd+/euCk6AcoZEjqe52NuhtIPDm4Ax3v/Vrp5Dh8e3IAbZl2ucFTEJxZzZiCrV6/Gb3/7W3R0dADw9lS54IIL8MYbbygc2ejQ2apFceXZ0raotSsYTeRE5dPAj3/8Y+mX7oknnuj34YSQQCbkeVDc9jWmtO/ApI5vkMZ1gFGNLGX1Gj3GpxWgMDU6xR+j1iJp+gLo8iaC1erBqNRQpyk/oych4RKPRSchicC/tdNnfe2XCT/Ws7m5GY899hguvPBCzJgxA3PnzsX111+P1atXAwBeeukllJSUoKSkpN97ffv/8pe/oL29Hbfffjtmz56N2bNnY8WKFfjoo49kxwuCgE8++QQ/+clPsHDhQkyfPh3z5s3DqlWr8Je//AUWi6XfNXyuv/56zJo1C7Nnzx70+7n33nuluBoaGgK+duaZZwLw9tS47777sGjRIkyfPh0LFizAHXfcgT179gT1sxvM//73P6noXLBgAd577z1UVFSM+LwkOE4HB63bKP2nccb/jMiBRKXF88ILL8Sf/vQnPPjgg/j8889x6aWXYtWqVZg5cyYKCgqQkpJCH06IpKSkBKIoQlVvg03gwEAEIwpgGYCNszX3Oj/7L1SmVBgmzoRh8ikQnT1gWJpcJdx8ORMPT5UTidlsRlVVFQRBkO3PysrCtGnTYvq+TjlDQhVrS2P4t3b6JHqr5/bt23Hrrbeip6d3KI7b7caOHTuwY8cObNiwIWDB2ZfNZsO1116LY8eOSfsOHjyIlJTe9b1PnjyJO+64A7t27ZK912w2w2w2Y8+ePXj55Zfx5JNPSoXhQMKRO7t27cIPf/hDWbHb1taGtWvX4uOPP8Y999yDm266aUTXGDt2LO666y4sXbp0pOGSEDHNZgC9w8AMTmHAY+NZVD7F33zzzQCAwsJCmM1m1NTU4LHHHgvpHAzDYP/+/ZEIj8QY3zgIl9MDpyapd78IYJgfZL9prIJerYNRY4BRa0CWIR1qVWTTX3A50L1zLSB4gM9egcqUhryrfknrd0ZAPIydSTQcx6G6ujoui06AcoaELpZyOlBrp0+ijvWsrq7GLbfcAqfTCQA499xzcc4550Cj0WDHjh14//33sW7dOmzdunXIc/33v/+Fy+XCggULsGzZMpjNZnzxxRdYsGABAO+Y9ZtuuglHjx4F4C3IVq5ciYkTJ6K7uxsbN27Eli1bYDabceutt+Kvf/0rFi5cOOD1Rpo7drsdt99+OywWC8rKynDZZZchJSUFO3fuxDvvvAOPx4PHH38cRqMRV1555bCuceedd2LGjBlQx9kD/kSR5r+WCgBWVCiQCItKdm3evFl6quz7vygm6E+UhA3fZ4wnyzDDap1w8xyOdp2Q7Vsy5WwkRbjwdByv9had3+EdNmgy8iJ6TUKiRaPRoLi4GAcOHJDu5/FSdBIS7wK1dvokaqvnb37zGzidTjAMg9/+9rdYuXKl9NqKFStw6aWX4pZbboHVah3yXC6XC2eddRb++te/Sp8rbrzxRun1J598Uio6zzvvPDz11FOyVsurr74a7733Hu6//354PB7cfffd2LBhA5KSkhAJVqsVVqsVV1xxBR5++GFpWSrfUoU333wzHA4Hnn76aSxevFjWchusWbNofXEljZa+N1H5dJCfn48xY8bI/svPzw/pvzFjxkQjVBJD+D7reLKq4f1a2jlHv30GTeS7TDnq5GMu9IUlYLWGiF+XkGjJycnB1KlTwTAMsrOzqegkJAoGa+30SbSxnl9//TV2794NALjiiitkRafPqaeeinvuuSfoc958880BH2a3tLTg/fffBwAUFBTgD3/4Q8CuspdeeqlUrHZ2dkZ8JtiSkhL8+te/7rcW8pw5c3DbbbcB8HYDfvfddyMaB4kMAfJeODyTmC3PUfmuPvvss2hchiQIq9UKQRDgsssLxuF+oN3XeghN1hYkaY0waYwwaY1QRWGcpeOovPA0TJgZ8WuOVr6cYVkWycnUlTmacnJyoNVq426sPuUMCZX/DKV9P/xH02CtnT6J1uq5adMm6evvfe97Ax536aWX4umnn4bZbB70fBqNBuXl5QFf27p1q7R+5XXXXQeDYeAHxj/4wQ/wn//8Bx6PBxs3bsQPfvCDgMf5lm4aiZtuumnAbrBXXnkl/vSnP8HtduPzzz+Xtd6S+GDKzwea3NI2o0nM+UDC+inhvvvuw3333YctW7aE87RklKmrq8ORI0dgsci7ywy3xfOrE9/iqxPfYP2RL/HegXU41F4bjjAH5WqrB9fZJNtnnDgz4tcdrXw5U1dXp3Qoo1JaWlpcFZ0A5QwJncvlkv5TSjCtnT6J1Oq5c+dOAEB6ejomT5484HFarXbIWWQB75wjWq024GuVlZXS1/Pnzx/0PFlZWVI8e/fuHXAYWThy5vTTTx/wteTkZBQXFwNAWGa4JdHH6vosF5igfW/D+knhvffew/vvv4+amppwnpaMUofMGTieNh0nUstQnzoNdtXwWiU67WbZdnnu1DBEN7ieffKHL6zOBG1eUcSvS0gkdHZ2StPsE0KUE0xrp4+v1TMRtLa2AvAO3RpKMOvyDjYGsrOzd+3twsLCIc/lO4bjuEGXVxkJo9GI3NzBl2Lz/Wzsdjvs9sRcAzKRaVKyZduiKvCDkXiXmB2ISVzLzc0Fz/PgxSYIrN8jHzH0bgeiKKLZ1io/f1L2AEeHT9/xnZrsAjBMfLUIxRNfzijZ/S1RdXZ2orq6GqIoYvr06cjMzFQ6pLCgnCGh0mg0ii7BE0prp0+izHDr6zobzLIkwRwzUGsnANlSLYN1sw10PYfDgdTU/j9rjUbTb18oTCbTkMf4x2Gz2WA0Gkd0TRJdHNenVZxJzElY6ZMwiTm5ubnIz89H3xWMhjPDt5vnUJgyBqm63tbSvOTIFp4Cz8Hdely2zzCBFmGOJF/ODPVEmISmo6NDWjJFFEVUV1fLWgPiGeUMCZVGo4FWqx1xETFcobR2+iRKq6dv+SOHo/9kgX35llsZLv9iM5jr+bcuDlT0DpYzwXTDdbvdQx7ji4NhGKSlpQ15PIktTT1tsm2n4BngyPhGLZ4kJomCiL4d3NXDGOOpU2vx6Hm/AOCd3bbF1o5sY0Y4QhyQo7YSokf+RyJp2hkRvSYh4eYrOv3HLImiiNbWVmRkRPZ3iBAiN5zWTp9EaPXMy8vDkSNH0NTUNOSxwRwzmKysLOnr+vp6TJ06+PCc48e9D5r1er2s4PNvGfd4PANODBTM8i8WiwU9PT2Dtnw2NDQA8I65H6xFlxAlUYsniUk837e9E1CPsEucUWPAhPTCiM9o23Nou2xblZQObVZBRK9JSDgFKjoBbythSUmJQlERMnoNp7XTJxFaPSsqvL2GzGYzamsHniBQEARp2ZXhmjFjhvT1119/PeixLS0t0nqfvsl9fPyLP5vNNuA5jhw5MmRMoigOOmmQ/89l7ty5Q56PxB6XVZ4jrEBdbQmJmkCFpypO2ued9Qdk27qxxQMcSUjsaW9vH7DoLC0tVWx8GyGj1UhaO33ifYbbiy66SPr61VdfHfC4devWoa2tbcDXg7Fo0SKpa+yrr746aHfbf/3rXxAE7+eVs846S/aa/3j4Awfknwt8Kisr0dzcHFRcr7/++oCvvfbaa9ISMOeee25Q5yMxpkU+gZ+ao8KTkKjYv38/9uzZ22+/dhhrGh1sO4KtJ3aiuuUgTpgbYXP3DP2mEfD0mOHpapHtM04+JaLXJL6c2YP9+/crHUpca29vx759+0ZF0Uk5Q0LlcDhgt9uDGvcXTp8f+xrJWhMyDGnD/i9Ja8LnxwZvvYtlCxYsQGlpKQBvAbZ27dp+xxw6dAiPPvroiK+Vk5ODZcuWAfB2tf3FL34RcNzo+++/j5dffhmAt8i8+uqrZa/7t5w+//zz8HjkY/ZOnjyJ+++/P+i41q9fH7Do3rp1K1544QUAQFFRERYvXhz0OUnsSNHIu1Enzl9buYi0Ib3++uuyxX7DgWEY6RecJDaPxwO3q3+XIs0wCs8WWztaetrRCG8xWJZTjLKcyLVAervZ+n1oZ1iYSudF7HrEy+PxwOPxJFRhFG0DFZ15eXkoKSlJuJ8t5QwJlSiKA67TGEmXTL0Ql0y9MOrXjSUsy+KRRx7BtddeC47jcMcdd+Djjz/GokWLoNPpUFlZibfeegsulwsqlQo8z49obeH77rsPO3fuRH19PTZs2IAlS5bgsssuw4QJE2CxWLBx40Zs3rxZiu2xxx7rN/Z98eLF+MMf/gCHw4GdO3di1apVuOyyy5CcnIz9+/fj7bffhtVqxYwZM7B3b/+H7X0xDINHHnkEmzdvxvnnnw+1Wo1t27bhgw8+gCAI0Gg0+PWvf03jO+OUlutEiqN3oimNqNx6wZEUkcKzvr4e9fX1YTufktOXk+jTarVQq/rP5qXWhJ6uFpe8z7z/7LaR4KiVjy3RZORDpU+K6DWJN2dYlh1w8gYyuLa2Nuzfv3/UFJ0A5QwJHcMwCfm7EC8qKirwzDPP4O6774bdbsf69euxfv162TGXX345GhsbsW3bthEVYCkpKXj11Vdx2223oaqqCo2NjXj22Wf7HZeWloann34aZ5zRfwLBzMxMPProo7j//vvhdruxb98+7Nu3T3bMDTfcgJkzZ+LOO+8cMqa7774bzzzzDDZt2tSvccdkMuHZZ5/FaaedFuJ3SmJFupZDpqN3Yiw1hp7JOB5F5C+uEk8ESeIoLS1Fa7MFgHxmuqSC0JY96HE7UN16CEaNASatESaNAcm6odfCGgld4VSIHg5cVws83a3QF9BELNHg64JFQjdQ0TlmzBgUFxcn7AdtyhkSqmDWdCSRdf755+Ojjz7Cv//9b2zevBknT56EVqvFtGnTcN111+H888/HtddeC8BbPI5Ebm4u3nzzTaxduxZr1qzB3r170dXVhbS0NBQWFmLx4sW45JJLBr3OsmXLMGPGDPzzn//E1q1b0draipSUFMyYMQPXXXcdFixYgDVr1gQVzwUXXIAFCxbgr3/9K7Zv347u7m7k5+fj7LPPxve//31aGirO6Vl5SZaoYyEjUnguXboUCxYsiMSpySjR99kFwwCTr1oZ0jnabO3Y3Vwt27e89LyRhjYgURTBCAJ0Y4uhG1sMUeBhmjInYtcjZKRGa9FJCIlfBQUF+OUvfzng6x0d3klaxowZ0++1Q4cOhXQthmGwdOlSLF26NLQg/RQVFeGRRx4Z8PVQzl9cXIynn3562LGEauXKlVi5MrTPXoQMJiKF5/Tp03HppZdG4tRklOg7q61KFfqznw6nWbadqk+BSRu5Fk/BYYXgt34nw6qgzcyP2PUIGSmr1UpFJyEk5n3wwQdYvXo1CgsL8cMf/nDA1r3a2locO3YMADBt2rQoRkgICQYNbiExyePpU3iqQy8823rkU1PnGCO76L3H0i7bZrUGMDpjRK9JyEhMmDABgiBIC4/n5+djypQpVHQSQmJKSkoKvvzSu6SMKIp46KGH+h1js9nwwAMPSA/TLr744qjGSMhIMAwPPdc7L4mGGd66vbGOCk8Sc5qamnCyWb7e2HAKT4Naj0np49Fq74DVZUN2Ula4QgzIY+mzBlNKJn2Aj5KmpibwPA+VSoX8fGplDhbDMJg0aRIA78Lro6nopJwhoXK7e3u00Myh0XXGGWegoKAADQ0NeO2117B//35ccMEFyMvLg8PhwNGjR/HBBx+gvd37APiKK67AqaeeqnDUlDMkeN1iF/KtR6RtpzYx/xZT4UliTnt7Ozo6rLJ96mF0tV00YT4WTZgPAHBwTrj5yM4Qxmi0YHVGCC47AECdEtlCl/Rqb28Hx3HQaDRURITIv/gcLUUnQDlDQufxeKRZ9qmIiC6tVovnn38eP/rRj9Dc3IzKykpUVlYGPPbqq68OaX3MSKKcIcEyO5NRV9DbSq8RenCugvFEChWeJCaZktUonZmK7Kwc8LwArS70NTz9GTR6GDT6MEXXn+P4Pqh0JqTOXQrR7YTH0gFVUnrErkdIqHyte4GMpoKTEBKfSktL8fHHH+Ptt9/Gp59+isOHD6O7uxsmkwm5ubmYNWsWLr/8cpSXlysdKiEhc/EsLPpsaVvP6RSMJnKo8CQxZ9KkSbBmOWFZ8zKcEMCqVPCoGViLWCRPmax0eAF1fvYKXE01YA3JMEwoR+q85dAaaP3OaJk0aRKt9zuIlpYWHD16FDNnzqQlIb5DOUNCpdMl5gfBeGIwGHD99dfj+uuvVzqUoIw0Zx5//HE8/vjjYYqGxDJ+lPwtCnvhSWt4kpEymUyw2wR0dTgA0TvJkIZ3wd3ZGdJ5thzfCa1K423tVOtRmJoPnTr8XV14uxWuJm+/fMFhRc/+rUiZGbllW0h/JlNk12eNZy0tLThw4AAAoLKykorP71DOkFAN1GOAkIFQzpBgpWrlk1Emahka1sLzP//5DwBg3Lhx4TwtGYUEQZQt5smIIlht8E8OPbwHTdYW2b6cpKyIFJ6OY1UA/GJVa6ErpMXpifJOnjyJgwcPStsulwuVlZU45ZRTaLwRIYQQEiNYJvS5TOJRWAvPuXPnhvN0ZBTj3R7IijkIYPXBF552j7PfPqM6MmM8HUf3yLb148vARqDAJSQUfYtOn5ycHGg0GgUiIoQQQkggvCAvyXgmMVvLaYwniTkOhwP2nh4YiorAiCJEQYARTugyM4M+R3XLQdR2HodJY4BJa0SaPgVqVfjTXRRF2Ovkhadx4sywX4cMzuFwSOP1qBsp0NzcjEOHDvXbX1hYiIkTJ9K4RlDOkNAJgiDlDMuOjtYJMjKUMyRYKsgfCItUeBISHTU1NWht6gE/YTxyc3MBABmZJuhzsod4Z6/q1sPY3VwtbU/NnozLypaEPVauoxG8pV22T180I+zXIYOrqamRlsYY7TMaUtEZHMoZEiqn0ykVEUajceg3kFGPcoYQOSo8SUxqPuFEwzEHGmqdYFgG+QWpKD+1IOj3m50W2fbU7CnhDhEA4DhaKdtmtAYIzp6IXIuQoQxUdI4bNw4TJkygopMQQgiJQYx+dEx4R4UniTmZmZlgWQs4Vw84lxsA0GNzh3SONpu8FTLHFHw33VDYj+ySbWvSc6FJz4vItcjAMjMzB12ncjRoamrC4cOH++2nojMwyhkSKrVaTUvwkJBQzpBgiRgdq4JQ4UliztixY2EwtAIwS/tYNrSb9oT0cVCxKrT1dMDq7olI4Sl6ODjr98v2abIKoUpKD/u1yODGjh2rdAiKGqjoHD9+PIqKiuhDTwCjPWdI6GgmaBIqyhkSLG9Pvd5JMBO1DKXCk8QkURBk20yIheeP590gfW3nHNCw4U91Z8NBiB5Ots9QNIM+5JOoamxsRE1NTb/9VHQSQgghJJZQ4UlikiDIn/WwI/jwbNREZsZK+9Hdsm1VUjp0uRMici1CAmlvb6eikxBCCIlzfJ8Gl0RFczuTmORs75Rt9xzp/+FaafYj8sJTnZ4HTXquQtGQ0Sg9PR1paWmyfUVFRTSmkxBCCIkjvMgrHUJUUIsniTmHDx9Gj9UGoHdshOByBf3+TocZlc37YdIaYNIYkKRNQlF68DPiBoPv6QbXdkK2T5c7AewomZUs1hw+fFhaGqO4uFjpcKJGpVJhxowZ2Lt3L8xmM4qKilBUVKR0WHFhtOYMGT7/pTH0ev3QbyCjHuUMCZZJI19uJ1EfHVPhSWKO0+mE4JE/+QlliKfVZUO7vRPtdu92ii78haejrkq+Q6WGgdbvVIzT6QTHceD50fHE0J+v+Gxra0NeHs2oHKzRnDNkeARBoBlKSUgoZ0iw9J5uJLl6u9uqheAbXOIJFZ4k5rAsC7HPdF6h3LN73A7ZdiTGeDI6AzSZY8GZWwDeA3VqDjRZ4S1uSfBYlpX+G41UKhUVnSEa7TlDQucrHqiIIMGinCHBSte4kN3TJW2rEdoygvGCCk8Sc6ZPn47t2iOAs3efCsG3SnxxbBu6nVYYtUaYNAaMTw3/sgnqpAyYpp0BURDAWzvAqDQ0vlNB06dPVzqEiGttbUVmZiatOxkmoyFnSHgZDJGZqI4krnjLmZaWFrz22mvYvHkz6uvr4XA4kJaWhunTp2PZsmVYvHgxPayLkIz8XJyorZO2terE/FtPhSeJSTqVfHYvI4LrciCKIrae+AZuvneZk6K08LdEujsaAAAMy0Kdmg1tdiEYNjFvEkR59fX1qK2tRWpqKsrLy6n4JIQQElZr1qzBL3/5S9jtdtn+trY2bNq0CZs2bcLrr7+OZ599FhkZGQpFmbh02enQpfUWnnpdYpZoifldkbgn8PK+tsGu42lxWWVFJwCU500NW1wAIHo4eLpaZPu0mbQYPYmMEydO4OjRowCA7u5u7N27FzNmzKDikxAi6ak7BtOEIqXDIHFq8+bN+MUvfgGe58EwDC644AIsXLgQJpMJdXV1eOedd9DY2IidO3fixz/+MV555RVoNBqlwyZxiNrLSUwS+qxnxAZZeLb1yJdhUTEsMgxp4QoLAMB1NUMUe+NjGBbqjDFhvQYhgLzo9DGbzejo6FAoIkJIrHF3daH6Vw/B3dU19MGE9MFxHB555BHwPA+VSoUXXngBzz77LK644gosWbIEP/nJT/DRRx9h/vz5AIDdu3fjjTfeUDjq/8/encc3Uef/A3/N5E56H7RASwuFlhtUwANUFHUFReQUBF11FXU9EHdlXdn1wGO9/S6uu+rP9VxPUEARD8CDU0Ch5T5arrb0btM2dzIzvz9Cppk0SZM2aY6+n48HDzIzn3zmk/bTybznc8UfGQuoWYv4TyWLzzGeFHiSqFNbWwu73SHZF+istnJWjvNzzsGA1H5IUOqQrk2FLMRdYDlTKxi3ia7lKZlg5Uo/7yDhVltbi6qqKtTW1ka6KCHjLegEgIKCAvTq1SsCJYov8VhnSHjZ7XbYbDbY7faOE3ejyi9Ww9FqQOWqNZEuCvEQrXXG3fbt23H6tHN5uAULFuCyyy5rl0an0+Gll14Sl4RZsWJFt5axJzjB1OC9YQ3iv8/zajp+UwyirrYk6lRXV8PukAaegXa1zU/NwZ/GLxS3bY7QPjHirSaocwdD1Wcg7A1nYG+ogIK62UZcdXW1uCZjPARlp06dwokTJ9rtLygoQG5ubgRKFH/irc6Q8LPb7eLSGNHSzdDW1ITqb78HAFR/8x36Tp8GZWpqhEtFXKKxznjavn27+HratGk+02VkZGDMmDHYsmULjhw5AovFQmuThlBzoxw5R8eK23K5xU/q2EWBJ4lKGUwTVPpqCAwLgWGQksZ3/CYvlCFuiWzavAKtxRugzh8B7YDR0BacA3lyZkjPQXo2X0HnwIEDkZNDS/YQQtpUfrEavM35gJW32VC5ag3633ZLZAsVZlVVVXj77bexadMmnDlzBhqNBkVFRbjhhhtw7bXX4s0338RLL70EADhy5IjkvUVFRQCARYsWYc6cOVi2bBm2bNkCAMjNzcXtt9+OqVOniul5nsf69evx5ZdfYu/evWhqaoJOp0NeXh4mTpyIBQsWICkpyWs5b7rpJuzcuROAs3uqLw8//DBWrVoFANi4caPkOu86lpWVhU2bNuH06dP4z3/+g23btqGhoQEpKSkYO3YsbrnlFowaNSrYHyUAQK1Wo3///qiurkZ+fr7ftMnJyeLrlpYWCjxDyGjgkNTctjoCpzBEsDThQ4EniTr5+floVHFQmSoACGAgILlXdIyhNJ8oBm81wXRkB0xHdiBlwmykXTo30sXq8fLz88HzfMxP837y5EmcPHmy3X4KOkMvXuoM6T4qlUpsvYoG7q2dLvHe6rljxw7cfffdMBqN4j6bzYadO3di586dWL9+vRhc+mMwGDB//nzJ9fbw4cOSILK6uhqLFy/G7t27Je/V6/XQ6/UoKSnBe++9hxdeeAGXXHKJ3/OpVKoAP6Fvu3fvxp133omWlhZxX11dHdatW4dvvvkGf/nLX3DrrbcGne+iRYuwaNGigNKWlpYCcK5LmpKSEvS5iG98jR5AW0OGxtK5BpdoR4EniTpJSUkwCWq0qDPEfalsYE/VtpzaCavDhkRVAhKUWuQk90GSKiEk5XK0NsFWe1qyTztgdEjyJl3j64lzLKGgs3vFQ50h3SvaZpJ2b+10iedWz/3792PhwoWwWJxdECdNmoTLL78cCoUCO3fuxOrVq/Htt99i69atHeb1v//9D1arFRMmTMDUqVOh1+vx888/Y8KECQCcM4jfeuut4jj7vn37YsaMGRgwYACam5uxYcMGbNmyBXq9HnfffTdef/11XHzxxT7P19W6YzKZcP/996OlpQXDhg3DzJkzkZSUhF27duHzzz+Hw+HAs88+C61WixtuuKFL5/Jl//79YgvykCFDoFTS3BahlMJI73Nl8Rl3UuBJopPAcZJtNsCFdBvNelgcNjSY9QCAFE1yyAJP84kSyTaj0kLVd1BI8iY9m6+gc9CgQejbl8YQE0KkvLV2usRrq+dTTz0Fi8UChmHwzDPPYMaMGeKxadOmYfr06Vi4cCFaW1s7zMtqtWLixIl4/fXXxRbsW265RTz+wgsviEHnFVdcIZlYBwDmzZuHVatW4ZFHHoHD4cCSJUuwfv16JCSE5n7DU2trK1pbWzF79mw88cQTYiA7depUTJ06FXfccQfMZjNefvllTJ48OeQP1niex9NPPy1uu3dHJqEhY3pG75ue8SlJzOE56aMeRt5xVbU5bLB4TCaUqNSFrEzm48WSbU3+CDAhnjGX9CyCIODEiRMUdBJCguKttdPF1eoZT3755RdxnOTs2bMlQafLmDFj8Je//CXgPO+44w6v3aZramqwevVqAEBOTg5efPFFr2MZp0+fLgarjY2N+PTTTwM+d2cUFRXh8ccfb9d6OnbsWNx7770AnN2Av/jii5Cf+5VXXhG7HGdnZ+PGG28M+Tl6Op6X/l55Jj7vLynwJFHHbre3CzzZALqplDaewr6awzjeeBrVhjoYbSboFNqQlEkQeJg8Ak9t/84N5CehFwtT1nvjcDhQXV3dbj8FneEXq3WGRA7P8+K/SPLX2ulS/c13cbWu548//ii+/v3vf+8z3fTp0wMae6hQKDBy5Eivx7Zu3SpeFxYsWACNRuMznz/84Q+Qy52dBzds2OAzXSjqzK233iqey9MNN9wgdn396aefunwudx988AHefPNNAM4uwy+88AJNKhQG2qw+km3Bx+861lHgSaLOoUOHYLVaJfsC6Wpba6zHkfoy7K7ahy2nduKX8t0hmzjEVnMSvFnafUcQ4rQDfgw6dOgQ9u3bh0OHDkW6KEFRKBQYPXq0ZOKJwsJCCjq7QazWGRI5FosFZrNZHGMYKf5aO13irdVz165dAIDU1FQMHDjQZzqlUolzzz23w/xyc3N9jlEsLi4WX19wwQV+88nIyBDLs2/fPgiC4DVdKOrMRRdd5PNYYmIiCgsLAQAlJSU+0wXr/fffl3SxXbJkCcaNGxey/EkbWYL0AUe89ryN049FYt0ZWR9UJQ5EVeJAVCcUoMnh+4mjS5O5WbKdkxy6mXDNx6UXcladAEVqdsjyJz2XRqMRg8/CwkL06dOn4zcRQnqkQFo7XeKp1bO2thYAAro+9uvXr8M0/sZANjY2iq8DWTfZlcZut0tmnA0lrVaLrKwsv2lcPxuTyQSTydTlc/7rX//C008/LQbTf/zjHyXjYEloyXUpkm1BFp8tnvH5qUhMS05OhoXRwKZo68phZzq+mNeZGiXbmdq0kJXJs5utPDUL8sTQ5U+6Jjk5GQ6Hw2c3pGin0Wgwbty4qJs1M57Fep0h3U8mk0V8OZVAWjtd4mmGW71eDwABdfEMJI2/GVndl2rx183W2/nMZrNkrUuXrl7bdbqO56twL4fBYIBW27mhRhzH4bHHHsOKFSvEfffeey/uu+++TuVHAuM5ZwgTp02e9I1Lok5eXh7A/CrZF8hFe0BqP4zrOxp1pgbUGxuRoUsPSXl4mwWWisOSfYrUbMgSKPCMFnl5eZEuQodcT4193bRS0Nm9YqHOkOgSirUYuyKY1k6XeJnhVqVSwW63w2w2d5i2q91a3YNNs9nc4Uy17q2LvoJef3XHc2iRN7YAHja4ytGVNTatVisWLVokjqllGKbT64OS4Jxukc73YObjc/4BCjxJVBIEBnC7P2cDmNX2ioIJuKJggrjNh2gMpuX0AYBzuO1hoEzvC1YTnmnTSfwRBAHHjx8Hz/MYOHBg1CxATwiJHcG0drrES6tndnY2SktLcebMmQ7TBpLGn4yMtjXEy8vLMWTIEL/pT506BcAZdLoHfO7XeX+9KwJZ/qWlpQVGo9Fvy2dFRQUAICUlpVNrbFosFtx555345ZdfAAByuRxPPvmk1xmESej1lHlD4rMdl8Q8z+H5sk50h2ND1E3B5DG+U5aUDnlKFgUPJCCuoLO8vByVlZUoKyvzOQEFIYR405nWTpd4GOs5apRzFnm9Xo+ysjKf6XieF5dd6awRI0aIr11BmC81NTXiep+uyX1c3IM/g8HgM4/S0tIOyyQIgt9Jg9x/Lp2Z/IfjOCxatEj8vCqVCsuXL6egsxs5PFq+mTi9TaDAk0QpaVAnC6DFM1w8JxZSpGbT+E4SEEEQUFZWhvLycnFfRUWFeKNCCCGB6Exrp0s8zHB79dVXi68//PBDn+m+/fZb1NXVdelcl156KRQKhXguf91733nnHXGplIkTJ0qOpae3DffxNXt2cXExqqqqAirXxx9/7PPYRx99JC4BM2nSpIDyc/fvf/9bXIZFrVbj9ddf71Q+pPO48hrJtsIWny2gFHiSqFNWVualxdP/+LcmczPWHtmIH45vw46KPThQezQkZXG01MPeUCHZJ0/NgiItdDPmkq4rKyvDkSNH/D4J726uoNPV/cldIBNFkPCKxjpDopvFYhH/daeutHa6xHqr54QJEzB48GAAzgBs3bp17dIcOXIETz75ZJfP1atXL0ydOhWAs6vtQw895PV3vnr1arz33nsAnEHmvHnzJMfdW05fe+01OBwOyfHq6mo88sgjAZfr+++/9xp0b926Ff/5z38AAPn5+Zg8eXLAeQLOn9vrr78OwNk9+Pnnn/e7dAsJD51cOj44XvvU0RhPEnWMRiMEzxZPhf+qarSbYLKbYbKbUW8CdAoNhvUq9PueQNgbq8Ao1RBszi8dRq6EMiMHsqSMDt5JupPRaITdbhefUkeaIAgoLS1FZWVlu2NDhgzpcFp8En7RVmdI9ON5PiKz2tZu/BHyxK7PKVC78UfkzIrNrpMsy2LZsmWYP38+7HY7Fi9ejG+++QaXXnopVCoViouLsWLFClitVshkMnAc16V1vP/6179i165dKC8vx/r16zFlyhTMnDkT/fv3R0tLCzZs2IDNmzeLZXv66aeRlibtCTV58mS8+OKLMJvN2LVrF+bMmYOZM2ciMTERBw8exMqVK9Ha2ooRI0Zg3759HZaJYRgsW7YMmzdvxpVXXgm5XI7t27djzZo14HkeCoUCjz/+eNDjO9944w0xKB46dChkMhk2bNjQ4fvOPffcdp+ZdJ7SYYDG1tbIouA7nnQqFlHgSaKTxxe7XOG/xdNkk3aF0So6ngI9EOp+Q5EyfibsTdVwNNVAEHiosvrT+E7iEwWdhJBQypk1I2YDxlAaNWoUXnnlFSxZsgQmkwnff/89vv9e2hI8a9YsVFZWYvv27Z2aYMclKSkJH374Ie69917s3bsXlZWVWL58ebt0KSkpePnllzF+/Ph2x9LT07Fs2TIsXboUNpsNBw4cwIEDByRpbr75ZowePRoPPvhgh2VasmQJXnnlFfz444/irLMuOp0Oy5cvx4UXXhjU5zQajZKf4YEDB3DPPfcE9N73338f559/flDnI76lKUzINjSI2zJ0rmt9tKPAk0Sd4cOHYw1OSvbJNf7X5fqlYg9KG05Aq9BCq9QgXROaqePtTTUQHHbIE9MhT3SO11D2yg9J3iR0hg8fHukiAKCgM5ZES50hsSOQNR1JeF155ZX46quv8O6772Lz5s2orq6GUqnE0KFDsWDBAlx55ZWYP38+AGfw2BVZWVn47LPPsG7dOnz99dfYt28fmpqakJKSgtzcXEyePBnXX3+93/NMnToVI0aMwDvvvIOtW7eitrYWSUlJGDFiBBYsWIAJEybg66+/Dqg8V111FSZMmIDXX38dO3bsQHNzM/r06YPLLrsMt912W6e+X44fPy6ODSWRpZUpALQ1osTrAmsUeJKow7IsWLkcHNc2sLrP2JF+31PZXIXD9W1jtdQyJSYVtH8CGSxb7UnJtjwxHTJtYpfzJaHVlS5VoSIIAo4dO+Z1Kv+hQ4eiV69eESgV8SUa6gyJLdTTJTrk5OTgb3/7m8/jDQ3OVqPevdvPxXDkyJGgzsUwDK655hpcc801wRXS7f39+/fHsmXLfKYJJv/CwkK8/PLLnSqLNyNGjAj6Z0JIV1DgSaKSa5Y4F5b1/4Wvt7ZItgvSur44PO+wwd4gDSKUWfldzpfEH19BJ8MwGDJkCAWdhBDSBWvWrMHatWuRm5uLO++802frXllZGU6ePAnA+cCPEBJdKPAkUUfgBXguc9hR4NlkbpZsp2lTulwOe30FBJ4TtxmGgTIzt8v5kvhCQSchhIRXUlISNm3aBMB5zX3sscfapTEYDFi6dKm4TvK1117brWUkpCsYCJDxbTMfs4zDT+rYRYEniTr1DQ3t9rEy/4HnuL6j0WBugt7cgiZLM9I0KV0uhzIzF4xCDUdTNexN1ZBpE8EqVF3Ol4ReY2MjeJ4Hy7LdPsteaWmp16Bz6NChyMzM7NaykMBFss6Q2ORwOMRZbeVyun3qTuPHj0dOTg4qKirw0Ucf4eDBg7jqqquQnZ0Ns9mM48ePY82aNaivrwcAzJ49G2PGjIlwqanOkMAZ0Yg8fdvkU1ZlfHbtp78CEnUqytuve9hRi+ftY+b5PR4sU9ketPz6DTQDRjv/FZwDCPG5mG88qKioEJfG6O4gIj09HVVVVWL3cAo6Y0Mk6wyJTTabjYKICFEqlXjttddw1113oaqqCsXFxSguLvaadt68eUGtjxlOVGdIoJpsGlT1miBus+je9YK7C/0VkOjDMOjdTw2GYZCYmASeF6BUdm9VNR37FabS32Aq/Q0AoBs6HlnTO57unPQ8aWlpGD58OPbv3w9BECjoJISQMBg8eDC++eYbrFy5Ehs3bsTRo0fR3NwMnU6HrKwsnHPOOZg1axZGjvQ/GSEh0chsV6IqaZC4rba3+EkduyjwJFGnd2oaBug3g5WxUFpVYGUyyBxFALqvm6v5RIlkW5XVv9vOTYKXk5MjdpuMBFfwyfM8MjIyIlIGEpxI1xkSe5RKpdh6RSJDo9Hgpptuwk033RTpogSkq3Xm2WefxbPPPhviUpFoZIfQcaI4QIEniTpamQxnTjZJ9g0zmqBOTfaavtpQh+KqA1DLVVDKlEhS6TA8a3Cnz2/X18DeWCXZpxkwqtP5kfCLhq6S0VAGEjj6fZFgUVdJEiyqMyRQSUptpIvQLehRL4k6vJ1rt4+V+15K12Qzo8VqQK2xARUtVag21HXp/Obj0tZOVptEy6gQCIKA5ubmjhMSQgghhARBzkrvc+O1XwUFniTq8HZ7u30ypdJnehtnk2wrZb7TBsJ4dJdkW9t/FBiG/lR6MkEQcPjwYezZswc1NTWRLg4hhBBC4gjHS+8z+Ti976Q+ACT6KBVQpmcAAu9cz1MQ/Aae207/hlPNldDIVVDL1UjvwlIqAs/BcvqAZJ8ivU+n8yPdwzWjLICQj9kTBAGHDh1CbW0tAODQoUNgGIbW54xx4awzJD4JbgtM0zhPEgiqMyRQMo95THgmPkO0+PxUJKYdr68HP2wIWBmL7KwsAIBMo/aZ/mjDcRxvOi1u907sfEBgqTwGwW6V7FP2yu90fqR77N+/X1waI5QzGnoGnS6HDx9GSkoKlH4eiJDoFq46Q+KX2WwWJ4rRanvGeCzSNVRnCJGiwJNEHYuJw5nTZrAMg8aaKjAMgwmTBvlM32o1SLb7p+Z2+tzGIzsk26w2Gaq+vs9N4pevoJNlWQwfPpyCTkIIIYSEhsJ3A0s8ocCTRB2ZTAVji3OCodZmZ1DJ+uihIggCmizStY5S1EmdPre5bI9kW5mZA5kupdP5ke6h0+ngcDhCNoOgIAg4ePAg6uqkE1W5gk6aETX2hbrOkPhHXbJJsKjOkECxsp7xXdQzPiWJKb2z+wA4JdnHyrxfvB28AxP7Xwi9uRlNlmbozS1I6+QYT85ihL2+QrJPkz+SxmXEgIKCgpDlxfM8Dh06REFnnAtlnSE9g1rdM1okSOhQnSGB0ltaALStAx6vq3pS4EmijuA26QcA+Iv7FDIFFo65MSTnNR3bBcmfOiuDdvAFIcmbxAZ/QeeIESOQmpoaoZIRQgghJF7x4DtOFAco8CRRh+M8nvN0U4uj8bB0fKc8pReUNKNtj8HzPA4ePIj6+nrJfgo6CSGEEBJOPB+vbZxS1PmcRJ3WEyelO3gu7OcUBAGW8kOSfeqcIlq/s4egoJMQQgghkeIQHJEuQregFk8SdepPlwPu6xkJvp8CNZr12FlRDJVMCZVcBa1CjdG9hwV9TlvtKfDmVsk+XeH5QedDIuPUqVPiRDF5eXlBvddf0Dly5EikpKSEsKQkWnSlzpCeyWq1iktjqFSqjt9AejyqMyRQGrl0PHC8zi5CgSeJOhazFe6BJ+NniLXFbkGL23IqWoWmU4GnwHNIOOdKOJqq4WiqAW81QlNwTtD5kMhobm4W12QMVkNDAwWdPVBX6gzpmTiOE4MIQgJBdYYESsWZoXSYxG0Fb4lgacKHAk8SdXjOY3IhP93ezQ6rZFst79zaio7GKsgTUiFPSAVyh0CR1gesnG5Ie4LMzEwMGDAAx48fBwDIZDKMGDGCgk5CCCGEdItUuQF9W9omNpTBFsHShA8FniTqJCclA1Xue3xHnj8c34qKlmpo5Cqo5SqkqBODPp8gCHC0SFu8lBk5QedDImfIkCFdeqrcr18/CIKA06dPU9DZQ3S1zpCeh5bGIMGKtTpTXl6O999/H1u3bkVlZSXkcjn69OmDyy+/HDfccAP69KEJF8MlLSMNpxWV4rZSFp/fTRR4kqijUfAAZOK23M+A6701h1FjaHtClJ8SfMDIW03g7dKWU3lyZtD5kMgJRXfJvLw8ZGVlxdyNAukc6mJLgsWyNNkcCU4s1ZnVq1fjscceg8Ui7eJ59OhRHD16FO+//z7+9re/YebMmREqYXzT5mRBm9kWeKpVnevBF+0o8CRRh3dIA09/YzxbrNIJgQozBgR9Pq61UbLNypVg1bqg8yGxj4JOQkgsqj7Tguw+SZEuBolRmzZtwl//+lfwPA+GYXDNNddg7NixkMlkKCkpwapVq2AymbB06VKkpKRg0qRJkS4yiVGx8yiG9Bi8xzqevgJPq8MGs136ZC5FHfwXL6vSQpU9APKEVDAMA1liKnW/i0Ou2WsNBkPHiQkhJEYYWiz44D/bYWiJz8lISHhxHIfHH38cPM+DZVm88cYbeOmllzB37lzMnj0bTz31FN5//30oFAoIgoB//OMf4Hm+44wJ8YJaPM8SBAFr167F559/jkOHDsFkMiEzMxNjx47F/PnzMXLkyC7nv3HjRqxZswZ79+5FY2MjFAoF+vbti/Hjx+Pmm2+mvvNn2awWAG1dDHwFng7egSsKLobe3Ay9pQVNlmakaJKDPp+1+jiUGTmQDxoD8BwER3wO6I5nLS0t4pdmUlL7hw8cx2H//v1oampCY2MjRo8ejYSEhAiUlESLjuoMIZ7cZyiVyWQdv6GbbP2xDGaTHdt+Oo6rrhsa6eIQN9FaZ9xt2bIFlZXOLp6zZ8/GpZde2i7NeeedhxkzZuDTTz9FeXk59u3bh1GjRnV3UeNaraIBPxWdErdTeAaTI1iecKHAE4DFYsGiRYvw008/SfZXVlaisrISX331FR544AEsXLiwU/k3Nzdj8eLF2Lp1q2S/zWYT+85/+OGHePLJJ3H99dd38lPEj9ZWI4C2G0FfjY86pRYLx9zYpXPxVjNqVj4PCDxYbRLUfQuRMflOsCptl/Il3evkyZPi0hieD4ncg04AcDgcKCkpwahRoyj47MH81RlCvHFfk1GrjY7vCEOLBb9tc96s/rrtJC6aOAAJSTRkIFpEY53xZLPZcN5556G0tBRXX321z3RFRUXi68rKSgo8Q6xez4OvGSFuG1mrn9SxiwJPAEuXLhWDzoKCAsyZMwcZGRk4cOAAPvnkE5hMJrz00kvIysrCtGnTgsqb53ncc8892LVrFwCgT58+mDlzJgYMGACj0YgtW7bg+++/h81mw8MPP4ykpCRcfvnlof6IMUUBO1JMVQDDQAADnSJ8XTqsVaWA4MyfN7XAVFZM4zvjiGfQ6cLzPHUVIoTEvK0/lsHhcF7LHHa+R7R6VlVV4e2338amTZtw5swZaDQaFBUV4YYbbsC1116LN998Ey+99BIA4MiRI5L3uoKnRYsWYc6cOVi2bBm2bNkCAMjNzcXtt9+OqVOniul5nsf69evx5ZdfYu/evWhqaoJOp0NeXh4mTpyIBQsW+OwxcdNNN2Hnzp0AgD179vj8PA8//DBWrVoFANi4cSNycnLaHcvKysKmTZtw+vRp/Oc//8G2bdvQ0NCAlJQUjB07FrfcckunA8Err7wSV155ZYfpampqxNeZmTQBY6gZWhhkVheI2w5lfA4L6vGB59atW7F27VoAwAUXXIA333wTKpUKAHDttddi1qxZuPHGG6HX6/HMM89g0qRJQbWSrFq1Sgw6L7jgAvznP/+RPPWaPXs2fvjhB9x3331wOBx4/PHHMX78eLEMPVEvHQOh4VcAzm622qyMsJ3LUiH9UlJl5YNV9NyffazKzs4Gx3GSrky+gk65XI6RI0dS98oezludIcQf1xi3aJkDwL210yXeWz137NiBu+++G0ajUdxns9mwc+dO7Ny5E+vXr5e0zPliMBgwf/58nDx5Utx3+PBhyfdCdXU1Fi9ejN27d0veq9frodfrUVJSgvfeew8vvPACLrnkEr/nC8Us2rt378add96JlpYWcV9dXR3WrVuHb775Bn/5y19w6623dvk83lRUVOCzzz4D4Lx2Umtn6Dlq9ADSxW2NJT4fjvf4wPPtt98G4LwZfeqpp9oFfAUFBfj73/+OP/3pT9Dr9VixYkVQf9iffvopAEClUuHFF1/02tXi8ssvx4IFC/Duu++ipqYGmzZtCujpU7wSZBo06Nqe+CXINF7TndZXYl/NYWgUamgUaqSqUzA4s8BrWl+slUcl26qcwuALTCKuV69ekm2O47Bv3z7o9XrJfrlcjlGjRiExMfj1Xkl88awzhHQk2pbgcW/tdInnVs/9+/dj4cKF4nIfkyZNwuWXXw6FQoGdO3di9erV+Pbbb9sNa/Lmf//7H6xWKyZMmICpU6dCr9fj559/xoQJEwA4h0jdeuutOH78OACgb9++mDFjBgYMGIDm5mZs2LABW7ZsgV6vx913343XX38dF198sc/zdbXumEwm3H///WhpacGwYcMwc+ZMJCUlYdeuXfj888/hcDjw7LPPQqvV4oYbbujSuQDnvCRmsxnl5eVYt24dPv74YzQ3N0Mul+OJJ56AUhmfS31EUiIvDclkXIQKEmY9OvDU6/XYtm0bAODiiy9Gbm6u13RTpkzBM888g4aGBnz77bcBB54GgwF79+4FAFx00UV+uyZcffXVePfddwEAJSUlPTrw5DnpX5uvp8smuxnGs/8AwOawBxV4CoIAi0fgqe7b8ZNSEt0o6CSExDtvrZ0u8drq+dRTT8FisYBhGDzzzDOYMWOGeGzatGmYPn06Fi5ciNbWVj+5OFmtVkycOBGvv/66eI9xyy23iMdfeOEFMei84oor8NJLL0mW25o3bx5WrVqFRx55BA6HA0uWLMH69evDNm9Aa2srWltbMXv2bDzxxBNiT42pU6di6tSpuOOOO2A2m/Hyyy9j8uTJXe7R8/333+P++++X7MvLy8MTTzyBCy+8sEt5E++UrDQki45+FaHXo5dT+fXXX8VxXhdccIHPdCzLYuzYsQCcQWFzc3NA+Tc1NWHEiBHIzMzEgAH+15dMTm6bjdW9G0VPJHDSJ7gM6/3Pz+yQTh2vUQT3JWtvrAJvln5BKbL7B5UHiS4UdBJCegJvrZ0urlbPePLLL7+I4yRnz54tCTpdxowZg7/85S8B53nHHXd4fbBdU1OD1atXAwBycnLw4osvel3jefr06WKw2tjYKPZwC5eioiI8/vjj7YYHjB07Fvfeey8AZ4PKF1980eVzVVVVtdtXW1uLL7/8EnV1dV3On7TH8dKQjGfiM0SLz08VoGPHjomvCwv9d7EcOHAgAGcr2dGjR/2mdcnNzcWKFSuwZcsWLFmyxG/asrIy8XVKSkpA+ccrwWPSF18tnj8e34YDtUdQ1ngKlS3VEITg+sObT5RIz6NQQ65LDa6wJGpwHIe9e/dS0EkIiWv+Wjtdft12Mq7W9fzxxx/F17///e99pps+fXpA91D+ZrPeunUr7HY7AGDBggXQaLwP9wGAP/zhD5DLnS1VGzZs6PC8XXHrrbeK5/J0ww03iN1fPVdo6Iz8/Hw88cQTeOWVV/DAAw8gNzcXZrMZX3zxBWbOnIkzZ850+RxESpMmHf4hyOKzU2qPDjxd6xYBzv77/mRnZ3t9X6h8/vnn4uuePmi7pVna4usr8DxQexSH6kqxp2o/tpf/1q4FtCOWUwck2/KUXpCpo3O6c+Lf3r17sXbtWsnDJMAZdI4ePZqCTtLO/v37sWfPHuzfvz/SRSExwmw2w2QywWw2R7Qc/lo7XeKt1dM1SWNqaqrYEOCNUqnEueee22F+ubm5PscpFhcXi6/99YYDgIyMDLE8+/btgyB4X3c8FHXmoosu8nksMTFRbEApKSnxmS5QEydOxNy5czFlyhTcfffd+Prrr3HZZZcBcLYIL126tMvnIFKKVGn3aEYWn51te3Tg2djYKL5OTfXf0uX+BM2zRaWrNm/eLD7NS09Px/jx40Oaf6zROzSo1+aiXpuDBm1f1CO5XRoHz6HVZpTs65/aL6jzWKvLJNvKXnnBF5ZEHMdxOHnyJIxGo+RLX6FQYPTo0bRWJ/HKtaQOLatDAiUIgvgvUgJp7XSJp1bP2tpaAM4l6TrSr1/H9wL+xkC63xv6mvvDnSuN3W73OVSqq3VGq9UiKyvLbxrXz8ZkMsFkMnXpfJ5UKhVeeuklZGQ4VxnYtm2bpKce6TpWKV3KT2Djc8b1Hh14umZGA9Dh8iXuT8bc39dVVVVVkjEJd999t9exBD2JWVCjVZ2BVnUmWtS90Cy0X1ez2dL+4p6qbh+g+sLbzHDopeMU1P2GBF9YEnEMw0Cj0UAul4vdkBQKBUaNGkVBJ/FJrVaL/wgJBMuy4r9ICaS10yWeWj1dD/wD+XsNJI2/WVndl2rx183W2/l8tWx2tc7odB2vL+5eDoMh9GtA6nQ6XHvtteK25zIzpGtkHmvIM2x8drWNz08VIIfDIb7uaGpo9+Pu7+uKxsZG3HbbbWhoaAAAjB8/HgsWLAhJ3l1RWlqKgoICSfdEq9UqLsSckpLS7oliaWmp+ITNc9xEfX29OB4gNzdX0rrMcRwOHHB2eU1MTET//v0hlysAt4lteYHH3r17MXToUDGwYBkWl+aej+qmWhgcRlhhR4JK+kfr6vai0WgwaNAgybHy3ZsAuD2BZBho8p1dnA0GgzibXWZmJnr37i1576FDh2C326FQKDBkiDRYraqqEgfeDxgwQBL4WCwWcXxwWlqaZJFowDnm2Gw2g2EYjBgxQnKsrq5OHOzfr18/SQu8w+HAwYMHATif4ubn50vee+LECXGWv2HDhkkmJmhqakJ5eTkA59NS19NMF9eszFqttl33ptOnT4s3A0VFRZKHN62trThx4gQAICsrq92T2oMHD8LhcECpVGLw4MGSY2fOnEF9fT0A53JG7l+4ZrNZ7E6bnp6Ovn37gmVZTJo0CQcPHsSRI0dQX1+P/Pz8dkFnbW0tqqurATjHr7g/8bbb7Th06BAA50RfeXnS1u+ysjLxZmT48OGSm4jGxkZUVFQAcE5EkZaWJh7jeV7syqnT6VBQIJ11+dSpU+JkZUOGDJFMud/S0iKuMZednd1u+Y/9+/eD53mo1ep2Y9QrKyvF68qgQYMkN09Go1F8Up2RkdGuBeHw4cOw2WyQy+UYOlS6JENNTY24iHj//v0jdo1wd/LkSbGVwf0aAThvVk+fPg0A6N27t2Rm8cLCQuzbtw8WiwXHjh1rd42oqKgQWz4KCwvb3dTRNcIpFq4R7o4ePQqLxQKWZTF8+HDJMfdrhOfyF+6t496CCIvFIh7XaDSSISIOhwM2mw2A817CvY66lq1w5esZNFmtVnBnZ3p32JiAWztdft12Eude2BcZmdIHszabTbyXUavVks/EcRysVisA53AFz/sjs9ksrmfqGZjZ7XZxfKRKpZLUJZ7nxQf3Mpms3QN/95+h59JzKpUKdrsdRqMRDofD589QJpO1axxw/xl6cv/dKBQKKBQKyWdqaGhAQkKC19+N62foPouuKw3HcZJzer7X/Wfo+ll75uv6bK59gPRn6Pm7cV1fGYbx2pji/rvxVw+9/W5cP0P3vyfXd4y3n6E7V7k6qt/+6qG3fP3VQ/efob966K1+u+qht3w5joPZbMbevXtDfh9x8PRhAG0/d6tgF8sbifuIcE0i1aMDT/c/ALvd7jf4dP1RAR0HqYGoq6uTrBGVl5eHF198MSoWpuY4rl33M0EQxAuWtwu4w+EQj3vieV485q1bm+uY6yLBe3RJYeA8t3tXlVRNMm4cMk38+eXk5ID1mAHM9R5vg/G5ikOSbZkuFYrUXu0+q6/yBvJZPbvWuOfr7eGFK19vdaAr+Ybyd+OO4zifZXLP11t9sdvtcDgcXm/g/OXrqx6yLIuhQ4eiqqoKOp2u3ax/nvn6q9/d+TN0z7czP0Oe5zv8rIH+DD3L5K1rWKA/w3BfI3zl6++z+srX1zWiq/nSNSK6rhHu+drt9g7z9bbuoutcvrpN+tvv773+umG6v3f7T8cDbu10cdh57Nx8ClNmSB/2dKVM/o6H6rN6ysrKgsFg8Drbqnu+giC0m/imo+7RnsfcH65UVFSgqKjI52cRBEF8uKVWqyUPfDwfPngGeq48vS3/4nm+lpYWGI1GaDQanz9f1wPQ5ORkn5MQefscb7/9Nn799VfU19fj7bff9vq34Sqve5Ds/sAnkJ9vOP5uXIFnOPL1xXWNCfV9hJWzwT3wdL8XjsR9RLiGofTowNP9iZrVag048OyoW25HTp8+jdtvvx2nTjmfXPbu3RvvvPOOpKUkkmQyWbsLD8Mw4hextwoql8t9LpDMsqx4zNsFzXXMdaH0nJyWOZvG8+LiXiZf+QqC4LVcTMMp9/ZOKDJzwZwNXAPJ1/1/d+6f1V95vX0pKBQKOBwOrxfRruQbyt+NO5lM5rNM7vl6qy+u32ew+fqrhyzLIi8vT2zN8Jevv/rdnT9D93w78zPked5ruTr7M3SVief5Dn83kbxG+Mo3lNeIrubr/r87uka0z7e7rhGufDmO6/Aa4Y3rXL5udP3t9/defw+cXe81tlrx2/bTPtP5U7yzApdcUShZ17MrZfJ8v6/9nf2s3owcORJlZWVobm5GWVkZioqK2r0XcN54u5ZdCSRfb2UaMWKEuDTKrl27MHjwYJ+fpa6uTmxR8mwxcr+nNBgMXoNShmFQWlraYZkEQUBJSQkuuOACrz9fvV4v9mQ577zzgqqjxcXF2LhxIwBnjxfP3hSu9zEMI5mMzX2ZwEB+vt35d9PVfP3VGdd1KdT3EQznEey6bUbiPiJcQwoYIZKj5CPs0UcfFS8uGzZs8DuIfMWKFfjb3/4GAHjxxRcxderUTp1z7969uOuuu8QuCn379sV7770X0AD2cDEYDGIXOcDZJSqSY+PeXfIuTnNtTxzT5Cbc+9yckOUvCAJOvrgAgq2tO07KhNlIu3RuyM5BwsPhcPgMFAghJFSOHTsmtlJ5dsOOhO/WHMCOTSc6/f4LLh2Aq64b2nHCKLVp0ybccccdAID58+fj0Ucf9Zpu3bp1WLx4sbjtfm8DQAxYx40bhw8++MBrHrW1tbj88stht9uRm5uLr776yudYz2effRbvvPMOAOD+++/HPffcIx77y1/+Iq4H+u677+LCCy9s9/7i4mLccMMN4vbGjRslXewffvhhrFq1CgBw1VVX4dVXX/Vajn//+9/45z//CQB4/vnnMW3aNK/pvHG/v505cyaeeeYZr+lOnTqFa665Bna7HSkpKdi8eXNIegDGinBfE9578b84VdU25EDGW7D0lVkhP0+gwhUb9OjJhdzHufjqvuHiGvcBBDarmjebN2/G73//ezHoHDhwID7++OOIBp3RyLM7gLeHTgdqj+LrIxvxw/Gt2F7+G040lQecv8PQBFadALh1zdUO6NlL2MQCh8OBkpISlJSUtOuuUllZidOnT4dlqSMSn6jOkGDZbDZYrVZJD6juEMxMtr7E+gy3EyZMEMf6fvzxx1i3bl27NEeOHMGTTz7Z5XP16tVLbFwoLy/HQw895HVSydWrV+O9994D4BxPPG/ePMlx95bDf//73+26SVZXV+ORRx4JuFzff/89Pvzww3b7t27div/85z8AnPe1kydPDjhPAJgyZYo4/n3VqlVef7Y1NTW45557xO/ehQsX9qigsztoBI9eXHHaLNiju9q6D9A9duwYxo0b5zOta7IChmE69aTjhx9+wP333y/+0Y4aNQpvvPFGh8u49EQOjgfc/v4YtI88jTYTjHYzjHbnYHi1XAUgsABesJmROOpyCDwHztgM3qiHsk/kn2gT3+x2O/bu3SuOhSkpKcGoUaPEls+GhgZxMpeO1uQlBKA6Q4Ln6nHBMEy33nQX76qARtf18xXvqsCESb7XwIxmLMti2bJlmD9/Pux2OxYvXoxvvvkGl156KVQqFYqLi7FixQpYrVbIZDKf3akD9de//hW7du1CeXk51q9fjylTpmDmzJno378/WlpasGHDBmzevFks29NPP91uuNTkyZPx4osvwmw2Y+fOnZgzZw5mzpyJxMREHDx4ECtXrkRraytGjBiBffv2dVgmhmGwbNkybN68GVdeeSXkcjm2b9+ONWvWiN0lH3/88aDrpk6nw1NPPYU//vGP4DgODz74IL777jtceumlUCqVOHDgAFasWCF+/15yySW49dZbgzoH6ZiKt0HGtT3UkvHd+4Cru/TowPOcc86BQqGA3W7Hjh07MH/+fK/pOI4TFy8ePHiw3/WfvNm5cycWLVokBp3jx4/Hv/71r3azthEXzzE77VNYHNJZ4DTywJdEcDQ7Z+piWBnkiWlQ5A4GK+vRfwpRzTPoBJxdQHyNRSGEkHgyYdLAmA0YQ2nUqFF45ZVXsGTJEphMJnz//ff4/vvvJWlmzZqFyspKbN++vUsPB5KSkvDhhx/i3nvvxd69e1FZWYnly5e3S5eSkoKXX37Z6/rr6enpWLZsGZYuXQqbzYYDBw6IM3S73HzzzRg9ejQefPDBDsu0ZMkSvPLKK/jxxx/Ftd9ddDodli9f7rU7byAmTpyIl19+GX/9619hMpnw7bff4ttvv22X7vrrr8eyZcsiuqRQvEqVN6Nfc424LQMFnnEnKSkJF1xwATZv3owffvgBZ86c8dqN9uuvvxan1Q+2C0NDQwMWLVokds257LLLsHz5cuqi4AfrMQCaYdr3N/j5xC9wCA6o5Wqo5SqM6FXULo0vrsDTRZ6c6SMliTS73Y6SkpJ2a5IplUpJj4VBgwb5nd2OEE9UZ0iw1Go11ZkIu/LKK/HVV1/h3XffxebNm1FdXQ2lUomhQ4diwYIFuPLKK8VGhGAbCTxlZWXhs88+w7p16/D1119j3759aGpqQkpKCnJzczF58mRcf/31fs9z7bXXYtiwYXjvvfewdetW1NbWIikpCSNGjMCCBQswYcIEfP311wGV56qrrsKECRPw+uuvY8eOHWhubkafPn1w2WWX4bbbbmu3JFGwrr76apxzzjn44IMP8PPPP6OiogIcxyEzMxNjx47FnDlzcO6553bpHMS3RJkSQFuX7vZTAcWHHh14AsAtt9yCzZs3w26348EHH8Rbb70lGTxbWlqKp59+GoDzidLs2bODyv/JJ58Ug9aRI0fin//8JwWdHeh3yThUuU2i0HuEtBusIAg4WHcMnNA2FvSy/oE95RN4DpyhSbJPnpThIzWJJH9B5+jRoyU9BgJZ5JsQd1RnSLColSc65OTkiJPheOOaR8NzfV2g/WRDHWEYBtdccw2uueaa4Ap5FsuyKCgowLJly3ymCSb/wsJCvPzyy50qSyCysrLw5z//GX/+85/Ddg7Ss/X4wHPChAn43e9+h++++w579uzBtGnTMG/ePPTu3RsHDx7Exx9/LC74umTJknZ9+Hfs2IGbb74ZQPtZ0srKyiRdFa6++mpxTIA/KSkpGDNmTCg+XkziPaaUliukz31abUZJ0AkAucmBTfjEGZsl6xwxYCBPTO9kSUm4+Ao6VSoVRo0aRd3UCSGkB1mzZg3Wrl2L3Nxc3HnnnT5b98rKysTlTYYOjd1ZfAmJVz0+8ASA5557DkajEVu2bEFFRQVeeOEFyXGGYXDvvfdi7tzglttYvXq1JMh5/vnnA3qfv2m+ewLPFX48uzXpzc3S42CQrA6sS40sIRXJY68BZ9SDMzSBt1nAyGlpjmjiL+gcPXo0tVQRQkgPk5SUhE2bNgFw3iM89thj7dIYDAYsXbpUvIe49tpru7WMhJCOUeAJZ5ert956C1999RVWr16NQ4cOobW1FSkpKTjvvPNw880347zzzgs636NHj4ahtPHPZpMulcGy0sBTLVfhqoGXQG9uQZOlGQ7eATkbWG/4hvVvg7eYoO5bCFVOEdT96IloNLHb7SguLhZ7Gbh0FHQajUZx7JVOp+uOopIYR3WGBMt9qS9vi7GT8Bk/fjxycnJQUVGBjz76CAcPHsRVV12F7OxsmM1mHD9+HGvWrEF9fT0AYPbs2VHRc4zqDAmUBXrkNbVNPmVTxudYcgo8z2IYBtdddx2uu+66oN53/vnn+xwz8MYbb4SiaD1Oc7NHi6ZH4NkrIQO3nyddLysQgiDAeHAbOKMehn0/AQAyr7sPiSMmdrKkJJRsNhtKSkqCDjoBZ/cq19IYI0eODHdRSRygOkOCZbVaxYcV1N2/eymVSrz22mu46667UFVVheLiYhQXF3tNO2/evKDWxwwnqjMkUHq7DE3JQ8RtgaFZbQnpFiqNDAnJckBwftnoElQhydfRXAfOqJfsU/ctDEnepGt8BZ1qtRqjRo2i7rWEENLDDR48GN988w1WrlyJjRs34ujRo2huboZOp0NWVhbOOecczJo1ix4kkZhktGtQmjFa3FbbWyJXmDCiwJNEnSK1HrmZLZDJZUhMSkRGL67jNwXAWint+sxqEiFPbT/rHel+x44d8xp0jh49Gmp1x2u0ZmRkgOM46spEAkZ1hgRLLqdbpkjTaDS46aabcNNNN0W6KAHpap159tln8eyzz4aoNCSa2YT2SwfGI7qKkqhTuWUfmgy8uF1QrUfWiLZ1OndVlqDWUA+NwrmGZ7+UvshJ6jiAtFRKu0Sr+xbSemxRYtCgQTAajTCZTACCCzoBeF1/lxB/qM6QYNFSaCRYVGdIoHTKntGzixalItHH46GP5xhPo80Eo92MelMTKlqqYbSZAsrWcuqgZFtF3WyjhlKpFJdJCTboJIQQQgiJZSpW2hYYr80i1OJJoo4Az+VUpM9HLA6rZFsj7zhA4R022OpOS/ax2sCWYCHdw7VGpyAIFHQSQgghpMfgeWmoKcRpjzwKPEnUkesSwHL2sy2fAuRaaRCy6eQOyFk5NAoV1HIVBJzTYZ7WqjJA4CX7VFn5oSs0CQmVKjQTSRFCCCGExAoG0ntdjonPNeYp8CRRh714PBRNFrAsi4yMDGQOyhCPmWxmlDaelKSfPmRyh3l6drNltclQ0MRC3c5qtaKyshL9+/cP6fjaw4cPw+FwQC6XY/DgwSHLl8QvqjMkWGazWXxNM22TQFCdIYGKz/bN9ijwJFGnptKIliYrGJaFsaURCUlq5A1IBwDore2nl85OzOwwT0u5NPCUJ2eA1SSEpsAkIFarFcXFxTCbzbBarRg8eHDIgk+bzQa73Q6e5ztOTAiozpDgCYIgrslISCCozpCAyeOzhdMTBZ4k6jTWWdHSZAcANNRY0SurLUDUm5slaTVy58y2HbFWH5dsKzP70RdBN3IPOgGgpqYGAEIWfMrlcgiCQMsdkIBRnSHBcl2r6LuDBIrqDAkUq+gZc1vQNy6JOiqlCoBd3Ha/YCepEnHVwEugN7dAb2mBUtbxEyJHSwN4k7SlVN13UMjKS/yzWCwoKSmRdDkCgJaWFjgcDigUXX/KN3To0C7nQXoWqjMkWNRVkgSL6gwJVKulFUBapIsRdhR4kqjjuYSu+3IqOcm9cft584LKz1JxWJqfXAFlHwo8u4PFYkFxcTEsFotkv1arxahRo0ISdBJCCCGExDK74JBse94Lxwtax5NEHYH3XE6la11UzKel4ztlielQJHc8LpR0TUdBJ81gSwghhBDSbuGFuEWBJ4k69mbpOE57Y0OX8rOWS1s8FSm9wKppYqFw8hd0jh49moJOQgghhJCz7IK940RxgLrakqhjN5kBeWLbtl4vvt5yaieaLa1Qy1XQKNQYkJaH7AT/rZe6IReBUWvBtTTA0doIZfYAGugfRh0FnUqlMuTnrKmpAcdxkMlkyMrKCnn+JP5QnSHBstvt4gylNEyABILqDAmUShb6e6NoRIEniULSoNA9SDTazDDanf9gBvokZneYm0yXBE3ecADOqc01ecNCW1wi8hV06nQ6jBo1KixBJ+AMIux2OxQKBQURJCBUZ0iwKIggwaI6QwKl4jkwbv1t2Tjte0uBJ4k6ngOqWbcO4WaHNKDRKPx32RQ4BzhDk7jNMAwUKb26WkTihdlsRnFxMaxWq2R/uINOQgghhJBYliZvQn5Tlbgtgw3AnMgVKEwo8CRRyHuLp9VhxbbTv0EtV53taqsCy/gfpswZ9RCEtlCWAQN5QvxPV93dIh109u/fHzzPg2Vp2DoJDNUZEiyVSiW2XpHYVFRUBAAYN24cPvjgg5DmXVFRgUmTJgEApk+fjmeffTYidcZbOUj0S9IlAExb44osTr+aKPAkUUch2GCBTtxO0Dj/+potrTipL5ekveWc2X7zcrRIJyaS6ZLAyKm7S6jZ7XY4HNKpwLuzpTMxMbHjRIS4oTpDgiWTySJdBBJjqM6QQCUP6oeE8npxWx2nkzDGaTxNYpng0eIpkzm3m62tkv0KVo4UdbLfvBiZHHJdMpizecoS00NYUuKSlJSEUaNGiV+yCQkJYZtIiBBCCCGExB5q8SRRjz0bzOgtLZL9Keokv91XHC0NkGmTkHju7wDOAYehEYycAqFwSUpKwsiRI3H8+HEMHz6cJlIghBBCCCEiCjxJ1PFs8XQN40zXpOLqgRPRZGmG3tyMFI3/1s7mXV+j+Zc1kCWkQtW3EAnDLkbCkAvDVWwCIDk5GaNHj+72MVBWq1UcR0NrhJJAUJ0hweJ5txkno2hsMM+3zWPAsjT+NJpEa50h0adJ3owDuRXidgIrw+QIlidcKPAkUaf9rLbOi/WAtH4YkNYv4HyslUcBAJyhCaYjO6DMyAUo8Owyh8MBudz3pSMSE28cOXJEXBpj5MiR3X5+EnuozpBgWSwW8WGFVquNdHEAADY7h3fWHoDZ4oBGLcet1w6DUkHjCqNFNNYZEp1qjVacduSK2zrYI1ia8KHAk0QdBWeDgjFDYBgADGQyXYfv8SRwDliryiT71DmFISphz2UymVBcXIy8vDz07ds30sUhhJAe7Vi5HnY7j/LaVvTvnYxj5XoMGxDfcxlUVVXh7bffxqZNm3DmzBloNBoUFRXhhhtuwLXXXos333wTL730EgDnA6ZgNTU14eOPP8bPP/+MEydOwGQyIS0tDSNHjsTUqVPxu9/9LuC8vvrqK6xcuRJlZWVgWRb9+/fHlClTMG/ePKjVar/vPXbsGL744gvs2LEDVVVVaG1thVqtRmZmJsaMGYO5c+di2DBalzxetDYrkHNitLjtUBkiV5gwosCTRJ0R9ZvBOzgAAAMBfXstDDoPW81JCA6bZJ+qDwWeXeEKOm02G44dOwYAURN8pqSkgOM4mkGQBIzqDAlWNNaV/cfr0Wq2wWRxoNVsw4HjDXEdeO7YsQN33303jEajuM9ms2Hnzp3YuXMn1q9fLy6Z0hnr16/HI488gpYW6ZwSNTU1WL9+PdavX4+xY8di+fLlSEvzvTQbx3F44IEH8M0330j27927F3v37sWHH36It956C/n5+e3ey/M8nnnmGXz44YeSrrqAcwb51tZWHD9+HJ999hkWL16Mu+66q9Ofl0QPa20TgBRxW23x7P8XHyjwJFGnVpsLu1vVzD37x/fD8W0w283OdTwVKhSlFyBD5/3CbznbzdZFkdYHMi0tn9BZRqMRJSUlsNnagvljx45BoVCgV69eESyZU79+gXfBJgSgOkOCF21jgWsbTahrMqOpxbl+clOLFbVaE2obTeiVFn/dOvfv34+FCxfCYnGudThp0iRcfvnlUCgU2LlzJ1avXo1vv/0WW7du7VT+P/74IxYtWgSOcz74njBhAiZNmoSUlBQcP34cX3zxBSorK7Fr1y4sWLAAK1asgE7nvUfWN998A7vdDq1Wi7lz52L48OGor6/HypUrcfToUZSXl+PWW2/FV199hYSEBMl7//nPf4prjKalpWH69Ono378/VCoVKisrsW7dOhw96rzH+b//+z9MmDABw4cP79RnJtEjQboMOuQOCjwJiQhW5qymRpsJZocFRrsZMAP9U33fOJqPF0u2ldkDwlnEuOYt6ASc6yD6e+JLCCEkdH7eXYETZ5rFbbuDh8PBw2CyQauWw2CyweHgsWZTGRTytols+vdJxqXn5kSiyCH11FNPwWKxgGEYPPPMM5gxY4Z4bNq0aZg+fToWLlyI1tZWP7l4ZzAY8PDDD4u9IP7xj39g2rRpkjR/+MMfsHjxYvz4448oKyvDc889h2XLlnnNz263IzMzEx988AH69+8v7r/xxhvxpz/9Cd999x3OnDmD1157DX/5y1/E442NjXj77bcBOHsUff7550hNTZXkfeedd2Lp0qX44osvIAgCvv76awo844BaJl11IV6nCaMptkj0ETye8rAMeIGHlZM+DlLLfT999hzfySpoGZXOMBqNYvdad651O/1NMkQIISQ0OI7HgeMNOHGmRfxXUWvAmXojGJZBTq9EMCyDM/VGVNQaJOkOnGgAx/EdnySK/fLLL9izZw8AYPbs2ZKg02XMmDGSIC4Yn3zyCfR6PQDgtttuaxd0AoBGo8HLL78sDjH54osvUFNT4zPPf/zjH5KgEwAUCgWeeeYZZGZmAgA+//xzWK1t9zY//vij+H37xz/+sV3QCTgnXFy4sG0I0okTJwL8lCSa8bw01PRc4SFeUOBJopDHcioMiyZzM3ZV7sX+miM41nAC5c1nIGe9j7fhjM3gjHrJPnW/IeEqbNxyBZ12u3RmNdd6nRR0EkJI92hqtUIAoFXL0dhiQW2TCXV6E+wODnnZiVDIWeRlJ8Lu4FCnN6G2yYTGFgu0ajkEwfn+WPbjjz+Kr3//+9/7TDd9+nSkpKQEnf/PP/8MAJDL5bj11lt9ptNqtViwYAEAZ6vmpk2bvKYbNGgQLr74Yq/HEhISMH36dABAc3Mzdu/eLR677rrr8P333+Ott97C1Vdf7bMcOTltLdiurscktskTpD3IOFl8roVOgSeJOoJHiyfLMjDYjDjRdBqH60tRUn0QOyr2QC3z3uJpPrVfuoOVQ92PuqEEw2AwxFTQWVpaisOHD6O0tDTSRSExguoMCZbFYoHZbI7IjX5GigbXX1qAzFQtCnKSodMoIAhAZqoWWrXzBlWrViAzVQtBAHQaBQpyktErVYvrLy1ARoqm28scSrt27QIApKamYuDAgT7TKZVKnHvuuUHnX1JSAgAYOHAg0tP9T8504YVty7Lt3bvXa5px48YB8F1n3MvonodCoUBeXh4uvvjidmM/AaC6uhobNmzAc889J+5zjUklsU2TJa13rDw+Wzyj6+6READNqkxwrKtqCjDbBQg2kySNTqGBUu69+6z5hPSLQJ6UBnlS/M7yF2oGgwElJSXtgs7k5GSMGDEi6oJOwDnjrmtNRkICQXWGBIvneXFNxkjom5mAuVcWYv3O05DLWJTXtKKxxYIkXdt3YWOzczs3KxG5WYm4clw/MTCNZbW1tQCAPn36dJg22InDDAaD2N01Nze3g9TSNPX19V7TuLrj+qoz7p+jrq7Oax67d+/Gtm3bUFZWhlOnTuHUqVMwGOJziQ0CsDIlgLbZmhGh60y4Rd8dJOnx6nW54Nm2qtlq4sFbpZMFJKl8z1BrPXNMsq3IzAXjo1sukYrFoJMQQnoKrVqBy87LxfvrDorTITQ0m2GxcVArZQDTNk3CZeflxkXQCUAcf9nR2peBpnHnvjSLRtNxy7B7/mazuVNlcD+P+xhPwDlm8+GHH0ZxcbHX9/bp0wcTJ07ERx991GFZSeyQJaUDaBK3BVl8zk1Cd5EkqniuWQU4B9Kna9NxVcElaLa2osVqQLomxev7BZ6DraFSsk/dt/NrevUkru61DodDsj8Wgs6RI0dGuggkxlCdIcHSaqNjiZK6JmcPILPVAY7nYTTbkaRTorrBBIYBZCwrpnNvDY1lKpUKdrvdZ6DnLtiu0O5BYCD5m0xtPbB8BZiuCYJ81Rn3PNy71NbW1uLGG29EY2MjACA9PR0XXnghBg8ejEGDBmHw4MHIzs4Gx3EUeMaZ+hbpRFUOweEjZWyL3jtJ0jMJQruZvFgZi4Hp+RiYnt/h2y1nSgFO+seqHTA6hAWMTw6HAyUlJV6DzpEjR0blwumEENIT1TaZ4XDwcHA85DIWOb0SoNMoYDTbUVFrgINzLrNS22RGQU5KpIsbEtnZ2SgtLcWZM2c6TBtIGneJiYlQqVSwWq0oLy/vMP3JkyfF11lZWV7TuLoG++J+nuzsbPH1q6++KgadN9xwA/7+9797HQ7Q0tLSYTlJbDHapQ89HEJsz0TtC00uRKKK4HC0W7yIkQVeTT3X72TVCVBm5Xe9YHFOLpe3m/Y9JSWFgk5CCIkydU0mmG0OyQRCl5zTVzLxkNnmQJ3e1HFmMWLUqFEAnF1uy8rKfKbjeV5cdiVQDMOI62CWlpaioaHBb/pffvlFfF1U5L1Hla9Jh1x27NghvnZ9NqBt9l61Wo1HHnnE5xj0w4cPi689J2QksUmI8SWPAkWBJ4kuggDPyJNlAx9gbW+skgzIVqT3ofGdAerTpw8KCwsBOIPOESNGUNBJCCFRJr9PEnRqBfJ7J6F/n2TccGUhRg7MxNwrC9G/TzLye7cdjxfuS4t8+OGHPtN9++23Pifr8WfSpEkAnL1/3nnnHZ/pjEYjPv74YwDOYUCXXnqp13S7d+/GkSNHvB5rbGzEl19+CQDo3bs3RowYIR5zjWWVy+VQqXyvVf7ee++Jrz17KpHYZKmSdrVV2OIzEKWutiSq8BwPz2d3MpkMW07tRIvVAKVMCbVciYHp/ZGdkNnu/Zp+QyFPzgRn0MPR2gBN/oh2aYhvffr0gVKpRGpqakwFnfX19eB5HizLIiMjI9LFITGA6gwJlvuka5GcDXnkwEzkZSehvKYVwwakizOmatUKTJ0wAAdONKBfViKSE3wHLrFmwoQJGDx4MA4fPoyPP/4YY8aMwZQpUyRpjhw5gieffLJT+c+ePRtvvPEGmpub8fbbb6OwsBDXXXedJI3FYsGf//xnsSvv9ddfL85e64nneTz44IN46623xOuLQqGAyWTC4sWL0dzcDAC45ZZbJN+1ffv2xcmTJ2EwGLBu3Tpcc801knwdDgdeeOEFybqmnpMTkdiktkvvfpk4bcimwJNEF45DuxZPGQuDzQSDzQTA2XWoX3L7i73gsIMz6MHI5JAnZ0CenIGEoRd1Q6HjSyzehJ85c0ZcGiMWy0+6H9UZEiy73S4ujRHpZXiSE1ReA0uWZTCiIP7qM8uyWLZsGebPnw+73Y7Fixfjm2++waWXXgqVSoXi4mKsWLECVqsVMpkMHMeBZQPv1JeUlIRnnnkG9913HziOw0MPPYQvv/wSkyZNQnJyMk6ePImVK1eistI5eWFeXh6WLl3qM7+0tDSUlpZi1qxZmDFjBvr374+GhgZ8+umn4vjOcePG4eabb5a8b/r06XjllVcAAEuWLMG2bdtwzjnnQC6X48SJE/jqq6/EMri0tkpn/SexSe3RwBmfi6lQ4EmijCDw7dYuYmQMbJxNss/bGp6OlnoIbu2lDMNCnkjrd3pqaWkBz/NISUmJdFEIIYSQgIwaNQqvvPIKlixZApPJhO+//x7ff/+9JM2sWbNQWVmJ7du3Q6kMbkbfK664Av/85z/x17/+FQaDAZs3b8bmzZvbpbvwwgvx8ssvS2aj9XTbbbdh69at2L59O9588812x8ePH4/ly5e3C45vu+027Nq1C1u2bIHD4cDKlSuxcuVKSRqZTIY//vGPOHToEDZs2IAzZ87AYDD4LQ+JfimyBuQ1VonbMtgAzIpcgcKEAk8SVQSOa7+TZbDt9G9QypRQyZ3/4GUwPWdslmzLElPByKiKu2tpaUFJSQkA53ISycnJES5RaOTm5ordJgkJBNUZEqxgAxkSeldeeSW++uorvPvuu9i8eTOqq6uhVCoxdOhQLFiwAFdeeSXmz58PwNmKGayrrroKY8aMwUcffYSffvoJp0+fhsViQXZ2NgYPHoxZs2bh4osvFrs3+6JQKPDf//4X7733HlatWoXTp09DpVKJeUydOtVrHkqlEm+++SZWrFiBL7/8EkePHoXJZIJOp0NOTg7GjBmDuXPnoqCgAB9++CE2bNgAjuPw3XffYebMmUF/XhI9EmRysGhbCkgOL/fDcYARaDqsHs9gMEgGwRcVFUXsyZnDYsUzS9dL9s29azj+tvs5yb5XpyxDVqJ0jKfxyE5Ya06I26rsAdAVjg1fYWNMc3Mz9u7dC+5scC+TyeIq+CSEkFA5duwYHA4H5HI5Bg0aFOnikCBcffXVOHHiBEaNGoXPPvss0sUhcSLc14Q9//dP7C9pWyZHCRtueKdzY5ZDIVyxATUHkegib18l7bL2z0bStant9qlzipwTC5lbwJtaIU+Kv3EuneUZdAIAx3GoqKigwJMQQkhUW7NmDdauXYvc3FzceeedPtfPLCsrE9fZHDp0aDeWkBASCAo8SVTx1v5udBgl21qFBnKPLrS83Qr99lVQ9sqHMisfmn5DwcgiO/lDtPAWdALOyQ+GDBkSoVIRQgghgUlKSsKmTZsAONetfOyxx9qlMRgMWLp0qbiu5bXXXtutZSSEdIwCTxJVBL595JmoSsBVBZegxWpAi7UVSi8Bpa2uHM07vhK3GZkCeX9+H6yXSYh6En9B5/Dhw+NmfJv754ulZWBI5FCdIcFyH5nU0Rg/Elrjx49HTk4OKioq8NFHH+HgwYO46qqrkJ2dDbPZjOPHj2PNmjWor68H4FweZcyYMREuNdUZEjg7WtG7pVTc5hXxORKSAk8SVbwNOe6TlIXb82Fku7kAAGUXSURBVOb5fZ+t9qRkW56c2eODTr1ej3379rULOtPT0zFs2LC4CToB4MCBA+LSGCNHjox0cUgMoDpDgmU2m8XlVLRabaSL06MolUq89tpruOuuu1BVVYXi4mIUFxd7TTtv3jw88sgj3VtAH6jOkEA1czxMyhRxm5PF5+RCFHiSqOKtqy0TQHxkqzkl2Vb2ygtRiWJTTwo6CSGExL/Bgwfjm2++wcqVK7Fx40YcPXoUzc3N0Ol0yMrKwjnnnINZs2bRgyQSk1qsCTjQ51xxW21v8ZM6dlHgSaKKHA5MnagEx/OQKeTI6t0HGk3H1dRW6xF4ZuWHqYTRT6/XY+/eveB56WrE8Rx0JiYmirPNERIIqjMkWDKZTGy9IpGh0Whw00034aabbop0UQJCdYYEyso7Il2EbkHfuCSqGMsrsf+LHeL2fgAFD/0OerkBSpkSSpkCeSl9kZeSI6YRBAE2t2VUgJ7b4tnU1IR9+/a1CzozMjIwdOjQuAw6AaB///6RLgKJMVRnSLBUKlWki0BiDNUZEiiVUhPpInQLCjxJVBE4vt0+C2eFgTcBMAEAMnVpkuNcawN4q0myT6bteUuE9NSgkxBCCCEklulk0nlJ4rWNnO5ESVQRhPaBp12QjlNUevxxWquOS98gU0CWKA1Oe4L6+noKOgkhhBBCYoznHCfxOacttXiSKOOtxfPX6n2wyW1iV9vhmYWS49YzxyTbMl0y5Lqe1+I5cOBAcByH6upqAEBmZiaGDBlCQSchhBBCSBQTBLVkm2Pjc2UGCjxJVEkcXITEq68Cx3FgGRYpSUn4Uf8uDEKrmGZi/gWS91irpS2e8qR0MPL2a33GO4ZhUFRUBMC5RmFPCjpPnjwpThSTn58f6eKQGEB1hgTLarWKE8XQ2D0SCKozJFBs3HaulaLAk0QVm8WBumoDBIEHy7Jw2OUwy82A2/rumbp06XvqKyTbirQ+3VHUqOQefPakWfRaWlrENRkJCQTVGRIsjuNohlISFKozJGCBrB0YByjwJFHF0GpB1WmzuH3mlBnCOZAEngkqnfiat1vBtTRI8ugJM9r6+yKjLzhCCCGEkNjBahMjXYRuQYEniSqeg6sBYGL/C2CEEQabEQabCQnKtsDTVlcOzyHYqt4Dw1zKyGpsbERZWRlGjhxJXXfOGjp0KD1VJkGhOkOCpdFoqM6QoFCdIYEymVsBpES6GGFHgSeJKhzXPvK8bcwNUKq8V1XP9TtZTQIUyRlhKVs0aGhowP79+yEIAoqLizF69GgKPgHI5XQpI8GhOkOCxTAMBRAkKFRnSKAsvE2yHa+z2vaMDsUkZghemjz9XbPbz2ibAjZOZ7R1DzoBwGw2o7i4GHa7PcIlI4QQQgghxD8KPElUsTQ0tNvHsL4jT1abBFlSBiBzThAiT8oAK4+/Kajr6+slQadLUlIStdwQQgghhMQwG+eIdBG6Bd2xkqhiPCWdoRaCgG+P/QS1UgWlTIEMbSqG9mpbx1PbfxQYmQKCIECwmqBIzermEodffX09Dhw40C7ozMrKwuDBg6kbDwC9Xi+Oo0lJSYl0cUgMoDpDguVwtN0Y0gM/EgiqMyRQCkbWcaI4QH8FJKoIvDS4YiDAaDfDxDlnupV5rEvJmVqc6RgGjFoXd0up+Ao6s7OzUVRUREHnWadPnxaXxqAgggSC6gwJls1mEx9WUBBBAkF1hgRK49EJNV7v7uivgEQV3tu0tm6UMmk3Ws7YLNmWaeNnfGddXR0OHjxIQSchhBBCSBxLZhuQo68Vt2Ww+UkduyjwJFGF53iPPQIO1B6BUq6ASq5Emial7QjPgbcYJKlluqTwF7Ib+Ao6e/fujcLCQgo6PfTu3Rs8z4Nladg6CQzVGRIshUIR6SKQGEN1hgQqSa2CgteL2woKPAkJPxkjDbRYgcfh+lKxz0HvhF7iMd5saBeYxUOLJwWdwcvMzIx0EUiMoTpDgkVBBAlWIHXm4YcfxqpVqwAAR44cCXeRYpL7z2jjxo3Iyclpl+a7777D+++/j9LSUhgMBiQmJuL666/Hww8/3N3F7ZSUwnzozhSL2+o4XSqPAk8SVRh4jvHkJR3dsxPbbhZlumSkXDANnKkFnLEZvM0ERh7bNwa1tbU4dOgQBZ2EEEIIIQH49NNP8eijj0r2NTU1QamMnVUOWDkLxq0DDhOnnXEo8CRRhfeYXAgeAViCUudMZ7fizLsPQ5HZD6pe+VD2yoMmf0R3FTMsGhsbvQadffr0waBBgyjoJIQQQgjx8OqrrwJwTjS5YMECjB49GlarFSNGxPZ9YTyiwJNEFYHjJNsMgPNzzoHRZoLRbkKqxtmV1l5XDlvtadhqT8N4YAsABvkP/Q8MYrfFMykpCQkJCWhtbRX3UdBJCCGEEOJdU1MT6urqAACTJk3C3/72twiXqHOMMiOqM6vFbY0sPkO0+PxUJGbxHnMLMQD+NH5hu3TW2pOSbUVaNlilOnwF6wZyuRyjRo1CSUkJWltbKegMwr59+8SlMegJJwkE1RkSLJPJJC6NodVqI10cEgOozoSf2WwWXw8cODCCJemaKpsB2xMTxe1k3oFbIlecsKHAk0QVQZBGnp5jPl1stack28peeWErU3eSy+UYOXIkqqurkZOTQ0FngARBEP8REgiqM4QQEvt4txaLWF4rtblBiYEHJ4jbDpXBT+rYFbu/IRKXshOBi058BjAMBAhQJCQCmN0una3GM/DM754CdgOFQoHc3NxIFyOmaDQayOVymnWSBIzqDAkWy7Ji6xXpfkVFRQCARYsWYc6cOVi2bBm2bNkCAMjNzcXtt9+OqVOniumNRiM+//xzbNmyBUeOHIFerwcAJCcnY+jQobjqqqtw3XXXeQ1WbrrpJuzcuRMXXngh3n33XZw+fRrvvvsuNm/ejJqaGmg0GgwdOhQzZszAtdde67NOsCyLlpYWfPTRR/jhhx9w8uRJKJVKDBo0CPPmzcN1110X0GfneR7r16/Hl19+ib1796KpqQk6nQ55eXmYOHEiFixYgKQk78vJuT7LhAkT8N///hdlZWV4++23sX37dtTV1SE9PR3jxo3DnXfeiYKCAgCAxWLB+++/j6+++grl5eWQyWQYOnQobr31Vlx++eUBldnfZ9m0aRNWrFiBI0eOiD/PwsJCTJ48GbNnzw5oUqBXX30V//rXvyT7/vWvf4n7pk+fjmeffbZLZe1OlqZmACnittIWnw9FKfAkUcVi41CVPKhth0KGDWVboJQpoJQpcH7OOQAAW80JyftircWzqakJycnJtIZgiAwaNKjjRIS4oTpDgqVWx/ZwjnhhMBgwf/58nDx5Utx3+PBhSeC1ZcsW/OlPfxKDTXcWiwU1NTX48ccf8cknn+Ctt97yGbQBwIYNG/DQQw/BZDKJ+6xWK7Zt24Zt27bh66+/xquvvur1IVZlZSVuu+02VFdXS967e/du7N69Gz/99FOHrXTV1dVYvHgxdu/eLdmv1+uh1+tRUlKC9957Dy+88AIuueQSv3mtXbsWjzzyCKxWq7ivqqoKa9aswcaNG/HOO+8gOzsbt99+e7ulXXbu3ImdO3di6dKluPnmm/2ex5empiYsWrQIO3bskOy32WzYtWsXdu3aJf5OsrKyOnWOWKVudUi2KfAkpBu0m9UWAhrNegCAUqYAwzBwtNSDt5qk73NYESuqq6tx+PBhpKenY9iwYRR8EkJIHLDZOr/gu0wmg0wm83rMbrd3ukt4uPJlWTZi3Rr/97//wWq1YsKECZg6dSr0ej1+/vlnTJjg7KZYWlqKu+66C3a7HTKZDJMmTcK4ceOQnp6Ouro6lJSU4JtvvgHP8ygpKcHy5ct9Tkhz6tQp/OlPf4LNZsOUKVMwYcIEyOVy7NixA6tWrQLP8/jxxx/x4Ycf4pZbbpG8t7a2FjfeeKMY/I4dOxbXXHMNEhMTceDAAXzyySf4+uuv/bbuNTc349Zbb8Xx48cBAH379sWMGTMwYMAANDc3Y8OGDdiyZQv0ej3uvvtuvP7667j44ou95lVWViauaTljxgycf/75aG5uxsqVK3H06FEYDAY8/vjjkMlkOHLkCC688EJMnjwZGo0GmzdvxpdffgkAeP7553HNNdcgPT094N8Z4Pz7WLBgAUpLSwE4W6lnzJiBvLw81NTUYMWKFTh+/DiOHj2Ku+++G5999pnfOjZlyhQMGTIEDQ0N4lIqU6ZMwTXXXAPAuQxdLEmQSx9sxWu/Cgo8SXTxNrvQWUqZ82miZzdbyBSQJ8XGYvCuoBMAGhoacODAAQo+CSEkDmzbtq3T7x00aBD69u3r9djOnTtht9s7lW9+fj7y8/O9HtuzZ4+kFS8Yffr0QWFhYafe21VWqxUTJ07E66+/LnZxdQ/6/vnPf4o/r1deeQW/+93v2uUxe/Zs3HrrrRAEAWvXrvUZeJ45cwYKhQL/7//9PzGwBYBp06Zh7NixYiC3cuXKdoHnK6+8Igadd911FxYvXiweu/baazFnzhzcdNNN4oys3rzwwgti0HnFFVfgpZdekrS8z5s3D6tWrcIjjzwCh8OBJUuWYP369UhISGiXV1VVFRQKBd58801cdNFF4v6ZM2fiqquuEu9JvJX3uuuuQ0ZGBt5++23Y7Xb88MMPmD27/TAof9544w0x6LziiivwyiuvSILum266CQsXLsS2bdtw4MABfPnll5gxY4bP/AoKClBQUICKigpx34ABA3DFFVcEVa6oEZ8NnO3Q3S6JKoJH4MkJPI7WH8fJpnLUGxsBAFaPbrYyXTLkiandVsbOqqqqEoNOl4aGBtTW1kaoRIQQQkjsueOOO7yOqzSbzfj5558BAGPGjPEadALAhRdeiNGjRwNwdv/01iXX5cYbb5QEnS7Tp08XHxYcO3YMFotFPNbY2IjVq1cDAEaOHIkHHnig3fv79++Pp59+2ud5a2pqxDxycnLw4osveu3uPX36dDHobWxsxKeffuozz9mzZ0uCTgBISEgQWwkB58OKRYsWtXvvrFmzxNeuADJQHMfhgw8+AABkZmbiueeea9fSq1Ao8I9//EN8EL927dqgzhHrBEWiZNvBdjzONRZRiyeJKp5dbXmBw96aQwCAgWn5AADrGekFT6ZLhkyX0h3F67Sqqqp24yUAZ1eTnjaOIRwqKirgcDggl8uRk5MT6eKQGEB1hgTLZrOJkwsFMvkJCQ+FQoGRI0d6PabRaPDDDz/g9OnTXlv93PXt2xd79uwBAEnQ6Omqq67yeaywsBCVlZUAgJaWFjEw3LJlizjb6syZM2G3273WmUsvvRT5+fmS8aouW7duFVtuFyxYAI1G47Mcf/jDH/D+++/D4XBgw4YN+MMf/uA1nXuA6c79GnjZZZd57YXl3nXVfb3xQOzZswfNzc0AnN18ff1usrOz8de//lWcbKgnScjtDZw2itusIj4721LgSaKKxSbALHddkATwbFv3ogxtGgDAViftaitP7gVWoequIgbNV9DZr18/9O/fn2ZIDIHGxkZxTUYKIkggqM6QYDkcDgo8o0Bubq7fn39GRgYyMjK8HjMajThy5Ah+++03MegEnC1yvrhmevXGPYByONomhykpKRFfDxs2DA6Hw2eZx4wZ4zXwLC4uFl9fcMEFPssAOD/zwIEDcfjwYezbt8/n7Mv9+/f3+v5Et/Ujfc2q7x748p7Dojqwb98+8fW5557rN21nJy4isYECTxJValtZVCe1zTap4EwATgIAdEoteLsVjmbpeAhlZr9uLGFwzpw5g6NHj7bbT0EnIYTEF88ujMHwNQEQAIwbN65Lkwv5cs4553RpcqFI8TcDrbva2lps2LABhw4dwsmTJ3Hq1CnU1tZ6/cz+fg7uQZkn98lv3IOx+vp68XV2drbfcvbr5/0eprGxUXwdyBJrubm5OHz4MOx2O1paWpCcnNwujbd9nny1rHblfsX959GnT59O5xPPlGk5ANoaKQR5fM6iTYEniSq8x8WfATC8VxGMNhOyEzJhrysHPNKoeg/oxhIGjoLO7lNYWEjr65GgUJ0hwepoOZVwtYKGa63ZWF3DtqOfs8PhwIsvvogPPvhA0grpotFocP7556Ourk6cTMefzsze694VNSUlxe8DAJ1O53W/0djW7dJfN1sX9/ppNpu9BpmRmonY1c0WoGWJfNG3SOf74IT2dTceUOBJoorg0XuDZRg8etkD4nZL8QbpcU0CFMm9uqFkwfEVdObl5SE/P59udkOMvshIsKjOkGDR7OOx4eGHH8ZXX30FwBlcjxkzBiNGjMCgQYNQWFiIgQMHQi6X46GHHgoo8OwM91ZZq9Xqd7ypr2V43INNs9nc4ZhV9xmKo+365l4ef+NpezK9TTpu1i747v4dyyjwJFHFs8XTk7XquGRbpk2BTNdx15HuVFlZiWPHjrXbT0EnIYQQEj67d+8Wg87c3Fy88847PrupBjtBTjAyM9uWeKuoqMDgwYN9pvU1s737ONXy8nIMGTLE7zlPnXLOf6FWq5GSkhJEacPPfc3PqqoqvxMHlZWVwWg0ol+/flH3OUjX0eM7El08mjw9QzRN/nCo84ZDkZELVpMIWWIaWK3v8RfdzVfQmZ+fT91rCSGEkDD66aefxNf33HOP37GRhw4dEl93dqyrL+edd574eseOHX7T7t692+v+ESNGiK9/+eUXv3nU1NSI631G42yww4YNE1+7T5rkzauvvorZs2fjwgsvhMFgCHPJooe1Sjp/idwe3AROsYICTxJVeEEamAngsenkDmwv/w0tllbIE9Og7jcUuiEXImnMZOiGXAiGiY5q7HA4xCeO7vwt4E1Cw2AwoLW1tUd9SZGuoTpDgsVxnPiPRCf39Ti1Wq3PdN9++y2qq6vFbW9jQbvikksugUrlnG3/o48+gtls9ppu//79khlw3V166aXiONwPP/zQZx4A8M4774iTG02cOLELJQ+PMWPGiF2F16xZA6vV6jVdS0sLNm3aBMC5/mlH3Yvjidwk7XLNxmfcSYEniS6CxzqeEARUG+pQ3lwFB8+BM+glh+UJqd1XuA7I5XKMGjVKMmEDBZ3d4/jx4zh69Kj4xJeQjlCdIcGyWq2wWCw+b5pJ5PXt21d8vWLFCq8tmdu2bcOjjz4q2Rfq36lWqxWXBTl58iSWLl3aLritq6vDQw895DOPXr16YerUqQCcXW0feughr+MjV69ejffeew+As0vrvHnzQvUxQkar1WLOnDkAnD3DHn300XY/D5vNhkcffVScVCkaP0c4aVnpBFTx2j+OxniSqOIZd7r/5SllCnBGveSwTJcS7iIFRafTYdSoUSgpKUFOTg7y8vIiXSRCCCGkR5gyZQpeffVV2O12bN68GbNnz8bUqVORmZmJ2tpa/Pzzz9i+fXu7gDQcPR/uuecebNiwASdOnMDXX3+NY8eOYdasWcjMzMTRo0fx8ccfQ6/XIz09HQ0NDV7z+Otf/4pdu3ahvLwc69evx5QpUzBz5kz0798fLS0t2LBhAzZv3gzAOfnV008/jbS0tJB/llC477778NNPP+H48eNYvXo1Dhw4gOnTp6N3794oLy/HF198Ia5neuGFF2LatGkhO/err76Kf/3rXwCAe++9F/fdd1/I8g6VRDSgT3NbPZDB+6RTsY4CTxJV2j2dFHicbCqHUqYAIwjgTC2Sw/KElO4rXIASEhIwduxYWmC8G2VmZoLneZp1kgSM6gwJVqSWoiCBy83NxWOPPYbHHnsMHMdh37592LdvX7t0Y8aMwbXXXovHH38cAHDkyBGMGTMmpGXRaDR455138Mc//hEHDx7E0aNH8cwzz0jSTJgwAePGjcPLL7/sNY+kpCR8+OGHuPfee7F3715UVlZi+fLl7dKlpKTg5Zdfxvjx40P6GUJJq9Xi/fffx9133419+/bh2LFjeP7559ulu+iii/Dqq6/2uDkxEuUsVFzbAxAFBZ6EhJ9KowCa3HYIFvx6Zi8A4O7Rs8ElpIEz6iHwzjE20dbi6UJBZ/fq3bt3pItAYgzVGRIsuq7HhtmzZ6OoqAjvvvsufvvtNzQ0NEAulyM9PR1Dhw7FtGnTcPnll6O1tRVPP/007HY7vvnmG8yfPz/kZenduzc+/fRTrFixAl9++aW4zFp+fj6mT5+O+fPn49133/WbR1ZWFj777DOsW7cOX3/9Nfbt24empiakpKQgNzcXkydPxvXXXy9ZwiVaZWZm4rPPPsOXX36JtWvX4tChQ2huboZOp8Pw4cMxffp0TJkypUc+EFR4zFcSr2E3I4R6Ki8ScwwGA44cOSJuFxUVRWxA9zfLV2PXqbbnIWruDH69cA80CjX+e9WjZwNNAbzZCM7cAmV6X595hVN5eTk4jqPxm4QQEoeOHTsGh8MBuVyOQYMGRbo4hJAIC/c1Yc///RP7S9p69Slhww3vPBny8wQqXLEBtXiSKOP9GY9OocHp5QvBqrVQ9sqDslceUifM7uayOZ0+fVoyIQkFn4QQQgghhPhHgSeJKknDhwGnDovblj7J6J+ai2RGAQg8eLMBllMHYDl1EGkTb+z28nkGnSdPngTDMDSJECGEEEII6RQOFmQYK9p2yOJzPRUKPElU4T2mtS3MGIC5V92AluKNqEfbAsry1CywSk23lu3UqVM4ceJEu/09cSxCtDl06BDsdjsUCgWGDBkS6eKQGEB1hgTLbDZDEAQwDAONpnu/f0hsojpDAtXCm6Dg2tZqtcXprSUFniSqeI44Zlln11tb7UnJflVWfvcU6CxfQWdBQQFyc3O7tSykPbvdDrvdHulikBhCdYYESxAEr+tCEuIL1RkSqCZLMg7kzxG31fYWTIlgecKFAk8SVc69IBcKrQF2uwMKuQKDhxQCAGy1pyTplL26r2vryZMnxbWl3A0cOBA5OTndVg7im0KhkPxPSEeozpBguZZ36GnLPJDOozpDAmXj47NrrScKPElUKf9lL2pLKmC0mWDn7Sg/eAQ5Vw8EW38SvdzSKdL6dEt5KOiMDdRVkgSL6gwJFnWVJMGiOkMC1VPWCY7THsQk1jl4DnbOAZPdjNN1ZTBw0oV0eZvZxztDx1fQOWjQIAo6CSGEEEJISCQqpA8p4rWNvGeE1yRmmGtqYWvSQ7CbwQocZGo7OIMNCvcxEjI5FJn9wlYGQRBw8uRJnDp1qt2xQYMGoW/fyKwdSgghhBBCSKyiwJNEFePxE7Cc0YPF2eZ4G4dKvYAst0c/Ml0K5AkpYTk/BZ2EEEIIIaQ7cbxKsu1g43P+AQo8SVSRJSYC0IvbTawVv1r0GCRv6xUu0yVDpk0Oy/l9BZ2FhYXo06d7xpWS4FVVVYHnebAsi969e0e6OCQGUJ0hwbLZ2oZ8KJXKCJaExAqqMyRQsnajH+Ozsy0FniSqWHkWNpnauSEIcLDO5Q5S7W2zfcmTMsAq1WE5f0JCAhiGkUx/TkFn9KurqxPXZKQgggSC6gwJlsPhENdkpCCCBILqDCFSFHiSqFJuSUFlcpq4zbA1AOqg4dsCQWVm+NbNzMzMxJAhQ3Do0CEIgoCioiK6KSWEkB5GJpPB4XCA4zgxcCCE9EyCIIDjOADOa0M4sLrw9OSLNhR4kqii6tMHaKwWt+3JaqTaOWi4thZPZa/+YS1Dr17OhVs4jqOgM0YMGDCAbg5JUKjOEH+USiWsVisEQYDJZIJOp4NKper4jYS4oToTH0wmk9gTLlwt11arEUBSWPKOJhR4kqji3sUVAAaoU3HLqQZxm1UnQJGSGfZyuIJPEhsSEhIiXQQSY6jOEH+SkpLQ2toKAGhsbIRWqw1bSweJX1RnYp8gCGhsbBS3k5LCExwaHRa4B56C76QxjdbxJFFF4D3+1DzW65TpUiALQXcEQRBgNBq7nA8hhJD44xrvDwAGgwEVFRUwGo3tHo4SQuKT6z6xoqICBoMBAMAwDD207CJq8SRRhXc4JNuKlEwk5F8JzqAHZ9RDnpAKVtu1p02CIKCsrAyVlZUYPnw40tPTu5QfIYSQ+MKyLPr27YvKykoIggCDwQCDwQCGYagVi5AewDW+24VhGPTt2xcsG542Ozvn6DhRHKDAk0QVW0urZFvfVIsTgxgMynaO62RVGrDyzvevdwWdFRUVAID9+/dT8BkHLBaLOF5PrQ7PjMckvlCdIR1JTEyUBJ88z4NhGPF/QjriGbiQ2OQKOhMTE8N2DjZOl0/xRIEniSqevZhsDivqODMGIQWAs6tt5/MWUFpaisrKSsm+AwcO4IILLqCpzmPY0aNHxaUxRo4cGenikBhAdYYEIjExEYWFhTAYDCgrKxODznDegJL40draKj7gojoTW2QyGZRKJZKSkpCQkBC2lk4XnUx6DxqvYSgFniSq2A0GAG2zwLEWKxRM2x+7PCmjU/l6CzpdioqKKOgkhBDiFcuySEpKgkwmA8/zkMvlGDRoUKSLRWLA3r17Ybfbqc6QDumEBmS16sVtmWCLXGHCiAJPElU4kwXugadgtcHA28VteXLwgacgCDh27BjOnDnT7tiQIUOQlZXVqbKS6JGWlgaHwwG5nC5pJDBUZ0iwqM6QYFGdIYFKVsugtbeI2wpQ4ElI2MkhHVztEEw4zXJglRoIdivkicGNxfQVdDIMgyFDhtCyKXEiJycn0kUgMYbqDAkW1RkSLKozJFBpA3KhOX1A3FbHaU88CjxJVJGBl2wzsCGn9xAkj5gKwWYBwwY+myAFnYQQQgghJNrJNCrIVG7bqvgc5UnreJKo0m6FNEaAedNKVLx+PzhjU+D5CAKOHj1KQSchhBBCCCFRgFo8SVQRBHhM5SVAw/OwN1dBlpAaYB7OoLOqqkqyn2EYDB06FJmZmSErLyGEEEIIIV1hk1lhTqwXt3mlIoKlCR8KPElUETwmkBYYASqehzw1C6xS0/H7KejskY4dOyYujUEzB5JAUJ0hwaI6Q4JFdYYE6gzfhDX92uY5SXPYMDOC5QkXCjxJVGnX1RaAmhegysoP6P319fUUdPZAZrMZdrsdDoej48SEgOoMCR7VGRIsqjMkUA01Kgz7bbK47VAZIlia8KHAk0SVIVwZ+lbvhMAwABhoUg3oa3FA2SsvoPdnZGQgNzcX5eXlAJxB57Bhw5CR0bn1P0lsYBhG/EdIIKjOkGBRnSHBojpDAmU1GgGkiNsyh7emmNhHgSeJKq2CBs3qXmDOtn1yLAcGrZCn9Q7o/QzDYMCAAQCAiooKCjp7iBEjRkS6CCTGUJ0hwaI6Q4JFdYYESl5nlGxrLBR4EhJ2nADwbkumGOVyCGAgT0wLOA9X8JmdnQ2dTheOYhJCCCGEEBISyUrp/Wq8tpHTciokqgjtRnkKkAsClNkDgsqHYRgKOgkhhBBCCIkSFHiSqCJ46VkgU2kh85jRVhAElJaWwmQydVPJCCGEEEIICT2ekd7nciwtpxLXBEHA2rVr8fnnn+PQoUMwmUzIzMzE2LFjMX/+fIwcObLL5zh69Cjeeecd7NixA7W1tUhMTERBQQGuv/56TJ8+HTKZrONMepgEnoNcmyzZJwgCDh06hNraWtTV1WH06NHQaDpeaoXEr7q6OvA8D5ZlafZiEhCqMyRYVGdIsKjOkEAl5vYFKs3iNqOIz7ZBCjwBWCwWLFq0CD/99JNkf2VlJSorK/HVV1/hgQcewMKFCzt9jhUrVuCJJ56A3W4X9zU2NqKxsRG7du3CqlWr8NprryElJaXT54gHdkEGjnH9sQlI4CAZ3+kedAKA1WpFcXExBZ89XFVVlbhWGn25k0BQnSHBojpDgkV1hgRMFp+BpicKPAEsXbpUDDoLCgowZ84cZGRk4MCBA/jkk09gMpnw0ksvISsrC9OmTQs6/82bN+Pvf/87BEGARqPB3LlzMXz4cDQ0NGDlypU4evQofv31Vzz44IN46623wLI9o/J5c1KRD7M6QdxuZFiMSHaO1RQEAQcPHkRdXZ3kPXa7HRaLhQJPQgghhBAScxQpvQGUituCXBW5woRRjw88t27dirVr1wIALrjgArz55ptQqZy/7GuvvRazZs3CjTfeCL1ej2eeeQaTJk1CQkKCvywlbDYbHn/8cQiCAK1Wi//9738YNmyYeHzevHl48MEHsX79emzduhXr1q3DtddeG9oPGUPaD/EUIE/NAs/zOHToULugk2VZDB8+HKmpqd1VRBKF+vXrB0EQaK00EjCqMyRYVGdIsKjOkECZTM2SbUHgIlSS8Oq5TWtnvf322wAAuVyOp556Sgw6XQoKCvD3v/8dAKDX67FixYqg8v/+++9RUVEBALj99tslQScAKJVKPPfcc2IX2zfeeKMzHyNuCB4TSLMQIE/r4zPoHDFiBNLSAl9qhcSnlJQUpKam9viu6iRwVGdIsKjOkGBRnSGBqrM0SbatFHjGH71ej23btgEALr74YuTm5npNN2XKFKSnpwMAvv3226DOsW7dOgDO5T3mzZvnNY1Op8OMGTMAOCcgOnHiRFDniGcMeBxv4X0GndTSSQghhBBCSPTr0YHnr7/+Cp7nATi72frCsizGjh0LACgpKUFzc7PPtJ527doFACgqKvLbMud+/k2bNgWcf/xpa/EUIEDNcGiyOCQpKOgkhBBCCCHxwtogbfGUObysLxgHenTgeezYMfF1YWGh37QDBw4E4Jzg5ujRowHlX1NTg5aWFgDAoEGD/KYtKCgQXx8+fDig/OORIP4vAPIm2BQMGKatmrIsi5EjR1LQSSQcDgfsdjscDkfHiQkB1RkSPKozJFhUZ0igmKZWybaMi8/As0dPLlRZWSm+7tu3r9+02dnZkve5WkD9cY3tDCT/rKwssCwLnudx5syZDvOOZ66gEzILBLcB+a6gk8ZKEE8HDx4Up6wPxZq7JP5RnSHBojpDgkV1hgQqUa6WbMfrdFQ9OvBsbGwUX3fUguYe7Oj1+oDyb2pqazbvKH+FQgGtVguDwRBw/vGIB8SgEwD0fAY2b9oHhmWhkKfg9F4OgsMGztwKzmwD16IHCwcEQYBJLsCUroI80YikzBqMackBxzv/dI1VzWipN6BO1htmeRIcPAfWLahVy5QABAhnn0oysEEGOwRBgE3gwQDQ8C3o5TgGFZsNB6MQ32sFjwY2EyZFGuw8B0uaBozSebyPNg0sI4PD0Aje5oBd3wyZYAUEAWZGgCFDCZnWAXWf07jI0Bu8w/k+S6MJ+somNLFpMCgyYeM5MAzAnL0UqVg5GFYGwW47WwoH5LA6y8NzYCBALjjQ174XKjYdDkYrltcGHs1sMloU2bDxHGyJKgg656RamaokqFU62JtrAY6HpbEZct65oLFN4NCcrgSjkkGbV4pzzRlQWp352g1WNJ1qRLOghV7ZB3aBBwSIM/kpWBlkrAKC3Sr+puVoy1cQBLBgkGMrhobRwcEmi+V1QEAro0ajIhcOCLCqZeCTnedNVeiQoEuFqeYUBEGAo9mEncJPzjIJPFqTZOATlFD3OYlhvA7J5iQAAGfj0FRaBwMnQ60yHxwE8IIg1gkFK4NcpgBvtwKCsyVeAaOYLy/wYMEgy34YSQIPhyzDrQ4LMIFFtbIAHATYlSwcKTqAARLkaqQmpMPRXAeB52BtMoC1tYKBAIfAw6Bl4UhRQZV5BgOUAnob2vJtPFwDk92BM4pB4BkGnMCL5ZUxLBQyBQTODvDOp6QymMR8ubPlTXOcQiqvBy/rLeYrALCAR5WiAA5GBrsMsKdpAZaFWqZApi4dnKkVvN0Ce6sZgqkZLJx5mpQMLOkqKFMb0TuxFQNb2vJtOdGAVoMFNYp82FklHHxbeVkwUMqVAM9B4Liz+yxgwYEXBNjP/s0lcTXI5CohyPrC/WvYDB518lxYZRrYGQHWVC0YuQwyhkVvXUZA1whVcjlGNWRBgAw7t/1E14g4v0bYm6qcP7f6Zsi5tr/lYK4Rzr8j529/i+w3ukbE+TUiFPcRLG8FD8AOHluwka4RcX6N6Mp9hMmRjQxZWyOXXLAiHvXowNNisYivPWez9aRUKr2+zx+z2Rxw/q40BoMh4PzjFtPWvUBgZBDMcsCeBl5Q4Xid8ewRtfOfLEn63gagDpU4kH4MfU83wC64LsCAw5IAfUIGTEwKIJO+rdl1So/97tJMlUip2ouKJCVscumaoXptBgxMhvP9bkOAT8J14Tj7JIv1WIqnCWixNqOs7yEMqKiB3Z4IALAZAJspAXpNOpqVvbyXi/dR3rP7VA4jhlXtQK1OBoNKK0nSrEpDoytf09l/ACrBAWhpKy+jlZ6jGeAZHrvzS5BdxUFhdI5bdlgAi0ELgzIVDaos74/qfJXXzZDynTAodWjSSstrkic68wUAG4Czc03VAKhBE4Cz9cDti8b5Rue//dlHkVhvQFqj8xfNOwBTqwZWmQaN6izvheHQ4WCEfjVHwXN21CVKy+tgFG35OgDUO182AmiEHoDi7D814HZDChuAWuBYchU4cw34M203JoZmNQQwaExr+2KS4OH8ufv5Gac31UJpqEF5irbdscaUXuBZufPbsaGtOC1wdf9x/c25PUTjAdQBFSoDahX10JS35WtqlIN3JKAxORMORt2+XPzZ//2UV2O0IaH+GE6kaiW9HwCgKTEDVubs35Pb0JjjCOwa0ZhuwYAGC+yCAk2w0TUi7q8RrtYEj7pI1wgJukYgtPcRHmnoGgG6RnhwXSO4RCUSubYGMTlsft4Vu3p04One5949sPTG/XigffU5rm0q5I7yd08T6bEApaWlKCgoQGJiorjParXiyJEjAJytv/369Wv3HpPJedXx7E5SX18vdh/Ozc2VtP5yHIcDBw4AABITE9HXdBxWgwJVGRkAawUEBrCngxE6/vkRQgghhBAS62Rnn7zwPI/9+/cDcK6C4T4nDACcOnVKnPR0yJAhUCjaHka1tLTg5MmTAJxDBnv16iV57/79+8HzPNRqdbu5bjxXkwiVHh14qtVt/antdrvf4NBma3vyEEgQCUhbOe12e4fpXedwrzSRwHGcONuviyAI4mdwD6hdXAPoveF5XjzmmS/Q9rNxOBw4P78VDTsOQ6+ZAbOWAbgECjoJIYQQQkiPke7WccD9PtmT+/23IEgnJHK///Z2726328HzPGSy9s3I3u7XQ6FHB55at2Z4q9UacOAZSLdZb/l3xJXGPSCOBJlMBpaV9g1gGEYMiL1VULlc7jNgZllWPOaZL9AWaMvlchQseRzl/3sLGcUNMNp1sAkNMKeoARkLlUIpGZthN1nANeshgwMCA5jlgCldhd6JRhSxSUjK0IAXWDAsC15uQUu9AVamHirBBjvvAAPnWAeGYTzGZggAb3WO3wJgh+AcvyVrgb63Bskww8E43y9jZbCCh52th1LgYecdMCarAYUMMpkMfXXp4tgMzmqHrUkv9tu3sIAhQwm11oEJgg7JGSng7M6fLasToHc0gWcbIBdY2HjXmBHn6AyVTCEZmyEIdsgFZxdtGwRxbIa+twY62KFgnF2hZKwMdvAAKwMjKGHjOVh0cnAaJVgZiyx1imRshrm+SRybYWcEcWzGBEGH9PQkyDTOvxmZg0WzrRGsAPCCBnaehwBBLK9CJpeMzeAFDgrBJObrGpvRmqWECgJSz5aXZVnwAOQMBwdfA4fAw6KWwZ6gAsOyyFAlSsZmmGr1UHAGAICDgTg2YwyrRO+UBGhZZ3nljBwt5gYYOBssfI3b+C1n3x6lTC4Zm8ELPOSCEczZfF1jM6xpPBQC21ZehgEYBiawSDubr1XOwJasBsMwSFbpJOO3zA0tYG2tYCGAYyCO3xquFJAnS0dqhlL8G9EYG2CyO5DGVYNnGDgETiyvnJVJxm8J4MHyZuc4KwbiZxMSzbDpVG3lBQOGZWEBjzShFg5eBhsrwJKsBlgWCSq1ZPyWrdkI3tQCGTjwDMTxWwO0NmSp2srLymRIdLSi1WBBGupgF5Sw85z4NydjWMn4LQECGN4s5usQnH9zCnUTDL21SGVaIYABCwYsy8IMHqlMPayCETaBp2sEXSPoGkHXCLpG0DUiLq4RMpZFau8UnLdkCVzc75M9ud9/Mx7dzd3vv73duysUCvA87/X+3dv9eij06MAzKamtX79er5d0LfXkPuGPv/U4feXf0dqfdrtd7KoaaP7hMnDgQCQkSMcQqFQqvzOyuZab8SYjIwMZGRlej8lksnb55t1yN24LoryEEEIIIYTEG9eKDr7k5eX5PJaUlOT3vcOHD/d5LDMzUzIJa6j06MAzPz9ffF1VVYXc3Fyfaaurq8XXffr06VT+/tTU1IjN2oHmH69OnDgBh8MBuVyO/v37R7o4JAZQnSHBojpDgkV1hgSL6gwJVrzXmR4deLoP0D127BjGjRvnM+2xY8cAOJuxBw0aFFD+qampSE9PR0NDg/h+X0pLS8XXngN8e5rW1lZx3StCAkF1hgSL6gwJFtUZEiyqMyRY8V5nwtOBN0acc8454i92x44dPtNxHIddu3YBAAYPHizpQtuRsWPHAgAOHTqE1tZWn+l++eUX8bW/AJgQQgghhBBCYk2PbvFMSkrCBRdcgM2bN+OHH37AmTNnvHZz/frrr8V+zpMnTw7qHL/73e/w7bffwuFw4OOPP8bChQvbpTEYDFi1ahUAoH///hg8eHAnPk38GDZsWKSLQGIM1RkSLKozJFhUZ0iwqM6QYMV7nenRLZ4AcMsttwBwTu7z4IMPwmAwSI6Xlpbi6aefBuBcP2f27NlB5X/FFVcgJycHAPDaa6/h119/lRy32WxYsmSJOHnRrbfe2olPEV9kMpn4j5BAUJ0hwaI6Q4JFdYYEi+oMCVa815ke3eIJABMmTMDvfvc7fPfdd9izZw+mTZuGefPmoXfv3jh48CA+/vhjGI1GAMCSJUvazTi7Y8cO3HzzzQCcXWQ/+OADyXGlUomlS5fij3/8IywWC2655RbMnj0b5557LvR6PT777DMcPXoUAHDuuedi1qxZ3fCpCSGEEEIIIaT79PjAEwCee+45GI1GbNmyBRUVFXjhhRckxxmGwb333ou5c+d2Kv/LL78cjz32GJ5++mnY7XZ89NFH+OijjyRpRowYgX//+99x+4SDEEIIIYQQ0nNR4AlAo9HgrbfewldffYXVq1eLEwGlpKTgvPPOw80334zzzjuvS+eYN28exowZg/feew/btm1DXV0dFAoFCgsLMXXqVMyZMyduZ7AKVlNTE3ieB8uySE1NjXRxSAygOkOCRXWGBIvqDAkW1RkSrHivMxR4nsUwDK677jpcd911Qb3v/PPPx5EjRwJKO2jQIDz11FOdKV6PUl5eLk4lHY9/dCT0qM6QYFGdIcGiOkOCRXWGBCve60yPn1yIEEIIIYQQQkh4UYsniTp9+vQRuxkQEgiqMyRYVGdIsKjOkGBRnSHBivc6Q4EniToZGRmRLgKJMVRnSLCozpBgUZ0hwaI6Q4IV73UmPsNpQgghhBBCCCFRgwJPQgghhBBCCCFhRYEnIYQQQgghhJCwojGeJOrs3btXnEp65MiRkS4OiQFUZ0iwqM6QYFGdIcGiOkOCFe91hlo8CSGEEEIIIYSEFbV4kqij1WrhcDggl1P1JIGhOkOCRXWGBIvqDAkW1RkSrHivM4wgCEKkC0Eiy2Aw4MiRI+J2UVEREhISIlgiQgghhBBCSCSEKzagrraEEEIIIYQQQsKKAk9CCCGEEEIIIWFFgSchhBBCCCGEkLCKz5GrJKadPn0aHMdBJpOhX79+kS4OiQFUZ0iwqM6QYFGdIcGiOkOCFe91hlo8SdTR6/VobGyEXq+PdFFIjKA6Q4JFdYYEi+oMCRbVGRKseK8zFHgSQgghhBBCCAkr6mpLok5RUREEQQDDMJEuCokRVGdIsKjOkGBRnSHBojpDghXvdYYCTxJ1VCpVpItAYgzVGRIsqjMkWFRnSLCozpBgxXudoa62hBBCCCGEEELCigJPQgghhBBCCCFhRV1tSdRpbW0Fz/NgWRaJiYmRLg6JAVRnSLCozpBgUZ0hwaI6Q4IV73WGAk8CjuMk2yaTKUIlcSorKxPXMBo4cGBEy0JiA9UZEiyqMyRYVGdIsKjOkGBFS53xjAU8Y4XOYgRBEEKSE4lZtbW1KC8vj3QxCCGEEEIIIVEmNzcXvXr16nI+NMaTEEIIIYQQQkhYUeBJCCGEEEIIISSsaIwnQUpKimRbpVJBJpNFpjCEEEIIIYSQiOE4DlarVdz2jBU6i8Z4EkIIIYQQQggJK+pqSwghhBBCCCEkrCjwJIQQQgghhBASVhR4EkIIIYQQQggJKwo8CSGEEEIIIYSEFQWehBBCCCGEEELCigJPQgghhBBCCCFhRYEnIYQQQgghhJCwosCTEEIIIYQQQkhYUeBJCCGEEEIIISSsKPAkhBBCCCGEEBJWFHgSQgghhBBCCAkrCjwJIYQQQgghhIQVBZ6EEEIIIYQQQsKKAk9CCCGEEEIIIWFFgSchhBBCCCGEkLCiwJMQQgghhBBCSFhR4EkIIYQQQgghJKwo8CSEEEIIIYQQElYUeBJCCCGEEEIICSsKPAkhhBBCCCGEhBUFnoQQQgghhBBCwooCT0IIIYQQQgghYSWPdAFI/BEEAWvXrsXnn3+OQ4cOwWQyITMzE2PHjsX8+fMxcuTILp/j6NGjeOedd7Bjxw7U1tYiMTERBQUFuP766zF9+nTIZLIQfBLSXcJdZwRBwMaNG7FmzRrs3bsXjY2NUCgU6Nu3L8aPH4+bb74Zffr0CdGnId2hO64z3jzxxBP46KOPAABHjhwJyzlIeHRHnbFYLPjkk0/w3Xff4cSJEzAYDEhPT8d5552HBQsW4Nxzzw3BJyHdpTvqzO7du/Hhhx/it99+Q319PVQqFfLy8nD55ZdjwYIFSElJ6foHIRHl+t649957cd9993U5v8rKSrzzzjvYvHkzzpw5A41Gg7y8PFxzzTWYO3cu1Gp1CEodHowgCEKkC0Hih8ViwaJFi/DTTz95PS6TyfDAAw9g4cKFnT7HihUr8MQTT8But3s9PmbMGLz22mt0sY4R4a4zzc3NWLx4MbZu3eozjVKpxJNPPonrr7++U+cg3as7rjPe/PLLL7jlllvg+tqkwDN2dEedOXz4MO677z6cPn3a63GGYXDXXXfhgQce6PQ5SPfpjjrz/PPP47///a/P45mZmXj11VdxzjnndPocJLK2b9+O2267DTzPhyTw/Pnnn7F48WIYjUavxwsLC/Gf//wHOTk5XTpPuFDgSULqT3/6E9auXQsAKCgowJw5c5CRkYEDBw7gk08+gclkAuC82E6bNi3o/Ddv3ow77rgDgiBAo9Fg7ty5GD58OBoaGrBy5UocPXoUADB+/Hi89dZbYFnqTR7twllneJ7HzTffjF27dgEA+vTpg5kzZ2LAgAEwGo3YsmULvv/+e/A8D4Zh8O9//xuXX355aD8gCblwX2e8MRqNuO6661BRUSHuo8AzdoS7zpSXl2POnDlobGwEAFx44YW48sorkZKSgt27d2PFihWwWq0AnK0fc+fODdEnI+ES7jrz3//+F88//zwAQKFQYM6cORgxYgRaWlqwfv168XsrKSkJX3zxBXJzc0P0yUh32b9/P37/+9/DYDAAQJcDzyNHjmD27NmwWq2QyWSYNWsWxowZA6PRiDVr1mDPnj0AgKKiInz66afQaDQh+RwhJRASIlu2bBEKCwuFwsJC4eabbxYsFovkeGlpqTBu3DihsLBQGDdunNDa2hpU/larVbj88suFwsJCYfTo0cL+/fvbHb/nnnvEMnz11Vdd/kwkvMJdZ1auXCnJ32g0tkuzceNGYejQoUJhYaFw8cUXtysDiS7hrjO+PP744+J5Xf9IbOiOOvOHP/xBPMcbb7zR7viePXuEYcOGieewWq2d/jwk/MJdZ/R6vTB69GihsLBQGDt2rHD48GHJcZ7nhVdeeUUsw4MPPtjlz0S6108//SSMGTNG8p2xfPnyLuU5d+5cobCwUBgyZIjw008/SY7xPC8sW7ZMPNfrr7/epXOFCzUHkZB5++23AQByuRxPPfUUVCqV5HhBQQH+/ve/AwD0ej1WrFgRVP7ff/+92Npw++23Y9iwYZLjSqUSzz33nNjF9o033ujMxyDdKNx15tNPPwUAqFQqvPjii9Bqte3SuMbRAEBNTQ02bdoU9Ocg3SfcdcabX375BR9//DEAIDExscv5ke4V7jqzc+dObN68GQAwY8YMr10vR48eLbZy6vV6bN++PejPQbpPuOvM1q1bxRbT22+/HUVFRZLjDMPg/vvvR79+/QAAGzduhMPh6NRnId3LZrNh+fLluOuuu9DS0hKyfPfs2YPdu3cDAK6//npceumlkuMMw2Dp0qUoKCgA4KzDvoakRRIFniQk9Ho9tm3bBgC4+OKLfXYJmTJlCtLT0wEA3377bVDnWLduHQDnH9e8efO8ptHpdJgxYwYA5wREJ06cCOocpPuEu84YDAbs3bsXAHDRRRchMzPTZ9qrr75afF1SUhLwOUj36o7rjCej0YilS5dCEARMmzYNQ4YM6VJ+pHt1R51xdcdUqVRYvHixz3SzZs3C3Llzcffdd4vnItGnO+qMe5f9wYMHe03DsiyGDx8OADCbzWhqagrqHKT7bdu2DZMnT8Zrr70Gnueh1Wpx6623hiRv1z0wANx4441e07AsKx7T6/X45ZdfQnLuUKLAk4TEr7/+Cp7nAQAXXHCBz3Qsy2Ls2LEAnDf4zc3NAZ/DNd6hqKgIaWlpPtO5n59ar6JXuOtMU1MTRowYgczMTAwYMMBv2uTkZPF1KJ9QktDqjuuMpxdffBEVFRXIzMzEI4880ul8SGR0R53ZsGEDAOcDrl69evlMN3jwYDzxxBN44IEHxICCRJ/uqDMJCQni6/Lycp/pzpw5A8A5kZH79xSJTl9++aX4UGH48OFYsWIFLrvsspDk7boHTk5OxtChQ32mc6+zrp4Y0YQCTxISx44dE18XFhb6TTtw4EAAzmnKXZMBdaSmpkYMCAYNGuQ3raubAeCcZZBEp3DXmdzcXKxYsQJbtmzBkiVL/KYtKysTX9NsyNEr3HXGk3sX28cee4zqRgwKd52pra1FQ0MDAGd3Whe73Y5Dhw5h06ZN2L9/P3WTjCHdcZ1xX4blf//7nzjxlLudO3eKvXbGjRsHpVIZcP4kctLS0vDoo4/is88+E+tHV3EcJ96nFBQU+J04s3///uKSgtF4D0yBJwmJyspK8XXfvn39ps3Ozvb6Pn/cu6V0lH9WVpb4R+l6WkiiT7jrTDA+//xz8fWoUaNCnj8Jje6sM+5dbCdPnowrr7wy6DxI5IW7zpSWloqvc3JyYLfb8eqrr+KSSy7B9ddfjzvuuAMzZ84UZ1rnOC7IT0C6W3dcZ4YPH45LLrkEAHD8+HEsWLAAv/zyC1pbW1FdXY2PPvoI99xzD3ieR0JCAh566KEgPwWJhPnz5+PHH3/E/PnzQ7qefH19PWw2G4CO66RMJhOHFkXjPbA80gUg8cE1hTwApKam+k3r3mqg1+sDyt99bENH+SsUCmi1WhgMhoDzJ90v3HUmUJs3b8aPP/4IAEhPT8f48eNDmj8Jne6sM64utqmpqXj00UeDfj+JDuGuM9XV1eJrpVKJBQsWoLi4uF06vV6PF154AcXFxXjllVegUCgCyp90v+66zvzf//0fHnzwQfz000/Yu3cvfv/737dLc+655+Jvf/tbu8kUSXQaMWJEWPINpk4Czu641dXVUXkPTC2eJCQsFov42nP2N0/u3UXc3+eP2WwOOH/3NIHmT7pfuOtMIKqqqvCXv/xF3L777ruhVqtDlj8Jre6qM+5dbP/+97/7HVNOolu464z7Iu7PP/88iouLMWjQILzxxhvYvXs3du3ahZdffhm9e/cGAKxfvx7/93//F8QnIN2tu64zOp0Ozz77rNjy6YlhGPTv35+6+JO4ugemwJOEhPv4lY7GIbgfD3Tci3v3pEDGObjS0Lia6BXuOtORxsZG3HbbbeL4rPHjx4vLqpDo1B11xr2L7aRJk3DNNdcEX1ASNcJdZ1xLYgDOSWKGDBmCTz75BBMnToROp0NSUhKuueYafPzxx+IDjHfffTcsQwZIaHTXd9O6deswceJEbNq0CVlZWbj33nvxyiuv4KmnnsLvfvc7AM5hIFOnThXHepKeKZ7ugSnwJCHh3krU0bpBrn7qQGB/QID0CU8g6xK5zkHdmaJXuOuMP3V1dbj55ptx/PhxAEBeXh5efPFFMAzT5bxJ+HRHnXF1sU1OTsbjjz8edBlJdAl3nREEQbL95JNPSmYsdenduzfuv/9+AM6bwdWrVweUP+l+3XGd2bhxI/785z/DYrHg/PPPx7p163DfffdhypQpmD17NpYvX4633noLarUaRqMRt99+O+rq6oL/MCQuxNM9MAWeJCS0Wq342tvsbO7cL9SBdBkINn/3NNRtMnqFu874cvr0acyfP1+cubB379545513qDtlDAh3nXHvYvvwww/7XRqDxIZw1xmNRiO+zs/P9zvGy9WKBUBcCJ5En3DXGUEQ8I9//AMcxyE5ORnLly/3+rBiwoQJ4qRCzc3NePvttwPKn8QfnU4nvo71e2AKPElIJCUlia87GszsfjzQm333/DtaK8tut4vdnyiYiF7hrjPe7N27F3PnzsWpU6cAOGeH++CDDzqcJY5Eh3DWGfcuthdffDFmzJjR2WKSKBLu64x7wNC/f3+/adPS0sTxerW1tQHlT7pfuOvMoUOHxLU7r7nmGr9jOOfMmSM+3Pj5558Dyp/En8TERPF1IOvFutJE4z0wzWpLQiI/P198XVVVhdzcXJ9p3WcB/P/t3X1cjff/B/BX6EiS+7mJYYoQVm5CRYWZWcNabidse5i23G2+mM1dG3MzExJbmc19tSFEMh1WrIRIGXKTVFTSke50qvP74zy6fufsnOocdaXxej4ePR7XdZ3PdV2f61zXdbre1+eubdu2z7X9iqSnpwuDP+u6fap5Yl8z/xYREYHZs2cLLyXMzc3xyy+/oFWrVs+1Pap5Yl4z8fHxwrBNERER6Nq1a6XrlKUxMzNDeHh4pemp5on9O9OuXTu98lNWHbPsfxTVPmJfM0lJScJ0ZeOESiQSdO7cWe33iV49r732Gho2bIi8vLxKh0gpKSkRqmXXxmdglnhStejcubMwrTr4sjZlnxsYGMDCwkKn7Tdt2hTNmzfXafuq46pV9qNOL47Y14yq8PBweHh4CEFn7969sXv3bgad/zE1ec3Qy0Hsa0b1f0xlHQaVlJQIJWT87am9avJ3Rpdqk2XjklfnuJD031N2Xd6+fbvCdHfu3BE6I6qNz8As8aRqYW1tDUNDQ8jlckRHR2Py5Mla05WUlCAmJgYAYGlpqValpTL9+vVDaGgo/vnnHzx9+lSt6oGqqKgoYbp///56HAXVpJq4ZgDg/PnzmDNnjtAg387ODj4+PmrteOi/QcxrxsLCAlu2bKk0nbe3t/CwWZa+NrajISWxf2eaNm0KCwsLJCYmIjExEQ8fPkTr1q21pk1ISBDaBNbGB0JSEvuaUX3pEB8fX2Ha4uJioRO82lh6RTWnX79+iIuLQ1ZWFhITE8t90aH6DNyvX7+ayp7OWOJJ1cLU1BQDBgwAoCxdKq8qQEhIiDAQ7siRI/XaR1nHDMXFxUIHIP+Wm5uLgwcPAlC2t7G0tNRrH1RzauKaycrKwpw5c4SHPScnJ2zbto1B53+UmNdMs2bNMGzYsEr/VAfvLltmb29fxSMjsdTE70zZkDsKhQJ+fn7lptu9e7cwre8+qOaIfc307NlTaBt86tSpCpsPBQcHIzc3F4DypSm9ulQ7J9u1a5fWNCUlJdi7dy8AZbvQ2vi/iYEnVZtp06YBUHbu88UXXwg/lmVu3bqFlStXAlD20OXm5qbX9ocNGya0p9myZQsuXLig9nlRUREWLFggVGWaPn36cxwF1SSxr5lvv/1WeDDo1asXNm7cWC3DsdCLI/Y1Qy8fsa+ZCRMmCJ147Nu3D8HBwRppDh06JCy3sbFB79699T0MqkFiXjMSiUQYMzo/Px9z584V/k+punTpElatWgVAOSzG1KlTn+dQ6CXRu3dvWFtbAwCCgoJw/Phxtc8VCgW+++47oYR80qRJtbI2joHi34NQEVXB7NmzceLECQDKThcmTpyINm3a4Nq1a9i3bx/y8vIAACtWrMCECRPU1o2Ojoa7uzsAZRVZbW90wsPD8dlnn0GhUMDQ0BBubm6wsbGBTCZDYGAgbt68CUD5j3337t1sE/EfINY1c/v2bYwaNUoYZ2/BggXo0KFDpflp0qQJ+vbtWy3HRuIQ+3emIlOmTMH58+cBADdu3KjqoVANEfuaOXnyJObMmSO0rXJycoKzszMkEgmkUilCQ0MBKIfcOHDgAMzNzUU7VqoeYl4zBQUFmDRpEq5duwZAWWV77NixsLS0RElJCaKiohASEoLi4mIAwPLlyzFx4kRRj5fEoXoteHp6YtasWVrTpaSkYOjQoQDK77AuISEB48ePh1wuh4GBAVxcXGBvb4/CwkIcOnRIGKapY8eOOHDggNowLLUF23hStVqzZg3y8vIQGRmJlJQUrFu3Tu1zAwMDeHp6avxI68rZ2RnLli3DypUrIZfLsXfvXqFaQZmePXvC19eXQed/hFjXzKFDh9QGd1+7dq1O6z1PMEI1S+zfGXr5iH3NDB8+HOvXr8c333yD3NxcSKVSSKVStTRNmjTB1q1bGXT+R4h5zTRo0ADbt2/HvHnzEBUVhezsbK3jdBoaGmLx4sUMOgkA0KNHD3h7e+N///sf8vPzcfjwYRw+fFgtTYcOHeDv718rg06AgSdVswYNGsDf3x9HjhzBoUOHhI6AmjRpgj59+sDd3R19+vSp0j4mTpyIvn374rfffsO5c+eQmZkJQ0NDdOnSBS4uLhg3bhwMDQ2r6YhIbGJdM2Wl3/TyqYnfGXq51MQ1M3LkSPTp0wd79uxBeHg4UlNTYWBggPbt22PYsGGYNGlSrRxXj7QT+5pp1qwZfv31V5w6dQqHDx/GlStXkJWVBYlEAjMzM9jZ2WHKlCkcZ5rUDBs2DCEhIdixYwf++usvPHz4EAYGBujUqRNGjBiBKVOm1NqgE2BVWyIiIiIiIhIZOxciIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiKiaieXy190FqgCPD9EVNPqvegMEBGReKKjo+Hu7v7c65uZmSE8PLwac/T/nJ2dkZqaCgC4ceOGKPuoSZs3b4aPj0+l6erVqwcjIyO0aNECXbt2ha2tLUaPHg0TE5MayGXVqF5PY8eOxerVqzXSFBYWwsfHBw0bNoSHh4fG54sWLcLBgwcBADt37oStra24mRaZPveYgYEBJBIJTE1NYWZmhp49e2Ls2LHo0aOHyLn8f5WdHyIisbDEk4iIqAYVFxcjNzcXSUlJOHHiBLy8vDB06FCEhYW96KxV2Y0bNzBq1Cj4+fmhuLj4RWen1lEoFHj27BkyMzNx+fJl7Nq1C66urli6dClKS0tF3z/PDxG9SCzxJCJ6RTRu3BiffvqpXus0atRIpNy83KysrPDOO+9o/aykpAT5+fm4f/8+wsLCUFRUBJlMhjlz5mDr1q1wdHSs2cxWo4SEBKSkpLzobLwwld1jpaWlyM3Nxe3btxEZGYmCggIoFAoEBATAyMgIixcvFjV/r/r5IaIXi4EnEdErwsTEBB9//PGLzsYrwcLCQqfv+uHDh/joo49w+/ZtlJaWYtmyZQgLC0P9+vVrIJf6s7W1rXK16NWrV2utovsy0Ocek8lkWLRoEaRSKQBlteNx48bB3NxczCwSEb0wrGpLRET0grRu3RpbtmxBnTrKf8cPHz4UrU0t1S5NmjTBpk2b8PrrrwNQVsPdv3//C84VEZF4GHgSERG9QJ06dYKdnZ0w//fff7/A3FBNkkgkeO+994T5l6GTLSKi8rCqLRERPZc7d+7g8OHDiImJQXJyMp48eQIDAwOYmprCwsICDg4OcHNzq1JvrYmJiQgKCkJ0dDTu37+PoqIiNGnSBB07dsTAgQPh5uaG1157rdLtPHjwAPv370dkZCRSUlKQl5eHpk2bonv37hg+fDhGjx4NQ0PD585nVXXu3BkREREAlKWe5Xn8+DECAgIQERGBO3fuIDc3F6ampujQoQMcHBwwYcIENGvWrMJ9FRUV4ciRIzh58iTi4+Mhk8lQv359tGjRAtbW1njrrbfg7Oysdd3yerXV1qOvj4+PsMzT0xOzZs0CoL1X29LSUjg5OQnHfujQIXTr1q3C4wgMDMSSJUsAAK6urli1apVGmoKCAgQFBSE8PBy3bt2CTCaDiYkJOnbsiCFDhmDixIlo0qRJhfsRW4sWLYTpjIyMCtNevXoVx44dw4ULF/DgwQPIZDIYGhqicePGsLS0hJOTE8aOHQuJRKK2nj7nR1V2djYCAgJw5swZ3Lt3Dzk5OWjcuDHMzc3h7OyMcePGoUGDBs976ET0imHgSUREepHL5fj2228RFBSktSfOwsJCZGRk4OzZs/j555/h6+sLa2trvffj6+uLzZs3a+wjMzMTmZmZiImJwc8//4yvv/4a48aNK3c7v/zyC7y9vfHs2TO15RkZGcjIyMDp06fh5+eHTZs2oWvXrnrnszqUVbUFgLp162pNExAQgNWrVyM/P19teVZWFrKysnDp0iX4+/tj8eLF+OCDD7Ru4/79+5gxYwbu3Lmjtlwulws97R48eBBvvvkmtm7dWmkQW13q1KkDFxcX+Pn5AQBCQkIqDTyPHDkiTI8ZM0bj83PnzmHBggXIzMxUW56dnY3s7GzExsZi+/btWLFiBUaNGlX1g3hO9+7dE6ZVg1BVubm5WLRoEU6ePKnxmVwuR35+Ph48eACpVAo/Pz/4+fmhU6dOVcrXkSNH4OXlhZycHLXljx49wqNHjxAVFQU/Pz/88MMPGDBgQJX2RUSvBgaeRESkl4ULFyIkJASAckxKe3t7WFpaomHDhsjJycGVK1cQExMDhUKBx48fY9asWQgNDdWr5DM4OBgbN24EoAxK7O3t0b17dxgbGyM9PR2nT59GamoqCgsLsWTJErRr1w6DBg3S2M66devg7+8vzFtbW6Nv374wMTFBWloapFIpMjIykJSUhIkTJ2Lv3r2wtLSs4jekP9UqlmVt/lT9/PPPWL9+vTDfrl07ODk5oUWLFsjMzIRUKkVqairy8vLw9ddf4/Hjx5gxY4baNoqKijBz5kwh6GzTpg0cHR3Rpk0b5Ofn4+bNmzh9+jRKS0tx+fJleHp6Yu/evTrl387ODsbGxoiPj8exY8eEZWVViHV58TBmzBgh8Dx27Bjmz59fbtr09HRcuHABgHKs2X79+ql9furUKcyZMwdyuRwA0KFDBwwePBgtW7aETCZDZGQkbt68iadPn+LLL79Efn4+3NzcdDrW6pSTk4Pg4GBhXlsAV1paik8++QSxsbEAACMjIwwZMgTm5uYwMjJCdnY2zp8/j/j4eADKlwtz5szBoUOHhBca+p6fPXv2wMvLS5jv2rUrBg0ahKZNmyIzMxNnzpxBcnIyMjMz8cknn2Dr1q1wcHCoxm+GiF5GDDyJiEhnUVFRQtBpamqKnTt3ai2Zio6OxqeffoqCggJkZmbizz//1FoqVR5fX18AyqBT2xAjX331FRYvXozDhw8DALZt26YReJ46dUoIOps0aYIff/xRrS0lADx79gzr1q3Drl27kJeXh9mzZ+Po0aMaVRXFlJiYiKioKGF+8ODBap9HRUWpBZ2zZs3CzJkzUa/e//8LX7RoETZv3oyffvoJALBhwwb07t0btra2QpoTJ07g1q1bAID+/fvD399fo/fcuLg4TJ06Ffn5+bh48SJiYmI0gjptbGxsYGNjgwMHDgiBjbW1tV69KJubm6NHjx5ISEhAamoqLl++jDfffFNr2mPHjgkl4S4uLjAwMBA+S0tLw6JFiyCXy1GnTh0sXLgQ7u7uaqXKCxcuxIEDB7B06VLI5XJ4eXnBxsYGnTt31jm/VZWcnIwFCxbg8ePHAJRDF02ePFkj3cGDB4Wg08zMDDt37kS7du000oWEhGD+/PkoLS3FjRs3cPHiReHc6XN+4uPj8f333wMA6tevj1WrVuHdd99VS/PVV19h+/bt+PHHHyGXyzF//nwcP368xkrIiei/iYEnEdErIjc3F9u3b9c5/fjx4zVKKcva5gHKAKi86pC2trYYO3asUGIWHx+vc+Apk8mQlJQEAOjSpYvWcS0NDQ3h5eWFkydPoqCgADdv3kRRUZEQMCoUCmzYsEFIv2nTJrUgrEz9+vXxzTff4P79+zh9+jTu3buH4ODgGiv9io+Px9y5c1FSUgIA6NGjh0Zw7O3tLUxPnz4dnp6eGtsxNDTEF198gby8POzevRulpaXw9vbGvn37hDRXrlwRpqdOnap1yJZevXrho48+go+PD+rUqYO4uDidAs/qMmbMGCQkJAAAjh49Wm7gefToUWFatXMeQFk6XFY99PPPP8e0adO0buP9999HdnY21q5di6KiImzbtg3r1q2rUv4ru8cKCgogk8lw7do1xMXFCSWyEokE69ev1xq4qd5zX3/9tdagEwBGjRqF4OBgnDlzBoByzM7nOXcbN24U8rVixQqNoBNQVgefMWMGHj58iD179kAmk2Hnzp2YO3eu3vsjolcHA08iolfEkydPsHbtWp3TjxgxQiPwfPvtt9GpUyekpKRoPPD/m2p7yby8PJ33q1qSl5qaiszMTLRs2VIjXYMGDfDHH3+gadOmGg/ssbGxSExMBKAs2dEWdKry8PDA6dOnAQCHDx+ucuCZmJhYbgDy7NkzZGVlIS4uDnFxccJyY2NjjfOTkpIilHYZGxtrDTpVzZs3DwcOHEB+fj4uXbqEO3fu4I033gCg3nY0NjYWw4YN07oNd3d3vPvuuzAzM6vRkl8AePfdd7FmzRoUFxcjNDQUixcvViupBICkpCShWqmVlZVaKWVRUZFQdVUikWD69OkV7s/d3R0+Pj7Iz89HaGgoVq5cWaVj1vceA5TB/pIlS9CrVy+tn0+YMAEDBgxARkaG1pcwqrp27SoEnrm5uXrlA1BWYS7r5Kp169aVvizy8PDAnj17ACjvGwaeRFQRBp5ERKQzJycnODk5VZouPz8fKSkpwnxxcbHO+zAxMUG3bt3wzz//4OnTp3B1dcXUqVPh6OioURWyvKqRMTExwnSPHj0q3Wf37t0hkUhQVFSEuLg4FBcXqwXA+oqPjxeCI1107NgR3t7eMDc3V1uuWgXX3t6+0nayJiYmsLe3R1hYGADgwoULQuDZr18//PrrrwAAf39/pKamYvTo0bC1tYWxsbGwjcaNG6Nx48Y65706NWvWDA4ODpBKpcjMzMT58+c12j2qlnaOHj1a7bOEhASh86WOHTuiYcOGFe7P0NAQVlZWOH/+PIqKinD16lX06dOnmo6mfNbW1rCzs4OjoyN69uxZYVptJY7aPHnyBOnp6cK8PvdcmbK22QDQrVs3tSrM2rRs2RJmZmZITU1Famoq0tPT0apVK733S0SvBgaeRESvCDMzM4SHh1frNvPy8nD37l0kJyfj/v37uHv3Lq5fv47ExES1B9+yh1ldzZ8/HzNmzEBJSQnS09Oxdu1arF27Fm3btoW9vT0cHBwwaNCgcgOxsraMALB7927s3r1b530XFhbi8ePHOg3T8jyMjIxgYmKC1q1bo0ePHnB0dISjo6NGyR4AteBd106PLC0thcDz/v37wnJnZ2f0798f58+fBwAcP34cx48fh6GhIWxsbGBvbw9HR0d06dKlKodXZaNHj4ZUKgWgbLdYXuBZr149jd5oVc/7zZs39e6l+MGDB8+TZYG2e6ywsBC3bt3Cr7/+KvTEm5iYCBcXl0qDTm2ePHmCpKQkJCcnIzk5GXfu3MH169dx+/ZttftM33sOUP/+pFKp3t9fWloaA08iKhcDTyIi0ktpaSmCg4Oxd+9exMfHax1SBVBW7Sxru6gve3t7+Pr6YtmyZWrjWqalpSEwMBCBgYGQSCRwdHTE9OnTYWNjo7b+kydPnmu/qutXJfBUHeOyKmQymTCt63iTqulUv4c6derA19cX3333HYKDg4XARC6XIzo6GtHR0Vi/fj06dOiA999/H+7u7moloTVl6NChMDU1RU5ODsLCwrB06VJhjNWEhATcvXsXgPIaad68udq61XHeq5uRkRGsrKzwww8/wMrKCt9//z1yc3Ph5eWFzMxMnaqnFhUVYf/+/QgKCsLNmzfLTVeVew6ond8fEb08GHgSEZHO8vLy4OnpiXPnzqktNzAwQOvWrWFubg4rKyv0798fKSkpWLJkyXPvy9HRESdPnsSZM2cQFhaGyMhIoQdQQPkwHhYWhrCwMHz++eeYPXu28Jnqw/fbb79dbvu58vw7oHlRnqfUqrwXAYCy59Q1a9bg888/R0hICKRSKa5evaq2zr1797BhwwYEBgaW24OqmCQSCUaOHImAgADIZDKcO3cOQ4YMAVBxNVtA/bz36NFD7/E5y+vMqLpMmzYN9+/fF0rgt27dirZt21Y4Dm3ZkCXXr19XW16nTh2YmZnBwsICPXv2hK2tLSIjI4UeoZ+H6vc3cOBAvYdIqerYoUT0cmPgSUREOlu5cqUQdDZs2BDu7u5wcHAQxvFUVdbpSFVIJBIMHz4cw4cPh0KhwI0bNxAVFYWIiAhERUUJ1Xm3bNmC/v37C9UyTU1NhW1YW1uX27Npbafa1jI7O1undVTTqX4Pql5//XV4eHjAw8MDOTk5OH/+PM6dOwepVIq0tDQAyo6dFi1apFc15ery3nvvISAgAICyuu2QIUOgUChw/PhxAMoAeujQoRrrqR5vq1at9BrOpaYsXLgQMTExwtitK1euRJ8+fcptrzx//nwh6GzevDmmTZuGQYMGwcLCQqNn4lOnTlUpb6rfn7m5ea38/ojov0uzQQkREZEW6enpOHToEABlCeeOHTswd+5c9OnTR2snLqoB0POU3P2bgYEBLC0tMW3aNGzfvh3h4eFqbdDKejMFgPbt2wvTZb3bVka1NLW26NChgzBdFqhU5p9//hGmVb+H8piammLYsGFYunQpwsPD1UqpY2JihEC0JvXt21fIu1QqRXFxMS5evCi0wRwxYoTW4WBUj1e1vWJFnjx5UmEpcXWTSCRYvXq10HlVYWEhFi5cqDUPV65cETqYMjY2RkBAAGbMmAErKyutx6/ry4nyPM/3l52dXS33NxG9/Bh4EhGRTq5evSpUxevWrRt69+5dYfro6GhhWp8H01OnTuHjjz+Gk5MTfvrpp3LTtWrVCjNnzhTmVXv07Nu3rzB95swZYVzC8ly9ehUDBw6EtbU1XF1dn6tHUDGoHkdkZGSlQ2Q8ffoUf//9tzBfVnW0pKQECxcuxPvvvw87OzsUFRVpXd/AwAAffvihWumbahvbylTWC6o+yqrS5uTkICYmBqGhoRqf/Zu1tbUQ0CUnJ1carD979gwjRoxAr1698NZbb2lUZxVL9+7d1YZ6uXr1qjDmrarLly8L03Z2dhW+SFAoFELHUYD2KteVnR/V6+3ixYuVvozJyMiAg4MDevfujZEjR9bKlzdEVHsw8CQiIp2oBiuqnd5o8+eff6o9BOsTyCkUCkRGRiItLQ0hISEVrqtawqPam+bAgQPRunVrAMo2cuWNqVm2v/Xr1wNQDgPTrl27Kg2lUp06dOgAa2trAMq8+fj4VJh+48aNKCgoAABYWFgIJcJ169bF9evXkZCQgEePHlVYJbO0tFTt/OrTS6lqz7xV6eQGUA8uT506hT///BOAsufYfv36aV2nYcOGGD58uDC/du3aCl96+Pv7Izs7G3K5HPn5+RrD2YjJ09MTZmZmwvyGDRuQkZGhlkb1nqusNHPnzp2VDmFU2fnp3Lmz0B66qKgIGzZsqHCf3t7ekMvlePbsGRo2bKgxni4RkSoGnkREpBPV4TzS0tLw22+/aaQpLS1FUFAQvvzyS7XlZcGQLgYPHoyWLVsCUFYv9fLyQmFhoUa6u3fvqgVib731ljBtaGiIzz77TJjfuHEjduzYoVEKVFBQgBUrVgilhPXq1YOHh4fOea0Jc+bMEUqqduzYAR8fH42gori4GJs2bcKuXbsAKEu2Fi9erJbG1dVVmF6+fDni4uI09qVQKLBmzRpkZWUBUHbQoxocVUZ1eJvU1FSd19Pm9ddfF4LuP/74Q6hm6+LiUmHJnYeHByQSCQBlKfH//vc/jZJihUKBoKAgtY54PDw8avSFg5GREZYuXSrM5+bmYtWqVWppVO+5ixcv4uTJkxrbKSoqwrZt27BmzRq15druOV3Oz+zZs4XvNzAwEGvWrNEoIS8uLoavry/++OMPYdmsWbO0bo+IqEzteKVLRES13htvvAF7e3tERkYCAFatWoXjx4/D2toaJiYmSE9Px19//SUECIaGhkIV18pKSFVJJBJ89dVX+OKLLwAAAQEBCA8Px+DBg9G2bVsAyjEaT58+jWfPngEAhgwZAicnJ7XtjB8/HhcuXMDhw4dRWlqK1atXY//+/Rg8eDCaNWuGtLQ0SKVSZGZmCut8+eWXOo+XWVMGDhwIT09PbN68GQCwefNmHDx4EE5OTmjRogUePXoEqVSqVtr12WefYdCgQWrbmTBhAn7//XfcuHEDMpkMbm5usLOzQ5cuXdCsWTNkZWUhMjJSaNtnaGioEbxWRrUH3CNHjqBRo0Zo1aoVLCws4OzsrPexjxkzBrGxscjPzxeWvffeexWu07VrVyxduhRLliyBQqHAkSNHEBERgaFDh6J9+/Z4/PgxoqOj1arhOjk5YdKkSXrnr6ocHR0xfPhwIaA8fvw4XF1dhd5kyzoRSkxMhEKhgKenJ+zt7dG9e3fUr18fqampkEqlQmloZfecLufHwcEBM2fOxNatWwEAv/zyC44dOwYnJye0atUKGRkZiIiIUBsj9sMPPxR6HiYiKg8DTyIi0tnatWsxffp04aE9NjYWsbGxGum6dOmC1atXY/z48ZDL5UhMTERRUZFQElWZUaNGITs7G6tXr4ZcLkdmZqZa6YqqESNGaJT2lFmzZg3atm2L7du3Qy6XIykpCUlJSRrpjIyMMH/+fEyZMkWn/NU0T09PNG3aFD/88APy8/ORkpIilG6qMjY2xvLly7W2gZRIJPD394eHhwfi4+MBAGfPnsXZs2c10rZo0QLfffedWps/XXTp0gXW1taIjY2FQqEQejZ2dnZ+rsDznXfewcqVK4USNysrq3J7f1Xl5uaGRo0aYdmyZZDJZJDJZOVeP66urli+fHm1tk/VxzfffIOzZ88KwbWXlxeOHj2K+vXro27duti8eTM++ugjoZOnyMhI4eWPqr59+2LevHmYPHkyAOWYp/+m6/mZO3cumjdvjvXr16OgoAAPHz7Evn37NLZXt25dfPLJJ5g3b17Vvwgieukx8CQiIp01b94cQUFBCAgIQGhoKG7duoXc3FwYGRmhZcuWsLS0xLBhwzBy5EjUq1cPAwYMQEREBAoKCnDixAm4uLjovK8PP/wQgwcPxu+//47o6GgkJSUhNzcXDRo0QMuWLdG/f3+4uLhUGBzVqVMH8+bNwwcffIDAwECcO3cOKSkpyM3NhbGxMTp27IhBgwZh/PjxQmlqbTV58mSMGDEC+/fvR2RkJO7du4ecnBwYGxujc+fOcHR0xLhx4ypsZ/faa68hMDAQoaGhOHHiBK5du4ZHjx6huLgYzZo1Q6dOneDk5ARXV1c0atRI7zwaGBjAz88P3t7eCA8PR2ZmplopnL5MTU3h5OSEEydOACi/UyFt3n77bdjb2yMoKAh//fUXEhMTIZPJYGhoiDZt2qBPnz5wc3PTe4zX6ta6dWvMmjVLeHmSnJwMX19fIZjr1KkTgoODsXv3boSHh+Pu3bsoKChAgwYN0KZNG3Tr1g3vvPMOHB0dYWBggDfeeAN37txBcnIyLl26BBsbG2Ff+pyfKVOmCOOpnj17FklJSXjy5Anq16+P9u3bw9bWFuPHj9fpRQAREQAYKNgHNhEREREREYmInQsRERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkaj+DyKO3UJD3PRyAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ ")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "493d213c",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Plot realized ROC points\n",
+ "> realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "fcd2aaf9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set group-wise colors and global color\n",
+ "palette = sns.color_palette(n_colors=N_GROUPS + 1)\n",
+ "global_color = palette[0]\n",
+ "all_group_colors = palette[1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "4c70252e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydd3gUVReHfzNbkmx6T0gCCSV0kN6liyBVAQVEKQqKlA9BQVREQAE7YAOkI71DaEqXKr1IbymkJ5u2fWe+P5YddrYkuynU8z4Pmpm5986d2TMz99xz7jkMz/M8CIIgCIIgCIIgCKKMYB93BwiCIAiCIAiCIIhnG1I8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIcWTIAiCIAiCIAiCKFNI8SQIgiAIgiAIgiDKFFI8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiCeeHQ63ePuwlMF3S+CIAh6FxLEk4b0cXeAIJ4XNBoNTpw4gcOHD+P8+fPIzMxEZmYmWJaFv78//P39UaNGDbRo0QLNmzeHj4/PY+3v3Llz8fPPPwvb165deyz92L59O1asWIHVq1fbPX7ixAm89dZbwvayZcvQpEmTR9W9JwqtVosFCxYgPT0dX3755ePujktcvnwZ69evx6lTp3D//n3odDoEBwejfPny6NSpE7p06QJfX98y7UNKSgrWrVuHI0eO4M6dOygoKICfnx/CwsLQpk0b9OjRA1FRUU63t3PnTvzvf/8rVl8uX74MqfTZ+0RPnDgRmzZtAgBERERg3759j7lHzw4DBw7EyZMnAQCNGzfG8uXLH3OPHh937tzB9OnTMWzYMIffg3bt2iEpKQkA0KtXL8ycOfNRdpEgnkueva8aQTxh6PV6LF68GAsXLoRSqbRbRqVSISkpCZcuXcLatWvh5uaG1157DWPGjIGfn98j7e+Tws2bN/Hll1/i5MmTiIiIeNzdeeLZv38/pk+fjsTERPTq1etxd8dpNBoNvvzyS2zcuNHmWFJSEpKSknDs2DHMmTMH06ZNQ4cOHcqkH0uWLMGPP/4IjUYj2p+eno709HRcvHgRv//+O0aMGIHhw4dDIpEU2eZ///1XJn0lCMI+Go0Gv/76KxYtWgS9Xo9hw4Y97i4RBGEBKZ4EUYbk5ORg+PDhOHv2rM0xT09PeHt7g2EY5OTkQKVSCce0Wi1WrlyJv/76C/Pnz0eNGjUeZbefCP744w9h9p4ommnTpgmz908LWq0WQ4cOxalTp0T7vby8oFAokJGRAY7jAABZWVn44IMPMGPGDLz66qul2o9vvvkGCxcuFO2Ty+UICAhAVlaW4K6n1+sxe/ZsJCQkYMaMGUW2a6l4ent7w9/f3+k+MQzjdFmCIEycP38e8+bNe9zdIAjCAaR4EkQZwfM8xowZI1I6a9asibfeegvNmzdHSEiIqHxycjIOHjyIxYsX4+7duwBM1pahQ4diw4YNKFeu3KPsPkGUOdOnTxcpnY0bN8ZHH32EOnXqAADy8vKwfv16zJ49G2q1GgAwefJkVKpUCXXr1i2VPmzbtk2kdEZEROCTTz5BmzZtIJPJYDAYsH//fsyYMUNQ7Ddu3IiqVati0KBBhbZtqXiOGDECQ4YMKZU+EwRBEMTTCAUXIogyYsuWLTh27Jiw/frrr2P9+vXo2bOnjdIJAOHh4XjjjTewbds2vPLKK8L+rKwsTJ069ZH0+WmkSZMmuHbtmvDveV3f+bRx/vx5rFu3Tthu27YtlixZIiidgMlKOHjwYCxbtgwKhQKAyerojLXRGfLz80XruiIjI7F27Vp07NgRMpkMACCVStGxY0ds2LABlSpVEsrOnTsXWVlZDttOTk4WHX8evRYI4klm3759wneD1ncSxKOBFE+CKCNWrVol/B0TE4PJkyeDZYt+5ORyOWbOnInKlSsL+/bv3487d+6UST8J4nGwYMEC8DwPwORaO2PGDIfrJuvUqYNJkyYJ22fPnsWRI0dK3IeNGzciIyND2J42bRqCgoLslvX398fcuXOFgD/5+flYunSpw7YvX74s2ibFkyAIgnjeIcWTIMoAjUaDixcvCttt27Z1KUKlXC7H0KFDRfuOHj1aav0jiMdJTk6OKJppz549i1z/2KtXLwQHBwvb27ZtK3E/zNFVASA2NhbNmzcvtHylSpXQvn17p/pg6WZbvnz5xx6lmiAIgiAeN7TGkyDKgNzcXBiNxhK10aJFC9F2WlqaU/Xu3r2LTZs24d9//0V8fDyUSiU8PDwQEBCAunXronXr1ujUqVOppGooTmqEjRs34pNPPhG29+7di8jISAC2qVHMJCUloWrVqsK2ZYCZ4qRTUavV2LZtG/755x9cvnwZWVlZMBqNCAgIQExMDJo3b47u3bsjNDS0yOux7NeOHTtQqVIlaDQa7NixA7t27cLNmzeRkZEBd3d3hIWFoUWLFujZs6eoXnGxTnljZtOmTSKlyvIeW6NUKrF582YcP34cV69eRXZ2NhiGQUBAAKpUqYKWLVuiW7dupRpd+ciRI6Lnw5lItVKpFK1bt8b69esBAH/99RemT59ebDnOyMjAlStXhG1LhbIw2rdvj927dwMwyeWFCxdE7sFmLBXPx2ntTExMFF3bhQsX4Obmhh07dmD+/Pm4c+cO/P39ERsbi86dO6Nbt25272lKSgq2bt2Kf/75B/fu3UNWVhbc3NwQGBiIunXrok2bNujUqZNT0X5d5ejRozh69ChOnz6NlJQUKJVK6PV6IWBTnTp10Lx5c7z88suQy+V22xg9erTwuwGmycDff/+90PMeO3YMgwcPFizzUVFR2Lx5M7y8vOyW53ke+/fvx759+3DmzBlkZGRApVLBz88PUVFRaNGiBbp3747y5cu7dP1ZWVnYsGEDDh48iBs3bqCgoAABAQGIjY1Fz5490blz5zK579akpqZi06ZNOHHiBG7evAmlUgmZTIbAwEBUr14drVq1QteuXeHh4VFoO5bvbG9vb2Gd982bN7F69WocOXIEKSkp4DgOoaGhqFevHnr27IlmzZo5bNMyNYollt8G6xQzzqRTsXxPm9+j+fn52Lp1K3bu3Il79+4hOzsbgYGBiIqKQvfu3dGtWze4u7uL2jl69Cg2bNiAixcvIiUlBTKZDJGRkWjVqhUGDhxY6LemOGlynEmHZlnG8vrPnz+PDRs24NSpU0hJSQHLsggNDUXDhg3Rr18/VKtWTdROVlYWNm7ciD179iAhIQF5eXnw9/dH7dq18eqrr6J9+/YULI0QIMWTIMqAgIAAyGQy6PV6AKYP1tixYx0OiuwRGhqKuLg4+Pr6ws/PT1hz5gilUonp06cjLi5OiARqRq/XIzc3F3fv3sWWLVsQFRWFSZMmoV27dq5f3FPO6tWr8eOPP9pNbZOcnIzk5GQcPXoUc+fOxYABA1z+3c6cOYOJEyfi3r17ov1arRY5OTm4du0alixZgjfeeAOfffbZIxkw2sNoNGLevHlYsGCBKKKyGXMqkwMHDmD27NkYNmwY3n333VIZQFh6AzAMY1dxs8cLL7wgKJ75+fm4ceMGqlevXuw+mBUKAKhXr57TfbDkzJkzdvtv6Wpbs2bNYvWxrFiyZIlonaxZ7i9duoQePXqIyup0Ovz0009YsWIFtFqtzbG8vDzhvRITE4MvvviiUAXBFY4dO4aZM2fi6tWrdo9nZWUhKysLt27dwqZNm/D9999j5syZds8/depUnDlzBunp6QBMyxfi4uJE6+ktycnJwYQJEwQZkUql+OGHHxwqnWfPnsWXX34pmswwY07Jc+bMGfz222/o06cPJk6caKOc2GPlypX47rvvUFBQINqfmpqK1NRUHD58GMuXL8f3339fZFvFRa1W4/vvv8fq1auFb5oZnU6HgoICxMfHY/fu3Zg9ezbGjh2L1157zaVzLFu2DN98841N+/fu3cO9e/ewefNmNG/eHDNnznRqQrCsOHr0KCZOnIjU1FTRfvMzdPLkSaxYsQLz5s1DWFgYcnJy8Pnnn4smPQDT9+Dq1au4evUqVq9ejdmzZ9tMNj9qCgoK8NVXX2HDhg02x/Ly8nDz5k2sXbsWEydOxNtvvw0A+Pvvv/Hpp5/afE/T0tKwd+9e7N27Fx06dMCPP/7o0neUeHYhV1uCKAOkUqloVvDevXsYNWqUMOhxlsqVKyM4OLhIpTM+Ph7du3fHtm3bREqnTCZDaGiojZtfQkICRowYgd9++82l/pQ17u7uKF++PMqXLw9PT09hv1QqFfaXL1/e4eCvMDiOw/jx4/HFF1+IPpIMw8DPzw8hISEiJVCr1WLRokV46623Cg0iY8m5c+cwePBgQelkWRbBwcEICAiw6cvKlStLHDTK19dXuCeWVipPT0/R/bKWH61Wi8GDB2P27NkipZNlWQQFBSEoKEi0HjkvLw/ff/89RowYYZPnsjjcuHFD+LtcuXKi37owYmJiRNu3bt0qlT4AEAUOKozIyEjR/bx9+7ZNmczMTJGHQs2aNZGYmIg5c+agX79+aNKkCWrVqoWWLVuif//++PXXX532aCgpN27cwHfffWf3WNu2bUW/e05ODgYPHoyFCxeKlE6ZTIawsDD4+/uLJiLu3LmDd955R7S+vbhs2bIF77zzjo3S6evri4iICAQFBdlMgqSkpODdd9/FpUuXbNrz8/PD119/Ldo3ffp0ZGdn2z3/F198IVIuxowZ43CCZNu2bXjrrbdslE4/Pz+Eh4fDzc1N2GcwGLBq1Sr0798fmZmZdtsz88033+DLL78UKZ3md4qlB8K5c+fw9ttvO/2ecoXs7Gz07dsXy5cvFymFEokEISEhNp4Q6enpmDRpEiZPnmwzAeqI5cuX46uvvhLal0qlCA0NtbGcHj16FH369EFCQoJNGxEREShfvrxN4L6QkBDhPWgvqJ8rHDp0CO+++64gFyzLIiQkBN7e3qJyV69exejRo5Gfn4/BgwcLSqf5t7P+Hufl5WH06NG4f/9+ifpXEvR6Pd5//32R0qlQKBAWFib6LnIch6+//hoHDx7Etm3bMHLkSOF7ai5v7THx999/O3znEM8fZPEkiDJi0KBBGDdunLB94MABtG3bFu3bt0fHjh3RokULl/L6OSIrKwtDhgwRDZJq1KiB0aNHo0WLFsIsY3x8PFatWiUMIHiex08//YSgoCD06dOnxP0oDerWrYu//voLgNiNNzQ0VNhfXL766ivRmjwvLy8MHz5ctHawoKAAf//9N2bPni24YJ09exZjxozB4sWLi3Tr/OKLL6DX6+Hn54eRI0eia9euwm+cmpqKxYsXY/HixUL5NWvW2HVdcpa33npLcCWzdBt76aWXHEZpNKf5OXHihLAvKCgII0eORJcuXeDr6wvAZEGPi4vDzz//LAxo9+3bh88//xzffvttsfprJiUlRfg7LCzM6XrWlo6SDNQs+8AwjNNWFIlEgqCgICQnJwOAXfc+a8Vn7dq1+Ouvv2zc782WsNOnT2PevHl49913MWLECKeCkBWXWbNm2ViVzFi65PI8j3HjxonS3TRq1AjvvfceGjduLLxXMjIysH37dvz2229QKpUwGAyYOnUqIiIi8OKLLxarj0lJSfjiiy9gMBgAmAa0Y8aMQdeuXUXBn/Lz83Ho0CHMnj1bSEGl1+vxww8/YNGiRTbtvvjii+jfvz9WrlwJwPTu/Oqrr2wGxZs3b8bOnTuF7aZNm+Kdd96x29dTp05h4sSJor6+++676NWrF8LDwwGYvAvOnj2L+fPn4+DBgwBMFvExY8ZgyZIldt8r27dvF6X5USgUGDFiBPr06SMoe3fv3sUff/yB9evXIzEx0fENLSYajQbvvvsurl+/LuwrX748xowZg3bt2gmRps0uuPPmzRMmstasWYOAgAD873//K/QcKpVKsL77+flh7Nix6N69OxQKBTiOw4kTJzBr1ixBqU9NTcXIkSOxbt06kQXN7H5qvfTiu+++K7VI59OnT4fRaERoaCjGjBmDV155Be7u7uB5HidPnsTHH38svFfOnz+PXr16IT4+Hu7u7vjggw/Qp08f4Xtw+fJlfPHFF4L3R35+PpYsWSIKovYo2blzp/B+6t69O4YNG4YqVaoAME1AzZkzBytWrBDKf/HFF8jIyADP82jQoAE+/PBD1K9fHyzLQq1WY8WKFfjpp5+E52LVqlUYPnw4AgMDH/3FEU8UZPEkiDKiS5cuNgMvvV6PXbt2Ydy4cWjWrBm6du2KyZMnY/PmzXZncZ3hp59+EtXt2rUr1q5di7Zt24o+zOXLl8eECROwcOFCYcAAmFzQHudM66Pg3Llzoo9meHg41q5di2HDhokC1nh6eqJHjx7YvHkzGjRoIOw/efKk3YGsNXq9HuXKlcPmzZsxcOBA0cRCaGgoJk6cKBqI8TyP7du3l/DqXGPHjh3Yv3+/sB0bG4vNmzejX79+gtIJmAaBAwYMwKZNm0TWwK1bt2LHjh0l6oOlpceVyRdr64o9d+ni9MHb27tIrwJH/cjJybE5brm+EwB27dolDOpkMhnCw8NtrLwajQZz587FBx984FAxLA3Ma8UGDhyIPXv24Ny5c9iyZQuGDBkiCq60cuVKHD58WNgeMmQIli9fjpYtW4reK0FBQRg0aBA2bNiAChUqADBZRT755BMb11xnmTdvnpC3lWEY/PLLLxg0aJBNxGEvLy906dIFa9euFVmzjh8/jry8PLttf/zxxyLL+bZt2wRlEDApvdOmTRO2/f398c0339idDNDpdBg3bpwwuA4JCcHGjRsxYsQIQekETJMVDRs2xPz58zFmzBhh/7///it6L5nRarWiiSOFQoGlS5fi3XffFcledHQ0pk+fXmbptpYtWyZyi2/atCk2bdqErl27ir4hoaGheO+997BmzRrR+/T333/HuXPnCj2H0WiE0WhEWFgY1q1bhzfeeENom2VZNGvWDGvWrEHLli2FOmb31EeN0WhEVFQU1q5di9dee01wlWYYBk2aNLFxd46Pj4dMJsOiRYswbNgw0buuZs2aWLx4sUgRO3DgwCO5DnuY308ffvghvv32W0HpBExeBp9//jmaNm0q7EtOToZer0f79u2xbNkyNGzYUHhGPDw88O6774pkXafTlUokcuLphxRPgigjWJbF3Llz0aVLF7vHeZ7HjRs3sGbNGkyYMAEdOnRA27Zt8emnn2Lfvn1ODT4TExNFrjHVq1fHjBkzCh1EN2nSBF988YWwrdPpsGDBAheu7Olj9uzZwt8SiQQ//fRToa6VPj4++Pnnn0UD3cWLFwuD4cL48ssvRYNOa4YOHSpyzTp//nyRbZYWPM9jzpw5wrZCocCvv/4qGixaExYWhp9//lm0Hu3XX38VrY90FUv3XssBbFFYl7Ve9/Yo+mBd3l4frBVPwBS5d926dbh48SIOHDiAM2fOYOfOnRg0aJDoed23b59I8SkL3nvvPXz22WeoUKECPDw8UK1aNUyYMEH4jQ0GA/744w+hfOPGjTFhwoRC1/dGRkaKBt4ZGRnCelxX4DhO5N3Qpk2bIqMN+/r6omfPnsK20Wi0a4kGTIPib7/9VmRl/PLLL6FSqcBxHD7++GPk5+cLx77++muH1vBNmzaJLOffffedjTu4NSNGjEDbtm2F7YULF0Kn04nKxMXFiZZljB8/vtB10H379kWvXr0KPa+rFBQUiGQgNDQUc+bMKXSZQ2xsLH744QdBTniex6+//lrkuViWxQ8//OAw6JKbmxu+++47kZK2ZMmSEr2DisvEiRMdemk0bNgQUVFRon0DBw4UTWJa4u3tjZdfflnYvnfvXrEna0qDmjVrYtiwYQ6PW8uYu7t7oQHeevfuLdq2Xt5APJ+Q4kkQZYi7uzt+/PFH/Prrr04FGLl//z7Wr1+P999/H23atMGSJUsKVUD37dsnzLYDwMiRI51awN+zZ09RnlB7AYmeFXJycnD8+HFhu02bNjYBYuwREBCAQYMGCdtZWVn4559/Cq0TFhaGVq1aFVpGLpeLAuI4WmNWFly7dk1wSQRMAwPrgZI9KlasKBp03Lhxw24QFWexlGlXotJKJBKR8mMp+4+qD9bl7fXBMrCQTCbDr7/+ilmzZqFOnTqi/lesWBGffPIJlixZIlJm16xZI3JxLU0UCkWhg0vAtJbO0gvCXqRpe9SuXVsUpGnXrl0u989oNOKHH37A9OnT8d5779mklXKEtdJiL2CWZT/ff/99YTspKQlz587FokWLRPf9zTffLDQAm+WkX9WqVZ126XzzzTeFv9PS0mysgpb3zcfHx6mlEO+9955T53aW48ePi6z5Q4YMEXlEOKJx48aid+ChQ4eKfMe1adPGoXJmxt/fH/369RO2k5KSRNbYR0FISEiREbhjY2NF25YTIvYwewmYsedB8ah4/fXXC51cso7E/uKLL9rEL7AkICBAtJ71cV4b8eRAiidBPALat2+PjRs3YuvWrRg1ahReeOGFIge7GRkZmDFjBvr27SusJ7PGMrenQqFAmzZtnO6TZTTHnJycEikSTzInTpwQKdWOoljao1u3bjZtFYa1YuEISwtjaQTrcZZjx46Jtl25F127dhVtF3UvCsPSUvG4wuyXZR++/fZbzJo1C6NGjcKPP/5YZKqWhg0birwQADhlKSoOderUKTKYk7XS60pU3vr16wt/nz9/3saaVxQymQzNmjVDnz59MHbsWDRq1KjIOjzP27jWFpXO6v3330fdunWF7eXLl4s8I2JjY/Hxxx87rK9SqYodubh+/foimTO7PwOmazl9+rSw3axZM6cmE6Ojo0slRZOZ0npX8DyPf//9t9Dy1u9ZR1grfZb37VFQu3btIstYerPI5XKRy6o9rJ9FV5+X0qSo6OLW1m5n0kRZXt/jvDbiyYGCCxHEI6Rq1aqoWrUqRo4ciYKCApw5cwanTp3CqVOncP78ebvWzf/++w8DBgzA+vXrbWYX79y5I/xdrVo1lyw31h/R27dvP3FpH0oDy3sEALVq1XK6blhYGIKDgwW3N3sRTK3LO4PlQPJRWpot74VEInEpv2StWrXAsqzQ36LuRWHIZDLBpcwVq6XRaBQpjJbRQovTBzOuWk4ty9vrQ4MGDYq04FjTvXt3/Prrr0JE5JMnTyI/P18Y7Fnm8isKezn7zDgzeLZ2FR44cKDTAY9yc3OFv7VaLdLS0hzmkC0O2dnZSExMREJCAm7duoUrV67g/PnzyMjIEJUr6rmSSCT45ptv0KtXL6hUKtG71+ypUph83bhxQyQHf/31V7Gt1JaBgVJSUkSuvtYWtMKoXr16ob+9K1i+K0JDQwt1x7fG3relMCwnAAqjcuXKojRlJYlqXRzKlStXZBnLCQVfX98in5uyDCTmKoUtEQFsJ+icWZ//JF0f8WRAiidBPCY8PT3RqlUrwS1Jo9HgxIkT2L17N7Zt2yaaHUxKSsLXX39tE33RMriKKwMDe+VLEqjlScbazcvV+xQUFCQonkXdI2fTgjwuLO+Fj4+PS3nV3N3d4eXlJSgWJZEXLy8vQfF0Zt2sGev1lEUlqi+qD2Zc6YN1P0rSB0tYlsWLL74oROfU6/W4evUqGjZsWCrtm7EO0GMP67QcJYmYqlQqi614chyHY8eO4a+//sKlS5dw584dkVJWUqKjozFhwgQba/PHH38sWopgD+t7lJeX5zCgUVFYPkvWKbcKc2W0pqTpQiyxfFeU5beFYZgiFR4zMpkMPj4+QmCwotLRlDauvt+ftryVrqYpe9quj3gyoKkIgnhCcHd3R+vWrfH1119j7969ogAUgCkaqXXSastBmKsfResBs6uD76cFy3vEMIzLgWQs71NR98gy39mTiOW9cPU+AK7di8KwDBLiigJrvUbIGSXKmT7k5uYW6ZrpqB+lmR7Aer1tWQysrXMO2qM0lbvC1loWxpkzZ9CjRw8MGTIEq1atwsWLF+32SyaToVGjRnjppZeKdR57gYOcUbSLq2Taw3Iiw9od0ZWJjeLkN3ZESd4VrnxbPDw8XLKKWQY5e9Sum66uBX/aeNavj3gyICkjiDJArVYjKysLmZmZCA0NdTpHoJmQkBD8+uuvePvttwX3OqPRiJMnT4rWwygUCsEC5WqEz9K0HrmCKwP80sBy0MTzPFQqlUsDqbKwbj0uLK+7OApBad2LiIgIITdgWlqa0/WsJ15cfa6s+2CG4zhkZGQ41Z7RaBS5dbqSh7QoLAfV5nOVNs6sZ7XsR1BQ0CNPg3Dw4EG7aWVCQ0NRpUoVxMTEoGLFiqhevTqqV68Od3d3bNmyBXv27HHpPFlZWfjss89s9i9ZsgTt2rUrdH2ptfxPmTJFFPymuFhbkVx5TkszDU9J3hWufFtc7bNl28WZPHteeNTfWYJwFlI8CaKUuX37Njp37ixsDxkyBBMmTHC5HZZlMXToUNG6LuuBt5+fn6B4WrtoFYV1WyW13Di7VrG4FpDiYp37MT093SaSYGFYKkauuL09iVjei9zcXGi1WqfXSebn54sGfSW5F5UqVRJyiSYmJkKn0znltmW9VsyV9W/2+mDdtjOKZ0JCgmiw7Ch4SH5+PrKyshAREeG0JdzaLdxyDZXZBfdRYJ2nlOO4R7ZWKzs7Gx9//LFwj1mWxeDBg9G/f/9CXXaLk4Zi8uTJokkEhUIhpFWZMGECtm7d6tCKaP1eKa3o1NYy6IrVuzSXS1heX0m/LYW9K/R6vWgtc2FotVqRpbk0J32eFp7U7yxBOAu52hJEKRMSEiKyKlhGKHQV64GWtZJgOei9cuWKS0FSrEPRO8qhVhiWg1FnB36Wee8eBdbKyYULF5yum5CQIBpQuqKwPolYyovRaBRF5SyKS5cuiQL7lOReWAYTMRgMTvfDMu2El5cXoqOji90H6wjEzsqFdeoL60AqP//8M+rUqYMGDRqgY8eOLt9jMwzDlGqUUlewVMr1er1gnXaGnJycEkVq3rx5s0iBGj16ND7++OMi14lav1eKyvG4ceNGUb7Q3r17Y/LkycJ2UlISpk+f7rB+xYoVRduu/M48zyM9Pd1uH0NDQ0VpS1xp9+rVq06XLQrLd0VqaqqNMlkY1t+Wot4Vzvb76tWrIkve43o+HjVPw3eWIJyFFE+CKGW8vLxEeRrPnz9vM1h1Fsuci4CtdcXSFUytVmPfvn1OtcvzPOLi4oRtLy8vVKtWzeX+WbpQObtOztkBfmmluGjQoIGoLcvrLgrrsq5GKn3SsHYd3LFjh9N1re9FSYLeNGvWTLSeaO/evUXWMRgMOHTokLDdvHnzEq1J8vf3F0U4dqYPAETPmHUbgCnypeXg0LLPhaFUKkUurdWqVXtsFnZrOXElH+ewYcNQt25dNGvWDH379nVZCT1//rxo+4033nCqnnXKjsIUz6SkJHz11VfCdmhoKCZOnIhevXqhZcuWwv5NmzaJlFNLAgMDRQr60aNHnV73+c8//6Bly5aoU6cOXnrpJaxatUp0vGnTpsLfx48fF0UKdkR2drbNvSsJpfWuYBimyPem2fuhKHbv3i3abt68uU2Zx5WeqSyx/M46a1l/1DlOCcJZSPEkiDLgtddeE21PnTrV5WAsPM9j0aJFwnZwcLDNYP/ll18WpYX45ZdfnAq4sHnzZpFS26FDh2IN4i2jFxoMhiIHPpcvX8aZM2ecattyAFGU9aIw/P39RYPJgwcP4uzZs0XWy8rKwrJly4RtT09PvPjii8XuR1ljOSvu6H7VqFFDNFjesGED4uPji2z71q1b2Lp1q7AdGRnpUloaa7y9vdG6dWthe926dUW6CW7atEnk8ldUYnZnsMw3eP78+SLTldy6dUukoPbo0cPGBbV169aiZ2n16tVOBeuZPXu2yD2uf//+RdYpK1q3bi2yuq1cudIpi9f+/fuFSbasrCx4eXnZrFstCmvlzRk35b1799r8do7WDprdaC1/k2nTpglBl6ZOnSpaO/j555/bpGox0717d+FvlUqF33//vci+chyHOXPmADAFx7l3756N5a5Xr17C3xqNBgsXLiyy3SVLlpRqsJ1WrVqJ3G0XLVrklCvviRMnRPmlGzZsWGQQsA0bNthECbYmPT0d69evF7br169vE4wLsE3fUZJvx5OC5Xf2/v37RVoz//77b9y/f7+su0UQxYIUT4IoA/r27Styxbp8+TIGDBiAmzdvOlVfq9Vi4sSJIjfd999/30Y5DA8PFwUbunr1KiZNmlSoy+2///6LadOmCdsymQzvvPOOU/2yxjJZPAD89ttvDtegpKWlYeLEiU6vUbGc5S1plM3hw4cLf3Mch7Fjx9rk97QkPz8fo0aNEq2vevPNN0s1amRp48z9YhgGw4YNE7ZVKhVGjhzpcGANmNzsRo0aJbJcDRs2rMRr/oYOHSr8rVQqMWbMGIcD5wsXLuDrr78WtmNjY22iPheH3r17iwbX48aNQ1JSkt2ySqUSo0aNEp4tNzc3vPXWWzblAgMD8corrwjb6enpRT6TS5cuxcqVK4XtypUrl4piXVw8PT0xcOBAYTsnJwcjRowoVDm4e/cuPv30U9E+S1lzFsugT4BJKSmMY8eOYdKkSTb7HcnSokWLRNbRHj16iCZBIiIiMH78eGE7OzvbbgAiwDQ5YBkleOHChUX2d9asWSKvj0aNGtm8R1u3bi3KsbtgwYJCAyft378ff/zxR6HndRUPDw+RDKSlpWHMmDGFBrG7efMmxo0bJ1L23nvvvSLPlZ2djfHjxzu0jhcUFGDs2LGiaNLvv/++3bLWEx2lGaH5cWEpHxzH4ddff3VY9tatW5g6deqj6BZBFAtSPAmiDJDL5Zg7dy58fHyEfZcvX0b37t0xevRobN261SZoBM/zuHr1Kv744w907NgRmzdvFo61adPGoQVk4sSJovVP27ZtQ9++fXHgwAHR4CshIQHffvstBg8eLBo8jBo1ymGAlKKoX7++KKn2oUOHMHLkSFFi77y8PPz555949dVXcf36dafTvli6Gebm5rrkImtNo0aNREpCcnIy+vTpgwULFoisaCqVCtu2bUPPnj1FyeCrV6+OESNGFPv8jwLL+3XixAmHydV79OiBDh06CNvXrl1Dz549sXr1atHALicnBytXrkSvXr1EbbVq1Qp9+/YtcX8bNGggshgdP34cffv2xfHjx4WBa35+PpYsWYK33npLsAZKJBJMnjy5UMW3Xbt2qFq1qvDPUXoMLy8vkZKRlpaG3r17Y/PmzcKzYzQa8ffff+PVV18V3Yf333/fRkky8/HHH4sCA+3evRv9+/fHsWPHRO7oly5dwujRo0VKtYeHB7755pvHniNv+PDhovWrly5dQq9evbBu3TqRVTI3Nxd//vknXn/9ddE7rVevXiKXUWfp1KmTaPu7777DDz/8IJocMRgMOH36ND755BMMGTLEriXOnsJx9epVzJ49W9gODg62q7T2799f5F2yf/9+rFmzxqacj4+P6LfjeR6TJk3CuHHj8N9//4n2X7hwAe+99x6WLFki7Pfw8LDJIQqYrHbTpk0TvFmMRiP+97//4euvvxZZslJTU/Hdd99h5MiRLq3vd5Zhw4ahTp06wvbx48fRq1cvbN++XWSdT09Px/z589G3b1/R+/T1118XeZsUxpEjR/D666/jn3/+EZ4Rg8GAffv2oU+fPqLJgq5duzr0PrEOkrd+/fpSjfb7OGjbtq3ICr9mzRp89tlnIlnIzMwUfoPU1NQnPqc08fxCUW0JooyoXLkyVqxYgQ8++AAJCQkATAOI3bt3C2tVZDIZAgMDodfrkZOTY3fw0LFjR3z33XcO1674+vpi3rx5GDZsmGCtuXz5MoYPHy60r9Fo7A7Ohg4dKrIGuopUKsXEiRMxZswYQVnYu3cv9u7dK7jZWQ4YZTIZfvnlFwwaNKjItmvWrCna/vDDDzFz5kwAwODBgzFkyBCX+jphwgRkZWVh+/btAEwK8XfffYfvv/8e/v7+kMlkyMzMtPkNqlWrhvnz57vsMvioqVGjBo4fPw7AdG3dunVDWFgY1Go15s2bJwwgGYbBrFmz8MEHHwjl09PT8cUXX+DLL78UBm6ZmZk21ulmzZrhp59+KrV1VFOmTEFSUpJg2b9y5QrefvttKBQKeHt7IyMjw2bd8CeffFJomgtX6dOnD27cuIGlS5cCMLmITpgwAZ999hkCAwORnZ1tE9Dj5ZdfLtSSExQUhIULF2LQoEHC+rzz589j0KBB8PDwgL+/P5RKpU3kSYVCgXnz5tnI/uNALpfjl19+wbBhw4TgLykpKfjss8/wxRdfICAgACzLIj093UZOmjdvjilTphTrvC1atECHDh3w999/AzApH/PmzcO8efPg7e0Nd3d3u7JZs2ZN/Pfff8J7yNodUafT4eOPPxZNxn3xxRc20WkB0zMyffp09OjRQ/jtZ86ciWbNmtkEYXvppZfw6aefYubMmYKsbt++Hdu3b4dCoRB+a2tLoZubG3744QeHk361atXCt99+i/Hjx8NgMMBoNGLp0qVYunQpAgMDwTAMMjMzhesNDAxEy5YtsWXLlkLvryvI5XL8/PPPIhm4d+8exo0bB6lUKny7srOzbVxau3btKgrWVBixsbG4fv06rl69iqFDh8LDwwN+fn7IysqyefaaNm1aaNCnsLAwBAYGCpMg+/fvR5MmTeDn5wd/f/8iLdJPIn5+fhg9erTw/QNMyxPWrVsnyK/l993HxwezZs1yaBUmiMcJWTwJogypWrUqtm7dihEjRoisn2b0ej1SUlLsKjwRERGYNWsWfv755yKVnsqVK2P9+vXo3LmzSCkwt2+tdEZEROCXX37Bxx9/XPyLe0CnTp0wc+ZMm+vLz88XKZ0RERFYtGgRmjVr5lS7rVu3tpktT0tLQ1pamij6p7NIpVJ8//33+PTTT0WDTZ7nkZWVhdTUVNFvIJfLheT1ISEhLp/vUfPOO++I+mk0GpGUlISsrCyR9QUwWfoWLlyI999/X+Siy3Ec0tPTbZQJT09PjBs3Dn/88Uepuht7enrijz/+QK9evURyq1KpkJqaKlI6fXx88O2334rc/0qLSZMm4eOPPxbdC/OzYznwlUgkGDJkCH744Ycile+aNWti06ZNaNy4sWi/Wq3G/fv3bZTORo0aYe3atTblHyehoaFYtWoV+vXrJ1pLbjQakZ6ejtTUVJGcyGQyDB8+HPPmzSvRRM13331nY/kETBMq1rIpl8vx3nvvYfXq1aLoqdZrPn/66Sdcu3ZN2O7SpQs6duzosA8xMTEYNWqUsK1SqfDxxx/bDaD21ltvYcGCBTaRblUqFZKSkmyUzqpVq2LFihVo166dw/MDQOfOnbF06VIbZTczMxMZGRmCshcVFYUFCxYgPDy80PaKgyMZMBgMSE1NRVZWlkjpDAgIwPTp0/H99987HTdg0qRJGDhwoPBMqdVqJCcni549s2z98ccfheYFZRgGEyZMED2fBQUFSEpKwn///edyrIUnhcGDB+Ojjz6yiWyvVCpF3/dq1aphxYoVJUo1RRBlCVk8CaKMUSgUGDNmDN577z0cPnwYJ0+exJUrV5CUlCRYU1iWhY+PD6KiolC7dm20adMGzZo1czr/H2D64P/000+4fv064uLicOLECSQmJkKpVEIikSAsLAy1atVCx44dix1MyBE9e/bEiy++iA0bNmD//v24e/cucnNzERgYiJiYGHTu3Bldu3Z1yf2HYRj89ttvWLJkCXbs2IHExESo1Wp4eXmVKGDEW2+9hVdffRXbtm3DP//8g6tXryIrKwt6vR6+vr6oUqUKWrZsiR49eoiCOjzpBAYGYuPGjZg3bx4OHTqEtLQ0GAwG+Pv72x1sSaVS/O9//8PAgQOxdetWHDlyBLdu3UJWVhaMRiMCAwNRrVo1vPjii+jWrZvdiZPSQKFQYObMmXjzzTexdetWHDt2DGlpacjPz4e3tzeqVKmCVq1aoXfv3mUa5XXo0KHo2rUrNm7ciIMHDyIhIQFKpRLu7u4oX748mjRpgj59+tjk/yyMyMhILF++HGfOnEFcXBxOnz6N5ORk5Ofnw8fHRwgY1rFjR6cnZB41CoUCU6ZMwbvvvovt27fj2LFjuHv3LrKzs8FxHHx9fVG5cmU0bdoUvXr1cioXalF4eHhgzpw5OHHiBDZt2oRz584hNTUVWq0WCoUCgYGBqFy5MurVq4fu3bsLEy4dOnQQ1joeO3YM8fHxKF++PE6dOoXFixcL7fv7++Pzzz8vsh9DhgzBrl27hImus2fPYv78+XYtSS1atEBcXBz27duHAwcO4Ny5c0hPT0d+fj48PDwQGhqKOnXqoFOnTmjVqpXT7/aGDRtix44diIuLw86dO3H58mUolUp4e3ujQoUKePnll9G7d294eXkVug60JJhl4J133sG2bdtw9OhR3Lt3T4iwGhwcjJo1a6Jt27bo0qWLy5MOLMvis88+Q/fu3bFq1SqcPHkSaWlpkMvliImJQatWrdCnTx/Rso7CML+7ly5disuXLyM7OxtyuRyhoaFISUlBTEyMy/fgSeCdd95B586dsWHDBhw8eBCJiYlQqVQIDg5GlSpV8Morr+Dll1+GXC53uLyAIB43DP8shPwiCIIgCIIgnnhOnDghWnO/bNkyNGnS5DH2iCCIRwW52hIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQRAEQRAEQZQppHgSBEEQBEEQBEEQZQopngRBEARBEARBEESZQoonQRAEQRAEQRAEUaZQHk+CIAiCIAiCIAiiTCGLJ0EQBEEQBEEQBFGmkOJJEARBEARBEARBlCmkeBIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQTyxGI3Gx92FMqEsr+tZvWfPIvRbOQ/dq+LBcdzj7gJBCJDiSRDPGQUFBejQoQPat28PnU4nOnb79m2MGTMGLVq0QK1atdCyZUtMnTq1xOccOHAgqlatioEDB5a4LeL5gOM4rFixAjNmzHgs52/Xrh2qVq2KiRMnlnrbcXFx+Oijj0q93bJum3CNwmQoPT0dY8eOxenTp22OVa1aFVWrVsXcuXMfRTefCo4ePYp33nnncXfjiaMwWbl37x4GDx6M+/fvl8q5bt26hZo1a2L06NGl0h7xfEKKJ0E8Z3z99ddISEjARx99BLlcLuzPzMxEv379sGvXLmRkZECv1yM9PR3u7u6PsbfE88pHH32EadOmIT8//3F3pVT58ccf8eGHHyI9Pf2papsoPbKystClSxfs2LEDlEq9aNasWYPBgwfj3r17j7srTw1Xr15Ft27dcPTo0VJrs1KlSujXrx92796NzZs3l1q7xPOF9HF3gCCIR8epU6ewfv161KtXDy+//LLo2L59+6BUKgEAn376Kbp06QKGYUTKaXEJCQlB+fLlERISUuK2iOeDtLS0x3r+iIgISCQSBAYGlmq7qamppdreo2qbcB1HMqRSqZCbm+uwXvny5QEAvr6+Zdq/p4XH/S54knEkKzk5OdBqtaV+vg8++ACbNm3CjBkz0Lp1a/j7+5f6OYhnG1I8CeI5ged5TJs2DQAwZswYm+NmK4mfnx/eeuutUj33999/X6rtEURZs3z58sfdBeIpp7gy9Ndff5VyT4hnlUctK/7+/hg4cCB+++03zJkzB1988cUjPT/x9EOutgTxnLBr1y5cvXoVsbGxaNasmc1xc+AGT0/PR901giAIgiCeAvr37w+pVIp169aV2vpR4vmB4WmBAUE8F7z22mu4dOkSPvnkEwwaNEjYP3HiRGzatMluncaNG4tm7fPz87F+/XocOnQI169fh1KphEwmQ1BQEOrXr48BAwagTp06Nu0MHDgQJ0+etGnPfO5u3bphzJgx+OKLL3D69GnI5XJUrlwZc+bMwe3btwUL7LVr13Dr1i388ccfOHbsGDIyMuDr64uGDRtiyJAhqFu3rsPrz87OxtKlS7F//34kJCTAaDQiPDwcrVq1wpAhQxAeHm63nlqtxqpVq7Bnzx7cuHEDWq0Wfn5+qFGjBrp06YJu3bpBIpHY1FMqlVi+fDn279+PO3fuwGAwICAgAHXq1EGPHj3QoUMHh30tiqSkJKxduxb79+9HUlISjEYjoqKi0LZtWwwZMgR+fn526506dQqrVq3CmTNnkJ6eDoVCgZiYGHTo0AEDBgyAQqGwqWP+jXr16oWZM2ciLi4Oa9aswbVr16BWqxEREYGOHTti6NChdl0DeZ7Hzp07sXnzZly6dAk5OTnw8vJCTEwM2rZti/79+8Pb29vmfPa4du0agIfy9N577+Gll17C1KlT8d9//0GhUKBWrVr47bffBBfxrKwsrF69GkeOHMGdO3eQm5sLNzc3hISEoHHjxnjrrbdQqVIlm3O1a9cOSUlJwnWX9H7MnTsXP//8s93r2rt3LyIjI0XnjYiIwL59++yWt8aZtp151g4fPoxPPvnEpk+WJCYmon379gCAGTNm4NVXX7UpU9xnrTDM/e/SpQt++OEHrFy5EmvXrsW9e/fg5eWF2NhYvPnmm2jXrl2h7Rw4cADr1q3D+fPnoVQq4enpidjYWHTp0gW9e/eGTCazW+/WrVtYtmwZjh8/jvv370MqlSIkJASNGjXCgAEDUL16dZs69mSoatWqdtu3V2bkyJEYNWoU0tPT0bp1axiNRowbNw7Dhg1zeH1vvvkm/v33XzRt2hRLly4VHbt//z6WLFmCw4cPIzk5GQzDCO+NQYMGFctt0nyN06dPR3h4OL755hvcvn0bvr6+aNq0qcjbJSkpCatXr8axY8eQmJiIvLw8KBQKlCtXDs2bN8fbb7+NsLAwofzGjRsFebRm2bJlaNKkibDN8zzi4uKwZcsWXL58Gbm5ufDz80PdunXRt29ftG7d2uVrO3HihPDtuXDhAq5du4Zff/0VZ8+ehU6nQ1RUFDp37owBAwbAx8fHYTtnz57Fxo0bcfr0aaSlpUGj0cDLywuVKlVC+/bt8cYbb9i8e83XHhoait27d2PGjBnYuXMn9Ho9oqKiMGnSJDRr1sxGViyfT2tGjhyJqKgoTJgwwe49tESj0aBZs2ZQqVQ2YwYAeP/997Fv3z4MGjTI4W9EEPYgV1uCeA64dOkSLl26BADo1KlTsdq4ePEi3nvvPWRkZIj26/V6xMfHIz4+Hlu2bMH06dPRu3dvl9rOycnB22+/jaSkJACmj152djaCg4Nx+/Ztody+ffswduxYaDQaYV9GRgZ27dqF3bt3Y9asWejRo4dN+8ePH8fo0aORk5Mj2n/nzh3cuXMHa9euxTfffGNzb5RKJQYOHIjr16+L9qenp+PgwYM4ePAgNmzYgPnz58PDw0M4npCQgIEDByI5OVlULyUlBSkpKdizZw+6dOmC77//HizrmuPJzp07MWnSJKhUKtH+69ev4/r169i4cSMWLVqE2NhY4RjHcZgyZQrWrFkjqpOTk4Nz587h3LlzWLlyJX777TdUq1bN7nl5nsfHH3+MLVu2iPbfvn0b8+bNw/bt27Fq1SqEhoaKjn/00UfYtm2baJ9SqcTZs2dx9uxZ/Pnnn1i2bBmio6Ndug+A6T6//fbbyMvLAwAhSrNZ6Tx48CD+97//2dwrvV6P/Px83L59Gxs3bsQvv/yCF1980aVzF/d+PG4Ke9ZKg+I+a64wfvx4bN++XdhWq9VIT0/HkSNH8Oqrr2L69Ok2k0FqtRrjxo3D3r17RfuVSiVOnjyJkydPYuXKlfj9998REREhKnPgwAGMGjVKFAVcp9Ph7t27uHv3LtavX4/PPvsMb775ZrGvqTCCg4PRrFkz/PPPP4iLi3OoeKakpODUqVMAYPMejIuLwyeffGKz7u/atWu4du0aVq9ejV9++QUNGzYsVh/PnTuHL7/8Enq9HoDpvWzpPbNu3TrRcTO5ubnIzc3F1atXsX79eixduhQ1atRw6dy5ubkYOXIkTpw4Idqfnp6Ov//+G3///Te6d++Or776qtgxC/bv34/x48eL+m++d+vXr8eiRYtQoUIFUR2j0YgpU6Zg7dq1Nu1lZ2fj1KlTOHXqFDZt2oRVq1bBy8vLphzP8xg7diz2798v7Lt58yZiYmKKdR0vvfQSvvzyS6hUKsTFxTlUPPft2weVSgWJRIJXXnnF5ninTp2wb98+bNq0CR9++CHc3NyK1R/i+YNcbQniOWDHjh0AgMqVK9tYG6ZOnYozZ85g+PDhAIBy5crhzJkzOHPmDBYsWADAZOl8//33kZGRgaCgIHz11VfYs2cPjh8/ji1btmDUqFHw8PAAz/P46quvbAb6RXHo0CGkpaVh6tSpOHLkCNauXWt3FvXDDz+En58fZs2ahUOHDuHQoUOYPHmycG57UVCvX7+O4cOHIycnB5GRkfjmm29w6NAhHDt2DPPnz0etWrWg0Wjw4Ycf2qQ2+OGHH3D9+nUoFApMnjwZf/31F44fP45Nmzahe/fuAICTJ0/aWBamTJmC5ORkBAUF4ZtvvsHff/+NY8eOYfXq1WjZsqXwm8TFxbl0n86cOYOxY8dCpVIhKioK33//PQ4fPox9+/bhs88+g6enJ9LT0/HBBx+IBslff/21oHQ2a9YMS5cuxbFjx/DXX39h3LhxUCgUuH//PgYNGoSUlBS75969eze2bNmCNm3aYOXKlcJvbx6UJCUl4aeffhLV2b59u6B0vv3229i6dSuOHz+O3bt3Y+zYsZBKpUhNTRWl7DHLY4MGDQAA3bp1E+TRmri4OPA8j9mzZ+Po0aNYsmQJRowYAcBk3RkzZgxUKhWio6Px448/Cr/Dhg0bMHDgQEilUuh0umKlDHL1fgwfPhxnzpxBt27dAAANGjQQrstS0YmKikJMTAyioqKc7ouzbQPOP2vFoSTPmrMcOHAA27dvR/Xq1bF48WIcP34c69atEyxaGzdutGv9/fDDDwWls3PnzlizZg1OnDiBHTt2YNiwYZBKpbh+/TqGDBkieoeoVCpMmDABOp0OderUwaJFi3Do0CEcPnwYv/76K6Kjo8HzPGbOnInExMQi+3/mzBnRcz9//nycOXOmSBk0K5JXr17FrVu37JbZvn07eJ6Hu7s7XnrpJWH/kSNHMH78eGi1WlSrVg2//PILjh49isOHD+PHH39EdHQ0lEolhg0bhrt37xZ5DfZYv349AgMDsWjRIhw9ehS//vqrkD7rwoUL+Pzzz6HX61GrVi3MmzcP+/fvx5EjR7B69Wr07NkTgEmBtPQu6N69u8Nvk1lBNhqN+OCDD3DixAlIpVK8++672L59O06cOIEtW7bgzTffBMMw2Lp1K6ZPn16sawOATz75BDKZDJ988gkOHTokTILKZDIkJibi3XfftUlPtmTJEkHpfOWVV7BmzRocOXIE+/btw/z581GvXj0ApudmyZIlds+blpaG/fv3Y8CAAdi/fz927dqFr7/+WmQZtiQiIgJnzpzB/PnzhX1xcXHCfVQoFIK3ze7du2EwGOy2Y35vN2vWzO6kVKtWrcAwDHJycko1ci7xHMATBPHM07VrVz42NpafNGmSwzJz5szhY2Nj+bZt29ocW7FiBR8bG8vHxsbyp06dslt/yZIlQpnDhw+Ljr355pt8bGws/+abb4r2T5gwQajzww8/2G33+PHjQpmGDRvy9+/ftynz559/CmV27dolOta/f38+NjaWb9euHZ+VlWVTV6PR8L179+ZjY2P5bt26iY41adKEj42N5X/55RebehzH8QMHDuRjY2P5rl27Cvvz8vL4qlWr8rGxsfzmzZtt6mm1Wr5Tp058bGwsP3z4cLvX7Ihu3brxsbGxfJs2bfjMzEyb43v27BHuw6ZNm3ie5/mrV68K/RkzZgxvNBpt6p05c4avWbMmHxsby48ePVp0zPI3GjVqlN1+me9f/fr1eY7jhP2jRo3iY2Nj+bfffttuvblz5/KxsbF81apVbX4bs8xMmDDBpp75WGxsLL927Vq7bc+aNYuPjY3la9asycfHx9st89VXXwnt3L59W3Ssbdu2ds9fkvthWd/6WSgNCmvbmWdtw4YNQpmEhAS7ZRISEoQyGzZsEB0rybPm7LWZn7f8/HzRcaPRyA8fPpyPjY3l69Spw6empgrH9u3bJ9SdOXOm3fZ37dollJk1a5awf//+/cL+5ORkm3rx8fF8tWrV+NjYWH7RokWiY45kyPIeHj9+3KZN87E5c+YI+1QqFf/CCy/Y7LekZ8+efGxsLP/hhx8K+wwGg9CP3r178xqNxqZedna2UMbVd5K5XmxsLH/kyBG7ZUaPHs3HxsbyTZs25ZVKpd0yI0aM4GNjY/lq1arxarVadKywb9O6deuE8+/evdtu24sWLRLKXLp0yelrs/z2VKtWjT927JhNmR07dghlFi9eLOw3Go188+bN+djYWH7w4ME27wGeN/2mrVq14mNjY/nXX39ddMzyWezXr5/DPtqTFeu+Wz/Lhw8fFo4dOHDApk2lUil8D8zfEXt06NCBj42N5b/88kuHZQjCGrJ4EsQzTn5+Pm7evAkAIvdLVwgPD8eAAQPQr18/wRJljaXLTlZWlsvn6Ny5c5FlevToYXd9WNu2bYW/La0ON27cEFzPRowYYXcNk5ubG8aOHQvA5Dp1/vx54Zh5BtvavRgAGIbB559/jqVLl+L3338X9hsMBiE3n716crkc33zzDf7880+XLG03btwQ1jiOHj0aAQEBNmU6duyIRo0aiX6LdevWged5yOVyTJ482a5rb7169dC/f38AwJ49e5CZmWm3D++9957d/W3atAFgkrXs7Gxhv/n+KZVKuzPr/fv3x/z58xEXFyda5+ksDMM4dNmMjY3F66+/jnfffdeh9bBx48bC38WRWVfvx5OCM8+aq5T0WXMFs3XfEpZl8emnn4JhGGg0GlG0T7PVKTg4GB9++KHdNjt16iRYgtauXSsEW7O0YtnLjxoVFYX58+dj3bp1Li8xcAUPDw9B1u15Sty6dQv//fcfAAjeGABw+PBhwa163Lhxdl0i/fz88P777wMwWZSLkwfWz8/PbtA6AKhfvz569+6NDz74wGGKGPOzyHGcjZt2YaxatQoA0KhRI5GV15K33npLsPzbc3t1hh49eqBp06Y2+zt37iz03dL9u6CgAH369EHXrl0xfPhwMAxjU9fDwwO1a9cGUPj7xzr1WUmxtGLak6U9e/ZAr9fDw8MDHTt2dNhOlSpVAKDYzzHxfEJrPAniGefu3bvgOA4AULFixWK10a5du0KDdmRkZODs2bPCtnnQ5iwymUz4iBWGo+BBlnny1Gq18PfJkyeFv2NjY1FQUGC3frVq1SCRSGA0GnH69GnhPI0aNcKBAwfw559/IjU1Fa+88gpatGghDJ6qVKli028/Pz9UqVIFN27cwPfff4/r16+jU6dOaNq0qRBAwl4ApqI4duyY8LdZsbHHihUrRNv//vsvANPAzp6yaqZLly5YunQpOI7D6dOnbQZxbm5uDtd/Wt5/y/W3jRo1wv79+3HlyhX07dsXvXv3xosvvigErQkICChW0A8zkZGRDoN69OzZU3Dhs0dycrIwUAdcl9ni3I8nAWefNVcp6bPmLMHBwQ7XpUVFRaFKlSq4fv06jh07hgEDBgB4+Ay0a9fOYfAgwPQM/P3338jLy8PVq1dRs2ZNvPDCC5DJZNDr9Rg8eDDeeOMNtG3bFi+88IKwjrRVq1YuXUNx6dGjBzZt2oQ7d+7gv//+E62FNCs9gYGBaNGihbDfct1jYb9LrVq1AJjWFJ45c8blNbjVqlWzq1wBJjf7wrh7967IfdiR+6c1+fn5wjNco0YNh9cGALVr10ZSUpJdl31n6NKli8Njbdu2xcmTJ3Hp0iXk5ubCx8cH3t7e+N///uewjsFgwJUrV4RJvsKu2dU1r0UhkUjQrVs3LFq0CHv37oVWqxVNSJjdbDt06FBolPuKFSti7969uHPnTqn2j3i2IcWTIJ5xLNfslTQhuV6vx7///ovLly8LAYVu375tk+CbdzFYtq+vr93IsNY4UpwsA0ZYnjshIUH421lrhGVAoIkTJ+L8+fPIzs4WglRIJBLUrl0brVq1QseOHe1GqZwyZQreeecdqNVqbN68GZs3b4ZMJkP9+vXRunVrdOzYUUj87SypqakATIqtK9Enzb+/vcitllgetxci39fX12EgJMv7b57kAIABAwZg9+7dOH/+PC5fvozLly8DAGJiYtCyZUu0b98eTZo0cTnAkpnCFGkzGo0Gx44dw9WrVxEfH4+EhATcvHnTxhJZHJl19X48CTj7rLlKSZ81ZylKaa5QoQKuX78uyH1+fr4QfMqVZyA5ORk1a9ZESEgIxo0bh5kzZyIvLw8LFizAggUL4OPjg2bNmqF169Zo3769w0jSpUmTJk0QFhaGlJQUxMXFiRQSs+XqlVdegVT6cGhn6QHiyCJpTXF+F2eexby8PBw9ehTXr18XnsVbt24hNzdXVM7ZZzEpKUl4vpYuXWqz1t4exbk2wHE0YgBCUCGe55GWlmYzGZaUlIQTJ07g9u3biI+Px71793Dnzh2bQE+OKE604aLo0aMHFi1ahPz8fBw4cECYaEhNTRUmaiwt5/YwjycKCgqQn59vNzgSQVhDiidBPONYBvopyYdh586d+Oqrr2zcsBiGQcWKFVG3bl2HaTCKwtmIeJYDKmewDjTkap2YmBhs374dv//+O3bs2IHMzEwYjUYhEuzcuXPRsGFDfPXVV6KorA0bNsTWrVvx22+/4a+//kJeXh70ej1OnDiBEydO4JtvvkG7du0wbdo0BAUFOdUvs/uZu7t7sa7HXqoUSyyj8toLDlWYpcgR7u7uWLFiBZYvX47169cLEYrNEU6XL1+OiIgITJkyxeWoskDRcrNixQr89NNPguJhhmVZVK9eHdHR0di5c6fL5wWKdz+eBMoq+mRJnzVnKcol2/x8mH9zSyuYK8+AZb3BgwejevXqWLhwIY4dOwa9Xo/c3Fzs3r0bu3fvhkwmw8CBAzF+/PgyUerNsCyLbt26YcGCBdi5cyfGjx8PhmFw4cIF3Lt3D4BtNNtH9bsUJlccx2Hu3LlYuHChjbIlk8lQr149+Pj44ODBg2Xez+LUAQqXO0u5sXzXKJVKTJ48GXv27LFRpj09PdG0aVOkp6eLPC/sURbPbLVq1RAbG4vr168jLi5OUDx37NgBjuMQFBQkspzbw/KeFBQUkOJJOAUpngTxjGPp/lTcQdGePXswduxY8DyPgIAAdOzYEbVq1ULFihURGxsLHx8f3Lt3r9iKZ1lhqaRduHChWB/woKAgfPbZZ5g0aRIuXryII0eO4OjRozh79iwMBgNOnTqFQYMGYefOnaIBSPny5TFjxgwhSuvRo0dx5MgRXLp0CTzPY9++fUhLS8P69esduqhZYm7bVddNhUKB3NzcIiMNuzJAdwW5XI6hQ4di6NChuHv3rnD/jh07hoKCAiQlJWHEiBFYs2YNatasWWrnXbJkCWbMmAHAFA2zQ4cOqF69OipVqoQqVapAoVDg6NGjxVY8n1ccWWlK41lzBuvIodaY5dxsJbKU5ZI8A02bNkXTpk2Rn58vyO8///yD+Ph46PV6LFq0CDzPY+LEiS5dj6v06NEDCxYsQFJSEs6ePYv69esLbraVKlUSXGbNmH+XoKAgHDlypEz75ogZM2Zg2bJlAEzume3atUPVqlWFZ1Eul2PdunUuK56W79spU6agX79+pdpvS7RarcP3oqVcmeVOr9dj6NChQhqzxo0bo1mzZoiNjUXFihURHR0NlmUxfvz4IhXPsqJHjx749ttvceDAARQUFMDT01OwnHfp0qXI8YLl8gRnvmEEAZDiSRDPPJZrNCzXP7rC999/D57nERkZifXr19t1/XkSg6iUK1dO+DsxMbFQVzue5wv9eLIsi7p166Ju3boYMWIEsrKyMGvWLGzevBnJycn466+/7LomyWQyNGnSBE2aNMHYsWORnJyMzz77DP/88w8uXbokSh1SGOagSkqlUlhHZI9du3bh7t27qFy5Mjp06IBy5cohNzfXYQoGM+YAVID4vpUm0dHRiI6OxoABA6DT6bBq1SrMmDEDer0eq1atKlG6A0s0Go2QUqNOnTpYvny5XUvxkyizjxNL12HrfItmHN2z0nzWCsPSpdce5vVm5mAyXl5e8PHxKbVnwMvLCy+99JKwBvrChQv43//+h6SkJKxcuRLjx4932TPDFapUqYKaNWvi8uXL2LNnD+rVqydMnth7/5ivIzs7GyqVqlQnlZwhOTlZWHfesWNHzJ49265CU5xn0TKliDmAkiNKInOASe4cubyaPTlkMpmQt3fXrl2C0jlx4kQMHjzYbt3H+Q7q1q0bvv/+e2i1Whw5cgR169bFxYsXARTtZguI+17YWlCCsISi2hLEM45lFFjzOkFXyMrKEnK7vfTSSw4/vpbBb56UdW2WydCtE8dbcubMGdStWxedOnUSBnEXLlxAv3790LhxY9y4ccOmTkBAACZNmiRsm+/tgQMH0Lt3bzRu3NjGxRMw/R7jxo2zqVcU9evXF/4+fPiww3ILFizAjz/+KER7NN+DkydPFho5cdeuXQBMM9cvvPCCU30qDLVajaFDh+LFF1/En3/+aXNcLpfj7bffFiItF0c2HXHjxg3h3vfs2dOhe/LjkNmytAyUtG1LpcSRrFgGEbOkJM+aK9y6dcthvsw7d+4ISoA5ABfDMMLEzr59+xwq1MDDZ8DT01OQy3nz5qFr164OrWl16tTBW2+9BcBkFXMmImtJfyezUrB//36cPn0aaWlpYBhGyONqiWW+ywMHDjhsc9u2bahXrx5eeeUVITpxaXD+/Hnh2erdu7dDK5rls2jtlurofgUEBKBy5coATL+to7WhHMfhlVdeQatWrfDRRx+5fA2AKf+tI/bt2wfAZNU0W2Etn5PXX3/dbj21Wo1z584JfSxNnJGx0NBQIVLv/v37sX//fgAmq7Q52m5hKJVKAKa1nqR4Es5CiidBPOOYXXoAID4+3uX6lrP3jiwGV69eFSWsLmxw9yipU6cOqlevDsCkkNlLjq7RaDBz5kxotVokJSUJEWfDw8Nx4cIF5OTkYPny5Xbbv3LlivC3OVhQYGAgLl68iJycHKxcudLpekVRt25dwYo0Z84cu2uV9u7dK8yyv/LKKwCAPn36ADC5KE6dOtXuAOfChQuCotq6dWuEhIQ41afC8PDwQGpqKlJTU7FmzRq7Lpo5OTlCICPr+2CWu+LIkqXMWlqxLDly5Ag2btwobD8qmTUPvMvifCVt2xwkBYBdpTArK8vhs1CSZ80VeJ7HN998Y6NkGAwGwWLu5+cnSrHUt29fAKZ0KD/88IPddv/++29BYe7Zs6ewhlcqleLGjRs4e/asw4io5ufZy8vLqSA7lvJZnN+qa9eukEqluHv3Lv744w8ApgjSZiuvJe3btxfWkX/33Xd2JxSysrIwZ84cqFQqZGRkCL9jaeDMs7hhwwYcPXpU2LZ2pzbLtT03a/P77datW1i4cKHd9pctW4Zbt24hLS1NUFRdZenSpXatqlu2bBGUzF69etn0GbB/3RzHYerUqcJ7vLTfB5bnL6xt85rggwcPCgq0M9ZO4KGVubjR8onnE1I8CeIZx8PDQxhIFGctiY+PjzBAPHjwIKZPn45bt24hOzsbV69exU8//YQ33nhDtM6lsLD2j5rJkydDKpUiNzcXr7/+OlasWIHExERkZmbin3/+waBBg4Q8ZEOHDhUGb8HBwcIHeM2aNfjkk09w4cIFZGVlISEhARs2bMD48eMBmJRU80C3du3aQl632bNnY9asWbhy5QqysrJw584dLFmyBF999RUAkzJpvSbLEea8oSzL4u7du+jXrx/27t0rWKQXLlwo9Kd69epC36tVq4aBAwcCMCkTQ4cOxYkTJ5CdnY2EhAQsXLgQgwYNgl6vh6+vL6ZMmVLSWy4wdOhQAKacjYMHD8bhw4cFZfTgwYMYMmQI8vLyIJFIbKwC5iihp06dwr1791zKsxkbGysoz6tXr8avv/4qtHHhwgVMnz4dw4YNE61RelQya76ua9eu4fLly8jOzhYNDN9++228/PLLRaagKE7bRVG1alUhSNaKFSvw888/IzExEampqdi2bRv69u2LrKwsh+6axX3WXGX37t14//33ceHCBSiVSpw5cwbvvPMO/vnnHwDAhAkTRIFOLNNBLVq0CGPHjsX58+ehVCpx+/Zt/PTTT0Lqi6ioKFGuz9deew1+fn7geR4jRozAihUrcPv2bWRlZeHq1auYNm0aNm/eDADo16+fU5Ymy+jiu3btglKpdCl3pWXgF7OVypGyIJfL8emnnwIwKQq9e/fG5s2bhedwz549GDhwoDApOW7cuFK1XjVo0EDwOPj555/x559/IjExERkZGfj3338xYcIEkecIYPssmuU6IyMDR44cQU5OjjCR1b9/fyG677fffotJkybh0qVLUCqVuHbtGmbMmIGZM2cCME3Cmt+FrpKbm4v+/fsjLi5O+AbMnTtX6Hvjxo1FFueWLVsKf48bNw579+5FWlqasCzjzTffFE18lfb7xzLKclxcHHJzc+1OVnbs2BEeHh7IzMzEoUOHHFrO7WG21lp64xBEUdAaT4J4DmjRogUuX74shEl3lcmTJ+Ott96CSqXC8uXL7Vo9evfujWPHjiEpKUmIsPgkUL9+fcyZMwfjx4+HUqnEtGnTMG3aNJtyffr0wejRo0X7Jk2ahNu3b+PcuXPYuHGjaKBgJigoCL///rsohca3336Lt99+G3fv3sWiRYuwaNEim3rR0dGYPXu2S9fSrFkzzJgxA5999hmuX7+OESNG2JSpXLkyfv/9d5GlYeLEidDpdFizZg2OHj0qsi6YiYqKwuzZs0Wu2SWlV69eOH/+PFatWoXTp0/jnXfesSkjk8kwbdo0wbXRTJMmTbBjxw6kpKQI6+n27t0r5AAtDIlEgqlTp2LkyJEwGAyYPXu2zb1mWRbDhw/H4sWLodPpHpnMNmnSBAsWLIBKpcKrr74KwGSRMeemTEhIQFJSUpFBdIrTtjN8+eWXGDZsGLRaLebOnYu5c+cKx2QyGWbOnInZs2fb9Z4oybPmLMHBwahUqZLINdAMwzD46KOPhGu35LvvvsP48eOxb98+7NixAzt27LApU7NmTcyePVuktPr5+eGnn37CiBEjkJ2dbfd6AFMuR2evyd3dHS+88ALOnTuHdevWYd26dWjcuLFDa7I9evToIQTjcXNzw8svv+ywbJcuXZCbm4vp06cjKSkJEyZMsCnDMAw++OADwTpcWvj7+2PixIn48ssvoVarMXXqVJsycrkcQ4YMwe+//w4AuHfvnsga3qhRIyH365AhQwCYAha9+uqrkMvlmD9/PkaMGIELFy5gw4YN2LBhg805oqOjsWDBgmKvce3atSvi4uJEkxJmGjduLKwpN9O6dWu88soriIuLQ3x8vN13dUhICNq1a4fVq1dDrVYjNTVVWCNaUipUqIDw8HAkJycLz3GvXr0EJdyMp6cnOnTogG3btoHneTRo0MCpd6x58gV4dHlsiWcDsngSxHOA2e0yISHBrgtcUdSuXRubNm3Cq6++ivDwcEilUri7uyMqKgqvvPIKli1bhq+++krIE7d///4nxt0WMLmb7dmzB8OHD0f16tXh5eUFmUyGkJAQdOrUCYsWLcL06dNt1h95e3vjzz//xJQpU9CkSRP4+/tDKpXC19cXtWvXxujRo7Fr1y5Uq1ZNVC8sLAybNm3C+PHjhVQBUqkU/v7+aNiwIT755BNs3bq1WEpez549sWPHDgwYMADR0dFwc3ODh4cHatasiY8++gjr168XBd0ATO5uU6dOxYoVK9C1a1eEh4dDJpMhMDAQDRo0wOTJk7Fly5ZSjSprZsqUKZg/fz5eeuklhIWFQSaTQaFQICYmBm+++Sa2b98uclEz07dvX4waNQrlypWDTCZDcHCwKCdtUbRt2xZr1qxB586dERwcDKlUCoVCgYoVK6J3797YsGEDPvzwQ2H93549e0rtmgujVatWmDx5MqKjoyGTyRAQEICMjIwnpu2mTZtiy5YteO211wQ5CQkJQdeuXbF+/Xp07dq10PrFfdacRS6XY+HChfjoo49QqVIluLm5ISIiAl27dsWGDRsEK7s1np6e+O233/DLL7+gffv2CA4OFvrVvHlzzJo1C6tXr0ZUVJRN3WbNmiEuLg6DBg1CbGwsFAqFULddu3aYM2eOzeRTUfz4449o164dvL294ebmVmTEXWvat28vKMht27YtMs3MG2+8gZ07d2LgwIGoXLmycA0RERHo0aMH1q5di1GjRrnUB2fp168fFi9ejDZt2sDf3x8SiURYRztw4EBs27YNY8eOFVy9//rrL1H9ypUr44cffkBsbCzc3Nzg6+srCmwTHByM1atXY9asWWjVqhUCAwMhlUrh5eWFevXqYeLEidiyZYvLuZMt6du3L5YtW4aWLVvCy8sLvr6+aNCgAWbOnIlFixbZzZH9/fffY+rUqahXrx48PT0hlUrh5+eHevXqYdy4cdi+fTuGDx8uLIWxvu6SIJVK8fvvv6NJkyZQKBRQKBQOraqWKXicdbM9efIkANO9d2ViiyAY3tWs2QRBPJX0798fp0+fxujRo/HBBx887u4QBEE4zcSJE7Fp0yZEREQIa9EIoiw5ceKEEDjKVc+Bp4kjR45gyJAhkMlkOHLkiF0l2po33ngDZ8+exahRozBy5MhH0EviWYEsngTxnGB29dm8efMTE3WWIAiCIIjHx7Zt2wCY1kI7o3TevHkTZ8+ehaenZ7HXzBLPL6R4EsRzQsuWLVGnTh3Ex8e7nKibIAiCIIhni7t37wpphMwRgoti3bp1AExeVM4oqgRhCQUXIojniPHjx+Ptt9/Gb7/9Jko3QBAEQRDEs8++fftw/fp1aLVarF27Fmq1GtWqVRNF4nVEWloa1qxZg4CAACHQE0G4AimeBPEc0aRJEwwYMAArVqzA33//jQ4dOjzuLhEEQRAE8YhITk7Gjz/+KGzL5XJMmzbNqVRAc+bMgVqtxsyZM53KWUsQ1pCrLUE8Z4wfPx4VKlTArFmzipWygSAIgiCIp5OqVasiJCQE7u7uqFevHhYvXixKX+OIW7duYePGjejcuXOh6XsIojAoqi1BEARBEARBEARRppDFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMkT7uDhCPH51OB6VSKWy7ublBIpE8vg4RBEEQBEEQBPFYMBqN0Gq1wrafnx/kcnmJ2yXFk4BSqURCQsLj7gZBEARBEARBEE8gISEhJW6DXG0JgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIVdbAm5ubqLtqKgoKBSKx9QbID4+HkajERKJBOXLl39s/SCeHkhmCFchmSFchWSGcBWSGcJVnhSZUalUomV41rpCcSHFk7AJJKRQKODl5fWYegMYDAbo9XrIZLLH2g/i6YFkhnAVkhnCVUhmCFchmSFc5UmVmdIKOkqutsQTB8uywj+CcAaSGcJVSGYIVyGZIVyFZIZwlWddZhie5/nH3Qni8ZKfn49r164J21WrVn2iZlkIgiAIgiAIgng0lJVu8Gyq0wRBEARBEARBEMQTAymeBEEQBEEQBEEQRJlCiidBEARBEARBEARRplBUW+KJIy0tTQglHRIS8ri7QzwFkMwQrkIyQ7gKyQzhKiQzhKs86zJDiifxxJGSkiKEkn4WHzqi9CGZIVyFZIZwFZIZwlVIZghXedZlhlxtCYIgCIIgCIIgiDKFLJ7EE0d0dDQ4jntmcxgRpQ/JDOEqJDOEq5DMEK5CMkO4yrMuM6R4Ek8cPj4+j7sLxFMGyQzhKiQzhKuQzBCuQjJDuMqzLjPPpjpNEARBEARBEARBPDGQ4kkQBEEQBEEQBEGUKeRqSzxx6PV68DwPhmEgk8ked3eIpwCSGcJVSGYIVyGZIVyFZIZwlWddZkjxJJ44rly5IoSSrlOnzuPuDvEUQDJDuArJDOEqJDOEq5DMEK7yrMsMudoSBEEQBEEQBEEQZQpZPIknDl9fXxgMBkilJJ6Ec5DMEK5CMkO4CskM4SokM4SrPOsy82xeFfFUU6FChcfdBeIpg2SGcBWSGcJVSGYIVyGZIVzlWZcZcrUlCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRTPQvjyyy9RtWpVzJ07t1TaS0pKwvTp09GpUyfUrl0bjRs3Rp8+fbBkyRJoNJpSOQdBEARBEARBEMSTBq3xdMCxY8ewevXqUmvv4MGDGDt2LAoKCoR9Op0OFy5cwIULF7Bhwwb89ttviIyMLLVzPq3cunVLWFhdqVKlx90d4imAZIZwFZIZwlVIZghXIZkhXOVZlxlSPO1w6dIljBw5EhzHlUp7165dw6hRo6DVaiGRSNC7d280bNgQBQUF2LJlC86ePYvr169jxIgRWLNmDTw8PErlvE8rBQUFQg4jgnAGkhnCVUhmCFchmSFchWSGcJVnXWbI1daKgwcPYvDgwcjPzy+1NqdMmSIonb/99humTp2K7t27o1+/fli1ahXefPNNACYFddmyZaV2XoIgCIIgCIIgiCcBsng+QKfT4ffff8dvv/1WapZOADh79izOnDkDAOjZsydat24tOs4wDD799FMcO3YMt27dwqJFizBkyJBndqbDGWrVqvW4u0A8ZZDMEK5CMkO4CskM4SokM4SrPOsyQxZPAEePHkXnzp3xyy+/gOM4KBQKDB48uFTa3rFjh/B3//797ZZhWVY4plQqcfz48VI599MKy7LCP4JwBpIZwlVIZghXIZkhXIVkhnCVZ11mns2rcpGtW7ciMTERgGmmYd26dWjbtm2ptP3vv/8CAHx9fVGjRg2H5Zo2bSr8ffjw4VI5N0EQBEEQBEEQxJMAudo+ICAgACNHjsQbb7wBiUSCzMzMErdpNBpx69YtAEClSpUKnb2IiYmBRCKB0WjE1atXS3xugiAIgiAIgiCIJwVSPAEMGDAAU6ZMgbu7e6m2m5GRAZ1OBwCIiIgotKxEIkFwcDBSUlJw//79Uu3H00ZWVhY4jgPLsggICHjc3SGeAkhmCFchmSFchWSGcBWSGcJVnnWZIcUTQO3atcuk3aysLOFvf3//Isv7+voiJSUFSqWyTPrztJCYmCiEkn4WHzqi9CGZIVyFZIZwFZIZwlWeJ5nhOA7gAZ7jwfEAz3HgABgNRoDnIZMwAMOAkUoB3lRHJpdAo9ZDq9ZBl5sHTqcDZ+Sg1xkBD0+wbm7gOYDnOfAcwPE8jHo91MmpMOr1kICHv4/EdE4j/6AcD293ICffgNx8A3iOB8/z4DkOOj0Pjc4InuOBB+1xHA/wPHge4B6chwWHcF8Ocv8A+NevB543ddg3xA2pyTmIv5WJ3Os3wOXmg+EZGIwA/ELgHhpmOhfPI0eTD51BC6PeAH1SCiR6DlJIEOGWCTdWCt5gAG/QgzfqweiSkG1wQwYbBQPPw11RgHqvvfxMygwpnmWIWq0W/nZzcyuyvLmMRqMpsz45w82bN1GpUiV4e3sL+7RaLa5duwYA8PPzQ/ny5W3qqFQqAECdOnVExzIyMgQrblRUlEgJNxqNuHz5MgDA29sbMTExorp3795Fbm4uAKBGjRqQSh+KrFKpRHx8PAAgPDwcwcHBoroXL14Ez/Pw8PBAlSpVRMcSExOFiYHY2FiRtTs/Px+3b98GAAQHByM8PFxU98qVK8KHpHr16qJjycnJSE9PBwBUrFgRXl5ewjGNRoPr168DMLl2R0ZGiureuHEDarUaDMPYTIakp6cjOTkZAFC+fHn4+fkJxwwGA/777z8AgI+PD6Kjo0V179y5g7y8PABAzZo1IZFIhGPZ2dlISEgAAJQrVw5BQUGiuhcuXAAAKBQKVK5cWXQsPj5emCSpWrWqSMbz8vJw584dAEBoaChCQ0NFdf/77z8YDAbI5XJUq1ZNdOz+/fvIyMgAYHJR9/T0FI6p1WrcuHEDABAYGGjjSWAwGHDhwgWwLGsTGS4tLQ0pKSkAgOjoaPj4+AjH9Ho9rly5AsA0AVShQgVR3Vu3bqGgoACAaR24pdt8VlaWsEY8MjJS9KHgOA6XLl0CAHh6etokg7537x5ycnIAANWrVxdFs87NzcXdu3cBAGFhYQgJCRHVvXTpEjiOg7u7O2JjY0XHkpKShOUCVapUEeUGLigoEJYABAUFoVy5cqK6V69ehU6ng1QqtVmXnpqaitTUVACm5QFP+zsCMP32N27coHfEc/KOuH79OjQaTbHeEXq9HoBJJq15Ft8RPM8jMDAI5cLDwfMAz/MwGDhcu3YdWq0OUokElavEmgbxDwbw6RkZSE/PgEQKVIypAG+Le8hxBty4eQMFuQZ4ursjyNsHHMeBN3JQq41Iyc+DTqMFzwMVKkSDf9CmPicXytRU5ObkwtOdR3iIPxQeHiZlg+Mhl3JIvZ+A1GwGMpkMPt4+grKRrzIiLy8fOp0e4AFPLy8wwANlhodOp4dGo4GPXItgfw+ENWoEmb8/wPPw9HZDUvJt3LiUA+gMkKamg+MB8DzUnBQGvwDoOQ48D3h5eYFlWfA8oM/NhSolDQaDAd5MPnyYAjAMg4wtR8HzgDtrgEyViiv6KOh5GSQykyLG84CWl0BvZMA9UHQYhgUYBg82wT+QGR8uF0FQIqhhQ3hXjQX/oL+MLBdH9yYiJ10N5OSCM5qyNBggBe/hCY5hAAAsKwHDMCYlyWiEQW0ad3oachCiuQ+GZWE+qdSoRbn8m7gQ0ByZ7uXAw9QGGAY8GNG2I9z1uQjPuwX38HIIbt0SACCTSeAdpcHxPUlIua13WLcw5AYVInKv2eyPyTqHWwH1cS+grostmp5bCWdAeeVlSDw9Uc7t4fv97wtbkXmTR3h8DZhUKL+HVbO0wO17Dtp98MzzHOQpd22ORuQowXiUQ1rYg++QHtD9uQ8NGjV6bO8I83eqtCHFswyx/DjJ5fIiy5vLGAyGMuuTMxiNRpuUMjzPF/rRNRgMwnFrOI4TjtlLVWM+Zr7uyMhIwc0gKytLOG6ecbLXJ0ft8jwvGoja629x2nXmWgtr195vbG6XsfPyLkm7pfnbWGI0Gh32ybJde/Ki1+thMBjsrnsurF1HcmiWmfv370Ov1xfZbmHy/SjvYWFy6Mw95DhOpCSYKc49tO6TdT3rdh/nO8JRu648y5GRkYLiY69fz9o7QqfTCe0LM/wW16pR68BxPNQqHVhWYlIy9Byy0guQlakCOEDG5sOglT2Y0Qc4jkfa/QKwEiAgiEV+nlZol4FJDnKy1dCojXDn7kPCsOA5DlqNHrlqA9KycsDzQGYycN9PC47jwRkM0GYrkXo/GQyMCPKXQJauBjgOPGeyZhh1WUhNykWeikHG2VRIpVLwHA+9nkOeSo/c3DyAB2QyGdzd3ASlieMAVUEBwBsQ5qmB8WYmfGvVNN0HHpC565F6vwCpiRrc2J8AXq0x3QcjA52bF9QsCx6AhGVx+d8TJmXLaIQ2PQNalRo8xyFKmoY0r5OmBh8oN/58FtIKgHtcOCTsRTCsSZHgwEDDSWE0cqZ7xjBgmDMPxvsM+Ae/Hc/ziDLcw13PQyjX9RXgQf2wKA+k3i/AheNKMNo74LTaB6dlYJTIwVtYllj21sP29AbT/wFEFdzEJWanSRnjTcVD1AkwcsDJ0JcBJAA4a1eWTcTb3Rueex03DAUIe/klyB5MgpSv6IeCPC32bkkrpD0TJ5BhZy+DkLw7uK8/L9rrp06FnzoVpyu//WBPgVU9+YN/ANKt32syADIEFmQj92oClAiAooJp0qxclB/0ej2uns+BQc8D8BBXzbTM966yatc0oWRQqcBrTMeUD/ql0OUgLP8O0spXh1ruA+jsXupDrLvMAhKdGu4qHdgUJYwhpvZ5nke27D4yMgtQoHzQB8tPoZa3aMzqvcU+GH/yEhgMnPi40QheowHHAUa2pKn+Hl4MzwNzLi6FV14MAlC+kDqF4VjZdXzE+XZ5gw6qW+fA67XgDTogKAFA4UvnnGnX3n6tVCHaU8A9nBR+HOOI0kwtaQkpnmWI5eyuo0GIJeb1oI87h6dEIrEZuDMMI/TLnoBKpVKH/WZZVjhmTyEwHzMriJazwbm5ucJx68GWZZ8ctcvzvN1+Wfa3OO1a/t/RtRbWrj1lWCaTwWAw2B1UlqTd0vxtLJFIJA77ZNmuPXmRyWRgGMbldh3JoVlmzBYqe9di2W5h8v0o72FhcljUPZRIJGDAgGUl0OuMJremB25OOg0Ho4GFVAIY9Ca3JfMHieN4SFgpNGojVPkGZGeqhMGtWqWHMlMPnc4IlgXu3MgwDdh5HjwHZGfnITtLD08fKQrydACnFtplJRxYVorMFA00ubnQZt0Fx5ncm/LydMjIzRWsDtrcWwBM7liGAhXys7KRn5cPP28e0nQtshQeJuWI4+AuB/iUeNxNZiGXShF/LOmB2xSPPJUBBQVqGPQG8ABuHEwTXKZM1hkjNFot/N11yA+4i6y6dSDz9QXPA75+7pDL5bhwMgu8LgcXtlwTFCq1UQKDwhMGzjQSP/fPKeH3MajU0ObkwGjg4CfJR4r7KVyWyQSFS8Hq4a5OwXlNBah5N/wjuSIMtXScBAbu4dBrL+6arAQW1gye5+HD5SKYycatOnXhVSkGPABvb3fIvWT4Z08ystM0+OvPTYJVhAMLXiIV2mCQ8kCZMl0PeB5gGHgachCqTcJJs6zxgIzTIjL/Gs77tUC6RyT2rE+1I+Vm7CkDgLs+D+F5N3EjPBzBrVs9kG0JyleR4/YVFe7dKMAxZNmtayIH9hQYuUGHgtyruGel+MRknUNyQH3cDagLQPvgnyWWAzjrwZMCEk4Pyd1byLqjRDmPMOFI5Ro+yFcacfuKWXGx9FSy/oarLf6WAPACeB5+GbeQhzxRSUnONag9wpEeVgswwvTPksKUDMb0T1ughyFfA+88jckaBYDnPMBAgoI8o6kPjOJhWzwAvWVjlidlhXKcwQgjJ9Z8OHUpel1ZXU/ZjW9sJ8qK1YrFwF2r1yJRlwq+BG0XVpMphT5b9tfAGTDv5mrE6JrBEwGF1CqMslXkYKUYSVgJSvLbOa7JlKhdoX2DHtqk68K2xEdTSpJmS65boPjcePjdL6txhEwmA8dxDsezZQEpnmWIpfuPVmv9YbTFXKa0gxy5SuXKlUXuX4BJibZ2j7Ou44igoCAb9ywzEomk0HatXcIs8fPzE7mTWVPY2t3IyEgbNzYzXl5ehfbJ2nXOkvDwcBu3OzPu7u6Ftmvt6mdJcHCwXTdBwPTSKaxda9dES/z9/Qtdf1xYu+XLl7dxpzTj7e1daN3CUguVK1fOxv3TjIeHR6HtWruKWBISEmLjZmJGJpMV2q61a4slAQEBDtdhsCxbaLvWLr1mjEYO3l7eKBdaETevpeHsnXTkKuORk62GMksNVYH1FPlNu+3UreWH1HMnYVCrYFRrwGk0CONSYchX4QBfD8B9AJcd9g9Itrs3PPcG7hh2IaxTR8j8/QAAlauFoHKlqti24u8HpRIctnoJSrv7Q/JuI10vVjJM1owU/Fd50IM9+Va1JA/+AbYjehaAB/Qp6dBcu4183hue0aZ7zhl9Ubt2bexcsxsatR4my4cFOZaDb+v3t+kdzeYrIUkVW2/M1gxl+SpQyX2AohxY7CgaOj0PjaoAeenZkJQzvafc3KSoWaUK/pGmQ6tVm/prOcaw0K9sBsrmwYiRA6/Vio5yRi34AhXgbTsb7jJWpy1fvjyCgpS4d8PaAlWs5iwonUGldRvBwUGIiNDg4r/KUmi78HOVRjNeXl6oVKkijv5VtAXRieZE+0qmZDxs11IWVQYN1H5l49FVciXOVjHKVCmxIn4rqnEdIUXRXmuFtmuXkihctv1lzOZNpnRVI140m1HCtqyacJe5gXdB2MzyxPD8gzkZHgzP2fz+BhZgoIfMoDLbLsGABw8GHCMRrogR2jTP/pnalfAGSKCGG8NDwZrdnk1rPw1yDfK9M+Gfp4eHlgMLHjxYcFI5pHKAkUgg8w9DpioLKk4PluehKDBAbuTBgoebJBtuvIVayQD6AEDKiL9t5j4WdxwBmJZWFFbXermBJcHBwaJYNaUFKZ5liOX6J7P/dWGYyzyLi4kJgjBhNHDIzlIhIzUPmekFyFVqULVWKDRqPTRqAzRqPXQ6Axq3iMH9BCX2bPmv2OfK+Oco5JxYacrNv2f6oJWvV+x2zR9qy0GlyahW0uGq/fplMagUjpSoy49uUGn+s8S32NG5SkMxEvXXPFgr5Q7DrBiVgpXExiUZJdO4CrnWspDhBGUSbiYnlU67NpRWfx/uuaNMwMpb61AdHR8c480OxQAYMBIJwDxUBgycaTKE5XlIOFNDEt4ACac3tc4wYACwDA8jC3jocmCWaLOyYWRl4MFYXCX/QDZ54TdhGAZuUMNDboSfvwe8Az1NVuYHuma+XzrcNSxCM3WQsaY+GlkPeESVh9TNzaQ4cHrcyLwDMIC71gjffCPkrARe8jz4ugPuMvcHrtQMJJAgPisRHvwtyHUmq7pC7gGWYcAz7pDKPIRr4AGkqzJgft8yADzdFPDw1SIgxA0VG1SAT2woGAaQylkgAUgPv4U8v3hEpeoQ7uYPqUQKVuKBiJoNIffzNbXNMlh2fh0MnBEyA4ewDD1CvQKgcGPh5xmISkHRYFgGLMOClTBYezUNat1VgL8NngGi/SPh6eYJGeuOSkEVTWVZFiwYbLi6A3l6FcDw4BigUlAFBHj5QqGoiBdrtYbUXQquIBvG/Eysu6lGStR/SI24Ag8th1qMJ0I4BqxBh8Y6I1hdPhQV68KrRjP8fm0HUo0qMDygMepR2yMYIekp4PMyUTdf/J37x9cD2bK7UPB3kC9lEa3WI0xnBAOgvEYPFoA8rCKCXhqKc1cPIo/TgQGg4gwIkXrAM/ke9Mk34WPgRN7K4RkMjEwOWLeLgByQ8TxkeODRzEog8fCG1DcYIa++BG3SDTBSOViZGxiZHIzUDUatCrymFiRe/sjjpJB6+cLf3zTmj/t2Ae6nPDwXx5SNxfFxQ4pnGRISEgJPT08UFBQUmSLFaDQKC3kdWXueFyz9ysvK1E88WzwpMsPzPDRqPXKy1cjKUCHlfg6UWSrkKjXIz9WiIF8LrcZ2xl/uJoFEKu63RqOHj7+HTVnXeHSDSvB8qStFplOUQaMwuRxzHFcyxchuVdNOxo6S6zKiNh7Ouhe7uULqlkp/wT8YXAMsazqZRMpCLpeY1h9yRgj2NKkcrFwKwFTedF0MwHEwqlUAx0Fm1EBm1MJaChiJBG6cBj5ak+uvWYHgwcLwYA2apaInKBgwKy9G+Ej1kHl6IjjUW7inZ1Mv4bYmDT6VAMm9ZLgVaMEyDDiwgF8wPKMiAYYBywBpBZnI0+WD54xQpOXCTc9DwrLw8tbD64ESAYYBwzLQeftBpStAkPYcePCQSaRwk7qBBwOpzBcSlhGUqFxtHgr0qgf3iYdMKoWHzAPe5fQIDyqHmNphYGVSMAD+Tt6PbfH74Fk5AMFZOkTlS+Cv8AMA+AXHIKx+AzBgwLDA6fsXcTTxFAAgNFOHIL0Mwd6B8CjPIiaoCrzdvcAwLBiWwU2lP44nngbH7QLPMFC4KVApoAIgASK9y8Nf4QNWwoJhWVzPvI2D946DY03TUJ7uCtQOqwpW6oNqEQ0RW+sFsG5yMACOJebCeE+HS43iINVxCIE7WsU0BcCgZrnqqFqxjvA8nrl/ETMP/2r63YwcFDIPdK7aDmBjUTu0KqoHP/QQupx2HV/u/xHAPwAAuUSO7tVMym314MqoHfowONXNzLuY9PcsYZtlWLxaozMAH1QOjMEL4TWFY4k5ycB/QGKlc6a6AF6r0QUMw6CifxQaRtQVymYUZGHE9tWip6FHtU6QsiEI8g1H08j6wrcpT5uPoZs/AvBQy+ga2x7uMneU8w5FywqNhP06ox5vrh8tavflym3g4eYJT89AVI9pLDomY6XQBSphYFj8F8kjsnI9+Hv4wt/DD82tJhv38Z4wckZwPIcCvRrlomsiSBEAT5kHqoWKA3pVr8JDb9SD4znk61SoHVoNAW4+kBr0KCf1gFGdB1auAOvmgW7lX4TRoAVv0EOj0yCYdQOuHIfhbiKyzm0Utfs+A7C8SXFz+OXW5EDi5o6h/raeUqr0HOjybT0KW+aobfZZw6lywUjliHXzszmmdcuCRuIG1t0DrJsHWDcFWA8veLl7gVX4QKLwgcTTF/KQ8pAofCFR+ICRe4i+JzJf+x5WgClo25WLF8EwiahTpw58fX0hgTgIKcc8myras3lVTxCVKlXChQsXhCiSjrh9+7aw8Lcwd8HngUuXLgkRIQtzESAIM49SZnieh15nhEajh1ZtgF+AAgl3s7Br82XkZKtNYeBdJGHn35AZ1Ijo0R14MGDXqPXwK6ni6Ugx4p0MGiAoI5YDfx4sbwTLGSGVMJDJTNERWQkDlmXg7eMGTquFIT9fGOgbGSlkvj6mj/KDATYYk6XBWJAPo1oDBjzcDAVwMxQ89BRjABmvA8OyCFAnA5YKBA/oJW7gGVbYZhj7yoYfnwcfqRYhwe7wifAFAKRmJEJ19j4iYtzhyXhCeeas4Galk7jDs1p1yDw98FAxMv1fl5mJgtu3wTAMfDzy4efBCtfCMICM8YGPpDqqG7OgZ3ItrhXQQQoOJjcv5sF/WObhcRYAGBYKPz185YEIaBwNv1qmQBZSqckxq2O3GijIykXW8RPgNBowDAMDI4VXrVrwCA6CKQgm++D/DIwFBcg5cxZgeMilXvB0rwOGZR6WYVm4yVsgQs/ACAYMa1IoWJYBzzAwRTIxrcViJSzAsGCkDCQMC0bCQiJhwEhYMJLacA8Kgkf4wzWTANCpR0281LUatJmZ4HQGMBLTBct8fSBViINpADCtVdbpTfeEZQE7MQfsYeCM0Bl1UMjEz8yemwdxT5mEbHUO7uelomZwLEK9w2DgQtG9+suigeLU/WtxKfMaEAggEKgRXAU1Qkzf425VO+DGlevCeyZLnY4Ld4+bKkYDsYEVUSesOvQoh6ZV2sDb7eFylT9Or8Kem4cAmKyTFf3Lo345U7svVWoFPw9foeyK8xvx99W/hO3yvhFoHFkdRkQjNqY5gjwfekTJs6QwynTIDUhBbgCg8Q5Ds/KmdutVaIww74cD3/ir15CrNrnO5wYCuV7BiKgQDSOAkPINEOnzcInIrZuHcPn0ZZhd1wMVElSMMS2rCI94AdH+D5epJN+V4C5zRNj2c2dRq1IYjADcwqMgUzxcOiSTPHQPN7ixyJXLYPQ3eYYxvl6i38K09s8EL2FhZAE8kAPOep0gI167xlm83zird52UFQ97LddIWpeVSaTwdfOG5EGwLSPPwVvuCZlEBg8rOXOXuqFxxAuQshJojTpoDTpUDCiP5IQkKPOycEl5Sfg2uUvd8NYLr0HCSKAz6qE16vBCaA24y9xs5FfGSvFVh48hZaXgOCOM4BHiGQC5RA4pY7tm788+c232OeKTFz94eB84I3i9Dtq0eBjS06C8ewNcQQ4M6lxwqjw01hSA0+SD06rBG3TgDXHgtCpwABIftOFZvTm8ar2ICiL3TBaAHgU6HfQ6WwVR7sR8l1GVB1ZqPzME42C/CFYCiacfJB7ekCi8wXp4mxRH7wBI/YLhWbXJA6uk6R8rlQMSaZl4awAmpfPixYvChPmFCxeeq7EuKZ5lTKNGjXDhwgVkZmbaDdlv5vjx46I6BEE8elQFOmSk5SMzvQDZGQVQZquRl6N+YK3UoXm7SuCMnCnwzQPqNIgEK2GRkWq99tB5tDojJHotjBoNJArTwEOj1iO0nA/KVwyALDcDhusX4W4ogLuhABLeiFrTJoOVSsAKCoRJ8Ulcsx5ZR4+C4QGZUQWJhIXEwx0SDwWkXp6QR0VB5uuDGJ9MyAP8IFV4ACwLlmVNypCENblXSSUmJYRhTQM+QVlhwbDRYOUyeFaqBIlVqqixX3SEoaAA2owMgJWYFCq5HG5BQUJQFEuMWi04g/GBUsM4VDZaFPvuOrjnF9Kg1+tRs4Gf6aM/qHTPUDbZoU2RNhHlB9R1NgpkMFAvuox64xyMRAJ3B+urbcqyLIxSFjqjFkYjB73OIFK2AGDVhS24nX0P2epcZKiyUCesOiJ9wsEyLF6r0Vk0YDyReBYXUx+mWwhSBMDXw5Tiw8AZTMrQAyyVRaBwBcZSMbI+bh1Z0lrZ4UTKjnVZcbuFKUY2CpfFQl/OyqtBYvU8ia6NK1w54wrpg3V/OZ574P5q+6wrZB4o5x0KKSuFzqiDu9QdwYoAMAwDD6k4tkWgwh/tYppDwkqg0qvBMiyqBVUCy7AIVojlIdw7GO83GggpK4XaoAHPc6gdVh0sw8LTSpGL8AnF7C5fCsokwzDwc/cxvfOsFI1Qr2As6PmNzXXYw8vNE+NbDrfZfyFbahNcUiaRoWvVDk61yzAMqgQ6jtPgCE6vhbEgB5xWBaMqB1xBLoyqHBgLciAPqQCJdwD0WffB67XgdFrwRlMf8y8ehEFZWICxQs6pzgMjs78WlpE5oSA6wGjRLsNKTMrhA/dV3miExM0DrMIbEg+TFdL0LwBSbz9IfALBunkWqkRKPLwdHittrJVOwOTxmJycDMgeb3yXRwUpnmVMp06dsHDhQgDA8uXLMXXqVJsyRqMRK1euBGBaF9qyZctH2scnDU9PTxgMBrvRuwjCHq7ITH6eFvG3M5GVoUKuUo3sTBXSknOhVukfhJF3TG62Ggov8YdVo9bD1891yyTDGyEzaiEzaqDQ5sJXm46oQCCwegTcPWRwd5dBImEx6IPmSD9yFNePnxHqsm5yRIS6Q2aRI8+Md8920DStCbfgYLiHhkDyIL/co0Tq6QmpRXC1wpC4uUFS/DFJsaH3zKOD4zhkqLPBPXDrM3BGlPcTpyT4+cQSXM+4jRxNHtQGDRpG1EW0X6RdZfJm1l1cTL0qbKt0Jrc6U9tWyqRcrExqjTrR32LFUyyznNWaVUuZkepdsbJZK5OFKLQPlEmWYU0KHMvCTSIX1gdaEqjwR5XAGEhZKVQ6FUI8gxDhEwoGLNytHqqK/hXQrWoHSFkpcrV58HHzRp3Q6mAZRmRxBYDaoVXxUcv3IGUlUOk1cJPIEe0f+UCRE1upG0bUxR89v4WUlYAFAwkrEd1TS2qFVsVPXabYPWZNpE843ms80Kmyvu4+aFuxuVNlZRIZwr2dmwQpDUrrPcPzHHi9zqQo6jVQ3zkPfWaySZlU5YJT58GoKQCnUYHXmaySDvtUowW8araCITfT5pgjxdEZjKo8sA4UTLvtSqRgZe5g3TzAyD0gcfeEPDQGEoXPA6ukt8lK6ekLWVAk5MHlwUie3vd1VlaWkDfTkuDgYMTGxiL+r+LHc3iaeHp/waeEunXrol69ejh79izWrVuHZs2aoXPnzsJxnucxffp0IRl5//79H3tU28dNYRFECcIehckMZ+SQo9TA188dp4/HY+fGS8U+j0ajh8JLDt7IQa9UQpuZiRsn98Ij/hLg3fnhAjyeh5tRBQlngJTTQW5Qwd1QAA99Hjz0ufDUKeFmUEFilerBj8tFYLCXzXl9a1RH5VEj4FGuHDyiIiHzdjxD61WxIrwqViz2NT4v0Hum9NAb9dAadPCyUtzmHl+MG5l3kKnKhp4zoGlU/QeWSQZRvuVEilS2Ogcp+Q8TlmsNJrc8jueg5wyQF2KZLFyZFJfVWQzIdQY9LIOVVvCNRO3QanCXukGpyUWlgPKC8itlJSKZyUvWItDDH1JWimy1EmFeIagcGA2WYW3cMDtUaoUG5WpDwkig1qvh5eaFYM9AsGDgYWXleK1GF7xWs4tdi6E1L0Y3wYvRTYosBwDVgiuhWrBzMh/sGYhgz8CiCwKQS2Si34YQ4+g9w3EcjPnZMOZmwKjKAzgDjAU5giJpLMiBe1Q1yPzDoUuPNymdFlbsklgmjapcxwqiM66rdmDdFGDk7pAofCALCAcrfRBQRyYHK3WDe7kqMNbvBImnH6TeAZB6B4CVPz9j3cKUzurVq4NlWSg1uQAeZoAoq7QtjxtSPEtIYmIi2rdvDwCIiIjAvn37bMp8/vnneP3116HX6zF27Fjs27cPLVu2hEajwebNm3HmjMmSER0djeHDbV01CIJwDY1aj4y0fGRnqqDMUsFo5FC3YSTCInyLrlwIWf/dhK4gBfrcPIAzQsrpwWgzIdWkolbBAciNarg/WKfIFvLZYOVyyEKDIff3h1tQINxCQ+BRLhx+L9S1W17u74/QDu1L1HeCKA323DyEu8pEpOSnIyknGXXCqiPYMxAyVopeNV4Wlc1QZYmUyYeWSb5IZVJnfOieqDPoRGV95M4rk9WDq8DIc/Bx84TOqEekTzhqBFeBXCqHj5t4Aqdj5VboWLmVU/fhhfAaeCHccVooS8K8ghHmZT8dljUUUO/phOd5wGgAp9c8cF/VgNfrkH/lCPSZ92FU54JTF4DTFpjWSeo1dqNsW7UKqW8IOL3t2sgSua4W5IBxoPSxMjcwUjkYuTtY+YOgOu6eYD28IHH3MrmxKnwhC42GVOEN1sMHEg8vkSVSFvB8B8i0xpHSGRISgurVqwsTcJxNzuFnE1I8HwE1a9bETz/9hI8++ggqlQpbt27F1q1bRWUqVKiAP/74Q5T7kyAI58nOVOHU0bu4djkV1WqFQioTu7dlZagQUzkQbu5Su5FlLZG7SeChkMPTSw42JwOIvwE3fT58tRnw0OdByukg4Q2i2D2hBXfttsVIJJAHBkIRFQnvqlXhW7cOvKpUAmsnmTNBPA7uZCcgJT8NyXlpuJV1DzH+UfBz94XeqEfn2LaiskfiT+FK+g1hO1udg2DPQOg5A3RGvUhBDLRai6c2PMyNWpQyqX2gTMolMhg48fPaMKIOgjz94S33goE3ItwrBBX8IuAmkdu4eTYv3wDNyzdw5XYQhEN4gx76rGToMhKgS0+APiMRiioNwcjk0KXb5i4uuHKsZJZJBwqi84onY1r/qPAxRV/19IHMPxxS3xAoKjcwKZpytwcWSjegZW+wLH2bSovMzExcvny5SKUTgCh2xLMMKZ6PiA4dOiAuLg6LFy/GoUOHkJKSAoZhEBMTg06dOmHgwIGkdBKEi+TnanH62F38dyEZ6SkPg/tkpOXbWDezM1WoVDUYFWODcOtaOiLK+8PX3wNu6mxok+8jsmUjhEQFIjDEC+4eMuGDkLLnL9w6c8K5DjEMZH5+cAsOgmdMDHxqVIdvrRqQBwaWWYQ8gigKlV6NPG0B9EY9NAYtKgdGi47//u9y3Ml+OGjWGnSIDTK5a9sqk/6iupbKpFqvFpUNsiqr0quhkLnDXepmE/ymTUxT1AipAh83U1qPYM8ABHj42XU5rRNWHXXCqjt59QThOkadGtqkG9Al34QuLR76rGQYCpQw5mXZRAVn3TygqGrf5bnElkk79VmpHDK/EHDqfEjcPYX1kKynL6Se/pB4+0PqHQipT5ApuI6DdZFSL79i940omszMTFy6dMkm2Jg9pRMADHzhE+LPCqR4OqBJkya4du1akeUiIyOdKgeY8nN++umn+PTTT0vavWeae/fuCYvxK1So8Li7QzxhqFU6nDkej//OJyMlKceut1Jaiq3iyTCm9Z5dXq0N5GcjccWfUP5zAYa8fHgBiOlUHf7RtlGnPaKiwLqZUoRYI/X2hjwwAB4R5eBdpTK8a9SAR7lwSL28SNF8wnnW3zObr+zGpdRrSMpNQaY6G/XDa6NiQHkwAKL9o0QBb8K9Q0WKp0rvmjIplDVoYfnUNYtqgAp+EQhSBMBLpkCIV5DDwDMVAyqgYsCT/Ts86zLzPMIb9TCq8pB/5Ri0SddMCmZuBjhVHpxdZafLSIRXrRftHtM74z0pkUHqHSC4sZpzREp9gyELjIC3wudBJFd307pJskg+8ThSOkNDQ1GtWjW74wPryM7P6giCFE/iiSMnJ0fIlUYQgGn9zN1bmTj81w3E38kCZyx8QKDMVIHjeJSL9IV/kCf8AxSQu5led57ebshNVCL79FkY1Q8HzXnXb8C/fj2btuR+fpAHBkCvzIE8wB/u4WHwrBANr6pVoIiMgDww0CalCPHk8zS+Z3ieR7YmB0k5ybicdh0+7t7wcfNGvq4AHSu1EqX4uJ0VjwupV4TtPJ3JI4AHkK8rgJ/7w4jI5ayifKoND58LlV4DX4uy1YIqoV3FFghSBEDCsIj0CUO14MrwkHnYRG+N8Y9CjH9UqVz7k8DTKDOECU6rBqctAM8Zoc9KNkWCVeXCqCkAABT8dwT6zKRita3LSAQsgvIwrASs3B2MzA067zAwPAO4eSKwXHlIvPxNAXZ8AiH1DoTELxgSeeFR0SXu5A33NJGRkYHLly+7pHQCgJtRDblBJWzLOI3dck87pHgSBPHEYjRwuHzuPo4fvI2U+7lFlmdYIKqCP2rVj0TdhhGQye2/4hQVysOjfBTyr10X9uVdte+5IA/wR5X/jYJbUBBkPj5gadBJPALMOQYtmX1sIY4mnBa2qwZVQu3QagCAAp0KPu4Pg+VYp4zI1xU8/FsrVjwjfMIQ4hloUiZZCaJ8wtGgXG14yNwR4OEnaqd+udqoX66sspQSRMkxqvOgTbkNXfJtaFNuQZt8GwZlKjxi6sK3WQ9oEm3f9azCB3BB8ZR4B0IeHAlZUBTkQZGQB0dCHlgOrNwNjIVV/64kVJisCKpTp1Suj3iyyczMdFnpBAB/aT4ich8GY5PAcUqcpxlSPIknjurVq9sddBHPF5fP3sfurZeRn2vr4moJwzIIDfdGtdqheKFxFHx8FdDn5iF12zYY8gsQ/fabNnWkCgX86tQWFE+pjzc8Y6Ltti9xc4NP1aolvh7iyeJJe8+odCqcSb4MvVEPmUSGLLUSL1dpI3JztU5xkad9uK45T1dQuOKpLYBC5g4vuafIMgoALco3QovyjUrzcp5JnjSZIUy5IzX3b0Bz7zK0929Al5EATmV/klKXkQCJwn5kc4nCNicyALDuXpD6BkHqHw55cBQ8omvDLTQarJvCbnlrSGaeP2JjY8FxHFJTTUGlwsLCULVq1SJlICAoAPGyh5MfcsmzKTOkeBJPHOTG9PzCcTzSU/Lg6+8BubvUsdLJACGh3qhWJwwNmlWAt49pbUTejZu4vngHMg4fAW8wgJFKEdGrO2Q+toOKwBbNoc3IRPCLreD7Qh1KY/Cc8aS8Z/be+ge7bh5EvDIJPHjE+EehQTmTZSRbrUSoRRqOcO9QUV2RFdPibwCIDaqI12t1Q7h3KPw9fBHlE26TZ5NwjSdFZp5ntKl3UXDtBLSJV6FNuweuIMfpusa8LFHaDzMMGMgCy0EeVhGygDDIgyvALbwS3MpVhsTDcc5kZyCZef5gGAbVqlUT/nZG6QQARWQoFMEPFU93N3khpZ9eSPEkCOKxYzAYkZyYi6R72dBo9Iis4I/KVYMRFOqFjNSHVh3/QAVeaBSF2vUj4BdomnHmdDqk7TuA+9vjUHDrtqhd3mBAyu6/ENXnNZtzesVEI/Z/o8r2wggCAMdzUGpykZafgWi/SLjLHgaRUBu0uKdMFLazVErh70yVWPE0r8WUS2Twd/eFv4cvqgdXhrfc0ybabDnvULxWs0sZXRFBPBp4ngenzoMhJwOG3AzkXTwA1TUno4xbw7DgtCrIAyMgUfiANacYUXibFNK2tt4xBFEcrJVP4iGkeBIE8VgwGIw4ezweWq1R2DaTnJiD6EqBaNIqBnHrL6JCpQA0fbEiqtQIBcuaXuKa1FTc374DaX/vg1GlsnsOAEiO24nIV3uCobyZxCOC53kk56fhUupVHLx7AhzPoV54LQCAh8wdFfwihbKxgTGiujnaPOiNBsgkUmSps0XHKgZUwK9dv0KAwn6aEYJ4GjHkZUObcgu6lNvQJt+GPisJ4W99Dc3tczDkZYLTP/R8cdbFFawUbqHRkIdXhFtYJbiFV4QsKBKsVA5ExJbRlRDPG4W5UZPCaR9SPIknjtzcXHAcB5Zl4WPHRZJ4usnP0+DIvls4dzIBWo0Bvv4eqNsoUlTGaORwPyEHdRpGIjzSF+Wi/AAAPMch88S/uL95K3L/u2KndQtYFoqoSAS1agWQGy1hRVm+Z47E/4s5xxcL2zKJDC+E1QTDMEjNzxApntH+UZCwEhg5I1iGRYCHH0I9g1AlKNrGiimXyBDkGVCqfSWch75NJceQlwVt8i1o79+EJuk69OnxMBYobcvlpkOXdd9mv8TTz7ZRVgKJpy9k/mGQh0TDPao6PKJrOVy3+SghmXl2SUtLw71791CnTh24lUJk+zRZJg5UvSds+3EMOpe41ScPUjyJJ467d+8KUeDqUBS4Z4a05Fwc2nMDVy+lgOMeRnzLyVYjL1cjrNMEAF8/D3j5uEEmk6BclB90OTm4v2Ub0vbuh16pLPQ8Eg8PeFWuhMAWzRHQsAHcgoPK6pKIp5iSvmcKdAXI0eYjLT8Dfu4+iLZIG1ItuLKorN6oh1KTC38PX6QVZIhmyeUSGd5r+CZCvYIQ418ebtJnc13PswB9m5yH53kYHyiZmqRr0CbdgC79Hjh1ftGVAejTE8C6KcBpxd4sjFQGWVAUWLk75CHl4VYuFu5R1SD1CzFZM58wSGaeTdLS0nDlyhXwPI/z5//P3n3Hx3GX+QP/zMz2Xa1Wq967LcmyJPcaJ06cXkhCCoQktMAPDo4DDg7uKFfg6BxwQOhcKAHSSE8gidNc4h5LtiTL6r1L2+uU3x+KVhpLstV2Z8vzfr38suY7RY/sR7P77HxLPerq6qDRrCz/xmwixOGZGcPd7MUnVoxVVHgSQsJGkiS0nxvBgVfa0Ns1ueBx/d02VK7PRlqGCXlFKUhOmVrXbPJ0Awaeehr2hjOQBGHB8wEAFgtUBfkoveF6JFdVQJ08/+yFhCyHJEnosffj7cFGHO45iV57P25auw9qTo1MY5qs8EwzWJGdlIFB50iobepJZy4yjGkQJBEqZqbr9+XF2yP6sxASDpIkQvQ4Ibht8A20Yez5B5d9Lf9QB3Q5ZQi8U3iyGv3U7LLmNJg3XA3OmAyGpeETJPJmF50A4PF4cPr0aWzYsGFFk0m5HAzSh0pD27xmcR/SxBoqPEnUycrKgiAI4GhMXszigwLOnOrHgVdaYZvwXvRYS6oBVbU52Lq7CDr91E178vRpdP76/+Dt7bvouYxaDWNJMXQbaqGrWAtdVhbSsrNX7ecg8Wup9xkv78MXX/omBEkMtY26x5FjzsKYZwK8KEA1643w+swK+IJ+VGeuRU5SJnbkb0KOOXO+S5MYQa9NUx/A8I7RqTUyB9thrNoFwTUJ3jEGwW2HJArvHCcCrAoQ+UVdl1HroM0qhiarBNrsEujyKgBJgjotH6rkdLBaQ0yOmaOciS/Dw8Nobp47zMdisUClWllJxQ/bAMwsmaX3iQseG8uo8CRRJyMj49IHkajk9wVx5I1OnDjcBbdr4cWPGQbIzkvG1suKsa42B5xqagymu6cHHT//FRyNTRf9PmpLMlK2bEbmNVfDVFwElqasJ0s0331GEAWMeycx5p6EO+jBltza0D6DWo+1aaVoGm0NtY28U3gKkohxz4RsBtr7at+ND298T0y+WSbzS7TXJkmSELQNw9fTjMBwJ4LjffAPdkD0OkPHsAYzWI0OvHNCdi7DsOBMFgiOsbkX5lTgjClQJaVAnV4Ay7abobZmx+UTzETLmXi2UNGZm5uLsrKyFd/rk0R5ScZdopNXrKLCkxCyKs6e6sdLzzTB5Vx4XIJKzaKwJBU79paguDQNzDsz1PonJtD1m4cwdugwIEnzn8yyMJUUI/PqfUi7Yg9UOt38xxGyBO6AB/VDzTja9zbeHjyLdRlrUJxSAACozlgL/aylT+qy18kKz1HPBDKMqcgwpsGokc+2SWM1SSyRJAnB8X74eprg6zuPwEgnghODkIIXH2cWGOqAsXLnnMITADhTCgS3HSqTBVxSKtSpudBml0KTVQx1knWquyxHHxqS6BfuohMANKy8JIvXjyyp8CSErIjAi+BULNpaRhcsOvUGNcorM7HlsiLk5CWHbtJBtxs9f/gThl9+BRI/f5cszqBH6vZtyLn1XTAWFoTt5yCJ6RfHH8aRvlOh7SHnaKjwHHaNysZu1mWtwyvtB1CXvQ4VqaWoy14Hk9YY8ZgJWSkx4IXgskFw2zH++sMIDLRB4hfupbIQ/2A7zFtulLWxGj04kwUp2aVT4zJNVrB6ExhaAojEoKGhIZw7d25Oe15eHkpLS1etV4sgyn8/xDj9faHCkxCybEMDDrSfG0HN5jzsu6kSLWeH4PfNFJDF5Wmo2ZSLNVWZ0BvlT4AEvx9nPv+v8Pb3z3ttRq1GxhWXo/AD90Ntojf3ZPmCAo9RzziGnCMoSy2GWWsK7duQvU5WeA67xyBKIliGxaBrRFZ4Flpy8eMbv0bdZ0nMkCQJvH0EUtAPSRQRGOmC4LZDDPhCx4hu+5KLTlZngja7BNrsMqiS02EoqQVntIAzWsBqqDcKiQ+RKjoBQG/NAIZmtiUuPku0+PypSEw7e/ZsaPrx6upqpcMh8xB4Ea3NIxgasAMAmusHsXFHAa68vgIvPnkWZRXpuPLGSmTlLLxuGavRILmuZm7hybJI2VCH4o98CPpFThREOUMuNO6ZxPH+erzeeRieoA+7C7cCAAxqA8zpplDO6CEfV8aLPPy8HzVZlchNypLto4IzscXCfYZ3TiAw3DW1TuZAK/yDbRA9DhjKNiF5+y0ITg7POYczpSA4Pv8HgADAqDTgklJhKNsIXX4ltNklUCVnyH4fVEaaRXw+sZAzZH6RLDoBQJ1iBuAObTNcfL7eUOFJoo4oiqE/JPp43H40vj0It3umW63HE0Br0wg27iiANd2IkjVpl7wpMwyD7JtuxOSxE/CPjgIMg6Q15Si47x4kV1cv6aZOOUNmOz3YhG+8+ePQNgMGASEIDafGoHMYFemloXwxqPWoSCuFTqVFTVYlKtPKUZpaqGD0JFpF231G8Lnh62qAt7sJ/qEOBMf7ZRP/zOYbaEWKYf7ikDOlhL5mVFqoktOgTs2FJrsEurxKaDOLwOqM9MHLMkRbzpDFGRwcREtLy5z2/Px8lJSUhOV3gdUYMbvwlOJwsi2ACk8ShXQ6HTiOW9F6SCQ8jh3sxFuvd6B6Yw44Tj7+gOVYsAyD0rXpsnZnaxtYtQrGoqI519NnZyF97x5MHDmG/Hveg9RtW8GwSx/XQDmTmCRJwqTPDl7gkWFKC7WvSSuGilWBf2cpBwkShl2jyE/Owbh3EgEhKMuZ/7jys2DjdDwNWT1K3mckSYR/sAOe1hPwD7QiMNoLwTkBYIHJ2C4gehyAIB9Hz7AcOKNlatKfzCLoCqqgySwCSxNjrRp6bYo9o6OjES86AYDTyYcUMWx8lmjx+VORmLZmzRqlQyAXEAQRzz5Sj4aTU92x2ppHsGZdJhiGgUrFYU1VBjKy5d1qvYOD6P7Dwxg/9BaSKtZi/bf+e84Nm2EY5N52GwreczeYFaxzRjmTOARRwMmBs3i98zCKUwogQYJFZ8Y1ZXtCxxjUeqzPrMDbg2dDbUOuUWzMrkZ2UgYgSZQzZMkinTOi34vAWC+C4/3gnRPw9TbD2/72sq7FGswQ/B7oC6rAGZPBGVPA6o004U+Y0X0m9lgsFphMJrhcrlBbQUEBiouLw/rUf8gh7wbvl4Jh+15KosKTEHJRTocPf/71MQz1O0JtwwNOmC16lFdmYl1dNvQG+SfkEydPofnr3wTe6V7kPNeCiRMnkbpl85zrqwz68P4AJG48dOpRHOg+BmdgqjuSKIkosRbC5nPAFXDDpJn5xHhrbi3Oj7VjY856lKUWY3tuHVIMFoUiJ+TSppc0YbUGeDtOg7ePQZr1RJNLsi7uQpwaupwyaHPKoM0phzanbM6YTELI/NRqNWpra1FfXw+XyxWRohMA/KJ8gi9xoaXlYhwVnoSQBXW1jeGx352E1zP3kzeeF7Fhaz441dxPzE0lJeB0OggeT6it89e/hXXjhhU92SSJIygEoWJVshd7m88RKjoBoN85jBLr1HjMAccw1qSVhPZdVrQNlxfvgCpOx8mQ+CCJAnw9TXCfPwZPyzHwjjHkfuSHCNpH5xzLGS0AwwLS7PGCDLikFGjS8qHNKYOusBq6gkqwtD4mIcs2XXyOjIwgJycnIh/aiMELlpSLz7qTCk9CyFySJOH1v7Xg4P42XPihG8My2LyzENfdum7Bm7EmxYLUXTsx8vIrU+eo1dBnZYH3eqE2meY9h5AR1xjaxrsgSCKG3WPYV7obFt1MF+6teXU43Hty5nj3GIJCECn65DkFpobeeJMoJQb9U4Vm60l4O96G6HXJ9vv7mqEyWsC7bbJ2huWgSc8Ho9ZCm10KXUEl9EU14PRJEYyekMSgVquRm5sbse8X6B8GkDnz/YPxOSEVFZ4k6vT390MQBHAcF9FfejLF6w7gL789jt6uyTn7tDoV9l63Flt2F4FhGPAuF1QLFJJZ114N26lT0KanI2XLZmRcvidsRSflTOzyBn040H0Uh3pO4NxoG6z6FOwt2QkA6HcMyQrPuux1oUmD8s3ZKEstwt7iHchOylzyJ9KUM2SpVpIzgscBV9NhuJsOwdd/HhD5BY91txyDZdft4N02MJwamtRcqNNyoTKnwbrn7pX+GCSC6D4T3cbHx5GSkgJ2GZMarja9JP/wlKUnnoRExvj4eGjdK7pRR5bHHcBDPz2MsWHXnH0pqQbsu6kSFeuzIHi96PzNQxg7cBAbfvxD6DIz5hxvLCxA8QMfgrG4GLrMjGXNVrtYlDOxa3/HIfz+9OOh7XHvJHxBH3RqHfodQ1iXMTM5h0Gtx6d3fBhFKfnIMKau6PtSzpClWmrOBCaH4TrzOjwtRxEY6cFi+87xjlFo0vLAGZOhTskCQ93FYxbdZ6JXf38/WltbkZaWhqqqKsWLT60YACfMjPPkLhjzGS+o8CSEAACcdh/++Muj8xadZZXpuOH29UhO0WPw+RfR8/CfQ+M323/2c6z7j6/OOYfVaJC2c0fY4yaxQ5IkBIQgtLOWa9hbvAOPnHkG/lkvuAPvjN10+F2hInTa1ry6SIZMyJJIAo+gbQRjz/8Mvt6mRZ+nySqBcc1WGNduhTq9AAzDgDOYL30iIWTJ+vr60NbWBgAYGxtDU1OT4sVnisqOAvvMzLYcqPAkJCLKy8shSRLNwBdBTrsPD/30MCbHPbJ2lZrF3uvWYtueErha2/D2V34Cb1+f7Bjb2/UYe+sI0nZsj2TIMpQz0c0V8GDAMYTOyV5oOHWoKy0AGDUGXF60HS+1vwkAULEcdGodtudtQFZSRtjGalLOkKVaKGfEgBfB8UEEJ/oRnByGJAqQLplWDFSWDJiqdsK88VqoktMvdQKJQXSfiT6zi85pY2NjGBsbQ0bG3N5bkZLEaQD4Qtvx2s+BCk8SdfR6Wl4jkjzuAP74iyNzik6zRYc779+E7Pxk9PzxYQw89QwkQZh7AZaFveGMooUn5Ux0GnGN4elzL+H1riOoy6pCoSUPADDptSNFnxw67ro1V2DCa8OVJTuxPqMCWrU27LFRzpClms6ZqcmBjsPffx6mmivgajw451h1ai78PRc88WQ5qK050Beth2ndbmizS8Fw9DYsntF9JrrMV3QCQHFxsaJFZyKhOx4hCc424YHD7pO1WdOMuO9j26GHHw3//AW4OzrmPVefl4uC970Xqdu2RiJUEkMePfscnmh8IbQOYdt4FwqSc8EwDFrHO2VdZvPM2fiXyz6uUKSEXJrgdcLTehLu88fg7TgNKegHABirdoEBI1tvE5ha+oTRGgCBhyajEPrSDTBW7YImNQcMo/xEJoQkmt7eXrS3t89pLy4uRmFhoQIRJSYqPAlJUJIkobt9HFm5ybj/4zvw8K+OwuMKIDXdiPf/ww5wbhvqv/RVBMbH55zLGY3Ie/dtyL7lJnBqWraCzFVkyZO9GZ/02THhtSHVkAKbzw5REsHSG3ASxQLj/XDWvwpP2ykEx/ouWD9zirezHpw5FbxjLNTGgIHako70Gz8OXX4VVCZLBKMmhFxooaKzpKQEBQUFCkSUuKjwJFHH7XaHxkQYjUalw4lLkijhfNMwBvvtGB5woG5rPj7wiZ149pF63H7vRmBsEA3//l/gHY4551o2bcSaz3wK6qToWTuOckY5kiShY7IHqXoLLLO6z27KWY90gxWjnolQW0AIYE/hVmSa0hUf80Q5Qy4kSRJ8vc1wnXkd3s4G8PbRS57jbjmG1Cvvg+C2Q23NgtqaA7U1G2wEuouT6Ef3GeX19PSgY55eW9FWdPpgQ+FkY2g7oInPccFUeJKo097eHpp+vKamRulw4o4kSTh3dgjDg1NFpdcbRP2JPtRtyccHPrkTjqYmnP3aNyF4vbLzWJ0WxR/+ILKuuVqJsC+KcibyJEnCoZ4T8Aa9mPQ5YNVbcGXJztBTTI7lcG355Xii6UXsLd6JvcU7QmM8owHlDAGm8tjTcgTOxoPwdTdC9DoXdyLDQldQCePa7dBkl0CbW07LnpA56D6jrFgpOgHAFuQwmVwZ2pYYmtWWEBLjJElC27mRUNE5zesJwunwgeluQcu3vwcxIL/hqZKSUPUfX0FSWWkkwyVRqmOiB78++We0TXRhY/Z6lFgLMOG1oXOyF6XWmbEy15TuwdWle6CftRwKIUqTJAmCaxKB0R4ERnthf+spCG7bpc9jVQimlUDMqcTavbfScieERLGFis7S0lLk5+crENHFuYN6tKXVhbZ1wbk9zuIBFZ4k6qSlpUEQBHAcfXq82p7+y2m4XQHkFlhCbSzLoKo2B2LT22j93x9D4uUz12pSrVj3tf+EITcnwtEuHuVM5DzR+AIePftcaPxm40gL8pOzoebUODN8DvnJOaElUHRRXHBSziQewetCYLgTgdFeCLOebKrT8xcsPBmVBtrsUhjWbIUrfS00GgM4jqOikywK3WeU0d3djc7Ozjnt0Vp0AkBAki59UBygwpNEnZyc6C1wYtn+55vRcKIfAMAHBRSUWMFxLNbV5SBw/CA6fvUbQJRPnqHLzkL1N74GrdWqRMiLRjkTOWvSSmSTBvmFAM6NtWNn/iZszKkO27qbq41yJjEEbSNwNx2Ef6gDlp3vhvfCJU4AaNIL4Os6E9pmdUbo8ithqNgJU+X20HhNS6SCJnGD7jORFwgE0HfBeuMAUFZWhry86BnucSGjJjGW3qHCk5AEcOxgJw69OjOjW3f7BARewk131cDz6ovo+dNf5pxjKCxA9Te+BrXJFMlQSZQRRREsOzP77PrMCmzKWY+TA1Nv1M1aE2oyK3BN2R5wNMaNRAHeZYO7+RBcjQfh7z8fak/ecSsYloMkynt1sDojtDnlUKfmwLTuMuiKa2U5TwiJHRqNBrW1taivr0cwGAQQ/UUnAGhZeUkWn1MLUeFJSNzr65rES8/M/ZS/sNQK13OPYfDZ5+fsS1q7BlX/+VWoaPHrhOXn/Wgd70SXrQ/XlO6BRqUJ7buv9na0jHXgloqrcX3ZFdDSDJ5EYWLQD+fbr8B55nUEhrvmXfrEc+4oNJlFCIxNPQ3hdEZo0gugTi9AymV3KT7TMiFkdZhMplDxWVhYGPVFJwCIovz+I8Xp/YgKT0LimM8bxKMPnYAoyMcO1GzMRUH7qxjc/+qcc5LralH5pS+C02jm7CPxr98xhF+e+BMACesy1gIAzo21oyZrZra9HHMWfnbzN6BVUY4QZXna6+E4+SK8XQ2Qgv6LHutqOoismivAag3QpBeAS7JSsUlInDKZTNi6dSvUMbLWOAP5nAgCExtxLxUVniTqnDt3DjzPQ6VSoaKiQulwYpYkSXjiD6fgcsrfjBWWWrGmZz9Gjrw155zUnTuw5p8/DVYVW7cGypmVc/ndeKzxebzU9gYESQTLsCi05MGkMaJ1vBOl1kIYNYbQ8bFedFLOxK6gbQT2Y8/Bfe4IBOf4JY9n9SYYK3bAVLULamsONKm5y/q+lDNkqShnlBUrRScQv11rLxRb7y5JQggEAggGgxDFuV2lyOIdeaMD7S3yBdCTzFpU972MycaGOcdn7LsKZZ/4GJgYHNtEObNyroAbL7W/CeGdLoqiJOLM8DnsyN8ECRJG3eOywjPWUc7EFkkUEJwYxMSrf4Cn7SRwiRkgGU4NY+UOmKp2Q19SA2YVJr2inCFLRTkTPpIkoaurCyzLorCw8NInRDtV7BTJK0GFJ4k6KpUKkiRBFWNP3aJJf/ckXnn+nKyN4xisG3sLvp4Lik6GQdb116HkIx+KyaIToJxZDVlJGbi+7Ao8d35/qG3MPYEUXTK25dXBrEtSMLrVRzkTGwS3Hf6hDgRGuiEG/ZAE/qJFp9qaDeO63UjedD04Y/KqxkI5Q5aKciY8JElCZ2cnenp6Qm2xXnyyUbz82Gqi3wQSdaqqqpQOIaZ5PQE89vuTkET5m7OtuwqR/sbrcM9qYzgO2Tdej6IP3B+zRSdAObNU3qAPTaOtKLMWIlk3sx7h7euux+tdR+Dn/bi2/HJcUbQDBZbldUuMdpQz0UsM+CDxAbhbjoG/oCutOqMQ3s4G2eRBrNYIQ/kmmLfcCF1OWdjiopwhS0U5s/rmKzo7OzvBMAwKCgoUjGxlnD4ngOheum41UOFJSByRRAlP/ek0HDafrL2oLBVX3FAJcfcXcfZLX4VvcAiMWo28O25H3rtvA0OLWyeEQccInj+/H1aDBbwowBv0YXfhltB+k8aIT23/EHLMmcgwpioYKUk0kiTB39cCx+lX4G4+jOz3/ScEt23OcaxaC7U1G8HJIehy1yBpwz4Y110GlpbyISTuzVd0Toul8ZzzCUq8bPvigwliFxWehMSRQ6+1o7V5RNaWmWPGzXfXQK3mgNRUlH3qH9H+4M+Qf9cdSLtsN83qmAB8QR+ePvcynj73EniRx56ibcgwpmHAOYwxzwTSDDOfstZl0yf0JHJ45yRcZ9+As34/guMDoXbX2TegL1oP/3CX7HiVORXWq94PbU4pVEZLZIMlhChGkiR0dHSgt7d3zr61a9ciOztbgahWzzwrQMUlKjwJiRNdbWN47UX5uE6jSYN7HtiKpOSZsQPmyrWo+fY3oDIaIx0iUUBQCOJzf/86RtwzXRYbhppxVcnUhw5NI63YU7RNwQhJohGFIJz1r8F1ej/8Qx3zvuNynT2A5M03wD/cBVajhyazENrMEnCG+BprTAi5tHgvOgEgKAWVDiEiqPAkUWd4eBiCIIDjOGRmZiodTswYHnTKu2YwwG3v2ygrOgGAYZi4KzopZxam5tTYV3oZ/tTwVKjN5nOgx96PvcU7UZVRrlxwCqKciTzeMYrJg0/A3XQIot9z0WNFvwdB5wSS1l8OlSUDDKP8GHTKGbJUlDMrJ0kS2tvb0dfXN2dfRUUFsrKyFIhq9Wm52F6ibLGo8CRRZ3h4GMFgEGq1mm7UiyBJEtpbRlG5PgvpmSb89eG34XEFUJfpQ1Hx6s7qGK0oZ2ZIkgRBFKDiZm7vN6/dh7d6T6JzshcMGNRlVeGemluRa46PF+zloJyJDEmS4O0+C9uhJ+DrbrxkfzK1NRtJtVfBVHMFVKaUCEW5OJQzZKkoZ1YmUYpOANCKApjZk6bFad9bKjwJiXFD/Q70dU9ieMCBDdsK8JHPXIYX//v3sB58CfW9h1D5lS9Bl56mdJgkAnxBH04NnkVQmBrHOT1+l2M5fHzL/fjLmafxvtrbkJ+co3CkJBF4e5ow+uxPwNuGL34gq4KpejeSaq+CLr+Sxp0TQhKq6AQAq2oSRZODoW0OAQB3KRdQmFDhSaJOcXExRFEEG8PLe0SK1xNA27mpyYSCQQFnTvUjtf0w8s+/BADwdPfg9D9+GhVf/DwsdbVKhhpWiZ4zkiThr00vYtQ9AavBAgDonOxBiXVmXbOilDx8cc8nFIow+iR6zoST4LbD13cOvr4W8PbRBY9TJafDVLUb5m03xcREQZQzZKkoZ5ZHkiS0tbWhv79/zr7Kysq4fHpsNpoAZmZFAi5OU4YKTxJ1kpJo8ojFkCQJ55tGIAgz3TFcYzY4XnwNhtnHCQKYGJ9m/FISOWdG3eP4+bE/4szIOejVOlxTugdqTo36oWZkmTJg0OiVDjEqJXLOhIMkieAnh+EfbEPgndlpGbUW6vR8BEe6Zw5kOejy1sKy/V0wlG9WKNrloZwhS0U5szzt7e0JVXQCQHJ5AUy9Y6FtnVarYDThQ4UnITGI5wV0tIxhctwta88pToP5vTej99EnILin9uW/924kr6MlMuJRn30Q//bKt+Hj/QAAb9CHM8PnsDFnPViGhSvoocKThI3gccJZvx+QJGhzyuDtaZpzjDa7DMGRbrA6IwzlW2DZeTs0abkKREsIiRVmsxkMw0CSZqZMjOeiM5FQ4UlIDHr5mSacONyD0rVpyM5PBsMw0OnUKK/OgaouH+bqarT96MfQ5eQg99ZblA6XhEmuOQtl1iKcHWkJtXVM9mB3wRbsK7sMOlV8fmJKlOUbaIPj5ItwNx6CJATBag3IfeD7wDyFpyo5HSlXvA9JG66GipZCIYQsQkZGBgCgqWnqnlJVVRVqI7GNCk8Sdfx+PyRJAsMw0MZpV4OVaHx7AMcPTXVdazs3CrvNi/KqTBSVpUKl4gAASWWlqPnetyHxPJgEGFuSKDkjSRIkSGDfWVqCYRj8vy3vw+f+9nX4hQBS9Mm4vfJ6XFO2hyZouYREyZnVIgR9cJ74G1xNhxAY6pDtE/0eeDtOQ2VKAe+aBACwKg20OWXQ5pSD1ejmu2TMoZwhS0U5s3wZGRmhf7tEKDonVXY05s9MpGRiOVyvYDzhQoUniTotLS2h6cdramqUDieqjI248Oxj9bK28RE31lQBmdlmWTun1QIJ8kKXCDnjCrhxauAsUg0pWJexJtSeaUrHPTW3otvej/tr301daxcpEXJmNQRGujF56Al4Wk9ACvoXPM5x8m9Ivf5jAABNVgm0mYVguPgaW045Q5aKcmZlEqlr7Yjbjx4+P7RtRFDBaMKHCk9CYkQwIODx351EwC/I2ssq01GzOQ8MS0+44lFACOIPp5+AXq2DilVhxD2OfHM2zLqZbovXr9mrYIQk3oiiCPe5t+A4+gz8A+0ApIUPZlUwVe2EedN10OSUQZ+3ZuFjCSFkFkmS4Ha7YTKZlA5FcU67GnmddaFtXutSLpgwosKTRB2LxQJBEMBxnNKhRA1JkvDcYw0YGXLK2pMEO6yTLqSmblQosugQrzkz7BrFN9/8KQacw8gzZ2N7/kaIkoiTA2dwRfEO6k67AvGaMysh+L2wH30aztOvQnCOX/RYLikV5o3XIKluH1QmS2QCVBjlDFkqypmFSZKE8+fPY3h4GNXV1bBarUqHpCj/yCQAS2hb57vIB34xjApPEnUKCgqUDiHqvPV6O86ckk8trmWCsNo7wfa2oqH/JCq//K/QJuiNOx5zpn6oCf9z+FfwBqfW9epzDKLfMYhcczZcAQ/cQQ9MGqPCUcaueMyZ5RL9HvgH2jD+2h8RGGy/6LHq1FyYt94Ic90+MGxivZmmnCFLRTkzP0mS0NLSgqGhIQDA2bNnE774NF0wkkHFU+FJCFFAV/sYXn2hRdbGMkD6ZCtSvMPQ8y64211o+q//xoYffl+hKMlqyzSlz+nh+PZgI3YVbEFd9jpo4mz8HIksSZIgOMbgG2hFcKwPkiRBk144f+HJqWAorkXyjluhL6ClmQghy3dh0QlMde9vbGzE9u3boY7zdccXouM0su147c9EhSchUcznDeLJh09DFOUVSIarE7mOFpgCNgAAw3Eo+ciHFYiQhEuWKR0f3XIPfvTWbwEA2aYMfHDj3ajLpjf+ZPkkUYAY8MPdfAi8c0K2jzOngjOlQJiemVafBNP6y2HZeRtURosC0RJC4sl8RScwNUN7ZWVlwhadACCK8lJTitPSkwpPQqKUJEl45pF6OO0+WXs6Y8fa4UNQiTMznuXecTuS11FBEm92FWzBmaFzCIo8Htj0XujV8bEsBYk8MeiH68wbsB15GtYr7gFEYc4xDMNAm1OO4OQgzJtvQFLdVWATrDstISQ8JEnCuXPnMDw8LGtnGAbr1q1DWlqaQpFFB5VJ3s1YiNNeTVR4kqjT1tYGnuehUqlQVlamdDiKOfJmJ86dkX8qmGwAqhqegQp8qM1YXIT899wV6fCiSiznTEAIQsOpIUoiWsbaUZJSCK1qpsvNRzbfA47e/K+6WM6ZpRC8TjhO/h2OEy9AcNsBALa3nkbajR8Hf/5Y6DiG5aDNLIZ547UJM1nQUiVKzpDVQzkz5WJFZ3V1NVJTUxWKLHroM1OBNndom1XRE09CIsLj8YTWvUpUvZ0T2P9cs6xNp1dhffsTsqKT0ahR/tl/AsuykQ4xqsRqzrSNd+GHb/0ad627CSIkjLjHMeqewO7CLWCZqf9TKjrDI1ZzZrECI92YPPgEPG0nIQXlvSYCQ+0QPQ6wWsM7TznLoMksBqtOjHV/lyvec4asPsqZqaKzubkZIyMjsnYqOuVYTgNgpvBEnM5aT4UnIVEm4Ofx+B9Oycd1MsBGsRlat3xMVu6t74KRZs2LOaIk4rmW/fhzw1MQJBG/OPEn7CvdDaPGgCHXKM6NtqEqg9ZDJEvn7W7E5Jt/ga+nGRdbf9PTehwpl90NVm8EwyT2B1eEkPBYqOhkWRbr1q2jonMWzpwKYDK0LV0w2VC8oMKTRJ2amhqlQ1CMJEnweoK4+qZKPPtYA4KBqXFYG4o56F86KDvWUFiI/LvvVCLMqBNrOdMw1Iw/1v81tB0Ugzja9zauKN4BlmHRPNqGopR8GNR6BaOMb7GWMxcjSRLc547AduhxBIa7LnqsvqQWlu23Qle0ntaBXaJ4yhkSGYmcMxcrOhN96ZT5jDnk3ZB5iV/gyNhGhSchUaS7YwJdbWMoq8jAA5/ejcd/dxIGHYvUN38pe3bBajQo++THwaroVzgW1WZVYXfhVhzsnjXGjmEQFIJI0Sdje/5GKjrJJUmiAMfbr8D+1lPg7SMLH8iwMFXtQvL2d0GbVRy5AAkhCUmSJDQ1NWF0dFTWTkXnwtxBr2ybl0SFIgkvetdKSJSYHPegu20cANB2bgQFxVZ86FO70PDvX0fAJ78hZV1/HZLWlCsRJlkFDMPgI5vei7bxTgy7xnBb1bVYn1GFce8EtubVQaeisXZkYZIkgbePYOiRbyI41rvwgSwHQ+lGpFxxD7QZ1CWfEBIZw8PDVHQukSTEZ6F5ISo8CYkCfh+P5oZBSLOea/Z2TUI10I7AubOyY40lxSi8/32RDpGskM1rh1mbFJoISq/W4dM7HoAr4EZNViUkSYIEKTSpECEXkiQRwbF++PpawDvHoUpOn7fwZNRaGCt3ImXP3VAnpysQKSEkkWVmZsLlcqGvrw/AVNG5fv16pKSkKBxZ9PINDgOYuV+rA/FZiFLhSaLO2NgYRFEEy7IJsa6TJEpobhhEICDvz19UasXIt38ga2M1Gqz9/Gepi+0FojVnTvQ3IMuUjkHXCLome1GZXo7qzLWh/SXWmadQDMOAidMFo6NRtObMfCSBh3+oA/7+8xB8M7MeajKL4OtuhMT7AQCsPgmmmitg2XUHVHqTUuHGrVjKGRIdEjVnGIZBaWkpAGBgYICKzkXQBeWTwTELzw0X0+jdK4k6AwMDoenHE+FG/fQj9QgGeaRnJoXaUtOM4BoOwz8sH7eVefVV0OfkRDrEqBdtORMUgvhj/ZN4sfU1pBusuKxoG1iGxbmxNuSas5CiT1Y6xIQXbTkzH/9gB2xHnoJlx63wdTdC5AOy/QyngjanDMHJIZg3XoPkbTfTkihhFAs5Q6JLIufMdPGZk5MDg8GgdDhRT3fBA854/RiaCk9CFNRwohcNJ6a6ojgKfChekwaDQYPS4iQ0fPdR2bHqZDMK7r1HiTDJEoy6x/G9g79Ap22qC+SoZwLNo21Yl7EGoiThWN9p7CvdTetzknlJkgRvZwPsR56Ct7MBAMCo1EiqvhzeXvnavpzOCOve90GTXQqWo5dzQkh0YRiGis5FsnDjKJwYDG1zCAC4Q7mAwoReqUjUyc/PD3VNiWc+XxB/f2bmjWR/jw0upx8f+MQO9D30awhe+YRCubffBhXdwOcVTTljUOvhCrhlbc2jrcg1ZyHNkIICCz2xjgbRlDMAIApBON9+Bc7T+xEY7pTtc509AMuO28AwLCRJhMqUAm3uGmjS88HQBxgRE205Q6JfvOeMKIpobW1FQUEB9HqaiX0lTJwKLHyhbRUEBaMJHyo8SdRJlHEALzx+Bl63vOtcxfosqByjGH3zgKzdUJCPnJtvjGR4MSWacsaoMeCfdnwYX331+xAlEWpWjU0567EhqwrrMyugU+uUDpEgenJGDPphO/wkHCdfhOh1LXCQAGf9qzBW7ABnSobKnE5rcCogWnKGxI54zhlRFNHY2Ijx8XFMTEygrq6Ois8V4C6YWDBe53ygwpMQBfR0jKPx9ICsLSXNgKtvqsTZf/0SIM7q7M8wKP7Ih8Fw9GQjGnkCXgw4h1GWWhRqW5NWgvesvwVvdB3BZ3Y8gJykTKioKySZJVRwnngRom+BghMAZ7TAvOVGmDdeA44mDCKERIHZRScA+P1+nD59mopPckn0ToiQCBNFEc89fgbSrBnLGAa45a5aTB4/DmfLednxKZs3wlKzPsJRkkuRJAmdk72oH2pCUOSRpDUi0zQzFfotFVfj+vK90Ko0CkZJos1iC061NRvJ298F0/rLwVIOEUKihCiKOHv2LCYmJmTtPM8jEAhQ4UkuigpPEnUEYaZfOxeHT/mOHejC2LD8DWdVbQ4Kiiw48Y3fytpZrRYlH/lwJMOLSZHOGUEQ8L3Dv4BOpUV2UiaAqaVTrinbAzWnBgCwDEtFZxSLdM5IooDJg4/DcfyFixacKksGUi67G6bqy2j8ZpSJ99cmsvriLWcWKjo5jkNNTQ2Sk2nG9uUKwolsR1toW1TH53oqVHiSqNPY2BiafrympkbpcFZVMMDjwCutsjadXoUb3l2N3sefQGBsTLYvc9+V0GVmRjLEmBTJnOEFHj8++hBODpwBy7DYU7gNaUYr3EEvmkfbUJNVGdbvT1ZHpHJGkkQEhrvh62mEu+XYgkWnypKJlMvuhLH68ridiCTWxfNrEwmPeMoZKjrDyy6I8GgsoW2Bo8mFCCErdOCVNng9QVnb7n3l4AJe9D/xlKxdnZJCy6dEmQAfwHcP/Rz1Q1OzEYuSiEM9x3F58Q5syF6HivQyhSMk0UKSJAQnBuHtbIDgsQMAdAWVCI50A5j5JJsKTkJItBMEAWfPnsXk5KSsneM41NbWwmw2KxRZ/HD4TWjM2Rja1gUdCkYTPlR4kqiTlJQEnuehUsVXevq8QZx8q1vWlpJqwPY9xeh+6PcQ/X7Zvvy77qDlUxYpUjmj4lRI1slfYAVJRJ45C1tya8P6vcnqCmfOiHwA7saDCNpHZe2cPgnqjEIER7qmCs7dd8K4ngrOWBGvr00kfOIhZ6jojAy/yCsdQkTE7m8CiVvFxcVKhxAWB/fPfdq576ZKsCyLgnvvAWcwYPDZ58G7XDCWFCPrumsUijT2RCpnWIbFx7bcB3fAg5MDZ6BVafG5Xf8PtdS9NuaEI2eCE4OYeP1h6Ms2LzgRvmndLqi23kQFZwyK19cmEj6xnjMLFZ0qlQo1NTVUdK4irSYxJmWiwpOQCLBPenH0gHxR+MqaLFTWZAMAOI0GBe+5CxlXXYnuh36H7JtvAkNvSqOCJEmyNRNVLIfP7HgA/3vk/3Br5bWyZVRIYhLcdkweeBSOt18GRAH+/lZkv+8/EbS/ETpGZbRAX1wDVUoWrcFJCIl6VHRGlpGTT0YYr68SVHgSEgGHXm2DwM+szcmyDK68oWLOcbr0NKz9/D9HMjRyEZIk4e3Bs9CptKhMLw8VDBqVBp/b/f8Ujo4oTfB74TjxAmyHn4QU8IbaeccY3OePQpOWB945AX3RemgyCqngJITEBEEQcObMGdhsNlm7SqVCbW0tkpKSlAksjkkXTGIbn3PaUuFJSNgF/DwaTvbL2jbtKEBqOi0GH806J3pg9zvRNjE1Ljcg8KjNqqTigUAUBdgPPwX7kach+t3zHuM49RJyP/RdsBotLYtCCIl5VHSGlyTpZNsCG5/LsVHhSaJOV1dXaDB+UVGR0uGsmFrD4b6PbcPJwz04e7ofAi9i516a/XQ1rXbOHO+vxw8O/wq55mxszqkBwzA4P94BURKwMWf9ygMmiltuzjgbD2Ly1T+Ad4zNu5/h1DBvvRGWHbeB09HkYPEk3l6bSPjFas5wHIf169eHnnpS0Rl+bNx2rpWjwpNEHYfDEVr3Kh60No+ADwrYeWUprrqxAn3dkzBqREwcPwHrls1KhxcXVjNnXus4jJ+f+CMkSUK3rQ8aTo2azEqwDIMMY9oqREuiwVJzxtd3HmN//xUCQx0LHMHAVHM5rJe/Fyoz5Uk8irfXJhJ+sZwz08Vnc3MzCgsLqegMNyYx5vWgwpOQMPJ5gxjqt0MUJYwMOaFScaiqzUbnbx7CyP5XYSovQ8n/+wiSyukJaDSY9Nrx21OPQJo12KJ1vBOp+hTcXnUd8pKzFYyOKEFw2zH6/IPwtJ2cOwjnHer0AmTc8o/QZpVEODpCCAkfjuNQXV2tdBgJgTUkRmFPhSeJOlVVVXNmEo1Vfd2TEMWZN6uiKIF1T2D09anZLl2tbWj43BeQd+e7UXjvPUqFGfNWK2dS9Mn4zM4H8J2DP4coTU0GVZtVhZvX7kNRSv5qhEqixGJyxtt5BsNPfAei3zPvfs6YDMue9yCpbh8tjZIA4um1iURGLOQMz/NgGAYcR2PRleTxOgFYlA4j7KjwJFEnlhdano0PChjss8vasvPM6Pv1g5AEYaaRYWCuropwdPFlNXNmY856/MPW+/GTow/hXRXX4J6aW6P6TQNZnkvljH+4C97us/POLMiotTBvvh4pl90FVq0NT4Ak6sTLaxOJnGjPGZ7n0dDQAJZlsX79eio+FeQTA7JtmtWWELIkY6NuCMLMEioMwyC3IAWDuXlwtrZB9PoAAJbaGqTU1SkUZWKTJAktYx0oSM6BYdbizXuKtiHPnIUSa6GC0RElSAIPT/vb8A91ACwLQ/lmuM++ObWTYWGs3IHUaz4EldGiaJyEELIS00Wnw+EAAJw5c4aKTxJ2VHgSEiZ/f6oRGi2H9CwTVCoOqWlGGIwalH7sI8i59WZ0/+4PsJ2uR8nHPqJ0qAlJkiScHWlB82gbOia7cXnRdhg1M7OQUtGZeASvE+6mw+DdtlCbOiULmswiSDyP9Fv/CToax0kIiXEXFp0AYLPZ0NLSgqoq6oGlhIDAKx1CRFDhSaKOzWYLjYmwWCxKh7MsAz2T6G4fBwC0nxtFepYJJbfNDNDXZ2Wh4gufR8BuhyY5Wakw48ZSc8bhd+Hbbz6IEmsBkrQmuAIevNb5Fq4o2g6T1hj+gInipnMGAFS99dDmrYXn/DGIAd+cYy2774ShfDNYjl4yE1k8vDaRyIrGnJmv6AQAtVqNwkL6wFUpaiYxnjTTqyiJOj09PaHpx6PlRr1Ub70xs+SCKEqYHPcgK8c85zgqOlfHUnJmzD2Br73xIww6R9DvHMIVxTtgUOvhDXox6bNT4Zkgenp6wDvGYGr6O1SjbdCX1CLl8numZq99B8NyMJRvhjazSLlASdSIh9cmElnRljM8z6O+vh5Op1PWrtFoUFtbC6ORXv+Uood8grp4nVmCCk9CVhkfEHC+aUTWVlyWBo0u9tbxijdDrlH856s/wLh3EgDgCXpxoPsYrijagd2FW5CfnKNwhCQSJEmEqus4jE2vgBGmJnTwdtTDWLkL2owi+Ee6wBnMMFXuBGekD4cIIbGPis7olsyOI882896RQ+AiR8cuKjxJ1MnOzoYoijG7PMHJIz0IBgRZ27Y9xQpFkxgWmzPJ2iRY9OZQ4QlMFSFr0kpQTMulJITA+ABGn38Qut7mOfsm9v8OeR/7EVitHrqCSjAcfVhEZsT6axOJvGjJmWAwiIaGhnmLzrq6OhgMhgXOJJFi1mmhFm2hbTUVnoRERnp6utIhrEjDiT7ZdopVh8Dzf4HvvXdBl5GhUFTxbbE5o1fr8K97Pomv7v8eBpzDyDVn4d8u+yTSTalhjpAoTRIFTB58DLZDTwLi3EkcOFMK0q7/f1AZU6AqTlEgQhLtYv21iUReNOQMFZ2xwbKmCMaB06FtnTY+l+qiwpOQVeSweTE0IF+7M1caweirr2H09TeQsmkjCu55D0wl9AQ0UnxBH3RqXWjbrDXhy1d8Cr97+3F8dPM9SNKaFIyORIJ/qAMjT/4AwYmBefcn1V4J674PgNNRVzNCSPwIBoOor6+Hy+WStVPRGX1YFQtm1oNxJk47VlDhScgqOn6oC9KsVX9ZloG18ZWpDVHE5PETEHw+rP/6fyoTYIIZcY/jYPcx1GZVoXTW8ihpBiv+eddHFYyMRIIk8Jh4/U+wH30WkMQ5+1XmNKTd+A8wlNQqEB0hhIQPFZ0kGlHhScgqaqoflG2n6nmoPRc8Ab3l5kiGlLB6bP04MdAAXhRwcuAMBFHAmjRagzFR+AbbMPLkD8BPDs27X5dfifSb/xHqlMwIR0YIIeF37ty5OUWnVqtFbW0tFZ1RyM25MZQ+83qlj9Plu+LzpyIx7cyZM6Hpx9evX690OIs2NuzC5LhH1pY+2iTb1ufnIWXLpkiGlRAuzJnG4fP45oGfoDarCoWWPADA6aEmmDQG5JizFI6WhNv4q3+E/chTkHU/eAerT0LKZXeiR5OLoc5+qPtGYuo+Q5QTq69NRDlK5kxZWRlcLhf8fj+AqaKzrq4Oer0+onGQxRkMuPBWUlJoO1nk8QHlwgkbKjxJ1JEkKfQnljSclE8qpNUwSGuvl7VlX38dGCZeV2dSzuyc6Zrsw/cO/wIBIYjj/fUQRBEl1gLkmbORlUSTO8UzSZIQGGxHYKhjnqKTgb6kFmk3/gPU5lRIDQ2QJCHm7jNEObH62kSUo2TO6PV61NXV4fTp0wBARWeUs49rUNa0O7TNa10XOTp2UeFJoo5er4dKpYJaHTtLGUiihDOn+mVtefwA1FIwtK0ymZB59b5Ih5YQpnPGI/nwjTd/DHdg5snzqcEzyEnKwPa8DWDjdbQ+geBzw3P+OIK2YWhyyxEY7YHgmlo2hzUkI2XP3TBvvBrMOzkQi/cZoizKGbJUSufMdPE5/TWJXr5JOwBLaFsTiM8PuKjwJFGnvLxc6RCWrLtjHPZJr6wttfu4fHv3TrAaesMSDtM5wws86txn8XrnW6F9a1JLcGf1TYqvo0bCQ5Ik+Afb4e2shyRMLZPCMCwM5VvgrN8PfXEN0q79yJyxnLF4nyHKopwhSxUNOUMFZ2zQOeXLfFHhSQhZUMNJ+dPOZHUAJv94aJvhOOTddmuEo0o8Kk6Fj2+5D1mmdPzlzDOoTC/Hv+35JLQqjdKhkVUm+j3wdp2BypwGT9vJOfs5kwUZN/8jjJXbwXD0gQ8hJD4FAgEMDQ0hPz+fhvLEMJNKJ9uO1/9JKjwJWSFJkjAy6JC1ZYw1yW4a5nVV0GXR7JmRwDAMbq+6HgXJOahIL6OiMw552k5i9IVfQHBNIuf9/w3OYIbgmfkdZLV6GMu3QG3NVjBKQggJr0AggNOnT8Pj8SAQCKC0tJSKz1gVnw8456DCk5AVcrsCeM+Ht8A+6UXDiT6cOdaFjIkW2TG5775Noejin58PoMfej1JroWwM5+ZcWpsx3ggeJ8Zf/i1cZ98MtY298DNk3vFFuM68AQkStFklMJTUgVHRU05CSPyaXXQCQF/f1ASHVHzGJkmdJNvm2fj80JwKTxJ1+vr6wPM8VCoV8vLylA7nkrpaxzA26kKyRY+6rQXIOPB7+ISZyW10OdlIqaMiKBz8fABvdB1Bz0gfTqvPoC69CuVFZUqHRcLAdfYAxl/5Pwhu+bq4gZEeuBoPQF9SC86YDHXK4pbLibX7DFEe5QxZqnDljN/vR319fajonDY2NobCwkKaACsGmfKzgR53aJtVx+eHB1R4kqgzMTERWvcq2l/c+aCA8bGpG4Xd5sVE/zgC/XaYZx2Tdtnu+U8mK3J2uAWPnn0OVenl8Hq9cLtcGHNOICktGVmmdKXDI6sk6BjH6DM/gq+7cd79+uJamKr3QG1Z2lI5sXSfIdGBcoYsVThyZqGiU6fToa6ujopOEtWo8CRkBWwTXtn6XO6OdqT4J0PbjFqNjCuvUCCy+DbiGsMPDv8azoAL495JlGnzwYKBiuFg0hiUDo+sAkmSYD/yDCbffAQS75+zn9UakHr1B2Gq2UvdygghCcHv9+P06dPweuWz6Ov1etTW1kKn0y1wJol2GmsegJlhWpIqPv8vqfAkUWfNmjWQJCkm3kxOTsx0i4AECG3NYCGGmozFRdBl0qRCq8kT8OKbB34KZ2BqceVR9zh8QR/2Fe3GNaV7YNIYFY6QrFTQNoLhx7+NwHDXvPsNa7Yg7bqPQpVkXfb3iKX7DIkOlDNkqVYzZy5WdNbV1UGr1a74exDl2Bwjsm1B4hc4MrZR4UmiTqx8YidJEibHZ7q6+EdHoZ4clB2Tum0rvUlZZe2T3RhxjcnaLPpk3Fh5Fcy6pAXOIrHC29OE4ce+BdHnnrOPUWlh3nIDrHvft+Lfq1i5z5DoQTlDlmq1coaKzvhnCzhl20FJUCiS8KIV1QlZpldfOIfDr7Wjv8eGgJ+Hq7UdhuDMkg4qcxJStmxWMML4tD6zAv955T8jRZcMAChIzsXXrvocFZ1xwHF6PwYf/s95i05NdilyPvDfSL3yXvowhxCSMHw+HxWdJG7QE09ClunMqX44bD44bD60t4wizeVBpjDzwpC0phyGvFwFI4xfZalF+ObVX8QvTzyMD296DwxqvdIhkRXy9bdi7IWfA5Ioa2c0eqRcdheSt91MBSchJKFMF50+n0/WbjAYUFtbS0VnHPEPjgJICW2rguLCB8cwKjxJ1HG5XKExESaTSelw5tXTMQ6HbdYLgQRY3X0IvS1mGKRfuRcMxykRXkKwGiz44p5PAIiNnCELC04MwttZD33pBnjbTobaVZZMZL/3K1Bbs1f9e1LOkKWinCFLtZKcoaIzsag8Adk2G591JxWeJPp0dHSEph+vqalROpx5HT/cLdtWSTyyna2hbV02rd25miRJQstYOzJMabDqLXP2x0LOkPn5h7vgOX8MkiRBm10KwW1DYLAd2vwKZN31b+B04ZksinKGLBXlDFmqleSM1+tFICAvRgwGA+rq6qDRaFYzTBIFDKz8QUW89u+hwpOQJRIFEe3nRmVtKe5eqGYNBE/ZUAuVkWZXXSkf74fT50KvYxBtE13AMJCfnI11GWth1tITh1gmiQK8nQ3w9Z+XtetLNkCXuxbWq+4Dq6I3V4SQxJSSkoLq6mqcOXMGkiRR0RnnkjCOHPt4aJtD4CJHxy4qPEnUSU9PhyiKYNnonPuqtXkEPm9Q1pZjn3nzzGq1SN21M9JhxR1REvHg0d+jYbgZW3PrkGacWjqj1z6IQecIblq7DxpuaqHsaM8ZIhcY7QEkzCk6AUCbVQTjmq1g2PB2U6ecIUtFOUOWaqU5Y7VaUV1djc7OTtTU1FDRGceSVCy0giu0rabCk5DIyM5e/fFcq+ntoz2ybY3og9U7ENo2FBbAWFQY6bDizhONL+BI3ykAwJvdR7AhuxrFKQVgAGzOqQkVnUD05wyZIgk8xl95CI6Tf0fm3f8GTXrBVBH6Dl3uGuhL6iIyiRDlDFkqyhmyVKuRM6mpqbBarTS5WpxTM/IPJ+L1f5s+tiNkCfiggM62cVmb1dUr+0WybKijbrYrdGrgDB5rfD60LUoSGobOISAEsD1/IwosNFtwrBG8Tgz+5etwnHgRkESMPvUDaNJywBmSwbAcjOVbYCjdQG+uCCEJRxQvPpMM3RdJvKDCk5AlOHOqH8GAfFHfXPu50NfqlBSkbt0S6bDiTkVaGTZkV4e2GYbBhzbehSuLdyI/OUfByMhyBEZ70f9/X4Sv60yoTfS5MfzE92FcuxVJNXuhzS5RMEJCCFGG1+vFsWPHMDIyonQohIQddbV9hyRJeO655/DEE0+gubkZHo8H6enp2LJlC973vvetygx2p06dwsMPP4yTJ09ibGwMWq0WhYWFuPLKK3HvvffCYrGs/AchYdXZOibbTjKwyMtPhqtjAhBFJJWXwlBYoFB08cOg0eMLuz+OP515Cs+cexnvr7sDV5XuVjossgzOswcw9sLPIQXlSwIwnBqWXe+GKsmqUGSEEKIsr9eL06dPw+/3o6mpCQCQkZGhcFRECQJ8SHP3zTRw8bmeChWemFor6Z/+6Z/w+uuvy9r7+/vR39+PZ599Fp/+9Kfx0Y9+dNnf4zvf+Q5+85vfyNqCwSAaGxvR2NiIv/zlL/jxj3+MDRs2LPt7xIvm5ubQ9OOVlZVKhxPC8wJam+WfSG7YXYraa2+Aq6ML/U89DeuWTWDV6gWuQC5GkiT4hQB0qqm1yViWxb21t2NzTi3Wpl38aVi05kwikyQJ4/t/B8fRZ+fs40wpyLzjC9DllisQ2RTKGbJUlDNkqS6WMx6PB/X19fD7/bLjOY5DampqpEMlCnOIHqgFb2g7EKd9UqnwBPClL30pVHSWlpbirrvuQlpaWqgg9Hg8+P73v4/MzEy8613vWvL1f/Ob34SKTrVajbvuugvr16+Hw+HAyy+/jOPHj2N0dBQf/ehH8de//hX5+fmr+ePFnGAwiGAweOkDI6y9ZQx+Hz/TwACbtk9NImQqKcLaz/4TpEuM0yALqx9qQp9jCFcUbYdJOzNGtiK99JLnRmvOJCrB78XwY9+Cr/vsnH3a7DJk3vEvUJmVfWNFOUOWinKGLNVCOePxeHD69Ok563QajUaYzeZIhUeiyKQvGY1Fd4W2dUEHblAwnnBJ+MLz0KFDeO655wAA27dvxy9/+UtotVNPXG666SbccccduOeee2Cz2fCNb3wDV111FUymxa8faLfb8ZOf/AQAkJycjD/84Q9Yu3ZtaP/999+PH/3oR/jZz34Gh8OBH/7wh/j+97+/ij9h7FG/88RQHWVPDpvqB2TbBcVWJCXrZG0MTbO/LEPOEZwf7wQAvNb5Fi4v3r6kdTqjNWcSUWCsH0N/+Tp4+9zxSrqiGmTd9UWwaq0CkclRzpClopwhSzVfzixUdJpMJtTW1lJ+JahAgjy4SPjC87e//S0AQKVS4etf/3qo6JxWWlqKr3zlK/jnf/5n2Gw2PPbYY/jgBz+46OsfOnQIHo8HAPDAAw/Iik5gatKUT33qU3j++efR09OD/fv3g+d5qFSJ+18TjV2Y+KCA843DsraqWppafzU4/W681P4mdKqpIt7L+/Bm1xFcV74XqkWu5RiNOZOI3G1vY+TJ70MKeOfsM1XvQdqNHwerio516ChnyFJRzpClmq977XxFZ1JSEmpqaqjoTGCJ8r4/oR/P2Gw2HD58GABw2WWXLdjF9YYbbgj1t//b3/62pO/R1zczULiiomLeY1iWRXX11AyeXq8Xk5OTS/oeJPzsNq/86SYDVNZQ4bkaHnr7UTzXsh/H+07Dz0+9GK9JLVl00Umig/348xh+7Jtzi05OBeu+DyD9lk9FTdFJCCGRRkUnuZgktV62Ha8L6CRGeb2AEydOhNZO2r59+4LHsSyLLVu24G9/+xvq6+tht9uRnJy8qO8xu1tub2/vgscNDEx14+Q4btHXJpHDsize//EdcLn8OPn8cThsXhi08XpbiJzm0VYc6D4GAOi292PQNYLLi3agzFqkbGBkSVwtRzH+0m/ntLP6JGTe/jnoi6rnOYsQQhKD2+1GfX39vEVnbW1twjztIiShn3i2traGvl6zZs1Fjy0rKwMwNVPj+fPnF/09Zi/D8sc//lE2e9m0Y8eOoaGhAQCwdetWaDT0VCDatDWP4PjhLnS1jUPTegpZhx7Gsfs+iHPf/T7cXd1KhxeTgkIQvzz+J1kbAwaXFW4BS2NlY4IkSfD2NCIw3AVd4TrZPnVqDnIf+B4VnYSQhEZFJ1kMQZQP9ePZ+HwCntDv7vr7+0Nf5+bmXvTYrKysec+7lOrqauzZswcA0NHRgXvvvRdHjhyB0+nE0NAQ/vSnP+ETn/gERFGEyWTC5z//+SX+FPFncHAQ/f39GBwcVDoUAIDL6YfbPfWBgdflx9A4D4FRQfT7MX7wMEbfeFPhCGMTx3K4fs1e6NUzXZjfW/MuVKSXLfla0ZYziUCSRHhaT8DbNTVzrTa/Cur0qeEK+uIa5H7ou1Cb05QM8aIoZ8hSUc6Qpero6MCbb76J8fFxWbvZbKaik8hwc0qy+OxVl9AZPzExEfo6JSXlosdaLJbQ1zabbUnf54c//CE++9nP4vXXX0dDQwPe//73zzlm48aN+PKXv4x169bNc4XEMjo6Glr3Kjtb+XGUg3320Nf+sTFwQS+0gifUZt22VYmwYh7LsLimbA8259bg/049ijH3BK4ru2JZ14q2nIl3ksDD3fwWAhMzMz0zDAND+RagbBNSrnhf1D+1ppwhS0U5Q5YiGAzi1KlTCAQC4DgOSUlJAKaKzpqaGio6SUKK7ncGYebz+UJfXzib7YVmd3+dfd5iGI1GfOtb3wo9+bwQwzAoLi6WFbckOoiCiJFBR2hb8HphUftDn0OpLckwlZYoE1ycsOot+OddH8VX93466osVAvCOMfj6zsmKTmCqm7RxzRakXnkf/T8SQhKeWq2G1WqVtVHRSRbCGhNjfpeEznye50NfX2pc5ez9s89bjBdeeAH/+q//Cp/Ph8zMTNx5550oLS2F2+3GgQMH8NJLL+GJJ57A3/72Nzz00EOycaFKaGtrQ2lpaejTOQDw+/1oaWkBMPX0t6CgYM4508vGXBj/2NhYaPKk/Px82dNlQRDQ2NgIYGq8Q3FxMUpKSiBJEhiGQVdXFxyOqcKvqqpKdrO22Wzo6ekBAGRnZyM9PV32fc+cOQNJkqDX61FeXi7b19fXF3rivWbNGuh0M909XS4XOjo6AABqzoRgUAjtMxQWwLLhvRCH+yC2tCEt1Qp21kx0g4ODGB0dBQCUlJTIJpfy+Xyh8cFWqxV5eXmymFpbW+H1esEwDNavXy/bNzo6GureVVBQIPuQgud5NDU1AZh6USsqKpKd29nZCafTCQBYt24dOG5mttjJycnQpFc5OTlIS5N3jZwee2wwGELjnKf19PSEnv6vXbtW9uGN0+lEZ+fUupyZmZnIzMwM7ZMkCW++fQgWLglarTY02/N0l9uBgQGMjY0BmFrOyGg0hs71er2hsdmpqamhLvLTOdPX14eGhgbZTNHTRkZGMDQ0BAAoKiqSLdIdDAbR3NwMYGq93cLCQtm57e3tcLvdAKa6z88urCYmJkKzV+fl5cneaIiiiLNnp7qiGo1GlJaWyq7b3d0Nu33qiXplZaVsVkOHw4Guri4AU139MzIyZOeePXsWoihCp9PNGaPe398f6tpVXl4OvX5mtjy324329nYAQFpaGnJycmTnnjt3DoFAACqVClVVVaF2SRLR98JvEGh4Bd4d9yPTYAbnm/rdZFgO6uINOD/uBsYbwn6PmG2594iSkhJ0dHRAkiS0trYu+x6Rnp4+5+lXc3Nz6MnYhcsp0D1iysXuEQDQ1NQEnueh0WjmzAi/nHvEtPPnz8Pn8y3rHiFJElQqFQwGAy5E94gpw8PDGB6eWnqsuLhYsfcRsyn5PiI1NRVGozE0KeX69euhUqnoHvGOeLtHrOR9xPj4CIC5PSmUukdM5+BqS+jCc/ZNIhgMXrT4nD0ofCmT/+zfvx+f+9znIAgCtm3bhgcffFB2E7nzzjtx8OBBfOITn4Db7cYDDzyA559/fs7NL5IEQQjN9jtNkiQEg8HQ/gvxPB/afyFRFEP7LrwugNC+6YJ+9r/P0NBQaL8kSQvGtNB1p98oXCzei1331ME+2MYDsKYZYU03IicvGazWDyE7G5qCAhRd8OI4+2e92HXn+/AiGAwiGAyCYeb261/JdVfz/2Y2QRAWjGn2dS/Ml25bHxomzsHIGbAuRf5CfqnrLpSH0zkz/X3ne+I2+7oXy+9I/hteLA8v9m84fV1RFGVvAKYt59/wwphmnycGfBh55n8RbDkKBoDuxKPg7vwyVGMdEP0emNbtBq9NQnCo8ZLXnU+4/g0vdo8wmUzgeV52zGpcdzrexfysdI+4eH7zPH/J3+Wl5vf0v+Fy7hHTP+N8//6Jfo+Y77pKvo9Y6LpKvI/Iy8tDYWEh0tLSQtehe8SUeLtHrOTf0CvKJx+dHbUS94j5/i9XQ0IXnrM/tfT7/YsuPC/VLXeaJEn45je/CUEQkJycjP/93/+VFVXTdu/ejc9//vP42te+Brvdjt/+9rf4whe+sISfZHVxHDfnF45hmNCnKPMlqEqlWnANKpZlQ/vm+0We3jffjX32dS+8kc6OaaHrSpI0b1yLua4kSRjud8PvE+Cw+dDVNg5uVxGKKtWyuBf6WS8W73w/q1qtBs/z875grOS64fq/4ThuwZhmX3d2vox5JvD2YCNYjoNb9OJtexOs42koTy1e1HUvlYdqtRqCIMz7s8y+7sXyO5L/hhfLw4X+DWdfVxTFeeNayb+hSqWCKIqheHnHGIYe/RYCw50zsfldcP39Z8i97z8BUQRnTIbg9yfcPeJS8dI9Yun3iNnXZRhmydele4T8upG4Ryx0XXofMXPd2RNUzo6X7hF0j5i+FnORyYSUuEeEa8gMI833kVWC+OpXv4pHHnkEAPDKK68gPz9/wWMfe+wxfPnLXwYAfO9738PNN998yes3NTXhtttuAwDcc889+Pd///cFjw0EAti6dSu8Xi9KS0vxwgsvLOVHWRGXyxXq/gJMdXeYr0BONL1dE/i/Hx+Wtd37sW0oKVfuaXQsOzVwFj966zdYn1mB/OSc0A1yZ8Em5Jlpoo5o5O1rwfBj34Locch3MCxSr/kwkjdfp0xghBASRZxOJxiGofdOZNn+8K1fonN0plu7SvDh3354h2LxhKs2SOgZIGb3Yb/U9OjTfboBzBnvsJDpftXApdcJ1Wg0oX7b02NBEpXP54PX613yJE6rrfFt+eQpWp0KRaWpCkUT23xBH35z8s/w8j4c6z+Ng93H4Ap4UJySvypFZ7TkTDxxvP0yBv/wlTlFJ6szIfu9X4n5opNyhiwV5QyZj9PpRH19Perr6+FyuWT7KGfIYrFxunzKhRK6q+3sAbqtra3YunXhZTGmByIzDDNngPli+P3+Sx4z/Vh7vsfhieT8+fOhQfdKTrTU0Tom284tsNBsncv06NnnMOqZWb5o2D0Gp9+Juqyqi5y1eNGSM/FAkkSMvfgrON9+ac4+dWoOsu76V6iti/vwLZpRzpClopwhF5ouOqfH3tXX16O2tjb0ZIhyhiyWkZMP94vXMjSh30Vv2LAh1K/56NGjCx4nCAKOHz8OAKioqJDNYnUxs2fgmp6RaiE8z4dmSVzsE1USPh53AOMj8k8uNadfw/kf/C8mjp+EuMSZjROZKIkY99pkbesy1uDjW+6Dmpt/vANRhuBzY+B3X5636NRklyHnA9+Ki6KTEEJW6sKiE5iarKW7u1vBqEisMkrjyHS2h/6kuzsvfVIMSugnnmazGdu3b8eBAwfw6quvYmBgYN6i7/nnnw9NmX399dcv+vrr16+HyWSCy+XC/v37MTg4uOCi008//XSoi8auXbuW8dPED6vVCp7nFV3nqrlhELNHPzOSiNThRowOeDH6+hvI2HcVyv/xHxSLL5awDIvP7HwAu/u34Dcn/wKn34WPbL4HGtXiZ4e+lGjImVgXGOvD4J/+C4JzfM4+bV4l0m/6ODidcZ4zYxPlDFkqyhkyzeFwoKGhYc4soykpKbKlPShnyGIl6zgYgjNDW9QIXOTo2JXwvwkf+MAHcODAAQSDQXz2s5/Fr3/9a9ng2ba2Nvz3f/83gKn1c+68885FX1uj0eDee+/Fz3/+c3g8Hnz605/Gz372szkLCp86dQrf+MY3AEzNMPX+979/FX6y2HXhulRKaGkclm3rAw7oBG9o27plU6RDinlbcmuxLmMNzo91Iicp89InLEE05EwsC04OY+APX4Xosct3MAySaq5E6jUfAqvRzX9yjKKcIUtFOUOAqaKzvr5+zvIUKSkpqK6ulg2Xopwhi2UtyYe+pzG0rVvC0o2xJOELz927d+Paa6/F3//+d7z99tt417vehfe+973Izs5GU1MT/vznP4cWfP2Xf/mXOUXj0aNHcf/99wMAtm7dij/84Q+y/R/72Mfw5ptvoqmpCadPn8YNN9yA2267DRUVFRAEAUeOHMHzzz8f+tTsS1/60pzFbElkiaKE3s4JWVuybyT0NafXw7JpY6TDijkBPgCH34U048zvjEGtR1326ozrJKuDd01i4A9fnlN0MioNrFfdD/Om6+admp8QQhLNUopOQpaC02vBzVqtkdPG5+tuwheeAPDtb38bbrcbBw8eRF9fH7773e/K9jMMg09+8pN4z3ves+Rr6/V6/OY3v8FnPvMZHDlyBJOTk/jtb3875zi1Wo1/+7d/w3vf+95l/xxkdfT32OD3ybvPpHpmZho2lhSDW2AtJjLj1OBZ9NoHsDatFOsy1oBj6QU52kgCD8/542DU8rWJWYMZmXd8Afr8igXOJISQxGK329HQ0DCn6LRarVi3bh0VnYQsAhWemCoOf/3rX+PZZ5/FU089hebmZjidTlgsFmzatAn3338/Nm1aftdKq9WKhx56CPv378czzzyD+vp6jI+PQ6PRIDc3F7t27cJ9991HTzqjRGuzvJutIWBHqmdmaZXkWpqZ7lJ67QPosU/9m50ba8eQaxQ78jciSUtrnEULSRTgbn4LvGsSxspd8LQcQXCsD6w+CTn3fQ2aNOoiRgghwMWLzurqaprxnqxYgPPDmzSzmoKoic8HHFR4voNhGNxyyy245ZZblnTetm3bZAusXuz6+/btw759+5YbYsJobW0NTT++nKVrVqqtaUS2ne7ugUoKTm2wLFK3L7zsDgEcfhcePPZ7rEktgVFjAAB4gl6o2PDdbpTOmVgjSSI8548jMDH14QDDsjBUbIe/pwmp+z6YEEUn5QxZKsqZxLSSopNyhizWgDiJpwtmettZ+QDerWA84UKFJ4k6Xq8XwWBwzmxxkeCwezE04JC1pbp7Q19r09NhoMkCLuqxs8+hfaIbXZO9qEwvx5rUEmzMq4ZeHb7JaZTMmVgjSRI850/APyKf8p9Ta5Fx22ehMqUoFFlkUc6QpaKcSTwrfdJJOUMWa3xYi3UnZ1bO4LWuixwdu6hvAIk6DMOE/kRaW7P8aadKDMgmFkpaWw6GxnEsqHOyFy+1vwkAECQRZ0dacH68A/nJ4V37UcmciSWSKEDwOsE75ZNnMSwH07rLEqboBChnyNJRziSegYGBOUVnamrqorvXUs6QxfK/M5HpNI6XFjgyttETTxJ11q9fr9j3HuqXP+20uvvAYuaXP+2yyyIdUkx55OyzkGYtgKrm1PjwxrvD/qKrZM7ECkkSMfrcgwiO9SHj3Z+Ht+0EeLcdDMPCVLULquR0pUOMKMoZslSUM4ln7dq1EAQBY2NTY+9SU1Oxbt26RY/ppJwhi6UalReeel98Fp70xJOQWS67uhz/8IXLcd1t65Ct9yHD3RPapzKZkLKxTrngYsAnt70f15TuAYOpQvP2yuuQm5ytcFREkiSM/e1XcJ15Hf7BNgw/+g3oSzdClZQKY9VOqK30f0QIIRdiWRZVVVVITU1dctFJyFIka4yy7Xh9Rk5PPAl5hyRKOPv2APiggPRMEyptxwFXZ2h/UsVasCr6lbkYk8aIBza/F1cU78CzLa/gloqrlQ4p4UmShIn9v4fz1EuhtsBIN4Yf/w5yPvgtsBzlNCGELIRlWaxbty70NSFk+eg3iJB32CY98PuCEAQRg90T6PQkIcDNTIhj2bhBweii2+zutQBQllqEz+x8AGouPqcDjyX2I0/DfvQZeSOrgvWK91LRSQgh77jwdWw2lmWp6CRhJTJ62bbAxuf7J3rXQaLO6OgoRFEEy7JIT4/cuLPR4ZkZxDz9/dAEPdAKvqkGhkHqjm0RiyWW2Lx2HOl7Gxuzq5FhSlMkBqVyJtrZjj2HiVf/IG9kWGTc9mkYypa/NnE8oJwhS0U5E78mJyfR1dWF6upqqNWr94afcoYsVlJ+LtDvDW0z6vj8oIMKTxJ1BgcHQ+teRepGLUkSxmcN7PYNDsEUmAxta9PSoLVaIxJLLBElEScGGuDwu/B61xEUp+SjNrMSGpUmonEokTPRzt1yFBOv/G5Oe/rNn4CpYocCEUUXyhmyVJQz8WlychJnzpyBKIpoaGhATU3NqhWflDNk0bj4LDQvlBg/JSGX4HL64fcFQ9uB8XEYAvbQtqm8TImwot6B7mMY99hC252TvWif7F74BBIRvoFWjDz1A0ASZe0pV9yDpPVXKBMUIYREmYmJiVDRCQBOpxMNDQ207iaJOLVFPsmfpNIqFEl40RNPEnUKCgogSVJE1716/vEz8HmDsKYZYNRzYBwTUIv+0H5LXW3EYokVo+5x/OL4w0jSGLEhpxpWvQVmrQlrUksiHosSOROtgrYRDP35a5D4oKxdX7oByTtuUyiq6EM5Q5aKcia+TExM4OzZs6Gic5pOpwO3Sut1U86QxfJ47LJtSRIWODK2UeFJoo7FYono9/N5g2htGoYkAT0dE1BxQIkozkxlzbJI2bwxojHFgt+9/Th4kcekz45XOw6h1FqIz+x4ABy7Oi/YSxHpnIlWgs+NwT9+FaJPvh6YJrMYme/+PE2OMQvlDFkqypn4sVDRmZGRgcrKylUrFClnyGKN+iZl234qPAmJT031g5g9mZ0gSEjxDoa2tenp0ND4TplTA2dwrP+0rC1Vn6LY5EIEkPggBv/0n+Dto7J2VXI6st7zZbDq+Oy2QwghSzE+Po7GxsawF52EkLno42+S8BpPD8i2DYILxuCs8Z2lJfRCdAGjxoBcc1ZoO0lrwse23KtgRIlNkkQMP/k/CAy2y9pZfRIy7/xXqEwWZQIjhJAoMj4+HpEnnYQslX9c/sST4xde3ieWUeFJog7P8wgGgxEZ3C8KIvq65b/sKc5ezH7pMa9fF/Y4Ys3atFJ895ov4Z6aW6Hh1Liv9naYtEbF4olkzkSj4MQQfD2NsjZGrUP6Lf8IbWahQlFFt0TPGbJ0lDOxbbrovHC9zszMzLAVnZQzZLGYSadsmxPis/CkrrYk6jQ1NYWmH6+pqQnr9+rtnkQwIO9Hn+VoC33NqFRI2UTjO+ej4lS4tfJaXFa4FVa9RdFYIpkz0UYSBfh6mmCqvRLuswcguG0Aq4J17/tgTPC1Oi8mkXOGLA/lTOy6WNFZUVERtiedlDNksZJUOtl2vD57p8KTJLTWphHZtpoRYA6Mh7Z1mRnQ0dpbIXafA0kak2ySmlRDioIRJTZJkuBpPQHeOQ5Wo4epZi/cLUdgLN8C8+brlA6PEEIUNzY2hsbGxogXnYQshUEYR5pr5qmnSvJf5OjYRYUniTpmsxk8z0OlCn969nS8U2RKErb0PQeN4JV9ymQsKwNDM4ECAHhRwBtdR8ExLCrTy1FkyYuaWVIjmTPRxNfTBP9wV2ibUalh3ngtzBuvAcNEx/9NtErUnCHLRzkTeyYmJuYtOrOysrB27dqwF52UM2SxzBoJSYGJ0LYKAQWjCR/6TSBRp6ioaFWv19MxgYIS+ay0kijh1z86iMG+qUmEjIFJmP1jsmNsugys2UJdFae1T3TBx099AndioAHnxtqwr2Q3NCqNwpGtfs7EAv9QJ7zdZ2VtDKdCUvUemsF2ERIxZ8jKUM7EHqPRCL1eD4/HE2qLVNEJUM6QxdMy8qXo4vWj43j9uQgBALz+9xY89NPDOPTqzLhNR1MzhoecoaITAEz+Cdl54/psnMy7EWfsKbLzEpXNa8fTzS9DEGfGw5o0xqgoOhMN75rE5MHHwepNsgKTAQPj2m3gjMkKRkcIIdFDq9WitrYWer0eQGSLTkLIXPTEk8Stno4JvPlSKwBg//PnAAD5wyfR+5dH4dp3P4CZT5fYCxbqFVg1AODga50oq8oG+/Yb6P79H5H/nrtQ8N67I/MDRJG/Nv8dJwbq0TR6HpXp5Si05KI6Y63SYSUc0e/F0CPfQGCoA4GRLqRe/UG4zx2B4HVBX7oBmrQ8pUMkhJCootVqUVdXh4GBARQVFVHRSYiCqPAkcaugxIqrbqwIFZ37nz+H0rFmFAFobRwEjDNv0gMqvezcFO8wIEm46qbKUNEJAL1/eRSW2hqYqyoj9WMobtJrx6sdBwEAnqAXJwcaIEoCrAaLsoElGEngMfzX7yEw1AEAcDe/BcFtR/q7Pg3BNQldTpnCERJCSHTSarUoLi5WOgxCFiQxQZh9M0O+WFa4yNGxiwpPEnU6OztDg/FX+kKRXyQvPtvTNkMCYNNnyY6z6zIgYWb6arXox1XbLCicPBMqOgGg8P57E6roBIAnm/6GgBAMbbMMi/vq7lAworlWM2eikSRJGH3hF/B2nJa1845xMCxHRecyxHvOkNVHORPdHA4HkpKSouqJJuUMWSynZEeapy+07dNETx6vJio8SdRxOp2hda9W4vW/t+DNl1px1Y0VsuKzI23znGN5TgeXJgVJgclQm+vIAXR3nAxtF95/L/LefduKYopFOwo2otveh+bRqXGye4t3Is+cdYmzImu1ciZaTb75CFwNr8raWH0Sst7zZahMFmWCinHxnjNk9VHORK+RkRE0NzcjIyMjqpZIoZwhizXmteBcyb2hbS3vxFUKxhMuVHiSuDR7fGfPQ79HgdCLqwD4vDwGzOXoTN045xybPktWeOo66yGCBQsRnMGAwedfwODzL4T2p+3eheIPfSDcP4riKtPL8R97P4v6oWY80fQC3r3ueqVDSiiOt1+G7eBjsjZGpUHW3f8GTWqOQlERQkh0GB4eRnNzc+hrhmFoAiESc3hRCs0vAgAiE58lWnz+VCSmrVu3bkXn//3pRjTVD0KrU8HvDaI7pRo9mLlmkJ1/Jtb21E3oTlm/4HUznZ0oHz8e2h4/fCQhCk8AYBgGddlVqMuuUjqUea00Z6KVu/Ukxl78hbyRYZBx22ehy12jTFBxIl5zhoQP5Uz0mV10ThsaGkJKSgoyMzMVimoG5QxZLClB1t6mwpNEHY7jLn3QAiRJQnPDIJx231QDwyCgMizqXIFVyz5tutCIqVBWeAYmJxF0OKA2m5cdbzSb9NqhV+ugU0X/mpAryZlo5Rtow8hfvwtcsPB5Uu1VMK7ZolBU8SMec4aEF+VMdJmv6ASA3NxcZGRkKBDRXJQzZLEsWqNsO16f11PhSeKK1x2E2xkIy7X9KgMCrBYa0Y/UnTtQ9IH74rboFCURR/vehifoRZm1CGvSSmKiAI0XwckhDP35a5D4oKxdl18Jy67bFYqKEEKiw9DQEM6dOzenPS8vD6WlpdTNlpAoRYUniSsGkwb/8IXL8cpzzWhuGFq162a4OlE2dgLm/Exkv++9MFVWIAAg4HCs2veIJv3OIYw6xgEA9f1NODvQgj35W2HWmhSOLDpotVpoteEpxAW3HYMP/wdEn0vWrs4oROq1H4Haonz3MUIIUQoVnSQeCaK8x51AYzwJiYzJyUmIogiWZZGSkrLk81NSjbjz/ZvR1T6Ol55qxNDA8otDk38ca0aPIlXlhuWum2DcvhUCy8Juty/7mtGu09GHF7pfQ74pG1puajxsksYI0cvD7ovOn9vr9Ya+1uv1Fzly5RiGgdlsDkvhKQb9GPzz18DbR2XtKksm0q75ELSZhav+PRPVSu8zJPFQzigv1opOyhmyWNwFJVm8jvmkwpNEnd7e3tD04yu5UReVpuKBz1yG+uO9eOHxegji4l+QNLwHpeOnkO1sAwMJktUKtq4GXp9v2fHEiue7XkWnqw9dzn7kGTJRYMzGWlOJrLiLNl1dXRAEARzHoaioKKzfy2BY3Jjh5Rh56ocIDHfK2lhjMqxX3Q9dAU1SsZpW6z5DEgfljLIGBwfR0tIypz0/Px8lJSVRV3QClDOEXCg+y2lC3sGyDLI4OwReuvTBs5SOn0SOsxUMps6TJibgb2wKR4hRpd3Zg07X1ALGIkT0eAYxGXAiXUsvmOEmeF3gzKlgVDOzLjNaA6yX3wPj2m1R+aaKEEIiIRaLTkKWgtUnKR1CRNATTxJ1cnJyQl1TVsPfjjiAJV5rOKkEOc42WVug6Ry066JzOZHV8vrQUdm2WW3CbQVXR/2LutVqhSRJUROnr7cZuvzKRR8vBrxwnX0DUsAHU+1VcDe+CYkPIGXnu5FUuzdqfq54str3GRL/KGeUMTAwgPPnz89pLygoQHFxcVTfHylnyGLxvB/AwisrxAsqPEnUSUtLW7VrvfrCOfR2Ti75vAl9DnwqI3S8O9TmP3ESxuuuBpsUv59KvbvwWrw+dAxvTzRChIQrMreFxnlGM3MUzS488eYjsB14FNa998Ky87ZLHi/yAbjOvAn3+ePwdZ2BtqAKptqrwHBqJG+7CQxL0/GHw2reZ0hioJyJvGAwiI6OjjntsVB0ApQzZPEcQQ+AmQkcl9ZPL3bQRzAkbvV0TODg/rZLHzgfhsFgUqm8TZJg//2fVh5YFLNozLi1YB8+VXk/dqTVYWNqfD/hXW2+3mbYDjwKAJh47Y+wHX7yosdLQhCuswfgOvcWfF1nAAD+niYwkJBy2R1gOPpskBCSuNRqNdavXy9bD7OwsDAmik5CyFxUeJK4ZU27+CQwuqATlcMHoQs6590/mFQ+5xMnobs7asZ6ipKEHz7ZhW8/0oEfPtkFUVq9z8dStSm4Ie8KcAw9bVsKXX4lrHvvDW1frPgU/V4IbjvcTYdCRScAGMo3I2XP3WBV0f+kmRBCwi05ORk1NTXgOA6FhYUoKiqiopPEHV4QlA4hIujjdBK3Th/vg0rDgQ/M/WXOcrRh7egRAIBNm44hcxmkC7o0ejVmTOhzkOodmGlkWQgjo0AUTDA6NOFH36hPtp2TqlvWtdqc3UjVWJCiTV6t8BLWdPfaidf+KPt7drdb3j6K/t/9GzQZhfB21ofa9aUbkX7zP4LVhHdJGEIIiSXJycnYsmULtFotFZ0kLokQlQ4hIqjwJFGnoaEhNP14TU3Nsq/DMJhbdEoi1o68hTznedh0GWDFIKrGDqNq7DDOZF6OkaQS2eH23bcgs/VF8F3dYHQ6JN3/PmjKLuiCq5D2AY98e9CzrMJz0m9Hj2sAPRhAmi4FpUmFMKpiq/CJ5HIqi3Gx4lPwujD4l69DcE7A65wInWMo24S0G/8BnN4094Jk1a3WfYYkDsoZZel0y/tgVUmUM2SxzGqjbDteP16hwpPEpZ6OCex/Xr7IdFqGEWMjbnSmboBbm4LB5DXY2flIaP/64TfQBh+6k2bGNSZnJSH5ygfgO3IMmup14JKjZxKb9sELCs8BDy6rti7pGoIoos3ZHdoe803CGXRjR/oGsHG6eHGkzFd8SqIAb2c9gmN9smP1RTXIvPMLNJEQISRh9ff3AwByc3MVjoSQyNPxY0jxzExoqZL8CkYTPlR4kqhjMBjA8zxUquWnZ0GJFXuuKcebL7Vi91WlMJl1cDv9OPBKGwIqA/osVdCJXqjEoOy8suGj0Bfm4dyEGWuqLVi7fmr9Sv2uHSv6mVabKElzCs+OQQ9ESQK7hG5Irw6/hTOTLSg25SNZPfWkrdCUG3NFp1arDT3xjCYXFp+Tb/x5zjGswYyM2z9LRWeErcZ9hiQWypnw6evrQ1vbzGSA8VJ8Us6QxUrWiLD4RkLbKgQUjCZ86DeBRJ2ysrJVuc4V165FSXk6CkqmngI++tAJ2X5NwAV2ngmrc489AesVNyN/Z/mqxBEOQxN+eP3y8QAev7ikcZ4BIYhT441w8R5MTjQiTWtBdfIa5OgzwxFyWGVnZysdwoIuLD5nYzR65H7o2+ASZOHoaLJa9xmSOChnwuPCorO1tRUMwyAnJ0fBqFYH5QxZrNTCXPR2z6xXq1XHZ4kWW481CFmi6aITAGwT8ieE+oBdtq2pq53Z9/qz8Lz2RniDW4ELx3eG2gfnb5/P8fEGuPiZ48f8NqTrrUt6YkoWR5u7Zt72nPu+BnVyRoSjIYSQ6NDb2ysrOqcFg8F5jiYkfqmTTVAbEfqjSYrPXlDxWU4TcgFJkjAx5pa1ZTvbZdvG66+BKjsLnhf/DgChvw17L49MkLM889Yw6jvmX+YFADz++afdfvHYKF6vn5h3HwDUliThlh2ZkCQJpybky8KUJxWiJqVieQGTBYlBP4Ye/ea8+7wdp6HNKo5wRIQQorze3l60t7fPaS8pKUFBQYECERFCwo0KT5IQHDYfAhcUa8aAbWZDowZrsYSKTCWLT0mS0NDhhN3NL/ncAC8hwC983plOJ27ZkQmGYfDR8rtxbKwBh0ZPwc17sDdr+0rCJgsY+P2XIQW88+6bb6kVQgiJdz09Pejo6JjTTkUnSVQSK4DVOkLbjDY+S7T4/KlITOvp6QlNFLNaL0BNT/wds9NdBR5aYaabKWs2h9YGU7r49PgFOL3hWUjY4RHg9vEw6lTQchpclrkZ29Jrcd7RhXxj9I6TvJTR0VGIogiWZZGenq50OCEjz/4EgSH5mysuyYqkun2wHXgUABWfSgnHfYbEN8qZ1ZFIRSflDFmsHmYUD691hbZTgyKuUzCecKHCk0Qdm80WWvdqNW7UjqZmdB44BaRtDbWZWZ9sjSTOmiI7Z77iU11UCHVx0YrjuRSjToV/uasYzx0dxZnOhbvbLlVNcRJu3JYOo07+a69h1ai2RO9ESovhdrtDL+7RUnhOvPEXuBpekzeyHFL3fRCmqp1gVZp51/kkkbHa9xkS/yhnVm6horO0tBT5+fkKRBRelDNksSZGNFhzem9oW9Isfs6OWEKFJ4l75qpKMBUbgLGZNoNPPg6Sm6dYmV186vddGZGic1qqWYP3X52L9gEP/npoCMOTy59WOzNFg9t3ZaE0xwAAsAUcECUJKZqZp7xkdU0e/itsBx+b026s2A5j5VSX5vnW+ZzdTggh8aS7uxudnZ1z2uO16CRkKXzeIDSBmYcgoihe5OjYRYUniTpr166FJEmrWhTd+ukb0Xe8CV5DGkaGnHA98rpsP5c1/xIihr2XR+xJ53xKcwz453cX49XT49h/ehxBfu7yLwtRqxhcVZeKK+tSwbJT/5aiJKLF0Ql30AMdp0W2IQPZ+nToOG24foSIiKY132yHn8Tkaw/PaVdZMmG98n4ws9ZIpeJTOeG4z5D4RjmzfIladFLOkMViBm0AZma51/uo8CQkIrTa1S+Cmk4PwsebYBBEZKWwGHEPyfarLlK4KFV0TmNZBvs2psGg5fDXQ8OLPu/mbRnYuW7Wp2eShB73ANzBqe4bPsGPTmcv9JwOWfrYLjzVarXSIQAAfL3N86/XqdLAsvsOqJPT5uybr/jU5VdAl18Z3mATXDjuMyS+Uc4sz0JFZ1lZGfLy8hSIKHIoZ8hiWdRG2Ta7+OcMMYXW8SRxT5IkeNwBBIMC7DYvepr7IDKz1kfiOHCZ0b+W4pmupY33vPD4+olz+EvX8xjyjkGUpu5oJrURGbrUVYsx0enyK5G8890AAHVmMVh9EgDAuHY7TJU7FzzPsvM2WPfeO/X1ZXdR0UkIiRvzfTCYCEUnIUuRKM/E6YkniXt+Hw9BmOmyELTZYRT8oW0uyQQ2Sp6YLWTCGURb/9IGmrf1ezDpCiLFpIYoSTg4egJu3otmRzu63H0oSyrEptRqsNQFaFVpMgthqNwJVVIqAAm8fQzJO94FVqO76HmWnbfRk05CSNzJyckBAJw/fx4AUF5eHlXDIwiJBiLkT8cFJj5LtPj8qUhMczqdoaUxkpKSVnw9j1s+MY/osIGTgqFtLjl5xd8j3E612rHUXhcSgJPn7di3MQ3N9jaM+MZD+7yCH2k6K5I1K//3jQZerzc0jkav14fvG0ki+Oe/jwkhCKfeiJwPfks2ZjMwMQB/f+s7RSfAanQwrt0CTUbhoi5PRWfkrPZ9hsQ/ypnly8nJgfROT5tEKjopZ8hiGXNygIGZ96uMmrvI0bGLCk8SdTo7O0PTj9fU1Kz4ei6nX7bNOMZlXRpUqdYVf49wkiQJx8/b592n07DYVpGMo+fs8AXmDkR/5WwfWg0vw6SWF2OZujRckbktLPEqYXh4OLScSlFRUfi+kX0Y0ngvJAB+GxAY6YE2c+r7iUIQ7ua3QocyKjUYTg1D2WaaWCIKrfZ9hsQ/ypmVSaSCcxrlDFksVqsGMOtBSZy+baAxniTutTYNw2H3QeCnCjPONirbr4qSdR8X0jXsxbgjOKc9L02Hz91RhJu3Z+JzdxQhL23uJAa8T4feUT+uzN6BuwqvR6FxqsvTnswt1MV2GdhR+fpzvp5GAABvH0VguAuid2pcLcOyYDgV9EXrwelNEY+TEEIiTZIk+Hw+pcMgJCapzfL3ohKnUSiS8KInniTqZGZmhp5erZQkSTj6Zif4d4pOrZZD6QU1nCo7a8XfJ5yOt8ifdmrVLC5bn4JrN6WBYRh0u/pRaMrFp24rwt9PjOHg2Un4gzNPP4WxXPS4B7AjfQPWp6zFoHcUGbrU0HnxwGKxhLozhRMzKp+Z0dvdCE16AQb//DWYN10L0/or4Otthuh1QZVkhTa3PKzxkOVbzfsMSQyUMwuTJAmdnZ3o7+9HTU0NkmNgCEskUM6QxQoG5b3zwMTntLZUeJKok5k5/5qay2Gf9IaKTgDw+wUYgo6ZA1gW6sxMCKv2HVffhjIzGrtdcPsEFGXqcc+V2bAmTX0S9urgW3ht+Ciuzt6FPZlbcP2WdGyrSMaPXmyE26YHVAFwqYPodPmwI30DACBbn443h4/j5cFD2Ju5DVdm71Dyx1sVFosl/N9EEucUnr7us/ANtAKiAMfxF+DrbkTazZ8Ey6nB6pNk4z9JdFnN+wxJDJQz85suOnt6egAADQ0NVHy+g3KGLNaAW94bzyfyCkUSXlR4krjW32OTbbMMYAxMhLY5oxGc0RDVhWd5rhGffXcRznS6sKPKAo6d6iLb7erHa8NHAQAvDx4CMNWF1mJSQ11xFOrBDHApw2A0fnQ63RAlCSzDhIpOgCXUcgABAABJREFUAHht+ChKkwri5slnWNmHwQS9sibR5wZ87tB2YKQbvu5GWLbdHOnoCCEk4iRJQkdHB3p7e0NtgiDgzJkz2LZtW9SssUwIiQ5UeJK4NtQv76aqY3mopJkyU5WUBNZkAvjo/mQp2ajG7uoUWVuhKRdXZ+8KFZHTf5ebi+AXfVBl9oSO9Yl+HBw5AS/vw8HRk6H2q7N3UdG5SBeO75yPrrAayVtvjEA0hBCirPmKzmmlpaVUdBKyBH6nC8DMsmusSF1tCYk5I0NO2bZOkK+FqbamgNVoor7wXMiezC0AICs+O5w98x57YuwMJmd1M57unkumsPXPg+07s/ABAe/C+wAADIJjfej58f+TtZqqdiF13wdWHB8hhEQLSZLQ3t6Ovr6+OfsqKiqQlRXdcycQEnWGxwHMPAhQBanwJCQimpqaQtOPV1VVrehaE2Nu2bbOOyHb1kT5xELzebH/DZy1tcratKwGfnFqGu5219xPnwHIik4tq8HRsXocHasPtVVb1uD63D1hiDj8ent7wfM8VCoV8vPzl34BSQLbdxaM13HpYxe+CAS3bU6r+9wRKjyj0GreZ0hioJyZQkXn4lHOkMUyq42y7Xhdd4AKTxJ1eJ4Hz/MrXvtQkiTYJ+VPqQzuEdm2rmAZRYqCJElCo60VjqBrRdfxi4FQoTqtydYas4WnIAgQRRGCsMzRugEP4F/Zv+lCeNckBI8DnMEcluuT5Vmt+wxJHJQzVHQuFeUMWSxNcAJm78zMtmrJf5GjYxcVniTqaDQasCwLlWpl6emw+8DPWlYEAEy+cdm2vrgYc1fIjF4ewQcXf6kun8vj5D1w814YVfqwXD+cVCoVGIZZ/pT1WiP4az4D7syLYPsbVy0uY8UOWK+6j4rOKLRa9xmSOBI9ZyRJQltbG/r7++fsq6yspBlc55HoOUMWL0UTRKp3ILStQuAiR8cu+k0gUaeiomJVrjPYa5NtswxgCkyGtjmjEZpUK3hRhMFgWJXvGW4GGPCFDR/Fc12vomGiZdWuW5NagZsKr0SqzrJq14ykNWvWrPwiBgNw1UcgDrVBOP4kMDn3zdViaTKLkXr1B6EvXLfyuEhYrNZ9hiSORM4ZKjqXJ5FzhiyNjpWXZPG6GBsVniRu2SbkTwaTktQouOYK+Pr74RsZAafXw2C1QhWIrU+VkpOT8anMD6FlvAN/aX4Wvc6BS5+0gPykHLyn8masTS1ZxQhjXPImSOUb4G8+CPdbT0BawrhPzmhByhXvRVLNXjAsLRhOCIl9kiShtbUVAwNzX2uo6CSELAUVniRujQ7LZ7QtWpuJsvdcG9qWRBEMy0Kn0114akzYYq7DpsIavN71Fh6ufwrOwOLHKJq1JtxTcyuuKNoBlo3Xz9VWaMdNsHHAxMv/t+hTknfeBnPdvjAGRQghkTUyMjKn6GQYBpWVlcjIyFAoKkJILFLkHafL5cJTTz2Fr371q3jggQdw55134umnnw7t/9nPfoY333xTidBIHBkdkhdi6ZlJsm0mDgoulmVxZckuFKcsbZKkYks+rizZRUXnJdiPPruk4x1LPJ4QQqJdRkaGbNIgKjoJWX0MI0AXdIX+aHn3pU+KQRF94imKIh588EE89NBDcLun/kElSQLDMJiYmFnm4uGHH8b4+Dhqa2vx3e9+d3nLI5CYNTAwAEEQwHEccnJylnUNSZLmPPFMzzKtRnhRx+a148zwuSWd0zB8DjavHRZ9cpiiiqzVyJkL+QbaIDjGlnQO7xiDb6ANupyyVYmBhE84cobEt0TNGYZhsHbtWkiShJGREVRVVSE9PV3psGJCouYMWTq7NIkcZ1to26eJz5mQI/a4IxAI4EMf+hB++tOfwuVyQZIkSNLcxVH9fj/Gxqbe7J0+fRp33nkn2tvbIxUmiQJjY2MYGRkJ5cFyeN1B+H28rO3CJ57x4s9nnoGEpS00LEHCI2fi5+ncauTMhcZf+u3yznt5eeeRyApHzpD4lsg5wzAMKioqsGHDBio6lyCRc4Ysjc2XhON5N4X+nEu7QumQwiJihee///u/48iRI5AkCTqdDnfffTe+9a1vzTlOkiTcc889UKvVYBgGNpsNn/70p8Hz/DxXJWR+LqcPs5fNYhjAnBybYzkvxua14/XOt5Z17qudh2Hz2lc5ovgQdE7A37+8WYP9fS0IOicufSAhhMQQhmFgNtPSUISEg19g4dClh/641ValQwqLiHS1bWhowJNPPgmGYVBeXo5f/OIXyM7OBgB88YtflB2r0+nw1a9+Fffffz8+/vGPo7OzE21tbXjuuedw6623RiJcorDS0tJQF+zlSssw4fNfuxZ+Hw+X0wfnhAsMG3/dFr5/6JdLfto5TYKE7x/6Jb627/OrHFXkrUbOzLaUCYXmPf+Vh5B522dXJRYSHqudMyT+xXvOSJKErq4u5OTkQKvVKh1OXIj3nCGrR0iQHIlI4fn4449PfTOVCj/5yU9CRefFFBUV4Sc/+QluueUWiKKIv/3tb1R4Jgij0bjiazjsPpw+3gsA4DgWtjdew8TX9kNjTYE2PR3WbVuR+66bV/x9lHS8rx4t4x0rukbLeAeO99VjS17tKkWljNXImWm8axLuc8t7ijzN3fwW+KsnoTKlrFJUZLWtZs6QxBDPOSNJElpaWjA0NISRkRHU1dVR8bkK4jlnyOpK1sjXk4/XMjQiXW2PHTsGhmGwZ88eFBQULPq80tJS7N27F5Ikobm5OYwRknjDB8XQ14Igwm+zQ+J5+EdG4Whsgqut7SJnx4Z+5xA4ZuFfYbPWBKveEvpjVBvm3Mg4hkW/cyi8gcYYx6mXwGpnvVlgGECtBas1gjNZwSXN/cMakwFu+nM8BqzOCFfDa4rETwghSzG76AQAr9eL+vp6+P1+hSMjJHGwF3k/F08i8sRzZGQEwNRCw0tVXl6OV155BZOTk6sdFoljPC/MbEgSRId8LKNuEU/do92tldeizFqI7x36JTxBr2zf2tSSebvQjrjH8eMj/4eWsXYY1Hp8btdHUZ1ZEamQo54k8PC0nYSuoBJJm2+E+8zrYE0WqIzJMNdeBVa38KfXkijAcfLvMFZshyopPsdmEELiiyRJOHfuHIaHh2XtXq8XbrebnnoSEiGCKC/JBIZTKJLwikjhOT17Lcct/R9xul+8Wq1e1ZhI9PJ6vaExEXq9flnX4PmZJ5682wNWCMr2G/LzVhRjtKjOrMD/XP9V/PjIQ+ie7IUr6AEAXFa0bd7jM4yp+I+9n8HL7QewNa8OVr0lgtGGz2rkDABMHnoCgcF2BAbb4e9vhfWaB6BOToXaknnRohMAGJZD8pYblv29SWStVs6QxBFvObNQ0ckwDKqrq2G10gdoKxVvOUPCh4O8zpGo8Fy+tLQ09PX1oW0Z3RsbGhpC1yCJobW1FcFgEGq1GjU1Ncu6Bh+ceeKpMhpR8sF7kYtRuDu74BscgrGkeLXCVZxVb8G/7/00eIHH20ONONB1DDvzNy14PMdyuK78isgFGAGrkTO+/vOwHXw8tC24bbC9+WfkffQHYNj4fAFIZKuRMySxxFPOTA9hmu6RNm266ExNTVUosvgSTzlDyGqISOG5efNm9Pb24tVXX8XExMSiP0VramrC4cOHwTAMNmzYEOYoSTw5d2YIbpcfGp0KWq0Khtw0ZK5fr3RYYaXiVNiSW4stubE9UZASxIAPI0//LyDNPCkHyyH9lk9R0UkIiSsLFZ0sy2LdunVUdBKiAOYSvariRUQKz5tuuglPPvkkfD4f/uVf/gUPPvggNBrNRc/p6enBJz/5SYiiCIZhcP3110ciVBIFUlNTIQjCsrpmA4DfF8Sxg12ytvSspFWILPqIkggGTMJP1b7SnBn726/ATw7K2lJ23wldTtlqhEei0EpzhiSeeMiZixWd1L129cVDzpDIWO7SeLEmIoXnrl27sGvXLhw6dAiHDh3C7bffjg984AOoqqoKHSOKIpxOJ1pbW/Hyyy/jkUcegdfrDT3tvPzyyyMRKokCubm5KzrfYfPNaUsy61Z0zWjVNdmH8+MdyDNnoyA5B2ZdfBbYl7KSnHE1vwXXmddlbdrcclh23b6yoEhUW+l9hiSeWM8ZSZLQ1NSE0dFRWTsVneET6zlDIsfmcwCYea8ar2VoRApPAPif//kf3H333ejq6kJ7ezu+8pWvAJgaTyBJEr73ve/he9/7Xuj46QmJMjIy8IMf/CBSYZI44LDLC0+VmoVOH5+TU/XaB+Dwu9A02oqm0VasSS1BXXbVpU8kAADeZcPo8w/K2hhOjfSbqYstISR+iKKI5uZmKjoJIYqK2KIxycnJePTRR7Fv3z5IkhT6A8zMXHth+4YNG/Doo48iMzMzUmGSOOC8oPDU6lTQ6iL2GUvE2LwODLvkbyLSDCkKRRN7JEnCyFM/gOT3yNpN6/dAbY395XYIIQS4eNG5fv16KjoJiQKCKF76oDgQ0XfjZrMZP/nJT9DQ0IDHH38cx44dQ3d3d6jQBID09HRs2bIFt956K/bs2RPJ8EicsE/K17Tkgn4E+3ogpq4Fq4qfAvRXJ/+Ec2PtKEzORYElF2atCVlJGUqHFTMcJ/8OX/dZWZs6NRfWfR9M+DGzhJD4IYoifD75B7LTRWdKCn1YSUg0ECTh0gfFAUXehdfU1ISmlRYEAXa7HYIgIDk5+ZKTDpH4d/78+dD042vWrFny+bYJ+RMsyTaOtq/9EZ2MCHPFWqz/5tdXK1TFBPgAzg63wMv7cHakBWdHWnDTmqugStDuoUvNmcDEECZeeUjWxqi1SLvhY+C0tNZaIljpfYYknljNGZVKhZqaGtTX18PlclHRGUGxmjMk8oxqg2w7Xj/+VvzxD8dxF+3mEQwG0d7ejrGxMezevTuCkRGl+Hw+BINBCMLyPv2x2+RPPFWiH6zEAxIgLfOa0eb4QD28/Mwn2AwY7Cu9TMGIlLWUnJFEASN//S4kIShrN2++HvoCGh+bKFZ6nyGJJ5ZzRq1Wo7a2FmfPnkVRUREVnRESyzlDIkvH22Hyz3S3VYl+BaMJn4gUnhUVFWBZFp///OfxwQ9+cEnn/vSnP8UvfvELpKen48033wxThCSasCwb+rMcF47x1PC+0CdH2qz4GC9cP9gs267OXIscc3z8bMuxlJyZPPg4AsNdsjZtdhlSLrsrTNGRaLTS+wxJPLGeM2q1GnV1dTSUIIJiPWdI5KSo/Uh3T4a2VQgoGE34ROyJ5+xxnEuh1+shSRImJiZWOSISraqrq1d0vssp/5RIK7hDXxty81Z07Wjx8a334cqSnXi96wje6j2Jy4u2Kx2SohabM6LAw1n/qqyN1RmRet1HwKq14QiNRKmV3mdI4omFnBHfmaBkoUKHis7IioWcIdHBmpOJnvbO0LZGFZ9DpxTvarsQSZLQ19eH5557DgBgMBgucQYhQDAowO/jZW0W78xC2YbC/EiHFBYMw6AivQwV6WX40Ia76M3EIgWGOmBYuxX+nmYEhqdu8MnbboEup0zhyAghZGVEUURjYyMAYN26dfSUjZAYok1PgdYyU3jqtFFboq3Iqv1UPM/jtttuQ1tb27z7JUnCd77zHXznO99Z8rUZhqFB2WRRLuxmCwAp3qHQ18ay0kiGExEaFU3ItRiCxwHP+eNgGA66wmqordmQ+ACSt92sdGiEELIioiji7Nmzod5hTU1NqKqqouKTEBJVVu2OpFKp8F//9V8A5Otxzu5ie2H7Yv8AwEc+8pHVCpXEMccFhScnBqCSpiaRYTUa6NLSlAhr1YiSiPNjHbD5HMvuvp6IJFGAq/EgRP6dCYUYBurUXKTuez91sSWExLQLi04AGBsbQ0tLi4JREUKWgmMBHesL/dFyNMbzkjZs2ID3v//9eOmll2TtAwMDYBgGZrMZRqPxktdhGAYcx8FkMiEvLw933XUXzWibQEZGRiAIAjiOQ0bG0taldF4wo62Wn1laRW2xrEZ4ipr02nF6qAkAoFfpkJWUjk3Z6xP2U21fbzN0+ZWXzBlv11kEbTNdrkWPHYbKXVBbcyIZLokiK7nPkMQUjTkzX9EJTK0YkJND9zelRWPOkOjUyQzjd+vGQ9upvIQrFYwnXFa9A/EXv/hFfPGLX5S1VVRUAAA+9rGPLXlWW5J4hoaGQuteLfVGfeETTx0/M7GQJsWyGuEpatg1Gvray/sw7plM2KJz4s1HYDvwKKx778WQqXTenJEkCaLAg3eMhdoCQ+3w9TRBZU6HoXyTEqGTKLCS+wxJTNGWM4Ig4OzZs5icnJS1cxyHmpoaJCcnKxQZmRZtOUOil31ChbzzW0LbKtXcoWPxIGLvWKlbIImEgF8Aw85MtKOdVXiqY3zdsnHPJJ5teQV2nzPUlmVKzBcyX28zbAceBQBMvPZHqNsOznucq/EABn/3JahSsmEo24jAUCd8PVNPjG2HHoevt3ne8wghJJpdrOisra2lopOQGON2CTDbM0N/tI5UpUMKi4hMmXTu3LlIfBsSJ4qKiiCK4rKe5F1+TTm2XlaEYEDAqa9+E/xkf2ifxmpdzTAj7q2ekzg5cAYAYNaaUJxSgD2FWxWOShm6/EpY996Lidf+CADQNu+HxWKBcfNNoWN4+yjG//YriH4Phv/yNegKquDrORvab917L3T5lRGPnUSHldxnSGKKlpxZqOhUqVSoqamB2WxWKDJyoWjJGRL9xGEbgPTQtt4nKhZLOMXnXL0kpq3kRdPtDuDkW90AgGHeBMaQA4PdDgaANi3GC8++U6GvHX4XOIZFmjE+PxFbDMvO2wAgVHx633oCep0e2HkbJEnEyDM/huifGuMr8QF4O06HzrXuvTd0PklM9OacLFU05AwVnbGF/j/IYlkYnWybi8+6U9nC88JZb6fbRFEEz/Pwer2w2WxobGzEU089hd/85jcKRUpixew1PPkgD47hMN3xVhvD4ytG3eNoHe+UtV1XfgVUbHwuMLxYFxaf03+D4+DraZz3HCo6CSGxSBAEnDlzBjabTdauUqlQW1uLpKQkZQIjhKwYxyTGU/GIFp4vvfQS/vSnP6GxsRFut5vGfZJV5/NOLZch+gOAKEIt+EP7dFmZSoW1YgzD4IY1V+JI7ylMeG0wagyozqxQOqyoMG/xucANnIpOQkgsoqKTkPgmivIHCSITnw8WIlZ4/uAHP8Avf/lLAMubaIhhmEsfROJCMBiEJElgGAZqtXpJ53o9U+se8a6pCXhU4uzCM3v1goywNIMVH9hwJ+6vezfOj3VgzDOR8E87ZzNuuQm8IMDx5p+nGqS5fVSo6CSzreQ+QxKTkjlz7tw5KjpjEN1nyGIZMnOAoZn3LpIqPkdDRuSnOn/+/IJF53RBuVC7SqXCzTffTOt4JpDm5ubQ9OM1NTVLOtfnmXriybumxvapxalClNVooDJdeg3ZaMcyLCrSy5QOI+o0NzcjaChGkiUXKlv/nP1UdJILreQ+QxKTkjlTWFgIm82GYHDqNY6KzthA9xmyWJxJD2BmJYZ47XkbkR/rscceCxWWmzZtwmOPPYaGhgY88cQTkCQJHMfh8OHDOH36NF599VV84xvfQHZ2NiRJAs/zqK6uxg033BCJUEkMGx50oKVxGOMjLjgm3RAYDqp3utpyBgM9NY9zjGsMnH1oTjurM1HRSQiJaSaTCbW1tVCr1VCpVKirq6Oik5A4ojJaZNsSF59PPCNSeJ44cQLA1I3zwQcfxPr166HRaLBu3TqYzWYIgoBDhw5Bp9MhJycHt99+O55++mmsWbMGkiThu9/9LsbGxi7xXUi8SE5OhsViWfI6ZJ3nx9BUP4jG04M4P8JhxFQceuKpSjKFI9SI8AS8ePH8azg92Ihh1yhEMU6nOluB5ORkJDf/HYwkzNkn+lywHX5SgahINFvufYYkLqVzZrr4rKurg8kUu69piUTpnCGxg7lg+BQTp488I/JTDQ0NgWEYXHHFFXN++datWwcAOHnypKw9KSkJ3//+98EwDHw+Hx599NFIhEqiQGFhIUpLS1FYWLik8yYnPLJtTgyGnniqY3hK847JHjgDbpwf78QbXUfxYutrNDHXBayOLjDj3fLGWTfxidf+SMUnkVnufYYkrmjIGZPJREVnDImGnCGxocch77HlFYMKRRJeESk8nc6piV6Ki4vn7CsrK4MkSTh37tycfeXl5di8eTMkScLx48fDHieJbfYLCk+VGAAnTS2voo7RTxsnvDa0jXfJ2jJNadRteBYx6MfYi7+UN7Ic8v/hp7DuvTfURMUnISTa8TyPwcFBpcMghESYNM+kiPEoIoWnXq8HgHln9CoqKgIAtLe3z3tudXX1RfcTMs1h98m2Nbw3tIanJiUl8gGtgq+//r94puUlnBk+B5vXDkmSUJ469wOcRDb48H9ACsr/7y3bboE6OR2WnbdR8UkIiQk8z6OhoQEtLS3o7u6+9AmEkLjB+/2ybSZOO7ZFpPC0WCwAMO84zfz8fACAy+XCyMjInP3TXXPtdnv4AiRxweWQ/9JqBW/oa02qNdLhrNiAcxh9jkG4Ah60jLXjlY6DACQk62K32/BqG3vlIfj7z8vaVOY0WC6/O7RNxSchJNpNF50OhwMA0NnZScUnIQlE6B2WbasD8fkENCJTJlVVVaG3txeHDx+es6+goCD0dUNDA/bt2yfbPzQ01eeZxrQljvb2dvA8D5VKhdLS0kWdI4kSPO6ArE3Hz0xLrU1PW9UYI+GtHvm452RtEm5ce5VC0UQf2+En4Tj67Jz21GsfAMvJe1dMz2o78dofZX/TbLeJazn3GZLYwpUzPM+jvr4+NCxpWl9fH3Jycmj9xxhG9xmyWEaVTrYdrwOqIvLEc+fOnQCAtrY2PPjgg7J9hYWFoa64zzzzjGyf1+vFK6+8AgBIS4u9woEsj9vthsvlgtvtvvTBoXMCEEX5hxO64MyLuDYjY9Xii5TWiS7Z9vb8jTBpYn8t0tXg620OFY8AwKfkQzCmgk8rgXHNlnnPme/Jp6+3Oeyxkui0nPsMSWzhyJmFik6NRoO6ujoqOmMc3WfIYml4F/QB+8yfoEPpkMIiIoXnu971LlitU10df/zjH+OOO+7A/v37AQAMw+DKK6+EJEl4+eWX8fWvfx3nz5/H0aNH8cADD2BsbAwMw6Curi4SoZIY5bB55Q2SBB3vmvqaYaDLyox8UCv0/9m78/go6vt/4K+ZvTf3HULCTRKuBFEOEQTBCxRQFNSKB23V2lqt+vNuq+JRv+JRrdajra21eB+oXAKKcoiAQhLCGUKA3Pdms9l7Zn5/rDvZSXY3u8neeT8fjzzYmZ2d+ezy3tl5z+d6YNbteOaiB7G48CJkaFNxbt7Z4S5SxFDlFkAzegoAQD1iEviMUbAMnQTz2cu8vs41+UyevRzqvHFBLyshhLhjs9m8Jp1xcXSjkZDBIlVhRLbhpPiXaawKd5GCIiRNbdVqNVatWoW77roLHMfh0KFD2LdvH+bPdzQbvPXWW7Fx40YIgoA1a9ZgzZo1vfZx3XXXhaKoJAI4B5TyR2ePgYVkvA0KztH0VqZWQxGFE20zDINRqcMxKnU4ri+iJqGuLPUnocoZA1lcEuRJGVAJArSjzoJq6Ng+X5s880qo8wop6Rzk+nOeIYNbIGPGZrOhrKzMY9Kp1WoDdiwSPnSeIb7SyhQAuitRZJ43jWohm530wgsvxN///ncMHToUgiAgNzdXfK6goACPPPIIAEdfTtc/ALjlllswdar75nMk9rAsK/75Sq+TJp6JyWqMuupyZF40H2kzzwUji+6vMMMwNIXKzwS7DeZTBwEA8qQMx79xyVDnjvU5ZijpJP05z5DBLVAx01dNJyWdsYPOM4RIhaTG02nOnDnYsmUL9u3bh6wsadPH66+/Hvn5+XjzzTdRWloKq9WKwsJC3HjjjVi4cGEoi0mikF4vTTyzR2Zh9C+is2mqnbNjf305chOzkRWfARkb3UlzoPEWI+IKZ8BYeQCcyXHhph1zFhiGftgJIZHNmXQaDAbJeko6CSGDQUgTT8Bx92f69Olun5s6dSrVbJJ+6ezRxzMxWe1hy8hX19mIU7oanNLVQMHKkZs0BOfkFFGNJwBL3QnU/fePSJx2GZLPvRK2lhpwRj0UydHXh5cQMrh4SjpVKhWKi4sp6SRkEGMgQMbbxWWWsXvZOnqFPPHsr7a2NnGAIhLb2trawPM8WJb1+f9c36OPZ0Ji9CaeZzpqxcc23g6TzUxJJwBB4NGy+V8QOBs6dq+F4eB3SLv4l4gfN7NfMUMGN4oZ4q+BxIy3pHPy5Mni6P4kttB5hviqC20YrjskLluUsXndFxWJ54cffojnn38ee/bsCXdRSAjU1NTAZrNBoVD4nni66eMZjSrbTmNjxbfITRyCVE0yGIbBsKSccBcrIhjKvoWl9ri4zBnaYW93zPPbn5ghgxvFDPHXQGJGr9f3mlKDks7YR+cZ4qt2qwb1mbPEZRZmL1tHr6Amnm1tbaisrERzczPS0tIwefJkqFQqn19fUVGBRx99FAcOHAhiKUksYGUMWJYR5/JMTIrOH/I91QdQ0VqFitYqaBUajE0bgSvHXRLuYoUdb+6SzNsJAIrUIUiatihMJSKEEN+lpaVh3LhxOHz4MABKOgkhUiabEvWJ3SPzq2N0Hs+gJJ7V1dV48cUXsXnzZnAcJ65Xq9W46aab8Pvf/x4yL6OMms1m/O1vf8Pbb78NjuMgCAI1NRxEcnNzxaYpvrr2l1MhV7Dg7BzaKmuQnhp9k24LgoA9Nd03WYw2E1I0SVDIou+9BFrb9g/AdXVI1qVdtBKM3PHZ9CdmyOBGMUP8NdCYyczMBACcPHkSxcXFlHQOAnSeIb6yQQh3EUIi4IlnSUkJbr/9duh0OnE6FMAxHYTJZMIbb7yBgwcP4s0333SbfH777bdYtWoV6uvrJQmn84RNYp+/zVEEQcChkjpwHA/OZELjZ58hu7MSatYOmUaDotXPQJMd+YPPnNbVoN7QJFl38eg5YSpN5LA0nYH+xw2Sddqx50A7pnvUYmrCRPxFMUP8FYiYyczMRHp6OiUigwSdZ4ivEpWDY3CxgJ75rFYr7r33XrS3t4vrlEol0tPTxWVBEPD999/j1VdflbzWaDTi4Ycfxu233466urruArIsbrzxRmzYIL3wJMTJauHAcTwAwG4wgmPlkPF2CDYb7Ho9FIkJYS6hbxJVCbh6wkLkJDiS5AxtKkanDg9zqcJLEAS0bHgNcLmJBVaGlLnXh69QhBDihetNd3co6SSE9CTvMXVerLbzDGiN5yeffILa2lowDAO1Wo1HHnkEixcvhlKphMFgwDvvvINXXnkFHMfh3//+N375y18iPj4eDQ0N+NWvfoWTJ0+KtZyCIKCoqAiPP/44xo2jyd6JZyajVXzMGY1gBB4ywQYAYJVKyKKkOVOqNhnLJy7CsgmXo7qjDm2mjkHfxLzr8E7JgEIAoB42Acr0oWEqESGEeGa1WlFWVoaRI0ciLS0t3MUhhEQJjpfekOJjdG7ygCaeu3btEh8/99xzmD9/vrgcHx+P22+/HYmJiXjiiSdgNpvx9ddfY/r06bjmmmvQ1NTdxDAhIQF33303rr322pBeeAuCgHXr1uGTTz7BkSNHYDQakZGRgalTp+L6669HUVHRgI9hNpvx/vvv46uvvkJVVRUMBgPS0tJw9tlnY8WKFZgyZUoA3kl043lefOzLnWGT0SY+5kwmKDireKdIptVEXfLGMAyGJQ/FsOTBnVzxVjNaNr8lWceotEg5/xowPe4M+hszhFDMEH/1FTMWiwWlpaUwGo04dOgQJk6cSE0tBzk6zxBfySAdfJVnomLiEb8F9F2dOHECAJCfny9JOl1dd911ePPNN9HU1ISffvoJn332GRobG8Vazosvvhh//vOfJc1zQ8FsNuOuu+7Ct99+K1lfW1uL2tpafPnll/jDH/6AW2+9td/HOHr0KH7/+9/jzJkzkvUNDQ1Yv349NmzYgN/85jf4wx/+0O9jxILy8nJx+HFfkn2zqTvxjM8fi9yzxmJUBmBtboHAc15eGTksdisUMjnYGL3D1R9t374H3igd1S1hwmyocwt6betvzBBCMUP85S1mXJNOwJFwlJeXY9KkSUhJSQlHcUkEoPMMIVIBTTxbW1vBMAymTp3qcRuWZXHOOedg/fr1WL9+vXiSjo+Px+OPP46FCxcGskg+e+SRR8Skc/To0Vi+fDnS09Nx6NAhvP/++zAajXj++eeRlZWFJUuW+L3/6upqrFy5Em1tbQCAc889FxdddBGSk5Oxf/9+fPTRR7BYLHjttdeQnZ2Na6+9NpBvL6YdKauHrs0IpVoOlUqO7KGZSBo3BIiiFto/1ZWhqasVmXHpyI7PQE5CJtSK6JyLNBCsbXW9BhSSJ2Ui+fxroq4GmxAS2ywWC0pKSmAymSTrVSoVtNrBMWAIIWSABsk1X0ATT+dJt6/aytzcXACOAYUEQcCoUaPwxhtvIC8vL5DF8dmuXbuwbt06AMCMGTPw5ptvivONXn755bj66qvxi1/8AjqdDk8//TTmz5+P+Ph4v47x+OOPi0nnvffeK6k5veyyy7Bo0SKsWLECNpsNL774IpYuXQqlUhmgdxhd4uLiYLfbIZf7Fp7HyhvQqbeIy/GJaowrGhKs4gUcL/Bo6mqFlbOhRl+PGn09pg0txoiU8HwfIkHzl68CAu+yhkHy7OWQxyW53d7fmCGEYob4y13MeEo6NRqN33OXk9hD5xniK1Y2OGIkoO/SbreDYZg+T7RxcXHi4+zsbLzzzjth7YT/1luOfmRyuRxPPvlkr/KPHj0af/rTn3DvvfdCp9Pho48+wsqVK33e/969e7Fjxw4AwNKlS9021508eTKuvfZavPPOO9DpdNi9ezfmzBmcU2mMHj3ar+1NLk1tASA5NToGE3Kq0zfCYrdKavKy4jPCWKLwMhzaBUvNUck69fAJSJh0vsfX+BszhFDMEH/1jBlKOklf6DxDfKUz6wG4zAISvqIEVVg6lLne+bnzzjvDmnTqdDp8//33AIDZs2d7rHVduHChWM5Nmzb5dQxnbapKpcLdd9/tcburr74a1157LW6//XYaDc9HZpMNdhsvWZeaHudh68j035KPsbFiGw7UlaO+swnxSi00g6TJRU+CIMBu7IAiY5i4jlGokH7Jr3sNKEQIIeFCSSchJJB48H1vFAPCXq87d+7csB7/xx9/FEcdmzFjhsftWJbF1KlTsWnTJpSWlqKjowNJSe6b/fW0detWAMDMmTORmZnpcbvCwkI8/vjjfpSetDYZeq1Lz/SvGXQ48TyPyrbTMNpMqGw/jcr200hSRce8o8Fga6kBb+pEXOEM2IeMhrFyP+LHz4YyY/A2OyaERBaz2YzS0tJeSadWq0VxcTElnYQQv/F8rNZxSoV9CM1wj/ZWUVEhPs7Pz/e67ZgxYwA4amWOHz/udVunpqYmtLa2AnA0p3Wy2Ww4cuQItm/fjvLyctjtdj9LTgCgtaVLsixjBRgP7IP+2HFYdbo+J/IOt4q2KnRape9hYcG8MJUmvAS7DcbKA+KyPCkDSdMWI+WC68JYKkII6WY2m93WdFLSSQgZCLswOPKAsNd4hnuEytraWvHx0KHe503Mzs6WvM7b6L1OzilmAMegSjabDa+//jreffddcbAhAEhOTsYtt9yClStXQiYb3E0KT58+LXbGHz58uNdtO9qlP/4yqwnHn/uPuFz81+cQP3JkMIoZEIeapDcw8pJykBk3OJtZm04dBG+V/n/GjZ0CmQ/Njv2JGUIAihniv+PHj6OiogI2mw3Jycnieq1Wi8mTJw/aAQGJZ3SeIb7SyKXXOrE6fn/YE89wc03++qp9df2h0el0Pu2/oaFBfKxUKrFixQqUlJT02k6n02H16tUoKSnBiy++CIVC4dP+Y1FHR4c471VfOjvMkmUFZ5EsqzIie5CeK8ddinNyirC/vhw/1R3EhMyx4S5SWHBdHbDUnZCsU6RkQ5HuWxNbf2KGEIBihvjHZrOhvLwcZrNZcnOYkk7iDZ1niK9UnAlKu1FcVvBmL1tHr0GfeJrN3f+xfTWRcf1hcX2dN11d3c0on332WVRXV2Ps2LH4f//v/2Hq1KngOA47duzA6tWrUV9fjy1btuCvf/0r7rvvPj/fSeCcOHECo0ePRkJCd19Di8WCY8eOAXAk4MOGDev1GuecrD0nSW5paUFdXR0AIC8vT5LgcxyHQ4cOAQASEhIwskft5KlTp6DX6wEA48ePlwxMpdPpUFvdJNlewbn8vygUOFxZCa1Wi7FjpQldTU2NeNMhPz8fanX3nSaDwYCTJ08CADIyMjBkiHRqliNHjog/JOPGSScLra+vR3NzMwBg1KhRkml3zGaz2EQ7NTUVubm5YBgGw5KHYljyUEyQj4LRaMTBgwcxadIkyX6bm5tRX18PABg2bJjkJojdbsfhw4cBAImJiRgxYoTktVVVVejs7AQATJgwQXLR1N7ejurqagBATk5Or6mQysrKADgurpxNzZ3OnDkj3oApKCiQfH86OztRVVUFAMjKykJWVpbktYcPH4bdbodSqURB/lgIrAza/HNgOlmKjvZWGE1m2LQjMNpolIyCbTKZxObxaWlpvVop2O12lJWVgWVZTJw4UfJcU1OTeCNoxIgRSExMFJ9zNn0HgKSkpF53pisrK8Xv8sSJE8Gy3b0U2traUFNTA8DRqiE1NVV8zjmJPOAYzbvnCIenT59GR0cHAGDcuHGSixO9Xo9Tp04BcLS26Nk/vLy8HDzPQ61W9+omUFtbKzbxHzt2LDSa7pGeu7q6UFlZCcAx9VVOTo7ktUePHoXVaoVcLsf48eMlzzU2NqKxsREAMHLkyKg4R5w5cwYAMGTIEGS4uRFls9lQUVERsecIVxUVFTCZTGAYZlCdIwoLCyXP1dXVoaWlBYBj1FB/zhHHjx+H2Wz2+xwhCAI0Gg3MZrM4LkRcXByKi4uhVCrpHPGzWDtHHDx4UPy/7885wmaTjrrvROcIh1g6Rwz0OkJpacRQfbO4TgYrgPCdI5wxGGhBSTzLy8uxdu1ar887eduupyuuuKL/hfLAtW9lX3csXZ/3tU+m8yQKANXV1Rg3bhz+97//SU4kl112GaZMmYKlS5eira0N//nPf/CLX/yiz6a/wcJxnPjD6iQIgngC5Tiu12vsdrvHEyzP8+JzPfcLQHzO+ZmOGzcOgiCAYRicPn1afL5nf01BEGA2Sf8flK6Jp1LpsVyu693tt6/y+vJeve3XXfzYbDZxSqJA7jeQ/zeuOI7zWCbX/bqLF+d7ZVkW+v2b0b7jQ6RecD0Szr4EHT9ug1VphZ2Re32vrvt1xszx48dhsVgkJ3R35fUW36H8DL3FoS+fIc/zbpvme/u/8fW77K5/tK+fYbDPEZ726893edy4ceJFZTSdI2w226A7R/iz377i0PkZ+nuOACAmJSaTSZJ0AnSOcLffaD9HOPcrCILbeTh93a+7m1N0jnCIpXPEQD9DbXw8WEV3zqCUdf8fhuMc4e7/MhCCknhu2LABGzZs8LqN80vx0EMP+bRPhmGCkni63qGy2Wxek0+r1So+9rVZTc8geOKJJyRJp9OQIUNw55134rHHHoPdbsfatWvxu9/9zqdjBJpMJuv1hWMYRryL4i5A5XK5x6YkLMuKz7n7Ijufc57YXffjut+eJ1KGYXrtL87a3n1ctRoKhcJtufrary/ldbdf1/fqbb9yuRxndI7+xdkJmVDKHOX0lHj6s19v79Xbfn35v3Elk8k8lsl1v+7iRaFQgGEYyHkb2re/D95kQMv619C5fwtkU5eCiVdDwTBe36vrfp3rlEoleJ53+15cy+stvkP5GXqLQ18+Q57n3ZbL2/+NL99lnuf7/D8P5znC0379+S47zw2CIETsOcLdfgfdOcLP/fYVhwqFAhzH9escoVQqkZOTA6vVKkk6ATpHuNtvtJ8jnPsd6DnC3XUInSMcYu0cMZDPUJmdCm1rd+KpVnWfX8JxjnD3/gOBEQI47GdhYSEYhgnKSKIMw4hV2IH0hz/8ARs3bgTgmFrFtVlIT1u2bMEdd9wBAHj44Ydx00039bn/t99+G08//TQAR7X8V1995XHbtrY2nHvuuQCAWbNm4V//+pfP72MgDAaD2PwFcDR3cJccR6JX/rINbS4j205s2IYswykAQPzYsSh+7pkwlcw7QRCwsWIbDFYjWIZBujYVk7IKkaYN7yjPoday+S3o962XrBuyYhU0wyeEqUSEEEIIIaFV9fV6lHyzX1xWqxgs+PMfw1aeYOUGAa3x9GWU10jj2j5bp9N5TTxdBxRy7aPhjet/Us9+Bz2lpqYiOTkZOp0OTU1NXrclDoZOaV9bpb17VFR5QlzPzSNGp7ULBqvjzhYvCGjqagXLhH12o5CyttRA/9Mmybq4wnMp6SSEhJVzqhTXfo+EEEIGLqCJ5zvvvBPI3YWEawfq+vp65OV5HkXTdYTanp3tPenZ8bsvzqY7wWpbHQ30er3YXNL1xkBPVosdVou0zbqK626mIPdyEyHctp7YgaauVqRrU8AyLDRyNZLVnt9rLGr7+r8A3/3/x8gUSJ1/Q7/25WvMEOJEMUPcMZlM4sjzkydPliSfFDPEXxQzxFdNilZ8W3BaXE7mGSwIY3mCZdCPaus6OlRFRQWmTZvmcVvnKFgMw/Qa3cwT11GiXOcMdYfjOLFWtefoXYPJqVOnxNHeeo5s56pT33tkYZVLjaciKSko5RsoXuCxoeIb6C0GKFg5suIzcPGY2WGf0zaUjJUHYDzxk2Rd0vRFUCT3L+59jRlCnChmSE9GoxElJSXieA4lJSWS5JNihviLYob4qkXHg2/sHom4i7V42Tp6Da62fW6cddZZYqfaPXv2eNyO4zjs27cPgKMvq693rlJSUsQktaKiQlJr2tOhQ4fEH7yewxqT3qwWDolJarCsI2GT8TbIhO4RvxTJkZl4VrVXQ28xAABsvB01+nqMSB7Wx6tih8BzaN38lmQdq4pD4tSFYSoRIWSw65l0Ao7pP5zTihBCSDAZ9AwyGkaLf9qW2LwuHPQ1nomJiZgxYwZ27NiBb775BnV1dW6b0a5fv16cr2nBAv8qvy+77DL89a9/hSAI+Mc//oE//elPbrf73//+Jz729xixJDs7GxzHuR2By1VKmhY3/vZcKBUy2Gw27L39D5LnlUnJwSvkAPxUd1CyPCQhE4UZoz1sHXv0P30FW1udZJ1mZBFkmv53Wvc1ZghxopghTu6STsAxJ2RBQYG4TDFD/EUxQ3xlb9QBSBOXNebY7HI36Gs8AeDmm28G4JhO5Z577oHBYJA8f+LECTz11FMAHJO3Llu2zK/9X3vtteJgRO+99x4+//zzXtusXbtWXD9lyhQUFxf7+zZiRmZmJoYMGdJrotueWpoMKPupBj/+cBr7d51Ep0o6abEyzbcBoEItTZOMUSndd7LOHjLJy9axhTMZ0P7de5J1srhkJJx1ERiZ+2HGfeFrzBDiRDFDAO9JZ1FRkWSaAYoZ4i+KGeKrBF5aFyjrPe1mTBj0NZ6AY+qSSy65BF999RUOHDiAJUuW4LrrrsOQIUNw+PBhvPfee+jqckzZcf/99/ca0XbPnj248cYbAQDTpk3rNchSSkoKVq1ahbvuugscx+H+++/Hxo0bMW/ePCiVSmzbtg2bNjlG91SpVHjiiSdC8K6jn9XS3ayWN5vB8tKJdZUpkTk1yfzRszB/9Cy0mXTYX1eOMakjwl2kkGn/7n3wFqNknbZgOtTDxoWpRISQwaqrqwulpaVuk87i4mK3c+YRQkgwKFnp+SZWR/2gs+rP/u///g9dXV3YuXMnampqsHr1asnzDMPgjjvuwLXXXtuv/V900UV4/vnn8cc//hEGgwHbtm3Dtm3bJNskJyfjtddew5gxY/r9PgYT18STM1sgF2ziMqtSQRbhQ+GnapJx4ehZ4S5GyFhbaqDfL53HVpGei6RzFoCVKz28ihBCAq+rqwslJSWw2WyS9ZR0EkLCgeOljVD5GJ1ij86sP9NoNPjnP/+JL7/8EmvXrsWRI0fQ2dmJ5ORknH322bjxxhtx9tlnD+gYCxYswNlnn401a9bgm2++QW1tLRiGQV5eHi688EL84he/8Hl+UAJYrd3tEDijCTK++wJCplZDplaFo1jEg5ZN/wAElz4LDIvEyRdBke7flEOEEDIQnpLOxMREFBUVUdJJCAk5TWom4DL+qCCLzfNQbL6rfmIYBosXL8bixYv9et306dNx7Ngxn7bNzMzE3Xffjbvvvrs/RRwUysvLxeHHJ06c6HE7m2viaTJB6dLUllWrwKoiL/E82HgURpsJaZoUpGqTkaxKBMvG5l0tV10nfoL5dLlknTqvEAnFFwRkGhlfY4YQJ4qZwWkgSSfFDPEXxQzxlSIlEUCXuMzIYrOxLSWeJOLwPC/+eXPiaBM4jodCKYO5w+IyFpijxpNVRl7zzVp9A/QWA07rHHO6ThkyEWPSRoS3UCFg72iGLD4FnKEdAMAo1EietQysOi4g+/c1ZghxopgZfAwGA0pLS/td00kxQ/xFMUN8xSrj4Jp4CmxsjoRMiSeJOGq1GjKZTDKaoDsVR5rAc8LPS3GIV8QDVseUN7K4ODARVpNotVvF+TudUrXJ4SlMCHFGPXhjJ+InXwhr0ymYqw4irmA6NCMCd/fX15ghxIliZvA5ffp0r6QzKSkJkyZN8ql5LcUM8RfFDPGVrMeNeIaNzRQtNt8ViWr5+fl9bmM22VySTge1rXu0VEV8/+eEDAZBEPDQ1v8Dy7AYEp+JrPh0qOUqJKsSw120oBIEAcaKHyEIPBiGgSprJFTpeUiYcimYAHac9yVmCHFFMTP4FBYWwmazQafTAfAv6QQoZoj/KGaIrxr0jZJli2DzsGV0o8STRCW9ztRrnZLrrk2UJ0ZWQlfdUYfqjjoAwGldDViGxXWTlsR8/05r4ynYOpol69TDJ0CRlObhFYQQEhwymQyTJk3CwYMHIQiCX0knIYQEk4WXTuvEC4KHLaNbWM64Z86cwZdffon9+/ejrq4OHR0d+N3vfofrr78eAPDYY4+hsLAQS5cuhTIC++mR8NPrzdIVggAl171OkZQU4hJ592NdmWQ5TZOMy/Pnh6k0ocHbLDBVlUrWsSotNMMnhKlEhJDBzpl8Oh8TQkgk4G3SuegRm3lnaBNPo9GIJ554Al988YXY0VoQBDAMI5nAedOmTfjggw/wj3/8A88//zwmT54cymKSKNDZIU08ZYIdrnWHyuTISjz310lHdD07pyj2L3pYFqqh+TCfOQyBd4xArB1zNhgZ9XUhhIRPzJ97CSFRx1rbCCBLXFbYYnNAqpC189Pr9bjmmmuwdu1acBwHQRAguKlG7urqEvtf1NbW4uabb8aPP/4YqmKSCFBbW4szZ86gtrbW4zZdnRbJsuscngCgSIus+VB/P+NmrDxrOYqzx0HOyjElZ1K4ixRUxpMlqPvPI2AYBolnXwJFShaU6blQpuUE5Xi+xAwhrihmYldnZyfKy8vBcVzfG/uBYob4i2KG+EojSG+IsTFa4xmyxPPee+9FRUUFBEFAeno67rnnHvz3v//ttZ1CocB9992H1FRH4mA2m3H//ffDZOrdp4/EptbWVjQ3N6O1tdXjNsYuaVt4eY/EU52eHpSy9VdWfAYW5F+AR+bciX9dsRoTswrCXaSgEQQBbd/8D9aGStT9949o2fgmVLnjEFcwPWjH9CVmCHFFMRObOjs7UVpaipaWFhw8eDCgySfFDPEXxQzxlYq3Qsa5/PXo8xkrQpJ47tq1Czt27ADDMJg2bRq++uor3HrrrZg2bVqvbZVKJX71q19h3bp1YhPb+vp6fPbZZ6EoKokSpi5poun6BWVVqogbXMiVRqGGPEbnZwIA44mfYG2sEpe7jnwP86mDYGQ0iAchJHj0ej1KS0thtzv6Sul0uoAnn4QQEgwp8g4M6zgk/uV2Hgl3kYIiJFeCX3zxBQBAo9HghRdeQFxc35PGp6Sk4KWXXsLFF18Mq9WKr7/+Gr/4xS+CXVQSAcaOHSv2/fXEbJImnq41njK1GnIfYixUrJwNgiBAJY/9gbIEQYBux4eSdYrUHCQUXxDU4/oSM4S4opiJLXq9HmVlZWLS6RTI/1+KGeIvihniqwSZEkD3+CWxWj0RksTzp59+AsMwuOCCC5DuRxPIrKwsXHjhhVi/fj2OHTsWxBKSSKLRaPrcRiaXVtbnTBiJ4ReugLW1FYIAyOO0wSqe387oanGgvhwpmiRkxWdgSEIm0rWR1Qc1UEyVB2Cpr5SsS551FZgg1/D6EjOEuKKYiR3Oms6eNZspKSmYOHFiwAYTopgh/qKYIUQqJIlnS0sLAGD06NF+v3bkyJEAgI6OjoCWiUQ3s0l6Vzt7/EjkzhsTptJ4V6tvgACgzdSBNlMHTDZzTCaegiCg9eu3JevkKdmInzA7TCUihMQ6T0lnamoqJkyYQCPYEkJIBAlJ4uk88TunUPGHzeZoQqlWqwNaJhLdzCZpp2ttXOQ1YxUEAbvP/IS6zkbIXGr8suMzwliq4DEe3wdbS41kXdKMJUGv7SSEDE4dHR0oKytzm3ROnDgRLBuy8RMJIYT4ICSJZ2ZmJk6dOoUjR/zvKOucSiUzMzPQxSIRqqurS+wT4ak/sLHH4EIabeTNDVnf2Yi//vAvyFgZMrVpGJKQicKM0RiamB3uogWcIAho++5dyTpWHYf4wnNDcnxfYoYQVxQz0S0cSSfFDPEXxQzxlRk6DG8/JC5blbHZLzgkief06dNRVVWF7du3o6amBrm5uT697vvvvxf7h55zzjlBLiWJFJWVlbDZbFAoFCgqKnK7jckorfHUaCOvxvOnunIAAMdzqDc0QW8xYFHBhZLaz1hhOlkKW3O1ZF38hNmQaRNCcnxfYoYQVxQz0StcNZ0UM8RfFDPEVzqbDO1J48RlgaHpVPpt6dKlAAC73Y677roLOp2uz9f89NNPuOeee8TlxYsXB6t4JMrwvAC5nAXDdt8N0kRgU9v99QclyzPypmB8Zn6YShNcbdvekSwzKi2Szr0yTKUhhMQqnU7nNulMS0uj5rWEkKjVZdPgRPpU8a82cVK4ixQUIanxLCoqwuLFi/HFF1/g8OHDuOyyy7B8+XKMHz9e3Ean0+Ho0aOoqKjAli1b8PXXX4PjOHE03LPPPjsURSURID09HRzHeRwUgmUZ3Hrv+WAYgLPZ0X7iNBKUkTVPm7M/M8MwEAQBAHB2zsSYHFLdeLIE1sZTknVxBTOgSPJ9BOuB6itmCOmJYib6dHR0uJ2XMy0tDRMmTAh60kkxQ/xFMUN8Zf35WjHWhWxG9yeffBI1NTXYv38/2tra8PrrrwPonmPrzTffxJtvvilu77xYHzNmDJ599tlQFZNEgJycnD63KdlbDY7jwXUZUfflOuToK6ARzJBptSh+7hmos8Pbj5JlWTx6wd0wWLpQ0nAI++sPYWJWYVjLFCxt3/Su7UyZdXVIy+BLzBDiimIm+iiVSsjlckniGaqkE6CYIf6jmCG+ilMOjql3QtYmRalU4u2338ZNN90EmUwGQRDE5NLJuc7ZEfuyyy7De++9h/j4+FAVk0QBgRfAcY4aRXtXFwCAFTgIHAe7wQB5UlI4iycRr4rDrOHTcOeMlVDLVeEuTsC5re0snAFFSlZ4CkQIiVkajQaTJ0+GSuU4l6anp4cs6SSEkGBSsdK6wNhrH+cQshpPAFAoFHjooYfwy1/+EmvXrsXevXtRWVmJjo4O2O12JCUlITc3F1OnTsUVV1zRr3k/SexzJp0AYO8yAnAkngDAqpSQ0dQ7IdP+3fuSZUapQersa8JUGkJIrHMmn9XV1RgzZgwlnYSQmMDz0lRTiMGuWUCIE0+nrKws3HbbbbjtttvCcXgS5ez27sSTM5kAAIzgWCfTaMPej9LG2bDrzI9I16YiIy4VaZoUyGVh+aoFFW8xQj18IsDKYKk7AfB2xI+bCXkI+3YSQgYfjUaD/PzYHKiNEDI4MZBWmnBM5E0TGAghuRpuaGhAdpj73JHocfToUdjtdsjlchQW9u4XabN19+9JHF+I+DGjMbnwOlibmiFw4R9kqNXYjqauVjR1tQLNgJyV4YrCS2Luzry5+igYuQKakUVQ5RbAWl+J5POvDUtZ+ooZQnqimIlsRqMRGo0m7DcSXVHMEH9RzBBfRc6ZLrhCknjOmzcP06ZNw5IlS3DxxRfTJLrEK6vVCpvNJo4M29PpEy2oq+6AQsFCrpAhIVGFxLFjgLFjQlxS95qNbZLlZHVSzCWdvMUES8NJcZlVqJA0fREUialhKU9fMUNITxQzkautrQ3l5eXIycnB6NGjIyb5pJgh/qKYIT6Tx2YNZ08hSTx5nseePXuwZ88ePP7445g/fz4WL16M2bNnx9wFORk4uVwOQRAgl7sPz6PljThxpElczhuZEqqi+WTLiR0AgHRtCtQKNdK1kVW+QDDXHIXAd9cuMwwDdd44L68Irr5ihpCeKGYikzPp5HkeNTU1ABAxySfFDPEXxQzxFasYHOOThOSbkJWVhcbGRgCA2WzGhg0bsGHDBqSmpuLyyy/H4sWLMWHChFAUhUQB1/ld3TEZbZJltTpy7hKZ7RbsrS0B/3Of03hlHMamjghvoQKMt1lgqa+UrFNmjYRMHb6WDH3FDCE9UcxEHtek06mmpgYJCQnIygr/SNkUM8RfFDPEV53mTgDhaTUWSiGpbvzuu+/wzjvv4JprrkFycrI4ZUprayv++9//4uqrr8bll1+Of/zjH2hoaAhFkUgUMxmtkmW1JnISz4rWKjHpBACjzYT89FFhLFHgCTyP+PHnQZ6YBiD8tZ2EkOjX2traK+kEgMzMTGRmZoapVIQQEho2wS5ZFjxsF+1C1s516tSpePzxx7Fz50688cYbuPzyy6HRaMQktLKyEi+88ALmzZuHm266CZ999hm6fp6jkRBXZpP0y6nRRk7ieaS5QrI8KmUY4pTaMJUm8CwNJ3Hmb7eis2wbtGOnIaFoLjQjiyDT0Fy7hJD+8ZR0ZmVlYdy4cRHRzJYQQoJJGCTdgEPe6Fwul2POnDmYM2cOzGYzvvnmG3z55ZfYuXMnbDYbBEHA3r17sXfvXuoPStyyWqRNbfmWeugOAsrkJKizssAqlWEqGTA0MRtnDZmAo82VMNnNGJcRGQMeBUr7zo8hWIzQ7foEHfvWI+W8q5A8c2m4i0UIiVLOpFMQpPf3s7KyUFhYSEknIWRQsAm2vjeKAWHt7axWq7Fw4UIsXLgQer0eX331FdavX499+/aB4zhJf9C0tDTs3LkznMUlIdLY2AiO4yCTydz267GYpVOm6Ldvw6F1xwAAE598HEmTJoaknO6cN2wqzhs2FRzP4bSuFlqlJmxlCTRL4ykYj+0RlwWrudfFYrj0FTOE9EQxE34tLS04dOhQ1CSdFDPEXxQzxFcqWfgqTUIpYobZSkxMxLJly7Bs2TK0tbXh008/xd///neYTCaxPygZHBobG2Gz2aBQKHqdqO02DhwnbY+g5MziY0VKciiK2CcZK8Oo1GHhLkZA6XZ9LFlm1fFIOmdBmEoj5S1mCHGHYia8PCWd2dnZKCgoiLikE6CYIf6jmCG+UvEcGJf2tmyMtr2NmMQTAKqrq7F161Z88803OHDgADiO6/tFZFDpOaItACg5k/hYkZwcwtJI2XkOclYWtuMHk6WhCl1HfpCsS5p2OVhV7PRfJYSERjQmnYQQEkyp8naMaK8Xl2WwAlgevgIFSdgTz6amJrE57cGDB8X1zh+krKwsLFq0CFdccUWYSkhCbeTIkeB53m2fXmOPEW0BQGU3AgAYuRxybfgSod1nfoLe0omMuDSka1MxJCETmhiZl6l1y1twHWONVWmROHVh+ArUg7eYIcQdipnwaG5uxuHDh6My6aSYIf6imCG+SoyLB5juFnyyGA2ZsCSe7e3tYn/On376SfwBcv6r0Whw8cUXY8mSJTj33HMj+oeIBF5CQoLH53rWeMp4K1Q/N7VlVUowYTq58wKPFmMbbLwdXboanNLVYEbuWRiWPDQs5Qkkc90JmM8clqxLmHxhWOft7MlbzBDiDsVM6NlsNhw9erRX0jlkyBDk5+dH/G89xQzxF8UM8VXS2GGIr24Rl9UqVRhLEzwhSzwNBgO2bt2K9evXY/fu3WIzWucPEMuymDFjBpYsWYJLLrkEGk3sDMpCAsfUJa3xVNrNkP0895FMFb7axQ5zJ2y8dJqXjLi0MJUmsNq+/q90hUyOhAjp20kIiR4KhQITJkyQTJ0SLUknIYSQgQtJ4nnHHXdgx44dsFodSYPr3c6xY8di8eLFWLx4MXW8Jn0y9Whqq+At4mNZGG9WbKrYhh+qDyA9LhXp2lTkJQ2JiWa27mo74/KnQZlME7oTQvyXmpqKiRMn4uDBg8jOzqakkxBCBpGQJJ5bt24FwzBiwpmamorLLrsMV1xxBSZMmBCKIpAoYrFYIAgCGIaBqkdTg55NbRWca+IZvkSvRt+AekMT6g1NAICzhkzE5QUXhq08gdL2zTtw7dsJmRyp824IW3k88RYzhLhDMRM+qampOPvssxEXFxdVSSfFDPEXxQzxVbu8A4fyasTleFaGWGxbFrKmtkqlEhdccAGuuOIKzJ49GzJZbI7+SQbu2LFj4vDjRUVFkueMXV5qPOPC0+eQF3gcbT4hWTcz7+ywlCWQbO0Nbms7FRFY2+ktZghxh2ImvOLj48NdBL9RzBB/UcwQXzV1WXDGnicux6H3LA6xICSJ5xNPPIFLL72UOlmTAeM5AQzLQOAdtXBylxpPeZgSz1p9AzqtXZJ14zLHhqUsgdS+8yPAdR4phkXqBSvCVyBCSNRobGwEAOpCQwghPujsUCC3arK4bFcZwleYIApJ4rls2bJQHIbEiOTkZHAc57ZWfM4l+Zg5bzQEXkDpn5+Erf20+Jw8THfQU9RJ+O20G1HRWoXjrVUw2kzI0KaGpSyBwlvNvebtVA+fAEVKZF5EeosZQtyhmAmexsZGHDlyBADAMAwyMyOvlUR/UMwQf1HMEF9ZmtoBJIvLarPgcdtoFvZ5PAnpadiwYR6fq6vuwJmqVsdjPg0atQmZXY7kU54Ynhr1eFUc5o48F3NHngsAsPNcVPVbcke//ysINrNkXfLMq8JUmr55ixlC3KGYCQ7XpBMADh92NNePheSTYob4i2KG+CreIl2W2ynx7NONN94IwHGH8+233+61fiB67pMMTjYbJz4WbHawQveyIjExHEXqRc5G951NQRDAKNSIm3g+LHUVsLfVQ5E2FNqRk8JdNEJIBGtoaMDRo0d7rdfr9TGReBJCSLCoZUrJcnRXX3gW0MRz7969bmt6PK33lXNEMEKslu65Mnm7HTK+u/O1Iin0iScv8Oi0GJCgigfLsCE/fjDY9c3gunRQpGRDkZINztgJzYiJ4S4WISSCeUo6c3NzMXr06DCUiBBCogfPS/McIUZTz4A3tfWUJLrO3UlIf1nMjsRT4HmA5yCXJJ7JIS+PwdKFr05sh5yVIUmVgBRNEiZnTwDLRm8SaqmtkCwrU7MRVzAtTKUhhES6vpJOunFMCCHeyeOlY4NwMkWYShJcAU08v/76a7/WE+LOiRMnYLfbIZfLMWbMGMlzFrMj0eQtjmlVXGs8lanJISujk86sB+Do19lq0sFoM2NKTvQ2SeXNXbC11ErWqYbmg4nw2lxvMUOIOxQzgVFfX49jx471Wp+Xl4dRo0bFVNJJMUP8RTFDfKXJSgNOdM+QwMpj59zpKqCJ59ChQ/1aT4g7RqNRnPdKst5gwemTrVAoZIDZCItMAxnfPa+nIiUl1EVFi7FNspyiiYx+pv1lrj8BAd2tExiZHMqsEeErkI88xQwhnlDMDNxgSjoBihniP4oZ4itWpgTgMjVfjJ0/nSJ+VFubzYbKykq0tLRg1qxZ4S4OCaOmhk6cONLcvSKxAGNb9gIAGLkccq02pOXhBR4v7X4LKrkSqZpkpGpTMColekewEwQB6qH5YFg5LPWV4K0mqLJGgJUr+34xIWRQ8ZR0Dhs2DCNHjoy5pJMQQoJJlpgGoF1cFmSxee0VksSzsLAQLMvivvvuw8qVK/167auvvoo33ngDGRkZ2L59e5BKSCJJUVGR2/X6Dun0Hqxgh+znUW1ZlRJMiOfJauhsgsluhsluhs6sx8n2M1g67tKQliGQOvdvRmf5diRNuwyJ51wKe1sDZAmhr0XuD08xQ4gnFDP9V1dXh+PHj/daH+tJJ8UM8RfFDPFVi75RsmwX7B62jG4hq/Hs7+BCGo0GgiCgra2t741JTDMarJJlGW8Xx/ySqdQhv9g53lolWU7RJGF06vCQliFQBEFAx48bYGupQVPNUcgS0pB28UrEZ0ZvDS4hJPAGa9JJCCHB1GUzSZbtAh+mkgRXxDa1FQQBNTU1WLduHQBAG+JmlCTymEw2ybLM5W4Qq1aFuji9Es/8tOjt02SqKoOtpUZc5jpbwSo1YSwRISQS2e2978IPHz4cI0aMiNrzHyGEhJvAxWai2VPAEk+73Y4rr7wSJ06ccPu8IAh49tln8eyzz/q9b4ZhkJ+fP9AikijnHNHWScZ3XwDJNKFPkm6afDVmD5+KitYqHG+pQnH2+JCXIVD0+9ZLlhXpudCMLA5TaQghkWrYsGEQBAFVVY4bb5R0EkLIwJnrGwFkiMsKa2wmogFLPOVyOVatWoVf/OIXHpvV9re5LcMwuOWWWwZSPBJFWlpawPM8WJZFenq6uN5ikt5pd63xlGlDn3iq5EqMyxiLcRljQ37sQLK11cF44ifJuqRzFkbVhaSnmCHEE4qZ/hs+3NGlQBAEjBgxIryFCSGKGeIvihniK7VNmiMx/UuZIl5Am9qeddZZuOmmm7B582bJ+rq6OjAMg8TERMTFxfW5H4ZhIJPJEB8fj9zcXCxfvpxGtB1E6urqxOHHJYmnpUfi6TKHp1zbd1wR91q/+Z9kmVXHIX7SnDCVpn88xQwhnlDMDIwz+RxMKGaIvyhmiK/UPSo4o+fWv38C3sfzwQcfxIMPPihZV1hYCAD4zW9+4/eotoQ4Wb0lnj7c0AgkvbkTOrMeadoUaBWaqKoddMUZO3rVdsZPmA1WqQ5TiQghkYLmHySEkNBIlrVieFu9uCyDFcDV4StQkET8qLZk8MnLyxObprjqnXh2L8vjQ5t4VuvrcajJMbKjWq7CyJQ8TMoqDGkZAqF916cA5/q5Mkg468Kwlae/PMUMIZ5QzHhXU1OD06dPo7i4GPHx8eEuTkSgmCH+opghvoqXycGie9pAObgwliZ4QpJ4Hj16NBSHITEiJcX93JEKpXSeziHjRyBnZgrshk4kFYd2IJxWY/ckv2a7BRwffZ3Aec4Ow8HvJOtUQ0ZDlTUyTCXqP08xQ4gnFDOeVVdXo7KyEgBQWlpKyefPKGaIvyhmiK9kjPTmBBOjjW0jdjoVQnqy9Rjha+iMyRh5buj7GRksXahqPwO1vHvu0DRtcsjLMVCG0q/Bmzol6xJnLApTaQghkcA16QQczW1LS0sxbdo0anZLCCFkQAKaeNbV1YmPc3Jy3K4fCNd9ksGn5+BCKlV47pvsqyvF+uPfQMHKkapJRlZ8Bi7Pnx+WsgxEx74NkmVZQiriCmeGqTSEkHA7c+YMTp482Wt9Xl4eJZ2EEEIGLKBX7vPmzQPDMGAYBocPH+61fiB67pPELo7rbtcuk3U3r+05j6dSHZ7E82TbGQCAjbejsasF6XGp0CiiazAe05nDsLXUSNYlFF8Ytf1QPMUMIZ5QzEh5SjpHjRqFYcOGhaFEkYdihviLYob4yoZODNGfEJd5RWyOjRPwK/dAz+FJBp9Dhw6JoykWFRWJ6y3myKjxrGitkiwXZY2LulFtdd9/KllmFCokRXEzW08xQ4gnFDPdPCWdo0ePRl5eXhhKFJkoZoi/KGaIrzo4HkZlsrjMyWhwoT5NnTrVr/WE+MNmlX4JlWFIPDmeQ5fVKFk3Ni26BuOxG/UwVZVJ1sXlT4NMpQ1TiQgh4XL69GlUVVX1Wk9JJyGEhI7eEo9DOVPEZbVNH8bSBE9Ar9zfeecdv9YT4k5CQgLsdjvk8u7wFAQBd/1pPjg7D5vJDJvJitR0TcjLJmNl+NvlT6DNqMPx1pM43lqFManRNZE619kK9fCJsNafAG/uAsAgaebScBdrQNzFDCHeUMx4TjrHjBmD3NzcMJQoslHMEH9RzBBfWXh73xvFAPomkIgzcmTvGkSO4/HT7tMAAEPFCbT/tB95+iNQK1ioh2Sj6Nm/gA3h4Bep2mTM0E7BjLwpfW8cYWztDVDnFkA1dCzs7Q0Q7DaoMqO7D5e7mCHEm8EeM5R0+o7neRgMBigUCgiCALvdjoqKinAXi0QRipnoI5PJoFQqkZiYiPj4+KCPgaFShr4yJRwo8SRRgee6+whzZgsAgOU4cHYL7F1GMHQ30ScCZ4OtpRYAwDAsFKk50I4+K8ylIoSE0qlTp3Dq1Kle6ynp7K2zsxO1tbU0TgUhg4zdbofFYkFnZycYhsHQoUORkJAQtOPFyZSS5egaOcR3Ybla99TsYO/evfj888/R0NCArKwsXHLJJZgzZ04YSkgiDc93/+jzFkfiyQiOeT1lanXIBvcpazgClmGRGZeGVG0K5Gx0jVJnbamFwHf3lWUYBsqM6K7tJIT4rqmpyW3SOXbsWAwdOjT0BYpg7pJOhmFodFJCBgGO48TvviAIqK2tDWry2fPeVqze6gpp4rl792688cYbqKiowK5duyTPvfLKK3j11Vcl6z777DPMmTMHL730ElQqVSiLSiKMa42nmHji58RTG5rmCbzA40TbKdh5DoebK8AyLGYPn4qs+IyQHD8QrE2nJcvy5CywyuiaCoYQ0n/p6elIT09HS0uLuI6Szt54npcknfHx8UhNTYVWq426UcwJIf4TBAFGoxFtbW0wGAxi8pmfnx+UZreCIL0W41ilhy2jW8gSz48++gh//vOfIQgCGIaBTqdDcnIyAODAgQN45ZVX3L7uu+++w4MPPogXX3wxVEUlYXbq1CmxVnzEiBEAAI7nxedTpp6NxAnjMH70Qth0OsiTkkJSLp1JD7tLbSEv8EhSBa/ZRaAJAg9AAAMGws/30pSZ0TUwkifuYoYQbwZrzLAsi/Hjx+PQoUNobW1Ffn4+cnJywl2siOO80AQcSWdubi6sVissFgsYhqGb4cQnFotFvO6lmIkuDMMgLi4OWq0WNTU14jnBYDAgMTEx4MdjY7ZxrVRIEs/m5mY89dRT4rJarUZbW5uYeP773/8G4PhPzs/Px29+8xu0tbXh1VdfRVtbGzZt2oQVK1bg7LPPDkVxSZjp9Xpx3iunzg4zWpsMYGUsZDIGKnU8Us+ZENJy7Ty9D3WdjUjTJEMlVyFRFQ+1IjpqC3mbBe3fvouEsy5CXP40WJvPwNpSA2V6bNRyuIsZQrwZzDHDsiwmTJiA9vZ2pKWlhbs4EUmv757KIDU1FQzDiE3vqMaT+IpiJvoxDIPU1FQYDAYAjnNDMBJPMMEdvChShCTx/Oijj2A2m8EwDBYvXoxVq1ZBrXZcsHd1deHbb78F4BhB6h//+AcyMzMBADNnzsQVV1wBq9WKdevWUeI5iNXX6HCopF5c1mgVuGRJaBPP76t/xMn2MwCAeKUWF40+P6THHwjDoZ3o2LsOHXvXQT1iEpLOWYDEyReGu1iEkDBhWZaSTi+sVisAx0WnVktzHBMymDmb2AuCIJ4bAo3VRk8LuoEISeK5e/duAEBOTg7+8pe/SDrmf//997BarWAYBjNmzBCTTsAx3P3cuXPx1VdfYe/evaEoKokA48eP73WH0GrlJNvI5KG9M2TjbDjTUScuG6zGqJm/UxAE6H/cKC6bTx0Ew8oQVzA9jKUKLHcxQ4g3sR4zzv5IWVlZg7JWd6A4zvGbI5PJxBjRaDQxHTMk8ChmYoNzUDG73S6eGwLNaOoEkByUfUeSkFy9V1VVgWEYXHDBBb1Gg9uxY4f4ePbs2b1eO3bsWACO5rpkcJDL5VAoFJKRj62WHomnLLSJ5yldDew9Jvcdn5kf0jL0l6X2GKyN0vn6Es9ZEKbSBIe7mCHEm1iOGUEQcPLkSZw4cQKlpaWw2WzhLlJMYBgGLMtSEkF8RjFDfGXmpTWpsTqqbUiu3js6OgBAUpvptHPnTvHxueee2+t555fVaDQGqXQkGth61HjKQ1zjyfE8xmeMherneZZyE4cgThkdza/0P26SLMuTM2nuTkJilDPprK6uBuAYJIeST0IIIZEgJLd6lUol7HY7TCaTZP3JkydRV1cndtzNz+9dg1RX52jeGB8fH4qikghltUhrGxm7FV1nqqFMTYE8Li7odxMLM0bjsXn3gOM5VHfUwWCNjhshts5WGI58L1mXePalYKJs/lFCSN8EQUBlZSVqamok6w0GAzo6OpCenh6mkhFCCPHGytn73igGhCTxzMvLw7Fjx3D48GHJeuegQgAwa9asXq+zWCzYvn07GIYZVMPdD3Y6nU7sE+Ec+dhmk9Z4WutrUfL7NwEAZ73yV2jz8kJSNhkrw4iU0BwrEHS7PgVcpoBh5AokFM8LY4mCw13MEOJNrMWMp6QTAAoLCynpDAC7vfvCMBabaJPAo5ghvlIwg6NCICTfgunTp+Po0aPYuXMntm/fjvPPPx8tLS14++23xW0uuugiyWt4nsfTTz+N5uZmMAyD6dNjZyAU4t2ZM2fEaQ7ExLNHU1v252SKUSggU2uCWp5oHRiAt9tgKN8uWacaMgYyTeyNnOYuZgjxJpZipq+kMzs7Owylij1Wq1X8PaAkgviCYob4StOj92P0XXX6JiTfgmXLluGdd94Bz/O4/fbbkZ+fj9raWnR2doJhGGRnZ2Pu3Lni9m+++SY2bNiAY8eOAQAUCgWuvvrqUBSVRKieNZ6s4FhmlUqwKmVQj13X2YiyhiNI06YgXZuK9LhUJKoiv+l3Z8kWCBZpk+DEaZeHqTSEkGAQBAEnTpxAbW1tr+fGjRuHrKysMJSKEEKIP5LYVuTqmsRlGYIzbUu4hSTxHDNmDO644w68/PLL4DgOR48eBeD4wZTJZHjsscckd4Lef/991NfXQxAcYzo98MADyAtRU0oSfkOGDAHP82DZ7rs/vWo8BUfzFVapBKsMbuLZZtKh09qFTmsXTulqkBmXhrkjew+EFWncDSoUS1OouHIXM4R4EwsxQ0lnaNG0NMRf0RYzNpsNH374Ib788ktUVFTAZrMhOzsb5513Hm644QaMGjUq3EWMWYlqFRS8TlxWUOI5ML/97W8xdOhQ/P3vf8fp06cBOH4Y/9//+38477zzJNuOGjUKdXV1SE9Px8MPP4yFCxeGqpgkAmRkZPRap1BI275rbAYAPyeeQT6x6y2dkuVUTXJQjxcIpjOHYWuVXowmFM2LyibDvnAXM4R4E+0xIwgCKioqxAH4XFHSGRzRlkSQ8IummGlvb8ctt9yCgwcPStafPn0ap0+fxqefforHH38cV1xxRXgKGOOS80cgrq5EXFarVOErTBCFtMH5kiVLsGTJEnR0dEAmk3kcqfYXv/gFrr32WsyZMyeqvrQkeHheOqORinOMkCxTq8DIgtsh+9uTuyFjZUhUJyBJlRAVzWx1338mWWaUaiRNp2a2hMQCT0knwzAYN26c26nLSGyzNJ6CKmtEuItBohTHcbjjjjvEpLO4uBhXXHEF4uPj8dNPP+GTTz6B2WzGI488giFDhtC4K0HAylkwLg1wmOhtjONVWHo6JyUleX1+3rzYG3WTDEzPPp4y3tHUVqYJ7lyaRpsJpY1HJOuKsscF9ZgDZTfoYKoqlazTjp0KVhncQZgIIcFHSSfpyW5oR/2aR5F7618hj08Jd3FIFPrkk0/w448/AgAWL16M//u//xO7ISxevBiXX345fvWrX8FiseDxxx/HunXrorqbAgmfsEeNzWZDS0sLWltbYbXGZntmMnA9+3jKfu7jKdMGN5mq6aiXLLMMi8L00UE95kDpdn8mmUIFYJB83lVhKw8hJHDsdjt0Op1kHSWdg1vH7rXgTQZ0/PB5uItCotRbb70FwFEx9Oijj/ZKKqdOnYrf/e53AIDKykps3bo15GWMdV2yLjRkNIh/jSnN4S5SUISlxnP37t34+OOP8eOPP6KpqUnyXEZGBiZPnozLLrsMl1xySTiKR8Ls4MGD4jQHkyZNAuBuOhVH4imPiwtqWc50SGsVhiRkQiGL3ObfgiDA1lLjaKMh8AAAVc4YqDJie3AudzFDiDfRGjMKhQLFxcUoLS2F0WgEwzAYP3581PdZjQZGo1GcGkOrDW5rG1/ZDe3Q798MAND/9BWSZiyhWs8IEokx09ORI0dQVVUFAFi0aJHHbnDXXXcdXnrpJXAch02bNuHiiy8OZTFjXr3VgN0J3dPdJfF23By+4gRNSBPPtrY23Hvvvfjhhx/Edc6Ra52am5uxZcsWbNmyBdOnT8ezzz5Ld3EHGUEQxD8nq9Uu2cZZ4ylPCO6clBlxqZiZdzaqO+pQ19mIYUlDg3q8gbLrm6Eamg9FxjBYG6tgqa9E4rTLwl2soHMXM4R4E80xo1KpUFxcjLKyMowYMYKSzkGsY/daCHZHazHBbkXHD58j7cKbw1uoIKuvr8dbb72F7du3o66uDhqNBgUFBbjmmmtw+eWX480338Tzzz8PAOK0fE4FBQUAgLvuugvLly/HqlWrsHPnTgBAXl4efv3rX2PRokXi9jzPY8uWLfjiiy9QVlaG9vZ2xMXFYfjw4Zg7dy5WrFiBxMREt+W84YYbsHfvXgDAgQMHPL6fBx98EJ995hiX4euvv0Zubm6v57KysrB9+3acOXMGr732Gr7//nu0trYiOTkZU6dOxc0334zi4mJ/P0oAEMsIAOee63nE/sTERIwfPx4HDx4UPzMSOB2tSow5PEtctqsMYSxN8IQs8WxtbcXy5ctRV1cn+aGXy+VITEwEx3EwGAzguO6arR9++AHLly/Hp59+itTU1FAVlYSZRqOBXC6XDCy18o6ZsNt5HLjvYViNFmhtegCAIjG4iWdx9ngUZ48HANg5O4x2c1CPN1C2pmoAAKtUQ503DtqxUxE37rw+XhX93MUMId5Ee8yoVCqcc845MTtSdSRiWVasvYoErrWdTrFe67lnzx7cfvvt6OrqEtdZrVbs3bsXe/fuxZYtW8Tk0huDwYDrr78ep06dEtcdPXpUkkQ2NDTg7rvvxv79+yWv1el00Ol0KC0txdtvv43Vq1fj/PPP93q8QPSH3L9/P2677Tbo9XpxXXNzMzZs2ICNGzfigQcewMqVK/3eb0VFhfh47NixXrcdM2YMDh48iI6ODtTV1SEnJ8fv4xH3zO0dAJLFZaU1+m6K+iJkiec999wjzjUWHx+PG264AQsWLMDYsWPFk7jdbkdFRQU2bdqENWvWwGAwoKGhAQ888AD+8Y9/hKqoJMzcnfiOlTfCaLSiXpYNRmuD3GCFgrdCkeT+TmMwyGVyJMoid0RbQeBhbamWrFNljxwUAwD09WNJSE/REDPOm7SeEp1ISYAGC7VaHe4iSLjWdjrFcq1neXk5br31VpjNjhvA8+fPx7x586BQKLB3716sXbsWmzZtwq5du/rc1//+9z9YLBbMmjULixYtgk6nw3fffYdZsxw1Th0dHVi5ciVOnjwJABg6dCiWLl2KUaNGoaOjA1u3bsXOnTuh0+lw++234/XXX8fs2bM9Hm+gsWM0GnHnnXdCr9djwoQJuOqqq5CYmIh9+/bhk08+gd1uxzPPPAOtVotrrrnGr307r81ZlsWQIUO8bpudnS0+psQzsNSd0pZ9lHgOwI4dO7Bnzx4wDIO8vDy89dZbkqYEYmHkcowbNw7jxo3D8uXL8ctf/hKnT5/Gzp07sWvXrl7zfZLBg+MFCBwP8BwEhgUDxxdSkZwc3oJFELuuCbzNIlmnjPG+nYTEKkEQcOzYMQiCgMLCQkoyiYS72k6nWK31fPLJJ2E2m8EwDJ5++mksXbpUfG7JkiW48sorceutt6Kzs9PLXhwsFgvmzp2L119/Xfxu3XzzzeLzq1evFpPOCy+8EM8//7wkebzuuuvw2Wef4eGHH4bdbsf999+PLVu2eOwfOVCdnZ3o7OzEsmXL8Pjjj0P28zRyixYtwqJFi3DLLbfAZDLhhRdewIIFCzw2/3Wnra0NABAXFwelUul122SXa66eg5yRgYmXS29OxOoZPyRVIevWrQMAyGQyvPrqq26Tzp6GDh2KV155BXK5Izf+4osvglpGEtl4jgfvMuox8/PAOYqU4P2wGqxd+PLoVnxbtRv768pxovUU+J+PG4lsrbWSZXl8CmSa4DZFJoQEniAIOHr0KBoaGtDY2IijR49GZV9UEjzuajudnLWeseSHH34Q+0kuW7ZMknQ6nXPOOXjggQd83uctt9zi9oZOY2Mj1q5dCwDIzc3Fc88957bG8sorrxST1ba2NnzwwQc+H7s/CgoK8Nhjj4lJp9PUqVNxxx13AHAkg59++qlf+3XWIKtUqj63dU1MTSaTX8chfRgkp/iQJJ779+8HwzCYPXu2X82bxo4di9mzZ0MQhF5t7MngwnECeEt3bR7rHLE1iH1/9eZOmOxmNHW14kTbKZQ3HQMTofegBM4G9cgiJEyaA1XWSLByBZSZw8JdLEKIn5xJZ2Njo7iusbERx48fD2OpSCTxVtvppP/pK9gN7SEqUfBt27ZNfHzTTTd53O7KK6+U1Mp5olAoUFRU5Pa5Xbt2wWazAQBWrFgBjcbztG2/+tWvxAqSYE8xsnLlSvFYPV1zzTViUvjtt9/6tV+73dHEs6/azp7buI7JQgZOUEgrCuxs3/8f0SgkiWdLSwsAYMKECX6/1vka1x9hEttqampw6tQp1NTUAHBciPE8D87cPbAPI/BgFArI44I3PLneIh1RLFGVELHN3QzlO1D9t99A/+NGyBPTkDh9MVRDInu+0UDqGTOE9CUSY8Zd0gk4+nKmp6eHqVTEyWq1wmKxhH3OcW+1nU6xVuu5b98+AEBKSgrGjBnjcTulUokpU6b0ub+8vDyPiVZJSYn4eMaMGV73k56eLpbn4MGDHlsmBCJmZs6c6fG5hIQE5OfnAwBKS0v92q+zNteZbHvj+j6idWC2SBWfJ+1fyyoi83pzoKJm1JGeTQtI7Gpra0Nra6vY78BstEHXZoK+3Qgrq4KNVYCBAFapBOtD05D+WnvkK5Q1HMFpXQ3aTR2IU3q+6xluhvLt4Lp06Ni7DrVv3Y+2zW+BieD5RgOtZ8wQ0pdIixlBEHDkyJFeSSfLspg4cSLS0tLCVDLiZLfbxb+wlcGH2k6nWKr1dM757stgNsOG9d3ax1sfSNdzQl5e3+MkOLex2WySEWddDTRmtFotsrKyvG7j/GyMRiOMRqNf+wYc/V774pp4+tI0l5CeQjK4UEZGBqqrq3Ho0CG/X+t8Dc1TNng1NXSi7MefayWSx4MReIxpPQCZSgU2SHfceIHHoabjsHDdJ9lRKZE5UI+9sw2mU+WSderh/rcuIISEhzPpdF5cOzmTTppOjDj5UtvpFEsj3DoHsvFldFhftvHWrNR1qhZvzWzdHc9kMiEpKanP1/grLi7Or3IYDAYxoeyLMwk3GAyw2+0em/MC0gGF6LwUWMrUXADd884K8sgaRTtQQpJ4Tp48GWfOnMGOHTtw8uRJjBo1yqfXVVZWYseOHWAYBmeddVaQS0kiRX5+vmSuNItFeqeQEXgwAg9WE7wvZXNXqyTpBIBzhvZvcuZgMxzeCdde6YxSA+3Yc8JXoDDoGTOE9CVSYoaSzugR7ulU/KntdIqVEW5VKhVsNptPA9qYzQObb9s12TSZTH2OVOtau+gpRrzFjr81jX2Vg2EYn/q5Oo0YMQI7d+4Ez/NobGzE0KFDPW7b0NAgPva2HfGfTi/9DeCE8LWsCKaQNLW94oorADg6It9xxx0+9ddsbGzE7373O7F5wsKFC4NZRBJB1Go1NBqNeKK2mKX9DhiBBwMeMnXwmr5Wd9RJluOVcUhWh27OUH8YyndIluMKp4NVDK4mMD1jhpC+RELM8DyPw4cPU9IZJViWFf/CwZ/aTqdY6evpnD+yrq6ujy1928Yb1/7U1dXVXrZ0OH36NADHOcU14XO9qcXznkfE92X6F71eL6mJdcfZXz05OdmngYKcRo/uHg/ixIkTXretqKgAACQlJfXZ9Jf4R2eVxoFNiM3Bm0Jy9pw5cyamTZsGQRBQVVWFxYsX49VXX0VFRYWkI7YgCKioqMArr7yCRYsW4fTp02AYBlOmTMGcOXNCUVQSgawW6ZePBQ8GgFwbvMQzKz4DS8dfinOGFiMrLh3Dk4eGvWbEHUtzDawNJyXr4iecH6bSEEJ8xfM8jhw5gubmZsl6lmUxadIkSjqJRH9qO51ioa9ncbGjxZFOp0NlZaXH7XieF6dd6a9JkyaJj3/44Qev2zY2NorzfToH93FyTf4MBulgha76SvYAx/Wxt0GDXD+XadOm9bk/V67be3u/er0eR44cAeCYwoWQ/gjZbbvVq1cjJycHgiBAr9fjlVdeweLFi1FUVISZM2di5syZKCoqEpNSvV4PQRCQlZWFF198MVTFJBHI2quprSMRlfnQ56G/8pJycO2kJbh/1m/wt8ufwJ/m3BW0Yw1E5wHphQir0kKdWxim0hBCfNFX0pkSxPmJSXTqT22nUyzUel566aXi4zVr1njcbtOmTb2+V/6aM2eOOGLrmjVrvDbv/fe//y3WZs6dO1fynOuAYM6EraeSkhLU19f7VK733nvP43PvvvuuOCrt/Pnzfdqf05gxY8QucJ999pnHmtU1a9aIU6gsWLDAr2OQvlnqpXErt0XuvPEDEbLEMysrCx9++CGmTp0KQRDEP5vNhvb2drS3t8Nms4nrAccdlQ8++ACZmZmhKiaJAAaDAZ2dneIdQqu1R43nz3N4yoOYePYUrqZV3giCgK4j30vWKbNGglUOrma2QO+YIaQv4YyZ48ePU9IZhTiOE/9CaSC1nU7RXus5a9YsFBY6bqq+99572LBhQ69tjh07hieeeGLAx8rMzMSiRYsAOJra3nfffW77ja5duxZvv/02AEeSed1110med605fe2113qNbNvQ0ICHH37Y53Jt3rzZbdK9a9cuvPbaawAc/TX7kxSuXLkSANDe3o4HH3ywV5/Sffv2iccYOnQoLr74Yr+PQbyTG6WfORubeWdoBhdySk9PxzvvvINdu3Zh3bp1+OGHH1BfXy9pbpuTk4Ozzz4bV155pdc5i0jsOnnyJGw2mzjBc88aT/bnGk95gvcO/wNh5znI2ciewsdSexxcjwuJuMLpYSpNePWMGUL6Es6YycnJQXNzs5jAsCyLoqIivwYEIaFnsVjEAal8HTE0EAxl28BqBv57ZyjbhuSZSwNQotBjWRarVq3C9ddfD5vNhrvvvhsbN27EnDlzoFKpUFJSgo8++ggWiwUymQwcxw3ohvFDDz2Effv2obq6Glu2bMHChQtx1VVXYeTIkdDr9di6dSt27Nghlu2pp57q1Tx+wYIFeO6552AymbBnzx4sX74cV111FRISEnD48GF8/PHH6OzsxKRJk3Dw4ME+y8QwDFatWoUdO3bgoosuglwux+7du/H555+D53koFAo89thjfvXvdLr66qvx0UcfoaysDJs3b8bVV1+NZcuWITk5Gfv378dHH30Em80GhmH6fQzinbbHNWfkde4KjJAmnk7nnXcezjvvPACOO4gdHR0QBAGJiYk0IS3ppVeNJ+9YViQkBOV4vMDj8yNfQSVXIVEVjyR1AgrSRkGtiKyBazpLt0mWWU0CNGPODlNpCCG+SkxMRFFREcrKyiAIAiWdxKvkmUujNmEMpOLiYrz44ou4//77YTQasXnzZmzeLK0Jvvrqq1FbW4vdu3cPKDlKTEzEmjVrcMcdd6CsrAy1tbV4+eWXe22XnJyMF154QbymdZWWloZVq1bhkUcegdVqxaFDh3pNK3jjjTdi8uTJuOeee/os0/33348XX3wR27Ztw7Zt0t//uLg4vPzyyzj33HP9fKcOLMvijTfewK9//WscOnQIx44dw5NPPinZRqFQ4NFHH8X559M4EsGQgFbkdLSKyzL0r2l9pAtL4ulKJpPRIApEIiMjAzzPi3crbT0HF/p5iGm5lwmgB8JgNYITeBhtJhhtJjQYmlGQPrrvF4aQwNnRdbR3M1tF0uCc77ZnzBDSl3DHTFJSEoqKiiAIAiWdUcLb/IYkNC666CJ8+eWX+M9//oMdO3agoaEBSqUS48ePx4oVK3DRRRfh+uuvB9A9P2V/ObuIbdiwAevXr8fBgwfR3t6O5ORk5OXlYcGCBbjiiiu8HufSSy/FuHHj8Pbbb2P37t1oampCYmIiJk2ahBUrVmDWrFlYv369T+W5+OKLMWvWLLz++uvYs2cPOjo6kJOTgwsuuAC//OUvBzzKbGpqKj788EN88MEHWLduHSorK2E0GpGRkYHp06dj5cqVKCgoGNAxiGcJchYqrrvrh4ISz/5paWlBQ0MD5HI5cnNz+5wPiZAhQ4ZIlmVyaYODpLR4pOZNR9zIkUE5fodZL1lWy1VQyyOr36SpqhS8WToAgDb/HDAR3jw4WHrGDCF9iYSYCcZE8yR4qHlhZMjNzcUf//hHj8+3tjpqjdx9x48dO+bXsRiGwWWXXYbLLrvMv0L+TKlUYuzYsb1qD135s//8/Hy88MIL/SqLL+RyOa6//noxeSeho2CkN0Gpqa0fBEHAu+++i/fff18yTDTLspg8eTJuvfVWmh6F+MylCzAAIOeciRi35JqgHe+9srWo62xCkjoBiaoEjM8YG7Rj9Vfnwe2SZVlCKjTDJoSpNIQQd3ieR1tbm2ReQEKI/z7//HOsW7cOeXl5uO222zzW7lVWVuLUqVMAgPHjx4ewhIQQXwQ88ezq6sItt9wizqPkOnAQx3HYv38/fvOb32Dp0qV48sknI3JuRBJZbD36eCqUwa3VO91Rh+auVtR1NgIARiTnBfV4/uKtJhiP75WsU2YMhyIlO0wlIoT0xPM8ysvL0dbWhrFjx2Lo0KHhLhIhUSsxMRHbtztuuAqCgEcffbTXNgaDAY888oh43Xn55ZeHtIyEkL4FPPH8f//v/2H//v1gGEaSdDo513366adITU3FvffeG+gikBjTM/FUKoPXQtxkM6O5q1Wy7uyciUE7Xn/w5i4oM4fDUl8JCDwABtrRk8EqI2vwI0IGK9ekEwAqKioAgJJPQvrpvPPOQ25uLmpqavDuu+/i8OHDuPjii5GdnQ2TyYSTJ0/i888/R0tLCwBg2bJlOOecc8JcakJ8x8GM9K6a7hWy2JxPJaBX8AcOHMC2bdvEpHPx4sVYsWIFRo0aBZlMhqNHj+K///0vNm7cCEEQ8O9//xsrVqwYcIdoEluOHDkiTnMwbtw4WK3S6VQUiuANBlKjl07kzDIschIjqyZRFpcMbf5UqIZPgK2lBrzZAFVuYbiLFVY9Y4aQvgQrZjiOQ3l5OdrbpVMdVVVVISMjg/oJRjGTySROp6LRaMJdnEFFqVTi1VdfxW9+8xvU19ejpKQEJSUlbre97rrr/JofM5goZoiv9LwRCs4kLltjdKzEgCaersNaP/jgg7j55pslz5911lk466yzkJOTg3/961/gOA6ff/45br311kAWg0Q5m80Gm83mstyzqW3wajwz49Lw22k34kxHHao7amHnOShlkTXFj62tHgJnBytXQpU9CgwYKNNzw12ssOoZM4T0JRgx4ynplMlkKCoqoqQzygmC4LYlFwmNwsJCbNy4ER9//DG+/vprHD9+HB0dHYiLi0NWVhbOOussXH311RE1lzPFDPFVuzkJh0YsF5fVNj0WhrE8wRLwGk8AGDt2bK+k09Vdd92Fjz/+GHq93uMdKzJ4Oedydf575XWTYew0guMZ2DkgPTN4IyMnqRMxd2T/5sEKFWvzGcmyPDlz0Dez7RkzhPQl0DHjKemUy+UoKioa8NQOJPycY1LQ2BTho9FocMMNN+CGG24Id1F8MtCYeeaZZ/DMM88EskgkQln52Gxa21NAE8+amhowDIOZM2d63U6pVOLcc8/Fpk2bxL4vhDj1bPZWebwF1Vu3w1RVBZmMQZbQipyJo1Bwz11hKmH4CJwNtjZpc2BlRmQNfhQO1LyW+CvQzWsPHjwInU4nWU9JZ2yhppLEXxQzxFeDZZ7ggLYg7uzsBACkpKT0ue2IESMAAHq93vuGZNDj7Dw4ixU8w8LGM7Dr9bAHKW50pg7YOXvfG4aJrb0RAt/d9JhhGCgGeTNbQsLJW9JZXFxMSSchhJA+JSikNylitV1FQNNrq9UKwLemS/HxjuaSXV1dgSwCiUEcx4P/ObYAgBF4yBMSAn8cnsPWkzshCALilXFI1iSiOHs8tIrIuGNpba2DPCkTiZMvhLWlGtbmasi0CWAVqnAXjZBBqa+kMyEI5ylCCCEkWgU08XSO3OVLW3aWdVS2chzXx5ZksLPbefAug4CwAgdFYuAv6PQWA/ifBwHotHah09qFc3IiY5ACQRDQ+NEz4Lp0iCs8F/ETZyNx6kIggmtnCYlllHQSQggJFI6XViLY2dgcs2JwNCgmUaW+vh48z4NlWWRlZUMQBKTNmA7OaAJvs2JE5lnIKAp8nz6dWdp8N16phSJCRrS1NlTB1loLAOgs2YrOkq3IuelpqHMLwlyyyOAaM0OGDAl3cUgUGEjMcByHsrIydHR0SNZT0hnbrC4tb2iEYuILihniK1mv3o+x2diWEk8ScZqbm8X59VJT0mHotECmjgMblwAFy2DIvDHQaAN/Av/40HocazmJJHUCElUJKM6OnLkxDYe2S5blSZlQDc0PU2kij2vMUOJJfDGQmGlvb3ebdE6ePFnsRkJij91uF1t2URJBfEExQ4gUJZ4konV2mLF/t3T6kGmzRyEYvS51pg7oLZ3QWxyDZI1JHR6Eo/hP4DkYDu2UrIufMIuG9CckTNLT05Gfn4/jx48DcIxrUFxcTEknIYSQfmHjksJdhJCgxJNEnFGjRol3CHWtvSd4V6tlAT8mL/Co1kunKZmQGRnNWM2nD4EzSOcGjJ94fphKE5lcY4YQXww0ZnJycgAAVVVVlHQOEioVDeRG/EMxQ3xlsXQBiP1R0IOSeHZ0dKCurq7PbZzq6+sh/DyoizfOH3oS21wv4JrqmqVPMoBcEfjEs6WrDWa7RbJuWHJkxFtn+XeSZWXWSJq7swe66Cf+CkTM5OTkIDMzc9DMvzbYyWSB/+0hsY1ihviqy26Ga+LZd1YUnYLya/nGG2/gjTfe8GlbQRAwb968PrdjGAaHDx8eaNFIlLGYpaO2ymSsOCJyICWpE/GnuXehTt+Ius5GtBjbkKIOf7MH3m5F15EfJOuU6bkQeA4MSz9ohARbX7WilHQSQgghvgnaL2ZfNZiu065425ZhGJ9qQ0lsslh6JJ4sA95qA6sM7GizKrkSk7IKMSkrcgYUAgBjxU8QbGbJOuWQ0ZR0EhICdrsdhw4dwogRI5CUFP4bUYQQQmKTbZBMjxfwqiNBEHxKFJ3b9bVtqJJOQRDw5Zdf4uabb8b06dMxadIkzJs3Dw888ADKysqCdtzHH38cBQUFKCiIjP6EkcBsNsNkMsFsNsPaI/EUTF3Yvexa2AyGMJUutDpLv5Esy5MyoR0ZGXOLRhLXmCHEF33FjN1uR2lpKdrb291OnUIGH57nxT9CfEExQ3zFxuj0KT0FtMbz6NGjgdxdyJjNZtx111349ttvJetra2tRW1uLL7/8En/4wx9w6623BvS4P/zwA957772A7jMWHD9+XJzmwGrVSp5jBB5gGMi0Wg+v7p8WYxtUMiXiFNqgNOXtD85kgKmqVLJOlT0KirShYSpR5HKNmaIiSsxJ37zFjDPp7Ox0jHDtnLezqKiIaj4HMbPZLDa91gb4N4jEJooZ4qs4mXS6nVhNQ6lzCoBHHnlETDpHjx6N5cuXIz09HYcOHcL7778Po9GI559/HllZWViyZElAjtnV1YVHHnmEmhH3wdajxpMV7GDk8oAnh7vP7IfJbgbLMIhTaDE1txjp2tSAHsNfhkM7AJ7rXsGwiJt0PhgZfW0JCRabzYaysjIx6XSSyWRQKALbxJ8QQggBgDihFVmdOnFZJljDV5ggioyqnTDatWsX1q1bBwCYMWMGPvvsM9x88824/PLL8cADD+Djjz9GcnIyAODpp5+GIUBNPJ977jnU1NQEZF+xJjU1FWlpaUhNTYXVykmeYwUerCKwiZeNs8FkdzS34wUBndYuKNjwJ3edJV9LlhVpOdCOmBSm0kQ215ghxBfuYsZT0qlUKjF58mSqsRjk5HK5+EeIL2IhZm677TYUFBTg008/DXdRYlqSWgatTS/+xdv14S5SUAz6xPOtt94C4Dg5PPnkk73mXBo9ejT+9Kc/AQB0Oh0++uijAR/TtYltQkLCgPcXa3JzczFixAjk5uZC0WPqFCVnBqtQenhl/+gtBknNMwMgXhkX0GP4y6ZrhLWxSrJOM3oKWBVd+LrjGjOE+KJnzNhsNknzWidKOomTUqmESqWCUhnY3yASu6I9Zj799NNe3dBIcKSOyoMmDeJf/JDojJm+DOrEU6fT4fvvvwcAzJ49G3l57udGXLhwIdLS0gAAmzZtGtAxXZvYLlmyBOPGjRvQ/mJej0buSrsp4CPa7jyzD18c3YKvT+7C3poS1HTUQxbmUWP1+zZIV8gUSJpySXgKQ0iMcyadPVu0UNJJosWpdmpBRQLru+++w5///OdwF2PQkGlUkKnQ/aeOzV6egzrx/PHHH8WRxmbMmOFxO5ZlMXXqVABAaWnpgEY3dDaxzcjIwMMPP9zv/QwWth5NbWWCDaxS5WHr/umyGmHjbWg36XCmoxZ6awSMmCtTQJE5Avi5P6cqZzQUqdnhLRMhMchT0qlSqSjpJFFBZ+rAqm//Cp2JRl4mgfHpp5/ijjvugM1mC3dRSIyJ3kbnAVBRUSE+zs/P97rtmDFjADimXTl+/LiYiPrDtYnto48+KvYdJZ7ZbdIhyFmBAxvgJit1nY2S5VEpwwK6f39xRj0YuQJxBdMgcFNga6tH/PjzwlomQmJRX0mnRqMJU8kI8d3nR7fAYO3CF0e34Mazrg53cUgU6+zsxOrVq/HBBx+EuyiDjlVmgSmhRVzmA9y6L1IM6sSztrZWfDx0qPcpKrKzu2ubamtr/U48XZvYLliwABdddJF/hR1EKioqxGkOOHvPxJMHqwps4lmvlyaeOQlZAd2/v6wt1eJjRiaHeuhYxBVOD2OJIp9rzIwdOzbcxSFR4MiRIzhx4gSsVqvYlQKgpJN45jo1hlqtDndxADhqOzdXbgcAbK7cjsWFFyFZQ1P+RIpIjBlP1q1bh6effhqtra0AHAOwXXzxxXj//ffDXLLBoY5vx+fDumdySLVbcVUYyxMsgzrxbGtrEx+npKR43da1dlKn0/l9LGcT25SUFGoz3weTyQSbzQa73Q6Oc1PjGeCT94Pn/w61+kbUdTagTt+IMWkjArp/f9laaiXLyrRcMMygbhXfJ9eYIaQvdrsdx44dg9FohEzW3Z+bkk7iDc/zYhIRKT4/ugU2ztEc0srZBkWtZ319Pd566y1s374ddXV10Gg0KCgowDXXXIPLL78cb775Jp5//nkAwLFjxySvLSgoAADcddddWL58OVatWoWdO3cCAPLy8vDrX/8aixYtErfneR5btmzBF198gbKyMrS3tyMuLg7Dhw/H3LlzsWLFCiQmJrot5w033IC9e/cCAA4cOODx/Tz44IP47LPPAABff/21ZJA853NZWVnYvn07zpw5g9deew3ff/89WltbkZycjKlTp+Lmm29GcXGxvx+lxAcffCAmnbNmzcJTTz2F77//nhLPEGltVGHCTwvEZbsqArp9BcGgTjzNZrP4uOdotj25jkjm+jpfuDax/dOf/kRTPvSBYRjxb9b8MUg69A06q85AYFhobHrIVN6bRfsrIy4NGXFpmDxkfED32x+cyQC7oV2yTpFBI7X2xTVmCOmLTCaDRqOByWQS11HSSaKNa22nU6zXeu7Zswe33347urq6xHVWqxV79+7F3r17sWXLFjG59MZgMOD666/HqVOnxHVHjx6VJJENDQ24++67sX//fslrdToddDodSktL8fbbb2P16tU4//zzB/7m+rB//37cdttt0Ou7p9lobm7Ghg0bsHHjRjzwwANYuXLlgI4xdOhQ3HvvvbjssssGWlziJ0tXF4BkcVlmFzxuG80GdeLpWjvS11DXrs/7U6vi2sR2/vz5UfFlPnHiBEaPHi2Z6sVisYh3DpOTkzFs2LBerzEajQCAoqIiyXMtLS2oq6sD4Lij6Fq7zHEcDh06BMAxtczIkSMxaVL3XJU7tpWh0cAACsePgdJugkzjqPHU6XQ4c+YMAGDIkCHIyMiQHPfgwYMQBAEajaZX88uamhqxxjs/P1/SBMZgMODkyZMAgIyMDAwZMkTy2iNHjojNOnuOSlxfX4/m5mYAwKhRoxAfHy8+Zzabcfz4cQCOJiw9p/6oqKiAua0R8g4jspIcA5qwChXkSRlobm5GfX09AGDYsGGSGni73Y7Dhw8DABITEzFixAjJfquqqsQpIiZMmCCp4Wlvb0d1taNpb05ODtLT0yWvLSsrAwBotVqxn7PTmTNnxNr/goICyc2bzs5OVFU5poPJyspCVpa0+fLhw4dht9uhVCpRWFgoea6urg4tLY5+DqNHj0ZcXPfUNiaTSeybnZaWJjaRd8bM8ePHUVZWBpZlMXHiRMl+m5qa0NDQAAAYMWKE5ALDZrPhyJEjAICkpCQMHz5c8trKykrxQmfixIlg2e4a6La2NnFO3tzcXMmNJZ7nUV5eDgCIi4vD6NGjJfs9ffq0OFjZuHHjoFB09+nQ6/XiRVF2djYyMzMlry0vLwfP81Cr1b36qNfW1op3rseOHStJprq6ulBZWQkASE9PR05OjuS1R48ehdVqhVwux/jx0psxjY2NaGx0NE0fOXJk2M4Rrk6dOiVeiI0fP14yX56ncwTDMLj44ouxefNm6HQ6dHZ2Yvr06ZLPKVLPESaTCQzDSM6TAOgc8TNP5win48ePw2w293mOcP0uAhAHImQYRvL5OJnNZnEbjUYjuQlmt9thtTomg1cqlZIYFQRBvAHCsmyv5pgWiwUc5xhkT61WS849a498JdZ2OrnWeppMJgiC4Ha/VqtVvJbpuV+O42CxWAA4pprreX3k3C/DML1u1NhsNnFAGpVKJfmseJ4Xb9zLZLJeN/xdP8Oeg3o5+2Pfeuut4j7mz5+PefPmQaFQ4Pvvv8e6deuwadMm7Nq1y+Nn6PS///0PFosFM2fOxKWXXgq9Xo+dO3di1qxZAICOjg6sXLlS/J7n5OTgqquuwqhRo9DR0YGtW7di586d0Ol0uP322/Haa69Jkk+O4yTH7Pl+XD/Dnlz/b5xTvRmNRtx5553Q6/UYN24clixZguTkZBw4cACffPIJ7HY7nnnmGSgUCixdutTjZ+j8v3EXh7/97W8xYcIEjxUxVqsVRqPRa3wrFIpe3x3ned/f+HaNQ3f79RaHrp+htzh0F9/OOHS3X47jYDKZUFZWFvDrCK6mHUD3+UpjFsTyhuM6wvk7FWiDOvF0/QLYbDavyafzSwX0naS6cjaxTUpKwmOPPdavcoYax3Hiyd9JEATxhNXzBA44TjyeRj/jeV58rud+AYjPuUvorRY77DwAmeMz51kZZD+fCFzL5Gm/giC4nbjZWV4jZ0JDZxPS2TRoFRqwDOvTfn15r65zg/Ysr7v3arPZwHc0wpQ9HkmTJsLWUgMIAhiGHdB+g/V/w3GcxzK57tddvDibxbqeeH3Zb19x6Py/6Wu/3uI7lJ+h63778xnyPO/2Inggn6GzTD1f13O/kXKO8PYZevsuMwyD9PR0CIKA7OzsXhcY/d2vs7zBOkfYbDa3F6t0joC4HIhzRM+LXNdjuftu9LXe22s9va7na13pTB3YUrnT7WuctZ5KQeHx9QMpk7fng/FenZ599lmYzWYwDIOnn35aTLAEQcCFF16IRYsW4c477+w1F6+7/VosFsydOxevvPKKeH138803i+fT1atXi0nnBRdcgL/85S+SG2LXXXcdPvzwQzz66KOw2+144IEHsGXLFsmNJG/6eq89n+vs7ERnZyeuvvpqPPDAA5DJZJDL5bjyyiuxaNEi3HLLLTCZTPjb3/6GCy+80OMc8d7+35w3BH35v/V1v67PBeN7463p+0D364nzHBPo6wgtIz3nuL6rcFxHuDvfB8Kg7jjmejfIeVfFE9fEs69muU6uTWwffPDBXncaIpVMJuv1o8wwjHjHyV2AyuVyt3ekAMddLudz7n7snc+5SxBZlgVcg18QIFNrepXJ237dlclZ3jZOj+9r92PD8W349PAm7K87OKD9ur7XnidD1/26e68KmxEJ+95F0tcvomX932HvaIIqZ/SA9xus/xuZTOaxTK77dRcv/d1vX3Ho7f/Gdb/e4juUn6Hrfvv7Gfb1Xv39DL29V18/w1CeI7x9hn19l5VKJXJyciQ1ZoHYb9DOEUHaL50jeu/Xnb6a9Ht6zvV13p7355ifH90CG+/+ItZZ6+nLMftTJm/PB+O9AsDevXtRWloKALjqqqvEpNP1tVOmTMG9997r835vueUWt881NjZi7dq1ABxNT5966im3TfCvuOIKrFixAoCjxsqfkWD7E0sFBQV49NFHIZfLJc9PnToVd9xxBwBHK48vvvgi4DHq7bW+PhfK700g9uutvMG4jvD2XsJxHeHufB8IjNDXba0gEAQBP/30E3766SfU1dWho6MDixcvxrx58wA45g8qLi7uVZ0caH/+85/FE8XWrVuRl5fncduPPvoIf/zjHwE4ajFdO5+709XVhcWLF6OmpgazZ8/GP//5T7fbuXY+79kJPlQMBoPk2AUFBT7ftQu2gz/V4OC/PgBncjTVSDXWoeiq+chbHpjBE74/8xNq9PXickH6KBRnh6evZ8e+DWjd/C9xmVVpMfzut8DIYnNIbUJCwXlT0dcbhoQAjmbNdrsdcrk84kbK1pk68Lv1f+rVzNaVUqbAK5c9ETN9Pf/yl7/gP//5DwBg/fr1vZp1O1mtVsyePVts4u1pcCGFQoH9+/e7bcH26aef4qGHHgLgqDTw1m+ypaUFc+bMgd1ux5QpU8TKBsD36ztfBhcCgGeeeQZXXnml2310dnZi5syZsFqtOPfcc8XPaqBcP4u//OUvvRL+wSTY54QNL/wXP9Z2d9VRciY8+NdlAT+Or4KVG4S8qe1nn32GV199VTKVCQDJaFwvv/wympqacOmll+LPf/5z0Oa7dO3nUl9f7zXxdPb7ANCrT5Q75eXlYr+vHTt2+NTZ3bnN0KFD8c033/S5faxqbm4Gz/NgWRaCAAguzQMYCJAFcEL3VmObZDlB2bvmI1S6jv4gWdbmT6Wk00euMdOzry8ZvCwWC0pLSyEIAiZPnixJPilmiL9cm8l5qhUNBdeRbD2JtRFu9+3bB8AxA4GnpBNwtGKYMmVKn9dQeXl5HrtNlZSUiI9nzJjhdT/p6ekYM2YMjh49Ko4r4a7mytnneyBmzpzp8bmEhATk5+ejvLxcrBkm0SUhbyhQ2z3gHaOIzUapIXtXgiDgwQcfxMMPP4za2lqxDXXPClebzYampiYIgoCNGzdi2bJl4mAWgeZao+ocjMAT5/MMw0Tc3c9YU19fj5qaGtTX18NitsHOC+DBQoAjjmRxgUk8jVYT3in9FF8e3YJtJ7/Hj7WlYMM0bQln6oS5+ohkXVyB9x880s01ZggBHElnSUkJjEYjTCYTSkpKJF0qKGaIv2w2G6xWq8d+WqHgbiRbTzZXbofO1BHkEoVGU1MTAN9u/Pcc2MwdT1OgANKp9rxVSPTcxmazSUacdTXQmNFqtb0G4OrJ+dkYjUZxQB8SRWSxmWj2FLIaz+eff15sM88wDGbNmoXJkyfjlVdekWznbCbx3XffgWEYVFdX4+6778a7774b8DKdddZZUCgUsNls2LNnD66//nq323EcJ95tKyws9HrCcho7dixeffXVPrf761//Kia1zu0jfZLhUNrx9QkYEieIyzKeg1wbmFrJuk7HDQ0LZ4XFZEW7uQNZ8el9vCo4TFUHAaG7LysjV0IzamBzchEyWDmTTtfpUkwmE44fP95rNFhCookvtZ1OsVTr6Ww668v1kS/beBsk0nWqFl+mV3I9nslkQlJS4Js3u+uH7q0cBoOh16i2JLIpkocAOCEuC/LY7B4SksTz5MmT+Pe//w2GYZCVlYWXX35ZHD2rZ+IZFxeHN954A/v27cPdd9+NlpYWHDhwAFu3bsWFF14Y0HIlJiZixowZ2LFjB7755hvU1dW5vZu2fv168Q7YggULej3vTmpqqk/lffvtt8XHgX5/0WrYsGFicxWek9ZGMAIHuQ8nYF84E0+nzLg0aBThmcOvs0zaLEidNw6sIjZPOsHgGjNkcHOXdAKOC0jX4eIpZoi//BnRPhj8qe10ipV5PVUqFWw2W6/vtTv+zrXek2uyaTKZ+uzX5lq76Cnp9RY7fQ1uCUgHuOyrHAzDBK2LGgkeo1HaOkEQeo9CGwtCUq/7/vvvg+M4MAyDv/3tb73mcHNn6tSp+Nvf/iYuf/nll0Ep28033wzA0QzinnvugcFgkDx/4sQJPPXUUwAcSfGyZeHr6DtYJCcnIyUlBcnJyeA5aVNsVuAhjw9O4pmTmB2Q/fpLEARYaqVNveWpQzxsTdxxjRkyeJnNZo9JZ88+nhQzxF9yuVz8Cwd/ajudnLWe0S472/H77Jzv1xtftvHGda5a5xy23pw+fRqAI+l0PZ/4elOr5/Qv7uj1eklNrDvOcUWSk5PDfpOE+K/Z3C5ZtlDi2X+7d+8GwzA499xz/WrmdNZZZ+G8886DIAg4ePBgUMo2a9YsXHLJJQCAAwcOYMmSJfjnP/+J9evXY/Xq1Vi+fLnYxOP++++XTA4PAHv27EFBQQEKCgpwww03BKWMgxnHSecRYgUO8oTAjLi7bMJleGnh43hg9m9xQ/FVmDNiekD26y9rYxV4s/SGR1z+tLCUhZBo5Snp1Gq1vZJOQqJNf2o7nWKhr6dzAEqdTofKykqP2/E8jwMHDgzoWK7XqT/88IOXLR1Trzjn+3RtUQFIazl7Vmq4OnHihMfnnARB8DpokOvnMm0aXT+QyBWSxNM5IqwvNZ09TZjg6N/X2toa0DK5+r//+z/MmjULgOOO0erVq3HPPffgn//8J7q6usAwDH7/+9/j2muvDVoZiHsC37PGk4M8LjCJp4yVYUhCJs7OmYRFhRfi3LyzA7Jff3Ud2S1ZZpQaqIdP8LA1IaQnZ9LZs4mdVqtFcXExJZ0k6vWnttMpFmo9L730UvHxmjVrPG63adMmNDc3D+hYc+bMEUegXbNmjdfmvf/+97/B/zzX+Ny5cyXPpaWliY+PHJEOHuhUUlLi8wBnrlO19PTuu++KAxjNnz/fp/2RyGJpldZ4yuwhn+0yJEKSeDrbpvdn0BznHaNgTWQKOJph/fOf/8Tq1atx3nnnITU1FQqFAhkZGbj00kuxZs0acXJeEnx2ux02mw12ux18j8STYQTI1LF1EWmqKpMsK7NGgJWFpylXtHKNGTK4eEs6vdV0UswQfwmCAJ7ne43GH2wDqe10ivZaz1mzZqGwsBCAIwHbsGFDr22OHTuGJ554YsDHyszMFOdqr66uxn333ee23+jatWvFcTrS0tJw3XXXSZ53rTl97bXXep1rGhoa8PDDD/tcrs2bN7tNunft2oXXXnsNgGOaQF/HIiGRhWmXNrmWcbGZeIbk6jYtLQ319fU4deqU3691Tl7as4lroDEMg8WLF2Px4sV+vW769OleJwbuyzvvvNPv18aqw4cPi3Ne9cg7IQ/QOCA8z+Nk+xnEq+KQqIyHRqEOyyAjgt0GS+MpyTrtCP9bBgx2rjHTn5YVJDr1lXR66+dEMUP8ZTKZxAGpQjli6LenfgjIHNPfnvoBV4y7JAAlCj2WZbFq1Spcf/31sNlsuPvuu7Fx40bMmTMHKpUKJSUl+Oijj2CxWCCTycBx3IAqLB566CHs27cP1dXV2LJlCxYuXIirrroKI0eOhF6vx9atW7Fjxw6xbE899VSv69QFCxbgueeeg8lkwp49e7B8+XJcddVVSEhIwOHDh/Hxxx+js7MTkyZN8qk7GcMwWLVqFXbs2IGLLroIcrkcu3fvxueffw6e56FQKPDYY49R/84olSCXVs7F6rB3IUk8i4qKUFdXh23btsFoNPp8wq6ursa3334LhmFoCPxBqGczWwBgA5R5dtmM2F9fLi7LWRkWFVwIhSy0k4Ibq8oAXnoXVFtA/TMI6YunpDMuLg7FxcV08UVixhXjLonahDGQiouL8eKLL+L++++H0WjE5s2bsXnzZsk2V199NWpra7F79+4BnQMSExPF1m5lZWWora3Fyy+/3Gu75ORkvPDCCzjvvPN6PZeWloZVq1bhkUcegdVqxaFDh3Do0CHJNjfeeCMmT56Me+65p88y3X///XjxxRexbds2bNu2TfJcXFwcXn75ZZx77rl+vlMSKbRcK9IN3bWecqHv0Y6jUUia2jqr/Ts6OvD444/79BqdToc777xTbLN+8cUXB618JLIkJiYiKSkJcfEJvZ6TB2iC3U6LtKO/nJWFPOkEAOPxPZJlWUIqlJl9T35NpJwx48scuyQ2VFZWDijppJgh/pLJZOIfCY+LLroIX375JW644QaMGDECarVanBrvlVdewVNPPSVeNw70u52VlYUPP/wQL7zwAubPn4/MzEyxG9aUKVPwyCOPYMuWLW6TTqdLLrkEH3/8MZYtW4bc3FwolUqkp6fjggsuwL/+9S888sgjPpfn4osvxieffILLLrsM6enpUCgUGD58OG6++WZs3LhRHKuERKdEpYAEa1v3n6297xdFoZDUeF5yySWYOHEiysvL8cUXX6C5uRm33HILxo8f32vbpqYmbNmyBW+++SaamprAMAxGjx5NbdYHkREjRgAAzCYbgMOS59ILRwfkGNUddbByNih/TjbjlYEZsMhfptPSu5+q7NFgmJDcD4opzpghg0dBQQHMZrM4FYG/NZ0UM8RfNEhVZMjNzcUf//hHj887B6McMqT3tGT+do1iGAaXXXYZLrvsMv8K+TOVSoWCggI8+eSTHrfxZ//5+fl44YUX+lWW/li6dCmWLl0asuMNZipGekMrVq8EQzaCyUsvvYRrrrkGLS0t2L17N3bvlo7k+dprr+Hvf/+7ZMhpQRAQHx+Pv/71rzTJ9yDE2fle68b/5qaA7PvTI1+hqv0M1HIV4pVxmDtiRkD26w+B58Cq48DIlRDsjgG4NCOprxkhvpDL5SgqKkJpaSkEQaDmtYTEsM8//xzr1q1DXl4ebrvtNmRlZbndrrKyUhxPxF3lBiEkvEKWeA4dOhTvvfce7r77bpSXd/etcyaUnZ2dvUaKGzZsGF566SWMGTMmVMUkEaTnHJ4AIAtQU9t2kw4AYLZbYLZbkJ2QGZD9+kPg7NCOORvC6CngDO2w6xqhHROeKV0IiUYKhUKc3885/QEhJPYkJiZi+3bHyL6CIODRRx/ttY3BYMAjjzwiXktefvnlIS0jIaRvIZ2zIS8vDx9++CE2bdqETz75BPv37+81P5JcLseECRNwxRVXYOnSpdS0ZRCzu6nxlMsHnngabSbozHrJulEpoe9Xade3AHDcfJEnpEKRlAF5UnrIy0FINKOEk5DYd9555yE3Nxc1NTV49913cfjwYVx88cXIzs6GyWTCyZMn8fnnn6OlxfG7umzZMpxzzjlhLjUhvhMYGxLNLeIyy3JhLE3whHyyQJZlsXDhQixcuBAcx6Gurg46nQ4cxyExMRE5OTn9mu+TxI6qqirY7XZ06Xt/6dgA1Hg2d7WCZVjwgiOxZRgGWfGhT/jsHdJJruWJaWBYGrSiP5wxI5fLMXLkyHAXhwSQ0WhEdXU1xo4dG9D5nClmiL8sFos4nQrdFA8tpVKJV199Fb/5zW9QX1+PkpISlJSUuN32uuuu82t+zGCimCG+6hQ6kG6sEZfNytjsYhjWWeplMhny8vKQl5cXzmKQCNPZ2QmbzYauTmnTa4ZlwLID/yIOT87F/656CQ1dzajTN6Ld1BGWEW3tHS2SZXki1Xb2lzNmqPYrthiNRpSUlMBqtcJqtWLChAkBSz4pZoi/OI4TkwgSeoWFhdi4cSM+/vhjfP311zh+/Dg6OjoQFxeHrKwsnHXWWbj66qsjal5eihniqxZTMo6OWiEuq+ydmB/G8gRLWBNPQrzRxslx9Y1TwNl5cJwA3s28nv0ll8mRmzgEuYm9R70LBYGzgzO0ScuUlBGWshASiVyTTsAxUuWhQ4cCmnwSQqKLRqPBDTfcgBtuuCHcRQmJZ555Bs8880y4i0FCwM4L4NjuG6E8E5spWkjeVV1dXUD2k5OTE5D9kMg2YcIEAADP8diy+l2YqmvAsAwYloW2LBuFt94c3gIGgAAg8ZwFsHe0wN7RDLu+BfLEtHAXK2o5Y4bEhp5Jp5PVagXP8wFJPClmiL80Gk24i0CiDMUM8ZUwSKbSC0niOW/evAE3M2AYBocPH+57QxL1nJNzCwJg6LTAYnEOMsTB0tTs+YU+Oq2rAcdziFfGIV4VB41cHdJmMLzdijMv3wpVzhhoR02GZmQxtPlTqSnOANCE7rGjq6sLpaWlvZLOhIQEFBcXQy4PzM8WxQzxF52jib8oZoivklVxkuVYjZyQ1eP2nCqFkL4IAoAeU6rIFAMP2YrWKrSZOsTlKUMmYkzaiAHv11fm6iPgTZ0wVR6AqfIAwLAYfvdbkGkSQlYGQiJRV1cXSkpKYLPZJOsDnXQSQgghJPRC8is+depUn7azWCxobm5GfX09AMedogsvvJCGxB6kBF6AwEsTT3aAiacgCDBYjZJ18UrtgPbpL9PJUsmyashoSjrJoOcp6UxMTERRURElnYQQQmIWx0sHuuOoj2f/vfPOO35t39LSgjfeeANr1qzBd999hyuvvBLz5s0LUulIpGlvbwfP87DbeCSMK4S9sxMCx0HgOKTPGDGgfTcYmtFoaEGCMg5ymSP843s0bwg208kSybJmVHFIjx+LnDHDsixSUlLCXRzip3AknRQzxF92u118TDdCiC8oZoivZD1Ssljt8xmR34L09HQ88sgjyMzMxPPPP4+HHnoIX375JTIzM8NdNBIC1dXVsNlsEHgWmtwcSR+J1GljBrTvH6r34+uTOwEAGoUaQxOG4OoJCwe0T3/YO9thbTotWacdNTlkx49VzphRKBSUREQZg8GA0tLSkNd0UswQf1mtVnFqDEoiiC8oZgiRiuh0+te//jVyc3Oh1+uxZs2acBeHhFj1SSN2bDmBHVsqsPPrEyj7sWbAHfVbjN1TmJhsZmTFp4EN4V0l0ylpM1tGqYEqZ2zIjk9IJAlX0kkIIYREEnaQdLmK6MSTYRjMnTsXgiDgm2++CXdxSIjk5OQgLy8P8XGOL6EgAPzP83iyA0w86zobJct5SaGdosdY8aNkWZGaA4HnQlqGWOSMGZpyKXp4SjqTkpJCknRSzBB/KRQKKJVKKBSKvjcmBBQzxHd2uyXcRQiJiL+dnJbmmNswUHOBksiXnp4OAFApdZL1LMuCYQeWeFo5GxgwEOAYZTknIWtA+/OHIPAwVR2UrJMnpYORK0NWhljljBkSPdy1XkhKSsKkSZNCUtNJMUP8RckD8RfFDPGV3mYEEC8ux+pcIBGfeJ45cwYAzYU0GNntPUa0lQ08Bp668H5Y7VbUG5pQ19mIwvTRA96nr6yNp8GbDZJ1mpFFFNtkUIqLi0NxcbFY6+ms6aT5NQkhhJDYFNGJZ01NDTZu3AiGYTBs2LBwF4eEGNcz8RxgbaeTUq7E8ORcDE/ODcj+fGWs3C9ZZtVx0AwbH9IyEBJJ4uPjUVxcjNOnT6OwsJCSTkIIIYOSnRsc3a4iro+n1WpFY2MjPv30U1x//fUwm80AQNOpDEJ2u/RLaK6uRvN3O8JUmoHr1b8zJRvylOwwlYaQyBAfH48JEyZQ0kkIIWTQ4sH3vVEMCEmN57hx4wb0+sTERNxwww0BKg2JdGVlZbDZbGhq0kvWMzwHDKDSs1bfgKauFiSpEpCkTkSSKkGcyzPYeJsFlvpKyTrV0Hyw1L8zIJwxo1AoUFRUFO7ikB4sFgtUKlW4iyFBMUP8ZTQaxakxtFptuItDogDFDPFVokI6p3ysdsIKyVW3IPS/i2xCQgJeeeUVJCUlBbBEJBrwnDRuGIEHO4CL1/rOJpxsPyMuD08eium5Z/V7f/4wnS4HJKPXMtCOPSckxyYknPR6PcrKypCbm4sRI0aEuziEEEJIxFHbW5Bi7BKX5UJsjnIbksTTn+HqZTIZ1Go1hgwZghkzZmDp0qVITk4OXuFIxNFqtbDb7WDQKVnPCjxYZf8Tzw6ztAY1SZXY7335y3hsj2RZlpgGVXboBjaKdc6YoXkfI4ter0dpaSk4jsOpU6fAMAyGDx8e7mIBoJgh/mNZVqy9IsQXFDPEV0lKHsnmJnFZDmsYSxM8IfnFpTk4iT/GjBkDACjf0wmgexRYBW8Gq+xf01SO53Cw6RjiFBrEK+MgY2VIVodusl5z3QnJsjJjGGTawTFZcCg4Y4ZEDtek06mqqgpqtRpZWaGbxsgTihniL7VaHe4ikCgTbTHT2NiId999Fzt27EB1dTVMJhOSk5MxceJELFq0CAsWLADLRtzwMDEhbfhQVJ8+Li6rFLF5UzQk7+rYsWOQyWT0Q0/80vPUprV1QqbqX+LZZGjF92e6B/eJU2hxwciZAyidfxKK58PWWgNbewPs7Y3QjglNE19CwqGjowNlZWWSpBMAUlNTaf5MQoKgq+oU4kaOCHcxSBRbv349/vjHP8JoNErWNzc3Y9u2bdi2bRvee+89vPzyy0hNTQ1TKWOXIikert08larYHHAvJLctXn31VSxatAiLFi3C1q1bQ3FIEgPsNrtkmRE4MP3s49liapMs8wKPdG1Kv8vmD86oB282QBaXDHVuIeInzUFc/vSQHJuQUPOWdE6cOJFGryUkwKzt7Sj/06OwtreHuygkSu3YsQP33XcfjEYjGIbBJZdcgieffBIvvvgi7rzzTgwdOhQAsG/fPvz2t7+FzWYLc4lJtApJjWdZWRkEQcCJEyeQkhKai30S/Tib9MKVFXjI+pl4NnQ2S5az4tND1ufC1lonWWaVGsgS6G4hiT19JZ3URIuQwKv9dC3snQbUfvY5Rv7y5nAXh0QZm82GVatWgeM4yGQyvPrqq7jgggsk29x888347W9/ix9++AEHDhzA+++/T7NNBJjAcmBV3WORMKrYbGobkquAdpe7cBMmTAjFIUkUO3PmDKqqqtBl6JKsZwUOrLp/iScncEhWdw8mlB2fOaAy+sPaWiNZVqTl0EADAeaMmTNnzvS9MQkKT0lnWlpaRCadFDPEXxaLRfyLFNb2djRs2gwAaNj4FdV6RphIjJmedu/eLZ4HV6xY0SvpBIC4uDg8//zzYp/Vjz76KKRlHAzOMM1YU2AQ/z4f2tb3i6JQSNLpESNG4NixYwCA+vp6jBw5MhSHJVFKp9PBZrPBapE25WAggJUr+rXPS8fOxaVj58JsM6OxqwUsE5qLYN5qAqeXnjyUab6P8kx844wZhUKBYcOGhbs4g45Op8PBgwfdJp0TJkyIuKQToJgh/uM4LuJGKK39dC14q2P0S95qpVrPCBOJMdPT7t27xcdLlizxuF16ejrOOecc7Ny5E8eOHYPZbI66wZMiWVuTEvkl3Um/oDR62Tp6heRq4Le//a34pXv22Wd7XZwQ4s7IbDvym3/A2Ja9GN36I5JtrWBkAwtZtUKN4cm5yEsKTfLHyJWInzgLquxRYJVqMDI55MnhH9GTkECJxqSTkFjgWtvpNBhqPevr6/HUU0/hkksuwaRJkzBt2jTccMMNWLduHQDgzTffREFBAQoKCnq91rn+73//O1paWnDnnXdiypQpmDJlCpYsWYIvv/xSsj3P8/jqq6/wu9/9DrNnz8bEiRMxffp0LF++HH//+9+h1+t7HcPphhtuwFlnnYUpU6Z4fT8PPvigWK6amhq3z51//vkAHC01HnroIcyZMwcTJ07ErFmzcPfdd6O0tNSnz84dtVqNkSNHQqPR9DnXclJSkvjY23sn/jObbFBateKfwhybSX1IajwvueQSvPTSS/jzn/+Mb7/9FldeeSWWL1+OyZMnIzc3F4mJiXRxQkQFBQUQBAGyagMMvA0MBDACD5YB2Cibc6/tm/9BFpcEzajJ0Iw5G4K5CwxLg6sEmjNmIvmucizS6XQoKysDz/OS9enp6Rg/fnxEn9cpZoi/Iq12x7W20ynWaz337NmD22+/HV1d3V1xrFYr9u7di71792LLli1uE86eDAYDrr/+epw6dUpcd/ToUSQmdnfJaWhowN133439+/dLXqvT6aDT6VBaWoq3334bq1evFhNDTwIRO/v378dtt90mSfiam5uxYcMGbNy4EQ888ABWrlzp937vuusu3HXXXT5te+KEY2o4hmGQnJzs97GIZ0y9DkB3NzCNmfe4bTQLyVX8LbfcAgDIy8uDTqdDRUUFnnrqKb/2wTAMDh8+HIzikQij+nkAIYvZDrMivnu9AKCfF7I/1pZBLVdBq9BAq9QgXZMCuSy44c9bTOjYtwHg7cA370AWl4zsa/9I83cGgaqfg06R/rPZbCgvL4/KpBOgmCH+i6SYdlfb6dSw8SsMvXIJlDE2mGN5eTluvfVWmM1mAMD8+fMxb948KBQK7N27F2vXrsWmTZuwa9euPvf1v//9DxaLBbNmzcKiRYug0+nw3XffYdasWQAcfdZXrlyJkydPAgCGDh2KpUuXYtSoUejo6MDWrVuxc+dO6HQ63H777Xj99dcxe/Zsj8cbaOwYjUbceeed0Ov1mDBhAq666iokJiZi3759+OSTT2C32/HMM89Aq9XimmuuGdCxPCkvLxe7zY0bNw7Kfs6rTtxLdp1LBQArhKkgQRaSxHPHjh3iXWXnv4IQo58oCRiuRx9PlmH6VTth5Ww42S4dQGTh2AsQH+TE03S63JF0/owzGaBIzQ7qMQkJFYVCgfz8fBw5ckQ8n0dL0klItHNX2+kUq7WeTz75JMxmMxiGwdNPP42lS5eKzy1ZsgRXXnklbr31VnR2dva5L4vFgrlz5+L1118Xrytuvvlm8fnVq1eLSeeFF14oGVgHAK677jp89tlnePjhh2G323H//fdjy5YtiI+PRzB0dnais7MTy5Ytw+OPPy5OS+WcqvCWW26ByWTCCy+8gAULFkhqbgOB53lJhdGiRYsCun8CDJa2NyG5OsjJycGQIUMkfzk5OX79DRkyJBRFJRGE6zGPJyvr39fSaDP1WqdRBL/JlKlK2udCnVcAVqkJ+nEJCZXMzEyMGzcODMMgIyODkk5CQsBbbadTrPX1dE7jAQDLli2TJJ1O55xzDh544AGf93nLLbe4vZnd2NiItWvXAgByc3Px3HPPuW0qe+WVV4rJaltbGz744AOfj90fBQUFeOyxx3rNhTx16lTccccdABzNgD/99NOAH/vFF18UmxxnZ2fjF7/4RcCPMdjxkLbC4Zjo6lrmq5C8q2+++SYUhyExorOzEzzPw2KUJoz9vaA91HQMdZ2NiFdqEafQIk6phSwE/SxNJ6WJp2bk5KAfc7ByxgzLskhIoKbMoZSZmQmlUhl1ffUpZoi/XEco7XnxH0reajudYq3Wc9u2beLjm266yeN2V155JV544QXodDqv+1MoFCgqKnL73K5du2CzOVpcrVixAhqN5xvGv/rVr/Df//4XdrsdW7duxa9+9Su32znnyByIlStXQu5hnItrrrkGL730EqxWK7799ltJ7e1AvfPOO3jzzTcBADKZDKtXr464/s6xIC4nB6jr/l4zitgcDySgVwkPPfQQHnroIezcuTOQuyWDTFVVFU6cOAG9Xtpcpr81nt+f+Qnfn/kRm09sx2dHNuFYS2UgiumVpbkatrY6yTrtqMlBP+5g5YyZqqqqcBdlUEpOTo6qpBOgmCH+i4Q5GX2p7XSKpVrPffv2AQBSUlIwZswYj9splco+R5EFHGOOeOqjWFJSIj6eMWOG1/2kp6eL5Tl48KDHbmSBiJmZM2d6fC4hIQH5+fkAMKARbnv673//K2lie//992PatGkB2z/pxqp6TBcYo21vA3ql8Nlnn2Ht2rWoqKgI5G7JIHVMl4rTyRNxJmkCqpPGwyjrX61Em1EnWS7KGheA0nnXdUh684VVxUGZPSLoxyUkGNra2tDa2hruYhAy6PlS2+nkrPWMBU1NTQAcXbf64su8vN76QLa1dc+9nZeX1+e+nNvYbLagTTGi1WqRleV9KjbnZ2M0GmE0DnwOyFdeeQVPPfWUmEz/9re/DWhNKpFSJGZIlgVZbA7eFJsNiElUy8rKAsdx4IQ68KzLLR/B/2YHgiCg3tAk3X98hoetA6dn/05FRi4YJrpqhKKJM2bC2fwtVrW1taG8vByCIGDixIlIS0sLd5ECgmKG+EuhUIR1Ch5/ajudYmWEW2fTWV+aePqyjbcRWV2navHWzNbd8Uwmk2SuSyeFQtFrnT/i4uL63Ma1HAaDAVqttl/H4jgOjz76KD766CNx3R133IHf//73/dof8Y3N1qNWnInNQVjpSphEnKysLOTk5KDnDEb9mcLTytmQlzgESaru2tLshOAmnjxng7XptGSdZmRxUI852Dljpq87wsQ/ra2t4pQpgiCgvLxcUhsQzShmiL8UCgWUSuWAk4j+8qe20ylWaj2d0x+ZTL0HC+zJOd1Kf7kmm74cz7V20VPS6y1mfGmGa/Xh/91ZjoHMsWmxWPC73/1OTDoZhsGDDz5ISWcI1HU1S5bNvN3DltGNajxJRBJ4AT0buMv70cdTJVfiiQvvA+AY3bbR0IIMbWogiuiRqbIEgl36IxE//rygHpOQQHMmna59lgRBQFNTE1JTg/sdIoRI9ae20ykWaj2zs7Nx4sQJ1NXV9bmtL9t4k56eLj6urq7GuHHeu+ecPu240axWqyUJn2vNuN1u9zgwkC/Tv+j1enR1dXmt+aypqQHg6HPfnzk2zWYzbrvtNvzwww8AALlcjieeeMLtCMKE9BfVeJKIxHE96zsB+QCbxGkVGoxMyQv6iLZdx/ZIlmXxKVCm5wb1mIQEkrukE3DUEhYUFISpVIQMXv2p7XSKhVrP4mJHqyGdTofKSs8DBPI8L0670l+TJk0SHzuTME8aGxvF+T6dg/s4uSZ/BoPB4z5OnDjRZ5kEQfA6aJDr59KfwX84jsNdd90lvl+VSoWXX36Zks4QsnRKY4TlqaktISHjLvGURUn9vLn6iGRZNTTfw5aERJ6WlhaPSWdhYWHY+rcRMlgNpLbTKdpHuL300kvFx2vWrPG43aZNm9Dc3OzxeV/MmTNHbBq7Zs0ar81t//3vf4PnHdcrc+fOlTzn2h/+yBHpdYFTSUkJ6uvrfSrXe++95/G5d999V5wCZv78+T7tz9Xf//53fPvttwAcNbevv/56v/ZDBqBROoCf3EaJJyEhcfjwYZSWHuy1XtmPOY2ONp/ArjP7UN54FGd0tTBYu/p+0QDYu3SwtzdK1mnHnB3UYxJnzJTi8OHD4S5KVGtpacGhQ4cGRdJJMUP8ZTKZYDQafer3F0hNX2+DPCEeyrTUfv/JE+LR9PW2vg8WoWbNmoXCwkIAjgRsw4YNvbY5duwYnnjiiQEfKzMzE4sWLQLgaGp73333ue03unbtWrz99tsAHEnmddddJ3neteb01Vdfhd0u7bPX0NCAhx9+2Odybd682W3SvWvXLrz22msAgBEjRmDBggU+7xNwfG6vv/46AEfz4Geffdbr1C0kOBIV0mbUsfNrKxWUOqT33ntPMtlvIDAMI37BSWyz2+2wWmy91iv6kXg2GlrQ2NWCWjiSwQmZ+ZiQGbwaSEczW5eLdoZFXOH0oB2PONjtdtjt9phKjELNU9KZnZ2NgoKCmPtsKWaIvwRB8DhPYzDlXr0UuVcP7iaPLMti1apVuP7662Gz2XD33Xdj48aNmDNnDlQqFUpKSvDRRx/BYrFAJpOB47gBzS380EMPYd++faiursaWLVuwcOFCXHXVVRg5ciT0+v/P3n3HR1Hn/wN/zczWbMqmkZACCZDQiwIqihUbKCpSTkTsZ/c875RTua9dT892Z/md53n2cgoKgh1sNAVUEjoJgYT0vkm2787M7491Jztbkt1kky15Px8PHuzMzn7ms8knu/Oez+fz/nRi48aN2Lx5s1S3xx57zGfu+9y5c/H000/DYrFg586dWLJkCRYuXIikpCTs378fq1evRldXFyZPnow9e3xvtntjGAYPP/wwNm/ejHPOOQcKhQI//vgjPvnkEwiCAKVSiQcffDDk+Z3//ve/paB4woQJ4DgOGzdu7PV1xx9/PM33DyOVow3Jlu5EU0oxcusFD6QBCTyrq6tRXV0dtvIimb6cDD6VSgUF55vNS6EMvbl22uRj5j2z2w4ES4V8bokyLQecJnFAz0lcbYZl2YDJG0jPmpubsX///iETdALUZkjoGIaJy7+FWDF16lQ899xzWLFiBcxmM77++mt8/bV8CPKiRYtQW1uLH3/8sU8JdtySk5Px7rvv4rbbbsPu3btRW1uL559/3uc4vV6PZ599Fqec4ptAMD09HY888gjuu+8+2O127Nu3D/v27ZMdc+WVV2LatGn405/+1GudVqxYgeeeew7fffedT+eOTqfD888/j1mzZoX0Pk0mk+xnuG/fPtx6661Bvfatt97CiSfSjfVwSVU5kG7pToylQN/mdEe7AfnGjcQdQRI/xo0bh6b6TgDyzHSJeaEte2CyW7C36RASlFroVAnQKbVIUve+FlZ/qPPHQ3Q64GhvhLOjCZo8SsQyGNxDsEjoAgWdw4cPR3FxcdxeaFObIaEKZk1HMrDOOeccrF+/Hm+88QY2b96MhoYGqFQqTJgwAVdccQXOOeccLFu2DIAreOyPrKwsfPjhh/j888/x2WefYc+ePWhvb4der0d+fj7mzp2LSy65pMfzzJ8/H5MnT8Zrr72GrVu3oqmpCcnJyZg8eTKuuOIKzJ49G5999llQ9Tn33HMxe/ZsvPzyy9i+fTs6OjqQk5ODM888E9dee22floY6cuSINDeURJaGlYdk8ToXckACzwsuuACzZ88eiKLJEOF974JhgDGXhTbUqNnYgl31e2X7Lhp3dn+rFpAoimAEAercYqhziyEKPHRFMwfsfIT011ANOgkhsSsvLw9//etfAz7f2upK0jJ8+HCf5w4dOhTSuRiGwQUXXIALLrggtEp6KCgowMMPPxzw+VDKLy4uxrPPPtvnunibPHlyyD8TQvpjQALPSZMmYcGCBQNRNBkivLPaclzo935arQbZdoomGTrVwPV4CpYuCB7rdzIsB1V6zoCdj5D+6urqoqCTEBL1PvnkE3z66afIz8/HjTfeGLB3r6KiApWVlQBc8xUJIdGFJreQqOR0egWeitADz2aTPDX1sISBnQTv7GyRbbMqLRh1woCek5D+KCwshCAI0sLjOTk5KCoqoqCTEBJVkpOTsWnTJgCu0UUPPPCAzzFGoxErV66UbqZdeOGFg1pHQvqDYXhoHN15SZRMfA6BpsCTRJ26ujo01HfI9vUl8NQqNBidOhJN5lZ02YzITMwIVxX9cnZ6rcGUnE4X8IOkrq4OPM+D4zjk5FAvc7AYhsHo0aMBuBZeH0pBJ7UZEiq7vXtES38S15DQnXLKKcjLy0NNTQ3ee+897N+/H+eeey6ys7NhsVhw5MgRfPLJJ2hpcd0AXrx4MWbMmBHhWlObIcHrENuR03VY2raq4vO7mAJPEnVaWlrQ2tol26fow1Db0wtPwumFJwEALA4r7PzAZghjlCqw6gQINjMAQJE8sIEu6dbS0gKHwwGlUklBRIg8g8+hEnQC1GZI6JxOp5Rln4KIwaVSqfDSSy/hpptuQn19PUpKSlBSUuL32KVLl4a0PuZAojZDgmWwJuFoXncvvVIwYU4E6zNQKPAkUUmXpMC4aSnIzBgGnhegUoe+hqcnrVIDrVITptr5slTtA6fWIeWECyDarXB2toJLTB2w8xESKnfvnj9DKeAkhMSmcePG4YsvvsDq1avxzTffoKysDB0dHdDpdMjKysJxxx2HRYsWYcqUKZGuKiEhs/EsOjWZ0rbGoY5gbQYOBZ4k6owePRpdGVZ0fvYmrBDAchycCgZdBSySisZEunp+tX37Nmx15WC1SdAWTkHKiRdBpaX1OwfL6NGjab3fHjQ2NuLIkSOYNm0aLQnxG2ozJFRqdXxeCMYSrVaL5cuXY/ny5ZGuSlD622aeeOIJPPHEE2GqDYlm/BD5Lgp74ElreJL+0ul0MBsFtLdaANGVZEjJ22BvawupnC1VO6HilK7eToUG+Sk5UCvCP9SFN3fBVucaly9YumDavxXJ0wZu2RbiS6cb2PVZY1ljYyMOHDgAACgpKaHg8zfUZkioAo0YICQQajMkWCkqeTLKeA1Dwxp4vvXWWwCAESNGhLNYMgQJgihbzJMRRbCq4O8cOnkn6roaZfuGJWYMSOBpqdwNwKOuChXU+bQ4PYm8hoYGHDx4UNq22WwoKSnB9OnTab4RIYQQEiVYJvRcJrEorIHnCSecEM7iyBDG252QBXMQwGqCDzzNTqvPvgTFwMzxtBwplW1rRk4EOwABLiGh8A463YYNGwalUhmBGhFCCCHEH16Qh2Q8E5+95TTHk0Qdi8UCs8kEbUEBGFGEKAhIgBXq9PSgy9jbeBAVbVXQKbXQqRKg1yRDwYW/uYuiCPNReeCZMGpa2M9DemaxWKT5ejSMFKivr8ehQ4d89ufn52PUqFE0rxHUZkjoBEGQ2gzLDo3eCdI/1GZIsDjIbwiLFHgSMjjKy8vRVGcCXzgSWVlZAIC0dB00wzJ7eWW3vU1l2FW/V9oenzkGCyfOC3tdHa214DtbZPs0BZPDfh7Ss/LycmlpjKGe0ZCCzuBQmyGhslqtUhCRkJDQ+wvIkEdthhA5CjxJVKo/ZkVNpQU1FVYwLIOcvBRMmZEX9OsN1k7Z9vjMonBXEQBgOVIi22ZUWghW04Cci5DeBAo6R4wYgcLCQgo6CSGEkCjEaIZGwjsKPEnUSU9PB8t2wmEzwWGzAwBMRntIZTQb5b2Qw3TBD9MNhfnwr7JtZWoWlKnZA3IuElh6enqP61QOBXV1dSgrK/PZT0Gnf9RmSKgUCgUtwUNCQm2GBEvE0FgVhAJPEnVyc3Oh1TYBMEj7WDa0D+3C1BHgWA7NplZ02U0DEniKTges1ftl+5QZ+eASU8N+LtKz3NzcSFchogIFnSNHjkRBQQFd9Pgx1NsMCR1lgiahojZDguUaqdedBDNew1AKPElUEgVBts2EGHjecuKV0mOzwwIlG/6mbq05CNHpkO3TFkymi3wyqGpra1FeXu6zn4JOQgghhEQTCjxJVBIE+b0eth8XzwnKgclYaT6yS7bNJaZCnVU4IOcixJ+WlhYKOgkhhJAYx3t1uMQryu1MopK1pU22bTrse3EdaebD8sBTkZoNZWpWhGpDhqLU1FTo9XrZvoKCAprTSQghhMQQXuQjXYVBQT2eJOqUlZXB1GUE0D03QrDZgn59m8WAkvr90Km00Cm1SFQloiA1+Iy4weBNHXA0H5PtU2cVgh0iWcmiTVlZmbQ0RnFxcaSrM2g4jsPkyZOxZ88eGAwGFBQUoKCgINLViglDtc2QvvNcGkOj0fT+AjLkUZshwdIp5cvtxOutYwo8SdSxWq0QnPI7P6FM8eyyGdFibkOL2bWdrA5/4Gk5ulu+g1NAS+t3RozVaoXD4QDPD407hp7cwWdzczOysymjcrCGcpshfSMIAmUoJSGhNkOCpXF2INHWPdxWIQTf4RJLKPAkUYdlWYhe6bxC+cw22S2y7YGY48motVCm58JhaAR4JxQpw6DMCG9wS4LHsqz0byjiOI6CzhAN9TZDQucOHiiIIMGiNkOClaq0IdPULm0rENoygrGCAk8SdSZNmoTtqsOAtXsfh+B7JX6o/BEd1i4kqBKgU2oxMiX8yyYoEtOgm3AKREEA39UKhlPS/M4ImjRpUqSrMOCampqQnp5O606GyVBoMyS8tNqBSVRH4lestZnq6mq89dZb2Lp1K2pra6FQKJCTk4OzzjoLv/vd75CTkxPpKsattJwsHKs4Km2rFPH5XU+BJ4lKak6e3SsBwQ05EEURW4/9DDvfvcxJgT78PZH21hoAAMOyUKRkQpWZD4aNzw8JEnnV1dWoqKhASkoKpkyZQsEnIYSQsFq7di0eeOABWK1W2f6ysjKUlZXhrbfewl//+lcsXLgwQjWMb+rMVKj13YGnRh2fIVp8visS8wRePtY22HU8O21dsqATAKZkjw9bvQBAdDrgbG+U7VOl02L0ZGAcO3YMR44cAQB0dHRgz549mDx5MgWfhBBJQ10nsnOSI10NEqM2bdqEe++9F4IggGEYXHDBBZg5cyY4jkNpaSnWrFkDs9mMlStXQq/XY86cOZGuMolRFHiSqCR4rWfEBhl4Npvky7BwDIs0rT5c1QIAONrrIYrd9WMYFoq04WE9ByGAPOh0MxgMaG1txbBhwyJUK0JINDF2WvH2v37EzXefjsRkypxKQsPzPB588EEIggCWZfHyyy/j9NNPl55fvHgxFixYgKuuugoOhwN/+9vfcOaZZ9L8+DDjWEDDdvc2q+P05jK1GhJ1mpqa4HA4ZfuCzWqrYBU4Me84jEodgUSVDukJqeDCPASWN3eB8Uh0rdBnglWoengFGWhNTU2or69HU1NTpKsSNv6CTgAYPXo0BZ1hEI9thgwsh8MBu90Oh8PR+8GDaOt3FbCYHdj2ve/nBYmsaG0znrZs2YLa2loAriDTM+h0mz59Oi699FIArqkfe/bsGdQ6DgVHmUa8ObFV+vfRyMbeXxSDqMeTRJ2GhgY4nPLAM9ihtgWpefjzKTdI23ZneLOCCTYzNPnjoM4ZA0drHRytNVDSMNuIa2hokNZkjIegrKqqCkePHvXZP3r0aOTn50egRvEn3toMGXgOh0NaGkOpVEa6OgBcvZ2/bKsCAPy8rRInnzGKej2jSDS2GW92ux3Tp0/H4cOHcf755wc8buzYsdLj2tpaTJ06dTCqN2R0tCmQVzZT2lYorD0cHbso8CRRKYNph9rQAJFhITIM9GlC7y/yQxXmnsj2zavQVbIRmoLJSBg1DQmjj4MiJTOs5yBDW6Cgc8yYMcjLoyV7CCHdtn5XAafT9f3odAjY9v0RnHvRhAjXamDV19fjtddew6ZNm1BXVwetVouxY8fid7/7HS688EK88soreOaZZwAAhw4dkr3WHTzdcccdWLJkCR5++GFs2bIFAJCfn4/rr78e8+fPl44XBAEbNmzAunXrsHv3brS3t0On02HkyJE444wzcMUVVyA52f/c2uXLl2PHjh0AgF27dgV8P/fccw/WrFkDAPjmm29kn/Pu57KysrBp0yYcO3YM//rXv7Bt2za0trZCr9dj5syZuPrqq/scCJ5zzjk455xzej2usbG7By4zk657ws1k5JHc0b06Aq80RrA2A4cCTxJ1CgoK0KbmoTbXABDBQETKsOiYQ2k5WgLBZob50HaYD22HfvZipJ1+WaSrNeQVFBRI81NiWWVlJSorK332U9AZfvHSZsjgUavVUu9VNPDs7XSL917P7du34+abb4bJZJL22e127NixAzt27MCGDRtkPXOBGI1GLFu2TPZ5e/DgQVkQ2dDQgDvvvBO//vqr7LUGgwEGgwGlpaV488038dRTT+G0007r8XxqtTrIdxjYr7/+ihtvvBGdnZ3SvubmZnz++ef44osv8Je//AXXXHNNv8/jT01NDT788EMAQHZ2NvV2DgCh0QCgO6DXWvvW4RLtKPAkUSc5ORlmUYNOTYa0L5UN7kt0S9UO2Jx2JKkTkahKQF5KDpLViWGpl7OrHfamY7J9CaOmhaVs0j+B7jjHEgo6B1c8tBkyuKItk7Rnb6dbPPd67t27FzfccIO03MecOXNw1llnQalUYseOHVi7di2+/PJLbN26tdey3nnnHdhsNsyePRvz58+HwWDADz/8gNmzZwNwZRC/5pprpHn2ubm5uPTSSzFq1Ch0dHRg48aN2LJlCwwGA26++Wa8/PLLOPXUUwOer79tx2w24w9/+AM6OzsxceJELFy4EMnJydi5cyc++ugjOJ1OPPHEE0hISMDvfve7fp0LcC1NZ7FYUF1djc8//xzvv/8+Ojo6oFAo8NBDD0GlorwW4aZn5Ne5XHzGnRR4kugk8rxsmw1yId02iwFWpx2tFgMAQK9NCVvgaTlaKttm1AlQ5xaFpWwytAUKOouKipCbS3OICSFy/no73eK11/PRRx+F1WoFwzB4/PHHpWQ3AHDxxRdjwYIFuOGGG9DV1dVrWTabDWeccQZefvllqQf76quvlp5/6qmnpKDz7LPPxjPPPAONpvvnuXTpUqxZswb33XcfnE4nVqxYgQ0bNiAxMTzXG966urrQ1dWFxYsX46GHHpIC2fnz52P+/Pn4/e9/D4vFgmeffRZz587t9421r7/+Gn/4wx9k+0aOHImHHnoIs2bN6lfZxD+OGRqjb4bGuyQxR+Dlt3oYRe9N1e60w+qVTChJpQtbnSxHSmTb2oLJYMKcMZcMLaIo4ujRoxR0EkJC4q+3083d6xlPfvrpJ2me5OLFi2VBp9uMGTPwl7/8Jegyf//73/sdNt3Y2Ii1a9cCAPLy8vD000/Lgk63BQsWSMFqW1sbPvjgg6DP3Rdjx47Fgw8+6NN7OnPmTNx2220AXMOAP/74436fq76+3mdfU1MT1q1bh+bm5n6XT3wJgvz3KjDxeX1JgSeJOg6HwyfwZIMYpnK4rQp7Gg/iSNsxNBibYbKboVMmhKVOoijA7BV4JhTSHIdoEQsp6/1xOp1oaGjw2U9B58CL1TZDIkcQBOlfJPXU2+n287ZKGDvjJyvmd999Jz2+6qqrAh63YMEC6PX6XstTKpWYMmWK3+e2bt0qfS5cccUV0Gq1Acu57rrroFC4Bg9u3Lgx4HHhaDPXXHONdC5vv/vd76Thr99//32/z1VQUICHHnoIzz33HP74xz8iPz8fFosFH3/8MRYuXIi6urp+n4PIJWTlyLbFAL/rWEeBJ4k6Bw4cgM1mk+0LZqhtk6kFh1oq8Gv9Hmyp2oGfqn8NW+IQe2MlBIt8+I4oxukA/Bh04MAB7NmzBwcOHIh0VUKiVCoxbdo0WeKJ4uJiCjoHQay2GRI5VqsVFotFmmMYKT31drrFW6/nzp07AQCpqakYM2ZMwONUKhWOP/74XsvLz88POE+xpKREenzSSSf1WE5GRoZUnz179kAURb/HhaPNnHzyyQGfS0pKQnFxMQCgtLQ04HHBOuOMM3DZZZdh3rx5uPnmm/HZZ5/hzDPPBODqEV65cmW/z0HkuET5DY54HXkbp2+LxLo6Lgf1SWNQnzQGDYmj0e4MfMfRrd3SIdvOSwlfJlzLEfkHOatJhDI1O2zlk6FLq9VKwWdxcTFycnJ6fxEhZEgKprfTLZ56PZuamgAgqM/HESNG9HpMT3Mg29rapMfBrJvsPsbhcMgyzoZTQkICsrKyejzG/bMxm80wm81hPb9arcYzzzyDjAxX0sdt27ahoqIirOcY6hQ6vWxb5KjHk5BBkZKSAiujhVWZBKsyCRZVMhxM73+AzeY22XZmQlrY6uQ9zFaRmgVFUvjKJ/2TkpICvV6PlJSUSFelT7RaLU444QQKOgdRrLcZMvg4jpP+RUowvZ1u8dTraTAYAMDvXEtvwRzTU1ZWz6Vaehpm6+98FovF7zH9bTM6Xe/5KjzrYTSGfw1InU6HCy+8UNr2XmaG9I93zhAmTrs84zOcJjFt5MiRAPOzbF8wH9qjUkfghNxpaDa3osXUhgxdeljqI9itsNYclO1TpmaDS6TAM1qMHDky0lXolXsIVqA1AKNtqYZ4FwtthkSXcKzF2B+h9Ha6xUuGW7VaDYfDETCw89TfYa2ewabFYuk1U61n72KgoLentuM9tcgfu93e6zHuejAME9Q8174oLCyUHre2tg7IOYaqY53yfA8WIT7zD1DgSaKSKDKAx/U5G0RW27NHz8bZo2dL20KY5mBaj+0DeKfHHgaq9Fyw2oFJm07ijyiKOHLkCARBwJgxY6JmAXpCSOwIpbfTLV7W9czOzsbhw4eDSmrT38Q37uGkAFBdXY3x48f3eHxVletmgEajkQV8np/zTqczYGKgYJZ/6ezshMlk6rHns6amBgCg1+tDWmfztddewy+//ILW1la8//77PX4/eQbJwfTCkuANlbwh8dmPS2Ke9/R8rg/ZvdgwDVMwe83v5JLTodBnUfBAguIOOqurq1FbW4uKioqACSgIIcSfvvR2usXDXM+pU11Z5A0GQ49zCwVBkJZd6avJkydLj3/66acej21sbJTW+3Qn93HzDP56Gvp6+PDhXuskimKPSYM8fy4nnHBCr+V5KikpwcaNG7Fr1y7s27evx2N3794tPR41alRI5yE9c3r1fDNxeplAgSeJUvKgjguix3OgeCcWUqZm0/xOEhRRFFFRUYHq6mppX01NjXShQgghwehLb6dbPMz1PP/886XH7777bsDjvvzyy36vM3n66adDqVRK5+ppeO/rr78uLZVyxhlnyJ5LT++e7hMoe3ZJSYnfNTP9ef/99wM+995770lLwMyZMyeo8txOPfVUWTmBVFVV4auvvgLg6lWdOXNmSOchPeOrG2XbSnt89oBS4EmiTkVFhZ8ez57nv7VbOvDpoW/w7ZFt2F6zC/uaysJSF2dnCxytNbJ9itQsKNPClzGX9F9FRQUOHToUVVn23EGne/iTJxqiFHnR2GZIdLNardK/wdSf3k63WO/1nD17NsaNGwfAFYB9/vnnPsccOnQIjzzySL/PNWzYMMyfPx+Aa6jt3Xff7fd3vnbtWrz55psAXEHm0qVLZc979py+9NJLcDqdsucbGhpw3333BV2vr7/+2m/QvXXrVvzrX/8C4Fp/c+7cuUGXCQDz5s1DZmYmAGDNmjV+f7aNjY249dZbpeD2hhtuCGk4L+mdTiGfHxyvY+pojieJOiaTCaJ3j6ey56ZqcphhdlhgdljQYgZ0Si0mDivu8TXBcLTVg1FpINpdXzqMQgVVRh645IxeXkkGk8lkgsPhkO5SR5ooijh8+DBqa2t9nhs/fnyvafHJwIu2NkOinyAIEEVx0KdZlOysgVbX/4v8kp01mD0n8BqY0YxlWTz88MNYtmwZHA4H7rzzTnzxxRc4/fTToVarUVJSglWrVsFms4HjOPA83691vO+9917s3LkT1dXV2LBhA+bNm4eFCxeisLAQnZ2d2LhxIzZv3izV7bHHHkNamnwk1Ny5c/H000/DYrFg586dWLJkCRYuXIikpCTs378fq1evRldXFyZPnow9e/b0WieGYfDwww9j8+bNOOecc6BQKPDjjz/ik08+gSAIUCqVePDBB0MOCHU6HR599FHccsst4Hkef/rTn/DVV1/h9NNPh0qlwr59+7Bq1SppLuppp52Ga665JqRzkN6pnEZo7d2dLEqh96RTsYgCTxKdvL7YFcqeezzNdvlQmARl7ynQg6EZMQH6UxbC0d4AZ3sjRFGAOquQ5neSgCjoJISE0+w5Y2I2YAynqVOn4rnnnsOKFStgNpvx9ddf4+uvv5Yds2jRItTW1uLHH3/sV49ccnIy3n33Xdx2223YvXs3amtr8fzzz/scp9fr8eyzz+KUU07xeS49PR0PP/wwVq5cCbvdjn379vnMobzyyisxbdo0/OlPf+q1TitWrMBzzz2H7777Dt99953sOZ1Oh+effx6zZs0K8Z26nHHGGXj22Wdx7733wmw248svv8SXX37pc9wll1yChx9+uF9BPfEvTWlGtrE7UzCH3jMZxyIKPEnUmTRpEj5BpWyfQttzKvifanbhcOtRJCgTkKDSIl2bGpa6ONobITodUCSlQ5Hkmq+hGlYQlrJJ+EyaNCnSVQBAQWcsiZY2Q2JHMGs6koF1zjnnYP369XjjjTewefNmNDQ0QKVSYcKECbjiiitwzjnnYNmyZQBcwWN/ZGVl4cMPP8Tnn3+Ozz77DHv27EF7ezv0ej3y8/Mxd+5cXHLJJT2eZ/78+Zg8eTJef/11bN26FU1NTUhOTsbkyZNxxRVXYPbs2fjss8+Cqs+5556L2bNn4+WXX8b27dvR0dGBnJwcnHnmmbj22mv7/f1y/vnn47jjjsPbb7+NH374ATU1NeB5HpmZmZg5cyaWLFmC448/vl/nIIElcEoA3Z0o8brAGgWeJOqwLAtWoQDPd0+szpk5pcfX1HbU42BL91wtDafCnNG+dyBDZW+qlG0rktLBJST1u1wSXtFw91UURZSXl/tN5T9hwgQMGzYsArUigURDmyGxhUa6RIe8vDz89a9/Dfi8e33J4cN9czEcOnQopHMxDIMLLrgAF1xwQWiV9Hh9YWEhHn744YDHhFJ+cXExnn322T7VJRhZWVm46667cNdddw3YOcjQRoEniUruLHFuLNvzF77B1inbHp3W/8XhBacdjlZ5EKHKKuh3uST+BAo6GYbB+PHjKegkhJB++OSTT/Dpp58iPz8fN954Y8DevYqKClRWVgJw3fAjhEQXCjxJ1BEFEd7LHPYWeLZbOmTbaQn6ftfD0VIDUeClbYZhoMrM73e5JL5Q0EkIIQMrOTkZmzZtAuD6zH3ggQd8jjEajVi5cqW0TvKFF144qHUkpD8YiOCE7szHLOPs4ejYRYEniTotra0++1iu58DzhNxpaLW0w2DpRLu1A2lafb/rocrMB6PUwNneAEd7A7iEJLBKdb/LJeHX1tYGQRDAsqxPZsGBdvjwYb9B54QJE6QU9ST6RLLNkNjkdDqlrLYKBV0+DaZTTjkFeXl5qKmpwXvvvYf9+/fj3HPPRXZ2NiwWC44cOYJPPvkELS0tAIDFixdjxowZEa41tRkSPBPaMNLQnXzKporPof30V0CiTk2177qHvfV4Xj9jaY/Ph8pcsQudP38B7ahprn+jjwPE+FzMNx7U1NRIS2MMdhCRnp6O+vp6aXg4BZ2xIZJthsQmu91OQUSEqFQqvPTSS7jppptQX1+PkpISlJSU+D126dKlIa2POZCozZBgtdu1qB82W9pmEbvr7vaE/gpI9GEYDB+hAcMwSEpKhiCIUKkGt6may3+G+fAvMB/+BQCgm3AKshb0nu6cDD1paWmYNGkS9u7dC1EUKegkhJABMG7cOHzxxRdYvXo1vvnmG5SVlaGjowM6nQ5ZWVk47rjjsGjRIkyZ0nMyQkKikcWhQn1ykbStcXT2cHTsosCTRJ3hqWkYZdgMlmOhsqnBchw451gAgzfM1XK0VLatzioctHOT0OXl5UnDJiPBHXwKgoCMjIyI1IGEJtJthsQelUol9V6RyNBqtVi+fDmWL18e6aoEpb9t5oknnsATTzwR5lqRaOSA2PtBcYACTxJ1EjgOdZXtsn0TTWZoUlP8Ht9gbEZJ/T5oFGqoOBWS1TpMyhrX5/M7DI1wtNXL9mlHTe1zeWTgRcNQyWioAwke/b5IqGioJAkVtRkSrGRVQqSrMCjoVi+JOoKD99nHKgIvpWu2W9BpM6LJ1Iqazno0GJv7dX7LEXlvJ5uQTMuoEIiiiI6Ojt4PJIQQQggJgYKVX+fG67gKCjxJ1BEcDp99nEoV8Hg7b5dtq7jAxwbDVLZTtp1QOBUMQ38qQ5koijh48CB27dqFxsbGSFeHEEIIIXGEF+TXmUKcXnfSGAASfVRKqNIzAFFwrecpij0GntuO/YKqjlpoFWpoFBqk92MpFVHgYT22T7ZPmZ7T5/LI4HBnlAUQ9jl7oijiwIEDaGpqAgAcOHAADMPQ+pwxbiDbDIlPoscC0zTPkwSD2gwJFueVx0Rg4jNEi893RWLakZYWCBPHg+VYZGdlAQA4rSbg8WWtR3Ck/Zi0PTyp7wGBtbYcosMm26caVtDn8sjg2Lt3r7Q0RjgzGnoHnW4HDx6EXq+HqocbIiS6DVSbIfHLYrFIiWISEobGfCzSP9RmCJGjwJNEHauZR90xC1iGQVtjPRiGwew5RQGP77IZZduFqfl9Prfp0HbZNpuQAnVu4HOT+BUo6GRZFpMmTaKgkxBCCCHhoQzcwRJPKPAkUYfj1DB1uhIMdXW4gko2wAgVURTRbpWvdaTXJPf53JaKXbJtVWYeOJ2+z+WRwaHT6eB0OsOWQVAURezfvx/NzfJEVe6gkzKixr5wtxkS/2hINgkVtRkSLJYbGt9FQ+NdkpgyPDsHQJVsH8v5//B2Ck6cUTgLBksH2q0dMFg6kdbHOZ681QRHS41sn7ZgCs3LiAGjR48OW1mCIODAgQMUdMa5cLYZMjRoNEOjR4KED7UZEiyDtRNA9zrg8bqqJwWeJOqIHkk/AKCnuE/JKXHDjMvDcl5z+U7I/tRZDgnjTgpL2SQ29BR0Tp48GampqRGqGSGEEELilQCh94PiAAWeJOrwvNd9nkHqcTQdlM/vVOiHQUUZbYcMQRCwf/9+tLS0yPZT0EkIIYSQgSQI8drHKUeDz0nU6TpaKd8h8AN+TlEUYa0+INunyRtL63cOERR0EkIIISRSnKIz0lUYFNTjSaJOy7FqwHM9IzHwXaA2iwE7akqg5lRQK9RIUGowbfjEkM9pb6qCYOmS7dMVnxhyOSQyqqqqpEQxI0eODOm1PQWdU6ZMgV6vD2NNSbToT5shQ5PNZpOWxlCr1b2/gAx51GZIsLQK+XzgeM0uQoEniTpWiw2egSfTwxRrq8OKTo/lVBKU2j4FnqLAI/G4c+Bsb4CzvRGCzQTt6ONCLodERkdHh7QmY6haW1sp6ByC+tNmyNDE87wURBASDGozJFhq3gKV0yxtKwVrBGszcCjwJFFH4L2SC/Uw7N3itMm2NYq+ra3obKuHIjEVisRUIH88lGk5YBV0QToUZGZmYtSoUThy5AgAgOM4TJ48mYJOQgghhAyKVIURuZ3diQ052CNYm4FDgSeJOinJKUC9557Akee3R7aiprMBWoUaGoUaek1SyOcTRRHOTnmPlyojL+RySOSMHz++X3eVR4wYAVEUcezYMQo6h4j+thky9NDSGLFv7NixAIATTjgBb7/9dljLrqmpwZw5cwAACxYswBNPPBGRNuOvHiT6pWWk4ZiyVtpWcfH53USBJ4k6WqUAgJO2FT1MuN7deBCNxu47RAX60ANGwWaG4JD3nCpSMkMuh0ROOIZLjhw5EllZWXRxOUTQEFsSKpalZHMkNNRmSLAS8rKQkNkdeGrUfRvBF+3oL4JEHcHpNdS2hx7PTps8IVBxxqiQz8d3tcm2WYUKrEYXcjkk9lHQSQghhBAyMCjwJFFH8FrHM1DgaXPaYXHIJ1/rNckhn49VJ0CdPQqKxFQwDAMuKZWG38Uhd/Zao9HY+8GEEEIIISSsaKjtb0RRxKeffoqPPvoIBw4cgNlsRmZmJmbOnIlly5ZhypQp/S7/m2++wSeffILdu3ejra0NSqUSubm5OOWUU3DllVciJycnTO8mttltVgDdQwwCBZ5OwYmzR58Kg6UDBmsn2q0d0GtTQj6freEIVBl5UBTNAAQeojM+J3THs87OTgiCAJZlkZzse/OB53ns3bsX7e3taGtrw7Rp05CYmBiBmpJo0VubIcSbZ4ZSjuN6f8Eg8Vx4nmXppmk0idY2Q6JPk7IV34+tkrb1AoO5EazPQKHAE4DVasUdd9yB77//Xra/trYWtbW1WL9+Pf74xz/ihhtu6FP5HR0duPPOO7F161bZfrvdjrKyMpSVleHdd9/FI488gksuuaSP7yJ+dHWZAHRfCAbqfNSpEnDDjMv7dS7BZkHj6r8DogA2IRma3GJkzL0RrDqhX+WSwVVZWSktjeF9k8gz6AQAp9OJ0tJSTJ06lYLPIaynNkOIP55rMiYkRMd3hN3B4/VP98FidUKrUeCaCydCpaQAJ1pEY5sh0anFIEBonCxtm1hbD0fHLgo8AaxcuVIKOkePHo0lS5YgIyMD+/btw//+9z+YzWY888wzyMrKwsUXXxxS2YIg4NZbb8XOnTsBADk5OVi4cCFGjRoFk8mELVu24Ouvv4bdbsc999yD5ORknHXWWeF+izFFCQf05nqAYSCCgU4p9P6iPrLVHwZEV/mCuRPmihKa3xlHvINON0EQIAgD164IIWQwlFcb4HAIqG7qQuHwFJRXGzBxVHqkqzWg6uvr8dprr2HTpk2oq6uDVqvF2LFj8bvf/Q4XXnghXnnlFTzzzDMAgEOHDoVcfnt7O95//3388MMPOHr0KMxmM9LS0jBlyhTMnz8f5513XtBlrV+/HqtXr0ZFRQVYlkVhYSHmzZuHpUuX9ppToLy8HB9//DG2b9+O+vp6dHV1QaPRIDMzEzNmzMBll12GiRNDX7ecRCdjJ4PMhtHStlMVn9OChnzguXXrVnz66acAgJNOOgmvvPIK1Go1AODCCy/EokWLcPnll8NgMODxxx/HnDlzQuolWbNmjRR0nnTSSfjXv/4lu+u1ePFifPvtt7j99tvhdDrx4IMP4pRTTpHqMBQN0zEQW38G4Bpmm5CVMWDnstbIv5TUWQVglUP3Zx+rsrOzwfO8bChToKBToVBgypQpNLxyiPPXZgjpiVKpjLolePYeaUGXxQ6z1Ykuix37jrTGdeC5fft23HzzzTCZTNI+u92OHTt2YMeOHdiwYYO0ZEpfbNiwAffddx86Oztl+xsbG7FhwwZs2LABM2fOxPPPP4+0tLSA5fA8jz/+8Y/44osvZPt3796N3bt3491338Wrr76KgoICn9cKgoDHH38c7777rs8NUofDga6uLhw5cgQffvgh7rzzTtx00019fr8kejgbDQC6/3a11vi8OT7kA8/XXnsNgOti9NFHH/UJ+EaPHo3/+7//w5///GcYDAasWrUK11xzTdDlf/DBBwAAtVqNp59+2u9Qi7POOgtXXHEF3njjDTQ2NmLTpk0455xz+vGuYpvIadGq614WJZHT+j3umKEWexoPQqvUQKvUIFWjx7jM0X6PDcRWWybbVucVh15hEnHDhg2TbfM8jz179sBgMMj2KxQKTJ06FUlJoa/3SuKLd5shpDfRtgRPU5sZze0WtHe6huS1d9rQlGBGU5sZw9Lib1jn3r17ccMNN8BqdSUVnDNnDs466ywolUrs2LEDa9euxZdffukzrSlY3333He644w7wPA8AmD17NubMmQO9Xo8jR47g448/Rm1tLXbu3IkrrrgCq1atgk7nf4TUF198AYfDgYSEBFx22WWYNGkSWlpasHr1apSVlaG6uhrXXHMN1q9f79OZ8c9//lNaYzQtLQ0LFixAYWEh1Go1amtr8fnnn6OszHXt8o9//AOzZ8/GpEmT+vSeSfRIEuQhGcdHqCIDbEgHngaDAdu2bQMAnHrqqcjPz/d73Lx58/D444+jtbUVX375ZdCBp9FoxO7duwEAJ598MjIzA68Nef755+ONN94AAJSWlg7pwFPg5X9tge4umx0WmH77BwB2pyOkwFMURVi9Ak9Nbt/vlJLoQEEnISQe/fBrDY7WdUjbDqcAp1OA0WxHgkYBo9kOp1PAJ5sqoFR0L1pQmJOC048PfY3raPPoo4/CarWCYRg8/vjjuPTSS6XnLr74YixYsAA33HADurq6eijFP6PRiHvuuUcaBfG3v/3NZ2rVddddhzvvvBPfffcdKioq8OSTT+Lhhx/2W57D4UBmZibefvttFBYWSvsvv/xy/PnPf8ZXX32Furo6vPTSS/jLX/4iPd/W1iZ1iOTm5uKjjz5CamqqrOwbb7wRK1euxMcffwxRFPHZZ59R4BkHVKw8JIuecRXhNaSXU/n555+lYQwnnXRSwONYlsXMmTMBuILCjo6OgMd6am9vx+TJk5GZmYlRo3peXzIlpTsbq/cQj6FG5L3W8QyQpc/ilC+lolWGtgajo60egkX+BaXMLgxwNIkFFHQSQuIRzwvYd6QVR+s6pX81TUbUtZjAsAzyhiWBYRnUtZhQ02SUHbfvaCt4PraH7f3000/YtWsXANcUJc+g023GjBmyIC4U//vf/6TvjWuvvdZvPg+tVotnn30Wubm5AICPP/4YjY2NAcv829/+Jgs6AVev+eOPPy51RHz00Uew2bqTyHz33Xew212Z9W+55RafoBNwXZN6Jrs8evRokO+SRDNekIdkAhOfIVp8vqsglZeXS4+Li3seYjlmzBgArl4y9xCH3uTn52PVqlXYsmULVqxY0eOxFRUV0mO9Xh9U+fFK9JrTEKjH87sj27Cv6RAq2qpQ29kAUQzti9VytFR+HqUGCp3vhzyJDTzPY/fu3RR0EkLiTnuXDSKABI0CbZ1WNLWb0Wwww+HkMTI7CUoFi5HZSXA4eTQbzGhqN6Ot04oEjQKi6Hp9LPvuu++kx1dddVXA4xYsWNCna6gffvgBgOv7oqdRbQkJCbjiiisAuHo1N23a5Pe4oqIinHrqqX6fS0xMxIIFCwC4Vj349ddfpecuuugifP3113j11Vdx/vnnB6xHXl53D7Z76DGJbdo0+fQPkYvPQanx+a6CVFtbKz1238EKJDs7W/Y6dw9ouHz00UfS46lTp4a17FjT2SHv8Q0UeO5rKkOXvTvBwHHDJ4R0HmvVPtm2Qj8MnCb+5sUMBbt378bRo0dhs9lkc/cUCgWt2Un82rt3r7ScCg1TI8GwWCxSciGt1n/ugYGSodfiktNH46ufqqBWcahpMsJkcSAzNQEJGtfc0wSNEpmpCahu7IJOq0TesESk6NQ496SRyNAPbn3DzZ2kMTU1VeoI8EelUuH444/Ht99+G1L5paWuG9FjxoxBenrPyZlmzZolPd69ezcWL17sc8wJJ5wAIHCbOf7442VluMtUKpUYOXIkRo4c6ffcDQ0N2Lt3L3766SdpH8/H6WTAIUaZmgyg+5qW4eJzsO2QDjzb2tqkx/6GM3jyvIPm3aPSX5s3b5bu5qWnp+OUU04Ja/mxxuDUoiUhE4AIBiKcfka6OwVeFnQCQGHqiJDOY2uokG2rhvn/oCfRjed5VFZWwmQyyTKUKpVKWquTBOReUoeW1SHBEkURoihG7Py5mYm47JxibNhxDAqORXVjF9o6rUjWqaRj2jpc2/lZScjPSsI5J4yQAtNY1tTUBMC1JF1vRowI7VrAaDRKw10D5frw5HlMS0uL32PcnRmB2ozn+2hubvZbxq+//opt27ahoqICVVVVqKqqgtEYn0tsEIBV6eAZeIpsfGZcH9KBp+fwhN6WL1Gpuj/Ywzmsob6+XjYn4eabb+51bad4ZxE16NJ4LKEimn2O6bD6zoNN1aT47AtEsFvgNMg/7DUjxgdfSRI13HeSrVarFHhS0El6o9FowHFc1GUqJdGLZdmIL6eSoFHizOn5eOvz/XDHM60dFljtPDQqDmAg7T9zen5cBJ1A9w3/YK6PQr2G8lyaJZiebM/yLRZLj8cEajOe5/Gc4wm45mzec889KCkp8Vt2Tk4OzjjjDLz33nu91pXEDs5rDXmGjc8QLT7fVZCcTqf02DOw9Mfzec/X9UdbWxuuvfZatLa2AgBOOeUUae5AJB0+fBijR4+WzYmz2WzSQsx6vd7njuLhw4dhNrsCxClTpsiea2lpQV1dHQDXnULP3mWe57Fvn2vIa1JSEgoLC6FQKAGPkSOCKGD37t2YMGECFApXk2UZFqfnn4iG9iYYnSbY4ECiWv5Hu2fPHoiiCK1Wi6KiItlz1b9uAuBxF5JhoC1wDXE2Go04cuQIACAzMxPDhw+XvfbAgQPSEL3x4+XBan19vXT3ctSoUbLAx2q1SvOD09LSZHM0ANecY4vFAoZhMHnyZNlzzc3NqK+vB+C6m+vZA+90OrF//34AQHJyss+6YEePHpWy/E2cOFHWK9je3o7q6moAri+zjAz5mqnurMwJCQk+w5uOHTsmXQyMHTtWdvOmq6tLSniQlZWFrKws2Wv3798Pp9MJlUqFcePGyZ6rq6uT7iKPHj1alq7eYrFIc7PT09ORm5sLlmUxZ84c7N+/H4cOHUJLSwsKCgp8gs6mpiY0NDQAAAoKCmTreDocDhw4cACAK9GX9zCniooK6eJk0qRJYNnu6fFtbW2oqakB4Jp347m2myAI2Lt3LwBAp9Nh9Gh51uWqqiopWdn48eNlQVBnZycqKysBuIb6ey//sXfvXgiCAI1G4zNHvba2VvpcKSoqkl3kmEwmaU55RkaGTw/CwYMHYbfboVAoMGGCfPh6Y2OjlEyjsLAwYp8RniorK6WEbJ6fEYDrYvXYsWMAgOHDh8syixcXF2PPnj2wWq0oLy/3+YyoqamRRsUUFxfLLjbpM6JbLHxGeCorK4PVagXLsj5DrD0/I7xvSHj2jnv+/btZrVbpea1WKws0nE6nlDBGpVLJ2qgoilLwwrKsT9Bks9mkoZQajQYsy6K53fV3ZLE54HAKMJptSNKp0dBqA8MA3G/1q2loR8HwJL/l2u126VrGXa4bz/NSMKRQKHyuj3oacuxwOOBwOAC4buh7tiVBEKQb9xzH+dzw9/wZei89p1ar4XA4YDKZ4HQ6A/4MOY7z6Rzw/Bl6876e8w4k3Z9Znj9D9z7A1U7MZrPPz9dqtUrH+fsZeo648/wMaGpqwuWXXy49n56ejlmzZmHcuHEoKipCcXEx9Ho9eJ73G3hardaAnSOev5ue2qG/343nz7Cn9q1UKn3+dvz9DP2V21M79FduT+3Qs3331A79/W7c7dBfuTzPw2KxYPfu3WG/jth/7CCA7p+7TXRI9Y3EdUSgnvj+GtKBp+cfgMPh6DH4dP9RAb0HqcFobm7GNddcI128jBw5Ek8//XRULEzN87zP8DNRFKUPLH8f4E6nU3remyAI0nP+hrW5n3N/SAhew1IYuM7tOVwlVZuCy8dfLP388vLywHplAHO/xvPDVXqPNQdk25wuFcrUYT7vNVB9g3mv3sNrPMv1d/PCXa6/NtCfcsP5u/HE83zAOnmW66+9OBwOOJ1OvxdwPZUbqB2yLIsJEyagvr4eOp1O9iXjr9ye2vdg/gw9y+3Lz1AQhF7fa7A/Q+86+RseFuzPcKA/IwKV29N7DVRuoM+I/pZLnxHR9RnhWa7D4ei1XH894e5zBRpu29P+nl7b0/Bdf0M1m9otcDoFOJ0iOJZBToYOSTo1LDYeNU1GOHnXMivN7RaMzE4MeM6+1qmn58P9Xt2ysrJgNBqlmyuByhVFUbqJFUy5gOtiXq1Ww2azSTdZ/JXr5r6QB1zrAfsru6mpqcdzum9WAvIcIi+88IIUdC5cuBD333+/7FpVEARYLJaAqx/09l7783vrS7mezw3E301PIxAG8r26v3/97Qf69jlr4+3wDDw9r4UjcR0xUNNQhnTg6XlHzWazBR149jYstzfHjh3D9ddfj6qqKgCuO/Gvv/66rKckkjiO8/lSZhhG+iL210AVCkXAIWssy0rP+fuydz/nvvjzTk7L/HaM94eLZ50ClSuKot96Ma1Vnv2dUGbmg/ktcA2mXM//PXm+157q6+9CV6lUwul0+v0Q7U+54fzdePIcpuhdJ89y/bUX9+8z1HJ7aocsy2LkyJFSb0ZP5fbUvgfzZ+hZbl9+hoIg+K1XX3+G7joJgtDr7yaSnxGByg3nZ0R/y/X83xN9RviWO1ifEe5yeZ7v9TPCH/e5Al3o9rS/p9f2dMPZ87Vuze1mWOxO6LQKZKcnIFmnxIzx2Sgpb5USD1nsTrR0Wv2+vr91ClSvgXivblOmTEFFRQU6OjpQUVGBsWPH+rwWcF14u5ddCaZcoPvG5a5du3D48GG0trZKCYb8vRfPxD5FRUV+y96zZ0+P5/z555+lx54JJd35PjQaDe666y7/1y8MI1tdwTPY6O299qeN9qVcz+cG8++mv+X29H7dn0vhvo5geK9g12MzEtcR/j4jw4ERIzlTPsLuv/9+fPDBBwCAjRs39jipfNWqVfjrX/8KAHj66acxf/78Pp1z9+7duOmmm6RhcLm5uXjzzTeDmtA+UIxGozREDnANiYrk3Lg3VryBY3z3cK40hRm3PbkkbOWLoojKp6+AaO8ejqKfvRhpp18WtnOQgeF0OgMGCoQQEi7l5eXSkE7vYdiRtvtwM77/pQYsy8gSCJmtDmzYcQzVjV0QBBFnTM/DlDGZvRcYAzZt2oTf//73AIBly5bh/vvv93vc559/jjvvvFPa9ry2ASAFrCeccALefvttaf9///tf/P3vfwcA/P73v8ddd93lt3yTyYQLL7wQdXV1YFkWGzdulIZz19TUYM6cOQBcF+1r1671CZAB17DK888/Hx0dHRg+fDi++eYbKSiYNGkSHA4HEhMT8fPPPwcMfm666SYpSD3uuOPwv//9T3rOsx4LFizAE0884bcMEpqB/kx48+n/oqq+e8oBJ1ix8rlFYT9PsAYqNhjS63h6znMJNHzDzT3vAwguq5o/mzdvxlVXXSUFnWPGjMH7778f0aAzGnkPB/D3ubuvqQyfHfoG3x7Zih+rf8HR9mrfgwJwGtvBahIBj6G5CaOG9hI2scDpdKK0tBSlpaU+w1Vqa2tx7Ngx2RJJhPSE2gwJld1uh81mk42AioQpYzJx1QUTcMbxebjo1FGy5VTmzx6F04/Pw1UXTIiboBMAZs+eLc31ff/99/H555/7HHPo0CE88sgjfSp/8eLFSElxJSh87bXXsG7dOp9jrFYr7rrrLmko7yWXXBJwKT5BEPCnP/0JdXV1sjZjNptx5513SnPyrr76allPlLs8o9Ho9z06nU787W9/k61r6p2ciMQmreg1iitOuwWH9FBbzwm65eXl0rpL/riTFTAM06c7Hd9++y3+8Ic/SBfMU6dOxb///e9el3EZipy8AHj8/TF+llMx2c0wOSwwOVyT4TUKNYDgAnjRbkHS1LMgCjx4UwcEkwGqnOi6o03kHA4Hdu/eLSVAKS0txdSpU6Wez9bWVimZS29r8hICUJshoXOPuGAYJiy5HvojJVGNlETfaT8sy2Dy6Aw/r4htLMvi4YcfxrJly+BwOHDnnXfiiy++wOmnnw61Wo2SkhKsWrUKNpsNHMcFHE4dSHJyMh5//HHcfvvt4Hked999N9atW4c5c+YgJSUFlZWVWL16tXSjauTIkVi5cmXA8tLS0nD48GEsXrwYl156KQoLC9Ha2ooPPvhAmkd6wgkn4Morr5S9bsGCBXjuuecAACtWrMC2bdtw3HHHQaFQ4OjRo1i/fr3PzTL39yKJbWrBDo7vvqnFCZG9wTVQhnTgedxxx0GpVMLhcGD79u1YtmyZ3+N4npcWLx43bpwsi1UwduzYgTvuuEMKOk855RS8+OKLPlnbiJv3nB3fI6xO+R0+rSL49OnODlemLobloEhKgzJ/HFhuSP8pRDXvoBNw3Q0+ePCgT2ZPQggh8Wnq1Kl47rnnsGLFCpjNZnz99df4+uuvZccsWrQItbW1+PHHH0O+OXD22Wfjn//8J+69914YjUZs3rwZmzdv9jlu1qxZePbZZ3scdnjttddi69at+PHHH/HKK6/4PH/KKafg+eef9wmOr732WuzcuRNbtmyB0+nE6tWrsXr1atkxHMfhlltuwYEDB7Bx40bU1dXBaDTS8mExLlXRgREdjdI2Bwo8405ycjJOOukkbN68Gd9++y3q6ur8DqP97LPPpCxjc+fODekcra2tuOOOO6RhFmeeeSaef/75iN8tjWas1wRohvEdb/DD0Z/gFJ3QKDTQKNSYPMx3HkUg7sDTTZESP8OR4o3D4UBpaanPotkqlUo2YqGoqCji6+uR2EJthoRKo9FQm4mwc845B+vXr8cbb7yBzZs3o6GhASqVChMmTMAVV1yBc845R+pECLWTAADOPfdczJgxA++99x6+//57HDt2DFarFdnZ2Rg3bhwWLVqEU089tdc2oFQq8d///hdvvfUW1qxZg6qqKqjVaqmM+fPn+y1DpVLhlVdewapVq7Bu3TqUlZXBbDZDp9MhLy8PM2bMwGWXXYbRo0fj3XffxcaNG8HzPL766issXLgw5PdLokcSpwLQnXvENxVQfBjSyYUAYMuWLbjuuusAuHpAX331Vdldo8OHD2PZsmUwGAzQ6XTYuHFjSNln//jHP+KLL74A4MrK9s477/Q7K264RVtyoa8+2Yftm45K21Nn5OLipcdJ26Io4vJVt4MXu+eC3nfabZg2fGKvZYsCD8PWj2RZ4JImnw5lanYPryKR0FPQOW3aNBoxQAgZMNGcXIj07Pzzz8fRo0cxdepUfPjhh5GuDokTA/2ZsOsf/8Te0u5lclSw43ev923OcjgMVGwwpHs8AdeE9fPOOw9fffUVdu3ahYsvvhhLly7F8OHDsX//frz//vvSgq8rVqzwCTq3b98ujdH3zpJWUVGBL7/8Uto+//zz/Q7b8KbX6zFjxoxwvL2YJHillFYo5fd9uuwmWdAJAPkpwSV84k0d8tTjYKBISu9jTclACRR0qtVqTJ06lYJOQggZQj755BN8+umnyM/Px4033oisrCy/x1VUVEjrbE6YMGEQa0gICcaQDzwB4Mknn4TJZMKWLVtQU1ODp556SvY8wzC47bbbcNlloS23sXbtWlmQ407V3RvvAHao8e6E9x6OYrB0yJ8HgxRNcENquMRUpMy8ALzJAN7YDsFuBaOgpTmiSU9B57Rp06DVaiNUM0IIIZGQnJyMTZs2AXBdIzzwwAM+xxiNRqxcuVK6hrjwwgsHtY6EkN5R4AlAq9Xi1Vdfxfr167F27VocOHAAXV1d0Ov1mD59Oq688kpMnz495HI9F/glwbPb5UtlsKw88NQo1Dh3zGkwWDrRbu2AU3BCwQY3Gr51w2sQrGZocouhzhsLzQi6IxpNHA4HSkpKpFEGbr0FnSaTSZp7pdPpBqOqJMZRmyGh8lzqy99i7GTgnHLKKcjLy0NNTQ3ee+897N+/H+eeey6ys7NhsVhw5MgRfPLJJ2hpaQHgWh4lGkaOUZshwbLCgJHt+6Rtuyo+55JT4PkbhmFw0UUX4aKLLgrpdSeeeKLPAsVu//73v8NRtSHHvb6VG+MVeA5LzMD105eGXK4oijDt3wbeZIBxz/cAgMyLbkfS5DP6WFMSTna7HaWlpSEHnYBreJV7aYwpU6YMdFVJHKA2Q0Jls9mkmxU03H9wqVQqvPTSS7jppptQX1+PkpISlJSU+D126dKluO+++wa3ggFQmyHBMjg4tKeMl7ZFhrLaEjIo1FoOiSkKQHR92ej8rFXWF86OZvAmg2yfJrc4LGWT/gkUdGo0GkydOpWG1xJCyBA3btw4fPHFF1i9ejW++eYblJWVoaOjAzqdDllZWTjuuOOwaNEiupFEYpLJocXhjGnStsbRGfjgGEaBJ4k6YzUG5Gd2glNwSEpOQsYwvvcXBcFWKx/6zGqToEgdHpaySf+Ul5f7DTqnTZsGjab3NVozMjLA8zwNZSJBozZDQqVQ0CVTpGm1WixfvhzLly+PdFWCQm2GBMs+RBYZob8IEnVqt+xBu1GQtkc3GJA1uXudzp21pWgytkCrdK3hOUKfi7zk3gNIa618SLQmt5jWY4sSRUVFMJlMMJvNAEILOgH4XX+XkJ5QmyGhovW3SaiozZBg6VRDY2QXG+kKEOLD66aP9xxPk90Mk8OCFnM7ajobYLKbgyrWWrVftq2mYbZRQ6VSScukhBp0EkIIIYTEMjUr7wuM124R6vEkUUeE93Iq8vsjVqdNtq1V9B6gCE477M3HZPvYhOCWYCGDw71GpyiKFHQSQgghZMgQBHmoKcbpiDwKPEnUUegSwfKO33o+RSgS5EHIpsrtULAKaJVqaBRqiDiu1zJt9RWAKMj2qbMKwldpEhZqdXgSSRFCCCGExAoG8mtdnonPNeYp8CRRhz31FCjbrWBZFhkZGcgsypCeM9stONxWKTt+wfi5vZbpPcyWTUiBkhILDTqbzYba2loUFhaGdX7twYMH4XQ6oVAoMG7cuLCVS+IXtRkSKovFIj2mTNskGNRmSLDis3/TFwWeJOo01prQ2W4Dw7IwdbYhMVmDkaPSAQAGm2966eykzF7LtFbLA09FSgZYbWJ4KkyCYrPZUFJSAovFApvNhnHjxoUt+LTb7XA4HBAEofeDCQG1GRI6URSlNRkJCQa1GRI0RXz2cHqjwJNEnbZmGzrbHQCA1kYbhmV1B4gGS4fsWK3Cldm2N7aGI7JtVeYI+iIYRJ5BJwA0NjYCQNiCT4VCAVEUKXU9CRq1GRIq92cVfXeQYFGbIcFilUMjtwV945Koo1apATikbc8P7GR1Es4dcxoMlk4YrJ1Qcb3fIXJ2tkIwy3tKNblFYasv6ZnVakVpaalsyBEAdHZ2wul0Qqns/12+CRMm9LsMMrRQmyGhoqGSJFTUZkiwuqxdANIiXY0BR4EniTreS+h6LqeSlzIc109fGlJ51pqD8vIUSqhyKPAcDFarFSUlJbBarbL9CQkJmDp1aliCTkIIIYSQWOYQnbJt72vheEHreJKoIwrey6n0b4iK5Zh8fieXlA5lSu/zQkn/9BZ0UgZbQgghhBCfhRfiFgWeJOo4OuTzOB1trf0qz1Yt7/FU6oeB1VBioYHUU9A5bdo0CjoJIYQQQn7jEB29HxQHaKgtiToOswVQJHVvGwzS4y1VO9Bh7YJGoYZWqcGotJHITuy591I3/mQwmgTwna1wdrVBlT2KJvoPoN6CTpVKFfZzNjY2gud5cByHrKyssJdP4g+1GRIqh8MhZSilaQIkGNRmSLDUXPivjaIRBZ4kCsmDQs8g0WS3wORw/YMFyEnK7rU0TpcM7chJAFypzbUjJ4a3ukQSKOjU6XSYOnXqgASdgCuIcDgcUCqVFESQoFCbIaGiIIKEitoMCZZa4MF4jLdl43TsLQWeJOp4T6hmPQaEW5zygEar7HnIpsg7wRvbpW2GYaDUD+tvFYkfFosFJSUlsNlssv0DHXQSQgghhMSyNEU7CtrrpW0OdgBLIlehAUKBJ4lC/ns8bU4bth37BRqF+rehtmqwTM/TlHmTAaLYHcoyYKBIjP901YMt0kFnYWEhBEEAy9K0dRIcajMkVGq1Wuq9IvFt+fLl2LFjBwDg0KFDfS4n2tvMwYMHUVVVhfPOO0+2v6amBnPmzAEALFiwAE888UQkqjekJOsSAaa7c4WL06+mOH1bJJYpRbtsO1HraqYd1i5UGqpxsOUwShr24cfqX6FguR7LcnbKExNxumQwChruEm4OhwNOpzwV+GD2dCYlJSElJQVJSUm9H0wIqM2Q0HEcB4VCAY7r+XuHELdobTMOhwPPPvssFi5ciLKyskhXhwBIKRqBxOGQ/iWPiM8kjNTjSaKO6NXjyXGu7Q5bl2y/klVAr0npsSyGU0ChSwFv6oQIEVxSengrSwAAycnJmDp1KkpLS8HzPBITE2mdTkLIkGKz2XxGfcQ7tVpNWcpjUGNjI/79739HuhpkCKLAk0Q99rc7hQZrp2y/XpPc4/AVZ2cruIRkJB1/HsA74TS2gVHQPMOBkpycjClTpuDIkSOYNGkSBZ2EkCHFZrOhs7NTNr0jnjEMg+TkZAo841BeXl6/hhgTEggFniTqePd4uqdxpmtTcf6YM9Bu7YDB0gG9tufezo6dn6Hjp0/AJaZCnVuMxImnInH8rIGqNgGQkpKCadOmDfp8FpvNJs2joYsgEgxqMyRUguCRcTLA3GBRFGE2mwerShGVkJAQ6SpEvWDaDCEA0K7owL78Gmk7keUwN4L1GSgUeJKo45vV1vVhPSptBEaljQi6HFuta94Cb2yH+dB2qDLyAQo8+83pdEKhCPzREYkkCocOHZKWxpgyZcqgn5/EHmozJFRWq1W6WUFBFwkGtRkSrCaTDcec+dK2Do4I1mbgUOBJoo6St0PJWCAyDAAGHKcLuQyRd8JWXyHbp8krDlMNhy6z2YySkhKMHDkSubm5ka4OIYSQIWLs2LEAgDvuuANLlizBww8/jC1btgAA8vPzcf3112P+/Pmy12zbtg0fffQRfv31V7S0tECr1aKgoABz5szBsmXLkJiY2Of6tLW1YfXq1di6dSuOHDkCg8EAhUIBvV6PyZMnY/78+Tj55JNlr7FarbjoootQVVUFAFi5ciWuvPJKn7J5nsdll12G3bt3AwAeffRRLF68WHaM3W7HunXr8MMPP2Dfvn1ob2+H0+lESkoKioqKcOaZZ2LJkiXQaDTSazyz1bq9+OKLePHFFwEAb731Fk488cSgs9o2NDTgnXfewZYtW1BdXQ2Hw4GMjAwcf/zxWLhwIWbN8n+zf/v27dL7fvfddzF9+nSsWbMGa9asQXl5OcxmM7Kzs3Haaafhuuuuw/Dhw/3/EuJIV4cSeUenSdtOtTFylRlAFHiSqDO5ZTMEJw8AYCAid9gNIZdhb6yE6JRnx1XnUODZH+6g0263o7y8HACiJvjU6/XgeT7qMgeS6EVthoSK2kp0MBqNWLZsGSorK6V9Bw8eRHJysrRttVpxzz334IsvvpC91m63o7S0FKWlpXjzzTfxwgsvYPr06SHXYe3atXjooYd8hlXb7XaYzWbU1dXhq6++wmmnnYbnnntOGiWk0Wjw2GOPYfny5RBFEf/85z9x/vnnY9gw+fri//3vf6Wg8/TTT/cJOg8cOIBbbrkFdXV1PnVrbm5Gc3Mztm3bhnfeeQdvvPEGcnJyQn6PvXnvvffwxBNP+CTUqq2tRW1tLdavX4/zzjsPTz75JLRabcBybDYbrrvuOmzdulW2v6qqCm+//TZWr16Nf/3rXwGD2Hhha2oHoJe2Ndb4nCtOgSeJOk0J+XB4NM383/74vj2yDRaHxbWOp1KNsemjkaHzvyantVaeHlyZlgMugZZN6CuTyYTS0lLY7d3BfHl5OZRKpc8XZiSMGBH8EGxCAGozJHQ0Fzg6vPPOO7DZbJg9ezbmz58Pg8GAH374AbNnzwbgmld56623Sr2hOTk5WLhwIUaNGgWTyYRt27bhyy+/RGtrK6655hp88MEHGD9+fNDn37p1K+655x6IogiVSoULLrgAU6ZMgV6vR0NDA3766Sf88MMPAIBNmzZh9erVuPrqq6XXz5w5E0uXLsV7770Ho9GIv/3tb3juueek5ysqKqQeSL1ej0cffVR2/k76rcQAAHQNSURBVLa2Nlx11VXo6OgAAJx88sk4/fTTkZmZCYPBgAMHDmDt2rVwOByoqqrCI488gn/9618AgPT0dLz00ktobW3F/fffDwCYN28eLrjgAgBAUVFRUD+D9957Dw899BAA1/Sa8847D7Nnz0ZCQgIOHjyIVatWob29HV999RXa29vxxhtvBLxx88gjj+Do0aPIzc3F4sWLMXLkSDQ0NOCDDz5AZWUlLBYL7r77bmzYsKHHADbWJXolxFY4KfAkJCJYztVMTXYzLE4rTA4LYAEKUwNfOFqOlMi2VdmjBrKKcc1f0Am41kFMS/Mf+BNCCCEDwWaz4YwzzsDLL78s5RTwDOzcQz8B4Oyzz8YzzzwjG266ePFiLFmyBDfffDMsFgvuuusufPrpp0HnJ3jmmWcgiiKUSiXefvttTJs2Tfb8tddei9WrV2PlypUAgHXr1snqBwB33XUXfvjhB9TW1uLzzz/HwoULMXv2bPA8j/vuu0/qRXzggQd8bu6+8sorUtB5zz334JprrvGp41VXXYVFixbBarVi06ZN6OrqQlJSErRaLc4++2zU1HQnsRk1ahTOPvvsoN474Bqu+/jjjwNwJZh66aWXZEOKL7jgAlx77bW44YYbsHv3buzYsQOvvvoqbrzxRr/lHT16FKeddhqef/55WWC5ZMkSLF26FGVlZWhubsYPP/yA888/P+h6xhoNJ191YfCzZQwOSrFFoo93KnqWgSAKsPHy20EaReC7z97zO1klLaPSFyaTSRpe68m9bmdPSYYIIYSQgfD73//eb6DodDrx2muvAQCys7N9gk63WbNm4frrrwcAHD58GN99911Q562ursa+ffsAuHoKvYNOt0WLFiEzMxMAZEOC3XQ6HR5++GFp+9FHH4XD4cCbb76JkpISqfx58+b5vParr74C4JrqctVVV/k9f1FRkRRMOp1OHDt2LKj3F4z//ve/cDhciW9WrFjhM48VAFJTU/Hiiy9Kc2hff/11WK1Wv+UplUo88cQTPr2ZiYmJsoB9z549YXoH0UkQ5O3Ze4WHeEGBJ4lCXsupMCzaLR3YWbsbexsPobz1KKo76qBg/Q/b4E0d4E0G2T7NiOCH0RAXd9Dp/oJxc6/XSUEnIYSQwdZTJurS0lLU19cDcAVu/oJOt4ULF0qPv//++6DOnZeXh02bNuGdd97B7bff3uuxAAIGXLNnz8all14KwNXr9+STT+L5558HAGRmZuKBBx7w+7qPP/4Yq1atwj/+8Y8el2hxnx8ALBZLj3UNhXsYsV6vl/0MvWVlZeGSSy4BALS3t+PXX3/1e9yMGTOQnp7u9zl3QikA6Orq6mONY4MiUT6CjOficy10unIkUUcURVnsybIMjHYTjrbL79jdfuLVfl9vqdor38EqoBkxKcy1jG9GoxGlpaUxE3QePnxYWuZlzJgxka4OiQHUZkioPJfG6CmgIQMrPz8fKpX/UUzuhDyA6+bpxo0beyxLo9HAarVi7969PR7nxjAMsrKykJWV5ff5jo4OHDhwAD///LPU08nzPKxWq982c++992LLli1oamrC22+/Le1/7LHHoNfr/Z4jNTUVqampfp+z2WwoKytDSUkJvv32W2m/53qi/dHc3Iza2loAwPTp0wP+HtxmzZqFd955B4Drd+Ovd3T06NEBX5+U1J2bw/t6JN5os9KBwyZpm1XEZ49ndF09EgKgQ50JnnU3TREWhwjRLs8cp1NqoVL4/8CzHN0t21Ykp0GR7P9uGvEVKOhMSUnB5MmToy7oBFwZd91rMhISDGozJFSCIEiBJ4kcz+y13hobG6XHH3zwAT744IOgymxrawu5HseOHcO3336LQ4cOobKyEseOHUNLS4vfYwMFfsnJyXjwwQdxyy23SPsWL16M008/vdfzd3R0YOPGjdi7dy8qKytRVVWF+vp6v+cSvacw9VFra6v0OD8/v4cjXTx7XQP9bHpa0sYzIVG43kO0YjkVgO7AE3H6ORN9V5BkyGvR5UNgu5tml1mAYJMPsUhWB85Qa6srl20rM/PBBBiWS+RiMegkhBAydPTUy2Y09m3tQ5PJ1PtBHsc+9NBDWLdund9gKDk5GSeffDL2798f1NzKoqIiKJVK6Xs3mGV7XnnlFfy///f//A6hVSqVOP744yGKInbs2BHEOwqe588pmAyznscEGu5L1xUuXHI6gHZpW+TiMzcJ/bZJVPF3p45lWaQnpOPc0aehw9aFTpsR6Vq939eLAg97a61snyZ3rN9jiZzRaERJSQmcTqdsfywEnYHm+xASCLUZEqqEhIRIV4H0wnM463/+8x+cdtppYS1fEATceOON2LlzJwBXYHXSSSdhwoQJGDNmDMaOHYvCwkKwLIvLL79cCjwDtR1RFLFy5UrZzd4PPvgA8+bNw4knnuj3Nc899xxefvllAK7ro2nTpmHq1KkoLi7GmDFjMG7cOKhUKvzjH/8Ie+Dp+T6CmTfquc5pPC+FEg4tnY2ybafoDHBkbIveK0kyNImiTyYvlmMxJr0AY9ILen25te4wwMv/WBNGTQtjBeOT0+lEaWmp36BzypQptHA6IYSQqOeZpKa5uTns5X/22WdS0Dl16lS8/PLLAZcVCyYZzv/+9z8pOJw9eza2b98Oh8OBv/71r1i/fr3PvND6+nr85z//AeBK7vP6669jwoQJfT5/qDIyMqTH1dXVvR7vmdE3Gtb8jmYmhzyQd4rhmZcbbSirLYkqotPps3gRwwXfTL3X72Q1iVBlFfS/YnFOoVCgsLBQtk+v11PQSQghJGZ4jmTorbevvb0dt956Kx577DGsW7cuqPI9s9/eddddAYNOi8UiC7r8Dcmtr6/HU089BcD1ffvUU0/h2muvBeCaP/rcc8/5vGbTpk3geR4AsHz58oBBJwAcOHCgx/P3RWZmJrKzswEAv/zyi89Sa95++ukn6bFnhlriS+TjM9D0RoEniS6iCO/Ik2WDn2DtaKuXTchWpufQ/M4g5eTkoLi4GIDrS3Dy5MkUdBJCCIkZ06dPl7LBfvnll1IGVn/eeustbNy4EW+99VbQa0QaDAbpcU9Dr9977z1ZUOYvI+v9998vzZlcsWIF0tLScPPNNyM3N1eqn3tNz1DPv3v3buzatUva9h7N5LkMS6gZb+fMmSPV5aOPPgp4XGNjI9avXw/AtW7pzJkzQzrPUGOtlw+1VdrjMxClwJNEFYEX4H1fjuM4bKnagc/LvsXGii3YUrUDDUb/Q2i0IyYgZdYCJE45C5rCqUgoPmHgKx1HcnJyMGnSpJgLOltaWtDU1BQwax4h3qjNkFA5HA7pH4lOGo0Gy5cvB+Ba/ubWW2/1+ze+efNmaciqQqHAlVdeGVT57qAQAD788EO/x6xfvx7/+Mc/ZPu8kxetXbsWmzZtAuBax9K9nqdWq8X//d//AXAFhCtXrpQFsJ7n/+STT/z2OO7fvx933HGHLKC02WyyYzyH8HZ2dvp9H4FceeWVUjbwv//97/jxxx99jjEYDLj99tul933ttdfSHOleaBzyq18mTpP40hxPEl14Hj49nhwLo90Mo90MwDVRfURKrs9LRacDvNEAhlNAkZIBRUoGEif4rhlFeuY5hyNW1NXVSUtjxGL9yeCjNkNC5XA4pOVUaBme6HXjjTdi06ZNKC0txYEDBzBv3jwsXLgQEydOhMlkwo4dO/D5559Lgdkdd9wR1NIgAHDxxRdLS7R88MEHqK2txVlnnQW9Xo+6ujps3LjRp5cScA3rda+92dzcjL/97W8AXBloH3roIdkSPWeeeSbOOeccbNiwAYcPH8ZLL72EO++8EwBwxhlnQK/Xw2Aw4ODBg7jooouwePFiDB8+HG1tbfjpp5/w3Xff+fRwes/3TE1NldYwXbNmDYqKipCcnIxp06YhJyenx59BQUEB/vKXv+DRRx+F2WzGtddei/POOw+zZ8+GVqtFWVkZPvzwQ2mJmuOOOw433XRTUD/foUzj1cEZn4upUOBJoowoCj5rFzEcAzsvv6vnbw1PZ2cLRI/+UoZhoUii9Tu9dXZ2QhCEgItTE0IIIbFKqVTitddew5133olNmzaho6MDr732ms9xLMvi5ptvxg033BB02dOnT8dtt92GF198EQCwZcsWbNmyxee4c889F+PGjcPzzz8PACgvL8eoUaMAAA8//LA0ZPa6667DmDFjfF6/cuVKbN26FWazGa+++irOP/98jB8/HomJifj73/+OP/zhD7BarTh69Cj+/ve/+7y+uLgYN998sxSwHjp0SPY8wzCYO3cu1qxZA5PJhAceeAAA8MADD+Dyyy/v9eewfPlysCyLJ554Ana7HV988QW++OILn+MuvPBCPPLII1GdFT9a6LlWjGyrl7Y52AEsilyFBgi1BBJVxN8mzcuwDLYd+wUqTgW1wvUPfibK86YO2TaXlAqGoybuqbOzE6WlpQBcSRhSUlIiXKPwyM/PhyAIsnkrhPSE2gwJVU/rR7oxDDNkhhQyUbzAfWJiIv7zn//ghx9+wLp167Br1y60tLSAYRhkZ2fjxBNPxNKlSzF+/PiQy7799ttx3HHH4d1338Xu3bthMBigUqkwbNgwTJ48GQsXLsSsWbNw+PBhKfDcuHEjzjvvPHz55Zf4+uuvAbg+g26++Wa/5xg+fDhuv/12PPnkk3A6nbj33nuxevVqKBQKnH766fj444/x2muv4aeffkJjYyNYlkVaWhrGjh2LuXPnYt68eeA4DpmZmWhubsbXX3+Nu+++W/Z59+CDDyIlJQVfffUVWlpaoNFoQhp2u2zZMpx55pl45513sGXLFtTW1oLneQwfPhxTp07F4sWLMX369JB/vkNVIqcAC6u0rYCf6+E4wIjhSnVFYpbRaJTdDRs7diwSExMjUhen1YbHV26Q7bvspkn4669Pyva9MO9hZCVlyvaZDu2ArfGotK3OHgVdMU1md+vo6MDu3buljHgcx8VV8EkIIeFSXl4Op9MJhUKBoqKioF5js9l85tLFO7VaDbVaHelqEDLg+vKZEIpd//gn9pZ2B/4q2PG71x8J+3mCNVCxAXUHkejiZziGg/O9N5KekOqzT5M3FoqUTPCWTgjmLiiSad6Wm3fQCQA8z6OmpoYCT0IICQMKwgghpGcUeJKo4q//3eSUZ4NLUGqh8BpCKzhsMPy4BqphBVBlFUA7YgIYjpI/AP6DTgBIS0vr0zAjQgghhBBCQkWBJ4kqouAbeSapE3Hu6NPQaTOi09YFlZ+A0t5cjY7t66VthlNi5F1vgfWThGgo6SnonDRpUtzMb/N8f7G0DAyJHGozJFSeM5OieX4jiR7UZkiwHOjC8M7D0ragjM+ZkBR4kqjib8pxTnIWrh+5tMfX2ZsqZduKlMwhH3QaDAbs2bPHJ+hMT0/HxIkT4yboBIB9+/ZJS2NMmTIl0tUhMYDaDAmVxWKRllMZKgmESP9QmyHB6uAFmFV6aZvn4jO5EAWeJKr4G2rLBBEf2RurZNuqYSPDVKPYNJSCTkIIIYSQWNZpS8S+nOOlbY0j+AzDsYQCTxJVFHBi/hkq8IIATqlA1vAcaLW9N1N7k1fgmVUwQDWMfgaDAbt375YWx3aL56AzKSlJyjZHSDCozZBQcRwn9V4REgxqMyRYNsEZ6SoMCvrGJVHFVF2LvR9vl7b3Ahh993kwKIxQcSqoOCVG6nMxUp8nHSOKIuwey6gAQ7fHs729HXv27PEJOjMyMjBhwoS4DDoBoLCwMNJVIDGG2gwJFWWsJaGiNkOCpVZpI12FQUGBJ4kqIi/47LPyNhgFMwAzACBTlyZ7nu9qhWAzy/ZxCUNviZChGnQSQgghhMQyHSfPSxKvfeR0JUqiiij6Bp4OUT5PUeX1x2mrPyJ/AacElyQPToeClpYWCjoJIYQQQmKMd46T+MxpSz2eJMr46/H8uWEP7Aq7NNR2Umax7HlbXblsm9OlQKEbej2eY8aMAc/zaGhoAABkZmZi/PjxFHQSQgghhEQxUdTItnk2PldmoMCTRJWkcWORdP654HkeLMNCn5yM7wxvwCh2ScecUXCS7DW2BnmPpyI5HYzCd63PeMcwDMaOHQvAtUbhUAo6KysrpUQxBQUFka4OiQHUZkiobDablCiG5u6RYFCbIcFi43ZwrRwFniSq2K1ONDcYIYoCWJaF06GARWEBPNZ3z9Sly1/TUiPbVqblDEZVo5Jn8DmUsuh1dnZKazISEgxqMyRUPM9ThlISEmozJGjBrB0YByjwJFHF2GVF/TGLtF1XZYF4HGSBZ6JaJz0WHDbwna2yMoZCRtuevsjoC44QQgghJHawCUmRrsKgoMCTRBXvydUAcEbhSTDBBKPdBKPdjERVd+Bpb66G9xRs9fAxA1zLyGpra0NFRQWmTJlCQ3d+M2HCBLqrTEJCbYaESqvVUpshIaE2Q4JltnQB0Ee6GgOOAk8SVXjeN/K8dsbvoFL7b6re63ey2kQoUzIGpG7RoLW1FXv37oUoiigpKcG0adMo+ASgUNBHGQkNtRkSKoZhKIAgIaE2Q4JlFeyy7XjNajs0BhSTmCH66fLs6TPbN6OtHmycZrT1DDoBwGKxoKSkBA6HI8I1I4QQQgghpGcUeJKoYm1t9dnHsIEjTzYhGVxyBsC5EoQokjPAKuIvBXVLS4ss6HRLTk6mnhtCCCGEkBhm552RrsKgoCtWElVMVfIMtRBFfFn+PTQqNVScEhkJqZgwrHsdz4TCqWA4JURRhGgzQ5maNcg1HngtLS3Yt2+fT9CZlZWFcePG0TAeAAaDQZpHo9frI10dEgOozZBQOZ3dF4Z0w48Eg9oMCZaS4Xo/KA7QXwGJKqIgD64YiDA5LDDzrky3nNe6lLy503Ucw4DR6OJuKZVAQWd2djbGjh1LQedvjh07Ji2NQUEECQa1GRIqu90u3aygIIIEg9oMCZbWaxBqvF7d0V8BiSqCv7S2HlScfBgtb+qQbXMJ8TO/s7m5Gfv376egkxBCCCEkjqWwrcgzNEnbHOw9HB27KPAkUUXgBa89IvY1HYJKoYRaoUKaVt/9jMBDsBplR3O65IGv5CAIFHQOHz4cxcXFFHR6GT58OARBAMvStHUSHGozJFRKpTLSVSAxhtoMCVayRg2lYJC2lRR4EjLwOEYeaLGigIMth6UxB8MTh0nPCRajT2AWDz2eFHSGLjMzM9JVIDGG2gwJFQURJFTBtJl77rkHa9asAQAcOnRooKsUkzx/Rt988w3y8vJ8jvnqq6/w1ltv4fDhwzAajUhKSsIll1yCe+65Z7Cr2yf64gLo6kqkbU2cLpVHgSeJKgy853gKsoHu2UndF4ucLgX6ky4Gb+4Eb+qAYDeDUcT2hUFTUxMOHDhAQSchhBBCSBA++OAD3H///bJ97e3tUKliZ5UDVsGC8RiAw8TpYBwKPElUEbySC8ErAEtU6VzHOWyoe+MeKDNHQD2sAKphI6EtmDxY1RwQbW1tfoPOnJwcFBUVUdBJCCGEEOLlhRdeAOBKNHnFFVdg2rRpsNlsmDw5tq8L4xEFniSqiDwv22YAnJh3HEx2M0wOM1K1rqG0juZq2JuOwd50DKZ9WwAwKLj7HTCI3R7P5ORkJCYmoqurS9pHQSchhBBCiH/t7e1obm4GAMyZMwd//etfI1yjvjFxJjRkNkjbWi4+Q7T4fFckZgleuYUYAH8+5Qaf42xNlbJtZVo2WJVm4Co2CBQKBaZOnYrS0lJ0dXVR0BmCPXv2SEtj0B1OEgxqMyRUZrNZWhojISEh0tUhMYDazMCzWCzS4zFjxkSwJv1Tbzfix6QkaTtFcOLqyFVnwFDgSaKKKMojT+85n272pirZtmrYyAGr02BSKBSYMmUKGhoakJeXR0FnkERRlP4REgxqM4QQEvsEjx6LWF4rtaNVhTH7Z0vbTrWxh6NjV+z+hkhcyk4CTj76IcAwECFCmZgEYLHPcfZG78CzYHAqOAiUSiXy8/MjXY2YotVqoVAoKOskCRq1GRIqlmWl3isy+MaOHQsAuOOOO7BkyRI8/PDD2LJlCwAgPz8f119/PebPny8dbzKZ8NFHH2HLli04dOgQDAYDACAlJQUTJkzAueeei4suushvsLJ8+XLs2LEDs2bNwhtvvIFjx47hjTfewObNm9HY2AitVosJEybg0ksvxYUXXhiwTbAsi87OTrz33nv49ttvUVlZCZVKhaKiIixduhQXXXRRUO9dEARs2LAB69atw+7du9He3g6dToeRI0fijDPOwBVXXIHkZP/Lybnfy+zZs/Hf//4XFRUVeO211/Djjz+iubkZ6enpOOGEE3DjjTdi9OjRAACr1Yq33noL69evR3V1NTiOw4QJE3DNNdfgrLPOCqrOPb2XTZs2YdWqVTh06JD08ywuLsbcuXOxePHioJICvfDCC3jxxRdl+1588UVp34IFC/DEE0/0q66DydreAUAvbavs8XlTlAJPElWsdh71KUXdO5QcNlZsgYpTQsUpcWLecQAAe+NR2etircezvb0dKSkptIZgmBQVFfV+ECEeqM2QUGk0sT2dI14YjUYsW7YMlZWV0r6DBw/KAq8tW7bgz3/+sxRserJarWhsbMR3332H//3vf3j11VcDBm0AsHHjRtx9990wm83SPpvNhm3btmHbtm347LPP8MILL/i9iVVbW4trr70WDQ0Nstf++uuv+PXXX/H999/32kvX0NCAO++8E7/++qtsv8FggMFgQGlpKd5880089dRTOO2003os69NPP8V9990Hm80m7auvr8cnn3yCb775Bq+//jqys7Nx/fXX+yztsmPHDuzYsQMrV67ElVde2eN5Amlvb8cdd9yB7du3y/bb7Xbs3LkTO3fulH4nWVlZfTpHrNJ0OWXbFHgSMgh8stpCRJvFAABQcUowDANnZwsEm1n+OqcNsaKhoQEHDx5Eeno6Jk6cSMEnIYTEAbu97wu+cxwHjuP8PudwOPo8JHygymVZNmLDGt955x3YbDbMnj0b8+fPh8FgwA8//IDZs13DFA8fPoybbroJDocDHMdhzpw5OOGEE5Ceno7m5maUlpbiiy++gCAIKC0txfPPPx8wIU1VVRX+/Oc/w263Y968eZg9ezYUCgW2b9+ONWvWQBAEfPfdd3j33Xdx9dVXy17b1NSEyy+/XAp+Z86ciQsuuABJSUnYt28f/ve//+Gzzz7rsXevo6MD11xzDY4cOQIAyM3NxaWXXopRo0aho6MDGzduxJYtW2AwGHDzzTfj5Zdfxqmnnuq3rIqKCmlNy0svvRQnnngiOjo6sHr1apSVlcFoNOLBBx8Ex3E4dOgQZs2ahblz50Kr1WLz5s1Yt24dAODvf/87LrjgAqSnpwf9OwNcfx9XXHEFDh8+DMDVS33ppZdi5MiRaGxsxKpVq3DkyBGUlZXh5ptvxocffthjG5s3bx7Gjx+P1tZWaSmVefPm4YILLgDgWoYuliQq5De24nVcBQWeJLr4yy70GxXnupvoPcwWnBKK5NhYDN4ddAJAa2sr9u3bR8EnIYTEgW3btvX5tUVFRcjNzfX73I4dO+BwOPpUbkFBAQoKCvw+t2vXLlkvXihycnJQXFzcp9f2l81mwxlnnIGXX35ZGuLqGfT985//lH5ezz33HM477zyfMhYvXoxrrrkGoiji008/DRh41tXVQalU4j//+Y8U2ALAxRdfjJkzZ0qB3OrVq30Cz+eee04KOm+66Sbceeed0nMXXnghlixZguXLl0sZWf156qmnpKDz7LPPxjPPPCPreV+6dCnWrFmD++67D06nEytWrMCGDRuQmJjoU1Z9fT2USiVeeeUVnHzyydL+hQsX4txzz5WuSfzV96KLLkJGRgZee+01OBwOfPvtt1i82HcaVE/+/e9/S0Hn2Wefjeeee04WdC9fvhw33HADtm3bhn379mHdunW49NJLA5Y3evRojB49GjU1NdK+UaNG4eyzzw6pXlEjPjs4fdDVLokqolfgyYsCylqOoLK9Gi2mNgCAzWuYLadLgSIpddDq2Ff19fVS0OnW2tqKpqamCNWIEEIIiT2///3v/c6rtFgs+OGHHwAAM2bM8Bt0AsCsWbMwbdo0AK7hn/6G5LpdfvnlsqDTbcGCBdLNgvLyclitVum5trY2rF27FgAwZcoU/PGPf/R5fWFhIR577LGA521sbJTKyMvLw9NPP+13uPeCBQukoLetrQ0ffPBBwDIXL14sCzoBIDExUeolBFw3K+644w6f1y5atEh67A4gg8XzPN5++20AQGZmJp588kmfnl6lUom//e1v0o34Tz/9NKRzxDpRmSTbdrK9z3ONRdTjSaKK91BbQeSxu/EAAGBMWgEAwFYn/8DjdCngdPrBqF6f1dfX+8yXAFxDTYbaPIaBUFNTA6fTCYVCgby8vEhXh8QAajMkVHa7XUouFEzyEzIwlEolpkyZ4vc5rVaLb7/9FseOHfPb6+cpNzcXu3btAgBZ0Ojt3HPPDfhccXExamtrAQCdnZ1SYLhlyxYp2+rChQvhcDj8tpnTTz8dBQUFsvmqblu3bpV6bq+44gpotdqA9bjuuuvw1ltvwel0YuPGjbjuuuv8HucZYHry/Aw888wz/Y7C8hy66rneeDB27dqFjo4OAK5hvoF+N9nZ2bj33nulZENDSWL+cOCYSdpmlfE52JYCTxJVrHYRFoX7A0mEwHYPL8pISAMA2JvlQ20VKcPAKtWDVcWQBQo6R4wYgcLCQsqQGAZtbW3SmowURJBgUJshoXI6nRR4RoH8/Pwef/4ZGRnIyMjw+5zJZMKhQ4fwyy+/SEEn4OqRC8Sd6dUfzwDK6exODlNaWio9njhxIpxOZ8A6z5gxw2/gWVJSIj0+6aSTAtYBcL3nMWPG4ODBg9izZ0/A7MuFhYV+X5/ksX5koKz6noGv4D0tqhd79uyRHh9//PE9HtvXxEUkNlDgSaJKUxeLhuTubJNK3gygEgCgUyVAcNjg7JDPh1BljhjEGoamrq4OZWVlPvsp6CSEkPjiPYQxFIESAAHACSec0K/kQoEcd9xx/UouFCk9ZaD11NTUhI0bN+LAgQOorKxEVVUVmpqa/L7nnn4OnkGZN8/kN57BWEtLi/Q4Ozu7x3qOGOH/GqatrU16HMwSa/n5+Th48CAcDgc6OzuRkpLic4y/fd4C9az253rF8+eRk5PT53LimSotD0B3J4WoiM8s2hR4kqgieH34MwAmDRsLk92M7MRMOJqrAa9j1MNHDWINg0dB5+ApLi6m9fVISKjNkFD1tpzKQPWCDtRas7G6hm1vP2en04mnn34ab7/9tqwX0k2r1eLEE09Ec3OzlEynJ33J3us5FFWv1/d4A0Cn0/ndbzJ1D7vsaZitm2f7tFgsfoPMSGUidg+zBWhZokAMnfJ8H7zo23bjAQWeJKqIXqM3WIbB/Wf+UdruLNkof16bCGXKsEGoWWgCBZ0jR45EQUEBXeyGGX2RkVBRmyGhouzjseGee+7B+vXrAbiC6xkzZmDy5MkoKipCcXExxowZA4VCgbvvvjuowLMvPHtlbTZbj/NNAy3D4xlsWiyWXuesemYojrbPN8/69DSfdigz2OXzZh1i4OHfsYwCTxJVvHs8vdnqj8i2uQQ9OF3vQ0cGU21tLcrLy332U9BJCCGEDJxff/1VCjrz8/Px+uuvBxymGmqCnFBkZnYv8VZTU4Nx48YFPDZQZnvPearV1dUYP358j+esqnLlv9BoNNDr9SHUduB5rvlZX1/fY+KgiooKmEwmjBgxIureB+k/un1HootXl6d3iKYtmATNyElQZuSD1SaBS0oDmxB4/sVgCxR0FhQU0PBaQgghZAB9//330uNbb721x7mRBw4ckB73da5rINOnT5ceb9++vcdjf/31V7/7J0+eLD3+6aefeiyjsbFRWu8zGrPBTpw4UXrsmTTJnxdeeAGLFy/GrFmzYDQaB7hm0cNWL89fonCElsApVlDgSaKKIMoDMxECNlVux4/Vv6DT2gVFUho0IyZAN34WkmfMhW78LDBMdDRjp9Mp3XH01NMC3iQ8jEYjurq6htSXFOkfajMkVDzPS/9IdPJcjzMhISHgcV9++SUaGhqkbX9zQfvjtNNOg1rtyrb/3nvvwWKx+D1u7969sgy4nk4//XRpHu67774bsAwAeP3116XkRmeccUY/aj4wZsyYIQ0V/uSTT2Cz2fwe19nZiU2bNgFwrX/a2/DieKIwy4dcs/EZd1LgSaKL6LWOJ0QRDcZmVHfUwynw4I0G2dOKxNTBq1wvFAoFpk6dKkvYQEHn4Dhy5AjKysqkO76E9IbaDAmVzWaD1WoNeNFMIi83N1d6vGrVKr89mdu2bcP9998v2xfu32lCQoK0LEhlZSVWrlzpE9w2Nzfj7rvvDljGsGHDMH/+fACuobZ333233/mRa9euxZtvvgnANaR16dKl4XobYZOQkIAlS5YAcI0Mu//++31+Hna7Hffff7+UVCka38dASmDlCajidXwczfEkUcU77vT8y1NxSvAmg+xpTqcf6CqFRKfTYerUqSgtLUVeXh5GjhwZ6SoRQgghQ8K8efPwwgsvwOFwYPPmzVi8eDHmz5+PzMxMNDU14YcffsCPP/7oE5AOxMiHW2+9FRs3bsTRo0fx2Wefoby8HIsWLUJmZibKysrw/vvvw2AwID09Ha2trX7LuPfee7Fz505UV1djw4YNmDdvHhYuXIjCwkJ0dnZi48aN2Lx5MwBX8qvHHnsMaWlpYX8v4XD77bfj+++/x5EjR7B27Vrs27cPCxYswPDhw1FdXY2PP/5YWs901qxZuPjii8N27hdeeAEvvvgiAOC2227D7bffHraywyUJrcjp6G4HHPwnnYp1FHiSqOJzd1IUUNleDRWnBCOK4M2dsqcVifrBq1yQEhMTMXPmTFpgfBBlZmZCEATKOkmCRm2GhCpSS1GQ4OXn5+OBBx7AAw88AJ7nsWfPHuzZs8fnuBkzZuDCCy/Egw8+CAA4dOgQZsyYEda6aLVavP7667jllluwf/9+lJWV4fHHH5cdM3v2bJxwwgl49tln/ZaRnJyMd999F7fddht2796N2tpaPP/88z7H6fV6PPvsszjllFPC+h7CKSEhAW+99RZuvvlm7NmzB+Xl5fj73//uc9zJJ5+MF154YcjlxEhSsFDz3TdAlBR4EjLw1Fol0O6xQ7Ti57rdAICbpy0Gn5gG3mSAKLjm2ERbj6cbBZ2Da/jw4ZGuAokx1GZIqOhzPTYsXrwYY8eOxRtvvIFffvkFra2tUCgUSE9Px4QJE3DxxRfjrLPOQldXFx577DE4HA588cUXWLZsWdjrMnz4cHzwwQdYtWoV1q1bJy2zVlBQgAULFmDZsmV44403eiwjKysLH374IT7//HN89tln2LNnD9rb26HX65Gfn4+5c+fikksukS3hEq0yMzPx4YcfYt26dfj0009x4MABdHR0QKfTYdKkSViwYAHmzZs3JG8IKr3ylcRr2M2I4U7lRWKO0WjEoUOHpO2xY8dGbEL3F8+vxc6q7vshGr4OP8/aBa1Sg/+ee/9vgaYIwWICb+mEKj03YFkDqbq6GjzP0/xNQgiJQ+Xl5XA6nVAoFCgqKop0dQghETbQnwm7/vFP7C3tHtWngh2/e/2RsJ8nWAMVG1CPJ4ky/u/x6JRaHHv+BrCaBKiGjYRq2Eikzl48yHVzOXbsmCwhCQWfhBBCCCGE9IwCTxJVkidNBKoOStvWnBQUpuYjhVECogDBYoS1ah+sVfuRdsblg14/76CzsrISDMNQEiFCCCGEENInPKzIMNV07+Dicz0VCjxJVBG80toWZ4zCZef+Dp0l36AF3QsoK1KzwKq0g1q3qqoqHD161Gf/UJyLEG0OHDgAh8MBpVKJ8ePHR7o6JAZQmyGhslgsEEURDMNAqx3c7x8Sm6jNkGB1CmYo+e61Wu1xemlJgSeJKt4zjlnWNfTW3lQp26/OKhicCv0mUNA5evRo5OfnD2pdiC+HwwGHwxHpapAYQm2GhEoURb/rQhISCLUZEqx2awr2FSyRtjWOTsyLYH0GCgWeJKocf1I+lAlGOBxOKBVKjBtfDACwN1XJjlMNG7yhrZWVldLaUp7GjBmDvLy8QasHCUypVMr+J6Q31GZIqNzLOwy1ZR5I31GbIcGyC/E5tNYbBZ4kqlT/tBtNpTUw2c1wCA5U7z+EvPPHgG2pxDCP45RpOYNSHwo6YwMNlSShojZDQkVDJUmoqM2QYA2VdYLjdAQxiXVOgYeDd8LssOBYcwWMvHwhXcFuCfDK8AkUdBYVFVHQSQghhBBCwiJJKb9JEa995EMjvCYxw9LYBHu7AaLDAlbkwWkc4I12KD3nSHAKKDNHDFgdRFFEZWUlqqqqfJ4rKipCbm5k1g4lhBBCCCEkVlHgSaKK6chRWOsMYPFbd7ydR61BRJbHrR9Op4ciUT8g56egkxBCCCGEDCZeUMu2nWx85h+gwJNEFS4pCYBB2m5nbfjZakCRontUOKdLAZeQMiDnDxR0FhcXIydncOaVktDV19dDEASwLIvhw4dHujokBlCbIaGy27unfKhUqgjWhMQKajMkWJzP7Mf4HGxLgSeJKjaBhZ3TuDZEEU7WtdxBqqM725ciOQOsSjMg509MTATDMLL05xR0Rr/m5mZpTUYKIkgwqM2QUDmdTmlNRgoiSDCozRAiR4EniSrVVj1qU9KkbYZtBNAMrdAdCKoyB27dzMzMTIwfPx4HDhyAKIoYO3YsXZQSQsgQw3EcnE4neJ6XAgdCyNAkiiJ4ngfg+mwYCKxuYEbyRRsKPElUUefkAG0N0rYjRYNUBw8t393jqRpWOKB1GDbMtXALz/MUdMaIUaNG0cUhCQm1GdITlUoFm80GURRhNpuh0+mgVqt7fyEhHqjNxAez2SyNhBuonmubzQQgeUDKjiYUeJKo4jnEFQBGaVJxdVWrtM1qEqHUZw54PdzBJ4kNiYmJka4CiTHUZkhPkpOT0dXVBQBoa2tDQkLCgPV0kPhFbSb2iaKItrY2aTs5eWCCQ5PTCs/AUwx8aEyjdTxJVBEFrz81r/U6OZ0eXBiGI4iiCJPJ1O9yCCGExB/3fH8AMBqNqKmpgclk8rk5SgiJT+7rxJqaGhiNRgAAwzB007KfqMeTRBXB6ZRtK/WZSCw4B7zRAN5kgCIxFWxC/+42iaKIiooK1NbWYtKkSUhPT+9XeYQQQuILy7LIzc1FbW0tRFGE0WiE0WgEwzDUi0XIEOCe3+3GMAxyc3PBsgPTZ+fgnb0fFAco8CRRxd7ZJds2tDfhaBGDomzXvE5WrQWr6Pv4enfQWVNTAwDYu3cvBZ9xwGq1SvP1NJqByXhM4gu1GdKbpKQkWfApCAIYhpH+J6Q33oELiU3uoDMpKWnAzsHG6fIp3ijwJFHFexST3WlDM29BEfQAXENt+162iMOHD6O2tla2b9++fTjppJMo1XkMKysrk5bGmDJlSqSrQ2IAtRkSjKSkJBQXF8NoNKKiokIKOgfyApTEj66uLukGF7WZ2MJxHFQqFZKTk5GYmDhgPZ1uOk5+DRqvYSgFniSqOIxGAN1Z4FirDUqm+49dkZzRp3L9BZ1uY8eOpaCTEEKIXyzLIjk5GRzHQRAEKBQKFBUVRbpaJAbs3r0bDoeD2gzplU5sRVaXQdrmRHvkKjOAKPAkUYU3W+EZeIo2O4yCQ9pWpIQeeIqiiPLyctTV1fk8N378eGRlZfWpriR6pKWlwel0QqGgjzQSHGozJFTUZkioqM2QYKVoOCQ4OqVtJSjwJGTAKSCfXO0UzTjG8mBVWogOGxRJoc3FDBR0MgyD8ePH07IpcSIvLy/SVSAxhtoMCRW1GRIqajMkWGmj8qE9tk/a1sTpSDwKPElU4SDIthnYkTd8PFImz4dot4Jhg88mSEEnIYQQQgiJdpxWDU7tsa2Oz1metI4niSo+K6QxIiybVqPm5T+AN7UHX44ooqysjIJOQgghhBBCogD1eJKoIorwSuUlQisIcHTUg0tMDbIMV9BZX18v288wDCZMmIDMzMyw1ZcQQgghhJD+sHM2WJJapG1BpYxgbQYOBZ4kqoheCaRFRoRaEKBIzQKr0vb+ego6h6Ty8nJpaQzKHEiCQW2GhIraDAkVtRkSrDqhHZ+M6M5zkua0Y2EE6zNQKPAkUcVnqC0AjSBCnVUQ1OtbWloo6ByCLBYLHA4HnE5n7wcTAmozJHTUZkioqM2QYLU2qjHxl7nStlNtjGBtBg4FniSqjOcrkNuwAyLDAGCgTTUi1+qEatjIoF6fkZGB/Px8VFdXA3AFnRMnTkRGRt/W/ySxgWEY6R8hwaA2Q0JFbYaEitoMCZbNZAKgl7Y5p7+umNhHgSeJKl2iFh2aYWB+6/vkWR4MuqBIGx7U6xmGwahRowAANTU1FHQOEZMnT450FUiMoTZDQkVthoSK2gwJlqLZJNvWWinwJGTA8SIgeCyZYlIoIIKBIikt6DLcwWd2djZ0Ot1AVJMQQgghhJCwSFHJr1fjtY+cllMhUUX0meUpQiGKUGWPCqkchmEo6CSEEEIIISRKUOBJooroZ2QBp04A55XRVhRFHD58GGazeZBqRgghhBBCSPgJjPw6l2dpOZW4JooiPv30U3z00Uc4cOAAzGYzMjMzMXPmTCxbtgxTpkzp9znKysrw+uuvY/v27WhqakJSUhJGjx6NSy65BAsWLADHcb0XMsQkCjwUCSmyfaIo4sCBA2hqakJzczOmTZsGrbb3pVZI/GpuboYgCGBZlrIXk6BQmyGhojZDQkVthgQrKT8XqLVI24wyPvsGKfAEYLVacccdd+D777+X7a+trUVtbS3Wr1+PP/7xj7jhhhv6fI5Vq1bhoYcegsPhkPa1tbWhra0NO3fuxJo1a/DSSy9Br9f3+RzxwCFy4Bn3H5uIRB6y+Z2eQScA2Gw2lJSUUPA5xNXX10trpdGXOwkGtRkSKmozJFTUZkjQuPgMNL1R4Alg5cqVUtA5evRoLFmyBBkZGdi3bx/+97//wWw245lnnkFWVhYuvvjikMvfvHkz/u///g+iKEKr1eKyyy7DpEmT0NraitWrV6OsrAw///wz/vSnP+HVV18Fyw6NxudPpbIAFk2itN3GsJic4pqrKYoi9u/fj+bmZtlrHA4HrFYrBZ6EEEIIISTmKPXDARyWtkWFOnKVGUBDPvDcunUrPv30UwDASSedhFdeeQVqteuXfeGFF2LRokW4/PLLYTAY8Pjjj2POnDlITEzsqUgZu92OBx98EKIoIiEhAe+88w4mTpwoPb906VL86U9/woYNG7B161Z8/vnnuPDCC8P7JmOI7xRPEYrULAiCgAMHDvgEnSzLYtKkSUhNTR2sKpIoNGLECIiiSGulkaBRmyGhojZDQkVthgTLbO6QbYsiH6GaDKyh27X2m9deew0AoFAo8Oijj0pBp9vo0aPxf//3fwAAg8GAVatWhVT+119/jZqaGgDA9ddfLws6AUClUuHJJ5+Uhtj++9//7svbiBuiVwJpFiIUaTkBg87JkycjLS34pVZIfNLr9UhNTR3yQ9VJ8KjNkFBRmyGhojZDgtVsbZdt2yjwjD8GgwHbtm0DAJx66qnIz8/3e9y8efOQnp4OAPjyyy9DOsfnn38OwLW8x9KlS/0eo9PpcOmllwJwJSA6evRoSOeIZwwEHOkUAgad1NNJCCGEEEJI9BvSgefPP/8MQRAAuIbZBsKyLGbOnAkAKC0tRUdHR8Bjve3cuRMAMHbs2B575jzPv2nTpqDLjz/dPZ4iRGgYHu1Wp+wICjoJIYQQQki8sLXKezw5p5/1BePAkA48y8vLpcfFxcU9HjtmzBgArgQ3ZWVlQZXf2NiIzs5OAEBRUVGPx44ePVp6fPDgwaDKj0ei9L8IKNphVzJgmO5myrIspkyZQkEnkXE6nXA4HHA6nb0fTAiozZDQUZshoaI2Q4LFtHfJtjk+PgPPIZ1cqLa2Vnqcm5vb47HZ2dmy17l7QHvintsZTPlZWVlgWRaCIKCurq7XsuOZO+gEZ4XoMSHfHXTSXAnibf/+/VLK+nCsuUviH7UZEipqMyRU1GZIsJIUGtl2vKajGtKBZ1tbm/S4tx40z2DHYDAEVX57e3e3eW/lK5VKJCQkwGg0Bl1+PBIAKegEAIOQgc2b9oBhWSgVehzbzUN02sFbusBb7OA7DWDhhCiKMCtEmNPVUCSZkJzZiBmdeeAF15+uqb4DnS1GNHPDYVEkwynwYD2CWg2nAiBC/O2uJAM7ODggiiLsogAGgFboxDBnOdRsNpyMUnqtDQJa2UyYlWlwCDysaVowKtfzOQlpYBkOTmMbBLsTDkMHONEGiCIsjAhjhgpcghOanGM42TgcgtP1OmubGYbadrSzaTAqM2EXeDAMwPz2UaRmFWBYDqLD/lstnFDA5qqPwIOBCIXoRK5jN9RsOpxMglRfOwR0sCnoVGbDLvCwJ6kh6lxJtTLVydCodXB0NAG8AGtbBxSCa0Fju8ijI10FRs0hYeRhHG/JgMrmKtdhtKG9qg0dYgIMqhw4RAEQIWXyU7IcOFYJ0WGTftMKdJcriiJYMMizl0DL6OBkU6T6OiGii9GgTZkPJ0TYNByEFNd5U5U6JOpSYW6sgiiKcHaYsUP83lUnUUBXMgchUQVNTiUmCjqkWJIBALydR/vhZhh5Dk2qAvAQIYii1CaULAcFp4TgsAGiqydeCZNUriAKYMEgy3EQyaIAJ5fh0YZFmMGiQTUaPEQ4VCyceh3AAIkKDVIT0+HsaIYo8LC1G8Hau8BAhFMUYExg4dSroc6swyiViOHG7nLbDjbC7HCiTlkEgWHAi4JUX45hoeSUEHkHILjuknIwS+Xyv9U3zVmFVMEAgRsulSsCsEJAvXI0nAwHBwc40hIAloWGUyJTlw7e3AXBYYWjywLR3AEWrjLNKgbWdDVUqW0YntSFMZ3d5XYebUWX0YpGZQEcrApOobu+LBioFCpA4CHy/G/7rGDBQxBFOH77m0vmG5HJ10LkcuH5NWyBgGZFPmycFg5GhC01AYyCA8ewGK7LCOozQp1SjamtWRDBYce27+kzIs4/Ixzt9a6fW0sHFHz333IonxGuvyPXb38L9wt9RsT5Z0Q4riNYwQYBgAMCtuAb+oyI88+I/lxHmJ3ZyOC6O7kUog3xaEgHnlarVXrsnc3Wm0ql8vu6nlgslqDLdx9jNBqDLj9uMd3DC0SGg2hRAI40CKIaR5pNvz2jcf3jkuWvbQWaUYt96eXIPdYKh+j+AAac1kQYEjNgZvQAJ39Zh/uUXvs9pZlroa/fjZpkFewK+ZqhhoQMGJkM1+s9pgBXwv3B8dudLNZrKZ52oNPWgYrcAxhV0wiHIwkAYDcCdnMiDNp0dKiG+a+XEKC+v+1TO02YWL8dTToORnWC7JAOdRra3OWaf/sHoBY8gM7u+jIJ8nN0AAIj4NeCUmTX81CaXPOWnVbAakyAUZWKVnWW/1t1gerrYXz1DhhVOrQnyOtrViS5ygUAO4Dfck01AmhEO4Df2oHHF43rha5/e7PLkNRiRFqb6xctOAFzlxY2Tos2TZb/yvDodTLCiMYyCLwDzUny+joZZXe5TgAtrodtANpgAKD87Z8G8LgghR1AE1CeUg/e0gihrvvCxNihgQgGbWndX0wyAlw/9x5+xuntTVAZG1GtT/B5rk0/DAKrcH07tnZXpxPu4T/uvzmPm2gCgGagRm1Ek7IF2urucs1tCgjORLSlZMLJaHzrJfz2fw/11ZrsSGwpx9HUBNnoBwBoT8qAjfnt78ljaswRBPcZ0ZZuxahWKxyiEu2w02dE3H9GuHsTvNoifUbI0GcEwnsd4XUMfUaAPiO8uD8j+CQVkvjuDjEF7D28KnYN6cDTc8y9Z2Dpj+fzwY7V5/nuVMi9le95TKTnAhw+fBijR49GUlKStM9ms+HQoUMAXL2/I0aM8HmN2ez61PEeTtLS0iINH87Pz5f1/vI8j3379gEAkpKSkGs+AptRifqMDIC1ASIDONLBiL3//AghhBBCCIl13G93XgRBwN69ewG4VsHwzAkDAFVVVVLS0/Hjx0Op7L4Z1dnZicrKSgCuKYPDhg2TvXbv3r0QBAEajcYn1433ahLhMqQDT42mezy1w+HoMTi027vvPAQTRALyXk6Hw9Hr8e5zeDaaSOB5Xsr26yaKovQePANqN/cEen8EQZCe8y4X6P7ZOJ1OnFjQhdbtB2HQXgpLAgPwiRR0EkIIIYSQISPdY+CA53WyN8/rb1GUJyTyvP72d+3ucDggCAI4zrcb2d/1ejgM6cAzwaMb3mazBR14BjNs1l/5vXEf4xkQRwLHcWBZ+dgAhmGkgNhfA1UoFAEDZpZlpee8ywW6A22FQoHRKx5E9TuvIqOkFSaHDnaxFRa9BuBYqJUq2dwMh9kKvsMADk6IDGBRAOZ0NYYnmTCWTUZyhhaCyIJhWQgKKzpbjLAxLVCLdjgEJxi45jowDOM1N0MEBJtr/hYAB0TX/C2uE4bhWqTAAifjej3HcrBBgINtgUoU4BCcMKVoACUHjuOQq0uX5mbwNgfs7QZp3L6VBYwZKmgSnJgt6pCSoQfvcP1sWZ0Ig7MdAtsKhcjCLrjnjLhmZ6g5pWxuhig6oBBdQ7TtEKW5GYbhWujggJJxDYXiWA4OCADLgRFVsAs8rDoFeK0KLMciS6OXzc2wtLRLczMcjCjNzZgt6pCengxO6/qb4ZwsOuxtYEVAELVwCAJEiFJ9lZxCNjdDEHkoRbNUrntuRleWCmqISP2tvizLQgCgYHg4hUY4RQFWDQdHohoMyyJDnSSbm2FuMkDJGwEATgbS3IwZrArD9YlIYF31VTAKdFpaYeTtsAqNHvO3XGN7VJxCNjdDEAUoRBOY38p1z82wpQlQimx3fRkGYBiYwSLtt3JtCgb2FA0YhkGKWiebv2Vp7QRr7wILETwDaf7WJJWIkVw6UjNU0t+I1tQKs8OJNL4BAsPAKfJSfRUsJ5u/JUIAK1hc86wYSO9NTLLArlN31xcMGJaFFQLSxCY4BQ52VoQ1RQOwLBLVGtn8LXuHCYK5Exx4CAyk+VujEuzIUnfXl+U4JDm70GW0Ig3NcIgqOARe+pvjGFY2f0uECEawSOU6RdffnFLTDuPwBKQyXRDBgAUDlmVhgYBUpgU20QS7KNBnBH1G0GcEfUbQZwR9RsTFZwTHskgdrsf0FSvg5nmd7M3z+pvxGm7uef3t79pdqVRCEAS/1+/+rtfDYUgHnsnJ3eP6DQaDbGipN8+EPz2txxmo/N7W/nQ4HNJQ1WDLHyhjxoxBYqJ8DoFare4xI5t7uRl/MjIykJGR4fc5juN8yh159c24NoT6EkIIIYQQEm/cKzoEMnLkyIDPJScn9/jaSZMmBXwuMzNTloQ1XIZ04FlQUCA9rq+vR35+fsBjGxoapMc5OTl9Kr8njY2NUrd2sOXHq6NHj8LpdEKhUKCwsDDS1SExgNoMCRW1GRIqajMkVNRmSKjivc0M6cDTc4JueXk5TjjhhIDHlpeXA3B1YxcVFQVVfmpqKtLT09Ha2iq9PpDDhw9Lj70n+A41XV1d0rpXhASD2gwJFbUZEipqMyRU1GZIqOK9zQzMAN4Ycdxxx0m/2O3btwc8jud57Ny5EwAwbtw42RDa3sycORMAcODAAXR1dQU87qeffpIe9xQAE0IIIYQQQkisGdI9nsnJyTjppJOwefNmfPvtt6irq/M7zPWzzz6TxjnPnTs3pHOcd955+PLLL+F0OvH+++/jhhtu8DnGaDRizZo1AIDCwkKMGzeuD+8mfkycODHSVSAxhtoMCRW1GRIqajMkVNRmSKjivc0M6R5PALj66qsBuJL7/OlPf4LRaJQ9f/jwYTz22GMAXOvnLF68OKTyzz77bOTl5QEAXnrpJfz888+y5+12O1asWCElL7rmmmv68C7iC8dx0j9CgkFthoSK2gwJFbUZEipqMyRU8d5mhnSPJwDMnj0b5513Hr766ivs2rULF198MZYuXYrhw4dj//79eP/992EymQAAK1as8Mk4u337dlx55ZUAXENk3377bdnzKpUKK1euxC233AKr1Yqrr74aixcvxvHHHw+DwYAPP/wQZWVlAIDjjz8eixYtGoR3TQghhBBCCCGDZ8gHngDw5JNPwmQyYcuWLaipqcFTTz0le55hGNx222247LLL+lT+WWedhQceeACPPfYYHA4H3nvvPbz33nuyYyZPnoz/9//+X9ze4SCEEEIIIYQMXRR4AtBqtXj11Vexfv16rF27VkoEpNfrMX36dFx55ZWYPn16v86xdOlSzJgxA2+++Sa2bduG5uZmKJVKFBcXY/78+ViyZEncZrAKVXt7OwRBAMuySE1NjXR1SAygNkNCRW2GhIraDAkVtRkSqnhvMxR4/oZhGFx00UW46KKLQnrdiSeeiEOHDgV1bFFRER599NG+VG9Iqa6ullJJx+MfHQk/ajMkVNRmSKiozZBQUZshoYr3NjPkkwsRQgghhBBCCBlY1ONJok5OTo40zICQYFCbIaGiNkNCRW2GhIraDAlVvLcZCjxJ1MnIyIh0FUiMoTbz/9u776im7v4P4O+ghClO6kCLlqniwFkFFFBrrbWuqjiKoz4+0uJqrVqtVm1t1Wq1zlpR+7QupA7co4AKWhAVi1gHTgQHqERlB5LfHzncXyIBEsgNSN+vczjnJvebe783+STkk+8ifTFmSF+MGdIXY4b0VdVjpmqm00RERERERFRpMPEkIiIiIiIiUTHxJCIiIiIiIlFxjCdVOvHx8cJU0q1bt67o6tBrgDFD+mLMkL4YM6Qvxgzpq6rHDFs8iYiIiIiISFRs8aRKx9LSEvn5+aheneFJumHMkL4YM6QvxgzpizFD+qrqMSNRKpXKiq4EVayMjAxcv35duO3i4gJra+sKrBEREREREVUEsXIDdrUlIiIiIiIiUTHxJCIiIiIiIlEx8SQiIiIiIiJRVc2Rq/RaS0pKQkFBAapVq4Y333yzoqtDrwHGDOmLMUP6YsyQvhgzpK+qHjNs8aRKRyaT4dmzZ5DJZBVdFXpNMGZIX4wZ0hdjhvTFmCF9VfWYYeJJREREREREomJXW6p0XFxcoFQqIZFIKroq9JpgzJC+GDOkL8YM6YsxQ/qq6jHDxJMqHTMzs4quAr1mGDOkL8YM6YsxQ/pizJC+qnrMsKstERERERERiYqJJxEREREREYmKXW2p0nn58iUUCgVMTExQo0aNiq4OvQYYM6QvxgzpizFD+mLMkL6qesww8SQUFBRo3M7KyqqgmqjcunVLWMPI0dGxQutCrwfGDOmLMUP6YsyQvhgzpK/KEjOv5gKv5gplJVEqlUqDHIleW6mpqbh//35FV4OIiIiIiCqZJk2a4I033ij3cTjGk4iIiIiIiETFxJOIiIiIiIhExTGehFq1amncNjMzQ7Vq1SqmMkREREREVGEKCgqQm5sr3H41VygrjvEkIiIiIiIiUbGrLREREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmqekVXgKoepVKJgwcPYvfu3bh69SqysrJga2uLjh07YuTIkWjdunW5z3Hjxg1s2bIFMTExSE1NRY0aNeDg4IABAwZg4MCBqFatmgGuhIxF7JhRKpUICwtDaGgo4uPj8ezZM5iamsLOzg4eHh7w9/dHo0aNDHQ1ZAzG+JzRZsGCBdi+fTsA4Pr166Kcg8RhjJjJycnBzp07cezYMdy5cwcZGRmoW7cu2rdvj1GjRqFdu3YGuBIyFmPEzMWLF7Ft2zZcuHABT548gZmZGezt7eHr64tRo0ahVq1a5b8QqlCF/zcCAwMxadKkch8vJSUFW7ZsQWRkJB48eAALCwvY29ujb9++8PPzg7m5uQFqLQ6JUqlUVnQlqOrIycnBlClTcPLkSa37q1WrhqlTp2LChAllPkdISAgWLFgAuVyudX+HDh2wdu1afli/JsSOmefPn2PatGk4c+ZMsWWkUim++eYbDBgwoEznIOMyxueMNtHR0RgzZgwK/20y8Xx9GCNmrl27hkmTJiEpKUnrfolEgokTJ2Lq1KllPgcZjzFiZunSpdi0aVOx+21tbbF69Wq4u7uX+RxUsf766y+MGzcOCoXCIInnqVOnMG3aNGRmZmrd7+zsjPXr16Nx48blOo9YmHiSQX3++ec4ePAgAMDBwQFDhw5FvXr1cOXKFezcuRNZWVkAVB+2/fv31/v4kZGR+M9//gOlUgkLCwv4+fnBzc0NT58+xR9//IEbN24AADw8PBAUFAQTE/Ymr+zEjBmFQgF/f3/ExsYCABo1aoTBgwfjrbfeQmZmJqKionD8+HEoFApIJBKsW7cOvr6+hr1AMjixP2e0yczMxAcffIDk5GThPiaerw+xY+b+/fsYOnQonj17BgDo0qULevXqhVq1auHixYsICQlBbm4uAFXrh5+fn4GujMQidsxs2rQJS5cuBQCYmppi6NChaNWqFV68eIETJ04I/7dsbGywZ88eNGnSxEBXRsaSkJCA0aNHIyMjAwDKnXhev34dQ4YMQW5uLqpVq4YPP/wQHTp0QGZmJkJDQxEXFwcAcHFxQXBwMCwsLAxyHQalJDKQqKgopbOzs9LZ2Vnp7++vzMnJ0dh/8+ZNZadOnZTOzs7KTp06KV++fKnX8XNzc5W+vr5KZ2dnZdu2bZUJCQlF9n/66adCHQ4cOFDuayJxiR0zf/zxh8bxMzMzi5QJCwtTtmjRQuns7Kz08vIqUgeqXMSOmeLMnz9fOG/hH70ejBEzH3/8sXCODRs2FNkfFxenbNmypXCO3NzcMl8PiU/smJHJZMq2bdsqnZ2dlR07dlReu3ZNY79CoVCuWLFCqMNnn31W7msi4zp58qSyQ4cOGv8zVq1aVa5j+vn5KZ2dnZXNmzdXnjx5UmOfQqFQLly4UDjXzz//XK5ziYXNQWQwmzdvBgBUr14d3377LczMzDT2Ozg4YO7cuQAAmUyGkJAQvY5//PhxobVh/PjxaNmypcZ+qVSKJUuWCF1sN2zYUJbLICMSO2aCg4MBAGZmZli2bBksLS2LlCkcRwMAjx8/xunTp/W+DjIesWNGm+joaOzYsQMAUKNGjXIfj4xL7Jg5d+4cIiMjAQCDBg3S2vWybdu2QiunTCbDX3/9pfd1kPGIHTNnzpwRWkzHjx8PFxcXjf0SiQSTJ0/Gm2++CQAICwtDfn5+ma6FjCsvLw+rVq3CxIkT8eLFC4MdNy4uDhcvXgQADBgwAN27d9fYL5FIMGfOHDg4OABQxXBxQ9IqEhNPMgiZTIazZ88CALy8vIrtEvLee++hbt26AICjR4/qdY7Dhw8DUL25hg8frrWMlZUVBg0aBEA1AdGdO3f0OgcZj9gxk5GRgfj4eABA165dYWtrW2zZd999V9j++++/dT4HGZcxPmdelZmZiTlz5kCpVKJ///5o3rx5uY5HxmWMmCnsjmlmZoZp06YVW+7DDz+En58fAgIChHNR5WOMmFHvsu/q6qq1jImJCdzc3AAA2dnZSE9P1+scZHxnz55Fnz59sHbtWigUClhaWmLs2LEGOXbhd2AAGDFihNYyJiYmwj6ZTIbo6GiDnNuQmHiSQZw/fx4KhQIA8PbbbxdbzsTEBB07dgSg+oL//Plznc9RON7BxcUFderUKbac+vnZelV5iR0z6enpaNWqFWxtbfHWW2+VWLZmzZrCtiF/oSTDMsbnzKuWLVuG5ORk2NraYvbs2WU+DlUMY8TMn3/+CUD1A9cbb7xRbDlXV1csWLAAU6dOFRIKqnyMETPW1tbC9v3794st9+DBAwCqiYzU/09R5bR//37hRwU3NzeEhITAx8fHIMcu/A5cs2ZNtGjRothy6jFb2BOjMmHiSQaRmJgobDs7O5dY1tHREYBqmvLCyYBK8/jxYyEhcHJyKrFsYTcDQDXLIFVOYsdMkyZNEBISgqioKMyYMaPEsrdu3RK2ORty5SV2zLxKvYvt119/zdh4DYkdM6mpqXj69CkAVXfaQnK5HFevXsXp06eRkJDAbpKvEWN8zqgvw7J161Zh4il1586dE3rtdOrUCVKpVOfjU8WpU6cO5s2bh127dgnxUV4FBQXC9xQHB4cSJ85s1qyZsKRgZfwOzMSTDCIlJUXYtrOzK7FsgwYNtD6uJOrdUko7fv369YU3ZeGvhVT5iB0z+ti9e7ew3aZNG4MfnwzDmDGj3sW2T58+6NWrl97HoIondszcvHlT2G7cuDHkcjlWr16Nbt26YcCAAfjPf/6DwYMHCzOtFxQU6HkFZGzG+Jxxc3NDt27dAAC3b9/GqFGjEB0djZcvX+LRo0fYvn07Pv30UygUClhbW+OLL77Q8yqoIowcORIREREYOXKkQdeTf/LkCfLy8gCUHpPVqlUThhZVxu/A1Su6AlQ1FE4hDwC1a9cusax6q4FMJtPp+OpjG0o7vqmpKSwtLZGRkaHz8cn4xI4ZXUVGRiIiIgIAULduXXh4eBj0+GQ4xoyZwi62tWvXxrx58/R+PFUOYsfMo0ePhG2pVIpRo0bh0qVLRcrJZDL88MMPuHTpElasWAFTU1Odjk/GZ6zPmZUrV+Kzzz7DyZMnER8fj9GjRxcp065dO3z11VdFJlOkyqlVq1aiHFefmARU3XEfPXpUKb8Ds8WTDCInJ0fYfnX2t1epdxdRf1xJsrOzdT6+ehldj0/GJ3bM6OLhw4eYOXOmcDsgIADm5uYGOz4ZlrFiRr2L7dy5c0scU06Vm9gxo76I+9KlS3Hp0iU4OTlhw4YNuHjxImJjY/Hjjz+iYcOGAIATJ05g5cqVelwBGZuxPmesrKywePFioeXzVRKJBM2aNWMXf6pS34GZeJJBqI9fKW0cgvp+Xce9qHdP0mWcQ2EZjqupvMSOmdI8e/YM48aNE8ZneXh4CMuqUOVkjJhR72Lbo0cP9O3bV/+KUqUhdswULokBqCaJad68OXbu3Alvb29YWVnBxsYGffv2xY4dO4QfMH799VdRhgyQYRjrf9Phw4fh7e2N06dPo379+ggMDMSKFSvw7bffonfv3gBUw0D69esnjPWkf6eq9B2YiScZhHorUWnrBhX2Uwd0ewMBmr/w6LIuUeE52J2p8hI7ZkqSlpYGf39/3L59GwBgb2+PZcuWQSKRlPvYJB5jxExhF9uaNWti/vz5eteRKhexY0apVGrc/uabbzRmLC3UsGFDTJ48GYDqy+C+fft0Oj4ZnzE+Z8LCwjB9+nTk5OSgc+fOOHz4MCZNmoT33nsPQ4YMwapVqxAUFARzc3NkZmZi/PjxSEtL0/9iqEqoSt+BmXiSQVhaWgrb2mZnU6f+Qa1LlwF9j69eht0mKy+xY6Y4SUlJGDlypDBzYcOGDbFlyxZ2p3wNiB0z6l1sZ82aVeLSGPR6EDtmLCwshO2mTZuWOMarsBULgLAQPFU+YseMUqnE999/j4KCAtSsWROrVq3S+mOFp6enMKnQ8+fPsXnzZp2OT1WPlZWVsP26fwdm4kkGYWNjI2yXNphZfb+uX/bVj1/aWllyuVzo/sRkovISO2a0iY+Ph5+fH+7duwdANTvc77//XuoscVQ5iBkz6l1svby8MGjQoLJWkyoRsT9n1BOGZs2alVi2Tp06wni91NRUnY5Pxid2zFy9elVYu7Nv374ljuEcOnSo8OPGqVOndDo+VT01atQQtnVZL7awTGX8DsxZbckgmjZtKmw/fPgQTZo0Kbas+iyAjRo1KtPxS/L48WNh8Wddj0/GJ3bMvCoyMhKTJ08WfpRwdHTE5s2bUb9+/TIdj4xPzJhJSEgQlm2KjIyEi4tLqY8pLGNnZ4fw8PBSy5Pxif0507hxY73qU9gds/B/FFU+YsfM3bt3he3S1gmVSqVwcHDQ+Hyif5833ngDVlZWyMzMLHWJlIKCAqFbdmX8DswWTzIIBwcHYVt98WVtCvdLJBI4OTnpdPzatWujbt26Oh1ffV210j7UqeKIHTPqwsPDERAQICSdbdq0wdatW5l0vmaMGTNUNYgdM+r/Y0qbMKigoEBoIeNnT+VlzM8ZXbpNFq5Lbsh1Ien1UxiXt27dKrHc7du3hcmIKuN3YLZ4kkG4u7vD1NQUcrkcMTExGDlypNZyBQUFiI2NBQC4urpqdGkpTceOHXH06FFcvXoVL1++1Oh6oC46OlrY7tSpkx5XQcZkjJgBgHPnzmHKlCnCgHwPDw+sWbNGYxwPvR7EjBknJyesXbu21HIrV64UvmwWlq+M42hIRezPmdq1a8PJyQmJiYlITEzEo0eP0KBBA61lr1y5IowJrIxfCElF7JhR/9EhISGhxLL5+fnCJHiVsfWKjKdjx46Ij4/H06dPkZiYWOwPHerfgTt27Gis6umMLZ5kEDY2Nnj77bcBqFqXiusKcOjQIWEh3D59+uh1jsKJGfLz84UJQF6VkZGBvXv3AlCNt3F1ddXrHGQ8xoiZp0+fYsqUKcKXPR8fH/z8889MOl9TYsZMnTp10LNnz1L/1BfvLrzP09OznFdGYjHG50zhkjtKpRIbN24sttzWrVuFbX3PQcYjdsy0atVKGBscFhZW4vCh0NBQZGRkAFD9aEr/XuqTk/3+++9ayxQUFGD79u0AVONCK+P/JiaeZDBjxowBoJrc57PPPhM+LAvdvHkTixYtAqCaoWvIkCF6Hb9nz57CeJq1a9fi/PnzGvvz8vIwY8YMoSvT2LFjy3AVZExix8w333wjfDFo3bo1fvrpJ4Msx0IVR+yYoapH7Jjx8/MTJvHYsWMHQkNDi5TZt2+fcH+7du3Qpk0bfS+DjEjMmJFKpcKa0VlZWZg6darwf0rdxYsX8d133wFQLYsxevToslwKVRFt2rSBu7s7ACAkJARHjhzR2K9UKvHtt98KLeQjRoyolL1xJMpXF6EiKofJkyfj2LFjAFSTLgwfPhwNGzbEP//8gx07diAzMxMAsGDBAvj5+Wk8NiYmBv7+/gBUXWS1/aITHh6OTz75BEqlEqamphgyZAjatWsHmUyGXbt24caNGwBU/9i3bt3KMRGvAbFi5tatW+jbt6+wzt6MGTNgb29fan1q1aqFDh06GOTaSBxif86U5KOPPsK5c+cAANevXy/vpZCRiB0zJ06cwJQpU4SxVT4+PvD19YVUKkVERASOHj0KQLXkxp49e+Do6CjatZJhiBkz2dnZGDFiBP755x8Aqi7bAwcOhKurKwoKChAdHY1Dhw4hPz8fADB//nwMHz5c1OslcajHQmBgICZNmqS1XHJyMnr06AGg+Anrrly5gmHDhkEul0MikaBfv37w9PRETk4O9u3bJyzT1LRpU+zZs0djGZbKgmM8yaCWLFmCzMxMREVFITk5GT/88IPGfolEgsDAwCIf0rry9fXF119/jUWLFkEul2P79u1Ct4JCrVq1wrp165h0vibEipl9+/ZpLO6+dOlSnR5XlmSEjEvszxmqesSOmV69emH58uX46quvkJGRgYiICERERGiUqVWrFtavX8+k8zUhZsxYWFhg06ZNmDZtGqKjo5Genq51nU5TU1PMnj2bSScBAFq2bImVK1fiiy++QFZWFvbv34/9+/drlLG3t0dQUFClTDoBJp5kYBYWFggKCsKBAwewb98+YSKgWrVqoX379vD390f79u3LdY7hw4ejQ4cO+N///oezZ88iLS0NpqamcHZ2Rr9+/TB06FCYmpoa6IpIbGLFTGHrN1U9xvicoarFGDHTp08ftG/fHtu2bUN4eDhSUlIgkUjQpEkT9OzZEyNGjKiU6+qRdmLHTJ06dfDrr78iLCwM+/fvx99//42nT59CKpXCzs4OHh4e+Oijj7jONGno2bMnDh06hC1btuD06dN49OgRJBIJmjVrht69e+Ojjz6qtEknwK62REREREREJDJOLkRERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klEREQGJ5fLK7oKVAK+PkRkbNUrugJERCSemJgY+Pv7l/nxdnZ2CA8PN2CN/p+vry9SUlIAANevXxflHMa0evVqrFmzptRy1atXh7m5OerVqwcXFxd07twZ/fv3h7W1tRFqWT7q8TRw4EAsXry4SJmcnBysWbMGVlZWCAgIKLJ/1qxZ2Lt3LwDgt99+Q+fOncWttMj0eY9JJBJIpVLY2NjAzs4OrVq1wsCBA9GyZUuRa/n/Snt9iIjEwhZPIiIiI8rPz0dGRgbu3r2LY8eOYeHChejRoweOHz9e0VUrt+vXr6Nv377YuHEj8vPzK7o6lY5SqURubi7S0tJw6dIl/P777xg8eDDmzZsHhUIh+vn5+hBRRWKLJxHRv0TNmjXx3//+V6/H1KhRQ6TaVG1ubm547733tO4rKChAVlYW7t+/j+PHjyMvLw8ymQxTpkzB+vXr4e3tbdzKGtCVK1eQnJxc0dWoMKW9xxQKBTIyMnDr1i1ERUUhOzsbSqUSwcHBMDc3x+zZs0Wt37/99SGiisXEk4joX8La2hoff/xxRVfjX8HJyUmn5/rRo0cYN24cbt26BYVCga+//hrHjx+HmZmZEWqpv86dO5e7W/TixYu1dtGtCvR5j8lkMsyaNQsREREAVN2Ohw4dCkdHRzGrSERUYdjVloiIqII0aNAAa9euhYmJ6t/xo0ePRBtTS5VLrVq1sGrVKrz55psAVN1wd+7cWcG1IiISDxNPIiKiCtSsWTN4eHgIt//6668KrA0Zk1QqxQcffCDcrgqTbBERFYddbYmIqExu376N/fv3IzY2FklJSXj+/DkkEglsbGzg5OQELy8vDBkypFyztSYmJiIkJAQxMTG4f/8+8vLyUKtWLTRt2hRdunTBkCFD8MYbb5R6nIcPH2Lnzp2IiopCcnIyMjMzUbt2bbRo0QK9evVC//79YWpqWuZ6lpeDgwMiIyMBqFo9i/Ps2TMEBwcjMjISt2/fRkZGBmxsbGBvbw8vLy/4+fmhTp06JZ4rLy8PBw4cwIkTJ5CQkACZTAYzMzPUq1cP7u7ueOedd+Dr66v1scXNaqttRt81a9YI9wUGBmLSpEkAtM9qq1Ao4OPjI1z7vn370Lx58xKvY9euXZg7dy4AYPDgwfjuu++KlMnOzkZISAjCw8Nx8+ZNyGQyWFtbo2nTpujevTuGDx+OWrVqlXgesdWrV0/YTk1NLbHs5cuXcfjwYZw/fx4PHz6ETCaDqakpatasCVdXV/j4+GDgwIGQSqUaj9Pn9VGXnp6O4OBgnDp1Cvfu3cOLFy9Qs2ZNODo6wtfXF0OHDoWFhUVZL52I/mWYeBIRkV7kcjm++eYbhISEaJ2JMycnB6mpqThz5gx++eUXrFu3Du7u7nqfZ926dVi9enWRc6SlpSEtLQ2xsbH45ZdfMGfOHAwdOrTY42zevBkrV65Ebm6uxv2pqalITU3FyZMnsXHjRqxatQouLi5619MQCrvaAkC1atW0lgkODsbixYuRlZWlcf/Tp0/x9OlTXLx4EUFBQZg9ezY+/PBDrce4f/8+JkyYgNu3b2vcL5fLhZl29+7di7Zt22L9+vWlJrGGYmJign79+mHjxo0AgEOHDpWaeB44cEDYHjBgQJH9Z8+exYwZM5CWlqZxf3p6OtLT0xEXF4dNmzZhwYIF6Nu3b/kvoozu3bsnbKsnoeoyMjIwa9YsnDhxosg+uVyOrKwsPHz4EBEREdi4cSM2btyIZs2alateBw4cwMKFC/HixQuN+588eYInT54gOjoaGzduxLJly/D222+X61xE9O/AxJOIiPQyc+ZMHDp0CIBqTUpPT0+4urrCysoKL168wN9//43Y2FgolUo8e/YMkyZNwtGjR/Vq+QwNDcVPP/0EQJWUeHp6okWLFrC0tMTjx49x8uRJpKSkICcnB3PnzkXjxo3RtWvXIsf54YcfEBQUJNx2d3dHhw4dYG1tjQcPHiAiIgKpqam4e/cuhg8fju3bt8PV1bWcz5D+1LtYFo75U/fLL79g+fLlwu3GjRvDx8cH9erVQ1paGiIiIpCSkoLMzEzMmTMHz549w4QJEzSOkZeXh4kTJwpJZ8OGDeHt7Y2GDRsiKysLN27cwMmTJ6FQKHDp0iUEBgZi+/btOtXfw8MDlpaWSEhIwOHDh4X7CrsQ6/LDw4ABA4TE8/Dhw5g+fXqxZR8/fozz588DUK0127FjR439YWFhmDJlCuRyOQDA3t4e3bp1g62tLWQyGaKionDjxg28fPkSn3/+ObKysjBkyBCdrtWQXrx4gdDQUOG2tgROoVBg/PjxiIuLAwCYm5uje/fucHR0hLm5OdLT03Hu3DkkJCQAUP24MGXKFOzbt0/4QUPf12fbtm1YuHChcNvFxQVdu3ZF7dq1kZaWhlOnTiEpKQlpaWkYP3481q9fDy8vLwM+M0RUFTHxJCIinUVHRwtJp42NDX777TetLVMxMTH473//i+zsbKSlpeHPP//U2ipVnHXr1gFQJZ3alhj58ssvMXv2bOzfvx8A8PPPPxdJPMPCwoSks1atWvjxxx81xlICQG5uLn744Qf8/vvvyMzMxOTJk3Hw4MEiXRXFlJiYiOjoaOF2t27dNPZHR0drJJ2TJk3CxIkTUb36//8LnzVrFlavXo0NGzYAAFasWIE2bdqgc+fOQpljx47h5s2bAIBOnTohKCioyOy58fHxGD16NLKysnDhwgXExsYWSeq0adeuHdq1a4c9e/YIiY27u7tesyg7OjqiZcuWuHLlClJSUnDp0iW0bdtWa9nDhw8LLeH9+vWDRCIR9j148ACzZs2CXC6HiYkJZs6cCX9/f41W5ZkzZ2LPnj2YN28e5HI5Fi5ciHbt2sHBwUHn+pZXUlISZsyYgWfPngFQLV00cuTIIuX27t0rJJ12dnb47bff0Lhx4yLlDh06hOnTp0OhUOD69eu4cOGC8Nrp8/okJCTg+++/BwCYmZnhu+++w/vvv69R5ssvv8SmTZvw448/Qi6XY/r06Thy5IjRWsiJ6PXExJOI6F8iIyMDmzZt0rn8sGHDirRSFo7NA1QJUHHdITt37oyBAwcKLWYJCQk6J54ymQx3794FADg7O2td19LU1BQLFy7EiRMnkJ2djRs3biAvL09IGJVKJVasWCGUX7VqlUYSVsjMzAxfffUV7t+/j5MnT+LevXsIDQ01WutXQkICpk6dioKCAgBAy5YtiyTHK1euFLbHjh2LwMDAIscxNTXFZ599hszMTGzduhUKhQIrV67Ejh07hDJ///23sD169GitS7a0bt0a48aNw5o1a2BiYoL4+HidEk9DGTBgAK5cuQIAOHjwYLGJ58GDB4Vt9cl5AFXrcGH30E8//RRjxozReoxBgwYhPT0dS5cuRV5eHn7++Wf88MMP5ap/ae+x7OxsyGQy/PPPP4iPjxdaZKVSKZYvX641cVN/z82ZM0dr0gkAffv2RWhoKE6dOgVAtWZnWV67n376SajXggULiiSdgKo7+IQJE/Do0SNs27YNMpkMv/32G6ZOnar3+Yjo34OJJxHRv8Tz58+xdOlSncv37t27SOL57rvvolmzZkhOTi7yhf9V6uMlMzMzdT6vekteSkoK0tLSYGtrW6SchYUFdu/ejdq1axf5wh4XF4fExEQAqpYdbUmnuoCAAJw8eRIAsH///nInnomJicUmILm5uXj69Cni4+MRHx8v3G9paVnk9UlOThZauywtLbUmneqmTZuGPXv2ICsrCxcvXsTt27fx1ltvAdAcOxoXF4eePXtqPYa/vz/ef/992NnZGbXlFwDef/99LFmyBPn5+Th69Chmz56t0VIJAHfv3hW6lbq5uWm0Uubl5QldV6VSKcaOHVvi+fz9/bFmzRpkZWXh6NGjWLRoUbmuWd/3GKBK9ufOnYvWrVtr3e/n54e3334bqampWn+EUefi4iIknhkZGXrVA1B1YS6c5KpBgwal/lgUEBCAbdu2AVC9b5h4ElFJmHgSEZHOfHx84OPjU2q5rKwsJCcnC7fz8/N1Poe1tTWaN2+Oq1ev4uXLlxg8eDBGjx4Nb2/vIl0hi+saGRsbK2y3bNmy1HO2aNECUqkUeXl5iI+PR35+vkYCrK+EhAQhOdJF06ZNsXLlSjg6Omrcr94F19PTs9RxstbW1vD09MTx48cBAOfPnxcSz44dO+LXX38FAAQFBSElJQX9+/dH586dYWlpKRyjZs2aqFmzps51N6Q6derAy8sLERERSEtLw7lz54qMe1Rv7ezfv7/GvitXrgiTLzVt2hRWVlYlns/U1BRubm44d+4c8vLycPnyZbRv395AV1M8d3d3eHh4wNvbG61atSqxrLYWR22eP3+Ox48fC7f1ec8VKhybDQDNmzfX6MKsja2tLezs7JCSkoKUlBQ8fvwY9evX1/u8RPTvwMSTiOhfws7ODuHh4QY9ZmZmJu7cuYOkpCTcv38fd+7cwbVr15CYmKjxxbfwy6yupk+fjgkTJqCgoACPHz/G0qVLsXTpUjRq1Aienp7w8vJC165di03ECscyAsDWrVuxdetWnc+dk5ODZ8+e6bRMS1mYm5vD2toaDRo0QMuWLeHt7Q1vb+8iLXsANJJ3XSc9cnV1FRLP+/fvC/f7+vqiU6dOOHfuHADgyJEjOHLkCExNTdGuXTt4enrC29sbzs7O5bm8cuvfvz8iIiIAqMYtFpd4Vq9evchstOqv+40bN/Sepfjhw4dlqbJA23ssJycHN2/exK+//irMxJuYmIh+/fqVmnRq8/z5c9y9exdJSUlISkrC7du3ce3aNdy6dUvjfabvew7QfP4iIiL0fv4ePHjAxJOIisXEk4iI9KJQKBAaGort27cjISFB65IqgKprZ+HYRX15enpi3bp1+PrrrzXWtXzw4AF27dqFXbt2QSqVwtvbG2PHjkW7du00Hv/8+fMynVf98eVJPNXXuCwPmUwmbOu63qR6OfXnwcTEBOvWrcO3336L0NBQITGRy+WIiYlBTEwMli9fDnt7ewwaNAj+/v4aLaHG0qNHD9jY2ODFixc4fvw45s2bJ6yxeuXKFdy5cweAKkbq1q2r8VhDvO6GZm5uDjc3Nyxbtgxubm74/vvvkZGRgYULFyItLU2n7ql5eXnYuXMnQkJCcOPGjWLLlec9B1TO54+Iqg4mnkREpLPMzEwEBgbi7NmzGvdLJBI0aNAAjo6OcHNzQ6dOnZCcnIy5c+eW+Vze3t44ceIETp06hePHjyMqKkqYARRQfRk/fvw4jh8/jk8//RSTJ08W9ql/+X733XeLHT9XnFcTmopSllar4n4IAFQzpy5ZsgSffvopDh06hIiICFy+fFnjMffu3cOKFSuwa9euYmdQFZNUKkWfPn0QHBwMmUyGs2fPonv37gBK7mYLaL7uLVu21Ht9zuImMzKUMWPG4P79+0IL/Pr169GoUaMS16EtXLLk2rVrGvebmJjAzs4OTk5OaNWqFTp37oyoqChhRuiyUH/+unTpovcSKeVdO5SIqjYmnkREpLNFixYJSaeVlRX8/f3h5eUlrOOprnDSkfKQSqXo1asXevXqBaVSievXryM6OhqRkZGIjo4WuvOuXbsWnTp1Erpl2tjYCMdwd3cvdmbTyk59rGV6erpOj1Evp/48qHvzzTcREBCAgIAAvHjxAufOncPZs2cRERGBBw8eAFBN7DRr1iy9uikbygcffIDg4GAAqu623bt3h1KpxJEjRwCoEugePXoUeZz69davX1+v5VyMZebMmYiNjRXWbl20aBHat29f7Hjl6dOnC0ln3bp1MWbMGHTt2hVOTk5FZiYOCwsrV93Unz9HR8dK+fwR0eur6IASIiIiLR4/fox9+/YBULVwbtmyBVOnTkX79u21TuKingCVpeXuVRKJBK6urhgzZgw2bdqE8PBwjTFohbOZAkCTJk2E7cLZbUuj3ppaWdjb2wvbhYlKaa5evSpsqz8PxbGxsUHPnj0xb948hIeHa7RSx8bGComoMXXo0EGoe0REBPLz83HhwgVhDGbv3r21Lgejfr3q4xVL8vz58xJbiQ1NKpVi8eLFwuRVOTk5mDlzptY6/P3338IEU5aWlggODsaECRPg5uam9fp1/XGiOGV5/tLT0w3y/iaiqo+JJxER6eTy5ctCV7zmzZujTZs2JZaPiYkRtvX5YhoWFoaPP/4YPj4+2LBhQ7Hl6tevj4kTJwq31Wf07NChg7B96tQpYV3C4ly+fBldunSBu7s7Bg8eXKYZQcWgfh1RUVGlLpHx8uVL/PXXX8Ltwq6jBQUFmDlzJgYNGgQPDw/k5eVpfbxEIsGoUaM0Wt/Ux9iWprRZUPVR2JX2xYsXiI2NxdGjR4vse5W7u7uQ0CUlJZWarOfm5qJ3795o3bo13nnnnSLdWcXSokULjaVeLl++LKx5q+7SpUvCtoeHR4k/JCiVSmHiKEB7l+vSXh/1eLtw4UKpP8akpqbCy8sLbdq0QZ8+fSrljzdEVHkw8SQiIp2oJyvqk95o8+eff2p8CdYnkVMqlYiKisKDBw9w6NChEh+r3sKjPptmly5d0KBBAwCqMXLFralZeL7ly5cDUC0D07hx43ItpWJI9vb2cHd3B6Cq25o1a0os/9NPPyE7OxsA4OTkJLQIV6tWDdeuXcOVK1fw5MmTErtkKhQKjddXn1lK1WfmLc8kN4BmchkWFoY///wTgGrm2I4dO2p9jJWVFXr16iXcXrp0aYk/egQFBSE9PR1yuRxZWVlFlrMRU2BgIOzs7ITbK1asQGpqqkYZ9fdcaa2Zv/32W6lLGJX2+jg4OAjjofPy8rBixYoSz7ly5UrI5XLk5ubCysqqyHq6RETqmHgSEZFO1JfzePDgAf73v/8VKaNQKBASEoLPP/9c4/7CZEgX3bp1g62tLQBV99KFCxciJyenSLk7d+5oJGLvvPOOsG1qaopPPvlEuP3TTz9hy5YtRVqBsrOzsWDBAqGVsHr16ggICNC5rsYwZcoUoaVqy5YtWLNmTZGkIj8/H6tWrcLvv/8OQNWyNXv2bI0ygwcPFrbnz5+P+Pj4IudSKpVYsmQJnj59CkA1QY96clQa9eVtUlJSdH6cNm+++aaQdO/evVvoZtuvX78SW+4CAgIglUoBqFqJv/jiiyItxUqlEiEhIRoT8QQEBBj1Bwdzc3PMmzdPuJ2RkYHvvvtOo4z6e+7ChQs4ceJEkePk5eXh559/xpIlSzTu1/ae0+X1mTx5svD87tq1C0uWLCnSQp6fn49169Zh9+7dwn2TJk3SejwiokKV4yddIiKq9N566y14enoiKioKAPDdd9/hyJEjcHd3h7W1NR4/fozTp08LCYKpqanQxbW0FlJ1UqkUX375JT777DMAQHBwMMLDw9GtWzc0atQIgGqNxpMnTyI3NxcA0L17d/j4+GgcZ9iwYTh//jz2798PhUKBxYsXY+fOnejWrRvq1KmDBw8eICIiAmlpacJjPv/8c53XyzSWLl26IDAwEKtXrwYArF69Gnv37oWPjw/q1auHJ0+eICIiQqO165NPPkHXrl01juPn54c//vgD169fh0wmw5AhQ+Dh4QFnZ2fUqVMHT58+RVRUlDC2z9TUtEjyWhr1GXAPHDiAGjVqoH79+nBycoKvr6/e1z5gwADExcUhKytLuO+DDz4o8TEuLi6YN28e5s6dC6VSiQMHDiAyMhI9evRAkyZN8OzZM8TExGh0w/Xx8cGIESP0rl95eXt7o1evXkJCeeTIEQwePFiYTbZwEqHExEQolUoEBgbC09MTLVq0gJmZGVJSUhARESG0hpb2ntPl9fHy8sLEiROxfv16AMDmzZtx+PBh+Pj4oH79+khNTUVkZKTGGrGjRo0SZh4mIioOE08iItLZ0qVLMXbsWOFLe1xcHOLi4oqUc3Z2xuLFizFs2DDI5XIkJiYiLy9PaIkqTd++fZGeno7FixdDLpcjLS1No3VFXe/evYu09hRasmQJGjVqhE2bNkEul+Pu3bu4e/dukXLm5uaYPn06PvroI53qZ2yBgYGoXbs2li1bhqysLCQnJwutm+osLS0xf/58rWMgpVIpgoKCEBAQgISEBADAmTNncObMmSJl69Wrh2+//VZjzJ8unJ2d4e7ujri4OCiVSmFmY19f3zIlnu+99x4WLVoktLi5ubkVO/uruiFDhqBGjRr4+uuvIZPJIJPJio2fwYMHY/78+QYdn6qPr776CmfOnBGS64ULF+LgwYMwMzNDtWrVsHr1aowbN06Y5CkqKkr48Uddhw4dMG3aNIwcORKAas3TV+n6+kydOhV169bF8uXLkZ2djUePHmHHjh1FjletWjWMHz8e06ZNK/8TQURVHhNPIiLSWd26dRESEoLg4GAcPXoUN2/eREZGBszNzWFrawtXV1f07NkTffr0QfXq1fH2228jMjIS2dnZOHbsGPr166fzuUaNGoVu3brhjz/+QExMDO7evYuMjAxYWFjA1tYWnTp1Qr9+/UpMjkxMTDBt2jR8+OGH2LVrF86ePYvk5GRkZGTA0tISTZs2RdeuXTFs2DChNbWyGjlyJHr37o2dO3ciKioK9+7dw4sXL2BpaQkHBwd4e3tj6NChJY6ze+ONN7Br1y4cPXoUx44dwz///IMnT54gPz8fderUQbNmzeDj44PBgwejRo0aetdRIpFg48aNWLlyJcLDw5GWlqbRCqcvGxsb+Pj44NixYwCKn1RIm3fffReenp4ICQnB6dOnkZiYCJlMBlNTUzRs2BDt27fHkCFD9F7j1dAaNGiASZMmCT+eJCUlYd26dUIy16xZM4SGhmLr1q0IDw/HnTt3kJ2dDQsLCzRs2BDNmzfHe++9B29vb0gkErz11lu4ffs2kpKScPHiRbRr1044lz6vz0cffSSsp3rmzBncvXsXz58/h5mZGZo0aYLOnTtj2LBhOv0QQEQEABIl58AmIiIiIiIiEXFyISIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiIS1f8B8dliV35QgI0AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "from error_parity.roc_utils import compute_roc_point_from_predictions\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ " plot_relaxation=True,\n",
+ ")\n",
+ "\n",
+ "# Compute predictions\n",
+ "y_pred_binary = clf(X, group=group)\n",
+ "\n",
+ "# Plot the group-wise points found\n",
+ "realized_roc_points = list()\n",
+ "for idx in range(N_GROUPS):\n",
+ "\n",
+ " # Evaluate triangulation of target point as a randomized clf\n",
+ " group_filter = group == idx\n",
+ "\n",
+ " curr_realized_roc_point = compute_roc_point_from_predictions(y_true[group_filter], y_pred_binary[group_filter])\n",
+ " realized_roc_points.append(curr_realized_roc_point)\n",
+ "\n",
+ " plt.plot(\n",
+ " curr_realized_roc_point[0], curr_realized_roc_point[1],\n",
+ " color=all_group_colors[idx],\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ " )\n",
+ "\n",
+ "realized_roc_points = np.vstack(realized_roc_points)\n",
+ "\n",
+ "# Plot actual global classifier performance\n",
+ "global_clf_realized_roc_point = compute_roc_point_from_predictions(y_true, y_pred_binary)\n",
+ "plt.plot(\n",
+ " global_clf_realized_roc_point[0], global_clf_realized_roc_point[1],\n",
+ " color=global_color,\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ ")\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8db9a56",
+ "metadata": {},
+ "source": [
+ "### Compute distances between theorized ROC points and empirical ROC points"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "be73972d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Group 0: l2 distance from target to realized point := 0.199%\n",
+ "Group 1: l2 distance from target to realized point := 0.000%\n",
+ "Group 2: l2 distance from target to realized point := 0.003%\n",
+ "Group 3: l2 distance from target to realized point := 0.092%\n",
+ "Global l2 distance from target to realized point := 0.036%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Distances to group-wise targets:\n",
+ "for i, (target_point, actual_point) in enumerate(zip(clf.groupwise_roc_points, realized_roc_points)):\n",
+ " dist = np.linalg.norm(target_point - actual_point, ord=2)\n",
+ " print(f\"Group {i}: l2 distance from target to realized point := {dist:.3%}\")\n",
+ "\n",
+ "# Distance to global target point:\n",
+ "dist = np.linalg.norm(clf.global_roc_point - global_clf_realized_roc_point, ord=2)\n",
+ "print(f\"Global l2 distance from target to realized point := {dist:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "### Compute performance differences\n",
+ "> assumes FP_cost == FN_cost == 1.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "6991bf75",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual accuracy: \t\t\t84.678%\n",
+ "Actual error rate (1 - Acc.):\t\t15.322%\n",
+ "Theoretical cost of solution found:\t15.336%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "from error_parity.roc_utils import calc_cost_of_point\n",
+ "\n",
+ "# Empirical\n",
+ "accuracy_val = accuracy_score(y_true, y_pred_binary)\n",
+ "\n",
+ "# Theoretical\n",
+ "theoretical_global_cost = calc_cost_of_point(\n",
+ " fpr=clf.global_roc_point[0],\n",
+ " fnr=1 - clf.global_roc_point[1],\n",
+ " prevalence=y_true.sum() / len(y_true),\n",
+ ")\n",
+ "\n",
+ "print(f\"Actual accuracy: \\t\\t\\t{accuracy_val:.3%}\")\n",
+ "print(f\"Actual error rate (1 - Acc.):\\t\\t{1 - accuracy_val:.3%}\")\n",
+ "print(f\"Theoretical cost of solution found:\\t{theoretical_global_cost:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f2e16086",
+ "metadata": {},
+ "source": [
+ "### Compute empirical fairness violation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "fce51ec0",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Maximum fairness violation is between group=0 (p=[0.69338557]) and group=2 (p=[0.74338557]);\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Empirical true_positive_rate_parity violation: 0.05\n",
+ "Theoretical true_positive_rate_parity violation: 0.05\n",
+ "Max theoretical constraint violation:\t 0.05\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import evaluate_fairness\n",
+ "\n",
+ "empirical_metrics = evaluate_fairness(\n",
+ " y_true=y_true,\n",
+ " y_pred=y_pred_binary,\n",
+ " sensitive_attribute=group,\n",
+ ")\n",
+ "\n",
+ "disparity_metric_map = {\n",
+ " \"equalized_odds\": \"equalized_odds_diff\",\n",
+ "\n",
+ " \"true_positive_rate_parity\": \"tpr_diff\",\n",
+ " \"false_negative_rate_parity\": \"tpr_diff\",\n",
+ "\n",
+ " \"false_positive_rate_parity\": \"fpr_diff\",\n",
+ " \"true_negative_rate_parity\": \"fpr_diff\",\n",
+ " \n",
+ " \"demographic_parity\": \"ppr_diff\",\n",
+ "}\n",
+ "\n",
+ "disparity_metric = disparity_metric_map[FAIRNESS_CONSTRAINT]\n",
+ "\n",
+ "# Calculate empirical fairness violation\n",
+ "empirical_constraint_violation = empirical_metrics[disparity_metric]\n",
+ "\n",
+ "# Check if empirical and theoretical results are reasonably close\n",
+ "print(f\"Empirical {FAIRNESS_CONSTRAINT} violation: {empirical_constraint_violation:.3}\")\n",
+ "print(f\"Theoretical {FAIRNESS_CONSTRAINT} violation: {clf.constraint_violation():.3}\")\n",
+ "print(f\"Max theoretical constraint violation:\\t {clf.tolerance:.3}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "485d5b1f",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "---\n",
+ "# Plot Fairness-Accuracy Pareto frontier achievable by postprocessing"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "790f18c6",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Using `n_jobs=9` to compute adjustment curve.\n",
+ "INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13\n",
+ " 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ].\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c6ae1586f8254b69b2162256afe47031",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/28 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=predictor,\n",
+ " fit_data=(X, y_true, group),\n",
+ " eval_data={\n",
+ " \"fit\": (X, y_true, group),\n",
+ " },\n",
+ " fairness_constraint=FAIRNESS_CONSTRAINT,\n",
+ " y_fit_pred_scores=predictor(X),\n",
+ " predict_method=\"__call__\", # for callable predictors\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "a17d1107",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG2CAYAAABiR7IfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACa0ElEQVR4nOydd3xUVfr/PzOTKQkhkAAhARN6GpEO0hUUVtFdQMEVxUV3UVlksSyKWJC1gCBYgAWVFRuWVXFVRCmWFWGlCoTAJKT33qffuXN+f/Cb+01IMifJzJ1CnvfrlRdk5uSeZ95z595nzj33OQrGGANBEARBEAThEqWvAyAIgiAIgggEKGkiCIIgCIJoA5Q0EQRBEARBtAFKmgiCIAiCINoAJU0EQRAEQRBtgJImgiAIgiCINkBJE0EQBEEQRBugpIkgCIIgCKINBPk6AH/k9OnTYIxBrVb7OhSCIAiCINqIIAhQKBQYOXKkLNunkaYWYIyhMxRKF0XR1yH4PeSIDzniQ474kCM+5IiP3OdvGmlqAecI09VXX+3jSORDEARUV1cjIiKCRtRagRzxIUd8yBEfcsSHHPERBAHnz5+HSqWSrQ9KmjoparUavXv39nUYfg054kOO+JAjPuSIDznio1arZU2YALo812kRRRH19fU03OsCcsSHHPEhR3zIER9yxEcURTgcDln7oKSpk2K1WpGRkQGr1errUPwWcsSHHPEhR3zIER9yxMdqtcJut8vah4J1hhnP7eTcuXMAruw5TQ6HA4IgQK1WQ6mk3LklyBEfcsSHHPEhR3zIER+Hw4HU1FQoFArZzt80p8lNRFGEIAi+DqPD2Gw2X4fg9/irI29cv+ehVCqh1Wp9GoO/Q474kCM+5IiPUqmEQqGQtQ9KmjoIYwylpaWora31dSgdgjEGURShUqlk38kClUBw1L17d0RFRfksPpvNhtLSUkRFRUGj0fgkBn+HHPEhR3zIER+bzQa73Y6gIPlSG0qaOogzYYqMjERISIjfnlRbw+FwwGazQaPR0FBvK/izI8YYTCYTysvLAQDR0dE+iUMURRgMBpqc6gJyxIcc8SFHfERRlL3GIs1pagHenCZRFHHx4kVERkaiR48e3gyNIJpQVVWF8vJyxMXF+fxSHUEQhK+Re06yf319DhCcc5hCQkJ8HAnR2XHug4E8r44gCCJQ8Puk6c0338Tdd9/tsk1NTQ3+/ve/Y+zYsRg3bhz+8Y9/wGw2yx5boF2Sa4woijCZTDTU64JAcOTrfdBkMuHs2bMwmUw+jcOfIUd8yBEfcsTHZDLJfuOOX89p+vDDD/Haa69hzJgxLtstX74cZrMZ7777Lurr6/HUU0/BZDJh/fr1Xoo08FAoFAgKCvL5SdefIUd81Go1IiMjaVkHF5AjPuSIDzni4407iv0yaSorK8Ozzz6LY8eOoX///i7bnj59GsePH8e3336LQYMGAQCee+45LF68GI8++iiVnW8FpVJJd2BwIEd81Gq1zyahBwrkiA854kOO+HTaZVTOnz8PtVqNr7/+GsOHD3fZ9uTJk+jVq5eUMAHAuHHjoFAocOrUKblDDVict9N74z6AU6dO4eTJk7L342ncdXTs2DHEx8ejsLDQw5H5D3RHDx9yxIcc8SFHfLxxTvPLpGn69OnYsmULYmJiuG3LysqaZd8ajQbdu3dHSUmJW3E0nhdlNpula6UOhwMOh0N6cxwOR5Md2fk80PzE2562Lf1tR9oCTdfkcba1WCxSO17b1rbLe60OhwN33nkn8vPzPebFW74bO3L+3h7fw4cPx+HDhxEVFdXu96Yjvm02m8t9tvH8LEEQmsyNsFgs7WrrXMrBYrEgPT1det5ut7fa1lkmwbnMgbOtM36r1QqLxSL9rclkkia4t6etcy6a09PlXtrTluewLW2tVivS09NRV1fn0ktbfLfFoSd8O714wrfZbOa2dTqqr69v837Y3v27NS/u+r7cizu+G3u5vK3RaER6ejrMZnO799mO7t+eOEa05tBTvhsfI2pra2W/KcYvk6b2YDabW7yEotVq3VqjRxRFZGRkSL/n5OSgtLQUwKUdxG63NzmZNu7LarVKbxxjDBaLRdq5nCdiJzabrcmb3Lit3W5v1rbxJDeLxSLtXJdvVxCEZm0bx2C1WqHT6aBUKiEIQrP4nW0dDgcsFou0017etnEMzrZOL3a7vdl2nW2dXly1vdyhp3y78tK4rd1uh0qlkmo0tce31WqFSqVCr169pL9tzWFjL5f7vtzL5b6tVqvUtqKiApmZmVLb7OxslJWVSa9br9dLB8zKyspm+7fzS4bdboder4fBYABw6UaL9PR0qW1eXh6Ki4sBQJpf4fRfW1sLvV4vtS0oKJBG2hhj0Ov1UvJQX18PvV4vva+FhYUoKCiQ/lav10vFYw0GA/R6vfTaS0pKkJubK7VNT09HdXU1AMBoNEKv10sxlZaWIicnR2qbkZGByspKAJeOH3q9XnJcXl6OrKwsqW1WVhYqKiok93q9XnrfKyoqWj1GOH2bTCbodDpERkYiPz9fapubm+vSd1pamtQ2Pz8fRUVFAC6953q9Hg0NDa36bs1hQ0NDE99FRUVNYkpLS0NNTU2bfF+8eBFVVVUALp249Hq9tP+35NuVw6ysLOh0OiQlJaGoqEiqPWa1Wrn7bONjsl6vh9FoBABUV1c32Wdd+Xa1zzp919fXAwDq6uqg1+ulz5yrfdbp23l8KS4uRl5entQ2PT3dpe/LHRoMBiQlJUkxOX2XlZUhOztbapuZmenSt7eOEUePHsX+/fuRnp7O3Wc9dYzIzc2Vf84X83NWrlzJFi5c2Orzzz33HJs3b16zx8ePH8/eeeedDvWZkpLCUlJSmMlkkh4zmUzMarUyxhgzGo0sNTVVel4URWa32xljjBkMBlZfX8/q6+uZwWBgDQ0NrK6ujjU0NEjP1dXVMYPBIP3u3K7D4WAWi4U1NDQwk8nEHA4Hs9vtzOFwcLfbuK0zJlEUpfjtdrv0e+O2cXFx7P3332fz5s1jycnJ7JZbbmEHDhxo0vaHH35g8+fPZyNGjGATJ05kL774IjObzVI/P/30E5s7dy4bNmwYGz9+PHv88cdZbW0tE0WRxcXFST+PP/54izEwxqQ45s+fz5KTk9nNN9/MDh48KLV97bXX2J133skefvhhNnLkSLZmzRrGGGO//fYbu/vuu9moUaPYuHHj2MqVK1llZaW0XYvFwl599VV23XXXsWHDhrG5c+eyQ4cOSdtNT09nixcvZiNGjGCTJk1ijzzyCCsrK5NeW1ZWFvvzn//MRo0axUaMGMHuvfdelpaWJsX/3//+t8lrX7lyJautrWV2u539+uuvLC4ujuXn5zO73c6uu+469q9//Ys9+OCDbMSIEWzcuHHs+eefZxaLRfJy6NAhNnv2bMnBZ599xuLi4lhBQUGz99W5X5w/f56ZzWZmtVpb3WdFUWRGo1HaT202GzMajVJb59+3ta3FYpFiMBqNTBAExhhjgiC0u23j98q5Xzk/Zzabrd1t7XY7MxqNkqfLvbSnLc+hO74v9+KO78ZePOHb6cUTvk0mk8d8N/birm+nF3d9X+7FHd+Nvbjj+3IvnvDd3mPEnj172Jo1a9j333/v1WOE8/wtFwGfNL311lts6tSpTR6zWq0sISGB7d27t0N98qSbzWZ24cKFJm+eEwDt/vn000+lv//0008ZAHbttdc22W7Pnj1dbqO9iKLIrFYri4uLYyNGjGC7du1iWVlZ7OWXX2YJCQns1KlTjDHGDhw4wBISEtg///lPlp2dzb7//ns2efJk9te//pUxxlhVVRVLTk5mu3btYoWFhezkyZNs+vTp7Mknn2SMMVZeXs7i4uLYu+++y+rr61uNhxfH5s2bWVxcHHvhhRdYfn4+y8nJYWfPnmVDhw5lzz33HMvMzGS//voru+mmm9jcuXOlD/Ozzz7Lxo8fz7777juWl5fHXnnlFZacnMyysrJYaWmplLhkZmayc+fOsfvvv59NmzZNOtDMnj2bPfHEEywnJ4dlZGSwxYsXsxtuuKFNr/3o0aNNEp5p06axq6++mr333nssPz+fff755yw+Pp795z//YYwxduHCBZaUlMTWr1/PsrKy2DfffMPGjh3bZBuX42pf9AZWq5UVFBRIB1OiOeSIDzniE2iO0tLS2IEDB1hGRobX+rRarez06dOyJk1+efdcexg7diw2btyIvLw89OvXDwBw/PhxAMDo0aN9GZrf4xw2vvXWW3HXXXcBAFasWIHjx49j165dGDVqFN566y3MmDEDS5cuBQAMGDAAjDE8+OCDyMzMlC5L9enTB3379kXfvn3xxhtvSNt2Xp7q2rUrunbt6jIeV3E4Wb58ubSdhx9+GPHx8XjmmWcAAIMGDcIrr7yC2bNn4/Dhwxg9ejQ+//xzPPPMM7jxxhsBAI888ggYYzAYDPj6668RFRWFp59+Wtr+a6+9hvHjx2Pfvn2YM2cOCgoKMGnSJPTt2xdqtRpr165FdnY2HA4HysrKXL72lpg8eTL+9Kc/AQBiYmLwwQcf4LfffsOcOXPw7rvvIjk5GY8//jgAYODAgaiqqsKLL77IfS99hSiKqK2tpcr4LiBHfMgRn0BzFB8fj/j4eK/2KYqitF6oXARc0iSKIqqrq9G1a1fodDoMHz4co0aNwiOPPII1a9bAZDJh9erVmDNnjk/KDTiv8baHxitXz507FwaDodlaZ43nE3gCpVKJ4OBgAMA111zT5LmRI0fiyJEjAC7NXbj55pubPD9u3DjpuVmzZuGWW27BkiVL0KtXL0yaNAnXXXcdZsyY0WK/q1evxp49e6TfH3jgASxZsoQbBwD06NGjSeJ18eJFTJo0qcnfJCQkoGvXrkhPT0dERAQEQWh2B+ajjz4KANi6dSsyMjIwcuTIJs9brVZkZWVBqVTi0Ucfxdq1a/Hxxx9j3LhxmDJlCm655RYolUokJia267UDaHKXJ3ApmXTOvblw4QImTpzY5PmxY8e2ui1/IDg4GMnJyb4Ow68hR3zIER9yxCc4OFj2MjEBlzSVlJTg+uuvx7p163DrrbdCoVBg69at+Mc//oFFixZBq9XixhtvxKpVq3wSX5cuXdz6+6CgoBZXaHZ3u7w+GyOKopS0sRZu33ROynP+3aZNm/Dggw/i0KFD+N///ofHHnsMo0ePxnvvvdfsbx966CH85S9/kX7v1q1bm+IAAJ1O1+T5lmJzPq5Wq7kTAh0OB8aPH49nn3222XPO5Oyuu+7CjTfeiJ9//hm//vorNm/ejO3bt+PLL79Ez5492/XaAbT4gXa+DpVK1eROOYIgiEDFeaevUqn0uwXP3cHvk6aXXnqpye9XXXVVk1n6wKURiM2bN3szrIDHeecVcGmBw+nTp0vPnT59GkOHDgVwaYj1t99+wz333CM976y5NGjQIJw9exZ79+7Fk08+iYEDB+Kee+7B119/jcceewxVVVXNhpJ79OjR6vCyqzhaIj4+vlktrrS0NBgMBgwaNAj9+vWDWq3GuXPnkJCQILW5/fbbMWvWLAwZMgTffvstoqOjpWSmtrYWK1euxL333otBgwZhy5YtWLJkCW699VbceuutKCsrw9SpU3H8+HH07dvX5WtvLwkJCUhJSWny2OnTp9u9HW9iNpuRlZWFQYMGSSOXRFPIER9yxCfQHO3fvx/Hjx/H5MmTcf3113ulT2cJBTlHm/w+aSLkw3nd97333sPAgQORnJyMTz/9FOnp6dI8msWLF+Ohhx7Ctm3bcNNNNyE3NxfPP/88pk2bhkGDBiErKwsfffQR1Go1br/9dlitVnz77bfo378/wsPDAVxaVDYrKws1NTXSYy3hKo6WuPfee3HnnXfi+eefx5133onKyko8//zzSEpKwoQJE6BWq7Fw4UK8/vrriIiIwJAhQ/D555/j4sWLeOmll6BWq/Hvf/8bK1askOZsrV+/Hunp6YiLi0NoaCgOHz6M4uJi/P3vf0doaCi++OILqNVqJCcnQxAE7mtvD3/+858xZ84cbNy4EbfddhsyMzOlLwP+upSLSqVCeHi47FV4AxlyxIcc8SFHfFQqVedcRoWQn8ZLhNxxxx149913cfHiRSQkJODtt9+WRmZ+97vf4ZVXXsH27duxbds2RERE4JZbbsHy5csBQBqN2bp1Kz766CMolUqMHz8eO3bskIZk//znP+Nf//oXsrKy8MYbb7Qak6s4WmL48OH417/+hddeew1z5sxBaGgobrjhBvz973+XLs09+uijUKlUePbZZ9HQ0ICEhAS89dZbGDhwIABg165d2LRpExYsWACVSoVRo0bh/fffR0REBABgx44dWL9+Pe655x6YzWYkJibirbfeQmxsLABwX3t7iIuLw9atW/HKK6/g3XffxYABA7Bw4UJs2bLFb9eb0mg06Nu3r6/D8GvIER9yxCfQHM2YMQPTp0/3apKn0Whk70/BWpsY0ok5d+4cAODqq69u8XmLxYKcnBwMGDCg2TybQIExBofDgaSkJGl+mC+Jj4/3izga43SkVCq9MtKTkpKCoKAgJCUlSY/t2bMHTz75JE6fPt3iXDdf74vOYpzOQqlEc8gRH3LEhxzxcTgcSE1NhUKhaPX87S5kvpPi/AASrXN5hXO50ev1+NOf/oQffvgBxcXF+PXXX7FlyxbcfPPNLSZM/sDlFYeJ5pAjPuSIDzniY7FYZF9GxT+PxITsKJXKgB0l8xZOR976Vnf77bejoqICa9euRVlZGXr06IGbb75ZuhTqj2i1WiQkJDQpm0E0hRzxIUd8As1RRkYGCgsL0a9fP2k6hNxotVrZpzJQ0tRJUSgUUKlUze5E9BX+EkdjnI682d+yZcuwbNkyr/XpLiqVStZyGFcC5IgPOeITaI4yMzOlu+e8lTSpVCrZp1LQ5blOisPhgM1mo7pALiBHfARBQHFxsexD4oEMOeJDjvgEmqN+/fph7NixuOqqq7zWpyAILldk8ASUNLlBoM+hd66oTbSOvzvy9T5ot9tRWVnp9558CTniQ474BJqjpKQkzJo1y6tLqdjtdtmTJro81wGck3IDZedtCaVSiZCQEF+H4dcEgiPnPuirieLBwcEYNmyYT/oOFMgRH3LEhxzx8cYyKjTS1AGcBbTq6+t9HQrRyamvr/dKQTeCIAiCRpo6hEKhQGRkJEpKSqDVatGlSxe/rdjcGs75OhqNhmp+tII/O2KMwWg0or6+HtHR0T7b/8xms1QnKhCWdvAF5IgPOeITaI727dsnTQRvvDyWnJjNZgiCIOsddJQ0dZBu3brBbDajsrISFRUVvg6n3TDGIIqiV+42CFT83ZFCoUD37t2bLHrsbVQqFUJDQ2mkywXkiA854hNojhhj0o+38MaxmiqCtwCvInhjRFEMmLsZiCsLtVodMAdQgiA6F85CkxqNxqu1pdpz/u4INNLkJoE6n8SfLz35C+SIDzniQ474kCM+geZIp9N5vYCyw+EAY0zW0Sb/N0/IgsViwfnz56kkvwvIER9yxIcc8SFHfMgRH1pGhZANrVaLuLi4gCnJ7wvIER9yxIcc8SFHfALNUXZ2NoqLixETE4N+/fp5pU9vLKNCI02dFJVKha5duwbkpUVvQY74kCM+5IgPOeITaI4uXryIH374AZmZmV7rk5ZRIWRDEASUlpbSJHYXkCM+5IgPOeJDjvgEmqO+fftixIgRiI6O9lqftIwKIRuB9gH0BeSIDzniQ474kCM+gebo6quvxuzZs5GUlOS1Pr2RNFHJgRaQ+5ZFgiAIgiA8j9znbxppIgiCIAiCaAOUNHVSLBYL0tLS6PZVF5AjPuSIDzniQ474BJqjgwcPYt26dfj555+91qc3Sg5Q0tRJUSgU0Ol0frk8iL9AjviQIz7kiA854hNojkRRhM1mg91u91qfCoWCllHxBTSniSAIgiA6jslkgsVigU6nQ0hIiNf6pTlNhCwwxiAIglcXUww0yBEfcsSHHPEhR3wCzVFISAgiIiK8mjB5ww0lTZ0Us9mMlJQUmM1mX4fit5AjPuSIDzniQ474kCM+ZrMZNptN1j5oGZVOilarxeDBgwOmJL8vIEd8yBEfcsSHHPEJNEd5eXkoLS1Fnz59EBMT45U+tVotgoLkTWtopKmTolKp0K1bt4Apye8LyBEfcsSHHPEhR3wCzZFer8e+fftw8eJFr/WpUqmgVMqb1lDS1EkRBAHl5eUBU13WF5AjPuSIDzniQ474BJqjqKgoDB06FL179/Zan96oCE6X5zopgiCgsLAQoaGhsq8KHaiQIz7kiA854kOO+ASaoxEjRmDEiBFe7dOZNMk5GkclB1qASg4QBEEQROBBJQcIgiAIgiD8AEqaOikWiwUXL14MmJL8voAc8SFHfMgRH3LEJ9Ac/fTTT9i0aRN++eUXr/VJy6gQsqFQKBAUFBQwJfl9ATniQ474kCM+5IhPoDmyWq0wGAyy101qTMAso2Kz2TB8+HCsW7cOc+bM8UBYvoXmNBEEQRBEx2loaIDJZEKXLl0QGhrqtX7lPn977O45mk8eWDDG4HA4oFQqA+abi7chR3zIER9yxIcc8Qk0R127dkXXrl292icto0LIhtlsxpkzZ6gkvwvIER9yxIcc8SFHfMgRH1pGhZANjUaDgQMHQqPR+DoUv4Uc8SFHfMgRH3LEJ9AcFRYWoqKiAr1790afPn280qdGo5F9GRVKmjopQUFBCA8P93UYfg054kOO+JAjPuSIT6A5Sk1NxbFjxzB58mSvJU1BQUG0jAohD3a7HZWVlbDb7b4OxW8hR3zIER9yxIcc8Qk0R7169UJcXBx69uzptT7tdjscDoesfdBIUyfFZrMhLy8PISEhsg9nBirkiA854kOO+JAjPoHmaPTo0Rg9erRX+7TZbLDb7bJewvR/84QsBAcHY9SoUb4Ow68hR3zIER9yxIcc8SFHfIKDg2Wf8+XW5bk333wTmzZtavLYyZMncf/998NkMrkVGCEvziJggXDrqq8gR3zIER9yxIcc8SFHfLzhxq2kSavVYseOHVi7di0UCgWOHj2K++67DzabTfbJWIR7WK1WZGZmwmq1+joUv4Uc8SFHfMgRH3LEJ9Ac/fzzz9i8eTP+97//ea1Pq9Uq+zIqbl2eu+eee6BWq/HCCy8AAL766itMnDgR27Ztg1ar9UiABEEQBEEEFmazGTU1NVdcXSmPLKPy6aef4tlnn8W1116LzZs3B0wdidagZVQIgiAIouPU1NTAYDAgLCwM3bp181q/AbGMyu23344JEyYgKioKarXaE5skZKZxrkzXyFuGHPEhR3zIER9yxCfQHIWHh3u9rlRALaMSExNDCVMAYTab8dtvv11xQ6eehBzxIUd8yBEfcsSHHPGhZVQI2dBoNOjXr1/AX0qVE3LEhxzxIUd8yBGfQHNUUlKCqqoq9OrVC7179/ZKn7SMCiEbQUFBXq3UGoiQIz7kiA854kOO+ASao7Nnz0rLqHgraaJlVAjZsNvtqKmpCZiS/L6AHPEhR3zIER9yxCfQHEVERKB///5endfkjWVUKGnqpNhsNmRnZ8t+/TeQIUd8yBEfcsSHHPEJNEfjxo3DokWLvFrF3LmMipx4pOTAlUZnKDnAGIPD4YBSqQyIOzF8ATniQ474kCM+5IgPOeLDGENqaioAPy85QAQeCoUCKpXK12H4NeSIDzniQ474kCM+5IiP3y+jQgQuVqsV2dnZAVOS3xeQIz7kiA854kOO+ASao8OHD2P79u04duyY1/q0Wq2yX57zyEhTXV0dzGZzixOw+vTp44kuCA/DGIPdbvdKMbBAhRzxIUd8yBEfcsQn0BwZDAaUl5fDYDB4rU/GmOx+3JrTlJeXh5UrV+Ls2bOtttHr9e3ersPhwNatW/HZZ5+hoaEBY8eOxerVqxETE9Ni+6qqKqxduxZHjhwBYwwTJ07EE0880eHbHDvDnCaCIAiCkIuqqirU1dWhe/fuiIiI8Fq/fr2MyvPPP4/c3FwsW7YMUVFRHquPsG3bNnz00Ud46aWXEBUVhZdffhmLFy/Gnj17Wizs9fDDD8Nut+Odd94BYwz/+Mc/8OCDD+Lzzz/3SDwEQRAEQbSdHj16oEePHr4Ow+O4lTSdOHECL774Im655RZPxQObzYadO3dixYoVuO666wAAr776KqZMmYIDBw4066u+vh7Hjx/H9u3bkZiYCAC4//77sXTpUtTW1qJ79+4ei+1KwmQyIS0tDQkJCQgJCfF1OH4JOeJDjviQIz7kiA854mMymWCz2WStmu7W0FBoaKjHVy9OS0uD0WjEhAkTpMfCwsKQlJSEEydONGuv0+nQpUsXfPnllzAYDDAYDPjqq68wYMAAhIWFeTS2Kwm1Wo2rrrqK1gt0ATniQ474kCM+5IhPoDkqLy9Heno6KioqvNanWq2W/Q5Dt5Km2bNn48MPP/ToxKvS0lIAQHR0dJPHIyMjpecao9Fo8NJLL+H48eMYM2YMxo4di7Nnz2LHjh1uXy5svDBi44UAHQ4HTCYTRFEEAAiCAJPJJLW1WCzSHQ6MsXa3dc7+t9vtMJlMkl+r1dquthaLRerHZDJBEAQAgCiKEAQBvXr1glqt5rY1mUzSJH+bzdbMS3vattWhu76dXtzx7XA4EBYWJh2k3PF9uRd3fF/uxRO+LRZLh3wHBQUhNDRUutXX6aUjvl05dNd3Yy/u+m7spS1t1Wo1wsPDpT5b8+JvxwhP+W7LMUKtViMyMhJ2uz2gjhEteZHrGAFcOg8qlcqAOEacOHECn3zyCVJSUlr04infjY8RgiD4d9IUHByMU6dOYcaMGXjkkUewatWqJj9PPvlku7fpfEMvH17TarUt3mrJGINer8fIkSPx4Ycf4r333kOfPn2wdOlSt2bti6KIjIwM6fecnBwpabPZbNDr9dIbX1VVhYsXL0ptc3NzUVJSAuDSG6nX66VYampqkJaWJrXNz89HUVERgEs7ol6vR0NDAwCgtra2yUT6goICFBQUSL/r9XrU1tYCABoaGqDX66UPR1FREfLz86W2aWlpqKmpAXDprga9Xo/q6mqIooiSkhLk5uZKbS9evIiqqioAl3ZKvV4vfVhKS0uRk5Mjtc3IyJC+SVgsFuj1emmnrqioQFZWltQ2KysL5eXlAC7t/Hq9Xnq/KysrW/UtCAL0ej2MRiMAoLq6Gunp6W3y3ZLDwsLCJr7r6+sBXLoLVK/XSx/QgoIC5OTkSAeGlnw7nysuLkZeXp7UT3p6ejPfzgNBSUlJM4eVlZUALu3/jX2XlZUhOztbapuZmenSd2ZmptQ2OzsbZWVlAP5vn3Xl29U+29h3Xl4eiouLm2y3rq6O69v5WXW2ra+vb7LPFhYWtrp/t+Sw8T6bnp6O6upqAIDRaIRer5cOpi3ts5f7dh5bysvLm+2zrny35RghiiKKiooC8hjRmm9PHyNEUURdXV3AHSNc7bOePkZUVFSgrq5OauvvxwgA6Nu3L0JDQ7n7rCePEXIvo+LW3XPTp093vXGFAj/88EO7trl//34sX74cZ8+ehU6nkx5/6KGHYLPZsH379ibtv/32Wzz77LP46aefEBoaCuDSjj1t2jQsX74c99xzT7v6B/5v9v3gwYMRHBwM4NLBVaVSQaPRwOFwwGKxQKvVQqVSQRAECIIgXWe2WCxQKBTQarVgjMFsNrerrXOlZue3ruDgYCgUCunA3ta2jDHJoclkglqthlqthiiKqK2tRW5uLhITE6FSqVy2tVqt0Ol0UCqVsNlsEEWxiZegoKA2t22rQ3d9O72447u2thZZWVlITExESEgITCZTh31f7sXhcHTY9+VePOHbYrFAqVS227fRaERaWhri4uLQtWtXyUtH9+/WHLrru7EXd3039mK327ltnSf/AQMGSHcRBcIxwmq1esR3W44RzpPlwIED0aVLl4A5RrTkRa5jhN1uR0ZGBuLj46FUKgPmGNGaQzmOEXV1dcjNzYVGo5Ht7jm/W0YlJSUF8+fPx8GDBxEbGys9vmDBAsTHx2PNmjVN2j/33HNITU3Fp59+2uTx2267DcOGDcOzzz7b7hg6Q8kBZ82PoKAgKsnfCuSIDzniQ474kCM+5IhPwCyjcujQIRw/fhz19fWIiIjA6NGjMWXKlA5tKyEhAaGhoTh27JiUNNXX1+PChQtYuHBhs/ZRUVHYu3cvrFYrtFotgEvZZ2FhIf7whz90/EVd4SgUioCZUOgryBEfcsSHHPEhR3zIER9vJJNuJU02mw1Lly7F4cOHoVKpEB4ejpqaGrz55psYP3483nzzzXbf+qfRaLBw4UJs3LgRERER6Nu3L15++WVERUVh5syZEEUR1dXV6Nq1K3Q6HebMmYO3334bDz/8MB566CEAwGuvvQatVotbb73VnZd3RWO1WlFSUoLo6Ggp2SSaQo74kCM+5IgPOeITaI6OHj2K8+fPY/jw4RgzZoxX+nQuoxIUJN+yum5NBN+yZQtOnTqFDRs2ICUlBYcPH8bZs2exbt06nDlzptn8o7ayfPlyzJs3D08//TQWLFgAlUqFt99+G2q1GiUlJZg8eTK+/fZbAJfuJvjoo4/AGMOiRYtw7733Qq1W46OPPkLXrl3deXlXNIwxWCyWgCnJ7wvIER9yxIcc8SFHfALNUW1tLQoLC6VJ3d7A75dRmTZtGhYuXIi//OUvzZ57++238fHHH+P77793K0Bf0BnmNBEEQRCEXJSXl6OmpgYRERHo1auX1/r162VUqqurkZSU1OJzSUlJ0q2MBEEQBEF0HiIjIxEZGenrMDyOW5fnYmNjcerUqRafO3HiRLMClYT/YDKZcObMmSZFxoimkCM+5IgPOeJDjviQIz7OZVTkxK2RpjvuuAMvvfQSdDodbr75ZvTs2ROVlZX45ptvsGPHDixbtsxTcRIeRq1WIyoqiu7GcAE54kOO+JAjPuSIT6A5qqqqQn19Pbp16ybVJ5Mbbyyj4tacJofDgWeeeQa7d+9ucqsfYwxz587F2rVrA7KeBM1pIgiCIIiOs2/fPhw7dgyTJ0/G9ddf77V+/XpOk1KpxIsvvoh7771XqtPUrVs3jBs3DoMGDfJUjIQMONc6CgkJkT0zD1TIER9yxIcc8SFHfALNUWhoKCIjI6WVOryBs7q8nIM1HilmMHjwYAwePNgTmyK8hNVqxcWLF6UlQojmkCM+5IgPOeJDjvgEmqPJkydj8uTJXu3TarVCEIR214dsD+2+PLdq1SosXboUMTExWLVqleuNKxRYu3atWwH6gs5wec7hcMBms0Gj0UCpdOt+gCsWcsSHHPEhR3zIER9yxMfhcCA1NRUKhcJ/Ls8dO3YMixYtkv7vikCcz9RZcC74SLQOOeJDjviQIz7kiA854qNUKmXPO9qdNP34448t/p8ILGw2G0pLSxEVFSXrUGYgQ474kCM+5IgPOeITaI6OHz+OtLQ0JCcnY9SoUV7p02az+fcyKidOnIDRaGzxufr6euzdu9edzRMyIooiDAYDRFH0dSh+CzniQ474kCM+5IhPoDmqrq5GTk4OampqvNancyK4nLhVciAxMRH//ve/MWzYsGbPHT16FPfffz9SUlLcCtAXdIY5TQRBEAQhF8XFxaiqqkKvXr0QFRXltX79ruTAypUrUVJSAuBSPaY1a9a0eEthbm4uevbs6X6EBEEQBEEEFH369EGfPn18HYbHafflud/97nfNVhJ2/u78USqVGDFiBNatW+fRYAnPYTabkZKSArPZ7OtQ/BZyxIcc8SFHfMgRH3LEx2w2+98yKtOnT8f06dMBAHfffTfWrFlDhSwDkKCgIPTs2VPWCXOBDjniQ474kCM+5IhPoDmqra2FwWBA165d0a1bN6/0GRQU5N/LqDipqqqCzWaTRp8cDgfMZjNOnjyJBQsWuB2kt6E5TQRBEATRcWgZlRZIS0vDihUrkJWV1eLzCoUiIJOmzoAoirBYLNDpdAFRkt8XkCM+5IgPOeJDjvgEmqPg4GB0794dwcHBXuvTG8uouFVyYMOGDairq8PKlSsxbtw4TJ48Gc888wyuvfZaKBQKvP/++56Kk/AwVqsVaWlpsFqtvg7FbyFHfMgRH3LEhxzxCTRH1157LR566CFMnDjRa306l1GRE7cuz40ePRqrVq3CvHnz8O9//xt79uzBrl27AADLly+HQqHA66+/7rFgvUVnuDzncDikby1Ukr9lyBEfcsSHHPEhR3zIER9vLKPilnmbzYb+/fsDAPr374+0tDTpuVtvvRVnzpxxZ/OEjCiVSoSEhNCHzwXkiA854kOO+JAjPuSIjzeWUXHLfp8+fVBQUADgUtJkMBhQWFgIANBoNKirq3M/QkIWbDYbioqKZL89M5AhR3zIER9yxIcc8Qk0R6dOncLHH3+Ms2fPeq1Pm80me8V0t5KmmTNnYtOmTdi/fz969+6NgQMH4rXXXkN6ejp27tyJmJgYT8VJeBhRFFFTUxMwJfl9ATniQ474kCM+5IhPoDmqqKjAxYsXUVlZ6bU+RVGU3Y9bc5qsVisee+wxmM1m7NixA7/88guWLVsGm80GlUqFV155BTNnzvRkvF6hM8xpIgiCIAi5KCwsRHl5OaKiorxaGVzu87dH6jQJggC1Wg0AKCgoQGpqKoYOHYrY2Fi3A/QFlDQRBEEQROAh9/nbIzPKnAkTAMTExOCmm24K2ISps2A2m5Gamkol+V1AjviQIz7kiA854kOO+PjlMipbt25tc1uFQoEHH3ywvV0QXkClUqF79+4BUSTNV5AjPuSIDzniQ474BJqjhoYGmEwmdOnSBaGhoV7pU6VS+d8yKgkJCW3fuEIBvV7f7qB8DV2eIwiCIIiOQ8uo/H8a12IiAheHwwGr1QqtVkt1P1qBHPEhR3zIER9yxCfQHGk0GnTp0gUajcZrfTocDtmXUfHIcsmHDh3C8ePHUV9fj4iICIwePRpTpkzxxKYJmbBYLNDr9UhMTERISIivw/FLyBEfcsSHHPEhR3wCzdH06dMxffp0r/ZpsVggCIKsiZpbd8/ZbDYsXboUhw8fhkqlQnh4OGpqauBwODB+/Hi8+eabXs0yPUVnuDwniiLMZjOCg4MD5hq5tyFHfMgRH3LEhxzxIUd8RFHE+fPn/XcZlS1btuDUqVPYsGEDUlJScPjwYZw9exbr1q3DmTNnsH37dk/FSXgYlUqF0NBQ+vC5gBzxIUd8yBEfcsSHHPFRqVT+vYzKN998g2XLluEPf/iD9EYGBQVhzpw5WLZsGfbs2eORIAnPIwgCSkpKZF8ROpAhR3zIER9yxIcc8Qk0R2fPnsXu3buRmprqtT4FQfDvZVSqq6uRlJTU4nNJSUkoKytzZ/OEjAiCgPLy8oD5APoCcsSHHPEhR3zIEZ9Ac1RSUoLU1FSv5gHeSJrcmggeGxuLU6dOYcKECc2eO3HiBKKjo93ZPCEjISEhGD58uK/D8GvIER9yxIcc8SFHfALNUWJiIsLDw726hEpISIjs86jdSpruuOMOvPTSS9DpdLj55pvRs2dPVFZW4ptvvsGOHTuwbNkyT8VJEARBEESA0K9fP/Tr18/XYXgct5KmBQsW4MKFC9i4cSM2bdokPc4Yw9y5c3H//fe7HSAhD2azGTk5ORgwYACCg4N9HY5fQo74kCM+5IgPOeJDjviYzeYma+HKgVtJk1KpxIsvvoh7771XqtPUrVs3jBs3DoMGDfJUjIQM0J0YfMgRH3LEhxzxIUd8As2RyWSC1WqFTqfzWpLnjbvn3KrTdKXSGeo0EQRBEIRc0DIq/59Vq1Zh6dKliImJwapVq1y2VSgUWLt2bYeDI+TD4XBIw5iBUJLfF5AjPuSIDzniQ474BJojlUoFjUbj1ZExv1xG5dixY1i0aJH0f1fIPUxGdJxAK8nvC8gRH3LEhxzxIUd8As3RjBkzMGPGDK/26ffLqIiiGDDXV9tDZ7g8J4oijEYjunTpckW+h56AHPEhR3zIER9yxIcc8RFFEampqVAqlf65jMrkyZPxwgsvSEkGETioVCqEhYXRh88F5IgPOeJDjviQIz7kiI9KpZL90qVbW7/llluwf/9+3H777bjxxhvxxhtvoKioyFOxETIiCALKysoCprqsLyBHfMgRH3LEhxzxCTRH586dw1dffQW9Xu+1Pv1+GZWnnnoKhw4dws6dOzFmzBi88847mDFjBhYuXIjPPvsMDQ0NnoqT8DCCIKC4uDhgPoC+gBzxIUd8yBEfcsQn0BwVFRXhzJkzKC4u9lqf3kiaPFpyQBAEHDlyBHv37sV3332HoKAgnDlzxlOb9xqdYU4TQRAEQchFVlYWiouLERMTg/79+3utX78rOdAadrsdhw8fxnfffYdDhw4BQItr0hEEQRAEcWUzaNCgK7LItVtJE2MMR48exd69e3Hw4EHU1dVh2LBhWL58OWbNmoXw8HBPxUl4GIvFgtzcXPTv3x86nc7X4fgl5IgPOeJDjviQIz7kiI+z5IDfLqMyZcoUVFVVoU+fPrjzzjsxe/Zsrw7DER1HoVBAp9NRLS0XkCM+5IgPOeJDjvgEmiOr1SrVTJKzblJjFAqF7H7cSpqmT5+OP/zhDxgzZoyn4iG8hFarpQSXAzniQ474kCM+5IhPoDn66aefvL6MilarRVCQx2YdtYhbW3/uuec8FQfhZRhjsNvtCAoKCphvLt6GHPEhR3zIER9yxCdQHXkzVm8spev/C9gQsmA2m5GSkgKz2ezrUPwWcsSHHPEhR3zIEZ9Ac3TjjTfi2WefxfTp073Wp9lshs1mk7UPSpo6KRqNBoMGDfLateZAhBzxIUd8yBEfcsSHHPHRaDT+fXmOCFyCgoLQvXt3X4fh15AjPuSIDzniQ474kCM+QUFB/r2MitVq9VQchJcRBAEVFRUBU13WF5AjPuSIDzniQ474BJqjCxcu4LvvvsPFixe91qffL6MyadIkPPvss0hJSfFUPISXEAQB+fn5AfMB9AXkiA854kOO+JAjPoHmKD8/H8ePH0dBQYHX+vT7ZVS2bduGr776Cvn5+RgwYABuvfVWzJ49G7169fJkjF6HllEhCIIgiI6TkZGBgoIC9OvXz6uVweU+f3tk7bnffvsN//nPf7Bv3z6YzWZMnDgRt912G6ZPn96hypwOhwNbt26VFv0dO3YsVq9ejZiYmBbbC4KAzZs348svv0RDQwOSk5Px1FNPITExsUOvh5ImgiAIggg85D5/e2TG1KhRo/D888/jyJEjeP3112E2m/Hwww9j8uTJWL9+PYqKitq1vW3btuGjjz7C888/j08++QQOhwOLFy9u9VbCNWvW4IsvvsDatWuxe/duRERE4L777kNDQ4MnXt4VicViQUZGBiwWi69D8VvIER9yxIcc8SFHfMgRH+cyKnLisWnmJSUl2LlzJzZv3owTJ06gf//+uPXWW3Ho0CHMmjUL3377bZu2Y7PZsHPnTixfvhzXXXcdEhIS8Oqrr6K0tBQHDhxo1r6goAC7d+/Giy++iClTpmDQoEF44YUXoNFokJqa6qmXd8WhUCigVCoDqkiatyFHfMgRH3LEhxzxCTRHdrsdVqsVdrvda316YxkVty7PGQwG7N+/H19++SVOnToFnU6HG2+8EfPmzcOoUaOkdg888ADOnz+Pw4cPc7eZkpKC+fPnY9++fRgwYID0+IIFCxAXF4d//OMfTdp/8skn2LRpE44dO+axWw3p8hxBEARBdJx9+/Z5fRkVwM8vz02aNAlPP/00BEHAc889h8OHD2Pt2rVNEibgUvBtzf5KS0sBANHR0U0ej4yMlJ5rTE5ODmJiYnDgwAHceuutmDRpEu677z5kZWV18FX9H40rrzauNOpwOGAymaRZ+oIgwGQySW0tFotUjoEx1u62zszcbrfDZDJJpeGtVmu72jYexjWZTNKwpSiKMBqNsNvtYIxx25pMJjgcDgCXRgIv99Ketm116K5vpxd3fFsslia/u+P7ci/u+L7ciyd8WyyWDvl2OBxoaGiQ4nd66YhvVw7d9d3Yi7u+G3tpS1vGGCwWC4xGo0sv/naM8JTvthwjGGPSc4F0jGjJi1zHCJvNBlEUpe36+zGi8V1sLXnxlO/Gx4jGnzG5cCtpuuuuu7B371588sknmDdvHkJCQlpsd++99+K///1vm7bpfEMvr3qq1WpbrAtlMBiQl5eHbdu24dFHH8X27dsRFBSEO++8E1VVVe17QY0QRREZGRnS7zk5OVLSZrPZoNfrpTe+qqqqSS2K3NxclJSUALj0Rur1ehgMBgBATU0N0tLSpLb5+fnSnC+HwwG9Xi/NxaqtrYVer5faFhQUNLl9U6/Xo7a2FgDQ0NAAvV4vfTiKioqQn58vtU1LS0NNTY3kLC0tDWfPnoXZbEZJSQlyc3OlthcvXpTcmUwm6PV66cNSWlqKnJwcqW1GRgYqKioAXNr59Xq9tFNXVFQ0SV6zsrJQXl4O4NLOr9frpfe7srKyVd+CIECv10sfiOrqaqSnp7fJd0sOCwsLm/iur68HANTV1UGv10sf0Pz8/CYxtuTbeWAoLi5GXl6e1E96enoT33q9XjoQlJSUNHNYWVkJ4NL+39h3WVkZsrOzpbaZmZkufWdmZkpts7OzUVZWBuD/9llXvl3ts4195+Xlobi4GABgNBqb7C+ufDPGoNfrUVdXBwCor69vss8WFha2un+35LDxPpueno7q6mopJr1eLx1MW9pnL/ftPLaUl5c322dd+W7LMcJsNuP8+fMBd4xw5dvTxwiz2YwzZ84E3DHC1T7r6WNEaWkpzpw5I8Xr78eI+Ph4PPnkk5g8eTJ3n/XUMSItLU32ZVTA3OD48ePMYDC0+FxdXR375ptv2r3Nffv2sbi4OGY2m5s8vnz5crZkyZJm7VevXs3i4uJYZmam9JjZbGbjxo1jO3bsaHf/jDGWkpLCUlJSmMlkkh4zmUzMarUyxhgTRZEZjUZmt9sZY4zZbDZmNBqb9G+xWBhjjDkcjna3FQSBMcaYIAjMaDQyh8PBGGPMYrG0q21jh0ajkdlsNsYYY3a7ndXV1bHKykomCAK3rdFoZKIoMsYYs1qtzby0p21bHbrr2+nFHd8Gg4GVlpZKz7vj+3Iv7vi+3IsnfJvN5g75ttlsrLi4WHo9Ti8d8e3Kobu+G3tx13djL21pKwgCKy8vZ/X19S69+NsxwlO+23KMEASBVVVVsYaGhoA6RrTkRa5jhMlkYlVVVcxisQTUMaI1h57y3fgYUVdXx86cOcNSUlKYXLg1pykxMRH//ve/MWzYsGbPHT16FPfff3+7C1865zQdPHgQsbGx0uMLFixAfHw81qxZ06T99u3bsXXrVpw/f77J4/PmzUNycnKz9m2B5jQRBEEQROAh9/m73WvPrVy5UhqiY4xhzZo1CA0NbdYuNzcXPXv2bHdACQkJCA0NxbFjx6Skqb6+HhcuXMDChQubtR87dizsdjvOnTsnSbJYLCgoKMDNN9/c7v47C3a7HXV1dejWrZvsCxwGKuSIDzniQ474kCM+gebo4sWLyM/PR//+/TF48GCv9Gm32+FwOGRdf67dW545cyYYY2g8QOX83fmjVCoxYsQIrFu3rt0BaTQaLFy4EBs3bsQPP/yAtLQ0PPLII4iKisLMmTMhiiIqKiqka7RjxozBxIkTsXLlSpw8eRKZmZl4/PHHoVKpMHv27Hb331mw2WzIzc2V//pvAEOO+JAjPuSIDzniE2iOsrOzceTIkSbzuOTGZrPJXuLArctzd999N9asWePxEumiKOKVV17BF198AYvFIlUEv+qqq1BYWIjrr78e69atw6233grg0gSwjRs3Yt++fbBYLBg1ahSefPLJDme3neHynDPB9UZdi0CFHPEhR3zIER9yxCfQHKWlpSEvLw8DBw7EkCFDvNInY0yqz+g3y6isWrUKS5cuRUxMDFatWuV64woF1q5d61aAvqAzJE0EQRAEcaXhd3Oajh07hkWLFkn/d0UgZMOdFavVisLCQlx11VXQarW+DscvIUd8yBEfcsSHHPEhR3ycFcjlnPPV7i3/+OOPLf6fCCwYY3A4HHDj6uwVDzniQ474kCM+5IhPoDlqHKe3BlAun28tB27NaXrmmWcwb948DB8+3JMx+Ry6PEcQBEEQHYeWUWmBr7/+2itlywmCIAiCIHyNW0nTyJEjufOaCP/EZDLh1KlTTdYAIppCjviQIz7kiA854hNojqZPn47HHnsMU6dO9VqfjdculAu3ZkvFx8fj7bffxr59+5CQkNBs7blAvXuuM6DRaNCvX79ma/wR/wc54kOO+JAjPuSIT6A50mg0Xo9Vo9HIXvjTra0fPHgQkZGREARBuo7YGLp7zn8JCgrqUMX2zgQ54kOO+JAjPuSIDzniExQUJGs1cMDNpInungtc7HY7Ghoa0LVr14Aoye8LyBEfcsSHHPEhR3wCzVFmZiaKiooQGxuLAQMGeKVPv1xGpSWqqqpQUlKC4uJiFBcXo7CwEBkZGfj44489sXlCBmw2G7KzswOmJL8vIEd8yBEfcsSHHPEJNEeZmZn473//i+zsbK/16ffLqKSlpWHFihXIyspqeeMKBS5cuNDh4HxFZyg5wBiDKIpQqVR0GbUVyBEfcsSHHPEhR3wCzVFqaipycnIwZMgQJCQkeKVPbyyj4tYY34YNG1BXV4eVK1fip59+gkajwbRp03Do0CEcOnQI77//vqfiJDyMQqEIiCFeX0KO+JAjPuSIDzniE2iOkpOTkZyc7NU+vZFMunV57uzZs3jooYdwzz33YNasWTCbzbjzzjvxxhtv4IYbbsAHH3zgqTgJD2O1WpGTkwOr1errUPwWcsSHHPEhR3zIER9yxMe5jIqcuJU02Ww29O/fHwDQv39/pKWlSc/deuutOHPmjDubJ2SEMQabzRYwJfl9ATniQ474kCM+5IgPOeLjjWVU3Eqa+vTpg4KCAgCXkiaDwYDCwkIAl+ol1NXVuR8hIQs6nQ7x8fHQ6XS+DsVvIUd8yBEfcsSHHPEJNEcHDhzAiy++iJ9++slrfep0OqjValn7cCtpmjlzJjZt2oT9+/ejd+/eGDhwIF577TWkp6dj586diImJ8VScBEEQBEEECA6HQyoBcCXhVtK0bNkyjBo1Cp9//jkAYNWqVTh48CDmzJmDo0eP4m9/+5tHgiQ8j8lkwunTpwOmJL8vIEd8yBEfcsSHHPEJNEfXXnstHn74YUyaNMlrfXpjGRW3Sg44EQRBGhIrKChAamoqhg4ditjYWLcD9AWdoeSAIAioqalBeHi47MOZgQo54kOO+JAjPuSIDzniIwgCzp8/D5VK5Z8lB5wcO3YMJ06cQG1tLXr06IEJEyYEbMLUWVCr1YiMjPR1GH4NOeJDjviQIz7kiA854qNWq6FSqWTtw62kqa6uDg888ADOnDmDoKAgdO/eHbW1tdi+fTumTp2KLVu2BMzigp0NURRhMBgQGhoq+04WqJAjPuSIDzniQ474BJqjnJwclJaWom/fvl4bRBFF0b+XUVm7di1ycnKwdetWnDt3DocPH0ZKSgpef/11nDlzBq+++qqn4iQ8jNVqRWZmJtX8cAE54kOO+JAjPuSIT6A5Sk9Px4EDB5CRkeG1Pr1Rp8mtOU3XXHMNVqxYgfnz5zd77pNPPsHWrVtx+PBhtwL0BZ1hTpPzzgZvrAodqJAjPuSIDzniQ474BJqjlJQUZGVlIS4uDkOHDvVKnw6HA6mpqVAoFP45p4kxhp49e7b4XHR0dMDM8u+MKJVKunTKgRzxIUd8yBEfcsQn0BwNGzYMw4YN82qfSqVS9qVU3EpX586di+3bt8NoNDZ53G63Y9euXZg7d65bwRHyYbPZkJeXFzArZvsCcsSHHPEhR3zIER9yxMdms8l+ec6tkabg4GDk5ubi+uuvx/XXX4/evXujpqYGP//8M0pLS9GtWzesWrUKwKWF9NauXeuRoAn3cTgcMJlMV1zhMU9CjviQIz7kiA854kOO+DgcDtmXUXFrTtP06dPb3pFCgR9++KGjXXmVzjCniSAIgiDk4ocffsCpU6cwfvx4TJ061Wv9yn3+dmuk6ccff/RUHARBEARBXCEIggCz2QxBEHwdikfx/yn4hCyYTCacPXuWJuu7gBzxIUd8yBEfcsQn0BxNnjwZS5cuxfjx473WpzeWUfFY0iSKIhITE3H+/HlPbZKQEWd1WSrH3zrkiA854kOO+JAjPoHmKDQ0FL169UKXLl281qffVwS/HLknYBGeQ61WIzo62tdh+DXkiA854kOO+JAjPuSIjzeSJro810lxluQXRdHXofgt5IgPOeJDjviQIz6B5qigoAAnT55EUVGR1/oURVH2wRtKmjopVqsV6enpAVOS3xeQIz7kiA854kOO+ASao/Pnz2Pv3r1IS0vzWp9Wq1X2ieceuzynVCqxbNkyWoU5QNDpdBg6dGhAVZj1NuSIDzniQ474kCM+geaod+/eSEhIQK9evbzWp06nk33Ol0eSpqysLBw5cgQWiwUOhwMnT55EQkICQkNDPbF5QgaUSiV0Op2vw/BryBEfcsSHHPEhR3wCzdHIkSMxcuRIr/bpjWVU3EqaHA4HVq9ejd27d4MxBoVCgZtuugnbtm1Dfn4+du3ahaioKE/FSngQm82GsrIy9O7dO2C+uXgbcsSHHPEhR3zIER9yxMe5jEpQkEfvcWuCW3Oatm3bhj179uCFF17AkSNHpAlYjz32GBwOB1599VWPBEl4HlEUUV9fHzCTCn0BOeJDjviQIz7kiA854uONieBuLaMybdo0LFy4EH/5y18giiKGDh2K3bt3Y+jQofjyyy+xceNGHD582JPxegVaRoUgCIIgOs5///tfnD59GuPGjcOkSZO81q/c52+3RpoqKyuRmJjY4nO9e/dGfX29O5snCIIgCCIAsVgsqK+vh8Vi8XUoHsWtpKlfv374+eefW3zu+PHj6NevnzubJ2TEbDbj3LlzMJvNvg7FbyFHfMgRH3LEhxzxCTRHEyZMwH333YexY8d6rU+z2Sz7MipuzZZatGgRVq9eDUEQMG3aNCgUCuTl5eHYsWPYuXMnnnjiCU/FSXgYlUqFiIgI2aunBjLkiA854kOO+JAjPoHmqFu3bujWrZtX+1SpVLL7cWtOEwC8+eab2L59O6xWqzQBS61WY/HixXjooYc8EqS3oTlNBEEQBBF4yH3+djtpAgCDwYDTp0+jtrYWYWFhGD58OLp37+6B8HxDZ0iaHA4HLBYLdDodlEoqDN8S5IgPOeJDjviQIz6B5qioqAiVlZWIjIz02pp5DocDqampUCgU/jkR/MSJEzAajQgNDcWUKVPw+9//Htdeey26d++O+vp67N2711NxEh7GYrFAr9dfcZP0PAk54kOO+JAjPuSIT6A5OnfuHL788ktcuHDBa31aLBbZl1FxK2n605/+hKysrBafu3DhAlatWuXO5gkZ0el0SExMDKgKs96GHPEhR3zIER9yxCfQHPXo0QODBg1CRESE1/r0y2VUVq5ciZKSEgAAYwxr1qxpcbmU3Nxc9OzZ0/0ICVlQKpUICQnxdRh+DTniQ474kCM+5IhPoDkaO3asV++cA7yzjEq7R5p+97vfgTHWpOqm83fnj1KpxIgRI7Bu3TqPBkt4DpvNhqKiItlvzwxkyBEfcsSHHPEhR3zIER+bzSZ7xfR2jzRNnz4d06dPBwDcfffdWLNmDQYNGuTxwAh5EUUR1dXVXh06DTTIER9yxIcc8SFHfMgRH1EUIYqirGUHPHL3XFVVFWw2mzT65HA4YDabcfLkSSxYsMDtIL1NZ7h7jiAIgiDk4pdffkFKSgpGjx6N8ePHe61fuc/fbhW3TEtLw4oVK1qdDK5QKAIyaSIIgiAIouMYjUZUVlbCaDT6OhSP4tbdcxs2bEBdXR1WrlyJcePGYfLkyXjmmWdw7bXXQqFQ4P333/dUnISHMZvNOH/+fMCU5PcF5IgPOeJDjviQIz6B5mjcuHG45557MGrUKK/1aTab/bvkwNmzZ/HQQw/hnnvuwaxZs2A2m3HnnXfijTfewA033IAPPvjAU3ESHkalUiEsLCxgSvL7AnLEhxzxIUd8yBGfQHMUERGBfv36ITw83Gt9qlQq/7t7rjE2mw39+/cHAPTv3x9paWnSc7feeivOnDnjzuYJGdFoNIiJiYFGo/F1KH4LOeJDjviQIz7kiA854qPRaBAU5NasIy5uJU19+vRBQUEBgEtJk8FgQGFhIYBLwdfV1bkfISELzpL8DofD16H4LeSIDzniQ474kCM+geaotLQUer0e5eXlXuvT4XDAA/e2ucStpGnmzJnYtGkT9u/fj969e2PgwIF47bXXkJ6ejp07dyImJsZTcRIexmKx4Pz58wFTkt8XkCM+5IgPOeJDjvgEmqMzZ87g008/le5m8wZ+v4zKsmXLMGrUKHz++ecAgFWrVuHgwYOYM2cOjh49ir/97W8eCZLwPFqtFvHx8dBqtb4OxW8hR3zIER9yxIcc8Qk0R+Hh4YiNjUX37t291qdWq5V9GRW36jQ988wzmDdvHpKSkqRACwoKkJqaiqFDhyI2NtZjgXoTqtNEEARBEIGH3Odvt0aavv76axiNxiaZXUxMDG666Sa3EiaHw4HNmzdjypQpGDFiBO677z5p7lRbYoqPj5fmVhEtIwgCSkpKZB/KDGTIER9yxIcc8SFHfMgRH0EQZF9Gxa2kaeTIkTh69KinYpHYtm0bPvroIzz//PP45JNP4HA4sHjxYu6aO0VFRXjuuec8Hs+ViCAIKC8vpw+gC8gRH3LEhxzxIUd8yBEfbyRNbl2eW7duHT788EP07dsXCQkJzVZgVigUWLt2bbu2abPZMH78eKxYsQJ33nknAKC+vh5TpkzBiy++iFtuuaXFv3M4HFi4cCHUajWOHj2KH374AVdddVWHXhddniMIgiCIjvO///0PqampGDFiBMaNG+e1fv16GZWDBw8iMjISgiC0OEO+I0Wm0tLSYDQaMWHCBOmxsLAwJCUl4cSJE60mTW+88QYEQcCyZctkGf0iCIIgCKJt1NfXo6SkBIMGDfJ1KB7FraTpxx9/9FQcEqWlpQCA6OjoJo9HRkZKz11OSkoKdu7cic8//xxlZWUei8VsNiM4OFj6v0qlgkajkeplaLVaqFQqCIIAQRCkkTaLxQKFQgGtVgvGGMxmc7vaOgt02e122Gw2BAcHQ6FQwGq1AkCb2zLGoNPpAAAmkwlqtRpqtRqiKEo79MCBA6FQKFy2tVqt0Ol0UCqVsNlsEEWxiZegoKA2t22rQ3d9O72447u+vh4FBQUYNGgQdDodTCZTh31f7sXhcHTY9+VePOHbYrFAqVS227fZbEZ2djb69++PLl26SF46un+35tBd3429uOu7sRe73c5tKwgCsrOz0adPH+lOokA4RlitVo/4bssxQqFQICcnB9HR0QgJCQmYY0RLXuQ6RoiiiMLCQsTGxkKhUPj9MeLqq6/GoEGD0L179xa9yHGMaGhogCAIst5B59acJjlwrqtzedVTrVYrHRAaYzKZsGLFCqxYsUKqTu4JRFFERkaG9HtOTo6UtNlsNuj1ephMJgBAVVUVLl68KLXNzc1FSUkJAMBut0Ov18NgMAAAampqmlROz8/PR1FREYBLlxj1ej0aGhoAALW1tdDr9VLbgoKCJhPi9Xo9amtrAQANDQ3Q6/VS4bOioiLk5+dLbdPS0lBTUwMAMBgMyM7ORnBwMJRKJUpKSpCbmyu1vXjxIqqqqgBc8qvX66X5ZKWlpcjJyZHaZmRkoKKiAsClnV+v10t1RCoqKpos5pyVlSUVOrNardDr9dL7XVlZ2apvQRCg1+ulhR+rq6uRnp7eJt8tOXTeJOD0XV9fDwCoq6uDXq+XiqOVlZVBFEUolcpWfTuvnxcXFyMvL0/qJz09vYlvvV4Pu90OACgpKWnmsLKyEsCl/b+x77KyMmRnZ0ttMzMzXfrOzMyU2mZnZ0tfIpz7rCvfrvbZxr7z8vJQXFwMAGCMwWKxSJ8FV74ZY9Dr9VLR2/r6+ib7bGFhYav7d0sOG++z6enpqK6uBnBpoVC9Xi/N/Whpn73ct/PYUl5e3myfdeW7LccIpVIJhULRJN5AOEa48u3pY4RSqURISAgKCgoC6hjhap/19DGirq4OISEh0r7l78cIm82GIUOGIDw8nLvPeuoYkZ2dLfsyKmAewm63s4SEBJaamurWdvbt28fi4uKY2Wxu8vjy5cvZkiVLmrVftWoVu//++6Xfjx49yuLi4lhBQUGHY0hJSWEpKSnMZDJJj5lMJma1WhljjImiyIxGI7Pb7Ywxxmw2GzMajVJbs9nMLBYLY4wxh8PR7raCIDDGGBMEgRmNRuZwOBhjjFkslna1bezQaDQym83GGLv0XrW3rSiKjDHGrFZrMy/tadtWh+76dnpx1/flXtzx3diLO74v9+IJ32az2SO+nV485dvpxV3fjb2467uxFzpG0DGCjhH+dYxwnr/lwq2J4I0RRRFDhw7F7t27MXTo0A5vJyUlBfPnz8fBgweblC1YsGAB4uPjsWbNmibt4+Pjm6w303hYecmSJViyZEm7Y+gME8EdDgfsdjuCgoKkkRSiKeSIDzniQ474kCM+geaosrIStbW1CA8PR48ePbzSp8PhQGpqKhQKhX/WaZKDhIQEhIaG4tixY9Jj9fX1uHDhAsaOHdus/YEDB/DNN9/gyy+/xJdffokXXngBAPDWW2/hjjvu8FrcgYbFYsG5c+cCpiS/LyBHfMgRH3LEhxzxCTRHJ0+exIcffogzZ854rU9vLKMi73LAHUCj0WDhwoXYuHEjIiIi0LdvX7z88suIiorCzJkzIYoiqqur0bVrV+h0OvTr16/J3zuvcTeedEk0R6vVYvDgwQFTkt8XkCM+5IgPOeJDjvgEmqOwsDBERUWha9euXutTq9VKV53kwmNbVyqVWLZsGSIjI93e1vLly2G32/H000/DYrFg7NixePvtt6FWq1FYWIjrr78e69atw6233uqByDsnKpUK3bp183UYfg054kOO+JAjPuSIT6A5mjhxIiZOnOjVPlUqleyXLj0ypykrKwtHjhxBeXk57r77bhQUFEiX2QKRzjCnSRAE1NTUIDw8XPYFDgMVcsSHHPEhR3zIER9yxEcQBJw/fx4qlco/i1s6HA6sXr0au3fvBmMMCoUCN910E7Zt24b8/Hzs2rULUVFRnoqV8CCCIKCoqAihoaH0AWwFcsSHHPEhR3zIER9yxMe5jIpKpZKtD7dGmrZu3YodO3Zg9erVuO666zBp0iTs3r0bSqUSDz74IMaOHYv169d7Ml6v0BlGmgiCIAhCLo4dO4YLFy5g2LBhGD16tNf6lfv87dbFv927d2P58uW47bbbmky6TkxMxPLly3HkyBF34yMIgiAIIsCoqalBfn6+VHzySsGtpKmyshKJiYktPte7d2+piirhf1gsFqSnpwfM7au+gBzxIUd8yBEfcsQn0ByNGDEC8+fP9+oVG2+UHHAraerXrx9+/vnnFp87fvx4s3IAhP+gUCig0WjkLzkfwJAjPuSIDzniQ474BJqjqKgoJCUleeSO+raiUChk9+PWRPBFixZh9erVEAQB06ZNg0KhQF5eHo4dO4adO3fiiSee8FSchIfRarUYMGCAr8Pwa8gRH3LEhxzxIUd8yBEfv6/TNH/+fFRXV2P79u34+OOPwRjDo48+CrVajcWLF2PBggWeipPwMIwx6S6DQPnm4m3IER9yxIcc8SFHfALNUXV1NRoaGtCtWzevFZr20KpwLnE7JXvggQdw11134fTp06itrUVYWBiGDx9O1bj9HOfq7omJiQgJCfF1OH4JOeJDjviQIz7kiE+gOTp+/DiOHTuGyZMn4/rrr/dKn2azGTabDRqNRrY+3EqanFlvaGgopkyZ4qmYCC+g0WgwcOBAWXeuQIcc8SFHfMgRH3LEJ9AchYSEoEePHl5N8DQajeyX59yq0zRhwgTcfPPNmD179hVV04jqNBEEQRBE4OHXdZpuueUW7N+/H7fffjtuvPFGvPHGGygqKvJUbISM2O12VFZWwm63+zoUv4Uc8SFHfMgRH3LEhxzxsdvtcDgcsvbhVtL01FNP4dChQ9i5cyfGjBmDd955BzNmzMDChQvx2WefoaGhwVNxEh7GZrMhLy8PNpvN16H4LeSIDzniQ474kCM+5IiPzWaTPan0yIK9TgRBwJEjR7B371589913CAoKwpkzZzy1ea9Bl+cIgiAIouOcPHkS6enpGDp0KEaMGOG1fv368lxj7HY7Dh8+jG+//RaHDh0CcGnOE0EQBEEQnYvKykpkZmaiqqrK16F4FLemmTPGcPToUezduxcHDx5EXV0dhg0bhuXLl2PWrFkIDw/3VJyEh7FYLCgoKEBMTAx0Op2vw/FLyBEfcsSHHPEhR3wCzdHVV1+N6Ohor1YEdy6jolarZevDraRpypQpqKqqQp8+fXDnnXdi9uzZ6N+/v4dCI+REoVBAqVQGRJE0X0GO+JAjPuSIDzniE2iO+vbti759+3q1T28so+LWnKbVq1dj9uzZGD16tCdj8jk0p4kgCIIgAg+5z9/tHmlatWoVli5dipiYGAiCgM8//xyff/55i20VCgXWrl3rdpCE52GMgTHmlcw8UCFHfMgRH3LEhxzxCTRHdXV1MJlM6NKlC8LCwrzSp18uo3Ls2DEsWrRI+r8rAuGN7awEWkl+X0CO+JAjPuSIDzniE2iOfv31V1pGBQB+/PHHFv9PBBYajQb9+/cPmJL8voAc8SFHfMgRH3LEJ9Ac6XQ6hIWFQavVeq1Pv19G5cSJE0hKSkKXLl2aPVdfX49ffvkFN998s1sB+gKa00QQBEEQgYdf12n605/+hKysrBafu3DhAlatWuXO5gkZsdvtqK6uppL8LiBHfMgRH3LEhxzxIUd8vLGMSrvHsVauXImSkhIAlyZdrVmzBqGhoc3a5ebmomfPnu5HSMiCzWZDTk4OEhMTZR/ODFTIER9yxIcc8SFHfMgRH+cyKnJewmz35bkff/wR77zzDoDWL8+pVCqEhYXhrrvuwjXXXOO5aL1EZ7g8xxiDw+EIqLof3oYc8SFHfMgRH3LEJ9AcnT59GhkZGUhISMCwYcO80idjDKmpqQD8qOTA9OnTMX36dADA3XffjTVr1mDQoEEeD4yQF4VCAZVK5esw/BpyxIcc8SFHfMgRn0BzVFZWBr1ejx49enitT28kk27Nafrggw8oYQpQrFYrsrKyYLVafR2K30KO+JAjPuSIDzniE2iOkpKSMGvWLMTHx3utT6vVKvucL7eKW/ImelNxS//FOdTrjWJggQo54kOO+JAjPuSIT6A5io2NRWxsrFf7dBYAlRMqbtlJ0el0GDJkiK/D8GvIER9yxIcc8SFHfMgRH51OJ+tivQAVtyQIgiAIop3U1dW5vL3fZDLBarVCq9W2WsFcp9MhODhYrhBlwe37Fg0GA4xGI3r37g1BEPDBBx+guLgYv/vd7zB27FhPxEjIgMlkCqiS/L6AHPEhR3zIER9yxMefHNntdpSXl7ucX3X27FlkZmYiPj4eycnJzZ4XRRHR0dEeTZpMJpP/LaPSmLNnz2Lx4sW444478Pe//x0vvPAC/v3vfyMsLAwfffQRtmzZ4rU1Z4j2oVarERsbK/tQZiBDjviQIz7kiA854uNPjkRRhCiKCAsLa7VmVGhoKLRaLUJDQxEREdHs+bq6Oo/HpVarZb/D0K2751577TUMGjQIt99+O8xmM7766ivceeedOH78OObNm4c33njDU3ESHkatVqNXr15+8QH0V8gRH3LEhxzxIUd8/MmRw+GAw+FwmaCMHTsWf/rTnzBq1CivxeX3SdPZs2fx17/+FTExMThy5AisVitmz54NAJg1axYyMjI8EiTheex2O2pra6kkvwvIER9yxIcc8SFHfPzJkSiKYIz53c1e3lhGxa2kSalUSisY//LLLwgLC5MqfxoMBuh0OvcjJGTBZrMhKysLNpvN16H4LeSIDzniQ474kCM+/uSoLYnJtm3bsGTJEvz8889eiOgSzmVU5MStOU3Jycn47LPPoNPpsG/fPlx33XVQKBSoqqrCjh07Wpz8RfgHwcHBGDZsGK1h5AJyxIcc8SFHfMgRH39y1Jak6ciRI/jvf/+L6667Tv6A/j/BwcGyTgIH3EyaHnvsMSxevBh79+5FREQE/vrXvwIAbrnlFjgcDrz99tseCZLwPAqFwi+ujfsz5IgPOeJDjviQIz7+5KgtozmTJk1CcHAwEhISvBDRJbxxudCtpGno0KE4ePAgsrKyMGTIEOk2yDVr1mDUqFHo1auXR4IkPI/VakVJSQmio6OlS6xEU8gRH3LEhxzxIUd8/MmR3W7nTrheunSpl6L5P5zLqMg5Guf2lkNDQ1FXV4dt27ahvr4e4eHhGD16NCVMfg5jDBaLJWBK8vsCcsSHHPEhR3zIER9/ciQIApRKt6ZEy4I3llFRMDd6sNlsWLp0KQ4fPgyVSoXw8HDU1NTA4XBg/PjxePPNN2W/vigH586dAwBcffXVPo6EIAiCIPyL7OxsMMZaLUxpNBphMpnQs2fPVi+Z1dbWomfPnoiMjPRobHKfv91KFbds2YJTp05hw4YNSElJweHDh3H27FmsW7cOZ86cwfbt2z0VJ0EQBEEQPsa5aLCr+UP79+/HiBEjcNddd7XahjEWkIMqbiVN33zzDZYtW4Y//OEP0vXNoKAgzJkzB8uWLcOePXs8EiTheUwmE06fPg2TyeTrUPwWcsSHHPEhR3zIER9/ceSsBu7q8lxVVRUUCgV69+7dahvGmMfnHjmXUZETtyKurq5GUlJSi88lJSWhrKzMnc0TMqJWq9GnTx+/uRvDHyFHfMgRH3LEhxzx8RdHbakGft9992HRokUwm80tPi+KIlQqlceTJr+vCB4bG4tTp061+NyJEycQHR3tzuYJGVGr1ejdu7fPP4D+DDniQ474kCM+5IiPvzhqy0gTAGg0GnTr1q3F55x3uHW6pOmOO+7Am2++iX/9618oKSmBIAgoKSnBjh07sGPHDtx2222eipPwMKIoor6+HqIo+joUv4Uc8SFHfMgRH3LEx18cOQtbulMTSRRFBAUFeTzBEUXRv5dRWbBgAf7whz9g48aNmD59OoYNG4bp06dj06ZNuOWWW3D//fd7Kk7Cw1itVmRkZMBqtfo6FL+FHPEhR3zIER9yxMdfHPGSElEUMW/ePDz00EMwGo0ttrHb7dDpdB4vRums0yQnbpUccJKVlYXjx4+jrq4O3bp1w7hx4zBo0CBPxOcTOkPJAYfDAUEQoFar/bLehj9AjviQIz7kiA854uMvjmpqalBcXIzw8PAWny8sLMQ111wDtVqNrKysFkeTampqEB0djYiICI/G5nA4kJqaCoVCIdv52yMXFEtKSlBaWora2lrYbDbU1NR4YrOEjDRebJloGXLEhxzxIUd8yBEff3EkiqLLEaKCggIAQN++fV1efpOjardSqZR9KRW3oq6rq8MDDzyAM2fOICgoCN27d0dtbS22b9+OqVOnYsuWLQFZh6EzYLPZUFpaiqioKHqPWoEc8SFHfMgRH3LEx18c2Ww2lyNd+fn5AICYmJgWn3fWeJJjQrvNZpN9GRW3xvjWrl2LnJwcbN26FefOncPhw4eRkpKC119/HWfOnMGrr77qqTgJDyOKIgwGg88nFfoz5IgPOeJDjviQIz7+4oi37lxhYSGAS3fXt/b3ctw5B1xyJPcyKm4lTf/973+xYsUK3HDDDdKQmFKpxMyZM/HII49QcUs/Jjg4GElJSa2WwSfIUVsgR3zIER9yxMcfHDHGYLfb3RppciZdciRNwcHBspdkcCtpYoyhZ8+eLT4XHR3t88qlBEEQBEF4BmdhS1dJk3OkqbWkSRRFaLVa2eceyYVbSdPcuXOxffv2ZrcV2u127Nq1C3PnznUrOEI+TCYTzp49S4mtC8gRH3LEhxzxIUd8/MFRW5Im3kiTIAjQ6XSyxOf3y6gEBwcjNzcX119/Pa6//nr07t0bNTU1+Pnnn1FaWopu3bph1apVAC4Vwlq7dq1HgibcR61WIzIy0ufVZf0ZcsSHHPEhR3zIER9/cMSrBm6z2VBSUgLA9URwuV6DNyqCu5U0ff311wgNDQUA/Prrr02ei4qKwm+//Sb9HqhDcVcqarWalrnhQI74kCM+5IgPOeLjD454684VFxeDMQadTodevXq12EahUMh2d5vfJ00//vijp+IgvIwoijCbzQgODpZ9JwtUyBEfcsSHHPEhR3z8wRHv7rTGl+ZaGiiR8865xvHJOUjjl6VXHQ4HNm/ejClTpmDEiBG47777pIJZLZGRkYH7778f11xzDSZMmIDly5ejuLjYixEHHlarFenp6T4vye/PkCM+5IgPOeJDjvj4gyO73e4yIeFNApc7abJarRAEQZZtO/FY0iSKIhITE3H+/Hm3t7Vt2zZ89NFHeP755/HJJ5/A4XBg8eLFLU7wqqmpwb333gudTocPPvgAO3bsQHV1NRYvXkwfQBfodDokJSXJNiHvSoAc8SFHfMgRH3LExx8cmc1ml6NcvEngci3U60Sn08k+58uj6Z4nikrZbDbs3LkTK1aswHXXXQcAePXVVzFlyhQcOHAAt9xyS5P233//PUwmEzZs2CDtTC+//DKuu+46/Pbbb5gwYYLbMV2JKJVKqonCgRzxIUd8yBEfcsTH144cDgfMZrPLpOSaa66B2Wxu9bxrt9vRrVs3uUL0yjIqfnd5Li0tDUajsYn0sLAwJCUl4cSJE83aT5gwAdu2bWuSfTtn9tfX18sfcIBis9lQWFgo++2ZgQw54kOO+JAjPuSIj68dCYIgLRjcGtOmTcM//vEP3HjjjS0+73A4ZF0CxmazyV4x3e+SptLSUgBodpdAZGSk9FxjrrrqKowfP77JY2+99RZ0Oh3Gjh3rVixms7nJ/507q8PhgMlkkt4cQRCa1M6wWCzSpUHGWLvb2u12AJeycpPJJI3gWa3WdrW1WCxSPyaTSbrW6yzHX1NTA1EUuW1NJhMcDgeASzvl5V7a07atDt317fTijm+z2Sw5cnrpqO/Lvbjj+3IvnvBtsVg65Ntut6O6ulr6W6eXjvh25dBd3429uOu7sZe2tBVFETU1NU3q2QXCMcJTvttyjBBFEbW1tTAajQF1jGjJi1zHCKvVitraWilebx8j6urqYDabERQUJI06tfZZuNyh2WyWvDhfj6d8Nz5GeGOZGY8lTUqlEsuWLUNkZKRb23GKvzwb1Wq1bZqj9MEHH2DXrl1YsWIFIiIiOhyHKIrIyMiQfs/JyZGSNpvNBr1eL73xVVVVuHjxotQ2NzdXqlVht9uh1+thMBgAXJqDlZaWJrXNz89HUVERgEs7rV6vR0NDAwCgtrYWer1ealtQUNBkQrxer0dtbS0AoKGhAXq9XvpwFBUVSdeXgUsjeDU1NQAAg8GAnJwcJCQkIDg4GCUlJcjNzZXaXrx4EVVVVQAu7ZR6vV76YJWWliInJ0dqm5GRgYqKCgCXdn69Xi/t1BUVFcjKypLaZmVloby8HMClnV+v10vvd2VlZau+BUGAXq+XTjrV1dVIT09vk++WHDonKzp9O0ck6+rqoNfrpQ9oZWUldDqdNCTekm/nB7S4uBh5eXlSP+np6U186/V66UBQUlLSzGFlZSWAS/t/Y99lZWXIzs6W2mZmZrr0nZmZKbXNzs5GWVkZgP/bZ135drXPNvadl5cn3Wih0Wikb6A834wx6PV61NXVAbg0Etx4ny0sLGx1/27JYeN9Nj09HdXV1QAAo9EIvV4vxdTSPnu5b+expby8vNk+68p3W44RwcHB6NWrV5P9IxCOEa58e/oYERwcjOTkZBQVFQXUMcLVPuvpY4TBYEBycrL0OfL2MaLxe26325GRkSH5rqurw2+//YZff/0VRqMRhYWF0nad59L6+noolUrptbbk291jRE5OjuyLGSuYByYiZWVl4ciRIygvL8fdd9+NgoICJCQkSDWc2sP+/fuxfPlynD17tsklt4ceegg2mw3bt29v8e8YY3j99dexfft2/PWvf8XDDz/c0ZeDc+fOAQAGDx4snTCdE+A0Gg0cDgcsFgu0Wi1UKpV00ggJCQFwaUdVKBTQarVSlt2ethqNBkFBQbDb7bDZbAgODoZCoZAO7G1t66yXAVw6sKnVaqjVaml0qT1tdTodlEqlNPzZ2EtQUFCb27bVobu+nV7c9X25F3d8N/bicDg67PtyL57wbbFYoFQq3fbt9OIp304v7vpu7MVd34292O12OkbQMeKKP0YwxpCWlgbGGLp37w6HwwGr1QqNRiO1/eKLL/Doo49i9OjR+PTTT5s4tFgsUuITExMDh8Mh2zHC+aXn6quvhhy4lTQ5HA6sXr0au3fvlmojfP7559i0aRPy8/Oxa9cuREVFtWubKSkpmD9/Pg4ePNhkleQFCxYgPj4ea9asafY3giBg1apV+Oabb/DEE0/gnnvu6ehLAvB/SZNc0v0Bs9mMrKwsDBo0iCZgtgI54kOO+JAjPuSIjy8dWa1W5ObmIjg4uNVyAf/+97+xYcMGzJo1C88//3yz500mE5RKJQYMGCDbZG2z2YwLFy5Ao9HIdv526/Lctm3bsGfPHrzwwgs4cuSINGT52GOPweFw4NVXX233Np0jVMeOHZMeq6+vx4ULF1qdo/T4449j37592LRpk9sJU2dBpVIhPDycCsm5gBzxIUd8yBEfcsTHl46c9Y9c1Vf64x//iJMnT+Lpp59u8Xm73Q6dTifr3W0qlcq/K4Lv3r0by5cvx2233dZk8lViYiKWL1+OjRs3tnubGo0GCxcuxMaNGxEREYG+ffvi5ZdfRlRUFGbOnAlRFFFdXY2uXbtCp9Phiy++wLfffovHH38c48aNk67lApDaEM3RaDTo27evr8Pwa8gRH3LEhxzxIUd8fOnIefmeh/MyW0uIoij7+dh5uVBO3BppqqysRGJiYovP9e7du8O3/C9fvhzz5s3D008/jQULFkClUuHtt9+GWq1GSUkJJk+ejG+//RYA8M033wAANmzYgMmTJzf5cbYhmnP5XRVEc8gRH3LEhxzxIUd8fOWIMQaj0ehygrXFYmlTnUa5KoE7cTgcHqkX6Qq3XkG/fv3w888/Y+LEic2eO378OPr169eh7apUKjz22GN47LHHmj131VVXNbkrYufOnR3qo7PjvKsiMTFRmpBHNIUc8SFHfMgRH3LEx1eObDabNBm7NbZv3463334by5Ytw5IlS5o975zzLHfSZLFYIAiCrHfQufUKFi1ahNWrV0MQBEybNg0KhQJ5eXk4duwYdu7ciSeeeMJTcRIeRqvVIiEhodWhVIIctQVyxIcc8SFHfHzlyGazQRAEdO3atdU2J06cQE1NTauX35zzoeRe4kSr1fr3Mirz589HdXU1tm/fjo8//hiMMTz66KNQq9VYvHgxFixY4Kk4CQ+jUqnQpUsXX4fh15AjPuSIDzniQ474+MqRsyRAa4iiiFOnTgEAxowZ02Ibm83mlYRGpVLJvoyK22NlDzzwAO666y789ttvqKurQ1hYGIYPH47u3bt7IDxCLgRBQEVFBXr16iX7jhyokCM+5IgPOeJDjvj4whFjDAaDweXoVkpKCgwGA8LCwlqd4ywIAnr06CFXmE36EUVR1sngHrnAGBoaiqlTp3piU4SXsNvtqKysRHh4OB2kWoEc8SFHfMgRH3LExxeOnPOZXN31dujQIQDAxIkTW0xWnBOzvXEnu91u9++kKSEhgTsU1rhcOuE/BAcHY9iwYb4Ow68hR3zIER9yxIcc8fGFI2d9JlfzmX755RcAwJQpU1p83mazQaPRyL68CXDJkdz9uJU0Pfjgg82SJqPRiN9++w35+flYsWKFW8ERBEEQBOEbjEajy1Ebk8mEkydPAkCrV5ucyypdKSOIbiVNf/vb31p97vHHH0dqaipuu+02d7ogZMJsNiMnJwcDBgygZQtagRzxIUd8yBEfcsTH247sdjuMRqPL+UzHjh2DIAjo27cvBgwY0Op2OrIObUcwm80QBEHWBM2t4paumDt3LhWX9GNUKhVCQ0Np2QIXkCM+5IgPOeJDjvh425HVapXuemsN56W5qVOntjhVxzmfyRuX5oAAuXuuNfLz82G32+XaPOEmGo2myYLIRHPIER9yxIcc8SFHfLztyGw2S0UpW8M5Cby1+UxWqxVardZrtaU0Go3sBTTd2vrWrVubPeZwOFBaWopvv/0W06ZNc2fzhIw4HA5pgl5b1hTqjJAjPuSIDzniQ474eNMRYwwNDQ0uk52KigrpRq/Jkye32EYQBISGhsqeyDhxLqMi52iTx5Mm4FIJghtuuAGrVq1yZ/OEjNCyBXzIER9yxIcc8SFHfLzpyGq1wmKxuJyLdPjwYQDA0KFDW63BJAiCVwty+v0yKmlpaZ6Kg/AyWq0WcXFxtGyBC8gRH3LEhxzxIUd8vOnIYrFw6x1lZWUBaP2uOYfDAaVS6dX31BtVxxXMjSWBn3nmGcybNw/Dhw/3ZEw+59y5cwCAq6++2seREARBEIR3KSgogMlkclmfCQCqq6tht9sRGRnZ7Dmz2QwA6N+/v1cn+Mt9/nbrwujXX38No9HoqVgILyIIAkpLSyEIgq9D8VvIER9yxIcc8SFHfLzlyGazwWw2t2mEKCIiosWECbgUb0hIiFcTJucyKnLiVtI0cuRIHDt2zFOxEF6EDlJ8yBEfcsSHHPEhR3y85chZasDVvKC2XKCy2+1en5/mjaTJrctz69atw4cffoi+ffsiISGhmSCFQoG1a9e6HaS3octzBEEQRGektLQU1dXV6N69e6ttHnjgAVRVVWHlypUYO3Zss+dFUYTBYED//v29XqxU7vO3WxPBDx48iMjISAiCIAXaGLmLTBEEQRAE4RlEUeRWAbfb7fjvf/8Lg8HQajvnSNWVOLHfraTppZdeQlJSUou3JdbX10vVQgn/w2KxIDc3F/379/fK6tOBCDniQ474kCM+5IiPNxxZLBZYLBZ069at1TYqlQr79u3DkSNHkJyc3GIbm82GiIgIr9fccpYc8NtlVBYtWoTs7OwWn7tw4QLVafJjFAoFdDodjQa6gBzxIUd8yBEfcsTHG45MJhMAuEx2FAoFBgwYgIULF7baThRFn6whqFAo/G8ZlZUrV6KkpATApclga9asaXGkKTc3Fz179nQ/QkIWtFot+vfv7+sw/BpyxIcc8SFHfMgRH7kdiaKI+vp6t0ex7HY7goKCvLbeXGO0Wq3s1cfbPdL0u9/9DoyxJrPnnb87f5RKJUaMGIF169Z5NFjCczDGIAhCm+6C6KyQIz7kiA854kOO+MjtyGw2w2KxuEyaDAYD7r//frz//vtwOBwttvHlfCZv7D/tTsmmT5+O6dOnAwDuvvturFmzBoMGDfJ4YIS8mM1mWraAAzniQ474kCM+5IiP3I4aGhq4l7d+/fVX7N27F+fPn8ef/vSnFtvYbDb07NnTJ5dazWYzt1yCu7g1jvXBBx94Kg7Cy2i1WgwePPiKvLvBU5AjPuSIDzniQ474yOlIEAQYDAbuPKQDBw4AaH2BXuDS8im+mM8EeOfynHeWHib8DpVK5fIOCYIctQVyxIcc8SFHfOR0ZDKZYLVaXS6uazQa8dVXXwEA5syZ02Ib551rvpjPBFxyJPcde969H5DwGwRBQHl5OVXgdQE54kOO+JAjPuSIj5yO6uvrubfpO5dNGzBgAMaPH99iG5vNBq1W67Okye+XUSECF0EQUFhYSAcpF5AjPuSIDzniQ474yOXIYrHAaDRy75r78MMPAQB33nlnq/OVBEFAaGioz0pH+P0yKlcqtIwKQRAE0RkoKytDZWUlwsPDW22j1+txww03ICgoCCdPnkSvXr2atWGMoaamBv3792+xDJG3kPv8TSNNBEEQBNEJMZvNqK2tdTmXCQA+/vhjAMDMmTNbTJiAS6M8Go3GZ5fmvAUlTZ0Ui8WCixcvwmKx+DoUv4Uc8SFHfMgRH3LERw5HtbW1sNvtLhMdi8WC3bt3A7h0aa41bDYbdDqdT5Mm5zIqckJJUydFoVAgKCiIli1wATniQ474kCM+5IiPpx2ZzWbU1dVxR5k+++wz1NbWom/fvpg6dWqr7QRBQNeuXT0SW0fxy2VUiCsDrVaLgQMH+joMv4Yc8SFHfMgRH3LEx9OOamtr4XA4XI4MCYKAf/7znwCABx54ACqVqsV2oihCoVD4vM6WXy6jQlwZMMYgiiItW+ACcsSHHPEhR3zIER9POjKZTG0aZfrPf/6DgoIC9OzZ0+WlOZPJhNDQUJ8VtXTijf2HkqZOitlsxpkzZ2A2m30dit9CjviQIz7kiA854uMpR4wx1NXVweFwcGszNTQ0oEuXLnjggQdaTYica+J169bN55dXncuoyAmVHGiBzlBywG63o6GhAV27dpV9ODNQIUd8yBEfcsSHHPHxlCOTyYS8vDyEhIRwkyYAqKmpgVarbXW9O2cS169fP5+/d3a7HefPn4dSqZTt/E17ZyclKCjIZV0Oghy1BXLEhxzxIUd8POHIWUuJMdamhAkAt0+z2Yzo6GifJ0zAJUe0jAohC3a7HZWVlbDb7b4OxW8hR3zIER9yxIcc8fGEI7PZjPr6em7xyePHj+N///sfd46Q1WqFRqPxaTHLxtjtdjgcDln7oKSpk2Kz2ZCXlyf79d9AhhzxIUd8yBEfcsTHXUeNR5lcjQoxxvDss89i/vz5eO+991xu02QyoVu3bj6/a86JzWaTPfH2/Xga4ROCg4MxatQoX4fh15AjPuSIDzniQ474uOvIecccb1TIYrFg1KhRKCgowO9///tW2wmCAJVKhbCwsA7H5GmCg4NlL65JI02dFGcRMF/f7eDPkCM+5IgPOeJDjvi444gxhtraWgDgzj0KDg7Giy++iBMnTqBHjx6ttjOZTOjatSt3oV9v4o39h5KmTorVakVmZiasVquvQ/FbyBEfcsSHHPEhR3zccdTWUabGuKq5JIoiHA6HX5QZaIzVaqVlVAiCIAiC6BiMMVRXV0vLsLhi48aNOHv2LHebzmKWvOKYVyJUp6kFOkOdJoIgCOLKx2AwIC8vD2FhYa0ugwIAJ06cwJw5c6BWq3Hy5En07NmzxXbOS30xMTF+NZ/Jidznb5oI3klpnCv70/CqP0GO+JAjPuSIDzni0xFHzjvmlEqly4QJADZv3gwAmDdvXqsJE3CpbIFOp/PLUSZaRoWQDbPZjN9++42WLXABOeJDjviQIz7kiE9HHBmNRjQ0NHDnMp07dw4//vgjlEolHnzwQZdtLRYLIiIiuEmYL/DGMiqUNHVSNBoN+vXrJ/vtmYEMOeJDjviQIz7kiE97HYmiiKqqqjaNMr3yyisAgDlz5mDAgAGttnOOMvlLMcvL0Wg0slcmp8tznZSgoCCXQ7AEOWoL5IgPOeJDjvi011FdXR0aGhrQvXt3l+3+85//4MCBA1CpVFi+fLnLtmazGVFRUW1egsXb0DIqhGzY7XbU1NTQsgUuIEd8yBEfcsSHHPFpjyOr1Yrq6moEBwe7TCIKCwuxatUqAMDDDz+MIUOGtNrWYrFAo9Gga9eu7Q/eS9AyKoRs2Gw2ZGdn07IFLiBHfMgRH3LEhxzxaasjZ4kBi8XistaS3W7H8uXL0dDQgNGjR7scZWKMwWQyISIiwm+WTGkJbyyjQiUHWqAzlBxgjMHhcECpVNLdKq1AjviQIz7kiA854tNWR1VVVSgpKUFYWJjL+T0bN27Eq6++ii5duuDAgQPo379/q21NJhMUCgViY2P99tIccMlRamoqAPnO3zTS1ElRKBRQqVR0gHIBOeJDjviQIz7kiE9bHBkMBlRUVCAkJMRlwnT48GG89tprAID169e7TJhEUYTFYkGPHj38OmECaBkVQkasViuys7Np2QIXkCM+5IgPOeJDjvjwHFksFpSVlUGhULhcD66yshJ/+9vfwBjDHXfcgblz57baljGGuro6RERE+GUhy8uxWq2yX56jpKmTwhiD3W73SjGwQIUc8SFHfMgRH3LEx5Ujs9mMoqIiWK1W7kTtM2fOoK6uDkOGDMHzzz/vsq1zvbpevXrJfleaJ2CMyb4P0ZymFugMc5oIgiAIeXCeVj3xb2vPOf/vcDhQWVkJQRDQrVu3NsV34cIFqFQqxMfHt9rGaDRCoVCgb9++LieU+xu0jApBEARxRePJJMMT/zpvW2/8b+MEpqXnG/97+ViEO0lSazDGoFAowBiDRqPhJkzOSeQAkJSU5LKt8zLXVVddFVAJkzegpKmTYjKZkJaWhoSEBISEhPg6HL+EHPEhR3zkcOTrpKItSUZ7/jWZTMjKysKgQYMQHBzsdjzu4pxQ3NF/L9+OM1lxZ3tmsxmZmZkYPHhwuxOZ3bt344033sCGDRswcuRIl23tdjtMJhOioqL8uiZTS5hMJthsNlkry/tl0uRwOLB161Z89tlnaGhowNixY7F69WrExMS02L6mpgYvvPACDh06BIVCgZtvvhmPP/44ZcguUKvVuOqqq/z+bghfQo74BIojXyYVgiAgNDQUBoMBFosFgPtJhjsjGa396xy1cPVv4/4uf7zxv+1JBhQKBdRqNaKjo6FWq6FQKDySZHgSpyfn9u12OywWCxQKRZNEuKKiQiqw6PwRRbHJ75c/FxMTI1X6rqmpwfnz5xESEoJRo0ZJ2/3ll19QV1cHg8GArKwsKBSKVrfn/P/IkSMxfPhwMMbw3Xff4cKFC3jppZfw0UcftbqsCmMM9fX16NGjB8LDw2VxKSdqtVr2NfH8Mmnatm0bPvroI7z00kuIiorCyy+/jMWLF2PPnj0tZpDLly+H2WzGu+++i/r6ejz11FMwmUxYv369D6IPDNRqNSIjI30dhl/TmR215Zu881JC9+7d4XA4YLVa/XYkw1dJRuN/KyoqmiUZzom9KpVKukVcEAQYjUYp/saXhkRRbPL/xs8lJiZK283KykJtbS369euHyMhIKBQK1NTUICUlBYyxVk/ijU++zna33nqrVNDw8OHDSEtLw6hRo6STekVFBT766KNmJ+7GMTbenvOxv//979Ln65tvvsH+/fsxdepUzJ8/HwBQXV2NFStWtPr3jbff+Ofll19GcnIyAOCzzz7Dli1bMH36dKxZswbApYTnmmuuafXvnX01fo4xhn/961+46aabAAB79uzBsmXLMGXKFHzyySfSfnXttdeirq4O7WH9+vVYuHAhgEvzcRYsWIDExER8//33UptVq1YhJyenXdt97LHHMHz4cCgUCmzYsAFjxozBfffd5zKpqKurQ9euXQNm4vfldMqkyWazYefOnVixYgWuu+46AMCrr76KKVOm4MCBA7jllluatD99+jSOHz+Ob7/9FoMGDQIAPPfcc1i8eDEeffRR9O7d29svISAQRREGgwGhoaF+uVq1P9BeR55MFHjJSlvaWywW2Gw2OBwO2O126STg/H9LP6GhodK3XpvNhvT0dDDGpJMQYwwZGRmorKyURlFMJhM0Gk2Tk7EzGXD2GRUVhTFjxkixfvbZZ2CMYc6cOdDpdGCM4ddff0VaWlqTE9XliUHjk6fD4UBsbKx0wlEoFHjxxRdhMpnw8MMPS5/9b7/9Fvv372/2t41/Lj9JxsbGSnVsFAoF/vKXvyA/Px+vvvoqhg0bBgD49NNP8eqrr7Z6om0piejRowdOnDghvZdz587F8ePHsWPHDsyaNQsA8OWXX3JXmr8clUqF/Px86fdNmzbhu+++w0svvYS7774bwKXJv87/t4cbb7xRSpr27NmDXbt2YcWKFU2Spg0bNrR7u/fdd5+UNJ0/fx5ffPEFwsLCpKRJEATs37+/3ds1GAzS/+vr65GVlYWhQ4dKjymVSpSWlrZ7u42X53AmFJcv2REUFAS1Wg2lUtnkx1lfSaVSNXuu8UhVly5dEBcX16xuUnJyMiIiIsAYQ1BQkLSdlrbn7Gvw4MHS30dERGDJkiUuX5/BYIBWq0Xv3r1lX/RWLpyfNTkTPr8zk5aWBqPRiAkTJkiPhYWFISkpCSdOnGiWNJ08eRK9evWSEiYAGDduHBQKBU6dOiUdiIimWK1WZGZmIjEx0eU8i8u/3TU+Kbh6rE+fPtKoYHl5OcrLyxEeHo6+ffsCuHRC/u2336STtfNEe/l2Gz8viiKmTJkindT1ej1OnDiB2NhYTJ06VTqxvvnmm01O3I2Hy1uK2W63Y/78+dI39dOnT+Pjjz9G3759MWnSJAwZMgTBwcFYtWoVDAZDs4Tg8hNl4xPoPffcg+nTpwMAUlJS8I9//AMxMTF45ZVXpARnyZIlyM/Pd/nN//IEYvHixVi8eDEA4OLFi5g3bx7Cw8Px888/S+/dokWLcOrUqXbtF3fffTeeffZZAEBtbS3mzJkDhUKBzMxMaYRky5Yt2LdvX7u2+/vf/x4zZswAcOnA5rzV+Y9//KN0GeCXX37BBx980K7tTpw4EX/961+l37/++mvU1tZi2bJl0n6dk5ODb7/9tl3bbWhoaJIoZ2dnIzMzUxoBAi7dXdQ4UWkLly+B0dLJ9/JLTK2dGJ2VoVUqVbOkPjIyEv3792+yGn1YWBiGDh3a7G8bn2hbOhE3PoGOGDECBoOhyV1X4eHhuOuuu1pNClr6UalUTS7/TJo0CWazGVOnTm0S7/r167nxXZ6UNI5t1qxZSE5ORo8ePZr43bdvXzOXvCSnscubb74ZmZmZzZKLlJSUlt72NjN69Gj89NNPzR5/4403YDabkZGRIR2PPIUoijCZTGCMoU+fPi5rPPk7zgnsnWpOk/MbQHR0dJPHIyMjW/x2UFZW1qytRqNB9+7dUVJS4lYsZrNZ2jnNZjNUKhU0Gg0cDgcsFgu0Wi1UKhUEQYAgCNJB2nmtW6vVgjEGs9kstT169CjeeustKJVKiKIIQRCaXEpwHlSdJ3u73Q6lUom9e/dK8yHWrl2LH3/8EUuXLsVtt90mbXfp0qXSdlxdV3cmIowxnDp1CqGhoWCMYfXq1XjnnXewfPlyPP744wgKCkJqaiomT57cbnc//fQTYmNj4XBcmp/2+uuv484778SaNWugUqlQUVHRJDFuK++99x5GjhwJQRCwe/durF27FjfccAN69+4tvTcrVqxo93b79++P7t27QxAEnDt3Du+88w7GjBmDuXPnQhAE2O127NmzBzU1Ne3a7o033giFQgFBEGCxWHDu3DmYzWYoFApp3yosLGz30LtCoUDXrl2luizOZEqj0UjbbW10rHFl4ctPEM5KwlarFRqNBtHR0VL8zv27d+/eGDx4sHRCcfYVFBQknfCd37adl57i4uIkB0FBQZg5cyYUCgUsFgsEQYBCocDQoUMxe/ZsaYjd4XBApVI1mS+l0Wik7SoUCgwaNAiCIEifz2XLlsFisUCtVsNisUCpVGLChAno0qULtFqt9LkLCgqSDqyiKEKr1SIoKEj6LEZERMBqtUrbXbt2LcxmM/r06QOTyQSVSoXrrrsOH330kbQoqiAIUKvVTbar0WigUqkgiiIUCgW6dOkCi8UCq9UKhUKBN954Q/pmbDQape2ePXsWXbp0gUKhkIoZOkfzrFar5Mh5DNFqtTCbzdLx45lnnsHTTz8Nq9UKg8EAlUqFwYMH45NPPoFOp5O2yxiTTpJms1kaKRFFETabTWpbW1sLxhhmz56N2bNnw2w2o66uDmq1GqGhoVi5cqXk12azQRTFJsfOy7frfB9ramogiiJGjBiB5ORkaVFa52f5xhtvlBw6P4eNt6tUKqW2zn1WpVJJC9t27doVQ4cOhcViQVVVlXRMjoqKglqtRlBQkHT8dm738uO3cz+y2WwwmUwQBEHyYjQaW3QYFBQkHb+1Wm2T99E5amexWKT92/k+Or04R4gvb+vc/+rr66W2giBAFEUpBmdb5/7c2PflbZ3xdu/eHd27d5c+H62d1xr7bu85UKPRSF5sNlu72gYHB7e4z5pMJqjVaqjVaunLrNzzK/0uaTKbzQDQLFPUarUtXit2Cr4crVbrVnVZURSRkZEhDcXn5OQgNDQUsbGxsNls0Ov1iIuLQ9euXVFVVYXS0lKMGDECAJCbmwudTof+/fvDbrdDr9dj8ODB6NatG86cOYN33nmn3fHk5OQgLy9PSnSOHDmCpKQkDBkyBBEREbhw4YJUn6I9FBQUwGKxwGKxoLa2FhaLBTk5OUhNTUWPHj1QUFDQpu04v7k6T77V1dUQBAENDQ1QKpUIDw+HyWRCbm4uoqKi0NDQgMjISOnA5RzRanwCCgoKanLACQ4Ohk6nQ1VVFcrLy9GnTx9MnjwZ0dHRqKioQN++feFwODBhwgSEhoZKHySr1Yrw8HCoVCrpxBQWFiadDMLCwtCvXz/U19ejqKgIAwcOxJIlSxASEoLS0lLExsYCAObMmYOQkBCEhobCarWivr4e0dHRUKlUqK+vh8PhQGRkpDT8361bN4wdOxZVVVXIy8tDnz59sHXrVlgsFqSlpUnD5/fffz+0Wi0iIiJgs9lQVlaG2NhYaLVaaeHNAQMGQKFQoKCgAGFhYRg4cCAqKiqQnZ2N2NhY/Pzzz6iursaFCxcQFxcHAFixYgW6dOmCvn37Sot9Dhw4EKGhoaioqEBVVRUSEhKkOTA6nQ59+/ZFfX09Ll68iNjYWPz444+oqqrC+fPnpduU//jHP+Kuu+5CTEwM7HY70tPTERMTg27duqGmpgZFRUXS5by8vDwAQL9+/WAymXDhwgVcddVV2Lx5M2pra5GXl4eQkBCoVCqMHDkSI0eOlC5NpKamok+fPoiIiEBdXR0KCgoQHx8PtVqNwsJC2Gw2DBw4EFarFWlpaYiMjMTdd9+NhoYG5OXlISwsTLrcMHHiRGkFd71ejx49eiAyMhJGoxE5OTkYPHgwdDodSkpK0NDQgLi4ONjtduTk5CAsLAwjR46E2WxGVlYWunTpIh3wQ0NDpRHKjIwMdOnSBX369IHFYkFmZib69u0r+a6oqMCAAQPAGENBQQG0Wi2uuuoqCIKA9PR0xMbGIiwsDPX19SgtLUVycjIYYygsLERQUBBiY2PBGENmZqbku66uDsXFxZJv5xfFfv36SSOETocGgwEFBQVISkqCUqmUJi0PGDAAwKXRtOjoaPTo0QNmsxm5ublITExEUFAQKisrYbVapRH9vLw89OrVC5GRkbBYLMjNzUVcXByCgoJQVlYGk8kk+S4qKkJ4eDh69+4Nm82G3NxcDB48GFqtFlVVVairq0N8fDy0Wi0uXryIsLAwREdHw2KxoKCgAAMHDoRWq0VtbS2qqqqk/TAvL6/J/p2VlSWNrhkMBpSVlUm1eoqLi6HVahEeHg5BEJCVlYV+/fohJCQEVVVVKC4ulo715eXlUCqV6NGjB0RRRE5ODmJjY9G1a1dUV1ejpKQEV199NZRKJaqqquBwONCrVy/JYUxMDMLCwlBXV4fCwkIMHToUQUFByM/PhyAI0mXjc+fOITo6Gt27d0d9fT0KCwuRmJgIjUaDgoICmM1mxMXFQaFQ4Pz58+jVqxd69+4No9GIzMxMxMfHQ6fToaioCA0NDdIo/oULFxAeHo6ePXvCZDJJo1NdunRBSUkJDAaDdExLS0tDz549ERMTA5vNhvPnzyM+Ph6hoaGorKxEeXk5hg8fDuDSOSgkJAT9+vVrdl5zfu6dd+bl5eVBo9FgwIABEEURer0eAwcORHh4uPS5Hz16tHQOUiqVGDRoEBhj0Ov16N+/P3r06IH6+nrk5ORgxIgRUKlUKCwshMPhaPJZjo2NRa9evaRJ8nKOMgF+WNxy//79WL58Oc6ePdtkmPChhx6CzWbD9u3bm7R//vnnkZKSgs8++6zJ4xMmTMADDzyAe+65p90xOJOPxrd2emqk6bfffpO+7TXO6ht/I3Vmzs63RqvVYsGCBdK3yJSUFBQXF2PIkCHSgaqiogInT56ETqeTtqNUKqV+nN9inDuU2WyG0WjE+PHjpaTFZDLBaDRCrVajZ8+eUKvVsFqtqKyslEYgnNl8ly5doFKppG+9Go0GoijCarVKfTq/LXXE4eVtrVZrh77VXN7W+Q2/Ld9qGhoapGRMq9VKc3eCgoKkb8xt+QbE88Jre/m39ssdOhPNtrR15bAj+7fFYkFhYSH69OmDkJAQ2O32dn/jbM2h2Wxu8i2yvb5b89IR31qttkUvl498tOTQbrejqKgIERER0iUpV8eIth5PWnPoPGa0xTcArsOO7N+uRppaaqtUKlFSUoLw8HAEBwd36BjR0ZGPjoySuPLSkVGS1o4Rjds6HJeKWDrngbXnGNGetq4c+vtIk8FgQE5ODoKCgmQrbul3SVNKSgrmz5+PgwcPStkwACxYsADx8fHSHRBOduzYgV27djWZy2Gz2TB8+HBs2rSpQ3OaOkNFcOe3w/79+wf0NWw5IUd8yBEfcsSHHPEhR3wsFgsuXLgAtVot2/nb7+4pTEhIQGhoKI4dOyY9Vl9fjwsXLmDs2LHN2o8dOxalpaXSZQAAOH78OABIw39Ec3Q6HRISEujD5wJyxIcc8SFHfMgRH3LER6fTdb45TRqNBgsXLsTGjRsRERGBvn374uWXX0ZUVBRmzpwJURRRXV2Nrl27QqfTYfjw4Rg1ahQeeeQRrFmzBiaTCatXr8acOXOo3ABBEARBEB7D70aagEvFKufNm4enn34aCxYsgEqlwttvvw21Wo2SkhJMnjxZuoVYoVBg69atuOqqq7Bo0SI8/PDDmDp1arPLeERTTCYTzpw5A5PJ5OtQ/BZyxIcc8SFHfMgRH3LEx7mMipz43Zwmf6AzzGkSBAFVVVXo0aOH3y+B4SvIER9yxIcc8SFHfMgRH0EQcP78eahUqs4zEdwf6AxJE0EQBEFcach9/vbLy3OE/IiiiIaGBoii6OtQ/BZyxIcc8SFHfMgRH3LEx1m0WU4oaeqkWK1WXLx40a0CoFc65IgPOeJDjviQIz7kiI/VaoUgCLL2QZfnWqAzXJ67vLw+0RxyxIcc8SFHfMgRH3LEx+FwIDU1FQqFQrbzt9+VHCC8g7NaONE65IgPOeJDjviQIz7kiI9zOS9Z+5B164TfYrPZkJ+fL/vtmYEMOeJDjviQIz7kiA854mOz2WC322Xtg5KmToooijAYDDSp0AXkiA854kOO+JAjPuSIjzcmgtOcphboDHOaCIIgCOJKg0oOEARBEARB+AE0EbwFBEEAY0zKWK9EGGMQBAFqtVr2iXOBCjniQ474kCM+5IgPOeLjdCSnH0qaWqAz7JAKhQIajcbXYfg15IgPOeJDjviQIz7kiI9CoZB+ZOuD5jQRBEEQBEHwoTlNBEEQBEEQbYCSJoIgCIIgiDZASRNBEARBEEQboKSJIAiCIAiiDVDSRBAEQRAE0QYoaSIIgiAIgmgDlDQRBEEQBEG0AUqaCIIgCIIg2gAlTQRBEARBEG2AkiaCIAiCIIg2QEkTQRAEQRBEG6CkiSAIgiAIog1Q0nQF4HA4sHnzZkyZMgUjRozAfffdh4KCghbbbtmyBfHx8S3+rFq1qll7xhj+8pe/4O6775b7ZciKHI5ycnJw//33Y+TIkZg0aRKee+45mM1mb70kjyOHo//973+47bbbMGLECNxwww14++23vfVyZKE9jgCgqqoKf//73zF+/Hhcc801eOSRR1BWVtakzXfffYdZs2Zh2LBhmDNnDn799Ve5X4aseNqRw+HAv/71L/zud7/DiBEjcPPNN+Ozzz7zxkuRDTn2Iyc2mw2///3v8cQTT8gVvleQw1FKSgruuusuDBs2DNdeey02b94Mh8PRvsAYEfBs2bKFXXPNNeynn35ier2e/fnPf2YzZ85kVqu1WVuDwcDKy8ub/Kxfv56NGDGCpaWlNWv/zjvvsLi4OLZw4UJvvBTZ8LSj6upqNnHiRPbXv/6VZWRksCNHjrDJkyezZ5991suvzHN42lFWVhZLTk5mW7ZsYfn5+Wzv3r1s2LBhbNeuXd5+aR6jPY4YY2zhwoXsjjvuYBcuXGDnz59nt99+O7vtttuk53/99Vc2dOhQ9t5777HMzEz20ksvseTkZJaZmemtl+RxPO1o27ZtbMyYMWzv3r0sLy+PffLJJywpKYn95z//8dIr8jyedtSY559/nsXFxbGVK1fK+RJkx9OOsrOz2fDhw9kzzzzDcnJy2L59+9jIkSPZW2+91a64KGkKcKxWKxs5ciT78MMPpcfq6urYsGHD2J49e7h/f/78eTZ06FD2xRdfNHsuLS2NjRkzht1+++0BnTTJ4Wjz5s1s6tSpzGKxSI99+umnbO7cuczhcHj2BXgBORy98847bNy4cU3aPfjgg+yBBx7wXOBepL2O6urqWFxcHPvhhx+kx77//nsWFxfHampqGGOM/fnPf2YPPfRQk7/74x//yJ555hlZXoPcyOFoypQpbNu2bU3+btWqVezOO++U50XIjByOnBw6dIhNnDiR3XzzzQGdNMnhaOXKley2225rcnx+/fXX2ZIlS9oVG12eC3DS0tJgNBoxYcIE6bGwsDAkJSXhxIkT3L9/7rnnMGbMGMydO7fJ41arFStWrMDy5csxYMAAj8ftTeRwdPjwYcyYMQNarVZ6bP78+fjiiy+gUCg8+wK8gByOevTogdraWnzzzTdgjCE9PR2nTp3C8OHDZXkNctNeRzqdDl26dMGXX34Jg8EAg8GAr776CgMGDEBYWBgcDgd+++23JtsDgGuuuaZNzv0RORytX7++2fFJqVSivr5e9tcjB5525KS6uhqrVq3C888/j/DwcK+8FrmQw9Hhw4dxyy23NDk+L1++HNu3b29XbJQ0BTilpaUAgOjo6CaPR0ZGSs+1xk8//YTTp09j5cqVzZ57+eWXERkZiYULF3ouWB8hh6OcnBxERkZi3bp1uO666zBjxgxs2LABVqvVs8F7CTkc3XTTTZg/fz4ee+wxDB06FH/4wx8wadIkLFmyxLPBe4n2OtJoNHjppZdw/PhxjBkzBmPHjsXZs2exY8cO6aRvMpkQFRXVpu0FAp52pFQqMWHChCaOiouLsXfvXkyePFneFyMTnnbk5KmnnsK0adMwffp0eV+AF/C0I4PBgIqKCnTt2hVPPvkkJk+ejFmzZuGtt96CKIrtio2SpgDHOfFYo9E0eVyr1XJP4O+88w6mTZuGxMTEJo8fOnQIe/bswdq1awNy1ORy5HBkMBiwY8cOWK1WbN26FY899hj27NmDp59+2rPBewk5HFVVVaGoqAjLly/H559/jhdffBE///wztmzZ4tngvUR7HTHGoNfrMXLkSHz44Yd477330KdPHyxduhQGgwEWi6Vd2wsEPO3ociorK3HfffehR48e+Otf/yrPi5AZORx98sknyMrKavFmnkDE046cntavX48+ffpgx44dWLx4Md588812H4+COviaCD9Bp9MBuHTHhPP/wKXLa8HBwa3+XXFxMY4dO4a33nqryePV1dV48sknsWbNGvTu3VueoL2Mpx0BQFBQEAYMGIA1a9YAAJKTkyGKIh5++GE88cQT6NGjh2dfhMzI4eipp55CdHS0dHJLSkoCYwxr1qzBwoULERER4eFXIS/tdfTdd99h165d+OmnnxAaGgoAeOONNzBt2jR8/vnnmD17trS9xvCc+zOednTPPfdIbbOzs3H//fdDFEW8//77TS5NBRKedjR16lS8/PLLePvttxESEuKdFyEznnZ0yy23AAAmTpyIZcuWAQASExNRXV2Nf/7zn3jooYfaPEBAI00BjnP4sry8vMnj5eXlLpOe77//HhEREZg0aVKTx3/++WdUVFTgySefxMiRIzFy5Ejs2bMHJ0+exMiRI1FcXOz5FyEznnYEAFFRURgyZEiTx5y/FxUVuRuy15HD0alTp3D11Vc3eWzEiBGw2+0oLCz0QNTepb2OTp48iQEDBkgHcQDo1q0bBgwYgLy8PHTv3h0hISHtdu7PeNqRk1OnTuGOO+5AcHAwPvnkE8TExMj0CuTH046+/fZbGI1G3HvvvdIx++TJk9izZw9Gjhwp74uRCU87Cg8Ph1arRVxcXJO/GzJkCEwmE6qrq9scGyVNAU5CQgJCQ0Nx7Ngx6bH6+npcuHABY8eObfXvTp48iXHjxiEoqOlg44wZM3DgwAF8+eWX0s/06dORnJyML7/8EpGRkbK9FrnwtCMAGDt2LFJSUsAYkx67ePEiVCoVrrrqKs++AC8gh6PevXsjPT29yWPp6elQKBTo16+f54L3Eu11FBUVhby8vCaXE0wmEwoLC9G/f38oFAqMGjUKx48fb/J3x44dw5gxY+R7ITLiaUfApdo6ixcvxpAhQ/Dhhx8GbELpxNOOFi5ciP379zc5ZicnJ2P69On48ssvvfGSPI6nHalUKowaNQpnz55t8nfp6ekICwtD9+7d2x5cu+61I/ySV155hY0bN459//33TepZ2Gw2ZrfbWXl5OTObzU3+5vrrr292G29rrFy5MqBLDjDmeUdZWVlSzY/s7Gx26NAhNnXqVPbEE0944+XIgqcdOevpvPfeeyw/P58dPHiQTZo0if3jH//wxsuRhfY4KisrY+PGjWNLlixher2e6fV69sADD7ApU6aw+vp6xhhjv/zyC0tMTGQ7d+5kmZmZbP369WzYsGEBXafJk44EQWAzZsxg119/PcvPz29SF6yqqsrHr7TjeHo/upyFCxcGdMkBxjzv6OjRoywxMZFt3ryZ5eXlsb1797LRo0ezLVu2tCsuSpquAOx2O9uwYQMbP348GzFiBLvvvvtYQUEBY4yxgoICFhcXx3bv3t3kb4YNG8Y++uijNm3/Skia5HB09uxZdtddd7Grr76aTZw4kb300kutFl4LBORw9J///If94Q9/YMOHD2czZ85k//znP5nNZpP1dchJex1lZmayBx54gI0bN46NHz+eLVu2TGrv5D//+Q+bMWMGu/rqq9ncuXPZ//73P6++Jk/jSUenTp1icXFxLf5MmzbNJ6/PE8ixHzXmSkia5HB06NAhNnfuXDZ06FB23XXXsTfffJOJotiuuBSMNbq+QBAEQRAEQbQIzWkiCIIgCIJoA5Q0EQRBEARBtAFKmgiCIAiCINoAJU0EQRAEQRBtgJImgiAIgiCINkBJE0EQBEEQRBugpIkgCIIgCKINUNJEEARBEATRBihpIgiCIAiCaAOUNBEE4REsFgs2bdqEmTNnIjk5GaNGjcK9994LvV4vtWGM4d1338VNN92EYcOGYcaMGXj77belhY95z8fHx2PLli1N+t2yZQvi4+ObPDZ9+nSsXbsWixYtwrBhw/DUU095JL7169dj2LBhaGhoaNLftm3bMHr0aJjNZrc9vvbaa/j000/d3g5BEJ6n+dLkBEEQHeDxxx/HyZMn8eijjyI2NhZ5eXl4/fXX8fe//x179+6FQqHAhg0b8N577+Hee+/FpEmTcO7cOWzcuBF2ux0PPPAA9/n28OGHH+Lee+/Ffffdhy5dungkvnnz5mHnzp3Yt28f5s+fL/X11VdfYdasWQgODnbbo8Hw/9q5n5Cm/ziO48/pNiVDwRChmrKEMBRzDUYMDxEqsoigPBj5Bwz04C2agk0vwhxEeAmjQ6KC6GniQQw6FM4uCoIoRB7UJoqihIdNcFT7HUJ/Cb+ffmVTf/B7Pa7vfb/f1/cDg9d3332/ETo7OzGbzTx8+DDh/YlI8qg0iUjCYrEY0WgUn8+Hx+MBwOVyEYlECAQCbG9vk5aWxuDgILW1tXi9XgDcbjdbW1vMzMzw+PHjI+cnLU2XL1/m+fPnScvX3NxMQUEBDoeDsbGxg9I0OzvLysoKgUDAUK69vb0j516vl2g0yosXL7BYLNy/f/9E5y0ip0elSUQSZrVaeffuHQCbm5ssLy+zsrLCx48fgd+l5cuXL/z48YPKyspD2/p8PgAmJyePnJ/UjRs3kppv36NHj+jo6GBtbY0rV64wOjqK3W7H4XAcmykajXLr1i3D59DW1sbt27fJyckxvI2InB6VJhFJilAohN/vZ2lpiYyMDAoLC7lw4QLw+79COzs7AGRnZ//j9sfNT2r/2MnKt8/j8eD3+xkbG+Pp06dMTEzQ1NRkKFNaWhrd3d3Hfm5qaorx8XEqKiqSth4ikjiVJhFJWDgcpqWlhfLyct6+fYvNZsNkMjE0NEQoFAIgMzMTgO/fv3Pt2rWDbdfX1wmHwwcF5t/mTqcTgJ8/fx469u7u7pnkczqdWCwWMjIyqKqqYmJiguvXr7O7u8uDBw8MrZOR/yl9/vyZDx8+UF5ezqtXr0hNTTW0bxE5fXp6TkQStrCwwN7eHk1NTeTl5WEymQAOCkk8HqekpASLxXJwS2xfX18fz549w+FwHDlPTU3l4sWLbG5uHprPzs6eSb4/y0t1dTWLi4sMDAzgdrvJzc01skyGvHnzBrfbTU9PD2azrmtF/kv0jRSRhBUVFWE2m3n58iWNjY3EYjGCwSCfPn0Cfv8aZLPZqK+vp7+/H6vVisvlYm5ujuHhYVpbW7l06dKR85SUFO7cucP4+Dg3b94kPz+fYDDIt2/fziRfSsrf15hOpxO73c709DQ9PT1JXcve3l7S09OxWq1J3a+IJM4U338BiYhIAt6/f8/r168Jh8NkZWVRWlpKfX09dXV1dHR08OTJE+LxOH19fYyMjLCxscHVq1dpaGigpqYG4Nj59vY2XV1dTE5OYjab8Xg8FBcX4/P5+Pr160GWu3fv4nK5Dj3Rlox8fwoEAgSDQaamplRwRP4nVJpERE4oHo9z7949ysrKaG9vP+84InJGdHtORMSgSCRCf38/8/PzrK6uUldXd96RROQMqTSJiBiUnp7OyMgIv379wu/3Y7PZzjuSiJwh3Z4TERERMUCvHBARERExQKVJRERExACVJhEREREDVJpEREREDFBpEhERETFApUlERETEAJUmEREREQNUmkREREQMUGkSERERMUClSURERMQAlSYRERERA/4CS+zU/qJLi30AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=disparity_metric,\n",
+ " show_data_type=\"fit\", # synthetic data example on the same data as used to fit the model\n",
+ " constant_clf_perf=max((y_true == const_pred).mean() for const_pred in {0, 1}),\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(FAIRNESS_CONSTRAINT.replace(\"_\", \"-\") + r\" violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "46ca150d",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/.doctrees/nbsphinx/examples_example-with-postprocessing-and-inprocessing_21_0.png b/.doctrees/nbsphinx/examples_example-with-postprocessing-and-inprocessing_21_0.png
new file mode 100644
index 0000000..0eaa1e4
Binary files /dev/null and b/.doctrees/nbsphinx/examples_example-with-postprocessing-and-inprocessing_21_0.png differ
diff --git a/.doctrees/nbsphinx/examples_example-with-postprocessing-and-inprocessing_30_0.png b/.doctrees/nbsphinx/examples_example-with-postprocessing-and-inprocessing_30_0.png
new file mode 100644
index 0000000..f7dc056
Binary files /dev/null and b/.doctrees/nbsphinx/examples_example-with-postprocessing-and-inprocessing_30_0.png differ
diff --git a/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_22_0.png b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_22_0.png
new file mode 100644
index 0000000..b31f279
Binary files /dev/null and b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_22_0.png differ
diff --git a/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_27_0.png b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_27_0.png
new file mode 100644
index 0000000..3d79817
Binary files /dev/null and b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_27_0.png differ
diff --git a/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_38_0.png b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_38_0.png
new file mode 100644
index 0000000..8452ddb
Binary files /dev/null and b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_38_0.png differ
diff --git a/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_41_0.png b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_41_0.png
new file mode 100644
index 0000000..a944c64
Binary files /dev/null and b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-folktables_41_0.png differ
diff --git a/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-synthetic-data_15_0.png b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-synthetic-data_15_0.png
new file mode 100644
index 0000000..c35313d
Binary files /dev/null and b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-synthetic-data_15_0.png differ
diff --git a/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-synthetic-data_18_0.png b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-synthetic-data_18_0.png
new file mode 100644
index 0000000..aa79f9d
Binary files /dev/null and b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-synthetic-data_18_0.png differ
diff --git a/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-synthetic-data_27_0.png b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-synthetic-data_27_0.png
new file mode 100644
index 0000000..51bbc00
Binary files /dev/null and b/.doctrees/nbsphinx/examples_relaxed-equalized-odds.usage-example-synthetic-data_27_0.png differ
diff --git a/.doctrees/nbsphinx/examples_usage-example-for-other-constraints.synthetic-data_18_0.png b/.doctrees/nbsphinx/examples_usage-example-for-other-constraints.synthetic-data_18_0.png
new file mode 100644
index 0000000..50f757a
Binary files /dev/null and b/.doctrees/nbsphinx/examples_usage-example-for-other-constraints.synthetic-data_18_0.png differ
diff --git a/.doctrees/nbsphinx/examples_usage-example-for-other-constraints.synthetic-data_21_0.png b/.doctrees/nbsphinx/examples_usage-example-for-other-constraints.synthetic-data_21_0.png
new file mode 100644
index 0000000..e8c4549
Binary files /dev/null and b/.doctrees/nbsphinx/examples_usage-example-for-other-constraints.synthetic-data_21_0.png differ
diff --git a/.doctrees/nbsphinx/examples_usage-example-for-other-constraints.synthetic-data_30_0.png b/.doctrees/nbsphinx/examples_usage-example-for-other-constraints.synthetic-data_30_0.png
new file mode 100644
index 0000000..1fa93bc
Binary files /dev/null and b/.doctrees/nbsphinx/examples_usage-example-for-other-constraints.synthetic-data_30_0.png differ
diff --git a/.doctrees/notebooks.doctree b/.doctrees/notebooks.doctree
new file mode 100644
index 0000000..da2c9a1
Binary files /dev/null and b/.doctrees/notebooks.doctree differ
diff --git a/.doctrees/readme.doctree b/.doctrees/readme.doctree
new file mode 100644
index 0000000..d98caa5
Binary files /dev/null and b/.doctrees/readme.doctree differ
diff --git a/.nojekyll b/.nojekyll
new file mode 100644
index 0000000..e69de29
diff --git a/_images/examples_example-with-postprocessing-and-inprocessing_21_0.png b/_images/examples_example-with-postprocessing-and-inprocessing_21_0.png
new file mode 100644
index 0000000..0eaa1e4
Binary files /dev/null and b/_images/examples_example-with-postprocessing-and-inprocessing_21_0.png differ
diff --git a/_images/examples_example-with-postprocessing-and-inprocessing_30_0.png b/_images/examples_example-with-postprocessing-and-inprocessing_30_0.png
new file mode 100644
index 0000000..f7dc056
Binary files /dev/null and b/_images/examples_example-with-postprocessing-and-inprocessing_30_0.png differ
diff --git a/_images/examples_relaxed-equalized-odds.usage-example-folktables_22_0.png b/_images/examples_relaxed-equalized-odds.usage-example-folktables_22_0.png
new file mode 100644
index 0000000..b31f279
Binary files /dev/null and b/_images/examples_relaxed-equalized-odds.usage-example-folktables_22_0.png differ
diff --git a/_images/examples_relaxed-equalized-odds.usage-example-folktables_27_0.png b/_images/examples_relaxed-equalized-odds.usage-example-folktables_27_0.png
new file mode 100644
index 0000000..3d79817
Binary files /dev/null and b/_images/examples_relaxed-equalized-odds.usage-example-folktables_27_0.png differ
diff --git a/_images/examples_relaxed-equalized-odds.usage-example-folktables_38_0.png b/_images/examples_relaxed-equalized-odds.usage-example-folktables_38_0.png
new file mode 100644
index 0000000..8452ddb
Binary files /dev/null and b/_images/examples_relaxed-equalized-odds.usage-example-folktables_38_0.png differ
diff --git a/_images/examples_relaxed-equalized-odds.usage-example-folktables_41_0.png b/_images/examples_relaxed-equalized-odds.usage-example-folktables_41_0.png
new file mode 100644
index 0000000..a944c64
Binary files /dev/null and b/_images/examples_relaxed-equalized-odds.usage-example-folktables_41_0.png differ
diff --git a/_images/examples_relaxed-equalized-odds.usage-example-synthetic-data_15_0.png b/_images/examples_relaxed-equalized-odds.usage-example-synthetic-data_15_0.png
new file mode 100644
index 0000000..c35313d
Binary files /dev/null and b/_images/examples_relaxed-equalized-odds.usage-example-synthetic-data_15_0.png differ
diff --git a/_images/examples_relaxed-equalized-odds.usage-example-synthetic-data_18_0.png b/_images/examples_relaxed-equalized-odds.usage-example-synthetic-data_18_0.png
new file mode 100644
index 0000000..aa79f9d
Binary files /dev/null and b/_images/examples_relaxed-equalized-odds.usage-example-synthetic-data_18_0.png differ
diff --git a/_images/examples_relaxed-equalized-odds.usage-example-synthetic-data_27_0.png b/_images/examples_relaxed-equalized-odds.usage-example-synthetic-data_27_0.png
new file mode 100644
index 0000000..51bbc00
Binary files /dev/null and b/_images/examples_relaxed-equalized-odds.usage-example-synthetic-data_27_0.png differ
diff --git a/_images/examples_usage-example-for-other-constraints.synthetic-data_18_0.png b/_images/examples_usage-example-for-other-constraints.synthetic-data_18_0.png
new file mode 100644
index 0000000..50f757a
Binary files /dev/null and b/_images/examples_usage-example-for-other-constraints.synthetic-data_18_0.png differ
diff --git a/_images/examples_usage-example-for-other-constraints.synthetic-data_21_0.png b/_images/examples_usage-example-for-other-constraints.synthetic-data_21_0.png
new file mode 100644
index 0000000..e8c4549
Binary files /dev/null and b/_images/examples_usage-example-for-other-constraints.synthetic-data_21_0.png differ
diff --git a/_images/examples_usage-example-for-other-constraints.synthetic-data_30_0.png b/_images/examples_usage-example-for-other-constraints.synthetic-data_30_0.png
new file mode 100644
index 0000000..1fa93bc
Binary files /dev/null and b/_images/examples_usage-example-for-other-constraints.synthetic-data_30_0.png differ
diff --git a/_modules/error_parity/binarize.html b/_modules/error_parity/binarize.html
new file mode 100644
index 0000000..ce4fa00
--- /dev/null
+++ b/_modules/error_parity/binarize.html
@@ -0,0 +1,292 @@
+
+
+
+
+
+ error_parity.binarize — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
Source code for error_parity.binarize
+"""Module to binarize continuous-score predictions.
+
+Based on: https://github.com/AndreFCruz/hpt/blob/main/src/hpt/binarize.py
+"""
+import math
+import logging
+from typing import Optional
+
+import numpy as np
+
+
+
+
[docs]
+
def compute_binary_predictions (
+
y_true : np . ndarray ,
+
y_pred_scores : np . ndarray ,
+
threshold : Optional [ float ] = None ,
+
tpr : Optional [ float ] = None ,
+
fpr : Optional [ float ] = None ,
+
ppr : Optional [ int ] = None ,
+
random_seed : Optional [ int ] = 42 ,
+
) -> np . ndarray :
+
"""Discretizes the given score predictions into binary labels.
+
+
If necessary, will randomly untie binary predictions with equal score.
+
+
Parameters
+
----------
+
y_true : np.ndarray
+
The true binary labels
+
y_pred_scores : np.ndarray
+
Predictions as a continuous score between 0 and 1
+
threshold : Optional[float], optional
+
Whether to use a specified (global) threshold, by default None
+
tpr : Optional[float], optional
+
Whether to target a specified TPR (true positive rate, or recall), by
+
default None
+
fpr : Optional[float], optional
+
Whether to target a specified FPR (false positive rate), by default None
+
ppr : Optional[float], optional
+
Whether to target a specified PPR (positive prediction rate), by default
+
None
+
+
Returns
+
-------
+
np.ndarray
+
The binarized predictions according to the specified target.
+
"""
+
assert sum ( 1 for val in { threshold , fpr , tpr , ppr } if val is not None ) == 1 , (
+
f "Please provide exactly one of (threshold, fpr, tpr, ppr); got "
+
f " { ( threshold , fpr , tpr , ppr ) } ."
+
)
+
+
# If threshold provided, just binarize it, no untying necessary
+
if threshold :
+
return ( y_pred_scores >= threshold ) . astype ( int )
+
+
# Otherwise, we need to compute the allowed value for the numerator
+
# and corresponding threshold (plus, may require random untying)
+
label_pos = np . count_nonzero ( y_true )
+
label_neg = np . count_nonzero ( 1 - y_true )
+
assert ( total := label_pos + label_neg ) == len ( y_true ) # sanity check
+
+
# Indices of predictions ordered by score, descending
+
y_pred_sorted_indices = np . argsort ( - y_pred_scores )
+
+
# Labels ordered by descending prediction score
+
y_true_sorted = y_true [ y_pred_sorted_indices ]
+
+
# Number of positive predictions allowed according to the given metric
+
# (the allowed budget for the metric's numerator)
+
positive_preds_budget : int
+
+
# Samples that count for the positive_preds_budget
+
# (LPs for TPR, LNs for FPR, and all samples for PPR)
+
# (related to the metric's denominator)
+
target_samples_mask : np . ndarray
+
if tpr :
+
# TPs budget to ensure >= the target TPR
+
positive_preds_budget = math . ceil ( tpr * label_pos )
+
target_samples_mask = y_true_sorted == 1 # label positive samples
+
non_target_samples_mask = y_true_sorted == 0 # label negative samples
+
+
elif fpr :
+
# FPs budget to ensure <= the target FPR
+
positive_preds_budget = math . floor ( fpr * label_neg )
+
target_samples_mask = y_true_sorted == 0 # label negative samples
+
non_target_samples_mask = y_true_sorted == 1 # label positive samples
+
+
elif ppr :
+
# PPs budget to ensure <= the target PPR
+
positive_preds_budget = math . floor ( ppr * total )
+
target_samples_mask = np . ones_like ( y_true_sorted ) . astype ( bool ) # all samples
+
+
# Indices of target samples (relevant for the target metric), ordered by descending score
+
target_samples_indices = y_pred_sorted_indices [ target_samples_mask ]
+
+
# Find the threshold at which the specified numerator_budget is met
+
threshold_idx = target_samples_indices [( positive_preds_budget - 1 )]
+
threshold = y_pred_scores [ threshold_idx ]
+
+
####################################
+
# Code for random untying follows: #
+
####################################
+
y_pred_binary = ( y_pred_scores >= threshold ) . astype ( int )
+
+
# 1. compute actual number of positive predictions (on relevant target samples)
+
actual_pos_preds = np . sum ( y_pred_binary [ target_samples_indices ])
+
+
# 2. check if this number corresponds to the target
+
if actual_pos_preds != positive_preds_budget :
+
logging . warning (
+
"Target metric for thresholding could not be met, will randomly "
+
"untie samples with the same predicted score to fulfill target."
+
)
+
+
assert actual_pos_preds > positive_preds_budget , (
+
"Sanity check: actual number of positive predictions should always "
+
"be higher or equal to the target number when following this "
+
f "algorithm; got actual= { actual_pos_preds } , target= { positive_preds_budget } ;"
+
)
+
+
# 2.1. if target was not met, compute number of extra predicted positives
+
extra_pos_preds = actual_pos_preds - positive_preds_budget
+
+
# 2.2. randomly select extra_pos_preds among the relevant
+
# samples (either TPs or FPs or PPs) with the same score
+
rng = np . random . RandomState ( random_seed )
+
+
samples_at_target_threshold_mask = (
+
y_pred_scores [ y_pred_sorted_indices ] == threshold
+
)
+
+
target_samples_at_target_threshold_indices = y_pred_sorted_indices [
+
samples_at_target_threshold_mask
+
& target_samples_mask # Filter for samples at target threshold # Filter for relevant (target) samples
+
]
+
+
# # The extra number of positive predictions must be fully explained by this score tie
+
# import ipdb; ipdb.set_trace() # TODO: figure out why this assertion fails
+
# assert extra_pos_preds < len(target_samples_at_target_threshold_indices)
+
+
extra_pos_preds_indices = rng . choice (
+
target_samples_at_target_threshold_indices ,
+
size = extra_pos_preds ,
+
replace = False ,
+
)
+
+
# 2.3. give extra_pos_preds_indices a negative prediction
+
y_pred_binary [ extra_pos_preds_indices ] = 0
+
+
# 2.4. Randomly sample the non-target labels at same rate
+
if tpr or fpr :
+
sampled_fraction = 1 - ( positive_preds_budget / actual_pos_preds )
+
+
non_target_samples_at_target_threshold_indices = y_pred_sorted_indices [
+
samples_at_target_threshold_mask
+
& non_target_samples_mask # Filter for samples at target threshold # Filter for positive samples
+
]
+
num_samples = (
+
non_target_samples_at_target_threshold_indices . shape [ 0 ]
+
* sampled_fraction
+
)
+
+
num_samples = int ( round ( num_samples , 0 ))
+
+
if num_samples :
+
extra_neg_preds_indices = rng . choice (
+
non_target_samples_at_target_threshold_indices ,
+
size = num_samples ,
+
replace = False ,
+
)
+
y_pred_binary [ extra_neg_preds_indices ] = 0
+
+
# Sanity check: the number of positive_preds_budget should now be exactly fulfilled
+
assert np . sum ( y_pred_binary [ target_samples_indices ]) == positive_preds_budget
+
+
return y_pred_binary
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/_modules/error_parity/classifiers.html b/_modules/error_parity/classifiers.html
new file mode 100644
index 0000000..4757d02
--- /dev/null
+++ b/_modules/error_parity/classifiers.html
@@ -0,0 +1,610 @@
+
+
+
+
+
+ error_parity.classifiers — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
Source code for error_parity.classifiers
+"""Helper functions to construct and use randomized classifiers.
+"""
+from __future__ import annotations
+
+import logging
+from abc import ABC , abstractmethod
+from typing import Callable
+
+import numpy as np
+from scipy.spatial import ConvexHull
+
+
+
+
[docs]
+
class Classifier ( ABC ):
+
@abstractmethod
+
def __call__ ( self , X : np . ndarray , group : np . ndarray = None ) -> np . ndarray :
+
"""Return predicted class, Y, for the given input features, X."""
+
raise NotImplementedError
+
+
+
+
+
[docs]
+
class BinaryClassifier ( Classifier ):
+
"""Constructs a deterministic binary classifier, by thresholding a
+
real-valued score predictor.
+
"""
+
+
def __init__ (
+
self ,
+
score_predictor : callable ,
+
threshold : float ,
+
):
+
"""Constructs a deterministic binary classifier from the given
+
real-valued score predictor and a threshold in {0, 1}.
+
"""
+
self . score_predictor = score_predictor
+
self . threshold = threshold
+
+
def __call__ ( self , X : np . ndarray , group : np . ndarray = None ) -> np . ndarray :
+
"""Computes predictions for the given samples, X.
+
+
Parameters
+
----------
+
X : np.ndarray
+
The input samples, in shape (num_samples, num_features).
+
group : None, optional
+
None. This argument will be ignored by this classifier as it does
+
not consider sensitive attributes.
+
+
Returns
+
-------
+
y_pred_binary : np.ndarray[int]
+
The predicted class for each input sample.
+
"""
+
return ( self . score_predictor ( X ) . ravel () >= self . threshold ) . astype ( int )
+
+
+
+
+
[docs]
+
class BinaryClassifierAtROCDiagonal ( Classifier ):
+
"""A dummy classifier whose predictions have no correlation with the input
+
features, but achieves whichever target FPR or TPR you want (on ROC diag.)
+
"""
+
+
def __init__ (
+
self ,
+
target_fpr : float = None ,
+
target_tpr : float = None ,
+
seed : int = 42 ,
+
):
+
err_msg = (
+
f "Must provide exactly one of 'target_fpr' or 'target_tpr', "
+
f "got target_fpr= { target_fpr } , target_tpr= { target_tpr } ."
+
)
+
if target_fpr is not None and target_tpr is not None :
+
raise ValueError ( err_msg )
+
+
# Provided FPR
+
if target_fpr is not None :
+
self . target_fpr = target_fpr
+
self . target_tpr = target_fpr
+
+
# Provided TPR
+
elif target_tpr is not None :
+
self . target_tpr = target_tpr
+
self . target_fpr = target_tpr
+
+
# Provided neither!
+
else :
+
raise ValueError ( err_msg )
+
+
# Initiate random number generator
+
self . rng = np . random . default_rng ( seed )
+
+
def __call__ ( self , X : np . ndarray , group : np . ndarray = None ) -> np . ndarray :
+
return ( self . rng . random ( size = len ( X )) >= ( 1 - self . target_fpr )) . astype ( int )
+
+
+
+
+
[docs]
+
class EnsembleGroupwiseClassifiers ( Classifier ):
+
"""Constructs a classifier from a set of group-specific classifiers."""
+
+
def __init__ ( self , group_to_clf : dict [ int | str , Callable ]):
+
"""Constructs a classifier from a set of group-specific classifiers.
+
+
Must be provided exactly one classifier per unique group value.
+
+
Parameters
+
----------
+
group_to_clf : dict[int | str, callable]
+
A mapping of group value to the classifier that should handle
+
predictions for that specific group.
+
"""
+
self . group_to_clf = group_to_clf
+
+
def __call__ ( self , X : np . ndarray , group : np . ndarray ) -> np . ndarray :
+
"""Compute predictions for the given input samples X, given their
+
sensitive attributes, group.
+
+
Parameters
+
----------
+
X : np.ndarray
+
Input samples, with shape (num_samples, num_features).
+
group : np.ndarray, optional
+
The sensitive attribute value for each input sample.
+
+
Returns
+
-------
+
y_pred : np.ndarray
+
The predictions, where the prediction for each sample is handed off
+
to a group-specific classifier for that sample.
+
"""
+
if len ( X ) != len ( group ):
+
raise ValueError ( f "Invalid input sizes: len(X) != len(group), { len ( X ) } != { len ( group ) } ." )
+
+
# Array to store predictions
+
num_samples = len ( X )
+
y_pred = np . zeros ( num_samples )
+
+
# Filter to keep track of all samples that received a prediction
+
cumulative_filter = np . zeros ( num_samples ) . astype ( bool )
+
+
for group_value , group_clf in self . group_to_clf . items ():
+
group_filter = group == group_value
+
y_pred [ group_filter ] = group_clf ( X [ group_filter ])
+
cumulative_filter |= group_filter
+
+
if np . sum ( cumulative_filter ) != num_samples :
+
raise RuntimeError (
+
f "Computed group-wise predictions for { np . sum ( cumulative_filter ) } "
+
f "samples, but got { num_samples } input samples."
+
)
+
+
return y_pred
+
+
+
+
+
[docs]
+
class RandomizedClassifier ( Classifier ):
+
"""Constructs a randomized classifier from the given classifiers and
+
their probabilities.
+
"""
+
+
def __init__ (
+
self ,
+
classifiers : list [ Classifier ],
+
probabilities : list [ float ],
+
seed : int = 42 ,
+
):
+
"""Constructs a randomized classifier from the given classifiers and
+
their probabilities.
+
+
This classifier will compute predictions for the whole input dataset at
+
once, which will in general be faster for larger inputs (when compared
+
to predicting each sample separately).
+
+
Parameters
+
----------
+
classifiers : list[callable]
+
A list of classifiers
+
probabilities : list[float]
+
A list of probabilities for each given classifier, where
+
probabilities[idx] is the probability of using the prediction from
+
classifiers[idx].
+
seed : int, optional
+
A random seed, by default 42.
+
+
Returns
+
-------
+
callable
+
The corresponding randomized classifier.
+
"""
+
if len ( classifiers ) != len ( probabilities ):
+
raise ValueError (
+
f "Invalid arguments: len(classifiers) != len(probabilities); "
+
f "( { len ( classifiers ) } != { len ( probabilities ) } );"
+
)
+
+
self . classifiers = classifiers
+
self . probabilities = probabilities
+
self . rng = np . random . default_rng ( seed )
+
+
def __call__ ( self , X : np . ndarray , group : np . ndarray = None ) -> int :
+
# Assign each sample to a classifier
+
clf_idx = self . rng . choice (
+
np . arange ( len ( self . classifiers )), # possible choices
+
size = len ( X ), # size of output array
+
p = self . probabilities , # prob. of each choice
+
)
+
+
# Run predictions for all classifiers on all samples
+
y_pred_choices = [ clf ( X ) for clf in self . classifiers ]
+
# TODO improvement:
+
# we could actually just run the classifier for the samples that get
+
# matched with it... similar to the EnsembleGroupwiseClassifiers call
+
# method.
+
+
return np . choose ( clf_idx , y_pred_choices )
+
+
+
[docs]
+
@staticmethod
+
def find_weights_given_two_points (
+
point_A : np . ndarray ,
+
point_B : np . ndarray ,
+
target_point : np . ndarray ,
+
):
+
"""Given two ROC points corresponding to existing binary classifiers,
+
find the weights that result in a classifier whose ROC point is target_point.
+
+
May need to interpolate the two given points with a third point corresponding
+
to a random classifier (random uniform distribution with different thresholds).
+
+
Returns
+
-------
+
tuple[np.ndarray, np.ndarray]
+
Returns a tuple of numpy arrays (Ws, Ps), such that Ws @ Ps == target_point.
+
The 1st array, Ws, corresponds to the weights of each point in the 2nd array, Ps.
+
"""
+
# Check if the target point is actually point A or B
+
if all ( np . isclose ( point_A , target_point )):
+
return np . array ([ 1 ]), np . expand_dims ( point_A , axis = 0 )
+
+
if all ( np . isclose ( point_B , target_point )):
+
return np . array ([ 1 ]), np . expand_dims ( point_B , axis = 0 )
+
+
# If not, we'll have to triangulate the target using A and B
+
point_A_fpr , point_A_tpr = point_A
+
point_B_fpr , point_B_tpr = point_B
+
target_fpr , target_tpr = target_point
+
if not ( point_A_fpr <= target_fpr <= point_B_fpr ):
+
raise ValueError (
+
f "Invalid input. FPR should fulfill: "
+
f "( { point_A_fpr } point_A_FPR) <= ( { target_fpr } target_fpr) <= "
+
f "( { point_B_fpr } point_B_fpr)"
+
)
+
+
# Calculate weights for points A and B
+
weight_A = ( target_fpr - point_B_fpr ) / ( point_A_fpr - point_B_fpr )
+
+
# Result of projecting target point P directly UPWARDS towards the AB line
+
weights_AB = np . array ([ weight_A , 1 - weight_A ])
+
point_P_upwards = weights_AB @ np . vstack (( point_A , point_B ))
+
if not np . isclose ( point_P_upwards [ 0 ], target_fpr ):
+
raise RuntimeError (
+
"Failed projecting target_fpr to ROC hull frontier. "
+
f "Got proj. FPR= { point_P_upwards [ 0 ] } ; target FPR= { target_fpr } ;"
+
)
+
+
# Check if the target point lies in the AB line (and return if so)
+
if all ( np . isclose ( point_P_upwards , target_point )):
+
return weights_AB , np . vstack (( point_A , point_B ))
+
+
# Result of projecting target point P directly DOWNWARDS towards the diagonal tpr==fpr
+
point_P_downwards = np . array ([ target_fpr , target_fpr ])
+
+
# Calculate weights for P upwards and P downwards
+
weight_P_upwards = ( target_tpr - point_P_downwards [ 1 ]) / (
+
point_P_upwards [ 1 ] - point_P_downwards [ 1 ]
+
)
+
+
# Sanity checks...
+
all_points = np . vstack (( point_A , point_B , point_P_downwards ))
+
all_weights = np . hstack (( weight_P_upwards * weights_AB , 1 - weight_P_upwards ))
+
+
if not np . isclose ( all_weights . sum (), 1 ):
+
raise RuntimeError (
+
f "Sum of linear interpolation weights was { all_weights . sum () } , "
+
f "should be 1!"
+
)
+
+
if not all ( np . isclose ( target_point , all_weights @ all_points )):
+
raise RuntimeError (
+
f "Triangulation of target point failed. "
+
f "Target was { target_point } ; got { all_weights @ all_points } ."
+
)
+
+
return all_weights , all_points
+
+
+
+
[docs]
+
@staticmethod
+
def construct_at_target_ROC ( # noqa: C901
+
predictor : callable ,
+
roc_curve_data : tuple ,
+
target_roc_point : np . ndarray ,
+
seed : int = 42 ,
+
) -> "RandomizedClassifier" :
+
"""Constructs a randomized classifier in the interior of the
+
convex hull of the classifier's ROC curve, at a given target
+
ROC point.
+
+
Parameters
+
----------
+
predictor : callable
+
A predictor that outputs real-valued scores in range [0; 1].
+
roc_curve_data : tuple[np.array...]
+
The ROC curve of the given classifier, as a tuple of
+
(FPR values; TPR values; threshold values).
+
target_roc_point : np.ndarray
+
The target ROC point in (FPR, TPR).
+
+
Returns
+
-------
+
rand_clf : callable
+
A (randomized) binary classifier whose expected FPR and TPR
+
corresponds to the given target ROC point.
+
"""
+
# Unpack useful constants
+
target_fpr , target_tpr = target_roc_point
+
fpr , tpr , thrs = roc_curve_data
+
+
# Check if we have more than two ROC points
+
# (3 minimum to compute convex hull)
+
if len ( fpr ) <= 1 :
+
raise ValueError (
+
f "Invalid ROC curve data (only has one point): "
+
f "fpr: { fpr } ; tpr: { tpr } ."
+
)
+
+
if len ( fpr ) == 2 :
+
logging . warning (
+
"Got ROC data with only 2 points: producing a random classifier..."
+
)
+
if not np . isclose ( target_roc_point [ 0 ], target_roc_point [ 1 ]):
+
logging . error (
+
f "Invalid target ROC point ( { target_roc_point } ) is not in "
+
"diagonal ROC line, but a random-classifier ROC was provided."
+
)
+
+
return BinaryClassifierAtROCDiagonal ( target_fpr = target_roc_point [ 0 ])
+
+
# Compute hull of ROC curve
+
roc_curve_points = np . stack (( fpr , tpr ), axis = 1 )
+
hull = ConvexHull ( roc_curve_points )
+
+
# Filter out ROC points in the interior of the convex hull and other suboptimal points
+
points_above_diagonal = np . argwhere ( tpr >= fpr ) . ravel ()
+
useful_points_idx = np . array (
+
sorted ( set ( hull . vertices ) & set ( points_above_diagonal ))
+
)
+
+
fpr = fpr [ useful_points_idx ]
+
tpr = tpr [ useful_points_idx ]
+
thrs = thrs [ useful_points_idx ]
+
+
# Find points A and B to construct the randomized classifier from
+
# > point A is the last point with FPR smaller or equal to the target
+
point_A_idx = 0
+
if target_fpr > 0 :
+
point_A_idx = max ( np . argwhere ( fpr <= target_fpr ) . ravel ())
+
point_A_roc = roc_curve_points [ useful_points_idx ][ point_A_idx ]
+
+
# > point B is the first point with FPR larger than the target
+
point_B_idx = min ( point_A_idx + 1 , len ( thrs ) - 1 )
+
point_B_roc = roc_curve_points [ useful_points_idx ][ point_B_idx ]
+
+
weights , points = RandomizedClassifier . find_weights_given_two_points (
+
point_A = point_A_roc ,
+
point_B = point_B_roc ,
+
target_point = target_roc_point ,
+
)
+
+
if max ( weights ) > 1 :
+
logging . error ( f "Got triangulation weights over 100%: w= { weights } ;" )
+
+
# Instantiate classifiers for points A and B
+
clf_a = BinaryClassifier ( predictor , threshold = thrs [ point_A_idx ])
+
clf_b = BinaryClassifier ( predictor , threshold = thrs [ point_B_idx ])
+
+
# Check if most of the probability mass is on a single classifier
+
if np . isclose ( max ( weights ), 1.0 ):
+
if all ( np . isclose ( target_roc_point , point_A_roc )):
+
return clf_a
+
+
elif all ( np . isclose ( target_roc_point , point_B_roc )):
+
return clf_b
+
+
else :
+
# differences from target point to A or B are significant enough
+
# to warrant triangulating between multiple points
+
pass
+
+
# If only one point returned, then that point should have weight==1.0
+
# (hence, should've been caught by the previous if statement)
+
if len ( weights ) == 1 :
+
raise RuntimeError ( "Invalid triangulation." )
+
+
# If there are two points, return a randomized classifier between the two
+
elif len ( weights ) == 2 :
+
return RandomizedClassifier (
+
classifiers = [ clf_a , clf_b ],
+
probabilities = weights ,
+
seed = seed ,
+
)
+
+
# If it's in the interior of the ROC curve, requires instantiating a randomized classifier at the diagonal
+
elif len ( weights ) == 3 :
+
fpr_rand , tpr_rand = points [ 2 ]
+
if not np . isclose ( fpr_rand , tpr_rand ):
+
raise RuntimeError (
+
f "Triangulation point at ROC diagonal has FPR != TPR "
+
f "( { fpr_rand } != { tpr_rand } ); "
+
)
+
+
# >>> BUG this would be better but for some reason it doesn't work!
+
# rng = np.random.default_rng(42)
+
# clf_rand = lambda X: (rng.random(size=len(X)) >= (1 - fpr_rand)).astype(int)
+
# # or...
+
# clf_rand = BinaryClassifierAtROCDiagonal(target_fpr=fpr_rand)
+
# <<<
+
clf_rand = lambda X : ( # noqa
+
np . random . random ( size = len ( X )) >= ( 1 - fpr_rand )
+
) . astype ( int )
+
+
return RandomizedClassifier (
+
classifiers = [ clf_a , clf_b , clf_rand ], probabilities = weights , seed = seed
+
)
+
+
else :
+
raise RuntimeError (
+
f "Invalid triangulation of classifiers; "
+
f "weights: { weights } ; points: { points } ;"
+
)
+
+
+
+
[docs]
+
@staticmethod
+
def find_points_for_target_ROC ( roc_curve_data , target_roc_point ):
+
"""Retrieves a set of realizable points (and respective weights) in the
+
provided ROC curve that can be used to realize any target ROC in the
+
interior of the ROC curve.
+
+
NOTE: this method is a bit redundant -- has functionality in common with
+
RandomizedClassifier.construct_at_target_ROC()
+
"""
+
# Unpack useful constants
+
target_fpr , target_tpr = target_roc_point
+
fpr , tpr , thrs = roc_curve_data
+
+
# Compute hull of ROC curve
+
roc_curve_points = np . stack (( fpr , tpr ), axis = 1 )
+
hull = ConvexHull ( roc_curve_points )
+
+
# Filter out ROC points in the interior of the convex hull and other suboptimal points
+
points_above_diagonal = np . argwhere ( tpr >= fpr ) . ravel ()
+
useful_points_idx = np . array (
+
sorted ( set ( hull . vertices ) & set ( points_above_diagonal ))
+
)
+
+
fpr = fpr [ useful_points_idx ]
+
tpr = tpr [ useful_points_idx ]
+
thrs = thrs [ useful_points_idx ]
+
+
# Find points A and B to construct the randomized classifier from
+
# > point A is the last point with FPR smaller or equal to the target
+
point_A_idx = max ( np . argwhere ( fpr <= target_fpr ) . ravel ())
+
# > point B is the first point with FPR larger than the target
+
point_B_idx = point_A_idx + 1
+
+
weights , points = RandomizedClassifier . find_weights_given_two_points (
+
point_A = roc_curve_points [ useful_points_idx ][ point_A_idx ],
+
point_B = roc_curve_points [ useful_points_idx ][ point_B_idx ],
+
target_point = target_roc_point ,
+
)
+
+
return weights , points
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/_modules/error_parity/cvxpy_utils.html b/_modules/error_parity/cvxpy_utils.html
new file mode 100644
index 0000000..9c8bfd5
--- /dev/null
+++ b/_modules/error_parity/cvxpy_utils.html
@@ -0,0 +1,583 @@
+
+
+
+
+
+ error_parity.cvxpy_utils — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
Source code for error_parity.cvxpy_utils
+"""A set of helper functions for using cvxpy."""
+from __future__ import annotations
+import logging
+from itertools import product
+
+import numpy as np
+import cvxpy as cp
+from cvxpy.expressions.variable import Variable
+from cvxpy.expressions.expression import Expression
+
+from .roc_utils import calc_cost_of_point , compute_global_roc_from_groupwise
+
+
+# Maximum distance from solution to feasibility or optimality
+SOLUTION_TOLERANCE = 1e-9
+
+# Set of all fairness constraints with a cvxpy LP implementation
+ALL_CONSTRAINTS = {
+ "equalized_odds" , # equal TPR and equal FPR across groups
+ "true_positive_rate_parity" , # TPR parity, same as FNR parity
+ "false_positive_rate_parity" , # FPR parity, same as TNR parity
+ "true_negative_rate_parity" , # TNR parity, same as FPR parity
+ "false_negative_rate_parity" , # FNR parity, same as TPR parity
+ "demographic_parity" , # equal positive prediction rates across groups
+}
+
+NOT_SUPPORTED_CONSTRAINTS_ERROR_MESSAGE = (
+ "Currently only the following constraints are supported: {} ." . format (
+ ", " . join ( sorted ( ALL_CONSTRAINTS ))
+ )
+)
+
+
+
+
[docs]
+
def compute_line ( p1 : np . ndarray , p2 : np . ndarray ) -> tuple [ float , float ]:
+
"""Computes the slope and intercept of the line that passes
+
through the two given points.
+
+
The intercept is the value at x=0!
+
(or NaN for vertical lines)
+
+
For vertical lines just use the x-value of one of the points
+
to find the intercept at y=0.
+
+
Parameters
+
----------
+
p1 : np.ndarray
+
A 2-D point.
+
p2 : np.ndarray
+
A 2-D point.
+
+
Returns
+
-------
+
tuple[float, float]
+
A tuple pair with (slope, intercept) of the line that goes from p1 to p2.
+
+
Raises
+
------
+
ValueError
+
Raised when input is invalid, e.g., when p1 == p2.
+
"""
+
+
p1x , p1y = p1
+
p2x , p2y = p2
+
if all ( p1 == p2 ):
+
raise ValueError ( "Invalid points: p1==p2;" )
+
+
# Vertical line
+
if np . isclose ( p2x , p1x ):
+
slope = np . inf
+
intercept = np . nan
+
+
# Diagonal or horizontal line
+
else :
+
slope = ( p2y - p1y ) / ( p2x - p1x )
+
intercept = p1y - slope * p1x
+
+
return slope , intercept
+
+
+
+
+
[docs]
+
def compute_halfspace_inequality ( # noqa: C901
+
p1 : np . ndarray ,
+
p2 : np . ndarray ,
+
) -> tuple [ float , float , float ]:
+
"""Computes the halfspace inequality defined by the vector p1->p2, such that
+
Ax + b <= 0,
+
where A and b are extracted from the line that goes through p1->p2.
+
+
As such, the inequality enforces that points must lie on the LEFT of the
+
line defined by the p1->p2 vector.
+
+
In other words, input points are assumed to be in COUNTER CLOCK-WISE order
+
(right-hand rule).
+
+
Parameters
+
----------
+
p1 : np.ndarray
+
A point in the halfspace.
+
p2 : np.ndarray
+
Another point in the halfspace.
+
+
Returns
+
-------
+
tuple[float, float, float]
+
Returns an array of size=(n_dims + 1), with format [A; b],
+
representing the inequality Ax + b <= 0.
+
+
Raises
+
------
+
RuntimeError
+
Thrown in case if inconsistent internal state variables.
+
"""
+
slope , intercept = compute_line ( p1 , p2 )
+
+
# Unpack the points for ease of use
+
p1x , p1y = p1
+
p2x , p2y = p2
+
+
# if slope is infinity, the constraint only applies to the values of x;
+
# > the halfspace's b intercept value will correspond to this value of x;
+
if np . isinf ( slope ):
+
# Sanity check for vertical line
+
if not np . isclose ( p1x , p2x ):
+
raise RuntimeError (
+
"Got infinite slope for line containing two points with "
+
"different x-axis coordinates."
+
)
+
+
# Vector pointing downwards? then, x >= b
+
if p2y < p1y :
+
return [ - 1 , 0 , p1x ]
+
+
# Vector pointing upwards? then, x <= b
+
elif p2y > p1y :
+
return [ 1 , 0 , - p1x ]
+
+
# elif slope is zero, the constraint only applies to the values of y;
+
# > the halfspace's b intercept value will correspond to this value of y;
+
elif np . isclose ( slope , 0.0 ):
+
# Sanity checks for horizontal line
+
if not np . isclose ( p1y , p2y ) or not np . isclose ( p1y , intercept ):
+
raise RuntimeError (
+
f "Invalid horizontal line; points p1 and p2 should have same "
+
f "y-axis value as intercept ( { p1y } , { p2y } , { intercept } )."
+
)
+
+
# Vector pointing leftwards? then, y <= b
+
if p2x < p1x :
+
return [ 0 , 1 , - p1y ]
+
+
# Vector pointing rightwards? then, y >= b
+
elif p2x > p1x :
+
return [ 0 , - 1 , p1y ]
+
+
# else, we have a standard diagonal line
+
else :
+
# Vector points left?
+
# then, y <= mx + b <=> -mx + y - b <= 0
+
if p2x < p1x :
+
return [ - slope , 1 , - intercept ]
+
+
# Vector points right?
+
# then, y >= mx + b <=> mx - y + b <= 0
+
elif p2x > p1x :
+
return [ slope , - 1 , intercept ]
+
+
logging . error ( f "No constraint can be concluded from points p1= { p1 } and p2= { p2 } ;" )
+
return [ 0 , 0 , 0 ]
+
+
+
+
+
[docs]
+
def make_cvxpy_halfspace_inequality (
+
p1 : np . ndarray ,
+
p2 : np . ndarray ,
+
cvxpy_point : Variable ,
+
) -> Expression :
+
"""Creates a single cvxpy inequality constraint that enforces the given
+
point, `cvxpy_point`, to lie on the left of the vector p1->p2.
+
+
Points must be sorted in counter clock-wise order!
+
+
Parameters
+
----------
+
p1 : np.ndarray
+
A point p1.
+
p2 : np.ndarray
+
Another point p2.
+
cvxpy_point : Variable
+
The cvxpy variable over which the constraint will be applied.
+
+
Returns
+
-------
+
Expression
+
A linear inequality constraint of type Ax + b <= 0.
+
"""
+
x_coeff , y_coeff , b = compute_halfspace_inequality ( p1 , p2 )
+
return np . array ([ x_coeff , y_coeff ]) @ cvxpy_point + b <= 0
+
+
+
+
+
[docs]
+
def make_cvxpy_point_in_polygon_constraints (
+
polygon_vertices : np . ndarray ,
+
cvxpy_point : Variable ,
+
) -> list [ Expression ]:
+
"""Creates the set of cvxpy constraints that force the given cvxpy variable
+
point to lie within the polygon defined by the given vertices.
+
+
Parameters
+
----------
+
polygon_vertices : np.ndarray
+
A sequence of points that make up a polygon.
+
Points must be sorted in COUNTER CLOCK-WISE order! (right-hand rule)
+
cvxpy_point : cvxpy.Variable
+
A cvxpy variable representing a point, over which the constraints will
+
be applied.
+
+
Returns
+
-------
+
list[Expression]
+
A list of cvxpy constraints.
+
"""
+
return [
+
make_cvxpy_halfspace_inequality (
+
polygon_vertices [ i ],
+
polygon_vertices [( i + 1 ) % len ( polygon_vertices )],
+
cvxpy_point ,
+
)
+
for i in range ( len ( polygon_vertices ))
+
]
+
+
+
+
+
[docs]
+
def compute_fair_optimum ( # noqa: C901
+
* ,
+
fairness_constraint : str ,
+
tolerance : float ,
+
groupwise_roc_hulls : dict [ int , np . ndarray ],
+
group_sizes_label_pos : np . ndarray ,
+
group_sizes_label_neg : np . ndarray ,
+
groupwise_prevalence : np . ndarray ,
+
global_prevalence : float ,
+
false_positive_cost : float = 1.0 ,
+
false_negative_cost : float = 1.0 ,
+
) -> tuple [ np . ndarray , np . ndarray ]:
+
"""Computes the solution to finding the optimal fair (equal odds) classifier.
+
+
Can relax the equal odds constraint by some given tolerance.
+
+
Parameters
+
----------
+
fairness_constraint : str
+
The name of the fairness constraint under which the LP will be
+
optimized. Possible inputs are:
+
+
'equalized_odds'
+
match true positive and false positive rates across groups
+
+
tolerance : float
+
A value for the tolerance when enforcing the fairness constraint.
+
+
groupwise_roc_hulls : dict[int, np.ndarray]
+
A dict mapping each group to the convex hull of the group's ROC curve.
+
The convex hull is an np.array of shape (n_points, 2), containing the
+
points that form the convex hull of the ROC curve, sorted in COUNTER
+
CLOCK-WISE order.
+
+
group_sizes_label_pos : np.ndarray
+
The relative or absolute number of positive samples in each group.
+
+
group_sizes_label_neg : np.ndarray
+
The relative or absolute number of negative samples in each group.
+
+
global_prevalence : float
+
The global prevalence of positive samples.
+
+
false_positive_cost : float, optional
+
The cost of a FALSE POSITIVE error, by default 1.
+
+
false_negative_cost : float, optional
+
The cost of a FALSE NEGATIVE error, by default 1.
+
+
Returns
+
-------
+
(groupwise_roc_points, global_roc_point) : tuple[np.ndarray, np.ndarray]
+
A tuple pair, (<1>, <2>), containing:
+
1: an array with the group-wise ROC points for the solution.
+
2: an array with the single global ROC point for the solution.
+
"""
+
if fairness_constraint not in ALL_CONSTRAINTS :
+
raise ValueError ( NOT_SUPPORTED_CONSTRAINTS_ERROR_MESSAGE )
+
+
n_groups = len ( groupwise_roc_hulls )
+
if n_groups != len ( group_sizes_label_neg ) or n_groups != len ( group_sizes_label_pos ):
+
raise ValueError (
+
"Invalid arguments; all of the following should have the same "
+
"length: groupwise_roc_hulls, group_sizes_label_neg, group_sizes_label_pos;"
+
f "got: { len ( groupwise_roc_hulls ) } , { len ( group_sizes_label_neg ) } , { len ( group_sizes_label_pos ) } ;"
+
)
+
+
# Group-wise ROC points --- in the form (FPR, TPR)
+
groupwise_roc_points_vars = [
+
cp . Variable ( shape = 2 , name = f "ROC point for group { i } " , nonneg = True )
+
for i in range ( n_groups )
+
]
+
+
# Define global ROC point as a linear combination of the group-wise ROC points
+
global_roc_point_var = cp . Variable ( shape = 2 , name = "Global ROC point" , nonneg = True )
+
constraints = [
+
# Global FPR is the average of group FPRs weighted by LNs in each group
+
global_roc_point_var [ 0 ]
+
== group_sizes_label_neg @ np . array ([ p [ 0 ] for p in groupwise_roc_points_vars ]),
+
# Global TPR is the average of group TPRs weighted by LPs in each group
+
global_roc_point_var [ 1 ]
+
== group_sizes_label_pos @ np . array ([ p [ 1 ] for p in groupwise_roc_points_vars ]),
+
]
+
+
# ** APPLY FAIRNESS CONSTRAINTS **
+
# NOTE: feature request: compatibility with multiple constraints simultaneously
+
+
# If "equalized_odds"
+
# > i.e., constrain l-inf distance between any two groups' ROCs being less than `tolerance`
+
if fairness_constraint == "equalized_odds" :
+
constraints += [
+
cp . norm_inf ( groupwise_roc_points_vars [ i ] - groupwise_roc_points_vars [ j ])
+
<= tolerance
+
for i , j in product ( range ( n_groups ), range ( n_groups ))
+
if i < j
+
]
+
+
# If some rate parity, i.e., parity of one of {TPR, FPR, TNR, FNR}
+
# i.e., constrain absolute distance between any two groups' rate metric
+
elif fairness_constraint . endswith ( "rate_parity" ):
+
roc_idx_of_interest : int
+
if (
+
fairness_constraint == "true_positive_rate_parity" # TPR
+
or fairness_constraint == "false_negative_rate_parity" # FNR
+
):
+
roc_idx_of_interest = 1
+
+
elif (
+
fairness_constraint == "false_positive_rate_parity" # FPR
+
or fairness_constraint == "true_negative_rate_parity" # TNR
+
):
+
roc_idx_of_interest = 0
+
+
else :
+
# This point should never be reached as fairness_constraint was previously validated
+
raise ValueError ( NOT_SUPPORTED_CONSTRAINTS_ERROR_MESSAGE )
+
+
constraints += [
+
cp . abs (
+
groupwise_roc_points_vars [ i ][ roc_idx_of_interest ]
+
- groupwise_roc_points_vars [ j ][ roc_idx_of_interest ]
+
)
+
<= tolerance
+
for i , j in product ( range ( n_groups ), range ( n_groups ))
+
if i < j
+
]
+
+
# If demographic parity, i.e., equal positive prediction rates across groups
+
# note: this ignores the labels Y and only considers predictions Y_hat
+
elif fairness_constraint == "demographic_parity" :
+
+
# NOTE: PPR = TPR * prevalence + FPR * (1 - prevalence)
+
def group_positive_prediction_rate ( group_idx : int ):
+
"""Computes group-wise PPR as a function of the ROC cvxpy vars."""
+
group_prevalence = groupwise_prevalence [ group_idx ]
+
group_tpr = groupwise_roc_points_vars [ group_idx ][ 1 ]
+
group_fpr = groupwise_roc_points_vars [ group_idx ][ 0 ]
+
+
return group_tpr * group_prevalence + group_fpr * ( 1 - group_prevalence )
+
+
# Add constraints on the absolute difference between group-wos
+
constraints += [
+
cp . abs (
+
group_positive_prediction_rate ( i ) - group_positive_prediction_rate ( j )
+
) <= tolerance
+
for i , j in product ( range ( n_groups ), range ( n_groups ))
+
if i < j
+
]
+
+
# NOTE: implement other constraints here
+
else :
+
raise NotImplementedError ( NOT_SUPPORTED_CONSTRAINTS_ERROR_MESSAGE )
+
+
# Constraints for points in respective group-wise ROC curves
+
for idx in range ( n_groups ):
+
constraints += make_cvxpy_point_in_polygon_constraints (
+
polygon_vertices = groupwise_roc_hulls [ idx ],
+
cvxpy_point = groupwise_roc_points_vars [ idx ],
+
)
+
+
# Define cost function
+
obj = cp . Minimize (
+
calc_cost_of_point (
+
fpr = global_roc_point_var [ 0 ],
+
fnr = 1 - global_roc_point_var [ 1 ],
+
prevalence = global_prevalence ,
+
false_pos_cost = false_positive_cost ,
+
false_neg_cost = false_negative_cost ,
+
)
+
)
+
+
# Define cvxpy problem
+
prob = cp . Problem ( obj , constraints )
+
+
# Run solver
+
prob . solve ( solver = cp . ECOS , abstol = SOLUTION_TOLERANCE , feastol = SOLUTION_TOLERANCE )
+
# NOTE: these tolerances are supposed to be smaller than the default np.isclose tolerances
+
# (useful when comparing if two points are the same, within the cvxpy accuracy tolerance)
+
+
# Log solution
+
logging . info (
+
f "cvxpy solver took { prob . solver_stats . solve_time } s; status is { prob . status } ."
+
)
+
+
if prob . status not in [ "infeasible" , "unbounded" ]:
+
# Otherwise, problem.value is inf or -inf, respectively.
+
logging . info ( f "Optimal solution value: { prob . value } " )
+
for variable in prob . variables ():
+
logging . info ( f "Variable { variable . name () } : value { variable . value } " )
+
else :
+
# This line should never be reached (there are always trivial fair
+
# solutions in the ROC diagonal)
+
raise ValueError ( f "cvxpy problem has no solution; status= { prob . status } " )
+
+
groupwise_roc_points = np . vstack ([ p . value for p in groupwise_roc_points_vars ])
+
global_roc_point = global_roc_point_var . value
+
+
# Validating solution cost
+
solution_cost = calc_cost_of_point (
+
fpr = global_roc_point [ 0 ],
+
fnr = 1 - global_roc_point [ 1 ],
+
prevalence = global_prevalence ,
+
false_pos_cost = false_positive_cost ,
+
false_neg_cost = false_negative_cost ,
+
)
+
+
if not np . isclose ( solution_cost , prob . value ):
+
logging . error (
+
f "Solution was found but cost did not pass validation! "
+
f "Found solution ROC point { global_roc_point } with theoretical cost "
+
f " { prob . value } , but actual cost is { solution_cost } ;"
+
)
+
+
# Validating congruency between group-wise ROC points and global ROC point
+
global_roc_from_groupwise = compute_global_roc_from_groupwise (
+
groupwise_roc_points = groupwise_roc_points ,
+
groupwise_label_pos_weight = group_sizes_label_pos ,
+
groupwise_label_neg_weight = group_sizes_label_neg ,
+
)
+
if not all ( np . isclose ( global_roc_from_groupwise , global_roc_point )):
+
logging . error (
+
f "Solution: global ROC point ( { global_roc_point } ) does not seem to "
+
f "match group-wise ROC points; global should be "
+
f "( { global_roc_from_groupwise } ) to be consistent with group-wise;"
+
)
+
+
return groupwise_roc_points , global_roc_point
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/_modules/error_parity/evaluation.html b/_modules/error_parity/evaluation.html
new file mode 100644
index 0000000..2d8db3f
--- /dev/null
+++ b/_modules/error_parity/evaluation.html
@@ -0,0 +1,526 @@
+
+
+
+
+
+ error_parity.evaluation — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
Source code for error_parity.evaluation
+"""A set of functions to evaluate predictions on common performance
+and fairness metrics, possibly at a specified FPR or FNR target.
+
+Based on: https://github.com/AndreFCruz/hpt/blob/main/src/hpt/evaluation.py
+"""
+from __future__ import annotations
+
+import logging
+import statistics
+from typing import Optional
+from itertools import product
+
+import numpy as np
+from sklearn.metrics import confusion_matrix , log_loss , mean_squared_error , accuracy_score
+
+from .roc_utils import compute_roc_point_from_predictions
+from .binarize import compute_binary_predictions
+from ._commons import join_dictionaries
+
+
+def _is_valid_number ( num ) -> bool :
+ return isinstance ( num , ( float , int , np . number )) and not np . isnan ( num )
+
+
+def _safe_division ( a : float , b : float , * , worst_result : float ):
+ """Tries to divide the given arguments and returns `worst_result` if unsuccessful."""
+ if b == 0 or not _is_valid_number ( a ) or not _is_valid_number ( b ):
+ logging . debug ( f "Error in the following division: { a } / { b } " )
+ return worst_result
+
+ else :
+ return a / b
+
+
+
+
[docs]
+
def eval_accuracy_and_equalized_odds (
+
y_true : np . ndarray ,
+
y_pred_binary : np . ndarray ,
+
sensitive_attr : np . ndarray ,
+
display : bool = False ,
+
) -> tuple [ float , float ]:
+
"""Evaluate accuracy and equalized odds of the given predictions.
+
+
Parameters
+
----------
+
y_true : np.ndarray
+
The true class labels.
+
y_pred_binary : np.ndarray
+
The predicted class labels.
+
sensitive_attr : np.ndarray
+
The sensitive attribute data.
+
display : bool, optional
+
Whether to print results or not, by default False.
+
+
Returns
+
-------
+
tuple[float, float]
+
A tuple of (fairness, equalized odds violation).
+
"""
+
n_groups = len ( np . unique ( sensitive_attr ))
+
+
roc_points = [
+
compute_roc_point_from_predictions (
+
y_true [ sensitive_attr == i ],
+
y_pred_binary [ sensitive_attr == i ])
+
for i in range ( n_groups )
+
]
+
+
roc_points = np . vstack ( roc_points )
+
+
linf_constraint_violation = [
+
np . linalg . norm ( roc_points [ i ] - roc_points [ j ], ord = np . inf )
+
for i , j in product ( range ( n_groups ), range ( n_groups ))
+
if i < j
+
]
+
+
acc_val = accuracy_score ( y_true , y_pred_binary )
+
eq_odds_violation = max ( linf_constraint_violation )
+
+
if display :
+
print ( f " \t Accuracy: { acc_val : .2% } " )
+
print ( f " \t Unfairness: { eq_odds_violation : .2% } " )
+
+
return ( acc_val , eq_odds_violation )
+
+
+
+
+
+
+
+
+
[docs]
+
def evaluate_fairness (
+
y_true : np . ndarray ,
+
y_pred : np . ndarray ,
+
sensitive_attribute : np . ndarray ,
+
return_groupwise_metrics : Optional [ bool ] = False ,
+
) -> dict :
+
"""Evaluates fairness as the ratios between group-wise performance metrics.
+
+
Parameters
+
----------
+
y_true : np.ndarray
+
The true class labels.
+
y_pred : np.ndarray
+
The discretized predictions.
+
sensitive_attribute : np.ndarray
+
The sensitive attribute (protected group membership).
+
return_groupwise_metrics : Optional[bool], optional
+
Whether to return group-wise performance metrics (bool: True) or only
+
the ratios between these metrics (bool: False), by default False.
+
+
Returns
+
-------
+
dict
+
A dictionary with key-value pairs of (metric name, metric value).
+
"""
+
# All unique values for the sensitive attribute
+
unique_groups = np . unique ( sensitive_attribute )
+
+
results = {}
+
groupwise_metrics = {}
+
unique_metrics = set ()
+
+
# Helper to compute key/name of a group-wise metric
+
def group_metric_name ( metric_name , group_name ):
+
return f " { metric_name } _group= { group_name } "
+
+
assert (
+
len ( unique_groups ) > 1
+
), f "Found a single unique sensitive attribute: { unique_groups } "
+
+
for s_value in unique_groups :
+
# Indices of samples that belong to the current group
+
group_indices = np . argwhere ( sensitive_attribute == s_value ) . flatten ()
+
+
# Filter labels and predictions for samples of the current group
+
group_labels = y_true [ group_indices ]
+
group_preds = y_pred [ group_indices ]
+
+
# Evaluate group-wise performance
+
curr_group_metrics = evaluate_performance ( group_labels , group_preds )
+
+
# Add group-wise metrics to the dictionary
+
groupwise_metrics . update (
+
{
+
group_metric_name ( metric_name , s_value ): metric_value
+
for metric_name , metric_value in curr_group_metrics . items ()
+
}
+
)
+
+
unique_metrics = unique_metrics . union ( curr_group_metrics . keys ())
+
+
# Compute ratios and absolute diffs
+
for metric_name in unique_metrics :
+
curr_metric_results = [
+
groupwise_metrics [ group_metric_name ( metric_name , group_name )]
+
for group_name in unique_groups
+
]
+
+
# Metrics' ratio
+
ratio_name = f " { metric_name } _ratio"
+
+
# NOTE: should this ratio be computed w.r.t. global performance?
+
# - i.e., min(curr_metric_results) / global_curr_metric_result;
+
# - same question for the absolute diff calculations;
+
results [ ratio_name ] = _safe_division (
+
min ( curr_metric_results ), max ( curr_metric_results ),
+
worst_result = 0 ,
+
)
+
+
# Metrics' absolute difference
+
diff_name = f " { metric_name } _diff"
+
results [ diff_name ] = max ( curr_metric_results ) - min ( curr_metric_results )
+
+
# Equal odds: maximum constraint violation for TPR and FPR equality
+
# i.e., the smallest ratio
+
results [ "equalized_odds_ratio" ] = min (
+
results [ "fnr_ratio" ],
+
results [ "fpr_ratio" ],
+
)
+
+
# or the largest absolute difference
+
results [ "equalized_odds_diff" ] = max (
+
results [ "tpr_diff" ], # same as FNR diff
+
results [ "fpr_diff" ], # same as TNR diff
+
)
+
+
# Optionally, return group-wise metrics as well
+
if return_groupwise_metrics :
+
results . update ( groupwise_metrics )
+
+
return results
+
+
+
+
+
[docs]
+
def evaluate_predictions (
+
y_true : np . ndarray ,
+
y_pred_scores : np . ndarray ,
+
sensitive_attribute : Optional [ np . ndarray ] = None ,
+
return_groupwise_metrics : bool = False ,
+
** threshold_target ,
+
) -> dict :
+
"""Evaluates the given predictions on both performance and fairness metrics.
+
+
Will only evaluate fairness if `sensitive_attribute` is provided.
+
+
Note
+
----
+
The value of `log_loss` may be inaccurate when using `scikit-learn<1.2`.
+
+
Parameters
+
----------
+
y_true : np.ndarray
+
The true labels.
+
y_pred_scores : np.ndarray
+
The predicted scores.
+
sensitive_attribute : np.ndarray, optional
+
The sensitive attribute - which protected group each sample belongs to.
+
If not provided, will not compute fairness metrics.
+
return_groupwise_metrics : bool
+
Whether to return groupwise performance metrics (requires providing
+
`sensitive_attribute`).
+
+
Returns
+
-------
+
dict
+
A dictionary of (key, value) -> (metric_name, metric_value).
+
"""
+
# Binarize predictions according to the given threshold target
+
y_pred_binary = compute_binary_predictions (
+
y_true ,
+
y_pred_scores ,
+
** threshold_target ,
+
)
+
+
# Compute global performance metrics
+
results = evaluate_performance ( y_true , y_pred_binary )
+
+
# Compute loss metrics
+
results . update (
+
{
+
"squared_loss" : mean_squared_error ( y_true , y_pred_scores ),
+
"log_loss" : log_loss (
+
y_true , y_pred_scores ,
+
# eps=np.finfo(y_pred_scores.dtype).eps, # NOTE: for sklearn<1.2
+
+
# NOTE: this parameterization of `eps` is no longer useful as
+
# per sklearn 1.2, and will be removed in sklearn 1.5;
+
),
+
}
+
)
+
+
# (Optionally) Compute fairness metrics
+
if sensitive_attribute is not None :
+
results . update (
+
evaluate_fairness (
+
y_true ,
+
y_pred_binary ,
+
sensitive_attribute ,
+
return_groupwise_metrics = return_groupwise_metrics ,
+
)
+
)
+
+
return results
+
+
+
+
+
[docs]
+
def evaluate_predictions_bootstrap (
+
y_true : np . ndarray ,
+
y_pred_scores : np . ndarray ,
+
sensitive_attribute : np . ndarray ,
+
k : int = 200 ,
+
confidence_pct : float = 95 ,
+
seed : int = 42 ,
+
** threshold_target ,
+
) -> dict :
+
"""Computes bootstrap estimates of several metrics for the given predictions.
+
+
Parameters
+
----------
+
y_true : np.ndarray
+
The true labels.
+
y_pred_scores : np.ndarray
+
The score predictions.
+
sensitive_attribute : np.ndarray
+
The sensitive attribute data.
+
k : int, optional
+
How many bootstrap samples to draw, by default 200.
+
confidence_pct : float, optional
+
How large of a confidence interval to use when reporting lower and upper
+
bounds, by default 95 (i.e., 2.5 to 97.5 percentile of results).
+
seed : int, optional
+
The random seed, by default 42.
+
+
Returns
+
-------
+
dict
+
A dictionary of results
+
"""
+
assert len ( y_true ) == len ( y_pred_scores )
+
rng = np . random . default_rng ( seed = seed )
+
+
# Set threshold target if unset
+
threshold_target . setdefault ( "threshold" , 0.50 )
+
+
# Draw k bootstrap samples with replacement
+
results = []
+
for _ in range ( k ):
+
# Indices of current bootstrap sample
+
indices = rng . choice ( len ( y_true ), replace = True , size = len ( y_true ))
+
+
# Evaluate predictions on this bootstrap sample
+
results . append (
+
evaluate_predictions (
+
y_true = y_true [ indices ],
+
y_pred_scores = y_pred_scores [ indices ],
+
sensitive_attribute = sensitive_attribute [ indices ],
+
** threshold_target ,
+
)
+
)
+
+
# Compute statistics from bootstrapped results
+
all_metrics = set ( results [ 0 ] . keys ())
+
+
bt_mean = {}
+
bt_stdev = {}
+
bt_percentiles = {}
+
+
low_percentile = ( 100 - confidence_pct ) / 2
+
confidence_percentiles = [ low_percentile , 100 - low_percentile ]
+
+
for m in all_metrics :
+
metric_values = [ r [ m ] for r in results ]
+
+
bt_mean [ m ] = statistics . mean ( metric_values )
+
bt_stdev [ m ] = statistics . stdev ( metric_values )
+
bt_percentiles [ m ] = tuple ( np . percentile ( metric_values , confidence_percentiles ))
+
+
# Construct DF with results
+
+
return join_dictionaries (
+
* (
+
{
+
f " { metric } _mean" : bt_mean [ metric ],
+
f " { metric } _stdev" : bt_stdev [ metric ],
+
f " { metric } _low-percentile" : bt_percentiles [ metric ][ 0 ],
+
f " { metric } _high-percentile" : bt_percentiles [ metric ][ 1 ],
+
}
+
for metric in sorted ( bt_mean . keys ())
+
)
+
)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/_modules/error_parity/pareto_curve.html b/_modules/error_parity/pareto_curve.html
new file mode 100644
index 0000000..0331f1f
--- /dev/null
+++ b/_modules/error_parity/pareto_curve.html
@@ -0,0 +1,569 @@
+
+
+
+
+
+ error_parity.pareto_curve — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
Source code for error_parity.pareto_curve
+"""Utils for computing the fairness-accuracy Pareto frontier of a classifier.
+
+"""
+
+from __future__ import annotations
+
+import os
+import logging
+import traceback
+from functools import partial
+from concurrent.futures import ThreadPoolExecutor
+
+import numpy as np
+import pandas as pd
+
+from .threshold_optimizer import RelaxedThresholdOptimizer
+from .evaluation import evaluate_predictions , evaluate_predictions_bootstrap
+from ._commons import join_dictionaries , get_cost_envelope , arrays_are_equal
+
+
+DEFAULT_TOLERANCE_TICKS = np . hstack ((
+ np . arange ( 0.0 , 0.2 , 1e-2 ), # [0.00, 0.01, 0.02, ..., 0.19]
+ np . arange ( 0.2 , 1.0 , 1e-1 ), # [0.20, 0.30, 0.40, ...]
+))
+
+
+
+
[docs]
+
def fit_and_evaluate_postprocessing (
+
predictor : callable ,
+
tolerance : float ,
+
fit_data : tuple ,
+
eval_data : tuple | dict [ tuple ],
+
fairness_constraint : str = "equalized_odds" ,
+
false_pos_cost : float = 1. ,
+
false_neg_cost : float = 1. ,
+
max_roc_ticks : int = 200 ,
+
seed : int = 42 ,
+
y_fit_pred_scores : np . ndarray = None , # pre-computed predictions on the fit data
+
bootstrap : bool = True ,
+
bootstrap_kwargs : dict = None ,
+
) -> dict [ str , dict ]:
+
"""Fit and evaluate a postprocessing intervention on the given predictor.
+
+
Parameters
+
----------
+
predictor : callable
+
The callable predictor to fit postprocessing on.
+
tolerance : float
+
The tolerance (or slack) for fairness constraint fulfillment.
+
fit_data : tuple
+
The data used to fit postprocessing.
+
eval_data : tuple or dict[tuple]
+
The data or sequence of data to evaluate postprocessing on.
+
If a tuple is provided, will call it "eval" data in the returned results
+
dictionary; if a dict is provided, will assume {<key_1>: <data_1>, ...}.
+
fairness_constraint : str, optional
+
The name of the fairness constraint to use, by default "equalized_odds".
+
false_pos_cost : float, optional
+
The cost of a false positive error, by default 1.
+
false_neg_cost : float, optional
+
The cost of a false negative error, by default 1.
+
max_roc_ticks : int, optional
+
The maximum number of ticks (precision) to use when computing
+
group-specific ROC curves, by default 200.
+
seed : int, optional
+
The random seed, by default 42
+
y_fit_pred_scores : np.ndarray, optional
+
The pre-computed predicted scores for the `fit_data`; if provided, will
+
avoid re-computing these predictions for each function call.
+
bootstrap : bool, optional
+
Whether to use bootstrapping when computing metric results for
+
postprocessing, by default True.
+
bootstrap_kwargs : dict, optional
+
Any extra arguments to pass on to the bootstrapping function, by default
+
None.
+
+
Returns
+
-------
+
results : dict[str, dict]
+
A dictionary of results, whose keys are the data type, and values the
+
metric values obtained by postprocessing on that data type.
+
+
For example:
+
>>> {
+
>>> "validation": {"accuracy": 0.7, "...": "..."},
+
>>> "test": {"accuracy": 0.65, "...": "..."},
+
>>> }
+
"""
+
clf = RelaxedThresholdOptimizer (
+
predictor = predictor ,
+
constraint = fairness_constraint ,
+
tolerance = tolerance ,
+
false_pos_cost = false_pos_cost ,
+
false_neg_cost = false_neg_cost ,
+
max_roc_ticks = max_roc_ticks ,
+
seed = seed ,
+
)
+
+
# Unpack data
+
X_fit , y_fit , s_fit = fit_data
+
+
logging . basicConfig ( level = logging . WARNING , force = True )
+
clf . fit ( X = X_fit , y = y_fit , group = s_fit , y_scores = y_fit_pred_scores )
+
+
results = {}
+
# (Theoretical) fit results
+
results [ "fit-theoretical" ] = {
+
"accuracy" : 1 - clf . cost ( 1.0 , 1.0 ),
+
fairness_constraint : clf . constraint_violation (),
+
}
+
+
ALLOWED_ABS_ERROR = 1e-5
+
assert clf . constraint_violation () <= tolerance + ALLOWED_ABS_ERROR , \
+
f "Got { clf . constraint_violation () } > { tolerance } "
+
+
# Map of data_type->data_tuple to evaluate postprocessing on
+
data_to_eval = (
+
{ "fit" : fit_data }
+
| ( eval_data if isinstance ( eval_data , dict ) else { "test" : eval_data })
+
)
+
+
def _evaluate_on_data ( data : tuple ):
+
"""Helper function to evaluate on the given data tuple."""
+
X , Y , S = data
+
+
if bootstrap :
+
kwargs = bootstrap_kwargs or dict (
+
confidence_pct = 95 ,
+
seed = seed ,
+
threshold = 0.50 ,
+
)
+
+
eval_func = partial (
+
evaluate_predictions_bootstrap ,
+
** kwargs ,
+
)
+
+
else :
+
eval_func = partial (
+
evaluate_predictions ,
+
threshold = 0.50 ,
+
)
+
+
return eval_func (
+
y_true = Y ,
+
y_pred_scores = clf . predict ( X , group = S ),
+
sensitive_attribute = S ,
+
)
+
+
# Empirical results
+
for data_type , data_tuple in data_to_eval . items ():
+
results [ data_type ] = _evaluate_on_data ( data_tuple )
+
+
return results
+
+
+
+
+
[docs]
+
def compute_postprocessing_curve (
+
model : object ,
+
fit_data : tuple ,
+
eval_data : tuple or dict [ tuple ],
+
fairness_constraint : str = "equalized_odds" ,
+
bootstrap : bool = True ,
+
tolerance_ticks : list = DEFAULT_TOLERANCE_TICKS ,
+
tolerance_tick_step : float = None ,
+
predict_method : str = "predict_proba" ,
+
n_jobs : int = None ,
+
** kwargs ,
+
) -> pd . DataFrame :
+
"""Computes the fairness and performance of the given classifier after
+
adjusting (postprocessing) for varying levels of fairness tolerance.
+
+
Parameters
+
----------
+
model : object
+
The model to use.
+
fit_data : tuple
+
Data triplet to use to fit postprocessing intervention, (X, Y, S),
+
respectively containing the features, labels, and sensitive attribute.
+
eval_data : tuple or dict[tuple]
+
Data triplet to use to evaluate postprocessing intervention on (same
+
format as `fit_data`), or a dictionary of <data_name>-><data_triplet>
+
containing multiple datasets to evaluate on.
+
fairness_constraint : str, optional
+
_description_, by default "equalized_odds"
+
bootstrap : bool, optional
+
Whether to compute uncertainty estimates via bootstrapping, by default
+
False.
+
tolerance_ticks : list, optional
+
List of constraint tolerances to use when computing adjustment curve.
+
By default will use higher granularity/precision for lower levels of
+
disparity, and lower granularity for higher levels of disparity.
+
Should correspond to a sorted list of values between 0 and 1.
+
Will be ignored if `tolerance_tick_step` is provided.
+
tolerance_tick_step : float, optional
+
Distance between constraint tolerances in the adjustment curve.
+
Will override `tolerance_ticks` if provided!
+
predict_method : str, optional
+
Which method to call to obtain predictions out of the given model.
+
Use `predict_method="__call__"` for a callable predictor, or the default
+
`predict_method="predict_proba"` for a predictor with sklearn interface.
+
n_jobs : int, optional
+
Number of parallel jobs to use, if omitted will use `os.cpu_count()-1`.
+
+
Returns
+
-------
+
postproc_results_df : pd.DataFrame
+
A DataFrame containing the results, one row per tolerance tick.
+
"""
+
def callable_predictor ( X ) -> np . ndarray :
+
preds = getattr ( model , predict_method )( X )
+
assert 1 <= len ( preds . shape ) <= 2 , f "Model outputs predictions in shape { preds . shape } "
+
return preds if len ( preds . shape ) == 1 else preds [:, - 1 ]
+
+
def _func_call ( tol : float ):
+
try :
+
return fit_and_evaluate_postprocessing (
+
predictor = callable_predictor ,
+
tolerance = tol ,
+
fit_data = fit_data ,
+
eval_data = eval_data ,
+
fairness_constraint = fairness_constraint ,
+
bootstrap = bootstrap ,
+
** kwargs )
+
+
except Exception as exc :
+
logging . error (
+
f "FAILED `fit_and_evaluate_postprocessing(.)` with `tolerance= { tol } `; "
+
f " { '' . join ( traceback . TracebackException . from_exception ( exc ) . format ()) } " )
+
+
return {} # return empty dictionary
+
+
# If n_jobs not provided: use number of CPU cores - 1
+
if n_jobs is None :
+
n_jobs = max ( os . cpu_count () - 1 , 1 )
+
logging . info ( f "Using `n_jobs= { n_jobs } ` to compute adjustment curve." )
+
+
from tqdm.auto import tqdm
+
# Use `tolerance_tick_step` kwarg
+
if tolerance_tick_step is not None :
+
tolerances = np . arange ( 0.0 , 1.0 , tolerance_tick_step )
+
+
if (
+
# > `tolerance_ticks` was provided
+
tolerance_ticks is not None
+
# > and `tolerance_ticks` was set to a non-default value
+
and not arrays_are_equal ( tolerance_ticks , DEFAULT_TOLERANCE_TICKS )
+
):
+
logging . error ( "Please provide only one of `tolerance_ticks` and `tolerance_tick_step`." )
+
+
logging . warning ( "Use of `tolerance_tick_step` overrides the use of `tolerance_ticks`." )
+
+
# Use `tolerance_ticks` kwarg
+
else :
+
tolerances = tolerance_ticks
+
+
# Log tolerances used
+
logging . info ( f "Computing postprocessing for the following constraint tolerances: { tolerances } ." )
+
+
with ThreadPoolExecutor ( max_workers = n_jobs ) as executor :
+
func_call_results = list (
+
tqdm (
+
executor . map ( _func_call , tolerances ),
+
total = len ( tolerances ),
+
)
+
)
+
+
results = dict ( zip ( tolerances , func_call_results ))
+
return _parse_postprocessing_curve ( results )
+
+
+
+def _parse_postprocessing_curve ( postproc_curve_dict : dict ) -> pd . DataFrame :
+ """Parses the postprocessing curve dictionary results into a pd.DataFrame.
+
+ Parameters
+ ----------
+ postproc_curve_dict : dict
+ The result of computing the postprocessing adjustment curve on a model.
+
+ Returns
+ -------
+ postproc_results_df : pd.DataFrame
+ A DataFrame containing the results for each tolerance value.
+ """
+ return pd . DataFrame ([
+ join_dictionaries (
+ {
+ "tolerance" : float ( tol ),
+ },
+
+ * [{
+ f " { metric_name } _ { data_type } " : metric_value
+ for data_type , results in results_at_tol . items ()
+ for metric_name , metric_value in results . items ()
+ }]
+ )
+ for tol , results_at_tol in postproc_curve_dict . items ()
+ ])
+
+
+
+
[docs]
+
def get_envelope_of_postprocessing_frontier (
+
postproc_results_df : pd . DataFrame ,
+
perf_col : str = "accuracy_mean_test" ,
+
disp_col : str = "equalized_odds_diff_mean_test" ,
+
constant_clf_perf : float = 0.5 ,
+
constant_clf_disp : float = 0.0 ,
+
) -> np . ndarray :
+
"""Computes points in envelope of the given postprocessing frontier results.
+
+
Parameters
+
----------
+
postproc_results_df : pd.DataFrame
+
The postprocessing frontier results DF.
+
perf_col : str, optional
+
Name of the column containing performance results, by default "accuracy_mean_test"
+
disp_col : str, optional
+
Name of column containing disparity results, by default "equalized_odds_diff_mean_test"
+
constant_clf_perf : float, optional
+
The performance of a dummy constant classifier (in the same metric as
+
`perf_col`), by default 0.5.
+
constant_clf_disp : float, optional
+
The disparity of a dummy constant classifier (in the same metric as
+
`disp_col`), by default 0.0; assumes a constant classifier fulfills
+
fairness!
+
+
Returns
+
-------
+
np.ndarray
+
A 2-D array containing the points in the convex hull of the Pareto curve.
+
"""
+
# Add bottom left point (postprocessing to constant classifier is always trivial)
+
postproc_results_df = pd . concat (
+
objs = (
+
pd . DataFrame (
+
{
+
perf_col : [ constant_clf_perf ],
+
disp_col : [ constant_clf_disp ],
+
},
+
),
+
postproc_results_df ,
+
),
+
ignore_index = True ,
+
)
+
+
# Make costs array
+
costs = np . stack (
+
(
+
1 - postproc_results_df [ perf_col ],
+
postproc_results_df [ disp_col ],
+
),
+
axis = 1 ,
+
)
+
+
# Get points in the envelope of the Pareto frontier
+
costs_envelope = get_cost_envelope ( costs )
+
+
# Get original metric values back
+
adjustment_frontier = np . stack (
+
(
+
1 - costs_envelope [:, 0 ], # flip perf values back to original metric
+
costs_envelope [:, 1 ], # keep disparity values (were already costs)
+
),
+
axis = 1 ,
+
)
+
+
# Sort by x-axis to plot properly (should already be sorted but, just making sure...)
+
adjustment_frontier = adjustment_frontier [ np . argsort ( adjustment_frontier [:, 0 ])]
+
return adjustment_frontier
+
+
+
+
+
[docs]
+
def compute_inner_and_outer_adjustment_ci (
+
postproc_results_df ,
+
perf_metric : str ,
+
disp_metric : str ,
+
data_type : str = "test" , # by default, fetch results on test data
+
constant_clf_perf : float = None ,
+
) -> tuple :
+
"""Computes the interior/inner and exterior/outer adjustment curves,
+
corresponding to the confidence intervals (by default 95% c.i.).
+
+
Returns
+
-------
+
postproc_results_df : tuple[np.array, np.array, np.array]
+
A tuple containing (xticks, inner_yticks, outer_yticks).
+
"""
+
# Make INTERIOR/UPPER envelope of the adjustment frontier
+
# (i.e., the WORST points, with lower performance and higher disparity)
+
interior_adjusted_df = postproc_results_df . copy ()
+
interior_adjusted_df [ perf_metric ] = \
+
interior_adjusted_df [ f " { perf_metric } _low-percentile_ { data_type } " ]
+
+
interior_adjusted_df [ disp_metric ] = \
+
interior_adjusted_df [ f " { disp_metric } _high-percentile_ { data_type } " ]
+
+
# Make OUTER/BOTTOM envelope of the adjustment frontier
+
# (i.e., the BEST points, with higher performance and lower disparity)
+
outer_adjusted_df = postproc_results_df . copy ()
+
outer_adjusted_df [ perf_metric ] = \
+
outer_adjusted_df [ f " { perf_metric } _high-percentile_ { data_type } " ]
+
+
outer_adjusted_df [ disp_metric ] = \
+
outer_adjusted_df [ f " { disp_metric } _low-percentile_ { data_type } " ]
+
+
# Process each frontier
+
interior_adj_frontier = get_envelope_of_postprocessing_frontier (
+
interior_adjusted_df ,
+
perf_col = perf_metric ,
+
disp_col = disp_metric ,
+
constant_clf_perf = constant_clf_perf ,
+
)
+
outer_adj_frontier = get_envelope_of_postprocessing_frontier (
+
outer_adjusted_df ,
+
perf_col = perf_metric ,
+
disp_col = disp_metric ,
+
constant_clf_perf = constant_clf_perf ,
+
)
+
+
# Create functions that interpolate points within each frontier (interior or outer)
+
# Because ax.fill_between requires both lines to have the same xticks
+
from scipy.interpolate import interp1d
+
interior_adj_func = interp1d (
+
x = interior_adj_frontier [:, 0 ], y = interior_adj_frontier [:, 1 ],
+
bounds_error = False ,
+
fill_value = (
+
np . min ( interior_adj_frontier [:, 1 ]),
+
np . max ( interior_adj_frontier [:, 1 ]),
+
),
+
)
+
outer_adj_func = interp1d (
+
x = outer_adj_frontier [:, 0 ], y = outer_adj_frontier [:, 1 ],
+
bounds_error = False ,
+
fill_value = (
+
np . min ( outer_adj_frontier [:, 1 ]),
+
np . max ( outer_adj_frontier [:, 1 ]),
+
),
+
)
+
+
# Get common xticks (union)
+
adjustment_frontier_xticks = np . sort ( np . unique ( np . hstack (
+
( interior_adj_frontier [:, 0 ], outer_adj_frontier [:, 0 ])
+
)))
+
+
interior_frontier_yticks = np . array ([ interior_adj_func ( x ) for x in adjustment_frontier_xticks ])
+
outer_frontier_yticks = np . array ([ outer_adj_func ( x ) for x in adjustment_frontier_xticks ])
+
+
return adjustment_frontier_xticks , interior_frontier_yticks , outer_frontier_yticks
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/_modules/error_parity/plotting.html b/_modules/error_parity/plotting.html
new file mode 100644
index 0000000..90ea801
--- /dev/null
+++ b/_modules/error_parity/plotting.html
@@ -0,0 +1,436 @@
+
+
+
+
+
+ error_parity.plotting — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
Source code for error_parity.plotting
+"""Utils for plotting postprocessing frontier and postprocessing solution."""
+
+import numpy as np
+import pandas as pd
+
+import seaborn as sns
+import matplotlib.figure
+from matplotlib import pyplot as plt
+
+from .pareto_curve import compute_inner_and_outer_adjustment_ci , get_envelope_of_postprocessing_frontier
+from .threshold_optimizer import RelaxedThresholdOptimizer
+from .classifiers import RandomizedClassifier
+
+
+
+
[docs]
+
def plot_polygon_edges ( polygon_points , ** kwargs ):
+
point_to_plot = np . vstack (( polygon_points , polygon_points [ 0 ]))
+
plt . plot ( point_to_plot [:, 0 ], point_to_plot [:, 1 ], ** kwargs )
+
+
+
+
+
[docs]
+
def plot_postprocessing_solution (
+
* ,
+
postprocessed_clf : RelaxedThresholdOptimizer ,
+
plot_roc_curves : bool = False ,
+
plot_roc_hulls : bool = True ,
+
plot_group_optima : bool = True ,
+
plot_group_triangulation : bool = True ,
+
plot_global_optimum : bool = True ,
+
plot_diagonal : bool = True ,
+
plot_relaxation : bool = False ,
+
group_name_map : dict = None ,
+
figure : matplotlib . figure . Figure = None ,
+
** fig_kwargs ,
+
):
+
"""Plots the group-specific solutions found for this predictor.
+
+
Parameters
+
----------
+
postprocessed_clf : RelaxedThresholdOptimizer
+
A postprocessed classifier already fitted on some data.
+
plot_roc_curves : bool, optional
+
Whether to plot the global ROC curves, by default False.
+
plot_roc_hulls : bool, optional
+
Whether to plot the global ROC convex hulls, by default True.
+
plot_group_optima : bool, optional
+
Whether to plot the group-specific optima, by default True.
+
plot_group_triangulation : bool, optional
+
Whether to plot the triangulation of a group-specific solution, when
+
such triangulation is needed to achieve a target ROC point.
+
plot_global_optimum : bool, optional
+
Whether to plot the global optimum ROC point, by default True.
+
plot_diagonal : bool, optional
+
Whether to plot the ROC diagonal with FPR=TPR, by default True.
+
plot_relaxation : bool, optional
+
Whether to plot the constraint relaxation bounding box, by default False.
+
group_name_map : dict, optional
+
A dictionary mapping each group's value to an appropriate name to show
+
in the plot legend, by default None.
+
figure : matplotlib.figure.Figure, optional
+
A matplotlib figure to use when plotting, by default will generate a new
+
figure for plotting.
+
"""
+
postprocessed_clf . _check_fit_status ()
+
+
from matplotlib import pyplot as plt
+
from matplotlib.patches import Rectangle
+
import seaborn as sns
+
+
n_groups = len ( postprocessed_clf . groupwise_roc_hulls )
+
+
# Set group-wise colors and global color
+
palette = sns . color_palette ( n_colors = n_groups + 1 )
+
global_color = palette [ 0 ]
+
all_group_colors = palette [ 1 :]
+
+
if figure is None :
+
figure = plt . figure ( ** fig_kwargs )
+
+
# For each group `idx`
+
for idx in range ( n_groups ):
+
group_ls = ([ "--" , ":" , "-." ] * ( 1 + n_groups // 3 ))[ idx ]
+
group_color = all_group_colors [ idx ]
+
+
# Plot group-wise (actual) ROC curves
+
if plot_roc_curves :
+
roc_points = np . stack ( postprocessed_clf . groupwise_roc_data [ idx ], axis = 1 )[:, 0 : 2 ]
+
plot_polygon_edges (
+
np . vstack (( roc_points , [ 1 , 0 ])),
+
color = group_color ,
+
ls = group_ls ,
+
alpha = 0.5 ,
+
)
+
+
# Plot group-wise ROC hulls
+
if plot_roc_hulls :
+
plot_polygon_edges (
+
postprocessed_clf . groupwise_roc_hulls [ idx ],
+
color = group_color ,
+
ls = group_ls ,
+
)
+
+
# Plot group-wise fair optimum
+
group_optimum = postprocessed_clf . groupwise_roc_points [ idx ]
+
if plot_group_optima :
+
plt . plot (
+
group_optimum [ 0 ],
+
group_optimum [ 1 ],
+
label = group_name_map [ idx ] if group_name_map else f "group { idx } " ,
+
color = group_color ,
+
marker = "^" ,
+
markersize = 5 ,
+
lw = 0 ,
+
)
+
+
# Plot triangulation of target point
+
if plot_group_triangulation :
+
(
+
_weights ,
+
triangulated_points ,
+
) = RandomizedClassifier . find_points_for_target_ROC (
+
roc_curve_data = postprocessed_clf . _groupwise_roc_data [ idx ],
+
target_roc_point = group_optimum ,
+
)
+
plt . plot (
+
triangulated_points [:, 0 ],
+
triangulated_points [:, 1 ],
+
color = group_color ,
+
marker = "x" ,
+
lw = 0 ,
+
)
+
+
plt . fill (
+
triangulated_points [:, 0 ],
+
triangulated_points [:, 1 ],
+
color = group_color ,
+
alpha = 0.1 ,
+
)
+
+
# Plot global optimum
+
if plot_global_optimum :
+
plt . plot (
+
postprocessed_clf . global_roc_point [ 0 ],
+
postprocessed_clf . global_roc_point [ 1 ],
+
label = "global" ,
+
marker = "*" ,
+
color = global_color ,
+
alpha = 0.6 ,
+
markersize = 5 ,
+
lw = 0 ,
+
)
+
+
# TODO: plot maximum constraint relaxation
+
# (may differ from realized relaxation, for example, if either the TPR or
+
# FPR diff violation is strictly smaller than the allowed tolerance)
+
+
# Plot rectangle to visualize constraint relaxation
+
if plot_relaxation :
+
# Get rectangle points
+
min_x , max_x = (
+
np . min ( postprocessed_clf . groupwise_roc_points [:, 0 ]),
+
np . max ( postprocessed_clf . groupwise_roc_points [:, 0 ]),
+
)
+
min_y , max_y = (
+
np . min ( postprocessed_clf . groupwise_roc_points [:, 1 ]),
+
np . max ( postprocessed_clf . groupwise_roc_points [:, 1 ])
+
)
+
+
# Draw relaxation rectangle
+
rect = Rectangle (
+
xy = ( min_x , min_y ),
+
width = max_x - min_x ,
+
height = max_y - min_y ,
+
facecolor = "grey" ,
+
alpha = 0.3 ,
+
label = "relaxation" ,
+
)
+
+
# Add the patch to the Axes
+
ax = plt . gca ()
+
ax . add_patch ( rect )
+
+
# Plot diagonal
+
if plot_diagonal :
+
plt . plot (
+
[ 0 , 1 ],
+
[ 0 , 1 ],
+
ls = "--" ,
+
color = "grey" ,
+
alpha = 0.5 ,
+
label = "random clf." ,
+
)
+
+
# Set axis settings
+
plt . suptitle ( f "Solution to { postprocessed_clf . tolerance } -relaxed optimum" , y = 0.96 )
+
plt . title (
+
f "(fairness constraint: { postprocessed_clf . constraint . replace ( '_' , ' ' ) } )" ,
+
fontsize = "small" ,
+
)
+
+
plt . xlabel ( "False Positive Rate" )
+
plt . ylabel ( "True Positive Rate" )
+
+
plt . legend ( loc = "lower right" , borderaxespad = 2 )
+
+
+
+
+
[docs]
+
def plot_postprocessing_frontier (
+
postproc_results_df : pd . DataFrame ,
+
* ,
+
perf_metric : str ,
+
disp_metric : str ,
+
show_data_type : str ,
+
constant_clf_perf : float ,
+
model_name : str = None ,
+
color : str = "black" ,
+
):
+
"""Helper to plot the given post-processing frontier results.
+
+
Will use bootstrapped results if available, including plotting confidence
+
intervals.
+
+
Parameters
+
----------
+
postproc_results_df : pd.DataFrame
+
The DataFrame containing postprocessing results.
+
This should be the output of a call to `compute_postprocessing_curve(.)`.
+
perf_metric : str
+
Which performance metric to plot (horizontal axis).
+
disp_metric : str
+
Which disparity metric to plot (vertical axis).
+
show_data_type : str
+
The type of data to show results for; usually this will be "test".
+
constant_clf_perf : float
+
Performance achieved by the constant classifier; this is the point of
+
lowest performance and lowest disparity achievable by postprocessing.
+
model_name : str, optional
+
Shown in the plot legend. Name of the model to be postprocessed.
+
color : str, optional
+
Which color to use for plotting the postprocessing curve, by default "black".
+
"""
+
+
# Get relevant column names
+
perf_col = f " { perf_metric } _mean_ { show_data_type } "
+
disp_col = f " { disp_metric } _mean_ { show_data_type } "
+
+
# Check if bootstrap means are available
+
has_bootstrap_results = perf_col in postproc_results_df . columns
+
+
if not has_bootstrap_results :
+
perf_col = f " { perf_metric } _ { show_data_type } "
+
disp_col = f " { disp_metric } _ { show_data_type } "
+
+
assert perf_col in postproc_results_df . columns , (
+
f "Could not find the column ' { perf_col } ' for the perf. metric "
+
f "' { perf_metric } ' on data type ' { show_data_type } '." )
+
assert disp_col in postproc_results_df . columns , (
+
f "Could not find the column ' { disp_col } ' for the disp. metric "
+
f "' { disp_metric } ' on data type ' { show_data_type } '." )
+
+
# Get envelope of postprocessing adjustment frontier
+
postproc_frontier = get_envelope_of_postprocessing_frontier (
+
postproc_results_df ,
+
perf_col = perf_col ,
+
disp_col = disp_col ,
+
constant_clf_perf = constant_clf_perf ,
+
)
+
+
# Get inner and outer confidence intervals
+
if has_bootstrap_results :
+
postproc_frontier_xticks , interior_frontier_yticks , outer_frontier_yticks = \
+
compute_inner_and_outer_adjustment_ci (
+
postproc_results_df ,
+
perf_metric = perf_metric ,
+
disp_metric = disp_metric ,
+
data_type = show_data_type ,
+
constant_clf_perf = constant_clf_perf ,
+
)
+
+
# Draw upper right portion of the line (dominated but not feasible)
+
upper_right_frontier = np . array ([
+
postproc_frontier [ - 1 ],
+
( postproc_frontier [ - 1 , 0 ] - 1e-6 , 1.0 ),
+
])
+
+
sns . lineplot (
+
x = upper_right_frontier [:, 0 ],
+
y = upper_right_frontier [:, 1 ],
+
linestyle = ":" ,
+
# label=r"dominated",
+
color = "grey" ,
+
)
+
+
# Plot postprocessing frontier
+
sns . lineplot (
+
x = postproc_frontier [:, 0 ],
+
y = postproc_frontier [:, 1 ],
+
label = (
+
"post-processing" if model_name is None
+
else f "post-processing of { model_name } "
+
),
+
linestyle = "-." ,
+
color = color ,
+
)
+
+
# Draw confidence intervals (shaded area)
+
if has_bootstrap_results :
+
ax = plt . gca ()
+
ax . fill_between (
+
x = postproc_frontier_xticks ,
+
y1 = interior_frontier_yticks ,
+
y2 = outer_frontier_yticks ,
+
interpolate = True ,
+
color = color ,
+
alpha = 0.1 ,
+
label = r "$95\%$ conf. interv." ,
+
)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/_modules/error_parity/roc_utils.html b/_modules/error_parity/roc_utils.html
new file mode 100644
index 0000000..0ffae00
--- /dev/null
+++ b/_modules/error_parity/roc_utils.html
@@ -0,0 +1,286 @@
+
+
+
+
+
+ error_parity.roc_utils — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
Source code for error_parity.roc_utils
+"""Helper functions to solve the relaxed equal odds problem.
+"""
+import logging
+import numpy as np
+from scipy.spatial import ConvexHull
+from sklearn.metrics import confusion_matrix
+
+
+
+
[docs]
+
def calc_cost_of_point (
+
fpr : float ,
+
fnr : float ,
+
prevalence : float ,
+
false_pos_cost : float = 1.0 ,
+
false_neg_cost : float = 1.0 ,
+
) -> float :
+
"""Calculates the cost of the given ROC point.
+
+
Parameters
+
----------
+
fpr : float
+
The false positive rate (FPR).
+
fnr : float
+
The false negative rate (FNR).
+
prevalence : float
+
The prevalence of positive samples in the dataset,
+
i.e., np.sum(y_true) / len(y_true)
+
false_pos_cost : float, optional
+
The cost of a false positive error, by default 1.
+
false_neg_cost : float, optional
+
The cost of a false negative error, by default 1.
+
+
Returns
+
-------
+
cost : float
+
The cost of the given ROC point (divided by the size of the dataset).
+
"""
+
cost_vector = np . array ([ false_pos_cost , false_neg_cost ])
+
weight_vector = np . array ([ 1 - prevalence , prevalence ])
+
return cost_vector * weight_vector @ np . array ([ fpr , fnr ])
+
+
+
+
+
[docs]
+
def compute_roc_point_from_predictions ( y_true , y_pred_binary ):
+
"""Computes the ROC point associated with the provided binary predictions.
+
+
Parameters
+
----------
+
y_true : np.ndarray
+
The true labels.
+
y_pred_binary : np.ndarray
+
The binary predictions.
+
+
Returns
+
-------
+
tuple[float, float]
+
The resulting ROC point, i.e., a tuple (FPR, TPR).
+
"""
+
tn , fp , fn , tp = confusion_matrix ( y_true , y_pred_binary ) . ravel ()
+
+
# FPR = FP / LN
+
fpr = fp / ( fp + tn )
+
+
# TPR = TP / LP
+
tpr = tp / ( tp + fn )
+
+
return ( fpr , tpr )
+
+
+
+
+
[docs]
+
def compute_global_roc_from_groupwise (
+
groupwise_roc_points : np . ndarray ,
+
groupwise_label_pos_weight : np . ndarray ,
+
groupwise_label_neg_weight : np . ndarray ,
+
) -> np . ndarray :
+
"""Computes the global ROC point that corresponds to the provided group-wise
+
ROC points.
+
+
The global ROC is a linear combination of the group-wise points, with
+
different weights for computing FPR and TPR -- the first related to LNs, and
+
the second to LPs.
+
+
Parameters
+
----------
+
groupwise_roc_points : np.ndarray
+
An array of shape (n_groups, n_roc_dims) containing one ROC point per
+
group.
+
groupwise_label_pos_weight : np.ndarray
+
The relative size of each group in terms of its label POSITIVE samples
+
(out of all POSITIVE samples, how many are in each group).
+
groupwise_label_neg_weight : np.ndarray
+
The relative size of each group in terms of its label NEGATIVE samples
+
(out of all NEGATIVE samples, how many are in each group).
+
+
Returns
+
-------
+
global_roc_point : np.ndarray
+
A single point that corresponds to the global outcome of the given
+
group-wise ROC points.
+
"""
+
n_groups , _ = groupwise_roc_points . shape
+
+
# Some initial sanity checks
+
if (
+
len ( groupwise_label_pos_weight ) != len ( groupwise_label_neg_weight )
+
or len ( groupwise_label_pos_weight ) != n_groups
+
):
+
raise ValueError (
+
"Invalid input shapes: length of all arguments must be equal (the "
+
"number of different sensitive groups)."
+
)
+
+
# Normalize group LP (/LN) weights by their size
+
if not np . isclose ( groupwise_label_pos_weight . sum (), 1.0 ):
+
groupwise_label_pos_weight /= groupwise_label_pos_weight . sum ()
+
if not np . isclose ( groupwise_label_neg_weight . sum (), 1.0 ):
+
groupwise_label_neg_weight /= groupwise_label_neg_weight . sum ()
+
+
# Compute global FPR (weighted by relative number of LNs in each group)
+
global_fpr = groupwise_label_neg_weight @ groupwise_roc_points [:, 0 ]
+
+
# Compute global TPR (weighted by relative number of LPs in each group)
+
global_tpr = groupwise_label_pos_weight @ groupwise_roc_points [:, 1 ]
+
+
global_roc_point = np . array ([ global_fpr , global_tpr ])
+
return global_roc_point
+
+
+
+
+
[docs]
+
def roc_convex_hull ( roc_points : np . ndarray ) -> np . ndarray :
+
"""Computes the convex hull of the provided ROC points.
+
+
Parameters
+
----------
+
roc_points : np.ndarray
+
An array of shape (n_points, n_dims) containing all points
+
of a provided ROC curve.
+
+
Returns
+
-------
+
hull_points : np.ndarray
+
An array of shape (n_hull_points, n_dim) containing all
+
points in the convex hull of the ROC curve.
+
"""
+
+
# Save init data just for logging
+
init_num_points , _dims = roc_points . shape
+
+
# Compute convex hull
+
hull = ConvexHull ( roc_points )
+
+
# NOTE: discarding points below the diagonal seems to lead to bugs later on, idk why...
+
# Discard points in the interior of the convex hull,
+
# and other useless points (below main diagonal)
+
# points_above_diagonal = np.argwhere(roc_points[:, 1] >= roc_points[:, 0]).ravel()
+
# hull_indices = sorted(set(hull.vertices) & set(points_above_diagonal))
+
+
hull_indices = hull . vertices
+
+
logging . info (
+
f "ROC convex hull contains { len ( hull_indices ) / init_num_points : .1% } "
+
f "of the original points."
+
)
+
+
return roc_points [ hull_indices ]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/_modules/error_parity/threshold_optimizer.html b/_modules/error_parity/threshold_optimizer.html
new file mode 100644
index 0000000..e29d6d8
--- /dev/null
+++ b/_modules/error_parity/threshold_optimizer.html
@@ -0,0 +1,630 @@
+
+
+
+
+
+ error_parity.threshold_optimizer — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+ Module code
+ error_parity.threshold_optimizer
+
+
+
+
+
+
+
+
+
Source code for error_parity.threshold_optimizer
+"""Solver for the relaxed equal odds problem.
+
+"""
+from __future__ import annotations
+
+import logging
+from itertools import product
+from typing import Callable
+
+import numpy as np
+from sklearn.metrics import roc_curve
+
+from .cvxpy_utils import (
+ compute_fair_optimum ,
+ ALL_CONSTRAINTS ,
+ NOT_SUPPORTED_CONSTRAINTS_ERROR_MESSAGE ,
+)
+from .roc_utils import (
+ roc_convex_hull ,
+ calc_cost_of_point ,
+)
+from .classifiers import (
+ Classifier ,
+ RandomizedClassifier ,
+ EnsembleGroupwiseClassifiers ,
+)
+
+
+
+
[docs]
+
class RelaxedThresholdOptimizer ( Classifier ):
+
"""Class to encapsulate all the logic needed to compute the optimal equal
+
odds classifier (with possibly relaxed constraints).
+
"""
+
+
def __init__ (
+
self ,
+
* ,
+
predictor : Callable [[ np . ndarray ], np . ndarray ],
+
constraint : str = "equalized_odds" ,
+
tolerance : float = 0.0 ,
+
false_pos_cost : float = 1.0 ,
+
false_neg_cost : float = 1.0 ,
+
max_roc_ticks : int = 1000 ,
+
seed : int = 42 ,
+
# distance: str = 'max', # TODO: add option to use l_1 or l_inf distances
+
):
+
"""Initializes the relaxed equal odds wrapper.
+
+
Parameters
+
----------
+
predictor : callable[(np.ndarray), float]
+
A trained score predictor that takes in samples, X, in shape
+
(num_samples, num_features), and outputs real-valued scores, R, in
+
shape (num_samples,).
+
constraint : str
+
The fairness constraint to use. By default "equalized_odds".
+
tolerance : float
+
The absolute tolerance for the equal odds fairness constraint.
+
Will allow for `tolerance` difference between group-wise ROC points.
+
false_pos_cost : float, optional
+
The cost of a FALSE POSITIVE error, by default 1.0.
+
false_neg_cost : float, optional
+
The cost of a FALSE NEGATIVE error, by default 1.0.
+
max_roc_ticks : int, optional
+
The maximum number of ticks (points) in each group's ROC, when
+
computing the optimal fair classifier, by default 1000.
+
seed : int
+
A random seed used for reproducibility when producing randomized
+
classifiers.
+
"""
+
# Save arguments
+
self . predictor = predictor
+
self . constraint = constraint
+
self . tolerance = tolerance
+
self . false_pos_cost = false_pos_cost
+
self . false_neg_cost = false_neg_cost
+
self . max_roc_ticks = max_roc_ticks
+
self . seed = seed
+
+
# Validate constraint
+
if self . constraint not in ALL_CONSTRAINTS :
+
raise ValueError ( NOT_SUPPORTED_CONSTRAINTS_ERROR_MESSAGE )
+
+
# Initialize instance variables
+
self . _groupwise_roc_data : dict = None
+
self . _groupwise_roc_hulls : dict = None
+
self . _groupwise_roc_points : np . ndarray = None
+
self . _groupwise_prevalence : np . ndarray = None
+
self . _global_roc_point : np . ndarray = None
+
self . _global_prevalence : float = None
+
self . _realized_classifier : EnsembleGroupwiseClassifiers = None
+
+
@property
+
def groupwise_roc_data ( self ) -> dict :
+
"""Group-specific ROC data containing (FPR, TPR, threshold) triplets."""
+
return self . _groupwise_roc_data
+
+
@property
+
def groupwise_roc_hulls ( self ) -> dict :
+
"""Group-specific ROC convex hulls achieved by underlying predictor."""
+
return self . _groupwise_roc_hulls
+
+
@property
+
def groupwise_roc_points ( self ) -> np . ndarray :
+
"""Group-specific ROC points achieved by solution."""
+
return self . _groupwise_roc_points
+
+
@property
+
def groupwise_prevalence ( self ) -> np . ndarray :
+
"""Group-specific prevalence, i.e., P(Y=1|A=a)"""
+
return self . _groupwise_prevalence
+
+
@property
+
def global_roc_point ( self ) -> np . ndarray :
+
"""Global ROC point achieved by solution."""
+
return self . _global_roc_point
+
+
@property
+
def global_prevalence ( self ) -> np . ndarray :
+
"""Global prevalence, i.e., P(Y=1)."""
+
return self . _global_prevalence
+
+
+
[docs]
+
def cost (
+
self ,
+
false_pos_cost : float = None ,
+
false_neg_cost : float = None ,
+
) -> float :
+
"""Computes the theoretical cost of the solution found.
+
+
NOTE: use false_pos_cost==false_neg_cost==1 for the 0-1 loss (the
+
standard error rate), which is equal to `1 - accuracy`.
+
+
Parameters
+
----------
+
false_pos_cost : float, optional
+
The cost of a FALSE POSITIVE error, by default will take the value
+
given in the object's constructor.
+
false_neg_cost : float, optional
+
The cost of a FALSE NEGATIVE error, by default will take the value
+
given in the object's constructor.
+
+
Returns
+
-------
+
float
+
The cost of the solution found.
+
"""
+
self . _check_fit_status ()
+
global_fpr , global_tpr = self . global_roc_point
+
+
return calc_cost_of_point (
+
fpr = global_fpr ,
+
fnr = 1 - global_tpr ,
+
prevalence = self . _global_prevalence ,
+
false_pos_cost = false_pos_cost or self . false_pos_cost ,
+
false_neg_cost = false_neg_cost or self . false_neg_cost ,
+
)
+
+
+
+
[docs]
+
def constraint_violation ( self , constraint_name : str = None ) -> float :
+
"""Theoretical constraint violation of the LP solution found.
+
+
Parameters
+
----------
+
constraint_name : str, optional
+
Optionally, may provide another constraint name that will be used
+
instead of this classifier's self.constraint;
+
+
Returns
+
-------
+
float
+
The fairness constraint violation.
+
"""
+
self . _check_fit_status ()
+
+
if constraint_name is not None :
+
logging . warning (
+
f "Calculating constraint violation for { constraint_name } constraint; \n "
+
f "Note: this classifier was fitted with a { self . constraint } constraint;"
+
)
+
else :
+
constraint_name = self . constraint
+
+
if constraint_name not in ALL_CONSTRAINTS :
+
raise ValueError ( NOT_SUPPORTED_CONSTRAINTS_ERROR_MESSAGE )
+
+
if constraint_name == "equalized_odds" :
+
return self . equalized_odds_violation ()
+
+
elif constraint_name . endswith ( "rate_parity" ):
+
constraint_to_error_type = {
+
"true_positive_rate_parity" : "fn" ,
+
"false_positive_rate_parity" : "fp" ,
+
"true_negative_rate_parity" : "fp" ,
+
"false_negative_rate_parity" : "fn" ,
+
}
+
+
return self . error_rate_parity_constraint_violation (
+
error_type = constraint_to_error_type [ constraint_name ],
+
)
+
+
elif constraint_name == "demographic_parity" :
+
return self . demographic_parity_violation ()
+
+
else :
+
raise NotImplementedError (
+
f "Standalone constraint violation not yet computed for "
+
f "constraint=' { constraint_name } '."
+
)
+
+
+
+
[docs]
+
def error_rate_parity_constraint_violation ( self , error_type : str ) -> float :
+
"""Computes the theoretical violation of an error-rate parity constraint.
+
+
Parameters
+
----------
+
error_type : str
+
One of the following values:
+
"fp", for false positive errors (FPR or TNR parity);
+
"fn", for false negative errors (TPR or FNR parity).
+
+
Returns
+
-------
+
float
+
The maximum constraint violation among all groups.
+
"""
+
self . _check_fit_status ()
+
valid_error_types = ( "fp" , "fn" )
+
if error_type not in valid_error_types :
+
raise ValueError (
+
f "Invalid error_type=' { error_type } ', must be one of "
+
f " { valid_error_types } ."
+
)
+
+
roc_idx_of_interest = 0 if error_type == "fp" else 1
+
+
return self . _max_l_inf_between_points (
+
points = [
+
np . reshape ( # NOTE: must pass an array object, not scalars
+
roc_point [ roc_idx_of_interest ], # use only FPR or TPR (whichever was constrained)
+
newshape = ( 1 ,))
+
for roc_point in self . groupwise_roc_points
+
],
+
)
+
+
+
+
[docs]
+
def equalized_odds_violation ( self ) -> float :
+
"""Computes the theoretical violation of the equal odds constraint
+
(i.e., the maximum l-inf distance between the ROC point of any pair
+
of groups).
+
+
Returns
+
-------
+
float
+
The equal-odds constraint violation.
+
"""
+
self . _check_fit_status ()
+
+
# Compute l-inf distance between each pair of groups
+
return self . _max_l_inf_between_points (
+
points = self . groupwise_roc_points ,
+
)
+
+
+
+
[docs]
+
def demographic_parity_violation ( self ) -> float :
+
"""Computes the theoretical violation of the demographic parity constraint.
+
+
That is, the maximum distance between groups' PPR (positive prediction
+
rate).
+
+
Returns
+
-------
+
float
+
The demographic parity constraint violation.
+
"""
+
self . _check_fit_status ()
+
+
# Compute groups' PPR (positive prediction rate)
+
return self . _max_l_inf_between_points (
+
points = [
+
# NOTE: must pass an array object, not scalars
+
np . reshape (
+
group_tpr * group_prev + group_fpr * ( 1 - group_prev ),
+
newshape = ( 1 ,),
+
)
+
for ( group_fpr , group_tpr ), group_prev in zip ( self . groupwise_roc_points , self . groupwise_prevalence )
+
],
+
)
+
+
+
@staticmethod
+
def _max_l_inf_between_points ( points : list [ float | np . ndarray ]) -> float :
+
# Number of points (should correspond to the number of groups)
+
n_points = len ( points )
+
+
# Compute l-inf distance between each pair of groups
+
l_inf_constraint_violation = [
+
( np . linalg . norm ( points [ i ] - points [ j ], ord = np . inf ), ( i , j ))
+
for i , j in product ( range ( n_points ), range ( n_points ))
+
if i < j
+
]
+
+
# Return the maximum
+
max_violation , ( groupA , groupB ) = max ( l_inf_constraint_violation )
+
logging . info (
+
f "Maximum fairness violation is between "
+
f "group= { groupA } (p= { points [ groupA ] } ) and "
+
f "group= { groupB } (p= { points [ groupB ] } );"
+
)
+
+
return max_violation
+
+
+
[docs]
+
def fit (
+
self ,
+
X : np . ndarray ,
+
y : np . ndarray ,
+
* ,
+
group : np . ndarray ,
+
y_scores : np . ndarray = None ,
+
):
+
"""Fit this predictor to achieve the (possibly relaxed) equal odds
+
constraint on the provided data.
+
+
Parameters
+
----------
+
X : np.ndarray
+
The input features.
+
y : np.ndarray
+
The input labels.
+
group : np.ndarray
+
The group membership of each sample.
+
Assumes groups are numbered [0, 1, ..., num_groups-1].
+
y_scores : np.ndarray, optional
+
The pre-computed model predictions on this data.
+
+
Returns
+
-------
+
callable
+
Returns self.
+
"""
+
+
# Compute group stats
+
self . _global_prevalence = np . sum ( y ) / len ( y )
+
+
unique_groups = np . unique ( group )
+
num_groups = len ( unique_groups )
+
if np . max ( unique_groups ) > num_groups - 1 :
+
raise ValueError (
+
f "Groups should be numbered starting at 0, and up to "
+
f "num_groups-1. Got { num_groups } groups, but max value is "
+
f " { np . max ( unique_groups ) } != num_groups-1 == { num_groups - 1 } ."
+
)
+
+
# Relative group sizes for LN and LP samples
+
group_sizes_label_neg = np . array (
+
[ np . sum ( 1 - y [ group == g ]) for g in unique_groups ]
+
)
+
group_sizes_label_pos = np . array ([ np . sum ( y [ group == g ]) for g in unique_groups ])
+
+
if np . sum ( group_sizes_label_neg ) + np . sum ( group_sizes_label_pos ) != len ( y ):
+
raise RuntimeError ( "Failed sanity check. Are you using non-binary labels?" )
+
+
# Convert to relative sizes
+
group_sizes_label_neg = group_sizes_label_neg . astype ( float ) / np . sum (
+
group_sizes_label_neg
+
)
+
group_sizes_label_pos = group_sizes_label_pos . astype ( float ) / np . sum (
+
group_sizes_label_pos
+
)
+
+
# Compute group-wise prevalence rates
+
self . _groupwise_prevalence = np . array (
+
[ np . mean ( y [ group == g ]) for g in unique_groups ]
+
)
+
+
# Compute group-wise ROC curves
+
if y_scores is None :
+
y_scores = self . predictor ( X )
+
+
# Flatten y_scores array if needed
+
if isinstance ( y_scores , np . ndarray ) and len ( y_scores . shape ) > 1 :
+
y_scores = y_scores . ravel ()
+
+
self . _groupwise_roc_data = dict ()
+
for g in unique_groups :
+
group_filter = group == g
+
+
roc_curve_data = roc_curve (
+
y [ group_filter ],
+
y_scores [ group_filter ],
+
)
+
+
# Check if max_roc_ticks is exceeded
+
fpr , tpr , thrs = roc_curve_data
+
if self . max_roc_ticks is not None and len ( fpr ) > self . max_roc_ticks :
+
indices_to_keep = np . arange (
+
0 , len ( fpr ), len ( fpr ) / self . max_roc_ticks
+
) . astype ( int )
+
+
# Bottom-left (0,0) and top-right (1,1) points must be kept
+
indices_to_keep [ - 1 ] = len ( fpr ) - 1
+
roc_curve_data = (
+
fpr [ indices_to_keep ],
+
tpr [ indices_to_keep ],
+
thrs [ indices_to_keep ],
+
)
+
+
self . _groupwise_roc_data [ g ] = roc_curve_data
+
+
# Compute convex hull of each ROC curve
+
self . _groupwise_roc_hulls = dict ()
+
for g in unique_groups :
+
group_fpr , group_tpr , _group_thresholds = self . _groupwise_roc_data [ g ]
+
+
curr_roc_points = np . stack (( group_fpr , group_tpr ), axis = 1 )
+
curr_roc_points = np . vstack (
+
( curr_roc_points , [ 1 , 0 ])
+
) # Add point (1, 0) to ROC curve
+
+
self . _groupwise_roc_hulls [ g ] = roc_convex_hull ( curr_roc_points )
+
+
# Find the group-wise optima that fulfill the fairness criteria
+
self . _groupwise_roc_points , self . _global_roc_point = compute_fair_optimum (
+
fairness_constraint = self . constraint ,
+
tolerance = self . tolerance ,
+
groupwise_roc_hulls = self . _groupwise_roc_hulls ,
+
group_sizes_label_pos = group_sizes_label_pos ,
+
group_sizes_label_neg = group_sizes_label_neg ,
+
groupwise_prevalence = self . groupwise_prevalence ,
+
global_prevalence = self . global_prevalence ,
+
false_positive_cost = self . false_pos_cost ,
+
false_negative_cost = self . false_neg_cost ,
+
)
+
+
# Construct each group-specific classifier
+
all_rand_clfs = {
+
g : RandomizedClassifier . construct_at_target_ROC (
+
predictor = self . predictor ,
+
roc_curve_data = self . _groupwise_roc_data [ g ],
+
target_roc_point = self . _groupwise_roc_points [ g ],
+
seed = self . seed ,
+
)
+
for g in unique_groups
+
}
+
+
# Construct the global classifier (can be used for all groups)
+
self . _realized_classifier = EnsembleGroupwiseClassifiers (
+
group_to_clf = all_rand_clfs
+
)
+
return self
+
+
+
def __call__ ( self , X : np . ndarray , * , group : np . ndarray ) -> np . ndarray :
+
"""Generate predictions for the given input data."""
+
return self . _realized_classifier ( X , group )
+
+
+
[docs]
+
def predict ( self , X : np . ndarray , * , group : np . ndarray ) -> np . ndarray :
+
"""Generate predictions for the given input data.
+
+
Parameters
+
----------
+
X : np.ndarray
+
Input samples.
+
group : np.ndarray
+
Input sensitive groups.
+
+
Returns
+
-------
+
np.ndarray
+
A sequence of predictions, one per input sample and input group.
+
"""
+
return self ( X , group = group )
+
+
+
def _check_fit_status ( self , raise_error : bool = True ) -> bool :
+
"""Checks whether this classifier has been fit on some data.
+
+
Parameters
+
----------
+
raise_error : bool, optional
+
Whether to raise an error if the classifier is uninitialized
+
(otherwise will just return False), by default True.
+
+
Returns
+
-------
+
is_fit : bool
+
Whether the classifier was already fit on some data.
+
+
Raises
+
------
+
RuntimeError
+
If `raise_error==True`, raises an error if the classifier is
+
uninitialized.
+
"""
+
if self . _realized_classifier is None :
+
if not raise_error :
+
return False
+
+
raise RuntimeError (
+
"This classifier has not yet been fitted to any data." )
+
+
return True
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/_modules/index.html b/_modules/index.html
new file mode 100644
index 0000000..4a11524
--- /dev/null
+++ b/_modules/index.html
@@ -0,0 +1,120 @@
+
+
+
+
+
+ Overview: module code — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+ Overview: module code
+
+
+
+
+
+
+
+
+
All modules for which code is available
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/_sources/error_parity.rst.txt b/_sources/error_parity.rst.txt
new file mode 100644
index 0000000..0387a8d
--- /dev/null
+++ b/_sources/error_parity.rst.txt
@@ -0,0 +1,67 @@
+:code:`error\_parity` package
+=============================
+
+error\_parity.threshold\_optimizer module
+-----------------------------------------
+
+.. automodule:: error_parity.threshold_optimizer
+ :members:
+ :undoc-members:
+ :show-inheritance:
+
+error\_parity.pareto\_curve module
+----------------------------------
+
+.. automodule:: error_parity.pareto_curve
+ :members:
+ :undoc-members:
+ :show-inheritance:
+
+error\_parity.plotting module
+-----------------------------
+
+.. automodule:: error_parity.plotting
+ :members:
+ :undoc-members:
+ :show-inheritance:
+
+
+error\_parity.evaluation module
+-------------------------------
+
+.. automodule:: error_parity.evaluation
+ :members:
+ :undoc-members:
+ :show-inheritance:
+
+error\_parity.binarize module
+-----------------------------
+
+.. automodule:: error_parity.binarize
+ :members:
+ :undoc-members:
+ :show-inheritance:
+
+error\_parity.classifiers module
+--------------------------------
+
+.. automodule:: error_parity.classifiers
+ :members:
+ :undoc-members:
+ :show-inheritance:
+
+error\_parity.cvxpy\_utils module
+---------------------------------
+
+.. automodule:: error_parity.cvxpy_utils
+ :members:
+ :undoc-members:
+ :show-inheritance:
+
+error\_parity.roc\_utils module
+-------------------------------
+
+.. automodule:: error_parity.roc_utils
+ :members:
+ :undoc-members:
+ :show-inheritance:
diff --git a/_sources/examples/README.md.txt b/_sources/examples/README.md.txt
new file mode 100644
index 0000000..01fe86e
--- /dev/null
+++ b/_sources/examples/README.md.txt
@@ -0,0 +1,10 @@
+# Example jupyter notebooks
+
+| File | Metric | Dataset | Description |
+| -------- | -------- | -------- | -- |
+| [relaxed-equalized-odds.usage-example-folktables.ipynb](relaxed-equalized-odds.usage-example-folktables.ipynb) | equalized odds | ACSIncome | Example usage of `RelaxedThresholdOptimizer` to map Pareto frontier of attainable fairness-accuracy trade-offs for a given predictor. |
+| [parse-folktables-datasets.ipynb](parse-folktables-datasets.ipynb) | - | ACSIncome / folktables | Notebook that downloads and parses folktables datasets (required to run the folktables/ACSIncome examples). |
+| [relaxed-equalized-odds.usage-example-synthetic-data.ipynb](relaxed-equalized-odds.usage-example-synthetic-data.ipynb) | equalized odds | synthetic (no downloads necessary) | Stand-alone example on synthetic data. |
+| [usage-example-for-other-constraints.synthetic-data.ipynb](usage-example-for-other-constraints.synthetic-data.ipynb) | TPR equality, FPR equality, demographic parity | synthetic (no downloads) | Stand-alone example with other available fairness metrics (based on TPR, FPR, or PPR). |
+| [example-with-postprocessing-and-inprocessing.ipynb](example-with-postprocessing-and-inprocessing.ipynb) | equalized odds | synthetic (no downloads) | Example of using relaxed postprocessing with an in-processing fairness algorithm. |
+| [brute-force-example_equalized-odds-thresholding.ipynb](brute-force-example_equalized-odds-thresholding.ipynb) | equalized odds | synthetic (no downloads) | Comparison between using the `RelaxedThresholdOptimizer` and a brute-force solver (out of curiosity). |
diff --git a/_sources/examples/brute-force-example_equalized-odds-thresholding.ipynb.txt b/_sources/examples/brute-force-example_equalized-odds-thresholding.ipynb.txt
new file mode 100644
index 0000000..70f5d01
--- /dev/null
+++ b/_sources/examples/brute-force-example_equalized-odds-thresholding.ipynb.txt
@@ -0,0 +1,580 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e2b69330",
+ "metadata": {},
+ "source": [
+ "# Comparison between `error-parity`'s LP solver and a brute-force solver\n",
+ "\n",
+ "Out of curiosity, this notebook compares the performance and efficiency of the `error-parity` LP formulation against a baseline brute-force solver.\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with:\n",
+ "```\n",
+ "pip install \"error_parity[dev]\"\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1509e4cf",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%pip install \"error-parity[dev]\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "f2866f8f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.8`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "70b33f87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_synthetic_data(n_samples: int, n_groups: int, prevalence: float, seed: int):\n",
+ " \"\"\"Helper to generate synthetic features/labels/predictions.\"\"\"\n",
+ "\n",
+ " # Construct numpy rng\n",
+ " rng = np.random.default_rng(seed)\n",
+ " \n",
+ " # Different levels of gaussian noise per group (to induce some inequality in error rates)\n",
+ " group_noise = [0.1 + 0.3 * rng.random() / (1+idx) for idx in range(n_groups)]\n",
+ "\n",
+ " # Generate predictions\n",
+ " assert 0 < prevalence < 1\n",
+ " y_score = rng.random(size=n_samples)\n",
+ "\n",
+ " # Generate labels\n",
+ " # - define which samples belong to each group\n",
+ " # - add different noise levels for each group\n",
+ " group = rng.integers(low=0, high=n_groups, size=n_samples)\n",
+ " \n",
+ " y_true = np.zeros(n_samples)\n",
+ " for i in range(n_groups):\n",
+ " group_filter = group == i\n",
+ " y_true_groupwise = ((\n",
+ " y_score[group_filter] +\n",
+ " rng.normal(size=np.sum(group_filter), scale=group_noise[i])\n",
+ " ) > (1-prevalence)).astype(int)\n",
+ "\n",
+ " y_true[group_filter] = y_true_groupwise\n",
+ "\n",
+ " ### Generate features: just use the sample index\n",
+ " # As we already have the y_scores, we can construct the features X\n",
+ " # as the index of each sample, so we can construct a classifier that\n",
+ " # simply maps this index to our pre-generated predictions for this clf.\n",
+ " X = np.arange(len(y_true)).reshape((-1, 1))\n",
+ " \n",
+ " return X, y_true, y_score, group"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "0d326b40",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "N_GROUPS = 2\n",
+ "# N_SAMPLES = 1_000_000\n",
+ "N_SAMPLES = 100_000\n",
+ "\n",
+ "SEED = 23\n",
+ "\n",
+ "X, y_true, y_score, group = generate_synthetic_data(\n",
+ " n_samples=N_SAMPLES,\n",
+ " n_groups=N_GROUPS,\n",
+ " prevalence=0.25,\n",
+ " seed=SEED)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "ba24bcc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual global prevalence: 27.2%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_true) / len(y_true)\n",
+ "print(f\"Actual global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "5615f135",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Example predictor that predicts the synthetically produced scores above\n",
+ "predictor = lambda idx: y_score[idx].ravel()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb54b73d",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "---\n",
+ "# Comparing LP vs brute-force solution"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1dc0899f",
+ "metadata": {},
+ "source": [
+ "## 1. Brute-force solver"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "2cb73fc8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from itertools import product\n",
+ "from collections.abc import Iterable\n",
+ "from error_parity.evaluation import eval_accuracy_and_equalized_odds\n",
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "def binarize_predictions(y_score, group_membership, group_thresholds: dict, seed: int = 42):\n",
+ " \"\"\"Binarizes score predictions using different group thresholds.\"\"\"\n",
+ " # Random number generator\n",
+ " rng = np.random.default_rng(seed)\n",
+ "\n",
+ " # Results array\n",
+ " y_pred_binary = np.zeros_like(group_membership, dtype=int)\n",
+ "\n",
+ " for group_key, group_thrs in group_thresholds.items():\n",
+ " \n",
+ " # Single threshold provided (no randomization)\n",
+ " if not isinstance(group_thrs, Iterable):\n",
+ " low_thr, high_thr = group_thrs, group_thrs\n",
+ " \n",
+ " # Two thresholds provided (partial randomization)\n",
+ " else:\n",
+ " assert len(group_thrs) == 2, f\"Provide exactly 2 thresholds, got {len(group_thrs)}\"\n",
+ " low_thr, high_thr = group_thrs\n",
+ "\n",
+ " # Boolean numpy filter for samples of the current group\n",
+ " group_filter = group_membership == group_key\n",
+ " group_score_preds = y_score[group_filter]\n",
+ "\n",
+ " # Below low_thr -> negative pred.\n",
+ " y_pred_binary[group_filter & (y_score < low_thr)] = 0\n",
+ "\n",
+ " # Above high_thr -> positive pred.\n",
+ " y_pred_binary[group_filter & (y_score > high_thr)] = 1\n",
+ "\n",
+ " # Between low_thr and high_thr -> random uniform prediction\n",
+ " if not np.isclose(low_thr, high_thr):\n",
+ " middle_scores_filter = ((y_score >= low_thr) & (y_score <= high_thr))\n",
+ " y_pred_binary[group_filter & middle_scores_filter] = rng.integers(\n",
+ " low=0, high=2, # sampled in [low, high)\n",
+ " size=np.sum(group_filter & middle_scores_filter),\n",
+ " )\n",
+ "\n",
+ " # Return binarized predictions\n",
+ " return y_pred_binary\n",
+ "\n",
+ "\n",
+ "def solve_brute_force(\n",
+ " *,\n",
+ " predictor,\n",
+ " tolerance: float,\n",
+ " data_tuple: float,\n",
+ " threshold_ticks_step: float = 1e-2,\n",
+ " ) -> dict:\n",
+ " \"\"\"Brute-force solution for equalized odds problem.\"\"\"\n",
+ "\n",
+ " # Unpack data tuple\n",
+ " X_feats, y_labels, s_group = data_tuple\n",
+ "\n",
+ " # Generate unique threshold combinations\n",
+ " unique_groups = np.unique(s_group)\n",
+ " group_threshold_combinations = product(*[\n",
+ " ### Deterministic thresholds\n",
+ " # np.arange(0, 1 + threshold_ticks_step, threshold_ticks_step)\n",
+ "\n",
+ " ### Randomized thresholds (full search)\n",
+ " [\n",
+ " (lo_thr, hi_thr)\n",
+ " for lo_thr, hi_thr in product(\n",
+ " np.arange(0, 1 + threshold_ticks_step, threshold_ticks_step),\n",
+ " np.arange(0, 1 + threshold_ticks_step, threshold_ticks_step),\n",
+ " )\n",
+ " if lo_thr <= hi_thr\n",
+ " ]\n",
+ " for _ in range(N_GROUPS)\n",
+ " ])\n",
+ "\n",
+ " ### Characterizing the best result\n",
+ " ### NOTE: \"best\" is defined as maximizing accuracy constrained by eq_odds <= tolerance\n",
+ "\n",
+ " # Threshold combination of the best result\n",
+ " best_combi: tuple = None\n",
+ " \n",
+ " # Accuracy of the best result\n",
+ " best_accuracy: float = None\n",
+ " \n",
+ " # Constraint violation of the best result\n",
+ " best_eq_odds_violation: float = None\n",
+ "\n",
+ " # Evaluate all threshold combinations\n",
+ " num_determ_thrs = np.ceil(1 / threshold_ticks_step) + 1\n",
+ " total_combinations = int((num_determ_thrs * (num_determ_thrs + 1) / 2) ** len(unique_groups))\n",
+ "\n",
+ " for combi in tqdm(group_threshold_combinations, total=total_combinations):\n",
+ " thrsh_dict = dict(zip(unique_groups, combi))\n",
+ " \n",
+ " # Binarize predictions with this threshold combination\n",
+ " binarized_preds = binarize_predictions(\n",
+ " y_score=y_score,\n",
+ " group_membership=s_group,\n",
+ " group_thresholds=thrsh_dict,\n",
+ " )\n",
+ " \n",
+ " # Evaluate results\n",
+ " curr_result = eval_accuracy_and_equalized_odds(\n",
+ " y_true=y_labels, y_pred_binary=binarized_preds,\n",
+ " sensitive_attr=s_group,\n",
+ " )\n",
+ " \n",
+ " curr_accuracy, curr_eq_odds_violation = curr_result\n",
+ "\n",
+ " if best_combi is None or (\n",
+ " best_accuracy < curr_accuracy\n",
+ " and curr_eq_odds_violation <= tolerance):\n",
+ " \n",
+ " # New best found\n",
+ " best_combi = combi\n",
+ " best_accuracy = curr_accuracy\n",
+ " best_eq_odds_violation = curr_eq_odds_violation\n",
+ "\n",
+ " # Return solution that fulfills target tolerance optimally\n",
+ " return {\n",
+ " \"group_thresholds\": best_combi,\n",
+ " \"accuracy\": best_accuracy,\n",
+ " \"eq_odds_violation\": best_eq_odds_violation,\n",
+ " }"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "670a04f2",
+ "metadata": {},
+ "source": [
+ "Run solver:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "04da756a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "759999d9e0934feebe59c009450e1a91",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/4356 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 3min 56s, sys: 5.15 s, total: 4min 2s\n",
+ "Wall time: 4min 2s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "{'group_thresholds': ((0.7000000000000001, 0.8), (0.7000000000000001, 0.9)),\n",
+ " 'accuracy': 0.80763,\n",
+ " 'eq_odds_violation': 0.04660537497114363}"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "brute_force_solution = solve_brute_force(\n",
+ " predictor=predictor,\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " data_tuple=(X, y_true, group),\n",
+ " threshold_ticks_step=0.1,\n",
+ ")\n",
+ "\n",
+ "brute_force_solution"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "52c03426",
+ "metadata": {},
+ "source": [
+ "## 2. LP solver"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "44ef577c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "def solve_lp(predictor, tolerance: float, data_tuple: tuple):\n",
+ " clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=\"equalized_odds\",\n",
+ " tolerance=tolerance,\n",
+ " max_roc_ticks=None, # use full precision\n",
+ " seed=SEED,\n",
+ " )\n",
+ "\n",
+ " X, y_true, group = data_tuple\n",
+ " clf.fit(X=X, y=y_true, group=group)\n",
+ " return clf"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "2905dbe7",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 111 ms, sys: 3.29 ms, total: 115 ms\n",
+ "Wall time: 114 ms\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "postproc_clf = solve_lp(\n",
+ " predictor=predictor,\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " data_tuple=(X, y_true, group),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "## Compare accuracy and constraint violation\n",
+ "Assumes `FP_cost == FN_cost == 1.0`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "c6488eea",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy for dummy constant classifier: 72.8%\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f\"Accuracy for dummy constant classifier: {max(np.mean(y_true==label) for label in {0, 1}):.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0be46537",
+ "metadata": {},
+ "source": [
+ "Evaluate predictions realized by LP solution."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "67746b4e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Realized LP accuracy: 82.2%\n",
+ "Realized LP eq. odds violation: 5.0%\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred_binary_lp = postproc_clf.predict(X, group=group)\n",
+ "\n",
+ "lp_acc, lp_eq_odds = eval_accuracy_and_equalized_odds(y_true, y_pred_binary_lp, group)\n",
+ "\n",
+ "print(f\"Realized LP accuracy: {lp_acc:.1%}\")\n",
+ "print(f\"Realized LP eq. odds violation: {lp_eq_odds:.1%}\\n\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cce2e2bb",
+ "metadata": {},
+ "source": [
+ "Evaluate predictions realized by brute-force solution."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "6706b353",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Realized BF accuracy: 80.8%\n",
+ "Realized BF eq. odds violation: 4.7%\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred_binary_brute_force = binarize_predictions(\n",
+ " y_score=y_score, group_membership=group,\n",
+ " group_thresholds=dict(zip(range(N_GROUPS), brute_force_solution[\"group_thresholds\"])),\n",
+ ")\n",
+ "\n",
+ "bf_acc, bf_eq_odds = eval_accuracy_and_equalized_odds(y_true, y_pred_binary_brute_force, group)\n",
+ "\n",
+ "print(f\"Realized BF accuracy: {bf_acc:.1%}\")\n",
+ "print(f\"Realized BF eq. odds violation: {bf_eq_odds:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9f926646",
+ "metadata": {},
+ "source": [
+ "**Conclusion:** brute-force solver took 4 minutes to exhaustively search over 4356 combinations while the LP solver took 114ms to achieve a superior solution (because of the finer search grid)."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/_sources/examples/example-with-postprocessing-and-inprocessing.ipynb.txt b/_sources/examples/example-with-postprocessing-and-inprocessing.ipynb.txt
new file mode 100644
index 0000000..602f3db
--- /dev/null
+++ b/_sources/examples/example-with-postprocessing-and-inprocessing.ipynb.txt
@@ -0,0 +1,762 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example usage of `error-parity` with other fairness-constrained classifiers\n",
+ "\n",
+ "Contents:\n",
+ "1. Train a standard (unconstrained) model;\n",
+ "2. Check attainable fairness-accuracy trade-offs via post-processing, with the `error-parity` package;\n",
+ "3. Train fairness-constrained model (in-processing fairness intervention), with the `fairlearn` package;\n",
+ "5. Map results for post-processing + in-processing interventions;\n",
+ "\n",
+ "---\n",
+ "\n",
+ "**NOTE**: This notebook has the following extra requirements: `fairlearn` `lightgbm`.\n",
+ "\n",
+ "Install them with ```pip install fairlearn lightgbm```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "error-parity==0.3.8\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"error-parity=={__version__}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(palette=\"colorblind\", style=\"whitegrid\", rc={\"grid.linestyle\": \"--\", \"figure.dpi\": 200, \"figure.figsize\": (4,3)})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Some useful global constants:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SEED = 2\n",
+ "\n",
+ "TEST_SIZE = 0.3\n",
+ "VALIDATION_SIZE = None\n",
+ "\n",
+ "PERF_METRIC = \"accuracy\"\n",
+ "DISP_METRIC = \"equalized_odds_diff\"\n",
+ "\n",
+ "N_JOBS = max(2, os.cpu_count() - 2)\n",
+ "\n",
+ "np.random.seed(SEED)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Fetch UCI Adult data\n",
+ "\n",
+ "We'll use the `sex` column as the sensitive attribute.\n",
+ "That is, false positive (FP) and false negative (FN) errors should not disproportionately impact individuals based on their sex."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SENSITIVE_COL = \"sex\"\n",
+ "sensitive_col_map = {\"Male\": 0, \"Female\": 1}\n",
+ "\n",
+ "# NOTE: You can also try to run this using the `race` column as sensitive attribute (as commented below).\n",
+ "# SENSITIVE_COL = \"race\"\n",
+ "# sensitive_col_map = {\"White\": 0, \"Black\": 1, \"Asian-Pac-Islander\": 1, \"Amer-Indian-Eskimo\": 1, \"Other\": 1}\n",
+ "\n",
+ "sensitive_col_inverse = {val: key for key, val in sensitive_col_map.items()}\n",
+ "\n",
+ "POS_LABEL = \">50K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Download data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from fairlearn.datasets import fetch_adult\n",
+ "\n",
+ "X, Y = fetch_adult(\n",
+ " as_frame=True,\n",
+ " return_X_y=True,\n",
+ ")\n",
+ "\n",
+ "# Map labels and sensitive column to numeric data\n",
+ "Y = np.array(Y == POS_LABEL, dtype=int)\n",
+ "S = np.array([sensitive_col_map[elem] for elem in X[SENSITIVE_COL]], dtype=int)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Split in train/test/validation data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "X_train, X_other, y_train, y_other, s_train, s_other = train_test_split(\n",
+ " X, Y, S,\n",
+ " test_size=TEST_SIZE + (VALIDATION_SIZE or 0),\n",
+ " stratify=Y, random_state=SEED,\n",
+ ")\n",
+ "\n",
+ "if VALIDATION_SIZE is not None and VALIDATION_SIZE > 0:\n",
+ " X_val, X_test, y_val, y_test, s_val, s_test = train_test_split(\n",
+ " X_other, y_other, s_other,\n",
+ " test_size=TEST_SIZE / (TEST_SIZE + VALIDATION_SIZE),\n",
+ " stratify=y_other, random_state=SEED,\n",
+ " )\n",
+ "else:\n",
+ " X_test, y_test, s_test = X_other, y_other, s_other\n",
+ " X_val, y_val, s_val = X_train, y_train, s_train"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Log the accuracy attainable by a dummy constant classifier."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'train': 0.7607125098715961,\n",
+ " 'test': 0.7607315908005187,\n",
+ " 'validation': 0.7607125098715961}"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "def compute_constant_clf_accuracy(labels: np.ndarray) -> float:\n",
+ " return max((labels == const_pred).mean() for const_pred in np.unique(labels))\n",
+ "\n",
+ "constant_clf_accuracy = {\n",
+ " \"train\": compute_constant_clf_accuracy(y_train),\n",
+ " \"test\": compute_constant_clf_accuracy(y_test),\n",
+ " \"validation\": compute_constant_clf_accuracy(y_val),\n",
+ "}\n",
+ "constant_clf_accuracy"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Train a standard (unconstrained) classifier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "LGBMClassifier(verbosity=-1) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "LGBMClassifier(verbosity=-1)"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from lightgbm import LGBMClassifier\n",
+ "\n",
+ "unconstr_clf = LGBMClassifier(verbosity=-1)\n",
+ "unconstr_clf.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In-processing model: \n",
+ "> accuracy = 0.87\n",
+ "> equalized odds = 0.0673\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import evaluate_predictions_bootstrap\n",
+ "\n",
+ "unconstr_test_results = evaluate_predictions_bootstrap(\n",
+ " y_true=y_test,\n",
+ " y_pred_scores=unconstr_clf.predict(X_test, random_state=SEED).astype(float),\n",
+ " sensitive_attribute=s_test,\n",
+ ")\n",
+ "\n",
+ "print(\n",
+ " f\"In-processing model: \\n\"\n",
+ " f\"> accuracy = {unconstr_test_results['accuracy_mean']:.3}\\n\"\n",
+ " f\"> equalized odds = {unconstr_test_results['equalized_odds_diff_mean']:.3}\\n\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Map attainable fairness-accuracy trade-offs via (relaxed) post-processing\n",
+ "\n",
+ "By varying the tolerance (or slack) of the fairness constraint we can map the different trade-offs attainable by the same model (each trade-off corresponds to a different post-processing intervention).\n",
+ "\n",
+ "**Post-processing** fairness methods intervene on the predictions of an already trained model, using different (possibly randomized) thresholds to binarize predictions of different groups.\n",
+ "\n",
+ "We'll be using the [`error-parity`](https://github.com/socialfoundations/error-parity) package [[Cruz and Hardt, 2023]](https://arxiv.org/abs/2306.07261)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "1da832ca83be43929491a5b6a3123648",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "# Data to fit postprocessing adjustment\n",
+ "fit_data = (X_train, y_train, s_train)\n",
+ "# fit_data = (X_val, y_val, s_val)\n",
+ "\n",
+ "# Common kwargs for the `compute_postprocessing_curve` call\n",
+ "compute_postproc_kwargs = dict(\n",
+ " fit_data=fit_data,\n",
+ " eval_data={\n",
+ " \"validation\": (X_val, y_val, s_val),\n",
+ " \"test\": (X_test, y_test, s_test),\n",
+ " },\n",
+ " fairness_constraint=\"equalized_odds\",\n",
+ " tolerance_ticks=np.hstack((\n",
+ " np.arange(0.0, 0.1, 1e-2),\n",
+ " np.arange(0.1, 1.0, 1e-1),\n",
+ " )),\n",
+ " bootstrap=True,\n",
+ " n_jobs=N_JOBS,\n",
+ " seed=SEED,\n",
+ ")\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=unconstr_clf,\n",
+ " y_fit_pred_scores=unconstr_clf.predict_proba(fit_data[0])[:, -1],\n",
+ " **compute_postproc_kwargs,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot post-processing adjustment frontier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SHOW_RESULTS_ON = \"test\"\n",
+ "# SHOW_RESULTS_ON = \"validation\"\n",
+ "\n",
+ "ax_kwargs = dict(\n",
+ " xlim=(constant_clf_accuracy[SHOW_RESULTS_ON] - 5e-3, 0.885),\n",
+ " ylim=(0.0, 0.3),\n",
+ " title=\"Random Hyperparameter Search (val.)\",\n",
+ " xlabel=PERF_METRIC + r\"$\\rightarrow$\",\n",
+ " ylabel=\"equalized odds (diff.) $\\leftarrow$\" if DISP_METRIC == \"equalized_odds_diff\" else DISP_METRIC,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLUAAAKACAYAAABqokocAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1xT1/8/8FeCQdmI4kLc4sY96t6KolL3rqvW9XFrh7VWbW1dVeuq1j3q1jqqiEK1uMW66kIRlSWiyBYI5P7+4Jv7S0gCARIC8fV8PHx4c++55557z80leecMiSAIAoiIiIiIiIiIiAoRqakLQERERERERERElFMMahERERERERERUaHDoBYRERERERERERU6DGoREREREREREVGhw6AWEREREREREREVOgxqERERERERERFRocOgFhERERERERERFToMahERERERERERUaHDoBYRERERERERERU6DGoREREREREREVGhw6AWEREREREREREVOgxqERERERERERFRocOgFhERERERERERFToMahERERERERERUaHDoBYRERERERERERU6DGoREREREREREVGhw6AWEREREREREREVOgxqERERERERERFRocOgFhGZFblcbuoiEBVogiAgPT3d1MXIEb6v8w+vNRERERUmDGoRmbGjR4+iRo0a2f6rXbs2GjZsiE6dOuGLL77Atm3b8O7dO1MXP0dev36NSZMm4d9//zV1UaiACQ0NFe/1ESNGmLo4RnXv3j3UqVMHn3zyCeLj4zW2P3v2DMOHD0dERIQJSpdzaWlp2Lp1K3766SdTF6VQ++qrr8T3wPXr17WmMfYz9O7du6hZsybatWuH2NhYoxyDiIiIPj4MahER0tPTkZSUhNDQUFy4cAFLly5F586dsXfvXlMXTS9//fUXPDw84Ovra+qiEJlMUlISZs+ejbS0NEyfPh12dnZq27dv3w4vLy8EBASYqIQ58/r1a/Tr1w/Lli1DUlKSqYtj1vLjGVq/fn306dMHr1+/xvfff2+04xAREdHHpYipC0BE+cPV1RVDhgzRuk2hUODDhw+IiIiAj48PEhISkJSUhEWLFkEqlercr6Dw9/fnl1766K1evRovX76Em5sb+vfvr7Hdz8+vUHUte/nyJR4/fmzqYnwU8usZOmPGDHh7e+P06dPw8PBA165djX5MIiIiMm8MahF9JMqWLYuxY8dmm+6rr77C5MmTcfPmTQDAsmXL0LlzZzg7Oxu7iERGUb58eTx58sTUxTCqx48fY8+ePQCAmTNnwsLCwsQlItJUpkwZjBgxAr///juWLFmC1q1bw9ra2tTFIiIiokKM3Q+JSI2DgwPWr18PW1tbABldmo4fP27iUhFRVpYtW4b09HTUqVMHHTp0MHVxiHQaM2YMrKysEBERge3bt5u6OERERFTIMahFRBocHBzg6ekpvr569aoJS0NEWQkICMDly5cBAMOGDTNxaYiy5uTkBA8PDwDAjh07tE5oQERERKQvdj8kIq2qVq0qLr9+/VpnuoSEBBw5cgQXLlxAYGAgYmNjYWNjg/Lly6NVq1YYNGgQXFxcsjyWQqGAj48PTp8+jfv37+Pt27coUqQInJyc4O7ujg4dOqBnz54aXapGjBiBGzduqK0bOXKkuLxr1y40b948J6cNAOjYsSPCwsLQrFkz7N69G2/fvsW2bdvg6+uL169fw8LCAlWqVEHXrl0xdOhQsVVbZkePHsXXX38NADhw4AAqVqyIZcuWwdfXF+np6ahQoQK6du2KiRMnqu2XmpqKEydO4Pz583jw4AHev38PKysrlClTBi1atMDAgQNRvXp1vc7l5cuXOHjwIC5fvoyXL19CLpfD0dERtWvXhqenp9brmtndu3dx9OhRXL9+HW/evEF6ejpKliyJxo0bo3fv3mjdunW25Xj69CkOHTqE69evIyQkBKmpqXB0dESlSpXwySefYMCAAShVqpTO/XN7jwAZsx926tQJAMQ6VaW8jypXrgxvb2+kpqbi0KFDOHPmDJ4/f474+HiUKFECjRs3xoABA9CiRYtsz/fNmzfYvXs3Lly4gJCQEEgkEpQvXx6dOnXCqFGj4OjoiO7duyM4OBguLi7w8/PLNk9dfv/9dwCAjY2NGCxQpbyfVSmvBwD4+vqifPnyGvuZqt5V3zdKx44dw7FjxwAAn376KX7++edsj60tv5y8DwVBwNmzZ3HmzBncu3cP7969g6WlJcqWLYsWLVpg8ODBas9JXS5duoQTJ07g9u3biIyMhEQigZOTkzgT4KeffoqiRYtq7JfdfZtZjRo1ACBH91NOn6Gpqak4efIkzp07h//++w8xMTEoWrQoSpYsiYYNG6Jr167o2LFjtsft378/jh49iri4OOzbtw/jx4/Xq7xEREREmTGoRURaqQYHdAU9zp8/j2+//Rbv379XWx8TE4OYmBj8999/2L59OyZNmqTxhVEpOjoakyZNwu3bt9XWp6amijMynj59Ghs2bMDmzZtRoUKFPJ5Zzty/fx8TJ05EVFSUxvr79+9j165d2LJlC2rWrJllPnK5HOPGjcN///0nrnv48CFcXV3V0gUEBGDu3LkaQQi5XI64uDgEBgZiz549GDp0KL7++msUKaL9Ma5QKLBq1Sps3boV6enpatuioqJw8eJFXLx4Ebt27cKGDRu0BpRSUlIwf/58rd1PQ0NDERoaiuPHj6NNmzZYuXIlHBwctJZlw4YNWLt2LRQKhUY5oqKicPPmTWzevBnz5s3DwIEDNfbPz3skJCQEkyZNQmBgoNr6iIgInDp1CqdOncLgwYPx/fffQyKRaM3D398fU6dO1Rh4OzAwEIGBgTh06BDWrl2b6zKqCgsLwz///AMgI3hliPGJCkq9G4O+78OwsDBMmzYN9+/fV1ufkpKC+Ph4BAYGYu/evRg9ejRmzZoFqVSz4XtycjJmzZqF8+fPa2wLDw9HeHg4/Pz8sH79eqxfvx7u7u4GOkvjCAkJwfjx4/H8+XO19XK5HAkJCXjx4gWOHTuGBg0aYOPGjXByctKZV+PGjVGuXDmEh4fjwIEDGDdunNZrSERERJQdBrWISCvVWce0BQlOnTqF2bNnQxAEAICzszM6duyIcuXKISYmBv7+/nj27BlSU1OxevVqREREYNGiRRr5zJw5UwxWFC9eHB07doSrqyvkcjlevHgBHx8fyOVyBAcHY8yYMTh9+jQsLS0BAEOGDEH79u1x+vRp8Uvq4MGDxfLmNQD29u1bMaBlY2ODbt26oUKFCggPD8fZs2cRGxuLqKgoDB8+HHv27MkysLVp0ya1L9JK3bt3F5dv3LiBsWPHIjU1FQBgb2+Pjh07omLFikhKSsK1a9dw//59KBQK7NmzByEhIfjtt9+0fhmcN28ejh49Kr52c3ND69atYWNjg+DgYJw9exZyuRz379/H6NGjceTIERQrVkxMn5qaitGjR+PWrVsAAJlMhjZt2qB27dqQSCQICgrChQsXkJSUBH9/fwwbNgz79+/XaLV2/PhxrFmzBgAglUrRunVr1K5dG9bW1oiMjMSFCxcQFhaG5ORkzJ8/H+XLl0fLli3V8sjLPZITSUlJGDduHF68eAF7e3t07twZFSpUQFxcHHx9ffHy5UsAwP79+1GrVi0MHjxYI4+LFy9i8uTJ4iyDLi4u6Ny5MxwdHREUFARfX1+8ffsWn3/+uUG+xB8/flwMGrVt21ZrmgkTJiA+Ph779u1DSEiIuM7e3h4A4OjoKKYtCPVer149zJ07F69evcL+/fsBAHXr1kWPHj0AQO9Witro8z4MCQnBkCFDxEC2o6MjOnTogIoVKyI5ORn37t3D1atXkZ6eji1btiAqKgrLli3TyHPx4sViQMvGxgYdOnRA5cqVIZFIEBoairNnzyIxMRFv3rzB2LFj4ePjg+LFi+f63HJD32doamoqJkyYIAa0ypYti/bt26Ns2bJISkpCYGAgLly4AIVCgTt37mDKlCn4448/sjx269atcfDgQYSGhiIgIADNmjUz4pkSERGR2RKIyGwdOXJEcHNzE9zc3IThw4frvV9UVJTQqFEjcd8DBw6obX/+/LlQp04dcfv8+fOFpKQktTQKhULYtWuXUKtWLTHdsWPH1NLcunVL3Obh4SG8f/9eoywvX74UWrVqpTMPQRCEL7/8Utx+7do1vc9Tlw4dOoj5ubm5CX379hVev36tlubdu3fC0KFDxTSDBw/WyEf1+ru5uQkNGjQQjh07JsTHxwuvX78Wtm/fLiQmJgqCIAgxMTFC06ZNxbQTJkzQej1Onz4tuLu7i+nWrVunkebMmTPi9tq1a2vUnyAIwosXL4S2bduK6dauXau2fcmSJeI2Ly8v4eXLlxp5REZGCsOHDxfTzZ07VyNN165dBTc3N6FmzZrC33//rbE9NTVVmD17tpjHiBEj1LYb4h4JCQnJ8n2geg5ubm7CxIkThdjYWLU0aWlpavdZ165dNfJJSkpSu6bz588XUlJSNMri6empdrwOHTpo5KWvvn37ivlERUVlmVb1PENCQrSmKSj1LgiCcO3aNXH7l19+meW5ZSUn78O0tDShX79+YtpZs2YJ8fHxGnnevXtXaNOmjZju8OHDatvDw8OFmjVrCm5ubkKrVq2EV69eaeTx7t07oWfPnjrfg9ndt5lldT9l94zMbvuJEyfUypKcnKz1mjRo0EBMd+PGjSzL+9dff4lplyxZku35EREREWnDtt5EpObly5cYP348EhISAAClSpVCnz591NKsW7dObInStWtXLFq0CFZWVmppJBIJRowYgdmzZ4vrfv31V6SlpYmv7969Ky4PHDhQrcWIUoUKFTBz5kwxz8zdgYzN2dkZW7duRenSpdXWOzk54bfffkOZMmUAAP/++y8uXLiQZV6LFy+Gl5cXbG1tUbp0aYwaNUrsLrZ161bExsYCANzd3bF27Vqt18PDw0OtVciWLVvE/ZSUYywBwKxZs7R27apYsSJWrlwpvj5w4IC4HBkZib1794rnuXXrVq2t3kqVKoWNGzfC2dkZAHDixAm8ePFC3B4TEyO+dnNzQ/v27TXykMlkavdPYGCg2FINyP97pFKlSli9erXYiknJwsIC8+fPh42NDQDgxYsXiIiIUEuze/ducfy51q1bY9GiRRotxsqXL49t27ZpPY+cSkhIwMOHDwEAJUuWRMmSJfOUX0Gqd2PK6n149uxZ8f5p0aIFli1bpnXMPHd3d6xbt07sgrp+/Xq1br7KFpVAxns2c/dGIOMaz58/X3z94MEDw52kgam+Dz/77DOtY4C5u7tjzJgxADJa5927dy/LPGvVqiUuX79+3UAlJSIioo8Nux8SfSQiIiKwdetWrdvkcjnev3+Phw8fIiAgQPwyZmFhgWXLlql9gUlJScG5c+cAZAQQ5s6dm+VxR40ahT179iAsLAxhYWG4evUq2rRpI+avdOfOHZ15eHh4wN3dHa6urlq/TBnTxIkTdQYg7OzsMHr0aPz0008AAB8fH61f4IGMLkzK7lPanDp1SlyePXu2zrGyAKBbt25o3Lgxbt26haSkJJw5c0bsChcZGSl2IypevDiGDx+uM58mTZqgZcuWEAQBlSpVQkJCAmxtbXHs2DExaDlw4MAsx8axtbXFyJEjsXLlSigUCpw6dQpTpkwBALVzCAsLQ1RUlBgIUWVlZYUjR46gePHiGsfK73ukX79+Orsu2tjYoE6dOuLA2lFRUShbtqy43dvbW1yePn26zmM4Ozvjs88+E7vn5ZZq4MTNzS1PeQEoUPVuLNm9Dw8fPiwujx8/Pssuou7u7mjVqhUuXbqEsLAw3Lp1S+xCp3rf3r9/H2lpaVrf002bNsXx48fh6uoqBkwLItXzuX37Njp37qw13ciRI+Hp6QkXF5dsuwBXrFgRxYoVQ3JyMgIDA/HhwweNH0eIiIiIssOgFtFHIiQkROu4L7o4Oztj+fLl+OSTT9TW//vvv0hJSQEA1K5dW2sLBFVSqRRdu3bF9u3bAWQMhK4MaqmOoXLmzBnExcVhwIABaNWqlVpLGSsrK1SrVk3vshtSVl+AgYxZ5JRBrUuXLulMV79+fZ1fkENCQsSB4R0dHfWasdHDw0Mc9+jmzZtiUOvy5ctimlatWmX7xVJZL6pu3rwpLteuXTvbsjRo0EBcVpYJyAh81KpVC48ePUJ8fDz69euHzz77DO3bt9eYNU7XLHL5fY9kN1i3avBFtWXR27dvxZY2pUqVQr169bLMp1u3bnkOagUHB4vLVapUyVNeQMGqd2PJ6n2YlpamNhmBPtegYcOG4vteNajVoEEDyGQyyOVy3L59G4MHD8awYcPQpk0btRZ1Uqk020kmCoKmTZtix44dADJah4aFhaFPnz5o3ry52uQEDg4OOicOyEwqlaJSpUp4/Pgx0tPTERISYpDgLBEREX1cGNQiIlhaWsLW1hbOzs6oU6cOWrZsiW7dumkNiISGhorL+n4ZU02nHKhaub5Pnz7iLGuXL1/G5cuXYWFhgXr16qFNmzZo27Yt6tWrp3OmOWNycXHJduBmV1dXsbXBmzdvdLbIKF++vM48cnNNVbvuqO6v2iUut0GeZ8+eictTp07N0b7h4eFqr2fPno3x48cjPT0dkZGRWLZsGZYtW4Zy5cqhdevWaNOmDVq2bKm1ixeQ//dIdl34VFuSqM7qpxxEHtCv1VTlypVhaWmZpy53qnWtbyAhKwWp3o0lq/dheHi42oyVLVq0yFHeqvVRokQJfP7559iwYQOAjNZaX331FSQSCWrWrInWrVujbdu2aNSoUZatMguKjh07olmzZmIrxTNnzuDMmTOQyWRo1KgRWrdujfbt2+c4KKV630ZERDCoRURERDlW8D9JEZFBNGvWDLt3785zPjExMeKyvl+kVQNDmcd/+uGHH1CiRAns2rVLHG8rPT0dd+7cwZ07d7B27VqULl0avXv3xpgxY3LcTSkhIUFtvCht7OzstI47VaJECb2OYWdnh+TkZAiCgHfv3mmMv6VMo8v79+/FZX2vqWqXSNU6iY6OFpczjwulr8x1lJd9W7dujQ0bNmDBggXieFNARgDh4MGDOHjwICwtLdG+fXuMHj0ajRo10sjT2PeIKtUZILMj/N/MnwDw7t07cTmrulaSSqVwcHAQZ9jLjfj4+BwdMzsFrd6NIavrpPo+yo3M+0+dOhVWVlZYv349kpOTAWTcM48ePcKjR4/w+++/i90hP//8c5QrVy5PxzcmqVSKDRs24IcffsDx48fFe18ul+P69eu4fv06Vq5ciYoVK6Jv374YOXKkWgsuXVTrQ/V+JiIiItIXg1pElCOqX+T1pTqAcmaWlpb48ssvMWrUKJw5cwa+vr64ffu2OLYPkDFO1O+//45Dhw5h69atqFu3rt7HjomJybbbpYuLi9aglr4tKFRb7MhkMq1pDN0aQ/WaqrZQUr1uuaU6mP/48eNzNKi5tvGs2rdvj3PnzuHixYvw8fHBpUuX1IJvqamp8PHxgY+PDyZPnqzRSsjY94ghqLa4Ur0fspKb95KuY+oTQMhOQat3Y8jqfaj6nrKzs8PEiRNzlHfFihXVXkskEowfPx4DBw6Et7c3fH19cePGDTHABWQ8n/744w8cPXoUv/76K9q1a5ejYyrl9V7Sh52dHZYuXYrJkyfjr7/+wt9//602rhuQ0WJx1apVOHjwIHbt2pVlyzhA/b7Nr4kCiIiIyLwwqEVEOaLakkjflg2qLZF0tR5SzkI2atQoJCUl4datW7hy5Qr+/vtvceygmJgYTJs2DT4+PmoDFxuLcgbIrCgUCrGFgUwmy7a7ojaq1ySv11R1ObctHxwcHPD27VsAGWN36TO2UHYsLS3RpUsXdOnSBYIg4MmTJ7h27Rr8/f1x7do1MaCyfv16NGvWTGvXr4J4jyipvi/i4uKyTS8IQp5bpqi2KjNEQKCg1nt+UX3vCIKAsWPHGiRfR0dHDB48GIMHD0Zqairu3LmDq1ev4sKFC+LslcnJyZg5cyb+/vtvrc/I7IJWynEO80OFChUwceJETJw4EXFxcbhx44b4PlR2Qw0LC8NXX32FPXv2ZJmXarlz0kqSiIiISEn3tD5ERFqotkZ48uSJXvs8evRIXM5uYHkg49f7Nm3a4Msvv4S3tzd+/fVXsQVUaGgo/v33X73LW758eTx58iTLf35+flr3ffnypVrrFW2Cg4PFgIKLi0uuxnXKzTV9/PixuKx6TVWXnz9/nm0+f/75J7799lts3rxZTK+ax9OnT7PNIzU1Va8AoJJyXKFRo0Zh69at8PPzQ40aNcTtyvGzsmLIe8QQVMcvUx2bSpeQkJA8ByJUx6NKTEzMU15A4ah3YypXrpzYkishIQGRkZHZ7pOQkJCjgKKlpSWaNWuGadOm4dixY9i7d6/YBS8hIUHtWaQalM3uGHnpxpoX9vb26Ny5M7777jv4+flh/vz54rabN29qjLWWmeoYZgV59kciIiIquBjUIqIcqV+/vhg8ePjwIV69epVleoVCgfPnz4uvVWdM++mnnzBo0CA0bdo0yy+Q3bp1U5uFUXWMHgBGG0Q+JSUF169fzzKNr6+vuNyxY8dcHcfV1VUchysmJgbXrl3Ldh9vb29xWfWaqo5NdOXKlSy7fgLAiRMncOjQIaxcuRJv3rwBADRp0kTcrlp3uuzevRuNGzdG8+bN8d1334nrfX19MXbsWHTo0AGbNm3SuX/p0qUxYcIE8bXqvWCoe8TYypYtKwaFoqKixJkQddEVSM0JFxcXcdkQ51uQ6h0w3vtaFysrK9SpU0d87ePjk+0+s2bNQv369dGuXTscPnxYXL9582YMGzYMLVq0yDLA2qRJE3h6eoqvVetRteWSardNbe7fv59tWbOS1bVOT0/Hl19+ib59+6JVq1Y6A2wSiQTDhw9Xm9Eyu/tSdXt2XRWJiIiItGFQi4hyxMrKCt26dQOQ0SVm+fLlWabftWuXOCuYo6MjWrVqJW4LCQnBnTt3EBcXh5MnT2aZj+qXuswDsUul//9Rpu94RvrauHGjzq4/MTEx2Llzp/jaw8Mj18f59NNPxeWVK1dm2ULs3LlzuH37NoCMMYKU9QEA1atXF2dGjIqKwpEjR3TmExQUJAbQihcvLgbEvLy8xC+558+fR0BAgM483r9/j61btwLIuB6qLW8EQcClS5cQHh6Ov/76K8tzUu1OqVq/hrpH8kPfvn3F5XXr1ulMl5CQgB07duT5eJUrVxaXVWcV1UW15Y+290lBqndA/X2dXXDWULy8vMTlzZs3ZxlMunnzJi5cuACFQoHIyEjUr19f3BYVFYWAgAC8f/8+1/eto6OjOOZUaGio2gybqtLT07Fly5Ysj5GdrJ6hFhYWePz4MR48eIC3b9+qBfIzUygUal2os3ofCoKAsLAwABnPsQoVKuSy9ERERPQxY1CLiHJs4sSJ4sDQPj4++O677/Dhwwe1NIIgYN++fWqDtM+ZM0dtQOl+/fqJy2vWrMHFixe1Hm/Hjh3477//AAClSpVSa5kEqHfDCg0Nzd1J6XDz5k3MmzdPo6vYmzdvMH78eHEMIk9PT7i7u+f6OCNHjhTH47p37x7+97//aR1f69y5c5g7d674evz48ShVqpRamkmTJonLP/74o9YWJxEREZg2bZoYLPjss89gaWkJIKMrXc+ePQFkfEmdPHkyLl++rJFHZGQkJk6cKM78V65cOfTv31/c3rZtWzg7OwPI6Fa5aNEitUGylYKDg9WCQF27dhWXDXWP5Idhw4aJM2b6+flhyZIlGgP3R0dHY8KECWKgNy/q1q0rdpdT7Y6qi+r7RBlMUFWQ6l2f8hpD3759xeDKmzdvMGbMGK2tUW/fvo3p06eLr7t164bq1auLr1Xv23379uHw4cNag+Nnz57FuXPnAGS0zGrbtq24TSKRoFmzZgAynqffffedxnVMSEjArFmzsm0ZmJ3snqGq5/P999/j3r17GmkEQcDSpUvF+6JOnTpqrQkzCw4OFrsf1qlTR+ckG0RERERZ4UDxRJRj1apVw4IFCzBv3jwIgoADBw7Az88PHTt2RLly5RAbGwt/f3+1cXk+/fRTtS++ANCpUye0adMG/v7+SE1Nxfjx49GwYUPUrVsXzs7OiI2Nxc2bN8UvUBKJBF999ZUYfFFS7bayYsUKhIWFQSaToWvXrmpfNHNDJpPhyJEjuHLlCrp06YISJUrg5cuXOHv2rDiOUYUKFfDNN9/k6TglSpTAihUrMGHCBMjlcvj5+aFLly7o1KkTKlasiA8fPuDatWu4e/euuE+LFi0wZcoUjby6du2KIUOGYN++fUhOTsb//vc/NGzYEM2bN4eVlRWCgoJw7tw5MRDZsGFDjUGxFy5ciMePH+PZs2eIiYnBmDFj0LhxYzRt2hQymQzPnz/H+fPnxWBf0aJFsWLFCrWgpaWlJb7++mvMnDkTAMT7pG3btihXrhwAIDAwEBcuXBDzadeuHTp06CDmYah7JD84ODhg8eLFmDJlChQKBXbu3AlfX1907twZxYsXx6tXr+Dj44P4+HhYWVmJ1z+33eysra1Rr1493L59G2/fvkVoaGiWXbhUt33zzTfo168fBEHAoEGDxMBoQal34P+PUScIAm7duoU5c+agevXqKFWqlFqLKkMqVqwY1qxZg+HDhyMxMRGPHj1Cjx490L59e9SsWRMpKSl48OCBWrDPxcUFCxYsUMunZs2aGDRoEA4cOABBEDBv3jzs2rULjRs3RpkyZZCUlITbt2+rdW+eMmWKGBRV+uyzz3DhwgUAwLVr19ClSxd069YNTk5OCAkJwblz5xAfH49y5crB2dlZ7fmQE9k9QwcPHozDhw/jyZMniImJwYABA9CqVSu4ubnByckJ7969w6VLl8Tx5GQyWbbPRNXAWPPmzXNVbiIiIiIGtYgoV/r16wc7OzvMnz8fMTExiIqKwoEDBzTSyWQyzJgxA2PGjNGaz+rVqzFt2jRcunQJQEYLCGXXOlU2Njb4+uuvxZYkqrp37461a9ciNjYWMTEx2Lhxo7hPXoNaq1atwpw5cxAREYFdu3ZpbG/SpAnWrl0LJyenPB0HAFq3bo0dO3Zg9uzZiIiIQFxcHI4dO6aRTiKRYPTo0Zg5c6bOGf4WLFgAR0dH/P7770hLS9N5Xdu3b48VK1ZoBIFsbW2xb98+zJ07F3///TcA4NatW7h165ZGHmXKlMHy5cvRuHFjjW09e/bE+/fv8fPPP0Mul2fZJbJbt25YunSpxnpD3CP5pVOnTvj555/x/fffIykpCaGhoRpdDcuWLYvvvvsOEydOBIA8BeA6deokXovLly9j0KBBOtP27dsXe/bsgVwuR3h4ONauXQsgIwDTpUsXAAWr3u3s7NCzZ0+cOnUKQMb4bwBQo0YNowW1AKB27drYv38/pk+fjqCgIMjlcpw7d05sUaWqYcOGWL16tdb3//z585Gamiq+h5UTU2Qmk8kwadIkfP755xrbWrZsia+++grLly9Heno63rx5g927d6ulqVq1KtauXYuVK1fm9pSzfYZaWlpiy5YtmDhxotgi8vLly1pb8pUsWRI//PCD2hht2qjuq7z/iIiIiHKKQS0iyrWuXbuiZcuWOHjwIC5cuICgoCDExsbC0tISlSpVQps2bTBw4MAsu6DY2tpi69atuHjxIk6dOoX79+8jMjISqampKF68OFxdXdGuXTv07dtXo5udkrOzM/bt24fVq1cjICAAcXFxsLGxydHMbLp06dIFJ0+exO+//45Lly7hzZs3sLW1hbu7O7y8vODh4WHQAa2bNGkCHx8fHD16FH5+fnj06BHev3+PIkWKwNXVFS1atMDAgQOzDdZJJBJMnz4dffr0wf79+3HlyhVEREQgOTkZTk5OaNCgAfr164d27drpzMPe3h6//fYbAgICcOLECdy8eRNv3rxBSkoK7O3tUaNGDXTq1AmffvppljOXDR8+HG3btsXhw4dx/fp1vHjxAgkJCbCysoKzszOaNWuGXr166fwSbIh7JD/16dMHTZs2xd69e3Hx4kWEh4dDoVDA1dUV3bp1w6hRo9QGRVeOm5QbvXv3xi+//AKFQoG///47y6CWm5sbdu3ahfXr1+O///5DQkIC7O3tNbq5FpR6BzImCihfvjzOnDmD169fiy23BEEw6kDybm5uOHnyJM6cOQMfHx/8999/ePfuHRQKBUqWLIl69erB09MTnTt3VhuPSpVMJsPPP/+M/v374/jx47hz5w7CwsLE61iuXDm0adNGrcujNqNHj0br1q2xZ88eXLlyBZGRkbCyskLlypXh4eGBQYMGqQ0qnxv6PENLlSqFgwcPwtvbG2fPnsXDhw/x9u1bpKWlwcnJCZUrV0aHDh3EHzyykpaWJgapK1eunKeu20RERPRxkwi6RkAmIvpIdezYURzDR1vLCqK8unv3LgYOHAggo7VcVrMEZmfSpEnw9fWFTCbDpUuX4OjoaKBSEhnHxYsXMX78eAAZXWE/++wzE5eIiIiICisOFE9ERGQAf/zxB44cOYJbt25lOwtnYGCguKw6i2FuKLv2yuXybGfaIyoIjh49CiBjHLrMYy0SERER5QSDWkRERAbg6+uLb775BkOHDs1ywG6FQoF9+/aJr7Mbeyg7TZo0QcuWLQEAe/bs0TrLHlFB8fr1a5w/fx5ARkA2qy6sRERERNlhUIuIiMgAVGdw+/nnn/H+/XuNNB8+fMC8efPw4MEDAEClSpXQtm3bPB971qxZkEgkePHihdYBzYkKiu3btyMtLQ3Ozs7sdkhERER5xjG1iIgy4ZhalBvx8fHo0aMH3rx5AyBjAPiOHTvC1dUVUqkU4eHh+Pvvv8WB2WUyGfbs2YMGDRoY5PgLFizA/v374ebmhhMnThh1IHWi3IiMjESXLl2QkpKCVatWoUePHqYuEhERERVynP1QB0EQcOrUKRw5cgSPHj1CUlISnJ2d0bRpUwwbNizPM/UoFAqcOnUKx48fx4MHD5CQkIASJUqgVq1a8PLyQrdu3fT6QhIYGIjt27fj+vXrePPmDezs7FC1alV4eXnh008/hYWFRZ7KSURE+rGzs8POnTsxZcoUBAUFISkpCadOndKatmzZslizZg3q169vsOPPnj0bFy9eRGBgII4dO4a+ffsaLG8iQ1izZg1SUlLQoUMHBrSIiIjIINhSS4vk5GRMmzYNFy5c0LrdwsIC06dPF2fuyanY2FhMnjwZN2/e1JmmefPmWLVqFUqUKKEzzaFDh7Bw4ULI5XKt25s0aYL169dzJiyiHGJLLcoLuVyOv/76Cz4+Pnj48CGio6NhYWGBUqVKoWLFiujZsye6deuGYsWKGfzYt27dwsiRI+Ho6Ahvb2/Y2dkZ/BhEuXHv3j0MHDgQzs7OOH78OJycnExdJCIiIjIDDGppMWvWLPHX9apVq2LgwIEoWbIkHjx4gP379yMpKQkAsGzZMvTp0ydHeSsUCgwfPhy3bt0CALi4uKB///5wdXVFREQE/vzzTwQFBQEAGjZsiF27dsHS0lIjH39/f3z++ecQBAFWVlYYPHgw6tati3fv3uHw4cPizFqtWrXCli1bIJVy+DQiIiIiIiIiMh8MamVy+fJlcXr0Fi1aYPPmzShatKi4PSgoCEOHDkVMTAwcHR3h6+sLW1tbvfM/fPgw5s2bByCjNdbmzZvVfq2Xy+WYNm0afH19AQA//fSTRheS1NRUeHh4IDQ0FNbW1tizZw/q1Kmjtn3mzJniYMErV66Ep6dnDq8EEREREREREVHBxeY7mWzbtg0AUKRIEfzwww9qAS0go+XW/PnzAQAxMTE4dOhQjvLfv38/gIwujMuWLdPofiKTybBgwQLx9enTpzXy8PHxQWhoKABg3LhxagEtALC0tMTSpUvFboebNm3KURmJiIiIiIiIiAo6BrVUxMTE4MqVKwCANm3awNXVVWu6Hj16iGNdeXt7651/eno6ypUrh8qVK6Nx48YoU6aM1nSlS5cWx5oIDw/X2K4MdEkkEgwZMkRrHjY2NmILr8DAQAQHB+tdTiIiIiIiIiKigo5BLRUBAQFQKBQAMroe6iKVStG0aVMAwN27dxEbG6tX/hYWFvj111/h7e2N3bt360yXmJiI+Ph4AEDJkiU1tisHmK9Ro0aWA62qnsM///yjVxmJiIiIiIiIiAoDBrVUPH36VFx2c3PLMm21atUAAIIgiIOyG8q6devEGQ27d++uti0yMhJxcXEAgOrVq2eZT9WqVcXlx48fG7SMRERERERERESmVMTUBShIwsLCxGUXF5cs06p2HQwLCxNbbuVGeno63r59i/v372PXrl24fv06AKBZs2bo37+/WlrlWFr6lLF06dKQSqVQKBRauzESERERERERERVWDGqpiI6OFpeLFy+eZVrlIOxAxlhceeHl5aXW2ksikWDYsGGYOXMmLC0t1dK+f/9e7zLKZDJYW1sjISEhz2UkIiIiIiIiIipIGNRSkZycLC5nnvUwM9Vgk+p+uREREaH2WhAEXLt2DRcuXEDPnj3Vtn348EHvMirTJCQk5LmMOZWamqoWSCtatCgsLCzytQxEREREpFt6ejpSUlLE146Ojho/qBIRERVkDGqpSEtLE5ez+4Ouul11v9wc87PPPkOVKlWQnJyMK1eu4PTp03j27BlmzpyJp0+fYvr06WL69PR0vcuomiYvZcyNmJgYhISE5OsxiYiIiChvSpUqZZB8FAoFEhISEBcXh9TUVLXPsERE9PGwsLCApaUl7O3tYWtrC6nUsEO7M6ilolixYuKyXC7PMmiUmpoqLuflF60iRYrgf//7n/i6X79+6N+/P7744gukpKRg48aNaN26NZo0aQJAvXWWcjD5rCjLKZPJcl1GIiIiIiJ9xcfHIywsDIIgmLooRERkYmlpaUhJSUF8fDwkEglcXFxgZ2dnsPwZ1FJhbW0tLqekpOgd1NKnG2BOfPLJJ5g6dSqWL18OANizZ48Y1Mpcxuwo06gG7IiIiIiIjEFbQEsikXAYCiKij1R6err4N0EQBISFhRk0sMWglgp7e3txOSYmJsuLrDpelJOTk8HLMmDAAKxcuRIKhQL//vuv1jLGxsZmmYdcLkdSUpLRypiVzIE+V1dXtYAcFXzPnj1Deno6LCwsUK1aNVMXh/KI9Wk+WJfmg3VpXgpjfSYlJakNF5HXH2oVCoVaQMvW1hZOTk6wtraGRCLJU95ERFQ4CYKApKQkREdHIyEhQQxsubm5GaQrIoNaKipVqiQuR0REwNXVVWfa169fi8vlypUzeFkcHBxQokQJREVFqc3KmLmMWYmMjIRCoTBaGbOS+dc4a2tr2Nra5msZKG+kUinS09MhlUpZd2aA9Wk+WJfmg3VpXsyhPvPamkr5ZQXICGiVL1+ewSwioo+cRCKBjY0NrK2tERoaKv6tSEhIUGu0k1sMaqmoWrWquPz06VM0a9ZMZ9qnT58CyKig6tWr65V/UFAQtmzZgpCQEHz66afo169flumVXQdtbGzEdcWLF0eJEiXw7t07sQy6PHv2TFx2c3PTq4wfM2UEWRV/WSQiIjIvCoUCu3btUlv36aefwsHBwUQlMh9xcXHispOTEz9DERGRSCKRwMnJCQkJCQAy/mYwqGVgDRs2hEwmg1wux/Xr1zFs2DCt6dLT03Hz5k0AQM2aNfWuiPT0dBw9ehRAxq9XWQW1goODxQ8GlStXVtvWtGlTeHt749GjR4iPj9fZTfLatWviclYBOsqQlJSEFStWqK2bPXu2WlCRiIiICjdBEPDy5Uu1dfk9S7S5Uo45K5FIOOwEERFpUDYaEQRBbZzyvGBQS4W9vT1atGgBf39/+Pn5ITw8XGu3vb/++kvsEujh4aF3/tWrV0fZsmUREREBf39/hISE6Ozi+Pvvv4vLnTt3VtvWrVs3eHt7Iy0tDfv27cP48eM19k9ISMCxY8cAZATFatasqXc5iQCgVq1aEASBv7KaCdan+WBdmg/WpXlhfWb8gAtkdGP8mK8DERFpp5w4JC0tTfybkVd5H5XLzIwaNQpAxiDrM2fOFJvGKT179gw//vgjgIxugQMGDNA7b4lEgs8++wxAxi+Cc+bM0cgfAHbu3IkjR44AAJydnTFkyBC17Z07d0b58uUBAOvXr0dAQIDa9tTUVMydO1cczH706NF6l5FISSaTwdLSEjKZzNRFIQNgfZoP1qX5YF2aF9YnERFR/mNLrUxat26Nbt264ezZs7h9+zb69OmDIUOGoGzZsnj48CH27duHxMREAMDcuXM1ZhW8fv06Ro4cCSCjy9/u3bvVtg8fPhznz59HQEAAbt++DU9PTwwaNAiVKlVCdHQ0vL29cePGDQAZH45WrVql0f3N0tIS8+bNw6RJk5CcnIxRo0ZhwIABaNSoEWJiYnDw4EEEBgYCABo1aoT+/fsb5VoRERERFTYSiUSjpT2HGiAiIiqcGNTSYunSpUhMTMSlS5cQGhqK5cuXq22XSCSYMmUKBg8enOO8ZTIZNm7ciBkzZuDSpUuIiIjA6tWrNdKVKFECq1evRtOmTbXm07FjRyxYsAA//vgj5HI5/vjjD/zxxx9qaerVq4cNGzbkeSYbIiIiInMhlUo51igREZGZYFBLCysrK2zZsgUnT57En3/+KQ7I7ujoiMaNG2PkyJFo3LhxrvO3t7fHli1bcP78eRw5cgT3799HbGwsbGxsUKVKFXTq1AlDhgzJ9lfDIUOGoEmTJti5cyeuXLmCqKgoyGQyuLm5oVevXhg4cCCbwFOuRUVFQaFQQCqVwtnZ2dTFoTxifZoP1qX5YF2aF9YnERFR/mNQSweJRILevXujd+/eOdqvefPmePLkiV75d+nSBV26dMltEQFkDD7/ww8/5CkPIm0iIiIgl8shk8n44dwMsD7NB+vSfLAuzQvrk4iIKP9xoHgiIiIiIiIiIip0GNQiIiIiIiIiIqJCh0EtIiIiIiIiKrAEQcAff/yBqKgoUxeF8kGNGjVQo0YNjBgxwtRFMbm0tDRs3rwZvXr1QsOGDVG3bl20bdsWp0+fNvixEhISDJ5nfuCYWkRERET00VAoFNi/f7/aOk9PT9jb25uoRESUlZcvX+Kbb75BQEAA2rZta+riEOWrL7/8EqdOnVJbFxkZaZS/WWvWrMGcOXNgaWlp8LyNiUEtIiIiIvpoCIKAp0+fqq2Ty+UmKg0RZefEiRMICAgwdTGI8l1QUJAY0HJwcMCYMWNQoUIFxMfHo169egY9VlpaGk6cOIHWrVujXbt2Bs3b2BjUIiIiIiIiIqIC4cmTJ6YuQoHw7NkzcXny5Mn47LPPjHas69evIyYmBmfPni10QS2OqUVEREREREREVIB8+PBBXK5WrZpRj+Xj4wMA8PPzQ3p6ulGPZWhsqUVEREREHw2JRILOnTurrbO2tjZRaYiIiLRTKBTicpEixgvdCIIAX19fAMD79+9x48YNfPLJJ0Y7nqExqEX0f4oWLYr+/ftrrPtYFStWDBYWFpDJZKYuChkA69N8sC7NB+vSNKRSKVq1amXwfFmfVBDVqFEDADBhwgTMmDEDPj4+2LVrFwIDA/HhwwdUqFABnTt3xujRo+Ho6Kgzn6SkJBw6dAjnz59HYGAgEhMT4ejoiJo1a8LDwwNeXl6wsLDQuf/r16+xZ88eXLp0CS9fvkRaWhqcnJxQu3ZtdO3aFb1799bYf+3atVi3bp3auk6dOgEAXFxc4Ofnl+/XQpnHtGnTMHDgQCxatAiXLl0CALi6umLcuHHo1auXwa4bAKSmpuLcuXM4evQonj9/jqioKNja2qJOnTro06cPPD09IZXq7oCVnp6OY8eO4cyZM3j8+DFiY2Ph4OCAWrVqwdPTE717985y/9zUXV73VV7nZs2aYffu3Vq3TZs2DZMmTcL169exd+9e3LlzB9HR0ShevDiaNm2KESNGoGHDhlle24iICGzbtg3//PMPwsPDYWVlhRo1amDQoEHw9PTE5s2bsXLlSgC57xKZm3tgxIgRuHHjhtq6kSNHiss//fQT+vbtm6vyaPPvv/+qzSzq4+NTqIJaEkEQBFMXgsxPQkKC2hu/Ro0asLW1NWGJiIiIiEiVoT+vPX36FGlpaShSpAiqV69uiCJSHqkGctLS0rBlyxat6UqVKoXt27dr7eIUEBCAWbNm4fXr1zqP4+bmhg0bNsDV1VVj25UrVzB58mQkJSVlWc7t27ejRIkS4jptQS2lvAa1cnstlHmMHTsWvr6+ePHihdr2zZs3i+MR5fW6AUBoaCgmTZqUZUClefPm2LBhg9b3bmhoKCZOnIjAwECd+9etWxcbN25EqVKlNLbltu7yuq++Qa2UlBRs2rQJ2kIaEokEM2fOxPjx47Ue+/r165g4cSISExO1bu/evTtq1KiBNWvWAMhdUCu394C2oJYqQwe1fvrpJ+zYsUN87ezsDH9/f0gkEoMdQ5Wh/1YwqEVGwaAWERERUcHGoJb5UwYAKleujODgYEilUnh5eeGTTz5BYmIijh8/jtu3bwMAHB0dcfLkSbXgxv379zFy5EgxMNGwYUN4eHjA2dkZYWFhOH78uDibaMmSJXH06FGULl1a3D86Ohrdu3dHbGwsLC0t0a9fP9SvXx9FixZFaGgoDh06hFevXgEA2rVrh82bN4v7BgUFITg4GH/99RdOnz4NAFi0aBFKlCiBYsWKoXXr1vl6LVTzKFq0KFJSUtC6dWv06tULMTExuHjxIrZs2QILC4s8XzfltevVqxfevn0LAKhZsyZ69+6NMmXKICQkBPv27RODJR07dsTGjRvV9n/37h0+/fRTREZGAgAaNGgADw8PlCpVCm/fvsXp06fF861UqRKOHDmi9v7PS93lZV/V65xVUEtZjzY2Nujfvz/c3d2RlJSEU6dO4fr16wAyAltHjhxBnTp11PL477//MGzYMCQnJwPIaAHYsWNHyGQy3LhxA3/++SfS0tJgZ2eH+Ph4ADkPauXlHggICEBMTAyuXbsmnv+0adPg5uYGAKhduzbKlSuXo/JkpWPHjggLC1Nbt2/fPjRq1Mhgx1DFoBYVCgxqERERERVsBSGopdrlxZgsLS3h4OCgdVtsbCxSU1PF19bW1rCxsdGaNjo6Os+DKDs7O+dp/5xQBgCAjEDMhg0b1IJBgiDgxx9/FL849+3bFz/99BOAjG5rPXv2RHBwMABg1qxZGq1e0tLSsGjRIhw4cAAA0Lp1a2zdulXcvmPHDjG/VatWoUePHmr7JycnY+jQoXjw4AEA4Pz58xqtllRbbPn6+qJ8+fL5fi205dG+fXv89ttvGq1ZDHHdAOCrr77CsWPHAADDhg3Dt99+q9ZNMCEhAUOGDBFbYe3atQvNmzcXt0+ZMgXnzp0DAMycORNffPGFxjVR7V43ePBgLFy4UNyWl7rLa73rE9QCMlrs7dq1S+Oe+Prrr3H06FHx2n333Xdq2wcPHozbt29DIpFgyZIlGq2eAgICMH78eLVWXDkJahnqHjh69Ci+/vprAJr1q6/Dhw9jz549WluzARnjdmlryVe6dGkUL15cZ75169bFN998o/NZmRVDB7U4+yEREREREZlEqVKl8uXfuHHjdJZh3LhxammXL1+uM22bNm3yXBZTmTp1qkbrJolEgq+//loMFPz555+Ijo4GkDGujvJLeY8ePbR24ypSpAgWLFgAd3d3AMClS5dw//59cbtyfwBitzxVxYoVw+eff46KFSuidevWeP/+fR7PUj85vRbafP7551q7ZxniukVHR+P48eMAgFq1amHevHka417Z2tqqBaFOnTolLj9//hznz58HAHTt2lVrQAsAxo8fj2bNmgEAjh07pna+eam7/Kr3b775RmuQc9KkSeKy6nUFgGvXrokt1AYMGKC1G1+TJk3w5Zdf5qpMgGHuAUPp378/Jk+ejIiICDx+/Fjjn66uqZGRkVrTP378GE2bNsWCBQtyFdAyBga1iEir4OBgPH36VO2PEhVerE/zwbo0H6xL88L6pILM2toaQ4cO1brNwsJC3KZQKODv7w8AuHjxopgmq6CghYWF2nZlMAWA2oDrW7du1dpaxMPDAz4+Pti6dav4Bd+YcnMtMpPJZDrLaojr9s8//4gz3w0ZMkTnQOyNGjXCtGnT8PPPP2P48OHi+rNnz4rXul+/fjrLoLo9JSUFV65cEdfnpe7yo94tLS3Rvn17rdtcXV3FgEtcXJzatr///ltc/uyzz3Tm/+mnn2Y5eUJWDHEPGFKXLl1w7NgxNGjQIE/5ODg4YP369fj2229haWlpmMIZAGc/JCKt4uPjIZfLOYuTmWB9mg/WpflgXZqGQqHAkSNH1NZ1794ddnZ2ecqX9UkFWcOGDWFtba1ze+PGjcXlu3fvok+fPrhz5w4AwN7eXmNMosxatGghLqu2Nunevbs4kPf69etx+vRpdO3aFW3btkWDBg1QpEj+fx3NzbXIzNXVVeeXekNct//++09czm5cI9VWSarlVgoJCckyWKLaSurBgwfw9PQEkLe6y496r1SpUpb52NraIjExEWlpaWrrb968CQAoXry41skAlCwtLdGoUaMcT0gAGOYeMDQXFxfs3bsXv/zyC7Zt26azO6IuDRs2xC+//GLQsbwMhUEtov+TmJiIFStWqK2bPXt2gWlWSURERHknCAIePnyotq5jx44mKg1R/qhUqVKW28uWLSsuKwcmV3ZF02cMKwcHBzg4OCA2NlbcH8joOjdt2jSsXr0aQEaLxk2bNmHTpk2ws7NDq1at0LVrV3Tq1AnFihXL4Vll37KlUaNGcHJyUluXm2uRmb29vc79DXHdVJdzE0R48+aNuPzDDz/ovd+7d+/E5bzUnbHrHUC24/8pA16ZgzfKa6PPda1QoUKuymaIe8AYihQpgrlz56J58+b48ssv9er2KZFIMHbsWMyYMcMkQWh9FMxSERERERGR2VP98m1MWXWV2bJlCzZs2CC+zqoVj7+/f54HijeF7H6ktbKyEpeVg2Mr/1fdlpVixYohNjYWHz58UFs/ceJENGjQAFu2bMHVq1fF6xcfHw9vb294e3ujePHimD9/Pnr27Kn3OQHA5MmTs9yubXDt3FyLzLK6nwxx3WJjY9W251RCQkKO9wE0zzcvdWfMegeQ6wBLTEwMAP2ua24DboZ67xhLu3btcPz4cXh6emp0z8zsxx9/zLYLq6kxqEVERERERCaRnzMB6qJrVkRtMrf6KSxUZ3fUJikpSVxWjiNkZWWF+Ph4vb9oK/PQFgj45JNP8MknnyA6Ohr//PMPLl++jKtXr4qzX75//x6zZs2Cra2t1oHFDSk31yInDHHdVJeTk5Nz3HNEdf979+6haNGiOdpfVV7qriDVu1LRokUhl8v1qp/k5ORcHcOQ7x1jkcvl2Qa0APXWewUVg1pERERE9NGQSCQaX570/TWdqLB6/fp1lttDQ0PFZeUMjSVLlkR8fLzaNl2io6MRHx8PAChdurTOdE5OTvDy8oKXlxcEQcCdO3ewYcMG/PPPPxAEARs3bsxRcOPJkyd6p1XKzbXICUNctxIlSojLr1+/RtWqVXXm8eDBA0ilUri6uopd8lT3f/PmDVxdXXN8Hpnlpe4MXe95UaZMGTx79gzh4eHZptUnjTbGeO8Ymr6D0p87d07r7I0FCWc/JCIiIqKPhlQqRfv27dX+ZdXdjMgc3LlzJ8uBoQMCAsTlZs2aAQDq1asHIGP2uAcPHmSZ/7Vr18TlGjVqAMgYy+jMmTNYt24dduzYobGPRCJBw4YNsWHDBjF4lJsgVU7l5lrkRF6vGwC1wcVv376dZR7ff/89vLy80KVLF3Gd6myCN27cyLYM06dPx4oVK8Rzz0vdFdR6V6pfvz6AjG6IQUFBOtMpFIpsr70uhrgHjM3Hx0djnba/hffv3882EGxqDGoRERERERGZsdevX+Pvv//Wuk0ul2Pfvn0AMr7UtmzZEgDQqVMnMc2WLVt05p2eno5t27aJrzt06AAgI3ixcuVKrF27Fhs2bNDZ7U8mk4nd67R1s5NIJOJyTmds0yY31yIn8nrdAKBNmzaQSjO+qh86dEjneb98+VKcMe+TTz7RWoZdu3ZBLpfrLMe6detw5swZ/P777+J4U3mpO0PVu7F0795dXN67d6/OdN7e3mI3yZwyxD1gTG/fvtUI2HXr1g0XL17E/Pnz1caMEwRBawCsIGFQi4iIiIiIyMwtWLAAL168UFuXnp6OhQsXii1Wxo4dK46/1KVLF1SsWBEAcPr0aWzevFkjz/T0dCxatEgMrDRv3hxNmjQRtysDCLGxsViyZInW4Mz58+cRHBwMAGr7Kql2D1YdQD0vcnotcsIQ1618+fJiy6s7d+6IswiqSkhIwLx588RrOnToUHGbu7u72Mrs8ePHmD9/vtbA1q+//oqbN28CyJgVUjWokpe6M0S9G0vr1q1Rs2ZNAMC+fftw+vRpjTRPnjzB4sWLc30MQ9wDxnT+/HkoFAoAGWOMfffdd/j1119hb2+P4cOH4+DBg2qzhJ47dy5fypVbHFOLiIiIiIjIjEkkErx58wZ9+/bF4MGDUbduXURHR+Po0aNi96hq1arh888/F/exsLDAihUrMGzYMKSmpmLlypXw8/NDjx49ULJkSURERODPP/9EYGAggIxB1ZcuXap23DFjxuDQoUOIiYnBvn37cPfuXXh4eMDFxQWxsbG4deuWGFQoWrQoJkyYoFH2MmXKiMs//fQThg0bBgDo0aNHvl2LnDDEdQOAb7/9FgEBAXj37h1+++03XL9+HT179kTx4sXx4sULHDhwQJw9tF+/fhoBkZ9++gn9+vVDTEwMjh07htu3b6Nv375wdXXFmzdvcPbsWfz7778AMmYS/PHHH2FhYSHun5e6M0S9G4tUKsWiRYswbNgwyOVyzJgxA2fOnEG7du1QtGhR3LlzB4cOHUJKSgosLCyQnp4utprTl6HuAWNRBqmqVKmCVatWiUE+pVq1auHYsWNYuHAh/vzzT9y6dQvR0dEFdqIMBrWISKuSJUsiPT1d7Y8bFV6sT/PBujQfrEvzwvqkgqxRo0YoXbo0Tp8+ja1bt2psb9iwITZu3KjRMsnd3R3bt2/H9OnTERUVhdu3b2sdZ6hWrVpYu3YtypYtq7beyckJv/32GyZOnIj379/j4cOHePjwocb+9vb2WLp0qcaXawBo2bIlHB0dERMTg4CAAAQEBEAikeR6PLzcXoucyOt1AzIGqd+zZw8mTJiAly9f6syjV69eWLhwocb68uXLY+/evZg8eTJevHiBFy9e4JdfftFIZ2dnh6VLl2oExfJSd4aod2OqX78+Vq1ahblz5yIpKQk+Pj4aXez69++PsLAwXL16Va07nr4McQ8YQ3x8PK5fv46+ffti/vz5Ot9D1tbWWLp0KVq2bInvv/8evr6+GDBgQL6UMacY1CIircqVK2fqIpABsT7NB+vSfLAuzQvrkwoyCwsLrFq1Cu3atcMff/yBp0+fAsj4Qu3l5YW+ffuiSBHtXw2bNGmCs2fP4sCBA/D19cWzZ8+QmJiIUqVKoXr16vDy8kLnzp0hk8m07t+wYUOcPn0a+/fvxz///IPg4GAkJCTA1tYW5cuXR4cOHTB48GCULFlS6/7FixfHzp07sXz5cty7dw9JSUlwcnJCRERElrMCGuNa5ERerxuQ0ZLm1KlTOHToELy9vREYGIjExEQ4ODigfv36GDRoUJazBlarVg0nT57EsWPH4OPjgydPniAmJgaWlpaoVKkS2rZti2HDhsHZ2Vnr/nmpu7zWu7F16dIFJ0+exI4dO+Dv74/Xr1/D0tIStWvXxvDhw9GlSxexVaC9vX2ujmGIe8DQbty4gSVLlqB37956pe/Tpw/q16+PY8eOGblkuScRDDHaHlEmCQkJarNY1KhRQ5xitqBKTEzEihUr1NbNnj07XwcuJCIiIuNSKBQ4ceKE2rrOnTsX+M8pxmDoz2tPnz5FWloaihQpgurVqxuiiJRHytnUmjVrht27d5u4NKbFa0E51b17dwQHB6N+/fo4ePCgqYtjEAqFIsfdKfOynzaG/lvBllpERERE9NEQBAF3795VW9emTZuPMqhFRPSxOX78OE6dOgVXV1d88cUXKF26tNZ0QUFB4mQCtWvXzscSGlduA1OGCmgZA4NaRERERERERGT27O3t8c8//wDI+JFjwYIFGmkyzyzp6emZr2WknGFQi4i0unfvHuRyOWQyGdzd3U1dHMoj1qf5YF2aD9aleWF9EhEVfK1atUL58uURGhqKP/74Aw8fPkTXrl1RpkwZfPjwAc+fP8fx48fx9u1bAMCAAQM0BtGngoVBLSIiIiL6aEgkEnzyySdq64oVK2ai0hARUX6ytLTE+vXrMWHCBERERODOnTu4c+eO1rRDhgzBN998k78FpBxjUIvo/1haWsLDw0NjHREREZkPqVSKrl27mroYRERkIjVr1sSZM2dw+PBh+Pr6IjAwELGxsbCxsUHp0qXRsGFD9O/fn61uCwkGtYj+j0wmQ7NmzUxdDCIiIiIig1Cd3fJjx2tBqqysrDBixAiMGDHC1EWhPCq4Q9gTERERERERERHpwKAWEREREREREREVOgxqERERERERERFRocOgFhERERERERERFTocKJ6IiIiIPhoKhQJnzpxRW9euXTvY2tqaqERERESUWwxqEf2fpKQkrF+/Xm3d5MmTYW1tbaISERERkaEJgoCAgAC1dS1atGBQi4iIqBBiUIvo/wiCgKSkJI11H6vKlStDoVBAKmUvZXPA+jQfrEvzwbo0L6xPIiKi/MegFhFpZWdnZ+oikAGxPs0H69J8sC7NC+uTiIgo/zGoRUREREQfDYlEgiZNmqitK1q0qIlKQ0RERHnBoBYRERERfTSkUil69uxp6mIQERGRATCoRURaxcfHi2ODsEtF4cf6NB+sS/PBujQvrE8iIqL8x6AWEWkVHBwMuVwOmUwGd3d3UxeH8oj1aT5Yl+aDdWleWJ9ERET5r0AEtZKSkqBQKACA0ykTEREREREREVG2CkRQq1+/fnjx4gUkEgkePnxo6uIQEREREREREVEBVyCCWgAgCIKpi0BERERERERERIVEgQlqEREREREZm0KhwPnz59XWtWrVCjY2NiYqEREREeUWg1pERERE9NEQBAFXr15VW9e4cWMGtYjIbKSlpWHbtm04efIkQkNDIZfL4eTkhK+++go9evTIc/41atQAADRr1gy7d+/Oc37aCIKAffv2oUuXLnB2djbKMcg8MKhFRERERET5LioqSpws6mMjlUrz/Yt6UFAQ9u3bhxs3biAiIgLJyckoWbIkatasiZ49e6JHjx6QSqVZ5jFixAjcuHFD72P6+vqifPnyWrfFx8dj8+bN8PHxQXh4OKysrNCgQQOMGzcOzZo1yzbvV69eoVevXkhOTsbmzZvRrl07vctl7r788kucOnVKbV1kZCTs7e1NVKKcefnyJb755hsEBASgbdu2pi4OFXAMahERERERUb5TKBRISkqCXC43dVHylUwmg7W1db4dLz09HatWrcKWLVs0xjEODw9HeHg4/Pz8sHfvXqxevRqlS5c2epmio6MxbNgwPH/+XFyXmpqKixcvwt/fHwsXLsTAgQOzzGPBggVITk5Gjx49GNBSERQUJAa0HBwcMGbMGFSoUAHx8fGoV6+eiUunnxMnTiAgIMDUxaBCgkEtIiIiIvpoSCQS1K9fX21d0aJFTVQaksvlSEhIgIWFhamLki/S09Nha2ubr8dctGgR9u/fDwCwsLCAh4cHWrRoARsbG4SGhuLkyZMIDAzEv//+i7Fjx+KPP/7Qq0XP+vXrs01TokQJret//PFHMaDl4eGBdu3aISoqCjt27MC7d++waNEiNG3aFJUrV9a6/59//okrV67AwcEB8+bNy7YcH5Nnz56Jy5MnT8Znn31m8GM8efLE4HkS5RaDWkT/RyaTafzKI5PJTFQaIiIiMgapVAovLy9TF4NUWFhYfDRj5kRFReXr8S5fviwGtKytrfH777+jSZMmamnGjh2L77//HgcPHsTTp0/xyy+/4Pvvv882786dO+eqTO/fv8eZM2cAAIMGDcKiRYvEbV27doWnpyfkcjkOHDiAr776SmP/6Oho/PzzzwCAOXPmoGTJkrkqh7n68OGDuFytWjUTloQofzCopYMgCDh16hSOHDmCR48eISkpCc7OzmjatCmGDRsGd3f3POfv6+uL48eP4969e4iOjoZMJoOLiwtatWqFkSNHoly5clnm0bFjR4SFhel1vEuXLn00HxZyy9LSEu3btzd1MQqMvN7jVLCwPs0H69J8sC7NC+uTCqIdO3aIy9OmTdMIaAEZQcUFCxbg5s2bCA4OxsGDBzFu3DidY2Hl1X///Yf09HQAwMiRI9W2VapUCR07dsTZs2dx584drfv//PPPeP/+PZo1a4b+/fsbpYyFmeo4dUWK8Os+mT/e5VokJydj2rRpuHDhgtr6sLAwhIWF4eTJk5g+fTrGjx+fq/xjY2MxY8YMXL58WW19amoqAgMDERgYiL1792Lx4sU6f0lMSEhAeHh4ro5PRERERETmTaFQiIO6SySSLFsoFilSBL1798aaNWuQnp6O06dP5/q7Tnbev38vLmsLnLm6umqkU7py5QqOHz8OS0tLLFq0CBKJxChlTE1Nxblz53D06FE8f/4cUVFRsLW1RZ06ddCnTx94enrqHFQ/KSkJhw4dwvnz5xEYGIjExEQ4OjqiZs2a8PDwgJeXl87utspZBadNm4ZJkybh+vXr2Lt3L+7cuYPo6GgUL14cTZs2xYgRI9CwYUO1fbUN4q8aNPzpp5/Qt2/fvFwWjXJqm/0wL+ewdu1arFu3Tm1dp06dAAAuLi7w8/PTKEt6ejqOHTuGM2fO4PHjx4iNjYWDgwNq1aoFT09P9O7dW2ddqZZ14MCBWLRoES5dugQg4z7s0qUL1q5dCyCjy2xWQdSEhAR88sknSE1NRdu2bfH777/rTEuGxaCWFvPmzRMDWlWrVsXAgQNRsmRJPHjwAPv370dSUhJWrlyJ0qVLo0+fPjnKW6FQYPLkybh58yYAoFy5cujXrx+qVKmCxMREXLp0CT4+PkhNTcVXX30Fe3t7dOzYUSOfJ0+eiAM9TpgwIdtB/xwcHHJUTiIiIiIiKrxiYmKQnJwMAHBycoKjo2OW6VXHr/Lz8zNaUEt1kPzY2FgUK1ZMbbsymGVlZaW2Pjk5Gd999x0AYOLEiTrH28qr0NBQTJo0SWPcqPfv3+PSpUu4dOkSDh8+jA0bNmiMjxYQEIBZs2bh9evXauujoqIQFRUFf39/7NixAxs2bBCDd7qsWrUKmzZtUhvc/82bN/jrr79w+vRpzJw502h1ZCjGPofQ0FBMnDgRgYGBauvfvn0Lf39/+Pv7Y/fu3di4cSNKlSqlM5+EhAQMGzYML168ENc9fvwYo0aNgoWFBdLT0+Ht7Z1lUOv8+fNITU0FAHh6eub6nCjnGNTK5PLly+JsES1atMDmzZvFwUM9PT3Rv39/DB06FDExMViyZAk6deqUo8Eejx07Jga0WrRogY0bN6o92AcMGAA/Pz/873//Q1paGr7//nu0atVKYwBT1Yesl5eX0R7qRERERERU+GSe6TAnMgcJtPniiy/w8OFDvH//HlZWVihVqhQaNmwIT09PtGjRQud+VapUEZf9/PwwZMgQ8XVqaqrYm6Vq1apq+61duxYhISGoXr06Pv/885yekl6io6MxaNAgvH37FgBQs2ZN9O7dG2XKlEFISAj27duH169f4/r165gzZw42btwo7nv//n18/vnnSEpKAgA0bNgQHh4ecHZ2RlhYGI4fP46nT58iMDAQgwcPxtGjR3XONHnixAkEBwfDxsYG/fv3h7u7O5KSknDq1Clcv34dgiDgl19+QatWrVCnTh0AGa2NYmJicO3aNbH11LRp0+Dm5gYAqF27tlGumS65OYcePXqgVq1aYtALyJjooESJEhrBz3fv3mHo0KGIjIwEADRo0AAeHh4oVaoU3r59i9OnT+P27dv477//MGLECBw5ckTn9/Y9e/YgJSUFrVu3Rq9evRATE4OLFy+id+/eOHnyJC5fvoxr164hJiZGZ3BYWV4rK6tcjzdHucOgVibbtm0DkNEE94cfftAIJlWtWhXz58/HrFmzEBMTg0OHDmH06NF653/gwAEAGbPsrFixQut0vh07dsTw4cOxY8cOREZG4p9//kGXLl3U0iiDWkWLFkXFihVzdI5E+ggPD0d6ejosLCyyHd+NCj7Wp/lgXZoP1qV5YX1SQePg4ACZTAa5XI7o6GixW5Yuqq1UEhMTERkZqTPoAkBtqBa5XI64uDg8e/YMhw4dQosWLbB8+XKtrWOqVKmCWrVq4dGjR/jll1/g4OCANm3a4N27d1i+fLnYyqlnz57iPo8fP8aOHTsglUqxePFio03mtGzZMjGgNWzYMHz77bdqXdeGDx+OIUOGIDAwEH5+frh+/TqaN2+O9PR0zJkzRwxozZo1S6MF0ujRo7Fo0SIcOHAAb9++xTfffIOtW7dqLUdwcDBcXFywa9cutS6aAwcOxNdff42jR49CEAQcOXJEDAgpx0uLi4sT0zdu3BjNmzc3wJXJudycQ9WqVVG1alU8evRITN+qVSut3VQXLFggBrRmzpyJL774Qm37yJEjsXnzZqxcuRIvXrzA8uXLsXDhQq1lTUlJQfv27fHbb7+JXVpHjRoFAOjVqxcuX74MuVyO8+fPa22tFRsbiytXrgAAOnToABsbG30vExmA9s6lH6mYmBjxZmzTpo3OJqE9evQQp6f19vbWO/+EhATcu3cPANCyZcssB27v3r27uHz37l2N7cqgVrVq1XT2ESbKi7dv3+LNmzfiH3Yq3Fif5oN1aT5Yl6ahUChw4cIFtX/KL6J5wfqkgqZIkSJo0KABgIxWW8ePH9eZNj09HSdOnFBbpxocUeXg4AAPDw/MmTMHK1aswKpVq/DVV1+hXbt2YkDg2rVrGDx4sM7ZHufPnw+ZTIa4uDjMmDEDTZo0Qbdu3XD+/HkAGeMoKYdgUSgU+Pbbb5GWlobBgwdrjMNkKNHR0eI1qlWrFubNm6fxPcvW1lYtMKLs4ePj44Pg4GAAGd8VtXWpK1KkCBYsWCBOKnHp0iXcv39fZ3m++eYbrcGcSZMmictZ7V8QGOscnj9/Lt4rXbt21QhoKY0fPx7NmjUDkNFjKjo6Wmeen3/+udYx2rp06SI2dNH13d/HxwdyuRwAux6aAltqqQgICBBni8iqyaxUKkXTpk3h7e2Nu3fvZvurh9L79+9Rr149REREqDW71UY1v8x/UARBwNOnTwFAbE5Keffhwwds375dbd3o0aM1+vMTERFR4SUIAi5evKi2rl69elpbzxMVdgMHDhSHPlm1ahXq1aunERRSKBRYvHgxnj9/rrY+ISFBI7+ZM2eiTp06sLS01Ng2evRo3L9/H1OnTkV4eDjCwsLwzTffaB0wu3HjxtiyZQsWLFig1kJMJpNh8ODBmDt3rrhu9+7duH//PkqXLo1Zs2aJ6y9evIht27bhwYMHkMvlqFSpEvr27Ythw4blata/f/75R/wuOGTIEJ2DuTdq1AjTpk1D2bJlxS59qs+UcePG6TyGhYUFxo0bh6lTpwLIGIdJ29jIWc3K7urqChsbGyQmJuoMPBYExjyHs2fPit1r+/Xrl2Xafv364caNG0hJScGVK1e0Bp1kMpnOGWxtbW3RoUMHeHt76+yCeObMGQCAo6Mj2rRpk+PzobxhUEuFMlAEZB8sqlatGoCMD0aBgYFo2rRptvm7urri0KFDepUlKChIXM78pgkLCxP/yFSvXh1Axh+dx48fIzExEaVKlYKbm5vOBzFpp1AoNH5NUp0Sl4iIiIioMPH09MTx48dx6dIlJCUlYfjw4fDw8ECLFi1gY2OD0NBQnDx5Ek+ePIGTkxNSUlKQmJgIAFp7g2TXSqpevXrYsmULvLy8kJqain/++Qf37t3TGjBo0aIFzp49i6dPnyI8PBxWVlaoXbu22rhHERERWL16NQDgu+++E7dt27YNS5cuBZAxHIulpSUeP36MJUuW4Pr161i3bl2Oe7P8999/4nKjRo2yTKva0ggA7ty5AwCwt7cXu9Lpotp4QlcrpUqVKmUZmLO1tUViYiLS0tKyPJYpGfMcVHsyhYSEiK22tFGdRfPBgwdag1qurq5aA7VKvXr1gre3t9YuiNHR0bh27RqAjFZjWeVDxpHvQa2goCD8/PPPWLlyJezt7XWmk8vlmDt3LgYPHpxv/YDDwsLEZRcXlyzTlilTRm0/fYJaOXHkyBFxuX79+mrbVAeJl0qlmDJlCvz8/JCeni6ud3R0xPDhw/H5559rDKpHRERERETmTyqVYs2aNfjqq69w7tw5pKWl4eTJkzh58qRaOmdnZ2zYsAFjx44V12X1XS0rVatWRZ8+fcQf8y9cuKCzFQyQ8SO98of6zBYuXIikpCR06dJFHHz7wYMHWLFiBYCMVlHTpk2DTCbDmTNnMHfuXPj6+mLv3r0YMWJEjsqt2nU4p+PiKbu1aetql5mDgwMcHBwQGxurs7tydhORKYNFeZkMwNiMeQ5v3rwRl3/44Qe993v37p3W9dnd623bthXrLPMsiGfPnhW/h7ProWnk62BMz58/x6hRo3Dp0iWMGTNGa5NWAEhLS8P06dNx5swZTJgwAdevX8+X8qn2sS1evHiWaVVbT8XExBi0HP7+/vj7778BACVKlECrVq3UtqsGtX7++WecO3dOLaClLNO6deswYsSILPsOExEREX1MJBIJateurfaPv6yTObO1tcW6deuwfft29OrVC+XLl0exYsVgbW0NNzc3TJ48GadOnUKtWrXEVloSiQQlS5bM9TFVGyWo9kDJidOnT+Pvv/+Gra0t5s+fL67fs2cP0tPTUblyZcyePRuWlpaQSCTo0aMHvLy8AAA7d+7M8fFiY2PF5Zw2ClBeN32HLVHm/+HDB63bc9N9sqAx5jnoiiNkR1lPmWX3N8DS0hLdunUDALELopJy1sMyZcoYvKEL6Sdf3y1FixYVZ6p48OABxowZI842qKRQKDBjxgz4+voCyOh3nF9jGiUnJ6uVNSuqN77qfnkVERGBL7/8Unw9ceJEjYeqalBLJpNh9OjR8PLygqurqzj96Jo1axAVFYV79+5hxowZ2L59OweUJyIioo+eVCrFgAEDTF0MonzXsmVLtGzZUuf2J0+eiD+UV6pUCXZ2drk+lpOTk7gcHx+f4/3j4uKwZMkSABkzCarOwqgcI6xbt24aA3t3794dhw4dQkhISLazN2am+p0rOTk5RzPYWVlZIT4+XmeQKjPl5BTsUZM7qtft3r172X53NwRPT08cPHhQrQtiVFQUAgICAGRMEMDv26aRr0EtFxcX7Ny5EyNHjkRERATu37+PsWPHqgWFZsyYgXPnzgHI+FVh69atWTZXNSTV/rz6RGu17ZcX0dHRGDNmjNgsslWrVhg+fLhGOuXUpUWLFsW2bdvE6VsBoFSpUhgwYADatm2LgQMH4vXr17h27RpOnz5t0uaQz549y/JNbm1tLY5TprqPPrMRlS5dWu0PVnp6Oh48eKBXuapWrZrlH6yHDx9qfUhKpVLUrVtXbV1oaKhereIcHBxQsWJFtXWPHj0SZ8zISvny5dU+JCQnJyMwMDDb/YCMWVxUpz+OiopCRESEzvTK8mi7v4ODg/X6gFKyZEmN5tvKGUCzU7lyZbUPU/Hx8eKsMtnJ/MwIDw/XazYqOzs7VK5cWW1dYGCgXoHrsmXLqs1oKpfL1aYjzoqbm5vaH+fo6GiEhoZmu59MJkOtWrXU1r18+VLtl0bV8ij/v3fvHpycnDSayP/33396jSNXoUIFtdaqiYmJev8KW6dOHbXx/iIjI8VnWlYKyjMiJiYGr169ynY/Yz4jMtelqvx8RigVK1ZMYxxKPiM0aXtGZFWXqvLjGZEZnxG5/xyRXX0CBedzREpKSrb70Mfjxo0b4nJeW5yojmOUm+DY8uXLERUVhYYNG2LIkCFq25TPBG0Bq7Jly4rLr1+/zlFQSzm7vXLfqlWr6kz74MEDSKVSuLq6wtbWFiVLlkR8fLxez+bo6Gjxb2ROykf/n2pdvXnzBq6urkY/ZtOmTVGmTBm8fv0a586dQ//+/eHj4yP+XezVq5fRy0Da5Xu7RldXV+zatQsjRoxAZGSkxh99Hx8fAICNjQ1+//13jfGkjEn1A6NcLs8ysJWamiouG6LJelRUFEaPHi3OOlKxYkWsWLFC67Si+/fvR0JCAuLj49Ue3KpKly6Nb7/9FlOmTAEAHDx40KRBrfT0dI0ukqq0BU7S0tL0+oCmLV999gOy78Mtl8u1BuO0rdO3vNrOVfXLTVYyf5kQBCHX56pQKPTaV9s1yo+6yXyu+pZXVznMsW600adu5HK5znPV5wtr5vLm5Fwzy0vdmOIZoe+55tczIvM6U9yH2iYl4TNCk7a6yZyPLvn9jFCmy4zPCE26Pkdkt39B+RxBpCQIAo4ePSq+zmtrRtXhYzL/GJCdgIAAHDp0CDKZDD/88IPW70OA9q57urqX6aNOnTriOGC3b9/OMqj1/fffiz8SXr16FfXq1UNwcDDi4uLw4MGDLAeLVw4qDgA1atTIdXk/Zu7u7rhy5QqAjGBsVkGta9euYf/+/Shfvjzat2+v1iAkJ6RSKXr27ImtW7fi2rVrSE5Ohre3NwCgSpUq4kyYlP9M0llXNbClHORN+bASBEEMaGU3u4ahqU7lnJKSondQK6/NHV+9eoVx48bh5cuXADJ+Ydi+fbvaL2mZ2draZjv4XseOHWFra4uEhATcvn0bCoXCZE0iLSwssjy2tj7XRYoUUWs1kFXememzHwCdfyRV89GWl7Zz0be82s5V3/JmPq5EIsn1uUql0iz3VX441naN8qNuMp9rduXNrhx5qZusArKq5VNlzLpRLVtmuupG9cuOTCbTea76fOHJXN6cnGtmeakbUzwj9D1XYz4jMtdlVsctaPdhZh/7MyJzPrqYom74jMjb54js9i8onyOIlPbv34+HDx8CAJo1a5annjLBwcE4fvy4+LpDhw5675uamor58+dDEAR8/vnnGi0wgYwf70NCQvDs2TONbarrctoKqk2bNpBKpVAoFDh06BD69eun9T3+8uVLcdbCTz75BADQqVMnnDhxAgCwZcsWrFq1Susx0tPT1Ybfycm1+ZioXndtPx506tQJv/32GwBg165d6N27t87n4Lp168Quqw0aNMhTuXr16oWtW7eKAa1bt24B4ADxpmayEegqVKggBraioqIA/P+A1ubNm7OdRtUYVGc9iImJybKprOrgcFkFn7Jz7949TJgwQexyqOyimd3si/qwsLBAxYoV8eDBA6SmpiImJiZPZc2LatWqZRuE07ZPblhYWBisy2rt2rX17k9fvnx5vWY80SZz9xB9FStWLNfn6uzsrNYVJrPg4GCkpaVp/fCc01/cVOW2vHZ2drnet1y5cjmexUYpc7cqfclkslyX18nJKdfv1cxdUpRU61NX/WXuCqMvGxubXJ9r5m4/OWGKZ4Sjo6Nat6qcMNQzQp+6VDLmMyIrfEZkTyaTwcnJSe+6VGWMZ4Q++IzImp2dXa7qU8kUnyPyYxwaMr07d+7onBBBEAQcPHhQnEHO2toaP/74o9Z8du3ahbp162b5Pe3hw4eYMmWK2LW1devWOep589tvv+H58+eoXLkyJk6cqDVNkyZNEBISgtOnT2P69OniMyI9PR179uwBkPF+Up2tXh/ly5dHly5dcPbsWdy5cwerV6/GjBkz1NIkJCRg3rx5YqBl6NChAIAuXbqgYsWKePnyJU6fPo1atWph/Pjxavump6dj0aJFYkCsefPmuW41ZO5Ux9SOjY3VaInl7u6OZs2a4caNG3j8+DHmz5+PxYsXawS2fv31VzGgValSpTwHEWvVqoVq1arh2bNn+OWXX8Qftdj10LRMOq1CxYoV1QJbVlZW2LRpExo3bmyS8lSqVElcjoiIyLIZ4+vXr8Xl3H4Q9vf3x9SpU8XxHqpVq4Zt27YZtG91bn8ZJcrLl1IqeFif5oN1aT5Yl+aF9UkF1caNG/Hvv/+ibdu2qFevHkqVKgW5XI6QkBD4+PiIk1AVK1YMa9asQYUKFbTmc+3aNfz444+oUKECPvnkE7i5ucHR0RFSqRRv3rzBtWvXcPHiRbFFp4uLizjYuz6CgoKwefNmSCQSLF68WGevmaFDh+L48eNITk7G8OHDMXr0aNjY2ODYsWPieHgjR47MySUSffvttwgICMC7d+/w22+/4fr16+jZsyeKFy+OFy9e4MCBA2JPo379+olBKQsLC6xYsQLDhg1DamoqVq5cCT8/P/To0QMlS5ZEREQE/vzzT3GcS0dHRyxdujRXZcyr69evi9enWbNm2L17t0nKkRXVgORPP/2EYcOGAcgYjF11fb9+/RATE4Njx47h9u3b6Nu3L1xdXfHmzRucPXsW//77L4CMFq4//vij1pa5OeXp6YnVq1eLY7u5u7vrfM8AheN6F3Ymnyu0UqVK+OOPPxAQEICaNWvm+pcmQ1DtN/306VM0a9ZMZ9qnT58CyGgaWb169Rwfy8/PD1OnThW7kdSvXx+bNm1C8eLFs9wvJCQEfn5+ePfuHRo1aoT27dtnmV75ZpPJZHBwcMhxOYmIiIjMiUKhwNWrV9XWNWrUKN9m2yYyhbi4OJw6dQqnTp3Sur1atWpYvHixXr1lXr16le2kKa1bt8aSJUv0/rFeEATMnz8fcrkcAwYMyHKgend3d0ydOhWrV6/Gq1evsHDhQrXtHTp00DrZlj5KlSqFPXv2YMKECXj58iVu376N27dva6Tr1auXxnHd3d2xfft2TJ8+HVFRUTr3rVWrFtauXatzbGTKmKnT0dERMTExCAgIQEBAACQSCdq3by8OGVS+fHns3bsXkydPxosXL/DixQv88ssvGnnZ2dlh6dKlBmsVpwxqqb4m0zJ5UAvIGGMrP2YsyE7Dhg0hk8kgl8tx/fp1MSKcWXp6utiMsWbNmmrdFvVx48YNTJs2TQxotWrVCuvWrVMb00uXN2/eiL94dOzYMcugVnBwsDhzVb169QwSmSYiIiIqzARBwPnz59XW1axZk0EtE0pPTxeHIzF3+ozBZ2jTpk1DvXr1cPPmTYSGhuLdu3eQSCQoUaIE6tSpgy5duqB79+5ah5xQ9dVXX6FDhw64d+8eHj9+jHfv3uH9+/eQy+WwtbWFi4sLGjZsiF69euV4sq8DBw7g1q1bKFmyJObOnZtt+okTJ8LNzQ07duzAw4cPIZfLUalSJfTt2xfDhw/P0/eeKlWq4NSpUzh06BC8vb0RGBiIxMREODg4oH79+hg0aBDatWundd8mTZrg7NmzOHDgAHx9ffHs2TMkJiaiVKlSqF69Ory8vNC5c2f2pslG8eLFsXPnTixfvhz37t1DUlISnJycEBERodYQpVq1ajh58iSOHTsmtjqMiYmBpaUlKlWqhLZt22LYsGG5Hk5BG1dXVzRs2BC3b9+GhYWFWusxMg2JkN30bx+ZcePGwd/fHzKZDD4+Plq7Fp44cQJz5swBAMycORNffPGF3vm/e/cOnp6e4pTNHTp0wK+//qr3DIopKSlo2bIlEhISsiwjAMydO1ccpHHhwoUYPHiw3uXMq4SEBLEpM5Axs0dOx9TKb4mJiVixYoXautmzZ+s9phYREREVfOnp6eL4QUpTpkxRmyL+Y2Hoz2tPnz4VxxXTpydDZGQkkpKScj07ZmElk8lgbW1t0CFHiIgKi5z+rchOgWipVZCMGjUK/v7+kMvlmDlzJrZs2aL2x/3Zs2fi4Ik2NjY5nu528eLFYkDL3d0da9as0TugBWQM6Dlw4EBs27YNcrkcs2bNwu+//67xAWTr1q1iQKtSpUr49NNPc1ROosDAQMjlcshkslwPhEwFB+vTfLAuzQfr0rywPnNOKpXq1VPBHHEmSiIiw2BQK5PWrVujW7duOHv2LG7fvo0+ffpgyJAhKFu2LB4+fIh9+/YhMTERQEZLqMyzD2U1EFxQUBC8vb3F1927d4e/v3+2ZXJ0dFTrAzxp0iT8/fffCA4Oxr///ouePXti0KBBqFSpEt6/f4/Tp08jICAAQEbgbcWKFZzdhnIsOTkZcrncJM3kyfBYn+aDdWk+WJemoW08VEN0BWJ95pwhuwQREdHHiUEtLZYuXYrExERcunQJoaGhWL58udp2iUSCKVOm5Lg7359//gnV3p7Lli3Ta7/MwTE7Ozts374dU6ZMwX///YfXr19jzZo1GvuVLVsWK1euRL169XJUzo9VkSJFNAYQzG5sASIiIipcpFIphg4daupiEBERkQHwG7sWVlZW2LJlC06ePIk///wTjx49Qnx8PBwdHdG4cWOMHDkSjRs3znG+yilcDaFs2bI4cOAATp06hb/++gsPHjxAXFwcbG1tUalSJXTt2hWDBg3ieFA5ULRoUfTs2dPUxSAiIiIiIiIiPTCopYNEIkHv3r3Ru3fvHO3XvHlztQE3VW3atMkQRRMVKVIEXl5e8PLyMmi+REREREREREQFHUcoJCIiIiIiIiKiQodBLSIiIiIiIiIiKnQY1CIiIiIiIiIiokKHY2oRERER0UdDEATcvHlTbZ27uzuKFStmohIRERFRbjGoRfR/kpOTsX//frV1gwcP5odcIiIiMyIIAs6cOaO2rmrVqvx7T0REVAgxqEUfldGjR+PVq1eQSCQ4f/682rb09HS8fPlSY93HqmzZslAoFJBK2UvZHLA+zQfr0nywLs0L65OIiCj/MahFH5XXr18jLCwMEonE1EUp8JydnU1dBDIg1qf5YF2aD9aleWF9EhER5T8GteijUqpUKaSkpJi6GERERGRCFStWVHtdpAg/EhuChYUF0tLSkJ6eDkEQ+CMiERGpEQRB7A1lYWFhkDz5F5w+Kjt37jR1EYiIiMiEpFIpRo0aZepimCVLS0ukpKRAEAQkJSXBxsbG1EUiIqICJCkpCYIgAMj4m2EI7PRPRFrJ5XKkpqZCLpebuihkAKxP88G6NB+sS/PC+gTs7e3F5ejoaPGLCxERkSAIiI6OFl+r/s3IC7bUIrOSmJio8avg69ev8ebNG7i7u5uoVIXTo0ePIJfLIZPJeO3MAOvTfLAuzQfr0rywPgFbW1tIJBIIgoCEhASEhobCyckJ1tbW7IpIRPSRUrbejY6ORkJCAgBAIpHA1tbWIPmbLKgVFxeHgIAA3L17Fy9evEBERATi4+ORmpqKYsWKwdbWFuXLl0flypXRoEEDNG7cGFZWVqYqLhVwR44cwaZNm1C3bl388ssvatv8/PywePFiuLq6Ys6cOejSpYuJSklERERkvqRSKVxcXBAWFiYGthISEiCRSAw2dgoRERUuynEWlSQSCVxcXAw2W3C+BrVSU1Nx+vRpHDt2DLdu3RIHCNPl3r174rKFhQVat26N3r17o0uXLpDJZMYuLhUSP/zwA/bu3QtBEGBtba2xPTQ0FIIg4NWrV5g6dSq+/PJLjqVBREREZAR2dnZqgS0g41f6tLQ0E5eMiIhMTRnQsrOzM1ie+RLUSkxMxI4dO7Br1y7ExcUBQI772KelpeHixYu4ePEiSpYsiREjRmDYsGEcgPIj5+/vjz179gAA6tati88//1wjzf/+9z80a9YMGzZswL1797B8+XI0btwY9erVy+/iEhEREZk9Ozs7uLm5ISEhAXFxcUhNTc32x2wiIjJPFhYWsLS0hL29PWxtbQ3WQkvJqEEtQRDwxx9/4Ndff0VcXJxaIKtq1aqoWbMmatSogSpVqsDR0RG2trawsbFBSkoKkpKSEBERgdDQUDx8+BD37t1DSEgIACAqKgqrVq3Cjh07MGHCBAwfPtzgF4YKhz/++AMA0KpVK/z2229aW/BZWVmhffv2aNOmDUaNGoWbN29i586dWLFiRX4Xl4iIiExMEATcvXtXbV3NmjVRrFgxE5XIPEmlUtjb2xtsIGAiIiJtjBbUevLkCb7++ms8evQIgiBAIpGgZcuW8PT0RKtWrVC6dOls88g8yGZISAguXLiAkydP4t69e4iOjsZPP/2Eo0ePYvHixWx58xG6d+8eJBIJpk6dmm2XVAsLC/zvf//DyJEjcePGjXwqIRERERUkgiDg+PHjautcXV0Z1CIiIiqEjBLU2rZtG1avXo3U1FRYW1tj6NChGDJkCFxcXPKUr6urK0aMGIERI0YgKCgIO3fuxIkTJ/D48WMMGTIE06ZN09r9jMxXbGwsAKBixYp6pa9WrRoA4P3790YrExEREREREREZn1H67C1btgwKhQLDhw/H+fPnMXv27DwHtDKrWrUqFi1ahPPnz4vdDzPPekfmz9nZGQDw+vVrvdIrg1mGmj6UiIiIiIiIiEzDKEGttm3b4uTJk/j222/h5ORkjEOISpYsiW+//RYnT55Eu3btjHosKnhq1KgBADh48KBe6Y8dOwYAqFWrltHKRERERAVbuXLl1P5ZWFiYukhERESUC0bpfrh582ZjZJulihUr4rfffsv345Jp9e3bFxcuXMC+ffvg6uqK0aNH60x78OBBbNu2DRKJBL1799bYbmFhgdq1a2usIyIiIvMhlUo5XAUREZGZkAiqUxISGUhCQgKePHkivq5Ro4ZRuvwJgoBx48bh8uXLkEgkcHV1Rdu2bVG5cmUUK1YMycnJePXqFS5duoTnz59DEAQ0btwYe/bsgUQiMXh5zElycrI4yQMHzy38WJ/mg3VpPliX5qUw1md+fV4jIiIyFga1yCjy80NSXFwcZsyYgcuXLwOA1mCV8jZv3rw51qxZA0dHR6OUhYiIiKiwYFCLiIgKO6N0PyTKT/b29ti6dSvOnz+PkydP4tq1a+KsiABgY2ODhg0bom/fvvDw8GALLSIiIiIiIiIzUGiCWn/++ae47OXlZbJyUMHVuXNndO7cGQCQkpKCmJgYWFtbw87OzsQlIyIiIiIiIiJDKzRBra+++kpsYcOgFmmTkpKCt2/fwsXFBUWLFkXp0qUBAEFBQXjy5Anat28Pa2trE5ey8IiOjoZCoYBUKjX6LKZkfKxP88G6NB+sS/PC+iQiIsp/hSaoBUAcfJNIVXp6OtavX49du3ahZcuW+PXXX9W2X7lyBUuWLIG1tTX+97//YdSoUaYpaCETGhoKuVwOmUzGD+dmgPVpPliX5oN1aRqCIODhw4dq66pVq4aiRYvmKV/WJxERUf4rVEEtIm1mzJiBc+fOQRAEPH/+XGP727dvIQgCEhMTsXTpUkRERODrr7/WSJecnIyTJ0+qrevVq1ehmcGIiIiIsicIAg4fPqy2bsqUKXkOahEREVH+k5q6APp6/PgxHj9+jEePHpm6KFSA/PXXX/Dx8YEgCOjUqROWLFmikWbGjBk4deoUunTpAkEQsGvXLly9elUjXXp6Oh4+fKj2Lz09PT9Og4iIiIiIiIhyyChBrXv37iE8PNwYWROpOXz4MCQSCXr27In169fD3d1da7pq1aph7dq16Nq1KwRBwJ49e/K5pERERERERERkSEYJas2ZMwedOnXC8uXL1daHh4cjPDwciYmJxjgsfYSUY2J8/vnneqUfN24cAOD27dtGKxMREREVbM7Ozmr/LCwsTF0kIiIiygWjjKn15s0bAIC9vb3a+o4dO0IikWDu3LkYPXq0MQ5NH5mkpCQAQNmyZfVKX6FCBQBAXFyc0cpEREREBZdUKsWkSZNMXQwiIiIyAKO01JLL5QD+f8CByFhKly4NAHj58qVe6V+/fg0AcHR0NFaRiIiIiIiIiCgfGCWopZzG2NfXl4EtMqq6desCALZv365XeuVYWvXq1TNamYiIiIiIiIjI+IzS/dDd3R3nz59HUFAQOnTogMqVK8PS0lLcvm/fPvz999+5ylsikWDnzp2GKioVcgMGDIC3tze8vb1RokQJzJo1C1ZWVhrpUlNTsX79enFg+f79+5ugtERERERERERkKEYJan322Wfw8/ODIAiIi4vD3bt3xW2CICAkJAQhISE5zlcQBEgkEkMWlQq5Vq1awcvLC3/++Sf27t2LY8eOoVmzZqhUqRKsrKzw4cMHhISE4ObNm+I4Wl26dEGnTp1MXPKCTyaTqf1PhRvr03ywLs0H69K8sD6JiIjyn1GCWk2bNsXKlSuxfPlyhIeHa2wXBMEYh6WP1KJFi2BpaYlDhw4hMTERFy5c0EijvOe8vLywcOHCfC5h4VSrVi1TF4EMiPVpPliX5oN1aV5Yn0RERPnPKEEtAPDw8ICHhwfi4uKQmJiI9PR0dO7cGRKJBF988QUGDBhgrEPTR8bS0hKLFi3CoEGD8Ndff+HatWuIjIxEbGwsrKysUKZMGTRq1Aj9+vWDu7u7qYtLREREJiQIAp4+faq2rlKlSmpDZRAREVHhYLSglpK9vT3s7e3V1jk4OMDFxcXYh6aPTJ06dVCnTh1TF4OIiIgKMEEQsG/fPrV1U6ZMQYkSJUxUIiIiIsotowS17t27h5IlS6JcuXJq65s2bQoAKFOmjDEOS0REREREREREHwmjBLXmzJmDV69eYcyYMZgzZ464funSpQAyWmoRmUpUVBR8fHwwbNgwUxelQHv58iXS0tJQpEgRVKxY0dTFoTxifZoP1qX5YF2aF9YnERFR/jNKUOvNmzcAoNHtsGPHjpBKpZgzZw5Gjx5tjEPTRygxMRE7d+6Ev78/oqOjkZ6erjEZgSAISE1NRWJiIpKTkyGRSBjUykZsbCzkcjlncTITrE/zwbo0H6xL08n8A6tUKs1znqxPIiKi/GeUoJZcLgcAJCUlaWzjzIdkSB8+fMDQoUMRGBgIQPf9JZFI1LZp+/BqYWGh8cuqhYWFAUtLREREpiaVSjF9+nRTF4OIiIgMwChBLScnJ0RFRcHX1xdffPEFrK2tjXEYIuzfvx9PnjwBAJQuXRr16tXD27dvcefOHdSuXRtVq1bF+/fvcefOHSQkJEAikWDw4MEYP368Rl7FihXDqFGj8vkMiIiIiIiIiCg3jBLUcnd3x/nz5xEUFIQOHTqgcuXKatMk79u3D3///Xeu8pZIJNi5c6ehikqFnK+vLwCgYcOG2L59O4oVK4b79+9jwIABKFWqFJYvXw4ASE5OxsKFC3Hs2DH4+flh5syZpiw2EREREREREeWRUYJan332Gfz8/CAIAuLi4nD37l1xmyAICAkJQUhISI7zFQQBEonEkEWlQi4oKAgSiQQTJ05EsWLFAAC1a9dG0aJFERAQIKYrVqwYlixZgpcvX+L27ds4cOAAxo0bZ6piExEREREREVEe5X1UTC2aNm2KlStXomzZshAEQfynpLouJ/+IMouPjwcAVK9eXVxnYWGBypUrIzExES9evBDXSyQSjB49GoIgiC28iIiIiIiIiKhwMkpLLQDw8PCAh4cH4uLikJiYiPT0dHTu3BkSiQRffPEFBgwYYKxD00fEysoKCQkJKFq0qNr6ihUr4smTJwgKCkKlSpXE9fXq1QMABAcH52cxiYiIiIiIiMjAjBbUUrK3t4e9vb3aOgcHB7i4uBj70PQRKFWqFBISEhAaGgonJydxfYUKFQAAT58+RadOncT1ytkMExIS8regREREVCAIgoCXL1+qrXNxcYFMJjNRiYiIiCi3jB7UUtW0aVMAQJkyZfLzsGTGGjdujKCgIOzatQsrVqwQ11epUgWCIODq1auYMGGCuP7+/fsAII6/pSolJQXnz59XW9e5c2eNVmBERERUeAmCoDHp0JQpU1CiRAkTlYiIiIhyK1+DWrt3787Pw9FHoG/fvjh48CD++usvxMTE4IsvvkDTpk3RvHlzSCQS3LhxAzt37sSgQYPw7Nkz/Pzzz5BIJGpjcCmlpaWpDS4PAO3bt/9og1pOTk5IS0tDkSL5+pggI2F9mg/WpflgXZoX1icREVH+M8pf3fDwcHG5XLlyWtfnhWqe9HFr0KABBgwYgEOHDuHy5csoXrw4mjZtinLlyqFLly7w8fHBzz//jJ9//hnA/59Bs2/fviYuecFXvnx5UxeBDIj1aT5Yl+aDdWleWJ9ERET5zyhBrY4dO0IikUAikeDhw4ca6/Mic55ECxcuRKVKlbB9+3a4urqK6xcvXoywsDA8ePBALX2PHj04UQEREdFHzNraWu11Xj+fEhERkWkYrX20IAg5Wk+UW1KpFGPHjsWYMWOQmJgorndwcMCBAwfg7e2N27dvw8LCAq1bt0bbtm1NWFoiIiIyJalUijlz5pi6GERERGQARglqKQeE13d9QSQIAk6dOoUjR47g0aNHSEpKgrOzM5o2bYphw4bB3d09z/n7+vri+PHjuHfvHqKjoyGTyeDi4oJWrVph5MiRenWzDAwMxPbt23H9+nW8efMGdnZ2qFq1Kry8vPDpp5+Ks/19DCQSCWxtbdXWFSlSBJ6envD09DRRqYiIiIiIiIjIGCQCm05pSE5OxrRp03DhwgWt2y0sLDB9+nSMHz8+V/nHxsZixowZuHz5ss40lpaWWLx4Mby8vHSmOXToEBYuXAi5XK51e5MmTbB+/Xo4Ojrmqpx5kZCQgCdPnoiva9SooRFwKmgSExPVZlAEgNmzZ8PGxsZEJTKt//77D3K5HDKZDHXr1jV1cSiPWJ/mg3VpPliX5qUw1mdh/LxGRESkitOzaDFv3jwxoFW1alUMHDgQJUuWxIMHD7B//34kJSVh5cqVKF26NPr06ZOjvBUKBSZPnoybN28CyBj0vl+/fqhSpQoSExNx6dIl+Pj4IDU1FV999RXs7e3RsWNHjXz8/f0xf/58CIIAKysrDB48GHXr1sW7d+9w+PBhBAYGIiAgADNnzsSWLVsglUrzfF3o46JQKMR/VPixPs0H69J8sC7NC+uTiIgo/zGolcnly5dx6tQpAECLFi2wefNmFC1aFADg6emJ/v37Y+jQoYiJicGSJUvQqVOnHP2idezYMTGg1aJFC2zcuFFtsNIBAwbAz88P//vf/5CWlobvv/8erVq1EssAAKmpqfj+++8hCAKsra2xZ88e1KlTR9w+ZMgQzJw5E+fOncPly5dx+vRpdr8jIiIiIiIiIrPC5juZbNu2DUDGWEw//PCDWjAJyGi5NX/+fABATEwMDh06lKP8Dxw4AAAoWrQoVqxYoTH7DpAxS+Tw4cMBAJGRkfjnn3/Utvv4+CA0NBQAMG7cOLWAFpDRdXHp0qVit8NNmzblqIxERERERERERAWdUVpqhYeHGyNbkT4DqOdGTEwMrly5AgBo06YNXF1dtabr0aMHlixZgnfv3sHb2xujR4/WK/+EhATcu3cPANCyZUs4OzvrTNu9e3fs2LEDAHD37l106dJF3Hb69GkAGQOjDxkyROv+NjY26Nu3L7Zt24bAwEAEBwejcuXKepWTiIiIyFwJgqDxWbV06dIoUoQdGIiIiAobo/z17tixIyQSiTGyhkQiwcOHD42Sd0BAgDgOQosWLXSmk0qlaNq0Kby9vXH37l3ExsbCwcEh2/zfv3+PevXqISIiAlWqVMkyrWp+cXFxatuU3Rdr1KgBJycnnXm0aNFCbHn2zz//MKhFREREHz1BELBlyxa1dVOmTEGJEiVMVCIiIiLKLaP9JFUYJ1V8+vSpuOzm5pZl2mrVqgHIOM/AwEA0bdo02/xdXV317q4YFBQkLqvOXhgZGSkGuapXr55lHlWrVhWXHz9+rNdxiYiIiIiIiIgKA6MEtbIL8AQGBiIuLg6CIEAqlaJ27dpwc3ND8eLFIZPJkJCQgKCgINy5cwcfPnyARCJBxYoV0bZtW2MUVxQWFiYuu7i4ZJm2TJkyavvpE9TKiSNHjojL9evXF5eVY2kB2ZexdOnSkEqlUCgURu8Saipz5syBtbU1Ro4cqRbEIyIiIiIiIiLzZpSg1u7du3VuO3jwoDhzX9++fTFt2jSULl1aa9qEhAT8/vvv+P333/Hy5UsUL14cEydONEaRAQDR0dHicvHixbNMq9p6KiYmxqDl8Pf3x99//w0AKFGiBFq1aiVue//+vd5llMlksLa2RkJCgsHLWFBcvXoV7969Q/v27RnUIiIiIr3IZDJTF4GIiIgMIF9HxHz69CkWL14MQRAwefJk/O9//8syva2tLWbMmIFSpUph8eLFWLt2LZo0aWLwVlFKycnJ4nLmWQ8zs7S01LpfXkVERODLL78UX0+cOBHFihUTX3/48EHvMirTJCQkGLSMBUlsbCwA9dZsuSWVSjUG75dKOUEoERGROZFKpfjmm29MXQwiIiIygHwNau3YsQNyuRxVqlTBlClT9N5v2LBhOHLkCB4+fIidO3caLaiVlpYmLqsGrbRR3a66X15ER0djzJgxePfuHQCgVatWGD58uFqa9PR0vcuomsZQZcytZ8+eZRkgsra2FscpU90nKSkpy3zLli2LkJAQPHnyBJ988gmAjGv04MEDvcpVtWpV2NjYAACsrKwwdOhQvHr1StyuOs6aKqlUirp166qtCw0NVWvtp4uDgwMqVqyotu7Ro0eQy+XZ7lu+fHm1yQGSk5MRGBiY7X4AUKtWLbVfpqOiohAREaEzvUKhgIWFBSwsLDS2BQcHIz4+PttjlixZUmO2UuUMoNmpXLky7OzsxNfx8fEIDg7Wa193d3e11+Hh4Xj79m22+9nZ2WlMqBAYGKhXULhs2bJqQVG5XI5Hjx7pVV43Nze14HV0dLRaV2NdZDIZatWqpbbu5cuXYrBXlbI+FQoF7t27BycnJ5QvX14tzX///SdOlpGVChUqqLVWTUxMVBsHMCt16tRRu6ciIyMRGRmZ7X65fUYAGV2xVVsE5/YZAWS0zFV9RuhizGdE5rpUlZ/PCKVixYppjEPJZ4Qmbc+IrOpSVX48IzLjMyLnz4gKFSogISEBb9++zfY+LiifI1JSUrLdh4iIqCDL16DW1atXIZFI0L59+xzPjtimTRs8fPgQd+/eNVLpoPaBUS6XZxk0Sk1NFZf1CS5lJyoqCqNHj8bz588BABUrVsSKFSs0rpNq6yx9Prwoy2nqZvbp6elqAbnMtAXd0tLSsj3HoUOHYsWKFfjmm2/w008/ibNW6nNtAM0JDQRB0GtfbQE6fcqrTJeZXC7Xa9/MXyb0La8ybea89NlX272j77lqq3N9y5v5XPUtr65ymGPdaKNP3aSnp+s8V32+sOb2faOrLLmtm/y4Dwv6MyLzuZniPtQW+OYzQpO2ulE9/6z+Rub3M0KZLjM+IzSpnqujoyMEQUBkZGSW9QkUnM8RREREhV2+BrWioqIAAPb29jneVxk4MubYUNbW1uJySkqK3kEtfboBZuXVq1cYN24cXr58CSDj19zt27er/ZKmq4zZUaZRDdiZgoWFRZYttYoU0bwVixQpkm0wLiYmBt26dcNff/2F0aNHw8HBATVr1oRUKs022Dhp0iSNoKFEItErAKjtXPQprzJdZvoGHTMfV9/yKtNmzkuffbWl0fdctX3Zze256lteXeXIS91k9+VEWT5VBb1udJ2rPl94cvu+0SYvdZMf9yGfEXxGqOIzgs+IzAr7M4KIiKiwkwiZf04zok8++QQxMTHw8PDAL7/8kqN9x48fj3/++QelSpXCP//8Y5Tyfffddzhw4AAA4Pz583B1ddWZ9tChQ/j2228BACtWrECvXr1ydcx79+5hwoQJYpdDFxcX7Ny5U+exb9++jcGDBwMAJk+ejKlTp+rMWy6Xw93dHQqFAq1atcK2bdtyVcbcSEhIwJMnT8TXNWrUgK2trcGPU7NmTfEDpfJWzq4VoCAIkEgkencNIyIiIjJH+fV5jYiIyFjytaVWnTp1cOnSJfj6+uLFixeoVKmSXvvdvHkT/v7+kEgkaNSokdHKp1qeiIiILINar1+/FpczjweiL39/f0ydOlUc76FatWrYtm2bztkgtZUxK5GRkeIvqrktY0FnrudVECQmJooBQNUxhahwYn2aD9al+WBdmhfWJxERUf7L16CWl5cXLl26hNTUVIwbNw6//fabxqCemV29ehXTp08XPyQMGjTIaOWrWrWquPz06VM0a9ZMZ1rlAOISiQTVq1fP8bH8/PwwdepUcfyD+vXrY9OmTShevHiW+xUvXhwlSpTAu3fvdA5irvTs2TNxOfMgvubCz8/P1EUwW0FBQZDL5ZDJZBqDKlPhw/o0H6xL88G6NA1BEMQhMZScnJy0duvLCdYnERFR/svXoFbPnj2xf/9+BAQEICwsDJ9++ik6duyItm3bomrVquIsRrGxsXjy5AnOnz+Pq1evQqFQQCKRwMvLS5zhzhgaNmwImUwGuVyO69evY9iwYVrTpaen4+bNmwAyur/ldIywGzduYNq0aWJAq1WrVli3bp3aeFlZadq0Kby9vfHo0SPEx8erzf6k6tq1a+JyVgE6ypCamoorV66orWvZsqVBJgIgIiKigkEQBGzcuFFt3ZQpU1CiRAkTlYiIiIhyK1+DWhKJBBs2bMDQoUPx7NkzyOVy+Pj4wMfHR+c+ynGS2rRpgx9++MGo5bO3t0eLFi3g7+8PPz8/hIeHa+3e9tdff4lTLnt4eOToGO/evcO0adPEgeY7dOiAX3/9NUeBk27dusHb2xtpaWnYt28fxo8fr5EmISEBx44dA5Ax7XnNmjVzVM7CShAEPH78GOHh4UhKSoKVlRVcXFzg5uamdSBYVXK5HBcvXlRb17RpUwa1iIiIiIiIiAqgfA1qARmBo0OHDmHjxo3YsWOH2iyC2tjZ2WH69OkYOnRotgOAG8KoUaPg7+8PuVyOmTNnYsuWLWoDZj579gw//vgjAMDGxgYDBgzIUf6LFy8WA2Lu7u5Ys2ZNjoMmnTt3Rvny5REaGor169ejUaNGaNKkibg9NTUVc+fOFWeKHD16dI7yL4wSExOxceNGHDx4EPHx8RrbbWxs4OXlhRkzZnCcCyIiIiIiIiIzkO9BLQCwsrLCzJkzMXbsWPj7++Py5csIDw/Hu3fvIJFIULJkSbi4uKB9+/Zo06YNihYtmm9la926Nbp164azZ8/i9u3b6NOnD4YMGYKyZcvi4cOH2LdvHxITEwEAc+fOhZOTk9r+169fx8iRIwFkdPnbvXu3uC0oKAje3t7i6+7du8Pf3z/bMjk6OqoFrSwtLTFv3jxMmjQJycnJGDVqFAYMGIBGjRohJiYGBw8eRGBgIACgUaNG6N+/f+4vSCEQHh6OsWPH4sWLF9A1mWdCQgL27t0Lf39/bN26FeXLl8/nUhIRERERERGRIZkkqKXk4OAAT09PeHp6mrIYGpYuXYrExERcunQJoaGhWL58udp2iUSCKVOmYPDgwTnK988//1QLuixbtkyv/TIHxwCgY8eOWLBgAX788UfI5XL88ccf+OOPP9TS1KtXDxs2bMi2211hlpaWhgkTJiA4OBhARiu2Hj16oEqVKrC2tkZiYiKePXsGb29v+Pr64tWrV5g+fTr279+f5wFhiYiIqPCRSqVYsGCBqYtBREREBsBv9VpYWVlhy5YtOHnyJP78809xQHZHR0c0btwYI0eOROPGjXOcr7L1lKEMGTIETZo0wc6dO3HlyhVERUVBJpPBzc0NvXr1wsCBAyGTyQx6zILm8OHDCAwMRJEiRfDLL7+ga9euGmlq1aqFXr164fz585g+fToePHiA06dPo3fv3iYoMREREREREREZglGCWt999x1mzpwJR0dHY2SvVWxsLFatWoXvv//eIPlJJBL07t07x4GP5s2b48mTJ1q3bdq0yRBFU1O9enWjD6BfkJ0+fRoSiQRjx47VGtBS1blzZ4wbNw6//fYbjh8/zqAWERERERERUSEmNUamBw8eRLdu3bBt27ZsB4LPq9TUVGzfvh3dunXDgQMHjHosKniUrd/69OmjV3plumfPnhmtTERERERERERkfEYJag0fPhxxcXFYvnw5unbtij/++ANJSUkGPUZMTAw2bdqETp06YdmyZYiJicGgQYMMegwq+BISEgAAJUuW1Cu9cmD/9+/fG61MRERERERERGR8Rul++O2336Jdu3b49ttv8fr1ayxevBgrVqxAz5490aNHDzRp0iRXYz0lJyfj0qVLOHnyJC5cuIDU1FQIgoCSJUtiwYIF6NKlixHOhgqy4sWL4+3bt3jx4gXc3d2zTf/y5UsAGZMUUNbq1Klj6iKQAbE+zQfr0nywLs0L65OIiCj/GW2g+DZt2sDb2xtr167Frl27kJSUhMOHD+Pw4cOwsrJCkyZNULNmTbi5uaFKlSpwcHCAnZ0drK2tkZqaisTERLx+/RohISF49OgR7t69izt37kAulwMABEGATCbD4MGDMW3aNNja2hrrVKgAq1+/Pnx9fbFz506sXLky2/Q7duwQ96OsmfOsmR8j1qf5YF2aD9alaQiCgNjYWLV1dnZ2ea4P1icREVH+M+rsh1ZWVpg79/+xd+fhTVTrH8C/0zbddwpl34rsoCxVFEFuwYsouwJlFa6IChUEEUFwBVFUFH8KqCCCqGwiiKDsiOyCAlUKlCJbWyjdku7NNr8/ejM3aZI2bZPJwvfzPH1IJmdm3nDSdPLmnPfMwujRo7F06VJs27YNWq0WRUVFOHToEA4dOlSl44miCADw9fXFwIED8eyzz6Jhw4aOCJ3cxBNPPIG9e/fi559/Rr169TB9+nSLF5U6nQ4ffvihVFh+6NChToiWiIiInE0URXz88ccm2xISElCrVi0nRURERETV5dCklkGDBg2wcOFCTJ8+HRs3bsSPP/6I69evV/k4MTExGDRoEB5//HFeeBAAoFevXoiLi8P+/fvx5ZdfYtu2bYiLi0NMTAwCAwNRVFSEy5cvY//+/cjMzAQAxMXFIS4uzsmRExEREREREVFNyJLUMqhduzamTJmCKVOmICUlBSdOnEBiYiKuXLmC9PR0FBQUQK1Ww8/PD8HBwWjQoAGaNWuGe+65B/fddx+aNm0qZ7jkJj788ENMnz4dBw4cwO3bty2ugmkY5RcXF4f3339f7hDdUkZGBnQ6Hby9vREdHe3scKiG2J+eg33pOdiXnoX9SUREJD9Zk1rGWrRogRYtWmD06NHOCoE8hL+/P5YvX44DBw5g06ZNOHnyJPLz86XHQ0ND0blzZ4wYMQL/+te/nBipe8nIyIBGo4FCoeDFuQdgf3oO9qXnYF96FvYnERGR/JyW1CKyt3/9619S0qqwsBAFBQUICgqyeREBQRAQGBhoto2IiIg8hyAImDNnjsm26qzKTURERM7HpBa5tU8//RQA8Oyzz8LH538v56CgIAQFBZm1LygowNtvv42ioiKzIrGBgYF46aWXHBswEREROZUgCPD19XV2GERERGQHTGqRW/v0008hCAKeeuopk6SWNaIoYsuWLWYjsoiIiIiIiIjIvTCpRW5BFEXcvHnT6uM3b96Ev79/hcfQaDTYvn07AE4rJCIiIiIiInJ3TGqRWxAEAfPmzcOxY8fMtgPAY489VqVjdejQwa7xEREREREREZG8vJwdAJGtXn/9dSgUCoiiWKOfunXr4pVXXnH20yEiIiIiIiKiGuBILXIbTZo0waZNm6BSqQCUTUl88sknIQgCPv/88wqnHwqCAG9vb4SHh6NJkybw9vaWK2wiIiJyIaIooqioyGRbQEAAvLz4XS8REZG7YVKL3EqrVq0sbo+NjUVAQECNjq3RaHD69GmTbZ06deIy30RERB5EFEV88MEHJtsSEhJQq1YtJ0VERERE1cWkFrm1ffv2AUCFCS21Wg0fH59Kv4FVq9X45ZdfTLa1a9fujk1qBQYGQqvV2rSqJLk+9qfnYF96DvalZ2F/EhERyY9/dcmtNWjQAABw+fJlfPXVVwgPD8fMmTNN2mzfvh0LFizAI488goSEBNSvX98ZobqdFi1aODsEsiP2p+dgX3oO9qVnYX8SERHJj8UDyO1t374dQ4YMwebNm3Hq1Cmzx2/cuIGioiJs2bIFAwYMwO+//+6EKImIiIiIiIjInlxypJYoivjjjz+QkZGB6Oho3H333XfsFDCq2OXLlzFnzhxoNBoEBwejc+fOZm3+/e9/o6SkBJs3b0ZeXh6ef/55bNu2DdHR0U6ImIiIiJxJEASzUd01rctJREREzuGUpJZWq8WOHTvw119/Yd68eSaPJSUlYdq0aUhNTZW21alTB7Nnz0a/fv3kDpVc3JdffgmNRoMmTZpg1apV0nREY23atEGbNm0wduxYjBs3Dmlpafjqq68we/ZsJ0RMREREziQIAoKCgpwdBhEREdmB7NMPb9y4gUcffRSzZ8/Gd999B7VaLT2Wm5uLCRMm4MaNGxBFUfrJyMjAiy++iB9++EHucMnFnThxAoIgYNasWRYTWsbq16+PGTNmQBRFHDhwQKYI3VdKSgouXLiAlJQUZ4dCdsD+9BzsS8/BvvQs7E8iIiL5yZrU0uv1mDRpEq5fvy4lrG7cuCE9vmrVKqhUKgiCAB8fH/Ts2RPt27eX9l24cCGysrLkDJlc3O3btwEAnTp1sql9ly5dAAA3b950WEyeoqioCIWFhSgqKnJ2KGQH7E/Pwb70HOxLz8L+JCIikp+sSa0dO3bgypUrEAQBtWvXxsKFC9GwYUPp8W3btkm3P/zwQ3zxxRf4/vvvpWlihYWFHK1FJkJCQgCUvTZsIYoiAMDX19dhMRERERERERGR48ma1DJM+VIoFPjuu+8wZMgQ+Pn5AQASExORkZEBQRDQrFkz/Pvf/5b2Gz9+PDp27AhRFHHw4EE5QyYX16RJEwDA3r17bWpveA0a9iMiIiIiIiIi9yRrUisxMRGCIODhhx9Go0aNTB777bffpNv/+te/zPaNjY0FAFy/ft2xQZJbeeyxxyCKIj799FOcPXu2wrYXL17EkiVLpNcgERER3XlEUYRarTb5MYzkJiIiIvci6+qHOTk5AIBmzZqZPXb48GHp9gMPPGD2eFhYGICyYvJEBkOGDMGaNWtw48YNjB49GoMGDUKvXr3QtGlT+Pv7o6SkBNevX8ehQ4ewZcsWlJaWIjo6GmPHjnV26EREROQEoijinXfeMdmWkJCAWrVqOSkiIiIiqi5Zk1parRZA2fRDY/n5+fjrr7/KAvLxkYp5G8vMzAQAaboiEQAEBQXh008/xVNPPYWsrCz88MMPVuuuiaKIWrVq4fPPP+dS3kRERERERERuTtbph1FRUQBgsuIhABw5cgQ6nQ6CIKBz587w9/c329eQ9IqOjnZ8oORWWrVqhZ9//hljxoxBrVq1pJU1jX8CAgIQHx+PH3/8Ea1bt3Z2yERERERERERUQ7KO1OrQoQPS09Oxf/9+5OfnSyvXbdq0SWoTFxdntt9vv/2GM2fOQBAEdOjQQbZ4yX2EhoZi3rx5mDt3LpKTk5GRkQGVSoWAgADUq1cPrVu3hre3t7PDJCIiIiIiIiI7kTWp1a9fP+zatQu5ubkYOXIkhg8fjjNnzuDIkSMAAG9vbzz66KNS+9u3b2P79u34+OOPpW2PPfaYnCGTmxEEAa1atUKrVq2cHQoRERG5IEEQMG3aNJNthi9aiYiIyL3ImtTq27cv7rnnHpw5cwaXL1+WinQKggAAGDduHGrXri2179+/P/Lz86UVaR588EH07NlTzpDpDhIUFITXX3/d2WG4jOjoaOh0Oo5w8xDsT8/BvvQc7EvnEAQB4eHhdj8u+5OIiEh+sia1BEHA8uXLMX36dBw/ftzksUGDBmH69Okm25o3b44zZ84AAHr06IElS5bIFCm5ojlz5gAoq8324osvmmyrKkEQsHDhQrvF5olYv86zsD89B/vSc7AvPQv7k4iISH6CaBgGJbPTp0/j7Nmz8Pb2RmxsrMXi3e+++y5u3LiBxx9/3GKtLXJdBQUFuHjxonS/VatWCA4OrtExW7duDUEQ0LhxY+zatctkW1WIoghBEHD+/PkaxUNERETkzhxxvUZERCQnWUdqGevUqRM6depUYZvZs2fLFA25g/r16wMA6tSpY7aNiIiIiIiIiO4sTktqEVXV/v37bdpG9qHT6aTbrA/i/tifnoN96TnYl56F/UlERCQ/hyS10tPTHXFYCUfnEDneuXPnoNFooFAo0LFjR2eHQzXE/vQc7EvPwb70LOxPIiIi+TkkqRUXF1flOke2EgQBSUlJDjk23dm0Wq1JXQmgrLaEjw8HNBIREXkKvV6P+fPnm2xLSEhArVq1nBQRERERVZfDPq07qf48ebCTJ0/a9XixsbEm90tLS/H999+bbJs5cyaTWkREREREREQuyCGf1ssnC8pLTk5GXl4eRFGEl5cX2rZti5YtWyIiIgIKhQIFBQW4fPkyzpw5g+LiYgiCgCZNmqBnz56OCJfcxNixY+02ApAj/oiIiIiIiIjcm0OSWmvXrrX62MaNG/HGG29AFEUMHToU06ZNQ3R0tMW2BQUFWLFiBVasWIFr164hIiICzz33nCNCJjdh6whAb29vBAYGQq1Wo7S0VNouCAIUCoWjwiMiIiIiIiIimcg6r+rSpUuYP38+RFHElClT8Pzzz1fYPjg4GNOnT0edOnUwf/58fPLJJ+jatWulI8HIM+3bt8/i9m+//RarVq1CaGgoJk6ciD59+qBZs2bSqK7MzEwcPHgQy5YtQ0ZGBqZNm4annnpKztCJiIjIRQiCYPYlaVhYmJOiISIiopqQNam1evVqaDQaNG/eHAkJCTbvN3r0aGzevBlJSUlYs2YNk1p3qAYNGpht+/333/HVV18hOjoa3333ncU2tWvXxhNPPIE+ffogPj4eH3zwAZo3b45//etfcoRNRERELkQQBNSpU8fZYRAREZEdeMl5smPHjkEQBPTq1avKtZF69OgBADh79qwjQiM3tWLFCgBlBd0tJbSMhYeHY+bMmRBFEatWrZIjPCIiIiIiIiJyEFmTWpmZmQCA0NDQKu/r6+sLAFAqlfYMidxcYmIiAKB79+42te/SpQsA4Pz58w6LiYiIiIiIiIgcT9akVnBwMICy1Q+ryjBCKyIiwq4xkXvTarUAYFIMviL5+fkAygrJExEREREREZH7krWmVrt27XD48GHs27cPV69eRdOmTW3a7+TJkzh06BAEQUDnzp0dGyS5lSZNmuD8+fPYuXMnJkyYUGn7zZs3AwCaN2/u6NDcXkxMDERRrPJUYXJN7E/Pwb70HOxLz8L+JCIikp+sI7UGDx4MAFCr1Zg4cSJSUlIq3efYsWNISEiAKIoAgBEjRjgyRHIzjz32GERRxP/93//h0KFDFbbdunUrVq5cCUEQ8MQTT8gUofsKCgpCcHAwgoKCnB0K2QH703OwLz0H+9KzsD+JiIjkJ+tIrcceewzr16/HqVOnkJaWhiFDhiAuLg49e/ZETEwMQkJCAAAqlQoXL17E3r17cezYMej1egiCgMGDB+P++++XM2RycfHx8di4cSOuXbuGSZMm4YEHHkDPnj3RpEkT+Pv7o7i4GP/88w/27t2LM2fOQBRFdO7cGYMGDXJ26EREROQEer0e7777rsm2Z555BrVq1XJSRERERFRdsia1BEHAsmXLMGrUKKSkpECj0WD37t3YvXu31X0MI7R69OiBBQsWyBUquYmgoCCsXLkSEydOxLVr13D06FEcPXrUrJ3hdRQbG4tPP/0UPj6yvvSJiIjIhWg0GmeHQERERHYg+yf70NBQbNq0CcuXL8fq1auhVqsrbB8SEoIXXngBo0aNYo0CsqhRo0bYvn07vv32W2zfvh3nzp2TklgA4OXlha5du+Lxxx+XpsBS5ZRKpVQbJDw83NnhUA2xPz0H+9JzsC89C/uTiIhIfk4ZrhIQEIAZM2bgqaeewqFDh3DkyBGkp6cjOzsbgiAgKioKDRo0QK9evdCjRw/4+fk5I0xyIwqFAuPHj8f48eNRUFCAjIwM5OXlISwsDHXr1kVgYKCzQ3Q7169fh0ajgUKh4MW5B2B/eg72pedgX3oW9icREZH8nDoHKywsDP3790f//v2dGQZ5mODgYAQHBzs7DCIiInJBgiBg4sSJJtvCwsKcFA0RERHVBAsLWSGKIrZv347Nmzfj/PnzKCoqQu3atREbG4vRo0ejY8eOdj/n2bNnER8fj3r16mH//v2Vth87dix+//13m469YcMG3HPPPTWM0PUlJibizz//xM2bN1FYWCjVYdu1axc6duyIevXqWd03MDAQM2fONNtGREREnkMQBDRo0MDZYRAREZEdMKllQUlJCaZNm4Zff/3VZHtaWhrS0tLw008/4YUXXsCkSZPsds7CwkLMmzcPer3e5n2Sk5Ptdn53d/r0abz55pu4ePGiyXZDUuujjz5CWloaJk6ciKlTp1qszyYIApfhJiIiIiIiInITDklqpaenO+Kwkvr16zv0+HPnzpUSWjExMRg+fDiioqJw7tw5rF+/HkVFRVi8eDGio6MxaNCgGp9PrVZj8uTJVUpSZWRkQKlUAgCGDx+Ohx56qML2zZo1q0mILm337t2YMWMGdDodRFGEt7c3dDqdSeIqPT0dGo0Gn332GbKzs/HWW285MWIiIiIiIiIiqimHJLXi4uIctlKhIAhISkpyyLEB4MiRI9i+fTsAoFu3bvjiiy+kQvX9+/fHE088gVGjRkGpVGLhwoXo3bt3jeo3ZWdnY9q0aTh58mSV9rtw4YJ0u2/fvnjwwQerHYM7u3XrFmbNmgWtVouOHTti+vTpaNWqFR544AGTdqtXr8aiRYtw9uxZbNq0Cf369cP999/vpKiJiIiIiIiIqKa8HHVgURQd9uNIq1atAgD4+PhgwYIFZisvxsTE4NVXXwVQtnTzpk2bqn2uY8eOYejQoVVOaAEwmWZ31113VTsGd7dq1SqUlJSgQ4cO+Oabb3D//ffD39/frF3nzp3x9ddfS3XF1q9fL3OkRERERERERGRPDhmpFRsbW+HjycnJyMvLgyiK8PLyQtu2bdGyZUtERERAoVCgoKAAly9fxpkzZ1BcXAxBENCkSRP07NnTEeFKlEoljh49CgDo0aMHGjVqZLHdo48+ioULFyI7Oxs7d+7EhAkTqnSenJwcvPrqq9i7d6+07fHHH8fhw4eRkZFh0zEMSa3w8HBER0dX6fye5NChQxAEAc8//zx8fX0rbOvn54eEhARMnDgRZ86ckSdAIiIiIiIiInIIhyS11q5da/WxjRs34o033oAoihg6dCimTZtmNSlTUFCAFStWYMWKFbh27RoiIiLw3HPPOSJkAMCpU6ekQu3dunWz2s7LywuxsbHYuXMnzp49C5VKVaWloC9duiQltIKCgjBnzhwMGzYMcXFxNh/DUH+rZcuWNu/jiW7evAkA6NChg03t27ZtC6AssVieTqfDjRs3TLY1atQI3t7eNYySiIiIXIVer8fixYtNtj311FOIjIx0UkRERERUXbKufnjp0iXMnz8foihiypQpeP755ytsHxwcjOnTp6NOnTqYP38+PvnkE3Tt2rXSkWA1ic+gsmRRixYtAJRNs0xOTq5yTF5eXhg0aBCmT59e5ZFWGo0GV65cAfC/qYfFxcW4cOEC8vLyEBERgdatW1c6cskTGBJOGo3GpvbFxcUAYHGKYklJCdasWWOybebMmXfsioheXl7SD7k/9qfnYF96Dval8xQVFZnct0d5C/YnERGR/GRNaq1evRoajQbNmzdHQkKCzfuNHj0amzdvRlJSEtasWeOwpFZaWpp0u0GDBhW2rVu3rsl+VYmpadOm2LVrFxo3blz1IAFcvnxZSuKEhIRgzpw52LFjB0pLS6U2QUFBGDp0KJ5//vkqjSJzN40aNcLFixfx+++/o3///pW2N6xqaW1qKf1P+/btnR0C2RH703OwLz0H+9KzsD+JiIjkJ+tXSceOHYMgCOjVq1eVV0fs0aMHAODs2bOOCA2A6ZS0iIiICtuGh4dLt5VKZZXOEx0dXe2EFmBaJP6zzz7DDz/8YJLQAoDCwkKsXbsWw4YNM5tS50l69eoFURTx8ccfIy8vr8K2169fxyeffAJBEKTXExERERERERG5J1lHamVmZgIAQkNDq7yvYSpdVRNIVVFSUiLdLr/qobV4yu8nB+OkliAIGD58OEaOHIlmzZqhqKgIx48fx8cff4yrV6/i2rVrePbZZ/H9998jICBA1jjlMH78eKxbtw6pqal4/PHHMWXKFJPVIDUaDVJTU7Fv3z6sWLECKpUKQUFBGDdunBOjJiIiImcRBAFPPvmkybbqXJsSERGR88ma1AoODoZSqZSKnFeFYYRWZSOoakKr1Uq3K6tHZfy48X5yMKyQKAgCPvroI/Tr1096zN/fH48++ih69OiBsWPH4vz580hJScHXX3+NZ555RtY4jaWkpFRYYyIwMFCqU2a8T/maF5a88cYbmDNnDm7cuIE5c+ZI20VRNCsg7+XlhYSEBKSlpSEtLQ0xMTEV1sxKSkqymOD08vIym2aQmppqsQB9eWFhYWjSpInJtvPnz9tUF6xhw4YmhWxLSkps/n1q06YNFAqFdD8zM1MqtF8Rf39/sxpzV65cQX5+fqX7RkVFoX79+ibbEhMTbYq3WbNmCAkJke7n5+dLteQq07FjR5P76enpyMrKqnS/kJAQNGvWzGRbcnKyTYnrevXqoXbt2tJ9jUaD8+fP2xRvy5YtTeq85eTkIDU1tdL9FAoF2rRpY7Lt2rVrUKlUle4bGRmJhg0bmmz7+++/pcUyKtK4cWOT0aqFhYW4fPlypfsBQLt27UwWX8jIyLBp1deavEdER0eb1C7U6XQ4d+6cTfGWf49QKpW4fv16pfvxPYLvEeXxPcK13yOMX/t30ntE+ZH+RERE7kbWpFa7du1w+PBh7Nu3D1evXkXTpk1t2u/kyZM4dOgQBEFA586dHRaf8QWjRqOpMLGlVqul23IXZF+8eDEWLFiArKwsq7WhQkJCsHDhQgwZMgRA2aqTzkxq6XQ66HQ6q49bSgxqtVqbLtDuvvtubNy4EW+++Sb++OMPq+2aNGmC8ePHo2XLltJxKysMq9FoLCbjLG2zNV5Lz1Wj0di0b/kPE6Io2lwkv/xz1ev11TonYPtztdTntsZb/ry2xmstDk/sG0tq+jq05QNr+Xir8lzLq0nfyPE6rO5zvZPeIyytEMv3CHN8j/D894jU1FQUFha61XsEERGRu5M1qTV48GAcPnwYarUaEydOxGeffWb2rVp5x44dwwsvvABRFCEIAkaMGOGw+AIDA6XbpaWlNie1Kpuq6AgBAQGVFjtv27Yt7rrrLly6dAmpqanIyMio8kqL9uLt7V3hSC0fH/OXoo+Pj8k3pxUdu2XLlvj222+RkpKC48eP48yZMygqKoKfnx+ioqLQtm1bxMTEmO1bWW03hUJhMQZLz8XWeC09V1v2s3ReQRBs3rf8c/Xy8qpwX8PFsaUL4Kr0TXnVfa6VxVtZHDXpm4oSssbxGXNk3xjHVp61vjH+sKNQKKw+V1s+8JSPtyrPtbya9I0cr8PqPldHvkeU78uKzutqr8Py7vT3iPLHscYZfcP3iKr/3uTk5Ei/n5Xt7yrXEURERO5OEO2xhrGNRFHE2LFjcerUKQiCAB8fH8TFxaFnz56IiYmRphGoVCpcvHgRe/fuxbFjx6DX6yEIAgYPHox33nnHYfG99tpr2LBhAwBg7969FSaNNm3ahHnz5gEAPvjgAwwYMKDG54+Li0NaWhoaNGiA/fv31/h4ADB16lTs2rULQFnM5adcOEpBQYFJ7a9WrVohODjY7udZvXo16tSpgz59+tR4xFxhYSE++OADk20zZ86scHqiJ0tMTIRGo4FCoZDtdUOOw/70HOxLz8G+9Czu2J9yXa8RERE5iqwjtQRBwLJlyzBq1CikpKRAo9Fg9+7d2L17t9V9DDm3Hj16YMGCBQ6Nz3g65M2bNytMat26dUu6Xb4eiCux9G2eJ1m7di3S09Px1ltvYdiwYc4Oh4iIiIiIiIhkIvsY5NDQUGzatAmTJk2Cr68vRFGs8CckJASvvvoqPv/8c4vDw+3JeHrapUuXKmxreFwQBJPV9hwtJycH33zzDZYsWYKtW7dW2t64uGqdOnUcGJlzGFbUfOihh5wcCRERERERERHJySnDeAICAjBjxgw89dRTOHToEI4cOYL09HRkZ2dDEARERUWhQYMG6NWrF3r06CFbzapOnTpBoVBAo9HgxIkTGD16tMV2Op0OJ0+eBAC0bt1a1mWgNRoN5s+fD6BsiPjgwYOtts3Pz8fff/8NoGxln7p168oRoqwiIyORkZEBlUrlkUk7IiIisi+9Xo//+7//M9n25JNPOnSFbSIiInIMp85NCwsLQ//+/dG/f39nhiEJDQ1Ft27dcOjQIezfvx/p6ekWpxbu2LFDWnK5X79+ssYYHR2Npk2b4urVq7h48SLOnDmDe+65x2LbVatWScuMDxo0SMYo5TN+/Hi8++67WLBgAZYuXco6EERERFQplUplcp+rAhIREbknlyi4dP36ddy4cUO6wAgNDUWjRo3QpEkT2WMZP348Dh06BI1GgxkzZmDlypUmiZKUlBS8/fbbAICgoCCn1HEaO3asNFrr5Zdfxtdff222quGOHTvwxRdfAADCw8Mxfvx4ucOURe/evXH16lWsX78eDz30ELp37442bdogMjKy0hF+FY1yIyIiIiIiIiLX5rSkllKpxOrVq7F582ZkZWVZbBMREYFHH30Uzz33HGrVqiVLXA8++CD69u2LXbt24fTp0xg0aBBGjhyJevXqISkpCevWrUNhYSEAYNasWYiMjDTZ/8SJExg3bhwA4N5778XatWvtHmN8fDx++eUXnDp1ClevXsXAgQMxYsQItG7dGgUFBdi/fz8OHDgAoKxQ/Lvvvivb/5/c/v3vfwMoq21WWFiIPXv2YM+ePZXuZ1hNk4iIiIiIiIjck1OSWidPnsT06dORnZ0N4H8rHJaXk5ODb7/9Fjt37sR7772HBx54QJb4Fi1ahMLCQhw+fBipqal4//33TR4XBAEJCQmIj4+XJZ7yfHx8sHz5ckyfPh2HDx+GUqnE559/btYuPDwcb7/9Nv71r385IUp5lH/tWHstEREREQFl13EjR4402RYSEuKkaIiIiKgmZE9qJSYmYuLEiVCr1VICIjw8HK1bt0Z4eDj0ej1yc3Nx8eJF5OXlQRRFZGVl4dlnn8WGDRvQpk0bh8cYEBCAlStX4qeffsLWrVtx/vx55OfnIzw8HF26dMG4cePQpUsXh8dRkdDQUKxcuRL79u3D1q1bcfbsWeTm5iIwMBANGzZEXFwcRo4c6bEjtAz27dtnt2MFBATgueeeM9t2pwoLC4NWq4WPj0vMUqYaYn96Dval52BfOocgCGjZsqXdj8v+JCIikp8gyji0RaPRoF+/fkhNTQUAtG3bFi+99BLuv/9+i+2PHDmCDz/8EOfOnQMANGnSBNu3b4dCoZArZKqmgoICXLx4UbrfqlUrFnEnIiIiciG8XiMiInfnJefJtm7ditTUVAiCgIceeggbNmywmtACgO7du2PDhg3o1asXgLKC8tu3b5cpWiIiIiIiIiIiclWyjo82TBULCQnBokWLbBpx5ePjg0WLFuHhhx9Gfn4+du3ahSFDhjg6VHJDFy5cwPbt23H06FFkZGQgPz8fERERaNCgAXr16oXHHnsMDRo0cHaYRERERERERGQHsia1zp8/D0EQ0Lt3b4SHh9u8X1hYGHr37o0tW7bg77//dlyA5JZKS0vx+uuvY9u2bRBF0aRYfEZGBjIyMnD69GksXboUkyZNwpQpU5wYLRERERERERHZg6xJrdzcXABltbGqyrCPUqm0Z0jk5nQ6HRISEnD48GGIooiAgADcd999aNq0Kfz9/VFUVIQrV67g5MmTKCkpwaeffor8/HzMnj3b2aG7vPPnz0Oj0UChUMiyQAM5FvvTc7AvPQf70rOwP4mIiOQna1LLz88PGo0GRUVFVd7XsE9gYKC9wyI3tmPHDhw6dAiCIGD06NF48cUXLb5GCgoK8M4772Dz5s1Ys2YNevfujdjYWJM2er0eWVlZJtuioqLg5SVr6TmXodFooNFonB0G2Qn703OwLz0H+9I59Ho9PvvsM5Nto0aNqtIsAkvYn0RERPKTNalVv359XLx4ESdOnKjyvoZ96tata++wyI1t2LABgiBg8ODBePXVV622Cw4Oxttvv42ioiL88ssv+Prrr82SWsXFxVi+fLnJtpkzZyIoKMghsRMREZFzZGZmmtzX6XROioSIiIhqQtYhKPfddx8AIDExEfv377d5v3379uHs2bMQBEE6BhEA/PPPPwCA//znPza1nzRpEoCy1yARERERERERuS9Zk1ojRoyAIAgAgJdeegm//vprpfscOHAAs2bNAgAIgoBhw4Y5MkRyM6WlpQDKpgnaon79+gCAvLw8h8VERERERERERI4n6/TDmJgYjBw5Et999x2Kiorw3HPPITY2Fn379kXr1q2lWga5ubm4ePEidu7ciVOnTkEURQiCgCeeeAItW7aUM2RycS1atMBff/2FP//8E7179660fXJyMgCgWbNmjg6NiIiIXJDhmtJYcHCwk6IhIiKimpA1qQUAs2fPRlpaGg4ePAhBEHDy5EmcPHnSantRFAEADzzwAF577TW5wiQ38eSTT+LFF1/EokWLcM8996BWrVpW22o0Gnz44YdSUXkiIiK68wiCgHbt2jk7DCIiIrID2Zd18/X1xbJlyzBlyhQEBgZCFMUKfwIDAzF58mSsWLECPj6y5+DIxT322GN45plncP36dQwdOhRbt25FSUmJWbtTp05h7NixOHPmDAYOHIjHH3/cCdESERERERERkb04JUvk7e2N559/HmPHjsWBAwdw/PhxpKamQqlUQhRFhIaGomnTpujSpQv69u2L0NBQZ4RJbiA+Ph4AEBAQgIyMDMyZMwfz5s1DgwYNEBoaitLSUqSlpaGoqEjaZ9u2bdi2bZvF44miiJEjR8oSOxERERERERFVn1OHPoWHh2PIkCEYMmSIM8MgN3bmzBmT+6IoQqvV4tq1a84JiIiIiIiIiIhkwfl85NYSEhLsdiy1Wo2jR4/a7XjurmHDhtDr9fDykn2WMjkA+9NzsC89B/vSs7A/iYiI5MekFrk1eya1CgsLkZ+fb7fjubvIyEhnh0B2xP70HOxLz8G+9CzsTyIiIvkxqUVEREREdwy9Xo8vv/zSZNuwYcMQHh7unICIiIio2pjUIiIiIqI7Snp6usl9nU7npEiIiIioJpjUIiKLSkpKIIoiBEGAv7+/s8OhGmJ/eg72pedgX3oW9icREZH8mNQiIouSk5Oh0WigUCjQsWNHZ4dDNcT+9BzsS8/BvvQs7E8iIiL5MalFRERERHcMQRAwaNAgk21BQUFOioaIiIhqgkktov/y9/fHk08+abaNiIiIPIcgCLjnnnucHQYRERHZAZNaRP/l7e2Npk2bOjsMIiIiIiIiIrKBl7MDICIiIiIiIiIiqiomtcitbd26FVu3boVer7epfVFRET799FMsXLjQwZERERERERERkSM5ZPphenq6Iw4rqV+/vkOPT+5j9uzZ8PLyQt++fREQEFBpe51Oh08//RQhISF45ZVXZIiQiIiIiIiIiBzBIUmtuLg4CILgiENDEAQkJSU55NjknkRRtOn1ptVqsWfPHuk2EREREREREbkvhxWKF0XRUYemO5Ber8cTTzyB8+fPm2w3JLM6depk87EEQUCrVq3MtouiiKKiIpNtgYGBDkvQEhERkfz0ej2+/vprk21DhgxBWFiYkyIiIiKi6nJIUis2NrbCx5OTk5GXlwdRFOHl5YW2bduiZcuWiIiIgEKhQEFBAS5fvowzZ86guLgYgiCgSZMm6NmzpyPCJTfg5eWFt956C8OHD7e5fpY1gYGBePHFF822FxUV4YMPPjDZNnPmTAQFBdXofERERORarl27ZnKfI7iJiIjck0OSWmvXrrX62MaNG/HGG29AFEUMHToU06ZNQ3R0tMW2BQUFWLFiBVasWIFr164hIiICzz33nCNCJjfQvn17fP7558jKypK2zZkzB4Ig4I033oCvr6/VfQVBgLe3N8LDw9G+fXtERETIEbJba9Omjc1TO8n1sT89B/vSc7AvPQv7k4iISH4Om35oyaVLlzB//nyIoogpU6bg+eefr7B9cHAwpk+fjjp16mD+/Pn45JNP0LVr10pHgpHn6tGjh8n9OXPmAAAGDhxoU6F4sp1CoXB2CGRH7E/Pwb70HOxLz8L+JCIikp+sSa3Vq1dDo9GgefPmSEhIsHm/0aNHY/PmzUhKSsKaNWuY1CKJoSaGv7+/kyMhIiIidyAIAvr162eyjaUGiIiI3JOsSa1jx45BEAT06tWrykOze/TogaSkJJw9e9ZB0ZE7uvfee50dAhEREbkRQRB4/UBEROQhZE1qZWZmAgBCQ0OrvK+hXpJSqbRnSORBkpKSkJqaiuLiYptW3xw8eLDjg3JjmZmZ0Ov18PLyQu3atZ0dDtUQ+9NzsC89B/vSs7A/iYiI5CdrUis4OBhKpRLJyclV3tcwQosFvqm8EydO4LXXXsP169dt3kcQBCa1KnHz5k1oNBooFApenHsA9qfnYF96DvalZ2F/EhERyc9LzpO1a9cOoihi3759uHr1qs37nTx5EocOHYIgCOjcubPjAiS3888//+Dpp5/G9evXIYpilX6IiIiIiIiIyH3JOlJr8ODBOHz4MNRqNSZOnIjPPvsMLVq0qHCfY8eO4YUXXpCWSB4xYoRM0ZI7WLFiBdRqNXx8fDB+/Hj06tULtWrVkqarEhEREREREZFnkjWp9dhjj2H9+vU4deoU0tLSMGTIEMTFxaFnz56IiYlBSEgIAEClUuHixYvYu3cvjh07Br1eL00Xu//+++UMmVycYfGByZMnY/Lkyc4Oh4iIiIiIiIhkImtSSxAELFu2DKNGjUJKSgo0Gg12796N3bt3W93HME2sR48eWLBggVyhkpvIzs4GwKLvREREZBu9Xo/169ebbOvfv3+1FjIiIiIi55I1qQWUrXy4adMmLF++HKtXr4Zara6wfUhICF544QWMGjUKgiDIFCW5i/DwcGRlZcHf39/ZoRAREZGbuHTpksl9jUbjpEiIiIioJmRPagFAQEAAZsyYgaeeegqHDh3CkSNHkJ6ejuzsbAiCgKioKDRo0AC9evVCjx494Ofn54wwyQ106dIFu3btwp9//ok+ffo4OxwiIiIiIiIikolTkloGYWFh6N+/P/r37+/MMMiN/ec//8GePXvw8ccf44EHHkBgYKCzQyIiIiIiIiIiGTg1qUVUUx07dsRrr72Gt956C4MHD8bo0aNx9913IzIyEj4+Fb+869evL1OURERE5CoEQTAb3c0vxYiIiNyTSyS19Ho9cnJyoFKpEBkZiYiICGm7l5eXk6MjV9a7d28AgLe3N27cuIF3333Xpv0EQUBSUpLJNj8/PzzxxBNm2+5U/v7+8Pb2hkKhcHYoZAfsT8/BvvQc7EvnEAQB3bt3t/tx2Z9ERETyc1pSS6vV4scff8S2bduQmJiIkpISAMCsWbMwYcIEAMCIESPQqFEjPPvss2jZsqWzQiUXlpaWZrdj+fj4oF27dnY7nrvj75xnYX96Dval52Bfehb2JxERkfycktS6ePEipk6diuvXrwMARFEEALPVDVNSUvD3339j9+7dmDlzJsaPHy93qOTi3nnnHWeHQEREREREREROIHtSKzk5GaNHj0ZhYaGUzPL19YVarTZpl5ubi+LiYgiCAK1Wi0WLFkGhUGD06NFyh0wubMiQIc4OgYiIiIiIiIicQNaCVVqtFs8//zwKCgogiiJ69eqFDRs24NSpU2ZtIyIisGnTJtx3330AykZzffDBB7h165acIRMRERERERERkQuSNan1448/4tq1axAEAePGjcNnn32Gu+++G76+vhbbd+jQAatXr0Z8fDwAoKSkBBs3bpQzZPJAOp0OBw8edHYYLu/KlSu4dOkSrly54uxQyA7Yn56Dfek52Jeehf1JREQkP1mnH+7ZswcAUKdOHcycOdPm/WbPno29e/ciOzsbR44cwdSpUx0VIrkhURSxbds2HDp0CLm5udBqtdLUVuM2Go0GhYWFSE1NRWlpqdnqh2QqPz8fGo2Gqzh5CPan52Bfeg72pXPo9Xps3rzZZNsjjzyCkJCQGh2X/UlERCQ/WZNaSUlJEAQBvXr1sjo6yxJ/f3/ExcVh48aNuHr1quMCJLej1Wrx9NNP4/jx42aPWVqAwNqiBABQWFiIDz74wGTbzJkzERQUZM+QiYiIyMnKf7EVFxfnpEiIiIioJmRNauXm5gIAGjRoUOV969evD6As8UBksGXLFhw7dgxAWfKzWbNmKCoqwrVr19CoUSPUrl0bubm5uHr1KkRRhCAI6N+/vzSllYiIiIiIiIjck6w1tQwjXgoKCqq8b05ODgDUeGg4eZadO3cCAO666y7s3bsXW7Zswdtvvw0AaNeuHb777jv88ssvOHDgALp37w5RFJGUlIQOHTo4M2wiIiIiIiIiqiFZR2o1bNgQSqUSJ0+erNJ+oiji4MGDEAQBDRs2dFB05I4uXLgAQRCQkJCAqKgoAEDHjh3h4+NjMiWxbt26WL58OR5//HGkpKRg8+bNGDlypLPCJiIiIicRBAEPPfSQybaAgAAnRUNEREQ1IetIrQcffBAAcObMGWnKmC3WrFmDa9euAQAeeOABh8RWniiK+OmnnzB+/Hjcd9996NChA+Li4vDyyy8jMTHRIec8e/Ys2rRpU6W6DmlpaViwYAH69u2LDh064N5778WwYcOwevVqlJSUOCROV5KXlwcAaNu2rbTN19cXTZs2hUqlQlpamsn2iRMnQhRF/PLLL7LHSkRERM5nqO9q/BMYGOjssIiIiKgaZE1qxcfHw8/PDwAwY8YMnDp1qsL2Op0OX3zxBd5//30AgI+PD4YNG+bwOEtKSvDss89i5syZOHbsGJRKJdRqNdLS0rB161bEx8fjiy++sOs5CwsLMW/ePOj1epv3OXjwIAYMGIC1a9fi6tWrUKvVUKlUSExMxDvvvINhw4YhNTXVrnG6GsOCA8HBwSbbmzRpAgBISUkx2d6lSxcAwOXLl2WIjoiIiIiIiIgcRdbph3Xr1sW0adPw3nvvQalUYuzYsejUqZPJKJvExESsWbMGKSkp+PXXX5GVlSUV+H7qqadkmX44d+5c/PrrrwCAmJgYDB8+HFFRUTh37hzWr1+PoqIiLF68GNHR0Rg0aFCNz6dWqzF58mQkJyfbvM/Fixfx/PPPo7S0FN7e3njiiSfQtWtXFBYW4scff8Tp06eRnJyMyZMnY8OGDR47rD4qKgrXr19HRkYGIiIipO2NGzcGUJbUMp5iYPgmVqVSyRsoEREREREREdmVrCO1AOA///kPnnrqKYiiCFEUcfr0aXz77bcQBAFAWeHvd999F99//72U0AKAgQMH4oUXXnB4fEeOHMH27dsBAN26dcOWLVswfvx49O/fHy+//DK+//57hIeHAwAWLlxYraL3xrKzs/Gf//zHpP6TLd544w0pobV8+XK89dZbGDhwIEaOHIl169ZhzJgxAMqSX19//XWNYnRl99xzDwBg8+bNJtubNWsGURTNRgMaEocKhUKW+IiIiIiIiIjIMWRPagHASy+9hKVLl+Kuu+6SklvWfurWrYu33noLixYtkiW2VatWASib6rhgwQJpuqRBTEwMXn31VQCAUqnEpk2bqn2uY8eOYejQoVUunH/69Gn8+eefAIDBgwebFTsVBAFz585FTEwMgLLnpNFoqh2nK+vfvz9EUcQ333yD1157Df/88w8AoGvXrgCA3377DXv37gVQlkA0TGVt1qyZcwJ2I1FRUahTp45UgJ/cG/vTc7AvPQf70rOwP4mIiOQn6/RDY71790bv3r1x+vRpnDx5EikpKVCpVNBqtQgLC0OjRo3QtWtX3H///fDxkSdMpVKJo0ePAgB69OiBRo0aWWz36KOPYuHChcjOzsbOnTsxYcKEKp0nJycHr776qpRsAYDHH38chw8fRkZGRqX7//zzz9LtUaNGWWzj5eWFUaNGYf78+VAqlTh+/Dh69OhRpTjdQY8ePdCrVy/8+uuv2LRpEwoKCvDhhx+iefPmuO+++3DixAk8//zziIiIgEqlgl6vhyAIeOyxx5wdusurX7++s0MgO2J/eg72pedgX3oW9icREZH8nJbUMujUqRM6derk7DAAAKdOnZIKtXfr1s1qOy8vL8TGxmLnzp04e/YsVCoVwsLCbD7PpUuXpIRWUFAQ5syZg2HDhtm86qFhZFdYWJhJPbLyjJ/DoUOHPDKpBQBLlizBe++9h40bN5rUXHvnnXcwZswYpKenIycnR9oeGxuLJ5980hmhEhERkZPp9Xps27bNZFufPn3MFp0hIiIi1ydrUmvr1q0AgO7du6N27dpV2nfVqlV4//33IQgCkpKSHBBdWbLJoGXLlhW2bdGiBQBAFEUkJycjNja2Sufy8vLCoEGDMH36dERHR9u8n06nk1bui4mJgZeX9RmkzZo1g7e3N3Q6HS5cuFCl+NyJv78/XnvtNcyYMQP5+fnS9vr16+PHH3/Ed999h9OnT8Pb2xsPPvggnnjiCdlG/xEREZHrOXv2rMn9Hj16MKlFRETkhmT9ZD979mwIgoDatWvj008/RceOHau0v6FovKOkpaVJtxs0aFBh27p165rsV5WkVtOmTbFr1y5phb6qyMrKglqttilGb29v1K5dG7du3UJ6enqVz+VugoODzS5IQ0JC8Mwzz5i1VavV8PX1lSs0IiIiIiIiIrIzpwxXuX37NsaMGYM333wTQ4YMcUYIFhlPUYuIiKiwrWEFRKCsFldVVGVkVnlViREom6J469atKsfoLsaNGwdBELBixQqbklRKpRJDhw6Ft7c39uzZI0OE7isxMREajQYKhaLKCWhyPexPz8G+9BzsS8/C/iQiIpKf0+ZgqdVqvPLKK0hKSsKcOXMqnEYnl5KSEul2+VUPyzNOoBjv52jFxcXS7cpiNG4jZ4xy+v333yEIAnQ6nU3t9Xo90tPTbfq/IyIiIs90//33m9z39/d3UiRERERUE05JarVr1w7nz5+HXq/HN998g0uXLmHJkiUmo5+cQavVSrcrG/Vj/Ljxfo5mnLyxZWSSoY2cMVqSkpJSYeIyMDBQqlNmvE9RURGAsmTUkSNHpEL+5f3000/Sc9Xr9SZTSQ20Wq1UZN/X1xeJiYmIiYlBUFCQtK1Xr17Izc2V9klOToa3t7fZsby8vNC+fXuTbampqSYj6awJCwtDkyZNTLadP38eGo2m0n0bNmyIyMhI6X5JSQmSk5Mr3Q8A2rRpA4VCId3PzMzEzZs3rbY3xGPptXPlyhWT+mXWREVFma0GlZiYaFO8zZo1Q0hIiHQ/Pz8fV65csWnf8t+Qp6enIysrq9L9QkJC0KxZM5NtycnJNiWF69WrZ1IrUKPR4Pz58zbF27JlS5MPVDk5OUhNTa10P4VCgTZt2phsu3btGlQqlVlbQ39qNBokJiYiMjLSZGEFAPj777+t/o4Za9y4scn7dWFhoVTrrzLt2rUz+Z3KyMiwadXXyt4jKhIdHW0yQlan0+HcuXM2xWv8HgGUjfa8fv16pfs58j2ifF8ak/M9wsDf39+sDiXfI8xZeo+oqC+NyfEeUZ6nvUd8/fXXWLt2rcV9vb29MXPmTMyYMQNAzd4jgMr7E3Cd64jS0tJK9yEiInJlTklq9e/fH9OmTcOMGTNQWFiIEydOYNiwYVi6dGmlBdodyfiCUaPRVJg0MtS1AmxLLtmL8QgjWy5eDHEaf1BxBp1OV+FoKkuJE61Wa/IcL1y4YHXK4Ouvv25yv7L6a/fccw80Go1JO8N0gX/++UfaptfrLV7AW0rQlY/XGkvP1fjDTUXKxyKKok37GdqWP5Yt+1r6v7T1uVrqc1vjLf9cbY3XWhye2DeW2NI3Go3G6nO15QNr+Xir8lzLq0nfyPE6rO5zles9ovw2Z7wOLSX++R5hzlLflD+ONXK/RxjalefO7xF5eXm4ffu21f3z8vJM7lf398bW/V3lOoKIiMjdOW36Yc+ePbFhwwY8++yzuHHjBm7cuIERI0bg3XffRd++fZ0SU2BgoHS7tLTU5qSWnFPZjL8NtOXbNUMbZw+r9/b2rnCklqXVCH18fEyScWPGjMHJkyct1gezZREBLy8vhISEoF27dvjPf/4DhUIBQRBM2giCYFMC0NJzKR+vNZaeq61Jx/LntTVeQ9vyx6poX8PFcfn9ANufq6UPu9V9rpXFW1kcNekbW6a3ytk3xrGVZ61vjD/sKBQKq8/Vlg881f29saQmfSPH69AV3yPK92VF53W112F5d/p7RPnjWOOMvvG094jQ0FDUqVMHQNmiO3q9Hl5eXoiKioK3tzdCQ0NN9q3u742t+7vKdQQREZG7E0RHLylopHXr1hAEAbNmzcKECRMAACqVCs8//zx+//33soAEAc8++yymTZtmsu+qVavw3nvvQRAEm6f0VNVrr72GDRs2AAD27t2LRo0aWW27adMmzJs3DwDwwQcfYMCAATU+f1xcHNLS0tCgQQPs37/fYpvbt2+jR48eAIDBgwdj0aJFFR7zoYcewq1bt6QVF+VSUFCAixcvSvdbtWrlkKWyDa+pP//8EwEBAXY//p2MBW89C/vTc7AvPQf70jmOHTuG0tJS+Pn5mdXWqgl37E+5rteIiIgcxelf14SFheGrr75CfHw8gLIRN5999hkmT56MwsJCqZ0c3yw1bdpUul1ZHZFbt25Jt8vXA3GkOnXqSKO10tPTK2yr0+mQmZkJQN4Y5VS/fn3Ur1+f3zwSERGRTe6//3706tXLrgktIiIicg6XyAR4e3vjjTfewKuvvioNqT5w4ABGjBghFeSVoyZUTEyMdPvSpUsVtjU8LggC7rrrLofGVZ4hzsqKrv7zzz/SlAhn1ipzpP3792Pfvn1czZCIiIiIiIjoDuMSSS2D0aNH44svvpDqGqSkpGDYsGH4/fffZZla1qlTJyl5duLECavtdDqdtIpe69atzeowOFpsbCwAIDs7u8Lk2/Hjx832udOUlpZi+/bt+PLLL7Fnzx6nrwJJREREzqXX67Fjxw6Tn4KCAmeHRURERNXgtELx1jzwwANSAfmrV69CpVLhqaeewr/+9S+Hnzs0NBTdunXDoUOHsH//fqSnp1uctrdjxw5pyeV+/fo5PK7y+vbtiy+//BIAsHbtWrz11ltmbXQ6Hb777jsAZUuQP/jgg7LGKKfS0lKsWbMGO3bswGeffYZ69eoBKFu2fMKECSZTSevVq4fPPvvM4si1oqIiLF261GTblClTTBYQICIiIvd28eJFnDp1ymRbt27dWEuKiIjIDbnUSC2Dpk2b4vvvv0f37t0BlC1dvGfPHlnOPX78eABlq0vNmDHD7Ju7lJQUvP322wDKViIcNmyYLHEZu/vuu9GpUycAZQXrf/nlF5PHRVHEggUL8M8//wAARo0a5fTVDx1Fr9fj6aefxkcffYTk5GTcuHFDemzu3LlIT0+HKIrST3p6Op566imL38iKooiioiKTHxnXUXA5zZo1Q4sWLdCsWTNnh0J2wP70HOxLz8G+dI5///vfDjku+5OIiEh+LpnUAoDg4GCsWLECY8eOlTWx8OCDD6Jv374AgNOnT2PQoEFYuXIlduzYgffffx/Dhw+HUqkEAMyaNQuRkZEm+584cQKtWrVCq1atMHbsWIfF+eqrr0pLa0+fPh0vvfQSfvzxR2zYsAGjRo2SRmk1bdoUzzzzjMPicLZt27bh999/hyiKuPfee1GrVi0AQHJyMk6dOgVBEDBkyBD8/vvvWL16NaKiopCVlYVvvvnGyZG7vpCQEISFhSEkJMTZoZAdsD89B/vSc7AvPQv7k4iISH6yTj801HWqW7euTe29vLwwd+5ctGzZEm+++aZs9ZAWLVqEwsJCHD58GKmpqXj//fdNHhcEAQkJCdKKjc7Qrl07LFmyBC+99BKKioqwbds2bNu2zaRNkyZNsHLlSmm1RE/0yy+/QBAEDBw4EIsWLZK2G0b2eXt74+WXX5amlk6fPh1z587F/v378eyzzzorbCIiInKS+Ph45Ofnw8/PDw888AAAcMEZIiIiNyVrUmvt2rXV2m/YsGFo27YtkpOT7RyRZQEBAVi5ciV++uknbN26FefPn0d+fj7Cw8PRpUsXjBs3Dl26dJEllor06dMHO3bswFdffYXffvsNt27dgiAIaNasGfr27YuxY8d6dEILAM6dOwcAmDBhgsn2Q4cOASgr/h8eHi5tv/feewGU1dsiIiKiO0/5LyuJiIjIfblcoXhr2rVrh3bt2sl2PsPon4EDB1Zpv/vuuw8XL16s1jn3799f5X3q16+PuXPnYu7cudU6p7tTqVQAIBWHB4C8vDz89ddfEARBqstmYEjyFRYWyhekm8rPz4der4eXlxenUngA9qfnYF96DvalZ2F/EhERyc9tklpElvj5+UGr1SIvLw9hYWEAgCNHjkCn00EQBGlagUFqaiqAspUuqWJXrlyBRqOBQqFAx44dnR0O1RD703OwLz0H+9KzsD+JiIjk55CkVnp6unS7fv36FrfXhPEx6c5211134cyZMzhy5IhU42zHjh0AgFq1apldVK5fvx4A0LJlS3kDJSIiIiIiIiK7ckhSKy4uDoIgQBAEJCUlmW2vifLHpDvbww8/jNOnT+O9996DUqlEVlYW9u7dC0EQ8Oijj0rtLl++jK+//ho//PADBEFAv379nBg1EREROcsjjzyC27dvo06dOti5c6ezwyEiIqIacNj0Q1EUq7SdqDpGjRqFLVu24NKlS/j444+l7RERESarG44aNQp5eXkAgLvvvhvDhg2TPVYiIiJyvr///htpaWlo0KCBs0MhIiKiGnJIUis2NrZK24mqy9/fH9988w0WL16MPXv2QK1WIzY2FrNnz0ZkZKTUrnnz5vjrr78wYMAAzJ07F15eXk6MmoiIiJzFz88PjzzyCIKDg7F7924AQPfu3T1+xWgiIiJP5JCk1tq1a6u0nagmwsLC8NZbb+Gtt96y2uaVV15BvXr1EBUVJWNkRERE5GouXbqE+fPnAwCOHTsGAOjSpQuTWkRERG6Iqx/SHaFDhw7ODoGIiIiIiIiI7IhzsIiIiIiIiIiIyO1wpBa5PVEUsW3bNuzcuROpqakoKSmBXq+vcB9BELB3716ZIiQiIiJXcvfdd5vc9/Pzc1IkREREVBMOSWq1adPGEYcFUJaMSEpKctjxyb3odDo899xzOHToEADbV9cUBMFsm0KhwEMPPWS2jYiIiDzHypUrUVBQgODgYEyaNMnZ4RAREVENOCSpZWtigaimNm3ahN9++w0AEBAQgLvvvhu1atWCr69vlY/l6+uLXr162TlC99WxY0dnh0B2xP70HOxLz8G+dI633noLaWlpaNCggV2TWuxPIiIi+TkkqVW/fn1HHJbIzNatWwEAbdu2xcqVKxEZGencgIiIiIiIiIhIFg5Jau3fv98RhyUyc+nSJQiCgNmzZzOhRURERJX67LPPUFxcjICAAGeHQkRERDXEQvHk1gxTXVu1auXkSIiIiMgd9O/f39khEBERkZ0wqUVurUmTJrhw4QKysrIQFhbm7HA8Snp6OnQ6Hby9vTml2AOwPz0H+9JzsC89C/uTiIhIfm6X1CopKYG/v7+zwyAX0a9fP5w/fx6bN2/GrFmznB2OR8nKyoJGo4FCoeDFuQdgf3oO9qXnYF86hyiKOHjwoMm2e++9F4GBgTU6LvuTiIhIfk5LaqnVavzzzz8oKCiAVqu1uGKiXq+HVqtFcXExlEolzp07hz179uD48eNOiJhc0fjx47F9+3asWbMGDRs2RHx8PLy8vKp1rOLiYnz11Vcm2yZMmMCaG0RERB4kKyvLLKnVoUOHGie1iIiISH6yJ7WKi4uxePFi/PDDDyguLpb79ORhfv75ZwwdOhQff/wx5s+fj08++QRt27ZFZGQkfHysv7wFQcDChQtNtun1emRmZpptIyIiIs/RuXNnTJw40dlhEBERkR3IntSaOnUqDh8+bHFkli28vb3tHBG5s9mzZ0MQBABl0wlyc3Nx9OjRCvcRRdFiUouIiIiIiIiI3IesSa2DBw/i0KFDUhIiNDQUzZs3R2FhIS5dugQfHx906tQJJSUlyMnJQVpamrSvQqHAa6+9hoceekjOkMnFsWYFERERVUWfPn2Qm5sLX19fxMbGAgB8fX2dHBURERFVh6xJrZ9//lm6PWbMGLz88stQKBRITU1Fnz59oNPpMH/+fDRt2hQAkJqainfeeQf79u2DVqvFuXPnMGzYMDlDJhe3f/9+Z4dAREREbqR8/UwiIiJyX9WrqF1NZ86cAVA2uuaVV16BQqEAADRs2BD16tUDABw5ckRq37BhQyxduhR9+/aFKIrYuHEjLly4IGfIRERERERERETkgmRNauXm5kIQBPTs2dNshbo2bdoA+F/iy9ibb74JX19fiKKIzZs3yxEquTGVSoULFy7gzz//xIULF5CXl+fskIiIiIiIiIjIzmSdflhUVAQA0qgsYy1atMD+/ftx8eJFs8fCw8Px0EMPYc+ePUhMTHR4nOR+9Ho9NmzYgHXr1uHSpUtmjzdr1gzDhw/HuHHjzBKqREREREREROR+ZE1qBQcHQ6VSQa/Xmz3WuHFjAMC1a9ek1emMNW/eHABw/fp1xwdKbkWlUmHKlCn4448/rK6q+c8//2DRokXYvXs3li5dioiICJmjdD8hISHQarXw8ZF9kVRyAPan52Bfeg72pXOMHj0aWVlZiIqKwrfffmu347I/iYiI5CfrX93atWtDpVKZrGpoYEhqqdVqXLt2TSoWb2Cov1VQUODwOMm9TJ06FadOnQIAtG3bFo888ghiYmIQGBiIwsJCpKSkYNeuXTh//jxOnz6NWbNmYcWKFU6O2vU1a9bM2SGQHbE/PQf70nOwL53j4MGDSEtLQ4MGDex6XPYnERGR/GRNat1zzz24dOkSfv31V6jVapPlk5s0aSLd/vPPP82SWlevXgUAfvtFJnbs2IETJ05AEAS8/PLLGD9+vFmbPn364Nlnn8WaNWvw7rvv4vDhw9i3bx969+4tf8BERERUKVEUUVJSYnF0vz2O/cADDyA0NBQHDhwAAHTo0AEBAQF2P5cxPz8/XscSERHZmax/WXv16oVNmzYhKysLU6dOxcKFCxEZGQkAiI6ORu3atZGVlYVvvvkGAwYMkEZn3bhxA7t374YgCKhfv76cIZOL27ZtGwRBwIgRIywmtIw9+eSTuHr1KtatW4fNmzczqUVEROSiCgsLkZeXZ7WsQE3s3bsXGzduBAD89ttvAMquQ8PCwux+LmNeXl6Ijo5mbU8iIiI7kjWp1bt3b9x1111ISUnBwYMHERcXh4SEBEycOBEA0L9/f3z11Vc4f/484uPjMWTIEOTm5mLdunVQq9UQBAH333+/nCGTizt37hwAID4+3qb28fHxWLduHS5cuODIsIiIiKgGSktLUVxcDJVKZfdjWxr9lZWVhZKSErufy8DHxwdRUVHQarUmMxWIiIioZmQfA71kyRKMGjUKKpUKpaWlyM/Plx57+umn8cMPPyAvLw9JSUlISkoCAOlbOn9/fzz55JNyh0wuTKlUAoDNI/gMK29mZWU5KiSPkZycDI1GA4VCgZYtWzo7HKoh9qfnYF96DvaldVqtVko+2XsElVarNdsWEhKC0NDQGh33ypUrUqF44/paJSUl0Ol0NTo2ERERWSZ7UismJgbbtm3Dhx9+iF27dqFhw4bSY5GRkVi2bBmmTp2K7Oxsk/38/Pzw/vvvo1GjRnKHTC4sNDQUubm5SE9Pt+liND09HUDZxStVrKSkBBqNhhfiHoL96TnYl56DfWmZKIrQ6XTSqCZ717o6evQokpOT0aVLF4SHhwMoW6HbnucxPpZWq2UfExEROYhTqlVGR0dj0aJFePPNN6HRaEwe69KlC3bs2IFNmzbh7NmzUKvVaN26NYYPH26SACMCgHbt2uHw4cP4/vvvMW/evErbG2potGnTxuwxHx8fdO3a1WwbERERyccwkkqn08Hb29vux1+2bBkOHDiAW7duYe3atXY/PhEREcnHqZ/Y/f394e/vb7Y9PDwcTz/9tBMiInczYMAAHDp0CN999x1iYmIwcuRIq22/++47rFu3DoIgYMCAAWaP+/n54bHHHnNkuERERFQJQ1JLq9XCz8/P7sc/ePAgAODXX3+1+7GJiIhIXhyGQm6tf//+WLduHU6fPo233noLmzdvRt++fRETE4PAwEAUFRXh8uXL2LVrF86dOwdRFHHPPfdg4MCBzg6diIiILDDU09Lr9XYfqXXq1CmpVpder8cff/yBLl262PUcREREJB9Zk1qGekY1ZWtRcPJ8Xl5eWLp0KZ5++mmcO3dO+inPsNhA+/btsWzZMgiCIHeoREREVIEPP/wQeXl58PHxwZgxYwDA7kmtzZs3m913RFLr888/R0FBAYKDgzFq1Ci7H5+IiIjKyJrUiouLq3EyQRAEaVVEIqBsgYH169djw4YN2LRpE5KTk6UkFlD2mrnrrrswYsQIjBgxAgqFwonREhERkSUffvgh0tLSUK9ePamcQFVrW5aWlmLx4sW4fPmy2WN5eXk4evSoybavv/4aly5dsrjYTIsWLTBjxoxqTYH84osvcOvWLdStW5dJLSIiIgeSffqhcbKByF4UCgXGjBmDMWPGQKVSISMjAwUFBQgMDES9evXsvhw4EREROY5Wq4W3t3eVvgwVRRF+fn544YUXMHfuXGlxmMr2KZ/oAoARI0Zg2rRp8PPzgyiKHOFNRETkomRNasXGxtrUrrS0FJmZmbh58yaAspE2ffr0MVuZjsjYzZs3kZ2djfbt25sksf766y8cP34c/fr14wqaRERELi4jIwMPPfQQ3nnnHfTt21fafv36dQwZMgQA0K9fPyxYsMBkvwkTJuCvv/4CAPzxxx946KGH8PLLL6OgoMCknSAIZteUf/31F0pKSuDj44OPP/4YgwcPlh6bMWMGfvvtNwDAnj17EBkZKT22Z88ezJ49GwAQHx9vEi8RERE5nqxJraoum5yVlYXPP/8c3377LQ4ePIghQ4YgLi7OQdGRuyosLMRbb72F7du3o2fPnli+fLnJ43/88Qc+/PBDLFmyBKNGjcLs2bMt1ugoKSnB+vXrTbbFx8dbXKGTiIiIHEOv1yMjIwM6nc5ku06nw61btwAAKpXKbL/s7GzpcQAYPHgwOnfujMmTJ+P06dPSdkEQzFY7/ueff1BSUoIuXbqYJLQAIDc3Vzpu+RkHJSUl0mPFxcVVfKZERERUUy69+mFUVBTmzp2LOnXqYPHixZgzZw5++ukn1KlTx9mhkYvQ6XR4+umncfr0aYiiiKtXr5q1MUxh0Gq1+Oabb5CZmYklS5ZYPNa1a9fMtt2p6tWrB71eDy8vL2eHQnbA/vQc7EvPwb60zMvLC1FRUQgICDDZ7u3tjbp16wKAxbICtWrVkh4HyhJQjRs3xtatW/Hvf/8bFy9etHpOhUKBunXron79+mbTDSMiIqTjlp+G6O/vLz0WHR2NevXqsT+JiIhk5NJJLYOJEydiw4YNSEtLw7fffovp06c7OyRyERs3bsSff/4JQRAwduxYTJw40azNxIkTER8fj08++QRff/01du3ahV27dnGKQCVq167t7BDIjtifnoN96TnYl5bVqVMHO3bsQEREhMn2xo0b448//rC63+rVq03uGxJQPj4+6N27d4VJreHDh+Pll1+2+NhHH31kdb+HH34YDz/8sNXHiYiIyLHc4qskQRDQq1cviKKI/fv3OzscciE//fSTlNCaO3cuoqOjLbYLDg7GnDlzMGzYMIiiiA0bNsgcKREREVVFVVc+rIjx9aNhZLfxz+HDh+12LiIiIpKPW4zUAsqGlANAenq6kyMhV5KcnAygrPaVLUaNGoWNGzfi3LlzjgyLiIiIqmjGjBm4efMmFAoFBEGwWP+yOv755x9cuHBBuu/j44O//voLiYmJ0Gg00vYrV66gWbNmdjnnpEmTUFBQgODgYLscj4iIiCxzm6TW9evXAZjXMqA7m+Fi1HgloooY6l4UFRU5LCZPodFopLoiCoXC2eFQDbE/PQf70nOwL00Zkloqlcok2VRTP//8s3Q7JiYGy5cvR7t27XDu3Dk899xzuHz5stRuypQp1T6PcX8+88wz0vb8/PzqB09EREQVcovph6mpqfjll18gCAIaN27s7HDIhRiSVJcuXbKpvaGQvK1JsDvZ+fPn8ddff+H8+fPODoXsgP3pOdiXnoN9aUqr1UIURWi1WrsWW9+xYweAslHdu3btQrt27QAA7dq1w86dO6XR3oZ21XXp0iVcuHDB5msSIiIiqjmXTWqp1WpkZGTghx9+wOjRo1FSUgIAiIuLc3Jk5Eq6dOkCURSxbNkys2W2Lfniiy8gCAK6dOkiQ3RERERkK8OKwzqdzm71tFJTU3H16lUsX74cixcvNltRMTAwEIsXL8by5ctx5coVpKWl2eW8REREJA9Zpx+2adOmRvuHhoZi7NixdoqGPEF8fDx++OEHHD9+HAkJCXjllVfQoEEDs3a3b9/Ge++9h/3790MQBIwaNcoJ0RIREZE1hpFa9kxqpaenY8+ePWjYsKG0bd68eVCpVAgLC8OCBQsAAAMHDkSnTp2Qnp5u8TqCiIiIXJOsSS1bRtJYExISgk8//RRhYWF2jIjcXceOHfH0009jxYoV2L9/Pw4cOIAWLVqgadOmCAgIQHFxMW7cuIHk5GTo9XoAwOjRo9G1a1cnR05ERETGNBoNtFotANitSPy9995rtu2XX37BrVu3ULduXSmpJYoiGjVqhEaNGtnlvERERCQPWZNa9evXt7mtt7c3/P39Ua9ePXTr1g1Dhw5FeHi444IjtzVjxgwEBwdj2bJlKC0tRXJyskk9C0My1cfHB8888wwSEhKcFSoREdEdz1A3S6PRmPwYtgOw20gta+655x6EhYVJqyg3bdoUvr6+Dj0nERER2Z+sSa39+/fLeTq6QxhWGRoyZAj27NmD48ePIyMjAyqVCgEBAahbty46d+6MQYMGITo62tnhEhER3TFEUTRLXhlWNjQksQwJLsO/Pj4+di0UX97mzZuxZ88eAMDBgwcBAHXq1GFSi4iIyA3JmtQicqQ6depg9OjRGD16tLNDISIiuuPo9Xqz5JVh5JUhuWWcwDLU0ALKRmb5+PggODjYrJi7vXElbSIiIs/BpBYRERERVYlOpzNLYBlWLyyfwDJObgGAQqGAj48PAgIC4OPjA4VCAUEQnPVUiIiIyI0xqUVEREREVlmqf2VYfMUwOqv8CCygrDyAQqGAr68vgoKCpNFYrpDAioqKMrlvr8L0REREJC9Zk1rp6ekOP0dVitFXRBRFbN++HZs3b8b58+dRVFSE2rVrIzY2FqNHj0bHjh1rfI7k5GR89dVXOHHiBG7fvo2QkBDExMRg8ODBGDJkSKUXWHFxcUhLS7PpXIcPH0bt2rVrHLMn8/b2Rtu2bc22ERER3SmME1hqtVoq4A78b3SWcQLLMDqrfALLMBrLFR0/fhwRERHw9fXFAw884OxwiIiIqAYE0XClIoPWrVs79Ns5QRCQlJRU4+OUlJRg2rRp+PXXXy0+7u3tjRdeeAGTJk2q9jk2bdqEN998UyqWWl7Xrl2xdOlSqys+FhQUoGvXrrC1++ROahUUFODixYvS/VatWiE4OFi281PNlZSUQBRFCIIAf39/Z4dDNcT+9BzsS8/hzL6saAVCAGbF27VarTQ6y8vLS5o2aPyvu+jSpQtu3bqFunXr4o8//rDbca31Z35+PkpLSxEVFYWoqCiXKkjP6zUiInJ3sl+ByJhDq7a5c+dKCa2YmBgMHz4cUVFROHfuHNavX4+ioiIsXrwY0dHRGDRoUJWPf+jQIbz66qsQRREBAQGIj49H+/btkZ2dje+//x7Jyck4deoUZsyYgZUrV1pcAejixYvS/+Wzzz6LDh06VHjOsLCwKsdJdzZ+WPYs7E/Pwb70HHL1ZUUrEAIwS14ZJ7e8vb3h4+ODwMBAKYHljqOYP//8c3zxxRcAgNu3b0v/dunSBQAwadIkPPPMMzU6B383iYiI5CdrUmvGjBkAgBMnTuDIkSPS9nbt2qFdu3aoVasWfH19kZ+fj3/++QcnT55EYWEhBEGAn59fpYkbezhy5Ai2b98OAOjWrRu++OIL+Pn5AQD69++PJ554AqNGjYJSqcTChQvRu3fvKn2jpVar8cYbb0AURQQGBuKbb75Bu3btpMdHjhyJGTNmYM+ePThy5Ah+/vln9O/f3+w4xt+qDR48GM2aNavuUyYiIiIPUdkKhIaaV5YSWMYrEBoSWJa+WHNHBQUFuHXrlsk2vV4vbSsoKHBGWERERFRDsia1Jk2ahC1btuD48eMAympCzZ492+rSysXFxfjyyy+xfPlylJaWIjY2FlOnTnVojKtWrQJQdmG3YMECKaFlEBMTg1dffRUvvvgilEolNm3ahAkTJth8/N27dyM1NRUAMHHiRJOEFgD4+vpi0aJFOHnyJJRKJT7//PMKk1p+fn5o0qRJlZ4jERERub+qrEBo+NfAkLTy9/e/I1YgDA4ORt26dSt8nIiIiNyPrEmt5ORkvP7669Dr9Rg5ciRef/31CtsHBAQgISEBderUwWuvvYbPPvsMPXr0QKdOnRwSn1KpxNGjRwEAPXr0QKNGjSy2e/TRR7Fw4UJkZ2dj586dVUpq/fzzzwDK6n+NHDnSYpugoCAMHToUq1atQnJyMq5cuWI2EsuQ1GrRooXHfItKriUnJwd6vR5eXl6IjIx0djhUQ+xPz8G+9BxV6UtDAstQvL0qKxAaRmAFBATcEQksS5555pkaTy+sTG5urlRTKyIiwqHnIiIiojKyJrVWr14NtVqNhg0bYu7cuTbvN3z4cHz//fdITEzEmjVrHJbUOnXqlHSB2K1bN6vtvLy8EBsbi507d+Ls2bNQqVQ216w6efIkgLJCnBVdwHbr1k0aNfbbb7+ZJLVEUcSlS5cAAC1btrTpvERVlZqaCo1GA4VCwQ/OHoD96TnYl57DWl9aKuBuuD6pygqEhmTWnZbAqowoirhy5YrJtoYNG9a4gPvNmzeh1Wrh4+PDpBYREZFMZE1qHT9+HIIg4OGHH67yKjndu3dHYmIiTp065aDoICWKgMqTRS1atABQdmGUnJyM2NjYSo+fkZGBvLw8AMBdd91VYduYmBjp9oULF0weS0tLk2o/GI5TUFCACxcuoLCwEHXq1EHLli3dspCrM5WUlOCnn34y2TZgwAAWfiUiIocwrnGlUqmqtQKh8fRBd1qB0Jl0Oh02bdoEb29veHl5wdvbG2PGjEGtWrWcHRoRERFVkaxXP5mZmQCqtxKfIUGTn59v15iMpaWlSbcbNGhQYVvjugxpaWk2JbUMtbRsOX50dDS8vLyg1+uRnp5u8phxkXgvLy8kJCRg//790je1ABAeHo4xY8bg6aefZlLGRjqdDklJSSbbHn30USdFQ0REnsTSCoRZWVnQaDTw8fGRklrGo7Q8bQVCV6HVavF///d/JtsGDRrEpBYREZEbkjWpFRQUBJVKZTbyyBanT58GANSuXdveYUlycnKk25UNGw8PD5duK5VKm46fm5tr8/EVCgUCAwNRUFBgdnzjpNa7775rcX+lUolPP/0Uv/32Gz7//HNOUSEiIpKJrSsQFhQUoKSkBACQlZUFwLNXIHQVxl8CGnCUGxERkXuS9S94+/btcfjwYezfvx+XL182mWJXkRMnTuDo0aMQBAH33Xefw+IzXFgCMFv1sDzjugvG+1WkuLjY5uMb2hhf8BoYJ7UUCgUmTJiAwYMHo1GjRlAqlTh48CA+/vhjZGZmIjExEdOnT8dXX33Fi2IiIiI7q8kKhGq1Gl5eXvD390dkZCR8fHz4t1oGhgSjMY58IyIick+yJrUGDBiAw4cPQ6PR4Omnn8ayZcvQunXrCvc5duwYXnjhBYiiCC8vL6srBtqD8UVOZcVCjR+3dHFkifE3g7YUIzW0KX/8jIwMAGVJr1WrVqFr167SY3Xq1MGwYcPQs2dPDB8+HLdu3cLx48fx888/o3///jbF6QgpKSkVXqgHBgZKdcqM9ykqKqr02NHR0YiOjpbu63Q6nDt3zqa4YmJiEBQUZPXxpKQkiwlILy8vtG/f3mRbamqqyWg/a8LCwtCkSROTbefPnzf5oGNNw4YNTUbdlZSUIDk5udL9AKBNmzZQKBTS/czMTNy8edNqe0M8ll7fV65csWkqcFRUFOrXr2+yLTEx0aZ4mzVrhpCQEOl+fn6+WWFfazp27GhyPz09XRoFUZGQkBCzlUaTk5NtSlzXq1fPZCSpRqPB+fPnbYq3ZcuWJtOEc3JyTKYrW6NQKNCmTRuTbdeuXYNKpTJra+hPjUaDxMREREZGomHDhiZt/v77b6leT0UaN25sMlq1sLAQly9frnQ/AGjXrp3Jh8eMjAzpPa0irvIeoVQqcf369Ur3c+R7RPm+NCbne4SBv7+/WR1KT32PCAwMRMOGDaXklVqtxqVLl1BaWgq9Xg+dTicVbjdObgmCgLp166JOnTrSCoQAcPv2benYKSkpVs/bvHlzk/eI3Nxcm/pGoVCY1fBMTU2V6ntWJDw83KxvLly4YNN7RIMGDUxKTRQVFeHq1auV7geULaRj/B6RmZkpla+oSEBAgNn795UrV0y+UDSw9B5p/NrX6XQmXyBWpGnTpggMDDTZptVqTcoZFBYWQq1W4/bt24iIiJBG37nCdURpaWml+xAREbky2ZNa69evx+nTp3Hz5k088cQTiIuLQ8+ePdGiRQvp4lSpVOLixYvYu3cvjh07Ji2PPGbMGLMLAHsyvmDUaDQVJp7UarV029bVcoyTI7ZceBjOYXyhBQDr169HQUEB8vPzUa9ePYv7RkdHY968eUhISAAAbNy40alJLZ1OZ3G4v4GlxEn5b7QrOnZ5tuwHQKpXYo1Go7GYjLO0zdZ4LT1XwwekypT/MGEYBWCL8s/VMD2mqvsB8vRN+edqa7zW4vDEvrHElr4xngpVfrstH1jLx1uV51peTfrGGe8Rtj5Xud4jym9zxuvQ0ggXT3iPMEwRNP4JCgpCYGCgyQqEOTk5KCoqkuIRBEGqgWUo3u7t7Y3w8HCTRI/xdYThfNZYeh3a+oVaeYbnUhlLfWNcqL4i9ozXkCi0pZ2t+2o0GoSFhUnXJnq93ux1bGu81q4jjPc3JDqNfy9c5TqCiIjI3cma1PLy8sKyZcsQHx+Pa9euQafTYc+ePdizZ4/VfQwXC48++ijmzJnj0PiMv2krLS21Oally1RCS8evjKGNpULvwcHBCA4OrnD/uLg4BAcHo6CgAKdPn4Zer3fatAbDCkPWWKplYfhAYMuxy7NlPwCVLnOuUCgsHsvSc7E1XkvP1dZ4y5/XsHy7Lco/Vy8vrwr3NVwcW/o/kqNvyj/XyuKtLI6a9E1FCVnj+Iw5sm+MYyvPWt8Yf9ixtkqaQqGw6QNP+Xir8lzLq0nfOOM9wtbn6sj3iPJ9WdF5Xe11WJ4rvEeIogi9Xm+WwDJcfxgeM/y/375922QFQm9vb6mAuyGBZUu85f+/K6rpZOl1aEsNKGt9Y8u+lp6Hj49Ptd8jqluzypAgtKWdrftGRUXh+++/l+7Xrl3brNaprfFau44w3t/w/2b4vbBWJ80Z1xFERETuThArG6riAEVFRfjkk0+wdu3aSr8Jq1WrFhISEhw67dDgtddew4YNGwAAe/fuRaNGjay23bRpE+bNmwcA+OCDDzBgwIBKj3/69GnEx8cDAKZMmYKpU6dabavRaNCxY0fo9Xp0794dq1atqspTkQwdOlSaZnPs2DHZCsYXFBSYDN1v1apVpUk4ZyssLMQHH3xgsm3mzJkVTk/0ZImJidBoNFAoFGZTdcj9sD89B/uy+iytQGicwCpf+8p4ZFL50Vf2WIEwKSkJWq0WPj4+aNu2bY2fHzmXtf7Mz89HaWkpoqKiEBUVZfMIfzm44/UaERGRMacs9RIYGIiXX34ZkyZNwoEDB3D06FFkZGQgOzsbXl5eCA8PR4sWLXDvvfeiT58+sv3xb9q0qXT75s2bFSa1bt26Jd0uX3PC1uNXJCMjQ7qQtvX4llR39ASR4bXD15BnYH96DvalbWxdgdA4iWVIbhkSWEFBQQ5dgZB96VnYn0RERPJz6vrFERERGDp0KIYOHerMMCTGqzFeunQJ9957r9W2ly5dAlA27Lx8EVZrIiIiUKtWLWRnZ0v7W2NcMNa4AO+NGzewf/9+ZGdno3PnzujVq1eFxzEUYFYoFCa1PIgqU74AObk39qfnYF+aM05gqdXqSlcgNB6dZZiOFxwc7NAEliW2Xj+Qe2B/EhERyc+pSS0DvV6PnJwcqFQqREZGSnUN5K4B1alTJygUCmg0Gpw4cQKjR4+22E6n0+HkyZMAgNatWyM0NNTmc8TGxmLnzp04f/488vPzTVZuMnb8+HHptnFy7fbt21i4cCGAsppZFSW1rly5Io0I69ChA5erJiIit2co0m78Y0hgGZJb5RNYwP/qOvn4+EgrECoUikprKxIRERGR63JatUitVovNmzfjySefRJcuXdCjRw/0798fW7duldqMGDECM2bMsHk58poKDQ1Ft27dAAD79+9Henq6xXY7duyQllzu169flc7Rt29fAGXPf926dRbbFBQUYMuWLQDKlixv3bq19Fj79u2lWgeHDh2yGiMALF++XLo9aNCgKsVJRETkbFqtFsXFxcjLy0N2djZu3bqFjIwM5OTkQKlUQqlUQqVSITc3F5mZmbh9+zZyc3NRUFAAvV4PX19fhIWFoVatWqhTpw5q1aqFsLAwBAYGwtfXlwktIiIiIjfnlJFaFy9exNSpU3H9+nUA/1vhsPzFZUpKCv7++2/s3r0bM2fOxPjx4x0e2/jx43Ho0CFoNBrMmDEDK1euNCmYmZKSgrfffhsAEBQUhGHDhlXp+H369EHDhg2RmpqKpUuXonPnzujatav0uFqtxqxZs6BUKgEAEyZMMNnfz88Pw4cPx6pVq6DRaPDiiy9ixYoVZkU9v/zyS/z4448Aymp5DRkypEpxEhERycVQ46r8CCzD9YFhdJZxG+MVCH18fODv729SyJ3ImhMnTuDUqVMICQmRXjuuUgqDiIiIqkb2q77k5GSMHj0ahYWF0sWqr68v1Gq1Sbvc3FwUFxdDEARotVosWrQICoXC6pRAe3nwwQfRt29f7Nq1C6dPn8agQYMwcuRI1KtXD0lJSVi3bh0KCwsBALNmzTJbTfDEiRMYN24cgLJpg2vXrjV53NfXF3PnzsXkyZNRUlKC8ePHY9iwYejcuTOUSiU2btwojUzr3LkznnjiCbMYJ0+ejAMHDuDKlSv4888/8dhjj2HEiBFo2rQpcnNz8fPPP+PUqVMAyhJvH3zwAfz8/Oz+f0We7dq1a9IqTk2aNHF2OFRD7E/P4e59WZMVCL28vKBQKBAYGGi3FQidKTU1VerLhg0bOjucO0JBQQFmzJiBq1evStvq1atnl6QW+5OIiEh+sia1tFotnn/+eRQUFAAAevXqheeeew5t2rQxW5Y8IiICmzZtwuLFi3H8+HGIoogPPvgAvXv3Rt26dR0a56JFi1BYWIjDhw8jNTUV77//vsnjgiAgISEB8fHx1Tp+XFwcXn/9dbz99tvQaDT47rvv8N1335m06dChA5YtW2bxYj0kJARfffUVEhIS8Pfff+PWrVv4+OOPzdrVq1cPixcvRocOHaoVJ93ZVCoVNBoNV3HyEOxPz+FOfanX66HVaqXi7dVZgdBTEliW5OXlSUkQksfrr79uktACYLdRWuxPIiIi+cn6V/fHH3/EtWvXIAgCxo4di1deeaXC9h06dMDq1avxxhtvYP369SgpKcHGjRsxdepUh8YZEBCAlStX4qeffsLWrVulou7h4eHo0qULxo0bhy5dutToHCNHjkTXrl2xZs0aHD16FJmZmVAoFGjZsiUGDBiA4cOHV/iBpV69etiwYQO2b9+OHTt24Ny5c8jLy0NwcDCaNm2Kf//73xgxYgSCgoJqFOedxNvb22zUg6d9gCIichTjFQgtJbBcdQVCurNMnToVf/31F86dOweg7Fpz+vTpTo6KiIiIqkvWpNaePXsAAHXq1MHMmTNt3m/27NnYu3cvsrOzceTIEYcntYCy0VgDBw7EwIEDq7Tffffdh4sXL9rU9q677sKCBQuqEx6Asg8BgwcPxuDBg6t9DPoff39/Weq2ERG5O65ASO6qSZMm+PHHHzFnzhzs2bMHK1asQEBAgLPDIiIiomqSNamVlJQEQRDQq1cv+Pr62ryfv78/4uLisHHjRrMh40REROQ4lgq4G2pcGSew1Go1tFqtlNwSBAEKhQK+vr4ICgqSkllMYJGzBQQE4KOPPkJ6ejoaNGjg7HCIiIioBmRNauXm5gJAtS4g6tevDwBSkXYiIiKyn6quQGicwOIKhORuBEFgQouIiMgDyHrFGRQUBJVKJRWKr4qcnBwAZUXSiYiIqPpqugKhIYGlUCg8soA7EREREbkHWZNaDRs2hFKpxMmTJ6u0nyiKOHjwIARB4BLJREREVVA+gWWYJmh47E5fgZA81+bNm3H8+HHMnz8f/v7+zg6HiIiIHEDWpNaDDz6Iv//+G2fOnMGxY8dw//3327TfmjVrpFUTH3jgAQdHSURE5J64AiFRmaSkJMyaNQslJSX4+++/sWLFCn4xSkRE5IFkTWrFx8fjq6++glqtxowZM/DJJ5+ga9euVtvrdDp8+eWX+PjjjwGUXXAPGzZMrnDpDlNaWoq9e/eabOvTpw/8/PycFBERkXU6nQ4lJSVWVyA0ro9lvAIhAKnmFVcgJE+kUqnw9NNPo6SkBACQmJiIvn37Yv/+/YiOjnZydERERGRPsia16tati2nTpuG9996DUqnE2LFj0alTJ7Rt21Zqk5iYiDVr1iAlJQW//vorsrKyIIoiBEHAU089xW/ZyGG0Wi1OnTplsq1Xr153bFIrMjISWq2WxZ49BPvTvRknqARBgF6vhyiKyMnJMVmBsHwCiysQurbw8HDodDpO6bQjvV6PadOmma2WPXDgQIcntNifRERE8pP9081//vMfZGdn48svvwQAnD59GqdPn5YusHfu3ImdO3dK7Q3TIgYOHIgXXnhB7nCJ7lhMIHsW9qf7KD99sPwKhEFBQfDz84NGo0FmZqY0OsuQwPLz80NQUBBXIHQDhpWdyX4++eQT7Nmzx2Rbp06d8MYbbzj83OxPIiIi+Tnlavell15C586dsWTJEly6dKnCtnXr1sXkyZMxfPhwmaIjIiJyPEORdmsJLFtXIDRMH2QCi+50Bw8exPvvv2+yrVatWvjiiy/u2FHXREREns5pV8C9e/dG7969cfr0aZw8eRIpKSlQqVTQarUICwtDo0aN0LVrV9x///28UCciIrdWfgVCw4/hMa5ASFQzN27cwOTJk6XfG6As+bts2TKOoCIiIvJgTs8WderUCZ06dXJ2GERERHbBFQiJ5FVSUoJJkyZBqVSabJ8zZw4efPBB5wRFREREsnB6UouIXNPff/8NjUYDhUKB9u3bOzscqiH2p2PodDqzBJahxlX5BJZxcguo/gqEFy5ckIr+t27d2mHPjRyPfWkfr776KhITE0229evXD88995yscbA/iYiI5MekFhFZpNfrpR9yf+zPmrNU/8rw/ynnCoTsS8/Bvqy57777Dt99953JtubNm+Ojjz6SfZVP9icREZH8mNQiIiIqxziBpVarzVYgLJ/AKr8CoSGBxQLuRI5z9uxZzJs3z2RbYGAgVq5ciZCQECdFRURERHLilTYREd2xuAIhkXv67bffMGXKFJSWlpps/+CDD9CqVSsnRWWZIelNRERE9serbyIiuiNUtAIhALPaV1yBkMj16HQ6LFmyBB999JHJSocAMHHiRAwaNMhJkVlWUlKCkpIShIaGQhAEJr6JiIjsjH9ZiYjI41S2AqGh5pWlBBZXICRyTVlZWUhISMChQ4fMHrvvvvvMpiI6m06nQ15eHvz8/BAYGIjQ0FC+lxAREdkZk1pEROTWqrICoeFfA0PSyngKodzFpYmocr///juee+453Lp1y+yxvn37YsmSJVAoFE6IzDJRFKFUKiEIAsLCwhAQEICgoCBnh0VERORxmNQiIiK3YUhgGYq3V2UFQsMIrICAACawiNyEKIr47LPP8M4775jVpvL29sYrr7yCZ555xuV+l/Pz86HVahEZGQlfX1+Eh4c7OyQiIiKPxKQWERG5JEsF3A0JrKqsQGhIZrnah14iqphSqcT06dOxe/dus8fq1q2L5cuX495773VCZBUrLS1FUVERQkND4evri4iICL7/EBEROQiTWkT/5eXlhdq1a5ttIyLH4gqERFReYmIiJk2ahBs3bpg91qNHD3z66aeIiopyQmQV0+l0KCgogL+/v1RHy5WmRRIREXkaXvkT/VdAQAAmT57s7DBcRuPGjSGKIr9d9hCu0p+WViDUarVWE1hcgdBcgwYNXKIvqebYl5apVCoMHz4c+fn5JtsFQcCMGTMwbdo0l/zdr1+/PnJychAWFsY6WkRERDJhUouILGL9D8/ijP7kCoSOERYW5uwQyE7Yl5aFhYVhzpw5eOWVV6RtkZGRWLp0KXr27OnEyCrm5eWFoKAgREZGQqFQ8O8oERGRDJjUIiKiGqvpCoSGBJZh+iATWER3tnHjxuHEiRP48ccfERsbi+XLl6NevXrODsuq4uJi1tEiIiJyAia1iIioSsonsNRqNVcgJCK7EgQB7733Htq1a4dJkya5dF0qrVaLvLw8qY5WWFiYS8dLRETkSZjUIiKLCgsLpVovrAni/qrbn1yB0PUUFRVJfRkYGOjscKgG7tS+LCwsRGpqKm7duoVbt25hxIgRFtsFBwdjypQpMkdXNaIoQqVSwdvbGwqFAjqdTppGTURERI7HpBYRWXT58mVoNBooFAp07NjR2eFQDVXWn5WtQFh+dBZXIHSeq1evQqvVwsfHB23btnV2OFQD7t6XGo0GSqUSOTk5yM3NRU5OjvSjUqkwb948i4nsPXv2SMkqQRBQr149l66VVZG8vDxotVpERkbin3/+QUhICHJzc/l3k4iISCb81EH0X2q1GkePHjXZ9sADD8DX19dJERE5RlVXIDROYHEFQiLPpNVqpQSV4ad8ospw3/BvXl5ehcecMWOGxZGhkZGR0m1RFJGQkIBdu3a5dM0sS4qLi1FcXIywsDD4+voiLCyMo7SIiIhkxqQW0X9pNBocPHjQZFtsbCyTWuTWDDWuioqKUFxcDAC4efMmgMpXIDQksAzTB7kCIZF7MExptOTHH3/EgQMHzJJUKpXK7nHk5ORUmtQCgOzsbMycORPffvut3WNwFOM6WgEBAQgLC0NmZqbJIhhERETkeExqmrSpKgAANzRJREFUERF5CEMCy1C83XgFwvz8fJSUlAAAVCqVlMwyJLCMVyBkAovIdRhGUKlUKsTExFhss2/fPixZsgQ5OTlQKpVo2bIltmzZYrHt2bNnsWnTJkeGLMnJyUGjRo3MtkdERAAAwsLCEBERgc6dO2Pq1KmyxGQPoihCqVTC29sbYWFhCAwMvKNqohEREbkSJrWIiNxQ+RpXxgksSysQZmdnQ6fTwcfHR6rhwxUIieSl0+lMalCdPXsWubm5KCgogEKhMJvql5ubC6VSCQBQKBS4cuWKxd/VwsJC/Pnnn9L97OxsqzGUHyVlL6GhoYiMjERERAQiIiIQGRlpdVGK+vXr49q1a25bey8vLw86nQ61atWCQqFAWFiYs0MiIiK6Y7nn1QQR0R2kohUI9Xo91Gp1pSsQBgcHAwD8/PxQq1Ytpz0XIk+TlpaGtLQ0q/WnjO+rVKpq11zSaDQoKChASEiI2WPlE1W5ublWj2MYJVURSwkqw7+GH+P74eHhUCgUNj8XQRDcNqFlXEdLoVAgMjKSXwoQERE5kXteURAReSBbVyA0bmPrCoT+/v7QarX88EVkg8uXL+PkyZNSQqpu3bqYOHGixbYffvgh1q9fL0tcOTk5NiW1lEoldDqdxUUc2rdvj6efftpicsqQxKpKgupOYqijFRAQgICAAISHh7ttco6IiMhT8C8xEZET1GQFQi8vLygUCq5ASGSBXq+HSqUym8ZXfgSVVqvF119/bfEYR48exezZs6X7nTt3tprUctR0PkuUSiWaNGlitr1hw4Z45513TEZSWUtg33333bj77rsdHarHMa6jFRoaisDAQAQEBDg7LCIiojsek1pERA6m1+uh1Wql4u2GJBVg+wqETGDRnciQoCqflLKUpDL8KJVKKQFcEW9vb+j1eosLIpRPVOXk5Fg9ji3T+SwJDg5GcHAwQkJCEB4ejkaNGlU4xS8iIsLqaryhoaEYN25cteIg26hUKqmOlq+vL+toERERuQgmtYiI7Mh4BUJLCazyo6+4AiHdKfR6PfLy8pCTkwNBENCsWTOL7RYtWoRffvlFSljZkqCqDp1Oh7y8PISHh5s9Zmk6nzWGgujlE1HG9agsPebn54ekpCRp4Ya2bdva+RmSvRQXF6OkpESqoxUREcGp3ERERC6CSS0isqhdu3bODsHlVXUFQkNyy1AkWc4VCFu1auWwY5O8XKEvDQkq41FSGo0Gjz76qMX2K1euxFtvvSX9fsTFxWHt2rUW22ZnZ+PSpUsOi91YTk6OxaRWnTp10LFjR5OElCiKFn9HR4wYgfj4+Gqd3xX6kiqm0WhsrqPFv5tERETyY1KLiCziFDdTla1AaEhcGVYitLQCYVBQkJTMkvtbfvan57B3X4qiKI2gsrRin6Wpfrm5udJr3CAiIsJqUiswMNCkvSOm81k7b0UF0S0ltAAgJiYGv/zyi03nqMnvMn8vXZsoilCpVPDx8UFoaCiCgoIqrKPF/iQiIpIfk1pEREaqugKhcQKrshUIiZzh4MGDuHDhgtUkVW5urjSKsCYqWnHPHjWqAgICKqw3ZWmqn7+/f82eFN2x9Hq99Jo21NEKDQ11dlhERERUDj9tEdEdq6YrEBoSWAqFggXcye6sTXcDgAMHDuCXX36RElRdunTBK6+8YrHtN998g59//tmRoQL436gWS6sBlt9WUlJi9Th9+vRBvXr1zJJWXGmO5KLT6aR6bpGRkfD19WUdLSIiIhfFpBYRWZSRkSGNuoiOjnZ2ODVWPoFlmCZoeMzTVyDMzMyU+rN27drODueOI4oiCgoKzKb2VTTVLzw8HL/++qvZsTIzM/H777/j22+/lbb5+flZPbelJJM9+fv7Swmo4uJii23atWuHXbt22ZSgatGiBVq0aOGocF0Kfy9dj1arRW5uLoCy3x0/Pz9ERkbaNOrW0/5uEhERuQMmtYjIooyMDGg0GigUCre7OOcKhOYyMzOlVdb44blmDAkqS0kpa0mq3NxcaDSaKp1HrVZb3J6ZmWn2mqxoOl9VklrGCSpLU/wsTf+zZQRVUFAQ2rdvb3Mcdwr+XroWjUaD3NxceHl5SStU1qpVy+YvMdz57yYREZG7YlKL6L8EQUBgYKDZNnJtla1AaFwfy3gFQgBSzSu5ViAk15WdnY0bN25ISai6deuie/fuFtuOHj0aBw8edHhMKpVK+oBcXlhYmMl9w8gSS1q2bIkHH3yw0uSUrQkqIk9UWloKpVIJhUKB8PBwKaHlCV9qEBEReTImtYj+KzAwEC+99JKzw6AK2LoCYfkElqusQEiOJYoiioqKrI6aCggIQEJCgsV9v/jiC3z66afS/YEDB1pNaslZLFqpVFocwdOwYUMMGDAAMTExiIyMRJ06daweY8iQIRgyZIgjwyRyayUlJVCpVFAoFNIIrcjISCa0iIiI3ACTWkTkksonr2xdgdCQwPLz80NQUBBXIHRToiiiuLi4wql9lqb6lZaWWj1m48aNrSa1yq+4Z6/pfJb4+vqajJCqaIpf+RFZBg0bNsTUqVPRtm3bGsVCdKcrLi6GSqWCv78/wsLCEBAQwKLwREREboSf9IjIqQxF2q0lsGxdgdAwfZAJLNcjiiJ0Op3Vvlm2bBn++usvkySVUqmscIW86qhKoqqitsYJMIVCYZaQqmh6X2RkJAIDA/mBmcgFFBYWIj8/H4GBgQgNDUVAQADCw8P5+0lERORG+OmPiGRTfgVCw4/hMU9fgdBTGEZQqdVqNGvWzGKblStXYuPGjdIoquHDh+Odd96x2PbQoUP47bffHBkyAKCgoAClpaUWVwqMjIw0SVDFxMRYPc6ECRMwYsQIREZGIigoiB+AidxQfn4+CgsLERQUhJCQEAQFBVkdGUlERESui0ktInIIrkDoHgwJKuPpfBVN9cvNzZVGUHXo0AE7d+60eNycnBycO3fO5L41NZ3OZ4mhNk75EVRardZiUisuLg5XrlyxKUEVFRVl93iJSD4qlQrFxcVSMiskJAQhISHODouIiIiqgUktIqqxilYgLJ/AMk5uAVyB0BGSk5Nx69YtKRmVm5uLlJQUKJVK5OfnQ61WS0mqmkzxq2jFPXvWqPLx8TGZyldRDSrD/eDg4Cq9jpg0JfJ8oihCqVSitLRUqp8VFhaGoKAgZ4dGRERE1cSkFtF/aTQanD592mRbp06doFAonBSRa+IKhM5x6tQp/P3331IyKjY2FoMGDbLY9oUXXsDZs2cdHlNVElUVJcB69uyJoKAgq0mqkJAQvk6IqEZEUURubi40Gg3Cw8Ph7++PiIgIBAQEODs0IiIiqgEmtYj+S61W45dffjHZ1q5duzs2qRUYGCiN4snLy4Nara7yCoRMYJUpKSkxm8pnWK3PeJpfkyZN8O6771o8xpYtW7B69WrpvlqttprUcsR0PktKS0tRUlICf39/s8diY2OxZMkSKTFVu3Ztq8d5+OGH8fDDDzsyVI8SEBAAnU7HmnIegH0pD71ej9zcXGi1WkRERMDPzw+RkZEWpyLXRGBgILRaLRcsISIikhH/6hKRxRUIg4KCEBgYCABQKpVcgfC/SkpKLNafKv+v8eNFRUU2Hbtt27ZWHys/na8qU/9s4e3tbTa1r/x0v/LT/kJDQ61O22vcuDEaN25c5TioctaK85P7YV86nk6nQ25uLvR6vZTIioyMhK+vr93P1aJFC7sfk4iIiCrmuZ88iciiilYgBGBW+8qTVyAsLS2VEk9hYWFo0KCBxXYTJ07EX3/9hZycHJsTVNVRUaKq/Oiriqb+1a5dG7Vq1bJYa8pa4qqiBBURkTvSarXS+6ohoVWrVi2P/uKFiIjoTsO/6laIoojt27dj8+bNOH/+PIqKilC7dm3ExsZi9OjR6NixY43PkZycjK+++gonTpzA7du3ERISgpiYGAwePBhDhgyxKVlgj2OQ56psBUJDzStLCSx3W4FQrVabjaAKCQnBQw89ZLH9jBkzsGHDBun+5MmTMXfuXIttb926hdTUVIfEbSw3NxeiKFqcptmkSRPce++9UkKqZcuWVo/z2muv4bXXXnNkqERELk2tVkOpVMLLy0uaclirVi1eFxEREXkYJrUsKCkpwbRp0/Drr7+abE9LS0NaWhp++uknvPDCC5g0aVK1z7Fp0ya8+eabJiNkDB/GT548iS1btmDp0qUIDw936DHIc1RlBULDvwaGpJVhCqGPj49TE1iGBJWlqXzGt43vFxQUmB3n/vvvt5rUCg4ONrlflVFS1SUIgtWRUobb1pJavXv3Ru/eve0SBxGRpxFFEWq1GqWlpVCr1dBqtfD19UV4eLiU0HLlL2aIiIioepjUsmDu3LlSQismJgbDhw9HVFQUzp07h/Xr16OoqAiLFy9GdHS01ULNFTl06BBeffVViKKIgIAAxMfHo3379sjOzsb333+P5ORknDp1CjNmzMDKlSstXoTZ4xjkvgwJLEPx9qqsQGhIWgUEBEjJLEtJlCtXrkgFjO1d92XTpk1IT0+3Wo8qPz/fLuepSt2pqqzkB5T9X4aHh1tdsc9STaqwsDCnjRJwZH+SvNiXnoN9WTN6vR6lpaXSjyiK8Pb2hq+vL4KDg+Hn5yfV0JLjOiglJUUqFM/6WkRERPJgUqucI0eOYPv27QCAbt264YsvvpBWx+nfvz+eeOIJjBo1CkqlEgsXLkTv3r3NRnxURK1W44033oAoiggMDMQ333yDdu3aSY+PHDkSM2bMwJ49e3DkyBH8/PPP6N+/v92PQe6jfAF34wSWI1cgLC4uNlvFydooIgD49ttvceLECWkEVXx8PMaMGWOx7ccff4wrV65U5b+hWmxNagmCYDJyrbwnn3wS/fr1M0lYOTNBVR2W+pPcE/vSc7Avq87whY5hRBYA6e+cn5+ftGKxn58f/P39ERgYKNvKu0VFRdBoNHfsqslERETOwKuoclatWgWgbDrWggULzJZ7jomJwauvvooXX3wRSqUSmzZtwoQJE2w+/u7du6XaPBMnTjRJRgFlF2aLFi3CyZMnoVQq8fnnn5slpOxxDHI9llYgNK5xVX7qYE1XINRoNFAqlVZX7Lty5QqUSiXy8/NRUlKCnJwcPPjgg1ixYoXF4x0/fhw//PCDdP++++6zeu7IyEiHJbUEQUBYWBgiIyMRHR1ttd3AgQPx4IMP2pSg6tSpkyNCJSK6oxj+nlm6b+02UPb3z5DI0ul0EAQBvr6+CAsLg5+fH7y8vODl5SUlsgzbiIiIyPMxqWVEqVTi6NGjAIAePXqgUaNGFts9+uijWLhwIbKzs7Fz584qJbV+/vlnAGUfvEeOHGmxTVBQEIYOHYpVq1YhOTkZV65cMZmWYI9jkHNZWoFQq9XalMCytAKhKIpQKpW4efOmxfpTlqb45eXlVTnu7Oxsq49VZXW+qtSoCg8PN5vOZ22qX1VGUBnaExFVxJbES3WSNYYaUIYRtsXFxbKf39r+jjp/TXh7e0vTCX19faXp9P7+/vD394evr69dzkNERETuhUktI6dOnZISB926dbPazsvLC7Gxsdi5cyfOnj0LlUqFsLAwm85x8uRJAECrVq0q/EDdrVs3adTYb7/9ZpKQsscxSD7VXYEwLS0N2dnZyMvLQ15eHu655x7cc889Fr99vvvuu5GVleXw52KvGlWdOnWCKIqVJqnCwsI4LYeoiuRKfFhLVrjq+at7HkfKy8uTamqpVCqr7Yynz1m7XZV25beX/7c6t6tzflv3MYxGNozQMiSy3GkKOBERETkGPy0auXTpknS7ZcuWFbY1FAAVRRHJycmIjY2t9PgZGRnS6Ji77rqrwrYxMTHS7QsXLtj1GOQ45VcgLC4ulkZKZWdnIzMzE9nZ2cjKykJ2djaaNm0qLTZgqHkVHBwMhUKBWbNmYd++fdKxZ82ahc6dO1s8b3h4uCxJrYoSVbGxsXjmmWekxFTz5s2ttp02bZojwiM35chkhy3JCnskPuQcDZOTkwOtVgtvb29kZGRUemxnqGniw5YkiCAIdk22VLRPVY9la7usrCypplb56dJy1YGyRU3/P6ub/DLua8MoLVf6fyEiIiLnY1LLSFpamnS7QYMGFbatW7euyX62JLUMdbBsOX50dDS8vLyg1+uRnp5u12NQ9eh0Oik5lZWVhdu3byMjIwOZmZnST3Z2tsm0v4q+eQeA3r17Y8KECRZXICw/Cq+iUVI1nUYXGhpqtlKfKIoIDg5GREQE2rVrV+l0ve7du6N79+41isOduNuUoMLCQunDc15ensdMSbIne344t9SmfBKmOucUBAEBAQFSX4aEhNh8/qrEb8/n7yyOSrbYc//Q0FCpsHhYWJjLxkxERETkqpjUMmI8CqX8VKrywsPDpdtKpdKm4xsnJSo7vkKhQGBgIAoKCkyOb49jkO0effRR3Lp1C1lZWcjNzbX7B3GVSmW1DkhVpvMZJ5ssJajK3w8PDzeZ4me8UpPhOZ4/fx4ajQY+Pj5o06aNtF2tVnvUlKSajvJxpqp8aFWr1dDpdFI9N0vtyu/vrClJd+qHdlufQ3BwsJTUMp767uzEhyvt7y4CAwOlpFZVVlImIiIiojJMahkpKSmRbpdf9bA840SE8X4VMS4CW9nxDW0KCgpMjm+PY8hBp9OZ3C8qKpL1/NVRXFxslkgqLS1FQEAAGjVqZHXhgJqoXbu21WmDjRs3xv3334+goCCEhISgbdu2uH37tlk7URTx0ksv4eWXX5aKxxs/VhG9Xm91BFhxcTH0ej20Wq3dpjbac6pPRe0sbS8/SsbWY1Unzoq2W0oU2eP8lYmKipJq9xiP7rEnOZJX1dnf2fvYe3RTRESE1JcBAQFV3t+eXD3x6+oMdTz1ej0KCgqcHA3VlDv2Z/nrs/LXb0RERK6OSS0jhuLdACpdRcf4ceP9KmJ8oWDLKj2GNsbHt8cx5FBaWmpy/8aNG7Kev7rKT5+TYzqdYdRMeY888ggeeeQRk23WLjaNR2vY64OlI5J4/ADsPKGhodLtilaxJPeh0+lw8eJFZ4dBdsC+9Czu3J/lr9+IiIhcnfkyancwf39/6ba1RIOBWq2Wbtu6jLTxyKrKjm98DuOpYfY4BhERERERERGRu2NSy0hgYKB0u7JvqoyTWrZMA6zq8Y3bGCfb7HEMIiIiIiIiIiJ3x+mHRoyn5yiVygrrzhgXXrd15Tnj41e2Kp5Go5HqHJQvAl7TY8jBuJA+UJb48/b2ljUGIiIiIrJOp9OZfEla/vqNiIjI1TGpZaRp06bS7Zs3b1ZYU+jWrVvS7fr161fr+BXJyMiQCo4aH98ex5CDr68v6tSpI+s5iYiIiIiIiOjOwemHRmJiYqTbly5dqrCt4XFBEHDXXXfZdPyIiAjUqlXLpuOnpKRIt1u2bGnXYxARERERERERuTsmtYx06tRJKqh+4sQJq+10Oh1OnjwJAGjdurXJlMDKxMbGAgDOnz+P/Px8q+2OHz8u3b733nvtfgwiIiIiIiIiInfGpJaR0NBQdOvWDQCwf/9+pKenW2y3Y8cO5OTkAAD69etXpXP07dsXAKDVarFu3TqLbQoKCrBlyxYAQLNmzdC6dWu7H4OIiIiIiIiIyJ0xqVXO+PHjAZQVWZ8xYwYKCgpMHk9JScHbb78NAAgKCsKwYcOqdPw+ffqgYcOGAIClS5fi1KlTJo+r1WrMmjVLKkQ/YcIEhxyDiIiIiIiIiMidCaIois4OwtVMnToVu3btAgA0bNgQI0eORL169ZCUlIR169ahsLAQAPDmm28iPj7eZN8TJ05g3LhxAMqm/K1du9bs+Pv378fkyZMhiiIUCgWGDRuGzp07Q6lUYuPGjUhOTgYAdO7cGd98843FVQPtcQwiIiIiIiIiInfFpJYFxcXFSEhIwOHDhy0+LggCEhISkJCQYPaYLUktAFi3bh3efvttaDQai4936NABK1asQEREhNU47XEMIiIiIiIiIiJ3xKSWFaIo4qeffsLWrVulguzh4eHo0qULxo0bhy5duljcz9akFlC2euGaNWtw9OhRZGZmQqFQoGXLlhgwYACGDx8uFa2viD2OQURERERERETkbpjUIiIiIiIiIiIit8NC8URERERERERE5HaY1CIiIiIiIiIiIrfDpBYREREREREREbkdJrWIiIiIiIiIiMjtMKlFRERERERERERuh0ktIiIiIiIiIiJyO0xqERERERERERGR22FSi4iIiIiIiIiI3A6TWkRERERERERE5HaY1CIiIiIiIiIiIrfDpBYREREREREREbkdJrWIiIiIiIiIiMjtMKlFRERERERERERuh0ktIiIiIiIiIiJyOz7ODoCIzImiiO3bt2Pz5s04f/48ioqKULt2bcTGxmL06NHo2LFjlY+ZmpqK3r17Vyueixcv2u0YxuLi4pCWlmbT/ocPH0bt2rWrdW5nc0R/lvfnn3/i22+/xR9//IGsrCz4+fmhSZMmiIuLw5gxYxAeHl7pMZKTk/HVV1/hxIkTuH37NkJCQhATE4PBgwdjyJAh8Pb2luUYrswd+lIURezbtw8//vgjEhMTkZOTA4VCgQYNGqB79+4YN24c6tevX+Ex7oTfTXfoS3v1g6f/XgKu25/8u0lERORYgiiKorODIKL/KSkpwbRp0/Drr79afNzb2xsvvPACJk2aVKXjVvfCWhAEXLhwwW7HMCgoKEDXrl1h61uQu16cO6o/jb333nv48ssvrT5eu3ZtfPLJJ+jUqZPVNps2bcKbb74JjUZj8fGuXbti6dKlFX4It8cxXJk79KVKpcL06dNx5MgRq8fw9fXF/PnzMXjwYIuP3wm/m+7Ql/bqB0//vQRcuz/5d5OIiMixmNQicjEvvvgitm/fDgCIiYnB8OHDERUVhXPnzmH9+vUoKioCUHaBPWjQIJuPW1xcXOEHXWPLli3DuXPnAABTp07FlClT7HYMgz/++AOjRo0CADz77LPo0KFDhcfr2bMnfH19bTq3K3FUfxp8+eWXeO+99wAACoUCw4cPR4cOHZCXl4c9e/bg5MmTAIDQ0FD88MMPaNSokdkxDh06hKeffhqiKCIgIADx8fFo3749srOz8f333yM5ORkA0L17d6xcuRJeXuYz1+1xDFfn6n2p1+sxbtw4qV39+vXx+OOPo3nz5igsLMThw4exe/du6PV6CIKAZcuWIS4uziyOO+F309X7ErBPP9wJv5eAa/cn/24SERE5mEhELuPw4cNiy5YtxZYtW4rjxo37//buPDyq6v7j+GcCCZJg2I0Q9mCIIoS9lrAZLQqIQDVRMIC2YAukomhBW6tiRbAVrWvrBongEzBaKwi4JSxhf2gtgYpaZAlBTJEkQAIx2/z+yDP3N0OSSTK5k8zNvF9/3eGe+d4z9/sc7sw395xrLyoqctl/+PBh+7Bhw+yRkZH2YcOG2c+fP296H9atW2f0Yfbs2fby8nKvxHjnnXeMNkeOHDGj6z7H2/nMz8+3DxgwwB4ZGWkfOnSo/auvvnLZX15ebn/++eeNPixYsKBSjB9//NEeGxtrj4yMtA8YMMB+8ODBSvvnzZtnxFi/fr1XYvg6K+Tyvffec+ljYWFhpTZpaWn2a665xh4ZGWkfOXJkpc9htzf9sWmFXNrt9c+DP4xLu906+awJ100AADxjzT/JAU3UihUrJEnNmzfXU089pRYtWrjsj4iI0B/+8AdJUn5+vlJTU009fk5Ojp588klJUtu2bfX000/LZrN5JYZjrRDHmiRNkbfzuWPHDuMOhFmzZqlPnz4u+202m+677z5169ZNkpSWlqbS0lKXNp9++qmys7ONGH379nXZHxQUpGeeecaYmvTaa69V6ocZMXydFXK5du1aSRVj6tlnn1VwcHCl4zjW/pEqxuq2bdsqtWnqY9MKuZTqnwd/GJeSdfLpDtdNAAA8R1EL8BH5+fnauXOnJGnkyJFVTkeRpPHjx6t9+/aSpI8//tjUPixZskTnzp2TJC1atEgdOnTwWgzHl/PevXtbdsqLOw2RT8cPVkmKioqqsk1AQICuvfZaSRXTYPLy8lz2b9y4UVLFD7OpU6dWGSMkJEQ///nPJVUsOH306FHTY/gyK+SyoKBAmZmZkqThw4e7XUfn5ptvNrb3799faX9THptWyKVDffPQ1MelZK18usN1EwAAz3FFBHzEvn37VF5eLkm67rrrqm0XEBCgoUOHSqr4QXr27FlTjr9r1y598sknkqTBgwdrypQpXotht9v13//+V5IUGRnpYY99W0Pks1WrVsb2iRMnqm333XffSapYLLl169Yu+xxrwfTp00ft2rWrNobzZ7j07h4zYvgyK+QyLy9P/fr1U8eOHdWrVy+3x3J+n+OHtENTH5tWyKVkTh6a+riUrJNPd7huAgBQPxS1AB/h+LIq1fyFtXfv3pIqvuQ6Fvqtr2effdbYfvjhh70a4+TJkyooKJAkXXXVVZIq7jTZt2+ftm7dqkOHDqmsrMyjPviKhsin8yPqV69erR9//LFSm7179xp38AwbNsxl0eCcnByjqOHIQ3UiIiKMbecncpkRw9dZIZddu3ZVamqqtm/froULF7o91rfffmtsX/rEu6Y+Nq2QS6n+efCHcSlZJ5/ucN0EAKB+mjd2BwBUOHnypLEdHh7utu2VV17p8j7HX6A99fnnn+vgwYOSpBtvvNHlS7w3YjimUEgVf0FPTExUenq6yxfyNm3aKCEhQbNnz9Zll11W5/40tobI57XXXqtRo0Zp27ZtOnLkiBISEvTggw+qb9++KiwsVHp6up5//nmVl5erVatW+u1vf+vyfudpNTX1MSwsTAEBASovLzfuSDArhq+zQi7r4v333ze2o6OjXfY19bFplVzWNw/+MC4l6+SzOlw3AQCoP4pagI/Izc01ttu2beu2rfPdFfn5+fU+dlJSkrE9a9Ysr8dw/nK+bNmyKtvk5+fr5Zdf1rZt2/Taa6+5nT7jixoqn3/5y1+0YMECbdmyRZmZmZo5c2alNoMGDdKjjz5aaaFo53VfaupjYGCggoODVVBQ4NJHM2L4OivksrYyMjK0efNmSVL79u0VExPjsr+pj02r5LK+efCHcSlZJ5/V4boJAED9Mf0Q8BFFRUXG9qVPb7qU89QG5/d54quvvjLWXhk4cKAGDhzo9RjOX84DAwN17733auPGjTpw4IAyMjL01FNPGQtdZ2Zm6oEHHjDWTbGKhspnSEiIli1bplGjRlW532azqWfPnpWmmUkVCxrXto/ObZz7aEYMX2eFXNbGqVOntGjRIuP1nDlzKt3N0dTHplVyWd88+MO4lKyTz6pw3QQAwBzcqQX4COdHgNe0Hofz/ro+OvxSb7/9trHt6V1adY2Rk5MjqeJHyIoVKzRkyBBj3xVXXKG4uDiNGjVK8fHx+v7777V7925t3LhRt9xyi0f9awwNlc+NGzfqkUceUVFRkcLCwhQXF6eIiAgVFhYqIyNDn376qd5//319/PHHSkpKcpne4jxtpTZrwDjaOPfRjBi+zgq5rElubq5+8Ytf6MyZM5KkmJgYJSQkVGrX1MemVXJZ3zz4w7iUrJPPqnDdBADAHBS1AB/hfMdESUmJ2y/oxcXFxnZdFqS9VGFhoT766CNJUufOnRUbG9sgMdasWaOCggKdP39enTp1qrJNWFiYHn30USUmJkqS3n33XUt9OW+IfKalpemhhx5SWVmZfvKTn+jVV191eVJXXFyctm/frnnz5qmwsFCzZs3Shg0bjL/mO9/ZUFJSUuPxHP0MDAw0/s2MGL7OCrl05/Tp07rnnnt05MgRSVL37t317LPPymazVWrb1MemVXJZ3zz4w7iUrJPPS3HdBADAPEw/BHxEcHCwsV3V05WcOX85r83UkupkZGQYxxo7dqwCAur+X4KnMVq1alXtF3OH2NhY48fDF198YampFN7Op91u19KlS1VWVqbWrVvrxRdfdPmh5TBixAhj4eKzZ89qxYoVHvXRuY3zD0kzYvg6K+SyOllZWbrrrruMp8R16tRJK1eudLvWTlMem1bKZX3y4A/jUrJWPp1x3QQAwDwUtQAfERoaamzXtIit8/76LASbnp5ubN90002NFqM6zZo1U/fu3SVV/CCx0iLG3s7noUOHdOLECUnShAkT3K7lEh8fr5YtW0qStm7dWmUfz5496/Z4JSUlunDhQqU+mhHD11khl1XJzMzUnXfeqePHj0uqeDrcqlWranxKXG1YdWxaNZfVqS4P/jAuJevmk+smAADmoagF+IgePXoY26dOnXLb9vvvvze2O3fu7NHxysrKjC/eYWFhHi0Qb0aMmlhtOoyDt/N57NgxYzsyMtJt26CgIEVEREiSsrOzPepjTk6O8Rd/5z6aEcPXWSGXl8rIyNDMmTONNbR69+6tlJQUde3atVZ9qg0rjk0r5rImVeXBH8alZM18ct0EAMBcFLUAH+H4MizJmCpUHcd+m82mq666yqPjHTx40PgLbmxsbJXr63gjxokTJ5ScnKznnntOW7ZsqbG9Y3HcwMBAtW7dus59bCwNmc/aTC9yTG9p1qyZ8W9t27ZV+/bta9XHw4cPG9vOP+7MiOHrrJBLZ+np6ZozZ45x9010dLRWr16tsLAwt3H9YWxaIZdm5MEfxqVkjXxeiusmAADmoqgF+IiBAwcaf13ds2dPte3KysqMx4BHRUW5TL+oiy+++MLYjo6ObrAY//vf//T000/rtdde09q1a922PXr0qPHX9379+rn9oeBrvJ1P5wLFwYMH3bYtLS01Fgm/9A6FoUOHSqqYZnP+/PlqY+zevdvYHjZsmOkxfJlVcilJe/fu1fz5843FwWNiYpSUlKS2bdvW2A9/GJtWyKVZeWjq41KyRj4vxXUTAABzUdQCfERoaKiuu+46SRV3Wnz33XdVttuwYYNyc3MlSePGjfP4eAcOHDC2+/bt22Axrr32WmMR24yMjGo/pyT99a9/NbYnTZrkUR8bi7fz2a9fP+M8pqWluZ168+GHH6qgoEBSRZHDmWM9l9LSUqWkpFT5/oKCAn3wwQeSpJ49eyoqKsr0GL7MKrk8c+aM5s+fbyyIff311+tvf/uby2La7vjD2LRCLs3KQ1Mfl5I18nkprpsAAJiLohbgQ+6++25JFQv3LliwwPiC7HD48GEtWbJEkhQSEqK4uDiPj+WYchIYGOgyhcPbMVq0aKH4+HhJFZ/zwQcfrPQ5Jemtt97Shx9+KKli3ZQpU6Z41MfG5M18BgUFKSEhQZJ04cIF3X///caPNmf/+te/9PTTT0uqyNPMmTNd9t94443q0qWLJOmVV17Rvn37XPYXFxdr4cKFxnSZe+65p9IxzIjh66yQyz/+8Y/G+/r3768XXnhBQUFBte6Hv4xNX8+lWXnwh3Ep+X4+L8V1EwAAc9nsdru9sTsB4P/dd999+uSTTyRJXbp00dSpU9WpUyd9+eWXSklJUWFhoSRp8eLFuvPOO13eu2fPHs2YMUNSxTSSVatWVXucgQMH6sKFC+rYsaO2b9/uUV89jXH+/HnFxcXp6NGjkqQrr7xSd9xxh3r06KG8vDxt3LjR+AEWEhKi5ORk9evXz6M+NjZv5vPixYuaNm2avvzyS0kV6+hMmTJFUVFRKisr0+7du7VhwwaVlpZKkp544glNnTq1Uh/T09M1d+5c2e12BQYGKi4uToMGDVJ+fr7effddffPNN5KkQYMGafXq1VVOZzEjhq/z5Vx+++23mjBhghyX9IULFxpPQHOnTZs2GjJkiPHaX8amL+dSMi8P/jAuJd/PpzOumwAAmIuiFuBjLl68qMTExGq/7NpsNiUmJioxMbHSvtoWtQoKCjR48GBJUq9evbRp06Y697O+MU6dOqXExES365R06tRJy5cvN45jRd7OZ25urh544AGXdXEuFRgYqN/97neaNm1atW1SUlK0ZMkSYy2mS/Xr109vvPGG27WZzIjhy3w5l8uXL9frr79el49TbV/8YWz6ci4dzMpDUx+XkjXyKXHdBADAG5o3dgcAuGrZsqXefPNNrV+/Xv/4xz+MRX7btGmjwYMHa8aMGfX+sur4q7Ukjxear2+MTp06ae3atfroo4+0YcMG/ec//9G5c+fUqlUr9ejRQ2PHjtUdd9yhkJAQj/rnK7ydz3bt2ikpKUlpaWlat26d9u/frzNnzigoKEjh4eGKiYnR9OnTFR4e7jbO1KlTNWTIECUnJ2vnzp06ffq0AgMDFRkZqYkTJyo+Pr7Gx8SbEcOX+XIuHXfcmMEfxqYv59LBrDw09XEpWSOfEtdNAAC8gTu1AAAAAAAAYDksFA8AAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy2ne2B0AADQ8u92utLQ0bdmyRf/+9791+vRpFRQUKDg4WO3atVN0dLTGjx+vMWPG1Bjr0KFDSk1N1d69e5Wdna3S0lK1b99e0dHRmjx5smJjY70SIzY2VidPnpQkff31127jT58+XXv37pUkpaWlqUuXLlXGGjFihN566y198skneuWVV3Ts2DG1bdtW0dHRmjt3rqKiooz3mHkO63oOtm7dqnvvvVeSFB4ervT09Brjz549W9u2bZMkpaamqn///rXqV30dOnRIHTp0UMeOHRvkeAAAAPAfNrvdbm/sTgAAGs63336r+++/X998802NbUeOHKkXXnhBISEhlfYVFRVp8eLF+vvf/+42xqhRo/T888+rVatWpsbwVlErPj5e8+fP16WXx/Xr1ysyMlKSeedQ8uwclJWVafTo0Tp9+rQkac2aNRo4cGC1783NzdXIkSNVWlqqXr16adOmTTX22wyZmZn65S9/qfbt2+vtt9/WFVdc0SDHBQAAgH/gTi0A8CM5OTmaNm2a8vPzJUkdO3bU6NGjFR4eroCAAJ06dUoZGRlGsSgjI0PLly/XY4895hKnrKxMc+fO1Y4dO4x/GzhwoIYOHaqgoCB99dVXSk9PV3l5ubZt26Z58+Zp5cqVCggIMDWG2c6ePavHHnusUkErIiLCKGiZdQ4lz89Bs2bNNHHiRK1YsUKStGHDBrdFrQ0bNqi0tFSSNGnSJM9PUB0tXrxY586d07lz5zRjxgwlJycrLCyswY4PAACApo2iFgD4keeee84oxowaNUovvfSSLrvsMpc2paWlWrZsmVatWiVJ+uCDD7Rw4UKXdklJSUYhJjg4WMuXL680RTAzM1N33323CgsLtXv3bn344YeaMmWKqTHMduDAAUnSmDFjtHDhQnXq1ElffvmlcnNzjTZmnUOpfudg0qRJRlFr06ZNeuSRR9SsWbMqP9f69eslSTabTRMnTvTk1Hjk1Vdf1YwZM3Ts2DEdPXpUM2bM0Ntvv01hCwAAAKZgoXgA8BMXL17Uxx9/LElq0aKFli5dWqnIIknNmzfXwoULFRoaKkm6cOGCjhw5YuwvLy/XW2+9ZbxetmxZlWte9e/f3+XupLVr15oaw1siIyP18ssvKyIiQsHBwRoyZIjGjh0rybxzKNX/HERFRRlrfP3www/avXt3lZ8nKytL+/fvlyQNHTpU4eHhtTsRJggLC9Pq1asVEREhSTp27JimT5+unJycBusDAAAAmi6KWgDgJ0pKSvT73/9e9957rxITE9WhQ4dq2wYFBalXr17G68LCQmP7iy++0JkzZyRJffr00U033VRtnPHjx+uaa67RyJEjNWDAAGNanxkxvCUuLk6BgYFV7jPrHErmnAPnu9Y++uijKt+7bt06Y/vWW2+t9hje0rFjR61atUpXXXWVJOn48eNKSEjQ999/3+B9AQAAQNPC9EMA8BOhoaGKj4+vVdvs7GxduHDBeO1Yj0mSdu7caWzX9GS/oKAgffDBB5X+3YwY3jJgwIBq95l1DiVzzsEtt9yiP//5zyotLdVnn32mxYsXKygoyKWNY+phixYtdPPNN9eq71LF2mEzZ86sdfuaOBf1srKylJCQoHfeeYepiAAAAPAYRS0A8GM5OTk6duyYsrKylJWVpcOHD+vQoUM6deqUSzvnu6Oc9/Xu3duj45oRw1sufTJiTTw5h5I556BDhw6KiYnR1q1bdf78eW3btk033nijsT8zM1PHjh2TJN1www26/PLLax27pKRER48e9ahftXHixAkdOHCAohYAAAA8RlELAPzMmTNn9Oabb2r9+vU6ffp0te2aNWumsrKySv/uvGh669atPeqDGTG8xbEOljv1PYeSeedg8uTJ2rp1q6SKKYjORS3nqYcN+dTD2ggNDTXW2gIAAAA8QVELAPzIP//5T82dO9d4ep9DUFCQevToocjISA0YMEAxMTF6/PHHtXfv3koxSkpK6t0PM2LURV3W4Wre3P2l0YxzKJl3Dm644QaFhobq3Llz2rx5swoLCxUSEqKysjJt2rRJktSuXTuNGDGiTnG7dOmir7/+2pQ+FhUVad68edq+fbukiiLeypUr1bNnT1PiAwAAwD9R1AIAP5GXl6ff/OY3RjHm6quvVkJCggYNGqTu3burWbNmLu0vXrxYZRznO5nOnTvnUV/MiOHMbrfLZrNVu//HH3+s9zEk886hZN45aNGihcaNG6e1a9eqqKhI6enpmjhxovbs2aMffvhBkjRhwoQai3XecvHiRc2ZM0e7du2SJLVp00YrV67UNddc0yj9AQAAQNNBUQsA/ERqaqrxtL2+fftqzZo1lRYVd+Y8Pc75TqeuXbsa20eOHKnxuCtXrtTx48fVtWtX3XLLLQoLCzMlRkDA/z/At7i4WC1atKj2/e6mCNaFWedQMuc8OkyaNElr166VJKWlpWnixIlKT0932d8YLly4oF/96lfG3Wpt2rRRUlKSrr766kbpDwAAAJqWgJqbAACagv379xvbkydPdluMyc7O1smTJ43X5eXlxvagQYOM7YyMjBqPu2bNGqWkpOhPf/qTiouLTYvRsmVLY79z8ehSp0+frrRou6fMOoeSOefAYfDgwerWrZsRq7i4WFu2bJEk9erVS/369asxvjfMmTPHpaCVnJxMQQsAAACmoagFAH7CuRCSl5fntu3SpUtdXpeWlhrbw4cPV4cOHSRJBw4c0I4dO6qNs2PHDuPpe5GRkcbdSWbEuPLKK13aVOf111+vdl9dmXUOJXPOgTPH3VgFBQVKSUnRiRMnXP69Mdx1110KDAxU27ZtlZycrKioqEbrCwAAAJoeiloA4CecCwopKSnKysqq1CYvL0/z58/X559/7vLvzmtDBQUFadasWcbrBQsWaN++fZViffPNN1q0aJHxevbs2abGuO6664ztF154wSjiOJSXl+uNN97Q6tWrK8X1lFnnUDLnHDibNGmSsa7Yiy++KEmy2Wy69dZba/pYXjN27Fi99NJLFLQAAADgFTZ7XR4JBQCwrBMnTmjChAnGoulBQUEaO3asevbsqeLiYh05ckRbt2417kYKDAw0ntD3+OOPa9q0aUYsu92uX//618YUN5vNpuHDh2vAgAFq3ry5Dh06pPT0dOPupJtuuskotJgVIy8vTz/72c90/vx5SdJll12mcePGqVu3bsrNzdXmzZuVnZ2twMBAjR492igypaWlqUuXLi59iY2NNaYKunvin5nn0Kzz6Oyuu+5yKYwNGzZMq1atqrY9AAAAYGUUtQDAj3z22Wd66KGHVFRUVG0bm82m+Ph49e3bV4899pgk6fbbb9eSJUtc2hUXF+vJJ5/Ue++9V2kRdGe33XabnnjiiSrXn6pvjL179yoxMVFnz56t8n2hoaFaunSpsrOzjemA9SlqSeaeQ8mc8+iQmpqqRx991Hi9ZMkS3X777W4/DwAAAGBVFLUAwM8cP35cycnJ2rVrl7777juVlZUpJCRE3bp1U3R0tG677TZdffXVysnJ0ZgxY1ReXq7WrVtry5YtCg4OrhTv4MGDSk1N1Z49e5STk6PS0lJ17NhRQ4YM0R133KHBgwfX2Kf6xMjLy9OqVauUnp6urKws2e12hYeH6/rrr1dCQoLCwsKUlJRkWlHLG+fQrPNYUFCgn/70p8bTIHfu3KlWrVrV+D4AAADAiihqAQDQRGRnZ+uGG26QJE2YMEHPPfdcI/cIAAAA8B4WigcAoIlYt26dsT1lypRG7AkAAADgfRS1AABoAkpKSvTee+9Jkjp37qyYmJhG7hEAAADgXRS1AACwoOLiYuPJimfPntXDDz9srAs2bdo0BQRwiQcAAEDT1ryxOwAAAOru6NGjuu222xQaGqr8/HyVlZVJksLDwzVt2rRG7h0AAADgfRS1AACwoM6dO6ukpERnzpwx/q1ly5Z65plnFBIS0og9AwAAABoGcxMAALCgyy+/XMOHD1dwcLBat26t0aNHa/Xq1Ro6dGhjdw0AAABoEDa73W5v7E4AAAAAAAAAdcGdWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsJz/AzZgCcQBIySaAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "\n",
+ "# Plot unconstrained model results with 95% CIs\n",
+ "unconstr_performance = unconstr_test_results[f\"{PERF_METRIC}_mean\"]\n",
+ "unconstr_disparity = unconstr_test_results[f\"{DISP_METRIC}_mean\"]\n",
+ "\n",
+ "sns.scatterplot(\n",
+ " x=[unconstr_performance],\n",
+ " y=[unconstr_disparity],\n",
+ " color=\"black\",\n",
+ " marker=\"*\",\n",
+ " s=100,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_test_results[f\"{PERF_METRIC}_low-percentile\"], unconstr_test_results[f\"{PERF_METRIC}_high-percentile\"]),\n",
+ " (unconstr_disparity, unconstr_disparity),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"|\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_performance, unconstr_performance),\n",
+ " (unconstr_test_results[f\"{DISP_METRIC}_low-percentile\"], unconstr_test_results[f\"{DISP_METRIC}_high-percentile\"]),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"_\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "# Plot postprocessing of unconstrained model\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=PERF_METRIC,\n",
+ " disp_metric=DISP_METRIC,\n",
+ " show_data_type=SHOW_RESULTS_ON,\n",
+ " constant_clf_perf=constant_clf_accuracy[SHOW_RESULTS_ON],\n",
+ " model_name=r\"$\\bigstar$\",\n",
+ ")\n",
+ "\n",
+ "# Vertical line with minimum \"useful\" accuracy on this data\n",
+ "curr_const_clf_acc = constant_clf_accuracy[SHOW_RESULTS_ON]\n",
+ "plt.axvline(\n",
+ " x=curr_const_clf_acc,\n",
+ " ls=\"--\",\n",
+ " color=\"grey\",\n",
+ ")\n",
+ "plt.gca().annotate(\n",
+ " \"constant predictor acc.\",\n",
+ " xy=(curr_const_clf_acc, ax_kwargs[\"ylim\"][1] / 2),\n",
+ " zorder=10,\n",
+ " rotation=90,\n",
+ " horizontalalignment=\"right\",\n",
+ " verticalalignment=\"center\",\n",
+ " fontsize=\"small\",\n",
+ " \n",
+ ")\n",
+ "\n",
+ "# Title and legend\n",
+ "ax_kwargs[\"title\"] = f\"Post-processing ({SHOW_RESULTS_ON} results)\"\n",
+ "ax_kwargs[\"xlim\"] = (curr_const_clf_acc - 1e-2, 0.885)\n",
+ "\n",
+ "plt.legend(\n",
+ " loc=\"upper left\",\n",
+ " bbox_to_anchor=(1.03, 1),\n",
+ " borderaxespad=0)\n",
+ "\n",
+ "plt.gca().set(**ax_kwargs)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Let's train another type of fairness-aware model\n",
+ "\n",
+ "**In-processing** fairness methods introduce fairness criteria during model training.\n",
+ "\n",
+ "_Main disadvantage_: state-of-the-art in-processing methods can be considerably slower to run (e.g., increasing training time by 20-100 times).\n",
+ "\n",
+ "We'll be using the [`fairlearn`](https://github.com/fairlearn/fairlearn) package [[Weerts et al., 2020]](https://arxiv.org/abs/2303.16626)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from fairlearn.reductions import ExponentiatedGradient, EqualizedOdds\n",
+ "\n",
+ "inproc_clf = ExponentiatedGradient(\n",
+ " estimator=unconstr_clf,\n",
+ " constraints=EqualizedOdds(),\n",
+ " max_iter=10,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Fit the `ExponentiatedGradient` [[Agarwal et al., 2018]](https://proceedings.mlr.press/v80/agarwal18a.html) in-processing intervention (**note**: may take a few minutes to fit)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 1min 19s, sys: 1min 21s, total: 2min 40s\n",
+ "Wall time: 39.2 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "ExponentiatedGradient(constraints=<fairlearn.reductions._moments.utility_parity.EqualizedOdds object at 0x11bd3abc0>,\n",
+ " estimator=LGBMClassifier(verbosity=-1), max_iter=10,\n",
+ " nu=0.000851617415307666) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "ExponentiatedGradient(constraints=,\n",
+ " estimator=LGBMClassifier(verbosity=-1), max_iter=10,\n",
+ " nu=0.000851617415307666)"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "inproc_clf.fit(X_train, y_train, sensitive_features=s_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Evaluate in-processing model on test data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In-processing model: \n",
+ "> accuracy = 0.867\n",
+ "> equalized odds = 0.0498\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import evaluate_predictions_bootstrap\n",
+ "\n",
+ "inproc_test_results = evaluate_predictions_bootstrap(\n",
+ " y_true=y_test,\n",
+ " y_pred_scores=inproc_clf.predict(X_test, random_state=SEED).astype(float),\n",
+ " sensitive_attribute=s_test,\n",
+ ")\n",
+ "\n",
+ "print(\n",
+ " f\"In-processing model: \\n\"\n",
+ " f\"> accuracy = {inproc_test_results['accuracy_mean']:.3}\\n\"\n",
+ " f\"> equalized odds = {inproc_test_results['equalized_odds_diff_mean']:.3}\\n\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**We can go one step further and post-process this in-processing model :)**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7f6f6af0fdaf4cdc868d9845219cf4dc",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "inproc_postproc_results_df = compute_postprocessing_curve(\n",
+ " model=inproc_clf,\n",
+ " y_fit_pred_scores=inproc_clf._pmf_predict(fit_data[0])[:, -1],\n",
+ " predict_method=\"_pmf_predict\",\n",
+ " **compute_postproc_kwargs,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLUAAAKACAYAAABqokocAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1hT1/8H8HeCoAwBUcABinujuPdGRVGpe1etWldrtdW2WmvVVuuqtm7rHnVQt0VEwYFaUayKG0VEQFAUggyBAPn9wTf3l5AEAgkrvl/P4+PNveeee3JPCOSTcz5HJJPJZCAiIiIiIiIiIipBxEXdACIiIiIiIiIiorxiUIuIiIiIiIiIiEocBrWIiIiIiIiIiKjEYVCLiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShwGtYiIiIiIiIiIqMRhUIuIiIiIiIiIiEocBrWIiIiIiIiIiKjEYVCLiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShwGtYiIiIiIiIiIqMRhUIuIiIiIiIiIiEocBrWIiIiIiIiIiKjEYVCLiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShwGtYiISgCpVFrUTSAq1mQyGTIyMoq6GXnCn2siIiIi3TCoRUQlztGjR1G3bt1c/zVo0AAuLi7o3r07Pv/8c+zYsQPv3r0r6ubnSXR0NKZNm4b//vuvqJtCxUxERITwWh8zZkxRN6dABQUFoWHDhmjbti0SEhJUjj979gyjR49GVFRUEbQu79LT07F9+3YsW7ZM7fE///wTdevWxeeff17ILSMiIiIqWRjUIiKDlZGRgeTkZERERODixYtYvnw5evTogf379xd107Tyzz//wM3NDb6+vkXdFKIik5ycjG+++Qbp6en46quvULZsWaXjO3fuhIeHBwIDA4uohXkTHR2NQYMGYcWKFUhOTlZb5tNPP0W1atVw8eJF/PXXX4XcQiIiIqKSo1RRN4CISBeOjo4YMWKE2mOZmZn48OEDoqKi4OPjg8TERCQnJ2Px4sUQi8Uazysu/P39NX7oJfpYrF27FmFhYahTpw4GDx6sctzPz69ETeMLCwvD48ePcyxjYmKCb775Bl988QVWrlyJrl27olKlSoXUQiIiIqKSg0EtIirRKlWqhM8++yzXct999x2mT5+OmzdvAgBWrFiBHj16wNbWtqCbSFQgHBwc8OTJk6JuRoF6/Pgx9u3bBwCYPXs2jIyMirhFhadnz55o0qQJ7t69i6VLl2LdunVF3SQiIiKiYofTD4noo2BlZYUNGzbAwsICQNaUphMnThRxq4goJytWrEBGRgYaNmyIrl27FnVzCt306dMBAD4+PiVmeiURERFRYWJQi4g+GlZWVnB3dxce//vvv0XYGiLKSWBgIK5evQoAGDVqVBG3pmh06tQJjo6OAIDff/+9iFtDREREVPxw+iERfVRq1qwpbEdHR2ssl5iYiCNHjuDixYsIDg5GfHw8zM3N4eDggPbt22PYsGGoUqVKjtfKzMyEj48PvLy8cO/ePbx9+xalSpWCjY0NnJ2d0bVrV/Tt21dlStWYMWNw48YNpX1jx44Vtvfs2YPWrVvn5WkDALp164bIyEi0atUKe/fuxdu3b7Fjxw74+voiOjoaRkZGqFGjBnr27ImRI0cKo9qyO3r0KL7//nsAwKFDh1CtWjWsWLECvr6+yMjIQNWqVdGzZ09MnTpV6by0tDScPHkS58+fx4MHDxAXFwdTU1NUrFgRbdq0wdChQ1G7dm2tnktYWBgOHz6Mq1evIiwsDFKpFNbW1mjQoAHc3d3V3tfs7t69i6NHjyIgIABv3rxBRkYGKlSogObNm6N///7o0KFDru14+vQpPD09ERAQgPDwcKSlpcHa2hpOTk5o27YthgwZAjs7O43n5/c1AmStfti9e3cAEPpUkfx1VL16dXh7eyMtLQ2enp44c+YMnj9/joSEBJQvXx7NmzfHkCFD0KZNm1yf75s3b7B3715cvHgR4eHhEIlEcHBwQPfu3TFu3DhYW1ujd+/eCA0NRZUqVeDn55drnZr8+eefAABzc3O4ubmpHJe/nhXJ7wcA+Pr6wsHBQeW8oup3xZ8buWPHjuHYsWMAgE8++QS//vqr0nGRSIRBgwZh7dq1uHHjBu7evYsmTZrk2j4iIiKijwWDWkT0UVEMDmgKepw/fx4//PAD4uLilPZLJBJIJBLcv38fO3fuxLRp01QCN3KxsbGYNm0abt++rbQ/LS1NWJHRy8sLGzduxNatW1G1alUdn1ne3Lt3D1OnTkVMTIzK/nv37mHPnj3Ytm0b6tWrl2M9UqkUEydOxP3794V9Dx8+FEaXyAUGBmLu3LkqQQipVIr3798jODgY+/btw8iRI/H999+jVCn1v54yMzOxZs0abN++HRkZGUrHYmJicOnSJVy6dAl79uzBxo0b1QaUUlNTsWDBArXTTyMiIhAREYETJ06gY8eOWL16NaysrNS2ZePGjVi3bh0yMzNV2hETE4ObN29i69atmD9/PoYOHapyfmG+RsLDwzFt2jQEBwcr7Y+KisLp06dx+vRpDB8+HD/99BNEIpHaOvz9/fHll1+qLF4QHByM4OBgeHp66i3vU2RkJC5fvgwgK3hlZmamc53Fpd/zyt3dHWvXrgUAHDhwgEEtIiIiIgUMahHRR0Vx1TF1QYLTp0/jm2++gUwmAwDY2tqiW7duqFy5MiQSCfz9/fHs2TOkpaVh7dq1iIqKwuLFi1XqmT17thCsKFeuHLp16wZHR0dIpVK8ePECPj4+kEqlCA0NxYQJE+Dl5QUTExMAwIgRI9ClSxd4eXkJwaLhw4cL7dU1APb27VshoGVubo5evXqhatWqePXqFc6ePYv4+HjExMRg9OjR2LdvX46BrS1btigFtOR69+4tbN+4cQOfffYZ0tLSAACWlpbo1q0bqlWrhuTkZFy/fh337t1DZmYm9u3bh/DwcGzevBliseoM+fnz5+Po0aPC4zp16qBDhw4wNzdHaGgozp49C6lUinv37mH8+PE4cuQIypQpI5RPS0vD+PHjcevWLQCAsbExOnbsiAYNGkAkEiEkJAQXL15EcnIy/P39MWrUKBw8eFBl1NqJEyeE6WBisRgdOnRAgwYNYGZmhtevX+PixYuIjIxESkoKFixYAAcHB7Rr106pDl1eI3mRnJyMiRMn4sWLF7C0tESPHj1QtWpVvH//Hr6+vggLCwMAHDx4EPXr18fw4cNV6rh06RKmT58urDJYpUoV9OjRA9bW1ggJCYGvry/evn2LSZMmqe23vDpx4oQQNOrUqZPaMlOmTEFCQgIOHDiA8PBwYZ+lpSUAwNraWihbHPq9cePGmDt3Ll6+fImDBw8CABo1aoQ+ffoAgMZRio6OjnBycsKLFy/g7e2Nn376Sek1TURERPRRkxERlTBHjhyR1alTR1anTh3Z6NGjtT4vJiZG1qxZM+HcQ4cOKR1//vy5rGHDhsLxBQsWyJKTk5XKZGZmyvbs2SOrX7++UO7YsWNKZW7duiUcc3Nzk8XFxam0JSwsTNa+fXuNdchkMtm3334rHL9+/brWz1OTrl27CvXVqVNHNnDgQFl0dLRSmXfv3slGjhwplBk+fLhKPYr3v06dOrKmTZvKjh07JktISJBFR0fLdu7cKUtKSpLJZDKZRCKRtWzZUig7ZcoUtffDy8tL5uzsLJRbv369SpkzZ84Ixxs0aKDSfzKZTPbixQtZp06dhHLr1q1TOr506VLhmIeHhywsLEyljtevX8tGjx4tlJs7d65KmZ49e8rq1Kkjq1evnuzChQsqx9PS0mTffPONUMeYMWOUjuvjNRIeHp7jz4Hic6hTp45s6tSpsvj4eKUy6enpSq+znj17qtSTnJysdE8XLFggS01NVWmLu7u70vW6du2qUpe2Bg4cKNQTExOTY1nF5xkeHq62THHpd5lMJrt+/bpw/Ntvv83xucktXLhQOOf8+fNanUNERET0MWCieCL6KISFhWHy5MlITEwEANjZ2WHAgAFKZdavXy+MROnZsycWL14MU1NTpTIikQhjxozBN998I+z7448/kJ6eLjy+e/eusD106FClESNyVatWxezZs4U67927p9sTzCNbW1ts374d9vb2SvttbGywefNmVKxYEQDw33//4eLFiznWtWTJEnh4eMDCwgL29vYYN26cMF1s+/btiI+PBwA4Oztj3bp1au+Hm5sbVqxYITzetm2bcJ6cPMcSAHz99ddqp3ZVq1YNq1evFh4fOnRI2H79+jX2798vPM/t27erHfVmZ2eHTZs2wdbWFgBw8uRJvHjxQjgukUiEx3Xq1EGXLl1U6jA2NlZ6/QQHBwsj1YDCf404OTlh7dq1wigmOSMjIyxYsADm5uYAgBcvXiAqKkqpzN69e4X8cx06dMDixYtVRow5ODhgx44dap9HXiUmJuLhw4cAgAoVKqBChQo61Vec+j2/6tevL2wHBAToXB8RERGRoeD0QyIq0aKiorB9+3a1x6RSKeLi4vDw4UMEBgYK05mMjIywYsUKlC5dWiibmpqKc+fOAcgKIMydOzfH644bNw779u1DZGQkIiMj8e+//6Jjx45C/XJ37tzRWIebmxucnZ3h6Oio1JbCMHXqVI0BiLJly2L8+PFYtmwZAMDHx0ftB3gga4qXfPqUOqdPnxa2v/nmG425sgCgV69eaN68OW7duoXk5GScOXNGmAr3+vVrYZpjuXLlMHr0aI31tGjRAu3atYNMJoOTkxMSExNhYWGBY8eOCUHLoUOHwsbGRmMdFhYWGDt2LFavXo3MzEycPn0aM2bMAACl5xAZGYmYmBghEKLI1NQUR44cQbly5VSuVdivkUGDBmmcumhubo6GDRsKixPExMSgUqVKwnFvb29h+6uvvtJ4DVtbW3z66ac6r9Inn4oKZAWPdFWc+j2/FO9DUFCQXuokIiIiMgQMahFRiRYeHq40wic3tra2WLlyJdq2bau0/7///kNqaioAoEGDBiqJzrMTi8Xo2bMndu7cCSArEbo8qNWqVSuh3JkzZ/D+/XsMGTIE7du3VxopY2pqilq1amnddn3KKRAFZK0iJw9qXblyRWO5Jk2aaMyhFB4eLiSGt7a21mrFRjc3NyHv0c2bN4Wg1tWrV4Uy7du3zzW3lLxfFN28eVPYbtCgQa5tadq0qbAtbxOQFfioX78+Hj16hISEBAwaNAiffvopunTporS6JgCVx3KF/RpxdnbO8bhi8EVxZNHbt2/x4MEDAFkjmRo3bpxjPb169dI5qBUaGips16hRQ6e6gOLV7/mlWJ/i/SEiIiL62DGoRUQGy8TEBBYWFrC1tUXDhg3Rrl079OrVS21AJCIiQtjObcU/deXkiarl+wcMGCCssnb16lVcvXoVRkZGaNy4MTp27IhOnTqhcePGGleaK0hVqlRBuXLlcizj6OiIMmXKICUlBW/evEF6erraUVYODg4a68jPPVWcZqV4vuKUuPwGeZ49eyZsf/nll3k699WrV0qPv/nmG0yePBkZGRl4/fo1VqxYgRUrVqBy5cro0KEDOnbsiHbt2qkkGpcr7NdIblP4FKfZKq7qJ08iD2g3aqp69eowMTHRacqdYl9rWoEwL4pTv+dX2bJlIRaLkZmZCYlEguTkZL2sCElERERU0jGoRUQlWqtWrbB3716d65FIJMK2th+kFQND2fM//fzzzyhfvjz27Nkj5NvKyMjAnTt3cOfOHaxbtw729vbo378/JkyYkOdpSomJiUr5otQpW7as2rxT5cuX1+oaZcuWRUpKCmQyGd69e6eSf0teRpO4uDhhW9t7qjglUrFPYmNjhe3seaG0lb2PdDm3Q4cO2LhxIxYuXCjkmwKygiCHDx/G4cOHYWJigi5dumD8+PFo1qyZSp0F/RpRlJfV8mT/W/kTAN69eyds59TXcmKxGFZWVoiJiclbAxUkJCTk6Zq5KW79nh8ikQgWFhZ4//49gKyffwa1iIiIiBjUIiICoPxBXlsZGRkaj5mYmODbb7/FuHHjcObMGfj6+uL27dtCbh8gK0/Un3/+CU9PT2zfvh2NGjXS+toSiSTXaZdVqlRRG9TKKa+VIsURO8bGxmrLaFuXthTvqeIIJcX7ll+KyfwnT56cp6Tm6vJZdenSBefOncOlS5fg4+ODK1euKAXf0tLS4OPjAx8fH0yfPl1llFBBv0b0QXHEleLrISf5+VnSdE19BG6KW7/nl5mZmRDU0kfyeSIiIiJDwKAWERGURxIpjhDKieJIJE2jh+SrAY4bNw7Jycm4desWrl27hgsXLgi5cSQSCWbOnAkfHx+lBOIFRb4CZE4yMzOFETPGxsa5TldUR/Ge6HpPFbcVR/LkhZWVFd6+fQsgK3eXNvmVcmNiYgJXV1e4urpCJpPhyZMnuH79Ovz9/XH9+nUhoLJhwwa0atUKbdq0UamjOL5G5BR/LuQBlZzIZLJ894+c4qgyfQRvimu/55U85x+Qt5F3RERERIZMfXZfIqKPTLVq1YTtJ0+eaHXOo0ePhO3cEssDWSMtOnbsiG+//Rbe3t74448/hBFQERER+O+//7Rur4ODA548eZLjPz8/P7XnhoWFKY1eUSc0NFQIKFSpUiVfeZ3yc08fP34sbCveU8Xt58+f51rP8ePH8cMPP2Dr1q1CecU6nj59mmsdaWlpWgUA5UQiEerVq4dx48Zh+/bt8PPzQ926dYXj8vxZOdHna0QfFPOXKeam0iQ8PFwp+JIfivmokpKSdKoLKBn9ro3k5GRhW985u4iIiIhKKga1iIiQtYqfPHjw8OFDvHz5MsfymZmZOH/+vPBYccW0ZcuWYdiwYWjZsiVev36tsY5evXoprcKomKMHQIElkU9NTUVAQECOZXx9fYXtbt265es6jo6OQh4uiUSC69ev53qOt7e3sK14TxVzE127di3HqZ8AcPLkSXh6emL16tV48+YNAKBFixbCccW+02Tv3r1o3rw5WrdujR9//FHY7+vri88++wxdu3bFli1bNJ5vb2+PKVOmCI8VXwv6eo0UtEqVKglBoZiYGGElRE00BVLzokqVKsK2Pp5vcep3IH8/17GxsUKwsEKFChypRURERPQ/DGoRESFr9bdevXoByJpCtXLlyhzL79mzR1ilzdraGu3btxeOhYeH486dO3j//j1OnTqVYz2KuXiyJ2IXi///LVrbfEba2rRpk8bcRxKJBLt37xYeu7m55fs6n3zyibC9evXqHEeInTt3Drdv3waQlatL3h8AULt2bWFlxJiYGBw5ckRjPSEhIUIArVy5ckJAzMPDQwgonD9/HoGBgRrriIuLw/bt2wFk3Q/FkTcymQxXrlzBq1ev8M8//+T4nBSnUyr2r75eI4Vh4MCBwvb69es1lktMTMSuXbt0vl716tWFbcVVRTVRnI6p7uekOPU7oPxznVtwVk5xJVDF+0NERET0sWNQi4jof6ZOnSokhvbx8cGPP/6IDx8+KJWRyWQ4cOCAUpL2OXPmKCWUHjRokLD9+++/49KlS2qvt2vXLty/fx8AYGdnpzQyCVCeYqT4oVYfbt68ifnz56tMFXvz5g0mT54s5CByd3eHs7Nzvq8zduxYIR9XUFAQvvjiC7X5tc6dO4e5c+cKjydPngw7OzulMtOmTRO2f/nlF/j4+KjUExUVhZkzZwrBgk8//RQmJiYAsqbS9e3bF0BW8GP69Om4evWqSh2vX7/G1KlThZX/KleujMGDBwvHO3XqBFtbWwBZ0yoXL16MlJQUlXpCQ0OVgkA9e/YUtvX1GikMo0aNElbM9PPzw9KlS1US98fGxmLKlClCoFcXjRo1EhYgUJyOqoniz0lkZKTK8eLU79q0V52HDx8K20XxGiAiIiIqrpgonojof2rVqoWFCxdi/vz5kMlkOHToEPz8/NCtWzdUrlwZ8fHx8Pf3V8rL88knnyh98AWA7t27o2PHjvD390daWhomT54MFxcXNGrUCLa2toiPj8fNmzcRFBQEIGs60nfffScEX+QcHByE7VWrViEyMhLGxsbo2bMnateurdNzNTY2xpEjR3Dt2jW4urqifPnyCAsLw9mzZ4U8RlWrVsW8efN0uk758uWxatUqTJkyBVKpFH5+fnB1dUX37t1RrVo1fPjwAdevX8fdu3eFc9q0aYMZM2ao1NWzZ0+MGDECBw4cQEpKCr744gu4uLigdevWMDU1RUhICM6dOycEIl1cXPDZZ58p1bFo0SI8fvwYz549g0QiwYQJE9C8eXO0bNkSxsbGeP78Oc6fPy8E+0qXLo1Vq1YpBS1NTEzw/fffY/bs2QAgvE46deqEypUrAwCCg4Nx8eJFoZ7OnTuja9euQh36eo0UBisrKyxZsgQzZsxAZmYmdu/eDV9fX/To0QPlypXDy5cv4ePjg4SEBJiamgr3P7/TZ83MzNC4cWPcvn0bb9++RUREhNLPQnaKx+bNm4dBgwZBJpNh2LBhQmC0uPQ78P856mQyGW7duoU5c+agdu3asLOzg4eHh9rnKH8dAEDr1q21vZVEREREBo9BLSIiBYMGDULZsmWxYMECSCQSxMTE4NChQyrljI2NMWvWLEyYMEFtPWvXrsXMmTNx5coVAMDt27eFqXWKzM3N8f333wsjSRT17t0b69atQ3x8PCQSCTZt2iSco2tQa82aNZgzZw6ioqKwZ88eleMtWrTAunXrYGNjo9N1AKBDhw7YtWsXvvnmG0RFReH9+/c4duyYSjmRSITx48dj9uzZGlf4W7hwIaytrfHnn38iPT1d433t0qULVq1apRIEsrCwwIEDBzB37lxcuHABAHDr1i3cunVLpY6KFSti5cqVaN68ucqxvn37Ii4uDr/++iukUmmOUyJ79eqF5cuXq+zXx2uksHTv3h2//vorfvrpJyQnJyMiIkJlqmGlSpXw448/YurUqQCgUwCue/fuwr24evUqhg0bprHswIEDsW/fPkilUrx69Qrr1q0DANSrVw+urq4Aile/ly1bFn379sXp06cBZOV/A4C6detqDGpdu3YNQFaAkUEtIiIiov/HoBYRUTY9e/ZEu3btcPjwYVy8eBEhISGIj4+HiYkJnJyc0LFjRwwdOlQpoXV2FhYW2L59Oy5duoTTp0/j3r17eP36NdLS0lCuXDk4Ojqic+fOGDhwoMo0OzlbW1scOHAAa9euRWBgIN6/fw9zc/M8rcymiaurK06dOoU///wTV65cwZs3b2BhYQFnZ2d4eHjAzc1Nr4nqW7RoAR8fHxw9ehR+fn549OgR4uLiUKpUKTg6OqJNmzYYOnRorsE6kUiEr776CgMGDMDBgwdx7do1REVFISUlBTY2NmjatCkGDRqEzp07a6zD0tISmzdvRmBgIE6ePImbN2/izZs3SE1NhaWlJerWrYvu3bvjk08+gbm5ucZ6Ro8ejU6dOuHvv/9GQEAAXrx4gcTERJiamsLW1hatWrVCv379lBKVK9LHa6QwDRgwAC1btsT+/ftx6dIlvHr1CpmZmXB0dESvXr0wbtw4paToZmZm+b5W//798dtvvyEzMxMXLlzIMahVp04d7NmzBxs2bMD9+/eRmJgIS0tLlWmuxaXfgayFAhwcHHDmzBlER0cLI7dkMpnKz93jx4+FaZ29e/cuktF6RERERMWVSKYpUzARERmUbt26CTl8njx5UsStIUN09+5dDB06FEDWaLmcVgnMzbRp0+Dr6wtjY2NcuXIF1tbWemplybJy5Ups27YNAHDixAnUq1eviFtEREREVHwwUTwRERFp9Ndff+HIkSO4detWrqtwBgcHC9u6rtInn9orlUpzXSHSUKWnpwvTE9u1a8eAFhEREVE2DGoRERGRRr6+vpg3bx5GjhyplNA/u8zMTBw4cEB4nNP0O220aNEC7dq1AwDs27cPH+PA8rNnz+LNmzcAgC+++KKIW0NERERU/DCoRURERBopJib/9ddfERcXp1Lmw4cPmD9/Ph48eAAAcHJyQqdOnXS+9tdffw2RSIQXL17g3LlzOtdX0mzfvh1A1tThZs2aFXFriIiIiIof5tQiIvpIMKcW5UdCQgL69OkjjBgyMzNDt27d4OjoCLFYjFevXuHChQtCYnZjY2Ps27cPTZs21cv1Fy5ciIMHD6JOnTo4efKkXhcwKM7OnTuHGTNmwNTUFKdOnYKjo2NRN4mIiIio2GFQSwOZTIbTp0/jyJEjePToEZKTk2Fra4uWLVti1KhRcHZ21qn+zMxMnD59GidOnMCDBw+QmJiI8uXLo379+vDw8ECvXr20+sM9ODgYO3fuREBAAN68eYOyZcuiZs2a8PDwwCeffAIjIyOd2klEhoNBLcqv58+fY8aMGQgJCcmxXKVKlfD777+jSZMmert2QkIC+vXrh6ioKCxbtgwDBw7UW93FlVQqRf/+/fH8+XN89913GD9+fFE3iYiIiKhYYlBLjZSUFMycORMXL15Ue9zIyAhfffUVJk+enK/64+PjMX36dNy8eVNjmdatW2PNmjUoX768xjKenp5YtGgRpFKp2uMtWrTAhg0bPtoVo4hIGYNapAupVIp//vkHPj4+ePjwIWJjY2FkZAQ7OztUq1YNffv2Ra9evVCmTBm9X/vWrVsYO3YsrK2t4e3tjbJly+r9GsXJ9u3bsWLFCnTo0AHbtm37aEanEREREeUVg1pqfP311zh9+jQAoGbNmhg6dCgqVKiABw8e4ODBg0hOTgYArFixAgMGDMhT3ZmZmRg9ejRu3boFAKhSpQoGDx4MR0dHREVF4fjx48I34S4uLtizZw9MTExU6vH398ekSZMgk8lgamqK4cOHo1GjRnj37h3+/vtvYQWq9u3bY9u2bRCLmT6NiIiIiIiIiAwHg1rZXL16VVhGvE2bNti6dStKly4tHA8JCcHIkSMhkUhgbW0NX19fWFhYaF3/33//jfnz5wPIGo21detWpW+1pVIpZs6cCV9fXwBQO9UiLS0Nbm5uiIiIgJmZGfbt24eGDRsqHZ89e7aQVHf16tVwd3fP450gIiIiIiIiIiq+OHwnmx07dgAASpUqhZ9//lkpoAVkjdxasGABAEAikcDT0zNP9R88eBBA1hTGFStWqEzTMDY2xsKFC4XHXl5eKnX4+PggIiICADBx4kSlgBYAmJiYYPny5cK0wy1btuSpjURERERERERExR2DWgokEgmuXbsGAOjYsaPGlYb69Okj5Lry9vbWuv6MjAxUrlwZ1atXR/PmzVGxYkW15ezt7WFjYwMAePXqlcpxeaBLJBJhxIgRauswNzcXRngFBwcjNDRU63YSERERERERERV3DGopCAwMRGZmJoCsqYeaiMVitGzZEgBw9+5dxMfHa1W/kZER/vjjD3h7e2Pv3r0ayyUlJSEhIQEAUKFCBZXj8gTzdevWFYJf6ig+h8uXL2vVRiIiIiIiIiKikoBBLQVPnz4VtuvUqZNj2Vq1agEAZDKZkJRdX9avXy+saNi7d2+lY69fv8b79+8BALVr186xnpo1awrbjx8/1msbiYiIiIiIiIiKUqmibkBxIl/qHshalTAnilMHIyMjhZFb+ZGRkYG3b9/i3r172LNnDwICAgAArVq1wuDBg5XKynNpadNGe3t7iMViZGZmqp3GSERERERERERUUjGopSA2NlbYLleuXI5l5UnYgaxcXLrw8PBQGu0lEokwatQozJ49GyYmJkpl4+LitG6jsbExzMzMkJiYqHMbiYiIiIiIiIiKEwa1FKSkpAjb2Vc9zE4x2KR4Xn5ERUUpPZbJZLh+/TouXryIvn37Kh378OGD1m2Ul0lMTNS5jXmVlpamFEgrXbo0jIyMCrUNRERERKRZRkYGUlNThcfW1tYqX6gSEREVZwxqKUhPTxe2c/uFrnhc8bz8XPPTTz9FjRo1kJKSgmvXrsHLywvPnj3D7Nmz8fTpU3z11VdC+YyMDK3bqFhGlzbmh0QiQXh4eKFek4iIiIh0Y2dnp5d6MjMzkZiYiPfv3yMtLU3pb1giIvp4GBkZwcTEBJaWlrCwsIBYrN/U7gxqKShTpoywLZVKcwwapaWlCdu6fKNVqlQpfPHFF8LjQYMGYfDgwfj888+RmpqKTZs2oUOHDmjRogUA5dFZ8mTyOZG309jYON9tJCIiIiLSVkJCAiIjIyGTyYq6KUREVMTS09ORmpqKhIQEiEQiVKlSBWXLltVb/QxqKTAzMxO2U1NTtQ5qaTMNMC/atm2LL7/8EitXrgQA7Nu3TwhqZW9jbuRlFAN2REREREQFQV1ASyQSMQ0FEdFHKiMjQ/idIJPJEBkZqdfAFoNaCiwtLYVtiUSS401WzBdlY2Oj97YMGTIEq1evRmZmJv777z+1bYyPj8+xDqlUiuTk5AJrY06yB/ocHR2VAnJU/D179gwZGRkwMjJCrVq1iro5pCP2p+FgXxoO9qVhKYn9mZycrJQuQtcvajMzM5UCWhYWFrCxsYGZmRlEIpFOdRMRUckkk8mQnJyM2NhYJCYmCoGtOnXq6GUqIoNaCpycnITtqKgoODo6aiwbHR0tbFeuXFnvbbGyskL58uURExOjtCpj9jbm5PXr18jMzCywNuYk+7dxZmZmsLCwKNQ2kG7EYjEyMjIgFovZdwaA/Wk42JeGg31pWAyhP3UdTSX/sAJkBbQcHBwYzCIi+siJRCKYm5vDzMwMERERwu+KxMREpUE7+cWgloKaNWsK20+fPkWrVq00ln369CmArA6qXbu2VvWHhIRg27ZtCA8PxyeffIJBgwblWF4+ddDc3FzYV65cOZQvXx7v3r0T2qDJs2fPhO06depo1caPmTyCrIjfLBIREZVMR44cQUJCgvC4e/fucHR0RGZmJvbs2aNU9pNPPoGVlVVhN9HgvH//Xti2sbHh31BERCQQiUSwsbFBYmIigKzfGQxq6ZmLiwuMjY0hlUoREBCAUaNGqS2XkZGBmzdvAgDq1aundUdkZGTg6NGjALK+vcopqBUaGir8YVC9enWlYy1btoS3tzcePXqEhIQEjdMkr1+/LmznFKCjLMnJyVi1apXSvm+++UYpqEhEREQlQ0REhFK6CPkXVzKZDGFhYUplC3uVaEMlzzkrEomYdoKIiFTIB43IZDKlPOW6YFBLgaWlJdq0aQN/f3/4+fnh1atXaqft/fPPP8KUQDc3N63rr127NipVqoSoqCj4+/sjPDxc4xTHP//8U9ju0aOH0rFevXrB29sb6enpOHDgACZPnqxyfmJiIo4dOwYgKyhWr149rdtJBAD169eHTCbjt6wGgv1pONiXhoN9aVjYn1lf4AJZ0xg/5vtARETqyRcOSU9PF35n6Er3rFwGZty4cQCykqzPnj1bGBon9+zZM/zyyy8AsqYFDhkyROu6RSIRPv30UwBZ3wjOmTNHpX4A2L17N44cOQIAsLW1xYgRI5SO9+jRAw4ODgCADRs2IDAwUOl4Wloa5s6dK3w7OX78eK3bSCRnbGwMExMTGBsbF3VTSA/Yn4aDfWk42JeGhf1JRERU+DhSK5sOHTqgV69eOHv2LG7fvo0BAwZgxIgRqFSpEh4+fIgDBw4gKSkJADB37lyVVQUDAgIwduxYAFlT/vbu3at0fPTo0Th//jwCAwNx+/ZtuLu7Y9iwYXByckJsbCy8vb1x48YNAFl/HK1Zs0Zl+puJiQnmz5+PadOmISUlBePGjcOQIUPQrFkzSCQSHD58GMHBwQCAZs2aYfDgwQVyr4iIiIiKqy5dugj5SQHAzs4OQNaXjNlH2jPVABERUcnEoJYay5cvR1JSEq5cuYKIiAisXLlS6bhIJMKMGTMwfPjwPNdtbGyMTZs2YdasWbhy5QqioqKwdu1alXLly5fH2rVr0bJlS7X1dOvWDQsXLsQvv/wCqVSKv/76C3/99ZdSmcaNG2Pjxo06r2RDREREVNI0adJE7X6xWMxco0RERAaCQS01TE1NsW3bNpw6dQrHjx8XErJbW1ujefPmGDt2LJo3b57v+i0tLbFt2zacP38eR44cwb179xAfHw9zc3PUqFED3bt3x4gRI3L91nDEiBFo0aIFdu/ejWvXriEmJgbGxsaoU6cO+vXrh6FDh3IIPOVbTEwMMjMzIRaLYWtrW9TNIR2xPw0H+9JwsC8NC/uTiIio8DGopYFIJEL//v3Rv3//PJ3XunVrPHnyRKv6XV1d4erqmt8mAshKPv/zzz/rVAeROlFRUZBKpTA2NuYf5waA/Wk42JeGg31pWNifREREhY+J4omIiIiIiIiIqMRhUIuIiIiIiIiIiEocBrWIiIiIiIio2JLJZPjrr78QExNT1E2hQlC3bl3UrVsXY8aMKeqmFLn09HRs3boV/fr1g4uLCxo1aoROnTrBy8tL79dKTEzUe52FgTm1iIiIiMjgnDhxAklJScLjTp06wcHBAZmZmTh48KBSWXd3d1haWhZ2E4lIC2FhYZg3bx4CAwPRqVOnom4OUaH69ttvcfr0aaV9r1+/LpDfWb///jvmzJkDExMTvdddkBjUIiIiIiKD8+LFC0gkEuGxfOVqmUyGp0+fKpWVSqWF2TQiyoOTJ08iMDCwqJtBVOhCQkKEgJaVlRUmTJiAqlWrIiEhAY0bN9brtdLT03Hy5El06NABnTt31mvdBY1BLSIiIiIiIiIqFp48eVLUTSgWnj17JmxPnz4dn376aYFdKyAgABKJBGfPni1xQS3m1CIiIiIiIiIiKkY+fPggbNeqVatAr+Xj4wMA8PPzQ0ZGRoFeS984UouIiIiIDE6HDh2QkpIiPLa1tQUAiEQi9OjRQ6msmZlZobaNiIgoN5mZmcJ2qVIFF7qRyWTw9fUFAMTFxeHGjRto27ZtgV1P3xjUIvqf0qVLY/DgwSr7PlZlypSBkZERjI2Ni7oppAfsT8PBvjQc7MuCJc+hlZ1YLEb79u31fj32JxVHdevWBQBMmTIFs2bNgo+PD/bs2YPg4GB8+PABVatWRY8ePTB+/HhYW1trrCc5ORmenp44f/48goODkZSUBGtra9SrVw9ubm7w8PCAkZGRxvOjo6Oxb98+XLlyBWFhYUhPT4eNjQ0aNGiAnj17on///irnr1u3DuvXr1fa1717dwBAlSpV4OfnV+j3Ql7HzJkzMXToUCxevBhXrlwBADg6OmLixIno16+f3u4bAKSlpeHcuXM4evQonj9/jpiYGFhYWKBhw4YYMGAA3N3dIRZrnoCVkZGBY8eO4cyZM3j8+DHi4+NhZWWF+vXrw93dHf3798/x/Pz0na7nyu9zq1atsHfvXrXHZs6ciWnTpiEgIAD79+/HnTt3EBsbi3LlyqFly5YYM2YMXFxccry3UVFR2LFjBy5fvoxXr17B1NQUdevWxbBhw+Du7o6tW7di9erVAPI/JTI/r4ExY8bgxo0bSvvGjh0rbC9btgwDBw7MV3vU+e+//5RWFvXx8SlRQS2RTCaTFXUjyPAkJiYq/eDXrVsXFhYWRdgiIiIiIlKk77/Xnj59ivT0dJQqVQq1a9fWRxNJR4qBnPT0dGzbtk1tOTs7O+zcuVPtFKfAwEB8/fXXiI6O1nidOnXqYOPGjXB0dFQ5du3aNUyfPh3Jyck5tnPnzp0oX768sE9dUEtO16BWfu+FvI7PPvsMvr6+ePHihdLxrVu3CvmIdL1vABAREYFp06blGFBp3bo1Nm7cqPZnNyIiAlOnTkVwcLDG8xs1aoRNmzbBzs5O5Vh++07Xc7UNaqWmpmLLli1QF9IQiUSYPXs2Jk+erPbaAQEBmDp1qtIquYp69+6NunXr4vfffweQv6BWfl8D6oJaivQd1Fq2bBl27dolPLa1tYW/vz9EIpHerqFI378rGNSiAsGgFhEREVHxxqCW4ZMHAKpXr47Q0FCIxWJ4eHigbdu2SEpKwokTJ3D79m0AgLW1NU6dOqUU3Lh37x7Gjh0rBCZcXFzg5uYGW1tbREZG4sSJE8JqohUqVMDRo0dhb28vnB8bG4vevXsjPj4eJiYmGDRoEJo0aYLSpUsjIiICnp6eePnyJQCgc+fO2Lp1q3BuSEgIQkND8c8//8DLywsAsHjxYpQvXx5lypRBhw4dCvVeKNZRunRppKamokOHDujXrx8kEgkuXbqEbdu2wcjISOf7Jr93/fr1w9u3bwEA9erVQ//+/VGxYkWEh4fjwIEDQrCkW7du2LRpk9L57969wyeffILXr18DAJo2bQo3NzfY2dnh7du38PLyEp6vk5MTjhw5ovTzr0vf6XKu4n3OKagl70dzc3MMHjwYzs7OSE5OxunTpxEQEAAgK7B15MgRNGzYUKmO+/fvY9SoUcIU9e7du6Nbt24wNjbGjRs3cPz4caSnp6Ns2bJISEgAkPegli6vgcDAQEgkEly/fl14/jNnzkSdOnUAAA0aNEDlypXz1J6cdOvWDZGRkUr7Dhw4gGbNmuntGooY1KISgUEtIiIiouKtOAS1FKe8FCQTExNYWVmpPRYfH4+0tDThsZmZGczNzdWWjY2N1TmJsjy/W2GQBwCArEDMxo0blYJBMpkMv/zyi/DBeeDAgVi2bBmArGlrffv2RWhoKADg66+/Vhn1kp6ejsWLF+PQoUMAsnLZbd++XTi+a9cuob41a9agT58+SuenpKRg5MiRePDgAQDg/PnzKqOWFEds+fr6wsHBodDvhbo6unTpgs2bN6uMZtHHfQOA7777DseOHQMAjBo1Cj/88IPSNMHExESMGDFCGIW1Z88etG7dWjg+Y8YMnDt3DgAwe/ZsfP755yr3RHF63fDhw7Fo0SLhmC59p2u/axPUArJG7O3Zs0flNfH999/j6NGjwr378ccflY4PHz4ct2/fhkgkwtKlS1VGPQUGBmLy5MlKo7jyEtTS12vg6NGj+P777wGo9q+2/v77b+zbt0/taDYgK2+XupF89vb2KFeunMZ6GzVqhHnz5ml8r8yJvoNaXP2QiIiIiIiKhJ2dXaH8mzhxosY2TJw4UansypUrNZbt2LGjzm0pKl9++aXK6CaRSITvv/9eCBQcP34csbGxALLy6sg/lPfp00ftNK5SpUph4cKFcHZ2BgBcuXIF9+7dE47LzwcgTMtTVKZMGUyaNAnVqlVDhw4dEBcXp+Oz1E5e74U6kyZNUjs9Sx/3LTY2FidOnAAA1K9fH/Pnz1fJe2VhYaEUhDp9+rSw/fz5c5w/fx4A0LNnT7UBLQCYPHkyWrVqBQA4duyY0vPVpe8Kq9/nzZunNsg5bdo0YVvxvgLA9evXhRFqQ4YMUTuNr0WLFvj222/z1SZAP68BfRk8eDCmT5+OqKgoPH78WOWfpqmpr1+/Vlv+8ePHaNmyJRYuXJivgFZBYFCLiNQKDQ3F06dPlX4pUcnF/jQc7EvDwb40LOxPKs7MzMwwcuRItceMjIyEY5mZmfD39wcAXLp0SSiTU1DQyMhI6bg8mAJAKeH69u3b1Y4WcXNzg4+PD7Zv3y58wC9I+bkX2RkbG2tsqz7u2+XLl4WV70aMGKExEXuzZs0wc+ZM/Prrrxg9erSw/+zZs8K9HjRokMY2KB5PTU3FtWvXhP269F1h9LuJiQm6dOmi9pijo6MQcHn//r3SsQsXLgjbn376qcb6P/nkkxwXT8iJPl4D+uTq6opjx46hadOmOtVjZWWFDRs24IcffoCJiYl+GqcHXP2QiNRKSEiAVCrlKk4Ggv1pONiXhoN9WbD++ecfpQTF7du3R+XKlZGZmYkjR44ole3duzfKli2r0/XYn1Scubi4wMzMTONxxdVC7969iwEDBuDOnTsAAEtLS5WcRNm1adNG2FYcbdK7d28hkfeGDRvg5eWFnj17olOnTmjatClKlSr8j6P5uRfZOTo6avxQr4/7dv/+fWE7t7xGiqOSFNstFx4enmOwRHGU1IMHD+Du7g5At74rjH53cnLKsR4LCwskJSUhPT1daf/NmzcBAOXKlVO7GICciYkJmjVrlucFCQD9vAb0rUqVKti/fz9+++037NixQ+N0RE1cXFzw22+/6TWXl74wqEX0P0lJSVi1apXSvm+++abYDKskIiIi7T179gwSiUR4LB8JIJPJ8PDhQ6Wy3bp1K8ymERU6JyenHI9XqlRJ2JYnJpdPRdMmh5WVlRWsrKwQHx8vnA9kTZ2bOXMm1q5dCyBrROOWLVuwZcsWlC1bFu3bt0fPnj3RvXt3lClTJo/PKveRLc2aNYONjY3Svvzci+wsLS01nq+P+6a4nZ8gwps3b4Ttn3/+Wevz3r17J2zr0ncF3e8Acs3/Jw94ZQ/eyO+NNve1atWq+WqbPl4DBaFUqVKYO3cuWrdujW+//VaraZ8ikQifffYZZs2aVSRBaG0Uz1YREREREZHBU/zwXZBymiqzbds2bNy4UXic0ygef39/nRPFF4XcvqQ1NTUVtuXJseX/Kx7LSZkyZRAfH48PHz4o7Z86dSqaNm2Kbdu24d9//xXuX0JCAry9veHt7Y1y5cphwYIF6Nu3r9bPCQCmT5+e43F1ybXzcy+yy+n1pI/7Fh8fr3Q8rxITE/N8DqD6fHXpu4LsdwD5DrDIv+zQ5r7mN+Cmr5+dgtK5c2ecOHEC7u7uKtMzs/vll19yncJa1BjUIiIiIiKiIlGYKwFqomlVRHWyj/opKRRXd1RHcaquPI+QqakpEhIStP6gLa9DXSCgbdu2aNu2LWJjY3H58mVcvXoV//77r7D6ZVxcHL7++mtYWFioTSyuT/m5F3mhj/umuJ2SkpLnmSOK5wcFBaF06dJ5Ol+RLn1XnPpdrnTp0pBKpVr1T0pKSr6uoc+fnYIilUpzDWgByqP3iisGtYiIiIjI4LRu3VrpA0n58uUBZE2lyP7hSdtv04lKqujo6ByPR0RECNvyFRorVKiAhIQEpWOaxMbGIiEhAQBgb2+vsZyNjQ08PDzg4eEBmUyGO3fuYOPGjbh8+TJkMhk2bdqUp+DGkydPtC4rl597kRf6uG/y9ysgq701a9bUWMeDBw8gFovh6OgoTMlTPP/NmzdwdHTM8/PITpe+03e/66JixYp49uwZXr16lWtZbcqoUxA/O/qmbVL6c+fOqV29sTjh6odEREREZHDatGmDLl26CP8qVKgAABCLxUr7u3TpkuN0MyJDcOfOnRwTQwcGBgrbrVq1AgA0btwYQNbqcQ8ePMix/uvXrwvbdevWBZCVy+jMmTNYv349du3apXKOSCSCi4sLNm7cKASP8hOkyqv83Iu80PW+AVBKLn779u0c6/jpp5/g4eEBV1dXYZ/iaoI3btzItQ1fffUVVq1aJTx3XfquuPa7XJMmTQBkTUMMCQnRWC4zMzPXe6+JPl4DBc3Hx0dln7rfhffu3cs1EFzUGNQiIiIiIiIyYNHR0bhw4YLaY1KpFAcOHACQ9aG2Xbt2AIDu3bsLZbZt26ax7oyMDOzYsUN43LVrVwBZwYvVq1dj3bp12Lhxo8Zpf8bGxsL0OnXT7EQikbCd1xXb1MnPvcgLXe8bAHTs2BFicdZHdU9PT43POywsTFgxr23btmrbsGfPHkilUo3tWL9+Pc6cOYM///xTyDelS9/pq98LSu/evYXt/fv3ayzn7e0tTJPMK328BgrS27dvVQJ2vXr1wqVLl7BgwQKlnHEymUxtAKw4YVCLiIiIiIjIwC1cuBAvXrxQ2peRkYFFixYJI1Y+++wzIf+Sq6srqlWrBgDw8vLC1q1bVerMyMjA4sWLhcBK69at0aJFC+G4PIAQHx+PpUuXqg3OnD9/HqGhoQCgdK6c4vRgxQTqusjrvcgLfdw3BwcHYeTVnTt3hFUEFSUmJmL+/PnCPR05cqRwzNnZWRhl9vjxYyxYsEBtYOuPP/7AzZs3AWStCqkYVNGl7/TR7wWlQ4cOqFevHgDgwIED8PLyUinz5MkTLFmyJN/X0MdroCCdP38emZmZALJyjP3444/4448/YGlpidGjR+Pw4cNKq4SeO3euUNqVX8ypRUREREREZMBEIhHevHmDgQMHYvjw4WjUqBFiY2Nx9OhRYXpUrVq1MGnSJOEcIyMjrFq1CqNGjUJaWhpWr14NPz8/9OnTBxUqVEBUVBSOHz+O4OBgAFlJ1ZcvX6503QkTJsDT0xMSiQQHDhzA3bt34ebmhipVqiA+Ph63bt0SggqlS5fGlClTVNpesWJFYXvZsmUYNWoUAKBPnz6Fdi/yQh/3DQB++OEHBAYG4t27d9i8eTMCAgLQt29flCtXDi9evMChQ4eE1UMHDRqkEhBZtmwZBg0aBIlEgmPHjuH27dsYOHAgHB0d8ebNG5w9exb//fcfgKyVBH/55RcYGRkJ5+vSd/ro94IiFouxePFijBo1ClKpFLNmzcKZM2fQuXNnlC5dGnfu3IGnpydSU1NhZGSEjIwMYdSctvT1Gigo8iBVjRo1sGbNGiHIJ1e/fn0cO3YMixYtwvHjx3Hr1i3ExsYW24UyGNQiIrUqVKiAjIwMpV9uVHKxPw0H+9JwsC8NC/uTirNmzZrB3t4eXl5e2L59u8pxFxcXbNq0SWVkkrOzM3bu3ImvvvoKMTExuH37tto8Q/Xr18e6detQqVIlpf02NjbYvHkzpk6diri4ODx8+BAPHz5UOd/S0hLLly9X+XANAO3atYO1tTUkEgkCAwMRGBgIkUiU73x4+b0XeaHrfQOyktTv27cPU6ZMQVhYmMY6+vXrh0WLFqnsd3BwwP79+zF9+nS8ePECL168wG+//aZSrmzZsli+fLlKUEyXvtNHvxekJk2aYM2aNZg7dy6Sk5Ph4+OjMsVu8ODBiIyMxL///qs0HU9b+ngNFISEhAQEBARg4MCBWLBggcafITMzMyxfvhzt2rXDTz/9BF9fXwwZMqRQ2phXDGoRkVqVK1cu6iaQHrE/DQf70nCwLw0L+5OKMyMjI6xZswadO3fGX3/9hadPnwLI+kDt4eGBgQMHolQp9R8NW7RogbNnz+LQoUPw9fXFs2fPkJSUBDs7O9SuXRseHh7o0aMHjI2N1Z7v4uICLy8vHDx4EJcvX0ZoaCgSExNhYWEBBwcHdO3aFcOHDxcWc8iuXLly2L17N1auXImgoCAkJyfDxsYGUVFROa4KWBD3Ii90vW9A1kia06dPw9PTE97e3ggODkZSUhKsrKzQpEkTDBs2LMdVA2vVqoVTp07h2LFj8PHxwZMnTyCRSGBiYgInJyd06tQJo0aNgq2trdrzdek7Xfu9oLm6uuLUqVPYtWsX/P39ER0dDRMTEzRo0ACjR4+Gq6urMCrQ0tIyX9fQx2tA327cuIGlS5eif//+WpUfMGAAmjRpgmPHjhVwy/JPJNNHtj2ibBITE5VWsahbt66wxGxxlZSUhFWrVint++abbwo1cSERERHph4+PD5KTk4XHrVu3RqVKlZCZmYmTJ08qle3Ro0ex/zulIOj777WnT58iPT0dpUqVQu3atfXRRNKRfDW1Vq1aYe/evUXcmqLFe0F51bt3b4SGhqJJkyY4fPhwUTdHLzIzM/M8nVKX89TR9+8KjtQiIiIiIoPz6NEjYSUvIGsURqVKlSCTyXD37l2lsh07dvwog1pERB+bEydO4PTp03B0dMTnn38Oe3t7teVCQkKExQQaNGhQiC0sWPkNTOkroFUQGNQiIiIiIiIiIoNnaWmJy5cvAwBkMhkWLlyoUib7ypLu7u6F2kbKGwa1iEitoKAgSKVSGBsbw9nZuaibQzpifxoO9qXhYF8aFvYnEVHx1759ezg4OCAiIgJ//fUXHj58iJ49e6JixYr48OEDnj9/jhMnTuDt27cAgCFDhqgk0afihUEtIiIiIjI4zZo1w4cPH4TH8qXIRSIR2rZtq1S2TJkyhdo2IiIqGiYmJtiwYQOmTJmCqKgo3LlzB3fu3FFbdsSIEZg3b17hNpDyjEEtov8xMTGBm5ubyj4iIiIqeTp27Kh2v1gsRs+ePQu5NUREVFzUq1cPZ86cwd9//w1fX18EBwcjPj4e5ubmsLe3h4uLCwYPHsxRtyUEg1pE/2NsbIxWrVoVdTOIiIiIiPRCcXXLjx3vBSkyNTXFmDFjMGbMmKJuCumo+KawJyIiIiIiIiIi0oBBLSIiIiIiIiIiKnEY1CIiIiIiIiIiohKHQS0iIiIiIiIiIipxmCieiIiIiAzOhQsXkJycLDxu0aIF7O3tkZmZiTNnziiV7dy5MywsLAq7iURERKQjBrWI/ic5ORkbNmxQ2jd9+nSYmZkVUYuIiIgov4KCgiCRSITHtWrVgr29PWQyGQIDA5XKtmnThkEtIiKiEohBLaL/kclkSt/oyvd9rKpXr47MzEyIxZylbAjYn4aDfWk42JeGhf1JRERU+BjUIiK1ypYtW9RNID1ifxoO9qXhYF8aFvYnERFR4WNQi4iIiIgMjrOzs9IIbGtrawCASCRCixYtlMqWLl26MJtGREREesKgFhEREREZnK5du6rdLxaL0bdv30JuDRERERUEBrWISK2EhAQhNwinVJR87E/Dwb40HOxLw8L+JCIiKnwMahGRWqGhoZBKpTA2Noazs3NRN4d0xP40HOxLw8G+NCzsTyIiosJXLIJaycnJyMzMBAAup0xERERERERERLkqFkGtQYMG4cWLFxCJRHj48GFRN4eIiIiIiIiIiIq5YhHUAgCZTFbUTSAiIiIiIiIiohKi2AS1iIiIiIj0xd/fHx8+fBAeu7i4wNbWFpmZmTh//rxS2fbt28Pc3Lywm0hEREQ6YlCLiIiIiAzOf//9B4lEIjyuVq0abG1tIZPJ8O+//yqVbd68OYNaRGQw0tPTsWPHDpw6dQoRERGQSqWwsbHBd999hz59+uhcf926dQEArVq1wt69e3WuTx2ZTIYDBw7A1dUVtra2BXINMgwMahERERERUaGLiYkRFov62IjF4kL/oB4SEoIDBw7gxo0biIqKQkpKCipUqIB69eqhb9++6NOnD8RicY51jBkzBjdu3ND6mr6+vnBwcFB7LCEhAVu3boWPjw9evXoFU1NTNG3aFBMnTkSrVq1yrfvly5fo168fUlJSsHXrVnTu3Fnrdhm6b7/9FqdPn1ba9/r1a1haWhZRi/ImLCwM8+bNQ2BgIDp16lTUzaFijkEtIiIiIiIqdJmZmUhOToZUKi3qphQqY2NjmJmZFdr1MjIysGbNGmzbtk0lj/GrV6/w6tUr+Pn5Yf/+/Vi7di3s7e0LvE2xsbEYNWoUnj9/LuxLS0vDpUuX4O/vj0WLFmHo0KE51rFw4UKkpKSgT58+DGgpCAkJEQJaVlZWmDBhAqpWrYqEhAQ0bty4iFunnZMnTyIwMLCom0ElBINaRERERGRw6tevj+TkZOGxfISCSCRCkyZNlMqWLl26UNtG/08qlSIxMRFGRkZF3ZRCkZGRAQsLi0K95uLFi3Hw4EEAgJGREdzc3NCmTRuYm5sjIiICp06dQnBwMP777z989tln+Ouvv7Qa0bNhw4Zcy5QvX17t/l9++UUIaLm5uaFz586IiYnBrl278O7dOyxevBgtW7ZE9erV1Z5//PhxXLt2DVZWVpg/f36u7fiYPHv2TNiePn06Pv30U71f48mTJ3qvkyi/GNQi+h9jY2OVb3mMjY2LqDVERESki549e6rdLxaL4eHhUbiNoRwZGRl9NDlzYmJiCvV6V69eFQJaZmZm+PPPP9GiRQulMp999hl++uknHD58GE+fPsVvv/2Gn376Kde6e/Toka82xcXF4cyZMwCAYcOGYfHixcKxnj17wt3dHVKpFIcOHcJ3332ncn5sbCx+/fVXAMCcOXNQoUKFfLXDUCkukFGrVq0ibAlR4WBQSwOZTIbTp0/jyJEjePToEZKTk2Fra4uWLVti1KhRcHZ21rl+X19fnDhxAkFBQYiNjYWxsTGqVKmC9u3bY+zYsahcuXKOdXTr1g2RkZFaXe/KlSsfzR8L+WViYoIuXboUdTOKDV1f41S8sD8NB/vScLAvDQv7k4qjXbt2CdszZ85UCWgBWUHFhQsX4ubNmwgNDcXhw4cxceJEjbmwdHX//n1kZGQAAMaOHat0zMnJCd26dcPZs2dx584dtef/+uuviIuLQ6tWrTB48OACaWNJppinrlQpftwnw8dXuRopKSmYOXMmLl68qLQ/MjISkZGROHXqFL766itMnjw5X/XHx8dj1qxZuHr1qtL+tLQ0BAcHIzg4GPv378eSJUs0fpOYmJiIV69e5ev6RERERERk2DIzM4Wk7iKRKMcRiqVKlUL//v3x+++/IyMjA15eXvn+rJObuLg4YVtd4MzR0VGlnNy1a9dw4sQJmJiYYPHixRCJRAXSxrS0NJw7dw5Hjx7F8+fPERMTAwsLCzRs2BADBgyAu7u7xqT6ycnJ8PT0xPnz5xEcHIykpCRYW1ujXr16cHNzg4eHh8bptvJVBWfOnIlp06YhICAA+/fvx507dxAbG4ty5cqhZcuWGDNmDFxcXJTOVZfEXzFouGzZMgwcOFCX26LSTnWrH+ryHNatW4f169cr7evevTsAoEqVKvDz81NpS0ZGBo4dO4YzZ87g8ePHiI+Ph5WVFerXrw93d3f0799fY18ptnXo0KFYvHgxrly5AiDrdejq6op169YByJoym1MQNTExEW3btkVaWho6deqEP//8U2NZ0i8GtdSYP3++ENCqWbMmhg4digoVKuDBgwc4ePAgkpOTsXr1atjb22PAgAF5qjszMxPTp0/HzZs3AQCVK1fGoEGDUKNGDSQlJeHKlSvw8fFBWloavvvuO1haWqJbt24q9Tx58kRI9DhlypRck/5ZWVnlqZ1ERERERFRySSQSpKSkAABsbGxgbW2dY3nF/FV+fn4FFtRSTJIfHx+PMmXKKB2XB7NMTU2V9qekpODHH38EAEydOlVjvi1dRUREYNq0aSp5o+Li4nDlyhVcuXIFf//9NzZu3KiSHy0wMBBff/01oqOjlfbHxMQgJiYG/v7+2LVrFzZu3CgE7zRZs2YNtmzZopTc/82bN/jnn3/g5eWF2bNnF1gf6UtBP4eIiAhMnToVwcHBSvvfvn0Lf39/+Pv7Y+/evdi0aRPs7Ow01pOYmIhRo0bhxYsXwr7Hjx9j3LhxMDIyQkZGBry9vXMMap0/fx5paWkAAHd393w/J8o7BrWyuXr1qrBaRJs2bbB161Yheai7uzsGDx6MkSNHQiKRYOnSpejevXuekj0eO3ZMCGi1adMGmzZtUnpjHzJkCPz8/PDFF18gPT0dP/30E9q3b6+SwFTxTdbDw6PA3tSJiIiIiKjkyb7SYV5kDxKo8/nnn+Phw4eIi4uDqakp7Ozs4OLiAnd3d7Rp00bjeTVq1BC2/fz8MGLECOFxWlqaMJulZs2aSuetW7cO4eHhqF27NiZNmpTXp6SV2NhYDBs2DG/fvgUA1KtXD/3790fFihURHh6OAwcOIDo6GgEBAZgzZw42bdoknHvv3j1MmjRJWKDCxcUFbm5usLW1RWRkJE6cOIGnT58iODgYw4cPx9GjRzWuNHny5EmEhobC3NwcgwcPhrOzM5KTk3H69GkEBARAJpPht99+Q/v27dGwYUMAWaONJBIJrl+/LoyemjlzJurUqQMAaNCgQYHcM03y8xz69OmD+vXrC0EvIGuhg/Lly6sEP9+9e4eRI0fi9evXAICmTZvCzc0NdnZ2ePv2Lby8vHD79m3cv38fY8aMwZEjRzR+bt+3bx9SU1PRoUMH9OvXDxKJBJcuXUL//v1x6tQpXL16FdevX4dEItEYHJa319TUNN/55ih/GNTKZseOHQCyhuD+/PPPKsGkmjVrYsGCBfj6668hkUjg6emJ8ePHa13/oUOHAGStsrNq1Sq1y/l269YNo0ePxq5du/D69WtcvnwZrq6uSmXkQa3SpUujWrVqeXqORNp49eoVMjIyYGRklGt+Nyr+2J+Gg31pONiXhoX9ScWNlZUVjI2NIZVKERsbK0zL0kRxlEpSUhJev36tMegCQClVi1Qqxfv37/Hs2TN4enqiTZs2WLlypdrRMTVq1ED9+vXx6NEj/Pbbb7CyskLHjh3x7t07rFy5Uhjl1LdvX+Gcx48fY9euXRCLxViyZEmBLea0YsUKIaA1atQo/PDDD0pT10aPHo0RI0YgODgYfn5+CAgIQOvWrZGRkYE5c+YIAa2vv/5aZQTS+PHjsXjxYhw6dAhv377FvHnzsH37drXtCA0NRZUqVbBnzx6lKZpDhw7F999/j6NHj0Imk+HIkSNCQEieL+39+/dC+ebNm6N169Z6uDN5l5/nULNmTdSsWROPHj0Syrdv317tNNWFCxcKAa3Zs2fj888/Vzo+duxYbN26FatXr8aLFy+wcuVKLFq0SG1bU1NT0aVLF2zevFmY0jpu3DgAQL9+/XD16lVIpVKcP39e7Wit+Ph4XLt2DQDQtWtXmJuba3ubSA/UTy79SEkkEuHF2LFjR41DQvv06SMsT+vt7a11/YmJiQgKCgIAtGvXLsfE7b179xa27969q3JcHtSqVauWxjnCRLp4+/Yt3rx5I/xip5KN/Wk42JeGg31ZsK5fv46LFy8K/+T3OTMzU2n/xYsXhQ+iumB/UnFTqlQpNG3aFEDWqK0TJ05oLJuRkYGTJ08q7VMMjiiysrKCm5sb5syZg1WrVmHNmjX47rvv0LlzZyEgcP36dQwfPlzjao8LFiyAsbEx3r9/j1mzZqFFixbo1asXzp8/DyArj5I8BUtmZiZ++OEHpKenY/jw4Sp5mPQlNjZWuEf169fH/PnzVT5nWVhYKAVG5DN8fHx8EBoaCiDrs6K6KXWlSpXCwoULhUUlrly5gnv37mlsz7x589QGc6ZNmyZs53R+cVBQz+H58+fCa6Vnz54qAS25yZMno1WrVgCyZkzFxsZqrHPSpElqc7S5uroKA100ffb38fGBVCoFwKmHRYEjtRQEBgYKq0XkNGRWLBajZcuW8Pb2xt27d3P91kMuLi4OjRs3RlRUlNKwW3UU68v+C0Umk+Hp06cAIAwnJd19+PABO3fuVNo3fvx4lfn8REREVPwFBARAIpEIjytVqoQKFSpAJpPh0qVLSmUbN26sdvQ8UUk3dOhQIfXJmjVr0LhxY5WgUGZmJpYsWYLnz58r7U9MTFSpb/bs2WjYsCFMTExUjo0fPx737t3Dl19+iVevXiEyMhLz5s1TmzC7efPm2LZtGxYuXKg0QszY2BjDhw/H3LlzhX179+7FvXv3YG9vj6+//lrYf+nSJezYsQMPHjyAVCqFk5MTBg4ciFGjRuVr1b/Lly8LnwVHjBihMZl7s2bNMHPmTFSqVEmY0qf4njJx4kSN1zAyMsLEiRPx5ZdfAsjKw6QuN3JOq7I7OjrC3NwcSUlJGgOPxUFBPoezZ88K02sHDRqUY9lBgwbhxo0bSE1NxbVr19QGnYyNjTWuYGthYYGuXbvC29tb4xTEM2fOAACsra3RsWPHPD8f0g2DWgrkgSIg92BRrVq1AGQFmIKDg9GyZctc63d0dISnp6dWbQkJCRG2s//QREZGCr9kateuDSDrl87jx4+RlJQEOzs71KlTR+MbMamXmZmp8m2S4pK4REREREQlibu7O06cOIErV64gOTkZo0ePhpubG9q0aQNzc3NERETg1KlTePLkCWxsbJCamoqkpCQAUDsbJLdRUo0bN8a2bdvg4eGBtLQ0XL58GUFBQWoDBm3atMHZs2fx9OlTvHr1CqampmjQoIFS3qOoqCisXbsWAPDjjz8Kx3bs2IHly5cDyErHYmJigsePH2Pp0qUICAjA+vXr8zyb5f79+8J2s2bNciyrONIIAO7cuQMAsLS0FKbSaaI4eELTKCUnJ6ccA3MWFhZISkpCenp6jtcqSgX5HBRnMoWHhwujttRRXEXzwYMHaoNajo6OagO1cv369YO3t7faKYixsbG4fv06gKxRYznVQwWj0INaISEh+PXXX7F69WpYWlpqLCeVSjF37lwMHz680OYBR0ZGCttVqlTJsWzFihWVztMmqJUXR44cEbabNGmidEwxSbxYLMaMGTPg5+eHjIwMYb+1tTVGjx6NSZMmqSTVIyIiIiIiwycWi/H777/ju+++w7lz55Ceno5Tp07h1KlTSuVsbW2xceNGfPbZZ8K+nD6r5aRmzZoYMGCA8GX+xYsXNY6CAbK+pJd/UZ/dokWLkJycDFdXVyH59oMHD7Bq1SoAWaOiZs6cCWNjY5w5cwZz586Fr68v9u/fjzFjxuSp3YpTh/OaF08+rU3dVLvsrKysYGVlhfj4eI3TlXNbiEweLNJlMYCCVpDP4c2bN8L2zz//rPV57969U7s/t9d6p06dhD7Lvgri2bNnhc/hnHpYNAo1GdPz588xbtw4XLlyBRMmTFA7pBUA0tPT8dVXX+HMmTOYMmUKAgICCqV9inNsy5Url2NZxdFTikPb9cHf3x8XLlwAAJQvXx7t27dXOq4Y1Pr1119x7tw5pYCWvE3r16/HmDFjcpw7TERERGSIatWqhQYNGgj/ypYtCwAQiURK+xs0aMBv1smgWVhYYP369di5cyf69esHBwcHlClTBmZmZqhTpw6mT5+O06dPo379+sIoLZFIhAoVKuT7moqDEhRnoOSFl5cXLly4AAsLCyxYsEDYv2/fPmRkZKB69er45ptvYGJiApFIhD59+sDDwwMAsHv37jxfLz4+XtjO66AA+X3TNm2JvP4PHz6oPZ6f6ZPFTUE+B01xhNzI+ym73H4HmJiYoFevXgAgTEGUk696WLFiRb0PdCHtFOpPS+nSpYWVKh48eIAJEyYIqw3KZWZmYtasWfD19QWQNe+4sHIapaSkKLU1J4ovfMXzdBUVFYVvv/1WeDx16lSVN1XFoJaxsTHGjx8PDw8PODo6CsuP/v7774iJiUFQUBBmzZqFnTt3MqE8ERERfTQUV05TJBaLMWTIkEJuDVHRa9euHdq1a6fx+JMnT4Qvyp2cnIRAcH7Y2NgI2wkJCXk+//3791i6dCmArJUEFVdhlOcI69Wrl0pi7969e8PT0xPh4eG5rt6YneJnrpSUlDytYGdqaoqEhASNQars5ItTcEZN/ijet6CgoFw/u+uDu7s7Dh8+rDQFMSYmBoGBgQCyFgjg5+2iUahBrSpVqmD37t0YO3YsoqKicO/ePXz22WdKQaFZs2bh3LlzALK+Vdi+fXuOw1X1SXE+rzbRWnXn6SI2NhYTJkwQhkW2b98eo0ePViknX7q0dOnS2LFjh7B8KwDY2dlhyJAh6NSpE4YOHYro6Ghcv34dXl5eRToc8tmzZzn+kJuZmQl5yhTP0WY1Int7e6VfWBkZGXjw4IFW7apZs2aOv7AePnyo9k1SLBajUaNGSvsiIiK0GhVnZWWFatWqKe179OiRsGJGThwcHJT+SEhJSUFwcHCu5wFZq7goLn8cExODqKgojeXl7VH3+g4NDdXqD5QKFSqoDN+WrwCam+rVqyv9MZWQkCCsKpOb7O8Zr1690mo1qrJly6J69epK+4KDg7UKXFeqVElpRVOpVKq0HHFO6tSpo/TLOTY2FhEREbmeZ2xsjPr16yvtCwsLU/qmUbE98v+DgoJgY2OjMkT+/v37WuWRq1q1qtJo1aSkJK2/hW3YsKFSvr/Xr18L72k5KS7vERKJBC9fvsz1vIJ8j8jel4oK8z1CrkyZMip5KPkeoUrde0ROfamoMN4jsuN7RP7/jsitP4Hi83dEampqrufQx+PGjRvCtq4jThTzGOUnOLZy5UrExMTAxcUFI0aMUDomf09QF7CqVKmSsB0dHZ2noJZ8dXv5uTVr1tRY9sGDBxCLxXB0dISFhQUqVKiAhIQErd6bY2Njhd+ReWkf/T/Fvnrz5g0cHR0L/JotW7ZExYoVER0djXPnzmHw4MHw8fERfi/269evwNtA6hX6uEZHR0fs2bMHY8aMwevXr1V+6fv4+AAAzM3N8eeff6rkkypIin8wSqXSHANbaWlpwrY+hqzHxMRg/Pjxwqoj1apVw6pVq9QuK3rw4EEkJiYiISFB6Y1bkb29PX744QfMmDEDAHD48OEiDWplZGSoTJFUpC5wkp6ertUfaOrq1eY8IPc53FKpVG0wTt0+bdur7rkqfrjJSfYPEzKZLN/PNTMzU6tz1d2jwuib7M9V2/Zqaoch9o062vSNVCrV+Fy1+cCavb15ea7Z6dI3RfEeoe1zLaz3iOz7iuJ1qG5REr5HqFLXN9nr0aSw3yPk5bLje4QqTX9H5HZ+cfk7gkhOJpPh6NGjwmNdRzMqpo/J/mVAbgIDA+Hp6QljY2P8/PPPaj8PAeqn7mmaXqaNhg0bCnnAbt++nWNQ66effhK+JPz333/RuHFjhIaG4v3793jw4EGOyeLlScUBoG7duvlu78fM2dkZ165dA5AVjM0pqHX9+nUcPHgQDg4O6NKli9KAkLwQi8Xo27cvtm/fjuvXryMlJQXe3t4AgBo1aggrYVLhK5LJuoqBLXmSN/mblUwmEwJaua2uoW+KSzmnpqZqHdTSdbjjy5cvMXHiRISFhQHI+oZh586dSt+kZWdhYZFr8r1u3brBwsICiYmJuH37NjIzM4tsSKSRkVGO11Y357pUqVJKowZyqjs7bc4DoPGXpGI96upS91y0ba+656pte7NfVyQS5fu5isXiHM+V/3Gs7h4VRt9kf665tTe3dujSNzkFZBXbp6gg+0axbdlp6hvFDzvGxsYan6s2H3iytzcvzzU7XfqmKN4jtH2uBfkekb0vc7pucXsdZvexv0dkr0eTougbvkfo9ndEbucXl78jiOQOHjyIhw8fAgBatWql00yZ0NBQnDhxQnjctWtXrc9NS0vDggULIJPJMGnSJJURmEDWl/fh4eF49uyZyjHFfXkdBdWxY0eIxWJkZmbC09MTgwYNUvszHhYWJqxa2LZtWwBA9+7dcfLkSQDAtm3bsGbNGrXXyMjIUEq/k5d78zFRvO/qvjzo3r07Nm/eDADYs2cP+vfvr/F9cP369cKU1aZNm+rUrn79+mH79u1CQOvWrVsAmCC+qBVZBrqqVasKga2YmBgA/x/Q2rp1a67LqBYExVUPJBJJjkNlFZPD5RR8yk1QUBCmTJkiTDmUT9HMbfVFbRgZGaFatWp48OAB0tLSIJFIdGqrLmrVqpVrEE7dOflhZGSktymrDRo00Ho+vYODg1YrnqiTfXqItsqUKZPv52pra6s0FSa70NBQpKenq/3jOa/fuCnKb3vLli2b73MrV66c51Vs5LJPq9KWsbFxvttrY2OT75/V7FNS5BT7U1P/ZZ8Koy1zc/N8P9fs037yoijeI6ytrZWmVeWFvt4jtOlLuYJ8j8gJ3yNyZ2xsDBsbG637UlFBvEdog+8ROStbtmy++lOuKP6OKIw8NFT07ty5o3FBBJlMhsOHDwsryJmZmeGXX35RW8+ePXvQqFGjHD+nPXz4EDNmzBCmtnbo0CFPM282b96M58+fo3r16pg6daraMi1atEB4eDi8vLzw1VdfCe8RGRkZ2LdvH4CsnyfF1eq14eDgAFdXV5w9exZ37tzB2rVrMWvWLKUyiYmJmD9/vhBoGTlyJADA1dUV1apVQ1hYGLy8vFC/fn1MnjxZ6dyMjAwsXrxYCIi1bt0636OGDJ1iTu34+HiVkVjOzs5o1aoVbty4gcePH2PBggVYsmSJSmDrjz/+EAJaTk5OOgcR69evj1q1auHZs2f47bffhC+1OPWwaBXpsgrVqlVTCmyZmppiy5YtaN68eZG0x8nJSdiOiorKcRhjdHS0sJ3fP4T9/f3x5ZdfCvkeatWqhR07duh1bnV+vxkl0uVDKRU/7E/Dwb40HOxLw8L+pOJq06ZN+O+//9CpUyc0btwYdnZ2kEqlCA8Ph4+Pj7AIVZkyZfD777+jatWqauu5fv06fvnlF1StWhVt27ZFnTp1YG1tDbFYjDdv3uD69eu4dOmSMKKzSpUqQrJ3bYSEhGDr1q0QiURYsmSJxlkzI0eOxIkTJ5CSkoLRo0dj/PjxMDc3x7Fjx4R8eGPHjs3LLRL88MMPCAwMxLt377B582YEBASgb9++KFeuHF68eIFDhw4JM40GDRokBKWMjIywatUqjBo1CmlpaVi9ejX8/PzQp08fVKhQAVFRUTh+/LiQ59La2hrLly/PVxt1FRAQINyfVq1aYe/evUXSjpwoBiSXLVuGUaNGAchKxq64f9CgQZBIJDh27Bhu376NgQMHwtHREW/evMHZs2fx33//Acga4frLL7+oHZmbV+7u7li7dq2Q283Z2VnjzwxQMu53SVfka4U6OTnhr7/+QmBgIOrVq5fvb5r0QXHe9NOnT9GqVSuNZZ8+fQoga2hk7dq183wtPz8/fPnll8I0kiZNmmDLli0oV65cjueFh4fDz88P7969Q7NmzdClS5ccy8t/2IyNjWFlZZXndhIRERGVRLdu3VJK4l+/fn3Y2NggMzMT//77r1LZZs2aFdpq20RF4f379zh9+jROnz6t9nitWrWwZMkSrWbLvHz5MtdFUzp06IClS5dq/WW9TCbDggULIJVKMWTIkBwT1Ts7O+PLL7/E2rVr8fLlSyxatEjpeNeuXdUutqUNOzs77Nu3D1OmTEFYWBhu376N27dvq5Tr16+fynWdnZ2xc+dOfPXVV4iJidF4bv369bFu3TqNuZEpa6VOa2trSCQSBAYGIjAwECKRCF26dBFSBjk4OGD//v2YPn06Xrx4gRcvXuC3335Tqats2bJYvny53kbFyYNaio+paBV5UAvIyrFVGCsW5MbFxQXGxsaQSqUICAgQIsLZZWRkCMMY69WrpzRtURs3btzAzJkzhYBW+/btsX79eqWcXpq8efNG+MajW7duOQa1QkNDhZWrGjdurJfINBEREVFJcOXKFaV0ERUqVICNjQ1kMhnOnz+vVLZevXoMahWhjIwMIR2JodMmB5++zZw5E40bN8bNmzcRERGBd+/eQSQSoXz58mjYsCFcXV3Ru3dvtSknFH333Xfo2rUrgoKC8PjxY7x79w5xcXGQSqWwsLBAlSpV4OLign79+uV5sa9Dhw7h1q1bqFChAubOnZtr+alTp6JOnTrYtWsXHj58CKlUCicnJwwcOBCjR4/W6XNPjRo1cPr0aXh6esLb2xvBwcFISkqClZUVmjRpgmHDhqFz585qz23RogXOnj2LQ4cOwdfXF8+ePUNSUhLs7OxQu3ZteHh4oEePHpxNk4ty5cph9+7dWLlyJYKCgpCcnAwbGxtERUUpDUSpVasWTp06hWPHjgmjDiUSCUxMTODk5IROnTph1KhR+U6noI6joyNcXFxw+/ZtGBkZKY0eo6IhkuW2/NtHZuLEifD394exsTF8fHzUTi08efIk5syZAwCYPXs2Pv/8c63rf/fuHdzd3YUlm7t27Yo//vhD6xUUU1NT0a5dOyQmJubYRgCYO3eukKRx0aJFGD58uNbt1FViYqIwlBnIWtkjrzm1CltSUhJWrVqltO+bb77ROqcWERERFR+///67UlBr+PDhqFu3LjIyMoT8QXIzZsxQWiL+Y6Hvv9eePn0q5BXTZibD69evkZycnO/VMUsqY2NjmJmZ6TXlCBFRSZHX3xW5KRYjtYqTcePGwd/fH1KpFLNnz8a2bduUfrk/e/ZMSJ5obm6e5+VulyxZIgS0nJ2d8fvvv2sd0AKyEnoOHToUO3bsgFQqxddff40///xT5Q+Q7du3CwEtJycnfPLJJ3lqJ1FwcDCkUimMjY3znQiZig/2p+FgXxoO9qVhYX/mnVgs1mqmgiHiSpRERPrBoFY2HTp0QK9evXD27Fncvn0bAwYMwIgRI1CpUiU8fPgQBw4cQFJSEoCskVDZVx/KKRFcSEgIvL29hce9e/eGv79/rm2ytrZWmgM8bdo0XLhwAaGhofjvv//Qt29fDBs2DE5OToiLi4OXlxcCAwMBZAXeVq1axdVtKM9SUlIglUqLZJg86R/703CwLw0H+7JgOTk5CX+zARBGXqvLh6qPqUDsz7zT55QgIiL6ODGopcby5cuRlJSEK1euICIiAitXrlQ6LhKJMGPGjDxP5zt+/DgUZ3uuWLFCq/OyB8fKli2LnTt3YsaMGbh//z6io6Px+++/q5xXqVIlrF69Go0bN85TOz9WpUqVUkkgmFtuASIiIiqeBgwYoHa/WCzGyJEjC7k1REREVBD4iV0NU1NTbNu2DadOncLx48fx6NEjJCQkwNraGs2bN8fYsWPRvHnzPNcrX8JVHypVqoRDhw7h9OnT+Oeff/DgwQO8f/8eFhYWcHJyQs+ePTFs2DDmg8qD0qVLo2/fvkXdDCIiIiIiIiLSAoNaGohEIvTv3x/9+/fP03mtW7dWSripaMuWLfpomqBUqVLw8PCAh4eHXuslIiIiIiIiIirumKGQiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShzm1CIiIiIig3P37l2kpqYKj2vXro1y5cpBJpPh5s2bSmWdnZ1RpkyZwm4iERER6YhBLaL/SUlJwcGDB5X2DR8+nH/kEhERlUAXL16ERCIRHltZWQlBrTNnziiVrVmzJn/fExERlUAMatFHZfz48Xj58iVEIhHOnz+vdCwjIwNhYWEq+z5WlSpVQmZmJsRizlI2BOxPw8G+NBzsS8PC/iQiIip8DGrRRyU6OhqRkZEQiURF3ZRiz9bWtqibQHrE/jQc7EvDwb40LOxPIiKiwsegFn1U7OzslPJrEBERkWFycHCAlZWV8NjMzEzYrlatmlLZUqX4JzEREVFJxN/g9FHZvXt3UTeBiIiICsGgQYPU7heLxRg3blzhNoaIiIgKBINaRKSWVCqFTCaDSCSCsbFxUTeHdMT+NBzsS8PBvjQs7E8iIqLCx6AWGZSkpCSYm5sr7YuOjsabN2/g7OxcRK0qmR49egSpVApjY2PeOwPA/jQc7EvDwb40LOxPIiKiwldkQa33798jMDAQd+/exYsXLxAVFYWEhASkpaWhTJkysLCwgIODA6pXr46mTZuiefPmMDU1LarmUjF35MgRbNmyBY0aNcJvv/2mdMzPzw9LliyBo6Mj5syZA1dX1yJqJRERERERERHpS6EGtdLS0uDl5YVjx47h1q1byMjIyLF8UFCQsG1kZIQOHTqgf//+cHV15bBuEvz888/Yv38/ZDKZUhJYuYiICMhkMrx8+RJffvklvv32W+bSICIiIiIiIirhCiWolZSUhF27dmHPnj14//49AEAmk+WpjvT0dFy6dAmXLl1ChQoVMGbMGIwaNUplqhl9XPz9/bFv3z4AQKNGjTBp0iSVMl988QVatWqFjRs3IigoCCtXrkTz5s3RuHHjwm4uEREREREREelJgQa1ZDIZ/vrrL/zxxx94//69UiCrZs2aqFevHurWrYsaNWrA2toaFhYWMDc3R2pqKpKTkxEVFYWIiAg8fPgQQUFBCA8PBwDExMRgzZo12LVrF6ZMmYLRo0dDLBYX5FOhYuqvv/4CALRv3x6bN29WO4LP1NQUXbp0QceOHTFu3DjcvHkTu3fvxqpVqwq7uURERFRIHj58iLS0NOFx9erVYWVlBZlMhrt37yqVrVevHsqUKVPYTSQiIiIdFVhQ68mTJ/j+++/x6NEjYSWYdu3awd3dHe3bt4e9vX2udWRPshkeHo6LFy/i1KlTCAoKQmxsLJYtW4ajR49iyZIlHHnzEQoKCoJIJMKXX36Z65RUIyMjfPHFFxg7dixu3LhRSC0kIiKionDu3DlIJBLh8fDhw4Wg1okTJ5TKOjo6MqhFRERUAhVIUGvHjh1Yu3Yt0tLSYGZmhpEjR2LEiBGoUqWKTvU6OjpizJgxGDNmDEJCQrB7926cPHkSjx8/xogRIzBz5ky108/IcMXHxwMAqlWrplX5WrVqAQDi4uIKrE1EREREREREVPAKZM7eihUrkJmZidGjR+P8+fP45ptvdA5oZVezZk0sXrwY58+fF6YfZl/1jgyfra0tACA6Olqr8vJgloWFRYG1iYiIiIiIiIgKXoEEtTp16oRTp07hhx9+gI2NTUFcQlChQgX88MMPOHXqFDp37lyg16Lip27dugCAw4cPa1X+2LFjAID69esXWJuIiIio6Nnb26Ny5crCP8XphYr7K1euDCMjoyJsKRHlRp6rOSYmpqibQoWgbt26qFu3LsaMGVPUTSly6enp2Lp1K/r16wcXFxc0atQInTp1gpeXV1E3rdgokOmHW7duLYhqc1StWjVs3ry50K9LRWvgwIG4ePEiDhw4AEdHR4wfP15j2cOHD2PHjh0QiUTo37+/ynEjIyM0aNBAZR8RERGVPMOHD1e7XywWM10FUQkSFhaGefPmITAwEJ06dSrq5hAVqm+//RanT59W2vf69WtYWloWUYuKnwJd/ZCooLm6uqJ9+/a4evUqVqxYgQMHDqBTp06oXr06ypQpg5SUFLx8+RJXrlzB8+fPIZPJ0Lx5cwwYMEClrjJlymDIkCFF8CyKpzp16giLPFDJx/40HOxLw8G+NCzsT6KCcfLkSQQGBhZ1M4gKXUhIiBDQsrKywoQJE1C1alUkJCRwkTwFDGpRiSYSibBmzRrMmjULV69excuXL7F//36VcjKZDADQunVr/P777/yDUwtcBcqwsD8NB/vScLAvDQv7k4hIP548eVLUTSgWnj17JmxPnz4dn376aRG2pvgqkJxaRIXJ0tIS27dvx/r169GrVy9YWlpCJpMJ/8zMzNChQwf89ttv2LVrF6ytrYu6yUREREREREQaffjwQdiuVatWgV1n3bp1Qh6zkqjEjNQ6fvy4sO3h4VFk7aDiq0ePHujRowcAIDU1FRKJBGZmZihbtmwRt4yIiIiIiIhIe5mZmcJ2qVIlJnRT6ErMnfnuu++EKWMMapE6qampePv2LapUqYLSpUvD3t4eQNZc5CdPnqBLly4wMzMr4laWHLGxscjMzIRYLC7wVUyp4LE/DQf70nCwLw0L+5OKI/nIiylTpmDWrFnw8fHBnj17EBwcjA8fPqBq1aro0aMHxo8fn+NshuTkZHh6euL8+fMIDg5GUlISrK2tUa9ePbi5ucHDwyPHBZaio6Oxb98+XLlyBWFhYUhPT4eNjQ0aNGiAnj17on///irnr1u3DuvXr1fa1717dwBAlSpV4OfnV+j3Ql7HzJkzMXToUCxevBhXrlwBADg6OmLixIno16+f3u4bAKSlpeHcuXM4evQonj9/jpiYGFhYWKBhw4YYMGAA3N3dIRZrnoCVkZGBY8eO4cyZM3j8+DHi4+NhZWWF+vXrw93dHf3798/x/Pz0na7nyu9zq1atsHfvXrXHZs6ciWnTpiEgIAD79+/HnTt3EBsbi3LlyqFly5YYM2YMXFxccry3UVFR2LFjBy5fvoxXr17B1NQUdevWxbBhw+Du7o6tW7di9erVAPI/JTI/r4ExY8bgxo0bSvvGjh0rbC9btgwDBw7MV3sMUYkJagFg8k1SKyMjAxs2bMCePXvQrl07/PHHH0rHr127hqVLl8LMzAxffPEFxo0bVzQNLWEiIiIglUphbGzMP84NAPvTcLAvDQf7smA9ffoUaWlpwuOqVauibNmykMlkePjwoVLZWrVqoXTp0jpdj/1Jxd3KlSuxbds2pX3Pnj3Ds2fPcPToUezcuVPtFKfAwEB8/fXXiI6OVtofExODmJgY+Pv7Y9euXdi4cSMcHR1Vzr927RqmT5+O5ORkpf3R0dGIjo6Gn58fdu7ciZ07d6J8+fJ6eKa5y++9kEtMTMSoUaPw4sULYd/jx4+VVqTT9b4BWe8r06ZNUwmoxMXF4cqVK7hy5Qr+/vtvbNy4ERYWFmrPnzp1KoKDg5X2v337Fv7+/vD398fevXuxadMm2NnZqZyvS98VRr+vWbMGW7ZsEfInA8CbN2/wzz//wMvLC7Nnz8bkyZPVnhsQEICpU6ciKSlJ2JeWloYbN27gxo0bOHfunM7T8fTxGqDclaigFpE6s2bNwrlz5yCTyfD8+XOV42/fvoVMJkNSUhKWL1+OqKgofP/99yrlUlJScOrUKaV9/fr1Y+JXIiKiEsjLywsSiUR4PHz4cNStWxcymQx///23UtkZM2boHNQiKs7Onj2L0NBQiMVieHh4oG3btkhKSsKJEydw+/ZtvHnzBqNGjcKpU6eUghv37t3DpEmThMCEi4sL3NzcYGtri8jISJw4cQJPnz5FcHAwhg8fjqNHjwqzJYCsEYxfffUVkpOTYWJigkGDBqFJkyYoXbo0IiIi4OnpiZcvX+LJkyf4/vvvsXXrVuHcPn36oH79+kKAAgAWL16M8uXL6/T3eX7vhaJ9+/YhNTUVHTp0QL9+/SCRSHDp0iV06NBBL/dNfu+GDRuGt2/fAgDq1auH/v37o2LFiggPD8eBAwcQHR2NgIAAzJkzB5s2bVI6/927dxg5ciRev34NAGjatCnc3NxgZ2eHt2/fwsvLC7dv38b9+/cxZswYHDlyRCkwpkvf6XKutk6ePInQ0FCYm5tj8ODBcHZ2RnJyMk6fPo2AgADIZDL89ttvaN++PRo2bKh07v379zF58mSkpKQAyBoB2K1bNxgbG+PGjRs4fvw4vL29cfXq1Ty3S06X18DMmTMhkUhw/fp1YaTazJkzUadOHQBAgwYN8t0uQ1RiglqPHz8u6iZQMfTPP//Ax8cHQNab0eeff65SZtasWejXrx9+//13nDt3Dnv27EGXLl3Qtm1bpXIZGRkq39z26dOn4BpPRERE9LGLiSmc65iYAFZW6o/FxwMKo/pgZgaYm6svGxsLZGTo1hZbW93Oz4fQ0FCULl0aGzduFAIvQFaw95dffsHevXshkUiwZs0aLFu2DEDW38Zz5swRPpR//fXXKqNexo8fj8WLF+PQoUN4+/Yt5s2bh+3btwvHT548ifj4eADA8uXLVf62Hjt2LEaOHIkHDx7g0qVLCA8PF0as1KxZEzVr1sSjR4+E8u3bt4eDg0Oh34vsUlNT0aVLF2zevFmYSSSfDaKP+wYAK1asEAJao0aNwg8//KA0TXD06NEYMWIEgoOD4efnh4CAALRu3Vo4vnDhQiGgNXv2bJXPSWPHjhWm17148QIrV67EokWLhOO69J0u52orNDQUVapUwZ49e5ReE0OHDsX333+Po0ePQiaT4ciRIypBrZ9//hkpKSkQiURYunSp0lS+AQMG4JNPPsHkyZORkJCQpzbJ6foaaNGiBQDg/fv3QvnmzZsr9S/9vwJZ/TAoKAivXr0qiKqJlPz9998QiUTo27cvNmzYAGdnZ7XlatWqhXXr1qFnz56QyWTYt29fIbeUiIiIiFTY2RXOv4kTNbdh4kTlsitXai7bsaPubSkiX375pVIQBwBEIhG+//57YZrV8ePHERsbCwDw8fFBaGgogKwvetVN4ypVqhQWLlwo/A1+5coV3Lt3TzguPx8AOnfurHJ+mTJlMGnSJFSrVg0dOnRAXFycjs9SO3m9F+pMmjRJbWocfdy32NhYnDhxAgBQv359zJ8/XyXvlYWFhVIQ6vTp08L28+fPcf78eQBAz5491X7xDwCTJ09Gq1atAADHjh1Ter669F1h9fu8efPUBjmnTZsmbCveVwC4fv06bt++DQAYMmSI2txULVq0wLfffpuvNgH6eQ2Q9gokqDVnzhx0794dK7P9Qnj16hVevXqlNG+VSBfykVWTJk3SqvzE//1BI38jIyIiIsNUvnx52NraCv9MTEyEY4r7bW1tc03UTFTSmZmZYeTIkWqPGRkZCccyMzPh7+8PALh06ZJQZmIOQUEjIyOl4/JgCgClhOvbt29Xyn0k5+bmBh8fH2zfvl3jF9T6lJ97kZ2xsbHGturjvl2+fFlY+W7EiBEa36OaNWuGmTNn4tdff8Xo0aOF/WfPnhXu9aBBgzS2QfF4amoqrl27JuzXpe8Ko99NTEzQpUsXtcccHR1h/r/RloqjnQDgwoULwvann36qsf5PPvkkx8UTcqKP1wBpr0CmH7558wYAlBLlAUC3bt0gEokwd+5cjB8/viAuTR8Z+ZDOSpUqaVW+atWqAFTf3IiIiMiwKH7AUyQWi5W+xSf6GLi4uOS4Cnjz5s2F7bt372LAgAG4c+cOgKzPdNmnb2XXpk0bYVtxtEnv3r2FRN4bNmyAl5cXevbsiU6dOqFp06YoVarws+Hk515k5+joqBQoV6SP+3b//n1hu1mzZjnWoe797O7du8J2eHh4jsESxVFSDx48gLu7OwDd+q4w+t3JySnHeiwsLJCUlIT09HSl/Tdv3gQAlCtXLsfFAExMTNCsWbM8r7IJ6Oc1oE/qVlPUJLfk+MVx5cUCeReRSqUAoLLSAZG+2dvbIzIyEmFhYVpF+OUrT+Q36k5EREREVNI4OTnleFzxC2J5Hif5VDRtclhZWVnBysoK8fHxwvlA1tS5mTNnYu3atQCypqVt2bIFW7ZsQdmyZdG+fXv07NkT3bt3z1fy99xGtjRr1kxlNdL83Ivssg/eUKSP+6a4Xbly5VzryU4+yATIyh+lrXfv3gnbuvRdQfc7ALWrPSqSB7yyjxKT3xtt7qt8QERe6eM1QNorkKCWjY0NYmJi4Ovri88//zzHSDiRLho1aoTIyEjs3LkTa9asybW8PJdW48aNC7ppRERERJQbhQ/fBUrDqBoAwLZtwMaN//84p88u/v66J4ovAuaaEt//j6mpqbAtTxUj/1/xWE7KlCmD+Ph4fPjwQWn/1KlT0bRpU2zbtg3//vsvMv53/xISEuDt7Q1vb2+UK1cOCxYsQN++fbV+TgAwffr0HI/v2bNHJbl2fu5FdppGaSmeo8t9kydZlx/Pq8TExDyfA6g+X136riD7HUC+R3vJV8XV5r7mN+Cmr58dfZGvpqiJ4gqjGzZsyLGu4rjyYoEEtZydnXH+/HmEhISga9euqF69utIP/oEDB5TmsuaFSCTC7t279dVUKuGGDBkivCmWL18eX3/9tdo3j7S0NGzYsEFILD948OAiaC0RERERKSmClQBVaFoVUZ1so35KijTF1R3VUJxhI5/RYGpqioSEBK0/aMvrUBcIaNu2Ldq2bYvY2FhcvnwZV69exb///ouY/61+GRcXh6+//hoWFhZqE4vrU37uRV7o474pbqekpOQaiMtO8fygoCCULl06T+cr0qXvilO/y5UuXRpSqVSr/klJScnXNfT5s6MP8tUUNVFcYbRHjx4F0oaCVCBBrU8//RR+fn6QyWR4//690pxemUyG8PBwhIeH57lemUymdoUJ+ni1b98eHh4eOH78OPbv349jx46hVatWcHJygqmpKT58+IDw8HDcvHlTyKPl6uqK7t27F3HLiz9jY2Ol/6lkY38aDval4WBfGhb2JxVn8hQcmkRERAjbdv9bobFChQpISEhQOqZJbGwsEhISAGSlB9HExsYGHh4e8PDwgEwmw507d7Bx40ZcvnwZMpkMmzZtylNw48mTJ1qXlcvPvcgLfdy38uXLC9vR0dGoWbOmxjoePHgAsVgMR0dHYUqe4vlv3ryBo6Njnp9Hdrr0nb77XRcVK1bEs2fP8OrVq1zLalNGnYL42SHNCiSo1bJlS6xevRorV65U+0JQt/oBUX4tXrwYJiYm8PT0RFJSEi5evKhSRv6a8/DwUFr6ljSrX79+UTeB9Ij9aTjYl4aDfWlY2J9UnN25cyfHAQKBgYHCdqtWrQBkpesIDQ3F+/fv8eDBgxwTXl+/fl3Yliealslk8Pb2RkhICCwsLDBu3Dilc0QiEVxcXLBx40Z069YNb968yVeQKq/ycy/yQtf7BgANGzaEp6cngKxV23MKav30008ICgqCjY0N/v33XwBZM6fkKxneuHEjx6DW9evXcfDgQTg4OKBLly5o0aKFTn1XXPtdrkmTJnj27BkkEglCQkI03tvMzEzcvn07X9fQx2uAtFdgy024ubnBzc0N79+/R1JSEjIyMtCjRw+IRCJ8/vnnGDJkSEFdmj4yJiYmWLx4MYYNG4Z//vkH169fx+vXrxEfHw9TU1NUrFgRzZo1w6BBgwplmWAiIiIqeqGhocLiRUBWUmALCwvIZDI8ffpUqayTk1OOOXKISrro6GhcuHAB3bp1UzkmlUpx4MABAICZmRnatWsHAOjevTtOnjwJANi2bZvG/LUZGRnYsWOH8Lhr164AsoIXq1evRnh4OKysrDBy5Ei1P2fGxsbC9Dp10+wUg0/6GByRn3uRF7reNwDo2LEjxGIxMjMz4enpiUGDBqkNwoWFhQkr5rVt21apDZs3bwaQlVesf//+GkeRrl+/XlgRsGnTpgB06zt99XtB6d27N44cOQIA2L9/P3788Ue15by9vYVpknmlj9cAaU9c0BewtLREpUqVlDL/W1lZoUqVKvn+R6ROw4YNMXfuXBw9ehRXr17F/fv3cfPmTZw6dQqLFi1iQIuIiOgjcvLkSRw4cED4FxkZCSDrQ7Hi/gMHDghTP4gM2cKFC/HixQulfRkZGVi0aBFCQkIAAJ999pmQf8nV1RXVqlUDAHh5eWHr1q0qdWZkZGDx4sVCYKV169ZK+Xt69+4NICvx+dKlS9UGpc6fP4/Q0FAA6nP/KObLVUygrou83ou80Md9c3BwgKurK4CskWXyVQQVJSYmYv78+cI9HTlypHDM2dlZGGX2+PFjLFiwQCnIL/fHH38IAS0nJyeloIoufaePfi8oHTp0QL169QBk5fqWJ0hX9OTJEyxZsiTf19DHa4C0VyAjtYKCglChQgWVZTJbtmwJIGseKxERERERERU8kUiEN2/eYODAgRg+fDgaNWqE2NhYHD16FA8ePAAA1KpVC5MmTRLOMTIywqpVqzBq1CikpaVh9erV8PPzQ58+fVChQgVERUXh+PHjCA4OBpCVVH358uVK150wYQI8PT0hkUhw4MAB3L17F25ubqhSpQri4+Nx69YtIahQunRpTJkyRaXtip8dly1bhlGjRgEA+vTpU2j3Ii/0cd8A4IcffkBgYCDevXuHzZs3IyAgAH379kW5cuXw4sULHDp0CG/+t3rooEGDVAIiy5Ytw6BBgyCRSHDs2DHcvn0bAwcOhKOjI968eYOzZ8/iv//+A5C1kuAvv/wCIyMj4Xxd+k4f/V5QxGIxFi9ejFGjRkEqlWLWrFk4c+YMOnfujNKlS+POnTvw9PREamoqjIyMkJGRAbE4b2OB9PUaIO0USFBrzpw5ePnyJSZMmIA5c+YI++UdZZWXFUaI9CwmJgY+Pj7CL0RSLywsDOnp6ShVqpTwTQOVXOxPw8G+NBzsS8PC/qTirFmzZrC3t4eXlxe2b9+uctzFxQWbNm1SGZnk7OyMnTt34quvvkJMTAxu376tNs9Q/fr1sW7dOlSqVElpv42NDTZv3oypU6ciLi4ODx8+xMOHD1XOt7S0xPLly4URNIratWsHa2trSCQSBAYGIjAwECKRCF26dIGZmVleb0W+70Ve6HrfgKwk9fv27cOUKVMQFhamsY5+/fqpzRns4OCA/fv3Y/r06Xjx4gVevHiB3377TaVc2bJlsXz5cpWgmC59p49+L0hNmjTBmjVrMHfuXCQnJ8PHxwc+Pj5KZQYPHozIyEj8+++/+Zqero/XAGmnQIJa8oixpaWl0v5u3bpBLBZjzpw5GD9+fEFcmj5CSUlJ2L17N/z9/REbG4uMjAyVIa4ymQxpaWlISkpCSkoKRCIRg1q5iI+Ph1Qq5SpOBoL9aTjYl4aDfVmwLC0tlf4eULzP2b9gzeu38OqwP6k4MzIywpo1a9C5c2f89ddfQl65+vXrw8PDAwMHDkSpUuo/GrZo0QJnz57FoUOH4Ovri2fPniEpKQl2dnaoXbs2PDw80KNHD42vfRcXF3h5eeHgwYO4fPkyQkNDkZiYCAsLCzg4OKBr164YPnw4KlSooPb8cuXKYffu3Vi5ciWCgoKQnJwMGxsbREVF5ZhAvSDuRV7oet8AoEaNGjh9+jQ8PT3h7e2N4OBgJCUlwcrKCk2aNMGwYcNyXDWwVq1aOHXqFI4dOwYfHx88efIEEokEJiYmcHJyQqdOnTBq1CjY2tqqPV+XvtO13wuaq6srTp06hV27dsHf3x/R0dEwMTFBgwYNMHr0aLi6ugqfF7PHNbSlj9cA5U4kK4ClCBs1aoSMjAxMnjwZs2bNEvbXq1cPIpEIc+fOZVDLwCUmJiqtYlG3bl1hiVl9+vDhA4YPHy4M3dT0chaJRErHjIyMhOHFcikpKTh48KDSvuHDh6NMmTJ6bnXJEBQUJPxxznxkJR/703CwLw0H+9KwlMT+1Pffa0+fPhVGq9WuXVsfTSQdyVdTa9WqFfbu3VvErSlavBeUV71790ZoaCiaNGmCw4cPF3VzDIa+f1cUyEgtGxsbxMTEwNfXF59//nm+hoUSaePgwYPCH2P29vZo3Lgx3r59izt37qBBgwaoWbMm4uLicOfOHSQmJkIkEmH48OGYPHmySl1lypRRWXKWiIiIiIiIDMOJEydw+vRpODo64vPPP4e9vb3aciEhIcJiAg0aNCjEFlJeFUhQy9nZGefPn0dISAi6du2K6tWrK81DPXDgAC5cuJCvukUiEXbv3q2vplIJ5+vrCyBreOvOnTtRpkwZ3Lt3D0OGDIGdnR1WrlwJIGsU1qJFi3Ds2DH4+flh9uzZRdlsIiIiIiIiKmSWlpa4fPkygKxZPgsXLlQpk31lSXd390JtI+VNgQS1Pv30U/j5+UEmk+H9+/e4e/eucEwmkyE8PBzh4eF5rlcmk0EkEumzqVTChYSEQCQSYerUqcI0wQYNGqB06dIIDAwUypUpUwZLly4VkiweOnQIEydOLKpmExERERERUSFr3749HBwcEBERgb/++gsPHz5Ez549UbFiRXz48AHPnz/HiRMn8PbtWwDAkCFDVJLoU/FSIEGtli1bYvXq1Vi5ciVevXqlcrwA0njRRyohIQEAlObiGhkZoXr16njy5AlevHgBJycnAFmj/MaPH4///vsPvr6+DGoRERERERF9RExMTLBhwwZMmTIFUVFRuHPnDu7cuaO27IgRIzBv3rzCbSDlWYEEtQDAzc0Nbm5ueP/+PZKSkpCRkYEePXpAJBLh888/x5AhQwrq0vQRMTU1RWJiosqSu9WqVcOTJ08QEhIiBLUAoHHjxgCA0NDQwmwmERERERERFQP16tXDmTNn8Pfff8PX1xfBwcGIj4+Hubk57O3t4eLigsGDB5eYRT8+dgUW1JKztLRUWQLTysoKVapUKehL00fAzs4OiYmJiIiIgI2NjbC/atWqALJWVujevbuw38jICEDWPGkiIiIyXBEREUhPTxce29nZwczMDDKZDGFhYUplq1SpwiXVySAprm75seO9IEWmpqYYM2YMxowZU9RNIR0VeFBLUcuWLQEAFStWLMzLkgFr3rw5QkJCsGfPHqxatUrYX6NGDchkMvz777+YMmWKsP/evXsAIOTfUpSamorz588r7evRo4fKKDAiIiIq/o4ePYq4uDjh8fDhw1G3bl3IZDKVRYdmzJiB8uXLF3YTiYiISEeFGtTau3dvYV6OPgIDBw7E4cOH8c8//0AikeDzzz9Hy5Yt0bp1a4hEIty4cQO7d+/GsGHD8OzZM/z6668QiURKObjk0tPTlZLLA0CXLl0+2qCWjY0N0tPTUapUob5NUAFhfxoO9qXhYF8aFvYnERFR4SuQ37qKyeErV66sdr8uFOukj1vTpk0xZMgQeHp64urVqyhXrhxatmyJypUrw9XVFT4+Pvj111/x66+/Avj/FTQHDhxYxC0v/hwcHIq6CaRH7E/Dwb40HOxLw8L+JCIiKnwFEtTq1q0bRCIRRCIRHj58qLJfF9nrJFq0aBGcnJywc+dOODo6CvuXLFmCyMhIPHjwQKl8nz59uFABERGRgTM1NUVqaqrwWJ5XEwDMzMyUyur69ykREREVjQIbHy2TyfK0nyi/xGIxPvvsM0yYMAFJSUnCfisrKxw6dAje3t64ffs2jIyM0KFDB3Tq1KkIW0tERESFYdKkSWr3i8VizJkzp5BbQ0RERAWhQIJa8oTw2u4vjmQyGU6fPo0jR47g0aNHSE5Ohq2tLVq2bIlRo0bpvLynTCaDr68vTpw4gaCgIMTGxsLY2BhVqlRB+/btMXbsWK2mWQYHB2Pnzp0ICAjAmzdvULZsWdSsWRMeHh745JNPlL6VNHQikQgWFhZK+0qVKgV3d3e4u7sXUauIiIiIiIiIqCAUSFBLU0L4kpIoPiUlBTNnzsTFixeV9kdGRiIyMhKnTp3CV199hcmTJ+er/vj4eMyaNQtXr15V2p+Wlobg4GAEBwdj//79WLJkCTw8PDTW4+npiUWLFkEqlQr7YmNjERsbi5s3b+LYsWPYsGEDrK2t89VO+rjdv38fUqkUxsbGaNSoUVE3h3TE/jQc7EvDwb40LOxPIiKiwsflWdSYP3++ENCqWbMmhg4digoVKuDBgwc4ePAgkpOTsXr1atjb22PAgAF5qjszMxPTp0/HzZs3AWQlvR80aBBq1KiBpKQkXLlyBT4+PkhLS8N3330HS0tLdOvWTaUef39/LFiwADKZDKamphg+fDgaNWqEd+/e4e+//0ZwcDACAwMxe/ZsbNu2DWKxWOf7Qh+XzMxM4R+VfOxPw8G+NBzsS8PC/iQiIip8DGplc/XqVZw+fRoA0KZNG2zduhWlS5cGALi7u2Pw4MEYOXIkJBIJli5diu7du6tMecvJsWPHhIBWmzZtsGnTJqVkpUOGDIGfnx+++OILpKen46effkL79u2FNgBZI7p++uknyGQymJmZYd++fWjYsKFwfMSIEZg9ezbOnTuHq1evwsvLi9PviIiIiIiIiMigcPhONjt27ACQlYvp559/VgomAVkjtxYsWAAAkEgk8PT0zFP9hw4dAgCULl0aq1atUll9B8haJXL06NEAgNevX+Py5ctKx318fBAREQEAmDhxolJACwBMTEywfPlyYdrhli1b8tRGIiIiIiIiIqLirkBGar169aogqhVok0A9PyQSCa5duwYA6NixIxwdHdWW69OnD5YuXYp3797B29sb48eP16r+xMREBAUFAQDatWsHW1tbjWV79+6NXbt2AQDu3r0LV1dX4ZiXlxeArMToI0aMUHu+ubk5Bg4ciB07diA4OBihoaGoXr26Vu0kIiIiKulev36N9PR04XH58uVRpkwZyGQylb9V7e3tUaoUJzAQERGVNAXy27tbt24QiUQFUTVEIhEePnxYIHUHBgYKeRDatGmjsZxYLEbLli3h7e2Nu3fvIj4+HlZWVrnWHxcXh8aNGyMqKgo1atTIsaxife/fv1c6Jp++WLduXdjY2Giso02bNsLIs8uXLzOoRURERB+NQ4cOIS4uTng8fPhw1K1bFzKZDNu2bVMqO2PGDJQvX76wm0hEREQ6KrCvpGQyWUFVXWCePn0qbNepUyfHsrVq1QKQ9TyDg4PRsmXLXOt3dHTUerpiSEiIsK24euHr16+FIFft2rVzrKNmzZrC9uPHj7W6LhERERERERFRSVAgQa3cAjzBwcF4//49ZDIZxGIxGjRogDp16qBcuXIwNjZGYmIiQkJCcOfOHXz48AEikQjVqlVDp06dCqK5gsjISGG7SpUqOZatWLGi0nnaBLXy4siRI8J2kyZNhG15Li0g9zba29tDLBYjMzOzwKeEFpU5c+bAzMwMY8eOVQriEREREREREZFhK5Cg1t69ezUeO3z4sLBy38CBAzFz5kzY29urLZuYmIg///wTf/75J8LCwlCuXDlMnTq1IJoMAIiNjRW2y5Url2NZxdFTEolEr+3w9/fHhQsXAGTlf2jfvr1wTHEYfW5tNDY2hpmZGRITE/XexuLi33//xbt379ClSxcGtYiIiEhQqlQpGBsbC4/F4v9fH0lxPxEREZVchZoR8+nTp1iyZAlkMhmmT5+OL774IsfyFhYWmDVrFuzs7LBkyRKsW7cOLVq00PuoKLmUlBRhO/uqh9mZmJioPU9XUVFR+Pbbb4XHU6dORZkyZYTHHz580LqN8jKJiYl6bWNxEh8fD0B5NFt+icVileT9in8AExERUckxbdo0tfvFYjHmzZtXyK0hIiKiglCoQa1du3ZBKpWiRo0amDFjhtbnjRo1CkeOHMHDhw+xe/fuAgtqKa6Qoxi0UkfxuOJ5uoiNjcWECRPw7t07AED79u0xevRopTIZGRlat1GxjL7amF/Pnj3LMUBkZmYm5ClTPCc5OTnHeitVqoTw8HA8efIEbdu2BZB1jx48eKBVu2rWrAlzc3MAgKmpKUaOHImXL18KxxXzrCkSi8Vo1KiR0r6IiAil0X6aWFlZoVq1akr7Hj16BKlUmuu5Dg4OSosDpKSkIDg4ONfzAKB+/fpK30zHxMQgKipKY/nMzEwYGRnByMhI5VhoaCgSEhJyvWaFChVUViuVrwCam+rVq6Ns2bLC44SEBISGhmp1rrOzs9LjV69e4e3bt7meV7ZsWZUFFYKDg7UKCleqVEkpKCqVSvHo0SOt2lunTh2l4HVsbKzSVGNNjI2NUb9+faV9YWFhQrBXkbw/MzMzERQUBBsbGzg4OCiVuX//vrBYRk6qVq2qNFo1KSlJKQ9gTho2bKj0mnr9+jVev36d63n5fY8AsqZiK44Izu97BJA1MlfxPUKTgnyP+D/27ju8qbL9A/j3JE33prTsVTaCrCqCbBWBMhUoS+EFFRVFUHlBQBAUxYH6igxBBAEFKorsWcWy4ceoslo2baHQvWizzu+PmEPSpm06ctKE7+e6uEhOnnPOnT5penLnee6nYF+akvM9wsjd3b1QHUq+RxRm6T2iuL40Jcd7REF8jyj9e0SdOnWQnZ2N5OTkEl/HleU6Ij8/v8R9bOrePcCK15RTUiiAYlZCJyoPrVaLlStXYuvWrYiPj4dGo0FgYCCmTZuGPn36lPv4TZo0AQA89thjxc7SKg9RFPHzzz/j6aefLjTwgMiUrEmtI0eOQBAEdOvWrdSrI3bu3Bnnz5/H2bNnbRQdzC4YNRpNsUkjtVot3bYmuVSSe/fuYezYsbh69SoAoG7duvj8888L/ZxMR2dZc/FijNPew+x1Op1ZQq4gS0k3rVZb4nMcMWIEPv/8c7z33nv4+OOPpVUrrfnZAIUXNBBF0ap9LSXorInX2K4gjUZj1b4FP0xYG6+xbcFjWbOvpdeOtc/VUp9bG2/B52ptvEXF4Yx9Y4k1faPT6Yp8rtZ8YC3r701RsZS1b+R4HVb294iCz80er0NLiW++RxRmqW9Mn39xfyPlfo8wtiuI7xGFmT5Xf39/iKKIpKSkYvsTqDzXEXan1wO5uUAZXx8OS6UCPD1lP+2VK1fw888/4/jx47h9+zby8vIQFBSEpk2bom/fvujTp0+JsxRGjx6N48ePW33O/fv3F0qQG2VlZeG7777Dnj17kJiYCA8PD7Ru3Rrjx4/HY489VuKxb968iX79+iEvLw/fffcdunbtanVczu6///0vtm3bZrYtKSkJvr6+doqodG7cuIH33nsPJ0+etHldbXJ8sia17t27BwBl+mUyJo5sWRvK0+SPS35+vtVJLWumARbn5s2bGD9+PG7cuAHA8G3uDz/8YPZNWlExlsTYxjRhZw9KpbLYP5IuLoVfigVrYViSnp6OXr16Yfv27Rg7diz8/PzQtGlTKBSKEpONr732WqGkoSAIViUALT0Xa+I1tivI2qRjwfNaG6+xbcFjWbOvpTbWPldLH3bL+lytjbeoOMrTNyV9ODHGZ6qy901Rz9WaDzxl/b2xpDx9I8frkO8RfI8wxfcIvkcU5OjvEZWCRgNkZwMW+sEp6XSAt7fMp9Thyy+/xIoVKwolnRMTE5GYmIioqCisW7cOX331VZH1jitSamoqRo4cKX2hDxg+Xx04cADR0dH44IMPMHTo0GKPMXv2bOTl5aFPnz5MaJm4cuWKlNDy8/PDf/7zH9SpUwdZWVlo2bKlnaOzzpYtW3Dy5El7h0EOQtaklre3N9LT062eCmHKOEKrpOLo5WGabEtPTzeb1lCQaXLNUvLJWjExMZgwYYI05bBmzZpYvXp1kSsbmsZY0vQBjUYjDbsvT4wVoWHDhvAu5R/wgtMILBk6dCgEQYAgCBBFEenp6Th27Fix+4iiCEEQsHTp0kKP+fv7m02ZKI1atWoV+U1USQpOD7GWu7t7oWk01qpatWqZh/IWnH5TGmWN18fHp8z71qhRo9AUJ2sVnFZlLZVKVeZ4AwMDy/w7W3BKSmkUnApjLS8vrzI/14LTfkrDmvcIS5RKZZnj5XuEdfgeUTK+R1iH7xHWKet7RHm/mK0wSuXDMxXv3y/55TR37lysX78egOH13bt3b3To0AFeXl6Ij4/H1q1bERsbi1OnTmHcuHH46aefrBqE8O2335bYpkqVKha3f/TRR1JCq3fv3ujatSvu3buHVatWISUlBXPnzkVYWFiRf082b96Mw4cPw8/PDzNmzCgxjofJ5cuXpduvv/46XnzxxQo/x6VLlyr8mERlJWtSq0WLFjh48CD279+P69evo169elbtd+LECURHR0MQBLRt29Zm8ZnGc/v2bdSuXbvItnfu3JFul/VCODo6Gm+++aaUeGrYsCFWrlxZ7MVbwRiLk5SUJH2jWtYYKztnfV6VQU5OjpQANK0pRI6J/ek82JfOg33pXNifVBkdOnRISmh5enpi+fLlaN++vVmbcePGYc6cOdi4cSPi4uKwcOFCzJkzp8RjP/XUU2WKKS0tDTt37gQADBs2DHPnzpUee+aZZxAeHg6NRoMNGzZg2rRphfZPTU3FJ598AgB49913ERQUVKY4nJXpwmJlTe4TORJZk1oDBw7EwYMHoVarMX78eCxdurTEX7QjR47grbfeki4Shg0bZrP4QkNDpdtxcXHFzuU2FhAXBAGNGjUq9bmioqLw5ptvSvUPHn30USxbtqzEkWgBAQGoUqUKUlJSiixibmSapS/rN8mVXVRUlL1DcFpXrlyBRqMp12gCqjzYn86Dfek82Je2lZKSYjY11M/PD25ubhBFUSqJYRQYGGhxWl9psD+pMlq1apV0e9KkSYUSWoBh9Nbs2bNx4sQJXLt2DRs3bsT48ePLPHKwJP/884/0u/nCCy+YPVavXj306NEDu3fvxpkzZyzu/8knnyAtLQ2PPfYYnn/+eZvE6MhMp4mX932NyBHI+irv27cv1q9fj5MnTyIhIQGDBg1Cjx490KVLF4SGhkrT/TIyMnDp0iXs27cPR44cgV6vhyAIGDhwoLTCnS20adMGKpUKGo0Gx44dw8iRIy220+l0OHHiBACgadOmpa4Rdvz4cUyaNElKaHXq1AmLFi0yq5dVnLCwMOzatQsXLlxAVlZWkdMkjx49Kt22ptjiw06tVuPw4cNm2zp27FghCwEQERGRvNatW4e0tDTpfkREBJo0aQJRFLFkyRKzthMnTixymhSRo9Lr9VJRd+NnqaK4uLigf//++Prrr6HT6bBjxw68/PLLNonL9PfSUuLMOFvGtJ3R4cOH8fvvv8PV1RVz584t9eJj1lKr1di7dy9+/fVXXL16Fffu3YO3tzdatGiBAQMGIDw8vMgadbm5uYiMjMS+ffsQGxuLnJwc+Pv7o2nTpujduzcGDhxosZYf8GBVwUmTJuG1117DsWPHsG7dOpw5cwapqakICAhAWFgYRo8ejTZt2pjta6mIv2nS8OOPP8bgwYPL82MpFKel1Q/L8xy++eYbLFq0yGxbz549ARjK9Fga0KDT6fDbb79h586duHjxIjIyMuDn54dmzZohPDwc/fv3L7KvTGMdOnQo5s6di4MHDwIwvA6ffvppfPPNNwAMU2aLS6JmZ2fjiSeegFqtRpcuXbB8+fIi21LFkjWpJQgCFi9ejBEjRuDy5cvQaDTYs2cP9uzZU+Q+xmKGnTt3xocffmjT+Hx9fdGhQwdER0cjKioKiYmJFqe3bd++XVpyuXfv3qU6R0pKCiZNmiQVmu/evTv+97//lSpx0qtXL+zatQtarRY///yzxT842dnZ+O233wAYaps0bdq0VHE6KlEUcfHiRSQmJiI3NxceHh6oWbMmGjduXOQfDyONRoMDBw6YbQsLC2NSi4iIiIgcTnp6OvLy8gAYRiOWVO/NtH5VVFSUzZJapl/kZ2RkFFrQypjM8vDwMNuel5eH999/HwDw6quvlqt+Y3Hi4+Px2muvFaoblZaWhoMHD+LgwYP45ZdfsHjx4kI1g0+ePIm3337brFQNYFgw7d69e4iOjsaqVauwePHiYkvdAMCXX36JZcuWmRX3v3v3LrZv344dO3ZgypQpNuujimLr5xAfH49XX321UM3u5ORkREdHIzo6GmvWrMGSJUsQHBxc5HGys7MxcuRIXL9+Xdp28eJFjBkzBkqlEjqdDrt27So2qbVv3z7pM354eHiZnxOVnuzjEX19fREZGYklS5Zg1apVZqsIWuLj44O33noLI0aMsFkm3tSYMWMQHR0NjUaDKVOmYMWKFWZvVpcvX8ZHH30EwFD4dMiQIaU6/rx586SEWKtWrfD111+XOmny1FNPoVatWoiPj8e3336Ltm3bmg0lVqvVmDp1qlTMfuzYsaU6viPKycnBkiVLsHHjRmRlZRV63MvLCwMHDsTkyZNZ54KIiIiInF7BlQ5Lw5qFvV555RWcP38eaWlp8PDwQHBwMNq0aYPw8HB06NChyP0aNGgg3Y6KisLw4cOl+2q1GocOHQJgXhoGMIziuXXrFho1aoSXXnqptE/JKqmpqRg2bBiSk5MBGGbl9O/fH9WqVcOtW7fw888/486dOzh27Bjeffdds1Gff//9N1566SWpXnKbNm3Qu3dvVK1aFQkJCfj9998RFxeH2NhYRERE4Ndffy2ylvKWLVtw7do1eHl54fnnn0erVq2Qm5uLbdu24dixYxBFEQsXLkSnTp3QokULAIbRRunp6Th69Kg0emrSpElSGZrmzZvb5GdWlLI8hz59+qBZs2ZS0gswLHRQpUqVQsnPlJQUjBgxAklJSQCA1q1bo3fv3ggODkZycjJ27NiB06dP459//sHo0aOxadOmIhcuW7t2LfLz8/Hkk0+iX79+SE9Px4EDB9C/f39s3boVhw4dwtGjR5Genl5kctgYr4eHR5nrzVHZ2GWSrYeHB6ZMmYJx48YhOjoahw4dQmJiIlJSUiAIAoKCglCzZk1069YNnTt3lnVllieffBK9evXC7t27cfr0aQwYMADDhw9H9erVcf78efz888/IyckBAEydOrXQ6kPHjh2ThnkWHI555coV7Nq1S7r/7LPPIjo6usSY/P39zZJWrq6umDFjBl577TXk5eVhzJgxGDJkCNq2bYv09HRs3LhR+kPUtm1bp59rnpiYiHHjxuH69etF/vHOzs7GunXrEB0dje+//95mNQKIiIiIiCoDPz8/qbRKamqqNC2rKKajVHJycpCUlFTsAlZ//vmndFuj0SAzMxOXL19GZGQkOnTogM8++8zi6JgGDRqgWbNmuHDhAhYuXAg/Pz907twZKSkp+Oyzz6RRTn379pX2uXjxIlatWgWFQoF58+ZBpVKV4idhvU8//VRKaI0cORIzZ840m7o2atQoDB8+HLGxsYiKisKxY8fw+OOPQ6fT4d1335USWm+//XahEUhjx47F3LlzsWHDBiQnJ+O9997D999/bzGOa9euoWbNmvjxxx/NPrcMHToU06dPx6+//gpRFLFp0yYpIWT8vJiZmSm1b9euHR5//PEK+MmUXlmeQ2hoKEJDQ3HhwgWpfadOnSx+dps9e7aU0JoyZQpeeeUVs8dfeOEFfPfdd/jiiy9w/fp1fPbZZ/jggw8sxpqfn49u3bph6dKl0kCaMWPGAAD69euHQ4cOQaPRYN++fRY/W2dkZEhlbLp3785BFDKza+U4Pz8/hIeHV7rheQsWLEBOTg4OHjyI+Ph4fPbZZ2aPC4KAiRMnIiIiolTH3bx5s1nS5dNPP7VqP0tzlXv06IHZs2fjo48+gkajwU8//YSffvrJrE3Lli2xePHiEqfdOTKtVosJEybg2rVrAAyj2Pr06YMGDRrA09MTOTk5uHz5Mnbt2oX9+/fj5s2beOutt7B+/XoWTiQiInJib775psXtCoUCs2fPljkaIvm5uLigdevWOHHiBERRxO+//16oMLuRTqfDli1bzLZlZmZaTGr5+fmhY8eOeOSRRxASEgKlUomkpCQcOXIEf/31F0RRxNGjRxEREYENGzagatWqhY4xa9YsvPjii8jMzMTkyZMLPd6zZ0/06NEDgKE22MyZM6HVajFixIhCdZgqSmpqKn7//XcAQLNmzTBjxoxCtZi8vb3xwQcfSKPLtm3bhscffxx79uyRPo/06dPH4pQ6FxcXzJ49GxcuXEBMTAwOHjyIv//+Gy1btrQYz3vvvWcxmfPaa6/h119/BWAYHVaZ2eo5XL16Ffv27QNgWDGzYELL6OWXX0Z0dDSOHz+O3377DZMmTSo0KMXopZdesjgz7Omnn8bs2bORn59f5BTEPXv2SPWyK1tu42HAT/UWeHh4YMWKFdi6dSs2b94sFWT39/dHu3bt8MILL6Bdu3alPq41w3hLY/jw4Wjfvj1Wr16Nw4cP4969e1CpVGjcuDH69euHoUOH2uxbjMril19+QWxsLFxcXLBw4UI888wzhdo0a9YM/fr1w759+/DWW2/h3Llz2LFjB/r372+HiImIiIiI5DF06FBpgasvv/wSLVu2LJQU0uv1mDdvHq5evWq2PTs7u9DxpkyZghYtWlgsnzJ27Fj8/fffePPNN5GYmIiEhAS89957Fgtmt2vXDitWrMDs2bPNRoipVCpERERg6tSp0rY1a9bg77//RkhICN5++21p+4EDB7By5UqcO3cOGo0G9erVw+DBgzFy5MgyfXn9119/SSsHDh8+vMiBAW3btsWkSZNQvXp1aUqfaV3e8ePHF3kOpVKJ8ePHS0n3ffv2WUxqubq6olu3bhaPUbt2bXh5eSEnJ8dsVFZlY8vnsHv3bmmwyHPPPVds2+eeew7Hjx9Hfn4+Dh8+bDHpVNyqtd7e3ujevTt27dpV5BTEnTt3AjDMsOrcuXOpnw+Vj02SWu+//z6mTJlSYjHCipSRkYEvv/wSc+bMqZDjCYKA/v37lzrx8fjjjxcqKmi0bNmyigjNTKNGjWxeQL8y27FjBwRBwLhx4ywmtEw99dRTGD9+PJYuXYrff/+dSS0iIiIicmrh4eH4/fffcfDgQeTm5mLUqFHo3bs3OnToAC8vL8THx2Pr1q24dOkSAgMDkZ+fL5VasbRiXEmjpFq2bIkVK1Zg4MCBUKvV+OuvvxATE2MxYdChQwfs3r0bcXFxSExMhIeHB5o3b25W9+j27dv46quvABg+YxofW7lyJRYsWAAAcHNzg6urKy5evIj58+fj2LFjWLRoUZEr3hXln3/+kW63bdu22Lavvfaa2f0zZ84AMNSPNk6lK4ppvbGiRinVq1ev2MSct7c3cnJyoNVqiz2XPdnyOZw9e1a6fevWLWnUliWmq2ieO3fOYlKrdu3axda57tevH3bt2mVxCmJqaiqOHj0KwDBqjIuMyc8mSa2NGzdi9+7deOWVVzBq1Cibdqxarca6deuwbNkyZGRkVFhSixyDcfTbgAEDrGo/YMAALF26FJcvX7ZlWEREREREdqdQKPD1119j2rRp2Lt3L7RaLbZu3YqtW7eatatatSoWL16McePGSdt8fX3LdM7Q0FAMGDAAkZGRAAy1t4oaBQMYvqRv1KiRxcc++OAD5Obm4umnn5aKb587dw6ff/45AMOoqEmTJkGlUmHnzp2YOnUq9u/fj3Xr1mH06NGlittYSwsAatSoUap9jQuBWVO318/PD35+fsjIyDA7p6miCpobGZNF5VkMwNZs+Rzu3r0r3S7NAI+UlBSL20t6rXfp0kXqs4JTEHfv3g2dTgeAUw/tpXTpayuNGjUKmZmZ+Oyzz/DMM8/gp59+kormVZT09HQsW7YMPXv2xKeffor09HQMGzasQs9BlZ9xWHRQUJBV7Y1zqE0z9kREREREzsrb2xuLFi3CDz/8gH79+qFWrVpwd3eHp6cnGjdujNdffx3btm1Ds2bNpFFaxsW7ysq0OPmVK1fKdIwdO3bgjz/+gLe3N2bNmiVtX7t2LXQ6HerXr4933nkHrq6uEAQBffr0wcCBAwEAq1evLvX5MjIypNsFV9orifHn5uHhYVV74/Hv379v8XFnqP1ry+dgaWqsNYz9VFBJg3BcXV3Rq1cvAJCmIBoZVz2sVq0awsLCyhQXlY9NXmkzZ85E165dMXPmTNy5cwfz5s3D559/jr59+6JPnz5o3759mWo95eXl4eDBg9i6dSv+/PNPqNVqiKKIoKAgzJ49G08//bQNng1VZgEBAUhOTsb169eL/QbI6MaNGwBQ7MovZFDS0GlyLOxP58G+dB7sS+fC/qTKrmPHjujYsWORj1+6dEkacVKvXj34+PiU+VymxbizsrJKvX9mZibmz58PwLCSoGnBemONsF69ehUq7P3ss88iMjISt27dKnH1xoJME1l5eXmlWsHOw8MDWVlZRSapCjIO+Cht8owMTH9uMTExcHNzs/k5w8PDsXHjRrMpiPfu3cPJkycBGBYIKO2UV6oYNkufdu7cGbt27cI333yDH3/8Ebm5ufjll1/wyy+/wMPDA+3bt0fTpk3RuHFjNGjQAH5+fvDx8YGnpyfUajVycnJw584d3Lp1CxcuXMDZs2dx5swZaVUBURSlQoKTJk0qcXgjOadHH30U+/fvx+rVq/HFF1+U2H7VqlXSflQ8Z14182HE/nQe7Evnwb60rczMTKnoMwB4eXlBpVJBFEWzERkA4OPjU+7+YH+Sozt+/Lh0u7wjTkxnRZQlOfbZZ5/h3r17aNOmjbTSoFFSUhIAWExYVa9eXbp9586dUiW1qlSpYrZvaGhokW3PnTsHhUKB2rVrw9vbG0FBQcjKykJ8fHyJ50lNTZUSfaWJjx4w7au7d++idu3aNj9nWFgYqlWrhjt37mDv3r14/vnnsWfPHunvTL9+/WweA1lm03GNHh4emDp1KkaOHIlvv/0WW7ZsgVarRW5uLqKjoxEdHV2q4xnn27q6uqJ///6YMGGCVfOWyXk9//zz2LdvH3bs2IHq1atj8uTJFi8qdTodFi5cKBWWHzx4sB2iJSIiIrmsWrXK7IN1REQEmjRpAlEU8fXXX5u1nThxotmHJKKHjSiK+PXXX6X7Q4YMKdfxjh07Jt2uX79+qfY9efIkIiMjoVKp8OGHHxYajWVkaVRUUdPLrNGiRQupDtjp06eLTWrNmTMHMTExCAwMxJEjR9CyZUtcu3YNmZmZOHfuXLEjN41FxQGgSZMmZY73YdaqVSscPnwYgCEZW1xS6+jRo1i/fj1q1aqFbt26oX379mU6p0KhQN++ffH999/j6NGjyMvLw65duwAADRo0kFbCJPnJMj6uZs2amD9/Pv744w+88cYbqFOnDkRRLPW/0NBQTJkyBX/88Qc+/PBDJrQI3bp1Q48ePSCKIr7//nt0794dc+bMwZo1a7Bp0yasWbMGc+bMQffu3bFy5UoAQI8ePdCjRw87R05EREREVDmsX78e58+fBwA89thjVpX1KMq1a9fw+++/S/e7d+9u9b5qtRqzZs2CKIp46aWX0LBhw0JtjKObLC38ZLqttKOgOnfuLE0fi4yMLLKA+Y0bN6RVC5944gkAQM+ePaXHV6xYUeQ5dDqd9JkEKN3P5mFimsi01A+mP+8ff/xRms1lyaJFi7Bz504sX77crBZWWRhHYxkTWv/3f/8HgAXi7U3WCnRVq1bF66+/jtdffx2XL1/GsWPHEBMTg2vXriExMRHZ2dlQq9Vwc3ODt7c3atasifr166N169Z4/PHHUa9ePTnDJQexcOFCTJ48GX/88Qfu3r2LDRs2FGpjfDPs0aMHPvvsM7lDdEhJSUnQ6XRQKpUcGu0E2J/Og33pPNiXzoX9SZXVmTNn0Lx5c4vFsEVRxMaNG6UV5Dw9PfHRRx9ZPM6PP/6IRx55BG3bti3yXOfPn8fEiRORn58PAHjyySdLVfZj6dKluHr1KurXr49XX33VYpv27dvj1q1b2LFjB9566y3p902n02Ht2rUADKsQVqtWzerzGvd5+umnsXv3bpw5cwZfffUVJk+ebNYmOzsbM2bMkD5bjBgxAgDw9NNPo27durhx4wZ27NiBZs2a4eWXXzbbV6fTYe7cuVJC7PHHHy/zqCFnZ1pwPyMjo9BIrFatWuGxxx7D8ePHcfHiRcyaNQvz5s0rVLf7f//7n1SDrV69euVOIjZr1gwNGzbE5cuXsXDhQqkGHace2pfdllVo2LAhGjZsiJEjR9orBHIS7u7uWLJkCf744w9ERkbixIkTZgUpfX190bZtWwwbNozfhpRCUlISNBoNVCoVL86dAPvTebAvnQf70rmwP6myWrJkCU6dOoUuXbqgZcuWCA4Ohkajwa1bt7Bnzx5cunQJgOGa+uuvv0adOnUsHufo0aP46KOPUKdOHTzxxBNo3Lgx/P39oVAocPfuXRw9ehQHDhyQagwZZ+tY68qVK/juu+8gCALmzZtX5Ip0I0aMwO+//468vDyMGjUKY8eOhZeXF3777TecO3cOAPDCCy+U5kckmTlzJk6ePImUlBQsXboUx44dQ9++fREQEIDr169jw4YNuHv3LgDgueeek5JSSqUSn3/+OUaOHAm1Wo0vvvgCUVFR6NOnD4KCgnD79m1s3rwZsbGxAAB/f38sWLCgTDGW17Fjx6Sfz2OPPYY1a9bYJY7imCYkP/74Yyln0KdPH7Ptzz33HNLT0/Hbb7/h9OnTGDx4MGrXro27d+9i9+7dOHXqFADDSowfffRRhdQ+DA8Px1dffSXVdmvVqlWRvzOAY/y8HZ3jrxVK9K/u3btLSaucnBxkZ2fDy8vL6kUEBEGAp6dnoW1ERETkeF599VWzaSvG5eUFQcD06dPN2pZlVW4iR5KZmYlt27Zh27ZtFh9v2LAh5s2bV+woLKObN2/i5s2bxbZ58sknMX/+fKsTvKIoYtasWdBoNBgyZEixhepbtWqFN998E1999RVu3ryJDz74wOzx7t27Y9SoUVadt6Dg4GCsXbsWEyZMwI0bN3D69GmcPn26ULt+/foVOm+rVq3www8/4K233sK9e/eK3LdZs2b45ptvzIrak7mOHTvC398f6enpOHnyJE6ePAlBENCtWzfp81qtWrWwbt06vP7667h+/TquX7+OhQsXFjqWj48PFixYUGGj4oxJLdP7ZF9MapFDW7RoEQBgwoQJ0sUqYFjhyNIyvNnZ2fjoo4+Qm5tbqEisp6cn3n33XdsGTERERLIoKlElCEKRI0DITnQ64N49e0chj3+nK8lp0qRJaNmyJU6cOIH4+HikpKRAEARUqVIFLVq0wNNPP41nn33W7FrakmnTpqF79+6IiYnBxYsXkZKSgrS0NGg0Gql0TJs2bdCvX79SrzS+YcMG/N///R+CgoIwderUEtu/+uqraNy4MVatWoXz589Do9GgXr16GDx4MEaNGlWuETkNGjTAtm3bEBkZiV27diE2NhY5OTnw8/PDo48+imHDhqFr164W923fvj12796NDRs2YP/+/bh8+TJycnIQHByMRo0aYeDAgXjqqaeYSC9BQEAAVq9ejc8++wwxMTHIzc1FYGAgbt++bVbAv2HDhti6dSt+++03adRheno6XF1dUa9ePXTp0gUjR45E1apVKyy22rVro02bNjh9+jSUSqXZ6DGyD0EsqgIeUTlkZ2dLQ5kBw8oe1o6YKo2mTZtCEAScOnXKbO51UbKyshAWFgZPT09pOCpZFhMTI02jKE+xUKoc2J/Og33pPNiXzsUR+7Oir9fi4uKg1Wrh4uKCRo0albxDUhKQmwsUU+TZKalUgKcnwGmqRPQQKvXfihJwpBY5BFEUcfv27SIfv337Ntzd3Ys9hkajkYZcc1ohERERkZ0pFIbkzsNIIcsi9ERETo9JLXIIgiBg5syZOHLkSKHtANC3b99SHatly5YVGh8RERERlVIFTgkiIqKHE78iIIcxe/ZsqFQqiKJYrn/VqlXDe++9Z++nQ0RERERERETlwJFa5DDq1q2LyMhIZGRkADBMSXzxxRchCAKWLVtW7PRDQRCgVCrh7++PunXrVshyrkRERFR55ebmmq1+6ObmBhcXF4iiiNzcXLO2Hh4eUHA6GBERkcNhUoscSpMmTSxuDwsLs6pQfHE0Gk2hZXfbtGnD1UmIiIgc0IoVK5CWlibdj4iIQJMmTSCKIj7//HOzthMnTkSVKlXkDpGIiIjKiUktcmj79+8HgGITWmq1Gi4uLiV+A6tWq7Fz506zbS1atHhok1qenp7SqhTk+NifzoN96TzYl86F/UlERCQ//tUlh1azZk0AwJUrV/DDDz/A398f77zzjlmbbdu24cMPP8Szzz6LiRMnokaNGvYI1eE0bNjQ3iFQBWJ/Og/2pfNgXzoX9icREZH8WDyAHN62bdswaNAgbNq0CSdPniz0+K1bt5Cbm4vffvsN/fr1w/Hjx+0QJRERERERERFVpEo5UksURfzf//0fkpKSEBISgkcfffShnQJGxbty5QqmT58OjUYDb29vtG3btlCbZ555Bnl5edi0aRMyMzPxxhtvYMuWLQgJCbFDxERERCSH8ePHFyoUDxgWjyk4qru8dTmJiIjIPuyS1NJqtdi+fTv+/vtvzJw50+yx8+fPY9KkSYiPj5e2BQcHY9q0aejdu7fcoVIl9/3330Oj0aBu3bpYuXKlNB3RVLNmzdCsWTOMHj0aL7zwAhISEvDDDz9g2rRpdoiYiIiI5ODp6WlxuyAI8PLykjkaIiIisgXZpx/eunULffr0wbRp0/DTTz9BrVZLj6WlpWHs2LG4desWRFGU/iUlJeHtt9/Gr7/+Kne4VMkdO3YMgiBg6tSpFhNapmrUqIEpU6ZAFEX88ccfMkXouC5fvoyLFy/i8uXL9g6FKgD703mwL50H+9K5sD+JiIjkJ2tSS6/X4+WXX8bNmzelhNWtW7ekx1euXImMjAwIggAXFxd06dIFjzzyiLTv/PnzkZycLGfIVMndvXsXANCmTRur2rdr1w4AcPv2bZvF5Cxyc3ORk5OD3Nxce4dCFYD96TzYl86Dfelc2J9ERETykzWptX37dly7dg2CIKBq1aqYP38+atWqJT2+ZcsW6fbChQvx3Xff4ZdffpGmieXk5HC0Fpnx8fEBYHhtWMNYW8PV1dVmMRERERE9jJRKJQBAp9OZ1TMjIiICDJ/HdTodgAd/M8pL1qSWccqXSqXCTz/9hEGDBklFO2NiYpCUlARBEFC/fn0888wz0n5jxoxBq1atIIoiDhw4IGfIVMnVrVsXALBv3z6r2htfg8b9iIiIiKhiGL80FEWRI9aIiKiQ3NzcCh9oImtSKyYmBoIg4Omnn0bt2rXNHvvrr7+k2927dy+0b1hYGADg5s2btg2SHErfvn0hiiIWLVqEs2fPFtv20qVL+Oqrr6TXIBERETkvjUYDtVot/dPr9QAMCRfT7Wq1mqOKKoivr690OzU1lT9XIiKSiKKI1NRU6b7p34zykHX1Q+MTqF+/fqHHDh48KN3u2LFjocf9/PwAGIrJExkNGjQIq1evxq1btzBy5EgMGDAA3bp1Q7169eDu7o68vDzcvHkT0dHR+O2335Cfn4+QkBCMHj3a3qETERGRDS1ZssTsujEiIgJNmjSBKIr4+OOPzdpOnDgRVapUkTtEp+Pt7Q1BECCKIrKzsxEfH4/AwEB4enpCEAR7h0dERHZgHL2bmpqK7OxsAIaViL29vSvk+LImtbRaLQDD9ENTWVlZ+Pvvvw0BubhIxbxN3bt3DwCk6YpEAODl5YVFixZh3LhxSE5Oxq+//lpk3TVRFFGlShUsW7aMS3kTERERVTCFQoGaNWsiISFBSmxlZ2dDEIQKq51CRESOpWCdRUEQULNmTSgUFTNxUNakVlBQEG7fvm224iEAHDp0CDqdDoIgoG3btnB3dy+0rzHpFRISIkus5DiaNGmCHTt24H//+x927dplcYVMT09P9O/fHxMnTkRQUJAdoiQiIiJyfj4+PmaJLcDwxaLxy20iInp4GRNaxgXfKoKsSa2WLVsiMTERUVFRyMrKkp5IZGSk1KZHjx6F9vvrr79w5swZCIKAli1byhYvOQ5fX1/MnDkTM2bMQGxsLJKSkpCRkQEPDw9Ur14dTZs25TeERERERDLw8fFB48aNkZ2djczMTKjVamm1KyIiergolUq4urrC19cX3t7eFTZCy0jWpFbv3r2xe/dupKWlYfjw4Rg6dCjOnDmDQ4cOATA82T59+kjt7969i23btuHrr7+WtvXt21fOkMnBCIKAJk2aoEmTJvYOhYiIiOxozJgxUnF4AFLpAUEQMGnSJLO2FfmNMRkoFAr4+vpWWCFgIiIiS2RNavXq1QutW7fGmTNncOXKFalIp7Fw5AsvvICqVatK7cPDw5GVlSUNXX7yySfRpUsXOUOmh4iXlxdmz55t7zAqjZCQEOh0Oo5wcxLsT+fBvnQe7EvbKiqZIggC/P39K/x87E8iIiL5yZrUEgQBS5YsweTJk3H06FGzxwYMGIDJkyebbWvQoAHOnDkDAOjcuTO++uormSKlymj69OkADLXZ3n77bbNtpSUIAubPn19hsTkj1q9zLuxP58G+dB7sS+fC/iQiIpKfIJqWoZfR6dOncfbsWSiVSoSFhaFp06aF2nzyySe4desWnnvuOYu1tqjyys7OxqVLl6T7TZo0KfeSnU2bNoUgCKhTpw52795ttq00RFGEIAi4cOFCueIhIiIicmS2uF4jIiKSk6wjtUy1adMGbdq0KbbNtGnTZIqGHEGNGjUAAMHBwYW2EREREREREdHDxW5JLaLSioqKsmobVQzTVYpYH8TxsT+dB/vSebAvnQv7k4iISH42SWolJiba4rASjs4hsr1z585Bo9FApVKhVatW9g6Hyon96TzYl86Dfelc2J9ERETys0lSq0ePHqWuc2QtQRBw/vx5mxybHm5ardasrgRgqC3h4sIBjURERI7mf//7H9LS0qT7ERERaNKkCfR6PebNm2fWduLEiahSpYrcIRIREVE52ezTup3qz5MTO3HiRIUeLywszOx+fn4+fvnlF7Nt77zzDpNaRERERERERJWQTT6tF0wWFBQbG4vMzEyIogiFQoHmzZujcePGCAgIgEqlQnZ2Nq5cuYIzZ87g/v37EAQBdevWRZcuXWwRLjmI0aNHV9gIQI74IyIiIiIiInJsNklqrVmzpsjHNm7ciDlz5kAURQwePBiTJk1CSEiIxbbZ2dlYvnw5li9fjhs3biAgIACvvvqqLUImB2HtCEClUglPT0+o1Wrk5+dL2wVBgEqlslV4RERERERERCQTWedVxcXFYd68eRBFEa+//jreeOONYtt7e3tj8uTJCA4Oxrx58/DNN9+gffv2JY4EI+e0f/9+i9vXrVuHlStXwtfXF+PHj8dTTz2F+vXrS6O67t27hwMHDmDx4sVISkrCpEmTMG7cODlDJyIiIpmNHDnSbEVCPz8/AIYvuAp+SWp8jIiIiByLrEmtVatWQaPRoEGDBpg4caLV+40cORKbNm3C+fPnsXr1aia1HlI1a9YstO348eP44YcfEBISgp9++slim6pVq+L555/HU089hYiICHz++edo0KABunfvLkfYREREZAdFFX4XBAHBwcEyR0NERES2oJDzZEeOHIEgCOjWrVupayN17twZAHD27FlbhEYOavny5QAMBd0tJbRM+fv745133oEoili5cqUc4RERERERERGRjcia1Lp37x4AwNfXt9T7urq6AgDS09MrMiRycDExMQCATp06WdW+Xbt2AIALFy7YLCYiIiIiIiIisj1Zk1re3t4ADKsflpZxhFZAQECFxkSOTavVAoBZMfjiZGVlATAUkiciIiIiIiIixyVrTa0WLVrg4MGD2L9/P65fv4569epZtd+JEycQHR0NQRDQtm1b2wZJDqVu3bq4cOECdu3ahbFjx5bYftOmTQCABg0a2Do0hxcaGgpRFEs9VZgqJ/an82BfOg/2pXNhfxIREclP1pFaAwcOBACo1WqMHz8ely9fLnGfI0eOYOLEiRBFEQAwbNgwW4ZIDqZv374QRRH/+9//EB0dXWzbzZs3Y8WKFRAEAc8//7xMETouLy8veHt7w8vLy96hUAVgfzoP9qXzYF86F/YnERGR/GQdqdW3b1+sX78eJ0+eREJCAgYNGoQePXqgS5cuCA0NhY+PDwAgIyMDly5dwr59+3DkyBHo9XoIgoCBAwfiiSeekDNkquQiIiKwceNG3LhxAy+//DI6duyILl26oG7dunB3d8f9+/dx9epV7Nu3D2fOnIEoimjbti0GDBhg79CJiIjIhhYvXmxWi3XIkCFo1KgR9Ho9PvnkE7O2r7zySpGrJRIREVHlJWtSSxAELF68GCNGjMDly5eh0WiwZ88e7Nmzp8h9jCO0OnfujA8//FCuUMlBeHl5YcWKFRg/fjxu3LiBw4cP4/Dhw4XaGV9HYWFhWLRoEVxcZH3pExERkcy0Wi00Go10X6/XS7dNtxMREZHjkv2Tva+vLyIjI7FkyRKsWrUKarW62PY+Pj546623MGLECNYoIItq166Nbdu2Yd26ddi2bRvOnTsnJbEAQKFQoH379njuueekKbBUsvT0dKk2iL+/v73DoXJifzoP9qXzYF86F/YnERGR/OwyXMXDwwNTpkzBuHHjEB0djUOHDiExMREpKSkQBAFBQUGoWbMmunXrhs6dO8PNzc0eYZIDUalUGDNmDMaMGYPs7GwkJSUhMzMTfn5+qFatGjw9Pe0dosO5efMmNBoNVCoVL86dAPvTebAvnQf70rmwP4mIiORn1zlYfn5+CA8PR3h4uD3DICfj7e0Nb29ve4dBREREdjRs2DBotVrpvrFmliAIGD9+vFlbPz8/WWMjIiKiisHCQkUQRRHbtm3Dpk2bcOHCBeTm5qJq1aoICwvDyJEj0apVqwo/59mzZxEREYHq1asjKiqqxPajR4/G8ePHrTr2hg0b0Lp163JGWPnFxMTg1KlTuH37NnJycqQ6bLt370arVq1QvXr1Ivf19PTEO++8U2gbEREROZ6QkBCL2wVBQM2aNWWOhoiIiGyBSS0L8vLyMGnSJPz5559m2xMSEpCQkICtW7firbfewssvv1xh58zJycHMmTPNipiWJDY2tsLO7+hOnz6NDz74AJcuXTLbbkxqffnll0hISMD48ePx5ptvWqzPJggCl+EmIiIiIiIichA2SWolJiba4rCSGjVq2PT4M2bMkBJaoaGhGDp0KIKCgnDu3DmsX78eubm5+OKLLxASEoIBAwaU+3xqtRqvvfZaqZJUSUlJ0jLVQ4cORdeuXYttX79+/fKEWKnt2bMHU6ZMgU6ngyiKUCqV0Ol0ZomrxMREaDQaLF26FCkpKZg7d64dIyYiIiIiIiKi8rJJUqtHjx42W6lQEAScP3/eJscGgEOHDmHbtm0AgA4dOuC7776TCtWHh4fj+eefx4gRI5Ceno758+ejZ8+e5arflJKSgkmTJuHEiROl2u/ixYvS7V69euHJJ58scwyO7M6dO5g6dSq0Wi1atWqFyZMno0mTJujYsaNZu1WrVmHBggU4e/YsIiMj0bt3bzzxxBN2ipqIiIiIiIiIykthqwOLomizf7a0cuVKAICLiws+/PDDQisvhoaGYtasWQAMSzdHRkaW+VxHjhzB4MGDS53QAmA2za5Ro0ZljsHRrVy5Enl5eWjZsiXWrl2LJ554Au7u7oXatW3bFj/++KNUV2z9+vUyR0pEREREREREFckmI7XCwsKKfTw2NhaZmZkQRREKhQLNmzdH48aNERAQAJVKhezsbFy5cgVnzpzB/fv3IQgC6tatiy5dutgiXEl6ejoOHz4MAOjcuTNq165tsV2fPn0wf/58pKSkYNeuXRg7dmypzpOamopZs2Zh37590rbnnnsOBw8eRFJSklXHMCa1/P39iyyE+jCIjo6GIAh444034OrqWmxbNzc3TJw4EePHj8eZM2fkCZCIiIiIiIiIbMImSa01a9YU+djGjRsxZ84ciKKIwYMHY9KkSUUmZbKzs7F8+XIsX74cN27cQEBAAF599VVbhAwAOHnypFSovUOHDkW2UygUCAsLw65du3D27FlkZGSUainouLg4KaHl5eWF6dOnY8iQIejRo4fVxzDW32rcuLHV+zij27dvAwBatmxpVfvmzZsDMCQWC9LpdLh165bZttq1a0OpVJYzSiIiIpLb8uXLpfqjADBo0CA0bNgQer0eX3zxhVnbcePGITAwUOYIiYiIqLxkXf0wLi4O8+bNgyiKeP311/HGG28U297b2xuTJ09GcHAw5s2bh2+++Qbt27cvcSRYeeIzKilZ1LBhQwCGaZaxsbGljkmhUGDAgAGYPHlyqUdaaTQaXLt2DcCDqYf379/HxYsXkZmZiYCAADRt2rTEkUvOwJhw0mg0VrW/f/8+AFicopiXl4fVq1ebbXvnnXce2hURFQqF9I8cH/vTebAvnQf70rbu37+P3Nxc6b5Op5Num24HUCHlLdifRERE8pM1qbVq1SpoNBo0aNAAEydOtHq/kSNHYtOmTTh//jxWr15ts6RWQkKCdLtmzZrFtq1WrZrZfqWJqV69eti9ezfq1KlT+iABXLlyRUri+Pj4YPr06di+fTvy8/OlNl5eXhg8eDDeeOONUo0iczS1a9fGpUuXcPz4cYSHh5fY3riqZVFTS+mBRx55xN4hUAVifzoP9qXzYF86F/YnERGR/GT9KunIkSMQBAHdunUr9eqInTt3BgCcPXvWFqEBMJ+SFhAQUGxbf39/6bbp0HZrhISElDmhBZgXiV+6dCl+/fVXs4QWAOTk5GDNmjUYMmRIoSl1zqRbt24QRRFff/01MjMzi2178+ZNfPPNNxAEQXo9EREREREREZFjknWk1r179wAAvr6+pd7XOJWutAmk0sjLy5NuF1z1sKh4Cu4nB9OkliAIGDp0KIYPH4769esjNzcXR48exddff43r16/jxo0bmDBhAn755Rd4eHjIGqccxowZg59//hnx8fF47rnn8Prrr5utBqnRaBAfH4/9+/dj+fLlyMjIgJeXF1544QU7Rk1ERES2NnjwYGi1Wul+cHAwAMO104svvmjWtizXpkRERGR/sia1vL29kZ6eLhU5Lw3jCK2SRlCVh+mFT0n1qEwfN91PDsYVEgVBwJdffonevXtLj7m7u6NPnz7o3LkzRo8ejQsXLuDy5cv48ccf8corr8gap6nLly8XW2PC09NTqlNmuk/BmheWzJkzB9OnT8etW7cwffp0absoioUKyCsUCkycOBEJCQlISEhAaGhosTWzzp8/bzHBqVAoCk0ziI+Pt1iAviA/Pz/UrVvXbNuFCxesqgtWq1Yts0K2eXl5Vv8+NWvWDCqVSrp/7949qdB+cdzd3QvVmLt27RqysrJK3DcoKAg1atQw2xYTE2NVvPXr14ePj490PysrS6olV5JWrVqZ3U9MTERycnKJ+/n4+KB+/fpm22JjY61KXFevXh1Vq1aV7ms0Gly4cMGqeBs3bmxW5y01NRXx8fEl7qdSqdCsWTOzbTdu3EBGRkaJ+wYGBqJWrVpm2/755x9psYzi1KlTx2y0ak5ODq5cuVLifgDQokULs8UXkpKSrFr1tTzvESEhIWa1C3U6Hc6dO2dVvAXfI9LT03Hz5s0S9+N7BN8jCuJ7hPzvEXl5eWbvEUWN6A4JCTF77T9M7xEFR/oTERE5GlmTWi1atMDBgwexf/9+XL9+HfXq1bNqvxMnTiA6OhqCIKBt27Y2i8/0glGj0RSb2FKr1dJtuQuyf/HFF/jwww+RnJxcZG0oHx8fzJ8/H4MGDQJgWHXSnkktnU5nVqC1IEuJQa1Wa9UF2qOPPoqNGzfigw8+wP/93/8V2a5u3boYM2YMGjduLB23pMKwGo3GYjLO0jZr47X0XDUajVX7FvwwIYqi1UXyCz5XvV5fpnMC1j9XS31ubbwFz2ttvEXF4Yx9Y0l5X4fWfGAtGG9pnmtB5ekbOV6HZX2uD9N7hKUVYvkeURjfI5z/PSI+Ph45OTkO9R5BRETk6GRNag0cOBAHDx6EWq3G+PHjsXTp0kLfqhV05MgRvPXWWxBFEYIgYNiwYTaLz9PTU7qdn59vdVKrpKmKtuDh4VFisfPmzZujUaNGiIuLQ3x8PJKSkkq90mJFUSqVxY7UcnEp/FJ0cXEx++a0uGM3btwY69atw+XLl3H06FGcOXMGubm5cHNzQ1BQEJo3b47Q0NBC+5ZU202lUlmMwdJzsTZeS8/Vmv0snVcQBKv3LfhcFQpFsfsaL44tXQCXpm8KKutzLSnekuIoT98Ul5A1jc+ULfvGNLaCiuob0w87KpWqyOdqzQeegvGW5rkWVJ6+keN1WNbnasv3iIJ9Wdx5K9vrsKCH/T2i4HGKYo++4XtE6X9vUlNTpd/PkvavLNcRREREjk4QK2INYyuJoojRo0fj5MmTEAQBLi4u6NGjB7p06YLQ0FBpGkFGRgYuXbqEffv24ciRI9Dr9RAEAQMHDsTHH39ss/jef/99bNiwAQCwb9++YpNGkZGRmDlzJgDg888/R79+/cp9/h49eiAhIQE1a9ZEVFRUuY8HAG+++SZ2794NwBBzwSkXtpKdnW1W+6tJkybw9vau8POsWrUKwcHBeOqpp8o9Yi4nJweff/652bZ33nmn2OmJziwmJgYajQYqlUq21w3ZDvvTebAvnQf70rk4Yn/Kdb1GRERkK7KO1BIEAYsXL8aIESNw+fJlaDQa7NmzB3v27ClyH2POrXPnzvjwww9tGp/pdMjbt28Xm9S6c+eOdLtgPZDKxNK3ec5kzZo1SExMxNy5czFkyBB7h0NEREREREREMpF9DLKvry8iIyPx8ssvw9XVFaIoFvvPx8cHs2bNwrJlyywOD69IptPT4uLiim1rfFwQBLPV9mwtNTUVa9euxVdffYXNmzeX2N60uKpx1R9nYlxRs2vXrnaOhIiIiIiIiIjkZJdhPB4eHpgyZQrGjRuH6OhoHDp0CImJiUhJSYEgCAgKCkLNmjXRrVs3dO7cWbaaVW3atIFKpYJGo8GxY8cwcuRIi+10Oh1OnDgBAGjatKmsy0BrNBrMmzcPgGGI+MCBA4tsm5WVhX/++QeAYWWfatWqyRGirAIDA5GUlISMjAynTNoRERFR2fzwww9mKz32798fDRo0gF6vx//+9z+zti+++KJNV9gmIiIi27Dr3DQ/Pz+Eh4cjPDzcnmFIfH190aFDB0RHRyMqKgqJiYkWpxZu375dWnK5d+/essYYEhKCevXq4fr167h06RLOnDmD1q1bW2y7cuVKaZnxAQMGyBilfMaMGYNPPvkEH374Ib799lvWgSAiIiIAhi/3TJNapossmG4HuCogERGRo6oUBZdu3ryJW7duSRcYvr6+qF27NurWrSt7LGPGjEF0dDQ0Gg2mTJmCFStWmCVKLl++jI8++ggA4OXlZZc6TqNHj5ZGa/33v//Fjz/+WGhVw+3bt+O7774DAPj7+2PMmDFyhymLnj174vr161i/fj26du2KTp06oVmzZggMDCxxhF9xo9yIiIiIiIiIqHKzW1IrPT0dq1atwqZNm5CcnGyxTUBAAPr06YNXX30VVapUkSWuJ598Er169cLu3btx+vRpDBgwAMOHD0f16tVx/vx5/Pzzz8jJyQEATJ06FYGBgWb7Hzt2DC+88AIA4LHHHsOaNWsqPMaIiAjs3LkTJ0+exPXr19G/f38MGzYMTZs2RXZ2NqKiovDHH38AMBSK/+STT2T7+cntmWeeAWCobZaTk4O9e/di7969Je5nXE2TiIiIiIiIiByTXZJaJ06cwOTJk5GSkgLgwQqHBaWmpmLdunXYtWsXPv30U3Ts2FGW+BYsWICcnBwcPHgQ8fHx+Oyzz8weFwQBEydOREREhCzxFOTi4oIlS5Zg8uTJOHjwINLT07Fs2bJC7fz9/fHRRx+he/fudohSHgVfO0W9loiIiOjh0q9fP7Mph8aSEoIgYPjw4WZtfXx8ZI2NiIiIKobsSa2YmBiMHz8earVaSkD4+/ujadOm8Pf3h16vR1paGi5duoTMzEyIoojk5GRMmDABGzZsQLNmzWweo4eHB1asWIGtW7di8+bNuHDhArKysuDv74927drhhRdeQLt27WweR3F8fX2xYsUK7N+/H5s3b8bZs2eRlpYGT09P1KpVCz169MDw4cOddoSW0f79+yvsWB4eHnj11VcLbXtY+fn5QavVwsWlUsxSpnJifzoP9qXzYF/aVv369S1uFwQBjRs3rvDzsT+JiIjkJ4gyDm3RaDTo3bs34uPjAQDNmzfHu+++iyeeeMJi+0OHDmHhwoU4d+4cAKBu3brYtm0bVCqVXCFTGWVnZ+PSpUvS/SZNmrCIOxEREVElwus1IiJydAo5T7Z582bEx8dDEAR07doVGzZsKDKhBQCdOnXChg0b0K1bNwCGgvLbtm2TKVoiIiIiIiIiIqqsZB0fbZwq5uPjgwULFlg14srFxQULFizA008/jaysLOzevRuDBg2ydajkgC5evIht27bh8OHDSEpKQlZWFgICAlCzZk1069YNffv2Rc2aNe0dJhERERERERFVAFmTWhcuXIAgCOjZsyf8/f2t3s/Pzw89e/bEb7/9hn/++cd2AZJDys/Px+zZs7FlyxaIomhWLD4pKQlJSUk4ffo0vv32W7z88st4/fXX7RgtEREREREREVUEWZNaaWlpAAy1sUrLuE96enpFhkQOTqfTYeLEiTh48CBEUYSHhwcef/xx1KtXD+7u7sjNzcW1a9dw4sQJ5OXlYdGiRcjKysK0adPsHXqld+HCBWg0GqhUKlkWaCDbYn86D/al82BfOhf2JxERkfxkTWq5ublBo9EgNze31Psa9/H09KzosMiBbd++HdHR0RAEASNHjsTbb79t8TWSnZ2Njz/+GJs2bcLq1avRs2dPhIWFmbXR6/VITk422xYUFASFQtbSc5WGRqMxWwqdHBv703mwL50H+9K21q5di8zMTOl+7969Ub9+fej1eixdutSs7YgRI0o1i8AS9icREZH8ZE1q1ahRA5cuXcKxY8dKva9xn2rVqlV0WOTANmzYAEEQMHDgQMyaNavIdt7e3vjoo4+Qm5uLnTt34scffyyU1Lp//z6WLFlitu2dd96Bl5eXTWInIiIi20lNTZVmCQCAWq2Wbt+7d8+srU6nky0uIiIiqjiyDkF5/PHHAQAxMTGIioqyer/9+/fj7NmzEARBOgYRAFy9ehUA8J///Meq9i+//DIAw2uQiIiIiIiIiByXrEmtYcOGQRAEAMC7776LP//8s8R9/vjjD0ydOhUAIAgChgwZYssQycHk5+cDMEwTtEaNGjUAwGw6AhERERERERE5HlmnH4aGhmL48OH46aefkJubi1dffRVhYWHo1asXmjZtKtUySEtLw6VLl7Br1y6cPHkSoihCEAQ8//zzaNy4sZwhUyXXsGFD/P333zh16hR69uxZYvvY2FgAQP369W0dGhEREdlR7969zaYcGr/YMl5TmvL29pY1NiIiIqoYsia1AGDatGlISEjAgQMHIAgCTpw4gRMnThTZXhRFAEDHjh3x/vvvyxUmOYgXX3wRb7/9NhYsWIDWrVujSpUqRbbVaDRYuHChVFSeiIiInFejRo0sbhcEAS1atJA5GiIiIrIF2Zd1c3V1xeLFi/H666/D09MToigW+8/T0xOvvfYali9fDhcX2XNwVMn17dsXr7zyCm7evInBgwdj8+bNyMvLK9Tu5MmTGD16NM6cOYP+/fvjueees0O0RERERERERFRR7JIlUiqVeOONNzB69Gj88ccfOHr0KOLj45Geng5RFOHr64t69eqhXbt26NWrF3x9fe0RJjmAiIgIAICHhweSkpIwffp0zJw5EzVr1oSvry/y8/ORkJCA3NxcaZ8tW7Zgy5YtFo8niiKGDx8uS+xEREREREREVHZ2Hfrk7++PQYMGYdCgQfYMgxzYmTNnzO6LogitVosbN27YJyAiIiIiIiIikgXn85FDmzhxYoUdS61W4/DhwxV2PEdXq1Yt6PV6KBSyz1ImG2B/Og/2pfNgXzoX9icREZH8mNQih1aRSa2cnBxkZWVV2PEcXWBgoL1DoArE/nQe7Evnwb50LuxPIiIi+TGpRUREREROZ/369WZfVj3zzDOoW7cu9Ho9vv/+e7O2Q4YMgb+/v8wREhERUXkxqUVERERETufu3btIS0uT7puujpyYmGjWVqfTyRYXERERVRwmtYjIory8PIiiCEEQ4O7ubu9wqJzYn86Dfek82JfOhf1JREQkPya1iMii2NhYaDQaqFQqtGrVyt7hUDmxP50H+9J5sC+dC/uTiIhIfkxqEREREZHTeeqpp6BWq6X71apVAwAIgoABAwaYtfXy8pI1NiIiIqoYTGoR/cvd3R0vvvhioW1ERETkeJo3b25xuyAIaN26tbzBEBERkU0wqUX0L6VSiXr16tk7DCIiIiIiIiKygsLeARAREREREREREZUWk1rk0DZv3ozNmzdDr9db1T43NxeLFi3C/PnzbRwZEREREREREdmSTaYfJiYm2uKwkho1atj0+OQ4pk2bBoVCgV69esHDw6PE9jqdDosWLYKPjw/ee+89GSIkIiIiIiIiIluwSVKrR48eEATBFoeGIAg4f/68TY5NjkkURateb1qtFnv37pVuExEREREREZHjslmheFEUbXVoegjp9Xo8//zzuHDhgtl2YzKrTZs2Vh9LEAQ0adKk0HZRFJGbm2u2zdPT02YJWiIiIrKdTZs2ISsrS7rfs2dP1K5dG3q9Hj/++KNZ20GDBsHPz0/uEImIiKicbJLUCgsLK/bx2NhYZGZmQhRFKBQKNG/eHI0bN0ZAQABUKhWys7Nx5coVnDlzBvfv34cgCKhbty66dOlii3DJASgUCsydOxdDhw61un5WUTw9PfH2228X2p6bm4vPP//cbNs777wDLy+vcp2PiIiI5JeQkIC0tDTpvukXVzdu3DBryxHcREREjskmSa01a9YU+djGjRsxZ84ciKKIwYMHY9KkSQgJCbHYNjs7G8uXL8fy5ctx48YNBAQE4NVXX7VFyOQAHnnkESxbtgzJycnStunTp0MQBMyZMweurq5F7isIApRKJfz9/fHII48gICBAjpAdWrNmzaye2kmVH/vTebAvnQf70rmwP4mIiORns+mHlsTFxWHevHkQRRGvv/463njjjWLbe3t7Y/LkyQgODsa8efPwzTffoH379iWOBCPn1blzZ7P706dPBwD079/fqkLxZD2VSmXvEKgCsT+dB/vSebAvnQv7k4iISH6yJrVWrVoFjUaDBg0aYOLEiVbvN3LkSGzatAnnz5/H6tWrmdQiibEmhru7u50jISIiosqka9euyM/Pl+4HBwcDMIze7t27t1lblhogIiJyTLImtY4cOQJBENCtW7dSD83u3Lkzzp8/j7Nnz9ooOnJEjz32mL1DICIiokro0UcftbhdEARePxARETkJWZNa9+7dAwD4+vqWel9jvaT09PSKDImcyPnz5xEfH4/79+9btfrmwIEDbR+UA7t37x70ej0UCgWqVq1q73ConNifzoN96TzYl86F/UlERCQ/WZNa3t7eSE9PR2xsbKn3NY7QYoFvKujYsWN4//33cfPmTav3EQSBSa0S3L59GxqNBiqVihfnToD96TzYl86Dfelc2J9ERETyU8h5shYtWkAURezfvx/Xr1+3er8TJ04gOjoagiCgbdu2tguQHM7Vq1fx0ksv4ebNmxBFsVT/iIiIiIiIiMhxyTpSa+DAgTh48CDUajXGjx+PpUuXomHDhsXuc+TIEbz11lvSEsnDhg2TKVpyBMuXL4darYaLiwvGjBmDbt26oUqVKtJ0VSIiIiIiIiJyTrImtfr27Yv169fj5MmTSEhIwKBBg9CjRw906dIFoaGh8PHxAQBkZGTg0qVL2LdvH44cOQK9Xi9NF3viiSfkDJkqOePiA6+99hpee+01e4dDRERERERERDKRNaklCAIWL16MESNG4PLly9BoNNizZw/27NlT5D7GaWKdO3fGhx9+KFeo5CBSUlIAsOg7ERERmfv999+Rk5Mj3e/SpQtq1aoFvV6P9evXm7UNDw8v00JGREREZF+yJrUAw8qHkZGRWLJkCVatWgW1Wl1sex8fH7z11lsYMWIEBEGQKUpyFP7+/khOToa7u7u9QyEiIqJK5MaNG0hLS5Put2vXTrodFxdn1laj0cgWFxEREVUc2ZNaAODh4YEpU6Zg3LhxiI6OxqFDh5CYmIiUlBQIgoCgoCDUrFkT3bp1Q+fOneHm5maPMMkBtGvXDrt378apU6fw1FNP2TscIiIiIiIiIpKJXZJaRn5+fggPD0d4eLg9wyAH9p///Ad79+7F119/jY4dO8LT09PeIRERERERERGRDOya1CIqr1atWuH999/H3LlzMXDgQIwcORKPPvooAgMD4eJS/Mu7Ro0aMkVJREREcuvUqRPy8vKk+1WrVgVgqPFacHQ3vxQjIiJyTJUiqaXX65GamoqMjAwEBgYiICBA2q5QKOwcHVVmPXv2BAAolUrcunULn3zyiVX7CYKA8+fPm21zc3PD888/X2jbw8rd3R1KpRIqlcreoVAFYH86D/al82Bf2pZpDS1TgiCgU6dOFX4+9icREZH87JbU0mq1+P3337FlyxbExMRI36RNnToVY8eOBQAMGzYMtWvXxoQJE9C4cWN7hUqVWEJCQoUdy8XFBS1atKiw4zk6/s45F/an82BfOg/2pXNhfxIREcnPLkmtS5cu4c0338TNmzcBAKIoAkCh1Q0vX76Mf/75B3v27ME777yDMWPGyB0qVXIff/yxvUMgIiIiIiIiIjuQPakVGxuLkSNHIicnR0pmubq6Qq1Wm7VLS0vD/fv3IQgCtFotFixYAJVKhZEjR8odMlVigwYNsncIRERERERERGQHshas0mq1eOONN5CdnQ1RFNGtWzds2LABJ0+eLNQ2ICAAkZGRePzxxwEYRnN9/vnnuHPnjpwhExERERERERFRJSRrUuv333/HjRs3IAgCXnjhBSxduhSPPvooXF1dLbZv2bIlVq1ahYiICABAXl4eNm7cKGfI5IR0Oh0OHDhg7zAqvWvXriEuLg7Xrl2zdyhUAdifzoN96TzYl86F/UlERCQ/Wacf7t27FwAQHByMd955x+r9pk2bhn379iElJQWHDh3Cm2++aasQyQGJoogtW7YgOjoaaWlp0Gq10tRW0zYajQY5OTmIj49Hfn5+odUPyVxWVhY0Gg1XcXIS7E/nwb50HuxL29qxYwdycnKk+506dUKNGjWg1+uxadMms7bPPvssfHx8ynU+9icREZH8ZE1qnT9/HoIgoFu3bkWOzrLE3d0dPXr0wMaNG3H9+nXbBUgOR6vV4qWXXsLRo0cLPWZpAYKiFiUAgJycHHz++edm29555x14eXlVZMhEREQkg8uXLyMtLU2636pVK+l2wS+2evToIVtcREREVHFkTWoZLyxq1qxZ6n1r1KgBAGbfuBH99ttvOHLkCABD8rN+/frIzc3FjRs3ULt2bVStWhVpaWm4fv06RFGEIAgIDw+XprQSERERERERkWOStaaWccRLdnZ2qfdNTU0FgHIPDSfnsmvXLgBAo0aNsG/fPvz222/46KOPAAAtWrTATz/9hJ07d+KPP/5Ap06dIIoizp8/j5YtW9ozbCIiIiIiIiIqJ1lHatWqVQvp6ek4ceJEqfYTRREHDhyAIAioVauWjaIjR3Tx4kUIgoCJEyciKCgIgGF6gYuLi9mUxGrVqmHJkiV47rnncPnyZWzatAnDhw+3V9hERERkY4899hjy8vKk+1WqVAFgKEHQtWtXs7YeHh6yxkZEREQVQ9ak1pNPPol//vkHZ86cwZEjR/DEE09Ytd/q1aulVRM7duxo4ygNRFHEtm3bsGnTJly4cAG5ubmoWrUqwsLCMHLkSLO6DBXl7NmziIiIQPXq1REVFWXVPgkJCfjhhx8QHR2NxMREeHh4oG7duujbty8iIiLg7u5e4XFWJpmZmQCA5s2bS9tcXV1Rr149XLlyBQkJCdJ0V1dXV4wfPx7//e9/sXPnTia1iIiInFiHDh0sbjfWdyUiIiLHJ+v0w4iICLi5uQEApkyZgpMnTxbbXqfT4bvvvsNnn30GAHBxccGQIUNsHmdeXh4mTJiAd955B0eOHEF6ejrUajUSEhKwefNmRERE4LvvvqvQc+bk5GDmzJnQ6/VW73PgwAH069cPa9aswfXr16FWq5GRkYGYmBh8/PHHGDJkCOLj4ys0zsrGuOCAt7e32fa6desCMBSJNdWuXTsAwJUrV2SIjoiIiIiIiIhsRdaRWtWqVcOkSZPw6aefIj09HaNHj0abNm3MRtnExMRg9erVuHz5Mv78808kJydLBb7HjRsny/TDGTNm4M8//wQAhIaGYujQoQgKCsK5c+ewfv165Obm4osvvkBISAgGDBhQ7vOp1Wq89tpriI2NtXqfS5cu4Y033kB+fj6USiWef/55tG/fHjk5Ofj9999x+vRpxMbG4rXXXsOGDRucdlh9UFAQbt68iaSkJAQEBEjb69SpA8CQ1DKdYuDp6QkAyMjIkDdQIiIiIiIiIqpQso7UAoD//Oc/GDduHERRhCiKOH36NNatWwdBEAAYCn9/8skn+OWXX6SEFgD0798fb731ls3jO3ToELZt2wbAMGz9t99+w5gxYxAeHo7//ve/+OWXX+Dv7w8AmD9/fpmK3ptKSUnBf/7zH7P6T9aYM2eOlNBasmQJ5s6di/79+2P48OH4+eefMWrUKACG5NePP/5Yrhgrs9atWwMANm3aZLa9fv36EEWx0GhAY+JQpVLJEh8RERERERER2YbsSS0AePfdd/Htt9+iUaNGUnKrqH/VqlXD3LlzsWDBAlliW7lyJQDDVMcPP/xQmi5pFBoailmzZgEA0tPTERkZWeZzHTlyBIMHDy514fzTp0/j1KlTAICBAwcWKnYqCAJmzJiB0NBQAIbnpNFoyhxnZRYeHg5RFLF27Vq8//77uHr1KgCgffv2AIC//voL+/btA2BIIBqnstavX98+ATuQoKAgBAcHSwX4ybGxP50H+9J5sC+dC/uTiIhIfrJOPzTVs2dP9OzZE6dPn8aJEydw+fJlZGRkQKvVws/PD7Vr10b79u3xxBNPwMVFnjDT09Nx+PBhAEDnzp1Ru3Zti+369OmD+fPnIyUlBbt27cLYsWNLdZ7U1FTMmjVLSrYAwHPPPYeDBw8iKSmpxP137Ngh3R4xYoTFNgqFAiNGjMC8efOQnp6Oo0ePonPnzqWK0xF07twZ3bp1w59//onIyEhkZ2dj4cKFaNCgAR5//HEcO3YMb7zxBgICApCRkQG9Xg9BENC3b197h17p1ahRw94hUAVifzoP9qXzYF86F/YnERGR/OyW1DJq06YN2rRpY+8wAAAnT56UCrUXtWIOYEgYhYWFYdeuXTh79iwyMjLg5+dn9Xni4uKkhJaXlxemT5+OIUOGoEePHlbtbxzZ5efnZ1aPrCDT5xAdHe2USS0A+Oqrr/Dpp59i48aNZjXXPv74Y4waNQqJiYlITU2VtoeFheHFF1+0R6hEREQkkz179iA3N1e6//jjj6N69erQ6/XYsmWLWdunnnqq0KIzREREVPnJmtTavHkzAKBTp06oWrVqqfZduXIlPvvsMwiCgPPnz9sgOkOyyahx48bFtm3YsCEAQBRFxMbGIiwsrFTnUigUGDBgACZPnoyQkBCr99PpdNLKfaGhoVAoip5BWr9+fSiVSuh0Oly8eLFU8TkSd3d3vP/++5gyZQqysrKk7TVq1MDvv/+On376CadPn4ZSqcSTTz6J559/XrbRf0RERGQfFy9eRFpamnS/WbNmqF69OgDg7NmzZm07d+7MpBYREZEDkvWT/bRp0yAIAqpWrYpFixahVatWpdrfWDTeVhISEqTbNWvWLLZttWrVzPYrTVKrXr162L17t7RCX2kkJydDrVZbFaNSqUTVqlVx584dJCYmlvpcjsbb27vQBamPjw9eeeWVQm3VajVcXV3lCo2IiIiIiIiIKphdhqvcvXsXo0aNwgcffIBBgwbZIwSLTKeoBQQEFNvWuAIiYKjFVRqlGZlVUGliBAxTFO/cuVPqGB3FCy+8AEEQsHz5cquSVOnp6Rg8eDCUSiX27t0rQ4SOKyYmBhqNBiqVqtQJaKp82J/Og33pPNiXzoX9SUREJD+7zcFSq9V47733cP78eUyfPr3YaXRyycvLk24XXPWwINMEiul+tnb//n3pdkkxmraRM0Y5HT9+HIIgQKfTWdVer9cjMTHRqp8dEREROa62bdua1dQKDAyUbj/xxBNmbd3d3WWLi4iIiCqOXZJaLVq0wIULF6DX67F27VrExcXhq6++Mhv9ZA9arVa6XdKoH9PHTfezNdPkjTUjk4xt5IzRksuXLxebuPT09JTqlJnuY7wY1ev1OHTokFTIv6CtW7dKz1Wv15tNJTXSarVSkX1XV1fExMQgNDQUXl5e0rZu3bqZ1d+IjY2FUqksdCyFQoFHHnnEbFt8fLzZSLqi+Pn5oW7dumbbLly4AI1GU+K+tWrVMrsoz8vLQ2xsbIn7AYZaIiqVSrp/79493L59u8j2xngsvXauXbtmVr+sKEFBQYVWg4qJibEq3vr168PHx0e6n5WVhWvXrlm1b8FvyBMTE5GcnFzifj4+Pqhfv77ZttjYWKuSwtWrVzerFajRaHDhwgWr4m3cuLHZB6rU1FTEx8eXuJ9KpUKzZs3Mtt24cQMZGRmF2hr7U6PRICYmBoGBgWYLKwDAP//8U+TvmKk6deqYvV/n5ORItf5K0qJFC7PfqaSkJKtWfS3pPaI4ISEhZiNkdTodzp07Z1W8pu8RgGG0582bN0vcz5bvEQX70pSc7xFG7u7uhepQ8j2iMEvvEcX1pSk53iMKcob3iGrVqknvET/++CNGjx5tcV+lUol33nkHU6ZMAVC+9wig5P4EKs91RH5+fon7EBERVWZ2SWqFh4dj0qRJmDJlCnJycnDs2DEMGTIE3377bYkF2m3J9IJRo9EUmzQy1rUCrEsuVRTTEUbWXLwY4zT9oGIPOp2u2NFUlhInWq3W7DlevHixyCmDs2fPNrtfUv211q1bQ6PRmLUzThe4evWqtE2v11u8gLeUoCsYb1EsPVfTDzfFKRiLKIpW7WdsW/BY1uxr6Wdp7XO11OfWxlvwuVobb1FxOGPfWGJN32g0miKfqzUfWAvGW5rnWlB5+kaO12FZn6tc7xEFt9njdWgp8c/3iMIs9U3B4xRF7vcIY7uCHPk9IjMzE3fv3i1y/8zMTLP7Zf29sXb/ynIdQURE5OjsNv2wS5cu2LBhAyZMmIBbt27h1q1bGDZsGD755BP06tXLLjF5enpKt/Pz861Oask5lc3020Brvl0ztrH3sHqlUlnsSC1LqxG6uLiYJeNGjRqFEydOWKwPZs0iAgqFAj4+PmjRogX+85//QKVSQRAEszaCIFiVALT0XArGWxRLz9XapGPB81obr7FtwWMVt6/x4rjgfoD1z9XSh92yPteS4i0pjvL0jTXTW+XsG9PYCiqqb0w/7KhUqiKfqzUfeMr6e2NJefpGjtdhZXyPKNiXxZ23sr0OC3rY3yMKHqco9ugbZ3uP8PX1RXBwMADDojt6vR4KhQJBQUFQKpXw9fU127esvzfW7l9ZriOIiIgcnSDaeklBE02bNoUgCJg6dSrGjh0LAMjIyMAbb7yB48ePGwISBEyYMAGTJk0y23flypX49NNPIQiC1VN6Suv999/Hhg0bAAD79u1D7dq1i2wbGRmJmTNnAgA+//xz9OvXr9zn79GjBxISElCzZk1ERUVZbHP37l107twZADBw4EAsWLCg2GN27doVd+7ckVZclEt2djYuXbok3W/SpIlNlso2vqZOnToFDw+PCj/+w4wFb50L+9N5sC+dB/vSPo4cOYL8/Hy4ubkVqq1VHo7Yn3JdrxEREdmK3b+u8fPzww8//ICIiAgAhhE3S5cuxWuvvYacnBypnRzfLNWrV0+6XVIdkTt37ki3C9YDsaXg4GBptFZiYmKxbXU6He7duwdA3hjlVKNGDdSoUYPfPBIREZFVnnjiCXTr1q1CE1pERERkH5UiE6BUKjFnzhzMmjVLGlL9xx9/YNiwYVJBXjlqQoWGhkq34+Liim1rfFwQBDRq1MimcRVkjLOkoqtXr16VpkTYs1aZLUVFRWH//v1czZCIiMiZLVwI1KpV9L+FC+0dIREREdmB3WpqWTJy5EjUr18fkydPRmZmJi5fvowhQ4bgm2++kWVqWZs2baBSqaDRaHDs2DGMHDnSYjudTietote0adNCdRhsLSwsDDExMUhJSUFcXFyRSbWjR4+a7fMwys/Px969e5GUlIQ6deqge/fuFmtREBERUSWWmQlYWNnY7PEC/vjjD7MVUtu3b4+QkBDo9Xrs3LnTrG3Xrl057Y6IiMgBVbpP9x07dpQKyF+/fh0ZGRkYN24cunfvbvNz+/r6okOHDoiOjkZUVBQSExMtTtvbvn27tORy7969bR5XQb169cL3338PAFizZg3mzp1bqI1Op8NPP/0EwLAE+ZNPPilrjHLKz8/H6tWrsX37dixduhTVq1cHYFi2fOzYsWZTSatXr46lS5daHLmWm5uLb7/91mzb66+/braAABEREdmBry9Qs2bxjxfw999/Iy0tTbrfsGFDhISE4NKlSzh58qRZ2w4dOjCpRURE5IAqXVILMNS2+uWXXzBp0iQcOnQIWq0We/fuleXcY8aMQXR0NDQaDaZMmYIVK1aYXeRcvnwZH330EQDDSoRDhgyRJS5Tjz76KNq0aYPTp08jMjISTzzxhFlyTRRFfPjhh7h69SoAYMSIEXZf/dBW9Ho9XnrpJWnk3K1bt6Sk1owZMwrVHUtMTMS4ceOwc+fOQhevoiiafaNr3Pawql+/vrQ6FDk+9qfzYF86D/ZlKUyZYvhXAZ555hmMHz++Qo5liv1JREQkv0r7V9fb2xvLly/H6NGjZU0sPPnkk+jVqxcA4PTp0xgwYABWrFiB7du347PPPsPQoUORnp4OAJg6dSoCAwPN9j927BiaNGmCJk2aYPTo0TaLc9asWdLS2pMnT8a7776L33//HRs2bMCIESOkUVr16tXDK6+8YrM47G3Lli04fvw4RFHEY489hipVqgAAYmNjcfLkSQiCgEGDBuH48eNYtWoVgoKCkJycjLVr19o58srPx8cHfn5+8PHxsXcoVAHYn86Dfek82JfOhf1JREQkP1lHahnrOlWrVs2q9gqFAjNmzEDjxo3xwQcfQKvV2jI8yYIFC5CTk4ODBw8iPj4en332mdnjgiBg4sSJ0oqN9tCiRQt89dVXePfdd5Gbm4stW7Zgy5YtZm3q1q2LFStWSKslOqOdO3dCEAT0798fCxYskLYbR/YplUr897//laaWTp48GTNmzEBUVBQmTJhgr7CJiIiorMaOBVJSgCpVgB9+KLJZy5YtzUZg+/v7AwAiIiKQlZUFNzc3dOzYEQC44AwREZGDkjWptWbNmjLtN2TIEDRv3hyxsbEVHJFlHh4eWLFiBbZu3YrNmzfjwoULyMrKgr+/P9q1a4cXXngB7dq1kyWW4jz11FPYvn07fvjhB/z111+4c+cOBEFA/fr10atXL4wePdqpE1oAcO7cOQDA2LFjzbZHR0cDMBT/N17EAsBjjz0GwFBvi4iIiBzQ3r2GovHF1dgCiqzHWvDLSiIiInJclbKmliUtWrRAixYtZDufcfRP//79S7Xf448/jkuXLpXpnFFRUaXep0aNGpgxYwZmzJhRpnM6uoyMDACQ6mgBQGZmJv7++28IgoBOnTqZtTcm+XJycuQL0kFlZWVJtUE4lcLxsT+dB/vSebAvnQv7k4iISH4Ok9QissTNzQ1arRaZmZnw8/MDABw6dAg6nQ6CIEjTCozi4+MBGFa6pOJdu3YNGo0GKpUKrVq1snc4VE7sT+fBvnQe7MsyOnsW0OuBSlaQnf1JREQkP5sktUxXnKtRo4bF7eVhekx6uDVq1AhnzpzBoUOHpBpn27dvBwBUqVKl0EXl+vXrAQCNGzeWN1AiIiKqGP8uCkNERERkk6RWjx49IAgCBEHA+fPnC20vj4LHpIfb008/jdOnT+PTTz9Feno6kpOTsW/fPgiCgD59+kjtrly5gh9//BG//vorBEFA79697Rg1ERER2cuzzz6Lu3fvIjg4GLt27bJ3OERERFQONpt+KIpiqbYTlcWIESPw22+/IS4uDl9//bW0PSAgwGx1wxEjRiAzMxMA8Oijj2LIkCGyx0pERET2988//yAhIQE1Syg0T0RERJWfTZJaYWFhpdpOVFbu7u5Yu3YtvvjiC+zduxdqtRphYWGYNm0aAgMDpXYNGjTA33//jX79+mHGjBlQVLI6HERERGSlbduA+/cBDw8gPLzIZgcPHkRubq50v02bNqhatSrc3Nzw7LPPwtvbG3v27AEAdOrUyelXjCYiInJGNklqrVmzplTbicrDz88Pc+fOxdy5c4ts895776F69eoICgqSMTIiIiKqcBMmAAkJQM2awL8LwFhy6tQppKWlSffr1q2LqlWrIi4uDvPmzQMAHDlyBADQrl07JrWIiIgcEFc/pIdCy5Yt7R0CEREREREREVUgJrWIiIiISH56veFfac2YAWRnA97egFZbdLuCdVx1OkN7S+fUaos/ljW02sLnJCIiIptiUoscniiK2LJlC3bt2oX4+Hjk5eVBX8JFsiAI2Ldvn0wREhEREUQRUKuB/HwgL6/sSaQBAx7cvnu3yGZN69RBbtWq0n1frdbQXq/Ho40ambV1y8oyJL3KwSU1FaJeD4SElOs4REREZD2bJLWaNWtmi8MCMCQjzp8/b7Pjk2PR6XR49dVXER0dDcD61TUFQSi0TaVSoWvXroW2ERERURlptQ+SWGq1IbGl0z1IbpVlpJaVnimQuAIApKZiRWQksnNz4e3piZeNqyHn5Rn+lYMyKwtaDw8IanW5jkNERETWs0lSy9rEAlF5RUZG4q+//gIAeHh44NFHH0WVKlXg6upa6mO5urqiW7duFRyh42rVqpW9Q6AKxP50HuxL5+GUfanXGxJWeXmGpJVO92CEljGRZRyh5eoKKJWyhzh32TIkJCWhZkgIXo6IqJiDarVoUr8+EBwMmKy+TERERLZlk6RWjRo1bHFYokI2b94MAGjevDlWrFiBQF5IEhERyUujeZDEMo5S0mofJLc0GkNiS6k0JLK8vAA3N0ChsE+8xtHaggD4+VXMMbOzgdzcijkWERERWc0mSa2oqChbHJaokLi4OAiCgGnTpjGhRUREJAe9/sGUQuMUQuMILWNiS6czJI1UKkNBdzc3wKWCLjufeAK4cweoVg04cqTUuy/95BPcz8uDh7t7xcRDREREdsNC8eTQjFNdmzRpYudIiIiInJQomo/G0mgM2zWaB0ks4wgtFxdDAsvV1fC/hRqW5WY8XxlrV4U//XQFB0RERET2wqQWObS6devi4sWLSE5Ohl9FTSEgAEBiYiJ0Oh2USiWnFDsB9qfzYF86j0rdlzrdgyRWfr4hsWUcoWVMZOn1hqSVqyvg62tIYslRI6tpUyAoyPCvErl79y40Gg2EvDzUaNDA3uEQERE9FBwuqZWXlwd3Dhenf/Xu3RsXLlzApk2bMHXqVHuH41SSk5Oh0WigUqkq34ctKjX2p/NgXzqPStWXovggYWUs5m4coWVMYhlHaKlUgIeHIYmlUtlmNFZx1q2zqtnRf/5BXn6+dP+R0FAE+ftDFEUcOHXKrO1jLVrAs5zXl+np6cjT6yEATGoRERHJxG5JLbVajatXryI7Oxtardbiiol6vR5arRb3799Heno6zp07h7179+Lo0aN2iJgqozFjxmDbtm1YvXo1atWqhYiICCjKWHj2/v37+OGHH8y2jR07Fh4eHhURKhERUeWi1ZoXeBdFwwgt09FYomgo6O7qCnh62rfAeykd/+cfpGVlSferBwUhyN8fySkphZJaLUNDy53UIiIiIvnJntS6f/8+vvjiC/z666+4f/++3KcnJ7Njxw4MHjwYX3/9NebNm4dvvvkGzZs3R2BgIFyKKUgrCALmz59vtk2v1+PevXuFthERETkF0+mD+fmGBJZxhJaxRpVWa2hrukqhSmXfuCtY22efxfhXXrF3GERERFQBZE9qvfnmmzh48KDFkVnWUMpRq4EcxrRp0yD8O+1BFEWkpaXh8OHDxe4jiqLFpBYREZHTMa5IaExcAYbElXGbRmNIbCmVhkSWt7fhfwcZjUVEREQPN1mTWgcOHEB0dLSUhPD19UWDBg2Qk5ODuLg4uLi4oE2bNsjLy0NqaioSEhKkfVUqFd5//3107dpVzpCpkrN7DRIiIqLKxHT6YH6+YXSWcYSWcTSWTmeog6VSAT4+hiRWMaObK51584CMDMDPD5g1q8hmDWvXRo7JrAAfT08AwFOdOyMtORmurq4Ie/RRAICrk41GIyIieljIegWzY8cO6faoUaPw3//+FyqVCvHx8Xjqqaeg0+kwb9481KtXDwAQHx+Pjz/+GPv374dWq8W5c+cwZMgQOUOmSi4qKsreIRAREdmPKJqPxjIWczcmsIz/AEPiyt3dkMRydZW/wHtF2bwZuHMHqFat2KRWn06dLG7/4csvbRQYERERyU3WseVnzpwBYBhd895770H177ditWrVQvXq1QEAhw4dktrXqlUL3377LXr16gVRFLFx40ZcvHhRzpCJiIiIKhetFsjJAVJTDcmdlBTDyKXMTCA9Hbh71/BYbq4hceXnB1StCgQFGUZmubk5bkKLiIiIyISsSa20tDQIgoAuXboUWqGuWbNmAB4kvkx98MEHcHV1hSiK2LRpkxyhkgPLyMjAxYsXcerUKVy8eBGZmZn2DomIiKjsRNGwSmFGBpCUZEhapac/SGSlpAD37hnu63SGVQoDA4HgYCAgAPDwMNTMchYbNgBRUYb/iYiI6KEm6/TD3NxcAJBGZZlq2LAhoqKicOnSpUKP+fv7o2vXrti7dy9iYmJsHic5Hr1ejw0bNuDnn39GXFxcocfr16+PoUOH4oUXXiiUUCUiIqp0NBrzAu+iaBihZZxqaNymUBhGXnl6Gv5/GP7GNWxo7wiIiIiokpA1qeXt7Y2MjAzo9fpCj9WpUwcAcOPGDWl1OlMNGjQAANy8edP2gZJDycjIwOuvv47/+7//K3JVzatXr2LBggXYs2cPvv32WwQEBMgcpePx8fGBVquFiyMVD6YisT+dB/vSeZj1pbGYe36+YVSWXm9IWhkTWPn55gXejasUssB5qY2cOBHJqakICgzEukWLKuy4Xl5ecPH2hsLHp8KOSURERMWT9Yq4atWqyMjIMFvV0MiY1FKr1bhx44ZULN7IWH8rOzvb5nGSY3nzzTdx8uRJAEDz5s3x7LPPIjQ0FJ6ensjJycHly5exe/duXLhwAadPn8bUqVOxfPlyO0dd+dWvX9/eIVAFYn86D/al86hfs+aDJNadO4aNGs2DJJZGY0hsKZWGUViurqyHVQEOHDmChDt3ULNatQo9bs2aNQ1TPgMDK/S4REREVDRZk1qtW7dGXFwc/vzzT6jVari6ukqP1a1bV7p96tSpQkmt69evAwC/mSYz27dvx7FjxyAIAv773/9izJgxhdo89dRTmDBhAlavXo1PPvkEBw8exP79+9GzZ0/5AyYiooeXTvcgiaVWG0ZjGUdoGRNZer0haeXqaijq7upqWLXwISOKIvLy8iyOwFacPm34ebm6Qt+mTZHHOBsXh3zjapAAGtWujQAfH4iiiI4dO8LXxwd//vulWMvQUHi4uZU94NxcCPfvQ8zNhejmZujrAtzc3HgdS0REVMFk/cvarVs3REZGIjk5GW+++Sbmz5+PwH+/zQoJCUHVqlWRnJyMtWvXol+/ftLorFu3bmHPnj0QBAE1atSQM2Sq5LZs2QJBEDBs2DCLCS1TL774Iq5fv46ff/4ZmzZtYlKLiIhsSxQfJKvy8gw1sQDDNtPRWIBhGqGHhyGJ5er60I/Gys3NRVZWlsWkVvDEiVDevQtdcDDu7thR5DGO/PMPsv6t5woA7i4uUOj1iFq/HusPHAAAHDh9GgAQ4ucHf2/vMscr5ORAyMuD3tUVekEA3N0LtVEoFAgJCWFtTyIiogoka1KrZ8+eaNSoES5fvowDBw6gR48emDhxIsaPHw8ACA8Pxw8//IALFy4gIiICgwYNQlpaGn7++Weo1WoIgoAnnnhCzpCpkjt37hwAICIiwqr2ERER+Pnnn3Hx4kVbhkVERA8rrdZ8NJYoGkbtqNWGbRqNYTSWQmFIXnl6Gv53ptUJK0B+fj7y8vKQlZVV6LEgvR5KGBaJSU5OLvIY+gKjpTIzM5GsVEJvIVGWlpYGbV5emeNV5OZCyMuDThShVasNo7VMuLi4ICgoCFqt1mymAhEREZWP7GOgv/rqK4wYMQIZGRnIz883u1h56aWX8OuvvyIzMxPnz5/H+fPnAUD6ls7d3R0vvvii3CFTJZaeng4AVo/gM668WdxFMBnExsZCo9FApVKhcePG9g6Hyon96TzYl5WMXv8gYWUs5m4coWUcjWUcoWWaxHJ1xZUrV6RC8aGhofZ9HpWMTqeTFhbyKVB4Pfu55yDk5ED08ir0mCmhwIgoDw8PqTh/QV5eXvDx8ipzvIJCgdtJSbiv10PU6VC3SRPpsby8POgsTEckIiKi8pM9qRUaGootW7Zg4cKF2L17N2rVqiU9FhgYiMWLF+PNN99ESkqK2X5ubm747LPPULt2bblDpkrM19cXaWlpSExMhK+vb4ntExMTARS+QKbC8vLyoNFoeCHuJNifzoN9WQloNA+SWGq1YZtWaz4ay1jg3dUV8PIyFHgvkGTJz8+HVqtlXxYgiiJ0Oh10Oh1UKhXcC0zly3/5Zel24Ul+D9QMCsL9/Hzpvq+3N9zd3XHy5EnciI1Fq5Yt4efnBwDw9vQsdJ7SEAr0oYeHh3SbfUxERGQ7dqlWGRISggULFuCDDz6AxqSAJwC0a9cO27dvR2RkJM6ePQu1Wo2mTZti6NChZgkwIgBo0aIFDh48iF9++QUzZ84ssf3GjRsBAM2aNSv0mIuLC9q3b19oGxERPeSMxdyNiSxjgXfjSCy12jBCSxAMtbG8vQ1JLP4NKRPjSCqdTgdlOaZldmvd2uL2ZT/+iOhDh5DcqRO++9//ynx8IiIisj+7Xm25u7tb/FbM398fL730kh0iIkfTr18/REdH46effkJoaCiGDx9eZNuffvoJP//8MwRBQL9+/Qo97ubmhr59+9oy7m2bkgAAgMhJREFUXCIicgSiaD4ay/gFnEbzIIllHKHl4mJIYLm6Gv5/yAu8VwRjUstW9ad2HzkCDYBdR45U+LGJiIhIXvwKkRxaeHg4fv75Z5w+fRpz587Fpk2b0KtXL4SGhsLT0xO5ubm4cuUKdu/ejXPnzkEURbRu3Rr9+/e3d+hERFSZ6HQPklj5+YbElnGEljGRpdcbklauroCvryGJxQLvFc5YT0sUxXKN1LLk7Nmz0P1bq0un1yMmJgatWrWq0HMQERGRfGRNahnrGZWXtUXByfkpFAp8++23eOmll3Du3DnpX0HGxQYeeeQRLF68GAK/SScieriJ4oOElbGYu3GEljGJZRyhpVIBHh6GJJZKxdFYNrJw2TJkZmdDpVTiheeeAwCLSa0qo0ZBkZICfZUqSFm7tlTn2LFjB3wAiACEf+/bIqm1bNkyZGdnw9vbGyNGjKjw4xMREZGBrEmtHj16lDuZIAiCtCoiEWBYYGD9+vXYsGEDIiMjERsbKyWxAMNrplGjRhg2bBiGDRsGlUplx2iJiMhutFrzAu+iaBihZToaSxQNBd2NKxVaKPBOtrHwu++QcOcOqgcHY+TAgQAsJ7UUKSlQ3r1r8RhqtRrLli3D9evXCz2WnZ2NEydPwtNkW2RkJK5duwZvb+9C7evVq4dXXnmlTFMgv/vuO9y5cwfVqlVjUouIiMiGZJ9+aJpsIKooKpUKo0aNwqhRo5CRkYGkpCRkZ2fD09MT1atXl1Y3IiKih4jp9MH8fEMCyzhCy1gX69/6TWarFPLLD7vTarVQKBQWvwzVV6li9r+RKIpwdXXF+PHjsWDBAmzZurXE84gATpw8WWj7gP79MX78eLi6ukIURY7wJiIiqqRkTWqFhYVZ1S4/Px/37t3D7du3ARhG2jz11FOFVqYjMnX79m2kpKTgkUceMUti/f333zh69Ch69+7NFTSJiJydcUVCY+IKMCSujNs0GkNiS6k0JLK8vQ3/czRWpZGUnIwnn3sOn06fjme6dZO230xIwMDx4wEAvbt3x0dTp5rtN2bKFPx98SIA4NTOnXjkscewc9cuqNVqqAH8ExeH9PR0+AqC2TWlHsCRv/9Gfl4evJRK/G/uXDz77LPS45M/+AB/HTsGANj3888I9PeXHtv711/478cfA6KIF55+Gr369KnYHwYREREVS9ak1po1a0rVPjk5GcuWLcO6detw4MABDBo0CD169LBRdOSocnJyMHfuXGzbtg1dunTBkiVLzB7/v//7PyxcuBBfffUVRowYgWnTplmczpCXl4f169ebbYuIiLC4QicREVUSptMH8/MNo7OMI7SMo7F0OkMdLJUK8PExJLFcuFZOZaXX65GUnCwVdDfS6fW4/e+0w/TMzEL7paSlSY8DgMbNDY89/bR0/85PPyE1PR0QBDxZYLXjs1ev4n5eHlq0amWW0AKAtIwM6bj6AjMO8vLzpcfu5+eX8pkSERFReVXqK7qgoCDMmDEDwcHB+OKLLzB9+nRs3boVwcHB9g6NKgmdToeXXnoJp0+fhiiKFmtoaLVaKJVKaLVarF27Fvfu3cNXX31l8Vg3btwotO1hVb16dej1eig4esEpsD+dx0Pfl6JoPhrLWMzdmMAy/gMMiSt3d0MSy9W10hV4DwkJebj7sggKhQJBgYFwd3Mz265UKFD932tAf1/fQvtVCQiQHgcMUwvNjvvvv8LpMMBVpUK14GBUDwkpNN0wwM9POq6iwGvI3c3N8JgoIqhKFQQHB0MMCLD6uRIREVH5VOqkltH48eOxYcMGJCQkYN26dZg8ebK9Q6JKYuPGjTh16hQEQcDo0aMx/t9pCabGjx+PiIgIfPPNN/jxxx+xe/du7N69G7169bJDxI6jatWq9g6BKhD703k8lH1pOn0wP/9BgXdjckutNozOUigMo7H8/AxJLAujciuTKgVqQpFBcFAQ9vz4Y6F6mHVq1sSpnTuL3G/1l1+a3S+YwvQHEALAUon5seHheOPVVy0e96s5c4o859NduuDpLl0g5ORAuH8f+ipVoDeZnkhERES25RBfDQqCgG7dukEURURFRdk7HKpEtm7dKiW0ZsyYgZCQEIvtvL29MX36dAwZMgSiKGLDhg0yR0pERFYTRcMqhRkZQFIScPcukJ5uuJ+ZCaSkAPfuGe7rdIZVCgMDgeBgICAA8PCo9AktKsa/U/wslQoAAK+VK+H9zTfwWrmy2MMEBwSgepUqqF6lCtLu3EHe/fsAAJUo4sb167hx/ToS//134vjxin0OREREJAuHGKkFPPg2MzEx0c6RUGUSGxsLwFD7yhojRozAxo0bce7cOVuGRUREpaXRmBd4F0XDCC3T0ViiaBiN5eZmSGS5ubHAuxOZ8vLLuHP3LlQuLoAgFJnU8oyMhPLuXeiCg5Hzn/8UebyebdsCAG7evIk5b7whbQ9WKpH4f/+HCxcuQGNc/RLArVu3ULt27Qp5Li+//DKys7Ph7e1dIccjIiIiyxwmqXXz5k0A4JLKZEbzby2VwMBAq9pXq1YNAJCbm2uzmJyFRqOR6oqouLy9w2N/Og+n6UtjMff8fMOoLL3ekLQyJrDy880LvBtXKXTk51yA0/RlBZnyyitISkpCVlaW9Pe9Iuzfv1+6Xa9uXXzyySdo3LgxYmNjMW3aNFz/t57m/v37MWbMmDKfR6PVQq/RQK/R4JVXXpG2Z2VllfmYREREVDyHSGrFx8dj586dEAQBderUsXc4VIlUq1YNN2/eRFxcHMLCwkpsbywkb20S7GF24cIFaDQaqFQqtGrVyt7hUDmxP52HQ/elMVmVl/egwLtG82C7RmNIbCmVhlFYrq6G/530C624uDhotVq4uLigefPm9g7H7rRaLURRhFarLbZ4fvqCBRDUaoiurlYd15jUGjhgAKZOnSqtaty4cWOsW7cOn332GTb//nu5k1q3bt7E/bQ0iAEBaNq6dZmPQ0RERNartEkttVqNtLQ0HDp0CF9//TXy8vIgCAJ69Ohh79CoEmnXrh1u3LiBxYsXY+XKlSWO5Pvuu+8gCALatWsnU4RERA8xne5BEstYzN04QsuYyNLrDUkrV1fAx8fwv0ulvTwhGzKuOKzT6eBWYOVDU5pSJHNv376NW7du4ZOPP8YzzzxT6HEPDw+8//776NChAz766CPcuXNHGtVNRERElZ+sV43NmjUr1/6+vr4YPXp0BUVDziAiIgK//vorjh49iokTJ+K9995DzZo1C7W7e/cuPv30U0RFRUEQBIwYMcIO0RIROTlRNB+NZaxXpFabj8YCDNMIPTwMSSxXV6cdjUXW0+l0EEURer0eLhWU2ExKSsL69etRvXp1aduMTz9FemYm/H198dHUqQCAZ555Bo888giSkpKY1CIiInIgsia1xH9XsykLHx8fLFq0qNDyzvRwa9WqFV566SUsX74cUVFR+OOPP9CwYUPUq1cPHh4euH//Pm7duoXY2Fjo9XoAwMiRI9G+fXs7R05E5CS0WvPRWKJoGKGlVj+YZqjXGwq6u7oaCry7unJ1QipEo9FIo7WKKhJfWq0tTAPc+ccfuH33LqoHB0tJLVEUUaNGDdSoUaNCzktERETykDWpVZoLBaVSCXd3d1SvXh0dOnTA4MGD4e/vb7vgyGFNmTIF3t7eWLx4MfLz8xEbG4u4uDjpcWMy1cXFBa+88gomTpxor1CJiByfXv8gYWUs5m4coWUcjWUcoWWaxLKy/hE5P2PdLK1WC41GI/1v3A4Un9RSXr8OQaeDqFRCV69eke2uJiZC82+SDABqBgXB28MDgCHZ5efjg0u3bgEA6lWrBjcW6yciInI4sia1oqKi5DwdPSQEQcArr7yCQYMGYe/evTh69CiSkpKQkZEBDw8PVKtWDW3btsWAAQMQEhJi73CJiByPRvMgiaVWG7ZpteajsYwF3l1dAS8vQ4H3Yop908NBFEWzxJXxf+NjOp1OSnBptVpotFoolcpiC8UHvvoqlHfvQhccjHs7dxbZ7tiFC8g0We24V1gYvD088Ovy5dh9+jQA4M8zZwAAw7p3Z1KLiIjIAbESKzmN4OBgjBw5EiNHjrR3KEREjs1YzN2YyDIWeDeOxFKrDSO0BMFQG8vb25DEYoH3h5pery+UwDKOvDIdnSX9M47yg2FklouLC7w8PaXVCW2lTo0awL9JLSIiInJsvPokIiJ62Imi+WgsYzF3jeZBEss4QsvFxZDAcnU1/M8C7w8lnU5XKIFlrIdVMIFlWisLMJQDcHFxgbu7u3S7pNWLTeX16gUhMxOir2+FPy8iIiJyLExqERERPYx0ugdJrPx8Q2LLOELLmMjS6w1JK1dXwNfXkMRigfeHTsGpg1qtVlp8Ra/XFxqBJSWwBAEqFxe4urpKySulUlmqBJYlWW+9ZVW7QB8fsymFria3qxZYeEjJqbJEREQOSdakVmJios3PUVGr1oiiiG3btmHTpk24cOECcnNzUbVqVYSFhWHkyJFo1apVuc8RGxuLH374AceOHcPdu3fh4+OD0NBQDBw4EIMGDSpx5Z8ePXogISHBqnMdPHgQVatWLXfMzkypVKJ58+aFthEROQVRfJCwMhZzN47QMiaxjCO0VCrAw8OQxFKpOBrrIVIwgWUs4A6gUP0r0+RWwQSWSqWy+9/QXo89ZnH70VOnEODiAjdXV3TkashEREQOTRCNVyoyaNq0abm/nSuOIAg4f/58uY+Tl5eHSZMm4c8//7T4uFKpxFtvvYWXX365zOeIjIzEBx98IBVLLah9+/b49ttvi1zxMTs7G+3bt4e13Sd3Uis7OxuXLl2S7jdp0gTe3t6ynZ/KLy8vD6IoQhAEm9c3IdtjfzqPUvWlVmte4F0UDSO0TEdjiaKhoLtxOiELvMvGnr+Xxa1ACJhPLzT+Mz4mCII08kquBJZnMbW28vLykGtSEL4kbXv3xu27d1E9OBiniik0XxpCTg40GRnQBgZCDAiAm8lIsKysLOTn5yMoKAhBQUFwrUQrgfJ6jYiIHJ3s0w9lzKGV2YwZM6SEVmhoKIYOHYqgoCCcO3cO69evR25uLr744guEhIRgwIABpT5+dHQ0Zs2aBVEU4eHhgYiICDzyyCNISUnBL7/8gtjYWJw8eRJTpkzBihUrLK4AdOnSJelnOWHCBLRs2bLYc/oVGGZPVBImPpwL+9N5FNuXptMH8/MNCSzjCC1jXax/C3ebrVLIVd/sQq7fy+JWIARQaPSVxjiKD4BCoYCLiws8PDzMphDKzd3dHa5aLXDxovkDTZsC7u4lJrWWrl2L79atAwAkJSdL/7ft3RsA8PLIkZgwalS5YnR1dYWLuzv0bm7lOg4RERFZT9ak1pQpUwAAx44dw6FDh6TtLVq0QIsWLVClShW4uroiKysLV69exYkTJ5CTkwNBEODm5lZi4qYiHDp0CNu2bQMAdOjQAd999x3c/r04CQ8Px/PPP48RI0YgPT0d8+fPR8+ePUv1jZZarcacOXMgiiI8PT2xdu1atGjRQnp8+PDhmDJlCvbu3YtDhw5hx44dCA8PL3Qc02/VBg4ciPr165f1KRMRkSMzrkhoTFwBhsSVcZtGY0hQKJWGRJa3t+F/jsZySiWtQFhwCqFpAst0BUJjAsvSF2t2c/Ei0K+f+batW4FHHilx1+ycHNy+e9dsm16vl7Zl5+RUWJhEREQkH1mTWi+//DJ+++03HD16FIChJtS0adNQp04di+3v37+P77//HkuWLEF+fj7CwsLw5ptv2jTGlStXAjCszPPhhx9KCS2j0NBQzJo1C2+//TbS09MRGRmJsWPHWn38PXv2ID4+HgAwfvx4s4QWYPiWb8GCBThx4gTS09OxbNmyYpNabm5uqFu3bqmeIxEROTDT6YP5+YbRWcYRWsbRWDqdoQ6WSgX4+BiSWC5cG8bZlGYFQtPkFmBIYKlUKri5uZVpBUJH4+3lherBwcU+TkRERI5H1ivc2NhYzJ49G3q9HsOHD8fs2bOLbe/h4YGJEyciODgY77//PpYuXYrOnTujTZs2NokvPT0dhw8fBgB07twZtWvXttiuT58+mD9/PlJSUrBr165SJbV27NgBwFCPYvjw4RbbeHl5YfDgwVi5ciViY2Nx7dq1QiOxjEmthg0bVq5vUclppKamQq/XQ6FQIDAw0N7hUDmxPx2YKJqNxkq7e9dQh0mrRYCn54NEFmBIXLm7G5JYrq4s8F7JpaWlSTW1AgICim1rTGAZ/5VmBUKXf0dgubu7PxQJLEsmjBpV7umFJcnMyoLWxQV6AP7Vqtn0XERERGQga1Jr1apVUKvVqFWrFmbMmGH1fkOHDsUvv/yCmJgYrF692mZJrZMnT0oXiB06dCiynUKhQFhYGHbt2oWzZ88iIyPD6ppVJ06cAGAoxFncB8sOHTpIo8b++usvs6SWKIqIi4sDADRu3Niq8xKVVnx8PDQaDVQqFZMgToD96WBMpw/m5z8o8K5W425cHLS5uVApFAho2tQwGsvPz5DE4oqtDuX27dvQarVwcXExS2oVrH1lmsAqzQqExvpXD1sCy+hmUhI0xuQegGqBgfByd4coirh6+7ZZ29rBwXAt52jG5Hv3cD8vD2JeHpNaREREMpE1qXX06FEIgoCnn34aLqW8cOjUqRNiYmJw8uRJG0UHKVEElJwsatiwIQBDgik2NhZhYWElHj8pKQmZmZkAgEaNGhXbNjQ0VLp9sUBR1ISEBGRnZ5sdJzs7GxcvXkROTg6Cg4PRuHFjuy+l7Wjy8vKwdetWs239+vVjgW0isj1jMff8fMNqhcYC78ZRWGq1oTYWAGi1EN3dofXwAIqZTkWVn+kUwczMzDKtQGicPijHCoSO5tA//yDTpIB8r7AweFWrBp1Oh407d0KpUEChVEKpUOCF8HBUKWLFaSIiIqq8ZE1q3bt3D0DZVuIzXqhlZWVVaEymEhISpNs1a9Ystm01k2/gEhISrEpqGWtpWXP8kJAQKBQK6PV6JCYmmj1mWiReoVBg4sSJiIqKejDVAIC/vz9GjRqFl156iUkZK+l0Opw/f95sW58+fewUDRE5PY3GvMC7KBpGaBmnGhq3KRSGFQo9PQE3N+hSU6HXaqFgjSyHYmkFwtTUVGi1WiiVSmRlZZklsCrjCoTW8Fy7FoqcHOi9vJBbyul+np6eRV6zFPdlqIuLi8URqEWVZ9DqdPjf4sVm2wZ17WoxqVWe50NERES2J+sVsZeXFzIyMgqNPLLG6dOnAQBVq1at6LAkqamp0u2Salv4m1z4pKenW3X8tLQ0q4+vUqng6emJ7OzsQsc3TWp98sknFvdPT0/HokWL8Ndff2HZsmWcbkREZG/GYu7G0Vh6/YMRWsZElmmBd+MqhSqVvSOnUrJ2BcLc3Fzk5eUBeHANUulXICyB17p1UN69C11wcKmTQO7u7nDVag2rHFqyebPFbQoArhaaFzXp0vRLQCNlEUmz8jwfIiIisj1Zk1qPPPIIDh48iKioKFy5csVsil1xjh07hsOHD0MQBDz++OM2i894YQmg0KqHBbm6Prh8Mt2vOPfv37f6+MY22dnZhY5vmtRSqVQYO3YsBg4ciNq1ayM9PR0HDhzA119/jXv37iEmJgaTJ0/GDz/84FAXxURETsGYrMrLezB9UKN5sF2jMSS2lErDaCxXV8P/D2kNJEdUnhUI1Wo1FAoF3Nzc4O/vD6VSyb/VFy8C/fpZ3/777w3/LAhcuBBKPz+pP1T/Jq60FpJaLpV05BsREREVT9akVr9+/XDw4EFoNBq89NJLWLx4MZo2bVrsPkeOHMFbb70FURShUCiKXDGwIpheaJomrSwxfdx0v+KYfjNY0vFN2xQ8flJSEgBD0mvlypVo37699FhwcDCGDBmCLl26YOjQobhz5w6OHj2KHTt2IDw83Ko4beHy5cvFXqh7enpKdcpM98k1qYVRlJCQEISEhEj3dTodzp07Z1VcoaGh8CpmGe/z589bTEAqFAo88sgjZtvi4+PNRvsVxc/PD3Xr1jXbduHCBWiMH3iLUatWLbNRd3l5eYiNjS1xPwBo1qwZVCYjPu7du4fbBQrlmjLGY+n1fe3aNaumAgcFBaFGjRpm22JiYqyKt379+vDx8ZHuZ2Vl4dq1a1bt26pVK7P7iYmJSE5OLnE/Hx+fQiuNxsbGWpW4rl69utlIUo1GgwsXLlgVb+PGjc2m3KSmpppNVy6KSqVCs2bNzLbduHEDGRkZhdoa+1Oj0SAmJgaBgYGoVauWWZt//vnnQcHpYtSpU8dstGpOTg6uXLlS4n4A0KJFC7NpU0lJSdJ7WnEqy3tEeno6bt68WfQOOh0EtRouWi2ahYYaRmP9O0Lr9s2byLp3z3BfEKBXqSCqVBALFHj39fUt1DdxcXGFfie1Wm2hKdPVq1c3Gwmcl5eHq1evWvVcGzVqZPYekZKSYlXfuLm5FfqS6ubNm1Ltx+IEBgaaTecHUOg5FaVOnTrw9vaW7mdnZxffNyaaN29udv/OnTtWvX97eHigevXqUgJLo9Hg2rVryM/PNxuBZRypZfy7LwgCgoODERQUJK1ACMAs/uLe3+rWrWv2tygjI8OqvlGpVIXe027fvm3V+7efn5/Z7w1g+J0r6T0iQKuFEoAiORlVe/dGxrx5yGjRArdu3QIAuN+9i0c/+AAAkNy+Pa6YrCDdunVruM6bV2Js1hq1bRs0KhWOjBmDxkuXImD+fADA6QKLFfUF8Mjo0VAoFMh+6SVkDxggvacZn49Wq7X497Z27drw8PAw21bwdzMnJwdqtRp3795FQEAAVCpVpbmOyM/PL3EfIiKiykz2pNb69etx+vRp3L59G88//zx69OiBLl26oGHDhtIH2PT0dFy6dAn79u3DkSNHpOWuR40aVegCoCKZfqjUaDTFJp7UxuXTYV2CCjAfnWXNhYfxHKoCU0/Wr1+P7OxsZGVloXr16hb3DQkJwcyZMzFx4kQAwMaNG+2a1NLpdBaH+xtZSpwYPzRYc+yCrNkPgFRwtygajcZiMs7SNmvjtfRcjR+OSlLww4SxRos1Cj5X44eu0u4HyNM3BZ+rtfEWFYcz9o0l1vSNcTSJpe3WJLUKxlua51pQefrGHu8RhZ6rKELQaCCo1VCo1RB0OojGc2ZmPhiNBUCfnw+1UgnR3R2iSvVgNJaxlpbJ87IUb1E/g5LitfaLF0uvQ2v2tVTbqeCIpKJY6htr47X0HmHtvpbiKLivccSV8bnodDp4enrCw8PDbHt6ejru378vxSMIglQDy1i8XalUwtfX1yxRX/A1WNzfSEv9Wlz74piOJCuOpTY6na7E9wipkL1eD+Xdu4BabRavXqOBm3GqZXa22XlEUQQsJOXLLCoKLkolhIED4ZKZKZ1Xp9HA39dXujbx02qh+veLD+HfRLnpaDvj/5Z+JkVdR2gL/E4bXzPGfq8s1xFERESOTtaklkKhwOLFixEREYEbN25Ap9Nh79692Lt3b5H7GC8W+vTpg+nTp9s0Pk9PT+l2fn6+1Ukta6YSWjp+SYxtLBVN9fb2NvuG15IePXrA29sb2dnZOH36NPR6vd2mNZQ0pcJSAVjjBwJrjl2QNfsBKHGZc5VKZfFYlp6LtfFaeq7WxlvwvIIglPm5KhSKYvc1Xhxb+hnJ0TcFn2tJ8ZYUR3n6xpoPgHL2jWlsBRXVN6YfdlQqVZHP1ZoPPAXjLc1zLag8fWOP9whBEKAShAdJLOP0Qb3esE2jgaDRQAEAubmG6YSenoCrKwS93qri7iW9R5h+oC3Y1lK81q42bOl1aM2+RfWNNfta6htr47X0HlHalZUBw3WGMflnmqwyTWaYJumSk5PNViBUKBTw8PCQamEV9bfO0nuEqeIKv1vqV2sKxRf1HmHNvpbaKJXKEv9uGh8XFQrog4IMr32TeBUqFfL/HSmk8/Y2O48gCEAZFhMqNh6dDlVjYqD19ZXOGxgYiN+XLZPa1I2Lg27RIkPc/16rGeMyPp+ifuZF/TxMX4suLi7Q6/XSe5ZxpJalfeS+jiAiInJ0si+dFBAQgN9++w3ffPMN1vx/e3ceH0V5/wH8M3tmd5NsTkIuDsGIyn0VxROs1nrgBYogaj1akYqixbZalf7EW1vbamsVkYKiYms9wBPkEkGpKCLIIVfCEUKSzb3X7Pz+mMxk9swm2U12k8/79coruzuzzzy7w7LZzz7P91m8uNVvVbOzszFr1qy4TjtUpKenq5cdDoffN6qBtMXboy3Crm0/1PQgLY/Ho06raW+Rd71ej759++L777+H2+2Gw+HosoLxAwcObDWEC3Wf9tDr9UHTz9rrlFNOiTg9UauoqChoylC0AqeQRSslJaXdjzU3Nzfiwgtbt26Fx+MJ+cdz4HSWtmhvf9PS0tp934KCgqBpkNEqKSlp1/2MRmO7+5uVldXu12rglBSFcj4j9au9I2FtNlu7H2vg1MC26LT/I3w+uQaW04kMlwsZvXvLQZbb3VIbS3kvM5n8fzQ68u/wxBNPVC9v374dXq8XBoMhaBpdoJSUlFb3CSc7OxvZ2dntum+fPn3adT8geGpgtFJTU1u9rzLSrrGx0a+Au8FgQEFBgV99rMBwSwnNtD96vR45OTnt6q9yf1EUodfr2/R/jd1ub9dK0oA8RTXcKO/WRPOaU94zfDk5qPjgAwCABZr/S0tKUN38ZaYegPZRp6SkAK++Gr5Q/NtvAy+/3OZ+99uxA45nnoGyXM8JgTuUlKDioovUq3pNf5XHYzAYoj5HBoMBgzT/Fuvq6uByuZCTk4OcnJywX5p2xd8R0X4xS0RElKi6ZD1wq9WKe++9F7feeis+++wzbNiwAeXl5aisrIROp0NGRgYGDhyIsWPH4rzzzot6el9H9evXT7185MgRFBcXh9336NGj6uVoP6QEth9JeXm5OmKivR+CgOi/uSMKpPzb4b+h7oHns408Hrm4u7IyISAHV83hll+Bd5MJsNnkAu+dMAqC5zI60a5AqPx4vF75nKIlwLLGeQVCnkt/TqcTSEkBtAG7KEL43/9g+PRTCCtWRN2WpNdDGjsW7nPPRe3pp8eht8H0yii4dowYJCIiovbp0nfdzMxMXHHFFbjiiiu6shsqbaHb3bt3Y+zYsWH33b17NwB52Ln2G/RIMjMzkZ2djcrKSvX+4ezZs0e9rP1msLS0FKtWrUJlZSVGjhyJc845J2I7SiFZo9HY7m91qWdq77e+lJh4PlvRXMxdDbKUAu/KSCy3GxBFuQ6W0QikpsohVhd8eI32Pacn0QZYbre79RUIRVENsJRpg7Y4B1ihdGTUa6JqmDYNuoYG+KIc5azV2Ngoj1J3OmH+8kuYV6+Gee1a6KurW78zAMlshuu00+A85xy4zjwTkmZBi/Zqy+Pp26cPfDk58MXguERERBSdhPgqyefzoaqqCjU1NcjKylJXbursGlAjRoyA0WiEx+PBpk2bMG3atJD7iaKIr776CgAwaNAgv2mFrRkzZgw+/PBD7NixA3V1dWGnOG7cuFG9rA3Xjh07hkeaV++ZMGFCxFBr37596oiwIUOGRFVDg4ioR5Ak/9FYSs0xj6clxFJGaBkMcoBlMsm/W6kpRPGlnSKo/FaLkDcXi9f+qDXxBAGG5gBLWYHQYDC0WiOK2qZx+vQO3T/1H/+AdckS6JqaortDWhrE889H7WmnwTVuHBCwEmFHdfTxEBERUXx1Wajl9Xrxzjvv4N1338XWrVvlIecA5s6dixubl3e++uqrUVxcjF/96lftrmvTFunp6Rg3bhzWrVuHVatW4fDhwyGn/i1fvlxdcvnCCy9s0zEuuOACfPjhh/B6vVi6dCluvfXWoH3q6+vx9ttvA5C/xR00aJC6bfDgwWrx93Xr1oXtIwD8/e9/Vy9PmjSpTf0kIup2RLElxHK51ALv6nW3W74uCHKAlZ4uh1j8QqDLaIMr5bcyNT9w+qB2GwQBRoMBJpPJr/4VA6zE57Naow+0AGDxYojDhsHV/HcZERER9SxdEmrt3LkTd9xxBw4ePAgAfqsIae3Zswfbtm3Dxx9/jHvuuQc33HBD3Pt2ww03YN26dfB4PJgzZw5eeuklvwLne/bswfz58wHIxZEnT57cpvbPO+88FBUVoaysDM899xxGjhyJ0aNHq9vdbjfmzp2rFqJXAj6F2WzGlClT8PLLL8Pj8eDuu+/Giy++GFSEfcGCBXjnnXcAyLW8Lr/88jb1k4go6UlSS2ClFHNXRmgpIZYyQstolEd4mM3yZYYfnUo7RVAbYil/HwTVv9JsU1Z4NJvN6upxHJmcoCQJ+v37Yf7iCzROnRrydeY65xzg2WeDbvcNGgTd8OHA66/7b2jHud64ZQs2f/st0lJTYdDrkWI248qf/7zN7RAREVHX6/RQa9euXZg2bRoaGhrUP0hNJhPcyjSPZtXV1WhqaoIgCPB6vXj88cdhNBrDTgmMlTPOOAMXXHABPvroI2zZsgWTJk3C1KlTkZ+fj+3bt2Pp0qVoaGgAII8qC1yhbNOmTZgxYwYAedrg4sWL/babTCbcd999mDlzJpxOJ2644QZMnjwZI0eOhMPhwJtvvoldu3YBAEaOHImrrroqqI8zZ87EZ599hn379uHrr7/GRRddhKuvvhr9+vVDdXU1VqxYgc2bNwOQg7ennnqKq9tQmx04cEBdFSzcinqUPHrM+fR6/Qu8S5I8Qks7GkuS5ILuJhNgtXZagfdYKSsrU89le1dK60rKCoSBBdy1AVa4FQgFQYDRaITFYvEbgZWsjhw5op7L9q5ImBRcLqS+8AJSVq+G4cABAIB75Eh4NSPRFWKfPvAMGADDvn3wDBsG57nnwnX22bAPHQrTtm3BoVYb1Tc04K6HHsL+sjL1toK8vJiEWuXHjsHZ1AQ0NKBQU6eViIiI4qdTQy2v14tf//rXqK+vBwCcc845uO2223DyyScHLa+emZmJZcuW4emnn8bGjRshSRKeeuopTJw4Eb17945rPx9//HE0NDRg/fr1KCsrw5NPPum3XRAEzJo1C9dcc0272p8wYQIefPBBzJ8/Hx6PB6+99hpee+01v32GDBmC559/PuQf62lpaVi4cCFmzZqFbdu24ejRo3g2xLea+fn5ePrppzFkyJB29ZN6tpqaGng8Hq7K1U102/OpnT7ocskBljJCS6mL1bziHUwmucC7ySSPxkpStbW1ahCS6JQaVx6Pp90rEHaXACuUuro6iKIIvV7fvUMtkwkpn34Kw6FD6k0pq1ejPkSoBQA18+bBl5cHX8AXhxg0CHjvveDb2uCBp5/2C7QA4Iqf/axNbYTTUF+PJkGAlMT/vxARESWbTv2L+J133sGBAwcgCAKuu+46/P73v4+4/5AhQ/DKK6/goYcewuuvvw6n04k333wTd9xxR1z7abFY8NJLL+G9997Df//7X7Woe0ZGBkaNGoUZM2Zg1KhRHTrG1KlTMXr0aCxatAgbNmxARUUFjEYjSkpKcMkll2DKlCkRP3zm5+fjjTfewPvvv4/ly5fj+++/R21tLVJTU9GvXz+cf/75uPrqq2Frx+pDPZVerw8awdLdPkARdQvKioRKcAXIwZVym8cjByN6vX+QlUSjsZKRdgXCUAFWoq5ASB0kSdBVVkJfVgYpJSXk6CsIAlznnAPDq6+qN5lXr0b9r34VsklviNVanU4nkJICDB4celuUZv/iF/juhx+wbedOAMCQQYMwJ0R9UyIiIkoOnRpqffLJJwCAXr164Z577on6fr/97W/x6aeforKyEp9//nncQy1AHo116aWX4tJLL23T/X7yk59gZ/MfSq058cQT8fDDD7enewAAg8GAyy67DJdddlm726AWKSkpnVK3jYjaSDt90OWSR2cpI7SU0ViiKNfnMRqBtDQ5xEqCkUzJiisQ9jBeL/Tl5dCXlUFfWgpDWZl8uflHKezuHjoUVQsXhmzCee65sDWHWmKvXnCPGCEH0FGOampsbERjY2OHH0rfoiK8+/LL+O2jj+KTdeuw4MknYUlJ6XC7RERE1DU69S/+7du3QxAEnHPOOTCZTFHfLyUlBRMmTMCbb76J/fv3x6+DRETU9STJfzSWUsxdCbCUH0AOrlJS5BDLZGKB9ziItAKhNsAK3MYVCJOM0wnDoUN+YZWhOcTSHz4MQQkmIzBt3QpdRQV8ublB2zxDh6Lul7+E64wz5JFYXfjvwJKSgj8/9BAOl5ejMM4lLYiIiCi+OjXUqq6uBgAUFha2+b4FBQUAoBZpJyKibkQ7fdDlainwroRbbrc8Oksp8G63y785RThm2roCoTbA4gqEyUGorW0JqwJHXR07FpNjmNeuRdOVVwZv0OvREKNpfvb77oPO4YAvIwM1zStSt5UgCAy0iIiIuoFODbVsNhtqamrUQvFtUVVVBUAukk5ERElOKebucsmrFSr1lbQjsZQRWkajvEqhMhqLOqyjKxAqAZbRaOyWBdy7G+sbbyD1hRegq6mJ2zEkoxFiQQF0DkfcjqEwff019MeOQezVK+7HIiIiosTWqaFWUVERHA4HvvrqqzbdT5IkrFmzBoIgJOXy5UREBDmk0hZ4lyR5hJZ2NJYkyaOxzGY5yDKbWeC9gwIDLOWysq2nr0CYrHSVlTCvXKmOtBKcTlQ//3zIfSWjMSaBls9mg1hUBLGoCN7m32JxMbxFRfD16pVwIyffWrECX/zvf5g/dy5SzOau7g4RERHFQaeGWmeccQa2bduGb775Bl988QVOO+20qO63aNEiddXE008/Pc69JCKimFCKuSujsXy+lhFaSpClLfCurFIYZeFoCsYVCLsHoalJrWvlHjsWUoiVjHUVFbA//rh6XRIE+XUVYjSjWFwc9bHF7OywwZWUkZEQdeuOv/WW/O82Ql+2796N3zz8MJwuF7bt3ImXnnwSxfn5ndhLIiIi6gydGmpdc801WLhwIdxuN+bMmYO//vWvGD16dNj9RVHEggUL8OyzzwKQV/ubPHlyZ3WXehiXy4VPP/3U77bzzjsPZn67SxQ9JaxyOlumD3o8Lbd7PPKHUb1eHoVlMsm/E+CDcrIRfT44nc6wKxAGTiEUNYW+ldCKKxB2EUmCUFODtD17YDpyBLaKCtg1QZb++HF118pXXoFnyJCgJsSAkeuCJEF/6BDE/v2D9vVq9pV0Ooi9e0MsLvYPrpp/JKs1hg80PkKFfFo1dXW46Z574HS5AABbd+zABdOm4bM33kBeiCL2RERElLw6NdTq3bs3Zs+ejSeeeAIOhwPXXXcdRowYgVNOOUXdZ+vWrVi0aBH27NmD1atX4/jx45AkCYIg4KabbuL0Q4obr9eLzZs3+912zjnn9NhQKysrC16vFwZDp/43QXESt/Mpii0hllLMXRmhpQRZPp8cWplMQFqa/Jv/rtpEG1wJggCfzwdBkuBwOPxWIAwKsLgCYdfx+aCrqJALs5eWBq0oqKuvR14UzehLS0OGWlJqKnwZGX41rAxlZSFDLV9eHqr+8hc5yMrP79ajIX0+H+544AHsLyvzu/3Sn/407oFWaloaTHY7JLs9rschIiKiFp3+qeIXv/gFKisrsWDBAgDAli1bsGXLFvUP7A8//BAffvihur9SmPbSSy/FnXfe2dndJeqxGCB3LzE7n0oxdyXIap7aphZ3V0ZjAfIHZ4ulpcA7g5SoBE4fDFyB0Gq1wmQywev1orKyUl2BMDDA4gqEncDjgf7IEf9VBJUQ6/BhCM0jhTpCHxDOaDnPOgtCU5M6RdBTUhJ6R50O7vHjO9yXZPCXhQvx8dq1freNHDwY8+6+O+7H7pWbC19ODnwZGXE/FhEREcm65Kvy3/zmNxg5ciT+/Oc/Y/fu3RH37d27N2bOnIkpU6Z0Uu+IiMiP1+s/GkuS5BFabnfLNEOfTy7objK1rFTIQCUibY2rcAFWNCsQMsDqfMZt22D/3e+gP3oUghIqxoGYkxNxoYTaBx+M27ETmXnVKghOJ6SUFLgmTFBvX/3FF3ji73/32zc7MxMvPvEEzFw5lYiIqFvqsvkfEydOxMSJE7FlyxZ89dVX2LNnD2pqauD1emG321FcXIzRo0fjtNNO4/QnIqLO5PO1BFZKMXdlhJYyGksZoaUNsfihMazAFQiV38o2rkCYAEQRKR991DJFsKwMjvnz4QtRXNyXlgbD4cMdPqSk10PMzw9dmL2wUB7pSEHSn3wS+mPHIPbqhYrmUKv08GHMvO8+NfgF5NfOPx55BAV50Uz0JCIiomTU5WnRiBEjMGLEiK7uBhFRz+bxtIRYbrd8m9frPxpLKfBuMgE2m1zgnavjBeEKhAlIFKE7dgyG0lKIBQVBRdYBADod0h99FLrGRvUmQ2kp3CFCLbGgAJJOF9UoLclsDlpFUC3M3rt3t65v1VmcLhdunjsX1TU1frf/ftYsnDF2bBf1ioiIiDpDl4daRJSYtm3bBo/HA6PRiMGDB3d1d6iDgs6nUsxdCbKUAu/KSCy3Wx6hJQjyh+7UVDnE4shZP9opgoErEAYGWB6PJyYrEO7ZsweiKEKv12PgwIFxe2xJx+2G/tAhv6Ls6qirw4chNI+Mq/v1r9Fwww3B9xcEiMXF0O3cqd6kLysDQoUiRiN8eXnQHzkCAPDZ7UGrCHqbVxf05eSErSfHc9k+9bfdpk4/BID7nngCW3fs8NvnwnPPxcwZMzq1X/v370dTZSWkzEyUDB3aqccmIiLqqfjphIhC8vl86g8lP58oQnK5gKYmoKKipZi7x9MSYikjtAwGOcAym1ngXSNw6qDX61VfH525AqHyuuyJKxgKdXX+YVXzSoKGsjLojh2DoJl6Fk6kwutiURGM2lCrtDTsvjUPPQSfzQaxqAhSWlrbHkiznnwuO6Lp0kvVy6++/TZe++9//bYP6NsXzz70UKc/r8r5lPi+SURE1GkYahERdVeiqI7EMhw/Dng88lS22tqWIMvnk0MrkwlIT5eDLNZrCgqwAgu4BwZYXIEwRiQJuspK/+CqeeSVoawMOoejw4eIFGq5hw6F4HSqo67cw4aF33f06A73hTrmm+3bcd8TT/jdZrVYsODJJ5GWmtpFvSIiIqLOxFCLiKi7kCQ5rFJ+lGLjHg909fXQNzXJ/+nn5MhTCi0WOcQyGnvsaCyuQJggPB5kz5gBfWkpdE1NcTuMz2KJuKBB4/TpaJw+PW7Hp9hZs3EjZt53H1zKCNNmzzzwAE4aMKCLehWadtoxERERxRZDLSKiZOb1+hd4lyR5hJYSbDXfJrhcgF4P0WoFevXqkQXeI61ACAQHWFyBsONMmzfDsHOnOtKq8aqr4Dr77OAdjUboKitjEmiJmZkha1uJRUXwZWX12AC3uxBFEX966SU88+KLfisdAsAt116LSeef30U9C83pdMLpdCI9PV0NwomIiCh2+M5KRJRMlALvyo+ycp62LlbzSnswmeQC7yYTxKoqiF4vBIOhRwRara1AGDiFUBtgcQXC6Ai1tfJUPp0O3kGDQu5jXbwYKevXq9c9p54aOtSCXM9KX1nZ6nElQYAvLy/sioISp511W8erqnD7/ffj1U2b8BSAMgDFzdt+MmIE/nDHHV3Yu2CiKKK2thZmsxlWqxXp6en8v4SIiCjGGGoRESU6ZUVCJbgC5OBKuc3jkQMZvV6eTtgcZPWE8Apo2wqE2nALkAMso9GoTiGMdgXCHkGSoDt+XB5lFWJFQV1NDQDAOX48HH/5S8gmxKIiv+utFWnHt9/KhzYaIRYU+I2yEouK5PCqsDDiFELqnjZt2YJf/e53OFpREbTtgrPPxl/mzYPRaOyCnoUmSRIcDgcEQYDdbofFYoHNZuvqbhEREXU7DLWIiBKNdvqgyyWPzlJGaCmjsURRnkZlNAJpafKH/B4wrUUJsJSftqxAaGgegZWSksIAS+HxQH/0qF8xdm1wJbhcrTZhaC2o0ogUajVMnYqmSy6Bt6gIvl69uGABAZDDob8vXoxH/vY39fX8NYBSAMcBPDB7Nn513XVd+1r2eCA0NUFq/jcrAairq4PX60VWVhZMJhMyMjK6rn9ERETdWPf/BERElOgkyX80llLnSQmwlB9ADq5SUuQQy2Tq1vWBAmtfaQOstqxAqNS/6qkBltDU1DLKqrTUL7jSHz0KoYNFrPWHD8sha4gQyjtgANzDhqmjrLwDB4Ztx3vyyR3qB3U/jtpa3PnQQ/hozRq/2ycB6J2bi388+ihuGzGiazqncLvlUYtGIzypqfAJApw+HxobG5Geng6TyYTMzMwe+/8PERFRvDHUImqm0+mQm5sbdBtRXGinD7pcLQXelXDL7ZZHZ+l0cnhlt8u/u+HoFa5AGB/pf/wjzOvXR1Wnqr0knQ5ibi6E2lpImZlB291jx6Jq7Ni4HZ+6r2937MAtc+ei9PDhoG1n/eQneO7hh5GTldUFPdNwOqGrq4NkNEKy2yE5HHCaTKhvaEBKSopaRyuRpkUSERF1Nwy1iJpZLBbMnDmzq7uRMPr06QNJkvjtcqwoxdxdLnm1QqXAu3YkljJCy2QCrNaW0VgxUFhYmBDnM9QKhNqQiisQRqbfvx8nbdkCQ1kZTEeOACefjIabbgq5r9DQEJNASzKZ/Aqxq7Wtiosh5ufLU2CpXfLz8xPidZloaurqMPmXv0RdQ4Pf7YIg4O5bb8WdN93U5a99oakJQn09JLMZUloapJQU5J50EvTV1bBnZLCOFhERUSdhqEVEIbH+Rwx4PP4F3iVJHqGlHY0lSfJoLLNZDrLM5rgUeLfb7TFvszVcgbCNPB7oDx+GrqoKnjBTqlLWrEGapii7q7Y2bKgVWM8qEl9amn9YpVwuKoIvN7fHLDrQ2dLS0rq6CwnJnpaG+379a/z2scfU27IyMvD8/Pk4e9y4LuyZTGhogNDYCMligZSaKv+226GrrYXNZkNWVhaMRiPfR4mIiDoBQy0iolhRirkro7F8vpYRWkqQpS3wrqxS2A1GunR0BUIlwFKmD3bXAEtobGwpxB6woqD+6FEIPh98ViuOrV0bsl6aNyCoilikvbjY/3pODsTi4uBRV8XFkLog9CSKZMZVV2Hjli3470cfYcywYXjhsceQ36sXACDtiSegq62FLz0ddXPndmq/hLo6CE4nJKsVks0m/6SloampiXW0iIiIugBDLSKijlDCKqezZfqgx9Nyu8cjB1sGgzwKy2SSfyfxh53AAMvj8XAFQoUkQXA45GLsgSsKlpZCX1XVahO6xkboqqvhC1EvKHD0le7YMfnfmdkctK/rJz9B9dNPy8FVYSFgsbT/cRF1MkEQ8OR99+HUkhL8cto0v7pUKZ99Bv2xYxB79eq8UEuS5EDL5WoZnZWWBslmg9frRW1trVpHy263s44WERFRJ2GoRUQhNTQ0qLVeWBNEQxRbQiylmLsyQksJsnw+ObQymYC0NPm3oWv/u21sbFTPp9Vqjfp+XIEwBFGE7tgxv5FW2hUFdQF1gNpDX1YWNtRyn3ACPAUF8qitfv3kf28h+PLz4crP73BfKH6amprU16WlB4WODY2NKDtyBEeOHUN5RQWuvvTSkPul2myYdcMNndu5UCQJQm0tBI8HvrQ0ICVFLgxvsUCSJNTU1ECv18NoNEIURbVGIBEREcUfQy0iCunHH3+Ex+OB0WjE0KFDu7o7XUcp5q4EWcq0OaW4uzIaC5CnEVosLQXeEyjA2b9/P7xeLwwGA0455ZSg7dGsQBiuuHtPWYHQ8p//wLZkCfSHD0NQznkc+Ox2CLW1IbdJNhs2zp8PURSh1+tRUlISt35Q/JWWlib1ufR4PHDU1qLK4UBVTY38u/mnprYWf5g9O2SQ/fHatZh5330A5P8/evfq1aZaWVUvvdSyOmy8+XwQamogiCJ86emA2Qyf3Q6kpAAAamtr4fV6kZWVhb179yItLQ3V1dU9+32TiIioEzHUImrmdruxYcMGv9tOP/10mGK0+hwlEa/XfzSWJMkjtNzulmmGygcq7UqFSRLktHUFQu227rYCoeBwwLR5szrqSvB4UPPHP4be1+OB4cCBmBxXzMvzK8au1LYSi4ogsXg4dQGv1wtHbS0qNcFUteZylcOB6oDgqra+PmKbd996K2whRoZmaQqoS5KE2++/H5+89ppaM6s1YmFhmx5bu2kDLbsdMJngy8hQp/s2NTWhqakJdrsdJpMJdrudo7SIiIg6GUMtomYejwdr1qzxu23MmDEMtXoCn68lsFKKuSsjtJTRWMoILW2IlQT/NpQVCJuamuB0OgEA5eXlAFpfgVAJsKzJugKhJEFXVQV9WRk8gwaFrDtlKC1F5r33ttzFYEDNAw+EnC4aWKQ94qENBogFBX5hlRpiFRSoozyI4kGZ0hjKfz/6CJ9t2BAUUtXU1cW8H1UOR6uhFgBUVldjzh//iKV/+1vM+9BuogidwwEA8GVmAkaj+huAXx0ti8UCu92OiooKeOI4ipOIiIiCMdQiop7J42kJsdxu+Tav1380liTJo69MJsBmk0ORBA51lADL6/XC7Xb7FWlvaGhQQ626ujo5xFLCO/ivQJhUAZbXC315ud8qgtpaV7qmJgDA8VdfhXfQoOC7BwRVQnN7oUaCBBZp91ksclgVYkVBMS+vy+uoUfegjKCqqavDgL59Q+6zcv16/Omll9SgquSEE/DOggUh9/12+3a8+f778eyyqtLhQHFBQdDtmc2rbdrT0pCVkYGRQ4bgjl/8olP6FBWPB7qaGkCnaxmhlZmpvqYlSYLD4YBer4fdbofVam1TrUIiIiKKHf7FTUQ9g1LMXQmylALvykgst1seoSUI8jfxqalyiJWgwUTgCoTaACvUCoRVVVXw+XzQ6/Vqba2kWYHQ6YT+8OHQhdkPHYKgrK4Ygb6sLGSoJWVkwGez+RV315eVhQ61CgrgmDcPYvPIK19WVkLVTaPEJ4oiqptrUFU7HNi2fTuqa2pQ19AAvdEYcqqfo7m+mtFgwIGNG0O+VhsaG/G/775Tr1dWV4ftQ+AoqVhJT01FVkYGMu12ZGVkICsjA6lhgp7C3r1RumkTDO38/9W0ebP8f7bJBPfo0R3pdjAl0NLr/QMtzTTr2tpaiKKI7OxsGI1G2JtDOiIiIup8iflpjYiooyTJfzSWMiXE42kJsZQRWgaDHGCZzQlX4B2IvAKhdnRWpBUIlRUszWYzMjMzu+qhhCXU1vqHVaWlLZePHetw+4bSUrhCHliAe8QICE6nGlaFrddjNMJ58cUd7gt1L4eOHkXZkSNB9aZCXXfU1ra75pLH60V9QwPSUlODtgUGVdU1NWHbyYwigAkVUGU2/1av2+3Ibr6ckZ4OY/O0vGgoi0u0l/0Pf4D+2DGIvXqh4oMP2t1OEJcLutpaeaqh3S4Xhc/I8Buhq62jZTQakZWVldhfChAREXVzDLWIqPsQxZYQy+WSgy1lhJYSZPl8cmhlMgHNK1klSoH3aFcg1O4T7QqEZrNZHcmVKAzff4/0xx+HobRU/iAZJ5LRCKF5GmIojmefjduxKTn9eOAAvvzmGzWQ6p2bi1uuvTbkvk//859Y+s47ndKvKocjdKgVEFQ7mkcShVrEYfCgQbh12jS/cCorIwPZzZczm8OaRGNdsgS2V18FAOiOH1d/5154IQCgYdo0NE6f3v4DOJ3Q1dVBMpkgpadDMpshZWb6fcmh1NGyWCywWCzIyMjoUDhHREREHcd3YiJKXpLUElgpxdyVEVpKiKWM0DIaAYtFDrGMxi4fjdWRFQgFQYDRaEzMFQi9Xpi+/NJv1FXt/ffLU/UCmUwwff99TA7rs9mCirIr1329eiV0LTSKLZ/Ph5q6uvAjphwOVDocEEURi8MEmp9v3ox7H3lEvT5qyJCwoVa8pvOFUl1bi1BVtYp698Zjv/udOnIqKyMj7Oih4aecguGnnBLfjsaBrqEhaNSm4POpt2mnELeV0NQEob4eUkoKpLQ0+bfd7vc+oa2jlZ6eDqvVCovF0u5jEhERUWww1CKi5OL1+hd4lyR5hJZ2NJYkySGGslJhFxd4V2pceTwev6AKiH4FwkQJsISmJujLyuDLzIQvJyd4B50OmXffDUGZ2gmgYcaMkKFW2Gl+YYjZ2f6rCGqKtEsZGV0eVFLsKQFVqGBKvR6wzVFb2zIFNwK9Xg+fzxdyQYTAoKqqeRW8UKKZzhdKqs2GVKsV9tRU2NPTUVxY6DfdLzvE9D9TmBFU6WlpuP6qq9rVj2Ths9kg9uoVcXt7CA0NEBobIVkskFJTIVmtkNLTg/arqalR62iZTCbW0SIiIkoQDLWIKLFppw+6XHKApYzQUupiNQdEMJnkAu8mk7rseud31xdyBBbgP71Q/Um0FQglCUJNTejaVmVl0DdP+6m9+240hhq5otNBLCiAYf9+9SZ9aSk8w4cHH8pqhZidDX1lpXxdp4OYnx8yuBILCyFxdbGk5vP5UFtfjyqHA4IgoH9xccj9Hnv+eaxYtUodZRVNQNUeoiiitr4eGSECjLbUqMrKyIDNag2azhdYd0pblyrTbofZZMKuXbvUaYIlJSWxfojdSuP06R2bXhiCUFcHwemEZLPJYVZqKqQQ0zubmprgdDrVOlqZmZmso0VERJQgGGoRUUinnnpq1x1cWZFQCa4AeRqhcrvHIwdBer08CktZqbCTP2S0dQVCtaaVIMDQHGB11gqEAwYMaLni80FXUSFPEQxcUbC0FLr6+lbb05eVhd3mLSryC7UMEfatnTtXDreKiiDm53dZGJlM/M5lF1ECKnUEVXU13F4vLpowIeT+L772Gub9+c/qa2DC+PF49S9/Cbnv8aoq7N63L25916pyOEKGWnk5ORh68skto6YyMyFJUsjX6DWXXoqpkya16/iJcC57JEmSAy2Xq2W6YXp6yODc4/FEXUerS983iYiIeiiGWkQUUqdOcdNOH3S55NFZyggtZTSWKMqhldEIpKXJo7E6sUBvaysQBhZ4D7UCoXb6YNy/5fd4oD9yJGiklaG0FPrDhyG4Qq4FGLVIQZX3pJPgqaxUR1q5x4wJu6/rvPM61I+eKNavTUmS1BFUftP6QkztU0Ks6uapWFqZdnvYUMtqsfjtH2k6XyxrVFktlpAjqLIyMpBlt4cMtABgQN+++GjJkqiO0ZHXcsLUwutJmkejCl4vfM2LhfjsdrnmYtCuEmpqamAwGJCeng6bzRaxjhbPJxERUedjqEVEnU+S/EdjKcXclQBL+QHk4ColRQ6xTKa4j8Zq6wqE2gCrtRUI487lQuadd8oB1tGjEOI0bQuQ69CEUz9zJupnzozbsaltVn/xBX748cfQRdNralDtcMjTYDso0op7balRlRWmVpElJSUolMoKMbVPG2KlmM0deUjU3YgihNpaCKLoH2ilpATt6vP54GheUECpo5UeJgQlIiKirsNQi4g6h9frPxpLKfCuhFtutzw6SynwbrfLv+MYCnV0BUIlwDIajXEt4G7YuROGH39Upwg2XXwx3GPHBu9oMsG4fXtU0wdbI+n1wfWtmlcW9BYWhhzVQLEVbrobAKzasAEffPaZGk6NHjIE991xR8h9l7z9NpavXBnPrgJoXh2uthbZmZlB2wJDLafTGbadiWecgfy8vKDaVJYQwQNR1Dwe6GpqAEGALyMDMJnU34FEUUR1dTV8Ph+ysrJgMplYR4uIiChBMdQiopDKy8vVURd5eXltb0Ap5u5yyasVKgXRtSOxlBFayiqFymisOAgMsJTLyrYuW4HQ54OuvByCKEIsKgq5S9qf/wzzl1+q1739+oUOtQQBYnExdDt2RHVoyWxuKcZeVARvc2glFhVB7N2b9a1iSJIk1Dc0RDW1T/nJSE/H2rfeCmqrsrISX33zDZb85z/qbeYIr5tYTucLJcVsVsMnZ5hprYNPOgmfvPZaVAHVif3748T+/ePV3YRSWVmprsCYnZ3d1d3ptoSmJgj19ZCMRnllQ6NRDrRC/B/n9XpRXV0NAMjKyoLZbEZWVlbYOlpaHX7fJCIiojZjqEVEIZWXl8Pj8cBoNEb/x7nH41/gXZLkEVra0ViSJI/GMpvlIMtslq/HUMKtQOh2Q3/okP8qgkqtq8OHIXg8cJ57LhxPPRXy7mJREaAJtVor0m7UhFo+ux3eoiI40tPR2KsXXPn5yBk9GmJREXw5OZ1eXL87UAIqJYSqDBNKVQcEVh5llc4ouZUpuAEqKythDPg3GasaVdqAKtRKfqG2WaMYtWezWjH4pJOi7kdPUVlZqYYgDLXiQFsQ3mKRVzc0mSBlZIR83/F4PKiuroZOp0NmZibMZjOys7Oj/hKjXe+bRERE1CEMtYiaCYIAa8DKR5xq0AqlmLsyGsvnaxmhpQRZ2gLvqanySKwYjgBqbQXCwCmE2mLVSmgVixUIhfp6/2LsmhUFdeXlEJpDs3AiBlXFxX7XIxVpb7rqKrgmTFBHYEnNNWB27dqlfni2l5S04ZH1DMerq1F2+LA6eio/NxfjwxS4nzprFtZs3Bj3PtXU1akfkAOlp6b6Xa+uqQnbTkn//jhz7NhWw6loAyqipOD1yoGWKMKXlgakpECy2SClpYXc3eVyweFwwGg0IiMjQw20OvylBhEREcUVQy2iZlarFb/5zW+6uhuJTwmrnM6W6YMeT8vtHo8cbBkM8igsk0n+HYOAMNoVCIMCrFisQChJ0FVW+oVV+ubwylBWBl2EkTLR0JeVyc9biD6JffvC26ePOkXQO2hQ2Hbco0d3qB/JTJIkNDY1tUztq672GyllSUnBr2+8MeR9//nqq/jrwoXq9Unnnx821LKH+VAcD47aWuSGGMFTnJ+PSeedhxP69UNWRgbycnLCtnHFhRfiigsvjGc3iRKLywVdXR2g08GXmQkYDGELwgNyjbeamhoYjUZ1hFZWVhYDLSIioiTAUIuIIhNFoLFRDrGUYu7KCC0lyPL55DDGZALS0uTfUdQfiSQwvIp2BcLAAKujKxCmPfMMTF9+CX1ZGXRNTR16TBEJAoTaWkghVn5znX02XGefHb9jJyBJktDkdLZM7dPWogqzil+VwwFXmCl7ANCnsDBsqBW44l6spvOFYjIao5vil5kJe5jV1voUFGDOTTehhKPuiPwIDQ0QGhvlaYbN70e+jIyw70lNTU2oqalBSkoK7HY7LBYLi8ITERElEYZaROSvuZi7rr4ehoYGGAQBcDhairsro7EAeRqhxdJS4L0dHwK0Na7CBVjRrEDYlgBLd/QojDt3qqOuvP37o2nKlJD76svKYNy9u82PKxQxM7OlEHtxsV+Rdl9WVretb6UU4g9XaPm5RYvw3Q8/BIVU4YqOt1dbgqpI+2ZqAjCjweAXUIWc3tf8O1szxY8fmIlizOeTpxu63ZCsVnmqodks188K83praGhAXV0drFYr0tPTYbFYkJGRwdcnERFREmGoRURyMXdlSmFzMXddfT2kpibofT7g2DF5NJZO579SYRtHQAWuQKj8VrbFagVCobYWuspKiGFWULO8+y7SXnhBve467bSwoVa4FQlDPj5BgC8vTw6rmlcS1AZXUkAdpGSlTPHzeL3oH1DvS/Hia6/hzfffV0Oqqy+5BI/97nch9127aRPWbtoUzy4DAOobGuByu0OuFJiVkeEXUA3o2zdsO7+4+mpcc+mlyMrIgM1q5Qdgoq7m8UBXWwtIkjzNsHmUlmSzhb1LXV0dGhoaYLPZkJaWBpvNBnuIkbJERESU2BhqEfVEPp8cXjmdLcXcm0doKaOxDFVV8u0pKS0hVogwIPwh4rgCoSRBd/x4UFF2tb5VTQ18djuOrVoVsm9iQBATqUh7YKglGY0QCwv9wipvc4AlFhS06TlKBI1NTWGn8oW7roygGjJoED5+9dWQ7VY5HNi2c6ff9XCyOzidLxSjwRByxJTX6w0Zak0YPx4HNm6MKqDKycqKeX+JqJ2cTrl+lsEAX3o6YDTKwZbZHPYuNTU1aGpqUsOstLQ0pHVirTwiIiKKHYZaRD2Fx9MSYil1h7zelnBLKfCu1wMmE8S0NHiVOlmtjDCKtAJhYIDl8XiiW4HQ64X+yBE5rCotlQuza4IroZWpabqaGgh1dSFXugoMqvSHD8vPRYjpca6xY1Fz//3qqCtfr15tHqHW2Xbu3Yvyigq/UOrHffvgqK1FbX09XB5PUEDVHpFW3Mtsw3S+1mpUGfT6oKl8oab6ZWuup9psbRpBxYLQRElGkiDU10NwOiGlpMgjYZX6WWH+j5YkCQ6HAy6XS62fZbfbYYswoouIiIgSG0MtomYejwdbtmzxu23EiBEwGo1d1KMO8vlaQiylmLsyQksJtkRRrjViNMrBldmsBjuS2SwHPQFiugKhxwPjoUN+qwgqIZb+6FEImvCrPfRlZfCefHLwYygqgpid3TLSqqhIDvVChFpiv35o6tevQ/2Ihc1bt/rVnRo7fDgmnX9+yH1nP/ggvt2+Pe59ilWNqrPHjYPNZlNDquyA0CotNZVT/Iiohc8HoaYGgtcLKTUVksUi/6Snh62fJUkSqqur4fF4kJGRgZSUFGRmZsJisXRy54mIiCiWGGoRNXO73fjggw/8bjv11FOTJ9SSJP/RWEoxd4+nJcRSRmgZDHKAZTaHLfBusVjgah7FU1dXB4/H0+4VCJX6V4IgIGX5clj/8x85vDp+PH5Ph04HfUVFyFBLysxExccfx+3YgZwuV8ipfNoV/SodDvQrKsLjv/99yDb+88EHWPjmm+p1t8cTNtTq6Op80XK53XC6XEgJMc1n7LBheHbePHX0VG52dth2fnrWWfjpWWfFs6vdisVigSiKHVrVkxIDz2U7KPWzAHlUlskEKT0dUoRwyufzobq6Gl6vF5mZmTCbzcjKyoI5whTF9rBarfB6vWEXxSAiIqLY47suUTITRf/RWJIkj8ZSrrvd8nVlGmF6uhxkBXyACrUCodVqVb/Brq2tjbgCocnthn3vXqQcOQLz0aPQeb2ou+uukF3WVVXB9M03MXn4ktkMb2Fhy4qC2vpW+fnyCLQYc7pcYYOpKocDVSHqUTU2NUXVdmV1ddhtmQEFjDsynS8UvV6PTLs9uA6VZuRUpt2OrMxM9XJ6amrYaXt9CgvRp7Cwzf2g1hWHKc5PyafbnktJUmsk+v1WLoe7XZIghGtDec9xOuW6Wdr6WRFqGYqiiOrqavh8PjXIysrKgikO9Q8HDhwY8zaJiIgoMoZaRMlEkloCK5dLnh6oLfDudreM0DIaAYtFDrGMRnU0liRJ8LjdIVcgBPzrYykrEApuN4zHjsGbnw9DSkrQCoSmzZuRNXu22oYvJQV1d94ZcgRYW1YTBABfWpp/WKVZUdCXmyuvyNhOLrdbDZ7SU1NRlJ8fcr9f3HOPOvUv2oCqPSLVqGrLdL7crCxkN4dPgbWntHWnog2oiCjBhAmEYhEaBd03xHYh3PFjRfveIQgt1wVBnmZos0EymyFlZER8D/B6vahu/rJACbSys7M5koqIiKgb4bt6GJIk4f3338e///1v7NixA42NjcjNzcWYMWMwbdo0DB06tMPH2LVrFxYuXIhNmzbh2LFjSEtLw4ABA3DZZZfh8ssvj2o6QizaoASnTB9URl5JkjxCK/A2nU7+ttpqlYMsna5lBcLGxpArEGqnEIp1ddAdPAjT4cMwHzmC9KNHYT5yBKYjR2AoL4fg86Hirbcg5uUFddEbMNpA53RCd/y4HDoFCBVqibm5fmGVWFysXpaiXGLd7fH4jZqqrqlBqs2Gc047LeT+d82bh9fffVe9fvv11+P+O+4IuW95RQXKjhyJqh8dUeVwQJKkkPWj+hUVYezw4erIqZIBA8K28+Bdd+HBMCPliCgK8QiNtL9babsrQyP1CxDtfkpw1LxdCmwnMHhqpe2Ix4+CZLOFXAREy+12w+FwQKfTqVMOs7Oz+XcRERFRN8NQKwSn04nZs2dj9erVfrcfOnQIhw4dwnvvvYc777wTt956a7uPsWzZMsybN89vhExVVRWqqqrw1Vdf4e2338Zzzz2HjAjTiGLRBiUg7fRBl0sOsJQRWspoLKWAu7IyockEUadrGXlVUxO8AqHHA9/x49AdPAhd82qCKc2hlfnIERgiTH1TGEpLIfbvH9zl3FxIJhMEpWYX5CLtoUItb1ERau+6q2XUVWGhPKJMQwmoqisqULV7t1pzqjrE1D7lcn1DQ9CxTh81KmyoZbNa/a5Xx3g6XyiCIARN8csOWNEvXKg18YwzMPGMM2LSD6IuF6vQKFQb2u0MjUJv74hIx4uy/61dliLdV68POTpLkiS43W64XC64m0cjm0wmZGRkqIEWR6MSERF1Pwy1QrjvvvvUQGvAgAGYMmUKcnJy8P333+P1119HY2Mjnn76aeTl5WHSpEltbn/dunX4wx/+AEmSYLFYcM0112Dw4MGorKzEW2+9hV27dmHz5s2YM2cOXnrppZB/hMWiDUogyoqESnAFyCO0lNs9HvkDl14PmM0QLRZ4dDp4vF54XC54GxrkIu2iCOHoUeDAAXnUVfOKgsbDh2E6cgT6xsYOdVNfVhZ6g04H78CBgMuljrTyZWaG3tdiwSsZGTj844+o/vpr/5Cq+XddiICqPSLWnQoYAVbZxlBLEARkpKf7TfELnOoXeN2eltZlowRKS0vVgtTdto5PDxHVuWRo5B+sxCo0Crwt0u1RCHkuowiN1McXq9BIuz3S402wVUh9Ph9cLpf6I0mSPCXeZEJqairMZrNaQ6sz/g7as2ePWiie9bWIiIg6B0OtAJ9//jnef/99AMC4cePwz3/+U10d5+KLL8ZVV12Fa6+9Fg6HA4888ggmTpyI1NTUqNt3u9146KGHIEkSrFYrlixZglNPPVXdPnXqVMyZMweffPIJPv/8c6xYsQIXX3xxzNugLqadPuhyyaOzlBFaymgsUQQEAV6dDh6DQf4tSfA6neoqg6IoQvf990h/4QUYDh2C8ehR6DQj92JNd+xY2G3PXn45Nn3zjRxMbdmCqX374rp+/ULvu2AB9h48GKdetoi2RpUgCPAoo99CuGHyZFx47rl+IVVGenpSTWNpamriKmux1NbQKGC7EKkN7f1D7OMtL4fo9ULS66GzWjsnNFJ+hwt+EjQ0Cqm10CbeoZHmck1FBbyiCIPRiMK8vIQLjRKRx+PxG5EFACaTCTabDWazWV2x2Gw2IyUlBVarFaFGv8ZDY/NU/6RZNZmIiKgbYKgV4OWXXwYAGAwGPPzww0HLPQ8YMAB/+MMfcPfdd8PhcGDZsmW48cYbo27/448/RlnzaJebb77ZL4wC5D/MHn/8cXz11VdwOBx44YUXggKpWLRBnUwp5q6EWErwpCnwLrlc8IoivAA8kgRpzx5IZWXQN//U/frXcKekBK1AaKmtRf7GjTHrqiM1FcesVuwTBPwoCNgjSdgtSfi2oQFDDh3CgjD327hlC/69YoV6fdzIkWGPkZWREbdQSzuCqldOTtj9LvnpTzF+zBhkZWS0GlCNGDw4Hl2lSCIFPlEEPx0JjYCAkUYhtndYB0Ijn9EInyBAMBggpaS0ft8Q25M2NAr1+NrTRqLQ6+V/V7F67hOcFPAa0l4PdxmQC74rQZYoihAEASaTCXa7HWazGTqdDjqdTg2ylNuIiIio+2OopeFwOLBhwwYAwJlnnhl2WsfPf/5zPPLII6isrMSHH37YplBrRfOHfkEQMHXq1JD72Gw2XHHFFXj55Zexa9cu7Nu3D/01dYxi0QZ1Aq/XfzSWUuDd7YbU1ARPWRlEQYDHYoFXr4dHECAZjYBeD9HpRMGMGRCaR2QBwOEJE9BUUgKdTgeDwaCuQGg85ZQ2dcsN4KAgYLckYQ+AHzU/+wA46+uB+vqQ9y2IUHerLavztaVGVeAUv3BT+5SfaEdQZWdmIjvcFMmeoCtCo4DtQqRRTh0Vj5FGAW1EFcqE26cDRIsFos8HGAxyseyOhkYhbus2oVEMRBO8tCesUWpAKfUPm8KsrBrP44e7f7yO3xF6vV6dTmgymSAIAgwGA1JSUpCSkgKTyRST4xAREVFyYailsXnzZnVa17hx48Lup9PpMGbMGHz44Yf49ttvUVNTA3uUK7R99dVXAICTTjoJWVlZYfcbN26cOmps7dq1foFULNqgOJCklgDL6ZR/HzoE3+7dEPfsgfTjjxBKSyEcOgTd4cMwOZ2o+c1vUHfVVS2jr5xOeRqcJCEzOxvWigq1+bodO5B32mnB3z6bzXAIAjI0HxzqIYdUgaHVHgClAHzt/JARaTpfZsBrIFKoNWLwYEiSFDqk0gZUaWnJu/R6pJE+XRAaGR0O6L1e6PV66DT/rtqtg6ERgFaDk64KjSIeLwFCI3dVlVq3x9erV1DX4xZ8aEL2UO3F/fgR7h9Nu+09TjzV1taq04JrIvz/qp0+F+5yW/YLvD3wd3sut+f40d5H+TJHGaGlBFmcTk1ERERJ+mkxPnbv3q1eLikpibivUgBUkiTs2rULY8aMabX98vJy1NbWAgBOPPHEiPsOGDBAvfzDDz/EtA2KodpaYNcuYOdOYM8e+Pbtg7R3L4QDByAcOgRBFKEDEG4SxPerViFt4kQA8rfQBoMBNqsVRqMROzwejNLsW/7118i/+eaQ7TyTmYn9VVVqiBW+8lXHRAqqxg4bhl9Nn64GVSf07Rt23ztvuik2HQo30ieWoVGE7Qk10ijwB/6hkS8lBaIoQtLr5dE9yva2hkaBfevI4wsTDmn7rVyWAh6PpJmypb0c2J72fuEeb9DxOzoyRRP+xGM0TFVzqKXX61FeXt5q212ho8FHNCGIIAgxDVsi3aetbUW73/Hjx9WAMi8vL6rjd4WOPp/tDb+051oZpZVIzwsRERF1PYZaGocOHVIvFxYWRty3d+/efveLJtQq06wc11r7eXl50Ol08Pl8OHz4cEzboDZyOIAff4Rv1y40ffcdPNu3Q9i7F6ayMlgCpuO1tYKHb/9+ZGRkqN9Aax2323HA4VBHWTktFgwP085Hffrgy6qqNh69RXpqatB0PkGSkGazISM9HSeXlCDLbpdXDGweSaZqDnPGDx2K8UOG+IdGymqL4YKfZA2N0ByWBIZHQFCgoj1GqLAmbECDDoYgAceoFQSIggC9TodazXEk7X0kKbj/rYRNgZd9YY4f9NzE+nzGQCw/nIfaJzCEac8xBUGAxWJRg5C05oAymuO3pf+xfPxdJV5hSyzvn56erhYWt9vtCdtnIiIiokTFUEujShMKZLZSaydDUxPIEWH0ila1JgBprX2j0Qir1Yr6+nq/9mPRBkWvtqAAtuaRcToAthi3n9PQAKNSKNjn8wtw3j7tNLxw4IC671UpKZjsdKrb1Y8bkoRszQfbdJsNWXa7HE6lp6thVGZamno9My0N2enpyEpPh91mg9FgCAqb9u3bB6/HA73BgP79+6vBh3jsmN++YUesBARFfmENwo+eiRj8tLJPYNuBt4cKm6SAx+03ysb/gfk/zhCPMVyfWg3LAi5rn6ugfTTHFjRT+gRN6BbqQ2u91QpRFGEwGOBsXrE1mhBEe10I2BbvKVFtuX93+NAe7WNITU1VQy3t1PeuDj4S6f7Jwmq1qqFWW1ZSJiIiIiIZQy0NpxIYAEGrHgbSFiTV3i8SbRHY1tpX9qmvr/drPxZtdAZRFP2uNyojdhJYU1NTUFBoOPlk1HfwuWsAUAbgEIDDzb+VH2NODp4KM4quX2EhThs7FqlWK9KsVgwZOBBVx4InFkoAfn/zzbj/l7+E1WKBQa9vCU604QjgH5xAHmnkAORATbOPJAios1ggms3Q6fWoaG4zSIjAJehy4P7KxaBNQvC+2rAm2mNqQx1N8CNpjyEIao0nQXMfCZrgRglytDXMtEFSa/0Pc7t21E447ZkS1ZqcnBy1do92dE8sdUZ41Z77d/V9Yj26KTMzUz2XFoulzfePpa6qRdVdKHU8fT4f6sMs0EHJIxnPZ+DfZ4F/vxERESU6hloaXq9XvdzaKjra7dr7RaL9QyGaVXqUfbTtx6KNzuByufyul5aWdurx22v8+PF+1w8GXO+IwuafwImqDWH2/+nUqfhpwOqWodfGApSPtWLzTyzkaApQd+6/nk4gSfJKlD1Ienq6ermysrILe0KxIooidu7c2dXdoBjguexekvl8Bv79RkRElOjaWgKoW0tJSVEvezyeiPu63W71crTLSGtHVrXWvvYYRqMxpm0QERERERERESU7hloaVqtVvdzaN1XaUCuaaYBtbV+7jzZsi0UbRERERERERETJjtMPNbTTcxwOR8S6M9rC61lZWW1uv6amJuK+Ho9HrXOgbT8WbXQGbSF9QA7+9Hp9p/aBiIiIiMITRdHvS9LAv9+IiIgSHUMtjX79+qmXjxw5guLi4rD7Hj16VL1cUFDQrvYjKS8vVwuOatuPRRudwWQyoZemJhMRERERERERUSxx+qHGgAED1Mu7d++OuK+yXRAEnHjiiVG1n5mZiezs7Kja37Nnj3q5pKQkpm0QERERERERESU7hloaI0aMUAuqb9q0Kex+oijiq6++AgAMGjTIb0pga8aMkde+27FjB+rq6sLut3HjRvXy2LFjY94GEREREREREVEyY6ilkZ6ejnHjxgEAVq1ahcOHD4fcb/ny5aiqqgIAXHjhhW06xgUXXAAA8Hq9WLp0ach96uvr8fbbbwMA+vfvj0GDBsW8DSIiIiIiIiKiZMZQK8ANN9wAQC6yPmfOHNTX1/tt37NnD+bPnw8AsNlsmDx5cpvaP++881BUVAQAeO6557B582a/7W63G3PnzlUL0d94441xaYOIiIiIiIiIKJkJkiRJXd2JRHPHHXfgo48+AgAUFRVh6tSpyM/Px/bt27F06VI0NDQAAObNm4drrrnG776bNm3CjBkzAMhT/hYvXhzU/qpVqzBz5kxIkgSj0YjJkydj5MiRcDgcePPNN7Fr1y4AwMiRI7FkyZKQqwbGog0iIiIiIiIiomTFUCuEpqYmzJo1C+vXrw+5XRAEzJo1C7NmzQraFk2oBQBLly7F/Pnz4fF4Qm4fMmQIXnzxRWRmZobtZyzaICIiIiIiIiJKRgy1wpAkCe+99x7++9//qgXZMzIyMGrUKMyYMQOjRo0Keb9oQy1AXr1w0aJF2LBhAyoqKmA0GlFSUoJLLrkEU6ZMUYvWRxKLNoiIiIiIiIiIkg1DLSIiIiIiIiIiSjosFE9EREREREREREmHoRYRERERERERESUdhlpERERERERERJR0GGoREREREREREVHSYahFRERERERERERJh6EWERERERERERElHYZaRERERERERESUdBhqERERERERERFR0mGoRURERERERERESYehFhERERERERERJR2GWkRERERERERElHQYahERERERERERUdJhqEVEREREREREREmHoRYRERERERERESUdQ1d3gIiCSZKE999/H//+97+xY8cONDY2Ijc3F2PGjMG0adMwdOjQNrdZVlaGiRMntqs/O3fujFkbWhMmTMChQ4eiuv/69euRm5vbrmN3tXicz0Bff/01Xn31Vfzvf//D8ePHYTab0bdvX0yYMAHTp09HRkZGq23s2rULCxcuxKZNm3Ds2DGkpaVhwIABuOyyy3D55ZdDr9d3ShuJLBnOpSRJWLlyJd555x1s3boVVVVVMBqNKCwsxPjx4zFjxgwUFBREbKMnvDaT4VzG6jx099clkLjnk++bRERE8SVIkiR1dSeIqIXT6cTs2bOxevXqkNv1ej3uvPNO3HrrrW1qt71/WAuCgB9++CFmbSjq6+sxevRoRPtfULL+cR6v86n1xBNPYMGCBWG35+bm4q9//StGjBgRdp9ly5Zh3rx58Hg8IbePHj0azz33XMQP4bFoI5Elw7msqanBXXfdhc8//zxsGyaTCf/3f/+Hyy67LOT2nvDaTIZzGavz0N1fl0Bin0++bxIREcUXQy2iBHP33Xfj/fffBwAMGDAAU6ZMQU5ODr7//nu8/vrraGxsBCD/gT1p0qSo221qaor4QVfr+eefx/fffw8AuOOOO3D77bfHrA3F//73P1x77bUAgF/96lcYMmRIxPbOOussmEymqI6dSOJ1PhULFizAE088AQAwGo2YMmUKhgwZgtraWnzyySf46quvAADp6en4z3/+g+Li4qA21q1bh1tuuQWSJMFiseCaa67B4MGDUVlZibfeegu7du0CAIwfPx4vvfQSdLrgmeuxaCPRJfq59Pl8mDFjhrpfQUEBrrzySpxwwgloaGjA+vXr8fHHH8Pn80EQBDz//POYMGFCUD96wmsz0c8lEJvz0BNel0Bin0++bxIREcWZREQJY/369VJJSYlUUlIizZgxQ3I6nX7b9+zZI40dO1YqKSmRxo4dK9XV1cW8D++++67ah1tuuUXy+XxxaePVV19V99m7d28sup5w4n0+HQ6HNHz4cKmkpEQaM2aM9MMPP/ht9/l80p/+9Ce1D3PmzAlqw+VySRMmTJBKSkqk4cOHS9u2bQvafvvtt6ttvPfee3FpI9Elw7l86623/PrY0NAQtM/KlSulU045RSopKZHOPPPMoMchSd3/tZkM51KSOn4eesLrUpKS53y2hu+bRERE7ZOcX8kRdVMvv/wyAMBgMODhhx+G2Wz22z5gwAD84Q9/AAA4HA4sW7YspscvLy/HH//4RwBAZmYmHnnkEQiCEJc2lFohSk2S7ije5/Pzzz9XRyDcfPPNOOmkk/y2C4KAO+64A3369AEArFy5El6v12+fjz/+GGVlZWobp556qt92k8mExx9/XJ2a9MILLwT1IxZtJLpkOJdvvPEGAPk19dRTT8FqtQYdR6n9A8iv1bVr1wbt091fm8lwLoGOn4ee8LoEkud8RsL3TSIiovZjqEWUIBwOBzZs2AAAOPPMM0NORwGAn//858jOzgYAfPjhhzHtw/z581FbWwsAuPfee5GTkxO3NpQ/zgcOHJi0U14i6YzzqXxgBYBBgwaF3Een02Hw4MEA5Gkw1dXVfttXrFgBQP5gNnXq1JBt2Gw2XHHFFQDkgtP79u2LeRuJLBnOZX19PbZu3QoAOP300yPW0fnZz36mXv7222+Dtnfn12YynEtFR89Dd39dAsl1PiPh+yYREVH78R2RKEFs3rwZPp8PADBu3Liw++l0OowZMwaA/IG0pqYmJsf/4osv8NFHHwEARo0ahcsvvzxubUiShN27dwMASkpK2tnjxNYZ5zM1NVW9XFpaGna/w4cPA5CLJdvtdr9tSi2Yk046CVlZWWHb0D6GwNE9sWgjkSXDuayursaQIUOQm5uLE044IeKxtPdTPkgruvtrMxnOJRCb89DdX5dA8pzPSPi+SURE1DEMtYgShPLHKtD6H6wDBw4EIP+RqxT67ainnnpKvfzb3/42rm0cOnQI9fX1AIATTzwRgDzSZPPmzVizZg127NgBURTb1YdE0RnnU7tE/ZIlS+ByuYL2+fLLL9URPGPHjvUrGlxeXq6GGsp5CGfAgAHqZe2KXLFoI9Elw7ksLi7GsmXLsH79esydOzfisX788Uf1cuCKd939tZkM5xLo+HnoCa9LIHnOZyR83yQiIuoYQ1d3gIhkhw4dUi8XFhZG3Ld3795+91O+gW6vTz/9FNu2bQMAnHfeeX5/xMejDWUKBSB/gz5r1iysWrXK7w/yjIwMTJ8+HbfccgtSUlLa3J+u1hnnc/DgwTjrrLOwdu1a7N27F9OnT8fdd9+NU089FQ0NDVi1ahX+9Kc/wefzITU1Fb/5zW/87q+dVtNaH/Py8qDT6eDz+dQRCbFqI9Elw7lsi3//+9/q5WHDhvlt6+6vzWQ5lx09Dz3hdQkkz/kMh++bREREHcdQiyhBVFVVqZczMzMj7qsdXeFwODp87FdeeUW9fPPNN8e9De0f54899ljIfRwOB/72t79h7dq1eOGFFyJOn0lEnXU+//znP2POnDlYvXo1tm7diuuvvz5on5EjR+L+++8PKhStrfvSWh+NRiOsVivq6+v9+hiLNhJdMpzLaK1btw6fffYZACA7Oxvjx4/3297dX5vJci47eh56wusSSJ7zGQ7fN4mIiDqO0w+JEoTT6VQvB67eFEg7tUF7v/b44Ycf1NorI0aMwIgRI+LehvaPc6PRiFtvvRUrVqzAd999h3Xr1uHhhx9WC11v3boVd911l1o3JVl01vm02Wx47LHHcNZZZ4XcLggC+vfvHzTNDJALGkfbR+0+2j7Goo1ElwznMhpHjhzBvffeq16/7bbbgkZzdPfXZrKcy46eh57wugSS53yGwvdNIiKi2OBILaIEoV0CvLV6HNrtbV06PNC//vUv9XJ7R2m1tY3y8nIA8oeQl19+GaNHj1a39erVC5MnT8ZZZ52FKVOm4OjRo9i4cSNWrFiBiy++uF396wqddT5XrFiB3/3ud3A6ncjLy8PkyZMxYMAANDQ0YN26dfj444/x73//Gx9++CFeeeUVv+kt2mkr0dSAUfbR9jEWbSS6ZDiXramqqsIvfvELVFZWAgDGjx+P6dOnB+3X3V+byXIuO3oeesLrEkie8xkK3zeJiIhig6EWUYLQjpjweDwR/0B3u93q5bYUpA3U0NCA999/HwBQUFCACRMmdEobr7/+Ourr61FXV4f8/PyQ++Tl5eH+++/HrFmzAABvvvlmUv1x3hnnc+XKlbjnnnsgiiJ+8pOf4Pnnn/dbqWvy5MlYv349br/9djQ0NODmm2/G8uXL1W/ztSMbPB5Pq8dT+mk0GtXbYtFGokuGcxlJRUUFbrzxRuzduxcA0LdvXzz11FMQBCFo3+7+2kyWc9nR89ATXpdA8pzPQHzfJCIiih1OPyRKEFarVb0canUlLe0f59FMLQln3bp16rHOP/986HRt/y+hvW2kpqaG/cNcMWHCBPXDw5YtW5JqKkW8z6ckSXj00UchiiLsdjv+8pe/+H3QUpxxxhlq4eKamhq8/PLL7eqjdh/tB8lYtJHokuFchnPw4EFMmzZNXSUuPz8fCxcujFhrpzu/NpPpXHbkPPSE1yWQXOdTi++bREREscNQiyhBpKenq5dbK2Kr3d6RQrCrVq1SL19wwQVd1kY4er0effv2BSB/IEmmIsbxPp87duxAaWkpAOCiiy6KWMtlypQpsFgsAIA1a9aE7GNNTU3E43k8HjQ2Ngb1MRZtJLpkOJehbN26Fddccw0OHDgAQF4dbvHixa2uEheNZH1tJuu5DCfceegJr0sgec8n3zeJiIhih6EWUYLo16+fevnIkSMR9z169Kh6uaCgoF3HE0VR/cM7Ly+vXQXiY9FGa5JtOowi3udz//796uWSkpKI+5pMJgwYMAAAUFZW1q4+lpeXq9/4a/sYizYSXTKcy0Dr1q3D9ddfr9bQGjhwIJYuXYri4uKo+hSNZHxtJuO5bE2o89ATXpdAcp5Pvm8SERHFFkMtogSh/DEMQJ0qFI6yXRAEnHjiie063rZt29RvcCdMmBCyvk482igtLcWiRYvwzDPPYPXq1a3urxTHNRqNsNvtbe5jV+nM8xnN9CJleoter1dvy8zMRHZ2dlR93LNnj3pZ++EuFm0kumQ4l1qrVq3Cbbfdpo6+GTZsGJYsWYK8vLyI7faE12YynMtYnIee8LoEkuN8BuL7JhERUWwx1CJKECNGjFC/Xd20aVPY/URRVJcBHzRokN/0i7bYsmWLennYsGGd1saxY8fwyCOP4IUXXsAbb7wRcd99+/ap374PGTIk4geFRBPv86kNKLZt2xZxX6/XqxYJDxyhMGbMGADyNJu6urqwbWzcuFG9PHbs2Ji3kciS5VwCwJdffonZs2erxcHHjx+PV155BZmZma32oye8NpPhXMbqPHT31yWQHOczEN83iYiIYouhFlGCSE9Px7hx4wDIIy0OHz4ccr/ly5ejqqoKAHDhhRe2+3jfffedevnUU0/ttDYGDx6sFrFdt25d2McJAH//+9/Vy5MmTWpXH7tKvM/nkCFD1Odx5cqVEafevPPOO6ivrwcghxxaSj0Xr9eLpUuXhrx/fX093n77bQBA//79MWjQoJi3kciS5VxWVlZi9uzZakHsc889F//4xz/8imlH0hNem8lwLmN1Hrr76xJIjvMZiO+bREREscVQiyiB3HDDDQDkwr1z5sxR/0BW7NmzB/PnzwcA2Gw2TJ48ud3HUqacGI1Gvykc8W7DbDZjypQpAOTHeffddwc9TgBYsGAB3nnnHQBy3ZTLL7+8XX3sSvE8nyaTCdOnTwcANDY24s4771Q/tGl9/fXXeOSRRwDI5+n666/3237eeeehqKgIAPDcc89h8+bNftvdbjfmzp2rTpe58cYbg44RizYSXTKcy//7v/9T7zd06FA8++yzMJlMUfejp7w2E/1cxuo89ITXJZD45zMQ3zeJiIhiS5AkSerqThBRizvuuAMfffQRAKCoqAhTp05Ffn4+tm/fjqVLl6KhoQEAMG/ePFxzzTV+9920aRNmzJgBQJ5Gsnjx4rDHGTFiBBobG5Gbm4v169e3q6/tbaOurg6TJ0/Gvn37AAC9e/fG1VdfjX79+qG6uhorVqxQP4DZbDYsWrQIQ4YMaVcfu1o8z2dTUxOuvfZabN++HYBcR+fyyy/HoEGDIIoiNm7ciOXLl8Pr9QIAHnroIUydOjWoj6tWrcLMmTMhSRKMRiMmT56MkSNHwuFw4M0338SuXbsAACNHjsSSJUtCTmeJRRuJLpHP5Y8//oiLLroIylv63Llz1RXQIsnIyMDo0aPV6z3ltZnI5xKI3XnoCa9LIPHPpxbfN4mIiGKLoRZRgmlqasKsWbPC/rErCAJmzZqFWbNmBW2LNtSqr6/HqFGjAAAnnHACPvjggzb3s6NtHDlyBLNmzYpYpyQ/Px9PP/20epxkFO/zWVVVhbvuusuvLk4go9GI3//+97j22mvD7rN06VLMnz9frcUUaMiQIXjxxRcj1maKRRuJLJHP5dNPP41//vOfbXk4YfvSE16biXwuFbE6D939dQkkx/kE+L5JREQUD4au7gAR+bNYLHjppZfw3nvv4b///a9a5DcjIwOjRo3CjBkzOvzHqvKtNYB2F5rvaBv5+fl444038P7772P58uX4/vvvUVtbi9TUVPTr1w/nn38+rr76athstnb1L1HE+3xmZWXhlVdewcqVK/Huu+/i22+/RWVlJUwmEwoLCzF+/Hhcd911KCwsjNjO1KlTMXr0aCxatAgbNmxARUUFjEYjSkpKcMkll2DKlCmtLhMfizYSWSKfS2XETSz0hNdmIp9LRazOQ3d/XQLJcT4Bvm8SERHFA0dqERERERERERFR0mGheCIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSDkMtIiIiIiIiIiJKOgy1iIiIiIiIiIgo6TDUIiIiIiIiIiKipMNQi4iIiIiIiIiIkg5DLSIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSjqGrO0BERJ1PkiSsXLkSq1evxjfffIOKigrU19fDarUiKysLw4YNw89//nOcc845rba1Y8cOLFu2DF9++SXKysrg9XqRnZ2NYcOG4bLLLsOECRPi0saECRNw6NAhAMDOnTsjtn/dddfhyy+/BACsXLkSRUVFIds644wzsGDBAnz00Ud47rnnsH//fmRmZmLYsGGYOXMmBg0apN4nls9hW5+DNWvW4NZbbwUAFBYWYtWqVa22f8stt2Dt2rUAgGXLlmHo0KFR9aujduzYgZycHOTm5nbK8YiIiIio5xAkSZK6uhNERNR5fvzxR9x5553YtWtXq/ueeeaZePbZZ2Gz2YK2OZ1OzJs3D//5z38itnHWWWfhT3/6E1JTU2PaRrxCrSlTpmD27NkIfHt87733UFJSAiB2zyHQvudAFEWcffbZqKioAAC8/vrrGDFiRNj7VlVV4cwzz4TX68UJJ5yADz74oNV+x8LWrVtx0003ITs7G//617/Qq1evTjkuEREREfUMHKlFRNSDlJeX49prr4XD4QAA5Obm4uyzz0ZhYSF0Oh2OHDmCdevWqWHRunXr8PTTT+OBBx7wa0cURcycOROff/65etuIESMwZswYmEwm/PDDD1i1ahV8Ph/Wrl2L22+/HQsXLoROp4tpG7FWU1ODBx54ICjQGjBggBpoxeo5BNr/HOj1elxyySV4+eWXAQDLly+PGGotX74cXq8XADBp0qT2P0FtNG/ePNTW1qK2thYzZszAokWLkJeX12nHJyIiIqLujaEWEVEP8swzz6hhzFlnnYW//vWvSElJ8dvH6/Xisccew+LFiwEAb7/9NubOneu33yuvvKIGMVarFU8//XTQFMGtW7fihhtuQENDAzZu3Ih33nkHl19+eUzbiLXvvvsOAHDOOedg7ty5yM/Px/bt21FVVaXuE6vnEOjYczBp0iQ11Prggw/wu9/9Dnq9PuTjeu+99wAAgiDgkksuac9T0y7PP/88ZsyYgf3792Pfvn2YMWMG/vWvfzHYIiIiIqKYYKF4IqIeoqmpCR9++CEAwGw249FHHw0KWQDAYDBg7ty5SE9PBwA0NjZi79696nafz4cFCxao1x977LGQNa+GDh3qNzrpjTfeiGkb8VJSUoK//e1vGDBgAKxWK0aPHo3zzz8fQOyeQ6Djz8GgQYPUGl/Hjx/Hxo0bQz6egwcP4ttvvwUAjBkzBoWFhdE9ETGQl5eHJUuWYMCAAQCA/fv347rrrkN5eXmn9YGIiIiIui+GWkREPYTH48F9992HW2+9FbNmzUJOTk7YfU0mE0444QT1ekNDg3p5y5YtqKysBACcdNJJuOCCC8K28/Of/xynnHIKzjzzTAwfPlyd1heLNuJl8uTJMBqNIbfF6jkEYvMcaEetvf/++yHv++6776qXL7300rDHiJfc3FwsXrwYJ554IgDgwIEDmD59Oo4ePdrpfSEiIiKi7oXTD4mIeoj09HRMmTIlqn3LysrQ2NioXlfqMQHAhg0b1MutrexnMpnw9ttvB90eizbiZfjw4WG3xeo5BGLzHFx88cV48skn4fV68cknn2DevHkwmUx++yhTD81mM372s59F1XdArh12/fXXR71/a7Sh3sGDBzF9+nS8+uqrnIpIRERERO3GUIuIqAcrLy/H/v37cfDgQRw8eBB79uzBjh07cOTIEb/9tKOjtNsGDhzYruPGoo14CVwZsTXteQ6B2DwHOTk5GD9+PNasWYO6ujqsXbsW5513nrp969at2L9/PwBg4sSJSEtLi7ptj8eDffv2tatf0SgtLcV3333HUIuIiIiI2o2hFhFRD1NZWYmXXnoJ7733HioqKsLup9frIYpi0O3aoul2u71dfYhFG/Gi1MGKpKPPIRC75+Cyyy7DmjVrAMhTELWhlnbqYWeuehiN9PR0tdYWEREREVF7MNQiIupB/ve//2HmzJnq6n0Kk8mEfv36oaSkBMOHD8f48ePx4IMP4ssvvwxqw+PxdLgfsWijLdpSh8tgiPzWGIvnEIjdczBx4kSkp6ejtrYWn332GRoaGmCz2SCKIj744AMAQFZWFs4444w2tVtUVISdO3fGpI9OpxO333471q9fD0AO8RYuXIj+/fvHpH0iIiIi6pkYahER9RDV1dX49a9/rYYxJ598MqZPn46RI0eib9++0Ov1fvs3NTWFbEc7kqm2trZdfYlFG1qSJEEQhLDbXS5Xh48BxO45BGL3HJjNZlx44YV444034HQ6sWrVKlxyySXYtGkTjh8/DgC46KKLWg3r4qWpqQm33XYbvvjiCwBARkYGFi5ciFNOOaVL+kNERERE3QdDLSKiHmLZsmXqanunnnoqXn/99aCi4lra6XHakU7FxcXq5b1797Z63IULF+LAgQMoLi7GxRdfjLy8vJi0odO1LODrdrthNpvD3j/SFMG2iNVzCMTmeVRMmjQJb7zxBgBg5cqVuOSSS7Bq1Sq/7V2hsbERv/zlL9XRahkZGXjllVdw8sknd0l/iIiIiKh70bW+CxERdQfffvutevmyyy6LGMaUlZXh0KFD6nWfz6deHjlypHp53bp1rR739ddfx9KlS/HEE0/A7XbHrA2LxaJu14ZHgSoqKoKKtrdXrJ5DIDbPgWLUqFHo06eP2pbb7cbq1asBACeccAKGDBnSavvxcNttt/kFWosWLWKgRUREREQxw1CLiKiH0AYh1dXVEfd99NFH/a57vV718umnn46cnBwAwHfffYfPP/88bDuff/65uvpeSUmJOjopFm307t3bb59w/vnPf4bd1laxeg6B2DwHWsporPr6eixduhSlpaV+t3eFadOmwWg0IjMzE4sWLcKgQYO6rC9ERERE1P0w1CIi6iG0gcLSpUtx8ODBoH2qq6sxe/ZsfPrpp363a2tDmUwm3Hzzzer1OXPmYPPmzUFt7dq1C/fee696/ZZbbolpG+PGjVMvP/vss2qIo/D5fHjxxRexZMmSoHbbK1bPIRCb50Br0qRJal2xv/zlLwAAQRBw6aWXtvaw4ub888/HX//6VwZaRERERBQXgtSWJaGIiChplZaW4qKLLlKLpptMJpx//vno378/3G439u7dizVr1qijkYxGo7pC34MPPohrr71WbUuSJPzqV79Sp7gJgoDTTz8dw4cPh8FgwI4dO7Bq1Sp1dNIFF1ygBi2xaqO6uho//elPUVdXBwBISUnBhRdeiD59+qCqqgqfffYZysrKYDQacfbZZ6sh08qVK1FUVOTXlwkTJqhTBSOt+BfL5zBWz6PWtGnT/IKxsWPHYvHixWH3JyIiIiJKZgy1iIh6kE8++QT33HMPnE5n2H0EQcCUKVNw6qmn4oEHHgAAXHXVVZg/f77ffm63G3/84x/x1ltvBRVB17ryyivx0EMPhaw/1dE2vvzyS8yaNQs1NTUh75eeno5HH30UZWVl6nTAjoRaQGyfQyA2z6Ni2bJluP/++9Xr8+fPx1VXXRXx8RARERERJSuGWkREPcyBAwewaNEifPHFFzh8+DBEUYTNZkOfPn0wbNgwXHnllTj55JNRXl6Oc845Bz6fD3a7HatXr4bVag1qb9u2bVi2bBk2bdqE8vJyeL1e5ObmYvTo0bj66qsxatSoVvvUkTaqq6uxePFirFq1CgcPHoQkSSgsLMS5556L6dOnIy8vD6+88krMQq14PIexeh7r6+tx2mmnqatBbtiwAampqa3ej4iIiIgoGTHUIiIi6ibKysowceJEAMBFF12EZ555pot7REREREQUPywUT0RE1E28++676uXLL7+8C3tCRERERBR/DLWIiIi6AY/Hg7feegsAUFBQgPHjx3dxj4iIiIiI4ouhFhERURJyu93qyoo1NTX47W9/q9YFu/baa6HT8S2eiIiIiLo3Q1d3gIiIiNpu3759uPLKK5Geng6HwwFRFAEAhYWFuPbaa7u4d0RERERE8cdQi4iIKAkVFBTA4/GgsrJSvc1iseDxxx+HzWbrwp4REREREXUOzk0gIiJKQmlpaTj99NNhtVpht9tx9tlnY8mSJRgzZkxXd42IiIiIqFMIkiRJXd0JIiIiIiIiIiKituBILSIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSDkMtIiIiIiIiIiJKOgy1iIiIiIiIiIgo6TDUIiIiIiIiIiKipMNQi4iIiIiIiIiIkg5DLSIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSDkMtIiIiIiIiIiJKOv8Ppm7VvylRGj4AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plot unconstrained model results with 95% CIs\n",
+ "sns.scatterplot(\n",
+ " x=[unconstr_performance],\n",
+ " y=[unconstr_disparity],\n",
+ " color=\"black\",\n",
+ " marker=\"*\",\n",
+ " s=100,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_test_results[f\"{PERF_METRIC}_low-percentile\"], unconstr_test_results[f\"{PERF_METRIC}_high-percentile\"]),\n",
+ " (unconstr_disparity, unconstr_disparity),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"|\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_performance, unconstr_performance),\n",
+ " (unconstr_test_results[f\"{DISP_METRIC}_low-percentile\"], unconstr_test_results[f\"{DISP_METRIC}_high-percentile\"]),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"_\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "# Plot postprocessing of unconstrained model\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=PERF_METRIC,\n",
+ " disp_metric=DISP_METRIC,\n",
+ " show_data_type=SHOW_RESULTS_ON,\n",
+ " constant_clf_perf=constant_clf_accuracy[SHOW_RESULTS_ON],\n",
+ " model_name=r\"$\\bigstar$\",\n",
+ ")\n",
+ "\n",
+ "# Plot inprocessing intervention results with 95% CIs\n",
+ "sns.scatterplot(\n",
+ " x=[inproc_test_results[f\"{PERF_METRIC}_mean\"]],\n",
+ " y=[inproc_test_results[f\"{DISP_METRIC}_mean\"]],\n",
+ " color=\"red\",\n",
+ " marker=\"P\",\n",
+ " s=50,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (inproc_test_results[f\"{PERF_METRIC}_low-percentile\"], inproc_test_results[f\"{PERF_METRIC}_high-percentile\"]),\n",
+ " (inproc_test_results[f\"{DISP_METRIC}_mean\"], inproc_test_results[f\"{DISP_METRIC}_mean\"]),\n",
+ " color='red',\n",
+ " ls=\":\",\n",
+ " marker=\"|\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (inproc_test_results[f\"{PERF_METRIC}_mean\"], inproc_test_results[f\"{PERF_METRIC}_mean\"]),\n",
+ " (inproc_test_results[f\"{DISP_METRIC}_low-percentile\"], inproc_test_results[f\"{DISP_METRIC}_high-percentile\"]),\n",
+ " color='red',\n",
+ " ls=\":\",\n",
+ " marker=\"_\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "# Plot postprocessing of inprocessing model\n",
+ "plot_postprocessing_frontier(\n",
+ " inproc_postproc_results_df,\n",
+ " perf_metric=PERF_METRIC,\n",
+ " disp_metric=DISP_METRIC,\n",
+ " show_data_type=SHOW_RESULTS_ON,\n",
+ " constant_clf_perf=constant_clf_accuracy[SHOW_RESULTS_ON],\n",
+ " model_name=r\"$+$\",\n",
+ " color=\"red\",\n",
+ ")\n",
+ "\n",
+ "# Vertical line with minimum \"useful\" accuracy on this data\n",
+ "curr_const_clf_acc = constant_clf_accuracy[SHOW_RESULTS_ON]\n",
+ "plt.axvline(\n",
+ " x=curr_const_clf_acc,\n",
+ " ls=\"--\",\n",
+ " color=\"grey\",\n",
+ ")\n",
+ "plt.gca().annotate(\n",
+ " \"constant predictor acc.\",\n",
+ " xy=(curr_const_clf_acc, ax_kwargs[\"ylim\"][1] / 2),\n",
+ " zorder=10,\n",
+ " rotation=90,\n",
+ " horizontalalignment=\"right\",\n",
+ " verticalalignment=\"center\",\n",
+ " fontsize=\"small\",\n",
+ " \n",
+ ")\n",
+ "\n",
+ "# Title and legend\n",
+ "ax_kwargs[\"title\"] = f\"Post-processing ({SHOW_RESULTS_ON})\"\n",
+ "ax_kwargs[\"xlim\"] = (curr_const_clf_acc - 1e-2, 0.885)\n",
+ "\n",
+ "plt.legend(\n",
+ " loc=\"upper left\",\n",
+ " bbox_to_anchor=(1.03, 1),\n",
+ " borderaxespad=0)\n",
+ "\n",
+ "plt.gca().set(**ax_kwargs)\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/_sources/examples/parse-folktables-datasets.ipynb.txt b/_sources/examples/parse-folktables-datasets.ipynb.txt
new file mode 100644
index 0000000..8f041bc
--- /dev/null
+++ b/_sources/examples/parse-folktables-datasets.ipynb.txt
@@ -0,0 +1,514 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a4d0fb85",
+ "metadata": {},
+ "source": [
+ "# Obtaining parsed folktables datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "5f222039",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys\n",
+ "import logging\n",
+ "from pathlib import Path\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from folktables import ACSDataSource"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "00d4bd71",
+ "metadata": {},
+ "source": [
+ "**NOTE**: use `MAX_SENSITIVE_GROUPS=2` to generate datasets for binary-group experiments."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "811ad844",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Important constants!\n",
+ "TRAIN_SIZE = 0.7\n",
+ "TEST_SIZE = 0.3\n",
+ "VALIDATION_SIZE = None\n",
+ "\n",
+ "MAX_SENSITIVE_GROUPS = None # keep samples from all groups\n",
+ "\n",
+ "SEED = 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "377fc203",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "assert TRAIN_SIZE + TEST_SIZE + (VALIDATION_SIZE or 0.) == 1 # sanity check"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dae0cfba",
+ "metadata": {},
+ "source": [
+ "**Change** these paths according to where you want the data to be saved to."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "60b5f503",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "root_dir = Path(\"~\").expanduser()\n",
+ "data_dir = root_dir / \"data\" / \"folktables\"\n",
+ "data_dir.mkdir(parents=True, exist_ok=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "ae28e462",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# download 2018 ACS data\n",
+ "from folktables.load_acs import state_list\n",
+ "\n",
+ "data_source = ACSDataSource(\n",
+ " survey_year='2018', horizon='1-Year', survey='person',\n",
+ " root_dir=str(data_dir),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "8afe4020",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(3236107, 286)"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# data is 3236107 rows x 286 columns\n",
+ "acs_data = data_source.get_data(states=state_list, download=True) # use download=True if not yet downloaded\n",
+ "acs_data.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6ea8d039",
+ "metadata": {},
+ "source": [
+ "According to the dataset's datasheet, train/test splits should be stratified by state\n",
+ "(at least for ACSIncome, the remaining tasks seem ambiguous)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "c4e23b32",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "STATE_COL = \"ST\"\n",
+ "\n",
+ "ACS_CATEGORICAL_COLS = {\n",
+ " 'COW', # class of worker\n",
+ " 'MAR', # marital status\n",
+ " 'OCCP', # occupation code\n",
+ " 'POBP', # place of birth code\n",
+ " 'RELP', # relationship status\n",
+ " 'SEX',\n",
+ " 'RAC1P', # race code\n",
+ " 'DIS', # disability\n",
+ " 'ESP', # employment status of parents\n",
+ " 'CIT', # citizenship status\n",
+ " 'MIG', # mobility status\n",
+ " 'MIL', # military service\n",
+ " 'ANC', # ancestry\n",
+ " 'NATIVITY',\n",
+ " 'DEAR',\n",
+ " 'DEYE',\n",
+ " 'DREM',\n",
+ " 'ESR',\n",
+ " 'ST',\n",
+ " 'FER',\n",
+ " 'GCL',\n",
+ " 'JWTR',\n",
+ "# 'PUMA',\n",
+ "# 'POWPUMA',\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "a37a6792",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from copy import deepcopy\n",
+ "from typing import Tuple\n",
+ "from functools import reduce\n",
+ "from operator import or_\n",
+ "\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from folktables import BasicProblem\n",
+ "\n",
+ "def split_folktables_task(\n",
+ " acs_data: pd.DataFrame,\n",
+ " acs_task: BasicProblem,\n",
+ " train_size: float,\n",
+ " test_size: float,\n",
+ " validation_size: float = None,\n",
+ " max_sensitive_groups: int = None,\n",
+ " stratify_by_state: bool = True,\n",
+ " save_to_disk: Path = None,\n",
+ " file_prefix: str = \"\",\n",
+ " seed: int = 42,\n",
+ " ) -> Tuple[pd.DataFrame, ...]:\n",
+ " \"\"\"Train/test split a given folktables task (for train/test/validation).\n",
+ " \n",
+ " According to the dataset's datasheet, (at least) the ACSIncome\n",
+ " task should be stratified by state.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " acs_data : pd.DataFrame\n",
+ " acs_task : folktables.BasicProblem\n",
+ " train_size : float\n",
+ " test_size : float\n",
+ " validation_size : float\n",
+ " max_sensitive_groups : int, optional\n",
+ " If the number of protected groups exceeds this, discard samples belonging to\n",
+ " the groups with lowest relative size.\n",
+ " stratify_by_state : bool, optional\n",
+ " Whether to stratify splits by state.\n",
+ " seed : int, optional\n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " (train_data, test_data, validation_data) : Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]\n",
+ " \"\"\"\n",
+ " # Sanity check\n",
+ " assert train_size + test_size + (validation_size or 0.0) == 1\n",
+ " assert all(val is None or 0 <= val <= 1 for val in (train_size, test_size, validation_size))\n",
+ "\n",
+ " # Add State to the feature columns so we can do stratified splits (will be removed later)\n",
+ " remove_state_col_later = False # only remove the state column later if we were the ones adding it\n",
+ " if stratify_by_state:\n",
+ " if STATE_COL not in acs_task.features:\n",
+ " acs_task = deepcopy(acs_task) # we're gonna need to change this task object\n",
+ " acs_task.features.append(STATE_COL)\n",
+ " remove_state_col_later = True\n",
+ " else:\n",
+ " remove_state_col_later = False\n",
+ "\n",
+ " # Pre-process data + select task-specific features\n",
+ " features, label, group = acs_task.df_to_numpy(acs_data)\n",
+ "\n",
+ " # Make a DataFrame with all processed data\n",
+ " df = pd.DataFrame(data=features, columns=acs_task.features)\n",
+ " df[acs_task.target] = label\n",
+ "\n",
+ " # Correct column ordering (1st: label, 2nd: group, 3rd and onwards: features)\n",
+ " cols_order = ([acs_task.target, acs_task.group] +\n",
+ " list(set(acs_task.features) - {acs_task.group}))\n",
+ " if remove_state_col_later:\n",
+ " cols_order = [col for col in cols_order if col != STATE_COL]\n",
+ "\n",
+ " # Save state_col for stratified split\n",
+ " if stratify_by_state:\n",
+ " state_col_data = df[STATE_COL]\n",
+ "\n",
+ " # Enforce correct ordering in df\n",
+ " df = df[cols_order]\n",
+ "\n",
+ " # Drop samples from sensitive groups with low relative size\n",
+ " # (e.g., original paper has only White and Black races)\n",
+ " if max_sensitive_groups is not None and max_sensitive_groups > 0:\n",
+ " group_sizes = df.value_counts(acs_task.group, sort=True, ascending=False)\n",
+ " big_groups = group_sizes.index.to_list()[: max_sensitive_groups]\n",
+ "\n",
+ " big_groups_filter = reduce(\n",
+ " or_,\n",
+ " [(df[acs_task.group].to_numpy() == g) for g in big_groups],\n",
+ " )\n",
+ " \n",
+ " # Keep only big groups\n",
+ " df = df[big_groups_filter]\n",
+ " state_col_data = state_col_data[big_groups_filter]\n",
+ " \n",
+ " # Group values must be sorted, and start at 0\n",
+ " # (e.g., if we deleted group=2 but kept group=3, the later should now have value 2)\n",
+ " if df[acs_task.group].max() > df[acs_task.group].nunique():\n",
+ " map_to_sequential = {g: idx for g, idx in zip(big_groups, range(len(big_groups)))}\n",
+ " df[acs_task.group] = [map_to_sequential[g] for g in df[acs_task.group]]\n",
+ "\n",
+ " logging.warning(f\"Using the following group value mapping: {map_to_sequential}\")\n",
+ " assert df[acs_task.group].max() == df[acs_task.group].nunique() - 1\n",
+ "\n",
+ " ## Try to enforce correct types\n",
+ " # All columns should be encoded as integers, dtype=int\n",
+ " types_dict = {\n",
+ " col: int for col in df.columns\n",
+ " if df.dtypes[col] != \"object\"\n",
+ " }\n",
+ " \n",
+ " df = df.astype(types_dict)\n",
+ " # ^ set int types right-away so that categories don't have floating points\n",
+ " \n",
+ " # Set categorical columns to start at value=0! (necessary for sensitive attributes)\n",
+ " for col in (ACS_CATEGORICAL_COLS & set(df.columns)):\n",
+ " df[col] = df[col] - df[col].min()\n",
+ "\n",
+ " # Set categorical columns to the correct dtype \"category\"\n",
+ " types_dict.update({\n",
+ " col: \"category\" for col in (ACS_CATEGORICAL_COLS & set(df.columns))\n",
+ " # if df[col].nunique() < 10\n",
+ " })\n",
+ "\n",
+ " # Plus the group is definitely categorical\n",
+ " types_dict.update({acs_task.group: \"category\"})\n",
+ " \n",
+ " # And the target is definitely integer\n",
+ " types_dict.update({acs_task.target: int})\n",
+ " \n",
+ " # Set df to correct types\n",
+ " df = df.astype(types_dict)\n",
+ "\n",
+ " # ** Split data in train/test/validation **\n",
+ " train_idx, other_idx = train_test_split(\n",
+ " df.index,\n",
+ " train_size=train_size,\n",
+ " stratify=state_col_data if stratify_by_state else None,\n",
+ " random_state=seed,\n",
+ " shuffle=True)\n",
+ "\n",
+ " train_df, other_df = df.loc[train_idx], df.loc[other_idx]\n",
+ " assert len(set(train_idx) & set(other_idx)) == 0\n",
+ "\n",
+ " # Split validation\n",
+ " if validation_size is not None and validation_size > 0:\n",
+ " new_test_size = test_size / (test_size + validation_size)\n",
+ "\n",
+ " val_idx, test_idx = train_test_split(\n",
+ " other_df.index,\n",
+ " test_size=new_test_size,\n",
+ " stratify=state_col_data.loc[other_idx] if stratify_by_state else None,\n",
+ " random_state=seed,\n",
+ " shuffle=True)\n",
+ "\n",
+ " val_df, test_df = other_df.loc[val_idx], other_df.loc[test_idx]\n",
+ " assert len(train_idx) + len(val_idx) + len(test_idx) == len(df)\n",
+ " assert np.isclose(len(val_df) / len(df), validation_size)\n",
+ "\n",
+ " else:\n",
+ " test_idx = other_idx\n",
+ " test_df = other_df\n",
+ "\n",
+ " assert np.isclose(len(train_df) / len(df), train_size)\n",
+ " assert np.isclose(len(test_df) / len(df), test_size)\n",
+ " \n",
+ " # Optionally, save data to disk\n",
+ " # Warning: depends on global notebook variables\n",
+ " if save_to_disk:\n",
+ " subfolder_name = f\"train={train_size:.2}_test={test_size:.2}\"\n",
+ " if validation_size:\n",
+ " subfolder_name = f\"{subfolder_name}_validation={validation_size:.2}\"\n",
+ " if max_sensitive_groups is not None and max_sensitive_groups > 0:\n",
+ " subfolder_name = f\"{subfolder_name}_max-groups={max_sensitive_groups}\"\n",
+ "\n",
+ " # Create folder\n",
+ " save_to_disk = save_to_disk / subfolder_name\n",
+ " save_to_disk.mkdir(parents=True, exist_ok=True)\n",
+ "\n",
+ " print(f\"Saving data to folder '{str(save_to_disk)}' with prefix '{file_prefix}'.\")\n",
+ " train_df.to_csv(save_to_disk / f\"{file_prefix}.train.csv\", header=True, index_label=\"index\")\n",
+ " test_df.to_csv(save_to_disk / f\"{file_prefix}.test.csv\", header=True, index_label=\"index\")\n",
+ " \n",
+ " if validation_size:\n",
+ " val_df.to_csv(save_to_disk / f\"{file_prefix}.validation.csv\", header=True, index_label=\"index\")\n",
+ "\n",
+ " return (train_df, test_df, val_df) if validation_size else (train_df, test_df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "6d0b1d1b",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/5 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSIncome'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSPublicCoverage'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSMobility'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSEmployment'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSTravelTime'.\n"
+ ]
+ }
+ ],
+ "source": [
+ "import folktables\n",
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "all_acs_tasks = [\n",
+ " 'ACSIncome',\n",
+ " 'ACSPublicCoverage',\n",
+ " 'ACSMobility',\n",
+ " 'ACSEmployment',\n",
+ " 'ACSTravelTime',\n",
+ "]\n",
+ "\n",
+ "const_predictor_acc = {}\n",
+ "\n",
+ "# Generate data and save to disk, for all tasks\n",
+ "for task_name in tqdm(all_acs_tasks):\n",
+ "\n",
+ " # Dynamically import/load task object\n",
+ " task_obj = getattr(folktables, task_name)\n",
+ "\n",
+ " # Process data\n",
+ " data = split_folktables_task(\n",
+ " acs_data,\n",
+ " task_obj,\n",
+ " train_size=TRAIN_SIZE,\n",
+ " test_size=TEST_SIZE,\n",
+ " validation_size=VALIDATION_SIZE,\n",
+ " max_sensitive_groups=MAX_SENSITIVE_GROUPS,\n",
+ " stratify_by_state=True,\n",
+ " seed=SEED,\n",
+ " save_to_disk=data_dir,\n",
+ " file_prefix=task_name,\n",
+ " )\n",
+ " \n",
+ " const_predictor_acc[task_name] = {\n",
+ " curr_type: max(curr_data[task_obj.target].mean(), 1-curr_data[task_obj.target].mean())\n",
+ " for curr_type, curr_data in zip([\"train\", \"test\", \"validation\"], data)\n",
+ " }"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c550577",
+ "metadata": {},
+ "source": [
+ "## Log the constant classifier accuracy for each dataset and data type\n",
+ "The constant classifier always predicts either class 1 or 0 (whichever has highest prevalence in the dataset)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "5bc9927c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{\n",
+ " \"ACSIncome\": {\n",
+ " \"train\": 0.6308792859288503,\n",
+ " \"test\": 0.6315490137178332\n",
+ " },\n",
+ " \"ACSPublicCoverage\": {\n",
+ " \"train\": 0.7028697217125459,\n",
+ " \"test\": 0.7021789994933921\n",
+ " },\n",
+ " \"ACSMobility\": {\n",
+ " \"train\": 0.736245988197536,\n",
+ " \"test\": 0.7358789362364587\n",
+ " },\n",
+ " \"ACSEmployment\": {\n",
+ " \"train\": 0.5450051516946736,\n",
+ " \"test\": 0.5446858522526532\n",
+ " },\n",
+ " \"ACSTravelTime\": {\n",
+ " \"train\": 0.5621626781395467,\n",
+ " \"test\": 0.5626382117978613\n",
+ " }\n",
+ "}\n"
+ ]
+ }
+ ],
+ "source": [
+ "import json\n",
+ "print(json.dumps(const_predictor_acc, indent=2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "714cd7d7",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.16"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/_sources/examples/relaxed-equalized-odds.usage-example-folktables.ipynb.txt b/_sources/examples/relaxed-equalized-odds.usage-example-folktables.ipynb.txt
new file mode 100644
index 0000000..46706d4
--- /dev/null
+++ b/_sources/examples/relaxed-equalized-odds.usage-example-folktables.ipynb.txt
@@ -0,0 +1,960 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "be6d19dc",
+ "metadata": {},
+ "source": [
+ "# Achieving _equalized odds_ on real-world ACS data (ACSIncome)\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with: ```pip install \"error_parity[dev]\"```\n",
+ "\n",
+ "**DATA**: the data used in this notebook can be easily downloaded and parsed using the companion notebook `parse-folktables-datasets.ipynb`;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "from pathlib import Path\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "ba678d67",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.9`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "8ecf4a84",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ACS_TASK = \"ACSIncome\"\n",
+ "SEED = 42\n",
+ "\n",
+ "data_dir = Path(\"~\").expanduser() / \"data\" / \"folktables\" / \"train=0.6_test=0.2_validation=0.2_max-groups=4\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "c617827f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ACS_CATEGORICAL_COLS = {\n",
+ " 'COW', # class of worker\n",
+ " 'MAR', # marital status\n",
+ " 'OCCP', # occupation code\n",
+ " 'POBP', # place of birth code\n",
+ " 'RELP', # relationship status\n",
+ " 'SEX',\n",
+ " 'RAC1P', # race code\n",
+ " 'DIS', # disability\n",
+ " 'ESP', # employment status of parents\n",
+ " 'CIT', # citizenship status\n",
+ " 'MIG', # mobility status\n",
+ " 'MIL', # military service\n",
+ " 'ANC', # ancestry\n",
+ " 'NATIVITY',\n",
+ " 'DEAR',\n",
+ " 'DEYE',\n",
+ " 'DREM',\n",
+ " 'ESR',\n",
+ " 'ST',\n",
+ " 'FER',\n",
+ " 'GCL',\n",
+ " 'JWTR',\n",
+ "# 'PUMA',\n",
+ "# 'POWPUMA',\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "034be8ef",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import folktables\n",
+ "\n",
+ "def split_X_Y_S(data, label_col: str, sensitive_col: str, ignore_cols=None, unawareness=False) -> tuple:\n",
+ " ignore_cols = ignore_cols or []\n",
+ " ignore_cols.append(label_col)\n",
+ " if unawareness:\n",
+ " ignore_cols.append(sensitive_col)\n",
+ " \n",
+ " feature_cols = [c for c in data.columns if c not in ignore_cols]\n",
+ " \n",
+ " return (\n",
+ " data[feature_cols], # X\n",
+ " data[label_col].to_numpy().astype(int), # Y\n",
+ " data[sensitive_col].to_numpy().astype(int), # S\n",
+ " )\n",
+ "\n",
+ "def load_ACS_data(dir_path: str, task_name: str, sensitive_col: str = None) -> pd.DataFrame:\n",
+ " \"\"\"Loads the given ACS task data from pre-generated datasets.\n",
+ "\n",
+ " Returns\n",
+ " -------\n",
+ " dict[str, tuple]\n",
+ " A list of tuples, each tuple composed of (features, label, sensitive_attribute).\n",
+ " The list is sorted as follows\" [, , ].\n",
+ " \"\"\"\n",
+ " # Load task object\n",
+ " task_obj = getattr(folktables, task_name)\n",
+ "\n",
+ " # Load train, test, and validation data\n",
+ " data = dict()\n",
+ " for data_type in ['train', 'test', 'validation']:\n",
+ " # Construct file path\n",
+ " path = Path(dir_path) / f\"{task_name}.{data_type}.csv\"\n",
+ " \n",
+ " if not path.exists():\n",
+ " print(f\"Couldn't find data for '{path.name}' (this is probably expected).\")\n",
+ " continue\n",
+ "\n",
+ " # Read data from disk\n",
+ " df = pd.read_csv(path, index_col=0)\n",
+ "\n",
+ " # Set categorical columns\n",
+ " cat_cols = ACS_CATEGORICAL_COLS & set(df.columns)\n",
+ " df = df.astype({col: \"category\" for col in cat_cols})\n",
+ " \n",
+ " data[data_type] = split_X_Y_S(\n",
+ " df,\n",
+ " label_col=task_obj.target,\n",
+ " sensitive_col=sensitive_col or task_obj.group,\n",
+ " )\n",
+ "\n",
+ " return data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "caaec009",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load and pre-process data\n",
+ "all_data = load_ACS_data(\n",
+ " dir_path=data_dir, task_name=ACS_TASK,\n",
+ ")\n",
+ "\n",
+ "# Unpack into features, label, and group\n",
+ "X_train, y_train, s_train = all_data[\"train\"]\n",
+ "X_test, y_test, s_test = all_data[\"test\"]\n",
+ "if \"validation\" in all_data:\n",
+ " X_val, y_val, s_val = all_data[\"validation\"]\n",
+ "else:\n",
+ " print(\"No validation data.\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "b5206c61",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "n_groups = len(np.unique(s_train))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "4e391ba2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Global prevalence: 37.2%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_train) / len(y_train)\n",
+ "print(f\"Global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "6e709bb8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.ensemble import RandomForestClassifier\n",
+ "\n",
+ "rf_clf = RandomForestClassifier(n_jobs=-2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "0ed640b6",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 2min 7s, sys: 2.08 s, total: 2min 10s\n",
+ "Wall time: 18.5 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "RandomForestClassifier(n_jobs=-2) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "RandomForestClassifier(n_jobs=-2)"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "rf_clf.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "85ba7bf6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "predictor = lambda X: rf_clf.predict_proba(X)[:, -1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6af00a5e",
+ "metadata": {},
+ "source": [
+ "## Construct the fair optimal classifier (derived from the given predictor)\n",
+ "- Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);\n",
+ " - optionally, this constraint can be relaxed by some small tolerance;\n",
+ "- Optimality is measured as minimizing the expected loss,\n",
+ " - parameterized by the given cost of false positive and false negative errors;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "3235a0d0-fd42-4537-ba2d-9e7b4678da5b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "if \"validation\" in all_data:\n",
+ " X_fit, y_fit, s_fit = X_val, y_val, s_val\n",
+ "else:\n",
+ " X_fit, y_fit, s_fit = X_train, y_train, s_train"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "48f713ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "postproc_clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=\"equalized_odds\",\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " false_pos_cost=FALSE_POS_COST,\n",
+ " false_neg_cost=FALSE_NEG_COST,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "3dbca6de",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:ROC convex hull contains 8.7% of the original points.\n",
+ "INFO:root:ROC convex hull contains 9.7% of the original points.\n",
+ "INFO:root:ROC convex hull contains 6.9% of the original points.\n",
+ "INFO:root:ROC convex hull contains 11.0% of the original points.\n",
+ "INFO:root:cvxpy solver took 0.000577791s; status is optimal.\n",
+ "INFO:root:Optimal solution value: 0.20063396358747293\n",
+ "INFO:root:Variable Global ROC point: value [0.14018904 0.69752148]\n",
+ "INFO:root:Variable ROC point for group 0: value [0.14441478 0.70148158]\n",
+ "INFO:root:Variable ROC point for group 1: value [0.12562792 0.65148158]\n",
+ "INFO:root:Variable ROC point for group 2: value [0.10094174 0.70148158]\n",
+ "INFO:root:Variable ROC point for group 3: value [0.14712885 0.65148158]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 16.4 s, sys: 213 ms, total: 16.6 s\n",
+ "Wall time: 2.67 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO, force=True)\n",
+ "postproc_clf.fit(X=X_fit, y=y_fit, group=s_fit)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "599af3ba",
+ "metadata": {},
+ "source": [
+ "## Plot solution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "b5ed8e16",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"whitegrid\", rc={'grid.linestyle': ':'})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "ee9d0214",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "all_groups_name_map = {\n",
+ " 0: \"White\",\n",
+ " 1: \"Black\",\n",
+ " 2: \"American Indian\",\n",
+ " 3: \"Alaska Native\",\n",
+ " 4: \"American Indian\",\n",
+ " 5: \"Asian\",\n",
+ " 6: \"Native Hawaiian\",\n",
+ " 7: \"other single race\",\n",
+ " 8: \"other multiple races\",\n",
+ "}\n",
+ "\n",
+ "largest_groups_name_map = {\n",
+ " 0: \"White\",\n",
+ " 1: \"Black\",\n",
+ " 2: \"Asian\",\n",
+ " 3: \"other\",\n",
+ "}\n",
+ "\n",
+ "group_name_map=all_groups_name_map if len(np.unique(s_fit)) > len(largest_groups_name_map) else largest_groups_name_map"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "5ccb923e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wT9f8H8NdddtK9J7SMskGUqaBMkQ0KKijIEFBk/BQURL8oS4aLISoOBEGW7KkoIChTNhTKhpbSne7s3P3+CDlyTdI2paUF38/Hgwe95O7yyeWTy73v8/m8PwzP8zwIIYQQQgghhJAKwlZ2AQghhBBCCCGEPNoo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEVHkmk6myi/BQoeNFCCF0LiSkqpFWdgEI+a8wGAw4evQo/v77b5w5cwZZWVnIysoCy7Lw9/eHv78/6tevj6eeegpPPvkkfHx8KrW8ixYtwldffSUsX7p0qVLKsX37dqxcuRJr1qxx+fzRo0cxePBgYfnnn39Gy5YtH1TxqhSj0Yjvv/8eGRkZmDZtWmUXxyPx8fFYv349jh8/jjt37sBkMiE4OBjVqlVDly5d0K1bN/j6+lZoGVJTU/Hrr7/i4MGDuHHjBgoLC+Hn54ewsDC0a9cOvXv3RnR0dKn3t2vXLvzf//1fmcoSHx8PqfTR+4mePHkyNm3aBACIjIzE3r17K7lEj45Bgwbh2LFjAIAWLVpgxYoVlVyiynPjxg3MnDkTI0eOdPt70KFDByQnJwMA+vbtizlz5jzIIhLyn/To/aoRUsWYzWb89NNP+PHHH5GTk+NyHZ1Oh+TkZJw/fx7r1q2DQqHACy+8gPHjx8PPz++BlrequHr1KqZNm4Zjx44hMjKysotT5e3btw8zZ87E7du30bdv38ouTqkZDAZMmzYNGzdudHouOTkZycnJOHz4MBYuXIgZM2agU6dOFVKOZcuW4csvv4TBYBA9npGRgYyMDJw7dw7ffvstRo8ejVGjRkEikZS4zwsXLlRIWQkhrhkMBnz99ddYunQpzGYzRo4cWdlFIoQ4oMCTkAqUm5uLUaNG4dSpU07PaTQaeHt7g2EY5ObmQqfTCc8ZjUasWrUKf/zxB7777jvUr1//QRa7Svjhhx+Eu/ekZDNmzBDu3j8sjEYjhg8fjuPHj4se9/LyglqtRmZmJjiOAwBotVq89dZbmD17Np5//vlyLce8efPw448/ih6Ty+UICAiAVqsVuuuZzWYsWLAASUlJmD17don7dQw8vb294e/vX+oyMQxT6nUJITZnzpzBkiVLKrsYhBA3KPAkpILwPI/x48eLgs4GDRpg8ODBePLJJxESEiJaPyUlBfv378dPP/2EmzdvArC1tgwfPhwbNmxARETEgyw+IRVu5syZoqCzRYsWePfdd9G4cWMAQH5+PtavX48FCxZAr9cDAKZOnYqaNWuiSZMm5VKGbdu2iYLOyMhIvP/++2jXrh1kMhksFgv27duH2bNnC4H9xo0bUadOHQwZMqTYfTsGnqNHj8awYcPKpcyEEELIw4iSCxFSQbZs2YLDhw8Lyy+99BLWr1+PPn36OAWdABAeHo6XX34Z27ZtQ/fu3YXHtVotpk+f/kDK/DBq2bIlLl26JPz7r47vfNicOXMGv/76q7Dcvn17LFu2TAg6AVsr4dChQ/Hzzz9DrVYDsLU6lqa1sTQKCgpE47qioqKwbt06dO7cGTKZDAAglUrRuXNnbNiwATVr1hTWXbRoEbRardt9p6SkiJ7/L/ZaIKQq27t3r/C7QeM7CXkwKPAkpIKsXr1a+Ds2NhZTp04Fy5b8lZPL5ZgzZw5q1aolPLZv3z7cuHGjQspJSGX4/vvvwfM8AFvX2tmzZ7sdN9m4cWNMmTJFWD516hQOHjx432XYuHEjMjMzheUZM2YgKCjI5br+/v5YtGiRkPCnoKAAy5cvd7vv+Ph40TIFnoQQQv7rKPAkpAIYDAacO3dOWG7fvr1HGSrlcjmGDx8ueuzQoUPlVj5CKlNubq4om2mfPn1KHP/Yt29fBAcHC8vbtm2773LYs6sCQFxcHJ588sli169ZsyY6duxYqjI4drOtVq1apWepJoQQQiobjfEkpALk5eXBarXe1z6eeuop0XJ6enqptrt58yY2bdqEf//9F4mJicjJyYFKpUJAQACaNGmCZ555Bl26dCmXqRrKMjXCxo0b8f777wvLe/bsQVRUFADnqVHskpOTUadOHWHZMcFMWaZT0ev12LZtG/755x/Ex8dDq9XCarUiICAAsbGxePLJJ9GrVy+EhoaW+H4cy7Vz507UrFkTBoMBO3fuxG+//YarV68iMzMTSqUSYWFheOqpp9CnTx/RdmVVdMobu02bNomCKsdjXFROTg42b96MI0eOICEhAdnZ2WAYBgEBAahduzbatGmDnj17lmt25YMHD4q+H6XJVCuVSvHMM89g/fr1AIA//vgDM2fOLHM9zszMxMWLF4Vlx4CyOB07dsTvv/8OwFYvz549K+oebOcYeFZma+ft27dF7+3s2bNQKBTYuXMnvvvuO9y4cQP+/v6Ii4tD165d0bNnT5fHNDU1FVu3bsU///yDW7duQavVQqFQIDAwEE2aNEG7du3QpUuXUmX79dShQ4dw6NAhnDhxAqmpqcjJyYHZbBYSNjVu3BhPPvkknnvuOcjlcpf7GDdunPC5Ababgd9++22xr3v48GEMHTpUaJmPjo7G5s2b4eXl5XJ9nuexb98+7N27FydPnkRmZiZ0Oh38/PwQHR2Np556Cr169UK1atU8ev9arRYbNmzA/v37ceXKFRQWFiIgIABxcXHo06cPunbtWiHHvai0tDRs2rQJR48exdWrV5GTkwOZTIbAwEDUq1cPbdu2RY8ePaBSqYrdj+M529vbWxjnffXqVaxZswYHDx5EamoqOI5DaGgomjZtij59+qB169Zu9+k4NYojx9+GolPMlGY6FcfztP08WlBQgK1bt2LXrl24desWsrOzERgYiOjoaPTq1Qs9e/aEUqkU7efQoUPYsGEDzp07h9TUVMhkMkRFRaFt27YYNGhQsb81ZZkmpzTToTmu4/j+z5w5gw0bNuD48eNITU0Fy7IIDQ1Fs2bNMGDAANStW1e0H61Wi40bN2L37t1ISkpCfn4+/P390ahRIzz//PPo2LEjJUsjAgo8CakAAQEBkMlkMJvNAGw/WG+//bbbiyJXQkNDsWPHDvj6+sLPz08Yc+ZOTk4OZs6ciR07dgiZQO3MZjPy8vJw8+ZNbNmyBdHR0ZgyZQo6dOjg+Zt7yK1ZswZffvmly6ltUlJSkJKSgkOHDmHRokV45ZVXPP7cTp48icmTJ+PWrVuix41GI3Jzc3Hp0iUsW7YML7/8Mj788MMHcsHoitVqxZIlS/D999+LMirb2acy+euvv7BgwQKMHDkSI0aMKJcLCMfeAAzDuAzcXHnssceEwLOgoABXrlxBvXr1ylwGe0ABAE2bNi11GRydPHnSZfkdu9o2aNCgTGWsKMuWLRONk7XX+/Pnz6N3796idU0mE+bPn4+VK1fCaDQ6PZefny+cV2JjY/HRRx8VGyB44vDhw5gzZw4SEhJcPq/VaqHVanHt2jVs2rQJn3/+OebMmePy9adPn46TJ08iIyMDgG34wo4dO0Tj6R3l5uZi0qRJQh2RSqX44osv3Aadp06dwrRp00Q3M+zsU/KcPHkS33zzDfr374/Jkyc7BSeurFq1Cp999hkKCwtFj6elpSEtLQ1///03VqxYgc8//7zEfZWVXq/H559/jjVr1gi/aXYmkwmFhYVITEzE77//jgULFuDtt9/GCy+84NFr/Pzzz5g3b57T/m/duoVbt25h8+bNePLJJzFnzpxS3RCsKIcOHcLkyZORlpYmetz+HTp27BhWrlyJJUuWICwsDLm5ufjf//4nuukB2H4PEhISkJCQgDVr1mDBggVON5sftMLCQsyaNQsbNmxwei4/Px9Xr17FunXrMHnyZLz22msAgD///BMffPCB0+9peno69uzZgz179qBTp0748ssvPfodJY8u6mpLSAWQSqWiu4K3bt3C2LFjhYue0qpVqxaCg4NLDDoTExPRq1cvbNu2TRR0ymQyhIaGOnXzS0pKwujRo/HNN994VJ6KplQqUa1aNVSrVg0ajUZ4XCqVCo9Xq1bN7cVfcTiOw8SJE/HRRx+JfiQZhoGfnx9CQkJEQaDRaMTSpUsxePDgYpPIODp9+jSGDh0qBJ0syyI4OBgBAQFOZVm1atV9J43y9fUVjoljK5VGoxEdr6L1x2g0YujQoViwYIEo6GRZFkFBQQgKChKNR87Pz8fnn3+O0aNHO81zWRZXrlwR/o6IiBB91sWJjY0VLV+7dq1cygBAlDioOFFRUaLjef36dad1srKyRD0UGjRogNu3b2PhwoUYMGAAWrZsiYYNG6JNmzYYOHAgvv7661L3aLhfV65cwWeffebyufbt24s+99zcXAwdOhQ//vijKOiUyWQICwuDv7+/6EbEjRs38Prrr4vGt5fVli1b8PrrrzsFnb6+voiMjERQUJDTTZDU1FSMGDEC58+fd9qfn58fPvnkE9FjM2fORHZ2tsvX/+ijj0TBxfjx493eINm2bRsGDx7sFHT6+fkhPDwcCoVCeMxisWD16tUYOHAgsrKyXO7Pbt68eZg2bZoo6LSfUxx7IJw+fRqvvfZaqc9TnsjOzsaLL76IFStWiIJCiUSCkJAQp54QGRkZmDJlCqZOnep0A9SdFStWYNasWcL+pVIpQkNDnVpODx06hP79+yMpKclpH5GRkahWrZpT4r6QkBDhPOgqqZ8nDhw4gBEjRgj1gmVZhISEwNvbW7ReQkICxo0bh4KCAgwdOlQIOu2fXdHf4/z8fIwbNw537ty5r/LdD7PZjDfffFMUdKrVaoSFhYl+FzmOwyeffIL9+/dj27ZtGDNmjPB7al+/aI+JP//80+05h/z3UIsnIRVkyJAhmDBhgrD8119/oX379ujYsSM6d+6Mp556yqN5/dzRarUYNmyY6CKpfv36GDduHJ566inhLmNiYiJWr14tXEDwPI/58+cjKCgI/fv3v+9ylIcmTZrgjz/+ACDuxhsaGio8XlazZs0Sjcnz8vLCqFGjRGMHCwsL8eeff2LBggVCF6xTp05h/Pjx+Omnn0rs1vnRRx/BbDbDz88PY8aMQY8ePYTPOC0tDT/99BN++uknYf21a9e67LpUWoMHDxa6kjl2G3v22WfdZmm0T/Nz9OhR4bGgoCCMGTMG3bp1g6+vLwBbC/qOHTvw1VdfCRe0e/fuxf/+9z98+umnZSqvXWpqqvB3WFhYqbcr2tJxPxdqjmVgGKbUrSgSiQRBQUFISUkBAJfd+4oGPuvWrcMff/zh1P3e3hJ24sQJLFmyBCNGjMDo0aNLlYSsrObOnevUqmTn2CWX53lMmDBBNN1N8+bN8cYbb6BFixbCeSUzMxPbt2/HN998g5ycHFgsFkyfPh2RkZF4+umny1TG5ORkfPTRR7BYLABsF7Tjx49Hjx49RMmfCgoKcODAASxYsECYgspsNuOLL77A0qVLnfb79NNPY+DAgVi1ahUA27lz1qxZThfFmzdvxq5du4TlVq1a4fXXX3dZ1uPHj2Py5Mmiso4YMQJ9+/ZFeHg4AFvvglOnTuG7777D/v37AdhaxMePH49ly5a5PK9s375dNM2PWq3G6NGj0b9/fyHYu3nzJn744QesX78et2/fdn9Ay8hgMGDEiBG4fPmy8Fi1atUwfvx4dOjQQcg0be+Cu2TJEuFG1tq1axEQEID/+7//K/Y1dDqd0Pru5+eHt99+G7169YJarQbHcTh69Cjmzp0rBPVpaWkYM2YMfv31V1ELmr37adGhF5999lm5ZTqfOXMmrFYrQkNDMX78eHTv3h1KpRI8z+PYsWN47733hPPKmTNn0LdvXyQmJkKpVOKtt95C//79hd+D+Ph4fPTRR0Lvj4KCAixbtkyURO1B2rVrl3B+6tWrF0aOHInatWsDsN2AWrhwIVauXCms/9FHHyEzMxM8z+OJJ57AO++8g8cffxwsy0Kv12PlypWYP3++8L1YvXo1Ro0ahcDAwAf/5kiVQi2ehFSQbt26OV14mc1m/Pbbb5gwYQJat26NHj16YOrUqdi8ebPLu7ilMX/+fNG2PXr0wLp169C+fXvRD3O1atUwadIk/Pjjj8IFA2DrglaZd1ofhNOnT4t+NMPDw7Fu3TqMHDlSlLBGo9Ggd+/e2Lx5M5544gnh8WPHjrm8kC3KbDYjIiICmzdvxqBBg0Q3FkJDQzF58mTRhRjP89i+fft9vjvP7Ny5E/v27ROW4+LisHnzZgwYMEAIOgHbReArr7yCTZs2iVoDt27dip07d95XGRxbejy5+VK0dcVVd+mylMHb27vEXgXuypGbm+v0vOP4TgD47bffhIs6mUyG8PBwp1Zeg8GARYsW4a233nIbGJYH+1ixQYMGYffu3Th9+jS2bNmCYcOGiZIrrVq1Cn///bewPGzYMKxYsQJt2rQRnVeCgoIwZMgQbNiwAdWrVwdgaxV5//33nbrmltaSJUuEeVsZhsHixYsxZMgQp4zDXl5e6NatG9atWydqzTpy5Ajy8/Nd7vu9994TtZxv27ZNCAYBW9A7Y8YMYdnf3x/z5s1zeTPAZDJhwoQJwsV1SEgINm7ciNGjRwtBJ2C7WdGsWTN89913GD9+vPD4v//+Kzov2RmNRtGNI7VajeXLl2PEiBGiuhcTE4OZM2dW2HRbP//8s6hbfKtWrbBp0yb06NFD9BsSGhqKN954A2vXrhWdT7/99lucPn262NewWq2wWq0ICwvDr7/+ipdfflnYN8uyaN26NdauXYs2bdoI29i7pz5oVqsV0dHRWLduHV544QWhqzTDMGjZsqVTd+fExETIZDIsXboUI0eOFJ3rGjRogJ9++kkUiP31118P5H24Yj8/vfPOO/j000+FoBOw9TL43//+h1atWgmPpaSkwGw2o2PHjvj555/RrFkz4TuiUqkwYsQIUV03mUzlkomcPPwo8CSkgrAsi0WLFqFbt24un+d5HleuXMHatWsxadIkdOrUCe3bt8cHH3yAvXv3luri8/bt26KuMfXq1cPs2bOLvYhu2bIlPvroI2HZZDLh+++/9+CdPXwWLFgg/C2RSDB//vxiu1b6+Pjgq6++El3o/vTTT8LFcHGmTZsmuugsavjw4aKuWWfOnClxn+WF53ksXLhQWFar1fj6669FF4tFhYWF4auvvhKNR/v6669F4yM95di91/ECtiRF1y067u1BlKHo+q7KUDTwBGyZe3/99VecO3cOf/31F06ePIldu3ZhyJAhou/r3r17RYFPRXjjjTfw4Ycfonr16lCpVKhbty4mTZokfMYWiwU//PCDsH6LFi0wadKkYsf3RkVFiS68MzMzhfG4nuA4TtS7oV27diVmG/b19UWfPn2EZavV6rIlGrBdFH/66aeiVsZp06ZBp9OB4zi89957KCgoEJ775JNP3LaGb9q0SdRy/tlnnzl1By9q9OjRaN++vbD8448/wmQyidbZsWOHaFjGxIkTix0H/eKLL6Jv377Fvq6nCgsLRXUgNDQUCxcuLHaYQ1xcHL744guhnvA8j6+//rrE12JZFl988YXbpEsKhQKfffaZKEhbtmzZfZ2Dymry5Mlue2k0a9YM0dHRoscGDRokuonpyNvbG88995ywfOvWrTLfrCkPDRo0wMiRI90+X7SOKZXKYhO89evXT7RcdHgD+W+iwJOQCqRUKvHll1/i66+/LlWCkTt37mD9+vV488030a5dOyxbtqzYAHTv3r3C3XYAGDNmTKkG8Pfp00c0T6irhESPitzcXBw5ckRYbteunVOCGFcCAgIwZMgQYVmr1eKff/4pdpuwsDC0bdu22HXkcrkoIY67MWYV4dKlS0KXRMB2YVD0QsmVGjVqiC46rly54jKJSmk51mlPstJKJBJR8ONY9x9UGYqu76oMjomFZDIZvv76a8ydOxeNGzcWlb9GjRp4//33sWzZMlEwu3btWlEX1/KkVquLvbgEbGPpHHtBuMo07UqjRo1ESZp+++03j8tntVrxxRdfYObMmXjjjTecppVyp2jQ4iphlmM533zzTWE5OTkZixYtwtKlS0XH/dVXXy02AZvjTb86deqUukvnq6++Kvydnp7u1CroeNx8fHxKNRTijTfeKNVrl9aRI0dErfnDhg0T9Yhwp0WLFqJz4IEDB0o8x7Vr185tcGbn7++PAQMGCMvJycmi1tgHISQkpMQM3HFxcaJlxxsirth7Cdi56kHxoLz00kvF3lwqmon96aefdspf4CggIEA0nrUy3xupOijwJOQB6NixIzZu3IitW7di7NixeOyxx0q82M3MzMTs2bPx4osvCuPJinKc21OtVqNdu3alLpNjNsfc3Nz7CiSqsqNHj4qCandZLF3p2bOn076KUzSwcMexhbE8kvWU1uHDh0XLnhyLHj16iJZLOhbFcWypqKw0+xVZhk8//RRz587F2LFj8eWXX5Y4VUuzZs1EvRAAlKqlqCwaN25cYjKnokGvJ1l5H3/8ceHvM2fOOLXmlUQmk6F169bo378/3n77bTRv3rzEbXied+paW9J0Vm+++SaaNGkiLK9YsULUMyIuLg7vvfee2+11Ol2ZMxc//vjjojpn7/4M2N7LiRMnhOXWrVuX6mZiTExMuUzRZFde5wqe5/Hvv/8Wu37R86w7RYM+x+P2IDRq1KjEdRx7s8jlclGXVVeKfhc9/b6Up5Kyixdt7S7NNFGO768y3xupOii5ECEPUJ06dVCnTh2MGTMGhYWFOHnyJI4fP47jx4/jzJkzLls3L1y4gFdeeQXr1693urt448YN4e+6det61HJT9Ef0+vXrVW7ah/LgeIwAoGHDhqXeNiwsDMHBwUK3N1cZTIuuXxqOF5IPsqXZ8VhIJBKP5pds2LAhWJYVylvSsSiOTCYTupR50mpptVpFAaNjttCylMHO05ZTx/VdleGJJ54osQWnqF69euHrr78WMiIfO3YMBQUFwsWe41x+JXE1Z59daS6ei3YVHjRoUKkTHuXl5Ql/G41GpKenu51Dtiyys7Nx+/ZtJCUl4dq1a7h48SLOnDmDzMxM0Xolfa8kEgnmzZuHvn37QqfTic699p4qxdWvK1euiOrBH3/8UeZWasfEQKmpqaKuvkVb0IpTr169Yj97TzieK0JDQ4vtjl+Uq9+W4jjeAChOrVq1RNOU3U9W67KIiIgocR3HGwq+vr4lfm8qMpGYp4obIgI436Arzfj8qvT+SNVAgSchlUSj0aBt27ZCtySDwYCjR4/i999/x7Zt20R3B5OTk/HJJ584ZV90TK7iyYWBq/XvJ1FLVVa0m5enxykoKEgIPEs6RqWdFqSyOB4LHx8fj+ZVUyqV8PLyEgKL+6kvXl5eQuBZmnGzdkXHU5Y0UX1JZbDzpAxFy3E/ZXDEsiyefvppITun2WxGQkICmjVrVi77tyuaoMeVotNy3E/G1JycnDIHnhzH4fDhw/jjjz9w/vx53LhxQxSU3a+YmBhMmjTJqbX5vffeEw1FcKXoMcrPz3eb0Kgkjt+lolNuFdeVsaj7nS7EkeO5oiJ/WxiGKTHgsZPJZPDx8RESg5U0HU158/T8/rDNW+npNGUP2/sjVQPdiiCkilAqlXjmmWfwySefYM+ePaIEFIAtG2nRSasdL8I8/VEsesHs6cX3w8LxGDEM43EiGcfjVNIxcpzvrCpyPBaeHgfAs2NRHMckIZ4EsEXHCJUmiCpNGfLy8krsmumuHOU5PUDR8bYVcWFddM5BV8ozuCturGVxTp48id69e2PYsGFYvXo1zp0757JcMpkMzZs3x7PPPlum13GVOKg0gXZZg0xXHG9kFO2O6MmNjbLMb+zO/ZwrPPltUalUHrWKOSY5e9BdNz0dC/6wedTfH6kaqJYRUgH0ej20Wi2ysrIQGhpa6jkC7UJCQvD111/jtddeE7rXWa1WHDt2TDQeRq1WCy1Qnmb4LM/WI094coFfHhwvmnieh06n8+hCqiJatyqL4/suS0BQXsciMjJSmBswPT291NsVvfHi6feqaBnsOI5DZmZmqfZntVpF3To9mYe0JI4X1fbXKm+lGc/qWI6goKAHPg3C/v37XU4rExoaitq1ayM2NhY1atRAvXr1UK9ePSiVSmzZsgW7d+/26HW0Wi0+/PBDp8eXLVuGDh06FDu+tGj9//jjj0XJb8qqaCuSJ9/T8pyG537OFZ78tnhaZsd9l+Xm2X/Fg/6dJaS0KPAkpJxdv34dXbt2FZaHDRuGSZMmebwflmUxfPhw0biuohfefn5+QuBZtItWSYru635bbko7VrGsLSBlVXTux4yMDKdMgsVxDIw86fZWFTkei7y8PBiNxlKPkywoKBBd9N3PsahZs6Ywl+jt27dhMplK1W2r6FgxT8a/uSpD0X2XJvBMSkoSXSy7Sx5SUFAArVaLyMjIUreEF+0W7jiGyt4F90EoOk8px3EPbKxWdnY23nvvPeEYsyyLoUOHYuDAgcV22S3LNBRTp04V3URQq9XCtCqTJk3C1q1b3bYiFj2vlFd26qJ10JNW7/IcLuH4/u73t6W4c4XZbBaNZS6O0WgUtTSX502fh0VV/Z0lpLSoqy0h5SwkJETUquCYodBTRS+0igYJjhe9Fy9e9ChJStFU9O7mUCuO48VoaS/8HOe9exCKBidnz54t9bZJSUmiC0pPAtaqyLG+WK1WUVbOkpw/f16U2Od+joVjMhGLxVLqcjhOO+Hl5YWYmJgyl6FoBuLS1ouiU18UTaTy1VdfoXHjxnjiiSfQuXNnj4+xHcMw5Zql1BOOQbnZbBZap0sjNzf3vjI1b968WRRAjRs3Du+9916J40SLnldKmuNx48aNovlC+/Xrh6lTpwrLycnJmDlzptvta9SoIVr25HPmeR4ZGRkuyxgaGiqatsST/SYkJJR63ZI4nivS0tKcgsniFP1tKelcUdpyJyQkiFryKuv78aA9DL+zhJQWBZ6ElDMvLy/RPI1nzpxxulgtLcc5FwHn1hXHrmB6vR579+4t1X55nseOHTuEZS8vL9StW9fj8jl2oSrtOLnSXuCX1xQXTzzxhGhfju+7JEXX9TRTaVVTtOvgzp07S71t0WNxP0lvWrduLRpPtGfPnhK3sVgsOHDggLD85JNP3teYJH9/f1GG49KUAYDoO1Z0H4At86XjxaFjmYuTk5Mj6tJat27dSmthL1pPPJmPc+TIkWjSpAlat26NF1980eMg9MyZM6Lll19+uVTbFZ2yo7jAMzk5GbNmzRKWQ0NDMXnyZPTt2xdt2rQRHt+0aZMoOHUUGBgoCtAPHTpU6nGf//zzD9q0aYPGjRvj2WefxerVq0XPt2rVSvj7yJEjokzB7mRnZzsdu/tRXucKhmFKPG/aez+U5PfffxctP/nkk07rVNb0TBXJ8Xe2tC3rD3qOU0JKiwJPQirACy+8IFqePn26x8lYeJ7H0qVLheXg4GCni/3nnntONC3E4sWLS5VwYfPmzaKgtlOnTmW6iHfMXmixWEq88ImPj8fJkydLtW/HC4iSWi+K4+/vL7qY3L9/P06dOlXidlqtFj///LOwrNFo8PTTT5e5HBXN8a64u+NVv3590cXyhg0bkJiYWOK+r127hq1btwrLUVFRHk1LU5S3tzeeeeYZYfnXX38tsZvgpk2bRF3+SpqYvTQc5xs8c+ZMidOVXLt2TRSg9u7d26kL6jPPPCP6Lq1Zs6ZUyXoWLFgg6h43cODAErepKM8884yo1W3VqlWlavHat2+fcJNNq9XCy8vLadxqSYoGb6Xpprxnzx6nz87d2EF7N1rHz2TGjBlC0qXp06eLxg7+73//c5qqxa5Xr17C3zqdDt9++22JZeU4DgsXLgRgS45z69Ytp5a7vn37Cn8bDAb8+OOPJe532bJl5Zpsp23btqLutkuXLi1VV96jR4+K5pdu1qxZiUnANmzY4JQluKiMjAysX79eWH788cedknEBztN33M9vR1Xh+Dt7586dElsz//zzT9y5c6eii0VImVDgSUgFePHFF0VdseLj4/HKK6/g6tWrpdreaDRi8uTJom66b775plNwGB4eLko2lJCQgClTphTb5fbff//FjBkzhGWZTIbXX3+9VOUqynGyeAD45ptv3I5BSU9Px+TJk0s9RsXxLu/9ZtkcNWqU8DfHcXj77bed5vd0VFBQgLFjx4rGV7366qvlmjWyvJXmeDEMg5EjRwrLOp0OY8aMcXthDdi62Y0dO1bUcjVy5Mj7HvM3fPhw4e+cnByMHz/e7YXz2bNn8cknnwjLcXFxTlmfy6Jfv36ii+sJEyYgOTnZ5bo5OTkYO3as8N1SKBQYPHiw03qBgYHo3r27sJyRkVHid3L58uVYtWqVsFyrVq1yCazLSqPRYNCgQcJybm4uRo8eXWxwcPPmTXzwwQeixxzrWmk5Jn0CbEFJcQ4fPowpU6Y4Pe6uLi1dulTUOtq7d2/RTZDIyEhMnDhRWM7OznaZgAiw3RxwzBL8448/lljeuXPninp9NG/e3Ok8+swzz4jm2P3++++LTZy0b98+/PDDD8W+rqdUKpWoDqSnp2P8+PHFJrG7evUqJkyYIAr23njjjRJfKzs7GxMnTnTbOl5YWIi3335blE36zTffdLlu0Rsd5ZmhubI41g+O4/D111+7XffatWuYPn36gygWIWVCgSchFUAul2PRokXw8fERHouPj0evXr0wbtw4bN261SlpBM/zSEhIwA8//IDOnTtj8+bNwnPt2rVz2wIyefJk0finbdu24cUXX8Rff/0luvhKSkrCp59+iqFDh4ouHsaOHes2QUpJHn/8cdGk2gcOHMCYMWNEE3vn5+fjl19+wfPPP4/Lly+XetoXx26GeXl5HnWRLap58+aiICElJQX9+/fH999/L2pF0+l02LZtG/r06SOaDL5evXoYPXp0mV//QXA8XkePHnU7uXrv3r3RqVMnYfnSpUvo06cP1qxZI7qwy83NxapVq9C3b1/Rvtq2bYsXX3zxvsv7xBNPiFqMjhw5ghdffBFHjhwRLlwLCgqwbNkyDB48WGgNlEgkmDp1arGBb4cOHVCnTh3hn7vpMby8vERBRnp6Ovr164fNmzcL3x2r1Yo///wTzz//vOg4vPnmm05Bkt17770nSgz0+++/Y+DAgTh8+LCoO/r58+cxbtw4UVCtUqkwb968Sp8jb9SoUaLxq+fPn0ffvn3x66+/ilol8/Ly8Msvv+Cll14SndP69u0r6jJaWl26dBEtf/bZZ/jiiy9EN0csFgtOnDiB999/H8OGDXPZEucq4EhISMCCBQuE5eDgYJdB68CBA0W9S/bt24e1a9c6refj4yP67Hiex5QpUzBhwgRcuHBB9PjZs2fxxhtvYNmyZcLjKpXKaQ5RwNZqN2PGDKE3i9Vqxf/93//hk08+EbVkpaWl4bPPPsOYMWM8Gt9fWiNHjkTjxo2F5SNHjqBv377Yvn27qHU+IyMD3333HV588UXR+fSll14S9TYpzsGDB/HSSy/hn3/+Eb4jFosFe/fuRf/+/UU3C3r06OG290nRJHnr168v12y/laF9+/aiVvi1a9fiww8/FNWFrKws4TNIS0ur8nNKk/8uympLSAWpVasWVq5cibfeegtJSUkAbBcQv//+uzBWRSaTITAwEGazGbm5uS4vHjp37ozPPvvM7dgVX19fLFmyBCNHjhRaa+Lj4zFq1Chh/waDweXF2fDhw0WtgZ6SSqWYPHkyxo8fLwQLe/bswZ49e4Rudo4XjDKZDIsXL8aQIUNK3HeDBg1Ey++88w7mzJkDABg6dCiGDRvmUVknTZoErVaL7du3A7AFxJ999hk+//xz+Pv7QyaTISsry+kzqFu3Lr777juPuww+aPXr18eRI0cA2N5bz549ERYWBr1ejyVLlggXkAzDYO7cuXjrrbeE9TMyMvDRRx9h2rRpwoVbVlaWU+t069atMX/+/HIbR/Xxxx8jOTlZaNm/ePEiXnvtNajVanh7eyMzM9Np3PD7779f7DQXnurfvz+uXLmC5cuXA7B1EZ00aRI+/PBDBAYGIjs72ymhx3PPPVdsS05QUBB+/PFHDBkyRBifd+bMGQwZMgQqlQr+/v7IyclxyjypVquxZMkSp7pfGeRyORYvXoyRI0cKyV9SU1Px4Ycf4qOPPkJAQABYlkVGRoZTPXnyySfx8ccfl+l1n3rqKXTq1Al//vknAFvwsWTJEixZsgTe3t5QKpUu62aDBg1w4cIF4TxUtDuiyWTCe++9J7oZ99FHHzllpwVs35GZM2eid+/ewmc/Z84ctG7d2ikJ27PPPosPPvgAc+bMEerq9u3bsX37dqjVauGzLtpSqFAo8MUXX7i96dewYUN8+umnmDhxIiwWC6xWK5YvX47ly5cjMDAQDMMgKytLeL+BgYFo06YNtmzZUuzx9YRcLsdXX30lqgO3bt3ChAkTIJVKhd+u7Oxspy6tPXr0ECVrKk5cXBwuX76MhIQEDB8+HCqVCn5+ftBqtU7fvVatWhWb9CksLAyBgYHCTZB9+/ahZcuW8PPzg7+/f4kt0lWRn58fxo0bJ/z+AbbhCb/++qtQfx1/3318fDB37ly3rcKEVCZq8SSkAtWpUwdbt27F6NGjRa2fdmazGampqS4DnsjISMydOxdfffVViUFPrVq1sH79enTt2lUUFNj3XzTojIyMxOLFi/Hee++V/c3d1aVLF8yZM8fp/RUUFIiCzsjISCxduhStW7cu1X6feeYZp7vl6enpSE9PF2X/LC2pVIrPP/8cH3zwgehik+d5aLVapKWliT4DuVwuTF4fEhLi8es9aK+//rqonFarFcnJydBqtaLWF8DW0vfjjz/izTffFHXR5TgOGRkZTsGERqPBhAkT8MMPP5Rrd2ONRoMffvgBffv2FdVbnU6HtLQ0UdDp4+ODTz/9VNT9r7xMmTIF7733nuhY2L87jhe+EokEw4YNwxdffFFi8N2gQQNs2rQJLVq0ED2u1+tx584dp6CzefPmWLdundP6lSk0NBSrV6/GgAEDRGPJrVYrMjIykJaWJqonMpkMo0aNwpIlS+7rRs1nn33m1PIJ2G6oFK2bcrkcb7zxBtasWSPKnlp0zOf8+fNx6dIlYblbt27o3Lmz2zLExsZi7NixwrJOp8N7773nMoHa4MGD8f333ztlutXpdEhOTnYKOuvUqYOVK1eiQ4cObl8fALp27Yrly5c7BbtZWVnIzMwUgr3o6Gh8//33CA8PL3Z/ZeGuDlgsFqSlpUGr1YqCzoCAAMycOROff/55qfMGTJkyBYMGDRK+U3q9HikpKaLvnr1u/fDDD8XOC8owDCZNmiT6fhYWFiI5ORkXLlzwONdCVTF06FC8++67Tpntc3JyRL/vdevWxcqVK+9rqilCKhK1eBJSwdRqNcaPH4833ngDf//9N44dO4aLFy8iOTlZaE1hWRY+Pj6Ijo5Go0aN0K5dO7Ru3brU8/8Bth/8+fPn4/Lly9ixYweOHj2K27dvIycnBxKJBGFhYWjYsCE6d+5c5mRC7vTp0wdPP/00NmzYgH379uHmzZvIy8tDYGAgYmNj0bVrV/To0cOj7j8Mw+Cbb77BsmXLsHPnTty+fRt6vR5eXl73lTBi8ODBeP7557Ft2zb8888/SEhIgFarhdlshq+vL2rXro02bdqgd+/eoqQOVV1gYCA2btyIJUuW4MCBA0hPT4fFYoG/v7/Liy2pVIr/+7//w6BBg7B161YcPHgQ165dg1arhdVqRWBgIOrWrYunn34aPXv2dHnjpDyo1WrMmTMHr776KrZu3YrDhw8jPT0dBQUF8Pb2Ru3atdG2bVv069evQrO8Dh8+HD169MDGjRuxf/9+JCUlIScnB0qlEtWqVUPLli3Rv39/p/k/ixMVFYUVK1bg5MmT2LFjB06cOIGUlBQUFBTAx8dHSBjWuXPnUt+QedDUajU+/vhjjBgxAtu3b8fhw4dx8+ZNZGdng+M4+Pr6olatWmjVqhX69u1bqrlQS6JSqbBw4UIcPXoUmzZtwunTp5GWlgaj0Qi1Wo3AwEDUqlULTZs2Ra9evYQbLp06dRLGOh4+fBiJiYmoVq0ajh8/jp9++knYv7+/P/73v/+VWI5hw4bht99+E250nTp1Ct99953LlqSnnnoKO3bswN69e/HXX3/h9OnTyMjIQEFBAVQqFUJDQ9G4cWN06dIFbdu2LfW5vVmzZti5cyd27NiBXbt2IT4+Hjk5OfD29kb16tXx3HPPoV+/fvDy8ip2HOj9sNeB119/Hdu2bcOhQ4dw69YtIcNqcHAwGjRogPbt26Nbt24e33RgWRYffvghevXqhdWrV+PYsWNIT0+HXC5HbGws2rZti/79+4uGdRTHfu5evnw54uPjkZ2dDblcjtDQUKSmpiI2NtbjY1AVvP766+jatSs2bNiA/fv34/bt29DpdAgODkbt2rXRvXt3PPfcc5DL5W6HFxBS2Rj+UUj5RQghhBBCqryjR4+Kxtz//PPPaNmyZSWWiBDyoFBXW0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYrm8SSEEEIIIYQQUqGoxZMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgipAFartbKLUCEe1fdFCCGkYlHgSQh5aBQWFqJTp07o2LEjTCaT6Lnr169j/PjxeOqpp9CwYUO0adMG06dPv+/XHDRoEOrUqYNBgwbd977IfwPHcVi5ciVmz55dKa/foUMH1KlTB5MnTy73fe/YsQPvvvtuue/3v2jjxo2oU6cO6tSpg9u3b4uesz++aNGiSiqdZ44ePer2vVS2yZMnl/kcfvv2beF9HT169L7LYjKZ0LlzZ3To0AEFBQX3vT9CHjYUeBJCHhqffPIJkpKS8O6770IulwuPZ2VlYcCAAfjtt9+QmZkJs9mMjIwMKJXKSiwt+a969913MWPGjEfuwvLLL7/EO++8g4yMjMouCiEPJblcjvfeew/JycmYNWtWZReHkAdOWtkFIISQ0jh+/DjWr1+Ppk2b4rnnnhM9t3fvXuTk5AAAPvjgA3Tr1g0Mw4iC07IKCQlBtWrVEBISct/7Iv8N6enplfr6kZGRkEgkCAwMLNf9pqWllev+iHvVqlUDAPj6+lZySUh569y5Mx5//HFs3LgRffv2RYsWLSq7SIQ8MBR4EkKqPJ7nMWPGDADA+PHjnZ63t8D4+flh8ODB5fran3/+ebnuj5CKtmLFisouArlPf/zxR2UXgVSgcePGYciQIZgxYwa2bNkClqUOiOS/gWo6IaTK++2335CQkIC4uDi0bt3a6Xl7shONRvOgi0YIIYR4pHXr1qhduzYuX76MXbt2VXZxCHlgqMWTEFLl/fDDDwCAF154QfT45MmTsWnTJmE5OTkZderUAQC0aNFC1PJTUFCA9evX48CBA7h8+TJycnIgk8kQFBSExx9/HK+88goaN27s9NqDBg3CsWPHnPZnf+2ePXti/Pjx+Oijj3DixAnI5XLUqlULCxcuxPXr14UW2EuXLuHatWv44YcfcPjwYWRmZsLX1xfNmjXDsGHD0KRJE7fvPzs7G8uXL8e+ffuQlJQEq9WK8PBwtG3bFsOGDUN4eLjL7fR6PVavXo3du3fjypUrMBqN8PPzQ/369dGtWzf07NkTEonEabucnBysWLEC+/btw40bN2CxWBAQEIDGjRujd+/e6NSpk9uyliQ5ORnr1q3Dvn37kJycDKvViujoaLRv3x7Dhg2Dn5+fy+2OHz+O1atX4+TJk8jIyIBarUZsbCw6deqEV155BWq12mkb+2fUt29fzJkzBzt27MDatWtx6dIl6PV6REZGonPnzhg+fLjLLo08z2PXrl3YvHkzzp8/j9zcXHh5eSE2Nhbt27fHwIED4e3t7fR6dps2bRKWL126BOBefXrjjTfw7LPPYvr06bhw4QLUajUaNmyIb775RugirtVqsWbNGhw8eBA3btxAXl4eFAoFQkJC0KJFCwwePBg1a9Z0KneHDh2QnJwsvO/7PR6LFi3CV199JSwfO3ZM+J7t2bMHUVFRoteNjIzE3r17XX6OJTl16hR++eUXHD9+HFlZWVCpVIiLi0P37t3Rr18/yGQyt9teuHABP/30E06cOIHMzEyEhoaia9eueOONN/Dbb7/h/fffdyrbxo0b8f777zu9F0e3b99Gx44dAQCzZ8/G888/77LcGzduxIkTJ5Ceng6DwQAvLy/UrFkTHTt2xMsvv+yyjrpjP75jxozB2LFjATjXr5K4ej937tzBsmXL8PfffyMlJQUMwwjfvyFDhsDf39/t/rRaLX7++Wfs2bMHt2/fhlKpRPPmzTF69OhSl8kdq9WKHTt2YOvWrYiPj0d+fj58fX3RoEED9OrVC927dwfDMG63P3XqFJYtW4Zz584hMzMT4eHh6Nq1K0aOHFniaxcUFGDt2rXYvn07bt26BalUisaNG2PEiBGIjIwsdtszZ84I9TU9PR0KhQLh4eFo1aoVBg8eLHSZdqVfv36YPXs2fvjhB3Tv3r3EchLyKKDAkxBSpZ0/fx7nz58HAHTp0qVM+zh37hzeeOMNZGZmih43m81ITExEYmIitmzZgpkzZ6Jfv34e7Ts3NxevvfYakpOTAQAGgwHZ2dkIDg7G9evXhfX27t2Lt99+GwaDQXgsMzMTv/32G37//XfMnTsXvXv3dtr/kSNHMG7cOOTm5ooev3HjBm7cuIF169Zh3rx5TscmJycHgwYNwuXLl0WPZ2RkYP/+/di/fz82bNiA7777DiqVSng+KSkJgwYNQkpKimi71NRUpKamYvfu3ejWrRs+//xzj7uH7dq1C1OmTIFOpxM9fvnyZVy+fBkbN27E0qVLERcXJzzHcRw+/vhjrF27VrRNbm4uTp8+jdOnT2PVqlX45ptvULduXZevy/M83nvvPWzZskX0+PXr17FkyRJs374dq1evRmhoqOj5d999F9u2bRM9lpOTg1OnTgkB0s8//4yYmBiPjgNgO86vvfYa8vPzAUDI0mwPOvfv34//+7//czpWZrMZBQUFuH79OjZu3IjFixfj6aef9ui1y3o8KhLHcZg3bx5++ukn0eMmkwn//vsv/v33X6xbtw7ffvuty3KtWrUKM2fOFE31kpiYiCVLlmDv3r0ef69Ly2q14uOPP8a6deucnsvOzsbx48dx/PhxbNq0CatXr4aXl1eFlKMolmWdxrjv2LED77//PoxGo+jxS5cu4dKlS1izZg0WL16MZs2aOe3v/PnzGDlyJLKysoTHdDodfv/9d+zduxcDBw4sc1mzsrIwZswYnDx5UvR4ZmamcK5at24dFi5c6PLG1Ndff40FCxaIHrt58ya++eYb/PHHH4iOjnb72klJSXj99ddx8+ZN0eN///03/vnnHwwdOtTttmvXrsVHH30EnueFx8xmM65cuYIrV65gzZo1mD9/vtsbdV26dMHs2bNx4cIFnD171uWNT0IeNdTVlhBSpe3cuRMAUKtWLaeWvenTp+PkyZMYNWoUACAiIgInT57EyZMn8f333wOw3c1+8803kZmZiaCgIMyaNQu7d+/GkSNHsGXLFowdOxYqlQo8z2PWrFlOF/olOXDgANLT0zF9+nQcPHgQ69atE1pQHL3zzjvw8/PD3LlzceDAARw4cABTp04VXttVFtTLly9j1KhRyM3NRVRUFObNm4cDBw7g8OHD+O6779CwYUMYDAa88847OHHihGjbL774ApcvX4ZarcbUqVPxxx9/4MiRI9i0aRN69eoFwNZytXz5ctF2H3/8MVJSUhAUFIR58+bhzz//xOHDh7FmzRq0adNG+Ex27Njh0XE6efIk3n77beh0OkRHR+Pzzz/H33//jb179+LDDz+ERqNBRkYG3nrrLdFUOZ988okQdLZu3RrLly/H4cOH8ccff2DChAlQq9W4c+cOhgwZgtTUVJev/fvvv2PLli1o164dVq1aJXz29laG5ORkzJ8/X7TN9u3bhaDztddew9atW3HkyBH8/vvvePvttyGVSpGWliaassdeH5944gkAQM+ePYX6WNSOHTvA8zwWLFiAQ4cOYdmyZULL0Z07dzB+/HjodDrExMTgyy+/FD6HDRs2YNCgQZBKpTCZTGWaMsjT4zFq1CicPHkSPXv2BAA88cQTwvtybBGKjo5GbGxssRf67ixcuFAIOp999lmsWrUKR48exZ9//onJkyfDy8sLFy5cwKhRo5wCp4MHD2LatGmwWq2Ii4sTehVs3rwZPXr0wJUrV7Bw4UKPy1Qay5YtE4LO7t27Y+3atTh48CD27t2L7777Dk2bNgVg+y4vW7bsvl7LXr/c/XM874wfP16UEO3gwYOYOHEijEYj6tati8WLF+PQoUP4+++/8eWXXyImJgY5OTkYOXKkUxCWnZ2N4cOHIysrC35+fpgxYwYOHDiA/fv3Y+rUqVAqlU7nkdIymUwYOXIkTp48CYZhMHDgQGzevBlHjx7F5s2b8dJLLwGwTdcyevRoWCwW0fYbN24Ugs5mzZph5cqVOHLkCDZv3oy+ffvi6tWr2Ldvn9vXtgedSqUS7777Lvbu3YuDBw9i3rx5CA4OxtKlS11um5ycjBkzZoDnebRt2xa//PILDh48iH379uHTTz9FcHAwzGYzPvjgA7fZrcPDw1G7dm0AoO625L+DJ4SQKqxHjx58XFwcP2XKFLfrLFy4kI+Li+Pbt2/v9NzKlSv5uLg4Pi4ujj9+/LjL7ZctWyas8/fff4uee/XVV/m4uDj+1VdfFT0+adIkYZsvvvjC5X6PHDkirNOsWTP+zp07Tuv88ssvwjq//fab6LmBAwfycXFxfIcOHXitVuu0rcFg4Pv168fHxcXxPXv2FD3XsmVLPi4ujl+8eLHTdhzH8YMGDeLj4uL4Hj16CI/n5+fzderU4ePi4vjNmzc7bWc0GvkuXbrwcXFx/KhRo1y+Z3d69uzJx8XF8e3ateOzsrKcnt+9e7dwHDZt2sTzPM8nJCQI5Rk/fjxvtVqdtjt58iTfoEEDPi4ujh83bpzoOcfPaOzYsS7LZT9+jz/+OM9xnPD42LFj+bi4OP61115zud2iRYv4uLg4vk6dOk6fjb3OTJo0yWk7+3NxcXH8unXrXO577ty5fFxcHN+gQQM+MTHR5TqzZs0S9nP9+nXRc+3bt3f5+vdzPBy3L/pduF83btzg69aty8fFxfEzZsxwuc6ZM2f4evXq8XFxcfzSpUtFz3Xt2pWPi4vjn332WT4vL89p26lTpwrvu+g5YsOGDcJzSUlJLl87KSlJWGfDhg3C41arlX/yySf5uLg4fujQoU7Hi+d5XqfT8W3btuXj4uL4l156qdSvbX984cKFLstU1L///uv2e2CxWIQ60a9fP95gMDhtn52dLaxT9Ls9Y8YMoT5euHDBadszZ84Ir13ccXRlxYoVwnYrV650uc7SpUtdrqPX64XjP2DAAN5oNDpt6/g9KVpvf/rpJ+G5v/76y2nbpKQkvlmzZsI6R44cEZ6z/6489thjLl/36NGjwna///672/c/ZcoUPi4uju/evbvbdQh5lFCLJyGkyiooKMDVq1cBQNT90hPh4eF45ZVXMGDAAKElqqiWLVsKf2u1Wo9fo2vXriWu07t3b5djMdu3by/87Tjx+pUrV3D8+HEAwOjRo12OvVIoFHj77bcB2LrLnTlzRnjO3mpYtHsxADAMg//9739Yvnw5vv32W+Fxi8UidBtztZ1cLse8efPwyy+/eNTSduXKFWGM47hx4xAQEOC0TufOndG8eXPRZ/Hrr7+C53nI5XJMnTrVZdfepk2bCt38du/eLeoK6OiNN95w+Xi7du0A2Opadna28Lj9+OXk5Di1sgDAwIED8d1332HHjh2icZ6lxTCM267jcXFxeOmllzBixAi3rYeOUzCUpc56ejwq0tq1a8FxHFQqlVCfi2rcuDG6desGAKJurQkJCbh27RoA23hIV5/F5MmTK2RaksLCQvTv3x89evTAqFGjXI5BVKlUaNSoEYCyfU6lcfv2bYwdOxZmsxl169YVjesFbN1G7UMBJkyYAIVC4bQPPz8/vPnmmwCAv/76S8gUzvO80Oukb9++qFevntO2jRs3djnutTTsn2WDBg3wyiuvuFxn6NChqF+/PgBgzZo1wuNHjhwRzlMTJ050OX3WO++8Ax8fH5f7tfdoeOqpp/DMM884PR8VFYURI0a43NZ+frBYLC6/Jy1atMDixYuxadMmoaeIK/YWz2vXrj1y8/4S4gqN8SSEVFk3b94Ex3EAgBo1apRpHx06dECHDh3cPp+ZmYlTp04Jy45jxEpDJpMJFw/FcZc8yHGuRb1eL/x97Ngx4e+4uDgUFha63L5u3bqQSCSwWq04ceKE8DrNmzfHX3/9hV9++QVpaWno3r07nnrqKeECvHbt2k7l9vPzQ+3atXHlyhV8/vnnuHz5Mrp06YJWrVoJiVHKMg7p8OHDwt/2wMaVlStXipb//fdfALaLOFfBql23bt2wfPlycByHEydO4NlnnxU9r1Ao3I7/dDz+juNvmzdvjn379uHixYt48cUX0a9fPzz99NNCspaAgACXF6ulFRUV5faCuE+fPujTp4/bbVNSUnDhwgVh2dM6W5bjUZHsdd3+HXdX15s0aYJt27bh+vXryM7Ohr+/P44cOSI8726sq0qlQvv27bF58+ZyLbe3tzf+7//+z+3zFosFFy9eFG6GuLqBcb8KCwvx5ptvQqvVws/PD4sXLxaN2QZs3VTtijuXNGzYEIAt2Dx58iS6dOmCy5cvC+Uvbixxp06dnMZhlyQnJ0cYg150buaiunbtigsXLuDy5ctOn723tzcef/xxl9splUq0adNGCJ7t8vPzER8fD6D499WxY0eXU2rZx8GaTCa88MILGDBgANq3b4969eoJNyBKk4TNXuc5jsOtW7fQoEGDErch5GFGgSchpMpyHLN3vy0WZrMZ//77L+Lj44WEQtevX0d6erpoPd4hUURp+Pr6uswMW5S7wMnxLr3jayclJQl/lzYximNCoMmTJ+PMmTPIzs7Gn3/+iT///BMSiQSNGjVC27Zt0blzZyFzpqOPP/4Yr7/+OvR6PTZv3ozNmzdDJpPh8ccfxzPPPIPOnTsXm6nRlbS0NAC2wLa4rJlF2T9/V5lbHTk+f+fOHafnfX193SZCcjz+9pscAPDKK6/g999/x5kzZxAfHy9cpMbGxqJNmzbo2LEjWrZsWeb594oLpO0MBgMOHz6MhIQEJCYmIikpCVevXnVqYSlLnfX0eFQke0t/fHy82wCiqNTUVPj7+4vqVnHniLL2mCit5ORkHD16FNevX0diYiJu3bqFGzduOI1HLU/83SRRly9fhlQqxYIFC9xm5bVzNR2VK/ZzieM5uLjvfUnfUVfS0tKEulvSjUXH5+2fvb2MJZ2PXJXN8bWL2z42Nla4seeoUaNGGDRoEFasWIGMjAwsXLgQCxcuRGBgIJ566im0b98e7dq1KzGTsWOypNTUVAo8ySOPAk9CSJXlmOjnfrJB7tq1C7NmzRK6j9kxDIMaNWqgSZMmHk1T4MhVtzVXpFLPTrdl6XbluE1sbCy2b9+Ob7/9Fjt37kRWVhasVquQCXbRokVo1qwZZs2aJcrK2qxZM2zdulXICJmfnw+z2YyjR4/i6NGjmDdvHjp06IAZM2YgKCioVOWyZ+RVKpVlej8lXbw5tvC4Sg5V3BQc7iiVSqxcuRIrVqzA+vXrhQzF9mzCK1asQGRkJD7++GOPs8oCJdeblStXYv78+ULWWzuWZVGvXj3ExMSUOSFJWY5HRbqfum4/PiXVLXety/crJycHU6dOxe7du51uAGg0GrRq1QoZGRmiFuryMn/+fPz5558AbDeaWrVq5XK9+zm+eXl5wmNFW1IdlaW7uWO5SpqD2fEcYG+xLe1n7+q3o7Tvi2VZqNVqp+8hAHz44Ydo3rw5VqxYgRMnToDjOGRlZWHr1q3YunUrNBoN3nrrLQwfPrxUZfM0sR0hDyMKPAkhVZbjmKnStCq6snv3brz99tvgeR4BAQHo3LkzGjZsiBo1aiAuLg4+Pj64detWmQPPiuJ4MXX27NlSB7iOgoKC8OGHH2LKlCk4d+4cDh48iEOHDuHUqVOwWCw4fvw4hgwZgl27dokuvqpVq4bZs2cLWTQPHTqEgwcP4vz58+B5Hnv37kV6ejrWr19f7Nx6dvZ9e9p1U61WIy8vr8QLMseug57MlVgSuVyO4cOHY/jw4bh586Zw/A4fPozCwkIkJydj9OjRWLt2bbm2VCxbtgyzZ88GYMvU3KlTJ9SrVw81a9ZE7dq1oVarcejQoUcmE6ZSqURBQQG6deuGL7/80qNt7Rfujt3UXXHMlOwpd62WZrMZw4cPF6Z7atGiBVq3bo24uDjUqFEDMTExYFkWEydOLPfA035TCQCef/55DBo0yO269nNJUFAQDh486NHrOLYiF/c9LMvxdQw23XX/dfW8/TtuL1tZPvvSvi9329t16dIFXbp0gVarFc4PBw8eRFpaGgoLCzFv3jzI5XK3n49jr4LSnEsJedhR4EkIqbIcL0xKurhw5/PPPwfP84iKisL69etddvV8UElUPBERESH8ffv27WK7svE8X+xFC8uyaNKkCZo0aYLRo0dDq9Vi7ty52Lx5M1JSUvDHH38IU6w4kslkaNmyJVq2bIm3334bKSkp+PDDD/HPP//g/PnzoqlDimNPqpSTk4O8vDy3rU+//fYbbt68iVq1aqFTp06IiIhAXl6ekDzGHXsCKkB83MpTTEwMYmJi8Morr8BkMmH16tWYPXs2zGYzVq9ejZkzZ5bL6xgMBnz11VcAbONpV6xY4bJFpyrW2bKKiIjA5cuXhQQ47riq59WrVwdga1XPysoSjVF1lJiY6PJxxy7HZrPZ5TrujvVvv/0mBJ2TJ092O+djeX9WZ8+exQcffADANu512rRpxa5v/05kZ2dDp9N5dHPGcbqc69evux0b7Dg0oLTCwsLAMAx4nhfNeeyKq++4/X97LgB33ccduxo7vjbLsuA4DtevX0fHjh1dbpuenl6q7tIBAQHo2bMnevbsCZ7ncfDgQbzzzjvIzc3FihUr3AaejnWjpFZfQh4FlNWWEFJlOWaBtY/l8oRWqxXmpHv22Wfdji90TH7zoMa1lcRxEvc9e/a4Xe/kyZNo0qQJunTpIrSAnT17FgMGDECLFi1w5coVp20CAgIwZcoUYdl+bP/66y/069cPLVq0cNm1LDw8HBMmTHDariSO4/b+/vtvt+t9//33+PLLL7F69WoA947BsWPHis0I+ttvvwGwtRg89thjpSpTcfR6PYYPH46nn34av/zyi9Pzcrkcr732mjBusCx1050rV64Ix75Pnz5uuxFWRp2tqBYZ++ccHx/vdi5WAJg6dSpatmyJF154Qeim6ZgF2d7t1JUDBw64fNwxCHNXxxyTj7l73D7fZFF6vR6nT58GUD6fU1paGt566y0YDAYEBwdj0aJFLrO5OrIfX6vVir/++svtetu2bUPTpk3RvXt3IaN2zZo1heCzuPOQu+NbHHsyM+Ded9id33//HYBtCIF9XKS9i7tOp8OhQ4dcbsdxHP755x+nxzUajXBcyvK+Zs6ciS5duuCdd95xeo5hGLRp00a4mVfc+cEx8HSV9ZyQRw0FnoSQKsveVQ1w32JRHMdxle5azRISEvDdd98Jy+5aPR60xo0bC1MXfP/9906TugO21rE5c+bAaDQiOTlZyDgbHh6Os2fPCnfbXbl48aLwtz25RmBgIM6dO4fc3FysWrWq1NuVpEmTJkKL7cKFC12OOduzZ4/QetS9e3cAQP/+/QHYurpNnz7d5YX72bNnhUD1mWeeQUhISKnKVByVSoW0tDSkpaVh7dq1Lls8cnNzhURGRY+Dvd6VpS451lnHVh5HBw8exMaNG4XlB1Vn7d3dy/v1XnzxRQC2rK/Tpk1zmaX3zJkz2LRpE3JycuDn5yd0sa1Ro4YwtnHRokVO47gB4JdffnHbomZvMQXgsuuyVqt1+x1y7P7v6rPiOA7Tp08X6vv9Hjej0Yi33noL6enpUCgUWLx4MUJDQ0vcrmPHjsJ47M8++8xlgK3VarFw4ULodDpkZmaKpk2xT5Wyc+dO0Q0Pu6SkJPz8889lek/2zz4+Pt7lTR4AWL58uXDesZ8TAFvmafvnN3fuXJfnlWXLlrltSX/hhRcA2G4gOH6f7HJycvD111+73JbjONy8eRP79u3DrVu3nJ7neV6YQqq486T9HCKRSERj7Ql5VFHgSQipslQqlXABVJYxUj4+PkIwtn//fsycORPXrl1DdnY2EhISMH/+fLz88suiMT4ljTV6kKZOnQqpVIq8vDy89NJLWLlyJW7fvo2srCz8888/GDJkiDB35/Dhw4WWieDgYOFu+9q1a/H+++/j7Nmz0Gq1SEpKwoYNGzBx4kQAtiDVPpdoo0aNhPkhFyxYgLlz5+LixYvQarW4ceMGli1bhlmzZgGwBZP26RdKYp83lGVZ3Lx5EwMGDMCePXuEFukff/xRKE+9evWEstetW1foorZr1y4MHz4cR48eRXZ2NpKSkvDjjz9iyJAhMJvN8PX1xccff3y/h1xgTwhy6dIlDB06FH///bcQjO7fvx/Dhg1Dfn4+JBKJU2uXvUXm+PHjuHXrlkfzN8bFxQnB85o1a/D1118L+zh79ixmzpyJkSNHioKzB1Vn7e/r0qVLiI+PR3Z2tiiYeu211/Dcc8/htdde82i/9erVE+Zi3bt3LwYPHox//vkHWq0WiYmJWLFiBUaMGAGz2QyFQoF3331XtP3UqVOhUqmQkZGBl156Cbt27RK2/eKLL4rtBl2nTh3hgn/lypX46quvcPv2baSlpWHbtm148cUXodVqXXZPdZyfccKECdizZw/S09OF7uuvvvqqKKC538/JPlabYRjMmTMHTZo0gclkQmFhoct/9rGJcrlc6JqbnJyMfv36YfPmzUJ93r17NwYNGiTc3JswYYKo2+eIESMQExMDjuPw5ptv4ocffsCdO3eQmZmJzZs3Y8CAAWUeCvHSSy8J55EZM2Zg2rRpSEhIQG5uLhISEjBt2jRhvHPTpk1FdYtlWUybNg0Mw+Dy5csYMGAA9u/fj+zsbFy7dg2zZ8/GvHnz3OYH6N27N5o3bw7Alijoiy++EL5rf/75J15++WWkpKS4bOkfNGgQ5HI5dDodhg4dik2bNiExMRFarRZnzpzBhAkThGmC7HXblZMnTwIA6tev73HyNUIeRjTGkxBSpT311FOIj48X5nT01NSpUzF48GDodDqsWLHCZetFv379cPjwYSQnJ7u8e11ZHn/8cSxcuBATJ05ETk4OZsyYgRkzZjit179/f4wbN0702JQpU3D9+nWcPn0aGzdudHlHPygoCN9++62oq96nn36K1157DTdv3sTSpUuxdOlSp+1iYmKwYMECj95L69atMXv2bHz44Ye4fPkyRo8e7bROrVq18O2334pa/SZPngyTyYS1a9fi0KFDLrvURUdHY8GCBeXaVa1v3744c+YMVq9ejRMnTuD11193Wkcmk2HGjBlOU3W0bNkSO3fuRGpqqjCn6J49e1xOdVGURCLB9OnTMWbMGFgsFixYsMDpWLMsi1GjRuGnn36CyWR6YHW2ZcuW+P7776HT6YRWsJ9//lno7pqUlITk5OQyJZqZMmUKTCYT1q9fj+PHj7vMBKrRaPDFF184jTOsWbMmvvnmG4wZMwbJyclOc2uGhYWhevXqovksHU2bNg0jR46E0WjEokWLsGjRIuE5mUyGOXPmYMGCBU69Lp555hl0794dO3bsQGJioss6HRISgg4dOmDNmjXQ6/VIS0srVStlUcnJydi+fTsA242cDz/8EBMnTix2Dte+fftizpw5AGxz3ebl5WHmzJlITk7GpEmTnNZnGAZvvfWW0Appp1Ao8OOPP2LEiBG4fv06Pv30U3z66afC8yzLYtKkSUKA6Am5XI4lS5bgrbfewunTp7Fq1SqXvS3atGmDTz/91Ck7eOvWrTFnzhzhvDJy5EjR85GRkejcuTOWLVvm8v1+9dVXeOONN3Dq1CksWbIES5YsEa0zceJELFy40KlOx8bGYtasWZgyZQqSk5MxefJkl+/v5ZdfxoABA9y+f3vg6XgTg5BHGbV4EkKqNHu3y6SkJJfdTUvSqFEjbNq0Cc8//zzCw8MhlUqhVCoRHR2N7t274+eff8asWbOE+e327dtXZbrbArZucrt378aoUaNQr149eHl5QSaTISQkBF26dMHSpUsxc+ZMp7v63t7e+OWXX/Dxxx+jZcuW8Pf3h1Qqha+vLxo1aoRx48bht99+c7qIDwsLw6ZNmzBx4kQ0bdoUPj4+kEql8Pf3R7NmzfD+++9j69atZQry+vTpg507d+KVV15BTEwMFAoFVCoVGjRogHfffRfr169HWFiYaBupVIrp06dj5cqV6NGjB8LDwyGTyRAYGIgnnngCU6dOxZYtWypk/ruPP/4Y3333HZ599lmEhYVBJpNBrVYjNjYWr776KrZv346+ffs6bffiiy9i7NixiIiIgEwmQ3BwcLFjF4tq37491q5di65duyI4OBhSqRRqtRo1atRAv379sGHDBrzzzjtCYqfdu3eX23suTtu2bTF16lTExMRAJpMhICAAmZmZ5bJvmUyGWbNmCZ9zZGQk5HI5lEolateujWHDhmHnzp1o166dy+1bt26NnTt3YtCgQYiMjIRMJkN4eDgGDRqEzZs3F5t0qlWrVtiyZQteeOEFoX6FhISgR48eWL9+PXr06OF2288//xzTp09H06ZNodFoIJVK4efnh6ZNm2LChAnYvn07Ro0aJQwZ+OOPP8p0fBynauE4DoWFhcUGna68/PLL2LVrFwYNGoRatWpBrVZDJpMhMjISvXv3xrp16zB27FiX29qTs02ePBkNGjSARqOBj48P2rZtixUrVgjn6bIICgrCqlWrMHfuXLRp0wYBAQGQyWSIiIhA+/bt8dVXX+H77793O/dtnz59hM8vOjoacrkcERERGDRoEDZu3Og24RRga8X/+eefMXPmTDRt2hS+vr7C+M/FixdjxIgRbrft1asXNm3ahJdeegmxsbFQKpVCvevevTuWLVtWbOKn69evC13De/bsWcqjRcjDjeE9nXmaEEIesIEDB+LEiRMYN24c3nrrrcouDiHkITN58mRs2rQJkZGR2Lt3b2UXhxB88cUXWLJkCVq0aOF2HDEhjxpq8SSEVHn2LmybN2+uMllnCSGEkLKwWq3C3NFvvvlmJZeGkAeHAk9CSJXXpk0bNG7cGImJidi/f39lF4cQQggps7/++gvp6el47LHH8OSTT1Z2cQh5YCjwJIQ8FCZOnAiGYfDNN99UdlEIIYSQMuF5HosXLwbDMC7nASXkUUaBJyHkodCyZUu88sorOHPmTLETxRNCCCFV1bZt2xAfH4+BAwcKGaEJ+a+gwJMQ8tCYOHEiqlevjrlz55ZpygZCCCGksphMJsyfPx9RUVHC3MWE/JdQVltCCCGEEEIIIRWKWjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoaWUXgFQ+k8mEnJwcYVmhUEAikVRegQghhBBCCCGVwmq1wmg0Cst+fn6Qy+X3vV8KPAlycnKQlJRU2cUghBBCCCGEVEEhISH3vQ/qaksIIYQQQgghpEJR4EkIIYQQQgghpEJRV1sChUIhWo6OjoZara6k0gCJiYmwWq2QSCSoVq1apZWDPDyozhBPUZ0hnqI6QzxFdYZ4qqrUGZ1OJxqGVzRWKCsKPIlTIiG1Wg0vL69KKg1gsVhgNpshk8kqtRzk4UF1hniK6gzxFNUZ4imqM8RTVbXOlFfSUepqS6oclmWFf4SUBtUZ4imqM8RTVGeIp6jOEE896nWG4Xmer+xCkMpVUFCAS5cuCct16tSpUndZCCGEEEIIIQ9GRcUGj2Y4TQghhBBCCCGkyqDAkxBCCCGEEEJIhaLAkxBCCCGEEEJIhaKstqTKSU9PF1JJh4SEVHZxyEOA6gzxFNUZ4imqM8RTVGeIpx71OkOBJ6lyUlNThVTSj+KXjpQ/qjPEU1RniKeozhBPUZ0hnnrU6wx1tSWEEEIIIYQQUqGoxZNUOTExMeA47pGdw4iUP6ozxFNUZ4inqM4QT1GdIZ561OsMBZ6kyvHx8ansIpCHDNUZ4imqM8RTVGeIp6jOEE896nXm0QynCSGEEEIIIYRUGRR4EkIIIYQQQgipUNTVllQ5ZrMZPM+DYRjIZLLKLg55CFCdIZ6iOkM8RXWGeIrqDPHUo15nKPAkVc7FixeFVNKNGzeu7OKQhwDVGeIpqjPEU1RniKeozhBPPep1hrraEkIIIYQQQgipUNTiSaocX19fWCwWSKVUPUnpUJ0hnqI6QzxFdYZ4iuoM8dSjXmcezXdFHmrVq1ev7CKQhwzVGeIpqjPEU1RniKeozhBPPep1hrraEkIIIYQQQgipUBR4EkIIIYQQQgipUBR4FmPatGmoU6cOFi1aVC77S05OxsyZM9GlSxc0atQILVq0QP/+/bFs2TIYDIZyeQ1CCCGEEEIIqWpojKcbhw8fxpo1a8ptf/v378fbb7+NwsJC4TGTyYSzZ8/i7Nmz2LBhA7755htERUWV22s+rK5duyYMrK5Zs2ZlF4c8BKjOEE9RnSGeojpDPEV1hnjqUa8zFHi6cP78eYwZMwYcx5XL/i5duoSxY8fCaDRCIpGgX79+aNasGQoLC7FlyxacOnUKly9fxujRo7F27VqoVKpyed2HVWFhoTCHESGlQXWGeIrqDPEU1RniKaozxFOPep2hrrZF7N+/H0OHDkVBQUG57fPjjz8Wgs5vvvkG06dPR69evTBgwACsXr0ar776KgBbgPrzzz+X2+sSQgghhBBCSFVALZ53mUwmfPvtt/jmm2/KraUTAE6dOoWTJ08CAPr06YNnnnlG9DzDMPjggw9w+PBhXLt2DUuXLsWwYcMe2TsdpdGwYcPKLgJ5yFCdIZ6iOkM8RXWGeIrqDPHUo15nqMUTwKFDh9C1a1csXrwYHMdBrVZj6NCh5bLvnTt3Cn8PHDjQ5TosywrP5eTk4MiRI+Xy2g8rlmWFf4SUBtUZ4imqM8RTVGeIp6jOEE896nXm0XxXHtq6dStu374NwHan4ddff0X79u3LZd///vsvAMDX1xf169d3u16rVq2Ev//+++9yeW1CCCGEEEIIqQqoq+1dAQEBGDNmDF5++WVIJBJkZWXd9z6tViuuXbsGAKhZs2axdy9iY2MhkUhgtVqRkJBw369NCCGEEEIIIVUFBZ4AXnnlFXz88cdQKpXlut/MzEyYTCYAQGRkZLHrSiQSBAcHIzU1FXfu3CnXcjxstFotOI4Dy7IICAio7OKQhwDVGeIpqjPEU1RniKeozhBPPep1hgJPAI0aNaqQ/Wq1WuFvf3//Etf39fVFamoqcnJyKqQ8D4vbt28LqaQfxS8dKX9UZ4inqM4QT1GdIZ76r9QZnueBu/8YiQSc2Qye4wCOE57jLRZYzWbbY1YOYBmwUtnd7TjwHA+AB8/xsBoM4ExGgLM9x3E8YN8fx4PnefCcBYyEhTIs1Pac1QpIpQAYgONgzEiHMSMLPMeBt1jAyngoQ4Jsr2W1AgzASORQhgQi/9pNmLNzbOvyHHiDDhaDHpa8QvCcFRKVLxiZHHI/H/AcB6vVArPVArPFBFPWHUhMFkBvAsvxAMOAkcjA8zwsVgvyrEbozVYYIYWZl0IVEQIJJwdrlcCiCYaVVcNk5pGfr4dMGw+L1QL4y1G/V+9Hss5Q4FmB9Hq98LdCoShxffs6BoOhwspUGlevXkXNmjXh7e0tPGY0GnHp0iUAgJ+fH6pVq+a0jU6nAwA0btxY9FxmZqbQihsdHS0Kwq1WK+Lj4wEA3t7eiI2NFW178+ZN5OXlAQDq168PqfRelc3JyUFiYiIAIDw8HMHBwaJtz507B57noVKpULt2bdFzt2/fFm4MxMXFiVq7CwoKcP36dQBAcHAwwsPDRdtevHhR+CGpV6+e6LmUlBRkZGQAAGrUqAEvLy/hOYPBgMuXLwOwde2OiooSbXvlyhXo9XowDON0MyQjIwMpKSkAgGrVqsHPz094zmKx4MKFCwAAHx8fxMTEiLa9ceMG8vPzAQANGjSARCIRnsvOzkZSUhIAICIiAkFBQaJtz549CwBQq9WoVauW6LnExEThJkmdOnVEdTw/Px83btwAAISGhiI0NFS07YULF2CxWCCXy1G3bl3Rc3fu3EFmZiYAWxd1jUYjPKfX63HlyhUAQGBgoFNPAovFgrNnz4JlWafMcOnp6UhNTQUAxMTEwMfHR3jObDbj4sWLAGw3gKpXry7a9tq1aygsLARgGwfu2G1eq9UKY8SjoqJEPxQcx+H8+fMAAI1G4zQZ9K1bt5CbmwsAqFevniibdV5eHm7evAkACAsLQ0hIiGjb8+fPg+M4KJVKxMXFiZ5LTk4WhgvUrl1bNDdwYWGhMAQgKCgIERERom0TEhJgMpkglUqdxqWnpaUhLS0NgG14wMN+jgBsn/2VK1foHPEfOUdcvnwZBoOhTOcIs9kMwFYni6JzhM2jdI7geR7nTpwAZzBCwQBRwSGw6nSw6HTQ3UpETloa9Lm5gNEEjVoNCcsKAZTFbLa9l/AwsOFhgESCzELd3ec53ElKgv74STBGI5QKBXirBT51a0Ae4IvCgnzoCgrBS6QIrhaNwPq1cfXbXwDw4KxWGA0GwGIGLFawHA+eBxipDKxUCgtsdYoBD7lMDt5iAmc2gjNawFmttiAQthkVAOZu0AfbvjkeUm85VJE+kN09RvLwWmAAFOTno/DCNXDZeQADgAeUQSooA5WwWq2wWi0AI4FMpURgg3Ak7rgIS4EJFc0qByShDJQcDykPyMNrgJUrYTSakJeUCibj3tSIBd4sJAGAt5WD0mHyCk04kHKTAZvF39svGJglSlhYOcysAhZJBiysDBZWAYtEhgDdHTDg4WMUD8vLVobiWmAzmCRKmCUKcAwLjpEAzN3zAQMgxWGDTMetZYjO84KUtwAFQPwvv+KJZs0q7Rxh/50qbxR4ViDHHye5XF7i+vZ1LBZLhZWpNKxWq9OUMjzPF/uja7FYhOeL4jhOeM7VVDX25+zvOyoqSuhmoNVqheftJ0xXZXK3X57nRT8yrspblv2W5r0Wt19Xn7F9v7YfhPLbb3l+No6sVqvbMjnu11V9MZvNsFgsLsc9F7dfd/XQXmfu3LkDs9lc4n6Lq98P8hgWVw9Lcww5jhMFCXZlOYZFy1R0u6L7rcxzhLv9evJdjoqKEgIfV+Wic4Tzfh/mc4Tjfst6jrBzNSyHzhHO+62scwTHceB0eoBlwFutMGZpYczOBqwWGMPCYWWAtD/3wFJQCF12FnQZmYBBj+uFelw3m8GbLeAsVvAWiy0wA1AIQOv0qvfkunlclnYN8msAAx53pAooImxBg7WgEFxiMniTBfbQyJqTCOnd+N9eO3OvAKbTQP7lYl7cDX0xzzl/cjZGox5crgFKKw8WAKP0AcMw4HR6WMwGsEKgCmRYDZDrDfC1cJDefYwz5UF/Ix1GK+Bc68qfiWGQL5ci0GSF3CqH3qKCBRoUmnhkS6UIkKWAAQ+1OQ8mloFFykLJ8ShgQ3BDWg8GRg1TvhImHyk4Hwk4RgKekYBnnM8PjqyMBDLO7BR4WlkZclUhbrYqmYwzQmGxfXJc9r3vQmWcI8pzaklHFHhWIMe7u+5Opo7s40Erew5PiUTi9KPMMIxQLlcVVCqVui03y7LCc65+7O3P2QNEx7vBeXl5wvNFL7Ycy+RuvzzPuyyXY3nLsl/H/9291+L26yoYlslksFgsLi8q72e/5fnZOJJIJG7L5LhfV/VFJpOBYRiP9+uuHtrrjL2FytV7cdxvcfX7QR7D4uphaY4hx3Euy1WWY+hYJo7jSvxsKvMc4W6/nnyXAwICkJycTOcI/DfOEY77tVqt93WOUKvVTtvSOcJ5v56eIyQsC4nJAl5fiLyEBFjyC2DJL4C5oAB5GemwpmeADQtBfmoSTJwZvNUKRqqExaAHfysRpqOnkW6xIv3uBbZXNSUYCQPeaoGM4wCGQeL+n8DAgqx4d6FX+WJ4Hoz9pfh7F/IMw8AKXjS1RKaMhUIK+Fk4iD4R5697hcmXsjDJJYgymiHnYAu8GQYMw8DE8HC85VLIstBLGWis9wJPe1BqZRhI3Ia3AAdGaE20sjIorLaWboVVHC5nK0OR4VUdBqkXjBIlOFYGKyMBx0jBsRLb35AAirtHstBhYzWHWO8zkFmNUOfm3Yu2GcAADe5IY+2F8ThK5hkJOMY5MJNwJV/rl7BjhOVfAwseesW92lEZ54iKms6F4V3dsiI4evQoBg8eDAAYM2YMxo4d6/E+rl27hm7dugEAXnvtNUyZMqXY9Xv16oVLly7Bx8dHmIblQSgoKBC6vwC2LlGO3b8IIYQQQlzheR6cwQCLTgdroQ5WvR6WwkLok+/AUpAPS6EOVp0OrFwOzmyBVVcIS2GhrdtqXi4sOj2sOr1t3F8JlP641yqo9oE8OEooQ9aRi6J1VcGApMj1tEwDSJVAxrlyeeslyg6QgPdjUM1gASRSKKPudWe8c/IS5MZ7rVDJEVLIVAyqG8yQ3L0ylygAVRCQ+oAuCXO8WZhCJIg0mqHgAEV0XTAsCysHJF9KhDzXNhRMyluQGiQF68sgwmiGHkHIZMOgY71gVamQny8Dz0thZaSwslJwjASc/X+GBc/cC4JYzozqOeehsOgQmSdu2r3tUxeXQlqX+f1E5ZyBlDchKi8e2b4S8EEsQkwWGKyROCLrVOb9+hoTIIEJAeZzAHgEmXmoTIBR6o9DgT1K3J4BBwnDQcoCEgkDKQuYDQWIyLgIjTUNnDwPFjmD/kvWlLmM96uiYgNq8axAjmMb7P2vi2Nf51EcTEwIIYSQqoczm2E1GGxdTM1mcGYzzLm50B791xYk6vSw6vUI7dwRvMW2jm1dE7xqxUKXeBPXvl76QMoqairh7gVtDMOAYVlbQhthZRfbcwBTxj6gZglgkrGABJBxPFQ8D9Y+fO9uQ9MdhRQFUhY8Y3t5kw8DpQaQ5lvASgFVRJBQ3uycVGj1tiY6ngF0/iwCZICsgIMMACQSSGRSSL1kSGpgxnXFvf36WnlE6q2obuAhY1ioouuCVcohVatwvPAOThek2oZwMoAvB8QagBomFgbeF3lsIHSMFwy8Apk8kM0DPCQALwMLKaSsDFdlEnC8BFyuDFarLcePJLQZdLGXwUkLYfRKhFwlR31NADRyP2hTQnEhMfDugQLgwSQRvESKf+urYZVKkR0SDC+pAk/710RT32hIU7xx6e+y5z1JbV4DVtaEm7V8oZQo0LHGk4jyjUBhKosjS46Wej8SCQOJlIVUKoFEyqJO885Qe8tQq8FwKBVy+Ci8wbIsjHoL/M+kgGUZWK0cFEoZVCoZlCoZlGopVBo5VEoZWAmLnJwcMAwDX19fAED81u9x+a+rsNVgBgrFoxmiPZrvqooICQmBRqNBYWFhiVOkWK1WYSBv0YH8/zWO/corqqmfPFqozhBPUZ0hnnpY6ozVYIBJmw1jZgZMmVkwZmbBlJ0Nc04uzHl5sOTlw1JYAKtOh9AuXSBRKmxZQq0WW2TGWWHOz0f6n/tF++XybwKcGbzVYluXsyLXm3fsQVrhHF+L58Rj1jgJA8fej2lSFjIZEGzhwLAAw9iCRFYCpITLkK2UwCRjYJIx8OE5BJosqGG0QqJWw6teM8h8vCD388ZP2edxwpwGjrVFlzWtUtRiFOjK+kMiVUDiEwSJ2gesTI5DWedwMC9RKEOsMgCNfKIQFt4UGo0fZEFRYCQSgJVg77kt2H15r7BuTf/qCI9oiJp1OkIlVcJssiIvx4C8XD2yz/+DpMQrkJrlkFjkMMp9YND4IV3iBauFh0XPwZxnhcXCgZfFQut7CUZlIfICUxDpE4bq0U8gtmZbnNhzB8f2XRMdt7tphgSWu/+csFIow8NgkunBRqsRpAlA3WrNEB1UA7p/s4DEeM8+TPvnyDNoX6stWBnQoHUwlFIlAtX+kEtkuBKfAfx93ON9sqwtUHwy9nFovJV4onU1UTfUXKsebTvXBgPAYuGgUEmhUEhtAeLdfyq1DGq1DEqVHBJp6b7vKrUcT7SuXuJ62dnZOHfuHBiGQePGjeHr6wtfiRJhxntHXlKFzzH3gwLPClazZk2cPXtWyBDnzvXr14WBv0UzS/3XnD9/XsgIWTSzHSGuUJ0hnqI6QzxVWXWG53lY9XqYsrJgSEuHMT0DJq0WvNUKc14+zLm59/7l5IIzGku97+yjuyCRcgBngcTLH7IAW4ZmzuwiiUleNtiirYU8nB8rLwxgZQGrhIFZysAsAYz+LFgfBnEGMyQaGbxrx4KVK8Aqldgrz0WSJR9GOQO9gkWEXwBifYLxRGBdsHIFpD5BkCg1YKRyrL+wGScy7nXrrB9UE96hddGwfjenmwqaY3pwN9LvFSs4Ct7hDRBQtzOUUvGMBf6nDIBD4FnIM8g0SXAui0OcJgwF1wtQkG9EQYEJyPFHHNMAOqYAjLcZUb5hiPIJA8uw2Lr2DM78e9thzzKEQ5xBWA9AL6QmukfBStEu5knIvHnENPSFj8ILwZpAqGUqyO+jFY3ngLYxLaDRKNC8TYzoObmi5F59xfFReEPjpUCtQHFGYv8gNR5rEQ0AsJg5yJUSKBRSKJS2IFGhlN5rUVTJbC2KKhmksuIrpa+/Cu2fq3NfZS4re9Bpv5F19uxZNG7cGDqDDMlsA2E9uYtkQI8CCjwrWPPmzXH27FlkZWW5TNlvd+TIEdE2hBBCCHm08RwHq8EIzmiA1WCAzMcHBVeuInX3HzBn58CkzYYpO9ujYNKj1zeYgLtjJnmHC13GRSISV0lYeA5gi+YlYe91Z2UYgJWykHr7QuqjhsxbjQQ+H5msGTlSK3QSHmG8FQFmBo8xcki91JAHhUMRHAKplw8+yzyFK4Z7mUObBNRArcBY1GrcG3Kp+IULVBm4mnxGWA4JDoMsJA6+LoJJ78RAwGG2CNPd1lMTZ4aSFQeTXnKNaNlsNYO5+396UiHSU/KRkZaPgjwDCrL98ERhN1hMPGBhwZl55FkZHIAWB/CPaD8+fkp0atEZoeE+qNdYPCWTUlX2JJM8xyNYEwBfHxUeCxdPWaNQlP0uAWe1zZ9pdTEW1y9AhZp1bFPRWK0c5HIJ5Aop5HeDRLlCCqVSBqXKoVVRLYNaLYdKJYVU7jocCQ33Qa+XmpS5zFVN0aATsPV4TElJQa5BgQvye9f/Gj6/MopY4SjwrGBdunTBjz/+CABYsWIFpk+f7rSO1WrFqlWrANjGhbZp0+aBlrGq0Wg0sFgsLrN3EeIK1RniKaozxFOe1Bl7K6WloADWQh30d1KQvmcvzHl5MOflgzebEd6zOziTSTRw0b/Z49CnJCPr4OGKfCv3yukYQ3BWMFIJWIkEjISFPNAHrIQFI5PCZCmEyUcPVs7Am+fBMABYgJXaWjz/7uSNm95y5MhZcBIGjS1SRElU6KqMgMwvBJp6T4KRysHK5FhzdCkStDdgj2LlYQ0QEBiDGvW7Qlqk+dTvnwwg+V7gaZZIwMiVsHAWyCEOzjRycbZhk9WWYdRVMKmRqsGapVBZNFBxXlCbgmHMU2Pf1UswGTjoC03Q68wwGCyQq4PxSo0h8AqQoladUPir/OAt14BhGOw5chpnj9+GmGPnVfcpaS1m28E3m51btlTqkqfgc8dqsdUni8U5QPT2VSIkzPvuFJ48ZHIp5DIJZAoJ5PJ7gaJCIYVCJYVSKYVSJbcFjGoZ/APUkLloTYypFYSYWkFOj5N7tFqtMG+mo+DgYMTFxeHg8auix61lHYxcxdEvbgVr0qQJmjZtilOnTuHXX39F69at0bVrV+F5nucxc+ZMYTLygQMHupwj7L+k6OS4hJSE6gzxFNUZ4qmaNWvaxk9maZFz9hxMmVkwpKbBkJ4OU1YWTNpshHV9FgzDwlJYKGpBNOfmIvvESdH+Ci+fBGfSgTPowZv04HkOuvObwJvuc0oGB/a561mp7W9WZvtbIrP9LdUAUoUteGS9pPB9oh4YVgJGJsfGmjxuGHOgNevAwRvN2AjEKP3ROSAOEo0fZAERkPoEQqL2hv6fr6HNuHfhzEbFQR0Yi8B6z0EqEV9q+qh8RctGq20qOZPFBKlcJXrOW+Hlel2rCeq7TbVWK4fCfCOCuFDU8Y6DiTNCpZajZkB1NAiJA8uw+PvPK7iakIFcrQ4GgxlmkxL1+S7CfjkAN6DDDSSiKB8/JWrWCkWoygfV/cQtkyp12Vsm7QGn2eQceKo1DvtlAJlMIrQi2gLCu11LVTLIlfbxiVIo7rYmRlX3dxkg1m8SgfpN/tt5RCpDcUFnvXr1bC3yag0c54PhK6wPe+WiwPM+3b59Gx07dgQAREZGYu/evU7r/O9//8NLL70Es9mMt99+G3v37kWbNm1gMBiwefNmnDxp+zGKiYnBqFGjHmj5CSGEkP863mqFKScHpiyt7Z/W9s+YpYUpKwvG9HSYsnNK7PJacO0GZL4aWAtyAJ4DI1OAN5tg1euc1tVdiwdb5CqMYwFJcY1dDMBKGUjUash8vaAI8IZErYBUrYRErYA1JwnWnCTbqndbIxkGYBRqSDV+uOatQZpChjQpg0zGgiaKIIT7hOKxsAaQ+ARCHhAGsFIwDAPt7gvILLh3IWwNrQ4moDq8XbRMOgeId1sbrWanwLPouqa7waTRIZi0axxaD0qJHAVGPZRmDXzNgVDe8MEfJ69Am1GI7CwdTHenJAkI1qBj026IjPVD7Xqhov1oMwqRdENbzIF1r/gA0bOWSZZlILsbQCpVMgQFe0HlYh8NHotAjbhgYSyjRPJoJpr5L3AXdIaEhKBevXpC0qPc1HQA97p121uuHzUUeD4ADRo0wPz58/Huu+9Cp9Nh69at2Lp1q2id6tWr44cffoBGo3GzF0IIIYR4ymowwJCWbgsmHYJKffIdmLTZMOfmwlJQUGSujrLJO/0XZErbfliNL+RBkQBsvZvAMKLXEHVzvZtxFbAFnprwu62S8nutk/bWS4lGA9/m3cCAASNXgJWrwMnkyOWtyNQGIsjUAIG+YZD5BkPiGwxZQDgkCls31MW7Z+N6diJgi/WgCogE5+uLlrGNICkSTAZ7BeJa9i1hudCkAw+gwFQIP6WPaF1vuetg0uQimHyy2hOI8YuC3mKAj8IL4V4hCPcJhbdcA12BCZnpBUhPzUPanTxkppuQkxWA/DwjeI7HHRTCsVXIkaWYANFVcFdaFpP7LrEBgRpEVvcDy7JgGNzNhiqHWiODxksOjbcCGi8FvH2V8PFRQqmSgWHdd78VyquW31d3W1I1ZGVlIT4+vsSgEwDy9QVwDDxdTQf0KKDA8wHp1KkTduzYgZ9++gkHDhxAamoqGIZBbGwsunTpgkGDBlHQSQghhJQSZzbbWiUzMmHMzIRf48awGg3gjMa7CXuM8KpZE9pjx3BlwVcPpEy8QysFbzGBYVmwChkkChm8akaAlUkg1ajAm7LBWtIhUdiCSft0H3Y+1VhIvPwh9Q2C1CcYAAepTwik/qGQBURAGVETjEwBhmEx7+9vcCrlPKx3I9mnopsh2luKPnEtnJLqhGiCbIHnXfZgstCkg4/S22ldRzqzHkqpAiaLyel9d6n1DFpHPw6O5+Cn9EGA2g9ecg1YxrmlrmFwHTQKrQue452CsC1rT+DKhXSnbUrDHnDax046Kq5LLMMwkMlZ0RhH+3QaKrUMGi8F6jUOdzmvYoOmEWjQlLquEmdZWVk4f/687aaTA1dBJwCYeJeT2DxyKPB0o2XLlrh06VKJ60VFRZVqPcA2P+cHH3yADz744H6L90i7deuWkMChevWS50MihOoM8RTVmarNotOj8OZNSFQqMAyEQNKeAdaQmobEX1aLtons9zxYh8Q/vo0bQeqlgTwgoPwLyNwdM8naurTaWyVlXoBcc/cxFQ+/lvcuMH3rxwibm9JvwZBkhETjC6mXPyQ+gVCExkIeUh1S32AczbmBy9qbuJ2bgkydFk9GP4G4oJpoGFoHcok4iJKwEiHoBIBMfTbCfUJRaNY5dWsN8QoULevMegBAnqnAKfB8MvpxVPeNhJSVIMw7GBHeYVBIXbfCxfhHiZZ5jkdutt7WepmSj7SUPFvXWK0O3j5K2xQZPI+WT9cQbRcY7IUrKFvgaTFzYMCA45ybimrWsXVbBQNIJSy8vJXw8lHA20cJtUYGibRixtPReea/yV3QGRoairp16zoFncAj28DphAJPUuXk5uYKc6URUhpUZ4inqM5UPlNuLgqv34QuMRH65GQYUtNgysyEKTsHVp1tTGRwh3ZQhoQ4bcuZnRPwcHoDWG9boMVIpbDk5SHjn3+gu3XVaV23WBYyLyWkGhWk3irAWgiYsmE12VokJQpAqryXpIeV3usiK8IwYBUyW3dXjS8kKi9wMiW0nAkppjzcCfZHaIuOCNIEIswvErIiweSR+E04dvu0sByfcQUsK0GNgGpOgWeIRhxMFppsxy7fVOgUeFbzjUStgBgAgEqqQLRvBGoHxkAtE3eHBYAaAdVRI6D4YEmvMyEroxAZqfm2rrFpBdBmFSIv1wDO6vpSmrPy0OtsraZWKycavxgYXHzPL6mMhVoth9pLDj9/FfyDNPD1VyEi2hdBwd5QKKUuu7JGRPshItqv2H1XBDrP/PdkZmYiPj7eo6ATAFgXN0weRRR4EkIIIaRCWI1G6JOToUu8DcOdO9CnpMKQmgrdrcRSzU1p1RtcPs7KZGCkUvCWe93TzPk54PRZsORlwVqYg5wjRnD6fPB3h+axUocxk/J7YywlCinUtRpAHR4AVWSQ6MLQmHIN+qsnXJaBUagh8wuFzD8UUv8wyPxCwcqVYAMioQyJBlukdfCzg0tEwWTdoJpoGFoXQZoA+DkFk+JurvZgUm82OI2vdFxXwkrA3J3CI99YAHiLk+w8HdMST8e0BMdzLrvBltbhv67h4N5r0BU6d7stiUFvBsdxYFkW+kITvHzuZfIPDPGCRMLCP9A2JtXbVwn/QDWCQrwQGuED/0A11Bo5ZHKJ2wt4QipTVlaWx0EnAHjx4lb3R7V2U+BJqpx69eqB53n6USGlRnWGeIrqTPmy6vXQJSYh/8oVFFy7Dv3tZJi02TBlZd1X0h5X2WABgOesYJUKWAssAMuClTAoiD8EmfremElWAkg0tmQ93lFuWiYBABb4PlELjIvpC6Q+QZD6h0PqHQDWJxBSvzDIw2tCExUHVuWNbH0urmhv4HRKPG5lnUK0bzhCmAL0CImGosi+QtRFWyZt3VxdB5NF1jXfW7eoFlGPoWZAdRSYdAB4+Ci84a3QwFfh7bSuXdGgk+d55OcakH635TI9NR8mowXNn4qBvtCMek3CwTq0JLIStkxBp51eZ4bGSwGdziwKPKvFBuD9OV3BsrYus2wpEvFUZXSe+e+Ji4sDx3FIS0sDAISFhaFOnTol1gG5mx4CjxoKPEmVQ11SiKeozhBPUZ0pO3NuLrT/noAuKQn6pCTokm7DmJ5RIa/FW6wAp4e1IBO8WQdlRCxgNYLnzYh47om704goYcm8CcOts/D4+p5hIVF7Q6L2gcw/DBKlF1ilBqzSC6xSDVZ2L3x0FUCsOrsZB24dFZYtnAWB6gDkGHIR6hUsWjfEq0grptneiql3KlYN/2poU70FLFYzpKwUoV7BiPWPhpdc7bSuv8oX/kXmxnTHaDAjIzUfqXfykJ6Sj6yMAmRn6ZGfa4DVKk7KwzAMQsK9bYkQdUFQe91rwS2pS6ydRMpCrZZB7SWHj58KAYFqBIV6IzzKF14+Cmg04vBcFNw+5EEnQOeZ/yKGYVC3bl3h79IEnQDAPrJtnGIUeBJCCCFExFJQCFapACORwFqogyknG+bsHIBlIVEocHXR4vJ5IYaBVKOBzM8P8kB/yHxUkKoYSKVGwJoFa85FWG7G29ZlJVAE1gbDOCe4YSyBMCY6PWx/FrKAcMhDq0PmHw6pfxhYpRdkgRGQBYaDLTKZpslqxs2cZJy6dRDXtInQyFWo7heFNtWaI0DtJ1o3xj9aFHjmGPKE/50Cz7utmHKJHGqZEgEqPwSo/CAtOpkngLigGogLquH0uKeSE3Nw6mgi0lPzkZGaD6Oh9JkzeZ6HQW+BSi2DTmcqEnjeGztqn0ZErZHDy0cB/0ANAoM1CAn3RmCwBmqNwjb2klr9yH9E0eCzNFiV+x4KjxIKPAkhhJD/OJ7ncePHn1B4/Tp0t5Nhyc1D1Ev9IJErRIl8pBoNQp/t5PH+FaEhUEdFQRkeBmV4OCQqGXhDFhhzBjhDLszaFFiyzwFGAEbAecZEAJwVnC4fEo1z657wGMNC4h0AeUCErUtsXDPIQ6qDlTsnz3Fna8JurDu/XVgOUgcg1CsYOYZc58DTT5zNNc9YAI7jhADUUcOQOlja9zMoJHJIWMl9jbHkeR75eUak3M5Beko+YmoFwqA3o1psABTKe61sBXkGnDziNiIvkb7QBJVaBn2RbrW+/iq8NKw5gkI04Dj+7ryTMlGiIEIedcV1o/b0Rgsr/W+0jlPgSaqcvLw8IfGAj49PyRuQ/zyqM8RT/7U6Y8rJtU1PopBD5ucPq04HS2EhrDqd8HfGXwdgyc8XttHduAVNjVjRfiyFhQDDQBESAmN6kWkv7rZeygP8oQgLg7paNAJbtYQqKhIMb4ElPwv6a6eQe3wTDPnZKMsEAtbCHCHIZBjWljHWyx8SL3+oazSFIrK2qHuso1xDHs6lXcKlzGswWIyoE1QTNQOqI9Y/WrRejF+003Y8zyNZm4oA1ldUZ2L8o6CRqRDmFQI/pQ9i/G0to0FFxmgCgFwqhxyupyNxx2gwIyU5F2l3bC2W2sxC5Gj1KMgzwGK51zW25dOxUCilCAjSiAJPx5bJ0mAlDNRqOTTeCvj6KREe5YuQcB/4+IkDd5ZlUKdBqJu9ELv/2nnmvyQ9PR23bt1C48aNoVC4Pud4QqIsso9HtIMABZ6kyrl586aQfrxx48aVXRzyEKA6Qzz1qNYZq8GAvIRLyL94EQXXbsCQkgJjZhY4gy0pjVdcbfg/3tTltjIfH1Hgac5zbrUDAHNOLvwffwymnFyoo6Ogjo6GKjoKyohwsCwL3qyH1VAAa2EOLHl3UHDqHDjL3ekzCnNgzdd6/L5YpQZS3xAowmtCXbOpLdhU+7hMCOTK4aQT+PLQD8KySqpEsCYQfjofp8Cz6LKZs6DQrMd17Q2oc6WiOuMl12Bp38/vuxup0WBB0k0t0lPzcetaFnKydMjPM8Kgd542xhW9zgSFUgq9Try+f6AaDMuALzJVg1Ilg+buuEv/QDWCQr0QEu6D4BBb11iJlFouy8Ojep75r0tPT8fFixfB8zzOnDmDxx57DHK5ZzeVijJxZjAOmW2Z+0jKVpVR4EkIIYQ8hCw6HQpv3EDhtRvIOXMWhTduwKTNLjaLrMVNMAkAUl8fIDlZWHYMPFm5HHJ/P8j8/CBRKlDzzVH39pmfjcKLh5D57yoYU2/AWpANryYdIfVxbvVj1T6ARApY3Yw1ZCWQB0VBHhoLRVgspAERkAdFQeob7DK443gON7NvIz79Eu7kp6FBSBwC1f6oF1xbtF60T4RoWW8xwGAxuuwSG6Dyg6/CGwqpAr4Kb0T7RaBV1GPIT84BOKfVPQ46eZ4Hx/GibqnZWYVY9f0xj/bjSFdohl8AhPkx7SRSFq2ejoVKLYdMxsLXX4XQSF94+ygglZYuaCeE3OMYdAKATqfD6dOn0bRp0/tKJiVRZyMm+9751yq1AOh/v8WtcijwJFVOWFgYrFYrJBL6USSlQ3WGeOphqzO81YqC6zeQn3AJeRcTUHjtOgypqR7vx5zrPvBUhYeBYVkoQ0OgqlYNXrExkAcGQu7vB4laLQRY5tx05J/7C4bEizAkxsOsTXHalyU/02XgyTAspN4BsOSk27rm+gRBHlwN6trNoQivCVlwlNP8l+7czk3BlD/nwmC5Nx+ot8ILFs7qFHhGeIdCLpHBZL3XIphjyINGpnKa05JhGHzdcxZkRebWTEd6qeuMfXqS5KQc3L6ZjdTkPGSmF+CJVtXASlgEhWhQt1G4sH5AUOmyxBbFsgzUGjk0XnKERTh3iQWAzj3rl2nf5P49bOcZUry0tDRcvHjR6XE/Pz9IpfcXUhmtJsisDnMbS0rX2+FhQ4EnqXJCQkIquwjkIUN1hniqqtcZq9GI/EuXof33OPIvXEThrUTw5vu7EGEkErAKW6Zaqbc3pBo1pBoNJGo1pBo1JGoNZD7eYB26jPE8D1PaTeSf+BeG5EswZyXDklvy1CnWPC0QKX6MlSsh9QmCb6s+kGh8oIppAonSeXoQRwXGQkhZCQrNegSq/UXPhWgCRYEkYAsm1TKVU9IPlmVR3S8Kt3KS4af0Rrh3KBqF1EW9kFouX7do0Am4rzMWixXpKflIuqFFclKuMBbTbHJOkZRyJxeh4T4oyBe3TMoVUvj4KpGX6zxPJwAoVVJ4+Sjh66dCQLAGwaFeCI30QWiYD+QKupSrqqr6eYaUnrugMzIyErVq1brv7vYyqQ7Ruff2n+v9aN6soLMVIYQQUsnMefnIT0hA3oWLyLuQgIJr18BbSj/1RVFSHx8ow0KhjoqCuno1qGNjoKkWDamXF9gSuoNxRj0suenI2vMzDMmXwRt1Hr++tSAbUu9ASH0CIfUOhMQnEKxCXeLFmYWz4tjt0zibdhHnUhOQoctCt7gOCFL7o3tcR9H2cqkckd6hSMq71+Kao89DkDoAerMB6iKZbN9r8wa85V5g2bKPX+Q4HjeuZCLtTh4Sr2ch7U4e8nINxfVuFinMNwHhgK7QBJ7jwTjMVRlRzQ9euQZoNHKoveUIDvFGaIQ3wiP9RFOZEEIerIoOOgGA1RWIl2mMJyGEEELKA8/zsBYWwpilhczHG1cWfIWcU6c93g8jkUBdrRo0NWIg0WjgHVcbvg3qQx4QUOp9cEYdzDnpsORmwJKbAavelmDInJ1a6qCTUagh8w8Tkv8oYxtD4sEUJnYsw+D7E6tQaLr3upmFWqhlKuSbCuGjEGdpjfGPRlJeipAsqGZgdbSKagqpxPnyxlfpWVZRk9ECo9ECbx+l8BgD4Nflx2EyupzwpUSF+baudBzHQaczQeN1L5Pli0OalWmfhJCKk5qaioSEBKfHo6KiULNmzXKbnzaEl6PQYVllocCTEEIIIR7iOQ4F166j8NYtqMLCYMrSwpiVBc5oC0J86tWFT/16pQo8ZX5+8H/icXjXrQOvmjWgrhZdYgtmUSZtCgovHIT+1nmA46Cs3sDlelLfYFiyXY8jZVXeUEbXg6p6Ayij60MeWr3EDLM8zyO9MBPx6VcQ7WPLgBvjFwWJw3Ysw6JeUC0cv3NWeCxDl4VqfpFIL8h0CjxfatQLrzZ5Hv4q57k9S4vneeRm63HrWhYuX0hHcmI2wiJ9ERbpA7lciifb1xTWZVgGIeE+uH0zu1T7lkhYePko4OevQlCoFyKi/VGthj80XgoolHQJRkhV9qCCTgBQWhhR4Ckt272tKo/OeqTKOX/+vJB+vGHDhpVdHPIQoDpDPFWRdYbneVgKCpBz5hySN22GPjEJnMkEVqlERO+eThcrxqws+NSr67wjloUqMgJyf39416uLgGZPwKtmDTAeJirhzEYYkhKgv3EauqunYM5MEp5jZAooqtV3eQEl9bs3Po2RKyEPrgZVTCN4NWgDWVAUGKb0XVbXnNuK/TeOIEtvC9gahNRBveBa8JKrEeoVLFq3fkhtUeCp1edCxkph5pzHuIa4mC+zJBazFcmJObh+JROJ17VIu5PnNG2JUiVDWKQPTCYLTEYL5ArpvTqjdN0FWqmSwsfXNgYzJNwHkdV8ER7pC7WXAiz7iE7KR4pFv00PrwcZdAKA2SJHive9MedShpILEfJAcBwn/COkNKjOEE+VZ53hOQ6m7ByYMjNhzMiAMSMTVoMB5rx8FF69du81DQZYCgog8/YWbW/SZiPwydaQaNTQxMbCp349+DaoD6+4OEjVnndX5TgO5vRb0N88B/2N0zAkXgRvMblclzcbwenyINGIWwxZqQyq6AaQKL2grt0Miqg6YEs5Z2bRxD4AoDPrhaATADILs4DgWkgryHQKPBuG1MFjYfUR7RuBYE0gHgurjxBNUJnHZuZk63DzShZuXM3EncQcaLN0TvNaFmXvEgsAhQVGyBVSob74B8pgrOaH0HBvsBIW4ZE+iIoJQECQmqYoISL02/RwSklJwaVLl5wej46ORo0aNco96AQArVmDC6FthWWV2X0G8ocZBZ6kylEqlZBIJPc1HxL5b6E6Qzx1P3VGn5qG7H//Re65eBRcuw6/xx+DwsWYSqm3F1iFQuhSCwCmjExR4MkqFJAHBIBhWbRcsczj1kw7c74WhecPQHftFIwp18Cb9KXe1pKbDplvEKS+wZD6hkDqGwKJl2+JLZocx+Fmzm2cSDmH82kJ0MjUqB8Sh7jAWMQF1RCtWz+4Nn678pewnKnPBsdzSC/MdNpvjH80pjwzttTld+fAH1dw4vAt5LvJFFscXaEJHMdBKpUK4zntdSauoTd6PB933+Ujjz76bXr4ZGRkPPCgEwAsjDiBGMc8mjexKPAkVU5cHP2gE89QnSGeKm2d4Xkeups3of33BHLj41F4/SYseeI70caUVJeBJ8MwUAQHQ3/7NgBAotFAolHDu04c5AEBUAQFQqLRlOlCxpacKBeW7BTorp5EzqFNADxIRiGRQR4cDWW1+vCq/xQUEbU86joLALuu7MPy0+uFZW+5BjH+0aKWTbt6wfe6kCkkcgRpAsAyLHwU3i5bSEtLX2iC1cohL9cAtUYOv4B707NYLFaPgk6pjIWPnwrBoV7wD1SjSbNoBARqhMyzdJ4hnqI68/Dx8/ODl5cXCgruZZmtVq0aYmNjKyzoBAAzJz7/UuBJCCGEPOJ4joMuMQl5Fy4i68hRFFy5Aquu+NZDY6Zzqx0ASJRKBD3VCoxECr/Hm8KrRmyZWzQBgLeYYc5Jg1mbAnN2CjijrVw8ALAswBWTjYJhoYioBVVsE6hiG0ERURustPgpOniex538NJitZsglMkT4hImerxssngMz31QIg9mALF2O0758lT4Y12ooIr3DYOU5BGkC4Kvw9uhCjrNyuHE1CzeuZOL2rWxkpOaD43i0fDoWABAe6SsKPKOq+7vbFQBA4yWHf5AG4ZG+qFYjAFExfvD2VoKVlH26FULIw00mk6FJkyY4c+YMCgoKHkjQCQCm4s7fjxAKPAkhhPxn8TwPffId5J49Z/t3/jws+QUlb+jAmJkFnuMg9/OFPCgYiuAgKIKDIPXyuu+LFWP6LeSf+hP6G2cgD6kGWVC00zqMROoyA63EOwDqWk9AVaMJVNUbQaLyctq2KIPZgBMp53A48STOp1+ChbOgZ53OCPUKcgo8Y/yioJIqobfca1XM0GmhlCmhM+uhlonHp7ap3sKTtw7ANqVJ/JkUXDh9B0k3tS6nMTEaLFAopcjLEbduOgaeCqUUXt4KBId5IyrGH7G1AhEU4g2Z/NFsVSCElJ09+ExPT0dERESFB50AUGg1ipYfzclUKPAkhBDyH6NPTUXmP4eQe+YsCq9fh6WgsOSNimBkMqgiwuFVqxZ8GzdEQIvmkKrVJW9YCmbtHRQmHEH+uf0wZ96+9wQrcRl4AoAsIByW3AzIg6OhimkETd0nIY+o5XFCnnxTIRYcXip6LPv/2bvr+EbuM3/gnxkxWGCZmZmWGbLZMDfYNE3h2l577RWv/V352iu3ubZXvEIKYWbm5WyWzGtmBsmyGGZ+fziWPZYMsmVLlp93X3515zugr+wnIz3zJccERKwIbq8bEtHMWDURK0JhXA6GLKPQymOQE5uJzcllyNSlQiGWz730klnMDlSf6cXF2kEM9E2A8y78FcxssiM+KQY2qwsej9c3wY9SJcXNH96MhOQYGAwqMCJmTb5AEkLWP4lEgtTU1DV7PTe1eBISHn19ffB6vRCJRGv6Hz1ZvyhmyELc5klM1NZhorYWpvPVcAwGXptyIaxcDmV6GmIKC6DbVAVteTlEsoW7qi4Vz/Nwj/bAevEUrBdPwTXcFfA4j3EQPM8JxmKK5CpI9MlQFmxHwo1fhki+cPLL8zw6Tb1wez2wuW2oShau4RmvMiAlJhH9k0O+siHLKGIVOozYxpESkyg4/j/2fhpS0conTjGOWdFUN4Sas70Y7AtuNsdJsxMZ2bGI0crh9XCCmWVLq1JWXLdpdJ8hwaKYiWxjY2PQ6/XLnjE7lPiobeMUosSTRJyxsTHfuld0oyZLQTFDAhl44SUMvf4GrB2dAB/ch7osIQGakmLIk5OgqyyHuqAA7ArGZ87FcRwcXbWwVL8FR38rPMaBRc/hPS5wFhPk6cWQxCZDEpsMVrG0cZJn+qrxXl81zvTVYNJlxe6MrUiJSUSeIQtqqUpwbEVSsSDxnHROIk2TBCnrn2CGIuk0m+z4zY/eWvLxSpUUcYlqpKTrkJ1vQEZWLGSK1Z81lO4zJFgUM5Grr68PLS0tiIuLQ0lJSdiTT4YST0IIIWR94HkebqMJ9oF+OPoHoMzKgnN0FNb2jiWdL9Hroassh7aiHLqKcsji4xc/aRl1dPQ2wXzmBdg7asHZJ5d0HiOWQpZWCFXhDqhL90KkiFn8pDmeb3oDDSMtvu0hywhSYhIxbBmFOlaYeG5NqcCwZRS5sZkoSchHUVweREtcw3MxdpsLo0MWpGToIHp/Eh+NToHE5BgMDcz/+9DHKZGTH4eKrWlIy9RTl1lCyLL19vaitbUVADA6OoqGhoawJ59agx6YNSE4H6XDzynxJBEnPz9/RdPrk42HYmZjmZp5thvGcxdgaWlF/MH9cAwMwmufmX2WkUigq6xA35NPB7wGI5FAnpYKdVEREvftgaakeFXih+d5eCfH4BrpgXusD47+FlgbTix6nkilhbJgB5QFW6HILAMrkQX1mnPfS2VSyZzEc2om3kHLKHJiMwXHViQVoyKpeMmvtxC7zYW68/1oqBmATCZGUqoGAKBQSRGXMDPZUUFZkiDxZFkG8UkxyC9OQOW2NBjiF58YabXRfYYEi2Im8sxOOqeNjo5idHQUCQkJYaoVIGOEvTbC3/l3dVDiSSKOQqFY/CBCZqGY2Rh4noe1rQ113/k+vNaZCYGkcQa/iX2cwyPQb9sKRiwG7/GAlUqhKSmGtrICmtISqDIzIZIvPZkLBsdx8FrG4R7pgWu0x7fsCQCIdYmASAJ43X7niWIMUBXtgKpoJ+RpRWCW2Mro8rhwqvc8hi2j0Cu0yDdkI0Mn7NZXmVSMh2qf8W17OA/iFHq/MZuhYBq3ofq9XjTVD2Ko3+zr5axUSX2J59iwRZB4FpYm4uzJLhSUJCIr14DcwnioYlbn77NcdJ8hwaKYiSyBkk4AyM7ODmvSCQCSOa2t0fqoghJPQgghEWe6lYDzeOAcGoZ9YACO/gG4JyfBuVyCY51DwxBnZwnP93rhMU0g99OfhDw5GTGFBWAlqzsO0NHfCvPZl2BrOQd5Vjmkcf5juhhWBIkhBe73JxBiFWrIM8uh3XI55JllgomDFjNkGcEzF1/Dsa7TcHickItluKbgUjAM65d4ZunTsT2tCjn6TOTGZqAsoTBk3Wd5nsdAzwSqz/Sg9eIIjGO2gMfZrC7YbS4olFKMDltQwPFg2KmvV8lpWnz5u5eBZaP16xYhJJx6enrQ1tbmV56dnY3MzMwAZ6wtkUoHYGZJFYaJzr62lHgSQggJO4/NDnNDA0znL8B0oRraslLEFBfDOTwM3jszzTzDspAnJsDe2+crcwwNQfV+4ilWq6FISYY8JQXyhHgoUkM3q2nAepvHYGk4jskLr8M9NlMn90hXwMQTABTpxZDGpSOm4hLIsyuWPa7I6XHh9bajvm2Hx4khywgYhoHJPgGdQuvbxzIs/mPPvy7rdQLxejm0NY2g9mwvOlrGYLO6Fj8JwNiwFTkFShjiVfB4OUjeT34ZhgH1RiSErIb5ks6cnBxkZGSEoUb+GLEMsxPPaL0hUuJJIo7VavW1dqhUqsVPIBsexcz643W5MFFTB+PZszDXN8DW0wtwnG8/z/OQ6HQBz5W9n3iKVCrIkxKhKS2BfvMmyJOTIdEsbeKdlcSM12GF9eJJWOqOwtFVj0BLfbvHB8B73GDEU62sIkUMpPHpkMSlQ6TShmTMV4YuFTn6DLQbu31lnaZeJMUkoNPUh6pZiWeoGMdsePvlJrQ0DsNh9+8uHAjDMDAkqHyTAyWnan0tnesJ3WdIsChmwq+7uxvt7e1+5ZGUdG4klHiSiNPW1uabfryioiLc1SHrAMXM+sBzHEaPHUf/cy/A2t4O3jP/gtnO4RHwHAcmQGtgTGEBDDt3QFNSAnliwrK60AYbM163A5aat2FvPQdbRzXg9Sx8AueF1zKOmIpLII3PgEgVfBLYaezBG+3HUWDIgYhlsTm5DHKJXHDMwexdvsQzQRWHkoR87M7YErKxm3MnRpFIRag93xco1xYQi1kkpGiQXxSP8i1p0BuU636CFbrPkGBRzITXeko67ZMTmD2yk/PO//m4nlHiSQghZFV5rFYMv/EWBl58CY6BwSWdw7vdcI0bIYszAABk8fHvd6FNhkQbmhbDxXBeD2yNJzBZ8xYc3Y3gA0wINBcjkUORVQZ11aVQ5m1dVjfa493v4ZnGV9Fp6gUANI22YWtqJWIVOhTF5wmO3ZuxDRaXDTvTN0MjVUEjD36pldl4nsdQvxlWixNuF4fxUSu27c2CRDLVJVYdI0Naph69nUa/c+UKMVLSdSgsTURxZTLUMXK/YwghZC3Ml3Tm5uYiPT09DDVaGOPsRua4aVaBC8DN4arOqqHEk0ScuLg4eL1eiEK4WDuJbhQzkcnW3Y2BF17C8NtHwDkci5/AspAZDJAlJkCVlQlFWhpkcQZoK8ohkoV2htOFYsZrn4RzoA3Wi6cwef61Ra/FSBVQFe2Eung35JmlQS19EsiIddyXdAJAr3kAVcmlaBvvQkFcDthZExCpZSrcUnr1il7P6+XQ3jSCuvP9aG8ZhXXSiZQMHfKKptYyHR+xIjFF4zu+sDTRl3jqDUokp2lRUpGMvJIESKXR+7WC7jMkWBQz4dHV1YWODv81nCM16QQAN+eChJsZK8+zSxvKsN5E7ycEWbdSUlZ3MhASfShmIgfv9WLojbcw/OZbmGy8uOjxEr0eyswMaIoKoS0vhzwxHhKtFqxUuqr1nBszPM/DYxqCs68FrvF+AACr0oKRyMC7nf4XEImhzN0Mddl+KPM2LyvZ9HJeWFxWaOUaQfn+rB14qPYZ8O+vQ+LhvOg1D0KsE2NwchgpmqSgXysQt8uLd4924MRbbX7jNceGLcgtjAPDMBgbsQgSz5LKFEilYhSUJkKr3zjLRdB9hgSLYmbtuVwu9Pb2+pXn5eUhLS0tDDVaGqnYjkxTnW/bLovOlTwp8SSEELJizvFx9D7+JEbfOQqPxbLgsYr0dOg3b0LiFZdDkZIU1rF/XrsFzr5muE1D8NrMgn0Mw0ISnwFXf4uvTBKbDHXlIWg2XQ6RQj33couadFrwcsvbeK+vBttTqyCXSN9fAmXmdxCr0KEqqQTnB+qhlCiQqUtFSVweihPyoVfolv1ep1ktTpx4sw1nT3XB5Qw8jsjp8MA66YJaI8P4qA0cx/uWOtEblNi2N2vF9SCEkFCTSqWorKxEdXU13O6pB2qRnnQCgJdzwKSeSTZdUko8CSGEEAFLaxsGXngJI0eOgvcsMOEOy8KwcweSr70KmpKSsE804xjsgOnYY7C3noM4Nhmqop0Bj5PGZ8A7OQ5l/hZoNl8BWWLW8l7P48Tfzz+Go53vws1N/Z6SY+KRqknGmM2IOFWs4PibS67GNQWXIkWTiBipGjLxyluAx0etOPJqM+ov9MPrXXh2IKlMDIlUhLyiBMQlqGl9TULIuqFWq33JZ2ZmZsQnnQCQkZ6O5sRm37ZIFp0pWnS+K0IIIauG93oxevwkBp5/EZNNTQseK9FqkHj5ZUi68grfREHhwvM8HN0NMJ18Gva2c75y92gPOGclWNlMt1FWLIE0MRvSzdkQX/tvK35tmUiK5tF2X9IJAJ3GXqRqktFj7vdLPAviclb8mtP6uk04+lozmhuHF5yNVqmSIilVg6rt6SgoTYzq8ZqEkOimVquxfft2SJYx63k4qERSGNwznw/ROi6YPlVIxLl48SI8Hg/EYjGKiorCXR2yDlDMrB2e51H79W9hsql5weOkcXFIvOxSpN1807KWOwkl3uOGpeEYJk6/ANeQ/4QT4Hk4B1qhyCqHSBEDWWoBZImZYETLqzfP8+DBCyYBYhgG1xZeij++d7+vbNAyAqfbAafHFegyK+ZyevDQX0+jq218weNi41Wo2paGLbsyoVCu7tja9YzuMyRYFDPhtV6STgCAWwoHl+rbFC2yYtd6RYkniTgulwtutxvcrMXkCVkIxczq89rtmKitg0SrhW7zpoCJJyMWQ52fh+Rrr0Hc7p0B1+BcSx6LEZPnX4P57CvwWk0LHsswDGLKD0CsS1x2N2CzYxJn+2vh5TmkahJRHJ8v2L83czseqnkGFpcVGdpU7M3cjoPZuxAjW52F5aUyMbh5utQyDJCYosHWPVkoq0qBNEq7dYUS3WdIsChmVg/P8+js7ATLssjMzAx3dVZsaFKCU/LLfNsq3oxLw1if1UKfNCTiiMVi8DwPsZjCkywNxczq4TweTDY1wdxwEbzHA1YiQeLlh9H/7HPwWm0AAKkhFklXXoHEyy+DVKcNc40BW2cdTMcfh6OrHuDn/8LHs2JwiXlIv/LjkKfkLvv1BieH8Vj9CzjZcxYMGFxTcClsbjsKDDkQsTPdpaQiCb6w61+QqkmCXhH635Pb5YXV4oQuVukr231JLh752xnftkjEIi1Lhx37c5BflACRODonsFgNdJ8hwaKYWR08z6OjowPd3d2+svWefHpY4brHHENdbQlZEyUlJeGuAllnKGZCi3O7MfzGW5DGx8He2wevzSbYZ+voRMp112L8vTNIu/kmGHbuABMB41EsjSdhOv44XEOdCx4n1idBu+0aqMsPQCRfWWuj0T6BL770PXCzEtxOUw/yDNnoMvUhJzZDcHxZYuGKXm8u84Qd59/tQXKaFkP9ZrAsg537c3wJZUFJIuIS1HA43NixLxu5hfFISNbQZEHLQPcZEiyKmdALlHR2dHSAYRhkZGQscGZk46QKAPaZbTY6U7TofFeEEEKCxrndGHr1dfQ8+jjcJhPUBfnQb97kd5y1oxMp11+H9DtuC/vstDzPw2McgL27EeazLy+YdMozy6Ddfi2UeZvBsKFJlPUKLTYll+Jsf62vrGWsE7mxWeg1D/glnqEy0DeBY6+3oKluCBzHo2xzCmLjVPB6p/alZeoBAAzL4PaPb4VWr4BYHP6HA4QQslyBks5p62o8ZwBWkxnAzHuYb5jEekeJJyGEEHhsNrT+5vcYO3HSV2Zta4emuAgixfuzvTIMVNlZ0JaXQ6xUzHOltcHzHNwjPXD0NMJjnQAAyFIL4RpsFx7IsFCX7oN25/XLXgplmsVlhYgRQSERdom6rvCwL/FkwCA5Jh5VySXIN2Sv6PXm4nkebU0jeOulJgz0Tgj29XYaERun8v07JV3na9U0xAe/3ighhEQSnufR3t6Onp4ev32FhYVITk4OQ61Cx2geB5Do215glMi6RoknIYRsYO6JCZgvNsHW2QVpbOzUrDP81JNW3uuF+WIT9JuqIE9MgG5TFaR6fVjr63XZ4R7thbO3CV6HVbBPpIyBxJAG91gvGIkMqqJd0O+7FRJ90rJfb8Q6hqcbX0H/5BBKEwqQrc/AlpRywTHF8fkoSyhEtj4dO9I3IT82O6QtwRzHo7F6AO+81ozRIUvAY0zjdkyaHdBoFdDqFfB6OLBSauEkhKx/0Z50AoCb94a7CmuCEk8ScYaGhuD1eiESiZCYmLj4CWTDo5gJnnNkFObGi7D39fnKxGoVVNlZsLZPLTkijTNAW1qChEsOQJa4/NleQ4Fzu2A6/gQmzrwIeUYJZEmB17lU5FZBkbcJ+j03Q6SImfd6i8XMuM2Ef1x4HO/2ngP3fiKerk1Bh7EHxfF5UEpmWnwZhsG3D34h5L8ft8uLC+/14MRbbZgw2uc9jmUZJKVqkJ4Vi6KyJMgV67vLWaSi+wwJFsXMyvE8j7a2NvT29vrtKyoqQlLS8h8sRhJuoUWWowglniTiDA0Nwe12QyKR0I2aLAnFzNJ4HA70PfYEXONGyBLiAx6jKSmGx2JF/CUHkHTF5ZAZYte4lkK814OJMy/DdPwxcPap1j5HdwOkCZmCcZoiRQzk6cWQJmQsafzmYjEjF8twYaDel3QCQOtYJ6qSS9E02oZNyWWC40OZdNosLrx3vBOnj3XAbnPPe5xYwiIjOxabd2UivygBEmrhXFV0nyHBophZmY2SdAIANsiSO5R4EkJIlPPY7eh5+FEMvfIavHY7WJkMydddA3bOFP+MSATdpiqk33EbJDHztxauBZ7zwlJ/FMajj8FjHBTuc9rgGuyALCUP4phYyNOLITGkhjT5U0oVuDRnD55vfsNX1mnqRVVyKSSrNNug3ebC2y834fzpHnjc838JkSvEKCpPwv7LC6DVKcI+wRMhhITahko6AWiZOZ/HYarHaqPEk0Sc7OxscBwHNsyLz5P1g2JmfqPHT6Ltj/8Hj3nSV8Y5nbC2tSGmcGppD1YigbogHzEF+RDJ5fNdak3wPAdr40kYjz4K96j/F45pnH0SMWX7INYnLyvxys7OxpjNiEm3FRMOM+xuB5JiEgTHXFVwCV5oeRNSVoIsXTouy9uHHWmbIBNLg369pZBIRGisGZw36VRrZMgrSsDeS3MRG0cTBq01us+QYFHMLA/P82htbUXfrKEg04qLi6Oy9Vi0wMPGaEKJJ4k4MWFuaSHrD8WMP6fRiJZf/QYTF6oD7jc3NkFbUQ5NSQnUuTlgwzwVPc/zsDaegOn4E3ANd817nFiXCP3em6GuOLTslr5OYw+eufgqTvacg16uxcHsXVBJlbi64BKwzMwXxHiVAf+x519REp8PuVgGUYiWYJmPWCLC9n3ZePPFi4JyvUGJrDwDNu3IQGq6DgytwRkWdJ8hwaKYWZ62trYNlXQCgBgb4+EEJZ6EEBJFeJ5H3zPPoeehR8A5HAGPUaSlIvUDNyHh4H4wovCOC5xOOMffftCvS+1sspR8aLZfB1XRDrCi5X90XRxpxXfevMe3PWY3Ytg6hkSGwbBl1K/Vc1tq5bJfKxCvh0NPlxFZuQYAgMfjhUjE+pLoLbsycPT1Fng9HMo2pSA1Uw+tXoHsvDgaw0kI2RA0Gg0YhgE/a4x9NCedAMDKVOGuwpqgxJMQQqKEc2QUzb/6X5jr6gPulyUmIPNDdyJu/96IGBdoaz2Hsdf/DveY/5PtadLEbOgP3AFl3paQ1LkgLgfJ6gQMWIZ9ZS1j7UhUx6HD1OOXeIaK0+HG2ZPdePdoByxmB265ewvcbi9M4zaUVKYgLmGq66xCKcUHPrQJSalaaPUK8DwfEX8rQghZKwkJU/fhhoYGAEBJSYmvLFox4o0xGzklniTiOJ1O35ctmUwW7uqQdWCjxwzPcRh86RV0/vP+gK2cjESCpCsuR+bdH4IoAn4/XpsZ9u56WOuOzZt0SuLTod9/O1SFO8AwwXdB8ng96J7oR6xCC51C6ytnGRbXFB7CX84+7NtWShSQiWTQyELfLW5ywoF3j3bg7MkuOB0eX/nxt1qRVzT1RaqtaQSxBiVY0dT7LCybmTSDks7IsdHvMyR4FDPLl5CQ4PvdRXvSCQBipUJYEKX3fko8ScRpamryTT9eUVER7uqQdWAjx4yttxdtv/sjzA2NAfercrKR9/nPQZ2dtbYVC8BrnYC9pwHu4R7w4CGOTwPbowFnM/uOYRUx0O3+ALTbr1nSsihzjduMeLDmadg9TmTq0pCjz8DWVGFM7M/aiadrX0GBKgt6mQaXbb4ESep4wfjOlRoenMTJt9tQe64PnNd/fbbBXjMycwyQSEWw21zo7TIhIye8S9eQhW3k+wxZHoqZlYnmrrVzuXkvgFmfeXx0rutJiSchhKxDnMeDvqeeQc/Dj4L3ePz2i9VqpN16M1JuuC7srWYe8xgcfc1wj0wlnNMYhoU8swy2xhNg5SrEVF4K3b5bIZIpg36NcbsJTze+gtfbjsLDeSETy5CmSUbPRD+qkkognjUuVC6W4V9zbofH44FEIkFKTGi+3PA8j672cZx8qw0tjcMLHqvWyOB2e33jNm1WV0jqQAgh6wXP87BarVCraZZuXjqGNNOIb5sT+X+uRwNKPEnE0el08Hq9EIV50hOyfmy0mJlsaUXzPb+EYyDwZDwJhy9F9sfuhjjMH+aO/haMvfo3cPZJqEr3BjxGmpAFaWwytDtvgEi+/MkVxmxGvNzytm/b6XGiw9iDPEMWes0DyNKnC47X6/UhixmO43GxdgAn3m5Hf7dpwWPjElRIy9JDq1MiNl4FnV4BvUEJtSa8y9iQxW20+wxZOYqZ+fE8j+bmZgwNDaGsrAyxsRu7x4eHd0PCzTyA9LKUeBKyJjIyMsJdBbLObJSY8Tqd6Pz7fRh86eWA3XDkSYnI/bdPQ1cZ3i5dXrsFoy//CdbGkwA/tTaZxzwGscbgO4YRSSBPzYcstQCsZOVjn/IN2ahILEbN0EyX4+axdmxLrYRc7H/9UMSM2+1F9Xs9OPl2O4xjtnmPY1gGSSkxSMvUQ62RIylVi7RMHRTK1VkPlKyOjXKfIaFDMRMYz/NoamrC4ODUw9O6uroNn3xKpE5kj1/wbU/ERGeKFp3vihBCooypphatv/09nEMBunAyDFJuuA4Zd94R1smDeJ6DpfYIxt+8D16rSbDP0VUHdfmBFSecHM/B5XGBAw+lRDgZw82lV6FmqBEiRoQCQzZuLbsWZYmFK3lLC7JZXHjpqXrwXOCxOGIJi5R0HVLStYjRKpCaoUNymhYSCbV+EEI2prlJJwBwHIf6+nrs3LkTkjCvKR0uXss4Zg+KYWiMJyGEkLXmsVjR+Y9/YujV1wPul2i1yPr4R5Bw8MAa10zI0d+KsVf+Amd/S8D93slxSOPSoMzfuqyEs328Cw/XPgcePArjcpGqScSu9C2CY4rj83F31c3YmbYZcarVf3Ku1StQVpWC2nPCmXllcjHSsvRIStFAF6tEWqYe8UkxYNnonKWQEEKWIlDSCUzN3l1cXLxhk04ASGUUsM7aVgaYlC4aUOJJCCERauzUu2j745/hNhr9d7IstBXlyPjg7dAUrV6r3mI8FiPG33oQlpo3Ax/AsFAWbofh8o9DEmMIfMwCBieH8bfzj+L8wNTapAzDIDUmCT0TAygwGGFQ6gXHX1t4OOjXWIzV4oRSJYXZ5MBArwm5RQm+Vstdl+T6Es/kNC1S0rVQqWSIS1RPjeXUK8I+uRMhhIQbz/O4ePEihoaGBOUMw6C0tBRxcXFhqllkkLo5QeIp9lDiSciaaG1thcfjgVgsRl5eXrirQ9aBaIyZsVPv4uKPfxZwnzIjHSnXX4v4A/vBSsMzTpDzuGB8+yGYz70K3u2/digAKHKqoN93G+Rpy0+M5WIZ6oaafNs8z6NprA2bkstQM9iIg9m7lpXYLRYzPM+j9eIITrzVhqF+Mw5ckQ+7zQ0AUMXIkZ41lfAmpWiw73A+MnMNyM43wDLphEjEQqmi8ZvRJhrvM2R1UcxMWSjpLCsrg8EQ/EPJaMNwUphlM8k3y3rDWJvVQ4kniTg2m8237hUhSxFNMcN7vTBdqIYyIx2q3BxY29p9+1i5HFl3fwhJV10Jhg3dmpPBstQdxdjrf/cbxzlNEpsMw+GPQZm/JeD+YOgUWlyasxcvt77tK+szD6IysRhqmQocz0HEBD9mcr6Y8Xo41F3ox/E3WjE6bPGVtzWNICVdBwAY6DEhLVPnS3gvuWomsY6h2WmjVjTdZ8jaoJiZSjobGxsxPCycn4CSTqFhhxrvpV/n21a4zbgijPVZLZR4EkJIhPDa7Rg9fhLOkRFYu7qR/fGPoe7b3wU4DrrNm5D7mU9BnpAQvvq5HRh84Ptw9jUF3M9I5dDvvRXa7deAES39ixbHceie6EP/5DD0Cg2K4/MF+68vvgyvtR+FUixHviEbl+bsQVF8HmJkoVsuxulw4+zJbpx8uw1Wi/+amr1dJiSnacEwDGw2F0zjNugNy1/+hRBCot18SSfLsigtLaWkcxavSDj3Ac+E7+HyaqLEk0SciorwLgVB1p/1HDM8zwMcB+O587C0tvnKOacT9t5eZNx5B2TxcYg/sD9sYwV5nodrqBP2jmrwfODuP6qy/TAcuhviGH3A/fM50nkKD9Y8A5ZhcTB7F0Zt4ygw5EDEzrRixilj8fV9n0VBXA5kImlIfg/TMTM54cDLT9fh/Ls9cLvm79rEeTg4bG7ExqmQnK6DOoZaNjea9XyfIeGxkWNmoaRzoy+dEojLK0w0vUx0pmjR+a4IIWQdsHV3o/lXv4G2vAwiuX8i4zabEX9wf1hbOT2T47C1noNncgwAIM8og3u4G7xnqlVQpIlD7KEPQ12yJ6iEcNxmwp/PPoiz/bW+shHrGOJVBvRMDCBLnyY4viKpOATvZsbwgBlvvdyE5obheZdDAQCFSoL0rFgUlychPTsWeoOSJgsihJAF8DyPhoYGjIyMCMop6ZyfF9E5mdBclHgSQsga49xudD/4MPqefhbgOLhGx5B4+WEwoplWPpFCgfj9+yCNDa4FMXR1dMLeWQvXQDv4WR+IrEQKeVY5HF310Gy5AvoDd4AVBz+RjkQkxsXRNkFZ40gr4lUGdBi7/RLPUOB5Ht3t4zjxdhtaGgKshzqLRidHdn4cyjalIjVDB7li447RIoSQYAwNDVHSGSSz2y7YjtY0lBJPQghZQ5zLhY6//RODL77kK3NPTMB8sQna0hIAU0ln0pWXB2wFXfX6eVwYf+M+eCbHIE3IDHiMunQP4q74JCS6+GW/ToxMjdvLrsO95x7xlTk9ThTF5aIofnVmf+ztMuEfvz+54DFxCSoUlSehdFMq4hPUYEXROc6GEEJWS2JiIiwWC3p7ewFMJZ3l5eXQ68PzIHU98HDROYvtXJR4kogzOjoKjuPAsuyGX9eJLM16iRlbdw9Gj5+AWK2CRKeF2zTh22fv7oFh505oS4uhzEgXtH6uFWvzexh96U/wWsYBkQRiXQJYqcK3X6SIgTK3CpLYlKCua7JPwOy0IEOXKii/LHcfXms9ArPTgqsLDuG6wsMQi0L7seT1cBCJp5LHtEwdklI0GOw3C45hWAbJqRpU7chAUVkS1DGyQJciG9x6uc+QyLFRY4ZhGOTm5gIA+vv7KelcAi5q2ziFKPEkEae/v983/fhGulGT5Yv0mPFYLDCeOw97Xz8AgGFZxG7fhqHX3gAAaEpLkPnhuxBTmB+W8YO8143xtx/CxKln4evg43XD3n4BqqJdYFgRFJmlkKUWgGGXnhD3m4fwSN1zSI1JhFgkRrzKAIVkphVXxIrwpT2fRKxcB+WsBHelOI7DhNGOnk4jnA4Ptu7OBMMwYBgGuy7JxVMPnAcASKQM4pLlOHxVJTKyY30JKiGBRPp9hkSejRwz08lnSkoKlEpluKsT8XieEk9CCCEr4HU6YWlthbm+EbxX2I1GGhsL3eYq6LdsQdJll4KVBj9OMhRcw90YfubXcA13+u1zj/SArTwMTdUhsLKlf3Hwcl482fASnmx4GV7ei62plcjSpaF26CK2p1UJjk3TJK/wHcwYGZrEO680Y6jfjJKqZF8SbxyzITZuaumTkspknDvVBY2BR0qWFAqFDNn5G+sLISGErAWGYSjpXCJtrBYwzWzza9/paU1Q4kkiTnp6uq9rCiFLEYkx0//Ci+h+4GHE7d0N6TxdjPI+86+QxS9/nORK8JwXE6efx/jbDwJej99+UUwsDJf/C9RFO4O+9s+O/RHnB+p823VDF5Eak4ROUy/yDFmIVehWUnU/TocbLz9dj5ozvZh+aGw2OaDVT7Wi9nSM+xJPkYjFR/5tN4xGY8TFDIlskXifIZEt2mOG4zi0tLQgIyMDCkXoeq1sRDKR8OFzdEYMJZ4kAtE4ABKsSIoZzuNB08/vwfip0wCA8dNnkHjZpWDe/+LBymTQb6qCMiszbMtyuE3DGHnuN3B0N/jvZEWIqboUhss+tqzZagHgkuxdgsTT4XGiZawdt5VdB40sZrnV9sNzPM6c6MKbL12E0yFMnns6jb7E0zLphMvpgVQ285EXSTFD1geKGRKsaI4ZjuNQX1+PsbExjI+Po6qqipLPFZDNGcYSrYt2UeJJCCEh4p6YQP1//Tes7R0zZUYjJpuaoSkphjovF7qK8rB1q+V5HhPvPgvjOw/71uGcTRKfgYTrPw9ZUvaKXmdH2iZsTa3Emb5qMADKE4vwia13Ikkdutbd7o5xPP9oDUaHLQH3G0etYFkGeUUJSEzRQESz0xJCSEjMTjoBwOl04sKFC5R8roBIHgNg5gEqw0TnZxYlnoQQEgKTbW1o/N4P4Z6Y8NvnGh9H4mWHITOEb/0yj3kMQ0/+As6+5gB7GWh3Xgf9gQ8G1crp4bxoHGlBtj4daqlq5moMg09svgOTjkl8uOpmFMTlhOAdTJmccODFJ2vRVDcUcD/DAMnpOhy6qhDZeXFg2Gh9bkwIIWuP4zjU1dVhfHxcUO7xeOByuSjxXCZGpgQwa8Z1SjwJWRveWZOwiMKwpARZf8IdM8PvHEHr//4OvGfOWEmWhWH3LhR85YthHeMzWfsORl/+E3iXw2+fWBuP+Ov+HYrM0iVfj+d5vNp6BE2jbUiKScC4zYT9WTsEXYdjlTr89+GvhqT+AOBxe3HszVaceLMNHg8X8BhDggqHri5CUVnSot2Ywx0zZP2hmCHBiraYmS/pFIlEqKiogFarDVPNyHpBiSeJOPX19b7pxysqKsJdHbIOhCtmeK8XHff+AwPPv+C3T6RQIOvjH50a3xmmsZy81wN7Zy0cXQ3gXU6//YrcTUi86ctBzVhrtE/gN6f+hrrhJohYES7P3Y8hjKLT1ItsfXooqw9gKsltqhvCa881wDhmC3iMQinBtj1Z2HMoDxLp0r7c0X2GBItihgQrmmKGks7V5XEIP984LvAD1vWOEk9CCFkGj8WCpl/8EqbzF/z2SePikPfvn4G+qmrN6zXNYzHC2ngSXvskRJpYyNKL4eyZmkyIkcig23MLdLtvDGocyYTDjC+//H1YXVMfkF7Oi/MDddiTsQ21Q43I0KZAFMQ6n4vhOR4P/vU02i6OBNwvErMoKEnA4WuLoTeoAh5DCCFkZbxeL+rq6mA0GgXlIpEIlZWV0Gg0YapZ9HCaO5AyMSv5ZPznYYgGlHiSiBMTEwOPxwOxmMKTLM1ax4ytuxuNP/wpHIODfvvUeXnI/ffPQJ2VtSZ1mYvneTj7W2HvqAbPzXTzkmeUwGMcgEipRcKNX4Q0PvjWSa1cgx2pVXiz44SvbNAyAqfHiSvzD4Q06QQAhmUQF68OmHimpGtx4IoC5BUmLGscJ91nSLAoZkiwoiFmKOlcGzxckHkp8SRkzWVnr2xGTbLxrGXMjJ16F82//F9wjjnjJVkWsdu3IftfPgp5QsKa1Wc2t3kMju4GuMf7/faxYgnir/ks5DkVYFeQIH646macH6yH0T4BpUSB6woP48biK0KadDodbsjkEgDAgSsKUHuuDzbr1IdwaoYOJZXJ2LIrU7A8SrDoPkOCRTFDgrXeY2a+pFMsFqOiooKSzhASi23IMM5ahkwWnRPjUeJJCCFLwHMceh5+FD2PPOa3T6LToeArX0RMQT5EcnkYagdY6o5g5KX/gzytGLLUfME+sVoPVdFOiJRL/5Jgc9vRPNqBisQiwcRIKqkSn9r6IRzveg8f3XwbNDJ1SOrP8zxsFhe62scwMmTB1l2ZUMXIIFdIcMlVhTj6WgsOX1eM0qqUsI2ZJYSQjYKSzrXFua3wimd6KXHi6Pyco8STEEIW4bHZ0PTz/4Hp3Hm/fer8PBT959cgizOEoWYA5/Vg5PnfwVp3BABg76iGSBsHsXpq4XJ5WiEUWeVgltgi6fV6cV/NkwDPQylVQi6Woig+T3DMlpRybEkpD0n9jWM2vPxUHaRyMeLi1eDBAwC62sdQUpkCANi0IwPlm1NX1MJJCCFkabxeL2pra2EymQTlYrEYlZWViImJCU/FolhKZjpaMlt922yUft5F57sihJAQsff1o+H7P4Bj0H/dyPhLDiLv3/4VrHTpa1+Gktc+iaEn74Gjs3amkOdgu3gS2m3XQl26B5LYlCVfr9vUh3tO/AkDk8PQK3Q4lL0b9cPNSNEkhaxlc5rL6cHbLzfh9LFOcBwPVsRg254syORTH0sjgxZYc51QqWVgWYaSTkIICSNKOleXSiSFzj17+Z3o/MyLzndF1rXOzk7fYPysME3QQtaX1YqZ8ffOounn94BzzlmKhGWR/fGPIPnaa8LW7dM13IXBx34Kj8k/IRbHGKAuPwCJbuljTeuGmvDTo7+H0zs1ltJoN6FlrAMFcTmoG7qI3RlbQ1Jvnudx5kQX3n65CXab21fOeXl0tIyiqDwJwNSMtTaLCyq1LCSvOxfdZ0iwKGZIsNZrzIhEIpSXl/taPSnpXH0KyKDyKHzbInd0pmjR+a7IumY2m33rXhGyFKGOGZ7n0ffEU+i6/0GA5wX7WKkU6R+8HSnXXRuS11oOy8WTGHn2t+DdcyY4YljEbL4Mhss/DpYN7vaeoUuFSqqE0z4zk179cDP2Z+3A1pTQrD/X1jSCl5+qw9iINeB+46gNPAdk5xuQmqmHRLJ6C67TfYYEi2KGBGs9x8x08tnY2IjMzExKOldZr1GC1xS3+bZVvBnbw1if1UKJJyGEzOJ1ONDyv7/D2PETfvskOi3Sbr8VSZcdDkPNAJ7nYHznYZiOP+G3T6TSIe7qT0NVsG1Z19bI1PjS7k/gv978H3h5DmqpCh+u+gD2Z+1YabXBeTm89FQ9zp7sCnwAA6Rl6LHnUC5yC+MhXsWEkxBCyNKIRCKUlZWFuxobAi9WCLeDWGN7PaHEk0SckpIS8DxPM1eSJQtVzDiGhtD4o5/C1umfICmzMpHz6U9BU1QYltj02swYeuIXcHTX++2TpeQj8eavQqxZ+gRHLq8bUpHwKXxhXC4+WHEjuif68InNH4RcsvJurhNGO564/xx6O40B9+sNSuy7LB9lVSlrmnDSfYYEi2KGBGs9xIzH4wHDMBCJ6IFfOLlYGYCZYT1edv21ki8FJZ4k4qznhZZJeIQiZhzDw6j+yv+DZ3JSuINhkPnhDyH5+mshClN3KedINwYf/D68Fv/kTV1xCHFXfRKseGkTHLm9HnSbelEzdBEHsnciVqET7L+u8HDIviRdrB3Es49Uw2F3++2TKyTYeTAHu/ZnQyJd+//m6T5DgkUxQ4IV6THj8XhQU1MDlmVRXl5OyWcYeRzCuSR4LkwVWWWR/V8EIYSsAde4EaNHjsGwayeGXn3NVy5SKVH4lS9Bv2Vz2OpmbX4Pw0//Erx77gRHIhgu+xg0W65ccqI4MDmCnxz5LeJVBhTE5eBk91lclrsP0llJayiSTo/bi9eea8R7xzv99jEMkJFrwC0f3rxqEwcRQghZ2HTSaTabAQC1tbWUfIbR0OgQgETfNufl5z94HYvODsSEELJEHosVI+8cAed2Q5GWCm3F1PqUirQ0VP7ip2FNOp1D3Rh64hd+SScjkSHpjm9Bu/WqJSeKZ/tr8Z+v/ggDlmHUDl3EmM0Iq9uO030XwPOh/YB78oHzAZNOmVyMym3puOzaYko6CSEkTOYmnQBgMpnQ1NQUxlptbG5EaRPnHNTiSSKOyWTyjYnQ6XThrg5ZB5YbM27zJIbfehtex9TssF6bDYmHD0GRkozMj3wYYqVylWq8hLqND8DW+h4UuVWwt5zxlYtUOiTe9nXIU/KWfK3ByWH87NgffAkmDx6nes7hcO4+qKWqkI9B2ntpHpobhgRPbAtKE5GZa0D5phSoNfKQvdZy0X2GBItihgQrEmMmUNIJABKJBJmZmWGqFeGitW/tHJR4kojT3d3tm348Um7UJLItJ2ZcpgmMzEo6p3ksVuR86hNgwtTdiOd5OPtbYG+faomUJeXAa52Aq78F0vgMJH3wWxDHLH0SIQBIiknATcVX4smGl3xlIlaEkvg8VCWXhvotICVdh0uvKcZrzzZALGZx5U2l2LQjA0BouvKGAt1nSLAoZkiwIi1mPB4PqqurMTlnLgOpVIrKykqoVKow1YzwlHgSQkj08VisaP7lryFPSoJYLfyQlWi1iD94IHxJp8cNa8sZuEa6BeWKnEpI49NhuPxfIJIur7XwttJr0TTahvrhZmxKLsPHN9+GRHV8KKoNAPB6OXS2jiEzNxZisQg792XDbLRj084MJCTR+m+EEBJOlHRGNs0GSck2xrsk60pycjI4jgPL0hBksjRLjRnn2Bjqv/M92Hv7II6JQcLhQxDJpsYaSmP1iD94wLe91pyDHXD0NMJrn/TbJ0vIgmrfbWDYpSXEo9Zx6BRaiGcdz7IsvrDz43ivrwaHc/euuOWR53k0XBhAcWUyPG4v6s73wTzhgM3iRNmmVDAsgytuDH1raqjQfYYEi2KGBCtSYsbtdqOmpiZg0llVVQVlGIeVkClil7DFMzL6BoUeJZ4k4sTHh64VhmwMS4kZe38/ar/xbbiNJgCAZ3ISo0eOIf6SA5AnJiDh4AGw0qUtSRJKPM9j/M37MPHuc1CV7IEkNlmwX5FeDHlW+ZISRaPNhNrhJgxZRpCpS8O21ErBeTqFFpfl7VtxnW0WF5555AJaGoaxuy8X6hgZHI6pJVPGRq1obRpGfnHiIlcJL7rPkGBRzJBgRULMUNK5PkiYjfFAixJPQkjU4zkOtu5egBPO3uqxWuG12ZBwyUGwYVijk3M7MfTYT2HvqAYAWC+eQkzVpRApNWDFEigLd0BqSF3Stc711+F/T90LlmFxac5edJp6EafUIyc2tJNFdLaN4an7z2HSPDXT7om32lC5LQ1avcJ3zFD/JNKzYiFXROcC2IQQsh643W5UV1fDYrEIyinpjDysVLH4QVFgY6TXhJANyzkygr6nn4W1owNxB/ZB9P4HrTgmBomHL0XmXXeGJen02iYx8MB/+ZLOqUI3rPXHwMpUiNl0+ZKSTo7n8ET9i/jp0d/D5rbD4rLiXH8teJ7H+YF6mJ2WRa+xFJyXw9uvNOG+P5z0JZ3TLtYOgvNOdROSKyTYtCOdkk5CCAkjSjrXF0ayMZYYoxZPQkjUcplMGHnnKDj3VDdQsVKJ+AP7YbpwAWm33YL4/fvAitf+Nuga68PgIz+Cxzjot0+RuwmarVeCFS2tXl7OizN9NeAx05rbY+5HoikO1xUdRox05RNGmE12PPnAeXS3j/vtk0hFyC9JACtiodEqULYpBVIZfbQQQkg4Xbx40S/plMlkqKyspKQzAokVcyYOjJAZ4EONvh2QiFNbW+ubfry8vDzc1SHrQKCY8djsgqRzmkSnRcGXvwh1fl5Ylvawd9Zi6Imfg3NYhTtYEWIPfgi6XTcEdT2JSIIv7f4E/t+rP4LVbQcApMQk4pbSq0PSzbapfgjPPnwBdpvbb5/OoERRWSKkMjESkmJQWJYEkWh9dKSh+wwJFsUMCVY4YyYvLw8WiwVO51QPFZlMhqqqKigUG6NL57rj932ED3jYekeJJ4k4PM/7fghZirkxM3bqXbiMRnhtNr9jEy+9BLIwTfhgvvA6Rl/6E8B5BeWimFgk3PAFKDLLlnXdBHUcPrP9bvzPiT/j1tJrcFXBJVBKVvblwuPx4o3nL+Ldox3+OxkgK8+A9Cw95Aop8osTYIhXRcwanUtB9xkSLIoZEqxwxoxCoUBVVRUuXLgAAJR0Rji7aBSJkxO+bZ71f9gbDSjxJBFHoVBALBZDEoZxd2R9mo4ZsViM7kceQ8+DD0OZnYXY7dt8yRArlSLlhuvC0rWW47wYe+WvmDz3it8+aVIOkm79T4g1hiVch0Pt8EXo5Vpk6ITjP7enVeHXV/9XSNbmHBux4In7zmGwz+y3TyYXo7giCRqdAsmpWhSUJIJh10/COY3uMyRYFDMkWOGOmenkc/rfJHIxjAtK98xnrlfsCWNtVg8lniTi5Ofnh7sKZJ3Jz88Hz/Po+uf96HnyaQCAraMTrFgM3eZNkMSokXjZ4bAknV6HFYMP/Tec/S1++5QF25FwwxfASuUBzhSqGWzESy1vIVufATErgl6hRYxMLTgmFElnzZlevPBELdwur9++uAQ1CkoTIJaIkJ4Vi5yCuHXVyjkb3WdIsChmSLAiIWYo4VwfWIkDaRMXfduTqvUxbCVYlHgSQtY9nuPQ/qe/YvCllwXllpZWqLKzkXLt1RDJF0/uQs01PojBB/8LnokRv33aXTci9pIPgVlk7S6e5/FC8xu4v/pJcDwPEStChjYVp3rO41DObohYUcjqe+KtNrz+fKNfOcsyyCmMR3KaBgzDIDs/DhnZses26SSEkGjhcrkwODiI9PR0uievY5x9AlKvw7ct5kL32R5JKPEkhKxrvNeL1t/+HsNvvu23T791C9Ju+QAkGs2a18s9MYz+e78GzjlnEiGGQdyVn4Rm8xVLus5fzz6MV9uO+LbP9tdCJ9eCZViM202IVy3eRXepyjal4PibrYKJhOIS1KjYmgqPhwMDBnnFCUjN0IXsNQkhhCyPy+XChQsXYLPZ4HK5kJubS8nnOpUAKVyztuVcdI4lj852XELIhsC53Wj6xS/9k06GQez2bci48w7IExPWvF6eiRFYG05AmpQtrJZYirhrPrvkpBMAsvTpgm0v50WnsQeX5uwJadIJABqdAtffUeXb3rwzA5/80j7sOpgLfawSRRVJlHQSQkgEmJ10AkBvby/a2tpo8qt1Su4UDm+RuKPz70gtniTi9Pb2wuPxQCwWIy0tLdzVIRHK63Si6ae/gPHsOeEOhoFh104kHDoIdW7OmtfLNdwFa9Np8DwHWXoxvPZJuIe7wCpikHjL16DIKAnqeodz96J1vBNvth8HAGxLrcS/7/go5JLV6TpcWJqIvYfzkJikQemmFF95xda0qHqSTvcZEiyKGRKs1YoZp9OJ6upqX9I5bXR0FJmZmTQB1jqkYCQwMjPda6O1ZZASTxJxxsfHfete0Yc7CcRjs+Pij36Cido64Q6WQdzePYjbsxv6LZvXtE48z8PR3QB710ydGIaBMn8rnEoN4q/+NCT6pEWvw/Ec2DnjPj+++XYMWUZwed5+7ErfsuK69nSMIyFZA5l85iPA6ZiaQU8mF+PQVUV+50RT0gnQfYYEj2KGBGs1Yma+pFMul6OqqoqSznWqz6bGO7l3+7YVbjP2hrE+q4UST0LIuuKxWNDw/R9isqlZuINlIa4oQ9zu3VPLqLBr97yQ57ywNZ+Bc7jTb580Lg2xe28FI174ywDHcagfaca4zYR9WdsFyadUJMF3Dn5xxckfx/E4+noLjrzajLLNqbjpzk0AAJvVhdPHOsCyLHYdzIFEEp2TGhBCyHrmdDpx4cIF2O12QblCoUBlZSXkYZhEj4QGJ5r7t4uuh73TKPEkEaegoAA8z0ddCwtZOffEBOq/+9+wdnQIylmFHPrdu6GtqkDsjrVNOt0TIxh85EeQpRVCrNYL9slT8qDI3bTozLVDkyP48dHfYVNyGRQSOeqGmlCRVCw4ZqX/PZgn7HjqgfPoahsHANSe7YMhXg29QYmxEQuA99cJPduHiq2pEIujO/mk+wwJFsUMCVYoY2ahpLOqqgoymWzFr0HCx+kVfuZ62OhsuabEk0QcemJHAnGOjaH+O9+DvbdPUC7WaFD6vW9DGhsLiUazpkmnY6ANgw//AJzNDI9pGDFVl4KVq8CAgSK3CvLUgkWvMWQZwTde/ykmXVY4PS4cyNqJi6Nt0Cu0SNemLHr+UjQ3DOGZhy4IZqsFgCOvNWPLrkwolDMfcOYJO4690YqDVxSG5LUjFd1nSLAoZkiwQhUzlHSSaBGtY1cJIVHEMTSE2q9/yy/plOj1KP/h96HOyYFUp1vbpLO/FQP3fxeczQwA4N0OWOqPguc4qEr3LCnp7J0YwHfevAeTrqklV8bsRlQPNQAA3F73QqcuicfjxctP1eHhv77nl3SCATKyYyFX+D9/zC9e+5mACSGE+HM4HJR0bgAmt/DvG51z2lKLJyEkwtl6e1H/ne/BNTYuKJclxKP0+/8FRfLiE/aEmrO/FYMP/zd4l/CDAl4vlDlVkBpSl3YhBvBwwinUhy2jqEgsRE5s5orqOD5qxcP3vofRIYvfPplcjKKKJGh1Cl8Zy7KI0ciQlWeA3qBa0WsTQghZuemk0+FwCMqVSiUqKysp6YwiHt67+EFRgBJPEnEsFotvTIRarQ53dUgYWTs6Uf/d78E9YRaUSw0G5H/x876kcy1jxtHTiIGHf+iXdIpiYpH8of9aetIJIE2TjG/u/3d87+1fwu52ICUmEV/e/Ulk6JZ+jUBqz/bi+cdr4Xb5f5AZElQoKE2ERCICyzKINagQnxQDQ4Iq6sd1zkb3GRIsihkSrJXEDCWdG4uX58JdhTVBiSeJOO3t7b7pxysqKsJdHRImk03NqP/eD+C1WgXlEp0Wcfv2QBZn8JWtVczY2qsx9NhPwHtcwjolZCLpjm9BEhMb9DVzYjPw9X2fw2P1z+NLuz8BtXT5rY0upwcvPVWH6vd6/fYxLIPcwjikZugQG6dGfFIM4uJVEG/QGWzpPkOCRTFDgrWSmLHb7XC5hJ81SqUSVVVVkEqloawmiQA8H62da4Uo8SSERJyJ2jo0/ODH4OY86ZXGxiLuwD4YdmyHPDFxTetkbTqNoafuAbweQbkiqxyJt/4nWOnik0iM2YwAAINSOPttUXwuvnXg8yua+XCwbwJP3HcOYyNWv30KlQTFFcnYuisThgQ1LZdCCCERTq/Xo6ysDLW1teB5npLOKKfWxACmmW0+SmfhocSTRJz4+HhwHAd2DSeKIZHDePYcLv7k5+DmPOmVxccjbv9e6DdVQVNcJNi32jFjOv0Cxl//OzCnK4wyfysSPvAVsOLFvwg0DLegbrgJUpEEB7N3QSfXCPavJOlsbx7FQ389Da/Hv6tOaoYOxRXJ2LwzA3JFdE7Pvhx0nyHBopghwVppzMTGxqKsrAwdHR2oqKigpDOKyWXCv220rtpEiSeJOMnJyeGuAgmT0RMn0XzPr8B7hK2Kus2bkPmhO+Cx2qApK/U7bzVjxnjscRjfecivXFWyBwnXfx6MaPHb6MO1z+KZxlexN3M74lWxONL5Lg5l74ZatvJJfDiOR1qmDjq9QtDaKZWJce0t5cgvSYRUJqK1B+eg+wwJFsUMCVYoYsZgMCA2Npbu4VFOMWfdzmh9vBWt74sQss6MHD2Opp/f45d0xu7cgeJv/D+o8/Kgq6xY0w/fsTfuC5h0xlQeQsINX1g06eR5Hk82vIQnG16Cl/fiePd7MNon4PA4cXG0dcX1mzQ7cOZEJ0xGO26+ewtE4qlbekq6Fp/68j6UbU6FTC6mLyyEEBLBOG7hiWXoHh79WKlCWMBEZ4oWne+KELKueB0OuMbGIJqz2Hb8wf0o+tpXwErWvouo6cTTmDj1tF+5Mn8b4q75DBh28XGSJ3vO4uHaZ33bHs6Do13vwuFxYnNy+bLrxvM8eruMOP9uN2xWF5rrh6DTK3D59SXYeSAHH/vcHsTG0ZIohBAS6ex2O06fPo3h4eFwV4WEEauYO/wmOlM06mr7Pp7n8fzzz+OJJ55AY2MjbDYb4uPjsW3bNnzoQx8KyQx2586dwwMPPICzZ89idHQUMpkMmZmZOHToEO666y7odLqVvxFC1hmXaQKjR47Ca7cjbv8+jL4z9e/EKy5H7qc/CSYM46kcfc3wumwQ6xLhMQ35ylWFOxH/gS8v+QNhe9ombE2txJm+al9ZgSEHd1bcuKwxP5MTDoyNWjDQa4bT4faVezxeNNYMYOuuTDAsPRknhJD1wG6348KFC3A6nWhoaAAAJCQkhLlWhKweSjwxtVbSF77wBbz99tuC8r6+PvT19eG5557DF7/4RXzqU59a9mv87Gc/w1//+ldBmdvtRn19Perr6/Hwww/jN7/5DTZt2rTs14gWjY2NvunHi4uLw10dsors/f0YO3EKnHsqiZLqdIg7sA8imRxZH7t7yd2LQhkzjr5m2NrOg2FFUJXsgaXuCLzmUajLDyL+us8F1eVJzIrwxV3/gp8e/R1qh5rw0U234oq8AxAtobV0rpbGITz1wHlIZWJUbk3zSzA5jofb7YVURrf1paD7DAkWxQwJ1kIxY7PZUF1dDafTKTheJBLBYDDMvRSJcvycGfP5KF3Xk76hAPjmN7/pSzpzc3Nx2223IS4uzpcQ2mw23HPPPUhMTMQNN9wQ9PX/+te/+pJOiUSC2267DeXl5TCbzXjttdfw3nvvYWRkBJ/61Kfw5JNPIj09PZRvb91xu91wu92LH0jWLZ7nMdnUDNOFamDO2lXyxETE7dkdVIIXqphxDrTB1nbet82IxFCX7gPDMNAfvHNZ42ykIgm+uufTqBtuxtbU4HtOeD0c3njxIk690w4AcNg96GwbQ3Z+nO+Y9KxYZOfHgaXWziWj+wwJFsUMCdZ8MWOz2XDhwgW/dTpVKhU0Go3f8ST6WUZaEGeZST5ZOBc4ev3a8Inn8ePH8fzzzwMAdu7ciT/96U+QyWQAgGuvvRa33HIL7rzzTphMJvzoRz/CpZdeCrVaveTrT0xM4Le//S0AQKvV4r777kNhYaFv/913341f//rX+MMf/gCz2Yxf/epXuOeee0L4Dtcfyfvj+SRhGNdHVh/P8+h56JGAc4VLDQbE79sDkUIR4Mz5hSJmnEOdsLWc9StX5W+BPH1prRuDlhH0m4ewKblUkKTKJfJlJZ3jo1Y8ef859PdMCMp7OozQxSqRmKxBUXkSjedcBrrPkGBRzJBgBYqZ+ZJOtVqNyspKiq8NihU5EeOa9VnPuOY/eB3b8InnvffeCwAQi8X4wQ9+4Es6p+Xm5uLb3/42vvKVr8BkMuGxxx7Dxz72sSVf//jx47DZbACAT3ziE4KkE5iaqezzn/88XnjhBXR3d+ONN96Ax+OBWLxx/zTUhSm6tf3hTxh65VVoqyqgKZpZj1OZmQHDju1gRMF3Q11pzJjPvQaPeRSYM+5SkVW+pKTT4rLiifoXoZQowb//v83JZSuaibDuXB+ef7wWLqfHb58hXoX0LD02bc/wzWRLgkP3GRIsihkSrEDdawMlnTExMaioqKCkcwNjWBuSzTOz3TujdMnWDf2NxWQy4cSJEwCAffv2zdvF9eqrr/b1t3/55ZeDeo3e3l7fv4uKigIew7IsysrKAEwNNDcajUG9BiHrRdd9D2DolVcBABMXajBRUwue56EpLYFh185lJZ0rZXr3OYy+9H+w1B8VjLFQZJRAkVGy+PkOM7752s/wQvObOD9QB57n0TbehfMD9eDndCNeCpfTg2cfqcaTD5z3SzoZhkFuUTyuvqUcW3dnUdJJCCHrBCWdZCGMywKFZ+ZH5rUuftI6tKG/tZw5c8a3dtLOnTvnPY5lWWzbtg0AUF1djYmJiXmPnWt2t9yenp55j+vv7wcAiEQiaLXaJV+fkPVi/NwF9D7+pKDM3HgRbpMJuorysKxTNln7Nsbf+AcAHh7TECx174DzuCBPK4Q8s2zR80et4/jum/dgwDI1DX7reCcaRloAAC6vCzyCSzyH+s34y6+O4cJp/3uFQinBph3p2Hc4H9l5cQHOJoQQEomsVuu8SSd1ryUAEJuehO5cie9nNFe++Enr0IZOPFtaWnz/LigoWPDYvLw8AFPj05qbm5f8GrOXYbn//vsFs5dNO336NGpqagAA27dvh1Qape3rZMNym82wd3VBWyUc52jYuQM5n/pEWOrkGGzH6At/FExu5DWPgXfaoMiuXFIi3GsewLBlVFDWYexGakwitqdVgV3isis8z+PMiU785dfHMDps8dufmBKDzTszULU9HRnZsUu6JiGEkPCzWq2orq6eN+ncyEOryAydVAkdx/l+YqNzUtuNnXj29fX5/p2amrrgsUlJSQHPW0xZWRn2798PAGhvb8ddd92FU6dOYXJyEoODg3jwwQfx2c9+FhzHQa1W46tf/WqQ7yL6DAwMoK+vDwMDA+GuCgkB9+Qkht98G16HA5qiIui3bQEAxO3fh4L/+BLYEHzoBhsz7olhDD3yI/Be4WyDirzNMFzxySW3vlYll+JzOz8KBlPHxyp0+NTWD2F3xtYlJ512mwuP/eMsXnyiDl6P8JNGJGJQWJaIwrIkFJUnIy1Tv6RrksXRfYYEi2KGBKu9vR1HjhzB2NiYoFyj0VDSSQR0YjlSnF7fT7LLG+4qrYoNHfHj4+O+f+v1C3+h0+l0vn+bTKagXudXv/oVvvzlL+Ptt99GTU0NPvKRj/gds3nzZnzrW99CaWlpUNeORiMjI751r5KTk8NdHbICHqt1Kum0231l6txcqPPzkfaBG0OSdALBxYzXbsHgwz+E1yIcSy1LK0Tirf8PLBvc87g9GdtgdzvwUvNb+ObBzyNWoVvyuRNGO/7+uxOYMNr99sXGq5BbEAelSoaC0kQkp1EX/FCi+wwJFsUMCYbb7ca5c+fgcrkgEokQExMDYCrprKiooKSTCHSOiPGa4i7ftgoWlIexPqtlQ7d4OhwO37/nzmY71+zur7PPWwqVSoWf/OQnvpbPuRiGQXZ2tiC5JWS989jsU0nn+7M6T5MaYqeSzjCMaeE8Lgw99hO4R3sF5fKMEiR/8Dtg2YW/CDjcDpgcZr/yw7n78JPLvx5U0gkAGq084FIoO/Zn49P/sR/FFckoLE+ipJMQQtYZiUSC2Fjh0AhKOsl8eIkSXkYy6yc6YyQ639USeTwzM0YuNq5y9v7Z5y3Fiy++iK9//etwOBxITEzErbfeitzcXFitVhw9ehSvvvoqnnjiCbz88sv4+9//LhgXGg6tra3Izc31PZ0DAKfTiaamJgBTrb8ZGRl+50wvGzO3/qOjo77Jk9LT0wWty16vF/X19QCmxjtkZ2cjJycHPM+DYRh0dnbCbJ76ol9SUiK4WZtMJnR3dwMAkpOTER8fL3jd2tqpGVMVCgXy8/MF+3p7e30t3gUFBZDLZwZxWywWtLe3AwDi4+P9nmw3Njb6nnrPnSp9YGAAIyMjAICcnBzB5FIOh8M3Pjg2NhZpaWmCc1taWmC328EwDMrLhc+5RkZGfN27MjIyBA8pPB4PGhoaAEx9qGVlZQnO7ejowOTkJACgtLQUolkzxxqNRt+kVykpKYiLE05aMz32WKlU+sY5T+vu7va1/hcWFgoe3gxdqEHX66+DEYuhUql8vweJTof4A/txsaUFHo8HUqnUb7bn/v5+jI5OjZvMzc2FSjWTmNntdt/YbIPB4OsiPx0zvb29qKmpEcwU7avT0CBML/4ekv5GQbkkPh2GG7+CuotTfxutVovMzEzBMW1tbRiaGEaDuQ3xiQm4NGcP1LKpeo2Pj/tmr05LSxN80eA4DnV1dQCmHkDl5uYKrtvV3YX8Sin6e1g4HRwUSglu+GAVCkoSYTabYbb1w2wDWHESEhISBOfW1dWB4zjI5XK/Mep9fX2+rl35+flQzFoX1Wq1oq2tDQAQFxeHlJQUwbkXL16Ey+WCWCxGSYlwVt+hoSEMDQ0BALKzs8N2j5htufeInJwctLe3g+d5tLS00D1ije8Rk5OT6OjoAAAkJiYiMTFRcG5DQ0NI7xHTmpub4XA4At4jhoeHMTg4CADIysqCRqPx7XO73eB5HmKxGEqlEnO1tbXBap2ahbKsrEzQc2JF94iuLt+EhsXFxYJJaMxmMzo7OwFMDQeie0Ro7xHAyr9HGAwGqFQqTExMQKvVory8HGKxmO4R74u2e0Rj49T3i/m+Ryx0jxgwWgHM1NPDTOUd4bpHTMdgqG3oxHP2TcLtdi+YfM4eFB7M5D9vvPEG/uM//gNerxc7duzA73//e8FN5NZbb8WxY8fw2c9+FlarFZ/4xCfwwgsv+N381pLX6/XN9juN53m43W7f/rk8Ho9v/1wcx/n2zb0uAN++6YR+9u9ncHDQt3/u0hSz6zTfdae/KCxU3+VcdynvdaHrBnp4MX3dQOMLV3LdUP5tZvN6vQHrZO3sQvuPfwrO4wFbVgr+/S9pEq0WCYcOQiSTwe12w+PxBOzWOt91577X2XE4HTPT7yfQdR1H7oekv15QJlLHIvn2b4KTKRd8rycGz+H1/uMojclDjEeLI13v4lD2bsgl8mX/Dl1OD9oujsPusKFylw6DXTw+8KHN0OgUgvcy973Ovi7HcYIvANOW8zucNh0vgZaCmX3dcN4j5rtuMP8tq9VqeDwewTGhuO50fekesXAcLiW+Q3mPmH3d+e4Ri8X39HsM9PsPR3zTPWLGatwjpq+70u8RaWlpyMzMRFxcnO86dI+YEm33iJX8DrkAdZldp6VcN5T3iEB/y1DY0Inn7KeWTqdzyYnnYt1yp/E8jx//+Mfwer3QarX43//9X0FSNW3v3r346le/iv/+7//GxMQE7r33Xvy///f/gngnoSUSifz+g2MYxvcUJVCAisXieacDZ1nWty/Qf8jT+wLd2Gdfd+6NdHad5rsuz/MB67XS687+/9lmv9eFrhvovUokEng8noAfGCu57mr9bUQikV+dnOPjqP/Of4F7vzs6V1sLj1wGcUoKEi45ANH7/+1IJBIwDLPk6wZ6r4HiUCKRwOv1+r2X8bcehLf5pPBaUgWS7vgmxNp435PnQO/19bajeK73TQBAvaUViZ4kMAyDcwP12J2xZUm/Q87Lw26duYmPDlnQ3DAEy4QHDieH1Ew57vxkheAeNPu6871XjuMC/m1X8jsUi8XgOG7Rvw3dI+geMV2n+a67UBwuJb7X8h4x97oLxfda/g4XikO6R8yI9HvE7AkqZ9eX7hF0j5i+ltlsAjDTgur1zCSR4bhHBDvfxVIx/HJWOI8S3/nOd/DII48AAF5//XWkp6fPe+xjjz2Gb33rWwCAX/ziF7juuusWvX5DQwNuuukmAMCdd96J7373u/Me63K5sH37dtjtduTm5uLFF18M5q2siMVi8XV/Aaa6OwRKkAlZiMdiRfVX/x8c/cIZH+Upyaj4xU8hmdXVZS2ZL7yJ0Rd+D8xeU5MVIemOb0KZXbnguUc638Vv3/27oEwr1+DGoitwac5Ui+dijGNWPHH/eVgnnfiXL+xBX5cJA33CtYAlEhG27s6CTL6hnwUSQsi6NDk5CYZh6LsTWbb77/kz2vtnhm2IvQ5841e3hK0+q5UbbOjJhWb3YV9sevTpPt0A/MY7zGe6XzWw+DqhUqnU1297eizIRuVwOGC324OexImEj9fpRMP3f+CXdEp0OpR851urnnTOFzP2zjqMvvRHCJJOALrdNy2adAJAVVIJUjXCJ9UZ2hQczt2zpKSz/kI//vQ/R9HfbcKE0Y77/vgu+ntNfscxDAOHPXAXHLI66D5DgkUxQwKZnJxEdXU1qqurYbEI12GmmCFL5eGjdOHOOTZ04jl7gO70QOP5TO9nGMZvgPlSOJ3ORY+ZbtYO1By+kTQ3N6OhocE3gJ5ENs7jQdPP7sFkk/DvJVarUfT1r0GRnDTPmaETKGZ4zgt7Zy0YkbALiap0L/T771jSdTXyGHz7wBeQoDIAAK4vvAxf3/dZyMQLd7d3u7x4/rEaPHHfOTgdM2MyRgYnMdArnBU3LkGNrbszodUr5l6GrCK6z5BgUcyQuaaTzulxdnOTT4oZslQbpQPqhk48N23a5OvX/O677857nNfrxXvvvQcAKCoqEsxitZDZM3BNz0g1H4/H45slcaktqoSEG89xaP3N72A8c1ZQzsrlyPzIXdAUFYanXjwH68VTAMtCXXUpWMXUf7OytCLEX/fvAce/zCdWqcO3D34BH998O+6q+gDEooW7ww4PmPGXXx3FuVPdfvsUSglitFNJq1gsQmFpEkqrUiCVURdbQghZT2YnndPcbje6urrCWCuyXqk2SEq2ob/taDQa7Ny5E0ePHsWbb76J/v7+gEnfCy+84Jsy+6qrrlry9cvLy6FWq2GxWPDGG29gYGBg3kWnn3nmGd9Tsj179izj3USP2NhYeDweWucqwvE8j457/4GRt48IyhmJBMlXXYGESw6uWV1mxwzP87C3nYfr/bU6RXIV1JWH4BpsQ+LNXwW7QOLYbeqDxWVFSYKwa3yiOh5X5h9csA48z+PcqW688nQ9PB7/LjMJyTHIK06AWDz14bJlVwYUyqXPkE1Ci+4zJFgUM2Sa2WxGTU2N3yyjer1esLQHxQxZKqlb2OK59Mfj68uG/y/hox/9KI4ePQq3240vf/nL+Mtf/iIYPNva2oof/vCHAKbWz7n11luXfG2pVIq77roLf/zjH2Gz2fDFL34Rf/jDH/wWFD537hx+9KMfAZiaYeojH/lICN7Z+jV3XSoSmXoffxIDzz0vKGNEIsQf2IekKy8HO8/sbathdszYuxvg6G8V7BfJVUi88UsQyQOPNeV4Du90nMKobRw8AJYRoSg+N+CxgTjsbjz/WA0aqv3HirMiBvnFCUhMmWp1NcSpUFyZDLF4Y3epDze6z5BgUcwQYCrprK6u9lueQq/Xo6ysTDBcimKGLJWUWjw3hr179+KKK67AK6+8gvPnz+OGG27ABz/4QSQnJ6OhoQEPPfSQb8HXr33ta35J47vvvou7774bALB9+3bcd999gv2f/vSnceTIETQ0NODChQu4+uqrcdNNN6GoqAherxenTp3CCy+84Htq9s1vftNvMVtCIs3gy6+i+/4HBWWMSATDnt2QJyZCnrT64zoDcQ52wN5ZK6wXw0JdugcilTbgORzH4WfH/oBzA3XYnlaFDG0qaoYaIWZFyDNkLfqavV1GPHn/OZjG7X77VDEyFFckQR0jR2qGDulZeupWSwgh61QwSSchwWBEG6MHFH0DAvDTn/4UVqsVx44dQ29vL37+858L9jMMg8997nO4446lTUgym0KhwF//+ld86UtfwqlTp2A0GnHvvff6HSeRSPCNb3wDH/zgB5f9PghZC6PHT6Dtj3/yK8/7/Geh37IZ4jBNJz9+5GE4uhshSy/2jeFkwEBVuAMSXWLAcziOw+9O/wPnBqbGYJ/uvQAGDNK1KbC4bIu+5qkj7Xj9uUZwnP+kACkZOuQVxSElXY/MHAMtlUIIIevYxMQEampq/JLO2NhYlJaWUtJJVoSVK8NdhTVB34QwlRz+5S9/wXPPPYenn34ajY2NmJychE6nw5YtW3D33Xdjy5Yty75+bGws/v73v+ONN97As88+i+rqaoyNjUEqlSI1NRV79uzBhz/8YWrpJBFv7OQpNN/zK2DO7GvZn/wXJBw8EJ5KATBfeAOmo48D4ME5LFDkbQXDslDkVkGakDHveSd6zuBo12lB2Zm+GuzN2IrKpOIFX/Pdox149ZkGv3K5QoL8kgSUVCQjM9cAuWLtuhwTQggJvYWSzrKyMt+qBIQsl0g2p8UzSgd5UuL5PoZhcP311+P6668P6rwdO3YIFlhd6PqHDx/G4cOHl1vFDaOlpQVutxsSiWRZS9eQ1WGqrkHTL34Jfs4Hb/odtyHl2qvDVCvA1n4BIy/+Ecz7a3W6hjrBOe0wXPlJyFMXXj93T8Y2tI514sWWtwAAIkaE28uuw470zQu/psWJM8c7/cozcmJx052boFJLIZbQ0+9IRvcZEiyKmY1pJUknxQxZKmaDtJhT4kkijt1uh9vt9pstjoTPZEsrGn/4E/Bz/iZJV1+J9DtuC1OtALdxEMNP/wrMnIWXZSl5UOZULXo+wzD4yKZbwfE83mg/hq/u/TSqkksXPMfpcOPCe73Yd1k+3j3SgYHeCQDAvsP5OHB5PlgRPfleD+g+Q4JFMbPxrLSlk2KGLJWTMUFvs/q2GcYVxtqsHko8ScRhGMb3Q8LPOTKChv/6b3BOp6BcXViAnE/+S9j+Tl7bJAYf/iE4+6SgXJ5egvjrPx+wXjzPw815IBXNdH9lGAYf23wbLsvbh3Ttwmvoer0c6s73w+XyYHzUg03b0yGTiZFdEId9h+lp9npC9xkSLIqZjae/v98v6TQYDCgtLV1S91qKGbJUjMQBnWPYt+0VR+fDCko8ScQpLy8PdxXI+3ivFxd/eg88768xO02RloaS73wTTJjGtXBuJwYf+zHc4/2CcmliNpLu+EbAtTp5nkft0EX0mQdxMHsXFBK5bx/DMIsmnTzPo7l+CJNmh6/MYnFi294sFJWHZxZfsnx0nyHBopjZeAoLC+H1ejE6OgoguKQToJghS8exdiRYOn3bVmV0PqygxJMQMq/+51+EpaVFUCZLiEfZD/4LkjDNXsvzPEae+y2cvcKx1dKETKR8+PtgpQq/cziOw/3VT0IqloJlWLzdcRIHsndCKfE/dj49HUYMDZgFZQqlFHnFCfQ0mxBCohDLsigpKUF9fT0ABJV0EhIM1mWG2mXybXul0TnmkxJPQkhAjqEhdD/wkKBMnpyE0u9/F1K9Pky1AiZOPgVr4wlBmSjGgKTbvwlW5j8dOc/z+PWpe3Gy5yxSYhKxM20zJl1WHOl8F5fl7oOIXfjmbre58M4rzVOz087KL8ViEco2pUBCkwgRQkjUYlkWpaWlvn8Tshp0EGH2bBVS3n+ZtmhA/wURQvzwPI+23/+f37jOvH//LOQJCWGqFWCufgPjbz0oKGNkSiTf8U2INQa/43mexwM1T+Fkz1kAQP/kEE70nAXHeVEUl7do0ul2e/HAn97F6WOdqK/uB+ed+lhgwKC4IgkqtSxE74wQQkg48Qt80WdZlpJOsqqUNuFYYqkrOhNPavEkEWdkZAQcx4FlWcTHx4e7OhvSyNvvwHShWlCWdOXl0JaWhKlGgKO/DWMv/wXA7Jsxg8SbvowJRgluaMgvZtrGu/DcxdcF1xmyjCBeZUCWPm3B1+O8HB7/x1n090zNWjs2bEXtuX6UViWjoDQJhvjwdDUmoUH3GRIsipnoZTQa0dnZibKyMkgkoVt7mWKGLFWMSIrZs2lIQIknIWtiYGDAt+4V3ajXnss0gfY/3ysok8bGIvPuu8JUI8Brt2DosR+D9winF9ftvw3K3E1orakJGDN5hix8bd9n8OuTf4XD4wQDBndW3IhLc/cu+Ho8z+P5x2rQ0jgsKLfbXNDFKpGeFb6uxiQ06D5DgkUxE52MRiNqa2vBcRxqampQUVERsuSTYoYsVb9NhROZt/i2FR4LdoWxPquF+g0QQgQYEQtFWqqgLPuTH4dYpQpLfXiex+AjP4TXYhSUy1LyodtzyzxnzdiSUo4fXPpVJKri8G/b78YNxZcves4bL17Ehfd6BWUiMYvyzanYtCODJhMihJAoMD4+7ks6AWBychI1NTW07iZZc16RHA5JzMyPODzfuVYbtXiSiJORkQGe5+nLfZi4jUboN1VBkZyMiZpaKDLSoUxPD1t9XANtEGnigIF2gJv6MiBS66cmE3p/zM1iMZOhS8X/XPUdSESLP8U+9U47TrzZJihjWQZlm1JQtT0DIhE9r4sGdJ8hwaKYiS7j4+Ooq6vzJZ3T5HI5RKLQTBpHMUOWyu4RpmQeVhqmmqwuSjxJxNHpdOGuwobFuVwwnj0PAJAnJSKmqADuyUnIkxLDUh+vdQK29guQxqVBpIiBteE4eI8Libf+J0TKGN9x0zHD8RxO915Ali4NCeo4wbWWknTWnu3Fq882+JUXVyRh+95sJKdpV/aGSMSg+wwJFsVM9Jgv6UxISEBxcXHIEkWKGUKEKPEkhPgYz1fD63D4tt2mCcTt2QU2hJMtLBXv9cDSeBI8NzXTm0ilhbrqMGRJ2ZCn5Pkfz/M411+HTlMvuif6UJVUitzYzCV/gWi9OIxnHq72Ky8oTcT+ywsQnxgT4CxCCCHrydjYGOrr61c96SQkGGaPXbAdnVML0RhPQsj77P39sLa3C8oUKSlQhKmbrb29Gl7bhKBMmVmKmNLAEwPdV/0kfnf6HzA7J8HxPM4N1KF26OKSXquv24jH/nEWHCe81WflGXDwykJKOgkhJAqMjY2tSUsnIcFyz4nJaEWJJ4k4Ho8HbrebBvevEc7thnN0DOOnzwjKGZEI+i2bw/JB7BrthWOgVVAmVmmhyKkMePx7PRfwfNPrsLpseLP9BAYnh8EyDJJiFl9zdHTIggf/fBpul3ANrYLSRBy6ughJKZrlvxESseg+Q4JFMbO+TSedc9frTExMXLWkk2KGLJWH9y5+UBSgrrYk4jQ0NPimH6+oqAh3daJe31PPoPeJp6AtL4MqJ9v34StPSoJYvfazqllbz8LacBxi3cy4UoYVQVW0CwzrP+FDz0Q/fn1qZvkXD+fB8e4z+MqeTyFBZVjwtcwmOx7487uw29yC8rJNKbjpzk1gWHr6Ha3oPkOCRTGzfi2UdBYVFa3aA1aKGbJk0dq3dg5q8SRkA7P19qLnkUfBORwwvncGI2+9DffkJAAgbs/aryDlMY9i5OlfwVL7DuztF8C/3/VEmbsZIlXgiX1UEiUMUp2gbH/WDmxLDdw6Oo3neTz2z7OYMArHVeQUxOOGO6oo6SSEkCgwOjoalqSTkGDIVXLBNh+lGVqUvi2ynmk0Gmi1Wmg01MVxNfEch5Zf/w68Z6Z7h3NkFPB6kXj5ZWBCNJ38UnFeDwYf+RE4p22qLn3NsNS8BbE2HtKk7HnPi1Xq8NmyD6NcXwgA2JuxDf+2/e5Fv0wwDIPKbemQK2YmTkpJ1+K2j26BSEy3xmhH9xkSLIqZ9Wd8fBz19fV+SWdSUtKaJJ0UM2SpFAqlYDtan4dQV1sScbKyssJdhQ3BPjgEzukUlMUUFiDh8KWQGWLXvD6mdx6Ga7hLUMZK5VCX7Fn0y0FBbj6+lfMFvNF+HPszty/py0R3+zgsZgfKN6egsXYQMpkYH/zEdkhldFvcCOg+Q4JFMbP+qFQqKBQK2Gw2X1lSUhIKCwvXpKWTYoYslWrOkm/R+vg7Wt8XIWQBXqcTo+8cgWHXDsQd2AeRUgmRSoWkq6+EOi93zetj76iB6eTTgjJGqkDizV8FK5H5He/lvH5PsBmGweHcvZCKF190ubfLiPaWEQCAQiVF6aYUXHJVIVRq/9cihBCyPslkMlRWVkKhUABY26STkGAworkPvaMzRunRPiEbkLm+wfdvRXIyZFddAYBH3O5da/6B7Jk0YviZX0Ewsp5hEHflJyGN91/Khed5vNdXDQ/nxfa0KkhFwa0x2tdtQuvFYUGZTCaGVq+c5wxCCCHrlUwmQ1VVFfr7+5GVlUVJJ4lIIrUBgNm3HWgyxWhAiSchG4zHYoGlRbhUCSuRIPnqK8FKgkviVornOYw89xt4rcL1OmMvuQsx5Qf8ju81D+BY53tg2anOGq+3HcXu9C3QKQJPPDTb8OAkvB4OLY1DfvvyihKQmqFb3psghBAS0WQyGbKz558rgBCyNijxJBGno6MDHo8HYrGYPihWwURtnW+22GnJ11wNiSZm7ety+gXYO6oFZcq8LdDuvN7v2EmnBT9+57cYsY0jLzYbFUlFsLhsONJ1GiWSbPAcP2/M1J7txVMPXkBWngHp2XrBE++cgnikZepD/+ZIRKP7DAkWxUxkM5vNiImJiagWTYoZslxzhxNFC0o8ScSZnJz0rXtFQss5Ng5rp3ACn5jCgrAknY6BNoy/db+gTBQTi/jr/h0MIxx+7uG8+J8Tf8aIbRwA0DregUmXBTvTNmFPxlaMdQ7PGzOtF4fx9MNTyW1n6xhcLg9yC+PBMAyy8uKQkb32EymR8KP7DAkWxUzkGh4eRmNjIxISEiJqiRSKGbJUlqFWaBwzyaaYd4WxNquHEk9CNgje60X9d78HZWYGFKmpYBgGrEQCTWnJmtfF67Rh6JEfAV7PrFIGCdd/HiKlfxJ8rr8W9cPNgjKXx4WiuDykapIwhmG/c4CpSYQe/dsZ8NzMzby/ewK6WCU278hEZg4lnYQQsp4NDQ2hsbHR92+GYWgCIbLusKwVBptppoChxJOQNVFaWhruKkSlwddeh72nF/aeXsji46DbVAX95k0QydZ+JteRZ34Nr9UkKNPuvB6KrPKAx29Pq8K/bb8bfzrzIDycBzq5Bh/fchs2pUzFSqCYGR2y4ME/vwuPR9itODVDh6pt6cjON9AXkw2M7jMkWBQzkWd20jltcHAQer0eiYmJYarVDIoZslQ8Y4PB2uvbdkuoqy0ha0Ikis6ZvMLJ63Cg+/4HfdvOkVGMv/se0m6/dc3rYj7/GmwtZwRlIk0c9AfuWPC8g9m7kByTgP89eS++tPuTyDNkzZw/J2bMJjvu++NJOOweQXl8Ugz2XZbv62pLNi66z5BgUcxElkBJJwCkpqYiISEhDDXyRzFDlkrktULtHPVt22k5FULIetXz6BPwTFoEZXH79kIeF7em9fDYzBh7/e/CQlaEhBu+CHYJ628WxuXi11d/D2K/9a5m2G0u3Pd/pzBpdgrK9QYl9h7KRX5xAiWdhBCyjg0ODuLixYt+5WlpacjNzaV7PFl31Ak6dGfMGgssjc6HFuzihxBC1jPn2Dj6n3lWUCZPSkJ6GFo7nd2NUOZvAyOR+8q0O66DIqPY79jByWEMW0b9yhdKOt0uLx7+63sYG7YKymM0Mhy6pghlm1PpCwkhhKxjlHSSaKRTaqCU8L4ftTQ645haPEnEMRqN4DgOLMtCr6dlLlaq4y9/Be+Z1eWUYZB83dovn+Ia7YVzuBOS2GTEbLkC9pazYMQS6A9+SHCch/PC4rTgRM9ZcDyHzcnlyInNWPDaRqMRHo8XLz3RhJ5Oo2CfQinB/ssKUFKeTF9IiA/dZ0iwKGbCb70lnRQzZKniJUp4Zg0PYqO0bZASTxJxenp6fNOP0416ZSztHRg7cUpQpsrJQcKhS9a0HpzLIRjXyUpkUJfvR0zFIbCs8Ob6t7OP4NxALXakb4ZSosCZ/hqYnRZUJhXP+6Wiu7sbZ4+NorfdLihXx8iw51Auqrang2Ej6wsJCS+6z5BgUcyE18DAAJqamvzK09PTkZOTE3FJJ0AxQ5aub1yEo7JrfdsK2BF4usX1jRJPQqIUz/Po/Ps/BWWMWIzUG6+HWKlc03rYWs6AcwvHXCrztkAcI/wgfrX1HbzWfhQA8Eb7cexO3wKDUg+j3bTgazScm/BLOuUKCe761x1ISNas/E0QQggJm/WYdBISDDergEmkmtnmJ8NYm9VDiSeJOCkpKb6uKWT5jGfPYaK6RlCmKSlG3J5da1oP11AnXGN9gjJpXBqkCZmCsrqhi7j33KO+bafHiWNdp3FL6TXYkb5p3i8Wp95pR0udWVAmFrO44+PbKOkk86L7DAkWxUx49Pf3o7m52a88IyMD2dnZEZ10UsyQpbJzUgAzXW09rGT+g9cxSjxJxIlb45lWoxHv9aLzb8LWTqkhFsXf+jqYNZze3dHbhInTz0FsSPN9OWAlMijztvh9WTAoY5Gkjkf/5JCvbEf6ZlyWtw9KiWLe1/C4vWAYgH9/ySuGZXDz3VuQkRMb+jdEogbdZ0iwKGbWntvtRnt7u1/5ekg6AYoZsnSsWIzZiSciPLaXix7BEBKFBl99HfbeXkFZ5l13QiSTrVkdOI8Lw0//EtbGk7A1ngDncgAAlPlbwUrlfscnxyTgh4e/hsqkqRlubyq+Ev+27cNQS1V+x04b6J2A18ujtCoFItHU7ey6WytQWBr+hcMJIYSsjEQiQXl5uWA9zMzMzHWRdBISjOEBYc8wr5sPU01WF7V4EhJlPDYbeh56WFCmyslG/MEDa1qPsVf/Cs/ECADAPdYHz8Qo9AfugDQubd5zVFIl/nPfZ/FO5ykczN4Flpn/2VhftxEtjcMAgNh4Fcq3pIDngcqt81+fEELI+qLValFRUYGamhqkpaUhKyuLkk4SdRxez+IHRQFKPAmJMn1PPg33hHDMY9bHPgJmDceYOPqaMXnhDUEZK1MgpvKQoMxon4BOrhF8iRCxIhzK2bPg9bs7xtHePCIo0+gUSM3QA/R9hBBCoopWq8W2bdsgk8ko6SRRyc1T4klIWNTU1PimH6+oqAh3ddYVl2kC/c88JyjTVlZAVxGaSbkdPY2QpxcveAzncWHk+d/NDLp8n+HKT0GkUPu2x2xGvNVxAknqBGxLrYRMLF309d1OD+qrB2Ay2gTlQ0ND0BnEsLkcYJiEIN4R2ajoPkOCRTETXnK5/xCNSEcxQ5YsOnvW+qExnoREke4HHwLncs0UMAxSrrsmJNceP/II+v/5LZhOPLXgccZ3HoJ7tNev3DXc6fv3sGUUz158DRzPo39yCK+2HsGwZXTB63o9HP70y6Nom9PSCQDxSXLEJdGTcEIIWa/6+vrQ19e3+IGERCH5Bkk8qcWTRBylUgmPxwOxmMIzGM6xMQy//qagTJ2bA/3mTSu+tqOnEaajU0udjL91PwBAt/sm/+P6mjHx7vMBr2E6+iiU2RWQphbip8f+gN6JAZQmFKAwLhd2jwPD1jEkqOefAfC15xowNmLF2KgVBSWJSEqdWiolrygBDreIYoYEhe4zJFgUM6unt7cXra2tvu3U1NQw1iZ0KGbIUkm8wu1ofYxO/yWQiJOXlxfuKqxLPY8+Dt47687Fski54fqQLJ8iTy9G7CV3+ZLOQMkn73Fj5IXfAzwX8Bqxl9wFeXoxHq17Hj0T/QCAuuEmjNjGcWXeAZQk5M/7+p2tYzh9rPP9FwKa64fA8zz2Hc5HWqYegH7F75FsLHSfIcGimFkdc5POlpYWMAyDlJSUMNYqNChmyFIp+I3RCZUST0KigGNoCMOvCSfzUeflInb71pC9xnSSOV/yaTzxJNwjPQHPjb3kLuh234TWsU48Uf+iYN+k04KtKRXzzmDrsLvxxP1nBWUMAySmaN5POgkhhKxHPT09aGtr8yt3u91hqA0hYcSu3Rrr4bQx0mtColzPw48KWjtZqRQFX/kSRCGejEG3+ybEXnKXb3v8rfthOvEU7N2NMB17POA500knAOToM3BL6dVg3u9EwjIsPr/z40iMiZ/3NZ97pBrWSZegLL8kEQcuK1jp2yGEEBIm8yWdOTk5yMzMDEONCAkfkSIm3FVYE9TiScg6Z+vtxfDbRwRlSVddAUVS4qq8XqCWT1auCtjFdnbSCQAsy+LWsmtRHJ+P/z11L64puBSbU8rmfa3ac71orB0UlGn1Clx5UylEYnpuRggh61F3dzfa29v9ynNycpCRkRGGGhESXoxkY6RkG+NdknWlu7sbXq8XIpGIPoCWoPvBRwBuJulj5XKkfsB/4p9Qmpt8cg6r3zFzk87ZyhILcc+V34ZKqpz3NcwTdrzweK2gTCRmcem1xdDphedRzJBgUcyQYFHMhMZGSjopZshSiSQSYUGUzi5ETQYk4phMJoyPj8NkMoW7KmFnbmhccL+lvQNjx08IylKuuwaO/v7VrBaAqeRTs/3awPv23eZLOjmOg81t9zsmRqaed1wnz/F49uFquJzCad4qtqSitCLZ73iKGRIsihkSLIqZlZsv6czNzY3KxIxihiyVExaonWO+H6XbFO4qrQpKPAmJUN0PPYLar38LvU/Mv25m94MPC7ZFKiUYkQi1X/8Wuh96ZLWrCJHaf3IfRiJH7P7bfdtNY214peUdtIx1gJtnxtu5Th/rQHuzcF3PpBQNLr2mCAwbpY8BCSEkinV1dc2bdKanp4ehRoREDlZmQ7y12/ejdQaerHG9o662JOIUFhaC53kwzMZNMMwNjeh5eGrdzK5/TnVnTbt5qgXR2tEJVXYWXCYTJmpqBOfF5Of7zut5+FHoKiugKSkOWb2cQ52QJWYBANymYdhbz/kdw7sdMJ14CrrdN+HdnvPoNPWAYVicH6hHl6kXW1MroZNr5n2NkcFJvP7CReH70srxoX/dCaVKGvAcihkSLIoZEiyKmeXr6upCR0eHX3m0J50UM2SpPLwNOvvMnBZ2BR/G2qweavEkEUcmk0Eul0Mmk4W7KmGjKSlG5t0zs8d2/fN+9D7xFFxGI+q+/V24jEYwDIOkq69CTHERGJEIjEgE04Vq3zmZd98V0qTTYzFi4IHvwmMxgue8GHv1r3B01/v2M6KZ8Qnjb92P6rf+jl+e/AteaT2CcbsJAGC0TyzY6slzPJ57tAZej/CYG+6ogkodOOkEKGZI8ChmSLAoZpZnvqQzLy8vqpNOgGKGLJ2ItyLWPuj7UbtGFz9pHaIWT0Ii1HQL53SLZ9c/78f4e2fgmbSg98mnocpIh0gmg66yAmAYTM4aD5p5912+80Nl4uTT4OwWTJx6BpzbBVvLGd8+eUYpYg99GI6uOoy/dT/cDPDnnuPgZGJYXFa81X4CJQn5uL7oMsQqdPO+xpmTXejtMgrKduzPRk5BXEjfCyGEkLUhmTtpCqaSzrS0tDDUhpDIpPYI57SQ8NHZ4kmJJyERbG7yOdk41QV18KVXkHz1lRApFDA3Nq560umxGGE+9yoAYOK9FwFu5gYpSy+GqmQPZCm5kKfmAwDur3kKw7KZ2wsPHgwYlCUUzvsakxMOvP6ccDKl2DglDl1dFMq3QgghZA2lpKQAAJqbmwEA+fn5SE1NDWeVCIk4aicP26xtqZsST0LWxOTkJDiOA8uyiInZGAvqLmRu8gkAvNsN88UmiOQyTFTPLDmyGkknMNXayXtcUxuzk860YigySqDK3wrm/RlqdbtvwmG3Fe2db6NXPvWkO1Wixqe33QWJyP/J9zSO55Ceo0dndgR4YwABAABJREFU6xg479QN95pbKiCRiBatH8UMCRbFDAkWxczypaSkgH+/BWcjJZ0UM2SpNJAKEk9JdOadlHiSyNPR0QG32w2JRIKKiopwVyciJBw6iO4HHgLvnUn6LE3NgmNWI+nkOB4eixGms6/6LSklTc6DPK0AstQCiDUGwb6iA3fhG2IFnqh5Bkd1CtzW1gVpzVFgnnU9AaCnw4i0TD3iEtRoaRiGXClBZq5h3uNno5ghwaKYIcGimFmZjZRwTqOYIUs16lTgQvJh37aMs2F3GOuzWijxJGQd6HvyaUHSOddqJJ0utxd/e74epvaLYM2VuF55FhJmZtIfj3kUrEwBRVZ5wPPj9tyM2xkWu995ACqOx/hb90OeXgR5uv+ER5NmB0aHLQAAuUKCss0pyMw1gKWlUwghZF3geR5OpxNyuTzcVSFk3XFAjjFVkm9b4TaHsTarhxJPEnESExPh9XohEi3exXIjcBmNGHz51Xn3i1SqFSWdjp7GgMlgS48JTpsd3cOTSGVF6PbEIVcy7NvPWU1gJXKwkqnZ+sZtJqilSkjFM7PP6t5v4Rx/637o9t0W8HUAoKttTLAtlYqRkR275PdAMUOCRTFDgkUxMz+e59HR0YG+vj5UVFRAq9WGu0oRgWKGLJWDEw5F8rLzD01azyjxJBEnMTEx3FWIKH1PPg3O5Zp3v9dqRe8TTy0r+Rw/8ghMRx9F7CV3+ZLEaXXtozD2dcHJiWFjpGjzJAgSTwCYbDgB7Y7rwHEcTvacBQDsSt+CWKXOd4xu903ztnQCwtbOaWlZeojFS/+gppghwaKYIcGimAlsOuns7u4GANTU1FDy+T6KGbJUPC/s4cX7DXCKDrSOJyERbLHWzmnT63wGw9HTCNPRRwFMtUiaTsycPzxuw/CwCWNjU109zLwCRk6Nca9KWL/+ZliaTuO9vmpY3XZY3Xa82XECLWMdgvU6AyWdHo8X/T0mv9ZOiUSE1AxdUO+FEELI2uN5Hu3t7b6kEwC8Xi9qa2vhdrvDWDNC1her1xnuKqwJavEkJIIt1to52/Sst0tt+ZSnFyP2krsw/tb9OOvMQt8LDZDXMpCn5sPt4WAd6IKNk0DOuGHjZPCwLN52FEM8a5xnqmgchtbj+KOlGbmxmShLKIJEJEaHsRt5sVkLvv6x11tx5LUWpGRokZUXB7F46jlYelZsUK2dhBBC1t500tnT0+O3Lzc3N+D6nYSQwJycR7AdpZPaUuJJSCQwNzRCUyJsFVxqa+dswSafut03wcsBbS+2YMyrBtr7ITEBIk0sJobNYBgxEkUT6PYaMMLFQAbhjdHGS/CKsQmQMGgb70K/eQibU8pxSfYuMMz83USGBydx7M1WAEB/9wTGhq0oLEtEfGIMUjKoexYhhEQynufR1taG3t5ev31FRUVISkoKcBYhZD5ubv4JJKMJJZ4k4jQ0NPimHy8pKQl3dVZd90OPoOfhR/1mpg2mtXO2YJNPvuxKyC4wkPd1YtirhXd0AuyEHWKeQYrIBDHDIUVkwog3BnZeBh6AiOGQIJpAj0yCCV4OBlNdROweBxRiGeJV8y+DwnM8nn+sxrdWJwA4nR6IJaJlt3ZutJghK0cxQ4JFMTOFks6lo5ghRIjGeJKI4/F4fD/RztzQiJ6Hp8ZZzh6n6TIaMfDCS0Fdi5k1a14wYz7jdArcdvthpGRmIU00DgXrAud2Qc9aIWemxujIGTf0rBU8AAXrQppoHLGsFSWaJkjEDt+1CuNy8aHKhRPeMye70NtpFJSlZ+mhj1Uuu7VzI8UMCQ2KGRIsihlKOoNFMUOWSiITdk3no3NuIUo8SeSRSqWQyWSQSqWLH7zOaUqKkXn3Xb7t6YSx/c/3LrhuZyC814uYWd11u/55P8wNjUs6NzVejY989BrkF+UgmTVBxTph5hSCYyY4JVSsE8msCaliI65Q1OIa2wi+1D2OPJsLYjD4zLa7oJIq530d84Qdb7xwUVAmV0iQkROLgtLEZY/t3EgxQ0KDYoYEa6PHDM/zaG1tDZh0FhcXU9IZwEaPGbJ0KrVw8sZozdCoqy2JOEVFReGuwpqa7hI73UW265/3C1ovg2FtbUParTej97EnkH7HbX7jRheilEtw+VV78H/NbZiekNbEKeHiRZAyXjDgwQNgGGCbtN3XGmrwePEv/SYMKeRIYGULvsZLT9bB5RQ++c0vSUB6ViziE2OCeq+zbbSYIStHMUOCtZFjZjrp7Ovr89tXXFxMy4bMYyPHDAmOes73p2idYjFK82lC1pe0m28StHwG29o5jXO5wLlcKP/xD5DxwduDPr/z6MsAz8PJS2DnpRjzqsGBxZhXDTsvhZOf6goyzgmfzDEAkuwOTJx6Zt5rN9YMoKluSFCWmBKDtAw9cgvjg64rIYSQ1cfzPFpaWijpJGQ1sRsjJdsY75KQdSDt5puQduvNK77O4EuvQJ4cfJcnj8WInvoaeHgWXp6FiOGQLDYiSTSBZLERIoaDl2cxyYhwRqaDg/UfgGA++wo8FqNfucPuxktP1QnKJBIR8ooSUVyZDJGIbkWEEBKJhoeH0d/fLyhjGAYlJSWUdBISImKN8AE8w0Znp9SwvCuLxYLXX38d586dQ39/PyYmJnDXXXfhhhtuAAD84Q9/QGlpKfbv3x+O6hESNiK5HCKlAl6bff5jlAqIFIp59wPA8BtvIe2WDwT12paatzDOqeHkxVCwLiSwZqhZB0okfWhwp0EKLwZ5HcYlSvCsHu/GTiBxQo8SyTiYOdfR7Ra+9hsvNMJiFi6OfOjqQmTmGqCOWbh7LiGEkPBJSEiA0WjE4OAggKmks7i4GAkJCWGuGSFkvVnTxJPjOPz+97/H3//+d1itVgBTXTgYhsH4+LjvuAceeABjY2OorKzEz3/+c6Snp69lNUmY9ff3w+v1QiQSISUlJdzVWVNpt3wAabd8AL1PPOUb8zlbxoc/hPQgE8qlY5CCYfQxaigZE1KUbuyQtiBxx+VIP/Ys3nHloVYugUaiQnJVOWyDFTjTD4guy8AVV1bMe9Wu9jGcPdntV263uZGUGpo1OzdyzJDloZghwdqoMcMwDAoLC8HzPIaHh1FSUoL4eBoesRQbNWbIyk3NqhF91izxdLlc+NSnPoV3330XPD//L9PpdGJ0dBQMw+DChQu49dZb8cADDyA3N3etqkrCbHR01Lfu1Ua9URt27fRLPBmpZNWSTtOJpzD+1v3IlwDJIhPG4zehvDgXitQroMzbAlaqwGj9s/CCw4TCgq7eeGjrNgEA3n2tG2qpEnsO5fld1+Px4oXHagO+5pHXWpBTEI+MnNgV159ihgSLYoYEayPHDMMwKCoqQmpqKjQaTbirs25s5JghwbGO9kLuAabzTTGCX8d9PVizgVXf/e53cerUKfA8D7lcjttvvx0/+clP/I7jeR533nknJBIJGIaByWTCF7/4RVoDiWwozff8yq+Md7mXvDZnMKaTzmlxOQWoKMmASCqDImuqJbMrpxC1GjlEGiMYiRs9yn44Mzt857zxwkUcf7PV79pHXm3B6LAl4Oteek1RSJJOQgghq49hGEo6CVklYowj2dyG5Mmpn3hLW7irtCrWpMWzpqYGTz31FBiGQX5+Pv7v//4PycnJAID//M//FBwrl8vxne98B3fffTc+85nPoKOjA62trXj++edx4403rkV1SZjl5ub6umBvRD2PPg5Lq38SB8wsuTK9BMtKzU065VnlkKdPLcEiTy8GI56axfZkzznBeTKOw2HXMXjLMnCibmrS7+n1OadbPt0uD86e7Ar4updeUxSwhXS5NnrMkOBRzJBgRXvM8DyPzs5OpKSkQCajsfehEO0xQ0LHxduhcYz6tj1iLoy1WT1r0uL5+OOPAwDEYjF++9vf+pLOhWRlZeG3v/0tRO+vZ/jyyy+vah1J5FCpVFCr1VCpVIsfHGV6n3gK3Q885Fced2Bmoq2uf94fkpZPR0/jvEknK1NCljKTGP7r1g/hczs+ihjp1N/k6lELMp0e5PT/Ewf2zLRazm75HOyfRNWOdL/Jg0KddAIbO2bI8lDMkGBFc8zwPI+mpiZ0dXXhwoULcDqdi59EFhXNMUNCSwIb4my9vh+tczDcVVoVa5J4nj59GgzDYP/+/cjIyFjyebm5ubjkkkvA8zwaGxtXsYaEhN98Ewop0lKR//nPCtb5DEXyKU8vhm7fbQAAkTYesuSZcdSKzDIw7MzyxQzDYH/WDvzyqu/ijvLrccXmqWVfdPtuw4EP7Mal18wskv3GCxfxxguNaG8ewWDvBCyTM19gDl5REPKkkxBCyPJNJ53Ts9ba7XZUV1dT8knIGpLFyNGXJPb9jCbRcirLNjw8DGBqoeFg5efn4/XXX4fR6L82ICHRYr6kEwDSb7sVrFjs6147fVwout1qt18L08mn4Z0Ygfm9FyFLL4IydzOkiZkBj9fIY/CBkqsAAMqMYl8L6XQyOd3d9vibbRBLWHjcM11Fdh3Mwf7LC5ZdV0IIIaHF8zwuXryIoaEhQbndbofVaqUut4SskXh9LIyqmS7ZIplogaPXrzVJPKdnsZ3uNhuM6X7xEokkpHUikctut/vGRCgWWa8yGiyUdIo1Ghh27/Rthzr5HH/rAcAzNXMa73HB0VGDmPKDYBgWPRP9sLisKIzLBcv4d46YTjqnzU0+Zyedm3am47LrSpZVx6XYaDFDVo5ihgQr2mJmvqSTYRiUlZUhNpYmf1upaIsZsnr0YgUyHG7ftijA965osCaJZ1xcHHp7e9E6z4QpC6mpqfFdg2wMLS0tvunHKyrmXx8yGpgbGgVJJyuVgnPNTKGdcOgg2DkPXQIln5riImhKgutR4LVPwlLzlqBMEp8Bddl+ONwOnO2vhcvrRp95CNtTK6GRxyx6zT2H8vDOq82CpFMiFeHam1f377iRYoaEBsUMCVY0xcz0EKbpHmnTppNOg8EQpppFl2iKGbK6jJNi1Ej2+rblvAtV4avOqlmTdHrr1q3geR5vvvkmxsfHl3xeQ0MDTpw4AYZhsGnTplWsISHhoSkpRvodU+MsDXt2C5JOAEi64rKA56XdfJNvzGf6HbcFnXQCgOnk0+A9wteLveQu8DyPX578CyYckwCAcbsJr7UdxaQz8LIosz1872lB0gkAbpcXJ96OzmnBCSFkvZkv6WRZlpJOQsLE6pWjR5zv++nH0ufEWU/WpMXz2muvxVNPPQWHw4Gvfe1r+P3vfw+pVLrgOd3d3fjc5z4HjuPAMAyuuuqqtagqiQAGgwFer3dZXbPXo4wP3g5dZQU6/vYPQbm2sgKKBRacTrv5pmW1dAKAZ3Ic5vdeFJQpcjZBlb8FTza8jPMD9agbakJ5YjGy9elI0SYiRqZe8JovPlmL5vqZLzJiMQuPZyoJnbvUSqhttJghK0cxQ4IVDTGzWNJJ3WtDKxpihqwNJy8FMPPg3svQ5ELLtmfPHuzZswfHjx/H8ePH8YEPfAAf/ehHUVIyM+aL4zhMTk6ipaUFr732Gh555BHY7XZfa+eBAwfWoqokAqSmpoa7CmtOpFTC0twiKEu87NJFz1tO0gkAxmOPCVs7GRZxV3wcNpcdLza/CQBwcx6cG6jFqG0MNxZfseD1jr/ZijPHhWt2yuRiVFYk4eyJbgCrm3xuxJghK0MxQ4K13mOG53k0NDRgZGREUE5J5+pZ7zFD1pBCAcDq2+RZGuO5Iv/zP/+D22+/HZ2dnWhra8O3v/1tAFPjCXiexy9+8Qv84he/8B0/PSFRQkICfvnLX65VNQkJi4EXXxJss3L5gq2dK+E2DmLywhuCspjKQ5DEpuChC0/A7JwU7NufuQMy8fw9FI6/2epLKmdLTtPiyhvKoNMrfftXu+WTEEKIP47j0NjYSEknIRFqrKcPgM637fXwYavLalqzdFqr1eLRRx/F4cOHwfO87weYmbl2bvmmTZvw6KOPIjExca2qScia89rtGHnrHUGZOjcXyoz0VXk94zsPA5zXt82IpdC/v57ntQWXYk/GVt++8sQiXF98+bzXmi/plEpF2LEvGyIxiz2H8vzW+Tz+ZvATjRFCCAneQklneXk5JZ2ERACbZ866udGZd65diycAaDQa/Pa3v0VNTQ0ef/xxnD59Gl1dXb5EEwDi4+Oxbds23Hjjjdi/f/9aVo+QsBg5etxvUiHD7h1+s9mGgr2rAZb6Y4IyzdYrIdZMTSYRq9ThC7v+BZfm7MX91U/iU1vvnPda8yWdAJCVF4fM3JkJKuYutUItn4QQsjY4joPD4RCUTSeder0+TLUihMzm4j3hrsKaCMvI1YqKCt+00l6vFxMTE/B6vdBqtYtOOkSiX3Nzs2/68YKCgnBXZ9UNvfKqYFuekoyY/PxVea2x1+7F7MdojEwJ3a4P+B1XlliIH1/2n77eCHN1t4/Pm3TK5GJs2Z0JsUQ4mUKg5DM9KxYZOSt/2r7RYoasHMUMCdZ6jRmxWIyKigpUV1fDYrFQ0rmG1mvMELJawj5yVSQSITY2FvHx8QGTTrfbjYsXL+LYsWMBzibRyOFw+H6i3WRLKyytwqVGkq+5GjGFof+AsjafgWuow7fdLxUjpuIgeJkC43aT3/HzJZ0AIJWLsf/ywMlxdl4cMudJJmd3u91/eX5Ikk5gY8UMCQ2KGRKs9RwzEokElZWV0Gq1lHSuofUcM2RtSfgo7Vs7x5oknkVFRSgpKcHf/va3oM/93e9+h5tuugnf+MY3VqFmJBKxLOv7iXZDr7wm2JbGxSH5qoVnkA3GxZGZsZTGo4/6/j0pYvGXVB2YLVei09SLN9qO4Vx/HVxet995c1nMDtz3h5PYsiMDuliFYJ9SLUXl9nRIZfN3pthzKA8f/exuHLyicLlvy89GihkSGhQzJFjrPWYkEgmqqqoo6VxD6z1myNpReIUP++d/9L++rVlXW36ZmbxCoQDP8xgfHw9xjUikKisrC3cV1oTHasXIkaOCsqTLD4MJ0Xpfj9Y9j8frX8CdFTfiSnUmXIMzLavv6JWwiVg81XkECSoDeACt453oNQ/A5DDj+abXcUvpNbit7Fq/6x5/qw12mxvPPV4D07hdsO+KG0qQVxS/aN1C1dI5baPEDAkdihkSrPUQMxw3tQ7gfInOQj1ZSOith5ghkUHGbYyHExH7LnmeR09PD55//nkAgFKpDHONCAmtkbePgHPOmsWMZZFwePG1O5fi4kgrHq9/AQDwYM3TeLb9KFRl+yHSxGNSxOKUZqql8rXWo3il5QjMTgsA4MJAA55veh0A8Hj9C34tnxazA2dPTK3X2doonCExPikGZVWpEIki9rZCCCFRi+M41NfXo76+3peAEkLWh43ySChkLZ4ejwc33XQTWlsDd9HjeR4/+9nP8LOf/SzoazMMQ4OySVTheR4DL74sKDPs2AaZITQtgUXxebiz4kY8WPM0AODxwXPwxuTgispL8OJILTyesal6gMeIbQyvtR5BrEKHMbvRd407K25EUbxw1tnjb7XB4wn8heaSKwvBsBvl1kkIIZGD4zjU1dX5eoc1NDSgpKSEungSsk6wKh0wFu5arL6Q3ZHEYjG+//3vAxCuxzm7i+3c8qX+AMAnP/nJUFWVkLAzX7wIe2+voCzxsstC+ho3Fl+BOytu9G0/NdmOZ8ztOOYx+h3Lg/dLOm8sFo41nd3aOVdymhaFZbTeLiGErLW5SScAjI6OoqmpKYy1IoQEgxWHZphVpAvpGM9NmzbhIx/5CF59Vbg8RH9/PxiGgUajgUqlWvQ6DMNAJBJBrVYjLS0Nt912G/bu3RvKqpIINjw8DK/XC5FIhISEhHBXZ1U4+gYgVqvhsUx1cRWpVBBrNSF/netz98Pe+f/Zu+/oOMpzf+Df2d606r1Yli3ZcpHlhk0LYMAEDDZxgBAgBG5CbkjIpeQmgZCQBJL8TkIIJJRcIAmXEAI39G5jMAY3bOMmy+qyJKv37X12fn+sd7Sj3ZV2pe16Puf4WO/szOy70qPRPPO2E3jD4Bnf+YH59LTHBEo6gWlaOy9fFNexQ3MhZkhkUcyQcCVizARKOgHPigFFRUVxqhXxSsSYIYlJPHlljxTtQBbxyYXuvfde3HvvvYJtixd7lk/47ne/i1tvvTXSb0lSzMDAAL/uVapeqBkRg4JNl8M+OAhT2ykoigqhmV8e8fex97biMnUpwHF4w3hq2v2DJZ1TtXYCQE6eZlb1nK25EDMksihmSLgSLWZYlkV9fT3Gx4W9WMRiMWpqapCenh6nmhGvRIsZkrgcnBUyn4f7Es4Rx9pET8LPaktIqrEPD8M2OASGYaAoKICioACZa1ZHbDZbL9ZhhbW3FQBwmaYMdbYRtDsNQfdfnLMgYNIJTN3aCQA73m3EtTevnl2FCSGEhGSqpHPFihXQaiPfg4YQEj1ipRHFhl6+zEpccaxN9MQk8WxqaorF25AUUV5eDrfbnbKTIuhPNgjKYqUSmor5EX+f0e1/g7XzBBSli2HWZuO00zTl/qfGT0Nn1SNDKXxKPl1rJwC0NgzCZLBBo1XMut4zkeoxQyKPYoaEK1FiJljSKZFIUFNTQ0lnAkmUmCGJz85aoXbo+LKNSc2ZqWPW4klIqFL5j6ZTr4etf0CwTVu9OPKtnRYjzA17wbkcMJ/cg/cKsuHUTP0eDtaJt5t24OaV1wi2T9faCQAupxv7dp3Cxs1LZl33mUjlmCHRQTFDwpUIMUNJZ3KhnwcJlURkRZapky/rmdScbCiuj2A4joPb7Rb8Y1kWTqcTVqsVY2NjOHXqFN555x1861vfimdVCYkIS7dwJluRXA71goqIv8/47n+Dc3nGBxjFIuxXhfar/mH7Z9BZ9Xw5lNZOry/2dcJksIVfWUIIIdNiWRYnTpwImHRS91pCkpvcLrx/ErtTc4hiTFs8P/zwQ/zrX//CyZMnYTabadwnmVNYux2GRmG3c1VZKUSSyP4aul0OmOo/48ufZqrgCnF9zcmtnqG0dnrFu9WTEEJSlTfp1Ol0gu3epDMtLS0+FSOERESmSwyLT1nhSs0cKWaJ56OPPopnnnkGwMwmGornUg0ktpxOJziOA8MwkEql8a5OxAx9/AlO//NfkOflQT2/HMqSYqhKSyL+Pqa6XXDbPOM5jWIRPtcqwzr+w/bPsHnxpZA45SG3dnp9sa8T51xYEfOxnqkaMyR6KGZIuOIZM01NTZR0JiG6zpBQqd0iQeIpTc0hnrFJPFtaWoImnd6EMth2iUSCq666itbxnEMaGxv56cdramriXZ2IGfp4JwDAPjQE+9AQlH2lmHfTDRF9D87NQrf/Db4cTmunl7fVM/90dcitnV7xavVM1Zgh0UMxQ8IVz5iZN28edDodnE4nAEo6kwVdZ0ioTA4lWrPX8GUZZ8c5caxPtMRkjOcrr7zCJ5arV6/GK6+8grq6Orz22mvgOA5isRj79u3DsWPHsHPnTvz2t79FYWEhOI6Dy+XCsmXLcMUVV8SiqoREhX14GKa2dsG2zNUrwUR4pjtTw164dEMAPK2d+8Js7fT68ORefBFma6cXjfUkhJDI0mg0WLFiBaRSKSQSCWpraynpJCSFGN1KnM5czv/rTauKd5WiIiaJ5xdffAHAc+F86qmnsHz5cshkMixduhRarRYsy2Lv3r1QKBQoKirC1q1b8dZbb6Gqqgocx+Hhhx/GyMhILKpKEkB6ejoyMjJSavFrY/spMD7dbBipFLkXfimi78Fxbuj2TbR2vlighTvM1k6vrL75YMNs7fTytnrGUirGDIkuihkSrnjHjDf5rK2thUajiUsdSHjiHTMkeTggE5TdTGouPBKTTzUwMACGYXDhhRf6/fItXboUn3/+OQ4fPoyrrrqK356WloZHHnkEmzdvhs1mw7///W9873vfi0V1SZzNmzcv3lWIOEVODoqv3gxrbx/MnZ2QqDVQlZZG9D0srYfhHD4NAGhQydCplE1zRGAShxxZQ7P7GcR6rGcqxgyJLooZEq5EiBlKOJNLIsQMSQ6sW9hQ4GZSc+3XmCSeRqMRADB//ny/1xYuXIj9+/ejqanJ77XKykqsWbMGhw4dwqFDh6JeT0KigeM4GFtawYjFUJWVQlVWCkVxcURns+U4DuOfvsSXh2QSyDnAzgBKiQJK6UQCyIEDg+AtofKBfLASB8DKIHIL15GSysSQSsUQS6a/IB471IPzLl44g09DCCFzk8vlwvDwMAoLC+NdFUJIDNlYZ7yrEBMxSTyVSiVMJlPAGb3Ky8sBAO3t7X6vAcCyZctw6NChoK8TkuhsAwNw6vWCbWkRXrvT3LgfjqGJMZkX6iy49kvfQm9BCRbnhp/8HWpuwLZnT8F3yq/ieRlYvqoYa84ph2iGXXgJIYQE5nK5UFdXB4PBAIfDQa1lhMwhVrcw8UzNxVRiNMYzIyMDAAKO0yw9093QZDJhaGjI73Vv11z9pBt3QpKFsbFZUJZq06AoiuzT7PG9rwrKIoUGooWrkSbXwO0Of6zm6YM2+E40LRIxKC3PRGV1HiWdhBASYb5JJwB0dHSgq2tmE7wRQpKPw+2KdxViIiYtnkuWLEF3dzf27dvn91pZWRn/dV1dHS655BLB6wMDAwBmtvYnSU7t7e1wuVyQSCRYsGBBvKszK47xcdgGBwXb0hYtiui6tJbOE3AOCW9Q0mouwmnTAE4MNkMulqEsowjlGaXIVE4/wcFgnwEnj/UJti1fXYx5C3KQma2OWL0jKZVihsQGxQwJV7RixuVy4fjx4/ywJK+enh4UFRXR+o9JjK4zhAjFpMXznHM8K9G0tbXhqaeeErw2b948KJWeJR/efvttwWtWqxUfffQRACAnJycGNSWJwGw2w2QywWw2x7sqs6avPykoi+RyqOeXR/Y99r0uKDNSBdyrN6JjvBsAYGcdaB3tRPtYZ0jn+2SbsIVWrpBg4+YlWLQ0PyL1jYZUihkSGxQzJFzRiJlgSadMJkNtbS0lnUmOrjMkVCKJcE4NLkU7l8Uk8dyyZQuysrIAAI8//jiuueYafPzxxwAAhmGwYcMGcByHHTt24Ne//jVaWlpw4MABfPvb38bIyAgYhkFtbW0sqkpIxNjHdWh97HGM7NkHa28fOLcbaZULwYjF0x8cIs7lhKywEop5y8DIPA9w1NXr8fjRl/B/9e+gabgdDpcDAFCeMf0sur2ndWg5KWyhPfvCCihVM5shlxBCSGBOp3PKpFOtTsweJoSQyNOmT1qXNzUntY1NV1uFQoEHH3wQd955J1iWxcmTJ3Ho0CFcfPHFAIDvfOc7+OCDD8BxHF588UW8+OKLfuf4+te/HouqkgSwbNmyeFchIga3fwjO5YK1pwfWnh6IVSoUb7lq+gPDYB/sACMWQ1G2BPKSxXCN9sK04kto2v8/AID6oSY0Drdg48ILkK3KnPZ8uya1dipVUqw7P7ITIUVDqsQMiR2KGRKuSMaM0+lEXV1d0KRTpVJF7L1I/NB1hoRKyQh7N6Ro3hm7z3XJJZfgqaeeQnFxMTiOQ0lJCf/aokWLcP/99wPwjOX0/QcAt912G9auXRurqpI4E4lE/L9kNrp3v6CsKCqEJIJrsHGcG/beFr7MiERQV5+NjwbrBfvJJXKsL1k17bjSrlOjaG8eFmw7d8NCyBWJv4hxqsQMiR2KGRKuSMXMdC2dlHSmDrrOkFCJJ8VIiva0jU2Lp9cFF1yAHTt24NChQ8jPF44Xu/HGG1FVVYVnnnkGx48fh8PhwOLFi3HzzTfjiiuuiGU1CZk129AQLN3dgm05554T0fdwjvaBtQnHjciKFmLgqHDN2y9XXoDqvOmXVPn801OCsjpNjrXnls+6noQQQjy8SafJZBJsp6STkLlNos0BMHFPx4gS/6H/TMT8U4lEIqxbty7ga2vXrqWWTZIS+t/fDt/1SBiJBPkbL5niiPD5tnYCgESTCWl6Hh646C60jXbi/ZadONR7HBsXXhDS+c46dz4sJgf6evRgXW6Uzc+E3e6CVBa5MamEEDJXBUs65XI5VqxYQUknIXMZMzfutZImnR4bG+MnKCKpbWxsDG63GyKRKGl/5mMHDgjKmsqFkEawm63LpINTL+wWKy+u4rvTLswux3+d/R+wOK1QSZXTns/tcuN05xiKyzKQX5SGkSEzCoq0UCiT4xKRCjFDYotihoRrNjEzVdJZW1vLz+5PUgtdZ8hMpeoikklxV/nvf/8bjzzyCA5MupknqamnpwdOpxNSqTQpL9ROoxG2/gHBttwLzo/oe4y89xRYqxGywoUQKzUQyRSQ5frPWhtK0gkAvd3jsFudAACZXIqyiiyUVmRDIkmOJ3DJHjMk9ihmSLhmEzMGg8FvSQ1KOlMfXWdIqMy6IYjdE+M8RW5HHGsTPVFNPMfGxtDe3o7h4WFkZ2ejtrYWcrk85ONbW1vxi1/8AkePHo1iLQmJLGNTs18329wvRS7xdOmHYWk/CpyZXEiSWYjM86+B0WkFOA5aRdr0J/HhdrnR2T52prKAWOK58M2bT38kCSEkErKzs1FdXY2GhgYAlHQSQoQk7CDKdGMTGxhKPEPW3d2NRx99FB9++CFYluW3KxQKfPOb38QPfvADiKdYy9Bms+Hxxx/H888/D5ZlwXHctDNyktRRUlLCd01JRoaGRkE5bVEVJBFcj0237w2Ac/Nll24QiuLFODjYiF7DIEq0BVicsxBZqoyQztfXo4fV7LnAiUQiMAywbGUxGFHy/M4le8yQ2KOYIeGabczk5eUBAE6dOoUVK1ZQ0jkH0HWGhMrhtkPhnOiK7xa74lib6Il44nns2DHcfvvt0Ol0/HIoAMAwDKxWK55++mmcOHECzzzzTMDkc9euXXjwwQfR398vSDi9F2yS+pK9O4rhpDDx1C5dErFzc24Wpsa9gm2K0sXQyaXo7RsEAPQYBtBjGMD6kpUoyygOei4364Zu3IrO9lHPBgaQSETQpCmQnZtcC5cne8yQ2KOYIeGKRMzk5eUhJyeHEpE5gq4zJFRSxoJMYxtftspT8xoR0U/lcDjwwx/+EOPj4/w2mUyGnJwcvsxxHPbt24cnn3xScKzFYsFPf/pT3H777ejr65uooEiEm2++Ge+//34kq0pIVLB2O0xtbYJt2iXVETu/peUQ3Fbh5BRc7UW454MHcbivDnqbZ104mViKwrSpH9bUHe7FU7/bhZPHeuGwuyAWiwAGmFeRRT0MCCFkhnwfugdCSSchZDKRjMNQloT/N56ZHHNshCuiV7/XXnsNvb29YBgGCoUCv/71r/HFF19gz549OHToEO68806IxWJwHIfnnnuOn91tYGAA1157Ld544w2+lZPjONTU1ODVV1/FT3/6U6gj2FWRkGgxNreA8+leDpEIaYsWRez8+sPbBGVZQQX2wAQ760DHeDd2tH+GvacPYUHmPEjF0qDnYV1ufPphC9xuDoN9Rhw91IPBPgPUajly8iM3+y4hhMwlDocDhw8fxujoaLyrQghJIkX5BUAmw/+TZyXF/K9hi+in2rt3ogvgH/7wB1x88cV8WaPR4Pbbb4dWq8VDDz0Em82Gjz/+GOvWrcPXvvY1DA0N8fumpaXh7rvvxvXXXx/TlheO4/Duu+/itddeQ2NjIywWC3Jzc7F27VrceOONqKmpmfV72Gw2vPzyy9i+fTs6OjpgMpmQnZ2N1atX46abbsKqVasi8EmSm9s9MX4x2Z4MTx7fqamYD4kqMuN4HCM9sHWeEGxTrfkydrQLk9E0mRpVORVTnuvowdPQj1v5MufmoFBJUbYgOVs7kzlmSHxQzJBwTRczdrsdx48fh8ViwcmTJ7Fs2TLqajnH0XWGhCpdrECBfWJcpzhF4yWiiWfbmS6GVVVVgqTT19e//nU888wzGBoawuHDh/HGG29gcHCQb+XcuHEjHnjgAUH33Fiw2Wy48847sWvXLsH23t5e9Pb24p133sFdd92F73znOzN+j6amJvzgBz/A6dOnBdsHBgbw3nvv4f3338d3v/td3HXXXTN+j1RQX1/PTz8eiWQ/lkY/Fy75kxbBbraGSa2dIpUWfXmFMDdbBNtvW3Mj5BJZ0PM4nSw+29Eq2KbNUKCoNAN5+eHNiJsokjlmSHxQzJBwTRUzvkkn4Ek46uvrsXz5cmRmZsajuiQB0HWGhMpik6JXtJQvy3x7z6WQiCaeo6OjYBgGa9euDbqPSCTCmjVr8N577+G9997jL9IajQa/+tWvcMUVV0SySiG7//77+aRzwYIFuO6665CTk4OTJ0/i5ZdfhsViwSOPPIL8/Hxs2bIl7PN3d3fj1ltvxdiYZ6rks88+G5deeikyMjJw5MgRvPLKK7Db7fjLX/6CgoICXH/99ZH8eCQGWKcT1u5uwTZ5hB6guO1WGOt2CbZpay9GeeESPHnVb/Bh22fY0b4b5RnFmDfFhEIAcHhfF0wGu2Bb+cJszKvITqqZbAkhJBHY7XYcO3YMVqtVsF0ul0OlUsWpVoSQZDJuk6NBNpE/qTljHGsTPRFNPL0X3elaK0tKSgB4JhTiOA4VFRV4+umnUVpaGsnqhGzv3r149913AQDr16/HM888w683euWVV+Kaa67BDTfcAJ1Oh9/+9re4+OKLodGENw7uV7/6FZ90/vCHPxS0nG7atAlXXXUVbrrpJjidTjz66KPYunUrZLLgrVapTK1Ww+VyQSJJrv7thvqT4FzCJ1RZa1dH5NzGup3gHD43NYwIaas2et5DmYHrl2/G1iWXw2Cb+kLlsLuw52Ph5EcZWUrkF6Ujv0gbkbrGQ7LGDIkfihkSrkAxEyzpVCqVYa9dTlIPXWdIqByccF4OlknNyYUi+pvgcrnAMMy0F1rfiYIKCgrwwgsvIDs7O5JVCcvf//53AIBEIsGvf/1rv/ovWLAAP//5z/HDH/4QOp0Or7zyCm699daQz3/w4EHs3r0bALB169aA3XVra2tx/fXX44UXXoBOp8P+/ftxwQUXzOJTJa8FCxbEuwozMv7FEUFZmpEORWHhrM/LcZxn7U4fqsrVkKYLZ62ViaXIUU89nujA7g5YzMJFicsX5iA7Vw1RErd2JmvMkPihmCHhmhwzlHSS6dB1hoRMpQZg5oucKDUTz7iMXPV98vNf//VfcU06dTod9u3bBwA4//zzg7a6XnHFFXw9t23bFnCfYLytqXK5HHfffXfQ/a655hpcf/31uP322+P6PSEzY+3vE5RV8+ZFZKIec9PnYE3jgm3qJedjwDQMN+cOcpQ/m9WJ/bvaBdsKS9KhzVAgryA5x3YSQkg8UNJJCIkk/cCQoMy6pl6WKVnFve3/wgsvjOv7f/HFF/ysY+vXrw+6n0gkwtq1a7Ft2zYcP34cer0e6enpIb3HRx99BAA455xzkJcXfG3FxYsX41e/+lUYtSeJgnO7YWoRTtiTe8GXInJu/YG3BWWRSgtL6UJ81nkAaTI1FucuxLz04mlnzNu/6xRsVpdg2+VfWQaFSoqMLBqHRAghobDZbDh+/Lhf0qlSqbBixQpKOgkhYTNaTQB8lo5MzbwzPi2evuI921tr60SyUFVVNeW+CxcuBODp+tjS0hLS+YeGhvj1vGpra/ntTqcTjY2N+Oyzz1BfXw+XyxXkDCQZWLp74DKaBNsyapbN+ryO0T7Ye4UJrbr6XDSPdQIAjA4zDvUex67Oz6c8j9lkx4HPTgm2VdcUoqQ8Ezl5tG4nIYSEwmazBWzppKSTEDIbDm5u5AFxb/GM95qBvb29/NfFxVPPBlpQUCA4bqrZe728S8wAnkmVnE4n/ud//gf/+te/+MmGACAjIwO33XYbbr31VojFqdmvO1RdXV38YPx58+bFuzohMTQ0CMry3BzIc3NnfV7HwClIc4rhHO0FOA4QSbC7IAc769/Bwuz5KNTkgWEYlKZPPZZ07852OBwTEx8xDHDhl6d+0JJMkjFmSHxRzJBwtbS0oLW1FU6nExkZGfx2lUqF2traOTshIAmOrjMkVCnawOkn7olnvPkmf9O1vvr+odHpdCGdf2BggP9aJpPhpptuwrFjx/z20+l0ePjhh3Hs2DE8+uijkEqlfvvMFXq9nl/3KlkYGpoEZe2SJbM+J8dxYM06qKvPgdthhWOgA4wyDTt7vsCQeRRD5lFoZCqsKVqB+ZllQc9j1Nvwxd5Owbblq0uQm6RrdgaSjDFD4otihoTD6XSivr4eNptN8HCYkk4yFbrOkFCJ3HMj9ZzziafNZuO/nq6LjO8fFt/jpmI2T8xQ9fvf/x7d3d2orKzEf//3f2Pt2rVgWRa7d+/Gww8/jP7+fuzYsQOPPfYYfvSjH4X5SSKnra0NCxYsQFraRGJit9vR3NwMwJOAl5WV+R3jXZN18iLJIyMj6OvzTLxTWloqSPBZlsXJkycBAGlpaZg/f77g2M7OThgMBgDAkiVLBBNT6XQ6nD59GgBQWFiI3EktjCdOnADHcVAqlaisrBS81tPTwz90qKqqgkKh4F8zmUw4dcrTLTU3NxeFk2ambWxs5P+QVFdXAwCMjY2CfQzpaTCZTIJld2w2G99FOysri19WyKu1tRVWqxUMw2D58uVwjfeDtXnix+Z0wyTPRmNWPoaGJiYIMjksSDfnoqHe8z3UarUoLy8XnPe9Nw7D5ZqYhEgkYnDBxkqcPjWGtEwG3WfWHi0qKvJbCqmurg6A5+bK29Xc6/Tp0/wDmEWLFgl+f4xGIzo6OgAA+fn5yM/PFxzb0NAAl8sFmUyGxYsXC17r6+vDyMgIAM+MgL6zYFutVr57fHZ2tl8vBZfLhbq6OohEIixbJuzqPDQ0xD8IKi8vh1Y7sXyMt+s7AKSnp/s9mW5vb+d/l5ctWyYYTzs2Noaenh4Anl4NWVkTMwt7F5EHPLN5T57hsKurC3q9HgBQXV0tuDkxGAzo7OwE4OltMXl8eH19PdxuNxQKhd8wgd7eXr6Lf2VlJZRKJf+a2WxGe7snhnJyclBUVCQ4tqmpCQ6HAxKJBEsmPUAZHBzE4OAgAGD+/PlJf40APD/71tbWqF8jvPr7+zE8PAwAqKiomNU1wtfw8DD6+/sBAGVlZYIHpS6XCw1nemUEukZ0dHTAaPQsxbR06VJBYjU+Pp5S14iWlhbYbLawrxHevyU2m42fF0KtVmPFihWQyWR0jTgj1a4Rs72PcDqdCISuER6pdI2Y7X2ExCqMFW9/0HhdI7wxGGlRSTzr6+vx5ptvTvm611T7TXb11VfPvFJB+I6tnO6Jpe/roY7J9F5EAaC7uxvV1dX45z//KbiQbNq0CatWrcLWrVsxNjaG//3f/8UNN9wwbdffaGFZlv/D6sVxHH8BZVnW7xiXyxX0Aut2u/nXJp8XAP+a93taXV0NjuPAMAy6urr41zlO+DTIt07BzstxXMD1s3zrO5Pz+n5W29AQ7MMjwnMUFU153kDx4z2vt/u5vb9deKxEiaPmLsExC0dWof0gC2ntOBYs0fidl+M4WIzCn8uiZQU4eawfO99vwtrzSpBXxk75WYPVl2XZoN9D3595oHhxOp1wuVwBJ0Sa6rzB4tAbMy0tLbDb7dOed6r4DvRZIxnfwc47k++h2+0O2DV/Jt/DyXWafNzk88bzGhHsvOH8LldXV/M3lYHqFclrhC/fzzrba0Skzhutn00iXSN8z+t0OsO+RgDgkxKr1SpIOgG6RgQ6b7JfI7znne19RKCHU3SN8Eila8Rsv4cSl//3zrdOoZw3kteIQD/LSIhK4vn+++/j/fffn3If7y/FfffdF9I5GYaJSuLp+4TK6XROmXw6HBPrH4barWZyEDz00EOCpNOrsLAQ//Vf/4Vf/vKXcLlcePPNN/H9738/pPeINLFY7PcLxzAM/xQlUIBKJJKgXUlEIhH/WqBfZO9r3gu773l8zzv5Qupbp2Dn5TguYL1me17f/3VHjwt3kMkgzcuf8ryB/ohJpVJ+LVy3zQznaL/gWCa7FFdrV6NfOoZdPQcw3G2G4pTnj1nTMSNEIjHWnOu/DE9BiQYQsRgfdsBqdsNitmPn+56uwYf29OD8L+chO18R0s/Gl1gsDvo99P2ZB4oXqVQKhmHCPm+wOPRuk8lkcLvdAT+L73mniu9AdYpkfAc770y+h263O2C9ZvI99K2T2+2e9mcTz2tEsPOG87sslUpjdo3w5ftZZ3ONiOR5o/WzSaRrhO95WZad0TVCJpOhqKgIDodDkHQCdI0IdN5kv0Z4zzvba4T3WhOovnSNSK1rxGy+h+Ip5nuNxzViupUSZorhAj2ymqHFixeDYZiAT8Fmi2EYvgk7ku666y588MEHADxLq/h2C5lsx44duOOOOwAAP/3pT/HNb35z2vM///zz+O1vfwvA0yy/ffv2oPuOjY3h7LPPBgCcd955+Nvf/hby55gNk8nEd38BPN0dAiXHJLDWPz+JoY938mVlSQlWPvHYrCbOsnaegPX0xIRFjFiKjPVXgRF7Lg4cx6FxuBUjdRx2fTAx6+3Fmxbj3A0TXVlOd4yhqc6TwDIiBj1d4+juGA+6PyGEEEIIia1tj76Mgz0T995S1ob7HrsmbvWJVm4Q0RbPUGZ5TTS+/bN1Ot2UiafvhEK+YzSm4vtDmjzuYLKsrCxkZGRAp9NhaGhoyn1J4sg6ex3ESgXswyOwD49As6BiVkmn22mH4djHkGTkgRF5nlDJ8+bxSSfgeRCzJK8KuAQQi8T4+D1PC6b3/3M3LITF7EBrwyB/TH+PnpJOQgiZhnepFN9xj4QQEk0iydyYgCqiiecLL7wQydPFhO8A6v7+fpSWlgbd13eG2smD7YOZPPB7Ot6uO9HqW50MDAYD313S98FAojK3tUOi0UCi0UA9vxza6sXTHzQFw9EdMJ/cDUYigyx/PmSFFRDnlwftQupNHn2TT44D5AoJ2DNjBvp69Dh9amIG51RLOpMtZkj8UcyQQKxWKz/zfG1trSD5pJgh4aKYIaESKyZNcBrf1SajJjodeJOI7+xQ3lmugvG+zjCM3+xmwfjOEuW7ZmggLMvyraqTZ++aSzo7O9He3s7PxJXI3AEGisuy/cdZhsNUtwsAwLkcsPc2w9p+FL0uM95t+Qh1A40wOcx+x5y7YSEu3jSR8O58vwn1Rz0zAPZ261I66QSSK2ZIYqCYIZNZLBYcPXoUdrsddrsdx44d41s/AYoZEj6KGRIqh9sJhnP7/EvN5VXmfOK5cuVKflDtgQMHgu7HsiwOHToEwDOWNdQnV5mZmXyS2traKmg1nezkyZP8BEaTpzUmickeYLrp2SSejrEBOAY7BdvUS7+EtrFO2FwONI2044OWT3B8oMHv2MnJZ3fHGL7Y10XdawkhZBoWiwXHjh0TTCJot9v5ZUUIISSaxKpxlI8f5/8VmOunPygJzfnEU6vVYv369QCAnTt38utETfbee+/x6zVdfvnlYb3Hpk2bAHgmhHn22WeD7vfPf/6T/zrc90glBQUFKCoqQkFBQbyrMi1bv/BBgjQjHRLVzMcFmRv2APB5yiWW4FluEId6j8PJnpkuG0CaTB3w+HM3LERmtoov+67fmcpJZzLFDEkMFDPEK1DSCXjWhFy0aBFfppgh4aKYIaGysw5IWTv/T8zZ4l2lqIjKcirJ5pZbbsHu3bvhdDpxzz334K9//atgUqC2tjb85je/AeBZvPXaa68N6/zXX389/vGPf2BsbAwvvfQSampqsGXLFsE+b775Jt566y0AwKpVq7BixYpZfqrkNXmB20Rmm9SCrSoLPkZ4OhzHwVT/mWDbyPwlODLomc355FALyjNKsK6kFuUZgd/HZLRBN271265USVM26QSSK2ZIYqCYIcDUSWdNTY1gmQGKGRIuihkSKqnEglL9xOod+jT/5U9SASWe8Cxdctlll2H79u04evQotmzZgq9//esoLCxEQ0MDXnrpJZjNnnF1P/7xj/1mtD1w4ABuvvlmAMBZZ53lN8lSZmYmHnzwQdx5551gWRY//vGP8cEHH2DDhg2QyWT45JNPsG3bNgCAXC7HQw89FINPTWbL0NiEkX2fQ56bA1l2NkQSCRSzeKpp72uFc1Q4DnhfTjow4kluXW4Xeg39qC28Kej6Sgc+6wDn9h8XYLU4sXdnW0onn4QQEg6z2Yzjx48HTDpXrFgRcM08QgiJBpHFJCyn6BhPuqqe8bvf/Q5msxl79uxBT08PHn74YcHrDMPgjjvuwPXXXz+j81966aV45JFH8LOf/QwmkwmffPIJPvnkE8E+GRkZ+Mtf/oKFCyk5SAbDn+2Bof6kp8AwUM8vR+nXwmsN92U8LowHa1Y+Doy1CbZ9ueoilKUHnlGZc3M4uKdTsI0RMXwi6rvUCiGEzGVmsxnHjh2Dc9IEcZR0EkLiIY+TwXfqSKWLEs+UplQq8de//hXvvPMO3nzzTTQ2NsJoNCIjIwOrV6/GzTffjNWrV8/qPS6//HKsXr0aL774Inbu3Ine3l4wDIPS0lJccskluOGGG0JeH5TEn7GpaaLAcZBmpIMJ0hI5HbfTfmZ854TCZRfh54tW4P2WT3Co7zgkjBibKjcEXSP0rZePwelgBds2fXUZrBZnwHU+CSFkLgqWdGq1WtTU1FDSSQiJOYWLESSeEjborkmNrq4+GIbB5s2bsXnz5rCOW7duHZqbm0PaNy8vD3fffTfuvvvumVRxTqivr4fT6YRUKsWyZcviXZ2A3CwLS3ePYJt22dIZn8/SchBuu8VnCwNtzYXISs/FkrwqDJlG0DbWBa0iLeDxe3e2oe6wsJuuOk2G5auKIZV5fs1TOflMhpghiYViZm6aTdJJMUPCRTFDQuV0ydCfNnFfJmH8l+tLBZR4koTjdrv5f4mKNVugnl8O+8gInOM6gOOQtWrljM+n/+IDQVk5fzkk6bl8OU+TgzxNTsBj9+5s45NJX4uWFvBJpzfJTNXkMxlihiQWipm5x2Qy4fjx4zNu6aSYIeGimCGhGnOq0ZB/Pl9WOg1xrE30UOJJEo5CoYBYLBbMJphoWKsFmWcSTbfTCadOD2XpzGa0dY4PwN4jbDHXLPtSSMcGSzqlUjG+tLFSsC2Vk89kiBmSWChm5p6uri6/pDM9PR3Lly8PqXstxQwJF8UMCZWLkQnKboZmtSUkJqqqquJdhWnZR0b5r0VSKdIWV0E0w3FB+oPvCjeIpahXySDqOYqitHwUaHIhFfv/0Tp9aixg0gkAy1YVQZvuv55ooOSztDwLZRXJPbY4GWKGJBaKmbln8eLFcDqd0Ol0AMJLOgGKGRI+ihkSKqdbOEdIqiaeM5sJhZA5zjE6KijLs7NndB6O42Bu3CfYJi2pRL/DgC5dL/Z3H8FbTTswYBr2O7asIsuvVdNr9dnzgr7nuRsW4uJNiwEAX9pYmfRJJyGEhEIsFmP58uXIyMgIO+kkhJBocrhTdDahSeJyxT19+jTeeecdHDlyBH19fdDr9fj+97+PG2+8EQDwy1/+EosXL8bWrVshk8mmORshscVxnKDFEwBkM0w8rR11YM36iXMD2JGfA8ZmhFqmOvN+bmQq0gMef+Fli3CqZRg9nTp+W2FJOopKM6Z833M3LEyJlk5CCAmHN/n0fk0IIYnAzNoF5dRcTCXGiafFYsFDDz2Et99+mx9ozXEcGIYRLOC8bds2/N///R+effZZPPLII6itrY1lNQmZEms2w20XXiDkOTNLPBmJDOql58Mx2AnnaC86tVpsG2sCxpqQr8nF/MxSrCxYCrkk8AOYsRETert0gm2rzy4L6b0p6SSEzEWUcBJCEo2TWjwjy2Aw4MYbb0RbWxs4LngebzabodPpwDAMent7ccstt+Cvf/0r1qxZE6uqkjjr7e0Fy7IQi8UoLi6Od3X8WAcGBWWRXA6xWh32eTiOg2OoC9KsQkizCuF22nHU0glY+gEAg6ZhWJ1WbKrcEPQcu3e0wffXSSaXYNnKxPueRVuixwxJPBQzqctoNKKrqwvV1dURTTIpZki4KGZIqLiUbeMUitkYzx/+8IdobW0Fx3HIycnBPffcg3/84x9++0mlUvzoRz9CVpanNcZms+HHP/4xrFZrrKpK4mx0dBTDw8MYnTSOMlG0/OFR9L+/DWMHv4C5oxNilRIMw4R9HtY4CtYy0c3WKhbhqG1IsM+Viy5BRVbgFkyO43CqdUSwrXxBNmTyuTdmKdFjhiQeipnUZDQacfz4cYyMjODEiRNg2ci1IlDMkHBRzJBQMZR4Rs7evXuxe/duMAyDs846C9u3b8d3vvMdnHXWWX77ymQyfOtb38K7777Ld7Ht7+/HG2+8EYuqEjIll8UK28AAXAYDzKdOYezAQbgdM1vk197XLihzMgUumn8uVFLPbLQSkQQbKs4NOKMtAOjGrFixthiLlxcgPdNzzJpzg08qRAghqcxgMOD48eNwuVwAAJ1OF/HkkxBCoiE9O1NQ5lJ0REBMmkbefvttAIBSqcQf//hHqEPolpiZmYk//elP2LhxIxwOBz7++GPccMMN0a4qSQCVlZX82N9EY2xpgaBvK8MgfdmSsM/jdtrhGOkWbMsrXYpvl1bjG7VfxefdRzBsGYNWrgl6jvqjvRCJRMgrTENeYRoYMFiwKDfsuqSCRI4ZkpgoZlKLwWBAXV0dn3R6RfLnSzFDwkUxQ0IlZ4SNDKm67EhMEs/Dhw+DYRhcdNFFyMnJCfm4/Px8XHLJJXjvvffQ3NwcxRqSRKJU+q8/mSgMJ+oFZVlmJuS54Sd7jqEucD4DyRlGBFn+fACAXCLDBfPXT3m8y8XCzQq7ZSxYnDtn/7glcsyQxEQxkzq8LZ2TWzYzMzOxbNmyiI3zpJgh4aKYIaGSioSpZqrezcUkoR4Z8YxDW7BgQdjHzp/vuRnX6/XT7ElI9OnrGwRleV4uJJrgrZKBuN0sRrb/zZN8sp6n85LsIohkitDrMW71G4ieX6gNqx6EEJLsgiWdWVlZEU06CSEkmsTqDEGZYVLz2hWTFk/vhd+7hEo4nE7P+DmFIvSbckKigWNZmE+dEmxTlc8Lu5XR0rgfjv42OPrbALEU0twSNGSokN/fgEU5FVBKp4/1kUGT3zapLDUvUoQQEoher0ddXV3QpFMkStXOaoSQVMNI5AB8lupL0R5sMUk88/Ly0NnZicbGxrCP/eKLL/hzkLnBbDbzYyJCGQ8cK+auLrh91psFgLSqqrDPYzj64USBdWLQqoOOAfSjp9A21omKzFLU5FdDIg7868m63BgZEiaeCxbN7d+PRI0ZkrgoZpJbPJJOihkSLooZQoRikniuW7cOHR0d+Oyzz9DT04OSkpKQjtu3bx8/PpTW8Zw72tvb4XQ6IZVKUVNTE+/q8AwNTYKyPDcHGSvCqx/rsMLWIxyv3FO2gG81dXNuDJlHIRYFb718+e+HoB+3oqBEi8xsFRiGQW5+eN19U02ixgxJXBQzySteLZ0UMyRcFDMkVFajHr4jO90pOht3TPqhbN26FQDgcrlw5513QqfTTXvM4cOHcc899/DlzZs3R6t6hITE2ChMPNOXL4M8Jzusc9g66gB2YtbFMbEI/7Kexsen9qJl5BQsTisWZpUH7b5r0FtxqmUYI0Mm1B/pw8HdneDcHBTKwEuuEEJIKtHpdAGTzuzsbOpeSwhJWoz9NOaNHef/Fenq4l2lqIhJi2dNTQ02b96Mt99+Gw0NDdi0aROuu+46LFkysQyFTqdDU1MTWltbsWPHDnz88cdgWZafDXf16tWxqCpJADk5OWBZNqEmheA4DoZJXcXTqheHfR5T4z5BuaWkFIAV41Ydxq06NA634pqlVwQ9/tiBbsFqLi4ni7KK8JLfVJSIMUMSG8VM8tHr9QHX5czOzsbSpUujnnRSzJBwUcyQUDndDkjdE8O5ONHM1ohPdDFJPAHg17/+NXp6enDkyBGMjY3hf/7nfwBMrLH1zDPP4JlnnuH3587cXS9cuBC///3vY1VNkgCKioriXQU/9uFhOEbHBNu01dVhncPttMPS8oVg24k0JWCz8uWVhcugkQUeB8K5ORz5/LRgW25BGopK08OqRypKxJghiY1iJvnIZDJIJBJB4hmrpBOgmCHho5ghoZJJrJinm1iyzypPzd4bMftUMpkMzz//PL75zW9CLBaD4zg+ufTybvMOxN60aRNeeuklaMJcroKQSDM2CsdlStI0UBaH9wfF0n4EnNPGl20iMYbcdsE+F1WcE/T4U60jMOhtgm0LFuVCqZKFVQ9CCElGSqUStbW1kMvlADytSbFKOgkhJJpYtw06jYj/Z1Sn5nUtZi2eACCVSnHffffhP/7jP/Dmm2/i4MGDaG9vh16vh8vlQnp6OkpKSrB27VpcffXVM1r3k5Bo8Otmu3gxmDBvdswNewXljLIleHrLz1E/2Ix93V+gYagFK/KDt6Ie3t8lKKvTZFiwODesOhBCSDLzJp/d3d1YuHAhJZ2EkJRQVlqKlvwWviyWxzRFi5m4fKr8/Hz853/+J/7zP/8zHm9PSNgMkyYW0iwM76GI22GDpfWw8BzV50AiEqO2cAlqC5fAzbkhYgLfRJmMdrScHBRsKyxOR16BNqx6EEJIslMqlaiawVJWhBCSqNRiGbKdE5NPpuq44JgkngMDAygoKIjFW5EU0NTUBJfLBYlEgsWLw5/AJ9JcZjMsXcKxlfahIbB2O8RnunxNx3h8JziXzxqgjAj64gqIHRaoZSoACJp0AsDxQ91wuye6pkskIqw5txwqNXWzBRIvZkjio5hJbBaLBUqlMugM3/FAMUPCRTFDQuaUweYu5oti1xT7JrGYJJ4bNmzAWWedhS1btmDjxo20iC6ZksPhgNPphNvtjndVAADG5hYIppIViaAsKws56QQA06RutpbiCqikMj7pnArHcTh6oFuwbUltEaqW5If8/qku0WKGJD6KmcQ1NjaG+vp6FBUVYcGCBQmTfFLMkHBRzJBQDRql+FxxKV9WcwZcHMf6REtMEk+3240DBw7gwIED+NWvfoWLL74Ymzdvxvnnn0/jM4gfiUQCjuMgkSRG//bJ3WxlWZlQFoSe9LmdDtj72wXbRvKK4NZ1o1PnSSgL0/JQnVsZ8Piu9lGMjZgF21atKwv5/eeCRIsZkvgoZhKTN+l0u93o6ekBgIRJPilmSLgoZkioXCKFoOxmqKvtjOXn52Nw0DM+zWaz4f3338f777+PrKwsXHnlldi8eTOWLl0ai6qQJOC7vmsiME5KPOV5eZDn5IR8vLlpP8BOrMfEAdDlFcNhGee3aeVpQY+fvIRKTr4GpfMzQ37/uSDRYoYkPoqZxOObdHr19PQgLS0N+fnx7+FBMUPCRTFDQuWWKQFMLK/nFqXmw4qYNDd++umneOGFF/C1r30NGRkZ/JIpo6Oj+Mc//oFrrrkGV155JZ599lkMDAzEokqEhMTtcnm62voo3nIV1PPLQz6HuXG/oHw4Pw8njL0w2SdaMRflVAQ81mpxoPGE8Hdi1bqyhHj6TwghkTI6OuqXdAJAXl4e8vLy4lQrQgiJDbPOICi7WS7InsktZv1c165di1/96lfYs2cPnn76aVx55ZVQKpV8Etre3o4//vGP2LBhA775zW/ijTfegNlsnv7EhESRuaMTbodDsE27pBpMGLONKcqXQ730fMgKFoCRKXAwXYkTg03Y1rYLO9o+w6hlHBpZ4HHPB3d3gHVN3IiJxSLUrC6Z2YchhJAEFCzpzM/PR3V1NT1oI4SkvHHDmKDMpeiw4Ji340okElxwwQW44IILYLPZsHPnTrzzzjvYs2cPnE4nOI7DwYMHcfDgQRoPSuLO0CBcv1NZUgypNvQlTFirCW6bCdKsQkizCqF3LUP38EQLqN5uRFFafsAbK47jcGTSpEIVi3Kg0tBMtoSQ1OBNOjlO+HQ/Pz8fixcvpqSTEDInODk23lWIibh2IFYoFLjiiitwxRVXwGAwYPv27Xjvvfdw6NAhsCwrGA+anZ2NPXv2xLO6JEYGBwfBsizEYnHcx/VMHt+ZFuZ06M6xPkG5ntXD9/ZKLpHj8qqLAh6r19mQnqmEzeKE0+m5IFVU5Yb1/nNFIsUMSQ4UM/E3MjKCkydPJk3SSTFDwkUxQ0LlRmp2rZ0sYUauarVaXHvttbj22msxNjaG119/HU899RSsVis/HpTMDYODg3A6nZBKpXG9UHMcB0OTMPHULgkv8XQMCycGmp+zAJdkZuNQzzHo7UasKlwGmVga8NiRQSMqqnJQvjAbo0Mm6MasWE2z2QaUKDFDkgfFTHwFSzoLCgqwaNGihEs6AYoZEj6KGRKyObLkTsIkngDQ3d2Njz76CDt37sTRo0fBsnOj2ZkkJtvAIJzjOsE2bXXoiafbYQM7qc9+VdkKLMsuxrdXXY+W0VOQiYN3mzXoPLObiUQMcgvSsHJdGSSy1JxemxAydyRj0kkIIdGUzghTslS9CsY98RwaGuK70544cYLf7v2DlJ+fj6uuugpXX311nGpIYm3+/Plwu91xH9M7uZutWKkERKEnfs7xAXA+XScYsQTSzAIAgEgkwuLchUGPtVmdMOhtgm1ZOYEnICKJEzMkeVDMxMfw8DAaGhqSMumkmCHhopghoRI7qcUzasbHx/nxnIcPH+b/AHn/VyqV2LhxI7Zs2YKzzz47of8QkchLSwu+pmUsGVuEy6jIsrPCikXd/jfAuZyQZBZAJJVDmpEPJsTEdWTIJChLJGJkZKlCfu+5JlFihiQPipnYczqdaGpq8ks6CwsLUVVVlfB/6ylmSLgoZkioJLFbaCSuYpZ4mkwmfPTRR3jvvfewf/9+vhut9w+QSCTC+vXrsWXLFlx22WVQKpWxqhohAeVfthFgGNiHR+AYGYG8oADynOyQjmWtJpgb9p2ZD5uBWJuNwfVfBnqOoSKrDNnKzClvskYGhYlnTp4aIlFi35QRQshUpFIpli5dKlg6JVmSTkIIiSaRfG70aotJ4nnHHXdg9+7dcJxZD9H3aWdlZSU2b96MzZs308BrklDsA4OQarWe5VMWVEBZXBTy+p2mhj0+izBxcBjH0CMFXLoedOp6kKFIw6qi5chRZfkd2940hOEBI6TyiffKyaOnpoSQ5JeVlYVly5bhxIkTKCgooKSTEEIAMJLAE02mmpgknh999BEYhuETzqysLGzatAlXX301li5dGosqkCRit9vBcRwYhoFcLo9LHTiOg21gQLBNUVAQ8vGW5oOCcndePlw+FxWdzQiFxP+zuVk3Xn/xKKxWJ7Jy1Cgo1iI3Pw2ZOdTNdiqJEDMkuVDMxE9WVhZWr14NtVqdVEknxQwJF8UMCZVENamnZxJdG8MRs662MpkMF110Ea6++mqcf/75EIfYckTmnubmZn768ZqamrjUwanXg7UJJ/cJNfHkODfsgx182QXgb2luKNs+RbG2AMXaQizKroBG5t+toq15GFaLEwAwNmzG2LAZl16ZAbF4bvT9n6lEiBmSXChm4kuj0cS7CmGjmCHhopghoXJyLACf3IhLzXU9Y5J4PvTQQ/jyl79Mg6xJ0rD1C1s7JWo1JGmh3SjZ+9rhthj48imVDE5wcNpNMAy3oXG4DeeWrQl47JHPhet+pqUrULEoN8zaE0JIfA0ODgIADaEhhJAQcLJRlOiG+bJb7IpjbaInJonntddeG4u3ISkiIyMDLMvGtVXc3NklKCsKC0LuEmZp+0JQbsjOAjAxTXZ5Rgmqc/yXUjEb7WhrHBJsKyjWIjt3bgw4n41EiBmSXChmomdwcBCNjY0AAIZhkJeXF+caRQbFDAkXxQwJlYtzQup28GVWRIknITFRVlYW1/c3trdjdN9+yHNzIMvKAiMWhze+s+2IoNyjUgCshS+fN29twDW96g73wO2e6FohEjGoWpIPiZT+YE0n3jFDkg/FTHT4Jp0A0NDQAAApkXxSzJBwUcyQUElldswfO8aX9WmpmaJF9FPdfPPNADxPOJ9//nm/7bMx+ZyERMvwzl3Q153wFEQiqOeVoeSrXwnpWJdxDI6BU4JtD625FT0aJQ70HMPBnqM4q7jW7ziO43D0YLdgW06+BoUl6TP6DIQQEmsDAwNoamry224wGFIi8SSEkGhhTWPw7VfH0BjP6R08eDBgd8Rg20PlnRGMkFgwtbZNFNxuQCSCSCYL6djJrZ0iuQqq0sVYJJZgUc4CfGPF1oCx3Hta57d2Z2FJOnLykm8CDkLI3BMs6SwpKcGCBQviUCNCCEkexYwSZp+yiqXEMyTBkkQuRTN3klo4joO5SzjBT0btipCPNzXsEZSVC1aCEU/8mgV7gHJsUmtnZrYKl15VDZk8NbtaEEJSx3RJJz04JoSQqcmcbkHiKXGlZt4U0bvajz/+OKzthATS1tYGl8sFiUSChQv9J+GJJqfRCFVpCezDI3DqdACArDWBZ6CdjHXaYeueGNvkAmAsnIdctzvgmE7+PR0s6o/2CbbVnlUKlZrW/ApVPGOGJCeKmcjo7+9Hc3Oz3/bS0lJUVFSkVNJJMUPCRTFDQsW4ZTDIc/iySMTGsTbRE9HEs7i4OKzthARisVj4da9izaU3IHP1KgCA2+GAU6eHpiq0PxaWpgMAOzEL2YhMjC6xAyeaPkSxtgAl2gIUaf0nKWqs64fD7jN7GQOsWFMyuw8yx8QzZkhyopiZvbmUdAIUMyR8FDMkVEM2DQ6VXsWXlU4DLotjfaIl4VeldzqdaGpqwp49e6bfmZBZsg9NLGciksmQXrMMIkloz2fMzfsF5ZM52RAr0+B0u9Cp60H72OmAx02eVGjBolxoM5Rh1pwQQmInWNJZVlaWkkknIYREEysW9nLjmIRP0WYkJgPIFi9eDJFIhB/96Ee49dZbwzr2ySefxNNPP43c3Fx89tlnUaohSSQ1NTVxe2/bkHAdTXmIMzFyHAfb6YlutgNSMU6pVSi36pGh0IJhGBRr/RdSHx02oat9VLBt5VmlM6j53BbPmCHJiWJm5vr6+tDS0uK3vaysDPPnz0/ZpJNihoSLYoaEysEKE02WSc05PmL2qWY6uZBSqQTHcRgbG4twjQgRYu12OHV6wTZFiImn226BcuFquMb64Bzrx3GlG+2cBe2n9kAlVWJ+Zhm2LN7od9zuHW2CslIlRdVS/wSVEEISwVxNOgkhJJpYpOZkQpMlbDrNcRx6enrw7rvvAgBUKlWca0RSnbVXOMEPIxZDlpUZ0rGu8QFIM/IgzciDsqIWbUOHANYzP5nFaQUDQC4RLsnidrvR0jAo2FZclgGJRDzzD0EIIVHkcrn8ts2bNw/l5eWUdBJCyAwZnFZBOVXT0Iglni6XC1/5ylfQ1tYW8HWO4/D73/8ev//978M+N8MwqKqqmm0VCZkSN+mGihGJwIhDSwKdYxNJ64jLim7WLHh965Iv+x1jNNiwpLYQw/1GDA0YYbe5sGwVTcRFCElcZWVl4DgOHR0dACjpJISQSHC5U3MW28kilnhKJBI8+OCDuOGGG4J2q51pd1uGYXDbbbfNpnokiYyMjMB9ZgmSnJyc6Q+IkNMvvgRrby+k6emQZmRAURBal1eOdcE5PtFyKWYYXFF6Fg6PncKgeQQamRrVuZV+x40MmqFJk0OTJkd5ZTaMBjuWrSyK2OeZS+IVMyR5UczM3Lx58wB4/qaXl5fHtzIxRDFDwkUxQ0LlTtk2TqGIdrVduXIlvvnNb+LDDz8UbO/r6wPDMNBqtVCr1dOeh2EYiMViaDQalJSU4LrrrsN5550XyaqSBNbX18dPPx7LC7W5sxNOnR724REAQNFXtoR0nEs/BM7nSVWWWImb127BNyUydOl6MWQegVgkbDnlOA7Dg0a+zDAMltUWT7neJwkuXjFDkhfFzOx4k8+5hGKGhItihoRqpo1zySbiYzzvvfde3HvvvYJtixcvBgB897vfDXtWW0JigbVa/SYW0ixYENKxztF+QVmszYZI6pkWuzyzBOWZ/mtymgx22KxOwbbcAk04VSaEkKii9QcJISQ20rPSAd1EmUvR6T4SflZbMveUlpbyXVNixXSqQ7iBYZBWtXDa49ysC8b6TyHWZEEk96y9Kcuevrvs0IBRUFaqZNCkyYPsTaYTj5ghyY1iZmo9PT3o6urCihUroNHQQzGAYoaEj2KGhEouFk5AmaoRE5PEs6mpKRZvQ1JEZmZoM8lGkrFZuDyAJE0DWXb2tMfZOupgbtgLABBrMtGWlQ1pfj7KxjUoSsuHbNJMtoDnIczIoDDxzM3X0OQcsxCPmCHJjWImuO7ubrS3twMAjh8/TsnnGRQzJFwUMyRU8klDslL1jjBVE2pCwmI+dUpQlmdnQySZ/rmMqWk//7XLNI4e2xgGHEYc7D2Ot5t34LSu1++YhmP9aGkYgs020dU2tyBtFrUnhJDI8E06AU932+PHj8PpdE5xFCGEkNkQK4T3gQyTmilaRFs8+/omlpQoKioKuH02fM9JSCTZBoTraSpCjDVb10n+60GpGC5tFnCm5dLNcchUpvsdc3BPB7o7x9HROgJthgILFudRN1tCSNydPn0apyY9hAM83QVprCchhEQPI1cBMPhsoMRzWhs2bADDMGAYBg0NDX7bZ2PyOUnqYtmJGWLFIa6jORscx8HaJ5wgKOe8c6Y9jjXr4dIN8eU38tIwJLKguL8BxdoCVGSWIk0u7J5mszrRe1rHlw06G2QyMXWznaVYxwxJfhQzQsGSzoqKCpSVlcWhRomHYoaEi2KGEKGIj/GM9BqeZO45efIkP5tiTU1N1N/PMTIK1mwWbNMsnH5GW2tHHXBm3SUHA/TJpXC6XWgb60DbWAcyFP7dZ49/0Q23e+J3gWGA2rWls/sAJOYxQ5IfxcyEYEnnggULUFpK1ycvihkSLooZEiqXzSIou93uONUkuiKaeK5duzas7YQkAnNXl6AsVqkgz82d9jjLqaP81y0qGZyiiVZLESPClxde4HdM3RfCMZ85+WnIK6TxnYSQ+Ojq6kJHR4ffdko6CSEkduyGDhTpfZJPxhG/ykRRRBPPF154IazthASSlpYGl8sFSQiT+0SCpVOYeKrmlU3b9ZXj3LCeOsaXO5XC2WuX5FYiW50l2GYy2NDfI1wrtLI6j7rZRkCsY4YkP4qZ4EnnwoULUVLiv/7wXEcxQ8JFMUNCxcEBOUuJJyExN3/+/Ji+n7mzU1BWl8+b9hjHQCdY80QSuWnEhCsv/yEOG07jYM8xnFVS63fMyWPCSbZEYga1Z1GLQiTEOmZI8pvrMUNJZ/jmesyQ8FHMkFBJJBaUjdfzZZs8NRslKPEkc57Zr8Vz+sTT0n5EUJZlFaG0rAYVqMG1y66Em/Pvm18/KfGcX5mD7Fz1DGpMCCEz19nZic5JD9wASjoJISRe3E4zWMnEZFRuCSWeEROs28HBgwfx1ltvYWBgAPn5+bjssstwwQX+4+QIiRS30wlrj3DcpbJ4+qVULK1fCI9ZUCsoiyZNgz0+akZvl06w7azzyqmbLSEkpoaGhgImnZWVlSguLo59hQghhKBoXila57XxZZE8NdsGY/qp9u/fj6effhqtra3Yu3ev4LUnnngCTz75pGDbG2+8gQsuuAB/+tOfIJfTOock8oytbcCkGZenm1jIZTXC3j9xceiTSaAtWTTlMfVHha2dSpUUFVXTT2BECCGRlJOTg5ycHIyMjPDbKOkkhJD4UotlyHD6Lr9DieesvPLKK3jggQfAcRwYhoFOp0NGRgYA4OjRo3jiiScCHvfpp5/i3nvvxaOPPhqrqpI46+zs5FvFy8vLo/pehpPCtWElGg0UBflTHmNp2McnqyYRg5MaBXqs/cg7tRcl2kIsyJoHsUi4XtfkxHPJiiKIxam5OHA8xDJmSGqYqzEjEomwZMkSnDx5EqOjo6iqqkJR0fS9PMjcjRkycxQzJFRKyKF2Kfmy2EmJ54wNDw/jN7/5DV9WKBQYGxvjE8/nnnsOAMAwDKqqqvDd734XY2NjePLJJzE2NoZt27bhpptuwurVq2NRXRJnBoOBX/cq2syT1q6T5+VO2/3V3HqI/3pIJoFYqYFIrsSIZRxmhxWV2cLJBEaGTBgeMAq2LVtJN3qRFMuYIalhLseMSCTC0qVLMT4+juzs7HhXJ2nM5ZghM0MxQ0LVMy7FDuV1fFnNGXBWHOsTLTFpcnnllVdgs9kAAJs3b8b+/ftRUVEBADCbzdi1axcAQCwW49lnn8Xll1+OG2+8ES+++CLfxfbdd9+NRVXJHOMymQVl9YKKKffnOA723hbP1wB2ZaqgT8sAd6YFtFhb4Je41n3RIyhr0uQomy9caoUQQmJJJBJR0kkIIQmCkyiFZSY1e8XFpMVz//79AICioiL8v//3/yAWT3RD3LdvHxwOBxiGwfr165GXl8e/Nn/+fFx44YXYvn07Dh48GIuqkgSwZMkSvkt2tFm6hUlhZu2KKfdnzTpIc0vhGhtAh8uEFrUccI3hWPNHKErLxzll/q3yjSf6BeWi0gwwIppUKJJiGTMkNaR6zHAch97eXuTn51NrS4SkesyQyKOYIaFyiOQA7HyZFaXmdTsm6XRHRwcYhsFFF10kSDoBYPfu3fzX559/vt+xlZWVADzddcncIJFIIJVKo77gstNghHN8XLBNVVY25TGsYRTK8hqkrdqI9qpl/HY764DOZkChJk+wv8lgw+iQsFW1dH7mLGtOJotVzJDUkcoxw3EcTp06hba2Nhw/fhxOpzPeVUoJqRwzJDooZkioXDa7oBxgVb6UEJPEU6/XA4CgNdNrz549/Ndnn3223+vep0QWiyVKtSNzleX0aUGZkUigKCqc8hjn2ETr5XGHTvDa+eXr/CYVUqplWHtuOeYtzIYmTQ6xRISqpVNPXkQIITPlTTq7u7sBACaTiZJPQghJcIMjg4Kym+WC7JncYvIIRiaTweVywWq1CrafOnUKfX19YBgGWVlZqKqq8ju2r88zG6hGo4lFVckcYukSJp6q0hKIpngqyblZOPVDAAAX50aNIhtSqNFt9rTGryup9TvGbLRDqZZiXkUW5lVkwelkkZmlityHIISQMziOQ3t7O3p6hEMITCYT9Ho9cnJy4lQzQgghU3EiRZs4J4lJ4llaWorm5mY0NAiXrvBOKgQA5513nt9xdrsdn332GRiGoWmo5xCdTsePifDOfBwN5smJ53TdbE3j4FgXAEDCiLBVuwAZ67dgzGXBiYEmLMia53eMQW8TlDMyVJBIxX77kdmJVcyQ1JFqMRMs6QSAxYsXU9IZAakWMyT6KGZIqNyp2rd2kpgknuvWrUNTUxP27NmDzz77DF/60pcwMjKC559/nt/n0ksvFRzjdrvx29/+FsPDw2AYBuvWrYtFVUkCOH36ND/9eFQTz44OQVk1b+rE06kTdoOQqNMhkimQI1PgoopzAh5j0Alb+bUZihnUlEwnVjFDUkcqxcx0SWdBQUEcapV6UilmSGxQzJBQcZR4Rs61116LF154AW63G7fffjuqqqrQ29sLo9EIhmFQUFCACy+8kN//mWeewfvvv4/m5mYAgFQqxTXXXBOLqpI5guM4WLq6BNtEyqmTQsdwt6AsSfcfszyZXids8dRmKIPsSQgh4eM4Dm1tbejt7fV7rbq6Gvn5NKacEEISnTY2KVncxeRTLly4EHfccQf+/Oc/g2VZNDU1AfD8wRSLxfjlL38pmPHr5ZdfRn9/P7824k9+8hOUlpbGoqokARQWFsLtdkMkit7cV46REbjtDsE2ZUHwiYVYixGj2/8KkVILQ2YOOjRKzM8vQqlVjwyFNuBU6TarE3abcEKPdEo8oyIWMUNSSyrEDCWdsZUKMUNii2KGhEriELZ4puoCPDFLr7/3ve+huLgYTz31FLrOtDRVV1fjv//7v3HuuecK9q2oqEBfXx9ycnLw05/+FFdccUWsqkkSQG5ubvTfhGGQsXIFnDo9HHo9WIsVqvLgXW3NzQcAjoPbokcfZ8WAVQarZRhN7btRoMnFl8qFXcG7To3ixOFeiMQMVGoZAEAqFUOpTs11meItJjFDUkqyxwzHcWhtbeUn4PNFSWd0JHvMkNijmCGhkjJz4+FETNt1t2zZgi1btkCv10MsFgedqfaGG27A9ddfjwsuuIAWvibRwQFpixb5FiFLTw+6u/XUUX6/EakYYqUaIqknocxSZvjtf+xgN44f8oy3UqqkKCnPxLLaIlpEmhAya8GSToZhUF1dHXDpMkIIIYlLJJsbPeLi0qE4fYobfADYsGFDjGpC5iqnwSAoy7RaMOLgs83a+08BALrlEmzPViNPIkOJYQB56hwUpAmfaLpZN5pPTkxEZLU44WbdSEuniYUIIbNDSSchhKQeRiqPdxViIu4jWZ1OJ/R6PRiGQVpaGmQyWbyrROYAp14vKEvTtUH3Zc16uM6s39mhlMIuFqGbs6O7+zA0MhW+XrNZsH9XxxhsFuHYzuw8DYpKMyJTeULInOVyuaDT6QTbKOkkhJDkJpk8wWWK9pCLS+K5f/9+vPrqq/jiiy8wNDQkeC03Nxe1tbXYtGkTLrvssnhUj8TZiRMn+OnHly9fHpX3mNziKdEGTzytXfX8120q4ROpNUUrIJrUL7/hmLAlQpMmx6KlBZDJ4/6cJ2XFImZIaknWmJFKpVixYgWOHz8Oi8UChmGwZMkSGksWA8kaMyR+KGZIyPwSTS4u1Yi2mN4Jj42N4Yc//CE+//xzfpt35lqv4eFh7NixAzt27MC6devw+9//np7izjEcx/H/osWpFyae0qnGd3Z6Ek8HA3QohGOOVxUtE5Q5jkNTvXC9z5x8DYrLMmZRWzKdWMQMSS3JHDNyuRwrVqxAXV0dysvLKemMkWSOGRIfFDMkVFbxCPKNE73xOJFzir2TV8wSz9HRUVx33XXo6+sT/AJKJBJotVqwLAuTyQSWZfnXPv/8c1x33XV4/fXXkZWVFauqkjhTKpWQSCRRm1jKaTLBZTKB8ZnefKquttbOOs8+HPCDnjF0rzgHzTIGLSOnsDx/sWDf/h49zEa7YNui5dTaGW3RjhmSepI9ZuRyOdasWUMTlsVQsscMiT2KGRIqhnFA5ZxoFGElrjjWJnpidjd8zz338GuNaTQafOMb38Dll1+OyspK/g+ny+VCa2srtm3bhhdffBEmkwkDAwP4yU9+gmeffTZWVSVxVllZGdXzn/7Xyxjc9iEk6VpI09OhLC6GNC0t4L4u/TBc4wMAPGsq5TtYrFq+GfLCCjhZJ6Ri4R+TpvoBQTkjS4UVq0ui8jnIhGjHDEk9yRAz3oe0wZJLSjpjKxlihiQWihkSKpHUhhJ9E182qlNzeZWYJJ67d+/GgQMHwDAMSktL8fe//x0lJf434xKJBNXV1aiursZ1112H//iP/0BXVxf27NmDvXv3+q33SchMmJpbwbEsnGPjcI6NQ6JWB53R1nd8JwCIFBrICsoBwC/pBIDmE8LEs7qmAAolPekkhISH4zg0NzeD4zgsXryYkkxCCElhbqseMtbGlyXu4CstJLOYpNPvvvsuAEAsFuPJJ58MmHROVlxcjCeeeAISiSc3fvvtt6NaRzJ32EeGBWVFQfCF1k0ndwMAnAxgETFQzFsKJsgiv2MjZgwPmgTbFi0rmGVtCSFzDcdxaGpqwsDAAAYHB9HU1ERjxAghJIXlQbiqh8Kdmtf8mCSeR44cAcMwOP/888PqdlBZWYnzzz8fHMfhyJEjUawhmStcNhucOuFSKtrq6oD7chwHe18bAGBYKsHeDBX2yN041n8SQ6YRv/2bJ3WzVWtkKJmXGaGaE0LmAm/SOTg4MUnZ4OAgWlpa4lgrQggh0aSws4Ky1JmaiWdMutqOjHhu0pcuXRr2sUuXLsUnn3wi+CNMUltPTw9cLhckEklIrePh4Fg3iq7eDKdOD6deD6dOj/SamoD7OgZOwW0zAwDGpZ5nNI7MXLSMdsDstCBPkyPYv/mkMEarluRDJKLucbEQzZghqSkRYyZQ0gl4xnLm5OQEOYrESiLGDElsFDMkVEpGinFmonttao7wjNM6njMhDjIGj6SesbExft2rSF+oXTodxAoFxAUKKAryIZJKIc/NDrivueUQAM9KSh0KKWQiCcRaz7IFeWrhTaDF5EB3x5hg26Ll1M02VqIZMyQ1JVrMcByHxsZGv7WtRSIRli5diuzswNcpEjuJFjMk8VHMkFD1WjT4dMHNfFnpNOC8ONYnWmKSUHvXGDt58mTYx3qPoXXKSCQ4dOOCsjQjPeikHY6hLgBAr0yMPZlqfKqVY2/3YTSPtCNLmSHYt+nkAHyHYInFDHLzNRGtOyEkNU2VdC5btoySTkIISXFusWLSltTsMReTFs/a2lqcPn0au3fvxqlTp1BRURHSce3t7di9ezcYhsHKlSujXEuSKKqqqsBxXFRmcXSM6QRlaUZG0H2V5cshySzAwHgb4B4BywADpiGYHRZkKtIF+5482icoZ2arkaadfBEh0RLNmCGpKVFiZrqkk9awThyJEjMkeVDMkFDZWWHPTpcoNVdEiEmL59VXXw0AYFkWd9xxR0jjNQcHB/H9738fLpdnAdUrrrgimlUkCUShUECpVEKhiHzi5pzU4inLCjz5j9thA2s1QiRToF040RhWFS2DSCT81Vm+qhgVi3KQnqkEAJSUZ0Aipe7hsRLNmCGpKRFixu12o6GhgZLOJJEIMUOSC8UMIUIxafE855xzcNZZZ+HgwYPo6OjA5s2bcfPNN2Pjxo1YuHAh/ySI4zi0tbVh+/bt+Mc//gGj0QiGYbBq1SpccMEFsagqSWFuhwMuk1mwTZYROPF0GSZmrTW6nYLXluZV+e3vdLIomZeJknmZcDpYlC+krnGEkODcbjcaGxsxPCxc3kkkEmH58uXIzKQZsQkhZK7QOa2CcmrOaRvDyYUefvhhfP3rX0dfXx8MBgOeeOIJfp3OtLQ0AIDRaORbOL1rlhUUFODRRx+NVTVJCjO2tcPS0wNpejokajVEEgmk6dqA+7r0EzeD/529EpY0Lbqyc3BysAXL8hcJ9rXbXDCb7HxZKhMjryDweQkhhJJOQgghvlwcO/1OKSBmiWd+fj7+/e9/4+6778ahQ4f47U6nE+Pjnu6PkxfIXrt2Lf7whz8gLy8vVtUkCcBkMvFjIjSayE3Qozt8BKN79gEAGLEYqvJylH7t2oD7+iaeAJCdXYaSsqU4t2yt/3nHLYKyRCKGNp261cRStGKGpK54xkxLSwslnUmIrjMkXBQzJFQs5453FWIipsup5OTk4IUXXsDevXvx7rvv4vPPP0d/f78g4SwqKsLq1avxla98Beecc04sq0cSxKlTp/jpx2uCrLE5E+au0/zXHMtCJA0c/m6XA6xJJ9gmSQ8+q/LIgElQTs9UgqH1O2MqWjFDUlc8Y6aoqAjDw8NgWc8TbpFIhJqaGmRMMdkZiT+6zpBwUcyQUE1ufEtVcVnH89xzz8W5554LwDPhkF6vB8dx0Gq1kEpTcxYnEn+2/n5BWVlcFHA/c+M+WE4dgyQ9F91KObIVWqRrgowFdbEYHRGOG83Jo6eahJDgtFotampqUFdXB47jKOkkhJA5TqNNA3QTZS4m07/GXlwST19isZhm7iMCubm5cLvdfjPHzpZ9ZERQVs8vD7ifuekA7L3N0PW34HCGCpL0XGQ15yBXnYWzimshk3imueU4Dh+/1wSH3QWNVg6GYSASMcih9TtjLloxQ1JXvGMmPT0dNTU14DiOks4kEe+YIcmHYoaESiEXLqGQqivwRD3xHBkZwcDAACQSCUpKSqiPO5lWYWFhxM9pHxmB22YXbNNUVQbed6AdADAu8SyHIlao4XS7MGrRQSqeaJEfGTLhwGcdAACZXIzsXA3WnDMPUlpGJeaiETMktSVCzKSnp0+/E0kYiRAzJLlQzJBQKSet25mqjyqiknhyHId//etfePnll9HW1sZvF4lEqK2txXe+8x1aHoXElLG1XVBmxGJo5lf47ecy68AaRgEAn6crYBGJUKzNAQDkqrMFi0A31k103XXYWYwOm1FYQjeShBAPt9uNsbEx5OTkxLsqhBBCEphIphRuYFIz9Yz4pzKbzbjxxhvx61//Gm1tbeA4jv/HsiyOHDmC7373u7j//vvnzEBaEn/OsTFBWV6QD5HMfzyxvbcVAMACOJqmRH2aAttHG7Gj7TO4WJdg34bjwjGjOXka6mZLCAHgSTrr6+tRX1+P3t7eeFeHEEJIAhMphcvwMZR4hua///u/ceTIEQCBZ2jyJqGvv/46/vjHP0b67QkJyNLdLSinLVwYcD9bdyMAoFcugdNnZlq93YjK7Pl82WSwYajfKDh2fmUOJBLqZkvIXOdNOsfOPPBqbW2l5JMQQsicF9GutkePHsUnn3wChmHAcRw2b96Mm266CRUVFRCLxWhqasI//vEPfPDBB+A4Ds899xxuuukm5OfnR7IaJMk1Njby049XV1dH5JyW08LEU1VWGnA/b+LZrhIO8i7RFqJQO7GebOOJAcHrYrEIS2oKIlFVMgPRiBmS2qIVMyzLor6+nl+f2qujowO5ubmQyWRBjiSJjq4zJFwUMyRU3KRedVyKrusZ0cTzww8/5L++9957ccsttwheX7lyJVauXImioiL87W9/A8uyeOutt/Cd73wnktUgSc7pdMLpdEb0nNaeHkFZWVrit4/bYYO93zMWNNvBospsR1eaGna3C0vzqgT7tjYOCcrZuWrkFQq7SZDYiUbMkNQWjZgJlnSKxWLU1NRQ0pnk6DpDwkUxQ0JlGm5Fjmki+RTBPsXeySviLZ4AUFlZ6Zd0+rrzzjvx6quvwmAw4NixY5GsAkkB3rVcI7Wmq9NohFNvEGxTlfgnnvbeFsDtWdC9xmxHjcWJkhv+jA7TINQyFb+fw+5CR6twaZb1F1ZALEnN/vjJINIxQ1JfpGMmWNIpkUhQU1MDrZYeTCU7us6QcFHMkFCJxHakOfQTGxhH/CoTRRFNPHt6esAwDM4555wp95PJZDj77LOxbds2tLa2RrIKJAVEujuKtbdPUGbEYsjz8/z2s/UJY1FeUAGZQoNFCuGEQe3Nw2BdE10gRCIGi5dRN9t4oi5MJFyR7l574sQJ6HQ6wXZKOlMLXWdIuChmSKgYkQWFhomVQOwp2kEmoomn0eiZbCUzM3PafcvLywEABoNh6h0JmSVjU4ugrCgogEjiH/re8Z1e8uLA63w21wvHd85bkA2Fkp5mEjIXTZV0rlixAmlpafGpGIkYt9sNk8kEg8EAh8MBlmXjXSVCSJSJxWLIZDJotVpoNBqIRNHt1cY4TFC6TD4VYILvnMQimng6HJ5m4VC6FGg0nlYks9kcySoQ4sfU3iYoixTygPvZez0JartSChfDoFylRprLAblk4rGTm3X7je9ctIwmxyJkLqKkM/UZjUb09vbS8m+EzDEulwt2ux1GoxEMw6C4uDiq1/Ss0gK0L5i4X2XkEU3REkZEPxXHcWAYBgwzfZbufXJATw5JtNn6hS2UigCzKDv1I3DbzOAA9MkksIlFGIcZJ5o+xLqSWszL8IwJPd0xBqtFOFHAoqXUzZaQuYaSztQXKOlkGAZiMS2bRUiqY1mW/93nOA69vb1RTT4zZCpkuCeGcYlTc1LbyCaehERCf38/3G43RCIRCgsLZ30++7BwIiBlqf9SKrbOOs//IgY2sQhgRBBrcwAAmYp0fr8v9nUJjiso1iI9UznrOpLZiXTMkNQ3m5hhWRZ1dXXQ6/WC7ZR0pg632y1IOjUaDdLS0qBUKsEwDM1QTELi7QkIgGImyXAcB4vFgrGxMZhMJj75rKqqikq32wyJAkX2icY4EZOaDXOUeJKEMzw8zK97Ndskwu1ywTlpHLF6/jy//axnxnfuS1fipFoOLSMBazMgX5ODNPnE5EKnWoYFxxWXTT+emURfJGOGzA2ziZnx8fGASWdtbS0/jIQkN++NJuBJOktKSmC1WuFyuSjxJCFzuVx8b0CKmeTCMAzUajVUKhV6enr4a4LJZIrKhHGdwxLsUN7El9UwYXnE3yX+aP0HktJsA4OAW9hfIX2J/yxzEnUmZPnl6FUpMSCXoEUG7Orcj5NDLXzX8eFBE2xW4QK/ZRVZ0as8ISQh5eTkoKpqYm1fqVRKSWeK8Z34MCsrK6QhRISQ1MMwDLKyJu71ojUpKidVgWWkPv9Ss20wNT8VSWoVFRX8E8LZsvb2CsrSjAxI09P99hOnZUJVdRaGhj4HWBu/fX3JyolzWRyYtyALBp0NRr1nn+rlNL4zEUQyZsjcMNuYKSoqAgB0dHRgxYoVlHSmGG8XSYZhoFJ51nGWywNPTEdIMBQzqUGlUoFhGHAcJ+g+HUk2yABMnNvFpGYLeVQST71ej76+vmn38erv7w9pxjjvH3qS2iJ5A2ftESaeypJiv304lxNuixEmtxMjPkknAFTlLOC/Zl1uzFuQ7TmG4yCTSSCR0iQTiYBu+km4IhEzRUVFyMvLgyTA8kwkuXknPhSLxfzDCZpUiISLYiY1eCcVc7lc0ZsUlUvR2YQmicpfy6effhpPP/10SPtyHIcNGzZMux/DMGhoaJht1cgcY530AERZ7P/wwmUaBwcOYjD4urYSp10mdEtFGDKPoCR9YuyX0TCRlDIMg4Ji/5ZTQkhqma5VlJJOQgghszUw2A8gly+zrtRcwilqfzGna8H0XXZlqn29TduEzIRtYFBQVhT4d41ljWMAAKVIggvUxZBoMqFdtREu1gWJyPO0kuM4vnutV1q6Ikq1JoQkApfLhZMnT6K8vBzpAbroE0IIIZHgdLum3ykFRDzxDDVJjPR+s8VxHN5991289tpraGxshMViQW5uLtauXYsbb7wRNTU1UXnfX/3qV/jXv/4FAGhubo7KeyQbm83GtzIoFLNL7vwTT/81PF3GUUFZkubpTisRT/x62KxOOJ3C7hVaSjwTRiRjhswN08WMy+XC8ePHYTQaYTAYUFNTQ8nnHOf2maguGsspkNRDMUNC5aKutuFramqK5Olixmaz4c4778SuXbsE23t7e9Hb24t33nkHd911F77zne9E9H0///xzvPTSSxE9ZypoaWnhlzmYTcLPOhxwjAjX8JRnZwvKHMfBqRfuI07zn6l2cmunVCqGXEFd7BJFpGKGzB1TxYxv0glMrNtJyefc5vuwwjvhECFToZghoZorvTvpzhnA/fffzyedCxYswHXXXYecnBycPHkSL7/8MiwWCx555BHk5+djy5YtEXlPs9mM+++/f84EWjxYu7v9tkmzhUmlY6AD47teBKfOwOcZKmQqtJg3bxFyzaPIUWVCxHieUI4MmQRjvbTpCppBlZAU5HQ6UVdXxyedXmKxGFKpNE61IoQQksrUc2SFy7nxKaewd+9evPvuuwCA9evX44033sAtt9yCK6+8Ej/5yU/w6quvIiMjAwDw29/+FiaTKSLv+4c//AE9PT0ROVeqycrKQnZ2tmDdpJmwdAkTT5Fc5tfiae2sA9wsDJZxmMxj6NH1oN7Qjc86Pxc8FHj3lRM48GkHTh7rQ3fHGESSOf+rk1AiFTNk7ggUM8GSTplMhtraWmqxmOMkEgn/j8TO448/jkWLFmHRokX429/+Nu3+L774Ir//okWL8P777097zK9//Wt+/w8//BAHDhzgy48//viM6n3gwAGsXLkSq1atwjPPPBNwn7GxMbzwwgszOj9JLTKnsCEqVZs25vzd89///ncAnj8ov/71r/3WXFqwYAF+/vOfAwB0Oh1eeeWVWb+nbxfbtLS0WZ8v1ZSUlKC8vBwlJSWzOo9qfjmKtlyFvIs3IGvdWchcs8avldLe2wIAMIk9vwoihRoMw0AjU0N8ZmIh/ZgFNqsTDgeL0SEzOlpHIZPRFOmJJFIxQ+aOyTHjdDoF3Wu9KOkkXjKZDHK5HDJZaq6vl6jWrVvHf338+PFp99+3b5+gvH///mmPOXz4MADPOEzf94uUQMuqvP3227j88svx4YcfRvz9SPKRzZGUbG58yiB0Oh1/gTr//PNRWloacL8rrrgC2WdayrZt2zar9/TtYrtlyxZUV1fP6nwkONZigViphDw3B+r55chau9pvH8eoZ53Pd3I0OKRVoFkhQaeuByKfZ02NJwYEx0gkIpSVU8saIanCm3RO7tFCSSdJFvbBznhXIWpqa2v5RoFjx45NuS/Lsjhw4ACAicl89u7dO+UxZrOZn9yxuro6ZuO4H3vsMeh0upi8F0l8jHhuPNCa04nnF198wc84tn79+qD7iUQirF27FoDnaZter5/xe3q72Obm5uKnP/3pjM9DpucymQVliVotKHNuFi79MABgRCaGQSJGF2fDF73HMW4z8Pt1d44JjkvPUkKupLFehKSCYEmnXC6npJMkBZdpHP0v/gIu03i8qxIV3gdAADA4OIiBgYGg+544cYLvtbBx40YAnokiu7q6gh5z7NgxsKxn1vqzzz47QrX2tNQ2NzejubkZP/jBDyJ2XpKaRIq58bdmTieera2t/NdVVVVT7rtw4UIAnlmnWlpaZvR+vl1sf/GLX/BjR0l0sOZJiadGIyg7R3rBOe0wiEUwSYTdYM6ft5b/eqDXIHhNm6GMcE0JIfFASSdJBfr9b8JtNUH/+VvxrkrUnHXWWfzXU7V6els35XI5vvWtb/HbJ3e/9XXkyBH+66kaIQiJJrF8Uotnig7ynNOJZ29vL/91cXHxlPsWFBQEPC5Uvl1sL7/8clx66aVhn2OuaG1tRUNDg+DBwEzYBoVreIontXjaB9oBAD1y4UQRSqkCBWl5AACXi4VeZxW8vqSmcFb1IpEXqZghc0djYyO2bdvm1xLiTTqVSnrARIRsNhusVitsNtv0O8eIyzQOwxHPGEHD4e0p2+rpmxBOlXh6x3OuXLkSy5cv54dJTZV4esd3SqVSrFmzJgK1nZCIMUMSExNgHHAqmtNTs42NTXShzMzMnHJf39bJmfTJ93axzczMxAMPPBD28XOJ1WqF0+mEy+Wa8Tm4M91mfE3uamvv9ySeFVYnvtU7jsGS+RgqLodMJOWXUenvMcDN+sw0xgBLVlDimWgiETNk7nC5XGhubobFYhFM+kFJJ5mK2+0WLKuVCPT73wTncgAAOJcD+s/fQvYlt8S3UlFQU1MDhUIBm80WNPG0WCz8a2effTYYhsH69evx3nvv4fPPPwfLsn6T/LAsy09YNNXvPsdxeOutt/D666+jubkZNpsNBQUFuOiii3DzzTejqKjI75gDBw7g5ptvBgD853/+J+655x4AwIYNGwQNGAcPHsSiRYsAAHfccUfAbrnbt2/H22+/jbq6OoyPj0Oj0aCyshKXXXYZrrvuOprwKgXYGR0yLRM99RjGEcfaRM+cTjx9n0BNns12Mt9f6nCfXPl2sf35z39OSz5Mg2EY/t9M2QaHYO3vh1ipgkSlBCOVQjyp25y9/xQAQMFxqLQ6cVbRamSee41gn54u4dPj3Pw0KFV0gU80kYgZMneIxWIolUpYrRO9GSjpJMnGt7XTy3B4O9LXb4FEM/XD9GQjk8mwcuVK7N+/Hw0NDXA6nX7r6h46dAhOpxMAcM455wDwJKDvvfceDAYD6uvrsWLFCsExjY2NsFgsAIJ3s7VYLPiP//gPv1bTzs5OPPfcc3jjjTfwl7/8BatWrYrIZ/Wl0+nwgx/8AAcPHhRsHx8fx8GDB3Hw4EH84x//wF/+8hcsWLAg4u9PYoeR2pBhG+LLrCQ1H6TP6cTTt3VkuqdFvq+H06ri28X24osvxqZNm8KvaIy1tbVhwYIFgqVe7HY7P+tbRkYGysrK/I7xXrxramoEr42MjKCvrw8AUFpaKmhdZlkWJ0+eBOBZWmb+/PlYvnw5/3pnZycMBs8YyyVLlgjWT9PpdDh9+jQAoLCwELm5ufxr+vqTGPl0N1+WaLUo+/rX+HL36S44+tsFXejlhZ6LtslkwqlTnqS0rUm4tELJvAw0Njbyf/Qmz0rc39+P4WHPhEUVFRXQ+Iwrtdls/PjgrKwsv6U/WltbYbVawTCM4HsAAMPDw+jv7wcAlJWVCVrgXS4XGhoaAABarRbl5eWCYzs6OvjJFpYuXSp44js+Po7ubs96p0VFRcjJyREcW1dXBwBQqVT8OGev06dP863/ixYtEjy8MRqN6OjoAADk5+cjPz9fcGxDQwNcLhdkMhkWL14seK2vrw8jIyMAPMsZqX1aqq1WK9+dNjs7m+8i7/1+tbS0oK6uDiKRCMuWLROcd2hoiJ+Uory8HFqtln/N6XSisbERAJCeno558+YJjm1vb4f5zJjhZcuW8bMlAp6eE941eUtKSgQPltxuN+rr6wEAarXa78agq6uLn6ysurpacCNlMBjQ2dkJwNPVPy8vT3BsfX093G43FAqF3xj13t5ejI6OAgAqKysFyZTZbEZ7u6e1Pycnx+9JfVNTExwOByQSCZYsWSJ4bXBwEINnurDPnz8/btcIXzO5RjAMg40bN+LDDz+ETqeD0WjEunXrBN+nnp4evldMVVUVFAoF/5rvNSI3NxeFhcJeEHSN8Eika4RXS0sLbDbbtNeIyUmNdyJChmECLo1hs9n4fZRKpeAhmMvlgsPhab2QyWSCGOU4jn8AIhKJBHEGeH6vvBPfKBQKwbVnfN8bfGsnfz6fVk+r1QqO4wKe1+Fw8Pcyk8/LsizsdjsAz1Jzk++PvOdlGMbvQY3T6eSTP7lcLvheud1u/sG9WCz2e+Dv+z2cPL7a6XTyiafdbkdjYyN/HfF+Dz/99FMAnhj3/mx9k8lPP/0UNTU1gp/NoUOH+K+9k0hO9vzzz4NlWeTm5uLaa69FRUUF+vv78X//93/o6emBTqfDj370I7z//vv8Z/L9HgLCeHrwwQeh1+vx0EMPYXx8HJWVlbjrrrsAeK6r3p+NzWbDLbfcwl9XKysrcdVVVyE/Px96vR6fffYZ9uzZg66uLtx444148803kZGRMeX30PuzmSoOA/1sfONwqviWSqV+vzve63648e37PQx03qni0De+p4rDQPHtjcNA52VZFlarFXV1dRG/j9CZBpFn6uS3mVUMX9943Ed4/05F2pxOPH1/AZxO55TJp/eXCpg+SfXl7WKbnp6OX/7ylzOqZ6yxLMtfuLw4juMvWGyAbqwul4t/fTK3282/Nvm8APjXAiX0vuflOOHiur51mnxe+9CQoCxWKAQXSufwaTBuz/u54RnsLC+o8DvvUJ9w0pGSeZlwOnUhfdap6hvos3r/KARqtZvNeaP1s2FZNmidfM8bKF683WJ9L7yhnHe6OPR+D6c771TxHcvv4VTxHcr30O12B7wJns330FunycdNPm+yXyMYhkFOTg44jkNBQYHfDcZMz+utL10jkvsaMfkm1/e9Av1uTLd9qmODHTf5WF8u0zhMRwOv/+ht9eRE8qDHz6ZOU70ejc/q5Tv+8tixY4IHWBzH8cuorFu3jv/5lpaWori4GL29vfj8889xxx13CH5/jh49CsCTpE1+mOPFsixWrVqFZ555RvCw7ZprrsHNN9+M1tZW9PT0YO/evdiwYcO0n/W8886DxWLBww8/DMAz1OuSSy7hX3c4HOA4Dk888QSfdN5www342c9+BoZh+ATx+uuvx/bt2/GTn/wE4+Pj+NnPfobHH3982u9xsO3T/dxmcl7f16LxezNV1/doflbv399A24GZXWdFTiM0Dh2/jfVZLz4e9xGBrveRMKcnF/J9GuT7ZCoQ38Rzum65Xr5dbO+9916/Jw2JSiwW+/1RZhiGf+IUKEAlEknAJ1KA5ymX97VAf+y9r/k+fQt03skXF986TT6vfWRU+B7aNEFZPOJ50u4G8GmmCp9naXFkvAPtY11wuV2QSqVwORiYTcKLREl5Jv+e033Wqeob6LNG67zR+tmIxeKgdfI9b6B4mel5p4vDqb6HvuedKr5j+T2cKr5D/R5O91nD/R5O9VlD/R4mwzUC8DxELCoqErSYReK8dI3wSOZrRCDTdekP9prvcVO9Hs57esZ2Br6J9bZ6hvKeM6nTVK9H47N6LVu2jG8w8I7L9BodHUVbWxsA/yVR1q1bB8DTOu/bvR6YSDxXrlwZ9OculUrx29/+VpB0AoBGo8FNN93El729Cnw/TzDTDQsxGo147bXXAHg+9wMPPMDHs+/3afPmzbj66qsBALt370ZbW1tUYzTc887m2HjH6FT1jcZ9RKZbeL2S+SSR8biPCHS9j4S4tHhyHIfDhw/j8OHD6Ovrg16vx+bNm/knRa+//jpWrFgR9f7qvk3kOp3O76Liy3dCoVDGaPp2sT3//POxdevWWdU1lhYuXCjo/gV4ku3J3eMmHxNMTk6OX/csL7FYPOV5J3cJ85WRkRF0SRqOZSGSy+H2dtOYtCC0wjwEMwCzWAQXw8Ci1qBD14MOXQ+2LN6Impoa1B/pBdA3cYxSipxcDXLzhV3nfBUWFvp1u+OPVyim/KyVlZVBX8vNzRV0JfYlkUimPO/krom+MjMzp5xYa6rzlpWV+XWn9EpLS5vy2MldOH0VFRUFnKgB8HTxmeq8Uy2LlJeXF/Thj1QqnfK8U12LsrKygl4TRCLRlOed3BXHl1arnfLYyd0EfRUXFwedqVutVk953sndGn0F6hLplajXCG9LZqAHhsFaOABPt+nJXV29NBrNlHWa3L3WF10jPBL9GtHa2ipoXRCJRFMurzO5C6EviUQS8IYR8NysTnXeQHEbaGznZNON9ZTJZEF7b4nF4inrNNU46KkS99l8D6VSKdLT07F69Wrs3btXMMEQwzB8Agn4J57nn38+Xn/9dTidTnzxxRe44IILAADd3d0YOtM76rzzzgta75UrVwb8HfFdXxQQdk0M1F3Vl1KpDHpjL5PJcPDgQb476NatW/mEItD38Ktf/Spef/11AJ7Ze4Nd16Z7qBJuHHpNFd+Af5ffUM87mzicKr5nE4disRhpaWkBr8WzvY/Il6rg28dO5uD4+sbjPiI3N1cwCWukxDzxfOONN/Dkk0/6LUniO+D7z3/+M4aGhvDlL38ZDzzwQNTWu/S9Yenv70dpaWnQfX0XLA72B89XfX09P+5r9+7d/IxlU/HuU1xcjJ07d067f6oaHh72dDsQiYLeSE0n90vnQVlUCI5lwVqtUE/6o+EY8oz7GpCJwQEQqzyJqUamglziuVi1Nwv7t2flqMCIaPKaRBSJmCGpx2634/jx4+A4DrW1tYKbHIoZEi7fbnLBbuBjwXcm22BSdYbbs846C3v37kVPTw9GR0f9lkspLCxERUWF4Jj169eDYRhwHIeDBw/yiad3GRXAP1n1NdVDM9/eEr494yYL1M1xKt6x04DnWvXRRx8F3dfss2a5dzw8ST5pYpkg8ZRi6u7uySpmiSfHcbjvvvvw1ltv8WUvwdg7pxNDQ0PgOA4ffPABTpw4gX/+859Bn7LPhu/Th9bWVsECxZN5JytgGGbKp85k9vr7+/mJOWZ6Q8haPU8KGbEYEo0GivyJli7OzcI5PggOwAuF6eDAIIOxInuwGeeXT0wu0NetE5wzLT34UzASX5GIGZJa7HY7jh07xnetO3bsmCD5pJgh4fKOffZ2qYuHUFo7vVJxhltvt1nA003WOzbSu35noAQyKysLVVVVaG5uxhdffMFvP3LkCABPz4ipenr49o6bzPf+dapxgeGOlxv0WYf8L3/5S8jHeSeVI8mnz6LGvnkTKysoXSYEfxySvGKWeD7yyCN48803AXh+Uc877zzU1tbiiSeeEOzncDhw/vnn49NPPwXDMOju7sbdd9+Nf/3rXxGvk7dPv9PpxIEDB3DjjTcG3I9lWX7ms8WLF095EfKqrKzEk08+Oe1+jz32GJ/UevefqpmfhIadtOSNyOd7yrnd0K7aiH7DIBxuz2yNwy4Lhkfa8JXqywAAbtaN8TGL4ByFJcLuuoSQxDQ56QQ8MyC2tLRM2b2WkEQXSmunVyq2ei5fvhwqlQoWiwXHjx/HJZdcgra2Nj5RC9ZyefbZZ6O5uRknT56E1WqFUqnkE89169ZNOVZwqm6k0WIymabfKQDf1k+SXFixAjbpxJA/hlo8Z+7UqVN47rnnwDAM8vPz8ec//5nvczw58VSr1Xj66adx6NAh3H333RgZGcHRo0fx0UcfCWb9igStVov169dj9+7d2LlzJ/r6+gJ2o33vvff4fs6XX355SOfOysoKqb7PP/88/3WkP1+yKisrm/Ui3e5JiadYOZF4ui16iJQa9MMC6Cb20co1qC1cCgAQiUW4eNNiDPYZYNDZYNDbUDaf1l9NVJGIGZIaAiWdgGc8kO/4PooZEq5wZrSPhnBaO71SrdVTIpFg1apV2LNnD98d1dvaCUydeP7v//4vnE4njh07hqVLlwadjCgaAk3sMhXfBoj333+f1uicA6wuYUrmEqXmmvExmdX25ZdfBsuyYBgGjz/++JQDXb3Wrl2Lxx9/nC+/8847UanbLbfcAsDTheaee+7xe8rU1taG3/zmNwA8SfG1114blXqQCRkZGcjMzJzx2F6O4+Ca9NRPrJgYhO4yeh4i9DiFP+sFWfP4m1C3m4Pd5oI2Q4mS8kwsWVGIzGz/mS9JYphtzJDUYLPZgiadk8d4UsyQcHknUYlHCxgQXmunl7fVM5V4u9t610z0dp+trKwM2m1+zZo1/M+tvr4ex44d47vGxiLxDHeGUO/YVSB66ykSEg8xSTz3798PhmFw9tlnh9XNaeXKlTj33HPBcRxOnDgRlbqdd955uOwyT/fKo0ePYsuWLfjrX/+K9957Dw8//DCuu+46fkbbH//4x36zVx44cACLFi3CokWL8I1vfCMqdSThYS0Wv21in6eHLqNnDMSWtPl4KHcdbi+/EJsXX4qzS1fz+1gtDrjdwm4OKk1qPn0iJBUESzpVKpVf0klIsplJa6eX4fB2uEzjEa5R/HgTT71ej+7ubn6SoKkSSI1Gw99/tra28suxFBYWTjkzdrz4NtAcPHhwyn3b2trwgx/8AL/73e+wa9euKNeMRIvBJfzblZodbWPU1dY7I2woLZ2TLV26FHv37o3qgOnf/e53MJvN2LNnD3p6evhFfb0YhsEdd9yB66+/Pmp1IJGjr6uHvv4kxCoVJColJBoNxKqJFk/2TIsnwzDIlShRXrYG8kJhNxazSfhUWa6QQioNr6sMISQ2vEmnbVIXe5VKhRUrVlDSSZLeTFo7vVJtrOfSpUuhVqthNpvx4Ycf8i2C55xzzpTHnX322Th69ChaW1v5BoX169dHu7pBTfSw8p946IILLoBEIoHL5cK///1v3HrrrUGX/HvmmWfw4YeehxLRmIiTxIYzzAmoklVMWjy9U0zPZNIc75iKaC1kCni6Yf31r3/Fww8/jHPPPRdZWVn8TIdf/vKX8eKLL+KOO+6I2vsTIZfLBafTKVhDLRy6ujoY6k9i/OAhDO/6DLpjx8GciR+30w7WKuxiK07zH7t5qkXYtUVNrZ0JbbYxQ5LXVEnnVC2dFDMkXBzHwe12Tzl7aTTMprXTK5VaPSUSCVav9vRQ8k48KZFIsHbt2qkO41tE29vb+V50sUo8A8WMdx1Kg8Hg91p+fj42b94MwNPV9q677go4cdCrr77KrxaRnp6Or371q5GsNokhFxfekjvJKiYtntnZ2ejv70dnZ2fYxzY3NwNA0AXaI4VhGGzevJn/RQ/VunXr+DrOxAsvvDDjY1NVQ0MDv8zBTFrJ7SPC1nFpxsRstLauk3DqBsGoM2ATi6ARyyFW+c9SLJq0XqdKTYlnIpttzJDkNF3SOdVkMBQzJFxWq5WfkGqqBegjzVT3CURKTUTOk3HO1gjUKP7OOussfPbZZ/x66cuXL4dGM/X3qLa2FkqlElarFXa7HUBsxncCCPiAKz8/H62trWhpacGjjz6K6upqFBUV8dej++67D4cOHUJ3dzf27NmDyy+/HNdccw0WLlyI8fFxfPrpp/j000/58z3wwANBW0VJEkjVvrWTxCTxrKmpQV9fHz755BNYLJaQL9jd3d3YtWsXGIahKfBJyJxnZiD2kvlMHmI49jEszZ/DIBbhYHY6FBn5KO0sRqYyAysKqsEwDE4c7sGp5mGkpSug0sjAMAwUyvgtFk4I8Rcs6VSr1VixYkXcZyAlJFIyztmaMgljpPiu5wlM380W8PSgW716Nfbs2QMAqKioiGvX1E2bNvF1+Z//+R8AnpUTHnvsMQCelRdefPFFfP/738eJEycwODgYcJk+uVyO+++/H1deeWXM6k4iT6FWCFZa4GLSJzX2YvKxvEuQ6PV6/OpXvwrpGJ1Oh//6r/+C0+kEAGzcuDFq9SOJRavVIj09PaT1UgNxnBm74SXzaS13Dp8GABgkInAuB1iRCMOWMfQbB/nxFvs/PYWWhiEc3n8a+z45hcE+AwqKZ1YXEhuzjRmSfNrb22eVdFLMkHCJxWL+H4mvpUuXClo4Q0k8AWHX2liO7wy0bNPWrVvxi1/8AgsXLoRcLodCofC7puXn5+OVV17BH//4R1xyySXIz8+HVCqFSqVCVVUVbrnlFrz77rv42te+FquPQqJEqRQ2yqXqSl8xafG87LLLsGzZMtTX1+Ptt9/G8PAwbrvtNixZssRv36GhIezYsQPPPPMMhoaGwDAMFixYEPL6mST5zWaGOY7j4NQLx0vIzkxLzrlZOPVDcANoUcrgZABVmue1TKWnO67LyWKo38gfy7rc0KTJIZHQjUYiS8RZCUl0LVq0CDabDUaj5/c13JZOihkSLpqkKnGIxWJ+Nttw3Hbbbbjtttum3S/UYVQlJSVB9wvlHDfccANuuOGGKfdhGAabNm3Cpk2bpq0PSV5qsbBnXYo2eMYm8QSAP/3pT/ja176GkZER7N+/X7DgLwD85S9/wVNPPSVYR5PjOGg0Gjz22GO0yDcJCWuxgDvTSu4lz8sDADjH+gHWhWGZGB/meJ6Uqo1dyOoxYkmuZ2H5/l6D3zIqRaUZ0a84ISQsEokENTU1OH78ODiOo+61hBBCkhYjnpySpWbeE7OEuri4GC+99BKWLVsGjuP4f96E0mg0wmg0Cl4rKyvDCy+8gIULF8aqmiTJOQIsu5O5qhYA4BzpBQD0yCeeKpldNhhsRpRoPeM8erqEs/6p1DJkZsduEglCSOikUilWrFgx7URChBBCSCITa7IFZUaUmj3tYtbiCQClpaX497//jW3btuG1117DkSNH/Bb7lkgkWLp0Ka6++mps3bqVuraQsPjNaJuuhfjMMj6OM+M7e+TCsF+UuwAZZ7ra9nQKE09thgLqNIpBQhKVVEoTfxFCCCHJIKaJJ+BZj/OKK67AFVdcAZZl0dfXB51OB5ZlodVqUVRUNKP1Pknq6OjogMvlgkQiwfz588M6dnKLp3d8JwA4RroBAE4RAzHHgT3T2r4gcx6/z+QWzwWLcqFNV4ZVBxJ7s4kZktgsFgu6u7tRWVkZ0fWcKWZIuOx2O99Tix6Kk1BQzJCZivV6wbES88TTl1gsRmlpKUpLS+NZDZJgjEYjv75euOyjk5ZS8U08z7R4XjNkxNVDRtgv+hoG8wtRlV0BANCPW2HUC2eUq1lTArkirr8mJASziRmSuCwWC44dOwaHwwGHw4GlS5dGLPmkmCHhYllWMESIkOlQzJBQmQbboLVNJJsSzhHH2kQP3VGTlDK5xVOe7VlKhWOdcI728dslAMpKa7C8dDG/bXJrp0IpRU7u7BftJoSEzzfpBIDR0VGcPHkyosknIYQQkghEIjOyLbqJDQwlnjPW19c3/U4hKCoqish5SGJbunTpjI8N1tXWOdYPuFnBa9JcYUv75MSzeF4GGBE9pUwGs4kZkngmJ51eDocDbrc7IoknxQwJl1JJwy5IeChmSKg4xoJscw9fdkqpq+2MbdiwYdbdDBiGQUNDQ4RqRBLZbBbntpzuEZRFZ7rRWTvqAACDMjHcAHJkaRAr1IJ9J08sVDIvc8b1ILFFC7qnDrPZjOPHj/slnWlpaVixYgUkksj82aKYIeGi7pIkXBQzJFRi1gyNfYQvW1N0OZWYdbVN1UGyJLE4DQZB2XVm1mT7YAcAz1IqY1IxxColOlp3oaagGkVp+XC5WAz0Co+lxJOQ2DKbzTh27Bick9bijXTSSQghhCQSTV4GTpf5zDkgS82HozH5K7527dqQ9rPb7RgeHkZ/fz8Az5OiSy65BGvWrIlm9UiKYO12uO12wTbxmVnkvGt4msWeJ0gihQYGuwluzg0A6O8xgGXdEwcyQMm8jOhXmhACIHjSqdVqUVNTQ0knIYSQlJWh0mLEp3utSEYtnjP2wgsvhLX/yMgInn76abz44ov49NNP8ZWvfAUbNmyIUu1IohkfH+fHcWVmht7qOHl8JwCk1ywHALh0Q9CJGXQqZNCwbmSptAAArcwzedDk8Z1qtQwDvQbMWyBc0JckppnGDEkM8Ug6KWZIuFwuF/81PQghoaCYIaHKlargsk7EiwipOYleQv4W5OTk4P7770deXh4eeeQR3HfffXjnnXeQl5cX76qRGOju7uaXOQjnhtA+Ikw8RXI55Lm5cLNOuF0OdChlaNB4WkAZSzeyO8y4ZskVnvfsEC7DkpaugFItm+UnIbEy05gh8WcymXD8+PGYt3RSzJBwORwOfmkMSiJIKChmSKh6x8TYLb+SLythxfI41idaEjqd/va3v42SkhIYDAa8+OKL8a4OSXCTWzwV+XmQZaSDs1uRvu4qWOZPzGLJAchUaPnZMbNz1MjIUkJ8pitueqYSWdmqmNWdkLkoXkknIYQQkkicIiV04lz+nwGp+UA0of+qMwyDCy+8EP/85z+xc+dO3H333fGuEomBoqKiGS2Z4BgVtlp6l1JhzToAQB8nHP+5IKuc/7qkPBNiqQgcx8FiciCvUAuJNDUHdqeimcYMiZ9gSWd6ejqWL18e9aSTYoaESyqVTr8TIT4oZkiorG4ZgImuti5RasZOQieeAJB9JnmI1FqgJPHl5OTM6LjJXW0nEk89AEArkiFbrMAoawMAlGV41oXlOA6jw2YAnocd6jQ5CkvSZ1QHEh8zjRkSP4GWGYhV0glQzJDwURJBwkUxQ0Ilkkjgm3giRZfiSfjE8/Tp0wBoLSQyvcldbeU5ZxJPi2eZlK+lV+JrqARXUI7RrFzkqT2vm4x2OBwuwbHZucI1PgkhkaVWq7FixQq+1TM9PR01NTW0viYhhJA5Z6i/F8DEhJasMzWXoUzoxLOnpwcffPABGIZBWVlZvKtDEpw9aFdbvWC7RpuH7Jz5fNmgswleV6pkUKpoYiFCok2j0WDFihXo6urC4sWLKekkhBAyJ9lY1/Q7pYCESzwdDgfGx8exd+9e/OlPf4LNZgPDMLScCpmWY3REUJbnZINjXXBbTYLtYrWwG61RL0w8temK6FSQEOJHo9Fg6dKl0+9ICCGEpCgnR4lnxFRXV8/qeK1Wi2984xsRqg1JdHV1dfwyBzU1NSEd43Y64dQJWzadOh1svS2wdJ2ASamGUaFAujIDKpmCD3y3m/NLPNMo8Uw6M4kZEjt2ux1yuTze1RCgmCHhslgs/NIYKhXNek6mRzFDQpaaPWv9xCTx5LiZfzfT0tLwxBNPID2dJnshwTnGxv22iWQyWLvqYT/dgC6lFB1KGURSBdLzc1CWXoT1pauwf1c79nzUhrQMBbQZCmRkqajFk5AIMhgMqKurQ0lJCcrLy+NdHUIIISThKCjxjJyioqKQ9xWLxVAoFCgsLMT69euxdetWZGRkRK9yJOGoVCq4XK6wZrZ06nSCMiMWQ5KRDnvLfgCAWexZMkEkVwIAlFJPctnVPgq73QX7oAkjgyYUlqRDk5ZYLTNkejOJGRJ9BoMBx48fB8uy6OzsBMMwmDdvXryrBYBihoRPJBLxrVeEhIJihoRKygrLqRoxMfmLu3Pnzli8DUkRCxcuDPsYTVUlSq67BqzVCtZqhdvhgEShhGl8ECyAYxoFJByHDLkSas6NNJkGANDXLeyem5uvgUhM6/olm5nEDIku36TTq6OjAwqFAvn5+XGsmQfFDAmXQkG9YeLpG9/4Bg4ePBj0dZFIhPT0dGRnZ2PNmjW48sorsXbt2oD73nvvvXjjjTcAAB9//DFKSkqiUueZxMzjjz+OJ554AgDwj3/8A+vWrYt0tUgCUnJz494zJolnc3MzxGIx/aEnUeO22cCIRJCo1ZCoPUuhSDRquG0mjEnFaNScacXk9GAatuGc0tXQj1thMTsE5ykuz4x11QlJOXq9HnV1dYKkEwCysrJo/UxCoqBzvAflmdFJnpKF2+3G+Pg4xsfH0dbWhpdffhlbt27FQw89RD0bSOITzY1Z3WPym/jkk09ix44dWLhwIe68805ccsklsXhbMoe4LBa/bbLsLLgMoxhWCH+Z1TIVirUFaD4xKNgukYhQMo8ST0JmY6qkc9myZRCJ5sZTXUJiRWfV48Fdj+GPX/45MpRzYz6MBx98ENnZ2YJtDocDOp0OLS0teOutt2CxWPD6669Do9Hg/vvvj1NNCQmNWJkW7yrEREwSz7q6OnAch7a2NmRm0o09iTzWbBaUJRo1XIZhwM1iWCYcs1maXgixSIzuTuGERNoMJdLTlVGvKyGpipJOQmLvraYdMDnMeLtpB25eeU28qxMT55577pTdY7/1rW/hmmuugU6nwwsvvIAbbrgB8+fPD7o/IfHGSOdGq3xM7gLGxydu8Gm9NjKd06dPo6OjA6dPnw75GJdZ2OIpUavhHOkFAGhYNyosDmhYz5RhRWkFAICeLmHiuWxVMZRq6WyqTuJkJjFDIitY0pmdnZ2QSSfFDAmX3W7n/yUKnVWPD9s/AwB82P4ZdFb9NEfMDaWlpfjWt74FwLOywptvvhmXeiRizJDEJJZOuv9M0dmFYpJel5eXo7m5GQDQ399PT53IlHQ6Hb++XllZWUjHuCa1eIpVKjjH+gAAq402rDbaoCithvaa++BiXXC5WAz0GATHlJZn0sxzSWomMUMiR6fT4cSJEwGTzqVLlyZc0glQzJDwsSybcDOUvtW0A07WCQBwsM451eo5nbPPPpv/ur29PS51SMSYIYnJDhM0Pg8oxHDGsTbRE5PE83vf+x7uuusuAMDvf/97PPHEExCL58YgWhJ9HMtidP8BuB0OiFVKSFQqT+J5ulewnzS7GBqZZ+Kh7s5xsKx74kUGKJmXEcNaE5IakjHpJCQV+LZ2en3Y/hk2L750zoz1nIpSObuhM2azGa+99hr27NmD5uZm6M4s25aeno4lS5Zg48aN2Lx587QTFx0+fBhvvPEGGhoa0N/fD6lUioqKClx66aW44YYboNFowqqXyWTCN77xDTQ0NAAAbrjhBvziF7+Y0WckiUMktyDXPHHfykpccaxN9MQk8bzsssvwpz/9CQ888AB27dqFr3zlK7juuutQW1uLkpISaLVaujkhvEWLFoX1hNCh02Hoo48F29JrV8Ax4p94ek3uZpuXnwa5grrZJqtwY4ZEhk6nQ11dHdxut2B7Tk4OlixZktDXdYoZEq5EW07Ft7XTi1o9J5w6dYr/etGiRWEdu2fPHvzwhz/kk01fNpsNg4OD+OSTT/Dyyy/jr3/9K7Rard9+VqsVP/3pT/HBBx8IttvtdtTV1aGurg4vvfQSnn322ZBXfbDb7bj99tv5pHPr1q144IEHwvpsJDG5OAsyrAN82ark4lib6IlJ4nnbbbcB8PS51+l0aG1txW9+85uwzsEwDP+LRlKbXC6fficf9pER4QaRCIq8POiGOmFnGJxWSKBiOYjlMqhYJ2RiKXomTSxUTK2dSS3cmCGz53Q6UV9fn5RJJ0AxQ8KXSDEdqLXTi1o9Pdenv//97wAAqVSKr371qyEf29bWhu9+97twOp0Qi8W4+OKLcdZZZyE7OxvDw8M4fvw4PvjgA7jdbhw/fhx//vOf8bOf/czvPLfffjv2798PwHNdvOaaa1BZWYnx8XG8++67OHbsGPr6+vDtb38b77zzDtLSpp7VlGVZ3HPPPfxappdffjl+85vf0MOzFCHmzND6JJ76FO0ZGpPEc/fu3fwvhvd/jkvNTJ7Enn1wSFAWK5UA4wDntMMoFaNTKQMAdFsHoWrZiS2LN/q1eNIyKoSERyqVoqqqCo2Njfz1PFmSTkKSXaDWTq+52urpdruh0+nQ0NCAv/zlLzh69CgA4L777kNRUVHI5/nTn/4Ep9PzvX300Udx2WWX+e1z7bXX4tZbbwXHcXj33Xf9Es/XX3+dTzpXrlyJZ555RtAqetNNN+GnP/0pXn/9dfT39+N///d/8YMf/GDKej3wwAP46KOPAAAXXXQRHn74YbrWphCNSzhcRZqieVJMEs9wfuEJCRfnckGamQnWaoXbZoNYpQSr80wsZBZ7nwQyEGsyoJVrYNTbYNTbhOfgADfrhkhMF3FCQpWXlwcAaGxsRE5ODqqrq+lGiJAom6q10yvVWz0vvvjiafdRq9X45S9/ic2bN4d8XqvVik8//RQAsGbNmoBJJ+CZuKi2thZHjx7F+Pg4dDodMjIy+Nefe+45AJ7u2Y899phfV1yGYfCLX/wCO3bsgNFoxLvvvjtl4vmHP/wBr776KgDgnHPOwZ///GdIJ8+CSpKaxs7Bd30GmZMSzxnbuXNnLN6GpAij0Qi32w2RSDRt1xMA0FRWouCySwF4JhpipFI4h7sBAIfSlNBJRdBAAqnThnKZyq+1UyIRwWyygxFRd5VkFW7MkMjJy8uDTCZLurH6FDMkXL4zlMZzgsSpWju95mqrpy+r1YqPPvoI1dXVqKysDOkYpVKJnTt34vTp09NO+lNcXMy3qtpsEw+z+/v70dLSAsCTIOfk5IBlWb+YUSgU+NnPfgaLxYKKioqg7/Pcc8/h2WefBQCsXr0aTz31FGQyWUifhyQPLWSCxFOamnlnZBPP++67DwCwadMmnHfeeZE8NZlDOjo6+GUOampqpt3fdykVRiyGPDsbHDsIkToDTWoJTJIzN8Ntu6BVaJDWKbxgp6UrkJGppHESSSzcmCGR5fukP1lQzJBw2e12PvFUqVRxqUMorZ1eqdzq+eCDDyI7O1uwzeVywWg0oqenB5999hkaGhqwfft27N27F88++yxWrVoV0rlzcnKQk5MT8DWz2Yzm5mYcPnyYTzoBCGb1PnHiBP/18uXLYbfbg8bM1VdfPWVd3nrrLbz++ut8+Uc/+tGsZ+sliWnErsSxwkv4stxtwTlxrE+0RDTxfOONN8AwDKqqqijxJDFjaGgUlCVqFeSZ8yGr3QDT4B7Ba6sKlqFkYTE4jsPQgBFGnQ0ZWUqkZ8XnJoKQZDA2NgaO4/xu9AghsRVKa6dXKrd6nnvuuSgpKQn6+l133YW//e1vePjhh2EymfC9730P27dvR3p66En40NAQPvroIzQ2NqKzsxNdXV0YGhoKOEeJ77YRnwkPCwsLQ36/QF577TVB+eGHH8aLL75ID8pTkA0KjKoL+LLSaZhi7+QVk662hIQjPz8/YLeUYCQqFRw+i+6KZDKw1lEMsVbBfgwYlKQXgnMBCqUUZfOz+NcyKfFMauHGDAnd2NgY6uvrwXEcli1bljLJJ8UMCZdUKo3rEjzhtHZ6pXKr51QYhsG3v/1tfP7559i9ezfGx8fx5ptv4pvf/Oa0x7pcLvzhD3/ACy+8AJfLfy1FpVKJdevWYXh4GCdPnvR7Xa/X81+r1WpIpdJZxcy8efOQlZWFo0eP4vDhw3j11Vdx7bXXzvh8JDHZ3MIxu6woNcfwUuJJEk5+fv6sjne73WDsRkghwrnKAgy4LBiEEyqZCjKJDIPDwqdIEokYmjRaWiGZzTZmSGCjo6M4efIkv2RKfX09li9fjqysrGmOTHwUMyRc8Z7MJZzWTq9UbvUMxeWXX47du3cDAA4fPhxS4nnvvffinXfeAeD5ma9ZswbLly9HZWUlqqqqsHDhQkgkEvzoRz8KmHj6doV1uVyzGo9ZXFyM559/HmazGVdffTWcTif+8Ic/4OKLL06J6zCZwHHChxMcUrNVmxJPkvRcFougrMjPhb2zHYVSNb6RsRgAoF1zORxnbhp0o8L90zOVNLEQIZOMjo7yLZ1eHMdhaGiIbngIibGZtHZ6zdVWT2Bi5m3AMz5zOkeOHOGTztLSUjz33HMoLS0NuK/RaAy43ff62N/fP+X79fT0YHh4GGVlZQF7k/zyl7/ku+t+4xvfwN///nfodDr8v//3//Dwww9P+3lI8jCz9ul3SgHJMwUhIQFY+/sxsmcv9PUnYWo/BWtfP0SMcC0khhFBrNRAJfU8hdSNC7vgZlA3W0IEAiWdgKeVcNGiRXGqFSFz10xaO728rZ5zke94y1CGCezatYv/+vvf/37QpBPwLCPl5XutXLp0Kf/1sWPHpny/l156Cddffz3OOecctLa2+r0ul0/0xrrjjjv4nhpvv/02v04oSQ12t7Bbd4pOakuJJ0lu5s4umNtPwVB/EuOHvsDYgYPgOOEvr0ihBsN4Qt1uc8JqcQhez8iiGeII8RoZGQmadC5evJgmtSAkxmbT2un1Yftn0Fn10++YYrZv385/vXr16mn31+l0/NdTzVy8bds2DAwM8GXfsaAVFRUoKysDAHz00UcYGxsLeA6Xy4Vt27YB8LTMLly4cMq6qdXq/8/encdHUd//A3/N7JXNfRCuEK6QhBtUQFQ8Kp6Icih+VaxXrd/a1uLx06/VVq1ttVqvitZqrWc98QDEW0QFUUC5IZBwQwi5r032mOv3x7qTnWQ32YVs9sjr+XjwYGdn9rOfTd6Znfd8Ltx555369n333QePx9PJKyieSKrS9UEJgIknxZzt27dj06ZN2L59e5fHuiurDNumZDscW1egtewHrDu0CVtrduGQpxn1zkY0Nzmx7tv9aG3x6BfVHN+ZGMKJGQqupqYG27Zt6xVJJ2OGwuV0OtHa2gqn09n1wd3oq33fI82agmx75lH/S7Wm4Kt93/dovaPt3XffxYoVKwAAaWlpOO+887p8TV5env540aJFAWewXb16Ne655x7Dc26/CQ4FQdDHkra0tOCWW27pkHyqqopHHnkEhw4dAgBcdtllIZ1fZ8yYgZNP9i6ysW/fPvzrX//q8jVEsSQiYzzfeOMN/Y+9uwiCgJdffrlby6TYJMsyZFkO6STsrq4xbJtTUuA+VILWmoPYl5UCNAJWzY2U3SkY7hyFLz/a4T3OIiK7TwqmnjY8oS6me6twYoYCC5Z09u/fH8XFxQn3s2XMULg0TQuYiETa7FHnYvaoc3v8fWPZt99+G7DrrCRJqKqqwooVKwxdUW+99daQllKZMWMGFi5cCEmSsHLlSsybNw8XXnghcnNzUVVVha+//hrfffddhzhwOByG7SuuuAKffvop1q5di++//x5z587FpZdeiqFDh+LIkSP46KOP9PU+R4wYgeuvvz7kz/6HP/wBs2bNgiRJeO655zBz5kwMHz485NdTbLLYjJOXaQn61RSRxPPgwYM4ePBgt5UXzenLqedZrVaIogizuevw9NTVGrYt6elQmg+gxdTWmG9KToMoCKgpb7tLLUsqJI+C5NSjn22OYkc4MUMdVVdXY/v27b0m6QQYMxQ+QRAS8m8hHrVvcQzGarViwYIFuOKKK0I6Pj8/H/feey/uvfdeKIqCLVu26Amiv0mTJmHmzJm47777AAA7d+7EpEmT9P2iKOKZZ57BggULsGrVKlRUVOAf//hHh3JGjx6NZ555xjCWsysFBQW45ppr8O9//xuSJOHee+/Fq6++GvLrKTalpKYYn0jQPqkR+caNxh1BShwjR44M+VhPfYNh25yWBtXVgg2ZydiRbEWyoqKPWUCqIKJ8v/HY9MwkpKSym20iCCdmyChY0jlgwAAUFRUl7IU2Y4bC5b9MBsUeQRCQlJSE9PR0FBQUYPLkyZg1a5ah+2wo5s2bh+LiYrz00kv48ccfUVtbC7PZjJycHIwePRqzZs3CmWeeiebmZvz1r3+FJEn4+OOPMX/+fEM5qamp+M9//oPly5dj8eLF2LhxI+rr62G321FUVISZM2fi4osvPqrlVn79619j2bJlqKiowNq1a/Hee+9h7ty5YZdDsSNVNF6PJuoK0xFJPC+44AJMmzYtEkUTGajtBtZbc9KBGqDCZkZ5krfbQlndbjQLFojlxoH73sSTLZ7Ue/XWpJOI4k93tur97W9/w9/+9reg+8ePH4/HHnus0zIyMjKwdevWLt9r+vTpmD59esh1u+mmm3DTTTd1ekxycrJhBl5KAGKCNnG2E5HEc+zYsZgzZ04kiiYykBqbDNv23DS4aoAGs/FeUaFlJMraTUWflsEWT+rdmpubmXQSERFFmTk9F0DbNa0gJuYwkN6RXlNC0lQVUn294TkBbmgAqq3GxNPSmGrYzspJxtCCPrBYE7UzA1HXhg0bhkGDBunbAwcOZNJJREREEZGY6TTFtcOHD0NRFJhMJgwcODDocVJTMzSl3bpHcjNUAKc1tKLaYkJtZjaqRA2uauOF9NARORgxsm8Eak/REGrMkJEgCCgoKADgnd6/sLCw1ySdjBkKl/+aiUczLo96H8YMHS0NiTlfDhNPijk1NTWQJAkWi6XTC8L2M9pCFKE6a2EC8LP6VgBA9tjZyJg6C0/8ebnh0EFDsrq72hRFocYMdeSffPaWpBNgzFD4ZFnWZ9lnEkGhYMxQqFpqDiFJBnz5phmeTo+PV0w8KW556ozdbC0ZGZAbjhifyxqApgYXmhtdhucHDWXiSb2Lr3UvkN6UcBIREcUaM+owoMnvulZg4knUIwoKCkJau9VTU2PYtmZlQnHsNTxnyR6AffuNCWqS3YI+ucYxnxTfQo2Z3qqyshJ79uzBxIkTuSTETxgzFK5w1lokAhgzFDqP5kS6q+26VjarUaxN5HR74sk1POlYpaSkdH0QgNYDBw3bqsfbqrkvyYJWUYBN06CoTuzZ3Wo4Lm9IJgSRF5uJJNSY6Y0qKytRUlICANi4cSOTz58wZihcwXoMEAXDmKFQWdCKrNZD+rbTlpjzv3Zr4vnKK68AAAYPHtydxRIF5G7X1VYQvHeHaiwm1FtMEEwW1FeX4siuJMNxHN9JvcWRI0ewY8cOfdvtdmPjxo044YQTON6IiIgoRtjSklDevy0tU5l4dm3KlCndWRxRp9ovpSKava3t7p9aM0WrDYosoLHabTyOrZ3UC7RPOn369u0Li8UShRoRERFRILlZ2ahPabs+NdkSs7WcYzwp5jidTn3sVWddAqXGJsO2IMpoFQWsTbfDpmpItlmQuqcOmpZtOK7/wPSI1JuiJ9SY6S0qKiqwc+fODs/n5+dj+PDhHNcIxgyFT1VVPWZEMTFbI6h7MWYoVFlmOwa7JH3bJCRmvDDxpJhTVlamL3Mwfvz4oMcpTqdh256Xi6o0CyptvnHGHmQdPoSi9P5odUjQVA32FAuGFvaJYO0pGkKNmd6ASWdoGDMULpfLpScRycnJ0a4OxQHGDIWqvtmMzZZp+naS5sHE6FUnYph4UlzSFAVSY6PhubTiUThobQTqt+nP2VPNOKFoCFRVg7PFA4vVDIslMbsvEAVLOgcPHoxhw4Yx6SQiIopBLUoSDpoL9e0UrTmKtYkcJp4Uc3JycjpdcxAAPA0NQLsZlE0WDXWKcTxnupAJwDuuMyXNhqEj2NqZiEKJmUR3+PBhlJaWdnieSWdgjBkKl9ls5hI8FBbGDIXKrVkBtC2hogiJmaIl5qeiuJaXl9flMZ72M9qaTBCTrBgipeHclMGoU1xoSk5FzhFjopmayjW1ElEoMZPIgiWdQ4YMwdChQ3nRE0BvjxkKH2eCpnAxZihkdjuAFn1TS9AxwUw8KS55amsN25bMdAiCgAJrBgqsGRAtNtiPuwDffb3HcFxqOhNPSizl5eUoKyvr8DyTTiIiovhQe7AcQKa+rcha0GPjWWKm05Tw2rd4WtJTDdtiUioczcZut2azCbYk3muhxFFTU8Okk4iIKM61ysZrViRm3snEk+KTu6bGsG1OMc4WZ7KnoaXZY3guJdXKC3FKKFlZWcjMzDQ8N3ToUI7pJCIiiiMeTY52FXoEm38o5pSWlurLHBQVFQU8xnW4wrDtLN+P5q2N2JGaBFhsyLaZsGGNE6oHSMuwIzXNhr4D0nqi+hQFocRMIjKZTBg3bhy2bNmChoYGDB06FEOHDo12teJCb40ZOnr+S2MkJSVFuzoUBxgzREZMPCnmuFwuSJIERVGCHuOpN3a1heqBUn8Eh7VkeEQBR+pyUHkwCZoKVFU4AAD9B6ZHstoURaHETKLyJZ/V1dXo379/tKsTN3pzzNDRUVWVM5RSWBgzFCqLlqB9a9th4kkxRxRF/V8wqkcybAuCChmAR/Se3BU1G5pqfE3+sOzurirFiFBiJpGZTCYmnWHq7TFD4fMlD0wiKFSMGQqVXTHGSKJGDBNPijljx47t8pghP78CTSU7oLhc8NRWQipfh82pNmxJtSFJ0ZBeacw6rTYTu9omsFBiJt5VVVUhJyeH6052k94QM9S97HZ7tKtAAcyYMQO7d+8GAMycOROPPvpoRN9v4cKFeOqppwAAr7zyCk488cSgxzJmKFQ2tXfcBO0dn5ISjuJ0QRBFmJOTYU6xwWwDqqxmVFnNOGC3oL7SOLFQRqYdZjMv2Ck+HTx4ENu3b8fmzZvZNZSI6CdbtmzRk04A+Pzzz9HU1BTFGhEdnURt4WyPiSfFJcXZqj9WXa0QTIDD3BbOFrfxLmO/vIweqxtRdzpw4IB+YdXY2IgtW7Yw+SQig5a9+6JdhahYsmQJAKBPnz4AALfbjaVLl0azSkRHRUzJjHYVegQTT4pLitOpP1ZdDggmoMHXoqkBSa3GiYRGjx/Qk9Uj6hYHDhzAnj17DM81NDSgtrY2SjUioljjqa/H1j/e23HSvQQnyzI+/PBDAMB5552nz+j9zjvvRPR9b7rpJuzcuRM7d+7stJstUTjEXtIrj4knxZyqqipUVFSgqqoq4H5N06A4Xfq26mqBKAKTm5w4o74FJ2AgzIrV8JoBg9jimci6ipl4FCjpBICCggL07ds3CjVKLIkYMxRZkiTB4/FAkqSuD+5B5e8thtzsQPn7S6JdlR61cuVK1NXVAQBOOOEEnHXWWQCAkpISbN26NZpV08VqzFDsMVmN162J2veWiSfFnCNHjuDw4cM4cuRIwP2qxwPNr6uh6mqBYAImONw4r7YFZydNNhxvT7YgPZPrZyWyrmIm3uzfvz9o0pmfnx+FGiWeRIsZijxJkvR/scJTX48jn3wGADjy8ae9qtVz8eLFAACz2YxTTjkF5557rr4v0q2eoYrFmKHY5NGcsMot+j+L4uz6RXGIs9pS3Kn74Uc4du2GyW6HyW6H0uKA4NegWdOaDKBtcoH+eRmcypzixv79+7F3794Oz48YMQKDBg2KQo2IKFaVv7cYqsc7mZ7q8aD8/SUYdt010a1UD2hubsaKFSsAeFs7MzIyMH78eAwePBgHDhzAsmXLcOeddyIpKfhNZ1mWsXjxYnz88cfYtm0bmpubkZaWhkGDBmHatGm44oorAvYuCWVWW4/Hg6VLl2L58uXYsWMHGhoaIMsyMjIyUFhYiJ/97Ge49NJLA9bvzjvvxPvvv4/Bgwfj888/R01NDV566SV8+eWXOHz4MCwWC0aMGIELL7wQl156KcxmXsonApO9GXlN5fq2YpajWJvIYbRSzBk6dChUVQ26vl7N19+g/ocf9W1LKpCW17a/qsF4PLvZJr6uYiZe7Nu3D/v27evwPJPO7pcoMUM9x2azQdO0mLmR6d/a6XPk40+RN2cWrFlZUapVz/j444/hdrsBeJdT8bnwwgvx9NNPo7m5GZ988glmz54d8PVNTU345S9/iY0bNxqer6+vR319PbZs2YIXX3wRf//733HOOeeEVbeSkhL8+te/xuHDhzvsq66uRnV1NVavXo3//ve/eOmllzBw4MCgZW3YsAG//vWv9S7FAOB0OrF+/XqsX78e77//Pl588UWkpqaGVUeKPW7FiRRPg77tEtTgB8cxJp4Uc9LT0zvd766uMWyLFqDJJKI02Qq7quHQYYdh/wDOaJvwuoqZeMCks2clQsxQz4q1NXT9Wzt9ekurp282W4vFgvPPP19/3pd4At7utsESz/vvv19POqdMmYJzzz0Xffr0QX19PVatWoUvvvgCLpcLt912Gz7//HP0798/pHrV1dXh6quvRmNjIwDg5JNPxumnn47c3Fw0NDSgpKQEixcvhiRJ2L9/P/785z/jmWeeCVhWU1OTnnSedtppmD59OlJSUrBp0ya8/fbbcLvd2Lx5M5544gn84Q9/CKl+FLvMohPZjn36dqMQW+eb7sLEk+JO+zEsJgvQahJQbzGhVkuFx2m8S2RPaTdgmyjGBEs6CwsLkZeX1/EFRNSrBWrt9En0Vs9Dhw7hxx+9vZ5OO+00ZGS03VweNmwYxo4di61bt2LdunXYt2+fPtutT11dHT766CMAwOmnn45nn33W0Ip9+eWX49///jceeeQReDwevP322/jd734XUt2ee+45Pem88847ce2113Y45uqrr8Yll1wCl8uFb775Ru/i215DQwMA4IEHHsDFF1+sP3/hhRfirLPOwjXXXANN07BkyRLceeed7HIb52xul2HbpGpRqklksY8RxZ2kvn1hzc6Gye5dq1MwAc6fustJHuN4DJNJQN/+7IJCsUnTNOzdu5dJJxGFJVBrp4+v1TNRLVmyBJrmvSi/8MILO+y/6KKL9MeBJhk6ePCgvhbyaaedFrDr9NVXX40hQ4bguOOOg91u77A/mE8//RQAkJeXh6uvvjrgMYWFhfoMvLIs48CBA0HLO+usswxJp8/UqVMxadIkAN6W0f3794dcR4pNWbKxhTNJTszEk7dHKOZIkqSPo7FYLB329zl1GmSHtztt8/ZvYZLLsSrDjmqbGRlNObD5HZuanoSUVFuHMiixdBUzsUqW5YCzqjLpjLx4jRmKHlVt600TzbHBnbV2+iRyq+fSpUsBAKmpqTjzzDM77J85cyYeeughKIqCxYsX4+abbza0BmZmZuqP3333XcyYMQPZ2dmGMqxWKz77rPOfcSDvvfceDh48CMAbI8Fixn/4hNMZfPbSzsaXFhcXY926dQC8ySfFtxRVRKvftiUxh3gy8aTYU1JSAkmSYLFYMH78eMM+7xqebSdpU1IqkjLyUWt3o8oMeJKbkJVai0wxG4LbgqycZAhibEwEQZHTWczEMovFgokTJ2Ljxo36RBlFRUWdTjZB3SNeY4aix+Vy6TcrkpOTo1aPzlo7fRJ1rOfGjRv1HiLnnHMObLaON5ZzcnJw8sknY+XKlaiursZXX32ltzACwJAhQzBq1CiUlJRg+/btOPvss3HmmWfijDPOwMknn4ysY0jWs7KyDK/3jxmTyYTS0lJs3LgRX375pX6Mf3LaXkFBQdB9/hMKyXJizoDamzg8dpTlTNK3rZobJ0exPpHCxJPiSvs1PE3J6UgpHgVHwzpAlaBYJLSk1+K4IQXon5aLfgM6jpsgiiV2u11PPocMGcKkk4iCCqW10ycRWz19kwoB3iVLnnvuuYDH+bdwvvPOO4bEEwAeeughXHXVVWhoaIDD4cDSpUuxdOlSiKKICRMm4Mwzz8SMGTOOemK3xsZGfPHFF9i4cSP279+PgwcP4siRIwGTTF+34UACjf308f+MnSWvFB+aVTsOZA3Xt+1SYrZiM/GkmJORkQFZlgMOlFdaW9s9IUE2i3Co3sWZzZL37mey1TsmIy0j9LEZFL86i5l4YLfbMWXKlJibNTORxXvMUM8zmUxRX04llNZOn0Rr9ZQkSZ8UCACWLVuGZcuWdfm6b775BlVVVYY1OYuLi7Fs2TI888wz+PDDD/WJfFRVxYYNG7BhwwY89thjuPjii/HHP/6x0/VA23vuuefwz3/+M2AXWovFguOPPx6apmHt2rVdlsXvhN7DA+NEmKqQmN9NifmpKK4NGTIk6D6lte1ErmkaBBGAIODy9ELUym7UJg2G0ywh2ez9kkhN4/jO3qCzmIkVvrvawS5aeYHRs+IhZii2BOrW2ZPCae30SaRWz6+//lpPEMOhKAref/99/O///q/h+dzcXNxzzz2466678MMPP2DlypVYvXo1SkpKoGkaNE3DO++8g9bWVjz++OMhvdfjjz+Of/3rXwC8YzonTpyICRMmoKioCCNGjMDIkSNhtVrxxBNPhJR4Uu+hqMZrA1VIzPlfmXhSXJH9WzxVGYLVBJtowukpeWh1A2UDx0Lwa8FIYeJJMUDTNOzZsweqqmLEiBExswA9EcWPcFo7fRKp1dO/m+0rr7yCE088sdPjv/32W1x33XUAvJMI3XDDDQHPvWazGVOnTsXUqVMBAJWVlXjvvffw1FNPQZZlfPTRR/jd736HYcOGdfp+FRUV+Pe//w3AO4HRiy++iNGjRwc8trm5udOyqPdxKVK0q9AjEjOdpoRV+dnnqFu7Do1btsJRtguqu+0P1eUxQTC1JZ22JAssFrYiUXT5ks6DBw+ivLwcu3fv7nRMDxFRe0fT2ulz5ONPO6x/HW8aGxuxYsUKAN6WysmTJ3f5mpNOOknvXrt//369hXHbtm14+eWXce+998Lx0wz5/vr164cbb7zRsBxKaWlpl+/3zTff6Mu0/PznPw+adALeyc18+H1AAOBUjYlnokYFE0+KK007dqJlz140bduOho1b4Glo+9JodCUBfjczU1KsAUog6jmapmH37t369PqAd/HzPXv2RLFWRBRvjqa10ycR1vX86KOPIEneC/PzzjsvpOVsRFHEzJkz9e1FixYBAL766is88MADePPNN7Fq1aqgr/dfdiWUWYz9uwF3dvzmzZuxYcMGfZsz0hIAeNTeEQdMPCnm7N69Gzt37sTu3bs77JMbjbN8KU3lKN25Eit2rcOHq4HVK3Zh4w8HsG9XLcxWhndv0VnMRIsv6Tx06FCHfSkpKVGoEfmLxZih2OZyufR/PelYWjt94r3V07+b7QUXXBDy62bNmqU//uyzz9DU1ITzzjtPf+6hhx5CbW1th9c1NDTg7bffBgAkJSVh7NixXb6X/9rLS5Ysgcfj6RAz27dvx4IFCwyz0PqW0iLqDTjGk2JOS0uLvr6eP03TILe0GJ4TBTfqHbU4rA0AAMiShqY6N5rr3Zh+wageqzNFV7CYiRZN07Br1y6Ul5d32Ddq1Cj069cvCrUif7EWMxT7VFWNyqy2VctXwJyW2vWBIZQz6JK53VCjnnXgwAG9hTAvLw8TJ04M+bUjR45EcXExdu7cCbfbjQ8++ADz58/H7NmzsXjxYhw+fBjnnnsu5s2bh4KCApjNZuzduxeLFi3SE9JrrrkmpLU9zzjjDGRmZqKhoQE7duzARRddhNmzZ6Nv375oaGjA+vXrsWLFig4tnBzvSQAgmo1Dw7QEnQqCiSfFDbmlBVq7E7bJBrgFAZLT+KWQnGpFRmbo058TdRcmnUTUnQZdMjcuE8bu4t/aed5554Wd+M+aNQsPP/wwAO+anvPnz8e9996LmpoarFq1Cs3NzXjhhRcCvvbSSy/FggULQnqf1NRUPPzww/jd734Hl8uFvXv3BpwNt6ioCDfeeCNuueUWAMDOnTvD+jyUmNIz0oBqvycStNMeE0+KOcG6tLirqjs8JyYBn+SkILu5L/zTzNQ0G5JTOcaztwilG1RPYNIZP2IlZih+2O1cFzoali5dqj+eMWNG2K+fOXMmHn30USiKgu3bt2Pbtm0YM2YMnn/+eXzyySdYtmwZtm3bhtraWphMJuTm5mLSpEm4+OKLMWnSpLDe6/TTT8d7772HF154Ad9//z0qKyshiiKys7NRXFyM888/HzNmzNDfp7q6Gp999hluv/32kMatUuKyC8beN4kaDYLG6bR6PYfDYbjjVlxcjNTUY+/W090aNm3Gtnv+pG8LJgFJk4G/Dc/FiM2nIcmVpu8bObY/Lr02vC8MomOhaRrKyspw+PDhDvtGjx5tWLyciGJbWVkZZFmG2WxGYWFhtKtDRFEW6XPC8ucW4dudbTe3rHDhzkcv6fb3CVWkcoNETagpAXnq6gzbJquGRqsJgirC5jJO1lI4mhf51HOCJZ2CIDDpJCIiok6Z0/sYtgUxMTulMvGkuOGpbzBsixagwWxCUmsaBP9QFoAxEwf2bOWo1+os6Rw1ahSTTiIiIuqc0DvWnU/MdJriWl1dHVRV1cdF+MhNxqVURAswyCVjaovNMB47p08KrDaGdm8SLGZ6wq5du4K2dObm5vZoXSh00YwZik+yLOuz2prN/I6hrjFm6Ggl6jhI/hVQzDl06JC+zIH/BaHU7DAcJ5qBLFlBRku6IfEcMCijh2pKsSJYzPSEnJwcVFRU6OuyMemMD9GMGYpPHo+HSQSFhTFDoWppqIJJbeu9J6qeKNYmcvhXQHFDdnRMPAGgSTEmmv0GpvdUlYiQnZ2NsWPHYuvWrdA0jUknERERhcWsVGJwg99cJgITT6IeMWjQIL0LnL/2kwsJP+1uUoyJZp++sTcjL0VWsJjpKb7kU1VV9OnTp+sXUNRFO2Yo/litVr31iigUjBkKlUd1I0lqa2BRTXInR8cvJp4Uc4J1e/PU1Bq2NRXYZbXDpSUbnk/LSAL1LrHQVTIW6kCh4++LwsWukhQuxgyFyiK0Iqt5l77ttCXmTVH+RVDcUFwuw7ZoBqq1jt1qk1MsHZ4jOlaapqGpqQkZGRxDTERERN1HtGqoym5Ly2RrYraSJ2Y6TQlH0zQo7naJpwVwKFmG5yw2Eckptp6sGvUCmqZhx44d2LBhAyorK6NdHSIiIkogA/v1B7IE/Z8tOzHbBhPzU1Fc880OCkAff6V6PICiGo47kmJCqSkH/u1PSXYzLJbesRYStQkUM91F0zSUlJSgqqoKAFBSUgJBELg+Z5yLZMxQYtK0tgUOOGaPQsGYoVBlmJLQ3902rtOUoN9LTDwp5mzdulVf5mD8+PEAALndUioAUDeoL2rEKqhSMsyKBUlaMvoOHApB5Mm9twkUM92hfdLps2PHDmRmZsJqtXbbe1HPilTMUOJyOp36RDHJycldv4B6PcYMharVZUG5OEbftipKFGsTOUw8KS7Izc0dnmsaMBBadSOkpFZIALLTk1E8akDPV44SUrCkUxRFjB07lkknERERdYt6lw3brZP17RSt43VvImDiSTEnJSUFsiwbZoOT2iWepiQr6lQ3RLWtW22yxQ6rlSHdGwWKmWOhaRq2b9+O6upqw/O+pJMzosa/7o4ZSnzskk3hYsxQqDyacWJMRUjMYWP8xqWYU1BQ0OE52WHsamuyW/GzlDz0bdJQZ7PCk5SMnORMWG2J+YdKnQsUM0dLVVWUlJQw6Uxw3Rkz1DskJXGpLgoPY4ZClpwCoEXf1MTEvJ5l4klxoX3iKSZZMcyaAadmRv9UO2wDvBeRScns/khHr7Okc9y4ccjKygrySiIiIqKj03ikCkCKvq3IWvCD4xj7AFBckJrad7W1QVGBFrcAwdTWPSEj097TVaMEoapq0O61TDqJiIgoUpqd7SbRTMy8k4knxQfHrl2GbdEk4kitCKe7rTuCIAhIz2C3FgqfL+msqakxPM+kk4iIiCLNo8ldH5QA2NWWYs7+/fv1ST+GDBkCAJAdLYZjXJVH8PVmB5yOXGBvC6xJuzG8uC9MZt5L6Y0CxUyoOks6x48fj8zMzG6sKcWKY4kZ6p3cbre+NIbNZot2dSgOMGYoVAnawNkBE0+KOY2Njfr6ej6aJBmOUaHA4/adxAV4XCqsViadvVWgmAlVbW0tk85e6FhihnonRVH0JIIoFIwZCpWo9o7Uk1fqFBdUt9u4nSxAlY3jOfv2T+/JKlGCyM3NxfDhw/Vtk8nEpJOIiIh6TKpmnMU2UW9VsMWTYs6oUaM63CEcOHsWnIcOQfG40fjdMqwelAKt0dhS0a9/Rk9XlWJEoJgJx+DBg6FpGg4cOIBx48Yx6ewFjjVmqPfh0hiJQdM0vPHGGzj77LORm5tr2Ldw4UI89dRTAIBXXnkFJ5544jG9F2OGQmVVekeLJxNPijmBur5psgTBZIIgAqIZaLS2n+xFQ/+8tJ6pIMWc7uguOWTIEPTr148XCr0Eu9hSuESRncTi3f79+3HXXXfhhx9+wGmnnRbx92PMUKjEhG3jNOJfBMUF9acxnprk7XLrQqphvy3NhORUDtynY8Okk4ji0ZHDTdGuQlxYunQpfvjhh2hXg6gD0d47Gk+YeFJcUD0/JZ4eFzQALtU4njMjO4ld5qhTvtlrHQ5H1wcTEcUJR5MLrz7zHRxNrmhXhYiOkmjuHb1w2NX2J5qmYdmyZXj33XdRUlKC1tZW5ObmYvLkyZg/fz7Gjx9/zOUvX74cS5YswebNm1FXVweLxYK8vDyccsopuOqqqzBw4MBu+jTxrampCaqqQhRFpKd7E0zfrLaq5P1iHeKwodbvNX37cmKh3ixQzPhTFAVbt25FfX096urqMHHiRKSmpgYoiXqLrmKGqD3/GUpNJlPXL+gh367YDWerhNVf7cE5F42OdnXIT6zGDMUeU1K7XnsJ2pbCxBOAy+XCggUL8NVXXxmeLy8vR3l5OT744APcfPPNuOGGG46q/MbGRtxyyy349ttvDc97PB6UlpaitLQUr732Gv785z9j9uzZR/kpEse+ffv0ZQ7Gjx8PTdOgyt6FdTWPGwIAQTImDQMGZEehphQr2seMP/+kEwBkWcamTZswYcIEJp+9WGcxQxSI/5qMycnJ0a4OAG9r54+r9wMAfli9DyefMRyp6RwyECtiMWYoNnlUCYLfzLaClpiTDTHxBHD33XfrSWdBQQEuvfRS9OnTB9u2bcObb76J1tZWPProo+jXrx9mzZoVVtmqquI3v/kN1q1bBwAYOHAgLr74YgwfPhwtLS1YtWoVPvvsM3g8Htx5551IT0/HmWee2d0fMa7Jzc1o2bsPosUMT20dFA/QrBlbKLJzeEKnjtonnT6qqkJV1SjVioioe3y7Yjdk2XsukyW1V7R6tra2YtGiRfjiiy9QWlqKlpYWZGZmYuTIkTj//PMxe/bsDq2L/rPV+kyfPh0AkJeXhy+//DLoe7388sv49NNPsX//fpjNZuTn5+OCCy7AFVdcAbvdHvB1Pvv378ebb76JNWvWoLKyEgAwYMAAvadbfn5+wNf56msymbB9+3a8//77ePbZZ3Ho0CFkZWVh3LhxeOSRR5jMJhBTcj2G1pfr24pZBjAvehWKkF6feH777bdYtmwZAGDq1Kl47rnnYLN5m7tnzpyJSy65BFdccQUaGhrwwAMPYPr06WG1krz//vt60jl16lQ888wzhhPFvHnz8OWXX+Kmm26CLMu47777cMopp+h16I369+8PRVH0Lw7nkUrUfb9G3y8LFrgzjSf77NyUHq0jxZb2MQMETzrNZjPGjx/P7pW9XKCYIeqMxWKJqSV4/Fs7fRK91fOHH37AbbfdhiNHjhier66uRnV1NVauXImXXnoJ//znP4MmdaHau3cvfv/736O8vNzw/LZt27Bt2zYsWbIEL774InJycgK+/rnnnsM//vEPyD/12PLZvXs3du/ejTfeeAO///3vMX/+/E7r8cYbb+C+++7Tt6uqqlBVVcWkM8G4FQ8sit+a9SYpepWJoF6feL7wwgsAvBejf/nLXzokfAUFBfjjH/+I2267DQ0NDVi0aBGuvfbakMt/6623AAA2my3o3akzzzwTV155JV566SVUVlbim2++wdlnn30Mnyq+9e3b17CtOJoN201J7brVCkBGVud3HSmxdYgZRcGWLVvQ0NBgeN5sNmPChAlIS+sds8dRcO1jhqgrsbYEj39rp08it3pu2bIFv/zlL9Ha2goAOO6443D++ecjNzcX5eXlWLJkCcrKylBaWorLLrsM7733Hvr16wcAmDFjBkaNGoUPP/wQH330EQDg/vvvR05OTtDZzO+//34oioJRo0Zh1qxZyMnJ0YdGtba2YufOnXjggQfw6KOPdnjtM888gyeeeAIAkJycjLlz52L8+PEQBAFbtmzBu+++i5aWFtx///0QRRGXX355wDqoqooHHngA6enpuOaaazBo0CD8+OOPGDdu3LH+OCnGWMytyG8s0bcb0xLzpmivTjwbGhqwevVqAMCpp54a9O7YjBkz8MADD6C2thaffPJJyImnw+HA5s2bAQAnn3xyh4WK/Z133nl46aWXAACbNm3q1Ylne1KTcRZSh824hqfZKsBiScw/UAofk04iSnSBWjt9ErHVU1EU3H777XrSedttt3WYd+Paa6/F/fffj7feegs1NTW466678J///AeAtxGhoKAAJSVtF/annHIKBg0a1Ol7Xn311fj9739vaOWeM2cOLr74YjidTnz88ce45557kJGRoe/ftm0bFi5cCAAYOnQo/vOf/xje56KLLsK1116La6+9Fvv27cODDz6I0047DXl5eR3qoGkaJEnCq6++iokTJwJA2EO+KD6IrcZrXTFBx3j26uVUfvjhB32c19SpU4MeJ4oiJk+eDMCbFDY2NoZUfn19PcaNG4fc3FwMHz6802P9T1pNTVyPy0iDJTMDppQUQAQctkzDXnuKOWa6PlF0Mekkot4gUGunj6/VM5F89tln2Lt3LwBvY0CgyR7NZjPuvfdefbKwVatWYcuWLUf9noWFhfi///u/DtcXBQUFOO+88wB4v3N27txp2P/CCy9AURQIgoB//OMfAZPbgQMH4s9//jMA7wREr776atB6TJ06VU86KXH11ayGbbvMxDPhlJWV6Y+Lioo6PXbEiBEAvHefSktLQyo/Pz8fixYtwqpVq3DHHXd0euzu3bv1x5mZmSGV31ukDh+G/uediwEXnI/U/kBlprHF05ag3REoPIqiYPPmzUw6iSihddba6fPD6n0Jta7n119/rT++/vrrgx5nMpkM+7/44oujfs9zzz036BjwUaNG6Y9ramr0x7IsY/ny5QCAMWPGYOTIkUHLnzJlit7TbsWKFUGPmzRpUlj1pviUJBtvcJiVKFUkwnp1V1v/AeOBujj469+/v+F1vhbQ7vLuu+/qjydMmNCtZcebrVu36sscjB07FqrHO8BaU2UIGTlQLAdQl+qESbbCJFswdljijWWh8GzevBl79+6F2+02jN0zm81cs5MCan+eIeqK0+nUJxfqajbTSOqstdMn0cZ6bty4EQCQnp6OMWPGdHqsfw+2Y2nx9DU4BOL/neJ2t00Is3PnTjidTgDeMcEffvihvi/QpJGZmZk4ePAg9u3bB4fDEfC7qqsec5QYJNmKirS2mDMLnFwo4dTV1emPs7KyOjnS2ArZvkXlWK1cuVK/25WTk4NTTjmlW8uPN76lLnzdoFXppz8+TYOcngPVbYFilqCYvc8fP44n5d5MURTs27cPLS0thrvTFouFa3VSUO3PM0Rd0TQNWpTHXYXS2umTSGM9fddrnY3J9MnIyEBGRgYaGxsNrZHh6mzmc//ut/4x4VsyBQA2bNiADRs2hPx+9fX1Ab+v2Fund6iTUrC936n6tl1KzGF3vbqrrcvV1g2lq+VLrNa2vtf+rztWFRUV+L//+z99+8Ybbww6w1pvkZSUpP8D/BJPVUGrIkPz6wdvNpmRlcGTcm/ma30wm80wm7330ph0Ulfan2eIuiKKov4vWkJp7fRJpLGeLS0tABByS7Pv79rX+ng0fN8n4XA4HF0fFITvM7bnf/1JiUsWjL9nVUjMYWS9usXTf22lrv6w/fe3X5PpaNXV1eG6665DbW0tAO8Ma1deeWW3lH0sdu3ahYKCAsNdNrfbrQ+gz8zMxODBgzu8xjfbnG9gv09NTQ0OHz4MwDvu1b91WVEUbNu2DYD3rt6wYcMM42337duHurIyKJWVyE5Ngl20o8CWhYE2G1pUGZLFjt17diJ/cF6HWYO3bNkCTdNgt9tRWFho2Hfo0CH9DmpRUZHh4tPhcGDPHu+XdW5uLgYMGGB4bUlJid5Fz3+cB+C9kVBdXQ3A2z3GP/FxuVz6+ODs7OwOd27LysrgdDohCEKHqdKrq6tRUVEBABg8eLChBV6WZWzfvh2A9w7t0KFDDa/du3cvmpu9S9KMGTPG0CpYX1+PgwcPAvBOdtCnTx/Da32zMicnJ3fodnTgwAG99b+4uNhw86a5uVmfCKJfv376lPY+27dvhyzLsFqtHcbAHD58WL9LXVBQgJSUtjVanU6nPjY7JycHeXl5EEUR06dPx/bt27Fz507U1NRg6NChHZLOqqoqfe23oUOHGu5mS5Kkz3aYkZGBIUOGGF67e/du/aJg7NixhgvPuro6HDp0CID3bnx2dttyP6qqYuvWrQCAlJQUFBQUGMrdv3+/PlnZqFGjDMs1NDU1Yd++fQC8Xf3bL/+xdetWqKqKpKSkDmPUy8vL9fNKYWGh4WKtpaVFH1Pep08fDBw40PDaHTt2wOPxwGw2Y/RoYze9yspK/Y7+sGHDonaO8Ldv3z59QrbRo0cbLhYbGhpw4MABAN5F2/3PEUVFRdiyZQtcLhfKysp4jkjgc4S/0tJSuFwuiKLYoYu1/zmi/dIp/q3jgRJPl8ul77fb7YYWMVmW4fF4AHivJfxjVNM0PTkSRbHDjRC32w1F8Q72kj1CyK2dPj+s3ofjT8pDn9wMw/Mej0e/lklKSjJ8JkVR9O6jZrO5w/VRZ12OJUmC9NPNYpvNZoglVVX1G/cmk6nDDX//n2H7pefsdjuam5vR0tICWZaD/gx95frONUlJSYafYfsWa//fTaDlcnzlBPrd+Hg8HqiqClEUDT+Pa665BgsWLAj7Z+jxePSfYXv+P8NA5Xb2M/T/3XQWh4F+N/4/w87i22KxdPg5dvYz9C+3szgMVG5XP0NffHcWh539DAOVqygKnE4nNm/e3O3XEQ0OY6OWL/GM1nWE73uqu/XqxNP/D0CSpE6TT98fFdA9d5+qq6tx7bXX6hcvQ4YMwSOPPBITs7MqitKh+5lvSm/f/vZkWe70ROnbF6hbm29foIRelmXILhdURYGmyACsyLQkoa81FQpMaEnKhKrJQcvVNC3gXUv/+rb/IvL/rMHKDeWzdlZuoM/qKzdQDBxLuZH63SiKErRO/uUGihdJkiDLcsALuM7KDRaHoihi9OjRqKioQEpKSsAJIfzL7Sy+e/Jn2FkchvIzVFW1y88a6s+wfZ0CdSkM9WfY0+eIY/lb5jmid5wj/MuVJKnLcgMlIb73CtbdtrPnO3ttZ913/V/73Vd7Qm7t9JElFWtX7seMucabPcdSp872d9dnba9Pnz5obm42zM0RqFxN01BXV6ffSOnXr1+XXaRD2Rfq6/1vPNbU1IT0c+rOOh1tuaH83iL1MzzWOgW7bo7kZ/V9/wZ6HjjK86wavFErGtcRkRqG0qsTT/+7QW63O+TEs6tuuV05cOAArr/+euzf771zOWDAALz44ouGE1Y0mUymDl/KgiDoX8SBAtRsNgddXFsURX1foC97375AF39msxnann3QamrQYjPDIZmhZnv/8ASTCUl2792qYOVqmhawXv71bX/S8v+sndU3ULn+n7WzcgN9VovFAlmWA55Ej6XcSP1uTCZT0Dr5lxsoXiwWCwRBCLvczuJQFEUMGTJEb83orNzO4rsnf4adxWEoP0NVVQPW62h/hr46qara5e8mls4Rx/K3zHNE7zlH+MpVFKXLc0QgvvcKdqHb2fOdvbazG86+17Y0u/HjdweCHteZjWsP4bSzigxjPY+lTu1fH+z5o/2sgYwZM0Zvmd++fXuHXhP+7/n999/rzxcXF3dabih1CvUYoK3XhSzLWL9+fZev+fOf/wyLxYJBgwbhuuuu0+P9aOt0tJ81lN9bpH6Gkfi7OdZyO/u8vvNSd19HODVjUumfQkbjOiJSQwoELdoj5aPonnvuwVtvvQXAO+W2b1rrQBYtWoQ//OEPAIBHHnkEF1544VG95+bNm/GrX/1K7waXl5eHl19+udP3jjSHw2FYh6q4uDimxsat/83v4Dzkvct5ML0Y7oEFyBicBXt6GvLGjsbY4zqfkZgShyzLQRMFIqLuUlZWpnfpbN8NOxo+XbINa77Ze9Svn3r68Lie4faTTz7BggULAHjX8Xz88ccDHqcoCv7nf/5Hn832tddeMyxH8tRTT2HhwoUAAl/3LVy4EE899RQA4JVXXsGJJ54Y8H3ee+89/P73vwcAPPjgg5g7d66+75e//CW++eYbAMATTzyB888/P2AZ3333Ha655hoAwMiRI7FkyZKw60E9J9LnhFf+8jT21bd1zzUrLtz1xCXd/j6hilRu0KsnF/If5+IbGxOMb9wHgA5jokK1cuVKXH311XrSOWLECLzxxhtRTTpjUXl5OQ4cOKB3qVH9piqvSC/EfrkfNu+xYs1GFzZvDW+8C8UvWZaxadMmbNq0qUN3lfYxQ9QVxgyFy+PxwO12G3pA9YRwZrINJt7X9Tz77LP1MXMfffQRnnvuuQ7HKIqC+++/X086TzzxxA5rYPqP2fONi+tu/uuI3nPPPVi3bl2HmDl8+LBhYslrr702InWh+KGhd7QD9uqutv4DdMvKyjBlypSgx/omKxAE4ajudHz55Zf43e9+p18wT5gwAc8++2yXy7j0RrW1tfrEHHl5eVDcbSdsj8l/oLcACyek7BUkScLmzZv1cTubNm3ChAkT9JbP9jFD1BXGDIXL1+NCEIQenWl047pDsKcc+/ttXHcI06YHX5sylplMJjzyyCOYP38+PB4PHn30UXz55ZeYMWMG+vTpg4qKCixevFifnCszMxMPPfRQh3L812R/8MEHMX/+fADeVtTucuKJJ+Kaa67BSy+9hKamJlxzzTU499xzMW3aNIiiiJKSErz99tv6pDunnnoqZs2a1W3vT/FJYOKZ+I477jhYLBZIkoQ1a9boJ6D2FEXBunXrAHi7Q3S2tlMga9euxYIFC/Sk85RTTsFTTz3VYcYxCkz1u1MomYyZZkYOM89E1z7pBLxdQHbs2NFhZk8iokQzbfqIuE0Yu9P48ePx4osv4uabb0Z1dXXQdTJHjRqFhQsXdphtGgBOPvlkZGZmoqGhAT/88AN++OEHCIKAM844o1uvye68807YbDb8+9//hizL+PDDD/Hhhx92OO5nP/sZHnvssZiYWJKiKyMnC6hv29YSczWV3p14pqenY+rUqVi5ciW+/PJLHD58OGA32g8//FCfVj9YX/1gamtrsWDBAr2bxc9+9jM8+eSTXJepE4WFhYaZyrSfEnZJsEAVjSGbnMmxfolMkiRs2rSpw9poVqvV0GOhfcwQdYUxQ+FKSkpizETZpEmT8Omnn+Ktt97C8uXLsWvXLrS0tKBv374oLCzE7NmzcdZZZwWdByArKwsvv/wy/v73v2Pz5s1obW1FdnY2KioqOixTcSwEQcCtt96KCy64AG+++SbWrFmDI0eOwOPxIDs7GxMmTMCcOXNw5plndtt7UnyzCcaYTdSxkL16ciEAWLVqFX7xi18A8LaAPv/884bBs7t27cL8+fPR0NCAlJQUfPHFF2HNPnvzzTfj448/BuC9W/ff//73mGfF7W6xPLmQKkn47pLLAADN1iysHTzbsP/qO07AkH4d72pS/Oss6Zw4cSJ7DBBRxMTa5EJEFF2RPicsf24Rvt3ZNpzMChfufDTxJhfq1S2eADBt2jSce+65+PTTT7FhwwbMmjULl19+OQYMGIDt27fjjTfe0Bd8veOOOzoknWvWrMFVV10FAJgyZQpeffVVfd/u3bvxySef6NvnnXceVq5c2WWdMjMzOwyI760UZ9tkCG6zMdGQzW4M7tu//UsoAQRLOm02GyZMmMCkk4iIiBKGKSUTQNtkmoKQmH1te33iCQAPPfQQWlpasGrVKhw6dAh///vfDfsFQcBvf/tbXHbZZWGVu3jxYsNirg8//HBIr2ufwPZmitOpP3aZjXda1CQPuzwloM6SzokTJxpmJSQiIiKKd4LZBv/EEwl6fcvEE97ptZ9//nl88MEHWLx4MUpKStDc3IzMzEyccMIJuOqqq3DCCSeEXa5vdjUKT0tLS9s4Gmer/rzLnGI4rk9OWk9XjSJMkiRs3LhR72Xg01XS6R8zKSkpAY8h8seYoXApiqI/DrQYO1F7jBkiIyaePxEEARdddBEuuuiisF534oknGvpA+3v22We7o2q9zu7du/VlDoaa2wZbuy3GFs9RQ4b1dNUogjweDzZt2hR20gkYY2b8+PGRriolAMYMhcvtdus3K9jdn0LBmKFQOZsbAbS1cqp+Ny0SCRNPimnGrrbGVomMLHa5TBTBks6kpCRMmDCB3WuJiIgoYQnuAxhS1+D3hAfAxdGqTsQw8aSY06dPHyiKApPJBE/JDv359mM8MzKZjCSKsrKygEnnxIkTkZTU9Vqt/jFDFArGDIXLbOYlE4WHMUOhklQPLGrbuvWaKEWxNpHDvwiKOf5rqR742jsLsAoBrnaz2u6tLccocCmVRFBYWIiWlha0tnrH9IaTdAIIuP4uUWcYMxQurr9N4WLMUKisZieGNGzVt522xFzJMzE/FSUM+adWMI85GRCM4epSWgO9hOKQ1WrVl0kJN+kkIiIiimeK6kJDqqj/a05JzBSNLZ4U05RW7xjP9uM7IajIyGFX20TiW6NT0zQmnURERNRrDM7PR2m/ttUwTLbETNES81NRwlAlb393p9m4dIpqkmFL4disRGOz2aJdBSIiIqIelWKyIkeS9e1EnX+AiSfFnB07dkCWZZjNZpis3kQk01WJIXWbUJGdjKpsOzQAg3OnRreiFDa3243y8nIMGzbMu05rN/GPmZEjR3ZbuZS4GDMULqffLOucaZtCwZihkElWuNQ8fdMkd3JsHGPiSTHH4/FAkiSoqgqr0zuO02OyQ4QKzeSGJ0mDZpOQn8mJheKJ2+3Gxo0b4XQ64Xa7MXLkyG5LPv1jhigUjBkKl6Zp+pqMRKFgzFCoKpst+D7pbH07RWvC9CjWJ1KYeFLMMZvN0DQNZrMZitMFAPCYvGP+VNF78rbZRZ7I44h/0gkAlZWVANBtyad/zBCFgjFD4fKdq/jdQ6FizFCoZNE4t4UqsKstUY8YPXq0/nhz638BALLJOyV5P1sKUq3JyB6YEZW6UfhcLhc2bdpk6HIEAE1NTZBlGRaL5Zjfwz9miELBmKFwsaskhYsxQ6FSrXYAbddJqpiYKVpifipKGMpPyYosehPPPtYU5NkyMKFwcjSrRSFyuVzYuHEjXC6X4fnk5GRMmDChW5JOIiIionjW0tAEoO2aSFW06FUmghJzkRhKGIrTBQ1tiadg8oasPTU5irWiUHSVdHIGWyIiIiKgvqnOsK0l6PQDbPGkmKa0tqLVnIZmWzbMqgc2RYBFA+xpTDxjWWdJ58SJE2G1WqNUMyIiIqLYImlKtKvQI5h4UsyprKyEoigwmUxQ3G402IeiOnUoAKCiDhAbZIx0V2N4yuDoVpQCikbS6R8z/fr16/byKfEwZihckiTpM5RymACFgjFDoVKRmF1r22PiSTGnsrISkiTBYrFAk2U4LamG/YLJgxapNUq1o84ESzpTUlIwYcKEiLV0+scMkwgKBWOGwsUkgsLFmKGQ9ZKlvZh4UszSFAXQNHhMxm61gsmDFAu72sYap9OJjRs3wu12G56PdNJJREREFM8yBGNKlqgL8DDxpJgzbNgwfVH32gsvwJYdgH8PBKdFhsg1sWJKtJNOX8yIIudLo9AwZihcNptNb72i+FRcXAwAmDJlCl599dVuLfvQoUOYPn06AGDOnDn429/+FpWYCVQPin0miS2eRFGRlpYGwNvi2ZiSAlV0AX5jrpuTWpGVlB6l2lEgkiRBlmXDcz3Z0umLGaJQMWYoXCZTYi7oTpHDmKFQmXvJQiO941NSXFJ/SmQ8mvHELac0IcOeEY0qURDp6emYMGGC/iWbmprK2WuJiIiIQiDaUqJdhR7BxJNilqZ4ux24VeOAfIutd3RHiDfp6ekYP348MjIyMGHCBE6kQERERBQCwdw7rpnY1ZZijtvthqZpUJyt0DRAQpJh//E5nIEyVmVkZGDixIk9PgbKFzOCIMBms/Xoe1N8YsxQuFS/WSdjaWywqrZNgiCKHH8aS2I1Zij2mJPtxicSdCw5E0+KOTt37oQkSTC5PUhVARXGrrZnDh4VpZoRAMiyDLM5+KkjGhNv+GLGYrFg/PjxPf7+FH8YMxQul8ul36xITo6NmdU9koIXl22D0yXDnmTGtTPHwGrhuMJYEYsxQ7FJ0hTA/3pXS8x1PZl4UszSWlvRVN0IwNjvPTWbEwtFS2trKzZu3IghQ4YgLy8v2tUhIurVyg42QJJUHKxqxrABGSg72IAxw3OiXa2IqqiowAsvvIBvvvkGhw8fht1uR3FxMf7nf/4HM2fOxHPPPYdHH30UgPcGU7jq6+vxxhtv4Ouvv8bevXvR2tqK7OxsjB8/HhdeeCHOPffckMv64IMP8M4772D37t0QRRHDhg3DjBkzcPnllyMpKanT15aVleG9997DmjVrUFFRgebmZiQlJSE3NxeTJk3CZZddhjFjxoT9+Sg2adZaDGqo1rdVk9zJ0fGLiSfFnMzMTCiKAmfZLuz5fiMwaKC+zwwJ9nQmntHgSzo9Hg/KysoAIGaST1/McAZBChVjhsIVi7GydU8Nmp0etLpkNDs92LanNqETzzVr1uDGG29ES0uL/pzH48HatWuxdu1afP755/qSKUfj888/x1133YWmpibD85WVlfj888/x+eefY/LkyXjyySeRnZ0dtBxFUXDzzTfj448/Njy/efNmbN68Ga+99hqef/55DB06tMNrVVXFAw88gNdee83QVRfwziDf3NyMPXv24O2338Ytt9yCX/3qV0f9eSl2yJoEi+rRtxWRiSdRjxg8eDAAoHzrdrhNxj7vmqigtOYwxuYOjkbVeq2WlhZs2rQJHk/bSbGsrAwWiwV9+/aNYs28fDFDFCrGDIUr1sYCV9W1orreifom7/rJ9U1uVCW3oqquFX2zE69b59atW3HDDTfA5XIBAKZPn44zzzwTFosFa9euxeLFi/HJJ5/g22+/ParyV6xYgQULFkBRvOu3TZs2DdOnT0dmZib27NmD9957D+Xl5Vi3bh2uvPJKLFq0CCkpgWci/fjjjyFJEpKTk3HZZZdh7NixqKmpwTvvvIPS0lIcPHgQ1157LT744AOkpqYaXvuPf/xDX2M0Ozsbc+bMwbBhw2Cz2VBeXo6PPvoIpaWlAIAnnngC06ZNw9ixY4/qM1PssFjdGFa3Ud9uTEvMFC0xPxUlBNXlgsds/PLUBAWyNba+/BNdoKQT8K6D2NkdXyIi6j5frz+EvYcb9W1JViHLKhytHiQnmeFo9UCWVSz5Zjcs5raJbIYNzMDpxw+KRpW71V/+8he4XC4IgoAHHngAc+fO1ffNmjULc+bMwQ033IDm5uawy3Y4HLjzzjv1XhAPPvggZs2aZTjmF7/4BW655RasWLECu3fvxkMPPYT7778/YHmSJCE3Nxevvvoqhg0bpj9/xRVX4LbbbsOnn36Kw4cP4+mnn8b//d//6fvr6urwwgsvAPD2KHr33XeRlZVlKPt///d/cffdd+O9996Dpmn48MMPmXgmAMVRB/8ZMoQEHePJKbYoZmmqCrfFeDdREBUkpXLh957S0tKid6/151u3s7NJhoiIqHsoiopte2qx93CT/u9QlQOHa1ogiAIG9U2DIAo4XNOCQ1UOw3Hb9tZCUeJ7GbLvv/8eGzZsAADMmzfPkHT6TJo0yZDEhePNN99EQ0MDAOC6667rkHQCgN1ux2OPPaYPMXnvvfdQWVkZtMwHH3zQkHQCgMViwQMPPIDc3FwAwLvvvgu3263vX7Fihf59++tf/7pD0gl4Z8e94YYb9O29e/eG+CkpluUJxh5+yQoTT6IelT35BIgDjWMIXWYFda6G6FSol/ElnZIkGZ73rdfJpJOIqGfUN7uhAUhOMqOuyYWq+lZUN7RCkhUM6Z8Gi1nEkP5pkGQF1Q2tqKpvRV2TC8lJZmia9/XxbMWKFfrjq6++Ouhxc+bMQWZmZtjlf/311wAAs9mMa6+9NuhxycnJuPLKKwF4WzW/+eabgMcVFhbi1FNPDbgvNTUVc+bMAQA0NjZi/fr1+r6LLroIn332GZ5//nmcd955QesxaFBbC7av6zHFN6tkvDlklhMz8eSVI8WcXbt2QZZlaIcrMD6zFoddR6DCDMlsQWO6CrOJYRtpDocDmzZtipuk0xczZrMZI0aMiHZ1KA4wZihc/ktjdDUjaXfrk2nH7NML8On3+2GzmnCoyoEWp4TcrGQkJ3kXnk9OsiA3KxkHK5uRYrdgUN9UZKTYcM7UIeiTae/iHWLbunXrAABZWVmd/r1arVYcf/zx+PLLL8Mqf9OmTQCAESNGICen88mZTjrpJP3x5s2bMW/evA7HTJkyBUDwmDn++OMNZfjKtFgsGDJkCIYMGRLwvY8cOYKtW7fi+++/15/zjUml+CaoVjTZ+ujbopiYv9fYunokgnf2VEmSILa2QrClQBNqIUCBZpYgWYHclMSdsS8WBEs6MzIyMG7cuJhLOoG2mLFYLNGuCsUJxgyFS1VVPYmIhrzcVFx2dhE+X3sAZpOIg5XNqGtyIT3Fqh9T1+jdzu+Xhvx+aTh7ymA9MY1nVVVVAICBAwd2cWT4E4c5HA69u2t+fn6Xx/sfU1NTE/AYX3fcYDHj/zmqq6sRyPr167F69Wrs3r0b+/fvx/79++FwOLqsH8WnKlcq1uVfqG/bpSaEvnBP/Ii9K0iin2iqCo/UNp20BkATVaRaE2+2vlgRj0knEVFvkZxkwc9OyMcrH23X15evbXTC5VGQZDUBQtu68z87IT8hkk4A+vjLUFqaw22N9l+axW7vumXYv3yn03lUdfB/H/8xnoB3zOadd96JjRs3BnztwIEDccYZZ+D111/vsq4UPxSTceJMTUjM0ZC8iqSYM378eABAg9mCraWHMMCcAgUaJKsJORnJSLOldlECHQ2Hw4GNGzdClo1rR8VD0umLGaJQMWYoXMnJsXHTs7q+FQDgdMtQVBUtTgnpKVYcqW2FIAAmUdSP828NjWc2mw2SJAVN9PyFO+bRPwkMpfzW1lb9cbAE0zdBULCY8S/DfzmVqqoqXHHFFairqwMA5OTk4KSTTsLIkSNRWFiIkSNHon///lAUhYlngvEoxkRTEWL3mutYJOanooSgKQokxYQ0k7eLitlsx/C8EUgyczmV7ibLMjZt2hQw6Rw/fnxMLpxORNQbVdU7IcsqZEWF2SRiUN9UpNgtaHFKOFTlgKx4l1mpqneiYFBmtKvbLfr3749du3bh8OHDXR4byjH+0tLSYLPZ4Ha7cfDgwS6P37dvn/64X79+AY/xdQ0Oxv99+vfvrz9euHChnnT+z//8D/74xz8GHA7Q1NTUZT0pvihIzMmE2kvMdlxKCM1lu9Bc64Dc6obs9ECVZSQnyN3bWGM2mztM+56Zmcmkk4goxlTXt8LpkZFit6BgUAb6ZiXjtOPykJuVjIJBGUixW+D0yKhuaO26sDgxYcIEAN4ut7t37w56nKqq+rIroRIEQV8Hc9euXaitre30eP+JfYqLiwMes3nz5k7LWLNmjf7Y99mAttl7k5KScNdddwUdg75jxw79sZag6z32Nk2SsbU9UX+rTDwpZpWv3YTDDSY0NSloqXfB1eREcipbOyNl4MCBKCoqAuBNOseNG8ekk4goxgwdmI6UJAuGDkjHsIEZ+J+zizB+RC4uO7sIwwZmYOiAtv2Jwn9pkddeey3ocZ988knQyXo6M336dADe3j8vvvhi0ONaWlrwxhtvAPCup3n66acHPG79+vXYuXNnwH11dXVYunQpAGDAgAEYN26cvs83ltVsNsNmC3698/LLL+uP2/dUovgkq4k5i217TDwp5tTU1KCqqgoVnlRUpRWgIr0IhzJHY48yANvqtka7eglt4MCBGDt2bNwlnb6YCTbDIFF7jBkKlyRJ+r9oGj8iF1dfMBpnHD8IF5063LCcyoXThuP04wfh6gtGY/yI3KjWsztNmzYNI0eOBAC88cYb+Oijjzocs3PnTvz5z38+qvLnzZuHjIwMAMALL7ygJ4b+XC4X/t//+396V97Zs2frs9e2p6oqbr31VlRUVBhiprW1FbfccgsaGxsBANdcc43hu9ZXnsPhCPgZZVnGgw8+aFjXtP3kRBSf1IRt4zTiGE+KOYcPH4YkSWhQjbPLiZDQJDdEp1K9SJ8+fbo+KMb4YsZiscRl/annMWYoXJIk6UtjRHsZnoxUGzIC9AASRQHjChIvnkVRxP3334/58+dDkiTccsst+Pjjj3H66afDZrNh48aNWLRoEdxuN0wmExRFgSiG3raSnp6OBx54ADfddBMURcHtt9+OpUuXYvr06cjIyMC+ffvwzjvvoLy8HAAwZMgQ3H333UHLy87Oxq5du3DJJZdg7ty5GDZsGGpra/HWW2/p4zunTJmCq666yvC6OXPm4PHHHwcA3HHHHVi9ejWOO+44mM1m7N27Fx988IFeB5/m5uaQPyfFrt7SZZqJJ8UsVTN+aQhQYLWlRKk2iaOpqQmqqiIzMzPaVSEiIgrJhAkT8Pjjj+OOO+5Aa2srPvvsM3z22WeGYy655BKUl5fju+++g9Ua3pwQZ511Fv7xj3/g97//PRwOB1auXImVK1d2OO6kk07CY489ZpiNtr3rrrsO3377Lb777js899xzHfafcsopePLJJzskx9dddx3WrVuHVatWQZZlvPPOO3jnnXcMx5hMJvz6179GSUkJvvjiCxw+fBgOh6PT+lDsy8jOABratrX46XQWFiaeFHPy8/Ohqip+ENYanldFGeUSF08+Fk1NTdi0aRMA73ISvq5F8c4XM+Hc4abejTFD4Qo3kaHud/bZZ+ODDz7ASy+9hJUrV+LIkSOwWq0YPXo0rrzySpx99tmYP38+AG8rZrjOOeccTJo0Ca+//jq++uorHDhwAC6XC/3798fIkSNxySWX4NRTT4UgCJ2WY7FY8J///Acvv/wy3n//fRw4cAA2m00v48ILLwxYhtVqxXPPPYdFixZh6dKlKC0tRWtrK1JSUjBo0CBMmjQJl112GQoKCvDaa6/hiy++gKIo+PTTT3HxxReH/XkpdthMxvNLon4zCVpvaduloBwOh2EQfHFxcUzcOXv+t8/gsC1f35aT9mHA+Um4cdr1UaxV/GpsbMTmzZuhKN4B7CaTKaGSTyKi7lJWVgZZlmE2m1FYWBjt6lAYzjvvPOzduxcTJkzA22+/He3qUIKI9Dlh+XOL8O3OtiFmVrhw56OXdPv7hCpSuUGiJtSUABTNeDdQtrowMHtQlGoT39onnQCgKAoOHToUxVoRERF1bcmSJfjlL3+J+++/H5WVlUGP2717t77O5ujRo3uodkTHzpSUZtgWhMRM0djVlmKWBGMHd8UsI63dHyZ1LVDSCXgnPxg1alSUakVERBSa9PR0fPPNNwC8k7Dce++9HY5xOBy4++679UlaZs6c2aN1JDoWgi0ZQJPfE0w8iXqEL0GS24XnINWDoZn5gV5CQXSWdI4dOzZhxrf5f754WgaGoocxQ+HyH5nU1Rg/6l6nnHIKBg0ahEOHDuH111/H9u3bcc4556B///5wOp3Ys2cPlixZoi+PNG/ePEyaNCnKtWbMELXHxJNizrZt2+BxuSCLxunqx0LD8OzBUapV/GloaMCWLVs6JJ05OTkYM2ZMwiSdgDdmfEtjjB8/PtrVoTjAmKFwOZ1OfTmV5OTkaFenV7FarXj66afxq1/9ChUVFdi4cSM2btwY8NjLL78cd911V89WMAjGDIVKdrUatlVVjVJNIouJJ8UmWYYsGmf4stkZrqHqTUknERElvpEjR+Ljjz/GO++8g+XLl6O0tBSNjY1ISUlBv379cNxxx+GSSy7hjSSKS+6mvRjY6Jd8Cp7oVSaCeCVPMSctLQ1uSeqQeCYlMVxD0dDQgM2bN3e4W5bISWdaWpo+2xxRKBgzFC6TyaS3XlF02O12/PznP8fPf/7zaFclJIwZCpUGD2wKE0+iHjds2DA0my1QxQrD8zs9rRjhakY6JxgKqr6+Hlu2bOmQdPbp0wejR49OyKQT8MYMUTgYMxQum80W7SpQnGHMUKjM5lYMrt+qb7tsiXmzgoknxSRnY2uH5xrtGhQtMfu8d4femnQSERERxTNVaoFibhsepZqZeBL1mNamjomnOVmDzWQNcDQBQE1NDZNOIiIiojgzcEg+yobs0rdFW2KmaIn5qSjutTQ6jU9oKvab3LCamXgGM2LECCiKgiNHjgAAcnNzMWrUKCadRERERDEsxWRFpuS/zFdipmiJ+akoru3btw9udy3y67dAFUxQBRM8ZhN2WlSYRa63F4wgCCguLgbgXaOwNyWd+/bt0yeKGTp0aLSrQ3GAMUPhcrvd+kQxHLtHoWDMUKjssCFFtuvbJikxU7TE/FQU15qamtDa6IBZkwFN9j4pCsjN7BvdisUB/+SzN82i19TUpK/JSBQKxgyFS1EUzlBKYWHMUKgO1Vvwuf1SfTtFa8KUKNYnUnpHcwjFHVWWDduaqCHVZg9ydO+jaVrQfYIg8EuOiIiIKE5oZuM1riYkZorGFk+KOaNHj8buPUewH3v152yiiKK+xVGsVeyoq6vD7t27MX78eHbd+cno0aN5V5nCwpihcNntdsYMhYUxQ6HyiDYAbn1bEROzN05iptMU18xmM1S/AdYAkGIyYVr+pCjVKHbU1tZiy5YtaGlpwcaNG+F2u7t+US9gNpthsVhgNvNeGoWGMUPhEgQBoigyiaCQMWYoVLLLeD2XqKsHMvGkmCS5XIZtkwkQzIl59ydUtbW12Lp1q97N1ul0YuPGjZAkKco1IyIiIqKjVVlTadhWleBDquIZb/VSTKquccJlToGoKRBVBQIAoRcvpVJTU4Nt27Z1GNuZnp7OFhsiIiKiOCYhQZs42+EVK8WchoYGlFQIqEsv0p9zuvej1t2EXEtuFGsWHcGSzn79+mHkyJHswgNvzPjG0WRmZka7OhQHGDMULtlv0jve8KNQMGYoVGqi9q1th38FFHMOHDgAjwzAL58SNRckVQn6mkQVLOns378/iouLmXT+5MCBA/rSGEwiKBSMGQqXx+PRb1YwiaBQMGYoVBoTT6LoUTSTIfE0wQ1rL+tqW11dje3btzPpJCIiIkpg6b0kJesdn5LiyoABA6Cad8G/u3tzigJV7R13g4DgSeeAAQNQVFTEpLOdAQMGQFVViCLnS6PQMGYoXBZL757gjsLHmKFQmT3Ga9xEvcpj4kkxJzc3FxAFQ+JZk+5BssUe/EUJhEln+HJze9/YXzo2jBkKF5MIClcoMXPnnXfi/fffBwDs3Lkz0lWKS/4/o+XLl2PQoEEdjvn000/xyiuvYNeuXXA4HEhLS8Ps2bNx55139nR1j4pF6B03QZl4UkxSVGNypZlcSLEmR6k2PaeqqgolJSVMOomIiIhC8NZbb+Gee+4xPFdfXw+rNX6GaInW3tG4wsSTYpKiGu/8mE1awpAQ8xwAAFxPSURBVCdddXV1AZPOgQMHorCwMOE/PxEREVG4Fi5cCAAQBAFXXnklJk6cCLfbjXHjxkW5ZqETLLZoV6FHMPGkmKPIKjQYE88RtsRv7UxPT0dqaiqam5v155h0EhEREQVWX1+P6upqAMD06dPxhz/8Ico1Ojpme5LxiQS97mPiSTFn48bNHZ47KT3xx2OZzWZMmDABmzZtQnNzM5POMGzZskVfGiOe7nBS9DBmKFytra360hjJyYl/M5SOHWMm8pxOp/54xIgRUazJMepwracFPCzeMfGkmCN5Os5ea7HFTz/9Y2E2mzF+/HgcOXIEgwYNYtIZIk3T9H9EoWDMEBHFP/8VD+J5rVSnqQb9mhv1bU2UolibyInf3xAlLHOA9Trl2oaer0iUWCwW5OfnR7saccVut8NsNnPWSQoZY4bCJYqi3npFPa+4uBgAsGDBAlx66aW4//77sWrVKgBAfn4+rr/+elx44YX68S0tLXj33XexatUq7Ny5Ew0NDQCAjIwMjB49Gueccw4uuuiigMnKz3/+c6xduxYnnXQSXnrpJRw4cAAvvfQSVq5cicrKStjtdowePRpz587FzJkzg8aEKIpoamrC66+/ji+//BL79u2D1WpFYWEhLr/8clx00UUhfXZVVfH5559j6dKl2Lx5M+rr65GSkoIhQ4bgjDPOwJVXXon09PSAr/V9lmnTpuE///kPdu/ejRdeeAHfffcdqqurkZOTgylTpuB///d/UVBQAABwuVx45ZVX8MEHH+DgwYMwmUwYPXo0rr32Wpx55pkh1bmzz/LNN99g0aJF2Llzp/7zLCoqwvnnn4958+aFNCnQwoUL8dRTTxmee+qpp/Tn5syZg7/97W/HVNeeJAgeJEtN+rZilqNYm8hh4kkxJzdnAIB9+ragqah0O1AYtRp1v/r6emRkZHANwW5SWJhI0UE9gTFD4UpKSur6IIo4h8OB+fPnY9++ffpzO3bsMCReq1atwm233aYnm/5cLhcqKyuxYsUKvPnmm3j++eeDJm0A8MUXX+D2229Ha2ur/pzb7cbq1auxevVqfPjhh1i4cGHAm1jl5eW47rrrcOTIEcNr169fj/Xr1+Orr77qspXuyJEjuOWWW7B+/XrD8w0NDWhoaMCmTZvw8ssv4+9//ztOO+20TstatmwZ7rrrLrjdbv25iooKLFmyBMuXL8eLL76I/v374/rrr++wtMvatWuxdu1a3H333bjqqqs6fZ9g6uvrsWDBAqxZs8bwvMfjwbp167Bu3Tr9d9KvX7+jeo94JVpcGNS4Q99uTknM60MmnhRzJI9i2BY0FR5z4vwBHjlyBDt27EBOTg7GjBnD5JOIKAF4PJ6jfq3JZILJZAq4T5Kko+4SHqlyRVGMWrfG//73v3C73Zg2bRouvPBCNDQ04Ouvv8a0adMAALt27cKvfvUrSJIEk8mE6dOnY8qUKcjJyUF1dTU2bdqEjz/+GKqqYtOmTXjyySeDTkizf/9+3HbbbfB4PJgxYwamTZsGs9mMNWvW4P3334eqqlixYgVee+01XHPNNYbXVlVV4YorrtCT38mTJ+OCCy5AWloatm3bhjfffBMffvhhp617jY2NuPbaa7Fnzx4AQF5eHubOnYvhw4ejsbERX3zxBVatWoWGhgbceOON+Ne//oVTTz01YFm7d+/W17ScO3cuTjzxRDQ2NuKdd95BaWkpHA4H7rvvPphMJuzcuRMnnXQSzj//fNjtdqxcuRJLly4FADz88MO44IILkJOTE/LvDPD+fVx55ZXYtWsXAG8r9dy5czFkyBBUVlZi0aJF2LNnD0pLS3HjjTfi7bff7jTGZsyYgVGjRqG2tlZfSmXGjBm44IILAHiXoYsnqrMRVsWlb5vVwH+38Y6JJ8Uct9vYr13QVJiTE2OMpy/pBIDa2lps27aNyScRUQJYvXr1Ub+2sLAQeXl5AfetXbsWknR0472GDh2KoUOHBty3YcMGQyteOAYOHIiioqKjeu2xcrvdOOOMM/Cvf/1L7+Lqn/T94x//0H9ejz/+OM4999wOZcybNw/XXnstNE3DsmXLgiaehw8fhsViwb///W89sQWAWbNmYfLkyXoi984773RIPB9//HE96fzVr36FW265Rd83c+ZMXHrppfj5z3+uz8gayN///nc96TzrrLPw6KOPGlreL7/8crz//vu46667IMsy7rjjDnz++edITU3tUFZFRQUsFguee+45nHzyyfrzF198Mc455xz9miRQfS+66CL06dMHL7zwAiRJwpdffol58+YFrXcgzz77rJ50nnXWWXj88ccNSffPf/5z3HDDDVi9ejW2bduGpUuXYu7cuUHLKygoQEFBAQ4dOqQ/N3z4cJx11llh1StW9IUV/reuktTEnH+AV7sUc5xOY792TVRRkxn/47AqKir0pNOntrYWVVVVUaoRERFR/PnlL38ZcFyl0+nE119/DQCYNGlSwKQTAE466SRMnDgRgLf7Z6AuuT5XXHGFIen0mTNnjn6zoKysDC5XW2tVXV0dFi9eDAAYP348br755g6vHzZsGP76178Gfd/Kykq9jEGDBuGRRx4J2N17zpw5etJbV1eHt956K2iZ8+bNMySdAJCamqq3EgLemxULFizo8NpLLrlEf+xLIEOlKApeffVVAEBubi4eeuihDi29FosFDz74oH4jftmyZWG9R7xLcht7+1mkxEw82eJJMcea5IZd3AUPBHjvjSiQk+N7Yd2KiooO4yUAb1eT3jaOIRIOHToEWZZhNpsxaNCgaFeH4gBjhsLl8Xj0yYVCmfyEIsNisWD8+PEB99ntdnz55Zc4cOBAwFY/f3l5ediwYQMAGJLG9s4555yg+4qKilBeXg4AaGpq0hPDVatW6bOtXnzxxZAkKWDMnH766Rg6dKhhvKrPt99+q7fcXnnllbDb7UHr8Ytf/AKvvPIKZFnGF198gV/84hcBj/NPMP35nwN/9rOfBeyF5d911X+98VBs2LABjY3eGVvnzp0b9HfTv39//P73v9cnG+pN7IIF9UJb99pEbRlk4kkxp9nRDEH0QNS8J21BkNA3N/CXTDwIlnQOHjwYw4YN4wyJ3aCurk5fk5FJBIWCMUPhkmWZiWcMyM/P7/Tn36dPH/Tp0yfgvpaWFuzcuRM//vijnnQC3ha5YHwzvQbin0DJcltvrU2bNumPx4wZA1mWg9Z50qRJARPPjRs36o+nTp0atA6A9zOPGDECO3bswJYtW4LOvjxs2LCAr09LS9MfB5tV3z/x9V/CJBRbtmzRHx9//PGdHnu0ExfFu/LWVHxd0PbZ7VITOrazxz8mnhRzVFltN+GBgiRbStTqcywOHz6M0tLSDs8z6SQiSiztuzCGI9gEQAAwZcqUY5pcKJjjjjvumCYXipbOZqD1V1VVhS+++AIlJSXYt28f9u/fj6qqqoCfubOfg39S1p7/5Df+yVhNTY3+uH///p3Wc/DgwQGfr6ur0x+HssRafn4+duzYAUmS0NTUhIyMjA7HBHquvWAtq8dyveL/8xg4cOBRl5PIVFP7btSJeX3IxJNizsD+A5BtSoICDSoAk6iiX0bfaFcrbEw6e05RURHX16OwMGYoXF0tpxKpVtBIrTUbr2vYdvVzlmUZjzzyCF599VVDK6SP3W7HiSeeiOrqan0ync4czey9/l1RMzMzO70BkJIS+MZ6S0uL/rizbrY+/vHpdDoDJpnRmonY180W4LJEwbgVY4zIYnz+fXaFiSfFHFHTkGluG9OZagIGZcdXV7hgSeeQIUMwdOhQXux2M36RUbgYMxQuzj4eH+6880588MEHALzJ9aRJkzBu3DgUFhaiqKgII0aMgNlsxu233x5S4nk0/Ftl3W53p+NNgy3D459sOp3OLses+s9QHGvnN//6dDaelhIfE0+KOe7GZiguCRAECAIgmCUIlvgZT1NeXo6ysrIOzzPpJCIiipz169frSWd+fj5efPHFoN1Uw50gJxy5ubn640OHDmHkyJFBjw02s73/ONWDBw9i1KhRnb7n/v37AXiTvMzMzDBqG3n+a35WVFR0OnHQ7t270dLSgsGDB8fc54ikBslp2E7MOW0Td9IkimPVe8rhqHOipcaBluomtO4/AtESH7PaBks6hw4dyu61REREEfTVV1/pj3/zm990OjaypKREf3y0Y12DOeGEE/THa9as6fTY9evXB3x+3Lhx+uPvv/++0zIqKyv19T5jcTbYMWPG6I/9J00KZOHChZg3bx5OOukkOByOCNcsdsha8AmuEgkTT4o5m3Y4cChzNA5mjcWBrPGoSs6HHAeRKsuyfsfRX2cLeFP3cDgcaG5u7lVfUnRsGDMULkVR9H8Um/zX40xOTg563CeffIIjR47o24HGgh6L0047DTab94b566+/DqfTGfC4rVu3GmbA9Xf66afr43Bfe+21oGUAwIsvvqhPbnTGGWccQ80jY9KkSXpX4SVLlsDtdgc8rqmpCd988w0A7/qnXXUvTiSKFt5MwfEqDi7nqbfxeCTDtqjJEONgdi+z2YwJEyYYJmxg0tkz9uzZg9LSUv2OL1FXGDMULrfbDZfLFfSimaIvLy9Pf7xo0aKALZmrV6/GPffcY3iuu3+nycnJ+rIg+/btw913390hua2ursbtt98etIy+ffviwgsvBODtanv77bcHHB+5ePFivPzyywC8XVovv/zy7voY3SY5ORmXXnopAG/PsHvuuafDz8Pj8eCee+7RJ1WKxc8RSd3d6h6rOMaTYo6iGpNMUfPAJAafES6WpKSkYMKECdi0aRMGDRqEIUOGRLtKREREvcKMGTOwcOFCSJKElStXYt68ebjwwguRm5uLqqoqfP311/juu+86XORHoufDb37zG3zxxRfYu3cvPvzwQ5SVleGSSy5Bbm4uSktL8cYbb6ChoQE5OTmora0NWMbvf/97rFu3DgcPHsTnn3+OGTNm4OKLL8awYcPQ1NSEL774AitXrgTgnfzqr3/9K7Kzs7v9s3SHm266CV999RX27NmDxYsXY9u2bZgzZw4GDBiAgwcP4r333tPXMz3ppJMwa9asbnvvhQsX4qmnngIA/Pa3v8VNN93UbWV3l9T0NKChbVtL0KZBJp4Uc2TNmHgKkONqbGRqaiomT57MBcZ7UG5uLlRV5ayTFDLGDIUrWktRUOjy8/Nx77334t5774WiKNiyZQu2bNnS4bhJkyZh5syZuO+++wAAO3fuxKRJk7q1Lna7HS+++CJ+/etfY/v27SgtLcUDDzxgOGbatGmYMmUKHnvssYBlpKen47XXXsNvf/tbbN68GeXl5XjyySc7HJeZmYnHHnsMp5xySrd+hu6UnJyMV155BTfeeCO2bNmCsrIyPPzwwx2OO/nkk7Fw4cK4uu7rDkk24zVjon58nkUp5ggCDNN5CULwcQ2xiklnzxowYEC0q0BxhjFD4eJ5PT7MmzcPxcXFeOmll/Djjz+itrYWZrMZOTk5GD16NGbNmoUzzzwTzc3N+Otf/wpJkvDxxx9j/vz53V6XAQMG4K233sKiRYuwdOlSfZm1oUOHYs6cOZg/fz5eeumlTsvo168f3n77bXz00Uf48MMPsWXLFtTX1yMzMxP5+fk4//zzMXv2bMMSLrEqNzcXb7/9NpYuXYply5ahpKQEjY2NSElJwdixYzFnzhzMmDGjV94QtLdbtzNRfwKC1ls6FVNQDocDO3fu1LeLi4ujOqD7gdvfg6y2fcEPb12OK595PGr1CeTgwYNQFIXjN4mIElBZWRlkWYbZbEZhYWG0q0NEURbpc8KKl5ZhpV/jvFXw4M5H5nb7+4QqUrkBWzwp5qiq8T6PKMbWTF8HDhwwTEjC5JOIiIiIjpZoTwfQpG8LQmK2eSbmp6K4pWkaVBgnEko1xU5H9/ZJ5759+wIuoUJERERERG3Y4kkxRVU0oN3SKX0slsAH97D9+/dj7969HZ7vjWMRYk1JSQkkSYLFYsGoUaOiXR2KA4wZCpfT6YSmaRAEAXa7PdrVoTjAmKFQaYpxeRktQdf1ZOJJMUWWOy7MbbZEfymVYElnQUEB8vPzo1Aj8idJEiRJ6vpAop8wZihcmqb1mrX2qHswZihUjuoy9HG0JZ8iEnO9YCaeFFMkqeMdHos1uonnvn379LWl/I0YMQKDBg3q+QpRB5afWsUtMdI6TrGPMUPh8i3v0NuWeaCjx5ihUIkmN9I8jW1PCJ7oVSaCmHhSTHG7OrZANDc1R6EmXkw64wO7SlK4GDMULnaVpHAxZihUgtiKAU279G13gq7exMSTYkqgFk+YotNNJVjSWVhYiLy8vJ6vEBERERElHMHjgF12tD0RQxNrdicmnhRTZKnjGE+TqWfDVNO0oLPVMukkIiIiou6Und8fuwvaWjwFW2KmaIn5qShutU88BU2Faum5uz5MOomIiIioJ2Vak5GptvX6MyXmpLZMPCm2ZOWkIMO9G0keQIMAQADy0nrs/YMlnUVFRRg4cGCP1YPCU1FRAVVVIYoiBgwYEO3qUBxgzFC4PJ62yT6s1gQdgEXdijFDoco0J2Ggu63xRRQ69gBMBEw8KaaYzAKsigPJfmM9MwcN77H3T01NhSAIhunPmXTGvurqan1NRiYRFArGDIVLlmV9TUYmERQKxgyFal+1GZ/br9S3U+DAuCjWJ1LEaFeAyJ9b9kBsN5eQ1Z7cY++fm5uLUaNG6VOfFxcXM+kkIuplTCbvMl6KonAdRqJeTtM0KIq3BdJ3buj297AkQxEsfv8Ss20wMT8VxTEBNs1vTKcGpKT0XFdbAOjbty8A7wUHW0Liw/Dhw/W7ykShYMxQZ6xWK9xuNzRNQ2trK1JSUmCz2aJdLYozjJnE0Nraqt+AilTLtQtWAG1ds2UhMVvImXhSTDHDBIsmwNfRVoQKe3LPJp5AW/JJ8SE1NTXaVaA4w5ihzqSnp6O52buGdF1dHZKTkyPW0kGJizET/zRNQ11dnb6dnp4eoTdK0NmE2mFXW4opqixDU9u6NQmaCjEpqdvfR9M0tLS0dHu5REQU/3zj/QHA4XDg0KFDaGlpYbdbol7Cd5146NAhOBze9TUFQYjYTcsjlRWGbUVOzHMNWzwppricHsiaAAEiBKgQoEG0dG93A03TsHv3bpSXl2Ps2LHIycnp1vKJiCi+iaKIvLw8lJeXQ9M0OBwOOBwOCILAViyiXqD9+G5BEJCXlwdRjEybnaTKESk31jDxpJjyw/elOJDZNo+X3dMIxe3p5BXh8SWdhw4dAgBs3bqVyWcCcLlc+ni9pAi0kFPiYcxQV9LS0gzJp6qqEARB/5+oK+0TF4pPvqQzLS1yQ7/kXtLVloknxRSno9mwLWgaTHZ7t5StaRp27dqF8vJyw3Pbtm3D1KlTOdV5HCstLdWXxhg/fny0q0NxgDFDoUhLS0NRUREcDgd2796tJ52RvAClxNHc3Kzf4GLMxBeTyQSr1Yr09HSkpqZGrKXTp7d042fiSTFFckmGbREKTMkpx1xuoKTTp7i4mEknEREFJIoi0tPTYTKZoKoqzGYzCgsLo10tigObN2+GJEmMGepSSi+ZdoeJJ8WURrcTQFsLpypqsBzjXUJN01BWVobDhw932Ddq1Cj069fvmMqn6MvOzoYsyzCbeUqj0DBmKFyMGQoXY4ZCZZWMLZ6J2jGbfwkUUxRRMWzLVjfMqUff4hks6RQEAaNGjeKyKQli0KBB0a4CxRnGDIWLMUPhYsxQqKy9pMWzd3xKihuiaLzHY4ELwlH2q2fSSURERESxTjD1jiFfbPGkmKJIxlm9REGFcBRdVDRNQ2lpKSoqjOsiMekkIiIiolgiJiVHuwo9gi2eFFOSYbzjY0f409Z3lnSOHj2aSScRERERxQyTrV2LZ4IO8mSLJ8WUFMH4h5cV5uzSXSWdubm5x1pFikFlZWX60hicOZBCwZihcDFmKFyMGQqVYDJFuwo9goknxRRZUgG0/fGZwmyTr6mpYdLZCzmdTkiSBFmWo10VihOMGQoXY4bCxZihULmFBmS1tujbguCJYm0ih4knxRR3sxNAqr4tNzrDen2fPn2Qn5+PgwcPAvAmnWPGjEGfPn26s5oUYwRB0P8RhYIxQ+FizFC4GDMUKsHiQqarSt9WzIl5s4KJJ8WUJpdx26mFN8uXIAgYPnw4AODQoUNMOnuJcePGRbsKFGcYMxQuxgyFizFDoVJFJ/o69unbLcmJebOCiSfFFKXDmE410GGd8iWf/fv3R0rK0a8BSkREREQUaaKnCameBn1bsSbmmE/OaksxRdWMISkeReIJeJNPJp1EREREFOsyYUw0rVqYs2vGCSaeFFNkk7FrgZwe+I6PpmnYtWsXWltbe6JaREREREQRkdyqGLatnsRMPNnV9ieapmHZsmV49913UVJSgtbWVuTm5mLy5MmYP38+xo8ff8zvUVpaihdffBFr1qxBVVUV0tLSUFBQgNmzZ2POnDkw9ZKplDujJh+ByWH5aUuAkNrS4RhN01BSUoKqqipUV1dj4sSJsNvtPVtRiinV1dVQVRWiKHL2YgoJY4bCxZihcDFmKFRpJiscftsWMPFMWC6XCwsWLMBXX31leL68vBzl5eX44IMPcPPNN+OGG2446vdYtGgR/vSnP0GSJP25uro61NXVYd26dXj//ffx9NNPIzMz86jfIxGYbS7AbzrpjDTj5EL+SScAuN1ubNy4kclnL1dRUaGvlcYvdwoFY4bCxZihcDFmKFSHW1Owesgl+rZdduCkKNYnUph4Arj77rv1pLOgoACXXnop+vTpg23btuHNN99Ea2srHn30UfTr1w+zZs0Ku/yVK1fij3/8IzRNg91ux2WXXYaxY8eitrYW77zzDkpLS/HDDz/g1ltvxfPPPw9R7MU9oNtNOW5KTdcfa5qG7du3o7q62nCMJElwuVxMPImIiIgo7iimJLgsafq2wBbPxPTtt99i2bJlAICpU6fiueeeg81mAwDMnDkTl1xyCa644go0NDTggQcewPTp05GamtpZkQYejwf33XcfNE1DcnIy/vvf/2LMmDH6/ssvvxy33norPv/8c3z77bf46KOPMHPmzO79kHGkjzkFbtE7blMDkGb1ThCkqipKSko6JJ2iKGLs2LHIysrq6apSDBk8eDA0TeNaaRQyxgyFizFD4WLMUKicsjElk8XwlhOMF724ac3rhRdeAACYzWb85S9/0ZNOn4KCAvzxj38EADQ0NGDRokVhlf/ZZ5/h0KFDAIDrr7/ekHQCgNVqxUMPPaR3sX322WeP5mMkDK2lP2Q1H7KaD0XNhw05nSad48aNQ3Z2dpRqS7EiMzMTWVlZvb6rOoWOMUPhYsxQuBgzREa9OvFsaGjA6tWrAQCnnnoq8vPzAx43Y8YM5OTkAAA++eSTsN7jo48+AuBd3uPyyy8PeExKSgrmzp0LwDsB0d69e8N6j0RS3yKiSUnW/7V6ELB7rS/pZEsnEREREcWzJtlp2E7Mjra9PPH84YcfoKredSKnTp0a9DhRFDF58mQAwKZNm9DY2Bjye6xbtw4AUFxc3GnLnP/7f/PNNyGXn2g0WW57DA0Vh/ehpqbGcAyTTiIiIiJKFJJ6dOvWx5tenXiWlZXpj4uKijo9dsSIEQC8E9yUlpaGVH5lZSWampoAAIWFhZ0eW1BQoD/esWNHSOUnIt96uRo0wFyPVkE27BdFEePHj2fSSQayLEOSJMiy3PXBRGDMUPgYMxQuxgyFStaUrg9KAL16cqHy8nL9cV5eXqfH9u/f3/A6XwtoZ3xjO0Mpv1+/fhBFEaqq4vDhw12WnbA0TU86YXJBVdtO1r6kk2MlqL3t27frU9Z3x5q7lPgYMxQuxgyFizFDIUvUvrXt9OrEs66uTn/cVQuaf7LT0NAQUvn19fUhl2+xWJCcnAyHwxFy+YnIP+kEgAZ3Mr7/5EeYICLZk4zS90pg1dzoJx9GtnIETgtQawM8ZgtcyIEo2NGqDYYoWKHKCqCq0GQJGjQoogBJBBQAAgARAiyiCanZaRDcLtjgRj9zLQbYq1ABCTX1LbDWS2g1ZQNiChy2ITCnta3DpbQ2QoMGFzTIbhlQvGcNEYAJAswQYYICm+ZGhlKLQfJ+tJhUNNpFtJpMcAuZEIQ0uLX+0IRUaIr60z8PoAGyoEE2CfCl3iIEWAQBaVnpgCwjCU6kownFqYdxAG7Ut7ogVjjhMWVAFtPhtPSHmNk2bll1OaCpCpxQIUsKIKl6fUUIsECEAA12OJGktKBQ2gmHoMKRYkKTCEimdKjIgqRlQxWyoakaNFmBpsiApkIWNCgmAZJeX8AEEekZqdCgIVlzwqI6MTF9Hw5DQr3sgbq/CbIpFR4xG24hE1rOCH32P9XdCk2R4IYKWVGhuhRA8P7uBAA2mAAASXACioTRzvVoETR8nmZFrUmDak6FpOVARipUYQCgaVAlBZoqA6oKBRoUswCPX30FCEhPTYFoFmFTXRAUN45P24MG0YN6yGjdUw+ISXCKuZCFZMiZIyGavadRVXJBk9zwQIOsqVBaJUAQOtTXBjdMqoQiTwk0OOFKMqHSrAIWO1xaX2iwwYPBECFAlWRomgIoClR4f75uQfuppt7fW4o9CdYkKyyyC6LqxqiUg1DNDjRCQfXBetgUE5qF/oBoRWvaKFhsSd6/NUWC6m6FDA0SNMitbWsMiwAsEH+KCw8smoTB0h7Y1Qa4rQKOWFVoliQ4tVyIsKAVw2ESRO/PV1MAWYYKDaoowC1q0Pzqm2S1wJ6WDNHjglVzY4jtCFJtDaiBhOrKRthagRYxF4JoQ1NyMazJ3unlNU2B6nRAgQYPNEguCYLaVl/v35sAM+SQzhGqYoKmKICqYbW2hueIBD9HiKqMcZ5NaIWK1mTTUZ0jhJ8iOSXJhh+XlPAckeDniO64jqisbYK1XoZTzMI2SzrPEQl+jjiW64i65hz40xK0T2qvTjxdLpf+uP1stu1ZrW3TGvu/rjNOZ9tA4a7K9x3jcDhCLj8RaQAgtN32kU1JkDU7IGXDKdjw0zkCYmM9UuubYQLQ96djK9Ky4LSIqM1Ig2xKaiu0syhXgboaAPAeL0s1SFX2osFmgeDQ0KdSRlVKDhw2G2oz0uExTHdtPEn46hZIP6eKPpVbYAKQ/dO/muRkNCWJaEhNQas1I6RyoAH1+v2SNOQqEvKO7EaD3QKPG8gvl1CflIr65CQ0pqTDUe9f38yQ65sq1yKvYh1EAOk//WuymVGTkgOH3Y5Ge4j1BdA2JDoVSWoLRlQtR1OSGS2agMHlElosFlSmJaHFloa6BovfK9ONBXXyexREFYUHVsEEILnKiWQALrOCw+l94bEmoTrVr74iOh1k0OzwPfIu5VNYvQKNVgVNZhH9DkvQoOBg5mC4zak44h9nSP3pX9f1hQkYcHgjkiUHrADyAShCK/ZnDYTbZEVlRqbfh+u8rGYnACcAJAMA+tWuh2iqQYPZhPQjCtKcKpqyhkEWrThiSgVa/Svot/ZtF7/H9Oq9sLR4/+a8/Tcc2J/ZD7Iooiq73Y21zurrAVAL/b3ttbuhYh8arGbYalX0aVDgSh8Ij9mGKjEdmttXMTMAv/Oo0HmdQzpHdFEGAJ4jgojHc0TB/pUAvH8px3KOcLgAuACeI4wS8hwRQn07O0eYHRr6VcqoSsnlOQK95xxxdNcRaYYyEnUFnl6dePr3ufdPLAPx3x9qX31Faeuv3VX5/sdEeyzArl27UFBQgLS0tj8Ct9uNnTt3AvC2/g4ePLjDa1pbvd9W7buT1NTU6N2H8/PzDa2/iqJg27ZtAIC0tDSIJgWQsgFLHSC6AU0ApBwIWmKuZ0RERERE5M8Mb2uyqqrYunUrAO8qGP5zwgDA/v379UlPR40aBYulLfFuamrCvn37AHiHDPbt29fw2q1bt0JVVSQlJXWY66b9ahLdpVcnnklJbXezJEnqNDn0eDz641CSSMDYyilJUidHGt/DP2iiQVEUfbZfH03T9M/gn1D7+AbQB6Kqqr6vfblA289GlmVMKLTghzIBmpTt7XKrpDLpJCIiIqJeY0Cq3vXAcJ3cnv/1t6YZB4r6X38HunaXJAmqqsJk6tjkHOh6vTv06sQzOTlZf+x2u0NOPEPpNhuo/K74jvFPiKPBZDJBFI19CARB0BPiQAFqNpuDJsyiKOr72pcLtCXaZrMZ5/1yNrIXL8f3q/dCcwuA5oQAAWYAZsGkj83ITXHCkpQKh6iiLkmAZLHCI4gQBRU5WjNEwQ3J7QFUDYIqAwIMYzMADSIEmAUR6VnpECT3T2MzBCTbhsAuO9GQ5EKVWYHLrMEsupFja4I5zQaP5IGmaRA8rRBFwTA2Q9O85ZoAWAQRJqjesRnWetgGpKEZChrtApxmMySTFYKgIlNrQYYgQPZI0FQVUGSIgtBubIb2U28qAWmZ6RBV9aexGU6kpA6H3eOA5PSgSvVAMptgEl3IsDQhKzMDkuw9sQgeJ0yiYBybobX9LKyCCBHwjs0QWpA8IB2NquQdm2ESoFqSoUFFquZEstAIRZKhKgqgKhChQRZgGJsh/FRuWloKRFHUx2akDipAkqcFTkVClasVisUGk+hCitCM5EwJiqpAURQIshuipsIjaG1jM2CsrwBBH5uRPCAdzaqMVruAOrMAWNOhagqscGGA0AhFUaFKEqCqEKBCBQKO30pLtsNstehjM9L6D0Gr4oBNk1HjbIZgskMUnbAJAvLSXNBEwftlIEswaTIkAYbxW9C85VohQBREffxWWh8bFDUZTpuAKgsgWpOhQIYJHvRDA6ABiscDaCoETYUGtBu/5S3XbrXCnmLXx29l982FS7PArkloVJrhUs0QBCcsooL+yQ6YrFbvF5EqwyR7vH8X/uO3fqqvBQJMgqiP38rM1CCmpcBpBqptGjSrHR6oEKGiL+phguj9m9NUCKoCTYBh/Jb+ezOZkJqZpo/f6puTApt5EOyKGw1iK6pTAcUkwSyK6JvUBEtyqvf8q6kQJe/P2zB+66f68hzBcwTPETxH8BzBc0TcnyMgY0CuFef+5oqA18nt+V9/C+365/pffwe6drdYLFBVNeD1e6Dr9e7QqxPP9PS2vt8NDQ2GrqXt+U/409l6nMHK72rtT0mS9K6qoZYfKSNGjEBqaqrhOZvN1umMbL7lZgLp06cP+vTpE3CfyWTqUO7Ui8/B1IvDqHAEjInu24ct+E8/NhV0fUhMKY52BSjm8BwRWTxHULzjOSKyess5wreiQzBDhgwJui89Pb3T144dOzbovtzcXMMkrN2lVyeeQ4cO1R9XVFQgPz8/6LFHjhzRHw8cOPCoyu9MZWWl3qwdavmJau/evZBlGWazGcOGDYt2dSgOMGYoXIwZChdjhsLFmKFwJXrM9OrE03+AbllZGaZMmRL02LKyMgDeZuzCwsKQys/KykJOTg5qa2v11weza9cu/XH7Ab69TXNzs77uFVEoGDMULsYMhYsxQ+FizFC4Ej1mEnSVmNAcd9xx+i92zZo1QY9TFAXr1q0DAIwcOdLQhbYrkydPBgCUlJSgubk56HHff/+9/rizBJiIiIiIiCje9OoWz/T0dEydOhUrV67El19+icOHDwfs5vrhhx/q/ZzPP//8sN7j3HPPxSeffAJZlvHGG2/ghhtu6HCMw+HA+++/DwAYNmwYRo4ceRSfJnGMGRNvIyMo2hgzFC7GDIWLMUPhYsxQuBI9Znp1iycAXHPNNQC8k/vceuutcDgchv27du3CX//6VwDe9XPmzZsXVvlnnXUWBg0aBAB4+umn8cMPPxj2ezwe3HHHHfrkRddee+1RfIrEYjKZ9H9EoWDMULgYMxQuxgyFizFD4Ur0mOnVLZ4AMG3aNJx77rn49NNPsWHDBsyaNQuXX345BgwYgO3bt+ONN95AS0sLAOCOO+7oMOPsmjVrcNVVVwHwdpF99dVXDfutVivuvvtu/PrXv4bL5cI111yDefPm4fjjj0dDQwPefvttlJaWAgCOP/54XHLJJT3wqYmIiIiIiHpOr088AeChhx5CS0sLVq1ahUOHDuHvf/+7Yb8gCPjtb3+Lyy677KjKP/PMM3Hvvffir3/9KyRJwuuvv47XX3/dcMy4cePwz3/+M2HvcBARERERUe/FxBOA3W7H888/jw8++ACLFy/WJwLKzMzECSecgKuuugonnHDCMb3H5ZdfjkmTJuHll1/G6tWrUV1dDYvFgqKiIlx44YW49NJLE3YGq3DV19dDVVWIooisrKxoV4fiAGOGwsWYoXAxZihcjBkKV6LHDBPPnwiCgIsuuggXXXRRWK878cQTsXPnzpCOLSwsxF/+8pejqV6vcvDgQX0q6UT8o6Pux5ihcDFmKFyMGQoXY4bClegx0+snFyIiIiIiIqLIYosnxZyBAwfq3QyIQsGYoXAxZihcjBkKF2OGwpXoMcPEk2JOnz59ol0FijOMGQoXY4bCxZihcDFmKFyJHjOJmU4TERERERFRzGDiSURERERERBHFxJOIiIiIiIgiimM8KeZs3rxZn0p6/Pjx0a4OxQHGDIWLMUPhYsxQuBgzFK5Ejxm2eBIREREREVFEscWTYk5ycjJkWYbZzPCk0DBmKFyMGQoXY4bCxZihcCV6zAiapmnRrgRFl8PhwM6dO/Xt4uJipKamRrFGREREREQUDZHKDdjVloiIiIiIiCKKiScRERERERFFFBNPIiIiIiIiiqjEHLlKce3AgQNQFAUmkwmDBw+OdnUoDjBmKFyMGQoXY4bCxZihcCV6zLDFk2JOQ0MD6urq0NDQEO2qUJxgzFC4GDMULsYMhYsxQ+FK9Jhh4klEREREREQRxa62FHOKi4uhaRoEQYh2VShOMGYoXIwZChdjhsLFmKFwJXrMMPGkmGOz2aJdBYozjBkKF2OGwsWYoXAxZihciR4z7GpLREREREREEcXEk4iIiIiIiCKKXW0p5jQ3N0NVVYiiiLS0tGhXh+IAY4bCxZihcDFmKFyMGQpXoscME0+CoiiG7dbW1ijVxGv37t36GkYjRoyIal0oPjBmKFyMGQoXY4bCxZihcMVKzLTPBdrnCkdL0DRN65aSKG5VVVXh4MGD0a4GERERERHFmPz8fPTt2/eYy+EYTyIiIiIiIoooJp5EREREREQUURzjScjMzDRs22w2mEym6FSGiIiIiIiiRlEUuN1ufbt9rnC0OMaTiIiIiIiIIopdbYmIiIiIiCiimHgSERERERFRRDHxJCIiIiIioohi4klEREREREQRxcSTiIiIiIiIIoqJJxEREREREUUUE08iIiIiIiKKKCaeREREREREFFFMPImIiIiIiCiimHgSERERERFRRDHxJCIiIiIioohi4klEREREREQRxcSTiIiIiIiIIoqJJxEREREREUUUE08iIiIiIiKKKCaeREREREREFFFMPImIiIiIiCiimHgSERERERFRRDHxJCIiIiIioohi4klEREREREQRxcSTiIiIiIiIIoqJJxEREREREUWUOdoVoMSjaRqWLVuGd999FyUlJWhtbUVubi4mT56M+fPnY/z48cf8HqWlpXjxxRexZs0aVFVVIS0tDQUFBZg9ezbmzJkDk8nUDZ+EekqkY0bTNCxfvhxLlizB5s2bUVdXB4vFgry8PJxyyim46qqrMHDgwG76NNQTeuI8E8if/vQnvP766wCAnTt3RuQ9KDJ6ImZcLhfefPNNfPrpp9i7dy8cDgdycnJwwgkn4Morr8Txxx/fDZ+EekpPxMz69evx2muv4ccff0RNTQ1sNhuGDBmCM888E1deeSUyMzOP/YNQVPm+N37729/ipptuOubyysvL8eKLL2LlypU4fPgw7HY7hgwZggsuuACXXXYZkpKSuqHWkSFomqZFuxKUOFwuFxYsWICvvvoq4H6TyYSbb74ZN9xww1G/x6JFi/CnP/0JkiQF3D9p0iQ8/fTTPFnHiUjHTGNjI2655RZ8++23QY+xWq3485//jNmzZx/Ve1DP6onzTCDff/89rrnmGvi+Npl4xo+eiJkdO3bgpptuwoEDBwLuFwQBv/rVr3DzzTcf9XtQz+mJmHn44Yfxn//8J+j+3NxcLFy4EMcdd9xRvwdF13fffYfrrrsOqqp2S+L59ddf45ZbbkFLS0vA/UVFRXjmmWcwaNCgY3qfSGHiSd3qtttuw7JlywAABQUFuPTSS9GnTx9s27YNb775JlpbWwF4T7azZs0Ku/yVK1fil7/8JTRNg91ux2WXXYaxY8eitrYW77zzDkpLSwEAp5xyCp5//nmIInuTx7pIxoyqqrjqqquwbt06AMDAgQNx8cUXY/jw4WhpacGqVavw2WefQVVVCIKAf/7znzjzzDO79wNSt4v0eSaQlpYWXHTRRTh06JD+HBPP+BHpmDl48CAuvfRS1NXVAQBOOukknH322cjMzMT69euxaNEiuN1uAN7Wj8suu6ybPhlFSqRj5j//+Q8efvhhAIDFYsGll16KcePGoampCZ9//rn+vZWeno733nsP+fn53fTJqKds3boVV199NRwOBwAcc+K5c+dOzJs3D263GyaTCZdccgkmTZqElpYWLFmyBBs2bAAAFBcX46233oLdbu+Wz9GtNKJusmrVKq2oqEgrKirSrrrqKs3lchn279q1S5syZYpWVFSkTZkyRWtubg6rfLfbrZ155plaUVGRNnHiRG3r1q0d9v/mN7/R6/DBBx8c82eiyIp0zLzzzjuG8ltaWjocs3z5cm306NFaUVGRduqpp3aoA8WWSMdMMPfdd5/+vr5/FB96ImZ+8Ytf6O/x7LPPdti/YcMGbcyYMfp7uN3uo/48FHmRjpmGhgZt4sSJWlFRkTZ58mRtx44dhv2qqmqPP/64Xodbb731mD8T9ayvvvpKmzRpkuE748knnzymMi+77DKtqKhIGzVqlPbVV18Z9qmqqt1///36e/3rX/86pveKFDYHUbd54YUXAABmsxl/+ctfYLPZDPsLCgrwxz/+EQDQ0NCARYsWhVX+Z599prc2XH/99RgzZoxhv9VqxUMPPaR3sX322WeP5mNQD4p0zLz11lsAAJvNhkceeQTJyckdjvGNowGAyspKfPPNN2F/Duo5kY6ZQL7//nu88cYbAIC0tLRjLo96VqRjZu3atVi5ciUAYO7cuQG7Xk6cOFFv5WxoaMB3330X9uegnhPpmPn222/1FtPrr78excXFhv2CIOB3v/sdBg8eDABYvnw5ZFk+qs9CPcvj8eDJJ5/Er371KzQ1NXVbuRs2bMD69esBALNnz8bpp59u2C8IAu6++24UFBQA8MZwsCFp0cTEk7pFQ0MDVq9eDQA49dRTg3YJmTFjBnJycgAAn3zySVjv8dFHHwHw/nFdfvnlAY9JSUnB3LlzAXgnINq7d29Y70E9J9Ix43A4sHnzZgDAySefjNzc3KDHnnfeefrjTZs2hfwe1LN64jzTXktLC+6++25omoZZs2Zh1KhRx1Qe9ayeiBlfd0ybzYZbbrkl6HGXXHIJLrvsMtx44436e1Hs6YmY8e+yP3LkyIDHiKKIsWPHAgCcTifq6+vDeg/qeatXr8b555+Pp59+GqqqIjk5Gddee223lO27BgaAK664IuAxoijq+xoaGvD99993y3t3Jyae1C1++OEHqKoKAJg6dWrQ40RRxOTJkwF4L/AbGxtDfg/feIfi4mJkZ2cHPc7//dl6FbsiHTP19fUYN24ccnNzMXz48E6PzcjI0B935x1K6l49cZ5p75FHHsGhQ4eQm5uLu+6666jLoejoiZj54osvAHhvcPXt2zfocSNHjsSf/vQn3HzzzXpCQbGnJ2ImNTVVf3zw4MGgxx0+fBiAdyIj/+8pik1Lly7VbyqMHTsWixYtws9+9rNuKdt3DZyRkYHRo0cHPc4/Zn09MWIJE0/qFmVlZfrjoqKiTo8dMWIEAO805b7JgLpSWVmpJwSFhYWdHuvrZgB4Zxmk2BTpmMnPz8eiRYuwatUq3HHHHZ0eu3v3bv0xZ0OOXZGOmfb8u9jee++9jI04FOmYqaqqQm1tLQBvd1ofSZJQUlKCb775Blu3bmU3yTjSE+cZ/2VY/vvf/+oTT/lbu3at3mtnypQpsFqtIZdP0ZOdnY177rkHb7/9th4fx0pRFP06paCgoNOJM4cNG6YvKRiL18BMPKlblJeX64/z8vI6PbZ///4BX9cZ/24pXZXfr18//Y/Sd7eQYk+kYyYc7777rv54woQJ3V4+dY+ejBn/Lrbnn38+zj777LDLoOiLdMzs2rVLfzxo0CBIkoSFCxfitNNOw+zZs/HLX/4SF198sT7TuqIoYX4C6mk9cZ4ZO3YsTjvtNADAnj17cOWVV+L7779Hc3Mzjhw5gtdffx2/+c1voKoqUlNTcfvtt4f5KSga5s+fjxUrVmD+/Pndup58TU0NPB4PgK5j0mQy6UOLYvEa2BztClBi8E0hDwBZWVmdHuvfatDQ0BBS+f5jG7oq32KxIDk5GQ6HI+TyqedFOmZCtXLlSqxYsQIAkJOTg1NOOaVby6fu05Mx4+tim5WVhXvuuSfs11NsiHTMHDlyRH9stVpx5ZVXYuPGjR2Oa2howN///nds3LgRjz/+OCwWS0jlU8/rqfPME088gVtvvRVfffUVNm/ejKuvvrrDMccffzz+8Ic/dJhMkWLTuHHjIlJuODEJeLvjHjlyJCavgdniSd3C5XLpj9vP/taef3cR/9d1xul0hly+/zGhlk89L9IxE4qKigr83//9n7594403IikpqdvKp+7VUzHj38X2j3/8Y6djyim2RTpm/Bdxf/jhh7Fx40YUFhbi2Wefxfr167Fu3To89thjGDBgAADg888/xxNPPBHGJ6Ce1lPnmZSUFPztb3/TWz7bEwQBw4YNYxd/SqhrYCae1C38x690NQ7Bf3+o4178uyeFMs7BdwzH1cSuSMdMV+rq6nDdddfp47NOOeUUfVkVik09ETP+XWynT5+OCy64IPyKUsyIdMz4lsQAvJPEjBo1Cm+++SbOOOMMpKSkID09HRdccAHeeOMN/QbGSy+9FJEhA9Q9euq76aOPPsIZZ5yBb775Bv369cNvf/tbPP744/jLX/6Cc889F4B3GMiFF16oj/Wk3imRroGZeFK38G8l6mrdIF8/dSC0PyDAeIcnlHWJfO/B7kyxK9Ix05nq6mpcddVV2LNnDwBgyJAheOSRRyAIwjGXTZHTEzHj62KbkZGB++67L+w6UmyJdMxommbY/vOf/2yYsdRnwIAB+N3vfgfAezG4ePHikMqnntcT55nly5fj//2//weXy4UTTzwRH330EW666SbMmDED8+bNw5NPPonnn38eSUlJaGlpwfXXX4/q6urwPwwlhES6BmbiSd0iOTlZfxxodjZ//ifqULoMhFu+/zHsNhm7Ih0zwRw4cADz58/XZy4cMGAAXnzxRXanjAORjhn/LrZ33nlnp0tjUHyIdMzY7Xb98dChQzsd4+VrxQKgLwRPsSfSMaNpGh588EEoioKMjAw8+eSTAW9WTJs2TZ9UqLGxES+88EJI5VPiSUlJ0R/H+zUwE0/qFunp6frjrgYz++8P9WLfv/yu1sqSJEnv/sRkInZFOmYC2bx5My677DLs378fgHd2uFdffbXLWeIoNkQyZvy72J566qmYO3fu0VaTYkikzzP+CcOwYcM6PTY7O1sfr1dVVRVS+dTzIh0zJSUl+tqdF1xwQadjOC+99FL95sbXX38dUvmUeNLS0vTHoawX6zsmFq+BOastdYuhQ4fqjysqKpCfnx/0WP9ZAAcOHHhU5XemsrJSX/w51PKp50U6ZtpbuXIlfve73+k3JUaMGIEXXngB/fr1O6ryqOdFMma2bt2qL9u0cuVKFBcXd/ka3zF5eXn48ssvuzyeel6kzzODBg0Kqz6+7pi+7yiKPZGOmX379umPu1on1Gq1oqCgwHB+ot6nb9++SElJQUtLS5dLpCiKonfLjsVrYLZ4UrcoKCjQH/svvhyIb78gCCgsLAyp/KysLOTk5IRUvv+6al2d1Cl6Ih0z/r788kvceOONetI5YcIE/Pe//2XSGWd6MmYoMUQ6Zvy/Y7qaMEhRFL2FjOee2NWT55lQuk361iXvznUhKf744nL37t2dHrdnzx59MqJYvAZmiyd1i+OOOw4WiwWSJGHNmjWYP39+wOMURcG6desAACNHjjR0aenK5MmT8cknn6CkpATNzc2Grgf+vv/+e/3xlClTwvgU1JN6ImYAYO3atViwYIE+IP+UU07BU089ZRjHQ/EhkjFTWFiIp59+usvjnnjiCf1i03d8LI6jIa9In2eysrJQWFiIsrIylJWV4ciRI+jfv3/AY7dt26aPCYzFC0LyinTM+N902Lp1a6fHyrKsT4IXi61X1HMmT56MzZs3o7a2FmVlZUFvdPhfA0+ePLmnqhcytnhSt0hPT8fUqVMBeFuXgnUF+PDDD/WFcM8///yw3sM3MYMsy/oEIO05HA68//77ALzjbUaOHBnWe1DP6YmYqa2txYIFC/SLvZ/97Gf417/+xaQzTkUyZrKzs3HWWWd1+c9/8W7fc9OmTTvGT0aR0hPnGd+SO5qm4d///nfQ4/773//qj8N9D+o5kY6ZcePG6WODly9f3unwoSVLlsDhcADw3jSl3st/crL/3979x9V0P34Af4V7S5L8mh8xTAhhlWlUVJiZNazl1yZse5i2/NoMs/nVxpSZ0LKtzOZ3tVFIyXSZWAn5EUN+JBW66NbqVvem+/3jPjrfe3dvdVM3Pryef90f73PP+9xzTt3Xeb/P+71161a9ZR49eoQdO3YAUN8X+jT+b2LwpDozdepUAOrBfT799FPhj2WFa9euYcWKFQDUI3R5e3vX6POHDRsm3E/zww8/4NSpU1rvKxQKzJ8/X+jKNG3atMfYCqpPxj5mvv76a+GHQd++fbFu3bo6mY6FnhxjHzP07DH2MTNhwgRhEI+dO3ciOjpap0xUVJTwuoODA/r161fTzaB6ZMxjRiwWC3NGy+VyzJkzR/g/penMmTNYuXIlAPW0GFOmTHmcTaFnRL9+/WBvbw8AiIyMRGxsrNb7KpUK33zzjdBCPmnSpKeyN46J6r+TUBHVwqxZs3Dw4EEA6kEXJk6ciHbt2uHSpUvYuXMnioqKAADLly/HhAkTtJZNTk6Gj48PAHUXWX1XdBISEvDxxx9DpVJBJBLB29sbDg4OkMlkiIiIwNWrVwGo/7Fv27aN90T8DzDWMXP9+nWMGjVKmGdv/vz56NSpU7X1sbKyQv/+/etk28g4jP13piqTJ0/GyZMnAQBXrlyp7aZQPTH2MXPo0CHMnj1buLfK3d0dHh4eEIvFkEgkiIuLA6CecmP37t2wsbEx2rZS3TDmMVNcXIxJkybh0qVLANRdtseOHQtbW1s8evQISUlJiImJQVlZGQBg2bJlmDhxolG3l4xD81jw8/PDzJkz9ZbLysrC0KFDAVQ+YN3Fixcxfvx4KJVKmJiYwNPTEy4uLigpKUFUVJQwTVPnzp2xe/durWlYnha8x5PqVEBAAIqKipCYmIisrCysXr1a630TExP4+fnp/JE2lIeHB5YuXYoVK1ZAqVRix44dQreCCn369EFISAhD5/8IYx0zUVFRWpO7BwYGGrTc44QRql/G/jtDzx5jHzPDhw/HmjVr8NVXX6GwsBASiQQSiUSrjJWVFTZu3MjQ+T/CmMdM48aNsWnTJsydOxdJSUnIy8vTO0+nSCTCokWLGDoJANC7d28EBQXh888/h1wux969e7F3716tMp06dUJYWNhTGToBBk+qY40bN0ZYWBj27duHqKgoYSAgKysrODo6wsfHB46OjrVax8SJE9G/f3/89ttvOHHiBKRSKUQiEbp37w5PT0+MGzcOIpGojraIjM1Yx0xF6zc9e+rj7ww9W+rjmBk5ciQcHR2xfft2JCQkIDs7GyYmJujYsSOGDRuGSZMmPZXz6pF+xj5mWrRogV9//RWHDx/G3r17ce7cOTx48ABisRjW1tZwdnbG5MmTOc80aRk2bBhiYmKwefNm/PXXX7h79y5MTEzQpUsXjBgxApMnT35qQyfArrZERERERERkZBxciIiIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiOqcUql80lWgKnD/EFF9a/SkK0BERMaTnJwMHx+fx17e2toaCQkJdVij/+fh4YHs7GwAwJUrV4yyjvq0YcMGBAcHV1uuUaNGMDMzQ6tWrdCjRw84OTlh9OjRsLCwqIda1o7m8TR27FisWrVKp0xJSQmCg4PRpEkT+Pr66ry/cOFC7NmzBwCwZcsWODk5GbfSRlaTc8zExARisRiWlpawtrZGnz59MHbsWPTu3dvItfx/1e0fIiJjYYsnERFRPSorK0NhYSEyMjJw8OBB+Pv7Y+jQoYiPj3/SVau1K1euYNSoUQgNDUVZWdmTrs5TR6VSobS0FFKpFGfPnsXWrVvh5eWFJUuWoLy83Ojr5/4hoieJLZ5ERM+JZs2a4aOPPqrRMk2bNjVSbZ5tdnZ2eOONN/S+9+jRI8jlcty+fRvx8fFQKBSQyWSYPXs2Nm7cCDc3t/qtbB26ePEisrKynnQ1npjqzrHy8nIUFhbi+vXrSExMRHFxMVQqFcLDw2FmZoZFixYZtX7P+/4hoieLwZOI6DlhYWGBDz744ElX47nQrVs3g77ru3fv4v3338f169dRXl6OpUuXIj4+HqampvVQy5pzcnKqdbfoVatW6e2i+yyoyTkmk8mwcOFCSCQSAOpux+PGjYONjY0xq0hE9MSwqy0REdET0rZtW/zwww9o0ED97/ju3btGu6eWni5WVlZYv349XnzxRQDqbri7du16wrUiIjIeBk8iIqInqEuXLnB2dhae//3330+wNlSfxGIx3nrrLeH5szDIFhFRZdjVloiIHsuNGzewd+9epKSkIDMzE/n5+TAxMYGlpSW6desGV1dXeHt712q01vT0dERGRiI5ORm3b9+GQqGAlZUVOnfujIEDB8Lb2xsvvPBCtZ9z584d7Nq1C4mJicjKykJRURGaN2+OXr16Yfjw4Rg9ejREItFj17O2unbtimPHjgFQt3pW5uHDhwgPD8exY8dw48YNFBYWwtLSEp06dYKrqysmTJiAFi1aVLkuhUKBffv24dChQ0hLS4NMJoOpqSlatWoFe3t7vPbaa/Dw8NC7bGWj2uob0Tc4OFh4zc/PDzNnzgSgf1Tb8vJyuLu7C9seFRWFnj17VrkdERERWLx4MQDAy8sLK1eu1ClTXFyMyMhIJCQk4Nq1a5DJZLCwsEDnzp0xZMgQTJw4EVZWVlWux9hatWolPM7Nza2y7IULF3DgwAGcOnUKd+7cgUwmg0gkQrNmzWBrawt3d3eMHTsWYrFYa7ma7B9NeXl5CA8Px9GjR3Hr1i0UFBSgWbNmsLGxgYeHB8aNG4fGjRs/7qYT0XOGwZOIiGpEqVTi66+/RmRkpN6ROEtKSpCbm4vjx4/j559/RkhICOzt7Wu8npCQEGzYsEFnHVKpFFKpFCkpKfj555/x5ZdfYty4cZV+zi+//IKgoCCUlpZqvZ6bm4vc3FwcOXIEoaGhWL9+PXr06FHjetaFiq62ANCwYUO9ZcLDw7Fq1SrI5XKt1x88eIAHDx7gzJkzCAsLw6JFi/DOO+/o/Yzbt29j+vTpuHHjhtbrSqVSGGl3z549ePnll7Fx48ZqQ2xdadCgATw9PREaGgoAiImJqTZ47tu3T3g8ZswYnfdPnDiB+fPnQyqVar2el5eHvLw8pKamYtOmTVi+fDlGjRpV+414TLdu3RIea4ZQTYWFhVi4cCEOHTqk855SqYRcLsedO3cgkUgQGhqK0NBQdOnSpVb12rdvH/z9/VFQUKD1+v3793H//n0kJSUhNDQU3333HV599dVarYuIng8MnkREVCMLFixATEwMAPWclC4uLrC1tUWTJk1QUFCAc+fOISUlBSqVCg8fPsTMmTMRFxdXo5bP6OhorFu3DoA6lLi4uKBXr14wNzfHvXv3cOTIEWRnZ6OkpASLFy9Ghw4dMGjQIJ3PWb16NcLCwoTn9vb26N+/PywsLJCTkwOJRILc3FxkZGRg4sSJ2LFjB2xtbWv5DdWcZhfLinv+NP38889Ys2aN8LxDhw5wd3dHq1atIJVKIZFIkJ2djaKiInz55Zd4+PAhpk+frvUZCoUCM2bMEEJnu3bt4Obmhnbt2kEul+Pq1as4cuQIysvLcfbsWfj5+WHHjh0G1d/Z2Rnm5uZIS0vDgQMHhNcquhAbcuFhzJgxQvA8cOAA5s2bV2nZe/fu4dSpUwDUc82+8sorWu8fPnwYs2fPhlKpBAB06tQJgwcPRuvWrSGTyZCYmIirV6/i33//xWeffQa5XA5vb2+DtrUuFRQUIDo6WniuL8CVl5fjww8/RGpqKgDAzMwMQ4YMgY2NDczMzJCXl4eTJ08iLS0NgPriwuzZsxEVFSVc0Kjp/tm+fTv8/f2F5z169MCgQYPQvHlzSKVSHD16FJmZmZBKpfjwww+xceNGuLq61uE3Q0TPIgZPIiIyWFJSkhA6LS0tsWXLFr0tU8nJyfjoo49QXFwMqVSKP//8U2+rVGVCQkIAqEOnvilGvvjiCyxatAh79+4FAPz44486wfPw4cNC6LSyssL333+vdS8lAJSWlmL16tXYunUrioqKMGvWLOzfv1+nq6IxpaenIykpSXg+ePBgrfeTkpK0QufMmTMxY8YMNGr0///CFy5ciA0bNuCnn34CAKxduxb9+vWDk5OTUObgwYO4du0aAGDAgAEICwvTGT33/PnzmDJlCuRyOU6fPo2UlBSdUKePg4MDHBwcsHv3biHY2Nvb12gUZRsbG/Tu3RsXL15EdnY2zp49i5dffllv2QMHDggt4Z6enjAxMRHey8nJwcKFC6FUKtGgQQMsWLAAPj4+Wq3KCxYswO7du7FkyRIolUr4+/vDwcEBXbt2Nbi+tZWZmYn58+fj4cOHANRTF7377rs65fbs2SOETmtra2zZsgUdOnTQKRcTE4N58+ahvLwcV65cwenTp4V9V5P9k5aWhm+//RYAYGpqipUrV+LNN9/UKvPFF19g06ZN+P7776FUKjFv3jzExsbWWws5Ef1vYvAkInpOFBYWYtOmTQaXHz9+vE4rZcW9eYA6AFXWHdLJyQljx44VWszS0tIMDp4ymQwZGRkAgO7du+ud11IkEsHf3x+HDh1CcXExrl69CoVCIQRGlUqFtWvXCuXXr1+vFcIqmJqa4quvvsLt27dx5MgR3Lp1C9HR0fXW+pWWloY5c+bg0aNHAIDevXvrhOOgoCDh8bRp0+Dn56fzOSKRCJ9++imKioqwbds2lJeXIygoCDt37hTKnDt3Tng8ZcoUvVO29O3bF++//z6Cg4PRoEEDnD9/3qDgWVfGjBmDixcvAgD2799fafDcv3+/8FhzcB5A3Tpc0T30k08+wdSpU/V+xttvv428vDwEBgZCoVDgxx9/xOrVq2tV/+rOseLiYshkMly6dAnnz58XWmTFYjHWrFmjN7hpnnNffvml3tAJAKNGjUJ0dDSOHj0KQD1n5+Psu3Xr1gn1Wr58uU7oBNTdwadPn467d+9i+/btkMlk2LJlC+bMmVPj9RHR84PBk4joOZGfn4/AwECDy48YMUIneL7++uvo0qULsrKydH7w/5fm/ZJFRUUGr1ezJS87OxtSqRStW7fWKde4cWP88ccfaN68uc4P9tTUVKSnpwNQt+zoC52afH19ceTIEQDA3r17ax0809PTKw0gpaWlePDgAc6fP4/z588Lr5ubm+vsn6ysLKG1y9zcXG/o1DR37lzs3r0bcrkcZ86cwY0bN/DSSy8B0L53NDU1FcOGDdP7GT4+PnjzzTdhbW1dry2/APDmm28iICAAZWVliIuLw6JFi7RaKgEgIyND6FZqZ2en1UqpUCiErqtisRjTpk2rcn0+Pj4IDg6GXC5HXFwcVqxYUattruk5BqjD/uLFi9G3b1+970+YMAGvvvoqcnNz9V6E0dSjRw8heBYWFtaoHoC6C3PFIFdt27at9mKRr68vtm/fDkB93jB4ElFVGDyJiMhg7u7ucHd3r7acXC5HVlaW8LysrMzgdVhYWKBnz574559/8O+//8LLywtTpkyBm5ubTlfIyrpGpqSkCI979+5d7Tp79eoFsVgMhUKB8+fPo6ysTCsA11RaWpoQjgzRuXNnBAUFwcbGRut1zS64Li4u1d4na2FhARcXF8THxwMATp06JQTPV155Bb/++isAICwsDNnZ2Rg9ejScnJxgbm4ufEazZs3QrFkzg+tel1q0aAFXV1dIJBJIpVKcPHlS575HzdbO0aNHa7138eJFYfClzp07o0mTJlWuTyQSwc7ODidPnoRCocCFCxfg6OhYR1tTOXt7ezg7O8PNzQ19+vSpsqy+Fkd98vPzce/ePeF5Tc65ChX3ZgNAz549tbow69O6dWtYW1sjOzsb2dnZuHfvHtq0aVPj9RLR84HBk4joOWFtbY2EhIQ6/cyioiLcvHkTmZmZuH37Nm7evInLly8jPT1d64dvxY9ZQ82bNw/Tp0/Ho0ePcO/ePQQGBiIwMBDt27eHi4sLXF1dMWjQoEqDWMW9jACwbds2bNu2zeB1l5SU4OHDhwZN0/I4zMzMYGFhgbZt26J3795wc3ODm5ubTsseAK3wbuigR7a2tkLwvH37tvC6h4cHBgwYgJMnTwIAYmNjERsbC5FIBAcHB7i4uMDNzQ3du3evzebV2ujRoyGRSACo71usLHg2atRIZzRazf1+9erVGo9SfOfOncepskDfOVZSUoJr167h119/FUbiTU9Ph6enZ7WhU5/8/HxkZGQgMzMTmZmZuHHjBi5fvozr169rnWc1PecA7e9PIpHU+PvLyclh8CSiSjF4EhFRjZSXlyM6Oho7duxAWlqa3ilVAHXXzop7F2vKxcUFISEhWLp0qda8ljk5OYiIiEBERATEYjHc3Nwwbdo0ODg4aC2fn5//WOvVXL42wVNzjsvakMlkwmND55vULKf5PTRo0AAhISH45ptvEB0dLQQTpVKJ5ORkJCcnY82aNejUqRPefvtt+Pj4aLWE1pehQ4fC0tISBQUFiI+Px5IlS4Q5Vi9evIibN28CUB8jLVu21Fq2LvZ7XTMzM4OdnR2+++472NnZ4dtvv0VhYSH8/f0hlUoN6p6qUCiwa9cuREZG4urVq5WWq805Bzyd3x8RPTsYPImIyGBFRUXw8/PDiRMntF43MTFB27ZtYWNjAzs7OwwYMABZWVlYvHjxY6/Lzc0Nhw4dwtGjRxEfH4/ExERhBFBA/WM8Pj4e8fHx+OSTTzBr1izhPc0f36+//nql989V5r+B5kl5nFaryi4EAOqRUwMCAvDJJ58gJiYGEokEFy5c0Frm1q1bWLt2LSIiIiodQdWYxGIxRo4cifDwcMhkMpw4cQJDhgwBUHU3W0B7v/fu3bvG83NWNphRXZk6dSpu374ttMBv3LgR7du3r3Ie2oopSy5fvqz1eoMGDWBtbY1u3bqhT58+cHJyQmJiojAi9OPQ/P4GDhxY4ylSajt3KBE92xg8iYjIYCtWrBBCZ5MmTeDj4wNXV1dhHk9NFYOO1IZYLMbw4cMxfPhwqFQqXLlyBUlJSTh27BiSkpKE7rw//PADBgwYIHTLtLS0FD7D3t6+0pFNn3aa91rm5eUZtIxmOc3vQdOLL74IX19f+Pr6oqCgACdPnsSJEycgkUiQk5MDQD2w08KFC2vUTbmuvPXWWwgPDweg7m47ZMgQqFQqxMbGAlAH6KFDh+osp7m9bdq0qdF0LvVlwYIFSElJEeZuXbFiBRwdHSu9X3nevHlC6GzZsiWmTp2KQYMGoVu3bjojEx8+fLhWddP8/mxsbJ7K74+I/nfp3lBCRESkx7179xAVFQVA3cK5efNmzJkzB46OjnoHcdEMQI/TcvdfJiYmsLW1xdSpU7Fp0yYkJCRo3YNWMZopAHTs2FF4XDG6bXU0W1OfFp06dRIeVwSV6vzzzz/CY83voTKWlpYYNmwYlixZgoSEBK1W6pSUFCGI1qf+/fsLdZdIJCgrK8Pp06eFezBHjBihdzoYze3VvF+xKvn5+VW2Etc1sViMVatWCYNXlZSUYMGCBXrrcO7cOWGAKXNzc4SHh2P69Omws7PTu/2GXpyozON8f3l5eXVyfhPRs4/Bk4iIDHLhwgWhK17Pnj3Rr1+/KssnJycLj2vyw/Tw4cP44IMP4O7ujp9++qnScm3atMGMGTOE55ojevbv3194fPToUWFewspcuHABAwcOhL29Pby8vB5rRFBj0NyOxMTEaqfI+Pfff/H3338Lzyu6jj569AgLFizA22+/DWdnZygUCr3Lm5iY4L333tNqfdO8x7Y61Y2CWhMVXWkLCgqQkpKCuLg4nff+y97eXgh0mZmZ1Yb10tJSjBgxAn379sVrr72m053VWHr16qU11cuFCxeEOW81nT17Vnjs7Oxc5YUElUolDBwF6O9yXd3+0TzeTp8+Xe3FmNzcXLi6uqJfv34YOXLkU3nxhoieHgyeRERkEM2wojnojT5//vmn1o/gmgQ5lUqFxMRE5OTkICYmpsplNVt4NEfTHDhwINq2bQtAfY9cZXNqVqxvzZo1ANTTwHTo0KFWU6nUpU6dOsHe3h6Aum7BwcFVll+3bh2Ki4sBAN26dRNahBs2bIjLly/j4sWLuH//fpVdMsvLy7X2b01GKdUcmbc2g9wA2uHy8OHD+PPPPwGoR4595ZVX9C7TpEkTDB8+XHgeGBhY5UWPsLAw5OXlQalUQi6X60xnY0x+fn6wtrYWnq9duxa5ublaZTTPuepaM7ds2VLtFEbV7Z+uXbsK90MrFAqsXbu2ynUGBQVBqVSitLQUTZo00ZlPl4hIE4MnEREZRHM6j5ycHPz22286ZcrLyxEZGYnPPvtM6/WKMGSIwYMHo3Xr1gDU3Uv9/f1RUlKiU+7mzZtaQey1114THotEInz88cfC83Xr1mHz5s06rUDFxcVYvny50ErYqFEj+Pr6GlzX+jB79myhpWrz5s0IDg7WCRVlZWVYv349tm7dCkDdsrVo0SKtMl5eXsLjZcuW4fz58zrrUqlUCAgIwIMHDwCoB+jRDEfV0ZzeJjs72+Dl9HnxxReF0P3HH38I3Ww9PT2rbLnz9fWFWCwGoG4l/vzzz3VailUqFSIjI7UG4vH19a3XCw5mZmZYsmSJ8LywsBArV67UKqN5zp0+fRqHDh3S+RyFQoEff/wRAQEBWq/rO+cM2T+zZs0Svt+IiAgEBATotJCXlZUhJCQEf/zxh/DazJkz9X4eEVGFp+OSLhERPfVeeukluLi4IDExEQCwcuVKxMbGwt7eHhYWFrh37x7++usvISCIRCKhi2t1LaSaxGIxvvjiC3z66acAgPDwcCQkJGDw4MFo3749APUcjUeOHEFpaSkAYMiQIXB3d9f6nPHjx+PUqVPYu3cvysvLsWrVKuzatQuDBw9GixYtkJOTA4lEAqlUKizz2WefGTxfZn0ZOHAg/Pz8sGHDBgDAhg0bsGfPHri7u6NVq1a4f/8+JBKJVmvXxx9/jEGDBml9zoQJE/D777/jypUrkMlk8Pb2hrOzM7p3744WLVrgwYMHSExMFO7tE4lEOuG1Opoj4O7btw9NmzZFmzZt0K1bN3h4eNR428eMGYPU1FTI5XLhtbfeeqvKZXr06IElS5Zg8eLFUKlU2LdvH44dO4ahQ4eiY8eOePjwIZKTk7W64bq7u2PSpEk1rl9tubm5Yfjw4UKgjI2NhZeXlzCabMUgQunp6VCpVPDz84OLiwt69eoFU1NTZGdnQyKRCK2h1Z1zhuwfV1dXzJgxAxs3bgQA/PLLLzhw4ADc3d3Rpk0b5Obm4tixY1pzxL733nvCyMNERJVh8CQiIoMFBgZi2rRpwo/21NRUpKam6pTr3r07Vq1ahfHjx0OpVCI9PR0KhUJoiarOqFGjkJeXh1WrVkGpVEIqlWq1rmgaMWKETmtPhYCAALRv3x6bNm2CUqlERkYGMjIydMqZmZlh3rx5mDx5skH1q29+fn5o3rw5vvvuO8jlcmRlZQmtm5rMzc2xbNkyvfdAisVihIWFwdfXF2lpaQCA48eP4/jx4zplW7VqhW+++Ubrnj9DdO/eHfb29khNTYVKpRJGNvbw8His4PnGG29gxYoVQoubnZ1dpaO/avL29kbTpk2xdOlSyGQyyGSySo8fLy8vLFu2rE7vT62Jr776CsePHxfCtb+/P/bv3w9TU1M0bNgQGzZswPvvvy8M8pSYmChc/NHUv39/zJ07F++++y4A9Zyn/2Xo/pkzZw5atmyJNWvWoLi4GHfv3sXOnTt1Pq9hw4b48MMPMXfu3Np/EUT0zGPwJCIig7Vs2RKRkZEIDw9HXFwcrl27hsLCQpiZmaF169awtbXFsGHDMHLkSDRq1Aivvvoqjh07huLiYhw8eBCenp4Gr+u9997D4MGD8fvvvyM5ORkZGRkoLCxE48aN0bp1awwYMACenp5VhqMGDRpg7ty5eOeddxAREYETJ04gKysLhYWFMDc3R+fOnTFo0CCMHz9eaE19Wr377rsYMWIEdu3ahcTERNy6dQsFBQUwNzdH165d4ebmhnHjxlV5n90LL7yAiIgIxMXF4eDBg7h06RLu37+PsrIytGjRAl26dIG7uzu8vLzQtGnTGtfRxMQEoaGhCAoKQkJCAqRSqVYrXE1ZWlrC3d0dBw8eBFD5oEL6vP7663BxcUFkZCT++usvpKenQyaTQSQSoV27dnB0dIS3t3eN53ita23btsXMmTOFiyeZmZkICQkRwlyXLl0QHR2Nbdu2ISEhATdv3kRxcTEaN26Mdu3aoWfPnnjjjTfg5uYGExMTvPTSS7hx4wYyMzNx5swZODg4COuqyf6ZPHmyMJ/q8ePHkZGRgfz8fJiamqJjx45wcnLC+PHjDboQQEQEACYqjoFNRERERERERsTBhYiIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqP4PkpRIwAOMKVMAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=postproc_clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ " group_name_map=group_name_map,\n",
+ ")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0e66e388",
+ "metadata": {},
+ "source": [
+ "#### Theoretical results:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "eed1f839",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Maximum fairness violation is between group=1 (p=[0.12562792 0.65148158]) and group=2 (p=[0.10094174 0.70148158]);\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy: 79.9%\n",
+ "Unfairness: 5.0% <= 5.0%\n"
+ ]
+ }
+ ],
+ "source": [
+ "acc_val = 1 - postproc_clf.cost(1.0, 1.0)\n",
+ "unf_val = postproc_clf.constraint_violation()\n",
+ "\n",
+ "print(f\"Accuracy: {acc_val:.1%}\")\n",
+ "print(f\"Unfairness: {unf_val:.1%} <= {EPSILON_TOLERANCE:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "493d213c",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Plot realized ROC points\n",
+ "> realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "fcd2aaf9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set group-wise colors and global color\n",
+ "palette = sns.color_palette(n_colors=n_groups + 1)\n",
+ "global_color = palette[0]\n",
+ "all_group_colors = palette[1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "4c70252e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8wAAAPbCAYAAACJ+wJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1xT1/sH8E8mEFbYSxAcOFDce++6pXVUrdZRR62jrVat9at11VWt27pn3QrujXtgFUVFcStDmWHIDsn9/cGP21ySMAMh8LxfL19yT+5Nntyc3NznnnPP4TEMw4AQQgghhBBCCCEcfH0HQAghhBBCCCGElEWUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEIIIYQQQogGlDATQgghhBBCCCEaUMJMCCGEEEIIIYRoQAkzIYQQQgghhBCiASXMhBBCCCGEEEKIBpQwE0IIIYQQQgghGlDCTAghhBBCCCGEaEAJMyGEEEIIIYQQogElzIQQQgghhBBCiAaUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEIIIYQQQogGlDATQgghhBBCCCEaUMJMCKkQMjMz9R2CQaH9RQghdCwkhABCfQdACCm49PR0BAQE4MaNGwgKCkJcXBzi4uLA5/NhZWUFKysr1K5dG61atULLli1hYWGh13jXrl2LdevWscsvXrzQSxynTp3C3r17ceDAAY2PBwQEYPjw4ezy7t270axZs9IKr0zJyMjAli1bEBMTg3nz5uk7nEIJDg7GkSNHcP/+fXz8+BGZmZmws7ODm5sbunXrhh49esDS0rJEY4iMjMThw4dx69YtvHv3DikpKZBKpXB0dET79u3Rt29fuLq6Fvj5zp49ix9//LFIsQQHB0MoLH8/8zNnzoSvry8AwMXFBf7+/nqOqPwYNmwY7t27BwBo2rQp9uzZo+eI9Ofdu3dYuHAhxo4dq/X3oGPHjoiIiAAA+Pj4YMmSJaUZIiGklJS/X1JCyiG5XI4dO3Zg27ZtSEhI0LhOamoqIiIi8PTpUxw6dAhGRkb46quvMGXKFEil0lKNt6x4/fo15s2bh3v37sHFxUXf4ZR5V65cwcKFCxEeHg4fHx99h1Ng6enpmDdvHo4dO6b2WEREBCIiInDnzh2sWbMGCxYsQOfOnUskjp07d+Kvv/5Ceno6pzwmJgYxMTF48uQJ/v77b0yYMAHjxo2DQCDI9zmfPXtWIrESQjRLT0/Hhg0bsH37dsjlcowdO1bfIRFC9IwSZkLKuMTERIwbNw4PHz5Ue8zU1BTm5ubg8XhITExEamoq+1hGRgb27duHixcvYvPmzahdu3Zphl0mbN26lW0tIflbsGAB21piKDIyMjB69Gjcv3+fU25mZgaJRILY2FgolUoAgEwmww8//IDFixfjyy+/1Gkcy5Ytw7Zt2zhlYrEY1tbWkMlkbLdOuVyO1atXIywsDIsXL873eVUTZnNzc1hZWRU4Jh6PV+B1CSHZgoKCsGnTJn2HQQgpQyhhJqQMYxgGU6ZM4STLXl5eGD58OFq2bAl7e3vO+p8+fcK1a9ewY8cOvH//HkB269bo0aNx9OhRODs7l2b4hJS4hQsXcpLlpk2b4pdffoG3tzcA4PPnzzhy5AhWr16NtLQ0AMCcOXNQtWpV1KtXTycxnDx5kpMsu7i44Ndff0X79u0hEomQlZWFK1euYPHixewFiWPHjqFGjRoYMWJEns+tmjBPmDABo0aN0knMhBBCCCkYGvSLkDLs+PHjuHPnDrs8aNAgHDlyBP369VNLlgHAyckJX3/9NU6ePImePXuy5TKZDPPnzy+VmA1Rs2bN8OLFC/ZfRb1/2dAEBQXh8OHD7HKHDh2wc+dONlkGsltlR44cid27d0MikQDIbuUtSOtuQSQnJ3PuW6xUqRIOHTqELl26QCQSAQCEQiG6dOmCo0ePomrVquy6a9euhUwm0/rcnz594jxeEXuJEFKW+fv7s78bdP8yIeUXJcyElGH79+9n//bw8MCcOXPA5+f/tRWLxViyZAmqVavGll25cgXv3r0rkTgJ0YctW7aAYRgA2V2wFy9erPW+YG9vb8yaNYtdfvjwIW7dulXsGI4dO4bY2Fh2ecGCBbC1tdW4rpWVFdauXcsOxJWcnIxdu3Zpfe7g4GDOMiXMhBBCSOmjhJmQMio9PR1Pnjxhlzt06FCoEW/FYjFGjx7NKbt9+7bO4iNEnxITEzmjI/fr1y/f+3t9fHxgZ2fHLp88ebLYceSM1gwAnp6eaNmyZZ7rV61aFZ06dSpQDKrdsd3c3PQ+6j0hhBBSEdE9zISUUUlJSVAoFMV6jlatWnGWo6OjC7Td+/fv4evri3///RehoaFISEiAiYkJrK2tUa9ePbRr1w7dunXTyZQ1RZki5tixY/j111/Z5cuXL6NSpUoA1KeIyhEREYEaNWqwy6oDPxVlWqm0tDScPHkSN2/eRHBwMGQyGRQKBaytreHh4YGWLVuiT58+cHBwyPf9qMZ15swZVK1aFenp6Thz5gzOnTuH169fIzY2FsbGxnB0dESrVq3Qr18/znZFlXvqrxy+vr6cZFB1H+eWkJAAPz8/3L17FyEhIYiPjwePx4O1tTWqV6+O1q1bo3fv3jodrf3WrVuc70dBRr4WCoVo164djhw5AgC4ePEiFi5cWOR6HBsbi+fPn7PLqolwXjp16oTz588DyK6Xjx8/5nQjz6GaMOuzdTk8PJzz3h4/fgwjIyOcOXMGmzdvxrt372BlZQVPT090794dvXv31rhPIyMjceLECdy8eRMfPnyATCaDkZERbGxsUK9ePbRv3x7dunUr0OjhhXX79m3cvn0bDx48QGRkJBISEiCXy9mB1Ly9vdGyZUt88cUXEIvFGp9j8uTJ7OcGZF/E/Pvvv/N83Tt37mDkyJFsTwhXV1f4+fnBzMxM4/oMw+DKlSvw9/dHYGAgYmNjkZqaCqlUCldXV7Rq1Qp9+vSBm5tbod6/TCbD0aNHce3aNbx69QopKSmwtraGp6cn+vXrh+7du5fIfs8tKioKvr6+CAgIwOvXr5GQkACRSAQbGxvUqlULbdq0Qa9evWBiYpLn86ges83NzdlxDF6/fo0DBw7g1q1biIyMhFKphIODAxo0aIB+/fqhRYsWWp9TdYooVaq/Dbmn2irItFKqx+mc42hycjJOnDiBs2fP4sOHD4iPj4eNjQ1cXV3Rp08f9O7dG8bGxpznuX37No4ePYonT54gMjISIpEIlSpVQps2bTBs2LA8f2uKMl1YQaaFVF1H9f0HBQXh6NGjuH//PiIjI8Hn8+Hg4IDGjRtj8ODBqFmzJud5ZDIZjh07hgsXLiAsLAyfP3+GlZUV6tatiy+//BKdOnWiQQyJXlHCTEgZZW1tDZFIBLlcDiD7h/ann37SejKniYODA06fPg1LS0tIpVL2nkptEhISsHDhQpw+fZodWTiHXC5HUlIS3r9/j+PHj8PV1RWzZs1Cx44dC//mDNyBAwfw119/aZzi69OnT/j06RNu376NtWvXYujQoYX+3AIDAzFz5kx8+PCBU56RkYHExES8ePECO3fuxNdff43Zs2eXyomuJgqFAps2bcKWLVs4I7TnyJnS6erVq1i9ejXGjh2LMWPG6OTER7X3BY/H05hwalK/fn02YU5OTsarV69Qq1atIseQkwgBQIMGDQocg6rAwECN8at2yfby8ipSjCVl586dnPvAc+r906dP0bdvX866mZmZWLVqFfbu3YuMjAy1xz5//sweVzw8PDB37tw8E5vCuHPnDpYsWYKQkBCNj8tkMshkMrx58wa+vr5YsWIFlixZovH158+fj8DAQMTExADIvs3l9OnTnPEiVCUmJmLGjBlsHREKhVi5cqXWZPnhw4eYN28e5yJMjpypyQIDA7Fx40YMGDAAM2fOVEuqNNm3bx/+/PNPpKSkcMqjoqIQFRWFGzduYM+ePVixYkW+z1VUaWlpWLFiBQ4cOMD+puXIzMxESkoKQkNDcf78eaxevRo//fQTvvrqq0K9xu7du7Fs2TK15//w4QM+fPgAPz8/tGzZEkuWLCnQhcyScvv2bcycORNRUVGc8pzv0L1797B3715s2rQJjo6OSExMxP/+9z/OxRog+/cgJCQEISEhOHDgAFavXq12kby0paSkYNGiRTh69KjaY58/f8br169x6NAhzJw5E99++y0A4NKlS/jtt9/Ufk+jo6Nx+fJlXL58GZ07d8Zff/1VqN9RQnSJumQTUkYJhULOVdgPHz5g0qRJ7MlaQVWrVg12dnb5JsuhoaHo06cPTp48yUmWRSIRHBwc1LqDhoWFYcKECdi4cWOh4ilpxsbGcHNzg5ubG0xNTdlyoVDIlru5uWk9ac2LUqnEtGnTMHfuXM6PO4/Hg1Qqhb29PSd5zcjIwPbt2zF8+PA8B3dS9ejRI4wcOZJNlvl8Puzs7GBtba0Wy759+4o9mJulpSW7T1RbBU1NTTn7K3f9ycjIwMiRI7F69WpOsszn82FrawtbW1vO/fafP3/GihUrMGHCBLV5iovi1atX7N/Ozs6czzovHh4enOU3b97oJAYAnAG98lKpUiXO/nz79q3aOnFxcZweIV5eXggPD8eaNWswePBgNGvWDHXq1EHr1q0xZMgQbNiwocA9SIrr1atX+PPPPzU+1qFDB87nnpiYiJEjR2Lbtm2cZFkkEsHR0RFWVlacCyjv3r3Dd999xxm/oaiOHz+O7777Ti1ZtrS0hIuLC2xtbdUu3kRGRmLMmDF4+vSp2vNJpVL88ccfnLKFCxciPj5e4+vPnTuXkxRNmTJF64WdkydPYvjw4WrJslQqhZOTE4yMjNiyrKws7N+/H0OGDEFcXJzG58uxbNkyzJs3j5Ms5xxTVHt8PHr0CN9++22Bj1OFER8fj4EDB2LPnj2cZFYgEMDe3l6t50lMTAxmzZqFOXPmqF241WbPnj1YtGgR+/xCoRAODg5qLdW3b9/GgAEDEBYWpvYcLi4ucHNzUxtQ097enj0OahpsszCuX7+OMWPGsPWCz+fD3t4e5ubmnPVCQkIwefJkJCcnY+TIkWyynPPZ5f49/vz5MyZPnoyPHz8WK77ikMvl+P777znJskQigaOjI+d3UalU4o8//sC1a9dw8uRJTJw4kf09zVk/dw+VS5cuaT3mEFIaqIWZkDJsxIgRmDp1Krt89epVdOjQAZ06dUKXLl3QqlWrQs3Lqo1MJsOoUaM4J3e1a9fG5MmT0apVK/aqbmhoKPbv38+e+DAMg1WrVsHW1hYDBgwodhy6UK9ePVy8eBEAt7u3g4MDW15UixYt4txzamZmhnHjxnHujU1JScGlS5ewevVqtqvew4cPMWXKFOzYsSPf7r9z586FXC6HVCrFxIkT0atXL/YzjoqKwo4dO7Bjxw52/YMHD2rs4lZQw4cPZ7scqnYv7Nq1q9ZRX3OmOwsICGDLbG1tMXHiRPTo0QOWlpYAsnssnD59GuvWrWNPxP39/fG///0Py5cvL1K8OSIjI9m/HR0dC7xd7pal4pxgqsbA4/EK3GolEAhga2uLT58+AYDGbqC5E7ZDhw7h4sWLardp5LQ8PnjwAJs2bcKYMWMwYcKEAg0OWFRLly5Va8XLodp1m2EYTJ06lTPtV5MmTTB+/Hg0bdqUPa7Exsbi1KlT2LhxIxISEpCVlYX58+fDxcUFbdu2LVKMERERmDt3LrKysgBkn4hPmTIFvXr14gzKlpycjOvXr2P16tXsVHxyuRwrV67E9u3b1Z63bdu2GDJkCPbt2wcg+9i5aNEitZN5Pz8/nD17ll1u3rw5vvvuO42x3r9/HzNnzuTEOmbMGPj4+MDJyQlAdm+Ohw8fYvPmzbh27RqA7B4IU6ZMwc6dOzUeV06dOsWZ7kwikWDChAkYMGAAm6S+f/8eW7duxZEjRxAeHq59hxZReno6xowZg5cvX7Jlbm5umDJlCjp27MiOXJ/TVXvTpk3sBbiDBw/C2toaP/74Y56vkZqayvZ2kEql+Omnn9CnTx9IJBIolUoEBARg6dKl7MWIqKgoTJw4EYcPH+a0WOZ0U859i86ff/6ps5kTFi5cCIVCAQcHB0yZMgU9e/aEsbExGIbBvXv3MH36dPa4EhQUBB8fH4SGhsLY2Bg//PADBgwYwP4eBAcHY+7cuWxvm+TkZOzcuZMzuGFpOnv2LHt86tOnD8aOHYvq1asDyL5wtmbNGuzdu5ddf+7cuYiNjQXDMGjUqBF+/vlnNGzYEHw+H2lpadi7dy9WrVrFfi/279+PcePGwcbGpvTfHKnwqIWZkDKsR48eaieMcrkc586dw9SpU9GiRQv06tULc+bMgZ+fn8ar5gWxatUqzra9evXCoUOH0KFDB84JhZubG2bMmIFt27axJzpAdldFfV7ZLg2PHj3i/Ng7OTnh0KFDGDt2LGcgKVNTU/Tt2xd+fn5o1KgRW37v3j2NJ+C5yeVyODs7w8/PD8OGDeNcEHFwcMDMmTM5J5AMw+DUqVPFfHeFc+bMGVy5coVd9vT0hJ+fHwYPHswmy0D2yevQoUPh6+vLaX09ceIEzpw5U6wYVFvWCnPRKHdrlqZu9UWJwdzcPN9eHNriSExMVHtc9f5lADh37hx7MioSieDk5KTWqp6eno61a9fihx9+0JrQ6kLOvZDDhg3DhQsX8OjRIxw/fhyjRo3iDHq2b98+3Lhxg10eNWoU9uzZg9atW3OOK7a2thgxYgSOHj2KypUrA8huhfr111/VunAX1KZNm9h5t3k8HtavX48RI0aojWBuZmaGHj164NChQ5zWw7t37+Lz588an3v69OmcngonT55kk1ggO1lfsGABu2xlZYVly5ZpvIiRmZmJqVOnskmBvb09jh07hgkTJrDJMpB9kaVx48bYvHkzpkyZwpb/+++/nONSjoyMDM4FL4lEgl27dmHMmDGcuufu7o6FCxeW2LSDu3fv5tw+0bx5c/j6+qJXr16c3xAHBweMHz8eBw8e5BxP//77bzx69CjP11AoFFAoFHB0dMThw4fx9ddfs8/N5/PRokULHDx4EK1bt2a3yenGXNoUCgVcXV1x6NAhfPXVV2yXeh6Ph2bNmql1iw8NDYVIJML27dsxduxYzrHOy8sLO3bs4CSQV69eLZX3oUnO8ennn3/G8uXL2WQZyO7V8b///Q/Nmzdnyz59+gS5XI5OnTph9+7daNy4MfsdMTExwZgxYzh1PTMzUyczGxBSFJQwE1KG8fl8rF27Fj169ND4OMMwePXqFQ4ePIgZM2agc+fO6NChA3777Tf4+/sX6KQ5PDyc04WqVq1aWLx4cZ4n/82aNcPcuXPZ5czMTGzZsqUQ78zwrF69mv1bIBBg1apVeXbBtbCwwLp16zgn6Dt27GBP4vMyb948zslybqNHj+Z04QsKCsr3OXWFYRisWbOGXZZIJNiwYQPnJDc3R0dHrFu3jnO/5YYNGzj3/xaWajdw1RPv/OReN/d9naURQ+71NcWQO2EGskcCP3z4MJ48eYKrV68iMDAQZ8+exYgRIzjfV39/f07CVhLGjx+P2bNno3LlyjAxMUHNmjUxY8YM9jPOysrC1q1b2fWbNm2KGTNm5Hn/eqVKlTgJQ2xsLHu/eWEolUpOb5L27dvnO3q5paUl+vXrxy4rFAqNLf9A9sn88uXLOa268+bNQ2pqKpRKJaZPn47k5GT2sT/++ENr7wNfX19OT4U///xT7baB3CZMmIAOHTqwy9u2bUNmZiZnndOnT3Nu35k2bVqe9/kPHDgQPj4+eb5uYaWkpHDqgIODA9asWZPn7TCenp5YuXIlW08YhsGGDRvyfS0+n4+VK1dqHQzNyMgIf/75Jye53LlzZ7GOQUU1c+ZMrb1iGjduDFdXV07ZsGHDOBdfVZmbm+OLL75glz98+FDki0y64OXlhbFjx2p9PHcdMzY2znPgxf79+3OWc98GQ0hpoYSZkDLO2NgYf/31FzZs2FCggX8+fvyII0eO4Pvvv0f79u2xc+fOPBNnf39/tnUDACZOnFiggTX69evHmedZ00Bh5UViYiLu3r3LLrdv315t4CZNrK2tMWLECHZZJpPh5s2beW7j6OiINm3a5LmOWCzmDFSl7R7KkvDixQu26yqQfUKT+wRPkypVqnBOll69eqVxcKOCUq3ThRnlWiAQcJI21bpfWjHkXl9TDKoDfolEImzYsAFLly6Ft7c3J/4qVarg119/xc6dOzlJ+MGDBzldoXVJIpHkeVIMZN8rqtrrRNPI9ZrUrVuXM3jauXPnCh2fQqHAypUrsXDhQowfP15tej1tcidbmgayU43z+++/Z5cjIiKwdu1abN++nbPfv/nmmzwHRlS9WFmjRo0Cd/395ptv2L+jo6PVWmFV95uFhUWBbpkZP358gV67oO7evcvpPTFq1ChODxRtmjZtyjkGXr9+Pd9jXPv27bUmlTmsrKwwePBgdjkiIoLT+l0a7O3t8x3R39PTk7OseiFHk5xeGTk09VgpLYMGDcrzoljumR3atm2rNj6HKmtra8792vp8b6Rio4SZEAPRqVMnHDt2DCdOnMCkSZNQv379fE/SY2NjsXjxYgwcOJC9XzI31bmZJRIJ2rdvX+CYVEeHTUxMLFYCVJYFBARwLgZoGxVXk969e6s9V15yJ0TaqLbo6mIQrYK6c+cOZ7kw+6JXr16c5fz2RV5UW4b0Nd1IScawfPlyLF26FJMmTcJff/2V75RVjRs35vT6AFCglrmi8Pb2zneQtdzJemFG+W7YsCH7d1BQkFrraX5EIhFatGiBAQMG4KeffkKTJk3y3YZhGLUu2PlN6/f999+jXr167PKePXs4PVE8PT0xffp0rdunpqYWeST0hg0bcupcTjd5IPu9PHjwgF1u0aJFgS6Curu762Squhy6OlYwDIN///03z/VzH2e1yZ2squ630lC3bt1811HtPSQWizldmzXJ/V0s7PdFl/KbrSB374KCTJen+v70+d5IxUaDfhFiYGrUqIEaNWpg4sSJSElJQWBgIO7fv4/79+8jKChIY2vys2fPMHToUBw5ckTtau67d+/Yv2vWrFmolrLcP/5v374tc9Pf6ILqPgKAOnXqFHhbR0dH2NnZsd0jNY2InHv9glA9AS7Nln3VfSEQCAo1P3CdOnXA5/PZePPbF3kRiURs18PCtBIrFApOoqs6+nBRYshR2JZq1fU1xdCoUaN8W8xy69OnDzZs2MCOsH7v3j0kJyezJ6mqc7HmR9OcqzkKctKfu0v5sGHDCjwQWVJSEvt3RkYGoqOjtc4BXhTx8fEIDw9HWFgY3rx5g+fPnyMoKAixsbGc9fL7XgkEAixbtgw+Pj5ITU3lHHtzegblVb9evXrFqQcXL14scq8A1QG7IiMjOV3Cc7dY5qVWrVp5fvaFoXqscHBwyPO2jdw0/bbkRfXCRV6qVavGma6xOKPkF4Wzs3O+66heCLG0tMz3e1OSA/wVVl63EgHqFxYLMv5EWXp/pOKihJkQA2Zqaoo2bdqw3dfS09MREBCA8+fP4+TJk5yrsREREfjjjz/URnNVHfSoMCc0mtYvzgBKZVnu7oCF3U+2trZswpzfPiro9Ej6orovLCwsCjUvprGxMczMzNiEqDj1xczMjE2YC3JfeI7c9wvnnnamsDHkKEwMueMoTgyq+Hw+2rZty472K5fLERISgsaNG+vk+XPkHjhLk9zTExVnBOaEhIQiJ8xKpRJ37tzBxYsX8fTpU7x7946TTBaXu7s7ZsyYoda6P336dM4tK5rk3kefP3/WOtBYflS/S7mnHsyry2tuxZ02SZXqsaIkf1t4PF6+iVoOkUgECwsLdsC+/Kbl0rXCHt8Nbd7hwk7XaGjvj1RcdNmGkHLE2NgY7dq1wx9//IHLly9zBoYBskc3Vp06CgDn5LGwP+a5T/QLmzQYCtV9xOPxCj3Ak+p+ym8fqc5XWRap7ovC7gegcPsiL6qD9xQm8c59D1xBkr+CxJCUlJRvF15tcehympTc95OXREKQe85YTXSZlOZ1L3FeAgMD0bdvX4waNQr79+/HkydPNMYlEonQpEkTdO3atUivo2lAr4JcIChqcqyJ6gWY3N1WC3NBpijz02tTnGNFYX5bTExMCtUKqTr4YGl38S3sWAeGpry/P1JxUc0mpIxKS0uDTCZDXFwcHBwcCjzHaw57e3ts2LAB3377LdsNU6FQ4N69e5z7vSQSCdviV9gRg3XZWlcYhUlMdEH1ZI9hGKSmphbqBLAkWhP1RfV9FyWR0dW+cHFxYed2jY6OLvB2uS8YFfZ7lTuGHEqlErGxsQV6PoVCwen+W5h5pPOjmgzkvJauFeR+bdU4bG1tS306mGvXrmmcXsvBwQHVq1eHh4cHqlSpglq1aqFWrVowNjbG8ePHceHChUK9jkwmw+zZs9XKd+7ciY4dO+Z5/3Tu+v/7779zBqUqqtytdoX5nupyOrLiHCsK89tS2JhVn7soF/0qitL+nSWkLKOEmZAy6O3bt+jevTu7PGrUKMyYMaPQz8Pn8zF69GjOfYu5EwapVMomzLm78uUn93MVt6WsoPfiFrXFqahyz90bExOjNjJpXlQTusJ0jyyLVPdFUlISMjIyCnwfcHJyMudktTj7omrVquxc0OHh4cjMzCxQ977c90IW5v5OTTHkfu6CJMxhYWGck3xtg/okJydDJpPBxcWlwD0Pct8+oHqPYE5X7dKQe55ppVJZavcixsfHY/r06ew+5vP5GDlyJIYMGZJn1+6iTMczZ84czsUPiUTCTi81Y8YMnDhxQmurbe7jiq5Gu89dBwvTy0CXt9Wovr/i/rbkdayQy+Wce/XzkpGRwWnZ1+XFKkNRVn9nCSnLqEs2IWWQvb09pxVHdcTTwsp9gpg7uVE9WX/+/HmhBi/KPSWHtjkw86J6El3QE1bVeUtLQ+6k6vHjxwXeNiwsjHMiXJhEuyxSrS8KhYIzym9+nj59yhlwqzj7QnWQn6ysrALHoTr9jpmZGdzd3YscQ+4RzQtaL3JPAZR7gKN169bB29sbjRo1QpcuXQq9j3PweDydjnpcGKoXE+RyOdsboCASExOLNfK7n58fJ/GbPHkypk+fnu990LmPK/nN0Xvs2DHOfM/9+/fHnDlz2OWIiAgsXLhQ6/ZVqlThLBfmc2YYBjExMRpjdHBw4EzfVJjnDQkJKfC6+VE9VkRFRaklwXnJ/duS37GioHGHhIRwWk719f0obYbwO0tIWUYJMyFlkJmZGWee3aCgILWT7IJSnTMXUG/NUu0ymJaWBn9//wI9L8MwOH36NLtsZmaGmjVrFjo+1a52Bb0PtKCJia6m+mnUqBHnuVTfd35yr1vYkY/LmtxdTM+cOVPgbXPvi+IMRtWiRQvO/XKXL1/Od5usrCxcv36dXW7ZsmWx7rmzsrLijJhekBgAcL5juZ8DyB5JV/WkVjXmvCQkJHC6PtesWVNvPRpy15PCzKc8duxY1KtXDy1atMDAgQMLnTwHBQVxlr/++usCbZd76qK8EuaIiAgsWrSIXXZwcMDMmTPh4+OD1q1bs+W+vr6cpFqVjY0N58LC7du3C3xf882bN9G6dWt4e3uja9eu2L9/P+fx5s2bs3/fvXuXM/K4NvHx8Wr7rjh0dazg8Xj5Hjdzepvk5/z585zlli1bqq2jr2nqSpLq72xBezKU9hzVhJRllDATUkZ99dVXnOX58+cXepAkhmGwfft2dtnOzk4tSfniiy840+OsX7++QAOh+Pn5cZLxzp07Fyn5UB0NNSsrK98TtuDgYAQGBhbouVVPfPJrLcqLlZUV5yT42rVrePjwYb7byWQy7N69m102NTVF27ZtixxHSVNthdC2v2rXrs05yT969ChCQ0Pzfe43b97gxIkT7HKlSpUKNT1Xbubm5mjXrh27fPjw4Xy7k/r6+nK6hvbr16/Ir59Ddb7YoKCgfKdtevPmDSex7tu3r1pX5Xbt2nG+SwcOHCjQIFqrV6/mdKMcMmRIvtuUlHbt2nFaOfft21egFsYrV66wFwdlMhnMzMzU7svOT+6ksyDd2S9fvqz22Wm7Nzanu7XqZ7JgwQJ2MLT58+dz7o393//+pzZlVY4+ffqwf6empuLvv//ON1alUok1a9YAyB606sOHD2otpT4+Puzf6enp2LZtW77Pu3PnTp0OgtWmTRtOt+zt27cXqMt3QEAAbt++zS43btw438H5jh49qjbqeG4xMTE4cuQIu9ywYUO1QfIA9WmMivPbUVao/s5+/Pgx39bjS5cu4ePHjyUdFiEGgxJmQsqogQMHcrrsBQcHY+jQoXj9+nWBts/IyMDMmTM53bm///57taTWycmJMwhYSEgIZs2alWfX7H///RcLFixgl0UiEb777rsCxZVbw4YNOcsbN27Ueo9VdHQ0Zs6cWeB7sFSvqhd31N5x48axfyuVSvz0009q8zOrSk5OxqRJkzj3D37zzTc6HYVW1wqyv3g8HsaOHcsup6amYuLEiVoTAiC7O+akSZM4LYVjx44t9j2to0ePZv9OSEjAlClTtJ7wP378GH/88Qe77OnpqTaKfFH079+fkxRMnToVERERGtdNSEjApEmT2O+WkZERhg8frraejY0NevbsyS7HxMTk+53ctWsX9u3bxy5Xq1ZNJxcEisrU1BTDhg1jlxMTEzFhwoQ8k5r379/jt99+45Sp1rWCUh2MDchOpvJy584dzJo1S61cW13avn07pzW6b9++nIs3Li4umDZtGrscHx+vcWAwIPuihuqo49u2bcs33qVLl3J62TRp0kTtONquXTvOHOlbtmzJc0CzK1euYOvWrXm+bmGZmJhw6kB0dDSmTJmS5+CSr1+/xtSpUzlJ6vjx4/N9rfj4eEybNk1rb4SUlBT89NNPnNHpv//+e43r5r5Ao8sR3/VFtX4olUps2LBB67pv3rzB/PnzSyMsQgwGJcyElFFisRhr166FhYUFWxYcHIw+ffpg8uTJOHHihNpgLgzDICQkBFu3bkWXLl3g5+fHPta+fXutLU4zZ87k3N938uRJDBw4EFevXuWcNIaFhWH58uUYOXIk56Rn0qRJWgcuyk/Dhg3h7OzMLl+/fh0TJ07Emzdv2LLPnz/jn3/+wZdffomXL18WePor1e6oSUlJhepKnVuTJk04yc2nT58wYMAAbNmyhdNqmZqaipMnT6Jfv364f/8+W16rVi1MmDChyK9fGlT3V0BAAOczUNW3b1907tyZXX7x4gX69euHAwcOcE5IExMTsW/fPvj4+HCeq02bNhg4cGCx423UqBGnhe7u3bsYOHAg7t69y55wJycnY+fOnRg+fDjb+ioQCDBnzpw8E/aOHTuiRo0a7D9t0wSZmZlxkqPo6Gj0798ffn5+7HdHoVDg0qVL+PLLLzn74fvvv1dL7nJMnz6dM2DX+fPnMWTIENy5c4dz28LTp08xefJkzsUAExMTLFu2TO9znI4bN45zf/bTp0/h4+ODw4cPc1qBk5KS8M8//2DQoEGcY5qPjw+na3FBdevWjbP8559/YuXKlZyLOllZWXjw4AF+/fVXjBo1SmPLp6ZEKSQkBKtXr2aX7ezsNCbbQ4YM4fTmuXLlCg4ePKi2noWFBeezYxgGs2bNwtSpU/Hs2TNO+ePHjzF+/Hjs3LmTLTcxMVGbAxrIbiVdsGAB23tIoVDgxx9/xB9//MFpOYyKisKff/6JiRMnFmr8ioIaO3YsvL292eW7d+/Cx8cHp06d4vSGiImJwebNmzFw4EDO8XTQoEGc3j15uXXrFgYNGoSbN2+y35GsrCz4+/tjwIABnIscvXr10trbJ/fglUeOHNHp6OH60KFDB06vh4MHD2L27NmcuhAXF8d+BlFRUYWeZpKQ8oxGySakDKtWrRr27t2LH374AWFhYQCyT3zOnz/P3oslEolgY2MDuVyOxMREjSc9Xbp0wZ9//qn13ixLS0ts2rQJY8eOZVvHgoODMW7cOPb509PTNZ5Ujh49mtP6WlhCoRAzZ87ElClT2CTn8uXLuHz5MtsdU/VEVyQSYf369RgxYkS+z+3l5cVZ/vnnn7FkyRIAwMiRIzFq1KhCxTpjxgzIZDKcOnUKQHYi/+eff2LFihWwsrKCSCRCXFyc2mdQs2ZNbN68udBdS0tb7dq1cffuXQDZ7613795wdHREWloaNm3axJ748ng8LF26FD/88AO7fkxMDObOnYt58+axJ5xxcXFqvQFatGiBVatW6ew+wd9//x0RERFsT4rnz5/j22+/hUQigbm5OWJjY9Xui//111/znO6nsAYMGIBXr15h165dALK7Es+YMQOzZ8+GjY0N4uPj1Qba+eKLL/JsObO1tcW2bdswYsQI9v7ToKAgjBgxAiYmJrCyskJCQoLaSLYSiQSbNm1Sq/v6IBaLsX79eowdO5YdlCkyMhKzZ8/G3LlzYW1tDT6fj5iYGLV60rJlS/z+++9Fet1WrVqhc+fOuHTpEoDspGnTpk3YtGkTzM3NYWxsrLFuenl54dmzZ+xxKHe31czMTEyfPp1zEXHu3Llqo10D2d+RhQsXom/fvuxnv2TJErRo0UJtcMSuXbvit99+w5IlS9i6eurUKZw6dQoSiYT9rHO3zBoZGWHlypVaL1bWqVMHy5cvx7Rp05CVlQWFQoFdu3Zh165dsLGxAY/HQ1xcHPt+bWxs0Lp1axw/fjzP/VsYYrEY69at49SBDx8+YOrUqRAKhexvV3x8vFrX5169enEGUcuLp6cnXr58iZCQEIwePRomJiaQSqWQyWRq373mzZvnORibo6MjbGxs2Is3V65cQbNmzSCVSmFlZZVvD4CySCqVYvLkyezvH5B9G8vhw4fZ+qv6+25hYYGlS5dqbYUnpKKhFmZCyrgaNWrgxIkTmDBhAqe1OYdcLkdkZKTGRM3FxQVLly7FunXr8k3WqlWrhiNHjqB79+6cZCbn+XMnyy4uLli/fj2mT59e9Df3/7p164YlS5aovb/k5GROsuzi4oLt27ejRYsWBXredu3aqbVOREdHIzo6mjOacEEJhUKsWLECv/32G+ckmWEYyGQyREVFcT4DsViMUaNGYf/+/bC3ty/065W27777jhOnQqFAREQEZDIZp7ULyG5Z3bZtG77//ntOV26lUomYmBi1JMjU1BRTp07F1q1bddot3dTUFFu3boWPjw+n3qampiIqKoqTLFtYWGD58uWcbqK6MmvWLEyfPp2zL3K+O6on7AKBAKNGjcLKlSvzvWjg5eUFX19fNG3alFOelpaGjx8/qiXLTZo0waFDh9TW1ycHBwfs378fgwcP5oyVoFAoEBMTg6ioKE49EYlEGDduHDZt2lSsC0x//vmnWkszkH0hKHfdFIvFGD9+PA4cOMAZjTn3Pc2rVq3Cixcv2OUePXqgS5cuWmPw8PDApEmT2OXU1FRMnz5d48CGw4cPx5YtW9RGzk5NTUVERIRaslyjRg3s3bsXHTt21Pr6ANC9e3fs2rVLLUmPi4tDbGwsm6S6urpiy5YtcHJyyvP5ikJbHcjKykJUVBRkMhknWba2tsbChQuxYsWKAo+LMWvWLAwbNoz9TqWlpeHTp0+c715O3dq6dWue8zrzeDzMmDGD8/1MSUlBREQEnj17VuixRMqKkSNH4pdfflGbKSMhIYHz+16zZk3s3bu3WFPuEVLeUAszIQZAIpFgypQpGD9+PG7cuIF79+7h+fPniIiIYFuv+Hw+LCws4Orqirp166J9+/Zo0aJFgedvBbJPVFatWoWXL1/i9OnTCAgIQHh4OBISEiAQCODo6Ig6deqgS5cuRR7kS5t+/fqhbdu2OHr0KK5cuYL3798jKSkJNjY28PDwQPfu3dGrV69CdRPj8XjYuHEjdu7ciTNnziA8PBxpaWkwMzMr1kAuw4cPx5dffomTJ0/i5s2bCAkJgUwmg1wuh6WlJapXr47WrVujb9++nMFWyjobGxscO3YMmzZtwvXr1xEdHY2srCxYWVlpPEkUCoX48ccfMWzYMJw4cQK3bt3CmzdvIJPJoFAoYGNjg5o1a6Jt27bo3bu3xgs+uiCRSLBkyRJ88803OHHiBO7cuYPo6GgkJyfD3Nwc1atXR5s2bdC/f/8SHTV69OjR6NWrF44dO4Zr164hLCwMCQkJMDY2hpubG5o1a4YBAwaozd+cl0qVKmHPnj0IDAzE6dOn8eDBA3z69AnJycmwsLBgB/Lr0qVLgS8klTaJRILff/8dY8aMwalTp3Dnzh28f/8e8fHxUCqVsLS0RLVq1dC8eXP4+PgUaC7r/JiYmGDNmjUICAiAr68vHj16hKioKGRkZEAikcDGxgbVqlVDgwYN0KdPH/ZCUefOndl7ee/cuYPQ0FC4ubnh/v372LFjB/v8VlZW+N///pdvHKNGjcK5c+fYC3QPHz7E5s2bNbbctWrVCqdPn4a/vz+uXr2KR48eISYmBsnJyTAxMYGDgwO8vb3RrVs3tGnTpsDH9saNG+PMmTM4ffo0zp49i+DgYCQkJMDc3ByVK1fGF198gf79+8PMzCzP+5yLI6cOfPfddzh58iRu376NDx8+sCM229nZwcvLCx06dECPHj0KfbGEz+dj9uzZ6NOnD/bv34979+4hOjoaYrEYHh4eaNOmDQYMGMC5/ScvOcfuXbt2ITg4GPHx8RCLxXBwcEBkZCQ8PDwKvQ/Kgu+++w7du3fH0aNHce3aNYSHhyM1NRV2dnaoXr06evbsiS+++AJisVjrbSiEVEQ8pjwM/0cIIYQQQiqEgIAAzpgSu3fvRrNmzfQYESGkPKMu2YQQQgghhBBCiAaUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEIIIYQQQogGlDATQgghhBBCCCEaUMJMCCGEEEIIIYRoQPMwE0IIIYQQQgghGlALMyGEEEIIIYQQogElzIQQQgghhBBCiAaUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEJIGaVQKPQdQokor++LEEJI+UMJMyGkQklJSUHnzp3RqVMnZGZmch57+/YtpkyZglatWqFOnTpo3bo15s+fX+zXHDZsGGrUqIFhw4YV+7lIxaBUKrF3714sXrxYL6/fsWNH1KhRAzNnztT5c58+fRq//PKLzp+3Ijp27Bhq1KiBGjVqIDw8nPNYTvnatWv1FF3hBAQEaH0v+jZz5swiH8PDw8PZ9xUQEFDsWDIzM9GlSxd07NgRycnJxX4+Qkj+KGEmhFQof/zxB8LCwvDLL79ALBaz5XFxcRg8eDDOnTuH2NhYyOVyxMTEwNjYWI/Rkorql19+wYIFC8rdCfFff/2Fn3/+GTExMfoOhRCDJBaLMX36dERERGDRokX6DoeQCkGo7wAIIaS03L9/H0eOHEGDBg3wxRdfcB7z9/dHQkICAOC3335Djx49wOPxOEl1Udnb28PNzQ329vbFfi5SMURHR+v19V1cXCAQCGBjY6PT542KitLp8xHt3NzcAACWlpZ6joToWpcuXdCwYUMcO3YMPj4+aNq0qb5DIqRco4SZEFIhMAyDBQsWAACmTJmi9nhOi5dUKsXw4cN1+torVqzQ6fMRUtL27Nmj7xBIMV28eFHfIZASNHnyZIwYMQILFizA8ePHwedTp1FCSgp9uwghFcK5c+cQEhICT09PtGjRQu3xnEGITE1NSzs0QgghpFBatGiB6tWr4+XLlzh79qy+wyGkXKMWZkJIhbB161YAwFdffcUpnzlzJnx9fdnliIgI1KhRAwDQtGlTTktbcnIyjhw5guvXr+Ply5dISEiASCSCra0tGjZsiKFDh8Lb21vttYcNG4Z79+6pPV/Oa/fu3RtTpkzB3Llz8eDBA4jFYlSrVg1r1qzB27dv2RbvFy9e4M2bN9i6dSvu3LmD2NhYWFpaonHjxhg1ahTq1aun9f3Hx8dj165duHLlCsLCwqBQKODk5IQ2bdpg1KhRcHJy0rhdWloa9u/fjwsXLuDVq1fIyMiAVCpF7dq10aNHD/Tu3RsCgUBtu4SEBOzZswdXrlzBu3fvkJWVBWtra3h7e6Nv377o3Lmz1ljzExERgUOHDuHKlSuIiIiAQqGAq6srOnTogFGjRkEqlWrc7v79+9i/fz8CAwMRExMDiUQCDw8PdO7cGUOHDoVEIlHbJucz8vHxwZIlS3D69GkcPHgQL168QFpaGlxcXNClSxeMHj1aY9dXhmFw9uxZ+Pn54enTp0hMTISZmRk8PDzQoUMHDBkyBObm5mqvl8PX15ddfvHiBYD/6tP48ePRtWtXzJ8/H8+ePYNEIkGdOnWwceNG9lYCmUyGAwcO4NatW3j37h2SkpJgZGQEe3t7NG3aFMOHD0fVqlXV4u7YsSMiIiLY913c/bF27VqsW7eOXb537x77Pbt8+TIqVarEeV0XFxf4+/tr/Bzz8/DhQ/zzzz+4f/8+4uLiYGJiAk9PT/Ts2RP9+/eHSCTSuu2zZ8+wY8cOPHjwALGxsXBwcED37t0xfvx4nDt3Dr/++qtabMeOHcOvv/6q9l5UhYeHo1OnTgCAxYsX48svv9QY97Fjx/DgwQNER0cjPT0dZmZmqFq1Kjp16oSvv/5aYx3VJmf/Tpw4EZMmTQKgXr/yo+n9fPz4ETt37sSNGzfw6dMn8Hg89vs3YsQIWFlZaX0+mUyG3bt34/LlywgPD4exsTGaNGmCCRMmFDgmbRQKBU6fPo0TJ04gODgYnz9/hqWlJby8vNCnTx/07NkTPB5P6/YPHz7Ezp078eTJE8TGxsLJyQndu3fH2LFj833t5ORkHDx4EKdOncKHDx8gFArh7e2NMWPGwMXFJc9tg4KC2PoaHR0NIyMjODk5oXnz5hg+fDjbtV6T/v37Y/Hixdi6dSt69uyZb5yEkKKhhJkQUu49ffoUT58+BQB069atSM/x5MkTjB8/HrGxsZxyuVyO0NBQhIaG4vjx41i4cCH69+9fqOdOTEzEt99+i4iICABAeno64uPjYWdnh7dv37Lr+fv746effkJ6ejpbFhsbi3PnzuH8+fNYunQp+vbtq/b8d+/exeTJk5GYmMgpf/fuHd69e4dDhw5h2bJlavsmISEBw4YNw8uXLznlMTExuHbtGq5du4ajR49i8+bNMDExYR8PCwvDsGHD8OnTJ852kZGRiIyMxIULF9CjRw+sWLGi0N0Iz549i1mzZiE1NZVT/vLlS7x8+RLHjh3D9u3b4enpyT6mVCrx+++/4+DBg5xtEhMT8ejRIzx69Aj79u3Dxo0bUbNmTY2vyzAMpk+fjuPHj3PK3759i02bNuHUqVPYv38/HBwcOI//8ssvOHnyJKcsISEBDx8+ZBO73bt3w93dvVD7Acjez99++y0+f/4MAOyo7znJ8rVr1/Djjz+q7Su5XI7k5GS8ffsWx44dw/r169G2bdtCvXZR90dJUiqVWLZsGXbs2MEpz8zMxL///ot///0Xhw4dwt9//60xrn379mHhwoWcKa9CQ0OxadMm+Pv7F/p7XVAKhQK///47Dh06pPZYfHw87t+/j/v378PX1xf79++HmZlZicSRG5/PVxvD4fTp0/j111+RkZHBKX/x4gVevHiBAwcOYP369WjcuLHa8z19+hRjx45FXFwcW5aamorz58/D398fQ4YMKXKscXFxmDhxIgIDAznlsbGx7LHq0KFDWLNmjcYLahs2bMDq1as5Ze/fv8fGjRtx8eJFuLq6an3tsLAwfPfdd3j//j2n/MaNG7h58yZGjhypdduDBw9i7ty5YBiGLZPL5Xj16hVevXqFAwcOYNWqVVovMHbr1g2LFy/Gs2fP8PjxY40XbAkhxUddsgkh5d6ZM2cAANWqVVNrSZ0/fz4CAwMxbtw4AICzszMCAwMRGBiILVu2AMhuPfj+++8RGxsLW1tbLFq0CBcuXMDdu3dx/PhxTJo0CSYmJmAYBosWLVJLUPJz/fp1REdHY/78+bh16xYOHTrEtlip+vnnnyGVSrF06VJcv34d169fx5w5c9jX1jSq8suXLzFu3DgkJiaiUqVKWLZsGa5fv447d+5g8+bNqFOnDtLT0/Hzzz/jwYMHnG1XrlyJly9fQiKRYM6cObh48SLu3r0LX19f9OnTB0B2S+GuXbs42/3+++/49OkTbG1tsWzZMly6dAl37tzBgQMH0Lp1a/YzOX36dKH2U2BgIH766SekpqbC1dUVK1aswI0bN+Dv74/Zs2fD1NQUMTEx+OGHHzhThv3xxx9sstyiRQvs2rULd+7cwcWLFzF16lRIJBJ8/PgRI0aMQGRkpMbXPn/+PI4fP4727dtj37597Gef06oTERGBVatWcbY5deoUmyx/++23OHHiBO7evYvz58/jp59+glAoRFRUFGfqspz62KhRIwBA79692fqY2+nTp8EwDFavXo3bt29j586dbEvdx48fMWXKFKSmpsLd3R1//fUX+zkcPXoUw4YNg1AoRGZmZpGmTivs/hg3bhwCAwPRu3dvAECjRo3Y96XaAufq6goPD488ExRt1qxZwybLXbt2xb59+xAQEIBLly5h5syZMDMzw7NnzzBu3Di1hO/WrVuYN28eFAoFPD092V4cfn5+6NWrF169eoU1a9YUOqaC2LlzJ5ss9+zZEwcPHsStW7fg7++PzZs3o0GDBgCyv8s7d+4s1mvl1C9t/1SPO1OmTOEMVHjr1i1MmzYNGRkZqFmzJtavX4/bt2/jxo0b+Ouvv+Du7o6EhASMHTtWLXmMj4/H6NGjERcXB6lUigULFuD69eu4du0a5syZA2NjY7XjSEFlZmZi7NixCAwMBI/Hw5AhQ+Dn54eAgAD4+flh0KBBALKnrZowYQKysrI42x87doxNlhs3boy9e/fi7t278PPzg4+PD16/fo0rV65ofe2cZNnY2Bi//PIL/P39cevWLSxbtgx2dnbYvn27xm0jIiKwYMECMAyDNm3a4J9//sGtW7dw5coVLF++HHZ2dpDL5fjtt9+0jpbv5OSE6tWrAwB1yyakJDGEEFLO9erVi/H09GRmzZqldZ01a9Ywnp6eTIcOHdQe27t3L+Pp6cl4enoy9+/f17j9zp072XVu3LjBeeybb75hPD09mW+++YZTPmPGDHablStXanzeu3fvsus0btyY+fjxo9o6//zzD7vOuXPnOI8NGTKE8fT0ZDp27MjIZDK1bdPT05n+/fsznp6eTO/evTmPNWvWjPH09GTWr1+vtp1SqWSGDRvGeHp6Mr169WLLP3/+zNSoUYPx9PRk/Pz81LbLyMhgunXrxnh6ejLjxo3T+J616d27N+Pp6cm0b9+eiYuLU3v8woUL7H7w9fVlGIZhQkJC2HimTJnCKBQKte0CAwMZLy8vxtPTk5k8eTLnMdXPaNKkSRrjytl/DRs2ZJRKJVs+adIkxtPTk/n22281brd27VrG09OTqVGjhtpnk1NnZsyYobZdzmOenp7MoUOHND730qVLGU9PT8bLy4sJDQ3VuM6iRYvY53n79i3nsQ4dOmh8/eLsD9Xtc38Xiuvdu3dMzZo1GU9PT2bBggUa1wkKCmJq1arFeHp6Mtu3b+c81r17d8bT05Pp2rUrk5SUpLbtnDlz2Ped+xhx9OhR9rGwsDCNrx0WFsauc/ToUbZcoVAwLVu2ZDw9PZmRI0eq7S+GYZjU1FSmTZs2jKenJzNo0KACv3ZO+Zo1azTGlNu///6r9XuQlZXF1on+/fsz6enpatvHx8ez6+T+bi9YsICtj8+ePVPbNigoiH3tvPajJnv27GG327t3r8Z1tm/frnGdtLQ0dv8PHjyYycjIUNtW9XuSu97u2LGDfezq1atq24aFhTGNGzdm17l79y77WM7vSv369TW+bkBAALvd+fPntb7/WbNmMZ6enkzPnj21rkMIKR5qYSaElGvJycl4/fo1AHC66RaGk5MThg4disGDB7Mtf7k1a9aM/VsmkxX6Nbp3757vOn379tV4r3GHDh3Yv8PDw9m/X716hfv37wMAJkyYoPHeQiMjI/z0008AsrtVBgUFsY/ltNLm7oYOADweD//73/+wa9cu/P3332x5VlYW271Q03ZisRjLli3DP//8U6iWzVevXrH38E6ePBnW1tZq63Tp0gVNmjThfBaHDx8GwzAQi8WYM2eOxi7gDRo0YLuDXrhwgdNlVNX48eM1lrdv3x5Adl2Lj49ny3P2X0JCglqrFgAMGTIEmzdvxunTpzn3MRcUj8fTeouBp6cnBg0ahDFjxmhtrVWdiqYodbaw+6MkHTx4EEqlEiYmJmx9zs3b2xs9evQAAE7355CQELx58wZA9v2+mj6LmTNnlsj0TCkpKRgwYAB69eqFcePGabzH1sTEBHXr1gVQtM+pIMLDwzFp0iTI5XLUrFmTc986kN29OOeWkalTp8LIyEjtOaRSKb7//nsAwNWrV9mZBxiGYXv5+Pj4oFatWmrbent7a7yvuyByPksvLy8MHTpU4zojR45E7dq1AQAHDhxgy+/evcsep6ZNm6ZxGsGff/4ZFhYWGp83pwdJq1at0K5dO7XHK1WqhDFjxmjcNuf4kJWVpfF70rRpU6xfvx6+vr5szxxNclqY37x5U+7mbSekrKB7mAkh5dr79++hVCoBAFWqVCnSc3Ts2BEdO3bU+nhsbCwePnzILqveA1kQIpGIPenJi7ZBvVTnyk1LS2P/vnfvHvu3p6cnUlJSNG5fs2ZNCAQCKBQKPHjwgH2dJk2a4OrVq/jnn38QFRWFnj17olWrVmziUL16dbW4pVIpqlevjlevXmHFihV4+fIlunXrhubNm7MDFhXlPrs7d+6wf+ckZJrs3buXs/zvv/8CyD751JRk5+jRowd27doFpVKJBw8eoGvXrpzHjYyMtN7frLr/Ve8vb9KkCa5cuYLnz59j4MCB6N+/P9q2bcsOomRtba3xJLugKlWqpPVEvl+/fujXr5/WbT99+oRnz56xy4Wts0XZHyUpp67nfMe11fV69erh5MmTePv2LeLj42FlZYW7d++yj2u7l9vExAQdOnSAn5+fTuM2NzfHjz/+qPXxrKwsPH/+nL2Io+nCS3GlpKTg+++/h0wmg1Qqxfr16zljEgDZ3Zlz5HUsqVOnDoDsJDkwMBDdunXDy5cv2fjzule+c+fOauMM5CchIYEdY+GLL77Ic93u3bvj2bNnePnypdpnb25ujoYNG2rcztjYGK1bt2aT/hyfP39GcHAwgLzfV6dOnTROLZhzn3dmZia++uorDB48GB06dECtWrXYCycFGRwxp84rlUp8+PABXl5e+W5DCCkcSpgJIeWa6j2pxW0hksvl+PfffxEcHMwO9PX27VtER0dz1mNUBnApCEtLS40jTeemLeFTbRVRfe2wsDD274IOWKQ6UNfMmTMRFBSE+Ph4XLp0CZcuXYJAIEDdunXRpk0bdOnShR2JV9Xvv/+O7777DmlpafDz84Ofnx9EIhEaNmyIdu3aoUuXLnmO/KpJVFQUgOyEPK9ReHPL+fw1jQStSvXxjx8/qj1uaWmpdYAy1f2fc3EGAIYOHYrz588jKCgIwcHB7Mm1h4cHWrdujU6dOqFZs2ZFnj81rwsAOdLT03Hnzh2EhIQgNDQUYWFheP36tVqLVlHqbGH3R0nK6VkRHBysNfHJLTIyElZWVpy6ldcxoqg9VAoqIiICAQEBePv2LUJDQ/Hhwwe8e/dO7X5rXWL+f/C2ly9fQigUYvXq1VpH+c6haVo+TXKOJarH4Ly+9/l9RzWJiopi625+F0RVH8/57HNizO94pCk21dfOa3sPDw/2gqSqunXrYtiwYdizZw9iYmKwZs0arFmzBjY2NmjVqhU6dOiA9u3b5zsyuuogZpGRkZQwE1ICKGEmhJRrqgNwFWd02bNnz2LRokVsN8McPB4PVapUQb169Qo1XYsqTd0bNREKC3fILkr3PNVtPDw8cOrUKfz99984c+YM4uLioFAo2JGl165di8aNG2PRokWcUZ4bN26MEydOsCPMfv78GXK5HAEBAQgICMCyZcvQsWNHLFiwALa2tgWKK2eEb2Nj4yK9n/xOOlVb1DQN2pbXVETaGBsbY+/evdizZw+OHDnCjnieMzr5nj174OLigt9//73Qo1QD+debvXv3YtWqVewo2jn4fD5q1aoFd3f3Ig8UVJT9UZKKU9dz9k9+dUtba35xJSQkYM6cObhw4YLahQtTU1M0b94cMTExnB4BurJq1SpcunQJQPYFsubNm2tcrzj7NykpiS3L3XKtqii3JajGZWpqmue6qseAnBbygn72mn47Cvq++Hw+JBKJ2vcQAGbPno0mTZpgz549ePDgAZRKJeLi4nDixAmcOHECpqam+OGHHzB69OgCxVbYAScJIQVDCTMhpFxTvSewIK24mly4cAE//fQTGIaBtbU1unTpgjp16qBKlSrw9PSEhYUFPnz4UOSEuaSongQ+fvy4wIm5KltbW8yePRuzZs3CkydPcOvWLdy+fRsPHz5EVlYW7t+/jxEjRuDs2bOck0Y3NzcsXryYHZX39u3buHXrFp4+fQqGYeDv74/o6GgcOXIkz7lRc+Q8d2G7+EokEiQlJeV7IqnaxbQwc93mRywWY/To0Rg9ejTev3/P7r87d+4gJSUFERERmDBhAg4ePKjTlqGdO3di8eLFALJHfu/cuTNq1aqFqlWronr16pBIJLh9+3a5GVnX2NgYycnJ6NGjB/76669CbZuTcKjezqCJ6sjrhaWtlVgul2P06NHstHdNmzZFixYt4OnpiSpVqsDd3R18Ph/Tpk3TecKcczEMAL788ksMGzZM67o5xxJbW1vcunWrUK+j2mqf1/ewKPtXNUnW1k1c0+M53/Gc2Iry2Rf0fWnbPke3bt3QrVs3yGQy9vhw69YtREVFISUlBcuWLYNYLNb6+aj24ijIsZQQUniUMBNCyjXVE6r8Toq0WbFiBRiGQaVKlXDkyBGNXYJLa3CjwnB2dmb/Dg8Pz7PLI8MweZ5s8fl81KtXD/Xq1cOECRMgk8mwdOlS+Pn54dOnT7h48SI71ZQqkUiEZs2aoVmzZvjpp5/w6dMnzJ49Gzdv3sTTp085UyjlJWews4SEBCQlJWlt7Tt37hzev3+PatWqoXPnznB2dkZSUhI7qJM2OQPDAdz9pkvu7u5wd3fH0KFDkZmZif3792Px4sWQy+XYv38/Fi5cqJPXSU9Px7p16wBk3y++Z88ejS1oZbHOFpWzszNevnzJDkyljaZ6XrlyZQDZvRji4uI492CrCg0N1Viu2jVdLpdrXEfbvj537hybLM+cOVPrnL26/qweP36M3377DUD2fd3z5s3Lc/2c70R8fDxSU1MLdVFJddqwt2/far33XfUWkoJydHQEj8cDwzCcOes10fQdz/k/Z6wLbbcZqHZJV31tPp8PpVKJt2/folOnThq3jY6OLlC3emtra/Tu3Ru9e/cGwzC4desWfv75ZyQmJmLPnj1aE2bVupFfKzshpGholGxCSLmmOqp0zr2KhSGTydg5Rbt27ar1/lnVQalK677N/OQMKgMAly9f1rpeYGAg6tWrh27durEtjo8fP8bgwYPRtGlTvHr1Sm0ba2trzJo1i13O2bdXr15F//790bRpU41dEJ2cnDB16lS17fKjel/qjRs3tK63ZcsW/PXXX9i/fz+A//bBvXv38hxh+Ny5cwCyW2jq169foJjykpaWhtGjR6Nt27b4559/1B4Xi8X49ttv2ftii1I3tXn16hW77/v166e1u6k+6mxJtYDlfM7BwcFa59IGgDlz5qBZs2b46quv2O68qqOq53RP1uT69esay1WTR211THVQQG3lOfMF55aWloZHjx4B0M3nFBUVhR9++AHp6emws7PD2rVrNY4OrSpn/yoUCly9elXreidPnkSDBg3Qs2dPdoT+qlWrsklzXschbfs3LzmDDAL/fYe1OX/+PIDsW01y7vvNuRUiNTUVt2/f1ridUqnEzZs31cpNTU3Z/VKU97Vw4UJ069YNP//8s9pjPB4PrVu3Zi9C5nV8UE2YNc2iQAgpPkqYCSHlWk6XRkB7C1FeVO8b1tZKGRISgs2bN7PL2lqZSpu3tzc7hcuWLVvYxF9Veno6lixZgoyMDERERLAjWDs5OeHx48ds64Ymz58/Z//OGfTGxsYGT548QWJiIvbt21fg7fJTr149toV8zZo1Gu+pvHz5Mtta17NnTwDAgAEDAGR3iZw/f77GhOPx48dsgt2uXTvY29sXKKa8mJiYICoqClFRUTh48KDGFqbExER2gLHc+yGn3hWlLqnWWdVWNVW3bt3CsWPH2OXSqrM5t0Xo+vUGDhwIIHsU6Xnz5mkc9TsoKAi+vr5ISEiAVCplu2JXqVKFvXd37dq1auMUAMA///yjtQUzp4UagMYu7jKZTOt3SPU2EU2flVKpxPz589n6Xtz9lpGRgR9++AHR0dEwMjLC+vXr4eDgkO92nTp1Yscb+PPPPzVeGJDJZFizZg1SU1MRGxvLmT4qZ8qoM2fOcC7U5AgLC8Pu3buL9J5yPvvg4GCNF6cAYNeuXexxJ+eYAGSPZJ/z+S1dulTjcWXnzp1aey589dVXALIvfKh+n3IkJCRgw4YNGrdVKpV4//49rly5gg8fPqg9zjAMO5VeXsfJnGOIQCDgjCVBCNEdSpgJIeWaiYkJe+JWlHsALSws2CTy2rVrWLhwId68eYP4+HiEhIRg1apV+Prrrzn3sOV3L11pmjNnDoRCIZKSkjBo0CDs3bsX4eHhiIuLw82bNzFixAh27uXRo0ezLUF2dnZs68bBgwfx66+/4vHjx5DJZAgLC8PRo0cxbdo0ANnJdc5c0HXr1mXn9129ejWWLl2K58+fQyaT4d27d9i5cycWLVoEIDsJzpmGJj858z7z+Xy8f/8egwcPxuXLl9keANu2bWPjqVWrFht7zZo12a6MZ8+exejRoxEQEID4+HiEhYVh27ZtGDFiBORyOSwtLfH7778Xd5ezcgbqefHiBUaOHIkbN26wSfS1a9cwatQofP78GQKBQK11MacF7P79+/jw4UOh5t/19PRkk/4DBw5gw4YN7HM8fvwYCxcuxNixYzlJZWnV2Zz39eLFCwQHByM+Pp6TBH777bf44osv8O233xbqeWvVqsXOpe3v74/hw4fj5s2bkMlkCA0NxZ49ezBmzBjI5XIYGRnhl19+4Ww/Z84cmJiYICYmBoMGDcLZs2fZbVeuXJlnd/kaNWqwicrevXuxbt06hIeHIyoqCidPnsTAgQMhk8k0dmNWnV936tSpuHz5MqKjo9nbHL755htOIlbczylnLAIej4clS5agXr16yMzMREpKisZ/OffeisVitgt3REQE+vfvDz8/P7Y+X7hwAcOGDWMvSk6dOpXTPXjMmDFwd3eHUqnE999/j61bt+Ljx4+IjY2Fn58fBg8eXORbZgYNGsQeRxYsWIB58+YhJCQEiYmJCAkJwbx589j7+Rs0aMCpW3w+H/PmzQOPx8PLly8xePBgXLt2DfHx8Xjz5g0WL16MZcuWaR3/om/fvmjSpAmA7AG8Vq5cyX7XLl26hK+//hqfPn3S2LNi2LBhEIvFSE1NxciRI+Hr64vQ0FDIZDIEBQVh6tSp7HRpOXVbk8DAQABA7dq1Cz0oIiGkYOgeZkJIudeqVSsEBwezc/IW1pw5czB8+HCkpqZiz549GluL+vfvjzt37iAiIkJja4G+NGzYEGvWrMG0adOQkJCABQsWYMGCBWrrDRgwAJMnT+aUzZo1C2/fvsWjR49w7NgxjS0otra2+PvvvzldOpcvX45vv/0W79+/x/bt27F9+3a17dzd3bF69epCvZcWLVpg8eLFmD17Nl6+fIkJEyaorVOtWjX8/fffnFbWmTNnIjMzEwcPHsTt27c1dr10dXXF6tWrddql0cfHB0FBQdi/fz8ePHiA7777Tm0dkUiEBQsWqE1Z1KxZM5w5cwaRkZHsnNCXL1/WOOVPbgKBAPPnz8fEiRORlZWF1atXq+1rPp+PcePGYceOHcjMzCy1OtusWTNs2bIFqampbKvj7t272W7RYWFhiIiIKNIAULNmzUJmZiaOHDmC+/fvaxxZ2NTUFCtXrlS7j7Zq1arYuHEjJk6ciIiICLW5kR0dHVG5cmXOfMSq5s2bh7FjxyIjIwNr167F2rVr2cdEIhGWLFmC1atXq/VyadeuHXr27InTp08jNDRUY522t7dHx44dceDAAaSlpSEqKqpArcK5RURE4NSpUwCyL0DNnj0b06ZNy3MObh8fHyxZsgRA9lzlSUlJWLhwISIiIjBjxgy19Xk8Hn744Qe21TeHkZERtm3bhjFjxuDt27dYvnw5li9fzj7O5/MxY8YMNrEtDLFYjE2bNuGHH37Ao0ePsG/fPo29W1q3bo3ly5erzTbQokULLFmyhD2ujB07lvO4i4sLunTpgp07d2p8v+vWrcP48ePx8OFDbNq0CZs2beKsM23aNKxZs0atTnt4eGDRokWYNWsWIiIiMHPmTI3v7+uvv8bgwYO1vv+chFn14gshRLeohZkQUu7ldM8NCwvT2C05P3Xr1oWvry++/PJLODk5QSgUwtjYGK6urujZsyd2796NRYsWsfOTXrlypcx0ywayu1NeuHAB48aNQ61atWBmZgaRSAR7e3t069YN27dvx8KFC9VaUczNzfHPP//g999/R7NmzWBlZQWhUAhLS0vUrVsXkydPxrlz59SSD0dHR/j6+mLatGlo0KABLCwsIBQKYWVlhcaNG+PXX3/FiRMnipSc9uvXD2fOnMHQoUPh7u4OIyMjmJiYwMvLC7/88guOHDkCR0dHzjZCoRDz58/H3r170atXLzg5OUEkEsHGxgaNGjXCnDlzcPz48RKZv/T333/H5s2b0bVrVzg6OkIkEkEikcDDwwPffPMNTp06BR8fH7XtBg4ciEmTJsHZ2RkikQh2dnZ53pubW4cOHXDw4EF0794ddnZ2EAqFkEgkqFKlCvr374+jR4/i559/Zgdcu3Dhgs7ec17atGmDOXPmwN3dHSKRCNbW1oiNjdXJc4tEIixatIj9nF1cXCAWi2FsbIzq1atj1KhROHPmDNq3b69x+xYtWuDMmTMYNmwYXFxcIBKJ4OTkhGHDhsHPzy/PweCaN2+O48eP46uvvmLrl729PXr16oUjR46gV69eWrddsWIF5s+fjwYNGsDU1BRCoRBSqRQNGjTA1KlTcerUKYwbN469teTixYtF2j+qU1YplUqkpKTkmSxr8vXXX+Ps2bMYNmwYqlWrBolEApFIBBcXF/Tt2xeHDh3CpEmTNG6bM2jizJkz4eXlBVNTU1hYWKBNmzbYs2cPe5wuCltbW+zbtw9Lly5F69atYW1tDZFIBGdnZ3To0AHr1q3Dli1btM5d3q9fP/bzc3V1hVgshrOzM4YNG4Zjx45pHQgOyO41sXv3bixcuBANGjSApaUle3/z+vXrMWbMGK3b9unTB76+vhg0aBA8PDxgbGzM1ruePXti586deQ7I9vbtW/YWgt69exdwbxFCCovH5J70jxBCyqEhQ4bgwYMHmDx5Mn744Qd9h0MIMTAzZ86Er68vXFxc4O/vr+9wCMHKlSuxadMmNG3aVOt98oSQ4qMWZkJIhZDT1dHPz6/MjGJNCCGEFIVCoYCvry8A4Pvvv9dzNISUb5QwE0IqhNatW8Pb2xuhoaG4du2avsMhhBBCiuzq1auIjo5G/fr10bJlS32HQ0i5RgkzIaTCmDZtGng8HjZu3KjvUAghhJAiYRgG69evB4/H0ziPMyFEtyhhJoRUGM2aNcPQoUMRFBSES5cu6TscQgghpNBOnjyJ4OBgDBkyhB1hnhBScmhaqf/HMAxOnTqFo0eP4vnz50hNTYWdnR2aNGmCoUOHsvOwFkZ4eDg6depUpHhyJqtX1bFjR0RERBRo+5s3b8LOzq5Ir01IeTZt2jTcuHEDS5cuRdu2bTnTIRFCCCFlWWZmJlatWoVKlSqxc88TQkoWjZINID09HVOmTMHVq1c1Pi4QCPDjjz+qzc2Xn6ImzDweDyEhIZyy5ORkNG7cGAX9uChhJoQQQgghhJDioRZmAL/99hubLFetWhUDBw6Era0tgoODceDAAaSmpmLFihVwcHBA3759C/y8NjY2WL9+fYHW3bBhA4KDgwFA4xyGL168YJPl8ePHo27dunk+n6WlZYHjJIQQQgghhBCirsK3MN+6dQujRo0CADRv3hybN2+GkZER+/ibN28wZMgQJCQkQCqV4vLlyzAzM9NpDCdPnmS71bRr1w6bNm0Cj8fjrLNv3z528vpz587Bw8NDpzEQQgghhBBCCOGq8IN+bd++HQAgFAqxcOFCTrIMZLc4/+9//wMAJCQk4PDhwzp9/aioKMyfPx8AYGVlhT/++EMtWQb+u6fZyMgIlStX1mkMhBBCCCGEEELUVeiEOSEhAbdv3wYAtGnTBq6urhrX69GjB2xsbABkt+7q0qJFi5CUlAQAmDFjBmxtbTWul5MwV6tWDXx+hf7YCCGEEEIIIaRUVOjM6/79+1AqlQCyu2Nrw+fz0aRJEwBAUFAQEhMTdfL6d+7cwfnz5wEAjRo1go+Pj8b1GIbBq1evAACenp46eW1CCCGEEEIIIXmr0AlzThIK5J+IVqtWDUB28vry5UudvP6ff/7J/j1z5kyt60VERCA5ORkAUL16dQDZo2bfv38f165dw/Pnz6FQKHQSEyGEEEIIIYSQbBV6lGzVOY1dXFzyXNfR0ZGzXU6Lc1FdunQJT58+BQB07tw5z3meVedk5vP5mDhxIvz9/TlJslQqxTfffIMxY8bA2Ni4WLERQgghhBBCCKngCbNMJmP/trKyynNdqVTK/p2QkFDs1965cyf793fffZfnuqoJ85IlSzSuk5CQgHXr1uH69evYtGkTrK2tix1jYSgUCqSlpbHLJiYmEAgEpRoDIYQQQgghRP/KU25QoRPm9PR09u/co2PnJhaLNW5XFCEhIfj3338BAA0aNECDBg3yXF81YRaJRBg5ciT69esHV1dXJCQk4Nq1a1i9ejViYmLw+PFj/PTTT9ixY0epDg6WnJyM169fs8uurq6QSCSl9vqEEEIIIYSQsiE1NRVhYWHscrVq1WBpaanHiIquQifMWVlZ7N+qCbEmqo+rblcUu3fvZv/Or3UZyJ56CshO6rdv347GjRuzj9nb22PAgAFo27YtBg4ciMjISNy9exdnzpxBr169ihVnYWRkZHCWVb8ghBBCCCGEkIord65gSCr0oF+q9/rK5fI8183MzGT/zi+5zktKSgpOnToFAHB2dkbHjh3z3ebAgQN48OABzp8/z0mWVTk4OGD27Nns8qFDh4ocIyGEEEIIIYSQCp4wq3YZzu+qh2rCnF/37bzcuHGDfa2uXbsWuNu0mZkZnJyc8lynY8eOMDMzAwA8fPiQnTKLEEIIIYQQQkjhVegu2RYWFuzfCQkJMDc317qu6kBfxRlQy9/fn/27W7duRX4eTQQCASpXrozg4GBkZmYiISGh1Ab/yn0RoTTvYQ4NDYVCoYBAIICbm1upvCYp36hOFUzo/gNICHrCKas8bCgsvWrrKaKyi+pU/jKi3iHuwnaAc7GXB4vmfWBWo6ne4iqO5IwUXH1/ByKBGCJ+9mA3zSo1gKm4+L+PZaFOMQyDR/+G4dE97m1Y1ram6PlVXQhF/w3wo1QyYBgGAkGFbqsp08pCnSLlR+57mIvT4KhvFTphdnd3Z//+9OkTXF1dta4bGRnJ/u3s7Fyk11MoFLh27RqA7C7U+Q32VRQikUjnz1kQuUe9k0gkbGt3ScvKyoJcLodIJCq11yTlG9Wp/Mn+vY/4U2c5ZTatWsClmWEmNiWN6lTespJiEev3J4TpyZxy84bdYNco/1uXyiozMzP0NOuMa+8D4GRuj0bOdXX23PquUwzD4NKp57hz9a3aY3Ub2MFSagEej1fqcZGi03edIuWboY6QDVTwhLlq1ars369evULTptpP9F69egUA4PF4qF69epFe7+nTp2xLdceOHQv0QxIWFgZ/f3/ExcWhYcOGaN++fZ7r5wwQJhKJDHYkusLi8/nsP0J0gepU3rJSU/Fm4yZOmdDMDFXG5j+IYUVFdUo7ZVYmPv0zD8pcybJxZS/YdButp6gKLl2ejlR5OqwlUo2PmxuZoWvVNhAJdHtBW591ilEyOOv7FPdvf1B7rG2X6mjfrUapx0SKj45ThGhWoRPmBg0aQCQSQS6XIyAgAEOHDtW4nkKhYKeBqlmzJqcrd2E8fPiQ/btevXoF2iY6Ohp//PEHgOwkO6+E+d27d/j06RMAoG7dugZ9Jacw6tSpo+8QSDlDdSpvH3bvRWacjFPmPupbiFXmqydcVKc0YxgGUUeWQy77yCkXSh3gMGAm+Pyy/TuWmZWJpTc3Ijo5FnM6/AgHMzuN64mFRR8sVBt91SmlQokThx7j8f1wtceq1bKDkYkI6WlyGJvop8cbKTo6ThGiWYW+hGRhYYHmzZsDyL63+OPHjxrXO336NGSy7JPD7t27F/n1njz5714/Ly+vAm1Tp04dtlvMjRs3tMYIABs3bmT/7tu3bxGjJIQQ7RKDnyHy7HlOmWnVKrBp0VxPERFDlvr6AdLePuKU8Y0kcBz0GwRGpTMORlHJFXKsuL0ZwdEvEZMqw+xLyxGRFJn/hgZMkaXE0b0PNSbLnl4OcHaVIiNdjuBHH8EwjB4iJIQQ3avQCTMAjBgxAkD2tFI///wzkpO5XcJev36NRYsWAQBMTU0xYMCAIr/W69evAWR3l1btDp4XIyMjDBw4kI1x6tSpajECwLZt23D8+HEA2fdm+/j4FDlOQgjRRJmZidfrNnLKeAIBLGrVhCIlRU9REUOVlRyPzKj3MKvXATzx/0/zyBfAru9kiG1d9BtcAex/cgIPPwWzy4kZn7HsxkYomfI5Q4VcrsDBnffx/PEnTjmPB9TydoSjS3bvO6FQgGo17en+ZUJIuVGhu2QDQOvWrdGtWzecP38eDx8+RN++fTF48GA4OTnh2bNn2L9/P1L+/0Rw+vTpaqNOBwQEYPjw4QCApk2bYs+ePVpfKzQ0FAAglUoL1V16woQJuHLlCt69e4fAwED07NkTgwYNgru7O+Lj43HmzBncv38fQHZS/+effxr0SHSEkLIp7OBhpOfq5WLpXQdCMzOIbW31FBUxRMrMdCQH3wSjVEBobgPz+l2Q8vwWLBp1h2n1JvoOr0D61eyKx5HPEJqY/Z0Q8YWo61ATkZ+j4WzhqOfodCszIwsHtv+L96/jOOU8Pg9e9ZxgbWcKALC2MUW1WvaQmOq+CzohhOhLhU+YAWDp0qVISUnBzZs3ER4ejuXLl3Me5/F4mDhxIr7++usiv0ZycjJSU1MBIM/pqzQxNzfHjh07MHHiRDx9+hSRkZFYvXq12npOTk5YsWIF6tbV3SichiA6OpqdBsHe3l7f4ZBygOqUupR37xHhe5xTJra2hln16rBp0Zxak/JBdeo/jFKB5Ge3oMxIZcv4Riaw6ToapjWa6TGywrEwNodPrS+wJ+gYkjI+o3XlprAwNsdr2Qc4mTuU+HeitOpUepoc+7bcQ/iHeE45X8BDnQbOkFpLIBDwUaeBC6xsynY3epI3Ok4RohklzABMTEywdetWnDx5En5+fnj+/Dk+f/4MqVSKRo0aYfjw4WjUqFGxXiNFpbtiUQYNc3JywsGDB3Hq1CmcPn0awcHBSEpKgpmZGdzd3dG1a1cMGjQIpqamxYrTEEVGRrLTINABnugC1SkuRqHAq7UbwCgU/xXyeLBq2hgmTk6QVKb5OvNDdeo/aW8fISspllMmtLCFqWcTg7vw0sK1ERSMAs9iXsPaRApbiRVaujYqlfdRWnXq8unnasmyQMhH3YbOsJCaQCDgo25DF0itKVk2dHScIkQzSpj/H4/HQ58+fdCnT59CbdesWTO8ePEi3/UcHBwKtF5ehEIh+vXrh379+hXreQghpDA+njiFlDdvOGUWtWvByNoaVo0bGlySQ/QnMyYMYgcPZMZFQJmRBiB7kC+z2i3BK+MjYmvC5/PRunJTGAuNkZie3cosFJSvU6tOPWvhY2gCPkUkAQBEIgHqNnKGmYUxJcuEkAqhfB3VSYXk7u4OpVJJ8wYSnaE69Z+0T5EI3XeAUya0sIBF7Vowr1UToiJOs1fRUJ0CPj+5ipgT62DV7mtYNOmBlGe3oUhJgFnt1uCLTfQdXp5CEyLgJtU8EBmfx0cTl3qQK7Mg1vFcy3kprTolEgvQoLkbEs+/RJZcgbqNXGBqZgSBgA/vRpVgaVW2PztScHScIkQzSpiJwSvqvNiEaEN1KhvDMHiz4W8oMzM55dZNG0NkmZ00k4Kp6HUqPeIlYk//DYBB/LX9yIwJhW2P8WAy0iA0t9J3eHk6GXIJe4OO4btGg9GlWhuN6/B4vFJNloHSqVMMwyD40Uckf86AdyMXKBRKmEjEEAoFqNvQhZLlcqaiH6cI0YYuIRFCCNEo+tJlJD5+wikzq14NRra2sGrUEHwhXXMl+ctKikPUkWVgFHK2LOXZLaS9fQShhY0eI8vf+VfXsCfoKBgw2PJgH06FXNJ3SKWKx+PB1t4MACA2ErLJsncjSpYJIRUHJcyEEELUZMri8W7HLk6ZQCKBpXddmFSqBBNnZz1FRgyJMisTUUeWQZHMHTTKonEPmNVqqaeoCuaN7AO2BXJvR9gddBRvZO/1E1AJ+xiWgKN7ApElV3DKnV2l8KztACB7jmXvxi6wkFKyTAipOKh5gBg8uVwOhmHA4/EgEpVulzhSPlGdAt5u3gJFSiqnzKpxIwhMTGDVsL5+gjJgFbFOMQyDqMNLkfHpNafcxL0ubLqM0E9QhVDFyg1f1e6Bo8/OsGXeDrUQmxoPDys38Hn6bXPQZZ0KfSvDvq33kJmRhSy5Av2/bQSB4L/35+wqBQCYWxjD3NK4WK9Fyq6KeJwipCAoYSYG7/nz5+w0CN7e3voOh5QDFb1Oxd25i7g7AZwySWU3mDg7wbKOF4QVcPq64qqIdSr++gGkvX3EKRNaOcLeZ6pBjIjN4/HQqWorvIp7i8dRIaht5wlP2yr4mBSFZLtUWBiZ6TU+XdWpNy9icHDHv8iSKwEAL4KjcHz/I/Qb0gB8/n8j4OckzaT8qojHKUIKghJmQgghrKzkZLzZtIVTxjcygrRhA4gsLWHuWV1PkRFDkvLqPhJuHeUWCoRw+OoXCCTm+gmqCGwl1hjRcCBOvbgMK2NLCPkCtHFvqvdkWVdePI3Ekd2BUCiUnPLUlEwoFErwDeDCBiGElDRKmInBs7S0RFZWFoQ0ABHRkYpcp97t2A15fAKnTNqgPgRGRrBu0gg8AZ1AF0VFqlPy+E+I9vsLYBhOuVWbgTBycNdPUMVQycIJ/Wp2xd3wh2jh2hC2Emt9hwSg+HXq6cMI+O57BEbJ/ZyqeNri61FNIBTRd72iqUjHKUIKg74RxOBVrlxZ3yGQcqai1qmEx08Qfekyp8zYyQmSym4wreIBIzs7PUVm+CpKnVJkpuPT/gVgMtM55ZIazSBt+aWeospfaEIEHM3sIBaKNT7uaG6Pnp4dISrlqaPyUpw69TAgFCcPPwa4uTLsHM3g6mGNlORMGgW7AqooxylCCotGySaEEAJFRgberN/IKeMJhbBq3BACIyNI69fTU2TEUDAMg+hjK5AVH8UpF9lWgn3fKeDxeFq21K/38WGY678CS25sQLo8Xet6ZSlZLo6A629x8pB6suzoYoGadR3BMAxePI1Ua3kmhJCKihJmQgghUKanw8S1EqfMsl5dCE1NIa1fDwIjIz1FRgxF/M3DSHsTyCnjm5jDccCv4IvKZv0JT/yEBdfWIEWehqfRL/A//xVIzUzTd1gl5salVzh//JlaubObFNVr24PH40EsFsKrgTN4/LJ5gYMQQkobJcyEEEIgsrREtUkTYdOiOfhGRhDb2sKsWjUY2drAtIqHvsMjZVxm3Eck3DjMLRQIYdfrB4isHfUTVD6USiVW3N6MzxnJbNmHhHDse+Knv6BKCMMwuHwmBFfOvlB7zNXDClVr2ILH48HISIj6TVxhalY2L3AQQog+0D3MxOC9efOGHaSiatWq+g6HlAMVrU4xSiUiz56DPOkzJJXdYOToAEaeBR6fD6smjctsV1pDUp7rFKNUID3sGUxrt0Lqi7tgsuQAAGnLL2Hq2UTP0WnH5/MxufkoLLy2hk2a7STWsJVYIzI5Bo5mZfue/YLWKUbJ4PzxYNy7+V7tMfdqNnCrkj2ImZGREPWauEJiqvk+blL+lefjFCHFQS3MxOClpKQgOTkZKSkp+g6FlBMVrU4lBT+DPOkzuywwMoLQzBTmntUhlkr1F1g5Up7rVNrbR8hKioPI2glm9TuDL7GApHoTWLUZoO/Q8uVh5YrZ7SbBWGgEaxMpWro1QaZCjuvvA/LfWM8KWqcunwnRmCxXrWH3X7JsLKJkmZTr4xQhxUEJMyGEVHAiqRROPbtzygQmJrCsW0dPERFDkRH1HukfX7PLAhNzSJv3gV3fKeDxDOMUw8PKDbPbT0EHj5YQCbI73rV0baTnqHSnflNXmJpxE2FPL3u4VJYCyE6W6zepRMkyIYRoQV2yicGrU4dO6oluVYQ6xSiVUKSnQyiRwMTFGYrUVM7jtq1agi8qH6MClwXlsU5lfY5H6qv7nDIeXwCzOu0hMDKsKYk8bTwgNbbA1Xd3YG9qg0qWTvoOKV8FrVO29mYYNLIJ9vx9F/IsBWrWcYS9kzkAwNhYhHpNKsFEQskyKZ/HKUJ0gRJmYvD4fMNoxSCGoyLUqcjzFxB++CiqjBsLm2bc+0xdfPpCYGysp8jKp/JWp5TyDDAKOXh8ARilgi2XVG8MobmVHiPTLE2ejqjkWLhbVdK6jr2pDXp5doJEbBjJfkHrVEZ6Fj6GJ8CroTPkGVmwsTcDABibiFC/iSuMTejCGMlW3o5ThOgKfTMIIaSCyYiNw4dde5EZJ0PIH0sQsmwF5MkpsPCqDZd+fShZJnnKSopF2MZJSHsXBPOGXSE0y06QjZ2rwcjBXb/BaZCRlYklN9Zjrv8KBEe/zHNdQ0mWC+NjeAJSUzJhYWnMJssmlCwTQkiBUcJMCCEVCMMwePP3JijS/ptrNu7WbWRERkLqXRcCk/KXMBDdUcozEHVkGRSf4xB75m/I/PfCrE5bmLjXhUmV+voOT02mQo7lN//G85jXSMtKx6Jra3D9/V19h1UiUlMyce/GOzAMwyl3r2oDR2dLdtnEJHuAL0qWCSGkYKhLNjF4MpkMSqUSfD4f1tbW+g6HlAPluU4pMzKgzJRzyuw7dYS0fj09RVQxlIc6xTAMYs9tRsanN2zZ54cXIDAxhXWHb/QYmXYnQi7icdRzdjlLqcD2wEOoaVsd9mY2eoys+FTrlFgowd5NAYiO/Iy0NDnadfVk1+PxeKjh5QCAQWJCOuo3qQQjY0qWibrycJwipCRQwkwMXnh4OORyOUQiER3giU6U5zrFZCkgrV8PFjVr4NOZs+AJhPAY9a2+wyr3ykOdSrp/FsmPr3LKRNZOsGzho5+ACqBPzS4IiXnNJs0igQgt3RrjbnggOlZpCTOxqZ4jLLqcOiXP4OH+tQTIYrMH7rt2/iXEYgFatP9vHl0en4caXo6QyxUQG9GpH9GsPBynCCkJ1CWbEEIqCIZhILt3D8qMDIDHQ6VBA1B9ykQIzcz0HRop41LfBSHu4g5OGU9sDIf+MyAwLrtJp1ggwvQ236O6jQeEfCHaVG4KqbEFLIzMIBYY/sjQKZ+zcONcFJss57h38z0y0rM4ZTw+j5JlQggpAjpyEoNXqVIltgsRIbpQXutU8us3SI+KZpcVySlglEo9RlRxGHKdkifGIOrocoDh1hX73pMgtnPVU1QFJxaIMLf9jzj18jKylApUsnBCs0r1IeAL9B1asZgYWeOCfzDSUhSccompGN9OaAEjYzrFI4VjyMcpQkoSHU2JwaNuQ0TXymudUqSkcJYFEgmk3nX1FE3FYqh1SinPQOT+BWAy0jjlFs36wLRmcz1FVXhioRi9anTGW9kHeNpWAZ9n2AnBp/BE+O0NRloqdzwCiakYzdp6QJ6p0LIlIdoZ6nGKkJJm2L8YhBBC8qXMyu6aKa1fD/Yd20Nomt2F1qZZE/DFht8tlZQMhmEQdXQ55HERnHKRtTOkLfrpJ6g8PI0KURshWpVYIEJNu2oGnyyHvZNh98Y7asmymbkR6jWpBIVCiVfPo7VsTQghpLAM+1eDEEJInpJCXiBwwiTEBz4EABg7OMCxezfYtGgOY0dHPUdHyjKZ/x6kvXnIKeObmMG+3xQITS21bKUfx59fwPyrq7Hy9mYolOW3dfXty1js3Rygdn+yhdQY3o1dIBJndzPnC3j6CI8QQsolSpiJwVMqlew/QnShvNQppVyO1+s2ICMqGs/mLcTLv1ZDnpQEvkgEU/fK+g6vQjG0OpUSEoDEgBPcQoEQNl1Hw8ipmn6C0uLcq6v457EvACAg/BGW3thYLpPml8+isH/bPbXu1lJrE9Rt6AKh6L97sm3taSA/UniGdpwipLTQPczE4D19+pSdBsHb21vf4ZByoLzUqfAjx5AWFs4ux1y9DtMqVeDSt7ceo6qYDKlOZcZHIfrkWiBX92Zp6/4wr9NWT1Fp9ulzNHYEHuKUPYoMxrlXV9GzRic9RaV7wY8+wvefh1AquZ+JqbkAdi5CCIT/tX9UqmyFqp52pR0iKQcM6ThFSGmiFmZCCCmHUkNDEX7kKKfMtGoVOPfqoaeIiCFQKrIQdWAhmEzuIF+mtVrCqlV/PUWlnZO5PYbX/wo8/NcFuZ5jbQCAXCHXtplBCfo3DMf2Bqoly+aWQji5GYPPz37vIpEA9Zu4olpNe/D41CWbEEJ0hVqYicEzNTVFVlYWhEKqzkQ3DL1OMQoFXq5aCyZLpesmn49qEyeAJzDsqXQMlaHUqYzwFxDZVoI8IQr4/27NIltX2PWdDB6vbCZhPWt0Ao/Hw65HR1DbzhNNXLzRpnIziAQifYemEyamYvB4PM6AZg7O5rBzEoNhGPD5fEhMxajb0AUmEhrEjxSdoRynCClt9I0gBq9q1ar6DoGUM4Zepz6eOoOUN285ZU69esCsioeeIiKGUKfk8ZFI/xAMsYM7+KaWSH12G+ABjoNmgV/Gk88enh1hZWyJDEUmWro1hriMx1sYnrUd0HdwffjuewgwgLOrJarWtGMvYFjbmKJ2PSfOPcyEFIUhHKcI0QdKmAkhpBxJj4rGhz3/cMqE5mY03zLJkzIjFSkhd8EguxVTaGYF84ZdYOLhDZHUXs/RFUwLt0ZQMkqDnzZKE5GID8/aDkhLzYR7NRs2WXZxk6JaDeqCTQghJYkSZkIIKScYhsGrNevAyLn3btq2awtpg/r6CYqUeYxSgeTnt6GUZ3DKTas3gbFrTT1Fpe5V7DtIxCZwsdA+HVp5TJYBwL2aLWSxqcjMzJ5OisfjoVpNO7i4Wek5MkIIKf/K5y8LIYRUQNGXryDpaTCnzLRaVVTy6Qc+3ZNGtFCkJEGRksQpE9u4wKhSDT1FpO5V7DvMu/oX5vqvQFjiR32HUyKUSgbhH+I1PmZsIoJXfWfw+TwIhQLUbehCyTIhhJQSOoMiBu/Dhw/sIBWVK9PcsqT4DLFOZSYk4t3W7ZwygYkJXAd8BSNbGz1FRXKU1TqVEHASIitHWDTogpTnt5CVkgiBsSkkNZqWmUG+Xse9x/xrq5GpkCNTIcdc/5WY13EqXC2d9B2azigVShw/EISnjz5i4LeNUKOOeiu6pZUJank7wdTUCBIzcZmtU8RwUZ0iRDNKmInBS0xMZOcNJEQXDLFOvVm/EYo07lRAtm1aw7pJYz1FRFSVxTqV+vYRZJd2AWAgbdUf0lZfIe1dEIycqoEvLBujLTMMg/UBu5CR9V938eTMFGx9sA+/d/i5zCT1xZGVpcDRPYF48TQKAHBkdyC+Ht0EVWuoz6Vs52DO/l0W6xQxbFSnCNGMumQTQoiBi75yFbJ7/3LKTNxc4fr1AJpGimgkT4hGtN9fwP8P8pVw6wiiji6HpHojCM3LTldfHo+HGW0nwNLIgi1zMLPD902GlYtkWZ6pwMHt99lkGQAUCiWO7nmA9LTyMY80IYQYOmphJgavVq1aYBimXJw8kbLBkOqUIj0dbzdt5ZTxxWK4DR4EIxvqil1WlKU6pZRnIOrocijTkjnlJm61wSuDg2Y5mtlhQaepmOu/EiKBEHPa/wg7U2t9h1VsGely7N/2L0LfyjjlfD4PbTpXh7FJ3q18ZalOkfKB6hQhmlHCTAwedR0iumZIdSr0wCG1rtjSBvVh06ypniIimpSVOsUwDGJOb0RmJHeebkmNZrBs0U8/QRWAo7k95nb8GcYCMawlUn2HU2xpqZn4Z8s9fAxN4JQLBDx4NXBBZoYCsdHJsLU30/ocZaVOkfKD6hQhmlHCTAghBio1PAKfTpzilBk52MO+Uwfqik00Srx7HCnBNzhlIhtn2PeeWOZblZzNDWM+6Pwkf87AP5vuIurTZ065UMhHnUYusLA0hpGJECb5tDATQggpHZQwE0KIAWIYBu+2bAOjUPxXyOfDqlFDWDVqqL/ASJmVFhoM2ZV/OGU8kREcvpoOvpFET1FxxaTEwUZiVW7nU05KSMOev+8iLiaFUy4SC1C3kQvMzI1gKTWBV31niI3oFI0QQsoCOhoTg5eUlASlUgk+nw8LC4v8NyAkH4ZQp2R3A5DwKIhTZu5ZHdJ63jTnchmk7zqVlZyAqMPLAEbJKbds1htiO9dSj0eTgLCHWH13O7pWbYtv6vlAKChf9Tg+LgV7/r6LBBn3FgqxkRDejV0gMRXD0dkCnrUdwBfkf8FA33WKlD9UpwjRrHz9GpEK6f379+w0CN7e3voOh5QDZb1OKTIy8G7bDk6ZwMQEFnW8YOFVW09Rkbzos04xSgUiDy6EMj3XIF9V6sOqzcBSjUWbN7L3WHN3O7KUWTjzyh+xqTJ832QYTMtIy3dxxUR9xt6/7+JzUgan3NhEhLqNXCCRiOFR3RauHlYF7hpf1o9TxPBQnSJEs/LZ54kQQsqx8MNHkRETyymTNqgHc8/qEJmba9mKVFSx57YiM/Idp0wodYB9vx/B4+v/Xvf4tEQsurYOcmUWW3Yv4hGOBJ/WY1S6ExmRiF3r76glyyamItRrUglm5kbwqu8MtyrWZf4+ckIIqYiohZkYPEdHRygUCghokCOiI2W5TqV9/IgI3+OcMiN7e5i4ucGSWpfLLH3Vqc9PruHzwwucMp7YBPb9foLApGxcXDE3MoO3Yy3cDr3PlnlIXfGlV3c9RqUbqcmZuHbhFVJTMjnlpuZGqNvQGeaWJqjbwBlmFsaFfu6yfJwihonqFCGaUcJMDJ69ffkYOZWUHWW1TjEMg7dbtoPJ+q8lDjwerBo1gFmVKhCaaZ+ChuiXPupU+sdXiDm9gVvI48O64zcwdqle6vFoI+QLMKX5KDib2ePIszOwk9jgxxbfwdzI8Ovz21cxsHcyQ2qKFcLexQMAzC2NUaehM2xsTeFV3wVGxkU7FSurxyliuKhOEaIZJcyEEGIgZAH3kBD4kFNm5lkdIqmUWpcJB8MwSLx3GlBkccrN6raDRcNueopKOx6Ph4F1e8PV0hn2pjZwsigfJ+7u1Wzh5mGNhs3ccPHkc0SEJsCrgTOcK1miRh1HCAowuBchhBD9ooSZEEIMRNQlf84y39gYlnW8YFbFA0IzUz1FRcoieVwERNZOMK3TDqkv7oKRZ8DIuTpsun1Xpu+TbeHWSN8h6JSZuREA4HNSOhxdLGBjb4oq1e3ofmVCCDEgdGmTEEIMRK1fp8Oha2fwRCIAgLR+PQiMjGhkbMKhzExD6utAAIDIygHmDbtC7FQVDgNmQiAu/L2ypPiMjIRo3NIdbTt7onJVG0qWCSHEgFALMzF4T58+ZadBqFOnjr7DIeVAWa1TiowMGNnawqnHF0h5+w6Sym4wreIBoSm1Lpd1pVWnGEaJlJC7UGb+N9cvX2wCmw7fQGgmLbHXLagXsW9xNPgMvmv8NexNbfUdjs59Ck+ElY0ExiYiTrnYSPenW2X1OEUMF9UpQjSjFmZi8JRKJfuPEF0oq3Uq6dlzMEpl9pzLXrXBFwhgUbuWvsMiBVBadSo9LATyhGhOmcjKAcbu+j/5jUqOwZLr6/AoMhjzr6zCy9i3+g5JpxLj0/DPlgBsWXkDURFJJf56ZfU4RQwX1SlCNKOEmRg8Y2Nj9h8hulAW65QyMxMpb7lz6ZpWrUKtywaipOsUwzCQJ0TByMEdQgsbtpxvZALTGs3B4+n35z45IwULrq5Gijy75Ts6JQ5Lb2zA/YjHeo1LV+SZChzc8S9SkzMRL0vFtjU38SQwokRfsywep4hhozpFiGbUJZsYPE9PT32HQMqZslin+GIxHLt3Q1LwM6S8/wAen0+tywakpOtU8uMriDm7CTadR8K8QWekf3iKjIiXMKvZAvwycN9yaOJHyNISOWWmYkm56JbNMAxOHgpCpEqrclaWEjcuvkKlylJY2ZTMRa2yeJwiho3qFCGaUQszIYSUUdH+V/D51Wt2WWRuDpvmzeDUozusmzaGUCLRY3SkrMiMDkXsuS2AIgtx57cgxm8VjJ2rw6JxDwgt7fQdHgCgtn11LOg4Fabi7DpraWSOUQ2/hpvUWc+RFd/tK2/w9OFHTpmJRARPL3uEv4/XU1SEEEJ0hRJmQggpg9KjovBm42Y8/mUmXm/4G/Kkz+xjIgtzmLq76y84UmYoM9MQdexPMFmZbFlKyB2kfQiGwMRMj5Gpq2rjjmVdZ6GatTsGe/dFPUfD7yHxOiQal8+EcMoEQj68GjjD3NIENb2d9BQZIYQQXaEu2YQQUga927YDyszsJCjq/EXI7gag4d/rqVWZsBiGQey5LZDHce+VtWj0BUxrNNVTVHmzM7XBH11mgGEYg59aKS4mGUf3BAIMt7xWXUeYWxijTgNniEQC/QRHCCFEZyhhJgYvIiICCoUCAoEALi4u+g6HlAP6rlMJj4IgC/iXU2bbuhUlywasJOpU0v2zSH5yjVMmdqwC687f6uT5S5KhJ8sZ6XIc3HEfGelZnHL3ajawtjNFLW8nmJoZlWgM+j5OkfKH6hQhmlGXbGLw4uLiEBMTg7i4OH2HQsoJfdcpC6/aqDz8G/CNsk+4RZYWcBsyWC+xEN3QdZ3KiHyLuEs7OWU8IwkcvpwKvlCsk9coqoikSDyPeQWGYfJf2QAxSga++x4hNiqZU27nYAZXDyt4VLOFrX3Jd4fX93GKlD9UpwjRjFqYCSGkjOGLRKj0lQ94QiGi/a/CumljCEyMy0U3VlJ8ioxURB5aDCgVnHKbDkMhsnLUU1TZEtOTsPDaGiSlJ+PL2l/Ap9YX4PPL17X5axde4mVwFKfM1FwMTy8H2DtawK2KtZ4iI4QQUhIoYSYGr3r16pRIEJ0qO3WKgU3zpmAYBh9PnYZVg/qQuLnpOSZSFLqqUwzDINr3Lyg+yzjlxm61YV6/c7Geu7gyszIx/+pqxKVmjwx9KPgUolPiMKrhIBjpudVbV54//oTrF19xyoQiPrzqO8PSygQ16ziW2nGj7BynSHlBdYoQzShhJgbPxMRE3yGQcqYs1CllVhYUqWkAsu/3VKSmQZGRmc9WpKzSVZ1KvHcKaW8COWUCM2vY9/0RPIF+f9J3PTqCsMT/pldiGAaPIoPxKu4d6jjU0GNkuhH9KQl++x9xC3lA7XpOMLcwhld9ZwiEpdeaXhaOU6R8oTpFiGblq58UIYSUE1nJyRDkOnkxdnDQUzSkJKWHPS/Yep/eQOa/h1soEMGu1/cQWtiUQGSFM8S7H7wd/psqSiIywZe1vkBt++p6jEp3rl98BXkmtxt8VU87WNmYonY9Z5hIykcrOiGEEC5KmAkhRM+UcjlSQ0M5ZWKpFE49u8PCqzZ4AgGM7O0gNC9b8+qS4pNdP4iPu2cj4bZvnuspMlIRdWiJ2n3LRk5VIanasCRDLDBTsQSz2k2ET60vYCw0whfV2qNjlVbg88rHqUbfwfXh6m7FLjs4m8PZzRLVatrByoZGsCeEkPKKumQTg5eSksLec2NqaqrvcEg5UNp16uPxk/jwz3449ewOt8GDIPz/1+SLRJB614VZFQ8wSrqvzJBpqlPpYc+RcOMQAEB2ZS8AQNrSR+P20b4roUiWqZVnhIcgPew5jF1radiq9PF5fPSu0Rk1bKvAy74GRAKRvkPSGZFIgG/GN8OpQ0/w4W0cqteyh3MlKZxdpXqJh377iK5RnSJEM0qYicF78+YN5HI5RCIRvL299R0OKQdKs05lxMQi7NARQKnEp5OnEXv9JqpN/gHWjRux6wjNqGXZ0GmqU8autWDd4Rs2WdaWNGclxYInFAN8IaDkzvtr3eGbMpMs5zAzMkVD57r6DqNEiERC9BtSH29fxSIpPg3Va9nr7UIW/fYRXaM6RYhmlDATQogevduxE8qMDHZZnpQEkaWlHiMipSknOdaWNCsz05H8/DbE9pWRlRyPzIiX7LbWHb7R2iJdGirqaLo8Hg9VPe2gVDLg8yve+yeEkIqGEmZi8GxtbaFQKCAQCPQdCiknSqtOJTwKQtytO5wyh66dYV69Wom+Lil9edUpbUmzZYu+SHlxF8qMNKSHPS9TyfKxZ2fxRvYBg+r0gZvUWW9xlJTU5EyIxAKIxNqPAfpOlum3j+ga1SlCNKOEmRg8Z+fyd7JG9Ks06pRSLsfbLds4ZXwTY7j49Cvx1yalL786pSlplifGQGBqifSw50h//4Rd16rDUL0my4Efn+LAkxMAgIikSAzw6olmlRpAqOdprXRFkaXEwZ33kZmRhYEjGpfZAb3ot4/oGtUpQjQrH0NXEkKIgfl48jTSwiM4ZZZeXoi9cRMJQY+hlMv1FBnRF2lLH1h3+IZd/hx4Hol3/LjJcttBsGr5pT7CAwB8+hyNVXe2sssfP0dhx8PDuB0WmMdWhuWc31OEvZMh6mMSNq24jjch0foOiRBCiB5RwkwIIaUsIy4OYQcPc8rE1tYwreIBRqFA0rPniL//QE/REX2StvSBRbPe7DKTlcn+bdmiH6zaDNRHWKyXsW+RoRITAHhYVUJ9x7I18FhRPbjzAQ/u/DfFW2ZGFnz3PUJCfKoeoyKEEKJPlDATQkgpe79jF5Tp6ZwyaaMG4PH//5DM48GidvlIQEjhMAo50j88VSvniU1g03GYHiLiaufRHLPaTYJEZAIAqGThhEF1+sDC2FzPkRVf6FsZzh7j7ns+n4eadR3w+nk0GIbRU2SEEEL0qXzccEQqtJCQEGRlZUEoFKJmzZr6DoeUAyVZpxIeP0HsjVucMtMqHjCysWGXzT2r00jZ5UxB65Ts2gFkRr5TK2cy05Bw21ev9y7nqOdYC8u6zsLeoGNo79ECVa0r6zukYkuMT8PhXfehVHKTYk8vB1haSVDL26nMjQhOv31E16hOEaIZJczE4GVmZkIul0OpVOo7FFJOlFSdUmZl4e3mrZwyvlgMS+//5qzlGxnBwqu2Tl+X6F9B6lTa+ydIvOPHLeTxgP9v2dQ2T7M+2JvZ4udWY/Udhk7I5Qoc2nkfKcncruaV3K1g72SOWt5OMDUz0lN02tFvH9E1qlOEaEZdsonBEwqF7D9CdKGk6tSn02eQFhbOKbOoWwcCY2N22bJuHQiMyt7JOSme/OpUVkoSIg8v5Rby+HAZ/SdnIDDZlb1IuO1bkqFWKAzD4NThx/gUnsgpt7KRwKO6DTyq2cLW3kxP0eWNfvuIrlGdIkQz+kYQg1e7NrXGEd0qiTqVKYtH2P5DnDKxtTXMqlZhl0WWlpxlUn7kVacYhsHHnTPAZKZxyq07DYeRgzuMHNwBqM/TXNItzanyNGQpFTAXm5a57si6cvf6Ozx5wB2t3lgiQk1vR9g7WsCtirWeIssf/fYRXaM6RYhmlDATQkgpeL9zNxRp3IRI2rD+fwN9AbDKtUwqhshDi5GVwJ26yMSjHiyb9mSXNc3TrFqua0pGiXUBu/Am7j06V22Nnp6dIBGblMhr6cubFzG4dPIZp0wg4MOrvhOsrCWoWcex3F4oIIQQUnCUMBNCSAlLDA5GzLXrnDKJhzuMbG3ZZRMXFxg7OpZ2aETPYi/uQNpr7hRiPKEY1p2Gg8fjXjwpzaT52LOzuB8RxP4dkRSF/nV6oJKFk85fSx9ksSk4uicQuQe+rlnXAVIrCbzqO0MgpItXhBBC6B5mQggpUYxCgbebcg30ZSSGtJ43u8zj8yFtUK+0QyN6lvb+CZLunVIrt2zel+2GnZu0pY/aPc3pYc91Glfgx6c49PS/uBSMEvc/BuHqu7uQpSbo9LX0ISM9Cwd33Ed6mpxTXrmqNWwdzFG7njNMJGI9RUcIIaSsoRZmYvCioqKgUCggEAjg4OCg73BIOaDLOvXpzFmkfgjllFl4eXEG+jKv4QmRueHPY0u001Snkp/fVlvPyLUmrFr3z/O5VFuapW0GwthVt3N2V7FyRTVrd7yWvWfLmlVqCE8bD1hLpDp9LX24eu4FYiI/c8ps7U3hVsUa1WrawcpGoqfICod++4iuUZ0iRDNKmInBi4qKglwuh0gkogM80Qld1anM+HiE7jvIKRNJLWFWrSq7LDA2pmmkKoDcdSr1zSN8DrzAWYdvYgG7XpPAE+T/0yxt6QNj15o6T5YBQGpiifkdp2Jb4AFcfnsL3g61UNXaDQ2cvHT+WvrQrpsn4mJT8Pp59n3jEjMxatRxhHMlKZxdpfoNrhDot4/oGtUpQjSjhJkQQkrI+117oUhN5ZRZNWrIGdjLsl5d8EWi0g6N6JEi7TOij//FLeTxYNNpGMTWBb+PvSSS5RxCgRDjmnyDFq6NYCY2hdTEAiJB+ainxiYifD2qCY7tDcTLZ1Hwqu8Ea1tTVK9lT4N8EUIIUUMJMzF4Hh4eUCqV4NPowkRHdFGnkp6HIObKVU6ZxL0yjOzsOGWmHh5Ffg1iOFTrVLTvX1CmJXMeN63ZAmbe7fUTXB68HUsuKdcnPp+Hek0qwcLKGJZSCWrXcwZfYFi/IfTbR3SN6hQhmlHCTAyeOd37SXSsuHUqe6CvLZwynkjEGegLAFy+7EctWhVETp1SZqQhzcwKPJExGHk6AEBo5Qib7mPVRsUmJcve0QKWVhJY20ggFAn0HU6h0W8f0TWqU4RoRgkzIYToWOS580h5955TZlnHCwKT7HlsJW6usGnZgpLlCoZhGCQ/vw2+iTlM67RD+vsgKD7LYPvFWAhN9HOiGp70Cc+jX6OVW2OIBSIIC3D/dHlhaVW+5pUmhBBSMirOLyMhhJSCzIREfPhnP6dMZGkJs+rVAADS+vVgUaumPkIjepYe8RKZseEAAL5IDEnN5hBZ2sHEwzufLUtGSmYqlt/4G5+So3H9fQAG1OmJatbukIjLTyIZHfkZV86GoEX7qnB1t6KLVIQQQgqNEmZi8DIyMsAwDHg8HoyMjPQdDikHilOnkoKDoUzP4JRJ/3+gL5NKlWBes4YuQyUGIlUWjeTnd8EosiAQCMDj8yGQWMLcu4Nekjglo8TauzvwKTl7pOgXcW+w4d5utHJrDDdLF9R1qGnwU0jJ5Qoc3f0AMVHJeP86Dk1auaNJK3eYWxrnv7EBoN8+omtUpwjRjBJmYvBevHjBToPg7a2flhpSvhSnTtm2agmeWIx3m7chIzoakspuMLa3g9DMFDbNmlALVwX1LuAyeHGR4Av4sLWzA08ogmmNpuCL9HNS+jTqBQI/PeWUMQwDIV+IVHkazMSGMRdxXi4cD0ZMVPbgahnpWbjl/xpJCWno0L1mueiOTb99RNeoThGiGY0wQgghOqSUy5EWFg67Du1g07IFpPXrgcfnw6ZlS/DFYn2HR0qZIi0ZSYEXoLSqBLlVJQA88IRiGFeqCZFVwaeQ0jVvx1r4scV3MBJk10kjgRgtXBvB0tgcHaq0hFho2HX1WdBHPLgTyimTmInhUtkKFtLy0cJMCCGkdFALMzF4UqkUCoUCAoHhjXJKyqbi1Cm+SASbFs0QdycAEjfX7OdrUB9GNta6DpOUcQzDIPbM30gJuQNTR0+gQS/wXavDSJCpt/uWVbV0awQXCwesvL0F7dxbQMDjo03lpjAWGnZXzARZKk4eeswp4/N5qOXthBpeDuWmlwf99hFdozpFiGaUMBOD5+bmpu8QSDmjWqeSnj2HRe3CzUVr4uQEU/fKyJTJIDAxYQf8IhVL8uMrSAm5k70Q+RL8a1vh0H8GTFzLzqBvlaWVsPKLOeDz+EiTpxv8gF8KhRJH9wYiIz2LU16tlj2qVLeFhdSw358q+u0jukZ1ihDNqEs2IYRoEbr/IJ78OhvhR30LtV34UV88m7cQ6dExsG5K9y1XRHLZJ8Se38otVCohsrTTT0B5EPAF4PF4Bp8sA8DVcy8Q8SGBU2bvZA5nV0t4VC97+54QQkjZRwkzIYRokPTsOcIOHAIAfNi9V2vS/PnVa4QdPAxlZiaA7GT5w+692X8fPIzkV69LJ2BSZjCKLET5/QVGzh0t3a7nBAgtbPQSU5ZSgfSsjPxXNGBvXsTglv8bTpmxRIRqtexRuaoNjIypUx0hhJDCo18PQgjRwKJ2LVQe/g2b/Ob8X+krH3YdRqnE201bkPzqNaL9r8K8di3E+F9hH688/JtCd+cmhk92/SAyP3ETN/P6nWFas5le4rkbFohDT0+hkXMd1HWohboONctdr4fkzxnw2/+IU8bjAbW8HWFmbgTXylb6CYwQQojBo4SZGLzXr18jKysLQqEQ1arRvaKk+Ng6Va9unklz1KXLbAtyemQk0iMj2eeoPPwbTnJNKoa00GAk3j7GKRNaOyGxajvEhYSU+nEqNCEC6wN2IUORiajkGMSlJSItKx1NnOuBzy8fncwYJQO/fY+Q8pnbgu7haQtzC2NUrWEHvqB8vFdV9NtHdI3qFCGaUcJMDF5qaio7byAhuqBap6r9f9KbO2l27t2T/Ts3SpYrJkVaMqJ9/+IW8niwqN8FoZlZpX6cSs5IwbKbfyNDkX27gFyZhZsf7sFIIIapyAR1HMrO4GPFcfvqG7x9GcMps7aVwMVNCitrCWztzfQUWcmi3z6ia1SnCNGs/F1yJYQQHav0lQ8qD/+GXf6wey/CjhyDXds2EEgknHXdhg2lZLkCYhgGMac3QJEczyk3cfeGWZ02eokpLSsdRrnmU3aXVoK7tBJq2FbVS0y6Fv4hHlfOvuCUiY0E8KzjAD6Pj6o17ctd93NCCCGli1qYicHz9tb/fKakfNFUpyrlamkOP3gYfLGYHewLAJx69YBr/y9LJ0hSpnx+fBWpLwI4ZUJLO0jbDoTQ3Bre3qU/D7edqQ0WdfoF6+/tRkD4Q1ibSNHKrQnaujeDSFA+WpBuXnoNpZLhlNWs6wixWAgnV0uYmRv2nNJ5od8+omtUpwjRjBJmQggpoNxJs2qybNe+HTy+G6WXuIh+yWWfEHduM6eMJxTBslkfGLvU0FNU2YxFxvi55RicfnkZteyqw05iDRPR/7F33+FxVOf+wL8z26tWvfcu2bJlWzbYmGJswPTeQwuQkAZpXAg3994kl9wkhFTKD0JCCBCqC9jGvWDj3i3LltV7Lytppe0zvz+EVhppZbXZqvfzPH6sPTt75kh6dXbfOWfOUfq0TWK646EF2PbZORw/WAsASEoLgyFMDalUgtSMCB+3jhBCSDCgKdmEEDIFCXfcBqlWeE8kq1Qi43tP0dTPWYh3OtC69mXwDpugXJO7DLp5K/wiJhiGwY3ZK5Eelgy9Uufr5ohKJpPghjvn4s5vLEBSahjSswf3Wk7JCIdMLvFx6wghhAQDGmEmhJApqF+zFg6TSVDGWSxo+nwj3bs8C3Xt+xi21mpBmTw6FaGX3w1W7v2RXJ7n/SJJ97a8+XHImx8Hu92Jxjoj4hINvm4SIYSQIEEJMwl4HR0d4DgOLMsiIoKm4JGZGy+m6j76BPX//tD1WKrVwGHqB+B+n2YS3HieB6tQg1WHgBvoAQCwSi1Cr7gXMkO04FhP91NOzokjDadgdlhxaeKCoJp2PRUymQQp6eG+boZX0HsfERvFFCHuUcJMAl5TU5NrGwTq4IkY3MVUw5p1gmQ5/o7bkXT/PWj6bMO4+zSTwMbzHJrefg6c1QxWoULco78BwwzfyWRtroDTZIQm7zJYGy/A1lIF3cJroc5YMKYuT/dT75z8FFsq9iA7Ih0m2wCuTFkSdNOvAYDjeLDs7BtBd4fe+4jYKKYIcY8SZkIImUDV3/6B5o2bBGXGkycRffVVYxYCo6Q5eNja6mBtrhQ8VkSnAAAcJiMGLhwBADAsC1XKHKhT5sJwyS2CpNob9lQfxJaKPQCACx2VMFp6YbGbcU3mFTAo9V5tiyeVnGrCwT2VuP3BBQiL0Pi6OYQQQmYJSphJwEtMTHRNISJEDImJiXA6HKh98Tc43N4x5p5lALA0t0AaMpiMUNIcnCy1ZwWPB8qPQhGdAt7pgOnsXnAOO4DBRbUYiQza/MvAKt0ncp7qpzr6u/DW8Q8EZW39HeDBQycPnqSyu3MAGz85A6vFgTf/sA8rrs9GztwY6ENUvm6az9B7HxEbxRQh7tFfBAl4oaGhCA8PR2hoqK+bQoJEaGgoVKZ+WKpr3CbLAKBJT0P3sROuxwl33Ibkhx50Pa7913toWLPO420lnmOuLRE87juzBwBg62iAo6/LVc5IZVDGZUIekTBuXZ7qp8LVoXho/h2QjBjVXpq4ELflrYaEDY5Vop1ODmvfOwGrxQEAsFkd2LKuBLs3X0BpcYurfLah9z4iNoopQtyjEeav8TyPjRs3Ys2aNTh//jwGBgYQGRmJoqIiPPDAA9PazL2hoQFXX331tNpz4cIFt+VlZWV4++23cfjwYbS1tUGn0yE9PR233norbrvtNkgkwfEBiRBfa92xc9znGKkUuqxMaFKSBOXuRpr1uTnQ5+V6rqHEI3ieg6XunKDM0d2Czj0fQD9/JTQ5l8BceRI874RUFwZV+nyftJNhGFyTcQWSQuLx8v43kRKaiCcW3g+5ROaT9njC7s0X0FhnFJRFxeqgNyjR0tSD9tY+FC5Jglan8E0DCSGEBDVKmAFYLBY8/fTT2LNnj6C8sbERjY2N2LBhA5555hk8+eSTXmnPeFuCfPLJJ/jFL34Bu93uKuvq6kJXVxeOHj2KdevW4dVXX4XBYPBKOwkJZtb2jnGf02ZmQBERAXVS0pjnRibNiffeTclygLK11YGzjJ1d0LP/UwyUHkT4dU9AN38FrI1lUKUUgPHxaG5OZAZ+e+3PoJNrIAuiZLnyQjsO7K4UlKnUMmTkRrneK9UaOTQauS+aRwghZBaghBnACy+84EqW09PTcffddyMiIgIlJSX48MMPMTAwgJdffhnR0dG45ZZbJl1veHg4Xn311Ukd+9prr6GkZHD63/e///0xz+/btw8///nPwfM8VCoV7r33XsyZMwednZ349NNPUVZWhmPHjuFHP/oR3nrrrVl1/4nT6XR9TSPsRAwOux09xWfdP8my0GVnIWTuHDDj/J0l3HEbjSwHuNH3L49k72xEy4f/i8jrn4Ku4MpJ1eeNfipMZfBIvb5i6rVg/b9PCspYlkFOQQyk0uG/vYycKDCzcOVseu8jYqOYIsQ9hud53teN8KX9+/fjscceAwBccsklePPNN6FQDE/rqqysxP333w+j0QiDwYCdO3dCq9WK2oYNGzbgJz/5CQDgiiuuwBtvvCEYZbbZbFi9ejUaGhqgVqvx3nvvIT8/X/D8j370I2zfvh0A8PLLL+PGG28UtY0TMZlMgmnk2dnZov+cxnPmzBnXNgjTmTpPyGgnt27DwGtvuH1OFhqKpHvvRvS1q8adDUL8X+f2t2E6f2Dc5zlLP3i79aJ1sGo9GInwurM2bxnCVz4y5lgx+ymO58B6eSVub+M5Hu+9eRjV5cKZHunZkYhPNrgeR8XokDcvzsut8w/03kfERjFFxOTL3EBswf2OOwn/+Mc/AABSqRT/+7//K0iWgcER55///OcAAKPRiE8++UTU87e2tuKXv/wlgMHFFn7961+P+RC+bds2NDQ0AAAef/xxQbIMAHK5HL/97W9dU7HfeMP9B31CyOQ4SsvGf663B+qkJEqWAxjP8zCVHoSzr2vcfxMlywDADfSOeV1/6SGPtZvjOawp+QL7ao7gSMMp2Bw2j53L1/bvrhyTLEfH6RGXFOJ6LJGwSMuK9HbTCCGEzDKzekq20WjEgQODIwzLly9HYmKi2+Ouv/56/PrXv0ZnZye2bNmCRx99VLQ2vPjii+jt7QUA/Md//IfbjeK/+OILAIP3Nt93331u69FoNLj99tvxj3/8A2VlZaiurkZqaqpo7fRnOp0ODocDUumsDmcyBdV/fxsd+8cfXbR1G8d9jndyKPnFryDVqMc8F3HZMqQ+9ogILSSexJn74Ozv8UjdDlM3nAO9kKiF+x+L0U99XrodH53dAJVMiSUJhWg1dWBRfAFidVEzbbZfqa/pxu4twoUvNVo50rIiBBeqElNCoVQFz/3aU0XvfURsFFOEuDer/yKOHTsGjuMADE7HHg/LsigqKsKWLVtw+vRp9PT0ICQkZNzjJ+vgwYPYunUrAGDhwoW47Tb3e7YePXoUwOBUhrCwsHHru+SSS1wj5nv37p01CfNs+T6JOHieR8eBg7B1dk188Dg4iwU2i2VMeeeBQ5Qw+zGO4/Hjv+yF2eKAUvoE/iPjJMwXxBsR1uRcirCrvzEmWQZm3k+VdVThw+LPAQBmuwVfVh/CvJg8OHknrs9aETSrYlvMdqx97wR4bvhuMYYB8ubFQiYfvqdSqZQhMXX898PZgN77iNgopghxb1YnzOXl5a6vs7KyLnpsRkYGgMEP22VlZSgqKprx+X//+9+7vn7uuefcHtPa2uoagc7MzLxofenp6a6vS0tLZ9w+QoKRo68PdqNnRhdt3d2w9/ZCph+bMBHfq23pRUW90fXYcv+TiC26Hp3b34attXra9cqjUxG+6lGokvMnPngaeJ7H2yc+Bsdzw2XgoVfqMD8mL2iSZZ7nseHj0+jpNgvKCxYlQDVqFey0rAhIJLP+rjJCCCFeMKvfbRobG11fx8fHX/TYmJgYt6+brh07duDs2cFVWFeuXDnu4gpD9y5Ppo3R0dGu1bGbmppm3EZCgpFMr8eCV/+M8EvHn1UyHeFLL8WC1/5CybIfK64Q3hNbXNkBVXI+4h/7LSJueAoSzdRnDoVd/TDiH/utx5JlYPB2nJ9e9m3kRw1f2M2NzMT8mFwkGxI8dl5vO3GoDufPtAjKElNCYQgT3v4QYlAhMkbnzaYRQgiZxWb1CHNX1/CUzNDQ0IseO3JvY6PROONz//Of/3R9/fjjj497XHd3t+vridook8mgVqthMplEaSMhwUoZE4Oc536KnrMlqH7rbfRXT390UZOaitTHH0XIHM8lTEQcxZWjEuaKDty8PB0MK4F+/kowDIv2jZPbCnCI09TllT2Yw9QG/PyKp7H2/BaUtF3AAwW3I14fHTSLz/E8j6oy4e9HpZZhXlEienuGR5wZMIPbSAXJ900IIcT/zeqE2TLiHsTRq2OPJpcPTwezuLl3cSpKS0td9yUXFhaisLBw3GPN5uEPChO1cegYk8k04zbOVEVFBdLT06HTDY8CWK1W1/LyBoMBSUlJY14zMDAAAGNG3Ds6Olyj5omJiYKLB9XV1eju7gbDMDAYDGPuwampqXFNa8/LyxMsZmE0GlFXVwcAiI2NRWSkcMXV4uJi197Xo6fENzQ0uC66ZGVlQalUup4zmUyoqqoCAERGRiI2Nlbw2vPnz7u2bsjNFe7V29zcjPb2dgBAWlqaYAl+i8WCsrLBFZzDwsKQkCAcXSovL4fZbAbDMJg7d67gufb2djQ3NwMAkpKSBBeBHA4Hzp07BwDQ6/VISUkRvLa6uhp9fX0AgPz8fMH+jN3d3aivrwcAxMXFjVm47syZMwAAtVrturVhSF1dneviTnZ2tiDG+/r6UP11IhsdHY3o6GjBa8+dOweHwwG5XI6cnBzBc01NTejoGPzwnZ6eDo1G43rObDa7bscIDw/HvJd/i7Zdu1Hzr/fg6O3DVDASCXJ//jwU4eGw2+04f/48ACAkJATJycmCYysrK9Hf3w8AmDNnjmCv9K6uLtdskoSEBMFaBRzHuWajaDQawa0XAFBbW4uensEp5rm5uZDJhqfn9vb2oqamBsDgLJmoKOHiUGfPngXHcVAqlWNuS2lsbERnZyeAwdtBVCqV67n+/n5UVlYCACIiIhAXJ9zWp7S0FDabDVKpFHl5eYLnWltb0draCmDwfjlv9BFOpxPFZ8/idFmb4DXHS9tgsTrQ0tyA3t5eqA5swFRTX+OxzWjSZ0EZGnnRPkKj0YDneUilUqSkpEyrj2BZFnfmX49LQ+ehs7ET5Y09QdVHzF+qR2JKKHZsOg/OyWPVTbmorWlxvZ9FhEcgITkMupDBvtZbfcTo2V1lZWWwWCxgWRZz5swRPNfW1oaWlsFR8pSUFOhHzDgRu4+oqamBw+GARCJx/eypj5h+H1FSUgJgcOGr2fo5oqamBj09PeA4DlKp1O/6CH/9HOGvfcQQX32OGIrBYDCrE2aHw+H6emRC7M7I50e+bjr+9a9/ub6+2OgyINxEfqI2jjxmpm2cKafT6VpQbQjP87Db7a7nR3M4HK7nR+M4zvXc6Hp7e3vB8zx4nnf7fY+sd/S24yPbNLpeYLDzGvqQK3a9k/leL1avu+91qF53oy8zqXe6v5uhNo1Xr9PpHLdNI+t1Fy92ux0Oh0PwhjGZekfHISORIHrVSnR8dQDGU6fdfo/j4Z1ONH22AamPPeKzn+HF4nAyP0OO4wQfXIZM5Wc4XptGv250vd7qIwCgsX0AZpuw3O7g8NXpJqSEOeDs7QDbVee27othnA5IyvfBXnjTRdtrMpngcDhcH0Rm0keAR1D2EXK5HJdckYmktDBUl3dAIpWA53hwzsHXSKQMUjMj3NbryT7CXb12u33Cei8W32L8DHt7e2G32yGVSl31UR/h/X42mD5H9Pb2usrc1e3rPsJfP0e4q9cf+ojRbZpMvWL2Ee7aEahmdcI88kqe3W6/aEJqsw3vdzmZxHU8/f392LhxI4DBq2grVqy46PEjr5SN++FphKF2jrw65AsSiWRMR8EwjKtd7v6wpFLpuO1mWdb1nLsOaGQdF6t39IfEkW1yV69MJgPP827bNdN6R/4/0sjv9WL1uvteZTIZHA6H2w/DM6l3Jr+bi9UrkUjGbdPIet3Fi0wmA8MwU67XXRzaurthPH3G7fc3kZbNWxF/2y1gtFqf/AwvFoeT+RlyHOe2XVP9GY5u09AIxcXq9WYfUd/h/iLi/jNNyFgZA1XDKUx3kq+i7gS4uasu2t7RH0KojxC2aWS9cYkGxCUaYLc70WcyoqHWBp7nkZgaBrlC6rZeT/cRo+t1Op1uv5fJxjf1Ef7XR0z3ZxhsnyNG1y9WvcH+OWJ0vdRHXPzzeqBheHeX92aJZ555Bps3bwYwuMXUyGk/o23fvh3f+973AAA/+9nP8PDDD0/rnFu2bMHTTz8NAHjkkUfw/PPPX/T4L7/8Ek8++eSkz7tw4UKYTCbk5uZi/fr102rjdJhMJtc0KWBwWszIKUCe5HA4wPP8uJ0eIRMp/+uraNuxa9qvj7vlJtpOysfe+uwsvjo9/oKMJrMdVtvYq+MSloFeIwfX3w24eTssVNTgNvXxCc8fsuQmhK98ZNznp9JPHao/AZNtADq5BjG6SCSFxM/qe3b7TVY01HQjMy8aLDt7fw6j0XsfERvFFBGTL3MDsc3qv4aR9w0YjcaLJswjF9G62F7IE9m1a/hD+bXXXjvh8SPbOHR/wXjsdrvr3p2ZtDHQUKdOZsLW3Y323V/OqI6hUWb5BAvzEc/geR77zzShs2fqazc4OR7dfVYAarfPn7YlTyph7j2+FSGX3AKp1n0MTLafajN14PWj78JstyBBH4uFcXOREtqMhbFzoZQpJ64gQDgdHKxWB9SaiWdsabQKZM+JmfC42Ybe+4jYKKYIcS94xsqnYeSCBEOLGIxn6AZ9AGMWr5gsp9OJL78c/GAeHR190cW+ptPG1tZW1/0C020jIbNN645dbu+jAwAwDCQaDTDetCKWhSwsFFKdFm07d3uukeSievttMPZZPVJ3H6eCWR0NiS4MEl0YGKUGGDV5m5EpwKq0MJ2ZWQw4OCf+dPDvMNsHE/+G3mbsqNyHqq567Kk5NH6cBqBdm0vxxst7UVvZ6eumEEIIIRc1qy8ljVwlrry8HIsXLx732KHV8BiGGbPK4WSdPXvWNVK9YsWKSU2xCw0NRXh4ODo7O11tGE9FRYXr69Er1RFC3AvJzwPcLEyhjIlB/q9+AWVUBBwDA6h6429o37NXeBDHIefZn0CfmzPm9cR7QrQKvP4fK/D2xhIcOHPxC4tTsawgDo/cmIeY8NsF5XZjG9o++zOsDaVgVTpE3/5jqFLmjlPL5J1oKkZFV42gLFwdBoVUjjnR2UEzLbuitA0H9wyu/vuv1w/i8lVZWL4qEzarA0qVb9ffIIQQQkab1SPMhYWFrpvUDx8+PO5xTqfTtQ1UTk6OYJr0VJw8edL19bx58yb9uqKiIgCDWwgMLcnvzqFDh1xfXyz5DzZGoxHd3d209zSZllY39y6zGg0i7rkLFvngNUWpWo2sHz6NrB89A4laOHWXRpb9Q0y4Bs8/vBi//s4ypMWFzKiu+DA5fv2dZXju4SLEhGvGPC8zRCHuG79E+DXfRMITf5hUsjyZfmpxwnz8ZNm3oJEPxphOrkFh7BwkG+KRoI8d93WBpK/XgvUfnHI95nngq50VuHC2GUe+qkZL48VvPSLD6L2PiI1iihD3ZnXCrNfrcckllwAYvLd4aH++0TZt2uTaJ2/16tXTPl9xcbHr6/z8/Em/buheZ4fDgQ8++MDtMSaTCevWrQMwuG/h6P3kglldXR2qqqpc+yASMhUyw9jkik1PQ7uEGRNTkVcsx/w/vQzd1yPKUp0OEZdf5pV2ksmZmx6BP/zwCnz/7vkwaCfeu34kpYTHw0tUeOW5azE3PeKixzKsBCFF10Oqm9x6EZPtpxYnzMdL17yAOVHZ+Oll30ZOZDoKYyb/fuHPeI7H+n+fwoDJJii/7OoMtLeawHE8Ss+2oKK0DTwXPNPPPYXe+4jYKKYIcW9WJ8zA4ErVwOCCWT/60Y9gMpkEz1dUVODFF18EMLjZ91133TXtcw1NmZbJZGM2Db+YlStXujaWf/XVV3Hs2DHB8zabDc8++6zriuCjjz467TYSMtt0HT4ieCwLCwUTFgpoxo4sAoAyOgpzX/wl0p78Jub/+Q8wFMx8Ki4Rl4RlcM2SZDx8Q96UXnff0nDcfuvlkEp8+9YYoQnDf131DHIiM7Awbi7k0ulvZehP9u+uRHV5h6AsIycSUhkLbkSC3FDbja7Ofm83jxBCCHFrVt/DDACXXXYZrr32WmzduhUnT57ELbfcgvvuuw+xsbE4d+4cPvjgA/T3D75xP/vss2NWnz58+DAeeughAIPToN99991xzzV0xc5gMLjdy2w8crkcL7zwAr7zne/AYrHgkUcewV133YUFCxbAaDTi448/RllZGQBgwYIFuPPOO6f0Mwh0sbGx4DguqPZ7I94Te9ONaN22HQM1teCdToTk50G1ZDEUiYnjxhQjkSD2huu93FIyEUv9eSgTc12P95yon9Lr99dyuF3umZWoZ3s/VV/dhd1bLgjKdCFKpGZGwGoV7pGdkByK8MjA3HrEm2Z7TBHxUUwR4t6sT5gB4Le//S36+/vx1VdfoaGhAS+99JLgeYZh8L3vfQ/33nvvtM9hMplcWz5dbPuq8axYsQL//d//jRdffBF2ux3//ve/8e9//1twzNy5c/Haa69NKRkPBpGRkb5uAglQPMchfHERtOlpMJ4+g57iszAUFiJ66aW+bhqZoq69H8G472OEXfUgDEtvQ1vXAM5UdEz8whHK6oxo6x5AVKj7LaZmYjb3U+YBG9a+f1IwzZphgAWXJI5JlsPCNUjPmr0/q6mYzTFFPINiihD3KGEGoFKp8NZbb2HDhg1Yv369a3Etg8GAhQsX4qGHHsLChQtndI6hUWoA01407L777sOiRYvwzjvv4MCBA2hvb4dMJkNWVhZuuukm3H333a5FzAghE3NaLOB5HvKwMMSuvhZRV10JeRjtpRxoLPXnYdz3MQCga/d7AIDd/XmYzi5Mu4/X456V2WI2zy2TrR+vHXkXDxTcio6BLqSHJkOrcH8bQCDjeR4bPj6Dnm6zoLxgUcKY349KLUfuvFgwbHCsBk4IISQ4MHwwbexIfMZkMuHCheHpdtnZ2dBqaUod8V88x8Fu7AHP82AYBrIQPZhZNjsjmBgPrHMlyzwP/Nr2DbT1j0281IwFq1WnsMeSj05u7Gyf2AgN3njuao9u4cTzPP5w4G843HAScokM82LykB6WjILoXKSHJQfN9lEAcOxALb5YUywoi0sMQXpOpOD7lEolKFySCM0UF2ojhBDin4IpN6ARZkLIrOS0WDF0vZBVyClZDnCGpbcBGBxhrnJEuU2WcxSteES1CyrWjsWKanzSvxjHbMIFGJs7+nG+pgt5qeEea+uOyq9wuGFwm0Gb046jjadhcVjh4JzoMhuxOGG+x87tTa1Nvdj6WYmgTKmSITk9XJAsM2CQWxBDyTIhhBC/RAkzCXjFxcWw2+2QyWSYO5dWLCYTc5jN4KwW12OJUrjQE8VUYBpKmj/YWCkoVyuluC+6AgV9e11lSsaOb2j3oyg9Fe8UyzFgGb6XdufRetET5qGYkkgl2NnyleA5uUSGxJA4AECyIV7U8/qKzerAmvdOwOngBOW5BTGQyYUXp9KyImiRr2mgfoqIjWKKEPdoGTwS8Hied/0jZCI9xWdx7NEn0LB2PRymfkgUijGjyxRTgcuw9DZcuTgdGmbwgkiqtA3/mVUiSJaHhF5xL66/9zb85cdXITdlcAcEvUaOywvFT1qH4okBg1+s+DGuThvev3tR/DyoZSpkhCUjWhsci+5sXV+CjlbhNo1pWRHQhQgvTsXE6ZGQQusGTAf1U0RsFFOEuEcjzCTgqVQqSKVSWvCMTErNv96D02xG8+cb0bplGxLvuxsJt98mOIZiKrAtu/U2xOnW4cs9h7FMUQZJw9gPf/qFqxF62V0AgOgwNf7vO8uw+WANLp0bi/AQlehtGhlTCqkc3yp6AHOjs1HX04grU5eitL0CBdG5E1cUAHiOh1wp/HgRGq5GXFKIoEwfokJWXnRQ3bPtTdRPEbFRTBHiHiXMJOBlZmb6ugkkQPScL4WprNz1mLPZYGluHXMcxVTgS736NhiUHLr3XBjznCp1HiKue1xQJpGwuPGyNI+1x11MLU1ahKVYBACICZKRZQBgWAbX3pKP1MwIfPbBKTgcHDJyIgV7uyoUUuTPjwMroYlu00X9FBEbxRQh7lHCTAiZNTq+3Cd4zCoViLvlRh+1hngaZzaNLWQliLnv595vDACO58CAmTUjqll50fjWTy5HW3MftHolykpawXEcWJbFnMJ4KJT0EYQQQoj/o0u7hJBZI/raVYi58Xoo4wfvUQ1btAjqhAQft4p4gqW5Ej2HPx/7BOdEz8H1XmvH0L2AraZ27KzcP+vuDdSHqJCRE4WYOD3mFyVAoZAie070mHuZCSGEEH9Fl3cJIbMCz/OQhxoQf9utCF+yGD1nihF5xeW+bhbxkJ5Dn4373NB+zUOranvS+2fWg+M5KCUKgAGqjfVID0t27f89m+gNKhRdlgKplLZwI4QQEjgoYSYBr6GhAQ6HA1KpFAk0WkjGwdls4J0cGIaBJiUFIXPnjJuwUEwFtq7d76P/3H7XY0amhDJlDpQJ2eje/f7Xx3g+aT7VXILPS7cBAPRyHeaEZsHWb4E0W4JQlQF6RXBspdTXa4HV7EBE9MTfDyXL4qF+ioiNYooQ92hKNgl4XV1d6OzsRFdXl6+bQnyk99z5CY9xmkfsu6xSgmGYcV9HMRW4uvevgfHAWtdjZcpchFx6CyKvfwqhS29H2FUPup7r2v0ejAfWeaYd5h68cvifrse9tj4cbTuNjr4uHG44BZ1c45HzehvH8Vj3/kn87U/7cOpIPXieh83qmPiFZMaonyJio5gixD1KmAkhAa3ug49Q/Px/omHN+ImP02oF73QCAFiZDKxMhoY161D8/H+i7oOPvNVU4mHGA+vQveffrsfKlLlQJuZCnVIAqdYAYHBE2RtJc3lnNQbsFkFZgjIGclaG6zKvDJrp2Pt3VaCmohN2mxOff3QaH/z9CA7srhyzBzMhhBASqGhKNgl4WVlZs/J+QDI4slz/4ccAgNp/DU6xTbhDOMW293wp5JGRrviQqJRoWLPOdXz9hx/DMK8A+rzhPXAppgKP8cA61zRrYDhZlmpCoIgXbpUyNA176HhPTM9enDAfL658Fn868BaaTW3Ii8hEXkQmFsYVBM1U7LrqLuzZWiYoq6/uRmS0DmdPNSI1IwJJaWH0d+Qh1E8RsVFMEeIeJcwk4CmVtNrqbKXPy0XyQw+6kt/RSbO5sQnFP/s55AYDYm+8AZFXLkfT5xtdxwFA8kMPCpJlgGIq0FjqzwuSZU3+ZZCFxYEBA3XmIjDs2Ptm3SXNysQcKBNzxxw7XamhifjNNc/jo7MbcEfeaigkcsilctHq9yXzgA3r3j8JnhOu+p0zNwYy+eDPu7qiA7oQJcIigmP6ub+hfoqIjWKKEPcoYSaEBLSh5Nhd0lzzr3cBjoOtqwu1/3oXDWvWwtnf73pt8kMPjhmRJoFHmZgLZWoBLNVnoM5chKibfwCHsRWOvm5I9RHjvm5k0mxYfreoyfIQlUyJRwrvEr1eX+J5Hhs+PoOebrOgPDk9DCGhKtfjuEQDQsPV3m4eIYQQIipKmAkhAc9d0mw3mdB15JjgOEqWg5OjtwPWhsGpwQPlx9D49vOIvPE7UCXnT/haw9LbRB9ZDnbHDtSitLhFUBYSqkJSWpjrsSFUjYycKJraSQghJOBRwkwCnslkct1zo9UGx72BZOpGJ81Na9ePe+xEyTLFVGDp2PYP8CMW2LK1VIF32Cb9ejGSZSfnRJ+tH6XtFVgYNxcyiUzwfLDEVGtTL7Z9fk5QJpWxyJkb40qOlSoZ8ubFgmUpWfakYIkp4j8opghxjxJmEvCqqqpgt9shk8lQUFDg6+YQHxqdNLszmZFliqnA0V9+DAMXDgvKdIUroYzP8lobao0N+N2+/4cFcXOgU2jRbe7BsqRF0Ct1rmOCIaZsVgfWvHsCTgcnKM+eEwOFcvDjhETCYk5hPOQK+njhacEQU8S/UEwR4h5tK0UICSoJd9wGbWaG2+doGnZwcdrM6Nj0uqCMVesRdtUDXmuDxWHFnw7+He0Dndha8SXOtl5Aj7UPO6q+QteA0Wvt8IYt60vQ0SbcLio+2YDwyOFFvXLmxkCrU3i7aYQQQojH0CVgEvAiIyPBcRxYlq7/EMBpNsPc0DimXKrTTjpZppgKDJ1b/w5nv1FQFn71w5CodO5f4AH/PPExGnuH7+ct7aiAQirHJQmFCBkxwhzoMVV8ohGnjtQLyrR6BVIzw12PUzMiEBntvZ/9bBfoMUX8D8UUIe5RwkwCXmxsrK+bQPxIy7YdcJrNY8odfSY0rFk3qaSZYsr/WRorYCreIyiTRSZBO/cKr7XB7rSjy2wUlBmUeuRFZuDSpIWQjNjOKpBjqqujH5s+LRaUSSQMcgtiXB+sQ8PUgkW/iOcFckwR/0QxRYh7dAmJEBI0OLsd9R9+JCwcsUpv7b/eQ8OadV5uFREbz/No3/hXgB+xBzDDInzlw15dlVkmkeG5y7+LB+fdDgnDQilV4M7867EseTHUMtXEFQQAp5PD2vdOwGZ1CMoz8qKgUg/vKZ2cHk4rYhNCCAlKNMJMCAkaZX/4M5wDwtHlqKuvglSjQdNnGwAI92kmgann0OewdzQIytRZi6FOm+/1trAMi5tzViEvMhNdZiMWJ3i/DZ7EsgzmL05Ea3Ofa7Gv6DgdomP1rmPSs6NgCKP9lgkhhAQnSpgJIUGh/tO16DxwUFCmiIyANi0NMddfB1lIiGCfZoCS5kDkMBnRvU84i4BVahCx+kkftWhQRniKT8/vKQzDYNHSFCSmhGHNeyfAcTwWL0tBT48FKrUcC5YkQSaXTFwRIYQQEqAoYSYB7/z5865tEHJzZ76fKgk8DWvWoe7d98eU63Jzoc/PBcMwY7aculjSTDHlvzo2vQbebhWUhS6/B1JNiNfaYHPaIR+1z/JEAj2mouP0ePzpy9BvssIQqkZVeQdiE0IoWfahQI8p4n8opghxjxJmEvDsdjvsdruvm0F8pGHNOrf7LstCQqDNSIc6KclVNtmkmWLKPw2UH8dAxXFBmTw6Ffqi671yfovdgj5rP/bXH0NhbD6SDQmTfm0wxJRcIXXtr5yeHenj1pBgiCniXyimCHGPEmYS8GQymeB/Mnv0njvvNlkGAF1uDvR5uWBGbY/hLmnWf33sEIop/8NxHDq2viUsZKWIvPG7XllsiuM4/Gbfa+i1mrAgdg4ON5xCl9mIedF5k9qChWKKiI1iioiNYooQ9yhhJgGPpg3NXvq8XCTeezfqP/xYUC7RaKDLyoQ2LdXt60YmzYn33i1IlgGKKX9kb6uFKr0QAxXH4eztAADo5l0FRYz737HY1p3fgnPt5QCATnM3lsQXAgD0Ch3Sw5InfH2gxFR9dRfsdifiEg2or+lCelYkWAltqOGPAiWmSOCgmCLEPUqYCSEBLWzJ4jEJsy4na3B0WTL+/ZUJd9w2ZmSZ+CfOboW5+jQkmhBoC66Cra0Gjo4GhK98xCvnL22vxCclm1yPzXYLjjSewsPz70RqaKJX2uAN5gEb1rx7Ar29FqRlRiAuyQBTrxVzCuPpXmVCCCGzFl02JoQEtMa1wn2VWYUCuqwsaDPSJ3wtJcuBwVx9BtzXC30xDANFdCqi7noerFzplfPbnDZo5MPbJjEALk9ejKVJi8AywfE2yvM8Pv/wNHp7LAAPVJV14PTRBnS0mXDicB3MAzZfN5EQQgjxieB4pyeEzErm5hZ0fHVAUKbNyoQ+Lxcs3YMVFBy9nbC2VAnK5BEJUETEe60NBTG5eOnaFzAnKhsAcFP2KtyWtxoKqdxrbfC0Y/trcaGkVVDGsgykMhYMA0hlNMJMCCFkdqIp2STgNTc3g+M4sCyL2NhYXzeHeFHTZ58DPO96zEil0OfkQJedNaN6Kab8h90oTOIYiRTq9EKvtyNMZcB/XvED7K09jMuTl0xqoa+R/DmmWhp7sO3zc4IymUyCnLkxUChkmLsgHjJKmP2OP8cUCUwUU4S4RwkzCXjt7e2ufQOpg589bEYjWnfsEpRp09Ogz8uBRKGYUd0UU/7BXFcCZVwWZIYoDJQfh6PfCFVyPliFeuIXewDLsrgy9dJpvdZfY8pmdWDNuyfgdHKC8uw50VCp5ZhTGAeVOnhG0oOJv8YUCVwUU4S4RwkzISQgNW/YBH7kfpEsC11uDnQ52b5rFBGNvasJLf/+FaQhkQi/7nHoFqyCrbUW8qikiV8sEp7nvbJllS9tXncWne39grKEZAPCI7XInRsDvUHlo5YRQggh/oESZhLw0tLSZsUHWzLM0d+P5k2bBWWa5GSE5OdBqp756CPFlG/xPI+OrX8H77R/nTj/Eto5lyPy5h945XfSNWAEBw4WuxVyyfC98JGa8Gmf3x9jqvh4A04fbRCUafUKpGRGIC0rApExOh+1jEyGP8YUCWwUU4S4RwkzCXhardbXTSBe1rJ1O5xms6BMl5cDXW6OKPVTTPlWf+khmKtOCcokmhCvfIj7qvYIXj/yHhbGz0W8LsZ1TqVUgZuyV067Xn+Lqa6Ofmz6tFhQJpGwyC2IQUJyKBJSQn3UMjJZ/hZTJPBRTBHiHq2STQgJKDzPo33Pl4IyVUI8QubkQ6ajEbFAx1nN6Nz+D0GZRBuG0OX3ePzcLX1t+NuxD2Dn7DhUfwKHG07C7hyc9p8amhg0oy4OhxOf/us4bDanoDwzLwrxSaHIzIkKmu+VEEIImSlKmAkhAYVhGOS88DzCl14KydfTr3W5ObSncpDo2PImnH1dgrLwax4Fq/DsvbQOpwN/Ovh3mB0WV1lDbzNaTR2IUIchP3JmK697Q11V18QHAdi5qRQtjb2Csuh4PdKyIpA3LxYMS8kyIYQQMoSmZJOAZ7FYXPfcKJVKXzeHeIEqOgrZz/4YA7V1aN2+HbrsbMgNBtHqp5jyDUtjGUwl+wRlqrR50ORMb2XqqeDBIysiDVXdda6y7PA0ZEWkYmnigilvIzWap2Nqz9YL2LutHFffkINlKzLGPa7sXCsO760eU65SDW4fJZXS9lGBgvopIjaKKULco4SZBLyysjLXNggFBQW+bg7xEoZhoElJRurj3wTvcIhaN8WU9/E8j/YNrwr21QbDIvTy+7wyPVgmkeGxBfdgbnQOXjvyL4QodHju8u+C4zkoZTP/4OjJmKqr6sLebeUABkePAbhNmm1WBzZ8dNptHTUVnWht6kNSWpiobSOeQ/0UERvFFCHu0ZRsQkhAYxgGrEw28YHEr/Uc3gB7p3DFZk3OEijjM73ajqL4eXjp2hfwk2Xfgkauhk7h/4vgJKWF4eobhhe827mpFPt3VYw5Tq6Q4tb7C6HRjd2n/OobcihZJoQQQtygEWYS8MLCwuBwOCCVUjgTcVBMeZdjoAfd+z4SlLFKLcKvfcIn7YlQi584ejqmhkaUh0aYxxtpTs+OROGSRHy1YzihnmgaN/FP1E8RsVFMEeIe/UWQgJeQkODrJhAvsPf0QBYS4pVzUUx5V8cXb4C3WQRlhsvugFTj+d/3ubYyRGkjPJIkj+SNmJpM0rx/VwUly0GC+ikiNoopQtyjKdmEEL/XV16Bo489gbI/v4KB+oaJX0AChrn2LAYuHBaUyaNTELL4Ro+et6m3BeUdNTjbVoY91YdQ1VXr0fN5y7IVGeNOz96/q8KVRAOULBNCCCGTQSPMhBC/17h2PXiHE+27dqN9126ELSlC+neegtzgnRFn4hk850T7xteEhawE4dc9AYbx3PXcPqsJv9j9J/DgsSShEDqFFseaitFj7UNh7ByPnddb3I00H9hdCfOA3XUMJcuEEELI5NAIMyHEr5kbm9B58JCgzGmxYKA2OEYEZ7O+M7vgMLYKyrR5l0GVkDPOK2aO53m8fvQ9dFt6YLT0YkfVV6g1Ds5aCFUGzwWYZSsykD8/zvWYkmVCCCFkemiEmQS88vJy1zYImZneXVGXeJ6pshKMROLaOoqRyaBNT4cqPt5j56SY8jye58A7HNDkLcNA5Unw1gGw6hCEX/OoR8+7teJLHGsc3lrJyTlRY2zA1WnLkBKa6LHzejumbFYHqsrax5Sr1DJKloME9VNEbBRThLhHCTMJeGazGXa7HQ6R9+Il/iHy8uVQxsai4dO16D5+AtqMdLByORQR4R47J8WU51mbKuAc6IUsPB56QzQs9eegzV8OiUrn0fPmRWYiQR+Lht5mAIBGrsaNWSsxPybfo+f1dkzt21khGFV2tWPAjv27KihpDgLUTxGxUUwR4h4lzCTgMQzj+keCky4zA7nPPwtrewe6T55C2OIij56PYsqzOKsZ5pqzrseMRApd/nLoFlzj8XMnGeLxf6uewz9PfoKdVV/hB5c8ivkx+R7/XXszpjrbTTgwah9mhgF4fvDr8bacIoGF+ikiNoopQtxjeH7oLZSQ6TOZTLhw4YLrcXZ2NrRarQ9bRAjxV/2lh2BtE96Drp+3AtKQSK+2o9bYgGRDcG2jwvM8Xv3NHnR19AvKFy1Nht3uxOmjw6vM073MhBBCPCWYcgNa9IsQQojX8JwTToswmVNEp3g0WXY4HXB3bTjYkmUAWP/BqTHJckKyAWqtHMtXZo675RQhhBBC3KOEmRBCiFfYe9rQX3YE2oKroMlaDFamACuVQZVa4LFzchyHvbVHcLjhJBzO4L4vb+/2MhQfbxSUyRUSJKWHwxCqRmi4+qL7NBNCCCFkLLqHmRDid0yVVVDGREOq0fi6KUREndvexkDZEajSChFx7TehX7Qazv4esHKVR85nd9qx8cJO2LnBRLnX2oelSYuglQdfXO3fVYE9W8rGlKdlRUIqZZGeHem6L9HdPs0jywkhhBAyjEaYScBrb29Ha2sr2tvHbqFCAg/vdKL0ty/h6GNPovyvr8La3uH1NlBMia+//BgGyo4AAMxVJ9Hw5g9hrimGzBDlsXO+fuRdfFD8Gc60nAfHcTBa+nCw7oTb6dme5smYqqvqciW9I4WEqhAZo0V0rB66EKXgOXcjzXVVXaK3jXgO9VNEbBRThLhHI8wk4DU3N7v2DYyM9O6iQUR8HfsPwNraBgBo27ELbbv2IOO7TyH8kiWQar0zMkgxJS7ObkXntr8LyhiFCsqEnHFeMXPHGs/gq7qjAICyziq0D3RiaeJCrEpf7pMVYD0ZU0lpYQiLUKOrY2C4kAEyciIhkbBIzYxw+7qRI82XX5OJpLQwUdtFPIv6KSI2iilC3KOEmRDiN3ieR+Pa9YIyucEAS1sbrJ2dXkuYibiMB9bCYWwTlIVf/RAkKs+sltlr6cPrR/4lKOux9CE7Ih2hqhCPnNOXLpS0CpNlAPGJBmh0CsQnhUKpko372mUrMpCYEkbJMiGEEDIOSphJwEtKSgLP87RvYBAwnjyF/uoaQZkuLwcSpRLqhHivtYNiSjy2jkYYD6wTlCkTc6Gde6XHzqlTaHFn/g149/RaOL6+f/mWnGtwSeICj51zIp6KKbvdia3rzwrKZHIJktPDIJNJJpUIU7IcmKifImKjmCLEPUqYScAzGAy+bgIRScMaYWIl1emgio+HNi0VjETitXZQTImD53m0b/gLwDmHCxkWEdc94dEPZAzDYHXWVciJzMCfDr6FxJA43Dv3Zo+dbzI8FVMHdlfC2GUWlKVlRUAqkyA5PRwymff+boh3UT9FxEYxRYh7lDATQvxCb+kF9J4tEZTpcrPBMAw06Wk+ahWZCVPxHlibhFsWKZPzIYtM8sr5U0MT8dtVz8PJc0E5YsI5ORSfEG4jZQhTISpWB5VKhrhEg28aRgghhAQRSpgJIX6hca1wdFmiUkGTnAxldDRkOp2PWkWmi7MOoHP724IyRq5C+MpHPJK88jyPjoEuRGrCBeVKmXKcVwQ+hmXw4BNLcGhvFY4frAXH8bjroYVwOHmoVDKwbPBdJCCEEEK8jRJmEvAcDofrnhuplEI6EA3UN6Dr8FFBmS47C4xEAm1GutfbQzE1cx3b/gHO0i8o0xeugiI6xSPnK++sxqmWc0gLTcS8mDzIJOMvdOULnogpu80JiZTFshUZmLsgHq3NvYilUeVZg/opIjaKKULco78GEvDOnTvn2gahoKDA180h0zB6ZWxGJoMmPQ0SpRKq+Divt4diamaszZUwFe8RlMnCYmFYfrdHzlfSegFnWkshYSWo6q5HW38nliQUIlwd6pHzTYfYMcVxPKxWh+txTEII4pP95/slnkf9FBEbxRQh7lHCTAjxKWt7B9q/3Cso02VmgJXJoPHyYl9k5nieQ9vnfwF4friQYRG24iFIFCrRz2ey9uP3+98Ex3NYFD8P0doImGwDcI5caCwIWS124OsfsUwugUTC+rZBhBBCSJCihJkEPL1eD4fDQdOHAlTjZxvAO4eTG0YigTYrE2AYaH202BfF1PT1HPkC9o4GQZk6YyHUWUUeOd87pz5Fv31wD+J9tYeREZaCO/KuR5Q2wiPnmy4xY8rhcMJh52AesEGtkUOhoDidjaifImKjmCLEPfqLIAEvJSXF100g02Tv7UPr9h2CMk1aKiRKJZQx0ZBqtT5pF8XU9HAch94TWwVlrFKL8Gu/6ZGFvo40nMKXNYcEZf22ARTE5Ih+rpkSK6b276pAclo4JFIWxScaERWjQ2ZeFDRahSj1k8BB/RQRG8UUIe5RwkwI8ZnmLzaDs1iGCxgGuuxsAIA23fuLfZGZsbdUQZN7KayN5bDUlQCcEyGX3AJZSKRHzpcWloS50dkobr0AAFDJlPjpZd/2uwW/xFJV1o6dm0ohkTBITg9HRLQWxu4BHNtfi4SUUKRne+bnTAghhMxmdNMTIcQnnBYLmjd+IShTJyVCqtVAolJBFRfro5aR6eBsZphrzoBhJVAm5kC/8Dqos4pguORmj50zQh2GF674AR4pvAsyiQyPFd6DhJDgjBung8PmdWcHv3byqCrrwLlTzeB5Hjx4SGX0dk4IIYR4Ao0wE0J8onX7Tjj6+gRlutzBqbS02FfgGag8Bc5hdz1mlRqEFz0CRuLZtxmWYXF91gosTpiPcFXwrhJ9eF81OtuE23TFJoaAYRgolDIk0ArZhBBCiEdQwkwCXnV1tWuRitTUVF83h0wC53Cg6bPPBWXKuFjIDQafLvY1hGJqauxdzbC11wnKFFHJkIXGiH4ui90CDjzUMuGK2xHqMNHPJaaZxFRvjxlfbisTlGn1CsTE6wEAqRnhtEr2LET9FBEbxRQh7lHCTAJeX1+fa99AEhg69n0Fa3uHoEz/9eiyMioSUo3GF81yoZiaGkauglQXBkdfFwCAlcqhSpsv+nl4nseRxtPoMhuxMG4uEkO8v0f3dM0kprZ/fh52m3CbrIzcKDAMA61OiehYvVjNJAGE+ikiNoopQtyjS9KEEK/iOQ6Na9cLyuQR4VBEDi5YFDJ3jg9aRaare/8aOPuN0M2/Gur0BWAkMqjS5oGVK0U/14G642jua4PNacfB+hM43HASNqd94hcGsJqKDpScahKUxcTroQ8Z/PmmZUWAYcVfgZwQQgghg2iEmQS8/Px8XzeBTEH3seMYqKsXlOlzc11fyyN8v38uxdTkmGuK0b3n3+j+8kPoi65H2OX3QB6ZAEYmfrJ8tvUC/nr4H4jVRWNB7FwopHK0mTrB87zo5/KE6cSU08lh89qzgjKplEVKZjgAICxCg7AI387GIL5D/RQRG8UUIe7RCDMJeBKJxPWP+Dee59Hw6TpBmTRED+XXK2Lr8/M8sl/vVFFMTYx32tGx5W9fP+DQe2QjGv/5PBiZQvTfoc1pxz9OfASO59HY24LtlXvR3NeKovgCKKRyUc/lKdOJqaNf1aC91SQoS8kIh1wuBQMGaVm0jdRsRv0UERvFFCHuUcJMCPGa3nPn0XfhgqBMn5MDhmHAKhSu+5iJ/+s5vAH2zkZBWcii1WAY8d9WPir+HA29za7HFocVTo5DjC5K9HP5i75eC/ZsFS70pdEpEJsYAmBwWrZWp/BF0wghhJBZhRJmQojXjL53WaJWQ52cBADQZWeCpYVGAoKtsxHd+z4RlCli06ErXOWR82VFpEEnH556nBgSh+8secgj5/IXOzeeh83qEJRl5EaCYRhIJCxSMsJ91DJCCCFkdqF7mEnA6+7uBsdxYFkWoaG0F6m/6q+pQfex44IyXU4WGJYFK5NBl5npo5aNRTF1cW2f/QW8wzaihEHEdU+CYT0zjW9JQiGyw9Pw+tH3UNxaiqcveQxKaWCNrk4lpuqqunDmuHD0PjpOhxDD4FZaCcmhUCjp4tJsR/0UERvFFCHuUcJMAl59fb1rGwTq4P1X+5f7BI9ZuRyatMH9lrWZGWDl/nMvKsXU+HpPbIOtuUJQpitcCUVchkfPa1CF4Lnl30F9TxOSDPEePZcnTDamOCeHL9YWC8okUhapmYOL4cnlUiSmUkwS6qeI+CimCHGPpmQTQrwi+aEHkfvzn0GbNTiSrM3KBCuVgpFIoMvO8nHryGRwdiu69vxbUMbIFDBcdpfo5zJZ+8esgM0wTEAmy1PR0tSL7o4BQVlaZgTkisHr28np4ZBKaUEeQgghxFtohJkEvLi4ONcUIuK/GIZB2KKFCFu0EL3nSyFRKtFfWwuZXg+JUvxtiGaCYsq97n0fgzP3CcoMl94KmV7c+2ktDit2Ve+HXqFDUfw8aORqUev3hcnGVHSsHg9951Ls3VaG8vNtiIrR4db75qOuphu9RjNiE0K81GLi76ifImKjmCLEPYYPlE0siV8zmUy4MGL14+zsbGi1Wh+2iAQKnuPA0Juz33MM9KH+lW+Bt1tdZVJDNBKeekXUD1c8z+PD4s8gYQev58pYKRbEzUFSSLxfbDnmaf0mKzjn4NtyU70RGp0CCcmDUyM5JwdWQn8rhBBC/F8w5Qb0zksI8SlKlgND1653BckyAIRefo/oIxG7qw9iw4WdqO6uA8/zsHMOVHfXi3oOf2WzOlzJMithkD0nxpUsD5bR3wohhBDibfTuSwgh5KJsXc0wndktKJNHpUCbf5mo5zFaevHuqU/h4Bw43lSMr2qPYMBmRkF0btCPLvMcL9hGSkmrYBNCCCF+gRJmQojH2Ht6fN0EIoLOrW8BPDdcwLAIvfI+0beR+sfxj9BvN7set/Z3wME5EKY2iHoef2S1OsDzg1PSpTIWEim9PRNCCCH+gBb9IgHvzJkzrm0QCgoKfN0c8jXObsepZ34CZVwsIpYthX7uHKgTAuM+VIqpYfaeNphrhNscKZPyoM5YKOp5HJwTcqlwVLUofh4eX3SfqOfxlfFiasBkw4E9FZi/OAkKhRQVF9qh0yuRkhEOmYxWwybjo36KiI1iihD3KGEmhHhE+5d7Yevqgq2rC71nSyAzGBB/260IXTAPqoQEunc5QNg7m6BftBqW2rOwtdYAEhnCVj4s+oUPKSvB95Y8gqWJC/HGsffhcDrwxKL7RT2HP9q1uRQnDtXh1NEGFC1Lgd3mQK/RjLbmXiSlhSM+MYTuXSaEEEJ8iBJmEvDUajUcDgekUgpnf8FzHBrXrheUsTIZnOYBdOw/iJjV10Fu8N/tcSimBjnNJlgby8Eq1FBnLYYiPguMVA5lTJrHzrkgbi7+cN1/obG3BQal3mPn8TZ3MdVYZ8SJw3UABkeav9xahuS0MCRnhMNud6KuqhMx8XqIPPOdBAnqp4jYKKYIcY/+IkjAy8jI8HUTyCiW1jY4zRZBmS4vBwCgio/z62QZoJgaYq45A37EvctSbRj0i64T9Rw8z6PP1g+9YnirCY1cjawIzyXlvjA6pniOx+a1xcCIjR1ZCYOYhOGLBElpNC2bjI/6KSI2iilC3KN5XoQQ0aliY7DwzdeQ/t2noIiKhDw8DMqYGACAPi/Px60jk+HoaYetXbidkyIuAxKVTtTz1PU0Ymv5HhS3lsLJOUWt25+dPFKPpnrhonjJaWFQjFgdOz7Rvy8sEUIIIbMBjTATQjyClckQc81KRK9cAWtnJzizGZa2digiwn3dNDIJnMMGVq4EZxucKcBK5VAmiXuxY8BmxsnmEvAAzrdXoLmvFYvj58OgCu5E0Txgw85N5wVlKrUM8SP2XE7LjKR7lwkhhBA/QO/GhBCPYlgWyshIqJOSELZI3JWViWcMVJ+GVGNASNH1UCXlgWElUCbng5UpRDvH8cYzeH7Hb9A50O0qM1r6YLINiHYOf7V78wWYB+yCsozcSLDs8EJqoRFqbzeLEEIIIW7QCDMJeHV1dXA6nZBIJEhKSvJ1c0gQmM0x5ejrQusnvwUjUyD0srugX7AKith0MCImywM2M/52/AN0mY1oM3UgLyoLWeFpSDbEIyEkVrTz+JOhmDJ2WnHsYK3guchoLULDNYIyrVa8nzcJTrO5nyKeQTFFiHs0wkwCntFoRFdXF4xGo6+bQoLEbI6p7r0fgbdbwQ30onPb39Hwtx8DEikYEZdq/tepT9FlNgIAnDyH4tZStPd3ojB2jmjn8DdGoxGdnZ34akedYKEviYRFalaE4NgFS5LAsP6/XznxrdncTxHPoJgixD1KmAkhorB2dsLc3AzHgBkNn66Ftb3D100iU2Rrr0Pf6V2CMmViLlipXLRzDNjNKGkvF5QVROfiwXm3QSHiefxRQ7UZ3e02QVlyehiUquGFvqJj9dAbVN5uGiGEEELGQVOyScDLzs4Gz/NgGBqR8aWGjz9Fy7btUMXHIyQ/D2AD93rcbI2pzp3vAiO2kWJkCoRefq+o51DLVHjp2hfw4ZnPsLl8DxRSOb5d9GDQL/SVnJSGrZ/uF5Tp9ArEJQ1/3wwYJKWFebtpJEDN1n6KeA7FFCHuUcJMAp5CQff6+ZqtuxutO3cDHA9zfQPM9Q2wdnQibEkRVHFxCJmT7+smTslsjClT6SGYK08IykKW3AypLnScV0yfUqrAIwvuxiWJC9BlNiJCE/xJ4sE9NTD3Cxf6SsuKBDviwlJkjBYauneZTNJs7KeIZ1FMEeIeJcyEkBlr2rAJvH1EMsCyUMXHwdbZBV1mpu8aRiaF5zl07finoIzVhMBw6S0inoOHk3NCKhl+28mJzBCtfn/W2tSLo1/VCMoSUkIREjY89ZoBg+R02nKNEEII8TeBO2eSEOIXHP39aNm8VVCmSUmGRKWCJiUFmtQU3zSMTFrP4Y1w9LQLyrRzLgcrF+9e2vLOamyt+BJtptl3b3tFaRv4EQt9SaUslq3IgEIxfPGARpcJIYQQ/0QjzCTg9fX1geM4sCwLnU7n6+bMOi1btsE5INw7V5eTAwAILQrMfZdnU0w57RYY968RlLHqEIRdId69y71WE4pbS+HkOeypOYTM8BTMjcoRjDYHCp7j8fe/fAWrxQGFUopv/uCyCVe0XrQ0GWqtBPt3VaOrfQDLVmQgOz8aTmckmht6UF/TjeQ0Gl0mUzOb+iniHRRThLgXeJ9WCBmluroadrsdMpkMBQUFvm7OrMLZbGjasFFQpkpMgEyvQ+SVl4OVBmYXM5tiqnvX++AsJkGZYdntYGVKUeovabuADaU7kWJIcN2vW95ZgwR9LCI1gZcktrb0oam+x/W4raUP0XH6cY/nnBxsVidsXDfmL9Ogq0WBpSvSAQxuKZWQHIr4RANtI0WmbDb1U8Q7KKYIcY+mZBNCpq1t9x7Yu42CMn1uDpTR0VDGxPimUWTSHH1d6Du1XVAmDY2FftFqUeq3Omz4f0few4nmYuys+grd5sFEMzM8JSCTZQCorRBOKa+p7Lzo8RaLw/W1TMYiJVsHmUy4pzUly4QQQoj/CszhH0JGiI6OhtPphEQimfhgIhre6UTj2s8EZYroKMjDwmCYPy+gt6WYLTHVsfUt8A7hys3hV38DLCvO9/1R8edo7R9MMHusfdhVtR+rM6/E3OhcUer3hdEJcm1lJ5YsT3V7rN3uhNMxuE1XVFQU5AoG0gCddUH8z2zpp4j3UEwR4h69c5OAFx0d7esmzEqdBw/B0tIiKNPn5kKTkgx5mPhbEXnTbIgpa3MVBsqOCMoU8dnQZC+ZUj0cz+GF7b+D2WGBSqrEi6ueBcuw6DIbsaXiS8GxaWFJuClnFaQiJeTexnM8aiu7BGW1lZ3gOX7MKDHP87COGF1OTIyFVBaY3zfxT7OhnyLeRTFFiHs0JZsQMmU8z6Nh7XpBmSw0FMrYGITMneubRpEp6dj6FgRLNzMsIq755pTrqTM2obK7Fk19rajsrkV9TxMAIExlwIsrn0WyIQEAIGOl+N6SRxCuDtyLKa0tfbCYhSPy5gE72lr60NLU6yorLW7GkX3VrtFlqYwFGKD8fCvMAzavtpkQQgghM0MJMyFkynpOn0F/ZZWgTJ+bA11WJqRajY9aRSbLYeqGPCIBEt3wfcTqrCIo4tIv+rrS9ooxZefaywSPS9qGH6eGJuL/Vv4HrkpdivsKbkG8PrDvax99//KQCyUtePf1gzD1WmC1OLB57Vls/ewcPvj7ETQ39kChkKKxzojGOiOOfFWD0uIWSpwJIYSQAEFTsgkhU9bw6VrBY6lWC01qCvT5eT5qEZkKc/VpSPTh0M5bAXtnI6wNFxA+wejyx2c34tOSTbi/4Fbcmnutq3xkgjz0+PqsFa7HG8t2Ynf1AdyZf4O434QHbP2sBOdON4/7/OjR5SF7t5WD43i88n+7AQA2mxMA0Nbchw//fhT5hbGIiQsBMDg7o6WpB04Hh/zCOJG/A0IIIYSIjRLmr/E8j40bN2LNmjU4f/48BgYGEBkZiaKiIjzwwAOiLK9vsVjw4YcfYuvWraiurobJZEJ4eDgWLlyIBx98EAsWLBj3tXa7HYWFhbDb3X9gG0kul6O4uHjG7Q0U586dc22DkJdHCZun9ZWVo6f4rKBMl5uNkDn5kCgUPmqVuII5puzdLbB3twIAGIaBPCIBIYtWQ6Yff9Xq0vYKfFqyCQDw7zPrAQC35l4LjufGJMzFraU4WHccC+LmYnP5btfxn5ZsQkF0DnIiM8T/pkTA8zzOn2lGX49lyq/luMGp7UOJ8mg15Z3gYAbn5MBKWERGRiIpPWxG7SUkmPsp4hsUU4S4RwkzBhPZp59+Gnv27BGUNzY2orGxERs2bMAzzzyDJ598ctrnKC0txfe//33U1dUJyltaWrBp0yZ88cUX+Pa3v41nnnnG7eurqqomlSzPRg6HAw6HI6BXZQ4kDWvWCR6zSiX0ebnQZmX6qEXiC9aY4nke5uozgjJWroIyPuuir8uJzMD9Bbe6kt+h/+fH5GPAbhYca3FYUdx2AXtqDuJkc4mr/P6CW/02WQYAc78d/X2emSY9MGCHzeYAywBggIgoLXR6cfa5JrNXsPZTxHcopghxjxJmAC+88IIrWU5PT8fdd9+NiIgIlJSU4MMPP8TAwABefvllREdH45Zbbply/fX19Xj00UfR1TW4uuqll16KVatWwWAw4MSJE/jkk09gtVrx+uuvIyYmBvfee++YOi5cuCBob1zc+FP5WHZ23Zoul8vBsixt1+IFAw2N6DosXFlZl50Fw/z5YIPo5x+sMeU0dcPZbxSUqZLngJFM/H0OTcMemTSfbS11e+yZlnNo6x/efmn0NG5/pNbK8Z3/uAI7Np7H+TMtE79gkpLTwxEVq0P/QA84jgPLskhOD8w9qIl/CdZ+ivgOxRQh7jE8P3KZ1Nln//79eOyxxwAAl1xyCd58800oRkwrraysxP333w+j0QiDwYCdO3dCq9VO6RyPP/449u3bBwD48Y9/PGak+tSpU3jwwQdht9thMBiwb98+yOVywTEvvfQS3nrrLbAsi5MnT0Kp9K/RCZPJJEjqs7Ozp/xzIv6v/C+voG3nbtdjRiZD8jfuR9xNN4KZZRdqAg3vsAMsC846AHPNWdja6yBR66FfeC0Yxv3v7p2Tn+Jg/XFBmdlhgdk++WnLKpkSKqmwv1qauBAPFd459W/CS2oqO7FtfYlg5eupYlkGdz+yEO2tJtjtw1O1IyK1mLMgXoxmEkIIIX4rmHKDWf8J9x//+AcAQCqV4n//938FyTIwOOL885//HABgNBrxySefTKn+I0eOuJLl22+/3e207vnz57tGlY1GIw4ePDjmmKGAS0pK8rtkmcwO1s5OtO/ZKyjTZqQjrGgRJcsBoHv/GjT+/VlYm6ugzb0U+vkroclcNG6yzPM8DtWfQJfZKPg3lWQZAMx2y5g6DjWcFONb8piU9HA8/sPluOnuAmi08olf4MZ1t+VDqZYLkmUANLpMCCGEBJhZ/SnXaDTiwIEDAIDly5cjMTHR7XHXX389wsMHP+Rs2bJlSufYuHEjAEChUOCHP/zhuMfdeeeduPfee/HUU0+5zjXSUMKclXXxew0J8ZTGtZ+Bd4748M+yiFi2FMrYWN81ikyKo68bPYc/h62tBi0f/BLNH/wSnN0CaUjkuK/ps/Wjx9rnkfYYLb3otZo8UrdYWJZB4ZIkXH1D7rRe39FqQkNNt6AsPFILXQhd8CSEEEICiU9uUjCZTNixYwdOnDiBpqYm9PT04MEHH3TdH/z6668jPz8fl19+uUfbcezYMXAcB2BwOvZ4WJZFUVERtmzZgtOnT6OnpwchISGTOseOHTsAAEuXLkVUVNS4x+Xk5OAXv/iF2+e6u7vR1tYGgBJm4hsOkwmt27YLyjRpqQhfeiktDhIAuvd+CN5udT02VxcDX/d949ErtPjj6v/Ce6fX4bCII8KXJCzAg/Nug14RGNOyik80Tut1xw/VoWhZMuSK4bfZZFoZmxBCCAk4Xk2YOY7Da6+9hn/+85/o7+8HMDjtj2EY14JYAPD++++js7MT8+bNw0svvTTuyO9MlZeXu76eKBHNyMhwtbesrAxFRUUT1t/W1obOzsGFb+bPn+8qt9vtqKioQHt7O8LCwpCTk3PRBRbKyoa3bcnMHFyJuKurC2VlZbDb7YiJiUFGRsasTVyamprgdDohkUguuhgamb76T9eCs41YQZhhELXiKijCgzMBCKaYsrXXo+/0LkGZbt4KyCMn7lejtZH48bInca6tDP88+QlqjA3TbkeKIQGPFN6FvKjAuehn7BpAdUXHtF7rdHCor+lGevbgKD4rtaOntwOm/sCPKeIfgqmfIv6BYooQ97yWMNtsNjz55JM4fPgwLrbOmNVqRUdHBxiGwalTp3DXXXfh/fffR3p6uuhtamwcHjmIj7/4IiwxMTGC100mYa6oqHB9nZCQALvdjv/3//4f/v3vfwsuEBgMBjzxxBN49NFHIZFIxtQz8oZ5k8mERx55BIcOHRL8HKOjo/H444/jgQcecFtHMOvo6HDtG0gdvPgcFgtavhDeiqBOSkTUFct91CLPC6aY6tj6FsAPjyYzMgVCL79nSnXkRWXhN6uex56ag3j/9Hr02SY/nVqv0OL+gltxZcqlAbeC/5njjcAMlsVsru9BYkoo5AopFGob2tragiKmiH8Ipn6K+AeKKULc89qnl//+7/92JXlKpRL33HMPfvOb34w5jud53H///ZDJZGAYBkajEc888wwcDofobRqZtIaGhl70WIPB4PraaDROqv6WluGtSeRyOR588EG88sorgvMO1ffSSy/h6aefdrvX8ugtpQ4ePDjmokNraytefPFFfOc734HFMrVFeQi5mJZNX4CzWgVlMdddA2mArnQ4m/RfOAJL7VlBWciSmyDVTX1mAMuyWJG2DKmhU5vxk2pIxIq0ZQGXLPM8j9NH62dUB8fxqK/pRliEBioNbdNCCCGEBCKvvIOfOXMG69atA8MwyMzMxBtvvIHYrxcKeu655wTHKpVK/Nd//RceeughPPXUU6iurkZFRQU2btyIW2+9VdR2jUwsR6+OPdrIbZ4mm5AOTTsHgN/97neor69HZmYmfvKTn6CoqAhOpxP79u3DSy+9hObmZmzfvh1/+tOf8NOf/lRQz8iEWaPR4Nvf/jZWr16N6OhotLe3Y9u2bXj11VfR19eHPXv24H/+53/cXozwpoqKCqSnp0On07nKrFar63sxGAxISkoa85qBgQEAQEFBgeC5jo4ONDU1AQASExMFFzhSUlJQXV0NnudRXV2N1NRUwWtramrQ2zu4PUxeXp5g+rvRaERdXR0AIDY2FpGRwkWQiouLwfM8VCqVazr8kIaGBtfFj6ysLMHq5SaTCVVVVQCAyMhIV7wPOX/+vOsqbm6ucFGh5uZmtLe3AwDS0tIES/BbLBbXFP2wsDAkJCQIXlteXg6z2QyGYTB37lzBc+3t7WhubgYwuNr6yItADocD586dAwDo9XqkpKQAAHinEy1btgnqUcREI+rqFa7H3d3dqK8fTCzi4uIQEREhOP7MmTMAALVa7bq1YUhdXZ3rAlR2drbg77Cvrw/V1dUABmdQREdHC1577tw5OBwOyOVy5OTkCJ5rampCR8fgVNr09HRoNBrXc2az2XU7Rnh4+JjZJWVlZeB5HnK5HGlpaYLn2traXBfCUlJSoNfrXc/Z7XacP38eABASEoLk5GTBaysrK119wpw5cwQJZFdXFxoaBqc7JyQkICxsOKHlOA5nzw4mvRqNZsxsm9raWvT09AAAcnNzIZPJAAwmfO3b/iE4lpErEbJkeC/5s2fPguM4KJXKMbelNDY2um4pyczMhEqlgtHcg+Jx9l4ez5nWUhjNPTCoBtd9aG1tRWtrKwAgNTXVK32E0+lESUkJAECn002qj6iv7kZ358CY74dhgKlsxthUZ4RxbjPmzEuHXC533ToTLH3EkOrqavT1DS4Sl5+fL5jpFIx9hMViAcuymDNnjuA5b/YR6enp4HkePM+7foZT6SMAoLe3FzU1NQAGZ9KNXmtlqn3EkP7+flRWVgIAIiIixoxWlpaWwmazQSqVIi8vT/BcoPQRQ4Lpc0R6ejrq6upgs9lQXFxMfUSA9xFDpvs5AphZHzEUg8HAKwnzp59+OngyqRSvvPLKmD96d1JSUvDKK6/g5ptvBsdx2LJli+gJ88hR69H7Ho828vnJjnYPddoAUF9fj9zcXLz33nuCjuuGG27AggULcPvtt6Orqwv//Oc/cf/99wv++IYW/DIYDPjggw8EH+Lj4+Px6KOPYtmyZbj33nvR39+PdevW4Z577kFhYeGk2ukJTqfTtaDaEJ7nXSPoTqdzzGscDofbEXZg8I996LnR9Wo0GtfvxN3vZmS9o0fmR7ZpdL3AYOfF87zbe8xnWu9kvteL1evuex2q19397NOpt6fkHKxtwg7PUDgPkhFvSBf73Qy1abz2Op3Ocds0sl538WK32+FwONyOXF6s3onicGS9I98gR9d7sfieKA5Hm8nPcLw47D22GVyv8Henm3c1JEq1oF6O49zexuHuZ/hB8efgpzhHmQePj4o34FuLHxxTr7f6CGDqP8PRo8tSGYPYBB3qq6e2NzPPA7UVJhRdohIkFMHSRwzx1O/GX/sIu90+Yb2e7iOG+qeRz031PXAyP8Op9BHuvteL/S27u0UvUPoId20K9M8RGo0GPM/D4XBQHxEEfcToNk2mXjH7CHftCFRemSN35MgRMAyDyy+/fMzVwItJT0/HVVddBZ7nXVdcxDTySt54ATjENmLBo4mS6yGjg+5Xv/qV2w27Y2Nj8YMf/ADAYNCuX79e8PzevXtx+PBhbNiwYcyI15CsrCxXHQDw8ccfT6qNniKRSMZ0FAzDQCaTQSaTuf3DkkqlrudHY1nW9Zy7DmjoOXdvSCPrHf0GMLJNF6vXXZs8Ve/I7/Vi9br7XsWu11AwFwW//y1UixYCEgkYQwgS7rtv3Hqn+ruRSCTjtmlkve7iZbr1ThSHF/sZjqz3YvE9URyOJnZ8c3YbuveN6gOUWoRdIfzdTfZ7ZRgGRnMP9lSP3SN+MnZVH4DR3DOmXn/uI+YsiIdKM3iesCgFll4Thab66W2zVVc+gH6TTVAWLH3EEE/9bqiPGPu9ivkeONmf4WT6iPG+16n+LQdKH+GuTfQ5gvqIkfXO9j4i0G7FuhiGv9gKXCJZsGABzGYzvvvd7+J73/ue4LmcnBwwDINnn30Wjz766JjX/vnPf8brr78OuVzumpIhlmeeeQabN28GMLjF1MhpP6Nt377d1faf/exnePjhhyes/5133sGvf/1rAIMj5lu3bh332K6uLlx66aUAgMsuuwx///vfJ/19uKsjOTkZ27Ztm+AV4jGZTIKp49nZ2W4vDpDAZTP2wN7dDU1qiq+bQibQuetd9BxcLygLXfENhF5667Tr/PmOl3Chs2rar88OT8OvVv504gP9SF+PBeeLm7Ho0mRs33geh/dWT7uuS65IwzU35018ICGEEBIEgik38ErqP5STT2f15qErHe6uXMzUyPsGJlrIa+TzI+8LuJiRQTH6fpjRwsLCXPeCDE3Bniox6ghEZrMZAwMDMJvNvm5KUJMbQmZNshzIMeUY6EXvsc2CMqkhCiGLb5x2nUcbTs8oWQaAC51VONpwekZ1eJsuRInFl6VioN+G4wdqZ1TXsQM1aG/tDsiYIv4pkPsp4p8opghxzyv3MEdERKChoUGwzdJkDY0qj14AQAwjFyRobm6+6H7PI1e8nuxS+6MXW5nI0FTvmcz598SFBX9XXl7uWvhi9CIfhExHIMdU1453wNuFq5qHXn4fWMn0u/vGvhZIGBZOXtg3MWAQ+vViXiNZHTYM2AcEdztLGBaNfS0owrxpt8NXTh1tgEojB3hesOAXw469x288drsdu7aeQe780ICLKeKfArmfIv6JYooQ97ySMC9atAj19fXYtWsXurq6Jj1Ce+7cORw4cAAMw3hkAauRq8SVl5dj8eLF4x47tBre0ErfkzFytbiRez6743Q6XaPYI1fxKy0txcGDB9HR0YGVK1de9Odgs9lcdYxepZGQqbJ1dUMWanC78AfxT/auZphK9gnK5NGp0M6Z2Z7Zt+Zei4ywZPx+/xsYsFsgYSRw8k786uqfICvC/boKbf2d+Ouht3GhoxJqmQo/WfYk5kTnuD3W3112dQbMAzYkJIciIXlwZV2lSgaZfHDWlMPhhLHLjPBIzbh/L2fOnJlwrQxCCCGE+B+vJMw33ngj1q1bB4vFgmeffRavvfbahAtn1dXV4Xvf+x44jgPDMFi9erXo7SosLIRMJoPdbsfhw4fxwAMPuD3O6XTi6NGjAAbvuR45lftiQkNDkZmZifLycpSXl6OlpQUxMTFujy0pKXEtLDYy0S4rK3NtEWW1Wi+aMB85csT1gWzevMAbxZmu8PBwOJ3OaU35J2PxPA97Xx9atm6DVKOBOikR6pQUyA1jRxKDVaDGVH/5MTBSOXjb19PpGAZhKx8W5aLHnOgc/GH1f+NIwylcllSEM63nx02WASBKE47/ueqH2F65D4sT5iNMZZhxG3ylorQNB/cMTknPzo/GlddlQxcyuGik08Hhq50VSEgOdd1+ZAhTQyYTxk6gxhTxXxRTRGwUU4S455V7mJctW4Zly5aB53ns378ft99+Oz799FPXfm3A4DTkvr4+nDhxAr/97W9x6623orm52TW6fMUVV4jeLr1ej0suuQQAsGvXLtf+fKNt2rTJtU/eVBP3G264AcBgEvK3v/1t3OPee+8919cjz7FkyRLXKnObNm2CyWRy+3qe5/HGG2+4Ht9yyy1ujwtG8fHxSEpKGrMPHpke44mTOPPT52CqqIStpwe950vRtms3eDfbCQSrQIwpzmoGb7dCv2g1lClzAYkUqpQCqFPmTvzii+B5Hk29LeB5HmEqA67LvBJahQZLkxZN+FoJK8F1mVcGdLLscDixZX2J6/GFklZ89PZRcNxgclxxYXDrrobabpScakLJqSZYzGNHkgMxpoh/o5giYqOYIsQ9r633/Yc//AEpKSngeR6VlZX4+c9/jjvuuAMMw4Dnefz+97/H4sWL8cADD+Cf//wnBgYGwPM8IiMj8cc//tFj7XrkkUcADN5f9qMf/WhMQlpRUYEXX3wRwOD+dHfdddeU6r/33ntdU9A/+OADfPbZZ2OOWb9+vat8wYIFgtHh6OhorFq1CsDgKtjPP/+8YIsrYPBiw4svvogjR44AAIqKinDZZZdNqZ2EDGna+AWsLa3oPnYcTZ9tQF9ZGdRJiWDoirNfM9eeBc85wUikUCbmImTRDQi/5pszrre+pwlf1R3Dzqr96BzoFqGlgeXQl9Xoau8XlC1fmQmWZdDRZkJzg1HwnFQqgUarACGEEEKCg1e2lRrS29uLn/3sZ9ixY8dwA0ZMFRzdlMLCQvzxj38cdxqzWH7wgx+4tnxKSEjAfffdh9jYWJw7dw4ffPAB+vsHPyz94he/wL333it47eHDh/HQQw8BABYvXox33313TP3bt2/H008/7drw+6qrrsKKFSsgl8uxe/dubNmyBQCgUCiwdu1aZGRkCF7f1NSEu+66Cx0dHQCAtLQ03HnnnYiLi0NLSwvWr1+P0tJSAIP3Ln/wwQcXXcDME4Jp6fjZzNzUhBNPfV9QFlq0EOnfegIKui/ebzkHetF7fIugD1XEpEGTVTSjeh1OB7ZU7MGA3eIqy43MwNwAvRd5qnq6zXjtt3tgtw/ProhLNOCbP1gGu92JYwdqYbM5BK+ZUxiPiCjq+wghhMxuwZQbeOUe5iF6vR6vvPIKzpw5g08//RRHjhxBbW2t4ENeZGQkioqKcOutt+Lyyy/3Srt++9vfor+/H1999RUaGhrw0ksvCZ5nGAbf+973xiTLk7Vq1Sq8/PLL+M///E+YTCbs3r0bu3fvFhxjMBjw+uuvj0mWgcFVuf/xj3/g+9//Pmpra1FVVYXf/e53Y47LzMzEn//8Z68nyyR4tO/9SvBYolIidOECyD2wSj0Rj7n6jKAfZVgJVMlzZlzvZ6XbMGC3QCEdXnMikKdXT9W2z88JkmUwwPV3zAEYoOxc65hkOTs/hpJlQgghJMh4NWEeUlBQ4Fqu3ul0oqenB06nEyEhIRMuBuYJKpUKb731FjZs2ID169fj/Pnz6Ovrg8FgwMKFC/HQQw9h4cKFMzrH6tWrsXDhQrz//vvYtWsXGhsbwTAMEhMTsXLlStx///0XXT08Ozsbn3/+OdasWYMtW7agrKwM/f39MBgMyMjIwOrVq3Hbbbf55Ofna2VlZa5tEEYumEamLvHuO6HLykTzxi/QfeIkoq+9BrGrr/N1s7wu0GJKEZcBztIPR78RAKCMzwKrUM2ozjZTB9ac2wyWYZEXmYm0sCTEaqMQp4ue+MVBoKqsHefPNAvKFixJQlyiAc0NPehoE96+ExGlRUz8+AtCBlpMEf9HMUXERjFFiHtenZI9HXa7HZWVlejo6KD7cv2YL6ddDG3XQvsGisvc3AyJQgl5WKivm+J1gRJTnMOGzu1vw7DkZkhDY2Brq4W1sQzagivBSmd28ez3+9/AkYZTrsehyhD836r/QJg6+OPB6eDw/17+Ep1tw/cuq9QyfPe5q8AwwLEDtXA6h/eklsulWLQ0GXLF+NegAyWmSOCgmCJio5giYgqmKdleWfQrJycHeXl5ePvtt6f82ldffRW33XYbfvazn3mgZSQYsCzr+kfEo4qNnZXJMhA4MdV79Av0ndiG+jeeQef2f0CqDYWucNWMk+WzraWCZBkAFicUzopkGQAO76sWJMsAsOL6HKhUMpQWtwiSZQDIyo++aLIMBE5MkcBBMUXERjFFiHtem5I93YFslUoFnudd2zoRMtqcOTO/V5OQkQIhppwDfTDuXzP4gHOg9+gXcHS3IuaemV9cjNFFYWnSIhyoOwYA0Mk1uGfujTOuNxD09Viwd1uZoCw2IQSFS5JQX9ONHqNZ+Fx8yKTuWw6EmCKBhWKKiI1iihD3fHIP82TwPI+GhgZs3LgRAKBWq33cIkKCG+900tZRAcS4/1Nw1gFBmWH53aLUHaEOwzOXfhPXZlyOt098jJXpy6GVa0Sp299t23AONptwz/HVt89Bv8mKmsoOQblKJUN6Dq0eTwghhAQz0RJmh8OB2267DRUVFW6f53kev/vd79yu7jwRhmFo8QFCPGQoUe48eAgOUz/UyUlQJydBShep/Jatqxk9x7YIyjR5y6CMG7vK/kzkRmbiN6ueF7VOf1ZT0YGSk02CsvmLExGXEILjB+vAcSNWIgeDnLmxkErpIhMhhBASzERLmKVSKX75y1/i/vvvH3f69XSnZTMMgyeeeGImzSOEjKP23ffRW3oBiohwKGNjYevuhvH0GURctgzqhHhfN4+40bH5DYAbsaURK0XYVQ/MuN7TLecgYSTIiUiHVDL49jBb7mVzOjlsXlciKFOqpLj6hhxUlXegv98qeC4xNQwhoTNbiZwQQggh/k/UKdmFhYV4+OGHsW3bNkF5U1MTGIaBXq+HRjPxtD6GYSCRSKDVapGQkIC7776bVsgm42pra4PT6YREIkFUVJSvmxNQnFYrWrfvhMNkQh8AiUqFsMVFUMXHQRE5e/de9ueYMtedg6WmWFCmm381ZIaZbfdktPSirKMKPIAaYz0KonORGBIHhmFmVG+gMHYNwDxgE5RddV0ONFoF1Bo5JBLWtdiXTq9ESkb4lOr355gigYliioiNYooQ90S/h/m5557Dc889JyjLyckBAHz729/Go48+KvYpySzX0tLi2gaBOvip6di7Dw7T8H6yTrMZEo0GythYSBQKH7bMt/w1pnieR8eWvwnKGIkM+kXXz6hejuNwsukshuYADdgtONp4GpGacKhkyhnVHSgMoWo8/J1LcWRfDY4frEVkjA4LlyYDAOISDTCEqlF6thmmPhty5saAZad2IcFfY4oELoopIjaKKULc8/tVsgkhnsHzPJo3bRaUKWNiINProElJ8lGryMWYSr6Cvb1OUKbJWwpFZMKM6t1Tcwjrzm/BvJhc6BU6AEBOZMasSZYBwGKxQy6X4rKrMzB/cQIYlhUkxWqtHPMXJ8HUa4FGO3svJhFCCCGzjVcS5tLSUm+chsxSKSkp4Dhu1txrKZbec+fRX10jKNNmZYCRSqGMi/NNo/yEP8YUzznRtetdQRmrUCNsxTdmVK/NYcOac1+gvb8TOyo7kBaagkVxc5EdkT6jegOJzeoA5xy8qMtKGMQmGNwex7IM9Ibp3bfsjzFFAhvFFBEbxRQh7vnttlKETJZer/d1EwJS86YvBI+lWi2UsbFQJySAlc7ursEfY6rn8AY4+zoFZbrCayDVhs6o3g0XdqC9f7BejudR0VWNy5IXQcrOjtWfeY6HzTq8gJpSKfPIefwxpkhgo5giYqOYIsQ9n15C4nkeHMcJ/jmdTtjtdpjNZnR1daGqqgobNmzAN7/5TV82lZCgYu3oROfBw4IybWY6GIaBOiXZR60i43FazTDuXyMok2hDYVh+54zqtTls2FK+R1CWG5mJ1ZlXzajeQGK1OjB0x5BMLgErYdDXY/FtowghhBDiN7w6jLRt2zb8+9//RklJCfr7++m+ZkJ8pGXLVoDjXI8ZiQSa1FSwcjmU0bTQh7/p/vIDcNYBQVnIpbdCIp/ZtkZyqRwvX/dzfH5hB7aW74GNs+PRwrtmxcrY/SYrtqwrweLlKTCEqgEGUCikaKo3ovx8GxKSQ5GWGQFWQlMTCSGEkNnMawnzH//4R7z55psAprcA2Gz4AEemx263g+d5MAwDmcwz0ymDCWe3o3XbdkGZOiUZrFwOhmXB0L1LfhVTTrsFfad3Cspk4fEIWbRalPr1Sh0enHcbbs5eiZL2MqSEJopSr7/buakUJaeaUFrcgqJlyVh2dQbMA3ZUXugAADTUdqO7YwC5BTHQ6me++Jk/xRQJDhRTRGwUU4S455WEuaysbNxkeSgRHq9cKpXipptuon2YybjOnz/v2gahoKDA183xex1f7Ye9p1dQps3MBADo5+T7okl+x59iytHRBN28q2GuLYG9rQYAEHr5vWBEvsdYr9Th0sSFotbprxpqu3HqSD0AwOnkcGhvNZwcj6gYHbgRMy/6+62w2ZyinNOfYooEB4opIjaKKULc80rC/Mknn7iuWC1cuBDPPfccsrOzUV5ejjvuuANSqRR79+6FWq1GV1cXDh06hFdeeQVNTU1wOByYM2cOrr9+ZvuMEkIGjd5KShEVBbkhBACgio3xRZPIOHinA+bas2CVGmiyF8MZnwXO3AdN7qUzrtvJOVHeWQ3JiMQ7UR8LZZBvJcVxPDavPSsok8slSEoLQ3tLn6A8PikUYREabzaPEEIIIX7GKwnzsWPHAABarRavvfYaQkIGP5zn5+dDr9ejr68P+/fvx0033YS4uDjcfvvtWLVqFR544AGUlZXhpZdewjXXXIOIiAhvNJcEmJCQEDgcDkhn+crOk9F3oQym8gpBmTYrY/D/jHRItVpfNMvv+EtMWRrLwNnMrscSrQGGS28R5RaV+p5mnGkVbvkXrw/+CyYnD9ehuaFHULbk8lR0tJgEZWqNHGlZ4r3n+EtMkeBBMUXERjFFiHte+YtoaWkBwzC48sorXcnykPz8fBw6dAjHjx/HTTfd5CrX6XR4+eWXcfPNN8NiseDjjz/Gd77zHW80lwSY5GRa1XmyRo8uS9RqqOLiINPrEbpwgY9a5X/8IaY4uxWWemFCKzNEQxY6s6TW7rRDwkhQ3lktKI/ShEMtm9kiYv5uoN+GXV8If6bhURoo1XJYLXZXGcMwyJ0bC4mIC375Q0yR4EIxRcRGMUWIe15Z3aevb3CaW2pq6pjnMjIywPM8SktLxzyXmZmJRYsWged5HD161OPtJCSY2bq70bH/gKBMm5kOhmURMm8uLfblZ5wDPWN+J6rUeTOu993Ta/HCzt+hsqtGsHZEZvjY/jnY7N5cCvOAXVA2d2GCIFkGgJT0cOhCgntqOiGEEEImxyufkFWqwVELdyvupaSkAAAqKyvdvnbOnDkXfZ4QMjktW7eDdzhcjxmJBJq0NCgiI6CKj/dhy8hotrY6SJRahBTdAFVSHhhWAnlUEqS60BnV2zVgxM7Kr1DZVYtd1QdwrPE0OJ6DVq5GrC64txNrqjfi+KE6QVl6diQ4Jyco04eokJQa5s2mEUIIIcSPeWVKtsFggMlkQkdHx5jnEhMHtzAxmUxoa2tDVJTwQ9vQFO6enp4xryWETA7ncKBlyzZBmTopCRKFAoZ5BbRtmx/hnQ60rvkdnJZ+hC6/G/rCVVDEZohS9/rzW2Hnhi+aNPS14NnUp6BTaMAywTvDgB9a6GvEZgxSGYuYeL3gOImERW5BDBiW/h4IIYQQMsgrCXNeXh7q6+tx4MCBMc8lJSW5vj5z5gxWrlwpeL6lpQXA9PZuJrNDZWWla5GK9PR0XzfHL3UePAx7d7egTJuVAVV8PBSRkT5qlf/yZUz1ntwBe1czAKBz61voPboJsQ/8AlJ9+IzqdXJOFLcJb31ZkboUkdqZ1RsITh2tR2OdUVCWkBIKiVR4kSA9OxIqtdwjbaB+ioiNYoqIjWKKEPe8MqSwdOlSAEBFRQVee+01wXPJycmuKduff/654Dmz2YwdO3YAAK2QTcbV398Pk8mE/v5+XzfFbzVv+kLwWB4RAXlYGAzz5vqoRf7NVzHFWc3o3veRoIxVaCDRzXyKsISV4KVr/xNPFX0DUZpwSFgJbsu9bsb1+jvzgA07NwkvFKjUMiQkGwRl4ZFaxCYIF6UUE/VTRGwUU0RsFFOEuOeVhPmWW25BWNjgB76//vWvuPPOO7Fz504Ag6uRrlixAjzPY/v27fjf//1flJWV4fDhw3j88cfR0dEBhmEwf/58bzSVkKBjqqpC33lhwqDLyoAmNRWyEM8lCGTqjIfWgxvoFZSFXf2QaFPmpawEV6UtxZ+u/wX+56ofIkIT/Pfq7tlyAQP9NkFZek4k2BELqslkEmTnR9OtCYQQQggZwytTspVKJX75y1/i6aefhtPpRElJCY4ePYqrr74aAPDkk09i8+bN4Hke77//Pt5///0xddx3333eaCoJQEMLwxH3mjeO2kpKpYI6ORkhc/N91CL/54uYsvd2oOfgZ4IydeYiqJLF+T3xPA8ePFiGhZSVIDsi+KfbtTT24NiBWkFZVn40ChYmoLHO6LrVJ29eHOQKz74dUj9FxEYxRcRGMUWIe15b5WXlypV47bXXEB8fD57nkZCQ4HouOzsbL7zwAoCvP9SN+AcATzzxBIqKirzVVBJgWJZ1/SNCjAB5EAABAABJREFU9t5etH+5V1CmSU+DPicbUrXaR63yf76IqY7Nb4J3jtjeiGEQdtWDotXf3NeKLeV7UNZRBZvTPvELgkBrU69gL2WplMV1t+YjIycKRUtTEBqmxmVXZyA03PN/C9RPEbFRTBGxUUwR4p5XRpiHXHHFFdi+fTuOHj2K6OhowXMPPPAAsrKy8Oabb+L06dOw2WzIycnBQw89hOuvv96bzSQkaLRs3yHYSgosC31uDnS5Ob5rFBnD0lQBc8UJQZkyMRfyyETRzlHWWQ2TbQCnWs6hpK0M+VFZyIpIE61+f5Q9JwbhUVrs3VaGitJ2XLYyA4awweRYrZVjXpF4P19CCCGEBCevJszA4NWrJUuWuH2uqKiIRpIJEQnvdKJl81ZBmToxEaELF0CiUPioVcSdrp3vQLDnEStB2NUPzbhek60fclaGAYcFbf2drnI754BcIptx/f7M6eRgtzkRYlDhpnvmobWpDynpwX/PNiGEEELE5fWEebq6urpcC4cRMlJXVxc4jgPLshQjI3QdOQZbu3Dvc0PhPOiyMn3UosDhzZiyNJbDUndOUKbJWgxl3Mx/Tx8Wf44jDaewJKEQapkKElYCAFBK5UgMiZtx/f7Mah6eWSGXS5GR49vt06ifImKjmCJio5gixL2ASJg//vhjvPzyyzh8+LCvm0L8UENDA+x2O2QyGXXwI9j7eiHRaOD8ensIbWYGUh7+Bhi6N2lC3oyprl3/EjxmJDKErZj5vcsdA13YVXUADs6BrRVfIkShw8r05WAZBulhKa7kORjZ7U44ndzg1zYHZHLff6/UTxGxUUwRsVFMEeKeRxPmrq4uVFZWor29HeHh4Zg/fz4UU5gKWl5ejv/+7//GyZMnPdhKQoJTzDWrEHn5crR/uRfNmzYj9obVlCz7GUtz5ZjRZXVWEWShMTOue/35rXBww6Os/XYzVqZfBqVUASkbENdKp4XneVgtw993fU03enssSEoNQ0JKqGARMEIIIYSQiXjkU1N9fT3++Mc/Ytu2bXA6na5ypVKJhx9+GN///vchkYx/xd9iseCvf/0r3nnnHTidTvA8T/tjknElJCS4phARIYlSiZhrr0H0NasAjvN1cwKGt2Kqa8c7wgKJDKFXPjDjenmeR+dAt6BsZdplCFeHzrhuf1Zysgn1NV0oWpYCuUIKU58F3V0DAIDqig40N/QgvzAOOr3S622jfoqIjWKKiI1iihD3RE+YT506haeeegpG4/AelwDAMAzMZjPeeOMNFBcX480333SbNO/Zswe//OUv0dzcLEiUo6KixG4qCRI0bWgs3umEtaMDiogIMBLJ4N/RRS5SESFvxNTg6HKJoEyTtQjysJmPLjMMg/9Y/h1c6KjEJ2c34Xx7OW7NvXbG9fozq8WOrZ+VwNRnRcnpZixflQGMukbEcTxUat8sdkb9FBEbxRQRG8UUIe6JegnJZrPhxz/+Mbq7h0c25HI5IiIiXI95nseBAwfw6quvCl47MDCAn/3sZ3jqqafQ1NQ03ECWxUMPPYQvvvhCzKYSErR4nkfbni/hMPWDczjgtFrBj5jpQfyDteECWI1huECk0eWRsiPS8Z9X/gB/vP5/EKY2THh8IPtyWzlMfVYAQH+fFVvWlqCpwSg4JjUzAlIpXTgihBBCyOSJOsK8Zs0aNDY2gmEYKJVKvPDCC7j55pshl8thMpnw7rvv4pVXXoHT6cTbb7+Nxx57DFqtFi0tLfjmN7+Jqqoq16gyz/MoKCjAL37xC+Tm5orZTEKCmqWlBda2dljb2oEjRwEAUVddAWXMzEcuiTg4uxWczQJd4SrYO5tgrSsZ3Hc5LNYj54vShHukXn/R3tKHI/uqBWXhkRqEhKpcj7U6BWLi9N5uGiGEEEICnKgJ8/79+11f//73v8fVV1/teqzVavHUU09Br9fjV7/6FSwWC3bu3IklS5bgnnvuQVtbm+tYnU6HH/7wh7j33nvp3mUyIW7Evbmz/b4bW3c3es6cHVMuCw3ue1fF5umYsjaWgXfawTAM5BHxkIfHQ1+4UtRzHGk4BSkrRWZ4CnQKrah1+xOe57F53Vlw3PAtQCzLIC07QvD+kZ4dCYb13fsJ9VNEbBRTRGwUU4S4J2rCXFFRAQDIysoSJMsj3XfffXjzzTfR1taG48ePY926dWhtbXWNKl9zzTX4r//6L8E0bkIu5uzZs65tEAoKCnzdHJ+q+/dHaNu5C6rEBGjT0yCPiIA2NQWSKaxOTzwbU5zdCktjuaBMHp0EqV68UWCTrR+1xgbwACq6ahCni0Jh7Bxo5GrRzuEvzp1uRk1Fp6AsISUUKrXc9TgiUovQcI23myZA/RQRG8UUERvFFCHuiXr5qLOzEwzDoKioaPwTsiwWLVoEnuexadMm197KWq0Wf/jDH/CXv/yFkmVCpsFpsaDjq/3gnU4M1NSibedu9FdWIXTRQl83jYwwNLo8hAEDVWLejOs1mnvQ0d8FAKjorAU/4rn2/i7IJb5Z7MqTbFYHtn0u3JZLpZYhMWV4RgXDMEjLjvR20wghhBASJEQdYTabzQAwYcKbkJAAYHChL57nkZaWhjfeeAOJiYliNofMEhqNBg6HA1Jp8O4tOxkd+w/AOTAwXMAwSLz/HrCy4EuUPM2TMSWLSIRzoBe2jobBx5GJkGhCZlzvxyWbsLv6AFakLoVapoJsRIKcGpooeBws9u0oR1+PRVCWkhkOiXT4WnB8kgFqjXz0S72O+ikiNoopIjaKKULcE/UvwuFwgGEYKCaY/qnRDE+Ni4mJwbvvvovw8OBelIZ4Tnp6uq+b4Bes7R1gpFLwDgcAIHRBIXT0s5kWT8WU8eB6KBOyoc1bBmd/D8x1JVAlzXx0ub2/E7urD8DJObG9ch8kjAS35F4DpVQBu9OOjLCUmTfez3S0mXDwyypBWUSUFhFRw/dry2QSJKf7x3sL9VNEbBRTRGwUU4S455NLSCOvXP3gBz+gZJkQESTdezdirrsW7bv3oGXbdkRfI+4iUmRmbB0N6Nr9PsBzUKXMhWH53dDmLhWl7nXntsDJDW8dxjIMrsm4HHq5Fm0DndAqfHv/rth4nseWdWfBOYULfaVkhgsW+kpOD4dMRttIEUIIIWT6fD7n4sorr/R1EwgJGnJDCOJvuwVxt94M8PzELyBeY9y/BuAHVyA11xTD0lSB5B+8CVYxs4W4eJ6HUqaEjJXCzg3OLliZvhxhKgMAIE4XPaP6/VFpcQuqyjoEZUlpYYKp12qNHHGJBi+3jBBCCCHBxudrxofSdjeEzBjvdAoeMwwDhraE8Bu2zkaYSr4SlIUUXT/jZBkY/F0/NP8O/PWGX+G6zCuhkalwa+61M67XX9ltTmz9rERQptbIEJ9kEJSlZ0eC9eE2UoQQQggJDj4fYaZ9lslM1dbWuhapSE5O9nVzvM7R34+WrduhSUmGNjMDMp3O100KeGLHlPGrT12jywDAyJUIWXzTjOsdKUxtwGML7sH9BbdCKQ3ebcS+2lmBXqNwoa+rrs+BXCZBZ0c/ACA0XIOwCP+ahj7b+ykiPoopIjaKKULc83nCTMhM9fT0uPYNnI1MlVXgrFb0XShD34UyqJMSEb70UroYNQNixpStrRams/sEZSGLrodELe6FjV6rCSyYoLtfeSSe59FrNAvKUtLDsWBJEhiGQVdHP6rK2pGeHel38T/b+ykiPoopIjaKKULcozmbhAQwe08P+i6UCcpYhcLvkoXZrHPnO8CIXZEZmQIhS24W9Rx9VhO2lO9BfW8T+CC/d/3qG3Nx18MLERGlBcsyuO72Oa54D4vQYOGlydDqgneEnRBCCCHe5ZER5rNnz2L9+vUXfX7IxY4b7dZbb51+o0jQys3NBc/zszJJrH77HXTuPwh1SjK06WmQhYRAl5nh62YFPLFiytZWC3PVGUGZKnWe6KPLm8v3AACKWy+g1tiIZEM8ciMzRT2HP7BZneA5HgnJoXjoqUvQ2dGPqBjhz9Jf+4HZ3E8Rz6CYImKjmCLEPY8kzF988QW++OKLix4z9Mf4/PPPT6pOhmEoYSZuzdapQ5zdjs6Dh8HZbDCVlcNUVo7IK5ZDFhLi66YFPLFiavToMiRShF5534zrbe/vRHt/J/KismBxWAXP9VpNKG69EHQJM8fxsNkcrsdqjRxavdKHLZqa2dpPEc+hmCJio5gixD2PJMzBPiWQEH/Qun0nOItw8aOIKy73UWvIaLb2ujGjy+r0Qigik2Zc95qSL7Cr+gDyo7JwY/ZKxGgj0WJqdz0fqQ6b8Tn8jdVid117kMrobiJCCCGEeIeoCXNRUZGY1RFCLqJly1bBY2VMDEIL5/umMWSMzh2jRpdZKUKvuH/G9baa2vFlzSEAQElbGUrayvDYgntwecoS7K05DAC4IuWSGZ/HnzjsTjjsg6uMO50cSs+2oN9kRd68OERGa2n6ICGEEEI8RtSE+d133xWzOkImpbe3FxzHgWVZ6PV6XzfHK/qrqzFQWycoi7xiOe29LJKZxpStox7m6tOCMnX6fCiiZj66vO7cFjhHbFEll8hwSUIhDKoQ3JG3Ghw/2O5g8flHpxEVo0PevFjwPI+yc60Y6LcBAM6dbkKIQYXMvGi/X+hrNvZTxLMopojYKKYIcY+2lSIBr6amxrUNQkFBga+b4xUNa9cLHrNyOWJvusE3jQlCM42pji1vAfyo0eUrZz66DAAZ4Sk41XIOXWYjAOCa9MthUA3ety5hJZBAIsp5/EH5+VacOlIPADhzrAEFixJgsdgFx/QYzeA4zt3L/cps7KeIZ1FMEbFRTBHiHiXMhAQYp8WKriPHBGUh8wog04m78jKZHktzJSy1JYIyddp8KKKSRal/ZfpyXJFyCXZVHcAXZbtwc84qUer1Nw6HE1vWD/8cW5p60bX1AhYvTxGMoMfGh0AfovJFEwkhhBAyC1DCTAJeTEwMnE4nJJLgGVm7mJZt28cs9hV/i7j7+s52M4kpR2czFIk5sDZVAE67qKPLQ2QSGa7NvALXZFwetPfvHtxThe6OAUFZSkaEIFmOiNIiMy/a202bltnWTxHPo5giYqOYIsQ9SphJwIuKivJ1E7yqY99XgseKyEiEzM33UWuC03RjirNZYDe2QJUyF4qEbNiaKsAq1FBEizO6DABOzoni1gvICk+FWh6cI6vGrgHs21EuKNOHKBEdNzyLIjpWj9yCWG83bdpmWz9FPI9iioiNYooQ9yhhJiSA8E7nmMW+VAnxPmoNGc3aVA6ecwIAWKkcyqQ8GJbcJOo5KrtqUdZZhcquGmSGpyInMgNySXDtnbnt83OuVbEBAAyQkRvpGk1nWRapmRE+ah0hhBBCZpPgWUqVkFnAVFEJzmoVlMXeSIt9+QPeaR+chj2CIjoVrEIt2jlsDhvOtQ+OvDp5DqUdlTjScEq0+v1B5YV2lBa3CMpiE0Kg1StdjxNTQqFUBddFAkIIIYT4J0qYCQkgHQcPCR5LdToYCub4qDVkJFtbHTiHTVCmTMiecb0tpnZsr9gHh9OB0o5K2JzCVaJzIzNmfA5/4XRw2LLurKBMJpcgJSPc9VgulyIxNdTbTSOEEELILEVTsknAO3v2rGsbhDlzgjt57Dl1RvBYnZwEVi73UWuC13RiSh6TCkamgKW+FI6+TsjD4yDRhMy4LWvPbcae6oNYd34LbspeiVRDImp7GsDxPJJC4hCuDp7k8dDeKnS29wvKUjLCIZMNL0CTmhkBqTTwFqSZTf0U8Q6KKSI2iilC3KOEmQQ8juNc/4KZY2AA/bW1gjJterqPWhPcphpTxoPrwVlMCFl8E3Tzr4ajtx2MZOYXMlr62rC35jAAoGOgC2+f/Bh3z7kR12ZcgeLWC5gTPfMRbH/RazRj7/ZRC30ZlIiJ17sea3UKxMTpR780IMyWfop4D8UUERvFFCHuUcJMAp5SqYREIoFMFtz3NPYUnwVGvomxLNTJib5rUBCbSkxxln4Y968BZx1Az5FN0BWugmHpbZBqDTNux9pzW8Dxw79zhUSOVenLoVNosTRp4Yzr9yfbNpyD3eYUlKVnRwq2zUrPjgTDBuY2WrOlnyLeQzFFxEYxRYh7lDCTgJeVleXrJniF8eQpwWNFRAQU4eHuDyYzMpWY6jm+BZx1cL9g3mFD79EvoC9cBWhnPlX68pQlaDG1obSjEgBwbeYVCFEG5gjrxVRXdODcqWZBWXJaGHQhwwt9hUdqERqu8XbTRDNb+iniPRRTRGwUU4S4RwkzIQGi+/hJwWNlbAxU8XE+ag0BBvdd7jmyUVCmybkE8khxRv7nRGcjPyoLZ9su4LPz23Bz9ipR6vUnTieHzWuFC32p1DLc+fBCmPqsqC7rgNXqQFoWbSNFCCGEEO/zScJcV1eHDRs24MSJE2hqakJPTw+++93v4oEHHgAA/M///A9ycnJw++23Q04LGhECc3MLrG1tgjJ1UiLkNMLsU70ntoIb6BWUGZbdLlr9HM+BAYO50TmYG50jWr3+pN9khUwm3LDhqtU50GgV0GgViIjSoqfbDI1W4aMWEkIIIWQ282rCPDAwgF/96lf4/PPPXQsK8DwPhmFgsw1vx7JlyxZ89NFH+Nvf/oaXX34Z8+fP92YzCfE7o6djs0ol9Pl5YFjaGc5XOIcNxv1rBGXqjIVQxKSJdo6qrjrUGhswLyYPEZow0er1JxqNAvc8WoSzJ5vw1c4KGMJUWHBJkut5iYRFWETgTsUmhBBCSGDzWsLc29uLBx54ABUVFeB5ftzj+vv7YTQawTAMGhsb8cgjj+Ctt97CokWLvNVUEmAaGxvhdDohkUgQHx/v6+Z4RPfxE4LHyphoqBMSfNSa4DeZmOo9+gU4i3ALJP3C60Rrg81pR0lbGaxOG3ZVH0CCPgYF0bnQKoIrebRY7GAYBnMXxCN/fiwcDg5sgC7sdTGzoZ8i3kUxRcRGMUWIe14bnvrxj3+M8vJy8DyPiIgI/OhHP8K//vWvMcfJZDL89Kc/RVjY4GiKxWLBs88+C7PZ7K2mkgDT2dmJ9vZ2dHZ2+ropHsHZ7YMrZI+gio2FMibaRy0KfhPFFO90wHjoM0GZNDQGqpS5orWhtL0CVufwzJuG3haYHRbR6vcHNqsDnHPwAiorYRASqkZ4pNbHrfKMYO+niPdRTBGxUUwR4p5XEub9+/dj3759YBgGixcvxtatW/Hkk09i8eLFY46Vy+X45je/iY0bN7qmYjc3N2PdunXeaCohfqevrAyc1Soo0xfMAUvbPvhM78kdY+5d1i24Box0Zr+Tpr5W/PPkJ+gc6EaLSXjPerw+GpGa4Llnned4WK0O1+OebjO6Owd82CJCCCGEkLG8MiX7888/BwCoVCr84Q9/gEYz8ZTC0NBQ/PnPf8Y111wDm82GnTt34v777/d0U0kAyszMdN0LH4yMJ04JHstCDdBlZvqmMbPExWKK55wwHhDeuyzRRwxuJTVDa0s2Y2/tYWyv3IdVactREJOD+p5m2Dk75kbnzrh+f2K1OoCv787hwaOqrAMOhxMRkVqkZUdCrQmuBR+DvZ8i3kcxRcRGMUWIe15JmI8fPw6GYXDVVVchImLyW4NER0dj5cqV2LRpEy5cuODBFpJAplKpfN0Ej+o+eVrwOGL5ZVAnibNtEXHvYjFlOvsVnH1dgjJdwVWQKNQzOmdTXyv21R0BANiddnxRvgtyqQx35t+A9v5O6BXBMVXZ1GfFJ+8cwyWXpyEhORQMAzTX98LhcAIAOtpN6Orsx5LlqVAog2cWRbD3U8T7KKaI2CimCHHPKwlzR0cHACA9PX3Kr01NTQUA9PT0iNomQgKBvacH/VVVgrKwokWQKGiLHV/geQ7d+z4SlEm0odAvun7Gda89t1mwIKJCqsCN2Sshl8gQr4+Zcf3+Yuem86iv7kZ99XHkzI3B0ivT0dwo7N8jo3VBlSwTQgghJHB55R5miUQCAK6tpKbCbrcDAJRKpahtIiQQcHYHYq5dBUV0FICvt5PKDc79eANB/4XDcBhbBWXa/Msg1ehnXPfd+TdiRdoySJjBbnl15pVBM6o8pL6mG6ePNrgelxa3YOcXpYILBSzLIjVz8jORCCGEEEI8ySsjzFFRUaipqcH58+en/Npjx4656iDEnf7+ftc9N5O5Pz6QKCLCkf7Ut8DzPCzNzTA3NNJiX17gLqZ4nkf3lx8KjmPVeuiLbhDlnFHaCHy76EHcnnsdPivdhhuzV4pSr7/gOB6b1xYLymRyCWIShBcbElNCoVQFX4wHcz9FfINiioiNYooQ97ySMC9ZsgTV1dXYu3cvGhoakDDJ/WMPHDjguv+Z9mEm46msrITdbodMJkNBQYGvm+MRDMNAFRcHVVycr5syK4wXU6q0QvCcE46uZgCAJnsJZCGRopyz29wDnUKLKG0EnlgUfAscHj9Yi5ZG4criGTmRUCiG34bkcimSUsO83TSvmA39FPEuiikiNoopQtzzypTs22+/HQDgcDjw9NNPw2g0Tvia48eP40c/+pHr8c033+yp5hHit/pramHv6/N1MwgAe1cTWIUK2vzl0Baugjw2AyGLxRldtjvt2Fd7BFvKd6Omux4cP/XbV/xZv8mK3ZtLBWWh4WqERwmnnKdmRkAi9crbEiGEEELIpHhlhLmgoAA333wzPv/8c5w7dw433HAD7r77buTl5bmOMRqNKC0tRXl5ObZv346dO3fC6XS6VtdeuHChN5pKAlBERAScTqfrXvlg4bRY0HnoMMDzkOn1UMXHQZebQwt+eYG7mLLUD99SItWGQlGQAln45GbLTORCRxUsjsG9to80nkZZZxWuTF0KuSQ4pibv+qIUFrNDUJaaGQGWHd66RKtTICZu5veC+6tg7aeI71BMEbFRTBHiHsOPXG3Fg2w2Gx555BGcOHFiUvu7DTUrMzMTH3zwAbTa4Fr8JtiYTCbB1l/Z2dn0O5shU1U1ug4fcT1mpFIk3H4rGHoj8zpHTzt6T+8SlGmyl0ARnTLjum1OOzZe2AEH53SVxWqjsDxl8Yzr9geNdd34+1/2u/ZcBoDk9HAkpwunXs9blIDQcLpnjhBCCAkGwZQbeG3um1wuxzvvvIOHH34YEokEPM9jdK4+VDa04MANN9xAyTKZlTi7HaZK4XZSypgYSpZ9xNJYJnjMKtSQR85sL+zG3hb8395Xcba1FEqpcNZAQUxwrITOcTy+WHNWkCzL5BLEJYYIjguP1FKyTAghhBC/5JUp2UNkMhmef/55PPbYY1i/fj2OHDmCyspK9PT0wOFwICQkBAkJCSgqKsKtt946rX2bCQkGPWeKUfnq61BEREARHQVlbAzClgTHiGOg4Xke6sxFkGgNsDaWg7NboUzIBsPO7OLFpyWbcLL5LE42n8X8mHxck7EcPACz3YIQZXBMTT55uA7NDcI9lnPnxkAmH/7ZMQyD9CxxFk4jhBBCCBGbVxPmIdHR0fjWt76Fb33rW744PSF+r/vkKYDnYW1vh7W9HY7eXqgef8zXzZp1rC1VaPv8rwhdejs0eUuhjM+GrbUG8ujkGdXb0NuMA3XHXY9PtZQgLSwR9869ZczMm0A10G/Dri/GLvSlD1UJyuISQ6DWyr3ZNEIIIYSQSfNKwtzS0oKYmBhvnIrMQqWlpXA4HJBKpcjJCY6prMaTpwWPIy5bBolS6aPWzD5DMaU89gnY9jq0ffYnSPd+iLAr7oM2/7IZ17/pwi7wI+Ypq6RK3Jg1uO/yZNZ4CAS7N1+AecAuKMufHydY6EsqlSAlPcLbTfOJYOyniG9RTBGxUUwR4p5X7mFesWIFHnnkEaxbtw79/f3eOCWZRWw2G6xWK2w2m6+bIgp7by+sbW2CMkPhfN80Zpay2WywdzaCaTzrKnN0t8De3SJK/Q8X3olvzLsDesXg+gyrs66CVhE89/A21Rtx/FCtoCy3IAZXXJOFlPRwSCSDbz3JaWGC6dnBLNj6KeJ7FFNEbBRThLjnlRFmjuNw+PBhHD58GL/4xS9w9dVX4+abb8by5cvBsrTnJpkZqVQKnuchlfrkDgPRyfT6/8/efce3Vd3/439dbdmWLE95x/F24jh7JwRCBiQQAiWUhtHS0v5oSz8FuqCle3y+LeXTsgu0pRQoqwRCQgaE7L2XnTi2Y8d7W7Jka9/7+0PoWteWh+xrybLez8eDB7pHusdHytvXOvec8z6Y9+a/0FVSCsOZszBdKUdUdlawmxVWZDIZlFVH4T3WK1FGIHrOzaLUr5IpcWvBCqzMWYrPKg7ghskLRal3vOgx2xEZqUC32f2lSy6XYtW6qZDKJMjMiUdyWjTqrhmQmqELbkMDaKJdp0jwUUwRsVFMEeJbQLaVWrZsGZqbm3t/6BdTDmNjY3HLLbdg3bp1mDp16lg3g4yhiZQ6nhBHZxNqX/oewLF8mW7xnYi9/iui1G+2d6O9pxMZ0akTZgq2N6vFgW6TDUf3V+HMsRpcf1M+ltyYE+xmEUIIISRAJlLfIGD7MJ84cQJbt27Fzp07YTAYehvwxZfF7Oxs3Hbbbbj11ltpvXMImki/FMHm6DJBGqGGhO7wBk3L5mdhvriPP2bkKmQ8/BKkEeJkrz5aexo1xgbEqKIxLakASVETJ0u0y8Wi54uRZTCApceB2PgIyGThMfWaEEIIIROrbxCwDrOH0+nEoUOHsGXLFnz++eewWCzuhnzRcWYYht9WatWqVYiMnDjr+iayifRLEWyN23fAaTJDmZgIdXISIjLSIVWrhz6RiMLZ1Yaa578tGF2OyF+ApDt/JEr9HT0G7Lp6UFA2O2UasmNHl3l7vOgx2+FyuT87pUoGhZJu/BBCCCHhZiL1DQL+TUYmk2HZsmVYtmwZrFYrdu/ejS1btuDgwYNwOBzgOA7Hjx/H8ePHab0zCTvOnh44DO59a62NjbA2NkIRG0Md5gDqPPBfQWcZjASRU0a/xthzb/J88yVBuUIqR7o2edT1jwcOh4vvLEskDGRyCWqqOiCTSZCSrgtu4wghhBBCRiCot/5VKhXWrFmDNWvWoKurCzt37sQnn3yCEydOwOVywWq1Ytu2bdi2bRvi4uJw8ODBoSslYae5uRkulwtSqRR6vT7YzRkVa6MwC7NELociLi5IrQk/TrMBpvN7BGXK5GxE5s4dVb21xgb8+dDLuL3wJmTHTILVaUOXzQwAKIjPgUIW2vsQcxwHcIDN0ruNlFItQ2d7D+qqOzE5Nx5N9e4bQfpkLRjJxFu3PZSJdJ0i4wPFFBEbxRQhvo2buXJarRYbNmzAhg0b0NHRgU2bNuHFF1+ExWIBx3Fob28PdhPJONXc3AyHwwG5XB7SF3in2Yyrf/8n5BoNVMlJkKpUUCUngaGZFQFjOPQBwDr5Yw4MtHPXQCJXjqreD0q2odHUgheP/xvJUYn48rRbkReXharOGuTGZY6y1cF34VQ9Ss42YOnKXETr1JDJJZDJpDB32WC3O1FW0nsjSJ8izjrwUDNRrlNk/KCYImKjmCLEt3HTYQaA2tpa7Nq1C7t378aZM2fgcrmC3SRCAsZw9hxMpb3TdRVxcSj42eNBbFF4cVlMMJ39TFDGRichMn/+qOqtNTbgSO1p/rjR3IK6riYsypiDyTHpIZ8l22px4LMtpeg223G1vA3zlmRi2ao8cCyHqoq2fq8P9fdLCCGEkPAS9A5zS0sLP+36woULfLlnvZ9er8ett96K9evXB6mFZLybPHkyWJYN+TXu7UePC44lchkiUibG2tZQYDj8ITinQ1AWPXftqEeXD1w7Dg69uRUj5GqszVsOYGJ0Hvd9eoXfb9nlZHFk71VMzo2HTN4/K3ZcfPgmcZwo1ykyflBMEbFRTBHiW1A6zJ2dnfx65VOnTvGdY8//1Wo1Vq1ahdtuuw0LFy6cEF8qydjRaDTBbsKocRwH4/kLgrLIrCxK9hUgrK0HXad2CMoUiZmIn7V81HV/ZdptyI/PxvsXt+JqZw3W5C1HpCJi1PWOB82NXTh+sFpQlluYiMRkDc4cq+33+oSk0P9dHamJcJ0i4wvFFBEbxRQhvgWsw2w2m7Fr1y588sknOHLkCD/d2tNJlkgkWLBgAW677TasXr0aauookDBiqa+Hw2gUlOlmzghOY8KQ8cQ2cA6boEwz56ZRjy4D7lHk2SnTMCu5CKcaLqAwIWfUdY4HHMdhx6aL4Nje0XOpTIKVtxbi8vkm9N2xMDM7Dkmp0YFuJiGEEELIqASkw/zwww/jwIEDsNvd0/a8v0jl5uZi3bp1WLduHSUYIGGr4/gJwbFUrYZuRnGQWhN+5LEpUOfOga32ElhrN+Tx6dAUXSdK3ReaL4MBg/z4LMxJnTj/piVnGnDtaoegbNEN2eho70FPj11Qnpkdh8yc+EA2jxBCCCFEFAHpMO/atQsMw/Ad5djYWKxduxbr16/H1KlTA9EEMoHZbDZwHAeGYaBUjn5EMBg6jp8UHKtSkqGMpw5GILh6THC01UGZlAWFPhOO1lrIM6bB7uLAsLZRxZTZ3o2ytqtgORZXO69hSkIesmIyQn59mM3qxGdbSgVl0TFqFBYn4fIF4dZo2mgVMrJoa7SJcJ0i4wvFFBEbxRQhvgVsSrZCocANN9yA9evXY+nSpZBK+yeEIWQkysrK+G0QiotDbwSPdThgLq8QlGmnFNJ2UgFirSnlk3IxjATK5GzUyhLhKCkZdUxdbC4Dy7Hun+O042xTKZI1iSG/hnn/Z1dg6hJOYb9xbQGulgmzYkulEhRMS4YkDPdd7ivUr1Nk/KGYImKjmCLEt4B0mH/729/ipptuomQChPhgvFgCzukUlMXOnxek1oQXV48J9pZrgjJVSi5gAuBw+D5pGKxOG1iWRV1Xo6A8JzYz5DvLrU0mHNtfJSjLyosHOMBuF8Zxdn4CIiIVgWweIYQQQoioAtJh3rBhQyB+DAlTOp0OLpcrZGcttB85JjhWxMZCk5MdpNaEF6exRXDMSGVQpuVD19g84piqMdTj57v/jJtyrsd1mfNQ1VmHBlMzFFJ5yCf84jgOOz66CNYr0ZdEymDO4kloqu8SvDYuPhLJaZTkyyPUr1Nk/KGYImKjmCLEt6Dvw0zIaGVkZAS7CaNiPHdOcBw5OZO2kwoA1mmHMjkbsuhEWGtKYW+5BlVKLiRy5ahi6v2ST2BxWPHhpR3YXr4Hd0y5GTdMXgiLwwqlLLRHWy+db0RVebugbN7iTLQ1dwvK5HIp8ouSaEtAL6F+nSLjD8UUERvFFCG+idphvv/++wG4t1F5/fXX+5WPRt86CZkI7J2dsDY1C8qip9O6obHGsS7U/+NHUCROgm7RHYgsmA9VxhQw8tF1aK8Z6nCs7gx/bHXa4GSdSIgM/aRXdpsTOzcLE31pdSosW52H5kYTqiva+JHnvKl6KJR0P5YQQgghoU/UbzTHjx/3OaIwUPlweTL2ETLRtB8TbifFyGSInTc3SK0JH92Xj8LRVgdHWx26Sw8hIm8uEm/93qj3Xb7UWiHYESBSrsaa3OViNDnoDuwqh8loFZStWjcFSpUcGZNjERsXgUsXmqCNViFBT/kqCCGEEDIxiD4EMFDn1nvvZUKIW8ex44JjVXISVPrEILUmPHAcC8Oh/wrKnMY2MMrRJ+O6Kfd6TNMX4IPS7ThUcwJr81cgQjExptfL5FJIpRK4XO6s35Nz41BYnMw/H6VVYfaCDNClnhBCCCETiagd5s8//9yvckLEUFFRAafTCZlMhpyc0EmqxLEsTJcuC8o0Bfm0ndQY6yk/BXtLjaBMt+RLght9I40pm9OOVG0S/mfBA/jSlJsRo5oYSa84jsPshZOQlRePfTuvoLqiHTfdXtTv5qhESrE7kFC9TpHxi2KKiI1iihDfRO0wp6am+lVOiBh6enr4fQNDibmiEi6LRVAWO4+2kxpLHMehc9/bgjJ5fBoi8+cLykYSUzanHdvL90AfFY9piQVI1SaJ0ubxwG5zgWM56GIicMe9s9DTbUd8YlSwmxVSQvU6RcYviikiNoopQnwb98MBDocDly9fxsGDB4PdFEJE1X74qOBYFhUF3bSpQWpNeOi+fLTfvsu6RXeAYUZ/KbzUWgG7y4FaYyN2VOzD2caSCbEUhXWxgv2VrRYH5HLacoQQQggh4SEgaUwLCgogkUjwox/9CA888IBf577wwgt4+eWXkZCQgP37949RC90jT1u3bsUHH3yAS5cuoaenBwkJCZg7dy7uueceFBePPnOx1WrFO++8g507d6KqqgpmsxlxcXGYPXs27r33XsyaNWvIOk6fPo1///vfOHXqFDo7O6HT6VBQUIANGzZg9erVo25jKBLj3yYYOk+fFhxHZE6i7aTGWOf+dwXHErUGkVMW9XudvzFltnejoqOaP2Y5FlanbUIkK7TZnMAX/X5GApSVNMNudSIjKxaTsuMgkYT+ewyEUL1OkfGLYoqIjWKKEN8Ctu/HSEda1Go1OI5DR0eHyC3qZbVa8f3vfx979+4VlNfX16O+vh5btmzBI488gm9961sj/hmXL1/G9773PdTUCNdONjU14ZNPPsG2bdvw0EMP4ZFHHhmwjueffx7PP/+84LNsbW1Fa2srDhw4gFWrVuHpp5+GQhHae72GA2d3N3pq6wRl0cXTgtSa8NBTeQaOtlpBmWbaMkiko5t61tLdjjpjA1iO5cskjARF+vxR1RtsHMfB5WThdLjfFyNhcK2yHTarAwBw7Wo7Otq6UTw7DXIFjTgTQgghZGIatxtlchyHuro6bN26FQAQETH6DLYD+dnPfsZ3lrOzs3HXXXchPj4eJSUleOedd9DT04Onn34aer0et912m9/119bW4oEHHuA7/QsXLsTKlSuh0+lw+vRpvP/++7DZbHjppZeQlJSEu+++u18d7733Hp577jkAgE6nw8aNG5GTk4P6+nq88847qK+vx6effopf//rX+P3vfz/yD4MERPvR4wDb28ECwyB+0YLgNSgMdO5/T3DMKNTQLdkwqjqrOmvx+Kf/iyJ9Pq7PXIhkjTvDOcMwiFJEjqruYHv/9VPQaFWYtzQTCoUMRoMFrc0mwWvkcilk8nG/socQQgghZMQYTqRFdk6nE7fffjsqKir6Pef5EaOZnjh79my8+eabIz5/IIcOHcLXv/51AMCCBQvwyiuvQKns3Yu1srISGzduhMFggE6nw+eff46oKP+S3Tz44IM4cOAAAOAHP/hBv5Hqs2fP4t5774XD4YBOp8OBAwcEo8SdnZ1YsWIFzGYzEhIS8O677woSqZnNZjz44IM4c+YMAOCdd97BzJkz/fsgRslsNqOsrIw/zs/P9/tzCidXnnkOrbv38sfKhATMfvkFMFIaqRsL1oYKNLz2E0GZZsYKJKz99qjqferg33Ci/hx/fGPWEvx/c+8By7GQiLAuOliulDbjnX+49wiP0iqxZHkObDYnv6UU4O4sz1k0CUoVJYchhBBCiNBE6huI9o1OJpPhN7/5DQB3B9n7P4++5cP9DwC++c1vitVUgX/+8598+3/3u98JOsuAe8T55z//OQDAYDDg/fff96v+48eP853lO+64w+e07hkzZvCjygaDAUeOHBE8/95778FsNgMAfvjDH/bLOh4VFYX/+7//47Mavvzyy361MdS1tbWhpaUFbW1twW7KsHWVlAqOVUl66iyPoc69/xEcM1I5Yq67a8DXDyemqjprBZ1lAEiIjAWAkO4sOx0u7PiwhD82d9mwZ0eZey2zl9wpeuos+yEUr1NkfKOYImKjmCLEN1GnZM+cORNf/epX8emnnwrKGxoawDAMtFotIiOHnqbIMAykUimioqKQlpaGu+66C0uWLBGzqQDcndPDhw8DAJYuXYr09HSfr1uzZg3+8Ic/oL29HTt27PArcZlnSrlSqcSjjz464OvuvPNOOBwOxMTEIC4uTvDctm3bAABarRa33nqrz/NTUlKwfPly7Ny5E4cOHYLZbA7Zuzj+amho4LdBiI+PD3ZzhmRrbYWtuUVQpi2i7Nhjxd7RCEv1BUFZRN5cyDRxA5wxvJhqNrciUq5Gt8O9NViUIhI35V4vWruD5dCeShg6egRlmTlxkMl6bwLok7VITNIEumkhLdSuU2T8o5giYqOYIsQ30dcwP/7443j88ccFZQUFBQCAhx56yO8s2WPp5MmTYL9YR7pgwcDrRyUSCebOnYsdO3bg3LlzMBqNiI6OHtbP2LVrFwBg0aJFSExMHPB1BQUF+PWvf92v3Gg08tMZ5s6dC+kgo5Dz58/Hzp07YbfbcfToUaxYsWJYbSSBZTgrHJWURUUiZd0tQWrNxNe5922A814vLkHMdf3zBPhrQfosFOsLsb18D7aW7cIt+TciQh7aWc4NHT049LlwWY1Wp0Zicm/nWKWSI7dw4GsZIYQQQshEMu6zZI+l8vJy/nFeXt6gr83JyQHgfh9XrlzB3Llzh6y/paUF7e3tANzTrj0cDgcqKirQ2tqK2NhYFBQUQCbz/U9RUVHBf3a5ubnDaiPgzsodLh3m9PR0sCwLiSQ0psEazp4XHEdPL4ZsDJPahTOXrRs95ScEZerJ06CITx3gDLfhxFStsQEAcPuUm3Bz7g0hE3+D2bm5BE4nKyjLKUzg808wYFAwLQky2ofZb6F2nSLjH8UUERvFFCG+BaTDfPny5UD8GL/V19fzj/uuC+4rKSlJcN5wOszeCdDS0tLgcDjwt7/9Df/5z38E22TpdDp885vfxAMPPNBvBNm7jWlpaYP+vOTkZP5xQ0PDkO2bKGJiYoLdhGHjWBaGc8IOs87rZgoRl6OtHlEzV8JWXwZ7UxXAsoi57itDnjdUTLEsi3NNpehxWBGliEBBfDYm6Qb//RzvKi63oOxis6AsJT0aUZrevA5pmTHQxdLNnZEIpesUCQ0UU0RsFFOE+DZut5UKBO9O61AXCZ1Oxz82GAzDqr+pqYl/rFAocO+99+Ls2bP9XmcwGPDUU0/h7Nmz+Mtf/sIn7/K3jd7TxIfbRhJYjESCGc88DcPZczCcPQ/juXPQzSgOdrMmJI51wVpXBqkqEhHZs6BKnwLO5YAqdfCZGsNRY6xHj8MKADDbe3Cy4QK0Kg3iI2JHXXcwOJ0ubP/woqBMLpciM6d3nXeURonJOQOv+yaEEEIImYhE7TB7j2qmpKT4LB8N7zrFYLVa+cd9s2P35b3Nk/d5g+nu7uYf/+lPf0JtbS1yc3Pxwx/+EHPnzoXL5cKBAwfw1FNPobGxEZ999hn++te/4kc/+pHPn+XdBl+838Nw2zhWKioqkJ2dDY2md+2jzWbj12PrdDpkZGT0O6enx51sqLhY2Ilsa2vj4yg9PV1w88DlcqGkxJ3VV6PRYPLkyYJzq6ur0dXVBQCYMmWKYPq7wWBATU0NAPcIfUJCguDcCxcugOM4qNXqflPi6+rq+BsaeXl5UKlU/HNmsxlXr14FACQkJAhG/5VxcehISYYjIR5RN62Eqs/a9sbGRrS2tgIAsrKyBMnbrFYrrly5AgCIjY3tN+ugvLwcFosFDMNg2rRpgudaW1vR2NgIAMjIyBDcBHI6nSgtdWfu1mq1yMzMFJxbVVUFk8m9B+/UqVMFMyE6OztRW1sLwP072jdRyPnz7hH1iIgIwbIBAKipqeFv7uTn5wti2GQyoaqqCgCg1+uh1+sF55aWlsLpdEKhUPB5EjwaGhrQUXkRsqYqxMTEQK5QQKJQQTP9ZlgsFn45RlxcXL/ZJVeuXIHVaoVEIkFRUZHguZaWFjQ2NuJUZwnkGiXf3oSIWETLNfx7jY6OxqRJkwTnVlZW8teEoqIiwZS3jo4O1NXVAXDPJImN7e14syyLixfdndnIyEhkZ2cL6r127RqMRiMAoLCwUHDDraurC9XV1QDcs2T65lG4ePEiWJbF1Us96GwTJvpKTo9Ee4c7U2p8fDwKpiVDInW3ubu7G5WVlfxzfa/Nly9fht1uh0wmw5QpUwTPNTc3o7nZPZI9efJkukag/zUCAC5dusQn3yksLBQ8R9cIt9FeIzyZgLOzswUJSUd7jfDcLM/MzIRWq+WfczgcuHTpEoDQu0aoVKp+S9fq6+v5ZWe5ublQq3tzONA1ohddI9zoGuEWTtcITwxOBKJ2mJcvXw6GYcAwDP9L410+Gn3rFIPT2btNylCdUe/nvc8bjOeiDQC1tbUoLCzEm2++KbhwrV27FrNmzcIdd9yBjo4O/Otf/8LGjRv5X76xbuNYcblcfEI1D47j4HA4+Of7cjqd/PN9sSzLP9e3XpfLxT/n631719t3Lb13m/rWC7gvXhzH+VxjPpJ6OY6Dq7sHdrt9wH8j7/c6WL2+znc4HHA4HD5/30ZT70j/bTxtGqhe73+7vm3yrtdXvDgcDjidTp9rrZxOJ9BWDZfLBU+tMm0cZNoEOCyWIet1OByQSCRwuVyCP+pXOq5CaZciRZEIm8IFG9z1FCTkBO0zHCwOh/MZdpscKDndLijXRKugi1fC0uPOAJ6RFSOYmj3c32VfuSu8/80DdY3wvFdPHYPVO1bXCKfTyb8nqVQ6rHqH817pGjGya8Rg9Q4Vh97XiMHqHSy+xfgMPW3zfm4srhEsy/pMODqaz5CuEeLUK/Y1wvPZ0zViYlwj+rZpOPWKeY3w1Y5QJfqU7IGSe43HpF/ed/IcDsegHVK73c4/Hqrj6tH3Pf/2t7/1udVTcnIy/ud//ge/+tWv4HQ68dFHH+G73/2uzzYOxruN3neHgkEqlfa7UDAMw7fL1y+WTCYbsN0SiYR/rm+9nrtxnjoGq7fvHwDvNvm6sMnlcnAc57NdI6nXYTSiaftOuEwmICoSTFwcuGnTBOd7v9fB6vX1XuVyOZxOp88/dKOpd6T/Np42DVSvVCodsE3e9fqKF7lcDoZhfNfLOiCVMGCkUnhqVaUX8jf0hqrXarWCZVmUlJTwoxRXO2rw7LnXkaCMwdL4uVidfj3sMidqjY1IikqA0+kMymc4WBwO5zO8fLYDLqfwWlUwLQlOpxUSqQQRUTKkZgh3BRjO7zLLskP+mwfqGuF5r546Bqt3rK4RlZWVfIwUFxcPq17v/w/0XukaMcJrxCD1Duca4XK5fL6X4ca3GJ9hSUkJHA6H4LyxuEawLOuzXaP5DOkaIU693v/3NtLfZU9MiV1v3/c6WL10jQi97xEDXSMmUvI4hhOxJ3vffffxj9944w2f5aPhXacYHnnkEWzfvh2Ae4sp72k/fX322Wd4+OGHAQA//elP8dWvfnXI+l9//XX84Q9/AOCedrFz584BX9vR0YGFCxcCAJYsWYJ//OMfAID//Oc//HZTL7zwwqCZr41GI+bNmwcAWLFiBV544YUh2ygWs9nMT5MC3NNiArUP9Pnz5/lpSX2nYI03pvIKdJ48xR/LImlLKbFxHAfO5QAjlcHR3gBrTSk4loV29uphz3TxFVN/PPAiTjX07uc8NTEPv7j+kVHPngmmq1da8ebLxwRlsxdOwspbC1F2sQlGgxVzFk2CSh3cG3ATQShdp0hooJgiYqOYImIKZt9AbKKOMA/UoRW7oysW73UDBoNh0A6zdxIt73UBg/EOir7rYfqKjY2FTqeDwWBAS0uLzzZ61hcMxPv54bZxItBoNHA6nQNuzTWe2L9YD+OhTIgf4JVkpCxXz6J1y/PQzl0L7ezV0MxcCc5h86tj2zemrnZcE3SWAWB60pSQ7iy7nGy/RF/qCDluuDkfCqUMRbNSYelxUGdZJKF0nSKhgWKKiI1iihDfwvo3wjshQWNjI9LT0wd8rXfG6+EmHxtqG6i+PFO9vef8923jYLyfFztB2ng21M2I8aJu00ewd3ZAqlSB+WJaiyKeOsxiMxz5EK5uAzr3vgXD4U2IXXY3ouf5N4rfN6bsLgfSo1P4vZc1yijclLNMtDYHg8PhQoJeg/aW3uSEy9cUICLSfR1iGIZ/TEYvVK5TJHRQTBGxUUwR4ltYd5i9s8SVl5fz05l98WTDYximX5bDgXhni/PeT9kXl8vFj2J7Z/HLysoCwzDgOI5vw0C8933um6mOBJetrR3XXnfPtJAoFIicnAn9TaugSkwY4kziD2v9FVivlfDHnN0CRqEa5IzhKUjIwVOrf4ZjdWfw34uf4LrMBVDJR19vMMnkEtx8exGKZqRgz44yKJQyzJyfMfSJhBBCCCFhJCgd5oGmexw/fhybN29GU1MT9Ho9Vq9ejWXLxm4UZ+bMmZDL5XA4HDh27Bjuuecen69zuVw4ceIEAKCgoEAwTXowMTExyM3NRXl5OcrLy9HU1ISkpCSfry0pKeGTdnl3diMiIlBUVIQLFy7g5MmTYFl2wEX0R48eBeBeZD9nzpxhtZEEhuHcOf4xa7ejp64eicuu40eaiTgMRz4SHEujYqEpGv01pNveg2uGesxOnob5aTNDPvMjx3GwWdyZMtMyY7Duy9OhjVFDIgndKeaEEEIIIWMhoOnLjhw5gq997Ws+O8HPP/88vvrVr2LTpk04fPgwPvzwQzz00EN46KGHYLPZxqQ9Wq0WCxYsAADs3r17wP2iP/nkE36fvJtvvtmvn7F27VoA7i+or7766oCve/PNN/nHfX/GqlWrALj3EPQkKeurrq4Oe/bsAQAsWrQI0dHRPl9HgsNw9pzgWFc8jTrLIrM2VKCn7LigLHr+LWBko1+DW9Z2FRdbyrD1yue40HwZdnbwjPXjncPuAsu68z3WVneg8kor6q91wuUM7RsBhBBCCCFiC1iH+f3338fXv/51HD16FB0dHYIkWmfOnMHzzz/vzm7b5799+/bh8ccfH7N2fe1rXwPg3rLpscceg9lsFjxfUVGB3//+9wDcm31v2LDBr/rvvvtuPgHX22+/jc2bN/d7zUcffcSXz5o1C9OnTxc8f+edd/IJyX7729+isrJS8LzZbMZjjz3GbwXwwAMP+NXGUFddXY2Kigp+Y/XxKCo7G1G5ucAXswN0M6cPcQbxV+fe/wDoTfovUUVCO3PliOryjimr04ZqQy0AwMm6UNZ2FVfarorR5KBgWQ42m3t0ubXZhJZGEwCgpcmEM8drYOmxD3Y6GaFQuE6R0EIxRcRGMUWIbwGZkt3a2sp3OgH33sIdHR3Q6XQAgNdeew2Ae31wXl4eHnroIXR0dOCFF15AR0cHduzYgXvvvRezZ88WvW1LlizB6tWrsXPnTpw5cwa33XYbvvKVryA5ORmlpaV4++230d3tTorz4x//uF/26WPHjuH+++8HAMybN69fRvCYmBj85je/wfe//324XC78+Mc/xvbt27F8+XIoFArs2bMHO3bsAAAolUr89re/7dfG2NhYPPLII/jtb3+Lzs5ObNiwARs3bkRhYSEaGxvx9ttvo66uDoB7RHvJkiWif07jWVdXF78NwniVun4dUtevg8NkgvH8RWgLC4LdpAnF3l4PS7Uwi3VE7lxIlBEjqs87psztNjhZF/+chGGQF5c1qvYGC8dysFkdAAeYTTZUV7RDIu2dht3TbYfD7oJ6ZB8bGUQoXKdIaKGYImKjmCLEt4B0mN9//31YrVYwDIN169bhN7/5DVQqd8Kc7u5u7N27F4B7Q+xXX30ViYmJANxTi9evXw+73Y6tW7eOSYcZAP74xz+iu7sbBw8eRF1dHZ566inB8wzD4OGHH8bdd989ovpXrlyJp59+Gk8++STMZjP27NnDT5/20Ol0eOmll5CTk+OzjnvvvRetra14+eWX0d3d7XN697Jly/h9n8n4JNdoEL94YbCbMeF07n0b4LymE0ukiFly56jqLDFVoCA6C3naSTDbu1FrbAAHICM6FREK9egaHASmLiv+9fxhzF2cidwpiSgvbe63Zjm3UA+tLvTeGyGEEELIWAlIh/nIkSMA3Fsd/e///i+kXms3Dx8+DLvdDoZhsGDBAr6zDLjT219//fXYuXMnjh8/3q9esajVavz973/Hli1b8NFHH+HSpUswmUzQ6XSYPXs27r///lF31m+++WbMnj0bb731Fnbv3o36+nowDIP09HSsWLECGzduHHLv5EcffRTLli3DW2+9hZMnT6K9vR1qtRqFhYX40pe+hHXr1oX0vrAjNWXKFHAcN67fe09NLZxmM5QJ8VDExtL6ZRE5zZ3oLj8hKFNnFkMemzziOhVJEdh6aS/2dBzHLYobcXPeDShKzMeV9qvIjp002iYHxa6tl9DZ3oNPPy7FsQNVyMyJQ3RMb+c4JV2H5DTKfTBWQuE6RUILxRQRG8UUIb4FpMNcVVUFhmFwww03CDrLAHDgwAH+8dKlS/udm5ubi507d6K1tXVM2+gZ/V63bp1f582fPx9lZWXDem1iYiIeffRRPProoyNpIgD3GudZs2aN+PyJyFfG9fGmu6oali+SyjESCaKLp9G0bJF07n8XcDm9ShjELBvZbBCPDy/vBAB0O3rw7sUtOHDtOP7v5l9gVsq0UdUbLNeutuPCqd6t7YydFjTVG/kOc7ROjZyCxIFOJyIIhesUCS0UU0RsFFOE+BaQpF9GoxEABKPHHgcPHuQfL1zYf6qq5y5XT0/PGLWOkLHFcRxsbW29xywLqZqmvYrBZbPAfPGAoEyZlgdViu+lDcNR0V6NM40XBWXLsxZDwgR0UwHRsC4W2zcJ349UJsHk3HgAgFIpw9QZKbSlFCGEEEKIDwH5BqhQKAAAFotFUH716lU0NDSAYRjExsYK9h/28Gz1FBUVNfYNJURkzh4LnF1dYO3CzMPKhPggtWhiMRz6AJzDKiiLWeJfJvu+IuQqzE+byR9rlVFYlXPdqOoMppOHr/GZsD0ys+OgUMogkTCYOiMFCiWNKhBCCCGE+BKQb0np6ekoKytDaWmpoNyT7AuAz8zONpsN+/fvB8MwyMzMHONWklBlMBj4NTeezOvjxYXHfwpndw8UMTqo9Hoo9YmQR2shi4wMdtNCHutywHT2M0GZPCEDEdkzBzhjeFK0SfjG1LuwMn0JPqncjaLkAqhkylHVGSzdJhv27BAuGYmMUiAl3b1WmZJ8Bc54vk6R0EQxRcRGMUWIbwHpMM+fPx+XL1/GwYMHsX//flx33XVoa2vD66+/zr9m5Urhfqksy+IPf/gDWltbwTAM5s+fH4imkhBUU1PDb4Mwni7w9o5O9FyrcT9ua4O5vAKJK5YjKjs7yC2bGExndoG1CPdN1y26fdT1chyHA5eOIloShbVx12FafmiuWwaAzz+5DJvVKSjLKUwEI2EoyVeAjdfrFAldFFNEbBRThPgWkA7zhg0b8MYbb4BlWXz7299GXl4e6uvrYTKZwDAMkpKScP311/Ovf+WVV7Bt2zY+mZZcLsedd45uixhCAs1w9pzgmJHLoYiNhTI+LkgtmlgYmQKRRdfBVnsZTmMLZNGJiJwy+j3I23o6UN1TD9blQoI9DimWNMRHDJ7Bfjyqre7E2RO1grLEZA2iY9SU5IsQQgghZJgC0mHOycnBww8/jGeffRYulwuXL18G4B7JkUql+NWvfiXIzPfOO++gsbERHMcBAH7yk58gPT09EE0lISg5ORksy0IiGV9Jmfp2mFX6RDASCZQJCUFq0cTh6jbC2dUGeUwS5DFJcJo6oEovFCUGLrdWQhMVBY7jYGecOFp7BmvybhhXSb9qrnYgI2vgTjzLcti+6YKgTCplEK+PglIpw5TplOQr0MbrdYqELoopIjaKKUJ8C1iml+985ztITU3Fiy++iGvXrgEACgsL8cMf/hCLFy8WvDYrKwsNDQ2Ij4/HT3/6U6xZsyZQzSQhKGEcdkA5lu3fYU7SAwDkMbogtGhisTaUC44VscnQFPXfls5fBmsXGs0tiPBaY54fnzWuOst7d5Zh/6fluHFtARYv950N/PTRGjTVdwnKomPUKD3bCI1GBaWKknwF2ni8TpHQRjFFxEYxRYhvAf3WdNttt+G2226D0WiEVCodMPP1xo0bcffdd2PZsmWQy+WBbCIhoui5VgPHF9upeaj0SdBOncJvlUZGhnXaYW+5JihTJmeDkUgHOGNomy99irmpxTDaTJB51SOXyDE5JmPE9Yqt5moH9n/qvlnw+SfumTp9O809Zjt2b7ssKIuIVKCjzb0137EDVSgsTh50hJoQQgghhLgFZZghOnrwRDPLly8PUEsIGRudZ84KjqWRkZBpoqArDt0EUuOFq6sdYFn+mGEYKJNHnkjtSttVvHX+Q/znwkdYnDEXd065GSnaJACA3eUQdKCDLSMrFjeuLeA7y746zbu3X4bV4hCc19Pdu63ZjWsLqLNMCCGEEDJMQZ9n6HA40NbWhvb2dtj77FVLSKjyNR07dv7cILVm4uA4DvLYZETPvwXqzCJIlGrI41IhUUaMuM73S7bydR+8dhy/3vtXuFgXAEAhHX8zXBYvz8GNawv4488/uYxDuysAAPU1Bpw+VjPguYNN4yaEEEIIIf0FZYT5yJEj+O9//4uTJ0+ipaVF8FxCQgJmzJiBtWvXYvXq1cFoHgkxFy5c4LdBmDYt+CO4LpsNXSXCPcdVyclQp6QEqUUTR9epHegpOwbt3LWIyJ0NVXohOMfIb7SVtVXiXNMlQdmt+StRWlI6rmKqL0+nt+9Ic2qGDvokDZobTf3Ooc5ycI236xQJfRRTRGwUU4T4FtAOc0dHB37wgx/g6NGjfJknE7ZHa2srPvvsM3z22WeYP38+/vSnPyExkbY/IQPjOI7/bzwwXboMzum19y3DQFuYD6lKFbxGTQAcx6LrxCdwdDTCUn0BspgkxK/8OiJyZ4+4zhSNHrcX3oTt5XtgddoQrdJiZfZSlJVeHlcx5YuvTnNmThwWXJeFi2fqUXmljX8tdZaDb7xdp0joo5giYqOYIsS3gHWY29vbcdddd6GhoUHwiyiTyaDVauFyuWA2m+Fyufjnjh49irvuugubNm1CbCytuSO+qdVqyGSycZMgru/6ZUVsLKKysoLTmAnEUnEGjo5G/tjZ2QRGrhhVnRplFDZMXYvlWYvw+dVDSIiIg1KmGHcxNZC+nebqinbUVXfC6exd402d5fEhVGKKhA6KKSI2iilCfAtYh/mxxx5DfX09ACAqKgr33Xcfbr75ZuTm5vJZg51OJ8rLy7Fjxw689dZbMJvNaGpqwk9+8hO8+uqrgWoqCTG5ubnBboJA56nTgmNVkh7qVJqOPVrGE58IjhWJk6CaVDTqei+0XEZ1Zx3mp81E1hcZscdbTA1m8fIcGDp6cOqIe+0ydZbHp1CKKRIaKKaI2CimCPEtIEm/Dhw4gGPHjoFhGGRkZOCjjz7C97//feTl5Qm22JHJZCgsLMSjjz6KzZs3Y9KkSQCAgwcP4tChQ4FoKiGjYu/shKW2TlAWOTkTMq02SC2aGGzN1bBUCROpaeeuHfUWXW09Hahor4aDdeJUwwXsrToCs617VHUGQ3pmLGRy4eVcHSGnzjIhhBBCyCgFpMO8das7C61UKsULL7yAtLS0Ic9JTU3F888/D5nMPQj+8ccfj2kbCRGD4dx5wTEjk0E3YzrtvTxKnQffFxxLIrSIKlo6qjpdrAsn68/De6VWh8UwqjqDpeRcA5wOVlBm6XHw2bMJIYQQQsjIBKTDfPr0aTAMg6VLl/o13SM3NxdLly4Fx3E4ffr00CcQEmSdJ08JjlX6RERkpAepNRODq8eEnisnBWURk6dDIhvd+mWWYxEXESMom5qYjyhl5KjqDSSnw4VX/3IA5aW9uw14jzR7bzlFCCGEEEL8F5A1zG1t7mytU6dO9fvcqVOnYs+ePWhubha7WWSCqKurg9PphEwmG9bshbHCcRwMZ4UjzOrUFCjj44PUoonBcHQzwAqzjmtmrhxxff86/R6mJRViVnIR5qZOR0Z0Ck41XIBcIkde/GQA4yemhrLprTNorDPyx8lpWhQWp4DjWOzZfgVAb0Iwmp4dXKESUyR0UEwRsVFMEeJbUPZhHgmpVBrsJpBxqqOjg983MJgX+J5rNXCahPvfRk+fDoZid8Q4lxOms7sEZQr9ZKgyCkdU3+XWCmwr34Nt5XuQHTMJG4rWYmZyEVZlXwebyw4J4x6dHS8xNZiDn1fg8oUmQZmlx4GUdB2y8uIhkUj67dNMnebgCYWYIqGFYoqIjWKKEN8CMiU7ISEBAFBSUuL3uZ5zPHUQMl71zY4tjYiAtsj/WRWkl7nkAFiL8CaEZuZKMMzILl3vl/Rm2q7svIaXT7wFB+uETCpDpCJiVG0NpEO7K7B72+V+5RlZcUibpAPg7hzfuLaAf46mZxNCCCGE+C8gI8wzZsxATU0NDhw4gKtXryJrmHvSVlZW4sCBA2AYBjNnzhzjVpJQlZeXB47jgp5Yq+OEcJ2tKjkJESnJQWrNxGA4ullwLNXGQVN03YjqutJ2FReahZ3M9YWroZD2329yvMSUL4d2V/Ajxt6iNEoUFidBoey9rPfdp5lGmoNnPMcUCU0UU0RsFFOE+BaQEeb169cDAFwuFx5++OFhrUdubm7Gd7/7XTid7rWLa9asGcsmkhCmUqmgVquhUqmC1gbWboe5XDh6p8nPh0QxusRU4cxaXwZHa62gLKpwMSSKkf07Z8Vk4Dvz7kdSlHu2SowqGjdmL/H52vEQU77UXO3w2VkGgIzJsciYHNuv3NdIc83VjjFrI/FtvMYUCV0UU0RsFFOE+BaQDvOiRYswb948cByHqqoqrFu3Di+88ALKy8vBcb2bunAch/Lycjz//PO49dZbce3aNTAMg1mzZmHZsmWBaCohI2IsvQTO6RSUxc6bE6TWTAydBz8QHDMKNbSzbxpxfbVdjXCxLvz6hsfw3XlfxX0z7vA5ujyeZWTF4rpV/XcaUEXIUVicBHWE7xs03p3m61blIiOrf8eaEEIIIYT0F7CkX0899RS+8pWvoKGhAV1dXXj++ef5fZY1Gg0AwGQy8SPKno50UlIS/vKXvwSqmYSMiLHP/svKhHhocmna60g5TR2wVJ4RlKkzp0Eeox9RfVaHFeeaSmF3OfB51WEUJuSgMD40/31yC/XY/2m5oCw9MwYZWXGDnrd4eQ7SM2Ops0wIIYQQ4oeAjDADgF6vx3vvvYe5c+eC4zj+P4fDgc7OTnR2dsLhcPDlADB37ly8++67SExMDFQzSQgym80wmUwwm81Ba4PhzDnBccL1yyCLigpSa0If57RDNWkqGIXaXSCRQjt37YjrO91YArvLAcC9/3JJyxW09rQP+PrxEFMD6Zu4S6GQIr8oCZrooafQUWc5eMZzTJHQRDFFxEYxRYhvAd1WKj4+Hm+88QYOHTqErVu34ujRo2hsbBRMy05JScHs2bNx++23Y9GiRYFsHglRV69e5bdBKC4uDvjPtxuM6K6qEpTpZk4PeDsmEkd7A1TphVCm5sPRVgfO5YB6hFtJ2Z12GKxGQVlGdAr0UQNn3g92TA2krcWMyxeFW0mlTtJhcs7go8sk+MZrTJHQRTFFxEYxRYhvQdmHefHixVi8eDEAdyIwo9EIjuOg1Wohl4fWmkJC+k7HlqhU0OTlBak1oY9zOmBrrgYAMBIJFIkZUKUXgJGMbD9rhUyBVTnLUNpyBVfar0IukWNGcmhu93VkTyXQe38RSpUMC6/Phi42dLbEIoQQQggJJUHpMHuTSqWIjaVpgmTkEhISwLIsJJKArTAQYB0OKOLjYW9rAwBET5sKCd34GTFbyzVwX0yfBgAGDJTJI1tv/NfDf0dW7CSsyrkOxUmFSI9OgdVpg0qmHPS8YMeUL11GC86dqhOUzVmciZwCWrISCsZjTJHQRjFFxEYxRYhvY95hbmtrQ1NTE2QyGdLS0hBF6zqJyJKTg7vXsX7FciTeeAMs9Q0wnjsHJa25HzGO42BrECa0ksclQ6qK9Luu0pZyHK49hcO1p7Dl8mdYV7AKq3OXIUYdPeS5wY4pX47trwLr6h1elsokmL90chBbRPwxHmOKhDaKKSI2iilCfBuTDjPHcfjPf/6Dd955BxUVvQlqJBIJZsyYgW9961u0TRSZEFw2GzpPnIQqJQXqlGQkr6X9wkcrMncOrA0VcLTVguM4KFP6b6M0HB9e2sE/NtpM+OTK51idG5rXHUuPHaeOXBOUzZibjijN4CPlhBBCCCFkdETvMHd3d+Ob3/wmzpxxbwnjndDL5XLh9OnTeOihh3DHHXfgd7/7HRiGEbsJhASMtbERPbV16KmtAxgGKn0iEq5fRnE9Ao7OJhhPfILoOWsQVbgQrG0G7G21kOn830qqvqsJ55pKBWXrC1eH3L7LHizLYfqcNJw5VgunkwXDAAuvzwp2swghhBBCJjzRO8w//OEPcfr0aTAMI+gse3jKNm3ahNjYWPzgBz8QuwmEBIylvqH3gOPASKXUWR4h44lt6DqxDV0ntiMiZxaiF9wG9aSRJeeKVevw5LL/wSdXPseZxhJolVFYPjl0s+5LJAziEqPw5a/PwbXKDlh6HIiN93+aOiGEEEII8Y+oHeYzZ85gz549fGd53bp1uPfee5GVlQWpVIrLly/j3//+N7Zv3w6O4/Daa6/h3nvvhV7v/wgSIR6XLl3it0EoLBzZ1kMjwblcsDYKt/hRp6YG7OdPJKytB6Zzu7844tBTcQryuJQRd5jPN19Co6kFK7Ovw5rc5bC7HFDIFMM+P1gxNZDa6k70dNvR022HSi1H3lS6Zoaa8RZTJPRRTBGxUUwR4puoHeZPP/2Uf/z444/ja1/7muD5mTNnYubMmUhJScE//vEPuFwubN68Gd/61rfEbAYJMw6HAw6HY+gXisxlsUKm6U1ix7Ec1CmUMGMkTOd2g7NbegsYCbRzbh5RXU6XE/VdTXCyLlztrAEAzE6Z5lcdwYopX+w2J5rqu3qP7U7YrM4gtoiMxHiKKTIxUEwRsVFMEeKbqHnjPeuWc3Nz+3WWvX3/+99HdLQ7U+3Zs2fFbAIJQ3K5nP8vkBq2foLW/QfhMHYhMjMT+pU3QqpWB7QNEwHHumA8uV1QFpE3F/IRrF0GgAZTM5ysiz+WMAxSNf7VFayY8qW+xgCWZfljiYRB2iRd8BpERmQ8xRSZGCimiNgopgjxTdQR5rq6OjAMg0WLBl8rqFAosHDhQuzYsQPl5eWDvpaQoQRr2lDnyVMwl1eg62IJat56G2l33YlJ93wlKG0JZd3lJ+HsFE5tj563dsT1GaxdguPEyHio5Cq/6hgvU9GcThfqawyCMn2yFkoVfZkJNeMlpsjEQTFFxEYxRYhvonaYTSYTACAmJmbI12ZmZgIAurq6Bn8hIeOQ02yGuaJSUBY9rShIrQltxsMfCo5luiQoU/NHXF9xUiGyYyehxliPa4Z6ZESH5rryq1facOlCI5RKKWRyKV+eljn09ZUQQgghhIhD1A6z3W4HgGFN5YiKcq/97O7uFrMJhASE4fwFwCsLvEShgLZg5J28cGVrroatQTjLRJVRCInU/0vT0drTuNxWibV5y5EQGYfChFwUxOeI1dSA2/fpFdRWdUAqkyAlLRqpk3RISdchMor2XiaEEEIICRRRO8wcx4FhmGFtqyORuJdPu1yuIV5JyPgTM3MGCp98Aoaz52A4dx7KuDhIFMPPwkzcjEc+EhwzciW0s2/yux6O4/BB6XZcM9RhR/leLEyfhTum3Iz06BSRWhpYNVUdqK3qAAC4nCxqqzuhjlRg/lLae5kQQgghJJBE34eZkEBrbGwEy7KQSCRITg5MlmqpWg11agp004shUSjAfjG7ggyfq9sI86XDgjJlaj6USZP9rutC82VcM9QBAFiOxaGak1iYPnvEHeZgxJS3Q7srBMcKpQx5hYmIjqGkcqEq2DFFJh6KKSI2iilCfKMOMwl5ra2t/L6BgbrAO81mtO47ADAMlHGxUOr10E4phERGv1LD1XVqJ+CVzRqMBNqZK8FIpAOfNICtZbsEx8lRiZiTWjzitgUjpjxaGrtQXtoiKEvL1GFSTlxA20HEFcyYIhMTxRQRG8UUIb6Juq0UIeHC2tTsfsBxsLW1w1xRCUbqf0cvXHEuB4wntwnKFAkZiMiaPqL6Hpz9FdycewOUUve0+FvyV0DChObl7dAeYTI5mVyCnIIExMZHBqlFhBBCCCHhi4bDSMjLysri188HirVJuA2SSq8P6M8PdeZLR8BaTIKyyKmLIVGNrFMol8pRkJCNJRlzUdp6Bcsy54+qfcGIKQAwdPSg5EyDoCwlXYfJOQkUXyEuWDFFJi6KKSI2iilCfBuTDrPRaERDQ8OQr/FobGwE55VxeCApKaGZwIeMLU/G9UDhWBbWZuGUWVWyPqBtCGUcx/VL9iXVxiNqyuIR13nNUIdaYyNqjY1QSOWo6LiGKYm5I64v0DHl8fknl8GyXtnXJQyycuORkKQJSnuIeIIVU2TiopgiYqOYIsS3Mekwv/zyy3j55ZeH9VqO47B8+fIhX8cwDEpLS0fbNEJGxdrUhM4z5+AwmSBV9m7vo9JTh3m4OKcdjEINMBKAYwEA6snTIYtOHFF9LMeixth7g87ucoD9ot5Q0mO2o+yicOZCUlo0svITIJHQ3X5CCCGEkGAYsynZQ40Ye28/NdhrGYYZ1ugzIYHQdugIrv37TQCAPEaHyMxJiJkzB7JIWl86bC4nIiZPhzI1F7aGSjg7m6CZvnzEU8BautthddoEZRm6VDFaGlDHD1XB6ezt6DMMMDknHsmp0UFsFSGEEEJIeBO9wzzczq3YryPhy2q18mtuVCrVmP4sw7nz/GNHpwHOuDiokmh02R+2xkpw4CBRqKHOLAKyZkCVnD3i+mJV0ZiVXIQaYz3aejoRq46GVjm6aWWBjCkAsNucOHGwWlCWnhmLuYsnQSoLzeRlRCjQMUUmPoopIjaKKUJ8E7XDfPnyZTGrI2RYrly5wm+DUFw88q2EhuKy2dBVeklQpkxKog6zHzjWBVvTVUGZKikTjEzuVz1O1oWXT7yJGyYvRGFCLnLiMpETlwmzvRs25+j3xA5UTHmcOV4LS49DULbmS0XQ6mjf5Yki0DFFJj6KKSI2iilCfKMs2YQMk+nSZXAOr04Nw0ClT4QqcWRrb8ORvbUWrEM4fVqZnON3PYdrTmJf9VHsqz6K7JhJuLVgBRamz0aUIhJRitCaHu9ysTi6T3gTIbcwEYnJ2iC1iBBCCCGEeFCHmYS82NhYOJ1OyGRjG87e07EBQBEbC3VyEiQKxZj+3ImEkcogjYiGq8edJV+u00Ma6d8aXY7jsOXyZ/xxZec1bC/fi0UZc0RrZ6BiCgBKzjTA2GkRlC1aPvIp6mR8CmRMkfBAMUXERjFFiG/0G0FCXlpaWkB+Tt8Os0qfCCVlxx4WjuNgLjmAyPz50M5eDaexFbbGCigSJ/ld14Xmy7hmrBeUrStYKVZTAQQupgCgp9uG1Awd6msM7p89KQYZk2MD9vNJYAQypkh4oJgiYqOYIsQ36jATMgyOri50X60SlCmTkqBOTgpSi0KLpeo8Wjc/g3Z1FLQzV0I7+2ZEFS4aUV158Vn4+qwvY2vZLrR0tyNZk4jZKdNEbnFgdBkssFqdyC5IQGZOHBpqjZi7OHPEGcMJIYQQQoi4qMNMyDAYz18AvDK2MzIZ1El6KGJpJHA4jMe3AgBYixmGwx+ip+IUUh/8vxF1DFUyJW7KvR5FifmoNtRBKVNAwoRmJuna6k7+sVQmQU5hIvKm0qwFQgghhJDxIjS/ZRISYIazwunYyoQEqJKTwEilQWpR6LC3N8BSeVpQpp1106hGUc32bhyuPYWW7ja4WBcaTM1gOXboE8cRS48dbc1mQVlqhg4SCY0uE0IIIYSMFzTCTEJeeXk5vw1Cbm6u6PVzHAfD2XOCMlVSIlS0fnlYuk5uExxLVJGImrZsVHXWGBoAuLeXqjE2oMncinX5KwGR+ppjHVMAUHetExx6Zy3IZFKkpPmXAI2EjkDEFAkvFFNEbBRThPhGHWYS8iwWCxwOB5xO55jUb21qgq21VVCm1NP+y8PhsnbDdG63oEwzcyUkCtWI6+Q4DjV9kn5lRKdAIhFvwsxYx5TD7kJTfZegLDktGjI5zViYqMY6pkj4oZgiYqOYIsQ3mpJNQh7DMPx/Y6HvdGyJSgVVsh4yLe2TOxTTuc/Bee+7zEignblqVHU6WSci5RGQeP17Z0SnjqrOvsY6pj7dUoqWJhO4L9bFMwyD1AzdmPwsMj6MdUyR8EMxRcRGMUWIbzTCTELetGljmyHZeK7PdGy9HuqkJPqDMgSOdcF4/BNBmTwuBazdMsAZA9tffQwOlwNLM+dDIZVjaeY8WJ021Bkb0dLdhriIGLGaDWBsY8rQ0YPTR66B44CIKAXSM2NQNDMVKrV8zH4mCb6xvk6R8EMxRcRGMUWIb9RhJmQQnMsFw/mLgjJVkp6mYw9Dz5WTcHW1CcpUGVOhSEj3qx6ny4n/nP8IHRYD3rnwMW7KvR6rc5YhShmJnLhM5MRlitjqsbdnRxmfcL3HbMeV0hZcvzovuI0ihBBCCCE+0ZRsQgZhrrwKV3e3oEypp4Rfw2E4/rHgWBoVg4j8eWAk/q3TPVx7Ch0WAwDAaDPh3Ytb0GhuEauZAdXTbUfpuUZB2aSsWOhTKNkXIYQQQsh4FJQRZo7jcOrUKZw6dQoNDQ0wGo1Yt24dli9fDgDYtGkTpk+fjuzs7GA0jxCe4Zxw/bJMq4U6JRlStTpILQoNtqYq2GovC8qUqflQp+b7VQ/Hcdhy+TNBWUF8NnLjJo+6jcFw4LNyuJzC7a+WrqBMpIQQQggh41XAO8wffvghXnjhBdTXC7PcTp8+nX/87LPPoqWlBTfddBN+8YtfQKfTBbiVJJS0traCZVlIJBIkJCSIWnf/7aT0UCUlifozJiLjsS2CY0auQlTRUkiU/t9ouGf6HdhS9ikuNJcBANYVrBSljYMZi5hyOFw4c7xWUJacFo3MnDhR6ifj21hep0h4opgiYqOYIsS3gHWYOY7DE088gc2bN/PHHt7JkxwOB1paWsBxHLZv344LFy7gzTffhJ6mwJIBNDY28vsGinmBd1mtMF0SjpKq9HqoEhNF+xkTkdNsgLn0oKBMmZIDdcYUv+tiGAYzkqdgRvIUHKk9hUutFZiVMvZJScYipo7tvwq7TbhVx8Lrsyl5XJgYq+sUCV8UU0RsFFOE+BawNcxPP/00PvroI76jvGTJEjz88MP9Xme327F06VL+dbW1tXj00UcD1UxCeF2ll8C5XL0FDANlYgJkUZHBa1QI6Dq9E2C9PzcJoqYugTRi5NtwdVlNqO9qQowqGhXt1WBZduiTxhGW5XDsQLWgLDYhElOmJwenQYQQQgghZFgCMsJ89epVvPbaa2AYBnq9Hs8++yyKi4sBAM8//7zgtZGRkXj55Zdx4sQJPProo2hra8OZM2ewa9curFixIhDNJSEmIyMDHMeJPlLXdzq2Ii4OErmc9l8egqVKuO5bkZiBiOxZI66P4zicbSoFy3FgOSfONpWi2lCLFdlLIWHG5p6f2DFVeq4B3SaboGzuokmQSGh0OVyM1XWKhC+KKSI2iilCfAtIh/mdd96By+WCRCLBc889N6x93ubOnYvnnnsOX/nKVwAAW7ZsoQ4z8Wms1rj3TfgVlTUZMbNm0h+SQXAch8gpiyGPTYat/goc7Q2IzJ8PmXbk63QbzS1oMrcKylI0+jHrLAPixhTHcTiy96qgLDpGjVkLMkT7GWT8o1wcRGwUU0RsFFOE+BaQKdlHjhwBwzBYuHChX5uiz5w5E4sXLwbHcbhw4cIYtpAQIbvBgJ7qa4Ky1DvWQ5NP++UOxtHRANZigiw6AZFTFkM7/xZETlkyqjpjVNHI1KXxx2qZCgXxOaNtasBUlbehsc4oKFt5ayHkiqBsUkAIIYQQQvwQkA5zU1MTAPDTsP0xdepUAEB7e7uobSJkMMZzwhs0UrUaUbmh00kLFmufraTkuiTIY/1bp9tjt+Dt85vR0WMAAKjlKsxLm4EbsxYjVq3DNH0BZNLQ6Wwe2l0pOI6Nj0DBNFq7TAghhBASCgLyrdNutwMAVCqV3+cqFAoAgEQSsPxkJMQ4nU5+zY1MJk5I912/rC2aColIdU9UTmMrnF1tgjJVeoHfU9h3XT2ADy/twMdln2FJxlzcmr8CGbpUxEXE4MasxWI2eUBixVRDrQFV5cLPZOH12bR2OQyNxXWKhDeKKSI2iilCfAvIb0NcXBwaGxtRXV3t97llZe69V2NjY0VuFZkoSktL+W0QRjKLoS+O4/qtX9bNmD7Aq4kHa7dAIleCdbiTW0mUEVAkpPtVh9PlxLYrewAALtaFfdVHYXXa8IPF3wKAgK0fFyumDu8Rji5HapSYPidtgFeTiUzs6xQhFFNEbBRThPgWkGHb4uJicByHPXv2oKenZ9jn1dbWYu/evWAYxq+1z4SMCssi/e4NiFu8CDKNBgCgm05/OAbjNLZCHp+O6Hm3ICJ7FqSqSKjS8sFIpH7Vc7j2FDosBkHZuoKVIrY0cDiOQ0SUAlEaJV82f+lkyOT+fSaEEEIIISR4AjLCfPPNN2PHjh0wGo349a9/jT/+8Y9DnmMwGPA///M/cDgcYBgGq1atCkBLSSjSarVwOp2iTR9ipFLoV65AZGYmJt1/D5zGLqjTUkWpeyJi7RbUvfoYZDHJiJ63BlFTFkOZkg18sZe6P/Lis7Ayeyn2Vh+Fw+VAYUIOcuMmj0GrBydGTF272oGISAVmLkiHpduB2upOzFk0ScRWklAi9nWKEIopIjaKKUJ8C8hvxOrVq1FUVISLFy/i448/RmtrK775zW9iypQp/V7b0tKCzz77DK+88gpaWlrAMAyys7Nx8803B6KpJARlZmaKXqerpwedp067DxgGpvIK6FfeCKlSOfiJYch0fh9YWw/sTZVo/fg5dOx+C+kPPQuJUu13XUlRCbgp93qkapPQ1tOJYn3hGLR4aKONKZeTRXWFe+0ywzCIiFJg9sJJUKroS0i4GovrFAlvFFNEbBRThPgWsG9vzzzzDL785S+jra0NR44cwZEjRwTPv/TSS3jxxRdhNpv5Mo7jEBUVhb/+9a+09y0JKHtnZ+8Bx4G1WiH5IgEd6cVxLLpOfCIoUyZnjaizDABO1oVzTZfQ47BALVOC5VywOe1QykLrs2/os40UAKRnxtB1jBBCCCEkxAQs9XRqairefvttFBUVgeM4/j/PF0iTyQSTySR4LiMjA2+88QZycmg7HxJY9o5OwbEiljo7vlgqz8LR0SAoi567dsT1XWmrRI/DAgDgAFR0XENrT+htKXe1rLVfWUKSJggtIYQQQgghoxHQ+YHp6el47733sGPHDnzwwQc4ffo0LBaLsEEyGaZOnYr169fjjjvugJKmwJIgkCqVkOt0cBiNAMdBHhMT7CaNS4bDmwTH8oQMqDJHlqCP5VjUGIWd78TIOKRqkkbcvmDh0H/9Nm0lRQghhBASegK+oE4ikWDNmjVYs2YNXC4XGhoaYDAY4HK5oNVqkZKSMqL9mkn4qqqq4pNUTJ48ugRR5qtViEhPgyY/D5r8PHAuF+wGIyQKuUitnThsLddgrb0kKIueu3bEI/ESRoIV2UtR1laJsrZKuFgXZiRNCcrI/khjinWx2LvzCliWFWTDjo2LHItmkhAi5nWKEIBiioiPYooQ34KagUYqlSI9PR3p6f7t1UqIN5PJxO8bOBrOHgvO//AnYORyRBdNhW56MRJXLIcyjvYA98Ww/z3BMSNTQJ090+969lUdRbImEXnxWZBJpJiamIfJunQ0d7dBp44Wq7l+GWlMXbrQhIOfVwAA4vVRSMuMgTZahcl58WPRTBJCxLpOEeJBMUXERjFFiG+UspWQL3SVlIBzucC5XOg8eQqGs+egX7Ui2M0al5w9RnSXnxCUqTOLIdfG+VVPt70H/zj9DqxOG/LjsnBrwUrMSS1GhEKNyYrQupHGcRyO7K3kj9uazbBaHFiyPEewFzMhhBBCCAkdAekwNzQ0DP2iYUhJSRGlHjKxTJ06VZR6DOfOC441BfmQ0vIAn4yHPgRYV28BwyB60e1+1/P51YOwOm0AgLL2q7hy+BU8t+Y3SIwK7ojsSGLqWmU7GmqF2bHTM2OQnBZNCeOIaNcpQjwopojYKKYI8S0gHebly5eP+gsjwzAoLS0VqUVkIpFKpUO/aBj6ZsbWTS8Wpd6JhnU5YTq/R1CmSMqCKi3fr3qcLie2XRHWMz9tZtA7y8DIYurI3quCY5VahgS9BvoUrVjNIiFMrOsUIR4UU0RsFFOE+BawKdkc1z9rLCHjScGPfwCH8UEYzl+E4ew5xMyZFewmjUumM5+BtZoFZdHzbvX7phgLDtdPXoh9VUfRbnHfrLg1PzSnwLc2mVB+qUVQljopBvH6KCiUtPKFEBKanE4nv+2n0+mEy+Ua+iRCSMiSSqWQyWTQaDTQaDSQyeg7DBCgDvPcuXOH9TqbzYbW1lY0NjYCcI8qr1ixAnPmzBnL5hHCkyiVcFl6ELdgHsBysLV30B7MfRhPfCI4lkUnIGrqYr/rsTvtkElkWJu/HCzLotHcity40MzK2Xd0WSaXIClFi6TU4CQtI4SQ0WBZFo2Njejq6gp2UwghAeR0OmGz2dDd3Y2mpiZotVokJydDIpEEu2lBFZAO8xtvvOHX69va2vDyyy/jrbfewr59+3D77bdj+fLlY9Q6Euo6OzvBsiwkEgliRrlfsr2zE/b2DtjbOwAAjFSKtDvvAKjDDADorjwDZ0ejoEwzYwUYxv8L6bnmUrAcix6HFQAwNTEXHMeNi5sT/sSUqcuK86frBGUp6TqoIxSIjaftpIibmNcpQoCxiymWZVFXV4fu7m5BOcMwNGV3gvOeDToe/haTwHO5XII46OrqgsvlQlpaWlh3msflOHt8fDx+9rOfITExEU8//TSeeOIJbNmyBYmJicFuGhmHamtr+W0QRt1h7rOOWRGjAxPGF4i+jEc3C44ZZQSi593idz1dVhNSNElo6+6EzWUHAEQposbNH2h/Yur4gSqwLq8vGRIGKenR0KdoIZGMj/dDgk/M6xQhwNjFVGNjI99Z9nTGtVotlErluLlGk7HR09PD37iOiIgIdnNIEHAcB5vNhq6uLv6mXHd3NxobG5Gamhrs5gXNuO4JPPjgg0hLS0NXVxfeeuutYDeHhAFHp7DDLKcvtjyOY6HKmAp11gxIItyJrKIKFkKi8D+TuFalweSYdH7gXiVTYEpirpjNDQib1YmTh68JyopnpSJ/ahKS02g6NiEktDidTn4atkQiQXp6OhITE6FSqaizTEgYYBgGKpUKiYmJSE9P50eVu7q64HQ6g9y64BmXI8weDMPg+uuvx5tvvondu3fj0UcfDXaTyDiUkpLCT0sbrX4jzLGxo65zonB2NgMcC2VqHhQpuXCZ2hG94DZR6i5KzIdCKhelLjEMN6bOHKuBzer1B4QBFt+Yg/jEqDFuIQk1Yl6nCAHGJqZMJhP/OCYmhkYZw4xcPn7+DpPgi4iIQExMDNrb2wG4rw/hOkNqXHeYASAuLg6AeHs5k4knPn502xBdfeXvgEQC7dQpsBsMkHj9wVDEhueFwRdbU29iK4ZhoErJhSLev+k5dpcDpS3lKNYXQCKRgIEEWTEZyIxJF7u5ozKcmHK5WBw7UCUoy5+ip84y8Wm01ylC+hqLmPLuMGu1tCVeuKEOM+lLq9VShxkh0GGuqakBQMkHyNhgHQ40f74HrNWKxi2fAAyDhGVLoUpKAiOVQq7RBLuJ4wJrt8DRXi8oUyRl+V3PifqzeObIPxEfEYsbJi/EdZkLoB8H+y6PROm5Rhg7LYKyhTdkB6k1hBAyep4plwzDQKlUBrk1hJBg8+Qu4DgurKdkj+u5YXV1ddi+fTsYhkFGRkawm0MmINOVK2Ct1t4CjoNcpwMAyHXRYCgjKADA0dkszJ4pkUKR6P/v5O6rhwAAbT0deL/kE7x84k3R2hhIHMfhyJ5KQVnqJB3SM8PzzishZGLw7LMslUppoIIQIsiOH877sI+7EWa73Y7Ozk4cOnQIzzzzDKxWKxiGoW2lyJgwnD0vOJbrdJCq3EmsFGE67cQXpT4TsqgY2JqrYG+uhjw2GRKZwq86msytuNBcJihbnuX//s3jgcPuQmKyBi1NJrCs+0bCouuz6QsmIYQQQsgEE5AOc2Fh4ajO12q1uO+++0RqDZlozp8/z2+tUVxc7Ne5xnPCDrMqSc8/pg6zm7nkIKy1l6CZcSMismZAnTkNnNPhdz2NXc1I1SahvqsJABCpiMC8tBkit1YcQ8WUQinD+o0zMSkrDmeO18BosEKukMLSY4c6wr8bCSQ8jOY6RYgvFFNEbLStFCG+BaTD7D2V018ajQbPP/88oqNpixYiLqe5G6byCkGZSt/bYaYtpdyMJ7bBVl+GrlM7oEjKQuyyryAiZ5bf9bg4Fxamz0a3vQfN5lYka/TjKjO2v1xOFmazDVn5CeA4DnXXOiFXSDEpKy7YTSOEEEIIISIJSIc5JSVl2K+VSqVQqVRITk7GggULcMcdd0D3xZpSQnyJiIiA0+mETOZfOBsvXgRYtrdAIoEiwZ2AipFIoNDRTRp7ay1s9b3TqO1NV8G5/B9ddrgcqDG6M91HKiKQFTsJ0/T5orVTbMOJqdZmE1wud/wwDAMGDJJSKGaIbyO9ThEyEIopIjaJRMKPMBNCegXkKrt79+5A/BgSpnJyckZ0Xt/1y8qEeEi++OIhj6aEXwBgOve54FgaqUNEzmy/66k1NsLJ9iaLYABk6sbXVlLehhNTTfVdguPYhEgoVfTFlfg20usUIQOhmCJiU32Rw4UQIhSQLNllZWWoqKgY+oWEBJCh7/plmo4twDrsMJ3fJyiLKr4ejNT/TmGEXIWEiFj+OFmjh1oeun+Ye7rtMHT2CMqSUmnPUkIIIeJ57rnnkJ+fj/z8fPzjH/8Y8vVvvfUW//r8/Hxs27ZtyHN+97vf8a//9NNPcezYMf74ueeeG1G7h1NHR0cH3njjjRHVT0igBaTD/MILL+DWW2/Frbfeil27dgXiRxIyKFtrK6wNDYIy74RfskhKdmG+sBesRTiKqp1x44jqStIk4oasRbgp93oUxGcjJy5z9A0MMKvFgZOHr8HhcKGp3ih4Ti6XIi4hKkgtI4QQMhHNnz+ff3zu3LkhX3/48GHB8ZEjR4Y859SpUwDc07G9f95Y+vjjj3HzzTfj008/DcjPI2S0AjJ/8Pz58+A4DhUVFYihkTsyDvQdXZYoFPz+ywAgUSoD3KLxp+u08A+ZPCEd8tjh5yMAAJZjYXc5oJK5P0+tMgrFSaPLmh8sp4/WYNfWS9i7owxJqVokpmigULgvofoULSQSWvNFCCGBZGuuhlKfGexmjJkZM2ZAqVTCZrPh7Nmzg77W5XLh2LFjANydX5ZlcejQoUHP6e7uRlmZO09JYWFhwBLs/vWvf4XBYAjIzyJEDAEZYe7s7OQfT506NRA/koSRmpoaVFVVoaamZtjnGM4K79Qq9YlgJL2/DpGZk0RrXyiydzTA3lwlKIvInet3PReby/D/bX4cr5z8Dyo7ro0qY34g9Y0pl5PFsQPuz6On246rV9pQebmVf31yKiX7IoMbyXWKkMGEe0w5zZ1ofOuXcJo7h35xiFIoFJgxYwYAoLm5GU1NTQO+9sKFCzCZTACAVatWAQDq6+tx7dq1Ac85e/YsXC53fpGFCxfCZrPB4fA/sWdf8+fPR1lZGcrKyvC9731v1PUREmwB6TBnZmbyjxsbGwPxI0kYMRgM6OjoGPbdSo5lYTx/QVDmvX4ZACTy0N3uSAzGox8LjhmpHNFzbva7nt1XD8HitGJX5QE88dn/w7NH/ylWE8dU35i6eLYBJqNV8JrUDB0AQButQqSGZiSQwfl7nSJkKOEeU8YjH4G1mGE8ujnYTRlT8+bN4x8PNsrsGU1WKpX4xje+wZf3nabt7fTp0/zjBQsWwOVy8R1oQkivgHSYv/Od7/Ap6v/0pz/RLyMJqu7qa3AYhWtzvdcvhzuOdaH7knDdkzK9EDJN7ABn+NZlM+N4vXAkPy8ua9TtCzSO43Bkb6WgTKtTQatTAwCSaHSZEEICymnu5JcNdZ3aOaFHmRcsWMA/HqzD7FmvPHPmTEybNg1xcXEABu8we9Yvy+VyzJkzR4TWEjIxBWQN8+rVq/HMM8/gF7/4Bfbu3Yvbb78dd911F2bMmIG0tDRotVpIJAHpu5MJKD8/3699A4191i/LY2Igi+pN2BTunefuS0fAWs2CMu2sVX7Xc6HpElxeW0nJJTIsnTRvkDPGD++YqixrRUujSfB8eqY7F4NEIkFikiYYTSQhxt/rFCFDCeeYMh75CJzTDgDgnHYYj25G3IqvBbdRY6S4uBgqlQpWq3XADnNPTw//3MKFC8EwDBYsWIBPPvkER48ehcvlgrTPVpkul4tPJDZjxgyo1WqwLAtlnxwuHMdh8+bN2LRpE8rKymC1WpGUlIQbbrgB999/P1JS+uc2OXbsGO6//34AwMMPP8xPy16+fDnq6+v51x0/fhz5+fn9Xudt586d+Pjjj3H+/Hl0dnYiKioKubm5WL16Ne666y4oFIphfIqEjE5AOszf/OY3AQDp6ekwGAwoLy/H73//e7/qYBgGpaWlY9E8EuL6XtyH0nf9sio5SXCs+OKubLgyntohOJZqYhGZ739HV6eOxi15N6Ld0onLbZUoTMhFlDJSrGaOKe+YOrL3quA5dYQcsQnu95Ggj4JMTvt1k6H5e50iZCjhGlPeo8seXad2InrBbZBFTbzEsgqFAjNnzsSRI0dQWloKh8MBeZ9lYydOnODXHi9atAiAu+P8ySefoKurCxcvXsT06dMF51y6dAk9Pe7tET2j2BKJRHADpqenB1//+tf7jVJXV1fjtddew4cffoiXXnoJs2bNEvdNw73k4Hvf+x6OHz8uKO/s7MTx48dx/Phx/Pvf/8ZLL72E7Oxs0X8+Id4C0mE+cOAA/wvo+X+oJP8hEwtrt6Or9JKgTNEnc3s4jzA7TR2w1ZUJyiLz54OR+NcpZDkWVZ21UMqVSJEnIVmjR1ZMhphNDYjGOiOqytsEZWmZMfx1jKZjE0JIYHmPLntM9FHmefPm4ciRI7DZbLh06RKKi4sFz3vWL2u1WhQVFQEQTuU+fPhwvw6zZzo24O5c+/L666/D5XIhISEBGzZsQFZWFhobG/Hee++htrYWBoMBP/rRj7Bt27Zh3cD5zW9+A6vVip///Ofo6OhAbm4uHnnkEQDA5MmT+ddZrVbcf//9fAbv3NxcrFu3DmlpaTAajdi9ezf279+Pa9eu4Z577sFHH32EpKQkXz+SEFEEpMPsa7oGIcHQdbkMrN3rDy3DQJmYwB9K5HIow3iE2XhsC8CxvQUSKaLn3uJ3PS3mNvQ4LPwxwzAhufdy37XLcoUU+mT3FGy1Wg5drDoYzSKEkLDka3TZYyKPMnvvj3z27Nl+HWbP+uX58+fzSxzT09ORlpaGuro6HD58GN/+9rcF53gSfkVERPSrz8PlcmHOnDn429/+Bo2md/nRxo0bsXHjRpSVlaGurg6HDh3C8uXLh3wfS5YsAQD84Q9/AADExMRgxYoV/V73l7/8he8sb9y4EU8++aRgSvlXvvIVfPzxx/jJT36Czs5OPPnkk/j73/8+5M8nZKQC0mHevXt3IH7MqHAch61bt+KDDz7gp6kkJCRg7ty5uOeeewa8mAxX33Ubgzl48CASEhL6lYtRx0RkMpnAsiwkEonggu5Lv+nYSXpIve6KKhMTwUjDd4qto6MRkEiBL9YeK5NzII/1/65tl80MCSMB+0XnW6fSIkYdOqOxJpMJho4elJxtEJTPWpCBxGQt2lu7kZQaHZZrB8nI+HOdImQ4wjGmfI0ue0zkUebi4mKo1WpYLBZ+3bFHa2srrly5AqD/SPHChQvx/vvv48yZM+jp6UFERAT/nKfDPGfOHH6Kd98s2XK5HE899VS/+IqKisLXvvY1PPHEEwCA0tLSYXWYh8NoNOLdd98FABQVFeEXv/iFz7+169atw5EjR7Bp0yYcOHAAZWVl/HpoQsQmaqatJ554Ak888QQOHjwoZrVjzmq14qGHHsIPf/hDHDlyBAaDAXa7HfX19fjoo49w991345VXXhlx/WazGQ0NDUO/cIzrmKiqqqpQUVGBqqqqIV/bN+GXIj5ecNx3PXM4cVnMUCRNhnb+rVBnz4I0KgaaGTeOqK68+Czcmr8CM5KmQKuMCrnp2FVVVdi7sxTeK0fkCimWrshF0cxULFyWhZQvtpUiZDj8uU4RMhzhFlODjS57TNSM2XK5nF8n3Dfxl/f64r4dZs96ZofDgRMnTvDltbW1aGlp6XdO332YZ86cOeAs0SlTpvCPW1tb/Xk7g9q3bx8sFvcMtTvuuGPQG9Nf+tKX+Md79+4VrQ2E9CXqCPOHH34IhmGQl5fHT7sIBT/72c/4X7Ts7GzcddddiI+PR0lJCd555x309PTg6aefhl6vx2233eZ3/WVlZfya7YceegjTpk0b9PXR0f1H4sSoI9w5ukwwVwoTOEVPnQKJUgnWZgMAqMO4w2xvdn/pksgUUKbkQJ1RiKii60Zcn1KmQF58FnLjJoNDaOUssNtY1FT2CMpmzktHRKQ7G6dCGZDJOYQQQr4w2Oiyx0QeZZ43bx4OHTqEuro6tLe399s2Kjk5GVlZwq0bFyxYAIZhwHEcjh8/jmXLlgEY3vplAMjJyRnwucjI3iSedvvg/y7+OH++d2CjtbUVu3btGvC13d3d/OOSkhLR2kBIX2H/re/QoUPYunUrAPeF5ZVXXuETF9xyyy248847sXHjRhgMBvzhD3/AjTfeiCivLYiGw7MOAwDWr18vSGwQyDomKr1e73PLhL6MFy7Ce8hQolAg7c47wMhksHd0wt7eLtheKpxwHAtbk3CUQpGYCYlMPsAZvlV31uHdix/jxqzFmJlcBKlECoZhwCC0pi63NQAuZ2+sMAww/7rQ20OajB/DvU4RMlzhFFPDGV32mKhrmb3XMZ85c4Zf++tZv+yr4xsbG4u8vDyUlZXh5MmTfLlnOrZOp0NBQQFfLpfLIZP1dg20Wu2A7fEe+RUzkW9zczP/+KWXXhr2ee3t7aK1gZC+wn7z43/+858AAJlMht/97nf9svxlZ2fj5z//OQB3ivv333/f75/h6ewqlUpMmjRpRO0Uo46JSq/XIyUlBXr94NmtDX3W/WinToFELgfDMFDGxUKTlzuWzRzXHB2NYO0WQZkiyf8O4u6rh3Cq4QL+dPBv+M6Wn2Fr2ediNTFgnE4XSs8Ip5cVFicjJi5igDMIGdpwr1OEDFc4xdRwRpc9PKPME820adP4NciedcwVFRV8B3OgkWJPeUlJCT/V2dNhnj9/vqDj27fD7P04UMxm84jO8x5tJkRsYd1hNhgM/FSWpUuXIj093efr1qxZw0992bFjh8/XDMbT2c3JyeGzFwajjnDXd/2ybsb0AV4ZfhiZHHJdIn8s08RCFqXzqw67044D147xx51WI7rtPYOcMT6ZjDZoolWCslnzQ2sNNiGETBT+jC57TMS1zDKZjF/H7Jm27BldBobuMDscDpw9exZdXV2oqKgY9JxgUql6//5u27YNZWVlw/rvo48+Cl6jyYQX1j2vkydPgmXdWXy996vrSyKRYO7cuQDcd/WMRuOwfwbHcSgvLwcA5OXljaidYtQR7qxNTbA2NQvKdNNHl/l8onB1GyFVa6ApvgHRc9dAnV4IVar/mSaP1p1Gt/dWUmBwQ9YiMZsaEDFxEXjwkSW45/+bj7iESMQlREITrQLrYoc+mRBCiKj8GV32mKijzJ5p2ZcuXQIAfpp1bm7ugDujzJkzhx8pvnjxIs6ePctPoR6PHeY4r609xUwmRshohHWH2dMJBYbuiHoSH3Acx6fvH476+np+eklurnvKr9lsxsmTJ7Fv3z5cunRJkMJ/rOoId8aLpYJjeXQ0IibRqCEAdB76L6498yBaP3kJjo5GqDKnQZHo/2eTGBmP6zMXIiM6FQBQnFSAxMjQ3NOaYRgolTJMnZmCwuIklJxrwJF9V1F3bWKNWBBCyHg2ktFlj4k4yuzpMBuNRtTW1vLJuwbr+EZFRfGJYsvLy/np3MnJycjMzBzbBo+A9zaux48fH/S1FRUV+N73voc//vGPlCWbjKmwTvrlvadxamrqoK9NSurNnlxfX8+POA/FO1mXRCLBww8/jN27dws6uDqdDvfeey+++c1vCqaiiFnHRFZaWgqHwwG5XC7Y5sBb4o03ICo3B8Zz52E4ew6K2BgwNLUdrNMO84X94OxWmM7ugunsLsSu+Cp089f5XVd9VxPiI2MRHxmLosQ8ZMeG7lr7C+cvouxCJziO4e/aOxwuaLTh9btFxDOc6xQh/giHmBrJ6LLHRMyYPXXqVERGRqK7uxuffvopPwLr2T5qIAsXLsSZM2dQXl4Og8EAwPfMSovFAtsXu4aMJc+6ac8sT2/Lli2DTCaD0+nEe++9hwceeGDAfcZfeeUVfPqp+4ZKOKzlJ8EzJh3mt99+G3v27BG1ToZh8Prrr4taZ0dHB/84JmbwbIo6nY5/7LnYDId3Z/f//b//5/M1BoMBzz//PPbv34+XX34ZsbGxotcxkTmdTjidzkH36mMYBpGTMhA5KQMJNyxD0/adaNm7D6qkJKiTkyDTagc9f6LqKTsG1ipMsBGZN8/veozWLrRbDPxxhCIipDvMzQ3dcNhdkEh7b6oUzUxFdIw6iK0ioWw41ylC/DHRY2o0o8seEy1jtkwmw+zZs7F//3785z//4cuGGsRZuHAhXnzxRVRWVqKpqQmA7w4zx3GiZrweiFrt/lva1dXV7zm9Xo9169Zh06ZNaG1txSOPPIJnn31WsI0VAPz3v//F5s3uaffR0dGCPZkJEduYdJhra2tRW1srWn0cx43JHwSr1co/7psduy+FQuHzvKF4d3blcjkeeOABrF+/Hunp6TAYDNi3bx+eeeYZtLa24vz583j00Ufx2muvCRJ7iVFHoFVUVCA7O1twV9Bms/HvRafTISMjo985PT3uJFHeU3IAoK2tDQ0NDQCA9PR0wQ0OuVwOh8MBp9OJqqqqfltuVVdX8xflKVOmwNrYBM7lgrWxCYaqanRZLJAvXoiUlJR+a4AuXLgAjuOgVqv56fAedXV1/E2XvLw8wci+2WzG1avuPZ8TEhKQnJwsOPfSpUv8yEBhYaHgucbGRv6ucVZWlmAbM6vVyi8JiI2NRVpamuDc8vJyWCwWMAzTb6/u1tZWNDY2AgAyMjKg0+lgOie8seWMn4x6oxWZfb5bVFVVwWQyAXDf4fbexqSzsxP7Lh9Bc08zNBoNIiIioJIpkaRxJxHzJCeJiIjot6djTU0NfwMqPz9f8HtoMplQVeXe6kqv1/e7e1xaWgqn0wmFQiHYFgMAGhoa0NbWBsCd6d77D63FYuGXY8TFxfWbXXLxwiW0N1sBBvz7TEjUID4xCi0tLfyXjczMTMGWGw6Hg19XFh0d3S+bfWVlJZ/Fs6ioSPD72dHRgbq6OgBAWlqa4IYXy7K4ePEiAPe+l9nZ2YJ6r127xudVKCwshFzeuxVYV1cXqqurAbhnySQmJgrOvXjxIliWhUql6rcspb6+nt+mIzc3l/+CA7izkVZWVgIA4uPjkZKSIjj38uXLsNvtkMlk/Ua+mpub+ayukydPDsg1wuVy8Xt0ajSaIa8R3plhDQYDampqALinMI70GiGTySCRSPi6Q+Ua4eF0OlFa6l7aotVq+03lHOoa4flOkJKSgvj4eMG5oXaNuHLlCqxWKyQSCYqKigTPBfIaoVAoIJFIIJVK+c9wtNeIviwWCziOg0Qi6Td7zW63w+l0AnAnavJur8vl4kcqZTKZ4DuUd70MwwiuLZ7PyeFwwHzyU0jU/bd67O3QMej71dC7s+f53mg+vwe6RXfw9QLu73Tev+ccx/EZpKVSab/vhDabjZ/Vp1arBd9JnU4nvw+xXC4XfL4A+GuWWJ/hvHnzsH//fj4epk6d2m+7U+96lUolZsyYAbVaLRhBnjFjBux2u+DfZqjv2t6fYd+lgN6foec13rw/Q71ej/Lycly5cgV/+ctfkJeXh4SEBBQVFUEul+OJJ57AiRMnUFtbi4MHD+Kmm27C+vXrkZ2dje7ubuzbtw/79u3j6/7JT34CqVQKlmUH/Ax9/dsMFod9P0PvaxrLsnxfwFd8W61WsCw7aHwPVa+vOPTUCwweh4PFt6849P638RWHLpcLdrvd54yAwb5HTKQ16GPSYQ7E3SkxeH4RAPQL9r68n/c+byieL4ZKpRL//Oc/MWfOHP65xMREbNiwAddddx3uuusuNDU14ejRo9i2bRtuueUWUesINJfL1e8Xi+O4AS+0gPtz9XWRBdwXEc9zfevNy8vjk1j4+rfxrpfjOFi/+DLjOWajtXA6nT4vBA6HAxzH+dxaoW+9A73XgeodznsdrF5f79VTr68/en3rdXQ2w1ItzBxuTSmGZIjP0Fe9qfIEqNRyOFQcLLAjU5cGCSPh2zRQe10u14Dv1bu9vuLFc5PE142hwer1FYfGTgsMHT3IyIpFQ40JLOv+AxofHw+GYTA5L75fvYPF91Bx2Ndg8e15r8OpdySfIcuyPvdx9fcz9NUmX38LhvsZinmNAEb+GQ7nd3k414i+Nx1C4RrhT71j9W8zXq4Rfet1OBxD1jvW1wjPTQCWZXHmzJlh1evvZ+gZcfT1u+xdPtDzgxnoeU+9kXNvQeySLwl+t1iW5b/4y2Syfh0Ki8XCfz59RySHatNQ78X7+b6/P2LUO9i53rz3Y/Z17OtchUKB2bNn4+DBgwDcN3MSEhL61d+3EzbcNnnKh/te16xZw7flb3/7GwBg5cqV+OMf/wjAfVPurbfewne/+11cuHABLS0teOWVV/rVqVQq8ZOf/AQ33XTTiGN0sEE5Md7rSM4d6mePpt6hzh3sPF+vGex7hK/rfagakw7z2rVrsWTJkrGoWlTed1gcDsegnWbPXRtg6M61t3feeQdmsxkmk6nfCIKHXq/Hk08+iYcffhgA8N577wk6u2LUEWhSqbTflwmGYfi7e75+sWQyWb+7fx4SiYR/zteXFM9zvr60CurlONhaeu94MQwDeUICpHL5gPVyHOezXd719r3Yer/Xwdrrq17v9zpYvb7eq1wuH3CKXt96jSe2A94XQqkCSJ069Gfoo16lQokUhXtPUJVWDRnT++87WHulUumA79W7vb7iRf7FHtr+1usrDo/srcTxg9VIStFCpmIREcXw/24p6TpERCr61TtYfI/kMxQjvkfyGbIs67Nd/n6GfdvEsuyQ/zbj8Roxkt/liXqN8Kfesfq3GS/XiL71ulwun+9lol0jPK/3FS8Mwwz5/GC8zxer3oHqHO65g/3M0bRpOPUOt72eEWVPMtiBdnnpe+6CBQv4Tuq8efMG/fwHM9Dzw/mMPOV33HEHbDYb3nrrLdTW1oJhGNhsNsF5er0e77//PrZt24YtW7agpKQEnZ2dkMvlSEtLw6JFi3DPPfdAr9cPmPhWjBgdzXsdTSwN9rNH2qaBDBaH3uW+XjPY94iJtA0uw4k4HFxQUACGYfDjH/8YDzzwgFjVjplHHnkE27dvB+BOzT9QUgEA+Oyzz/jO6E9/+lN89atfFbUtLpcL8+bNg9lshkKhwLlz5/wONDHqGCmz2SyYOp6fn99vitB44bLZYGtuhqWxGdamJiStXglpmCVKA4Ca5x+C09h780CVMQUp9/3WrzraejpwuuEilkyaiwh5aK7v7em245nffQ6HvfcP7qTsWEzKjoNMJsX8pZMhV/T/IkkIIRNNeXk5nE4nZDJZvyUGhJDwNNLrQij1DYYycbr+I+C9tmioRF7ez49FQi2pVMqvZ7Lb7X4lFhOzjonGVF6Bug8+hLnyKrgvpoZIlUpEZGQgbv5cpKy7JSw7y9aGCkFnGQCiipb5Xc/eqqP4+6m38f9tfhwvHvs3yturxGpiwJw8fE3QWQYD6FPc14aMybHUWSaEEEIICWNhva2Ud9KSxsZGpKenD/jaJq91r30T3IhloKlYga4j1DQ0NMDlckEqlfb7t2k/dBj1H27GtX+/CZlGg+Q1NyFj49388xM1u+hQuk7tEBwzCjWiipb6VQfHcdhffRQAYHPZsbf6CGRSGXLjJg9x5vjhdLhw4qCwk5+g18DhtAJWOyTy0LwTSsafwa5ThIwExRQR20iXHxIy0YV1h9k7k2R5eTnmzRt4Ox1PxkyGYYY9HaG2tha7d+9Ge3s7Zs2aheuvv37Q13uSe8nlckRHR4tWx0TX1tbGZ5Pt+6XBcLY3qZXTZAqZhHRjieNY9JSfEJSpJ02FRD54pvi+rrRfRZNZOEp9fabvtVTj1flTdeg2C/f4TM/UobvHiMQUBTo625GWPvge7YQMx2DXKUJGgmKKiM3pdPJJsKjDTEivsO4wz5w5k9+S6NixY7jnnnt8vs7lcuHECXcHo6CgQDCVezAtLS34wx/+AABYvnz5oJ3dqqoqfjuPadOm8ck3xKgjXDmMRnRXCUcPdTOmB6k144el8ixYi3Dv5ajiG/yup8NiRKYuDTXGerAch2RNYkiNLnMshyN7rwrKdLFqRGlVcMEMjS6sL4+EEEIIIQRh3mHWarVYsGABDhw4gN27d6OhocHnXdpPPvmE30vz5ptvHnb9RUVFfCbDAwcODFg/ALz00kv849tuu03UOia67Oxsn9sCsA4nkm6+CYZz52BtaIREpYImj5KYdJ3+VHAsjYxGRO6cAV49MCkjwZzU6SjSF6DW2IBUbVJITXG/UtqM9tZuQVnaFxtQz12YD61OFVLvh4xvA12nCBkpiikitr7bdBFC3ERP+hVqU16/9rWvAXBvK/XYY4/xafo9Kioq8Pvf/x6Ae0+/DRs2DLtupVKJu+66i6//Bz/4Qb/6AeAf//gHNm/eDMC9rvr2228XtY6JLjIyElFRUf32XFTGxyH7oW9i9kvPY9YrLyHtzjtgbW4GO8A+l+GAddphqTonKFNPng6J1L97ZyzHotHUAgBQyZTIjZuMJRlzRWtnIBzuM7ocqVEiJi4CcfGRSEmL9xlThIzUQNcpQkaKYoqITSqV8v8RQnqJOsL873//GwCQkZEhZrVjasmSJVi9ejV27tyJM2fO4LbbbsNXvvIVJCcno7S0FG+//Ta6u92jUD/+8Y/7Zcg+duwY7r//fgDufe3eeOMNwfPf+c53sGfPHlRVVeH06dNYu3YtvvzlLyMzMxOdnZ3Ytm0bTp48CcD9x+/Pf/5zvzt8YtQR7qQKOTinE20HDgEMA2V8PBKWLYUkzJKkdZceAucUrtnVzFzpdz0dFgNsLmE9yZrEUbUtkOqudaK2qkNQdsNN+dBEq5CSFh5r/wkhhBBCyNBE7TAPljRrPPvjH/+I7u5uHDx4EHV1dXjqqacEzzMMg4cffhh33333ADUMTKPR4LXXXsPDDz+MixcvoqmpCc8880y/1yUnJ+Ppp5/GtGnTxqSOcGdtau494Di4LD1h11kGAI51QZ6YCUd7HeByQqbTQ5Ve4Hc9WqUGC9JmotHcgkZTC9QyFSIVEWPQ4rFxeE+l4FgTrcL0OWmQysJ6pz1CCCGEENJHWK9h9lCr1fj73/+OLVu24KOPPsKlS5dgMpmg0+kwe/Zs3H///Zg9e/aI609OTsa7776LrVu34pNPPkFJSQm6uroQFRWFzMxMrFq1Cl/+8pcHnVYlRh0TlcVi4ddxqdVqn69xWSyCY2V8QiCaNu5wTici8+eBc82Co70BSn0mGMb/TqJCKkeGLhUZulSwHAurwzYGrR0bHW3duHyxSVA2f+lkQWd5ODFFiD8opojYKKaI2FiW5WNKIqEbyIR4UIf5CwzDYN26dVi3bp1f582fPx9lZWVDvk4mk2H9+vVYv379CFsoTh0TUXl5Ob+1RnFxcb/nOY6DqeyKoIyRht8fAle3Ea4eIwCAkcqgSMxAVPEyv+vpspqgVWn4YwkjQYQidL6sHd13FfBKtaBQyjBrgXAZyVAxRYi/KKaI2CimiNisVivfYY6ICJ1ZY4SMNeowkwmHc7ngslggi4oCAJgrKvu9hgnDhBb21hrBsUSphkzr30j7NUMdfvzpHzAjaQqWZS7AnJRiKGShs1djt9mGs8drBWWzF2ZApQ6/6fmEEEIIIWRo1GEmIS8uLg4ul4vP6miuqMT5x3+GqOxs6GYUw2W1QRYpvFOqSkkORlODhuO4fh1mRXy639uR7Ks+Bo7jcKaxBGcaS5AenYKnb/q5mE0dUy1NJkilEjidLABAImEwf2n/vaP7xhQho0UxRcRGMUXEJpPJaKsyQnygDjMJeampqYJjw7nzAMvCXF4Oc3k5ZFotktfcxD8vj46GKikp0M0MMg6q9Cmwt9bAaWgGx3FQJE7yqwYX68KBa8cFZbNTQivBXMbkWCy+MQfXrrajrroTMXER6DbbodUJp5T3jSlCRotiioiNYoqITaEInRljhAQSdZjJhGM4d15wrErSC46TVq8Mq7unHMeh+/IxRGTNgDJpMli7FY6ORkijYvyqp66rEVaHVVB2XeZ8MZs65uqudcLpdCE1Q4eUtGg4XSwUShqdIYQQQgghvlGHmUwoLosFpsvCJGwqfW+HOTIrK+zWL9ubq9Cy6c9gZApE5M2FpmgZ1Dkz/b5pMEmXhu/O/yoOXjuO+q5mgHFvLxUq7DYnaqs6+WNGwiAxQYvY+PDLLE8IIYQQQoaHOsxkQukqvQTO6ewtYBgoE3sTW6lTU4LQquAyX9wPAOCcdnSXHoKtvhzpOS/4XQ/HcWjv6USGLg0ZujS4WBfquxqhTcgVu8ljorqyHU6niz9mwCArLz6sZhsQQgghhBD/UIeZhLwrV67wW2vIz54TPKeIi4NE7s6AzEil/aZnT3Qc64L54gFBWVTR0hHtvdxlM6Hb0buftVQiRbImND7PHrMdjXVGQZk+RQONVuXz9d4xlZeXF4gmkgmOYoqIjWKKiM17WymVyvffR0LCEXWYScizWq1wOBxwuVzoHmT9sipJD4ksvELeUn0Rrm6DoCyq6LoR1WWyd0MmkcLJukdpI+RqRIfAlOyOtm5UlrWC43o3X5ZIJMjMiR/wHO+YIkQMFFNEbBRTRGwsy1KWbEJ8CK/eA5mQJBIJJBIJ0N2NnmvCrZO8O8zqtPDLKGo6u0twrEjKgiI+bUR1pWmTkVyQiNaeDjSamqGUKkLij+q2Dy6gqrwNiclapGXqEBmlRNqkmEH3XvbElETi/0g8Ib5QTBGxUUwRsXn+pofC33ZCAok6zCTkFRUVAQBa9u6DyauckcmgiI394oCBOiW81i+zdit6yk8IyiJy54yqTqlEiqSoBCRFJQz94nGgtdmEq1faAADNDV1obujCtFmpWLI8Z9DzPDFFiFgopojYKKaI2NRq9dAvIiQMUYeZTBjGPtOxlfpEMF/ceVfGxUIaZutxusuOgXM6vEoYKJOy/KqD5Vj836FXUaTPx+KMOdAoo8Rt5Bjbu0OYMV0qk2DG/DTI5OGVKZ0QQkhouu+++3D8+PEBn5dIJIiOjkZcXBzmzJmDW265BXPnzvX52scffxwffvghAODzzz9HWtrIZpyNheeeew7PP/88AODf//435s8PrW0rycRGHWYyIXAcB8PZPuuX9d7TscfPH4VA6TsdW6ZLhHrSVL/quNxaieP1Z3G8/ixeP/tfzE6ehofnfxUq+fi/+dBlsKDsYrOgLGNyLCZlDbx2mRBCCAklLMuis7MTnZ2dqKiowDvvvIM77rgDv/3tbyELs7wthIwV+k0iE4Klrh72jg5BmWD9cphtJ+U0G2CtvSQoU2dOg0QZ4Vc9+6uP8o9drAsNpmYoZUpR2jjW9mwvA8v2JvpiGOC6lbmQSGhtFiGETATVnXXIjAmfG+K/+c1vEBcXJyiz2+0wGAy4cuUKNm/ejJ6eHmzatAlRUVH42c9+FqSWEjKxUIeZhLyWlhZ07BdunSRVqyHTuDM4yzQayLXaYDQtaLpO7wC8skJDIkWkn9mxbU47jtSeFpQty1wQEslAHHYXSs81CsrSJsUgIyt2WOe3tLTA5XJBKpUiMTFxLJpIwgzFFBFbuMeUwWLEb/b+Ff9308+hU0cHuzkBsXjx4kGnUX/jG9/AnXfeCYPBgDfeeAMbN27E5MmTh12/w+Hgs2TL5QMnxiQk3FBqRRLympqa0Nln/2VVkp7v2EWEYXbs7pKDgmNFQjpUqbl+1SGTSPH9hd9AcVIhZBIpGDBYkuF7XdR4c/ZELRwO4VYri5fnDLuz39TUhIaGBjQ1NY1F80gYopgiYgv3mNp8+TOY7d34+PJnwW7KuJGeno5vfOMbANxL1T766CO/znc4HPx/hJBe1GEmIY9zucBWXxOUKfXhOx3b3t4AR4dwdDUyfwEkMoVf9UglUsxKKcK81OlYk3cjFmbMxrH6M2joGt9fzjiWw/EDVYIyfYoWk7LjBjiDEEJIKDFYjPi0cj8A4NPK/TBYjEFu0fixcOFC/nFlZWUQW0LIxEFTsknIS3S6YLbbBWWe9csSpRKKuPDqKHWd/lRwzMgU0M5aNaK6euwWGKwmKKRypGj0MNt7oJD61/EOtIqyFrS3dgvKVtxSCKVq+Je7zMxMsCxL+5sS0VBMEbGFc0xtvvwZHC73KKjd5cDHlz/D/TPvDHKrxofRbA2lVCphNpvx4Ycf4vDhwygrK4PBYAAAREdHY8qUKVi1ahXWrVs3ZEKxEydO4N1338WFCxfQ2NgIuVyOrKwsrFy5Ehs3bkRUlH+7bpjNZtx3330oLS0FAGzcuBG//OUvR/Q+CfEXdZhJyHNUCO+gynXR/BZS6tQUfmupcNFTdlRwrEzJgTRyZOu7Gs0tgmOFVI7YCN1ImxYQR/cJR5cTkzTIyvMvM7Y2zNa8k7FHMUXEFq4x5T267PFp5X6sK1gZNmuZB3P16lX+cX5+vl/nHjlyBD/4wQ/4TrI3q9WK5uZm7NmzB++88w7+/ve/+4xBi8WCn/70p9i2bZug3Gaz4fz58zh//jzefvttvPrqq8jJyRlWu2w2G7797W/zneU77rgDv/jFL/x6b4SMBnWYScgz9F2/nJzMPw636dis0wHV5OmwN1fB0VYHzmFDZOHiEdenU2mRFZOBRlMLLE4rkqISIGHG7w2I5oYuVJW3CcrmXzc5JBKVEUIIGZr36LIHjTK7ORwO/POf/wQAyOVyfOlLXxr2uRUVFXjooYfgcDgglUpx4403Yt68eYiLi0NrayvOnTuH7du3g2VZnDt3Ds8++yyefPLJfvV8+9vfxpEjRwAA8fHxuPPOO5Gbm4vOzk5s3boVZ8+eRUNDAx588EFs2bIFmi8StA7E5XLhscce4/eivvnmm/H73/+e/q6TgKIOMwlpzp4emK6UC8o0ee7kVoxUKtiLORw4O5sg08RCpokFlz0TLkMbooqWjri+uIgYxEXEuPe5tnaN+z9Qx/YLR5cjoxSYNiv8kr4RQshE5Gt02SNcR5lZloXBYEBpaSleeuklnDlzBgDwxBNPICVl+IMGzzzzDJ/s6y9/+QtWr17d7zUbNmzAAw88AI7jsHXr1n4d5k2bNvGd5ZkzZ+KVV14RjELfe++9+OlPf4pNmzahsbER//rXv/C9731v0Hb94he/wK5duwAAN9xwA5566qmwXIZAgos6zCSkGS+UACzLHzMyGdSpKbB3dEKl10MSZtsi2Ntq+ccMI4F6chGkqki/6jjbWIIUjR6JUb3TmBmGQcw4/xJiNtlw4XS9oGzOokzI5FK/66KtNYjYKKaI2MIxpnyNLnuEwyjzjTfeOORrIiMj8atf/Qrr1q0bdr0WiwX79u0DAMyePRsrV670+bqFCxdixowZOHPmDDo7O2EwGKDT6fjnX3vtNQCASqXCX//6135TthmGwS9/+Ut89tlnMJlM2Lp166Ad5j//+c/473//CwBYtGgRnn322bCJdTK+UIeZhDTjufOCY01BPt9Jjsob3tqYiYJzOeBobxCUKRIy/KrD6XLiuWP/gslmRmFCLpZlzsei9NlQyVViNnVMXL3SCper9+aJVCrB7IX+vX+PS5cuweFwQC6Xo7i4WKwmkjBGMUXEFm4xNdjoske4jjJ7s1gs2LVrFwoLC5GbO7ztJNVqNXbv3o0rV64gMjISVqsVERERPl+bmprKj2JbrVa+vLGxEVeuXAEArFixAklJST7PV6lUePLJJ9HT04OsrKwB2/Taa6/h1VdfBeDuxL/44otQKMZ30lEycVGHmYQ0wznh+mXdjOlQ6hMRlZMNtdda5nDg6GgEx/buPcwwDOTxaX7VcbapBCabGQBwqbUcl1rLMSUhF0kh0GEunp0GhUKGA7vK0dzQhfikKJSca8ScRZMgldL0LUIICWWDjS57TPRR5t/85jeI67Pzh9PphMlkQl1dHfbv34/S0lLs3LkThw4dwquvvopZs2YNq+74+HhERESA47h+z3V3d6OsrAynTp3iO8uAe32xx4ULF/jHQ/3M9evXD/r85s2bsWnTJv74Rz/60aiyfxMyWtRhJiHL1tYOS51wCq5uejG/hjncyOPToJm2DPbWWjja6iDVxEIiV/pVx95qYYbt/PhsJGkSxWzmmLLZnMidkojMnDiwLAeVWj6iznJ0dDScTueQ22YQMlwUU0Rs4RRTwxld9pjIo8yLFy9GWtrAN8IfeeQR/OMf/8BTTz0Fs9mM73znO9i5cyeio4f3WUilUrS0tGDPnj0oLy9HdXU1rl27hpaWFp8dae+ytrbehJv+rJ325YMPPhAcP/XUU3jrrbfGfR4VMnFN/KssmbD6ji5LIyMRlT3w9J6JzN5aA2vtZUQWLEBk3lxwObPAOexDn+iF4zgkRMQhUhGBbnsPAGBZ5vyxaO6YsFocMLS72y1XuNctJ6WObNuVSZMmidYuQgCKKSK+cIqp4Ywue0z0UebBMAyDBx98EEePHsWBAwfQ2dmJjz76CF/96leHPNfpdOIvf/kL3njjDTidzn7Pq9VqzJ8/H62trSgpKen3vNFo5B+rVKOflTZp0iTExsbizJkzOHXqFP773/9iw4YNo66XkJGgeYokZBnOCtcv64qLwEj9T/A0EZjO7Ubb9pdx7a/fQOPbv0NP+SlIlP5NX2IYBl+deSf+tPKnWJg+C6maJLhYFs3mVp93lsebpoYucOhtp0wmRXxiVBBbRAghZLT8GV32+LRyPwwW49AvnKBuvvlm/vGpU6eGdc7jjz+O1157DU6nE3K5HAsXLsS3vvUtPPXUU9i8eTNOnjyJl19+GdnZ2T7P954y7b22eSRSU1Px+uuv43e/+x2f5OvPf/4zOjo6RlUvISNFHWYSsqRqFaSRvUkpVMkpcPZYgtii4OA4FubSQ18csLBcPQNbY8WI66vsvIZUbTIWZsyG0WbC0dozcHHs0CcGEcdxaK4XfjlKTNbQ2mVCCAlx/owue3hGmcNVYmLvUqru7u4hX3/69Gls2bIFAJCeno7t27fjX//6F37wgx9g3bp1KCgo4Kf+m0wmn3XExsbyjxsbGwf9eXV1dThz5gza29t9Pv+rX/0KycnJyMnJwX333QcAMBgM+N///d8h3wshY4G+TZKQlfOdhzD75ReRuPJGaKcVgXXY0fDxFtha24Y+eQKx1ZXBZRLedY2asmREdZlt3ag1CjNt58ZNhkwyPkfurRYHWBcLY6cFFovwC9VIp2MTQggZH0YyuuwRzqPM3uuJ+yYJ82Xv3r384+9+97tIT08f8LWXLl3iH3vPPps6dSr/+OzZs4P+vLfffht33303Fi1ahPLy8n7PK5W9+Vcefvhh6PV6AMDHH3/M7/NMSCBRh5mENGtTM7oZBg59IrpsNkhkMihiY4LdrIAylxwUHMvj06BIHNl2SkqZAtP0hVDJ3H+sZBIpcmLH7zq5XVsv4bn/3YO9O8vgdPRm64yMVEKjHfkaqsrKSpSVlaGyslKMZhJCMUVEFw4xNZLRZY9wHmXeuXMn/3j27NlDvt5gMPCP5XL5gFOqd+zYgaamJv7Ye61zVlYWMjLc3z127do14PRpp9OJHTt2AHCPhOfkDL4FaGRkJB5//HH++Fe/+hXsdv9ytBAyWtRhJiHNUl8Ph8MBu90Oh8MBVUpyWK1j5lgXzCUHBGUjHV0GALlUjoKEbKzNW47ZKdMwNTEPCtn43Pewx2zH+ZN1MHZacP5kPY7tr0J7q3tLrKRU7aiyaXZ3d8NsNg9rKhshw0ExRcQ20WNqNKPLHuE4yvzBBx9gz549AACNRoObbrppyHNSU1MF53tvF+Vx+PBh/OIXvxCU2Ww2/jHDMHxyse7ubvzwhz+ExSJcJseyLP785z+jrq4OAHD33XcP62/1mjVrsGjRIgBAdXU1/va3vw15DiFioizZJKTFL16EeocDXFMTYDAiYpDtFiainsrTYK3CL0sR2TP9qsPmtEMhlQv+aEklUmSP45FlADh55Bqczt611SzLIUqjAsMw0KfQdGxCCAlle6uPQqOIFKWe9YWrRWhR8B06dMjnFGuHw8FvB+U9Zfmxxx4b1pZSa9aswXPPPQeHw4HDhw/jvvvuw2233YaEhAS0tLRg3759OHLkSL8EoGazWXC8ceNG7Ny5E8ePH8ehQ4ewdu1a3HnnncjMzERTUxO2bdvG79eck5ODBx98cNjv/cknn8Rtt90Gh8OBV155BbfccguyssJzZxQSeNRhJiFNIpdj+o3LAQCcywWJJLwmTZjOfC44lkbFQKHP9KuOV0/+B1c7a7AscwGWZs5DrFonXgPHiNPpwslD1YKyhCQNlCoZ4uIjoVCO7tJWVFQ0qvMJ6YtiiohtosfU+sLVE6ajK5a+I7wDUSgU+P73v4+NGzcO6/Xp6en45S9/iV/+8pdwuVwoKSnxuXXUnDlzcMstt+BXv/oVAKCsrAxz5szhn5dIJHjppZfw2GOPYd++faivr8czzzzTr54pU6bgpZdeEqxVHkp2dja+9rWv4dVXX4XD4cAvf/lLvPHGG8M+n5DRCK/eBZmQJBIJJBIJpHJ5eE3HdjlgqRZuraXKnAZGOvzOotVhxbG6M6jrasRb5z/Et7f8FEdqh7cFRTCVnG2E2WQTlKVN0gEA9CIk+/LEVLjdgCFjh2KKiI1iigDuqdBqtRp6vR6LFi3C97//fezYscOv0VsA2LBhA9555x2sXbsWSUlJkMvlUKvVSEtLw6pVq/DCCy/gjTfewJo1a/itnrZv396vnqioKLzyyit48cUXsWrVKiQmJkIul0Or1WLOnDn41a9+hXfffRdJSUl+v9fvfOc7SE5OBgAcP34cmzZt8rsOQkaC4UJhg1Uy7pnNZpSVlfHH+fn5iIoamz1wS375G0iUCuimT0f09GKoU1NGtV41VJkvHUbLpqcFZUkbf4mIycXDrmNf1VG8cPx1/ljCSPC3df8LnWr8TmnmOA6v/t8BNDV08WXRMWpMn5sGuVyKhddnQyIJv3gghJDRKi8vh9PphEwmQ25ubrCbQwgZB0Z6XQhk32Cs0ZRsElKcZjMM5y8ALIuOYycAAEW/+zWip03sqWm+mM7tFhxLtfFQT5o6wKt9O9dUKjiekTRlXHeWAaC6sl3QWQa8RpdTtNRZJoQQQgghoqEOMwkpxgsXAbY30ZNEoYAjMQFtbW2QSCSIjY0NYusCh3XaYb12UVAWMbkYjJ/7JX9n/v2IVESgrK0S9V1NyIvPgpN1jdt9lwHg2L4qwbE6Qo7YBHdimKTUoZObDEdHRwdYlg2rmCJji2KKiI1iiojN6XSC4zgwDAOZjLoIhHjQbwMJKYZzwjW7moJ8NDQ3w+FwQC6Xh82Xhu5LR8A5hXtTaqYv97ue+q4maJRRmJM6HTOSi2B3OtDR04nEqHixmiqq9lYzrlxqFpQtXZmLybnxMHZaEKUZfgKRwdTV1YVdTJGxRTFFxEYxRcRmt9upw0yID/TbQEJK+pc3QJmUhNY9+2BrbgYjkcBxoQRcfnittTKd3yM4lun0UKbm+VUHx3G43FrZW4dEili1DgmR/besGC+OH6gCvLIuqNRyzJqfAYVSBn3y+J5KTgghhBBCQg91mElIUcTEICI1BXEL5rn3A2RZqCIiEJ2ZGTaZQlmHDdbaS4IyddYMv6djA0CRPh+XWivQYTEAAAoTcsZtAjVLjx1nT9QJymYtyBj1FlK+pKWl8VMdCREDxRQRG8UUEZtCoeBHmAkhvajDTEIKx7Kw1NUDcG+lAKkUCQX50MaPzynEY4G126ApXg57aw0crbVgbT3QzPB/OjbDMEjVJiFFo0drdztqjPVI0ejHoMXiOH20Bg67iz9mJAzmLs4ck59F0xuJ2CimiNgopojYaBo2Ib7RbwYJKfb2drisVkGZOjU1SK0JDkdbLaRROqijdFBlTgOcdiiTskZcH8MwSIyKH7frlgHA5WJx/GC1oGzq9GREx6iD0yBCCCGEEBIWaB4PCSk9X4wue8ijoyHXaoLUmuCwt9bwjxmGgXrSVDDM8H+VzzaW4M1zm1BrbBiL5o2JKyXNMBmFN0rmXzfymwSEEEIIIYQMB40wk5DBcRwsdcI1rOq0VLDe20xN8LVcTrMBrh7hHsSKhAy/6thZsQ+nGi7g48ufYXJMOr40ZQ3mpc0QsZXiyy9Kwl1fm4Oj+6+i5moHtDoVjJ09UEfIERMbAUbkvZfDKaZIYFBMEbFRTBGxcVxvVk1ax0xIL+owk5BgvHAR9s5O2A1GSLzW2ESkpeHixYv81hrFxcVBbOXYc5k7wDAM/0dNolRDqh3+VGqjtQtnG0v446rOWpjtPaK3U2wSCYOCaUmIS4zE0f1XwbFAS5MJLU0mzFsyGRGRClF/XjjFFAkMiikiNoopIjaLxcIn/YqIiAh2cwgZN6jDTEJC3X83wXD2HCCRQBkfD01hATQ52ZDH6IC62mA3L2CUSVmQ6fSw1V6GrbkKSv1kv+4CH6o5CRfXOyqhkMqxIH3mWDR1TDTXd0GjVfHH0Tq16J1lQgghhBBCPKjDTMY91m5HV+kX2yixLGwtLYjKzYE6LRUMwyAyMhJOp3PCZ3fsvnICjo4GRBUuQkTubKgypgB+TsMr0hcgLy4LtV0NsDisSNUmwWg1IUI+/pNn2W1OtP//7N13eFvV/T/wt/b0trxnvBJn74RMEmYIZEBCIGGEb6HQQinwo2WU0lJIS8tsoIxCwl4JkIQkjIQsJyF7O44dz3hv2ZYsa97fH6pudG1Jlm1N+/N6Hh50j849OlI+vtK5ZzVpOWlxiWFeea2hElPEdyimiKdRTBFPo6H9hDhGV1kS8NoLLsBiMFxO4PEgjY2BPDkJAJCRkeGnmvlW+9Ft0JWfRcvPH0GSmIOImTdDnjmxb4UwDMbEjcDo2OGo1zZBKhBDEQSNZQCor2nnzK8SCPhQxSm98lpDJaaI71BMEU+jmCKeJpVKe89EyBBEDWYS8NSnTnOOxREREIaEQBwV5aca+Z5Jo4au4vLcY311ISxGfZ/LKVdbF03j8XiIU6oAAKHSwFxl3DaPyva4rpq72JkqNgRCocAfVSOEEEIIIUMENZhJwFOfPss5lsbFQp6UCN4QGjqkvXAIsJt7zBNJ+967DCApNA5GsxHNOjUAYFpS4M5fPrSvDCUXGjB19jDExCuh1XJvEMQlhvqpZoQQQgghZKigBjMJaMb2DmhLSzlpkthYyP43HHuo0BYc4BzLsyaCL5L0uZxhkakYFpmK9q4OVLRVIyE0zlNV9CiL2YIjeWVoa9WhtKgJoWFSpGZGIiJKAQCQyUQIiwiOoeSEEEIIISR4UYOZBLS2s2cB+30BBQLI4uMgjYlh0yoqKtiFT1JTU/1RTa8yNNeg69J5Tpoyd+aAygyVhmC0dPiAyvCmC+fq0NaqY4/b27rAF1weURCbGObVPSIHe0wR36OYIp5GMUU8Ta/Xs9OhJJK+35QnZLCiBjMJaOqT3PnLkhgVZMlJ4Akuz11ta2tj96IcjDpO/Mg55gnFkA0b5/b5nUYdylsrMVyVCT4vOIaxH9pbxjkOCZUgNMy6GAkPPMQleHc49mCPKeJ7FFPE0yimiKeZzWbO+iGEECtqMJOA1nLsGOdYGhsLyRBa7AsAtBePco4lCZngi9zfe/hQ5Qm8ffQTqBRRmJ06FXPSpiIuJKb3E/2kqqIVVRWtnLTE1Aj2Czw8Sg6pjH4gEkIIIYQQ76MGMwlYuto6GFvVnDRJXCwksbGctBEjRgzaO6KGxkqYWus5aYo+DsfeW34IANCobcbX57ejoq0af5h5v8fq6GmH9nLnrIslQkTHXt4+yheLfQ3mmCL+QTFFPI1iingabStFiGPUYCYBq+30Gc4xXyqFKCwM4vAwTvpgHo7WfuInzjFPKEbI6Dlun1+vaURBYzEnbW7aNI/UzRvaWnUoOFvHSUtMCQefb/1BKBIJEB3jnb2X7Q3mmCL+QTFFPI1iingafwjtPkJIX9BfBglY3fdflsbGIGzUSD/Vxj86uw/HTsoBX+z+HeBWXTsiZJdvMMhFMoyLy/VY/TztyP4yMJbLi7wJBHzEJ13uUU5Jj4RAQJctQgghZMGCBcjJyUFOTg4ee+wxr7/e2rVr2dc7fPiw11+PkEBBvzxJQGLMZqjPdNt/OTYW0m7DsQczfV0ZTG2NnDTlyL4Nx04Oi8f89BmYN2wGMiPTkBKWiIbOZk9W02P0XSacOHSJkzZhWjJGT0yCRCpCVLQCyemRfqodIYSQQKMtK/d3Ffzm7NmzKCkpYY937NiB9vZ2P9aIkMGLGswkIGlKy2DWajlpsuQkSFTRPfK2t7dDrVYPui+KHsOxRRIoR83uUxkV6iqAx0OkLBzj4kdiQsIoxCsDc8GvU0croe8yXU7gAVNnD0NsfCimzkpHzijf7Rk9WGOK+A/FFPG0oR5ThtZWnHvmWRhaW3vPPAht3rwZABAdbf1dpNfrsWXLlgGVaTabYTKZYDabB1w/QgYTajCTgNR9/rIwNATKzAzwHMyvKS8vR0lJCcrLy31UO9/oLD7OOZYmjwBf6P7q2ADQZTKAb7cgTEpYAgR8gYsz/MNiYXAkj7uVVE5uLCKjFQAAPp8HscR3Sy4M1pgi/kMxRTxtqMdU9TebYOrQoPrbzf6uis+ZTCZs27YNAHDdddchLS0NALBx48YBlavX69n/HHnooYdQWFiIwsJCTJ06dUCvRUgwoQYzCUitJ09xjqWxsZAlJvqnMn6gry+HuYM7dFo5alafy5mQMAoLs+djbNwIhElCkBae7KkqelRRfj1amzs5aVPnDPNTbQghhAQyQ2sr6n6wjsKq+/7HIdfLnJeXh5aWFgDAxIkTcdVVVwEACgoKcO7cOX9WjZBBiVbJJgHHrNej48IFTpo0Lg6yeMdDcuPi4mA2myEQBF7PaX8xJgNCJi2AsakShsZLYIwGKEbM6FdZUpEUOdEZyI4K3AbooX3craTiEkOROsx/85UHY0wR/6KYIp42lGOq+ptNsBgMAACLwYDqbzcj/Z67/VspH9q0aRMAQCgUYsaMGUhKSsJ7770HwNrLPGrUqH6VKxKJaKsyQhygBjMJOO3558GY7ObP8HgIHZkLvtjxcOSYmMCckzsQhsZKCGRKCJJHQJo8AqKwWPCF7m8hYrFYemwPEahfgLVVbbhU2sJJmzZnmF/rOxhjivgXxRTxtKEaU/a9yzZ13/+IxCWLII6I8FOtfKejowO7d+8GYO1dDgsLw5gxY5CSkoJLly5h69ateOKJJ1zuqWwymbBp0yZ8//33yM/PR0dHB0JCQpCUlISZM2fi9ttvdxhfa9euxRtvvAEA+OijjxwOyzYYDNiyZQv27t2L/Px8tLa2wmQyISwsDFlZWbjyyiuxfPlyh/V74okn8O233yIlJQU7duxAU1MTPvjgA+zatQs1NTUQiUTIzMzEjTfeiOXLl0MopGYM8Q2KNBJw1N3mLyszMxA5ZbKfauN7Fn0nTO1NnDRJUrbb57fq2vCHH1/A1OTxmJs2HRmRqQHbWAaA8EgZrrw+B0fyyqDVGCCWCMBYGGjau6AMdX8LLUIIIYOffe+yzVDqZf7+++/ZOcYLFixg02+88Ua8+eab6OjowA8//IDFixc7PL+9vR333nsvTp06xUlvbW1Fa2srzp49i/Xr1+Nf//oXrrnmmj7VraCgAL/5zW9QU1PT47nGxkY0Njbi4MGD+OSTT/DBBx8gISHBaVknT57Eb37zG3boOQDodDqcOHECJ06cwLfffov169dDqVT2qY6E9Ac1mEnA6b7gV8TECZBEDZ3thAyNlZxjvlAEUYT722nlVRxBm74DPxXvw0/F+5ARkYo1V/8xYBvNMrkYs67KQmiYFBfO1QEAWls6cepoFabPGQaBkJZaIIQQ4rh32Wao9DLbVscWiUS4/vrr2XRbgxmwDst21mB+7rnn2MbylClTcO211yI6Ohqtra3Yv38/du7cia6uLjz22GPYsWMH4uLc26GipaUFd911F9ra2gAAV1xxBebMmQOVSgW1Wo2CggJs2rQJRqMRFRUV+Nvf/oa33nrLYVnt7e1sY3n27NmYP38+FAoFTp8+ja+++gp6vR5nzpzBa6+9hj/96U9u1Y+QgaAGMwkoBnVbj30Vw8eO8U9l/MSsVXOORVGJ4Lm5sjXDMNhbfoiTlhQWH7CNZZu2Vh1aWzoRmxDKpiWlRVBjmRBCCMtR77LNUOhlrqqqwvHj1h00Zs+ejbCwMPa59PR0jBo1CufOncPRo0dRXl7Orp5t09LSgu3btwMA5syZg3feeYfz++C2227Df//7X7z00kswGAz46quv8Lvf/c6tur377rtsY/mJJ57A6tWre+S56667cMstt6Crqwv79u1jh4J3p1arAQBr1qzBzTffzKbfeOONuOqqq3D33XeDYRhs3rwZTzzxBA3NJl5Hv0ZJQGk7w+1d5kulUGZnuTzn3LlzOHny5KBZGVKRMxVhkxZAljYKQkUYxCr3V7au1TSgso07FGpO2jRPV9GjGIZB2UXuEHSxWIik1HD/VAiDL6aI/1FMEU8bajHlqnfZZrCvmL1582YwDAPA2njs7qabbmIfO9piqrKykt1jefbs2T1uput0OixfvhzJyckYP348ZDKZ23X78ccfAQCJiYm46667HObJyspiV/Q2mUy4dOmS0/KuuuoqTmPZZtq0aZg0aRIAa090RUWF23UkpL+owUwCSvf5y2GjR4Lfy51Di8XC/hfs2o5sRcvez2HWtkKWMhKhE6+DMCLe7fPjlTFYOuI65KqyoBDJIRfJoBQrvFjjgWtt7oS6lbulVMqwSAiF/lv5dTDFFAkMFFPE04ZaTLnqXbax9TIPVlu2bAEAKJVKzJs3r8fzCxcuZFdN37RpE0wmE+f58PBw9vHXX3/NmR8MWG9gC4VCbNmyBV988QXuvfdet+v2zTffYMOGDXjttdd6LDpqLykpiX2s0+mc5nM1fzonJ4d93N7e7nYdCekvGsNAAgbDMFCfOMVJCx87ttfzpFIpBAIBRCL3V5EORAzDoO3IVpjaGqHevxEiVTKir/k/yNJGu11GY2cL+HwBcmOyMUKVBZ2pC6HSwF0Qw1HvslQqQkJSmJMzfGOwxBQJHBRTxNOGUky507tsM1jnMp86dQrl5eUArI1JiUTSI09UVBSuuOIK5OXlobGxEXv27GF7dAEgNTUVI0aMQEFBAc6fP4+rr74a8+bNw9y5c3HFFVdAJpP1e1upiIgIRDj5zPV6PYqKinDq1Cns2rWLTXd1sycjI8Ppc/YLfXW/KUCIN1CDmQSMrppaGLrd7VRmOb9g2mRnu7+CdCDT11yEqa2RPTY2VoIv6zm3x5VL6ir2MY/HQ7wyBhFS/zY+HSkpbERxQQMyh6vQ0d7FeS41Iwp8gX8HvwyWmCKBg2KKeNpQiil3epdtButcZttiX4B166Z3333XYT77+bwbN27kNJgB4MUXX8Sdd94JtVoNjUaDLVu2YMuWLeDz+Rg7dizmzZuHBQsWcHqC+6KtrQ07d+7EuXPnUF5ejoqKCtTW1jpsHNuGlzviaG6zjf17HCojLIh/UYOZBAyeWITwcWOhq62DoakJfLEYgj7Mnwl2mvMHOMeiqASIY1L7VMa4uJGIlkehXF2JBm0z0iKSAnLBrwO7ilFe3IzDeWWIilEgJT0SIWFSyBVixNkt/EUIIWRo60vvss1g62U2Go3sYl0AsHXrVmzdurXX8/bt24eGhgbOnso5OTnYunUr3nrrLWzbto1dYMtiseDkyZM4efIkXnnlFdx888145plnXO7n3N27776L//znPw6HWotEIkyYMAEMw+DIkSO9lmUbWk5IIKAGMwkYli49QobnIGR4DhizGSZtJ2Tx7s/fDWYMY4H2/EFOmiJ3Zp8bu0KBEGkRSUiLSILW0AkRP/D+xOtq2lFe3MweNzdoEaVSICRMirTMaPD4gdfAJ4QQ4h996V22GWy9zHv37mUbtn1hNpvx7bff4te//jUnXaVS4c9//jOeeuopHDt2DHl5eTh48CAKCgrAMAwYhsHGjRvR2dmJV1991a3XevXVV/H2228DAPh8PsaNG4exY8ciOzsbmZmZGD58OMRiMV577TW3GsyEBJLA+zVNhixzVxf4IhEsRiN4AgFCsjLBF4v9XS2f6Cw+AbOm23D03BkDKlMhlg/ofG85vLeUcywSCxATF4KQUClUsYE735oQQohv9ad32WYw9TLbD8f+6KOPMHXqVJf5Dxw4gHvuuQeAdXGv++67z+ENeKFQiGnTpmHaNOtuGvX19fjmm2/wxhtvwGQyYfv27fjd736H9PR0l69XW1uL//73vwCsC4utX78eubm5DvN2dHS4LIuQQESrZJOAEZKVicQlixAzby5CcrKhGJbm1nnV1dW4dOkSqqurvVtBL+o4vYtzLAiJgjja/flDX5zdghM152C2mD1dNY/StHfh3EnutlcJyWHgC/hIz4oOmOHjgyGmSGChmCKeNhRiqj+9yzaDZcXstrY27N69G4C1Z3jy5Mm9njN9+nR2GHZFRQXbo5ufn48PP/wQzz77LDQaTY/zIiIicM899+COO+5g04qKinp9vX379rHbVd1xxx1OG8sAUFBQwD52NYeZkEBCPcwkoPAEAkhjYyGNjXX7nObmZhiNRohEIiQmJnqxdt7BWMzQlXG305KmjnT7/JqOenxz/nsAQJg0FLNSJuOWkTdALg68+d9HD1bAbL68QAePz0N8UhjCI+SIiAqcHvFgjykSeCimiKcN9pgaSO+yzWDoZd6+fTuMRiMA4LrrrnO5ZZMNn8/HwoULsW7dOgDAhg0bMHXqVOzZswf//ve/AVgb1ddddx3nPJPJBIZhOKtQy+W9fzfbDxd3lf/MmTM4efIk5/UICQbUw0yIn2mLjoExcBfICBnbc39FZ/aVH2Yft3W1Y1/FYYiFgTeU3Wg04/jBCk5abHwIxBJhQPUuE0II8b+Gn3dDGKKEOCqy3/8JQ5Ro+Hm3v9/KgNgPx77hhhvcPm/RokXs459++gnt7e2cBvKLL76I5ubmHue1tbXh22+/BWDdumzUqFG9vpb9DZvNmzfD4GBUwPnz5/Hwww9zVrXW6/XuvRlC/Ix6mInfmfV6dNXWQp6a2q9GU1ZWVr/3DQwEPYdjR0LmZg+zhbFgdxl3sbCZKZMh5Afe6pJnj1ejU8v9Ek1MCUeUSomwiMDqDQ/2mCKBh2KKeNpgj6mkW5Yi6Zal/q6GX126dIntkU1MTMS4cePcPnf48OHIyclBYWEh9Ho9vvvuO6xcuRKLFy/Gpk2bUFNTg2uvvRbLli1DRkYGhEIhSktLsXHjRrYhfffddzvdW9ne3LlzER4eDrVajQsXLuCmm27CsmXLEB8fj5aWFhw6dAi7d+/u0aNM85lJsKAGM/G7trPnUPC3NRCFhyN87BiETxiPmLmz3T5fFsRbTzFmE7oqznLSZOljweO5N/jDYrFgfNxInKw7j1adGgCQEdm3rah8gWEYHN7HXewrLTMKOaPiAnIbqWCOKRKYKKaIp1FMDX72vcvXXXddn2+OLFq0CP/85z8BWPdkXrlyJZ599lk0NTVh//796OjoYIdtd7d8+XI8/PDDbr2OUqnEP//5T/zud79DV1cXysrK2Ne1l52djQceeACPPPIIAKCwsLBP74cQf6EGM/E79anTAACjWo3Gvfugb2rqU4M5mGkvHAJj5A5JChk73+3zLYwFKkUU5g+bgXZ9B+o6GhGrVHm6mgNWUtiIxnruAiPT52Ygc3iMkzMIIYSQoW3Lli3s4wULFvT5/IULF+Lll1+G2WzG+fPnkZ+fj5EjR+K9997DDz/8gK1btyI/Px/Nzc0QCARQqVSYNGkSbr75ZkyaNKlPrzVnzhx88803WLduHQ4dOoT6+nrw+XxERkYiJycH119/PRYsWMC+TmNjI3766Sc8/vjjbs3LJsSfeAwtUUc8QKPRcO4U5uTkcBaNcOXoPffBYDePJuX2FUi+dZnH6xiIaj//G3Slp9hjQWg0Uh58y+0e5ovNZThZm88e83l83JhzFSQBNof503cPo6SwkT2OjlXigf83h/ZcJoSQAHLx4kWYTCYIhUJkZWX5uzqEkADQ3+vCQNoGgYZ6mIlfGTs6YO7q4qTJktzfTgkAtFotO49LoVB4snpexZiM6Lp0npMmHzbO7cYyAKSGJ4EHHspaK9Ha1YbE0NiAayw31HVwGssAMHVWekA3loM1pkjgopginkYxRTzNtjUUAAgEgbcWCiH+Qg1m4lfGVjXiFy6AWaNFV3099I1NiJg4vk9llJSUsFtrjBkzxks19bzOstNgTEZOmnKc+6tjA4BYIEJmVBoyo9Kg1rUF5OIvv+wu4RzL5CKMmdS3myK+FqwxRQIXxRTxNIop4ml6vZ69CePOdlKEDBXUYCZ+pautBY/HgzBECWWIEtEzr4BAKvV3tXyCL5YidOpCGJuqYGisBI8vgDQhu9/lhcvCPFg7z2hr7cTZE9WctIlXpEIkojvXhBBCCCEk8FGDmfiVWavlHEtjY/tcRnR0NMxmc9ANHzI0VoIvlkGSkGX9Ly7D7R7iyrYaqBRRkAolXq7lwFRdUiMiWo7mRi3AADwekJjS+xYV/hasMUUCF8UU8TSKKeJpQiE1CwhxhP4yiF911Tdwjnn9+OJPSEjwVHV8xqxtg7mznZMmiUtz61yGYfDKgf+iSdeKaUnjMSdtGnJjssDvw9xnX2AYBp0dBowclwB9lwl11W0wmxnI5CJ/V61XwRhTJLBRTBFPo5giniYWB9YaKIQEisD6hU2GlK66up6JATgH1xsMjZc4x3yJDIKQKLfOLWmpQHVHHfQmPfaWH8Jze15DUVOZN6o5IB1tXdBqrVtmSaRCpGZEYdrsdCSnBX4PMyGEEEIIIQA1mIkftV/ouWG9KDzw5uF6g0XfCR4u3xwQRye7PRz759L9nONYRTRyood5tH6eUFvN7UGXycUYMSY+IBcmI4QQQgghxBEakk38pnFvHhizGeLISIgjI8AXiSBRqfxdLZ9Q5EyFLG0MDE2VMDRWQqxKcfvcBm0z53hy0tiAa4SazRY01nVw0uISQgOunoQQQgghhLhCDWbiF2a9HuqTpwCGYdOyHvldvxpUFy5cYDdUHz58uAdr6R2N378DnkAEZe4MSBKzIU10f2VsC2PB+PiRSAlLRGVbDSrUVUgKjfdibfunsV4Dk+nyfo488BCXGOrHGvVNsMUUCXwUU8TTKKaIp+l0OvaxTCbzY00ICSzUYCZ+0VFYyGksA0Bo7sh+lWUwGGA0GmGxWDxRNa+ydGnRcXoXYDah/eg2CEOjEXvz45AkZLp1fr2mCZ3GLshEUmRHD0N29DBMiB/l5Vr3jcXC4MShCkhlIvD51hsgEdFySKSBv9iXTTDFFAkOFFPE0yimiKcxDMPuw0wIuYwazMQv2s6d5xwLQ0MhUbm36FV3QqEQDMMExXYI2qKjgNnEHpu0aggj3e8hFgmEiFfGoE7TAAZApCws4PZfLjhTg2MHKiASCRCXGIq4pFDEJwbXaq7BFFMkOFBMEU+jmCKeZmsoU4OZEC66yhK/0Fws5hxL4+P6fYHOzc31RJV8QnP+AOdYPmwcBFKF2+dHyyMxK20KOo06lLdWQSmWe7qKA3Y4rxwAYDSaUVneCnVLJ669qX+jB/wlmGKKBAeKKeJpFFPE02gYNiGOUYOZ+EVnBXdbJXmK+4teBSuTth26stOcNEXujH6VJRfJkBuT5YlqeVRbSyeqyls5acPHxIMvoAX5CSGEEEJI8KFfscTnTJ06GJq5Kz2HZAde48/TNGd2Axa7hbCEYiiyJrt1LtNtvnegOri3lHMsEPAwdVa6n2pDCCGEEELIwFAPM/E5TTF3ODZ4PISOyPFPZXxIk5/HORZFJ4EvcW/405fnvkO5ugpz0qZiYsIYiAWBt4CWxWzBuRPVnLTE1AhERrs/5JwQQgghhJBAQg1m4nPt+dwFv0ThYZBER/e7vPr6epjNZggEAsTGxg60el5h0qhhqC/npMkzJ7h1rsViwe6yg2jVteFEzVkoRDL8evIqTEt273xfKSpogK7TyEkbPzU4h9oHQ0yR4EIxRTyNYop4mtFoZFfJFokC78Y8If5CDWbicx2FRZxjiUoFwQAWmqivr4fRaIRIJArYHw0dp38GYDesmi+EcsyVbp17uv48WnVt7LHWqENCSOC9zxOHuPPSQ8OlGDk28PaIdkcwxBQJLhRTxNMopoinUYOZEMdoDjPxOW15OedYnpzkn4r4UPfVscUxKRCFu/cD56fifZzjtPBkpIQneqxunqBu6UTxhQZO2pxrsiEUCfxUI0IIIYQQQgaOepiJTxnb2mBsVXPSlBkZAyozPT0dFosFfH5g3v8xtjfD2FDBSVNkT3Z7G62xcSPBAw8VbdVo1DYjLTzwbjCcOHyJ04EukQoxclxw7b1sL9BjigQfiiniaRRTxNMkEgnbw0wIuYwazMSnNMUlnGOeQABl5sAazCEhIQM639s6Tv3MTRCIoBzt3nDsdr0G7foOpEUkIy0iGVpDJ2amureytq+YzRacOlzJSRszMRFiSfBeXgI9pkjwoZginkYxRTxNIKBRYYQ4QrcliU91FF3kHIsiwiGOjPRTbXxD22M4diqEYe4tctbW1Q4h//IXWJQ8HBkRqR6t30AV5ddD06HnpE2YHlh1JIQQQoYyhmHw2WefobGxscdza9euRU5ODnJycnD48GE/1I6QwBa8XUAkKLVfKOQciyMjIQoP81NtvM+oboCxuYqTpsiZ4vZwp+SwBMQpVahqr0NZ6yVEySMCbvjd0QPlnOOktAjExof6pzKEEEII4aioqMBTTz2FY8eOYfbs2f6uDiFBhxrMxGcYhoG2pJSTJo2PA3+AKzHq9Xp2zo1EIhlQWZ6mKz0F8PgAYwEA8IRihIye26cyRAIR0iOSkR6RDMv/ygkULU1alBc3c9ImDoLe5UCOKRKcKKaIp1FMAXU17YhLoBu0vdmyZQuOHTvmVl6GYWhuPCHdUIOZ+IyhqRmmjg5OmiI9fcDlFhYWsltrjBkzZsDleZIwTIWwaYtgbK6GoakSAkU4hKFR/S6PzwusL7DTR7lzl4VCPhKTg3/EQCDHFAlOFFPE04Z6TGnau/DxW7/ggcfnQBkq9Xd1Bg29Xo+uri7I5XJ/V4WQgBFYv77JoKYpLuYc80QiKFKDvzfSGYtRD31dKXhCEcSxaVCOnIWIWcvdOre8tRI/Fe+FxqD1ci0HJjUzCqMnJiA6RgnwgPjkMERGK/xdLUIIIYPcgd0l0HUacXBPae+ZCSFkAKiH+X8YhsHWrVvx9ddfo6CgAJ2dnVCpVJg8eTJWrlw54Lu38+bNQ3V1tVt59+/fD5VK5fC5oqIirF+/HocPH0ZDQwNCQkKQkZGBxYsXY8mSJQG9wmHHRW6DWZGWCnlq8oDLDQ8Ph9lsDrj3bmyqAmM2scc88CCJc69H/aeSPOwsycMHJzdiUsIYXJs1ByNjsr1V1X5hLAwaajoQEaVARJQCer0J8Ylh4AuC/z5coMYUCV4UU8TThnJMadq7cPygdbvGYwfLccXcYdTL7CECgWBIxhQhrlCDGUBXVxcefvhh7Nmzh5NeXV2N6upqfPfdd/j973+P++67r1/lazQa1NTUDLieGzZswF//+lcYjUY2raWlBS0tLTh69Ci+/fZbvPnmmwgPDx/wa3mDpluDOWzMaEii+j882SYlJWXAZXiDoZl7g0QUnQiBrPdtQAxmI365ZJ1rZLKYcKjqBNIikgKuwdza0omursuxKJEIMSzLvdW/A12gxhQJXhRTxNOGckwd2F0Ck8m6pofJaMHBPaW45qZcP9fKuzo7O7Fhwwbs3LkTRUVF0Gq1CA8Px/Dhw3H99ddj8eLFPRq6a9euxRtvvMFJmz9/PgAgMTERu3bt6vE6IpEIZrMZb731Fn788UdUVFRAKBQiOTkZN9xwA26//XbIZDKXdS0rK8Onn36KAwcOoK6uDgAQHx+PGTNm4M4770RysuPOElt9BQIBzp8/j2+//RbvvPMOqqqqEBERgdGjR+Oll16i4eLE56jBDODpp59mG8sZGRlYvnw5oqOjkZ+fjy+++AKdnZ14+eWXERsbi0WLFvW5/MLCQjAMAwC4//77MXr0aJf5w8J6zgHNy8vDM888A4ZhIJPJsGLFCowaNQrNzc3YuHEjioqKcOzYMTz66KN47733Am6xBsZigaaEuwdzSFamn2rjfdaFWPjg8fhg/rdQlzg6ya1zj1WfgdaoY4954GF26lSv1HMg6qrbOMchoVK6w08IIcSr7HuXbQZ7L/OxY8fw2GOPsY1Pm8bGRjQ2NiIvLw8ffPAB/vOf/zhtjLqrrKwMTz75ZI9Rkfn5+cjPz8fmzZuxfv16RDnp8Hj33Xfx73//m9O5AwAlJSUoKSnB559/jieffBIrV650WY/PP/8cf/nLX9jjhoYGNDQ0UGOZ+MWQbzAfOHAAW7duBQBMmzYN7777Lrva5MKFC3HLLbfg9ttvh1qtxpo1azB//nwolco+vUZh4eWtlBYvXoz0Pi50ZTAY8Je//AUMw0Aul+OTTz7ByJEj2edvu+02PProo9ixYwcOHDiA7du3Y+HChX16DW/rqq2DWdvJSVNmDt4GM4/Hg3LkTDAmI4yttTA210AYGe/WuUIeH4mhcajtaICFsSA+JAahkr7FnLcZDWY0NWg4aXGJtFIpIYQQ77LvXbYZzL3MZ8+exb333ovOTutvqPHjx+P666+HSqVCdXU1Nm/ejIsXL6KoqAgrVqzAN998g9jYWADAggULMGLECGzbtg3bt28HADz33HOIioqCVOr45sJzzz0Hs9mMESNGYNGiRYiKikJRURE+/fRTdHZ2orCwEGvWrMHLL7/c49y33noLr732GgBALpdj6dKlGDNmDHg8Hs6ePYuvv/4aWq0Wzz33HPh8Pm677TaHdbBYLFizZg1CQ0Nx9913IykpCcePH++1w4kQbxnyDeZ169YBAIRCIZ5//vkeWzNkZGTgmWeewWOPPQa1Wo0NGzZg9erVfXoNW4NZIpEgtR+LXP3000+oqrLu5furX/2K01gGALFYjBdffBFHjx6FWq3GO++8E3AN5u7zl0Xh4RBHD3w4dqCq++rvECjCoRg+DbK0URCr+jB0jsfD9OSJMJiNqGyrQYwiEiLBwLbe8iSGYVBf2w6LhWHT+Hw+YmjvZUIIIV7kqHfZZjD2MpvNZjz++ONsY/mxxx7rMT1w9erVeO655/Dll1+iqakJTz31FN5//30A1t+wGRkZKCgoYPPPmDEDSUnOR7yZzWbcddddePLJJ8Hj8dj0JUuW4Oabb4ZOp8P333+PP//5z5wRkfn5+Vi7di0AIC0tDe+//z7ndW666SasXr0aq1evRnl5Of7+979j9uzZSExM7FEHhmFgNBrx8ccfY9y4cQDQrxGehHhKYI3b9TG1Wo2DBw8CAGbNmuV0GMuCBQvYoSc//PBDn1/H1mDOzMzs11Bp211BHo/n9G6cQqHA0qVLAVgXBisrK+vz63hT9xWylVkZnAvxQBQXF+PChQso7vYa/mJqb0bnxWPoOLUTdV88j4rX/g/6+nK3zjVbzKhqrwUAiAUiZESmYmbqFI99Vp5w7mQNNn12Cg217bBYrHf5o2MUEIkGzyIhgRZTJPhRTBFPG4ox5ah32cbWyzyY/PTTT+zvuQULFjhcS0coFOLZZ59lF6fdv38/zp492+/XzMjIwMMPP9zjd0dGRgauu+46ANZGtf3oScDaAWU2m8Hj8fD66687bJQnJCTgb3/7GwDr9lUff/yx03pMmzaNbSwT4m9DusF87Ngx9gf/tGnTnObj8/mYPHkyAOD06dNoa2tzmrc7hmFw8eJFAEB2dv8WbTp69CgAICcnB5GRkU7z2b+Hffv29eu1vKX7gl/KjAyPld3Z2QmtVsvegfU3beFhbgLDQBzd8w6qIwK+AFcNm4nh0RmQi6TgAUgJc+9cXzmSV4aWJi0unK3Hob1lqK1qQ1xi8O+9bC/QYooEP4op4mlDLaZc9S7bHDtYDk17l49q5H179+5lH//qV79ymk8gEHCe37lzZ79fc/78+U5v0o8YMYJ93NTUxD42mUz4+eefAQAjR47E8OHDnZY/ZcoUtoNq9+7dTvNNmjSpT/UmxJuG9JBsW0MW6L0xm/m/+bYMw6CoqIhtQPemuroaGo11rmdWVhYA66rZFy5cgFarRUxMDLKzs50u4V9fX4/29nbO+c5k2DVCL1y44Fb9fIExm6Et5fZ462rrYNJoIOzjfPBgoL3wC+dYnj0ZvD4MqQ6VhmBM3AiMis1BW1cHZKLAGV7WWNeB6ktq9thktEAmFyMiihbhIIQQ4j2uepdtBttc5lOnTgEAQkNDe0zH686+02SgPczO2K/ho9fr2ceFhYXQ6ayLlYpEol4b7OHh4aisrER5eTk0Go3DtYGGDRvW16oT4jVDusFsvwKgozkU9uLi4jjnudtgth+ywufz8eCDD2LXrl0wm81senh4OFatWoV77723xyIMtrnL7tQxNjYWfD4fFovFI9tYeYpZb4Bq7myoT52GoaUVjMkESXQ0BB5a6XCge2R7kqmjFV2XCjhpihznoxdc4fP4iJAFVs/tsW5390ViAUZPSAioIeOeEEgxRQYHiiniaUMpptzpXbYZTHOZW1paAMDlnGObsLAwhIWFoa2tjdP721cqlcrpStT23/W23V8Aa+eOzcmTJ/Hb3/7W7ddrbW112GAOCel9G05CfGVIN5htFyIAiIiIcJnXfm9jtVrt9mvYN5j/8Y9/OMyjVqvxxhtvYN++fXjnnXc4w65bW1vdrqNIJIJcLodGo+lTHb1NKJch9qr5EEdGgmEYmDo0kMaowAuwra88oePcXgCXv0R4Yilkw8b2ep7ZYkaLTg2VInAXQjMazDhzvIqTFpcYisQU13FJCCGEDIQ7vcs2g6mXWavVAkCv+x7bSKVStLW1sb29/SEU9r1pYBtJ2R+299idWCzud5mEeNqQbjB3dV2e59J9dezu7P9w7c/rjX2DWSQSYfXq1Vi8eDGSk5OhVquxd+9evP7662hsbMSZM2fwyCOPYP369eziYPYXvd7qaMuj0Wj6VEdvKC4uRkZGBnuHUCCXQ6iKRk1xMZguPYxGA+IcnGObi9X9znlTUxPba56cnMy5eWA2m5Gfnw/Aekey+7Zd5eXl7LD23NxczpeBWq3GpUuXAADx8fFQqVScc8+ePcvufd19SHxVVRV70yU7OxtSqRTa8wc4eUyyCNQ3tSA+nrulVEFBAYxGI0QiEUaMGIHTdQX4R96bGBmTjbHhw5EIFSQCMYYNG8a589rV1YWioiIAQGRkZI+7zhcvXoROpwOPx+ux/UJjYyNqa60LiqWkpHBuAplMJpw/fx6AdehXWloa59yysjKcO1kLfZeJk56ZEwNdlwZFFysBWBf0iI6O5uQ5c+YMAOsWE5ndthK7dOkSe3MnJyeHE+MdHR3sYiexsbHsNhk258+fh8lkglgs7jFfqqamhr3DnpGRAYVCwT6n0+nY6RhRUVE9Rm4UFRWhq6sLfD4fo0aN4jzX0NDA7oOZlpaG0NDLK4MbjUZ2JdKwsLAeK+KXlJSwPwxGjRrFWQCwpaWFHU2SlJTEuWlmsVhw7tw5ANbF/boPl6uoqGDXVRgxYgREosvD/9vb21FeXg7AOkomJiaGc+65c+dgsVgglUp7TEuprq5Gc3MzAOt0EPsfbFqtFiX/21c9OjoaCQkJnHMvXLgAg8EAoVCI3Fzuj9b6+nq2NyI9PZ3Ti6DX69lrZnh4OFJSuKvLD4ZrhI1Go0FpqXWBIpVK1es1wl5tbS0aGxsBIKCuER0dHQCscxjtpxm1traispKuEcFwjehOp9OBYRjw+fweI+AMBgNMJut3glQq5dTXbDazQ3aFQmGPxo+tXB6P16MxaDQa2T18JRIJdFqj273LNo56me3LFYvFnL9zhmHY31sCgaDH7y29Xs+ODJTJZJyeVpPJBIPBAMD6O8/+8wXAXrP68xlKpVJoNBqH89QdfYa2fBKJhPPYHsMw7HOO/m0MBgP7fPeeZvvRkfaP7f8N7777bjz66KP9+gy7791s4+oztC/XVRw6+rdxFYf2/zYSiYRzTbNYLOzvbEefYVdXFywWi1vx7axcR3FoKxdwHYeu4rs/n6HZbIbBYGBf256r3xG276nBYEg3mG1/CEDvd7Lsn7c/rze2H4YSiQTr1q3jLGIQExODZcuWYfbs2Vi+fDnq6upw6NAhzj7K9hckd+622fL0pY7eYDabOX9Y8uQk8FXRqI0IB0wmiEJ7bkFkMpmcXiwtFgv7nKM/WNtzjt63fbn2Q4hsx72VyzCMwzuu3cs1d3bAUM+dq22ISndarv173Vt+CACQ31CE/IYiJEvjcHvSQpf1dfRebeU6GiJt/xn2tVyTyYSyCx2ctIgoOSKi5AP6tzGbzU7rZF+u/d+Bfbkmk8nhyvOuyrV/r87KNRqNvZbb/b268xn6Or7d+QwtFovDNRQG8hna6tT9vO7luvoMXZXrSDBcI/parjvvNZCuEd74t6FrBNiy/HGNYBiG/c/Zc47KdZbmzvPdy+1L77KNs15mV3Xq7b3YP9/978cT5ToSHR0NjUbDmZ7n7NyWlhb2plVMTIzX6uSI/Q2cpqamfpXr6nlX9e0t3Z336mxa2UDL7e+5vb32QMrt7VxX5znK4+p3hKNrVbAa0g1m+zssRqPRZYPUdtcG6NswkS+++AIajQYdHR09ehBsYmNj8ac//QkPPvggAOCrr75iG8z2d5ecfZE6qmf3u2i+JhAIevyY4PF41nqJRBDZ3c23EQqFTuvN5/PZ57qX29zczP6hOvrRal9u94siWycH5QLWz5FhGIf16l6uJn8/YH9h4fFhSR7jtFzb/7WGThytPsV5fmRYFkQikcv6OnqvIpEIJpPJ4cXf/jPsa7ntahPUzdz4Gz8tBRHRCvD5TK+fobNyBQKB0zrZ19fRhdj2+fS1XPv36qxcW4OiqamJ0xtmX67T+HbyXvsb37Y6uVNufz5Di8XisF4D+QyFQiEsFkuv/zauPkNn5fr6M/TUNUKtVqOjowN8Ph/R0dFulWv/f2fvNVCuEd76twnUa4TZbHb4Xnx5jWhqamJ7sbx1jbDldxQvPB6v1+ddsT/fWbpWY+hz77KNo15mV3Xy1nt1t1xHRo4cifLycnR0dCA/P5+z8Ff3cg8dOsQ+l52d3e86uUp3xjYyx2Qy4cSJE07LtJX7zDPPgM/nIykpCffcc0+P5z1VX0/EaH/LdSe+XdXJl+/Vnc/eWRmufkf0ZyvdQDWkG8z2Q030er3bDWZ3hkbbUyqVDhc0sDdv3jwolUpoNBqcPHkSFosFfD6/Rx17Y8vTfbiFr2VmZvZ4zxKJxOUiJd2H4tmLjo7uMYzPpq6uDmazGSKRqMdQSwA9hg7aCw8P5ww77K77kEV7SUlJnOGOzfn7Oc+LoxIxbMZ88Hg9Lxj2QyzPNxSBz+MDsN7d5/P4uHHStVApe85nlkqlLj9DVyupq1SqHsNJbYRCocty6y9xey2UoRJMnzMMAoH1vbmaX++q3JSUlB7Dbm1CQkJcntt9qK+9hISEHsOEbWQymctys7OzcebMGRiNRtTU1HDiLiYmpsewZhuRSOSyXFcrj0ZGRjrdMo7P57sst/uwTnuhoaEuz+0+nNReYmKi04UGFQqFy3JdbSniaOisjbeuEQKBwGW5vrhG2GJKJBIhOjoaSqXSZZ26D8O2Fx8f7/QGrL+uEY6uvTYRERGD7hrhjC+vETU1NWxMeeoa0X3bTFdzZ8VisdPfTQKBwOnCUb2Vaz909scd+X3uXbbp3svsaEiuDY/Hc1lfV7/7hEKhy3m/rsrt7TO85pprsG3bNgDAe++9h1dffZV93v4zNJvNWLduHXt81VVXcV63e0PHVZ1svYiO8tjfVLF/LJPJcMUVV2Dfvn2oqanB7t27cf3113POtX2Gv/zyCzZs2ADA+l1h21va1Q2j/v7bDCQOXf3bdP993p2r3+Cu4nAg5bqKw4HEt0AggEAg6DHM28bV7wiVSsVZLyqYDZ6mfz/Yzy3qbZEs++dd7YXcXwKBgP1SMxgM7OvZ17G3/Z+NRiM7z8MbdewPxsEQr8HI0qWFvrqIkyZLH+OwsdxdhCwcN2TPx7SkCYhXxiAhJBYSUd9uyniTQW/CmePVnLTxU1PYxjIhhBDiaX1ZGduZYN+X+eqrr2Z/G27fvh3vvvtujzxmsxnPPfccu5XU1KlTe+xhbN8w7O23ZH/Z7wP97LPP4vTp0z3y1NTU4I9//CN7vHr1aq/UhRBPG9I9zPa9CrW1texG6o7YFvEA4PSu9EA5uuPUvY6u1NfXs/MFvFXHvip+4z9oP18AZWYmlFmZiJg4AfLk3rdH6Ivk5GS2R95fNIWHAcbuLjiPD+XImW6dW6GugoAvQFJYPJLC4hEhDUOoJHD2pz53shoG/eUeZh4PmDDVcY/PYBEIMUUGF4op4mmDPaZOHa2CTDHwlZJPHa3CzPnOR6cEMoFAgJdeegkrV66EwWDAyy+/jF27dmHBggWIjo5GbW0tNm3axC70Fx4ejhdffLFHOfYLuv3973/HypUrAQALFizokVckEvVrheqpU6fi7rvvxgcffIC2tjbcfvvtuOGGGzBt2jTw+XwUFBTgq6++Yjt2Zs2ahUWLFvX5dQjxhyHdYLYf/nTx4kVMmTLFaV7bipk8Hs/lkDZ7lZWV2LVrF5qbmzFhwgTMnTvXZX7bAmEikQhhYdb9dyMiIhAVFYXm5ma2Ds4UFxezj10NGfOljqJidNXVo6uuHk37D4AvEnq8wdzbdlu+oDm3j3MsioiDJM75EEV7UfIItHV1oE1vXawjPcL5jRt/OP7LJc5x5vAYhEW4t8VFsAqEmCKDC8UU8bTBHlMz52cGbUPXk8aMGYP169fj97//PRobG3Hy5EmcPHmyR74RI0Zg7dq1DqdrXHHFFQgPD4darcaxY8dw7Ngx8Hg8zJ07t8dQXYFA0K+tpQDgiSeegEQiwX//+1+YTCZs3rwZmzdv7pHvyiuvxCuvvNLnudKE+MvgvC3ppvHjx7O9uocPH3aaz2w24+jRowCs8y1CHazw7EhDQwPWrFmDd955B19++aXLvGVlZWwP8ujRozlzQyZPngzAus2IbQVER+wXfHDV+PcVU2cndNXcobwWkwlddhvcDwYWgw5dlwo4adKUXPAE7i28lhWVjmsyZ+PqjFnIjkpHclhgjA4AgJpKNWqruMO3Jl7hfD4cIYQQQjxr0qRJ+PHHH/HHP/4RkyZNQnh4OEQiERITEzF37ly89tpr2LBhg9ORkhEREfjwww8xc+ZMhIaGQigUQqVS9Tpysa94PB4effRRbNmyBatWrWK3bBOJRIiNjcU111yDt956C2+//bbLObWEBJoh3cMcGhqKadOmIS8vD7t27UJNTY3Doczbtm1jJ613X8TAlVGjRrELeeXl5TktHwDeeust9nH3ISrXXnstfvjhB5hMJnz++efsAgn2NBoNvv32WwDWxVdcLbrjK5riEs6q0eDxYOrQQFddA6mTRX+Ckb6+HLC/ScrjuT0c+/IpPETIwhAhC/No3Qbq+C/c+WNyhRixCe7dMCKEEEKIZygUCtxzzz3sqtJ9NXz4cLz//vsOn3vooYfw0EMP9VrG0qVLsXTp0l7zZWVl4ZlnnulzHd2tByG+NqR7mAHrBuuAdcGsRx99FBqNhvN8cXExXnjhBQDWi9WyZcvcLlsikWD58uVs+Y899liP8gHg/fffZ4espKWlYcmSJZznr7rqKnal1TfffBPHjh3jPG8wGPCHP/yBXSgsUBZRCM0dgTH/+gcip0yGYtgwyFOSwRMIII3zbGPZtqm6oz0kfUGoCEfY1JugyJ0BUUwqRFFJkCQMjmFkcQlhUIRcXoBMFadEaeHg2YjeGX/HFBl8KKaIp1FMEU9zte82IUPZkO5hBoCZM2fi2muvxY8//oiTJ09i0aJFuO222xAfH4/z58/j888/h1arBQD84Q9/6LH69OHDh3HnnXcCsA6D/vjjjznP/+Y3v8Hu3btRVlaGEydO4IYbbsCtt96KtLQ0tLa2Yvv27WwDWKFQ4KWXXuqxvLtYLMbTTz+N3/zmN+jq6sLdd9+NZcuWYcKECVCr1fjqq6/YBR8mTJiAW265xSufVV/xhUIIlQoohqVDMex/83l5PEicbFvSX/n5+W5treEtxuYa8ARCiKISIYpKhDAkCnyx6zm+epMBf9vzOqYkjcOs1CkB17NsM3piIrQaPVpbOlFX1Ya4xDDEJQZmXT3J3zFFBh+KKeJpFFPE03Q6HRiG6XUbIkKGmiHfYAaAF198EVqtFvv370dVVRX+9a9/cZ7n8Xh48MEHsWLFij6XHRISgvXr1+PBBx/EuXPnUFdXh9dff71Hvvj4eLz88stO9/ScN28enn32WbzwwgswGo347LPP8Nlnn3HyjB49Gv/5z38485/9rau+gXMsiY4C38n+c8GIYRgYmrnztMXRjveutXe0+hSKmktR1FyKT898i/FxI/H4zPsh4AfOvx0A1Fa3ATwgIkqOiCg5hEIBYuJC/F0tQgghhBBCfIIazLDuT/fee+/hu+++w6ZNm9jFtcLDwzFx4kTceeedmDhxYr/Lj4+Px5dffomtW7di27ZtyM/PR3t7O5RKJdLS0nDNNdfg1ltvhUKhcFnObbfdhkmTJuHDDz/EwYMH0djYCJFIhOzsbNx4441Yvny5083Q/aWrjrvAlzfmLoeEhMBkMvV7VceBMHe0wGLQcdJEkb0v2rW77Bf2McMwMDPmgGssMxYGddXtnLSY+BAIhIN/Joc/Y4oMThRTxNMopoinCQQCtoeZEHIZXWX/h8fj4aabbsJNN93Up/OmTp2KwsLCXvMJhUIsXrwYixcv7mcNrbKysvD8888PqAxfMXd1wfi/edU2np6/DFgXOfMXS5cGPIEQjNm6T7FAFgK+3PWiWC06Nc7Vc2NmVupUr9Wxv1qatdB3GTlpCUmDfzg24N+YIoMTxRTxNIop4mndpwQSQqyowUy8Rt/AHY7NEwoh7jYHPNiJY1Ihik6CSV0PQ1M1BDJlr3dmQ8QKzBt2BYpbKlDVXgserHsxB5raSu52UqFhUihDpX6qDSGEEEIIIb5HDWbiFe3nC8BU14Axm8H735xqiUrFPh4Mmn5aB7OmFYrh0yDPnACFG0OxAaBe04QIWTgmJ4ZjfPxIqLvakRae5OXauq+8pBlCIQ/NjVpOenxSuH8qRAghhBBCiJ9Qg5l4RdU3m2AsuADw+RCFhSFi0kSEjx/n72p5DGMxQ3NuHyy6DmgLDoInFCNm8e+hyOl9aHVr1+WeWyFfiFxVFhTiwFiNkmEYfP/1WTTWaxAaLkV8UhiiY5UQi4W02BchhBBCCBlyqMFMvMJk22/aYoGxtRV8sQjS2BivvFZ5eTm78ElaWppXXqO7rop8WHQd7DFjMkAc6958stGxwzEsIgUV6mpUqKuQGkC9y5VlrWist/7btau70K7uglgiRO7YhCGx2JeNP2KKDG4UU8TTKKaIp+n1enbRL5rPTMhl1GAmXscTiSCOioIoPNwr5be3t7N7UfqK9sIhzrE4LgOicPdvCCjEcuTGZGGEKhMMGE9Xr9+OH6rgHMvkIoRHyobMYl82/ogpMrhRTBFPo5ginmY2m2mVbEIcoAYz8TpxZCRkcXGD5gLMWMzQFh7mpCmGT+tXWTweDzwExufSqTXg/OlaTlpcUhhCw2QICaPFvgghhBBCyNBDDWbideLICK8NxwaA3Nxcn94R7aq8ALNWzUlzp8G8r/wwhkWmICk03ks1G5jTx6pgNlnYYx6Ph7iEUMQPsd5lwPcxRQY/iiniaRRTxNNkMhnFFCEOUIOZeJ04KtIr+y/bCIW+DWPNub2cY4EiHIJe9l7u0Gvw1tGPYbaYkRGZijlp0zA3bRqkosDouWUYBid+4Q7Hjo5VQioTISZ+6C325euYIoMfxRTxNIop4mk8Ho8ay4Q4QFdb4nXy5CQIlUp/V8MjGMYCbdFRTpo4Lh18qcLleT+XHoDZYgYAlLRU4JK6GrNSp3itnn1VXtLcYxuppNRwxMSFQCgcPFuBEUIIIYQQ0hfUYCZexZdKIU9zb/XoYNBVfRGWznZOmiJnWq93ZH8uPcA5Hp8wKmC2kgKAE79c4hxHxypx3eKRsFicnEAIIYQQQsgQQA1m4lXiyEjI4uO8+hpqtZqdcxPupZW4bTRnucOx+bIQyDImuDyn06BDmCQEbV3t6DLpAQC50Vleq2NfaTv0KDjLXexr4rQUiMRD9/Lgy5giQwPFFPE0iiniaSaTiX1MQ/4JuYz+GohXeXvBLwC4dOkSu7WGN380MAyDzqIjnDRJXDqEIREuz6vpqMeYuBEYFZuDek0TajvqceWwK7xWz746dbQSFvPlra2EQj7GTAqcvaH9wVcxRYYOiiniaRRTxNMMBgN7E4YazIRcRn8NxKvkKckQSANjYauB0teVwqxp5aTJc6b2Ohybx+NBLpKi09iF+JAYTE0aB1mgLPZlYXDiEHc4du64BMjkYj/ViBBCCCGEkMBBDWbiVaEjc73+GvHx8bBYLODz+V59nR7DsaUKyLN6X7grIzIV6RHJaNQ2o0JdjZTwRG9Vsc9KLzahtbmTkzZxWoqfahM4fBVTZOigmCKeRjFFPE0kEvm7CoQEJGowE68RKBRQDvP+gl8qlcrrr8EwDLSFhzhp4tjeh2Pb8Hl8xCpViFV6v659ceIQdyspVVwIktLce0+DmS9iigwtFFPE0yimiKdRg5kQx+i2JPEacVQkJIPkC92sUcOi4267JM+eEtT7FRr0JpQUNnLSwiNlqCht8VONCCGEEOJpOTk5yMnJwR133OHxsquqqtjyn3jiCY+XH2z1IIMTNZiJ18iTk8EfLHcreUDo1IVQjJ4LcXwmBCGRUAyf6vKUDr0GDMO4zONPYokQDzw+BxnDVZDJReDzeVDFKiEU0mWBEEIIIYQQgIZkEy8KHZ7j7yp4jLGxEjweH6LwGIjCYyCQKiAMiXJ5zqsH30Ojthmz06ZiTto0xCijfVRb95iMZpQUNiExJRwJyWHQdRohlogQmxDq76oRQgghhBASEKjBTLyDx0PYuDE+eamzZ8+yW2uMHj3a4+UzDANDUxUnTRSd7HI4doOmCfkNRWDAYEP+NmzI34Y/zfkdxsSN8Hj9+kPXacCxgxUwmy0A/reSt0IMVawSIpHAz7XzP2/HFBl6KKaIp1FMEU/r7Oxkt5WSy+X+rg4hAYMazMQrxBERkCf6ZjVohmHY/7zBrG2DWdfBSRNHu96neGvhz2BwuT5ykQzDVZleqV9/VJS0sI1le/FJYX6oTeDxdkyRoYdiinjaUI8pi+Xy++bzg3c9EUJI4KMGM/EKRXoaeALf9FTKZDIIhUKvre7IGDrBl8hg0esAAAKpAoKQSJfnXGgq5hxnRw2DWBAY87kZhkFrS2eP9NAwKcIiZH6oUeDxdkyRoYdiinjaUI4pg9GM9VvzoesyQSYVYvXCkRDT6KgB4/P5bA8zIeQyajATr5Al+W6v4aysLK+WL4pMQNiUG2HuaIahsRJ8sczll0mnUYdJCWMwLCIVFW1VqGyrwcyUSV6tY1/oOo3Qdxk5aaFhMuSOjacvyf/xdkyRoYdiinjaUI6pi5VqGI0WVDZ0ID0+DBcr1Rg5zPW6IsGutrYW69atw759+1BTUwOZTIacnBzceuutWLhwId599128/PLLAIDCwsI+l9/a2orPP/8ce/fuRVlZGTo7OxEZGYkxY8bgxhtvxLXXXut2WZs2bcIXX3yBoqIi8Pl8pKenY8GCBbjtttsglUpdnnvx4kV88803OHz4MGpra9HR0QGpVAqVSoVJkyZhxYoVGDlyZJ/fHyEDQQ1m4hW+Go7tbW1Ht6Oz+AQUw6dBkTMF8ozxvZ5T29EA8HiIlIcjUh6OifGjMT2AGswbPzoOo9GM2PhQKELEkEpFGD/V9ZxsQgghJFCcK21Ch86Azi4TOnQG5Jc2D+oG8+HDh/HAAw9Aq728vaXBYMCRI0dw5MgR7NixAzk5/V9odceOHXjqqafQ3t7OSa+vr8eOHTuwY8cOTJ48Gf/+978RGel8hJ3ZbMbvf/97fP/995z0M2fO4MyZM/j000/x3nvvIS0trce5FosFa9aswaeffgqLhTtlzGg0oqOjA6Wlpfjqq6/wyCOP4P777+/3+yWkr6jBTLxCGh/n7yp4hOb8fuirCqErPYmm799B5JUrET59sctzhkWkIFIWjgp1FS61VSMhJBYiQWD8qbU2a1Fe3AwAqK5QQ64UY87V2dRYJoQQEhQaWjrR2KpDa7seANDarkeDvBMNLZ2IiRx8C1WdO3cO9913H7q6ugAA8+fPx7x58yASiXDkyBFs2rQJP/zwAw4cONCv8nfv3o2HH34YZrMZADBz5kzMnz8f4eHhKC0txTfffIPq6mocPXoUq1atwoYNG6BQKByW9f3338NoNEIul2PFihUYNWoUmpqasHHjRhQVFaGyshKrV6/Gd999B6VSyTn39ddfx8cffwwAiIyMxJIlS5Ceng6JRILq6mps374dRUVFAIDXXnsNM2fOxKhRo/r1ngnpq8D4FU8GncGw/7KpvRn6KrthTYwFYlVKr+fxeDxEyMIQIQvDmNgRMFlMXqxl35w5Vs05NuhNiE+mhb4IIYQEpr0nqlBW08YeG00WmEwWaDoNkEuF0HQaYDJZsHlfCURCPpsvPSEMcya4XqAzGDz//PPo6uoCj8fDmjVrsHTpUva5RYsWYcmSJbjvvvvQ0dHhohTHNBoNnnjiCZjNZggEAvz973/HokWLOHn+7//+D4888gh2796NkpISvPjii3juuecclmc0GqFSqfDxxx8jPT2dTb/99tvx2GOP4ccff0RNTQ3efPNN/PGPf2Sfb2lpwbp16wAAiYmJ+PrrrxEREcEp+9e//jWefvppfPPNN2AYBtu2baMGM/EZfu9ZCOk7U2fPRaW8paqqCuXl5aiqquo9cx9oCw9zjvkSOWTpfdu6g8/nQywUe7Ja/cYwDE4fq+SkxcSFIDpG6eSMoctbMUWGLoop4mlDIabMZgvyS5tRVtPO/lfVoEFNkxY8Pg9JMSHg8XmoadKiqkHDyZdf1uxwN4hgcujQIZw8eRIAsGzZMk5j2WbSpEmcxmdffPHFF1Cr1QCAe+65B9dffz30ej0MBgObRyaT4ZVXXkHi/6baffPNN6ivr3da5t///ndOYxkARCIR1qxZA5VKBQD4+uuvodfr2ed3797NvuZvfvObHo1lwPp76r777mOPy8rK+vhuCek/ajCToNfS0oLm5ma0tLR4tFzthUOcY3nWJPACZKXr/qiqUEPdouOkJadHQioL3vfkLd6KKTJ0UUwRTxsKMdXaoQcDQC4VoqW9Cw2tnWhUd8JoMiM1LgQiIR+pcSEwmsxoVHeiobUTLe1dkEuFYBjr+cFs9+7d7OO77rrLab4lS5YgPDy8z+Xv3bsXACAUCrF69WqYTCb2P3tyuRyrVq0CYO1F3rdvn8PysrKyMGvWLIfPKZVKLFmyBADQ1taGEydOsM/ddNNN+Omnn/Dee+/huuuuc1rfpKTLIwZsQ9QJ8QVqMBOvEAb5hvdmbRu6Lp3npCmGT3d5zu7Sg1h34kuUtFQE5L6YZ49zeyFkchFSMwbvIimEEEKCW3S4DIvnZEAVIUdGUhgUMhEYBlBFyCGXWm/2yqUiqCLkYBhAIRMhIykMMRFyLJ6Tgejw4N4q8ejRowCAiIgIZGZmOs0nFosxYcKEPpd/+vRpAEBmZiaiolz/Hpg+/fJvoDNnzjjMM2XKFJdl2NfRvgyRSITU1FTMmjWrx9xmAKirq8POnTvx4osvsmm2OdeE+ALNYSZBLzs72+P7Bnac3QPArtHLF0IUm+bynB+K96CstRI/XNyDpNB4rBy7BBMT+jaE21vMJgvyT9Vw0kaOS0BCEs1fdsQbMUWGNoop4mlDJaYSVUqsuDobO45cglDAR2V9B1rauxCquDzdqaXNepwcG4Lk2BBcPSWFbVAHs4aGBgBAQkJCr3lTUnpfY8WeRqNhh0UnJycDgMstn2x5AKCpqclhnsRedkixfx+NjY0O85w4cQIHDx5ESUkJKioqUFFRAY1G47JcQryNGswk6PW2p19/aM5zV5sUq5IgClM5zV/SXI6y1svzg6vaayHkCzxer/66WNAAXSd37+XpczMQGuR3373FGzFFhjaKKeJpQymm5FIRrpyYjI+2n4dtAFdzmw5dBjOkYgHAA5t+5cTkQdFYBsDOL3bn37qv8WC/RZVMZv0twOc7H3hqX75Op+s1jyO21wHAmcMMWOckP/HEEzh16pTDcxMSEjB37lx89tlnLl+DEG+gBjMh3Zh1HTDUlXLS5BkTXN7F335xN+c4VKLE6JjhXqlff5zpNhw7ZVgkIqKCe9g8IYSQoaOx1bqYqE5vgtligVZnRKhCjLrmTvB4gOB/jb3G1k5O73Mwk0gkMBqNThuo9vo6p9e+8epO+Z12i7k6axjbLxbWWxn2Q68bGhpw++23s/Pxo6KiMH36dAwfPhxZWVkYPnw44uLiYDabqcFM/IIazIR0ozm77/KtagDgC6AcNdvlOYkhcRihykKFugqdRh2yo4e5vFPrS7pOA4rOc1e0HDPR9bApQgghJJA0tOpgMllgMlsgFPCRFKOEQiaCVmdEVYMGJrN1u6mGVh0yksL9XV2PiIuLQ3FxMWpqanrN604eeyEhIZBIJNDr9aisrOw1f3l5Ofs4NjbWYR7bEHJn7F8nLi6Ofbx27Vq2sXzrrbfimWeegcjB9qTt7e291pMQbwiMX/SEDIBGo0FHR4fH5rhozu/nHIuiEiCKdr6XY7teAxNjxsiYbFyfdSXmpE3Dgux5HqmLJ+SfqoXFfPkGgEDIR+7Y3udDDWWejilCKKaIpw21mGps7YTOYOIs7DV7fCJnQTCdwYRGte+2tfS2sWPHArAOzS4pKXGaz2KxsNtPuYvH47H7GBcXF6O5uRlms5n9r7tDhy7vHJKTk+OwTGeLgdkcPnx5u07bewMurwYulUrx1FNPOWwsA8CFCxfYx4G4uCoZvKjBTIJeaWkpioqKUFpa2nvmXlj0ndDXFHPS5MNcD8cWC0QYFZODELECPB4PyWHxyI3OGnBdPKX7cOzs3FjaSqoXnowpQgCKKeJ5Qy2m0hJCoZCKkBYfivSEMNx6dTbGZKqw4upspCeEIS3+8vODhf0WS59++qnTfD/88IPTRbRcmT9/PgDAZDJh/fr10Ov16Orq6jG/WKvV4vPPPwdgnec8Z84ch+WdOHEChYWFDp9raWnBli1bAADx8fEYPfryoqi2udpCoRASicRpfT/88EP2cfetrwjxJmowE2JHk58HMJbLCTw+lGMcfzHYSIUS5MZk4bqsuZg/bAYmxI8OmOHYLU1aVJW3ctIyclSwmC1OziCEEEICz5hMFe66IRdzJyThplnDONtK3ThzGOZMSMJdN+RiTKbzBTqDzcyZMzF8uHU9lM8//xzbt2/vkaewsBB/+9vf+lX+smXLEBZm3S1j3bp1Dsvv6urC//t//48d8r148WKnq2FbLBY8+uijPVbR7uzsxCOPPIK2tjYAwN133w2B4PLCqLbyNBqNwzqYTCb8/e9/5+xL3b1RT4g30RxmEvRUKhUsFotHGqkdZ/dxjkWR8RCr3NuqgcfjIUoeMeA6eNLZ49WcY5FIAHVrJ8pLWjAsO9pPtQp8nowpQgCKKeJ5QzGmwpQShCl79kDy+TyMzhh832l8Ph/PPfccVq5cCaPRiEceeQTff/895syZA4lEglOnTmHDhg3Q6/UQCAQwm819iofQ0FCsWbMGDz30EMxmM55++mls374d8+bNQ2RkJMrLy7Fx40ZUV1t/S6SmpuLpp592Wl5kZCSKi4uxePFi3HrrrRg2bBhqamrw5ZdfsvOXp0yZgjvvvJNz3pIlS/Dqq68CAP7whz/g4MGDGD9+PIRCIcrKyvDdd9+xdbDp6Ohw+30SMlDUYCZBLz4+3iPlWMxGGFtqOWmyYeODeo/Lri4jBAIezP+bw6yKU4LP5yEiiraTcsVTMUWIDcUU8TSKqaFh7NixePXVV/GHP/wBnZ2d+Omnn/DTTz9x8txyyy2orq7GL7/8ArG4byuEX3XVVXj99dfx5JNPQqPR4MCBAzhw4ECPfNOnT8crr7zCWd26u3vuuQcHDhzAL7/8gjfeeKPH8zNmzMC///3vHo36e+65B0ePHsX+/fthMpmwceNGbNy4kZNHIBDgN7/5DQoKCrBz507U1NRAo9G4rA8hnkINZkL+x6RuRMiEa2DWtMLYXAVjUw1CJ17rNH9zZysq22oxJnZ4wN7hv3bRSIwcl4C8nRdRX9OOmIRQ8Pl82n+ZEEIICRJXX301vvvuO3zwwQfIy8tDXV0dxGIxcnNzsWrVKlx99dVYuXIlAGuvcV9dc801mDRpEj777DPs2bMHly5dQldXF+Li4jB8+HDccsstmDVrVq8dCCKRCO+//z4+/vhjfPPNN6ioqIBEImHLuPHGGx2WIRaL8e6772LDhg3YsmULioqK0NnZCYVCgaSkJEyaNAkrVqxARkYGPv30U+zcuRNmsxk//vgjbr755j6/X0L6isfQMnPEAzQaDWehh5ycnKC766e9eAz62surUApDoxE6br7T/BvObcWG/G2IkIZhVtoUzE2bjqSwwLvjf7GgAdWXLs9jjoiUY+zkZD/WiBBCSCC6ePEiTCYThEIhsrICZ/FK0rvrrrsOZWVlGDt2LL766it/V4cMIv29LgyGtoFNYHaLEeJjDMPA2MLdw1Ac5XyvYoZhsK/cuj1Ca1cbtlzYgR+L93q1jv2lbuFusREeKfdTTQghhBDirs2bN+Pee+/Fc889h3vb2GwAAF19SURBVPr6eqf5SkpK2H2Sc3NzfVQ7QoYOGpJNgl5BQQGMRiNEIhFGjBjRrzLMWjUseh0nTRTpvLe4rLUS9VruKpAzUyf367W9yaA3QavhriRJDebeeSKmCLFHMUU8jWJq8AsNDcW+fdbFSBmGwbPPPtsjj0ajwdNPP83uS7xw4cJ+v55OpwPDMODxeJDJaOoWITbUYCZBz2g0wmg0DqgMxtAFgVQBc5cWACCQKcGXO58HVNFWhVCJEu16DQBALpIhNSxpQHXwhtZuvctCoQChYVI/1SZ4eCKmCLFHMUU8jWJq8JsxYwaSkpJQVVWFzz77DOfPn8c111yDuLg46HQ6lJaWYvPmzew2TsuWLcOkSZP6/XoMw4BmahLSEzWYSdATiUSc//erjMh4hE6+AZbOdutK2XyBy8Ut5CIZrsmcg/auDlS11yJCFgapqOdWF/5gNJrBAyAUCaBu5jaYwyJk4PGDd9VvX/FETBFij2KKeBrF1OAnFovx5ptv4v7770dtbS1OnTqFU6dOOcx722234amnnhrQ69l+9wTz7iCEeAM1mEnQG+hQNKO6Hk3b3oI8axLkWZMgTR7uMj/DMNDorT3RodIQ5EpDMCF+1IDq4EmnjlRi9/eFyB0bD6GQD4lMyH750XBs99DwRuJpFFPE0yimhobhw4fj+++/x8aNG/Hzzz+jqKgIbW1tUCgUiI2Nxfjx43HLLbdgzJgxA34tGoZNiGPUYCZDXufF49CVn4Wu/Cyad6yHNGUkEu54zml+Ho+H+Rkz/9e7XIfq9jokhsb5sMaunTlehS6dEScOXQIAxCeHIWtEDAAgIooazIQQQkgwkclkuOOOO3DHHXf4uyqEDEnUYCZDXufFY5xjYbjKrfNsvcu5MYGz9UZzowbVFWpOWmS0tZEsEgmgUIr9UCtCCCGEEEKCE20rRYY0i14HXUU+J02e1f8FM/ztzPFqzrFIJEBElAKAtXeZ5iURQgghhBDiPuphJkGvtrYWFosFfD4f8fHOt4JypLP0FGAxXU7gCyFPH+vZCvoIwzA4263BrIpXgs+n+ct9NZCYIsQRiiniaRRTxNMMBgP7WCymEWmE2FCDmQS9xsZGdi/Kvv5o6DjxE+dYmpoLvsR5w/Kvu19FQkgspidPwAhVFgR8Qb/q7A2VZa1Qd9tGKjb+8tZYNH/ZfQOJKUIcoZginkYxRTzNZDKx+zBTg5mQy6jBTIYsi8WMruoiTppYleI0f1VbLfIbipDfUIQdJXkIlSix5qo/IkYZ7e2quuXM8SrOcaRKgUlXpELdooOu0wipjLYeIYQQQgghpC+owUyC3rBhw9g7on3RVXoajLGLk6bMnek0/66yA5xjIV+IaEVkn17TW0xGM86fruWkjZ2UhPikcMQnhfunUkGsvzFFiDMUU8TTKKaIp0kkEn9XgZCARA1mEvSUSmW/ztOc3885FijCIUnIdJr/cOVJznFWVDr4vMBYN6/ofD26dEZO2ugJiX6qTfDrb0wR4gzFFPE0iiniaQJB4EwzIySQBMavfUL8QFd+jnMsTR7u9E49wzCYlTYVo2JyEC61zgseoXLeuPa17qtjp2ZE0SJfhBBCCCGEDBD1MJMhydBcDXNHMydNMXy60/xtXe3g8/gYrsrEcFUmNAYtpiaN93Y13dKpMaC4oIGTNmYi9S4TQgghhBAyUNRgJkGvq6uLnccllUrdOqfjzB7OMU8ohjxnitP8EqEEo2NzUN1ehxZdG+KUKkTKwgdQa8/JP1UDi4Vhj4VCPnLH0oqpA9GfmCLEFYop4mkUU8TTLBYL+5jPp0GohNhQg5kEvaKiInZrjTFjxrh1jq6EOx9ZHDcMfKHzLRRkIilGqLIwQpUFraETnUZdwCy0crrb6tiJqRHo1BohEgnAF9AXXn/0J6YIcYViingaxRTxNPubMHI5TesixIYazGTIMXdpYWio4KTJMye6fb5CLIdCHBhfJE0NGtRcUnPSQkIlOH2sEnw+H2ERMoyZkAgePzAa94QQQgghhAQTajCToBcZGQmTyQSh0L1w1l44BDCXhx2Bx4Ny1Gwv1c67eDzr9lEFZ2th0JshlYkQEWVtzFssFpiMZmos90NfY4qQ3lBMEU+jmCKeJhQKaasyQhygqywJeklJSX3KL1BGIGTCtTC21MDYUgu+SAJRWLTDvE2dLahsq8HomOEQCgLvzyVKpcSi28bh+qWjUHiuDiWFjZwGMq2U3T99jSlCekMxRTyNYop4mljsfGoaIUNZ4LUACPEihmFgaq2FQBEGgSIM0uQRkCaPcJp/b9khfHnuOyjEckxOGIvZaVMxKjbHhzV2j1giRO7YBLQ0d4JhLi8AFh4p82OtCCGEEEJ6euKJJ/Dtt98CAAoLC/1cm8Bk/xn9/PPPDm+S/fjjj/joo49QXFwMjUaDkJAQLF68GE888YSvqzuoUYOZDCkWXQfMOg0nTRyd7DT/wUvHAABaQyf2lP8CiVAckA1mAKiuVHMayzweD+ER1MNMCCGEEDLYfPnll/jzn//MSWttbaWRAl5ADWYypBhbajjHfLEMAmW4w7w1HfWobK/lpE1JGuelmg2MxWxBaVEjJ00iFUIgpFWyCSGEEEIGm7Vr1wKwdpCsWrUK48aNg16vx+jRo/1cs8GHGswk6F28eJHdWiMrK8tlXrO2nXMsiox3urhFS6cakbJwtOjUAKx7MQfK3svd1VS19UiTyekOY3/1JaYIcQfFFPE0iiniabS3d/BobW1FY6O1o2T+/Pn405/+5OcaDW7UYCZBT6fTwWg0wmQy9ZpXkTMF0tSRMDbXwNhSA3F0otO8UqEE84bNQKdRh+r2OvB5fMQpVZ6ser+VFjUiMSUCEqkQZpMFl0pbeuQZlu14ITPSu77EFCHuoJginkYxRTzNYrHQKtlBQqfTsY8zMzP9WJOhgRrMJOjxeDz2P1e0RUdhaLwEeeZESBIyIU10fUe+XW+d6ywXyZAVlY6UsAQI+AKP1bu/tBo9PvvvEfAFPAwfFYe4xFDou0yc1bHHT0lBSCjdHe4vd2OKEHdRTBFPo5giZOiyWC5vj0pby3kffcIk6Lk7V6Pj5A50Fh9H657PIAyNRsTsWxEydp7T/BMSRmF4dAaqO+pQ3V6H5LAET1V5QPJP1sBiYWCxMDh3sgbnT9di2txhEP6vwRylUiIsglbHHgia/0M8jWKKeBrF1NCQk2NdaPThhx/G8uXL8dxzz2H//v0AgOTkZPzqV7/CjTfeyObXarX4+uuvsX//fhQWFkKtVgMAwsLCkJubi2uuuQY33XSTw0bWr3/9axw5cgTTp0/HBx98gEuXLuGDDz5AXl4e6uvrIZPJkJubi6VLl2LhwoUub9Z0dHTgww8/xE8//YTy8nKIxWJkZWXhtttuw0033eTWe7dYLNixYwe2bNmCM2fOoLW1FQqFAqmpqZg7dy5WrVqF0NBQh+fecccdOHLkCGbOnIn3338fJSUlWLduHX755Rc0NjYiKioKU6ZMwa9//WtkZGQAsA5J/+ijj/Ddd9+hsrISAoEAubm5WL16NebNc/570d33sm/fPmzYsAGFhYXs55mdnY3rr78ey5Ytc2uxrrVr1+KNN97gpL3xxhts2pIlS/CPf/xjQHUlPVGDmQwJFqMeuvKz7LGpvQk8gajX8+Ria+9yVlS6N6vXJ2eOV3GOo2IUENot7pWeGeXrKhFCCCHEizQaDVauXIny8nI27cKFC5wG4/79+/HYY4+xjWR7XV1dqK+vx+7du/HFF1/gvffec9rYBICdO3fi8ccfR2dnJ5um1+tx8OBBHDx4ENu2bcPatWshEvX8LVVSUoJ77rkHdXV1nHNPnDiBEydOYM+ePb32itbV1eGRRx7BiRMnOOlqtRpqtRqnT5/Ghx9+iH/961+YPXu2y7K2bt2Kp556Cnq9nk2rra3F5s2b8fPPP2P9+vWIi4vDr371qx5bXB05cgRHjhzB008/jTvvvNPl6zjT2tqKhx9+GIcPH+akGwwGHD16FEePHmX/TWJjY/v1GsS7qMFMhgRd+VkwJsPlBB4fsoxxfqtPfzU1aFBTyV3gKzY+lPNYSUOxCSGEkEHlk08+gV6vx8yZM3HjjTdCrVZj7969mDlzJgCguLgY999/P4xGIwQCAebPn48pU6YgKioKjY2NOH36NL7//ntYLBacPn0a//73v50uFFVRUYHHHnsMBoMBCxYswMyZMyEUCnH48GF8++23sFgs2L17Nz799FPcfffdnHMbGhpw++23s432yZMn44YbbkBISAjy8/PxxRdfYNu2bS57U9va2rB69WqUlpYCABITE7F06VIMGzYMbW1t2LlzJ/bv3w+1Wo0HHngAb7/9NmbNmuWwrJKSEnZP4qVLl2Lq1Kloa2vDxo0bUVRUBI1Gg7/85S8QCAQoLCzE9OnTcf3110MmkyEvLw9btmwBAPzzn//EDTfcgKiovnVKGAwGrFq1CsXFxQCsowKWLl2K1NRU1NfXY8OGDSgtLUVRUREeeOABfPXVVy5vJixYsAAjRoxAc3Mzu6XUggULcMMNNwAA4uPj+1Q/4h5qMJMhofPicc6xNHk4BLIQP9Wm/7r3LovEAkREWfda5vF4SKPeZUIIIT5mMBh6z+SEQCCAQOB4fRCj0QiGYQKqXD6f75c5o3q9HnPnzsXbb7/NDoW2b6y+/vrrMBqNAIBXX30V1157bY8yli1bhtWrV4NhGGzdutVpg7mmpgYikQj//e9/2QY5ACxatAiTJ09mG6AbN27s0WB+9dVX2cby/fffj0ceeYR9buHChVi+fDnuuOMOdoVnR/71r3+xjeWrrroKL7/8MmfV7ttuuw3ffvstnnrqKZhMJvzhD3/Ajh07oFQqe5RVW1sLkUiEd999F1dccQWbfvPNN+Oaa65Bc3Mz8vPzHdb3pptuQnR0NNatWwej0Yhdu3Zh2bJlTuvtyDvvvMM2lq+66iq8+uqrnJsFd9xxB+677z4cPHgQ+fn52LJlC5YuXeq0vIyMDGRkZKCq6vLvwWHDhuGqq67qU71I31CDmQS9xsZGWCwW8Pl8qFQ9V7FmGAbagoOcNHnmRKfl/X3fG1CIFZiWNB7j4nIhFgbG9kyMhcHZ49WctFHjExCpUqK1WYv4pDDaSspDeospQvqKYop4WiDF1MGDB3vP5ERWVhYSEx3vWHHkyBG2EdhXaWlpSEtLc/jcyZMnOUON+yIhIQHZ2dn9Oneg7r33XofzhnU6Hfbu3QsAmDRpksPGMgBMnz4d48aNw8mTJ9Ha2gq1Wo3w8HD2efuFpG6//XZOY9lmyZIlWLt2Laqrq3Hx4kV0dXWxjdmWlhZs2rQJADBmzBj8/ve/73F+eno6XnjhBdx3330O61hfX8+WkZSUhJdeesnhFldLlixBUVER1q1bh5aWFnz55Zf4v//7P4dlLlu2jNNYBgClUokbbrgBH330EQBrvDz88MM9zr3llluwbt06AGAbvu4ym834+OOPAQAqlQovvvhij551kUiEv//977jyyithsViwdetWlw1m4h/UYCZBr7a2lt2L0tGPhq5L52Hp0nDSpEkjHJbV0qnGyVrrncb9FUcgEYjx3Pz/h/SIZM9XvI8qylrQ1qrjpE26Ig3xSWFobdZCrpD4qWaDT28xRUhfUUwRT6OYGlpEIhHGjBnj8DmZTIZdu3bh0qVLDntZ7SUmJuLkyZMArPOa7dn3ul9zzTVOy8jOzkZ1tfUGfnt7O9ug3b9/P9vovvXWW50uCjZnzhykpaVx5mPbHDhwgL1JsmrVKshkzhcx/b//+z989NFHMJlM2Llzp9MGs224cndJSUns4yuvvBJ8Pr9HHvshzh0dHU7r4sjJkyfR1madRrd06VKn/zZxcXF48skn2UXASOChBjMZ9DT5eZxjvkwJcaLjPesOVXIXlxDwBUgODYz5IGePcYdjq+JCEJdonb8cEaXwR5UIIYQQ4gPJycku5/1GR0cjOjra4XNarRaFhYU4fvw421gGrD2gzthWjnbEvuFnvw/46dOn2cfjx493ej5g7Ql31GA+deoU+3jatGkuy4iOjkZmZiYuXLiAs2fPOt1DOj3d8cKtISGXp+YlJzvuGLFvsNv3wLvj7NnLi81OmDDBZd7+LihGfIMazCTopaSkOL1IAoCu7AznWJKYDb6T/ZT3XzrKOVYpAmNOsNFoxvkztZy0MRMTaf9NL+ktpgjpK4op4mkUU0OLqxWt7TU0NGDnzp0oKChAeXk5Kioq0NDQ4HDOdvc0+x5W+8Zkd/ZzuO0bkU1NTezjuLg4l/VMSUlxmN7S0sI+dtaItZecnIwLFy7AaDSivb0dYWFhPfI4SuvOWU/2QP6+7D+PhITA2JqU9A81mEnQs59/052xvRkmdT0nTZ412Wn+uenToBQrUN1Rh0ZtM0aqsiAU+P/PpOhcPfRdl+/iggeMnuB4zhcZOFcxRUh/UEwRTwukmOo+P7QvnC3MBQBTpkwZ0KJfzowfP35Ai375Q2979JpMJrz00kv4+OOPOb2+NjKZDFOnTkVjYyO7yFV39o3D/ixsZj9k2dG8Y3sKheORcVqtln3saji2o9fR6XQOG8f+WKQNADscG+j98yCBzf8tAUK8SHN2DzdBIIIyd4bDvGaLGVqDDplRaciMSoPepMfUJNdDinyl++rYaRlRCA3v/YuEEEII8bbeGnP95WiP30Au15+eeOIJfPfddwCs72/SpEkYPXo0srKykJ2djczMTAiFQjz++ONOG8wDZd8LrtPpXM6ndrayun0jubcyAHAWbwu0Rql9fbrPFyfBhRrMZFDrvHiMcyyOSYFA6viupoAvwA0581HTXofKtlo0djYjNTzJYV5f0nboUVzI3X5hWLaKhuIRQgghBCdOnGAby8nJyVi/fr3T4cx9XbiqL+wXn6uqqsLw4cOd5m1oaHCYbj8Pu7KyEiNGOF6k1aaiogKAtXEaSKMuAHD2bK6trXW5oFdJSQm0Wi1SUlIC7n0QwD/jSgjxIJPJBKPR2GMIktmoh762lJMmSx/rsiyxQIS0iGTMSpuCm3KuhiQAtpQ6d6oGjOXy0DE+n4euLiMKus1pJp7jLKYI6S+KKeJpFFPEZs+ePezj3/72ty7n/hYUFLCPuw9L7+8wdZuJEy9v2Xn48GGXeU+cOOEwffTo0ezjQ4cOuSyjvr6e3a85EFeXHjlyJPvYfjEzR9auXYtly5Zh+vTp0Gg0LvMS36MGMwl658+fx5kzZ3D+/HlOuu7iMcDC/SGhHDnL7XIDYe4yAJzptjp2VIwSQiEfkSrXw5RI/zmLKUL6i2KKeBrFFLFRq9XsY7lc7jTfDz/8gLq6Ova4+82Wvq4C3d3s2bMhkVi3uPzss8+cDrs+d+4cZ0Vte3PmzGGHzH/66afQ6XQO8wHA+vXr2TrPnTt3ADX3jkmTJrFDyjdv3gy9Xu8wX3t7O/bt2wfAun91b8PQie9Rg5kMWprzBzjHwjAVxCr/76fcV9cuHonktAgIRdY/19iEECiUEsTGOV/BkhBCCCFDQ2Li5UVAN2zY4LCn+ODBg/jzn//MSXPWgOsvuVzObo9UXl6OP/3pTz0a5Y2NjXj88cedlhETE4Mbb7wRgHVI9uOPP+5w/u+mTZvw4YcfArAOfb7ttts89TY8Ri6XY/ny5QCA6upq/PnPf+7xeRgMBvz5z39mFzsLxPdBaA4zGQRCQ0NhMpl6rIIoTRoOxmSAsaUWJnUDpMm5Duf8dhm7cLIuH+PjR0EqlPiq2m4TCPhIz45GamYUWpu0iIiUIz0rGjw+zV/2FmcxRUh/UUwRT6OYIjYLFizA2rVrYTQakZeXh2XLluHGG2+ESqVCQ0MD9u7di19++aVHQ7r70F9PrIvy29/+Fj///DNKS0uxefNmFBQU4JZbboFKpUJRURE+//xzqNVqREVFobm52WEZTz75JI4ePYrKykrs2LEDCxYswM0334z09HS0t7dj586dyMvLA2BdtfyFF15AZGTkgOvuDQ899BD27NmD0tJSbNq0Cfn5+ViyZAni4+NRWVmJb775ht2Pevr06Vi0aJHHXnvt2rV44403AAAPPvggHnroIY+VPdTQVZYEvbS0tB5pjMkIxqiHJCELkoQsMGYjFNlTHJ5/si4frx58DyKBCOPicjEjZRKuSJnk5Vq7x2yyoKLE+oXC5/MQFaNEWLgMUSrHC5cRz3AUU4QMBMUU8TSKKWKTnJyMZ599Fs8++yzMZjPOnj2Ls2fP9sg3adIkLFy4EH/5y18AAIWFhZg06fLvHU9smSWTyfDJJ5/g3nvvRX5+PoqKirBmzRpOnpkzZ2LKlCl45ZVXHJYRGhqKTz/9FA8++CDOnDmD6upq/Pvf/+6RLzw8HK+88gpmzHC8+0kgkMvl+Oijj/DAAw/g7NmzuHjxIv75z3/2yHfFFVdg7dq1tJhrgKIGMxmUjOp6MMzluTh8oQSS2HSHefeWWReVMJqNOFp9GgazIWAazNWX1DAYuMN30rOi6YJKCCGEENayZcuQk5ODDz74AMePH0dzczOEQiGioqKQm5uLRYsWYd68eejo6MALL7wAo9GI77//HitXrvR4XaKiovDFF19gw4YN2LJlC4qKigBYb/IsWbIEK1euxAcffOCyjNjYWHz11VfYvn07tm3bhrNnz6K1tRXh4eFITk7G9ddfj8WLF3O2sgpUKpUKX331FbZs2YKtW7eioKAAbW1tUCgUGDVqFJYsWYIFCxb4bY9v0jseM9Al8QiBdVhPYWEhe5yTk+PXRQu0RUehr7u8QrYoPBYhY+b2yGcwG7H6m0dhtFsc7NZRN+LmkQt8UU2XjEYzDu8rg8lkZtMioxUYM9H/W10RQggZfC5evMgO887KyvJ3dQghAaC/14VAaxsMBN3KIIMOwzAwtnK3XBJFxjvM29TZgkhZOHi43GObHTXMq/VzV2VZC6exDFh7lwkhhBBCCCG+QUOySdArKytj73ylp6eDx+MhdPzVMLbUwdhSA2NrvdMGs8FkxKy0qdCbDKjtqIfG0IkcVYaP30FPhefqcOLwJUTHKCESCwAAMXEhCAmV+rlmQ0P3mCJkoCimiKdRTBFP0+v1YBgGPB6P3R6KEEINZjIIdHR0wGg0svv2ac7lQRgeA0lCJiRx6WAsZoDneDCFQixDUmgcajsakBaRjISQWIgFIl9W36F9Oy6itqoNxQUNiIhWIDktAlNm0A8iX+keU4QMFMUU8TSKKeJpZrOZbTATQi6jBjMZVBizEY3fvwPGoANfHgp55gREzLoVovAYh/lViiioFFEwmo2o7WiAVOT/Htw2tQ611W0AAIYBWhq1yBoeA7lS7OeaEUIIIYQQMrRQg5kEvZEjR7KPdZfOgTHoAACWznZozuxB5JV39FqGSCBCSnii1+rYF2eOVQF2S/Hx+TxMnxsY86qHCvuYIsQTKKaIp1FMEU+TyWT+rgIhAYkazCToCQQC9nHnxWOc5yQJWRAqw31co4EpOMNdsCw6VomQMP/3fA8l9jFFiCdQTBFPo5ginkZDsQlxjFbJJoMGwzA9GszyrMDYT9ldzY0a1FW3c9ImTk/1U20IIYQQQggZ2qiHmQwahsZLMKkbOGnyzIkO835y+htUt9dhatJ4TEocA6VY4Ysq9ursiWrOsVwpxsRpKXTXlxBCCCGEED+gBjMJeq2trbBYLNAf38lJ58uUEKmSe+S3MBbkVRxBq64Nx2vOQsDj44Epd2J22lRfVdkhhmFwrluDedS4BPAFNBDE12wxxefzERER4e/qkEGAYop4GsUU8TSTycQ+FgqpiUCIDf01kKBXWVkJo9GI0IvHYD+jSxSdDL6gZ4gXNBSjVdfGHpsZC4ZFpPigpq5VX1KjpamTkzZqQmAsRDbU2GJKJBLRD1HiERRTxNMopoinGQwGdlspajATchl1XZFBgWfoBL+DOxxblj7WYd6thdye6FCJEvEhjred8qXuvcuR0XIkpoT7pzKEEEIIIYQQ6mEmwS8hIQH688XQ2yfyBVDkTneYPzEsHnw+H9XtdajTNCInehgEfP+uNmo2W3DuVA0nbdSERJq77CcJCQnsUEdCPIFiingaxRTxNJFI5O8qkADEMEzvmQY5ajCToBcdHY3aqnOcNFFEHMSRCT3yWhgLpEIxclVZSA1PgslsQpxS5auqOlVa1IROjYGTNmJ0vJ9qQ6Kjo/1dBTLIUEwRT/NGTAkEAphMJpjNZnZoLhk6qMFMurNYLLBYLACG9lZ2dFuSBD3GbEJX1QVOmjQlFzxez/Dm8/i4ZeQNWJA9D+PiciEUCDEpyfHQbV/qPhw7JFSCksJGuqtHCCHEZyQSCQBrj1JHR4efa0MI8TeNRsP+FrVdH4YiajCToKerOAfGyBmQDcVwx8Ox7clEUoyPH4lQidJbVXOLQW/ChXN1nLSY+FBERivo7j4hhBCfCQ8PZx83NTVxVk0mhAwtJpMJTU1N7LH99WGooSHZJOhpzu7lHAuUEZAmZbs8h8fjITms55Btfyi72ASjwXw5gQeo4pSIjvFvQ54QQsjQIpfLIRKJYDQaodfrUV5ejsjISCiVSojFYn9XjxDiAwaDARqNBi0tLTAajQCsw/Xlcrmfa+Y/1GAmQa+96DhnqIQkMRt8scxv9emrnFFxuPmOCTiSV4aGug7IFWLI5GJERA/dC5O/nTlzht2uZcyYMf6uDhkEKKaIp3kjpng8HpKSklBZWQmTyQSj0Yj6+nrU19eDz+fTAmODnNl8+eb9UJ6vOpTZz1m2EQqFSEpKGtKjHqnBTIKaWa+DOTwBjLYZfF0beBYzlLkzHOYtaalAvDIG8gBsTFssDNKzo5GWFQWT0YLIKAUEAvphQgghxLekUinS0tJQVVWFrq4uNt3RD2kyuBgMlxcfpREFBLBeD5KSkob8gnDUYCZBzdzeCKEqFZaoZIAHKEU8yHOm9MhnYSz4R95/oNFrMFyVifHxozA3bRpCpSF+qDWXyWRGa3MnAOvdfZFYgOhYGo7tT3K5HCaTCUIhXSKJZ1BMEU/zZkyJRCKkpaVBr9dDq9VCq9XCaDRSg3mQMxgM7OrodK0amvh8PkQiERQKBRQKBSQSyZDuWbahvwYS1Iyt9YiIjGSPRRFx4At63gXLry9EW1e79XFDEfIbijA5cWxANJhbmjo5P0J4PB4iVQo/1ohkZmb6uwpkkKGYIp7m7Zji8XiQSqWQSqWIiory6msRQkggozGfJGgxDANjK3d1aVFEnMO8By4d4xyHSpSID4nxWt36orlBwzmOiJRDJKK5Q4QQQgghhPgb9TD/D8Mw2Lp1K77++msUFBSgs7MTKpUKkydPxsqVK722SMtf//pXfPbZZwCAwsJCl3nnzZuH6upql3ls9u/fD5VKNeD6BTJLZzss+k5OmrMGc1NnK/g8PiyMtSc3Kyrd6/Vzh8XCoLlRy0mLotWxCSGEEEIICQjUYAbQ1dWFhx9+GHv27OGkV1dXo7q6Gt999x1+//vf47777vPo6x46dAiff/65W3k1Gg1qamo8+vrBji+RQzliOowtdTCqrT3NfHloj3xGsxHDVZkYFpGCBm0TajUNuCJloq+ry8EwDL764BgioxUwWyyQSi8PI6ftpAghhBBCCAkM1GAG8PTTT7ON5YyMDCxfvhzR0dHIz8/HF198gc7OTrz88suIjY3FokWLPPKaWq0WTz/9NBiGcSt/YWEhm/f+++/H6NGjXeYPCwsbcB0DnaHxEsSxaajTASZRNASMGeEOFiYQ8oWYl34FajUNqO2oR3JYAqYlTfBDjS+rqWxD4bl69jgsQobcsfGIUikhkdKfpb9dunQJZrMZAoEAKSkp/q4OGQQopoinUUwRT6OYIsSxIf/L/MCBA9i6dSsAYNq0aXj33XchkUgAAAsXLsQtt9yC22+/HWq1GmvWrMH8+fOhVA68B/Cll15CVVWV2/nth2svXrwY6emBMaTYX0wdrahe9wfwJHIYI1Khj0oDk+q4Eczj8RApD0ekPBwjY7JhMBshcrAwmC+dO8EdWq/vMkEo4lPvcoBQq9Xs/qb0o4F4AsUU8TSKKeJpFFOEODbkF/1at24dAOum3M8//zzbWLbJyMjAM888A8B6IdmwYcOAX9N+KHZIiHurNNsazBKJBKmpqQOuQ7DTlZ0CADD6TgjrCiAv3AW4uey92M+NZYvZgnMnuQ3mmPgQ8Hg82k6KEEIIIYSQADKke5jVajUOHjwIAJg1axaSk5Md5luwYAHWrFmD5uZm/PDDD1i9enW/X9N+KPaiRYtQW1uLI0eO9HqercGcmZkJPn/I3+dAZ+kpzrEsbTSSRuT6pzJ9VHqxCVqNgZMWEx8ChUICuULsp1oRezk5OexelIR4AsUU8TSKKeJpFFOEODakW17Hjh1j97+dNm2a03x8Ph+TJ08GAJw+fRptbW39fk3bUGyVSoWnnnrKrXMYhsHFixcBANnZ2f1+7cGCsZihKz3NSVNmTewxOiBQne02HDs2IRTDR8UhIWXwzzsPFhKJBFKpNGhiigQ+iiniaRRTxNMopghxbEj3MNsaoUDvDdHMzEwA1sZrUVER24DuC/uh2M8++yzCw8PdOq+6uhoajXWv3qysLADWVbMvXLgArVaLmJgYZGdnQyAYGnv3dlUVwqLr4KTJMsY5zPvusc+QFp6ECfGjEK2I9EHtXDPoTbhwlrt39LjJSRiWPbi3ACOEEEIIISQYDekGs/2exomJiS7zxsVd3t+3urq6zw1m+6HY119/Pa6++mq3z7Vf8IvP5+PBBx/Erl27YDab2fTw8HCsWrUK9957L6RSaZ/qFmw05w9wjoWhKojCYnrkq2yrwc6SPPY4JSwRT815EJGycG9X0anC/HoYDZf/3Xg8YOS4BL/VhxBCCCGEEOLckG4wt7S0sI8jIiJc5rXvDVar1X1+LdtQ7IiICPz5z3/u07n2DeZ//OMfDvOo1Wq88cYb2LdvH9555x1ERvq/N9VbusrPco55EXFoa2sDn8/nLKK2t+wwJ1+LTo1wac99mn2p+3DsYdkqKEMH9w2OYNTR0QGLxdIjpgjpL4op4mkUU8TTKKYIcWxIN5i7urrYx73N1xCLLy/GZH+eO+yHYj/zzDN9bszaN5hFIhFWr16NxYsXIzk5GWq1Gnv37sXrr7+OxsZGnDlzBo888gjWr1/v08XB7Hu7Aetw98TERMjlcjbNYDDg0qVLAKyrg8fGxnLOqaqqYj9b2xB4G7VajaamJsCkh9zMB8KT2Oe0kVloKC5my01IsPbYVjfXIFF6+TViJVFob2uHUHg57Ds6OlBfb90POSoqqseNk5KSEjAMA4lE0mNRuIaGBrS3twMAkpOTOTHU2dmJmpoaANabLdHR0dB1GtDSrEaE6vIq3bEpPHa4vU1TUxN7UyYhIYHzGer1elRWVgIAQkNDERPD7VmvrKyEXq8Hj8dDRkYG57nW1lY0NzdbXzc2lvNlaDKZUF5eDgBQKBSIj4/nnFtTU4POzk4AQHp6Omf4v/1nGB0d3WOqQfH//m2kUimSkpI4z9XX16Ojwzq8PiUlhfN3Zv8ZRkZG9vi7KSsrg9lshkgk6rFyvP1nmJiYCJlMxj5n/xmGhYVBpeIOh7906RJ0Oh0AQCAQcGLR/jOMj4+HQqFgn7P/DJVKJWdUCmAdmWIrd9iwYZy/z/b2djQ0NAAAYmJiEBp6+caOxWJBaWkpAEAmk/UYDVNXV8fGUFpaGie+tVotamtrATiO79LSUlgsFojF4h5biDQ2NrLrNXSPb51Ox47QscW3vYqKChiNRggEgh5b4LW0tLA3K7vHt0euEegZ32azGWVlZQAAuVzOXiNsamtrodVqAfT8DD11jbDVwxZTjq4R9srLy2EymSAUCpGWlsZ5jq4RVv68RhgMBvD5fAwbNozznC+vESUlJWxM2dA1InivEe78jrDnjWuELaYA6+4xdI1QAwjea4SNv35H2D57m+5thWDCYxiG8Xcl/OXOO+/E4cPWXsgLFy64XBXwl19+wd133w0AeOihh/Dggw+69RparRY33XQTqqqqMH/+fPznP//hPH/HHXewq2TbN4ztrVixAidPnoREIsG6deswadKkHnnq6+uxfPly1NVZ58e+/PLLWLhwoVt19ISGhgb24kEIIYQQQgghNsnJyT1u4gaLIb1Ktv1cX6PR6DKvwXB5GyD7u1e9sQ3FDgsLw1/+8pc+1xEAvvjiCxw/fhw//vijw8YyYL3T96c//Yk9/uqrr/r1WoQQQgghhBBCrIZ0g7n7EBVX7BvM7i63bz8U+4knnhjQXRWlUtljeEt38+bNg1KpBACcPHmS3TLLF2gLAkIIIYQQQogjwdxWGNJzmO3H96vVapcLHNgv9OXOHGT7VbFnzZqFpUuXDqiu7hAIBEhNTUV+fj4MBgPUarXPFv9SKpXIycnxyWsRQgghhBBCgof9PPBgM6QbzPaLJNTW1vZYjMGebW4wgB6LQThy7tw5VFVVAQDy8vLcakza8iQmJmLXrl295ndEJBL1nskLBAIB27tNCCGEEEIIIYPBkG4w26/+d/HiRUyZMsVp3osXLwIAeDwesrKyvF43m8rKSuzatQvNzc2YMGEC5s6d6zK/bZVBkUiEsLAwH9SQEEIIIYQQQganId1gHj9+PEQiEYxGIw4fPoyVK1c6zGc2m3H06FEAwPDhwzlDuZ3JysrCm2++2Wu+1157jW2M2/LbL0bW0NCANWvWALDOUXbVYC4rK2OXfh89ejRnyX5CCCGEEEIIIX0zpBvMoaGhmDZtGvLy8rBr1y7U1NQ4HG69bds2dk/A66+/3q2yIyMjcdVVV/Wa78MPP2QfO8o/atQoKJVKaDQa5OXlOa0jALz11lvs40WLFrlVT0IIIYQQQgghjg3pVbIBsHsrG41GPProo+zG3TbFxcV44YUXAFg3Yl+2bJlP6yeRSLB8+XK2jo899liPOgLA+++/j82bNwOwzs1esmSJT+tJCCGEEEIIIYMNj2EYxt+V8Lff/e53+PHHHwEASUlJuO222xAfH4/z58/j888/h1arBQD89a9/xYoVKzjnHj58GHfeeScAYMqUKfj444/79Np33HEHjhw5AgAoLCx0mKejowPLli1DWVkZACAuLg633nor0tLS0Nraiu3bt+PYsWMArI36Dz/8EKNHj+5TPQghhBBCCCGEcA3pIdk2L774IrRaLfbv34+qqir861//4jzP4/Hw4IMP9mgs+0pISAjWr1+PBx98EOfOnUNdXR1ef/31Hvni4+Px8ssvU2OZEEIIIYQQQjyAGsyw7gv23nvv4bvvvsOmTZtQUFCAjo4OhIeHY+LEibjzzjsxceJEv9YxPj4eX375JbZu3Ypt27YhPz8f7e3tUCqVSEtLwzXXXINbb70VCoXCr/UkhBBCCCGEkMGChmQTQgghhBBCCCEODPlFvwghhBBCCCGEEEeowUwIIYQQQgghhDhADWZCCCGEEEIIIcQBajATQgghhBBCCCEOUIOZEEIIIYQQQghxgBrMhBBCCCGEEEKIA9RgJoQQQgghhBBCHKAGMyGEEEIIIYQQ4gA1mAkhhBBCCCGEEAeowUwIIYQQQgghhDhADWZCCCGEEEIIIcQBajATQgghhBBCCCEOUIOZEEIIIYQQQghxgBrMhBBCCCGEEEKIA0J/V4AMbgzDYOvWrfj6669RUFCAzs5OqFQqTJ48GStXrsSYMWMG/BpFRUVYv349Dh8+jIaGBoSEhCAjIwOLFy/GkiVLIBAIXJ4/b948VFdXu/Va+/fvh0qlGnCdSf/5Iqa6O336NFasWIH4+Hjs2rXLrXOqq6uxfv165OXloaamBjKZDKmpqbjhhhuwYsUKSKVSj9eT9E8wxNQdd9yBI0eOuFX2l19+iXHjxg2whmQgvB1TDMPg559/xubNm3HmzBm0tLRAJBIhMTERM2bMwJ133omEhIReyxno9yfxnWCIKfo9FVy8HVMWiwVbt27F5s2bkZ+fD41Gg6ioKIwYMQKLFy/GtddeCx6P12s5gXCd4jEMw3j9VciQ1NXVhYcffhh79uxx+LxAIMDvf/973Hffff1+jQ0bNuCvf/0rjEajw+cnTZqEN998E+Hh4Q6f12g0mDRpEtz9M6ALvH/5Iqa602q1WLFiBYqKipCYmOhW42bv3r145JFHoNVqHT6fnZ2Nt956C0lJSR6rJ+mfYImpqVOnQq1Wu1U+NZj9y9sx1dbWhkceeQQHDhxwmkcsFuNvf/sbFi9e7DTPQL8/ie8EQ0zR76ng4ouY+u1vf4ujR486zTN16lS8+uqriIqKcponUK5T1GAmXvPYY49h69atAICMjAwsX74c0dHRyM/PxxdffIHOzk4AwD//+U8sWrSoz+Xn5eXh3nvvBcMwkMlkWLFiBUaNGoXm5mZs3LgRRUVFAIAZM2bgvffeA5/fcwbC8ePHcfvttwMA7r//fowePdrla86ePRtisbjPdSWe4e2Y6s5gMODee+/FoUOHAMCtxk1hYSGWLVsGvV4PgUCAW265BZMmTYJWq8XmzZtx8uRJAEBOTg6+/PJLyGSyAdeT9F8wxFR9fT1mz54NAFi+fDnmzJnjMv/kyZMRFhY24LqS/vFmTFksFtx5553sj9CEhATcfPPNGDZsGLRaLfbv34+ffvoJFosFPB4P//nPfzBv3rwe5Xji+5P4TjDEFP2eCi7ejqlVq1bh+PHjAKzfc7fccguSk5NRW1uLTZs2oaSkBAAwfvx4fPTRRw5jIaCuUwwhXrB//34mOzubyc7OZu68806mq6uL83xxcTEzZcoUJjs7m5kyZQrT0dHRp/L1ej0zb948Jjs7mxk3bhxz7ty5Hs//9re/Zevw3XffOSzn008/ZfOUlpb27U0Sn/J2THXX1NTErFy5kn3N7Oxs5sorr+z1vBUrVjDZ2dnMiBEjmD179nCes1gszHPPPceW9/bbbw+ojmRggiWm9uzZw+bPy8sbUB2Id3k7pjZu3MgpX6vV9sjz888/M7m5uUx2djYza9asHnXw1Pcn8Y1giCmGod9TwcTbMbVhwwa2/DvuuIPR6XSc5w0GA/PAAw+web7++useZQTadYpuGRKvWLduHQBAKBTi+eefh0Qi4TyfkZGBZ555BgCgVquxYcOGPpX/008/oaqqCgDwq1/9CiNHjuQ8LxaL8eKLL7JDNN555x2H5RQWFgIAJBIJUlNT+1QH4lvejil7v/zyC5YuXepyKJEjJ0+exIkTJwAAixcv7tETyOPx8PTTTyMjIwOA9T05G2ZEvC8YYgq4fJ0CgKysrH7XgXift2Pqyy+/BGD9znrppZcgl8t75Jk3bx5WrVoFwDo6Yd++fZznPfX9SXwjGGIKoN9TwcTbMfXFF18AsA7r/uc//9ljzRaRSIRnn32WPd6+fXuPMgLtOkUNZuJxarUaBw8eBADMmjULycnJDvMtWLCAnbfwww8/9Ok1bH9cPB4Pt912m8M8CoUCS5cuBWBdMKCsrKxHHtsFPjMzk4acBTBfxBQAtLS04Le//S3uvvtu1NXVAQBuvvlmxMbGunW+/UXfNjStOz6fzz6nVqvZobnEt4IlpoDL16nw8PA+nUd8y9sxpdFocObMGQDAFVdc4XL+53XXXcc+Pn36NOc5T31/Eu8LlpgC6PdUsPB2TJnNZiQkJCA9PR0TJ05EXFycw3yxsbGIjIwEANTU1PR4PtCuUxTRxOOOHTsGi8UCAJg2bZrTfHw+H5MnTwZgvfi2tbW5/Rq2XpqcnBz2D84R+9fvfkeUYRhcvHgRgHURJhK4fBFTAHDx4kXs3LkTgPVC/Pzzz2PNmjUQCt3bUMAWl2FhYcjNzXWaz/495OXl9amOxDOCJaYAsPO06DoV2LwdU62trRg9ejRUKhWGDRvmMq/9HPb29nbOc574/iS+ESwxRb+ngoe3Y0ogEODf//43fvjhB3z88cdO82m1WnR0dAAAoqOjezwfaNcp2laKeJztogn0fuHMzMwEYL3YFhUVsX+crtTX17MX696GJ9qGvgLAhQsXOM9VV1dDo9FwytFoNLhw4QK0Wi1iYmKQnZ1N22oEAG/HlD0+n49FixbhkUce6VNvntlsZhexyMjIcHmHPT09HQKBAGazuUdcEt8IhpgCAKPRyN41t12ndDodLly4gPb2dkRERGD48OG0eE4A8HZMJScnuz000nYtAsBZPdZT35/EN4IhpgD6PRVMfPnd58obb7zBTkmzH70ABOZ1ihrMxOPs9+BLTEx0mdd+qEZ1dbVbf4y2OQ3ulB8bGws+nw+LxdJjyIf9vEA+n48HH3wQu3btgtlsZtPDw8OxatUq3HvvvbRvrh95O6Zs0tLS8OOPPyIlJaXPdWxqaoLBYHCrjgKBACqVCnV1dQ6HIhHvC4aYAqw/Um0/KkJCQvDkk09i27Zt0Ov1bB7bsLSHHnqIVsf2I1/FlDu+/vpr9vHYsWPZx576/iS+EQwxBdDvqWDir5gym81oamrC2bNn8dFHH+Hw4cMAgClTpuCWW27h5A3E6xQ1mInHtbS0sI8jIiJc5rW/S+nuHqOtra1uly8SiSCXy6HRaHqUb3+B/8c//uHwfLVajTfeeAP79u3DO++843JYCPEeb8eUzUDmh/aljoB1eFtdXV2f60g8IxhiCuBep95++22HebRaLT7++GPs27cP77//vtM5acS7fBVTvcnLy8Pu3bsBAFFRUZgxYwb7nKe+P4lvBENMAfR7Kpj4K6YWL17MTi8CrHOTV65ciUcffbTHCKlAvE7RHGbicV1dXezj7ivvdWf/R2J/nis6nc7t8u3zdC/f/gIvEolw3333Yfv27Th79izy8vLw/PPPswtgnDlzBo888gg774P4lrdjyhM8FZfEN4IhpgDudYrH4+HWW2/Fpk2bcPr0afzyyy949dVXkZaWBgCoqKjA/fffz4lF4juBEFO1tbX44x//yB4/8MADnN48uk4Fl2CIKYB+TwUTf8VUbW0t55hhGBw6dAh79uzpkTcQr1PUYCYeZzKZ2Me9zauzf97+PFfsh/i4M2/Plqd7+fX19QCsf2gffPABHnvsMWRkZEAsFiMmJgbLli3D119/zQ5JOXTokMOl74n3eTumPMFTcUl8IxhiCrh8neLxeHj11Vfx3HPPYcSIEZBKpYiMjMSCBQuwceNGjBgxAgBQXFyMjz76yKd1JFb+jqmWlhbcc889aG5uBgDMmDGD3QrIhq5TwSUYYgqg31PBxB8xZTKZcNddd+GVV17BmjVrsHDhQvD5fBQXF+PRRx/Fa6+9xskfiNcpajATj7O/89jbHrO2OZ+Ae38UAPdukzt72NpeQyQScdK/+OILHD9+HD/++CMmTZrk8NzY2Fj86U9/Yo+/+uort+pIPMvbMeUJnopL4hvBEFMA8PLLL+PUqVPYsWMHrr/+eod5QkJCsGbNGvaYrlP+4c+YamxsxJ133onS0lIAQGpqKl566SXweDxOPrpOBZdgiCmAfk8FE3/ElFAoxEMPPYQbbrgBN998M15++WWsW7eOvR699dZbOHbsGJs/EK9T1GAmHme/6b39wjSO2P8xujPsoq/l2+dxtMiEUqlEfHy8y/PnzZsHpVIJADh58iQNI/IDb8eUJygUCvbxQOOSeF8wxJSNTCbrdV5ybm4uu5poVVUV2+NDfMdfMXXp0iWsXLmSXf02Pj4e69evdzhH1JPfn8T7giGmbOj3VHAIlO++6dOn43e/+x17/Mknn7CPA/E6RQ1m4nGhoaHs494m4Ns/7+4CEPbl97YvnNFoRGdnZ5/K704gECA1NRWA9eJBi5/4nrdjyhNCQkLYx+7sV2jLQwuf+EcwxFRf2e+jSg1m3/NHTJ05cwYrVqxARUUFAOuKsh9//LHTlWV9/f1JBiYYYqov6PeU/wXSd9+yZcvYLThPnDjBpgfidYoazMTjbAvQAD0n+XdXV1fHPk5ISPB4+fX19ewdTHfLd4SGo/mXt2PKE2JiYthe5t62NjCbzWhsbATg2zqSy4IhpvpKKKSNL/zJ1zGVl5eHu+66i51fmpmZic8//9zlaAR/fH+S/guGmOor+j3lX4H03RcWFoaoqCgA3NW7A/E6RQ1m4nH2m4jbb5DuiO15Ho/X6+bkNhEREewfWG/lFxcXs4/tN2ivrKzEhx9+iFdeecXhCn3d2XprRCIR7XPqB96OKU+x1bOkpMRlvtLSUnZRC/u4JL4TDDHV0tKCTz75BK+99ho2bdrUa377XuWYmBgv1ow44suY2rVrFx544AG2Z2Xs2LH45JNPet3GzBPfn8R3giGm6PdUcPF2TJWUlODJJ5/EqlWrOHt3O2MbTm0/rS0Qr1PUYCYeN378ePYOom1jckfMZjOOHj0KABg+fDhnCEZvbJunFxQUoKOjw2m+Q4cOsY+nTJnCPm5oaMCaNWvwzjvv4Msvv3T5WmVlZewdrtGjR0MgELhdT+IZvogpT7DFZXNzs8uLvH1c2s4hvhUMMWU0GvG3v/0Nb731FtatW+cyb0dHB86dOwfAuriObTVa4ju+iqkjR47g4YcfZhfDmTFjBj744AO39n8HBv79SXwnGGKKfk8FF2/HlNlsxjfffIOjR49ix44dLvOWlZWhvb0dAJCens55LtCuU9RgJh4XGhqKadOmAbDesXQ2PHXbtm3sEAxnq786c+211wKwLiH/+eefO8yj0Wjw7bffArD+IQ4fPpx9btSoUezCE3l5eS6H0L711lvs40WLFvWpnsQzfBFTnmCLSwD4+OOPHeYxm8347LPPAFjnPc+cOdMndSNcwRBTsbGx7NC0wsJCnDp1ymnedevWsXtQ0nXKP3wRU83NzXj44YfZxXiuvPJKvP3225xFcnoz0O9P4jvBEFP0eyq4eDumsrKy2MXf8vLyUFlZ6TTvf//7X/bxVVddxXku0K5T1GAmXnH33XcDsPaQPProo9BoNJzni4uL8cILLwCwDsNYtmxZn8q/6qqrkJSUBAB48803OcvRA9bFJP7whz+wCxasXr2a87xEIsHy5cvZOj722GM96ggA77//PjZv3gzAOqdiyZIlfaon8Rxvx5QnjB07FuPHjwcAbNiwAd9//z3neYZh8Pzzz7PbdNx+++20+qwfBUNM3XHHHezjP/7xjw4X89q2bRveffddAEB4eDj7vojveTum/va3v7E/YseMGYPXX3/9/7d352FRlQsYwF9UFgERFxLEEhUVFSvQJBUUcKuM1AiRW6FWj0nhVpZmaclNQ4tEJazATLMUyAUVRVRGE01EQ1lKxQXZFEZhQNYZZO4f83DuTHNYRhax3t9fs5wz55uzwLzn23Se7qWp/z+pdbX1c4q/px49LXlO6enpYebMmQBUYfeDDz4QPR+2bt0qNNm2sLCAj4+Pxvtt7e+UnlKpVLboFuhfa/78+Th8+DAAoFevXvDx8YGVlRX+/PNP7NixA2VlZQCAlStXYsaMGRrrJiYmwtfXF4CqiYVYbV18fDzeeecdKJVK6Ovrw8vLC46OjpDJZIiMjMSVK1cAAI6Ojti+fbtW05979+7By8sLN27cAABYWlrC29sbNjY2KCoqwsGDB4UL1MTEBFu3bsXQoUObcQ+Rrlr6nKqLu7s7cnNzYW1tjfj4+HqXTU9Ph7e3NxQKBfT09ODh4QFnZ2dUVlZi7969wkiQNjY22L17t0a/HWp9bf2cqq6uxsyZM4W/Rebm5vD29oadnR1KS0sRHx8PiUQCQDXoV0hICNzc3Bq/A6jZtdQ5de3aNUyePBm1P9s+/PBDYcTh+pibm2vNjdvU/5/Uutr6OcXfU4+elvzfp1AoMGvWLOGYW1lZCedDYWEhYmNjcfbsWQCqvuxbtmwR7Z7Wlv5OMTBTi6moqIC/vz8SEhJE39fT04O/vz/8/f213mvsD9EdO3Zg1apVdU5sPnToUISFhdXZD+fWrVvw9/cX+v6JsbKyQlBQEIYNG1bnMtQ6WuOcEqNLYAaAo0eP4oMPPhAGT/m73r17Y/Pmzc068ig9mEfhnCopKcGiRYvqLCOg+gG7atUqrWZt1Ppa6pwKCgoSWhLooq5zs6n/P6n1PArnFH9PPVpa+n9fY/5vdevWDcHBwfX2PW4rf6c4BwW1mI4dOyI8PBz79+/H3r17hY775ubmGDZsGHx9fZv8R9PHxwfDhw/H1q1bcfr0aUilUujr62PAgAHw8PDA9OnT653CwMrKChEREThw4ABiYmKQnp6OkpISmJqawsbGBhMnToS3tzdrAduI1jinmsP48eMRExODLVu24LfffsPt27ehp6eHPn36YNKkSXj99dd5TrURj8I5ZWZmhvDwcBw7dgx79+7FxYsXUVRUBGNjY/Tq1Qvu7u7w8fERRhWlh6ulzqna2pTm0tT/n9R6HoVzir+nHi0t/b+v9v/W0aNHsWvXLqSmpqK4uBgmJibo27cvxo0bBx8fnwbPh7byd4o1zEREREREREQiOOgXERERERERkQgGZiIiIiIiIiIRDMxEREREREREIhiYiYiIiIiIiEQwMBMRERERERGJYGAmIiIiIiIiEsHATERERERERCSCgZmIiIiIiIhIBAMzERERERERkQgGZiIiIiIiIiIRDMxEREREREREIhiYiYiIiIiIiEQwMBMRERERERGJYGAmIiIiIiIiEsHATERERERERCSCgZmIiIjaJIVC8bCLQPXg8SGif4MOD7sARETUtiUmJsLX1/eB17e2tkZ8fHwzluj/3N3dkZubCwC4fPlyi2yjNW3cuBEhISENLtehQwcYGRmhe/fuGDhwIJycnDBlyhSYmpq2QimbRv18mjZtGgIDA7WWqaysREhICExMTODn56f1/tKlS7Fnzx4AwLZt2+Dk5NSyhW5hulxjenp6MDAwgJmZGaytrTF06FBMmzYNQ4YMaeFS/l9Dx4eI6J+ENcxERESPmOrqapSWliIzMxOHDx9GQEAAxo0bh7i4uIddtCa7fPkyJk+ejLCwMFRXVz/s4rQ5SqUSVVVVkEqluHDhAn766Sd4enpixYoVqKmpafHt8/gQ0b8Na5iJiKjROnfujLffflundTp16tRCpflns7e3xwsvvCD63v3791FeXo7s7GzExcVBLpdDJpNhwYIF2LRpE1xdXVu3sM0oPT0dOTk5D7sYD01D11hNTQ1KS0tx7do1JCQkoKKiAkqlEhERETAyMsKyZctatHz/9uNDRP8+DMxERNRopqamePPNNx92Mf4V+vfv36h9ffv2bbzxxhu4du0aampq8OmnnyIuLg6GhoatUErdOTk5Nbn5fGBgoGhT7n8CXa4xmUyGpUuXQiKRAFA1T58+fTpsbW1bsohERP8qbJJNRET0CLO0tMQ333yDdu1U/9Jv377dYn3GqW0xNzfHhg0b8MQTTwBQNdfeuXPnQy4VEdE/CwMzERHRI65Pnz4YPXq08Pz3339/iKWh1mRgYICXXnpJeP5PGPyOiKgtYZNsIiJ6aK5fv459+/YhKSkJWVlZKC4uhp6eHszMzNC/f3+4uLjAy8urSaM/Z2RkICoqComJicjOzoZcLoe5uTlsbGwwcuRIeHl54bHHHmvwc27duoWdO3ciISEBOTk5KCsrQ5cuXTB48GBMmDABU6ZMgb6+/gOXs6n69euHkydPAlDVMtelsLAQEREROHnyJK5fv47S0lKYmZmhd+/ecHFxwYwZM9C1a9d6tyWXy7F//34cOXIEaWlpkMlkMDQ0RPfu3eHg4ICJEyfC3d1ddN26RskWGyE8JCREeM3f3x/z5s0DID5Kdk1NDdzc3ITvvnfvXgwaNKje7xEZGYnly5cDADw9PbF69WqtZSoqKhAVFYX4+HhcvXoVMpkMpqamsLGxwdixY+Hj4wNzc/N6t9PSunfvLjwuKCiod9nU1FQcPHgQ586dw61btyCTyaCvr4/OnTvDzs4Obm5umDZtGgwMDDTW0+X4qCsqKkJERAROnDiBmzdvoqSkBJ07d4atrS3c3d0xffp0dOzY8UG/OhFRi2NgJiKiVqdQKPDf//4XUVFRoiP7VlZWoqCgAKdOncL333+P0NBQODg46Lyd0NBQbNy4UWsbUqkUUqkUSUlJ+P777/Hxxx9j+vTpdX7ODz/8gODgYFRVVWm8XlBQgIKCAhw/fhxhYWHYsGEDBg4cqHM5m0Ntk2wAaN++vegyERERCAwMRHl5ucbrd+/exd27d/HHH38gPDwcy5YtwyuvvCL6GdnZ2ZgzZw6uX7+u8bpCoRBG7t6zZw+efvppbNq0qcHw3VzatWsHDw8PhIWFAQBiYmIaDMz79+8XHk+dOlXr/dOnT+PDDz+EVCrVeL2oqAhFRUVITk7G5s2bsXLlSkyePLnpX+IB3bx5U3isHp7VlZaWYunSpThy5IjWewqFAuXl5bh16xYkEgnCwsIQFhaGPn36NKlc+/fvR0BAAEpKSjRev3PnDu7cuYMzZ84gLCwMX331FZ599tkmbYuIqKUwMBMRUatbsmQJYmJiAKjmFHZ2doadnR1MTExQUlKCixcvIikpCUqlEoWFhZg3bx5iY2N1qmmOjo7G+vXrAajClLOzMwYPHgxjY2Pk5+fj+PHjyM3NRWVlJZYvX45evXph1KhRWp/z5ZdfIjw8XHju4OCA4cOHw9TUFHl5eZBIJCgoKEBmZiZ8fHzwyy+/wM7Orol7SHfqTXFr+7Sq+/777xEUFCQ879WrF9zc3NC9e3dIpVJIJBLk5uairKwMH3/8MQoLCzFnzhyNz5DL5Zg7d64Qlq2srODq6gorKyuUl5fjypUrOH78OGpqanDhwgX4+/vjl19+aVT5R48eDWNjY6SlpeHgwYPCa7VNzRtzw2Tq1KlCYD548CAWL15c57L5+fk4d+4cANVc4c8884zG+8eOHcOCBQugUCgAAL1798aYMWNgYWEBmUyGhIQEXLlyBffu3cP777+P8vJyeHl5Neq7NqeSkhJER0cLz8WCZ01NDd566y0kJycDAIyMjDB27FjY2trCyMgIRUVFOHv2LNLS0gCoboosWLAAe/fuFW7E6Hp8fv75ZwQEBAjPBw4ciFGjRqFLly6QSqU4ceIEsrKyIJVK8dZbb2HTpk1wcXFpxj1DRNQ8GJiJiKhVnTlzRgjLZmZm2LZtm2hNYGJiIt5++21UVFRAKpXi6NGjorWAdQkNDQWgCstiUy199NFHWLZsGfbt2wcA+Pbbb7UC87Fjx4SwbG5ujq+//lqjrzAAVFVV4csvv8RPP/2EsrIyzJ8/HwcOHNBq0tqSMjIycObMGeH5mDFjNN4/c+aMRlieN28e5s6diw4d/v8zYOnSpdi4cSO+++47AMC6devw1FNPwcnJSVjm8OHDuHr1KgBgxIgRCA8P1xqNOyUlBTNnzkR5eTnOnz+PpKQkrTAqxtHREY6Ojti9e7cQyBwcHHQald3W1hZDhgxBeno6cnNzceHCBTz99NOiyx48eFBoeeDh4QE9PT3hvby8PCxduhQKhQLt2rXDkiVL4Ovrq1GLv2TJEuzevRsrVqyAQqFAQEAAHB0d0a9fv0aXt6mysrLw4YcforCwEIBqCrdXX31Va7k9e/YIYdna2hrbtm1Dr169tJaLiYnB4sWLUVNTg8uXL+P8+fPCsdPl+KSlpeGLL74AABgaGmL16tV48cUXNZb56KOPsHnzZnz99ddQKBRYvHgxDh061GotEoiIGouBmYiIGq20tBSbN29u9PLe3t5atcK1fU8BVXCrq9msk5MTpk2bJtRQpqWlNTowy2QyZGZmAgAGDBggOi+xvr4+AgICcOTIEVRUVODKlSuQy+VC0FUqlVi3bp2w/IYNGzTCYy1DQ0N88sknyM7OxvHjx3Hz5k1ER0e3Wm1jWloaFi5ciPv37wMAhgwZohXqg4ODhcezZ8+Gv7+/1ufo6+vjvffeQ1lZGbZv346amhoEBwdjx44dwjIXL14UHs+cOVN06qonn3wSb7zxBkJCQtCuXTukpKQ0KjA3l6lTpyI9PR0AcODAgToD84EDB4TH6oNmAara+NpmxO+++y5mzZol+hkvv/wyioqKsHbtWsjlcnz77bf48ssvm1T+hq6xiooKyGQy/Pnnn0hJSRFqwA0MDBAUFCQaONWvuY8//lg0LAPA5MmTER0djRMnTgBQzbn8IMdu/fr1QrlWrlypFZYBVbeBOXPm4Pbt2/j5558hk8mwbds2LFy4UOftERG1JAZmIiJqtOLiYqxdu7bRy0+aNEkrMD/33HPo06cPcnJytILK36n3By4rK2v0dtVrTnNzcyGVSmFhYaG1XMeOHbFr1y506dJFK2gkJycjIyMDgKomTSwsq/Pz88Px48cBAPv27WtyYM7IyKgzOFVVVeHu3btISUlBSkqK8LqxsbHW8cnJyRFqF42NjUXDsrpFixZh9+7dKC8vxx9//IHr16+jb9++ADT7RicnJ2P8+PGin+Hr64sXX3wR1tbWrVrTDgAvvvgi1qxZg+rqasTGxmLZsmUaNcMAkJmZKTQ/tre316gVlsvlQhNnAwMDzJ49u97t+fr6IiQkBOXl5YiNjcWqVaua9J11vcYA1U2K5cuX48knnxR9f8aMGXj22WdRUFAgevNI3cCBA4XAXFpaqlM5AFVT99rB5ywtLRu8yeXn54eff/4ZgOq6YWAmoraGgZmIiFqVm5sb3NzcGlyuvLwcOTk5wvPq6upGb8PU1BSDBg3CX3/9hXv37sHT0xMzZ86Eq6urVpPZuprQJiUlCY+HDBnS4DYHDx4MAwMDyOVypKSkoLq6WiO46yotLU0IdY1hY2OD4OBg2Nraaryu3lTb2dm5wX7gpqamcHZ2RlxcHADg3LlzQmB+5pln8OOPPwIAwsPDkZubiylTpsDJyQnGxsbCZ3Tu3BmdO3dudNmbU9euXeHi4gKJRAKpVIqzZ89q9etVr12eMmWKxnvp6enCoGg2NjYwMTGpd3v6+vqwt7fH2bNnIZfLkZqaimHDhjXTt6mbg4MDRo8eDVdXVwwdOrTeZcVqeMUUFxcjPz9feK7LNVerduwBABg0aJBGU3cxFhYWsLa2Rm5uLnJzc5Gfn48ePXrovF0iopbCwExERI1mbW2N+Pj4Zv3MsrIy3LhxA1lZWcjOzsaNGzdw6dIlZGRkaPxgr/0R3liLFy/GnDlzcP/+feTn52Pt2rVYu3YtevbsCWdnZ7i4uGDUqFF1BsjavroAsH37dmzfvr3R266srERhYWGjpqt6EEZGRjA1NYWlpSWGDBkCV1dXuLq6atWkAtC46dDYwcjs7OyEwJydnS287u7ujhEjRuDs2bMAgEOHDuHQoUPQ19eHo6MjnJ2d4erqigEDBjTl6zXZlClTIJFIAKj65dYVmDt06KA1urX6cb9y5YrOo57funXrQYosELvGKisrcfXqVfz444/CyN4ZGRnw8PBoMCyLKS4uRmZmJrKyspCVlYXr16/j0qVLuHbtmsZ1pus1B2juP4lEovP+y8vLY2AmojaFgZmIiFpdTU0NoqOj8csvvyAtLU10ailA1QS4tm+urpydnREaGopPP/1UY17ivLw8REZGIjIyEgYGBnB1dcXs2bPh6OiosX5xcfEDbVd9/aYEZvU5iptCJpMJjxs7X7D6cur7oV27dggNDcXnn3+O6OhoIVApFAokJiYiMTERQUFB6N27N15++WX4+vpq1Dy3lnHjxsHMzAwlJSWIi4vDihUrhDmy09PTcePGDQCqc6Rbt24a6zbHcW9uRkZGsLe3x1dffQV7e3t88cUXKC0tRUBAAKRSaaOaMcvlcuzcuRNRUVG4cuVKncs15ZoD2ub+IyJqCgZmIiJqVWVlZfD398fp06c1XtfT04OlpSVsbW1hb2+PESNGICcnB8uXL3/gbbm6uuLIkSM4ceIE4uLikJCQIIwoDKhCRFxcHOLi4vDuu+9i/vz5wnvqoeG5556rs39oXf4exB6WB6klrOsGBqAaiXnNmjV49913ERMTA4lEgtTUVI11bt68iXXr1iEyMrLOEZlbkoGBAZ5//nlERERAJpPh9OnTGDt2LID6m2MDmsd9yJAhOs+vXNcgY81l1qxZyM7OFlo8bNq0CT179qx3HvHaqZsuXbqk8Xq7du1gbW2N/v37Y+jQoXByckJCQoIwwvyDUN9/I0eO1HmqqKbO/UxE1NwYmImIqFWtWrVKCMsmJibw9fWFi4uLMA+zutrBgJrCwMAAEyZMwIQJE6BUKnH58mWcOXMGJ0+exJkzZ4Rm39988w1GjBghNN81MzMTPsPBwaHOkZLbOvW+xEVFRY1aR3059f2g7oknnoCfnx/8/PxQUlKCs2fP4vTp05BIJMjLywOgGnBt6dKlOjVnby4vvfQSIiIiAKiaZY8dOxZKpRKHDh0CoAr+48aN01pP/fv26NFDp2mtWsuSJUuQlJQkzL29atUqDBs2rM7++IsXLxbCcrdu3TBr1iyMGjUK/fv31xrp/NixY00qm/r+s7W1bZP7j4hIF9qdnYiIiFpIfn4+9u7dC0BVo7xlyxYsXLgQw4YNEx1cST24PUhN6d/p6enBzs4Os2bNwubNmxEfH6/Rx7J2dGQAePzxx4XHtaNlN0S99rqt6N27t/C4NmA15K+//hIeq++HupiZmWH8+PFYsWIF4uPjNVoFJCUlCQG6NQ0fPlwou0QiQXV1Nc6fPy/0MZ40aZLotFjq31e9P259iouL662Vb24GBgYIDAwUBpWrrKzEkiVLRMtw8eJFYeA3Y2NjREREYM6cObC3txf9/o29qVKXB9l/RUVFzXJ9ExG1BAZmIiJqNampqUKTzUGDBuGpp56qd/nExEThsS4/qI8dO4Y333wTbm5u+O677+pcrkePHpg7d67wXH2E4OHDhwuPT5w4IcwrW5fU1FSMHDkSDg4O8PT0fKARhluC+vdISEhocKqge/fu4ffffxee1zYxvn//PpYsWYKXX34Zo0ePhlwuF11fT08Pr732mkZtp3of8oY0NKqyLmqbXJeUlCApKQmxsbFa7/2dg4ODEESzsrIavMlQVVWFSZMm4cknn8TEiRO1mj23lMGDB2tMeZWamirMWa7uwoULwuPRo0fXewNEqVQKA7oB4k3zGzo+6ufb+fPnG7yJVFBQABcXFzz11FN4/vnn2+RNJyL6d2NgJiKiVqMestQHoxJz9OhRjR/vugRQpVKJhIQE5OXlISYmpt511WvU1EfnHTlyJCwtLQGo+oDWNSdy7faCgoIAqKbD6tWrV5OmlGpOvXv3hoODAwBV2UJCQupdfv369aioqAAA9O/fX6iBb9++PS5duoT09HTcuXOn3qa7NTU1GsdXl1GP1Uf6bsrgU4BmKD527BiOHj0KQDUS9TPPPCO6jomJCSZMmCA8X7t2bb03a8LDw1FUVASFQoHy8nKtab1akr+/P6ytrYXn69atQ0FBgcYy6tdcQ7XH27Zta3Aqt4aOT79+/YT+/nK5HOvWrat3m8HBwVAoFKiqqoKJiYnWfOhERA8bAzMREbUa9WmN8vLysHXrVq1lampqEBUVhffff1/j9doQ1xhjxoyBhYUFAFUz5ICAAFRWVmotd+PGDY0AOXHiROGxvr4+3nnnHeH5+vXrsWXLFq1at4qKCqxcuVKole3QoQP8/PwaXdbWsGDBAqFmcMuWLQgJCdEKQ9XV1diwYQN++uknAKqaxGXLlmks4+npKTz+7LPPkJKSorUtpVKJNWvW4O7duwBUA2eph7qGqE/zlZub2+j1xDzxxBPCzYJdu3YJzbE9PDzqrSn18/ODgYEBAFWt/AcffKBVM69UKhEVFaUxQJafn1+r3igxMjLCihUrhOelpaVYvXq1xjLq19z58+dx5MgRrc+Ry+X49ttvsWbNGo3Xxa65xhyf+fPnC/s3MjISa9as0WqRUF1djdDQUOzatUt4bd68eaKfR0T0MLWN299ERPSv0LdvXzg7OyMhIQEAsHr1ahw6dAgODg4wNTVFfn4+fvvtNyHY6OvrC02hG6qRVmdgYICPPvoI7733HgAgIiIC8fHxGDNmDHr27AlANcfu8ePHUVVVBQAYO3Ys3NzcND7H29sb586dw759+1BTU4PAwEDs3LkTY8aMQdeuXZGXlweJRAKpVCqs8/777zd6vuPWMnLkSPj7+2Pjxo0AgI0bN2LPnj1wc3ND9+7dcefOHUgkEo3axXfeeQejRo3S+JwZM2bg119/xeXLlyGTyeDl5YXRo0djwIAB6Nq1K+7evYuEhASh76q+vr5W6G6I+oja+/fvR6dOndCjRw/0798f7u7uOn/3qVOnIjk5GeXl5cJrL730Ur3rDBw4ECtWrMDy5cuhVCqxf/9+nDx5EuPGjcPjjz+OwsJCJCYmajTXdnNzw3/+8x+dy9dUrq6umDBhghCEDx06BE9PT2F06trBvTIyMqBUKuHv7w9nZ2cMHjwYhoaGyM3NhUQiEWqfG7rmGnN8XFxcMHfuXGzatAkA8MMPP+DgwYNwc3NDjx49UFBQgJMnT2rM8f3aa68JI5kTEbUlDMxERNSq1q5di9mzZwthIzk5GcnJyVrLDRgwAIGBgfD29oZCoUBGRgbkcrlQ89eQyZMno6ioCIGBgVAoFJBKpRq1WeomTZqkVbtWa82aNejZsyc2b94MhUKBzMxMZGZmai1nZGSExYsX4/XXX29U+Vqbv78/unTpgq+++grl5eXIyckRapPVGRsb47PPPhPt42tgYIDw8HD4+fkhLS0NAHDq1CmcOnVKa9nu3bvj888/1+jT2hgDBgyAg4MDkpOToVQqhZHS3d3dHygwv/DCC1i1apVQw2lvb1/naNLqvLy80KlTJ3z66aeQyWSQyWR1nj+enp747LPPmrX/tS4++eQTnDp1SrgpEBAQgAMHDsDQ0BDt27fHxo0b8cYbbwiDryUkJAg3rdQNHz4cixYtwquvvgpANWf13zX2+CxcuBDdunVDUFAQKioqcPv2bezYsUPr89q3b4+33noLixYtavqOICJqAQzMRETUqrp164aoqChEREQgNjYWV69eRWlpKYyMjGBhYQE7OzuMHz8ezz//PDp06IBnn30WJ0+eREVFBQ4fPgwPD49Gb+u1117DmDFj8OuvvyIxMRGZmZkoLS1Fx44dYWFhgREjRsDDw6PeUNeuXTssWrQIr7zyCiIjI3H69Gnk5OSgtLQUxsbGsLGxwahRo+Dt7S3UXrdVr776KiZNmoSdO3ciISEBN2/eRElJCYyNjdGvXz+4urpi+vTp9fYjfeyxxxAZGYnY2FgcPnwYf/75J+7cuYPq6mp07doVffr0gZubGzw9PdGpUyedy6inp4ewsDAEBwcjPj4eUqlUo9ZTV2ZmZnBzc8Phw4cB1D3Yl5jnnnsOzs7OiIqKwm+//YaMjAzIZDLo6+vDysoKw4YNg5eXl85zdDc3S0tLzJs3T7jpk5WVhdDQUCGE9unTB9HR0di+fTvi4+Nx48YNVFRUoGPHjrCyssKgQYPwwgsvwNXVFXp6eujbty+uX7+OrKws/PHHH3B0dBS2pcvxef3114X5sE+dOoXMzEwUFxfD0NAQjz/+OJycnODt7d2oGxhERA+LnpLj+BMRERERERFp4aBfRERERERERCIYmImIiIiIiIhEMDATERERERERiWBgJiIiIiIiIhLBwExEREREREQkgoGZiIiIiIiISAQDMxEREREREZEIBmYiIiIiIiIiEQzMRERERERERCIYmImIiIiIiIhEMDATERERERERiWBgJiIiIiIiIhLBwExEREREREQkgoGZiIiIiIiISAQDMxEREREREZEIBmYiIiIiIiIiEQzMRERERERERCIYmImIiIiIiIhEMDATERERERERiWBgJiIiIiIiIhLBwExEREREREQkgoGZiIiIiIiISAQDMxEREREREZEIBmYiIiIiIiIiEQzMRERERERERCIYmImIiIiIiIhE/A9DdjAveKCl1wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.roc_utils import compute_roc_point_from_predictions\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=postproc_clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ " group_name_map=group_name_map,\n",
+ ")\n",
+ "\n",
+ "# Compute predictions\n",
+ "y_fit_preds = postproc_clf(X_fit, group=s_fit)\n",
+ "\n",
+ "# Plot the group-wise points found\n",
+ "realized_roc_points = list()\n",
+ "for idx in range(n_groups):\n",
+ "\n",
+ " # Evaluate triangulation of target point as a randomized clf\n",
+ " group_filter = s_fit == idx\n",
+ "\n",
+ " curr_realized_roc_point = compute_roc_point_from_predictions(y_fit[group_filter], y_fit_preds[group_filter])\n",
+ " realized_roc_points.append(curr_realized_roc_point)\n",
+ "\n",
+ " plt.plot(\n",
+ " curr_realized_roc_point[0], curr_realized_roc_point[1],\n",
+ " color=all_group_colors[idx],\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ " )\n",
+ "\n",
+ "realized_roc_points = np.vstack(realized_roc_points)\n",
+ "\n",
+ "# Plot actual global classifier performance\n",
+ "global_clf_realized_roc_point = compute_roc_point_from_predictions(y_fit, y_fit_preds)\n",
+ "plt.plot(\n",
+ " global_clf_realized_roc_point[0], global_clf_realized_roc_point[1],\n",
+ " color=global_color,\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ ")\n",
+ "\n",
+ "plt.xlim(0.04, 0.3)\n",
+ "plt.ylim(0.45, 0.75)\n",
+ "plt.legend()\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8db9a56",
+ "metadata": {},
+ "source": [
+ "### Compute distances between theorized ROC points and empirical ROC points"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "be73972d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Group 0: l2 distance from target to realized point := 0.034% (size=259521)\n",
+ "Group 1: l2 distance from target to realized point := 0.000% (size=29518)\n",
+ "Group 2: l2 distance from target to realized point := 0.060% (size=19386)\n",
+ "Group 3: l2 distance from target to realized point := 0.227% (size=12570)\n",
+ "Global l2 distance from target to realized point := 0.034%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Distances to group-wise targets:\n",
+ "for i, (target_point, actual_point) in enumerate(zip(postproc_clf.groupwise_roc_points, realized_roc_points)):\n",
+ " dist = np.linalg.norm(target_point - actual_point, ord=2)\n",
+ " print(f\"Group {i}: l2 distance from target to realized point := {dist:.3%} (size={np.sum(s_fit==i)})\")\n",
+ "\n",
+ "# Distance to global target point:\n",
+ "dist = np.linalg.norm(postproc_clf.global_roc_point - global_clf_realized_roc_point, ord=2)\n",
+ "print(f\"Global l2 distance from target to realized point := {dist:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "### Compute performance differences\n",
+ "> assumes FP_cost == FN_cost == 1.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "6991bf75",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual accuracy: \t\t79.955%\n",
+ "Actual error rate (1 - Acc.):\t20.045%\n",
+ "Theoretical error rate:\t\t20.063%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "from error_parity.roc_utils import calc_cost_of_point\n",
+ "\n",
+ "# Empirical accuracy\n",
+ "accuracy_fit = accuracy_score(y_fit, y_fit_preds)\n",
+ "\n",
+ "print(f\"Actual accuracy: \\t\\t{accuracy_fit:.3%}\")\n",
+ "print(f\"Actual error rate (1 - Acc.):\\t{1 - accuracy_fit:.3%}\")\n",
+ "print(f\"Theoretical error rate:\\t\\t{postproc_clf.cost(1.0, 1.0):.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "485d5b1f",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "148524a8",
+ "metadata": {},
+ "source": [
+ "### Best non-fairness-constrained single-threshold solution --- RESULTS ON *TEST DATA*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "790f18c6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "08708f36f2c54a43aa7f7b5196963b60",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/50 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Best (train) unfair accuracy is 80.198%, with threshold t=0.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "# Compute prediction scores\n",
+ "y_test_scores = predictor(X_test)\n",
+ "\n",
+ "acc_unfair_best, acc_unfair_threshold = max((accuracy_score(y_test, y_test_scores >= t), t) for t in tqdm(np.arange(0, 1, 2e-2)))\n",
+ "print(f\"Best (train) unfair accuracy is {acc_unfair_best:.3%}, with threshold t={acc_unfair_threshold}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "5f28c70a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Best (unconstrained) single-threshold classifier:\n",
+ "\tAccuracy: 80.20%\n",
+ "\tUnfairness: 36.11%\n",
+ "Best (constrained) multi-threshold classifier:\n",
+ "\tAccuracy: 79.85%\n",
+ "\tUnfairness: 7.30%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import eval_accuracy_and_equalized_odds\n",
+ "print(\"Best (unconstrained) single-threshold classifier:\")\n",
+ "\n",
+ "eval_accuracy_and_equalized_odds(\n",
+ " y_true=y_test,\n",
+ " y_pred_binary=predictor(X_test) >= acc_unfair_threshold,\n",
+ " sensitive_attr=s_test,\n",
+ " display=True,\n",
+ ")\n",
+ "\n",
+ "print(\"Best (constrained) multi-threshold classifier:\")\n",
+ "eval_accuracy_and_equalized_odds(\n",
+ " y_true=y_test,\n",
+ " y_pred_binary=postproc_clf(X_test, group=s_test),\n",
+ " sensitive_attr=s_test,\n",
+ " display=True,\n",
+ ");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ed71b0f1",
+ "metadata": {},
+ "source": [
+ "# Fairness vs Performance trade-off\n",
+ "\n",
+ "Plotting the entire Pareto frontier **may take a few minutes...**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "57bb076e-5c6c-45b1-94b4-322a82492378",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Using `n_jobs=9` to compute adjustment curve.\n",
+ "INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4\n",
+ " 0.5 0.6 0.7 0.8 0.9 ].\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "48a318097ae848f69d244d5843b403ae",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=rf_clf,\n",
+ " fit_data=(X_fit, y_fit, s_fit),\n",
+ " eval_data={\n",
+ " \"test\": (X_test, y_test, s_test),\n",
+ " },\n",
+ " fairness_constraint=\"equalized_odds\",\n",
+ " tolerance_ticks=np.hstack((\n",
+ " np.arange(0.0, 0.1, 1e-2),\n",
+ " np.arange(0.1, 1.0, 1e-1),\n",
+ " )),\n",
+ " y_fit_pred_scores=predictor(X_fit),\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "6f80437c-3b14-48e7-9dc4-9385d9cc952a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVi0lEQVR4nO2deXxTVfr/P0mapaWlC7QUKDsUyr4vCgqMMu4CosKIgjOogIgjooL7NoAL4sIXFAbGFZ1x3EZRFFcEgbIIZUn3jdJ9b7Pd5Ob8/ujvXpMmLU2TNAnneb9evGjvPbk57yf33jw959xzFIwxBoIgCIIgCI5QBroCBEEQBEEQHQ0lQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcEdYoCsQjPz+++9gjEGtVge6KgRBEARBtBGr1QqFQoExY8ZcsCy1ALmBMQZfTZAtiqJPjhOqkD/58wrP7gD5k39g/D35/qYWIDdILT8jRozw6jhWqxXV1dWIi4vjsjWJ/MmfV3+e3QHyJ//A+Z86darNZRW0FpgrUgC9TYAIgiAIgug4PPn+pi4wPyKKIurr67ltCiV/8ufVn2d3gPzJPzT8KQHyIxaLBVlZWbBYLIGuSkAgf/Ln1Z9nd4D8yT80/KkLzA2+6gKz2+2wWq1Qq9VQKvnLNcmf/Hn159kdIH/yD5y/J9/fNAjaS0RRhNVqbbWMIAgdVJvghPwvfn+1Wg2VSuW0TalUQqvVBqhGgYVnd4D8yT80/CkBaieMMZSWlqK2trbVMqIoQqVSQaFQdFzlggTy58s/JiYGiYmJsqsgCCgtLUViYiI0Gk2Aa9ex8OwOkD/5h4Y/JUDtREp+EhISEBER4fYLzm63QxAEaDQabptByf/i92eMwWg0ory8HADQvXt3AE2to42NjUE/ENIf8OwOkD/5h4Y/jQFyw4X6EEVRRGZmJhISEtClS5eOrBpBBC1VVVUoLy9HcnKyS3cYQRBER0CPwfsZacxPREREgGtCEMGDdD1caEwcQRBEMBD0CdBbb72F22+/vdUyNTU1ePDBBzFhwgRMnDgRzzzzDEwmk9/rdqFxHaIowmg0Bn0zoL8gf778m18PRqMRJ0+ehNFoDFCNAgfP7gD5k39o+Af1GKAPPvgAr776KsaPH99quZUrV8JkMuHtt99GfX09HnvsMRiNRrzwwgsdVFP3KBQKhIWFcTEA1h3kz7e/Wq1GQkICl0sB8OwOkD/5h4Z/UCZAZWVleOqpp3D48GH07du31bK///47UlNT8fXXX2PAgAEAgGeffRZLlizBqlWr0K1btw6osXuUSmVQj4D3N+TPt79arZYHRPMGz+4A+ZN/aPgHZRfYmTNnoFar8b///Q+jRo1qtezRo0cRHx8vJz8AMHHiRCgUChw7dszfVW0V6TFoXseZkz/f/qHyJIg/4NkdIH/yDw3/oEyAZs6ciTfeeAO9evW6YNmysjKXTFOj0SAmJgYlJSVe1cNxHJHJZJIntLPb7bDb7fIXm91ud/qgpf12ux1ms9npS7ClsoDrF2bz39tbFmg6IVt6rTdlW6uTKIowm83y/tbKehIXf5VtS1w8jbfk3xHx9rSsv2IoXTcWiwUZGRloaGiQ9xmNRthsNgCAzWaD0WiUX2uxWGA2m+X3MRqN8oBqT8pKY6+kOgqC4HQte1K2+XXvOKbLarW2WNZkMiEjI0MeA2G1Wp3GQ5jNZnmZACkujse9UNnWYuhJ2QvFsL3xrq+vR0ZGBiwWC0wmk8/i7RgXT8q2FkNv4908LjabTT73a2tr2x3D9p7f7uLii3ibzeY2l3X8/FuKoa/i3fwe4QlBmQB5gslkctvNoNVqvVqHRBRFZGVlyb/n5eWhtLQUQNOHbbPZ5JNKFEWn97JYLLBarVAqldDpdLBYLPKJIiUFEoIgOD01IyVMQNMH2rys46zCZrNZPlGaH9dqtbqUbV4H6aSyWq0u9ZfKSl/iLZV1rIPjF770u0KhQGlpKXbv3g2LxSKXZYw5lZVuGs1j6K5sS/F2LNtavC8UF1/E22KxwG63Y+zYsfj0008vGO/mMZTKNo9La/Fufr5Ixz116hSuueYajBo1Chs2bGhTvI8cOSLfKJvHu7Vz1m63Izc3FwCg0+kQGRmJyspK+bh6vR51dXUAmm6Ser1ern9RURHOnTsnH1ev18sTjTY2NkKv18vuJSUlyM/Pl8tmZGSguroaAGAwGKDX6+U6lpaWIi8vTy6blZUl18lkMkGv18t+5eXlyMnJkcvm5OSgoqJC9tTr9XKMKyoqWrxHSNMASG5VVVXIzMyUy+bn58t/oNlsNuj1ejQ2NgJoeqgjPT1dLltYWIjz58/Lx9Pr9XJSWVtbC71eL5c9d+5cizFsaGhwivf58+dRWFgol01PT0dNTU2b4p2ZmYmqqioATV9Cer1ePv9LS0tRXFyMoUOHQqfTISsrq9UYNo+3NJ+UxWKBXq+Xz8PKyspW78l6vR4GgwEAUF1djYyMjDbF210Mi4qKnOJdX18PAKirq4Ner5evz5bOWZ1Oh6SkJOTn58vXRnFxMQoKCuSyGRkZrcb7QuesFO+ysjL5mgOA7OzsVuOdnZ0tl83NzUVZWRmApuv6QvFu7Zx1jHd5eTmio6Oh0+kgiiL0ej327t2Lb7/9FufPn28x3r64R3hC0M8DtGbNGpw/fx7vvfee2/3PPfcc0tLS8PHHHzttnzJlCu655x4sXrzY4/eU5hEYOHAgwsPDATSddCqVChqNBkajEXl5eejfvz/Cw8Pl1qDmNz2lUgnGGOx2O5RKJRQKhUdl3b22PWWBpi8xhULRYp3aW/ZCrgCwaNEi9OzZE+vWrfNJXAIRbykunsa7qqoKkZGR8mSIHRHv5mVXrlyJwsJCvPbaa4iOjkZcXNwF4/L444/jyiuvxPTp09scQ4vFgtzcXHTv3h2xsbEAmm7ACoUCWq1Wbh3SaDQICwuDzWaDIAgIDw+HQqGQ/1rU6XQAmr5Y1Wo11Gq1R2WlhE2n00GpVEIQBIiiKF/LnpR1vO6lhFOr1UKlUsl/CLW1rNVqlacKcBcXT8q2FkMAXsdbiosv4m0ymRAWFuaTeDvGxdt4S3HxNt7N4+JNvB3jYrfb2x3v5nHxRbzNZrM8rrE98d6yZQsMBgPuuusuxMTE+Czeze8RUkLNxVpgiYmJ+P777522CYIgz9LsDdJJ0vxnpVIpf+lIvzvi+AVks9mcngRqqSzQ9NSQ4wRyzX9vb1kAfivbWp2Apr8UpBy7tbKeHNdfZX0dQ7vdjujoaISFhTnt91e8WypbV1eHlJQU9OvXr03HFUUR33//PURRxPTp0z2OoXStCIKAyspK+TpUKBROc2eFhYUhLOyPW1DztYPaW1alUjn93ryF2JOyza97x7LSjdddWZvNhurqaiQkJEClUrmUlW7ggGtcPCnbWly8iXfzuHgab0EQUFRUhISEBKe4+CveFyrbEfEG/oiLIAgoLy9HQkKCfO8PhnPWm3g7xuVCZZVKpeyv0WgQERGBCRMmQBAEREVFOb3WF/F2V7YthHwX2IQJE1BaWurUtJiamgoAGDduXIfXx2AwOP2rr6932db8n9TsCTTdOA0Gg8s8Rhc6hjcMHjwYH3zwAW655RaMGDEC119/PX744Qd5f21tLZ555hlcfvnlGDlyJObPn4/Dhw/L+3/55RfMnTsXo0aNwpQpU7BmzRq5CXPx4sU4cuQIPvvsM8ycObPddZDKvP7665gxYwamTp2K/Pz8C9bNYDDgueeew9SpUzFmzBgsXLgQp0+flvc3NDTgiSeewOTJkzFu3DjccccdcgtgW/xa2wc0/RXy2WefyfX/73//i8WLF2PkyJGYOnUqNm/e7PRe1dXVeOCBBzB+/HhMmjQJL7/8Mu644w688cYbbuN2If+ZM2ciNTUVn3/+OQYPHiw3NbfGwYMHUVtbix9++MGrhVxFUURtbW3QD4T0Bzy7A+RP/q7+l19+Oa688kpERUUFsGbNYEHOI488whYuXCj/brPZWHl5OTOZTIwxxux2O5s/fz6bM2cOO3nyJDt48CCbMWMGW7NmTbvfMy0tjaWlpbW432QysbNnz8p1cASAx//+85//yK//z3/+wwCwyy+/3Om4Xbt2bfUY3pCcnMxGjx7N3n//fZaTk8NeeuklNmTIEHbs2DFms9nYnDlz2HXXXccOHz7MsrKy2BNPPMGGDRvGTp48yaqqqtjw4cPZ+++/z4qKitjRo0fZzJkz2aOPPsoYY6ympobdeuut7P7772dVVVXtqoNjmUmTJrG0tDT2+++/X7BujDG2ZMkSdsUVV7B9+/ax/Px8tmbNGjZhwgRWW1vL7HY7u/XWW9miRYvYiRMnWHZ2Ntu4cSMbNmwYO3PmDGOMtep3IXepzp988on88/jx49nnn3/OCgsL2datW1lycjJLTU1ljDEmiiKbN28emzNnDvv999/Z6dOn2W233cYGDx7MXn/9dZeYtcW/qqpKjn95eTmz2Wwux/nss8/YsmXL5H9XXXUVS05OZsnJyez222+Xt99///0sMzOzxc+wteuCIAiiI7jQ97cjIdcFVlJSgj/96U9Yv3495s6dC4VCgc2bN+OZZ57BokWLoNVqcdVVV2Ht2rWBrmpIMXfuXNx2220AgNWrVyM1NRXvv/8+GhoacObMGXz55ZdITk4GADzzzDM4deoUduzYgaVLl0IQBPTo0QM9e/ZEz5498eabb8qZf0xMDNRqNXQ6HeLi4tpVh7Fjx8plbrzxRrlv95dffmm1bvfffz/27duHHTt2YOrUqQCAp59+Gp07d0ZNTQ3Onj2LEydO4NChQ4iJiQEArFq1CsePH8e7776LDRs2oKysrEW/1va1xOzZs3HjjTcCAJYuXYodO3bg+PHjmDBhAlJTU5GWloZvvvkG/fv3BwC8+uqrLbac7d+/v1X/1157DXFxcXL84+PjW6yTyWTChg0bnAZRA5Bbk/r374+NGzdi0KBBLboRBEG0hNTToVKpgmZy2KBPgKSnViSSkpKcRpsDQJcuXfD66693ZLVaRBoVDzSNAbJYLNBqta2uBu7Yrzlnzhw0Nja6lHd8AsMfTJo0yen3MWPG4MCBA8jMzERUVJT8BQs09dOOHz8e+/fvR0pKCq677josXboU8fHxuPTSSzF9+nRceeWVsj9zGGf/5ptv4q233pJ/v/766/Hss8+2WgdH+vTpI/98obpJT92MHj1a3q/VauXk+PvvvwdjDDNmzHB6D0EQ5MGkrfmFhYW1uA/4Y7Cwo7/jfFUAEBUVJT+tdPbsWURHR8vJDwB07drVaeyOIxfy94QFCxZg4sSJeOCBB1yur5tvvhmPPfaY03iBtmAymZCTk4MBAwZ4/NpQh2d3gPzJ39X/1VdfhcFgwNKlSwM6QbEjQZ8AhRqdOnWSf7bb7dBqtS6DYFujpYFcjsf1B83fU3riyfHL2xHGmPyajRs34t5778W+ffvw22+/4aGHHsK4cePwr3/9y2VQ9Pz583H11VfLv0dGRl6wDo44Dpi7UN0uNCDObrcjMjISn376qcs+x8GCLfm98847re5zh7spGyQPaeB0W2nLZ+MJAwYMwKhRo1wSoKuuuqpdN3GVSoXY2FguV4bn2R0gf/IPDf+QHwQdzEiPDLY1+QkkzQf+/v777xg2bBgGDx6MhoYGpzlMGGM4duwYBg4ciJMnT2LdunXo378/Fi9ejG3btmHdunU4dOgQampqoNFonJo7Y2Ji0KdPH/lfly5dLliHlrhQ3aTWFsfj2mw2zJw5E3v27EFycjIaGxthtVqd6rR9+3Z5AHZrfq3tq6qqkj/3tjb3DhkyBA0NDU7zotTU1DgN8PfE31NEUcTevXsBAJMnT5YnGP3mm288PhbQlOz17NmTy+VAeHYHyJ/8Xf3vu+8+rFmzpsWu+EAQ/N/MIQwLoaUQ3nnnHXz55ZfIy8vDCy+8gIyMDCxatAhTp05FSkoKHnzwQaSmpiInJwfPPvssMjMzsWjRIkRGRmLXrl146aWXUFBQgMzMTHz99dfo27cvYmJiIIoiIiIicP78eXnSMk/r0BIXqlu/fv0wa9YsPPPMMzh06BDy8vLwxBNPwGKxYOLEiZg2bRpSUlLwwAMP4NChQygoKMD69evx6aefyslTa34REREt7ouNjXWaHbktTJo0CaNGjcLDDz+MEydOID09HatXr4bJZHKbRF3I31MOHz4Mg8GAtWvX4u2338YXX3yBq6++Gt9//73Tk4ptpfkstDzBsztA/uTv6q/Vai84HKSjCZ6aXIQ0n6k3mJk/fz7efvtt3HDDDTh69Ch27NiBIUOGQKVSYefOnRg6dChWrFiBm266CVlZWXj77bcxevRoDBgwAG+88QYOHTqE2bNnY8GCBVCpVNi+fTuApkmubr31VmRmZuKGG25odYBwS3VoiQvVDQDWrVuHCRMm4P7778fcuXNRUlKCHTt2IC4uTn798OHD8fe//x033HADjhw5gs2bN2PKlCkA0KrfoEGDWtynVCrdjgG6EG+88QYSExOxePFiLFq0CCNHjkSPHj3crqrcFn9PyMnJwccff4zFixdDoVAgOjoar776Kh555BGkpaV5fLzms9DyBM/uAPmTf2j4B/1M0IFA6jJpaSZJs9mMvLw89OvXz2lMSnNYs5l6g5XBgwfLT9X5Ek/8/VWHQOLp519dXY2TJ09i6tSpcsIjCAImTZqEp556CrNnz/Zzjb2j+XUhLRei0+mCfiyAr+HZHSB/8nf1P3DgAARBwIQJE5zGfvqaC31/O0KDoP2Iu5mReYL8PfMPCwvDAw88gPnz52PBggWwWq3YsWMHNBoNLrvsMj/W1D+oVCq/D94PVnh2B8if/F39Dx48CIPBgKFDh/o1AfIE6gLzI3a7XV7ThUfI3zP/zp07480338SJEycwe/Zs3HrrraisrMS77757wTmUghGr1Yri4mKnhVN5gWd3gPzJ39V/zJgxmDBhgtPyFYGGWoD8jLQWWDDT/LFnX9JWf3/WIZB4+vlPnjwZH330kR9r1HHYbDZUVlYiNjbW7Rimixme3QHyJ39X/z/96U8BrpUrwf3NHOI0XzCON8ifb//w8HCMHDky0NUICDy7A+RP/qHhT11gBEEQBEFwByVAfsRut8NkMnE9Bob8+fU3mUw4e/YsTCZToKvS4fDsDpA/+bv6b9y4Ec8++yzKysoCWDNnKAHygrbMIBBMkz4FAvLnx7/59aBSqRAZGcnlk4A8uwPkT/6u/oyxoJsUmMYAtQNpUOuFZsdVKpVOC53yBvnz5S9dD9L1odFo0Lt370BWKWDw7A6QP/m7+i9duhSMsaAaF8nPn6c+RKVSQaVSob6+vtVy0kR4wZb1dhTkz5d/fX29fG0AoTUTuq/h2R0gf/J39Y+MjERUVFRQtYpRC1A7UCgUSEhIQElJCbRaLTp16uR2pl9RFGGxWKDVaoPqQ+8oyJ8Pf8YYDAYD6uvr0b17d/lakKbDT0lJCaq/+joCnt0B8if/0PCnBKidREdHw2QyobKyEhUVFW7LSH2eCoUiqJfC8Bfkz4+/QqFATEwMoqOj5W1arRbJyclcdQNK8OwOkD/5u/qnpqZCEASMGTMmaGbJpgSonSgUCnTv3h0JCQnczvZJEBJqtdqllUulUiEqKipANQosPLsD5E/+rv779u2DwWDAoEGDKAG6WHAc89Acq9WKqqoqdOnShcvZQMmf/Hn159kdIH/yd/UfPnw4LBYLwsPDA1y7P6BB0H7EarWitLSU2xYi8id/Xv15dgfIn/xd/a+66irceOON6Ny5cwBr5oyC8fKIigecOnUKADBixIgA14QgCIIgiLbiyfc3tQARBEEQBMEdlAD5EbPZjPT0dJjN5kBXJSCQP/nz6s+zO0D+5O/q//rrr2P9+vUoLy8PYM2coQTIjygUCuh0uov+EeiWIH/y59WfZ3eA/Mnf1V8QBAiCEFQTw9IYIDfQGCCCIAiC8B21tbWw2+3o3LmzvFyOP6AxQEECYwxWqzWoMt6OhPzJn1d/nt0B8id/V/+YmBjExcX5NfnxFEqA/IjJZEJaWhpMJlOgqxIQyJ/8efXn2R0gf/IPDf/gScUuQrRaLQYOHMj1dOjkT/48+vPsDpA/+bv6Hz9+HFarFSNGjAia9cEoAfIjKpXKaW0k3iB/8ufVn2d3gPzJ39X/xx9/hMFgQN++fYMmAaIuMD9itVpRXl7O9Wyg5E/+PPrz7A6QP/m7+g8ePBjDhg2DTqcLYM2coRYgP2K1WlFUVITIyEhu14Mhf/Ln0Z9nd4D8yd/V//rrrw9wrVyhx+DdQI/BEwRBEEToQY/BEwRBEARBtAIlQH7EbDYjMzOT6+nQyZ/8efTn2R0gf/J39d+6dSs2btyIioqKANbMGRoD5EcUCgXCwsK4ng6d/MmfR3+e3QHyJ39Xf4PBAIPBALvdHsCaOUNjgNxAY4AIgiAIwndUVFTAbrcjLi7OrwPDPfn+phYgP8IYg91uh1Kp5PIvAfInf179eXYHyJ/8Xf3j4+MDXCtXaAyQHzGZTDhx4kTQTwfuL8if/Hn159kdIH/yDw1/agHyIxqNBv3794dGowl0VQIC+ZM/r/48uwPkT/6u/qdOnYLNZsOQIUMQHh4ewNr9ASVAfiQsLAyxsbGBrkbAIH/y59WfZ3eA/Mnf1f/bb7+FwWBAjx49giYBoi4wP2Kz2VBZWQmbzRboqgQE8id/Xv15dgfIn/xd/QcMGIDk5OSgWiCWWoD8iCAIKCgoQEREBMLC+As1+ZM/r/48uwPkT/6u/nPmzAlwrVyhx+Dd4KvH4B1Dy+uTABLkT/48wbM7QP7kHzh/egw+SODxxHeE/MmfV3h2B8if/EPDn8YA+RGLxYLs7GxYLJZAVyUgkD/58+rPsztA/uTv6v/Pf/4Tr7/+OiorKwNYM2eoBYggCIIgCL9SW1sLg8EAURQDXRUZGgPkBloKgyAIgiB8R3FxMURRRLdu3fw6PxKNAQoSaCAc+UuQP1/+PLsD5E/+rv49evQIVHVahMYA+RGTyYTjx48H/XTg/oL8yZ9Xf57dAfIn/9DwpxYgP6LRaNCnTx+up0Mnf/Ln0Z9nd4D8yd/VPz09HTabDQMHDoROpwtg7f6AEiA/EhYWhq5duwa6GgGD/MmfV3+e3QHyJ39X/6+++goGgwFLly4NmgSIusD8iM1mQ01NDdfToZM/+fPoz7M7QP7k7+rfu3dv9O3bN6haxSgB8iOCICA3NxeCIAS6KgGB/MmfV3+e3QHyJ39X/1tuuQWLFi0KqkVi6TF4N/hyKQy73Q6lUsntkwDkT/48+vPsDpA/+QfOnx6DDxIUCgVUKlWgqxEwyJ/8efXn2R0gf/IPDX/qAvMjFosFubm5XE+HTv7kz6M/z+4A+ZO/q/8777yDrVu3oqqqKoA1c4ZagPwIYww2mw289jKSP/nz6s+zO0D+5O/qX1FRAYPBEFQDw4NyDJDdbsfmzZvx8ccfo6GhARMmTMCTTz6JXr16uS1fVVWFdevW4cCBA2CM4ZJLLsGaNWvQrVu3dr0/LYVBEARBEL6joKAAoigiKSkpaJbCCMousC1btmDXrl147rnn8NFHH8Fut2PJkiUtjqj/+9//juLiYvzrX//Cv/71LxQXF+Pee+/t4FoTBEEQBOGOPn36oH///vQYfGsIgoCdO3di5cqVmD59OoYMGYJNmzahtLQU3333nUv5+vp6pKam4q677kJKSgqGDh2Ku+++G6dOnUJtbW3HCzhgNBpx/PhxGI3GgNYjUJA/+fPqz7M7QP7kHxr+QZcApaenw2AwYMqUKfK2zp07Y+jQoThy5IhLeZ1Oh06dOuHzzz9HY2MjGhsb8cUXX6Bfv37o3LlzR1bdBbVajaSkJKjV6oDWI1CQP/nz6s+zO0D+5O/qn5OTg4yMjKAaGB50CVBpaSkAoHv37k7bExIS5H2OaDQabNiwAampqRg/fjwmTJiAkydPYvv27VAqvdNzXMjNZDLJXXB2ux1GoxGiKAIArFarU6ZrNpthsVigVqsRHx8Pq9V6wbJA08Axo9EoDxKz2WwwGo3yQDKLxeJRWbPZLL+P0WiE1WoFAIii6HFZu90OoKmFrnlcWirLGENUVJR8EXgSw/bE211cvI1387h4UhZoOm+VSqVLDL2Jd/O4eFK2tRj6It5SXICmm2Dnzp2dzof2nrPtOb9biou38XaMS0tlVSoVIiMj5XtQW2J4Md0jbDYbEhISoFarW71HeHPOBvM9Qq1WIy4uDlartd0xDOV7hCiKiI6OhlqtlmP42Wef4aOPPkJVVZVP4938HuEJQZcASR9O835CrVbrNnNkjEGv12PMmDH44IMP8M4776BHjx5Yvnw5Ghsb210PURSRlZUl/56XlycnYIIgQK/Xy8GuqqpCZmamXDY/Px8lJSUQRRHV1dXQ6/VyXWpqapCeni6XLSwsxPnz5wE0nVR6vR4NDQ0AgNraWuj1ernsuXPncO7cOfl3vV4vd/M1NDRAr9fLJ/r58+dRWFgol01PT0dNTQ0AoLGxEXq9Xj7JSkpKkJ+fL5fNzMyUH1U0Go3Q6/XyiV9aWoq8vDy5bFZWFioqKgA0nch6vV4+QcvKypCVlSVfJDk5OSgvLwfQdCLr9Xr5866srGwx3larFXq9HgaDAQBQXV2NjIwMl3gDTReBY7zdxbCoqMgp3vX19QCAuro66PV6+WIrKiq6YLwlt+LiYhQUFMhlMzIyUFVVhbq6OtTX17vEu3kMKysrATSd/47xLisrQ25urlw2Ozu7xXhXVFQgOztbLpubm4uysjIAf5yzrcW7pRjW1NQ4xbugoADFxcUAmq6Tls5ZURSRl5cnx1C6Vuvq6gBAjot0zrYW7wudsxkZGaiurgYAGAwG6PV6+cbo7pxtHm/p3lJeXo6cnBy5bE5OTqvxbumclcpKcWnpHtFSvEP9HpGbm4u6ujr5PtpaDJvH+2K4R4iiiLKysgveI1qLdyjfI/Lz85Gfnw9RFOV7RNeuXdGzZ0/5fHEXb1/cIzyCBRl79uxhycnJzGQyOW1fuXIlW7p0qUv53bt3s/Hjx7OGhgZ5W21tLRszZgz717/+1a46pKWlsbS0NGY0GuVtRqORWSwWxhhjoigyg8HAbDYbY4wxQRCYwWCQy5pMJmY2m5nBYGBHjx5llZWVFyzLGGN2u50ZDAZmtVoZY4xZrVZmMBiY3W5njDFmNps9KusYQ4PBwARBYIwxZrPZPC4riiJjjDGLxeISl5bK1tbWsqNHj8q+nsSwPfF2Fxdv4908Lp6UraurY0ePHmX19fUuMfQm3s3j4knZ1mLoi3hLcZG8jh49ympqatodbyku7Tm/W4qLt/F2jEtLZRsaGuTPvq0xvJjuEdXV1fK139o9wptzNpjvEY73/vbGMJTvEY6ff2v3CF/Eu/k9Qvr+bgtB9xh8Wloabr75Zuzduxe9e/eWty9YsACDBw/G008/7VT+2WefxenTp/Gf//zHaftNN92EkSNH4qmnnvK4Dr5cCsNmsyEsLIzb6dDJn/x59OfZHSB/8g+cf4c/Bi8IAlJSUvD55597fawhQ4YgMjIShw8flrfV19fj7NmzmDBhgkv5xMREFBQUOHWPGY1GFBUVoW/fvl7XxxsUCgXUajWXFwBA/uTPrz/P7gD5k39o+PtsDJCvGpI0Gg0WLlyIl19+GT/88APS09PxwAMPIDExEbNmzYIoiqioqJD7NGfPng2gaS6g9PR0pKenY9WqVdBqtZg7d65P6tReLBYL8vPzg2rUe0dC/uTPqz/P7gD5k7+r/65du7Bjxw55rF4wEHSDoAFg5cqVmDdvHh5//HEsWLAAKpUKO3bsgFqtRklJCaZOnYqvv/4aQNNTNrt27QJjDIsWLcKdd94JtVqNXbt2ISoqKqAejDGYzWaup0Mnf/Ln0Z9nd4D8yd/Vv7i4GEVFRfLDCcGAT8YACYKAkSNHYsOGDXKLTChDS2EQBEEQhO/Izs6GKIro27cvtFqt397Hk+9vWgyVIAiCIAi/MnDgwEBXwYWg7AK7WDAajThx4kTQTwfuL8if/Hn159kdIH/yDw1/agHyI2q1GomJiVxPh07+5M+jP8/uAPmTv6t/YWEhRFFEz549g2ZBVEqA/Ih0EvAK+ZM/r/48uwPkT/6u/v/5z39gMBiwdOlSdOvWLUA1c8arLrC33noLGzdudNp29OhR3H333UHf9NURiKKIhoYGeSp03iB/8ufVn2d3gPzJ39W/a9euSEhIQFhY8LS7eJUAabVabN++HevWrYNCocChQ4dw1113QRAErxcivRiwWCzIzMzkei4I8id/Hv15dgfIn/xd/RcvXoxly5ahS5cuAayZM14/Bv/BBx/g+eefl3+/5JJLsGXLFr8+5uZvfPUYvN1uhyAI0Gg0XCaE5E/+vPrz7A6QP/kHzr9DH4O/7bbboFar8dRTT+Hyyy/H66+/HjQDnAKNUqmETqcLdDUCBvmTP6/+PLsD5E/+oeHvk9TslltuwXfffYc33niDkh8HBEFAYWEhBEEIdFUCAvmTP6/+PLsD5E/+rv7/+c9/8O6776KmpiaANXPGZ6ORevXq5atDXTSIoojGxkauB8KRP/nz6M+zO0D+5O/qX1hYCIPBEFRJoU+WwrjYoKUwCIIgCMJ36PV62Gw2DBo0yK/dY7QUBkEQBEEQQUNKSkqgq+ACf8PTOxCTyYS0tDSYTKZAVyUgkD/58+rPsztA/uQfGv7UAuRHwsLC0LVr16Ca+KkjIX/y59WfZ3eA/Mnf1b+kpASiKKJbt25Bs0QIjQFyA40BIgiCIAjf8fLLL3fIUhiefH9TF5gfEUURBoOB6ycByJ/8efTn2R0gf/J39Y+OjkZMTAxUKlUAa+YMJUB+xGKxID09nevp0Mmf/Hn059kdIH/yd/W/6667cP/996Nr164BrJkzPukCq6urg8lkgt1ud9nXo0cPbw/f4fhyKQyz2QydTsftdOjkT/48+vPsDpA/+QfOv8Megy8oKMAjjzyCkydPtlhGr9d78xYhjVKpRERERKCrETDIn/x59efZHSB/8g8Nf68SoOeeew75+flYsWIFEhMTucx0W0MQBFRUVCA+Pp7LJULIn/x59efZHSB/8nf1/+yzz2A2m3H11VcjJiYmsBX8/3iVAB05cgT/+Mc/cN111/mqPhcVoiiipqYGcXFxga5KQCB/8ufVn2d3gPzJ39U/JycHBoMBM2fODGDNnPFqDNCll16KDRs2YNq0ab6sU8Chx+AJgiAIwnecOnUKVqsVKSkpCA8P9+v7AB3wGPyNN96IDz74ADSVEEEQBEEQLTFixAiMHTvWr8mPp3jVBRYeHo5jx47hyiuvxIgRI1wWOFMoFFi3bp1XFQxlTCYTcnJyMGDAgKD60DsK8id/Xv15dgfIn/xDw9+rBOizzz5DVFQU7Ha72yfBFAqFN4cPeVQqVdBN/NSRkD/58+rPsztA/uTv6l9RUQG73Y4uXboEzRIhtBSGG2gMEEEQBEH4DloKgzPsdnuLE0TyAPmTP6/+PLsD5E/+rv4RERHo1KlTUE2X45N2qH379iE1NRX19fWIjY3FuHHjcNlll/ni0CGN2WyGXq9HSkpKSEwK5WvIn/x59efZHSB/8nf1X758eYBr5YpXXWCCIGD58uXYv38/VCoVYmNjUVNTA7vdjsmTJ+Ott94KyUmgfNUFJooiTCYTwsPDuewLJn/y59WfZ3eA/Mk/cP4d1gX2xhtv4NixY3jxxReRlpaG/fv34+TJk1i/fj1OnDiBrVu3enP4kEelUiEyMpLLCwAgf/Ln159nd4D8yT80/L1KgL766iusWLECN9xwgywaFhaG2bNnY8WKFfjyyy99UslQxWq1oqSkBFarNdBVCQjkT/68+vPsDpA/+bv6f/XVV/jkk09QV1cXwJo541UCVF1djaFDh7rdN3ToUJSVlXlz+JDHarWivLyc64uA/MmfR3+e3QHyJ39X//T0dJw+fRpmszmANXPGq0HQvXv3xrFjxzBlyhSXfUeOHEH37t29OXzIExERgVGjRgW6GgGD/MmfV3+e3QHyJ39X/5kzZ8JqtSIqKipAtXLFqwRo/vz52LBhA3Q6Ha699lp07doVlZWV+Oqrr7B9+3asWLHCV/UkCIIgCCJEGTt2bKCr4IJXCdCCBQtw9uxZvPzyy9i4caO8nTGGOXPm4O677/a6gqGMyWRCXl4e+vXrF9TTgfsL8id/Xv15dgfIn/xDw9+rBEipVOIf//gH/vrXvyI1NRV1dXWIjo7GxIkTMWDAAF/VMWQJlZHw/oL8yZ9Xf57dAfInf1f/2tpaMMbQuXPnoImLx/MArV27FsuXL0evXr2wdu3a1g8eoouh0lIYBEEQBOE7gnEpDI9bgA4fPoxFixbJP7cG74uh2u12WK1WqNXqoJr+u6Mgf/Ln1Z9nd4D8yd/VX6PRwGq1BlVeQIuhusFXLUBGo5Hr6dDJn/x59efZHSB/8g+cf4fNBH3kyBEYDAa3++rr67F7925vDh/yaLVaDBo0CFqtNtBVCQjkT/68+vPsDpA/+YeGv1cJ0B133IGcnBy3+86ePXvBMUIXOyqVKqgGfHU05E/+vPrz7A6QP/mHhr/HY4AeeeQRlJSUAGh63P3pp59GZGSkS7n8/Hx07drV+xqGMFarFdXV1YiLi4NarQ50dToc8id/Xv15dgfIn/xd/ffs2QOLxYLp06cjOjo6wDVswuMWoD//+c9gjMFx6JD0u/RPqVRi9OjRWL9+vU8rG2pYrVYUFxdzPR06+ZM/j/48uwPkT/6u/qdPn8aJEyeCaikMrwZB33777Xj66acvujl/6DF4giAIgvAdhw8fhiAIGDt2LDp16uS39/HrY/COvPfeewCAqqoqCIIgtwrZ7XaYTCYcPXoUCxYs8OYtCIIgCIIIcSZNmhToKrjgVQKUnp6O1atXtzgQWqFQcJ0Amc1m5Ofno2/fvtDpdIGuTodD/uTPqz/P7gD5k39o+HuVAL344ouoq6vDI488gp9++gkajQYzZszAvn37sG/fPrz77ru+qmdIolAooNPpgmrip46E/MmfV3+e3QHyJ39Xf4PBAMYYwsPDg+bpMK/GAI0bNw5r167FvHnz8O9//xtffvkl3n//fQDAypUroVAo8Nprr/mssh0FjQEiCIIgCN8RjEtheDUPkCAI6Nu3LwCgb9++SE9Pl/fNnTsXJ06c8ObwIQ9jDFarFbxOtk3+5M+rP8/uAPmTv6t/MLaGeZUA9ejRA+fOnQPQlAA1NjaiqKgIQNO6H3V1dd7XMIQxmUxIS0uDyWQKdFUCAvmTP6/+PLsD5E/+rv4PPvggnnrqKb+2/niKVwnQrFmzsHHjRnz77bfo1q0b+vfvj1dffRUZGRnYuXMnevXq5at6hiQajQYDBgyARqMJdFUCAvmTP6/+PLsD5E/+oeHv1Rggi8WChx56CCaTCdu3b8evv/6KFStWQBAEqFQqvPLKK5g1a5Yv69sh0BgggiAIggg9PPn+9slq8NKy9wBw7tw5nD59GsOGDUPv3r29PXRA8FUCZLVaUVtbi5iYGG6nQyd/8ufRn2d3gPzJ39X/hx9+gCAIuPTSS9G5c2e/vXeHDYKWcPyAe/Xqhauvvjpkkx9fYrVaUVhYyPV06ORP/jz68+wOkD/5u/r//vvvSE1NDapxUR63AG3evLntB1cocO+993pcqUBDXWAEQRAE4Tv2798PQRAwceJEtwuo+wq/doENGTKkzWUVCgX0er0nhwfQtJTG5s2b8fHHH6OhoQETJkzAk08+2eKgaqvVitdffx2ff/45GhoaMHz4cDz22GNISUnx+L0BSoAIgiAIIhTx61pgjnP9+IstW7Zg165d2LBhAxITE/HSSy9hyZIl+PLLL92OKn/66afx888/Y8OGDejRowdee+013HXXXfjmm28QFRXl9/q2hNlsxrlz59CrV6+gng7cX5A/+fPqz7M7QP7kHxr+Xi2FIbFv3z6kpqaivr4ecXFxGDduHKZNm9auYwmCgJ07d2L16tWYPn06AGDTpk2YNm0avvvuO1x33XVO5c+dO4dPPvkEb775pvyezz//PGbPno3Tp09jypQpXrl5g0KhgFKpDMoJoDoC8id/Xv15dgfIn/xd/aUF09VqNZRKnww/9hqvngITBAHLly/H/v37oVKpEBsbi5qaGtjtdkyePBlvvfWWx/MApKWl4eabb8aePXvQr18/efuCBQuQnJyMZ555xqn8Rx99hI0bN+Lw4cM+Cyp1gREEQRCE77jolsJ44403cOzYMbz44otIS0vD/v37cfLkSaxfvx4nTpzA1q1bPT5maWkpAKB79+5O2xMSEuR9juTl5aFXr1747rvvMHfuXFx66aW46667Wlyh3hMcR6ubTCYIggCgaYyS0WiEKIoAmsYgGY1GuazZbIbFYgFjDDabDQaD4YJlgabpw41GI2w2GwDAZrPBaDTK04lbLBaPyprNZvl9jEajPCJfFEWPy9rtdgBNSW/zuLRU1mKxoLGxUX4fT2LYnni7i4u38W4eF0/KCoIAURTlso4x9CbezePiSdnWYuiLeEuujvskV2/O2fac3y3Fxdt4O8alpbKiKKKhocGj8/BiukdIPoyxVu8R3pyzwXyPYIzBYrHIC4C2J4ahfI8wmUxynKQYSjjeI3wR7+b3CE/wKgH66quvsGLFCtxwww3y6q5hYWGYPXs2VqxYgS+//NLjY0ofTvOWI61WKwfJkcbGRhQUFGDLli1YtWoVtm7dirCwMPzlL39BVVVVO6yaEEURWVlZ8u95eXlyAiYIAvR6vRzsqqoqZGZmymXz8/NRUlICk8mEkydPIj09HY2NjQCAmpoap3FUhYWFOH/+PICmk0qv16OhoQEAUFtb6zSI/Ny5c/LSIwCg1+tRW1sLAGhoaIBer5dP9PPnz6OwsFAum56ejpqaGjlmer1ePslKSkqQn58vl83MzJRjZzQaodfr5RO/tLQUeXl5ctmsrCxUVFQAaDqR9Xq9fIKWlJQgIyND/kxzcnJQXl4OoOlE1uv18r7KysoW4221WqHX62EwGAAA1dXVyMjIcIk30HQR6PV6Od7uYigt1yLFu76+HgBQV1cHvV4vX2xFRUUXjLd0AyguLkZBQYFcNiMjA+Xl5Thx4gSqq6td4t08hpWVlQCazn/HeJeVlSE3N1cum52d3WK8KyoqkJ2dLZfNzc1FWVkZgD/O2dbi3VIMa2pqnOJdUFCA4uJiAE3XSUvnrOQinYeMMej1enmJnPr6eqdztrV4X+iczcjIQHV1NYCmVaf1er18Y3R3zjaPt3RvKS8vd/rjKScnp9V4t3TONjQ0IDMzU77mWrpHtBTvUL9H5Obm4sSJEzCZTK3eIyoqKlzifTHcI0wmE06fPo309PRW7xGtxTuU7xH5+fnysaR7xKJFi/Doo49Co9G0GG9f3CM8gnnByJEj2W+//eZ232+//caGDx/u8TH37NnDkpOTmclkctq+cuVKtnTpUpfyTz75JEtOTmbZ2dnyNpPJxCZOnMi2b9/u8fszxlhaWhpLS0tjRqNR3mY0GpnFYmGMMSaKIjMYDMxmszHGGBMEgRkMBqf3N5vNzGq1ssrKSlZXV3fBsowxZrfbmcFgYFarlTHGmNVqZQaDgdntdsYYY2az2aOyjjE0GAxMEATGGGM2m83jsqIoMsYYs1gsLnFpqazRaGQlJSVyHT2JYXvi7S4u3sa7eVw8KWs0GllVVRUzm80uMfQm3s3j4knZ1mLoi3hLcZF+Li0tZY2Nje2OtxSX9pzfLcXF23g7xqWlshaLhRUXF8txaksML6Z7RENDA6uqqmJWq7XVe4Q352ww3yOsVisrLy9ndXV17Y5hKN8jGhsbWWlpKbNara3eI3wR7+b3COn7uy14NQbo+uuvx5///GesWLHCZd/rr7+Or776Ct99951Hx5TGAO3du9dpMsUFCxZg8ODBePrpp53Kb926FZs3b8aZM2ects+bNw/Dhw93Kd8WaAwQQRAEQYQeHTYGaP78+Xjrrbfwz3/+EyUlJbBarSgpKcH27duxfft23HTTTR4fc8iQIYiMjMThw4flbfX19Th79iwmTJjgUn7ChAmw2WyyNPDHI3h9+vRpn5iPsNlsqKqqkps1eYP8yZ9Xf57dAfInf1f/ffv24fvvv5e7b4MBrxKgBQsW4IYbbsDLL7+MmTNnYuTIkZg5cyY2btyI6667DnfffbfHx9RoNFi4cCFefvll/PDDD0hPT8cDDzyAxMREzJo1C6IooqKiQu7THD9+PC655BI88sgjOHr0KLKzs/Hwww9DpVLhxhtv9EbPawRBQH5+vtxXyxvkT/68+vPsDpA/+bv6p6am4sCBAx4PVPYnPlkMNTs7W54HKDo6GhMnTsSAAQPafTxRFPHKK6/g008/hdlslmeCTkpKQlFREf70pz9h/fr1mDt3LoCmwU8vv/wy9uzZA7PZjLFjx+LRRx/FwIED2/X+vuoCY/9/BLxCoeByPgjyJ39e/Xl2B8if/F39f/rpJwiCgEsuucSvExR3+GrwFxs0BoggCIIgQg+/LoWxdu1aLF++HL169cLatWtbLatQKLBu3TpP3+KiwWKxoKioCElJSdBqtYGuTodD/uTPqz/P7gD5k39o+HucAB0+fBiLFi2Sf24NHpv+HGGMwW63g9dGNvInf179eXYHyJ/8Xf0dfw6W3MCrLjBRFOUJEC8mqAuMIAiCIHzHRbcUxtSpU/H88887PYJOEARBEAQR7HiVAF133XX49ttvccstt+Cqq67Cm2++KU/ZTjRNEX/s2LGgeuyvIyF/8ufVn2d3gPzJ39X/3nvvxUMPPYT4+PgA1swZr58CY4zh0KFD2L17N/bu3YuGhgaMHTsWN954I6666iq/Pu7mL3zVBWaz2VBbW4uYmBiEhXk83CrkIX/y59WfZ3eA/Mk/cP4BewzearXiwIED2L17N7755huEhYXhxIkTvjp8h0FjgAiCIAgi9OiwMUCO2Gw27N+/H19//TX27dsHAJgyZYqvDh+S2Gw21NTUcD0dOvmTP4/+PLsD5E/+rv4HDx7EL7/8Iq8gHwx4lQAxxnDw4EE8/vjjuPTSS7Fs2TLk5+dj5cqV+PXXX7F161Zf1TMkEQQBubm5XE+HTv7kz6M/z+4A+ZO/q/+BAwfw888/w2AwBLBmznjVBTZ16lRUVVWhR48euOGGG3DjjTeib9++PqxeYPDlUhjSVAHBMu9BR0L+5M+rP8/uAPmTv6v/d999B4vFgssvvxydO3f223v7dSZoR2bOnIkbbrgB48eP9+YwFy0KhYLLAXAS5E/+vPrz7A6QP/m7+s+aNStAtWkZr7rAnn32WUp+WsFisSAvLw8WiyXQVQkI5E/+vPrz7A6QP/mHhr/PBkETrjDGIAgC19Ohkz/58+jPsztA/uQfGv60Grwb6DF4giAIgvAdr776KgwGA5YsWXJxLIVBEARBEARxIWw2W9BNC0AJkB8xGo34/fffuZ4OnfzJn0d/nt0B8id/V/+7774bf//739G1a9cA1swZr4epNzY2wmAwoFu3brBarXjvvfdQXFyMP//5z5gwYYIv6hiyqNVq9OzZE2q1OtBVCQjkT/68+vPsDpA/+bv6+/PR9/biVQvQyZMnMWPGDLz//vsAgOeffx4vvvgi/ve//2HRokX44YcffFLJUEWtViMhIYHri4D8yZ9Hf57dAfIn/9Dw9yoBevXVVzFgwADccsstMJlM+OKLL/CXv/wFqampmDdvHt58801f1TMkEUURdXV1EEUx0FUJCORP/rz68+wOkD/5u/ofPXoUBw8eDKqZoL1uAVq2bBl69eqFAwcOwGKx4MYbbwQAXHPNNcjKyvJJJUMVi8WC7OzsoJ8LwV+QP/nz6s+zO0D+5O/q//PPP+O7774LqrXAvBoDpFQqodVqAQC//vorOnfujJEjRwJoGhuk0+m8r2EIo9PpMGLECG5nBCV/8ufVn2d3gPzJ39V/6NChsFgsQZUXePXpDB8+HB9//DF0Oh327NmD6dOnQ6FQoKqqCtu3b8fw4cN9Vc+QRKlUQqPRBLoaAYP8yZ9Xf57dAfInf1f/a665JkC1aRmvusBWr16N3377DfPnz4dKpcKyZcsAANdddx3y8/Px97//3Rd1DFkEQUBBQQHXKwKTP/nz6M+zO0D+5B8a/l63AO3duxc5OTkYNGgQIiIiAABPP/00xo4di/j4eJ9UMlSx2+0wGo2w2+2BrkpAIH/y59WfZ3eA/Mk/NPw9XgqjuLjYozfo0aOHR+WDAVoKgyAIgiB8x//93//BYDBg8eLFSEhI8Nv7ePL97XEL0MyZM6FQKNpcXq/Xe/oWBEEQBEFcRJhMJphMpqBaINXjBGjdunVyAlRXV4eXX34ZU6ZMwdVXX434+HjU1tbixx9/xM8//4w1a9b4vMKhhNFoRFZWllP3IE+QP/nz6s+zO0D+5O/qf+edd8JutyM2NjbAtfsDjxOguXPnyj/fe++9mD17Np5//nmnMtdffz3+8Y9/4JtvvsGtt97qfS1DlFCZDdNfkD/58+rPsztA/uTv6t+lS5cA1sg9Xj0FduDAAVx99dVu902fPh2///67N4cPedRqNbp37871RUD+5M+jP8/uAPmTf2j4e5UAxcbGIi0tze2+Q4cOoVu3bt4cPuQRRRGNjY1cT4dO/uTPoz/P7gD5k7+r/8mTJ3H06FGnFeIDjVcJ0M0334z/+7//w6ZNm/D7778jPz8fR48exfPPP4+dO3di0aJFvqpnSGKxWJCRkcH1dOjkT/48+vPsDpA/+bv67927F7t370ZDQ0MAa+aMx4/BO8IYw4svvoj33ntPzvQYY9DpdFi+fDnuvvtun1W0I/HVY/B2ux2CIECj0UCp9CrXDEnIn/x59efZHSB/8nf1/+KLL2A2m/HnP/8ZMTExfntvT76/vUqAJBoaGnDixAnU1dUhNjYWY8aMCemR7zQPEEEQBEGEHn6dB6iliRAHDBgg/1xbW4va2loAoTkRoq8QBAFlZWXo1q0bl+vCkD/58+rPsztA/uQfGv40EaIfEUUR9fX16Nq1a6CrEhDIn/x59efZHSB/8g8Nf4+7wD799FOPJkIMxXmAqAuMIAiCIHzHtm3bYDAYsHDhQr+uE+rXLjCaCJEgCIIgCE+or6+HwWAIqgVSaSJEP2IymXDq1CmYTKZAVyUgkD/58+rPsztA/uTv6r9w4ULcddddiIuLC2DNnKGJEP2ISqVCXFwcVCpVoKsSEMif/Hn159kdIH/yd/VPTExEjx49gmp2aI+7wByRJkI0m82YPn06YmNjUVlZiT179uDDDz/Eo48+6qt6hiQajQY9e/YMdDUCBvmTP6/+PLsD5E/+oeHvVQK0bNkyNDQ0YMeOHdi2bRuAPyZCvP/++3Hbbbf5pJKhit1uh9lshk6n43YyLPInfx79eXYHyJ/8Xf3PnDkDm82G5ORkhIeHB7iGTXj1ySgUCjzyyCM4ePAgtm3bhpdeegk7duzAb7/9FrKzQPsSs9kMvV4Ps9kc6KoEBPInf179eXYHyJ/8Xf2/+eYbfP7556ivrw9gzZzxyUzQFxu+XAqD/gogf/Lnz59nd4D8yd/V/7///S/MZjOuvfZaxMbG+u29/foYvDv27duH1NRU1NfXIzY2FuPGjcNll13mi0OHNEqlMqSXBPEW8id/Xv15dgfIn/xd/efNmxeg2rSMVwmQIAhYvnw59u/fD5VKhdjYWNTU1GDbtm2YPHky3nrrraCeBtvfCIKAiooKxMfHcxkH8id/Xv15dgfIn/xDw9+rtrk33ngDx44dw4svvoi0tDTs378fJ0+exPr163HixAls3brVV/UMSURRRHV1NURRDHRVAgL5kz+v/jy7A+RP/qHh79UYoBkzZmDhwoX429/+5rJvx44d+PDDD/H99997VcFAQEthEARBEITv+Ne//gWj0Yhbb73Vr2uEddgYoOrqagwdOtTtvqFDh6KsrMybwxMEQRAEcRFQVVUFg8EQVK1CXnWB9e7dG8eOHXO778iRI+jevbs3hw95TCYTzpw5w/V06ORP/jz68+wOkD/5u/rfeuutWLx4sV+fAPMUr1qA5s+fjw0bNkCn0+Haa69F165dUVlZia+++grbt2/HihUrfFXPkESlUqFz585cT4dO/uTPoz/P7gD5k7+rf69evQJYI/d4NQbIbrfjiSeewCeffAKFQiFvZ4xhzpw5WLdundP2UIHGABEEQRBE6OHJ97dPJkLMyclBamoq6urqEB0djYkTJ2LAgAHeHjZg+HIiREEQoNFouJ0Mi/zJn0d/nt0B8if/P/yBpkaRrKwsiKKIvn37QqfTAWiaL8jXjSQdPhHigAEDQjrh8RfSdOApKSlcTopF/uTPqz/P7gD5k3+Tf3JyMqqqqmCz2fDFF1/AbDbjmmuukccBxcbGokuXLgGrp08SIMI9Wq0WgwcPhlarDXRVAgL5kz+v/jy7A+RP/k3+YWFhEAQBCoUCXbt2lVuFVCoV6uvr0blz54DWkxIgP6JSqRAZGRnoagQM8id/Xv15dgfIn/yb/AVBAGMMOp0OV199tVOZYJghOig7J+12O15//XVMmzYNo0ePxl133YVz58616bX/+9//MHjwYBQVFfm5lhfGarWipKQEVqs10FUJCORP/rz68+wOkD/5h4Z/UCZAW7Zswa5du/Dcc8/ho48+gt1ux5IlSyAIQquvO3/+PJ599tkOquWFsVqtKC8vD/qTwF+QP/nz6s+zO0D+5N/kf6Hv7EDj8VNgxcXFHr1Bjx49PCovCAImT56M1atX4y9/+QsAoL6+HtOmTcM//vEPXHfddW5fZ7fbsXDhQqjVahw6dAg//PADkpKSPHpvCXoMniAIgiC8w2KxIC8vD506dcK3334Li8WCmTNnIjo6GnV1dejSpQsSEhJ8+p5+fQps5syZHj22ptfrPTp+eno6DAYDpkyZIm/r3Lkzhg4diiNHjrSYAL355puwWq1YsWIFDh065NF7EgRBEAThP8rLy2GxWIKqVczjLrB169bJ/x555BGoVCpMnToV//jHP7Bt2za8+OKLuOqqq6DT6fD00097XKHS0lIAcFlGIyEhQd7XnLS0NOzcuRMvvfSST2fedJzG22Qyyc15drsdRqNRXtPEarXCaDTKZc1mMywWC8xmM86ePYuampoLlgWa5kowGo2w2WwAAJvNBqPRCKmRzmKxeFTWbDbL72M0GuUTTxRFj8va7XYATS10zePSUtmGhgacOXNGPrYnMWxPvN3Fxdt4N4+LJ2UbGxuh1+thMBhcYuhNvJvHxZOyrcXQF/GW4iKVO3PmDOrr69sdbyku7Tm/W4qLt/F2jEtLZY1GI86cOQODwdDmGF5M94ja2lro9XqYzeZW7xHenLPBfI9wvPe3N4ahfI+oq6uTl8Kw2+0wm83YuHEjnn32WZSVlTnVwdt4N79HeILHCdDcuXMxZ84czJkzB0eOHMHs2bOxfft2zJ07F9OmTcP111+PTZs2Yd68efjmm288PbwcmOYjxLVarRwkR4xGI1avXo3Vq1ejb9++Hr9fS4iiiKysLPn3vLw8OQETBAF6vV4OdlVVFTIzM+Wy+fn5KCkpgVKpRHh4OHJzc9HY2AgAqKmpQXp6uly2sLAQ58+fB9B0Uun1ejQ0NACAfBOROHfunNNgcL1ej9raWgBNyYZer5dP9PPnz6OwsFAum56ejpqaGgCQv5ilk6ykpAT5+fly2czMTFRVVQFoiq9er5dP/NLSUuTl5clls7KyUFFRAeCPuR+kE7SmpgaCIMgTgeXk5KC8vBxA04ms1+vlz7uysrLFeFutVjmRAJoW4c3IyHCJN9B0Eej1ejne7mIoDZCX4i19QdfV1UGv18sXW1FR0QXjLd0AiouLUVBQIJfNyMhAfX09IiIi5Lg4xrt5DCsrKwE0nf+O8S4rK0Nubq5cNjs7u8V4V1RUIDs7Wy6bm5srL0gsnbOtxbulGNbU1DjFu6CgQO4KF0WxxXNWqVRCFEW5Dowx6PV61NXVAWjq2nY8Z1uL94XO2YyMDFRXVwMADAYD9Hq9fGN0d842j7d0bykvL0dOTo5cNicnp9V4t3TOiqLodGNv6R7RUrxD/R5x/vx5REREQKlUtnqPqKiocIn3xXCPUCqVCAsLQ25ubqv3iNbiHcr3iJKSEjDGoFQqYbfbkZWVJbuZTCan4zrG2xf3CI9gXjBq1Ci2f/9+t/v279/PRo4c6fEx9+zZw5KTk5nJZHLavnLlSrZ06VKX8mvXrmV33323/PuhQ4dYcnIyO3funMfvLZGWlsbS0tKY0WiUtxmNRmaxWBhjjImiyAwGA7PZbIwxxgRBYAaDQS5rMpmY2WxmjDFmt9s9Lmu1WhljjFmtVmYwGJjdbmeMMWY2mz0q6xhDg8HABEFgjDFms9k8LiuKImOMMYvF4hIXT8q2NYbexluKi7fxbh4Xb+LtGBdv4t08Lr6It8lk8km8pbj4Kt5SXLyNt2NcvI23Y1zoHkH3CLpHtBxDk8nEzpw5wzIzM1lkZCQDwH755ReWnZ3Nzp49y8rKynx+j5C+v9uCV0thzJgxA7fccguWLVvmsm/jxo349ttv8d1333l0zLS0NNx8883Yu3cvevfuLW9fsGABBg8e7NKtNnjwYGg0GoSFNQ1nEkURFosF4eHhWLp0KZYuXeqxly+XwrDZbAgLC+N2OnTyJ38e/Xl2B8if/Jv8rVYrCgoKEB0djUGDBsFkMuHQoUPo1atXaA6CduTmm2/G//3f/8FsNmP69OmIjY1FZWUl9uzZgw8//BCPPvqox8ccMmQIIiMjcfjwYTkBqq+vx9mzZ7Fw4UKX8s0TrJMnT+Khhx7Ctm3bkJyc3D4xH0HToZM/+fPpz7M7QP7k3+TvOCxF6goMpoTQqwRo2bJlaGhowI4dO7Bt2zYAkGd9vP/++3Hbbbd5fEyNRoOFCxfi5ZdfRlxcHHr27ImXXnoJiYmJmDVrFkRRRHV1NaKioqDT6dCnTx+n10t9wj169EBMTIw3el6j1WoxcOBArqdDJ3/y59GfZ3eA/Mm/yV+pVMrjpe68805YrVZERUUFuHZ/4FUCpFAo8Mgjj2D58uU4ceIE6urqEBsbizFjxniV9a5cuRI2mw2PP/44zGYzJkyYgB07dkCtVqOoqAh/+tOfsH79esydO9eb6vsdlUqF6OjoQFcjYJA/+fPqz7M7QP7k3+QvPSikUCjw5JNPBrhWrng1BkgiJycHBw4cQHl5OW6//XacO3dO7soKRXw1BshqtaKmpgaxsbFQq9W+qFpIQf7kz6s/z+4A+ZN/k79Wq0VRUZG8+rsjIT8GyG6348knn8Qnn3wCxhgUCgWuvvpqbNmyBYWFhXj//feRmJjozVuENFarFefPn0dkZCS3FwH5kz+P/jy7A+RP/k3+0moMjDEUFxcjLCwM8fHxQTMOyKsWoM2bN2P79u148sknMX36dFx66aX45JNPoFQqce+992LChAl44YUXfFnfDoGWwiAIgiAI7zAYDMjPz4dWq8WgQYMANM1pFBERgdraWnTt2jWgLUBepWGffPIJVq5ciZtuuslpwHFKSgpWrlyJAwcOeHN4giAIgiBCFKl9RRRFaDQaKJVKp9afQLcEefXulZWVSElJcbuvW7du8uyZvGI2m5GRkeE0dTdPkD/58+rPsztA/uTv7B8VFYW8vDycO3cOOp0uwLX7A68SoD59+uCXX35xuy81NdXlEXXeUCgU0Gg0Hi0eezFB/uTPqz/P7gD5k39o+Hs1CHrRokV48sknYbVaMWPGDCgUChQUFODw4cPYuXMn1qxZ46t6hiRarRb9+vULdDUCBvmTP6/+PLsD5E/+Tf4NDQ1oaZix9OBUIPF6Jujq6mps3boVH374IRhjWLVqFdRqNZYsWYIFCxb4qp4hCWMMoihCpVIF/IMOBORP/rz68+wOkD/5N/lLSU5VVRUefPBB6HQ6vPnmm3K5QMfGqwQIAO655x7cdttt+P3331FbW4vOnTtj1KhRAZ+FORiQVu3ldTp08id/Xv15dgfIn/yb/JOSksAYg8FgwN69e4MuFl6NAbrjjjvw1VdfITIyEtOmTcP111+Pyy+/HDExMTh58mSLA6R5QaPRoH///tBoNIGuSkAgf/Ln1Z9nd4D8yb/JX61WQ6FQwGazAWiaITqY8KoFKDU1FUeOHMGZM2fw8MMPB7w5K9gICwtzOwMmL5A/+fPqz7M7QP7k3+QvPQlut9sBBF8C5PVD+AsXLsSuXbvwt7/9DXV1db6o00WDzWZDZWWlnP3yBvmTP6/+PLsD5E/+Tf5WqxWMsRZbgALdaOJ1AnT99dfj3XffRWZmJubNm4eMjAwAgRcLBgRBQEFBAQRBCHRVAgL5kz+v/jy7A+RP/n/4O3aBhYV5PezYp/hkGsZRo0bhv//9L6KiojB//nx8/fXXXK5/0pyIiAiMGzcu6AZ+dRTkT/68+vPsDpA/+Tv7u+sC88E67F7js3moExMTsWvXLlx22WV48MEHsWPHDl8dmiAIgiCIEENKctx1gSkUioD3FPl0IQ6dTofXXnsNy5cvx+7du3156JDEbDYjKyuL6+nQyZ/8efTn2R0gf/J39hdFEUDwDYL2qkPu3XffRf/+/V2233fffRg8eDB++uknbw4f8igUCiiVyoBnuYGC/MmfV3+e3QHyJ3+FvNCpNCkiEHwJkIIFQ0dckHHq1CkAwIgRIwJcE4IgCIIITWpqalBcXIwzZ87g1ltvxeDBg/Hjjz8CAKqrq5GUlOTzSZM9+f72uAVo7dq1WL58OXr16oW1a9e2WlahUGDdunWevsVFA2NMngqcx78EyJ/8efXn2R0gf/Jv8pcGP7trAQqG2HicAB0+fBiLFi2Sf26NQMsFGpoOnfzJn09/nt0B8if/Jv/4+HgoFIqg7QLzOAGSmq+a/0y4otFo0LdvX66nQyd/8ufRn2d3gPzJv8nfZDJBoVAgISEBc+bMQVJSUqCr5gSNAXIDjQEiCIIgCO8oLi5GfX09Onfu7LKvuroavXr1QnR0tE/f069jgDZv3tzmsgqFAvfee6+nb3HRYLPZ5A8/2GbA7AjIn/x59efZHSB/8m/yFwRBfhqsOSE5BogSoLYjCALy8vKQkpLC5UVA/uTPqz/P7gD5k3+Tf2RkJJRKJQRBgN1uh1arDXjS4wh1gbnBV11g0ih4XueDIH/y59WfZ3eA/Mm/yb+wsBCiKOLLL7/EqlWr8Kc//QnvvvsugKYusN69e7vtHvMGv3aBuaOqqgqCIMjTXtvtdphMJhw7dgzz58/3xVuEJAqFIuhGvXck5E/+vPrz7A6QP/k3+UtTARgMBgBAeHh4gGvmjFcJUHp6OlavXo2cnBy3+xUKBdcJkMViQVFREZKSkqDVagNdnQ6H/MmfV3+e3QHyJ38Lzp07B6vVCo1Gg0WLFuHmm292WgA1JMcAOfLiiy+irq4OjzzyCH766SdoNBrMmDED+/btw759++SmLl6RmgF57WUkf/Ln1Z9nd4D8yb9p+Qu73S63BkVFRQW6Wi54NQZo3LhxWLt2LebNm4d///vf+PLLL/H+++8DAFauXAmFQoHXXnvNZ5XtKOgxeIIgCIJoP6IoIi8vDyqVym0rWHV1Nfr06ePzxMiT72+vVoMXBAF9+/YFAPTt2xfp6enyvrlz5+LEiRPeHJ4gCIIgiBDEbrfLLUAffPABVq9ejV9++UXeHwxdYF4lQD169MC5c+cANCVAjY2NKCoqAtA0E2RdXZ33NQxhjEYjjh07BqPRGOiqBATyJ39e/Xl2B8if/P/wVygU+O233/Dhhx8iIyMj0FVzwqsEaNasWdi4cSO+/fZbdOvWDf3798err76KjIwM7Ny5E7169fJVPUMStVqN3r17Q61WB7oqAYH8yZ9Xf57dAfInfzWSkpIQFhYGpVIpPwXWqVOnANfMGa8SoBUrVmDs2LH473//C6Bppfi9e/di9uzZOHToEO677z6fVDJUUavViI+P5/oiIH/y59GfZ3eA/Mlfja5du0KlUkGhUMgtYc0Xhg10F5hXT4FptVq8/vrrsFqtAIBp06bhyy+/xJkzZzBs2DD07t3bJ5UMVWw2GxobGxEZGcnlbKDkT/68+vPsDpA/+dtQU1MDm83mlABJLUDSs1eBToC8agGScMxye/fujauvvpr75AdoGiSek5MDQRACXZWAQP7kz6s/z+4A+ZO/gNzcXFgsFqcESJoIkTEGpVLZ4jphHYVXqemQIUMumMHp9Xpv3iKkCQ8Px8iRI7n8CwAgf/Ln159nd4D8yT8cw4YNkx+KctcCFAxPgXn16dx7770uAgaDAcePH0dhYSFWr17tVeVCHYVCwW0fMED+5M+vP8/uAPmTvwJhYWFyfiANgpbGAEnrpIV0C1Brg5wffvhhnD59GjfddJM3bxHSWCwWlJSUoHv37txOh07+5M+jP8/uAPmTvwX5+flyF2CwtgD5Lf2aM2cOvv76a38dPiRgjMFsNnM9HTr5kz+P/jy7A+RP/gwmk0leEsNsNgO4yFqAWqOwsBA2m81fhw8JdDodhgwZEuhqBAzyJ39e/Xl2B8if/HUYNGgQioqKYDKZ5O1SAhQsT4F5lQBt3rzZZZvdbkdpaSm+/vprzJgxw5vDEwRBEAQRgkjdXNL4H4VCAZ1OJ+9zHCMUKHyeAAFAZGQkrrjiCqxdu9abw4c8RqMRGRkZGDx4sMsEUDxA/uTPqz/P7gD5k78RJ0+eRFRUlNz91alTJznhkR6DDzReJUCOi58SrqjVavTo0YPbpwHIn/x59efZHSB/8lcjISEBNpsNoijiyiuvhEajkffb7fagmCJAwbwYpVVcXOxR+R49erT3rTqUU6dOAQBGjBgR4JoQBEEQROhRXl6OqqoqREdHu+yrr69HTEwMEhMTff6+nnx/e5WCzZw506M+PN4mRRRFEQaDAZ06dYJKpQp0dToc8id/Xv15dgfIn/xF1NXVwW63u90fLC1AXtXg1VdfxVNPPYVhw4bhhhtuQLdu3VBTU4Mff/wR33zzDZYtW4aePXv6qq4hh8ViQVZWFlJSUrjsByZ/8ufVn2d3gPzJ34Ls7Gx0795dHgztiPQYfKDxqgts2bJliI6OxoYNG1z2rV+/HllZWdi5c6dXFQwEvuoCs9vtsFqtUKvVQfFhdzTkT/68+vPsDpA/+duRm5sLm82Gb7/9Fg8//DCuuOIKbN++HQBQU1ODnj17IiYmxufv7cn3t1efzMGDB3Hddde53XfZZZfh2LFj3hw+5FEqldBqtVxeAAD5kz+//jy7A+RP/k2THKrVahiNRpdFYd21CgUCrz6d2NhYnDx50u2+gwcPolu3bt4cPuQRBAGFhYVcrwhM/uTPoz/P7gD58+5vMplQVFQEm82GW265BampqXjuuefk/QqFIiiSQ6/GAM2bNw9bt26FyWTCzJkzERcXh8rKSuzZswcffvghnnjiCV/VMyQRRRGNjY0QRTHQVQkI5E/+vPrz7A6QP+/+VqsVjY2NSEhIQHh4uMtY4GBpAfJqDBBjDC+88ALef/99+YNmjCE8PBz33nsvlixZ4rOKdiT0GDxBEARBtA+z2Yy8vDxERka6fQqupqYG/fr188sA8Q57DF6hUGDNmjVYvnw5Tpw4gbq6OsTGxmL06NGIjIz05tAEQRAEQYQgdrtdftLrs88+Q1paGq688kpccsklQbMSPOCj1eArKiqQn5+PjIwMDBo0COnp6WhsbPTFoUMaaTpwo9EY6KoEBPInf179eXYHyJ93/4aGBqSnp8NsNuPHH3/Etm3bkJaWBiB4VoIHvGwBstvtePLJJ/HJJ5/IWd3VV1+NLVu2oLCwEO+//75fZnoMFaTpwHmfDp38yZ83eHYHyJ93f5VKhS5duiAsLAz19fUAgKioKAC4eFqAtmzZgi+//BLPP/88Dhw4IC9x/9BDD8Fut2PTpk0+qWSoolar0b17d24vAvInf179eXYHyJ93f6VSifj4eKjVapSVlQGA/FR4MLUAeVWDTz75BCtXrsRNN93kNKFRSkoKVq5ciQMHDnhbv5CG9ycByJ/8efXn2R0gf979LRYLzGYzRFGUEyCpN8hut18cLUCVlZVISUlxu69bt25y05en2O12vP7665g2bRpGjx6Nu+66C+fOnWuxfFZWFu6++25MmjQJU6ZMwcqVKz1eqNUfWCwWZGRkwGKxBLoqAYH8yZ9Xf57dAfLn3d9gMCA/Px8GgwEVFRUA/mgBkrrAQr4FqE+fPvjll1/c7ktNTUWfPn3addwtW7Zg165deO655/DRRx/BbrdjyZIlbieVqqmpwZ133gmdTof33nsP27dvR3V1NZYsWRLwk0+n02Ho0KHQ6XQBrUegIH/y59WfZ3eA/Hn3VyqVSE5ORkNDAxhj8pggILjGAHk1CHrRokV48sknYbVaMWPGDCgUChQUFODw4cPYuXMn1qxZ4/ExBUHAzp07sXr1akyfPh0AsGnTJkybNg3fffedy9Ib33//PYxGI1588UX5ZHvppZcwffp0HD9+HFOmTPFG0SuUSiXCw8MD9v6BhvzJn1d/nt0B8ufZ3263gzGGiIgIFBYWAgASEhLkFh/GWFCsBA94mQDdfPPNqK6uxtatW/Hhhx+CMYZVq1ZBrVZjyZIlWLBggcfHTE9Ph8FgcEpcOnfujKFDh+LIkSMuCdCUKVOwZcsWp0xbCnR7u+B8hSAIKC8vR0JCAjQaTUDrEgjIn/x59efZHSB/nv3tdjvMZjPq6+tx/vx5AHB6GjxYVoIHfDAP0D333IP9+/dj27ZteOmll/DWW2/h119/xf3339+u45WWlgIAunfv7rQ9ISFB3udIUlISJk+e7LRt27Zt0Ol0mDBhQrvqIGEymZx+lrrg7HY7jEajPMDNarU6zfdgNpthsVggiiJqamqcBsO1VBZoyoyNRiNsNhsAwGazwWg0yk/XWSwWj8qazWb5fYxGI6xWK4CmAXqelrXb7QCaLuzmcWmprNlsRnV1tezuSQzbE293cfE23s3j4klZi8WC2tpaCILgEkNv4t08Lp6UbS2Gvoi3FBfJpaamRq6TN+dse87vluLibbwd49JSWavViurqaqffLxTDi+keYTQaUVtbC1EUW71HeHPOBvM9wvHe394Yhuo9QqpfQ0MDSkpKAADx8fFO8ZZcfBHv5vcIT/BJGhYZGYlp06bh+uuvx+WXX+7VEvfSh9M8a9ZqtW0a0/Pee+/h/fffx+rVqxEXF9fueoiiiKysLPn3vLw8OQETBAF6vV4OdlVVFTIzM+Wy+fn5KCkpQXh4OIYMGYK8vDx5Ysiamhqkp6fLZQsLC+Us2W63Q6/Xo6GhAQBQW1sLvV4vlz137pzTYHC9Xo/a2loATRNP6fV6+UQ/f/683PwINLWs1dTUAAAaGxuh1+vlk6ykpAT5+fly2czMTFRVVQFoOsH0er184peWliIvL08um5WVJQ9yM5vN0Ov18gna0NDg1BSck5OD8vJyAE0nsl6vlz/vysrKFuNttVqh1+thMBgAANXV1cjIyHCJN9B0Eej1ejne7mJYVFTkFG+ppbCurg56vV6+2IqKii4Yb+kGUFxcjIKCArlsRkYGTCYThg8fDlEUXeLdPIaVlZUAms5/x3iXlZUhNzdXLpudnd1ivCsqKpCdnS2Xzc3NlZ/AkM7Z1uLdUgxramqc4l1QUCA/ZCC5uTtnw8PDodPpZDfGGPR6Perq6gA0tdA6nrOtxftC52xGRgaqq6sBNA3A1Ov18o3R3TnbPN7SvaW8vBw5OTly2ZycnFbj3dI5q1KpYLVa5XOppXtES/EO9XtEcXExhg8fjvDw8FbvERUVFS7xvhjuEeHh4UhKSkJeXl6r94jW4h2q9wi73Y7y8nJERUXJ16RWq5XL1tXVOX3mjvH2xT3CI1iQsWfPHpacnMxMJpPT9pUrV7KlS5e2+Dq73c42bdrEkpOT2aZNm7yqQ1paGktLS2NGo1HeZjQamcViYYwxJooiMxgMzGazMcYYEwSBGQwGuazJZGJms1mul6dlrVYrY4wxq9XKDAYDs9vtjDHGzGazR2UdY2gwGJggCIwxxmw2m8dlRVFkjDFmsVhc4uJJ2bbG0Nt4S3HxNt7N4+JNvB3j4k28m8fFF/E2mUw+ibcUF1/FW4qLt/F2jIu38XaMC90j6B5B9wjnsg0NDezYsWMsNzeX3XrrrQwAW7VqFSsoKGDnz59nJ0+eZOfPn/dZvJvfI6Tv77bg1WKo/iAtLQ0333wz9u7di969e8vbFyxYgMGDB+Ppp592eY3VasXatWvx1VdfYc2aNVi8eLFXdfDVYqgmkwk5OTkYMGAAlwPiyJ/8efXn2R0gf5796+vrkZWVhbq6Ojz99NP49ddf8corr+DWW28F0NQ617t3b3Tu3Nkv799hi6H6gyFDhiAyMhKHDx+WE6D6+nqcPXsWCxcudPuahx9+GHv37sXGjRtx7bXXdmR1W0WlUiE2Ntbtarg8QP7kz6s/z+4A+fPsL4oiVCoVoqOjMWzYMNhsNvTr10/er1AogiYuQZcAaTQaLFy4EC+//DLi4uLQs2dPvPTSS0hMTMSsWbMgiiKqq6sRFRUFnU6HTz/9FF9//TUefvhhTJw4Ue77BCCXCaRLz549A/b+gYb8yZ9Xf57dAfLn2V8URWg0GsTExOCJJ55w2hdMy2AAPhoE7WtWrlyJefPm4fHHH8eCBQugUqmwY8cOqNVqlJSUYOrUqfj6668BAF999RUA4MUXX8TUqVOd/kllAkXzEfi8Qf7kz6s/z+4A+fPsLz18YDKZXPylBChYWoCCbgxQMOCrMUDS0xEpKSmIiIjwRdVCCvInf179eXYHyJ9n/8LCQtTW1uLcuXMYOHCgvAo8AHl6mH79+vktCfLk+zsoW4AuFrRaLYYMGQKtVhvoqgQE8id/Xv15dgfIn1d/xhhsNht0Oh0MBgOGDh2K66+/Xt4vLYQaLF1gQTcG6GJCpVKhU6dOga5GwCB/8ufVn2d3gPx59bfb7bDb7VCr1aitrYXdbnda9sJut0Or1QbFOmAAtQD5FavViuLiYqdZL3mC/MmfV3+e3QHy59VfSoBEUcSYMWOQmpqK1157Td4viiLUanUAa+gMJUB+xGazobKyUp7dkzfIn/x59efZHSB/Xv1FUYQoimCMoa6uDnFxcU7z+QVbAkSDoN3gq0HQBEEQBMELRqMReXl5iI2Ndbu/pqYGPXv29Gq5rAsR0hMhEgRBEAQRekitPwDw6quvora2Fn/5y1+QnJwMoGmQdLAMgAaoC8yvmEwmnD171mn1XZ4gf/Ln1Z9nd4D8efWXnvIymUz497//je3btztNThxMs0ADlAD5FZVKhcjIyKD6wDsS8id/Xv15dgfIn1d/qQVIpVKhqqoKANCtWzcAwTcJIkBdYH5Fo9E4DQDjDfInf179eXYHyJ9Xf5vNBpVKBavVCoPBAABITEwEEHzLYADUAuRX7HY7zGYzl9OhA+RP/vz68+wOkD+v/oIgQKlUorS0FADQqVMnREZGAvhjkdRgagGiBMiPmM1mnDlzBmazOdBVCQjkT/68+vPsDpA/r/5SC1BhYSEAICEhQd5HLUCcodVqkZyczN106BLkT/68+vPsDpA/j/7SBIgKhQLV1dUA/uj+kvaHhYUFzSzQAI0B8isqlcppITjeIH/y59WfZ3eA/Hn0d1wGQ3ryyzEBEkURGo0mUNVzC7UA+RGr1YrS0lLupkOXIH/y59WfZ3eA/Hn0l2aBViqVKC4uBuDcBSaKotO6YMEAJUB+hMeLwBHyJ39e/Xl2B8ifR3+pBUilUsmDoLt27epUJtgSoOCqzUVGREQERo8eHehqBAzyJ39e/Xl2B8ifR39pDiCFQoHKykoAQFJSklOZYBoADVALEEEQBEEQXiKKovyz1AIkTYIoEUyPwAOUAPkVs9mM9PR07h6FlCB/8ufVn2d3gPx59Je6++x2O0pKSgD80QUWjLNAA9QF5lcUCgV0Ol1QPfbXkZA/+fPqz7M7QP48+lutVqhUKpjNZlxzzTUoKCiQW4CkwdHB1gWmYNLSrYTMqVOnAAAjRowIcE0IgiAIIvjJz8+H1WpFp06dXPZZLBaIooh+/fr5vRXIk+/v4ErHLjIYY7BareA1xyR/8ufVn2d3gPx585cmQZRaeJr7B+Ms0AAlQH7FZDIhLS0NJpMp0FUJCORP/rz68+wOkD9v/tIcQCqVCg0NDWhoaIBer5fHQAXjLNAAJUB+RavVYuDAgVxNh+4I+ZM/r/48uwPkz5u/YwK0fv16DBs2DHv37pVnfg7GWaABGgTtV1QqFaKjowNdjYBB/uTPqz/P7gD58+YvCIKcAJWWlsJutyMxMVEe7xOMs0AD1ALkV6xWK8rLy7maDdQR8id/Xv15dgfInzd/g8EgJzv//Oc/kZqaiksuucTJnxIgzrBarSgqKuLmImgO+ZM/r/48uwPkz5O/zWaDwWCQu/uUSiXi4uLQ2NgIm80mlwu2OYAAegzeLfQYPEEQBEFcmMbGRhQUFCAmJqbFQc41NTXo168fIiIi/F4fegyeIAiCIAi/YzQaATRN/nj27FncddddeOONN+T90tigYGwBogTIj5jNZmRmZnI1Hboj5E/+vPrz7A6QPy/+drsdDQ0N0Ol0AIAzZ87g66+/xk8//YScnByYzWY5AQq2OYAASoD8ikKhCMq5DzoK8id/Xv15dgfInxd/s9kMi8Uij//57bffAACjRo2S/aUJEoOxBSj4hmVfRGi1WvTv3z/Q1QgY5E/+vPrz7A6QPy/+JpNJnuWZMYZ9+/YBAGbMmIE+ffoAaOoiCwsLoxYg3mCMQRRFbqZDbw75kz+v/jy7A+TPg7/NZkNdXZ3c/ZWdnY3S0lJotVqMHz9e9g/WSRABSoD8islkwokTJ7iZDr055E/+vPrz7A6QPw/+tbW1MBqNCA8PBwC59WfixIlQKBQ4c+aMPAaIEiAO0Wg06N+/f9B++P6G/MmfV3+e3QHyv9j9zWYzqqurERERIY9zkhKgyy67DGq1Gr1794ZarQZjLCjH/wA0BsivhIWFITY2NtDVCBjkT/68+vPsDpD/xezPGEN1dTWsVisiIyMBNE38ePDgQQBNCVBYWBhiYmLk8sGaAFELkB+x2WyorKx0mg2TJ8if/Hn159kdIP+L2d9gMKCmpgZRUVHytuPHj8NgMKBLly4YOnQobDYbqqurYbPZoFAoKAHiEUEQUFBQAEEQAl2VgED+5M+rP8/uAPlfrP6iKKKyshJhYWFOa3vt3r0bADB16lQolUp5KRCj0Qi1Wg21Wh2oKrcKLYXhBl8theEY2ot9Pgh3kD/5S/Dmz7M7QP4Xq391dTWKi4sRGxsre2VlZeGKK66AzWbDe++9h5kzZ8r+BoMBGo0Gffr06bA4ePL9TWOA/MjFdOK3B/Inf17h2R0g/4vRXxAEVFdXIzw8XPZjjOHxxx+HzWbDFVdcgZkzZwL4w99qtSIuLi5o40FdYH7EYrEgOzsbFosl0FUJCORP/rz68+wOkP/F6F9TUwOz2Sw/9g40PQpfX18PrVaLZ599Vt5usViQm5sLQRDkeYKCEWoBIgiCIAiiRQwGA6qrq50GPgNAbGwsvvrqK5w5c0ae+VnCZrNBrVbLy2QEIzQGyA2+GgNEEARBEKGM3W5HUVERDAYDoqOj2/y6xsZG6HQ69O7d24+1c4XGAAUJF+tAuLZC/uQvwZs/z+4A+Qezv91uv+A/m83m9M9oNMrz+gBNy1589tlnWLFihVOXmARjDIIgoEuXLh1o5jmUAPkRk8kEvV6PlJQUREREBLo6HQ75kz+v/jy7A+TfUf7tSWYYYy5lgKakRUrWpLl7FAoFlEolOnfuLC9myhjDE088gX379qGsrAwvv/yyS72MRiPOnj2Lbt26+c3dF1AC5Eekx/8u1unQLwT5kz+v/jy7A+TfHn9fJjOOKJVKp38KhQJqtdrpd09bqRYuXIhz585hxYoVbvebzWYMHjzYoy6zQEBjgNxAY4AIgiCI5jDGfPLPXULT3mSm+e8d1eVmt9vlViFHzGYzrFYrevfu7bZ7zN/QGKAgwWazoaGhAVFRUU6zZvIC+ZM/r/48uwMd7+/rxKSlf1J7wYWOI4oiDAYDOnXq5HYZCClRaa1lxl1y0dEwxtDQ0IDy8nJUVFRAp9NhzJgxAOC2fna7HUajEfHx8TCbzVCr1UF9/gdvzS4CBEFAbm4uUlJSgvok8BfkT/68+vPsDjj7q1SqNiUegGtiISUd7pITURQ9TkwckX53bDGREpOW/kllHFtb3P0zmUwoLi5GQkJCQFpB2oIoikhLS0NFRYWc4JSVlTn9XlFRAbPZLL8mJiYGjz32GBYsWOC2pamxsRFRUVGIiIhAZmZm0J//1AXmBl8uhSE1EwbbkwAdAfmTP6/+oeDuz1YTURRdFgL1JDlxR1uTE8fWFXf7O4JAfP6iKKKmpkZOXkaMGIG4uDgAwN69e/HWW29hzJgxeOyxxwA0Jan9+vVr07GjoqIQHx+PhIQETJ06FX//+99dvARBgMlkQu/evRERERGw85+6wIKEYF4FtyMgf/Ln1d8b92DrzmmLqy9aTS4mfHnu2+125OXlObXMOLbQSD9XVlZCFEX5de+88w6uuOIKAEB9fT0OHjzoVCeNRoOhQ4dCq9UiPj5eTnDc/X+hVizGGBobG5GQkIBOnToBQEhc+5QA+RGLxYLz58+jZ8+eQT0bpr8gf/K/2Pxb66Jx/Gc2m3H+/Hl0794dGo2Gu8TEYrGgtLQUiYmJF81nfyEYYzAajbBarWhsbERxcTFiYmKgUChgtVphtVohCAKsVitsNpv885gxY5CYmAgA+PXXX/H2229j6NChePDBBwE0JUCXX355mz/zLl26ID4+3mmMzqRJk/B///d/LrM179271yfu0ngnqcUpVK59SoD8CGNMHt3PI+RP/h3lHwytJo7JkJQAWK1Wly+ACyUmLXXhhFKLiS8+e2kgsWOyIAgCbDabUzLRfNv06dMRGRkJADh69CiOHz+OoUOHYurUqQCaWkM2bdrU4vEc/zkmLJs2bZK7Vd577z2sX78eV111FV555RUATQt/Jicne+y5Y8cOXHXVVQCAyspK7NmzB/X19fL+sLAw9O7dG0ql0m0LjfQvPj4eXbp0cTvmJikpCUlJSR7XrS1Iserevbv83qFy76MEyI/odLp2XRAXC+RP/oMGDQJjTU/F8Nad0717d/8Ftx1YrVYYDIY2fdk77r/hhhvkY3z//ffIzs7G1KlTMXz4cABAbm4u3n77bZfjOSYYjseTtn322Wfy7MLPPPMMdu3ahRUrVuC+++4DAGRkZODKK6/02PPnn3/GoEGD5J83bdqExYsXywmQxWLBtm3bPD5uQ0OD/LMoiqirq0NjY6O8Ta1WO5XXarUICwuDWq2GRqOBWq12+idtc1xfa+zYsVi3bp3L2JzffvvN4/p2FI2NjYiLi5OTTiB07n2UABEEhwRDi0modOe0hNlshtFobDGZaP7Fb7VaodPp8Kc//Uk+xscff4yKigrccMMN8l/oqamp+N///udR60RERAT+97//yce944478Ntvv+G1117DtddeCwDYs2cPli5d6rHnddddJ3en/Pe//8WXX36J559/Xk6AysrKsGPHDo+PKwiC/LPNZkNjYyNMJpO8zXESwbCwMISFhTklEhqNxmWb9E8iJSUFc+bMwciRI+VtkZGRuPfee12SE+l4LSUsQ4cOlY9x4403Ytq0aejcubO8TaFQIDs7G2q1Wp5F2VP69OmDRYsWefw6f9P8qTvpn9VqRXh4OLp06RL0rZLuoATIjxiNRqSnp2PIkCFcTgdP/u3z9zYhaSk5ac9jw+6SE8cbXWvJhtlsRm5uLgYOHIjw8PALJiYGgwEmk6nVL/vm2xISEjB58mS5Ptu2bYMgCFi8eLH8F+nu3buxf/9+twmJu24Qm82GlJQU/N///Z983EsvvRQlJSXYvXs3UlJSAABvvvkmXnrpJQ/OCKBfv35OCdBbb70FvV6P4cOHywlQRkYG/vWvf3l0XMcvYqCptcdkMsFiscjbHBODtrZOhIWFQRRFOQGaPHkyNBoN+vfvLx8rKSkJ9913n9NrAaCmpgY9evRAp06d3CYsjrMEr1y5En/9618RGxsrb+vfvz9yc3PluXHaw7XXXisngBLh4eF49NFH23U8idjYWKe6Oh4baFoKIzs7Wz73gxGpZVa6Nzj+3nwSRmleIimxczx/IiIiXGa8DpV7f1AmQHa7HZs3b8bHH3+MhoYGTJgwAU8++SR69erltnxNTQ2ef/557Nu3DwqFAtdeey0efvjhgJ94arUaSUlJLk2jvHCx+XuajAiCgOjoaLmVoKNbTRoaGpxaCZr/c9wuJQMDBw7EiBEjoFAoUF9fj48++ggKhcKp5eDtt9+GXq9vsWtD+lkQBFgsFoiiiGuuuQZr1qwB0DQGY9y4cbBarcjIyJDHyKxZswaffvqpR5/JlVde6ZQArV+/HoIgYM6cOXICdOTIEbz77rseHbf5TVtysVqt8jbpvFapVC6JRFhYGFQqFbRardP2nj17utR/+PDhiI+Pl7eNHDkS999//wVbORxbLHQ6ndNxX3nlFVitVnTt2tXpvQoKCtrdOgEAixcvxuLFi5229erVS/5sJaxWK+rq6hAdHd2m6196CskRpVIZ1ANoWyMsLMxpTExH4Xh/aZ7USE+IMcbkPzxUKpWc3ISFhUGn08nnleM+6Wfp/wudP6Fy7w/KBGjLli3YtWsXNmzYgMTERLz00ktYsmQJvvzyS7drq6xcuRImkwlvv/026uvr8dhjj8FoNOKFF14IQO3/QK1WIyEhIaB1CCQd5d9R3TmVlZXyF7vjAEzHn5u3LowaNQq9e/cGABQWFuK7775DXFwc5s2bJ9+EXn31VVRVVcnJiJRIOCYmzf8tXboUCxcuBACcPHkSc+fORWJiIg4cOCDH5S9/+QvS0tI8iuWyZcswevRoAE0J1PPPP4/w8HCnBOiHH37Ajz/+6NFxS0tL5Z/VajWMRiOApq4P6UtO+rJo7Uu/eaIxePBgp/e56aabwBhzSgguv/xyREZGurRsOHZ9NN/WfA2jTz/9FAqFwul8Xrp0KZYtW+bVjL2PPPKIy7ZRo0Zh1KhR7T4m4H78UUc+lqxWq52SL97wtb+7VlzHJEdKagA4JSsKhcIpqQkLC3NKZJr/7CtC5bsv6BIgQRCwc+dOrF69GtOnTwcAbNq0CdOmTcN3332H6667zqn877//jtTUVHz99dcYMGAAAODZZ5/FkiVLsGrVqoCuRiuKIhobGxEZGRkScyL4GlEU0dDQgE6dOkGpVDrN9mqz2VBWVgZBEGA2m50SC4vF4vK7tG3GjBmIjY2F3W7H8ePH8euvv2LgwIGYNWsWGGt6+ua5555rtZvD8Z+07amnnsIll1wChUKBr776Co899himTJmCf/7zn3KiMmPGDPmLu60899xzGD58OFQqFU6cOIFXX30VI0aMwN/+9je5zDfffIOCggKPjltdXS3/rFKpYDabnWZsBSD/FddS14a7BMPxMdnIyEjcfPPNLq0Lc+bMwdixYy84FkOlUkEURXTu3Fl+zBdoGiD522+/Qa1WO7XSvvzyy3jllVe8GkvgbmXqGTNmYMaMGe0+JgC3rc+tXdMXWgohlHHX+th8m3Tvc+ffltf7Y5s7PHmtJ+8tiiKMRiMiIiLkmbC9ee/mXVDNWxvdtdJIPweCUPnuC7oEKD09HQaDAVOmTJG3de7cGUOHDsWRI0dcEqCjR48iPj5eTn4AYOLEiVAoFDh27BiuueaaDqt7cywWC7Kzs5GSkuLzflDpQpG+LCwWCyoqKlxaJlpqqZASigULFkCtVoMxhq+//hrHjx/HtGnTcOmll4IxhsLCQmzYsMHtMVpq/RAEAbt27UJcXByys7Px9ddf45///CfuuOMOrF27FowxlJSUtOtL6YMPPsC4ceOgUChw5MgRvPLKK7jhhhvw5z//GUqlEhqNBv/+97/bFVPpiZROnTrBarXCbrfLk3oBTS0TNputza0TUtInCALCw8PRo0cPzJ8/3+Vx1CVLlqChoaHNrRMajcbpGIMGDcLhw4ddWke/+OILr/6qi4mJwaZNmwA435hnz57tUtbdjdtoNDqNg3B8LLZHjx4A4DJjsGMzfVveo7Xt7X2tt19WjDXNA5STk4MBAwa02I3jyZd086TQ19s8xd3rHbeZTCbk5uZiwIABLkMRLvRaT7e1tv1C5aSB8+7KuSvb1m1msxlFRUXo2rWr0/i35rh7b2mbu6SmrV1Qgcaf332+JOgSIKmpvHkTbkJCglMzukRZWZlLWY1Gg5iYGJSUlHhVF5PJ5DSoTaVSQaPRwG63w2w2Q6vVQqVSyV/80gdtNpuhUCgQHh6OESNGwGq1QhRFqFQqHDx4EG+++aY8RsRkMsn7pdYQx0TCYrHAbrcjIyMDZrMZjDH87W9/w2effYYXX3wRf/vb36BSqfDDDz9g7ty5HjuOGDEC4eHhYIzhww8/xL///W8sXboUCQkJUKlUSE9PxzvvvOPxcevq6tC5c2f06tULYWFhcsxEUYRGo4FOp4NKpZLHMDT/km8+QFMaDyAlKVarFUOGDMEtt9yCoUOHyp8HACxfvhw6nQ5arVbu546IiJC7WKSWh7CwMDDGEB4ejoEDB6K2thaCIGDy5Mn4+eefoVQq5QUAGWP48ccf5bpJLUfSe0hjfKQkxGw2y3+tGQwG1NbWomvXrnj88cdhtVpRUlIit6xcddVVcouJ1Iql0+nk49rtdrms2WyWE73q6mqYzWbodDpERES4HFeqg5TgSjFSKBQQRVF+gqO1siqVSnaVygqCIP8VKpWVWoGal+3evbs8EFdyax5DnU4HpVIpl5M+R7PZLJ8HjsdVKBSwWCxOXV0mk0k+rpR0SjGUri/ptc3LSp+jUqmUyzpey9K5J9Vfo9HIcZGOK9VBpVJBp9NBFEV5TSRpIHHze4RSqZTPLZPJ5BLvlupgMpnk60LqMpXcpCerHMtKA1Ydy0rxdoyh0WiUjyuKIiwWS4tlpRi6Kyu1tg4aNAhqtdrpc5Tuc9JnLgiCy2cj3Webn4eOT7w5xrstZaV7smO8pXO2pft383g3j6G781CKoUqlQmJiIux2OyIiIlos2zyGjnFxvO6NRiNUKpXcqtq8rLvz0PG7ypOyrX2vSfeeC5VVKBQYMmSI/N3iLoa+ircUQ6msJwRdAiQ9Btn8r1mtVou6ujq35d2NC9JqtU5PQHiKKIrIysqSH5/My8tDZGQkevfuDUEQoNfrkZycjKioKFRVVaG0tFQeO5Gfnw+dToe+fftCoVAgPT0dAwcORHR0NNLS0jwekAkABQUFKCgokE8QxhjS09Oh1+sRExOD0tJSp+4OKbnQarVQq9Ww2+0IDw+XLwSbzYbo6GhYrVbU1NRAEASMHTsWjDHExsaitrYW8fHxiIqKwvz589GtWzeEh4fDYDCAMYaePXtCrVajvLwcMTExiI+PhyiKqKioQJ8+fZCUlIS6ujrU19fjr3/9K+bPn4+SkhJUVFSge/fu6NSpEz7++GP069cPkZGRKC8vR1VVlfyETXZ2NiIiItCzZ09YLBZkZWWhb9++iIyMRGVlJcrKynDJJZfg0ksvRU5ODiorK5GUlATGGP785z+jb9++6Ny5M6qqqlBcXIwRI0ZAqVQiLy8PCoUCffv2hSiK0Ov16N27N2JiYlBTUyOXTUxMRH5+PhoaGhAfHw+FQoGCggIkJSUhJiYGtbW1KC4uxvDhwxEWFoaCggJYrVb07NkTCoUCaWlp6N69O+Lj49HQ0IC8vDwMHToUGo0G586dgyAI8pM0p0+fRqdOnZCYmAiDwYDs7GwkJSVBp9OhqKgIjY2NGDhwIADgzJkziI2NRc+ePWE0GpGRkYGkpCRERESguLgYtbW18vwber0eERER6NWrF8xmM/R6PZKSkhAZGSkveti3b18ATS2vOp1OPr/PnDmDnj17IiYmBuXl5SguLpYfA87KyoJGo0Hfvn1hs9mQlpaGHj16IDY2FpWVlSgsLJTLZmdnQ6lUol+/frDb7Thx4gS6deuGLl26oLq6Gvn5+Rg8eDDCwsKQk5MDu90uz4Fy/Phx9O7dG/Hx8aitrUVOTg6Sk5OhVquRn58Ps9mMfv36QaFQ4Pfff0fXrl3RrVs31NfXyy1PWq0WhYWFaGxslI978uRJxMTEoHv37mhsbERGRgZ69+6N8PBwFBUVOcXw9OnTTvHW6/UYMmQIOnXqJMdbOu7Zs2cRGRmJhIQEmM1mFBcXo1u3boiKikJpaSmqq6vl8WBSvHv06AGr1Yr8/Hz5HlFeXo6ysjKMHTsWAJCZmYmwsDB069YNoigiNzcX/fv3R3R0NCorK1FcXIyxY8fKj2EDwMCBA8EYQ3Z2Nvr06YPY2FjU1NSgqKgIo0ePhkqlQnl5OWw2m+yamZkpn991dXUoLCzEyJEj5evcbDZjyJAhctnExEQkJiaioaEB+fn5GDZsGHQ6HcrLy9HY2CifA5mZmejatSt69OgBg8GAnJwcpKSkQKfToaKiAjU1NfIj9RkZGYiJiUFSUhJMJhOysrIwePBgaLVaedkHaXxUYWGhfE+2WCzIyMjAoEGD0LlzZ/n6lFYuLygokO/JNpsNer0eAwYMkK/lwsJCjBs3DgBw7tw5KJVKDBgwAHa7HXq9Hv369UNcXBzq6uqQn5+PMWPGQKFQoKioCHa7XZ53SK/Xo0+fPujatav8FOSoUaMQFhaG4uJiCIIgj1vLyMhAz549kZCQgMbGRmRnZ2PEiBHQaDQoKSmB0WiU74dZWVlISEhA9+7dYTKZkJGRIce7rKwM9fX1GDZsmHzNxcXFoWfPnvJ1L7XEVFRUoLq6Wp7QMTc3V/5DVfpeGzx4sHyfdYx3Xl4eIiIi0KdPHzmG0jlbU1OD8+fPy/EuLCyERqNBv3795LL9+/eXv1sKCgrcxpsxBr1ej759+6JLly6or69HXl6efM66i7d0j2hsbEROTo7bfKAlgm4x1G+//RYrV67EyZMnncYe3H///RAEAVu3bnUq/9xzzyEtLQ0ff/yx0/YpU6bgnnvucXlioS1Ii6k5PsLYnhYgACguLkZsbCyioqLkcSD//ve/ERERIWe8Go1GfpRQapGQ/ppSKBSIiorCmDFj5OxWmh01LCwM0dHRLn95O2bKUv2b/7XRPKsG4JJVazSaFv8ycYyL1HLTvKzBYEBpaSl69eoFrVbrVNYxhi39FeYu3u7KWiyWFv+C8Mdfd20tyxhDRUWFPBiwtb/uWvtLMNj+umtLDCMiImCxWFBUVISEhARERUX55K+7tpS9UAy9jXfzVgZ3ZU0mE86fP48ePXrIrXMXiqE38W5+LXv717Rjq0574m0ymVBTU4Pu3bvDbrc7tQB5E2/HuLTnntxR9whRFHH+/HnExcUhOjraJy1AoXSPqK+vR0VFBZKSkuTroaNagHJycgCE6GKoUndWeXm5/NeS9HvzJz4AIDExEd9//73TNkEQUFtb6/UodMe+a8eflUqlU7+m9AFIOHZBSCeqNBBs9OjRcktRe2n+uKg7HGflBOA0lqU5zftom/fZO762+YDY5uMbHF9rt9uhUCicurkccczUpa4Dd++pVCqdfDQajdNrHV+nUCja9Nm4Kys9JdGSm6dlpYHJUleHO+/mx5W661oq29p56EnZ1uLiSdnWYsgYg9VqlV/r73hLXCiGvop387g4llUoFLDZbPJ4Dk9i6Ktz1pt4N4+Lp/GWviAd/whrqawj7Y23N+esP+4R0pex1A3bWlmg487ZjrpHaDQaWK1WebxZazH01z25LfjuuTcfMWTIEERGRuLw4cPytvr6epw9exYTJkxwKT9hwgSUlpY6PUWTmpoKAHITW6DQ6XQYMmSIS9LAC+RP/rz68+wOkD/5h4Z/0LUAaTQaLFy4EC+//LLcj/nSSy8hMTERs2bNgiiKqK6uRlRUFHQ6HUaNGoWxY8figQcewNNPPw2j0Ygnn3wSs2fPDugj8ARBEARBBC9B1wIENE1sOG/ePDz++ONYsGABVCoVduzYAbVajZKSEkydOhVff/01gKYms82bNyMpKQmLFi3C3//+d1x22WV4+umnAyuBpv7JEydOeDx3zMUC+ZM/r/48uwPkT/6h4R90g6CDAWkQdFsGUbWG1WpFVVUVunTpEvRTgvsD8id/Xv15dgfIn/wD5+/J9zclQG7wVQJEEARBEETH4cn3d1B2gV0sSEtBSLPb8gb5kz+v/jy7A+RP/qHhTwmQH7FYLMjMzPRqQsZQhvzJn1d/nt0B8if/0PCnLjA3+KoLTJqSX6PR+HSl3VCB/MmfV3+e3QHyJ//A+Xvy/R10j8FfTDSfAI83yJ/8efXn2R0gf/IPDX/+UtMORBAEFBYWerxA28UC+ZM/r/48uwPkT/6h4U8JkB8RRRGNjY1BPxDMX5A/+fPqz7M7QP7kHxr+NAbIDfQYPEEQBEGEHvQYPEEQBEEQRCvQIGg3SKvYSplke3FcDVtaEZgnyJ/8efXn2R0gf/IPnL8gCG1+T0qA3OCrD0yhUECj0fjkWKEI+ZM/r/48uwPkT/6B81coFG3+DqcxQARBEARBcAeNASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoAWoFu92O119/HdOmTcPo0aNx11134dy5cy2Wt1qt2Lhxo1x+4cKF0Ov1TmU++eQTXH/99Rg9ejRmzZqFbdu2QRRFef///vc/DB482OVfUVGR3zzd4Q/3O++808Xr9ttvl/dbLBY888wzmDJlCsaMGYMHH3wQ1dXVfnNsDV/7z5w50+3nOnjwYBw5cgQAUFZW5nb/p59+6nff5nji/8Ybb7TotnbtWrncwYMHMXfuXIwaNQpXXXUVdu/e7XScUP382+ofKtc+4B//ULn+fe1+MV/7AFBVVYUHH3wQkydPxqRJk/DAAw+grKzMqcw333yDa665BiNHjsTs2bNx8OBBp/01NTV48MEHMWHCBEycOBHPPPMMTCaTX/ycYESLvPHGG2zSpEnsp59+Ynq9nv31r39ls2bNYhaLxW35Rx99lF1yySVs3759LDs7m913333s0ksvZfX19Ywxxr744gs2bNgw9tFHH7GCggK2e/duNnbsWPbGG2/Ix3jxxRfZwoULWXl5udM/m83WIc4SvnZnjLEpU6awXbt2OXnV1NTI+9esWcOuuOIKduTIEXby5Ek2e/Zsdtttt/lb1S2+9q+qqnLyLioqYrNmzWJ33HEHs1qtjDHGfv75ZzZixAhWVlbmVNZkMnWYt4Qn/o2NjS7n6wsvvMBGjx7N0tPTGWOMZWdnsxEjRrBXXnmFZWdns3/+859s6NCh7LfffpOPE6qff1v8Q+naZ8z3/oyFzvXva/eL+dpnjLGFCxey+fPns7Nnz7IzZ86wW265hd10003y/oMHD7Jhw4axd955h2VnZ7MNGzaw4cOHs+zsbKdj3HTTTez06dPst99+YzNmzGAPP/yw310pAWoBi8XCxowZwz744AN5W11dHRs5ciT78ssvXcoXFhaywYMHs59++smp/IwZM+Sb/Pz589ljjz3m9LrNmzezyy+/XP59yZIl7LnnnvOtjIf4w72yspIlJyezM2fOuH3P0tJSNmTIEPbzzz/L23Jzc1lycjI7fvy4j8zahj/8m7NhwwY2efJkVlVVJW/btm0bu/76630n0k489W/OmTNn2LBhw9inn34qb3viiSfYvHnznMqtWrWK/fWvf2WMhfbn3xx3/qFy7TPmH/9Quf794d6ci+nar6urY8nJyeyHH36Qt33//fcsOTlZTm7/+te/svvvv9/pdbfeeit74oknGGOMHT9+nCUnJzslRL/++isbPHgwKy0t9aGdK9QF1gLp6ekwGAyYMmWKvK1z584YOnSo3GzpyIEDBxAVFYXLLrvMqfyPP/4oH2P16tX429/+5vQ6pVKJuro6+feMjAwMGDDA1zoe4Q/3jIwMKBQK9OvXz+17Hjt2DAAwefJkeVu/fv3QrVs3t+/pT/zh70h2djbeffddrFmzBnFxcfL2YPjsAc/9m/Pss89i/PjxmDNnjrzt6NGjLrGYPHkyjh07BsZYSH/+zXHnHyrXPuAf/1C5/v3h7sjFdu3rdDp06tQJn3/+ORobG9HY2IgvvvgC/fr1Q+fOnWG323H8+HGXa3/SpEny8Y4ePYr4+Hgn/4kTJ0KhUMjnhb8I8+vRQ5jS0lIAQPfu3Z22JyQkyPscycvLQ69evfDdd99h27ZtKCsrw9ChQ7FmzRr5gx03bpzTaxoaGvDhhx9i2rRpAIC6ujqUlZXh6NGj2LVrF2pqajBy5Eg89NBDLd44/IE/3DMzMxEVFYVnn30WBw4cQEREBK666iosX74cGo0GZWVliI2NhVarbdN7+hN/+Dvy+uuvIzk5GTfeeKPT9szMTMTGxuK2225DXl4e+vTpg2XLljklVh2Bp/6O/PTTT/j999/x+eefuxwzMTHR5Xgmkwk1NTUh/fk70pJ/qFz7gH/8Q+X694e7Ixfbta/RaLBhwwY8+eSTGD9+PBQKBRISEvD+++9DqVSitrYWRqPR7bUvHa+srMzl/TQaDWJiYlBSUuJLPReoBagFpAFYGo3GabtWq4XFYnEp39jYiIKCAmzZsgWrVq3C1q1bERYWhr/85S+oqqpyKW8wGLB8+XJYLBY8/PDDAICsrCwAAGMM69evx6uvvgqLxYK//OUvqKys9LVii/jDPTMzExaLBSNHjsQ///lPLFu2DB9//DEef/xx+T2bv19r7+lP/PnZnzt3Dnv37sWyZcuctttsNuTm5qKurg733Xcftm3bhtGjR+Puu+92GTDobzz1d+Rf//oXZsyYgZSUFKftZrPZ5XjS74IghPTn70hL/o4E87UP+Mc/VK5/f372F+O1zxiDXq/HmDFj8MEHH+Cdd95Bjx49sHz5cjQ2NsJsNl/weIH87KkFqAV0Oh2Appuz9DPQ9KRCeHi4S/mwsDA0NjZi06ZN8l/9mzZtwuWXX47PPvsMS5YskctWVFTgnnvuQVFREXbs2IGkpCQAwPjx43Hw4EHExsZCoVAAADZv3ozp06fj008/xd133+03X0f84f7ss8/ikUceQXR0NAAgOTkZarUaDzzwAB5++GHodDoIguBy7Jbe05/487P/3//+hy5duuCKK65wOcbhw4ehUqnk9xw+fDiysrKwY8cOt11p/sJTf4ni4mIcPnwY27Ztc9mn1WpdPl/p9/Dw8JD+/CVa85cI9msf8I9/qFz//vzsL8Zr/5tvvsH777+Pn376CZGRkQCAN998EzNmzMB///tfuaWr+WfreLzWPvuIiAjfiLUAtQC1gNQkV15e7rS9vLwc3bp1cymfmJiIsLAwpy4PnU6HXr16OT3GmpOTg1tuuQVVVVX44IMPMGLECKfjxMXFyTdAoOnLISkpyeWxQn/iD/ewsDD55icxaNAgAH90j9TW1rpcCC29pz/x12cPAN9//z2uvfZaKJWul16nTp2cbjpAU4w68rMHPPeX+P777xEXF4dLL73U7THdHS8iIgJRUVEh/flLtOYPhMa1D/jHP1Suf3999lKZi+3aP3r0KPr16ycnPwAQHR2Nfv36oaCgADExMYiIiGj1eImJiS77BUFAbW0tEhISfOLVEpQAtcCQIUMQGRmJw4cPy9vq6+tx9uxZTJgwwaX8hAkTYLPZcOrUKXmb2WzGuXPn0KdPHwBNTaCLFi1CeHg4PvroI/kGIPHvf/8bkyZNgtFolLc1NjYiPz8fAwcO9LVii/jD/fbbb3eaEwQATp06BbVajb59+2LcuHGw2+1Og97y8vJQVlbm9j39iT/8gabPUq/X45JLLnE5RlZWFsaOHev0ngBw+vTpDv3sAc/9JY4ePYqJEyciLMy1YXn8+PFITU112nbo0CGMHTsWSqUypD9/idb8Q+XaB/zjHyrXvz/cgYv32k9MTERBQYFTV5XRaERRURH69u0LhUKBsWPHulz7hw8fxvjx4wE03T9LS0tRUFAg75fKNx8753P8+oxZiPPKK6+wiRMnsu+//95pPgRBEJjNZnOZp2Hx4sXs6quvZkeOHGFZWVnsvvvuY1OmTJEfd1y4cCGbMGEC0+v1LnNHMMZYcXExGz9+PLv33ntZZmYmS0tLY4sXL2ZXXHEFM5vNIe3+3nvvsZSUFLZr1y5WWFjIdu/ezSZNmsReeeUV+RirVq1iM2fOZIcOHZLnAVm4cGGHekv42p8xxo4cOcKSk5PdPtopiiK76aab2DXXXMOOHDnCsrOz2bp169jw4cNZRkZGhzg74qk/Y4z96U9/Ylu2bHF7vMzMTDZs2DD20ksvsezsbLZjxw6XeYBC+fNnrHX/ULr2GfO9fyhd/752Z+zivfbLysrYxIkT2dKlS5ler2d6vZ7dc889bNq0afIcaL/++itLSUlhO3fuZNnZ2eyFF15gI0eOlB97t9vtbP78+WzOnDns5MmT7ODBg2zGjBlszZo1fnelBKgVbDYbe/HFF9nkyZPZ6NGj2V133cXOnTvHGGPs3LlzLDk5mX3yySdy+YaGBvbUU0+xSZMmsVGjRrE777yTZWVlMcaa5rlITk5u8Z/E6dOn2Z133snGjRvHxo4dy+677z5WXFzcseLMt+4S77//Prv66qvZ8OHD2YwZM9jWrVuZKIryfoPBwB577DE2fvx4Nn78eLZq1SpWXV3dMcLN8If/7t27WXJycotfaBUVFWzNmjXs0ksvZSNGjGC33norO3LkiP8kW8FTf8YYGzlyJNu1a1eLx/zll1/Yddddx4YPH86uuuoqtnv3bqf9ofz5M9ayf6hd+4z55/MPlevfH+4X87WfnZ3N7rnnHjZx4kQ2efJktmLFCrm8xGeffcauvPJKNmLECDZnzhyX+dEqKyvZfffdx0aPHs0mTZrEnnrqqQ5J/BWMMebfNiaCIAiCIIjggsYAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQThE8xmMzZu3IhZs2Zh+PDhGDt2LO68807o9Xq5DGMMb7/9Nq6++mqMHDkSV155JXbs2AFpQvoL7R88eDDeeOMNp/d94403MHjwYKdtM2fOxLp167Bo0SKMHDkSjz32mE/q98ILL2DkyJFoaGhwer8tW7Zg3LhxMJlMXsfx1VdfxX/+8x+vj0MQROu4X7qWIAjCQx5++GEcPXoUq1atQu/evVFQUIDXXnsNDz74IHbv3g2FQoEXX3wR77zzDu68805ceumlOHXqFF5++WXYbDbcc889F9zvCR988AHuvPNO3HXXXejUqZNP6jdv3jzs3LkTe/bswc033yy/1xdffIFrrrkG4eHhXsexsbERTz75JMLCwjB37lyvj0cQhHsoASIIwmsEQYDBYMDjjz+Oa665BgAwceJENDY2YsOGDaisrIRWq8W7776LhQsX4qGHHgIAXHLJJaioqMCRI0ewYMGCVvd7mgD16NEDq1ev9ln97rnnHgwYMABjxozBF198ISdAx48fR35+PjZs2NCmelksllb3P/TQQzAYDHjsscegVqtx/fXXe+RNEETboASIIAiv0Wg02LFjBwCgrKwMeXl5yM/Px08//QSgKQHR6/Ww2WyYNWuW02sff/xxAMC+ffta3e8pKSkpPq2fxE033YQnnngC58+fR8+ePfHZZ5+hX79+GDNmzAXrZDAYMHbs2DY7PPLII5g8eTLi4+Pb/BqCINoGJUAEQfiEX3/9FevWrUNubi46deqEIUOGICIiAkDT2Jra2loAQFxcnNvXX2i/p0jv7av6SVxzzTVYt24dvvjiC/ztb3/DN998g7vvvrtNddJqtVi/fv0Fy+3fvx+7d+/GlVde6bN4EAThDCVABEF4TWFhIe69915cccUVeOutt9CrVy8oFAp88MEH+PXXXwEAnTt3BgBUV1ejf//+8muLi4tRWFgoJyMt7R83bhwAQBRFp/c2Go0dUr9x48ZBrVajU6dOuOqqq/DNN98gOTkZRqMRN954Y5vi1JZxPQcOHMDevXtxxRVXYOPGjVCpVG06NkEQnkFPgREE4TWnT5+GxWLB3Xffjd69e0OhUACAnFwwxjBy5Eio1Wq520li586dWLVqFcaMGdPqfpVKhcjISJSVlTntP378eIfUzzERmTdvHjIzM/HOO+/gkksuQbdu3doSpjaxdetWXHLJJdi0aRPCwuhvVILwF3R1EQThNcOGDUNYWBheeukl/PWvf4UgCPj000/x888/A2hqpenVqxfuuOMOvP3229BoNJg4cSJOnjyJDz/8EA8//DC6dOnS6n6lUonp06dj9+7dGDVqFPr06YNPP/0UBQUFHVI/pfKPvxfHjRuHfv36ITU1FZs2bfJpLLds2QKdTgeNRuPT4xIE4YyCSRNcEARBeMGePXuwefNmFBYWIjo6GqNHj8Ydd9yB22+/HU888QRuu+02MMawc+dOfPTRRygtLUVSUhIWLVqE+fPnA8AF91dWVuK5557Dvn37EBYWhmuuuQbDhw/H448/joyMDLkuM2fOxMSJE52ezPJF/RzZsGEDPv30U+zfv5+SFYIIQSgBIgiC8BDGGK699lpMnToVjz76aKCrQxBEO6AuMIIgiDbS2NiIt99+G6dOncK5c+dw++23B7pKBEG0E0qACIIg2ohOp8NHH30Eu92OdevWoVevXoGuEkEQ7YS6wAiCIAiC4A56DJ4gCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO74fx4v94AaXOP5AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=\"equalized_odds_diff\",\n",
+ " show_data_type=\"test\",\n",
+ " constant_clf_perf=max((y_test == const_pred).mean() for const_pred in {0, 1}),\n",
+ " model_name=r\"$\\bigstar$\",\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(r\"equalized odds violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8e7b0885",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "# Fit and plot similar example but using \"Equal Opportunity\" fairness metric\n",
+ "> equal opportunity is achieved by setting `fairness_constraint=\"true_positive_rate_parity\"`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "727e485b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "89156406259543afb1e7efc03b5a2b8f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=rf_clf,\n",
+ " fit_data=(X_fit, y_fit, s_fit),\n",
+ " eval_data={\n",
+ " \"test\": (X_test, y_test, s_test),\n",
+ " },\n",
+ " fairness_constraint=\"true_positive_rate_parity\",\n",
+ " tolerance_ticks=np.hstack((\n",
+ " np.arange(0.0, 0.1, 1e-2),\n",
+ " np.arange(0.1, 1.0, 1e-1),\n",
+ " )),\n",
+ " y_fit_pred_scores=predictor(X_fit),\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "84c57e54",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYPklEQVR4nOy9eXxTVf7//8ratLSUFihlK3tbyr7KIiqojCKjbPoBxQUGQRFREUVccQNkEQW+MIDgMso447giKu6DMMgqLUtaui9039vsuTm/P/q71yRNS0OSJul5Px+PPqD3nt6c5zv33rxzzrnnyBhjDARBEARBEBwh93cFCIIgCIIgWhtKgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A6lvysQiPzxxx9gjEGlUvm7KgRBEARBtBCLxQKZTIYRI0ZcsSy1ALmAMQZvTZAtCIJXjhOskD+//jy7A+RP/uTvD9z5/KYWIBeILT9Dhgzx6DgWiwWVlZWIjo7msjWJ/Pn159kdIH/yJ39/+Z87d67FZWW0FlhjxAB6mgARBEEQBNF6uPP5TV1gPkQQBNTW1nLbFEr+/Prz7A6QP/mTfzD4UwLkQ0wmE9LT02EymfxdFb9A/vz68+wOkD/5k38w+FMXmAu81QVms9lgsVigUqkgl/OXa5I/v/48uwPkT/7k7y9/dz6/aRC0hwiCAIvF0mwZs9ncSrUJTMjfN/4qlQoKhcInx/YUuVyOkJAQf1fDb5A/+ZN/4PtTAnSVMMZQXFyM6urqZssIggCFQgGZTNZ6lQsQyN/3/h06dEBsbGzAxddsNqO4uBixsbFQq9X+rk6rQ/7kT/6B708J0FUiJj8xMTEICwtz+QFks9lgNpuhVqu5bQYlf9/4M8ag1+tRWloKAOjatatXj+8pgiCgvr4+4AdB+gryJ3/yD3x/GgPkgiv1IQqCgEuXLiEmJgYdO3ZszaoRhAMVFRUoLS1FfHx8wHaHEQRBtBb0GLyPEcf8hIWF+bkmBO+I5+CVxqERBEEQjgR8ArRr1y7ce++9zZapqqrCk08+iTFjxmDs2LF4+eWXYTAYfF63K427EAQBer0+4JsBfQX5+94/0Mb+iOj1eiQnJ0Ov1/u7Kn6B/Mmf/APfP6DHAH300Ud46623MHr06GbLLV++HAaDAe+99x5qa2vx3HPPQa/X44033milmrpGJpNBqVQG7IeUryF/fv1VKhViYmK4XAYAIH/yJ/9g8A/IBKikpAQvvfQSjh8/jt69ezdb9o8//sCJEyfwzTffoF+/fgCAV155BYsWLcKKFSvQpUuXVqixa+RyeUCPgPc15M+vv0qlCriB2a0J+ZM/+Qe+f0B2gV24cAEqlQpfffUVhg0b1mzZU6dOoXPnzlLyAwBjx46FTCbD6dOnfV3VZhEfg+Z1nLnof/r0aZw6dcrf1Wl1fv/9dyQkJCA/P9/fVWl1guUpEF9B/uRP/oHvH5AJ0JQpU7Bt2zb07NnzimVLSkoaZZpqtRodOnRAUVGRR/WwH0dkMBikCe1sNhtsNpuU2NhsNoc3Wtxvs9lgNBodkqCmygKNEybn36+2LNBwQjb1t56Uba5OgiDAaDTi7rvvRl5eXrNl3YmLr8q2JC7ulB02bBi+//57dOnSpVXibTabmz1n7ccjWSwWh/55o9HoVllxinvxcXyr1QoAsFqt0Ov1MJlMSEtLQ11d3RXLivU3mUwwGo3S6+j1emlwtztlxbFXYpyc4+JO2SvFsKmyBoMBaWlpUtxaEkNP4m0fF2/EW4zL1ca7trYWaWlpMJlMMBgMXou3fVzcPb+bioun8XaOi9Vqlc7/6urqq47h1Z7fruLijXi7c4+wf/+biqG34u18j3CHgEyA3MFgMLjsZggJCfFoHRJBEJCeni79np2djeLiYgANb7bVapVOKkEQHF7LZDLBYrFALpdDo9HAZDJJJ4qYFIiYzWaHJ3jEhAloeEOdy9rPKmw0GqUTxfm4FoulUVnnOognlcViaVR/sayYxDVV1r4OYlkxLjabzWH8i8lkksoyxhzKijcN5xi6KttUvO3LNhfvK8XFG/E2mUxQKpXo2bMn5HL5FePtHEOxrHNcnOMt3mAAoKysDBkZGVLZrKwslJSUSC5arVa6+ZWXlzc6v8UvDFarFVqtFvX19QAaHjJIS0uTyubm5qKwsFCKg1arRV1dHQCguroaWq0WGo0GSUlJKCsrQ0FBgfTeaLVa1NTUAGi4SWq1Wul9LSgocGgt02q10kSj9fX10Gq1kntRURFycnKksmlpaaisrAQA6HQ6aLVa6ZwoLi5Gdna2VDY9PR3l5eUAGu4fWq1WinFpaSkyMzOlspmZmSgrK5Nir9Vqpfe9rKysyXuEOCWB6FZRUYFLly5JZXNycpqNd2pqqlQ2Ly8Ply9flo7nKt4i+fn5Tcawrq7OId6XL19GXl6eVDY1NRVVVVUtivelS5dQUVEBoOFDSKvVSud/cXExCgsLkZSUBI1Gg/T09GZj6BxvcW4rk8l0xXPW/p6s1Wqh0+kAAJWVlQ7nbHPxdhVD8ZwV411bWwsAqKmpgVarla65ps5ZjUaDHj16ICcnR7q/FBYWIjc3VyqblpbWbLyvdM6K8S4pKUFWVpZUNiMjo9l4t8Y9orS0FJGRkdBoNNI94ocffsChQ4dQWFjYZLy9cY9wCxbgrFq1is2fP7/J/a+88gqbM2dOo+3jxo1j77777lW9ZkpKCktJSWF6vV7aptfrmclkYowxptPp2Pnz56X9giAwq9XKGGOsvr6e1dbWstraWlZfX8/q6upYTU0Nq6urk/bV1NSw+vp66XfxuDabjRmNRlZXV8f0ej2z2WzMarUym812xePalxXrJAiCVH+r1Sr9bl82Pj6effDBB2zOnDls8ODBbPr06ez77793KPvTTz+xO++8kw0fPpxNmDCBvf7668xgMEiv88svv7CZM2eyoUOHsnHjxrGnn36aVVdXM0EQWHx8vPTz9NNPu6wDY0yqx5133skGDx7MbrvtNvbDDz9IZd966y129913s8cff5yNGDGCrVmzhjHG2JkzZ9i9997LRo4cycaOHctWrVrFysvLpeMajUa2ZcsWdsMNN7ChQ4eymTNnssOHD0vHTUtLY4sWLWLDhw9nEydOZE888QQrKSmR3DIzM9nChQvZyJEj2fDhw9mCBQtYamqqVP9ff/3VwX3VqlWsurqaWa1WduzYMRYfH8/y8vKY1WplN9xwA3vnnXfYI488woYPH87Gjh3LXn31VWY0GqW4HD58mN1xxx1SDD755BMWHx/P8vPzG72v4nlx4cIFZjAYmMlkavKcFQSB6XQ66Tw1m81Mp9NJZcW/b2lZo9Eo1UGn0zGLxcIYY8xisbhd1v69Es8r8Tozm81ul7VarUyn00lxco6LO2WvFENP4u0cF0/ibR8Xb8RbjIs34q3X670Wb/u4eBpvMS6exts5Lp7E2z4unsTbOS7eiLen94g33niDrVmzhhUVFfn0HiF+freEoE+Adu/eza677jqHbSaTiSUmJrKDBw9e1WteKYAGg4FdvHjR4Y0QAeD2z7///W/p7//9738zAOz66693OG6nTp2aPcbVEh8fz4YPH84+/PBDlpmZyTZu3MgSExPZ6dOnGWOMff/99ywxMZH9v//3/1hWVhb78ccf2bXXXssefvhhxhhjFRUVbPDgwezDDz9kBQUF7NSpU2zKlCns2WefZYIgsMuXL7P4+Hj23nvvsdra2quux9atW1l8fDx77bXXWF5eHsvOzmbJycls0KBB7JVXXmEZGRns2LFj7NZbb2UzZ86ULsyXXnqJjRs3jn377bcsNzeXvfnmm2zw4MEsMzOTFRcXS0lIRkYGO3fuHFu8eDGbPHmydIHOnDmTrV69mmVnZ7P09HS2aNEidtNNN13RnTHmkAAxxtjkyZPZkCFD2Pvvv8/y8vLYf/7zH5aQkMA+//xzxhhjFy9eZElJSeyNN95gmZmZ7Ouvv2ZjxoxxSICcae5c9Ccmk4nl5+dLN0zeIH/yJ39H/19++YV9//33rL6+3qev7U4CFJBPgbnDmDFjsGnTJuTm5qJXr14AgBMnTgAARo0a5c+qBQ2zZs3CPffcAwBYuXIlTpw4gQ8//BAjR47E7t27cfPNN2Pp0qUAgD59+oAxhkceeQQZGRlS10+3bt3QvXt3dO/eHX//+9+lZt+oqCgAQEREBCIiIq66HiLLly+XjvP4448jISEBL7zwAgCgX79+ePPNN3HHHXfgyJEjGDVqFP7zn//ghRdewC233AIAeOKJJ8AYQ319Pb766ivExsbi+eefl47/1ltvYdy4cfjuu+8wa9Ys5OXlYcKECejevTtUKhXWrl2LrKws2Gw2lJSUNOvuimuvvRb33XcfAKBnz574xz/+gTNnzmDGjBl47733MHjwYDz99NMAgL59+6KiogKvv/56S97GgEIQBFRXV3M7Uzr5kz/5O/rfcMMN/qtQEwRdAiQIAiorKxEREQGNRoNhw4Zh5MiReOKJJ7BmzRro9Xq8+OKLmDFjhl8egRf7RN3BftXcmTNnor6+vtHaUfb9797mmmuucfh9xIgROHr0KICGvv7bbrvNYf/YsWOlfdOmTcP06dPx0EMPoXPnzpg4cSJuuOEG3HzzzZDL5QgNDXX42xdffBEHDhyQfl+yZAkeeuihK9YDADp27OiQRF26dAkTJ050+JvExEREREQgLS0N0dHRsFgsjZ4kXLFiBQBg+/btSE9Px4gRIxz2m0wmaVzCE088gbVr12L//v0YO3YsJk2ahOnTp0Mul2PgwIFNugN/TlJoPw7K/mlFoCExFMeqXLx4ERMmTHDYP2bMGAQjoaGhGDx4sL+r4TfIn/zJP/D9gy4BKioqwo033oh169Zh1qxZkMlk2L59O15++WXcf//9CAkJwS233ILVq1f7pX7t2rXz6O+VSiWUysZvi6fHvdJr2iMIgpSAMReP8IsD0sS/27x5Mx555BEcPnwY//vf//DUU09h1KhReP/99xv97WOPPYa//e1v0u+RkZEtqgcAaDQah/2u6iZuV6lUV5yEy2azYdy4cXjppZca7RMTrXvuuQe33HIL/vvf/+LYsWPYunUrdu7ciS+++AKdOnVyyx2AywH7oodCoXB44osgCKKtIA7wVigUATM5bMAnQOvXr3f4vUePHg6jzYGGloGtW7e2ZrVahPiUTkhISECvhn7u3DlMmTJF+v2PP/7AoEGDAAAJCQk4c+YMHnjgAWm/OKdPv379kJycjIMHD+LZZ59F37598cADD+Crr77CU089hbKyMoSHhzu8VseOHZtsFm6uHq5ISEhoNNdTamoq6uvr0a9fP/Tq1QsqlQrnzp1DYmKiVOauu+7CtGnTMGDAAHzzzTfo2rWrlJhUV1dj1apVWLBgAQYMGID/9//+HxYvXoxZs2Zh1qxZKCkpwXXXXYcTJ06ge/fuTbpXVFQ4PDLfEhITE5GSkuKw7Y8//mjR3wYaBoMBmZmZ6NevX6NWQB4gf/Inf0f/N998EwaDAUuXLkXnzp39XMMGAj4BCnaCYYXu999/H3379sXgwYPx73//G2lpadK4k0WLFuGxxx7Djh07cOuttyInJwevvvoqJk+ejH79+iEzMxP79++HSqXCXXfdBZPJhG+++Qa9e/dGVFQUbDYbwsLCkJmZiaqqKmlMkLv1cMWCBQtw991349VXX8Xdd9+N8vJyvPrqq0hKSsL48eOhUqkwf/58vP3224iOjsaAAQPwn//8B5cuXcL69euhUqnwr3/9CytXrpTGOL3xxhtIS0tDfHw82rdvj19//RV5eXl48sknER4ejs8++wwqlQqDBw+GxWJp1t1dFi5ciBkzZmDTpk2YPXs2MjIypMQ+UL4xtRSFQoGoqKigOP99AfmTP/kHvj8lQD4kWJZCmDt3Lt577z1cunQJiYmJ2Lt3r9Ri8pe//AVvvvkmdu7ciR07diA6OhrTp0/H8uXLATS0Am3btg3bt2/H/v37IZfLMW7cOOzZs0fq0lq4cCHeeecdZGZm4u9///tV1cMVw4YNwzvvvIO33noLM2bMQHh4OG666SY8+eSTUvfXihUroFAo8NJLL6Gurg6JiYnYvXs3+vbtCwD48MMPsXnzZsybNw8KhQIjR47EBx98gOjoaADAnj178MYbb+CBBx6AwWDAwIEDsXv3bsTFxQFAk+5yudzlGKDmiI+Px/bt2/Hmm2/ivffeQ58+fTB//nxs27Yt4NfUcUatVqN79+7+robfIH/yJ39H/8ceewwAAupeJmMtbZ/niHPnzgEAhgwZ4nK/0WhEdnY2+vTp02hcij2MMdhsNocPw0AjISFBGk/lbdzx92U9/IW7739KSgqUSiWSkpKkbQcOHMCzzz6LP/74w+XYsJaei62NOKGjRqMJ6O5fX0H+5E/+/vG/0ue3Pfy9M62I88zIvEH+7vlrtVrcd999+Omnn1BYWIhjx45h27ZtuO2221wmP4GM8wy0vEH+5E/+ge8fXHfVIENcCoPHbwAA+bvrf9ddd6GsrAxr165FSUkJOnbsiNtuu03qbgwmQkJCkJiY6DDFA0+QP/mTv6P/kSNHYLFYMHbsWJ8+1ewOlAD5EJlMFvCDwJyfqPMm7vj7sh7+wt33XyaTYdmyZVi2bJkPa9U6KBSKgLnJ+QPyJ3/yd/T/3//+B4PBgMGDBwdMbPj8at5K2Gw2mM1mrruAyJ9Pf4vFgsLCQoeFfnmC/Mmf/B39R44ciTFjxgTUtACUAHlAS8aPi5M/8Qr5+9Y/UJ9hsFqtKC8v5/b9J3/yJ39H/5tuugnTpk1rNDecP6EusKtAHJB6pZNbLpcjLCysNaoUkJC/7/3FczDQBkmHhoZi6NCh/q6G3yB/8if/wPenFqCrQKFQQKFQoLa21t9VITintrZWOh8JgiCIlhNYXxuDBJlMhpiYGBQVFSEkJATt2rVzOc+LOAZErVZz+SQU+fvOnzEGnU6H2tpadO3aNeDmmTIYDNL8RIHU599akD/5k7+j/8aNG2EwGPDwww/TUhjBTmRkJAwGA8rLy1FWVuayDGMMgiAE1OJvrQn5+9ZfJpOhQ4cODgvKBgoKhQLh4eHctkyRP/mTv6M/YyzgxizSTNAucGcmSUEQuB3pT/gXlUrF7Q2WIIjgor6+HowxhIWF+fS+5c7nN7UAeUhz4y+oC4j8efXn2R0gf/Inf2f/QHr6S4S/d6YVMRqNuHDhQsBPB+4ryJ9ff57dAfInf/IPBn/qAnOBO01ozSEIAvR6vc+b/AIV8ufXn2d3gPzJn/yd/Y8fPw6LxYKRI0f6dHoQ6gILEBQKBSIiIvxdDb9B/vz68+wOkD/5k7+z/3//+18YDAYkJCQEzPxw1AXmQywWC4qLi7kdJE3+/Prz7A6QP/mTv7P/kCFDMHz4cGg0Gj/WzBFKgHwIXQTkz6s/z+4A+ZM/+Tv733rrrbjjjjsCqmWMxgC5wFtjgAiCIAiCaD3c+fymFiCCIAiCILiDEiAfYjQakZqaGvCPAvoK8ufXn2d3gPzJn/yd/d966y2sW7cO5eXlfqyZI5QA+RCZTAaNRsPlMhAA+fPsz7M7QP7kT/7O/mazGWazOaCWw6AxQC6gMUAEQRAE4T2qqqrAGENkZGTALIVBLUA+hDEGi8USUBlva0L+/Prz7A6QP/mTv7N/VFQUoqOjA2piSEqAfIjBYEBKSgoMBoO/q+IXyJ9ff57dAfInf/IPBn+aCdqHhISEoH///ggJCfF3VfwC+fPrz7M7QP7kT/7O/qdPn4bVasXQoUMRGhrqx9r9CSVAPkShUCAyMtLf1fAb5M+vP8/uAPmTP/k7+//0008wGAzo27dvwCRA1AXmQywWC0pLS7meDZT8+fTn2R0gf/Inf2f/xMREDBo0KKBaxagFyIdYLBYUFBQgPDwcKpXK39VpdcifX3+e3QHyJ3/yd/a//fbb/VyrxtBj8C6gx+AJgiAIIvigx+AJgiAIgiCagRIgH2I0GnHp0iWup0Mnfz79eXYHyJ/8yd/Zf8eOHdi8eTMqKir8WDNHaAyQD5HJZFAqlVxPh07+fPrz7A6QP/mTv7N/fX09DAYDbDabH2vmCI0BcgGNASIIgiAI71FaWgrGGDp27Ail0ndtL+58flMLkA9hjMFms0Eul3P5TYD8+fXn2R0gf/Inf2f/mJgYP9eqMTQGyIcYDAacPXs24KcD9xXkz68/z+4A+ZM/+QeDP7UA+RC1Wo2+fftCrVb7uyp+gfz59efZHSB/8id/Z/+UlBQIgoCBAwdCo9H4sXZ/4pUWILPZjIEDB+KLL77wxuHaDEqlElFRUT7t7wxkyJ9ff57dAfInf/J39v/uu+/w1Vdfoa6uzo81c8RrXWA0lroxVqsV5eXlsFqt/q6KXyB/fv15dgfIn/zJ39m/X79+iI+PD6hWMT7T01bCbDYjNzcXYWFhXH4TIH9+/Xl2B8if/Mnf2X/27Nl+rlVjvPIYvNlsxtChQ7F+/XrMmDHDC9XyL956DN4+tLw+CSBC/nz58+wOkD/5k79Ia/vTY/ABAo8nvj3kz68/z+4A+ZM/+QcD9Bi8DzGZTMjIyIDJZPJ3VfwC+fPrz7M7QP7kT/7O/rt378bWrVtRWVnpx5o5Qi1ABEEQBEH4lOrqahgMBgiC4O+qSFAC5ENCQkLQv39/f1fDb5A/v/48uwPkT/7k7+x/zz33wGazoUOHDv6plAs86gLbtWsXNm/e7LDt1KlTWLx4MfR6vUcVawswxqQfHiF/fv15dgfIn/zJ39m/e/fu6NmzJ1QqlR9r5ohHCVBISAj27NmDtWvXQiaT4ffff8eDDz4Is9kMuZyGFxkMBpw5cybgpwP3FeTPrz/P7gD5kz/5B4O/R11gDzzwAFQqFV577TUAwJdffokJEyZgx44dCAkJ8UoFgxm1Wo1evXoF1MRPrQn58+vPsztA/uRP/s7+Wq0WgiBgwIABAZMfeNxMc8899+Dll18GAFx//fXYuXNnwMj5G6VSiU6dOnE5ERZA/jz78+wOkD/5k7+z/4EDB/Dpp5+itrbWjzVzxCvvzl133YXx48cjNjY2oPr3/I3VakVdXR0iIiK4vBDIn19/nt0B8id/8nf2j4uLg8lkCqgcwWsDdQJtcFMgYDabkZWVBbPZ7O+q+AXy59efZ3eA/Mmf/J39586di/vvvz+gngLzylIYbQ1vLoVhs9kgl8uDZmZMb0L+/Prz7A6QP/mTv7/8aSmMAEEmk0GhUPi7Gn6D/Pn159kdIH/yJ/9g8Kdn1X2IyWRCVlYW19Ohkz+f/jy7A+RP/uTv7P/uu+9i586dqKqq8mPNHKEWIB/CGIPVauV6Mizy59OfZ3eA/Mmf/J39y8rKYDAYYLVa/VgzRwJyDJDNZsP27dvxySefoK6uDmPGjMGLL76Inj17uixfUVGBtWvX4ujRo2CMYcKECXjmmWfQpUuXq3p9b40BIgiCIAgCyM3NhSAI6NGjh0/nR3Ln8zsgu8B27NiB/fv349VXX8XHH38Mm82GRYsWNTmi/vHHH0dhYSHeffddvPvuuygsLMQjjzzSyrUmCIIgCMIVvXr1Qt++fQNqcsiAS4DMZjP27duH5cuX44YbbkBiYiK2bNmC4uJifP/9943K19bW4sSJE3jwwQcxcOBAJCUlYfHixTh37hyqq6tbX8AOvV6PM2fOcLsuGvnz68+zO0D+5E/+weDvlTFANTU1MBgMsNlsjfZ169bNrWOlpqZCp9Nh/Pjx0rb27dsjKSkJJ0+exPTp0x3KazQatGvXDl988QXGjh0LoGFJjj59+qB9+/ZXYeM9VCoVevTowe38SOTPrz/P7gD5kz/5O/tnZGRAEAT07t07YFaL8KgFKDc3F3PnzsW4ceMwefJk3HjjjY1+3KW4uBgA0LVrV4ftMTEx0j571Go11q9fjxMnTmD06NEYM2YMkpOTsWfPHo8XZLVfyM1gMEhdcDabDXq9HoIgAAAsFotDpms0GqUZLzt37gyLxXLFskDDwDG9Xi8NErNardDr9dJAMpPJ5FZZo9EovY5er4fFYgEACILgdlkxuTWbzY3i0lRZxhgiIiKki8CdGF5NvF3FxdN4O8fFnbJAw3krl8sbxdCTeDvHxZ2yzcXQG/EW46JSqRATEwNBELxyzl7N+d1UXDyNt31cmiqrUCgQHh4u3YNaEsO2dI+wWq2IiYmBSqVq9h7hyTkbyPcIlUqF6OhoWCyWq45hMN8jBEFAZGQkVCqVFMPPPvsMH3/8Maqqqrwab+d7hDt4lCG8+uqryMnJwbJly/Daa69h7dq1jX7cRXxznPsJQ0JCXD5SyBiDVqvFiBEj8NFHH+H9999Ht27dsHTpUtTX11+dGBrewPT0dOn37OxsKQEzm83QarVSsCsqKnDp0iWpbE5ODoqKiiAIAiorK6HVaqW6VFVVITU1VSqbl5eHy5cvA2g4qbRaLerq6gAA1dXV0Gq1Utn8/Hzk5+dLv2u1Wqmbr66uDlqtVjrRL1++jLy8PKlsamqq9PhhfX09tFqtdJIVFRUhJydHKnvp0iVUVFQAaDjBtFqtdOIXFxcjOztbKpueno6ysjIADSeyVquVTtCSkhKkp6dLF0lmZiZKS0sBNJzIWq1Wer/Ly8ubjLfFYoFWq4VOpwMAVFZWIi0trVG8gYaLwD7ermJYUFDgEG9xbZqamhpotVrpYisoKLhivEW3wsJC5ObmSmXT0tJQUVGBmpoa1NbWNoq3cwzLy8sBNJz/9vEuKSlBVlaWVDYjI6PJeJeVlSEjI0Mqm5WVhZKSEgB/nrPNxbupGFZVVTnEOzc3F4WFhQAarhNX56wgCKipqXGIt3it1tTUAIAUF/GcbS7eVzpn09LSUFlZCQDQ6XTQarXSjdHVOescb/HeUlpaiszMTKlsZmZms/Fu6pwVy4pxaeoe0VS8g/0ekZWVhZqaGuk+2lwMnePdFu4RgiCgpKTkiveI5uIdzPeInJwc5OTkQBAE6R7RqVMndO/eXTpfXMXbG/cIt2AeMHToUHbgwAFPDtGI7777jsXHxzODweCwffny5eyhhx5qVP7gwYNs9OjRrK6uTtpWXV3NRowYwd59992rqkNKSgpLSUlher1e2qbX65nJZGKMMSYIAtPpdMxqtTLGGDObzUyn00llDQYDMxqNTKfTsVOnTrHy8vIrlmWMMZvNxnQ6HbNYLIwxxiwWC9PpdMxmszHGGDMajW6VtY+hTqdjZrOZMcaY1Wp1u6wgCIwxxkwmU6O4NFW2urqanTp1SvJ1J4ZXE29XcfE03s5xcadsTU0NO3XqFKutrW0UQ0/i7RwXd8o2F0NvxFuMi3juV1VVeeWcvZrzu6m4eBpv+7g0Vbaurk5671saw7Z0j6isrJSu/ebuEZ6cs4F8j7C/919tDIP5HmH//jcVQ2/F2/keIX5+twSPHoOfOHEi1q9fj0mTJl3tIRqRkpKCO++8Ez/88APi4uKk7fPmzUNCQgLWrFnjUP6VV17B+fPn8e9//9th++zZszF06FC89NJLbtfBm0thWK1WKJVKbqdDJ38+/Xl2B8if/MnfX/6t9hj8HXfcgY8++sirkz0lJiYiPDwcx48fl7bV1tbi4sWLGDNmTKPysbGxyM3Ndege0+v1KCgoQO/evb1Wr6tBJpNBpVJxeQEA5M+zP8/uAPmTP/kHg79HT4GFhobi9OnTuPnmmzFkyBBoNBqH/TKZzO1xQGq1GvPnz8emTZsQHR2N7t27Y+PGjYiNjcXUqVOlcTURERHQaDSYMWMG9u7di8cffxyPPfYYAOCtt95CSEgIZs2a5Ymex5hMJhQVFaFr164BM+q9NSF/fv15dgfIn/zJ39n/ww8/hMlkwuzZswNmRXiPEqDPP/8cERERsNlsSE5ObrT/arO/5cuXw2q14vnnn4fRaMSYMWOwd+9eqFQqFBQU4MYbb8S6deswa9YsxMTEYP/+/di4cSPuv/9+yOVyjB49Gvv370dERIQneh7DGIPRaOR6OnTy59OfZ3eA/Mmf/J39CwsLHZ4IDAQCcikMf0NLYRAEQRCE92iteYDc+fymxVAJgiAIgvAp/fv393cVGuGVpTAOHz6MTZs24cUXX8SWLVtw+PBhbxw26NHr9Th79mzATwfuK8ifX3+e3QHyJ3/yDwZ/j1qAzGYzli5diiNHjkChUCAqKgpVVVXYvXs3xo0bh127dgXUwmetjUqlQmxsLNfToZM/n/48uwPkT/7k7+yfm5sLm82G7t27B0xe4FEL0LZt23D69Gls2LABKSkpOHLkCJKTk7Fu3TqcPXsWO3fu9FY9gxK6CMifV3+e3QHyJ3/yd/b/17/+hQ8++ECa5TkQ8CgB+vrrr7Fs2TLcfvvtUCgUAAClUokZM2Zg2bJlOHDggFcqGawIgoC6ujppKnTeIH9+/Xl2B8if/Mnf2b9z586IiYmBUhk4Q489SoAqKyuRlJTkcl9SUpK0xgivmEwmXLp0yeUaZjxA/vz68+wOkD/5k7+z/4IFC/Dwww8jKirKjzVzxKMEKC4uDqdPn3a57+TJk41WdOcNjUaDQYMGNZogkhfIn19/nt0B8id/8g8Gf4/aoubOnYv169dDo9HgtttuQ6dOnVBeXo6vv/4ae/bswbJly7xVz6BELpcH/AngS8ifX3+e3QHyJ3/yDwZ/jxKgefPm4eLFi9i0aRM2b94sbWeMYebMmVi8eLHHFQxmzGYziouLERsbGzCj3lsT8ufXn2d3gPzJn/yd/f/1r3/BZDLh9ttvbxtLYcjlcrz++utYuHAhTpw4gZqaGkRGRmLs2LHo16+ft+oYtAiCgPr6eq4HwpE/n/48uwPkT/7k7+yfm5sb/EthrF69GkuXLkXPnj2xevXq5g9+FYuhBgK0FAZBEARBeI+LFy9CEAQMGDDAp91jPl0K4/jx47j//vul/zfH1S6GShAEQRBE26GpJ8b9idsJ0M8//+zy/0RjDAYD0tPTMWDAAISGhvq7Oq0O+fPrz7M7QP7kT/7B4O/RY/AnT56ETqdzua+2thYHDx705PBBj1KpRKdOnQJq4qfWhPz59efZHSB/8id/Z//CwkIUFBQE1BggjxKg++67D5mZmS73Xbx48YpjhNo6KpUK3bp143o6dPLn059nd4D8yZ/8nf0//PBD7N27F9XV1f6rmBNup6erVq1CUVERgIbH3desWYPw8PBG5XJyctCpUyfPaxjECIIAo9EIjUYjLRXCE+TPrz/P7gD5kz/5O/t36NABISEhARUPt1uA/vKXv4AxBvuHx8TfxR+5XI7hw4dj3bp1Xq1ssGEymZCamsr1dOjkz6c/z+4A+ZM/+Tv7L168GI899hiio6P9WDNH3H4M3p57770Xa9asaXNz/njrMXibzSZlwXK5R72NQQn58+vPsztA/uRP/v7yd+fz26MESKSiogJms1lqFbLZbDAYDDh16hTmzZvn6eFbHZoHiCAIgiCCD5/OA2RPamoqVq5c2eRAaJlMFpQJkLcwm80oKytD586duZ0Onfz59OfZHSB/8id/Z//PPvsMJpMJ06ZNQ2RkpJ9r2IBHbVMbNmxATU0NVq1ahbFjx+Laa6/FCy+8gOuvvx4ymQwffPCBt+oZlAiCgKqqKq6nQyd/Pv15dgfIn/zJ39k/IyMDly5dgtls9mPNHPGoC2zUqFFYvXo15syZg3/96184cOAAPvzwQwDA8uXLIZPJ8Pbbb3utsq0FdYERBEEQhPdISUmB1WpFUlJSwCyF4VELkNlsRu/evQEAvXv3RmpqqrRv1qxZOHv2rCeHJwiCIAiiDTB06FCMHDnSp8mPu3iUAHXr1g35+fkAGhKg+vp6FBQUAADUajVqamo8r2EQYzAYcP78eRgMBn9XxS+QP7/+PLsD5E/+5B8M/h4lQFOnTsXmzZtx6NAhdOnSBX379sVbb72FtLQ07Nu3Dz179vRWPYMShUKBDh06BNTET60J+fPrz7M7QP7kT/7O/mVlZSgpKYHVavVjzRzxaAyQyWTCU089BYPBgD179uC3337DsmXLYDaboVAo8Oabb2Lq1KnerG+rQGOACIIgCMJ7bNiwAQaDAUuXLkXnzp199jqt9hh8SEgItm7dKi1uNmnSJHz99dc4f/48Bg0ahLi4OE8OH/TYbDaYTCaEhIRwOxkW+fPpz7M7QP7kT/7O/u3atYNcLg+oeHilJvYLnvXs2RO33nor98kPABiNRly8eBFGo9HfVfEL5M+vP8/uAPmTP/k7+z/yyCNYuXIlOnbs6MeaOeJ2F9j27dtbfnCZDI888ojblfI33uoCEwQBBoMBoaGhXPYFkz+//jy7A+RP/uTvL3+fLoWRmJjY4rIymQxardadwwcENAaIIAiCIIIPn44Bsp/rh2gei8WC8vJydOrUyaGbkBfIn19/nt0B8id/8nf2P3DgAMxmM26++Wa0b9/ezzVswKNB0CKHDx/GiRMnUFtbi+joaIwaNQqTJk3yxqGDGovFgtLSUkRGRnJ7EZA/n/48uwPkT/7k7+yv1WphMBhw3XXX+bl2f+LRY/BmsxlLly7FkSNHoFAoEBUVhaqqKthsNowbNw67du0KyoXgqAuMIAiCILzH6dOnYbVaMXToUISGhvrsdVptKYxt27bh9OnT2LBhA1JSUnDkyBEkJydj3bp1OHv2LHbu3OnJ4QmCIAiCaAOMGjUK11xzjU+TH3fxKAH6+uuvsWzZMtx+++3SSG+lUokZM2Zg2bJlOHDggFcqGawYDAZcvHgx4KcD9xXkz68/z+4A+ZM/+QeDv0djgCorK5GUlORyX1JSEkpKSjw5fNCjUCgQHh7O5WOQAPnz7M+zO0D+5E/+zv7V1dVgjKF9+/YBExePWoDi4uJw+vRpl/tOnjyJrl27enL4oEetViMuLi4ox0F5A/Ln159nd4D8yZ/8nf13796NrVu3orKy0o81c8SjBGju3LnYtWsX3nnnHRQVFcFisaCoqAh79uzBnj17MHv2bG/VMygRpwO32Wz+ropfIH9+/Xl2B8if/Mnf2V+tVkOtVkMmk/mxZo549BSYzWbDCy+8gE8//dRBijGGmTNnYu3atQEl21K89RSYXq+HVqvFwIEDERYW5o2qBRXkz68/z+4A+ZM/+fvL36czQbsiIyNDmgcoMjISY8eORb9+/Tw9rN/w5lIYOp0O7dq1C5g+z9aE/Pn159kdIH/yJ39/+bd6AtTWoHmACIIgCCL48OlSGKtXr8bSpUvRs2dPrF69utmyMpkMa9eudfcl2gwWiwWVlZWIjo7mdjZQ8ufTn2d3gPzJn/yd/b/99luYzWZMmTIFERERfq5hA24nQMePH8f9998v/b85gnH8jzexWCwoLCxEREQEtxcB+fPpz7M7QP7kT/7O/ufOnYPBYMCECRMCJgHyqAtMEIQ22b9JXWAEQRAE4T1+//13WCwWjBo1yqcDo33aBWbPtddei9tuuw133HEHJQsEQRAEQbhk3Lhx/q5CIzyaB2j69Ok4dOgQ7rrrLtxyyy34+9//jsuXL3urbkGP0WhEamoqjEajv6viF8ifX3+e3QHyJ3/yDwZ/jxKg5557DocPH8a+ffswevRovPvuu7j55psxf/58fPLJJ6irq/NWPYMSmUwGjUbD7Vgo8ufXn2d3gPzJn/yd/XU6Herr6wNqckivPgZvsVhw9OhRHDx4EN9++y2USiXOnj3rrcO3GjQGiCAIgiC8x4YNG2AwGLB06VJ07tzZZ6/jzue3Ry1A9litVhw5cgTffPMNDh8+DAAYP368tw4flDDGYLFYwOtUS+TPrz/P7gD5kz/5O/sHYmuYR4OgGWP4/fffcfDgQfzwww+oqanB0KFDsXz5ckybNg1RUVHeqmdQYjAYuJ4Onfz59efZHSB/8id/Z/+nnnrKz7VqjEcJ0KRJk1BRUYFu3brh7rvvxh133IHevXt7qWrBj1qtRr9+/bheEZj8+fTn2R0gf/In/2Dw9ygBmjJlCm6//XaMHj3aW/VpUyiVSnTo0MHf1fAb5M+vP8/uAPmTP/kHg79HY4BeeeUVSn6awWKxoKysDBaLxd9V8Qvkz68/z+4A+ZM/+Tv7//jjj/j2229RX1/vx5o54rVB0ERjLBYL8vLyuL4IyJ9Pf57dAfInf/J39j9z5gxOnDgBg8Hgx5o5QqvBu4AegycIgiAI7/Hbb7/BYrHgmmuuQbt27Xz2On55DN6b2Gw2bN26FZMmTcLw4cPx4IMPIj8/v8nyFosFmzdvlsrPnz8fWq22FWtMEARBEERTTJo0CVOmTPFp8uMuHiVAJpPJW/VwYMeOHdi/fz9effVVfPzxx7DZbFi0aBHMZrPL8mvWrMFnn32GtWvX4tNPP0V0dDQefPBBv89EbTQakZ6eHvDTgfsK8ufXn2d3gPzJn/yDwd+jBGjixIl46aWXkJKS4q36wGw2Y9++fVi+fDluuOEGJCYmYsuWLSguLsb333/fqHx+fj4+/fRTvP7665g0aRL69euH1157DWq1GufPn/dava4GmUwGuVwekBNAtQbkz68/z+4A+ZM/+Tv7m81mmEymgFoKw6MEaOHChfj999/xf//3f5g2bRreeecdlJWVeVSh1NRU6HQ6h1mk27dvj6SkJJw8ebJR+aNHjyIiIgLXXXedQ/mff/7Z7zNRh4SEoF+/fggJCfFrPfwF+fPrz7M7QP7kT/7O/m+99RbWr1+PiooKP9bMEY8SoKVLl+LQoUP46KOPMGrUKOzatQuTJ0/G4sWLcejQoasaAV9cXAwA6Nq1q8P2mJgYaZ892dnZ6NmzJ77//nvMmjULEydOxIMPPojMzMyrk7LDfrS6wWCQuuBsNhv0ej0EQQDQMAZJr9dLZY1GI0wmExhjsFqt0Ol0VywLNMysrdfrYbVaATQsL6LX66XpxE0mk1tl7Zsf9Xq99H4IguB2WTFrN5vNjeLSVFmTyYT6+nrpddyJ4dXE21VcPI23c1zcKWs2myEIglTWPoaexNs5Lu6UbS6G3oi3fVwEQYDBYPDKOXs153dTcfE03vZxaaqsIAioq6tz6zxsS/cI0Ycx1uw9wpNzNpDvEYwxmEwm6HS6q45hMN8jDAaDFCcxhiJiDL0Vb+d7hDt4ZRD0yJEj8eqrr+Lo0aN4++23YTAY8Pjjj+Paa6/FG2+8gcuXL7f4WOKb4zyDZEhIiMsxR/X19cjNzcWOHTuwYsUK7Ny5E0qlEnfffbdHmaYgCEhPT5d+z87OlhIws9kMrVYrBbuiogKXLl2Syubk5KCoqAgGgwHJyclITU2V5j6oqqpCamqqVDYvL0+Kj81mg1arlcYuVVdXOwzmzs/PdxgMrtVqUV1dDQCoq6uDVquVTvTLly8jLy9PKpuamoqqqiopZlqtVjrJioqKkJOTI5W9dOmSFDu9Xg+tViud+MXFxcjOzpbKpqenS61+RqMRWq1WOkGLioqQlpYmvaeZmZkoLS0F0HAia7VaaV95eXmT8bZYLNBqtdDpdACAyspKpKWlNYo30HARaLVaKd6uYlhQUOAQ79raWgBATU0NtFqtdLEVFBRcMd7iDaCwsBC5ublS2bS0NJSWluLs2bOorKxsFG/nGJaXlwP4cwp5Md4lJSXIysqSymZkZDQZ77KyMmRkZEhls7KyUFJSAuDPc7a5eDcVw6qqKod45+bmorCwEEDDdeLqnDUYDDh79ixyc3OleDPGoNVqUVNTAwCora11OGebi/eVztm0tDRUVlYCaFh1WqvVSjdGV+esc7zFe0tpaanDl6fMzMxm493UOVtXV4dLly5J11xT94im4h3s94isrCycPXsWBoOh2XtEWVlZo3i3hXuEwWDA+fPnkZqa2uw9orl4B/M9IicnRzqWeI9YsGABnn32WSiVyibj7Y17hFswL1FYWMh27tzJbr/9dpaQkMBuueUWtn79ejZt2jQ2dOhQdvDgwRYd57vvvmPx8fHMYDA4bF++fDl76KGHGpV/8cUXWXx8PMvIyJC2GQwGNnbsWLZnz56rcklJSWEpKSlMr9dL2/R6PTOZTIwxxgRBYDqdjlmtVsYYY2azmel0OofXNxqNzGKxsPLyclZTU3PFsowxZrPZmE6nYxaLhTHGmMViYTqdjtlsNsYYY0aj0a2y9jHU6XTMbDYzxhizWq1ulxUEgTHGmMlkahSXpsrq9XpWVFQk1dGdGF5NvF3FxdN4O8fFnbJ6vZ5VVFQwo9HYKIaexNs5Lu6UbS6G3oi3GBeLxcIqKipYfX29V87Zqzm/m4qLp/G2j0tTZU0mEyssLJTcWxLDtnSPqKurYxUVFcxisTR7j/DknA3ke4TFYmGlpaWspqbmqmMYzPeI+vp6VlxczCwWS5Mx9Fa8ne8R4ud3S/BoHqD6+nocOnQIX3zxBU6fPg2NRoNbbrkFc+bMwciRI6VyS5YswYULF3DkyJErHjMlJQV33nknfvjhB8TFxUnb582bh4SEBKxZs8ah/M6dO7F9+3ZcuHDBYfucOXMwePDgRuVbAs0DRBAEQRDBR6vNAzRx4kQ8//zzsFgseOWVV3DkyBGsXbvWIfkRK9LS0fCJiYkIDw/H8ePHpW21tbW4ePEixowZ06j8mDFjYLVaJWmgodkvPz8fvXr1ukoz72C1WlFRUSE1a/IG+fPrz7M7QP7kT/7O/v/973/x448/tp2lMO655x4cPHgQH3/8MebMmSMte+/MggUL8Ouvv7bomGq1GvPnz8emTZvw008/ITU1FU888QRiY2MxdepUCIKAsrIyqU9z9OjRmDBhAlatWoVTp04hIyMDTz/9NBQKBe644w5P9DzGbDYjJyenyfmL2jrkz68/z+4A+ZM/+Tv7Hz9+HEePHm07S2GcPHkSSUlJLmd2rK2txW+//YbbbrvN7eMKgoA333wTn332GYxGI8aMGYMXX3wRPXr0QEFBAW688UasW7cOs2bNAtDQFbdp0yZ89913MBqNGDlyJJ599ln079//qry81QXG/v8R8DKZjMv5IMifX3+e3QHyJ3/yd/b/+eefYbFYMHHiRISHh/vstd35/PYoARo4cCD+9a9/YejQoY32/f7771i8eLFXJ0lsLWgMEEEQBEEEH+58fivdPfiqVaukR+EYY1izZo3LbC4nJwedOnVy9/BtCpPJhIKCAvTo0YPLCbHIn19/nt0B8id/8g8Gf7fHAE2dOlVq3hIRfxd/5HI5hg8fjnXr1nm1ssEGYww2mw0eNLIFNeTPrz/P7gD5kz/5O/vb5wiBgkddYPfeey/WrFmDfv36ebNOfoe6wAiCIAjCe2zYsAEGgwFLly5F586dffY6Pu0CW716NZYuXYqePXuiR48eeOedd5osK5PJsHbtWndfgiAIgiAIwqe4nQAdP34c999/v/T/5uBx9Ls94hTxAwcObHKKgLYM+fPrz7M7QP7kT/7O/o8++igYY9BoNH6u3Z+4nQD9/PPPLv9PNEatVqNXr16N1jXjBfLn159nd4D8yZ/8nf1DQ0P9WCPXeDQGqK1CY4AIgiAIIvjw6RggV9TU1MBgMEgrttrTrVs3b7xEUGK1WlFXV4eIiAgolV4JdVBB/vz68+wOkD/5k7+z///+9z9YLBaMHj3a5eTJ/sCjdyY3NxerVq1CcnJyk2XcXp6+DWE2m5GVlYWBAwdyeRGQP7/+PLsD5E/+5O/sf+TIERgMhiZXj/AHHnWBLVq0COfPn8e9996L2NhYyOWNpxWaOXOmRxX0B95cCkMQBCgUCi4HhJM/v/48uwPkT/7k7+x/6NAhmM1m3HDDDYiIiPDZa7daF9jJkyfx+uuvY/r06Z4cps0ik8m4zP5FyJ9ff57dAfInf/J39v/LX/7ip9o0jUerwYeHhyMyMtJbdWlzmEwmZGdnw2Qy+bsqfoH8+fXn2R0gf/In/2Dw9ygBuuOOO/DRRx8F1NTWgQRjDGazmdv4kD+//jy7A+RP/uQfDP4ejQHatm0bPvjgA0RGRmLIkCGNJjgK1pmg6TF4giAIgvAeb775JgwGAxYvXhy8S2HY8/nnnyMiIgI2m83lk2A8Dv4iCIIgCMIRq9UKq9Xq72o44FECRDNBN49er0daWhoSEhK4nQ6d/Pn059kdIH/yJ39n/4ceegiMMYSHh/u5dn/C7zD1VkClUqF79+5QqVT+ropfIH9+/Xl2B8if/Mnf2b99+/Z+rJFrPBoDlJiYeMVurmCcCJHGABEEQRBE8NFqY4AeeeSRRgmQTqfDmTNnkJeXh5UrV3py+KBHEATU19cjPDwcCoXC39VpdcifX3+e3QHyJ3/yd/Y/efIkrFYrhg0bFjDdgh4lQI8++miT+55++mmcP38es2fP9uQlghqTyYSMjAwMHDgwYN7w1oT8+fXn2R0gf/Inf2f/X375BQaDAf379w+YmPhsNfhjx47h8ccfx/Hjx31xeJ/irS4wm80Gq9UKpVLpcpmQtg758+vPsztA/uRP/s7+X3/9NSwWC2688Uafjgdq9dXgXZGXlxdwj7y1NnK5HGq12t/V8Bvkz68/z+4A+ZM/+Tv7B+KSWR4lQNu3b2+0zWazobi4GN988w0mT57syeGDHrPZjKKiInTt2pXLi4H8+fXn2R0gf/In/2Dw93oCBDSsEXbTTTdh9erVnhw+6LHZbNDr9bDZbP6uil8gf379eXYHyJ/8yT8Y/H02BiiYocfgCYIgCMJ7bNu2DQaDAQsXLkSnTp189jrufH57NDrr5MmT0Ol0LvfV1tbi4MGDnhyeIAiCIIg2gMFggMFgCKgFUj1KgO677z5kZma63Hfx4kXuu8D0ej2Sk5Oh1+v9XRW/QP78+vPsDpA/+ZO/s//f/vY3LF26FFFRUX6smSNujwFatWoVioqKADQseb9mzRqXa3vk5OT4tJkrGFCpVIiJieF6OnTy59OfZ3eA/Mmf/J39O3bs6McaucbtFqC//OUvYIw5NGOJv4s/crkcw4cPx7p167xa2WBDpVKha9euXF8E5M+nP8/uAPmTP/kHg7/bLUBTpkzBlClTAABTp07FCy+8gBEjRni9Ym0BQRBgMBgQGhrK7XTo5M+nP8/uAPmTP/k7+589exZWqxWDBg1CaGion2vYgEdjgEpKSmAwGLxVlzaHyWRCWloaTCaTv6viF8ifX3+e3QHyJ3/yd/b//vvvcfDgQdTX1/uxZo54lACNGDECv//+u7fq0ubQaDQYNGgQNBqNv6viF8ifX3+e3QHyJ3/yd/aPj49HYmJiQE2M6NFEiAkJCdi3bx8OHTqExMTERgucyWQyrF271qMKBjNyuZzbCwAgf579eXYHyJ/8yd/Zf8aMGf6pTDN4lAD98MMPiImJgcVikSYfskcmk3ly+KDHbDajpKQEXbp0Caist7Ugf379eXYHyJ/8yT8Y/D1KgH7++Wdv1aNNIggCamtruZ0OgPz59efZHSB/8if/YPD3ylIYhw8fxokTJ1BbW4vo6GiMGjUKkyZN8kb9/AIthUEQBEEQ3uPvf/87DAYD7rvvPp/OCeTO57dHLUBmsxlLly7FkSNHoFAoEBUVhaqqKuzatQvjxo3Drl27Arr5iyAIgiAI31NbWwuDwRBQC6R69BTYtm3bcPr0aWzYsAEpKSk4cuQIkpOTsW7dOpw9exY7d+70Vj2DEoPBgHPnznE7VQD58+vPsztA/uRP/s7+9913Hx588EF06NDBfxVzwqME6Ouvv8ayZctw++23S5MdKZVKzJgxA8uWLcOBAwe8UslgRaFQIDo6msuJsADy59mfZ3eA/Mmf/J39Y2Nj0a1bt4CaHdqjLrDKykokJSW53JeUlISSkhJPDh/0qNVqdO/e3d/V8Bvkz68/z+4A+ZM/+QeDv0ctQHFxcTh9+rTLfSdPnkTXrl09OXzQY7PZoNfrA6rPszUhf379eXYHyJ/8yd/Z/8KFC0hOTobRaPRjzRzxKAGaO3cudu3ahXfeeQdFRUWwWCwoKirCnj17sGfPHsyePdtb9QxKjEYjtFptQL3hrQn58+vPsztA/uRP/s7+Bw8exBdffIG6ujo/1swRjx6Dt9lseOGFF/Dpp586THrIGMPMmTOxdu3aoJwM0VuPwdtsNhiNRmg0GsjlHuWaQQn58+vPsztA/uRP/s7+n3zyCUwmE6ZPn+7TgdDufH57ZR6gzMxMHD9+HLW1tYiMjMTYsWPRr18/Tw/rN2geIIIgCIIIPlptHiCRfv36BXXC4yvMZjPKysrQuXNnLudDIn9+/Xl2B8if/Mk/GPy9kgAdOXIEJ0+eRHV1NTp27IgJEyZg9OjR3jh0UCMIAiorKxEdHe3vqvgF8ufXn2d3gPzJn/yDwd+jLrCamhosWbIEZ8+ehVKpRIcOHVBdXQ1BEHDddddh27ZtAZ39NQV1gREEQRCE99i7dy+MRiPmzZvn08TInc9vj0ZnrV27FtnZ2di+fTvOnTuHI0eOICUlBW+//TbOnj2LLVu2eHJ4giAIgiDaABUVFSgvL4cgCP6uioRHCdCvv/6KlStX4qabbpKe9pLL5Zg6dSqeeOIJ7meCNhgMuHDhAtfToZM/n/48uwPkT/7k7+w/b948PPDAA4iMjPRjzRzxaAwQY6zJ5e67du0KvV7vyeGDHoVCgfbt23M9HTr58+nPsztA/uRP/s7+PXv29GONXONRC9DMmTOxc+dO6HQ6h+1WqxUffvghZs6c6VHlgh21Wo2ePXsG5Tgob0D+/Prz7A6QP/mTfzD4e9QCFBoaipycHNx444248cYb0aVLF1RVVeG///0viouLERkZidWrVwMAZDIZ1q5d65VKBws2mw1msxlqtZrbybDIn09/nt0B8id/8hf9GWNgjCE9PR2CIKBPnz4ICQkB0NBS5M/Jkj1KgL766iuEh4cDAI4dO+awLzY2FmfOnJF+D8YZoT1FnA584MCBCAsL83d1Wh3y59efZ3eA/Mmf/LVaLQYMGIDKykpYLBZ8+eWXMJlMuO2226RxQFFRUU0Oo2kNPEqAfv75Z2/Vo00SEhKChIQEKdvlDfLn159nd4D8yZ/8ExISoFAoYDabIZfL0blzZ5jNZmg0GqhUKmnlCH/i9YkQO3XqhPHjx9NEiGho3hNbyHiE/Pn159kdIH/yJ//w8HCYzWYwxqBWq3Hrrbc6lFGpVH6q3Z941DlZU1ODuXPnYtGiRdi7dy9++ukn7Nq1C/feey+WLFkCs9l8Vce12WzYunUrJk2ahOHDh+PBBx9Efn5+i/72q6++QkJCAgoKCq7qtb2JxWJBUVERLBaLv6viF8ifX3+e3QHyJ3/yDwb/gJwIcceOHdi/fz9effVVfPzxx7DZbFi0aNEVE6rLly/jlVdeuarX9AUWiwWlpaUBfxL4CvLn159nd4D8yZ/8S0tLpRagQB0D7NFSGNdccw1WrlyJO++8s9G+jz/+GNu3b8eRI0fcOqbZbMa4ceOwcuVK3H333QCA2tpaTJo0Ca+//jqmT5/u8u9sNhvmz58PlUqF33//HT/99BN69OjhvhRoKQyCIAiC8BSTyYTs7Gy0a9cO3333HcxmM2688Ua0b98eNTU16NixI2JiYrz6mq22FIYvJkJMTU2FTqfD+PHjpW3t27dHUlISTp482eTf/f3vf4fFYsGSJUvcfk2CIAiCIHxHcXExiouLr3pojC8IuIkQi4uLATQkUPbExMRI+5xJSUnBvn37sHHjRq/OvGk/jbfBYJDeOJvNBr1eL61pYrFYHJI9o9EIk8kEo9GIixcvoqqq6oplgYaEUq/Xw2q1AmiIo16vh9hIZzKZ3CprNBql19Hr9VJzrCAIbpe12WwAGlronOPSVNm6ujpcuHBBOrY7MbyaeLuKi6fxdo6LO2Xr6+uh1Wqh0+kaxdCTeDvHxZ2yzcXQG/EW4yI+BltTU+OVc/Zqzu+m4uJpvO3j0lRZvV6PCxcuSPfGlsSwLd0jqqurodVqYTQam71HeHLOBvI9wv7ef7UxDOZ7RE1NjbQUhs1mg9FoxKZNm/Daa6+hoqLCoQ6extv5HuEOHiVA9hMhPvfcc9i6dStefvllTJ06FUePHkVNTQ1Wr16N1atX49lnn23RMcXAOM8gGRISIgXJHr1ej5UrV2LlypXo3bu3JzoOCIKA9PR06ffs7GwpATObzdBqtVKwKyoqcOnSJalsTk4OioqKIJfLERoaiqysLNTX1wMAqqqqkJqaKpXNy8vD5cuXATScVFqtFnV1dQAg3URE8vPzHQaDa7VaVFdXA2hINrRarXSiX758GXl5eVLZ1NRUVFVVAYD0wSyeZEVFRcjJyZHKXrp0CRUVFQAa4qvVaqUTv7i4GNnZ2VLZ9PR0lJWVAfhz7gfxBK2qqpIegQSAzMxMlJaWAmg4kbVarfR+l5eXNxlvi8UiJRIAUFlZibS0tEbxBhouAq1WK8XbVQzFAfJivGtrawE0XLRarVa62AoKCq4Yb/EGUFhYiNzcXKlsWloaamtrERYWJsXFPt7OMSwvLwfQcP7bx7ukpARZWVlS2YyMjCbjXVZWhoyMDKlsVlYWSkpKAPx5zjYX76ZiWFVV5RDv3NxcFBYWAmi4Tlyds3K5HGFhYSgpKZHizRiTkiKgoWvb/pxtLt5XOmfT0tJQWVkJANDpdNBqtdKN0dU56xxv8d5SWlqKzMxMqWxmZmaz8W7qnBUEweHG3tQ9oql4B/s94vLlywgLC4NcLm/2HlFWVtYo3m3hHiGXy6FUKpGVldXsPaK5eAfzPaKoqAiMMcjlcthsNqSnp0tuBoPB4bj28fbGPcIdPBoDNGXKlJa/kEyGn3766YrlDh06hOXLlyM5ORkajUba/thjj8FsNmPnzp0O5Z999llUVFRg165dAIDjx4/jvvvu88oYoP79+yM0NBRAw5umUCigVquljDYkJAQKhQIWiwUWi0Wa8MpoNEImkyEkJASMMRgMBrfKqtVqKJVKWK1WmM1mhIaGQiaTSTfTlpZljEkx1Ov1UKlUUKlUEAQBJpPJrbIajQZyuRxmsxmCIDjERalUtrhsS2PoabzFuHgab+e4eBJv+7jYbLarjrdzXLwRb6PRCLlc7nG8xbh4K95iXDyNt31cPI23fVysVivdI+geQfeIJmJos9mQlZWFkJAQDBkyBEajEUeOHEFsbCzMZjM6duyI9u3be/UeISbULRkD5FEC5AtSUlJw55134ocffkBcXJy0fd68eUhISMCaNWscyickJEjBAuBw4T700EN46KGH3K6DtwZB22w2WK1WKJVKbqdDJ38+/Xl2B8if/MnfarXCYrEgNzcXkZGR6NOnDywWC06ePIlu3boFxCBor0yEePjwYZw4cQK1tbWIjo7GqFGjMGnSpKs6VmJiIsLDw3H8+HEpAaqtrcXFixcxf/78RuW///57h9+Tk5Px1FNPYffu3YiPj7+qOngLmg6d/Hn159kdIH/yJ3+tVuswLEXsAhMbKwIBj2piNpuxdOlSHDlyBAqFAlFRUaiqqsKuXbswbtw47Nq1y+3VYNVqNebPn49NmzYhOjoa3bt3x8aNGxEbG4upU6dCEARUVlYiIiICGo0GvXr1cvh7sU+4W7du6NChgyd6HhMSEoL+/ftzPR06+fPpz7M7QP7kT/79+/eHXC6XFkMVO5u8+aCSp3jUNrdt2zacPn0aGzZsQEpKCo4cOYLk5GSsW7cOZ8+ebTRep6UsX74cc+bMwfPPP4958+ZBoVBg7969UKlUKCoqwrXXXotvvvnGk6q3CgqFApGRkQH1hrcm5M+vP8/uAPmTP/nb+4sDwcV9gYJHY4AmT56M+fPn429/+1ujfXv37sU///lP/Pjjjx5V0B94awyQxWJBVVUVoqKiAmLdk9aG/Pn159kdIH/yJ/+qqiqo1WoUFBQgNDQU/fv3B9Dw9Ft4eHhAjAHyqAWosrISSUlJLvclJSVJj9fxisViweXLl7meDp38+fTn2R0gf/Inf9FffBpMJJBagDwaAxQXF4fTp087zNoscvLkyUaTGfJGWFgYRowY4e9q+A3y59efZ3eA/Mmf/EeMGCHNyyQOgAb+TIACYY0wjxKguXPnYv369dBoNLjtttvQqVMnlJeX4+uvv8aePXuwbNkyb9WTIAiCIIggQhxhExYWhv3790tTA4gEdQI0b948XLx4EZs2bcLmzZul7YwxzJw5E4sXL/a4gsGM0WhEbm4uevXq5TCpIy+QP7/+PLsD5E/+5J+bm4uOHTsCAFQqFa6//no/16oxHiVAcrkcr7/+OhYuXIgTJ06gpqYGkZGRGDt2LPr16+etOgYtMpkMarXa71muvyB/fv15dgfIn/zJX5wCp6nnrAJhDuaAmwk6EPDWU2AEQRAEwSt1dXXIy8uDSqXCl19+CbVajTvvvBNAw/phXbt2RXR0tFdfs9VngiZcwxiDIAhQKBRcfhMgf379eXYHyJ/8yV8QBKmVp6KiAk8//TTatWsnJUCBAH+LlLQiBoMBycnJ0uq6vEH+/Prz7A6QP/mTf3JyMvR6PRhjCAkJwdSpUzF58mR/V80Bt1uATCYTt9N7u4tarUbfvn3dXg6krUD+/Prz7A6QP/mTf9++faVH3WNjY/Huu+86lAmE0TdutwBNmTIFf/zxBwBg+/bt3E922BxKpRJRUVEBtfhba0L+/Prz7A6QP/mTv+jfVKIjk8n83j3odgJUV1eH0tJSAMD/+3//jxKgZrBarSgvL3eYBIonyJ9ff57dAfInf/IvLy+XZoIOVNxOT4cMGYInn3wSb7zxBhhjeOSRR5ps5pPJZEG5Fpi3MJvNyM3NRVhYGJffBMifX3+e3QHyJ3/yz83NRbdu3QAAycnJuOOOO9CzZ0/89ttvfq7dn7j9zrz55pt47733UF1djS+++AJJSUlef4ytrRAWFoZRo0b5uxp+g/z59efZHSB/8if/UaNGobq6GowxWK1WWCwWh1XhAwG3E6AuXbpg1apVAIDjx4/jiSeeQGJiotcrRhAEQRBEcCOTyaTERy6XN9rnTzx6DP7nn3+m5KcZjEYj0tPTYTQa/V0Vv0D+/Prz7A6QP/mTv72/OBYq0LoDvVKbw4cP48SJE6itrUVUVBRGjRqF6667zhuHDmpkMhnkcrnfs1x/Qf78+vPsDpA/+ZO/fWuP2AJknwAFwmPwHiVAZrMZS5cuxZEjR6BQKBAVFYWqqirs3r0b48aNw65du7idBwEAQkJCuF4Tjfz59efZHSB/8if/fv36oaqqCsCfCZBCoZDKBOVj8PZs27YNp0+fxoYNG5CSkoIjR44gOTkZ69atw9mzZ7Fz505v1TMoYYzBZrMFRKbrD8ifX3+e3QHyJ3/yt9lsUteX+K99AhQIeJQAff3111i2bBluv/12SUypVGLGjBlYtmwZDhw44JVKBisGgwF//PEH19Ohkz+f/jy7A+RP/uT/xx9/QKfTQSaTwWazAWhjCVBlZSWSkpJc7ktKSuJ+kkS1Wo3evXtz2w1I/vz68+wOkD/5k3/v3r2hVCohl8tdDoIOhNYxjxKguLg4nD592uW+kydPomvXrp4cPuhRKpXo2LFjwI18by3In19/nt0B8id/8u/YsaM0ENxVF1jQjwGaO3cudu3ahXfeeQdFRUWwWCwoKirCnj17sGfPHsyePdtb9QxKrFYrKisruZ4Onfz59OfZHSB/8if/yspKmM1mh3mA2lQX2Lx583D77bdj06ZNmDJlCoYOHYopU6Zg8+bNmD59OhYvXuytegYlZrMZ2dnZMJvN/q6KXyB/fv15dgfIn/zJPzs7GwaDockEKBC6wGTMC7XIzMzEiRMnUFNTg8jISIwdOzaoHwE8d+4cgIZ1zzxBHAnP63wQ5M+vP8/uAPmTP/nbbDbk5OQAAD799FOsWrUKt9xyC/bu3QsAqKqqQlxcHCIiIrz62u58fnulg7Jfv35BnfD4CplMFnBNfq0J+fPrz7M7QP7kT/72EyFOnDgRW7duRZcuXfxYq8Z41AVGNI/JZEJmZiZMJpO/q+IXyJ9ff57dAfInf/LPyMiAyWSCTCZDnz59MHv2bFx77bX+rpoDlAD5EJoMi/x59efZHSB/8id/QRBgs9ma7AIMhNh4ZQxQW8NbY4AIgiAIgkcsFguys7OhVqtx8eJFlJSUICEhAb179wbQMAaoV69eCA8P9+rruvP57VELEK/NewRBEARBNA1jDIwxyOVyvPvuu1i4cCG+/fZbf1fLAY8SoIkTJ+Kll15CSkqKt+rTptDr9Th9+jT0er2/q+IXyJ9ff57dAfInf/IX/WUyGXr37o2RI0eiW7du/q6aAx4lQAsXLsTvv/+O//u//8O0adPwzjvvoKyszFt1C3pUKhXi4uKgUqn8XRW/QP78+vPsDpA/+ZN/jx49oFQqIZPJ8MQTT+DAgQO44447/F01B7wyBujMmTP4/PPP8d1338FgMGDChAmYPXs2pkyZEpQnAI0BIgiCIIirR6/XIzs7Gx06dHA5ELqqqgq9e/dGu3btvPq6rTYGSGTkyJF49dVXcfToUbz99tswGAx4/PHHce211+KNN97A5cuXvfEyQYfVakV1dTXX06GTP5/+PLsD5E/+5F9VVQVBEFwmP2K7i78nifTaY/BFRUXYt28ftm7dipMnT6J3796YNWsWDh8+jGnTpuGbb77x1ksFDWazGZmZmVxPh07+fPrz7A6QP/mTf1ZWluQ/bdo0jB49WhovLA6Otp8s0R941AVWX1+PQ4cO4YsvvsDp06eh0Whwyy23YM6cORg5cqRUbsmSJbhw4QKOHDnilUr7Gm8uhWG1WqV+UN4gf379eXYHyJ/8yb+qqgqFhYWIjo7GyJEjUVJSgkOHDmHw4MEQBAE6nQ59+vRBSEiIV1+71ZbCmDhxIsxmM4YNG4ZXXnkF06ZNQ1hYWKNyQ4YMwcWLFz15qaBEJpMF5Rgob0H+/Prz7A6QP/mTv33yp9PpAEAa7yNOkOjv5NCj9qcBAwbgiy++wMcff4w5c+Y4JD+1tbU4ePAgAGDBggX49ddfPapoMGIymZCTk8PtfEnkz68/z+4A+ZM/+Yv+jDEpARJzhEDpAvPo1S9cuNDkG3zx4kWsXr0aQEPWx+PCcIwxGI3GgJjy2x+QP7/+PLsD5E/+5G8wGADAIQ5iCxBjLCBagNweA7Rq1SoUFRUBAE6cOIGkpCSXU1nn5ORAqVTi559/9k5NWxF6DJ4gCIIgrp7KykoUFRXBZrNh6NChAIC8vDwoFAopKerTp4/XW4F8+hj8X/7yF2mKaxHxd/upr4cPH45169a5e3iCIAiCIIIccZyP2P2l0WiknqBAaQFyexD0lClTMGXKFADAvffeizVr1qBfv35er1hbQK/XIy0tDQkJCS4Hh7d1yJ9ff57dAfInf/I/e/YsOnbsKC0HYj/hIWMMCoUi+BIge/7xj394qx5tEpVKhW7dunH7NAD58+vPsztA/uRP/p07d4ZcLm80ABr4cxC0v3E7AVq9ejWWLl2Knj17SoOcm0Imk2Ht2rVXXblgR6VSoUuXLv6uht8gf379eXYHyJ/8yV9s/XF+BB5o6B4LhAej3E6Ajh8/jvvvv1/6f3P4u3nL34iTPfH6FBz58+vPsztA/uRP/jU1NVAoFNLTYM4tQIEQF7cTIPunuoLxCa/WxGQyIT09HQMHDuSyH5j8+fXn2R0gf/In/6ysLPTu3bttdYERLUej0WDw4MHc9gOTP7/+PLsD5E/+fPuHhISgf//+UCqVLgdB22y24EyAtm/f3uKyMpkMjzzyiLsv0WaQy+VeX+ckmCB/fv15dgfIn/z59gcaxgEpFAqMGTMGr7/+Orp37+6wPyi7wCgBajlmsxnFxcWIjY2FWq32d3VaHfLn159nd4D8yZ9vf6PRiIKCAnTv3h0JCQlISEhoVCYQxgi7nQClpqb6oh5tEkEQUF9fD0EQ/F0Vv0D+/Prz7A6QP/nz7W82m1FXV9fkUiDiRIj+xu2lMFxRUVEBs9ksydpsNhgMBpw+fRpz5871uJKtDS2FQRAEQRBXh16vR3Z2NqKiopCWlobKykr07t0bXbt2BdCwTEZcXBzat2/v9dd25/Pbo0HQqampWLlyJTIzM13ul8lkQZkAEQRBEARxdQiCIDWI7Ny5E5988gmee+45LF26FEBDbhAIg6A9qsGGDRtQU1ODVatWYezYsbj22mvxwgsv4Prrr4dMJsMHH3zgrXoGJXq9HsnJydIoeN4gf379eXYHyJ/8+favr69HWloaDAYDOnfujAEDBqBz584OZQKhC8yjBCg5ORmPPfYYHnjgAUybNg0GgwF33303/v73v+Omm27ifqkMlUqFmJgYbh+FJH9+/Xl2B8if/Pn2VygU6NixI5RKJZ577jn8+uuvuPPOOwFAahkK+gTIbDajd+/eAIDevXs7DJCeNWsWzp4968nhgx6VSoWuXbtyexGQP7/+PLsD5E/+fPsDaDIBFCdBDPousG7duiE/Px9AQwJUX1+PgoICAIBarUZNTY3nNQxieH8SgPz59efZHSB/8ufb32QywWQyufQXnwAL+hagqVOnYvPmzTh06BC6dOmCvn374q233kJaWhr27duHnj17XtVxbTYbtm7dikmTJmH48OF48MEHpUTLFenp6Vi8eDGuueYajB8/HsuXL0dhYeHVankNk8mEtLQ0mEwmf1fFL5A/v/48uwPkT/58++t0OuTk5KCmpgbDhw/HX/7yF2lNMJvN1jYSoGXLlmHkyJH4z3/+A6BhpfgffvgBM2bMwO+//45HH330qo67Y8cO7N+/H6+++io+/vhj2Gw2LFq0CGazuVHZqqoqLFiwABqNBv/4xz+wZ88eVFZWYtGiRX4/+TQaDZKSkqDRaPxaD39B/vz68+wOkD/58+vPGINSqUR8fDyqq6tRVlaGzMxMKRaB1AXm0WPwISEh2Lp1KywWCwBg0qRJOHDgAC5cuIBBgwYhLi7O7WOazWbs27cPK1euxA033AAA2LJlCyZNmoTvv/8e06dPdyj/448/Qq/XY8OGDVKAN27ciBtuuAFnzpzB+PHjPVH0CLlcjtDQUL+9vr8hf379eXYHyJ/8+fW32WwAGhY/vXTpEgCgS5cuUotPm+kCE7Ef6BQXF4dbb731qpIfoGFuIZ1O55C4tG/fHklJSTh58mSj8uPHj8eOHTscMm0xs6ytrb2qOngLs9mMgoICly1XPED+/Prz7A6QP/nz6y8IAoxGI0pKSnD58mUAQGxsrLS/zSRAiYmJGDhwYLM/7lJcXAwA0oyRIjExMdI+e3r06IFx48Y5bNu9ezc0Gg3GjBnj9uvbI/ZZiv8XT2abzQa9Xi8N8LJYLA7zPRiNRmkAWFVVlcNguKbKAg0nhl6vh9VqBQBYrVbo9XrpsUFxYFlLyxqNRul19Hq91FInCILbZcWs3mw2N4pLU2WNRiMqKysld3dieDXxdhUXT+PtHBd3yppMJlRXV8NsNjeKoSfxdo6LO2Wbi6E34i3GRRAEVFdXw2AweOWcvZrzu6m4eBpv+7g0VdZisaCystLh9yvFsC3dI/R6PaqrqyEIQrP3CE/O2UC+R9jf+682hsF6jxD31dXVoaioCADQsWNHh3gbjUYpAfI03s73CHfwKAF65JFHGv088MADGDp0KDp06IDXXnvN7WOKb47zAnIhISEtGtPzj3/8Ax9++CFWrlyJ6Ohot19fRBAEpKenS79nZ2dLCZjZbIZWq5WCXVFRITX1AUBOTg6KiooQGhqKxMREZGdno76+HkDDmCX76QLy8vKkLNlms0Gr1aKurg4AUF1dDa1WK5XNz893GAyu1WpRXV0NAKirq4NWq5VO9MuXLyMvL08qm5qaiqqqKgANk1RptVrpJCsqKkJOTo5U9tKlS6ioqADQcIJptVrpxC8uLkZ2drZUNj09HWVlZQAaTmStViudoHV1dQ5NwZmZmSgtLQXQcCJrtVrp/S4vL28y3haLBVqtFjqdDkDDNOppaWmN4g00XARarVaKt6sYik8qivEWWwpramqg1Wqli62goOCK8RZvAIWFhcjNzZXKipOADR48GIIgNIq3cwzLy8sBNJz/9vEuKSlBVlaWVDYjI6PJeJeVlSEjI0Mqm5WVhZKSEgB/nrPNxbupGFZVVTnEOzc3V3rIQHRzPmdDQ0MxePBglJaWSvFmjEGr1UpPh9bW1jqcs83F+0rnrDjdPtAwAFOr1Uo3RlfnrHO8xXtLaWmpw8z2mZmZzca7qXNWoVDAYrFI51JT94im4h3s94jCwkIMHjwYoaGhzd4jxPEh9vFuC/eI0NBQ9OjRA9nZ2c3eI5qLd7DeI2w2G0pLSxERESFdk2q1WipbU1OD7OxsKQGyj7c37hFuwXzEU089xdasWeP233333XcsPj6eGQwGh+3Lly9nDz30UJN/Z7PZ2JYtW1h8fDzbsmWL269rT0pKCktJSWF6vV7aptfrmclkYowxJggC0+l0zGq1MsYYM5vNTKfTSWUNBgMzGo1Svdwta7FYGGOMWSwWptPpmM1mY4wxZjQa3SprH0OdTsfMZjNjjDGr1ep2WUEQGGOMmUymRnFxp2xLY+hpvMW4eBpv57h4Em/7uHgSb+e4eCPeBoPBK/EW4+KteItx8TTe9nHxNN72caF7BN0j6B7hWLa2tpadOnWKZWVlsZkzZzIA7JlnnmG5ubns8uXL7Ny5cywjI8Nr8Xa+R4if3y3BK4uhuuLYsWN4/PHHcfz4cbf+LiUlBXfeeSd++OEHh3FE8+bNQ0JCAtasWdPobywWC1avXo2vv/4azzzzDB544AGP6u6txVANBgMyMzPRr18/LgfEkT+//jy7A+RP/vz619TUICMjAzU1NXj22Wdx/PhxbN++HTNnzgTQ0FrUpUsXdOrUySev787nt8+eQ8vLy5Oa89whMTER4eHhDolTbW0tLl682OSYnqeffhrfffcdNm/e7HHy400UCgWioqKgUCj8XRW/QP78+vPsDpA/+fPrLwgCFAoFIiMjpe7MLl26OJRRKj16AN1reFSL7du3N9pms9lQXFyMb775BpMnT3b7mGq1GvPnz8emTZsQHR2N7t27Y+PGjYiNjcXUqVMhCAIqKysREREBjUaDzz77DN988w2efvppjB07Vur7BCCV8RdqtRrdu3f32+v7G/Ln159nd4D8yZ9ff6vVCrVajQ4dOjSZAAVKYuj1BAgAwsPDcdNNN2H16tVXddzly5fDarXi+eefh9FoxJgxY7B3716oVCoUFBTgxhtvxLp16zBr1ix8/fXXABpWpt+wYYPDccQy/sJms8FoNEKj0QTEpE+tDfnz68+zO0D+5M+vv9VqhUwmQ1lZmTQo3TkBCpSY+GwMUDDjrTFA4tMRAwcORFhYmDeqFlSQP7/+PLsD5E/+/Prn5OSgtrYWJ06cwIMPPojw8HDpCTFxjbQ+ffr4rHfGnc9vj1qA3F1vq1u3bp68XNAREhKCxMREhISE+LsqfoH8+fXn2R0gf/Ln058xBkEQEBoaKg3+tm/9EccHtYkusClTprg1m6Pbz+gHOQqFAu3atfN3NfwG+fPrz7M7QP7kz6e/zWaT1gJLTEzEhg0bHAY822y2tpMAvfXWW3jppZcwaNAg3H777ejSpQuqqqrw888/49tvv8XDDz/M7UAwoOHx/LKyMnTu3NlhuRBeIH9+/Xl2B8if/Pn0FwQBgiBIS13cddddDv42mw1KpTJgxgB5lAB9+eWXmDx5MtavX++wfdq0aejYsSPOnDmDZcuWeVTBYMZqtaK8vBxRUVFcXQQi5M+vP8/uAPmTP5/+NptN+qmsrERkZKSDv9g9Fih4lIYdO3as0ersItdddx1Onz7tyeGDntDQUAwdOjSg3vDWhPz59efZHSB/8ufTX2wBateuHerr63HmzBlpOQxxfyAlhB4lQFFRUUhOTna579ixY40efSMIgiAIom1is9mkccHr16/HXXfdhSNHjjjsD6QEyKMusDlz5mDnzp0wGAyYMmUKoqOjUV5eju+++w7//Oc/8cILL3irnkGJwWBAdnY2+vTpw903AYD8efbn2R0gf/Ln019ctNRgMCAyMhL9+vVzGAcsk8kCZgA04GECtHTpUtTV1eG9997D3r17ATQ8BhcaGoonnngCc+fO9UolgxWFQoHw8PCAesNbE/Ln159nd4D8yZ9Pf0EQwBiDQqHAa6+9hs6dO0OtVjuUCaSYeGUixNraWpw9exY1NTWIiorC8OHDER4e7o36+QVvTYRIEARBELxQWlqKiooKREZGNtpns9lQV1fn00kQAT8shlpWVoacnBykpaVhwIABSE1NRX19vTcOHdSI06GLzYK8Qf78+vPsDpA/+fPpb7FYIJfLXfoLggC5XB4wj8ADHiZANpsNzz//PKZPn461a9di7969KC8vx44dOzBjxgwUFxd7q55BidFoxIULF2A0Gv1dFb9A/vz68+wOkD/58+lvsVigUCjwyy+/YOTIkVi0aJG0L9BmgQY8TIB27NiBAwcO4LXXXsPRo0ch9qY99dRTsNls2LJli1cqGayEhIQgPj6eu+nQRcifX3+e3QHyJ3/+/MVlMGQyGcrLy1FTUwO9Xi/tt9lskMvlbScB+vTTT7F8+XLMnj0bHTp0kLYPHDgQy5cvx9GjRz2tX1CjUCgQERERUG94a0L+/Prz7A6QP/nz5y8IgpTklJWVAQBiY2Ol/TabrdGAaH/jUQJUXl6OgQMHutzXpUsX1NbWenL4oMdisaC4uBgWi8XfVfEL5M+vP8/uAPmTP3/+4gzQCoUCRUVFAIDOnTtL+wVBaFsJUK9evfDf//7X5b4TJ06gV69enhw+6OHxIrCH/Pn159kdIH/y589fTIDkcrmUAHXq1Mlhv/3CqIGAR7W5//778eKLL8JisWDy5MmQyWTIzc3F8ePHsW/fPjzzzDPeqmdQEhYWhuHDh/u7Gn6D/Pn159kdIH/y58/fvgusvLwcANCzZ09pvzg/UCDhUQJ05513orKyEjt37sQ///lPMMawYsUKqFQqLFq0CPPmzfNWPQmCIAiCCFAEQZD+X1JSAgCIiYlxKNOmEiAAWLJkCe655x788ccfqK6uRvv27TFs2DCHQdG8YjQakZOTg969e/t04qdAhfz59efZHSB/8ufPX0yABEGQpsCJjo4G0ND6E2hPgAFeSIAAIDw8HJMmTfLGodoUMpkMGo1GWhyON8ifX3+e3QHyJ3/+/MVJEEtKSmC1WqFQKKSnwAJxDiDASwkQ4ZqQkBD07t3b39XwG+TPrz/P7gD5kz9//iaTCQqFApcvXwYAdOvWDWFhYQD+TIACaRZowEtLYRCuYYzBYrHAC8utBSXkz68/z+4A+ZM/X/6ir0KhQEFBAYCGBEj0t9lsAbcSPEAJkE8xGAxISUmBwWDwd1X8Avnz68+zO0D+5M+XvyAI0lpfYgIUHh4uLQUiCAJUKlXAdQlSAuRDQkJC0L9/f66mQ7eH/Pn159kdIH/y58tfTIDsW4AGDBggTXwYiLNAAzQGyKcoFApERkb6uxp+g/z59efZHSB/8ufL32q1SgnQ/PnzMWzYMAwaNEjq8hJbgAINagHyIRaLBaWlpVzNBmoP+fPrz7M7QP7kz5e/2NUnk8kwZMgQ3HnnnejevbuDf6DNAg1QAuRTLBYLCgoKuLkInCF/fv15dgfIn/z58bfZbKirq3Po7rNarSgqKoLVagXw5zxAgYaM8TJM3Q3OnTsHABgyZIifa0IQBEEQgYvBYEBOTg7Cw8Oh1+vxzTffoFevXhg3bhyAhuSnuroaffr0kR6L9yXufH4HXpsUQRAEQRBBgdFolMb/ZGRkYMWKFYiNjcXp06cBQFohPtAegQeoC8ynGI1GXLp0SXoUkDfIn19/nt0B8id/PvwZY6irq5Oe8JLL5bjuuuswduxYZGZmOiRHgZgAUQuQD5HJZFAqlQE390FrQf78+vPsDpA/+fPhbzabYTAYpPXOhg0bhn/+858wmUwoLi6GTCaT5gcKxASIxgC5gMYAEQRBEETz1NTUID8/X1r01BU6nQ4qlarVlgZx5/ObusB8CGMMgiBwMx26M+TPrz/P7gD5kz8f/vX19dLj7RUVFcjPzwfg6C8IQkBOgghQAuRTDAYDzp49y8106M6QP7/+PLsD5E/+bd/fYrFAr9dLj79/8sknGDduHJ566ikYjUZcuHABRqMxYGeBBigB8ilqtRp9+/YN2Dff15A/v/48uwPkT/5t399oNMJkMkmOP//8MwAgMTERKpUKcXFxUKlUYIwF5CSIAA2C9ilKpRJRUVH+robfIH9+/Xl2B8if/Nu+v16vh1wuh0wmg06nw4kTJwAAN9xwA5RKJTp06CCVDcQB0AC1APkUq9WK8vJyaTZM3iB/fv15dgfIn/zbtr8gCKivr5e6v44ePQqLxYJevXqhb9++sFqtqKyshNVqDdhZoAFKgHyK2WxGbm4uzGazv6viF8ifX3+e3QHyJ/+27W8ymWA0GqUESOz+mjx5MmQymbQUiF6vh0qlCtguMHoM3gXeegzePrRtfT4IV5A/v/48uwPkT/5t27+iogJFRUWIjo4GYwzjxo1DQUEB3n//fdx0002Sf319PTQaDeLi4lotDrQURoDQFk98dyB/fv15dgfIn/zbrr84+7PY+pOZmYmCggKo1WpMmDABwJ/+FosFnTp1Cth4UBeYDzGZTMjIyIDJZPJ3VfwC+fPrz7M7QP7k33b9m+r+GjdunLTYqclkQmZmJqxWK0JDQ/1W1ytBCRBBEARBEC3CaDTCarVK43p++eUXAA3jf+yxWCxQq9VSohSI0BggF9BSGARBEATRmPz8fOj1ekRERECv12PQoEEwm8349ddfMWDAAKlcTU0NoqKiEBsb26r1ozFAAUJbHwh3JcifX3+e3QHyJ/+26S8ufiq26vzvf/+D2WxGjx490L9/f6mcuARGIHd/AdQF5lMMBgPOnDnTpqdDbw7y59efZ3eA/Mm/bfobjUaYzWZp9mf77i/7RK+urg5paWkBvxYaJUA+RK1Wo1evXm16OvTmIH9+/Xl2B8if/Numv06nc5jVOTo6Gl27dsWUKVMcytlsNvTt2xft2rVr7Sq6BY0BcgGNASIIgiDaKowxlz/N7bNYLCgqKkK7du2gUqkaHct+tueqqip07doV0dHRre5GY4ACBKvVirq6OkRERATsTJi+hPz59efZHSB/8m+5f1MJx5USkqbK2Gw2hx9xm/0+V3/X3GuJaDQah+QHaBjjZN/9Jb6GwWBweFosEAncmrUBzGYzsrKyMHDgwIA+CXwF+fPrz7M7QP7B6H+1CYerH71ej7S0NPTv3x8ajcZlUmKfmLg6ZlPb7OsKNB5kbZ+QiP93/mlun6uyrsjIyECfPn0aLXRqMpkgk8lw+fJlREVFBfT7T11gLvDmUhg2m01aMZc3yJ9ff57dAfL31N+dZMOdcs6JiP2PeIwrHcu+nH19RWQymUO3kBiDphIP522uylwpGWltDAYDBg8eDI1Gg59++snhUffq6mpERUUhJibGL+c/dYEFCDKZrFF2zBPkz68/z+5A2/L3RreMcxJypYTEubXjSq/VXN2BlreEiL/bJy3NJS68kpmZCbVajbCwMHTp0sVhn81mQ7t27YLi/KcEyIeYTCZcvnwZ3bt3D+jZMH0F+fPrz7M74Dt/b44VcU5AmkpKnP/2Sq8lk8lgNptRUlKCLl26ODwJJe6/UpdLc8mIq6Qk0DCZTCguLkZsbGzQn/+MNczpY7FYpDE9gwcPxrlz53D58mWH+IuzP8tkMmRlZQX89U8JkA9hjMFqtV7xW0pbhfz59efBvbkkwGg0QqfTQa/XQxCEFiUk3h68Km4XaSpRaOkYkKYSEVeJi9FoRH19PSIjI6HRaLwc+cDHZrPBaDTCYDDAbDZLyYPzv1arFT169ECHDh0AAKWlpTh37hzat2+PMWPGSMf79NNPodPpXB7D1TEtFgtmzZqFSZMmAQAuXLiA119/Hd26dcOmTZuk4y5cuFBas6u549rz5JNPYsWKFVAqlejVq5fDPpPJJA2UDobrnxIgH6LRaBAfH+/vavgN8ufXvzXdvdEt41zmSmNFmhu8Km5XKpUoKipq1J0j0tTg1ebGgYjbxUeOr2bwamug0WjQr18/t/7GftwM0PAkVWVlZZMf8OKP84f19ddfj/bt2wMAzp49i9OnTyM+Pl5KBvR6Pd5+++0rJhLO/7788ssYOnQoAODzzz/Hpk2bcN1112HdunVS/ePj46V6tZQdO3bgjjvuAAAcP34cDz30EK655hp89tlnUpmXX34ZFRUVbsVzyJAhknNdXR3++9//NnpPcnNzkZGR4dZxrVZrk/ssFgs6d+4cNPc+SoAIgvAa7iQb7pTz1eBV520tHajqqovGVRlfJyNiS5vFYnFYdqCsrAw6nQ6dOnVCeHg4gIa5WdLT093+4F+6dKmUlHz66adITk7GLbfcggkTJgBoeBpo48aNLWqVsP/30KFD6Ny5MwDgpZdewjvvvIPHHnsMTz/9NAAgJycH119/vdsx+f777zFo0CAADTMVb9q0Cffcc4+UDJhMJmzfvt3t41ZVVUn/1+l0yMnJQUJCgrRN7PprKkGQyWRQqVRQKpUO/9p3EUZHR2Po0KGNEpUpU6agvr6+0d8qlUqX21QqFUaPHi39ff/+/fH2229LiaHIxo0bYTKZmjxGU/+6wmazQSaTBXSXlzOUAPkQvV6P1NRUJCYmIiwszN/VaXXI37/+V5NoNFfOuQWkucGrBoMBmZmZ6NOnDzQaTZOv1VzdgSu3cFzN4FUxaWjuA1ulUjk07588eRJ6vR4jR45EREQEACA1NRUpKSku/95gMKC0tFQqK+7r0KEDVq1aJR13zZo1yMrKwlNPPSU9tfLdd99hy5YtLe7uAICIiAikpqZKx3300Ufx22+/Ydu2bZg1axYA4MSJE1i4cKEbZ1ADDz74oPSh9uuvv+Kzzz5D9+7dpQSouroaX3/9tdvHNZvN0v/F98o+eVAqlU0mDc198Nt3uSUmJuKvf/2r1HIDAKGhoVi0aJHL4zX3wZ+UlCQdY+rUqUhISGg00d9vv/0GhUIBQRCQn5+PAQMGICIiAmq1ukWDgidOnIhvv/220fa33nrrygFthk6dOmHOnDmNto8cOdKj49pjMpkQEhKCkJAQv9/7WkpAJkA2mw3bt2/HJ598grq6OowZMwYvvvgievbs6bJ8VVUVXnvtNRw+fBgymQy33XYbnn76ab8vxKZSqdCjR48mM+a2Dvn/6e+NbpmmWkSaG0Ni/7dXei2g6XEijP05eFUc12C1WiEIAgRBkD6MxR+TyYTa2lpUVlYCALp06YIhQ4ZI35L/85//QBAE3HPPPdI8Id99912TCUVT/w4bNgzPPPOMVM9bb70VOp0O//73v6VHczds2IB9+/Y1ShqaY8SIEQ4f6kuXLkVhYSG++eYbDBs2DADw008/Ye3atS08Gxro2bOnQwJ0/PhxpKSk4P7775e21dTU4Pz5824d17nLJSwsrNEHT3h4OHr37u3WN33nOVxuvvlmdOvWDSNGjJC2xcXF4bXXXnP4G5lMBovFgvbt20Oj0bg8rtj6AwArVqzAI4884rB0Qq9evVBQUOBWHJy59dZbceuttzps02g0ePnllz06bkxMDGJiYhptj4uLA9DwfoSFhSEyMpKb+5/JZELHjh2hUCiC5t4fkAnQjh07sH//fqxfvx6xsbHYuHEjFi1ahAMHDrhcW2X58uUwGAx47733UFtbi+eeew56vR5vvPGGH2r/JyqVyuVFwguB6u+tcSLNdc+I2wVBQH19PRhjMJlMqKqqgkwmQ6dOnaTjpKWlQa/XNzmmwTnBsFgsGDFihJRQlJSUYP/+/WjXrh2WLl0qJSpbt25FdnZ2o+TEPhFw/n3u3LlYvnw5AKCgoADXX3891Go1tFqtFL9HH30UP//8s1sxnzNnDt5++23JWUwC5syZI33IHjp0CP/+97/dOq7zt+qMjAzo9XqYTCZpm8ViQV1dXbPHcW5pcF7DKD4+Hh06dHC4//Tq1QuTJ09uUauE+G9UVJTDcR977DFUV1cjMTFR2jZp0iT84x//aPIY4k9z3RL79u1r5Dhx4kQcPXq02Thcidtvvx233367w7aYmBgsWLDAo+M6d80Awb2Kukqlkq5xHhDvd2KjQ6De+50JuATIbDZj3759WLlyJW644QYAwJYtWzBp0iR8//33mD59ukP5P/74AydOnMA333wj9Zu+8sorWLRoEVasWNFojoLWRPzwCw8PD4o5EbzNlfybSibMZrPDj/gBbTabERsbK3WpFBYWIisrC9HR0UhISABjDevVfPXVVw5/K/7rauCk+P85c+ZIg/ZOnjyJDz/8EAMGDMDDDz8s1XHx4sWor69vcTIhCAJeeOEFzJ8/HwqFAsePH8fChQsxaNAgfP3111KismzZMuTn57sV22eeeUYa05CXl4c9e/YgNjYWTz31lFTmyJEjOHPmjFvHLS8vl/4vl8thNBobtZiICYtcLm+2W0IulyMkJAQqlcqh9ValUuHmm2+GSqVy+JC79tprERYW5lbrRNeuXR3q9v7770MulzvcfJcsWYK5c+c2e6wrXZ8fffRRo23Tp09vdD8SEQQBOp3uivOh3HLLLY22devWDd26dWu2PoFOS/1bi6a6XH21XfQPCwtr9t7n6XZvHMMb261WK8LCwqQEKFg++wIuAUpNTYVOp8P48eOlbe3bt0dSUhJOnjzZ6IZz6tQpdO7c2WHQ2NixYyGTyXD69GlMmzat1erujMlkQkZGBgYOHOjzflBx7RXnD/or/UyZMkXqojl27BhSU1MxbNgwDBs2DIwxFBcX47333oPFYoHJZGrxcbds2YL27dsjLS0Nx44dwyeffILbb78dS5Ysgc1mQ3FxMf7617+6TBqa44MPPpD6rT/44ANs2LABt956KzZu3Aig4dv+4sWL3Y7fxIkTMXz4cMhkMlRXV+P777+HXq93+MZ+8eJF1NTUuHXcqqoqKBQKhIaGIiwsDHK5HAqFwqEloXv37gDg1gd///79pb/v3LkzFi1aJD1KK/K3v/0Nf/3rX5s9lvM2+xldY2Ji8PvvvzfqBtm9ezcUCoXD4ofOGAwGpKenY8CAAY26opVKJd577z0Ajt1zs2bNksaruHPzFR8zBxqufRHxMdzIyEhERkY2eRyxG8/d121uu8FgQEZGBvr37y/5++ODydvbXbXKuNoujgHr16+fw/vfVFdrc9tb+prNbXd1bF9ut/dv6t7v7vFbWra5wfe+2i6Xy9GhQwepJbI1P/s8IeASoOLiYgBo9M0uJiZG2mdPSUlJo7JqtRodOnRAUVGRR3UxGAzSxWswGKQPLnGOh5CQECgUCulDX3yjjUYjZDIZQkNDMWTIEKkbQ6FQ4NixY9i1a5fUWiF+wxYnmjKZTA7jKMxmMxhjSElJgdFoBGMMDz/8MA4cOIBXXnkFCxYsgEKhwE8//YQZM2a47XjmzBmEhoZK467++c9/YunSpXjkkUegVCpx8eJFvPjii24fNyMjAz179kT79u1RWFiI8+fPIykpCVVVVVCr1TCbzQ6tDc0hl8ulD2mxRcFqtaJLly7o3bs3OnfuLL03ISEhGD16NNRqtfTNXqFQICQkxGFQpfg7AISEhCAuLk7qhkpMTMRLL72Ezp07o6KiQhpU+dprr0mtGuLFHxYWJiWQCoVCasEQBAFqtRoREREwGo2oq6vD4MGDceHCBZjNZpSVlSEkJASMMezYsUPqNxcEAWazGWq1GnK5XDp3xFYvo9Eola2oqJDKPv7449JqzWJ9x44dK8VN/Fux7uL5Jp7fRqMRcrkcarUalZWVUtl27drBarWisLBQKit2L4lJnNFolAZ5ii11oaGh6Nq1K6qrq1FbWyvdGO3Liq4ajQZyuVw618UBtwaDAWq1WornlcqKCZ1YNiQkRIqhzWaT4mIwGKBUKqFWqxuVFY8rlrWPi9iNKdZfTNztYyi+NyEhIejTp48Ub/snteRyubReknhco9EIjUYjxdD+vbFYLI3Kiue3WFaj0Ujjq8QnccSyznEJDQ2FTCaT3kfxdfR6vVRWbIm1LyvGRSaTOZQVBAEmk0lyE8eH9erVCyqVCkajUToPXZUVBKFRDJ3vs0qlstF91v59dL4ni3GxvyeL1y5jzOHcclVWJpNJ15yrss3FRTw/+vTpI82K7FzW1TkrzqGjUChgNpsdzlnxuM5l7e8RzX1W2V83Vyrb3OeaeC00VVa8J8hkMiQmJiI0NNRlDM1mc6N4N/XeNHUeOp+zYll3CLgEyGAwAIDDN2Sg4UPK1bdvMVjOhISEOIwDcBdBEJCeni49PZCdnY3w8HDExcXBbDZDq9UiPj4eERERqKioQHFxMYYPHw6g4fFNjUaD3r17QyaTITU1Ff3790dkZCSSk5Px/vvvu12fnJwc5OXlgTGGqqoq1NXV4fz589BqtS6TPfukQfygV6vV0sUpXpg6nQ5lZWUwmUzo06cPJk2aBKVSibKyMnTq1AlqtRqTJ09GdHS0FFPGGDp37gylUonq6mpERESgQ4cOYIyhuroasbGx6Nq1K+rr61FTU4MZM2Zg9OjRsFgs0v527dph8+bN6NWrFyIiIlBTU4O6ujoMHDgQKpUKubm5aN++PeLi4mCxWJCeno7evXsjIiICZWVlKC0tlcYjZGVloaSkBD169IDVasXzzz+Pnj17IjIyEpWVlSgsLMTgwYOlOCoUCsTFxcFms+HChQvo2bMnOnTogJqaGhQUFGDQoEEYMGAAcnNzUVFRgb59+wIA+vTpg+7duyM6Oho1NTXIz89HUlISlEol8vLyYDabMWDAAMhkMpw7dw7R0dHo1KkTamtrpbJqtRr5+fkwGAyIj4+HTCbDhQsX0LlzZ3Ts2BE6nQ5FRUXSzePy5cvQ6/XS4EqtVouoqCh07doVer0ely5dQnx8PMLCwlBUVASdTifVV6vVIiQkBN27d4fRaERqaipiY2MRHh6OkpIS1NXVYcCAAQCAtLQ0qNVq9OzZE2azGRcuXECXLl0QGRmJsrIyFBUVSY/8Xrp0CWq1Gr169YIgCDh37hy6dOmCqKgolJeXS65AQyIsl8ulD4OUlBR06dIFHTt2RGVlJXJzc5GQkAClUomsrCzYbDb06dMHQENyHhMTg86dO6O6uhpZWVkYMGCAdH6I5yzQMN9Lx44dERsbi9raWmRkZKBfv34ICQlBXl4edDqdVDY5ORlRUVHo1q0b6uvrkZaWhj59+iA0NBQFBQWoqamRyp4/fx7t27dH9+7dYTAYoNVq0atXL7Rr1w6FhYUoLy+X4n3x4kWEhoYiLi4ORqMRFy9eRGxsLCIiIlBcXIzi4mLp8ezU1FSEhISgd+/esFgsSElJQbdu3RAZGYnS0lIUFBQ4xFupVKJHjx4QBAFnz55F3759pXjn5uZi5MiRkMlk0pwuvXr1AmMMZ86cQa9evdCpUydUVVWhqKgIw4cPh0KhQFZWFqxWq9Q9eebMGfTo0QOdOnWSzu+hQ4dCpVIhJycHRqNR6prLzc1FbGwsoqKiUFdXh9zcXAwaNAgajQZ5eXmor6+XzoGUlBR06tQJnTp1gk6nQ3Z2ttQycPnyZVRVVUnXZ15eHjp06ICOHTtKrWgJCQkIDw9HUVERSktLpUHoeXl50j3ZZDLh0qVLGDBgANq1a4eSkhIUFhZKg7Xz8vKke7LFYoFWq0W/fv2k+0leXh5GjRoFAMjPz4dcLke/fv0gCAIuXLiAPn36oF27dqivr0dOTg5GjBgBuVyO/Px82Gw26TrKyMiQ4q3T6ZCVlYVhw4ZBqVQiPz8fZrNZel8zMjLQvXt3xMTEoL6+HhkZGRgyZAjkcjlKSkqg1+sxcOBAAA1LT8TExKBr164wGo1IS0uT4l1SUoLa2lrp3MrIyEB0dLR03Wu1WineZWVlqKyslJ44zMrKQvv27aXrXqvVSvEuLy93iHd2djbCwsLQq1cvWK1WaLVa6XOtqqoKly9fdoi3Wq1Gnz59pLLiOVtdXY3c3FyX8WaMQavVonfv3ujYsSNqa2uRnZ0tnbMFBQUO8dZqtYiLi0Pnzp1RX18vLdHRUgJuMdRDhw5h+fLlSE5Odnic8bHHHoPZbMbOnTsdyr/66qtISUnBJ5984rB9/PjxWLJkCR544AG36yAupmbffH01LUAAUFhYiKioKEREREChUOCPP/7Av/71L4SGhkpvlEqlQmhoKJRKJRhjCA0Nlb6RAkC7du0wceJE6UmPyspK6PV6tGvXTkpExFaG9u3bQ6VSSWVdZco2m036FmafVTf1TdD+24b4DcL5W5j9N0yxbH19PYqLi9GzZ09oNJomv5k4x1B80qglZYE/Vx92/gYhxsGdb4JX+rbhTlnGGMrKyqTxKPYxdP525+qbYEu/sbXWtzt3vrEpFAoUFRVJibO3vt21pOyVYuhpvO3jYt8CZF/WYDDg8uXL6NatG8LCwloUQ0/i7dyq42m87VtqribeBoMBVVVV6Nq1K2w2W6MWIG+cs1dzT3YVF0/j7eoeIQgCLl++jOjoaERGRl5VDIP5HlFbW4uysjL06NFDuh5aqwUoMzMTQJAuhip2Z5WWlkrfesXf7SedEomNjcWPP/7osM1sNqO6utrjUej2fdf2/5fL5Q79muIbIGLffG7frAk0PF5r/wjp1WD/+KhIRESEy+0i4mRornB+4sXV47MizuM5nKe5tz+W2C0ktjw5Z+b2f+v8FIs4f4qI/d8qFAqHv22uvs6va19/mUzm8LfiIF4R5wm93C1rNBqlm4Z9fZ3jYH9csRutqbLNnYfulG3qnHW3bFMxFN3Fbsnmyop4Gm+RK8XQW/F2jovzuWW1WqUvMe7E8GriLWIfF0/i7RwXd+MtfkDaf7Fqqqw9VxtvT85Zb8Ub+DMu4oex2DXWXFmg9c7Z1rpHqNVqWCwWaUxWczH0RrxdlW0JTY9i9BOJiYkIDw/H8ePHpW21tbW4ePGiw9ooImPGjEFxcTFyc3OlbSdOnAAAqYnNX2g0GiQmJnK5Fg5A/jz78+wOkD/5k38w+AdcC5Barcb8+fOxadMmqR9z48aNiI2NxdSpUyEIAiorKxEREQGNRoNhw4Zh5MiReOKJJ7BmzRro9Xq8+OKLmDFjhl8fgScIgiAIInAJuBYgoGFiwzlz5uD555/HvHnzoFAosHfvXqhUKhQVFeHaa6/FN998A6ChyWz79u3o0aMH7r//fjz++OO47rrrsGbNGv9KoKF/8uzZs9Dr9f6uil8gf379eXYHyJ/8yT8Y/ANuEHQgIA6CbskgquawWCyoqKhAx44dA35KcF9A/vz68+wOkD/5k7+//N35/KYEyAXeSoAIgiAIgmg93Pn8DsgusLaCIAioq6u74uzGbRXy59efZ3eA/Mmf/IPBnxIgHyJOzuXJhIzBDPnz68+zO0D+5E/+weBPXWAu8FYXmDidvLisAW+QP7/+PLsD5E/+5O8vf3c+vwPuMfi2hPMEeLxB/vz68+wOkD/5k38w+POXmrYiZrNZWiOKR8ifX3+e3QHyJ3/yDwZ/SoB8iCAIqK+vD/iBYL6C/Pn159kdIH/yJ/9g8KcxQC6gx+AJgiAIIvigx+AJgiAIgiCagQZBu0BcxVbMJK8WxhgsFgtUKpW0IjBPkD+//jy7A+RP/uTvL3+z2dzi16QEyAXeesNkMhnUarVXjhWMkD+//jy7A+RP/uTvL3+ZTNbiz3AaA0QQBEEQBHfQGCCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEqBmsNls2Lp1KyZNmoThw4fjwQcfRH5+fpPlLRYLNm/eLJWfP38+tFqtQ5lPP/0Uf/3rXzF8+HBMnToVu3fvhiAI0v6vvvoKCQkJjX4KCgp85ukKX7gvWLCgkde9994r7TeZTHj55Zcxfvx4jBgxAk8++SQqKyt95tgc3vafMmWKy/c1ISEBJ0+eBACUlJS43P/ZZ5/53NcZd/y3bdvWpNvq1aulcseOHcOsWbMwbNgw3HLLLTh48KDDcYL1/W+pf7Bc+4Bv/IPl+ve2e1u+9gGgoqICTz75JMaNG4drrrkGTzzxBEpKShzKfPvtt5g2bRqGDh2KGTNm4NixYw77q6qq8OSTT2LMmDEYO3YsXn75ZRgMBp/4OcCIJtm2bRu75ppr2C+//MK0Wi1buHAhmzp1KjOZTC7LP/vss2zChAns8OHDLCMjgz366KNs4sSJrLa2ljHG2JdffskGDRrEPv74Y5abm8sOHjzIRo4cybZt2yYdY8OGDWz+/PmstLTU4cdqtbaKs4i33RljbPz48Wz//v0OXlVVVdL+Z555ht10003s5MmTLDk5mc2YMYPdc889vlZ1ibf9KyoqHLwLCgrY1KlT2X333ccsFgtjjLFff/2VDRkyhJWUlDiUNRgMreYt4o5/fX19o/P1jTfeYMOHD2epqamMMcYyMjLYkCFD2JtvvskyMjLYO++8w5KSktj//vc/6TjB+v63xD+Yrn3GvO/PWPBc/952b8vXPmOMzZ8/n82dO5ddvHiRXbhwgd11111s9uzZ0v5jx46xQYMGsffff59lZGSw9evXs8GDB7OMjAyHY8yePZudP3+e/e9//2OTJ09mTz/9tM9dKQFqApPJxEaMGME++ugjaVtNTQ0bOnQoO3DgQKPyeXl5LCEhgf3yyy8O5SdPnizd5OfOncuee+45h7/bvn07u/7666XfFy1axF599VXvyriJL9zLy8tZfHw8u3DhgsvXLC4uZomJiezXX3+VtmVlZbH4+Hh25swZL5m1DF/4O7N+/Xo2btw4VlFRIW3bvXs3++tf/+o9kavEXX9nLly4wAYNGsQ+++wzadsLL7zA5syZ41BuxYoVbOHChYyx4H7/nXHlHyzXPmO+8Q+W698X7s60pWu/pqaGxcfHs59++kna9uOPP7L4+HgpuV24cCF77LHHHP7u//7v/9gLL7zAGGPszJkzLD4+3iEh+u2331hCQgIrLi72ol1jqAusCVJTU6HT6TB+/HhpW/v27ZGUlCQ1W9pz9OhRRERE4LrrrnMo//PPP0vHWLlyJf72t785/J1cLkdNTY30e1paGvr16+dtHbfwhXtaWhpkMhn69Onj8jVPnz4NABg3bpy0rU+fPujSpYvL1/QlvvC3JyMjAx988AGeeeYZREdHS9sD4b0H3Pd35pVXXsHo0aMxc+ZMadupU6caxWLcuHE4ffo0GGNB/f4748o/WK59wDf+wXL9+8LdnrZ27Ws0GrRr1w5ffPEF6uvrUV9fjy+//BJ9+vRB+/btYbPZcObMmUbX/jXXXCMd79SpU+jcubOD/9ixYyGTyaTzwlcofXr0IKa4uBgA0LVrV4ftMTEx0j57srOz0bNnT3z//ffYvXs3SkpKkJSUhGeeeUZ6Y0eNGuXwN3V1dfjnP/+JSZMmAQBqampQUlKCU6dOYf/+/aiqqsLQoUPx1FNPNXnj8AW+cL906RIiIiLwyiuv4OjRowgLC8Mtt9yCpUuXQq1Wo6SkBFFRUQgJCWnRa/oSX/jbs3XrVsTHx+OOO+5w2H7p0iVERUXhnnvuQXZ2Nnr16oWHH37YIbFqDdz1t+eXX37BH3/8gS+++KLRMWNjYxsdz2AwoKqqKqjff3ua8g+Wax/wjX+wXP++cLenrV37arUa69evx4svvojRo0dDJpMhJiYGH374IeRyOaqrq6HX611e++LxSkpKGr2eWq1Ghw4dUFRU5E29RlALUBOIA7DUarXD9pCQEJhMpkbl6+vrkZubix07dmDFihXYuXMnlEol7r77blRUVDQqr9PpsHTpUphMJjz99NMAgPT0dAAAYwzr1q3DW2+9BZPJhLvvvhvl5eXeVmwSX7hfunQJJpMJQ4cOxTvvvIOHH34Yn3zyCZ5//nnpNZ1fr7nX9CW+fO/z8/Pxww8/4OGHH3bYbrVakZWVhZqaGjz66KPYvXs3hg8fjsWLFzcaMOhr3PW3591338XkyZMxcOBAh+1Go7HR8cTfzWZzUL//9jTlb08gX/uAb/yD5fr35XvfFq99xhi0Wi1GjBiBjz76CO+//z66deuGpUuXor6+Hkaj8YrH8+d7Ty1ATaDRaAA03JzF/wMNTyqEhoY2Kq9UKlFfX48tW7ZI3/q3bNmC66+/Hp9//jkWLVoklS0rK8OSJUtQUFCAvXv3okePHgCA0aNH49ixY4iKioJMJgMAbN++HTfccAM+++wzLF682Ge+9vjC/ZVXXsGqVasQGRkJAIiPj4dKpcITTzyBp59+GhqNBmazudGxm3pNX+LL9/6rr75Cx44dcdNNNzU6xvHjx6FQKKTXHDx4MNLT07F3716XXWm+wl1/kcLCQhw/fhy7d+9utC8kJKTR+yv+HhoaGtTvv0hz/iKBfu0DvvEPluvfl+99W7z2v/32W3z44Yf45ZdfEB4eDgD4+9//jsmTJ+M///mP1NLl/N7aH6+59z4sLMw7Yk1ALUBNIDbJlZaWOmwvLS1Fly5dGpWPjY2FUql06PLQaDTo2bOnw2OsmZmZuOuuu1BRUYGPPvoIQ4YMcThOdHS0dAMEGj4cevTo0eixQl/iC3elUind/EQGDBgA4M/ukerq6kYXQlOv6Ut89d4DwI8//ojbbrsNcnnjS69du3YONx2gIUat+d4D7vuL/Pjjj4iOjsbEiRNdHtPV8cLCwhARERHU779Ic/5AcFz7gG/8g+X699V7L5Zpa9f+qVOn0KdPHyn5AYDIyEj06dMHubm56NChA8LCwpo9XmxsbKP9ZrMZ1dXViImJ8YpXU1AC1ASJiYkIDw/H8ePHpW21tbW4ePEixowZ06j8mDFjYLVace7cOWmb0WhEfn4+evXqBaChCfT+++9HaGgoPv74Y+kGIPKvf/0L11xzDfR6vbStvr4eOTk56N+/v7cVm8QX7vfee6/DnCAAcO7cOahUKvTu3RujRo2CzWZzGPSWnZ2NkpISl6/pS3zhDzS8l1qtFhMmTGh0jPT0dIwcOdLhNQHg/PnzrfreA+77i5w6dQpjx46FUtm4YXn06NE4ceKEw7bff/8dI0eOhFwuD+r3X6Q5/2C59gHf+AfL9e8Ld6DtXvuxsbHIzc116KrS6/UoKChA7969IZPJMHLkyEbX/vHjxzF69GgADffP4uJi5ObmSvvF8s5j57yOT58xC3LefPNNNnbsWPbjjz86zIdgNpuZ1WptNE/DAw88wG699VZ28uRJlp6ezh599FE2fvx46XHH+fPnszFjxjCtVtto7gjGGCssLGSjR49mjzzyCLt06RJLSUlhDzzwALvpppuY0WgMavd//OMfbODAgWz//v0sLy+PHTx4kF1zzTXszTfflI6xYsUKNmXKFPb7779L84DMnz+/Vb1FvO3PGGMnT55k8fHxLh/tFASBzZ49m02bNo2dPHmSZWRksLVr17LBgweztLS0VnG2x11/xhi78cYb2Y4dO1we79KlS2zQoEFs48aNLCMjg+3du7fRPEDB/P4z1rx/MF37jHnfP5iuf2+7M9Z2r/2SkhI2duxY9tBDDzGtVsu0Wi1bsmQJmzRpkjQH2m+//cYGDhzI9u3bxzIyMtgbb7zBhg4dKj32brPZ2Ny5c9nMmTNZcnIyO3bsGJs8eTJ75plnfO5KCVAzWK1WtmHDBjZu3Dg2fPhw9uCDD7L8/HzGGGP5+fksPj6effrpp1L5uro69tJLL7FrrrmGDRs2jC1YsIClp6czxhrmuYiPj2/yR+T8+fNswYIFbNSoUWzkyJHs0UcfZYWFha0rzrzrLvLhhx+yW2+9lQ0ePJhNnjyZ7dy5kwmCIO3X6XTsueeeY6NHj2ajR49mK1asYJWVla0j7IQv/A8ePMji4+Ob/EArKytjzzzzDJs4cSIbMmQI+7//+z928uRJ30k2g7v+jDE2dOhQtn///iaP+d///pdNnz6dDR48mN1yyy3s4MGDDvuD+f1nrGn/YLv2GfPN+x8s178v3NvytZ+RkcGWLFnCxo4dy8aNG8eWLVsmlRf5/PPP2c0338yGDBnCZs6c2Wh+tPLycvboo4+y4cOHs2uuuYa99NJLrZL4yxhjzLdtTARBEARBEIEFjQEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCMIrGI1GbN68GVOnTsXgwYMxcuRILFiwAFqtVirDGMN7772HW2+9FUOHDsXNN9+MvXv3QpyQ/kr7ExISsG3bNofX3bZtGxISEhy2TZkyBWvXrsX999+PoUOH4rnnnvNK/d544w0MHToUdXV1Dq+3Y8cOjBo1CgaDweM4vvXWW/j3v//t8XEIgmge10vXEgRBuMnTTz+NU6dOYcWKFYiLi0Nubi7efvttPPnkkzh48CBkMhk2bNiA999/HwsWLMDEiRNx7tw5bNq0CVarFUuWLLnifnf46KOPsGDBAjz44INo166dV+o3Z84c7Nu3D9999x3uvPNO6bW+/PJLTJs2DaGhoR7Hsb6+Hi+++CKUSiVmzZrl8fEIgnANJUAEQXiM2WyGTqfD888/j2nTpgEAxo4di/r6eqxfvx7l5eUICQnBBx98gPnz5+Opp54CAEyYMAFlZWU4efIk5s2b1+x+dxOgbt26YeXKlV6r35IlS9CvXz+MGDECX375pZQAnTlzBjk5OVi/fn2L6mUymZrd/9RTT0Gn0+G5556DSqXCX//6V7e8CYJoGZQAEQThMWq1Gnv37gUAlJSUIDs7Gzk5Ofjll18ANCQgWq0WVqsVU6dOdfjb559/HgBw+PDhZve7y8CBA71aP5HZs2fjhRdewOXLl9G9e3d8/vnn6NOnD0aMGHHFOul0OowcObLFDqtWrcK4cePQuXPnFv8NQRAtgxIggiC8wm+//Ya1a9ciKysL7dq1Q2JiIsLCwgA0jK2prq4GAERHR7v8+yvtdxfxtb1VP5Fp06Zh7dq1+PLLL/G3v/0N3377LRYvXtyiOoWEhGDdunVXLHfkyBEcPHgQN998s9fiQRCEI5QAEQThMXl5eXjkkUdw0003YdeuXejZsydkMhk++ugj/PbbbwCA9u3bAwAqKyvRt29f6W8LCwuRl5cnJSNN7R81ahQAQBAEh9fW6/WtUr9Ro0ZBpVKhXbt2uOWWW/Dtt98iPj4eer0ed9xxR4vi1JJxPUePHsUPP/yAm266CZs3b4ZCoWjRsQmCcA96CowgCI85f/48TCYTFi9ejLi4OMhkMgCQkgvGGIYOHQqVSiV1O4ns27cPK1aswIgRI5rdr1AoEB4ejpKSEof9Z86caZX62Scic+bMwaVLl/D+++9jwoQJ6NKlS0vC1CJ27tyJCRMmYMuWLVAq6TsqQfgKuroIgvCYQYMGQalUYuPGjVi4cCHMZjM+++wz/PrrrwAaWml69uyJ++67D++99x7UajXGjh2L5ORk/POf/8T/1879sigQxHEY/94iss1gVcQuKAgmgxj1DQiy+i4MoklYbFvEKMZN2wSzmKwmo1oMRrNz6f5Y7jxvOTnm+dSB4cemZxhme72e0un0l+uO46hWq2mxWKhYLCqXyymKIu33+z+Zz3E+zovlcln5fF6bzUZBEMT6LafTqVzXVTKZjHVfALdezNsPLgDgF5bLpSaTiQ6Hg1KplEqlkjqdjjzP03A4VLvdljFGs9lMYRjqdDopk8mo2+2q1WpJ0rfr5/NZo9FIq9VKiURCjUZDhUJBg8FAu93ufZZ6va5KpXLzMiuO+T4bj8eKokjr9ZpYAf4hAggAfsgYo2azqWq1qn6//+xxADyAKzAAuNPlctF8Ptd2u9XxeJTnec8eCcCDCCAAuJPrugrDUNfrVb7vK5vNPnskAA/iCgwAAFiHZ/AAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACs8wreRPaSbONdtgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=\"tpr_diff\",\n",
+ " show_data_type=\"test\",\n",
+ " constant_clf_perf=max((y_test == const_pred).mean() for const_pred in {0, 1}),\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(r\"equality of opportunity violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/_sources/examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb.txt b/_sources/examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb.txt
new file mode 100644
index 0000000..65fc284
--- /dev/null
+++ b/_sources/examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb.txt
@@ -0,0 +1,627 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e2b69330",
+ "metadata": {},
+ "source": [
+ "# Achieving _equalized odds_ on synthetic data\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with:\n",
+ "```\n",
+ "pip install \"error_parity[dev]\"\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "da92fdab",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.9`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "70b33f87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_synthetic_data(n_samples: int, n_groups: int, prevalence: float, seed: int):\n",
+ " \"\"\"Helper to generate synthetic features/labels/predictions.\"\"\"\n",
+ "\n",
+ " # Construct numpy rng\n",
+ " rng = np.random.default_rng(seed)\n",
+ " \n",
+ " # Different levels of gaussian noise per group (to induce some inequality in error rates)\n",
+ " group_noise = [0.1 + 0.3 * rng.random() / (1+idx) for idx in range(n_groups)]\n",
+ "\n",
+ " # Generate predictions\n",
+ " assert 0 < prevalence < 1\n",
+ " y_score = rng.random(size=n_samples)\n",
+ "\n",
+ " # Generate labels\n",
+ " # - define which samples belong to each group\n",
+ " # - add different noise levels for each group\n",
+ " group = rng.integers(low=0, high=n_groups, size=n_samples)\n",
+ " \n",
+ " y_true = np.zeros(n_samples)\n",
+ " for i in range(n_groups):\n",
+ " group_filter = group == i\n",
+ " y_true_groupwise = ((\n",
+ " y_score[group_filter] +\n",
+ " rng.normal(size=np.sum(group_filter), scale=group_noise[i])\n",
+ " ) > (1-prevalence)).astype(int)\n",
+ "\n",
+ " y_true[group_filter] = y_true_groupwise\n",
+ "\n",
+ " ### Generate features: just use the sample index\n",
+ " # As we already have the y_scores, we can construct the features X\n",
+ " # as the index of each sample, so we can construct a classifier that\n",
+ " # simply maps this index to our pre-generated predictions for this clf.\n",
+ " X = np.arange(len(y_true)).reshape((-1, 1))\n",
+ " \n",
+ " return X, y_true, y_score, group"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "0d326b40",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# N_GROUPS = 4\n",
+ "N_GROUPS = 3\n",
+ "\n",
+ "# N_SAMPLES = 1_000_000\n",
+ "N_SAMPLES = 100_000\n",
+ "\n",
+ "SEED = 23\n",
+ "\n",
+ "X, y_true, y_score, group = generate_synthetic_data(\n",
+ " n_samples=N_SAMPLES,\n",
+ " n_groups=N_GROUPS,\n",
+ " prevalence=0.25,\n",
+ " seed=SEED)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "ba24bcc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual global prevalence: 26.6%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_true) / len(y_true)\n",
+ "print(f\"Actual global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "5615f135",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Example predictor that predicts the synthetically produced scores above\n",
+ "predictor = lambda idx: y_score[idx]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6af00a5e",
+ "metadata": {},
+ "source": [
+ "## Construct the fair optimal classifier (derived from the given predictor)\n",
+ "- Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);\n",
+ " - optionally, this constraint can be relaxed by some small tolerance;\n",
+ "- Optimality is measured as minimizing the expected loss,\n",
+ " - parameterized by the given cost of false positive and false negative errors;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "48f713ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=\"equalized_odds\",\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " false_pos_cost=FALSE_POS_COST,\n",
+ " false_neg_cost=FALSE_NEG_COST,\n",
+ " max_roc_ticks=None,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "3dbca6de",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:ROC convex hull contains 0.8% of the original points.\n",
+ "INFO:root:ROC convex hull contains 1.1% of the original points.\n",
+ "INFO:root:ROC convex hull contains 1.7% of the original points.\n",
+ "INFO:root:cvxpy solver took 0.000423541s; status is optimal.\n",
+ "INFO:root:Optimal solution value: 0.16804655919862382\n",
+ "INFO:root:Variable Global ROC point: value [0.07881903 0.58530983]\n",
+ "INFO:root:Variable ROC point for group 0: value [0.1126535 0.55350038]\n",
+ "INFO:root:Variable ROC point for group 1: value [0.0626535 0.60350038]\n",
+ "INFO:root:Variable ROC point for group 2: value [0.0626535 0.60350038]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 185 ms, sys: 6.64 ms, total: 191 ms\n",
+ "Wall time: 190 ms\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO, force=True)\n",
+ "clf.fit(X=X, y=y_true, group=group)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "599af3ba",
+ "metadata": {},
+ "source": [
+ "## Plot solution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "eb901f92",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"whitegrid\", rc={'grid.linestyle': ':'})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "5ccb923e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wT9f8H8NdlNUn3bumAMsoGkb1ki2xQUEFBhoAi46egIPpFWTJcDFFxIAqyZG8HIHsIhQKFsjvpTnfarLvfH2muuYy2KV3A+/n48rW3P7l8cnfv+yyG4zgOhBBCCCGEEEJIJRFVdwIIIYQQQgghhDzZKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhNR4Wq22upPwWKHzRQghdC0kpKaRVHcCCHlaFBYW4vz58zh58iQiIyORkZGBjIwMiEQieHp6wtPTE02aNEHnzp3RqVMnuLm5VWt6V69ejW+++YafvnXrVrWkY//+/di4cSO2bNlic/n58+cxZswYfvq3335D+/btqyp5NYpGo8GPP/6ItLQ0zJ8/v7qT45CoqChs374dFy9exMOHD6HVauHr64vQ0FD07dsX/fv3h7u7e6WmITk5GX/88QdOnz6NBw8eID8/Hx4eHggICED37t0xZMgQhISElHl/hw4dwv/93/+VKy1RUVGQSJ68W/ScOXOwa9cuAEBQUBCOHj1azSl6cowePRoXLlwAALRr1w4bNmyo5hRVnwcPHmDRokWYNGmS3ftBz549kZiYCAAYNmwYli5dWpVJJOSp9OTd1QipYXQ6HX755Rf8/PPPyMrKsrmOWq1GYmIirl+/jm3btsHJyQkvvfQSZsyYAQ8PjypNb01x9+5dzJ8/HxcuXEBQUFB1J6fGO3bsGBYtWoSEhAQMGzasupNTZoWFhZg/fz527txptSwxMRGJiYk4e/YsVq1ahYULF6J3796Vko7169fj66+/RmFhoWB+Wloa0tLScO3aNXz//feYMmUKJk+eDLFYXOo+b9y4USlpJYTYVlhYiG+//Rbr1q2DTqfDpEmTqjtJhBAzFHgSUomys7MxefJkXL582WqZs7MzXF1dwTAMsrOzoVar+WUajQabNm3C33//jR9++AFNmjSpymTXCD/99BP/9p6UbuHChfzb+8eFRqPBhAkTcPHiRcF8FxcXKJVKpKeng2VZAIBKpcI777yDJUuW4MUXX6zQdCxfvhw///yzYJ5MJoOXlxdUKhVfXU+n02HlypWIj4/HkiVLSt2veeDp6uoKT0/PMqeJYZgyr0sIMYqMjMTatWurOxmEEDso8CSkknAchxkzZgiCzqZNm2LMmDHo1KkT/Pz8BOsnJSXh+PHj+OWXXxATEwPAWNoyYcIE7NixA7Vq1arK5BNS6RYtWiQIOtu1a4f3338fLVq0AADk5uZi+/btWLlyJQoKCgAA8+bNQ7169dCyZcsKScO+ffsEQWdQUBA+/PBDdO/eHVKpFHq9HseOHcOSJUv4wH7nzp1o2LAhxo4dW+K+zQPPKVOmYPz48RWSZkIIIeRxRJ0LEVJJ9uzZg7Nnz/LTr7zyCrZv346hQ4daBZ0AEBgYiFdffRX79u3DgAED+PkqlQoLFiyokjQ/jtq3b49bt27x/57W9p2Pm8jISPzxxx/8dI8ePbB+/Xo+6ASMpYTjxo3Db7/9BqVSCcBY6liW0sayyMvLE7TrCg4OxrZt29CnTx9IpVIAgEQiQZ8+fbBjxw7Uq1ePX3f16tVQqVR2952UlCRY/jTWWiCkJjt69Ch/36D2nYRUDQo8Cakkmzdv5v8OCwvDvHnzIBKV/pOTyWRYunQp6tevz887duwYHjx4UCnpJKQ6/Pjjj+A4DoCxau2SJUvstpts0aIF5s6dy09fvnwZp0+ffuQ07Ny5E+np6fz0woUL4ePjY3NdT09PrF69mu/wJy8vD7/++qvdfUdFRQmmKfAkhBDytKPAk5BKUFhYiGvXrvHTPXr0cKiHSplMhgkTJgjmnTlzpsLSR0h1ys7OFvRmOnTo0FLbPw4bNgy+vr789L59+x45HabeVQEgPDwcnTp1KnH9evXqoVevXmVKg3k129DQ0GrvpZoQQgipbtTGk5BKkJOTA4PB8Ej76Ny5s2A6NTW1TNvFxMRg165d+O+//xAXF4esrCwoFAp4eXmhZcuW6NatG/r27VshQzWUZ2iEnTt34sMPP+Snjxw5guDgYADWQ6OYJCYmomHDhvy0eQcz5RlOpaCgAPv27cOpU6cQFRUFlUoFg8EALy8vhIWFoVOnThg8eDD8/f1L/Tzm6Tp48CDq1auHwsJCHDx4EIcPH8bdu3eRnp4OuVyOgIAAdO7cGUOHDhVsV16WQ96Y7Nq1SxBUmZ9jS1lZWdi9ezfOnTuH6OhoZGZmgmEYeHl5oUGDBujSpQsGDRpUob0rnz59WvD7KEtPtRKJBN26dcP27dsBAH///TcWLVpU7nycnp6Omzdv8tPmAWVJevXqhT///BOAMV9evXpVUD3YxDzwrM7SzoSEBMFnu3r1KpycnHDw4EH88MMPePDgATw9PREeHo5+/fph0KBBNs9pcnIy9u7di1OnTiE2NhYqlQpOTk7w9vZGy5Yt0b17d/Tt27dMvf066syZMzhz5gwuXbqE5ORkZGVlQafT8R02tWjRAp06dcILL7wAmUxmcx/Tp0/nvzfA+DLw+++/L/G4Z8+exbhx4/iS+ZCQEOzevRsuLi421+c4DseOHcPRo0cRERGB9PR0qNVqeHh4ICQkBJ07d8bgwYMRGhrq0OdXqVTYsWMHjh8/jjt37iA/Px9eXl4IDw/H0KFD0a9fv0o575ZSUlKwa9cunD9/Hnfv3kVWVhakUim8vb3RuHFjdO3aFQMHDoRCoShxP+bXbFdXV76d9927d7FlyxacPn0aycnJYFkW/v7+aNWqFYYOHYqOHTva3af50CjmzO8NlkPMlGU4FfPrtOk6mpeXh7179+LQoUOIjY1FZmYmvL29ERISgsGDB2PQoEGQy+WC/Zw5cwY7duzAtWvXkJycDKlUiuDgYHTt2hWjR48u8V5TnmFyyjIcmvk65p8/MjISO3bswMWLF5GcnAyRSAR/f3+0adMGI0eORKNGjQT7UalU2LlzJ/766y/Ex8cjNzcXnp6eaN68OV588UX06tWLOksjPAo8CakEXl5ekEql0Ol0AIw3rHfffdfuQ5Et/v7+OHDgANzd3eHh4cG3ObMnKysLixYtwoEDB/ieQE10Oh1ycnIQExODPXv2ICQkBHPnzkXPnj0d/3CPuS1btuDrr7+2ObRNUlISkpKScObMGaxevRqvvfaaw99bREQE5syZg9jYWMF8jUaD7Oxs3Lp1C+vXr8err76Kjz/+uEoeGG0xGAxYu3YtfvzxR0GPyiamoUz+/fdfrFy5EpMmTcLEiRMr5AHCvDYAwzA2AzdbnnnmGT7wzMvLw507d9C4ceNyp8EUUABAq1atypwGcxERETbTb17VtmnTpuVKY2VZv369oJ2sKd9fv34dQ4YMEayr1WqxYsUKbNy4ERqNxmpZbm4uf10JCwvDJ598UmKA4IizZ89i6dKliI6OtrlcpVJBpVLh3r172LVrF7788kssXbrU5vEXLFiAiIgIpKWlATA2Xzhw4ICgPb257OxszJ49m88jEokEX331ld2g8/Lly5g/f77gZYaJaUieiIgIfPfddxgxYgTmzJljFZzYsmnTJnzxxRfIz88XzE9JSUFKSgpOnjyJDRs24Msvvyx1X+VVUFCAL7/8Elu2bOHvaSZarRb5+fmIi4vDn3/+iZUrV+Ldd9/FSy+95NAxfvvtNyxfvtxq/7GxsYiNjcXu3bvRqVMnLF26tEwvBCvLmTNnMGfOHKSkpAjmm35DFy5cwMaNG7F27VoEBAQgOzsb//vf/wQvPQDj/SA6OhrR0dHYsmULVq5cafWyuarl5+dj8eLF2LFjh9Wy3Nxc3L17F9u2bcOcOXPwxhtvAAD++ecffPTRR1b309TUVBw5cgRHjhxB79698fXXXzt0HyVPLqpqS0glkEgkgreCsbGxmDZtGv/QU1b169eHr69vqUFnXFwcBg8ejH379gmCTqlUCn9/f6tqfvHx8ZgyZQq+++47h9JT2eRyOUJDQxEaGgpnZ2d+vkQi4eeHhobaffgrCcuymDVrFj755BPBTZJhGHh4eMDPz08QBGo0Gqxbtw5jxowpsRMZc1euXMG4ceP4oFMkEsHX1xdeXl5Wadm0adMjdxrl7u7OnxPzUipnZ2fB+bLMPxqNBuPGjcPKlSsFQadIJIKPjw98fHwE7ZFzc3Px5ZdfYsqUKVbjXJbHnTt3+L9r1aol+K5LEhYWJpi+d+9ehaQBgKDjoJIEBwcLzuf9+/et1snIyBDUUGjatCkSEhKwatUqjBw5Eu3bt0ezZs3QpUsXjBo1Ct9++22ZazQ8qjt37uCLL76wuaxHjx6C7z07Oxvjxo3Dzz//LAg6pVIpAgIC4OnpKXgR8eDBA7z55puC9u3ltWfPHrz55ptWQae7uzuCgoLg4+Nj9RIkOTkZEydOxPXr16325+Hhgc8++0wwb9GiRcjMzLR5/E8++UQQXMyYMcPuC5J9+/ZhzJgxVkGnh4cHAgMD4eTkxM/T6/XYvHkzRo0ahYyMDJv7M1m+fDnmz58vCDpN1xTzGghXrlzBG2+8UebrlCMyMzPx8ssvY8OGDYKgUCwWw8/Pz6omRFpaGubOnYt58+ZZvQC1Z8OGDVi8eDG/f4lEAn9/f6uS0zNnzmDEiBGIj4+32kdQUBBCQ0OtOu7z8/Pjr4O2OvVzxIkTJzBx4kQ+X4hEIvj5+cHV1VWwXnR0NKZPn468vDyMGzeODzpN353l/Tg3NxfTp0/Hw4cPHyl9j0Kn0+Htt98WBJ1KpRIBAQGC+yLLsvjss89w/Phx7Nu3D1OnTuXvp6b1LWtM/PPPP3avOeTpQyWehFSSsWPHYubMmfz0v//+ix49eqBXr17o06cPOnfu7NC4fvaoVCqMHz9e8JDUpEkTTJ8+HZ07d+bfMsbFxWHz5s38AwTHcVixYgV8fHwwYsSIR05HRWjZsiX+/vtvAMJqvP7+/vz88lq8eLGgTZ6LiwsmT54saDuYn5+Pf/75BytXruSrYF2+fBkzZszAL7/8Umq1zk8++QQ6nQ4eHh6YOnUqBg4cyH/HKSkp+OWXX/DLL7/w62/dutVm1aWyGjNmDF+VzLza2PPPP2+3l0bTMD/nz5/n5/n4+GDq1Kno378/3N3dARhL0A8cOIBvvvmGf6A9evQo/ve//+Hzzz8vV3pNkpOT+b8DAgLKvJ1lScejPKiZp4FhmDKXoojFYvj4+CApKQkAbFbvswx8tm3bhr///tuq+r2pJOzSpUtYu3YtJk6ciClTppSpE7LyWrZsmVWpkol5lVyO4zBz5kzBcDdt27bFW2+9hXbt2vHXlfT0dOzfvx/fffcdsrKyoNfrsWDBAgQFBeG5554rVxoTExPxySefQK/XAzA+0M6YMQMDBw4UdP6Ul5eHEydOYOXKlfwQVDqdDl999RXWrVtntd/nnnsOo0aNwqZNmwAYr52LFy+2eijevXs3Dh06xE936NABb775ps20Xrx4EXPmzBGkdeLEiRg2bBgCAwMBGGsXXL58GT/88AOOHz8OwFgiPmPGDKxfv97mdWX//v2CYX6USiWmTJmCESNG8MFeTEwMfvrpJ2zfvh0JCQn2T2g5FRYWYuLEibh9+zY/LzQ0FDNmzEDPnj35nqZNVXDXrl3Lv8jaunUrvLy88H//938lHkOtVvOl7x4eHnj33XcxePBgKJVKsCyL8+fPY9myZXxQn5KSgqlTp+KPP/4QlKCZqp9aNr344osvKqyn80WLFsFgMMDf3x8zZszAgAEDIJfLwXEcLly4gA8++IC/rkRGRmLYsGGIi4uDXC7HO++8gxEjRvD3g6ioKHzyySd87Y+8vDysX79e0IlaVTp06BB/fRo8eDAmTZqEBg0aADC+gFq1ahU2btzIr//JJ58gPT0dHMehdevWeO+99/Dss89CJBKhoKAAGzduxIoVK/jfxebNmzF58mR4e3tX/YcjNQqVeBJSSfr372/14KXT6XD48GHMnDkTHTt2xMCBAzFv3jzs3r3b5lvcslixYoVg24EDB2Lbtm3o0aOH4MYcGhqK2bNn4+eff+YfGABjFbTqfNNaFa5cuSK4aQYGBmLbtm2YNGmSoMMaZ2dnDBkyBLt370br1q35+RcuXLD5IGtJp9OhVq1a2L17N0aPHi14seDv7485c+YIHsQ4jsP+/fsf8dM55uDBgzh27Bg/HR4ejt27d2PkyJF80AkYHwJfe+017Nq1S1AauHfvXhw8ePCR0mBe0uPIyxfL0hVb1aXLkwZXV9dSaxXYS0d2drbVcvP2nQBw+PBh/qFOKpUiMDDQqpS3sLAQq1evxjvvvGM3MKwIprZio0ePxl9//YUrV65gz549GD9+vKBzpU2bNuHkyZP89Pjx47FhwwZ06dJFcF3x8fHB2LFjsWPHDtSuXRuAsVTkww8/tKqaW1Zr167lx21lGAZr1qzB2LFjrXocdnFxQf/+/bFt2zZBada5c+eQm5trc98ffPCBoOR83759fDAIGIPehQsX8tOenp5Yvny5zZcBWq0WM2fO5B+u/fz8sHPnTkyZMoUPOgHjy4o2bdrghx9+wIwZM/j5//33n+C6ZKLRaAQvjpRKJX799VdMnDhRkPfq1KmDRYsWVdpwW7/99pugWnyHDh2wa9cuDBw4UHAP8ff3x1tvvYWtW7cKrqfff/89rly5UuIxDAYDDAYDAgIC8Mcff+DVV1/l9y0SidCxY0ds3boVXbp04bcxVU+tagaDASEhIdi2bRteeuklvqo0wzBo3769VXXnuLg4SKVSrFu3DpMmTRJc65o2bYpffvlFEIj9+++/VfI5bDFdn9577z18/vnnfNAJGGsZ/O9//0OHDh34eUlJSdDpdOjVqxd+++03tGnThv+NKBQKTJw4UZDXtVpthfRETh5/FHgSUklEIhFWr16N/v3721zOcRzu3LmDrVu3Yvbs2ejduzd69OiBjz76CEePHi3Tw2dCQoKgakzjxo2xZMmSEh+i27dvj08++YSf1mq1+PHHHx34ZI+flStX8n+LxWKsWLGixKqVbm5u+OabbwQPur/88gv/MFyS+fPnCx46LU2YMEFQNSsyMrLUfVYUjuOwatUqflqpVOLbb78VPCxaCggIwDfffCNoj/btt98K2kc6yrx6r/kDbGks17Vs91YVabBc31YaLANPwNhz7x9//IFr167h33//RUREBA4dOoSxY8cKfq9Hjx4VBD6V4a233sLHH3+M2rVrQ6FQoFGjRpg9ezb/Hev1evz000/8+u3atcPs2bNLbN8bHBwsePBOT0/n2+M6gmVZQe2G7t27l9rbsLu7O4YOHcpPGwwGmyXRgPGh+PPPPxeUMs6fPx9qtRosy+KDDz5AXl4ev+yzzz6zWxq+a9cuQcn5F198YVUd3NKUKVPQo0cPfvrnn3+GVqsVrHPgwAFBs4xZs2aV2A765ZdfxrBhw0o8rqPy8/MFecDf3x+rVq0qsZlDeHg4vvrqKz6fcByHb7/9ttRjiUQifPXVV3Y7XXJycsIXX3whCNLWr1//SNeg8pozZ47dWhpt2rRBSEiIYN7o0aMFLzHNubq64oUXXuCnY2Njy/2ypiI0bdoUkyZNsrvcMo/J5fISO3gbPny4YNqyeQN5OlHgSUglksvl+Prrr/Htt9+WqYORhw8fYvv27Xj77bfRvXt3rF+/vsQA9OjRo/zbdgCYOnVqmRrwDx06VDBOqK0OiZ4U2dnZOHfuHD/dvXt3qw5ibPHy8sLYsWP5aZVKhVOnTpW4TUBAALp27VriOjKZTNAhjr02ZpXh1q1bfJVEwPhgYPmgZEvdunUFDx137tyx2YlKWZnnaUd6pRWLxYLgxzzvV1UaLNe3lQbzjoWkUim+/fZbLFu2DC1atBCkv27duvjwww+xfv16QTC7detWQRXXiqRUKkt8uASMbenMa0HY6mnalubNmws6aTp8+LDD6TMYDPjqq6+waNEivPXWW1bDStljGbTY6jDLPJ1vv/02P52YmIjVq1dj3bp1gvP++uuvl9gBm/lLv4YNG5a5Sufrr7/O/52ammpVKmh+3tzc3MrUFOKtt94q07HL6ty5c4LS/PHjxwtqRNjTrl07wTXwxIkTpV7junfvbjc4M/H09MTIkSP56cTEREFpbFXw8/MrtQfu8PBwwbT5CxFbTLUETGzVoKgqr7zySokvlyx7Yn/uuees+i8w5+XlJWjPWp2fjdQcFHgSUgV69eqFnTt3Yu/evZg2bRqeeeaZUh9209PTsWTJErz88st8ezJL5mN7KpVKdO/evcxpMu/NMTs7+5ECiZrs/PnzgqDaXi+WtgwaNMhqXyWxDCzsMS9hrIjOesrq7NmzgmlHzsXAgQMF06Wdi5KYl1RUVzf7lZmGzz//HMuWLcO0adPw9ddflzpUS5s2bQS1EACUqaSoPFq0aFFqZ06WQa8jvfI+++yz/N+RkZFWpXmlkUql6NixI0aMGIF3330Xbdu2LXUbjuOsqtaWNpzV22+/jZYtW/LTGzZsENSMCA8PxwcffGB3e7VaXe6ei5999llBnjNVfwaMn+XSpUv8dMeOHcv0MrFOnToVMkSTSUVdKziOw3///Vfi+pbXWXssgz7z81YVmjdvXuo65rVZZDKZoMqqLZa/RUd/LxWptN7FLUu7yzJMlPnnq87PRmoO6lyIkCrUsGFDNGzYEFOnTkV+fj4iIiJw8eJFXLx4EZGRkTZLN2/cuIHXXnsN27dvt3q7+ODBA/7vRo0aOVRyY3kTvX//fo0b9qEimJ8jAGjWrFmZtw0ICICvry9f7c1WD6aW65eF+YNkVZY0m58LsVjs0PiSzZo1g0gk4tNb2rkoiVQq5auUOVJqaTAYBAGjeW+h5UmDiaMlp+br20pD69atSy3BsTR48GB8++23fI/IFy5cQF5eHv+wZz6WX2lsjdlnUpaHZ8uqwqNHjy5zh0c5OTn83xqNBqmpqXbHkC2PzMxMJCQkID4+Hvfu3cPNmzcRGRmJ9PR0wXql/a7EYjGWL1+OYcOGQa1WC669ppoqJeWvO3fuCPLB33//Xe5SavOOgZKTkwVVfS1L0ErSuHHjEr97R5hfK/z9/Uusjm/J1r2lJOYvAEpSv359wTBlj9KrdXnUqlWr1HXMXyi4u7uX+rupzI7EHFVSExHA+gVdWdrn16TPR2oGCjwJqSbOzs7o2rUrXy2psLAQ58+fx59//ol9+/YJ3g4mJibis88+s+p90bxzFUceDGyt/ygdtdRkltW8HD1PPj4+fOBZ2jkq67Ag1cX8XLi5uTk0rppcLoeLiwsfWDxKfnFxceEDz7K0mzWxbE9Z2kD1paXBxJE0WKbjUdJgTiQS4bnnnuN759TpdIiOjkabNm0qZP8mlh302GI5LMej9JialZVV7sCTZVmcPXsWf//9N65fv44HDx4IgrJHVadOHcyePduqtPmDDz4QNEWwxfIc5ebm2u3QqDTmvyXLIbdKqspo6VGHCzFnfq2ozHsLwzClBjwmUqkUbm5ufMdgpQ1HU9Ecvb4/buNWOjpM2eP2+UjNQK8iCKkh5HI5unXrhs8++wxHjhwRdEABGHsjtRy02vwhzNGbouUDs6MP348L83PEMIzDHcmYn6fSzpH5eGc1kfm5cPQ8AI6di5KYdxLiSABr2UaoLEFUWdKQk5NTatVMe+moyOEBLNvbVsaDteWYg7ZUZHBXUlvLkkRERGDIkCEYP348Nm/ejGvXrtlMl1QqRdu2bfH888+X6zi2Og4qS6Bd3iDTFvMXGZbVER15sVGe8Y3teZRrhSP3FoVC4VCpmHknZ1VdddPRtuCPmyf985GagXIZIZWgoKAAKpUKGRkZ8Pf3L/MYgSZ+fn749ttv8cYbb/DV6wwGAy5cuCBoD6NUKvkSKEd7+KzI0iNHOPKAXxHMH5o4joNarXboQaoySreqi/nnLk9AUFHnIigoiB8bMDU1tczbWb54cfR3ZZkGE5ZlkZ6eXqb9GQwGQbVOR8YhLY35Q7XpWBWtLO1ZzdPh4+NT5cMgHD9+3OawMv7+/mjQoAHCwsJQt25dNG7cGI0bN4ZcLseePXvw119/OXQclUqFjz/+2Gr++vXr0bNnzxLbl1rm/08//VTQ+U15WZYiOfI7rchheB7lWuHIvcXRNJvvuzwvz54WVX2fJaSsKPAkpILdv38f/fr146fHjx+P2bNnO7wfkUiECRMmCNp1WT54e3h48IGnZRWt0lju61FLbsraVrG8JSDlZTn2Y1pamlVPgiUxD4wcqfZWE5mfi5ycHGg0mjK3k8zLyxM89D3KuahXrx4/lmhCQgK0Wm2Zqm1ZthVzpP2brTRY7rssgWd8fLzgYdle5yF5eXlQqVQICgoqc0m4ZbVw8zZUpiq4VcFynFKWZausrVZmZiY++OAD/hyLRCKMGzcOo0aNKrHKbnmGoZg3b57gJYJSqeSHVZk9ezb27t1rtxTR8rpSUb1TW+ZBR0q9K7K5hPnne9R7S0nXCp1OJ2jLXBKNRiMoaa7Ilz6Pi5p6nyWkrKiqLSEVzM/PT1CqYN5DoaMsH7QsgwTzh96bN2861EmKZVf09sZQK4n5w2hZH/zMx72rCpbBydWrV8u8bXx8vOCB0pGAtSYyzy8Gg0HQK2dprl+/LujY51HOhXlnInq9vszpMB92wsXFBXXq1Cl3Gix7IC5rvrAc+sKyI5VvvvkGLVq0QOvWrdGnTx+Hz7EJwzAV2kupI8yDcp1Ox5dOl0V2dvYj9dS8e/duQQA1ffp0fPDBB6W2E7W8rpQ2xuPOnTsF44UOHz4c8+bN46cTExOxaNEiu9vXrVtXMO3I98xxHNLS0mym0d/fXzBsiSP7jY6OLvO6pTG/VqSkpFgFkyWxvLeUdq0oa7qjo6MFJXnV9fuoao/DfZaQsqLAk5AK5uLiIhinMTIy0uphtazMx1wErEtXzKuCFRQU4OjRo2XaL8dxOHDgAD/t4uKCRo0aOZw+8ypUZW0nV9YH/Ioa4qJ169aCfZl/7tJYrutoT6U1jWXVwYMHD5Z5W8tz8Sid3nTs2FHQnujIkSOlbqPX63HixAl+ulOnTo/UJsnT01PQw3FZ0gBA8Buz3Adg7PnS/OHQPM0lycrKElRpbdSoUbWVsFvmE0fG45w0aRJatmyJjh074uWXX3Y4CI2MjBRMv/rqq2XaznLIjpICz8TERCxevJif9vf3x5w5czBs2DB06dKFn79r1y5BcGrO29tbEKCfOXOmzO0+T506hS5duqBFixZ4/vnnsXnzZsHyDh068H+fO3dO0FOwPZmZmVbn7lFU1LWCYZhSr5um2g+l+fPPPwXTnTp1slqnuoZnqkzm99mylqxX9RinhJQVBZ6EVIKXXnpJML1gwQKHO2PhOA7r1q3jp319fa0e9l944QXBsBBr1qwpU4cLu3fvFgS1vXv3LtdDvHnvhXq9vtQHn6ioKERERJRp3+YPEKWVXpTE09NT8DB5/PhxXL58udTtVCoVfvvtN37a2dkZzz33XLnTUdnM34rbO19NmjQRPCzv2LEDcXFxpe773r172Lt3Lz8dHBzs0LA0llxdXdGtWzd++o8//ii1muCuXbsEVf5KG5i9LMzHG4yMjCx1uJJ79+4JAtQhQ4ZYVUHt1q2b4Le0ZcuWMnXWs3LlSkH1uFGjRpW6TWXp1q2boNRt06ZNZSrxOnbsGP+STaVSwcXFxardamksg7eyVFM+cuSI1Xdnr+2gqRqt+XeycOFCvtOlBQsWCNoO/u9//7MaqsVk8ODB/N9qtRrff/99qWllWRarVq0CYOwcJzY21qrkbtiwYfzfhYWF+Pnnn0vd7/r16yu0s52uXbsKqtuuW7euTFV5z58/Lxhfuk2bNqV2ArZjxw6rXoItpaWlYfv27fz0s88+a9UZF2A9fMej3DtqCvP77MOHD0stzfznn3/w8OHDyk4WIeVCgSchleDll18WVMWKiorCa6+9hrt375Zpe41Ggzlz5giq6b799ttWwWFgYKCgs6Ho6GjMnTu3xCq3//33HxYuXMhPS6VSvPnmm2VKlyXzweIB4LvvvrPbBiU1NRVz5swpcxsV87e8j9rL5uTJk/m/WZbFu+++azW+p7m8vDxMmzZN0L7q9ddfr9BeIytaWc4XwzCYNGkSP61WqzF16lS7D9aAsZrdtGnTBCVXkyZNeuQ2fxMmTOD/zsrKwowZM+w+OF+9ehWfffYZPx0eHm7V63N5DB8+XPBwPXPmTCQmJtpcNysrC9OmTeN/W05OThgzZozVet7e3hgwYAA/nZaWVupv8tdff8WmTZv46fr161dIYF1ezs7OGD16ND+dnZ2NKVOmlBgcxMTE4KOPPhLMM89rZWXe6RNgDEpKcvbsWcydO9dqvr28tG7dOkHp6JAhQwQvQYKCgjBr1ix+OjMz02YHRIDx5YB5L8E///xzqeldtmyZoNZH27Ztra6j3bp1E4yx++OPP5bYcdKxY8fw008/lXhcRykUCkEeSE1NxYwZM0rsxO7u3buYOXOmINh76623Sj1WZmYmZs2aZbd0PD8/H++++66gN+m3337b5rqWLzoqsofm6mKeP1iWxbfffmt33Xv37mHBggVVkSxCyoUCT0IqgUwmw+rVq+Hm5sbPi4qKwuDBgzF9+nTs3bvXqtMIjuMQHR2Nn376CX369MHu3bv5Zd27d7dbAjJnzhxB+6d9+/bh5Zdfxr///it4+IqPj8fnn3+OcePGCR4epk2bZreDlNI8++yzgkG1T5w4galTpwoG9s7NzcXvv/+OF198Ebdv3y7zsC/m1QxzcnIcqiJrqW3btoIgISkpCSNGjMCPP/4oKEVTq9XYt28fhg4dKhgMvnHjxpgyZUq5j18VzM/X+fPn7Q6uPmTIEPTu3ZufvnXrFoYOHYotW7YIHuyys7OxadMmDBs2TLCvrl274uWXX37k9LZu3VpQYnTu3Dm8/PLLOHfuHP/gmpeXh/Xr12PMmDF8aaBYLMa8efNKDHx79uyJhg0b8v/sDY/h4uIiCDJSU1MxfPhw7N69m//tGAwG/PPPP3jxxRcF5+Htt9+2CpJMPvjgA0HHQH/++SdGjRqFs2fPCqqjX79+HdOnTxcE1QqFAsuXL6/2MfImT54saL96/fp1DBs2DH/88YegVDInJwe///47XnnlFcE1bdiwYYIqo2XVt29fwfQXX3yBr776SvByRK/X49KlS/jwww8xfvx4myVxtgKO6OhorFy5kp/29fW1GbSOGjVKULvk2LFj2Lp1q9V6bm5ugu+O4zjMnTsXM2fOxI0bNwTzr169irfeegvr16/n5ysUCqsxRAFjqd3ChQv52iwGgwH/93//h88++0xQkpWSkoIvvvgCU6dOdah9f1lNmjQJLVq04KfPnTuHYcOGYf/+/YLS+bS0NPzwww94+eWXBdfTV155RVDbpCSnT5/GK6+8glOnTvG/Eb1ej6NHj2LEiBGClwUDBw60W/vEspO87du3V2hvv9WhR48eglL4rVu34uOPPxbkhYyMDP47SElJqfFjSpOnF/VqS0glqV+/PjZu3Ih33nkH8fHxAIwPEH/++SffVkUqlcLb2xs6nQ7Z2dk2Hx769OmDL774wm7bFXd3d6xduxaTJk3iS2uioqIwefJkfv+FhYU2H84mTJggKA10lEQiwZw5czBjxgw+WDhy5AiOHDnCV7Mzf2CUSqVYs2YNxo4dW+q+mzZtKph+7733sHTpUgDAuHHjMH78eIfSOnv2bKhUKuzfvx+AMSD+4osv8OWXX8LT0xNSqRQZGRlW30GjRo3www8/OFxlsKo1adIE586dA2D8bIMGDUJAQAAKCgqwdu1a/gGSYRgsW7YM77zzDr9+WloaPvnkE8yfP59/cMvIyLAqne7YsSNWrFhRYe2oPv30UyQmJvIl+zdv3sQbb7wBpVIJV1dXpKenW7Ub/vDDD0sc5sJRI0aMwJ07d/Drr78CMFYRnT17Nj7++GN4e3sjMzPTqkOPF154ocSSHB8fH/z8888YO3Ys3z4vMjISY8eOhUKhgKenJ7Kysqx6nlQqlVi7dq1V3q8OMpkMa9aswaRJk/jOX5KTk/Hxxx/jk08+gZeXF0QiEdLS0qzySadOnfDpp5+W67idO3dG79698c8//wAwBh9r167F2rVr4erqCrlcbjNvNm3aFDdu3OCvQ5bVEbVaLT744APBy7hPPvnEqndawPgbWbRoEYYMGcJ/90uXLkXHjh2tOmF7/vnn8dFHH2Hp0qV8Xt2/fz/2798PpVLJf9eWJYVOTk746quv7L70a9asGT7//HPMmjULer0eBoMBv/76K3799Vd4e3uDYRhkZGTwn9fb2xtdunTBnj17Sjy/jpDJZPjmm28EeSA2NhYzZ86ERCLh712ZmZlWVVoHDhwo6KypJOHh4bh9+zaio6MxYcIEKBQKeHh4QKVSWf32OnToUGKnTwEBAfD29uZfghw7dgzt27eHh4cHPD09Sy2Rrok8PDwwffp0/v4HGJsn/PHHH3z+Nb+/u7m5YdmyZXZLhQmpTlTiSUglatiwIfbu3YspU6YISj9NdDodkpOTbQY8QUFBWLZsGb755ptSg5769etj+/bt6NevnyAoMO3fMugMCgrCmjVr8MEHH5T/wxXp27cvli5davX58vLyBEFnUFAQ1q1bh44dO5Zpv926dbN6W56amorU1FRB759lJZFI8OWXX+Kjjz4SPGxyHAeVSoWUlBTBdyCTyfjB6/38/Bw+XlV78803Bek0GAxITEyESqUSlL4AxpK+n3/+GW+//bagii7LskhLS7MKJpydnTFz5kz89NNPFVrd2NnZGT/99BOGDRsmyLdqtRopKSmCoNPNzQ2ff/65oPpfRZk7dy4++OADwbkw/XbMH3zFYjHGjx+Pr776qtTgu2nTpti1axfatWsnmF9QUICHDx9aBZ1t27bFtm3brNavTv7+/ti8eTNGjhwpaEtuMBiQlpaGlJQUQT6RSqWYPHky1q5d+0gvar744gurkk/A+ELFMm/KZDK89dZb2LJli6D3VMs2nytWrMCtW7f46f79+6NPnz520xAWFoZp06bx02q1Gh988IHNDtTGjBmDH3/80aqnW7VajcTERKugs2HDhti4cSN69uxp9/gA0K9fP/z6669WwW5GRgbS09P5YC8kJAQ//vgjAgMDS9xfedjLA3q9HikpKVCpVIKg08vLC4sWLcKXX35Z5n4D5s6di9GjR/O/qYKCAiQlJQl+e6a89dNPP5U4LijDMJg9e7bg95mfn4/ExETcuHHD4b4Waopx48bh/ffft+rZPisrS3B/b9SoETZu3PhIQ00RUpmoxJOQSqZUKjFjxgy89dZbOHnyJC5cuICbN28iMTGRL00RiURwc3NDSEgImjdvju7du6Njx45lHv8PMN7wV6xYgdu3b+PAgQM4f/48EhISkJWVBbFYjICAADRr1gx9+vQpd2dC9gwdOhTPPfccduzYgWPHjiEmJgY5OTnw9vZGWFgY+vXrh4EDBzpU/YdhGHz33XdYv349Dh48iISEBBQUFMDFxeWROowYM2YMXnzxRezbtw+nTp1CdHQ0VCoVdDod3N3d0aBBA3Tp0gVDhgwRdOpQ03l7e2Pnzp1Yu3YtTpw4gdTUVOj1enh6etp82JJIJPi///s/jB49Gnv37sXp06dx7949qFQqGAwGeHt7o1GjRnjuuecwaNAgmy9OKoJSqcTSpUvx+uuvY+/evTh79ixSU1ORl5cHV1dXNGjQAF27dsXw4cMrtZfXCRMmYODAgdi5cyeOHz+O+Ph4ZGVlQS6XIzQ0FO3bt8eIESOsxv8sSXBwMDZs2ICIiAgcOHAAly5dQlJSEvLy8uDm5sZ3GNanT58yv5CpakqlEp9++ikmTpyI/fv34+zZs4iJiUFmZiZYloW7uzvq16+PDh06YNiwYWUaC7U0CoUCq1atwvnz57Fr1y5cuXIFKSkp0Gg0UCqV8Pb2Rv369dGqVSsMHjyYf+HSu3dvvq3j2bNnERcXh9DQUFy8eBG//PILv39PT0/873//KzUd48ePx+HDh/kXXZcvX8YPP/xgsySpc+fOOHDgAI4ePYp///0XV65cQVpaGvLy8qBQKODv748WLVqgb9++6Nq1a5mv7W3atMHBgwdx4MABHDp0CFFRUcjKyoKrqytq166NF154AcOHD4eLi0uJ7UAfhSkPvPnmm9i3bx/OnDmD2NhYvodVX19fNG3aFD169ED//v0dfukgEonw8ccfY/Dgwdi8eTMuXLiA1NRUyGQyhIWFoWvXrhgxYoSgWUdJTNfuX3/9FVFRUcjMzIRMJoO/vz+Sk5MRFhbm8DmoCd58803069cPO3bswPHjx5GQkAC1Wg1fX180aNAAAwYMwAsvvACZTGa3eQEh1Y3hnoQuvwghhBBCSI13/vx5QZv73377De3bt6/GFBFCqgpVtSWEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqloHE9CCCGEEEIIIZWKSjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYSQSmAwGKo7CZXiSf1chBBCKhcFnoSQx0Z+fj569+6NXr16QavVCpbdv38fM2bMQOfOndGsWTN06dIFCxYseORjjh49Gg0bNsTo0aMfeV/k6cCyLDZu3IglS5ZUy/F79uyJhg0bYs6cORW+7wMHDuD999+v8P0+jXbu3ImGDRuiYcOGSEhIECwzzV+9enU1pc4x58+ft/tZqtucOXPKfQ1PSEjgP9f58+cfOS1arRZ9+vRBz549kZeX98j7I+RxQ4EnIeSx8dlnnyE+Ph7vv/8+ZDIZPz8jIwMjR47E4cOHkZ6eDp1Oh7S0NMjl8mpMLXlavf/++1i4cOET92D59ddf47333kNaWlp1J4WQx5JMJsMHH3yAxMRELF68uLqTQ0iVk1R3AgghpCwuXryI7du3o1WrVnjhhRcEy44ePYqsrCwAwEcffYT+/fuDYRhBcFpefn5+CA0NhZ+f3yPvizwdUlNTq/X4QUFBEIvF8Pb2rtD9pqSkVOj+iH2hoaEAAHd392pOCaloffr0wbPPPoudO3di2LBhaNeuXXUniZAqQ4EnIaTG4zgOCxcuBADMmDHDarmpBMbDwwNjxoyp0GN/+eWXFbo/Qirbhg0bqjsJ5BH9/fff1Z0EUommT5+OsWPHYuHChdizZw9EIqqASJ4OlNMJITXe4cOHER0djfDwcHTs2NFquamzE2dn56pOGiGEEOKQjh07okGDBrh9+zYOHTpU3ckhpMpQiSchpMb76aefAAAvvfSSYP6cOXOwa9cufjoxMRENGzYEALRr105Q8pOXl4ft27fjxIkTuH37NrKysiCVSuHj44Nnn30Wr732Glq0aGF17NGjR+PChQtW+zMde9CgQZgxYwY++eQTXLp0CTKZDPXr18eqVatw//59vgT21q1buHfvHn766SecPXsW6enpcHd3R5s2bTB+/Hi0bNnS7ufPzMzEr7/+imPHjiE+Ph4GgwGBgYHo2rUrxo8fj8DAQJvbFRQUYPPmzfjrr79w584daDQaeHh4oEmTJujfvz8GDRoEsVhstV1WVhY2bNiAY8eO4cGDB9Dr9fDy8kKLFi0wZMgQ9O7d225aS5OYmIht27bh2LFjSExMhMFgQEhICHr06IHx48fDw8PD5nYXL17E5s2bERERgbS0NCiVSoSFhaF379547bXXoFQqrbYxfUfDhg3D0qVLceDAAWzduhW3bt1CQUEBgoKC0KdPH0yYMMFmlUaO43Do0CHs3r0b169fR3Z2NlxcXBAWFoYePXpg1KhRcHV1tTqeya5du/jpW7duASjOT2+99Raef/55LFiwADdu3IBSqUSzZs3w3Xff8VXEVSoVtmzZgtOnT+PBgwfIycmBk5MT/Pz80K5dO4wZMwb16tWzSnfPnj2RmJjIf+5HPR+rV6/GN998w09fuHCB/50dOXIEwcHBguMGBQXh6NGjNr/H0ly+fBm///47Ll68iIyMDCgUCoSHh2PAgAEYPnw4pFKp3W1v3LiBX375BZcuXUJ6ejr8/f3Rr18/vPXWWzh8+DA+/PBDq7Tt3LkTH374odVnMZeQkIBevXoBAJYsWYIXX3zRZrp37tyJS5cuITU1FYWFhXBxcUG9evXQq1cvvPrqqzbzqD2m8zt16lRMmzYNgHX+Ko2tz/Pw4UOsX78eJ0+eRFJSEhiG4X9/Y8eOhaenp939qVQq/Pbbbzhy5AgSEhIgl8vRtm1bTJkypcxpssdgMODAgQPYu3cvoqKikJubC3d3dzRt2hSDBw/GgAEDwDCM3e0vX76M9evX49q1a0hPT0dgYCD69euHSZMmlXrsvLw8bN26Ffv370dsbCwkEglatGiBiRMnIigoqMRtIyMj+fyampoKJycnBAYGokOHDhgzZgxfZdqW4cOHY8mSJfjpp58wYMCAUtNJyJOAAk9CSI12/fp1XL9+HQDQt2/fcu3j2rVreOutt5Ceni6Yr9PpEBcXh7i4OOzZsweLFi3C8OHDHdp3dnY23njjDSQmJgIACgsLkZmZCV9fX9y/f59f7+jRo3j33XdRWFjIz0tPT8fhw4fx559/YtmyZRgyZIjV/s+dO4fp06cjOztbMP/Bgwd48OABtm3bhuXLl1udm6ysLIwePRq3b98WzE9LS8Px48dx/Phx7NixAz/88AMUCgW/PD4+HqNHj0ZSUpJgu+TkZCQnJ+Ovv/5C//798eWXXzpcPezQoUOYO3cu1Gq1YP7t27dx+/Zt7Ny5E+vWrUN4eDi/jGVZfPrpp9i6datgm+zsbFy5cgVXrlzBpk2b8N1336FRo0Y2j8txHD744APs2bNHMP/+/ftYu3Yt9u/fj82bN8Pf31+w/P3338e+ffsE87KysnD58mU+QPrtt99Qp04dh84DYDzPb7zxBnJzcwGA76XZFHQeP34c//d//2d1rnQ6HfLy8nD//n3s3LkTa9aswXPPPefQsct7PioTy7JYvnw5fvnlF8F8rVaL//77D//99x+2bduG77//3ma6Nm3ahEWLFgmGeomLi8PatWtx9OhRh3/XZWUwGPDpp59i27ZtVssyMzNx8eJFXLx4Ebt27cLmzZvh4uJSKemwJBKJrNq4HzhwAB9++CE0Go1g/q1bt3Dr1i1s2bIFa9asQZs2baz2d/36dUyaNAkZGRn8PLVajT///BNHjx7FqFGjyp3WjIwMTJ06FREREYL56enp/LVq27ZtWLVqlc0XU99++y1WrlwpmBcTE4PvvvsOf//9N0JCQuweOz4+Hm+++SZiYmIE80+ePIlTp05h3LhxdrfdunUrPvnkE3Acx8/T6XS4c+cO7ty5gy1btmDFihV2X9T17dsXS5YswY0bN3D16lWbLz4JedJQVVtCSI128OBBAED9+vWtSvYWLFiAiIgITJ48GQBQq1YtREREICIiAj/++CMA49vst99+G+np6fDx8cHixYvx119/4dy5c9izZw+mTZsGhUIBjuOwePFiqwf90pw4cQKpqalYsGABTp8+jW3btvElKObee+89eHh4YNmyZThx4gROnDiBefPm8ce21Qvq7du3MXnyZGRnZyM4OBjLly/HiRMncPbsWfzwww9o1qwZCgsL8d577+HSpUuCbb/66ivcvn0bSqUS8+bNw99//41z585h165dGDx4MABjydWvv/4q2O7TTz9FUlISfHx8sHz5cvzzzz84e/YstmzZgi5duvDfyYEDBxw6TxEREXj33XehVqsREhKCL7/8EidPnsTRo0fx8ccfw9nZGWlpaXjnnXcEQ+V89tlnfNDZsWNH/Prrrzh79iz+/vtvzJw5E0qlEg8fPsTYsWORnJxs89h//vkn9uzZg+7du2PTpk38d28qZUhMTMSKFSsE2+zfv58POt944w3s3bsX586dw59//ol3330XEokEKSkpgiF7TPmxdevWAIBBgwbx+dHSgQMHwHEcVq5ciTNnzmD9+vV8ydHDhw8xY8YMqNVq1KlTB19//TX/PezYsQOjR4+GRCKBVqst15BBjp6PyZMnIyIiAoMGDQIAtG7dmv9c5iVCISEhCAsLK/FB355Vq1bxQefzzz+PTZs24fz58/jnn38wZ84cuLi44MaNG5g8ebJV4HT69GnMnz8fBoMB4eHhfK2C3bt3Y+DAgbhz5w5WrVrlcJrKYv369XzQOWDAAGzduhWnT5/G0aNH8cMPP6BVq1YAjL/l9evXP9KxTPnL3j/z686MGTMEHaKdPn0as2bNgkajQaNGjbBmzRqcOXMGJ0+exNdff406deogKysLkyZNsgrCMjMzMWHCBGRkZMDDwwMLFy7EiRMncPz4ccybNw9yudzqOlJWWq0WkyZNQkREBBiGwahRo7B7926cP38eu3fvxiuvvALAOFzLlClToNfrBdvv3LmTDzrbtGmDjRs34ty5c9i9ezeGDRuGu3fv4tixY3aPbQo65XI53n//fRw9ehSnT5/G8uXL4evri3Xr1tncNjExEQsXLgTHcejatSt+//13nD59GseOHcPnn38OX19f6HQ6fPTRR3Z7tw4MDESDBg0AgKrbkqcHRwghNdjAgQO58PBwbu7cuXbXWbVqFRceHs716NHDatnGjRu58PBwLjw8nLt48aLN7devX8+vc/LkScGy119/nQsPD+def/11wfzZs2fz23z11Vc293vu3Dl+nTZt2nAPHz60Wuf333/n1zl8+LBg2ahRo7jw8HCuZ8+enEqlstq2sLCQGz58OBceHs4NGjRIsKx9+/ZceHg4t2bNGqvtWJblRo8ezYWHh3MDBw7k5+fm5nINGzbkwsPDud27d1ttp9FouL59+3Lh4eHc5MmTbX5mewYNGsSFh4dz3bt35zIyMqyW//XXX/x52LVrF8dxHBcdHc2nZ8aMGZzBYLDaLiIigmvatCkXHh7OTZ8+XbDM/DuaNm2azXSZzt+zzz7LsSzLz582bRoXHh7OvfHGGza3W716NRceHs41bNjQ6rsx5ZnZs2dbbWdaFh4ezm3bts3mvpctW8aFh4dzTZs25eLi4myus3jxYn4/9+/fFyzr0aOHzeM/yvkw397yt/CoHjx4wDVq1IgLDw/nFi5caHOdyMhIrnHjxlx4eDi3bt06wbJ+/fpx4eHh3PPPP8/l5ORYbTtv3jz+c1teI3bs2MEvi4+Pt3ns+Ph4fp0dO3bw8w0GA9epUycuPDycGzdunNX54jiOU6vVXNeuXbnw8HDulVdeKfOxTfNXrVplM02W/vvvP7u/A71ez+eJ4cOHc4WFhVbbZ2Zm8utY/rYXLlzI58cbN25YbRsZGckfu6TzaMuGDRv47TZu3GhznXXr1tlcp6CggD//I0eO5DQajdW25r8Ty3z7yy+/8Mv+/fdfq23j4+O5Nm3a8OucO3eOX2a6rzzzzDM2j3v+/Hl+uz///NPu5587dy4XHh7ODRgwwO46hDxJqMSTEFJj5eXl4e7duwAgqH7piMDAQLz22msYOXIkXxJlqX379vzfKpXK4WP069ev1HWGDBlisy1mjx49+L/NB16/c+cOLl68CACYMmWKzbZXTk5OePfddwEYq8tFRkbyy0ylhpbViwGAYRj873//w6+//orvv/+en6/X6/lqY7a2k8lkWL58OX7//XeHStru3LnDt3GcPn06vLy8rNbp06cP2rZtK/gu/vjjD3AcB5lMhnnz5tms2tuqVSu+mt9ff/0lqApo7q233rI5v3v37gCMeS0zM5Ofbzp/WVlZVqUsADBq1Cj88MMPOHDggKCdZ1kxDGO36nh4eDheeeUVTJw40W7pofkQDOXJs46ej8q0detWsCwLhULB52dLLVq0QP/+/QFAUK01Ojoa9+7dA2BsD2nru5gzZ06lDEuSn5+PESNGYODAgZg8ebLNNogKhQLNmzcHUL7vqSwSEhIwbdo06HQ6NGrUSNCuFzBWGzU1BZg5cyacnJys9uHh4YG3334bAPDvv//yPYVzHMfXOhk2bBgaN25stW2LFi1stnstC9N32bRpU7z22ms21xk3bhyaNGkCANiyZQs//9y5c/x1atasWTaHz3rvvffg5uZmc7+mGg2dO3dGt27drJYHBwdj4sSJNrc1XR/0er3N30m7du2wZs0a7Nq1i68pYoupxPPevXtP3Li/hNhCbTwJITVWTEwMWJYFANStW7dc++jZsyd69uxpd3l6ejouX77MT5u3ESsLqVTKPzyUxF7nQeZjLRYUFPB/X7hwgf87PDwc+fn5Nrdv1KgRxGIxDAYDLl26xB+nbdu2+Pfff/H7778jJSUFAwYMQOfOnfkH8AYNGlil28PDAw0aNMCdO3fw5Zdf4vbt2+jbty86dOjAd4xSnnZIZ8+e5f82BTa2bNy4UTD933//ATA+xNkKVk369++PX3/9FSzL4tKlS3j++ecFy52cnOy2/zQ//+btb9u2bYtjx47h5s2bePnllzF8+HA899xzfGctXl5eNh9Wyyo4ONjuA/HQoUMxdOhQu9smJSXhxo0b/LSjebY856MymfK66TduL6+3bNkS+/btw/3795GZmQlPT0+cO3eOX26vratCoUCPHj2we/fuCk23q6sr/u///s/ucr1ej5s3b/IvQ2y9wHhU+fn5ePvtt6FSqeDh4YE1a9YI2mwDxmqqJiVdS5o1awbAGGxGRESgb9++uH37Np/+ktoS9+7d26oddmmysrL4NuiWYzNb6tevH27cuIHbt29bffeurq549tlnbW4nl8vRpUsXPng2yc3NRVRUFICSP1evXr1sDqllager1Wrx0ksvYeTIkejRowcaN27Mv4AoSydspjzPsixiY2PRtGnTUrch5HFGgSchpMYyb7P3qCUWOp0O//33H6KiovgOhe7fv4/U1FTBepxZRxFl4e7ubrNnWEv2Aifzt/Tmx46Pj+f/LmvHKOYdAs2ZMweRkZHIzMzEP//8g3/++QdisRjNmzdH165d0adPH77nTHOffvop3nzzTRQUFGD37t3YvXs3pFIpnn32WXTr1g19+vQpsadGW1JSUgAYA9uSes20ZPr+bfXcas58+cOHD62Wu7u72+0Iyfz8m15yAMBrr72GP//8E5GRkYiKiuIfUsPCwtClSxf06tUL7du3L/f4eyUF0iaFhYU4e/YsoqOjERcXh/j4eNy9e9eqhKU8edbR81GZTCX9UVFRdgMIS8nJyfD09BTkrZKuEeWtMVFWiYmJOH/+PO7fv4+4uDjExsbiwYMHVu1RKxJX1EnU7du3IZFIsHLlSru98prYGo7KFtO1xPwaXNLvvrTfqC0pKSl83i3txaL5ctN3b0pjadcjW2kzP3ZJ24eFhfEv9sw1b94co0ePxoYNG5CWloZVq1Zh1apV8Pb2RufOndGjRw9079691J6MzTtLSk5OpsCTPPEo8CSE1FjmHf08Sm+Qhw4dwuLFi/nqYyYMw6Bu3bpo2bKlQ8MUmLNVbc0WicSxy215ql2ZbxMWFob9+/fj+++/x8GDB5GRkQGDwcD3BLt69Wq0adMGixcvFvTK2qZNG+zdu5fvETI3Nxc6nQ7nz5/H+fPnsXz5cvTs2RMLFy6Ej49PmdJl6pFXLpeX6/OU9vBmXsJjq3OokobgsEcul2Pjxo3YsGEDtm/fzvdQbOpNeMOGDQgKCsKnn37qcK+yQOn5ZuPGjVixYgXf662JSCRC48aNUadOnXJ3SFKe81GZHiWvm85PaXnLXunyo8rKysK8efPw119/Wb0AcHZ2RocOHZCWliYooa4oK1aswD///APA+KKpQ4cONtd7lPObk5PDz7MsSTVXnurm5ukqbQxm82uAqcS2rN+9rXtHWT+XSCSCUqm0+h0CwMcff4y2bdtiw4YNuHTpEliWRUZGBvbu3Yu9e/fC2dkZ77zzDiZMmFCmtDnasR0hjyMKPAkhNZZ5m6mylCra8tdff+Hdd98Fx3Hw8vJCnz590KxZM9StWxfh4eFwc3NDbGxsuQPPymL+MHX16tUyB7jmfHx88PHHH2Pu3Lm4du0aTp8+jTNnzuDy5cvQ6/W4ePEixo4di0OHDgkevkJDQ7FkyRK+F80zZ87g9OnTuH79OjiOw9GjR5Gamort27eXOLaeiWnfjlbdVCqVyMnJKfWBzLzqoCNjJZZGJpNhwoQJmDBhAmJiYvjzd/bsWeTn5yMxMRFTpkzB1q1bK7SkYv369ViyZAkAY0/NvXv3RuPGjVGvXj00aNAASqUSZ86ceWJ6wpTL5cjLy0P//v3x9ddfO7St6cHdvJq6LeY9JTvKXqmlTqfDhAkT+OGe2rVrh44dOyI8PBx169ZFnTp1IBKJMGvWrAoPPE0vlQDgxRdfxOjRo+2ua7qW+Pj44PTp0w4dx7wUuaTfYXnOr3mwaa/6r63lpt+4KW3l+e7L+rnsbW/St29f9O3bFyqVir8+nD59GikpKcjPz8fy5cshk8nsfj/mtQrKci0l5HFHgSchpMYyfzAp7eHCni+//BIcxyE4OBjbt2+3WdWzqjpRcUStWrX4vxMSEkqsysZxXIkPLSKRCC1btkTLli0xZcoUqFQqLFu2DLt370ZSUhL+/vtvfogVc1KpFO3bt0f79u3x7rvvIikpCR9//DFOnTqF69evC4YOKYmpU6WsrCzk5OTYLX06fPgwYmJiUL9+ffTu3Ru1atVCTk4O33mMPaYOqADheatIderUQZ06dfDaa69Bq9Vi8+bNWLJkCXQ6HTZv3oxFixZVyHEKCwvxzTffADC2p92wYYPNEp2amGfLq1atWrh9+zbfAY49tvJ57dq1ARhL1TMyMgRtVM3FxcXZnG9e5Vin09lcx965Pnz4MB90zpkzx+6YjxX9XV29ehUfffQRAGO71/nz55e4vuk3kZmZCbVa7dDLGfPhcu7fv2+3bbB504CyCggIAMMw4DhOMOaxLbZ+46b/mvoCsFd93LyqsfmxRSIRWJbF/fv30atXL5vbpqamlqm6tJeXFwYNGoRBgwaB4zicPn0a7733HrKzs7Fhwwa7gad53iit1JeQJwH1aksIqbHMe4E1teVyhEql4seke/755+22LzTv/Kaq2rWVxnwQ9yNHjthdLyIiAi1btkTfvn35ErCrV69i5MiRaNeuHe7cuWO1jZeXF+bOnctPm87tv//+i+HDh6Ndu3Y2q5YFBgZi5syZVtuVxrzd3smTJ+2u9+OPP+Lrr7/G5s2bARSfgwsXLpTYI+jhw4cBGEsMnnnmmTKlqSQFBQWYMGECnnvuOfz+++9Wy2UyGd544w2+3WB58qY9d+7c4c/90KFD7VYjrI48W1klMqbvOSoqyu5YrAAwb948tG/fHi+99BJfTdO8F2RTtVNbTpw4YXO+eRBmL4+Zdz5mb75pvElLBQUFuHLlCoCK+Z5SUlLwzjvvoLCwEL6+vli9erXN3lzNmc6vwWDAv//+a3e9ffv2oVWrVhgwYADfo3a9evX44LOk65C981sSU2dmQPFv2J4///wTgLEJgaldpKmKu1qtxpkzZ2xux7IsTp06ZTXf2dmZPy/l+VyLFi1C37598d5771ktYxgGXbp04V/mlXR9MA88bfV6TsiThgJPQkiNZaqqBtgvsSiJebtKe6Vm0dHR+OGHH/hpe6UeVa1Fixb80AU//vij1aDugLF0bOnSpdBoNEhMTOR7nA0MDMTVq1f5t+223Lx5k//b1LmGt7c3rl27huzsbGzatKnM25WmZcuWfIntqlWrbLY5O3LkCF96NGDAAADAiBEjABirui1YsMDmg/vVq1f5QLVbt27w8/MrU5pKolAokJKSgpSUFGzdutVmiUd2djbfkZHleTDlu/LkJfM8a17KY+706dPYuXMnP11VedZU3b2ij/fyyy8DMPb6On/+fJu99EZGRmLXrl3IysqCh4cHX8W2bt26fNvG1atXW7XjBoDff//dbomaqcQUgM2qyyqVyu5vyLz6v63vimVZLFiwgM/vj3reNBoN3nnnHaSmpsLJyQlr1qyBv79/qdv16tWLb4/9xRdf2AywVSoVVq1aBbVajfT0dMGwKaahUg4ePCh44WESHx+P3377rVyfyfTdR0VF2XzJAwC//vorf90xXRMAY8/Tpu9v2bJlNq8r69evt1uS/tJLLwEwvkAw/z2ZZGVl4dtvv7W5LcuyiImJwbFjxxAbG2u1nOM4fgipkq6TpmuIWCwWtLUn5ElFgSchpMZSKBT8A1B52ki5ubnxwdjx48exaNEi3Lt3D5mZmYiOjsaKFSvw6quvCtr4lNbWqCrNmzcPEokEOTk5eOWVV7Bx40YkJCQgIyMDp06dwtixY/mxOydMmMCXTPj6+vJv27du3YoPP/wQV69ehUqlQnx8PHbs2IFZs2YBMAapprFEmzdvzo8PuXLlSixbtgw3b96ESqXCgwcPsH79eixevBiAMZg0Db9QGtO4oSKRCDExMRg5ciSOHDnCl0j//PPPfHoaN27Mp71Ro0Z8FbVDhw5hwoQJOH/+PDIzMxEfH4+ff/4ZY8eOhU6ng7u7Oz799NNHPeU8U4cgt27dwrhx43Dy5Ek+GD1+/DjGjx+P3NxciMViq9IuU4nMxYsXERsb69D4jeHh4XzwvGXLFnz77bf8Pq5evYpFixZh0qRJguCsqvKs6XPdunULUVFRyMzMFARTb7zxBl544QW88cYbDu23cePG/FisR48exZgxY3Dq1CmoVCrExcVhw4YNmDhxInQ6HZycnPD+++8Ltp83bx4UCgXS0tLwyiuv4NChQ/y2X331VYnVoBs2bMg/8G/cuBHffPMNEhISkJKSgn379uHll1+GSqWyWT3VfHzGmTNn4siRI0hNTeWrr7/++uuCgOZRvydTW22GYbB06VK0bNkSWq0W+fn5Nv+Z2ibKZDK+am5iYiKGDx+O3bt38/n5r7/+wujRo/mXezNnzhRU+5w4cSLq1KkDlmXx9ttv46effsLDhw+Rnp6O3bt3Y+TIkeVuCvHKK6/w15GFCxdi/vz5iI6ORnZ2NqKjozF//ny+vXOrVq0EeUskEmH+/PlgGAa3b9/GyJEjcfz4cWRmZuLevXtYsmQJli9fbrd/gCFDhqBt27YAjB0FffXVV/xv7Z9//sGrr76KpKQkmyX9o0ePhkwmg1qtxrhx47Br1y7ExcVBpVIhMjISM2fO5IcJMuVtWyIiIgAATZo0cbjzNUIeR9TGkxBSo3Xu3BlRUVH8mI6OmjdvHsaMGQO1Wo0NGzbYLL0YPnw4zp49i8TERJtvr6vLs88+i1WrVmHWrFnIysrCwoULsXDhQqv1RowYgenTpwvmzZ07F/fv38eVK1ewc+dOm2/0fXx88P333wuq6n3++ed44403EBMTg3Xr1mHdunVW29WpUwcrV6506LN07NgRS5Yswccff4zbt29jypQpVuvUr18f33//vaDUb86cOdBqtdi6dSvOnDljs0pdSEgIVq5cWaFV1YYNG4bIyEhs3rwZly5dwptvvmm1jlQqxcKFC62G6mjfvj0OHjyI5ORkfkzRI0eO2BzqwpJYLMaCBQswdepU6PV6rFy50upci0QiTJ48Gb/88gu0Wm2V5dn27dvjxx9/hFqt5kvBfvvtN766a3x8PBITE8vV0czcuXOh1Wqxfft2XLx40WZPoM7Ozvjqq6+s2hnWq1cP3333HaZOnYrExESrsTUDAgJQu3ZtwXiW5ubPn49JkyZBo9Fg9erVWL16Nb9MKpVi6dKlWLlypVWti27dumHAgAE4cOAA4uLibOZpPz8/9OzZE1u2bEFBQQFSUlLKVEppKTExEfv37wdgfJHz8ccfY9asWSWO4Tps2DAsXboUgHGs25ycHCxatAiJiYmYPXu21foMw+Cdd97hSyFNnJyc8PPPP2PixIm4f/8+Pv/8c3z++ef8cpFIhNmzZ/MBoiNkMhnWrl2Ld955B1euXMGmTZts1rbo0qULPv/8c6vewTt27IilS5fy15VJkyYJlgcFBaFPnz5Yv369zc/7zTff4K233sLly5exdu1arF27VrDOrFmzsGrVKqs8HRYWhsWLF2Pu3LlITEzEnDlzbH6+V199FSNHjrT7+U2Bp/lLDEKeZFTiSQip0UzVLuPj421WNy1N8+bNsWvXLrz44osIDAyERCKBXC5HSEgIBgwYgN9++w2LFy/mx7c7duxYjaluCxiryf3111+YPHkyGjduDBcXF0ilUvj5+aFv375Yt24dFi1aZPVW39XVFb///js+/fRTtG/fHp6enpBIJHB3d0fz5s0xffp0HD582OohPiAgALt27cKsWbPQqlUruLm5QSKRwNPTE23atMGHH36IvXv3livIGzp0KA4ePIjXXnsNderUgZOTExQKBZo2bYr3338f27dvR0BAgGAbiUSCBQsWYOPGjRg4cCACAwMhlUrh7e2N1q1bY968edizZ0+ljH/36aef4ocffsDzzz+PgIAASKVSKJVKhIWF4fXXX8f+/fsxbNgwq+1efvllTJs2DbVq1YJUKoWvr2+JbRct9ejRA1u3bkW/fv3g6+sLiUQCpVKJunXrYvjw4dixYwfee+89vmOnv/76q8I+c0m6du2KefPmoU6dOpBKpfDy8kJ6enqF7FsqlWLx4sX89xwUFASZTAa5XI4GDRpg/PjxOHjwILp3725z+44dO+LgwYMYPXo0goKCIJVKERgYiNGjR2P37t0ldjrVoUMH7NmzBy+99BKfv/z8/DBw4EBs374dAwcOtLvtl19+iQULFqBVq1ZwdnaGRCKBh4cHWrVqhZkzZ2L//v2YPHky32Tg77//Ltf5MR+qhWVZ5Ofnlxh02vLqq6/i0KFDGD16NOrXrw+lUgmpVIqgoCAMGTIE27Ztw7Rp02xua+qcbc6cOWjatCmcnZ3h5uaGrl27YsOGDfx1ujx8fHywadMmLFu2DF26dIGXlxekUilq1aqFHj164JtvvsGPP/5od+zboUOH8t9fSEgIZDIZatWqhdGjR2Pnzp12O5wCjKX4v/32GxYtWoRWrVrB3d2db/+5Zs0aTJw40e62gwcPxq5du/DKK68gLCwMcrmcz3cDBgzA+vXrS+z46f79+3zV8EGDBpXxbBHyeGM4R0eeJoSQKjZq1ChcunQJ06dPxzvvvFPdySGEPGbmzJmDXbt2ISgoCEePHq3u5BCCr776CmvXrkW7du3stiMm5ElDJZ6EkBrPVIVt9+7dNabXWUIIIaQ8DAYDP3b022+/Xc2pIaTqUOBJCKnxunTpghYtWiAuLg7Hjx+v7uQQQggh5fbvv/8iNTUVzzzzDDp16lTdySGkylDgSQh5LMyaNQsMw+C7776r7qQQQggh5cJxHNasWQOGYWyOA0rIk4wCT0LIY6F9+/Z47bXXEBkZWeJA8YQQQkhNtW/fPkRFRWHUqFF8j9CEPC0o8CSEPDZmzZqF2rVrY9myZeUasoEQQgipLlqtFitWrEBwcDA/djEhTxPq1ZYQQgghhBBCSKWiEk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZVKUt0JINVPq9UiKyuLn3ZycoJYLK6+BBFCCCGEEEKqhcFggEaj4ac9PDwgk8keeb8UeBJkZWUhPj6+upNBCCGEEEIIqYH8/PweeR9U1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiqrYETk5OgumQkBAolcpqSg0QFxcHg8EAsViM0NDQaksHeXxQniGOojxDHEV5hjiK8gxxVE3JM2q1WtAMzzJWKC8KPIlVR0JKpRIuLi7VlBpAr9dDp9NBKpVWazrI44PyDHEU5RniKMozxFGUZ4ijamqeqahOR6mqLalxRCIR/4+QsqA8QxxFeYY4ivIMcRTlGeKoJz3PMBzHcdWdCFK98vLycOvWLX66YcOGNeotCyGEEEIIIaRqVFZs8GSG04QQQgghhBBCagwKPAkhhBBCCCGEVCoKPAkhhBBCCCGEVCrq1ZbUOKmpqXxX0n5+ftWdHPIYoDxDHEV5hjiK8gxxFOUZ4qgnPc9Q4ElqnOTkZL4r6SfxR0cqHuUZ4ijKM8RRlGeIoyjPEEc96XmGqtoSQgghhBBCCKlUVOJJapw6deqAZdkndgwjUvEozxBHUZ4hjqI8QxxFeYY46knPMxR4khrHzc2tupNAHjOUZ4ijKM8QR1GeIY6iPEMc9aTnmScznCaEEEIIIYQQUmNQ4EkIIYQQQgghpFJRVVtS4+h0OnAcB4ZhIJVKqzs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHAk9Q4N2/e5LuSbtGiRXUnhzwGKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiEk9S47i7u0Ov10MioexJyobyDHEU5RniKMozxFGUZ4ijnvQ882R+KvJYq127dnUngTxmKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiwLME8+fPR8OGDbF69eoK2V9iYiIWLVqEvn37onnz5mjXrh1GjBiB9evXo7CwsEKOQQghhBBCCCE1DbXxtOPs2bPYsmVLhe3v+PHjePfdd5Gfn8/P02q1uHr1Kq5evYodO3bgu+++Q3BwcIUd83F17949vmF1vXr1qjs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHA04br169j6tSpYFm2QvZ369YtTJs2DRqNBmKxGMOHD0ebNm2Qn5+PPXv24PLly7h9+zamTJmCrVu3QqFQVMhxH1f5+fn8GEaElAXlGeIoyjPEUZRniKMozxBHPel5hqraWjh+/DjGjRuHvLy8Ctvnp59+yged3333HRYsWIDBgwdj5MiR2Lx5M15//XUAxgD1t99+q7DjEkIIIYQQQkhNQCWeRbRaLb7//nt89913FVbSCQCXL19GREQEAGDo0KHo1q2bYDnDMPjoo49w9uxZ3Lt3D+vWrcP48eOf2DcdZdGsWbPqTgJ5zFCeIY6iPEMcRXmGOIryDHHUk55nqMQTwJkzZ9CvXz+sWbMGLMtCqVRi3LhxFbLvgwcP8n+PGjXK5joikYhflpWVhXPnzlXIsR9XIpGI/0dIWVCeIY6iPEMcRXmGOIryDHHUk55nnsxP5aC9e/ciISEBgPFNwx9//IEePXpUyL7/++8/AIC7uzuaNGlid70OHTrwf588ebJCjk0IIYQQQgghNQFVtS3i5eWFqVOn4tVXX4VYLEZGRsYj79NgMODevXsAgHr16pX49iIsLAxisRgGgwHR0dGPfGxCCCGEEEIIqSko8ATw2muv4dNPP4VcLq/Q/aanp0Or1QIAgoKCSlxXLBbD19cXycnJePjwYYWm43GjUqnAsixEIhG8vLyqOznkMUB5hjiK8gxxFOUZ4ijKM8RRT3qeocATQPPmzStlvyqViv/b09Oz1PXd3d2RnJyMrKysSknP4yIhIYHvSvpJ/NGRikd5hrB6PfR5+QDLgivqIM7Jx1uwnC0sBKs3QJeTg5hLETAwgFgkgjgsDJxpO5aFLjcXrFYLjmXBFhSC41iAg3EdAwtwpnU54zIAxhUAcBy4okmAg0eL5pAKrv+cMT06HdJPnobMwwMcxwEch8CBAyBRGofT0qoyoSmqeaNVZSLryhVIXFyKdmFc3/gnB21mFjidtmgWxx+76FAAuDIsM3Jr2hgudevaPMepR45CrFDy04ED+kEZYhx7WpORgYJE40tTVqtF6tFjkLq529yPPj8fhsJCm8scpQwNgUfLFjaXZZw7D05vAFNU28i7Uwd4tDDe7/V5+cgrqpEEAClHjkKidLa5H0NhIfT5ecjJyQHHcmBEDNzc3MqVXpmHJ3y6dLK5LDvqBrQZGRBJZQAA10YN4df9OQDG/JtzPcrss10Ax7L8ZzPH6nTQZWeXK32WRFIJAvo+b3NZzoMHyLl/DyK5E8ABEj8fhL/8avHnuR4FTq83pvfqVWSnJoGRSoz5HYC73BUAA45joc0ofl7Ss3rkavJhlknhIXcHwzBWaTCweqgKTJ+VA8Cg4YChcHJ2sVo3OyUJd08fBaswnl9GJkXnGbOhlBp/c7l37kJfNKJB1oO7uH3lHFiZ8TGZYRjU9giGTGzcVqvKMF4LABg4Ax7mpIIzS2+Aqy9kIilycs3yjKsbDByLxJxksBwLDhwYMKjXrTf8gsOs0puek4bog3ugURSlAQxaTZyCusHhAAB1fAI0aWnG7yI1GdeOH0KhjOHXDfMMgbvcmE912dlgiwpCDKwBibnJ0BmM3w0YwN/ZBy4y6/xvXDcFOoMWppUDW7RCvRbtrNbVGfS4tGcT8iTFHXSGDR6KNq17AgA0aWlQx8Ub/9YUIHLvH8hxKl43yC0A/s6+AAB9Xh4MBWoAxkvdw9wUFOqLrxmecg94Ka2vL6Z1C3TF67rXqYPmXfparQsA/x3ejhxNHlCUtzw7tEPv/q+DYw3Q56uRe+s2v27Eni3IZDTgDHpwrAGeUgVCZO4Ax8JQqIE+P994MgGksxrks0XnjAOUIin8pEqAYyE2pbsou6QVZiNHrwZYAzi9DiKZBLUbhQMdBzyRzzMUeFaigoIC/m8nJ6dS1zetU1hBN+Tyunv3LurVqwdXV1d+nkajwa1btwAAHh4eCA0NtdpGrTZeJFq0ED4EpKen86W4ISEhgiDcYDAgKsp4M3V1dUVYmPDiGxMTg5ycHABAkyZNIJEUZ9msrCzExcUBAAIDA+Hr6yvY9tq1a+A4DgqFAg0aNBAsS0hI4F8MhIeHC0q78/LycP/+fQCAr68vAgMDBdvevHmTD3IaN24sWJaUlIS0ohtB3bp14eJSfPMrLCzE7dvGi5iXlxeCg4MF2965cwcFBQVgGMbqZUhaWhqSkpIAAKGhofDw8OCX6fV63LhxAwDg5uaGOnXqCLZ98OABcnNzAQBNmzaFWCzml2VmZiI+3ngjqFWrFnx8fATbXr16FQCgVCpRv359wbK4uDj+JUnDhg0FeTw3NxcPHjwAAPj7+8Pf31+w7Y0bN6DX6yGTydCoUSPBsocPHyI9PR2AsYq6s3PxzbCgoAB37twBAHh7e1vVJNDr9bh69SpEIpFVz3CpqalITk4GANSpU0fw4KjT6XDz5k0AxhdAtWvXFmx779495OfnAzC2AzevNq9Sqfg24sHBwYIbBcuyuH79OgDA2dnZajDo2NhYZBc9IDZu3FjQm3VOTg5iYmIAAAEBAfDz8xNse/36dbAsC7lcjvDwcMGyxMREvrlAgwYNBGMD5+fn800AfHx8UKtWLcG20dHR0Gq1ELMs6gbWMgZgOi1EUhlyZVKkpKQAAEL9AyDTFILjgOxr15AbE4vs/HxAp4OUEUEhlYLVasFqtdDn5qIwLw+swQBwHGQSqTFgKwrcWL0BrF4PjuMg4jgwTFFcxXHFAWFRsBU68hWIFYqih1cOqgwVCnNywGZmQX8lkv8cElcXNPxmJX+NkF64yOel3Dt3UXApovhcovLosrIgDwjgp3Nzc6FWq8HpdNCdOiNY171LZ8TcNeZvZYYKsmTjudakpSH1yLFKTGUxVqsFW1B8DyooKOCvwfpzF8Ca3Z+82rfF3UzjdVSaoYJzUXpZrRYZp89WSXoLU1MhMrsv6HQ6/trOXrsOfXpxsxlFrUCkyp2M99jsHHgkJPLLMi9chMHsnl2azHKmV+sqh8yr+B7IcRxSU1MBAPm3b0CamMYvi0y8htZhtZGdnQ1Op4PbzVv89Tv5wjkgI6ucqSg7vQhQWtzv09PTYTAYkBV3B8p7xTW0knykcO/Wg79GuNyIhqQoyEy+9B8QkyjYT9nPNpBVwjLLB1lVnetwcSs+x1lZWdBoNMjNSIbi6n1+vkbKIGFkIgozjM8uyvsxkBXlgYzoKLhEPhDuF7dhj2WYm48k5FvMM+UZV4v5Wd7XocjX8dO5ublQ5WYiuyALXreSBesmpSUgT2X8DSqSkuGkMu41Oykenjcsz2+83XNsmQYd0u3mact1cyXRyJUXn1/TNULH6iG/lQg3XXEwmdTqLq5Kjc8V5tcITYEaLjfjBeeNQyKEn7aYsuhfsQy76bVcNy8zBw+TYoruIQawOl3R6BUcmHQdauUXp/eW4RDuXd4NTukOjXcTSJJy+Jd80psxqKUTjnqhQrzNNCiK/pnL41OcJJgvA2D+5KVWaAHdZYjys4BWrartOcL0LFvRKPCsRAaDgf9bJpOVur5pHX3RG8LqYjAYrIaU4TgOOp2OX25Jr9fzyy2xLMsvszVUjWmZ6XMHBwfz1QxUKhW/nDN/LW+RJnv75ThOEKzaSm959luWz1rSfm19x6b92nqr+yj7rcjvxpzBYLCbJvP92sovOp0Oer3eZrvnkvZrLx+a8szDhw+h0+lK3W9J+bsqz2FJ+bAs55BlWcGLBINGA01qKnIjr6EwLQ2cVovkm9EQGViwBQXQpKdDm5ePvJwcQK+HVqGA04jhKIiPB6vXQ+rqiry7d41pfZiEiLvFJULuLZrD6+1JfJo0GenIibwGAFD9dxH594of6HQA1DbPlpGmhGWlDWalz8/nSzQBwFBQAIPBYFbyaMSxLP+9clot5B7ugM74Hdj6jVUazmKS44zptZFXOM7ed16F6bVgSi9g9VEAFOdvkaF67lssZ50qU3p1Bp2gB8Wz8RGoFxYMg84A6IW/Zx2rq5LeFnWs7WspYCwxMh9ILacwl79GcBbXH5Zjq613SJZli35zts+9rWsaA9v5pyrw6bXxm2PNrv22Pk914DgOYDm4iZU2l5nSK7NxX6gqxloaLDiDHqxGDbYgFxyrg+W3rE1PhEh3AqzCDQZZAPR5WWA1+dAbKm7YwlLTyhpgyBH228JfUTmLayvHgQEHzmAAq9cBXNWl00RZwEEjBsS3ioPaqnyOMN+2MlDgWYnMS4DsPbSaM7UHre4xPMVisdWDO8MwfLpsZVCJRGI33SKRiF9mKyAwLTMFiOYlRjk5Ofxyy4dF8zTZ2y/HcTbTZZ7e8uzX/L/2PmtJ+7UVDEulUuj1epsPxY+y34r8bsyJxWK7aTLfr638IpVKwTCMw/u1lw9NecZU0mHrs5jvt6T8XZXnsKR8aNovx3Lg1Grkx8RAq8qELisL2sws6CIjwWZlQ6dW47xGA0NBodXDKQCU1GJcK5Mi/75ZwJiTA5FIBLFYDNYivaxGa3EOi88/Y+M7riwcK7yx8ukVi4VBK8vx3ysnkcApMBAoquaFKgw8LR9lGYaBWCwGx3JWQTYD2P7dVF/cyacXKKpJbLG8OL3V8ziRrlZBWpANT0VxtTuxWAyO41Bo0AhKPtLyM1BPXPRbl1j+nqvvJJvOr61sabpGWIVE1ZgnTL85EVPydZbhqy5ULQ62rxG2rs8MA5vX4Ko8vZaniGEYyKVyaGw8+DMMA6nE/r21KugyEpF18g/BPDkAHQNoLT6L5uEdKFOuQ+9TF6w4CboMY1VmfRmeiasTwxkgFlXP+QUAXR5g0BQHio/6HAHYfxZjWdbu82xloMCzEplXEdRoSnrHL1ynojs5clT9+vUFVUQBYxBtWYXWcht7fHx8rKpwmojF4hL3a1lt1JyHh4egyqmlktruBgcHW1V1NXFxcSkxTZbVa80FBgZaVc01kcvlJe7XsjqwOV9fX6uqxCYSiaTE/VpWXzbn6elZYvvjkvYbGhpqVeXaxNXVtcRtSxpaqFatWlbVP00UCkWJ+7WsKmLOz8/PqpqJiVQqLXG/llVbzHl5edlthyESiUrcr2WVXgDIvHwF8Vu2QZORAbagEIbCQuRVUi0ITm/9BtT0W81XF0BlNp/VagXVptUJiXw1rqoMPC3fQJuuARqJBKmC1VjBNSLnxk1kFQWejEgERiqFSCo1tpETiYzziv5mtVrjcRgGjOnhmmHASMTGaYYBREzRTZ4pekpliv5XdOMvmufk4yOoWunt5QlvhgGr0yE1KQmyorzDMAwUrq5oUVR9PO/+A+QXvaFmJBK4NWsKmel6x6AoSjGmQVtUFZPHFKeBMX+E5ucL/8vw/we4hIdDGRrCb6IEYGopm5CfC72zE/I0+dAatLiueQgm0BedQ9tAk5KCvKJaO6xOh/xGQUgUqaEz6MByLDzk7ghw8UGIexB0OTkwqE3ttzjcz4xFrra4YqJSqoSP0hNeCg+Y07MGxGc/RLYmh59n8FHA09cVSq/ia5F7vXrQ6LVQZSfgas5DcCLjh8vykiGsbhicxDKIC7TINsu3mgZBuK1JMUuDHJ1D20LEiGBQq6HLKT5mcl4akvOKc5tMJEU9r9pwklg0qWGA5FzhuqyzAq3rCH/3LmF1AACXDZmIUhRALzamNztQwV8jWJ0Omdri79hQLwTXPe7xn00qlqBnWGfjulottJnFFRFV6kzEZRe/ghIxIrQIsH0fy1RnITa7uMomK2bQzOI+7Fw0He3M4aYhHVqp8TeS4yLGcLNrRKZOD7YozeKMBESKMvjPxgDoVa8LxIwYHMvybRUBIFeTh/uZcfx6YBg09Q23GQiodQW4p4otXhcMaoWFwdmsqq3pSSw5KQaRuQ+hkRv3w0rFaO7hBd8gYw7Pkcr47zmf1eBWfiJ0RZ9NxIjwTGATKKXGVxmatDS+BFVr0CEmMx4sOD4NtT2CILfMDzCWasdmJxhLk4p+nw0a1odzSPF92pTevPxsXE59gDw5A6lYChGAVm4eCPXwgUjqBI2bOwqTk8EW5kErNiAm3A8FTgxYTQHA6hGqA5wNxlJJQ6Ger06iB5AmE0NvFqR46wxQshzELh6Q+YdBpzJWB2XBIUmvho5jwRl0AMvCQ8FCaqsSHwPk+IqR72T2UlhkPKizlIFz07bIvmFsDiHRaRFX2x25CgacXgtOr4efVg9vvXF9Vg9wRbcnDkCqTASt2YsON4MB7noOjFQGiWcAOL4GA4dkvRqFnAEw6MEZDFDIOUjttHYrFImR4cuAKzoX7kVtTkXg4BvoDzVXHCYVhnggS1ZUyqvXwt3AIUjHAQyDosPx50ElEUPNFEfhSojhWxRyiVw8BNfldF0+cg0auCfnQaqzflFTnucI/jy5uZW4rWWTJHO+vr6CvmoqCgWelci8jWR2GRr6m9Z5EhsTE/K0YnU66PPykH7qNHJv30VhUhJYnQ4+nToi5JURgnU5jkNu9C3osrOhTUuvgsSx4AwGm4EjI7Eo0bR4+ymSSiF1cwUYERRBQeAMLJTBQRA5ySCSmf1zkkGfmwdWozEGeIwIEBcHeuaBH0QiiMTGB1GIGEhdXACRGIxYZEwDI4I8wB9imUwQfAEAZ9AjsN8LcPLzLd6vGZcG9eEcVgciubxqq9qWoNaA/naXudQNg0vd4ofRkBEvVUoaLj28hsScJKTkpeNhbgqa+rqijqcLarn6oZZbgGDdn9griHh4jZ9uWnALjXOND2rygABBW9a7ilj8G3MWKKo82sA7FG6hbVAvvKdgn9mFOThzbT/+uV88fnUdjxD0D++BpmEdBevma9W4Gf0P9tw8xM8LdgtEo+aN4RP8jPVn89fiWOROftrfWY60fBX0rAGNfOvBp1Px/gu91fj3ynZ+2lvpiVH9xkEmsX7CTr5/GqeuH+BLBNyd3DC89/s281VewmU8uHsSDMOAAQMfpRe823awWg8AAut6Ier+KTBgIBIxCJIVP0OIpFJ4dyzernajIDx4cAYMw0AEERRSBeo1G2Bzv8m5qchMvAIGIiilcigkcjSt3cbmutkF2ZCrYorSIIZUJIG3f0Ob6z7bpiVC1SMgYhiIGBHEjPA64tn6Wf5vt3at0cyghajoZQnDiOBk49ya2D5DtrUt43reaI+mw16xu9ytcXF/A97t26Hxa2PKnIZWZV4TeKbov4UJ0dDnZoItzAerSQJbmA9DYT7YglwY8rMhystEqxA9OIMOnF4HTq8FtixGAgC3Nv3g0XEoNHExEIsArwAxugzqDgDIu3oM+uwcO0c38oPtarrK+vXgP2I2Mk8V/xbqFP03/9Z56FJj7e5TDqC5hwGwsW+OZeHSuAVYTfELho6NjHsuiLkKTXzJwwh6gwMjk0IkdQIjlYGRyMCIpZC4+8C1eQ8YCnL4+0G9ot+hOuY6DHkqiJyUYEQSMGIJIBaDEUvAsQYwIjGC/GpD4uYDRiwFI5EU/VcGRmI8licYfr9BI4ryrpPCuN4j3keysrLAMAxauBtra1xctRCaI1f45dqacZuqcBR4ViI/Pz84OzsjPz+/1CFSDAYD35DXXmnP08K8XnllFfWTJ0t15xm9Wg11bBx0ubnQ5+ZCk5oGkVQK1qwUKvvqNeTcuMlP51l0uAQAXFEJl1hh2S2BYxixmC/RE0mlRTdsKURFJVIiqRQyH29IlEq4hDeASCoFOA6sRgNFSDBMLbLqjHkdUk9PiG10jib390NgCYFTTSOSSgGz6kTVnWcq0/WUaDzMTcHDnBTcVcWigXcY6nvXhlQkRTuLAO3vuycQkVTcvRIDBiw4yCUyq8DTRSpsc6Y1FLUrAgedQQ8xI+JLpeQWRQx6g95me0x3uRvc5MLeNPWs3mZ7O2eZEgqp3Gpd1k47rFqu/qjrGQodq4dSKoefsy/UugI0sxFIdQ5tg2C3ADhJZJCLnSCXOEFiUX3YlGd61OmIXnU72zympfbBrdA+uGxhSVP/cDT1t19rw1yYZwjCPO0HUeYCXP0wuJHtnmktuSvc0SaoZZnWVUjlCHEv2/OKVCyBtJqqY1cUjmPBaQpg0OSDLVSDLcwzBo2F+WA1ahgK8ozzNGp+ubJxJ7i1fgH6nHRoYq+DM+gBjoU+Pxs5EX+Bzc8qV1rYwnxoU+PgHN4W+bf/EyxjSgjoS92vrhCwUYUagDFwKwkjAiOWQCR3gchJAUbqVBQoyiH1DoRlBWaxwgViVy+InBSQBzUExGLAYIDY2QNSr0BALIHE1RtipStETs58b89l5dqyZ+krVZPMzExcu3bNGHi2aAF3d3fks1pBUFa9vb1Unsf7KvAYqFevHq5evcr3ImnP/fv3+Ya/JVUXfBpcv36d7zW2pCoChJhUVZ7hDAYUJqcgPyYWOVFRyL1zDwWJiTAU9XgrdXdHQD9jt+2sRRsWsVL40K5JTQOr0xkDoiIiiQRipdJ24MkwkLq5QeblCamHBxixGPr8fIjlckg93OFSty7Ezs5wbVAfTv5+NoNFUuxxu86o1FlIzc9AhlqFe5lxkItlqONprBIb4OKLUI/iHp533TyMaym3+GkniQwKqRxyGw+klkMoaIqGTcjXWfeH6SIT5mFdUeCpNehwJSlKEGBZVjPUswZo9LabnPg5+yLUPQiFeg0kIjH8XXytq60W6RzaBp4Kd9xVxSDMMwQKiRy1XK1f4gBAm6AWaBNUtu/WU+EuaCdqy+OWZ4gQx3Hg9FqwBXkwFOaBVeeC1RWCLcyHzDcETgF1i9ZjkX/jDCASQySVIePIBuiz08DpNHC0i6QcsQvuwQfy3CTUDvCBLru4xE8kkZbamZo9bGE+FPVawZBjXTOGsWq/bIPYWLondnaHxMXTWCook0PmGwqGYSDzC+Wrg+qyUiHzC4XEzQdsoXHoEZFMAZHcBRIXTzByBUQSp6LAlIHY2Q2M2DoNHMfCs/NLpQewTzhT0Gl6kXX16tWn6nrydH/7VaBt27a4evUqMjIycOfOHbvt+M6dOyfYhhBSvfR5eciPjUX+g1jk3ryJvLv3oElPt9ku0kSXk2O36qrYWfjQXpicDMZGRwGKWoHwaNUSMi8vyDw94NWhPeQB/pAVBZvkyaI16KAqyEJGvgrOMiVkEhkKdRqoCrLQKrApX4K4+vwviEotHs6hhX9jvo2mXOKEUBQHnp5yD8ExCosCvkK9FpbsBZPGcRQt1nVyNpYEisSQiCSQS+Rwc3JBTGY8mvg2EFQ96xLaFrU9gpFdmAO52AneSk9BcGyuZ91O6FnX9tiWlnycvfCcc3s8V6d9mdYnTzZWrwWnLQQ4DtkXD8GQq4KhMB+GPJWxLV5RaaSxHaH9Xko9ugznA09DrgrajOJ2roaCXHC68g1zx+iMvz2Ddx2IZMJ7x6OVTGqMvzeR8B4ikikgC6wPiZsPIJEBHAeppx/ECjew2kLIgxpC7OYFsdIdIicFRHYaP7o06mhz/qMwNbN4mlkGnYCxxmNSUlK19fpc1SjwrGR9+/bFzz//DADYsGEDFixYYLWOwWDApk2bABjbhXbp0qVK01jTODs7Q6/X2+y9ixBbHiXPcAYDCpKSkP8gFuqYGOTHxiLnRjRfiunYzjjocnIgs9Fhk9TVFYrgIEjd3SFxc4N3O9svmLzatoFXW9vtr0jFqYrrTKGuEByMVRJzNHlIyUuDh9wNvs7GzkyWn/oeFxOLxx5t4d8Y4T51+elm/g35wNNbIcxTarMH4TytcPAay5K7ghIemkM9gtAyoAkYMDBwBvgoveAiU6KhWTpMXmrSH8Ob2m5HaGu/9gLNxxXdmyoHxxqgz8+GITcD+swU6DKToU2LMwaOBcaqqxyrB6vOhedzr8Dt2eJqw9rUOKjvXgIAZP93AJympIGc7GMLi7djLIKxRymZlHA6uLi5QyKRQCQTvvhhnJQQKVzAiI1tCk1tCwV/Fy1zbtQRMt9giJycIZY786WaYmc3eHQYDJHs0ZpnkMqnUqn4cTPN+fr6Ijw8HOlHhM0IntAmnhR4VraWLVuiVatWuHz5Mv744w907NgR/fr145dzHIdFixbhftGQBqNGjar2Xm2rW0k9iBJiS1nzDMdxKExNg+rsOeTevg1thgr59x8YezF9VEVVYdmisSLBMPDp1AESV1eIlUqIZLIa06kNqbjrjIE1QM8au96XiMTYdHU3Lj28hgx1JtS6Agxv0l8wTka4dxgfeColwmu92iJA1LN6aA0iSEUSeCk9BMsK9MVVYXM0uYJlQW4BaOAdBk+FOwp0hZBLnOAiU6Kel3Xvhz3rdkbPMrZXfNrzL92bHg2rLYQm+QFUxzbCoM4Bp1GD1RY6VJpoyMsSTAuGQJHIHiHwzOP/FitcwTAM387YdskkIwwSxcV/y4MbQlxUfVXqXQvKusY2xfq8TDipcyHx8AMjEsGlSWdwBj3EClfjNcKsF22R3LlMVVIZkRgMBZ01XklBZ+PGjSESieDfriVOFhb3A6G0aPv+pKDA8xElJCSgV69eAICgoCAcPXrUap3//e9/eOWVV6DT6fDuu+/i6NGj6NKlCwoLC7F7925EREQAMA4dMnny5CpNPyFPA9XFS0g6eBg5UTfAFpavypQ5kZMTpB4ekHm4Q+rhAZd6deES3gAyLy9IXV0Fw2eQx9+/D87iVvp9pKszkKHOQsuAJgjzDEFyXnF7rXZBz6COZzBUBVmINxu6Ii77oaDkr9CsnaNlMGnZfiw1Lx3Zmly0CmwGb4UnZGIpvBWecJO7QMwYb99uTi5o7t9IsF33sI7oHlbxVeUIMcdqC6HLSYdelQSd6iF0qmQYCnLBFubBve0AOIcX1+ooiI1CQayxEytt8gNwdtr7lsagthwhwDzwdHAMdLEUIielsZ2jm7dgkdQ7CJxOA31eFtxa9wWn04FxkkMkkYE16I1tIEUSMAwDVqeBxMUDjFQORiyFSK4EY2PoF4mLJyQN2zmWRvLYsxd0+vn5oXHjxvzLE0YmhU5ZXBXZ4PRkNq2hwLMKNG3aFCtWrMD7778PtVqNvXv3Yu/evYJ1ateujZ9++kkw9ichxHGcwQBDYSEk5uPopqUj61KE4zsTiSB1c4PUwx1SD3fIPDzgXK8uvFq3hkguh9TNVdA5EHk8mUotnSQypOZnIDk3FdHp9xDg4ovn6rTHmbiLuJJ8g1+/nldtZBYIH4DZokHnLKvEGjhhu6647Ieo6xkKPxcfwbqWvbUCxjEKw72NVV571+uC5+s/99SXOpKqo0mLhzb5PrSpscahPvKzoM9OgyE/C6ymwDi8hx2K2s34wJMzGIcEcQqoC03yfYicFDBUVOBp9nuQevhDJFOAkUghVrqBYw3GYM/NB5xBD4mHLySuPnxPqhIXT7tVVF2alK0WACElycjIQFRUVKlB59OEAs8q0rt3bxw4cAC//PILTpw4geTkZDAMg7CwMPTt2xejR4+moJOQcmB1OqQdPwHV+f/gXDTuoTzAH349uvPruNQvvYqc1NMTznVqwzmsjjHQ9PSEzNMTcn8/iGQySN3crMaGJI8fjuOgM+gQkXQdEUnXEZeViPicJLzY+AXU966DW+n3+XWT89LAcixqewQLAs9CvQbB7oH8wPUAEJ+dhLpeteFtUYqZVZADWBSAm9pgdgx5Fk39w+Gl8IBSqkChXgMnse0q2WIbJSiEOIrjOHAaNfS5GdDnZEDi4Q+Zdy2LdVjkR59D2r5vinpydZw+p7g2ACOWQFn3Gegyk6FJvg/GSQnYHEaEASN1AiOTQySTg5HKIXZSQuLpD6eAupB6BULi4SfYQuZfGzL/2sZtn8KHeFJzZWRk4Pr161ZDQ9kLOv2c3NAts7hvCYmHS5Wks6pR4GlH+/btcevWrVLXCw4OLtN6gHF8zo8++ggfffTRoybviRYbG8t34FC7tnWbJEIAIDvqJu6v/QEFiQ/B6Y3tKjVOTvAKqgWDWtjOx6VuGEQyGd+WUySTGXuN9fZCrSGD4NqwIWQeJQ+lQB4/HMeBYRg8zE3Bqdjise5kYikepMThbEpxKfiDrHh0C+uA+OyHgraWuZo8+DkLq+FlqDMhZoSBoKuT8cVhM/9GeKfdG/BWesBL6QkPJzfkavPAAfBWeEBqNsyAm9wVbnJXftpyCBJSs9T0exPHccaSyaKgUp+bAX1WGvS56dCpkqHPSQerzgFnKB7qyblxJ/i/OFOwH116grH00EkJQ7kDzwyreabqpzLfkKKSSC9IfUKM/9y8IVJ6QKxQGttMlvFFC2NnzMmaoqbnGVI57AWd/v7+aNSoke2Xi4wIMvPVS+hB/3FGgSepcbKzs/mx0ggxp8/Lw8P9BwGOM46pmZTMB50AUJiYCATVgi4nF9rMTGMppVgMRixG6OujIHFWQpOWDo9Wz8C1YTi9IX+CcByHmMx43M54gHuqWNzLjEUT3wYY0vh5QdAJABKRGF6Mq2BefPZD+Ci94KlwFwSef949gVYBTdCtTgfUcvWHt9ITAS6+8FJ4wEPuBheZEkqZAjKxsQOSWq7+VuNKKqnzjydCTb03pez8EoUJ0TCocwGDrvQNzOhtjAMp9Q4CGJEx8MzLLHUfjEQGRqYwDs/hpITUwx8uzZ6zWk/s6gXPLsPLHFQ+CWpqniGVJz09HVFRUQ4FnQAARgSpdxAKNRrjM46MSjwJIaTK6bKzkX39BtRxcYL5jFgMRUgw8u8VV41k04ofovLvP4Bn62f56aAhgyo/saTKRTy8jruqGADAnYwHiDSrEisVScCAwdDGffHPvZP8sCNqXSHcpMLAMzk3DRq9Fi6y4iYPLjIlWgU2Q6CrHxrYGF7Ex9mrEj4ReRqxOg00D+9Cl5UMQ64K+rxMGHIzYchTQZ+dDqeghnBp3BEuzbpabatTPYQhV1Wu4xrUOXzNABNTYChSuBiDSidlUVDpDKm7H0QKF4AB5LXCIfUNhsTFC2IXj1IDyqcp4CRPr4yMDMeDTgDxubm4VCiBVsOCAwcZgPBKTmt1oMCT1DiNGze2uhGSp4tBo0Hijl1IOXIMYrkTfLrY7uhBGRrKB54yH2/Ig4IgdnaGV9s2UAQGVGWSSSViORYJ2Um4kXYHBtaAAQ2NPYnHZz/kg04AcJcLg8nY7ES4OblAKpbCReYsGO/SN9APHblnUc+rNup6hSLUIxhOEhma+DZAc/9GENXwKnyk6j3qvYnjOBhyVdCmJ6Aw8Ra0yQ+gTY2FoSC31GFA9Dmp0KmSbC4Tu3gBKTEOp4eROIERS+x+Hp/+b0Hs5Ayxqxfdj8uJnmeePuHh4WBZFikpKQCAgIAANGzYsNQ8kHHlKuocK+43oNBJBPxfZaa0elDgSWocqpLy9MqPiUXi7j1IP3UGnK6oyphIBINGA7GTdfs3J18feLZpjYB+feHZ+lm6uT9hOI7D8QfnsO7yVn4YEg+5G/qH9wTDMJCKJPBz9kZqvrE9madc2E7XwBoQm5WI+t514Ofsg+S8NDTxbYDaHkFwkTmjS1hbq2Oat8EkxJwj9yaOY63aHyb8+B50aXF2tigZqykABw6sTgNOr4NYUVwNT+rhhwKL9RmpHCInBRgnBUQyJV8NViRTgHFSQhnWApxBB6lnoN1jOvmGliutpBg9zzx9GIZBo0aN+L/LEnQ+TSjwJIRUK726APFbtiH91GloM6w7pADLoiA+wapnWmXtUHi1aQ2RzNbg3uRxYmANgl5bWZbFqbj/kJyXhlxNvmDsy6zCHCTlpaKWqz8CXP0Qn5MEFAWeUrEUAS5+qO9dB/W9aqO+Vx3ULhpDs5FvPTTyLb13Y0LKiuM46HPSURBzDdqke9CmxYORyeEUaMxnnp1eFIwtKXZ2hy7N3t5KxmqMoaUm4RbEbt6CwNOleTcwMjkYiQycQQdFSBOweg0krt4Qu3hALHcFxGKIJHStJKQqWAafZWJRPfdJRYEnIaTaJO7ei/itf1j1QmupMCmJDzz9e/eEk69vVSSPVBI9a8CN1Nu4nnoLt9LvISYzAWsHL4G8aCzLmKwE5GmN3cq7yJSQS5wEwefN1Dt8Bz4uMiW8FB5QFWShhX8jDG/an6rJkgrHGfQojI9Gwf0rUMdcM45lqc4Gpxd25iPxrsUHnobCfEhcPPhlMr9QFMZcK/E4fCc9cheI5M4QOTlDrHAGRBIwYikk7j6QegmHP5EHhUMe9CS2BiOkZiupGrXDpZwSMVjzW5fkybyPUeBJapycnBywLAuRSAQ3N7fqTg6pBLqcHNxd8z1U586XuJ48IADO9eoiaNhguDZoYHc9yjOPj/uqWJxLuIw9N/8Ch+I3vLczHqBFQGMAQKhHELwU7vjr3kkwDAMfpRcScpLgLndDy4DGCHQtHsuvsW8DNPa1nzfsoTxD7OEMemjT4qFJvgfNw7tQ370EQ14WwLGlbsvm5/B/a1MeQJ/tDKfAemBEYsi8gwEYe4EVyZ0hUrhCrHCF1DMAEq8AODfsAKlXIFXLe4LQdebJlZqaitjYWLRo0QJONpoCOSqox3M47quGQW8AB07Q0d2ThAJPUuPExMTw3Y+3aNGiupNDKhDHcUg7fhIPfv4F+pwcm+uI5HK41A2Dc90w1Bo8EHJ/f5vrmaM8U/Mk5abCXe4KpbR4KJFCvQbp6kxIRBJ4KtyhKsjil91Iu8MHnhKRWDCmZVO/cLTwb4wRzQbAWaaskPRRniEmrEYNVqOGSOkGkUSGtH3fIC/qZPn2VZgHzqAHI5agMPE2lGEt+N5cnRt3grJ+azByZ3DaQkFpKHky0XXmyZSamoqbN2+C4zhERkbimWeegewRm/3os1Ohz0qBTqsFB6BQ9GSO60yBJyGkSmjS0nD327XIirhsc7nMxweujRoioG9vuIaHQyyXV3EKyaNKy8vAtqj9uJp8E5mF2ZjWfhy61mnHL5cwYjwT0AQxWQnwdfYWBJ430+4K9iWTyNDEtz5cZC6o5eoHGbVPIxWA1WmgvnUBBfE3IHb2ECxzbd4NIs8AyALCAEcCT7EEYqUbxEp3SD0DIPMJgVjhAqegcEFbTLHCBTBNy+j6RsjjyDzoBAC1Wo0rV66gVatWj9SZlD43E/qcDDBA0T/LLsOeDBR4khonICAABoMBYjGN+fUk4DgOcZu3InHn7uKeas2IlUq4NW2CelMmw8mrfOMiUp6pfleSovDdfxuRaRZMRqbcQJfabfmqgxKxBGxRdUVfZ2+k5qXDx9kLwxr3RSOf+oL9iRgRmvk3qrT0Up55OrB6LTSJt6G+G4G8G6eN411yLBiZHG7tBgmqtXIGPTiOg1OA9ZitPJkCjNIdcu9AyPzqQB7cCPKQhhDJna16sSWErjNPlpSUFNy8edNqvoeHBySSRwupfKXO6JxV3N+FyImq2hJSJfz8/EpfiTwW8mNicPOz5dAUjWdlybtTR9SdOAEyL89HOg7lmeql1hbgdsYDhLgFCgLPK0k3cCXpBlrVasrPEzEiPBPQBDpWjzEtX4RSpoSsGoYwoTzzZOIMOhQm3kFBzHUUxlxF4cM7gEFvvZ62EGxBLsTK4nZ3BfevQCR3Lgo8GUg8/OAUWBcihStEMgVkfrXh3LA9RFRaScqIrjNPDntBZ1BQEOrXr//IbbMljAhKtrjfgye1kzwKPAkhFY5jWTw8cBCx6zeA01s/9Mm8vFB38pvw7tC+GlJHykOtLcDxmHOIz36IdsHP4JnA4mBSKVNgeJP+uJV+D1dTim/MhXoNDKz19x/uU0KJEiEO4Ax6aJLuoiA2CoWx11EYHw1Ory3TtvrsVEHgyel1EDt7gGEY1Jn5K0TyJ7PEgRDimMoOOp8mFHgSQipUYXIy7qz+FjnXo2wud2vWFOEz/6/c1WpJ1XqYm4K1/23ErfT7YDkWEpEErk4uaBHQWPBGViQSobFfAzTza4g8rRoh7oF445nhcJO7VmPqyZPKUJCHgvgbSNu9Epyu0MGtGYhdPcGIZZC4+UAe0ghSzwC+EyAAFHQSQgAAycnJiI6OtpofHByMevXqVVjQGRsfi7tpZuP+yrSoUyF7rlko8CSEVAiOZfFw/wHEbdwMVqOxWi5WKODZrg3qTpwAqSsFI48LhhN2/KNn9UjOS4POoIeTRYc/HMfhvU4T4SxT0htgUiE41gBDfjb0uSroMhKhy0wWLONYQxn2wkDs4gGJu5+x+mytcLi37gOmGqp4E0IeH1UVdAJAZtxD+D8o7gejUGZdW+hJQIEnqXGuX7/Odz/erFmz6k4OKYP82DjcXPgZNGlpNpe7NmqEoJeGwrtd20o5PuWZR6M36AGGgZ7VI6cwF34uPvwyd7kbmvg2wI20O/y8+OyHuPTwKjqGtBbceBmGgctj0iEC5ZmaieNYFNy/CvWdC1A/uAZDThrkYS1tdvjDiMRwqlUfmnjrKnBiZw9I3H0h8fCD2N0XIokMUndfODftAlE5e0imPEMcRXnm8VWVQefThAJPUuOwLMv/IzVf2slTuL/2R+hz86yWOfn6oP7UKfB4pmWlpoHyjOMMrAE30u7geMw5nIuPwLOBzRHsHohAFz9B4KmUKdA5tC1upN0BwzAIcPFDsHsg6nnVfqxvvJRnagaO46BNT0DeteNQ3/4P+uxUqzaa+uw0uz3Nip3dAQBS31AoajeDonYzyEObQJeZBJHcGVIPfzDiinnUoTxDHEV55vGUlJSEW7duWc0PCQlB3bp1H+t7X3WjwJPUOHK5HGKx+JHGQyJVI+dmNAoSEuHZujXS/j0uWBbwwvOo/cYYSJSKSk8H5RnHrTy7DucSIvjp+JyHCHYPRLpaBQNrgIFj+d5m24e0go7VQcyI0T2so1UV28cR5Znqw2rUUN+7DPXt/1AQcw2G/KwS19dnpYLjOJsPezLvIPhM/xESV2GbcbGy4qvzU54hjqI88/hJS0urnqBTKryvPqmhLQWepMYJDw+v7iSQUhg0GmRHXkXevfsAAHmAP1wahiPv1m2InZ1R+7WRCBzQr8rSQ3mmZAbWgNisRChlCgS4+AIAWgY0FgSeyblpkIkk0LJ6HLrzL9S6ArzcbCAAwM3JBf3De1ZL2isL5ZmqpctVIS/yCNT3I6GxM8SJPZy2AGxhPsQKFzBM0TAnAfUg9Qmq0rEzKc8QR1Geefx4eHjAxcUFeXnFtbhCQ0MRFhZWqSWdnhJn5JpNP6kB2pP6uQghlYDjODzcsw+GggKrZR4tmkMkkyF4+IvwrOSqtaR0qoIs7Ln5F5xlSn5eHY9gPvBsH9wKP13aDANnrAJm4AyIzX6IQFc/qHUF6FOva7WkmzxZOIMemad3QH33ErRJ98q8nUjuDIm7H5yCGkDmVxuuzbtBJKv82hOEkKebVCpFy5YtERkZiby8vCoJOp8mFHgSQsok8/IVxG3aAo9Wz9i8ADNiMRp9MAtSN+qxtjplqDOx++af+OfeKTAMg4ENe0EiMl7q09UqAMbOhFycnNEyoAmyCnPQIeRZuMqcwTAitApsCk+Fe3V+BPKY4jgOAAf1rQvQpMYKlkm9g0oMPMUunhAp3SDx8IPMJxQeHYdATEOaEEKqgSn4TE1NRa1atSjorEAUeBJCSnX765VIO3EKYFlIXV3h0qC+1TpujRtR0FnNHuamYNbhRdCzRdUYOaBAV4hm/g0Rm5WIPK0a0Wl3oZQqEOoRhPc6T+LbcRJSHqxei8KYa8i5/A8KYq7B9dnnIZI6Wa0ncfcFxFLAUDRcgEgCRZ1mUDZoC2XdlhB7+EMkqrpqs4QQUhKpVIqgoKAqO56zRCasastV2aGrFAWepMZJTEyEwWCAWCyu0h89sS368y+RceoMP511JRJO/n6Qurnx8/x6dIM8IKA6kgeA8kxqfgZkYikCXfxQzzMUtzLu88seZMajjkcwP52vK0BDn3oA8FQHnU97nnkUhoI8qO9FIPfKERQmRAvaa+pVSZD517HahhGJIfMNAWfQwe2ZPnBt2QMiJ6XVejUZ5RniKMozNVtGRgY8PT1rxEsvsUV79Se1jJUCT1LjZGRk8ONe0YW6emnSM8AWFgrmcQYDcm9Gw6t9O4S8+nKNqILyNOeZbdf3AwBGNB0AhmEwotlALDq+CgAgFokR4h6IABdfdAxtDaWU2siZPM15pjz0OenIv/0f1LcvoCA2CmANNtfTZSTaDDwBQNmgDTy71oxrRnlQniGOojxTcyUmJuLOnTvw8fFBkyZNqj/45CwnH8/rZGko8CSE2JQVeRU5N27CpX596HLzkHfrNgDApWE4wmdMhYJuov/P3n3Hx1Gf+QP/zPamVe9dclGX3I0xmGKaMb0TH4RLv+QS0ntyCQmXhHDJLyEh4ZIchBIwGEyxqTZgY2NjsCVZxVa1eq/bd3Zmfn/IWmmkVVlpd2fL8369eKH5zuzss/Kj2X12vkUSHM+hY6wHObEZeKf5AwCAjGHw2tkDAAC7y4GChHxkx2TghsIrkaCLm+90hHgkCALYgXZYGk7AcvYjOHsXNzEQO9ILgefAyOQAAF1uGRSxqZDro0O24CSEhJfOzk40NTUBAAYHB1FXVyd58WlWiXsgsVIXwn5ChScJOitXrpxzzTbif4IgoOPZ3aK2mPIycFYrtGlpWPnVr0BhCK5JPyIhZwRBwMfd1Ximei+GbaN45NoHkKSPhyAIGLGPweaaujP900u/Dvn5D/7Es0jImaUaPfYKxj95A67RvkU/Rm5MgDI+Dcq4dBhWb4YqJfxmgaScId6inAk+04vOSYODgxgcHERSUpJEUQFjToto2wVeokj8iwpPEnS0WuoOKBWB59Hx3POz2hmZDPFbLoA+Jzvoik4g/HOG5Vg88N7/w5nBqbtOL9W9gXvW3Ir3Wj8UHXt9wRVUdC5CuOfMUvAOG5xDXbCcPbZg0cnIldBkF0Ouj4YyNhX6oi1QGBM8TiwULihniLcoZ4KLp6ITAHJzcyUtOiMJFZ6EEABA4/97BALPQ5OS7HF/3Lq1iFpNi2FLweS0wDVjTN0bTe/jmlWXiiYImhznSch8OKsJ9s4z0K/aAEHg4eg8C2trtXu/Mj4djs6zsx4nU+ugzV8LfeFm6PIqaF1NQkjI6OjoQHPz7CEDubm5yM7OliCiyESFJyERThAE1P74vzB2ugaMUonk7ZdBGS1exzHlmquhiqG1HQPt7GAzqnrrAQAXZK5D62gHuPMFaKYxFRanDRdkrqNikyyIHe2HteEjWBo+gr29HhB4GDfu9DizrDwqHoxSA4G1g1Hr3F1oVUlZMFZsh1xrkOAVEELI0sxVdObl5SErK0uCiGbjeB7T+yoxNLkQIYFhsVjcYyL0+uDr1hlOBEFA25NPY+x0zcQ2y2Lg0AdIvuJyyDUaAEDWXXdIGeKihEvOODnWfQfT4XLCytrc+7RKDUqTVqN1pAPXF16Ja1ddBhkTnpMPBEK45MxcBEGAs691Yibasx/B2X9u1jHsUBfUaStntTMMA93KdWDUOsj1Me4vNozll0V00RnuOUN8j3JGeu3t7WhpaZnVHkxFJwDEaaIwNm1bEaZfKFPhSYJOc3Oze/rxsrIyqcMJW4IgoP2pZ9C15yVRO2exwN7Ti6TLL0X8po0SReedUM8ZJ8fijcb38PKZt/DTS+5HVkw61AoVKlKK0WcexLjDjGHbKLJjMpEXm41N6RVUdC5TqOeMJzzngvn0IZhrD8HZ0wzeYZ33eHao22PhCQDanFLIDbHQrVgLhnINQHjmDPEvyhlphUrRCQC8XTy5kMDT5EKEkDAxWXR2vvDirH2xG9ah4HvfBhOmU3kHmw/aPsLjp57HuMMMAHimei++d/GXAUzceYpS6937lHIFsqLTkGRIkCxeEnycg10Yfu9p2FqrIThtCz8AAGRyMArlrBk3DYVboEzIoO7bhJCQNlfRmZ+fj8zMTAkimh9nM4u2GUGY48jQRoUnCToJCQngOA5yOc3M6S/n/u8JdL/8qriRYZD9b7uQfvMNIfehM1RzpmOsG+80H3EXlgBwsqcGdf0NKEqamMgpNzYLibp4rIjPobucPhSqOTMdzzrQ/cQP4Ow7t6jjZdoo6FauhyI6EQLnAiNXQJ2UDWVCBpTxaXRncwHhkDMksChnpNHW1obW1tZZ7cFadAKAXq7E9D4qclDhSUhApKWlSR1CWGv537+j57X94kaGwYqvfAnJ2y+XJqhlCsWcGbQM48OOk1gVn4vm4XNwcE73vppphWdaVDIQJVWU4SsUc2YSZzNh7MTE3zCzwPIlcn0MtCvWIqrsEmgyCsDQUjtLFso5Q6RBORN4TqcTnZ2ds9pXrFiBjIwMCSJaHMWML/5kNLkQISTUDbx/OOyKzlDFQ8COVZdif8O7KEpaiVM9tUjQxeE/NvwbSlIKpA6PBBHeboFMMzExyfCh50T7VMm5s5Y+kemjoYrPgK5gM/SrN0NpjAtYrIQQIiWVSoXy8nJUVVWBZVkAwV90RhIqPAmJEKNV1Wj4/R9mtceuXUNFpx/ZXQ48d/pVrEktQllKkbs9SR8PQRAgYxjkxmbBoNIjJyYDqxPzJYyWBAuBc8HadBKmqoOwtpxCym3fhb2rcdZxcp0RcmM8eKsJyqRsqFPyELftTsh1RgmiJoQQ6RkMBnfxmZ2dHRJFp2larycAYCWKw9+o8CQkApibmlH/4K+BGbOkGUuKUfC9b0sUVfh74tTzeLf1Q1hZG073ncGvr1wN+bSujgzDQKPQwMra8G/lNyNGS2ulRjrnQAdM1QdhPv0+OMvU5PqjH74MTVaRx8foVm+GKi4NxjXbwcjpbZ0QQgwGAzZu3AilUil1KIsyytlFRRkbnj1tqfAkwefMmTNwuVxQKBQoKKAuh8tl6+5G3c9/Ad5uF7UbVq5A6s4dkKlUEkXmO8GYMw998Bec6Kpyb7ePdeGZ6r3YseoyxOti3e3XrLxEVIySwAimnOEdVpjrjsBUdRCOrgaPx7jGB6GMTwc71CVqV6fkTay5SRMD+V0w5QwJDZQz0gqVojOSUOFJgo7T6QTLsuDDdA2jQHIMDaP2pw+AHRsXtWszM5Fw0VYkXLBZosh8K9hyxuywIMOYijMDTTA5p9bmerPpfcRqo7Fz9XZ3GxWd0pA6ZwSBh62tFmPHXoattRrguXmP58wjEJziL4/iLr7DnyGSGaTOGRJ6KGf8RxAEnDt3DjKZDNnZ2VKHQxaJCk8SdBQKBQRBgEJB6bkcLrMFdT97AI7+flF7dFkpVn3r61BFh0+3zmDLGbVChSvyL0J2TDr+34f/gAABifp4rEktxtUrLpE6PALpcsY1PojxygMYP7Fv1oLhnqgzViOq/DIYCi+Ea3wQtnOnEVV2CWRqXQCiJdMF23WGBD/KGf8QBAGtra1ob293t4V68SkoxHdnw7SnLRWeJPgUFXkex0QWj3M4UPeLB2Ftaxe16/PzUfD970Kh00oUmX9InTOjtjFYWBvSjSkAAKVciQR9HOJ0MajqrYOVteE/Nt4LrVIjaZxkSiBzRhAE2JpPYrzyAKxnjy94PKPUQLdyHXSrNiKqeKu7XZWYCVVicK5BFwmkvs6Q0EM543ueis7W1lYwDIOsrCwJI1uelNIiVPadcW+rNOH5eYEKT0LCjMBxOPvQ/8BUf0bUrk5KQuH3vxN2RaeUxu0m/OaDv6A4aRUyjKnuwnMSAwZf2LALMhp/F7HsnWdhbakEAMiN8XMfyDBQxqVBlZwLRWwKGJkMutyywARJCCEhwFPROSnUx3MqYqIwljZVlhnUVHgSQoKcIAhoeuRRjJz4WNQu02gQt3EDZKrQvjAHk+Odp/DI8SfgcDnAMAzitDEAAF7g3YUmwzBgwrbDDPFEEASAd4GRK+HoO+cuOgFArjFAEZ0E19hU93eZzghVci5USdlQJ2VBnZIPRUwSZKrw/NBBCCFLIQgCWlpa0NHRMWvf6tWrkZqaKkFUxFtUeBISRs793xPoP/iuqI1RKpF4ycVQGPRQhtG4Tim9ULsPu2tec2+fHWxGVnQauk19GLQMoyylUMLoiBR4hxWm0+9j/JM3EFV6CWK23ASFIRbGiu0Yr3zHfZwqJRcu88hEt9mUXGgyCxFVegkYhr6gIIQQTyKh6IxT6rFu3ObeVkUbJIzGf6jwJEGnr68PHMdBLpcjOTlZ6nBCRuMf/4T+dw6K2hi5HIkXb4UqJgZZd4XvDJiBzpmN6RXYU/s6OGFqJtKT3TWI1hhxY+FVfn9+sny+yhnnQDtGDu2GpfEEwLkAAOMn30T05ush10dDEHjIFCrwronFwZUJGUguvhiq1FwoohNpGZQQQu9NxFuUM8snCAKam5vR2dk5a19BQQFSUlI8PCr0qOVKxLmmZj9m2PCcCZkKTxJ0+vr6wLIslEolXagXqelPj84qOsEwiN9yAdSJiUi/+UZJ4gqUQOXMZDfarJh03FZyLZ49/QoAIDUqCWtTS3Fb8bV05ypELCdnBM4Fy9njGPngebADs7+Bd40NwNp8CvqV68EwMiiiE+Ac6oaxYjsU843zJEGN3puItyhnlidSik5gYn4ORqEEzwsAAJ6jwpMQEoRGqqrQN7PoBBC3YT206WnIvPN2KoaWQRAEvHb2AGwuO64vuAIahRoAcEPBlajrb0Rh4gqUJK3GqoQ8+j2HOZdpGOOfvImxE6/NWlNzJuvZj6BfuR4AYCi+KBDhEUJI2IikohMAhpVqVOeUwWo2g+cFqFVarJA6KD+gwpMEndzcXPA8D5mMuqAtxshHn0AVFwvn4JC7Lbq8DPEXXoCkS7ZJGFng+CNneIHHmYFm1PSfBQCsiMsBy7HuwlMuk+OH2/6Tis0QtdicEQQB9vY6jH+8H5azxwFBmOdoBsr4NMRf+Rloc0t9GzCRHL03EW9RziyNIAhoampCV1fXrH2FhYVhefe449BhJLzyiXvbrpYB90oYkJ9Q4UmCTlRUlNQhhIz2fz0HhUGPpMsuxXhdPcZr62BYkY+C738HCm3kLJvi65wZs4/jkeNPoKq3DttyNiNRH4+m4XNoGj4HAFifVoq8uGwqOkPYQjkjCALGP3kDY8dehmtsYN5jGaUaqpQ8qFPyEHvhLZDraRKvcETvTcRblDNL09zcHFFFZyShwpOQEDVWW+v+mZHJEF1SDE1qChK2bomootPXWobb8NAHf8WQbQQAUNVbh4tzNkMln1qKJjM6TarwSIC4RvswduyVeYtOuTEe6tQVUCZkwFixHcqYpABGSAgh4cloNIJhmInlqc6jojM8UOFJSAhix8YwVl0zq10dH4/YiorABxRG3j933F10AsCofRwnu09jc+ZaAMCtxTvc63SS8GVpOAFV2grRmpsAAJkcqqQsqFJXQJOci6i1V9Kdb0II8aGkpIkv8erq6gAARUVF7rZw5eJ5UVEWrmuAU+FJgo7D4YAgCGAYBmq1WupwglLP/jc8tmfeeXuAIwkOvsiZk92nkWJIxL+V34xzo52oH2gEAMRqopEbm4n8uGysS6Nxe+HC4XDAZRqGtfYQjAWboE7OEe2P3rADcq0RtuZTEJw2yLQGqFJXQJWcA1VMMqLWXEEFZ4Sh9ybiLcqZpUtKSnL/7sK96ASAzG1b8aHBBEHgIQDQqXVSh+QXVHiSoHP27Fn39ONlZWVShxN0+g99MDHttlwuak+/+caI/SC8nJxxciz21r8JYOLuZmpUMr655XP4/tu/QoI+Ht/Y8llEa4z+CJtIQBAE2Npr0bn/75APd4CBAGGkB0k33i86jpHJIVNpoM2rAKNQQhGTDGP5ZdSdNoLRexPxFuXM8kRS11reZYNDZnN/WcEJ88+cHqqo8CQkhNh6e9H8xz9BptUgftMmqOJiAQCGFfmQ07epXnPxnLvoBIBB6wi6TL2IVkfhJ5d+HfG6WChk8nnOQEIF57Bg7NirGD/5FnjrmOjNz97dCIHnAEwUnJPU6SuhiE2GKjFT1E4IIWT5BEGAxWKBwWCQOhTJuUZ6wQ53Y3IgjyxMS7TwfFUkpMXExIDjOMjl9EFvOkEQUPezX4B3OsE7neh7+x0Yi4tgLC5C3Ib1UocnqaXkTNtoJ/QqPUqTV6N+oAmu84XH0fZPoFdqce3qy/0VLgkga/MpjH64F/bOswDHejzGNdKLkQ/2QJWUCUPBBe52RVQcFFFxgQqVBDl6byLeopyZmyAIaGhoQF9fH0pKShAXF9nX2liFFhWmqbuccmV4ThJJhScJOllZWVKHEJRaHvs77N09Uw2CANf4OJIuvUSqkIKGtzlztP1j/On4E7g4ZxM+v/5T0Co0+Kiryr3/qhWRsf5pOHP0t6F/7+/BDrTPf6BMDlViFji7Gbr8tYEJjoQkem8i3qKc8UwQBJw9exa9vb0AgJqamogvPjUyBRJZzr0tU4bnJIZUeBISAgSOA+9wQGE0wjU+DgCQaTRIv+lGaFNTJI4udAiCgD11r2N3zasAgAMtR5AWlYKdqy/HR11VUMtVuKHwSomjJMvBjvSib89DcPa1ARDmPE6mMUCVmg9N+kpEb7oeco0+cEESQkiEmll0AgDP86itrcXmzZuhVCrneTQJdVR4EhIChj48BnViAlKuugKmM2cxXlePuA3rkHTZJVKHFlLeajqEl+peF7U9VfUiVsRn47biayN2cqZwwNstGDn6IsaOvwrw3JzHKeLSoE5bAVVyLqLXXw2ZQhXAKAkhJHJ5KjoBgGEYFBYWRnTR2T80iAbzVJdshcuFHOnC8RsqPAkJAaqEBAgC4DKbYSwugj4vF1l33yl1WCFDEAQ8X7sPAPCFDbvwyPHH3fuuyL8Iq+LzqOgMcbyLxfjHb3guOuUKqFPzEVWyDbrVm6AwxAQ8PkIIiWSCIODMmTPo6+sTtTMMg+LiYiQkJEgUWXDoPtOImLqp9y+7yiZhNP5DhScJOk1NTXC5XFAoFFixYoXU4QQFY8FqoGA1AGC0+jTA85BrNBJHFTzmy5npy6UAQK95ABUpxajqrcXdZTfh+gJajzGUCTwHRiaHwhCD6M3XY/Tw7qmdMgXU6SsRVXYJjBXbRY+j6wzxFuUM8RblzIT5is6SkhLEx8dLFBkJNCo8SdCxWq3uda+ImMBx0OfkQGmMkjqUoDJfztT1N85qy4/LRrwulsZzhjBB4DFy+Hmok3KgL9gEAIjZdD1MJ98CZzNBm10CfeEWRFVc7vGLBbrOEG9RzhBvUc5MFJ319fXo7+8XtVPRGZmo8CQkSLEmExR6PRjZ1MxmjFxOReci2Vk7NEoNVsbnICc2AwDg4l042HIUDMPgc+vukjhC4i2Bc2H81DuQKdVgxyY+xKhT8+AaGwAAyHRGJF7/n1BEJ0EVnyZlqIQQEvHmKjplMhmKi4up6JyGkysioiiLhNdIQkxZWZnUIUhOEASc/fVvwZpMyP3MpxFDv5N5zcyZ184ewL6GA3jgsm8hQT8xPTsv8Dh07jhSDUm4KGejFGGSZbC116L/5T+AGx+EOrMQ2pxSAMB41UH3MdHrd0CXV7Go89F1hniLcoZ4K5JzZr6iM9KXTvEkQRUF07TtcL1HHp6LxBAS4gbefR9jp2tgPdeG2p8+gHNPPAnO4ZA6rKAnCAL+Vb0X/6x8AUPWEfzi/T9g3D5xKed5Hluy1lPRGWJcphH0vfgwep78CbjxQQCAo/MsOJtp1rFyHfUGIIQQqQmCgLq6Oio6ySxUeBISZNjxcbT+4/GpBp5H75tvo/vVfZLFFCpeOfM2Xpo2kVC3qQ8PHnoETo6FQq6ASh6u3yGGH4FzYfT4K+h49Muw1B+dsZOHrfmUqCnu4jsCGB0hhJC59PX1YWBgQNRGRScBqKstIUHn3ONPwmUS382JXbsGAstKFFFocHEujDvMMKoNGHeY3e2bM9dSwRlibG01GHj1T3CN9XvcL9fHQJNVBACI2XwDZCqa4ZkQQoJFcnIyzGYzOjs7AUwUnaWlpYiNjZU4suClkStFXW3lgmSh+BUVniToDA4Ogud5yGSyiFvXaex0DfoPHBS1aTMzoE1PQ/pNN0gUVfAbHBzEJ701WB2VAz6bx7utR2FjbdiavRGX5V0odXhkkVymYQy98wQsdR94PkCuhDanBKrUfMRecCNkKu2SnyuSrzNkaShniLciNWcYhkF+fj4AoLu7m4rORVDJ5KLtcO2SSoUnCTrd3d3u6ccj6ULNsyyaH/2rqI1RKhG7dg0A0Lqd8+ju7kacUw+5i4FWqcFF2RthcpiRbEiEUW2QOjyyAIFzYezEfowcfg6C0+7xGFVyDjQ5ZdCkrYChaPlfJkTqdYYsHeUM8VYk58xk8ZmWlgadTid1OEFP4HnxtkRx+BsVnoQEic49L8HW1S1qiykvg1yrRdZdNH5tITJm6vvBKLUBUWoDbi/ZKWFEZDFs505j8M2/gR3s9Lhfro+BdsVaKIwJiN6wA3ItTSBECCGhgGEYKjoXyaER9+DhZtwBDRdUeJKgk5mZ6e6aEilsXd3ofH6PqM2wciUKf/BdMPLwvPgsR9d4L16qewM3Fl2FDGOqO2cECGCcSqRGJSPFkCh1mGQBptPvY+CVP3jcxyg10GQVQZWaB0PBBVAlZYNhGJ89dyReZ8jyUM4Qb4V7zvA8j8bGRmRlZUGrXfrQBwIMOcRzezjBz3FkaKPCkwSdSBsHIAgC6h/8NQSXa6pRJkP+f3yBik4P6gea8Mv3/wAnx8Kg0uHTa28X5UwCIqs7UyhyDnXBXDsxjlOZkDHrbmdU+WUwVFwO8By0WcV+iSHSrjNk+ShniLfCOWd4nkdtbS2GhoYwPDyMiooKKj7JgqjwJERiHc89D1un+IN32nXXwpCXK1FEwauqtw6/PvxnuHgOAPB643soSS5AiiERGdGpEkdHFiIIPEYOPy9q0+ZVwDU2AIF1QJWSh4SrPwdN+iqJIiSEELKQ6UUnADgcDlRWVlLxSRZEhSchEnKOjaFrz0uiNoXBgLgLNksUUXA71nHSXXQCgAAB/3fyOdxZegMVnkHMZRqBc6gT9va6Wftkah20eRUQXCxSbv8emDAd10IIIeGA53nU1NRgeHhY1O5yueB0OqnwXCKWd2H6wm++G1gSXKjwJEGH46YKC3mYdzWt++nPwTudoraYNRWIWpEvUUTB7bNr74JWqcVrZ98BACTpE3Bx9iZsyVznzptwz5lQwrucGHz9f2GuOQTdirVQJed4PE6VlI3YC28JaNEZSdcZ4huUM8Rb4ZYzcxWdcrkcZWVliI6Oliiy0JegicbYtG0FE/r54gkVniTo1NbWuqcfLysrkzocvxn88BgsredEbdrMDOR94bOQKZWeHxTh5HI5/q38ZjQPt8HkMGNL5jrcWnItqqurIyJnQom9uwm9ux8Eb5l4K7W1VkMZnwZGoRIdp8sthyazIODxRcp1hvgO5QzxVjjlDBWd/sWzDtG2INDkQoQQHxF4Hi2P/U3UxigUiF27BsooWi5ikpW1QS1XQT7tThjDMLit+FrIGBmKklZKGB3xROBc6NvzEKxNnwDC1EpkAmuHra0Wuvw17rbYrbdS11pCCAlyHMehpqYGIyMjona5XI7y8nIYjUaJIgsfnHlUtM3wVHgSEhBRUVFwuVxQKMI3PQfePwx2WHwBjy4rQe6/f1qagIKMIAg42VOD5uE23Fh4FeQQFyclyatF25GQM6HA2d+Gnmd+Ds4y6vkAgYcgCIjZdB3kGn1AY5uJcoZ4i3KGeCsccoaKzsDQypWwTtuWQ5jz2FAWun8JJGzl5ob3bK6cw4GWv/1d1KaIikLKlVdIFFFw4XgO//Xu/2DENo4Ls9bjYMsRZEWnIysmDQaV52Il3HMm2Ak8h7FjL2P4/WeBaZM/TZLpoqFbtR7xl+6CXBccH1IoZ4i3KGeIt0I9Z+YqOhUKBcrKyqjo9CEVI17rVRam0wtR4UlIgDU/+hg4s0XUFlNRjrjNmySKKLj87ujfcHawBQDwYcdJbMlch3GHGTX9Z3F7yU6JoyMzOYe6MfDqH+HoavCwl4E6sxBR5ZfCWH5ZwGMjhBCyNFR0En+gwpOQALJ2dGDw0GFRmzo5GXGbNoBhwvPbLW/sO3sAH3VVurd7zf043nUKmzPWYufqy6ULjMwiCDxGj+zB6Ad7IHDsrP0ynRG6VRuRePXnwMjprYYQQkIFx3E4ffo0RkdHRe0KhQLl5eWIorkofM7Ou0Tbs/sOhQf6NEBIADX+4U8QOPHlJGZNORIu3CJRRMElQR8HpVwJ9nwhw4BBhjEVV63cBr1KJ3F0ZBI71o/e5/4b7ED77J2MDNGbr0fs1tsgU2kCHxwhhBCfo6LTvwZcVlFR5gjTexFUeJKgc+7cOfdg/JycHKnD8Rnn6CgszS2iNn1eLrJ33Q1GJpvjUZFlU8Ya/PSSaPz6g0dhcphxS/E1uK1454J3g8M1Z4IRzzrR/fgPwJlHZu1TRCci6cb7ockI/PIo3qKcId6inCHeCtWckcvlKC0tdd/1pKKT+AoVniTojI+Pu9e9CieNv/+j+G6nTIaUa66O+OVTeJ7H643vYn16GZINiViVkIdfXv5tnO47iytWXLSoc4RrzgQbR3cTLE2fQJtbDvPp90T7VKkrkHzzN6GMSZIkNm9RzhBvUc4Qb4VyzkwWn/X19cjOzqaik/gEFZ6EBIDLbsd4Xb2oTZeVheQrInvcoiAIeKFuPwCgbbQLyYZEAEBKVBJSokKjgIkEgiBg5PBu97YiJgnqtJVwdDeCUeugW7kBsRfeHDJFJyGEkIXJ5XKUlJRIHUZEcMnkEVGURcJrJCGmqKgIgiCE1WQ77U8+A97hELXFbaYJhZ6v3ef+uWOsG+UpRXByTkSpDV6dJxxzJhjwThtGj73icZ8mpxSQy6HJKED0+h1QGOMDHN3yUM4Qb1HOEG+FQs64XC4wDAO5XL7wwcRvUletRGPz1A0KuUYtYTT+Q4UnCTqhvNDyXHinE7rsLFg7OgGehzo5GVl33C51WJLheR6PffIMMqJSYHXZAQCcwOPlM2/hgsy1Xhee4ZgzUhs9sR+mynegW7XR44cmRq6AoWgrjGuuCMlZaylniLcoZ4i3gj1nXC4XqqurIZPJUFpaSsWnhFSpCegtmCo2DV5+DgoVwf0XQUgY4Gw2qOJiEX/BZsSsdcB67hyU0TERPaHQszWv4GDLEUSpDbh6xSUQILj3ZUanSRgZ4R029L/yR1gbjgMAnFFxUKetnHVc9MadkGv0gQ6PEEKID0wWnePj4wCA06dPU/FJ/I4KT0L8rOf1N90/y9VqRK1ejejSyB0zUd1bj5fr3wIAmBxm7K1/A+vTy5FuTMHtJTslji6y2dprMfDKH+EaG5hqa62GIiYZct3UYuGxW24Gowi9yTIIIYTMLjoBYHR0FGfPnkVRUZGEkUUuo0KLAsvUkCy1jO54EhIQo6Oj7jERMTExUoezbDPHdgKAsTgyL+yCIODJqhdFdzh5QUBebCauL7hyyecNt5wJNN7lxMj7/8LYsVeBaf82Ezs5OPvOQZtbhpgLboRMGR7jTihniLcoZ4i3gjFnPBWdAKBUKpGdnS1RVESvUCPT4XJvyzTCPEeHLio8SdBpb293Tz8eLBfqpbJ2ds1q06alBfVEA/5kc9nxg4u+jEc+egKn+84AAD5VfiN2rt6+rPOGU84EmqO3Ff2v/D+wAx2z9jFKDTQ5JYi7dBfUiZkSROc/lDPEW5QzxFvBljMulwtVVVUwmUyidpVKhfLycuj1NHxCKoLAi7ZdLCtRJP5FhSchfjRWVT2rLXbdGgkikd6ZgWacGWzCjYVX4Yfb/hOvnHkbDYMt2LHqMqlDi0gCz2H44FMY++g1YMYbHgBoMgsRd+VnoE7OBsNE7nhkQggJB1R0Bjer1oDeiq0wjY6B53koVTqskDooP6DCkwSd1NRU8DwPWYhPvmPt7AKjVCC6tBTm5iZwVhsAQGEIz37787GzdlT3TUwTfrDlCKI1RqyKz8P1q6+AzAdFTbjkTKA4+9vR8+wvwJmGZu+UKxB3yacQvfFaMLLwnWSCcoZ4i3KGeCtYcoZlWVRXV3ssOisqKqDT6SSKjExqfO892F894i7MnBo5cIekIfkFFZ4k6CQmJkodgk/0vvEmel7dB7lOh4SLt0KdkIDEiy+SOixJvHL2HffPg9YRDFpHAABFSbNnS12KcMmZQBh88+8YP/kmwHOz9sn1MUi65dvQZhZIEFlgUc4Qb1HOEG8FQ85Q0RkiXBw07LRxnbLZPZHCAX1tR4gf8CyLgfcOAQA4qxV9b7wF58goNMlJEkcmjVRDEi7Pu1DUtmPlpRJFE5k4pw2df/smxj/e76HoZKDOLETstjuhyVgtSXyEEEJ8i2XZObvXUtFJpEB3PAnxg+GPPoZrxoU+7bodEkUjncPnPoLNZcf2vK1gGAYquRJOjoVCJodBTeNJAoVnHRg98iJcppFZ+2QaA3SrNyJm406okmhGQ0IICQeTRafZbBa1U9EZnJwcC5XUQQQAFZ6E+IHcoIexpBjjtXWAIMBYUgxtaqrUYQVUt6kPj33yDBwuB6r76vHF9bvg5CZmabup8GqJo4scptPvgR3pAyNXQF94AUyn3gH4iSnbVSl5iNl0PQwlkdkFnBBCwtWZM2dmFZ1qtRrl5eVUdAahzPUbUGXrc2+rNeH55TwVniTonD592j39eGlpqdTheE3gOLhGx1D4w++Ds5jRf/A96HIi604Sy7H4fx/+HQ7XxBqmH3VWonm4DQ9c/i3Ea2N9vpxMqOeMvwwfek60LdcZoVu5DtamT6BbuR5J1381bNbl9BblDPEW5QzxlpQ5s2LFCpjNZjjOryWuVqtRUVEBrVYb0DjI4siiNBjP1MNut0EQBOgUtI4nIQEhCIL7v1A0fuYMbN3dcL79DhR6PXRZmYjbsF7qsALqRFc1WkfE60KWpxQhQRfnl+cL9ZzxB2vTSY/tqqRsKGKSEX/5PRG7nixAOUO8RzlDvCVlzmi1WlRUVKCyshIAqOgMcs7+Njj7Wt2T78jCtEQLz1dFQppWq4VCoYBSqZQ6FI/G6+phLCqcc//Y6VoAE5MKcVYrHANA/AWbF3xcOJExDG4ouBIHW47A5LQg3ZiC+9bc7rfnC/acCSTOOo6xj1+HIAgeC0ttVhG0OXS3hnKGeItyhnhL6pyZLD4nfybBK0quxkqr072tkIfn/K9UeJKgs3Klb5bY8If2fz2Hjmd3I/ueXci45aZZ+wWOA2Z8s6k0GtG55yW0/fMpZN55O7LuCsOFmaYRBAHtY91QypXYlrMZH3dX48Ks9VAr/DdsPphzJpCcQ93ofe6XcI30wrjhWhhKLoZzuBvscA8AIOaCGyO2a+1MlDPEW5QzxFvBkDNUcIYGg1yFHDvr3pbpwvPfLTzLaUL8YLyuHh3P7gYAtP3zKXTueWnWMZzDiahVK6FOiAcjlwMA7H19aPvnUwCAjmd3Y7yuPnBBS+Cl+jfcP2uUGmzN3oi82Mga4yoFW1stuh//PlwjvQCA8RP74OhrhTolDwAQu+VmKjoJISTMOJ1OtLe3UxdwEhKo8CRkkYxFhci+Z5d7e2bx6bLaYKqvR0xFOZKv2I7UHdfA1NCI7pdfdR+Tfc+usO9uW5ZciK1Z4jGtFalFEkUTGUzV76HnmZ+Bt4tnMBw9+iLk0QmIu/gOMArqHkgIIeHE6XSisrISLS0taG5upuIzhJlsVnTxMvd/3SwvdUh+QV1tCfHCZPfayTuYk//PuOUmDH5wBM1/ehSq+DgkXnoJ2LExjJ485X7sXN1zw82K+BzYWLt7O0qlh4yh77j8QRAEjLz/LEaPvDBrnyolDym3fx9ypUaCyAghhPjTZNFptVoBAJ2dnQCA/Pz8iJ44LlQ1n6yC4uOpYtOmskgYjf9Q4UmCTmdnJ1wuFxQKBTIyMqQOZ5a5is/h4ycAAM6hYXS98KLoMeFcdFqdNjxy/HHcXX4jMowTa5VqpxU7V6+8xO8xBHvO+APvcqL/xYdhbfx41j5tbhmSb/0uZCoqOucSiTlDlodyhnjLXznjcDhQVVXlLjonDQ4OIjs7mybAIkGLCk8SdIaHh93rXgXrm/tcxacn4Vx0CoKAxz5+Gh93V6O6rx73rbkdl+VdCIZhcGvxjoDd6QyFnPEldqQX3U/9BNz40Kx96vRViN58IxWdC4i0nCHLRzlDvOWPnJmr6NRoNKioqKCikwQ1KjwJWaKZxacn4Vx0AsBbTYdwtOMTAICTY/HXj5/GqH0ctwSw6Iw09q6z6H32l+DtM7vhMNDmr4E6bQW0uWWSxEYIIcR/HA4HKisrYbPZRO1arRbl5eXQaOgLx1DFMkxEFGWR8BpJiFm1atWcaxAGm4xbboLA82h/6plZ+8K96OQFXjSDLQDolFpcnL0p4LGEUs4sx9jHr2P4wBMQXKx4h1wBfcEFUMalIvai28L+9+ALkZIzxHcoZ4i3fJkz8xWdFRUVUKtp1vJQlqSJgWnadrjet6bCkwSdUPvGTpeZOatNplKFddEJAC/U7se2nM2o7q1H80gbAKAspRAJ+riAxxJqObMUI0f2YOT9ZwFBPNMdo9bBULwVhuKt0GYVSxRd6ImEnCG+RTlDvOWrnKGik4QLKjwJWaaWv/1jVhvvdKJzz0thW3zy54sfuUyONWklSDIkYMg6gstyL6S7AX4wXnUQI4efn1V0yg2xMK67GrFbb5UoMkIIIf5kt9tRVVVFRScJC1R4ErIMHXtehHNgwOO+6UuthBsGDG4rvhZmpwV95kEAQLoxhdbr9APLmeNwjQ1AX3QhLDWH3MWnMj4d8dd8Ebps+p0TQkg4stvtqKyshN1uF7XrdDqUl5dT0RlGVDJxSRaus2SE6+siIcxsNsNkMsFsNksdyrw697yE9n8+PavdWFri/rntn0+hc89LgQwrIBiGAcMwiFIb0GueKLxvLrxasnhCJWe8JQg8HP3nAADKmCToCjYDYKBKXYHkO35ARecyhGvOEP+hnCHeWk7OUNEZWTRyceEpFyQKxM/ojicJOi0tLe7px8vKgnN2zs49L3mczVau02HVN76GgXffn7XUSjjc+fQ0ScLmzLVQyOQSRTQhFHJmaRgYK7aDHe2Fa6QPACBbsx0xm66DKjZF4thCW/jmDPEXyhnireXkjM1mg9PpFLXpdDpUVFRApVL5MkwSBIQZhWaY1p10x5MQb81VdAKAJjUFCq0WGbfchOx7drnbw+HO598/eRYPHnoENqd4nInURWc4YxgGCmM8tFnF0OaWAwASrrgPqvh0iSMjhBDiT7GxsSgpKXF/2UtFZ3jjVeI72EKYfraiO54k6CQmJoLnechkwfe9yHxFJzBReE6auc5nKN/5rOyuxVtNhyBAwI8O/hZf2/zvyIoJnuInmHPGWwLHgh3pgypharFxQRDA2UyI3XIzGEW4TrIeWOGUMyQwKGeIt5abM3FxcSgpKUFrayvKysqo6AxjvU6TaNsOfo4jQxsVniTopKamSh2CR+N19aKi01hagvHTNe5tmUoFfV6e6DGeik9jYQGMRYUBiNg3zA4Lfn/s7xDOd/zoGOvG99/+Fb64YRcuygn8mp2eBGvOeEsQBAzs/wvMtUeQdMNXYSjcAmDizqc6OUfa4MJMuOQMCRzKGeItX+RMfHw84uLiaMZ4EhboaztCFslYVIjMO28HAGTfswuOvn7RfnVSEuI3bpj1uOndbjPvvD2kik4A+KD9Y9hdDlHbyvhcbEgvlyii8DXy3jMwV78HcCz6X3wYIx88D2HmwA9CCCFhhefnv7tFRScJF3THkxAvZN11B2LKy6BOTJzV5VadnAS5TuvxcRm33BRydzonFSetxGfX3YkX697AoHUYCbo4XLPqUmiUtJi6L1mbPsHoUfE44JHDz0OVnAf9ynUSRUUIIcSfbDYbqqqqkJeXh6SkJKnDIRJxcE5EwjzFVHieJwgCXnvtNezZswf19fWwWq1ITEzEhg0b8KlPfconM9idPHkSTz/9ND755BMMDg5CrVYjOzsbl112GXbt2oWYmJjlvxDid8aiQrQ9KS46GYUCUYXzF5WhWHQCQGZ0GjKj03BR9ib87N3fY1VCLjZlrJE6rLDiHGhH7wu/wcx57HSrN0GTvkqaoAghhPiVzWZDZWUlHA4H6urqAICKzwiVqInB+LRtJUOTC4Utu92Or33ta3jvvfdE7V1dXejq6sKrr76K+++/H5///OeX/By/+c1v8Pe//13UxrIsamtrUVtbi2effRZ//OMfsWYNfaCvr693Tz9euEAxJ5XBo8dE2+rkZEQXh/eaigqZHF+94D4k6xOkDmWWUMiZuXDWcXT/80cA5xK1a7JLEFV0IeS6KIkiC2+hnDNEGpQzxFvz5YzVakVVVRUcDofoeLlcjvj4+ECHSqQ2o7u1INDkQmHrhz/8obvozM/Px+23346EhAR3QWi1WvHwww8jOTkZN9xwg9fn//vf/+4uOpVKJW6//XaUlpZifHwcb7/9Nk6cOIGBgQF8/vOfx4svvojMzExfvryQw7IsWJaVNIbxuvo571Cy4+Owd/eI2jQpyZCpVDA1NCJ2TUUAIgw8uUyOFEOi1GF4FAw5sxQCx6LnqZ+Ct1tE7crELKgzC6Ev2CxRZOEvVHOGSIdyhnhrrpyxWq2orKyctU6nXq+H0WgMVHgkiLjGB0XbzALjfkNVxE8udOTIEbz22msAgM2bN+Oll17Cpz/9aezcuRPf/e538cILL7i7wD744IMwm81enX9sbAyPPPIIACA6Ohp79uzBT37yE9x0002499578eSTT+JLX/oSAGB8fBy///3vffbaQpVSqXT/J4X2fz2H09//0Zzrbg4cOizaZuRyxKypQP/Bd3H2Vw+h4/k9gQjTr8xOC3pM/QsfGCSkzpmlEAQBvc89COdAu6hdHhUH3cr1iLv4DokiiwyhmDNEWpQzxFuecmauotNgMKC8vJzyK0Kp5eKutTKE58SCEX/H8x//+AcAQKFQ4Be/+AXUavHQ3vz8fPz4xz/GN7/5TYyOjuL555/Hfffdt+jzHzlyBFarFQDw2c9+FqtXrxbtZxgGX/3qV7Fv3z60t7fjwIEDcLlcUCgi959Gyi5M43X16Hh2N4C5193see110bY6KRG2jk70vfkWAKDrhRcRt25tyI7prOypw/HOU7g09wIoZHIYVHpoFOqgnlUvFLu9Db7xGGyt1aI2RqWFvuhCxF18R1D/vsNBKOYMkRblDPGWp+61norOqKgolJWVUdEZwTSM+HO/HOH5GSCi73iOjo7i6NGjAICLLrpozi6uO3bscPe3f+ONN7x6js7OTvfPBQUFHo+RyWQoKSkBMDHQfGRkxKvnIL5jLCp0L30CTBSf0+98uqxW2Pv6xA9iZO6iEwAy774zZItOi9OKh4/8FQdaPsDjp57HW02H8OrZd/BJ92mpQwsrlrMfwXTyLXGjTA598VbEXngLGHnkfvFECCHhiIpOQiK88Pz444/daydt3jz3WCqZTIYNGybWZ6yqqsLY2Niin8NgMLh/7ujomPO47u5uAIBcLkd0dPSiz098b/q6m4C4+Oze+8qsAeD28/92AJB+681Iv+G6wATqB09XvQQHN/Gm2DR8Dm82vQ87a8fqhDyJIwsfzv529L308Kx23epNiL3wZsi1NJkQIYSEE4vFMmfRSd1rCQC4ZkwmFJ4dbSO88GxsbHT/vGrV/EsWrFixAsDEuKyGhoZFP8f0ZVieeuop0exlkz766CNUV090udu4cSNUKtWiz0/8Y67ic+ZsttOlXLsDqTuuDkR4ftEy3IYDLUdEbbGaaKgVakSpDXM8iniDs4yhd/d/e5zBNvmGr0IZTdPoE0JIOLFYLKiqqpqz6IzkoVVkSg8rnkPGFp49bSO78Ozq6nL/nJ6ePu+xKSkpHh+3kJKSElx88cUAgJaWFuzatQvHjh2DyWRCb28vnnnmGXz5y18Gz/MwGAz49re/7eWrCD89PT3o6upCT0/Pwgf7kafi0zbHv33aTTcg6bJLAxWaX2RGp+G2kp1QyibeBOWMDBWpxbijNPjv4AZLzizEVHMIrjHxpE2TM9gycvrGO5BCJWdI8KCcId5qaWnBoUOHMDQ0JGo3Go1UdJKIFNEZPzw87P45NjZ23mMnZ7YFJsaGeuP3v/89vvGNb+C9995DdXU17r333lnHrF27Fj/60Y9QXFzs1bnD0cDAgHvdq9TUVEljmZxYaHKioZndbIGJ7rXJ2y+Hy2INZGg+p5QrcWvxDmzNWo+/ffIs1AoVbineIXVYixJMOTOf6I07wTAMht55AhB4KOJSoVu1AbEXeL9ME1meUMkZEjwoZ4g3WJbFyZMn4XQ6IZfLERU1MYzCaDSirKyMik4SkSL6jqfdbnf/PHM225mmd3+d/rjF0Ov1+NWvfuW+8zkTwzDIzc0VFbckeMy88zld+s03IXXHNRCE8OmNnxKVhB9u+098c8vnYaQutj7FMAyiN+5Eyh0/gDIxC9EbdsJQuAUylVbq0AghhPiQUqlEXFycqI2KTjIXdsZM9uHzqVIsojPf5ZoaZ7XQuMrp+6c/bjH279+P73//+7Db7UhOTsZtt92G/Px8WCwWHD58GG+99Rb27NmDN954A48//rhoXKgUmpqakJ+f7/52DgAcDgfOnj0LYOLub1ZW1qzHTC4bMzP+wcFB9+RJmZmZorvLHMehtrYWwMR4h9zcXOTl5UEQBDAMg3PnzmF8fBwAUFRUJLpYj46Oor19Yg3E1NRUJCYmip739OnTEAQBWq0WK1euFO3r7Ox03/FetWoVNBqNe5/ZbEZLSwsAIDExEampqci45SZ07H4B/PQvHRRypO4U3xHs7+/HsMUCRqVCXl6eaHIpu93uHh8cFxeHjIwM0WMbGxths9nAMAxKS0tF+wYGBtzdu7KyskRfUrhcLtTV1QGYeFPLyckRPba1tRUmkwkAUFxcDPm0taJGRkbQ3NYCXuCRm5Hj/h0yDAOGYdxjj3U6nXuc86T29nb33f/Vq1eLvrwxmUxobW0FACQnJyM5OVn02Lq6OrhcLqhUqlmzPXd3d2NwcGIh5fz8fOj1evc+m83mHpsdHx/v7iI/mTOdnZ2orq4WzRQ9qb+/H729vQCAnJwc0SLdLMuivr4ewMR6u9nZ2aLHNjc3w2KxAJjoPi+TTX1nNzw87J69OiMjQ/RBg+d51NTUADwPPWdG3totYBgZdPlroMktRXtLC8b7xoG+ahQWFoommBgfH8e5c+cATHT1T0oSj/+sqakBz/PQaDSzxqh3dXW5u3atXLkSWu1UYWuxWNDc3AwASEhIQFpamuixZ86cgdPphEKhQFFRkWhfX18f+s7P6pybmyvZNWK6pV4j8vLy0NLSAkEQ0NjYuOxrxHT19fXuO2Mzl1Po6enBwMCAO4ZQuEZMToyXlpaGhIQE0WND5RoxqaGhAXa7fUnXCEEQoFAooNPpMNOyrxGY+JI6Pz9fdN62tjb3hIZ0jQjsNQJY/ueI+Ph46PV6jI2NITo6GqWlpVAoFHSNOC/crhHL+Rwh1+oxHj/tfqB24m9dqmvEZA76WkQXntMvEizLzlt8Th8U7s3kPwcOHMC3vvUtcByHTZs24c9//rPoInLbbbfhgw8+wJe//GVYLBZ89rOfxb59+2Zd/AKJ4zj3bL+TBEEAy7Lu/TO5XC73/pl4nnfvm3leAO59kwX99N9Pb2+ve//Mu4rTY5rrvJMfFOaLdzHn7dzzkrjoBAAXh579ryN1xzXTXuvEYxmGmfe8nr68YFnW/diZpv8OvT3vfP82HMfhSP8nUMoUiEmIhZ41QCNXuy+I852X47g5Y5oer6d8YVkWLpdLdOFdzHnnysPJnJl83oXOO19+e/s7XDC/bWZoWo+DV6nAF5W7Z62VyRTgGPmyfoc8z4s+AHh6rYv9Hc58rZ7u4i/2d+jva8Rc5/XmGmEwGOByuUTH+OK8k/Eu5rWGwjViOf82wXSNmH7epV4jJl+jp9+/FPlN14gp/rhGTJ53uZ8jMjIykJ2djYSEBPd56BoxIdyuEcv5HQqp8WjfMPUFkGFajzMprhGe/i19IaILz+nfWjocjkUXngt1y50kCAL++7//GxzHITo6Gn/4wx9ERdWkrVu34tvf/jYeeOABjI2N4R//+Ae++93vevFKfEsul8/6g2MYxv0tiqcEVSgUc04HLpPJ3Ps8/SFP7vN0YZ9+3pkX0ukxzXVeQRA8xuXNeTv3vDQ1xhMAo9FAOF+Edr3wIgAg6fLLzh8/8VhGqZz3vJ5eq1KphMvl8viGMf136O155/u3OdLzCWRyOTgIONpzErqxM7g4ZxNSDInumOY6r1wunzOm6fF6yhfl+d+Pt+ddKA+VSiU4jvOYD9PPO19+e/s7nCu/OcsYXHYL9O0fA+f/pjirCTKNwf265svDxfwOeZ73GNdyfocKhQI8zy/4b0PXiIXj9XTe5fwtS3GNWM6/DV0j4D6XP/KbrhFTgv0aMX2Cyunx0jWCrhGT5/IUy/SYFnNeX14jPL1+X2CEcBqc5qWf/OQneO655wAA77zzDjIzM+c89vnnn8ePfvQjAMBvf/tbXHfdwjN91tXV4aabJianufvuu/HTn/50zmOdTic2btwIm82G/Px87N+/35uXsixms9nd/QWY6O7gqUCORDOLzozbbkHiJdvQ+/qb6Hltn7s97cYbkHDRVqhiY6Aw6CFf5JcTUrK7HPjRO79BXlw2EnRTXb9uKboGctncF0CyMMHFovvpn8LZ2wp94RYoYia6t2hzSgGem/g/IYSQsGAymcAwDH12IkvWXfMuKt9+zL2t0cfiss//WbJ4/FUbRPTkQtP7sC80Pfpkn24As8Y7zGWyXzWw8DqhKpXK3W97cixIpLLb7bDZbF5P4uRrM4vO7Ht2IfXaawAwSLr8MqTferN7X/fel9F/8F0Joly6gy1H0D7WjfdaP8S7rUfRY5oYlxOKRWew5Aww0dNhYP+jcHSeheBywlzzPhy9E+MBbedOg7OMSRwhAYIrZ0hooJwhnphMJlRVVaGqqgpms3gtRsoZsljRSh0KrE73f/mee+WGvIguPKcP0J0caDyXyf0Mw8waYL4YDodjwWMmb2vPd7s9EjQ0NKCurs49gF4KM4vO2HVrEbNuDTCtG0PqjmtExWfvvv3o2f96QONcKo7nsK/hoHt7yDqC5uE2XLXC88zLwS4YcmbS6JE9MJ9+f6pBEGBvr4PATbyLGIq3ShQZmS6YcoaEBsoZMtNk0Tk5zm5m8Uk5Q5ZqrvGgoS6iC881a9a4+zUfP358zuM4jsOJEycAAAUFBaJZrOYzfQauyRmp5uJyudyzJC72jirxj5lFpzImBiOfnETV/d9C3QMPYvzMGfe+mcVn1wsvomvvKwGNdyk+7DiJAYt4QesLMtchWrO43CaeWc4ex8j7/xI3yhQwFG8FI1ci9qLbpQmMEEKIT00vOiexLIu2tjYJoyKhStAawJRehLGMUgynFcOUnL/wg0JQRBeeRqMRmzdvBgAcPHjQPVX3TPv27XNPmX3NNdd4PMaT0tJSd3/oAwcOzNud9+WXX3Z/S3bhhRcu+jnCUVxcHOLj42etfxUI43X1oqIz/eYbwZ6f6huCAEtTM8br6jF9haXUHdcg7cYb3Nsdzzx7/pjgtS6tFPdU3Ip47cSU9CvicnBn6fUSR7V0UubMJEffOfS9+D+z2vUFmyDXxyD2ots9TvhApBEMOUNCC+UMmTQ+Pj6r6ASA2NhY0dIelDNksao+/ADVLxxF+4E6dL17Bi3vVksdkl9E9Ky2APDpT38ahw8fBsuy+MY3voG//e1vosGzTU1N+OUvfwlgYv2c2267bdHnVqlU2LVrF/7yl7/AarXi/vvvx6OPPjrrAnTy5Ek8+OCDACZmmLr33nt98MpC18x1qQLJWFSIzDtvR8ezu5F9zy4wM2b6kqlUUEVHz3pc8lVXgGdZ9O7bj/Rbb4axqHDWMcFEq9Rg5+rLcfWKbfig/QTitDEhXRRJmTMA4DKPoPfZXwC8+EOIJrcM2uwSGNdeKVFkZC5S5wwJPZQzBJgqOmcuTxEbG4uSkhLRcCnKGbJoZhsSxqZyym4Pz7lfI77w3Lp1K6666iq8+eabOHXqFG644QbcddddSE1NRV1dHf71r3+5F3z9zne+M6toPH78OO655x4AwMaNG/Hkk0+K9n/xi1/EoUOHUFdXh8rKSuzYsQM33XQTCgoKwHEcjh07hn379rm/NfvhD384azFbElhZd92BmPIyGIsK0fv2AeiyMmHr7oHgckGdkgxDfq7HxyVddimiS0sQu7YisAF7adxhxhuN7+G61duhVWpwSe4FUocU0niXE30v/AaceUTUrkzKgTp9NRWdhBASJrwpOgkhs0V84QkAv/71r2GxWPDBBx+gs7MTDz30kGg/wzD4yle+gjvvvNPrc2u1Wvz973/H17/+dRw7dgwjIyP4xz/+Mes4pVKJH/zgB7jrrruW/DqI70zesYzfvBG6jHTY+/sxXlcP3u6ALjsb/ByDvqNWeT/xVKC90fgeAKBxqBUGlQ4J+ngY1TQF/FIIgoDBfY/C0SWeOEJuTIBu5TrEb/P+mkEIIST4jI2Nobq6elbRGRcXh+LiYio6ybI4ORYqqYMIACo8MVEc/u1vf8Orr76KvXv3or6+HiaTCTExMVi3bh3uuecerFu3bsnnj4uLw+OPP44DBw7glVdeQVVVFYaGhqBSqZCeno4LL7wQ//Zv/0Z3OoOQMioKysICGAsLkHDBZpiamsHIZAjV5W87x6bGGZ8ZbAYApBqScFHORqlCCmmjR1+CueaQqE2m1kNfuAWGgs0SRUUIIcSX5is6S0pK3KsSELJUyYWFaGxrdm/L9ToJo/EfKjzPYxgG119/Pa6/3rsJVjZt2iRaYHW+82/fvh3bt29faogRo7GxESzLQqlULmnpGn9hlEpoUlPB22xSh7JkxzpPzWorTy2SIBLfkiJnLGeOYeS9p0VtjEINffFWyFQaqFPyAhIHWZpgvc6Q4EU5E5mWU3RSzpDF0makYXRzFmw2GwRBgF5JhSchAWGz2cCy7KzZ4qTGMAxkMgb8PPuD2d76NzFoGUZWdBrkMjnGHCYACItutoHOGUdvC/pf+cOMVgYJV38OrrEBxF5My6YEu2C9zpDgRTkTeZZ7p5NyhiyWo7sR9s4zYABMfJoMzxItPF8VCWkMw7j/I74xah/H8zWvgeVdiNfG4qqV2+DiXNiQUS51aD4R6JwxVR2EwDpEbXGX3wND2SWUtyGCrjPEW5Qzkae7u3tW0RkfH4/i4uJFda+lnCGLpZUpkeqYmj9EKQ/P7ttUeJKgU1paKnUIcAwNYeTkKSRsuQAKvX72ASE2xPONxnfBnl/qY8g2gudOv4JvXfhFrIjLkTYwHwl0zugKNoEd7YOt6SQAwFB2GaI3XUcfLkJIMFxnSGihnIk8q1evBsdxGBwcBOBd0QlQzpDFi1FoUGJxurdlOo2E0fgPFZ6EeFDz4/+Cc2AQfW+9A8OKfCRsvRDRxefHQoZYceF0OfF202FR28U5m7Eund4Ql8LWVgt7Wx2i114NXf46WBqOI/Gaz1PRSQghYUYmk6GoqAi1tbUA4FXRSQiZjQpPQmbgOQ7OgUHwTifMDY0wNzRCplBMFJ4hWFzIGBmuXnkJqnvrcXaoBQBw3Wqa5Gop2JFe2NpqAAD2niYAgDp9NVzmYShjkqUMjRBCiB/IZDIUFxe7fybEHzieBzutN50sRFdPWAgVnoTMYD7bCN7pFLVFnV/XMxS9WP8GAOALG3bBwTlR03cWGdGpEkcVegSeg+n0+7PaGYaBIjpJgogIIYT4iiAIc/ZcoYKT+Nvpj07AVTmVf061BeE4DzIVniToDAwMgOd5yGQyJCYmBvz5R06eFG3L9XrEb94067j53qSChYufmhShdaQDF+VsRKIuTsKI/MOfOePsb4NMa8T4qbc87jdWbA/6PCCzSX2dIaGHciZ8jYyM4Ny5cygpKYFSqfTZeSlnyKJxPDTTb3mG6ccKKjxJ0Onp6XGveyXFhXq0skq0rU5KDNnC4sW6190/95r7sbvmNRQmrkCppkDCqHzPXznjMo2g59lfgHfYoC/eCoUhVrTfULgFCmO8z56PBI7U1xkSeihnwtPIyAhOnz4NnudRXV2NsrIynxWflDOEiFHfAUKmEQQB1o5OUZsuM2PaVmgWoMDURLzFSaskjSNU8KwDfc//CpxpGILTBnPVQTgHu9z7FVFxUCVmShghIYSQ5RgeHnYXnQBgMplQXV1N626SgHOF8OdLb9AdTxJ0srKyJOvGauvsBG+3i9qU0TELPzAIB4ELgoBLcy8Ay7vgdDnxUdfEnVwZE37fN/k6ZwRBwMBrf4Lj/ARCAACeg7O7Acr4NDAMA+OaK3zyXEQaUl5nSGiinAkvw8PDqKmpcRedkzQaDeRyuU+eg3KGLFaMJgrTP32Ga4EWrq+LhLCYmBjJnnv4oxOibZlajeSr5pgBVhCCdpZbi9OKN5vex/a8rUjUx6OuvxEAcFvxtRJH5h++zpnRD16Ape6IqE2m0UNXuAUMwyDmght9+nwk8KS8zpDQRDkTPuYqOpOSklBYWOizQpFyhiyWkpGLCs/g/HS5fFR4EjLNaNVp0bY6MRH6THF3yiCtNUXebT2KZ0+/gj21+3FR9kZcuWIbbi/ZKXVYIcFcfxQjh54VN8qV0BdthUypRuxFt9O314QQEqKGhoZQW1vr96KTEDJb+PW5I2QZLC2tom19Xq74gPnej4LkvYrnebze+B4AgOVdONh6FC+f8TwjKxFz9DRj4JU/zmhloC/YDLk+GtHrr6EPJYQQEqKGhoYCcqeTEG8pZizZE66ZSHc8SdBxuVzuMREKReBS1Dk8ApfJJGpTJ3i/9IjUb1wfd1djwDIkart21WUSRRMYvsgZl2kYvbt/BcElXsNVk1cOZVwqtJmFkOuMvgiXBAGprjMkdFHOhLbJolOYMSdDcnIyCgoK/PLeTTlDFksnV2Fk2rYi+KYO8Qn6KyBBp66uzj39eFlZWcCed6y2TrTNKJWILi0N2PP7yqmeWmQaU9Ft6gcncMiNzcTK+NyFHxjClpsz7hlszcOidm3+WqhS88EwDLS5gctF4n9SXWdI6KKcCV1SFJ0A5QxZujCtO6nwJGTSWPWM8Z0J8dDn5c0+MIi74giCgFhtNDZlroXd5UD7aBd0Sq3kd2GDmSAIGHj1ETh6mkXtmqxiJN3wNTj726DJKpIoOkIIIcsxODiI2tragBedhHiDUarFDTLfzKwcbKjwJEHHaDTC5XIFvFvKaFWVaFudmAhltLhrZbC/QZ3uO+P+WaNQY1VCHnJjw3+tyeXkzMj7/4Kl/qioTRGbguRbvg251gBtdrGvwiRBRKrrDAldlDOhZ3h42GPRmZKSgtWrV/v9PZ1yhixWp1M81MsGfo4jQxv9JZCgk5OTE/DndJnNcPT1i9q06WlBX2jOZGVts9rWp4V/956l5oy57ghGj+wRtTFqHZJv+y7kuigfREaClRTXGRLaKGdCj16vh1arhdVqdbcFqugEKGcImYlmtSUEwHj9GXGDTAaFwSBNMMuwKWMNrl11GS7MWg8AMKh0IVc8B4ogCLOXTWEYGNdcCVVC+N8lJoSQcKdWq1FeXg6tVgsgsEUnIWQ2uuNJCICRk5WibXV8PBK2bpn/QULwDf1mGAZ6lQ5apQa3Fu2gN9d5jJ/YB13BFtiaT8LZ2wIA0OaWQ5Oxin5vhBASJtRqNSoqKtDd3Y2cnBy6vpOgxPIslFIHEQBUeBICYLRy5vjOBOgyPd31Cs43LBtrx7jDhGRDIgBAxsiCNdSgYO84A85uASOTQbtiHeS6aHC2cajSVkK/epPU4RFCCPEhtVqN3Nzwnt2dhLZopR7WadsKJjw7pVLhSYJOa2urezB+IN4oOIcD9p4eUZs6MRGM3IsZxSS++Xm47Tj+9smzKE1ejcvyLsSG9Aqo5JHw3dkEb3LG3tUAa+vUFw0Mw0CdvhIAEHvRbX6NkwSPQF9nSOijnAlu4+PjiIqKCqo7mpQzZLGUMz6zMcHXqc4nqPAkQcdkMrnXvQrI851tEHebZRioEuID8ty+8k7zBwCA031ncbrvLC7O3oSvbP60tEEF0GJzxmUagbX5lMd9sRfdBiZMv2EkswX6OkNCH+VM8Orv70d9fT2SkpKCaokUyhmyWOyoeIJL8Jw0gfgZFZ4k4o3X1Iq2lbExiC4tmfsB59/QBEEIit6szUPncG60U9S2JWudRNEEL2tLFaznqiFTqGbtM669iopOQggJQX19faivr3f/zDAMTSBEQo5iRr6Ga/ZS4UmCTnFxYNdNHP7kpGhbnZiIqNWrPB8835VAoqtEVW89lHIlWI4FAGiVGhQkrpAmGIkslDP2rgb0PvsLyDR66Iu3Qq6dWirFULwVCkOMnyMkwSbQ1xkS+ihngs/0onNSb28vYmNjkZycLFFUUyhnyGLpZUqMT9sO1wItXF8XCWFyb8ZWLhPvcsF6rk3Upk5MhEKnW/pJA/wtq0vgsHPV5ega70XraAcSdHHQKbUBjUFq8+WMa3wQPU//DBB48DYTzJUHoCvcAmVMEvQr10MVnx7ASEmwCOR1hoQHypng4qnoBID09HQkJSVJENFslDOEiFHhSSKapbkFgsslatOmp0kUjfdc3ETscpkcWTHpyIpJD8plXqTCO+3ofe6/IbB2d5vgcoId7IQyJgnq1HwJoyOEELIUvb29OHPmzKz2jIwM5OfnUzdbQoIUFZ4koo3Xib8tVRiNiFo5fzfVYHpDkzEyXJa7BWanFRbWitr+BlySe4HUYQUFQeDR/8of4Ow/J2pXxCRBm1eB2ItulyYwQgghS0ZFJwlHnU4Tpt8ft4ZpGlPhSYLOyMgIeJ6HTCZDbGysX5/L3i+eRUydmABjYcHcDwiyNzSZTIYEfRwS9HEYso6A5VxIMiRIHVbAecqZkfefhfXscdFxiugk6Aq2IG7bnfThJMIF8jpDwgPljPRCreiknCGLJUi9Ll+AUOFJgk5HR4d7+nF/X6jzv/A5ZN11J8brz2D01CnErKmAwmDw63P6gyAIUMtVKE8plDoUSczMGXPNYYwe2SM6RqbRI2HHF6HNKQm6Dyck8AJ5nSHhgXJGWj09PTh79uys9szMTOTl5QXldZ1yhhAxKjxJxFMaoxC/aQPiN23w7oESjqXkBR4MGPcbLcMwMKj1ksUTTGydZ9D/6h/FjYwMSTd/E7rccmmCIoQQsmShWHQS4g0XmIgoyiLhNZIQk5aW5u6aQjz7uKsa/zj5HHJiMvAfm+6FUR16d2l9aTJnBMsIep/5+ayFl+Ov/AwVnUSErjPEW5Qz0uju7kZDQ8Os9qysLOTm5gZ10Uk5QxYrJj4BI7qpXObU4TkjMhWeJOgkJARmjCLvdMLS1g5Dfh6YRb8pBMcb3N76NzFsG8WwbRRfeOV7uLnwatxWslPqsCSTkJAA3mlD5/P/JZrBFgDUmQWIXn+1RJGRYBWo6wwJH5QzgceyLFpaWma1h0LRCVDOkMWLLluNj80fu7cNYXpDgb6CIRGrc89LGPn4E/AsC2HZ3WYD1+120DqMpuFz7m2O5yBjIvtPWRB4dD3+fbhG+0TtiphkGNftkCgqQgghy6FUKlFaWipaDzM7Ozskik5CyGx0x5NEJM5mc//c9eJeMDIZostK55/RNki803xYtK2UKeBwOSWKJjj0Pf9rsAMdojaZNgq6ggsQVXyhRFERQghZrujoaJSVlaG6uhoZGRnIycmhopOEHaVMgVh2apiQTilhMH5EhSeJSH3vHMRoVTVU8XFQxcVBodNBFRuzuAdL/IaXqIvHxTmbcW6kA53jPciITsOO1ZdJGpOUzA0nYO8Qr8fKKFTQF29FzAa620kIIaEuOjoaGzZsgFqtpqKThKUElQHrTVNDhRSKGOmC8SMqPEnQqa6udk8/XlZW5pfnGK2sgql+ai0wXU42su66Y8HHzf9+F5g3w3XpZciNzcS4w4Ka/rPgeA4xGmNAnjvYCDwHZ28L7OkVkPeegdwyBDAMdIUXIGbDtVAY46UOkQSpQFxnSHihnJGWRqOROgSvUc6QpXI6w7MnGxWeJCI5R0ZF2+oQmgAgRmNEjMYIXuBhcphRkrxa6pAkYzl7fOIHuQLO5AIozf2IMhiQdO1/gJHT5Y0QQkJFV1cXACA9PV3iSAgJPEajh77gAoyOjULgBSBMl8ijT2Yk6Oh0OrhcLigU/klPgeNg6xCPB0zcdpFfnsufnByLdWml0Km0UociCUEQ4Dw/rlOpVEIul0OmzUbyNZ+mopMsyN/XGRJ+KGf8p7OzE01NTe7tcCk+KWfIYp2uPoWWA6cACBPTVaqVKPg3iYPyA/pLIEFnxYoVfj0/53AidecOmJuaYW5qBme1IqaiYvEnmOxvu+yZcJdHo1BL+vxSGzm82/1zbFyc+2eZOjILceIdf19nSPihnPGPmUVnY2MjGIZBWlqahFH5BuUMWSxX/xCyuqbGeNrVrITR+A8VniTiKHRa5Nw78TWSwPNw9PdDaYxa3IMlnNTAxtrRNd6LvLisiF8+xWUa9tgevf6aAEdCCCFkqTo6OtDc3DyrnWXD80M3IZEusj+9kojlMpsh8DwYmQyalBSpw1lQ83Abfvn+H/H+uWOBXDI0KLlMwxh45Q/g2dkD7+W6yJxkiRBCQs1cRWdeXh6ys7MliIgQ6bC8S+oQAoLueJKIY2psglytgs5gkDqURXuhdh8ahlrQMNSC+oFG3Fl6PSpSiqGIwLGMQ2//H2znTsPRdw7GdVeDUaohuJyIveh2qUMjhBCyCO3t7WhpaZnVnpeXh6ysLAkiIkRa0enp6E6f+lwq6MJzOFXkfWolQa+9vR0cx0Eul/vlDWjk40+gTkoEz7ogU6uhTkyAXO39H7gQoDGeNtaOqt6pdSrbx7qxv+FdFCSugCHCCk9r8ylY6o8CAHibCaMfPA/j+mtgydmMsXPn/JYzJPz4+zpDwg/ljG9EUtFJOUMWK7a4ENVCGxx2BwRBgF6lkzokv4isT60kJIyOjrrXvfL1hZodHwcAOPoH4OgfAAAkX7l98YUnwyBQ63VOOtr+MVzTumAwYJAdkwGDKjyn2p4Lzzow+Mb/itpkGgOMG3agu3MQrHnYLzlDwpM/rzMkPFHOLN9cRWd+fj4yMzMliMi/KGfIYjl6W+DoaoQgCBAggGeUUofkFzTGk0QUy7m2WW2qaTOiLpU/734WJa7EtpzN0ConFs9OjUrC1Su3+e35gtXoBy/ANdonaou7/B6o4kJ/5kNCCAl3bW1tEVV0EuINBccjymGH0elAtNMJfZhOsEV3PEnQWb16NQRBAOOHGWS7XnoZ5qYmKKOjoYyJgSY5yS/P40upxmR8edO9+AL3KXzcXQ21XIVEfbzUYQWUc7ATox/uFbVpMgsRVX4pAP/mDAlPlDPEW5QzS9fW1obW1tZZ7eFedFLOkMVKUOqwaXxqORWZNjzveFLhSYKOegnjLRfL3tcH17gJrnETbB2dENjVfnsuX1PIFdicuVbqMAJOEAT0PvsLQOCnGhkZorfcDOb8sjL+zBkSnihniLcoZ5ZmrqJzxYoVyMjIkCCiwKGcIUsWpl9WUFdbElHY0THRtiZ1aUup0LeXgWOqfAeusQFRmzp9FVQJ6RJFRAghZLGUytl3biKh6CSEzEZ3PEnEcNls4CwWUZs+N8dn5/dHLcoLPGRM5H4/5DKPYOjt/xO1MWodNFlFUMYkSxQVIYSQxUpLmxiH39DQAABYuXIl0tPpi0NCpquprMLomanPey6VFTnSheM3VHiSoGMymcDzPGQyGaKionx33jNnZrUlXHihz87v5qMKtHu8F0Z1FAzqyJq9drre5x6EwDpEbbr8tYi75G5Rm79yhoQvyhniLcqZpUtLS3NPwhdJRSflDFksl8WKmPGpIUV2VWCW7As0KjxJ0GltbXVPP15WVuaz85rONIi2FQYDVHGxSz+hH2ey7TH148X6N5Goi0OiPh5Z0WnIjE6DWqHy23MGG2tbLZy94hkQlfHpiN6wY1ZXZ3/lDAlflDPEW5QzyxNJBeckyhlCxKjwJBHD3Ngk2lZEG8HIvOvG6i54/DzE87GPn0ZtfwMMKh1yYjKRHZOB7flbkW5c2pjUUCPwHAZe+h9xo0wBbV4FNBmhMyEUIYRECkEQ4HA4oNFopA6FkJDDgYmIoiwSXiMJMcnJyeA4DnK53KfntfX0ira1aak+Pb+v8DyPluF2AIDZaUVN/1nYXQ7cU3GLxJEFzsiRF8FZRkVtmuwixF/xaY/H+ytnSPiinCHeopyZmyAIaG1tRVdXF8rKyhAdHS11SEGBcoYsll6th2vadrhmDBWeJOgkJ/tn0hh2TDyjrSp2Gd1s/ai6rx42l13UVpFSFDEz6QqCAFvzKVGbTBcN49qr3MunzOSvnCHhi3KGeItyxrPJorO9feIL0+rqaio+z6OcIYullSlhmrYdrtNKhuvrIkSEczhmzWirSVlmt1U/DfF08S6kRiW5t1MMibi56Br/PFkQGv/4dWjzymEovxxyfQwAQLdiHQwFm6UNjBBCiIggCGhpaXEXnQDAcRxOnz4NlmUljIwQEozojieJCNaOzlltsWvXeH+iAIzxXJ9ejnVpZWgcasV7544hPzYLCnlk/KkKAg/ONvGdn8IYD8Oa7XCN9iN647USR0YIIWS6yaKzo6Nj1r78/HyP63cSQjyb2astXPu4RcanWRLxxuvqRNtyvR7q5KQ5jpYewzBYlZCHVQl5UocSUJxpGFFll8By9jh4hw0MI4MyNgXq5BypQyOEEHKeIAhobm5GZ+fsL3ULCgqQstweRYREmCiFGuPTthXhuZoKFZ4k+NTV1bmnHy8qKvLJOW3t4m9kldFGKHQ6n5zbl3iBhyAIkMvCdVj5/OSGWDAyOVSJWbB3ngUAxG69dcHH+SNnSHijnCHeopyZQEXn4lHOkKUK07qTxniS4ONyudz/+Yq5pVW0rTQafXBW314WWI7F0faP4XA5fXreUMKcL7hVidkAAG1OqbttPv7IGRLeKGeItyhnqOj0FuUMWSxm5jrtc0ymGOrojicJOiqVCjKZDAqF79LT0d8v2takLncpFQ+975c56+xbTYdgYW3QKBoQp41FjNaIOG3Mss4ZCgRBQN+eh6DNLoZx3dVgZHLIDTEwFF4AZULmos7hj5wh4Y1yhngr0nNGEAQ0NTWhq6tr1r7CwkKawdWDSM8Zsnh9nHg1A0eYDvKkvwQSdAoKCnx6Pt7phMs8Y0bbpESfPsd0S1n2hBd4mJwWyBgZWkY60DIy0TX49pKdvg4v6JiqD8J69jisZ4/DVPUuEq75AjTpK6FKzFr0OXydMyT8Uc4Qb0VyzlDRuTSRnDPEOywvvivOh2ln2/C8j0vINNauLkAQ/wFrsxZ3Jy1QjrZ/jH1nD6Cypxajton1Ro1qg8RR+R9nM2PozX+4t519reh/6WEIHHVLIoSQYCAIAhobG6noJIQsGxWeJOxZmlpE23KdDsbC5X8LKQi++zbqSPvHcHBONA2fwzstH+BYx0lsywn/dSt7n30AAivuXhK3/V4wEbJ8DCGEBLv+/n50d3eL2hiGQVFRERWdhPgIx/NShxAQkny6M5vNeOedd3Dy5El0d3djbGwMu3btwg033AAAePTRR1FcXIyLL75YivBImBmrFS+loow2QhUbu7STne9Gu8zhnCJ2lwO1/Q2itlhtNLRKje+eJAhZzn4ER3ezqE0Zlwbdyg0SRUQIIWSmpKQkjIyMoLe3F8BE0VlYWIikpOBdkoyQUKNVqDB9akk5TS60fDzP489//jMef/xxWCwTY+4EQQDDMBgeHnYf9/TTT2NoaAjl5eV46KGHkJkZXN0iiX91d3eD4zjI5XKkpaUt+3z2nh7RtsJoBCMLnj/ouv4G2F0O9zYDBp9Ze6eEEfkfz7kw+MZjEM0MLJNDt3ojZEu42+nrnCHhj3KGeCtSc4ZhGKxevRqCIKC/vx9FRUVITPTfPAnhJFJzhnhPq1CLCs/g+ZTqWwErPJ1OJz7/+c/j+PHj83ZRdDgcGBwcBMMwqKysxG233Yann34a+fn5gQqVSGxwcNC97pUvLtS2GV2EfLOUiu+sTSvF73f8Fw6dO4ZD5z5ChjEFacbw7r40/M4T4MwjojZNZiHiLt21pPP5OmdI+KOcId6K5JxhGAYFBQVIT0+HMcjeQ4NZJOcM8Q5rGhZtCzwnUST+FbCC+qc//SmOHTsGQRCg0Whwxx134Fe/+tWs4wRBwN133w2lUgmGYTA6Oor777+f1kAiS8I5nXCZzKK2mPJSiaLxjOM5JGhjcWfpDXhk5wP4yub7pA7Jrzi7Faaqg6I2mTYKidf+x5JmBCaEEOJ/DMNQ0UmIn8hmTKrIhOektoG541ldXY2XXnoJDMNg5cqV+Otf/4rU8+sofu973xMdq9Fo8JOf/AT33HMPvvSlL6G1tRVNTU147bXXcOONNwYiXCKx/Px8dxfs5bL39M6a0dawcuWSz+eOyUcFktlhQcNQK8pTCgEAMkYW9rPZ9u5+cNaEQtr8NVDGLv0ury9zhkQGyhnirXDPGUEQcO7cOaSlpUGtVksdTlgI95whvhMlV2H6bRKlZJH4V0DueL7wwgsAAIVCgUceecRddM4nJycHjzzyCORyOQDgjTfe8GuMJHjo9XoYDAbo9fpln8vW2SnaVkRFwViwetnnnWWJM9weaDmCPvMABixDMDst4IXwntWMHemBo0s8kZIiNhWJ13xhWef1Zc6QyEA5Q7wVzjkjCALOnj2LtrY2VFZWwuFwLPwgsqBwzhlCliIghedHH30EhmFw8cUXIytr8YvC5+fn49JLL4UgCKivr/djhCRcWTvEhachP0+iSGYTBAEOzgmT04JDbR9hf8O7ONldI3VYftX7wkOAaNwCA21uGWSq8J7BlxBCgtVk0Tk5a63NZkNVVRUVn4QQnwtI4dnf3w9gYqFhb6083y1yZGRkgSMJmc3a3iHa1mZm+O7ky1zH81TP7CIzLSp8p6e3tlSC7W8TtalS85Bw1WckiogQQiKbIAg4c+aMu+icZLPZ3KsPEEL8r88p/nuzh2nv7ICM8ZycxXay26w3JvvFK5Xh2tuZzGSz2dxjIrRa7bLOlbjtIqgTE2Dr6IS1oxO6LF8tzePpirD4q4QgCNjXcBCx2mgk6uLdeZ4aFZ6z2QqCgIF9j4ob5UpElV0KRub9dWEmX+YMiQyUM8Rb4ZYzk0VnX1+fqJ1hGJSUlCAuLk6iyMJHuOUM8R8nOFFRFq4DrwJSeCYkJKCzsxNNTU1eP7a6utp9DhIZGhsb3dOPl5WVLetcSqMRaTuvhTpxIn/mW8onkNpGO3G67wwAIEZjRJI+HkVJq8J2AgKXaWhGF1tAk1UI47qrfXJ+X+YMiQyUM8Rb4ZQzk0OYJnukTZosOuPj4yWKLLyEU84Q4gsB6Wq7fv16CIKAgwcPYnh4eOEHnFdXV4ejR4+CYRisWbPGjxGScCRwHEYrq9D3zgEIXHCth/RB+wn3z6P2cXSb+nFL0TUSRuRfcrUemV95FPFX3AdGpYVMrZ+42xmmhTYhhASruYpOmUxGRSchEuG96DUXygJyx3Pnzp146aWXYLfb8Z3vfAd//vOfoVKp5n1Me3s7vvKVr4DneTAMg2uuCd8P5UQsPj4eHMctqWv2dLaubvfPI6cqoc/NgTIqCswCubdoS7x5KggCjndWitq252+FWhG+09fL1BNdjPQFm+GyjIG3W2AoutBn5/dVzpDIQTlDvBUOObNQ0Unda30rHHKGBIZWawA7rfZkZOFZiAak8Lzwwgtx4YUX4siRIzhy5AhuvvlmfPrTn0ZRUZH7GJ7nYTKZ0NjYiLfffhvPPfccbDab+27ntm3bAhEqCQLp6ek+OY+tq8v9s7mxCebGJmTeefvyTupexxNLLjw5nsMFmWvxSVc1OsZ7AACbM9YuL64QwciVUEYnIuqi230ytnOSr3KGRA7KGeKtUM8ZQRBQV1eHgYEBUTsVnf4T6jlDAidhczkO8FOTThrCdE33gBSeAPA///M/uOOOO3Du3Dk0Nzfjxz/+MYCJ8QSCIOC3v/0tfvvb37qPnxyLl5SUhN/97neBCpOEEdZkmtUWDF075TI5SpMLsHP1dlhZG6p765Ab66tJj4KbXB8N49orpQ6DEEIiCs/zqK+vp6KTECKpgIzxBIDo6Gjs3r0b27dvhyAI7v+AqWJgZvuaNWuwe/duJCeH50yfxL+0aWnQ5+ZAd34JFU1KcOTR8c5T6DUNwKDUIcWQiCtXbAuKgtgfHL2tcI0PSh0GIYRErPmKztLSUio6CQkCDCODihfc/ymDYy5MnwvYHU8AMBqNeOSRR1BdXY0XXngBH330Edra2kQzjSYmJmLDhg248cYbcfHFFwcyPBJGBEFA/YO/gtJohCYlBYooAxK2+m5M4flnWdKj2scmxp6+3vguVHIVkg0JKEvxfo3bYNfz7C8g18fAuPYq8E47ZBo9FIZYqcMihJCIwvM87Ha7qG2y6IyNpWsyIcEgRW3EtlGre1sRa5QwGv8JaOE5qayszD2tNMdxGBsbA8dxiI6OXnDSIRL+Ghoa3NOPr1q1aknncA4Pg7NYwVmssPdMLIydc+89yw/u/J3JyS7i3hq2jbp/trA2WFjb8mMKQtaWStiaTwEAHF0N0OSWQRWXhugNO/zyfL7IGRJZKGeIt0I1ZxQKBcrKylBVVQWz2UxFZwCFas4Q6bEsK3UIfiFJ4TmdXC6ft5sHy7Jobm7G4OAgtm7dGsDIiFTsdjtYlgW3jCVQps9oCwAytRqqeD92J1pkDVrX3zCr7aLsDT4ORloCz2HglT+6t9mhLrhMw4i75FN+e05f5AyJLJQzxFuhnDNKpRLl5eWoqalBTk4OFZ0BEso5QwKLUaigyS6F2WyauLGhocmFlqygoAAymQzf/va3cd9993n12D/96U/461//isTERBw6dMhPEZJgIpPJ3P8tlb27R7StTUuTfBwlz/PIicmEQWWA3WV3d7nVKDWSxuVrg2/+HZxlVNSmySqCcf3VfntOX+QMiSyUM8RboZ4zSqUSFRUVkr8XRpJQzxkSOA0dbThd3wmO5yFAgEJlxWqpg/KDgN3xXEq3RADQarUQBAHDw8M+jogEq5KSkmWfI+GiC6GMNoI1W+Do74fSGOWDyMS8zemTPafxvx//C+vSSrEmtQRx2hhsyqjweVxS4l1OmGsPi9pkOiOiyi7z64cdX+QMiSyUM8RboZAzPM8DwJyFDhWdgRUKOUOCg6X5HPJqRtzbdnV4flkheVfbuQiCgM7OTrz22msAAJ1OJ3FEJJSYG5vgGBxCylVXQObDccNTb9oe3rwXeD//uKsaI/YxvNPyAd5p+QBlyYXYnh9e3cdH3vsXBIdV1KbNLYehcLNEERFCSGTgeR61tbUAgOLiYrrLRggJOj4rPF0uF2666SY0NTV53C8IAn7zm9/gN7/5jdfnZhiGBmUTr4zXnwEAdL/yGmQaDbSpKYhdtzYwT+7hG2Ve4PFJ92lRW0VqcWDiCRDeacf4yTdFbYroRCTu/LJEERFCSGTgeR41NTXu3mF1dXUoKiqi4pOQEMHxPORSBxEAPrsiKRQK/PznPwcgXo9zenfEme2L/Q8APve5z/kqVBLmpuccz7JwmUywdXfP8wj/OzfSgTGHSdS2Pr1Momj8Y/i9pyGwDlGbJqcUMoVSoogIIST8zSw6AWBwcBBnz56VMCpCiDc0MUZYDUr3f2y0VuqQ/MKnXW3XrFmDe++9F2+99Zaovbu7GwzDwGg0Qq/XL3gehmEgl8thMBiQkZGB22+/nWa0jSD9/f3gOA5yuRxJSUleP553OGa1xW1Y74vQxLwY4plkSMD3L/oy2se68En3aVhZO1IMib6PSSKc3QLTqbdFbYrYVMRtuysgz7/cnCGRh3KGeCsYc8ZT0QlMrBiQlpYmUVRkUjDmDAlOSRvXo143CNbJQhAE6FXhOcTQ52M8v/e97+F73/ueqK2goAAA8MUvftHrWW1J5Ont7XWve7WUC7XLYp3VpkpI8EVoAM6P8/Ryfob9De8i1ZCEtWmluDR3CzQKtc/iCQYj7z0NwSVec0qTUwJFlB+XsJlmuTlDIg/lDPFWsOUMx3GoqanByMiIqF0ul6OsrAzR0dESRUYmBVvOkODlHOyEc6AdnIsDIICV+W5+kmAS9LPaEuIta0cH2LExyHU6yJQT3TwZuXQ9522sHQDQY+5Hj7kfAJCsT8C23PCYcMdlHsV45QFRmzIhAzGbrpcoIkIICW/zFZ3l5eUwGo0SRUYIWQrBbgVjNbkLMznDznt8qApI4XnmzJlAPA0JEzk5OeB5fsmTIgx9cBR9b78DAJCpVNBlZyHrrjt8GaJXOsd7ZrUVJa2UIBL/GHn/XwDnmtbCQJNdAlV84Lp5LTdnSOShnCHeCpacmavoVCgUKCsro6IziARLzpDgl6Iy4LKRqR57jMYgYTT+E7TLqZDItdw3Tee0N2Pe6YRwfl0z31vcXfwotQE3FlyJN5sOweaauPuZqI/3U0yB5Rofgun0e6I2ZVIWYrfcHNA46IMW8RblDPFWMOQMFZ2hhf49yFIxYfplhaSvShAE8Dwv+o/jOLAsC5vNhuHhYbS0tODVV1/FZz7zGSlDJSHE3tMr2takpPjhWRY/yDPFkAiVQoXS5NV+iENaox/uFd/tlMmRcOVnoDCGR2FNCCHBguM4nD592mPRSd1rCSGhIKB3PN966y0888wzqK2thcVioXGfxC9Ys3jZElW8jye48Vhzes7lpqFzsLBWFCeuQkZ0Gj7qqsL2/PCZoTn24tshU6kxdmI/BNaBqIrLoc0Or/VJCSFEapNF5+joqKh9suiMioqSJjBCiE80nD2DzrZpZZnKjhzJovGfgBWev/vd7/DYY48BWNpEQwzj5TSiJGSx7MRU0gzDQKn0bg1IQRDAmS2iNrlauhlkXznzNo51noRWoUF5ahGuyr8YcdoYyeLxNZnGgLhLd8G44VqMfrhXsgmFlpMzJDJRzhBvSZkzZ86coaIzBNF1hiyWdXAESX1TPcjsqvCsewJSeDY0NMxZdE4WlHO1KxQKXHfddbSOZwSpr693Tz9eVlbm1WOdo2MQOE7Upl+R78vwpizw/QnLsajsrQUA2Fx2HOs4iYqUIhQj9LvcCoIAy9lj0KSthMKYAIUhFglXSLdU0nJyhkQmyhniLSlzJjs7G6Ojo2DZiZkuqegMDXSdIUQsIGM8n3/+eXdhuW7dOjz//POorq7Gnj17IAgC5HI5jh49isrKShw8eBAPPvggUlNTIQgCXC4XSkpKsGPHjkCESkKc9dw5cQPDQJ+d5Ydnmv1N1My78rX9jbC7HNMewWBtWqkfYgk8W9NJOPvbwVnHIfDcwg8ghBCyZAaDAeXl5VAqlVAoFKioqKCik5Aw4q9pMINNQArPjz/+GMDEhfPPf/4zSktLoVKpUFxcDKPRCI7jcOTIEWg0GqSlpeHmm2/Gyy+/jFWrVkEQBDz00EMYHBwMRKgkCERHRyMmJmZJi1/burpE23KtFprkZF+FNmGhbt/n9/eZ+xGvjXU3r4jPQYwm9Cd/EAQB9p4mAICl4QRGP9yL4UPPSRrTcnKGRCbKGeItqXNmsvisqKiAwRCeSy2EG6lzhoQOtUor2g7POW0D1NW2t7cXDMPgkksumfXHV1xcjGPHjuGTTz7Bdddd526PiorCww8/jOuvvx52ux27d+/Gf/zHfwQiXCKx7OzsJT/W2tYu2pbrdJJNST3mMOPSvC2IVhvQZx5CRrQ/ZtcNPHZA/DsWRGt4SmM5OUMiE+UM8VYw5AwVnKElGHKGhAaDXIPpU2PKJYvEvwLyidxkmvhV5ubmztq3YsUKCIKAM2fOzNq3cuVKrF+/HoIg4MSJE36Pk4Q+x9CwaFth0Pvx2eYe5MlyrPvnMYcZGqUaKYZEP8YSGIIgoP/l/wd7ex14dqobsbHicgmjIoSQ8OByudDT0yN1GIQQ4hcBKTy12onbx55m9MrJyQEANDc3e3xsSUnJvPsJmY4dFheeco3GL8+zUG/bE13Vs9oyotP8Eksg2dtq4Oxvg72tBuMf7YO1+SQEFwuFMUHq0AghJKS5XC5UV1fj7NmzaGtrkzocQgjxuYAUnjExMQDgcZxmZmYmAMBsNqO/v3/W/smuuWNjY/4LkIQN1mQWbaviYuc4cjkWnuJaq1RDo1CJjjSqQ7+L1Oixl6c2eBdcw71Qp/pp1mBCCIkQk0Xn+Pg4AKC1tZWKT0IiSJRCfKNE6f3KkyEhIGM8i4qK0NHRgaNHj87al5U1NeNodXU1tm/fLtrf29sLYGlrf5LQ1NzcDJfLBYVCgfx874oazmYTbWtSpBlXuSa1BGtSS+DiOexvOIhEfZwkcfiSs78dtuZTojZ1+iqoEjMlimjKcnKGW0bSWAABAABJREFURCbKGeItf+WMy+VCVVWVe1jSpM7OTqSlpdH6jyGMrjNksWb2pAvXqicgdzy3bNkCAGhqasKf//xn0b7s7Gx3V9xXXnlFtM9ms+Gdd94BACQkUFe+SGGxWGA2m2GxWLx6nMDzswvPVP8Vnov5MkQhk+OqFdtwQeY6v8URKCNHXxRtMwoVVMk5UMZL34V4qTlDIhflDPGWP3JmrqJTpVKhoqKCis4QR9cZsliMTD6zQZpA/Cwgr+qGG25AXNzEHZ8//vGPuPXWW3HgwAEAE2sfXnbZZRAEAW+//TZ+8YtfoKGhAcePH8dnP/tZDA4OgmEYVFRUBCJUEsLYsTGAF6+EpE7004Q+8wzyfL3hXfzloydxtP0TmBxmqBUq/8QQQC7TCCx1R0RtqtQVYOQKMGF6cSSEEH9iWXbeolOv9+fkeISQYDLMiD+/Ohce1RWSAtLVVqPR4Oc//zm+9rWvgeM41NbW4sSJE7j88omZMD//+c/j9ddfhyAIePrpp/H000/POsddd90ViFBJEJicUMpbjsEhcQPD+OWOp6eaUxAEMOdHdH7QfgJNw+dwsPUoGDC4p+IWXLs6tGd9HTv+MiBMuygyMqjTViBm407pgppmqTlDIhflDPGWL3OGZVlUV1fPWXTqdDqfPReRDl1nyGJZXQ7RNhemnW0Ddqti+/bt+POf/4z09HQIgoCMjAz3vtWrV+OHP/whgIkP8NP/A4DPfe5z2LBhQ6BCJRKTyWTu/7xhPz8eeJJcq4UiwG/eFtaG5pGpCSEECMgM8dlseacN45+8IWpTJedAv2oDZJrg+EZ+qTlDIhflDPGWr3JmoTudVHSGD7rOECIWkDuek7Zt24a3334bJ06cQHJysmjfpz71KaxatQqPPfYYqqqq4HQ6UVBQgHvuuQc7duwIZJgkRNl7+0Tbcp0WCn92VfLwZVTtcJNo7KdSrkRB4gr/xRAAw4d2Q3CxojZ1+ipos4okiogQQkLTZNFpNs+YgZ2KTkIiGs/zgbsbKKGAFp7AxLc/mzZt8rhvw4YNdGeTLJljYEC0LdfqwMjlcxy9THOM8Ryyj6MsuRBD1hH0WQaQFpUMlTx0J4cQeA6WmkOiNkVcGvQr1koUESGEhKa5ik61Wo3y8nIqOgmJYAqZHNNHecoWWjA+RAW88Fyq4eFh9wRFJLwNDw9PfPMjk3n1b+4cHhFtKwx+uts558WAgYxhsCo+F0jIA8/z4ATOPzEEiOXMMXCWUVGbJmM1dCuCa5bepeYMiVyUM8Rby8mZ+YrOiooK9+z+JLzQdYYsVpRKh7Fp2/JFrBkfikKi8Ny9ezcefvhhHD9+XOpQSAB0dnaCZVkolUqvLtTcjOnK5RrNHEf6j4W1Qa6c+AAhk8mgkoXw3U5BwNgx8RJHyvh0JFzzeYkimttSc4ZELsoZ4q3l5Mz4+PisJTWo6Ax/dJ0hi8VZxkXbwoxVGsKFXwvP4eFhNDc3Y2BgAPHx8aioqIBarV704xsbG/HTn/4Up06dWvhgEvGcw8Oi7ehS/88mJwgCmPN3QDmBR6zGCLsccHITYyI3Z6zxewz+4ug8A0dPk6gtdtudkIXB8jCEEBJI8fHxKCwsRF1dHQAqOgkhYrxTvA49s4i14kORXwrPjo4O/O53v8Nbb70FjpvqaqjRaHDvvffiP//zPyGfZ+yd3W7HH//4RzzxxBPgOE704Z6Ev4yMDHfXlMUSBGHWcirRJcW+Dg1nBpqQr07yuE/OyHBp+gao4+PgcDnRY+pDoj7e/bhQm2Ro9Pirom1FdBL0qz2Pz5baUnKGRDbKGeKt5eZMUtLEe0dLSwvKy8up6IwAdJ0hi2WUq2Gdtq0I0+VUfF54VlZW4ktf+hJGR0dFs3syDAObzYa//vWvOH36NB577DGPxed7772Hn//85+jp6REVnJMXbBL+ltIdxTU+DsHlErWp4uN9FRIAYHfNa3ihdh/uXHUNrknZOO+xaoUKaVHJUMqV2Fv/Jp6p3otbi6/F7SXBse7lYqiTc+EaH4SzpxkAEL3xWjAyP03WtEzUhYl4i3KGeMsXOZOUlISEhAQqRCIEXWfIYs28v8aE6RhPn175nE4nvvnNb2JkZGqSF5VKhYSEBPe2IAg4evQo/vSnP4kea7Va8YMf/ABf+tKX0N3dPRWgTIZ77rkH+/fv92WoJMw4hsR3OyGTQRUb47Pznxlowgu1+wAAzza8jn0dH4j22zknXLx4IiGVQuUuOgHghdp9ODMg7roarJz97RAEHjFbbkLCji9Ct2ojDGWXSh0WIYQEPWGBLnJUdBJCIpVP73ju2bMHXV1dYBgGGo0GP/zhD3H99ddDpVLBbDbjySefxCOPPAKO4/B///d/+Pd//3cYDAb09vbiM5/5DFpaWtx3OQVBQFlZGX72s5+hsLDQl2GSMOQYEBeeqtgYny6lUpC4AneX3eguIne3HgDnZHFD9BUAw2D/ydfwFlpREJuLiswyrEktxomuKvfxAHB32Y0h093WfOZDABMFKABoMgsg1/hxTVRCCAkDTqcT1dXVyM3NRbyPe90QQsLXsMsu2naG5w1P3xaeR44ccf/829/+Fpdffrl722Aw4Etf+hKMRiMeeOAB2O12HDhwAJs2bcIdd9yB/v5+97FRUVH4+te/jjvvvDOgYzsFQcBrr72GPXv2oL6+HlarFYmJidiwYQM+9alPoaysbNnPYbfb8eyzz+LNN99Ea2srzGYz4uPjsW7dOuzatQtr19L6iPy0mbwW+82wLisTqdfthComGs7RUchUvp8A58bCqwDAXUzu6ToEuUaNC/Qrkb77CBTXxqGab0D1UAM+bP8EjcOt7sfeXXaj+/HBztO39bzT7uHI4LGUnCGRjXKGeGuhnHE4HKiqqoLVakVtbS1KSkqoq2WEo+sMWSwL7xQVZa45jwxtPi08m5omuhGuWrVKVHROd9ddd+Gxxx5Df38/PvnkE7z00kvo6+tz3+W88sor8ZOf/ETUPTcQ7HY7vva1r+G9994TtXd1daGrqwuvvvoq7r//fnz+80tfSuLMmTP4z//8T7S3t4vae3t7sW/fPuzfvx9f/OIXcf/99y/5OcJBTU2Ne/rxxRb7vNMJhV4HnmWhNBrBKPwzYfONhVeBdzjw7NnXAQC7m9+GveZt5DoFrKu34vDaKAAI2aITAEyVB2a1aXP8P0PwciwlZ0hko5wh3povZ6YXncBEwVFTU4PS0lLExsZKES4JAnSdIUTMp5/Oh4aGwDAMNmzYMOcxMpkM69evx759+7Bv3z73RdpgMOBnP/sZduzY4cuQFu2HP/yhu+jMz8/H7bffjoSEBNTW1uLZZ5+F1WrFww8/jOTkZNxwww1en7+jowP33Xcfhs8v+XHBBRfgiiuuQExMDE6ePInnn38eDocDjz76KFJSUnDnnXf68uWFPd4+dUdO4DgIHDfP0ctzXf6l4J1O7G49AJ2NQ2btRDff0kYbPinUwaqd6uIbakWnIPBwmYZmtWsyqbs7IYR44nA4UFlZCZtNvByCWq2GTqeTKCpCSCgJzzlsZ/Np4Tl50V3obmVGRgaAiQmFBEFAXl4e/vrXvyIzM9OX4SzakSNH8NprrwEANm/ejMcee8y93ujOnTtx66234u6778bo6CgefPBBXH755TAYDF49x89+9jN30fnNb35TdOf02muvxXXXXYddu3aBZVn87ne/w8033wyVH7qLhgK9Xg+XywWFF3ctzU3Nom1lTLSvwxLZmbUVnJNF/yv7oDhf4yo5iO56hl7RKaB3968hU2mgiEt1d3OX64xgmODuIrSUnCGRjXKGeMtTzsxVdGq1Wq/XLifhh64zZLEUSo1oO0yHePq28HS5XGAYZsELrV4/NUlJSkoKnnzySUkH4f/jH/8AACgUCvziF7+YFX9+fj5+/OMf45vf/CZGR0fx/PPP47777lv0+T/66CMcPnwYAHDzzTd77K5bUVGBO++8E08++SRGR0fx4YcfYtu2bct4VaErPz/f68eoExPAO53gHA5AEPwyxlOEYbBZlY1zTeIPG5N3PW/cdEtIFZ0AYO+oh63pYwCATGuAOm0VVCm5MK67WuLIFraUnCGRjXKGeGtmzlDRSRZC1xmyWMkby3HYXu/e1oXphI6SfAUz/Zufr371q5IWnaOjozh69CgA4KKLLprzruuOHTvw4IMPYmhoCG+88YZXhefk3VS1Wo2vf/3rcx536623gmVZxMbG0mx4XorbONG9WxAEjNfV+fW5Ju8EVu3fg/gZPXqVHLC+3oYbPx1aRScAjB55wf0zbzPD0XUWqtS8gE7wRQghoYCKTkKILzEqJVjdVO8yTh2c66Yvl+T95y655BJJn//jjz92zzq2efPmOY+TyWTusatVVVUYGxtb9HO88847AIAtW7YgKSlpzuMKCgrws5/9DPfffz9KSoJ7MpdgInAcXBYLBEEAOzoKdnQMxqIivz7n4EA3oqvPedxX0mjF7iPP+vX5fY0d7oGtpUrUpk5bCf3KucdrE0JIJLLb7R6LTp1OR0UnIYTMQ/JO51LP9tbY2Oj+edWqVfMeu2LFxBqMgiCgoaFh3kmUJvX392NoaGKyloqKCnc7y7JoamrCwMAA4uLiUFBQQGMAlsja0YHKr30TMo0G6oR4qBMSEH/BZsCPd+pOvfQM4uaYv0jJAX2vvIa9cbEh09127KPXxA1yJVTJuVCnUjchQgiZNFl02u3iJaZ0Oh3Ky8up6CSELEmS2ohtIxb3tiLGu7lkQoXklY7U3fi6urrcP6enp897bEpKiuhxiyk8J5eYASYmVWJZFn/5y1/wzDPPuCcbAoCYmBh87nOfw3333Qe5PDxvry9WW1ubezB+dnb2gsc7BicKe95uh62zCy6LBYwf18sa7OuE8VTLvMeUNtrw+PE9ABD0xSdnM2O88h1RmzolD/pV6yX/+1wsb3OGEMoZ4q2GhgY0NjaCZVnExMS42yfvdEbqhIBkbnSdIYslZ2RQTZ/a1uW/1RmkJHnhKbXpxd9Cd1+nv9GMjo4u6vy9vb3un1UqFXbt2oXKyspZx42OjuKhhx5CZWUlfve730GpVC7q/OFobGzMve7VYjgHxct/qP28Buw7T/wRuQtcDyZnuH1GuxdAcBefplNvA9z0pYoZqNNWQJ2+WrKYvOVtzhBCOUO8wbIsampqYLfbRV8OU9FJ5kPXGbJojAzK+HTYz0+SKajojmdYmt5dZqEuMtPfWGZ2s5mLxTJ12/w3v/kNOjo6sHLlSnzrW9/Chg0bwHEcDh8+jIceegg9PT14++238fvf/x7f/va3vXwlvtPU1IT8/HxERUW52xwOB86ePQtgogDPysqa9ZjJNVlnLpI8ODiI7u5uAEBmZqaowOc4DrW1tQCAqKgo5Obmih577tw5jI+PAwCKiopE3ZFHR0fR3t4O+4zJhFTnJ2Y6ffo0BEGAVqvFypUrRcd0dna6v3RYtWoVNJqpaazNZjNaWibuaCYmJiI1NdW9b/eRZ5FZ04vFmJzh9pnqvQCAq3O3oaGhAQAQFxfnXlZoUmNjI2w2GxiGQWlpqWjfwMAAenp6AABZWVmiL0FcLhfqzv8OjEYjcnJyRI9tbW2FyWQCABQXF4s+NA0PDmD46F7RYG9lYgYUhhgwDIPq6moAEx+uJruaT2pvb3d/AbN69WrR34/JZEJraysAIDk5GcnJyaLH1tXVweVyQaVSoaCgQLSvu7sbg4ODACZmBJw+C7bNZnN3j4+Pj5/VS8HlcqG6uhoymWzWOOn+/n73F0E5OTkwGo3ufSzLor5+Yja56OjoWd9MNzc3u/+WS0pKIJt2R314eBidnZ0AJno1xMXFufdNLiIPTMzmPXOGw7a2Nvd48cLCQtGHk/HxcZw7dw7ARG+LmePDa2pqwPM8NBrNrGECXV1d7i7+K1euhFarde+zWCxobp5YfighIQFpaWmix545cwZOpxMKhQJFM8ZK9/X1oa+vDwCQm5sbMtcIAEhNTUViYiJmYlkWjY2NPrtGAEB9fb37w2ZhoXgN3J6eHgwMDAAA8vLyREtz2e32oLtGjIyMoKOjAwCQlpY2a7m0ULtGNDQ0wG63e32NmHwvsdvt7nkh9Ho9ysvLoVKp6BpxXrhdI5b7OYJlWXhC14gJ4XSNWO7niJP1Z9AxxgNQQoAAFYBVkO4aMZmDvuaXwrOmpgZ79+6dd/+k+Y6b6cYbb1x6UHNwuabu9Cz0jeX0/dMfN5/JiygAdHR0oLCwEE899ZToQnLttddi7dq1uPnmmzE8PIzHH38cd99994Jdf/2F4zj3G+skQRDcF1COm327z+VyzXmB5XnevW/meQG4903+TgsLCyEIAhiGQVtbm3u/IIiX152MidfpEH35ZYhOSQZns0GTmuI+ryAIHsfOTo93rvPOjHdv/Zvoe/k1pC+y98P0dT2fqd4LF8sil00VvdaZvweWZT12b53+O5wvXk/nne/fxtF4AjKHWdSmTl8F48ad7pjmOi/HcXPGND1eT/nCsixcLpfowruY886Vh5M509DQAIfDseB558tvb3+H3ub3XOddyu+Q53mPXfOX8jucGdPMx808r5TXiLnOu9i/ZWAiZyY/VHqKa6nnnYx3Ma/V279lKa4Ry/m3CaZrxPTzsizr9TUCgLsosdlsoqIToGuEp/OG+jVi8rzL/Rzh6cspukZMCKdrxHJ/h/bGRqw62uNus6tlwP1TMS3mvL68Rnj6t/QFvxSe+/fvx/79++c9ZvKP4vvf//6izskwjF8Kz+nfULEsO2/x6XQ63T8vtlvNzCR44IEHREXnpNTUVHz1q1/Ff/3Xf8HlcmHv3r348pe/vKjn8DW5XD7rD45hGPe3KJ4SVKFQzNmVRCaTufd5+kOe3Dd5YZ9+nunnnXkhnYxJgAC5TguB4yBTqcDI5O7zCILgMa7FnHd6vGcGmrD3+B7cN2PdzoVM3vW0auXYXb8P92TfiCxdqsc3MaVS6V4Ld6bpv8P54vV03rn+bQRBgPP02+IYErMQvX4HZAqVO6a5ziuXy+eMaXq8nvJFqVSCYRivzztXHk62qVQq8DzvMc+mn3e+/PbmdzjztS4mv+c671J+hzzPe4xrKb/D6THxPL/gv42U14i5zruYv+Xp5/TlNcJTvJ7Ou5y/5UBfI2ae19t/m2C6Rkw/L8dxS7pGqFQqpKWlwel0iopOgK4Rns4b6teIyfMu9xoxea3xFC9dI8LrGrGc3yHDzD2/ixTXCE+v3xcYwdNXVktUUFAAhmE8fgu2XAzDuG9h+9L999+P119/HcDE0irTu4XM9Pbbb+MrX/kKAOAHP/gB7r333gXP/8QTT+DBBx8EMHFb/s0335zz2OHhYVxwwQUAgK1bt+Lvf//7ol/HcpjNZnf3F2Ciu4On4jhY9b7xFpwjI+5tdWIikrdf5vPneeonX0Zu1eK62U53bk0qXi7kcGvxtbi9ZKfP41oqW3sdep78sagt6ZZvw1Aw97JChBBCCCHEt4787XfAqx+4t+1qGS7f/bxk8firNvDpHc/FzPIabKb3zx4dHZ238Jw+odD0MRrzmf6PNHPcwUxxcXGIiYnB6Ogo+vv7F3V+AlHRCQD63ByfP8dAT/uix3bOlF7di2/d9nVsLL4QAMDzU1/MyGTSzRo7duxl0bYiJhn6VaH3N0wIIb40uT7n9HGPhBDiVwo5+Ok3GRX+W51BSj4tPJ988klfni4gpg+g7unpQWZm5pzHTp+hduZg+7nMHPi9kMmuO/7qWx0KxsfH3d0lp38xsFgyte9nF/zo8b8gZokzWys5AQOv7gOKL4ST5fB/r9XCZndBq1Hgvp3FUCkDv3wOOzYAa+Mnojbj+mvc3ZRDzXJzhkQeyhniic1mc888X1FRISo+KWeItyhnyGKlX3ox3k+0gnNxECDAoNIv/KAQFJ7ltBemzw41OcvVXCb3Mwwza3azuUyfJWr6mqGecBznvqs6c/auSHLu3Dk0Nze7Z+KaD+9hoDXD+C6tzww0YaCnHYYTZxc+eB76jxow0NOOxo5RsCyPjn4TWJZHY8eobwL10tCBJwBM6xIvV8JQuk2SWHzBm5whBKCcIbNZrVacOnUKDocDDocDlZWV7rufAOUM8R7lDFks11g/XKN9cA53wzncA3t/h9Qh+UXEF55r1qxxD6o9fvz4nMdxHIcTJ04AmBjLuthvrmJjY91FamNjo+iu6Uy1tbXuCYxmTmtMPLP398Pe1w92bBy80wlBEKCKX1w36IXsrnkNPzn4MN546g9wqBWw6Kb/J5/zP7NODpNWBrNO7j7eqZbj5N5/oaZlECabE1a7CyabE7UtQwsH4geCww5GNTWxlioxEwodfRtLCIlMVqsVlZWVokkEHQ6He1kRQgjxJ5dpBK7xITB2E2R2ExjrqNQh+UXEr+NpNBqxefNmHD58GAcPHkR3d7fHbrT79u1zr9d0zTXXePUc1157LX7/+99DEAT87//+L3784x97PO6pp55y/+ztc4STlJQUcBzncQaumcZOVWLg3ffc24ooA7LuumPZMZwZaMILtfsAAK9mWXD3zn/HjYVXAQBcVits42MYH+qD3KCHVq2H3OaETKnE6/0n8Fzj1ARSP7/smyhInFi3qn/Yit0HGjAy7gAAjIw70K+zon/YiqQ43bJjXiyBY6FOXwlVaj7YoS44upugTlux8AODmDc5QwhAOUOmeCo6gYk1IVevXu3eppwh3qKcIYuVqNTjwtGpJRhl6vDsahvxhScAfPrTn8bhw4fBsiy+8Y1v4G9/+5toUqCmpib88pe/BDCxeOttt93m1fnvvPNO/POf/8Tw8DD+9a9/oaysDDfccIPomL179+Lllycme1m7di3Ky8uX+apC18wFbufDmsRrUDIKpcdpxL1VkLgCd5fdiGeq9wKA+/+TxSfHn+/iKwDy81NO7+s8iufbDrrPsUl/HY4dd+AYJha2Zl08XC4eZqsTOo0CZqsTLhePlw81QzltEHluWjS2rfVubLA3bK0TizkzMhlUiZlQJWYiet3Vfnu+QPAmZwgBKGfIhPmKzrKyMtEyA5QzxFuUM2SxFIwMuumTT/pw2FgwocITE0uXXHXVVXjzzTdx6tQp3HDDDbjrrruQmpqKuro6/Otf/4LFYgEAfOc735k1o+3x48dxzz33AAA2btw4a5Kl2NhY/PznP8fXvvY1cByH73znO3j99ddx2WWXQaVS4d1338Ubb7wBAFCr1XjggQcC8KrDg8ssLjzlPpxYaLLInFl8JqticLavESsVicjV5UAhU+CV7mN4ofN992PvLLkBvfWpaB0eF53T5nCBkTHISIpCU+cougct0KrFf4ZWhwtby9Mgly/tomPvqIcms3Du/d1Ns9rk+ugFH0cIIeHEYrGgqqrKY9FZXl7ucc08QgghS0dX1fN+/etfw2Kx4IMPPkBnZyceeugh0X6GYfCVr3wFd95555LOf8UVV+Dhhx/Gj370I5jNZrz77rt49913RcfExMTg0UcfxYoVod3tMZAc/QOibcU8y+EshafiM0Ebi0HbxBIumnYVimLzcHLwjPsxd5fdiK2pF+O5+gboNAp09pvh4ngwDKBWypGdEgWlQobslCj0DFpgtjkhCIBCLkNGkgGCAIyYHEiI8X4q/+FDz2H08G7EXboLMVtumrWfHfO8TM/o0Zcw/O5TiLnodsRdvPyuyoQQEswsFgsqKyvBsqyonYpOQogU2jra0DQw1cNCrnIiR7pw/IaurOdptVr87W9/w6uvvoq9e/eivr4eJpMJMTExWLduHe655x6sW7duWc9xzTXXYN26dXj66adx8OBBdHV1gWEYZGZmYvv27bj77rsXvT4omeAymUTbjB/GUcwsPieLTgCwc05R0XnHyqvcx9+4LR9vHmuDWiVHZ78ZFhuLxFgddJqJC4tOo0RirA4dfSbotUpkJBkQrVfjys3ZSyo67R31GD28GwAw/O7EeOGZxaep6t1Zj+OdNvfjRg/vhi63jO58EkLC1lxFp9FoRFlZGRWdhJCAG2nvRnLr1DXJrpq9akM4oKvrNAzD4Prrr8f111/v1eM2bdqEs2cXt9xGUlISvv71r+PrX//6UkKMCDU1NWBZFkqlEiUlJfMey02b6h4A5BrNHEcuz8zi05Pbsi/DdblTS5KkJxpw5xWr8PZH7VDIZejoM2F43A6jfqo78PDYxHZmchQyk6NwxcYsd2HqLU1mIeIu3eUuOmcWn7b2WnB2C+SaqQHr9o562M+ddm/HXborJItOb3KGEIByJlItp+iknCHeopwhRIwKTxJ0eJ53/7cQdsYYT4UfF2i+sfAqdI714FDb7GV3bs3Yhmsztsxq12mUuHRdJv65vw7C+THjQ2M22J0cNCo5wMDdfum6zCUXnZMmi8yZxWf0BTegb89vwVvHoYhLhTptJTjzyKyi01P33FDgTc4QAlDORCKz2Yyqqqol3+mknCHeopwhRIwKTxJ0NBoN5HK5aDbBufAO8aQQyuhof4UFAPj3tXfgZPdpmNmpKa8NSi12pG6e8zEDIxPH2hwucDwPi42FUa9C75AVDDM1K+7AiFV0N3SpPBWfzsEO8NaJiY5cwz1wDfeIHhPKRSfgXc4QAlDORKK2trZZRWd0dDRKS0sX1b2WcoZ4i3KGLJpS/Plv+eszBCcqPEnQWbVq1aKP5R0O0bY6KdHX4Yi81XxIVHQCgJm1YX/PMezMvsjjY/pHbHC5eLg43j2BkF6rhMXGuicecrl49I/YkJ8R45M4Zxaf5tPvz3lsqBedgHc5QwhAOROJCgoKwLIsRkdHAXhXdAKUM8R7lDNksWIVekyftSRcC7TwXCSGRARBEMDPmAZfFRfrt+fbW/+maIynVq52//xC5/vY13nU4+MGRqywOV3Qa5XIz4hGUqwOF69JR2KsDvkZ0dBrlbA5XRgYtXp8/FLFbLkJcZfumveYcCg6CSFkMeRyOUpLSxETE+N10UkIIWT5JLnitre349VXX8XJkyfR3d2NsbExfPnLX8anPvUpAP+fvTuPj6o+9wf+OXNmn2Qy2XcIW0IgBFRAFCiKdQFlVbAutNpWra3XXu2vrm1dqr3eut161artrbVWrVoVFRUBRQVEQZGwJIEkBMi+T5LJ7Oec3x9hDnNmy0wye5736xXN2b8JT86c53w34P7778f06dOxdu1aKJXhm5eRJBduyHy6g+QpquzI1Hh6Jp1XTr0IF6XNxse9+/BG4ycAgDdPfAqZUoHL01dLji0p0ON42wBStUrJAEJTiwziwEM8L6AkP/z9Uw3nroHpyNewt9Z5baOkkxAy3riST9f3hBBCoieqiafZbMbvf/97vPfee2JHa0EQwDCMZALnzZs34/XXX8df/vIXPP7445gzZ040i0kShH2g32udMt0Q9ut4Jp1XzbgMywsWwN7Xj0uLF4Fh5Xi9/mMAwOt1H4PVaMRRcAGgcmo2Jubp0dQxiJmTM8Ewwy33tWoFViyajMONPZiQm4q0FBXCTeA5cAPdXutlmhRKOgkh4xIlnISQeKOTK6VNbQW/uya0qCWeAwMDuOaaa1BfXw9B8P/bHBoagtFoBMMwaGlpwXXXXYe//vWvmDt3brSKSmKspaUFHMeBZVkUFhb63c/e3SNdIZOB1YQ+/2Ugnknn1ZWrsWLSEjiHhsR1l5V8D5zVin83D/ejdO3vnnympah8JpYyGYNZU7LCWmZ35rpvwZn6vNbzFhOMX76TNMlnsDFDiAvFTPIaHBzEiRMnUF5eHtYkk2KGhIpihgSLZaS9H5N1cKGo9fH81a9+hbq6OgiCgKysLNx+++34xz/+4bWfQqHAr3/9a2RkZAAArFYr7rjjDlg85mskyaunpwddXV3o6ekJuJ+1vV2yzKpUkGu1YSuHZ9I5NaMEQ3YzvmrZjw5zj+QFyvL8BVg3cam4/OqBjdhY83HYyjJaPdtflq5wu7H1bv8njF++E+USRUawMUOIC8VMchocHERVVRW6u7tx8OBBcBwXtnNTzJBQUcyQoAmei8mZekYl8dy1axd27NgBhmEwf/58fPzxx7jxxhsxf/58r32VSiV+8pOfYNOmTWIT27a2NrzzTnI8IJPwcfQPSJZlKiWYML3dru2ql/bprFiBY30n8W7tFvzpm5fw/758Ert7DkuSz0uLFuLKaZeIy68e2IjarvqwlGc0ere/AmdPq2Rd1vKbJAMOJVPySQgZ3wYGBlBVVQWn0wkAMBqNYU8+CSEkEkxK6ZQ7Dllyjv8alaa27733HgBAo9HgiSeegE6nG/GY9PR0/OlPf8JFF10Eu92OTz75BFdffXWki0riwLRp08S+v4E4B02SZVYTvtrO6dlTccXMS/Hvwx/g6srVqMgpw+uH3pfsw3m+ngKwYvISsBo1Xj2wEVfMvBTTs6eGrUyhMH75Doxfvi1ZxyjVSJmxEDLlcHNk93k+ASR0s9tgY4YQF4qZ5DIwMIADBw6ISadLOP99KWZIqChmSLD67UOSZSf4GJUksqKSeH777bdgGAbnn38+srKC78+Wm5uL73//+/jggw9w5MiRCJaQxBNNkP00bR5NV1htePt3rq+4DJW50zE9eyq21u+QbEtRaMH6+SBZXX4xpmdNiWnS6Uom3WlKKsWk03Oez0RPPoONGUJcKGaSh6um07NmMz09HRUVFWHr50kxQ0JFMUOIVFTqcbu7h0fVnDJlSsjHTpo0CQDQ3+89gikZ3wSHQ7IsUyj87Dl6ruRxUnoxyrKmIDclG0pWAYMyFTrW/wdKvCWdACDTSqdr8Zznk5rdEkISjb+kMyMjI6xJJyGEkLGLSo2n68bvmkIlFI5TyYVarQ5rmUji46xW6YoINmWZnDEBt537U9icdpzsPomjHfWYklIQseuNhrWpxm/SyeoMUKTnea33VfOpLp4OdXF55ApKCCFh0N/fjwMHDvhNOmVJ2keKEJJ8OJ6H+2syhgYXGr2cnBwAQE1NTcjHfvPNN5JzkOQ3NDQEk8mEoaGhgPsxHg8VqdPLIlYmGSNDhsaA/NQcpCi1WJBXiVSFe5/S2E+4pC4uh/7sFT63KfMmQTvlDJ/b3Gs+DYvXJ2TSGWzMEOJCMZPYYpF0UsyQUFHMkGBlqFMly/Ik7RcclRrPs88+G42Njfjiiy/Q3NyMoqKioI778ssvxf6hNI/n+NHQ0ACHwwGFQoHKykq/+3nWeKqj9HJietYUOE1DcBjjr/k34zlHrmz4/ZkiZyJUuSV+jzOcuyahazqDjRlCXChmElesajopZkioKGZIsHir9OWEMIpWookgKjWea9euBQA4nU788pe/hNFoHPGYb7/9Frfffru4vHLlykgVjyQop0k6qq08JSX6hfBM9GLIaerDwL4tHmsFaGcshM5Pbae7RE06CSHjh9Fo9Jl0ZmZmUvNaQkjC4izSZ1qvioQkEZUaz8rKSqxcuRLvvfceqqurcemll2L9+vWYMWOGuI/RaERtbS3q6uqwdetWfPLJJ+A4ThwN96yzzopGUUkcyMrKAsdxIw4K4TRJ3w7JU0aepme0BEGAk3dCwfofwCjWrSL6d2+E4LRLV/I8uL52aCZWxKZQURJszBDiQjGTePr7+33Oy5mZmYmZM2dGPOmkmCGhopghwdKxCpjdltk46MIVCVFJPAHgoYceQnNzM/bt24fe3l4899xzAE7PsfXCCy/ghRdeEPcXTmX6U6dOxR//+MdoFZPEgYKC4AbtiVaNp8k2hA/rtmP5tPOhYBWn5+OKo+b3vms7h9k7GuE09UGekh7lUkVPsDFDiAvFTOJRKpWQy+WSxDNaSSdAMUNCRzFDgiVnpPcwWTw9ZIZR1NqkKJVKvPTSS/jRj34ElmUhCIKYXLq41rkm27300kvx2muvISUWTShJXONsNq/pVCJR48nzPP7zowewt6UK/zr0HrbV70DnUE+AI2Jzo/BZ23mK4HSg/6t3o1wiQggJL41Ggzlz5kClUgEYrk2KVtJJCCFk7KJW4wkACoUCd999N3784x9j48aN2LNnDxoaGtDf3w+n04m0tDQUFRVh3rx5WL169ajm/STjg3Nw0GsdG4GJmlsG2zFgG8SAbRAnjM0AgPXly7GicGHYrzVagWo7XQa+/RhpC1Ylda0nIST5uZLPpqYmTJ06lZJOQkhSGOSklQcOP/sluqgmni65ubm46aabcNNNN8Xi8iQJMHI50ufPg2C3g7fbwTscYCLQh2JvS5VkWS1X4cy8madXxEET/EC1nS6C047+r95F5vevi06hCCEkQjQaDUpLS2NdDEIICRsjZ5UkZY7kbGkbncSzvb0deXnek9cT4kttbS2cTifkcjmmT5/ucx9GJkPK5EmSdZGo8azpqpcsp2vSUJJeDMfAYFz08QymttMlmWs9g4kZQtxRzMQ3s9kMjUZzuk99HKCYIaGimCFEKiptVJYuXYrrrrsO77zzDk2iS0Zkt9ths9lgt/uvxePMZq91MoX/EWdH6/oz1uOGuVdjSckC5OqykKmJTdJmbarxuT6Y2k4XV61nMgomZghxRzETv3p7e/HNN9+goaHBayyIWKKYIaGimCFEKio1njzP4+uvv8bXX3+NBx54ABdccAFWrlyJxYsXU/8M4kUul0MQBMjl/sOTUSihTE+HwHFwDA5GbD7NAn0uCvS5WFKyAAfaqzE9e2pErhNI7xevw7jjDWScfy0M564R14dS2+mSrLWewcQMIe4oZuJTb28vDh06BJ7n0dw83K9+ypQpcVHzSTFDQkUxQ4IlyKWVJ7G/40VGVP4ScnNz0dHRAQCwWq348MMP8eGHHyIjIwOXXXYZVq5ciZkzZ45wFjJeuM/v6o8qMwN5l1wEQRAwWHsECr0+omWSMyzmFs4GAPCS0XQj+zbe2lQD4443AAC92/8JAGLyGUptp0uy9vUMJmYIcUcxE3/ck06X5uZmpKamIjc3N4YlG0YxQ0JFMUOClTdrBvZ31IrLSrU6hqWJnKhUN37++ed4+eWXceWVV8JgMIhTpvT09OAf//gHrrjiClx22WX4y1/+gvb29mgUiSQLQUBq6TRoCiM7V5bvmvnT76Mi1RxMXVyOjPOvFZd7t/8Txi/fGVVtp8vAtx/DaeoLVxEJIWTMenp6vJJOAMjJyUFOTk6MSkUIIdEhN6Siv0AuflnyKfEck3nz5uGBBx7Azp078fzzz+Oyyy6DRqMRk9CGhgY88cQTWLp0KX70ox9Rf1ASkCvRY2SyiIxmG08M567xSj4733os5NpOl2Tu60kISTz+ks7c3FyUl5fHRTNbQgghYxf1RudyuRxLlizBkiVLYLVa8emnn+L999/Hzp074XA4IAgC9uzZgz179lB/UOJX3f/8L3r37IU8RQe5LgW5F1+I/GUXh/UarYMdyNJmQMmGf9CiULma17qa21qbawPtPqJk7etJCEksrqTTs9VIbm4upk+fTkknIWRcyFDocNaARVxWpqXEsDSRE9Pezmq1GsuXL8fy5csxMDCAjz/+GB988AH27t0LjuMk/UEzMzOxc+fOWBaXRElHRwc4jgPLsn779ThNJnBmMzizGTZ0wTk4GNYyCIKALxq/hkwmw3mTzkGOLhOCIHg9BEVzxEXP5DMQRqmBTBV4ehnTge0wnLs2LGWLtWBihhB3FDOx193djcOHDydM0kkxQ0JFMUOCpWIVyHCebvXBOPgAeyeuuBlmS6/XY926dVi3bh16e3vx9ttv49lnn4XFYhH7g5LxoaOjAw6HAwqFImDi6U6eEt43Q32Wfmys/Rh6VQq+aalCaeZkrCq/GNm6DODUw5DXM1EUHpKCST49R78dD4KJGULcUczElr+kMy8vD2VlZXGXdAIUMyR0FDMkWALHgZErwPPD90Seo8Qz4pqamrBt2zZ8+umn+O6778BxXKyLROKUtU06CJXgdIb1/A19J8ALPIzWARitA2geaMfqGeFtyjtagZLP9POuHndJJyEksSRi0kkIIZHUq1DhQEklzCYTeF6ASqlB9Cfwi7yYJ56dnZ1ic9qDBw+K610fSLm5uVixYgVWr14doxKSaJs0aRJ4ng/Ypzdr8UJwFgt4ux283QFFuiGsZWjoPSFZTlOnQqfQjnhctJ6XtGVneyeeMjnSF14enQLEmWBihhB3FDOx0dXVherq6oRMOilmSKgoZkiwmr7Ygaz3vhWXrSoZ8KMYFihCYpJ49vX1if05v/32W/EDyPV/jUaDiy66CKtWrcI555wT1x9EJPxSU1NH3EeekiJpXqsO83D7Tf2tkuVMjQEqVhnWa4xF58YnvVfyThi/fGdc1ngGEzOEuKOYiT6Hw4Ha2lqvpDM/Px+lpaVx/1lPMUNCRTFDiFTUEk+TyYRt27bhgw8+wO7du8VmtK4PIJlMhgULFmDVqlW4+OKLodEEHhiFEHcyZXiTwp/P/yFOGJtx3NiM6s46lGVNFt9Yig9HMXpI6vvybdjbj/nc5qoFHY/JJyEkvikUCsycOVMydUqiJJ2EEELGLiqJ5y233IIdO3bAbh+ed9D9bee0adOwcuVKrFy5kjpek6AIPvr+yvXhfauoU2oxI6cU5dnTcNHUJZDL4mOuUOOX76Bv+yte61VFZbA1HwFAySchJH5lZGSgoqICBw8eRF5eHiWdhBACwMnzkqSMQXLeF6OSeG7btg0Mw4gJZ0ZGBi699FKsXr0aM2fOjEYRSAKx2Wzi1CUqlcprO2e1eq1jI1RDzjAM5Ez8JJ3u/TpVRdPByJVwDnQha/nNsNR9I24fb8nnSDFDiCeKmdjJyMjAWWedBZ1Ol1BJJ8UMCRXFDAlW8ZJF2J0yCEHgIQDQqkYeVyQRRa2prVKpxPnnn4/Vq1dj8eLFYNn4eJgn8efIkSPi8OOVlZVe233VeLJqdTSK5i1K83h6Jp3qkllQF5efWpoOZVYRVNnFADAuk8+RYoYQTxQzsZUS5imwooFihoSKYoYEi3daYJNZxJcVnOBdyZIMopJ4/v73v8cll1xCnaxJWNiNRjgGBiBTKiFTKsGwLJiYjBjn9qY+gvln4KTzVElO1Rp4TrUynpJPQkj86OjoAADqQkMIIUFw9rXD0dsK19OsLPYTj0REVH6qdevWReMyJEkYDAZwHOe3Vrzv2+/Q/uFmcVmVnYUJP1gftus7eQ4dpi7kp+TEfAh0a1ONJOlMO2c1GLl0ICVNSYVk2VfyqS6e7pWsJpORYoYQTxQzkdPR0YGamhoAwy/FcsI86nisUMyQUFHMkGClyzWYM3i6lpNVJOcgq8mZTpOENmHChIDbuaEhyTLDhi+MOZ7DP/e/BY1Cg3SNHipWhQJ9LqZlTgrbNUKhLi6HYfF6GHe8gYzzrwWbkg6HsUO6T2Gp13Huyadh8fqkTjqBkWOGEE8UM5HhnnQCQHV1NQAkRfJJMUNCRTFDgqWWyZHtON2VTKZIzrlfw5p4/vCHPwQw/IbzpZde8lo/Fp7nJOOXY9AkWZaFscN+y0A7PqzbDrlMDoNaD4Najx/MWuH/gCh08cz43pXQTqqEIqMAxm8+8hqMg2EVPo8znLsm6Ws6CSHxo729HbW1tV7rBwYGkiLxJIQQMjZhTTz37Nnjc4Q6f+uD5RoRjBAAcPYbJcusOnyJZ2Nf0/A1eCe6zb0wOyzI0WVJdxLn8YQ08YxgjKqLy9H6yv2wtx+DMm8ylDkTIVNpocwqGvE4QgiJNH9JZ1FREaZMmRKDEhFCSOLo7OnGUdPpJtlypxMlsStOxIS9qa2/JFGI0uifJPk5BgYjdu4j3Q2SZYNajxSVLvgTRCj5dA70wHr8EAAB1uMHYT1+EIaFl0M75YyIXI8QQoI1UtJJL44JISSw1to6GKpPN7W1Ki0xLE3khDXx/OSTT0JaT4gv9fX1cDqdkMvlmDp1qtd2z3k8wzmHp9E6IFlOU+uhU8R+LiXT4R1wr15llBqknnkxZEk6z1OoRooZQjxRzIRHW1sbjhw54rW+uLgYkydPTqqkk2KGhIpihhCpsCaehYWFIa0nxBez2SzOe+ULZ5EmnvLU8M0H9+tFP0OfpR/H+k5i18m9OKf4rBEenKJTk2869LlkOaX8HCj0mVG5diIYKWYI8UQxM3bjKekEKGZI6ChmCJGK+1FtHQ4HGhoa0N3djUWLFsW6OCQOcGazZFmdnx+2czMMgwytARlaA+YW+pns+dTDFMMwUWlCbus4DnvnScm6lFlLIn5dQgjxx1/SOWHCBEyaNCnpkk5CCIkkjpXHf1IWBlH5GadPnw6ZTIZf//rXuP7660M69plnnsHzzz+P7OxsfPHFFxEqIYknlZV+Er5TPJvaKjMyIlmcmDMd2C5ZZlMzoZ4wI0aliU8jxQwhnihmRq+1tRVHjx71Wp/sSSfFDAkVxQwJVpYyFe4jmCRrHXnUJokZbc2QRqOBIAjo7e0Nc4lIohIcDskyG8bpVARBgJNzhu18YyXwHAb2S/tIa0pmYXhIXUIIia7xmnQSQggZu7idnVQQBDQ1NWHTpk0AAK2WBlEhAG+3Q+A4yTplVnj6Og7ZzXir+iM4+OATz0g3tbUcPwTBLh3ZjFGo6OGOEBITTqf3/XHixImUdBJCCBlR2JraOp1OrFmzBvX19T63C4KAP/7xj/jjH/8Y8rkZhkFpaelYi0iSgK+pVOSpqWE59wdHPwUA1HTVQ8nKkanNQH6q96Tnpx+uIv+Q1fPJPyTLrM4AVpcW8esSQogvEyZMgCAIaGxsBDCcdJaUlFDSSQghY6BmFZKmtmySzkIZtsRTLpfjwQcfxNVXX+23Fmi0tUMMw+CGG24YS/FIAunu7gbP85DJZMjKypJss/f1ee2vzEgf8zWtDivaTV0wqPWo7z0OACjS5/lMPD1FqtaTs1vh6GmWrFPkTITh3DURuV4iCxQzhPhCMTN6EydOBDB87yspKYltYaKIYoaEimKGBEspYyXLcdskdYzCOrjQGWecgR/96EfYsmWLZH1raysYhoFer4dOpxvxPAzDgGVZpKSkoKioCOvXr6cRbceR1tZWcfhxr8Szp0eyzMjlUKSMfTqVQ51HsPPEHgCAWq5ChsaAn5z5gzGfdywGvvkIkPQ3ZaDMngCZXBmzMsWrQDFDiC8UM2PjSj7HE4oZEiqKGRIsgeelyzEqR6SFfVTbu+66C3fddZdk3fTp0wEAP/vZz0Ie1ZYQd07TkGRZplCAYVk/ewfvcOfpwTKsThvMDgvKc6aNfGAE7wyDVdJBheSGHGR+/0eRuyAhhLih+QcJISQ6bGqNZJmTjf3ZNh5FbcqYaMx3SJJDcXGx2DTFk627W7LMKMPzUNRvk/YdzdJmQB7gj55hmIh28eSG+uHsa5esU+ZMpH5UfgSKGUJ8oZgJrLm5GSdOnMDs2bOREoZWJcmAYoaEimKGBKvH4znUDt7PnoktKolnbW1tNC5DkkR6uv8+m4JDOqKiTBGeZqcyRgYVq4SNswMAzp0wd5RnCk9iOLD/E8D9ZY2MhXbqaMuU/ALFDCG+UMz419TUhIaGBgBAVVUVJZ+nUMyQUFHMECIVtRpPQsLBOWSSLMvCVON5y9nX4efzfoh2UycajU2YklESlvOOlr2nGfKMAjj72gBBgCKzEKlzzo9pmQghyc896QSGm9tWVVVh/vz51OyWEELImIQ18WxtbRW/Lygo8Ll+LNzPScYnzxbb6tzcsJ1bJpOhQJ+HAn1eKCUK2/VdOIsJCkMuFIZc8A4bHF1NYFMMYBhqqkMIiZyTJ0/i2LFjXuuLi4sp6SSEkAhy8E6432WTtWNVWBPPpUuXgmEYMAyD6upqr/Vj4XlOkrw4jhO/Zz0HDuI5yaKmID8aRfIjMreF/r0fiN/LFCqoCqZCN42a2QYSMGYI8YFiRspf0jl58mRMmDAhBiWKPxQzJFQUMyRYWeo09Lsty5nkjJewN7UN9xyeZPw5fPiwOJpiZWWlZJtzSDqqLRvE9DwREeVXUar8KdG9YIIJFDOE+EIxc5q/pHPKlCkoLi6OQYniE8UMCRXFDAkW77BJlgWBBhca0bx580JaT0iouCGzZFkehsSz09QNi9MKBauAnGGhUaiRqordQBoyhUpyA6KRbAkhkXLixAk0NjZ6raekkxBCooczGSXLDE+J54hefvnlkNYT4ktqaiqcTifkcu/w9KzxlOu0Y75eVXsN+qynGziUGIowv2hOcAdHoCLfcM5qCDwHe+cJDB3di7QFq8J/kSQTKGYI8YVixn/SOXXqVBQVFcWgRPGNYoaEimKGBEvDKuBetcJGcqL4GKK/BBJ3Jk2a5HdbuJvaWh1W7Gs7CL0qFXpVChSsAlqFOsijw18Tae88CUV2ERgZC1XeZChzS2hQoSAEihlCfBnvMUNJZ+jGe8yQ0FHMkGApPZ71ZEk6vBAlniShOAekE+yOtantcWMzvm09KC5rFRrML5w98oHuzV/D1H+ZMw+g+a+/AqvVQzttLnSl86GZPBtgKfEkhITP8ePHcfz4ca/1lHQSQgiJpJgknv6aHezZswfvvvsu2tvbkZubi4svvhhLliyJQQlJPBIEwavGk7dZx3TOk8YWyTIrY5GTkjWmc46Wuf5bQODBDRkxuH8bTId3YOJtL4Jh6f0QISQ8Ojs7fSad06ZNQ2FhYfQLRAghBFbeKVnm/OyX6KL6RLt79248//zzqKurw65duyTbnn76aTzzzDOSde+88w6WLFmCP/3pT1CpVNEsKolHPA/D7ErwDgd4ux28wwFWN7ZBgNpNXZLlqRkl0Co0IZzhdG3nWMcAGqr9WrKsmTwHMgXFPSEkfLKyspCVlYXu7m5xHSWdhBASW11OsyQpsyVnS9voJZ5vvvkmfve730EQBDAMA6PRCIPBAAD47rvv8PTTT/s87vPPP8ddd92FJ598MlpFJTF2/PhxsVa8pKREXC9wHFKnl0n21RaPrVlYikqHwtQ8tJk6wQs8JqcHP19dOAeb5R02mBv2SdZpae7OoPmLGUL8Ga8xI5PJMGPGDBw+fBg9PT0oLS1FQUFBrIuVEMZrzJDRo5ghRCoqiWdXVxcefvhhcVmtVqO3t1dMPF988UUAw9NGlJaW4mc/+xl6e3vxzDPPoLe3F5s3b8a1116Ls846KxrFJTE2MDAgznvljnc4vPZl1cEOBOTb2hnLsHbGMjg4B9oGO0Oo7fSTdY4yGTUfqwJ494YVDOSG3NGdbBzyFzOE+DOeY0Ymk2HmzJno6+tDZmZmrIuTMMZzzJDRoZghRCoqieebb74Jq9UKhmGwcuVKPPjgg1CfShiGhobw2WefAQBYlsVf/vIX5OTkAADOPfdcrF69Gna7HZs2baLEc5xjtVoUrbscAsfBfPwEFIY0MGG6mStYBSYYYtfUbKh6p2RZnpYFZXpejEpDCEl2MpmMkk5CCIkTThk7LkZ8jcrPuHv3bgBAQUEB/uu//gssy4rbvvzyS9jtdjAMgwULFohJJzA8DPV5552Hjz/+GHv27IlGUUkcmDFjhtgk2x3DMGDkckAuR2pZaViuZbQOoLarHmcXneF1vWAIYRjRVuA5mOu+kayTZxaCTTGM+dzjhb+YIcSfZI8ZQRDQ0tKC3Nxcqm0Jk2SPGRJ+FDMkWPml01DXUCMus+rkHOMjKvM0NDY2gmEYnH/++ZKkEwB27Nghfr948WKvY6dNmwZguLkuGR/kcjkUCkXEJ1wWBAFb6r9ASXrx6D4UwvRBYm2qheCwSdYpMgvAyFg/RxBP0YoZkjySOWYEQcCxY8dQX1+PqqoqOHx0UyChS+aYIZFBMUOCpczPQvt0lfjVXza2wTPjVVT+Evr7+wFAUpvpsnPn6SaG55xzjtd2V0JgNpsjVDoyXnWZewEA+1oPQiNXQwBwbvGZUCtG7jcazpeXpmrpCM8yXRrkOkP4LkAIGTdcSWdTUxMAwGQyoaqqCrNnz6aaT0IIITEVlcRTqVTC6XTCYrFI1h87dgytra1gGAYZGRkoLfVuPtna2goASElJzsyfBK/l3ffQtukjyHU6sDot0s+Yg6Ir1o76fMd6TwAATHYzTPbhFxsqeXSbNgiCAHPdXsk6RWYhDOesjmo5CCGJTxAENDQ0oLm5WbLeZDKhv78fWVmxmaOYEEJIYHq5BtOHTrd+U8mSM++JSuJZXFyMI0eOoLq6WrLeNagQACxatMjrOJvNhi+++AIMw9Aw1OOI0WgU+0S4Rj4GAHtvH2ydnXD9Waqys8d0nY/rP4dWoYFelQq9KgWsjA29ye0Yu3g6uprADfZK1ikyC6mZbYj8xQwh/iRbzPhLOgFg+vTplHSGQbLFDIk8ihkSLJ1chWKbU1yWqcc+hkg8ikriefbZZ6O2thY7d+7EF198ge9973vo7u7GSy+9JO5z4YUXSo7heR5/+MMf0NXVBYZhcPbZZ0ejqCQOnDx5Uhx+3P1GbevqluzHyEbfRXnIbsbhzqOSdctLlwZ/AoYJS3tb05GvpadVacFSM9uQ+YsZQvxJppgZKenMy6MRssMhmWKGRAfFDAmWIPCSZWeS9s2PSuK5bt06vPzyy+B5HjfffDNKS0vR0tKCwcFBMAyDvLw8nHfeeeL+L7zwAj788EMcOXIEAKBQKHDFFVdEo6gkjplPNkmWOY+m26FoHmiTLDNgcNHU7436fKNlOrhdsqzIKIA6d1LUy0EISUyCIKC+vh4tLS1e28rLy5GbS/MBE0JIvDNrUtA+ZxEGjf3geR4KpRZTY12oCIhK4jl16lTccssteOqpp8BxHGprawEMf2CyLIv7779fMuLXv/71L7S1tYlTVdx5550oLi6ORlFJHMjPzwfP85B51GhmnrsA1taJ4O128A4HNEWjn3ezqV+aeOalZKMgNboPaM6BHjj7OiTrFJmF0JbNi2o5koG/mCHEn2SIGUo6oysZYoZEF8UMCVbdZ5/B+v4uMTGzq1ngypgWKSKiNr7zz3/+cxQWFuLZZ5/FiRPDg7qUl5fj//2//4eFCxdK9p08eTJaW1uRlZWFe+65B8uXL49WMUkcyPbTd1Ou00JTWHB6OTV11NcwqPU4s2AWmvtb0TnUg4npRaM+lyjEprf27mYoMgvh6GsHeA6MXAF5WjYYhj6gQuUvZgjxJ9FjRhAE1NXViQPwuaOkMzISPWZI9FHMkKA5Oagdbv06Zbz/fRNYVCcWWrVqFVatWoX+/n6wLOt3pNqrr74aP/jBD7BkyRIa/p2IOLO0aW3K1CmjPtfcwkrMLawEAFidNlgd1tEXTBhdB3Bbax10MxZC4JxwGjvBO6xIO+uS0ZeDEDIu+Es6GYZBeXm5z6nLCCGEkFiLyYy2aWlpAbcvXRrCIC9k3BLG0PGaF3h0DvUgV5cFtVwFdcjTqPiu3QxlVFzN5Dlw9rbBYeyAInO4Jleemh5iOQgh4wklnYQQknzsnAPKWBciCmKSeLpzOBzo7+8HwzBITU2FUjkefu0kHOR6/aiPre48CrVcjVxd7KYYUBdMBQqmghvqR/+3m6EpqYhZWQghicHpdMJoNErWUdJJCCGJrXjuPFRZTo/7oVLrYliayIlJ4rl79278+9//xjfffIPOzk7JtuzsbMyZMweXXnopLr744lgUj8TYwYMHxeHHZ82a5Xc/uZ+m2iMRBAHVXfUAgF6LESq5ElMzSqBTakd9vjFhZEgpPxeKrDD0Mx2ngo0ZQlwSNWYUCgVmz56NqqoqmM1mMAyDGTNmUF+yKEjUmCGxQzFDgiVLVWOgWAer1QJBEKCV0zyeY9bb24tf/epX+Oqrr8R1ng/tXV1d2Lp1K7Zu3Yqzzz4bf/zjH+kt7jgjCIL45cLb7eCsVsgUCjAsCwBgZKObR7PH0id+f9w4PO/dlIyJIZ8nDNN4AgBYbSpY7egHSiK+Y4aQQBI5ZlQqFWbPno0DBw6gpKSEks4oSeSYIbFBMUOCZe88AXtHI1zDS8pi3yg1IqL2U/X09GD9+vVobW2V/AHK5XLo9XpwHAeTyQSO48RtX331FdavX4+3334bGRkZ0SoqiTGNRgO5XC4ZWMrUeAKtG98DADAsC5lSiYKVl43q/D3mPq91OkWItZ1jSDp56xDAysHIZGBYGjwrHHzFDCGBJHrMqFQqzJ07N6R+5WRsEj1mSPRRzJBgpbIqTDPbxWU5m5wzHEQt8bz99tvFucZSUlKwYcMGLFu2DNOmTRM/OJ1OJ+rq6rB582a88sorMJlMaG9vx5133om//OUv0SoqibFp06Z5rXMODorfCxwH3umETBXqgEDDtjbsQNdQL9JUqdCrUpCi0kX14a17298xVP0ltNPOgnbaXGgnn0E1nmPkK2YICSQRYsb1ktbf/YmSzuhKhJgh8YVihgQrhVWixHp60EyZVhPD0kROVBLPHTt24OuvvwbDMCguLsbf/vY3FBV592eTy+UoLy9HeXk51q9fjx//+Mc4ceIEdu7ciV27dnnN90nGD/fEE4CkyW2oqtqq0W87fb7l06I3irIgCDAf2QPBYcVQ9S4MVe+CYeHlyDjv6qiVgRAS/wRBwJEjRyAIAqZPn05JJiGEkIQXlXrcTZs2AQBYlsUzzzzjM+n0VFhYiKeffhpy+XBu/N5770W0jCS+OQcHJMsypXJUD2Im25Ak6QSA8yefO7pCjeL69u4m8FaTZJ1cT/2zCCGnCYKA2tpatLe3o6OjA7W1tdRHjBBCktigxYwWXiZ+tTr4WBcpIqKSeO7btw8Mw2Dx4sUhNTuYNm0aFi9eDEEQsG/fvgiWkMQ7R79Hjecom9k2DUjnvmNlLAr1eSGfR5L0hvBAaKraLj2PUgPdjFEmvoSQpONKOjs6Tg+r39HRgaNHj8awVIQQQiKpYV8VZN/w4pdl71CsixQRUWlq293dDQCYOXNmyMfOnDkT27dvl3wIk+TW3NwMp9MJuVwu1o7bensl+7Aa9ajOnapKwfJp56NpoA3N/W1IUekgl42uye5oDB35WrKsyMgHm6RzNUWTr5ghJJB4jBlfSScw/KIrKyt2cw6TYfEYMyS+UcwQIpUwY/Wyo+zPRxJPb2+vOO+V60bNDUnf/LDq0SWeRfp8XHfmenHZ7rQH2Du8nOZBOI3SeWsVGQVRu34y8xUzhAQSbzEjCAJqamq85raWyWSYOXMmMjMzY1Qy4hJvMUPiH8UMIVJRaWrrmmPs8OHDIR/rOobmKRvfBF7a1p13Okd9Lt7tXEq5ctTnCZVp/ycA3JrlyljoSudF7fqEkPgUKOmsqKigpJMQQpKcY5wMIBeVGs85c+bg5MmT2LFjB44dO4bJkycHdVxDQwN27NgBhmFwxhlnRLiUJF6UlpZCEARJP0reZpPsoxrlg9ihjiOwOK0ozZwEFauEklVCJhvN+xd/Nwj/Nw5z/TeSZXlaDnTl54zi2sSTr5ghJJB4iZmRkk6awzp+xEvMkMRBMUOClaM2wH00k2Sd+TUqNZ6rV68GAHAch1tuuSWo/podHR34xS9+Aeepmq3ly5dHsogkjqjVamg0GqjdmtM6jEbJPqMdXKi6qw6NfU34uP4LvHdkG+p7j4+hpMETeA62tgbJOkVmPpgo9i9NZr5ihpBA4iFmeJ5HdXU1JZ0JIh5ihiQWihlCpKKSeJ577rmYP38+BEFAY2MjVq5ciWeeeQZ1dXWSIeIFQUBdXR2efvpprFixAidOnADDMDjzzDOxZMmSaBSVxCneLu2LyYyiltLXdAQyJgx/AkGMamtpqoXg0Z9UV7Zg7NcmhCQknudRU1ODrq4uyXqZTIZZs2ZR0kkIISTpRG1woUcffRRXXXUVWltbMTAwgKefflqcpzM1NRUAMDg4KNZwupKEvLw8PPnkk9EqJolT4ZjCzuK0eq3LTRnDSJEhNJ3p371RsizTGaAuLB39tQkhCWukpDM9PT1GJSOEEBILSpk0JYtKzWAMRO3nys3NxRtvvIF58+ZBEATxy+FwoK+vD319fXA4HOJ6AJg3bx5ef/115OTkRKuYJA6YTCYMDg7CZDKdXslzkn0UafqQz/vBkU9wqKMWJ4zNaB3ogMVhhU6pHV0hQ+yuYW8/JllWZORDkUUj3IWLz5ghJIBYxszRo0cp6UxAdJ8hoaKYIcFSs9LEkw1DhUs8iup0KllZWXj55Zexa9cubNq0CV999RXa2tokTSALCgpw1llnYc2aNTj33HOjWTwSJ44dOyYOP15ZWQnAexRbRVpayOet7qpDbffpfpbrZl4anqa2I3D0tYMbMkrWKTIKaLCBMPIVM4QEEsuYKSgoQFdXFzhu+IWaTCZDZWUlDAZDVMtBQkP3GRIqihkSLM+WfUmad8ZmHs+FCxdi4cKFAIYHHOrv74cgCNDr9VAoknUcJzIWglNa48mMIk6a+lslyxMN4alx9NV31N3Atx9LlhmFCumLLg/LtQkhiUev16OyshIHDhyAIAiUdBJCyDjHK6WDZgpJOvhkTBJPdyzL0iAKRCI7Oxs8z0umORE8ajxZZWjzb/ZbBzBgkzZ1KU4rGH0hgaBrLB09LWDkCghOB4DhZrbyNJqXNpx8xQwhgcQ6ZtLS0lBZWQlBECjpTBCxjhmSeChmSLDa7YOSZSt4P3smtognnt3d3Whvb4dcLkdRURFSUlIifUmS4PLz873WeTa1ZUJMPOUyOX585pVo6m9F80AbOkzdyNVFZ2Ch3HV3grMMwtJ4AAPfbIY8PQ9MFJr4jie+YoaQQOIhZtJG0WWAxE48xAxJLBQzhEhFJPEUBAGvvvoq/vWvf6G+vl5cL5PJMGfOHNx44400PQoJicBJm9qyqtCa2uqUWlw8dUlM+lUyMhZynQEp5edCplBDPaE86mUghEQfz/Po7e1FVtYYXnIRQgghSSLsiefQ0BBuuOEGfPfddwCk/d84jsO+ffvws5/9DGvXrsVDDz1EA6yQEQkcB/DSJgfK7NBGOh6ym8EwDLQKTTiLFhKB56CddhaYJG23Twg5jed5HDp0CL29vZg2bRoKCwtjXSRCCCFxysbZoRp5t4QX9sTz//2//4d9+/aBYRifg6641r399tvIyMjAr371q3AXgSQZ3uHwWqcMcTqVD45+CgDI0BigVaiRrcvEtMxJYSmfOBQZwwScZkWmGA+3FEKIe9IJAHV1dQBAySchhBCfstUGDLgtK5jkrKQIa+L53XffYfv27WLSuXLlSlx77bWYPHkyWJZFbW0t/vGPf+Cjjz6CIAh48cUXce211yI3NzecxSAJrqamRhx+vLy8HLzd7rWPLMQ+ni69FiN6LYCdc4wx8Qyupp532CjhjALPmCFkJJGKGY7jcOjQIfT19UnWNzY2Ijs7G8pR3rtI7NF9hoSKYoYEzaNlnyDQ4EIj2rJli/j9XXfdheuuu06y/YwzzsAZZ5yBgoIC/N///R84jsO7776LG2+8MZzFIAnO4XDA4VbLydu9azxliuAf3uyc9/EZGsOoyhYKS1MtZKwciox8MCoNDSgUQZ4xQ8hIIhEz/pJOlmVRWVlJSWeCo/sMCRXFDAmWc6BbsszwlHiOyNWvc9q0aV5Jp7tf/vKX+Pe//42BgQHs378/nEUgScA1l6vr/7zd5rWPTBX8A5zVYfVaV549dZSl88HPNJ5d7/4JOJV4KjMLoSqYipQZC8N3XSLyjBlCRhLumPGXdMrlclRWVkKvD617AIk/dJ8hoaKYIcFSsSzMbssyfw+XCS6siWdzczMYhsG5554bcD+lUolzzjkHmzdvFvu+EOLi2RzFq6ktw4CRBx+6J4wtqOtpRIYmDTqlFvkpuVCwYfgQCDAwlqO/E87+TgCAs7cVlvpvkbZgFSWeEUJNmEiowt289uDBgzAajZL1lHQmF7rPkFBRzJBgqRnpcy0bZJeuRBPWxHNwcHjy0/T09BH3LSkpAQAMDAwE3pGMe7xNmngycjk4sxlynS6o45sGWlHVXi0ul2VNwYVTF4+pTCMNxmw+sle6v1wJ3fTAL2QIIYknUNI5e/ZspKamxqZghBBCSJwJa6cz+6maqWCaFKSkpAAYnn6FkEA4jxpPhmHgDCFuus3Spm+Z2pFfjITGuzmEqXqHZFmekQ9FBg2iRUgyoaSTEEJIODg9BhNKzoa2Ya7xFAQBDMMENTenTDac83IcF84ikCQk16ihmzwJAsdB4DgwcnnQtZ0A0OOReGZpM8JdRAneboGttUGyTpFRAFZDD6GEJAtKOgkhhIRLm8MkScosydnSNvzzeBIyVm1tbeB5HjKZDPn5+VDl5iJj/jzJPqxaHfT5zpu0AMX6fHSb+9Br6cOk9KLwFNTPCxZL40HA/c0Vw0CVF6Y5Q4lPnjFDyEjGEjMcx+HAgQPo7++XrKekM7nRfYaEimKGEClKPEnc6erqEue9ys/Ph0wuR2rpNAg8D4Hnh+c6CqJW3WVKRgkYyLBmxiVgZWGakNft+oIgbRAxVLtbsizXZ0M7eU54rkt88owZQkYylpjp6+vzmXTOmTNH7EZCkg/dZ0ioKGYIkaLEk8Q9VqNB+llnjvr4pv5W5Ogy0Gfph5JVQK1QQxmOUW19EAQe5rpvJevkmflQ5pZE5HqEkOjLyspCaWkpjh49CmB4XIPZs2dT0kkIIWRUHAwjScqojychUTJ58mSxv3A4HO48Kj1/+gTMLawMy7ndMQwDe+dx8DbpwEeKjAIw4appJT6FO2ZI8htrzBQUFAAAGhsbKekcJ+g+Q0JFMUOClVs0Ac2ZNadXaJJz7teIJJ79/f1obW0dcR+XtrY2r+aKvrg+6Elyi/QDXFbYRrX1/iCxHNsvWZZpUqFIjexgRiTyMUOSTzhipqCgADk5OZCHMK8wSVx0nyGhopghwdJMLcbJeRpxOUWVnLETkU/L559/Hs8//3xQ+wqCgKVLl464H8MwqK6uHnE/QjwpZHI4eKe4zAfxkmNE/gYWOrZPeu2MfGgmzRn79QghMTFSbQUlnYQQQkhwIvaJOVINpvu0K4H2ZRgmqNpQkrzat2xFz67dkCmVkCmV0FfMRP6yi4M+Pk2th5N3wGgdBABkaNIiUk5uyAhH10nJOnlGAZQ5xRG5HiEkspxOJw4fPoySkhKkpUXmvkEIIYRoWSWKrQ5xWZ2kPbTCnngGmySGe7+xEgQBmzZtwltvvYWamhqYzWZkZ2dj3rx5uOaaa1BZGf4+gQDwwAMP4NVXXwUAHDlyJCLXSDRWq1WsZVCr1bA0NcO4v0rcLlOpgCATz3eqN6O2ux6ZmnRk6TIwM6cUhnAnnqdi1HryoHQ9q4BcnwUmQgMZkdM8Y4aQkYwUM06nE1VVVRgcHMTAwAAqKysp+Rzn6D5DQkUxQ4KVptBiutkuLrPKGBYmgsKaeNbW1obzdFFjtVrxy1/+Ep999plkfUtLC1paWvD+++/jP//zP3HjjTeG9bpfffUVXnvttbCeMxkcPXpUHH68srIS9t4+yXaHxzQGAc/VcwzftR0Wl6+YuRxlWVPCVlb3JnieiaciPQ+sJjnb6Mcbz5ghZCSBYsY96QROz9tJyef4RvcZEiqKGTJaDodj5J0SEHVOAXDvvfeKSeeUKVOwfv16ZGVl4fDhw/jXv/4Fs9mMxx9/HLm5uVi1alVYrjk0NIR7772XmhEHgbNaJcsCxwV9bI9ZmrRmasI1sJCUIPBw9LVJ1ikyC6A/86KIXI8QEhkOhwMHDhwQk04XlmWhUFDrBUIIIeEnaFLAzFoMY58RHM+DVWtjXaSIGPeJ565du7Bp0yYAwIIFC/DCCy9ApVIBAC677DJcccUVuPrqq2E0GvGHP/wBF1xwQVhGKXvsscfQ3Nw85vMko4yMDDidTnHQDn3FTPBOJ8BxEDgO2gnB95n0TDyzdBEYYVYAGEaG3CsfAD/UDVvTYQwd+QqZF14HmUIV/usRL54xQ8hIfMWMv6RTqVRizpw50GqT80GABIfuMyRUFDMkWFW7d6L7gy/FZadajjOuimGBImTc/yX87W9/AzA8MuFDDz0kJp0uU6ZMwW9/+1v86le/gtFoxJtvvonrr79+TNd0b2Kbmprq9ZAz3hUVFUmWlenp0E8vE5eDTTwFQcAP51yBzqEe9Fr60GPuQ25KdljL6o5hZFDmToJ20kykf299xK5DvHnGDCEj8YwZh8OBqqoqmEwmyXpKOokL3WdIqChmSNBMFmT1n27RZ7UmZ4tIWawLEEtGoxFffjn8dmHx4sUoLvad0CxfvhyZmZkAgM2bN4/pmu5NbFetWoXy8vIxnW88EJxOyTIT5JtDhmEwI2caZuWW4ca51+CeJf+BvAglnoLTAc4yEJFzE0Iii5JOQgghJPLGdeL5zTffgOd5AMPNbP2RyWSYN28eAKCqqgr9IQxu48nVxDY7Oxv33HPPqM8znrBajWTZ3tMb9LHbG3fjQEctqtqrcbT7GAZtppEPCoI4qBADCE47bK2HIVNqAh9ECIk7/pJOlUpFSSchhJCosHPJOZiQp3Hd1Laurk78vrS0NOC+U6dOBTDcfPPo0aNiIhoK9ya29913HwwGQ8jnGI/MJ6RzY2qLQ2+6crSnUfw+VRXekWYd3cfBDXTCVLUVbEoaFOnZSJmxMKzXIISE30hJp0ZDL5MIIYREXm55OepONIjLrC45X3qO68SzpaVF/L6wsDDgvnl5eZLjQk083ZvYLlu2DBdeeGFohR1H6urqxOHHp02bBnlqKpxu/WCDHdXW6rR5rUsP9xyeGB7RFgAEngNnNUHo9r4uiSzPmCFkJDU1Naivr4fdbhe7UgCUdBL/6D5DQkUxQ4KlKSqAccEEWCwWCIIAnYISz6TT23u6yWZ6euBpNtxrJ41GY8jXcjWxTU9Px+9+97uQjx9PLBYLHA4HnKf6djpHOfiS2WHxWpeuMYylaD6ZvvsAjEoHGHLAKjIgT80c+SASVp4xQ0ggTqcTR44cgdlsBsuy4npKOkkgdJ8hoaKYIcGytdbB2lwLBsBwZ67kTNGS86cKktVtfkjP0Ww9KZVKn8cFw72J7W9/+1tkZERgSo8kwjCM+AUA7R9vBW+1gpGzYGQsFBkZMARxHr0yBd+bOB82zo6arnqY7GawTJi6NZ8qG2fuhbO3CQDgaKsFI1dCs+KW8FyDBM0zZggJhGVZaDQaWCynX05R0klGQvcZEiqKGRIsjUyBfNvpfp4KNjmH4RnXiaf7Gyj3xNIX9+2hvLlyb2J7wQUX4NJLLw29oFFWX1+PKVOmIDU1VVxns9lw5MgRAMO1vxMmTPA6xmw2AwAqKysl27q7u9Ha2goAKC4ultQucxyHw4cPAxieWmbSpEmYNWuWuP348eNwmEyA4/Qfo+zUJO5GoxEnTw73/8zPz0d2tnTE2vs3Pw5O4JCuNiDdYMCiCfPEm39zc7NY411aWgq1Wi0eZzKZcOzYMQBAdnY28vPzJeetqamB3WKB3OFAzkCjZJsgCDjR2gHOeQCTJ0+WzPlqtVpx9OhRAMNze3kOs15XVweLxQKGYSS/AwDo6upCW1sbAGDChAmSGnin04nq6moAgF6vR0lJieTYxsZGccqemTNnSmp4+vr60NQ0nDgXFBQgKytLcuyBAwcAAFqtVuzn7HLy5Emx9r+srEzy8mZwcBCNjcO/m9zcXOTm5kqOra6uhtPphFKpxPTp0yXbWltb0d3dDWB4OiOdTidus1gsYt/szMxMsYm86/d19OhRHDhwADKZDBUVFZLzdnZ2or29HQBQUlICvV4vbnM4HKipqQEApKWlYeLEiZJjGxoaMDQ0BACoqKiATHb6A6G3t1eck7eoqEjyYonneRw6dAgAoNPpMGXKFMl5T5w4IQ5WVl5eDsWp2AaAgYEBHD9+HMBwU/+cnBzJsYcOHQLP81Cr1V591FtaWtDT0wMAmDZtmiSZGhoaQkPDcD+SrKwsFBQUSI6tra2F3W6HXC7HjBkzJNs6OjrQ0dEBAJg0aVLM7hHujh8/joGB4RGlZ8yYIZkvz989gmEYXHTRRdiyZQuMRiMGBwdx9tlnS35PY71HuJrXeY5c3tbWhq6uLgCge0QU7xEuR48ehdVqHdU9QhAEyOVyyXoXukcMS5Z7hMvBgwchCAI0Go1XU9lg7xH5+fl0j8D4uEeM5TliqKMXFUN2cZ1MOxxPsbpHuGIw3MZ14ul+k3A4HAGTT7v9dDCMlKS6czWxTUtLw/333z+qckYbx3HiaL8ugiDAcSr543z0sXQ6neJ2TzzPi9s8zwtA3OYroXc6nYDH9eQatVeZfJW3cagZDsEJDDUBPcDCCXN9llcQBK9jRyqvw+GA4HDC2lQl3ag1wJqaB5x6SPF3Xl8/q+u8vt6Muv8OQz1vpP5tOI7zWyb38/qKF1fTI/cbbzDnHSkOXb/Dkc4bKL6j+TsMFIfB/A55npc8ALiM5XfoKpPncZ7njad7xGj+lhmGQVZWFgRBQF5enldNZzjuESP9rHSPoHuEq0zBnJfuEdG9R7jO63rhEO7z0j2C7hEuPM+D4/2PXxKLe4Svf8twGNeJp/sw+TabLejEc6RmuS7uTWzvuusurzcN8YplWa8/OIZhxLcovgJULpdL3rK4k8lk4jZff8iubb5u7CzLAh7BL1OqvMrked4hh3k46XSTpT39ltm9vJ436EDndZVXcDohB+DsbZEeqzNAoUkZ8by+flaFQgGn0+nzA8P9dxjqeSP5b+OvTO7n9RUvCoUCDMOEfN6R4lChUIDjOJ8/i/t5A8V3NH+HgeIwmN8hz/M+yzWW36FcLgfP8yP+28TLPWIsf8tKpRIFBQU+m9eO9R7h/n93Y/lbpnvEyOele4T0vHSPCMPnvSD4LBfdI7zPS/eI0f8OAQYOt7xR5pZExuIe4evnDwdG8PXKKsIEQcC3336Lb7/9Fq2trejv78fKlSuxdOlSAMDbb7+N2bNne1Unh9vvfvc7vP766wCAbdu2obi42O++b775Jn7zm98AGK7FXLFiRcBzDw0NYeXKlWhubsbixYvx17/+1ed+GzZswJ49ewBAbIISbSaTSXLtsrIySdOOWOIdDuy+4geSdTMfegCGWRV+jhh2vK8Zd2x5WFxmwOCVK56CnA3Puxbe4YC1oxXtL90uWa+rWILcVbeG5RqEkLGz2YZHmQ72hSEhhBASbZ//731wfn5YXLarGCx75c2YlSdSuUHUazzfeecdPPPMM5KpTABg9uzZ4vdPPfUUOjs7cckll+B3v/tdxOa7dG/D3tbWFjDxdLXpBuDV38GXQ4cOiX06duzYgbKyshGPce1TWFiITz/9dMT9k1VXVxd4nodMJkO6xns4aVY58gNkhtaAn8//ITpM3ei3DsDstIYt6XSxtR6VrpCx0Ew6I6zXIMFxjxnPPjpk/LLZbKiqqoIgCJgzZ44k+aSYIaGimCGhopghQeN4qN2rPJN0PKqoJZ6CIODuu+/Gu+++Ky67uFcNOxwOdHZ2QhAEfPTRRzh48CD++c9/enUqDgf3GtW6ujrMnz/f776ujsgMw9BcTBHW1tYmdrrXFxZ5bZepRu5jq1VoIGNkOG/SAmTrMiEL12i2bmwtNZJlVmeAuqjcz94kktxjhj7cCTCcdO7fv18cuXb//v2S5JNihoSKYoaEimKGEKmoJZ6PP/44Nm7cCGA4eVu0aBHmzJmDp59+WrKf3W7H4sWL8fnnn4NhGDQ1NeG2227Dq6++GvYynXHGGVAoFHA4HPj6669xzTXX+NyP4zjs3bsXADB9+nSfI9p5mjZtGp555pkR9/uf//kfMal17e8+6NF4x1m85+JkghjcqWuoB+2mLrSbhkfl0sjVWDH9+2Etm62lVrLMpmSAUdFUDITEmmfSCQyPZHj06FGvkR4JIYSQWHOCGRcD70TlZzx27BhefPFFMAyD3NxcPPXUU+JQ2Z6Jp06nw/PPP4+9e/fitttuQ3d3N7777jts27YN3/9+eBMHvV6PBQsWYMeOHfj000/R2trqsxntBx98IA6ZvWzZsqDOnZGREVR5X3rpJfH7cP98iWrChAkQBAEMw4A7Ndy7O0UQiT8vSAcksjhDm3t1xPPbreD6OyTr2JQMMBGoWSUjc48ZMr75SjoBQKPRSIaLp5ghoaKYIaGimCHBMqhT4f6kmqxJaFSekv/1r3+B4zgwDIP//d//9ZqfyZd58+bhf//3f8Xl999/PyJlu+666wAMN/G9/fbbYTKZJNvr6+vx8MPDg9TodDqsW7cuIuUgpxkMBqSnp8NgMIAzmaUbZTKwQTS1/bb1YIRKN8za4jEQFMOA1aX73plEnHvMkPHLarX6TTo9+3hSzJBQUcyQUFHMkGApGOmos8n6qiIqiefu3bvBMAzOOeeckJo5nXHGGVi4cCEEQcDBg5FJJBYtWoSLL74YAPDdd99h1apV+Otf/4oPPvgAjz76KNavXy9ObnvHHXdIJn4GgK+//hplZWUoKyvDhg0bIlLG8YyzSWsqGZYF42M4aU9F+nykKnVQsUowkE6lEg7WxgOSZZlaD0Wmd39UQkh0+Es6tVqtV9JJCCGEkOiLSk2ua0TYYGo6Pc2cORO7du1Cj48ml+Hy3//93xgaGsLOnTvR3NyMRx99VLKdYRjccsst+MEPfuDnDCRSeLf5U4FTiWcQTVbOLDg93UpNVx2sTltYy2XraJQsy7QGaCafGdZrEEKC40o6rVbpiyqtVovZs2dT0kkIISSuyT3nBY1ROSItKomn/VTyMJpBc5SnBpKJ1ESmwHAzrL/+9a94//33sXHjRtTU1GBwcBAGgwFnnXUWfvjDH+Kss86K2PWJlNPpFPtE8DbvxHMk/dYB/OHzp2HQpEGrUMPOOfAfZ18XtvIJTgfsbXWSdaoJc8DIWFA3jthwjxlfEyyT5BUo6ZwzZ474GeKJYoaEimKGhIpihgRLyyrR57YsF/zumtCi8leQmZmJtrY2HD9+PORjXZOXejZxDTeGYbBy5UqsXLkypOPOPvtsyQSroXr55ZdHfWyyqq6uPj38uGeNp3zkxLPX0o9GYxNgbBo+hmGgYBVhK5+tvQGC0yFZp55ItZ2x5B4zo2lZQRLTaJNOgGKGhI5ihoSKYoaMVpLmndHp41lZWQlBELB9+3aYzeaRDzilqakJn332GRiGoSHwxyneo4+njB35XUmfxShZNqj0YGUjJ6zBYlPSYVi0DqrCcoBVgk3Lg0ylDdv5CSEj85d06nS6EZNOQgghJJ4wCo8uIWF8bo0nUanxXLZsGTZv3oz+/n488MAD+O///u8RjzEajbj11lvhcDjAMAwuuuiiKJSUxAO9Xg+n0wm5XA7O7DGPp2zktqx9ln7JcromLZzFg8KQi/RF66CruAiOASOcg30jH0Qiyj1myPjQ0NDgM+mcPXt2UEknxQwJFcUMCRXFDAlWs31QsmwB72fPxBaVv4SLL74YFRUVOHToEN577z10dXXhhhtuwIwZM7z27ezsxNatW/HCCy+gs7MTDMNgypQpQc+fSRJfSUmJ+P2JnV9KtgXTx7NAn4eV0y+ERq5Gn6UfGVpDWMtna28EZHKA1YGRyYenUUnWNhEJwj1myPhQVlYGq9WKwcHhD+tQkk6AYoaEjmKGhIpihhCpqL2C+dOf/oQrr7wS3d3d2L17N3bv3i3Z/uc//xnPPvusZB5NQRCQkpKC//mf/6HJd8cpQZBmdPLU1BGPcXAOKFklpmVOQmVeOXg+fG+NOIsJQ0f3ADwPsBoIPAN5zlTIFJqwXYMQMjK5XI7KykpUVVVBEISQkk5CCCGERF9U+ngCQGFhIV577TVUVFRAEATxy5VQDg4OYnBwULJtwoQJePnllzF16tRoFZPEGZlHDac6J2fEY450NwAAarsb0NB7Ai2D7WErj+X46fk7uSEjnP0dYGThG7iIEBI8hUKB2bNnU59OQgghCc3BO0beKQlEtdF5cXEx3njjDWzevBlvvfUW9u3b5zXZt1wux8yZM7F69WqsXbuW5l8b5zzn8ZQF8XDpXkf6betBTM2YiOK0grCUx97V5LWOCWLAI0JIZCgU9OKHEEJIYktT6OA+/KqciVrdYFRF/YlZJpNh+fLlWL58OTiOQ2trK4xGIziOg16vR0FBwajm+yTJo7GxUeyML3gmnqqRE08Vq4SNO32cnQvPWyRBEMBbh8CotKebflML8LjgHjOTJk2KdXFIGJnNZjQ1NWHatGlhnc+ZYoaEimKGhIpihgTLc9o/JknHDolpVQ3LsiguLkZxcXEsi0HizODgoDjvldYuTRplQdRuTM6YAJvTDqO1H72WfhTq88JSLkd3Mwb2fgBGqYFcnwmZxgD1tHPDcm4yNu4xQ5KH2WzG/v37YbfbYbfbMXPmzLAlnxQzJFQUMyRUFDMkWA5jp3QFz8WmIBFGbQRJXBtNU9tZudMBAMf7mqFg5WFLPM0N3wEABLsFju5mMGwHUs+5KiznJoRIuSedANDT04PDhw+HNfkkhBBC4oHcYxDVZG1QF5XEs7W1NSznKSgITz89Et9mzpwpfn/0g82SbbIR+vw29bfi6a/+DoMmDQa1HplaA9ZXrAhLuWxtDdKy6NLBqrTg7c7hFTTycsy4xwxJfJ5Jp4vdbgfP82FJPClmSKgoZkioKGZIsHQyBQbclpO1ZjAqP9fSpUvHPB0KwzCorq4OU4lIPGPdRrJ1GI2SbZ7LnrrNvWg0NgHG4UGADGp92BJPe+dxybLckOcd15R8xgQbxPyuJDEMDQ2hqqrKK+lMTU3F7NmzwzYRO8UMCRbP8zCZTBgYGIDdbgfHJWcTOELIaSzLQqlUQq/XIyUlhVrahEnUEmrP+RgJCQZvswVc9tRnGZAsp6vTwlIOQeDh6OuQrJMpaMRlQsJpaGgI+/fvh8Mh7dsd7qSTkGANDg6ipaWFnmEIGWecTidsNhsGBwfBMAwKCwuRGsRc8iSwqHyKz5s3L6j9bDYburq60NbWBmC4lvP73/8+5s6dG8nikTimysmBY9AEgeMgcBzkI/zRGy39kmWDRh+Wcjj72gGP0XHlGYVhOTchxH/SqdfrUVlZSUkniTpfSSfDMFRbTsg4wHGc+LcvCAJaWloimnw22wfhfmcxJ2kDuqh8kr/88ssh7d/d3Y3nn38er7zyCj7//HOsWbMGS5cujVDpSLzp6+sT+3HlXXIRBo8cFbfpJgcejnyCoQBnFcyCRq6GTqlFkT4/LGWyNB+RLDMKNRSZRWE5Nxk795hJT0+PdXFIiGKRdFLMkEB4npcknSkpKUhLS4NGowHDMPQihATF6XSK31PMJBZBEGA2m9Hb2wuTySQmn6WlpRFpditgfLSqiMu/gqysLNx7773IycnB448/jrvvvhvvv/8+cnJyYl00EgVNTU3i8ONlxUWQ63QAAIHnoTAEbjprtA5iUvoETE6fgLMKZmHANhiWMlmPH5Iss6npUBWWQXDwYTk/GRv3mKEkIrGYTCZUVVVFvaaTYoYE4nrQBIaTzqKiIlgsFtjtdko8SdDsdjsEQaCYSUAMw0Cn00Gr1aK5uVm8J5hMJuj14WlNNx7FdU/Zn/70pygqKsLAwABeeeWVWBeHxIAqOxupZaVILSuFvnw6NPmBazB7LUYAACuT4WBHLRr7msNSDlv7Mckym5IOmUIdlnMTMl7FKukkZCQDA6fHC8jIyBjzAImEkMTEMAwyMjLEZfd7Qzg5k3YCFam4/lRnGAbnnXce/vnPf+LTTz/FbbfdFusikSgoKCgY9ZQJDAABQGNfE5w8hxxd5pjLIwg8nH1tknXylAw/e5NYGEvMkNjwl3SmpaVh1qxZEU86KWZIIK5RlRmGgVarBQAoFIpYFokkIIqZ5KDVasEwDARB8BpxPVwMmVno055OPjlVcvYlj+vEEwAyM4cTh3DNBUriX1ZW1qiPdbWQd/LDw92Ho4+no7cdglP6cKwtDW7ALBIdY4kZEhu+apCilXQCFDMkMNeUKSzLirFKSQQJFcVMcnANKuZ0OiM2nVJaZRm+MX0jLqeoUiJynViL+8Tz5MmTAHw/pBDiaemkc2Hn7Oi19KPfNgCDeuzt8O1tDZJlVmeArnQenINmjJOWEYSEnU6nw+zZs8Vaz7S0NFRWVtKIoYQQQkiSiuvEs7m5GR999BEYhsGECRNiXRwSZQLHoeHPL8BpsUCVlQlWo0H+pcugCDCUdZZuuAmsWq4GICBTO/ZBQ2zt0sRTlT/l1Bye5jGfm5DxLCUlBbNnz8aJEycwffp0SjoJIYSMSwqZHOmO07Wp2iStLI+7xNNut6Ovrw+7du3Cn/70J1itVjAMQ9OpjEO83Y6Ordsk63KWnuc38TzafQz/9+2/YNDokabSIy81GxW508dcDptHjacyf8qYz0kIGZaSkoKZM2fGuhiEEEJIzGQpUzB30Couy+WG2BUmgqKSeJaXl4/peL1ejw0bNoSpNCTeHThwAA6HA6yPDtxDx09C7WdanW5zLxqNTYBxeDk/NQdrZywbU1kEgYet47hknSpvsp+9qd1trLhiRqFQoLKyMtbFIR5sNhtUKlWsiyFBMUNCZTabxakxXAMOERIIxQwZrUgNYhRrUUk8XXNhjUZqaiqefvpppKUFnr+RJCGH02sVq1L63b3fKp2zMxz9OxlGhgm/+DMsJw7BaeyAra0BqoKppzaK/yGE+DEwMIADBw6gqKgIJSUlsS4OIYQQEncYtQ666efA2G+EwAuAShfrIkVEVBLPgoKCoPdlWRZqtRr5+flYsGAB1q5dC4PBELnCkbij1WrhdDohY+Vgpk2FwHGnvngoAkza22+TJp5pqrEnnoIgYPC7rVDmTYKudD5SZiwCqw1wXhoEKyZcMUPzPsaXgYEBVFVVgeM4HD9+HAzDYOLEibEuFgCKGRI6mUwm1l4REgyKGRKsgwe+w7FPvgMgDM/QoFJgehI29ozKJ+6nn34ajcuQJDF16lTx+5M1tdKNAebcO7twDlKUOgzZzbA4LJhoKBpzWXibGbzTDmvzEVibjwAA0uZfBladnG+iEpV7zJD44J50ujQ2NkKtViM3NzeGJRtGMUNCpVarY10EkmASLWYcDgfeeOMNvP/++6irq4PD4UBeXh4WLlyIDRs2YPJkf12NyFg5O3swoeV0H0+ryhFg78QVlcTzyJEjYFmWPujJmDGs/8SzzdQJs8MCBSuHRmFAahiaKTi6mrzWyZSJ9UFCSLT19/fjwIEDXvOdZWRk0PyZhESAreM4VLklsS4GSWB9fX244YYbcPDgQcn6EydO4MSJE3j77bfxwAMPYPXq1bEpIEkK/p/iw+iZZ57BihUrsGLFCmzbtm3kAwgBwDt99PFUa0Y8zslzsDrtsDptYy6DubHKax0jc5/ygZrPEOIuUNJZUVFBU6YQEmZOUx/aXrkPTlNfrItCEhTHcbjlllvEpHP27Nm477778Oijj+IHP/gBFAoFrFYr7r33Xnz99dcxLm1ycvDez7zJKCo1ngcOHIAgCKivr0d6+tjnVSTjA2/zThzlOv+jwilZ6cBDPWbjmK4vCLz3NbLd5pOlPhuESIyUdMoCNJUnhIxO/+6N4C0m9H/1LjK/f12si0MS0FtvvYVvvvkGALBy5Ur893//t3i/XrlyJS677DL85Cc/gc1mwwMPPIBNmzbR/TzM0goL0VqYIi4L2vgaCT5copJ49vWdfgtH87WRkZw8eXL4wdVqhWfdiEzpf1TbU92xRWPt42mu/xb2zhNgU9Ih06SCYRioC6eN6ZwkMlwxw7IsJkyYMPIBJOz8JZ2ZmZmYOXNm3D2kUMyQUNncXobGy/RATlMfBvZtAQAMfPsx0hasgjyFXvDHi3iMGV/+9re/AQDS0tJw3333ed2v582bh1/84hd44okn0NDQgG3btuGiiy6KRVGTVvrMchwQTsBmtUEQBOiUyTn9TlSeBNyH0G9ra4vGJUkCMxqN6O3tRX93t/fGAA+vs3KnY9m083DJ1CW4aMpilGZNGlM5BvdthfnI1xj8djP6d78Dy/GDkOupf1o8csWM0WiMdVHGJaPRmFBJJ0AxQ0LHcRycTqdXnMdS/+6NEJzD8/0JTjv6v3o3xiUi7uIxZjzV1NSgsbERALBixQqkpKT43O+qq64Su0ps3rw5auUbL2ztx2BrqYPQfQJCzwnw7fWxLlJEROVp4Oc//7k4lPQf//jHuP4DJPHDWVePjm2fonP75+jasRP9Bw4GHJJcLVchVZUCvToVBk0atIqR+4MGYncfWIhzgmG8/1yotS0Z74xGIw4ePJhQSSchycC9ttNl4NuPk76vZ1tbGx5++GFcfPHFmDVrFubPn48NGzZg06ZNAIAXXngBZWVlKCsr8zrWtf7ZZ59Fd3c3br31Vpx55pk488wzsWrVKrz//vuS/Xmex8cff4xf/OIXWLx4MSoqKnD22Wdj/fr1ePbZZzEwMOC3nBs2bMAZZ5yBM888M+DPc9ddd4nlam5u9rnte9/7HoDhlhp33303lixZgoqKCixatAi33XYbqqq8x6MI1p49e8TvzznnHL/76fV6zJgxAwCwc+fOUV+P+CbneKTarNDbbUiz26Fz0Ki2o3bxxRfjT3/6E373u9/hs88+w5o1a7B+/XrMmTMHRUVF0Ov19HBCRGVlZRAEAc37D6DDrdZTsPv/IzxpbMGze/6BNHUq9KpUpGvScHXl6lGXQeA5OAd7JevYVM/mS5R1xgtXzNBcadHlqunkeWl/6KysLMyYMSOu7+sUMyRU8TY1hnttp4ur1jNZ+3p+/fXXuPnmmzE0NCSus9vt2LNnD/bs2YOtW7f6TDg9mUwmXHPNNTh+/Li4rra2Fnq3ucLb29tx2223Yd++fZJjjUYjjEYjqqqq8NJLL+HRRx8VE0N/whE7+/btw0033SRJdru6uvDhhx/io48+wp133onrr78+5PPW1dWJ30+bFrg70dSpU3Hw4EH09/ejtbUVBQUFIV+P+Jal0OLsgdPTqcg0ihiWJnKiknjecMMNAIDi4mIYjUbU1dXh4YcfDukcDMOguro6EsUjccbVD4LhpA+zjNL/H2GPpQ/H+k6Ky+nqsSWe9p5WwGOEMfXEilGfj0RWPPedSVYOhwOHDh1KyKQToJghoYunmPZV2+mSrH09Dx06hBtvvBFW6/DD+QUXXIClS5dCoVBgz5492LhxIzZv3oxdu3aNeK5//vOfsNlsWLRoEVasWAGj0YjPP/8cixYtAjDcZ/3666/HsWPHAACFhYVYu3YtJk+ejP7+fmzbtg07d+6E0WjEzTffjOeeew6LFy/2e72xxo7ZbMatt96KgYEBzJw5E5dffjn0ej327t2Lt956C06nE4888gi0Wi2uvPLKkM7d0tIiljE/Pz/gvnl5eeL3lHhGWJK+FI1K4rljxw7xrbLr/4IgBDqEEAgO6ZtcmcJ/4tlvHZQsp6lTx3Rta6N0HitGqYGmuNzv/lRrQsYbhUKB0tJS1NTUiPfzREk6CUl0vmo7XZK11vOhhx6C1WoFwzD4wx/+gLVr14rbVq1ahTVr1uDGG2/E4OBggLMMs9lsOO+88/Dcc8+Jn9/XXXeduP3RRx8Vk87vf//7ePzxxyW1lldddRXeeecd3HPPPXA6nbjjjjuwdetWv/0jx2pwcBCDg4NYt24dHnjgAbGvpWuqwhtuuAEWiwVPPPEEli1bJqm5HUlv73DrLp1OB2WAARwBwGAwiN9T/3gyGlF5OigoKEB+fr7kq6CgIKSvkd7CkOTjNA1JlmUBaigGbGFOPFtqJctsajoUmYXeO1LCScaxnJwclJeXg2EYZGdnU9JJSBQEqu10Sba+nl999RW+++47AMC6deskSafL3LlzceeddwZ9zhtuuMHnS+OOjg5s3LgRAFBUVITHHnvMZ1PZNWvWiMlqb28vXn/99aCvPRplZWW4//77veZCnjdvHm655RYAw8ng22+/HdJ5XTXIwbQCcU9MLRZLSNchgR3aX4WaWpn4VXXIHOsiRURUajw//fTTaFyGJInBwUHwPA+71SpZLwsw8Xx51jQsKDoTWdp0WJ02FKTmjqkM9o5GybI8Jd3rA4pyzvjhihmZTIbU1LG9dCChycnJgVKpTLi++hQzJFQcx4n9gj0f/qMpUG2nS7LVem7fvl38/kc/+pHf/dasWYMnnnhixNo4hUKByspKn9t27doFx6mBXa699lpoNP4HKvzJT36Cf/zjH3A6ndi2bRt+8pOf+NzPNXXTWFx//fWQy30/tl955ZX405/+BLvdjs8++0xSezsSp3O4W9FItZ2e+9BAoeHlHDLDMHC664pVmZwtQ8P6lHD33Xfj7rvvptGuyJg0Njaivr4eZo/mMnyAwYWUcgWK0vKhVqhh0KTBzo9+NDCB5+Do65Csk6fSNCrxzBUzriHhSXQZDIaESjoBihkSOpvNJn7FSjC1nS7JVOu5d+9eAEB6ejqmTp3qdz+lUjniKLLA8Jgj/hKt/fv3i98vWLAg4HmysrLE8hw8eNBvN7JwxMy5557rd1tqaipKS0sBIOQRbl21uY4gRlG120+/8FAE6P5EiD9hfVJ45513sHHjRskIWYSMluDRjEOZ4X+gBM97vZMf/Zs4R08L4HG8qsD/Bx0hya63txc9PT2xLgYh414wtZ0uyTSvZ2dnJwAENZjNhAkTRtwnUB9IV59HYDhBHYlrH4fDEXB6lbHQarXIzQ3cksv1uzGbzTCbg2+mqdVqAQSXHLsnnjRAW3hx42SmhKg0tSUkFLm5ueA4Dm0aDdwb2/IB3sY5PGo4DergO9Z7srUdkywzSg10ZfO9d2QYam8bJ1wxE8vmb8mqt7cXhw4dgiAIqKioQGZmZqyLFBYUMyRUCoUiplPwhFLb6ZIsI9y6ms4GMy1JMPsEalbqPlVLoGa2vq5nsViQlpbmtc9Yawd1Ol1I5TCZTGJCORJXEm4ymeB0Ov025wWkAwplZGQEdX4SHJ1KB/e5FJL1kymx2kaRcSE3NxcFBQWQezTdk6f4v/GyjAypSh20Cg3UciVSlMHdcH2xtTdIltXF0yHXU1PbeOaKmZHeCJPQ9PT0iFOmCIKAQ4cOSWoDEhnFDAmVQqGAUqmMWRPDUGo7XZKl1tNVuxbMgDZWj/EhQuWebAZzPffaRX9Jb6CYCbWmcaRyMAwjGX12JCUlJQAAnufR0dERcN/29nbx+8JCHwMuklHTyKQxkqwJGtV4krgleNxoZSr/bzEnZ0zE5IyJp48dw3Q9tjaPxLNo+qjPRUiiciWd7n9LgiCgs7OT3nQTEmWjqe10SYZaz7y8PNTX16O1tXXEfYPZJ5CsrNMvmpuamlBe7n8qNQA4ceIEgOGk0z3hc68ZD1STGMz0LwMDAxgaGgpY89nc3AxguM99MAMFuUyZMkX8vr6+PmBC6epKl5aWRi/tyKgka0JNkgBn8RjVNoS3zKNtCiXwHOwdxyXrVHmTR3UuQhKVr6QTGK4lLCsri1GpCBm/RlPb6ZIMtZ6zZ88GMNzUs6Ghwe9+PM+L066M1qxZs8Tvv/rqq4D7dnR0iPN9ugb3cXFP/kwmk99z1NfXj1gmQRACDhrk/nuZP99H16AA3PcP9PMODAygpqYGwPAULiS8vGZOiFE5Io0STxK3GLm0hbu/Pp6dpm7cueUP+MPn/4unv/47Xt7/Fnie97nvSBzdLRAc0mYvqvwpfvYmJPl0d3f7TTqnT58es/5thIxXY6ntdEn0EW4vueQS8ftXXnnF736bN29GV1fXmK61ZMkSsWnsK6+8ErC57Ysvvig+b5x33nmSbe794V0Jm6f9+/ejra0tqHK99tprfre9+uqr4qi0F1xwQVDnc5k6dSomTx5+wf7OO+9I+ri6e+WVV8QpVJYtWxbSNcjIUuXSwZrkyTmbCiWeJP5UV1ejqqoKNrP0Zq9ITfG5f6+lH419TdjfXo0vjn+NLQ07Rj21g9PUB1afCUY+/KHD6rPA6rwHChhGD+DxwhUz1dXVsS5KQuvu7sbhw4fHRdJJMUNCZbFYYDabg+r3F06mA9sh06SATc0Y9ZdMkwLTge0jXyxOLVq0CNOnD3d7ee211/Dhhx967XPkyBH8/ve/H/O1cnJysGLFCgDDTW1//etf++w3unHjRrz00ksAhpPMq666SrLdveb0mWeeEefLdGlvb8c999wTdLm2bNniM+netWsX/vznPwMY7q85mqTw+uuvBwD09fXhrrvu8upTunfvXvEahYWFuOiii0K+BglNkuadkenj+dprr0km+w0HhmHEP3CS3JxOJ5xOJwSPKU0Ype+huwds0v4RBtXoJ4N3DnQjdfYFYBQqwOmgUWsThCtmkikxijZ/SWdeXh7KysqS7ndLMUNCJQjCmMYPGC3DuWthOHdt1K8bT2QyGR588EFcc801cDgcuO222/DRRx9hyZIlUKlU2L9/P958803YbDawLAuO48Y0t/Ddd9+NvXv3oqmpCVu3bsXy5ctx+eWXY9KkSRgYGMC2bduwY8cOsWwPP/ywV9/3ZcuW4bHHHoPFYsHevXuxfv16XH755UhNTUV1dTX+/e9/Y3BwELNmzcLBgwdHLBPDMHjwwQexY8cOXHjhhZDL5di9ezfeffdd8DwPhUKB+++/P6T+nS5XXHEF3nzzTRw4cABbtmzBFVdcgXXr1sFgMGDfvn1488034XA4wDDMqK9BAmPkHr9TJjnrBiOSeDY1NaGpqSls54vl8OUk+pRKJWQyGWy89ANepvTdx7PP0i9Z1qtHn3i65u8Um9sG+4xB4RlTrpgJNAw88a+rqwvV1dXjJukEKGZI6BiGScq/hUQxe/ZsPPnkk7jjjjtgNpuxZcsWbNkibYJ8xRVXoKWlBbt37x5TcqTX6/HKK6/glltuwYEDB9DS0oKnnnrKaz+DwYAnnngCCxcu9NqWmZmJ3//+97jnnntgt9tx+PBhHD58WLLPD3/4Q8yZMwe33377iGW644478OSTT2L79u1elTs6nQ5PPfUUzjnnnBB/0mEymQzPP/88fvrTn+Lw4cM4cuQIHnroIck+CoUC9913H773ve+N6hoksA5OWqtuS9JbTUQ+cWPxRpAkD1dzmj0MA/denZ59Pl0K9Xm4rPQC2DgHbE4bsnWjH3HTsw+MXB94zkLPZxB6KIkNV8yQ0PlLOvPz81FaWpq0MU0xQ0IVzJyOJLIuvPBCvP/++/j73/+OHTt2oL29HUqlEjNmzMC1116LCy+8ENdccw2A0/NTjlZubi7eeOMNfPjhh/jggw9w8OBB9PX1wWAwoLi4GMuWLcPq1asDXmfFihWYNWsW/va3v2HXrl3o7OyEXq/HrFmzcO2112LRokX44IMPgirPRRddhEWLFuG5557D119/jf7+fhQUFOD888/Hj3/84zGPMpuRkYE33ngDr7/+OjZt2oSGhgaYzWZkZ2fj7LPPxvXXX0+Dy0WQg5c2xeaTtLFtRBLPSy+9FIsWLYrEqck4wnhM7K7yM4WDVqGG+tQXMPraToHzHrxImVUUoICjvhQhcWG8Jp2EkMRVVFSE3/zmN3639/T0ABi+j3k6cuRISNdiGAaXXnopLr300tAK6aakpAQPPvig3+2hnL+0tBRPPPHEqMsyErlcjmuuuUZM3gkJt4gknhUVFVizZk0kTk3GEUGQjkyr8PNW8WS/dM6uDI1hVNdzDnqP+KfIoAmSSfIaHBykpJMQEvfeffddbNq0CcXFxbjpppv81u41NDTg+PHjAIAZM2ZEsYSEjA3H8/Ddri+5UOcWErcEh7TZAaPwHa5ahcZjWT2q69navOfSYrVj6C9KSJybNGkSeJ4XJx4vKCjAtGnTKOkkhMQVvV6PL774AsBwd6777rvPax+TyYR7771XfJl22WWXRbWMhIyFRq6E+1jCLA0uREh0tLa2guM4cA7pcN4yue/BhTI0BsgYBpzA44SxBWr56BLP/q/eA++0Q56SDjYlA4pM72Y6XugBPS64YoZlWRQUFMS6OAmDYRhMmTI8Ty3P8+Mq6aSYIaFyn2KCRvWMroULF6KoqAjNzc149dVXUV1djYsuugh5eXmwWCw4duwY3n33XXR3dwMA1q1bh7lz58a41BQzJHgauUqSeCZn2kmJJ4lD3d3dcDgcQdd4Ts0sAQBYnTbMzC6FTqkN+ZoCz8HWfgzgOTg6TwAAdBWBR24bLw/oicAVMwqFgpKIELknn+MppilmSKicTqc4yj4lEdGlVCrxzDPP4Gc/+xna2tqwf/9+7N+/3+e+V111VUjzY0YSxQwJlmOwV7LsOaVgsqDEk8QlQRAAXtrH01+Np4targLkvuf6HIm966Q4lYqLbupZozoXIfHIVbvny3hKOAkhiWn69On46KOP8O9//xuffPIJjh49iv7+fuh0OuTm5uKMM87AFVdcgcrKylgXlZCQyTiPypbkHNSWEk8Sf6ZMmQLOZoPndMq+ajwHrIN4+Iv/RZoqFXp1KvSqVFxZsQIqz4l4R2A9WSO9lkoLdXF5qEUnMTJlyhSa7zeAjo4OHDt2DHPmzKEpIU6hmCGhUqlG92KThI9Go8GGDRuwYcOGWBclKGONmUceeQSPPPJImEpD4lkqq4TJbTlwVUviCnviSXN4krHS6XRw+ljvMBqh8Rge3WgdQGNfk7jMgME1latDvqa5/hvJsjwlA2zq6OcDJdGl0+liXYS41dHRgZqa4Rcr+/fvp+TzFIoZEip/LQYI8YdihhCpsCae//jHPwAAEyZMCOdpyTjEO7xTT0buHa79tkHJcopKB1YW+o3e3tUkWVak5wVRE0I1JSS+tbe3o7a2Vly22WzYv38/zjrrLOpvRAghhJCoCmviOX/+/HCejoxnPA+ZWg3wPIRTX4yPPp79VmnimaYKffoTgXOCG+qXrJOn+54jjJBE4Zl0uuTk5EChSNZGPIQQQkji6bAPSZatSVq3QX08SdyxWCwQ1CrkXLpM8oAs13mPVluQmou5BZUAGDAMRjWira2ryWtgIW3Z2SGfh8SOxWIR++tRM1Kgra0NR44c8VpfXFyMyZMnU79GUMyQ0PE8L8aMTJaskx2QcKKYIcGyg5MkZbzfPRMbJZ4k7tTV1cHhcEBeOhUzysshCAJsHZ2Qa737ZMllLErSi8VlJRt6TY69vUGyLFPpoM4tCe5g1wM847FMosoVMwqFYtyPaEhJZ3AoZkiorFarmERotaG/5CTjD8UMIVL0+oXELUarhSItDYLDAc5igTzFO/H07ONp5xwhX8fe3ihZVhWVQaYOYuARen4nccZf0jlhwgRKOgkhhJA4xY+Th0qq8SRxJzMzUzLnoMJggCo72+e+o6nh9GRrk9Z4aibQNCqJxjNmxqPW1lYcPXrUa/2ECRMwadIkSjo9UMyQUMnlcpqCh4SEYoYES6NJgcMtTBhZcsYMJZ4k7hQWFkqWZQEGQsnVZeHM/Ao4eQ41XXXI1mWGdC2Bc8LecVyyTpk3JaRzkNjzjJnxxl/SOXHiRJSUlNBDjw/jPWZI6GgkaBIqihkSrKwFs/EJf0hcTlGlxLA0kUOJJ0loBk0aDJo0ODgHCvW5SA3xD9Xe3QzBo3muKm9y0MfTAz2JtZaWFtTV1Xmtp6STEEIIIfGEEk8Sl6zt7ejd+w0YuQIyhRzylBRkLvA/0qyCVUAxima3ns1s5Wk5YLVBTslCD/Qkxrq7uynpJIQQQhIcw8ig5AVxWSEE2DmBUeJJ4tJgwzE0/vVFcVmdl4uMs+dLHqTtTjt++8lj0KtToFelIk2VirUzlyFFGcTAQKfYWqQDsSizJ4y98IRESXp6OgwGA4xGo7iupKQEJSUlMSsTIYQQQkKTp9JjidEsLsvT9TEsTeRQ4kniztGjR2E6Iu2v5rRYAJ4H3AYC6bcNotHYJNnv8pnLQ7qWMncS1BNmwmnqA2fqg8A7R19wEjNHjx4Vp8YoLS2NdXGihmVZzJo1CwcPHoTRaKSkMwTjNWbI6LlPjaFWq2NdHJIAKGbIaDkcoc/SkAgo8SRxx2q1wmE2S9YxLAvGY/TJfqt0KhW5TA6tIrSJ4DnzANQTZ56+joIGAkhEVqsVDocDHMfFuihR50o+u7q6kJeXF+viJIzxHDNkdHiepxFKSUgoZkiwGLkS6omzYDINQhAEQE2DCxESFTKZDIxcDibdAAUrB3geinSD1369ZqNkOU2VOuabu+Cwh7A3fZDEC5lMJn6NRyzLUtIZovEeMyR0rs8XSiJIsChmSLCONp3AwZpmcDwPAQLkSjPKYl2oCKDEk8SdiooKDKWkoictLeB+Dt6JuQWVsHF2cDwHtVw15mvLU9LHfA4SfRUVFbEuQsR1dnYiMzOT5p0Mk/EQMyS8NJrQWtQQkgwxc9NNN+Gzzz7Df/3Xf2Ht2rWxLk7SGmo4jsmH+sRlqyo5X4pS4kkSllapRkl68aiPdw70eJ9z2tyxFImQiGhqakJDQwPS0tJQWVlJySchhJCIe/vtt/HZZ5/FuhgkiSRnOk0SHm+XNnlVZmZ47WNxWMd0DWtzrdc6NsUQ2knE5jPUjIZExsmTJ9HQMDztT39/Pw4ePEj9EgkhEsf7mmNdBJJkPv/8c/zud7+LdTHGDY7nY12EqKDEk8Qlx8CAZNlX/wi1XDpCHMsEH84Cz8HacnS4A7fkOsGfg7pskEg7efIkjh07JllnNBrR0+NdW08IGZ+Mln48+Nn/wGjpj3VRSJJ4++23ccsttyTtyKrxSG3Qw5yiEL8caYnfTNsXampL4k5nZyeGLBZYh4ag0w3PyWnr9n7QnpM/A5W502F2WFDfewLl2VODvoajuxkDezaBUajApqSDTUlHauX5YfsZSHR1dnaC4ziwLIucnJxYFycsfCWdADBlypSk+RljKRljhkSWw+EQRyhVKBSxLo7o3dqtMNmH8F7tVvzwjCtiXRziJl5jxp/BwUE8+uijeP3112NdlHEnZ/5c1Gi74bAPx4xOqY11kSKCajxJ3Glvb0fXiRMwmUziOlVWptd+MkYGOSuHXp2KMwsqoFEEP0eWtbUeACA4bHD2tcPeeQLKrKKxF57ERHt7O1pbW9He3h7rooTFiRMn/CadxcWj79dMTku2mCGR53A4xK94YbT0Y0vDFwCALQ1fUK1nnInHmPFn06ZNuPjii8WkMyMjAz/4wQ9iXKrxw97dDHvXSTh7msH1NsPReTzWRYoISjxJXOKPn4DzyFH0fbsPxv1VMDe1hPX8Q7VfSZblKelQZBaEfiJqb0vC7MSJE2hsbPRaP3XqVEo6CSES79ZuhYMbTmrsnAPv1W6NcYkir62tDQ8//DAuvvhizJo1C/Pnz8eGDRuwadMmAMALL7yAsrIylJV5T0bhWv/ss8+iu7sbt956K84880yceeaZWLVqFd5//33J/jzP4+OPP8YvfvELLF68GBUVFTj77LOxfv16PPvssxjw6BbkbsOGDTjjjDNw5plnBvx57rrrLrFczc3NPrd973vfAzDcEubuu+/GkiVLUFFRgUWLFuG2225DVVVVUL+7QF5//XWxG8eiRYvwzjvvYPbs2WM+LwmOYDWDMQ9CbjdDbreAtQ3FukgRQU1tSdwpKSnBMasNQ61tcNV5evbFFAQBd299BKkqHfSqVKSpUrGy/CIY1PqgruHobpIssynpYDWpoRWUks64UVJSAp7nE35OxuPHj+P48eNe66dOnYqiIqqRD6dkiRkSPSqVSmw2GQ/caztdtjR8gZXTL4RBE3g6skT19ddf4+abb8bQ0OmHcrvdjj179mDPnj3YunWrz4TTk8lkwjXXXCO539bW1kKvP/0M0d7ejttuuw379u2THGs0GmE0GlFVVYWXXnoJjz76qJgY+qNSjX26t3379uGmm26SJLtdXV348MMP8dFHH+HOO+/E9ddfP6ZrFBYW4le/+hUuvfTSsRaXhChPmYKlfWZxmVGnxLA0kUOJJ4k7er0eco8PdmW6QbI85DDjWN9JybrlZUuDOr/Ac3AO9krWsaneo+aSxOH+sJCoKOmMrmSIGRJd8TaNkXttp4ur1jMZ+3oeOnQIN954I6zW4RHtL7jgAixduhQKhQJ79uzBxo0bsXnzZuzatWvEc/3zn/+EzWbDokWLsGLFChiNRnz++edYtGgRgOERxK+//nqxy0NhYSHWrl2LyZMno7+/H9u2bcPOnTthNBpx880347nnnsPixYv9Xm+ssWM2m3HrrbdiYGAAM2fOxOWXXw69Xo+9e/firbfegtPpxCOPPAKtVosrr7xyVNe4/fbbMWvWLMjllBrEAyZJX4pSdJG4JDidkmWGlYZqv3XQ6xi9KrgaS1v7MYCXTkeRNn9FiCUkJHz8JZ3Tpk1DYWFh9AtECIlrvmo7XZK11vOhhx6C1WoFwzD4wx/+gLVr14rbVq1ahTVr1uDGG2/E4KD384Enm82G8847D88995xYg33dddeJ2x999FEx6fz+97+Pxx9/HGr16XEkrrrqKrzzzju455574HQ6cccdd2Dr1q1ISYlMLdXg4CAGBwexbt06PPDAA2Iiu2LFCqxYsQI33HADLBYLnnjiCSxbtmxUL9bOOOOMcBebEC/JmU6ThMc7pYmhzOMNXK/HAAoauRpKNrgR42zt0kFbGJUWqpzR9p2LjyZXJDEJgoDGxkZKOgkhIfFV2+mSjH09v/rqK3z33XcAgHXr1kmSTpe5c+fizjvvDPqcN9xwg89m0x0dHdi4cSMAoKioCI899pgk6XRZs2aNmKz29vZGfCTYsrIy3H///V61p/PmzcMtt9wCYLgZ8Ntvvx3RcpDIOHqkFlUn5OLXdw1jm6s+XlHiSeKOw+EAZzFL1jFy6Y02Xa3H3MLZmJU7HaWZk1GUlg+7nw9hr/N3Sft3qnJLwASZtEoLRUlnvHA4HLDb7QkxcqA7p9Ppc1RVSjojL1FjhsQOz/PiVywFqu10SbYRbrdv3y5+/6Mf/cjvfmvWrIHBYBjxfAqFApWVlT637dq1S7wvXHvttdBo/M+n+JOf/ERsmrpt2za/+4UjZq6//nq/zWCvvPJKKJVKAMBnn3025muR6DN39yGnwyl+6TuS87OJEk8Sd2pqamAdko7mxXjcbBmGQYmhCGVZU1CZV47ZeTOgkAXXctzWJq3x1EyiUdsSXU1NDQ4ePIiamppYFyUkCoUCc+bMkQw8UVpaSklnFCRqzJDYsVqtsFgsYh/DWAlU2+mSbLWee/fuBQCkp6dj6lT/c3YrlcoRR5EFgOLiYjFR87R//37x+wULFgQ8T1ZWlliegwcPeg2E6BKOmDn33HP9bktNTUVpaSkAhGWEW0IihRJPEpcEj6a2vM0uWe4wdXsdE8xIgwLPwe4xN5Iqf0roBSQkTDQajZh8lpaWoqBgFNP6EELGhWBqO12Sqdazs7MTAIK6P06YMGHEfQL1geztPT34YDBTWLn2cTgcAadXGQutVovc3NyA+7h+N2azGWazOeC+JP7Eth1F9FDiSeJOWloaWI+mtfIUnWQ5U2tAhsYAvSq0jvxOYycEh02yTpk7aXQFPYVhmNOtbqn5bUykpaXBYDAgLS0xB9PQaDSYP38+JZ1RlOgxQ6KPZVnxK1aCqe10SaZaT6PRCAA++1p6CmYff7WdACRTtQRqZuvrehaLxec+Y40ZnU434j7u5TCZTAH2JPFIpZTGWrImaDSqLYk7EydORCfLwr3Ok/W4+U80FGGioQhOzomNtR9j8cT5QZ3b1nlCsizT6sHq6MEz0U2cODHWRRiRqwmWv5r5eJuqIdklQsyQ+BKOuRjHIpTaTpdkGeFWpVLB4XD4TezcjbVZq3uyabFYRhyp1r120V/SGyh2bDab320udrt9xH1c5WAYJqh+riS+pLBquI/HnKxPBMmaUJNEx0v7SchUft5OMgzWli9Dbkp2UKe1NUn7cymziuNmMnCSvARBwLFjx1BfX++3DxAhhAQSSm2nS7LUeubl5QEAWltbR9w3mH0CycrKEr9vamoKsOewEyeGX2ir1WpJwuf+bOH0mCLOXTDTvwwMDEhqYn1pbm4GABgMhoA1uoTEEiWeJC4JHvNsMjLf737kMhayECbZNTcekJ5XPorRbAkJgSvpbGpqQktLCxoaGij5JISEZDS1nS7J0Ndz9uzhQQCNRiMaGhr87sfzvDjtymjNmjVL/P6rr74KuG9HR4c436drcB8X9+QvUNPX+vr6EcskCELAQYPcfy/z5wfXAoyQWKDEk8Qnj6HHPUe1ve/TJ/DQZ0/hqa9exEvf/RvdQ70IBmeWdvxnUzPGVk6ApvIkfgmCgIaGBslb8+bmZvFBhRBCgjGa2k6XZKj1vOSSS8TvX3nlFb/7bd68GV1dXWO61pIlS6BQKMRrBWre++KLL4pTpZx33nmSbZmZmeL3/kbP3r9/P9ra2oIq12uvveZ326uvvipOAXPBBRcEdT4SX1Ll0mbaiiR9P02JJ4k7DQ0NcHrMrce49X9z8hxquupwoKMGO0/swQdHP4HFGVyfjpRZS5BSeT40U8+CqmAaFOn5oy4nNdGNHw0NDThy5EjAN+HR5ko6Xc2f3AUzUASJrHiMGRLfrFar+BVNY6ntdEn0Ws9FixZh+vTpAIYTsA8//NBrnyNHjuD3v//9mK+Vk5ODFStWABhuavvrX//a57/5xo0b8dJLLwEYTjKvuuoqyXb3mtNnnnnGq7lte3s77rnnnqDLtWXLFp9J965du/DnP/8ZAFBSUoJly5YFfU4SPzwfKZM076TBhUj8GRoaguBZ48mefkcyYPPuD5GmSh3xvIIgQKZQQZaWDXnacJ/QlJkLx1haEg+GhobgcDjEt9SxJggC6uvr0dLS4rWtvLx8xGHxSeTFW8yQ+MfzPARBiPpLx8+Of4VU5dhfVn12/CusLr84DCWKPplMhgcffBDXXHMNHA4HbrvtNnz00UdYsmQJVCoV9u/fjzfffBM2mw0sy4LjuJC64Xi6++67sXfvXjQ1NWHr1q1Yvnw5Lr/8ckyaNAkDAwPYtm0bduzYIZbt4YcfRkaGtAXVsmXL8Nhjj8FisWDv3r1Yv349Lr/8cqSmpqK6uhr//ve/MTg4iFmzZuHgwYMjlolhGDz44IPYsWMHLrzwQsjlcuzevRvvvvsueJ6HQqHA/fffT/07E5RXlzImOesGKfEk8cljcCH3P8hej7e2DBio5UGMNsh5d+5nZPQnQMKLkk5CSDitLr84YRPGcJo9ezaefPJJ3HHHHTCbzdiyZQu2bNki2eeKK65AS0sLdu/ePaYETK/X45VXXsEtt9yCAwcOoKWlBU899ZTXfgaDAU888QQWLvR+iZ2ZmYkHH3wQ9957L+x2Ow4fPozDhw9L9vnhD3+IOXPm4Pbbbx+xTHfccQeefPJJbN++Hdu3b5ds0+l0eOqpp3DOOeeE+JOSeNHLSCtc7EnaqI6eukncqaiowNcMI5lM172Pp16pw7zC2bA6bbA57eB4DnwQjRJ4u3dTGZkmtHlASXyqqKiIdREAUNKZSOIlZkjiCGZORxJZF154Id5//338/e9/x44dO9De3g6lUokZM2bg2muvxYUXXohrrrkGwHDyOBa5ubl444038OGHH+KDDz7AwYMH0dfXB4PBgOLiYixbtgyrV68OeJ0VK1Zg1qxZePHFF7Fr1y50dnZCr9dj1qxZuPbaa7Fo0SJ88MEHQZXnoosuwqJFi/Dcc8/h66+/Rn9/PwoKCnD++efjxz/+MX2+JDizUzqtDpekjW0p8SRxx1fzGKVbJ32lXImJhiLJdnkQNZe8zXsockY+hiYpruZWSfpWKpGMpUlVuAiCgLq6Op9D+c+YMQM5OTkxKBXxJx5ihiQW6tcfH4qKivCb3/zG7/aenh4AQH6+9xgOR44cCelaDMPg0ksvxaWXXhpaId2OnzRpEh588EG/+4Ry/tLSUjzxxBOjKstorF27FmvXro3a9Ujyo8STxCeP6SbkOq34Pe/R/xMA2GDawgvex9GDBAkHf0knwzAoLy+npJMQQsbg3XffxaZNm1BcXIybbrrJb+1eQ0MDjh8/DmD4hR8hiYLn+XEx4islniQu8R6jv8ncmtoqWDlKDEVw8hyaB9ogl7EjJpCCIGDw4BfgzP2QaVLBBHFMSE6dixLZ8YeSTkIIiSy9Xo8vvhge2VcQBNx3331e+5hMJtx7773iPMmXXXZZVMtIyFjIZayki5ksSZ8nKfEkcaenp8d7Hk+3UW1TVSmYXzQnpHNypj4Yd77pOhtkGh3SF68fY0lJvOjt7R1+WyiTeY0sGGn19fU+k84ZM2YgOzs7qmUhwYtlzJDE5HQ6xVFt5XJ6fIqmhQsXoqioCM3NzXj11VdRXV2Niy66CHl5ebBYLDh27BjeffdddHd3AwDWrVuHuXPnxrjUFDMkeKlKLdyHzmSTtB8X/RWQuNN84qTXOoYdW6g6ut3nUhTA2yzgrOYxnfO05Lw5JJLm5mZxaoxoJxGZmZloa2sTm4BT0pkYYhkzJDHZ7XZKImJEqVTimWeewc9+9jO0tbVh//792L9/v899r7rqqpDmx4wkihkSLG5oQLLsOa1gsqC/AhJ/fPyxMXLWx47Bs0sST4DV6qFMzxvTOQkBgIyMDFRUVODQoUMQBIGSTkIIiYDp06fjo48+wr///W988sknOHr0KPr7+6HT6ZCbm4szzjgDV1xxBSorK2NdVEJCxtstkmVGoFFtCYmKgrxcHPVc6TZ40H998TScPIc0VSr06lRcPHUJ8lMD96NzeCSeMq0ecgMlB8miqKhIbDYZC67kk+d5ZGVlxaQMJDSxjhmSeJRKpVh7RWJDo9Fgw4YN2LBhQ6yLEpSxxswjjzyCRx55JMylIvFIz6rg3g5PTtOpEBIdBh9zYjmMfVDnDCeK1Z11sHF2cdu5xWeNmHjau5sky6wmFXI9JQjJIh6aSsZDGUjw6N+LhIqaSpJQUcyQYHm+m2CStBsXveolcUdwcl7rXH08rQ6rJOkEAL06dcRzOnpaJMsyrR4y7dgmlz49ku3YTkMSgyAI6O/vH3lHQgghhBDihRJPEncEzjvxlCmGE89+26DXNmaE1gicZRDckDRh0JXNh0yuHH0hybgiCAJqa2vx3XffoaOjI9bFIYQQQkgS6XVaJcv2JK3UoDYAJO7I0w0oWncFOLsNDIZH9pKp1ACAFKUOC4rPxJDdDJvTDjtnh513BDyfo1ta2wkZC13ZggiVnsQC7zYgVbj77AmCgJqaGnR2dgIAampqwDAMzc+Z4CIZMyQ5CW6DfVA/TxIMihkSrCHeLknKnH73TGyUeJK4c7i6Gvapk6CQy1ExcyYEQQCrUgEAdEotJqYVghNOPzTqFNqA5/Mc0VaRkQ+ZXBG+AtOHScwdOnRInBojnCMaeiadLrW1tTAYDFAqqdY8UUUqZkjyslgs4kAxWm3gzx1CAIoZQjxR4kniEqNQgFEowGo0kvWCIEiSTmDk2gpHjzTxVGYVhaeMlHAmNX9Jp0wmQ0VFBSWdhBBCCAmL5BzD1hslniTu6HQ6OJ1On6PBCYKAhRPmwuKwwuK0wuKwQiNXBzyfV41nZngSTxI/AsXMaAiCgOrqanR1dUnWu5JOGhE18YU7ZkjyoybZJFQUMyRYcoX0WTZZqzboE5fEnSlTpvjdJpPJUKjPE5eDmR/L3t4oWQ5XjadUst4iEkOgmAkVz/OoqamhpDPJhTNmyPigVgd+yUmIJ4oZEqzc+bOxw1ojLmvVuhiWJnIo8SQJbaSkk7dbwQ0ZJeucpr4IlogkskBJ56xZs5Cenh6jkhFCCCEkWTFKBRza0zXknIqNYWkihxJPEnccg4MYajgGhmXByOWQKRRImTq62gm7x/ydAACPPqJjR7WdyYDneVRXV6O7u1uynpJOQgghhJCxo8STxJ3Bo3WoefBhcVmemor5//gbGJkMT+z6C4YcQ9CrUpGmSsXSyQsxwVDo91z2zhOAjAX44blBZWoddNNpKhUiRUknIYQQQmIlR6XHkr4hcVluSIlhaSKHEk8Sd9pPnpQsC87TsxnVdtfDaB0Ql+fkVwRMPGVKDdLOXQvBZgZnHoDAc5AbcsNfaBJTJ06cEAeKmThxYkjHBko6KysrYTAYwlhSEi/GEjNkfLLZbOK4AqpTU3wREgjFDAkWy8igdB/a1snFrCyRRIkniTvmgUHpCpkMYBjwAo8Bm0myKU2dGvBc9q6TYBgGjFoH2amO2jQNSvLp7+8X52QMVU9PDyWd49BYYoaMTxzHBTWgHSEuFDMkaIwMisxCWG02QBAgKKnGk5AoEQClAhAEMGAgUyjAMAwGbUPgPfpnDtmH/JzDN5kyjCPMuT5IGIyfCZiSUHZ2NiZPnoxjx44BAFiWxaxZsyjpJIQQQkhUNA0O4lurHHYbDwEClABKY12oCKDEk8SdsvPPRzc7HJosy0J2qnmKklVgXuFs2Jx22Dg7bE4b5LLQaiuUOSXhLi6JA+Xl5WN6qzxhwgQIgoCTJ09S0jlOjDVmyPhDU2OQUCVazHR0dODVV1/Fjh070NTUBIvFAoPBgIqKCqxYsQLLli2juUkjpGf/AZRsPyEuW1Uy4D9jV55IocSTxB2WYcCyp4eRlimGw1QtV6EsazIM6jR0m3vh5DkEembkHTavdYp06t+ZjMLRXHLixInIzc1NuAcFMjrUxJaEih64SagSKWY++OAD/OY3v4HZbJas7+rqwvbt27F9+3a89tpreOqpp2g+azJqifMXQcYNR3+/ZJlxu3HnpmRj4YS5cJ4apVav8t/H0znQ7bVOrs8KUylJMqKkkxCSiIYaj8e6CCSB7dixA7/+9a9hNpvBMAwuvvhiPPTQQ3jyySdx6623orBweBDHvXv34uc//zkcDkeMS5yEhPHRZ4sSTxJ3WK1WsuxwG2xoXuFssLLTtaGBBhcyHd4Ja/MROHrbwFlNw83q2DBW8p+qbqWmeonBNXqtyWQaeWdCCEkQ9r4+HPrtfbD39cW6KCQBORwOPPjgg+A4DizL4s9//jOeeuoprFu3DsuXL8cvfvELvP/++1iwYHgquu+++w7/+te/YlzqJCRnwcsgfkGenCkaNbU9RRAEbNq0CW+99RZqampgNpuRnZ2NefPm4ZprrkFlZeWYz//JJ5/g3XffxYEDB9Db2wuFQoHCwkIsXLgQP/zhD1FQUBCmnyaxDZkGYbVaxeHHZW5N4mTM8B+iklUgNyULWoXG73nMdXthb28Ul5UF04AlP4hcwUnMDAwMgOd5yGQy6PV6r+0cx+HQoUPo6+tDb28v5syZg5SU5BwxjgRnpJghxJP7CKXu3UFireXtjXAOmtDyzruY9OPrYl0c4iZeY8bd7t27cfLUNHbXXnstzj//fK99dDodHn/8cVxwwQWwWq148803sWHDhmgXNakVnv89fJ5tBufkIEBAilIX6yJFBCWeAKxWK375y1/is88+k6xvaWlBS0sL3n//ffznf/4nbrzxxlGdv7+/H7fddht27dolWW+323H06FEcPXoUr7zyCn7/+99j9erVo/wpkkdrSytsvb1gWRa5ublQGNK89lk8cT7SNd7r3XGD0re/8tTMsJaTxI/jx4+LU2N4viRyTzoBwOl0oqqqCrNnz6bkcxwLFDOE+OI+J6PWo2VOrNj7+tC+eQsAoP2jj1G4ZhWU6ekxLhVxiceY8bR7927x+1WrVvndLysrC3PnzsXOnTtx5MgRWK1W6p4SRs7+TjiNHXDY7RAAWGXJOe8rJZ4A7r33XjHpnDJlCtavX4+srCwcPnwY//rXv2A2m/H4448jNzc34B+lLzzP4xe/+AX27t0LACgoKMDll1+OyZMnY2hoCDt37sSWLVtgt9tx1113Qa/XY+nSpeH+ERMK19EBvqUFkLEwDZrAWSxe+2RqA3+wCgIPziKdD1Suj2Di6WptS81u44pn0unC8zx4nvdzFCGEJIaWtzeCt9sBALzdPi5qPdva2vC3v/0NX3zxBVpbW6HRaFBWVoYrr7wSl112GV544QU8/vjjAIAjR45Iji0rKwMA/PKXv8T69evx4IMPYufOnQCA4uJi/PSnP8WKFSvE/Xmex9atW/Hee+/hwIED6Ovrg06nw8SJE3Heeefh2muv9dtiYsOGDdizZw+A4eap/tx111145513AACffPIJioqKvLbl5ubiiy++wMmTJ/HnP/8ZX375JXp6emAwGDBv3jxcd911mD17dqi/SgDDYxtMmjQJ7e3tKCkpCbhvWtrpF/4DAwOUeIaRc7APzoEeMMCpL+9n32Qw7hPPXbt2YdOmTQCABQsW4IUXXoDq1PQdl112Ga644gpcffXVMBqN+MMf/oALLrggpFqSd955R0w6FyxYgD//+c+St17r1q3Dp59+iv/4j/+A0+nE/fffj4ULF4plGI8UzS2wNTSCA9AHwNbdAwB4+uu/o9dshF6dijRVKr5XcjamZEz0eQ6HsQM4NQCRi65sfljLebpvJ03kGWt5eXli/xQXf0mnXC5HZWUlNa8c53zFDCGBKBSKuJqCx7220yXZaz2//vpr3HzzzRgaOj2Ht91ux549e7Bnzx5s3bpVTC4DMZlMuOaaa3D8+HFxXW1treRzob29Hbfddhv27dsnOdZoNMJoNKKqqgovvfQSHn30UXzve98LeL1wjKK9b98+3HTTTRgYGBDXdXV14cMPP8RHH32EO++8E9dff33I5/3lL3+JX/7yl0HtW19fD2D4+YemHQuvbIUOC42nRxSWqaipbVL629/+BmD4YfShhx7ySvimTJmC3/72t/jVr34Fo9GIN998M6Q/7Ndffx0AoFKp8Nhjj/lsarF06VJce+21+Pvf/46Ojg588cUXuPDCC8fwUyU2rT4N7sO/CE4nAKCuuxFtpk5x/fTsKX4TT2dPq2SZkSuhzJ8a9rKS+JCTkyNZ5jgOBw8ehNFolKyXy+WYPXs2UlP9D0pFxgfPmCFkJPE2BY97badLMtd6Hjp0CDfeeCOsVisA4IILLsDSpUuhUCiwZ88ebNy4EZs3b/bq1uTLP//5T9hsNixatAgrVqyA0WjE559/jkWLFgEY7iJ1/fXX49ixYwCAwsJCrF27FpMnT0Z/fz+2bduGnTt3wmg04uabb8Zzzz2HxYsX+73eWGPHbDbj1ltvxcDAAGbOnInLL78cer0ee/fuxVtvvQWn04lHHnkEWq0WV1555Ziu5c+hQ4fEGuTy8nIolcqIXGe8kjMyaPnTlRiuMU2STXL+VEEyGo348ssvAQCLFy9GcXGxz/2WL1+OzMzhZpqbN28O+vwmkwkHDhwAAJx77rnIzs72u+8ll1wifl9VVRX0NZKSx5DSDDscpr0Wo2R9WoCpVOzdLZJlRVYRWCU1CRkPKOkkhCQ7X7WdLu0ffZyUI9w+9NBD4sCD//Vf/4Vnn30WV1xxBVatWoWHH34YL730EnQ6HQYHB0c8l81mw3nnnYe//vWvWL16Na677jq8+OKLYguIRx99VEw6v//97+PDDz/ELbfcguXLl+Oqq67C//3f/+GRRx6BTCaD0+nEHXfcEdER0wcHB9HV1YV169bhzTffxDXXXIMVK1bgwQcfxN///ndoNMMDLT7xxBOSGtFw4XkeDz/8sLjs3hyZkFCM68Tzm2++Eft5uYaJ9kUmk2HevHkAhpPCfo95Jv3p6+vDrFmzkJ2djcmTJwfc17Pd/HgmeDSRZdVqODgHbJz0za6dc/o9h6O7SbKsyp0UvgKSuEVJJyFkPPBV2+niqvVMJl999ZXYT3LdunVYu3at1z5z587FnXfeGfQ5b7jhBp/Npjs6OrBx40YAQFFRER577DGffRnXrFmD6667DgDQ29srtnCLlLKyMtx///1e3QPmzZuHW265BcBwhcrbb78d9ms/+eSTYpPjvLw8XH311WG/xnh3oukE9ncpxK+qNt9/34luXCeedXV14velpaUB9506dbiZpiAIOHr0aFDnLy4uxptvvomdO3fijjvuCLhvQ0OD+P14bzcvcB6DvshksDsdmF84B5W55SjLmoISQxEytQa/5/BV4xkJDMOcHliIxBTHcThw4AAlnYSQpBaottMl2Wo9t2/fLn7/ox/9yO9+a9asCeoZKtBo1rt27YLD4QAwPL2IqzbRl5/85CeQy4d7rW3btm3E647F9ddfL17L05VXXik2ffWcoWGsXn75ZbzwwgsAAJZl8eijj9KgQhHQd7IVuY0O8Sul0RbrIkXEuE48W1pOJyeFhYUB983Ly/N5XLi89dZb4vejHZksWfQbpR+WDCuDQ3BigqEQpVmTMSt3OuYWzkZ+aq7P4wVBgKOnWbJOmRX435cktgMHDmDTpk2Sl0nAcNI5Z84cSjqJl0OHDuG7777DoUOHYl0UkiAsFgvMZjMsPkZaj6ZAtZ0uyVbr6RqkMT09XawI8EWpVOLMM88c8XzFxcV++yju379f/D5QazhgeIoRV3kOHjwIQfA90GA4Yubcc8/1uy01NVWsQAlnd61//OMfkia2d9xxB+bPD+9AjWR8GdeJZ29vr/h9+ggjwLm/QfOsURmrHTt2iG/zMjMzsXDhwrCeP9HwHjWezKkO1nIZC5lbsxi5zPdolNyQEbx1SLIuUjWeJPY4jsPx48cxNDQk+dBXKBSYM2cOzdVJfHJNqUPT6pBgCYIgfsVKMLWdLslU69nZOTywYEFBwYj7TpgwYcR9Ao1q7v5s6G/sD3eufRwOh9+uUmONGa1Wi9xc3y/bXVy/G7PZDLPZHHDfYDz99NN4+OGHxbL//Oc/F5sWEzJa43pUW9fIaABGnL7E/c2Y+3Fj1dbWJumTcPPNN4/7Jgwsw0DSy1Mmg0Gtx9oZyyAIAhr7mpCbkuX3eOvJaskywyrARnIOTxJTDMNAo9HAarWKfV8UCgVmz55NSSfxS61Wg2XZuBuplMQvmUwW8+lUgqntdEmmEW5dL/yDeT4KZp9AI7K6T9USqJmtr+tZLBbJmB0uMtnY6nl0upGn1nAvh8lk8jmLQjA4jsN9992HN998U1x3yy234D/+4z9GdT4SJIU0JpO1F9e4TjydztOD04w0LLT7dvfjxqK3txc//vGP0dMzPE/lwoULce2114bl3GNRX1+PKVOmSJon2mw2cRhtg8Hg9Uaxvr5efMPm2W+iu7sbra3D05sUFxdLapc5jsPhw4cBDDcVmTRpErQqNdw/Vk1DQzhw4ABmzJgBuVyOyRnD1zYajTh58iQAID8/Xxw12Fz/reT6vEINmUwa6s3NzeJbzdLSUq8btms0u+zsbOTn50uOrampgcPhgEKhwJS8PLjfHtra2tB96t9z8uTJksTHarWK/YMzMjIkk0QDw32OLRYLGIbBrFmzJNu6urrQ1tYGYPhtrnsNvNPpRHX1cLKt1+u9JoBubGwUR/mbOXOmZGCCvr4+NDUND8RUUFCArCxpQu8alVmr1Xo1bzp58qT4MFBWViZ5eTM4OIjGxkYAQG5urteb2urqajidTiiVSkyfPl2yrbW1Fd3d3QCGpzNy/8C1WCxic9rMzEwUFhZCJpPhggsuQHV1NY4cOYLu7m6UlJR4JZ2dnZ1ob28HAJSUlEjeeDscDtTU1AAYHuhr4kTpND0NDQ3iw0hFRYXkIaK3txfNzcNNu4uKipCRkSFu43lebMqp0+kwZcoUyXlPnDghDlZWXl4uSYIGBgbEOeby8vK8pv84dOgQeJ6HWq326qPe0tIi3lemTZsmeXgaGhoS+5RnZWV51SDU1tbCbrdDLpdjxowZkm0dHR3o6OgAAEyaNClm9wh3x48fF2sZXPcIF3/3CGD47/7gwYOwWq2oq6vDtGnTJOcN1z2ivLxcsq2trQ1dXV0A6B4RrXuEu6NHj8JqtUImk6GiokKyzf0e4flCwr123FcSYbVaxe0ajUaSnDqdTthPJYtKpVISo4IgiM0wZTKZV9Jks9nAccOvYmUWS9C1nS5tH32MrOWXINWtuxAwPPel61lGrVZLfiaO42CzDfcvk8vlXs9HFotFTMA9EzOHwyH2j1SpVJJY4nlefHHPsqzXC3/336Fn0qRSqeBwODA0NASn0+n3d8iyrFflgPvv0JP7v41CoYBCoZD8TD09PUhJSfH5b+P6HbqPouvah+M4yTU9j3X/Hbp+157ndf1srnWA9Hfo+W/jur8yDOOzMsX938ZfHNpsNtxxxx344osvxHPdeeeduPrqq8XzB4pv1+/Qneu4keI7UBz6Om+gOHT/HQaKQ1/x7YpDX+flOA4WiwUHDhwI+3MEM+SQ7O/614nVc4TrcyrcxnXi6f4H4HA4Aiafdrc3jOGYu6irq0syR9TEiRPx2GOPxcXE1BzHeTU/EwRBvGH5uoE7nU5xuyee58Vtvpq1uba5bhKcWdpMVji1j2dTFfcyuZ/XYZT+sQhK77d+7uUN9rzu5Q3mZw10Xl8vL1zn9RUDYzlvOP9t3HEc57dM7uf1FS8OhwNOp9PnA1yg8/qLQ5lMhhkzZqCtrQ06nc5r1D/P8waK72j+DgPFYTC/Q57nR/xZg/0depbJV9OwYH+Hkb5H+DvvaP6WBUHwOWAH3SO8z5vI9wj38zocjhHP66sm3HUtf80mA60PdGygZpjux7a+827QtZ3i8XY72t/bhNQbfxq2MgXaHq6f1VNubi5MJpP4csXfeQVBEF9iBXNeX2Vyf7nS3NyMsrIyvz+LIAjiyy21Wi154eOZnHkmeq5z+pr+xfN6AwMDGBoagub/t3ff4U2V7R/Av9lJdymlhVKgQEvZG0SKMkQFRGQKgjhef76iKOKeqDhexYGCWxQXIEPZQ7YUkKHs2bLbAm1pm7bpyDy/P0IPSZu0CTRNmn4/18VFTvLk5El65+Tc51kajdPPt+wCaGhoqNNJiCr7u5WUlGDKlCnieFq5XI63334bI0aMQGlpqVufoaPHPPG9qawHwo3u15myY0x1n0dYLBY4HkDmnfMITw1DqdOJp+0VNb1e73LiWVW33KpcuHABjzzyCM6fPw/AeiV+7ty5di0l3iSTySr8KEskEvGH2FGAyuVyp13WpFKp+JijH/uyx8oOlNJyV8QkJhMUCkWFg4ttneyukhVesX8BVcUuKrb1dXW/5evr6P3avtfK9uvoR0GhUMBkMjk8iN7Ifqvzb2PLtpti+TrZ7tdRvJT9Pd3db2VxKJVK0bRpU7E1o7L9VhbfNfkZVhaHrnyGFovFYb2u9zMsq5PFYqnyb+PNY4Sz/V7Pd1kQBIf14jGi4n5r+zGibL9ms7nKY4QjZa/l7ES3svsre25lF5zLnmvUanH5T/daO8tkb9iEpqNHQmnTk+BG6lT++c7uv9736kiHDh1w+vRp5Ofn4/Tp02jVqpXD/QqCIC674sp+HdWpffv24tIoe/fuRWJiotP3kp2dLbYolW8xsj2n1Ol0DpNSiUSCU6dOVVknQRBw8OBB3HTTTQ4/X61WK/Zk6dq1q9sxarFY8OKLL4pJp0qlwsyZMzFgwADxee58ho4eq8nvzY3ut7L3W3Zcqu7ziMq6Y3vjPOJGu4c7IxG8OUrey6ZNmyYeXDZu3FjpIPLFixfjtddeAwB89NFH17147qFDh/DYY4+J3eBiYmLw008/uTSA3VN0Op3YRQ6wdony5ti4I6+/gfxD12aaDO/eDRljk7A34wACFBpoFBq0bRCPpKaOZ1ZL//55mPKzYSnRARAQ0nMo6t/2oEfqasjLg6moGBAskAUEQlkv3Cdarf2VyWRymigQEVWX1NRUsZWqfDdsbzj7/VxcXLHqup/faNjQWj3Wc9u2bfi///s/AMD48eMxbdo0h+XWrFmDqVOnitu25zYAxIS1R48e+OWXXxzuIysrC/3794fRaERsbCxWrlzpdKzn+++/j7lz5wIAnnrqKTzxxBPiYy+++KK4HuiPP/6IXr16VXj+gQMHcO+994rbmzZtsuti/9JLL2Hp0qUAgNtvvx2zZ892WI8vv/wSn332GQBgxowZGDZsmMNyzsyePRuff/45AGvL7VdffVXpLLp1kaePCae//xyXV1xbNkiikODmJUuq/XVc5ancoE7Pams7zsVZ940yZeM+ANdmVXMkOTkZDzzwgJh0tmzZEgsWLPBq0umLSkvsx2dIFQqc16bjwOVj2Jn2Lzad2Y5j2RWvEJYJiO+GkG6DENp7BIK73IGA5p09XGMmmjXBZDLh4MGDOHjwYIXuKhkZGbhw4YJHljoi/8SYIXcZDAbo9Xq7HlA18rpuzGTrTG2f4TYpKUkc67tgwQKsWbOmQpmTJ0/i7bffvuHXatCggdi4kJaWhueff97hpJLLli3DTz/9BMA6nnjcuHF2j9uOw/7yyy8rdJO8fPkyXnnlFZfrtX79esybN6/C/Tt27MBXX30FwHpeO2jQIJf3CVg/t6+//hqAtcVsxowZTDq9QCYp14LqpXp4Wp3uams7QDc1NbXStYnKJiuQSCTXdaVj8+bNeOqpp8QT5o4dO+Kbb76pchmXushY7kddIpUirzTf7j6lzHGLl2C51oddIpVBFhgKZYOmDstWC7Zu1gij0YhDhw6JY2EOHjyIjh07ii2fOTk54mQuVa3JSwQwZsh9ZT0uJBJJtcz14KqsTVsgD77xloasTVvQeNSIaqhRzZNKpZg+fTrGjx8Po9GIqVOnYu3atbj11luhUqlw4MABLF68GHq9HjKZzGl3ale9/PLL2Lt3L9LS0rBhwwYMHjwYI0eORFxcHAoKCrBx40YkJyeLdXv33XcrDJcaNGgQPvroI5SUlGDPnj0YM2YMRo4cieDgYBw7dgxLlixBYWEh2rdvj8OHD1dZJ4lEgunTpyM5ORkDBw6EXC7H33//jeXLl4vdJd988023Y/Obb74Rk+I2bdpAJpNh48aNVT6vS5cuPjNEzC8I5Tf98/yyTieenTt3hkKhgNFoxO7duzF+/HiH5cxms9jvPTExsdL1nxzZs2cPpkyZIiadvXv3xueff37dU137PUu5b59UiosFmXZ36fT2ExCVKU07UeE+qarq6dDJd5VPOgFrF5ATJ05UmNmTiMjfNB41otYmjNWpY8eOmDlzJl544QUUFxdj/fr1WL/eviV41KhRyMjIwN9//31DFwdCQkIwb948TJ48GYcOHUJGRgZmzZpVoVxYWBg++eQTh+uvR0REYPr06Xj11VdhMBhw9OhRcYbuMhMnTkSnTp3wzDPPVFmnF154ATNnzsSWLVvEtd/LBAYGYtasWQ6781amqKjI7jM8evSoXXfhyvz888/o2bOnW69HzumU9g0qRg+NsfS2Op14hoSE4KabbkJycjI2b96MixcvOuxGu3r1anFafXe7MOTk5GDKlCli15x+/fph1qxZNXq1tLZRq5SwXfpYIpOiW0wH1MsLg9FshNFiQqg62OFzDVnnKtwnVdzYZFDkPUajEQcPHoROp7O7X6lU2vVYiI+P9/r6elS7MGbIXWq1mjHjZQMHDsTKlSvx448/Ijk5GZcvX4ZSqUSbNm0wYcIEDBw4UGxEcLeRoLyoqCgsWrQIa9aswerVq3H48GHk5eUhLCwMsbGxGDRoEO65555KX+euu+5C27Zt8dNPP2HHjh3IyspCSEgI2rdvjwkTJiApKQmrV692qT633347kpKS8PXXX2P37t3Iz89Ho0aN0K9fPzz88MMVliRyxZkzZ5zOtEo1K99g36BigmdmlfW2Op14AsCDDz6I5ORkGI1GPPPMM5gzZ47d4NlTp07h3XffBWC9ojR69Gi39v/222+LSWuHDh3w2WefMemsgjI42C7xVEVEoGlYDBQ23Wubhzep+EQA5hKdw/s9SSIB6u4UXZ5TWdLZqVMnux4DrizyTWSLMUPu8tQsj+Sexo0bi5M9OlI2j0b59XWBipMNVUUikWDIkCEYMmSIe5W8SiqVokWLFpg+fbrTMu7sPyEhAZ988sl11cWR9u3bu/2ZEN2IOp94JiUl4Y477sCff/6J/fv3Y9iwYRg3bhwaNmyIY8eOYcGCBeKCry+88EKF/uy7d+/GxIkTAVScJe306dNYt26duH3nnXeKYwIqExYWhm7dulXH26uVJOWmfJZpNFDLVQhWBqLEZF1LKkTleLyLPLgeTIW54rYiPNphuerDK9+e4CzpVKlU6NixI7upExHVIcuXL8eqVasQGxuL//73v05b906fPi0ub9KmTZsarCERuaLOJ54A8MEHH6CoqAjbt29Heno6PvzwQ7vHJRIJJk+ejLFjx7q132XLltkt5jpjxgyXnlfZNN91gVBu0VqJTIZuMR3t7nO0sK1gMUO7ewVk6iBINUGQqoOhatTSo3Wl6ldZ0tmpUye2VBER1TEhISHYtm0bAOualm+88UaFMjqdDq+++qp43nXXXXfVaB2JboTZYoFts4vETxs2mHjC2uVqzpw5WLlyJZYtW4bjx4+jsLAQYWFh6Nq1KyZOnIiuXbu6vd+UlBQP1Nb/mcuPN3DQvclRlydTQQ5MORdhO2F5cIe+1Vs58iij0YgDBw6IvQzKVJV0FhUViWOvAgMDa6KqVMsxZshdZvO1WdMdLcZOntO7d280btwY6enpmD9/Po4dO4bbb78d0dHRKCkpwZkzZ7B8+XJcuXIFADB69Gif6DnGmCFX1VMHw3b9BrmfjiVn4nmVRCLB3Xffjbvvvtut5/Xs2dNp//hvvvmmOqpW5xSXa+kq3/XWGWNuufX4ZArIgmpguRo/PTjUNIPBgIMHD7qddALW7lVlS2N06NDB01UlP8CYIXfp9XrxYgW7+9cspVKJL774Ao899hguXbqEAwcO4MCBAw7Ljhs3zq31MT2JMUOuspTan/uU7/3nL5h4ku8pN1OPxMUJHQxZaXbbMk0Q5IFh1VUrh5hzVg9nSadarUbHjh3ZvZaIqI5LTEzE2rVrsWTJEmzatAkpKSnIz89HYGAgoqKi0LlzZ4waNYoXkqhWKj85psRPZ61k4kk+Ry6RwGyzXajX4cdtn0MjVyNAoUGAUoPxHYZXmNLeVJBtv5/gCEg17EJXG6SmpjpMOjt16gS1Wl3l8+vXrw+z2cyuTOQyxgy5Sy7nKZO3aTQa3H///bj//vu9XRWX3GjMvP/++3j//ferqTbkywJlCrsVHWRg4klUIyQlJXbbuuxM7DdcW3RZJVdhQseKi2kbcy7ZbasaJ0Aiqanp761JMNd3uz7x8fEoKipCcbH1sOtO0gnA4fq7RJVhzJC7uBQauYsxQ66Slztflfrp5EJclIp8jmCxv8pTYtLbbatkjg/kxtyLdtvqmITqrZgjEgn721YDpVIpLpPibtJJRERERL6PLZ7kewT7AdUlFvvEUxAcLKViMsKUb9/VVlGPLRq1SdkanYIgMOkkIiKiOqPQbLDbNjopV9sx8SSf02BAf5RmZVknGRKA7OZRaKfRwGgxwWQxQSVTVXiOUZtZIWFV1GtYU1WmaqJSVfzbEhEREfkzrbnULikz+mlnOiae5HOK2reFyRAPuVyOhIQECNo0JF65tmRNgKJia5gxx76brSwwDFIVpy73NXq9HhkZGYiLi6vW8bAnTpyAyWSCXC5HYmJite2X/BdjhtxVYjP/AGfaJlcwZojsMfEkn2O0WGAUBAgAZGo1woLCEGOIgsUiILdEi2JjaYXnGLIv2G1LA0IgmIyQyBUerq2fXpLyAL1ejwMHDqCkpAR6vR6JiYnVlnwaDAYYjUZY/HTdK6p+jBlylyAI4pqMRK5gzBDZY+JJPkcul0MQBHEa8qigSEQFRcJkMSM9/yKahMVUeE7J2YN22xIpl0jwJbZJJwBkZmYCQLUln+VjhqgqjBlyV9mxikkEuYoxQ64SyjWU+GvE8BeXfE6bNm0c3i+XytAsPNbhY6bCXLttqSa4Blo7yRWlpaU4ePCgXZcjACgoKIDJZIJCceN/J2cxQ+QMY4bcxa6S5C7GDLkqun0bHMg8IW4r/XSSRSae5BfMRVq7bakm2DsVITulpaU4cOAASkvtu0cHBASgY8eO1ZJ0EhEREdVm8rBg5De6lpYFqZh4EtUIg1YLAJBIpZBIpZCq1ZBW0h3Ooi+BYLBPbNQNm3uyinYkEkCoulidU1XSyRlsiYiIiOoOJp7kcw5MeRbGq8knAGSNuxUXmgZCI1dDrVDj5tiuaBnRTHxcMBmgbNgClpJCmEt0EPQlUEbF1Uxl/bUT/g2qLOns1KkTlEqll2pGRERE5FvqKQLRteDakCRlaJAXa+M5TDzJ55jKJSuXLp7FDsm1+5qENrJLPC36YgS07CpuCxYzFBE1vIYnE1CRN5LOzMxMmM1myGQyREVFVfv+yf8wZshdRqNRnKGUwwTIFYwZcpVKpkA907VZ1iVG/5xxnYkn+Ryh3PIGJeWWTzFbzPbbJYV22xKpDPKQ+p6pHFXKWdIZGBiIjh07eqylMzMzE0ajEQqFgkkEuYQxQ+5iEkHuYsyQqwSzGRK5AhaLdfCWxczEk6hmCPYjJkstRgDXDtjlE09TfnaFXUgkUo9UzSFOlw7AulD2gQMHoNfr7e73dNJJREREVJvlKlQ41KwDinU6WCwCVEoNWnq7Uh7AxJN8TsMxo2DIzYUEgFKpRHBABlrVV8FkMcFkNiFEbT9jrURmH8aKsAY1Vte6nmyW8XbSGRcXB4vFAqm0Bi84UK3GmCF3qVQqsfWKaqdWrVoBAHr06IFffvmlWvednp6OAQMGAACGDx+O999/3ysx46ge5PvStiWj/op/xe1SlRR4wIsV8hAmnuRzAkJDIDdfa9WMj2qB6Mhrg6yjg+wTS7Muz367KN+zFaQKjEYjTCaT3X012dIZHMzlc8g9jBlyl0wm83YVqJZhzBDZ46Ve8nmNgqPQsl5ThKqCEaYORrgmxO5xS7mlVJSRTWqyegQgJCQEHTt2FH9kg4KCOHstEREREYnY4km+p9yimC0j4hDYqJnDovrLZ6HdvRIydRCkmiBINcFQhEd7vo5UQUhICDp06IAzZ86gXbt2nEiBiIiIyAUmi8UuKZP46XIJTDzJ55hMJrHbplxeeYgactJhKdLCUqQFAEjVgQjrOdTTVbThnweG6xUaGopOnTrV+BgovV4vjqNRqVQ1+tpUOzFmyF0WmxnXfWlscNksmAAglfI3yZf4asyQ74m9NQl/BxVCECwQAASoArxdJY9g4kk+53JGBkw63bX19Sr5HTVeSbfblqqDoIiI8XAN6zaTyVTpBQFvTLxx8uRJcWmMDh061PjrU+3DmCF3lZaWihcrAgJ846TQYDRj7qqjKCk1QaOW46G72kKp4LhCX+GLMUO+yWIqgV5aIl4UNQulVT+pFmLiST5FEASYMy5CsFhgkcmgl0phMRicljcVXLHbVkTEQB4U5uFa1l3FxcU4cOAAmjZtipgYJvhERN6UmqaF0WhBWlYh4hqGIjVNi7bNI7xdLY+6dOkSfvjhB2zbtg0XL16ERqNBq1atcO+99+Kuu+7Ct99+i48//hiA9QKTu/Ly8rBgwQL89ddfOHv2LIqLi1GvXj106NABQ4cOxR133OHyvlauXIklS5bg9OnTkEqliIuLw+DBgzFu3Dio1epKn5uamoo//vgDu3fvxqVLl1BYWAi1Wo3IyEh069YNY8eORdu2bd1+f+SbTHmXYcy9KE6+I/XTFM0/3xXVXhYLTAcPWW8CyAKwKyAPJQUtoJGrEBkYgTvj+4rFjbmX7Z6uiWtfc3UFrK2xdWRq/bKk02AwIDU1FQB8JvkMCwuD2WzmDILkMsYMucsXY+XImSsoLDGguNSEwhIDjp7J8evEc/fu3Zg0aRKKiorE+wwGA/bs2YM9e/Zgw4YN4pIp12PDhg145ZVXUFBQYHd/ZmYmNmzYgA0bNqB79+6YNWsW6tWr53Q/ZrMZTz/9NNauXWt3/6FDh3Do0CHMmzcPc+bMQbNmzSo812Kx4L333sO8efPsuuoC1hnkCwsLcebMGSxatAhTp07FY489dt3vl3xHuFyDToXXWjllCo0Xa+M5TDzJpwjlDrIAcCT/DM6evggAaBrW2C7xNOXZJ56K8IYerV9dVVRUhIMHD8Jg0/qcmpoKhUKBBg1qbt1UZ5o04UzG5B7GDLnL18YCZ+UWIzuvBHkF1vWT8wr0yAooRlZuMRrU879unUeOHMGjjz6K0lLryfmAAQPQv39/KBQK7NmzB8uWLcO6deuwY8eO69r/li1bMGXKFJivLueWlJSEAQMGICwsDGfOnMEff/yBjIwM7N27FxMmTMDixYsRGBjocF9r166F0WhEQEAAxo4di3bt2uHKlStYsmQJUlJSkJaWhoceeggrV65EUFCQ3XM/++wzcY3RevXqYfjw4YiLi4NKpUJGRgbWrFmDlJQUAMCnn36KpKQktGvX7rreM/kOtVSOSOO1pQSlCv8cE8zEk3yKo8TTJLvWoigI1yZRsOiLYb46qVAZRT1vJZ7+2+rpKOkErOsgVnbFl4iIqs9f+9Jx9uK1daqNJgtMJgt0xQYEqOXQFRtgMlmwfNtpKOTXTlrjGoXi1i6NvVHlavXOO++gtLQUEokE7733HkaMGCE+NmzYMAwfPhyPPvooCgsL3d63TqfDSy+9JPaC+N///odhw4bZlfnPf/6DqVOnYsuWLTh9+jQ++OADTJ8+3eH+jEYjIiMj8csvvyAuLk68/7777sOzzz6LP//8ExcvXsQXX3yBF198UXw8NzcXP/zwAwBrj6Lff/8d4eHhdvv+73//i1dffRV//PEHBEHA6tWrmXhSreGf6TTVXg4ST4tNTicI1x43lmvtBCSQh3m/9c2fFBUVid1rbZWt21nVrMNERHTjzGYLjp7JwdmLBeK/9CwdLl4pgkQqQeMGwZBIJbh4pQjpWTq7ckfP5sBsrvjbWpvs2rUL+/fvBwCMHj3aLuks061bN7skzh2//fYbtFotAODhhx+ukHQCgEajwSeffCIOMfnjjz+QmZnpdJ//+9//7JJOAFAoFHjvvfcQGRkJAPj999+h1+vFx7ds2SL+3j7++OMVkk7AOjvuo48+Km6fPXvWxXdJviwr5wqO62Tiv5MFJm9XySOYeJJPcdTiGRsWgxbhTdEkNAZhmlDxfkO5GW3lofUhlSs9XsfyxFlc/azRsyzpNBqNdveXrdfJpJOIqGbkFeqtSyyo5cgtKEVWXjGytcUwmsxoGh0MhVyKptHBMJrMyNYWIyuvGLkFpQhQyyEI1ufXZlu2bBFvP/DAA07LDR8+HGFhYW7v/6+//gJgXcLtoYceclouICAAEyZMAGBt1dy2bZvDcvHx8ejTp4/Dx4KCgjB8+HAAQH5+Pvbt2yc+dvfdd2P9+vWYM2cO7rzzTqf1aNz4Wgt2Wddjqt0unkhF2DGz+E9+pMTbVfIInjmSb7HpSlumeURTNG4UDQBoFHytRbM07YRdOYkXkk5/nVhIp9Ph4MGDtSbpPHXqlLjMS8uWLb1dHaoFGDPkLtulMaqakbS61Q/T4J5bW+DPXeehUsqQnqVDUYkRkeEBCFArAAABagUiwwOQllmIQI0CjRsEITRQhdtvaor6YbV7opK9e/cCAMLDwyv9viqVSnTp0gWbN292a/8HDx4EALRs2RIREZVPztSrVy/x9qFDhzB69OgKZXr06AHAecx06dLFbh9l+1QoFGjatCmaNm3q8LUvX76MI0eOYNeuXeJ9ZWNSiWoD3zp7pDrPUYtny/rNIY9qCotghtFyretB+YmFJArfmvihtnKWdIaGhqJ9+/Y+l3QC1hl3y9ZkJHIFY4bcZbFYxCTCG2IigzB2YAI27LkAuUyKtMxC5BaUIiTw2kXX3HzrdmxUMGKjgjGwRxMxMa3NsrKyAACNGjWqsqy7E4fpdDqxu2tsbGyV5W3LXLlyxWGZsu64zmLG9n1kZ2c73Me+ffuwc+dOnD59GufPn8f58+eh0+mqrB+RL/O9M0iq0xwlnk3rNUZg/TgcvHwMzcOv/aAYtVl25eTBnOjmRtXGpJOIqK4IUCvQr2ssfl5zTOwglJNfglKDGWqlDJBc6zjUr2usXySdAMTxl660NLvbGm27NItGU3XLsO3+S0ocd4esqg62r2M7xhOwjtl86aWXcODAAYfPbdSoEfr27Yv58+dXWVeqPcwyeZ1IyurCe6RaRHA0AYJUBpPZhLYNWkEpu/YjWn5GW2WDZp6tnJ/T6XQ4cOAATCb7Ae21Iens0KGDt6tAtQxjhtwVEOAbS5Rk5xUDAEr0JpgtFhSVGBESqMTlnGJIJIBMKhXL2baG1mYqlQpGo9FpomfL3TGPtkmgK/svLi4WbztLMMsmCHIWM7b7sF1OJSsrC/fddx9yc3MBABEREejVqxcSExMRHx+PxMREREdHw2w2M/H0M/WVwbCdj9k/LhlV5LtnklQ3OWjxlEilUJYbv2kxlEIw2P9AyELre7RqjvnHGE+TyYSDBw86TDo7dOjgkwunExHVRVl5JTCZLDCZLZDLpGjcIAiBGgWKSoxIz9LBZLYus5KVV4IWjcO8Xd1qER0djVOnTuHixYtVlnWljK3g4GCoVCro9XqkpaVVWf7cuXPi7aioKIdlyroGO2P7OtHR0eLt2bNni0nnvffei9dff93hcICCgoIq60nkizirLfkUR11tJdKKyZ0x71KF+9TRzT1Sp7pALpdXmPY9LCyMSScRkY/JzitGicGEQI0CLRqHokF4AG7pHIPI8AC0aByKQI0CJQYTsrXFVe+slujYsSMAa5fb06dPOy1nsVjEZVdcJZFIxHUwT506hZycnErL207s06pVK4dlDh06VOk+du/eLd4ue2/Atdl71Wo1XnnlFadj0E+cuDa5ouBgUkYiX8XEk3yLUDHxXHJ8LX458Ad+P7oGmTrrIHyL0Qh1s/ZQRsVBFlIfsqBwruF5gxo1aoSEhAQA1qSzffv2TDqJiHxMs0YhCFQr0KxhCOIaheLegQno0DISYwcmIK5RKJo1vPa4v7BdWmTevHlOy61bt87pZD2VGTBgAABr75+5c+c6LVdUVIQFCxYAsK6neeuttzost2/fPpw8edLhY7m5uVixYgUAoGHDhmjfvr34WNlYVrlcDpXK+YSJP/30k3i7fE8lqp3UMvuLDDI/vZ7ArrbkUxy1eO5I3wdtgTVUEyNbIiooEoK+COrY1nblpOqgCs+tEX60pEqjRo2gVCoRHh5eq5LOK1euwGKxQCqVon59b3S5ptqGMUPusp10zZuzIXdoGYmm0SFIyyxE2+YR4oypAWoFhiY1x9GzOWgSFYzQIP+Z6T0pKQmJiYk4ceIEFixYgG7dumHw4MF2ZU6ePIm33377uvY/evRofPPNN8jPz8cPP/yAhIQE3H333XZlSktL8dxzz4ldee+55x5x9tryLBYLnnnmGcyZM0c8vigUChQXF2Pq1KnIz88HADz44IN2v7UxMTE4d+4cdDod1qxZgyFDhtjt12Qy4cMPP7Rb17T85ERUOyml9udc/toyyMSTfIqjxNNik9cVGaxdh0wFFbvCeGOKez/KOUW18ST84sWL4tIYtbH+VPMYM+Quo9EoLo3h7WV4QoNUDhNLqVSC9i38L56lUimmT5+O8ePHw2g0YurUqVi7di1uvfVWqFQqHDhwAIsXL4Zer4dMJoPZbIZU6vqpe0hICN577z08+eSTMJvNeP7557FixQoMGDAAoaGhOHfuHJYsWYKMjAwAQNOmTfHqq6863V+9evVw6tQpjBo1CiNGjEBcXBxycnKwcOFCcXxnjx49MHHiRLvnDR8+HDNnzgQAvPDCC9i5cyc6d+4MuVyOs2fPYuXKlWIdyhQWFoJqv/Lnv37a4MnEk3yMg8TT9stXqLeuYVV+Rlt5ULgHK+VfCgoKYLFYEBYW5u2qEBERuaRjx46YOXMmXnjhBRQXF2P9+vVYv369XZlRo0YhIyMDf//9N5RK92b0ve222/DZZ5/h5Zdfhk6nQ3JyMpKTkyuU69WrFz755BO72WjLe/jhh7Fjxw78/fff+Pbbbys83rt3b8yaNatCcvzwww9j79692L59O0wmE5YsWYIlS5bYlZHJZHj88cdx/PhxbNy4ERcvXoROp6u0PuT79Gr7pXzM0trT68wdTDzJpzi64tMkLAaFQTIYLWY0Co66Ws5sV06qCa6pKjpRO5o+CwoKcPDgQQDW5SRCQ0O9XKPqERsbK3abJHIFY4bc5W4iQ9Vv4MCBWLlyJX788UckJyfj8uXLUCqVaNOmDSZMmICBAwdi/PjxAKytmO66/fbb0a1bN8yfPx9bt27FhQsXUFpaiujoaCQmJmLUqFHo06dPlT2sFAoFvv/+e/z0009YunQpLly4AJVKJe5j6NChDvehVCrx7bffYvHixVixYgVSUlJQXFyMwMBANG7cGN26dcPYsWPRokULzJs3Dxs3boTZbMaff/6JkSNHuv1+yXfk6O1brg1wsLygH5AInA6rztPpdHaD4Fu1auW1K2e6M2dwcOrz4rYgkeDyy2NhCbSulZXUpBsahUQjd9tCu+cFtOgCdUx8jdYVAMwlJTAVF8Ncooc8KABKH25FzM/Px6FDh2A2W5N2mUzmV8knEVF1SU1NhclkglwuR3x8zf+20PW78847cfbsWXTs2BGLFi3ydnXIT3j6mLDj+0+BFdda2EtVUgxYtLjaX8dVnsoN2OJJPkUw21/hkUiluKl1b5jMJuSW5EMtV1do7QQAqdpLC3vXkkGe5ZNOADCbzUhPT2fiSUREPm358uVYtWoVYmNj8d///tfp+pmnT58W19ls06ZNDdaQiFzBxJN8S7kGeKlcjsYhDaEtLUBuiRbhmlAUn9qH/L+XQ6oOgFQdCGlACMJuGualCvs+R0knYJ38oHXr1k6eRURE5BtCQkKwbds2ANZ1K994440KZXQ6HV599VVxXcu77rqrRutIdCOMFhNspyyrHc0a7mPiST6l/BhPydXxV2qZEp0btoNEIoG5MAeCSQ+zTg+zLg9STQgkCo69caSypLNdu3Z+M77N9v3VpmVgyHsYM+Qu25FJ3phFvS7r3bs3GjdujPT0dMyfPx/Hjh3D7bffjujoaJSUlODMmTNYvnw5rly5AsC6PEq3bt28XGvGDLmuvjoU+Tbbcol//i4x8STfUn5WW6n1QK1WqMW7ys9oq2rUAhKJNxMo3/wx0Wq1OHz4cIWkMyIiAm3btvWbpBMAjh49Ki6N0aFDB29Xh2oBxgy5q6SkRFxOJSDAS8M76iilUokvvvgCjz32GC5duoQDBw7gwIEDDsuOGzcOr7zySs1W0AnGDLnKYrRfj1UQ/HNyISae5FOctXjaMmqz7bYVYY7HetQIH72CWZeSTiIi8n+JiYlYu3YtlixZgk2bNiElJQX5+fkIDAxEVFQUOnfujFGjRvFCEtVKZp3WblviYHlBf8DEk3yKUC5RKjUbMe/gUmgUajQOaYgejTvBlJ9lV0YeGlmTVfR5Wq0Whw4dgqXcQcufk87g4GBxtjkiVzBmyF0ymUxsvSLv0Gg0uP/++3H//fd7uyouYcyQqzQyBYpttmXwz0VH+ItLPsWst+9qYDEYsObwOhgVUnRr1MGaeGrLJZ5hDWqyig75ym9KXl4eDh8+XCHprF+/Ptq0aeOXSScAxMXFebsKVMswZshdKpXK21WgWoYxQ65SlhsyJvXRYVw3yj/PQqn2KtfiKcC6licAFOh1ECxmmAqu2JWRh3o/8fQFdTXpJCIiIiLfxzNR8inlx3hCArvOBqbCHKDcgGuFD7R4+oIrV64w6SQiIiKqZUotJrvtiivW+wd2tSWfomkcg/BuXSEIAjLyL6HAVIzGYQ1hkFgQpAyAISvN/gkyOQRf6I7gA31tW7ZsCbPZjMuXLwMAIiMj0bp1ayadRERERD4s21Rsl5TpvX9a6RFMPMmnBDRuDNWIYTAbTZAWXwSkOnQPUIvLqugvptqVl6oCIFNpvFFVnyORSNCqVSsA1jUK61LSee7cOXGimGbNmnm7OlQLMGbIXXq9XpwohmP3yBWMGSJ7TDzJp0hkMhSZzTCaTQgPaIBuib1RatLjWFYK2kUlwpAy1668VB0IicxXwtj7l6dsk8+6NIteQUGBuCYjkSsYM+Qus9nMGUrJLYwZInu+csZOVIFCqkCYOgQAEB1kXTIlozDProxUFVjj9bIl/pjU8I9KZT9k/IEjIiIiqj1MUlmdSMrqwnukWqZNmzZOEytTQY7dtiI8qqaq5TNyc3Nx+vRpdOjQgV13rqosZogcYcyQuzQaDWOG3MKYIVc1TIhH6unj4rZM7Z/nd0w8yedUtqC7RV9kty0LDPd0dXxKTk4Ojhw5AkEQcODAAXTq1InJJyqPGSJHGDPkLolEwgSC3MKYIVcpG9bH5cRr53NBqiAv1sZz6sbMI+QXBIsZgr7E7j5ldN1ZBN426QSAkpISHDhwAEaj0cs1IyIiIiKqHC/5kk/J3LQZZ+fMBaQS6C1G6KPCoPu/u6FRqNG7YQdo4rvCoi+GoC+GpbQY6kbx3q1wDV3JvHLlCo4ePSomnWVCQkLYckNERERUi4XINUgs0ovbKql/tnjyjJV8iiEnB+biYgDW4CzOvILfjqwAAHQKawZVdHO78vLQ+jVdxRrnLOmMiopCYmIiu/EA0Gq14jiasLAwb1eHagHGDLnLZLq2wDsv+JErGDPkqkC5CrH6a/EiVQuVlK69+C0gnyKYzfbbNjmVTl+I8qMZpQrfGN/oqdzPWdIZHR2NVq1aMem86sKFC+LSGEwiyBWMGXKXwWAQL1YwiSBXMGbIVYJgsds2+ekwKn4LyKcIZvsEyzbxVAt1K8nKzs7GsWPHmHQSERER+bFiTRAud0pCoTYfFosFCmUAWnq7Uh7AxJN8Smj7dsjPyECJsQSn886hJEiJ6KAGMAtmqHT5dmWlqgAv1dLznCWdDRs2REJCApPOcho2bAiLxQKplPOlkWsYM+QuhULh7SpQLcOYIVelbt2K0pU7xMTMoJYB93q1Sh7BxJN8iiI0GGFNYhFgMiAvWAJTkBpJTRMBANLcS3ZlLfpib1TRsWpMBJl0ui8yMtLbVaBahjFD7mISQe5yJWZeeuklLF26FABw8uRJT1epVrL9jDZt2oTGjRtXKPPnn3/i559/xqlTp6DT6RAcHIx77rkHL730Uk1X9/qYzFAbbc77pBbnZWsxJp7kW65+55RyJdo0iIciPAxFDVshWBUIyb+bAZucSx7kf2t4ZmVl4fjx40w6iYiIiFywcOFCTJs2ze6+vLw8KJVKL9WInGHiST6lfMIlkUjQMqIZBEHAuV3LAKkMUpUGUlUAQroN8U4lnbjRnDA3N9dh0tmoUSPEx8cz6SQiIiIqZ/bs2QCs54wTJkxAp06doNfr0b59ey/XzHUGsxF1IU1m4kk+ptz00VeTLUtpEQSTAQBgNpTAXJgLTXMfOKBUYzIYEhKCoKAgFBYWivcx6SQiIiJyLC8vD9nZ2QCAAQMG4LXXXvNyja5PbLfuOFiSKW6r1IFerI3nMPEk3yIAmZmZ4qQfsRERAABTfna5ghIoQvxrDU+5XI6OHTvi4MGDKCwsZNLphsOHD4tLY9SmK5zkPYwZcldxcbG4NEZAgP9ObkfVhzHjeSUlJeLtli1r7zyw0mA1CmIDUVpaAkEQECDnOp5EHqfPzYWg18NisUAil0MwWdcxMhVcsSsnCw6HROZ/Ez3I5XJ06NABly9fRuPGjZl0ukgQBPEfkSsYM0REtZ/Fcm0Sntq8Vqoh6zwMmWdRNs+61E9TNP98V1Rr5WzfAePOXQAAC4CTZ07iQEs16l9OR4RNOXmIj81IWY0JokKhQGxsbLXtry7QaDSQy+WcdZJcxpghd0mlUrH1impeq1atAABTpkzBmDFjMH36dGzfvh0AEBsbi0ceeQRDhw4VyxcVFeH333/H9u3bcfLkSWi1WgBAaGgo2rRpg9tvvx133323w2Tl/vvvx549e9CrVy/8+OOPuHDhAn788UckJycjMzMTGo0Gbdq0wYgRI3DXXXc5jQmpVIqCggLMnz8fmzdvxrlz56BUKhEfH49x48bh7rvvdum9WywWbNiwAStWrMChQ4eQl5eHwMBANG3aFH379sWECRMQEhLi8Lll7yUpKQnff/89Tp8+jR9++AF///03srOzERERgR49euC///0vWrRoAQAoLS3Fzz//jJUrVyItLQ0ymQxt2rTBQw89hP79+7tU58rey7Zt27B48WKcPHlS/DwTEhIwaNAgjB492qVJgWbPno3PP//c7r7PP/9cvG/48OF4//33b6iuNSlYpkJ8sUHclsv8c6kvJp7kUyRSmd12gU6LX/cvws2qSNgenuWhvtHN9npPQPLy8hAaGso1BKtJfHy8t6tAtQxjhtylVqu9XQUCoNPpMH78eJw7d06878SJE3aJ1/bt2/Hss8+Kyaat0tJSZGZmYsuWLfjtt98wZ84cp0kbAGzcuBHPP/88iouvLeGm1+uxc+dO7Ny5E6tXr8bs2bMdXsTKyMjAww8/jMuXL9s9d9++fdi3bx+2bt1aZSvd5cuXMXXqVOzbt8/ufq1WC61Wi4MHD+Knn37Chx9+iFtuuaXSfa1atQqvvPIK9Hq9eN+lS5ewfPlybNq0CXPnzkV0dDQeeeSRCku77NmzB3v27MGrr76KiRMnVvo6zuTl5WHKlCnYvXu33f0GgwF79+7F3r17xb9JVFTUdb1GbRUkU6JZqVHclgZovFgbz2HiST5FsNivW2RQWBO7QoP9mp3yUB9r8XTD5cuXceLECURERKBt27ZMPomI/IDBYKi6kBMymQwymczhY0aj8bq7hHtqv1Kp1GvdGn/99Vfo9XokJSVh6NCh0Gq1+Ouvv5CUlAQAOHXqFB577DEYjUbIZDIMGDAAPXr0QEREBLKzs3Hw4EGsXbsWFosFBw8exKxZs5xOSHP+/Hk8++yzMBgMGDx4MJKSkiCXy7F7924sXboUFosFW7Zswbx58/Dggw/aPTcrKwv33XefmPx2794dQ4YMQXBwMI4ePYrffvsNq1evrrR1Lz8/Hw899BDOnDkDAIiJicGIESPQvHlz5OfnY+PGjdi+fTu0Wi0mTZqEr7/+Gn369HG4r9OnT4trWo4YMQI9e/ZEfn4+lixZgpSUFOh0Orz55puQyWQ4efIkevXqhUGDBkGj0SA5ORkrVqwAAMyYMQNDhgxBRESEw9dxxmAwYMKECTh16hQAayv1iBEj0LRpU2RmZmLx4sU4c+YMUlJSMGnSJCxatKjSGBs8eDBat26NnJwccSmVwYMHY8gQ64oHDRs2dKt+VDOYeJJPKZ94Wq62KEr1JfYFLb61sK6rLZ9lSScA5OTk4OjRo0w+iYj8wM6dO6/7ufHx8YiJiXH42J49e2A0Gh0+VpVmzZqhWbNmDh/bv3+/XSueOxo1aoSEhITreu6N0uv16Nu3L77++mvxt9c26fvss8/Ez2vmzJm44447Kuxj9OjReOihhyAIAlatWuU08bx48SIUCgW+++47MbEFgGHDhqF79+5iIrdkyZIKiefMmTPFpPOxxx7D1KlTxcfuuusujBkzBvfff784I6sjH374oZh03nbbbfj444/tWt7HjRuHpUuX4pVXXoHJZMILL7yADRs2ICgoqMK+Ll26BIVCgW+//RY333yzeP/IkSNx++23i+ckjup79913o379+vjhhx9gNBqxefNmjB492mm9Hfnmm2/EpPO2227DzJkz7ZLu+++/H48++ih27tyJo0ePYsWKFRgxYoTT/bVo0QItWrRAenq6eF/z5s1x2223uVUvX1FYUowMy7VzQZnRgmbeq47H8GyXfEu5hFIhVyAyoB4UhlK7+yXy2rfa0aVLl8Sks0xOTg6ysrK8VCMiIqLa5//+7/8cXvAtKSnBX3/9BQDo1q2bw6QTAHr16oVOnToBsHb/dNQlt8x9991nl3SWGT58uHixIDU1FaWl185TcnNzsWzZMgBAhw4d8PTTT1d4flxcHN59912nr5uZmSnuo3Hjxvjoo48cdvcePny4mPTm5uZi4cKFTvc5evRou6QTAIKCgsRWQsB6sWLKlCkVnjtq1CjxdlkC6Sqz2YxffvkFABAZGYkPPvigQkuvQqHA//73P/FC/KpVq9x6jdru9L6DkP5jEf+V7C3ydpU8gi2e5FPMNuMOACBEE4Jbm/ZAvZQFdvfLw2pXV9tLly5VGC8BWLua1LVxDJ6Qnp4Ok8kEuVyOxo0be7s6VAswZshdBoNBnFzIlclPyDMUCgU6dOjg8DGNRoPNmzfjwoULDlv9bMXExGD//v0AYJc0lnf77bc7fSwhIQEZGRkAgIKCAjEx3L59uzjb6siRI2E0Gh3GzK233opmzZrZjVcts2PHDrHldsKECdBonI/5+89//oOff/4ZJpMJGzduxH/+8x+H5WwTTFu2x8B+/fo57IVl23XVdr1xV+zfvx/5+fkArN18nf1toqOj8fLLL4uTDZH/YeJJPkUwmey2GwTVR+uIeFwyme3ul9eiNTydJZ1NmjRBXFwcZ0isBrm5ueKajEwiyBWMGXKXyWRi4ukDYmNjK/3869evj/r1HZ8jFBUV4eTJk/j333/FpBOwtsg5UzbTqyO2CZTJ5vzl4MGD4u22bdvCZDI5rXO3bt0cJp4HDhwQb990001O6wBY33PLli1x4sQJHD582Onsy3FxcQ6fHxwcLN52Nqu+beJrcXO40+HDh8XbXbp0qbTs9U5cRLUDE0/yKZJyA8mNRTpcTj+OMJPNQU6mgDqmVQ3XzAUODvIXL15ESkpKhfuZdBIR+ZfyXRjd4WwCIADo0aPHDU0u5Eznzp1vaHIhb6lsBlpbWVlZ2LhxI44fP45z587h/PnzyMrKcvieK/scbJOy8mwnv7FNxq5cubb2eHR0dKX1bNKkicP7c3NzxduuLLEWGxuLEydOwGg0oqCgAKGhoRXKOLqvPGctqzdyvmL7eTRq1Oi69+PPjBJJnUjK6sJ7pNqk3MFfFRqG6EId8m3uk6o0kChrflr7gmPHEdKmtcvly5JOfXY2VJHXugYz6ax+CQkJXF+P3MKYIXdVtZyKp1pBPbXWbG1dw7aqz9lkMuGjjz7CL7/8YtcKWUaj0aBnz57Izs4WJ9OpzPXM3mvbFTUsLKzSCwCBgYEO7y8qujbGr7JutmVs47OkpMRhkumtmYjLutkCXJbImQbqMNh2YK6d386qMfEk3yLYd9+QSKUw6XLt7pOqAmr8ZPHCgoVI+20Rmk6cgMYjh9tUUGL//1VlSWfBsePQHjqM0LZtENq+HZo2bYpmzZrxZLea8YeM3MWYIXdx9vHa4aWXXsLKlSsBWJPrbt26oX379oiPj0dCQgJatmwJuVyO559/3qXE83rYtsrq9fpKx5s6W4bHNtksKSmpcsyq7QzFvnZ8s61PZeNpyf8x8SSfIljKdXeRSmEpKrC/SxVQgzWytnSm/bYIAHD+518BwD75LCcjIwOpqali0gkA+UePoWX79kw6iYiIPGTfvn1i0hkbG4u5c+c67abq7gQ57oi06eWUnp6OxMREp2WdzWxvO041LS0NrVtX3uPq/PnzAKxJXlhYmBu19TzbNT8vXbpU6cRBp0+fRlFREZo0aeJz74NuHC/fkU8pP84iuzgHewPlkLbsAlWTNlBGxUERUbPjA0LatEbTiRPE7fM//4r035c6LOso6QSA1r16oW3fW5l0EhERecjWrVvF20888USlYyOPHz8u3r7esa7OdO3aVby9e/fuSsvu27fP4f3t27cXb+/atavSfWRmZorrffribLBt27YVb9tOmuTI7NmzMXr0aPTq1Qs6nc7DNfMdSql9W6C/Jmj++r6otip38D+Xn4Ff9ekwRMZA07QdAhK6I7hDvxqvVuORwytPPiUSmEwmnD9/3mHS2f2B+2uyunWOTqdDYWFhnfqRohvDmCF3mc1m8R/5Jtv1OAMCnPeOWrduHS5fvixuOxoLeiNuueUWqFQqAMD8+fNRUlLisNyRI0fsZsC1deutt4rjcOfNm+d0HwAwd+5ccXKjvn373kDNPaNbt25iV+Hly5dDX27pvDIFBQXYtm0bAOv6p1V1L/Ynapl94imr3mshPoOJJ/mWclN0C1cbCM02Yz8Fg+MDlqc5TD6XLhO35XI5ItMyULj/2o9I65uZdNaEM2fOICUlRbziS1QVxgy5S6/Xo7S01OlJM3lfTEyMeHvx4sUOWzJ37tyJadOm2d1X3X/TgIAAcVmQc+fO4dVXX62Q3GZnZ+P55593uo8GDRpg6NChAKxdbZ9//nmH4yOXLVuGn376CYC1S+u4ceOq621Um4CAAIwZMwaAtWfYtGnTKnweBoMB06ZNEydV8sX34UnlQ9VP806O8STfUv5HQoA189TYdEFQ1GsIbykb21k21vPCz/NgLi5Bw8F34uKq1chauAQN5XJcighHQlJvdJ/IpJOIiKgmDB48GLNnz4bRaERycjJGjx6NoUOHIjIyEllZWfjrr7/w999/VzjX8ETPhyeeeAIbN27E2bNnsXr1aqSmpmLUqFGIjIxESkoKFixYAK1Wi4iICOTk5Djcx8svv4y9e/ciLS0NGzZswODBgzFy5EjExcWhoKAAGzduRHJyMgDr5Ffvvvsu6tWrV+3vpTo8+eST2Lp1K86cOYNly5bh6NGjGD58OBo2bIi0tDT88ccf4nqmvXr1wrBhw6rttWfPno3PP/8cADB58mQ8+eST1bbv6mJRquy2BanzmZBrMyae5FvK/RgoFUqESZVQSK59AWVB4TVdKzvlk8+MJX/g8to/Yb56lU5lMuHmgQMRN3qk1+pY10RGRsJisXDWSXIZY4bc5a2lKMh1sbGxeOONN/DGG2/AbDbj8OHDOHz4cIVy3bp1w1133YU333wTAHDy5El069atWuui0Wgwd+5cPP744zh27BhSUlLw3nvv2ZVJSkpCjx498MknnzjcR0hICObNm4fJkyfj0KFDyMjIwKxZsyqUCwsLwyeffILevXtX63uoTgEBAfj5558xadIkHD58GKmpqZgxY0aFcjfffDNmz55d5+bEuGywn+yqFBYnJWs3HkXJp8jLrWcVUT8avQPCIJdcOzmUemENz/LKJ59mm/W2Kiy5Qh7XsKH3WsGpdmLMkLs8tU4nVa/Ro0ejVatW+PHHH/Hvv/8iJycHcrkcERERaNOmDYYNG4b+/fujsLAQ7777LoxGI9auXYvx48dXe10aNmyIhQsXYvHixVixYgVSUlIAAM2aNcPw4cMxfvx4/Pjjj5XuIyoqCosWLcKaNWuwevVqHD58GHl5eQgLC0NsbCwGDRqEe+65x24JF18VGRmJRYsWYcWKFVi1ahWOHz+O/Px8BAYGol27dhg+fDgGDx7MC4J+TCJU91ReVOvodDqcPHlS3G7VqpXXBnSf/PATXNm+Q9yOHHIbIttGARaT2DWm3i33eqVuttLS0mA2m5H52hswFV7roiMPDkLPX3/yYs2IiOhGpaamwmQyQS6XIz4+3tvVISIv8/QxYcf3nwIrksXtUpUUAxYtrvbXcZWncgO2eJJPEYRyXQvyMpG3dRNkgaGQqgOhbtrOOxWzceHCBZw5cwYFx45DKgiw7fhrKtQh/felbPEkIiIiIpfozQaoqi5W67Etm3yLxb4B3mIsASDAXKSFMScDgsm7swnaJp3aQ4eRGxyEvKBAyIOvXQWqbJ1PIiIiIiJbkeowu23buU38CVs8yceUSzz1JYDNkE55cEQN1+ea8+fP4+zZsxXW6Wx45+3oev8EpP++VBzzWfY/Wz5rxvHjx2E0GqFQKNC6dWtvV4dqAcYMuaukpASCIEAikUCj0Xi7OlQLMGbIZeWXEyzfA9BPMPEkn1JhHSND+cTTO9OEO0s62/a+GV3vt67tWX7CISafNcdoNMJoNHq7GlSLMGbIXYIgOFwXksgZxgy5ylRwxW5bYmHiSeR55a7wpFtKoFbJEau3LjQs80KL57lz53Du3LkKSWe73jejy9WkswyTT+9QKBR2/xNVhTFD7ipb3qGuLfNA148xQ65SyWQottmWwj8vWDDxJJ9iyMm12z5rFpATFoBxmQUAAHlIzSaezpPO3uhyv+Op15l81jx2lSR3MWbIXewqSe5izJCr1BL7lEwG/7xYwcmFyKeU75IiAVAguxamElnNtU6UJZ367Gy7pLN9JUlnmcYjh6PpxGutoed//hUFx457rK5ERERERL6MiSf5lnKJp0UCqMruk0ghSDwfsoIg4OzZszh37hwAQBUZidC2bQBYk87OVSSdZWyTz9ixYxDShi0sRERERGTPVG6omX92tGVXW/Ixgc3jcLnoCgxmIwSLBSUBUoQbzQAAqUoDuebGF6+tjCAIOHfuHM6fP293f2j7dmjduTMSknq7tb/GI4cjpHUik04iIiIicuiSUWeXlJX4Z09bJp7kW+IeegCZxxKRV5oPy4VDCM85hfBS68yTEqUG0oBgj76+o6QTABISEtCoUaPr2ieTTs+7dOkSLBYLpFIpGjZs6O3qUC3AmCF3GQwG8bZSqfRiTai2YMwQ2WPiST5FHhSEEHUkNLIwyPR7EWQyodnVxFOq0kDi4a62QUFBkEgkdmNNbyTppJqRnZ0trsnIJIJcwZghd5lMJnFNRiYR5ArGDJE9jvEknxVYlIfmpUYxSBWhDTz+mpGRkWjdurU49XmrVq2YdBIR1TEymQwAYDabuQ4jUR0nCALMZuuwr7JjQ3Uzlltyx1+POmzxJJ/TvHlzCIKA3F1SmG0fkNVMuDZoYE1wzWYzW0JqibKY4Vpp5CrGDFVGqVRCr9dDEAQUFxcjMDAQKpXK29WiWoYx4x+Ki4vFC1CearmOatwE6RE2qx9o/HONaSae5HOCgqwTCOWUFtndrwiPrrE6lCWfVDuUxQyRqxgzVJmQkBAUFhYCAHJzcxEQEOCxlg7yX4yZ2k8QBOTmXltjPiQkxCOvo2kZiwvdr637GqTyz98odrUlnyQIAiz6Yrv7lJFNqnX/RUVFVRckIqI6p2y8PwDodDqkp6ejqKiI3W6J6oiy88T09HTodDoAgEQi4UXLG8QWT/Ipp776BunHDkIqkcJSooYpPhwtGoZCYSiFPDyqWl5DEAScPn0aGRkZaNeuHSIiIqplv0RE5B+kUiliYmKQkZEBQRCg0+mg0+kgkUjYikVUB5Qf3y2RSBATEwOp1DNtdgEyJWKvTqYJAGo/Pcww8SSfoj18BIqMTACADMDhcAGNunZCqCIQirAbTzzLks709HQAwJEjR5h8+oHS0lJxvJ5arfZ2dagWYMxQVYKDg+2ST4vFAolEIv5PVJXyiQvVTmVJZ3Cw55b0C1UEILH42vI7Mj+dBJmJJ/kUi2Cxv0Ny7WAtVWkcPMN1giDg1KlTyMjIsLvv6NGjuOmmmzjVeS2WkpIiLo3RoUMHb1eHagHGDLkiODgYCQkJ0Ol0OH36tJh0evIElPxHYWGheIGLMVO7yGQyKJVKhISEICgoyGMtnc4YjcaqC9VCTDzJp1gsdvPYQoAEgVJrmEoU198q4SjpLNOqVSsmnURE5JBUKkVISAhkMhksFgvkcjni4+O9XS2qBQ4dOgSj0ciYoSoJmiBI2veBNk8Ls8UCmTrA21XyCCae5FNUHdogRb4XsFggCBYUhCuhvhqm19tNRRAEpKam4uLFixUea926NaKiqmfsKHlPvXr1YDKZIJfzkEauYcyQuxgz5C7GDLnq4N/bcWX1TnHbpJaj8zgvVshD+E0gnxLZqjX0csBUeAV5RXlo0yAcshsYF+Es6ZRIJGjdujWXTfETjRs39nYVqJZhzJC7GDPkLsYMuUxXgvr513r9lZb65wzaTDzJpyhlCjQKiYJZEYiY8CYIbZMAqSQfsgD3101i0klERERE5BuYeJJvuXqBR3c0GZbiQhjTt0EdGYyIAQ+4txtBQEpKCi5dumR3P5NOIiIiIvIlBrMRdWG2ESae5JMshhLr/6VFMOUVQerGIOvKks42bdogMjKyWutKRERERHS9olq3Rur50+K2LJCTCxHViJzsLEhNJrv75MGurbPJpLNuSk1NFZfG4MyB5ArGDLmLMUPuYsyQqzSNG0F7UxOUlJRAEAQEKph4EtUAAUVFeVBJAaXNkp6y4HouPfvKlStMOuugkpISGI1GmMpdsCByhjFD7mLMkLsYM+Qq/cVUlKafgASAdUpN/0zR/PNdUa11etFCWLJyoBcAPYACuQSxkYGQKlQuPb9+/fqIjY1FWloaAGvS2bZtW9SvX9+DtSZvk0gk4j8iVzBmyF2MGXIXY4ZcpZEq0FBvFLcVMqkXa+M5TDzJpxgKCyE3X2vqPKFRollgGATBAomk6i+hRCJB8+bNAQDp6elMOuuI9u3be7sKVMswZshdjBlyF2OGXBUmV6NdkUHclgaovVgbz2HiST7FDMEuKAVBAsFsAgShrO9BlcqSz+joaAQGBnqknkRERERE5DomnuRbyiWXMgiQqgIgkcrc241EwqSTiIiIiHye2WKBUbi2LRUE54VrMSae5FOk5TJPiwyQKjUVygmCgNOnT6NRo0YICPDPmb+IiIiIyP8d3rMXpgPXzoENqiL44zzITDyvEgQBq1atwu+//47jx4+juLgYkZGR6N69O8aPH48OHTrc8GukpKRg7ty52L17N7KyshAcHIwWLVrgnnvuwfDhwyGTudeq54/UchXMKBW3WxcZIA+xn9FWEAQcP34cWVlZyM7ORqdOnaDRVExOqe7Izs6GxWKBVCrl7MXkEsYMuYsxQ+5izJDLzBaobZs8/XQ+KiaeAEpLSzFlyhRs3brV7v6MjAxkZGRg5cqVePrpp/Hoo49e92ssXrwYb731FozGazNW5ebmIjc3F3v37sXSpUvxxRdfICws7Lpfwx9IIYXZZjvYIkCqChK3bZNOANDr9Thw4ACTzzru0qVL4lpp/HEnVzBmyF2MGXIXY4bIHhNPAK+++qqYdLZo0QJjxoxB/fr1cfToUfz2228oLi7Gxx9/jKioKAwbNszt/ScnJ+P111+HIAjQaDQYO3Ys2rVrh5ycHCxZsgQpKSn4559/8Mwzz2DOnDmQSv1zCmWXlO/TLgE0zdpffUjAsWPHkJ2dbVfEaDSitLSUiScRERER1TomSOpEUlYX3mOlduzYgVWrVgEAbrrpJnz77bdQqaxrRt51110YNWoU7rvvPmi1Wrz33nsYMGAAgoKCKtulHYPBgDfffBOCICAgIAC//vor2rZtKz4+btw4PPPMM9iwYQN27NiBNWvW4K677qreN1mLCBZzhftkweGwWCw4fvx4haRTKpWiXbt2CA8Pr6kqkg9q0qQJBEHgWmnkMsYMuYsxQ+5izJCrwtTBNgPN/DdBq8NNa1Y//PADAEAul+Odd94Rk84yLVq0wOuvvw4A0Gq1WLx4sVv7X79+PdLT0wEAjzzyiF3SCQBKpRIffPCB2MX2m2++uZ634T/KJ54SCeSRTZwmne3bt0e9evZjQKnuCQsLQ3h4eJ3vqk6uY8yQuxgz5C7GDLlKIbGf58VfL1XU6cRTq9Vi586dAIA+ffogNjbWYbnBgwcjIiICALBu3Tq3XmPNmjUArMt7jBs3zmGZwMBAjBgxAoB1AqKzZ8+69Rr+RLBY7O+QK3Ai5ZTTpJMtnUREREREvq9OJ57//PMPLFcTnZtuuslpOalUiu7duwMADh48iPz8fJdfY+/evQCAViKgHYMAAEClSURBVK1aVdoyZ/v627Ztc3n//sa2vVMAcD60Ia5cuWJXhkknEREREfkLebn5Xdji6YdSU1PF2wkJCZWWbdmyJQDrBDcpKSku7T8zMxMFBQUAgPj4ylfjadGihXj7xIkTLu3fH5VarLP+CgAyw0NxUaG2e1wqlaJDhw5MOsmOyWSC0WiEyWTydlWolmDMkLsYM+Quxgy5KkCmtNuWC04K1nL+OnbVJRkZGeLtmJiYSstGR0fbPa+sBbQyZWM7Xdl/VFQUpFIpLBYLLl68WOW+/ZUgCFeTzjAUqVUQbK4AlSWdHCtB5R07dkycsr461twl/8eYIXcxZshdjBm6Xn6ad9btxDM3N1e8XVULmm2yo9VqXdp/Xl6ey/tXKBQICAiATqdzef/+qizpBADVJS3Or1kBCQRElxZh928GmASzuOyKrFEwOiU0BgBYIOA4SiENrgdVVBwKlm6BpbBYnE1O2q0VujeNhaXY2gp9xJhv/WJbBBg3HIPBbILk6n5VkCDC5utRCAsgk0GmDkSJ2QiDxSTuVyWVIwJyCCYDAEAnmFA2UtUgWFBqubZfIVyFbh2bi/tNRSmMSjXUTdpAt2kPjBnZkF7dr6lFNPr06A6TNhMAcMqkQ4lg7Yxs2paCUl0JpGWfAySIsqlvMSwwSySQBQTDIJhRbNJDKrEm8VJIEC3XQDBY508rFswwXT3EmQUBOotR3K9ZLUOPm671BrgAAwolAjQtOqP03xMoPnoKsqv7La0fiL6D7oD5ivWCS5q5GNqrLdiWf86jOEsr7hcAoqEQu1yUwgIjBMgCQmABkG8qEfcLANHyAEiu1rcUFhiEq5+wAGgtBkgtZus7kEigSYpHsFxhjSUYcQUmqJq0hSQ9D7nJ/0AutQ7gN2kU6DhqCDTZ6ZBIpMgylyLTogcASE5movDMZUgt1+pbH3Ior3Z+MUCAHhZI1UGQyGTQGovFzxcA6isCINeXQnK1bKlwrRN5gcUAic1+ozo3RuPQYACAFmZkwABlwxaQGuXIX/HXtdkQJUDsfXcjKisNErkC+RYjLpiLrQ9laFF06AJgM0Y6DDIEXP2ETRBQAgskKg2kciUKTLZz5wFhCg00ev3VskCxcO3qvM5ispttOjC+PhJjrOvRlcCCM9BDUa8RZGFRKJz/JwSbv3HInTejlRyA2YRSwYxUk876QGEpSrenwiKYxV/XQEgRCuvfxgKgCGZIFCpIlWroTAZYYEZZ56NAmQohZgtw9e9eaFPfEovZpWOEFgGQbtkPSYkeGVfjhccI/z1GyMr2KwESere8rmNEYc4lZAsGSKRS5K7/hceIq/z1GFEd5xEhZgACYJYA22RSHiPg38eIGzmPKMrJQSBsSO0nG/IXdTrxLC29dmAtP5tteUrltSZw2+dVpqSkxOX9l5XR6XQu799fWWw6tssMFkhLixGdp4XGYKxQNlNqRLEsy/o8AKfqBUKm10IBA2JPXYaq9NqP4dmIUyix5EKffhIAkBIeAEEigcQioG1asf0XHkCxze1rX/98aACUXzFUZ3NbYlO+fNmcUgOKg/aJ2+dCNShRB0ClkiEyNQ1h2ddi5pxEj9KGgShOsY4TPhOiQaHcehBNOF+Menr762HFsGetQyGUAJTlHtM5LGv933YkcpFaguLT1+qbHqRCtlIBdVAAwk6dQf3z2mtlCwugz0hB8RHrGOULgSpcVlkPMc3OlaCe1n7iqFKU2G1b61AEKYDyl2mKkeugrFWEzW2LBMg7fwSyqz+AmRoFzmqUUKmVCD2ThwYXro3PLlJLkXMpBaGHtgMALqoVOB1g/aQanSlFvQz7GZZNV/+Vry8AhJWrrwG5MDipb/n3diXyLOpdse45RynDqSA1FDIBGp0ETc5fu3hlkQAZl1IQcMQ6IVq2QoaUYGtX9HrnDWiUUfH7UTGGrfUNKVfOIj5Ssb6h5cpmBV1CcWkaAKBAJsWpUA3klhLIS7VoeTbHrmz6hRQ0NuTCXHAFRVIJUsICAAAarRktMioe55zV19ECVs7qW76ss2OEOag+WqblQc1jBI8RLh4jStQKZF49Rkh5jBD56zGiOs4jbD9xHiOs/PkYcSPnEeVjpwQW+KM6nXja9rm3TSwdsX3c1b76ZvO1gKtq/7ZlvD0W4NSpU2jRogWCg4PF+/R6PU6etB5ow8LC0KRJkwrPKS62HrLKdye5cuWK2H04NjbWrvXXbDbj6NGjAIDg4GAEBoVAlaPF5XrhKFEpIbVY0DBXC7Wx4g9mVYRa1lFBEGrXQUYwV1xz1ZdZall9a9vnW2FGah+nVqtR2zoz8RjhWTxGeFZtO0YAPI/wtNoWwzV5jBCk1lYYi8WCI0eOALCugmE7JwwAnD9/Xpz0tHXr1lAoFOJjBQUFOHfuHADrkMEGDRrYPffIkSOwWCxQq9UV5ropv5pEdanTkwtZTzysjFUkNgbDtWuTriSRgH0rZ1X7t30N26DxBrPZLM72W0YQBBiNRhiNRruEukzZAHpH79NisYiPld8vAPExk8mERv0HQAogOjcPgaWl15101kq16/cNQm2rby37gGtXbWtffWulWvYh8xjhWbWrtrWvvrVSLfuQeYxwztQsSrxte55coZzN+bdQ7gO1Pf92dO5e9pizc3dPqNMtngEBAeJtvV5faUJpm3i60m3W0f6rUlbGNiH2BplMBmn5aZ0lEjEhlskq9juXy+VOE2apVCo+Vn6/wLVEWy6Xo8l9Y6FuGI3MtcsRrC+FURMojs2Qy2QoESw2YzMEKOprYGpQHyq1CmqFAi1txmZcaXIORcWlkEqkkMlkiIxrCU3TWKii4qDT6RBtyIMAIEgdgKLYk3ZjMxQWAWGC1PpcqdRu/FahvuTq2Awp5HKZ3dgMk9mMQosRwtX6GiDYjc2whMhhahANhUIBjVqNZmVjM6Ja4UrTLFxR50IqkUAulyOkeTTUsW0gD45ASUkJ6hXnIFAiQKPWwNT0LHQ2YzMkgoD6FimkEglkUpnd2IwSgx5FZsPV/coghVQcm2GxWFBoNsAMQCaVwiKR2I3NMCokMDWIgUwmQ2BAABrDgFCJAE1UK+Q1LcYVvVn8fGWRQVDFJECuCoDBYEBI4RVAYoZKqYK82WXk2ozNEAQLIi0ySAHIZXK7sRkGsxn5xmLIru5XIpGIYzMEAdCZ9DBCgFQigVQqsxubYYGAmPoNYZLKERIcjCgYIYMJqgbx0BcEITujwLpfqQzmQCUiGiZAIw+AIACavExES0xQyBUIaF6AXFwbmyFAQLhZCgUAhUxuNzbDAgnyDEVX6yOFVCoVx28BQLFRDz0ESCQSyGQyu/FbAgSE1KsPU5AGQUFBiJBY0BIGKBu0gCnQjJyYS5CU7VcmRWzDBATLNJDIFcjNyUK0RA+ZVIYgiRHagmvjtwQICDFLoIYEcpkMZkAcvwWZAlp90dXvo/UztB2/VWo0ohhma1cvudxu/JYAAQH1QmCKDIUmQINQmRQtr47fkgTVR27sGUAQIJFa47BxkwQElo3fys9DtNnaOSskVImCtGvjtwQICLBIECRIIJNKAYlUHL8lUaiRry+CxeYztB2/ZTSZeIzgMYLHCB4jeIzgMcI/jhEyGQLimmLA5BdRxvY8uTzb829xvPdVtuffjs7dFQoFLBaLw/N3R+fr1UEilE+P65Bp06Zh4cKFAICNGzciNjbWadnFixfjtddeAwB89NFHGDp0aJX7379/P8aOHQsAeOKJJ/DUU085LWs0GtGhQwdYLBb07t0bP/zwgztv5YbodDqxGy1gXXM0KMjRiAkiIiIiIvJnnsoN6nSLZ7NmzcTbly5dqjTxvHz5sni7UaNG17X/ymRmZorN2q7u31+dPXsWJpMJcrkccXFx3q4O1QKMGXIXY4bcxZghdzFmyF3+HjN1OvG0HaCbmpqKHj16OC2bmpoKwNqMHR8f79L+w8PDERERgZycHPH5zpw6dUq8XX6Ab11TWFgorntF5ArGDLmLMUPuYsyQuxgz5C5/j5k6PblQ586dxT/s7t27nZYzm83Yu9c6FXViYiJCQspPNO5c9+7dAQDHjx9HYWGh03K7du0Sb1eWABMREREREdU2dbrFMyQkBDfddBOSk5OxefNmXLx40WE319WrVyM317r+z6BBg9x6jTvuuAPr1q2DyWTCggUL8Oijj1Yoo9PpsHTpUgBAXFwcEhMTr+Pd+I+2bdt6uwpUyzBmyF2MGXIXY4bcxZghd/l7zNTpFk8AePDBBwFYJ/d55plnoNPZL4l76tQpvPvuuwCs6+eMHj3arf3fdtttaNy4MQDgiy++wD///GP3uMFgwAsvvACtVgsAeOihh67jXfgXmUwm/iNyBWOG3MWYIXcxZshdjBlyl7/HTJ1u8QSApKQk3HHHHfjzzz+xf/9+DBs2DOPGjUPDhg1x7NgxLFiwAEVF1mnFX3jhBdSrV8/u+bt378bEiRMBWLvI/vLLL3aPK5VKvPrqq3j88cdRWlqKBx98EKNHj0aXLl2g1WqxaNEipKSkAAC6dOmCUaNG1cC7JiIiIiIiqjl1PvEEgA8++ABFRUXYvn070tPT8eGHH9o9LpFIMHnyZHFpFHf1798fb7zxBt59910YjUbMnz8f8+fPtyvTvn17fPnll357hYOIiIiIiOouJp4ANBoN5syZg5UrV2LZsmXiREBhYWHo2rUrJk6ciK5du97Qa4wbNw7dunXDTz/9hJ07dyI7OxsKhQIJCQkYOnQoxowZ47czWLkrLy8PFosFUqkU4eHh3q4O1QKMGXIXY4bcxZghdzFmyF3+HjNMPK+SSCS4++67cffdd7v1vJ49e9otsFqZ+Ph4vPPOO9dTvTolLS1NnEraH790VP0YM+Quxgy5izFD7mLMkLv8PWbq/ORCRERERERE5Fls8SSf06hRI7GbAZErGDPkLsYMuYsxQ+5izJC7/D1mmHiSz6lfv763q0C1DGOG3MWYIXcxZshdjBlyl7/HjH+m00REREREROQzmHgSERERERGRRzHxJCIiIiIiIo/iGE/yOYcOHRKnku7QoYO3q0O1AGOG3MWYIXcxZshdjBlyl7/HDFs8iYiIiIiIyKPY4kk+JyAgACaTCXI5w5Ncw5ghdzFmyF2MGXIXY4bc5e8xIxEEQfB2Jci7dDodTp48KW63atUKQUFBXqwRERERERF5g6dyA3a1JSIiIiIiIo9i4klEREREREQexcSTiIiIiIiIPMo/R65SrXbhwgWYzWbIZDI0adLE29WhWoAxQ+5izJC7GDPkLsYMucvfY4YtnuRztFotcnNzodVqvV0VqiUYM+Quxgy5izFD7mLMkLv8PWaYeBIREREREZFHsast+ZxWrVpBEARIJBJvV4VqCcYMuYsxQ+5izJC7GDPkLn+PGSae5HNUKpW3q0C1DGOG3MWYIXcxZshdjBlyl7/HDLvaEhERERERkUcx8SQiIiIiIiKPYldb8jmFhYWwWCyQSqUIDg72dnWoFmDMkLsYM+Quxgy5izFD7vL3mGHiSTCbzXbbxcXFXqqJ1enTp8U1jFq2bOnVulDtwJghdzFmyF2MGXIXY4bc5SsxUz4XKJ8rXC+JIAhCteyJaq2srCykpaV5uxpERERERORjYmNj0aBBgxveD8d4EhERERERkUcx8SQiIiIiIiKP4hhPQlhYmN22SqWCTCbzTmWIiIiIiMhrzGYz9Hq9uF0+V7heHONJREREREREHsWutkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDxK7u0KkP8RBAGrVq3C77//juPHj6O4uBiRkZHo3r07xo8fjw4dOtzwa6SkpGDu3LnYvXs3srKyEBwcjBYtWuCee+7B8OHDIZPJquGdUE3xdMwIgoBNmzZh+fLlOHToEHJzc6FQKBATE4PevXtj4sSJaNSoUTW9G6oJNXGcceStt97C/PnzAQAnT570yGuQZ9REzJSWluK3337Dn3/+ibNnz0Kn0yEiIgJdu3bFhAkT0KVLl2p4J1RTaiJm9u3bh3nz5uHff//FlStXoFKp0LRpU/Tv3x8TJkxAWFjYjb8R8qqy343JkyfjySefvOH9ZWRkYO7cuUhOTsbFixeh0WjQtGlTDBkyBGPHjoVara6GWnuGRBAEwduVIP9RWlqKKVOmYOvWrQ4fl8lkePrpp/Hoo49e92ssXrwYb731FoxGo8PHu3Xrhi+++IIH61rC0zGTn5+PqVOnYseOHU7LKJVKvP3227jnnnuu6zWoZtXEccaRXbt24cEHH0TZzyYTz9qjJmLmxIkTePLJJ3HhwgWHj0skEjz22GN4+umnr/s1qObURMzMmDED33//vdPHIyMjMXv2bHTu3Pm6X4O86++//8bDDz8Mi8VSLYnnX3/9halTp6KoqMjh4wkJCfjqq6/QuHHjG3odT2HiSdXq2WefxapVqwAALVq0wJgxY1C/fn0cPXoUv/32G4qLiwFYD7bDhg1ze//Jycn4v//7PwiCAI1Gg7Fjx6Jdu3bIycnBkiVLkJKSAgDo3bs35syZA6mUvcl9nSdjxmKxYOLEidi7dy8AoFGjRhg5ciSaN2+OoqIibN++HevXr4fFYoFEIsGXX36J/v37V+8bpGrn6eOMI0VFRbj77ruRnp4u3sfEs/bwdMykpaVhzJgxyM3NBQD06tULAwcORFhYGPbt24fFixdDr9cDsLZ+jB07tpreGXmKp2Pm+++/x4wZMwAACoUCY8aMQfv27VFQUIANGzaIv1shISH4448/EBsbW03vjGrKkSNH8MADD0Cn0wHADSeeJ0+exOjRo6HX6yGTyTBq1Ch069YNRUVFWL58Ofbv3w8AaNWqFRYuXAiNRlMt76NaCUTVZPv27UJCQoKQkJAgTJw4USgtLbV7/NSpU0KPHj2EhIQEoUePHkJhYaFb+9fr9UL//v2FhIQEoVOnTsKRI0cqPP7EE0+IdVi5cuUNvyfyLE/HzJIlS+z2X1RUVKHMpk2bhDZt2ggJCQlCnz59KtSBfIunY8aZN998U3zdsn9UO9REzPznP/8RX+Obb76p8Pj+/fuFtm3biq+h1+uv+/2Q53k6ZrRardCpUychISFB6N69u3DixAm7xy0WizBz5kyxDs8888wNvyeqWVu3bhW6detm95sxa9asG9rn2LFjhYSEBKF169bC1q1b7R6zWCzC9OnTxdf6+uuvb+i1PIXNQVRtfvjhBwCAXC7HO++8A5VKZfd4ixYt8PrrrwMAtFotFi9e7Nb+169fL7Y2PPLII2jbtq3d40qlEh988IHYxfabb765nrdBNcjTMbNw4UIAgEqlwkcffYSAgIAKZcrG0QBAZmYmtm3b5vb7oJrj6ZhxZNeuXViwYAEAIDg4+Ib3RzXL0zGzZ88eJCcnAwBGjBjhsOtlp06dxFZOrVaLv//+2+33QTXH0zGzY8cOscX0kUceQatWrewel0gkeOqpp9CkSRMAwKZNm2Ayma7rvVDNMhgMmDVrFh577DEUFBRU237379+Pffv2AQDuuece3HrrrXaPSyQSvPrqq2jRogUAaww7G5LmTUw8qVpotVrs3LkTANCnTx+nXUIGDx6MiIgIAMC6devceo01a9YAsH65xo0b57BMYGAgRowYAcA6AdHZs2fdeg2qOZ6OGZ1Oh0OHDgEAbr75ZkRGRjote+edd4q3Dx486PJrUM2qieNMeUVFRXj11VchCAKGDRuG1q1b39D+qGbVRMyUdcdUqVSYOnWq03KjRo3C2LFjMWnSJPG1yPfURMzYdtlPTEx0WEYqlaJdu3YAgJKSEuTl5bn1GlTzdu7ciUGDBuGLL76AxWJBQEAAHnrooWrZd9k5MADcd999DstIpVLxMa1Wi127dlXLa1cnJp5ULf755x9YLBYAwE033eS0nFQqRffu3QFYT/Dz8/Ndfo2y8Q6tWrVCvXr1nJazfX22XvkuT8dMXl4e2rdvj8jISDRv3rzSsqGhoeLt6rxCSdWrJo4z5X300UdIT09HZGQkXnnlleveD3lHTcTMxo0bAVgvcDVo0MBpucTERLz11lt4+umnxYSCfE9NxExQUJB4Oy0tzWm5ixcvArBOZGT7O0W+acWKFeJFhXbt2mHx4sXo169ftey77Bw4NDQUbdq0cVrONmbLemL4EiaeVC1SU1PF2wkJCZWWbdmyJQDrNOVlkwFVJTMzU0wI4uPjKy1b1s0AsM4ySL7J0zETGxuLxYsXY/v27XjhhRcqLXv69GnxNmdD9l2ejpnybLvYvvHGG4yNWsjTMZOVlYWcnBwA1u60ZYxGI44fP45t27bhyJEj7CZZi9TEccZ2GZZff/1VnHjK1p49e8ReOz169IBSqXR5/+Q99erVw7Rp07Bo0SIxPm6U2WwWz1NatGhR6cSZcXFx4pKCvngOzMSTqkVGRoZ4OyYmptKy0dHRDp9XGdtuKVXtPyoqSvxSll0tJN/j6Zhxx++//y7e7tixY7Xvn6pHTcaMbRfbQYMGYeDAgW7vg7zP0zFz6tQp8Xbjxo1hNBoxe/Zs3HLLLbjnnnvwf//3fxg5cqQ407rZbHbzHVBNq4njTLt27XDLLbcAAM6cOYMJEyZg165dKCwsxOXLlzF//nw88cQTsFgsCAoKwvPPP+/muyBvGD9+PLZs2YLx48dX63ryV65cgcFgAFB1TMpkMnFokS+eA8u9XQHyD2VTyANAeHh4pWVtWw20Wq1L+7cd21DV/hUKBQICAqDT6VzeP9U8T8eMq5KTk7FlyxYAQEREBHr37l2t+6fqU5MxU9bFNjw8HNOmTXP7+eQbPB0zly9fFm8rlUpMmDABBw4cqFBOq9Xiww8/xIEDBzBz5kwoFAqX9k81r6aOM59++imeeeYZbN26FYcOHcIDDzxQoUyXLl3w2muvVZhMkXxT+/btPbJfd2ISsHbHvXz5sk+eA7PFk6pFaWmpeLv87G/l2XYXsX1eZUpKSlzev20ZV/dPNc/TMeOKS5cu4cUXXxS3J02aBLVaXW37p+pVUzFj28X29ddfr3RMOfk2T8eM7SLuM2bMwIEDBxAfH49vvvkG+/btw969e/HJJ5+gYcOGAIANGzbg008/deMdUE2rqeNMYGAg3n//fbHlszyJRIK4uDh28Se/Ogdm4knVwnb8SlXjEGwfd3Xci233JFfGOZSV4bga3+XpmKlKbm4uHn74YXF8Vu/evcVlVcg31UTM2HaxHTBgAIYMGeJ+RclneDpmypbEAKyTxLRu3Rq//fYb+vbti8DAQISEhGDIkCFYsGCBeAHjxx9/9MiQAaoeNfXbtGbNGvTt2xfbtm1DVFQUJk+ejJkzZ+Kdd97BHXfcAcA6DGTo0KHiWE+qm/zpHJiJJ1UL21aiqtYNKuunDrj2BQLsr/C4si5R2WuwO5Pv8nTMVCY7OxsTJ07EmTNnAABNmzbFRx99BIlEcsP7Js+piZgp62IbGhqKN9980+06km/xdMwIgmC3/fbbb9vNWFqmYcOGeOqppwBYTwaXLVvm0v6p5tXEcWbTpk147rnnUFpaip49e2LNmjV48sknMXjwYIwePRqzZs3CnDlzoFarUVRUhEceeQTZ2dnuvxnyC/50DszEk6pFQECAeNvR7Gy2bA/UrnQZcHf/tmXYbdJ3eTpmnLlw4QLGjx8vzlzYsGFDzJ07l90pawFPx4xtF9uXXnqp0qUxqHbwdMxoNBrxdrNmzSod41XWigVAXAiefI+nY0YQBPzvf/+D2WxGaGgoZs2a5fBiRVJSkjipUH5+Pn744QeX9k/+JzAwULxd28+BmXhStQgJCRFvVzWY2fZxV0/2bfdf1VpZRqNR7P7EZMJ3eTpmHDl06BDGjh2L8+fPA7DODvfLL79UOUsc+QZPxoxtF9s+ffpgxIgR11tN8iGePs7YJgxxcXGVlq1Xr544Xi8rK8ul/VPN83TMHD9+XFy7c8iQIZWO4RwzZox4ceOvv/5yaf/kf4KDg8XbrqwXW1bGF8+BOastVYtmzZqJty9duoTY2FinZW1nAWzUqNF17b8ymZmZ4uLPru6fap6nY6a85ORkPPXUU+JFiZYtW+KHH35AVFTUde2Pap4nY+bIkSPisk3Jyclo1apVlc8pKxMTE4PNmzdXWZ5qnqePM40bN3arPmXdMct+o8j3eDpmzp07J96uap1QpVKJFi1a2B2fqO5p0KABAgMDUVRUVOUSKWazWeyW7YvnwGzxpGrRokUL8bbt4suOlD0ukUgQHx/v0v7Dw8MRERHh0v5t11Wr6qBO3uPpmLG1efNmTJo0SUw6O3bsiF9//ZVJZy1TkzFD/sHTMWP7G1PVhEFms1lsIeOxx3fV5HHGlW6TZeuSV+e6kFT7lMXl6dOnKy135swZcTIiXzwHZosnVYvOnTtDoVDAaDRi9+7dGD9+vMNyZrMZe/fuBQAkJibadWmpSvfu3bFu3TocP34chYWFdl0PbO3atUu83aNHDzfeBdWkmogZANizZw+mTJkiDsjv3bs3Pv/8c7txPFQ7eDJm4uPj8cUXX1RZ7tNPPxVPNsvK++I4GrLy9HEmPDwc8fHxSE1NRWpqKi5fvozo6GiHZY8ePSqOCfTFE0Ky8nTM2F50OHLkSKVlTSaTOAmeL7ZeUc3p3r07Dh06hJycHKSmpjq90GF7Dty9e/eaqp7L2OJJ1SIkJAQ33XQTAGvrkrOuAKtXrxYXwh00aJBbr1E2MYPJZBInAClPp9Nh6dKlAKzjbRITE916Dao5NREzOTk5mDJliniy169fP3z99ddMOmspT8ZMvXr1cNttt1X5z3bx7rL7kpKSbvCdkafUxHGmbMkdQRDw3XffOS3366+/irfdfQ2qOZ6Omfbt24tjgzdt2lTp8KHly5dDp9MBsF40pbrLdnKyX375xWEZs9mM+fPnA7COC/XF3yYmnlRtHnzwQQDWyX2eeeYZ8WBZ5tSpU3j33XcBWGfoGj16tFv7v+2228TxNF988QX++ecfu8cNBgNeeOEFsSvTQw89dB3vgmqSp2Pm7bffFk8MOnTogM8++6xalmMh7/F0zJD/8XTMjB07VpzEY8GCBVi+fHmFMsuWLRPv79KlCzp27Oju26Aa5MmYUSqV4prRxcXFePrpp8XfKVv79u3De++9B8C6LMYDDzxwPW+F/ETHjh3RuXNnAMDixYuxdu1au8cFQcA777wjtpDfd999PtkbRyKUX4SK6AY89dRT+PPPPwFYJ10YN24cGjZsiGPHjmHBggUoKioCALz11lsYO3as3XN3796NiRMnArB2kXV0RWfz5s14/PHHIQgCFAoFRo8ejS5dukCr1WLRokVISUkBYP1h//XXXzkmohbwVMycPn0aQ4YMEdfZe+GFF9C0adMq6xMWFoZu3bpVy3sjz/D0caYy999/P/bs2QMAOHny5I2+Faohno6ZDRs2YMqUKeLYqn79+qF///5QKpXYsmUL1q1bB8C65MYff/yBli1beuy9UvXwZMyUlJTgvvvuw7FjxwBYu2wPHz4ciYmJMJvN2LVrF1avXg2TyQQAePPNNzFu3DiPvl/yDNtYmDx5Mp588kmH5dLT0zFgwAAAziesO3r0KO69914YjUZIJBIMHToUSUlJKC0txbJly8Rlmpo1a4Y//vjDbhkWX8ExnlStPvjgAxQVFWH79u1IT0/Hhx9+aPe4RCLB5MmTKxykXdW/f3+88cYbePfdd2E0GjF//nyxW0GZ9u3b48svv2TSWUt4KmaWLVtmt7j7jBkzXHre9SQjVLM8fZwh/+PpmBk4cCA+/vhjvPbaa9DpdNiyZQu2bNliVyYsLAxfffUVk85awpMxo9Fo8P3332Pq1KnYtWsX8vLyHK7TqVAo8MorrzDpJABA27Zt8emnn+L5559HcXExVqxYgRUrVtiVadq0KebMmeOTSSfAxJOqmUajwZw5c7By5UosW7ZMnAgoLCwMXbt2xcSJE9G1a9cbeo1x48ahW7du+Omnn7Bz505kZ2dDoVAgISEBQ4cOxZgxY6BQKKrpHZGneSpmylq/yf/UxHGG/EtNxMygQYPQtWtXzJs3D5s3b0ZGRgYkEgliY2Nx22234b777vPJdfXIMU/HTL169fDjjz9i06ZNWLFiBQ4ePIicnBwolUrExMSgd+/euP/++7nONNm57bbbsHr1asydOxfbtm3D5cuXIZFIEBcXhzvuuAP333+/zyadALvaEhERERERkYdxciEiIiIiIiLyKCaeRERERERE5FFMPImIiIiIiMijmHgSERERERGRRzHxJCIiIiIiIo9i4klEREREREQexcSTiIiIiIiIPIqJJxEREREREXkUE08iIiIiIiLyKCaeRERERERE5FFMPImIiIiIiMijmHgSERERERGRRzHxJCIiIiIiIo9i4klEREREREQexcSTiIiIiIiIPIqJJxEREVU7o9Ho7SpQJfj3IaKaJvd2BYiIyHN2796NiRMnXvfzY2JisHnz5mqs0TX9+/dHRkYGAODkyZMeeY2aNHv2bHz++edVlpPL5VCr1ahfvz5atWqFnj17YtiwYQgKCqqBWt4Y23gaPnw43n///QplSktL8fnnnyMwMBCTJk2q8PhLL72EpUuXAgB+/vln9OzZ07OV9jB3vmMSiQRKpRIhISGIiYlB+/btMXz4cLRt29bDtbymqr8PEZGnsMWTiIioBplMJuh0Opw7dw5//vknpk+fjgEDBmD9+vXertoNO3nyJIYMGYLvvvsOJpPJ29XxOYIgQK/XIzs7GwcOHMAvv/yCkSNHYtq0abBYLB5/ff59iMib2OJJRFRHhIaG4r///a9bzwkODvZQbfxbu3btMHjwYIePmc1mFBcXIy0tDevXr4fBYIBWq8WUKVPw1VdfoW/fvjVb2Wp09OhRpKene7saXlPVd8xisUCn0+H06dPYvn07SkpKIAgCFi5cCLVajVdeecWj9avrfx8i8i4mnkREdURQUBD+85//eLsadUJ8fLxLn/Xly5fx8MMP4/Tp07BYLHjjjTewfv16qFSqGqil+3r27HnD3aLff/99h110/YE73zGtVouXXnoJW7ZsAWDtdjxmzBi0bNnSk1UkIvIadrUlIiLykujoaHzxxReQSq0/x5cvX/bYmFryLWFhYZg1axaaNGkCwNoN97fffvNyrYiIPIeJJxERkRfFxcWhd+/e4vbff//txdpQTVIqlbj77rvFbX+YZIuIyBl2tSUiouty5swZrFixAnv37sWFCxeQn58PiUSCkJAQxMfHo0+fPhg9evQNzdaampqKxYsXY/fu3UhLS4PBYEBYWBiaNWuGXr16YfTo0WjQoEGV+7l06RJ+++03bN++Henp6SgqKkJ4eDjatGmDgQMHYtiwYVAoFNddzxvVokULJCcnA7C2ejqTm5uLhQsXIjk5GWfOnIFOp0NISAiaNm2KPn36YOzYsahXr16lr2UwGLBy5Ups2LABR44cgVarhUqlQv369dG5c2fcfvvt6N+/v8PnOpvV1tGMvp9//rl43+TJk/Hkk08CcDyrrcViQb9+/cT3vmzZMrRu3brS97Fo0SK8/vrrAICRI0fivffeq1CmpKQEixcvxubNm3Hq1ClotVoEBQWhWbNmuPXWWzFu3DiEhYVV+jqeVr9+ffF2VlZWpWUPHz6MNWvW4J9//sGlS5eg1WqhUCgQGhqKxMRE9OvXD8OHD4dSqbR7njt/H1t5eXlYuHAh/vrrL5w/fx4FBQUIDQ1Fy5Yt0b9/f4wZMwYajeZ63zoR1TFMPImIyC1GoxFvv/02Fi9e7HAmztLSUmRlZWHHjh349ttv8eWXX6Jz585uv86XX36J2bNnV3iN7OxsZGdnY+/evfj222/x6quvYsyYMU7388MPP+DTTz+FXq+3uz8rKwtZWVnYunUrvvvuO8yaNQutWrVyu57VoayrLQDIZDKHZRYuXIj3338fxcXFdvfn5OQgJycH+/btw5w5c/DKK69g1KhRDveRlpaGRx99FGfOnLG732g0ijPtLl26FJ06dcJXX31VZRJbXaRSKYYOHYrvvvsOALB69eoqE8+VK1eKt++5554Kj+/cuRMvvPACsrOz7e7Py8tDXl4e9u/fj++//x5vvfUWhgwZcuNv4jqdP39evG2bhNrS6XR46aWXsGHDhgqPGY1GFBcX49KlS9iyZQu+++47fPfdd4iLi7uheq1cuRLTp09HQUGB3f1XrlzBlStXsGvXLnz33Xf46KOPcNNNN93QaxFR3cDEk4iI3PLiiy9i9erVAKxrUiYlJSExMRGBgYEoKCjAwYMHsXfvXgiCgNzcXDz55JNYt26dWy2fy5cvx2effQbAmpQkJSWhTZs2CAgIQGZmJrZu3YqMjAyUlpbi9ddfR+PGjXHzzTdX2M+HH36IOXPmiNudO3dGt27dEBQUhIsXL2LLli3IysrCuXPnMG7cOMyfPx+JiYk3+Am5z7aLZdmYP1vffvstPv74Y3G7cePG6NevH+rXr4/s7Gxs2bIFGRkZKCoqwquvvorc3Fw8+uijdvswGAx47LHHxKSzYcOG6Nu3Lxo2bIji4mKkpKRg69atsFgsOHDgACZPnoz58+e7VP/evXsjICAAR44cwZo1a8T7yroQu3Lh4Z577hETzzVr1uC5555zWjYzMxP//PMPAOtas927d7d7fNOmTZgyZQqMRiMAoGnTprjlllsQGRkJrVaL7du3IyUlBYWFhXj22WdRXFyM0aNHu/Req1NBQQGWL18ubjtK4CwWCx555BHs378fAKBWq3HrrbeiZcuWUKvVyMvLw549e3DkyBEA1osLU6ZMwbJly8QLGu7+febNm4fp06eL261atcLNN9+M8PBwZGdn46+//sKFCxeQnZ2NRx55BF999RX69OlTjZ8MEfkjJp5EROSyXbt2iUlnSEgIfv75Z4ctU7t378Z///tflJSUIDs7Gxs3bnTYKuXMl19+CcCadDpaYuTll1/GK6+8ghUrVgAAvv766wqJ56ZNm8SkMywsDJ988ondWEoA0Ov1+PDDD/HLL7+gqKgITz31FFatWlWhq6InpaamYteuXeL2LbfcYvf4rl277JLOJ598Eo899hjk8ms/4S+99BJmz56Nb775BgAwc+ZMdOzYET179hTL/Pnnnzh16hQAoEePHpgzZ06F2XMPHTqEBx54AMXFxfj333+xd+/eCkmdI126dEGXLl3wxx9/iIlN586d3ZpFuWXLlmjbti2OHj2KjIwMHDhwAJ06dXJYds2aNWJL+NChQyGRSMTHLl68iJdeeglGoxFSqRQvvvgiJk6caNeq/OKLL+KPP/7AtGnTYDQaMX36dHTp0gUtWrRwub436sKFC3jhhReQm5sLwLp00fjx4yuUW7p0qZh0xsTE4Oeff0bjxo0rlFu9ejWee+45WCwWnDx5Ev/++6/4t3Pn73PkyBH873//AwCoVCq89957uOuuu+zKvPzyy/j+++/xySefwGg04rnnnsPatWtrrIWciGonJp5ERHWETqfD999/73L5e++9t0IrZdnYPMCaADnrDtmzZ08MHz5cbDE7cuSIy4mnVqvFuXPnAAAJCQkO17VUKBSYPn06NmzYgJKSEqSkpMBgMIgJoyAImDlzplh+1qxZdklYGZVKhddeew1paWnYunUrzp8/j+XLl9dY69eRI0fw9NNPw2w2AwDatm1bITn+9NNPxdsPPfQQJk+eXGE/CoUCzzzzDIqKivDrr7/CYrHg008/xYIFC8QyBw8eFG8/8MADDpds6dChAx5++GF8/vnnkEqlOHTokEuJZ3W55557cPToUQDAqlWrnCaeq1atEm/bTs4DWFuHy7qHPvHEE3jwwQcd7mPEiBHIy8vDjBkzYDAY8PXXX+PDDz+8ofpX9R0rKSmBVqvFsWPHcOjQIbFFVqlU4uOPP3aYuNl+51599VWHSScADBkyBMuXL8dff/0FwLpm5/X87T777DOxXm+99VaFpBOwdgd/9NFHcfnyZcybNw9arRY///wznn76abdfj4jqDiaeRER1RH5+PmbMmOFy+TvuuKNC4nnnnXciLi4O6enpFU74y7MdL1lUVOTy69q25GVkZCA7OxuRkZEVymk0Gvz+++8IDw+vcMK+f/9+pKamArC27DhKOm1NmjQJW7duBQCsWLHihhPP1NRUpwmIXq9HTk4ODh06hEOHDon3BwQEVPj7pKeni61dAQEBDpNOW1OnTsUff/yB4uJi7Nu3D2fOnEHz5s0B2I8d3b9/P2677TaH+5g4cSLuuusuxMTE1GjLLwDcdddd+OCDD2AymbBu3Tq88sordi2VAHDu3DmxW2m7du3sWikNBoPYdVWpVOKhhx6q9PUmTpyIzz//HMXFxVi3bh3efffdG3rP7n7HAGuy//rrr6NDhw4OHx87dixuuukmZGVlObwIY6tVq1Zi4qnT6dyqB2Dtwlw2yVV0dHSVF4smTZqEefPmAbB+b5h4ElFlmHgSEZHL+vXrh379+lVZrri4GOnp6eK2yWRy+TWCgoLQunVrHD9+HIWFhRg5ciQeeOAB9O3bt0JXSGddI/fu3Svebtu2bZWv2aZNGyiVShgMBhw6dAgmk8kuAXbXkSNHxOTIFc2aNcOnn36Kli1b2t1v2wU3KSmpynGyQUFBSEpKwvr16wEA//zzj5h4du/eHT/++CMAYM6cOcjIyMCwYcPQs2dPBAQEiPsIDQ1FaGioy3WvTvXq1UOfPn2wZcsWZGdnY8+ePRXGPdq2dg4bNszusaNHj4qTLzVr1gyBgYGVvp5CoUC7du2wZ88eGAwGHD58GF27dq2md+Nc586d0bt3b/Tt2xft27evtKyjFkdH8vPzkZmZKW67850rUzY2GwBat25t14XZkcjISMTExCAjIwMZGRnIzMxEVFSU269LRHUDE08iojoiJiYGmzdvrtZ9FhUV4ezZs7hw4QLS0tJw9uxZnDhxAqmpqXYnvmUns6567rnn8Oijj8JsNiMzMxMzZszAjBkz0KhRIyQlJaFPnz64+eabnSZiZWMZAeDXX3/Fr7/+6vJrl5aWIjc316VlWq6HWq1GUFAQoqOj0bZtW/Tt2xd9+/at0LIHwC55d3XSo8TERDHxTEtLE+/v378/evTogT179gAA1q5di7Vr10KhUKBLly5ISkpC3759kZCQcCNv74YNGzYMW7ZsAWAdt+gs8ZTL5RVmo7X9u6ekpLg9S/GlS5eup8oiR9+x0tJSnDp1Cj/++KM4E29qaiqGDh1aZdLpSH5+Ps6dO4cLFy7gwoULOHPmDE6cOIHTp0/bfc/c/c4B9p/fli1b3P78Ll68yMSTiJxi4klERG6xWCxYvnw55s+fjyNHjjhcUgWwdu0sG7vorqSkJHz55Zd444037Na1vHjxIhYtWoRFixZBqVSib9++eOihh9ClSxe75+fn51/X69o+/0YST9s1Lm+EVqsVb7u63qRtOdvPQSqV4ssvv8Q777yD5cuXi4mJ0WjE7t27sXv3bnz88cdo2rQpRowYgYkTJ9q1hNaUAQMGICQkBAUFBVi/fj2mTZsmrrF69OhRnD17FoA1RiIiIuyeWx1/9+qmVqvRrl07fPTRR2jXrh3+97//QafTYfr06cjOznape6rBYMBvv/2GxYsXIyUlxWm5G/nOAb75+RGR/2DiSURELisqKsLkyZOxc+dOu/slEgmio6PRsmVLtGvXDj169EB6ejpef/31636tvn37YsOGDfjrr7+wfv16bN++XZwBFLCejK9fvx7r16/HE088gaeeekp8zPbk+84773Q6fs6Z8gmNt1xPq5WzCwGAdebUDz74AE888QRWr16NLVu24PDhw3bPOX/+PGbOnIlFixY5nUHVk5RKJQYNGoSFCxdCq9Vi586duPXWWwFU3s0WsP+7t23b1u31OZ1NZlRdHnzwQaSlpYkt8F999RUaNWpU6Tq0ZUuWnDhxwu5+qVSKmJgYxMfHo3379ujZsye2b98uzgh9PWw/v169erm9RMqNrh1KRP6NiScREbns3XffFZPOwMBATJw4EX369BHX8bRVNunIjVAqlRg4cCAGDhwIQRBw8uRJ7Nq1C8nJydi1a5fYnfeLL75Ajx49xG6ZISEh4j46d+7sdGZTX2c71jIvL8+l59iWs/0cbDVp0gSTJk3CpEmTUFBQgD179mDnzp3YsmULLl68CMA6sdNLL73kVjfl6nL33Xdj4cKFAKzdbW+99VYIgoC1a9cCsCbQAwYMqPA82/cbFRXl1nIuNeXFF1/E3r17xbVb3333XXTt2tXpeOXnnntOTDojIiLw4IMP4uabb0Z8fHyFmYk3bdp0Q3Wz/fxatmzpk58fEdVeFQeUEBEROZCZmYlly5YBsLZwzp07F08//TS6du3qcBIX2wToelruypNIJEhMTMSDDz6I77//Hps3b7Ybg1Y2mykAxMbGirfLZretim1rqq9o2rSpeLssUanK8ePHxdu2n4MzISEhuO222zBt2jRs3rzZrpV67969YiJak7p16ybWfcuWLTCZTPj333/FMZh33HGHw+VgbN+v7XjFyuTn51faSlzdlEol3n//fXHyqtLSUrz44osO63Dw4EFxgqmAgAAsXLgQjz76KNq1a+fw/bt6ccKZ6/n88vLyquX7TUT+j4knERG55PDhw2JXvNatW6Njx46Vlt+9e7d4250T002bNuE///kP+vXrh2+++cZpuaioKDz22GPitu2Mnt26dRNv//XXX+K6hM4cPnwYvXr1QufOnTFy5MjrmhHUE2zfx/bt26tcIqOwsBB///23uF3WddRsNuPFF1/EiBEj0Lt3bxgMBofPl0gkmDBhgl3rm+0Y26pUNQuqO8q60hYUFGDv3r1Yt25dhcfK69y5s5jQXbhwocpkXa/X44477kCHDh1w++23V+jO6ilt2rSxW+rl8OHD4pq3tg4cOCDe7t27d6UXEgRBECeOAhx3ua7q72Mbb//++2+VF2OysrLQp08fdOzYEYMGDfLJizdE5DuYeBIRkUtskxXbSW8c2bhxo91JsDuJnCAI2L59Oy5evIjVq1dX+lzbFh7b2TR79eqF6OhoANYxcs7W1Cx7vY8//hiAdRmYxo0b39BSKtWpadOm6Ny5MwBr3T7//PNKy3/22WcoKSkBAMTHx4stwjKZDCdOnMDRo0dx5cqVSrtkWiwWu7+vO7OU2s7MeyOT3AD2yeWmTZuwceNGANaZY7t37+7wOYGBgRg4cKC4PWPGjEovesyZMwd5eXkwGo0oLi6usJyNJ02ePBkxMTHi9syZM5GVlWVXxvY7V1Vr5s8//1zlEkZV/X1atGghjoc2GAyYOXNmpa/56aefwmg0Qq/XIzAwsMJ6ukREtph4EhGRS2yX87h48SJ++umnCmUsFgsWL16MZ5991u7+smTIFbfccgsiIyMBWLuXTp8+HaWlpRXKnT171i4Ru/3228XbCoUCjz/+uLj92WefYe7cuRVagUpKSvDWW2+JrYRyuRyTJk1yua41YcqUKWJL1dy5c/H5559XSCpMJhNmzZqFX375BYC1ZeuVV16xKzNy5Ejx9ptvvolDhw5VeC1BEPDBBx8gJycHgHWCHtvkqCq2y9tkZGS4/DxHmjRpIibdv//+u9jNdujQoZW23E2aNAlKpRKAtZX4+eefr9BSLAgCFi9ebDcRz6RJk2r0goNarca0adPEbZ1Oh/fee8+ujO137t9//8WGDRsq7MdgMODrr7/GBx98YHe/o++cK3+fp556Svx8Fy1ahA8++KBCC7nJZMKXX36J33//XbzvySefdLg/IqIyvnFJl4iIfF7z5s2RlJSE7du3AwDee+89rF27Fp07d0ZQUBAyMzOxbds2MUFQKBRiF9eqWkhtKZVKvPzyy3jmmWcAAAsXLsTmzZtxyy23oFGjRgCsazRu3boVer0eAHDrrbeiX79+dvu599578c8//2DFihWwWCx4//338dtvv+GWW25BvXr1cPHiRWzZsgXZ2dnic5599lmX18usKb169cLkyZMxe/ZsAMDs2bOxdOlS9OvXD/Xr18eVK1ewZcsWu9auxx9/HDfffLPdfsaOHYslS5bg5MmT0Gq1GD16NHr37o2EhATUq1cPOTk52L59uzi2T6FQVEheq2I7A+7KlSsRHByMqKgoxMfHo3///m6/93vuuQf79+9HcXGxeN/dd99d6XNatWqFadOm4fXXX4cgCFi5ciWSk5MxYMAAxMbGIjc3F7t377brhtuvXz/cd999btfvRvXt2xcDBw4UE8q1a9di5MiR4myyZZMIpaamQhAETJ48GUlJSWjTpg1UKhUyMjKwZcsWsTW0qu+cK3+fPn364LHHHsNXX30FAPjhhx+wZs0a9OvXD1FRUcjKykJycrLdGrETJkwQZx4mInKGiScREblsxowZeOihh8ST9v3792P//v0VyiUkJOD999/HvffeC6PRiNTUVBgMBrElqipDhgxBXl4e3n//fRiNRmRnZ9u1rti64447KrT2lPnggw/QqFEjfP/99zAajTh37hzOnTtXoZxarcZzzz2H+++/36X61bTJkycjPDwcH330EYqLi5Geni62btoKCAjAm2++6XAMpFKpxJw5czBp0iQcOXIEALBjxw7s2LGjQtn69evjnXfesRvz54qEhAR07twZ+/fvhyAI4szG/fv3v67Ec/DgwXj33XfFFrd27do5nf3V1ujRoxEcHIw33ngDWq0WWq3WafyMHDkSb775ZrWOT3XHa6+9hh07dojJ9fTp07Fq1SqoVCrIZDLMnj0bDz/8sDjJ0/bt28WLP7a6deuGqVOnYvz48QCsa56W5+rf5+mnn0ZERAQ+/vhjlJSU4PLly1iwYEGF/clkMjzyyCOYOnXqjX8QROT3mHgSEZHLIiIisHjxYixcuBDr1q3DqVOnoNPpoFarERkZicTERNx2220YNGgQ5HI5brrpJiQnJ6OkpAR//vknhg4d6vJrTZgwAbfccguWLFmC3bt349y5c9DpdNBoNIiMjESPHj0wdOjQSpMjqVSKqVOnYtSoUVi0aBF27tyJ9PR06HQ6BAQEoFmzZrj55ptx7733iq2pvmr8+PG444478Ntvv2H79u04f/48CgoKEBAQgBYtWqBv374YM2ZMpePsGjRogEWLFmHdunX4888/cezYMVy5cgUmkwn16tVDXFwc+vXrh5EjRyI4ONjtOkokEnz33Xf49NNPsXnzZmRnZ9u1wrkrJCQE/fr1w59//gnA+aRCjtx5551ISkrC4sWLsW3bNqSmpkKr1UKhUKBhw4bo2rUrRo8e7fYar9UtOjoaTz75pHjx5MKFC/jyyy/FZC4uLg7Lly/Hr7/+is2bN+Ps2bMoKSmBRqNBw4YN0bp1awwePBh9+/aFRCJB8+bNcebMGVy4cAH79u1Dly5dxNdy5+9z//33i+up7tixA+fOnUN+fj5UKhViY2PRs2dP3HvvvS5dCCAiAgCJwDmwiYiIiIiIyIM4uRARERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8qj/B8SuBXxdadAxAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ ")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "493d213c",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Plot realized ROC points\n",
+ "> realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "fcd2aaf9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set group-wise colors and global color\n",
+ "palette = sns.color_palette(n_colors=N_GROUPS + 1)\n",
+ "global_color = palette[0]\n",
+ "all_group_colors = palette[1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "4c70252e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wT9f8H8NdlNUn3bumAMsoGkb1ki2xQUEFBhoAi46egIPpFWTJcDFFxIAqyZG8HIHsIhQKFsjvpTnfarLvfH2muuYy2KV3A+/n48rW3P7l8cnfv+yyG4zgOhBBCCCGEEEJIJRFVdwIIIYQQQgghhDzZKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhNR4Wq22upPwWKHzRQghdC0kpKaRVHcCCHlaFBYW4vz58zh58iQiIyORkZGBjIwMiEQieHp6wtPTE02aNEHnzp3RqVMnuLm5VWt6V69ejW+++YafvnXrVrWkY//+/di4cSO2bNlic/n58+cxZswYfvq3335D+/btqyp5NYpGo8GPP/6ItLQ0zJ8/v7qT45CoqChs374dFy9exMOHD6HVauHr64vQ0FD07dsX/fv3h7u7e6WmITk5GX/88QdOnz6NBw8eID8/Hx4eHggICED37t0xZMgQhISElHl/hw4dwv/93/+VKy1RUVGQSJ68W/ScOXOwa9cuAEBQUBCOHj1azSl6cowePRoXLlwAALRr1w4bNmyo5hRVnwcPHmDRokWYNGmS3ftBz549kZiYCAAYNmwYli5dWpVJJOSp9OTd1QipYXQ6HX755Rf8/PPPyMrKsrmOWq1GYmIirl+/jm3btsHJyQkvvfQSZsyYAQ8PjypNb01x9+5dzJ8/HxcuXEBQUFB1J6fGO3bsGBYtWoSEhAQMGzasupNTZoWFhZg/fz527txptSwxMRGJiYk4e/YsVq1ahYULF6J3796Vko7169fj66+/RmFhoWB+Wloa0tLScO3aNXz//feYMmUKJk+eDLFYXOo+b9y4USlpJYTYVlhYiG+//Rbr1q2DTqfDpEmTqjtJhBAzFHgSUomys7MxefJkXL582WqZs7MzXF1dwTAMsrOzoVar+WUajQabNm3C33//jR9++AFNmjSpymTXCD/99BP/9p6UbuHChfzb+8eFRqPBhAkTcPHiRcF8FxcXKJVKpKeng2VZAIBKpcI777yDJUuW4MUXX6zQdCxfvhw///yzYJ5MJoOXlxdUKhVfXU+n02HlypWIj4/HkiVLSt2veeDp6uoKT0/PMqeJYZgyr0sIMYqMjMTatWurOxmEEDso8CSkknAchxkzZgiCzqZNm2LMmDHo1KkT/Pz8BOsnJSXh+PHj+OWXXxATEwPAWNoyYcIE7NixA7Vq1arK5BNS6RYtWiQIOtu1a4f3338fLVq0AADk5uZi+/btWLlyJQoKCgAA8+bNQ7169dCyZcsKScO+ffsEQWdQUBA+/PBDdO/eHVKpFHq9HseOHcOSJUv4wH7nzp1o2LAhxo4dW+K+zQPPKVOmYPz48RWSZkIIIeRxRJ0LEVJJ9uzZg7Nnz/LTr7zyCrZv346hQ4daBZ0AEBgYiFdffRX79u3DgAED+PkqlQoLFiyokjQ/jtq3b49bt27x/57W9p2Pm8jISPzxxx/8dI8ePbB+/Xo+6ASMpYTjxo3Db7/9BqVSCcBY6liW0sayyMvLE7TrCg4OxrZt29CnTx9IpVIAgEQiQZ8+fbBjxw7Uq1ePX3f16tVQqVR2952UlCRY/jTWWiCkJjt69Ch/36D2nYRUDQo8Cakkmzdv5v8OCwvDvHnzIBKV/pOTyWRYunQp6tevz887duwYHjx4UCnpJKQ6/Pjjj+A4DoCxau2SJUvstpts0aIF5s6dy09fvnwZp0+ffuQ07Ny5E+np6fz0woUL4ePjY3NdT09PrF69mu/wJy8vD7/++qvdfUdFRQmmKfAkhBDytKPAk5BKUFhYiGvXrvHTPXr0cKiHSplMhgkTJgjmnTlzpsLSR0h1ys7OFvRmOnTo0FLbPw4bNgy+vr789L59+x45HabeVQEgPDwcnTp1KnH9evXqoVevXmVKg3k129DQ0GrvpZoQQgipbtTGk5BKkJOTA4PB8Ej76Ny5s2A6NTW1TNvFxMRg165d+O+//xAXF4esrCwoFAp4eXmhZcuW6NatG/r27VshQzWUZ2iEnTt34sMPP+Snjxw5guDgYADWQ6OYJCYmomHDhvy0eQcz5RlOpaCgAPv27cOpU6cQFRUFlUoFg8EALy8vhIWFoVOnThg8eDD8/f1L/Tzm6Tp48CDq1auHwsJCHDx4EIcPH8bdu3eRnp4OuVyOgIAAdO7cGUOHDhVsV16WQ96Y7Nq1SxBUmZ9jS1lZWdi9ezfOnTuH6OhoZGZmgmEYeHl5oUGDBujSpQsGDRpUob0rnz59WvD7KEtPtRKJBN26dcP27dsBAH///TcWLVpU7nycnp6Omzdv8tPmAWVJevXqhT///BOAMV9evXpVUD3YxDzwrM7SzoSEBMFnu3r1KpycnHDw4EH88MMPePDgATw9PREeHo5+/fph0KBBNs9pcnIy9u7di1OnTiE2NhYqlQpOTk7w9vZGy5Yt0b17d/Tt27dMvf066syZMzhz5gwuXbqE5ORkZGVlQafT8R02tWjRAp06dcILL7wAmUxmcx/Tp0/nvzfA+DLw+++/L/G4Z8+exbhx4/iS+ZCQEOzevRsuLi421+c4DseOHcPRo0cRERGB9PR0qNVqeHh4ICQkBJ07d8bgwYMRGhrq0OdXqVTYsWMHjh8/jjt37iA/Px9eXl4IDw/H0KFD0a9fv0o575ZSUlKwa9cunD9/Hnfv3kVWVhakUim8vb3RuHFjdO3aFQMHDoRCoShxP+bXbFdXV76d9927d7FlyxacPn0aycnJYFkW/v7+aNWqFYYOHYqOHTva3af50CjmzO8NlkPMlGU4FfPrtOk6mpeXh7179+LQoUOIjY1FZmYmvL29ERISgsGDB2PQoEGQy+WC/Zw5cwY7duzAtWvXkJycDKlUiuDgYHTt2hWjR48u8V5TnmFyyjIcmvk65p8/MjISO3bswMWLF5GcnAyRSAR/f3+0adMGI0eORKNGjQT7UalU2LlzJ/766y/Ex8cjNzcXnp6eaN68OV588UX06tWLOksjPAo8CakEXl5ekEql0Ol0AIw3rHfffdfuQ5Et/v7+OHDgANzd3eHh4cG3ObMnKysLixYtwoEDB/ieQE10Oh1ycnIQExODPXv2ICQkBHPnzkXPnj0d/3CPuS1btuDrr7+2ObRNUlISkpKScObMGaxevRqvvfaaw99bREQE5syZg9jYWMF8jUaD7Oxs3Lp1C+vXr8err76Kjz/+uEoeGG0xGAxYu3YtfvzxR0GPyiamoUz+/fdfrFy5EpMmTcLEiRMr5AHCvDYAwzA2AzdbnnnmGT7wzMvLw507d9C4ceNyp8EUUABAq1atypwGcxERETbTb17VtmnTpuVKY2VZv369oJ2sKd9fv34dQ4YMEayr1WqxYsUKbNy4ERqNxmpZbm4uf10JCwvDJ598UmKA4IizZ89i6dKliI6OtrlcpVJBpVLh3r172LVrF7788kssXbrU5vEXLFiAiIgIpKWlATA2Xzhw4ICgPb257OxszJ49m88jEokEX331ld2g8/Lly5g/f77gZYaJaUieiIgIfPfddxgxYgTmzJljFZzYsmnTJnzxxRfIz88XzE9JSUFKSgpOnjyJDRs24Msvvyx1X+VVUFCAL7/8Elu2bOHvaSZarRb5+fmIi4vDn3/+iZUrV+Ldd9/FSy+95NAxfvvtNyxfvtxq/7GxsYiNjcXu3bvRqVMnLF26tEwvBCvLmTNnMGfOHKSkpAjmm35DFy5cwMaNG7F27VoEBAQgOzsb//vf/wQvPQDj/SA6OhrR0dHYsmULVq5cafWyuarl5+dj8eLF2LFjh9Wy3Nxc3L17F9u2bcOcOXPwxhtvAAD++ecffPTRR1b309TUVBw5cgRHjhxB79698fXXXzt0HyVPLqpqS0glkEgkgreCsbGxmDZtGv/QU1b169eHr69vqUFnXFwcBg8ejH379gmCTqlUCn9/f6tqfvHx8ZgyZQq+++47h9JT2eRyOUJDQxEaGgpnZ2d+vkQi4eeHhobaffgrCcuymDVrFj755BPBTZJhGHh4eMDPz08QBGo0Gqxbtw5jxowpsRMZc1euXMG4ceP4oFMkEsHX1xdeXl5Wadm0adMjdxrl7u7OnxPzUipnZ2fB+bLMPxqNBuPGjcPKlSsFQadIJIKPjw98fHwE7ZFzc3Px5ZdfYsqUKVbjXJbHnTt3+L9r1aol+K5LEhYWJpi+d+9ehaQBgKDjoJIEBwcLzuf9+/et1snIyBDUUGjatCkSEhKwatUqjBw5Eu3bt0ezZs3QpUsXjBo1Ct9++22ZazQ8qjt37uCLL76wuaxHjx6C7z07Oxvjxo3Dzz//LAg6pVIpAgIC4OnpKXgR8eDBA7z55puC9u3ltWfPHrz55ptWQae7uzuCgoLg4+Nj9RIkOTkZEydOxPXr16325+Hhgc8++0wwb9GiRcjMzLR5/E8++UQQXMyYMcPuC5J9+/ZhzJgxVkGnh4cHAgMD4eTkxM/T6/XYvHkzRo0ahYyMDJv7M1m+fDnmz58vCDpN1xTzGghXrlzBG2+8UebrlCMyMzPx8ssvY8OGDYKgUCwWw8/Pz6omRFpaGubOnYt58+ZZvQC1Z8OGDVi8eDG/f4lEAn9/f6uS0zNnzmDEiBGIj4+32kdQUBBCQ0OtOu7z8/Pjr4O2OvVzxIkTJzBx4kQ+X4hEIvj5+cHV1VWwXnR0NKZPn468vDyMGzeODzpN353l/Tg3NxfTp0/Hw4cPHyl9j0Kn0+Htt98WBJ1KpRIBAQGC+yLLsvjss89w/Phx7Nu3D1OnTuXvp6b1LWtM/PPPP3avOeTpQyWehFSSsWPHYubMmfz0v//+ix49eqBXr17o06cPOnfu7NC4fvaoVCqMHz9e8JDUpEkTTJ8+HZ07d+bfMsbFxWHz5s38AwTHcVixYgV8fHwwYsSIR05HRWjZsiX+/vtvAMJqvP7+/vz88lq8eLGgTZ6LiwsmT54saDuYn5+Pf/75BytXruSrYF2+fBkzZszAL7/8Umq1zk8++QQ6nQ4eHh6YOnUqBg4cyH/HKSkp+OWXX/DLL7/w62/dutVm1aWyGjNmDF+VzLza2PPPP2+3l0bTMD/nz5/n5/n4+GDq1Kno378/3N3dARhL0A8cOIBvvvmGf6A9evQo/ve//+Hzzz8vV3pNkpOT+b8DAgLKvJ1lScejPKiZp4FhmDKXoojFYvj4+CApKQkAbFbvswx8tm3bhr///tuq+r2pJOzSpUtYu3YtJk6ciClTppSpE7LyWrZsmVWpkol5lVyO4zBz5kzBcDdt27bFW2+9hXbt2vHXlfT0dOzfvx/fffcdsrKyoNfrsWDBAgQFBeG5554rVxoTExPxySefQK/XAzA+0M6YMQMDBw4UdP6Ul5eHEydOYOXKlfwQVDqdDl999RXWrVtntd/nnnsOo0aNwqZNmwAYr52LFy+2eijevXs3Dh06xE936NABb775ps20Xrx4EXPmzBGkdeLEiRg2bBgCAwMBGGsXXL58GT/88AOOHz8OwFgiPmPGDKxfv97mdWX//v2CYX6USiWmTJmCESNG8MFeTEwMfvrpJ2zfvh0JCQn2T2g5FRYWYuLEibh9+zY/LzQ0FDNmzEDPnj35nqZNVXDXrl3Lv8jaunUrvLy88H//938lHkOtVvOl7x4eHnj33XcxePBgKJVKsCyL8+fPY9myZXxQn5KSgqlTp+KPP/4QlKCZqp9aNr344osvKqyn80WLFsFgMMDf3x8zZszAgAEDIJfLwXEcLly4gA8++IC/rkRGRmLYsGGIi4uDXC7HO++8gxEjRvD3g6ioKHzyySd87Y+8vDysX79e0IlaVTp06BB/fRo8eDAmTZqEBg0aADC+gFq1ahU2btzIr//JJ58gPT0dHMehdevWeO+99/Dss89CJBKhoKAAGzduxIoVK/jfxebNmzF58mR4e3tX/YcjNQqVeBJSSfr372/14KXT6XD48GHMnDkTHTt2xMCBAzFv3jzs3r3b5lvcslixYoVg24EDB2Lbtm3o0aOH4MYcGhqK2bNn4+eff+YfGABjFbTqfNNaFa5cuSK4aQYGBmLbtm2YNGmSoMMaZ2dnDBkyBLt370br1q35+RcuXLD5IGtJp9OhVq1a2L17N0aPHi14seDv7485c+YIHsQ4jsP+/fsf8dM55uDBgzh27Bg/HR4ejt27d2PkyJF80AkYHwJfe+017Nq1S1AauHfvXhw8ePCR0mBe0uPIyxfL0hVb1aXLkwZXV9dSaxXYS0d2drbVcvP2nQBw+PBh/qFOKpUiMDDQqpS3sLAQq1evxjvvvGM3MKwIprZio0ePxl9//YUrV65gz549GD9+vKBzpU2bNuHkyZP89Pjx47FhwwZ06dJFcF3x8fHB2LFjsWPHDtSuXRuAsVTkww8/tKqaW1Zr167lx21lGAZr1qzB2LFjrXocdnFxQf/+/bFt2zZBada5c+eQm5trc98ffPCBoOR83759fDAIGIPehQsX8tOenp5Yvny5zZcBWq0WM2fO5B+u/fz8sHPnTkyZMoUPOgHjy4o2bdrghx9+wIwZM/j5//33n+C6ZKLRaAQvjpRKJX799VdMnDhRkPfq1KmDRYsWVdpwW7/99pugWnyHDh2wa9cuDBw4UHAP8ff3x1tvvYWtW7cKrqfff/89rly5UuIxDAYDDAYDAgIC8Mcff+DVV1/l9y0SidCxY0ds3boVXbp04bcxVU+tagaDASEhIdi2bRteeuklvqo0wzBo3769VXXnuLg4SKVSrFu3DpMmTRJc65o2bYpffvlFEIj9+++/VfI5bDFdn9577z18/vnnfNAJGGsZ/O9//0OHDh34eUlJSdDpdOjVqxd+++03tGnThv+NKBQKTJw4UZDXtVpthfRETh5/FHgSUklEIhFWr16N/v3721zOcRzu3LmDrVu3Yvbs2ejduzd69OiBjz76CEePHi3Tw2dCQoKgakzjxo2xZMmSEh+i27dvj08++YSf1mq1+PHHHx34ZI+flStX8n+LxWKsWLGixKqVbm5u+OabbwQPur/88gv/MFyS+fPnCx46LU2YMEFQNSsyMrLUfVYUjuOwatUqflqpVOLbb78VPCxaCggIwDfffCNoj/btt98K2kc6yrx6r/kDbGks17Vs91YVabBc31YaLANPwNhz7x9//IFr167h33//RUREBA4dOoSxY8cKfq9Hjx4VBD6V4a233sLHH3+M2rVrQ6FQoFGjRpg9ezb/Hev1evz000/8+u3atcPs2bNLbN8bHBwsePBOT0/n2+M6gmVZQe2G7t27l9rbsLu7O4YOHcpPGwwGmyXRgPGh+PPPPxeUMs6fPx9qtRosy+KDDz5AXl4ev+yzzz6zWxq+a9cuQcn5F198YVUd3NKUKVPQo0cPfvrnn3+GVqsVrHPgwAFBs4xZs2aV2A765ZdfxrBhw0o8rqPy8/MFecDf3x+rVq0qsZlDeHg4vvrqKz6fcByHb7/9ttRjiUQifPXVV3Y7XXJycsIXX3whCNLWr1//SNeg8pozZ47dWhpt2rRBSEiIYN7o0aMFLzHNubq64oUXXuCnY2Njy/2ypiI0bdoUkyZNsrvcMo/J5fISO3gbPny4YNqyeQN5OlHgSUglksvl+Prrr/Htt9+WqYORhw8fYvv27Xj77bfRvXt3rF+/vsQA9OjRo/zbdgCYOnVqmRrwDx06VDBOqK0OiZ4U2dnZOHfuHD/dvXt3qw5ibPHy8sLYsWP5aZVKhVOnTpW4TUBAALp27VriOjKZTNAhjr02ZpXh1q1bfJVEwPhgYPmgZEvdunUFDx137tyx2YlKWZnnaUd6pRWLxYLgxzzvV1UaLNe3lQbzjoWkUim+/fZbLFu2DC1atBCkv27duvjwww+xfv16QTC7detWQRXXiqRUKkt8uASMbenMa0HY6mnalubNmws6aTp8+LDD6TMYDPjqq6+waNEivPXWW1bDStljGbTY6jDLPJ1vv/02P52YmIjVq1dj3bp1gvP++uuvl9gBm/lLv4YNG5a5Sufrr7/O/52ammpVKmh+3tzc3MrUFOKtt94q07HL6ty5c4LS/PHjxwtqRNjTrl07wTXwxIkTpV7junfvbjc4M/H09MTIkSP56cTEREFpbFXw8/MrtQfu8PBwwbT5CxFbTLUETGzVoKgqr7zySokvlyx7Yn/uuees+i8w5+XlJWjPWp2fjdQcFHgSUgV69eqFnTt3Yu/evZg2bRqeeeaZUh9209PTsWTJErz88st8ezJL5mN7KpVKdO/evcxpMu/NMTs7+5ECiZrs/PnzgqDaXi+WtgwaNMhqXyWxDCzsMS9hrIjOesrq7NmzgmlHzsXAgQMF06Wdi5KYl1RUVzf7lZmGzz//HMuWLcO0adPw9ddflzpUS5s2bQS1EACUqaSoPFq0aFFqZ06WQa8jvfI+++yz/N+RkZFWpXmlkUql6NixI0aMGIF3330Xbdu2LXUbjuOsqtaWNpzV22+/jZYtW/LTGzZsENSMCA8PxwcffGB3e7VaXe6ei5999llBnjNVfwaMn+XSpUv8dMeOHcv0MrFOnToVMkSTSUVdKziOw3///Vfi+pbXWXssgz7z81YVmjdvXuo65rVZZDKZoMqqLZa/RUd/LxWptN7FLUu7yzJMlPnnq87PRmoO6lyIkCrUsGFDNGzYEFOnTkV+fj4iIiJw8eJFXLx4EZGRkTZLN2/cuIHXXnsN27dvt3q7+ODBA/7vRo0aOVRyY3kTvX//fo0b9qEimJ8jAGjWrFmZtw0ICICvry9f7c1WD6aW65eF+YNkVZY0m58LsVjs0PiSzZo1g0gk4tNb2rkoiVQq5auUOVJqaTAYBAGjeW+h5UmDiaMlp+br20pD69atSy3BsTR48GB8++23fI/IFy5cQF5eHv+wZz6WX2lsjdlnUpaHZ8uqwqNHjy5zh0c5OTn83xqNBqmpqXbHkC2PzMxMJCQkID4+Hvfu3cPNmzcRGRmJ9PR0wXql/a7EYjGWL1+OYcOGQa1WC669ppoqJeWvO3fuCPLB33//Xe5SavOOgZKTkwVVfS1L0ErSuHHjEr97R5hfK/z9/Uusjm/J1r2lJOYvAEpSv359wTBlj9KrdXnUqlWr1HXMXyi4u7uX+rupzI7EHFVSExHA+gVdWdrn16TPR2oGCjwJqSbOzs7o2rUrXy2psLAQ58+fx59//ol9+/YJ3g4mJibis88+s+p90bxzFUceDGyt/ygdtdRkltW8HD1PPj4+fOBZ2jkq67Ag1cX8XLi5uTk0rppcLoeLiwsfWDxKfnFxceEDz7K0mzWxbE9Z2kD1paXBxJE0WKbjUdJgTiQS4bnnnuN759TpdIiOjkabNm0qZP8mlh302GI5LMej9JialZVV7sCTZVmcPXsWf//9N65fv44HDx4IgrJHVadOHcyePduqtPmDDz4QNEWwxfIc5ebm2u3QqDTmvyXLIbdKqspo6VGHCzFnfq2ozHsLwzClBjwmUqkUbm5ufMdgpQ1HU9Ecvb4/buNWOjpM2eP2+UjNQK8iCKkh5HI5unXrhs8++wxHjhwRdEABGHsjtRy02vwhzNGbouUDs6MP348L83PEMIzDHcmYn6fSzpH5eGc1kfm5cPQ8AI6di5KYdxLiSABr2UaoLEFUWdKQk5NTatVMe+moyOEBLNvbVsaDteWYg7ZUZHBXUlvLkkRERGDIkCEYP348Nm/ejGvXrtlMl1QqRdu2bfH888+X6zi2Og4qS6Bd3iDTFvMXGZbVER15sVGe8Y3teZRrhSP3FoVC4VCpmHknZ1VdddPRtuCPmyf985GagXIZIZWgoKAAKpUKGRkZ8Pf3L/MYgSZ+fn749ttv8cYbb/DV6wwGAy5cuCBoD6NUKvkSKEd7+KzI0iNHOPKAXxHMH5o4joNarXboQaoySreqi/nnLk9AUFHnIigoiB8bMDU1tczbWb54cfR3ZZkGE5ZlkZ6eXqb9GQwGQbVOR8YhLY35Q7XpWBWtLO1ZzdPh4+NT5cMgHD9+3OawMv7+/mjQoAHCwsJQt25dNG7cGI0bN4ZcLseePXvw119/OXQclUqFjz/+2Gr++vXr0bNnzxLbl1rm/08//VTQ+U15WZYiOfI7rchheB7lWuHIvcXRNJvvuzwvz54WVX2fJaSsKPAkpILdv38f/fr146fHjx+P2bNnO7wfkUiECRMmCNp1WT54e3h48IGnZRWt0lju61FLbsraVrG8JSDlZTn2Y1pamlVPgiUxD4wcqfZWE5mfi5ycHGg0mjK3k8zLyxM89D3KuahXrx4/lmhCQgK0Wm2Zqm1ZthVzpP2brTRY7rssgWd8fLzgYdle5yF5eXlQqVQICgoqc0m4ZbVw8zZUpiq4VcFynFKWZausrVZmZiY++OAD/hyLRCKMGzcOo0aNKrHKbnmGoZg3b57gJYJSqeSHVZk9ezb27t1rtxTR8rpSUb1TW+ZBR0q9K7K5hPnne9R7S0nXCp1OJ2jLXBKNRiMoaa7Ilz6Pi5p6nyWkrKiqLSEVzM/PT1CqYN5DoaMsH7QsgwTzh96bN2861EmKZVf09sZQK4n5w2hZH/zMx72rCpbBydWrV8u8bXx8vOCB0pGAtSYyzy8Gg0HQK2dprl+/LujY51HOhXlnInq9vszpMB92wsXFBXXq1Cl3Gix7IC5rvrAc+sKyI5VvvvkGLVq0QOvWrdGnTx+Hz7EJwzAV2kupI8yDcp1Ox5dOl0V2dvYj9dS8e/duQQA1ffp0fPDBB6W2E7W8rpQ2xuPOnTsF44UOHz4c8+bN46cTExOxaNEiu9vXrVtXMO3I98xxHNLS0mym0d/fXzBsiSP7jY6OLvO6pTG/VqSkpFgFkyWxvLeUdq0oa7qjo6MFJXnV9fuoao/DfZaQsqLAk5AK5uLiIhinMTIy0uphtazMx1wErEtXzKuCFRQU4OjRo2XaL8dxOHDgAD/t4uKCRo0aOZw+8ypUZW0nV9YH/Ioa4qJ169aCfZl/7tJYrutoT6U1jWXVwYMHD5Z5W8tz8Sid3nTs2FHQnujIkSOlbqPX63HixAl+ulOnTo/UJsnT01PQw3FZ0gBA8Buz3Adg7PnS/OHQPM0lycrKElRpbdSoUbWVsFvmE0fG45w0aRJatmyJjh074uWXX3Y4CI2MjBRMv/rqq2XaznLIjpICz8TERCxevJif9vf3x5w5czBs2DB06dKFn79r1y5BcGrO29tbEKCfOXOmzO0+T506hS5duqBFixZ4/vnnsXnzZsHyDh068H+fO3dO0FOwPZmZmVbn7lFU1LWCYZhSr5um2g+l+fPPPwXTnTp1slqnuoZnqkzm99mylqxX9RinhJQVBZ6EVIKXXnpJML1gwQKHO2PhOA7r1q3jp319fa0e9l944QXBsBBr1qwpU4cLu3fvFgS1vXv3LtdDvHnvhXq9vtQHn6ioKERERJRp3+YPEKWVXpTE09NT8DB5/PhxXL58udTtVCoVfvvtN37a2dkZzz33XLnTUdnM34rbO19NmjQRPCzv2LEDcXFxpe773r172Lt3Lz8dHBzs0LA0llxdXdGtWzd++o8//ii1muCuXbsEVf5KG5i9LMzHG4yMjCx1uJJ79+4JAtQhQ4ZYVUHt1q2b4Le0ZcuWMnXWs3LlSkH1uFGjRpW6TWXp1q2boNRt06ZNZSrxOnbsGP+STaVSwcXFxardamksg7eyVFM+cuSI1Xdnr+2gqRqt+XeycOFCvtOlBQsWCNoO/u9//7MaqsVk8ODB/N9qtRrff/99qWllWRarVq0CYOwcJzY21qrkbtiwYfzfhYWF+Pnnn0vd7/r16yu0s52uXbsKqtuuW7euTFV5z58/Lxhfuk2bNqV2ArZjxw6rXoItpaWlYfv27fz0s88+a9UZF2A9fMej3DtqCvP77MOHD0stzfznn3/w8OHDyk4WIeVCgSchleDll18WVMWKiorCa6+9hrt375Zpe41Ggzlz5giq6b799ttWwWFgYKCgs6Ho6GjMnTu3xCq3//33HxYuXMhPS6VSvPnmm2VKlyXzweIB4LvvvrPbBiU1NRVz5swpcxsV87e8j9rL5uTJk/m/WZbFu+++azW+p7m8vDxMmzZN0L7q9ddfr9BeIytaWc4XwzCYNGkSP61WqzF16lS7D9aAsZrdtGnTBCVXkyZNeuQ2fxMmTOD/zsrKwowZM+w+OF+9ehWfffYZPx0eHm7V63N5DB8+XPBwPXPmTCQmJtpcNysrC9OmTeN/W05OThgzZozVet7e3hgwYAA/nZaWVupv8tdff8WmTZv46fr161dIYF1ezs7OGD16ND+dnZ2NKVOmlBgcxMTE4KOPPhLMM89rZWXe6RNgDEpKcvbsWcydO9dqvr28tG7dOkHp6JAhQwQvQYKCgjBr1ix+OjMz02YHRIDx5YB5L8E///xzqeldtmyZoNZH27Ztra6j3bp1E4yx++OPP5bYcdKxY8fw008/lXhcRykUCkEeSE1NxYwZM0rsxO7u3buYOXOmINh76623Sj1WZmYmZs2aZbd0PD8/H++++66gN+m3337b5rqWLzoqsofm6mKeP1iWxbfffmt33Xv37mHBggVVkSxCyoUCT0IqgUwmw+rVq+Hm5sbPi4qKwuDBgzF9+nTs3bvXqtMIjuMQHR2Nn376CX369MHu3bv5Zd27d7dbAjJnzhxB+6d9+/bh5Zdfxr///it4+IqPj8fnn3+OcePGCR4epk2bZreDlNI8++yzgkG1T5w4galTpwoG9s7NzcXvv/+OF198Ebdv3y7zsC/m1QxzcnIcqiJrqW3btoIgISkpCSNGjMCPP/4oKEVTq9XYt28fhg4dKhgMvnHjxpgyZUq5j18VzM/X+fPn7Q6uPmTIEPTu3ZufvnXrFoYOHYotW7YIHuyys7OxadMmDBs2TLCvrl274uWXX37k9LZu3VpQYnTu3Dm8/PLLOHfuHP/gmpeXh/Xr12PMmDF8aaBYLMa8efNKDHx79uyJhg0b8v/sDY/h4uIiCDJSU1MxfPhw7N69m//tGAwG/PPPP3jxxRcF5+Htt9+2CpJMPvjgA0HHQH/++SdGjRqFs2fPCqqjX79+HdOnTxcE1QqFAsuXL6/2MfImT54saL96/fp1DBs2DH/88YegVDInJwe///47XnnlFcE1bdiwYYIqo2XVt29fwfQXX3yBr776SvByRK/X49KlS/jwww8xfvx4myVxtgKO6OhorFy5kp/29fW1GbSOGjVKULvk2LFj2Lp1q9V6bm5ugu+O4zjMnTsXM2fOxI0bNwTzr169irfeegvr16/n5ysUCqsxRAFjqd3ChQv52iwGgwH/93//h88++0xQkpWSkoIvvvgCU6dOdah9f1lNmjQJLVq04KfPnTuHYcOGYf/+/YLS+bS0NPzwww94+eWXBdfTV155RVDbpCSnT5/GK6+8glOnTvG/Eb1ej6NHj2LEiBGClwUDBw60W/vEspO87du3V2hvv9WhR48eglL4rVu34uOPPxbkhYyMDP47SElJqfFjSpOnF/VqS0glqV+/PjZu3Ih33nkH8fHxAIwPEH/++SffVkUqlcLb2xs6nQ7Z2dk2Hx769OmDL774wm7bFXd3d6xduxaTJk3iS2uioqIwefJkfv+FhYU2H84mTJggKA10lEQiwZw5czBjxgw+WDhy5AiOHDnCV7Mzf2CUSqVYs2YNxo4dW+q+mzZtKph+7733sHTpUgDAuHHjMH78eIfSOnv2bKhUKuzfvx+AMSD+4osv8OWXX8LT0xNSqRQZGRlW30GjRo3www8/OFxlsKo1adIE586dA2D8bIMGDUJAQAAKCgqwdu1a/gGSYRgsW7YM77zzDr9+WloaPvnkE8yfP59/cMvIyLAqne7YsSNWrFhRYe2oPv30UyQmJvIl+zdv3sQbb7wBpVIJV1dXpKenW7Ub/vDDD0sc5sJRI0aMwJ07d/Drr78CMFYRnT17Nj7++GN4e3sjMzPTqkOPF154ocSSHB8fH/z8888YO3Ys3z4vMjISY8eOhUKhgKenJ7Kysqx6nlQqlVi7dq1V3q8OMpkMa9aswaRJk/jOX5KTk/Hxxx/jk08+gZeXF0QiEdLS0qzySadOnfDpp5+W67idO3dG79698c8//wAwBh9r167F2rVr4erqCrlcbjNvNm3aFDdu3OCvQ5bVEbVaLT744APBy7hPPvnEqndawPgbWbRoEYYMGcJ/90uXLkXHjh2tOmF7/vnn8dFHH2Hp0qV8Xt2/fz/2798PpVLJf9eWJYVOTk746quv7L70a9asGT7//HPMmjULer0eBoMBv/76K3799Vd4e3uDYRhkZGTwn9fb2xtdunTBnj17Sjy/jpDJZPjmm28EeSA2NhYzZ86ERCLh712ZmZlWVVoHDhwo6KypJOHh4bh9+zaio6MxYcIEKBQKeHh4QKVSWf32OnToUGKnTwEBAfD29uZfghw7dgzt27eHh4cHPD09Sy2Rrok8PDwwffp0/v4HGJsn/PHHH3z+Nb+/u7m5YdmyZXZLhQmpTlTiSUglatiwIfbu3YspU6YISj9NdDodkpOTbQY8QUFBWLZsGb755ptSg5769etj+/bt6NevnyAoMO3fMugMCgrCmjVr8MEHH5T/wxXp27cvli5davX58vLyBEFnUFAQ1q1bh44dO5Zpv926dbN6W56amorU1FRB759lJZFI8OWXX+Kjjz4SPGxyHAeVSoWUlBTBdyCTyfjB6/38/Bw+XlV78803Bek0GAxITEyESqUSlL4AxpK+n3/+GW+//bagii7LskhLS7MKJpydnTFz5kz89NNPFVrd2NnZGT/99BOGDRsmyLdqtRopKSmCoNPNzQ2ff/65oPpfRZk7dy4++OADwbkw/XbMH3zFYjHGjx+Pr776qtTgu2nTpti1axfatWsnmF9QUICHDx9aBZ1t27bFtm3brNavTv7+/ti8eTNGjhwpaEtuMBiQlpaGlJQUQT6RSqWYPHky1q5d+0gvar744gurkk/A+ELFMm/KZDK89dZb2LJli6D3VMs2nytWrMCtW7f46f79+6NPnz520xAWFoZp06bx02q1Gh988IHNDtTGjBmDH3/80aqnW7VajcTERKugs2HDhti4cSN69uxp9/gA0K9fP/z6669WwW5GRgbS09P5YC8kJAQ//vgjAgMDS9xfedjLA3q9HikpKVCpVIKg08vLC4sWLcKXX35Z5n4D5s6di9GjR/O/qYKCAiQlJQl+e6a89dNPP5U4LijDMJg9e7bg95mfn4/ExETcuHHD4b4Waopx48bh/ffft+rZPisrS3B/b9SoETZu3PhIQ00RUpmoxJOQSqZUKjFjxgy89dZbOHnyJC5cuICbN28iMTGRL00RiURwc3NDSEgImjdvju7du6Njx45lHv8PMN7wV6xYgdu3b+PAgQM4f/48EhISkJWVBbFYjICAADRr1gx9+vQpd2dC9gwdOhTPPfccduzYgWPHjiEmJgY5OTnw9vZGWFgY+vXrh4EDBzpU/YdhGHz33XdYv349Dh48iISEBBQUFMDFxeWROowYM2YMXnzxRezbtw+nTp1CdHQ0VCoVdDod3N3d0aBBA3Tp0gVDhgwRdOpQ03l7e2Pnzp1Yu3YtTpw4gdTUVOj1enh6etp82JJIJPi///s/jB49Gnv37sXp06dx7949qFQqGAwGeHt7o1GjRnjuuecwaNAgmy9OKoJSqcTSpUvx+uuvY+/evTh79ixSU1ORl5cHV1dXNGjQAF27dsXw4cMrtZfXCRMmYODAgdi5cyeOHz+O+Ph4ZGVlQS6XIzQ0FO3bt8eIESOsxv8sSXBwMDZs2ICIiAgcOHAAly5dQlJSEvLy8uDm5sZ3GNanT58yv5CpakqlEp9++ikmTpyI/fv34+zZs4iJiUFmZiZYloW7uzvq16+PDh06YNiwYWUaC7U0CoUCq1atwvnz57Fr1y5cuXIFKSkp0Gg0UCqV8Pb2Rv369dGqVSsMHjyYf+HSu3dvvq3j2bNnERcXh9DQUFy8eBG//PILv39PT0/873//KzUd48ePx+HDh/kXXZcvX8YPP/xgsySpc+fOOHDgAI4ePYp///0XV65cQVpaGvLy8qBQKODv748WLVqgb9++6Nq1a5mv7W3atMHBgwdx4MABHDp0CFFRUcjKyoKrqytq166NF154AcOHD4eLi0uJ7UAfhSkPvPnmm9i3bx/OnDmD2NhYvodVX19fNG3aFD169ED//v0dfukgEonw8ccfY/Dgwdi8eTMuXLiA1NRUyGQyhIWFoWvXrhgxYoSgWUdJTNfuX3/9FVFRUcjMzIRMJoO/vz+Sk5MRFhbm8DmoCd58803069cPO3bswPHjx5GQkAC1Wg1fX180aNAAAwYMwAsvvACZTGa3eQEh1Y3hnoQuvwghhBBCSI13/vx5QZv73377De3bt6/GFBFCqgpVtSWEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqloHE9CCCGEEEIIIZWKSjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYSQSmAwGKo7CZXiSf1chBBCKhcFnoSQx0Z+fj569+6NXr16QavVCpbdv38fM2bMQOfOndGsWTN06dIFCxYseORjjh49Gg0bNsTo0aMfeV/k6cCyLDZu3IglS5ZUy/F79uyJhg0bYs6cORW+7wMHDuD999+v8P0+jXbu3ImGDRuiYcOGSEhIECwzzV+9enU1pc4x58+ft/tZqtucOXPKfQ1PSEjgP9f58+cfOS1arRZ9+vRBz549kZeX98j7I+RxQ4EnIeSx8dlnnyE+Ph7vv/8+ZDIZPz8jIwMjR47E4cOHkZ6eDp1Oh7S0NMjl8mpMLXlavf/++1i4cOET92D59ddf47333kNaWlp1J4WQx5JMJsMHH3yAxMRELF68uLqTQ0iVk1R3AgghpCwuXryI7du3o1WrVnjhhRcEy44ePYqsrCwAwEcffYT+/fuDYRhBcFpefn5+CA0NhZ+f3yPvizwdUlNTq/X4QUFBEIvF8Pb2rtD9pqSkVOj+iH2hoaEAAHd392pOCaloffr0wbPPPoudO3di2LBhaNeuXXUniZAqQ4EnIaTG4zgOCxcuBADMmDHDarmpBMbDwwNjxoyp0GN/+eWXFbo/Qirbhg0bqjsJ5BH9/fff1Z0EUommT5+OsWPHYuHChdizZw9EIqqASJ4OlNMJITXe4cOHER0djfDwcHTs2NFquamzE2dn56pOGiGEEOKQjh07okGDBrh9+zYOHTpU3ckhpMpQiSchpMb76aefAAAvvfSSYP6cOXOwa9cufjoxMRENGzYEALRr105Q8pOXl4ft27fjxIkTuH37NrKysiCVSuHj44Nnn30Wr732Glq0aGF17NGjR+PChQtW+zMde9CgQZgxYwY++eQTXLp0CTKZDPXr18eqVatw//59vgT21q1buHfvHn766SecPXsW6enpcHd3R5s2bTB+/Hi0bNnS7ufPzMzEr7/+imPHjiE+Ph4GgwGBgYHo2rUrxo8fj8DAQJvbFRQUYPPmzfjrr79w584daDQaeHh4oEmTJujfvz8GDRoEsVhstV1WVhY2bNiAY8eO4cGDB9Dr9fDy8kKLFi0wZMgQ9O7d225aS5OYmIht27bh2LFjSExMhMFgQEhICHr06IHx48fDw8PD5nYXL17E5s2bERERgbS0NCiVSoSFhaF379547bXXoFQqrbYxfUfDhg3D0qVLceDAAWzduhW3bt1CQUEBgoKC0KdPH0yYMMFmlUaO43Do0CHs3r0b169fR3Z2NlxcXBAWFoYePXpg1KhRcHV1tTqeya5du/jpW7duASjOT2+99Raef/55LFiwADdu3IBSqUSzZs3w3Xff8VXEVSoVtmzZgtOnT+PBgwfIycmBk5MT/Pz80K5dO4wZMwb16tWzSnfPnj2RmJjIf+5HPR+rV6/GN998w09fuHCB/50dOXIEwcHBguMGBQXh6NGjNr/H0ly+fBm///47Ll68iIyMDCgUCoSHh2PAgAEYPnw4pFKp3W1v3LiBX375BZcuXUJ6ejr8/f3Rr18/vPXWWzh8+DA+/PBDq7Tt3LkTH374odVnMZeQkIBevXoBAJYsWYIXX3zRZrp37tyJS5cuITU1FYWFhXBxcUG9evXQq1cvvPrqqzbzqD2m8zt16lRMmzYNgHX+Ko2tz/Pw4UOsX78eJ0+eRFJSEhiG4X9/Y8eOhaenp939qVQq/Pbbbzhy5AgSEhIgl8vRtm1bTJkypcxpssdgMODAgQPYu3cvoqKikJubC3d3dzRt2hSDBw/GgAEDwDCM3e0vX76M9evX49q1a0hPT0dgYCD69euHSZMmlXrsvLw8bN26Ffv370dsbCwkEglatGiBiRMnIigoqMRtIyMj+fyampoKJycnBAYGokOHDhgzZgxfZdqW4cOHY8mSJfjpp58wYMCAUtNJyJOAAk9CSI12/fp1XL9+HQDQt2/fcu3j2rVreOutt5Ceni6Yr9PpEBcXh7i4OOzZsweLFi3C8OHDHdp3dnY23njjDSQmJgIACgsLkZmZCV9fX9y/f59f7+jRo3j33XdRWFjIz0tPT8fhw4fx559/YtmyZRgyZIjV/s+dO4fp06cjOztbMP/Bgwd48OABtm3bhuXLl1udm6ysLIwePRq3b98WzE9LS8Px48dx/Phx7NixAz/88AMUCgW/PD4+HqNHj0ZSUpJgu+TkZCQnJ+Ovv/5C//798eWXXzpcPezQoUOYO3cu1Gq1YP7t27dx+/Zt7Ny5E+vWrUN4eDi/jGVZfPrpp9i6datgm+zsbFy5cgVXrlzBpk2b8N1336FRo0Y2j8txHD744APs2bNHMP/+/ftYu3Yt9u/fj82bN8Pf31+w/P3338e+ffsE87KysnD58mU+QPrtt99Qp04dh84DYDzPb7zxBnJzcwGA76XZFHQeP34c//d//2d1rnQ6HfLy8nD//n3s3LkTa9aswXPPPefQsct7PioTy7JYvnw5fvnlF8F8rVaL//77D//99x+2bduG77//3ma6Nm3ahEWLFgmGeomLi8PatWtx9OhRh3/XZWUwGPDpp59i27ZtVssyMzNx8eJFXLx4Ebt27cLmzZvh4uJSKemwJBKJrNq4HzhwAB9++CE0Go1g/q1bt3Dr1i1s2bIFa9asQZs2baz2d/36dUyaNAkZGRn8PLVajT///BNHjx7FqFGjyp3WjIwMTJ06FREREYL56enp/LVq27ZtWLVqlc0XU99++y1WrlwpmBcTE4PvvvsOf//9N0JCQuweOz4+Hm+++SZiYmIE80+ePIlTp05h3LhxdrfdunUrPvnkE3Acx8/T6XS4c+cO7ty5gy1btmDFihV2X9T17dsXS5YswY0bN3D16lWbLz4JedJQVVtCSI128OBBAED9+vWtSvYWLFiAiIgITJ48GQBQq1YtREREICIiAj/++CMA49vst99+G+np6fDx8cHixYvx119/4dy5c9izZw+mTZsGhUIBjuOwePFiqwf90pw4cQKpqalYsGABTp8+jW3btvElKObee+89eHh4YNmyZThx4gROnDiBefPm8ce21Qvq7du3MXnyZGRnZyM4OBjLly/HiRMncPbsWfzwww9o1qwZCgsL8d577+HSpUuCbb/66ivcvn0bSqUS8+bNw99//41z585h165dGDx4MABjydWvv/4q2O7TTz9FUlISfHx8sHz5cvzzzz84e/YstmzZgi5duvDfyYEDBxw6TxEREXj33XehVqsREhKCL7/8EidPnsTRo0fx8ccfw9nZGWlpaXjnnXcEQ+V89tlnfNDZsWNH/Prrrzh79iz+/vtvzJw5E0qlEg8fPsTYsWORnJxs89h//vkn9uzZg+7du2PTpk38d28qZUhMTMSKFSsE2+zfv58POt944w3s3bsX586dw59//ol3330XEokEKSkpgiF7TPmxdevWAIBBgwbx+dHSgQMHwHEcVq5ciTNnzmD9+vV8ydHDhw8xY8YMqNVq1KlTB19//TX/PezYsQOjR4+GRCKBVqst15BBjp6PyZMnIyIiAoMGDQIAtG7dmv9c5iVCISEhCAsLK/FB355Vq1bxQefzzz+PTZs24fz58/jnn38wZ84cuLi44MaNG5g8ebJV4HT69GnMnz8fBoMB4eHhfK2C3bt3Y+DAgbhz5w5WrVrlcJrKYv369XzQOWDAAGzduhWnT5/G0aNH8cMPP6BVq1YAjL/l9evXP9KxTPnL3j/z686MGTMEHaKdPn0as2bNgkajQaNGjbBmzRqcOXMGJ0+exNdff406deogKysLkyZNsgrCMjMzMWHCBGRkZMDDwwMLFy7EiRMncPz4ccybNw9yudzqOlJWWq0WkyZNQkREBBiGwahRo7B7926cP38eu3fvxiuvvALAOFzLlClToNfrBdvv3LmTDzrbtGmDjRs34ty5c9i9ezeGDRuGu3fv4tixY3aPbQo65XI53n//fRw9ehSnT5/G8uXL4evri3Xr1tncNjExEQsXLgTHcejatSt+//13nD59GseOHcPnn38OX19f6HQ6fPTRR3Z7tw4MDESDBg0AgKrbkqcHRwghNdjAgQO58PBwbu7cuXbXWbVqFRceHs716NHDatnGjRu58PBwLjw8nLt48aLN7devX8+vc/LkScGy119/nQsPD+def/11wfzZs2fz23z11Vc293vu3Dl+nTZt2nAPHz60Wuf333/n1zl8+LBg2ahRo7jw8HCuZ8+enEqlstq2sLCQGz58OBceHs4NGjRIsKx9+/ZceHg4t2bNGqvtWJblRo8ezYWHh3MDBw7k5+fm5nINGzbkwsPDud27d1ttp9FouL59+3Lh4eHc5MmTbX5mewYNGsSFh4dz3bt35zIyMqyW//XXX/x52LVrF8dxHBcdHc2nZ8aMGZzBYLDaLiIigmvatCkXHh7OTZ8+XbDM/DuaNm2azXSZzt+zzz7LsSzLz582bRoXHh7OvfHGGza3W716NRceHs41bNjQ6rsx5ZnZs2dbbWdaFh4ezm3bts3mvpctW8aFh4dzTZs25eLi4myus3jxYn4/9+/fFyzr0aOHzeM/yvkw397yt/CoHjx4wDVq1IgLDw/nFi5caHOdyMhIrnHjxlx4eDi3bt06wbJ+/fpx4eHh3PPPP8/l5ORYbTtv3jz+c1teI3bs2MEvi4+Pt3ns+Ph4fp0dO3bw8w0GA9epUycuPDycGzdunNX54jiOU6vVXNeuXbnw8HDulVdeKfOxTfNXrVplM02W/vvvP7u/A71ez+eJ4cOHc4WFhVbbZ2Zm8utY/rYXLlzI58cbN25YbRsZGckfu6TzaMuGDRv47TZu3GhznXXr1tlcp6CggD//I0eO5DQajdW25r8Ty3z7yy+/8Mv+/fdfq23j4+O5Nm3a8OucO3eOX2a6rzzzzDM2j3v+/Hl+uz///NPu5587dy4XHh7ODRgwwO46hDxJqMSTEFJj5eXl4e7duwAgqH7piMDAQLz22msYOXIkXxJlqX379vzfKpXK4WP069ev1HWGDBlisy1mjx49+L/NB16/c+cOLl68CACYMmWKzbZXTk5OePfddwEYq8tFRkbyy0ylhpbViwGAYRj873//w6+//orvv/+en6/X6/lqY7a2k8lkWL58OX7//XeHStru3LnDt3GcPn06vLy8rNbp06cP2rZtK/gu/vjjD3AcB5lMhnnz5tms2tuqVSu+mt9ff/0lqApo7q233rI5v3v37gCMeS0zM5Ofbzp/WVlZVqUsADBq1Cj88MMPOHDggKCdZ1kxDGO36nh4eDheeeUVTJw40W7pofkQDOXJs46ej8q0detWsCwLhULB52dLLVq0QP/+/QFAUK01Ojoa9+7dA2BsD2nru5gzZ06lDEuSn5+PESNGYODAgZg8ebLNNogKhQLNmzcHUL7vqSwSEhIwbdo06HQ6NGrUSNCuFzBWGzU1BZg5cyacnJys9uHh4YG3334bAPDvv//yPYVzHMfXOhk2bBgaN25stW2LFi1stnstC9N32bRpU7z22ms21xk3bhyaNGkCANiyZQs//9y5c/x1atasWTaHz3rvvffg5uZmc7+mGg2dO3dGt27drJYHBwdj4sSJNrc1XR/0er3N30m7du2wZs0a7Nq1i68pYoupxPPevXtP3Li/hNhCbTwJITVWTEwMWJYFANStW7dc++jZsyd69uxpd3l6ejouX77MT5u3ESsLqVTKPzyUxF7nQeZjLRYUFPB/X7hwgf87PDwc+fn5Nrdv1KgRxGIxDAYDLl26xB+nbdu2+Pfff/H7778jJSUFAwYMQOfOnfkH8AYNGlil28PDAw0aNMCdO3fw5Zdf4vbt2+jbty86dOjAd4xSnnZIZ8+e5f82BTa2bNy4UTD933//ATA+xNkKVk369++PX3/9FSzL4tKlS3j++ecFy52cnOy2/zQ//+btb9u2bYtjx47h5s2bePnllzF8+HA899xzfGctXl5eNh9Wyyo4ONjuA/HQoUMxdOhQu9smJSXhxo0b/LSjebY856MymfK66TduL6+3bNkS+/btw/3795GZmQlPT0+cO3eOX26vratCoUCPHj2we/fuCk23q6sr/u///s/ucr1ej5s3b/IvQ2y9wHhU+fn5ePvtt6FSqeDh4YE1a9YI2mwDxmqqJiVdS5o1awbAGGxGRESgb9++uH37Np/+ktoS9+7d26oddmmysrL4NuiWYzNb6tevH27cuIHbt29bffeurq549tlnbW4nl8vRpUsXPng2yc3NRVRUFICSP1evXr1sDqllager1Wrx0ksvYeTIkejRowcaN27Mv4AoSydspjzPsixiY2PRtGnTUrch5HFGgSchpMYyb7P3qCUWOp0O//33H6KiovgOhe7fv4/U1FTBepxZRxFl4e7ubrNnWEv2Aifzt/Tmx46Pj+f/LmvHKOYdAs2ZMweRkZHIzMzEP//8g3/++QdisRjNmzdH165d0adPH77nTHOffvop3nzzTRQUFGD37t3YvXs3pFIpnn32WXTr1g19+vQpsadGW1JSUgAYA9uSes20ZPr+bfXcas58+cOHD62Wu7u72+0Iyfz8m15yAMBrr72GP//8E5GRkYiKiuIfUsPCwtClSxf06tUL7du3L/f4eyUF0iaFhYU4e/YsoqOjERcXh/j4eNy9e9eqhKU8edbR81GZTCX9UVFRdgMIS8nJyfD09BTkrZKuEeWtMVFWiYmJOH/+PO7fv4+4uDjExsbiwYMHVu1RKxJX1EnU7du3IZFIsHLlSru98prYGo7KFtO1xPwaXNLvvrTfqC0pKSl83i3txaL5ctN3b0pjadcjW2kzP3ZJ24eFhfEv9sw1b94co0ePxoYNG5CWloZVq1Zh1apV8Pb2RufOndGjRw9079691J6MzTtLSk5OpsCTPPEo8CSE1FjmHf08Sm+Qhw4dwuLFi/nqYyYMw6Bu3bpo2bKlQ8MUmLNVbc0WicSxy215ql2ZbxMWFob9+/fj+++/x8GDB5GRkQGDwcD3BLt69Wq0adMGixcvFvTK2qZNG+zdu5fvETI3Nxc6nQ7nz5/H+fPnsXz5cvTs2RMLFy6Ej49PmdJl6pFXLpeX6/OU9vBmXsJjq3OokobgsEcul2Pjxo3YsGEDtm/fzvdQbOpNeMOGDQgKCsKnn37qcK+yQOn5ZuPGjVixYgXf662JSCRC48aNUadOnXJ3SFKe81GZHiWvm85PaXnLXunyo8rKysK8efPw119/Wb0AcHZ2RocOHZCWliYooa4oK1aswD///APA+KKpQ4cONtd7lPObk5PDz7MsSTVXnurm5ukqbQxm82uAqcS2rN+9rXtHWT+XSCSCUqm0+h0CwMcff4y2bdtiw4YNuHTpEliWRUZGBvbu3Yu9e/fC2dkZ77zzDiZMmFCmtDnasR0hjyMKPAkhNZZ5m6mylCra8tdff+Hdd98Fx3Hw8vJCnz590KxZM9StWxfh4eFwc3NDbGxsuQPPymL+MHX16tUyB7jmfHx88PHHH2Pu3Lm4du0aTp8+jTNnzuDy5cvQ6/W4ePEixo4di0OHDgkevkJDQ7FkyRK+F80zZ87g9OnTuH79OjiOw9GjR5Gamort27eXOLaeiWnfjlbdVCqVyMnJKfWBzLzqoCNjJZZGJpNhwoQJmDBhAmJiYvjzd/bsWeTn5yMxMRFTpkzB1q1bK7SkYv369ViyZAkAY0/NvXv3RuPGjVGvXj00aNAASqUSZ86ceWJ6wpTL5cjLy0P//v3x9ddfO7St6cHdvJq6LeY9JTvKXqmlTqfDhAkT+OGe2rVrh44dOyI8PBx169ZFnTp1IBKJMGvWrAoPPE0vlQDgxRdfxOjRo+2ua7qW+Pj44PTp0w4dx7wUuaTfYXnOr3mwaa/6r63lpt+4KW3l+e7L+rnsbW/St29f9O3bFyqVir8+nD59GikpKcjPz8fy5cshk8nsfj/mtQrKci0l5HFHgSchpMYyfzAp7eHCni+//BIcxyE4OBjbt2+3WdWzqjpRcUStWrX4vxMSEkqsysZxXIkPLSKRCC1btkTLli0xZcoUqFQqLFu2DLt370ZSUhL+/vtvfogVc1KpFO3bt0f79u3x7rvvIikpCR9//DFOnTqF69evC4YOKYmpU6WsrCzk5OTYLX06fPgwYmJiUL9+ffTu3Ru1atVCTk4O33mMPaYOqADheatIderUQZ06dfDaa69Bq9Vi8+bNWLJkCXQ6HTZv3oxFixZVyHEKCwvxzTffADC2p92wYYPNEp2amGfLq1atWrh9+zbfAY49tvJ57dq1ARhL1TMyMgRtVM3FxcXZnG9e5Vin09lcx965Pnz4MB90zpkzx+6YjxX9XV29ehUfffQRAGO71/nz55e4vuk3kZmZCbVa7dDLGfPhcu7fv2+3bbB504CyCggIAMMw4DhOMOaxLbZ+46b/mvoCsFd93LyqsfmxRSIRWJbF/fv30atXL5vbpqamlqm6tJeXFwYNGoRBgwaB4zicPn0a7733HrKzs7Fhwwa7gad53iit1JeQJwH1aksIqbHMe4E1teVyhEql4seke/755+22LzTv/Kaq2rWVxnwQ9yNHjthdLyIiAi1btkTfvn35ErCrV69i5MiRaNeuHe7cuWO1jZeXF+bOnctPm87tv//+i+HDh6Ndu3Y2q5YFBgZi5syZVtuVxrzd3smTJ+2u9+OPP+Lrr7/G5s2bARSfgwsXLpTYI+jhw4cBGEsMnnnmmTKlqSQFBQWYMGECnnvuOfz+++9Wy2UyGd544w2+3WB58qY9d+7c4c/90KFD7VYjrI48W1klMqbvOSoqyu5YrAAwb948tG/fHi+99BJfTdO8F2RTtVNbTpw4YXO+eRBmL4+Zdz5mb75pvElLBQUFuHLlCoCK+Z5SUlLwzjvvoLCwEL6+vli9erXN3lzNmc6vwWDAv//+a3e9ffv2oVWrVhgwYADfo3a9evX44LOk65C981sSU2dmQPFv2J4///wTgLEJgaldpKmKu1qtxpkzZ2xux7IsTp06ZTXf2dmZPy/l+VyLFi1C37598d5771ktYxgGXbp04V/mlXR9MA88bfV6TsiThgJPQkiNZaqqBtgvsSiJebtKe6Vm0dHR+OGHH/hpe6UeVa1Fixb80AU//vij1aDugLF0bOnSpdBoNEhMTOR7nA0MDMTVq1f5t+223Lx5k//b1LmGt7c3rl27huzsbGzatKnM25WmZcuWfIntqlWrbLY5O3LkCF96NGDAAADAiBEjABirui1YsMDmg/vVq1f5QLVbt27w8/MrU5pKolAokJKSgpSUFGzdutVmiUd2djbfkZHleTDlu/LkJfM8a17KY+706dPYuXMnP11VedZU3b2ij/fyyy8DMPb6On/+fJu99EZGRmLXrl3IysqCh4cHX8W2bt26fNvG1atXW7XjBoDff//dbomaqcQUgM2qyyqVyu5vyLz6v63vimVZLFiwgM/vj3reNBoN3nnnHaSmpsLJyQlr1qyBv79/qdv16tWLb4/9xRdf2AywVSoVVq1aBbVajfT0dMGwKaahUg4ePCh44WESHx+P3377rVyfyfTdR0VF2XzJAwC//vorf90xXRMAY8/Tpu9v2bJlNq8r69evt1uS/tJLLwEwvkAw/z2ZZGVl4dtvv7W5LcuyiImJwbFjxxAbG2u1nOM4fgipkq6TpmuIWCwWtLUn5ElFgSchpMZSKBT8A1B52ki5ubnxwdjx48exaNEi3Lt3D5mZmYiOjsaKFSvw6quvCtr4lNbWqCrNmzcPEokEOTk5eOWVV7Bx40YkJCQgIyMDp06dwtixY/mxOydMmMCXTPj6+vJv27du3YoPP/wQV69ehUqlQnx8PHbs2IFZs2YBMAapprFEmzdvzo8PuXLlSixbtgw3b96ESqXCgwcPsH79eixevBiAMZg0Db9QGtO4oSKRCDExMRg5ciSOHDnCl0j//PPPfHoaN27Mp71Ro0Z8FbVDhw5hwoQJOH/+PDIzMxEfH4+ff/4ZY8eOhU6ng7u7Oz799NNHPeU8U4cgt27dwrhx43Dy5Ek+GD1+/DjGjx+P3NxciMViq9IuU4nMxYsXERsb69D4jeHh4XzwvGXLFnz77bf8Pq5evYpFixZh0qRJguCsqvKs6XPdunULUVFRyMzMFARTb7zxBl544QW88cYbDu23cePG/FisR48exZgxY3Dq1CmoVCrExcVhw4YNmDhxInQ6HZycnPD+++8Ltp83bx4UCgXS0tLwyiuv4NChQ/y2X331VYnVoBs2bMg/8G/cuBHffPMNEhISkJKSgn379uHll1+GSqWyWT3VfHzGmTNn4siRI0hNTeWrr7/++uuCgOZRvydTW22GYbB06VK0bNkSWq0W+fn5Nv+Z2ibKZDK+am5iYiKGDx+O3bt38/n5r7/+wujRo/mXezNnzhRU+5w4cSLq1KkDlmXx9ttv46effsLDhw+Rnp6O3bt3Y+TIkeVuCvHKK6/w15GFCxdi/vz5iI6ORnZ2NqKjozF//ny+vXOrVq0EeUskEmH+/PlgGAa3b9/GyJEjcfz4cWRmZuLevXtYsmQJli9fbrd/gCFDhqBt27YAjB0FffXVV/xv7Z9//sGrr76KpKQkmyX9o0ePhkwmg1qtxrhx47Br1y7ExcVBpVIhMjISM2fO5IcJMuVtWyIiIgAATZo0cbjzNUIeR9TGkxBSo3Xu3BlRUVH8mI6OmjdvHsaMGQO1Wo0NGzbYLL0YPnw4zp49i8TERJtvr6vLs88+i1WrVmHWrFnIysrCwoULsXDhQqv1RowYgenTpwvmzZ07F/fv38eVK1ewc+dOm2/0fXx88P333wuq6n3++ed44403EBMTg3Xr1mHdunVW29WpUwcrV6506LN07NgRS5Yswccff4zbt29jypQpVuvUr18f33//vaDUb86cOdBqtdi6dSvOnDljs0pdSEgIVq5cWaFV1YYNG4bIyEhs3rwZly5dwptvvmm1jlQqxcKFC62G6mjfvj0OHjyI5ORkfkzRI0eO2BzqwpJYLMaCBQswdepU6PV6rFy50upci0QiTJ48Gb/88gu0Wm2V5dn27dvjxx9/hFqt5kvBfvvtN766a3x8PBITE8vV0czcuXOh1Wqxfft2XLx40WZPoM7Ozvjqq6+s2hnWq1cP3333HaZOnYrExESrsTUDAgJQu3ZtwXiW5ubPn49JkyZBo9Fg9erVWL16Nb9MKpVi6dKlWLlypVWti27dumHAgAE4cOAA4uLibOZpPz8/9OzZE1u2bEFBQQFSUlLKVEppKTExEfv37wdgfJHz8ccfY9asWSWO4Tps2DAsXboUgHGs25ycHCxatAiJiYmYPXu21foMw+Cdd97hSyFNnJyc8PPPP2PixIm4f/8+Pv/8c3z++ef8cpFIhNmzZ/MBoiNkMhnWrl2Ld955B1euXMGmTZts1rbo0qULPv/8c6vewTt27IilS5fy15VJkyYJlgcFBaFPnz5Yv369zc/7zTff4K233sLly5exdu1arF27VrDOrFmzsGrVKqs8HRYWhsWLF2Pu3LlITEzEnDlzbH6+V199FSNHjrT7+U2Bp/lLDEKeZFTiSQip0UzVLuPj421WNy1N8+bNsWvXLrz44osIDAyERCKBXC5HSEgIBgwYgN9++w2LFy/mx7c7duxYjaluCxiryf3111+YPHkyGjduDBcXF0ilUvj5+aFv375Yt24dFi1aZPVW39XVFb///js+/fRTtG/fHp6enpBIJHB3d0fz5s0xffp0HD582OohPiAgALt27cKsWbPQqlUruLm5QSKRwNPTE23atMGHH36IvXv3livIGzp0KA4ePIjXXnsNderUgZOTExQKBZo2bYr3338f27dvR0BAgGAbiUSCBQsWYOPGjRg4cCACAwMhlUrh7e2N1q1bY968edizZ0+ljH/36aef4ocffsDzzz+PgIAASKVSKJVKhIWF4fXXX8f+/fsxbNgwq+1efvllTJs2DbVq1YJUKoWvr2+JbRct9ejRA1u3bkW/fv3g6+sLiUQCpVKJunXrYvjw4dixYwfee+89vmOnv/76q8I+c0m6du2KefPmoU6dOpBKpfDy8kJ6enqF7FsqlWLx4sX89xwUFASZTAa5XI4GDRpg/PjxOHjwILp3725z+44dO+LgwYMYPXo0goKCIJVKERgYiNGjR2P37t0ldjrVoUMH7NmzBy+99BKfv/z8/DBw4EBs374dAwcOtLvtl19+iQULFqBVq1ZwdnaGRCKBh4cHWrVqhZkzZ2L//v2YPHky32Tg77//Ltf5MR+qhWVZ5Ofnlxh02vLqq6/i0KFDGD16NOrXrw+lUgmpVIqgoCAMGTIE27Ztw7Rp02xua+qcbc6cOWjatCmcnZ3h5uaGrl27YsOGDfx1ujx8fHywadMmLFu2DF26dIGXlxekUilq1aqFHj164JtvvsGPP/5od+zboUOH8t9fSEgIZDIZatWqhdGjR2Pnzp12O5wCjKX4v/32GxYtWoRWrVrB3d2db/+5Zs0aTJw40e62gwcPxq5du/DKK68gLCwMcrmcz3cDBgzA+vXrS+z46f79+3zV8EGDBpXxbBHyeGM4R0eeJoSQKjZq1ChcunQJ06dPxzvvvFPdySGEPGbmzJmDXbt2ISgoCEePHq3u5BCCr776CmvXrkW7du3stiMm5ElDJZ6EkBrPVIVt9+7dNabXWUIIIaQ8DAYDP3b022+/Xc2pIaTqUOBJCKnxunTpghYtWiAuLg7Hjx+v7uQQQggh5fbvv/8iNTUVzzzzDDp16lTdySGkylDgSQh5LMyaNQsMw+C7776r7qQQQggh5cJxHNasWQOGYWyOA0rIk4wCT0LIY6F9+/Z47bXXEBkZWeJA8YQQQkhNtW/fPkRFRWHUqFF8j9CEPC0o8CSEPDZmzZqF2rVrY9myZeUasoEQQgipLlqtFitWrEBwcDA/djEhTxPq1ZYQQgghhBBCSKWiEk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZVKUt0JINVPq9UiKyuLn3ZycoJYLK6+BBFCCCGEEEKqhcFggEaj4ac9PDwgk8keeb8UeBJkZWUhPj6+upNBCCGEEEIIqYH8/PweeR9U1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiqrYETk5OgumQkBAolcpqSg0QFxcHg8EAsViM0NDQaksHeXxQniGOojxDHEV5hjiK8gxxVE3JM2q1WtAMzzJWKC8KPIlVR0JKpRIuLi7VlBpAr9dDp9NBKpVWazrI44PyDHEU5RniKMozxFGUZ4ijamqeqahOR6mqLalxRCIR/4+QsqA8QxxFeYY4ivIMcRTlGeKoJz3PMBzHcdWdCFK98vLycOvWLX66YcOGNeotCyGEEEIIIaRqVFZs8GSG04QQQgghhBBCagwKPAkhhBBCCCGEVCoKPAkhhBBCCCGEVCrq1ZbUOKmpqXxX0n5+ftWdHPIYoDxDHEV5hjiK8gxxFOUZ4qgnPc9Q4ElqnOTkZL4r6SfxR0cqHuUZ4ijKM8RRlGeIoyjPEEc96XmGqtoSQgghhBBCCKlUVOJJapw6deqAZdkndgwjUvEozxBHUZ4hjqI8QxxFeYY46knPMxR4khrHzc2tupNAHjOUZ4ijKM8QR1GeIY6iPEMc9aTnmScznCaEEEIIIYQQUmNQ4EkIIYQQQgghpFJRVVtS4+h0OnAcB4ZhIJVKqzs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHAk9Q4N2/e5LuSbtGiRXUnhzwGKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiEk9S47i7u0Ov10MioexJyobyDHEU5RniKMozxFGUZ4ijnvQ882R+KvJYq127dnUngTxmKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiwLME8+fPR8OGDbF69eoK2V9iYiIWLVqEvn37onnz5mjXrh1GjBiB9evXo7CwsEKOQQghhBBCCCE1DbXxtOPs2bPYsmVLhe3v+PHjePfdd5Gfn8/P02q1uHr1Kq5evYodO3bgu+++Q3BwcIUd83F17949vmF1vXr1qjs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHA04br169j6tSpYFm2QvZ369YtTJs2DRqNBmKxGMOHD0ebNm2Qn5+PPXv24PLly7h9+zamTJmCrVu3QqFQVMhxH1f5+fn8GEaElAXlGeIoyjPEUZRniKMozxBHPel5hqraWjh+/DjGjRuHvLy8Ctvnp59+yged3333HRYsWIDBgwdj5MiR2Lx5M15//XUAxgD1t99+q7DjEkIIIYQQQkhNQCWeRbRaLb7//nt89913FVbSCQCXL19GREQEAGDo0KHo1q2bYDnDMPjoo49w9uxZ3Lt3D+vWrcP48eOf2DcdZdGsWbPqTgJ5zFCeIY6iPEMcRXmGOIryDHHUk55nqMQTwJkzZ9CvXz+sWbMGLMtCqVRi3LhxFbLvgwcP8n+PGjXK5joikYhflpWVhXPnzlXIsR9XIpGI/0dIWVCeIY6iPEMcRXmGOIryDHHUk55nnsxP5aC9e/ciISEBgPFNwx9//IEePXpUyL7/++8/AIC7uzuaNGlid70OHTrwf588ebJCjk0IIYQQQgghNQFVtS3i5eWFqVOn4tVXX4VYLEZGRsYj79NgMODevXsAgHr16pX49iIsLAxisRgGgwHR0dGPfGxCCCGEEEIIqSko8ATw2muv4dNPP4VcLq/Q/aanp0Or1QIAgoKCSlxXLBbD19cXycnJePjwYYWm43GjUqnAsixEIhG8vLyqOznkMUB5hjiK8gxxFOUZ4ijKM8RRT3qeocATQPPmzStlvyqViv/b09Oz1PXd3d2RnJyMrKysSknP4yIhIYHvSvpJ/NGRikd5hrB6PfR5+QDLgivqIM7Jx1uwnC0sBKs3QJeTg5hLETAwgFgkgjgsDJxpO5aFLjcXrFYLjmXBFhSC41iAg3EdAwtwpnU54zIAxhUAcBy4okmAg0eL5pAKrv+cMT06HdJPnobMwwMcxwEch8CBAyBRGofT0qoyoSmqeaNVZSLryhVIXFyKdmFc3/gnB21mFjidtmgWxx+76FAAuDIsM3Jr2hgudevaPMepR45CrFDy04ED+kEZYhx7WpORgYJE40tTVqtF6tFjkLq529yPPj8fhsJCm8scpQwNgUfLFjaXZZw7D05vAFNU28i7Uwd4tDDe7/V5+cgrqpEEAClHjkKidLa5H0NhIfT5ecjJyQHHcmBEDNzc3MqVXpmHJ3y6dLK5LDvqBrQZGRBJZQAA10YN4df9OQDG/JtzPcrss10Ax7L8ZzPH6nTQZWeXK32WRFIJAvo+b3NZzoMHyLl/DyK5E8ABEj8fhL/8avHnuR4FTq83pvfqVWSnJoGRSoz5HYC73BUAA45joc0ofl7Ss3rkavJhlknhIXcHwzBWaTCweqgKTJ+VA8Cg4YChcHJ2sVo3OyUJd08fBaswnl9GJkXnGbOhlBp/c7l37kJfNKJB1oO7uH3lHFiZ8TGZYRjU9giGTGzcVqvKMF4LABg4Ax7mpIIzS2+Aqy9kIilycs3yjKsbDByLxJxksBwLDhwYMKjXrTf8gsOs0puek4bog3ugURSlAQxaTZyCusHhAAB1fAI0aWnG7yI1GdeOH0KhjOHXDfMMgbvcmE912dlgiwpCDKwBibnJ0BmM3w0YwN/ZBy4y6/xvXDcFOoMWppUDW7RCvRbtrNbVGfS4tGcT8iTFHXSGDR6KNq17AgA0aWlQx8Ub/9YUIHLvH8hxKl43yC0A/s6+AAB9Xh4MBWoAxkvdw9wUFOqLrxmecg94Ka2vL6Z1C3TF67rXqYPmXfparQsA/x3ejhxNHlCUtzw7tEPv/q+DYw3Q56uRe+s2v27Eni3IZDTgDHpwrAGeUgVCZO4Ax8JQqIE+P994MgGksxrks0XnjAOUIin8pEqAYyE2pbsou6QVZiNHrwZYAzi9DiKZBLUbhQMdBzyRzzMUeFaigoIC/m8nJ6dS1zetU1hBN+Tyunv3LurVqwdXV1d+nkajwa1btwAAHh4eCA0NtdpGrTZeJFq0ED4EpKen86W4ISEhgiDcYDAgKsp4M3V1dUVYmPDiGxMTg5ycHABAkyZNIJEUZ9msrCzExcUBAAIDA+Hr6yvY9tq1a+A4DgqFAg0aNBAsS0hI4F8MhIeHC0q78/LycP/+fQCAr68vAgMDBdvevHmTD3IaN24sWJaUlIS0ohtB3bp14eJSfPMrLCzE7dvGi5iXlxeCg4MF2965cwcFBQVgGMbqZUhaWhqSkpIAAKGhofDw8OCX6fV63LhxAwDg5uaGOnXqCLZ98OABcnNzAQBNmzaFWCzml2VmZiI+3ngjqFWrFnx8fATbXr16FQCgVCpRv359wbK4uDj+JUnDhg0FeTw3NxcPHjwAAPj7+8Pf31+w7Y0bN6DX6yGTydCoUSPBsocPHyI9PR2AsYq6s3PxzbCgoAB37twBAHh7e1vVJNDr9bh69SpEIpFVz3CpqalITk4GANSpU0fw4KjT6XDz5k0AxhdAtWvXFmx779495OfnAzC2AzevNq9Sqfg24sHBwYIbBcuyuH79OgDA2dnZajDo2NhYZBc9IDZu3FjQm3VOTg5iYmIAAAEBAfDz8xNse/36dbAsC7lcjvDwcMGyxMREvrlAgwYNBGMD5+fn800AfHx8UKtWLcG20dHR0Gq1ELMs6gbWMgZgOi1EUhlyZVKkpKQAAEL9AyDTFILjgOxr15AbE4vs/HxAp4OUEUEhlYLVasFqtdDn5qIwLw+swQBwHGQSqTFgKwrcWL0BrF4PjuMg4jgwTFFcxXHFAWFRsBU68hWIFYqih1cOqgwVCnNywGZmQX8lkv8cElcXNPxmJX+NkF64yOel3Dt3UXApovhcovLosrIgDwjgp3Nzc6FWq8HpdNCdOiNY171LZ8TcNeZvZYYKsmTjudakpSH1yLFKTGUxVqsFW1B8DyooKOCvwfpzF8Ca3Z+82rfF3UzjdVSaoYJzUXpZrRYZp89WSXoLU1MhMrsv6HQ6/trOXrsOfXpxsxlFrUCkyp2M99jsHHgkJPLLMi9chMHsnl2azHKmV+sqh8yr+B7IcRxSU1MBAPm3b0CamMYvi0y8htZhtZGdnQ1Op4PbzVv89Tv5wjkgI6ucqSg7vQhQWtzv09PTYTAYkBV3B8p7xTW0knykcO/Wg79GuNyIhqQoyEy+9B8QkyjYT9nPNpBVwjLLB1lVnetwcSs+x1lZWdBoNMjNSIbi6n1+vkbKIGFkIgozjM8uyvsxkBXlgYzoKLhEPhDuF7dhj2WYm48k5FvMM+UZV4v5Wd7XocjX8dO5ublQ5WYiuyALXreSBesmpSUgT2X8DSqSkuGkMu41Oykenjcsz2+83XNsmQYd0u3mact1cyXRyJUXn1/TNULH6iG/lQg3XXEwmdTqLq5Kjc8V5tcITYEaLjfjBeeNQyKEn7aYsuhfsQy76bVcNy8zBw+TYoruIQawOl3R6BUcmHQdauUXp/eW4RDuXd4NTukOjXcTSJJy+Jd80psxqKUTjnqhQrzNNCiK/pnL41OcJJgvA2D+5KVWaAHdZYjys4BWrartOcL0LFvRKPCsRAaDgf9bJpOVur5pHX3RG8LqYjAYrIaU4TgOOp2OX25Jr9fzyy2xLMsvszVUjWmZ6XMHBwfz1QxUKhW/nDN/LW+RJnv75ThOEKzaSm959luWz1rSfm19x6b92nqr+yj7rcjvxpzBYLCbJvP92sovOp0Oer3eZrvnkvZrLx+a8szDhw+h0+lK3W9J+bsqz2FJ+bAs55BlWcGLBINGA01qKnIjr6EwLQ2cVovkm9EQGViwBQXQpKdDm5ePvJwcQK+HVqGA04jhKIiPB6vXQ+rqiry7d41pfZiEiLvFJULuLZrD6+1JfJo0GenIibwGAFD9dxH594of6HQA1DbPlpGmhGWlDWalz8/nSzQBwFBQAIPBYFbyaMSxLP+9clot5B7ugM74Hdj6jVUazmKS44zptZFXOM7ed16F6bVgSi9g9VEAFOdvkaF67lssZ50qU3p1Bp2gB8Wz8RGoFxYMg84A6IW/Zx2rq5LeFnWs7WspYCwxMh9ILacwl79GcBbXH5Zjq613SJZli35zts+9rWsaA9v5pyrw6bXxm2PNrv22Pk914DgOYDm4iZU2l5nSK7NxX6gqxloaLDiDHqxGDbYgFxyrg+W3rE1PhEh3AqzCDQZZAPR5WWA1+dAbKm7YwlLTyhpgyBH228JfUTmLayvHgQEHzmAAq9cBXNWl00RZwEEjBsS3ioPaqnyOMN+2MlDgWYnMS4DsPbSaM7UHre4xPMVisdWDO8MwfLpsZVCJRGI33SKRiF9mKyAwLTMFiOYlRjk5Ofxyy4dF8zTZ2y/HcTbTZZ7e8uzX/L/2PmtJ+7UVDEulUuj1epsPxY+y34r8bsyJxWK7aTLfr638IpVKwTCMw/u1lw9NecZU0mHrs5jvt6T8XZXnsKR8aNovx3Lg1Grkx8RAq8qELisL2sws6CIjwWZlQ6dW47xGA0NBodXDKQCU1GJcK5Mi/75ZwJiTA5FIBLFYDNYivaxGa3EOi88/Y+M7riwcK7yx8ukVi4VBK8vx3ysnkcApMBAoquaFKgw8LR9lGYaBWCwGx3JWQTYD2P7dVF/cyacXKKpJbLG8OL3V8ziRrlZBWpANT0VxtTuxWAyO41Bo0AhKPtLyM1BPXPRbl1j+nqvvJJvOr61sabpGWIVE1ZgnTL85EVPydZbhqy5ULQ62rxG2rs8MA5vX4Ko8vZaniGEYyKVyaGw8+DMMA6nE/r21KugyEpF18g/BPDkAHQNoLT6L5uEdKFOuQ+9TF6w4CboMY1VmfRmeiasTwxkgFlXP+QUAXR5g0BQHio/6HAHYfxZjWdbu82xloMCzEplXEdRoSnrHL1ynojs5clT9+vUFVUQBYxBtWYXWcht7fHx8rKpwmojF4hL3a1lt1JyHh4egyqmlktruBgcHW1V1NXFxcSkxTZbVa80FBgZaVc01kcvlJe7XsjqwOV9fX6uqxCYSiaTE/VpWXzbn6elZYvvjkvYbGhpqVeXaxNXVtcRtSxpaqFatWlbVP00UCkWJ+7WsKmLOz8/PqpqJiVQqLXG/llVbzHl5edlthyESiUrcr2WVXgDIvHwF8Vu2QZORAbagEIbCQuRVUi0ITm/9BtT0W81XF0BlNp/VagXVptUJiXw1rqoMPC3fQJuuARqJBKmC1VjBNSLnxk1kFQWejEgERiqFSCo1tpETiYzziv5mtVrjcRgGjOnhmmHASMTGaYYBREzRTZ4pekpliv5XdOMvmufk4yOoWunt5QlvhgGr0yE1KQmyorzDMAwUrq5oUVR9PO/+A+QXvaFmJBK4NWsKmel6x6AoSjGmQVtUFZPHFKeBMX+E5ucL/8vw/we4hIdDGRrCb6IEYGopm5CfC72zE/I0+dAatLiueQgm0BedQ9tAk5KCvKJaO6xOh/xGQUgUqaEz6MByLDzk7ghw8UGIexB0OTkwqE3ttzjcz4xFrra4YqJSqoSP0hNeCg+Y07MGxGc/RLYmh59n8FHA09cVSq/ia5F7vXrQ6LVQZSfgas5DcCLjh8vykiGsbhicxDKIC7TINsu3mgZBuK1JMUuDHJ1D20LEiGBQq6HLKT5mcl4akvOKc5tMJEU9r9pwklg0qWGA5FzhuqyzAq3rCH/3LmF1AACXDZmIUhRALzamNztQwV8jWJ0Omdri79hQLwTXPe7xn00qlqBnWGfjulottJnFFRFV6kzEZRe/ghIxIrQIsH0fy1RnITa7uMomK2bQzOI+7Fw0He3M4aYhHVqp8TeS4yLGcLNrRKZOD7YozeKMBESKMvjPxgDoVa8LxIwYHMvybRUBIFeTh/uZcfx6YBg09Q23GQiodQW4p4otXhcMaoWFwdmsqq3pSSw5KQaRuQ+hkRv3w0rFaO7hBd8gYw7Pkcr47zmf1eBWfiJ0RZ9NxIjwTGATKKXGVxmatDS+BFVr0CEmMx4sOD4NtT2CILfMDzCWasdmJxhLk4p+nw0a1odzSPF92pTevPxsXE59gDw5A6lYChGAVm4eCPXwgUjqBI2bOwqTk8EW5kErNiAm3A8FTgxYTQHA6hGqA5wNxlJJQ6Ger06iB5AmE0NvFqR46wxQshzELh6Q+YdBpzJWB2XBIUmvho5jwRl0AMvCQ8FCaqsSHwPk+IqR72T2UlhkPKizlIFz07bIvmFsDiHRaRFX2x25CgacXgtOr4efVg9vvXF9Vg9wRbcnDkCqTASt2YsON4MB7noOjFQGiWcAOL4GA4dkvRqFnAEw6MEZDFDIOUjttHYrFImR4cuAKzoX7kVtTkXg4BvoDzVXHCYVhnggS1ZUyqvXwt3AIUjHAQyDosPx50ElEUPNFEfhSojhWxRyiVw8BNfldF0+cg0auCfnQaqzflFTnucI/jy5uZW4rWWTJHO+vr6CvmoqCgWelci8jWR2GRr6m9Z5EhsTE/K0YnU66PPykH7qNHJv30VhUhJYnQ4+nToi5JURgnU5jkNu9C3osrOhTUuvgsSx4AwGm4EjI7Eo0bR4+ymSSiF1cwUYERRBQeAMLJTBQRA5ySCSmf1zkkGfmwdWozEGeIwIEBcHeuaBH0QiiMTGB1GIGEhdXACRGIxYZEwDI4I8wB9imUwQfAEAZ9AjsN8LcPLzLd6vGZcG9eEcVgciubxqq9qWoNaA/naXudQNg0vd4ofRkBEvVUoaLj28hsScJKTkpeNhbgqa+rqijqcLarn6oZZbgGDdn9griHh4jZ9uWnALjXOND2rygABBW9a7ilj8G3MWKKo82sA7FG6hbVAvvKdgn9mFOThzbT/+uV88fnUdjxD0D++BpmEdBevma9W4Gf0P9tw8xM8LdgtEo+aN4RP8jPVn89fiWOROftrfWY60fBX0rAGNfOvBp1Px/gu91fj3ynZ+2lvpiVH9xkEmsX7CTr5/GqeuH+BLBNyd3DC89/s281VewmU8uHsSDMOAAQMfpRe823awWg8AAut6Ier+KTBgIBIxCJIVP0OIpFJ4dyzernajIDx4cAYMw0AEERRSBeo1G2Bzv8m5qchMvAIGIiilcigkcjSt3cbmutkF2ZCrYorSIIZUJIG3f0Ob6z7bpiVC1SMgYhiIGBHEjPA64tn6Wf5vt3at0cyghajoZQnDiOBk49ya2D5DtrUt43reaI+mw16xu9ytcXF/A97t26Hxa2PKnIZWZV4TeKbov4UJ0dDnZoItzAerSQJbmA9DYT7YglwY8rMhystEqxA9OIMOnF4HTq8FtixGAgC3Nv3g0XEoNHExEIsArwAxugzqDgDIu3oM+uwcO0c38oPtarrK+vXgP2I2Mk8V/xbqFP03/9Z56FJj7e5TDqC5hwGwsW+OZeHSuAVYTfELho6NjHsuiLkKTXzJwwh6gwMjk0IkdQIjlYGRyMCIpZC4+8C1eQ8YCnL4+0G9ot+hOuY6DHkqiJyUYEQSMGIJIBaDEUvAsQYwIjGC/GpD4uYDRiwFI5EU/VcGRmI8licYfr9BI4ryrpPCuN4j3keysrLAMAxauBtra1xctRCaI1f45dqacZuqcBR4ViI/Pz84OzsjPz+/1CFSDAYD35DXXmnP08K8XnllFfWTJ0t15xm9Wg11bBx0ubnQ5+ZCk5oGkVQK1qwUKvvqNeTcuMlP51l0uAQAXFEJl1hh2S2BYxixmC/RE0mlRTdsKURFJVIiqRQyH29IlEq4hDeASCoFOA6sRgNFSDBMLbLqjHkdUk9PiG10jib390NgCYFTTSOSSgGz6kTVnWcq0/WUaDzMTcHDnBTcVcWigXcY6nvXhlQkRTuLAO3vuycQkVTcvRIDBiw4yCUyq8DTRSpsc6Y1FLUrAgedQQ8xI+JLpeQWRQx6g95me0x3uRvc5MLeNPWs3mZ7O2eZEgqp3Gpd1k47rFqu/qjrGQodq4dSKoefsy/UugI0sxFIdQ5tg2C3ADhJZJCLnSCXOEFiUX3YlGd61OmIXnU72zympfbBrdA+uGxhSVP/cDT1t19rw1yYZwjCPO0HUeYCXP0wuJHtnmktuSvc0SaoZZnWVUjlCHEv2/OKVCyBtJqqY1cUjmPBaQpg0OSDLVSDLcwzBo2F+WA1ahgK8ozzNGp+ubJxJ7i1fgH6nHRoYq+DM+gBjoU+Pxs5EX+Bzc8qV1rYwnxoU+PgHN4W+bf/EyxjSgjoS92vrhCwUYUagDFwKwkjAiOWQCR3gchJAUbqVBQoyiH1DoRlBWaxwgViVy+InBSQBzUExGLAYIDY2QNSr0BALIHE1RtipStETs58b89l5dqyZ+krVZPMzExcu3bNGHi2aAF3d3fks1pBUFa9vb1Unsf7KvAYqFevHq5evcr3ImnP/fv3+Ya/JVUXfBpcv36d7zW2pCoChJhUVZ7hDAYUJqcgPyYWOVFRyL1zDwWJiTAU9XgrdXdHQD9jt+2sRRsWsVL40K5JTQOr0xkDoiIiiQRipdJ24MkwkLq5QeblCamHBxixGPr8fIjlckg93OFSty7Ezs5wbVAfTv5+NoNFUuxxu86o1FlIzc9AhlqFe5lxkItlqONprBIb4OKLUI/iHp533TyMaym3+GkniQwKqRxyGw+klkMoaIqGTcjXWfeH6SIT5mFdUeCpNehwJSlKEGBZVjPUswZo9LabnPg5+yLUPQiFeg0kIjH8XXytq60W6RzaBp4Kd9xVxSDMMwQKiRy1XK1f4gBAm6AWaBNUtu/WU+EuaCdqy+OWZ4gQx3Hg9FqwBXkwFOaBVeeC1RWCLcyHzDcETgF1i9ZjkX/jDCASQySVIePIBuiz08DpNHC0i6QcsQvuwQfy3CTUDvCBLru4xE8kkZbamZo9bGE+FPVawZBjXTOGsWq/bIPYWLondnaHxMXTWCook0PmGwqGYSDzC+Wrg+qyUiHzC4XEzQdsoXHoEZFMAZHcBRIXTzByBUQSp6LAlIHY2Q2M2DoNHMfCs/NLpQewTzhT0Gl6kXX16tWn6nrydH/7VaBt27a4evUqMjIycOfOHbvt+M6dOyfYhhBSvfR5eciPjUX+g1jk3ryJvLv3oElPt9ku0kSXk2O36qrYWfjQXpicDMZGRwGKWoHwaNUSMi8vyDw94NWhPeQB/pAVBZvkyaI16KAqyEJGvgrOMiVkEhkKdRqoCrLQKrApX4K4+vwviEotHs6hhX9jvo2mXOKEUBQHnp5yD8ExCosCvkK9FpbsBZPGcRQt1nVyNpYEisSQiCSQS+Rwc3JBTGY8mvg2EFQ96xLaFrU9gpFdmAO52AneSk9BcGyuZ91O6FnX9tiWlnycvfCcc3s8V6d9mdYnTzZWrwWnLQQ4DtkXD8GQq4KhMB+GPJWxLV5RaaSxHaH9Xko9ugznA09DrgrajOJ2roaCXHC68g1zx+iMvz2Ddx2IZMJ7x6OVTGqMvzeR8B4ikikgC6wPiZsPIJEBHAeppx/ECjew2kLIgxpC7OYFsdIdIicFRHYaP7o06mhz/qMwNbN4mlkGnYCxxmNSUlK19fpc1SjwrGR9+/bFzz//DADYsGEDFixYYLWOwWDApk2bABjbhXbp0qVK01jTODs7Q6/X2+y9ixBbHiXPcAYDCpKSkP8gFuqYGOTHxiLnRjRfiunYzjjocnIgs9Fhk9TVFYrgIEjd3SFxc4N3O9svmLzatoFXW9vtr0jFqYrrTKGuEByMVRJzNHlIyUuDh9wNvs7GzkyWn/oeFxOLxx5t4d8Y4T51+elm/g35wNNbIcxTarMH4TytcPAay5K7ghIemkM9gtAyoAkYMDBwBvgoveAiU6KhWTpMXmrSH8Ob2m5HaGu/9gLNxxXdmyoHxxqgz8+GITcD+swU6DKToU2LMwaOBcaqqxyrB6vOhedzr8Dt2eJqw9rUOKjvXgIAZP93AJympIGc7GMLi7djLIKxRymZlHA6uLi5QyKRQCQTvvhhnJQQKVzAiI1tCk1tCwV/Fy1zbtQRMt9giJycIZY786WaYmc3eHQYDJHs0ZpnkMqnUqn4cTPN+fr6Ijw8HOlHhM0IntAmnhR4VraWLVuiVatWuHz5Mv744w907NgR/fr145dzHIdFixbhftGQBqNGjar2Xm2rW0k9iBJiS1nzDMdxKExNg+rsOeTevg1thgr59x8YezF9VEVVYdmisSLBMPDp1AESV1eIlUqIZLIa06kNqbjrjIE1QM8au96XiMTYdHU3Lj28hgx1JtS6Agxv0l8wTka4dxgfeColwmu92iJA1LN6aA0iSEUSeCk9BMsK9MVVYXM0uYJlQW4BaOAdBk+FOwp0hZBLnOAiU6Kel3Xvhz3rdkbPMrZXfNrzL92bHg2rLYQm+QFUxzbCoM4Bp1GD1RY6VJpoyMsSTAuGQJHIHiHwzOP/FitcwTAM387YdskkIwwSxcV/y4MbQlxUfVXqXQvKusY2xfq8TDipcyHx8AMjEsGlSWdwBj3EClfjNcKsF22R3LlMVVIZkRgMBZ01XklBZ+PGjSESieDfriVOFhb3A6G0aPv+pKDA8xElJCSgV69eAICgoCAcPXrUap3//e9/eOWVV6DT6fDuu+/i6NGj6NKlCwoLC7F7925EREQAMA4dMnny5CpNPyFPA9XFS0g6eBg5UTfAFpavypQ5kZMTpB4ekHm4Q+rhAZd6deES3gAyLy9IXV0Fw2eQx9+/D87iVvp9pKszkKHOQsuAJgjzDEFyXnF7rXZBz6COZzBUBVmINxu6Ii77oaDkr9CsnaNlMGnZfiw1Lx3Zmly0CmwGb4UnZGIpvBWecJO7QMwYb99uTi5o7t9IsF33sI7oHlbxVeUIMcdqC6HLSYdelQSd6iF0qmQYCnLBFubBve0AOIcX1+ooiI1CQayxEytt8gNwdtr7lsagthwhwDzwdHAMdLEUIielsZ2jm7dgkdQ7CJxOA31eFtxa9wWn04FxkkMkkYE16I1tIEUSMAwDVqeBxMUDjFQORiyFSK4EY2PoF4mLJyQN2zmWRvLYsxd0+vn5oXHjxvzLE0YmhU5ZXBXZ4PRkNq2hwLMKNG3aFCtWrMD7778PtVqNvXv3Yu/evYJ1ateujZ9++kkw9ichxHGcwQBDYSEk5uPopqUj61KE4zsTiSB1c4PUwx1SD3fIPDzgXK8uvFq3hkguh9TNVdA5EHk8mUotnSQypOZnIDk3FdHp9xDg4ovn6rTHmbiLuJJ8g1+/nldtZBYIH4DZokHnLKvEGjhhu6647Ieo6xkKPxcfwbqWvbUCxjEKw72NVV571+uC5+s/99SXOpKqo0mLhzb5PrSpscahPvKzoM9OgyE/C6ymwDi8hx2K2s34wJMzGIcEcQqoC03yfYicFDBUVOBp9nuQevhDJFOAkUghVrqBYw3GYM/NB5xBD4mHLySuPnxPqhIXT7tVVF2alK0WACElycjIQFRUVKlB59OEAs8q0rt3bxw4cAC//PILTpw4geTkZDAMg7CwMPTt2xejR4+moJOQcmB1OqQdPwHV+f/gXDTuoTzAH349uvPruNQvvYqc1NMTznVqwzmsjjHQ9PSEzNMTcn8/iGQySN3crMaGJI8fjuOgM+gQkXQdEUnXEZeViPicJLzY+AXU966DW+n3+XWT89LAcixqewQLAs9CvQbB7oH8wPUAEJ+dhLpeteFtUYqZVZADWBSAm9pgdgx5Fk39w+Gl8IBSqkChXgMnse0q2WIbJSiEOIrjOHAaNfS5GdDnZEDi4Q+Zdy2LdVjkR59D2r5vinpydZw+p7g2ACOWQFn3Gegyk6FJvg/GSQnYHEaEASN1AiOTQySTg5HKIXZSQuLpD6eAupB6BULi4SfYQuZfGzL/2sZtn8KHeFJzZWRk4Pr161ZDQ9kLOv2c3NAts7hvCYmHS5Wks6pR4GlH+/btcevWrVLXCw4OLtN6gHF8zo8++ggfffTRoybviRYbG8t34FC7tnWbJEIAIDvqJu6v/QEFiQ/B6Y3tKjVOTvAKqgWDWtjOx6VuGEQyGd+WUySTGXuN9fZCrSGD4NqwIWQeJQ+lQB4/HMeBYRg8zE3Bqdjise5kYikepMThbEpxKfiDrHh0C+uA+OyHgraWuZo8+DkLq+FlqDMhZoSBoKuT8cVhM/9GeKfdG/BWesBL6QkPJzfkavPAAfBWeEBqNsyAm9wVbnJXftpyCBJSs9T0exPHccaSyaKgUp+bAX1WGvS56dCpkqHPSQerzgFnKB7qyblxJ/i/OFOwH116grH00EkJQ7kDzwyreabqpzLfkKKSSC9IfUKM/9y8IVJ6QKxQGttMlvFFC2NnzMmaoqbnGVI57AWd/v7+aNSoke2Xi4wIMvPVS+hB/3FGgSepcbKzs/mx0ggxp8/Lw8P9BwGOM46pmZTMB50AUJiYCATVgi4nF9rMTGMppVgMRixG6OujIHFWQpOWDo9Wz8C1YTi9IX+CcByHmMx43M54gHuqWNzLjEUT3wYY0vh5QdAJABKRGF6Mq2BefPZD+Ci94KlwFwSef949gVYBTdCtTgfUcvWHt9ITAS6+8FJ4wEPuBheZEkqZAjKxsQOSWq7+VuNKKqnzjydCTb03pez8EoUJ0TCocwGDrvQNzOhtjAMp9Q4CGJEx8MzLLHUfjEQGRqYwDs/hpITUwx8uzZ6zWk/s6gXPLsPLHFQ+CWpqniGVJz09HVFRUQ4FnQAARgSpdxAKNRrjM46MSjwJIaTK6bKzkX39BtRxcYL5jFgMRUgw8u8VV41k04ofovLvP4Bn62f56aAhgyo/saTKRTy8jruqGADAnYwHiDSrEisVScCAwdDGffHPvZP8sCNqXSHcpMLAMzk3DRq9Fi6y4iYPLjIlWgU2Q6CrHxrYGF7Ex9mrEj4ReRqxOg00D+9Cl5UMQ64K+rxMGHIzYchTQZ+dDqeghnBp3BEuzbpabatTPYQhV1Wu4xrUOXzNABNTYChSuBiDSidlUVDpDKm7H0QKF4AB5LXCIfUNhsTFC2IXj1IDyqcp4CRPr4yMDMeDTgDxubm4VCiBVsOCAwcZgPBKTmt1oMCT1DiNGze2uhGSp4tBo0Hijl1IOXIMYrkTfLrY7uhBGRrKB54yH2/Ig4IgdnaGV9s2UAQGVGWSSSViORYJ2Um4kXYHBtaAAQ2NPYnHZz/kg04AcJcLg8nY7ES4OblAKpbCReYsGO/SN9APHblnUc+rNup6hSLUIxhOEhma+DZAc/9GENXwKnyk6j3qvYnjOBhyVdCmJ6Aw8Ra0yQ+gTY2FoSC31GFA9Dmp0KmSbC4Tu3gBKTEOp4eROIERS+x+Hp/+b0Hs5Ayxqxfdj8uJnmeePuHh4WBZFikpKQCAgIAANGzYsNQ8kHHlKuocK+43oNBJBPxfZaa0elDgSWocqpLy9MqPiUXi7j1IP3UGnK6oyphIBINGA7GTdfs3J18feLZpjYB+feHZ+lm6uT9hOI7D8QfnsO7yVn4YEg+5G/qH9wTDMJCKJPBz9kZqvrE9madc2E7XwBoQm5WI+t514Ofsg+S8NDTxbYDaHkFwkTmjS1hbq2Oat8EkxJwj9yaOY63aHyb8+B50aXF2tigZqykABw6sTgNOr4NYUVwNT+rhhwKL9RmpHCInBRgnBUQyJV8NViRTgHFSQhnWApxBB6lnoN1jOvmGliutpBg9zzx9GIZBo0aN+L/LEnQ+TSjwJIRUK726APFbtiH91GloM6w7pADLoiA+wapnWmXtUHi1aQ2RzNbg3uRxYmANgl5bWZbFqbj/kJyXhlxNvmDsy6zCHCTlpaKWqz8CXP0Qn5MEFAWeUrEUAS5+qO9dB/W9aqO+Vx3ULhpDs5FvPTTyLb13Y0LKiuM46HPSURBzDdqke9CmxYORyeEUaMxnnp1eFIwtKXZ2hy7N3t5KxmqMoaUm4RbEbt6CwNOleTcwMjkYiQycQQdFSBOweg0krt4Qu3hALHcFxGKIJHStJKQqWAafZWJRPfdJRYEnIaTaJO7ei/itf1j1QmupMCmJDzz9e/eEk69vVSSPVBI9a8CN1Nu4nnoLt9LvISYzAWsHL4G8aCzLmKwE5GmN3cq7yJSQS5wEwefN1Dt8Bz4uMiW8FB5QFWShhX8jDG/an6rJkgrHGfQojI9Gwf0rUMdcM45lqc4Gpxd25iPxrsUHnobCfEhcPPhlMr9QFMZcK/E4fCc9cheI5M4QOTlDrHAGRBIwYikk7j6QegmHP5EHhUMe9CS2BiOkZiupGrXDpZwSMVjzW5fkybyPUeBJapycnBywLAuRSAQ3N7fqTg6pBLqcHNxd8z1U586XuJ48IADO9eoiaNhguDZoYHc9yjOPj/uqWJxLuIw9N/8Ch+I3vLczHqBFQGMAQKhHELwU7vjr3kkwDAMfpRcScpLgLndDy4DGCHQtHsuvsW8DNPa1nzfsoTxD7OEMemjT4qFJvgfNw7tQ370EQ14WwLGlbsvm5/B/a1MeQJ/tDKfAemBEYsi8gwEYe4EVyZ0hUrhCrHCF1DMAEq8AODfsAKlXIFXLe4LQdebJlZqaitjYWLRo0QJONpoCOSqox3M47quGQW8AB07Q0d2ThAJPUuPExMTw3Y+3aNGiupNDKhDHcUg7fhIPfv4F+pwcm+uI5HK41A2Dc90w1Bo8EHJ/f5vrmaM8U/Mk5abCXe4KpbR4KJFCvQbp6kxIRBJ4KtyhKsjil91Iu8MHnhKRWDCmZVO/cLTwb4wRzQbAWaaskPRRniEmrEYNVqOGSOkGkUSGtH3fIC/qZPn2VZgHzqAHI5agMPE2lGEt+N5cnRt3grJ+azByZ3DaQkFpKHky0XXmyZSamoqbN2+C4zhERkbimWeegewRm/3os1Ohz0qBTqsFB6BQ9GSO60yBJyGkSmjS0nD327XIirhsc7nMxweujRoioG9vuIaHQyyXV3EKyaNKy8vAtqj9uJp8E5mF2ZjWfhy61mnHL5cwYjwT0AQxWQnwdfYWBJ430+4K9iWTyNDEtz5cZC6o5eoHGbVPIxWA1WmgvnUBBfE3IHb2ECxzbd4NIs8AyALCAEcCT7EEYqUbxEp3SD0DIPMJgVjhAqegcEFbTLHCBTBNy+j6RsjjyDzoBAC1Wo0rV66gVatWj9SZlD43E/qcDDBA0T/LLsOeDBR4khonICAABoMBYjGN+fUk4DgOcZu3InHn7uKeas2IlUq4NW2CelMmw8mrfOMiUp6pfleSovDdfxuRaRZMRqbcQJfabfmqgxKxBGxRdUVfZ2+k5qXDx9kLwxr3RSOf+oL9iRgRmvk3qrT0Up55OrB6LTSJt6G+G4G8G6eN411yLBiZHG7tBgmqtXIGPTiOg1OA9ZitPJkCjNIdcu9AyPzqQB7cCPKQhhDJna16sSWErjNPlpSUFNy8edNqvoeHBySSRwupfKXO6JxV3N+FyImq2hJSJfz8/EpfiTwW8mNicPOz5dAUjWdlybtTR9SdOAEyL89HOg7lmeql1hbgdsYDhLgFCgLPK0k3cCXpBlrVasrPEzEiPBPQBDpWjzEtX4RSpoSsGoYwoTzzZOIMOhQm3kFBzHUUxlxF4cM7gEFvvZ62EGxBLsTK4nZ3BfevQCR3Lgo8GUg8/OAUWBcihStEMgVkfrXh3LA9RFRaScqIrjNPDntBZ1BQEOrXr//IbbMljAhKtrjfgye1kzwKPAkhFY5jWTw8cBCx6zeA01s/9Mm8vFB38pvw7tC+GlJHykOtLcDxmHOIz36IdsHP4JnA4mBSKVNgeJP+uJV+D1dTim/MhXoNDKz19x/uU0KJEiEO4Ax6aJLuoiA2CoWx11EYHw1Ory3TtvrsVEHgyel1EDt7gGEY1Jn5K0TyJ7PEgRDimMoOOp8mFHgSQipUYXIy7qz+FjnXo2wud2vWFOEz/6/c1WpJ1XqYm4K1/23ErfT7YDkWEpEErk4uaBHQWPBGViQSobFfAzTza4g8rRoh7oF445nhcJO7VmPqyZPKUJCHgvgbSNu9Epyu0MGtGYhdPcGIZZC4+UAe0ghSzwC+EyAAFHQSQgAAycnJiI6OtpofHByMevXqVVjQGRsfi7tpZuP+yrSoUyF7rlko8CSEVAiOZfFw/wHEbdwMVqOxWi5WKODZrg3qTpwAqSsFI48LhhN2/KNn9UjOS4POoIeTRYc/HMfhvU4T4SxT0htgUiE41gBDfjb0uSroMhKhy0wWLONYQxn2wkDs4gGJu5+x+mytcLi37gOmGqp4E0IeH1UVdAJAZtxD+D8o7gejUGZdW+hJQIEnqXGuX7/Odz/erFmz6k4OKYP82DjcXPgZNGlpNpe7NmqEoJeGwrtd20o5PuWZR6M36AGGgZ7VI6cwF34uPvwyd7kbmvg2wI20O/y8+OyHuPTwKjqGtBbceBmGgctj0iEC5ZmaieNYFNy/CvWdC1A/uAZDThrkYS1tdvjDiMRwqlUfmnjrKnBiZw9I3H0h8fCD2N0XIokMUndfODftAlE5e0imPEMcRXnm8VWVQefThAJPUuOwLMv/IzVf2slTuL/2R+hz86yWOfn6oP7UKfB4pmWlpoHyjOMMrAE30u7geMw5nIuPwLOBzRHsHohAFz9B4KmUKdA5tC1upN0BwzAIcPFDsHsg6nnVfqxvvJRnagaO46BNT0DeteNQ3/4P+uxUqzaa+uw0uz3Nip3dAQBS31AoajeDonYzyEObQJeZBJHcGVIPfzDiinnUoTxDHEV55vGUlJSEW7duWc0PCQlB3bp1H+t7X3WjwJPUOHK5HGKx+JHGQyJVI+dmNAoSEuHZujXS/j0uWBbwwvOo/cYYSJSKSk8H5RnHrTy7DucSIvjp+JyHCHYPRLpaBQNrgIFj+d5m24e0go7VQcyI0T2so1UV28cR5Znqw2rUUN+7DPXt/1AQcw2G/KwS19dnpYLjOJsPezLvIPhM/xESV2GbcbGy4qvzU54hjqI88/hJS0urnqBTKryvPqmhLQWepMYJDw+v7iSQUhg0GmRHXkXevfsAAHmAP1wahiPv1m2InZ1R+7WRCBzQr8rSQ3mmZAbWgNisRChlCgS4+AIAWgY0FgSeyblpkIkk0LJ6HLrzL9S6ArzcbCAAwM3JBf3De1ZL2isL5ZmqpctVIS/yCNT3I6GxM8SJPZy2AGxhPsQKFzBM0TAnAfUg9Qmq0rEzKc8QR1Geefx4eHjAxcUFeXnFtbhCQ0MRFhZWqSWdnhJn5JpNP6kB2pP6uQghlYDjODzcsw+GggKrZR4tmkMkkyF4+IvwrOSqtaR0qoIs7Ln5F5xlSn5eHY9gPvBsH9wKP13aDANnrAJm4AyIzX6IQFc/qHUF6FOva7WkmzxZOIMemad3QH33ErRJ98q8nUjuDIm7H5yCGkDmVxuuzbtBJKv82hOEkKebVCpFy5YtERkZiby8vCoJOp8mFHgSQsok8/IVxG3aAo9Wz9i8ADNiMRp9MAtSN+qxtjplqDOx++af+OfeKTAMg4ENe0EiMl7q09UqAMbOhFycnNEyoAmyCnPQIeRZuMqcwTAitApsCk+Fe3V+BPKY4jgOAAf1rQvQpMYKlkm9g0oMPMUunhAp3SDx8IPMJxQeHYdATEOaEEKqgSn4TE1NRa1atSjorEAUeBJCSnX765VIO3EKYFlIXV3h0qC+1TpujRtR0FnNHuamYNbhRdCzRdUYOaBAV4hm/g0Rm5WIPK0a0Wl3oZQqEOoRhPc6T+LbcRJSHqxei8KYa8i5/A8KYq7B9dnnIZI6Wa0ncfcFxFLAUDRcgEgCRZ1mUDZoC2XdlhB7+EMkqrpqs4QQUhKpVIqgoKAqO56zRCasastV2aGrFAWepMZJTEyEwWCAWCyu0h89sS368y+RceoMP511JRJO/n6Qurnx8/x6dIM8IKA6kgeA8kxqfgZkYikCXfxQzzMUtzLu88seZMajjkcwP52vK0BDn3oA8FQHnU97nnkUhoI8qO9FIPfKERQmRAvaa+pVSZD517HahhGJIfMNAWfQwe2ZPnBt2QMiJ6XVejUZ5RniKMozNVtGRgY8PT1rxEsvsUV79Se1jJUCT1LjZGRk8ONe0YW6emnSM8AWFgrmcQYDcm9Gw6t9O4S8+nKNqILyNOeZbdf3AwBGNB0AhmEwotlALDq+CgAgFokR4h6IABdfdAxtDaWU2siZPM15pjz0OenIv/0f1LcvoCA2CmANNtfTZSTaDDwBQNmgDTy71oxrRnlQniGOojxTcyUmJuLOnTvw8fFBkyZNqj/45CwnH8/rZGko8CSE2JQVeRU5N27CpX596HLzkHfrNgDApWE4wmdMhYJuov/P3n3Hx1Gf+QP/zPamXfXe5aIuuRvbYIppxtTQ44Pkl37JJaT35BIIl4RwySUkXDhIIxCa6Tam2IDBxsZNktWr1XvdXmbm94eslUZalZV2d7Y879eLF5rvzM4+Kz+a3WfnW0TBciw6x3uRHZOOd1o+BABIGAavNxwCANhcduTH5yErOh03FlyFeE3sQqcjxCOe5+Ec7IC58STMDR/D0be0iYGco33gORaMRAoA0OSUQhaTAqnWELIFJyEkvHR1daG5uRkAMDQ0hNraWtGLT5NC2APJKXYh7CdUeJKgs3r16nnXbCP+x/M8Op95TtAWXVYK1mKBOjUVq7/6Fch0wTXpRyTkDM/zONVThaerXsaIdQyPXHc/ErVx4Hkeo7ZxWF3Td6Z/etnXIb3wwZ94Fgk5s1xjx1/FxOmDcI31L/kxUn085HGpkMemQbd2KxTJ4TcLJOUM8RblTPCZWXROGRoawtDQEBITE0WKChh3mAXbLnAiReJfVHiSoKNWU3dAsfAch85nn5/TzkgkiNt2EbTZWUFXdALhnzNO1on73/sf1A9N33V6qfYg7ll3K95r+0hw7A35V1LRuQThnjPLwdmtcAx3w9xwfNGik5HKocoqglRrgDwmBdrCbZDp4z1OLBQuKGeItyhngounohMAcnJyRC06IwkVnoQQAEDT/zwCnuOgSk7yuD92w3pEraXFsMVgdJjhmjWm7mDz+7h2zWWCCYKmxnkSshDWYoStqx7aNZvA8xzsXQ2wtFW598vj0mDvapjzOIlSA3XeemgLtkKTW07rahJCQkZnZydaWuYOGcjJyUFWVpYIEUUmKjwJiXA8z6Pmx/+J8XPVYORyJO26HHKDcB3H5GuvgSKa1nYMtIahFlT21QEALsrYgLaxTrAXCtAMfQrMDisuythAxSZZlHNsAJbGj2Fu/Bi2jjqA56DfvMfjzLLSqDgwchV4pw2MUuPuQqtIzIS+fBekap0Ir4AQQpZnvqIzNzcXmZmZIkQ0F8txmNlXiaHJhQgJDLPZ7B4TodUGX7fOcMLzPNqffArj56ont51ODB75EElXXgGpSgUAyLzrDjFDXJJwyRkH63TfwbS7HLA4re59arkKJYlr0TbaiRsKrsJ1ay6HhAnPyQcCIVxyZj48z8PR3zY5E23Dx3AMnJ9zjHO4G8rU1XPaGYaBZvUGMEoNpNpo9xcb+rLLI7roDPecIb5HOSO+jo4OtLa2zmkPpqITAGJVURifsS0L0y+UqfAkQaelpcU9/XhpaanY4YQtnufR8c+n0b3vJUE7azbD1tuHxCsuQ9yWzSJF551QzxkH68TBpvfwSv1b+Oml9yEzOg1KmQLlyUXoNw1hwm7CiHUMWdEZyI3Jwpa0cio6VyjUc8YTjnXBdO4ITDVH4OhtAWe3LHi8c7jHY+EJAOrsEkh1MdCsWg+Gcg1AeOYM8S/KGXGFStEJAJxNOLkQz9HkQoSQMDFVdHa98OKcfTGbNiD/e98GE6ZTeQebD9s/xt/OPo8JuwkA8HTVy/jeJV8GMHnnKUqpde+TS2XINKQiURcvWrwk+DiGujHy3lOwtlWBd1gXfwAASKRgZPI5M27qCrZBHp9O3bcJISFtvqIzLy8PGRkZIkS0MNZqEmwzPD/PkaGNCk8SdOLj48GyLKRSmpnTX87/9e/oeeU1YSPDIOvf9iLtlhtD7kNnqOZM53gP3mk56i4sAeBMbzVqBxpRmDg5kVNOTCYSNHFYFZdNdzl9KFRzZibOaUfP338AR//5JR0vUUdBs3ojZIYE8KwLjFQGZWIW5PHpkMel0p3NRYRDzpDAopwRR3t7O9ra2ua0B2vRCQBaqRwz+6hIQYUnIQGRmpoqdghhrfX/nkDv6weEjQyDVV/5EpJ2XSFOUCsUijkzZB7BR51nsCYuBy0j52FnHe591TMKz9SoJCBKrCjDVyjmzBTWasT4ycm/YWaR5Uuk2mioV61HVOmlUKXng6GldpYtlHOGiINyJvAcDge6urrmtK9atQrp6ekiRLQ0sllf/ElociFCSKgbfP+DsCs6QxUHHrvXXIYDje+iMHE1zvbWIF4Ti3/f9G8oTs4XOzwSRDibGRLV5MQkI0eeFexTJOXMWfpEojVAEZcOTf5WaNduhVwfG7BYCSFETAqFAmVlZaisrITT6QQQ/EVnJKHCk5AIMVZZhcbf/X5Oe8z6dVR0+pHNZcez517DupRClCYXutsTtXHgeR4ShkFOTCZ0Ci2yo9OxNiFPxGhJsOBZFyzNZ2CsPAxL61kk3/Zd2Lqb5hwn1egh1ceBsxghT8yCMjkXsTvvhFSjFyFqQggRn06ncxefWVlZIVF0Gmf0egIAp0hx+BsVnoREAFNzC+oe/BUwa5Y0fXER8r/3bZGiCn9/P/s83m37CBanFef66/Grq9ZCOqOrI8MwUMlUsDit+LeyWxCtprVSI51jsBPGqsMwnXsfrHl6cv2xj16BKrPQ42M0a7dCEZsK/bpdYKT0tk4IITqdDps3b4ZcLhc7lCUZY22CoswZnj1tqfAkwae+vh4ulwsymQz5+dTlcKWsPT2o/fkD4Gw2Qbtu9Sqk7NkNiUIhUmS+E4w589CH/4uT3ZXu7Y7xbjxd9TJ2r7kccZoYd/u1qy8VFKMkMIIpZzi7BabaozBWHoa9u9HjMa6JIcjj0uAc7ha0K5NzJ9fcpImB/C6YcoaEBsoZcYVK0RlJqPAkQcfhcMDpdIIL0zWMAsk+PIKan94P5/iEoF2dkYH4i3cg/qKtIkXmW8GWMya7Gen6FNQPNsPomF6b683m9xGjNmDP2l3uNio6xSF2zvA8B2t7DcaPvwJrWxXAsQsez5pGwTuEXx7FXnKHP0Mks4idMyT0UM74D8/zOH/+PCQSCbKyssQOhywRFZ4k6MhkMvA8D5mM0nMlXCYzan92P+wDA4J2Q2kJ1nzr61AYwqdbZ7DljFKmwJV5FyMrOg3/89FfwINHgjYO61KKcM2qS8UOj0C8nHFNDGGi4hAmTu6fs2C4J8r0tYgquxy6gu1wTQzBev4cokovhUSpCUC0ZKZgu86Q4Ec54x88z6OtrQ0dHR3utlAvPnmZ8O5smPa0pcKTBJ/CQs/jmMjSsXY7ah94EJb2DkG7Ni8P+d//LmQatUiR+YfYOTNmHYfZaUWaPhkAIJfKEa+NRawmGpV9tbA4rfj3zfdCLVeJGieZFsic4Xke1pYzmKg4BEvDiUWPZ+QqaFZvgGbNZkQV7XC3KxIyoEgIzjXoIoHY1xkSeihnfM9T0dnW1gaGYZCZmSliZCuTXFKIiv5697ZCFZ6fF6jwJCTM8CyLhof+G8a6ekG7MjERBd//TtgVnWKasBnx6w//F0WJa5CuT3EXnlMYMPjCpr2Q0Pi7iGXraoCltQIAINXHzX8gw0AemwpFUg5kMclgJBJockoDEyQhhIQAT0XnlFAfzymLjsJ46nRZplNS4UkICXI8z6P5kUcxevKUoF2iUiF28yZIFKF9YQ4mJ7rO4pETf4fdZQfDMIhVRwMAOJ5zF5oMw4AJ2w4zxBOe5wHOBUYqh73/vLvoBACpSgeZIRGu8enu7xKNHoqkHCgSs6BMzIQyOQ+y6ERIFOH5oYMQQpaD53m0trais7Nzzr61a9ciJSVFhKiIt6jwJCSMnP/r3zFw+F1BGyOXI+HSSyDTaSEPo3GdYnqhZj+eq37dvd0w1IJMQyp6jP0YMo+gNLlAxOiIGDi7BcZz72Pi9EFElVyK6G03Q6aLgb58FyYq3nEfp0jOgcs0OtltNjkHqowCRJVcCoahLygIIcSTSCg6Y+VabJiwurcVBp2I0fgPFZ4k6PT394NlWUilUiQlJYkdTsho+sMfMfDOYUEbI5Ui4ZIdUERHI/Ou8J0BM9A5szmtHPtq3gDLT89EeqanGgaVHjcVXO335ycr56uccQx2YPTIczA3nQRYFwBg4sybMGy9AVKtATzPQSJTgHNNLg4uj09HUtElUKTkQGZIoGVQQgi9NxFvUc6sHM/zaGlpQVdX15x9+fn5SE5O9vCo0KOUyhHrmp79mHGG50zIVHiSoNPf3w+n0wm5XE4X6iVq/uOjc4pOMAzitl0EZUIC0m65SZS4AiVQOTPVjTYzOg23FV+HZ869CgBIiUrE+pQS3FZ0Hd25ChEryRmedcHccAKjHz4P5+Dcb+Bd44OwtJyFdvVGMIwEMkM8HMM90JfvgmyhcZ4kqNF7E/EW5czKRErRCUzOz8HI5OA4HgDAsVR4EkKC0GhlJfpnF50AYjdthDotFRl33k7F0ArwPI/XGw7B6rLhhvwroZIpAQA35l+F2oEmFCSsQnHiWqyJz6Xfc5hzGUcwcfpNjJ98fc6amrNZGj6GdvVGAICu6OJAhEcIIWEjkopOABiRK1GVXQqLyQSO46FUqLFK7KD8gApPEnRycnLAcRwkEuqCthSjH5+GIjYGjqFhd5uhrBRx2y9C4qU7RYwscPyRMxzPoX6wBdUDDQCAVbHZcLJOd+EplUjxw53/QcVmiFpqzvA8D1tHLSZOHYC54QTA8wsczUAel4q4qz4DdU6JbwMmoqP3JuItypnl4Xkezc3N6O7unrOvoKAgLO8edx75APGvnnZv25QS4F4RA/ITKjxJ0ImKihI7hJDR8a9nIdNpkXj5ZZiorcNETS10q/KQ//3vQKaOnGVTfJ0z47YJPHLi76jsq8XO7K1I0MaheeQ8mkfOAwA2ppYgNzaLis4QtljO8DyPidMHMX78FbjGBxc8lpEroUjOhTI5FzHbPwGplibxCkf03kS8RTmzPC0tLRFVdEYSKjwJCVHjNTXunxmJBIbiIqhSkhG/Y1tEFZ2+1jrSjoc+/DOGraMAgMq+WlySvRUK6fRSNBmGVLHCIwHiGuvH+PFXFyw6pfo4KFNWQR6fDn35LsijEwMYISGEhCe9Xg+GYSaXp7qAis7wQIUnISHIOT6O8arqOe3KuDjElJcHPqAw8v75E+6iEwDGbBM403MOWzPWAwBuLdrtXqeThC9z40koUlcJ1twEAEikUCRmQpGyCqqkHEStv4rufBNCiA8lJk5+iVdbWwsAKCwsdLeFKxfHCYqycF0DnApPEnTsdjt4ngfDMFAqlWKHE5R6Dxz02J5x5+0BjiQ4+CJnzvScQ7IuAf9WdgvOj3WhbrAJABCjMiAnJgN5sVnYkErj9sKF3W6HyzgCS80R6PO3QJmULdhv2LQbUrUe1paz4B1WSNQ6KFJWQZGUDUV0EqLWXUkFZ4Sh9ybiLcqZ5UtMTHT/7sK96ASAjJ078JHOCJ7nwAPQKDVih+QXVHiSoNPQ0OCefry0tFTscILOwJEPJ6fdlkoF7Wm33BSxH4RXkjMO1omX694EMHl3MyUqCd/c9jl8/+1fIl4bh29s+ywMKr0/wiYi4Hke1o4adB14AtKRTjDgwY/2IvGm+wTHMRIpJAoV1LnlYGRyyKKToC+7nLrTRjB6byLeopxZmUjqWsu5rLBLrO4vK1h+4ZnTQxUVnoSEEGtfH1r+8EdI1CrEbdkCRWwMAEC3Kg9S+jbVay6OdRedADBkGUW3sQ8GZRR+ctnXEaeJgUwiXeAMJFSwdjPGj7+GiTNvgbOMC978bD1N4DkWwGTBOUWZthqymCQoEjIE7YQQQlaO53mYzWbodDqxQxGda7QPzpEeTA3kkYRpiRaer4qEtOjoaLAsC6mUPujNxPM8an/2ADiHA5zDgf6334G+qBD6okLEbtoodniiWk7OtI91QavQoiRpLeoGm+G6UHgc6zgNrVyN69Ze4a9wSQBZWs5i7KOXYetqAFinx2Nco30Y/XAfFIkZ0OVf5G6XRcVCFhUbqFBJkKP3JuItypn58TyPxsZG9Pf3o7i4GLGxkX2tjZGpUW6cvssplYfnJJFUeJKgk5mZKXYIQan1sSdg6+mdbuB5uCYmkHjZpWKFFDS8zZljHafwxxN/xyXZW/D5jZ+EWqbCx92V7v1Xr4qM9U/DmX2gHQMv/w7OwY6FD5RIoUjIBGszQZO3PjDBkZBE703EW5QznvE8j4aGBvT19QEAqqurI774VElkSHCy7m2JPDwnMaTCk5AQwLMsOLsdMr0erokJAIBEpULazTdBnZIscnShg+d57Kt9A89VvwYAONR6FKlRydiz9gp83F0JpVSBGwuuEjlKshLO0T7073sIjv52APy8x0lUOihS8qBKWw3DlhsgVWkDFyQhhESo2UUnAHAch5qaGmzduhVyuXyBR5NQR4UnISFg+KPjUCbEI/nqK2Gsb8BEbR1iN21A4uWXih1aSHmr+Qheqn1D0PbPyhexKi4LtxVdF7GTM4UDzmbG6LEXMX7iNYBj5z1OFpsKZeoqKJJyYNh4DSQyRQCjJISQyOWp6AQAhmFQUFAQ0UXnwPAQGk3TXbJlLheyxQvHb6jwJCQEKOLjwfOAy2SCvqgQ2twcZN59p9hhhQye5/F8zX4AwBc27cUjJ/7m3ndl3sVYE5dLRWeI41xOTJw66LnolMqgTMlDVPFOaNZugUwXHfD4CCEkkvE8j/r6evT39wvaGYZBUVER4uPjRYosOPTUNyG6dvr9y6awihiN/1DhSYJOc3MzXC4XZDIZVq1aJXY4QUGfvxbIXwsAGKs6B3AcpCqVyFEFj4VyZuZyKQDQZxpEeXIRKvtqcHfpzbghn9ZjDGU8x4KRSCHTRcOw9QaMffDc9E6JDMq01YgqvRT68l2Cx9F1hniLcoZ4i3Jm0kJFZ3FxMeLi4kSKjAQaFZ4k6FgsFve6V0SIZ1los7Mh10eJHUpQWShnagea5rTlxWYhThND4zlDGM9zGP3geSgTs6HN3wIAiN5yA4xn3gJrNUKdVQxtwTZElV/h8YsFus4Qb1HOEG9RzkwWnXV1dRgYGBC0U9EZmajwJCRIOY1GyLRaMJLpmc0YqZSKziWyOW1QyVVYHZeN7Jh0AICLc+Fw6zEwDIPPbbhL5AiJt3jWhYmz70AiV8I5PvkhRpmSC9f4IABAotEj4Yb/gMyQCEVcqpihEkJIxJuv6JRIJCgqKqKicwZWKouIoiwSXiMJMaWlpWKHIDqe59Hwq9/AaTQi5zOfQjT9ThY0O2debziE/Y2HcP/l30K8dnJ6do7ncOT8CaToEnFx9mYxwiQrYO2owcArvwc7MQRlRgHU2SUAgInKw+5jDBt3Q5NbvqTz0XWGeItyhngrknNmoaIz0pdO8SReEQXjjO1wvUcenovEEBLiBt99H+PnqmE5346an96P839/EqzdLnZYQY/nefyr6mX8o+IFDFtG8cD7v8eEbfJSznEctmVupKIzxLiMo+h/8WH0PvkTsBNDAAB7VwNYq3HOsVIN9QYghBCx8TyP2tpaKjrJHFR4EhJknBMTaPvL36YbOA59b76Nntf2ixZTqHi1/m28NGMioR5jPx488ggcrBMyqQwKabh+hxh+eNaFsROvovPRL8Ncd2zWTg7WlrOCpthL7ghgdIQQQubT39+PwcFBQRsVnQSgrraEBJ3zf3sSLqPwbk7M+nXgnU6RIgoNLtaFCbsJeqUOE3aTu31rxnoqOEOMtb0ag6/9Ea7xAY/7pdpoqDILAQDRW2+EREEzPBNCSLBISkqCyWRCV1cXgMmis6SkBDExMSJHFrxUUrmgq62UFy0Uv6LCkwSdoaEhcBwHiUQSces6jZ+rxsChw4I2dUY61GmpSLv5RpGiCn5DQ0M43VeNtVHZ4LI4vNt2DFanFTuyNuPy3O1ih0eWyGUcwfA7f4e59kPPB0jlUGcXQ5GSh5iLboJEoV72c0XydYYsD+UM8Vak5gzDMMjLywMA9PT0UNG5BAqJVLAdrl1SqfAkQaenp8c9/XgkXag5pxMtj/5Z0MbI5YhZvw4AaN3OBfT09CDWoYXUxUAtV+HirM0w2k1I0iVAr9SJHR5ZBM+6MH7yAEY/eBa8w+bxGEVSNlTZpVClroKucOVfJkTqdYYsH+UM8VYk58xU8ZmamgqNRiN2OEGP5zjhtkhx+BsVnoQEia59L8Ha3SNoiy4rhVStRuZdNH5tMRJm+vvBKKUOUUodbi/eI2JEZCms589h6M3H4Rzq8rhfqo2GetV6yPTxMGzaDamaJhAihJBQwDAMFZ1LZFcJe/Cws+6AhgsqPEnQycjIcHdNiRTW7h50Pb9P0KZbvRoFP/guGGl4XnxWonuiDy/VHsRNhVcjXZ/izhkePBiHHClRSUjWJYgdJlmE8dz7GHz19x73MXIVVJmFUKTkQpd/ERSJWWAYxmfPHYnXGbIylDPEW+GeMxzHoampCZmZmVCrlz/0gQDDduHcHg5w8xwZ2qjwJEEn0sYB8DyPugd/Bd7lmm6USJD371+gotODusFm/OL938PBOqFTaPCp9bcLciYekdWdKRQ5hrthqpkcxymPT59ztzOq7HLoyq8AOBbqzCK/xBBp1xmycpQzxFvhnDMcx6GmpgbDw8MYGRlBeXk5FZ9kUVR4EiKyzmefh7VL+ME79frroMvNESmi4FXZV4tfffAnuDgWAPBG03soTspHsi4B6YYUkaMji+F5DqMfPC9oU+eWwzU+CN5phyI5F/HXfA6qtDUiRUgIIWQxM4tOALDb7aioqKDikyyKCk9CROQYH0f3vpcEbTKdDrEXbRUpouB2vPOMu+gEAB48/nrmWdxZciMVnkHMZRyFY7gLto7aOfskSg3UueXgXU4k3/49MGE6roUQQsIBx3Gorq7GyMiIoN3lcsHhcFDhuUxOzoWZC7/5bmBJcKHCkwQdlp0uLKRh3tW09qc/B+dwCNqi15UjalWeSBEFt8+uvwtquRqvN7wDAEjUxuOSrC3YlrHBnTfhnjOhhHM5MPTG/8FUfQSaVeuhSMr2eJwiMQsx2z8R0KIzkq4zxDcoZ4i3wi1n5is6pVIpSktLYTAYRIos9MWrDBifsS1jQj9fPKHCkwSdmpoa9/TjpaWlYofjN0MfHYe57bygTZ2RjtwvfBYSudzzgyKcVCrFv5XdgpaRdhjtJmzL2IBbi69DVVVVRORMKLH1NKPvuQfBmSffSq1tVZDHpYKRKQTHaXLKoMrID3h8kXKdIb5DOUO8FU45Q0Wnf3FOu2Cb52lyIUKIj/Ach9bHHhe0MTIZYtavgzyKlouYYnFaoZQqIJ1xJ4xhGNxWdB0kjASFiatFjI54wrMu9O97CJbm0wA/vRIZ77TB2l4DTd46d1vMjlupay0hhAQ5lmVRXV2N0dFRQbtUKkVZWRn0er1IkYUP1jQm2GY4KjwJCYioqCi4XC7IZOGbnoPvfwDniPACbigtRs7/+5Q4AQUZnudxprcaLSPtuKngakghLE6Kk9YKtiMhZ0KBY6AdvU//HKx5zPMBPAee5xG95XpIVdqAxjYb5QzxFuUM8VY45AwVnYGhlsphmbEtBT/vsaEsdP8SSNjKyQnv2VxZux2tjz8haJNFRSH5qitFiii4sByL/3z3vzFqncD2zI043HoUmYY0ZEanQqfwXKyEe84EO55jMX78FYy8/wwwY/KnKRKNAZo1GxF32V5INcHxIYVyhniLcoZ4K9RzZr6iUyaTobS0lIpOH1IwwrVeJWE6vRAVnoQEWMujj4E1mQVt0eVliN26RaSIgstvjz2OhqFWAMBHnWewLWMDJuwmVA804PbiPSJHR2ZzDPdg8LU/wN7d6GEvA2VGAaLKLoO+7PKAx0YIIWR5qOgk/kCFJyEBZOnsxNCRDwRtyqQkxG7ZBIYJz2+3vLG/4RA+7q5wb/eZBnCi+yy2pq/HnrVXiBcYmYPnOYwd3YexD/eBZ51z9ks0emjWbEbCNZ8DI6W3GkIICRUsy+LcuXMYGxsTtMtkMpSVlSGK5qLwORvnEmzP7TsUHujTACEB1PT7P4JnhZeT6HVliN++TaSIgku8NhZyqRzOC4UMAwbp+hRcvXontAqNyNGRKc7xAfQ9+19wDnbM3clIYNh6A2J23AaJQhX44AghhPgcFZ3+NeiyCIoye5jei6DCkwSd8+fPuwfjZ2dnix2OzzjGxmBuaRW0aXNzkLX3bjASyTyPiixb0tfhp5ca8KsPH4XRbsIniq7FbUV7Fr0bHK45E4w4pwM9f/sBWNPonH0yQwISb7oPqvTAL4/iLcoZ4i3KGeKtUM0ZqVSKkpIS911PKjqJr1DhSYLOxMSEe92rcNL0uz8I73ZKJEi+9pqIXz6F4zi80fQuNqaVIkmXgDXxufjFFd/Guf4GXLnq4iWdI1xzJtjYe5phbj4NdU4ZTOfeE+xTpKxC0i3fhDw6UZTYvEU5Q7xFOUO8Fco5M1V81tXVISsri4pO4hNUeBISAC6bDRO1dYI2TWYmkq6M7HGLPM/jhdoDAID2sW4k6RIAAMlRiUiOCo0CJhLwPI/RD55zb8uiE6FMXQ17TxMYpQaa1ZsQs/2WkCk6CSGELE4qlaK4uFjsMCKCSyKNiKIsEl4jCTGFhYXgeT6sJtvpePJpcHa7oC12K00o9HzNfvfPneM9KEsuhIN1IEqp8+o84ZgzwYBzWDF2/FWP+1TZJYBUClV6Pgwbd0OmjwtwdCtDOUO8RTlDvBUKOeNyucAwDKRS6eIHE79JWbMaTS3TNyikKqWI0fgPFZ4k6ITyQsvz4RwOaLIyYensAjgOyqQkZN5xu9hhiYbjODx2+mmkRyXD4rIBAFiewyv1b+GijPVeF57hmDNiGzt5AMaKd6BZs9njhyZGKoOucAf0664MyVlrKWeItyhniLeCPWdcLheqqqogkUhQUlJCxaeIFCnx6MufLjZ1Xn4OChXB/RdBSBhgrVYoYmMQd9FWRK+3w3L+POSG6IieUOiZ6ldxuPUoopQ6XLPqUvDg3fsyDKkiRkY4uxUDr/4BlsYTAABHVCyUqavnHGfYvAdSlTbQ4RFCCPGBqaJzYmICAHDu3DkqPonfUeFJiJ/1vvGm+2epUomotWthKIncMRNVfXV4pe4tAIDRbsLLdQexMa0Mafpk3F68R+ToIpu1owaDr/4BrvHB6ba2KsiikyDVTC8WHrPtFjCy0JssgxBCyNyiEwDGxsbQ0NCAwsJCESOLXHqZGvnm6SFZSgnd8SQkIMbGxtxjIqKjo8UOZ8Vmj+0EAH1RZF7YeZ7Hk5UvCu5wcjyP3JgM3JB/1bLPG245E2icy4HR9/+F8eOvATP+bSZ3snD0n4c6pxTRF90EiTw8xp1QzhBvUc4QbwVjzngqOgFALpcjKytLpKiIVqZEht3l3pao+AWODl1UeJKg09HR4Z5+PFgu1Mtl6eqe06ZOTQ3qiQb8yeqy4QcXfxmPfPx3nOuvBwB8suwm7Fm7a0XnDaecCTR7XxsGXv0fOAc75+xj5CqososRe9leKBMyRIjOfyhniLcoZ4i3gi1nXC4XKisrYTQaBe0KhQJlZWXQamn4hFh4nhNsu5xOkSLxLyo8CfGj8cqqOW0xG9aJEIn46gdbUD/UjJsKrsYPd/4HXq1/G41Drdi95nKxQ4tIPMdi5PA/Mf7x68CsNzwAUGUUIPaqz0CZlAWGidzxyIQQEg6o6AxuFrUOfeU7YBwbB8dxkCs0WCV2UH5AhScJOikpKeA4DpIQn3zH0tUNRi6DoaQEppZmsBYrAECmC89++wuxOW2o6p+cJvxw61EYVHqsicvFDWuvhMQHRU245EygOAY60PvMA2CNw3N3SmWIvfSTMGy+DowkfCeZoJwh3qKcId4KlpxxOp2oqqryWHSWl5dDo9GIFBmZ0vTee7C9dtRdmDlUUuAOUUPyCyo8SdBJSEgQOwSf6Dv4Jnpf2w+pRoP4S3ZAGR+PhEsuFjssUbza8I775yHLKIYsowCAwsS5s6UuR7jkTCAMvfkEJs68CXDsnH1SbTQSP/FtqDPyRYgssChniLcoZ4i3giFnqOgMES4WKueMcZ2SuT2RwgF9bUeIH3BOJwbfOwIAYC0W9B98C47RMaiSEkWOTBwpukRckbtd0LZ79WUiRROZWIcVXY9/ExOnDngoOhkoMwoQs/NOqNLXihIfIYQQ33I6nfN2r6Wik4iB7ngS4gcjH5+Ca9aFPvX63SJFI54Pzn8Mq8uGXbk7wDAMFFI5HKwTMokUOiWNJwkUzmnH2NEX4TKOztknUemgWbsZ0Zv3QJFIMxoSQkg4mCo6TSaToJ2KzuDkYJ1QiB1EAFDhSYgfSHVa6IuLMFFTC/A89MVFUKekiB1WQPUY+/HY6adhd9lR1V+HL27cCwc7OUvbzQXXiBxd5DCeew/O0X4wUhm0BRfBePYdgJucsl2RnIvoLTdAVxyZXcAJISRc1dfXzyk6lUolysrKqOgMQhkbN6HS2u/eVqrC88t5KjxJ0Dl37px7+vGSkhKxw/Eaz7JwjY2j4IffB2s2YeDwe9BkR9adJCfrxP989ATsrsk1TD/uqkDLSDvuv+JbiFPH+Hw5mVDPGX8ZOfKsYFuq0UOzegMszaehWb0RiTd8NWzW5fQW5QzxFuUM8ZaYObNq1SqYTCbYL6wlrlQqUV5eDrVaHdA4yNJIolSYyNDCZrOC53loZLSOJyEBwfO8+79QNFFfD2tPDxxvvwOZVgtNZgZiN20UO6yAOtldhbZR4bqQZcmFiNfE+uX5Qj1n/MHSfMZjuyIxC7LoJMRdcU/EricLUM4Q71HOEG+JmTNqtRrl5eWoqKgAACo6g5xjoB2O/jb35DuSMC3RwvNVkZCmVqshk8kgl8vFDsWjido66AsL5t0/fq4GwOSkQqzFAvsgEHfR1kUfF04kDIMb86/C4dajMDrMSNMn49Prbvfb8wV7zgQSa5nA+Kk3wPO8x8JSnVkIdTbdraGcId6inCHeEjtnporPqZ9J8IqSKrHa4nBvy6ThOf8rFZ4k6Kxe7ZslNvyh41/PovOZ55B1z16kf+LmOft5lgVmfbMp1+vRte8ltP/jn8i483Zk3hWGCzPNwPM8OsZ7IJfKsTN7K071VGF75kYoZf4bNh/MORNIjuEe9D37C7hG+6DfdB10xZfAMdID50gvACD6opsitmvtbJQzxFuUM8RbwZAzVHCGBp1UgWyb070t0YTnv1t4ltOE+MFEbR06n3kOAND+j3+ia99Lc45h7Q5ErVkNZXwcGKkUAGDr70f7P/4JAOh85jlM1NYFLmgRvFR30P2zSq7CjqzNyI2JrDGuYrC216Dnb9+Ha7QPADBxcj/s/W1QJucCAGK23UJFJyGEhBmHw4GOjg7qAk5CAhWehCyRvrAAWffsdW/PLj5dFiuMdXWILi9D0pW7kLL7Whgbm9DzymvuY7Lu2Rv23W1LkwqwI1M4prU8pVCkaCKDseo99D79M3A24QyGY8dehNQQj9hL7gAjo+6BhBASThwOByoqKtDa2oqWlhYqPkOY0WpBNydx/9fj5MQOyS+oqy0hXpjqXjt1B3Pq/+mfuBlDHx5Fyx8fhSIuFgmXXQrn+DjGzpx1P3a+7rnhZlVcNqxOm3s7SqGFhKHvuPyB53mMvv8Mxo6+MGefIjkXybd/H1K5SoTICCGE+NNU0WmxWAAAXV1dAIC8vLyInjguVLWcqYTs1HSxaVWYRYzGf6jwJEGnq6sLLpcLMpkM6enpYoczx3zF58iJkwAAx/AIul94UfCYcC46LQ4rHjnxN9xddhPS9ZNrlapnFDvXrL7U7zEEe874A+dyYODFh2FpOjVnnzqnFEm3fhcSBRWd84nEnCErQzlDvOWvnLHb7aisrHQXnVOGhoaQlZVFE2CRoEWFJwk6IyMj7nWvgvXNfb7i05NwLjp5nsdjp57CqZ4qVPXX4dPrbsfludvBMAxuLdodsDudoZAzvuQc7UPPP38CdmJ4zj5l2hoYtt5EReciIi1nyMpRzhBv+SNn5is6VSoVysvLqegkQY0KT0KWaXbx6Uk4F50A8FbzERzrPA0AcLBO/PnUUxizTeATASw6I42tuwF9z/wCnG12NxwG6rx1UKaugjqnVJTYCCGE+I/dbkdFRQWsVqugXa1Wo6ysDCoVfeEYqpwMExFFWSS8RhJi1qxZM+8ahMEm/RM3g+c4dPzz6Tn7wr3o5HhOMIMtAGjkalyStSXgsYRSzqzE+Kk3MHLo7+BdTuEOqQza/Isgj01BzMW3hf3vwRciJWeI71DOEG/5MmcWKjrLy8uhVNKs5aEsURUN44ztcL1vTYUnCTqh9o2dJiNjTptEoQjrohMAXqg5gJ3ZW1HVV4eW0XYAQGlyAeK1sQGPJdRyZjlGj+7D6PvPALxwpjtGqYGuaAd0RTugziwSKbrQEwk5Q3yLcoZ4y1c5Q0UnCRdUeBKyQq2P/2VOG+dwoGvfS2FbfHIXih+pRIp1qcVI1MVj2DKKy3O2090AP5ioPIzRD56fU3RKdTHQb7gGMTtuFSkyQggh/mSz2VBZWUlFJwkLVHgSsgKd+16EY3DQ476ZS62EGwYMbiu6DiaHGf2mIQBAmj6Z1uv0A3P9CbjGB6Et3A5z9RF38SmPS0PctV+EJot+54QQEo5sNhsqKipgs9kE7RqNBmVlZVR0hhGFRFiShessGeH6ukgIM5lMMBqNMJlMYoeyoK59L6HjH0/NadeXFLt/bv/HP9G176VAhhUQDMOAYRhEKXXoM00W3rcUXCNaPKGSM97ieQ72gfMAAHl0IjT5WwEwUKSsQtIdP6CicwXCNWeI/1DOEG+tJGeo6IwsKqmw8JTyIgXiZ3THkwSd1tZW9/TjpaXBOTtn176XPM5mK9VosOYbX8Pgu+/PWWolHO58epokYWvGesgkUpEimhQKObM8DPTlu+Ac64NrtB8AIFm3C9FbrociJlnk2EJb+OYM8RfKGeKtleSM1WqFw+EQtGk0GpSXl0OhUPgyTBIE+FmFZpjWnXTHkxBvzVd0AoAqJRkytRrpn7gZWffsdbeHw53PJ04/gwePPAKrQzjOROyiM5wxDAOZPg7qzCKoc8oAAPFXfhqKuDSRIyOEEOJPMTExKC4udn/ZS0VneOMUwjvYfJh+tqI7niToJCQkgOM4SCTB973IQkUnMFl4Tpm9zmco3/ms6KnBW81HwIPHjw7/Bl/b+v+QGR08xU8w54y3eNYJ52g/FPHTi43zPA/WakTMtlvAyMJ1kvXACqecIYFBOUO8tdKciY2NRXFxMdra2lBaWkpFZxjrcxgF2zZw8xwZ2qjwJEEnJSVF7BA8mqitExSd+pJiTJyrdm9LFApoc3MFj/FUfOoL8qEvLAhAxL5hspvxu+NPgL/Q8aNzvAfff/uX+OKmvbg4O/BrdnoSrDnjLZ7nMXjgf2GqOYrEG78KXcE2AJN3PpVJ2eIGF2bCJWdI4FDOEG/5Imfi4uIQGxtLM8aTsEBf2xGyRPrCAmTceTsAIOuevbD3Dwj2KxMTEbd505zHzex2m3Hn7SFVdALAhx2nYHPZBW2r43KwKa1MpIjC1+h7T8NU9R7AOjHw4sMY/fB58LMHfhBCCAkrHLfw3S0qOkm4oDuehHgh8647EF1WCmVCwpwut8qkREg1ao+PS//EzSF3p3NKUeJqfHbDnXix9iCGLCOI18Ti2jWXQSWnxdR9ydJ8GmPHhOOARz94HoqkXGhXbxApKkIIIf5ktVpRWVmJ3NxcJCYmih0OEYmddSAS5immwvMCnufx+uuvY9++fairq4PFYkFCQgI2bdqET37ykz6Zwe7MmTN46qmncPr0aQwNDUGpVCIrKwuXX3459u7di+jo6JW/EOJ3+sICtD8pLDoZmQxRBQsXlaFYdAJAhiEVGYZUXJy1BT9793dYE5+DLenrxA4rrDgGO9D3wq8xex47zdotUKWtEScoQgghfmW1WlFRUQG73Y7a2loAoOIzQiWoojExY1vO0ORCYctms+FrX/sa3nvvPUF7d3c3uru78dprr+G+++7D5z//+WU/x69//Ws88cQTgjan04mamhrU1NTgmWeewR/+8AesW0cf6Ovq6tzTjxcsUsyJZejYccG2MikJhqLwXlNRJpHiqxd9GknaeLFDmSMUcmY+rGUCPf/4EcC6BO2qrGJEFW6HVBMlUmThLZRzhoiDcoZ4a6GcsVgsqKyshN1uFxwvlUoRFxcX6FCJ2GZ1t+Z5mlwobP3whz90F515eXm4/fbbER8f7y4ILRYLHn74YSQlJeHGG2/0+vxPPPGEu+iUy+W4/fbbUVJSgomJCbz99ts4efIkBgcH8fnPfx4vvvgiMjIyfPnyQo7T6YTT6RQ1honaunnvUDonJmDr6RW0qZKTIFEoYGxsQsy68gBEGHhSiRTJugSxw/AoGHJmOXjWid5//hSczSxolydkQplRAG3+VpEiC3+hmjNEPJQzxFvz5YzFYkFFRcWcdTq1Wi30en2gwiNBxDUxJNhmFhn3G6oifnKho0eP4vXXXwcAbN26FS+99BI+9alPYc+ePfjud7+LF154wd0F9sEHH4TJZPLq/OPj43jkkUcAAAaDAfv27cNPfvIT3Hzzzbj33nvx5JNP4ktf+hIAYGJiAr/73e989tpClVwud/8nho5/PYtz3//RvOtuDh75QLDNSKWIXleOgcPvouGXD6Hz+X2BCNOvTA4zeo0Dix8YJMTOmeXgeR59zz4Ix2CHoF0aFQvN6o2IveQOkSKLDKGYM0RclDPEW55yZr6iU6fToaysjPIrQimlwq61EoTnxIIRf8fzL3/5CwBAJpPhgQcegFIpHNqbl5eHH//4x/jmN7+JsbExPP/88/j0pz+95PMfPXoUFosFAPDZz34Wa9euFexnGAZf/epXsX//fnR0dODQoUNwuVyQySL3n0bMLkwTtXXofOY5APOvu9n7+huCbWViAqydXeh/8y0AQPcLLyJ2w/qQHdNZ0VuLE11ncVnORZBJpNAptFDJlEE9q14odnsbOvgYrG1VgjZGoYa2cDtiL7kjqH/f4SAUc4aIi3KGeMtT91pPRWdUVBRKS0up6IxgKkb4uV+K8PwMENF3PMfGxnDs2DEAwMUXXzxvF9fdu3e7+9sfPHjQq+fo6upy/5yfn+/xGIlEguLiYgCTA81HR0e9eg7iO/rCAvfSJ8Bk8TnzzqfLYoGtv1/4IEbiLjoBIOPuO0O26DQ7LHj46J9xqPVD/O3s83ir+Qhea3gHp3vOiR1aWDE3fAzjmbeEjRIptEU7ELP9E2CkkfvFEyGEhCMqOgmJ8MLz1KlT7rWTtm6dfyyVRCLBpk2T6zNWVlZifHx8yc+h0+ncP3d2ds57XE9PDwBAKpXCYDAs+fzE92auuwkIi8+el1+dMwDcduHfDgDSbr0FaTdeH5hA/eCpypdgZyffFJtHzuPN5vdhc9qwNj5X5MjCh2OgA/0vPTynXbN2C2K23wKpmiYTIoSQcGI2m+ctOql7LQEA16zJhMKzo22EF55NTU3un9esWXjJglWrVgGYHJfV2Ni45OeYuQzLP//5T8HsZVM+/vhjVFVNdrnbvHkzFArFks9P/GO+4nP2bLYzJV+3Gym7rwlEeH7ROtKOQ61HBW0xKgOUMiWilLp5HkW8wZrH0ffcf3mcwTbpxq9CbqBp9AkhJJyYzWZUVlbOW3RG8tAqMq3XKZxDxhqePW0ju/Ds7u52/5yWlrbgscnJyR4ft5ji4mJccsklAIDW1lbs3bsXx48fh9FoRF9fH55++ml8+ctfBsdx0Ol0+Pa3v+3lqwg/vb296O7uRm9v7+IH+5Gn4tM6z7996s03IvHyywIVml9kGFJxW/EeyCWTb4JSRoLylCLcURL8d3CDJWcWY6w+Ate4cNKmqRlsGSl94x1IoZIzJHhQzhBvtba24siRIxgeHha06/V6KjpJRIrojB8ZGXH/HBMTs+CxUzPbApNjQ73xu9/9Dt/4xjfw3nvvoaqqCvfee++cY9avX48f/ehHKCoq8urc4WhwcNC97lVKSoqosUxNLDQ10dDsbrbAZPfapF1XwGW2BDI0n5NL5bi1aDd2ZG7E46efgVKmwCeKdosd1pIEU84sxLB5DxiGwfA7fwd4DrLYFGjWbELMRd4v00RWJlRyhgQPyhniDafTiTNnzsDhcEAqlSIqanIYhV6vR2lpKRWdJCJF9B1Pm83m/nn2bLazzez+OvNxS6HVavHLX/7SfedzNoZhkJOTIyhuSfCYfedzprRbbkbK7mvB8+HTGz85KhE/3Pkf+Oa2z0NPXWx9imEYGDbvQfIdP4A8IROGTXugK9gGiUItdmiEEEJ8SC6XIzY2VtBGRSeZj3PWTPbh86lSKKIz3+WaHme12LjKmftnPm4pDhw4gO9///uw2WxISkrCbbfdhry8PJjNZnzwwQd46623sG/fPhw8eBB/+9vfBONCxdDc3Iy8vDz3t3MAYLfb0dDQAGDy7m9mZuacx0wtGzM7/qGhIffkSRkZGYK7yyzLoqamBsDkeIecnBzk5uaC53kwDIPz589jYmICAFBYWCi4WI+NjaGjY3INxJSUFCQkJAie99y5c+B5Hmq1GqtXrxbs6+rqct/xXrNmDVQqlXufyWRCa2srACAhIQEpKSlI/8TN6HzuBXAzv3SQSZGyR3hHcGBgACNmMxiFArm5uYLJpWw2m3t8cGxsLNLT0wWPbWpqgtVqBcMwKCkpEewbHBx0d+/KzMwUfEnhcrlQW1sLYPJNLTs7W/DYtrY2GI1GAEBRURGkM9aKGh0dRUt7KzieQ056tvt3yDAMGIZxjz3WaDTucc5TOjo63Hf/165dK/jyxmg0oq2tDQCQlJSEpKQkwWNra2vhcrmgUCjmzPbc09ODoaHJhZTz8vKg1Wrd+6xWq3tsdlxcnLuL/FTOdHV1oaqqSjBT9JSBgQH09fUBALKzswWLdDudTtTV1QGYXG83KytL8NiWlhaYzWYAk93nJZLp7+xGRkbcs1enp6cLPmhwHIfq6mqA46BlTchdvw0MI4Embx1UOSXoaG3FRP8E0F+FgoICwQQTExMTOH/+PIDJrv6JicLxn9XV1eA4DiqVas4Y9e7ubnfXrtWrV0Otni5szWYzWlpaAADx8fFITU0VPLa+vh4OhwMymQyFhYWCff39/ei/MKtzTk6OaNeImZZ7jcjNzUVrayt4nkdTU9OKrxEz1dXVue+MzV5Oobe3F4ODg+4YQuEaMTUxXmpqKuLj4wWPDZVrxJTGxkbYbLZlXSN4nodMJoNGo8FsK75GYPJL6ry8PMF529vb3RMa0jUisNcIYOWfI+Li4qDVajE+Pg6DwYCSkhLIZDK6RlwQbteIlXyOkKq1mIibcT9QPfm3LtY1YioHfS2iC8+ZFwmn07lg8TlzULg3k/8cOnQI3/rWt8CyLLZs2YI//elPgovIbbfdhg8//BBf/vKXYTab8dnPfhb79++fc/ELJJZl3bP9TuF5Hk6n071/NpfL5d4/G8dx7n2zzwvAvW+qoJ/5++nr63Pvn31XcWZM85136oPCQvEu5bxd+14SFp0A4GLRe+ANpOy+dsZrnXwswzALntfTlxdOp9P92Nlm/g69Pe9C/zYsy+LowGnIJTJEx8dA69RBJVW6L4gLnZdl2Xljmhmvp3xxOp1wuVyCC+9SzjtfHk7lzNTzLnbehfLb29/hovltNUHVdgKcQgGusMw9a61EIgPLSFf0O+Q4TvABwNNrXervcPZr9XQXf6m/Q39fI+Y7rzfXCJ1OB5fLJTjGF+edincprzUUrhEr+bcJpmvEzPMu9xox9Ro9/f7FyG+6RkzzxzVi6rwr/RyRnp6OrKwsxMfHu89D14hJ4XaNWMnvkE+JQ8em6S+AdDN6nIlxjfD0b+kLEV14zvzW0m63L7nwXKxb7hSe5/Ff//VfYFkWBoMBv//97wVF1ZQdO3bg29/+Nu6//36Mj4/jL3/5C7773e968Up8SyqVzvmDYxjG/S2KpwSVyWTzTgcukUjc+zz9IU/t83Rhn3ne2RfSmTHNd16e5z3G5c15u/a9ND3GEwCjUoG/UIR2v/AiACDxissvHD/5WEYuX/C8nl6rXC6Hy+Xy+IYx83fo7XkX+rc52nsaEqkULHgc6z0DzXg9LsnegmRdgjum+c4rlUrnjWlmvJ7yRX7h9+PteRfLQ7lcDpZlPebDzPMulN/e/g7ny2/WPA6XzQxtxyngwt8UazFCotK5X9dCebiU3yHHcR7jWsnvUCaTgeO4Rf9t6BqxeLyezruSv2UxrhEr+behawTc5/JHftM1YlqwXyNmTlA5M166RtA1YupcnmKZGdNSzuvLa4Sn1+8LDB9Og9O89JOf/ATPPvssAOCdd95BRkbGvMc+//zz+NGPfgQA+M1vfoPrr198ps/a2lrcfPPk5DR33303fvrTn857rMPhwObNm2G1WpGXl4cDBw5481JWxGQyubu/AJPdHTwVyJFodtGZftsnkHDpTvS98SZ6X9/vbk+96UbEX7wDiphoyHRaSJf45YSYbC47fvTOr5Ebm4V4zXTXr08UXgupZP4LIFkc73Ki56mfwtHXBm3BNsiiJ7u3qLNLAI6d/D8hhJCwYDQawTAMfXYiy9ZT/S4q3n7Mva3SxuDyz/9JtHj8VRtE9ORCM/uwLzY9+lSfbgBzxjvMZ6pfNbD4OqEKhcLdb3tqLEikstlssFqtXk/i5Guzi86se/Yi5bprATBIvOJypN16i3tfz8uvYODwuyJEuXyHW4+iY7wH77V9hHfbjqHXODkuJxSLzmDJGWCyp8PggUdh72oA73LAVP0+7H2T4wGt58+BNY+LHCEBgitnSGignCGeGI1GVFZWorKyEiaTcC1GyhmyVAa5BvkWh/u/PM+9ckNeRBeeMwfoTg00ns/UfoZh5gwwXwq73b7oMVO3tRe63R4JGhsbUVtb6x5AL4bZRWfMhvWI3rAOmNGNIWX3tYLis2//AfQeeCOgcS4Xy7HY33jYvT1sGUXLSDuuXuV55uVgFww5M2Xs6D6Yzr0/3cDzsHXUgmcn30V0RTtEiozMFEw5Q0ID5QyZbaronBpnN7v4pJwhyzXfeNBQF9GF57p169z9mk+cODHvcSzL4uTJkwCA/Px8wSxWC5k5A9fUjFTzcblc7lkSl3pHlfjH7KJTHh2N0dNnUHnft1B7/4OYqK9375tdfHa/8CK6X341oPEux0edZzBoFi5ofVHGBhhUS8tt4pm54QRG3/+XsFEig65oBxipHDEX3y5OYIQQQnxqZtE5xel0or29XcSoSKji1TowJRdjPL0EI6lFMCblLf6gEBTRhader8fWrVsBAIcPH3ZP1T3b/v373VNmX3vttR6P8aSkpMTdH/rQoUMLdud95ZVX3N+Sbd++fcnPEY5iY2MRFxc3Z/2rQJiorRMUnWm33ATnham+wfMwN7dgorYOM1dYStl9LVJvutG93fn0MxeOCV4bUktwT/mtiFNPTkm/KjYbd5bcIHJUyydmzkyx959H/4v/Paddm78FUm00Yi6+3eOED0QcwZAzJLRQzpApExMTc4pOAIiJiREs7UE5Q5aq8qMPUfXCMXQcqkX3u/VofbdK7JD8IqJntQWAT33qU/jggw/gdDrxjW98A48//rhg8GxzczN+8YtfAJhcP+e2225b8rkVCgX27t2L//3f/4XFYsF9992HRx99dM4F6MyZM3jwwQcBTM4wde+99/rglYWu2etSBZK+sAAZd96OzmeeQ9Y9e8HMmulLolBAYTDMeVzS1VeCczrRt/8A0m69BfrCgjnHBBO1XIU9a6/ANat24sOOk4hVR4d0USRmzgCAyzSKvmceADjhhxBVTinUWcXQr79KpMjIfMTOGRJ6KGcIMF10zl6eIiYmBsXFxYLhUpQzZMlMVsSPT+eUzRaec79GfOG5Y8cOXH311XjzzTdx9uxZ3HjjjbjrrruQkpKC2tpa/Otf/3Iv+Pqd73xnTtF44sQJ3HPPPQCAzZs348knnxTs/+IXv4gjR46gtrYWFRUV2L17N26++Wbk5+eDZVkcP34c+/fvd39r9sMf/nDOYrYksDLvugPRZaXQFxag7+1D0GRmwNrTC97lgjI5Cbq8HI+PS7z8MhhKihGzvjywAXtpwm7Cwab3cP3aXVDLVbg05yKxQwppnMuB/hd+DdY0KmiXJ2ZDmbaWik5CCAkT3hSdhJC5Ir7wBIBf/epXMJvN+PDDD9HV1YWHHnpIsJ9hGHzlK1/BnXfe6fW51Wo1nnjiCXz961/H8ePHMTo6ir/85S9zjpPL5fjBD36Au+66a9mvg/jO1B3LuK2boUlPg21gABO1deBsdmiyssDNM+g7ao33E08F2sGm9wAATcNt0Ck0iNfGQa+kKeCXg+d5DO1/FPZu4cQRUn08NKs3IG6n99cMQgghwWd8fBxVVVVzis7Y2FgUFRVR0UlWxME6oRA7iACgwhOTxeHjjz+O1157DS+//DLq6upgNBoRHR2NDRs24J577sGGDRuWff7Y2Fj87W9/w6FDh/Dqq6+isrISw8PDUCgUSEtLw/bt2/Fv//ZvdKczCMmjoiAvyIe+IB/xF22FsbkFjESCUF3+tmt8epxx/VALACBFl4iLszeLFVJIGzv2EkzVRwRtEqUW2oJt0OVvFSkqQgghvrRQ0VlcXOxelYCQ5UoqKEBTe4t7W6rViBiN/1DheQHDMLjhhhtwww3eTbCyZcsWwQKrC51/165d2LVr13JDjBhNTU1wOp2Qy+XLWrrGXxi5HKqUFHBWq9ihLNvxrrNz2spSCkWIxLfEyBlz/XGMvveUoI2RKaEt2gGJQgVlcm5A4iDLE6zXGRK8KGci00qKTsoZslTq9FSMbc2E1WoFz/PQyqnwJCQgrFYrnE7nnNnixMYwDCQSBtwC+4PZy3VvYsg8gkxDKqQSKcbtRgAIi262gc4Ze18rBl79/axWBvHXfA6u8UHEXELLpgS7YL3OkOBFORN5Vnqnk3KGLJW9pwm2rnowACY/TYZniRaer4qENIZh3P8R3xizTeD56tfh5FyIU8fg6tU74WJd2JReJnZoPhHonDFWHgbvtAvaYq+4B7rSSylvQwRdZ4i3KGciT09Pz5yiMy4uDkVFRUvqXks5Q5ZKLZEjxT49f4hcGp7dt6nwJEGnpKRE7BBgHx7G6JmziN92EWRa7dwDQmyI58Gmd+G8sNTHsHUUz557Fd/a/kWsis0WNzAfCXTOaPK3wDnWD2vzGQCArvRyGLZcTx8uQkgwXGdIaKGciTxr164Fy7IYGhoC4F3RCVDOkKWLlqlQbHa4tyUalYjR+A8VnoR4UP3j/4RjcAj9b70D3ao8xO/YDkPRhbGQIVZcOFwOvN38gaDtkuyt2JBGb4jLYW2vga29Fob110CTtwHmxhNIuPbzVHQSQkiYkUgkKCwsRE1NDQB4VXQSQuaiwpOQWTiWhWNwCJzDAVNjE0yNTZDIZJOFZwgWFxJGgmtWX4qqvjo0DLcCAK5fS5NcLYdztA/W9moAgK23GQCgTFsLl2kE8ugkMUMjhBDiBxKJBEVFRe6fCfEHluPgnNGbThKiqycshgpPQmYxNTSBczgEbVEX1vUMRS/WHQQAfGHTXthZB6r7G5BuSBE5qtDDcyyM596f084wDGSGRBEiIoQQ4is8z8/bc4UKTuJv5z4+CVfFdP45lGaE4zzIVHiSoDM4OAiO4yCRSJCQkBDw5x89c0awLdVqEbd1y5zjFnqTChYubnpShLbRTlycvRkJmlgRI/IPf+aMY6AdErUeE2ff8rhfX74r6POAzCX2dYaEHsqZ8DU6Oorz58+juLgYcrncZ+elnCFLxnJQzbzlGaYfK6jwJEGnt7fXve6VGBfqsYpKwbYyMSFkC4sXa99w/9xnGsBz1a+jIGEVSlT5Ikble/7KGZdxFL3PPADOboW2aAdkuhjBfl3BNsj0cT57PhI4Yl9nSOihnAlPo6OjOHfuHDiOQ1VVFUpLS31WfFLOECJEfQcImYHneVg6uwRtmoz0GVuhWYAC0xPxFiWuETWOUME57eh//pdgjSPgHVaYKg/DMdTt3i+LioUiIUPECAkhhKzEyMiIu+gEAKPRiKqqKlp3kwScK4Q/X3qD7niSoJOZmSlaN1ZrVxc4m03QJjdEL/7AIBwEzvM8Lsu5CE7OBYfLgY+7J+/kSpjw+77J1znD8zwGX/8j7BcmEAIAcCwcPY2Qx6WCYRjo113pk+ci4hDzOkNCE+VMeBkZGUF1dbW76JyiUqkglUp98hyUM2SpolVRmPnpM1wLtHB9XSSERUdHi/bcIx+fFGxLlEokXT3PDLA8H7Sz3JodFrzZ/D525e5AgjYOtQNNAIDbiq4TOTL/8HXOjH34Asy1RwVtEpUWmoJtYBgG0Rfd5NPnI4En5nWGhCbKmfAxX9GZmJiIgoICnxWKlDNkqeSMVFB4Bueny5WjwpOQGcYqzwm2lQkJ0GYIu1MGaa0p8G7bMTxz7lXsqzmAi7M246pVO3F78R6xwwoJprpjGD3yjLBRKoe2cAckciViLr6dvr0mhJAQNTw8jJqaGr8XnYSQucKvzx0hK2BubRNsa3NzhAcs9H4UJO9VHMfhjab3AABOzoXDbcfwSr3nGVmJkL23BYOv/mFWKwNt/lZItQYYNl5LH0oIISREDQ8PB+ROJyHeks1asidcM5HueJKg43K53GMiZLLApahjZBQuo1HQpoz3fukRsd+4TvVUYdA8LGi7bs3lIkUTGL7IGZdxBH3P/RK8S7iGqyq3DPLYFKgzCiDV6H0RLgkCYl1nSOiinAltU0UnP2tOhqSkJOTn5/vlvZtyhiyVRqrA6IxtWfBNHeIT9FdAgk5tba17+vHS0tKAPe94Ta1gm5HLYSgpCdjz+8rZ3hpk6FPQYxwAy7PIicnA6ricxR8YwlaaM+4ZbE0jgnZ13nooUvLAMAzUOYHLReJ/Yl1nSOiinAldYhSdAOUMWb4wrTup8CRkynjVrPGd8XHQ5ubOPTCIu+LwPI8YtQFbMtbD5rKjY6wbGrla9LuwwYzneQy+9gjsvS2CdlVmERJv/BocA+1QZRaKFB0hhJCVGBoaQk1NTcCLTkK8wciVwgaJb2ZWDjZUeJKgo9fr4XK5At4tZayyUrCtTEiA3CDsWhnsb1Dn+uvdP6tkSqyJz0VOTPivNbmSnBl9/18w1x0TtMlikpH0iW9DqtZBnVXkqzBJEBHrOkNCF+VM6BkZGfFYdCYnJ2Pt2rV+f0+nnCFL1eUQDvWygpvnyNBGfwkk6GRnZwf8OV0mE+z9A4I2dVpq0Beas1mc1jltG1PDv3vPcnPGVHsUY0f3CdoYpQZJt30XUk2UDyIjwUqM6wwJbZQzoUer1UKtVsNisbjbAlV0ApQzhMxGs9oSAmCirl7YIJFAptOJE8wKbElfh+vWXI7tmRsBADqFJuSK50DheX7usikMA/26q6CID/+7xIQQEu6USiXKysqgVqsBBLboJITMRXc8CQEweqZCsK2Mi0P8jm0LP4gPvqHfDMNAq9BALVfh1sLd9Oa6gImT+6HJ3wZryxk4+loBAOqcMqjS19DvjRBCwoRSqUR5eTl6enqQnZ1N13cSlJycE3KxgwgAKjwJATBWMXt8Zzw0GZ7uegXnG5bVacOE3YgkXQIAQMJIgjXUoGDrrAdrM4ORSKBetQFSjQGsdQKK1NXQrt0idniEEEJ8SKlUIicnvGd3J6HNINfCMmNbxoRnp1QqPEnQaWtrcw/GD8QbBWu3w9bbK2hTJiSAkXoxo5jINz8/aD+Bx08/g5Kktbg8dzs2pZVDIY2E784meZMztu5GWNqmv2hgGAbKtNUAgJiLb/NrnCR4BPo6Q0If5Uxwm5iYQFRUVFDd0aScIUsln/WZjQm+TnU+QYUnCTpGo9G97lVAnq+hUdhtlmGgiI8LyHP7yjstHwIAzvU34Fx/Ay7J2oKvbP2UuEEF0FJzxmUchaXlrMd9MRffBiZMv2EkcwX6OkNCH+VM8BoYGEBdXR0SExODaokUyhmyVM4x4QSX4FhxAvEzKjxJxJuorhFsy2OiYSgpnv8BF97QeJ4Pit6sLcPncX6sS9C2LXODSNEEL0trJSznqyCRKebs06+/mopOQggJQf39/airq3P/zDAMTSBEQo5sVr6Ga/ZS4UmCTlFRYNdNHDl9RrCtTEhA1No1ng9e6Eog0lWisq8OcqkcTtYJAFDLVchPWCVOMCJZLGds3Y3oe+YBSFRaaIt2QKqeXipFV7QDMl20nyMkwSbQ1xkS+ihngs/MonNKX18fYmJikJSUJFJU0yhnyFJpJXJMzNgO1wItXF8XCWFSb8ZWrhDncsFyvl3QpkxIgEyjWf5JA/wtq4tnsWfNFeie6EPbWCfiNbHQyNUBjUFsC+WMa2IIvU/9DOA5cFYjTBWHoCnYBnl0IrSrN0IRlxbASEmwCOR1hoQHypng4qnoBIC0tDQkJiaKENFclDOECFHhSSKauaUVvMslaFOnpYoUjfdc7GTsUokUmdFpyIxOC8plXsTCOWzoe/a/wDtt7jbe5YBzqAvy6EQoU/JEjI4QQshy9PX1ob6+fk57eno68vLyqJstIUGKCk8S0SZqhd+WyvR6RK1euJtqML2hSRgJLs/ZBpPDArPTgpqBRlyac5HYYQUFnucw8Orv4Rg4L2iXRSdCnVuOmItvFycwQgghy0ZFJwlHXQ4jZt4ft4RpGlPhSYLO6OgoOI6DRCJBTEyMX5/LNiCcRUyZEA99Qf78DwiyNzSJRIJ4bSzitbEYtozCybqQqIsXO6yA85Qzo+8/A0vDCcFxMkMiNPnbELvzTvpwEuECeZ0h4YFyRnyhVnRSzpCl4sVely9AqPAkQaezs9M9/bi/L9R5X/gcMu+6ExN19Rg7exbR68oh0+n8+pz+wPM8lFIFypILxA5FFLNzxlT9AcaO7hMcI1FpEb/7i1BnFwfdhxMSeIG8zpDwQDkjrt7eXjQ0NMxpz8jIQG5ublBe1ylnCBGiwpNEPLk+CnFbNiFuyybvHijiWEqO58CAcb/RMgwDnVIrWjzBxNpVj4HX/iBsZCRIvOWb0OSUiRMUIYSQZQvFopMQb7jARERRFgmvkYSY1NRUd9cU4tmp7ir85cyzyI5Ox79vuRd6ZejdpfWlqZzhzaPoe/rncxZejrvqM1R0EgG6zhBvUc6Io6enB42NjXPaMzMzkZOTE9RFJ+UMWarouHiMaqZzmVWG54zIVHiSoBMfH5gxipzDAXN7B3R5uWCW/KYQHG9wL9e9iRHrGEasY/jCq9/DLQXX4LbiPWKHJZr4+HhwDiu6nv9PwQy2AKDMyIdh4zUiRUaCVaCuMyR8UM4EntPpRGtr65z2UCg6AcoZsnSG0rU4ZTrl3taF6Q0F+gqGRKyufS9h9NRpcE4n+BV3mw1ct9shywiaR867t1mOhYSJ7D9lnufQ/bfvwzXWL2iXRSdBv2G3SFERQghZCblcjpKSEsF6mFlZWSFRdBJC5qI7niQisVar++fuF18GI5HAUFqy8Iy2QeKdlg8E23KJDHaXQ6RogkP/87+Cc7BT0CZRR0GTfxGiiraLFBUhhJCVMhgMKC0tRVVVFdLT05GdnU1FJwk7cokMMc7pYUIauYjB+BEVniQi9b9zGGOVVVDExUIRGwuZRgNFTPTSHizyG16CJg6XZG/F+dFOdE30It2Qit1rLxc1JjGZGk/C1ilcj5WRKaAt2oHoTXS3kxBCQp3BYMCmTZugVCqp6CRhKV6hw0bj9FAhmSxavGD8iApPEnSqqqrc04+Xlpb65TnGKiphrJteC0yTnYXMu+5Y9HELv98F5s1wQ1opcmIyMGE3o3qgASzHIlqlD8hzBxueY+Hoa4UtrRzSvnpIzcMAw0BTcBGiN10HmT5O7BBJkArEdYaEF8oZcalUKrFD8BrlDFkuhyM8e7JR4UkikmN0TLCtDKEJAKJVekSr9OB4Dka7CcVJa8UOSTTmhhOTP0hlcCTlQ24aQJROh8Tr/h2MlC5vhBASKrq7uwEAaWlpIkdCSOAxKi20+RdhbHwMPMcDYbpEHn0yI0FHo9HA5XJBJvNPevIsC2uncDxgws6L/fJc/uRgndiQWgKNQi12KKLgeR6OC+M65XI5pFIpJOosJF37KSo6yaL8fZ0h4Ydyxn+6urrQ3Nzs3g6X4pNyhizVuaqzaD10FgA/OV2lUo78fxM5KD+gvwQSdFatWuXX87N2B1L27IapuQWm5hawFguiy8uXfoKp/rYrngl3ZVQypajPL7bRD55z/xwTG+v+WaKMzEKceMff1xkSfihn/GN20dnU1ASGYZCamipiVL5BOUOWyjUwjMzu6TGeNqVTxGj8hwpPEnFkGjWy7538GonnONgHBiDXRy3twSJOamB12tA90Yfc2MyIXz7FZRzx2G7YeG2AIyGEELJcnZ2daGlpmdPudIbnh25CIl1kf3olEctlMoHnODASCVTJyWKHs6iWkXb84v0/4P3zxwO5ZGhQchlHMPjq78E55w68l2oic5IlQggJNfMVnbm5ucjKyhIhIkLE4+RcYocQEHTHk0QcY1MzpEoFNDqd2KEs2Qs1+9E43IrG4VbUDTbhzpIbUJ5cBFkEjmUcfvuvsJ4/B3v/eeg3XANGrgTvciDm4tvFDo0QQsgSdHR0oLW1dU57bm4uMjMzRYiIEHEZ0tLQkzb9uZTXhOdwqsj71EqCXkdHB1iWhVQq9csb0Oip01AmJoBzuiBRKqFMiIdU6f0fOB+gMZ5Wpw2VfdPrVHaM9+BA47vIT1gFXYQVnpaWszDXHQMAcFYjxj58HvqN18KcvRXj58/7LWdI+PH3dYaEH8oZ34ikopNyhixVTFEBqvh22G128DwPrUIjdkh+EVmfWklIGBsbc6975esLtXNiAgBgHxiEfWAQAJB01a6lF54Mg0Ct1znlWMcpuGZ0wWDAICs6HTpFeE61PR/OacfQwf8TtElUOug37UZP1xCcphG/5AwJT/68zpDwRDmzcvMVnXl5ecjIyBAhIv+inCFLZe9rhb27CTzPgwcPjpGLHZJf0BhPElHM59vntClmzIi6XP68+1mYsBo7s7dCLZ9cPDslKhHXrN7pt+cLVmMfvgDXWL+gLfaKe6CIDf2ZDwkhJNy1t7dHVNFJiDdkLIcouw16hx0GhwPaMJ1gi+54kqCzdu1a8DwPxg8zyHa/9ApMzc2QGwyQR0dDlZTol+fxpRR9Er685V58gf0kTvVUQSlVIEEbJ3ZYAeUY6sLYRy8L2lQZBYgquwyAf3OGhCfKGeItypnla29vR1tb25z2cC86KWfIUsXLNdgyMb2cikQdnnc8qfAkQUe5jPGWS2Xr74drwgjXhBHWzi7wzrV+ey5fk0ll2JqxXuwwAo7nefQ98wDAc9ONjASGbbeAubCsjD9zhoQnyhniLcqZ5Zmv6Fy1ahXS09NFiChwKGfIsoXplxXU1ZZEFOfYuGBblbK8pVTo28vAMVa8A9f4oKBNmbYGivg0kSIihBCyVHL53Ds3kVB0EkLmojueJGK4rFawZrOgTZuT7bPz+6MW5XgOEiZyvx9ymUYx/PZfBW2MUgNVZiHk0UkiRUUIIWSpUlMnx+E3NjYCAFavXo20NPrikJCZqisqMVY//XnPpbAgW7xw/IYKTxJ0jEYjOI6DRCJBVFSU785bXz+nLX77dp+d381HFWjPRB/0yijolJE1e+1Mfc8+CN5pF7Rp8tYj9tK7BW3+yhkSvihniLcoZ5YvNTXVPQlfJBWdlDNkqVxmC6InpocU2RSBWbIv0KjwJEGnra3NPf14aWmpz85rrG8UbMt0OihiY5Z/Qj/OZNtrHMCLdW8iQROLBG0cMg2pyDCkQilT+O05g42lvQaOPuEMiPK4NBg27Z7T1dlfOUPCF+UM8RblzMpEUsE5hXKGECEqPEnEMDU1C7ZlBj0YiXfdWN0Fj5+HeD526inUDDRCp9AgOzoDWdHp2JW3A2n65Y1JDTU8x2Lwpf8WNkpkUOeWQ5UeOhNCEUJIpOB5Hna7HSqVSuxQCAk5LJiIKMoi4TWSEJOUlASWZSGVSn16Xmtvn2BbnZri0/P7CsdxaB3pAACYHBZUDzTA5rLjnvJPiBxZ4IwefRGseUzQpsoqRNyVn/J4vL9yhoQvyhniLcqZ+fE8j7a2NnR3d6O0tBQGg0HskIIC5QxZKq1SC9eM7XDNGCo8SdBJSvLPpDHOceGMtoqYFXSz9aOq/jpYXTZBW3lyYcTMpMvzPKwtZwVtEo0B+vVXu5dPmc1fOUPCF+UM8RbljGdTRWdHx+QXplVVVVR8XkA5Q5ZKLZHDOGM7XKeVDNfXRYgAa7fPmdFWlbzCbqt+GuLp4lxIiUp0byfrEnBL4bX+ebIgNHHqDahzy6AruwJSbTQAQLNqA3T5W8UNjBBCiADP82htbXUXnQDAsizOnTsHp9MpYmSEkGBEdzxJRLB0ds1pi1m/zvsTBWCM58a0MmxILUXTcBveO38ceTGZkEkj40+V5zmw1snv/GT6OOjW7YJrbACGzdeJHBkhhJCZporOzs7OOfvy8vI8rt9JCPFsdq+2cO3jFhmfZknEm6itFWxLtVookxLnOVp8DMNgTXwu1sTnih1KQLHGEUSVXgpzwwlwdisYRgJ5TDKUSdlih0YIIeQCnufR0tKCrq65X+rm5+cjeaU9igiJMFEyJSZmbMvCczUVKjxJ8KmtrXVPP15YWOiTc1o7hN/Iyg16yDQan5zblzieA8/zkErCdVj5wqS6GDASKRQJmbB1NQAAYnbcuujj/JEzJLxRzhBvUc5MoqJz6ShnyHKFad1JYzxJ8HG5XO7/fMXU2ibYluv1Pjirby8LTtaJYx2nYHc5fHreUMJcKLgVCVkAAHV2ibttIf7IGRLeKGeItyhnqOj0FuUMWSpm9jrt80ymGOrojicJOgqFAhKJBDKZ79LTPjAg2FalrHQpFQ+971c46+xbzUdgdlqhkjUiVh2DaLUeseroFZ0zFPA8j/59D0GdVQT9hmvASKSQ6qKhK7gI8viMJZ3DHzlDwhvlDPFWpOcMz/Nobm5Gd3f3nH0FBQU0g6sHkZ4zZOn6WeFqBvYwHeRJfwkk6OTn5/v0fJzDAZdp1oy2iQk+fY6ZlrPsCcdzMDrMkDAStI52onV0smvw7cV7fB1e0DFWHYal4QQsDSdgrHwX8dd+Aaq01VAkZC75HL7OGRL+KGeItyI5Z6joXJ5IzhniHScnvCvOhWln2/C8j0vIDJbuboAX/gGrM5d2Jy1QjnWcwv6GQ6jorcGYdXK9Ub1SJ3JU/sdaTRh+8y/ubUd/GwZeehg8S92SCCEkGPA8j6amJio6CSErRoUnCXvm5lbBtlSjgb5g5d9C8rzvvo062nEKdtaB5pHzeKf1QxzvPIOd2eG/bmXfM/eDdwq7l8TuuhdMhCwfQwghwW5gYAA9PT2CNoZhUFhYSEUnIT7CcpzYIQSEKJ/uTCYT3nnnHZw5cwY9PT0YHx/H3r17ceONNwIAHn30URQVFeGSSy4RIzwSZsZrhEupyA16KGJilneyC91oVzicU8DmsqNmoFHQFqM2QC1X+e5JgpC54WPYe1oEbfLYVGhWbxIpIkIIIbMlJiZidHQUfX19ACaLzoKCAiQmBu+SZISEGrVMgZlTS0ppcqGV4zgOf/rTn/C3v/0NZvPkmDue58EwDEZGRtzHPfXUUxgeHkZZWRkeeughZGQEV7dI4l89PT1gWRZSqRSpqakrPp+tt1ewLdPrwUiC5w+6dqARNpfdvc2AwWfW3yliRP7HsS4MHXwMgpmBJVJo1m6GZBl3O32dMyT8Uc4Qb0VqzjAMg7Vr14LneQwMDKCwsBAJCf6bJyGcRGrOEO+pZUpB4Rk8n1J9K2CFp8PhwOc//3mcOHFiwS6KdrsdQ0NDYBgGFRUVuO222/DUU08hLy8vUKESkQ0NDbnXvfLFhdo6q4uQb5ZS8Z31qSX43e7/xJHzx3Hk/MdI1ycjVR/e3ZdG3vk7WNOooE2VUYDYy/Yu63y+zhkS/ihniLciOWcYhkF+fj7S0tKgD7L30GAWyTlDvOM0jgi2eY4VKRL/ClhB/dOf/hTHjx8Hz/NQqVS444478Mtf/nLOcTzP4+6774ZcLgfDMBgbG8N9991HayCRZWEdDriMJkFbdFmJSNF4xnIs4tUxuLPkRjyy5358ZeunxQ7Jr1ibBcbKw4I2iToKCdf9+7JmBCaEEOJ/DMNQ0UmIn0hmTarIhOektoG541lVVYWXXnoJDMNg9erV+POf/4yUC+sofu973xMcq1Kp8JOf/AT33HMPvvSlL6GtrQ3Nzc14/fXXcdNNNwUiXCKyvLw8dxfslbL19s2Z0Va3evWyz+eOyUcFksluRuNwG8qSCwAAEkYS9rPZ9j334JwJhdR56yCPWf5dXl/mDIkMlDPEW+GeMzzP4/z580hNTYVSqRQ7nLAQ7jlDfCdKqsDM2yRy0SLxr4Dc8XzhhRcAADKZDI888oi76FxIdnY2HnnkEUilUgDAwYMH/RojCR5arRY6nQ5arXbF57J2dQm2ZVFR0OevXfF551jmDLeHWo+i3zSIQfMwTA4zOD68ZzVzjvbC3i2cSEkWk4KEa7+wovP6MmdIZKCcId4K55zheR4NDQ1ob29HRUUF7Hb74g8iiwrnnCFkOQJSeH788cdgGAaXXHIJMjOXvih8Xl4eLrvsMvA8j7q6Oj9GSMKVpVNYeOryckWKZC6e52FnHTA6zDjS/jEONL6LMz3VYoflV30vPAQIxi0wUOeUQqII7xl8CSEkWE0VnVOz1lqtVlRWVlLxSQjxuYAUngMDAwAmFxr21uoL3SJHR0cXOZKQuSwdnYJtdUa6706+wnU8z/bOLTJTo8J3enpLawWcA+2CNkVKLuKv/oxIERFCSGTjeR719fXuonOK1Wp1rz5ACPG/fofw780Wpr2zAzLGc2oW26lus96Y6hcvl4drb2cym9VqdY+JUKvVKzpXws6LoUyIh7WzC5bOLmgyfbU0j6crwtKvEjzPY3/jYcSoDUjQxLnzPCUqPGez5Xkeg/sfFTZK5YgqvQyMxPvrwmy+zBkSGShniLfCLWemis7+/n5BO8MwKC4uRmxsrEiRhY9wyxniPw6wgqIsXAdeBaTwjI+PR1dXF5qbm71+bFVVlfscJDI0NTW5px8vLS1d0bnkej1S91wHZcJk/iy0lE8gtY914Vx/PQAgWqVHojYOhYlrwnYCApdxeFYXW0CVWQD9hmt8cn5f5gyJDJQzxFvhlDNTQ5imeqRNmSo64+LiRIosvIRTzhDiCwHpartx40bwPI/Dhw9jZGRk8QdcUFtbi2PHjoFhGKxbt86PEZJwxLMsxioq0f/OIfBscK2H9GHHSffPY7YJ9BgH8InCa0WMyL+kSi0yvvIo4q78NBiFGhKldvJuZ5gW2oQQEqzmKzolEgkVnYSIhPOi11woC8gdzz179uCll16CzWbDd77zHfzpT3+CQqFY8DEdHR34yle+Ao7jwDAMrr02fD+UE6G4uDiwLLusrtkzWbt73D+Pnq2ANicb8qgoMIvk3pIt8+Ypz/M40VUhaNuVtwNKWfhOXy9RTnYx0uZvhcs8Ds5mhq5wu8/O76ucIZGDcoZ4KxxyZrGik7rX+lY45AwJDLVaB+eM2pORhGchGpDCc/v27di+fTuOHj2Ko0eP4pZbbsGnPvUpFBYWuo/hOA5GoxFNTU14++238eyzz8Jqtbrvdu7cuTMQoZIgkJaW5pPzWLu73T+bmpphampGxp23r+yk7nU8sezCk+VYXJSxHqe7q9A50QsA2Jq+fmVxhQhGKofckICoi2/3ydjOKb7KGRI5KGeIt0I9Z3ieR21tLQYHBwXtVHT6T6jnDAmc+K1lOMRNTzqpC9M13QNSeALAf//3f+OOO+7A+fPn0dLSgh//+McAJscT8DyP3/zmN/jNb37jPn5qLF5iYiJ++9vfBipMEkacRuOctmDo2imVSFGSlI89a3fB4rSiqq8WOTG+mvQouEm1BujXXyV2GIQQElE4jkNdXR0VnYQQUQVkjCcAGAwGPPfcc9i1axd4nnf/B0wXA7Pb161bh+eeew5JSeE50yfxL3VqKrQ52dBcWEJFlRwceXSi6yz6jIPQyTVI1iXgqlU7g6Ig9gd7XxtcE0Nih0EIIRFroaKzpKSEik5CggDDSKDgePd/8uCYC9PnAnbHEwD0ej0eeeQRVFVV4YUXXsDHH3+M9vZ2wUyjCQkJ2LRpE2666SZccsklgQyPhBGe51H34C8h1+uhSk6GLEqH+B2+G1N44VmW9aiO8cmxp280vQuFVIEkXTxKk71f4zbY9T7zAKTaaOjXXw3OYYNEpYVMFyN2WIQQElE4joPNZhO0TRWdMTF0TSYkGCQr9dg5ZnFvy2L0IkbjPwEtPKeUlpa6p5VmWRbj4+NgWRYGg2HRSYdI+GtsbHRPP75mzZplncMxMgLWbAFrtsDWO7kwdva996w8uAt3Jqe6iHtrxDrm/tnstMLstK48piBkaa2AteUsAMDe3QhVTikUsakwbNrtl+fzRc6QyEI5Q7wVqjkjk8lQWlqKyspKmEwmKjoDKFRzhojP6XSKHYJfiFJ4ziSVShfs5uF0OtHS0oKhoSHs2LEjgJERsdhsNjidTrArWAJl5oy2ACBRKqGI82N3oiXWoLUDjXPaLs7a5ONgxMVzLAZf/YN72zncDZdxBLGXftJvz+mLnCGRhXKGeCuUc0Yul6OsrAzV1dXIzs6mojNAQjlnSGAxMgVUWSUwmYyTNzZUNLnQsuXn50MikeDb3/42Pv3pT3v12D/+8Y/485//jISEBBw5csRPEZJgIpFI3P8tl62nV7CtTk0VfRwlx3HIjs6ATqGDzWVzd7lVyVWixuVrQ28+AdY8JmhTZRZCv/Eavz2nL3KGRBbKGeKtUM8ZuVyO8vJy0d8LI0mo5wwJnMbOdpyr6wLLceDBQ6awYK3YQflBwO54LqdbIgCo1WrwPI+RkREfR0SCVXFx8YrPEX/xdsgNejhNZtgHBiDXR/kgMiFvc/pM7zn836l/YUNqCdalFCNWHY0t6eU+j0tMnMsBU80HgjaJRo+o0sv9+mHHFzlDIgvlDPFWKOQMx3EAMG+hQ0VnYIVCzpDgYG45j9zqUfe2TRmeX1aI3tV2PjzPo6urC6+//joAQKPRiBwRCSWmpmbYh4aRfPWVkPhw3PD0m7aHN+9F3s9PdVdh1DaOd1o/xDutH6I0qQC78sKr+/joe/8Cb7cI2tQ5ZdAVbBUpIkIIiQwcx6GmpgYAUFRURHfZCCFBx2eFp8vlws0334zm5maP+3mex69//Wv8+te/9vrcDMPQoGzilYm6egBAz6uvQ6JSQZ2SjJgN6wPz5B6+UeZ4Dqd7zgnaylOKAhNPgHAOGybOvClokxkSkLDnyyJFRAghkYHjOFRXV7t7h9XW1qKwsJCKT0JCBMtxkIodRAD47Iokk8nw85//HIBwPc6Z3RFnty/1PwD43Oc+56tQSZibmXOc0wmX0QhrT88Cj/C/86OdGLcbBW0b00pFisY/Rt57CrzTLmhTZZdAIpOLFBEhhIS/2UUnAAwNDaGhoUHEqAgh3lBF62HRyd3/OQ1qsUPyC592tV23bh3uvfdevPXWW4L2np4eMAwDvV4PrVa76HkYhoFUKoVOp0N6ejpuv/12mtE2ggwMDIBlWUilUiQmJnr9eM5un9MWu2mjL0IT8mKIZ6IuHt+/+MvoGO/G6Z5zsDhtSNYl+D4mkbA2M4xn3xa0yWJSELvzroA8/0pzhkQeyhnirWDMGU9FJzC5YkBqaqpIUZEpwZgzJDglbt6IOs0QnA4neJ6HVhGeQwx9Psbze9/7Hr73ve8J2vLz8wEAX/ziF72e1ZZEnr6+Pve6V8u5ULvMljltivh4X4QG4MI4Ty/nZzjQ+C5SdIlYn1qCy3K2QSVT+iyeYDD63lPgXcI1p1TZxZBF+XEJmxlWmjMk8lDOEG8FW86wLIvq6mqMjo4K2qVSKUpLS2EwGESKjEwJtpwhwcsx1AXHYAdYFwuAh1Piu/lJgknQz2pLiLcsnZ1wjo9DqtFAIp/s5slIxes5b3XaAAC9pgH0mgYAAEnaeOzMCY8Jd1ymMUxUHBK0yePTEb3lBpEiIoSQ8LZQ0VlWVga9Xi9SZISQ5eBtFjAWo7swkzLOBY8PVQEpPOvr6wPxNCRMZGdng+O4ZU+KMPzhMfS//Q4AQKJQQJOVicy77vBliF7pmuid01aYuFqESPxj9P1/AaxrRgsDVVYxFHGB6+a10pwhkYdyhngrWHJmvqJTJpOhtLSUis4gEiw5Q4JfskKHy0ene+wxKp2I0fhP0C6nQiLXSt80HTPejDmHA/yFdc18b2l38aOUOtyUfxXebD4Cq2vy7meCNs5PMQWWa2IYxnPvCdrkiZmI2XZLQOOgD1rEW5QzxFvBkDNUdIYW+vcgy8WE6ZcVor4qnufBcZzgP5Zl4XQ6YbVaMTIygtbWVrz22mv4zGc+I2aoJITYevsE26rkZD88y9IHeSbrEqCQKVCStNYPcYhr7KOXhXc7JVLEX/UZyPThUVgTQkiwYFkW586d81h0UvdaQkgoCOgdz7feegtPP/00ampqYDabadwn8QunSbhsiSLOxxPceKw5Pedy8/B5mJ0WFCWsQbohFR93V2JXXvjM0Bxzye2QKJQYP3kAvNOOqPIroM4Kr/VJCSFEbFNF59jYmKB9quiMiooSJzBCiE80NtSjq31GWaawIVu0aPwnYIXnb3/7Wzz22GMAljfREMN4OY0oCVlO5+RU0gzDQC73bg1InufBmsyCNqlSvBlkX61/G8e7zkAtU6EspRBX512CWHW0aPH4mkSlQ+xle6HfdB3GPnpZtAmFVpIzJDJRzhBviZkz9fX1VHSGILrOkKWyDI0isX+6B5lNEZ51T0AKz8bGxnmLzqmCcr52mUyG66+/ntbxjCB1dXXu6cdLS0u9eqxjbBw8ywratKvyfBnetEW+P3GyTlT01QAArC4bjneeQXlyIYoQ+l1ueZ6HueE4VKmrIdPHQ6aLQfyV4i2VtJKcIZGJcoZ4S8ycycrKwtjYGJzOyZkuqegMDXSdIUQoIGM8n3/+eXdhuWHDBjz//POoqqrCvn37wPM8pFIpjh07hoqKChw+fBgPPvggUlJSwPM8XC4XiouLsXv37kCESkKc5fx5YQPDQJuV6YdnmvtN1Oy78jUDTbC57DMewWB9aokfYgk8a/MZOAY6wFomwHPs4g8ghBCybDqdDmVlZZDL5ZDJZCgvL6eik5Aw4q9pMINNQArPU6dOAZi8cP7pT39CSUkJFAoFioqKoNfrwbIsjh49CpVKhdTUVNxyyy145ZVXsGbNGvA8j4ceeghDQ0OBCJUEAYPBgOjo6GUtfm3t7hZsS9VqqJKSfBXapMW6fV/Y328aQJw6xt28Ki4b0arQn/yB53nYepsBAObGkxj76GWMHHlW1JhWkjMkMlHOEG+JnTNTxWd5eTl0uvBcaiHciJ0zJHQoFWrBdnjOaRugrrZ9fX1gGAaXXnrpnD++oqIiHD9+HKdPn8b111/vbo+KisLDDz+MG264ATabDc899xz+/d//PRDhEpFlZWUt+7GW9g7BtlSjEW1K6nG7CZflboNBqUO/aRjpBn/Mrht4zkHh75gXrOEpjpXkDIlMlDPEW8GQM1RwhpZgyBkSGnRSFWZOjSkVLRL/CsgncqNx8leZk5MzZ9+qVavA8zzq6+vn7Fu9ejU2btwInudx8uRJv8dJQp99eESwLdNp/fhs8w/ydLJO98/jdhNUciWSdQl+jCUweJ7HwCv/A1tHLTjndDdiffkVIkZFCCHhweVyobe3V+wwCCHELwJSeKrVk7ePPc3olZ2dDQBoaWnx+Nji4uIF9xMyk3NEWHhKVSq/PM9ivW1PdlfNaUs3pPollkCytVfDMdAOW3s1Jj7eD0vLGfAuJ2T6eLFDI4SQkOZyuVBVVYWGhga0t7eLHQ4hhPhcQArP6OhoAPA4TjMjIwMAYDKZMDAwMGf/VNfc8fFx/wVIwobTaBJsK2Jj5jlyJRaf4lotV0IlUwiO1CtDv4vU2PFXpjc4F1wjfVCm+GnWYEIIiRBTRefExAQAoK2tjYpPQiJIlEx4o0Tu/cqTISEgYzwLCwvR2dmJY8eOzdmXmTk942hVVRV27dol2N/X1wdgeWt/ktDU0tICl8sFmUyGvDzvihrWahVsq5LFGVe5LqUY61KK4eJYHGg8jARtrChx+JJjoAPWlrOCNmXaGigSMkSKaNpKcoZEJsoZ4i1/5YzL5UJlaSAcogABAABJREFUZaV7WNKUrq4upKam0vqPIYyuM2SpZvekC9eqJyB3PLdt2wYAaG5uxp/+9CfBvqysLHdX3FdffVWwz2q14p133gEAxMdTV75IYTabYTKZYDabvXocz3FzC88U/xWeS/kyRCaR4upVO3FRxga/xREoo8deFGwzMgUUSdmQx4nfhXi5OUMiF+UM8ZY/cma+olOhUKC8vJyKzhBH1xmyVIxEOrtBnED8LCCv6sYbb0Rs7OQdnz/84Q+49dZbcejQIQCTax9efvnl4Hkeb7/9Nh544AE0NjbixIkT+OxnP4uhoSEwDIPy8vJAhEpCmHN8HOCEKyEpE/w0oc8CgzzfaHwX//vxkzjWcRpGuwlKmcI/MQSQyzgKc+1RQZsiZRUYqQxMmF4cCSHEn5xO54JFp1brz8nxCCHBZIQRfn51LD6qKyQFpKutSqXCz3/+c3zta18Dy7KoqanByZMnccUVkzNhfv7zn8cbb7wBnufx1FNP4amnnppzjrvuuisQoZIgMDWhlLfsQ8PCBobxyx1PTzUnz/NgLozo/LDjJJpHzuNw2zEwYHBP+Sdw3drQnvV1/MQrAD/joshIoExdhejNe8QLaobl5gyJXJQzxFu+zBmn04mqqqp5i06NRuOz5yLioesMWSqLyy7YZsO0s23AblXs2rULf/rTn5CWlgae55Genu7et3btWvzwhz8EMPkBfuZ/APC5z30OmzZtClSoRGQSicT9nzdsF8YDT5Gq1ZAF+M3b7LSiZXR6QggePDJCfDZbzmHFxOmDgjZFUja0azZBogqOb+SXmzMkclHOEG/5KmcWu9NJRWf4oOsMIUIBueM5ZefOnXj77bdx8uRJJCUlCfZ98pOfxJo1a/DYY4+hsrISDocD+fn5uOeee7B79+5AhklClK2vX7At1agh82dXJQ9fRtWMNAvGfsqlcuQnrPJfDAEwcuQ58C6noE2ZtgbqzEKRIiKEkNA0VXSaTLNmYKeik5CIxnFc4O4GiiighScw+e3Pli1bPO7btGkT3dkky2YfHBRsS9UaMFLpPEev0DxjPIdtEyhNKsCwZRT95kGkRiVBIQ3dySF4joW5+oigTRabCu2q9SJFRAghoWm+olOpVKKsrIyKTkIimEwixcxRnpLFFowPUQEvPJdrZGTEPUERCW8jIyOT3/xIJF79mztGRgXbMp2f7nbOezFgIGEYrInLAeJzwXEcWJ71TwwBYq4/DtY8JmhTpa+FZlVwzdK73JwhkYtyhnhrJTmzUNFZXl7unt2fhBe6zpClilJoMD5jW7qENeNDUUgUns899xwefvhhnDhxQuxQSAB0dXXB6XRCLpd7daFmZ01XLlWp5jnSf8xOK6TyyQ8QEokECkkI3+3keYwfFy5xJI9LQ/y1nxcpovktN2dI5KKcId5aSc5MTEzMWVKDis7wR9cZslSseUKwzc9apSFc+LXwHBkZQUtLCwYHBxEXF4fy8nIolcolP76pqQk//elPcfbs2cUPJhHPMTIi2DaU+H82OZ7nwVy4A8ryHGJUetikgIOdHBO5NX2d32PwF3tXPey9zYK2mJ13QhIGy8MQQkggxcXFoaCgALW1tQCo6CSECHEO4Tr0zBLWig9Ffik8Ozs78dvf/hZvvfUWWHa6q6FKpcK9996L//iP/4B0gbF3NpsNf/jDH/D3v/8dLMsKPtyT8Jeenu7umrJUPM/PWU7FUFzk69BQP9iMPGWix31SRoLL0jZBGRcLu8uBXmM/ErRx7seF2iRDYydeE2zLDInQrvU8Pltsy8kZEtkoZ4i3VpoziYmT7x2tra0oKyujojMC0HWGLJVeqoRlxrYsTJdT8XnhWVFRgS996UsYGxsTzO7JMAysViv+/Oc/49y5c3jsscc8Fp/vvfcefv7zn6O3t1dQcE5dsEn4W053FNfEBHiXS9CmiIvzVUgAgOeqX8cLNftx55prcW3yZgCTXSHqfvFfYC0WSFUqFPzkRwAApUyB1KgkyKVyvFz3Jp6uehm3Fl2H24uDY93LpVAm5cA1MQRHbwsAwLD5OjASP03WtELUhYl4i3KGeMsXOZOYmIj4+HgqRCIEXWfIUs2+v8aE6RhPn175HA4HvvnNb2J0dHqSF4VCgfj4ePc2z/M4duwY/vjHPwoea7FY8IMf/ABf+tKX0NPTMx2gRIJ77rkHBw4c8GWoJMzYh4V3OyGRQBET7bPz1w8244Wa/QCAZxrfwP7ODwEA1u5uWM63wz4wCEtHJ6zd07mrkCncRScAvFCzH/WDzXPOHYwcAx3geQ7R225G/O4vQrNmM3Sll4kdFiGEBD1+kS5yVHQSQiKVT69++/btQ3d3NxiGgUqlwgMPPIBTp07hww8/xMmTJ/G1r30NUqkUPM/jr3/9q3t2t76+Ptx222146aWX3Hc5eZ5HaWkpXnjhBfzgBz+A1p/rMZKQZx8UFp6KmGifLqWSn7AKd5fe5N5+ru0QDvSdgLG+QXDcy4eexOsNh9A90ScoOgHg7tKbQqa7ran+IwCTBajLOAJVRj6kKvobJISQhTgcDpw+fRrDs78MJYSQBYy4bIJtR3je8PRtV9ujR4+6f/7Nb36DK664wr2t0+nwpS99CXq9Hvfffz9sNhsOHTqELVu24I477sDAwID72KioKHz961/HnXfeGdCxnTzP4/XXX8e+fftQV1cHi8WChIQEbNq0CZ/85CdRWlq64uew2Wx45pln8Oabb6KtrQ0mkwlxcXHYsGED9u7di/XraX1EbsZMXkv9ZliTmYGU6/dAEW2AY2wMEoXvJ8C5qeBqAHAXk/u6jyD+rAIz586VtHbjHxUv4KOO02gaaXO33116k/vxwc7Tt/Wcw+bhyOCxnJwhkY1yhnhrsZyx2+2orKyExWJBTU0NiouLqatlhKPrDFkqM+cQFGWueY8MbT4tPJubJ7sRrlmzRlB0znTXXXfhsccew8DAAE6fPo2XXnoJ/f397rucV111FX7yk58IuucGgs1mw9e+9jW89957gvbu7m50d3fjtddew3333YfPf375S0nU19fjP/7jP9DR0SFo7+vrw/79+3HgwAF88YtfxH333bfs5wgH1dXV7unHl1rscw4HZFoNOKcTcr0ejMw/EzbfVHA1OLsdzzS8AfA80NYt2J824AB4PmSLTgAwVhya06bO9v8MwSuxnJwhkY1yhnhroZyZWXQCkwVHdXU1SkpKEBMTI0a4JAjQdYYQIZ9+Oh8eHgbDMNi0adO8x0gkEmzcuBH79+/H/v373RdpnU6Hn/3sZ9i9e7cvQ1qyH/7wh+6iMy8vD7fffjvi4+NRU1ODZ555BhaLBQ8//DCSkpJw4403en3+zs5OfPrTn8bIhSU/LrroIlx55ZWIjo7GmTNn8Pzzz8Nut+PRRx9FcnIy7rzzTl++vLDH2abvyPEsC37GbMq+dn3eZeAcDhw+cxAqh/DuoNrBI36MxVDM5J9WqBWdPM/BZZzbRUyVUSBCNIQQEvzsdjsqKipgtQqXQ1AqldBoNCJFRQgJJeE5h+1cPi08py66i92tTE9PBzA5oRDP88jNzcWf//xnZGRk+DKcJTt69Chef/11AMDWrVvx2GOPudcb3bNnD2699VbcfffdGBsbw4MPPogrrrgCOp3Oq+f42c9+5i46v/nNbwrunF533XW4/vrrsXfvXjidTvz2t7/FLbfcAoUfuouGAq1WC5fLBZkXdy1NzS2CbXm0wddhCezJ3AH1R7UARufsSxtwYChGFoJFJ4++534FiUIFWWyKu5u7VKMHwwR3F6Hl5AyJbJQzxFuecma+olOtVnu9djkJP3SdIUslk6sE22E6xNO3hafL5QLDMIteaGdOFJScnIwnn3wScT5e+sIbf/nLXwAAMpkMDzzwwJz48/Ly8OMf/xjf/OY3MTY2hueffx6f/vSnl3z+jz/+GB988AEA4JZbbvHYXbe8vBx33nknnnzySYyNjeGjjz7Czp07V/CqQldeXp7Xj1EmxINzOMDa7QDP+2SMZ9sTf8XQ0WNz2nmOB3geMWaTx2+otlWacHETD/WbL+AkXpizP37HduT8v0+tOD5fs3XWwdp8CgAgUeugTF0DRXIO9BuuETmyxS0nZ0hko5wh3pqdM1R0ksXQdYYsVdLmMnxgq3Nva8J0QkdRvoKZ+c3PV7/6VVGLzrGxMRw7NllcXHzxxfPedd29ezcefPBBDA8P4+DBg14VnlN3U5VKJb7+9a/Pe9ytt94Kp9OJmJgYUX8noSh282T3bp7nMVFbu+Lz8TyPoWMfwTE84vVjFS4AE2Y4YPa4f/jY8aAsPMeOThfJnNUEe3cDFCm5AZ3gixBCQgEVnYQQX2IUcjg1073LWGVwrpu+UqLf+7/00ktFff5Tp065Zx3bunXrvMdJJBJs2rQJBw8eRGVlJcbHx2EwLK075zvvvAMA2LZtGxITE+c9Lj8/Hz/72c+8iJ4Ak2M6WZsNUo0GzrExOMfGEbftohWd02U0wjk27qMIhRyjo3BOTECu1/vl/MvhHOmFtbVS0KZMXQ3t6vnHaxNCSCSy2WyorKycU3RqNBqUlZVR0UkIIfMQvfAUe7a3pqYm989r1qxZ8NhVqybXYOR5Ho2NjQtOojRlYGDAvZ5XeXm5u93pdKK5uRmDg4OIjY1Ffn4+jQFYJktnJyq+9k1IVCoo4+OgjI9H3EVbgRXcqZPr9Vj/x//B+7/7JXR1nT6LtT1bhzObE9Dc8hbuWXerz867UuMfvy5skMqhSMqBMoW6CRFCyBSbzYaKigrYbMIlpqjoJISsRKJSj52j0z3lZNHezSUTKkSvdMTuxtfdPb0cRlpa2oLHJicnCx63lMJzaokZYHJSJafTif/93//F008/7Z5sCACio6Pxuc99Dp/+9KchlYbn7fWlam9vdw/Gz8rKWvR4+9BkYc/ZbLB2dcNlNoPxwXpZyqQkvLxNA1VqNC45Y0Li6PJXVRqIkeHIeh26kxQAzLB0nQ2awpO1mjBR8Y6gTZmcC+2ajaL/fS6VtzlDCOUM8VZjYyOamprgdDoRHR3tbtdoNCgvL4/YCQHJ/Og6Q5ZKykigmDlxiMt/qzOISfTCU2wzi7/F7r7OfKMZGxtb0vn7+vrcPysUCuzduxcVFRVzjhsbG8NDDz2EiooK/Pa3v4VcLl/S+cPR+Pi4e92rpXAMCZf/UPpoDVijw4xxuxHDSQo8c3UMCtts2FZpgsa29EmvzSoJPirTojZHBV4yXcSN2SYwYTdBrxT/Gy3j2bcBdmZRzUCZugrKtLWixeQtb3OGEMoZ4g2n04nq6mrYbDbBl8NUdJKF0HWGLBkjgTwuDbYLk2TyCvE/H/pDxBeeM7vLLNZFZuYby+xuNvMxm6dvm//6179GZ2cnVq9ejW9961vYtGkTWJbFBx98gIceegi9vb14++238bvf/Q7f/va3vXwlvtPc3Iy8vDxERUW52+x2OxoaGgBMFuCZmZlzHjO1JuvsRZKHhobQ09MDAMjIyBAU+CzLoqamBgAQFRWFnJwcwWPPnz+PiYkJAEBhYaGgO/LY2Bg6OjpgmzWZkOLCxEznzp0Dz/NQq9VYvXq14Jiuri73lw5r1qyBSjU9jbXJZEJraysA4PsbvoS3ej/Eia6zqMlTg2OAq44b5/nNzXW0XIu6XLWgrSAqF7esuXZO0dnU1ASr1QqGYVBSUiLYNzg4iN7eXgBAZmam4EsQl8uF2gu/A71ej+zsbMFj29raYDROxlxUVCT40DQyNIiRYy9j5v1heUI6ZLpoMAyDqqoqAJMfrqa6mk/p6OhwfwGzdu1awd+P0WhEW1sbACApKQlJSUmCx9bW1sLlckGhUCA/P1+wr6enB0NDQwAmZwScOQu21Wp1d4+Pi4ub00vB5XKhqqoKEokExcXFgn0DAwPuL4Kys7OhnzHG1ul0oq5ucjY5g8Ew55vplpYW999ycXExJDPuqI+MjKCrqwvAZK+G2NhY976pReSBydm8Z89w2N7ejvHxybHEBQUFgg8nExMTOH/+PIDJ3hazx4dXV1eD4zioVKo5wwS6u7vdXfxXr14NtXo6B81mM1paJpcfio+PR2pqquCx9fX1cDgckMlkKCwsFOzr7+9Hf38/ACAnJydkrhEAkJKSgoSEBMzmdDrR1NS07GtEQkICUlJSBI+tq6tzf9gsKBCugdvb24vBwUEAQG5urmBpLpvNhsbGRgBAbGyse+mxKWJcI0ZHR9HZOTncIDU1dc5yaaF2jWhsbITNZvP6GjH1XmKz2dzzQmi1WpSVlUGhUNA14oJwu0as9HOE0+mEJ3SNmBRO14iVfo44U1ePznEOgBw8eCgArIF414ipHPQ1vxSe1dXVePnllxfcP2Wh42a76aablh/UPFyu6Ts9i31jOXP/zMctZOoiCgCdnZ0oKCjAP//5T8GF5LrrrsP69etxyy23YGRkBH/7299w9913L9r1119YlnW/sU7hed59AWXZubf/XS7XvBdYjuPc+2afF4B739TvtKCgADzPg2EYtLe3u/fzvPBO41RMnEYDwxWXw5CcBNZqhSol2X1enuc9jp2dGe985wWAZGUcvrn986gdaMT/fPQX5LfNXbdzIfnnbe7CM1qpxzVxO/DmESl+f7oL+qhhPPzVSyC5cCfU6XTC6XR67N4683e4ULye8nKhfxt700lI7CZBmzJtDfSb97hjmu+8LMvOG9PMeD3li9PphMvlElx4l3Le+fJwKmcaGxtht9sXPe9C+e3t79Db/J7vvMv5HXIc57Fr/nJ+h7Njmv242ecV8xox33kXeq2zz1tQUOD+UOkpruWedyrepbxWb/+WxbhGrOTfJpiuETPP63Q6vb5GAHAXJVarVVB0AnSN8HTeUL9GTJ13pZ8jPH05RdeISeF0jVjp79DW1IQ1x3rdbTalBLhvOqalnNeX1whP/5a+4JfC88CBAzhw4MCCx0z9UXz/+99f0jkZhvFL4TnzGyqn07lg8elwONw/L7VbzewkuP/++wVF55SUlBR89atfxX/+53/C5XLh5Zdfxpe//OUlPYevSaXSOX9wDMO4v0XxlKAymWzeriQSicS9z9Mf8tS+qQv7zPPMPO/sC+lUTDx4SDVq8CwLiUIBRiJ1n4fneY9xLeW8M+OVMBLIugeR0e/5ojGfjD4nokwuGHUyjNknYDTL0DMymUcDY3a0900gJ9XgjndqLdzZZv4OF4rX05vjfP82PM/Dce5tQZs8IROGjbshkSncMc13XqlUOm9MM+P1lC9yuRwMw3h93vnycKpNoVCA4ziPeTbzvAvltze/w9mvdSn5Pd95l/M75DjOY1zL+R3OjInjuEX/bcS8Rsx33qX8Lc88py+vEZ7i9XTelfwtB/oaMfu83v7bBNM1YuZ5WZZd1jVCoVAgNTUVDodDUHQCdI3wdN5Qv0ZMnXel14ipa42neOkaEV7XiJX8Dhlm/vldxLhGeHr9vsDwnr6yWqb8/HwwDOPxW7CVYhjGfQvbl+677z688cYbACaXVpnZLWS2t99+G1/5ylcAAD/4wQ9w7733Lnr+v//973jwwQcBTN6Wf/PNN+c9dmRkBBddNLkMyI4dO/DEE08s+XWshMlkcnd/ASa7O3gqjoNV38G34BidvhOpTEhA0q7Lff48r3/hXsT0mRY/cJa2HC1evUiLW4uug2qkAP/3yvQd/8/dVIwbLhZn5lhrRy16n/yxoC3xE9+GLn/+ZYUIIYQQQohvHX38t8BrH7q3bUoJrnjuedHi8Vdt4NM7nkuZ5TXYzOyfPTY2tmDhOXNCoZljNBYy8x9p9riD2WJjYxEdHY2xsTEMDAws6fwEgqITALQ52T5/joGedkTPU3SOayU4WazFpmozDGYP3bP6rPhm0eexpXgHfvHXE4J91S3DohWe48dfEWzLopOgXRN6f8OEEOJLU+tzzhz3SAghfiWTgpt5k1HmnzuOYvNp4fnkk0/68nQBMXMAdW9vLzIyMuY9duYMtbMH289n9sDvxUx13fFX3+pQMDEx4e4uOfOLgaWSKH0/u+CZP/wWnr6SqMtW4b1NOjjkEjRlKnHpSSMKztsFx+isHHqefR5c4XZUtwhn4D3XMgSO493jPAPFOT4IS9NpQZt+47XubsqhZqU5QyIP5QzxxGq1umeeLy8vFxSflDPEW5QzZKnSLrsE7ydYwLpY8OChU2gXf1AIivhZbWfODtXU1ITNmzfPe+zULFgMw8yZ3Ww+M2eJmrlmqCcsy7rvqs6evSuSnD9/3j3b2+yZ7WbjPAy0ZhjffUtUP9iMOJcC2rpOQbtdzuDwpig0Zk+PEXbIJXhrmwHtqTZcdtIIpXO6yznf2Yez5xpgsgrHiJosTsE4z0AZPvR3ADO6xEvl0JXsDGgMvuRNzhACUM6QuSwWCyoqKtzzOVRUVAiKT8oZ4i3KGbJUrvEBuMb64XQ4wAOwSRZeaSNUhed9XC+sW7fOPaj2xIkT8x7HsixOnjwJYHIs61K/uYqJiXEXqU1NTYK7prPV1NS43/BmT2tMPLMNDMDWPwDn+AQ4hwM8z0MRt7Ru0It5rvp1/OTwwzj4z9/DrpC4y7SeBDmeujZWUHRGmVlcfNaEKDOLhmwVnro2Fj0Jk3llVTI4m6/BOwfe9/g851qGfBKvN3i7DYxiOn5FQgZkGvo2lhASmWYXncDk8h9Ty4oQQog/uYyjcE0Mg7EZIbEZwVjGxA7JLyL+jqder8fWrVvxwQcf4PDhw+jp6fHYjXb//v3u9ZquvfZar57juuuuw+9+9zvwPI//+7//w49//GOPx/3zn/90/+ztc4ST5ORksCzrcQau2cbPVmDw3ffc27IoHTLvumPFMdQPNuOFmv0AgNcyzbh7z2eRKkvAi//6H5xbrQY/o2vs1qQS/Fv6FdinHIWxrg9Wlx1WAE/GA7JoHqwU4MYYyHk1BHcZL/jH/jq8+G7zvLFcXJ6Gz9xQPO9+b/GsE8q01VCk5ME53A17TzOUqasWf2AQ8yZnCAEoZ8g0T0UnMLkm5Nq1a93blDPEW5QzZKkS5FpsH5teglGipK62YetTn/oUPvjgAzidTnzjG9/A448/LpgUqLm5Gb/4xS8ATC7eetttt3l1/jvvvBP/+Mc/MDIygn/9618oLS3FjTfeKDjm5ZdfxiuvTE72sn79epSVla3wVYWu2QvcLsRpFE74w8jkHqcR91Z+wircXXoTnq56GQDwdNXLyIvJQstajfsYlUSBO3J2YWfmJvAmK96t64PVygCYvJPIA3ACwIXewE4PRScA2J0s7ONz11eacrSqx6eFp7VtcjFnRiKBIiEDioQMGDZc47Pzi8GbnCEEoJwhkxYqOktLSwXLDFDOEG9RzpClkjESaLjpz4kSHw4bCyZUeGJy6ZKrr74ab775Js6ePYsbb7wRd911F1JSUlBbW4t//etfMJvNAIDvfOc7c2a0PXHiBO655x4AwObNm+dMshQTE4Of//zn+NrXvgaWZfGd73wHb7zxBi6//HIoFAq8++67OHjwIABAqVTi/vvvD8CrDg8uk7DwlPpwYqGbCq4GAHfx2TLaDqVUATvrQIwiCjclbkVZ3BrIJDI8d/4ELDYlAN9PEjQ6Yce4yQ6Dbmn9/W2ddVBlFMy/v2fu3VWp1rDo4wghJJyYzWZUVlZ6LDrLyso8rplHCCFk+eiqesGvfvUrmM1mfPjhh+jq6sJDDz0k2M8wDL7yla/gzjvvXNb5r7zySjz88MP40Y9+BJPJhHfffRfvvvuu4Jjo6Gg8+uijWLUqtLs9BpJ9YFCwLVtgOZzlmF182lkHtHI1Rh1G/LXrbah630dhTC7ODNVDWaKGs3MtuNFknz3/9tJUfGpP4ZKLzpEjz2Lsg+cQe9leRG+7ec5+57jnZXrGjr2EkXf/ieiLb0fsJSvvqkwIIcHMbDajoqICTqdwwjcqOgkhYmjvbEfz4HQPC6nCgWzxwvEburJeoFar8fjjj+O1117Dyy+/jLq6OhiNRkRHR2PDhg245557sGHDhhU9x7XXXosNGzbgqaeewuHDh9Hd3Q2GYZCRkYFdu3bh7rvvXvL6oGSSy2gUbDN+GEcxu/g0O63ufTbWgTND9QAAicqKe3YnYY1hOx5/uRqtPePLfs7cVAM+e1MxSvLil/wYW2cdxj54DgAw8u7keOHZxaex8t05j+McVvfjxj54DpqcUrrzSQgJW/MVnXq9HqWlpVR0EkICbrSjB0lt09ckm2Luqg3hgK6uMzAMgxtuuAE33HCDV4/bsmULGhoalnRsYmIivv71r+PrX//6ckKMCNXV1e7px4uLFx7byFqtgm2pSjXPkSszu/j05Lasy3F9zk4oYmLw31/fiUMnO/CP/bUYNzvmfcxsBp0C9+wuxBWbMiH1cm1PVUYBYi/b6y46Zxef1o4asDYzpKrpAeu2zjrYzp9zb8detjcki05vcoYQgHImUq2k6KScId6inCFEiApPEnQ4jnP/txjnrDGeMj8u0HxTwdXoGu/Fkfa5y+7cmr4T16Vvc29LJQyu2pIFCcPgf549u+Tn+NR1Rdi1OXPZMU4VmbOLT8NFN6J/32/AWSYgi02BMnU1WNPonKLTU/fcUOBNzhACUM5EIpPJhMrKymXf6aScId6inCFEiApPEnRUKhWkUqlgNsH5cHbh3US5weCvsAAA/2/9HTjTcw4m5/SU1zq5GrtTtno8/r0znV6d//0zXSsqPAHPxadjqBOcZQIA4BrphWukV/CYUC46Ae9yhhCAciYStbe3zyk6DQYDSkpKltS9lnKGeItyhiyZXDg5pu+nqgwOVHiSoLNmzZolH8vZ7YJtZWKCr8MReKvliKDoBACT04oDvcexJ+tiQfvAiAVVzUNenb+yeRADoxYkxmgWP3gBs4tP07n35z021ItOwLucIQSgnIlE+fn5cDqdGBsbA+Bd0QlQzhDvUc6QpYqRaTFz1pJwLdDCc5EYEhF4ngc3axp8RWyM357v5bo3BWM81dLpmWZf6Hof+7uOCY5/93QneM9Ld86L5ycf5wvR225G7GV7FzwmHIpOQghZCqlUipKSEkRHR3tddBJCCFk5UQrPjo4O/PGPf8T/Z+/O46Mq7/2Bf86c2SeZTPaQBcKWEAgBFRBZRHErKKuCdaHVetXaeu21/dWltnWptt5a9dbr3t5aa91qVVRUFBQVEAVFwpIEkpBA9n2yzX7O+f0R5jBntsxk9sn3/XqlzTlz5pwn+M3JfM/zPN/nhhtuwIoVK7Bo0SK8/PLL4uv33XcfXnvtNY+1tQhxxQ2b4J7ZqbIj0+PpnnReOe1iPDn3NmycfIG4740Tn+K9hpGeRUEQ8Mk+7wlkTroG/7lxLnLSNV5f/2RfE4RgM1YfDIvWQZk/3etrlHQSQsYbZ/JJ1WsJIST6onrXNZlM+N3vfod3331XnGgtCAIYhpEkmVu3bsXrr7+Ov/zlL3j00Ucxd+7caDaTJAjbgOdyJcp0Q9iv4550XjXzMqzMXwhbXz8uLVoChpXj9bqPAACv134EVqPBdNU8tPUMe5zr/LMK8eP1FdCqFVgyJx/PvHkQn+1vlhzT1j2M6sZezJycGXLbBZ4DN+A53FemSaGkkxAyLrERWHaLEEJCoZMrpUNtw9P/EHeilngODAzgmmuuQV1dnd/enOHhYRiNRjAMg5aWFlx33XX461//innz5kWrqSTGWlpawHEcWJZFQUGBz+Ns3T3SHTIZWI33XsSxck86r65Yi1WTl8ExfDqpvKz4XHAWC/7dPNLb+crBzSgySgtYaNVy/OTyOVh2ZqHLPgV+cc1ZOKssF8+8WQmT5fSaTZ/sawpL4mmq/RbcUJ/Hft48BOOXbydN8hlozBDiRDGTvAYHB3HixAmUlZWFNcmkmCHBopghgWIZ6SDUZC0uFLWhtr/4xS9QW1sLQRCQlZWFn//85/jHP/7hcZxCocAvf/lLZGRkAAAsFgvuuOMOmN3WayTJq6enB11dXejp6fF7nKW9XbLNqlSQa0MryuPKPemcllGMYZsJX7UcQIepR/IAZeWEhdgwabm43SjbA9WpKaBlxRl44hfnS5JOV+edWYgnfnE+yopHYl6vU+LcM8LzB6pnx0vSHS43tt4d/4Txy7fDcp1YCzRmCHGimElOg4ODqKysRHd3Nw4dOgSO48J2booZEiyKGRIwwX0zOVPPqPR47t69Gzt37gTDMJg/fz6eeeYZ6HQ6r8cqlUrccMMNWL9+PW655RYcOHAAbW1tePvtt3H11VdHo7kkQdj7ByTbMpUSTJiebtd01UnndJavwhtH3kddb6O474ZJK7BUN1/cvrRwMWRKJV6v3QpW3wuhbAfWZl+F6y6aD5b1/4wnN0OLP/xkMT7c04hzZk9AZtrYem4FgUfrC3eBt5rBW03gho2S17NW3gzeNOixzmey9HwSQsavgYEBHDx4EA7HyOgRo9GIQ4cOYfbs2TS8lhAS14aU0iV37LLkrP8alcTz3XffBQBoNBo89thjPpNOV+np6fjzn/+Miy++GDabDZ988gklnuPE9OnTxbm//jgGhyTbrCZ8vZ0zsqfhilmX4t9H3sfVFWtRnlOK1w+/JzmGc388BWDVlGVgNWq8cnAzNpxxITaWnx3wNVlWhsuWTAmp3bbOk7C21Xt9jVGqkTJzMWTKkaQ2mZLPQGOGECeKmeTinnQ6hfO/L8UMCRbFDAlUv01aF8QBPkYtiayoJJ7ffvstGIbB+eefj6ysrIDfl5ubiwsvvBDvv/8+jh49GsEWkniiCXCeptVt6AqrDe/8zo3ll6EidwZmZE/DtrqdktdSFFqwPv6QrC27BDOypmJG9rSwticQlhOHfb6mKa4Qk073dT4TPfkMNGYIcaKYSR4DAwOorKz0GFabnp6O8vLysPV2UsyQYFHMECIVlX7c7u6RqppTp04N+r2TJ08GAPT3e1YwJeObYJcW8JEpFD6OHDtn8jg5vQilWVORm5INJauAQZkKHev7D0oskk4AGPhuu8/XZFq9ZNt9nc9kmvNJCBkffCWdGRkZYU06CSGEhC4qPZ7OG79zCZVg2E8lF2q1OqxtIomPs1ikOyI4lGVKxkTcvug/YHXYcLL7JI511GFqSn7ErjcW5pNHYO/2vnYoqzNAkZ7nsd9bz6e6aAbURWWRayghhIRBf38/Dh486DPplCXpHClCSPLheB6uj8kYKi40djk5OWhsbER1dXXQ7/3mm2/Ec5DxYXh4WJwT4W8+MOP2oSJ1RmnE2iRjZMjQGAAAvQPdWJhXgVTOtccz9gsuyVS+/62UeZOhnXqG19dck0/D0o0JmXQGGjOEOFHMJLZYJJ0UMyRYFDMkUBnqVLiO7ZQn6bzgqCSeZ599NhoaGvDFF1+gubkZhYXel5Vw9+WXX4rzQ2kdz/Gjvr4edrsdCoUCFRUVPo9z7/FUR+nhxIysqXAMDcNujK/h3z7ndzIMFDmToMot9vlew6J1Cd3TGWjMEOJEMZO4YtXTSTFDgkUxQwLFW6TFhYQxjBJNBFFJPNevX4/XXnsNDocDP/vZz/B///d/MBgMft/z7bff4uc//7m4vXr16gi3kiQax5C0qq08JSX6jRCi19PZs+0FDFV/6fN13jzk/QWGwVDlpxg+/IXXl1NmLkbmhdclbNJJCBk/nEukuCedmZmZmDVrFg2vJYQkJM7tMxwTxc+X0RSVxLOiogKrV6/Gu+++i6qqKlx66aXYuHEjZs6cKR5jNBpRU1OD2tpabNu2DZ988gk4jhOr4Z511lnRaCqJA1lZWeA4btSiEI4h6dMheUrkhrEIggAH74CC9V3AKJKjIgRBwFDNHnCDvcG/mefBmwZ8vjxc8xUyL7xu7I2LA4HGDCFOFDOJp7+/P6ZJJ8UMCRbFDAmUjlXA5LLNxsEUrkiISuIJAA8++CCam5uxf/9+9Pb24tlnnwVweo2t559/Hs8//7x4vHAq0582bRr++Mc/RquZJA7k5wdWtCdaPZ5D1mF8ULsDK6efDwWrOL0eVxSH3/PmQXDDkRna6xjqA2caAOtW9TaRBBozhDhRzCQepVIJuVwuSTyj2dNJMUOCRTFDAiVnpPcwWZIWF4ramBSlUokXX3wRP/zhD8GyLARBEJNLJ+c+50TsSy+9FK+++ipSYjGEksQ1zmr1WE4lEj2ePM/jvz68H/taKvHa4XexvW4nOod7/LwjMjcKVqtH0c1/hm7GwrCeVzfjHBT9+ImETjoJIeODRqPB3LlzoVKpAIz0JtHwWkIISRxR6/EEAIVCgbvvvhs/+tGPsHnzZuzduxf19fXo7++Hw+FAWloaCgsLMX/+fKxdu3ZM636S8cExOOixj43AQs0tg+0YsA5iwDqIE8ZmAMDGspVYVbA47NcajSI9D7mX/xLmE0fQs+0F2DoaxnwuZe5kZF50PTSTZoWxhYQQElnO5LOpqQnTpk2jpJMQkhQGOZtk2+7juEQX1cTTKTc3FzfffDNuvvnmWFyeJAFGLkf6gvkQbDbwNht4ux1MBOZQ7GuplGyr5SqcmeeSrMVgCL5m0iwU/Oi/MXhwB/o+eyWoIbiszoD0865CasX5YGQ054QQkng0Gg1KSkpi3QxCCAkbI2eRJGX25BxpG53Es729HXl5novXE+JNTU0NHA4H5HI5ZsyY4fUYRiZDypTJkn2R6PGs7qqTbKdr0lCcXgT7wGBU53i6Y2Qs9HMvBG+zoHfbCwG/L23ROujnXhjBlsVGIDFDiCuKmfhmMpmg0WhOz6mPAxQzJFgUM4RIRWWMyvLly3Hdddfh7bffxvDw8OhvIOOazWaD1WqFzWbzeQxnMnnskyl8V5wdq+vP2Igb512NZcULkavLQqYmPezXCISlqdrr/v6v3wvqPANBHp8oAokZQlxRzMSv3t5efPPNN6ivr/eoBRFLFDMkWBQzhEhFpceT53l8/fXX+Prrr3H//ffjggsuwOrVq7F06VKan0E8yOVyCIIAudx3eDIKJZTp6RA4DvbBwYitp5mvz0W+PhfLihfiYHsVZmRPi8h1/On94nUYd/4LGedfC8OideJ+S2sduIHuoM7lGOiGpbUO6vzo/xyRFEjMEOKKYiY+9fb24vDhw+B5Hs3NI/Pqp06dGhc9nxQzJFgUMyRQglzaeRL7O15kROU3ITc3Fx0dHQAAi8WCDz74AB988AEyMjJw2WWXYfXq1Zg1i4qckBGu67v6osrMQN73LoYgCBisOQqFPrJVWeUMi3kFcwAAvKSabmSfxluaqmHc+S8AQO+OfwKAmHz2fPy3MZ2zZ9vfUPDD34engXEikJghxBXFTPxxTTqdmpubkZqaitzc3Bi2bATFDAkWxQwJVN7smTjQUSNuK9XqGLYmcqLS3fj555/jpZdewpVXXgmDwSAumdLT04N//OMfuOKKK3DZZZfhL3/5C9rb26PRJJIsBAGpJdOhKYjsWlnee+ZPP4+K1HAwdVEZMs6/Vtzu3fFPGL98G/bBXlhbjo7pnNbmo7AP9oariYQQErKenh6PpBMAcnJykJOTE6NWEUJIdMgNqejPl4tf5gmUeIZk/vz5uP/++7Fr1y4899xzuOyyy6DRaMQktL6+Ho899hiWL1+OH/7whzQflPjlTPQYmSwi1WzjiWHROo/ks+PV34V0zt7tfw+xVYQQEh6+ks7c3FyUlZXFxTBbQgghoYv6oHO5XI5ly5Zh2bJlsFgs+PTTT/Hee+9h165dsNvtEAQBe/fuxd69e2k+KPGp9n/+F71790GeooNcl4LcSy7ChBWXhPUarYMdyNJmQMmGv2hRsJzDa53DbW1dJ0M633D1Hjgu6oM8JTbFkgghBDiddLqPGsnNzcWMGTMo6SSEjAsZCh3OGjCL28q0lBi2JnJiOttZrVZj5cqVWLlyJQYGBvDRRx/h/fffx759+8BxnGQ+aGZmJnbt2hXL5pIo6ejoAMdxYFnW57wex9AQOJMJnMkEK7rgGBwMaxsEQcAXDV9DJpPhvMnnIEeXCUEQPD4ERbPionvy6Q+j1ECmOr28jMBz4C3DAOcAwECm1mHo4A4YFq2PVHOjKpCYIcQVxUzsdXd348iRIwmTdFLMkGBRzJBAqVgFMhynR30wdt7P0Ykrbsps6fV6bNiwARs2bEBvby/eeustPP300zCbzeJ8UDI+dHR0wG63Q6FQ+E08XclTwvtkqM/cj801H0GvSsE3LZUoyZyCNWWXIFuXAZz6MOTxmSgKH5ICST7dq986CTyHgW8/gm7GQshTMyLWxlgIJGYIcUUxE1u+ks68vDyUlpbGXdIJUMyQ4FHMkEAJHAdGrgDPj9wTeY4Sz4hramrC9u3b8emnn+K7774Dx3GxbhKJU5Y2aREqweEI6/nr+06AF3gYLQMwWgbQPNCOtTPDO5R3rPwln+nnXe016QQARsYibf7KiLaNEEJGk4hJJyGERFKvQoWDxRUwDQ2B5wWolBok18J3I2KeeHZ2dorDaQ8dOiTud/5Bys3NxapVq7B27doYtZBE2+TJk8HzvN85vVlLF4Mzm8HbbOBtdijSDWFtQ33vCcl2mjoVOoV21PdF6/OStvRsz8RTJkf64suj04A4E0jMEOKKYiY2urq6UFVVlZBJJ8UMCRbFDAlU0xc7kfXut+K2RSUDfhjDBkVITBLPvr4+cT7nt99+K/4Bcv6/RqPBxRdfjDVr1uCcc86J6z9EJPxSU1NHPUaekiIZXqsOc7n9pv5WyXamxgAVqwzrNULRuflxz528A8Yv3/bZ45nMAokZQlxRzESf3W5HTU2NR9I5YcIElJSUxP3feooZEiyKGUKkopZ4Dg0NYfv27Xj//fexZ88ecRit8w+QTCbDwoULsWbNGlxyySXQaDT+TkeIhEwZ3qTwJwt+gBPGZjQam1HVWYvSrCniE0vxw1GMPiT1ffkWbO3Hvb7m7AUdj8knISS+KRQKzJo1S7J0SqIknYQQQkIXlcTz1ltvxc6dO2Gz2QBIK4FOnz4dq1evxurVq2niNQmI4GXur1wf3qeKOqUWM3NKUJY9HRdPWwa5LD7WCjV++Tb6drzssV9VWApr81EAlHwSQuJXRkYGysvLcejQIeTl5VHSSQghABw8L0nKGCTnfTEqief27dvBMIyYcGZkZODSSy/F2rVrMWvWrGg0gSQQq9UqLl2iUqk8XucsFo99bIR6yBmGgZyJn6TTdV6nqnAGGLkSjoEuZK28Bebab8TXx1vyOVrMEOKOYiZ2MjIycNZZZ0Gn0yVU0kkxQ4JFMUMCVbRsCfakDEIQeAgAtKrR64okoqgNtVUqlTj//POxdu1aLF26FCwbHx/mSfw5evSoWH68oqLC43VvPZ6sWh2NpnmK0jqe7kmnung21EVlp7ZmQJlVCFV2EQCMy+RztJghxB3FTGylhHkJrGigmCHBopghgeIdZlhlZvFhBSd4drIkg6gknr/73e/wve99jyZZk7CwGY2wDwxAplRCplSCYVkwMakY5/KkPoL5p/+k81RLTvUauC+1Mp6ST0JI/Ojo6AAAmkJDCCEBcPS1w97bCuenWVnsFx6JiKj8VBs2bIjGZUiSMBgM4DjOZ69437ffof2DreK2KjsLE7+/MWzXd/AcOoa6MCElJ+Yl0C1N1ZKkM+2ctWDk0kJKmuJyyba35FNdNMMjWU0mo8UMIe4oZiKno6MD1dXVAEYeiuWEuep4rFDMkGBRzJBApcs1mDt4upeTVSRnkdXkTKdJQps4caLf17nhYck2w4YvjDmewz8PvAmNQoN0jR4qVoV8fS6mZ04O2zWCoS4qg2HpRhh3/gsZ518LNiUddmOH9JiCEo/3uSafhqUbkzrpBEaPGULcUcxEhmvSCQBVVVUAkBTJJ8UMCRbFDAmUWiZHtv30VDKZIjnXfg1r4vmDH/wAwMgTzhdffNFjfyjcz0nGL/vgkGRbFsYJ+y0D7figdgfkMjkMaj0Maj2+P3uV7zdEYYpnxrlXQju5AoqMfBi/+dCjGAfDKry+z7BoXdL3dBJC4kd7eztqamo89g8MDCRF4kkIISQ0YU089+7d67VCna/9gXJWBCMEABz9Rsk2qw5f4tnQ1zRyDd6BblMvTHYzcnRZ0oPEdTwhTTwjGKPqojK0vnwfbO3HocybAmXOJMhUWiizCkd9HyGERJqvpLOwsBBTp06NQYsIISRxdPZ049jQ6SHZcocDxbFrTsSEfaitryRRiFL1T5L87AODETv30e56ybZBrUeKShf4CSKUfDoGemBpPAxAgKXxECyNh2BYfDm0U8+IyPUIISRQoyWd9OCYEEL8a62phaHq9FBbi9Icw9ZETlgTz08++SSo/YR4U1dXB4fDAblcjmnTpnm87r6OZzjX8DRaBiTbaWo9dIrYr6U0dGQnXLtXGaUGqWdeAlmSrvMUrNFihhB3FDPh0dbWhqNHj3rsLyoqwpQpU5Iq6aSYIcGimCFEKqyJZ0FBQVD7CfHGZDKJ6155w5mliac8NXzrwf1yyY/RZ+7H8b6T2H1yH84pOmuUD07R6ckfOvy5ZDul7Bwo9JlRuXYiGC1mCHFHMRO68ZR0AhQzJHgUM4RIxX1VW7vdjvr6enR3d2PJkiWxbg6JA5zJJNlWT5gQtnMzDIMMrQEZWgPmFfhY7PnUhymGYaIyhNza0Qhb50nJvpTZyyJ+XUII8cVX0jlx4kRMnjw56ZJOQgiJJI6Vx39SFgZR+RlnzJgBmUyGX/7yl7j++uuDeu9TTz2F5557DtnZ2fjiiy8i1EISTyoqfCR8p7gPtVVmZESyOTE3dHCHZJtNzYR64swYtSY+jRYzhLijmBm71tZWHDt2zGN/siedFDMkWBQzJFBZylS4VjBJ1j7yqC0SM9aeIY1GA0EQ0NvbG+YWkUQl2O2SbTaMy6kIggAH5wjb+UIl8BwGDkjnSGuKZ2OkpC4hhETXeE06CSGEhC5uVycVBAFNTU3YsmULAECrpSIqBOBtNggcJ9mnzArPXMdhmwlvVn0IOx944hnpobbmxsMQbNLKZoxCRR/uCCEx4XB43h8nTZpESSchhJBRhW2orcPhwLp161BXV+f1dUEQ8Mc//hF//OMfgz43wzAoKSkJtYkkCXhbSkWemhqWc79/7FMAQHVXHZSsHJnaDExI9Vz0/PSHq8h/yOr55B+SbVZnAKtLi/h1CSHEm4kTJ0IQBDQ0NAAYSTqLi4sp6SSEkBCoWYVkqC2bpKtQhi3xlMvleOCBB3D11Vf77AUaa+8QwzC48cYbQ2keSSDd3d3geR4ymQxZWVmS12x9fR7HKzPSQ76mxW5B+1AXDGo96nobAQCF+jyviae7SPV6cjYL7D3Nkn2KnEkwLFoXkeslMn8xQ4g3FDNjN2nSJAAj977i4uLYNiaKKGZIsChmSKCUMlayHbdDUkMU1uJCZ5xxBn74wx/i448/luxvbW0FwzDQ6/XQ6XSjnodhGLAsi5SUFBQWFmLjxo1U0XYcaW1tFcuPeySePT2SbUYuhyIl9OVUDncexa4TewEAarkKGRoDbjjz+yGfNxQD33wISOabMlBmT4RMroxZm+KVv5ghxBuKmdA4k8/xhGKGBItihgRK4HnpdozaEWlhr2p711134a677pLsmzFjBgDgxz/+cdBVbQlx5RgalmzLFAowLOvj6MAd6TxdLMPisMJkN6MsZ/rob4zgnWGwUlpUSG7IQeaFP4zcBQkhxAWtP0gIIdFhVWsk25ws9M+28ShqS8ZEY71DkhyKiorEoSnurN3dkm1GGZ4PRf1W6dzRLG0G5H5+6RmGiegUT264H46+dsk+Zc4kmkflg7+YIcQbihn/mpubceLECcyZMwcpYRhVkgwoZkiwKGZIoHrcPofawPs4MrFFJfGsqamJxmVIkkhP9z1nU7BLKyrKFOEZdipjZFCxSlg5GwBg0cR5YzxTeBLDgQOfAK4Pa2QstNPG2qbk5y9mCPGGYsa3pqYm1NfXAwAqKysp+TyFYoYEi2KGEKmo9XgSEg6O4SHJtixMPZ63nn0dfjL/B2gf6kSDsQlTM4rDct6xsvU0Q56RD0dfGyAIUGQWIHXu+TFtEyEk+bkmncDIcNvKykosWLCAht0SQggJSVgTz9bWVvH7/Px8r/tD4XpOMj65j9hW5+aG7dwymQz5+jzk6/OCaVHYru/EmYegMORCYcgFb7fC3tUENsUAhqGhOoSQyDl58iSOHz/usb+oqIiSTkIIiSA774DrXTZZJ1aFNfFcvnw5GIYBwzCoqqry2B8K93OS5MVxnPg96144iOckm5r8CdFokg+RuS3073tf/F6mUEGVPw266TTM1h+/MUOIFxQzUr6SzilTpmDixIkxaFH8oZghwaKYIYHKUqeh32VbziRnvIR9qG241/Ak48+RI0fEaooVFRWS1xzD0qq2bADL80RElB9FqSZMje4FE4y/mCHEG4qZ03wlnVOnTkVRUVEMWhSfKGZIsChmSKB4u1WyLQhUXGhU8+fPD2o/IcHihk2SbXkYEs/OoW6YHRYoWAXkDAuNQo1UVewKacgUKskNiCrZEkIi5cSJE2hoaPDYT0knIYREDzdklGwzPCWeo3rppZeC2k+IN6mpqXA4HJDLPcPTvcdTrtOGfL3K9mr0WU4PcCg2FGJB4dzA3hyBjnzDOWsh8BxsnScwfGwf0hauCf9Fkoy/mCHEG4oZ30nntGnTUFhYGIMWxTeKGRIsihkSKA2rgGvXChvJheJjiH4TSNyZPHmyz9fCPdTWYrdgf9sh6FWp0KtSoGAV0CrUAb47/D2Rts6TUGQXgpGxUOVNgTK3mIoKBcBfzBDizXiPGUo6gzfeY4YEj2KGBErp9llPlqTlhSjxJAnFMSBdYDfUobaNxmZ823pI3NYqNFhQMGf0N7oOfw3T/GXONIDmv/4CrFYP7fR50JUsgGbKHIClxJMQEj6NjY1obGz02E9JJyGEkEiKSeLpa9jB3r178c4776C9vR25ubm45JJLsGzZshi0kMQjQRA8ejx5qyWkc540tki2WRmLnJSskM45Vqa6bwGBBzdsxOCB7Rg6shOTbn8BDEvPhwgh4dHZ2ek16Zw+fToKCgqi3yBCCCGw8A7JNufjuEQX1U+0e/bswXPPPYfa2lrs3r1b8tqTTz6Jp556SrLv7bffxrJly/DnP/8ZKpUqmk0l8YjnYZhTAd5uB2+zgbfbwepCKwLUPtQl2Z6WUQytQhPEGU73doZaA2i45mvJtmbKXMgUFPeEkPDJyspCVlYWuru7xX2UdBJCSGx1OUySpMyanCNto5d4vvHGG/jtb38LQRDAMAyMRiMMBgMA4LvvvsOTTz7p9X2ff/457rrrLjz++OPRaiqJscbGRrFXvLi4WNwvcBxSZ5RKjtUWhTYsLEWlQ0FqHtqGOsELPKakB75eXTiLzfJ2K0z1+yX7tLR2Z8B8xQwhvozXmJHJZJg5cyaOHDmCnp4elJSUID8/P9bNSgjjNWbI2FHMECIVlcSzq6sLDz30kLitVqvR29srJp4vvPACgJFlI0pKSvDjH/8Yvb29eOqpp9Db24utW7fi2muvxVlnnRWN5pIYGxgYENe9csXb7R7HsupACwF5t37mCqyfuQJ2zo62wc4gejt9ZJ1jTEZNxysB3nVgBQO5IXdsJxuHfMUMIb6M55iRyWSYNWsW+vr6kJmZGevmJIzxHDNkbChmCJGKSuL5xhtvwGKxgGEYrF69Gg888ADUpxKG4eFhfPbZZwAAlmXxl7/8BTk5OQCARYsWYe3atbDZbNiyZQslnuMcq9WicMPlEDgOpsYTUBjSwITpZq5gFZhoiN1Qs+GqXZJteVoWlOl5MWoNISTZyWQySjoJISROOGTsuKj4GpWfcc+ePQCA/Px8/OEPfwDLsuJrX375JWw2GxiGwcKFC8WkExgpQ33eeefho48+wt69e6PRVBIHZs6cKQ7JdsUwDBi5HJDLkVpaEpZrGS0DqOmqw9mFZ3hcLxBCGCraCjwHU+03kn3yzAKwKYaQzz1e+IoZQnxJ9pgRBAEtLS3Izc2l3pYwSfaYIeFHMUMCNaFkOmrrq8VtVp2cNT6isk5DQ0MDGIbB+eefL0k6AWDnzp3i90uXLvV47/Tp0wGMDNcl44NcLodCoYj4gsuCIODjui9QnF40tj8KYfpDYmmqgWC3SvYpMvPByFgf7yDuohUzJHkkc8wIgoDjx4+jrq4OlZWVsHuZpkCCl8wxQyKDYoYESjkhC+0zVOJXf2loxTPjVVR+E/r7+wFA0pvptGvX6SGG55xzjsfrzoTAZDJFqHVkvOoy9QIA9rcegkauhgBgUdGZUCtGnzcazoeXQ1XSCs8yXRrkOkP4LkAIGTecSWdTUxMAYGhoCJWVlZgzZw71fBJCCImpqCSeSqUSDocDZrNZsv/48eNobW0FwzDIyMhASYnn8MnW1lYAQEpKcmb+JHAt77yLti0fQq7TgdVpkX7GXBResX7M5zveewIAMGQzYcg28mBDJY/u0AZBEGCq3SfZp8gsgOGctVFtByEk8QmCgPr6ejQ3N0v2Dw0Nob+/H1lZsVmjmBBCiH96uQYzhk+PflPJkjPviUriWVRUhKNHj6Kqqkqy31lUCACWLFni8T6r1YovvvgCDMNQGepxxGg0inMinJWPAcDW2wdrZyecv5aq7OyQrvNR3efQKjTQq1KhV6WAlbHBD7kNcYqnvasJ3GCvZJ8is4CG2QbJV8wQ4kuyxYyvpBMAZsyYQUlnGCRbzJDIo5ghgdLJVSiyOsRtmTr0GiLxKCqJ59lnn42amhrs2rULX3zxBc4991x0d3fjxRdfFI+56KKLJO/heR6///3v0dXVBYZhcPbZZ0ejqSQOnDx5Uiw/7nqjtnZ1S45jZGOfojxsM+FI5zHJvpUlywM/AcOEZbzt0NGvpadVacHSMNug+YoZQnxJppgZLenMy6MK2eGQTDFDooNihgRKEHjJtiNJ5+ZHJfHcsGEDXnrpJfA8j1tuuQUlJSVoaWnB4OAgGIZBXl4ezjvvPPH4559/Hh988AGOHj0KAFAoFLjiiiui0VQSx0wnmyTbnNvQ7WA0D7RJthkwuHjauWM+31gNHdoh2VZk5EOdOznq7SCEJCZBEFBXV4eWlhaP18rKypCbS+sBE0JIvDNpUtA+dwkGjf3geR4KpRbTYt2oCIhK4jlt2jTceuuteOKJJ8BxHGpqagCM/MFkWRb33XefpOLXa6+9hra2NnGpijvvvBNFRUXRaCqJAxMmTADP85C59WhmLloIS+sk8DYbeLsdmsKxr7vZ1C9NPPNSspGfGt0PaI6BHjj6OiT7FJkF0JbOj2o7koGvmCHEl2SIGUo6oysZYoZEF8UMCVTtZ5/B8t5uMTGzqVngypg2KSKiVt/5Jz/5CQoKCvD000/jxImRoi5lZWX4f//v/2Hx4sWSY6dMmYLW1lZkZWXhV7/6FVauXBmtZpI4kO1j7qZcp4WmIP/0dmrqmK9hUOtxZv5sNPe3onO4B5PSC8d8LlGQQ29t3c1QZBbA3tcO8BwYuQLytGwwDP2BCpavmCHEl0SPGUEQUFtbKxbgc0VJZ2QkesyQ6KOYIQFzcFDbXeZ1ynjfxyawqC4stGbNGqxZswb9/f1gWdZnpdqrr74a3//+97Fs2TIq/05EnEk6tDZl2tQxn2teQQXmFVQAACwOKyx2y9gbJoxtAri1tRa6mYshcA44jJ3g7RaknfW9sbeDEDIu+Eo6GYZBWVmZ16XLCCGEkFiLyYq2aWlpfl9fvjyIIi9k3BJCmHjNCzw6h3uQq8uCWq6COuhlVLz3bgZTFVczZS4cvW2wGzugyBzpyZWnpgfZDkLIeEJJJyGEJB8bZ4cy1o2Igpgknq7sdjv6+/vBMAxSU1OhVI6Hf3YSDnK9fszvreo8BrVcjVxd7JYYUOdPA/KngRvuR/+3W6EpLo9ZWwghicHhcMBoNEr2UdJJCCGJrWjefFSaT9f9UKl1MWxN5MQk8dyzZw/+/e9/45tvvkFnZ6fktezsbMydOxeXXnopLrnkklg0j8TYoUOHxPLjs2fP9nmc3MdQ7dEIgoCqrjoAQK/ZCJVciWkZxdAptWM+X0gYGVLKFkGRFYZ5puNUoDFDiFOixoxCocCcOXNQWVkJk8kEhmEwc+ZMmksWBYkaMyR2KGZIoGSpagwU6WCxmCEIArRyWsczZL29vfjFL36Br776Stzn/qG9q6sL27Ztw7Zt23D22Wfjj3/8Iz3FHWcEQRC/nHibDZzFAplCAYZlAQCMbGzraPaY+8TvG40j695NzZgU9HnCsIwnAIDVpoLVjr1QEvEeM4T4k8gxo1KpMGfOHBw8eBDFxcWUdEZJIscMiQ2KGRIoW+cJ2Doa4CwvKYv9oNSIiNpP1dPTg40bN6K1tVXyCyiXy6HX68FxHIaGhsBxnPjaV199hY0bN+Ktt95CRkZGtJpKYkyj0UAul0sKSw01nEDr5ncBAAzLQqZUIn/1ZWM6f4+pz2OfThFkb2cISSdvGQZYORiZDAxLxbPCwVvMEOJPoseMSqXCvHnzgppXTkKT6DFDoo9ihgQqlVVhuskmbsvZ5FzhIGqJ589//nNxrbGUlBRs2rQJK1aswPTp08U/nA6HA7W1tdi6dStefvllDA0Nob29HXfeeSf+8pe/RKupJMamT5/usc8xOCh+L3AceIcDMlWwBYFGbKvfia7hXqSpUqFXpSBFpYvqh7fu7X/HcNWX0E4/C9rp86Cdcgb1eIbIW8wQ4k8ixIzzIa2v+xMlndGVCDFD4gvFDAlUCqtEseV00UyZVhPD1kROVBLPnTt34uuvvwbDMCgqKsLf/vY3FBZ6zmeTy+UoKytDWVkZNm7ciB/96Ec4ceIEdu3ahd27d3us90nGD9fEE4BkyG2wKtuq0G89fb6V06NXRVkQBJiO7oVgt2C4ajeGq3bDsPhyZJx3ddTaQAiJf4Ig4OjRoxAEATNmzKAkkxBCSMKLSj/uli1bAAAsy+Kpp57ymnS6KygowJNPPgm5fCQ3fvfddyPaRhLfHIMDkm2ZUjmmD2JD1mFJ0gkA509ZNLZGjeH6tu4m8JYhyT65nuZnEUJOEwQBNTU1aG9vR0dHB2pqamiOGCGEJLFBswktvEz8arXzsW5SREQl8dy/fz8YhsHSpUuDGnYwffp0LF26FIIgYP/+/RFsIYl39n63Hs8xDrNtGpCufcfKWBTo84I+jyTpDeID4VDlDul5lBroZo4x8SWEJB1n0tnRcbqsfkdHB44dOxbDVhFCCImk+v2VkH3Di1/mfcOxblJERGWobXd3NwBg1qxZQb931qxZ2LFjh+SPMEluzc3NcDgckMvlYu+4tbdXcgyrUY/p3KmqFKycfj6aBtrQ3N+GFJUOctnYhuyOxfDRryXbiowJYJN0raZo8hYzhPgTjzHjLekERh50ZWXFbs1hMiIeY4bEN4oZQqQSplYvO8b5fCTx9Pb2iuteOW/U3LD0yQ+rHlviWaifgOvO3Chu2xw2P0eHl8M0CIdRum6tIiM/atdPZt5ihhB/4i1mBEFAdXW1x9rWMpkMs2bNQmZmZoxaRpziLWZI/KOYIUQqKkNtnWuMHTlyJOj3Ot9D65SNbwIvHevOOxxjPhfvci6lXDnm8wRr6MAnAFyG5cpY6ErmR+36hJD45C/pLC8vp6STEEKSnH2cFJCLSo/n3LlzcfLkSezcuRPHjx/HlClTAnpffX09du7cCYZhcMYZZ0S4lSRelJSUQBAEyTxK3mqVHKMa4wexwx1HYXZYUJI5GSpWCSWrhEw2lucvvm4Qvm8cprpvJNvytBzoys4Zw7WJO28xQ4g/8RIzoyWdtIZ1/IiXmCGJg2KGBCpHbYBrNZNkXfk1Kj2ea9euBQBwHIdbb701oPmaHR0d+OlPfwrHqZ6tlStXRrKJJI6o1WpoNBqoXYbT2o1GyTFjLS5U1VWLhr4mfFT3Bd49uh11vY0htDRwAs/B2lYv2afInAAmivNLk5m3mCHEn3iIGZ7nUVVVRUlngoiHmCGJhWKGEKmoJJ6LFi3CggULIAgCGhoasHr1ajz11FOora2VlIgXBAG1tbV48sknsWrVKpw4cQIMw+DMM8/EsmXLotFUEqd4m3QuJjOGXkpvyxHImDD8CgRQ1dbcVAPBbT6prnRh6NcmhCQknudRXV2Nrq4uyX6ZTIbZs2dT0kkIISTpRK240COPPIKrrroKra2tGBgYwJNPPimu05mamgoAGBwcFHs4nUlCXl4eHn/88Wg1k8SpcCxhZ3ZYPPblpoRQKTKIoTP9ezZLtmU6A9QFJWO/NiEkYY2WdKanp8eoZYQQQmJBKZOmZFHpGYyBqP1cubm5+Ne//oX58+dDEATxy263o6+vD319fbDb7eJ+AJg/fz5ef/115OTkRKuZJA4MDQ1hcHAQQ0NDp3fynOQYRZo+6PO+f/QTHO6owQljM1oHOmC2W6BTasfWyCCna9jaj0u2FRkToMiiCnfh4jVmCPEjljFz7NgxSjoTEN1nSLAoZkig1Kw08WTD0OESj6K6nEpWVhZeeukl7N69G1u2bMFXX32FtrY2yRDI/Px8nHXWWVi3bh0WLVoUzeaROHH8+HGx/HhFRQUAzyq2irS0oM9b1VWLmu7T8yw3zLo0PENtR2Hvawc3bJTsU2TkU7GBMPIWM4T4E8uYyc/PR1dXFzhu5IGaTCZDRUUFDAZDVNtBgkP3GRIsihkSKPeRfUmad8ZmHc/Fixdj8eLFAEYKDvX390MQBOj1eigUyVrHiYRCcEh7PJkxxElTf6tke5IhPD2O3uaOuhr49iPJNqNQIX3J5WG5NiEk8ej1elRUVODgwYMQBIGSTkIIGed4pbRoppCkxSdjkni6YlmWiigQiezsbPA8L1nmRHDr8WSVwa2/2W8ZwIBVOtSlKC1/7I0EAu6xtPe0gJErIDjsAEaG2crTaF3acPIWM4T4E+uYSUtLQ0VFBQRBoKQzQcQ6ZkjioZghgWq3DUq2LeB9HJnYIp54dnd3o729HXK5HIWFhUhJSYn0JUmCmzBhgsc+96G2TJCJp1wmx4/OvBJN/a1oHmhDx1A3cnXRKSyUu+FOcOZBmBsOYuCbrZCn54GJwhDf8cRbzBDiTzzETNoYpgyQ2ImHmCGJhWKGEKmIJJ6CIOCVV17Ba6+9hrq6OnG/TCbD3LlzcdNNN9HyKCQoAicdasuqghtqq1Nqccm0ZTGZV8nIWMh1BqSULYJMoYZ6YlnU20AIiT6e59Hb24usrBAechFCCCFJIuyJ5/DwMG688UZ89913AKTz3ziOw/79+/HjH/8Y69evx4MPPkgFVsioBI4DeOmQA2V2cJWOh20mMAwDrUITzqYFReA5aKefBSZJx+0TQk7jeR6HDx9Gb28vpk+fjoKCglg3iRBCSJyycjaoRj8s4YU98fx//+//Yf/+/WAYxmvRFee+t956CxkZGfjFL34R7iaQJMPb7R77lEEup/L+sU8BABkaA7QKNbJ1mZieOTks7RNLkTGM32VWZIrxcEshhLgmnQBQW1sLAJR8EkII8SpbbcCAy7aCSc5OirAmnt999x127NghJp2rV6/GtddeiylTpoBlWdTU1OAf//gHPvzwQwiCgBdeeAHXXnstcnNzw9kMkuCqq6vF8uNlZWXgbTaPY2RBzvF06jUb0WsGbJw9xMQzsJ563m6lhDMK3GOGkNFEKmY4jsPhw4fR19cn2d/Q0IDs7Gwox3jvIrFH9xkSLIoZEjC3kX2CQMWFRvXxxx+L399111247rrrJK+fccYZOOOMM5Cfn4//+7//A8dxeOedd3DTTTeFsxkkwdntdthdejl5m2ePp0wR+Ic3G+f5/gyNYUxtC4a5qQYyVg5FxgQwKg0VFIog95ghZDSRiBlfSSfLsqioqKCkM8HRfYYEi2KGBMox0C3ZZnhKPEflnNc5ffp0j6TT1c9+9jP8+9//xsDAAA4cOBDOJpAk4FzL1fn/vM3qcYxMFfgHOIvd4rGvLHvaGFvnhY9lPLve+TNwKvFUZhZAlT8NKTMXh++6ROQeM4SMJtwx4yvplMvlqKiogF4f3PQAEn/oPkOCRTFDAqViWZhctmW+PlwmuLAmns3NzWAYBosWLfJ7nFKpxDnnnIOtW7eKc18IcXIfjuIx1JZhwMgDD90TxhbU9jQgQ5MGnVKLCSm5ULBh+CPgpzCWvb8Tjv5OAICjtxXmum+RtnANJZ4RQkOYSLDCPbz20KFDMBqNkv2UdCYXus+QYFHMkECpGennWjbAKV2JJqyJ5+DgyOKn6enpox5bXFwMABgYGPB/IBn3eKs08WTkcnAmE+Q6XUDvbxpoRWV7lbhdmjUVF01bGlKbRivGbDq6T3q8XAndDP8PZAghicdf0jlnzhykpqbGpmGEEEJInAnrpDPbqZ6pQIYUpKSkABhZfoUQfzi3Hk+GYeAIIm66TdKhb5na0R+MBMdzOMRQ1U7JtjxjAhQZVESLkGRCSSchhJBwcLgVE0rOgbZh7vEUBAEMwwS0NqdMNpLzchwXziaQJCTXqKGbMhkCx0HgODByecC9nQDQ45Z4Zmkzwt1ECd5mhrW1XrJPkZEPVkMfQglJFpR0EkIICZc2+5AkKTMn50jb8K/jSUio2trawPM8ZDIZJkyYAFVuLjIWzJccw6rVAZ/vvMkLUaSfgG5TH3rNfZicXhiehvp4wGJuOAS4PrliGKjywrRmKPHKPWYIGU0oMcNxHA4ePIj+/n7Jfko6kxvdZ0iwKGYIkaLEk8Sdrq4ucd2rCRMmQCaXI7VkOgSeh8DzI2sdBdCr7jQ1oxgMZFg383tgZWFakNfl+oIgHRAxXLNHsi3XZ0M7ZW54rku8co8ZQkYTSsz09fV5TTrnzp0rTiMhyYfuMyRYFDOESFHiSeIeq9Eg/awzx/z+pv5W5Ogy0Gfuh5JVQK1QQxmOqrZeCAIPU+23kn3yzAlQ5hZH5HqEkOjLyspCSUkJjh07BmCkrsGcOXMo6SSEEDImdoaRJGU0x5OQKJkyZYo4XzgcjnQek54/fSLmFVSE5dyuGIaBrbMRvFVa+EiRkQ8mXD2txKtwxwxJfqHGTH5+PgCgoaGBks5xgu4zJFgUMyRQuYUT0ZxZfXqHJjnXfo1I4tnf34/W1tZRj3Fqa2vzGK7ojfMPPUlukf4AlxW2qraef0jMxw9ItmWaVChSI1vMiEQ+ZkjyCUfM5OfnIycnB/Ig1hUmiYvuMyRYFDMkUJppRTg5XyNup6iSM3Yi8tfyueeew3PPPRfQsYIgYPny5aMexzAMqqqqRj2OEHcKmRx23iFu8wE85BiVr8JCx/dLr50xAZrJc0O/HiEkJkbrraCkkxBCCAlMxP5ijtaD6brsir9jGYYJqDeUJK/2j7ehZ/ceyJRKyJRK6MtnYcKKSwJ+f5paDwdvh9EyCADI0KRFpJ3csBH2rpOSffKMfChziiJyPUJIZDkcDhw5cgTFxcVIS4vMfYMQQgjRskoUWezitjpJZ2iFPfEMNEkM93GhEgQBW7ZswZtvvonq6mqYTCZkZ2dj/vz5uOaaa1BREf45gQBw//3345VXXgEAHD16NCLXSDQWi0XsZVCr1TA3NcN4oFJ8XaZSAQEmnm9XbUVNdx0yNenI0mVgVk4JDOFOPE/FqOXkIel+VgG5PgtMhAoZkdPcY4aQ0YwWMw6HA5WVlRgcHMTAwAAqKioo+Rzn6D5DgkUxQwKVptBihskmbrPKGDYmgsKaeNbU1ITzdFFjsVjws5/9DJ999plkf0tLC1paWvDee+/hv/7rv3DTTTeF9bpfffUVXn311bCeMxkcO3ZMLD9eUVEBW2+f5HW72zIGfs/VcxzftR0Rt6+YtRKlWVPD1lbXIXjuiaciPQ+sJjnH6Mcb95ghZDT+YsY16QROr9tJyef4RvcZEiyKGTJWdrt99IMSEE1OAXDPPfeISefUqVOxceNGZGVl4ciRI3jttddgMpnw6KOPIjc3F2vWrAnLNYeHh3HPPffQMOIAcBaLZFvguIDf22OSJq2ZmnAVFpISBB72vjbJPkVmPvRnXhyR6xFCIsNut+PgwYNi0unEsiwUChq9QAghJPwETQqY2Uth7DOC43mwam2smxQR4z7x3L17N7Zs2QIAWLhwIZ5//nmoVCoAwGWXXYYrrrgCV199NYxGI37/+9/jggsuCEuVsj/96U9obm4O+TzJKCMjAw6HQyzaoS+fBd7hADgOAsdBOzHwOZPuiWeWLgIVZgWAYWTIvfJ+8MPdsDYdwfDRr5B50XWQKVThvx7x4B4zhIzGW8z4SjqVSiXmzp0LrTY5PwiQwNB9hgSLYoYEqnLPLnS//6W47VDLccZVMWxQhIz734S//e1vAEYqEz744INi0uk0depU/OY3v8EvfvELGI1GvPHGG7j++utDuqbrENvU1FSPDznjXWFhoWRbmZ4O/YxScTvQxFMQBPxg7hXoHO5Br7kPPaY+5KZkh7WtrhhGBmXuZGgnz0L6uRsjdh3iyT1mCBmNe8zY7XZUVlZiaGhIsp+STuJE9xkSLIoZErAhM7L6T4/os1iSc0SkLNYNiCWj0Ygvvxx5urB06VIUFXlPaFauXInMzEwAwNatW0O6pusQ2zVr1qCsrCyk840HgsMh2WYCfHLIMAxm5kzH7NxS3DTvGvxq2X8iL0KJp+CwgzMPROTchJDIoqSTEEIIibxxnXh+88034HkewMgwW19kMhnmz58PAKisrER/EMVt3DmH2GZnZ+NXv/rVmM8znrBajWTb1tMb8Ht3NOzBwY4aVLZX4Vj3cQxah0Z/UwDEokIMIDhssLYegUyp8f8mQkjc8ZV0qlQqSjoJIYREhY1LzmJC7sb1UNva2lrx+5KSEr/HTps2DcDI8M1jx46JiWgwXIfY3nvvvTAYDEGfYzwynZCujaktCn7oyrGeBvH7VFV4K83auxvBDXRiqHIb2JQ0KNKzkTJzcVivQQgJv9GSTo2GHiYRQgiJvNyyMtSeqBe3WV1yPvQc14lnS0uL+H1BQYHfY/Py8iTvCzbxdB1iu2LFClx00UXBNXYcqa2tFcuPT58+HfLUVDhc5sEGWtXW4rB67EsP9xqeGKloCwACz4GzDEHo9rwuiSz3mCFkNNXV1airq4PNZhOnUgCUdBLf6D5DgkUxQwKlKcyHceFEmM1mCIIAnYISz6TT23t6yGZ6uv9lNlx7J41GY9DXcg6xTU9Px29/+9ug3z+emM1m2O12OE7N7XSMsfiSyW722JeuMYTSNK+GvnsfjEoHGHLAKjIgT80c/U0krNxjhhB/HA4Hjh49CpPJBJZlxf2UdBJ/6D5DgkUxQwJlba2FpbkGDICRyVzJmaIl508VIIvL+pDu1WzdKZVKr+8LhOsQ29/85jfIyIjAkh5JhGEY8QsA2j/aBt5iASNnwchYKDIyYAjgPHplCs6dtABWzobqrjoM2UxgmTBNaz7VNs7UC0dvEwDA3lYDRq6EZtWt4bkGCZh7zBDiD8uy0Gg0MJtPP5yipJOMhu4zJFgUMyRQGpkCE6yn53kq2OQswzOuE0/XJ1CuiaU3rq8H8+TKdYjtBRdcgEsvvTT4hkZZXV0dpk6ditTUVHGf1WrF0aNHAYz0/k6cONHjPSaTCQBQUVEhea27uxutra0AgKKiIknvMsdxOHLkCICRpWUmT56M2bNni683NjbCPjQE2E//MspOLeJuNBpx8uTI/M8JEyYgO1tasfa+rY+CEzikqw1INxiwZOJ88ebf3Nws9niXlJRArVaL7xsaGsLx48cBANnZ2ZgwYYLkvNXV1bCZzZDb7cgZaJC8JggCTrR2gHMcxJQpUyRrvlosFhw7dgzAyNpe7mXWa2trYTabwTCM5N8AALq6utDW1gYAmDhxoqQH3uFwoKqqCgCg1+tRXFwseW9DQ4O4ZM+sWbMkPTx9fX1oahpJnPPz85GVlSV578GDBwEAWq1WnOfsdPLkSbH3v7S0VPLwZnBwEA0NI/82ubm5yM3Nlby3qqoKDocDSqUSM2bMkLzW2tqK7u5uACPLGel0OvE1s9kszs3OzMwUh8g7/72OHTuGgwcPQiaToby8XHLezs5OtLe3AwCKi4uh1+vF1+x2O6qrqwEAaWlpmDRpkuS99fX1GB4eBgCUl5dDJjv9B6G3t1dck7ewsFDyYInneRw+fBgAoNPpMHXqVMl5T5w4IRYrKysrg+JUbAPAwMAAGhsbAYwM9c/JyZG89/Dhw+B5Hmq12mOOektLC3p6egAA06dPlyRTw8PDqK8fmUeSlZWF/Px8yXtrampgs9kgl8sxc+ZMyWsdHR3o6OgAAEyePDlm9whXjY2NGBgYqSg9c+ZMyXp5vu4RDMPg4osvxscffwyj0YjBwUGcffbZkn+nUO8RzuF17pXL29ra0NXVBQB0j4jiPcLp2LFjsFgsY7pHCIIAuVwu2e9E94gRyXKPcDp06BAEQYBGo/EYKhvoPWLChAl0j8D4uEeE8jliuKMX5cM2cZ9MOxJPsbpHOGMw3MZ14ul6k7Db7X6TT5vtdDCMlqS6cg6xTUtLw3333TemdkYbx3FitV8nQRBgP5X8cV7mWDocDvF1dzzPi6+5nxeA+Jq3hN7hcABu15Nr1B5t8tbehuFm2AUHMNwE9ACLJ87z2l5BEDzeO1p77XY7BLsDlqZK6YtaAyypecCpDym+zuvtZ3We19uTUdd/w2DPG6n/NhzH+WyT63m9xYtz6JHrjTeQ844Wh85/w9HO6y++o/lv6C8OA/k35Hle8gHAKZR/Q2eb3N/nft54ukeM5XeZYRhkZWVBEATk5eV59HSG4x4x2s9K9wi6RzjbFMh56R4R3XuE87zOBw7hPi/dI+ge4cTzPDjed/2SWNwjvP23DIdxnXi6lsm3Wq0BJ56jDct1ch1ie9ddd3k8aYhXLMt6/MIxDCM+RfEWoHK5XPKUxZVMJhNf8/aL7HzN242dZVnALfhlSpVHm9zPO2w3jSSdLrK0p58yu7bX/Qbt77zO9goOB+QAHL0t0vfqDFBoUkY9r7efVaFQwOFweP2D4fpvGOx5I/nfxlebXM/rLV4UCgUYhgn6vKPFoUKhAMdxXn8W1/P6i+9o/hv6i8NA/g15nvfarlD+DeVyOXieH/W/TbzcI0L5XVYqlcjPz/c6vDbUe4Tr/7sK5XeZ7hGjn5fuEdLz0j0iDH/vBcFru+ge4XleukeM/d8QYGB3yRtlLklkLO4R3n7+cGAEb4+sIkwQBHz77bf49ttv0draiv7+fqxevRrLly8HALz11luYM2eOR3dyuP32t7/F66+/DgDYvn07ioqKfB77xhtv4Ne//jWAkV7MVatW+T338PAwVq9ejebmZixduhR//etfvR63adMm7N27FwDEISjRNjQ0JLl2aWmpZGhHLPF2O/Zc8X3JvlkP3g/D7HIf7xjR2NeMOz5+SNxmwODlK56AnA3PsxbeboeloxXtL/5csl9Xvgy5a24LyzUIIaGzWkeqTAf6wJAQQgiJts//9144Pj8ibttUDFa8/EbM2hOp3CDqPZ5vv/02nnrqKclSJgAwZ84c8fsnnngCnZ2d+N73voff/va3EVvv0nUMe1tbm9/E0zmmG4DHfAdvDh8+LM7p2LlzJ0pLS0d9j/OYgoICfPrpp6Men6y6urrA8zxkMhnSNZ7lpFnl6B8gM7QG/GTBD9Ax1I1+ywBMDkvYkk4na+sx6Q4ZC83kM8J6DRIY15hxn6NDxi+r1YrKykoIgoC5c+dKkk+KGRIsihkSLIoZEjCOh9q1yzNJ61FFLfEUBAF333033nnnHXHbybVr2G63o7OzE4Ig4MMPP8ShQ4fwz3/+02NScTi49qjW1tZiwYIFPo91TkRmGIbWYoqwtrY2cdK9vqDQ43WZavQ5tlqFBjJGhvMmL0S2LhOycFWzdWFtqZZsszoD1IVlPo4mkeQaM/THnQAjSeeBAwfEyrUHDhyQJJ8UMyRYFDMkWBQzhEhFLfF89NFHsXnzZgAjyduSJUswd+5cPPnkk5LjbDYbli5dis8//xwMw6CpqQm33347XnnllbC36YwzzoBCoYDdbsfXX3+Na665xutxHMdh3759AIAZM2Z4rWjnbvr06XjqqadGPe5//ud/xKTWebxr0aPxjjN7rsXJBFDcqWu4B+1DXWgfGqnKpZGrsWrGhWFtm7WlRrLNpmSAUdFSDITEmnvSCYxUMjx27JhHpUdCCCEk1hxgxkXhnaj8jMePH8cLL7wAhmGQm5uLJ554QiyV7Z546nQ6PPfcc9i3bx9uv/12dHd347vvvsP27dtx4YXhTRz0ej0WLlyInTt34tNPP0Vra6vXYbTvv/++WDJ7xYoVAZ07IyMjoPa++OKL4vfh/vkS1cSJEyEIAhiGAXeq3LsrRQCJPy9ICxKZHcGtvTrq+W0WcP0dkn1sSgaYCPSsktG5xgwZ37wlnQCg0Wgk5eIpZkiwKGZIsChmSKAM6lS4flJN1iQ0Kp+SX3vtNXAcB4Zh8L//+78e6zN5M3/+fPzv//6vuP3ee+9FpG3XXXcdgJEhvj//+c8xNDQkeb2urg4PPTRSpEan02HDhg0RaQc5zWAwID09HQaDAdyQSfqiTAY2gKG237YeilDrRlha3ApBMQxYXbr3g0nEucYMGb8sFovPpNN9jifFDAkWxQwJFsUMCZSCkVadTdZHFVFJPPfs2QOGYXDOOecENczpjDPOwOLFiyEIAg4dikwisWTJElxyySUAgO+++w5r1qzBX//6V7z//vt45JFHsHHjRnFx2zvuuEOy8DMAfP311ygtLUVpaSk2bdoUkTaOZ5xV2lPJsCwYL+Wk3RXqJyBVqYOKVYKBdCmVcLA0HJRsy9R6KDI956MSQqLDV9Kp1Wo9kk5CCCGERF9UenKdFWED6el0N2vWLOzevRs9XoZchst///d/Y3h4GLt27UJzczMeeeQRyesMw+DWW2/F97//fR9nIJHCu6yfCpxKPAMYsnJm/unlVqq7amFxWMPaLmtHg2RbpjVAM+XMsF6DEBIYZ9JpsUgfVGm1WsyZM4eSTkIIIXFN7r4uaIzaEWlRSTxtp5KHsRTNUZ4qJBOphUyBkWFYf/3rX/Hee+9h8+bNqK6uxuDgIAwGA8466yz84Ac/wFlnnRWx6xMph8MhzongrZ6J52j6LQP4/edPwqBJg1ahho2z4z/Pvi5s7RMcdtjaaiX7VBPngpGxoGkcseEaM94WWCbJy1/SOXfuXPFviDuKGRIsihkSLIoZEigtq0Sfy7Zc8HloQovKb0FmZiba2trQ2NgY9Hudi5e6D3ENN4ZhsHr1aqxevTqo95199tmSBVaD9dJLL435vcmqqqrqdPlx9x5P+eiJZ6+5Hw3GJsDYNPIehoGCVYStfdb2eggOu2SfehL1dsaSa8yMZWQFSUxjTToBihkSPIoZEiyKGTJWSZp3RmeOZ0VFBQRBwI4dO2AymUZ/wylNTU347LPPwDAMlcAfp3i3OZ4ydvRnJX1mo2TboNKDlY2esAaKTUmHYckGqArKAFYJNi0PMpU2bOcnhIzOV9Kp0+lGTToJIYSQeMIo3KaEhPFzazyJSo/nihUrsHXrVvT39+P+++/Hf//3f4/6HqPRiNtuuw12ux0Mw+Diiy+OQktJPNDr9XA4HJDL5eBMbut4ykYfy9pn7pdsp2vSwtk8KAy5SF+yAbryi2EfMMIx2Df6m0hEucYMGR/q6+u9Jp1z5swJKOmkmCHBopghwaKYIYFqtg1Kts3gfRyZ2KLym3DJJZegvLwchw8fxrvvvouuri7ceOONmDlzpsexnZ2d2LZtG55//nl0dnaCYRhMnTo14PUzSeIrLi4Wvz+x60vJa4HM8czX52H1jIugkavRZ+5HhtYQ1vZZ2xsAmRxgdWBk8pFlVJJ1TESCcI0ZMj6UlpbCYrFgcHDkj3UwSSdAMUOCRzFDgkUxQ4hU1B7B/PnPf8aVV16J7u5u7NmzB3v27JG8/swzz+Dpp5+WrKMpCAJSUlLwP//zP7T47jglCNKMTp6aOup77JwdSlaJ6ZmTUZFXBp4P31MjzjyE4WN7AZ4HWA0EnoE8ZxpkCk3YrkEIGZ1cLkdFRQUqKyshCEJQSSchhBBCoi8qczwBoKCgAK+++irKy8shCIL45UwoBwcHMTg4KHlt4sSJeOmllzBt2rRoNZPEGZlbD6c6J2fU9xztrgcA1HTXo773BFoG28PWHnPj6fU7uWEjHP0dYGThK1xECAmcQqHAnDlzaE4nIYSQhGbn7aMflASiOui8qKgI//rXv7B161a8+eab2L9/v8di33K5HLNmzcLatWuxfv16Wn9tnHNfx1MWwIdL1z7Sb1sPYVrGJBSl5YelPbauJo99TAAFjwghkaFQ0IMfQgghiS1NoYNr+VU5E7W+waiK+idmmUyGlStXYuXKleA4Dq2trTAajeA4Dnq9Hvn5+WNa75Mkj4aGBnEyvuCeeKpGTzxVrBJW7vT7bFx4niIJggDeMgxGpT099JtGgMcF15iZPHlyrJtDwshkMqGpqQnTp08P63rOFDMkWBQzJFgUMyRQ7sv+MUlaOySmXTUsy6KoqAhFRUWxbAaJM4ODg+K6V1qbNGmUBdC7MSVjIqwOG4yWfvSa+1GgzwtLu+zdzRjY9z4YpQZyfSZkGgPU0xeF5dwkNK4xQ5KHyWTCgQMHYLPZYLPZMGvWrLAlnxQzJFgUMyRYFDMkUHZjp3QHz8WmIRFGYwRJXBvLUNvZuTMAAI19zVCw8rAlnqb67wAAgs0Me3czGLYDqedcFZZzE0KkXJNOAOjp6cGRI0fCmnwSQggh8UDuVkQ1WQfURSXxbG1tDct58vPDM0+PxLdZs2aJ3x97f6vkNdkoc36b+lvx5Fd/h0GTBoNaj0ytARvLV4WlXda2emlbdOlgVVrwNsfIDqq8HDOuMUMSn3vS6WSz2cDzfFgST4oZEiyKGRIsihkSKJ1MgQGX7WTtGYzKz7V8+fKQl0NhGAZVVVVhahGJZ6xLJVu70Sh5zX3bXbepFw3GJsA4UgTIoNaHLfG0dTZKtuWGPM+4puQzJtgA1ncliWF4eBiVlZUeSWdqairmzJkTtoXYKWZIoHiex9DQEAYGBmCz2cBxyTkEjhByGsuyUCqV0Ov1SElJoZE2YRK1hNp9PUZCAsFbrX633fWZByTb6eq0sLRDEHjY+zok+2QKqrhMSDgNDw/jwIEDsNulc7vDnXQSEqjBwUG0tLTQZxhCxhmHwwGr1YrBwUEwDIOCggKkBrCWPPEvKn/F58+fH9BxVqsVXV1daGtrAzDSy3nhhRdi3rx5kWweiWOqnBzYB4cgcBwEjoN8lF96o7lfsm3Q6MPSDkdfO+BWHVeeURCWcxNCfCeder0eFRUVlHSSqPOWdDIMQ73lhIwDHMeJv/uCIKClpSWiyWezbRCudxZTkg6gi8pf8pdeeimo47u7u/Hcc8/h5Zdfxueff45169Zh+fLlEWodiTd9fX3iPK68712MwaPHxNd0U/yXI59oyMdZ+bOhkauhU2pRqJ8QljaZm49KthmFGorMwrCcm4TONWbS09Nj3RwSpFgknRQzxB+e5yVJZ0pKCtLS0qDRaMAwDD0IIQFxOBzi9xQziUUQBJhMJvT29mJoaEhMPktKSiIy7FbA+BhVEZe/BVlZWbjnnnuQk5ODRx99FHfffTfee+895OTkxLppJAqamprE8uOlRYWQ63QAAIHnoTD4HzprtAxicvpETEmfiLPyZ2PAOhiWNlkaD0u22dR0qApKIdj5sJyfhMY1ZiiJSCxDQ0OorKyMek8nxQzxx/lBExhJOgsLC2E2m2Gz2SjxJAGz2WwQBIFiJgExDAOdTgetVovm5mbxnjA0NAS9Pjyj6cajuJ4p+x//8R8oLCzEwMAAXn755Vg3h8SAKjsbqaUlSC0tgb5sBjQT/Pdg9pqNAABWJsOhjho09DWHpR3W9uOSbTYlHTKFOiznJmS8ilXSSchoBgZO1wvIyMgIuUAiISQxMQyDjIwMcdv13hBOjqRdQEUqrv+qMwyD8847D//85z/x6aef4vbbb491k0gU5Ofnj3nJBAaAAKChrwkOnkOOLjPk9ggCD0dfm2SfPCXDx9EkFkKJGRIbvpLOtLQ0zJ49O+JJJ8UM8cdZVZlhGGi1WgCAQqGIZZNIAqKYSQ5arRYMw0AQBI+K6+FiyMxCn/Z08smpknMueVwnngCQmTmSOIRrLVAS/7Kyssb8XucIeQc/Uu4+HHM87b3tEBzSD8faksAKZpHoCCVmSGx460GKVtIJUMwQ/5xLprAsK8YqJREkWBQzycFZVMzhcERsOaW0ilJ8M/SNuJ2iSonIdWIt7hPPkydPAvD+IYUQd8snL4KNs6HX3I9+6wAM6tDH4dva6iXbrM4AXcl8OAZNGCcjIwgJO51Ohzlz5oi9nmlpaaioqKCKoYQQQkiSiuvEs7m5GR9++CEYhsHEiRNj3RwSZQLHof6Z5+Ewm6HKygSr0WDCpSug8FPKOks3MgRWLVcDEJCpDb1oiLVdmniqJkw9tYanKeRzEzKepaSkYM6cOThx4gRmzJhBSSchhJBxSSGTI91+ujdVm6Sd5XGXeNpsNvT19WH37t3485//DIvFAoZhaDmVcYi32dCxbbtkX87y83wmnse6j+P/vn0NBo0eaSo98lKzUZ47I+R2WN16PJUTpoZ8TkLIiJSUFMyaNSvWzSCEEEJiJkuZgnmDFnFbLjfErjERFJXEs6ysLKT36/V6bNq0KUytIfHu4MGDsNvtYL1M4B5uPAm1j2V1uk29aDA2AcaR7QmpOVg/c0VIbREEHtaORsk+Vd4UH0fTuNtYccaMQqFARUVFrJtD3FitVqhUqlg3Q4JihgTLZDKJS2M4Cw4R4g/FDBmrSBUxirWoJJ7OtbDGIjU1FU8++STS0vyv30iSkN3hsYtVKX0e3m+RrtkZjvmdDCPDxJ8+A/OJw3AYO2Btq4cqf9qpF8X/IYT4MDAwgIMHD6KwsBDFxcWxbg4hhBASdxi1DroZ58DYb4TAC4BKF+smRURUEs/8/PyAj2VZFmq1GhMmTMDChQuxfv16GAyGyDWOxB2tVguHwwEZKwczfRoEjjv1xUPhZ9Hefqs08UxThZ54CoKAwe+2QZk3GbqSBUiZuQSs1s95qQhWTDhjhtZ9jC8DAwOorKwEx3FobGwEwzCYNGlSrJsFgGKGBE8mk4m9V4QEgmKGBOrQwe9w/JPvAAgjKzSoFJiRhIM9o/IX99NPP43GZUiSmDZtmvj9yeoa6Yt+1tw7u2AuUpQ6DNtMMNvNmGQoDLktvNUE3mGDpfkoLM1HAQBpCy4Dq07OJ1GJyjVmSHxwTTqdGhoaoFarkZubG8OWjaCYIcFSq9WxbgJJMIkWM3a7Hf/617/w3nvvoba2Fna7HXl5eVi8eDE2bdqEKVN8TTUioXJ09mBiy+k5nhaV3c/RiSsqiefRo0fBsiz9oSchY1jfiWfbUCdMdjMUrBwahQGpYRimYO9q8tgnUybWHxJCoq2/vx8HDx70WO8sIyOD1s8kJAKsHY1Q5RbHuhkkgfX19eHGG2/EoUOHJPtPnDiBEydO4K233sL999+PtWvXxqaBJCn4/hQfRk899RRWrVqFVatWYfv27aO/gRAAvMPLHE+1ZtT3OXgOFocNFoc15DaYGio99jEy1yUfaPgMIa78JZ3l5eW0ZAohYeYY6kPby/fCMdQX66aQBMVxHG699VYx6ZwzZw7uvfdePPLII/j+978PhUIBi8WCe+65B19//XWMW5uc7LznZ95kFJUez4MHD0IQBNTV1SE9PfR1Fcn4wFs9E0e5zndVOCUrLTzUYzKGdH1B4D2vke2ynizN2SBEYrSkU+ZnqDwhZGz692wGbx5C/1fvIPPC62LdHJKA3nzzTXzzzTcAgNWrV+O///u/xfv16tWrcdlll+GGG26A1WrF/fffjy1bttD9PMzSCgrQWpAibgva+KoEHy5RSTz7+k4/haP12shoTp48OfLB1WKBe9+ITOm7qu2p6diiUOd4muq+ha3zBNiUdMg0qWAYBuqC6SGdk0SGM2ZYlsXEiRNHfwMJO19JZ2ZmJmbNmhV3H1IoZkiwrC4PQ+NleSDHUB8G9n8MABj49iOkLVwDeQo94I8X8Rgz3vztb38DAKSlpeHee+/1uF/Pnz8fP/3pT/HYY4+hvr4e27dvx8UXXxyLpiat9FllOCicgNVihSAI0CmTc/mdqHwScC2h39bWFo1LkgRmNBrR29uL/u5uzxf9fHidnTsDK6afh+9NW4aLpy5FSdbkkNoxuH8bTEe/xuC3W9G/522YGw9Brqf5afHIGTNGozHWTRmXjEZjQiWdAMUMCR7HcXA4HB5xHkv9ezZDcIys9yc4bOj/6p0Yt4i4iseYcVddXY2GhgYAwKpVq5CSkuL1uKuuukqcKrF169aotW+8sLYfh7WlFkL3CQg9J8C318W6SRERlU8DP/nJT8RS0n/84x/j+heQxA9HbR06tn+Kzh2fo2vnLvQfPOS3JLlarkKqKgV6dSoMmjRoFaPPB/XH5lpYiHOAYTx/XWi0LRnvjEYjDh06lFBJJyHJwLW302ng24+Sfq5nW1sbHnroIVxyySWYPXs2FixYgE2bNmHLli0AgOeffx6lpaUoLS31eK9z/9NPP43u7m7cdtttOPPMM3HmmWdizZo1eO+99yTH8zyPjz76CD/96U+xdOlSlJeX4+yzz8bGjRvx9NNPY2BgwGc7N23ahDPOOANnnnmm35/nrrvuEtvV3Nzs9bVzzz0XwMhIjbvvvhvLli1DeXk5lixZgttvvx2VlZ71KAK1d+9e8ftzzjnH53F6vR4zZ84EAOzatWvM1yPeyTkeqVYL9DYr0mw26OxU1XbMLrnkEvz5z3/Gb3/7W3z22WdYt24dNm7ciLlz56KwsBB6vZ4+nBBRaWkpBEFA84GD6HDp9RRsvn8JTxpb8PTefyBNnQq9KhXpmjRcXbF2zG0QeA6OwV7JPjbVffgSZZ3xwhkztFZadDl7OnleOh86KysLM2fOjOv7OsUMCVa8LY3h2tvp5Oz1TNa5nl9//TVuueUWDA8Pi/tsNhv27t2LvXv3Ytu2bV4TTndDQ0O45ppr0NjYKO6rqamB3mWt8Pb2dtx+++3Yv3+/5L1GoxFGoxGVlZV48cUX8cgjj4iJoS/hiJ39+/fj5ptvliS7XV1d+OCDD/Dhhx/izjvvxPXXXx/0eWtra8Xvp0/3P51o2rRpOHToEPr7+9Ha2or8/Pygr0e8y1JocfbA6eVUZBpFDFsTOVFJPG+88UYAQFFREYxGI2pra/HQQw8FdQ6GYVBVVRWJ5pE445wHwXDSD7OM0vcvYY+5D8f7Torb6erQEk9bTyvgVmFMPal8zOcjkRXPc2eSld1ux+HDhxMy6QQoZkjw4immvfV2OiXrXM/Dhw/jpptugsUy8uH8ggsuwPLly6FQKLB3715s3rwZW7duxe7du0c91z//+U9YrVYsWbIEq1atgtFoxOeff44lS5YAGJmzfv311+P48eMAgIKCAqxfvx5TpkxBf38/tm/fjl27dsFoNOKWW27Bs88+i6VLl/q8XqixYzKZcNttt2FgYACzZs3C5ZdfDr1ej3379uHNN9+Ew+HAww8/DK1WiyuvvDKoc7e0tIhtnDBhgt9j8/LyxO8p8YywJH0oGpXEc+fOneJTZef/C4Lg7y2EQLBLn+TKFL4Tz37LoGQ7TZ0a0rUtDdJ1rBilBpqiMp/HU68JGW8UCgVKSkpQXV0t3s8TJekkJNF56+10StZezwcffBAWiwUMw+D3v/891q9fL762Zs0arFu3DjfddBMGBwf9nGWE1WrFeeedh2effVb8+33dddeJrz/yyCNi0nnhhRfi0UcflfRaXnXVVXj77bfxq1/9Cg6HA3fccQe2bdvmc35kqAYHBzE4OIgNGzbg/vvvF+daOpcqvPHGG2E2m/HYY49hxYoVkp7b0fT2jozu0ul0UPop4AgABoNB/J7mx5OxiMqng/z8fEyYMEHylZ+fH9TXaE9hSPJxDA1LtmV+eigGrGFOPFtqJNtsajoUmQWeB1LCScaxnJwclJWVgWEYZGdnU9JJSBT46+10Sra5nl999RW+++47AMCGDRskSafTvHnzcOeddwZ8zhtvvNHrQ+OOjg5s3rwZAFBYWIg//elPXofKrlu3TkxWe3t78frrrwd87bEoLS3Ffffd57EW8vz583HrrbcCGEkG33rrraDO6+xBDmQUiGtiajabg7oO8e/wgUpU18jEr8rDplg3KSKi0uP56aefRuMyJEkMDg6C53nYLBbJfpmfhefLsqZjYeGZyNKmw+KwIj81N6Q22DoaJNvylHSPP1CUc8YPZ8zIZDKkpob20IEEJycnB0qlMuHm6lPMkGBxHCfOC3b/8B9N/no7nZKt13PHjh3i9z/84Q99Hrdu3To89thjo/bGKRQKVFRUeH1t9+7dsJ8q7HLttddCo/FdqPCGG27AP/7xDzgcDmzfvh033HCD1+OcSzeF4vrrr4dc7v1j+5VXXok///nPsNls+OyzzyS9t6NxOEamFY3W2+l+DBUKDS/HsAmGgdNTVyzK5BwZGtZPCXfffTfuvvtuqnZFQtLQ0IC6ujqY3IbL8H6KCynlChSmTYBaoYZBkwYbP/ZqYALPwd7XIdknT6VlVOKZM2acJeFJdBkMhoRKOgGKGRI8q9UqfsVKIL2dTsnU67lv3z4AQHp6OqZNm+bzOKVSOWoVWWCk5oivROvAgQPi9wsXLvR7nqysLLE9hw4d8jmNLBwxs2jRIp+vpaamoqSkBACCrnDr7M21B1BF1WY7/cBD4Wf6EyG+hPWTwttvv43NmzdLKmQRMlaC2zAOZYbvQgnu93oHP/YncfaeFsDt/ap833/oCEl2vb296OnpiXUzCBn3AuntdEqmdT07OzsBIKBiNhMnThz1GH9zIJ1zHoGRBHU0zmPsdrvf5VVCodVqkZvrfySX89/GZDLBZAp8mKZWqwUQWHLsmnhSgbbw4sbJSglRGWpLSDByc3PBcRzaNBq4Drbl/TyNs7v1cBrUgU+sd2dtOy7ZZpQa6EoXeB7IMDTeNk44YyaWw9+SVW9vLw4fPgxBEFBeXo7MzMxYNyksKGZIsBQKRUyX4Ammt9MpWSrcOofOBrIsSSDH+BtW6rpUi79htt6uZzabkZaW5nFMqL2DOp0uqHYMDQ2JCeVonEn40NAQHA6Hz+G8gLSgUEZGRkDnJ4HRqXRwXUshWf8yJdbYKDIu5ObmIj8/H3K3oXvyFN83XpaRIVWpg1ahgVquRIoysBuuN9b2esm2umgG5HoaahvPnDEz2hNhEpyenh5xyRRBEHD48GFJb0Aio5ghwVIoFFAqlTEbYhhMb6dTsvR6OnvXAiloY3GrDxEs12QzkOu59i76Snr9xUywPY2jtYNhGEn12dEUFxcDAHieR0dHh99j29vbxe8LCrwUXCRjppFJYyRZEzTq8SRxS3C70cpUvp9iTsmYhCkZk06/N4Tleqxtboln4Ywxn4uQROVMOl1/lwRBQGdnJz3pJiTKxtLb6ZQMvZ55eXmoq6tDa2vrqMcGcow/WVmnHzQ3NTWhrMz3UmoAcOLECQAjSadrwufaM+6vJzGQ5V8GBgYwPDzst+ezubkZwMic+0AKBTlNnTpV/L6urs5vQumcSpeWlkYP7ciYJGtCTZIAZ3arahvEU+axDoUSeA62jkbJPlXelDGdi5BE5S3pBEZ6CUtLS2PUKkLGr7H0djolQ6/nnDlzAIwM9ayvr/d5HM/z4rIrYzV79mzx+6+++srvsR0dHeJ6n87iPk6uyd/Q0JDPc9TV1Y3aJkEQ/BYNcv13WbDAy9QgP1yP9/fzDgwMoLq6GsDIEi4kvDxWTohROyKNEk8Stxi5dIS7rzmenUPduPPj3+P3n/8vnvz673jpwJvged7rsaOxd7dAsEuHvagmTPVxNCHJp7u722fSOWPGjJjNbyNkvAqlt9Mp0Svcfu973xO/f/nll30et3XrVnR1dYV0rWXLlolDY19++WW/w21feOEF8fPGeeedJ3nNdT68M2Fzd+DAAbS1tQXUrldffdXna6+88opYlfaCCy4I6HxO06ZNw5QpIw/Y3377bckcV1cvv/yyuITKihUrgroGGV2qXFqsSZ6cq6lQ4kniT1VVFSorK2E1SW/2itQUr8f3mvvR0NeEA+1V+KLxa3xcv3PMSzs4hvrA6jPByEf+6LD6LLA6z0IBI+gDeLxwxkxVVVWsm5LQuru7ceTIkXGRdFLMkGCZzWaYTKaA5v2F09DBHZBpUsCmZoz5S6ZJwdDBHaNfLE4tWbIEM2aMTHt59dVX8cEHH3gcc/ToUfzud78L+Vo5OTlYtWoVgJGhtr/85S+9zhvdvHkzXnzxRQAjSeZVV10led215/Spp54S18t0am9vx69+9auA2/Xxxx97Tbp3796NZ555BsDIfM2xJIXXX389AKCvrw933XWXx5zSffv2idcoKCjAxRdfHPQ1SHCSNO+MzBzPV199VbLYbzgwDCP+gpPk5nA44HA4ILgtacIovZfuHrBK50cYVGNfDN4x0I3UOReAUagAh52q1iYIZ8wkU2IUbb6Szry8PJSWlibdvy3FDAmWIAgh1Q8YK8Oi9TAsWh/168YTmUyGBx54ANdccw3sdjtuv/12fPjhh1i2bBlUKhUOHDiAN954A1arFSzLguO4kNYWvvvuu7Fv3z40NTVh27ZtWLlyJS6//HJMnjwZAwMD2L59O3bu3Cm27aGHHvKY+75ixQr86U9/gtlsxr59+7Bx40ZcfvnlSE1NRVVVFf79739jcHAQs2fPxqFDh0ZtE8MweOCBB7Bz505cdNFFkMvl2LNnD9555x3wPA+FQoH77rsvqPmdTldccQXeeOMNHDx4EB9//DGuuOIKbNiwAQaDAfv378cbb7wBu90OhmHGfA3iHyN3+zdlkrNvMCKJZ1NTE5qamsJ2vliWLyfRp1QqIZPJYOWlf+BlSu9zPPvM/ZJtvXrsiadz/U5xuG2gnzEoPGPKGTP+ysAT37q6ulBVVTVukk6AYoYEj2GYpPxdSBRz5szB448/jjvuuAMmkwkff/wxPv5YOgT5iiuuQEtLC/bs2RNScqTX6/Hyyy/j1ltvxcGDB9HS0oInnnjC4ziDwYDHHnsMixcv9ngtMzMTv/vd7/CrX/0KNpsNR44cwZEjRyTH/OAHP8DcuXPx85//fNQ23XHHHXj88cexY8cOj84dnU6HJ554Auecc06QP+kImUyG5557Dv/xH/+BI0eO4OjRo3jwwQclxygUCtx7770499xzx3QN4l8HJ+1VtybprSYif3Fj8USQJA/ncJq9DAPXWZ3ucz6dCvR5uKzkAlg5O6wOK7J1Y6+46T4HRq73v2ah+2cQ+lASG86YIcHzlXROmDABJSUlSRvTFDMkWIGs6Ugi66KLLsJ7772Hv//979i5cyfa29uhVCoxc+ZMXHvttbjoootwzTXXADi9PuVY5ebm4l//+hc++OADvP/++zh06BD6+vpgMBhQVFSEFStWYO3atX6vs2rVKsyePRt/+9vfsHv3bnR2dkKv12P27Nm49tprsWTJErz//vsBtefiiy/GkiVL8Oyzz+Lrr79Gf38/8vPzcf755+NHP/pRyFVmMzIy8K9//Quvv/46tmzZgvr6ephMJmRnZ+Pss8/G9ddfT8XlIsjOS4di80k62DYiieell16KJUuWROLUZBxh3BZ2V/lYwkGrUEN96gsYe2+nwHkWL1JmFfpp4JgvRUhcGK9JJyEkcRUWFuLXv/61z9d7enoAjNzH3B09ejSoazEMg0svvRSXXnppcI10UVxcjAceeMDn68Gcv6SkBI899tiY2zIauVyOa665RkzeCQm3iCSe5eXlWLduXSROTcYRQZBWplX4eKp4sl+6ZleGxjCm6zkGPSv+KTJogWSSvAYHBynpJITEvXfeeQdbtmxBUVERbr75Zp+9e/X19WhsbAQAzJw5M4otJCQ0HM/D+7i+5EKTW0jcEuzSYQeMwnu4ahUat231mK5nbfNcS4vVhjBflJA4N3nyZPA8Ly48np+fj+nTp1PSSQiJK3q9Hl988QWAkelc9957r8cxQ0NDuOeee8SHaZdddllU20hIKDRyJVxrCbNUXIiQ6GhtbQXHceDs0nLeMrn34kIZGgNkDANO4HHC2AK1fGyJZ/9X74J32CBPSQebkgFFpucwHQ/0AT0uOGOGZVnk5+fHujkJg2EYTJ06sk4tz/PjKumkmCHBcl1igqp6RtfixYtRWFiI5uZmvPLKK6iqqsLFF1+MvLw8mM1mHD9+HO+88w66u7sBABs2bMC8efNi3GqKGRI4jVwlSTyTM+2kxJPEoe7ubtjt9oB7PKdlFgMALA4rZmWXQKfUBn1NgedgbT8O8BzsnScAALpy/5XbxssH9ETgjBmFQkFJRJBck8/xFNMUMyRYDodDrLJPSUR0KZVKPPXUU/jxj3+MtrY2HDhwAAcOHPB67FVXXRXU+piRRDFDAmUf7JVsuy8pmCwo8SRxSRAEgJfO8fTV4+mklqsAufe1Pkdj6zopLqXipJt21pjORUg8cvbueTOeEk5CSGKaMWMGPvzwQ/z73//GJ598gmPHjqG/vx86nQ65ubk444wzcMUVV6CioiLWTSUkaDLOrbMlOYvaUuJJ4s/UqVPBWa1wX07ZW4/ngGUQD33xv0hTpUKvToVelYory1dB5b4Q7ygsJ6ul11JpoS4qC7bpJEamTp1K6/360dHRgePHj2Pu3Lm0JMQpFDMkWCrV2B5skvDRaDTYtGkTNm3aFOumBCTUmHn44Yfx8MMPh6k1JJ6lskoMuWz772pJXGFPPGkNTxIqnU4Hh5f9dqMRGrfy6EbLABr6msRtBgyuqVgb9DVNdd9ItuUpGWBTx74eKIkunU4X6ybErY6ODlRXjzxYOXDgACWfp1DMkGD5GjFAiC8UM4RIhTXx/Mc//gEAmDhxYjhPS8Yh3u6ZejJyz3Dttw5KtlNUOrCy4G/0tq4mybYiPS+AnhDqKSHxrb29HTU1NeK21WrFgQMHcNZZZ9F8I0IIIYREVVgTzwULFoTzdGQ843nI1GqA5yGc+mK8zPHst0gTzzRV8MufCJwD3HC/ZJ883fsaYYQkCvek0yknJwcKRbIO4iGEEEIST4dtWLJtSdK+DZrjSeKO2WyGoFYh59IVkg/Icp1ntdr81FzMy68AwIBhMKaKttauJo/CQtrSs4M+D4kds9ksztejYaRAW1sbjh496rG/qKgIU6ZMoXmNoJghweN5XowZmSxZFzsg4UQxQwJlAydJynifRyY2SjxJ3KmtrYXdboe8ZBpmlpVBEARYOzoh13rOyZLLWBSnF4nbSjb4nhxbe71kW6bSQZ1bHNibnR/gGbdtElXOmFEoFOO+oiElnYGhmCHBslgsYhKh1Qb/kJOMPxQzhEjR4xcStxitFoq0NAh2OzizGfIUz8TTfY6njbMHfR1be4NkW1VYCpk6gMIj9PmdxBlfSefEiRMp6SSEEELiFD9OPlRSjyeJO5mZmZI1BxUGA1TZ2V6PHUsPpztrm7THUzORllFJNO4xMx61trbi2LFjHvsnTpyIyZMnU9LphmKGBEsul9MSPCQoFDMkUBpNCuwuYcLIkjNmKPEkcaegoECyLfNTCCVXl4UzJ5TDwXOo7qpFti4zqGsJnAO2jkbJPmXe1KDOQWLPPWbGG19J56RJk1BcXEwferwY7zFDgkeVoEmwKGZIoLIWzsEn/GFxO0WVEsPWRA4lniShGTRpMGjSYOfsKNDnIjXIX1RbdzMEt+G5qrwpAb+fPtCTWGtpaUFtba3Hfko6CSGEEBJPKPEkccnS3o7efd+AkSsgU8ghT0lB5kLflWYVrAKKMQy7dR9mK0/LAasNcEkW+kBPYqy7u5uSTkIIISTBMYwMSl4QtxWCn4MTGCWeJC4N1h9Hw19fELfVebnIOHuB5IO0zWHDbz75E/TqFOhVqUhTpWL9rBVIUQZQGOgUa4u0EIsye2LojSckStLT02EwGGA0GsV9xcXFKC4ujlmbCCGEEBKcPJUey4wmcVuero9hayKHEk8Sd44dO4aho9L5ag6zGeB5wKUQSL91EA3GJslxl89aGdS1lLmToZ44C46hPnBDfRB4x9gbTmLm2LFj4tIYJSUlsW5O1LAsi9mzZ+PQoUMwGo2UdAZhvMYMGTvXpTHUanWsm0MSAMUMGSu7PfhVGhIBJZ4k7lgsFthNJsk+hmXBuFWf7LdIl1KRy+TQKoJbCJ4zDUA9adbp6yioEEAislgssNvt4Dgu1k2JOmfy2dXVhby8vFg3J2GM55ghY8PzPFUoJUGhmCGBYuRKqCfNxtDQIARBANRUXIiQqJDJZGDkcjDpBihYOcDzUKQbPI7rNRkl22mq1JBv7oLdFsTR9IckXshkMvFrPGJZlpLOII33mCHBc/59oSSCBIpihgTqWNMJHKpuBsfzECBArjShNNaNigBKPEncKS8vx3BKKnrS0vweZ+cdmJdfAStnA8dzUMtVIV9bnpIe8jlI9JWXl8e6CRHX2dmJzMxMWncyTMZDzJDw0miCG1FDSDLEzM0334zPPvsMf/jDH7B+/fpYNydpDdc3YsrhPnHbokrOh6KUeJKEpVWqUZxeNOb3OwZ6PM85fV4oTSIkIpqamlBfX4+0tDRUVFRQ8kkIISTi3nrrLXz22WexbgZJIsmZTpOEx9ukQ16VmRkex5jtlpCuYWmu8djHphiCO4k4fIaG0ZDIOHnyJOrrR5b96e/vx6FDh2heIiFEorGvOdZNIEnm888/x29/+9tYN2Pc4Hg+1k2ICko8SVyyDwxItr3Nj1DLpRXiWCbwcBZ4DpaWYyMTuCXXCfwcNGWDRNrJkydx/PhxyT6j0YieHs/eekLI+GQ09+OBz/4HRnN/rJtCksRbb72FW2+9NWkrq8YjtUEPU4pC/LKnJf4wbW9oqC2JO52dnRg2m2EZHoZON7Imp7Xb84P23AkzUZE7Aya7GXW9J1CWPS3ga9i7mzGwdwsYhQpsSjrYlHSkVpwftp+BRFdnZyc4jgPLssjJyYl1c8LCW9IJAFOnTk2anzGWkjFmSGTZ7XaxQqlCoYh1c0Tv1GzDkG0Y79Zsww/OuCLWzSEu4jVmfBkcHMQjjzyC119/PdZNGXdyFsxDtbYbdttIzOiU2lg3KSKox5PEnfb2dnSdOIGhoSFxnyor0+M4GSODnJVDr07Fmfnl0CgCXyPL0loHABDsVjj62mHrPAFlVmHojScx0d7ejtbWVrS3t8e6KWFx4sQJn0lnUdHY5zWT05ItZkjk2e128SteGM39+Lj+CwDAx/VfUK9nnInHmPFly5YtuOSSS8SkMyMjA9///vdj3Krxw9bdDFvXSTh6msH1NsPe2RjrJkUEJZ4kLvGNJ+A4egx93+6H8UAlTE0tYT3/cM1Xkm15SjoUmfnBn4jG25IwO3HiBBoaGjz2T5s2jZJOQojEOzXbYOdGkhobZ8e7Ndti3KLIa2trw0MPPYRLLrkEs2fPxoIFC7Bp0yZs2bIFAPD888+jtLQUpaWei1E49z/99NPo7u7GbbfdhjPPPBNnnnkm1qxZg/fee09yPM/z+Oijj/DTn/4US5cuRXl5Oc4++2xs3LgRTz/9NAbcpgW52rRpE8444wyceeaZfn+eu+66S2xXc3Oz19fOPfdcACMjYe6++24sW7YM5eXlWLJkCW6//XZUVlYG9G/nz+uvvy5O41iyZAnefvttzJkzJ+TzksAIFhMY0yDkNhPkNjNY63CsmxQRNNSWxJ3i4mIct1gx3NoGZ5+n+1xMQRBw97aHkarSQa9KRZoqFavLLoZBrQ/oGvbuJsk2m5IOVpMaXEMp6YwbxcXF4Hk+4ddkbGxsRGNjo8f+adOmobCQeuTDKVlihkSPSqUSh03GA9feTqeP67/A6hkXwaDxvxxZovr6669xyy23YHj49Idym82GvXv3Yu/evdi2bZvXhNPd0NAQrrnmGsn9tqamBnr96c8Q7e3tuP3227F//37Je41GI4xGIyorK/Hiiy/ikUceERNDX1Sq0Jd7279/P26++WZJstvV1YUPPvgAH374Ie68805cf/31IV2joKAAv/jFL3DppZeG2lwSpDxlCpb3mcRtRp0Sw9ZEDiWeJO7o9XrI3f6wK9MNku1huwnH+05K9q0sXR7Q+QWeg2OwV7KPTfWsmksSh+uHhURFSWd0JUPMkOiKt2WMXHs7nZy9nsk41/Pw4cO46aabYLGMVLS/4IILsHz5cigUCuzduxebN2/G1q1bsXv37lHP9c9//hNWqxVLlizBqlWrYDQa8fnnn2PJkiUARiqIX3/99eKUh4KCAqxfvx5TpkxBf38/tm/fjl27dsFoNOKWW27Bs88+i6VLl/q8XqixYzKZcNttt2FgYACzZs3C5ZdfDr1ej3379uHNN9+Ew+HAww8/DK1WiyuvvHJM1/j5z3+O2bNnQy6n1CAeMEn6UJSii8QlweGQbDOsNFT7LYMe79GrAuuxtLYfB3jpchRpC1YF2UJCwsdX0jl9+nQUFBREv0GEkLjmrbfTKVl7PR988EFYLBYwDIPf//73WL9+vfjamjVrsG7dOtx0000YHPT8fODOarXivPPOw7PPPiv2YF933XXi64888oiYdF544YV49NFHoVafriNx1VVX4e2338avfvUrOBwO3HHHHdi2bRtSUiLTSzU4OIjBwUFs2LAB999/v5jIrlq1CqtWrcKNN94Is9mMxx57DCtWrBjTg7Uzzjgj3M0mxENyptMk4fEOaWIoc3sC1+tWQEEjV0PJBlYxztouLdrCqLRQ5Yx17lx8DLkiiUkQBDQ0NFDSSQgJirfeTqdknOv51Vdf4bvvvgMAbNiwQZJ0Os2bNw933nlnwOe88cYbvQ6b7ujowObNmwEAhYWF+NOf/iRJOp3WrVsnJqu9vb0RrwRbWlqK++67z6P3dP78+bj11lsBjAwDfuuttyLaDhIZx47WoPKEXPz6rj60terjFSWeJO7Y7XZwZpNkHyOX3mjT1XrMK5iD2bkzUJI5BYVpE2Dz8UfY4/xd0vmdqtxiMAEmrdJGUdIZL+x2O2w2W0JUDnTlcDi8VlWlpDPyEjVmSOzwPC9+xZK/3k6nZKtwu2PHDvH7H/7whz6PW7duHQwGw6jnUygUqKio8Pra7t27xfvCtddeC43G93qKN9xwgzg0dfv27T6PC0fMXH/99T6HwV555ZVQKpUAgM8++yzka5HoM3X3IafDIX7pO5LzbxMlniTuVFdXwzIsrebFuN1sGYZBsaEQpVlTUZFXhjl5M6GQBTZy3Nom7fHUTKaqbYmuuroahw4dQnV1daybEhSFQoG5c+dKCk+UlJRQ0hkFiRozJHYsFgvMZrM4xzBW/PV2OiVbr+e+ffsAAOnp6Zg2zfea3UqlctQqsgBQVFQkJmruDhw4IH6/cOFCv+fJysoS23Po0CGPQohO4YiZRYsW+XwtNTUVJSUlABCWCreERAolniQuCW5DbXmrTbLdMdTt8Z5AKg0KPAeb29pIqglTg28gIWGi0WjE5LOkpAT5+WNY1ocQMi4E0tvplEy9np2dnQAQ0P1x4sSJox7jbw5kb+/p4oOBLGHlPMZut/tdXiUUWq0Wubm5fo9x/tuYTCaYTCa/x5L4E9txFNFDiSeJO2lpaWDdhtbKU3SS7UytARkaA/Sq4CbyO4ydEOxWyT5l7uSxNfQUhmFOj7ql4bcxkZaWBoPBgLS0xCymodFosGDBAko6oyjRY4ZEH8uy4lesBNLb6ZRMvZ5GoxEAvM61dBfIMb56OwFIlmrxN8zW2/XMZrPXY0KNGZ1ON+oxru0YGhrycySJRyqlNNaSNUGjqrYk7kyaNAmdLAvXPk/W7eY/yVCISYZCODgHNtd8hKWTFgR0bmvnCcm2TKsHq6MPnolu0qRJsW7CqJxDsHz1zMfbUg3JLhFihsSXcKzFGIpgejudkqXCrUqlgt1u95nYuQp1WKtrsmk2m0etVOvau+gr6fUXO1ar1edrTjabbdRjnO1gGCagea4kvqSwarjWY07WTwTJmlCTRMdL50nIVD6eTjIM1petQG5KdkCntTZJ53Mps4riZjFwkrwEQcDx48dRV1fncw4QIYT4E0xvp1Oy9Hrm5eUBAFpbW0c9NpBj/MnKyhK/b2pq8nPkiBMnRh5oq9VqScLn+tnC4bZEnKtAln8ZGBiQ9MR609zcDAAwGAx+e3QJiSVKPElcEtzW2WRk3p/9yGUsZEEssmtqOCg9r3wM1WwJCYIz6WxqakJLSwvq6+sp+SSEBGUsvZ1OyTDXc86ckSKARqMR9fX1Po/jeV5cdmWsZs+eLX7/1Vdf+T22o6NDXO/TWdzHyTX58zf0ta6ubtQ2CYLgt2iQ67/LggWBjQAjJBYo8STxya30uHtV23s/fQwPfvYEnvjqBbz43b/RPdyLQHAm6cR/NjUjtHYCtJQn8UkQBNTX10uemjc3N4sfVAghJBBj6e10SoZez+9973vi9y+//LLP47Zu3Yqurq6QrrVs2TIoFArxWv6G977wwgviUinnnXee5LXMzEzxe1/Vsw8cOIC2traA2vXqq6/6fO2VV14Rl4C54IILAjofiS+pcukwbUWSPp+mxJPEnfr6ejjc1tZjXOa/OXgO1V21ONhRjV0n9uL9Y5/A7AhsTkfK7GVIqTgfmmlnQZU/HYr0CWNuJw3RjR/19fU4evSo3yfh0eZMOp3Dn1wFUiiCRFY8xgyJbxaLRfyKplB6O50SvddzyZIlmDFjBoCRBOyDDz7wOObo0aP43e9+F/K1cnJysGrVKgAjQ21/+ctfev1vvnnzZrz44osARpLMq666SvK6a8/pU0895THctr29Hb/61a8CbtfHH3/sNenevXs3nnnmGQBAcXExVqxYEfA5Sfxw/0iZpHknFRci8Wd4eBiCe48ne/oZyYDVcz5Emip11PMKggCZQgVZWjbkaSNzQlNmLQ6xtSQeDA8Pw263i0+pY00QBNTV1aGlpcXjtbKyslHL4pPIi7eYIfGP53kIghD1h46fNX6FVGXoD6s+a/wKa8suCUOLok8mk+GBBx7ANddcA7vdjttvvx0ffvghli1bBpVKhQMHDuCNN96A1WoFy7LgOC6oaTju7r77buzbtw9NTU3Ytm0bVq5cicsvvxyTJ0/GwMAAtm/fjp07d4pte+ihh5CRIR1BtWLFCvzpT3+C2WzGvn37sHHjRlx++eVITU1FVVUV/v3vf2NwcBCzZ8/GoUOHRm0TwzB44IEHsHPnTlx00UWQy+XYs2cP3nnnHfA8D4VCgfvuu4/mdyYojyllTHL2DVLiSeKTW3Eh11/IXrentgwYqOUBVBvkPCf3MzL6FSDhRUknISSc1pZdkrAJYzjNmTMHjz/+OO644w6YTCZ8/PHH+PjjjyXHXHHFFWhpacGePXtCSsD0ej1efvll3HrrrTh48CBaWlrwxBNPeBxnMBjw2GOPYfFiz4fYmZmZeOCBB3DPPffAZrPhyJEjOHLkiOSYH/zgB5g7dy5+/vOfj9qmO+64A48//jh27NiBHTt2SF7T6XR44okncM455wT5k5J40ctIO1xsSTqojj51k7hTXl6OrxlGspiu6xxPvVKH+QVzYHFYYXXYwPEc+AAGJfA2z6EyMk1w64CS+FReXh7rJgCgpDORxEvMkMQRyJqOJLIuuugivPfee/j73/+OnTt3or29HUqlEjNnzsS1116Liy66CNdccw2AkeQxFLm5ufjXv/6FDz74AO+//z4OHTqEvr4+GAwGFBUVYcWKFVi7dq3f66xatQqzZ8/GCy+8gN27d6OzsxN6vR6zZ8/GtddeiyVLluD9998PqD0XX3wxlixZgmeffRZff/01+vv7kZ+fj/PPPx8/+tGP6O9LgjM5pMvqcEk62JYSTxJ3vA2PUbpM0lfKlZhkKJS8Lg+g55K3epYiZ+QhDElxDrdK0qdSiSSUIVXhIggCamtrvZbynzlzJnJycmLQKuJLPMQMSSw0rz8+FBYW4te//rXP13t6egAAEyZ41nA4evRoUNdiGAaXXnopLr300uAa6fL+yZMn44EHHvB5TDDnLykpwWOPPTamtozF+vXrsX79+qhdjyQ/SjxJfHJbbkKu04rf827zPwGADWQsvOD5PvogQcLBV9LJMAzKysoo6SSEkBC888472LJlC4qKinDzzTf77N2rr69HY2MjgJEHfoQkCp7nx0XFV0o8SVzi3aq/yVyG2ipYOYoNhXDwHJoH2iCXsaMmkIIgYPDQF+BM/ZBpUsEE8J6gnDoXJbLjDyWdhBASWXq9Hl98MVLZVxAE3HvvvR7HDA0N4Z577hHXSb7sssui2kZCQiGXsZIpZrIk/TxJiSeJOz09PZ7reLpUtU1VpWBB4dygzskN9cG46w3n2SDT6JC+dGOILSXxore3d+RpoUzmUVkw0urq6rwmnTNnzkR2dnZU20ICF8uYIYnJ4XCIVW3lcvr4FE2LFy9GYWEhmpub8corr6CqqgoXX3wx8vLyYDabcfz4cbzzzjvo7u4GAGzYsAHz5s2LcaspZkjgUpVauJbOZJN0Hhf9FpC403zipMc+hg0tVO3drmspCuCtZnAWU0jnPC05bw6JpLm5WVwaI9pJRGZmJtra2sQh4JR0JoZYxgxJTDabjZKIGFEqlXjqqafw4x//GG1tbThw4AAOHDjg9dirrroqqPUxI4lihgSKGx6QbLsvK5gs6LeAxB8vv2yMnPVyYOBsksQTYLV6KNPzQjonIQCQkZGB8vJyHD58GIIgUNJJCCERMGPGDHz44Yf497//jU8++QTHjh1Df38/dDodcnNzccYZZ+CKK65ARUVFrJtKSNB4m1myzQhU1ZaQqMjPy8Ux950uxYP+8MWTcPAc0lSp0KtTccm0ZZiQ6n8end0t8ZRp9ZAbKDlIFoWFheKwyVhwJp88zyMrKysmbSDBiXXMkMSjVCrF3isSGxqNBps2bcKmTZti3ZSAhBozDz/8MB5++OEwt4rEIz2rgus4PDktp0JIdBi8rIllN/ZBnTOSKFZ11sLK2cTXFhWdNWriaetukmyzmlTI9ZQgJIt4GCoZD20ggaP/XiRYNFSSBItihgTK/dkEk6TTuOhRL4k7goPz2Oec42mxWyRJJwDo1amjntPe0yLZlmn1kGlDW1z6dCXb0E5DEoMgCOjv7x/9QEIIIYQQ4oESTxJ3BM4z8ZQpRhLPfuugx2vMKKMROPMguGFpwqArXQCZXDn2RpJxRRAE1NTU4LvvvkNHR0esm0MIIYSQJNLrsEi2bUnaqUFjAEjckacbULjhCnA2KxiMVPaSqdQAgBSlDguLzsSwzQSrwwYbZ4ONt/s9n71b2tsJGQtd6cIItZ7EAu9SkCrcc/YEQUB1dTU6OzsBANXV1WAYhtbnTHCRjBmSnASXYh80z5MEgmKGBGqYt0mSMofPIxMbJZ4k7hypqoJt2mQo5HKUz5oFQRDAqlQAAJ1Si0lpBeCE0x8adQqt3/O5V7RVZEyATK4IX4Ppj0nMHT58WFwaI5wVDd2TTqeamhoYDAYoldRrnqgiFTMkeZnNZrFQjFbr/+8OIQDFDCHuKPEkcYlRKMAoFGA1Gsl+QRAkSScwem+FvUeaeCqzCsPTRko4k5qvpFMmk6G8vJySTkIIIYSERXLWsPVEiSeJOzqdDg6Hw2s1OEEQsHjiPJjtFpgdFpjtFmjkar/n8+jxzAxP4knih7+YGQtBEFBVVYWuri7JfmfSSRVRE1+4Y4YkPxqSTYJFMUMCJVdIP8sma9cG/cUlcWfq1Kk+X5PJZCjQ54nbgayPZWtvkGyHq8dTKllvEYnBX8wEi+d5VFdXU9KZ5MIZM2R8UKv9P+QkxB3FDAlU7oI52GmpFre1al0MWxM5lHiShDZa0snbLOCGjZJ9jqG+CLaIJDJ/Sefs2bORnp4eo5YRQgghJFkxSgXs2tM95JyKjWFrIocSTxJ37IODGK4/DoZlwcjlkCkUSJk2tt4Jm9v6nQAAtzmioaPezmTA8zyqqqrQ3d0t2U9JJyGEEEJI6CjxJHFn8Fgtqh94SNyWp6ZiwT/+BkYmw2O7/4Jh+zD0qlSkqVKxfMpiTDQU+DyXrfMEIGMBfmRtUJlaB90MWkqFSFHSSQghhJBYyVHpsaxvWNyWG1Ji2JrIocSTxJ32kycl24Lj9GpGNd11MFoGxO25E8r9Jp4ypQZpi9ZDsJrAmQYg8BzkhtzwN5rE1IkTJ8RCMZMmTQrqvf6SzoqKChgMhjC2lMSLUGKGjE9Wq1WsK6A6tcQXIf5QzJBAsYwMStfStg4uZm2JJEo8SdwxDQxKd8hkAMOAF3gMWIckL6WpU/2ey9Z1EgzDgFHrIDs1UZuWQUk+/f394pqMwerp6aGkcxwKJWbI+MRxXEAF7QhxopghAWNkUGQWwGK1AoIAQUk9noREiQAoFYAggAEDmUIBhmEwaB0G7zY/c9g27OMc3smUYaww5/xDwmD8LMCUhLKzszFlyhQcP34cAMCyLGbPnk1JJyGEEEKiomlwEN9a5LBZeQgQoARQEutGRQAlniTulJ5/PrrZkdBkWRayU8NTlKwC8wvmwOqwwcrZYHVYIZcF11uhzCkOd3NJHCgrKwvpqfLEiRMhCAJOnjxJSec4EWrMkPGHlsYgwUq0mOno6MArr7yCnTt3oqmpCWazGQaDAeXl5Vi1ahVWrFhBa5NGSM+BgyjecULctqhkwH/Frj2RQokniTssw4BlT5eRlilGwlQtV6E0awoM6jR0m3rh4Dn4+8zI260e+xTpNL8zGYVjuOSkSZOQm5ubcB8UyNjQEFsSLPrATYKVSDHz/vvv49e//jVMJpNkf1dXF3bs2IEdO3bg1VdfxRNPPEHrWZMxS5zfCDJu2Pv7JduMy407NyUbiyfOg+NUlVq9yvccT8dAt8c+uT4rTK0kyYiSTkJIIhpuaIx1E0gC27lzJ375y1/CZDKBYRhccsklePDBB/H444/jtttuQ0HBSBHHffv24Sc/+QnsdnuMW5yEhPExZ4sSTxJ3WK1Wsm13KTY0v2AOWNnp3lB/xYWGjuyCpfko7L1t4CxDI8Pq2DB28p/qbqWheonBWb12aGho9IMJISRB2Pr6cPg398LW1xfrppAEZLfb8cADD4DjOLAsi2eeeQZPPPEENmzYgJUrV+KnP/0p3nvvPSxcOLIU3XfffYfXXnstxq1OQnIWvAziF+TJmaLRUNtTBEHAli1b8Oabb6K6uhomkwnZ2dmYP38+rrnmGlRUVIR8/k8++QTvvPMODh48iN7eXigUChQUFGDx4sX4wQ9+gPz8/DD9NIlteGgQFotFLD8ucxkSJ2NGfhGVrAK5KVnQKjQ+z2Oq3Qdbe4O4rcyfDiz7fuQaTmJmYGAAPM9DJpNBr9d7vM5xHA4fPoy+vj709vZi7ty5SElJzopxJDCjxQwh7lwrlLpOB4m1lrc2wzE4hJa338HkH10X6+YQF/EaM6727NmDk6eWsbv22mtx/vnnexyj0+nw6KOP4oILLoDFYsEbb7yBTZs2RbupSa3g/HPxebYJnIODAAEpSl2smxQRlHgCsFgs+NnPfobPPvtMsr+lpQUtLS1477338F//9V+46aabxnT+/v5+3H777di9e7dkv81mw7Fjx3Ds2DG8/PLL+N3vfoe1a9eO8adIHq0trbD29oJlWeTm5kJhSPM4ZumkBUjXeO53xQ1Kn/7KUzPD2k4SPxobG8WlMdwfErkmnQDgcDhQWVmJOXPmUPI5jvmLGUK8cV2TUes2MidWbH19aN/6MQCg/cOPULBuDZTp6TFuFXGKx5hxt2fPHvH7NWvW+DwuKysL8+bNw65du3D06FFYLBaanhJGjv5OOIwdsNtsEABYZMm57islngDuueceMemcOnUqNm7ciKysLBw5cgSvvfYaTCYTHn30UeTm5vr9pfSG53n89Kc/xb59+wAA+fn5uPzyyzFlyhQMDw9j165d+Pjjj2Gz2XDXXXdBr9dj+fLl4f4REwrX0QG+pQWQsRgaHAJnNnsck6n1/4dVEHhwZul6oHJ9BBNP52hbGnYbV9yTTiee58HzvI93EUJIYmh5azN4mw0AwNts46LXs62tDX/729/wxRdfoLW1FRqNBqWlpbjyyitx2WWX4fnnn8ejjz4KADh69KjkvaWlpQCAn/3sZ9i4cSMeeOAB7Nq1CwBQVFSE//iP/8CqVavE43mex7Zt2/Duu+/i4MGD6Ovrg06nw6RJk3Deeefh2muv9TliYtOmTdi7dy+AkeGpvtx11114++23AQCffPIJCgsLPV7Lzc3FF198gZMnT+KZZ57Bl19+iZ6eHhgMBsyfPx/XXXcd5syZE+w/JYCR2gaTJ09Ge3s7iouL/R6blnb6gf/AwAAlnmHkGOyDY6AHDHDqy/OzbzIY94nn7t27sWXLFgDAwoUL8fzzz0N1avmOyy67DFdccQWuvvpqGI1G/P73v8cFF1wQVC/J22+/LSadCxcuxDPPPCN56rVhwwZ8+umn+M///E84HA7cd999WLx4sdiG8UjR3AJrfQM4AH0ArN09AIAnv/47ek1G6NWpSFOl4tziszE1Y5LXc9iNHcCpAkROutIFYW3n6bmdtJBnrOXl5YnzU5x8JZ1yuRwVFRU0vHKc8xYzhPijUCjiagke195Op2Tv9fz6669xyy23YHj49BreNpsNe/fuxd69e7Ft2zYxufRnaGgI11xzDRobG8V9NTU1kr8L7e3tuP3227F//37Je41GI4xGIyorK/Hiiy/ikUcewbnnnuv3euGoor1//37cfPPNGBgYEPd1dXXhgw8+wIcffog777wT119/fdDn/dnPfoaf/exnAR1bV1cHYOTzDy07Fl7ZCh0WG09XFJapaKhtUvrb3/4GYOTD6IMPPuiR8E2dOhW/+c1v8Itf/AJGoxFvvPFGUL/Yr7/+OgBApVLhT3/6k9ehFsuXL8e1116Lv//97+jo6MAXX3yBiy66KISfKrFp9WlwLf8iOBwAgNruBrQNdYr7Z2RP9Zl4OnpaJduMXAnlhGlhbyuJDzk5OZJtjuNw6NAhGI1GyX65XI45c+YgNdV3USoyPrjHDCGjibcleFx7O52Sudfz8OHDuOmmm2CxWAAAF1xwAZYvXw6FQoG9e/di8+bN2Lp1q8e0Jm/++c9/wmq1YsmSJVi1ahWMRiM+//xzLFmyBMDIFKnrr78ex48fBwAUFBRg/fr1mDJlCvr7+7F9+3bs2rULRqMRt9xyC5599lksXbrU5/VCjR2TyYTbbrsNAwMDmDVrFi6//HLo9Xrs27cPb775JhwOBx5++GFotVpceeWVIV3Ll8OHD4s9yGVlZVAqlRG5znglZ2TQ8qc7MZw1TZJNcv5UATIajfjyyy8BAEuXLkVRUZHX41auXInMzJFhmlu3bg34/ENDQzh48CAAYNGiRcjOzvZ57Pe+9z3x+8rKyoCvkZTcSkoz7EiY9pqNkv1pfpZSsXW3SLYVWYVglTQkZDygpJMQkuy89XY6tX/4UVJWuH3wwQfFwoN/+MMf8PTTT+OKK67AmjVr8NBDD+HFF1+ETqfD4ODgqOeyWq0477zz8Ne//hVr167FddddhxdeeEEcAfHII4+ISeeFF16IDz74ALfeeitWrlyJq666Cv/3f/+Hhx9+GDKZDA6HA3fccUdEK6YPDg6iq6sLGzZswBtvvIFrrrkGq1atwgMPPIC///3v0GhGCi0+9thjkh7RcOF5Hg899JC47TocmZBgjOvE85tvvhHneTnLRHsjk8kwf/58ACNJYb/bOpO+9PX1Yfbs2cjOzsaUKVP8Hus+bn48E9yGyLJqNeycHVZO+mTXxjl8nsPe3STZVuVODl8DSdyipJMQMh546+10cvZ6JpOvvvpKnCe5YcMGrF+/3uOYefPm4c477wz4nDfeeKPXYdMdHR3YvHkzAKCwsBB/+tOfvM5lXLduHa677joAQG9vrzjCLVJKS0tx3333eUwPmD9/Pm699VYAIx0qb731Vtiv/fjjj4tDjvPy8nD11VeH/Rrj3YmmEzjQpRC/Ktu8/34nunGdeNbW1orfl5SU+D122rSRYZqCIODYsWMBnb+oqAhvvPEGdu3ahTvuuMPvsfX19eL3433cvMC5FX2RyWBz2LGgYC4qcstQmjUVxYZCZGoNPs/hrcczEhiGOV1YiMQUx3E4ePAgJZ2EkKTmr7fTKdl6PXfs2CF+/8Mf/tDncevWrQvoM5S/ata7d++G3W4HMLK8iLM30ZsbbrgBcvnIrLXt27ePet1QXH/99eK13F155ZXi0Ff3FRpC9dJLL+H5558HALAsi0ceeYSKCkVA38lW5DbYxa+UBmusmxQR4zrxbGk5nZwUFBT4PTYvL8/r+8LlzTffFL8fa2WyZNFvlP6xZFgZ7IIDEw0FKMmagtm5MzCvYA4mpOZ6fb8gCLD3NEv2KbP8//clie3gwYPYsmWL5GESMJJ0zp07l5JO4uHw4cP47rvvcPjw4Vg3hSQIs9kMk8kEs5dK69Hkr7fTKdl6PZ1FGtPT08WOAG+USiXOPPPMUc9XVFTkc47igQMHxO/9jYYDRpYYcbbn0KFDEATvhQbDETOLFi3y+VpqaqrYgRLO6Vr/+Mc/JENs77jjDixYEN5CjWR8GdeJZ29vr/h9+igV4FyfoLn3qIRq586d4tO8zMxMLF68OKznTzS8W48nc2qCtVzGQuYyLEYu816Nkhs2grcMS/ZFqseTxB7HcWhsbMTw8LDkj75CocDcuXNprU7ilXNJHVpWhwRKEATxK1YC6e10SqZez87OkcKC+fn5ox47ceLEUY/xV9Xc9bOhr9ofrpzH2O12n1OlQo0ZrVaL3FzvD9udnP82JpMJJpPJ77GBePLJJ/HQQw+Jbf/JT34iDi0mZKzGdVVbZ2U0AKMuX+L6ZMz1faFqa2uTzEm45ZZbxv0QBpZhIJnlKZPBoNZj/cwVEAQBDX1NyE3J8vl+y8kqyTbDKsBGcg1PElMMw0Cj0cBisYhzXxQKBebMmUNJJ/FJrVaDZdm4q1RK4pdMJov5ciqB9HY6JVOFW+cD/0A+HwVyjL+KrK5LtfgbZuvtemazWVKzw0kmC62fR6cbfWkN13YMDQ15XUUhEBzH4d5778Ubb7wh7rv11lvxn//5n2M6HwmQQhqTyTqLa1wnng7H6eI0o5WFdn3d9X2h6O3txY9+9CP09IysU7l48WJce+21YTl3KOrq6jB16lTJ8ESr1SqW0TYYDB5PFOvq6sQnbO7zJrq7u9HaOrK8SVFRkaR3meM4HDlyBMDIUJHJkydDq1LD9c/q0PAwDh48iJkzZ0Iul2NKxsi1jUYjTp48CQCYMGGCWDXYVPet5Pq8Qg2ZTBrqzc3N4lPNkpISjxu2s5pddnY2JkyYIHlvdXU17HY7FAoFpublwfX20NbWhu5T/z2nTJkiSXwsFos4PzgjI0OySDQwMufYbDaDYRjMnj1b8lpXVxfa2toAjDzNde2BdzgcqKoaSbb1er3HAtANDQ1ilb9Zs2ZJChP09fWhqWmkEFN+fj6ysqQJvbMqs1ar9RjedPLkSfHDQGlpqeThzeDgIBoaGgAAubm5Hk9qq6qq4HA4oFQqMWPGDMlrra2t6O7uBjCynJHrH1yz2SwOp83MzERBQQFkMhkuuOACVFVV4ejRo+ju7kZxcbFH0tnZ2Yn29nYAQHFxseSJt91uR3V1NYCRQl+TJkmX6amvrxc/jJSXl0s+RPT29qK5eWRod2FhITIyMsTXeJ4Xh3LqdDpMnTpVct4TJ06IxcrKysokSdDAwIC4xlxeXp7H8h+HDx8Gz/NQq9Uec9RbWlrE+8r06dMlH56Gh4fFOeVZWVkePQg1NTWw2WyQy+WYOXOm5LWOjg50dHQAACZPnhyze4SrxsZGsZfBeY9w8nWPAEZ+7w8dOgSLxYLa2lpMnz5dct5w3SPKysokr7W1taGrqwsA3SOidY9wdezYMVgsFshkMpSXl0tec71HuD+QcO0d95ZEWCwW8XWNRiNJTh0OB2ynkkWlUimJUUEQxGGYMpnMI2myWq3guJFHsTKzOeDeTqe2Dz9C1srvIdVluhAwsval87OMWq2W/Ewcx8FqHZlfJpfLPT4fmc1mMQF3T8zsdrs4P1KlUkliied58cE9y7IeD/xd/w3dkyaVSgW73Y7h4WE4HA6f/4Ysy3p0Drj+G7pz/W+jUCj+f3v3Hd5U2f4B/JuddJdSWihlt5S9QaQoQ1RARKYgiOP15yuKIu6JiuNVHCi4RXEBMpQ9ZMuSoYyyWzYt0Ja2aZuOzPP7I+SQtEmbQNOk6fdzXVxkPHnyJL17eu7zLCgUCofPlJOTg5CQEKc/G9t3aL+Krq2M2Wx2eM+yr7X/Dm3fddl6bZ/N9hjg+B2W/dnYjq8SicRpZ4r9z8ZVHOr1erzwwgvYunWrWNeLL76I++67T6y/ovi2fYf2bK+rLL4rikNn9VYUh/bfYUVx6Cy+bXHorF6z2YySkhKkpKRU+XmEpMjoUN720/HVeYTt71RVq9WJp/0vgNForDD5NNhdYayKvYuys7Md9ohq3LgxPvroI7/YmNpsNpcbfiYIgnjAcnYAN5lM4vNlWSwW8Tlnw9psz9kOEuZix2GywtUyZYeq2LfJvl6j1vGXRVCWv+pn315367VvrzuftaJ6nV28sNXrLAZupN6q/NnYM5vNLttkX6+zeDEajTCZTE5P4Cqq11UcSqVStG7dGpcuXUJwcHC5Vf/K1ltRfFfnd1hRHLrzHVoslko/q7vfYdk2ORsa5u536O1jhKt6r+d3WRAEpwt28BhRvt6afIywr9doNFZar7OecNt7uRo2WdHjFb22omGY9q+9uGSZ272d4usNBlxevhKhjz5SZW2q6Pmq+qxlxcTEQKfTiRdXXNUrCIJ4Ecudep21yf7iSnp6Olq2bOnyswiCIF7cUqvVDhd8yiZnZRM9W53Otn8p+34FBQUoKiqCRqNx+f3aLoCGh4e7XISoop9bSUkJJk+eLM6nlcvlePvttzF8+HCUlpZ69B06e84bvzcVjUC40XpdsR1jqvo8wmKxwPkEMt+cR3hrGkqtTjztr6jp9Xq3E8/KhuVW5vz583jkkUdw7tw5ANYr8XPmzHHoKfElmUxW7o+yRCIR/xA7C1C5XO5yyJpUKhWfc/bH3vac7UApLXNFTGIyQaFQlDu42LfJ4SpZ4RXHN1CVH6Ji31536y3bXmef1/6zVlSvsz8KCoUCJpPJ6UH0Ruqtyp+NPfthimXbZF+vs3ix/Tw9rbeiOJRKpWjcuLHYm1FRvRXFd3V+hxXFoTvfocVicdqu6/0ObW2yWCyV/mx8eYxwVe/1/C4LguC0XTxGlK+3ph8jbPWazeZKjxHO2N7L1YluRY9X9NqKLjjbXmvUanH5T896O22y129E41EjoLQbSXAjbSr7elePX+9ndaZ9+/Y4deoU8vPzcerUKbRs2dJpvYIgiNuuuFOvsza1a9dO3Bpl7969SEpKcvlZsrOzxR6lsj1G9ueUOp3OaVIqkUhw8uTJStskCAIOHjyIm266yen3q9VqxZEsXbp08ThGLRYLXnzxRTHpVKlUmDFjBvr37y++zpPv0Nlz1fl7c6P1VvR5bcelqj6PqGg4ti/OI250eLgrEsGXs+R9bOrUqeLBZcOGDRVOIl+0aBFee+01AMBHH3103ZvnpqSk4LHHHhOHwcXFxeGnn35yawK7t+h0OnGIHGAdEuXLuXGHX38D+SnXVpqM7NYVGWOSsTfjAIIUGmgUGrSpl4Dkxs5XVkv//nmY8rNhKdEBEBDWYwjq3vagV9pqyMuDqagYECyQBQVDWSfSL3qtA5XJZHKZKBARVZW0tDSxl6rsMGxfOPP9HFxcvvK6X99g6JAaPddz69at+L//+z8AwLhx4zB16lSn5VavXo0pU6aI9+3PbQCICWv37t3xyy+/OK0jKysL/fr1g9FoRHx8PFasWOFyruf777+POXPmAACeeuopPPHEE+JzL774orgf6I8//oiePXuWe/2BAwdw7733ivc3btzoMMT+pZdewpIlSwAAt99+O2bNmuW0HV9++SU+++wzAMD06dMxdOhQp+VcmTVrFj7//HMA1p7br776qsJVdGsjbx8TTn3/OS4vv7ZtkEQhwc2LF1f5+7jLW7lBrV7V1n6ei6vhGza2eR+Ae6uqObNt2zY88MADYtLZokULzJ8/36dJpz8qLXGcnyFVKHBOm44Dl49i54V/sfH0dhzNLn+F0CYooSvCug5EeK/hCO18B4KadfJyi5loVgeTyYSDBw/i4MGD5YarZGRk4Pz5817Z6ogCE2OGPGUwGKDX6x1GQFXL+3qwkq0rNX2F2+TkZHGu7/z587F69epyZU6cOIG33377ht+rXr16YufChQsX8PzzzztdVHLp0qX46aefAFjnE48dO9bheft52F9++WW5YZKXL1/GK6+84na71q1bh7lz55Z7fMeOHfjqq68AWM9rBw4c6HadgPV7+/rrrwFYe8ymT5/OpNMHZJIyPag+aoe31eqhtvYTdNPS0ircm8i2WIFEIrmuKx2bNm3CU089JZ4wd+jQAd98802l27jURsYyf9QlUinySvMdHlPKnPd4CZZrY9glUhlkweFQ1mvstGyVYO9mtTAajUhJSRHnwhw8eBAdOnQQez5zcnLExVwq25OXCGDMkOdsIy4kEkmVrPXgrqyNmyEPvfGehqyNm9Fw5PAqaFH1k0qlmDZtGsaNGwej0YgpU6ZgzZo1uPXWW6FSqXDgwAEsWrQIer0eMpnM5XBqd7388svYu3cvLly4gPXr12PQoEEYMWIEmjZtioKCAmzYsAHbtm0T2/buu++Wmy41cOBAfPTRRygpKcGePXswevRojBgxAqGhoTh69CgWL16MwsJCtGvXDocOHaq0TRKJBNOmTcO2bdswYMAAyOVy/P3331i2bJk4XPLNN9/0ODa/+eYbMSlu3bo1ZDIZNmzYUOnrOnfu7DdTxAKCUPZuYJ5f1urEs1OnTlAoFDAajdi9ezfGjRvntJzZbBbHvSclJVW4/5Mze/bsweTJk8Wks1evXvj888+ve6nrgGcp89snleJiQabDQzq94wJENqUXjpd7TKqqfDl08l9lk07AOgTk+PHj5Vb2JCIKNA1HDq+xCWNV6tChA2bMmIEXXngBxcXFWLduHdatc+wJHjlyJDIyMvD333/f0MWBsLAwzJ07F5MmTUJKSgoyMjIwc+bMcuUiIiLwySefON1/PSoqCtOmTcOrr74Kg8GAI0eOiCt020yYMAEdO3bEM888U2mbXnjhBcyYMQObN28W9363CQ4OxsyZM50O561IUVGRw3d45MgRh+HCFfn555/Ro0cPj96PXNMpHTtUjF6aY+lrtTrxDAsLw0033YRt27Zh06ZNuHjxotNhtKtWrRKX1fd0CENOTg4mT54sDs3p27cvZs6cWa1XS2satUoJ+62PJTIpusa1R528CBjNRhgtJoSrQ52+1pB1ttxjUsWNLQZFvmM0GnHw4EHodDqHx5VKpcOIhYSEBJ/vr0c1C2OGPKVWqxkzPjZgwACsWLECP/74I7Zt24bLly9DqVSidevWGD9+PAYMGCB2InjaSVBWTEwMFi5ciNWrV2PVqlU4dOgQ8vLyEBERgfj4eAwcOBD33HNPhe9z1113oU2bNvjpp5+wY8cOZGVlISwsDO3atcP48eORnJyMVatWudWe22+/HcnJyfj666+xe/du5Ofno0GDBujbty8efvjhclsSueP06dMuV1ql6pVvcOxQMcE7q8r6Wq1OPAHgwQcfxLZt22A0GvHMM89g9uzZDpNnT548iXfffReA9YrSqFGjPKr/7bffFpPW9u3b47PPPmPSWQllaKhD4qmKikLjiDgo7IbXNotsVP6FAMwlOqePe5NEAtTeJbq8p6Kks2PHjg4jBtzZ5JvIHmOGPOWtVR7JMw0bNhQXe3TGto5G2f11gfKLDVVGIpFg8ODBGDx4sGeNvEoqlaJ58+aYNm2ayzKe1J+YmIhPPvnkutriTLt27Tz+TohuRK1PPJOTk3HHHXfgzz//xP79+zF06FCMHTsW9evXx9GjRzF//nxxw9cXXnih3Hj23bt3Y8KECQDKr5J26tQprF27Vrx/5513inMCKhIREYGuXbtWxcerkSRllnyWaTRQy1UIVQajxGTdSypM5Xy+izy0DkyFueJ9RWSs03JVh1e+vcFV0qlSqdChQwcOUyciqkWWLVuGlStXIj4+Hv/9739d9u6dOnVK3N6kdevW1dhCInJHrU88AeCDDz5AUVERtm/fjvT0dHz44YcOz0skEkyaNAljxozxqN6lS5c6bOY6ffp0t15X0TLftYFQZtNaiUyGrnEdHB5ztrGtYDFDu3s5ZOoQSDUhkKpDoWrQwqttpapXUdLZsWNH9lQREdUyYWFh2Lp1KwDrnpZvvPFGuTI6nQ6vvvqqeN511113VWsbiW6E2WKBfbeLJEA7Nph4wjrkavbs2VixYgWWLl2KY8eOobCwEBEREejSpQsmTJiALl26eFxvamqqF1ob+Mxl5xs4Gd7kbMiTqSAHppyLsF+wPLR9n6ptHHmV0WjEgQMHxFEGNpUlnUVFReLcq+Dg4OpoKtVwjBnylNl8bdV0Z5uxk/f06tULDRs2RHp6OubNm4ejR4/i9ttvR2xsLEpKSnD69GksW7YMV65cAQCMGjXKL0aOMWbIXXXUobDfv0EeoHPJmXheJZFIcPfdd+Puu+/26HU9evRwOT7+m2++qYqm1TrFZXq6yg69dcWYW2Y/PpkCspBq2K4mQA8O1c1gMODgwYMeJ52AdXiVbWuM9u3be7upFAAYM+QpvV4vXqzgcP/qpVQq8cUXX+Cxxx7DpUuXcODAARw4cMBp2bFjx3q0P6Y3MWbIXZZSx3OfsqP/AgUTT/I/ZVbqkbi5oIMh64LDfZkmBPLgiKpqlVPMOauGq6RTrVajQ4cOHF5LRFTLJSUlYc2aNVi8eDE2btyI1NRU5OfnIzg4GDExMejUqRNGjhzJC0lUI5VdHFMSoKtWMvEkvyOXSGC2u1+o1+HHrZ9DI1cjSKFBkFKDce2HlVvS3lSQ7VhPaBSkGg6hqwnS0tKcJp0dO3aEWq2u9PV169aF2WzmUCZyG2OGPCWX85TJ1zQaDe6//37cf//9vm6KW240Zt5//328//77VdQa8mfBMoXDjg4yMPEkqhaSkhKH+7rsTOw3XNt0WSVXYXyH8ptpG3MuOdxXNUyERFJdy99bk2Du73Z9EhISUFRUhOJi62HXk6QTgNP9d4kqwpghT3ErNPIUY4bcJS9zvioN0MWFuCkV+R3B4niVp8Skd7ivkjk/kBtzLzrcV8clVm3DnJFION62CiiVSnGbFE+TTiIiIiLyf+zxJP8jOE6oLrE4Jp6C4GQrFZMRpnzHobaKOuzRqElse3QKgsCkk4iIiGqNQrPB4b7RRbmajokn+Z16/fuhNCvLusiQAGQ3i0FbjQZGiwkmiwkqmarca4zazHIJq6JO/epqMlURlar8z5aIiIgokGnNpQ5JmTFAB9Mx8SS/U9SuDUyGBMjlciQmJkLQXkDSlWtb1gQpyveGGXMch9nKgiMgVXHpcn+j1+uRkZGBpk2bVul82OPHj8NkMkEulyMpKanK6qXAxZghT5XYrT/AlbbJHYwZIkdMPMnvGC0WGAUBAgCZWo2IkAjEGWJgsQjILdGi2Fha7jWG7PMO96VBYRBMRkjkCi+3NkAvSXmBXq/HgQMHUFJSAr1ej6SkpCpLPg0GA4xGIywBuu8VVT3GDHlKEARxT0YidzBmiBwx8SS/I5fLIQiCuAx5TEg0YkKiYbKYkZ5/EY0i4sq9puTMQYf7Eim3SPAn9kknAGRmZgJAlSWfZWOGqDKMGfKU7VjFJILcxZghdwllOkoCNWL4F5f8TuvWrZ0+LpfK0CQy3ulzpsJch/tSTWg19HaSO0pLS3Hw4EGHIUcAUFBQAJPJBIXixn9OrmKGyBXGDHmKQyXJU4wZcldsu9Y4kHlcvK8M0EUWmXhSQDAXaR3uSzWhvmkIOSgtLcWBAwdQWuo4PDooKAgdOnSokqSTiIiIqCaTR4Qiv8G1tCxExcSTqFoYtFoAgEQqhUQqhVSthrSC4XAWfQkEg2Nio67fzJtNdCCRAELlxWqdypJOrmBLREREVHsw8SS/c2DyszBeTT4BIGvsrTjfOBgauRpqhRo3x3dBi6gm4vOCyQBl/eawlBTCXKKDoC+BMqZp9TQ2UAfh36CKks6OHTtCqVT6qGVERERE/qWOIhhdCq5NSVKGh/iwNd7DxJP8jqlMsnLp4hnskFx7rFF4A4fE06IvRlCLLuJ9wWKGIqqa9/BkAiryRdKZmZkJs9kMmUyGmJiYKq+fAg9jhjxlNBrFFUo5TYDcwZghd6lkCtQxXVtlXWIMzBXXmXiS3xHKbG9QUmb7FLPF7Hi/pNDhvkQqgzysrncaRxVylXQGBwejQ4cOXuvpzMzMhNFohEKhYBJBbmHMkKeYRJCnGDPkLsFshkSugMVinbxlMTPxJKoeguOMyVKLEcC1A3bZxNOUn12uColE6pWmOcXl0gFYN8o+cOAA9Hq9w+PeTjqJiIiIarJchQopTdqjWKeDxSJApdSgha8b5QVMPMnv1B89EobcXEgAKJVKhAZloGVdFUwWE0xmE8LUjivWSmSOYayIqFdtba3tyaaNr5POpk2bwmKxQCqtxgsOVKMxZshTKpVK7L2imqlly5YAgO7du+OXX36p0rrT09PRv39/AMCwYcPw/vvv+yRmnLWD/N+FrdtQd/m/4v1SlRR4wIcN8hImnuR3gsLDIDdf69VMiGmO2Ohrk6xjQxwTS7Muz/F+Ub53G0jlGI1GmEwmh8eqs6czNJTb55BnGDPkKZlM5usmUA3DmCFyxEu95PcahMagRZ3GCFeFIkIdikhNmMPzljJbqSijG1Vn8whAWFgYOnToIP6RDQkJ4eq1RERERCRijyf5nzKbYraIaorgBk2cFtVfPgPt7hWQqUMg1YRAqgmFIjLW+22kcsLCwtC+fXucPn0abdu25UIKRERERG4wWSwOSZkkQLdLYOJJfsdkMonDNuXyikPUkJMOS5EWliItAECqDkZEjyHebqKdwDwwXK/w8HB07Nix2udA6fV6cR6NSqWq1vemmokxQ56y2K247k9zg22rYAKAVMq/Sf7EX2OG/E/8rcn4O6QQgmCBACBIFeTrJnkFE0/yO5czMmDS6a7tr1fB31HjlXSH+1J1CBRRcV5uYe1mMpkqvCDgi4U3Tpw4IW6N0b59+2p/f6p5GDPkqdLSUvFiRVCQf5wUGoxmzFl5BCWlJmjUcjx0VxsoFZxX6C/8MWbIP1lMJdBLS8SLomahtPIX1UBMPMmvCIIAc8ZFCBYLLDIZ9FIpLAaDy/KmgisO9xVRcZCHRHi5lbVXcXExDhw4gMaNGyMujgk+EZEvpV3Qwmi04EJWIZrWD0faBS3aNIvydbO86tKlS/jhhx+wdetWXLx4ERqNBi1btsS9996Lu+66C99++y0+/vhjANYLTJ7Ky8vD/Pnz8ddff+HMmTMoLi5GnTp10L59ewwZMgR33HGH23WtWLECixcvxqlTpyCVStG0aVMMGjQIY8eOhVqtrvC1aWlp+OOPP7B7925cunQJhYWFUKvViI6ORteuXTFmzBi0adPG489H/smUdxnG3Ivi4jvSAE3RAvNTUc1lscB0MMV6E0AWgF1BeSgpaA6NXIXo4CjcmdBHLG7Mvezwck3TdtXXVsDaG1tLlta3JZ0GgwFpaWkA4DfJZ0REBMxmM1cQJLcxZshT/hgrh09fQWGJAcWlJhSWGHDkdE5AJ567d+/GxIkTUVRUJD5mMBiwZ88e7NmzB+vXrxe3TLke69evxyuvvIKCggKHxzMzM7F+/XqsX78e3bp1w8yZM1GnTh2X9ZjNZjz99NNYs2aNw+MpKSlISUnB3LlzMXv2bDRp0qTcay0WC9577z3MnTvXYaguYF1BvrCwEKdPn8bChQsxZcoUPPbYY9f9ecl/RMo16Fh4rZdTptD4sDXew8ST/IpQ5iALAIfzT+PMqYsAgMYRDR0ST1OeY+KpiKzv1fbVVkVFRTh48CAMdr3PaWlpUCgUqFev+vZNdaVRI65kTJ5hzJCn/G0ucFZuMbLzSpBXYN0/Oa9Aj6ygYmTlFqNencAb1nn48GE8+uijKC21npz3798f/fr1g0KhwJ49e7B06VKsXbsWO3bsuK76N2/ejMmTJ8N8dTu35ORk9O/fHxERETh9+jT++OMPZGRkYO/evRg/fjwWLVqE4OBgp3WtWbMGRqMRQUFBGDNmDNq2bYsrV65g8eLFSE1NxYULF/DQQw9hxYoVCAkJcXjtZ599Ju4xWqdOHQwbNgxNmzaFSqVCRkYGVq9ejdTUVADAp59+iuTkZLRt2/a6PjP5D7VUjmjjta0EpYrAnBPMxJP8irPE0yS71qMoCNcWUbDoi2G+uqiQjaKOrxLPwO31dJZ0AtZ9ECu64ktERFXnr33pOHPx2j7VRpMFJpMFumIDgtRy6IoNMJksWLb1FBTyayetTRuE49bODX3R5Cr1zjvvoLS0FBKJBO+99x6GDx8uPjd06FAMGzYMjz76KAoLCz2uW6fT4aWXXhJHQfzvf//D0KFDHcr85z//wZQpU7B582acOnUKH3zwAaZNm+a0PqPRiOjoaPzyyy9o2rSp+Ph9992HZ599Fn/++ScuXryIL774Ai+++KL4fG5uLn744QcA1hFFv//+OyIjIx3q/u9//4tXX30Vf/zxBwRBwKpVq5h4Uo0RmOk01VxOEk+LXU4nCNeeN5bp7QQkkEf4vvctkBQVFYnDa+3Z9u2sbNVhIiK6cWazBUdO5+DMxQLxX3qWDhevFEEilaBhvVBIpBJcvFKE9CydQ7kjZ3JgNpf/21qT7Nq1C/v37wcAjBo1yiHptOnatatDEueJ3377DVqtFgDw8MMPl0s6AUCj0eCTTz4Rp5j88ccfyMzMdFnn//73P4ekEwAUCgXee+89REdHAwB+//136PV68fnNmzeLf28ff/zxckknYF0d99FHHxXvnzlzxs1PSf4sK+cKjulk4r8TBSZfN8krmHiSX3HW4xkfEYfmkY3RKDwOEZpw8XFDmRVt5eF1IZUrvd7GssRVXAOs09OWdBqNRofHbft1MukkIqoeeYV66xYLajlyC0qRlVeMbG0xjCYzGseGQiGXonFsKIwmM7K1xcjKK0ZuQSmC1HIIgvX1NdnmzZvF2w888IDLcsOGDUNERITH9f/1118ArFu4PfTQQy7LBQUFYfz48QCsvZpbt251Wi4hIQG9e/d2+lxISAiGDRsGAMjPz8e+ffvE5+6++26sW7cOs2fPxp133umyHQ0bXuvBtg09pprt4vE0RBw1i//kh0t83SSv4Jkj+Re7obQ2zaIao2GDWABAg9BrPZqlF447lJP4IOkM1IWFdDodDh48WGOSzpMnT4rbvLRo0cLXzaEagDFDnrLfGqOyFUmrWt0IDe65tTn+3HUOKqUM6Vk6FJUYER0ZhCC1AgAQpFYgOjIIFzILEaxRoGG9EIQHq3D7TY1RN6JmL1Syd+9eAEBkZGSFv69KpRKdO3fGpk2bPKr/4MGDAIAWLVogKqrixZl69uwp3k5JScGoUaPKlenevTsA1zHTuXNnhzpsdSoUCjRu3BiNGzd2+t6XL1/G4cOHsWvXLvEx25xUoprAv84eqdZz1uPZom4zyGMawyKYYbRcG3pQdmEhicK/Fn6oqVwlneHh4WjXrp3fJZ2AdcVd256MRO5gzJCnLBaLmET4Qlx0CMYMSMT6Pechl0lxIbMQuQWlCAu+dtE1N996Pz4mFPExoRjQvZGYmNZkWVlZAIAGDRpUWtbThcN0Op043DU+Pr7S8vZlrly54rSMbTiuq5ix/xzZ2dlO69i3bx927tyJU6dO4dy5czh37hx0Ol2l7SPyZ/53Bkm1mrPEs3Gdhgiu2xQHLx9Fs8hrf1CM2iyHcvJQLnRzo2pi0klEVFsEqRXo2yUeP68+Kg4QyskvQanBDLVSBkiuDRzq2yU+IJJOAOL8S3d6mj3tjbbfmkWjqbxn2L7+khLnwyEra4P9+9jP8QSsczZfeuklHDhwwOlrGzRogD59+mDevHmVtpVqDrNMXiuSstrwGakGEZwtgCCVwWQ2oU29llDKrv0RLbuirbJeE+82LsDpdDocOHAAJpPjhPaakHS2b9/e102gGoYxQ54KCvKPLUqy84oBACV6E8wWC4pKjAgLVuJyTjEkEkAmlYrl7HtDazKVSgWj0egy0bPn6ZxH+yTQnfqLi4vF264STNsCQa5ixr4O++1UsrKycN999yE3NxcAEBUVhZ49eyIpKQkJCQlISkpCbGwszGYzE88AU1cZCvv1mAPjklF5/nsmSbWTkx5PiVQKZZn5mxZDKQSD4x8IWXhdrzbNucCY42kymXDw4EGnSWf79u39cuN0IqLaKCuvBCaTBSazBXKZFA3rhSBYo0BRiRHpWTqYzNZtVrLyStC8YYSvm1slYmNjcfLkSVy8eLHSsu6UsRcaGgqVSgW9Xo8LFy5UWv7s2bPi7ZiYGKdlbEODXbF/n9jYWPH2rFmzxKTz3nvvxeuvv+50OkBBQUGl7STyR1zVlvyKs6G2Emn55M6Yd6ncY+rYZl5pU20gl8vLLfseERHBpJOIyM9k5xWjxGBCsEaB5g3DUS8yCLd0ikN0ZBCaNwxHsEaBEoMJ2driyiurITp06ADAOuT21KlTLstZLBZx2xV3SSQScR/MkydPIicnp8Ly9gv7tGzZ0mmZlJSUCuvYvXu3eNv22YBrq/eq1Wq88sorLuegHz9+bXFFwcmijET+iokn+RehfOK5+Nga/HLgD/x+ZDUyddZJ+BajEeom7aCMaQpZWF3IQiK5h+cNatCgARITEwFYk8527dox6SQi8jNNGoQhWK1Ak/phaNogHPcOSET7FtEYMyARTRuEo0n9a88HCvutRebOneuy3Nq1a10u1lOR/v37A7CO/pkzZ47LckVFRZg/fz4A636at956q9Ny+/btw4kTJ5w+l5ubi+XLlwMA6tevj3bt2onP2eayyuVyqFSuF0z86aefxNtlRypRzaSWOV5kkAXo9QQOtSW/4qzHc0f6PmgLrKGaFN0CMSHREPRFUMe3cignVYeUe221CKAtVRo0aAClUonIyMgalXReuXIFFosFUqkUdev6Ysg11TSMGfKU/aJrvlwNuX2LaDSODcOFzEK0aRYlrpgapFZgSHIzHDmTg0YxoQgPCZyV3pOTk5GUlITjx49j/vz56Nq1KwYNGuRQ5sSJE3j77bevq/5Ro0bhm2++QX5+Pn744QckJibi7rvvdihTWlqK5557ThzKe88994ir15ZlsVjwzDPPYPbs2eLxRaFQoLi4GFOmTEF+fj4A4MEHH3T4WxsXF4ezZ89Cp9Nh9erVGDx4sEO9JpMJH374ocO+pmUXJ6KaSSl1POcK1J5BJp7kV5wlnha7vK7IYB06ZCooPxTGF0vcB1DOKaqJJ+EXL14Ut8aoie2n6seYIU8ZjUZxawxfb8MTHqJymlhKpRK0ax548SyVSjFt2jSMGzcORqMRU6ZMwZo1a3DrrbdCpVLhwIEDWLRoEfR6PWQyGcxmM6RS90/dw8LC8N577+HJJ5+E2WzG888/j+XLl6N///4IDw/H2bNnsXjxYmRkZAAAGjdujFdffdVlfXXq1MHJkycxcuRIDB8+HE2bNkVOTg4WLFggzu/s3r07JkyY4PC6YcOGYcaMGQCAF154ATt37kSnTp0gl8tx5swZrFixQmyDTWFhIajmK3v+G6Adnkw8yc84STztf/kK9dY9rMquaCsPifRiowJLQUEBLBYLIiIifN0UIiIit3To0AEzZszACy+8gOLiYqxbtw7r1q1zKDNy5EhkZGTg77//hlLp2Yq+t912Gz777DO8/PLL0Ol02LZtG7Zt21auXM+ePfHJJ584rEZb1sMPP4wdO3bg77//xrffflvu+V69emHmzJnlkuOHH34Ye/fuxfbt22EymbB48WIsXrzYoYxMJsPjjz+OY8eOYcOGDbh48SJ0Ol2F7SH/p1c7buVjltacUWeeYOJJfsXZFZ9GEXEoDJHBaDGjQWjM1XJmh3JSTWh1NdGFmtH1WVBQgIMHDwKwbicRHh7u4xZVjfj4eHHYJJE7GDPkKU8TGap6AwYMwIoVK/Djjz9i27ZtuHz5MpRKJVq3bo3x48djwIABGDduHABrL6anbr/9dnTt2hXz5s3Dli1bcP78eZSWliI2NhZJSUkYOXIkevfuXekIK4VCge+//x4//fQTlixZgvPnz0OlUol1DBkyxGkdSqUS3377LRYtWoTly5cjNTUVxcXFCA4ORsOGDdG1a1eMGTMGzZs3x9y5c7FhwwaYzWb8+eefGDFihMefl/xHjt6x59oAJ9sLBgCJwOWwaj2dTucwCb5ly5Y+u3KmO30aB6c8L94XJBJcfnkMLMHWvbKSG3VFg7BY5G5d4PC6oOadoY5LqNa2AoC5pASm4mKYS/SQhwRB6ce9iPn5+UhJSYHZbE3aZTJZQCWfRERVJS0tDSaTCXK5HAkJ1f+3ha7fnXfeiTNnzqBDhw5YuHChr5tDAcLbx4Qd338KLL/Ww16qkqL/wkVV/j7u8lZuwB5P8iuC2fEKj0QqxU2tesFkNiG3JB9qubpcbycASNU+2ti7hkzyLJt0AoDZbEZ6ejoTTyIi8mvLli3DypUrER8fj//+978u9888deqUuM9m69atq7GFROQOJp7kX8p0wEvlcjQMqw9taQFyS7SI1ISj+OQ+5P+9DFJ1EKTqYEiDwhBx01AfNdj/OUs6AeviB61atXLxKiIiIv8QFhaGrVu3ArDuW/nGG2+UK6PT6fDqq6+K+1redddd1dpGohthtJhgv2RZzejW8BwTT/IrZed4Sq7Ov1LLlOhUvy0kEgnMhTkQTHqYdXqYdXmQasIgUXDujTMVJZ1t27YNmPlt9p+vJm0DQ77DmCFP2c9M8sUq6rVZr1690LBhQ6Snp2PevHk4evQobr/9dsTGxqKkpASnT5/GsmXLcOXKFQDW7VG6du3q41YzZsh9ddXhyLe7L5cE5t8lJp7kX8quaiu1HqjVCrX4UNkVbVUNmkMi8WUC5Z9/TLRaLQ4dOlQu6YyKikKbNm0CJukEgCNHjohbY7Rv397XzaEagDFDniopKRG3UwkK8tH0jlpKqVTiiy++wGOPPYZLly7hwIEDOHDggNOyY8eOxSuvvFK9DXSBMUPushgd92MVhMBcXIiJJ/kVVz2e9ozabIf7igjncz2qhZ9ewaxNSScREQW+pKQkrFmzBosXL8bGjRuRmpqK/Px8BAcHIyYmBp06dcLIkSN5IYlqJLNO63Bf4mR7wUDAxJP8ilAmUSo1GzH34BJoFGo0DKuP7g07wpSf5VBGHh5dnU30e1qtFikpKbCUOWgFctIZGhoqrjZH5A7GDHlKJpOJvVfkGxqNBvfffz/uv/9+XzfFLYwZcpdGpkCx3X0ZAnPTEf7FJb9i1jsONbAYDFh9aC2MCim6NmhvTTy1ZRLPiHrV2USn/OVvSl5eHg4dOlQu6axbty5at24dkEknADRt2tTXTaAahjFDnlKpVL5uAtUwjBlyl7LMlDGpn07julGBeRZKNVeZHk8B1r08AaBAr4NgMcNUcMWhjDzc94mnP6itSScRERER+T+eiZJfKTvHExI4DDYwFeYAZSZcK/ygx9MfXLlyhUknERERUQ1TajE53C+/Y31g4FBb8iuahnGI7NoFgiAgI/8SCkzFaBhRHwaJBSHKIBiyLji+QCaH4A/DEfxgrG2LFi1gNptx+fJlAEB0dDRatWrFpJOIiIjIj2Wbih2SMr3vTyu9gokn+ZWghg2hGj4UZqMJ0uKLgFSHbkFqcVsV/cU0h/JSVRBkKo0vmup3JBIJWrZsCcC6R2FtSjrPnj0rLhTTpEkTXzeHagDGDHlKr9eLC8Vw7h65gzFD5IiJJ/kViUyGIrMZRrMJkUH10DWpF0pNehzNSkXbmCQYUuc4lJeqgyGR+UsY+/7ylH3yWZtW0SsoKBD3ZCRyB2OGPGU2m7lCKXmEMUPkyF/O2InKUUgViFCHAQBiQ6xbpmQU5jmUkaqCq71d9sQ/JtX8R6WiP2T8A0dERERUc5ikslqRlNWGz0g1TOvWrV0mVqaCHIf7isiY6mqW38jNzcWpU6fQvn17Dt25qqKYIXKGMUOe0mg0jBnyCGOG3FU/MQFpp46J92XqwDy/Y+JJfqeiDd0t+iKH+7LgSG83x6/k5OTg8OHDEAQBBw4cQMeOHZl8ouKYIXKGMUOekkgkTCDII4wZcpeyfl1cTrp2PheiCvFha7yndqw8QgFBsJgh6EscHlPG1p5N4O2TTgAoKSnBgQMHYDQafdwyIiIiIqKK8ZIv+ZXMjZtwZvYcQCqB3mKEPiYCuv+7GxqFGr3qt4cmoQss+mII+mJYSouhbpDg2wZX05XMK1eu4MiRI2LSaRMWFsaeGyIiIqIaLEyuQVKRXryvkgZmjyfPWMmvGHJyYC4uBmANzuLMK/jt8HIAQMeIJlDFNnMoLw+vW91NrHauks6YmBgkJSVxGA8ArVYrzqOJiIjwdXOoBmDMkKdMpmsbvPOCH7mDMUPuCparEK+/Fi9StVBB6ZqLvwXkVwSz2fG+XU6l0xei7GxGqcI/5jd6K/dzlXTGxsaiZcuWTDqvOn/+vLg1BpMIcgdjhjxlMBjEixVMIsgdjBlylyBYHO6bAnQaFX8LyK8IZscEyz7xVAu1K8nKzs7G0aNHmXQSERERBbBiTQgud0xGoTYfFosFCmUQWvi6UV7AxJP8Sni7tsjPyECJsQSn8s6iJESJ2JB6MAtmqHT5DmWlqiAftdL7XCWd9evXR2JiIpPOMurXrw+LxQKplOulkXsYM+QphULh6yZQDcOYIXelbdmC0hU7xMTMoJYB9/q0SV7BxJP8iiI8FBGN4hFkMiAvVAJTiBrJjZMAANLcSw5lLfpiXzTRuSpMBJl0ei46OtrXTaAahjFDnmISQZ5yJ2ZeeuklLFmyBABw4sQJbzepRrL/jjZu3IiGDRuWK/Pnn3/i559/xsmTJ6HT6RAaGop77rkHL730UnU39/qYzFAb7c77pBbXZWswJp7kX67+zinlSrSulwBFZASK6rdEqCoYkn83AXY5lzwk8PbwzMrKwrFjx5h0EhEREblhwYIFmDp1qsNjeXl5UCqVPmoRucLEk/xK2YRLIpGgRVQTCIKAs7uWAlIZpCoNpKoghHUd7JtGunCjOWFubq7TpLNBgwZISEhg0klERERUxqxZswBYzxnHjx+Pjh07Qq/Xo127dj5umfsMZiNqQ5rMxJP8TJnlo68mW5bSIggmAwDAbCiBuTAXmmZ+cECpwmQwLCwMISEhKCwsFB9j0klERETkXF5eHrKzswEA/fv3x2uvvebjFl2f+K7dcLAkU7yvUgf7sDXew8ST/IsAZGZmiot+xEdFAQBM+dllCkqgCAusPTzlcjk6dOiAgwcPorCwkEmnBw4dOiRujVGTrnCS7zBmyFPFxcXi1hhBQYG7uB1VHcaM95WUlIi3W7SouevASkPVKIgPRmlpCQRBQJCc+3gSeZ0+NxeCXg+LxQKJXA7BZN3HyFRwxaGcLDQSElngLfQgl8vRvn17XL58GQ0bNmTS6SZBEMR/RO5gzBAR1XwWy7VFeGryXqmGrHMwZJ6BbZ11aYCmaIH5qajGytm+A8aduwAAFgAnTp/AgRZq1L2cjii7cvIwP1uRsgoTRIVCgfj4+CqrrzbQaDSQy+VcdZLcxpghT0mlUrH3iqpfy5YtAQCTJ0/G6NGjMW3aNGzfvh0AEB8fj0ceeQRDhgwRyxcVFeH333/H9u3bceLECWi1WgBAeHg4Wrdujdtvvx13332302Tl/vvvx549e9CzZ0/8+OOPOH/+PH788Uds27YNmZmZ0Gg0aN26NYYPH4677rrLZUxIpVIUFBRg3rx52LRpE86ePQulUomEhASMHTsWd999t1uf3WKxYP369Vi+fDlSUlKQl5eH4OBgNG7cGH369MH48eMRFhbm9LW2z5KcnIzvv/8ep06dwg8//IC///4b2dnZiIqKQvfu3fHf//4XzZs3BwCUlpbi559/xooVK3DhwgXIZDK0bt0aDz30EPr16+dWmyv6LFu3bsWiRYtw4sQJ8ftMTEzEwIEDMWrUKLcWBZo1axY+//xzh8c+//xz8bFhw4bh/fffv6G2VqdQmQoJxQbxvlwWmFt9MfEkvyKRyhzuF+i0+HX/Qtysiob94Vke7h/DbK/3BCQvLw/h4eHcQ7CKJCQk+LoJVMMwZshTarXa100gADqdDuPGjcPZs2fFx44fP+6QeG3fvh3PPvusmGzaKy0tRWZmJjZv3ozffvsNs2fPdpm0AcCGDRvw/PPPo7j42hZuer0eO3fuxM6dO7Fq1SrMmjXL6UWsjIwMPPzww7h8+bLDa/ft24d9+/Zhy5YtlfbSXb58GVOmTMG+ffscHtdqtdBqtTh48CB++uknfPjhh7jlllsqrGvlypV45ZVXoNfrxccuXbqEZcuWYePGjZgzZw5iY2PxyCOPlNvaZc+ePdizZw9effVVTJgwocL3cSUvLw+TJ0/G7t27HR43GAzYu3cv9u7dK/5MYmJirus9aqoQmRJNSo3ifWmQxoet8R4mnuRXBIvjvkUGhTWxKzQ47tkpD/ezHk8PXL58GcePH0dUVBTatGnD5JOIKAAYDIbKC7kgk8kgk8mcPmc0Gq97SLi36pVKpT4b1vjrr79Cr9cjOTkZQ4YMgVarxV9//YXk5GQAwMmTJ/HYY4/BaDRCJpOhf//+6N69O6KiopCdnY2DBw9izZo1sFgsOHjwIGbOnOlyQZpz587h2WefhcFgwKBBg5CcnAy5XI7du3djyZIlsFgs2Lx5M+bOnYsHH3zQ4bVZWVm47777xOS3W7duGDx4MEJDQ3HkyBH89ttvWLVqVYW9e/n5+XjooYdw+vRpAEBcXByGDx+OZs2aIT8/Hxs2bMD27duh1WoxceJEfP311+jdu7fTuk6dOiXuaTl8+HD06NED+fn5WLx4MVJTU6HT6fDmm29CJpPhxIkT6NmzJwYOHAiNRoNt27Zh+fLlAIDp06dj8ODBiIqKcvo+rhgMBowfPx4nT54EYO2lHj58OBo3bozMzEwsWrQIp0+fRmpqKiZOnIiFCxdWGGODBg1Cq1atkJOTI26lMmjQIAwebN3xoH79+h61j6oHE0/yK2UTT8vVHkWpvsSxoMW/NtZ1t+fTlnQCQE5ODo4cOcLkk4goAOzcufO6X5uQkIC4uDinz+3ZswdGo9Hpc5Vp0qQJmjRp4vS5/fv3O/TieaJBgwZITEy8rtfeKL1ejz59+uDrr78W//baJ32fffaZ+H3NmDEDd9xxR7k6Ro0ahYceegiCIGDlypUuE8+LFy9CoVDgu+++ExNbABg6dCi6desmJnKLFy8ul3jOmDFDTDofe+wxTJkyRXzurrvuwujRo3H//feLK7I68+GHH4pJ52233YaPP/7Yoed97NixWLJkCV555RWYTCa88MILWL9+PUJCQsrVdenSJSgUCnz77be4+eabxcdHjBiB22+/XTwncdbeu+++G3Xr1sUPP/wAo9GITZs2YdSoUS7b7cw333wjJp233XYbZsyY4ZB033///Xj00Uexc+dOHDlyBMuXL8fw4cNd1te8eXM0b94c6enp4mPNmjXDbbfd5lG7/EVhSTEyLNfOBWVGC5r4rjlew7Nd8i9lEkqFXIHooDpQGEodHpfIa95uR5cuXRKTTpucnBxkZWX5qEVEREQ1z//93/85veBbUlKCv/76CwDQtWtXp0knAPTs2RMdO3YEYB3+6WxIrs19993nkHTaDBs2TLxYkJaWhtLSa+cpubm5WLp0KQCgffv2ePrpp8u9vmnTpnj33Xddvm9mZqZYR8OGDfHRRx85He49bNgwMenNzc3FggULXNY5atQoh6QTAEJCQsReQsB6sWLy5MnlXjty5Ejxti2BdJfZbMYvv/wCAIiOjsYHH3xQrqdXoVDgf//7n3ghfuXKlR69R013at9BSP+xiP9K9hb5uklewR5P8itmu3kHABCmCcOtjbujTup8h8flETVrqO2lS5fKzZcArENNats8Bm9IT0+HyWSCXC5Hw4YNfd0cqgEYM+Qpg8EgLi7kzuIn5B0KhQLt27d3+pxGo8GmTZtw/vx5p71+9uLi4rB//34AcEgay7r99ttdPpeYmIiMjAwAQEFBgZgYbt++XVxtdcSIETAajU5j5tZbb0WTJk0c5qva7NixQ+y5HT9+PDQa13P+/vOf/+Dnn3+GyWTChg0b8J///MdpOfsE0579MbBv375OR2HZD12132/cHfv370d+fj4A6zBfVz+b2NhYvPzyy+JiQxR4mHiSXxFMJof79ULqolVUAi6ZzA6Py2vQHp6uks5GjRqhadOmXCGxCuTm5op7MjKJIHcwZshTJpOJiacfiI+Pr/D7r1u3LurWdX6OUFRUhBMnTuDff/8Vk07A2iPnim2lV2fsEyiT3fnLwYMHxdtt2rSByWRy2eauXbs6TTwPHDgg3r7ppptctgGwfuYWLVrg+PHjOHTokMvVl5s2ber09aGhoeJtV6vq2ye+Fg+nOx06dEi83blz5wrLXu/CRVQzMPEkvyIpM5HcWKTD5fRjiDDZHeRkCqjjWlZzy9zg5CB/8eJFpKamlnucSScRUWApO4TRE64WAAKA7t2739DiQq506tTphhYX8pWKVqC1l5WVhQ0bNuDYsWM4e/Yszp07h6ysLKefuaLvwT4pK8t+8Rv7ZOzKlWt7j8fGxlbYzkaNGjl9PDc3V7ztzhZr8fHxOH78OIxGIwoKChAeHl6ujLPHynLVs3oj5yv230eDBg2uu55AZpRIakVSVhs+I9UkZQ7+qvAIxBbqkG/3mFSlgURZ/cvaFxw9hrDWrdwub0s69dnZUEVfGxrMpLPqJSYmcn898ghjhjxV2XYq3uoF9dZeszV1D9vKvmeTyYSPPvoIv/zyi0MvpI1Go0GPHj2QnZ0tLqZTketZvdd+KGpERESFFwCCg4OdPl5UdG2OX0XDbG3s47OkpMRpkumrlYhtw2wBbkvkSj11BOwHMNfM387KMfEk/yI4Dt+QSKUw6XIdHpOqgqr9ZPH8/AW48NtCNJ4wHg1HDLNroMTx/6tsSWfB0WPQphxCeJvWCG/XFo0bN0aTJk14slvF+IeMPMWYIU9x9fGa4aWXXsKKFSsAWJPrrl27ol27dkhISEBiYiJatGgBuVyO559/3q3E83rY98rq9foK55u62obHPtksKSmpdM6q/QrF/nZ8s29PRfNpKfAx8SS/IljKDHeRSmEpKnB8SBVUjS2y9nRe+G0hAODcz78CgGPyWUZGRgbS0tLEpBMA8o8cRYt27Zh0EhERecm+ffvEpDM+Ph5z5sxxOUzV0wVyPBFtN8opPT0dSUlJLsu6Wtnefp7qhQsX0KpVxSOuzp07B8Ca5EVERHjQWu+z3/Pz0qVLFS4cdOrUKRQVFaFRo0Z+9znoxvHyHfmVsvMssotzsDdYDmmLzlA1ag1lTFMooqp3fkBY61ZoPGG8eP/cz78i/fclTss6SzoBoFXPnmjT51YmnURERF6yZcsW8fYTTzxR4dzIY8eOibevd66rK126dBFv7969u8Ky+/btc/p4u3btxNu7du2qsI7MzExxv09/XA22TZs24m37RZOcmTVrFkaNGoWePXtCp9N5uWX+Qyl17AsM1AQtUD8X1VRlDv5n8zPwqz4dhug4aBq3RVBiN4S271vtzWo4YljFyadEApPJhHPnzjlNOrs9cH91NrfW0el0KCwsrFV/pOjGMGbIU2azWfxH/sl+P86gINejo9auXYvLly+L953NBb0Rt9xyC1QqFQBg3rx5KCkpcVru8OHDDivg2rv11lvFebhz5851WQcAzJkzR1zcqE+fPjfQcu/o2rWrOFR42bJl0JfZOs+moKAAW7duBWDd/7Sy4cWBRC1zTDxlVXstxG8w8ST/UmaJbuFqB6HZbu6nYHB+wPI2p8nnkqXifblcjugLGSjcf+2PSKubmXRWh9OnTyM1NVW84ktUGcYMeUqv16O0tNTlSTP5XlxcnHh70aJFTnsyd+7cialTpzo8VtU/06CgIHFbkLNnz+LVV18tl9xmZ2fj+eefd1lHvXr1MGTIEADWobbPP/+80/mRS5cuxU8//QTAOqR17NixVfUxqkxQUBBGjx4NwDoybOrUqeW+D4PBgKlTp4qLKvnj5/CmsqEaoHkn53iSfyn7R0KANfPU2A1BUNSpD1+xze20zfU8//NcmItLUH/Qnbi4chWyFixGfbkcl6IikZjcC90mMOkkIiKqDoMGDcKsWbNgNBqxbds2jBo1CkOGDEF0dDSysrLw119/4e+//y53ruGNkQ9PPPEENmzYgDNnzmDVqlVIS0vDyJEjER0djdTUVMyfPx9arRZRUVHIyclxWsfLL7+MvXv34sKFC1i/fj0GDRqEESNGoGnTpigoKMCGDRuwbds2ANbFr959913UqVOnyj9LVXjyySexZcsWnD59GkuXLsWRI0cwbNgw1K9fHxcuXMAff/wh7mfas2dPDB06tMree9asWfj8888BAJMmTcKTTz5ZZXVXFYtS5XBfkLpeCbkmY+JJ/qXMHwOlQokIqRIKybVfQFlIZHW3ykHZ5DNj8R+4vOZPmK9epVOZTLh5wAA0HTXCZ22sbaKjo2GxWLjqJLmNMUOe8tVWFOS++Ph4vPHGG3jjjTdgNptx6NAhHDp0qFy5rl274q677sKbb74JADhx4gS6du1apW3RaDSYM2cOHn/8cRw9ehSpqal47733HMokJyeje/fu+OSTT5zWERYWhrlz52LSpElISUlBRkYGZs6cWa5cREQEPvnkE/Tq1atKP0NVCgoKws8//4yJEyfi0KFDSEtLw/Tp08uVu/nmmzFr1qxatybGZYPjYlelsLgoWbPxKEp+RV5mP6uourHoFRQBueTayaHUB3t4llU2+TTb7bdVbssV8rr69X3XC041E2OGPOWtfTqpao0aNQotW7bEjz/+iH///Rc5OTmQy+WIiopC69atMXToUPTr1w+FhYV49913YTQasWbNGowbN67K21K/fn0sWLAAixYtwvLly5GamgoAaNKkCYYNG4Zx48bhxx9/rLCOmJgYLFy4EKtXr8aqVatw6NAh5OXlISIiAvHx8Rg4cCDuuecehy1c/FV0dDQWLlyI5cuXY+XKlTh27Bjy8/MRHByMtm3bYtiwYRg0aBAvCAYwiVDVS3lRjaPT6XDixAnxfsuWLX02ofvEh5/gyvYd4v3owbchuk0MYDGJQ2Pq3HKvT9pm78KFCzCbzch87Q2YCq8N0ZGHhqDHrz/5sGVERHSj0tLSYDKZIJfLkZCQ4OvmEJGPefuYsOP7T4Hl28T7pSop+i9cVOXv4y5v5Qbs8SS/IghlhhbkZSJvy0bIgsMhVQdD3bitbxpm5/z58zh9+jQKjh6DVBBgP/DXVKhD+u9L2ONJRERERG7Rmw1QVV6sxmNfNvkXi2MHvMVYAkCAuUgLY04GBJNvVxO0Tzq1KYeQGxqCvJBgyEOvXQWqaJ9PIiIiIiJ70eoIh/v2a5sEEvZ4kp8pk3jqSwC7KZ3y0Khqbs81586dw5kzZ8rt01n/ztvR5f7xSP99iTjn0/Y/ez6rx7Fjx2A0GqFQKNCqVStfN4dqAMYMeaqkpASCIEAikUCj0fi6OVQDMGbIbWW3Eyw7AjBAMPEkv1JuHyND2cTTN8uEu0o62/S6GV3ut+7tWXbBISaf1cdoNMJoNPq6GVSDMGbIU4IgON0XksgVxgy5y1RwxeG+xMLEk8j7ylzhSbeUQK2SI15v3WhY5oMez7Nnz+Ls2bPlks62vW5G56tJpw2TT99QKBQO/xNVhjFDnrJt71Dbtnmg68eYIXepZDIU292XIjAvWDDxJL9iyMl1uH/GLCAnIghjMwsAAPKw6k08XSedvdD5fudLrzP5rH4cKkmeYsyQpzhUkjzFmCF3qSWOKZkMgXmxgosLkV8pOyRFAqBAdi1MJbLq652wJZ367GyHpLNdBUmnTcMRw9B4wrXe0HM//4qCo8e81lYiIiIiIn/GxJP8S5nE0yIBVLbHJFIIEu+HrCAIOHPmDM6ePQsAUEVHI7xNawDWpLNTJUmnjX3yGT9mNMJas4eFiIiIiByZykw1C8yBthxqS34muFlTXC66AoPZCMFiQUmQFJFGMwBAqtJArrnxzWsrIggCzp49i3Pnzjk8Ht6uLVp16oTE5F4e1ddwxDCEtUpi0klERERETl0y6hySspLAHGnLxJP8S9OHHkDm0STklebDcj4FkTknEVlqXXlSotRAGhTq1fd3lnQCQGJiIho0aHBddTLp9L5Lly7BYrFAKpWifv36vm4O1QCMGfKUwWAQbyuVSh+2hGoKxgyRIyae5FfkISEIU0dDI4uATL8XISYTmlxNPKUqDSReHmobEhICiUTiMNf0RpJOqh7Z2dninoxMIsgdjBnylMlkEvdkZBJB7mDMEDniHE/yW8FFeWhWahSDVBFez+vvGR0djVatWolLn7ds2ZJJJxFRLSOTyQAAZrOZ+zAS1XKCIMBstk77sh0bqpqxzJY7gXrUYY8n+Z1mzZpBEATk7pLCbP+ErHrCtV49a4JrNpvZE1JD2GKGe6WRuxgzVBGlUgm9Xg9BEFBcXIzg4GCoVCpfN4tqGMZMYCguLhYvQHmr5zqmYSOkR9ntfqAJzD2mmXiS3wkJsS4glFNa5PC4IjK22tpgSz6pZrDFDJG7GDNUkbCwMBQWFgIAcnNzERQU5LWeDgpcjJmaTxAE5OZe22M+LCzMK++jaRGP892u7fsaogrMv1Ecakt+SRAEWPTFDo8poxtVaf1FRUWVFyQiolrHNt8fAHQ6HdLT01FUVMRht0S1hO08MT09HTqdDgAgkUh40fIGsceT/MrJr75B+tGDkEqksJSoYUqIRPP64VAYSiGPjKmS9xAEAadOnUJGRgbatm2LqKioKqmXiIgCg1QqRVxcHDIyMiAIAnQ6HXQ6HSQSCXuxiGqBsvO7JRIJ4uLiIJV6p88uSKZE/NXFNAFAHaCHGSae5Fe0hw5DkZEJAJABOBQpoEGXjghXBEMRceOJpy3pTE9PBwAcPnyYyWcAKC0tFefrqdVqXzeHagDGDFUmNDTUIfm0WCyQSCTi/0SVKZu4UM1kSzpDQ723pV+4IghJxde235EF6CLITDzJr1gEi+MDkmsHa6lK4+QV7hMEASdPnkRGRobDY0eOHMFNN93Epc5rsNTUVHFrjPbt2/u6OVQDMGbIHaGhoUhMTIROp8OpU6fEpNObJ6AUOAoLC8ULXIyZmkUmk0GpVCIsLAwhISFe6+l0xWg0Vl6oBmLiSX7FYnFYxxYCJAiWWsNUorj+XglnSadNy5YtmXQSEZFTUqkUYWFhkMlksFgskMvlSEhI8HWzqAZISUmB0WhkzFClBE0IJO16Q5unhdligUwd5OsmeQUTT/IrqvatkSrfC1gsEAQLCiKVUF8N0+sdpiIIAtLS0nDx4sVyz7Vq1QoxMVUzd5R8p06dOjCZTJDLeUgj9zBmyFOMGfIUY4bcdfDv7biyaqd436SWo9NYHzbIS/ibQH4lumUr6OWAqfAK8ory0LpeJGQ3MC/CVdIpkUjQqlUrbpsSIBo2bOjrJlANw5ghTzFmyFOMGXKbrgR186+N+istDcwVtJl4kl9RyhRoEBYDsyIYcZGNEN46EVJJPmRBnu+bxKSTiIiIiMg/MPEk/3L1Ao/uyDZYigthTN8KdXQoovo/4Fk1goDU1FRcunTJ4XEmnURERETkTwxmI2rDaiNMPMkvWQwl1v9Li2DKK4LUg0nWFSWdrVu3RnR0dJW2lYiIiIjoesW0aoW0c6fE+7JgLi5EVC1ysrMgNZkcHpOHurfPJpPO2iktLU3cGoMrB5I7GDPkKcYMeYoxQ+7SNGwA7U2NUFJSAkEQEKxg4klUDQQUFeVBJQWUdlt6ykLruPXqK1euMOmshUpKSmA0GmEqc8GCyBXGDHmKMUOeYsyQu/QX01CafhwSANYlNQMzRQvMT0U11qmFC2DJyoFeAPQACuQSxEcHQ6pQufX6unXrIj4+HhcuXABgTTrbtGmDunXrerHV5GsSiUT8R+QOxgx5ijFDnmLMkLs0UgXq643ifYVM6sPWeA8TT/IrhsJCyM3XujqPa5RoEhwBQbBAIqn8l1AikaBZs2YAgPT0dCadtUS7du183QSqYRgz5CnGDHmKMUPuipCr0bbIIN6XBql92BrvYeJJfsUMwSEoBUECwWwCBME29qBStuQzNjYWwcHBXmknERERERG5j4kn+ZcyyaUMAqSqIEikMs+qkUiYdBIRERGR3zNbLDAK1+5LBcF14RqMiSf5FWmZzNMiA6RKTblygiDg1KlTaNCgAYKCAnPlLyIiIiIKfIf27IXpwLVzYIOqCIG4DjITz6sEQcDKlSvx+++/49ixYyguLkZ0dDS6deuGcePGoX379jf8HqmpqZgzZw52796NrKwshIaGonnz5rjnnnswbNgwyGSe9eoFIrVcBTNKxfutigyQhzmuaCsIAo4dO4asrCxkZ2ejY8eO0GjKJ6dUe2RnZ8NisUAqlXL1YnILY4Y8xZghTzFmyG1mC9T2XZ4Buh4VE08ApaWlmDx5MrZs2eLweEZGBjIyMrBixQo8/fTTePTRR6/7PRYtWoS33noLRuO1Fatyc3ORm5uLvXv3YsmSJfjiiy8QERFx3e8RCKSQwmx3P9QiQKoKEe/bJ50AoNfrceDAASaftdylS5fEvdL4x53cwZghTzFmyFOMGSJHTDwBvPrqq2LS2bx5c4wePRp169bFkSNH8Ntvv6G4uBgff/wxYmJiMHToUI/r37ZtG15//XUIggCNRoMxY8agbdu2yMnJweLFi5Gamop//vkHzzzzDGbPng2pNDCXUHZL2THtEkDTpN3VpwQcPXoU2dnZDkWMRiNKS0uZeBIRERFRjWOCpFYkZbXhM1Zox44dWLlyJQDgpptuwrfffguVyrpn5F133YWRI0fivvvug1arxXvvvYf+/fsjJCSkoiodGAwGvPnmmxAEAUFBQfj111/Rpk0b8fmxY8fimWeewfr167Fjxw6sXr/LH8AAAEHuSURBVL0ad911V9V+yBpEsJjLPSYLjYTFYsGxY8fKJZ1SqRRt27ZFZGRkdTWR/FCjRo0gCAL3SiO3MWbIU4wZ8hRjhtwVoQ61m2gWuAlaLe5as/rhhx8AAHK5HO+8846YdNo0b94cr7/+OgBAq9Vi0aJFHtW/bt06pKenAwAeeeQRh6QTAJRKJT744ANxiO0333xzPR8jcJRNPCUSyKMbuUw627Vrhzp1HOeAUu0TERGByMjIWj9UndzHmCFPMWbIU4wZcpdC4rjOS6BeqqjViadWq8XOnTsBAL1790Z8fLzTcoMGDUJUVBQAYO3atR69x+rVqwFYt/cYO3as0zLBwcEYPnw4AOsCRGfOnPHoPQKJYLE4PiBX4HjqSZdJJ3s6iYiIiIj8X61OPP/55x9YriY6N910k8tyUqkU3bp1AwAcPHgQ+fn5br/H3r17AQAtW7assGfO/v23bt3qdv2Bxr6/UwBwLrw+rly54lCGSScRERERBQp5mfVd2OMZgNLS0sTbiYmJFZZt0aIFAOsCN6mpqW7Vn5mZiYKCAgBAQkLFu/E0b95cvH38+HG36g9EpRbrqr8CgMzIcFxUqB2el0qlaN++PZNOcmAymWA0GmEymXzdFKohGDPkKcYMeYoxQ+4Kkikd7ssFFwVruECdu+qWjIwM8XZcXFyFZWNjYx1eZ+sBrYhtbqc79cfExEAqlcJiseDixYuV1h2oBEG4mnRGoEitgmB3BciWdHKuBJV19OhRccn6qthzlwIfY4Y8xZghTzFm6HoFaN5ZuxPP3Nxc8XZlPWj2yY5Wq3Wr/ry8PLfrVygUCAoKgk6nc7v+QGVLOgFAdUmLc6uXQwIBsaVF2P2bASbBLG67ImsQio6JDQEAFgg4hlJIQ+tAFdMUBUs2w1JYLK4mJ+3aEt0ax8NSbO2FPmzMt/5iWwQY1x+FwWyC5Gq9KkgQZffrUQgLIJNBpg5GidkIg8Uk1quSyhEFOQSTAQCgE0ywzVQ1CBaUWq7VK0Sq0LVDM7HeNJTCqFRD3ag1dBv3wJiRDenVek3NY9G7ezeYtJkAgJMmHUoE62Bk09ZUlOpKILV9D5Agxq69xbDALJFAFhQKg2BGsUkPqcSaxEshQaxcA8FgXT+tWDDDdPUQZxYE6CxGsV6zWobuN10bDXAeBhRKBGiad0Lpv8dRfOQkZFfrLa0bjD4D74D5ivWCywVzMbRXe7At/5xDcZZWrBcAYqEQh1yUwgIjBMiCwmABkG8qEesFgFh5ECRX21sKCwzC1W9YALQWA6QWs/UTSCTQJCcgVK6wxhKMuAITVI3aQJKeh9xt/0AutU7gN2kU6DByMDTZ6ZBIpMgylyLTogcASE5kovD0ZUgt19pbF3Iorw5+MUCAHhZI1SGQyGTQGovF7xcA6iqCINeXQnK1bKlwbRB5gcUAiV29MZ0aomF4KABACzMyYICyfnNIjXLkL//r2mqIEiD+vrsRk3UBErkC+RYjzpuLrU9laFGUch6wmyMdARmCrn7DJggogQUSlQZSuRIFJvu184AIhQYavf5qWaBYuHZ1XmcxOaw2HZxQF0lx1v3oSmDBaeihqNMAsogYFM77E4LdzzjszpvRUg7AbEKpYEaaSWd9orAUpdvTYBHM4l/XYEgRDuvPxgKgCGZIFCpIlWroTAZYYIZt8FGwTIUwswW4+nMvtGtvicXs1jFCiyBIN++HpESPjKvxwmNE4B4jZLZ6JUBirxbXdYwozLmEbMEAiVSK3HW/8BhxVaAeI6riPCLMDEAAzBJgq0zKYwQC+xhxI+cRRTk5CIYdqeNiQ4GiVieepaXXDqxlV7MtS6m81gVu/7qKlJSUuF2/rYxOp3O7/kBlsRvYLjNYIC0tRmyeFhqDsVzZTKkRxbIs6+sAnKwTDJleCwUMiD95GarSa38Mz0SdRIklF/r0EwCA1MggCBIJJBYBbS4UO/7CAyi2u33t1z8fGgBldwzV2d2W2JUvWzan1IDikH3i/bPhGpSog6BSyRCddgER2ddi5qxEj9L6wShOtc4TPh2mQaHcehBNPFeMOnrH62HFcGRtQyGUAJRlntM5LWv9334mcpFaguJT19qbHqJCtlIBdUgQIk6eRt1z2mtlCwugz0hF8WHrHOXzwSpcVlkPMU3OlqCO1nHhqFKUONy3tqEIUgBlL9MUI9dJWasou9sWCZB37jBkV/8AZmoUOKNRQqVWIvx0HuqdvzY/u0gtRc6lVISnbAcAXFQrcCrI+k01OF2KOhmOKyybrv4r214AiCjTXgNyYXDR3rKf7Ur0GdS5Yq05RynDyRA1FDIBGp0Ejc5du3hlkQAZl1IRdNi6IFq2QobUUOtQ9DrnDGiQUf73o3wMW9sbVqacRXymfHvDy5TNCrmE4tILAIACmRQnwzWQW0ogL9WixZkch7Lp51PR0JALc8EVFEklSI0IAgBotGY0zyh/nHPVXmcbWLlqb9myro4R5pC6aHEhD2oeI3iMcPMYUaJWIPPqMULKY4QoUI8RVXEeYf+N8xhhFcjHiBs5jygbOyWwIBDV6sTTfsy9fWLpjP3z7o7VN5uvBVxl9duX8fVcgJMnT6J58+YIDQ0VH9Pr9ThxwnqgjYiIQKNGjcq9prjYesgqO5zkypUr4vDh+Ph4h95fs9mMI0eOAABCQ0MRHBIGVY4Wl+tEokSlhNRiQf1cLdTG8n8wKyPUsIEKglCzDjKCufyeq/7MUsPaW9O+33IrUvs5tVqNmjaYiccI7+Ixwrtq2jEC4HmEt9W0GK7OY4QgtfbCWCwWHD58GIB1Fwz7NWEA4Ny5c+Kip61atYJCoRCfKygowNmzZwFYpwzWq1fP4bWHDx+GxWKBWq0ut9ZN2d0kqkqtXlzIeuJhZawksTEYrl2bdCeJBBx7OSur3/497IPGF8xms7jar40gCDAajTAajQ4JtY1tAr2zz2mxWMTnytYLQHzOZDKhQb/+kAKIzc1DcGnpdSedNVLN+vsGoaa1t4Z9wTWrtTWvvTVSDfuSeYzwrprV2prX3hqphn3JPEa4ZmoSI962P08uV87u/Fso84Xan387O3e3Pefq3N0banWPZ1BQkHhbr9dXmFDaJ57uDJt1Vn9lbGXsE2JfkMlkkJZd1lkiERNimaz8uHO5XO4yYZZKpeJzZesFriXacrkcje4bA3X9WGSuWYZQfSmMmmBxboZcJkOJYLGbmyFAUVcDU726UKlVUCsUaGE3N+NKo7MoKi6FVCKFTCZDdNMW0DSOhyqmKXQ6HWINeRAAhKiDUBR/wmFuhsIiIEKQWl8rlTrM3yrUl1ydmyGFXC5zmJthMptRaDFCuNpeAwSHuRmWMDlM9WKhUCigUavRxDY3I6YlrjTOwhV1LqQSCeRyOcKaxUId3xry0CiUlJSgTnEOgiUCNGoNTI3PQGc3N0MiCKhrkUIqkUAmlTnMzSgx6FFkNlytVwYppOLcDIvFgkKzAWYAMqkUFonEYW6GUSGBqV4cZDIZgoOC0BAGhEsEaGJaIq9xMa7ozeL3K4sOgSouEXJVEAwGA8IKrwASM1RKFeRNLiPXbm6GIFgQbZFBCkAukzvMzTCYzcg3FkN2tV6JRCLOzRAEQGfSwwgBUokEUqnMYW6GBQLi6taHSSpHWGgoYmCEDCao6iVAXxCC7IwCa71SGczBSkTVT4RGHgRBADR5mYiVmKCQKxDUrAC5uDY3Q4CASLMUCgAKmdxhboYFEuQZiq62RwqpVCrO3wKAYqMeegiQSCSQyWQO87cECAirUxemEA1CQkIQJbGgBQxQ1msOU7AZOXGXILHVK5Mivn4iQmUaSOQK5OZkIVaih0wqQ4jECG3BtflbAgSEmSVQQwK5TAYzIM7fgkwBrb7o6u+j9Tu0n79VajSiGGbrUC+53GH+lgABQXXCYIoOhyZIg3CZFC2uzt+ShNRFbvxpQBAgkVrjsGGjRATb5m/l5yHWbB2cFRauRMGFa/O3BAgIskgQIkggk0oBiVScvyVRqJGvL4LF7ju0n79lNJl4jOAxgscIHiN4jOAxIjCOETIZgpo2Rv9JL8LG/jy5LPvzb3G+91X259/Ozt0VCgUsFovT83dn5+tVQSKUTY9rkalTp2LBggUAgA0bNiA+Pt5l2UWLFuG1114DAHz00UcYMmRIpfXv378fY8aMAQA88cQTeOqpp1yWNRqNaN++PSwWC3r16oUffvjBk49yQ3Q6nTiMFrDuORoS4mzGBBERERERBTJv5Qa1usezSZMm4u1Lly5VmHhevnxZvN2gQYPrqr8imZmZYre2u/UHqjNnzsBkMkEul6Np06a+bg7VAIwZ8hRjhjzFmCFPMWbIU4EeM7U68bSfoJuWlobu3bu7LJuWlgbA2o2dkJDgVv2RkZGIiopCTk6O+HpXTp48Kd4uO8G3tiksLBT3vSJyB2OGPMWYIU8xZshTjBnyVKDHTK1eXKhTp07iD3b37t0uy5nNZuzda12KOikpCWFhZRcad61bt24AgGPHjqGwsNBluV27dom3K0qAiYiIiIiIappa3eMZFhaGm266Cdu2bcOmTZtw8eJFp8NcV61ahdxc6/4/AwcO9Og97rjjDqxduxYmkwnz58/Ho48+Wq6MTqfDkiVLAABNmzZFUlLSdXyawNGmTRtfN4FqGMYMeYoxQ55izJCnGDPkqUCPmVrd4wkADz74IADr4j7PPPMMdDrHLXFPnjyJd999F4B1/5xRo0Z5VP9tt92Ghg0bAgC++OIL/PPPPw7PGwwGvPDCC9BqtQCAhx566Do+RWCRyWTiPyJ3MGbIU4wZ8hRjhjzFmCFPBXrM1OoeTwBITk7GHXfcgT///BP79+/H0KFDMXbsWNSvXx9Hjx7F/PnzUVRkXVb8hRdeQJ06dRxev3v3bkyYMAGAdYjsL7/84vC8UqnEq6++iscffxylpaV48MEHMWrUKHTu3BlarRYLFy5EamoqAKBz584YOXJkNXxqIiIiIiKi6lPrE08A+OCDD1BUVITt27cjPT0dH374ocPzEokEkyZNErdG8VS/fv3wxhtv4N1334XRaMS8efMwb948hzLt2rXDl19+GbBXOIiIiIiIqPZi4glAo9Fg9uzZWLFiBZYuXSouBBQREYEuXbpgwoQJ6NKlyw29x9ixY9G1a1f89NNP2LlzJ7Kzs6FQKJCYmIghQ4Zg9OjRAbuClafy8vJgsVgglUoRGRnp6+ZQDcCYIU8xZshTjBnyFGOGPBXoMcPE8yqJRIK7774bd999t0ev69Gjh8MGqxVJSEjAO++8cz3Nq1UuXLggLiUdiL90VPUYM+Qpxgx5ijFDnmLMkKcCPWZq/eJCRERERERE5F3s8SS/06BBA3GYAZE7GDPkKcYMeYoxQ55izJCnAj1mmHiS36lbt66vm0A1DGOGPMWYIU8xZshTjBnyVKDHTGCm00REREREROQ3mHgSERERERGRVzHxJCIiIiIiIq/iHE/yOykpKeJS0u3bt/d1c6gGYMyQpxgz5CnGDHmKMUOeCvSYYY8nEREREREReRV7PMnvBAUFwWQyQS5neJJ7GDPkKcYMeYoxQ55izJCnAj1mJIIgCL5uBPmWTqfDiRMnxPstW7ZESEiID1tERERERES+4K3cgENtiYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIirwrMmatUo50/fx5msxkymQyNGjXydXOoBmDMkKcYM+Qpxgx5ijFDngr0mGGPJ/kdrVaL3NxcaLVaXzeFagjGDHmKMUOeYsyQpxgz5KlAjxkmnkRERERERORVHGpLfqdly5YQBAESicTXTaEagjFDnmLMkKcYM+Qpxgx5KtBjhokn+R2VSuXrJlANw5ghTzFmyFOMGfIUY4Y8Fegxw6G2RERERERE5FVMPImIiIiIiMirONSW/E5hYSEsFgukUilCQ0N93RyqARgz5CnGDHmKMUOeYsyQpwI9Zph4Esxms8P94uJiH7XE6tSpU+IeRi1atPBpW6hmYMyQpxgz5CnGDHmKMUOe8peYKZsLlM0VrpdEEAShSmqiGisrKwsXLlzwdTOIiIiIiMjPxMfHo169ejdcD+d4EhERERERkVcx8SQiIiIiIiKv4hxPQkREhMN9lUoFmUzmm8YQEREREZHPmM1m6PV68X7ZXOF6cY4nEREREREReRWH2hIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqua8bQIFHEASsXLkSv//+O44dO4bi4mJER0ejW7duGDduHNq3b3/D75Gamoo5c+Zg9+7dyMrKQmhoKJo3b4577rkHw4YNg0wmq4JPQtXF2zEjCAI2btyIZcuWISUlBbm5uVAoFIiLi0OvXr0wYcIENGjQoIo+DVWH6jjOOPPWW29h3rx5AIATJ0545T3IO6ojZkpLS/Hbb7/hzz//xJkzZ6DT6RAVFYUuXbpg/Pjx6Ny5cxV8Eqou1REz+/btw9y5c/Hvv//iypUrUKlUaNy4Mfr164fx48cjIiLixj8I+ZTt78akSZPw5JNP3nB9GRkZmDNnDrZt24aLFy9Co9GgcePGGDx4MMaMGQO1Wl0FrfYOiSAIgq8bQYGjtLQUkydPxpYtW5w+L5PJ8PTTT+PRRx+97vdYtGgR3nrrLRiNRqfPd+3aFV988QUP1jWEt2MmPz8fU6ZMwY4dO1yWUSqVePvtt3HPPfdc13tQ9aqO44wzu3btwoMPPgjbn00mnjVHdcTM8ePH8eSTT+L8+fNOn5dIJHjsscfw9NNPX/d7UPWpjpiZPn06vv/+e5fPR0dHY9asWejUqdN1vwf51t9//42HH34YFoulShLPv/76C1OmTEFRUZHT5xMTE/HVV1+hYcOGN/Q+3sLEk6rUs88+i5UrVwIAmjdvjtGjR6Nu3bo4cuQIfvvtNxQXFwOwHmyHDh3qcf3btm3D//3f/0EQBGg0GowZMwZt27ZFTk4OFi9ejNTUVABAr169MHv2bEilHE3u77wZMxaLBRMmTMDevXsBAA0aNMCIESPQrFkzFBUVYfv27Vi3bh0sFgskEgm+/PJL9OvXr2o/IFU5bx9nnCkqKsLdd9+N9PR08TEmnjWHt2PmwoULGD16NHJzcwEAPXv2xIABAxAREYF9+/Zh0aJF0Ov1AKy9H2PGjKmiT0be4u2Y+f777zF9+nQAgEKhwOjRo9GuXTsUFBRg/fr14t+tsLAw/PHHH4iPj6+iT0bV5fDhw3jggQeg0+kA4IYTzxMnTmDUqFHQ6/WQyWQYOXIkunbtiqKiIixbtgz79+8HALRs2RILFiyARqOpks9RpQSiKrJ9+3YhMTFRSExMFCZMmCCUlpY6PH/y5Emhe/fuQmJiotC9e3ehsLDQo/r1er3Qr18/ITExUejYsaNw+PDhcs8/8cQTYhtWrFhxw5+JvMvbMbN48WKH+ouKisqV2bhxo9C6dWshMTFR6N27d7k2kH/xdsy48uabb4rva/tHNUN1xMx//vMf8T2++eabcs/v379faNOmjfgeer3+uj8PeZ+3Y0ar1QodO3YUEhMThW7dugnHjx93eN5isQgzZswQ2/DMM8/c8Gei6rVlyxaha9euDn8zZs6ceUN1jhkzRkhMTBRatWolbNmyxeE5i8UiTJs2TXyvr7/++obey1vYHURV5ocffgAAyOVyvPPOO1CpVA7PN2/eHK+//joAQKvVYtGiRR7Vv27dOrG34ZFHHkGbNm0cnlcqlfjggw/EIbbffPPN9XwMqkbejpkFCxYAAFQqFT766CMEBQWVK2ObRwMAmZmZ2Lp1q8efg6qPt2PGmV27dmH+/PkAgNDQ0Buuj6qXt2Nmz5492LZtGwBg+PDhTodeduzYUezl1Gq1+Pvvvz3+HFR9vB0zO3bsEHtMH3nkEbRs2dLheYlEgqeeegqNGjUCAGzcuBEmk+m6PgtVL4PBgJkzZ+Kxxx5DQUFBldW7f/9+7Nu3DwBwzz334NZbb3V4XiKR4NVXX0Xz5s0BWGPY1ZQ0X2LiSVVCq9Vi586dAIDevXu7HBIyaNAgREVFAQDWrl3r0XusXr0agPWXa+zYsU7LBAcHY/jw4QCsCxCdOXPGo/eg6uPtmNHpdEhJSQEA3HzzzYiOjnZZ9s477xRvHzx40O33oOpVHceZsoqKivDqq69CEAQMHToUrVq1uqH6qHpVR8zYhmOqVCpMmTLFZbmRI0dizJgxmDhxovhe5H+qI2bsh+wnJSU5LSOVStG2bVsAQElJCfLy8jx6D6p+O3fuxMCBA/HFF1/AYrEgKCgIDz30UJXUbTsHBoD77rvPaRmpVCo+p9VqsWvXrip576rExJOqxD///AOLxQIAuOmmm1yWk0ql6NatGwDrCX5+fr7b72Gb79CyZUvUqVPHZTn792fvlf/ydszk5eWhXbt2iI6ORrNmzSosGx4eLt6uyiuUVLWq4zhT1kcffYT09HRER0fjlVdeue56yDeqI2Y2bNgAwHqBq169ei7LJSUl4a233sLTTz8tJhTkf6ojZkJCQsTbFy5ccFnu4sWLAKwLGdn/nSL/tHz5cvGiQtu2bbFo0SL07du3Suq2nQOHh4ejdevWLsvZx6xtJIY/YeJJVSItLU28nZiYWGHZFi1aALAuU25bDKgymZmZYkKQkJBQYVnbMAPAusog+Sdvx0x8fDwWLVqE7du344UXXqiw7KlTp8TbXA3Zf3k7ZsqyH2L7xhtvMDZqIG/HTFZWFnJycgBYh9PaGI1GHDt2DFu3bsXhw4c5TLIGqY7jjP02LL/++qu48JS9PXv2iKN2unfvDqVS6Xb95Dt16tTB1KlTsXDhQjE+bpTZbBbPU5o3b17hwplNmzYVtxT0x3NgJp5UJTIyMsTbcXFxFZaNjY11+rqK2A9Lqaz+mJgY8ZfSdrWQ/I+3Y8YTv//+u3i7Q4cOVV4/VY3qjBn7IbYDBw7EgAEDPK6DfM/bMXPy5EnxdsOGDWE0GjFr1izccsstuOeee/B///d/GDFihLjSutls9vATUHWrjuNM27ZtccsttwAATp8+jfHjx2PXrl0oLCzE5cuXMW/ePDzxxBOwWCwICQnB888/7+GnIF8YN24cNm/ejHHjxlXpfvJXrlyBwWAAUHlMymQycWqRP54Dy33dAAoMtiXkASAyMrLCsva9Blqt1q367ec2VFa/QqFAUFAQdDqd2/VT9fN2zLhr27Zt2Lx5MwAgKioKvXr1qtL6qepUZ8zYhthGRkZi6tSpHr+e/IO3Y+by5cvibaVSifHjx+PAgQPlymm1Wnz44Yc4cOAAZsyYAYVC4Vb9VP2q6zjz6aef4plnnsGWLVuQkpKCBx54oFyZzp0747XXXiu3mCL5p3bt2nmlXk9iErAOx718+bJfngOzx5OqRGlpqXi77OpvZdkPF7F/XUVKSkrcrt++jLv1U/Xzdsy449KlS3jxxRfF+xMnToRara6y+qlqVVfM2A+xff311yucU07+zdsxY7+J+/Tp03HgwAEkJCTgm2++wb59+7B371588sknqF+/PgBg/fr1+PTTTz34BFTdqus4ExwcjPfff1/s+SxLIpGgadOmHOJPAXUOzMSTqoT9/JXK5iHYP+/uvBf74UnuzHOwleG8Gv/l7ZipTG5uLh5++GFxflavXr3EbVXIP1VHzNgPse3fvz8GDx7seUPJb3g7ZmxbYgDWRWJatWqF3377DX369EFwcDDCwsIwePBgzJ8/X7yA8eOPP3plygBVjer627R69Wr06dMHW7duRUxMDCZNmoQZM2bgnXfewR133AHAOg1kyJAh4lxPqp0C6RyYiSdVCfteosr2DbKNUwfc+wUCHK/wuLMvke09OJzJf3k7ZiqSnZ2NCRMm4PTp0wCAxo0b46OPPoJEIrnhusl7qiNmbENsw8PD8eabb3rcRvIv3o4ZQRAc7r/99tsOK5ba1K9fH0899RQA68ng0qVL3aqfql91HGc2btyI5557DqWlpejRowdWr16NJ598EoMGDcKoUaMwc+ZMzJ49G2q1GkVFRXjkkUeQnZ3t+YehgBBI58BMPKlKBAUFibedrc5mz/5A7c6QAU/rty/DYZP+y9sx48r58+cxbtw4ceXC+vXrY86cORxOWQN4O2bsh9i+9NJLFW6NQTWDt2NGo9GIt5s0aVLhHC9bLxYAcSN48j/ejhlBEPC///0PZrMZ4eHhmDlzptOLFcnJyeKiQvn5+fjhhx/cqp8CT3BwsHi7pp8DM/GkKhEWFibermwys/3z7p7s29df2V5ZRqNRHP7EZMJ/eTtmnElJScGYMWNw7tw5ANbV4X755ZdKV4kj/+DNmLEfYtu7d28MHz78eptJfsTbxxn7hKFp06YVlq1Tp444Xy8rK8ut+qn6eTtmjh07Ju7dOXjw4ArncI4ePVq8uPHXX3+5VT8FntDQUPG2O/vF2sr44zkwV7WlKtGkSRPx9qVLlxAfH++yrP0qgA0aNLiu+iuSmZkpbv7sbv1U/bwdM2Vt27YNTz31lHhRokWLFvjhhx8QExNzXfVR9fNmzBw+fFjctmnbtm1o2bJlpa+xlYmLi8OmTZsqLU/Vz9vHmYYNG3rUHttwTNvfKPI/3o6Zs2fPircr2ydUqVSiefPmDscnqn3q1auH4OBgFBUVVbpFitlsFodl++M5MHs8qUo0b95cvG2/+bIztuclEgkSEhLcqj8yMhJRUVFu1W+/r1plB3XyHW/HjL1NmzZh4sSJYtLZoUMH/Prrr0w6a5jqjBkKDN6OGfu/MZUtGGQ2m8UeMh57/Fd1HmfcGTZp25e8KveFpJrHFpenTp2qsNzp06fFxYj88RyYPZ5UJTp16gSFQgGj0Yjdu3dj3LhxTsuZzWbs3bsXAJCUlOQwpKUy3bp1w9q1a3Hs2DEUFhY6DD2wt2vXLvF29+7dPfgUVJ2qI2YAYM+ePZg8ebI4Ib9Xr174/PPPHebxUM3gzZhJSEjAF198UWm5Tz/9VDzZtJX3x3k0ZOXt40xkZCQSEhKQlpaGtLQ0XL58GbGxsU7LHjlyRJwT6I8nhGTl7Zixv+hw+PDhCsuaTCZxETx/7L2i6tOtWzekpKQgJycHaWlpLi902J8Dd+vWrbqa5zb2eFKVCAsLw0033QTA2rvkaijAqlWrxI1wBw4c6NF72BZmMJlM4gIgZel0OixZsgSAdb5NUlKSR+9B1ac6YiYnJweTJ08WT/b69u2Lr7/+mklnDeXNmKlTpw5uu+22Sv/Zb95teyw5OfkGPxl5S3UcZ2xb7giCgO+++85luV9//VW87el7UPXxdsy0a9dOnBu8cePGCqcPLVu2DDqdDoD1oinVXvaLk/3yyy9Oy5jNZsybNw+AdV6oP/5tYuJJVebBBx8EYF3c55lnnhEPljYnT57Eu+++C8C6QteoUaM8qv+2224T59N88cUX+OeffxyeNxgMeOGFF8ShTA899NB1fAqqTt6Ombfffls8MWjfvj0+++yzKtmOhXzH2zFDgcfbMTNmzBhxEY/58+dj2bJl5cosXbpUfLxz587o0KGDpx+DqpE3Y0apVIp7RhcXF+Ppp58W/07Z27dvH9577z0A1m0xHnjggev5KBQgOnTogE6dOgEAFi1ahDVr1jg8LwgC3nnnHbGH/L777vPL0TgSoewmVEQ34KmnnsKff/4JwLrowtixY1G/fn0cPXoU8+fPR1FREQDgrbfewpgxYxxeu3v3bkyYMAGAdYissys6mzZtwuOPPw5BEKBQKDBq1Ch07twZWq0WCxcuRGpqKgDrH/Zff/2VcyJqAG/FzKlTpzB48GBxn70XXngBjRs3rrQ9ERER6Nq1a5V8NvIObx9nKnL//fdjz549AIATJ07c6EehauLtmFm/fj0mT54szq3q27cv+vXrB6VSic2bN2Pt2rUArFtu/PHHH2jRooXXPitVDW/GTElJCe677z4cPXoUgHXI9rBhw5CUlASz2Yxdu3Zh1apVMJlMAIA333wTY8eO9ernJe+wj4VJkybhySefdFouPT0d/fv3B+B6wbojR47g3nvvhdFohEQiwZAhQ5CcnIzS0lIsXbpU3KapSZMm+OOPPxy2YfEXnONJVeqDDz5AUVERtm/fjvT0dHz44YcOz0skEkyaNKncQdpd/fr1wxtvvIF3330XRqMR8+bNE4cV2LRr1w5ffvklk84awlsxs3TpUofN3adPn+7W664nGaHq5e3jDAUeb8fMgAED8PHHH+O1116DTqfD5s2bsXnzZocyERER+Oqrr5h01hDejBmNRoPvv/8eU6ZMwa5du5CXl+d0n06FQoFXXnmFSScBANq0aYNPP/0Uzz//PIqLi7F8+XIsX77coUzjxo0xe/Zsv0w6ASaeVMU0Gg1mz56NFStWYOnSpeJCQBEREejSpQsmTJiALl263NB7jB07Fl27dsVPP/2EnTt3Ijs7GwqFAomJiRgyZAhGjx4NhUJRRZ+IvM1bMWPr/abAUx3HGQos1REzAwcORJcuXTB37lxs2rQJGRkZkEgkiI+Px2233Yb77rvPL/fVI+e8HTN16tTBjz/+iI0bN2L58uU4ePAgcnJyoFQqERcXh169euH+++/nPtPk4LbbbsOqVaswZ84cbN26FZcvX4ZEIkHTpk1xxx134P777/fbpBPgUFsiIiIiIiLyMi4uRERERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiKiKmc0Gn3dBKoAfz5EVN3kvm4AERF5z+7duzFhwoTrfn1cXBw2bdpUhS26pl+/fsjIyAAAnDhxwivvUZ1mzZqFzz//vNJycrkcarUadevWRcuWLdGjRw8MHToUISEh1dDKG2MfT8OGDcP7779frkxpaSk+//xzBAcHY+LEieWef+mll7BkyRIAwM8//4wePXp4t9Fe5snvmEQigVKpRFhYGOLi4tCuXTsMGzYMbdq08XIrr6ns50NE5C3s8SQiIqpGJpMJOp0OZ8+exZ9//olp06ahf//+WLduna+bdsNOnDiBwYMH47vvvoPJZPJ1c/yOIAjQ6/XIzs7GgQMH8Msvv2DEiBGYOnUqLBaL19+fPx8i8iX2eBIR1RLh4eH473//69FrQkNDvdSawNa2bVsMGjTI6XNmsxnFxcW4cOEC1q1bB4PBAK1Wi8mTJ+Orr75Cnz59qrexVejIkSNIT0/3dTN8prLfMYvFAp1Oh1OnTmH79u0oKSmBIAhYsGAB1Go1XnnlFa+2r7b/fIjIt5h4EhHVEiEhIfjPf/7j62bUCgkJCW5915cvX8bDDz+MU6dOwWKx4I033sC6deugUqmqoZWe69Gjxw0Pi37//fedDtENBJ78jmm1Wrz00kvYvHkzAOuw49GjR6NFixbebCIRkc9wqC0REZGPxMbG4osvvoBUav1zfPnyZa/NqSX/EhERgZkzZ6JRo0YArMNwf/vtNx+3iojIe5h4EhER+VDTpk3Rq1cv8f7ff//tw9ZQdVIqlbj77rvF+4GwyBYRkSscaktERNfl9OnTWL58Ofbu3Yvz588jPz8fEokEYWFhSEhIQO/evTFq1KgbWq01LS0NixYtwu7du3HhwgUYDAZERESgSZMm6NmzJ0aNGoV69epVWs+lS5fw22+/Yfv27UhPT0dRUREiIyPRunVrDBgwAEOHDoVCobjudt6o5s2bY9u2bQCsvZ6u5ObmYsGCBdi2bRtOnz4NnU6HsLAwNG7cGL1798aYMWNQp06dCt/LYDBgxYoVWL9+PQ4fPgytVguVSoW6deuiU6dOuP3229GvXz+nr3W1qq2zFX0///xz8bFJkybhySefBOB8VVuLxYK+ffuKn33p0qVo1apVhZ9j4cKFeP311wEAI0aMwHvvvVeuTElJCRYtWoRNmzbh5MmT0Gq1CAkJQZMmTXDrrbdi7NixiIiIqPB9vK1u3bri7aysrArLHjp0CKtXr8Y///yDS5cuQavVQqFQIDw8HElJSejbty+GDRsGpVLp8DpPfj728vLysGDBAvz11184d+4cCgoKEB4ejhYtWqBfv34YPXo0NBrN9X50IqplmHgSEZFHjEYj3n77bSxatMjpSpylpaXIysrCjh078O233+LLL79Ep06dPH6fL7/8ErNmzSr3HtnZ2cjOzsbevXvx7bff4tVXX8Xo0aNd1vPDDz/g008/hV6vd3g8KysLWVlZ2LJlC7777jvMnDkTLVu29LidVcE21BYAZDKZ0zILFizA+++/j+LiYofHc3JykJOTg3379mH27Nl45ZVXMHLkSKd1XLhwAY8++ihOnz7t8LjRaBRX2l2yZAk6duyIr776qtIktqpIpVIMGTIE3333HQBg1apVlSaeK1asEG/fc8895Z7fuXMnXnjhBWRnZzs8npeXh7y8POzfvx/ff/893nrrLQwePPjGP8R1OnfunHjbPgm1p9Pp8NJLL2H9+vXlnjMajSguLsalS5ewefNmfPfdd/juu+/QtGnTG2rXihUrMG3aNBQUFDg8fuXKFVy5cgW7du3Cd999h48++gg33XTTDb0XEdUOTDyJiMgjL774IlatWgXAuidlcnIykpKSEBwcjIKCAhw8eBB79+6FIAjIzc3Fk08+ibVr13rU87ls2TJ89tlnAKxJSXJyMlq3bo2goCBkZmZiy5YtyMjIQGlpKV5//XU0bNgQN998c7l6PvzwQ8yePVu836lTJ3Tt2hUhISG4ePEiNm/ejKysLJw9exZjx47FvHnzkJSUdIPfkOfsh1ja5vzZ+/bbb/Hxxx+L9xs2bIi+ffuibt26yM7OxubNm5GRkYGioiK8+uqryM3NxaOPPupQh8FgwGOPPSYmnfXr10efPn1Qv359FBcXIzU1FVu2bIHFYsGBAwcwadIkzJs3z6329+rVC0FBQTh8+DBWr14tPmYbQuzOhYd77rlHTDxXr16N5557zmXZzMxM/PPPPwCse81269bN4fmNGzdi8uTJMBqNAIDGjRvjlltuQXR0NLRaLbZv347U1FQUFhbi2WefRXFxMUaNGuXWZ61KBQUFWLZsmXjfWQJnsVjwyCOPYP/+/QAAtVqNW2+9FS1atIBarUZeXh727NmDw4cPA7BeXJg8eTKWLl0qXtDw9Oczd+5cTJs2TbzfsmVL3HzzzYiMjER2djb++usvnD9/HtnZ2XjkkUfw1VdfoXfv3lX4zRBRIGLiSUREbtu1a5eYdIaFheHnn3922jO1e/du/Pe//0VJSQmys7OxYcMGp71Srnz55ZcArEmnsy1GXn75ZbzyyitYvnw5AODrr78ul3hu3LhRTDojIiLwySefOMylBAC9Xo8PP/wQv/zyC4qKivDUU09h5cqV5YYqelNaWhp27dol3r/lllscnt+1a5dD0vnkk0/iscceg1x+7U/4Sy+9hFmzZuGbb74BAMyYMQMdOnRAjx49xDJ//vknTp48CQDo3r07Zs+eXW713JSUFDzwwAMoLi7Gv//+i71795ZL6pzp3LkzOnfujD/++ENMbDp16uTRKsotWrRAmzZtcOTIEWRkZODAgQPo2LGj07KrV68We8KHDBkCiUQiPnfx4kW89NJLMBqNkEqlePHFFzFhwgSHXuUXX3wRf/zxB6ZOnQqj0Yhp06ahc+fOaN68udvtvVHnz5/HCy+8gNzcXADWrYvGjRtXrtySJUvEpDMuLg4///wzGjZsWK7cqlWr8Nxzz8FiseDEiRP4999/xZ+dJz+fw4cP43//+x8AQKVS4b333sNdd93lUObll1/G999/j08++QRGoxHPPfcc1qxZU2095ERUMzHxJCKqJXQ6Hb7//nu3y997773leiltc/MAawLkajhkjx49MGzYMLHH7PDhw24nnlqtFmfPngUAJCYmOt3XUqFQYNq0aVi/fj1KSkqQmpoKg8EgJoyCIGDGjBli+ZkzZzokYTYqlQqvvfYaLly4gC1btuDcuXNYtmxZtfV+HT58GE8//TTMZjMAoE2bNuWS408//VS8/dBDD2HSpEnl6lEoFHjmmWdQVFSEX3/9FRaLBZ9++inmz58vljl48KB4+4EHHnC6ZUv79u3x8MMP4/PPP4dUKkVKSopbiWdVueeee3DkyBEAwMqVK10mnitXrhRv2y/OA1h7h23DQ5944gk8+OCDTusYPnw48vLyMH36dBgMBnz99df48MMPb6j9lf2OlZSUQKvV4ujRo0hJSRF7ZJVKJT7++GOniZv979yrr77qNOkEgMGDB2PZsmX466+/AFj37Lyen91nn30mtuutt94ql3QC1uHgjz76KC5fvoy5c+dCq9Xi559/xtNPP+3x+xFR7cHEk4iolsjPz8f06dPdLn/HHXeUSzzvvPNONG3aFOnp6eVO+Muyny9ZVFTk9vva9+RlZGQgOzsb0dHR5cppNBr8/vvviIyMLHfCvn//fqSlpQGw9uw4SzrtTZw4EVu2bAEALF++/IYTz7S0NJcJiF6vR05ODlJSUpCSkiI+HhQUVO7nk56eLvZ2BQUFOU067U2ZMgV//PEHiouLsW/fPpw+fRrNmjUD4Dh3dP/+/bjtttuc1jFhwgTcddddiIuLq9aeXwC466678MEHH8BkMmHt2rV45ZVXHHoqAeDs2bPisNK2bds69FIaDAZx6KpSqcRDDz1U4ftNmDABn3/+OYqLi7F27Vq8++67N/SZPf0dA6zJ/uuvv4727ds7fX7MmDG46aabkJWV5fQijL2WLVuKiadOp/OoHYB1CLNtkavY2NhKLxZNnDgRc+fOBWD9vWHiSUQVYeJJRERu69u3L/r27VtpueLiYqSnp4v3TSaT2+8REhKCVq1a4dixYygsLMSIESPwwAMPoE+fPuWGQroaGrl3717xdps2bSp9z9atW0OpVMJgMCAlJQUmk8khAfbU4cOHxeTIHU2aNMGnn36KFi1aODxuPwQ3OTm50nmyISEhSE5Oxrp16wAA//zzj5h4duvWDT/++CMAYPbs2cjIyMDQoUPRo0cPBAUFiXWEh4cjPDzc7bZXpTp16qB3797YvHkzsrOzsWfPnnLzHu17O4cOHerw3JEjR8TFl5o0aYLg4OAK30+hUKBt27bYs2cPDAYDDh06hC5dulTRp3GtU6dO6NWrF/r06YN27dpVWNZZj6Mz+fn5yMzMFO978jtnY5ubDQCtWrVyGMLsTHR0NOLi4pCRkYGMjAxkZmYiJibG4/clotqBiScRUS0RFxeHTZs2VWmdRUVFOHPmDM6fP48LFy7gzJkzOH78ONLS0hxOfG0ns+567rnn8Oijj8JsNiMzMxPTp0/H9OnT0aBBAyQnJ6N37964+eabXSZitrmMAPDrr7/i119/dfu9S0tLkZub69Y2LddDrVYjJCQEsbGxaNOmDfr06YM+ffqU69kD4JC8u7voUVJSkph4XrhwQXy8X79+6N69O/bs2QMAWLNmDdasWQOFQoHOnTsjOTkZffr0QWJi4o18vBs2dOhQbN68GYB13qKrxFMul5dbjdb+556amurxKsWXLl26niaLnP2OlZaW4uTJk/jxxx/FlXjT0tIwZMiQSpNOZ/Lz83H27FmcP38e58+fx+nTp3H8+HGcOnXK4ffM0985wPH727x5s8ff38WLF5l4EpFLTDyJiMgjFosFy5Ytw7x583D48GGnW6oA1qGdtrmLnkpOTsaXX36JN954w2Ffy4sXL2LhwoVYuHAhlEol+vTpg4ceegidO3d2eH1+fv51va/9628k8bTf4/JGaLVa8ba7+03al7P/HqRSKb788ku88847WLZsmZiYGI1G7N69G7t378bHH3+Mxo0bY/jw4ZgwYYJDT2h16d+/P8LCwlBQUIB169Zh6tSp4h6rR44cwZkzZwBYYyQqKsrhtVXxc69qarUabdu2xUcffYS2bdvif//7H3Q6HaZNm4bs7Gy3hqcaDAb89ttvWLRoEVJTU12Wu5HfOcA/vz8iChxMPImIyG1FRUWYNGkSdu7c6fC4RCJBbGwsWrRogbZt26J79+5IT0/H66+/ft3v1adPH6xfvx5//fUX1q1bh+3bt4srgALWk/F169Zh3bp1eOKJJ/DUU0+Jz9mffN95550u58+5Ujah8ZXr6bVydSEAsK6c+sEHH+CJJ57AqlWrsHnzZhw6dMjhNefOncOMGTOwcOFClyuoepNSqcTAgQOxYMECaLVa7Ny5E7feeiuAiofZAo4/9zZt2ni8P6erxYyqyoMPPogLFy6IPfBfffUVGjRoUOE+tLYtS44fP+7wuFQqRVxcHBISEtCuXTv06NED27dvF1eEvh7231/Pnj093iLlRvcOJaLAxsSTiIjc9u6774pJZ3BwMCZMmIDevXuL+3jasy06ciOUSiUGDBiAAQMGQBAEnDhxArt27cK2bduwa9cucTjvF198ge7du4vDMsPCwsQ6OnXq5HJlU39nP9cyLy/PrdfYl7P/Huw1atQIEydOxMSJE1FQUIA9e/Zg586d2Lx5My5evAjAurDTSy+95NEw5apy9913Y8GCBQCsw21vvfVWCIKANWvWALAm0P379y/3OvvPGxMT49F2LtXlxRdfxN69e8W9W99991106dLF5Xzl5557Tkw6o6Ki8OCDD+Lmm29GQkJCuZWJN27ceENts//+WrRo4ZffHxHVXOUnlBARETmRmZmJpUuXArD2cM6ZMwdPP/00unTp4nQRF/sE6Hp67sqSSCRISkrCgw8+iO+//x6bNm1ymINmW80UAOLj48XbttVtK2Pfm+ovGjduLN62JSqVOXbsmHjb/ntwJSwsDLfddhumTp2KTZs2OfRS7927V0xEq1PXrl3Ftm/evBkmkwn//vuvOAfzjjvucLodjP3ntZ+vWJH8/PwKe4mrmlKpxPvvvy8uXlVaWooXX3zRaRsOHjwoLjAVFBSEBQsW4NFHH0Xbtm2dfn53L064cj3fX15eXpX8fhNR4GPiSUREbjl06JA4FK9Vq1bo0KFDheV3794t3vbkxHTjxo34z3/+g759++Kbb75xWS4mJgaPPfaYeN9+Rc+uXbuKt//66y9xX0JXDh06hJ49e6JTp04YMWLEda0I6g32n2P79u2VbpFRWFiIv//+W7xvGzpqNpvx4osvYvjw4ejVqxcMBoPT10skEowfP96h981+jm1lKlsF1RO2obQFBQXYu3cv1q5dW+65sjp16iQmdOfPn680Wdfr9bjjjjvQvn173H777eWGs3pL69atHbZ6OXTokLjnrb0DBw6It3v16lXhhQRBEMSFowDnQ64r+/nYx9u///5b6cWYrKws9O7dGx06dMDAgQP98uINEfkPJp5EROQW+2TFftEbZzZs2OBwEuxJIicIArZv346LFy9i1apVFb7WvofHfjXNnj17IjY2FoB1jpyrPTVt7/fxxx8DsG4D07BhwxvaSqUqNW7cGJ06dQJgbdvnn39eYfnPPvsMJSUlAICEhASxR1gmk+H48eM4cuQIrly5UuGQTIvF4vDz9WSVUvuVeW9kkRvAMbncuHEjNmzYAMC6cmy3bt2cviY4OBgDBgwQ70+fPr3Cix6zZ89GXl4ejEYjiouLy21n402TJk1CXFyceH/GjBnIyspyKGP/O1dZb+bPP/9c6RZGlf18mjdvLs6HNhgMmDFjRoXv+emnn8JoNEKv1yM4OLjcfrpERPaYeBIRkVvst/O4ePEifvrpp3JlLBYLFi1ahGeffdbhcVsy5I5bbrkF0dHRAKzDS6dNm4bS0tJy5c6cOeOQiN1+++3ibYVCgccff1y8/9lnn2HOnDnleoFKSkrw1ltvib2EcrkcEydOdLut1WHy5MliT9WcOXPw+eefl0sqTCYTZs6ciV9++QWAtWfrlVdecSgzYsQI8fabb76JlJSUcu8lCAI++OAD5OTkALAu0GOfHFXGfnubjIwMt1/nTKNGjcSk+/fffxeH2Q4ZMqTCnruJEydCqVQCsPYSP//88+V6igVBwKJFixwW4pk4cWK1XnBQq9WYOnWqeF+n0+G9995zKGP/O/fvv/9i/fr15eoxGAz4+uuv8cEHHzg87ux3zp2fz1NPPSV+vwsXLsQHH3xQrofcZDLhyy+/xO+//y4+9uSTTzqtj4jIxj8u6RIRkd9r1qwZkpOTsX37dgDAe++9hzVr1qBTp04ICQlBZmYmtm7dKiYICoVCHOJaWQ+pPaVSiZdffhnPPPMMAGDBggXYtGkTbrnlFjRo0ACAdY/GLVu2QK/XAwBuvfVW9O3b16Gee++9F//88w+WL18Oi8WC999/H7/99htuueUW1KlTBxcvXsTmzZuRnZ0tvubZZ591e7/M6tKzZ09MmjQJs2bNAgDMmjULS5YsQd++fVG3bl1cuXIFmzdvdujtevzxx3HzzTc71DNmzBgsXrwYJ06cgFarxahRo9CrVy8kJiaiTp06yMnJwfbt28W5fQqFolzyWhn7FXBXrFiB0NBQxMTEICEhAf369fP4s99zzz3Yv38/iouLxcfuvvvuCl/TsmVLTJ06Fa+//joEQcCKFSuwbds29O/fH/Hx8cjNzcXu3bsdhuH27dsX9913n8ftu1F9+vTBgAEDxIRyzZo1GDFihLiarG0RobS0NAiCgEmTJiE5ORmtW7eGSqVCRkYGNm/eLPaGVvY7587Pp3fv3njsscfw1VdfAQB++OEHrF69Gn379kVMTAyysrKwbds2hz1ix48fL648TETkChNPIiJy2/Tp0/HQQw+JJ+379+/H/v37y5VLTEzE+++/j3vvvRdGoxFpaWkwGAxiT1RlBg8ejLy8PLz//vswGo3Izs526F2xd8cdd5Tr7bH54IMP0KBBA3z//fcwGo04e/Yszp49W66cWq3Gc889h/vvv9+t9lW3SZMmITIyEh999BGKi4uRnp4u9m7aCwoKwptvvul0DqRSqcTs2bMxceJEHD58GACwY8cO7Nixo1zZunXr4p133nGY8+eOxMREdOrUCfv374cgCOLKxv369buuxHPQoEF49913xR63tm3bulz91d6oUaMQGhqKN954A1qtFlqt1mX8jBgxAm+++WaVzk/1xGuvvYYdO3aIyfW0adOwcuVKqFQqyGQyzJo1Cw8//LC4yNP27dvFiz/2unbtiilTpmDcuHEArHueluXuz+fpp59GVFQUPv74Y5SUlODy5cuYP39+ufpkMhkeeeQRTJky5ca/CCIKeEw8iYjIbVFRUVi0aBEWLFiAtWvX4uTJk9DpdFCr1YiOjkZSUhJuu+02DBw4EHK5HDfddBO2bduGkpIS/PnnnxgyZIjb7zV+/HjccsstWLx4MXbv3o2zZ89Cp9NBo9EgOjoa3bt3x5AhQypMjqRSKaZMmYKRI0di4cKF2LlzJ9LT06HT6RAUFIQmTZrg5ptvxr333iv2pvqrcePG4Y477sBvv/2G7du349y5cygoKEBQUBCaN2+OPn36YPTo0RXOs6tXrx4WLlyItWvX4s8//8TRo0dx5coVmEwm1KlTB02bNkXfvn0xYsQIhIaGetxGiUSC7777Dp9++ik2bdqE7Oxsh144T4WFhaFv3774888/AbheVMiZO++8E8nJyVi0aBG2bt2KtLQ0aLVaKBQK1K9fH126dMGoUaM83uO1qsXGxuLJJ58UL56cP38eX375pZjMNW3aFMuWLcOvv/6KTZs24cyZMygpKYFGo0H9+vXRqlUrDBo0CH369IFEIkGzZs1w+vRpnD9/Hvv27UPnzp3F9/Lk53P//feL+6nu2LEDZ8+eRX5+PlQqFeLj49GjRw/ce++9bl0IICICAInANbCJiIiIiIjIi7i4EBEREREREXkVE08iIiIiIiLyKiaeRERERERE5FVMPImIiIiIiMirmHgSERERERGRVzHxJCIiIiIiIq9i4klERERERERexcSTiIiIiIiIvIqJJxEREREREXkVE08iIiIiIiLyKiaeRERERERE5FVMPImIiIiIiMirmHgSERERERGRVzHxJCIiIiIiIq9i4klERERERERexcSTiIiIiIiIvIqJJxEREREREXkVE08iIiIiIiLyKiaeRERERERE5FVMPImIiIiIiMirmHgSERERERGRVzHxJCIiIiIiIq9i4klERERERERexcSTiIiIiIiIvIqJJxEREREREXkVE08iIiIiIiLyqv8HOS4AGpqTF6cAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.roc_utils import compute_roc_point_from_predictions\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ ")\n",
+ "\n",
+ "# Compute predictions\n",
+ "y_pred_binary = clf(X, group=group)\n",
+ "\n",
+ "# Plot the group-wise points found\n",
+ "realized_roc_points = list()\n",
+ "for idx in range(N_GROUPS):\n",
+ "\n",
+ " # Evaluate triangulation of target point as a randomized clf\n",
+ " group_filter = group == idx\n",
+ "\n",
+ " curr_realized_roc_point = compute_roc_point_from_predictions(y_true[group_filter], y_pred_binary[group_filter])\n",
+ " realized_roc_points.append(curr_realized_roc_point)\n",
+ "\n",
+ " plt.plot(\n",
+ " curr_realized_roc_point[0], curr_realized_roc_point[1],\n",
+ " color=all_group_colors[idx],\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ " )\n",
+ "\n",
+ "realized_roc_points = np.vstack(realized_roc_points)\n",
+ "\n",
+ "# Plot actual global classifier performance\n",
+ "global_clf_realized_roc_point = compute_roc_point_from_predictions(y_true, y_pred_binary)\n",
+ "plt.plot(\n",
+ " global_clf_realized_roc_point[0], global_clf_realized_roc_point[1],\n",
+ " color=global_color,\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ ")\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8db9a56",
+ "metadata": {},
+ "source": [
+ "### Compute distances between theorized ROC points and empirical ROC points"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "be73972d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Group 0: l2 distance from target to realized point := 0.091%\n",
+ "Group 1: l2 distance from target to realized point := 0.219%\n",
+ "Group 2: l2 distance from target to realized point := 0.098%\n",
+ "Global l2 distance from target to realized point := 0.021%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Distances to group-wise targets:\n",
+ "for i, (target_point, actual_point) in enumerate(zip(clf.groupwise_roc_points, realized_roc_points)):\n",
+ " dist = np.linalg.norm(target_point - actual_point, ord=2)\n",
+ " print(f\"Group {i}: l2 distance from target to realized point := {dist:.3%}\")\n",
+ "\n",
+ "# Distance to global target point:\n",
+ "dist = np.linalg.norm(clf.global_roc_point - global_clf_realized_roc_point, ord=2)\n",
+ "print(f\"Global l2 distance from target to realized point := {dist:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "### Compute performance differences\n",
+ "> assumes FP_cost == FN_cost == 1.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "6991bf75",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual accuracy: \t\t\t83.179%\n",
+ "Actual error rate (1 - Acc.):\t\t16.821%\n",
+ "Theoretical cost of solution found:\t16.805%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "from error_parity.roc_utils import calc_cost_of_point\n",
+ "\n",
+ "# Empirical\n",
+ "accuracy_val = accuracy_score(y_true, y_pred_binary)\n",
+ "\n",
+ "# Theoretical\n",
+ "theoretical_global_cost = calc_cost_of_point(\n",
+ " fpr=clf.global_roc_point[0],\n",
+ " fnr=1 - clf.global_roc_point[1],\n",
+ " prevalence=y_true.sum() / len(y_true),\n",
+ ")\n",
+ "\n",
+ "print(f\"Actual accuracy: \\t\\t\\t{accuracy_val:.3%}\")\n",
+ "print(f\"Actual error rate (1 - Acc.):\\t\\t{1 - accuracy_val:.3%}\")\n",
+ "print(f\"Theoretical cost of solution found:\\t{theoretical_global_cost:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "f2259911",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy for dummy constant classifier: 73.4%\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f\"Accuracy for dummy constant classifier: {max(np.mean(y_true==label) for label in {0, 1}):.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "b05ebc45",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Realized LP accuracy:\t 83.2%\n",
+ "Realized LP eq. odds violation: 5.0%\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import eval_accuracy_and_equalized_odds\n",
+ "lp_acc, lp_eq_odds = eval_accuracy_and_equalized_odds(y_true, y_pred_binary, group)\n",
+ "\n",
+ "print(f\"Realized LP accuracy:\\t {lp_acc:.1%}\")\n",
+ "print(f\"Realized LP eq. odds violation: {lp_eq_odds:.1%}\\n\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d590d262",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "---\n",
+ "# Plot postprocessing Pareto frontier\n",
+ "> i.e., all attainable optimal trade-offs for this predictor"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "dcf828fd",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Using `n_jobs=9` to compute adjustment curve.\n",
+ "INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13\n",
+ " 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ].\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "2aa8e5bce1c9479d935fffe7b86b2be6",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/28 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=predictor,\n",
+ " fit_data=(X, y_true, group),\n",
+ " eval_data={\n",
+ " \"fit\": (X, y_true, group),\n",
+ " },\n",
+ " fairness_constraint=\"equalized_odds\",\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ " y_fit_pred_scores=predictor(X),\n",
+ " predict_method=\"__call__\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "a789ef9f",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSgElEQVR4nO3dd3gU1f4/8Pdma3pCCQESqoQAkSoICgpcxYJYEPyKol4VUZSLDUUsyLUgYlcuFgQbYq8IIupVEVQ6BGETkpDee7K9nd8f+c3c3ZTNHHaTnQmf1/PkUXZPZs++M5n95MyZMyrGGAMhhBBCyGkkLNQdIIQQQgjpbFQAEUIIIeS0QwUQIYQQQk47VAARQggh5LRDBRAhhBBCTjtUABFCCCHktEMFECGEEEJOO1QAEUIIIeS0owl1B+To0KFDYIxBq9WGuiuEEEIIkcjpdEKlUmHMmDHttqURoFYwxqC0BbLdbneou6AolBcfyks6yooP5cWH8vKP5/ObRoBaIYz8nHnmmSHuiTROpxM1NTXo1q0bjVpJQHnxobyko6z4UF58KK/2HT16VHJbKoC6AK1Wi169eoW6G4pBefGhvKSjrPhQXnwor+CiU2BdgNvtRkNDAw2NSkR58aG8pKOs+FBefCiv4KICqAuw2+3IysqC3W4PdVcUgfLiQ3lJR1nxobz4UF7BpWJKm+3bCYRziEqZA+TxeOB0OqHVahEWRjVteygvPpSXdJQVH8qLD+XVPp7Pb5oDFCC32w2n0xnqbgAAHA5HqLugKErPS6vVQq1Wd/jrhIWFQa/Xd/jrdAWUFR/Kiw/lFVxUAJ0ixhjKyspQV1cX6q6AMQa32w21Wg2VShXq7sheV8orLi4OiYmJHfo+HA4HysrKkJiYCJ1O12Gv0xVQVnwoLz6UV3BRAXSKhOInISEBERERIf0g9Xg8cDgc0Ol0NCwqQVfIizEGi8WCiooKAEDv3r077LXcbjdMJhNNvJSAsuJDefGhvIKLCqBT4Ha7xeKne/fuoe4OACAiIiLUXVCUrpBXeHg4AKCiogIJCQkddjosPDwcw4cP75BtdzWUFR/Kiw/lFVzK/PM3xIQ5P13hQ5Qom7APymUeGiGEKIXsC6A333wTN9xwg982tbW1uP/++zF+/HhMmDAB//73v2G1Wju8b3KZP+J2u2GxWGhYVKKulFdn7IMWiwVHjhyBxWLp8NdSOsqKD+XFh/IKLlmfAvvwww/x8ssv46yzzvLbbsmSJbBarXj33XfR0NCARx55BBaLBc8++2wn9TS0VCoVNBqNbAoyuaO8+Gi1WiQkJNDS+xJQVnwoLz6UV3DJsgAqLy/H448/jj179mDAgAF+2x46dAh79+7Ftm3bMHjwYADAE088gQULFuC+++47LZYNDwsLoysCOFBefLRabYdOsu5KKCs+lBcfyiu4ZHkK7NixY9Bqtfj2228xatQov23379+Pnj17isUPAEyYMAEqlQoHDhzo6K7KgnBZt1zXtDxw4AD2798f6m6IOiuvPXv2YOjQoSgqKurQ1+lodOWJdJQVH8qLD+UVXLIsgKZPn47XXnsNycnJ7bYtLy9vURHrdDrExcWhtLQ0oH54zyOyWq3iwnkejwcej0f8APV4PD47pPA80PLDlqdta9/bWluPxwObzdZmW6DpF8dfn061bXvv1ePx4LrrrkNBQUHQcgm0rdvths1mE/9fSt5CLjxtR40ahV27diExMbFT8nY4HH73We95T06n02cegc1ma7Ot2WxGZmamuPy+zWYT/1+4HN/lcgEAXC5Xi+2211bov91uh81mE7/XYrGIk7t52gpzvIScmufC07a9DJu3NZlMyMzMhNVqbTfv5rnwtPWXYTDyFnIJRt5Wq7XNtkJeQp959lne/butXALNu3kugeTtnWFrbe12OzIzM1FXV8e1z57q/i31GHEqGQYr7+bHCB6yLIB4WK3WVk9n6PX6gO6X4na7kZWVJf47NzcXZWVlAJp+2C6XS9yp3G63z2vZ7Xbxh8IYE4sToa33D9DhcPhcwePd1uVytWjrvXqxzWaDy+UST+l498HpdLZo27wPwk4l/GJ5919oKxRXbbUV+uDdVsjF5XK12K7QVsjFX9vmGQYrb5fLhfDwcKhUqnbbtpZ3a22b522326FWq9GzZ0/xe/3l3TxDoW3zXJrnbbfbxbaVlZXIzs4W2548eRLl5eXiezEajeLBr6qqqsX+LfzB4HK5YDQaYTKZADQdZFQqFQwGAwAgPz8fJSUlYg5GoxGNjY0AgLq6OhiNRnG7hYWF4ggYYwxGoxH19fUAgIaGBhiNRvHnWlRUhMLCQvF7jUajuNCoyWSC0WgU33tpaSny8vLEtpmZmaipqQHQVLAZjUZxnygrK0Nubq7YNisrC1VVVQCajh9Go1HMuKKiAjk5OWLbnJwcVFZWitkbjUbx515ZWdkiw/r6egwfPhxqtRpGo1E8IFdXV+PEiRNi27y8vDbzrq2tRUZGhti2oKAAxcXFAJp+5u3l3VaGjY2NPnkXFxejoKBAbJuRkYHa2lpJeZ84cQLV1dUAmvYPo9Eo7v+t5d1Who2NjdBqteK+lZOTI65tZbfb291nvY/JRqMRZrMZAFBTU4PMzExJefvbZ4W8GxoaAAD19fUwGo3i75y/fVbIWzi+lJSUID8/X2ybmZnpN+/W9lmDwYABAwYgLy9PzLu8vBwnT54U22ZnZ/vdZzviGFFbW+uT9/Hjx/Htt99i586dnX6M4MJkbtmyZWz+/PltPv/EE0+wOXPmtHh84sSJ7J133jml10xPT2fp6enMYrGIj1ksFma32xljjJnNZvb333+Lz7vdbuZyuRhjjJlMJtbQ0MAaGhqYyWRijY2NrL6+njU2NorP1dfXM5PJJP5b2K7H42E2m401NjYyi8XCPB4Pc7lczOPxtLtd77ZCn9xut9h/l8sl/tu7bUpKCnv//ffZnDlzWFpaGrvsssvYjh07fNr+/PPPbO7cuWz06NHsnHPOYU8//TSzWq3i6/zyyy/sqquuYiNHjmQTJ05kDz74IKurq2Nut5ulpKSIXw8++GCrfWCMif2YO3cuS0tLYzNnzmQ//vij2Pbll19m1113HbvnnnvYmDFj2MqVKxljjB08eJDdcMMNbOzYsWzChAls2bJlrKqqStyuzWZjL730Eps6dSobOXIku+qqq9jOnTvF7WZmZrIFCxaw0aNHs3PPPZfde++9rLy8XHxvOTk57JZbbmFjx45lo0ePZjfffDPLyMgQ+//rr7/6vPdly5axuro65nK52J9//slSUlJYQUEBc7lcbOrUqeztt99md911Fxs9ejSbMGECe/LJJ5nNZhNz2blzJ7viiivEDD777DOWkpLCCgsLW/xchf3i2LFjzGq1Mrvd3uY+63a7mdlsFvdTh8PBzGaz2Fb4fqltbTab2Aez2cycTidjjDGn08nd1vtnJexXwu+Zw+HgbutyuZjZbBZzap4LT9v2Mgwk7+a5BJK3dy7ByFvIJRh5WyyWoOXtnUugeQu5BJp381wCyds7l0Dybp5LMPLmOUacPHmSrVy5kr300kudfowQPr+lUHwB9NZbb7HzzjvP5zG73c5SU1PZ1q1bT+k12wvQarWy48eP+/wgBAC4vz799FPx+z/99FMGgJ1//vk+2+3Ro4ffbdjtdp+CR6qUlBQ2evRotmnTJpaTk8Oee+45lpqayg4cOMAYY2zHjh0sNTWV/ec//2EnT55kP/30E5s8eTJbtGgRY4yx6upqlpaWxjZt2sSKiorY/v372fTp09nDDz/MGGOsoqKCpaSksHfffZc1NDSccj9effVVlpKSwp566ilWUFDAcnNz2ZEjR9iIESPYE088wbKzs9mff/7JLrnkEnbVVVeJv5iPP/44mzhxIvv+++9Zfn4+e/HFF1laWhrLyMhgpaWlYhGSnZ3Njh49yhYuXMimTZsm/oJeddVVbPny5Sw3N5dlZWWxBQsWsAsuuEDSe//rr798ipdp06axM888k7333nusoKCAff7552zo0KHsq6++Yowxdvz4cTZ8+HD27LPPspycHPbdd9+x8ePH+2yjOX/7YrDY7XZWWFgoHvxI2ygrPpQXH6XkVVdXx3bs2MF+//33Tn9tngJIlleB8Rg/fjyef/555Ofno3///gCAvXv3AgDGjRsXyq51KrfbDY3m1H6cs2fPxvXXXw8AWLp0Kfbu3YtNmzZh7NixeOutt3DhhRfizjvvBAAMHDgQjDHcddddyM7OFk/99OnTB3379kXfvn3xxhtviMO+wimg6OhoREdHn3I/BEuWLBG3c88992Do0KF47LHHAACDBw/Giy++iCuuuAK7du3CuHHj8Pnnn+Oxxx7DxRdfDAC499574fF40NDQgG3btiExMRGPPvqouP2XX34ZEydOxPbt2zF79mwUFBTgnHPOQd++faHVarFq1SqcPHkSHo8H5eXlft97ayZPnowbb7wRAJCcnIwPPvgABw8exJVXXol3330XaWlpePDBBwEAgwYNQnV1NZ5++mkpP8YOI6x8LpdVz+WMsuJDefFRSl6xsbG48MILQ92NdimuAHK73aipqUF0dDQMBgNGjRqFsWPH4t5778XKlSthsViwYsUKXHnllSG5BF44J8rD++6+V111FUwmU4t7VHmff2+NcFuEU3H22Wf7/HvMmDHYvXs3gKZz/TNnzvR5fsKECeJzl156KS677DLccccd6NmzJ84991xMnTq1zZ1/xYoV2LJli/jv22+/HXfccUe7/QCA7t27+xRRJ06cwLnnnuvzPampqYiOjkZmZia6desGp9PZ4krC+++/HwCwfv16ZGVlYcyYMT7P2+12cR7Ivffei1WrVmHz5s2YMGECpkyZgssuuwxhYWEYNmwY13sH4HO1ItBUGApzVY4fP45zzjnH5/nx48e3ua3OEh4ejrS0tFB3QxEoKz6UFx/KK7gUVwCVlpbiH//4B5555hnMnj0bKpUKa9euxb///W/cdNNN0Ov1uPjii7F8+fKQ9C8yMjKg79doNK2O5AS63fZe05vb7RYLMNbKpeLChDTh+1544QXcdddd2LlzJ/744w888MADGDduHN57770W33v33Xfj1ltvFf8dGxsrqR8AxImSgtb6Jjyu1WrbXSzM4/Fg4sSJePzxx1s8JxRa119/PS6++GL89ttv+PPPP/Hqq6/i9ddfx9dff40ePXpwvXcArU7YF96HWq32ueKLEEKUiP3/K1SBlsd1OZFvz/6/1atX+/w7KSnJZ7Y50DQy8Oqrr3Zmt2RFuBpIr9ef0t3Njx49iunTp4v/PnToEEaMGAEAGDp0KA4ePIh//vOf4vPCmj6DBw/GkSNHsHXrVjz88MMYNGgQ/vnPf+Lbb7/FAw88gOrq6hZDtd27d29z+NZfP1ozdOjQFms9ZWRkwGQyYfDgwejfvz+0Wi2OHj2K1NRUsc3cuXNx4YUXYsiQIdi2bRt69+4tFiZ1dXVYtmwZbr75ZgwZMgT/+c9/sHDhQsyePRuzZ89GeXk5zjvvPOzduxd9+/b1+955paamIj093eexQ4cOcW8n2KxWK3JycjB48OCARhpPB5QVH8qLj1LyKikpwdtvv43Y2Fjcc889oe5Om2RfABFpArkT+HvvvYdBgwYhLS0Nn376KTIzM8V5JwsWLMDdd9+NdevW4ZJLLkFeXh6efPJJTJs2DYMHD0ZOTg42b94MrVaLa665Bna7Hdu2bcOAAQMQHx8PoOmGnTk5OaitrRUf4+1Ha26++WZcd911ePLJJ3HdddehqqoKTz75JIYPH45JkyZBq9Vi/vz5eOWVV9CtWzcMGTIEn3/+ObKysvDUU08hPDwcn3zyCZYuXSrOcXr22WeRmZmJlJQUxMTE4Ndff0VBQQHuv/9+REVF4csvv4RWq0VaWhqcTme7753HLbfcgiuvvBLPP/88rr76amRnZ4uFfShv26FWqxEfH99hd5vvSigrPpQXH8oruKgA6gICvbXDtddei3fffRcnTpxAamoqNmzYII6YXHTRRXjxxRfx+uuvY926dejWrRsuu+wyLFmyBEDTKNBrr72GtWvXYvPmzQgLC8PEiROxfv16cTTqlltuwdtvv42cnBy88cYbp9SP1owaNQpvv/02Xn75ZVx55ZWIiorCBRdcgPvvv188/XXfffdBrVbj8ccfR2NjI1JTU/HWW29h6NChAIBNmzbhhRdewLx586BWqzF27Fi8//776NatG4CmeULPPvss/vnPf8JqtWLYsGF466230K9fPwBo973zSElJwdq1a/Hiiy/i3XffxcCBAzF//ny89tprIb33j06nQ9++fUP2+kpCWfGhvPgoJa/evXvjoYceCnU32qVibU2kOI0dPXoUAHDmmWe2+rzNZkNubi4GDhzYYl5KKLD/vxp0WFgY90jB0KFDxflUodSZ/Qgkr46Unp4OjUaD4cOHi49t2bIFDz/8MA4dOtTqufTO2BeFxRkNBsMpFXanE8qKD+XFh/JqX3uf394owS6g+QrMxD+55mU0GnHjjTfi559/RklJCf7880+89tprmDlzZkgnEjZfTZa0jbLiQ3nxobyCi06BdQFhYWH0FwEHueZ1zTXXoLKyEqtWrUJ5eTm6d++OmTNniqcbQ0Wv1yM1NdVnuQbSOsqKD+XFRyl5NTQ04MCBAzAYDJg0aVKou9MmKoC6AJVKdcqT4ppfURcqndmPQPLqSCqVCosXL8bixYtD3RUfarW6Q5dh6EooKz6UFx+l5NXY2IidO3ciNjZW1gWQvP4EJqfE4/HA4XDI7pSOXFFefJxOJ0pKSnxu2ktaR1nxobz4KCWvyMhIjB8/vsUitHJDBVAA5DR/XLiLMJGmq+TVGfugy+VCVVVVl8msI1FWfCgvPkrJKy4uDpdeeimmTZsW6q74RafAToEwIVUuO2FYWBgiIiJC3Q3F6Ep5CftgR06SDg8Px8iRIzts+10JZcWH8uJDeQUXjQCdArVaDbVajYaGhlB3hZzmGhoaxP2REEKIdDQCdApUKhUSEhJQWloKvV6PyMjIkK4nI8xp0el0sruySY66Ql6MMZjNZjQ0NKB3794duv9ZrVZxrSE5L78vB5QVH8qLj1LyKi4uxoYNGxAbG4u777471N1pExVApyg2NhZWqxVVVVWorKwMaV+EG8+p1WpZLewnV10lL5VKhbi4OJ8bynYEtVqNqKgoGmWSgLLiQ3nxUVJejDFZzZNtDa0E3QqelSTdbrfsZ+STrkmr1SriQEgIOb243W5YLBaEhYV1+mX7PJ/fNAIUIDnMv+gKp3Q6E+XFh/KSjrLiQ3nxUUpearUa0dHRoe5Gu+SbIJHMZrPh2LFjtDy6RJQXH8pLOsqKD+XFh/IKLhoB6gL0ej1SUlJkvzy6XFBefCgv6SgrPpQXH6Xk1djYiCNHjkCv12P8+PGh7k6bqADqApQy3CgXlBcfyks6yooP5cVHKXk1NDTg559/RmxsrKwLIDoF1gU4nU6UlZXRZGyJKC8+lJd0lBUfyouPUvKKiIjA6NGjMXz48FB3xS8qgLoApfxSyAXlxYfyko6y4kN58VFKXvHx8bjiiiswY8aMUHfFL7oMvhU8l9ERQgghRB54Pr9pBIgQQgghpx0qgLoAm82GjIwMujRSIsqLD+UlHWXFh/Lio5S8SkpK8Mwzz2DdunWh7opfVAB1ASqVCgaDQdG3dehMlBcfyks6yooP5cVHKXkxxuBwOOBwOELdFb9oDlAraA4QIYQQcmpcLhcaGhoQFhaGuLi4Tn1tmgN0mmGMwel0yv7Gc3JBefGhvKSjrPhQXnyUkpdGo0G3bt06vfjhRQVQF2C1WpGeng6r1RrqrigC5cWH8pKOsuJDefGhvIKLVoLuAvR6Pc444wzZL48uF5QXH8pLOsqKD+XFRyl5mUwmHDt2DHq9HqNHjw51d9pEBVAXoFarERsbG+puKAblxYfyko6y4kN58VFKXvX19di+fTtiY2NlXQDRKbAuwOl0oqKiQvarg8oF5cWH8pKOsuJDefFRSl7h4eEYMWIEUlJSQt0Vv2gEqAtwOp0oKipCVFQUtFptqLsje5QXH8pLOsqKD+XFRyl5devWDXPmzAl1N9pFl8G3gi6DJ4QQQpSHLoMnhBBCCPGDCqAuwGaz4cSJE7JfHl0uKC8+lJd0lBUfyouPUvIqKyvDCy+8gPXr14e6K37RHKAuQKVSQaPRyH55dLmgvPhQXtJRVnwoLz5KycvtdsNkMkGtVoe6K37RHKBW0BwgQggh5NQ4nU7U1NQgLCwMPXv27NTX5vn8phGgLoAxBo/Hg7CwMNn/ZSAHlBcfyks6yooP5cVHKXlptVr06tUr1N1oF80B6gKsVisOHz5My6NLRHnxobyko6z4UF58KK/gohGgLkCn02HQoEHQ6XSh7ooiUF58KC/pKCs+lBcfpeRlNptx4sQJ6HQ6jBgxItTdaRMVQF2ARqNBfHx8qLuhGJQXH8pLOsqKD+XFRyl51dXV4dtvv0VsbKysCyA6BdYFuFwuVFVVweVyhborikB58aG8pKOs+FBefJSSl8FgQEpKCgYOHBjqrvhFI0BdgMPhQH5+PiIiIqDR0I+0PZQXH8pLOsqKD+XFRyl5de/eHfPmzQt1N9pFl8G3QmmXwXv/COV8ZYBcUF58KC/pKCs+lBcfyqt9dBn8aYZ+EfhQXnwoL+koKz6UFx/KK7hoDlAXYLfbkZ2dDbvdHuquKALlxYfyko6y4kN58VFKXuXl5Xj11VfxzjvvhLorftEIECGEEEKCxuVyoba2Fh6PJ9Rd8YvmALVCaXOACCGEELlwOBwoLy+HRqNB7969O/W1aQ7QaYYmxvGhvPhQXtJRVnwoLz5KyUun0yE5OTnU3WgXzQHqAqxWKw4ePEjLo0tEefGhvKSjrPhQXnwor+CiEaAuQKfToX///rJfHl0uKC8+lJd0lBUfyouPUvKyWCw4efIktFothg4dGurutIkKoC5Ao9GgR48eoe6GYlBefCgv6SgrPpQXH6XkVVtbiy+++AKxsbGyLoDoFFgXIMy4l/vy6HJBefGhvKSjrPhQXnyUkpder8eAAQNkPw+ICqAuwOFw4OTJk3A4HKHuiiJQXnwoL+koKz6UFx+l5NWjRw/cdNNNuPrqq0PdFb/oMvhWKO0yeMYYPB4PwsLCZH1lgFxQXnwoL+koKz6UFx/Kq310GfxpRqVSQa1Wh7obikF58aG8pKOs+FBefCiv4KJTYF2A3W7HyZMnZb88ulxQXnwoL+koKz6UFx+l5FVRUYHXX38dmzZtCnVX/KIRoC6AMQaXywU6mykN5cWH8pKOsuJDefFRSl5OpxMVFRWyL9RkOQfI4/Fg7dq1+Oyzz9DY2Ijx48djxYoVbc4or66uxqpVq7B7924wxnDOOefgoYceQq9evU7p9ZU2B4gQQgiRC7vdjuLiYmg0GvTr169TX5vn81uWp8DWrVuHzZs348knn8THH38Mj8eDBQsWtDnz/Z577kFJSQneeecdvPPOOygpKcFdd93Vyb0mhBBCiF6vx6BBgzq9+OEluwLI4XBg48aNWLJkCaZOnYrU1FS89NJLKCsrw44dO1q0b2howN69e3Hbbbdh2LBhGD58OBYuXIijR4+irq6u899ACFgsFhw8eBAWiyXUXVEEyosP5SUdZcWH8uJDeQWX7AqgjIwMmM1mTJo0SXwsJiYGw4cPx759+1q0NxgMiIyMxNdffw2TyQSTyYRvvvkGAwcORExMTGd2PWS0Wi2SkpKg1WpD3RVFoLz4UF7SUVZ8KC8+SsnLZrMhMzMTJ0+eDHVX/JJdAVRWVgYA6N27t8/jCQkJ4nPedDodVq9ejb179+Kss87C+PHjceTIEaxfvx5hYYG9Pe8bzlmtVvEUnMfjgcVigdvtBtA04cu7IrfZbOLkL8YYd1thlU+XywWLxSJOeLPb7a221Wq16NatG5xOp09bm80mvo7FYoHT6QQAuN3uFtttr63H4wHQNELXPBeetlIzDDRvIcPW2no8HiQkJECj0bSbd/NceNr6yyWQvJvnEoy8bTZbm20BICoqSjzoStlnpfxseDIMNG/vXALN2zvD5m0ZY0hISIBarZbVMeJUM+zoYwRjDNHR0eK+JZdjRCAZduQxQqvVonv37nA6nbI6RjRvW1paio8//hjffvttpx8jeMiuABJ+OM1v9qbX61udUc4Yg9FoxJgxY/Dhhx/ivffeQ58+fXDnnXfCZDKdcj/cbjeysrLEf+fm5ooFmMPhgNFoFMOurq7GiRMnxLZ5eXkoLS0F0PRDMRqNYl9qa2uRkZEhti0oKEBxcTGApp3KaDSisbERAFBXVwej0Si2LSwsRGFhofhvo9GIuro6uN1ulJeXw2g0ijt6cXExCgoKxLYZGRmora0FAJhMJhiNRnEnKy0tRV5entj2xIkTqK6uBtC0gxmNRnHHLysrQ25urtg2KysLlZWVAJp2ZKPRKO6glZWVyMnJEdvm5OSgoqICQNOObDQaxZ93VVVVm3k7nU4YjUaYzWYAQE1NDTIzMyXl3VaG9fX14nYbGhoAAPX19TAajeIvW1FRUat5A0BjYyOMRqN4ACgpKUF+fr7YNjMz02/ezTOsqqoC0LT/e+ddXl7u81dUdna237yzs7PFtidPnkR5eTmA/+2z/vJuK8Pq6mpkZGSI7zU/Px8lJSUAmn5P2ttni4qKAPzvd7W+vh5A0+lr733WX97t7bOZmZmoqakBAJjNZhiNRvHA2No+2zxv4dhSUVHRYp/1l3drGdbX14tt5XKMAP63z8rpGFFeXo6srCxx35LLMULYZ4W85XKMcLvdqKyslN0xora21ifvyspK9OjRA4mJiZ1+jODCZGb79u0sJSWFWa1Wn8eXLFnC7rjjjhbtt27dys466yzW2NgoPlZXV8fGjBnD3nnnnVPqQ3p6OktPT2cWi0V8zGKxMLvdzhhjzO12M7PZzFwuF2OMMYfDwcxms9jWarUym83GGGPM4/Fwt3U6nYwxxpxOJzObzczj8TDGGLPZbK22NZvNbP/+/ayqqsqnrXeGZrOZORwOxhhjLperxXbba+t2uxljjNnt9ha58LSVmmGgeQsZtta2traW7d+/n5lMpnbzbp4LT1t/uQSSd/NcgpG31Wpts219fT3bv3+/2F7KPivlZ8OTYaB5e+cSaN7eGTZvW1dXx/bv388aGxtldYw41Qw7+hgh5CW8X7kcIwLJsCOPEd7HejkdI04lw2Dl3fwYIXx+SyG7y+DT09Mxd+5c/Pjjjz4zyOfNm4ehQ4di5cqVPu2feOIJ/P333/j00099Hr/66qsxcuRIPP7449x9UNpl8Oz/rw2h0WhoeXQJKC8+lJd0lBUfyosP5dW+Tr8M3uFwYNiwYfj6668D3lZqaiqioqKwZ88e8bGGhgYcP34c48ePb9E+MTER+fn5PqfHLBYLioqKMGDAgID7owQqlQparZZ+ISSivPhQXtJRVnwoLz6UV3AFbQ5QsAaSdDod5s+fj+effx4///wzMjIycO+99yIxMREzZswQz4EK5zSvvPJKAE1rAWVkZCAjIwP33Xcf9Ho9Zs+eHZQ+yZ3dbkdeXp7sV92UC8qLD+UlHWXFh/Lio5S8KisrsWHDBnzyySeh7opfspsEDQBLlizBnDlz8Oijj2LevHlQq9XYsGEDtFotSktLMXnyZGzbtg1A09VhmzdvBmMMN910E26++WZotVps3rwZ0dHRIX4nnYMxBpvNJvvl0eWC8uJDeUlHWfGhvPgoJS+Hw4GioiJx0rRcBWUOkMPhwMiRI7F69WpxREbJlDYHiBBCCJELq9WKgoICaDQaDB48uFNfm+fzm26GSgghhJCgCQ8Px9ChQ0PdjXbJ8hQY4WOxWHD48GFaHl0iyosP5SUdZcWH8uJDeQUXjQB1AVqtFomJibJfHl0uKC8+lJd0lBUfyouPUvKy2+0oKSmBRqNBcnJyqLvTJhoB6gKU8kshF5QXH8pLOsqKD+XFRyl5VVVV4f3338cXX3wR6q74FVAB9Oabb+KFF17weWz//v1YuHAhDdF1IrfbjcbGRp97N5G2UV58KC/pKCs+lBcfpeSl1WqRkJCAHj16hLorfgVUAOn1eqxfvx6rVq2CSqXCX3/9hdtuuw0OhyPgG5ES6ex2O06cOCH7tSHkgvLiQ3lJR1nxobz4KCWvhIQELFq0CPPnzw91V/wK+DL4Dz/8EE899ZT473POOQfr1q2DXq8PuHOhorTL4D0eDxwOB3Q6HRWeElBefCgv6SgrPpQXH8qrfZ16Gfz1118PrVaLxx9/HOeffz5effXVFndyJx0rLCwMBoMh1N1QDMqLD+UlHWXFh/LiQ3kFV1BKyGuuuQY7duzAa6+9RsVPCDgcDhQUFMDhcIS6K4pAefGhvKSjrPhQXnyUkpdSJkEH7TJ4OV/q1tW53W6YTCbZT4yTC8qLD+UlHWXFh/Lio5S87HY7cnNzERsbG+qu+BWUW2F0NUqbA0QIIYTIhcViQU5ODnQ6XaevCE23wiCEEEJISERERChiAIGmkXcBVqsV6enpsFqtoe6KIlBefCgv6SgrPpQXH8oruGgEqAvQaDTo0aMHNBr6cUpBefGhvKSjrPhQXnyUkpfD4UBFRQXUajV69+4d6u60iUaAugCtVos+ffrIfnl0uaC8+FBe0lFWfCgvPkrJq7KyEhs2bMAnn3wS6q74RQVQF+B2u2E2m2V/ZYBcUF58KC/pKCs+lBcfpeSl0WgQFxcn+6vAqADqAux2OzIyMmS/PLpcUF58KC/pKCs+lBcfpeTVq1cv3H333bj55ptD3RW/gnIZfH19PaxWKzweT4vn+vTpE+jmO53SLoP3eDyw2WwwGAy0PLoElBcfyks6yooP5cWH8mpfp10Gn5+fj2XLluHIkSNttjEajYG8BJEgLCwMERERoe6GYlBefCgv6SgrPpQXH8oruAIqgJ588knk5eVh8eLFSExMpIo0RBwOByorK9GzZ0+6FYkElBcfyks6yooP5cVHKXlVV1djx44diIyMxOWXXx7q7rQpoAJo3759ePrpp3HZZZcFqz/kFLjdbtTW1qJbt26h7ooiUF58KC/pKCs+lBcfpeRls9lw4sQJ2U+CDqgAioqKkv0bPB2Eh4cjLS0t1N1QDMqLD+UlHWXFh/Lio5S84uLiMGvWLFmPUgEBXgV2xRVX4MMPPwTdTowQQgghABAZGYmxY8fKvlgLaAQoPDwcBw4cwIUXXogzzzwTBoPB53mVSoVVq1YF1EHSPqvVipycHAwePBjh4eGh7o7sUV58KC/pKCs+lBcfyiu4AiqAvvrqK0RHR8Pj8bR6JZhKpQpk80QitVqNuLg4qNXqUHdFESgvPpSXdJQVH8qLj1LycjqdqKmpgVqtRo8ePULdnTYFZR2grkZp6wARQgghclFcXIy3334bsbGxuOeeezr1tXk+v+m69S7A4/G0uRAlaYny4kN5SUdZ8aG8+Cglr7CwMERGRsp+zaKg3FJ2586d2Lt3LxoaGhAfH49x48bhvPPOC8amiQQ2mw1GoxHDhg2T/Q4nB5QXH8pLOsqKD+XFRyl59e7dG0uXLg11N9oV0Ckwh8OBO++8E7t27YJarUZ8fDxqa2vh8XgwceJEvPnmm7K/DK41SjsF5na7YbVaER4eLvtzw3JAefGhvKSjrPhQXnwor/Z12imw1157DQcOHMCaNWuQnp6OXbt24ciRI3jmmWdw+PBhvP7664FsnkikVqsRFRVFvxASUV58KC/pKCs+lBcfyiu4AiqAvvvuOyxevBiXX365+APRaDS48sorsXjxYmzZsiUonST+OZ1OlJaWwul0hrorikB58aG8pKOs+FBefJSSV01NDb744gts27Yt1F3xK6ACqKamBsOHD2/1ueHDh6O8vDyQzROJnE4nKioqZP9LIReUFx/KSzrKig/lxUcpeVmtVvz99984ceJEqLviV0CToPv164cDBw5g0qRJLZ7bt28fevfuHcjmiUQREREYNWpUqLuhGJQXH8pLOsqKD+XFRyl5xcbG4uKLL5b9HOCACqBrr70Wq1evhsFgwMyZM9GjRw9UVVXhu+++w/r167F48eJg9ZMQQgghChAVFYWzzz471N1oV0AF0Lx583D8+HE8//zzeOGFF8THGWO46qqrsHDhwoA7SNpntVqRm5uLgQMH0vLoElBefCgv6SgrPpQXH8oruAIqgMLCwvD000/jlltuwd69e1FfX4/Y2FhMmDABgwcPDlYfSTvoygA+lBcfyks6yooP5cVHKXm5XC40NjYiLCwMsbGxoe5Om7jXAVq+fDnuvPNOJCcnY/ny5f43rtCboSptHSBCCCFELpRyKwzuEaA9e/bgpptuEv/fH7oZaufweDxwOp3QarUIC6O7m7SH8uJDeUlHWfGhvPgoJS+VSgWdTgetVhvqrvhFN0NthdJGgCwWiyKWR5cLyosP5SUdZcWH8uJDebWv01aC3rdvH8xmc6vPNTQ0YOvWrYFsnkik1+sxZMgQ6PX6UHdFESgvPpSXdJQVH8qLD+UVXAEVQDfeeCNycnJafe748ePtzhEiwaFWqxETEyP7iXFyQXnxobyko6z4UF58KK/g4p4DtGzZMpSWlgJoutx95cqViIqKatEuLy8PPXr0CLyHpF1OpxM1NTXo1q2b7M+5ygHlxYfyko6y4kN58VFKXrW1tdi5cyciIiJw4YUXhro7beIeAbrooovAGIP31CHh38JXWFgYRo8ejWeeeSaonSWtczqdKCkpkf3y6HJBefGhvKSjrPhQXnyUkpfFYsHhw4dx7NixUHfFr4AmQd9www1YuXJll1vzR2mToAkhhBC5aGxsxOHDh6HX6zFhwoROfe0OvQze2wcffAAAqK6uhsPhEEeFPB4PrFYr9u/fj3nz5gXyEoQQQghRkOjoaEyZMiXU3WhXQAVQRkYGli5d2uZEaJVKRQVQJ7DZbMjLy8OAAQNgMBhC3R3Zo7z4UF7SUVZ8KC8+lFdwBVQArVmzBvX19Vi2bBl++eUX6HQ6TJs2DTt37sTOnTvx/vvvB6ufxA+VSgWDwUALT0pEefGhvKSjrPhQXnyUkpfb7YbVaoVKpUJkZGSou9OmgOYAjRs3DsuXL8ecOXPwySefYMuWLdi0aRMAYMmSJVCpVHjllVeC1tnOQnOACCGEkFOjlFthBLQOkMPhwIABAwAAAwYMQEZGhvjc7Nmzcfjw4UA2TyRijMHpdIIW9ZaG8uJDeUlHWfGhvPhQXsEVUAHUp08fFBYWAmgqgEwmE4qKigAAOp0O9fX1gfeQtMtqtSI9PR1WqzXUXVEEyosP5SUdZcWH8uKjlLz69u2Lxx9/vNNHf3gFVADNmDEDL7zwAn744Qf06tULgwYNwssvv4zMzExs3LgRycnJweon8UOn02Hw4MHQ6XSh7ooiUF58KC/pKCs+lBcfyiu4ApoDZLfb8cADD8BqtWL9+vX4/fffsXjxYjgcDqjVarz44ouYMWNGMPvbKWgOECGEEKI8PJ/fQbkbvNPpFJflLiwsxN9//40RI0agX79+gW46JJRWADmdTtTV1SEuLk7Wy6PLBeXFh/KSjrLiQ3nxUUpedXV1+PPPP2EwGDBt2rROfe1OmwQt8P5BJCcn45JLLlFs8aNETqcTBQUFsl8eXS4oLz6Ul3SUFR/Ki49S8jKbzdi7dy+OHDkS6q74xT0CtHbtWukbV6lw1113cXcq1JQ2AkQIIYTIRUNDA/bv3w+DwYBzzjmnU1+7Q0+BpaamSm6rUqlgNBp5Ng+g6VYaa9euxWeffYbGxkaMHz8eK1asaHNStdPpxKuvvoqvv/4ajY2NSEtLwyOPPIJhw4ZxvzZABRAhhBCiRB16LzDvtX46yrp167B582asXr0aiYmJeO6557BgwQJs2bKl1dnvK1euxK+//orVq1ejT58+eOWVV3Dbbbfh+++/R3R0dIf3N9RsNhsKCwuRnJxMy6NLQHnxobyko6z4UF58KK/gCuhWGIKdO3di7969aGhoQLdu3TBu3LhTvhGaw+HAxo0bsXTpUkydOhUA8NJLL2HKlCnYsWMHLrvsMp/2hYWF+OKLL/DGG2+Ir/nUU0/hyiuvxN9//41JkyYF9N6UQKVSISwsTPbLo8sF5cWH8pKOsuJDefFRSl4ejwdOpxMqlUrWl+wHVAA5HA7ceeed2LVrF9RqNeLj41FbW4s333wTEydOxJtvvsn95jMyMmA2m30Kl5iYGAwfPhz79u1rUQDt3r0b0dHROO+883za//e//w3krSmKXq/H4MGDQ90NxaC8+FBe0lFWfCgvPkrJq7S0NGS3wuAR0FVgr732Gg4cOIA1a9YgPT0du3btwpEjR/DMM8/g8OHDeP3117m3WVZWBgDo3bu3z+MJCQnic95yc3ORnJyMHTt2YPbs2Tj33HNx2223tXmHeh7eq21arVY4HA4ATdWtxWKB2+0G0DQHyWKxiG1tNhvsdjuApqXLedu6XC4AgMvlgsViEZc9t9vtrbZljMFut8NsNvu0tdls4utYLBbxygG3291iu+219Xg8AJqK3ua58LSVmmGgeQsZttbWZrPB7XaL2/WXd/NceNr6yyWQvJvnEoy8bTZbm20dDgcaGxvF9ypln5Xys+HJMNC8vXMJNG/vDJu3tdvtcLvd4nblcow41Qw7+hhht9thMpnE15HLMSKQDDvyGMEYg8PhgNlsltUxonlboZ2/DIOVd/NjBI+ACqDvvvsOixcvxuWXXw61Wg0A0Gg0uPLKK7F48WJs2bKFe5vCD6f5yJFerxdD8mYymZCfn49169bhvvvuw+uvvw6NRoPrrrsO1dXVp/CumrjdbmRlZYn/zs3NFQswh8MBo9Eohl1dXY0TJ06IbfPy8lBaWgqg6YdiNBphMpkAALW1tT7zqAoKClBcXAygaacyGo1obGwE0LSWgvck8sLCQvHWIwBgNBpRV1cHq9WKv//+GxkZGeKOXlxcjIKCArFtRkYGamtrxcyMRqO4k5WWliIvL09se+LECTE7i8UCo9Eo7tBlZWXIzc0V22ZlZaGyshJA045sNBrFHbSystKnEM3JyUFFRQWAph3ZaDSKP++qqqo283Y6nTAajTCbzQCAmpoaZGZmSsq7tQwLCgpw+PBh8b01NDQAAOrr62E0GsVftqKiolbzBoDGxkYYjUbxAFBSUoL8/HyxbWZmpt+8m2dYVVUFoGn/9867vLwcJ0+eFNtmZ2f7zTs7O1tse/LkSZSXlwP43z7rL++2MqyoqMCJEyfE783Pz0dJSQmApt+T9vZZ4fY4jDEYjUbxFjkNDQ0wGo3iPusv7/b22czMTNTU1ABougTXaDSKB8bW9tnmeQvHloqKihb7rL+8m2dYXFyMw4cPi/uHXI4RwP/2WTkdI0pLS5GZmSnuW3I5Rgj7rJC3XI4RVqsVR48eRUZGhqyOEbW1tT552+12XHfddVi8eHGnHyO4sACMHDmS/fHHH60+98cff7C0tDTubW7fvp2lpKQwq9Xq8/iSJUvYHXfc0aL9ihUrWEpKCsvOzhYfs1qtbMKECWz9+vXcr88YY+np6Sw9PZ1ZLBbxMYvFwux2O2OMMbfbzcxmM3O5XIwxxhwOBzObzT6vb7PZGGOMeTwe7rZOp5MxxpjT6WRms5l5PB7GGGM2m63Vtk6nk1VUVLD6+nqftt4Zms1m5nA4GGOMuVyuFtttr63b7WaMMWa321vkwtNWaoaB5i1k2Fpbk8nEqqurxef85d08F562/nIJJO/muQQjb6vV2mZbi8XCSkpKxPcuZZ+V8rPhyTDQvL1zCTRv7wybtzWbzay6uprZ7XZZHSNONcOOPkZYLBZWWloq9lEux4hAMuzIY4TT6WSVlZWsvr5eVseIU8kwWHk3P0YIn99SBLQS9KxZs3DRRRdh8eLFLZ579dVX8d1332HHjh1c20xPT8fcuXPx448/+iymOG/ePAwdOhQrV670af/6669j7dq1OHbsmM/jc+bMQVpaWov2UtBl8IQQQojydNpK0Ndeey3efPNNvP322ygtLYXT6URpaSnWr1+P9evX4+qrr+beZmpqKqKiorBnzx7xsYaGBhw/fhzjx49v0X78+PFwuVzimwb+d6lg//79T+2NKYzL5UJ1dbU4fEr8o7z4UF7SUVZ8KC8+SsmroaEBP/30E3bt2hXqrvgVUAE0b948XH755Xj++ecxffp0jBw5EtOnT8cLL7yAyy67DAsXLuTepk6nw/z58/H888/j559/RkZGBu69914kJiZixowZcLvdqKysFM9pnnXWWTjnnHOwbNky7N+/H9nZ2XjwwQehVqtxxRVXBPL2FMPhcCAvL89n4hlpG+XFh/KSjrLiQ3nxUUpejY2N2L17N/bv3x/qrvgVlJuhZmdni+sAxcbGYsKECQFdqud2u/Hiiy/iyy+/hM1mE1eCTkpKQlFREf7xj3/gmWeewezZswE0TX56/vnnsX37dthsNowdOxYPP/wwzjjjjFN6faWdAmOMgTEGlUol+/Uh5IDy4kN5SUdZ8aG8+Cglr/r6evz1118wGAw4//zzO/W1O/1u8F2N0gogQgghhHTwrTCWL1+OO++8E8nJyVi+fLnftiqVCqtWreJ9CcLJbrejqKgISUlJ0Ov1oe6O7FFefCgv6SgrPpQXH8oruLgLoD179uCmm24S/98fOQ/RdSWMMXg8HtBgnjSUFx/KSzrKig/lxUcpeXn3T851QECnwNxut7gAYldCp8AIIYSQU1NcXByyW2F02mXwkydPxlNPPeVzCTohhBBCiNwFVABddtll+OGHH3DNNdfg4osvxhtvvCEu2U46j8ViwYEDB7jvg3K6orz4UF7SUVZ8KC8+Ssmrd+/eeOCBB3D77beHuit+BXwVGGMMf/31F7Zu3Yoff/wRjY2NGDt2LK644gpcfPHFiI6ODlZfO43SToG5XC7U1dUhLi4OGg33tK7TDuXFh/KSjrLiQ3nxobzaF7LL4J1OJ3bv3o2tW7fi+++/h0ajweHDh4O1+U6jtAKIEEIIIZ04B8iby+XCrl27sG3bNuzcuRMAMGnSpGBtnvjhcrlQW1sr++XR5YLy4kN5SUdZ8aG8+Cglr8bGRvz222/tXikeagEVQIwx/Pnnn3j00Udx7rnnYtGiRcjLy8OSJUvw+++/4/XXXw9WP4kfDocDJ0+elP3y6HJBefGhvKSjrPhQXnyUkldDQwN+/fVX/Pnnn6Huil8BnQKbPHkyqqur0adPH1x++eW44oorMGDAgCB2LzSUdgqMMSYuSSDnNRfkgvLiQ3lJR1nxobz4KCWvuro6/P777wgPD8cFF1zQqa/doStBe5s+fTouv/xynHXWWYFshgRIpVLRhDgOlBcfyks6yooP5cVHKXnFxcVh1qxZoe5GuwI6BfbEE09Q8SMDdrsdubm5sNvtoe6KIlBefCgv6SgrPpQXH8oruII2CZqEDmMMDodD9sujywXlxYfyko6y4kN58aG8govuBt8Kpc0BIoQQQuSipKQE77zzDmJiYvCvf/2rU187JJfBE0IIIYQwxuByueB2u0PdFb+oAOoCLBYLDh06JPvl0eWC8uJDeUlHWfGhvPgoJa9evXrhnnvuwS233BLqrvgV8HRyk8kEs9mMXr16wel04oMPPkBJSQkuuugijB8/Phh9JO3QarXo27cvtFptqLuiCJQXH8pLOsqKD+XFRyl5aTQaxMbGhrob7QpoBOjIkSOYNm0aNm3aBAB46qmnsGbNGnz77be46aab8PPPPwelk8Q/rVaLhIQE2f9SyAXlxYfyko6y4kN58aG8giugAujll1/G4MGDcc0118BqteKbb77Bddddh71792LOnDl44403gtVP4ofb7UZ9fb3sz7fKBeXFh/KSjrLiQ3nxUUpeJpMJf/75Jw4cOBDqrvgV8AjQokWLkJycjN27d8Nut+OKK64AAFx66aXIysoKSieJf3a7HdnZ2bQ2hESUFx/KSzrKig/lxUcpedXX12PHjh34/fffQ90VvwKaAxQWFga9Xg8A+P333xETE4ORI0cCaKoADQZD4D0k7TIYDDjzzDMVsUKoHFBefCgv6SgrPpQXH6XkFRERgZEjRyI8PDzUXfEroBTT0tLw2WefwWAwYPv27Zg6dSpUKhWqq6uxfv16pKWlBaufxI+wsDDodLpQd0MxKC8+lJd0lBUfyouPUvKKj4/HVVddFeputCugU2BLly7FH3/8gWuvvRZqtRqLFi0CAFx22WXIy8vDPffcE4w+knY4HA7k5+fL/g7BckF58aG8pKOs+FBefCiv4Ap4BOjHH39ETk4OhgwZgoiICADAypUrMXbsWPTs2TMonST+eTweWCwWeDyeUHdFESgvPpSXdJQVH8qLD+UVXNy3wigpKeF6gT59+nC1lwO6FQYhhBByakpLS/HBBx8gJiYGd9xxR6e+Ns/nN/cI0PTp06FSqSS3NxqNvC9BCCGEEIXyeDywWq2yn6/EXQCtWrVKLIDq6+vx/PPPY9KkSbjkkkvQs2dP1NXV4b///S9+/fVXPPTQQ0HvMGnJYrEgKyvL5zQkaRvlxYfyko6y4kN58VFKXgkJCbjzzjsRFibvu21xF0CzZ88W//+uu+7ClVdeiaeeesqnzaxZs/D000/j+++/x//93/8F3kviF60Oyofy4kN5SUdZ8aG8+CglL61Wq4g5wAGVZ7t378Yll1zS6nNTp07FoUOHAtk8kUir1aJ3796y/6WQC8qLD+UlHWXFh/LiQ3kFV0AFUHx8PNLT01t97q+//kKvXr0C2TyRyO12w2QyyX55dLmgvPhQXtJRVnwoLz5KyctsNmP//v1t1gdyEVABNHfuXPznP//BSy+9hEOHDiEvLw/79+/HU089hY0bN+Kmm24KVj+JH3a7HZmZmbJfHl0uKC8+lJd0lBUfyouPUvKqq6vD1q1b8d///jfUXfGL+zJ4b4wxrFmzBh988IFYkTLGYDAYcOedd2LhwoVB62hnUtpl8B6PBw6HAzqdTvaTzuSA8uJDeUlHWfGhvPgoJa/q6mr89NNPiIiIwKxZszr1tXk+vwMqgASNjY04fPgw6uvrER8fjzFjxsh6hnp7lFYAEUIIIaSD1wFqayHEwYMHi/9fV1eHuro6AMpcCFFpHA4HysvL0atXL9mvuyAHlBcfyks6yooP5cWH8gouWgixC3C73WhoaECPHj1C3RVFoLz4UF7SUVZ8KC8+lFdwcZ8C+/LLL7kWQlTiOkB0CowQQgg5NWVlZfjoo48QExODW2+9tVNfu0NPgdFCiIQQQghpizBSxXO2KBRoIcQuwGq14ujRo7BaraHuiiJQXnwoL+koKz6UFx+l5NWzZ0/cdtttmDdvXqi74hcthNgFqNVqdOvWDWq1OtRdUQTKiw/lJR1lxYfy4qOUvHQ6Hfr06SP7GoD7FJg3YSFEm82GqVOnIj4+HlVVVdi+fTs++ugjPPzww8HqJ/FDp9Ohb9++oe6GYlBefCgv6SgrPpQXH8oruAIqgBYtWoTGxkZs2LABb731FoD/LYR499134/rrrw9KJ4l/Ho8HNpsNBoNB1otjyQXlxYfyko6y4kN58VFKXsJd63U6HYYNGxbq7rQpoAJIpVJh2bJluPPOO7vUQohKY7PZYDQaMWzYMMpdAsqLD+UlHWXFh/Lio5S8amtr8fXXXyM2NrbrFkCC6OhoTJkyJRibIqfAYDBg2LBhMBgMoe6KIlBefCgv6SgrPpQXH6XkpdfrMXjwYERGRoa6K34F5VYYO3fuxN69e9HQ0ID4+HiMGzcO5513XjD6FxK0DhAhhBCiPB26DpA3h8OBO++8E7t27YJarUZ8fDxqa2vx1ltvYeLEiXjzzTdpue5O4HA4UFlZiZ49e1LeElBefCgv6SgrPpQXH8oruAKaRfXaa6/hwIEDWLNmDdLT07Fr1y4cOXIEzzzzDA4fPozXX389WP0kfrjdbtTU1MDtdoe6K4pAefGhvKSjrPhQXnwor+AK6BTYtGnTMH/+/FaXut6wYQM++ugj/PTTTwF1MBToFBghhBByasrLy/H5558jOjoaN954Y6e+dqedAqupqcHw4cNbfW748OEoLy8PZPOEEEIIURiXy4Wqqio4nc5Qd8WvgE6B9evXDwcOHGj1uX379qF3796BbJ5IZLVacezYMdkvjy4XlBcfyks6yooP5cVHKXn16NED//znPzFnzpxQd8WvgEaArr32WqxevRoGgwEzZ85Ejx49UFVVhe+++w7r16/H4sWLg9VP4odarUZMTIzsl0eXC8qLD+UlHWXFh/Lio5S89Ho9+vfvH+putCugOUAejwePPfYYvvjiC5+7vjLGcNVVV2HVqlWyvxtsa2gOECGEEKI8PJ/fQVkHKCcnB3v37kV9fT1iY2MxYcIEDB48ONDNhozSCiCPxwOHwwGdTifr5dHlgvLiQ3lJR1nxobz4KCUvq9WKvLw8aDQaDBkypFNfm+fzOygJDh48GPPmzcMdd9yBefPmKbr4USKbzYZjx47BZrOFuiuKQHnxobyko6z4UF58lJJXTU0NPv30U2zdujXUXfErKLfCIKGl1+sxdOhQ6PX6UHdFESgvPpSXdJQVH8qLj1Ly0ul06Nev3+lxK4yuRmmnwAghhBASglNgwebxePDqq69iypQpGD16NG677TYUFhZK+t5vv/0WQ4cORVFRUQf3Uj6cTidKS0tlv+aCXFBefCgv6SgrPpQXH8oruGRZAK1btw6bN2/Gk08+iY8//hgejwcLFiyAw+Hw+33FxcV44oknOqmX8uF0OlFRUUG/FBJRXnwoL+koKz6UFx/KK7i4T4GVlJRwvUCfPn242jscDkycOBFLly7FddddBwBoaGjAlClT8PTTT+Oyyy5r9fs8Hg/mz58PrVaLv/76Cz///DOSkpK4XltAp8AIIYSQU1NZWYmvvvoKUVFR4ud4Z+nQW2FMnz6da20fo9HItf2MjAyYzWZMmjRJfCwmJgbDhw/Hvn372iyA3njjDTidTixevBh//fUX12sSQgghJDiEU3WxsbGh7opf3KfAVq1aJX4tW7YMarUakydPxtNPP4233noLa9aswcUXXwyDwYCVK1dyd6isrAwAWtxGIyEhQXyuufT0dGzcuBHPPfdcUFfI9F5u3Gq1iqfgPB4PLBaLeEdep9MJi8UitrXZbLDb7QCaFoXkbetyuQA03U/FYrFAGKSz2+2ttrXZbDh+/Dhqa2t92npfKmmxWMRhU7fb3WK77bX1eDwAmkbomufC01ZqhoHmLWTYWtuGhgYYjUZYrdZ2826eC09bf7kEknfzXIKRt81ma7OtyWTyufRWyj4r5WfDk2GgeXvnEmje3hk2b9vY2Aij0QiLxSKrY8SpZtjRx4jGxkaffUsux4hAMuzIY4T3sV5Ox4jmbSMjIzF37lxcccUVnX6M4MFdAM2ePRtXXXUVrrrqKuzbtw9XXnkl1q9fj9mzZ2PKlCmYNWsWXnrpJcyZMwfff/897+bFH45Op/N5XK/XiyF5s1gsWLp0KZYuXYoBAwZwv15b3G43srKyxH/n5uaKBZjD4RAPcgBQXV2NEydOiG3z8vJQWloKoOmHYjQaYTKZAAC1tbXIyMgQ2xYUFKC4uBhA005lNBrR2NgIAKirq/MZQSssLPSZDG40GlFXV4ewsDBoNBqcPHlS3NGLi4tRUFAgts3IyEBtbS2Apg80o9Eo7mSlpaXIy8sT2544cQLV1dUAmvI1Go3ijl9WVobc3FyxbVZWFiorKwE07chGo1HcQSsrK5GTkyO2zcnJQUVFBYCmHVkoQgCgqqqqzbydTieMRiPMZjOApjUmMjMzJeXdWobl5eWIiIiASqWC0WhEQ0MDAKC+vh5Go1H8ZSsqKmo1bwDiB51wACgpKUF+fr7YNjMz02/ezTOsqqoC0LT/e+ddXl6OkydPim2zs7P95p2dnS22PXnypHhDYmGf9Zd3Wxk2NDTAZrOJC6/l5+eLp8Ldbne7+6xwQQJjDEajEfX19eJ2jUajuM/6y7u9fTYzMxM1NTUAALPZDKPRKB4YW9tnm+ctHFsqKipa7LP+8m6eYXV1NSIiIsRc5HKMAP63z8rpGFFbWwuHwyHuW3I5Rgj7rJC3XI4RYWFh0Ol0OHnypKyOEbW1tT55l5WVITw8HAMHDuz0YwQXFoBRo0axXbt2tfrcrl272MiRI7m3uX37dpaSksKsVqvP40uWLGF33HFHi/bLly9nCxcuFP/9119/sZSUFFZYWMj92oL09HSWnp7OLBaL+JjFYmF2u50xxpjb7WZms5m5XC7GGGMOh4OZzWaxrdVqZTabjTHGmMfj4W7rdDoZY4w5nU5mNpuZx+NhjDFms9m42npnaDabmcPhYIwx5nK5uNu63W7GGGN2u71FLjxtpWYYaN5CLoHm3TyXQPL2ziWQvJvnEoy8rVZrUPIWcglW3kIugebtnUugeXvnQscIOkbQMUJexwjh81uKgNYBmjZtGq655hosWrSoxXMvvPACfvjhB+zYsYNrm+np6Zg7dy5+/PFH9OvXT3x83rx5GDp0aIvTakOHDoVOp4NG0zSdye12w263Izw8HHfccQfuuOMO7veltEnQHo8HLpcLGo1G1sujywXlxYfyko6y4kN58VFKXjabDUVFRdBoNEE9MyNFh06C9jZ37lz85z//gc1mw9SpUxEfH4+qqips374dH330ER5++GHubaampiIqKgp79uwRC6CGhgYcP34c8+fPb9G+eYF15MgRPPDAA3jrrbeQkpJyam9MYYRhzmHDhiEiIiLU3ZE9yosP5SUdZcWH8uKjlLxqamrw4YcfIjY2Fvfcc0+ou9OmgAqgRYsWobGxERs2bMBbb70FoOkcnsFgwN13343rr7+ee5s6nQ7z58/H888/j27duqFv37547rnnkJiYiBkzZsDtdqOmpgbR0dEwGAzo37+/z/cL54T79OmDuLi4QN6eYuj1epxxxhmyXx5dLigvPpSXdJQVH8qLj1Ly0mq1SExMRFRUVKi74ldQboXR2NiIw4cPo76+HvHx8RgzZkxA1anb7caLL76IL7/8EjabDePHj8eKFSuQlJSEoqIi/OMf/8AzzzyD2bNnt/jePXv24MYbb6R1gAghhJDTDM/nd1AKoJycHOzevRsVFRW44YYbUFhYKJ7KUiKlFUBOpxO1tbWIj4+HVqsNdXdkj/LiQ3lJR1nxobz4UF7t67Q5QB6PBytWrMAXX3wBxhhUKhUuueQSrFu3DgUFBdi0aRMSExMDeQkigdPpRHFxMaKiouiXQgLKiw/lJR1lxYfy4kN5BVdAI0Br167F+vXrsWLFCkydOhXnnnsuvvjiC4SFheGuu+7C+PHj8eyzzwazv51CaSNAhBBCiFxUVVVhy5YtiIqKwty5czv1tTvtbvBffPEFlixZgquvvtpnwvGwYcOwZMkS7N69O5DNE0IIIURhHA6HzwKechVQAVRVVYVhw4a1+lyvXr3E1TNJx7LZbMjMzPRZIpy0jfLiQ3lJR1nxobz4KCWv+Ph4zJ07FzNnzgx1V/wKqADq378/fvvtt1af27t3b4tL1EnHUKlU0Ol0XDepPZ1RXnwoL+koKz6UFx+l5BUeHo7hw4djyJAhoe6KXwFNgr7pppuwYsUKOJ1OTJs2DSqVCvn5+dizZw82btyIhx56KFj9JH7o9XoMHDgw1N1QDMqLD+UlHWXFh/LiQ3kFV8ArQdfU1OD111/HRx99BMYY7rvvPmi1WixYsADz5s0LVj+JH4wxuN1uqNVq2f9lIAeUFx/KSzrKig/lxUcpedntdpSVlUGj0aBv376h7k6bAiqAAOD222/H9ddfj0OHDqGurg4xMTEYNWrUabMKsxwId7SW+/LockF58aG8pKOs+FBefJSSV3V1Nd59913Z3wojoDlAN954I7777jtERUVhypQpmDVrFs4//3zExcXhyJEjbU6QJsGl0+kwaNAg6HS6UHdFESgvPpSXdJQVH8qLj1LyUqvV6N69O+Lj40PdFb8CGgHau3cv9u3bh2PHjuHBBx+U9ZBcV6bRaGS/o8kJ5cWH8pKOsuJDefFRSl69evXC4sWLQ92NdgU0AgQA8+fPx+bNm3Hrrbeivr4+GH0inFwuF6qqquByuULdFUWgvPhQXtJRVnwoLz6UV3AFXADNmjUL77//Pk6cOIE5c+YgMzMTAGg0qBM5HA7k5+fD4XCEuiuKQHnxobyko6z4UF58KK/gCrgAAoBRo0bh888/R3R0NK699lps27aN7lPSiSIiIjBu3DhZT4qTE8qLD+UlHWXFh/Lio5S8qqur8eGHH+Lrr78OdVf8CkoBBACJiYnYvHkzzjvvPNx///3YsGFDsDZNCCGEEIWw2+3Izs5GXl5eqLviV9AKIAAwGAx45ZVXcOedd2Lr1q3B3DTxw2azISsrS/bLo8sF5cWH8pKOsuJDefFRSl5xcXG48sorMWPGjFB3xa+ArgJ7//33MWjQoBaP/+tf/8LQoUPxyy+/BLJ5IpFKpUJYWBjNu5KI8uJDeUlHWfGhvPgoJa+IiAiMGjUq1N1ol4oxxkLdCbk5evQoAODMM88McU8IIYQQIhXP5zf3CNDy5ctx5513Ijk5GcuXL/fbVqVSYdWqVbwvQTgxxsAYg0qlkv1fBnJAefGhvKSjrPhQXnyUkpfD4UB1dTXUajUSEhJC3Z02cRdAe/bswU033ST+vz9y/gF1JUpZHl0uKC8+lJd0lBUfyouPUvKqqqrC+vXrZX8rDO4C6L///W+r/09CR6fTYcCAAbJfHl0uKC8+lJd0lBUfyouPUvIKCwtDTEwMoqKiQt0Vv2gOUCtoDhAhhBCiPB06B2jt2rWS26pUKtx11128L0E4uVwuNDQ0ICYmBhpNQBf2nRYoLz6Ul3SUFR/Kiw/lFVxUAHUBDocDubm5GDZsGP1SSEB58aG8pKOs+FBefCiv4KJTYK1Q2ikwxhg8Ho8i1oeQA8qLD+UlHWXFh/Lio5S8ampq8NNPPyE8PByzZs3q1Nfu0FNgramurobD4YBQS3k8HlitVhw4cADXXnttMF6C+KFSqaBWq0PdDcWgvPhQXtJRVnwoLz5Kyctms8FoNCI2NjbUXfEroAIoIyMDS5cuRU5OTqvPq1QqKoA6gd1uR1FREZKSkqDX60PdHdmjvPhQXtJRVnwoLz5KySs2NhaXXnqp7K9WC6gAWrNmDerr67Fs2TL88ssv0Ol0mDZtGnbu3ImdO3fi/fffD1Y/iR/CsCidzZSG8uJDeUlHWfGhvPgoJa/IyEiMHz8+1N1oV0BzgMaNG4fly5djzpw5+OSTT7BlyxZs2rQJALBkyRKoVCq88sorQetsZ1HaHCBCCCGE8H1+B3Q3eIfDgQEDBgAABgwYgIyMDPG52bNn4/Dhw4FsnhBCCCEK43K5UFVVhZqamlB3xa+ACqA+ffqgsLAQQFMBZDKZUFRUBKBpxcr6+vrAe0jaZbFYcODAAVgsllB3RREoLz6Ul3SUFR/Ki49S8qqoqMB//vMf2U+DCagAmjFjBl544QX88MMP6NWrFwYNGoSXX34ZmZmZ2LhxI5KTk4PVT+KHVqtFv379oNVqQ90VRaC8+FBe0lFWfCgvPkrJS6VSwWAwyHqiNhDgHCC73Y4HHngAVqsV69evx++//47FixfD4XBArVbjxRdfxIwZM4LZ305Bc4AIIYQQ5eH5/A7KQohOp1OsSAsKCnDs2DGMGDEC/fr1C3TTIaG0AsjlcsFkMiEqKopWB5WA8uJDeUlHWfGhvPhQXu3rtEnQAu/huH79+uGSSy5RbPGjRA6HAzk5OXA4HKHuiiJQXnwoL+koKz6UFx/KK7gCGgFKTU1tdzluo9F4qpsPGaWNADHG4HK5oNFoZL08ulxQXnwoL+koKz6UFx+l5FVbW4tff/0V4eHhuPjiizv1tTvtVhh33XVXix+C2WzGwYMHUVBQgKVLlwayeSKRSqWS/aQ4OaG8+FBe0lFWfCgvPkrJy2q1Ij09HbGxsZ1eAPEIqAD617/+1eZzDz74IP7++29cffXVgbwEkcBut6O0tBS9e/eW/ax7OaC8+FBe0lFWfCgvPkrJKyYmBhdeeKGs+wgEaQ5Qa6666ips27atozZPvDDGYLPZZL88ulxQXnwoL+koKz6UFx+l5BUVFYVzzjkH48aNC3VX/OqwaeQFBQVwuVwdtXnixWAwIDU1NdTdUAzKiw/lJR1lxYfy4kN5BVdABdDatWtbPObxeFBWVoZt27Zh2rRpgWyeEEIIIQrjdrthMpkQFhaG6OjoUHenTUEvgICm4a8LLrgAy5cvD2TzRCKLxYLMzEwMHToUERERoe6O7FFefCgv6SgrPpQXH6XkVV5ejvXr1yM2Nhb33HNPqLvTpoAKIO+bn5LQ0Wq16NOnjyKuDpADyosP5SUdZcWH8uKjpLzUajXUanWou+FXQOsAlZSUcLXv06fPqb5Up1LaOkCEEEII6cR1gKZPn861GJMSF0VUArfbDbPZjMjISNlX3HJAefGhvKSjrPhQXnwor+AKqAB6+eWX8fjjj2PEiBG4/PLL0atXL9TW1uK///0vvv/+eyxatAh9+/YNVl9JG+x2O7KysjBs2DBZnxeWC8qLD+UlHWXFh/LiQ3kFV0CnwBYtWoTY2FisXr26xXPPPPMMsrKysHHjxoA6GApKOwXm8XjEG9KGhXXY0k5dBuXFh/KSjrLiQ3nxUUpedXV12LVrF8LDw/GPf/yjU1+7026G+ueff+Kyyy5r9bnzzjsPBw4cCGTzRKKwsDDo9XpZ/0LICeXFh/KSjrLiQ3nxUUpeFosFBw4cEIsRuQooxfj4eBw5cqTV5/7880/06tUrkM0TiRwOBwoKCugOwRJRXnwoL+koKz6UFx+l5BUfH4+5c+di5syZoe6KXwHNAZozZw5ef/11WK1WTJ8+Hd26dUNVVRW2b9+Ojz76CI899liw+kn8EBadcrvdoe6KIlBefCgv6SgrPpQXH6XkFR4ejuHDh4e6G+0KaA4QYwzPPvssNm3aJP5AGGMIDw/HXXfdhQULFgSto51JaXOACCGEEML3+R1QASRoaGjA4cOHUV9fj/j4eIwePRpRUVGBbjZkqAAihBBCTs3u3buxfPlyjBw5ss07RnSUTpsELaisrEReXh4yMzMxZMgQZGRkwGQyBWPTRAKLxYIjR47AYrGEuiuKQHnxobyko6z4UF58lJJXWVkZfv/9dxw+fDjUXfEroDlAHo8HK1aswBdffAHGGFQqFS655BKsW7cOBQUF2LRpExITE4PVV9IGrVaLhIQERSyPLgeUFx/KSzrKig/lxUcpeZ199tn49NNPER8fH+qu+BXQCNC6deuwZcsWPPXUU9i9ezeEs2kPPPAAPB4PXnrppaB0kvin1WrRu3dv2f9SyAXlxYfyko6y4kN58VFKXklJSZg7dy4uuOCCUHfFr4AKoC+++AJLlizB1Vdfjbi4OPHxYcOGYcmSJdi9e3eg/SMSKOXKALmgvPhQXtJRVnwoLz6UV3AFVABVVVVh2LBhrT7Xq1cvNDQ0nNJ2PR4PXn31VUyZMgWjR4/GbbfdhsLCwjbbZ2VlYeHChTj77LMxadIkLFmyhPtGrUpmt9uRmZkJu90e6q4oAuXFh/KSjrLiQ3nxUUpeGRkZ+PTTT7F///5Qd8WvgAqg/v3747fffmv1ub1796J///6ntN1169Zh8+bNePLJJ/Hxxx/D4/FgwYIFrS7+VFtbi5tvvhkGgwEffPAB1q9fj5qaGixYsED2O0mwGAwGDB8+HAaDIdRdUQTKiw/lJR1lxYfy4qOUvL799lv83//9X6dfAcYroEnQN910E1asWAGn04lp06ZBpVIhPz8fe/bswcaNG/HQQw9xb9PhcGDjxo1YunQppk6dCgB46aWXMGXKFOzYsaPFrTd++uknWCwWrFmzRtwpnnvuOUydOhUHDx7EpEmTAnmLihAWFobw8PBQd0MxKC8+lJd0lBUfyouPUvISBh/0en2Ie+JfQAXQ3LlzUVNTg9dffx0fffQRGGO47777oNVqsWDBAsybN497mxkZGTCbzT6FS0xMDIYPH459+/a1KIAmTZqEdevW+VTEwn1STvUUnNI4HA5UVFQgISEBOp0u1N2RPcqLD+UlHWXFh/Lio5S8lFIABbwO0O23345du3bhrbfewnPPPYc333wTv//+O+6+++5T2l5ZWRkAoHfv3j6PJyQkiM95S0pKwsSJE30ee+utt2AwGDB+/PhT6oPAarX6/L9wCs7j8cBisYgT0ZxOp8+6DDabTdwBGGPcbV0uFwDA5XLBYrGIV9fZ7fZW27rdbtTW1sJkMvm0tdls4utYLBY4nU4ATRPpmm+3vbYejwdA0y9g81x42krNMNC8hQxba2u1WlFXVyfm6y/v5rnwtPWXSyB5N88lGHnbbLY229rtdtTU1Ij/lrLPSvnZ8GQYaN7euQSat3eGzdvabDbU1dWJ+crlGHGqGXb0McJms/nsW3I5RgSSYUceI7yP9XI6RjRvazabATQVQJ19jOARlIUQo6KiMGXKFMyaNQvnn3++zxVhvIQfTvPqVq/XS5rT88EHH2DTpk1YunQpunXrdsr9cLvdyMrKEv+dm5srFmAOhwNGo1EMu7q6GidOnBDb5uXlobS0FEDTD8VoNIoLQ9bW1iIjI0NsW1BQgOLiYgBNO5XRaERjYyMAoK6uDkajUWxbWFjoMxncaDSirq4O4eHhSEpKQm5urrijFxcXo6CgQGybkZGB2tpaAIDJZILRaBR3stLSUuTl5YltT5w4gerqagBNO5jRaBR3/LKyMuTm5opts7KyUFlZCaBpRzYajeIOWllZiZycHLFtTk4OKioqADTtyEajUfx5V1VVtZm30+mE0WgUf6lqamqQmZkpKe/WMqyqqkJaWhr0ej2MRqM4UlhfXw+j0Sj+shUVFbWaNwA0NjbCaDSKB4CSkhLk5+eLbTMzM/3m3TzDqqoqAE37v3fe5eXlOHnypNg2Ozvbb97Z2dli25MnT6K8vBzA//ZZf3m3laHVaoXb7RaH3vPz88WLDNxud7v7bFFREYCmg5vRaER9fT2AphFao9Eo7rP+8m5vn83MzERNTQ2ApoOv0WgUD4yt7bPN8xaOLRUVFS32WX95N8+wrq4OaWlpUKvVsjpGAP/bZ+V0jGhsbPQ5rSOXY4Swzwp5y+UYER4ejoEDByI3N1dWx4ja2lqfvIXfL71e3+nHCC5MZrZv385SUlKY1Wr1eXzJkiXsjjvuaPP7PB4Pe+mll1hKSgp76aWXAupDeno6S09PZxaLRXzMYrEwu93OGGPM7XYzs9nMXC4XY4wxh8PBzGaz2NZqtTKbzSb2i7et0+lkjDHmdDqZ2WxmHo+HMcaYzWbjauudodlsZg6HgzHGmMvl4m7rdrsZY4zZ7fYWufC0lZphoHkLuQSad/NcAsnbO5dA8m6eSzDytlqtQclbyCVYeQu5BJq3dy6B5u2dCx0j6BhBx4iWbW+99VYGgD3xxBOdfowQPr+lCMq9wIIpPT0dc+fOxY8//oh+/fqJj8+bNw9Dhw7FypUrW3yP0+nE8uXL8d133+Ghhx7CP//5z4D6oLR7gVmtVuTk5GDw4MGKmCAXapQXH8pLOsqKD+XFR055NT8F7G3RokXYvHkz/v3vf+Oee+5pcxs6nS7oV7TxfH4HNAm6I6SmpiIqKgp79uwRC6CGhgYcP34c8+fPb/V7HnzwQfz444944YUXMHPmzM7sriyo1WrEx8dDrVaHuiuKQHnxobyko6z4UF585JSXyWRCcXExVCpVi+eEU3sWi6XNNfzcbjcSExNDekm/7AognU6H+fPn4/nnn0e3bt3Qt29fPPfcc0hMTMSMGTPgdrtRU1OD6OhoGAwGfPnll9i2bRsefPBBTJgwQTz3CUBs09XpdDr07ds31N1QDMqLD+UlHWXFh/LiI6e8HA4H1Go1YmNj22wTFxfX5v3AhHk+oRSUSdDBtmTJEsyZMwePPvoo5s2bB7VajQ0bNkCr1aK0tBSTJ0/Gtm3bAADfffcdAGDNmjWYPHmyz5fQpqtrPtOf+Ed58aG8pKOs+FBefOSUl81mg0bT+hiKUi6Dl90IENA0zPfAAw/ggQceaPFcUlKSz2zzjRs3dmbXZEmY6T9s2DBERESEujuyR3nxobyko6z4UF585JKX2+2Gy+Vq81ScUAD5W6vI4/GIa/aFiixHgAgfvV6P1NRU2VfbckF58aG8pKOs+FBefOSSl8vlgsvlanMESFiSwt/pMQAhL4BkOQJE+KjVakRGRoa6G4pBefGhvKSjrPhQXnzkkpdQALU1AiRcHeZ9JXdrQl0A0QhQF+B0OlFSUiIu/Eb8o7z4UF7SUVZ8KC8+cslLWLCxtSvAAGD37t3IysrCwIED/W6nre/vLFQAdQEulwtVVVXiTkn8o7z4UF7SUVZ8KC8+cslLSgEWERHR7uX6oS6AZLcQohwobSFEQgghpLMUFxfDZDIhOjr6lLdRW1uLfv36BbSN1vB8ftMIECGEEEIkYYzBbre3OQH6/fffx7XXXotPPvmk3W3RHCASMKvViuPHj7e5LDnxRXnxobyko6z4UF585JCXy+WC2+1u8/RWeno6fv/9d/GGya0RLoEP9YrWdBVYF6BWqxEVFRXynUkpKC8+lJd0lBUfyouPHPISrgBr615kN998MyZMmIARI0a0uQ23242wsLCQjwDRHKBW0BwgQgghpKXGxkYUFBS0eYsLKWw2GzweDwYOHBj0Yo7mAJ1mPB6PuEOR9lFefCgv6SgrPpQXHznkFYwr0BhjsjgFRgVQF2Cz2XDs2DHYbLZQd0URKC8+lJd0lBUfyouPHPJyOBxtnrqqqqrCpk2b8Mcff/jdhtvt9nubjM5Cc4C6AL1ej5SUlJAvj64UlBcfyks6yooP5cVHDnn5uwnqsWPHsGzZMqSkpOCXX35pcxtUAJGgUavVQV9LoSujvPhQXtJRVnwoLz6hzqu9m6Dm5+cDaP8WGB6Pp80iqjPRKbAuwOl0oqysLOTLoysF5cWH8pKOsuJDefEJdV7t3QS1oKAAANC/f3+/22GMhXz+D0AFUJcQ6l8KpaG8+FBe0lFWfCgvPqHOq72boAoFUHsjQCqVShYFUOjHoEjAIiIiMHr06FB3QzEoLz6Ul3SUFR/Ki0+o82rvJqhSCiDGmGwKIBoBIoQQQki7bDab3xuYSjkFJqwiTQUQCQqbzYaMjAy6lFQiyosP5SUdZcWH8uITyrxcLhcaGxthMBhafb6urg719fUA/I8ACQVQqFeBBqgA6hJUKhUMBoPfypz8D+XFh/KSjrLiQ3nxCWVeNpsNdru9zUvwhdGfhISENm+TATRdASaXU2A0B6gL0Ov1GDBgQKi7oRiUFx/KSzrKig/lxSdUeVksFtTW1kKlUrVZfJ04cQIAkJyc7HdbbrdbNkUvFUBdAGNMvDRRDjuV3FFefCgv6SgrPpQXn87Oy+l0ora2FjU1NfB4PIiJiWmz7aeffgoAmDx5st9tejweWSyCCNApsC7BarUiPT0dVqs11F1RBMqLD+UlHWXFh/Li01l5OZ1O1NXVoaCgABUVFdDr9YiLi2tz3s6JEyewe/duhIWF4frrr/e7bbmsAg3QCFCXoNfrccYZZ9By8hJRXnwoL+koKz6UF5+OyosxBofDAZvNBpPJBIvFArvdDoPBgG7durX7/Y888ggA4IILLkDfvn3bbS+H+T8AFUBdglqtRmxsbKi7oRiUFx/KSzrKig/lxSeYeQl3lrfZbGhoaIDdbofT6YRGo4Fer0dERITk02yPPfYYHnjgAaxcuVJSezlcAQZQAdQlCOdp4+PjodVqQ90d2aO8+FBe0lFWfCgvPoHm5XK5YLPZYLFY0NjYCLvdDsYYdDodwsPDJd9n7Ndff0VBQQFuvPFGAMDIkSOxffv2dgsmi8UCrVYrm581FUBdgNPpRFFREaKiomSzY8kZ5cWH8pKOsuJDefHhzcvj8cBut8PhcMBsNountlQqFfR6PWJiYiSNxgirNwNAZWUlrr/+emi1WkyYMAGpqakA2l4dGgDsdjvMZjP0ej0SExPbXEuos6kYYyzUnZCbo0ePAgDOPPPMEPeEEEIIkYYxJhY8FosFZrMZDocDbrcbGo0GOp0Oer2+3ZEaxhiysrLw66+/4rfffoPBYMCGDRvE52fMmIGzzz4bDz/8sN81fxwOB0wmE3Q6HWJjYxEXF9fh8714Pr9pBIgQQghRIGHyssPhgNVqhclkgsPhEG9YqtPpEBUVJWnScV1dHX7//Xf89ttv+PXXX1FaWio+ZzAYYLVaxWLnu+++83sll91uh8VigUajQc+ePREbGyubUR9vVAB1ATabDQUFBejXr58sdzK5obz4UF7SUVZ8KC8+VqsVOTk56NWrF1QqFUwmkzh5OSwsDDqdDhEREdBo2v9od7lcOHToEHbu3Ilff/0Vhw8fhsfjEZ/X6/WYOHEizj//fEydOtXn59Na8SNcReZyuaDT6dCjRw/ZFj4CKoC6AJVKRQuJcaC8+FBe0lFWfCgv/zwejzjCY7PZUFNTg9LSUjidTuh0Ouh0OhgMBsmTlwGgtLQUK1aswO7du8V7dwmGDBmCqVOnYurUqTj77LP9nt4CmkZ67Ha7WPRER0cjKioK4eHhslnrxx+aA9QKmgNECCGks7ndbrHgsVgssFgscDqdcLlc4giPTqeTNMIDAGazGX/88QcYY5gxYwaAplGk4cOHw+FwIC4uDlOmTMH555+P8847T9IaPs2LnsjISERHR8NgMMii6KE5QKcZxhg8Hg/CwsLoLykJKC8+lJd0lBWf0z0vl8vlM2nZarXC4XDA4/GIc3giIyPFOTxCXt5XZXkzm81wuVziWkE7duzA4sWLMXz4cLEACg8Px5o1azB48GCMGjWq3flBLpcLDocDdrsdAMSRHjkVPaeKCqAuwGq1wmg0YtiwYYiIiAh1d2SP8uJDeUlHWfE5nfJijMHpdIrFhNlsFosfxpi4Po6/S9NtNhuysrIwZMgQhIeHo6amBnv37sWePXuwd+9eHD16FPfffz/uvvtuAMB5552H/v37Y9y4cXC73WKxM3fu3Db7KYxC2e12eDweaLVa6HQ69OzZE+Hh4TAYDF1myQIqgLoAnU6HQYMGKboS70yUFx/KSzrKik9Xzqv5/B2LxSL+W6VSiQUPz4rLFRUVSE9Px6ZNm7Bv3z7xDuzesrOzxf/v3r07/vjjD7/b9D7tJlwur9Vq0b17d4SHh0Ov10On03XJEToqgLoAjUaD+Pj4UHdDMSgvPpSXdJQVn66Sl3CXdqfTCafTCavVCrPZ3GL+jl6vR1RUlOTtFhQUYOfOndizZw/27NmD4uLiFm2GDBmCs88+W/xqbx6Pd2Hmfbl8fHy8T8Ejl9tVdCQqgLoAl8uFuro6xMXFSZ4cdzqjvPhQXtJRVnyUmJdwKkv4stlssFqt4r8ZY2JRIfWSdKApi+PHj2Pw4MGIjIwEAHz00Ud49dVXxTZqtRqpqamYNGkSJk2ahAkTJrR7s1JhcUShf2FhYeIq0JGRkWJhdjoUPM0pY48jfjkcDuTn53P9sp3OKC8+lJd0lBUfuefVWrFjsVjE0R6h2BHmyURGRko+VeRyuXze86xZs5Ceno53330XF154IQDg3HPPxb59+8TRneHDh6OkpEScA9RWnx0Oh9hnAOLIk3fBI5c7soeS/PY4wi08PBxjx44NdTcUg/LiQ3lJR1nxkUtejDG43W643e5Wix2Xy+UzsqPX67mKHcYYCgsLcejQIRw4cACHDh3CyZMncfjwYXFCcVpaGvLz81FdXS1+3+TJkzF58mSf7XTv3r3FtoXJ1ULBI9zctGfPnuIpLTkWmKFG6wC1gtYBIoSQrkUoclwul/hfoXCw2WxiAeR2uwFAHNnRaDTcizU2NDTg8OHDOHToEA4dOoSDBw/6FDaCbdu2YdSoUQCAxsZGREZGSjoVJfTb4XAAALRaLQwGAyIjI2EwGKDX60/bgofWATrN2O12FBYWIjk5ucNvNNcVUF58KC/pKCs+wc7Lu8gRCh2n0yku3udd5Ahr6Wg0GqjVamg0GhgMhlM6NWSxWPDll1/i4MGDOHToELKystB8bEGr1WLEiBEYM2YMxowZg3HjxqF///7i8/5WcxbW4mlsbERZWRmSkpIQHR2N+Ph4seDpKpemdyYqgAghhCiGcMWVd6Hjcrlgs9nES7mF54VRG2EUJ5AiR1BXV4c///wTYWFhuOiiiwA03dLjkUcegcvlEtslJydjzJgxGDt2LMaMGYO0tDRJ98VqPu/Iey2eHj16QKVSYcCAAYiKiuqSl6Z3JjoF1go6BUYIIaEjFDnehY5wyqf5SA4AhIWFiaM4wn9P9aomh8OBgoIC5OfnIy8vD/n5+Zg1axbGjx8PAPjhhx9wyy23YNSoUdi2bZv4fQ899BDi4uLEgqdnz56SXs/78nmXyyWuESRcRSaM8HTVtXiCjU6BnWa8a1j6BWkf5cWH8pKOspLO4/H4jOAI69PYbDY4nU6x8BEy9T5dJUzqPdUix2KxIC8vTyxwcnNzxYKnpKTE567oANCrVy+xABo4cCCGDRuGMWPG+NySYvXq1e2+rvcka+G9CfOMYmNjER4eLhY/rc07ov0ruKgA6gJOp+Xkg4Hy4kN5SUdZ+RKKHO/TVcIVVk6nEyaTCSdOnMCAAQPEFZGFIkev1yMiIuKUixybzYaMjAzU19fj/PPPFx+//PLLceDAAb/fGx4ejgEDBohf3leqpaSk4Keffmr39YXL0YXRK++ryCIjIxEREQGdTicWPFIKGtq/gosKoC5Ap9Ohf//+XXI5+Y5AefGhvKQ7HbNqfmWV2+32uWO48BhjTCwChNGbqKgoDB069JQWQmSMoaKiQhzJycvLw7hx43DBBRcAaLolxMyZM9GtWzfxtAjwv8nGcXFxYoHTv39/n4KnZ8+ekgoSj8fj876bn5YTbncRFxcnnsbSarWnPAfpdNy/OhIVQF2ARqNBjx49Qt0NxaC8+FBe0nXFrJpPOhZO4winq7xHeYRTQmFhYWKRYzAY/F5G3taCfkBTcVVcXOxzusr7v1ar1af9jTfeKBZAAwYMQK9evTBgwADY7XbxKrM1a9YgIiJC8i04vN+fv9NyBoNBvFGo96TrYF6d1RX3r1CiAqgLcLlcaGxsRHR09Gm79gMPyosP5SWdUrNq61SVcLdy4XnvuTHCB79wWketVnPPS3G5XKivr0dFRQXKy8sxdepU8bm7774b33zzjbi4X2vCwsKQlJQkjuJ4LxoYFRWFgwcPtvie1u6V1VqR4/F4xGJOeJ/e98oSRrKEHDrjVhJK3b/kihLsAhwOB06ePIlhw4bRL4UElBcfyks6uWblvdJx8yurhEUAhceFD37v0Q2tVovw8PBT+pB3Op0oKSlBQUEBCgsLUVhYiAEDBuD//u//4HQ6kZmZiblz5wIAsrKyxLkter0eTqdTPO3T/DRV//79kZSUJPl0kPcpKn+n5SIiIsR1dbyvKuNdDLEjyHX/Uiq6DL4VSrsMnjEGj8eDsLCwkP+CKgHlxYfyki6UWTWfi+K90rGwPo73HBUA4siG8HUqH/JutxtlZWUoLCz0KXKEr9LS0hZXVU2fPh0ffPCBmNekSZMQFxeHd955RxyhEe583rt3b8mFV2sZCKflvN+nXq8Xi5zmIzly3sfpd7F9dBn8aUb45SbSUF58KC/pOjKr1kYwvBcA9D6N492fYKx0DDSdJvrmm29QUFCAhQsXinN3li9fjg8//NDv9xoMBiQlJSE5ORnJyckYPXq02D+1Wo29e/e2+J7WTlV5j2R55yBoPpIjTDr2zkDuRY4/9LsYXFQAdQF2ux3FxcXo27cvLb8vAeXFh/KS7lSy8ng8Lb68P+CFERzvkQ3v01TeH+ynMheHMYbq6mpxxKaoqAhFRUXiLSpWrVoFoOnDd/ny5WhsbMSll16KIUOGAGgqVDQaDfr27Yvk5GT069cPSUlJ6Nevn1jw9OzZs9VRHLvdjrKyMiQmJop5eV9Z5T33yHskRxixEU5XeU86FkZ5lFrk+EO/i8FFBVAXIFylQWczpaG8+FBe0glrvwgTd9sqbpovhte8jTfvSbanOtkYAPLy8nDkyBGxwBGKnMLCQthstla/Z+jQoeL/q1QqzJw5E26322f+ycKFC7F48WLJIxPeozhmsxn19fXiKSnhdbzXAoqOjoZer/c5TSc8f7qh38XgojlArVDaHCBCSPAJE2RbK1CEUZjmqxk3L2i8R2sEwpVFwpcwquH9GG8/GxsbERMTIz725JNPIjMzE0899RQGDBgAAHj55Zfx3HPPtboNlUqFXr16iSM2SUlJSEpKwqBBgzBp0iTu7JpfVSXk0HwUJywsTCx+vAubzryyinQtNAeIEKJ4QvHh/f/eX609LuUxYYSleVHTvNjx/t7m7YTHgf/dh8q7oNFqtadc0AiXhtfV1aG+vl78av7v8vJyFBQUoLi4GAMHDvRZnfi3336D0WhEbm6uWAClpqZiwoQJPnNxhP/v06cP1+J63ndd9z5lJTznPeHY+15Wze/XdTqO4hD5oAKoC7BYLMjIyEBqaiotjy4B5SWNUBCYzWZkZGRg6NChCA8PD7gwaa3Y8D7107zQaG973o+19h5aO10kzJ8Rvtp6DPjfir7eBU5brFYrsrKyMHDgQDgcjhaFi0ajwcyZM8X2Dz30ELKzs/Hkk09i2LBhAIANGzbgiSeeaOen46u4uNjnvS5atAgOh8PnFNbFF1+Miy++WNL2mk82Fr68FwD0PiXlPeHYu7hpbxSHfhf5UF7BJcsCyOPxYO3atfjss8/Q2NiI8ePHY8WKFUhOTm61fW1tLZ566ins3LlTPE/94IMP+l1htCvRarVISkoK6oqjXZlS8grWiEfzx9sa8WhehAjfI1xCXVRUBI1G0+brtPUeALQ4BST8118R0nwycGv/NhgM6NOnj/j9Bw4cgNPpxOjRo2EwGAAAGRkZyMnJaXGqyntVY+8FAF0uFxISEvDPf/5T7PMzzzyDqqoq3H333ejXrx8A4Pvvv8cnn3wCt9sNm83mU+yYTKZW8xgwYIBPAXTw4EEcO3YMZWVlYgEUFxcHoGkhv9jYWPErPj7e5989e/YUR3J69+7tk/HVV1/d6ut7/1zaKnAYYz6L/4WFhYkLADYfvRG+TpVSfhflgvIKLlkWQOvWrcPmzZuxevVqJCYm4rnnnsOCBQuwZcuWVodplyxZAqvVinfffRcNDQ145JFHYLFY8Oyzz4ag951Pq9UiISEh1N1QDCl5tfUBH8ipGOFxf6ddvB9rbTvCB7YwURRoujKkqqoKAJCYmCh+EObk5MBsNvt82Hsvdud0OltccTNkyBCcddZZUKlUaGxsxPvvvw8A+Ne//iUWJps3b4bRaPTZbluFhPD41KlTcd999wFoGiW54IIL4Ha78d///lf8S/bhhx/Gp59+6tOf9kydOtXnEuxrr70WFosFf/zxB/r37w8A+OKLL7Bu3bp2t+XtzDPP9CmAtmzZgvz8fMybN08sgPLz8/Hjjz/63U5kZKRYsMTFxbX4I+7++++HzWbD8OHDxcdmz56Nq6+++pQXums+B0mYOOtd4HhPNG6twGle5HQUOnbxobyCS3YFkMPhwMaNG7F06VJxWfSXXnoJU6ZMwY4dO3DZZZf5tD906BD27t2Lbdu2YfDgwQCAJ554AgsWLMB9992HXr16dfZb6HRutxsmkwlRUVFd5py61IJDOMir1Wrx3xUVFeIVNsLVNt5X3djtdjQ0NECtVosf0GlpaejRowc8Hg/y8vKwd+9e9OjRA+eff774Wu+++y6sVqvPrQKa3x+p+Rotc+fOxcSJE8EYw7Fjx/DCCy8gOTkZTz31lFioLFy4EEVFRa0WE80LCsGDDz6IxYsXQ6VSIT8/H5dccgkSExN97nL973//u9VbAfhz66234rzzzgMA1NXV4aWXXoJWq8XChQsRGRkJtVqNX3/9FTt27ODarlA0AE1rteTl5QFo+n0XCiCXy9Xi3k6t8T7N0vxS4MGDB8NqtfqcdunXrx/OPvtsnyuI2voSVj3u06ePz3YXLlyIxsZGn8fPP/98xMTEQKPRQKfTITY2FtHR0dBqtejduzfi4+Pb/Uv9oosuavX9Ndd8AnbzIkcgjN40/4qMjPRZ+K+zCpz2dMVjV0eivIJLdgVQRkYGzGazz5UHMTExGD58OPbt29eiANq/fz969uwpFj8AMGHCBKhUKhw4cACXXnppp/U9VOx2O7KzszFs2DCEh4eLf917f1B7f4h6/3v48OHiX5qZmZkoKirCwIEDMXDgQDDGUFtbi++//75FQdHa/3v/95577hFv2vfNN99g27ZtOO+883DNNdcAAKqqqrBo0SKxvffKtc1HLLwLjDfffBOjRo0CYwzvv/8+nnnmGVx66aVYs2YNgKZl98eMGcOd4dq1azFjxgyoVCocPHgQy5Ytw6RJkzB16lRx3sfatWvR0NDAtd2pU6f63HRx3759MJlMiI2NFR8rLi5Gbm4u13Y9Ho94ANRqteIkU2+JiYno169fqx/8wge99wehVqtFamqq+P2RkZG4/vrroVKpkJeXhyFDhiA8PByXX3450tLSWly101ZBIawRI9Bqtfj666+h0WgQFRUlPi4UdUJfWtt2e3Nwtm/f3uKxG264ATfccANXvs15jwYJhg0bJp62EghzgIRCqC2tnXpsXuQ0n4fk/dVa1sJzza8ok/Oqwd7HLprT0j7KK7hkVwCVlZUBaFr+3FtCQoL4nLfy8vIWbXU6HeLi4lBaWhpQX6xWqziPyGq1iguNeTwe2Gw2cW0KoRAQdkibzQaVSgW9Xg/GGKxWq9j2zz//xFtvvSUOS9vtdp8Fv7zvriwsYw8Ae/fuhc1mA2MM9957L7Zt24ZHH30UN9xwA8LCwlBUVISJEyf6jBJIcfToUURERMDtduOpp57Cpk2bcNddd+Ff//oXNBoNjh8/fkofHhdeeCGSk5Ph8Xjwxx9/iHMlJk2aBJ1Oh6qqKvz666/c23W5XOL8EGGOh8fjgU6ng16vF/8abv6XbvN/e39oaLVaxMXFQaVSwel0ok+fPpg6dSqGDBkCh8Mh/hwvu+wyOBwO6HQ68UNF+KsagHjFizAapdVqMWrUKJjNZjgcDvTr1w+vvPIKIiMjUVdXJ45ePPXUU+J7CAsLA2MM4eHh0Gq14umKyMhIaDQa8d5IUVFRMJlMsNvtSE5Oxt9//y2eChP22WeeecZnn7Xb7WIOQqEptLXZbGIW9fX1sNvt0Ol0eOyxx8SF+IT9fPLkyZg8ebKYi91uF/MU9lvhZ2O326FSqaDT6VBXVye2HTJkCNxuN6qqqqDX68WfqXchZ7PZoNFo4PF4YLVa4XQ6xbZ2ux2MMfF1rFarWDQJv58GgwEqlUosoJu3VavV8Hg8cDgcYlth5E342dhsNjFDxpj4ex8WFiZmKHyvkGHv3r1hsVhQU1MjthUKeGESucPhEFdmFt6PMEojjDhGR0cjLCwMDocDarUaERERYlvhDuvCQonh4eHicwB8jj06na7Ntt4ZWiwWaLVaaLVauN1u2O12rrYGg0Hsr9vt9jl2Cr+Dzduq1WqkpKSc0nE20GOykAtPWykZBpK3d4bexzihbXh4OEaMGCGexm4r7+a5+PvZ8GQorEUVSN5CLsHKW8hQaMtDdgWQMATe/K9ZvV6P+vr6Vtu3Ni9Ir9eLB4NT4Xa7kZWVhZEjRwIAcnNzERUVhX79+sHhcMBoNCIlJQXR0dGorq5GWVmZuLx7Xl4eDAYDBgwYAJfLBaPRiDPOOAOxsbE4cuQI3n33Xe7+5ObmoqCgAIwxlJSUoLS0FAcPHsS4ceMQFxeHsrIyv8WPcM7f+9JTvV6P6upqFBcXw263Iz4+HkOGDIHNZkNJSQl69uwJt9uNESNGICYmBlqtVpx/EhsbC7VaDYvFgvDwcPEveZPJhO7duyM2Nha1tbVobGzEueeei5iYGERFRaG2thaJiYnQ6XS466670KtXL0RFRcFsNsNisWDAgAFQq9UoLy9HZGQkevXqJb7npKQkDBkyBBUVFaioqMCsWbNwwQUXoLS0FAUFBUhKSoLT6cRnn32G/v37IyYmBjU1NSgpKUFaWpo4kqFSqdC/f3+43W4YjUYkJSUhLi4ONTU1KC4uxpgxY/DWW28hPz8fBQUFGDhwIABgzpw56Nu3L7p164a6ujoUFRUhNTUVGo0GhYWFcDqd4kjk33//jcTERPTo0QMNDQ0oKChASkoKZs6cieLiYhQVFYlto6Oj0b17dyQkJMBqtSInJweDBg2CXq9HSUkJzGazWORnZmYiLi4OERERsFqtyMvLwxlnnCEWlfX19UhNTRVPjUVFRaFPnz6w2+0oLCzEoEGDYDAY0NDQgOrqaowYMQJA0yhUeHg4kpKS4HA4kJubi0GDBiE6OhpVVVWoqqoS+5CdnQ29Xo+EhAS43W4UFBSgf//+iIuLQ3V1NSoqKjBq1CiEhYXh5MmTUKlU6N27NzweD44ePYrk5GQxw/Lycpx55plQq9XIzc2Fx+MR58kcPnwY/fr1Q48ePVBfX4/c3FyMGDECWq0WBQUFsNlsGDhwIFQqFdLT05GYmIiEhAQ0NDSgqqoKycnJ0Ov1KCoqgs1mE/M+evQooqKikJiYCJPJhJycHCQlJSE8PBzFxcWor6/HGWecAQA4fvw4IiMj0bdvX1gsFmRmZqJv376IjIxEaWkpqqurkZKSApVKhYyMDISHhyM5ORk2mw1GoxF9+/ZFdHS0eLdzYYQtKysLer0eAwcOhNvtxt9//43k5GTExsaioqICRUVFSEpKAgCcOHECGo0GcXFxcLvdyMzMxKBBgxAfH4+6ujrk5+dj7NixAIDCwkIAEPtvNBrRv39/9OjRA42NjTh58iRGjx4NtVqN4uJiuFwupKSkAGgafU9KSkJCQgJMJhOys7MxcuRIaLValJaWwmazif0/ceIEEhMTkZiYCIvFghMnTmDEiBEwGAwoKyuDyWQS5zVlZWWhR48e6NOnD2w2GzIyMsQRjKqqKtTW1iItLQ1A07y1uLg4JCUlwW63w2g0YujQoYiKikJVVZW4bwnHROGY7HQ6YTQaMWTIEJ/fe2E0uLVj8uDBgxEXF4e6ujoUFBRg3LhxYoZhYWEYPHgwPB4PjEYjBg4ciG7duqG+vh55eXkYM2YMVCoVioqKxLlzbeU9atQoaDQalJSU+FyZJ+xL3nmfeeaZ0Ol0KC0thcViEUcYs7KykJCQgN69e8PlciEzM1PMu7y8HA0NDeLvcnZ2Nrp164a+ffuK+6GQd2VlJWpqasQ1ck6ePImYmBgkJyeLn2v+8o6IiED//v1bfK7V1taKx06gaX6cTqcT92+j0dhin20tb8YYjEYjBgwYgO7du6OhoQG5ubniPtta3v369UPPnj3F32We5RxktxDiDz/8gCVLluDIkSNilQcAd999NxwOB15//XWf9k8++STS09Px2Wef+Tw+adIk3H777a0OXbdHWEjpjDPOCPoI0KFDh/DJJ58gPDxcPPWk0WgQHh4u/kUqrJshTDqNiIjAtGnTxNVlS0pK0NDQgG7duqFPnz5wu93Iy8sDY0ycdyD8dRAVFQWtVgubzdbmX3cOh0PSX4L+/rrT6XR+/xJUqVR+MxRGDvz9dSeMrrSVt8FgaPevO7vdDqfTierqaiQmJoojLxqNBm63u92/NoSJom39ZSLk4u+vO2HycVt5CyMScvnrzmw2o7S0VCwoQvnXXTBGJHhHL/xl6D2KJswPq66uFgv3UzlGBDoiAShnBMhkMqGsrEzct2gEyP8IkMfjQUlJCeLj4xETEyObY4ScRoBycnIASFsIUXYFUHp6OubOnYsff/zRZ+LkvHnzMHToUKxcudKn/fr167Fp0yb89ttv4mMOhwOjRo3CCy+8cEpzgJS2ErTNZkNeXh4GDBjgUzSS1lFefCgv6SgrPpQXH8qrfTyf37JbZzw1NRVRUVHYs2eP+FhDQwOOHz+O8ePHt2g/fvx4lJWVIT8/X3xMuLOwMMTW1RkMBqSmptIvhESUFx/KSzrKig/lxYfyCi7ZzQHS6XSYP38+nn/+efE85nPPPYfExETMmDEDbrcbNTU1iI6OhsFgwKhRozB27Fjce++9WLlyJSwWC1asWIErr7zytLgEnhBCCCH8ZDcCBDQtbDhnzhw8+uijmDdvHtRqNTZs2CBOxps8eTK2bdsGAOLlyUlJSbjppptwzz334Lzzzmtxqqwrs1gsOHz4MCwWS6i7ogiUFx/KSzrKig/lxYfyCi7ZzQGSA6XNARIm9Xbv3p2WSJeA8uJDeUlHWfGhvPhQXu2ju8GfZrRaLRITE0PdDcWgvPhQXtJRVnwoLz6UV3DJ8hQY4eN2u9HY2OizJD5pG+XFh/KSjrLiQ3nxobyCiwqgLsBut+PEiRMBLfx4OqG8+FBe0lFWfCgvPpRXcNEcoFYobQ6QsJy/cCsF4h/lxYfyko6y4kN58aG82kdzgE4zYWFhtC4EB8qLD+UlHWXFh/LiQ3kFF5WQXYDD4UBBQQH3jeBOV5QXH8pLOsqKD+XFh/IKLiqAugC32w2TyUQT4ySivPhQXtJRVnwoLz6UV3DRHKBWKG0OECGEEEIUfi8wQgghhJCORpOgW+F0OsEYEytJuWOMwel0QqvVQqVShbo7skd58aG8pKOs+FBefCiv9jkcDsnZUAHUCqXtWCqVCjqdLtTdUAzKiw/lJR1lxYfy4kN5tU+lUkn+DKc5QIQQQgg57dAcIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGmHCiBCCCGEnHaoACKEEELIaYcKIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGmHCiBCCCGEnHaoACKEEELIaYcKIBnyeDx49dVXMWXKFIwePRq33XYbCgsLW2372muvYejQoa1+LV++vEV7xhhuvfVW3HDDDR39NjpFR2SVm5uLhQsXYsyYMTj33HPxxBNPwGq1dtZb6lAdkdcff/yBq6++GqNHj8YFF1yADRs2dNbb6XA8eQFAdXU17r//fkycOBFnn3027r33XpSXl/u0+f7773HppZdi5MiRuPLKK/Hnn3929NvoNMHOy+Px4O2338ZFF12E0aNHY+bMmfjss8864610io7YvwQOhwOzZs3CQw891FHdVz5GZOe1115jZ599Nvvll1+Y0Whkt9xyC5sxYwaz2+0t2ppMJlZRUeHz9eyzz7LRo0ezjIyMFu3feecdlpKSwubPn98Zb6XDBTurmpoads4557BFixaxrKwstnv3bjZ58mT2+OOPd/I76xjBzisnJ4elpaWx1157jRUUFLCtW7eykSNHsk2bNnX2W+sQPHkxxtj8+fPZtddey44fP86OHTvGrrnmGnb11VeLz//5559sxIgR7L333mPZ2dls9erVLC0tjWVnZ3fWW+pQwc5r3bp17KyzzmJbt25l+fn57OOPP2bDhw9nX331VSe9o44V7Ly8PfnkkywlJYUtW7asI9+ColEBJDN2u52NGTOGffjhh+Jj9fX1bOTIkWzLli3tfv+xY8fYiBEj2JdfftniuYyMDHbWWWexa665pksUQB2R1auvvsrOO+88ZrPZxMc+/fRTdtVVVzGPxxPcN9DJOiKvd955h02YMMGn3V133cVuv/324HU8RHjzqq+vZykpKeznn38WH/vpp59YSkoKq62tZYwxdsstt7C7777b5/v+7//+jz322GMd8h46U0fkNWXKFLZu3Tqf71u+fDm77rrrOuZNdKKOyEuwc+dOds4557CZM2dSAeQHnQKTmYyMDJjNZkyaNEl8LCYmBsOHD8e+ffva/f4nnngCZ511Fq666iqfx+12O5YuXYolS5Zg4MCBQe93KHREVrt27cKFF14IvV4vPjZ37lx8+eWXUKlUwX0Dnawj8urevTvq6urw3XffgTGGzMxMHDhwAKNGjeqQ99CZePMyGAyIjIzE119/DZPJBJPJhG+++QYDBw5ETEwMPB4PDh486LM9ADj77LMl5S93HZHXs88+2+JYFhYWhoaGhg5/Px0t2HkJampqsHz5cjz55JOIj4/vlPeiVFQAyUxZWRkAoHfv3j6PJyQkiM+15ZdffsGhQ4ewbNmyFs8999xzSEhIwPz584PX2RDriKxyc3ORkJCAZ555BlOnTsWFF16INWvWwG63B7fzIdAReV1yySWYO3cuHnjgAYwYMQKXX345zj33XNxxxx3B7XwI8Oal0+mwevVq7N27F2eddRbGjx+PI0eOYP369eKHtsViQWJioqTtKU2w8woLC8OkSZN88iopKcHWrVsxefLkjn0znSDYeQkeeeQRTJs2DdOnT+/YN9AFUAEkM8JkW51O5/O4Xq9v90P4nXfewbRp0zBs2DCfx3fu3IktW7Zg1apVih/F8NYRWZlMJqxfvx52ux1r167FAw88gC1btuDRRx8NbudDoCPyqq6uRnFxMZYsWYLPP/8cTz/9NH777Te89tprwe18CPDmxRiD0WjEmDFj8OGHH+K9995Dnz59cOedd8JkMsFms3FtT2mCnVdzVVVVuO2229C9e3csWrSoY95EJ+qIvD7++GPk5OS0egEMaUkT6g4QXwaDAUDTDH7h/4GmU1jh4eFtfl9JSQn27NmDt956y+fxmpoaPPzww1i5ciV69erVMZ0OkWBnBQAajQYDBw7EypUrAQBpaWlwu92455578NBDD6F79+7BfROdqCPyeuSRR9C7d2/xA2n48OFgjGHlypWYP38+unXrFuR30Xl48/r++++xadMm/PLLL4iKigIAvPHGG5g2bRo+//xzXHHFFeL2vLWXv1IEO69//vOfYtuTJ09i4cKFcLvdeP/9931O+ShVsPM677zz8Nxzz2HDhg2IiIjonDehcDQCJDPCcGhFRYXP4xUVFX4LmJ9++gndunXDueee6/P4b7/9hsrKSjz88MMYM2YMxowZgy1btmD//v0YM2YMSkpKgv8mOkmwswKAxMREDBkyxOcx4d/FxcWBdjmkOiKvAwcO4Mwzz/R5bPTo0XC5XCgqKgpCr0OHN6/9+/dj4MCB4ocTAMTGxmLgwIHIz89HXFwcIiIiuPNXimDnJThw4ACuvfZahIeH4+OPP0ZycnIHvYPOFey8tm3bBrPZjJtvvlk81u/fvx9btmzBmDFjOvbNKBQVQDKTmpqKqKgo7NmzR3ysoaEBx48fx/jx49v8vv3792PChAnQaHwH9S688ELs2LEDX3/9tfg1ffp0pKWl4euvv0ZCQkKHvZeOFuysAGD8+PFIT08HY0x87MSJE1Cr1UhKSgruG+hkHZFXr169kJmZ6fNYZmYmVCoV+vfvH7zOhwBvXomJicjPz/c5fWGxWFBUVIQBAwZApVJh7Nix2Lt3r8/37dmzB2eddVbHvZFOEuy8ACA9PR0LFizAkCFD8OGHH3aJQlEQ7Lzmz5+PH374wedYn5aWhunTp+Prr7/ujLekOFQAyYxOp8P8+fPx/PPP4+eff0ZGRgbuvfdeJCYmYsaMGXC73aisrBTnEwiOHz+O1NTUFtuLiopC//79fb4iIyNhMBjQv3//Vj/UlCLYWQHArbfeisLCQjz++OPIzc3F77//jmeffRZXXHGFok/nAB2T180334zPPvsM77//PgoLC/HTTz9h9erVuO666xAbG9sZb6vD8OZ15ZVXAgDuueceZGRkICMjA/fddx/0ej1mz54NoCmvrVu34p133kFOTg7WrFkDo9GIm266KVRvM2iCnZfL5cLSpUvRvXt3rF69Gna7HZWVlaisrERNTU0I32lwBDuvuLi4Fsd64coxpf8x0mFCeQ0+aZ3L5WJr1qxhEydOZKNHj2a33XYbKywsZIwxVlhYyFJSUtgXX3zh8z0jR45kmzdvlrT9ZcuWdYl1gBjrmKyOHDnCrr/+enbmmWeyc845h61evbrNhcmUpiPy+uqrr9jll1/ORo0axWbMmMH+85//MIfD0aHvo7Pw5pWdnc1uv/12NmHCBDZx4kS2ePFisb3gq6++YhdeeCE788wz2VVXXcX++OOPTn1PHSmYeR04cIClpKS0+jVt2rSQvL9g64j9y9v8+fNpHSA/VIx5jfUTQgghhJwG6BQYIYQQQk47VAARQggh5LRDBRAhhBBCTjtUABFCCCHktEMFECGEEEJOO1QAEUIIIeS0QwUQIYQQQk47VAARQggh5LRDBRAhhBBCTjtUABFCgsJms+GFF17AjBkzkJaWhrFjx+Lmm2+G0WgU2zDG8O677+KSSy7ByJEjceGFF2LDhg3izWfbe37o0KF47bXXfF73tddew9ChQ30emz59OlatWoWbbroJI0eOxCOPPBKU/j377LMYOXIkGhsbfV5v3bp1GDduHKxWa8A5vvzyy/j0008D3g4hxD/l3gmTECIrDz74IPbv34/77rsP/fr1Q35+Pl555RXcf//92Lp1K1QqFdasWYP33nsPN998M84991wcPXoUzz//PFwuF26//fZ2n+fx4Ycf4uabb8Ztt92GyMjIoPRvzpw52LhxI7Zv3465c+eKr/XNN9/g0ksvRXh4eMA5mkwmrFixAhqNRryJKiEk+KgAIoQEzOFwwGw249FHH8Wll14KAJgwYQJMJhNWr16Nqqoq6PV6vP/++5g/fz4eeOABAMA555yDyspK7Nu3D/PmzfP7PG8B1KdPHyxdujRo/bv99tsxePBgjBkzBt98841YAB08eBB5eXlYvXq1pH7Z7Xa/zz/wwAMwm8145JFHoNVqMWvWLK73TQiRhgogQkjAdDodNmzYAAAoLy9Hbm4u8vLy8MsvvwBoKkCMRiNcLhdmzJjh872PPvooAGDnzp1+n+c1bNiwoPZPcPXVV+Oxxx5DcXEx+vbti6+++goDBw7EmDFj2u2T2WzG2LFjJb+HZcuWYeLEiejZs6fk7yGESEMFECEkKH7//XesWrUKJ0+eRGRkJFJTUxEREQGgaW5NXV0dAKBbt26tfn97z/MSXjtY/RNceumlWLVqFb755hvceuut+P7777Fw4UJJfdLr9XjmmWfabbdr1y5s3boVF154YdDyIIT4ogKIEBKwgoIC3HXXXbjgggvw5ptvIjk5GSqVCh9++CF+//13AEBMTAwAoKamBoMGDRK/t6SkBAUFBWIx0tbz48aNAwC43W6f17ZYLJ3Sv3HjxkGr1SIyMhIXX3wxvv/+e6SkpMBiseCKK66QlJOUeT27d+/Gjz/+iAsuuAAvvPAC1Gq1pG0TQvjQVWCEkID9/fffsNvtWLhwIfr16weVSgUAYnHBGMPIkSOh1WrF006CjRs34r777sOYMWP8Pq9WqxEVFYXy8nKf5w8ePNgp/fMuRObMmYMTJ07gvffewznnnINevXpJiUmS119/Heeccw5eeuklaDT0NyohHYV+uwghARsxYgQ0Gg2ee+453HLLLXA4HPjyyy/x66+/AmgapUlOTsaNN96Id999FzqdDhMmTMCRI0fw0Ucf4cEHH0T37t39Ph8WFoapU6di69atGDVqFPr3748vv/wS+fn5ndK/sLD//b04btw4DBw4EHv37sVLL70U1CzXrVsHg8EAnU4X1O0SQnypmLDABSGEBGD79u1Yu3YtCgoKEBsbi9GjR+PGG2/EDTfcgMceewzXX389GGPYuHEjPv74Y5SVlSEpKQk33XQTrr32WgBo9/mqqio8+eST2LlzJzQaDS699FKkpaXh0UcfRWZmptiX6dOnY8KECT5XZgWjf95Wr16NL7/8Ert27aJihRAFogKIEEI4McYwc+ZMTJ48GQ8//HCou0MIOQV0CowQQiQymUx49913cfToURQWFuKGG24IdZcIIaeICiBCCJHIYDDg448/hsfjwapVq5CcnBzqLhFCThGdAiOEEELIaYcugyeEEELIaYcKIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGmHCiBCCCGEnHaoACKEEELIaYcKIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGnn/wHnf1lG6g2ewAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=\"equalized_odds_diff\",\n",
+ " show_data_type=\"fit\",\n",
+ " constant_clf_perf=max((y_true == const_pred).mean() for const_pred in {0, 1}),\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(r\"equalized odds violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/_sources/examples/usage-example-for-other-constraints.synthetic-data.ipynb.txt b/_sources/examples/usage-example-for-other-constraints.synthetic-data.ipynb.txt
new file mode 100644
index 0000000..0de190f
--- /dev/null
+++ b/_sources/examples/usage-example-for-other-constraints.synthetic-data.ipynb.txt
@@ -0,0 +1,690 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e2b69330",
+ "metadata": {},
+ "source": [
+ "# Achieving different fairness constraints on synthetic data\n",
+ "\n",
+ "Any of: `equalized_odds`, `demographic_parity`, `true_positive_rate_parity`, `false_positive_rate_parity`.\n",
+ "\n",
+ "---\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with:\n",
+ "```\n",
+ "pip install \"error_parity[dev]\"\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "c3fc96e4",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.9`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a881f9d7",
+ "metadata": {},
+ "source": [
+ "## **NOTE:** change the `FAIRNESS_CONSTRAINT` to your target fairness constraint."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "284b51f0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "FAIRNESS_CONSTRAINT = \"true_positive_rate_parity\"\n",
+ "# FAIRNESS_CONSTRAINT = \"false_positive_rate_parity\"\n",
+ "# FAIRNESS_CONSTRAINT = \"demographic_parity\"\n",
+ "# FAIRNESS_CONSTRAINT = \"equalized_odds\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "70b33f87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_synthetic_data(n_samples: int, n_groups: int, prevalence: float, seed: int):\n",
+ " \"\"\"Helper to generate synthetic features/labels/predictions.\"\"\"\n",
+ "\n",
+ " # Construct numpy rng\n",
+ " rng = np.random.default_rng(seed)\n",
+ " \n",
+ " # Different levels of gaussian noise per group (to induce some inequality in error rates)\n",
+ " group_noise = [0.1 + 0.4 * rng.random() / (1+idx) for idx in range(n_groups)]\n",
+ "\n",
+ " # Generate predictions\n",
+ " assert 0 < prevalence < 1\n",
+ " y_score = rng.random(size=n_samples)\n",
+ "\n",
+ " # Generate labels\n",
+ " # - define which samples belong to each group\n",
+ " # - add different noise levels for each group\n",
+ " group = rng.integers(low=0, high=n_groups, size=n_samples)\n",
+ " \n",
+ " y_true = np.zeros(n_samples)\n",
+ " for i in range(n_groups):\n",
+ " group_filter = group == i\n",
+ " y_true_groupwise = ((\n",
+ " y_score[group_filter] +\n",
+ " rng.normal(size=np.sum(group_filter), scale=group_noise[i])\n",
+ " ) > (1-prevalence)).astype(int)\n",
+ "\n",
+ " y_true[group_filter] = y_true_groupwise\n",
+ "\n",
+ " ### Generate features: just use the sample index\n",
+ " # As we already have the y_scores, we can construct the features X\n",
+ " # as the index of each sample, so we can construct a classifier that\n",
+ " # simply maps this index to our pre-generated predictions for this clf.\n",
+ " X = np.arange(len(y_true)).reshape((-1, 1))\n",
+ " \n",
+ " return X, y_true, y_score, group"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eded764d",
+ "metadata": {},
+ "source": [
+ "Generate synthetic data and synthetic predictions (there's no need to train a predictor, the predictor is seen as a black-box that outputs scores)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "0d326b40",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "N_GROUPS = 4\n",
+ "# N_GROUPS = 3\n",
+ "\n",
+ "# N_SAMPLES = 1_000_000\n",
+ "N_SAMPLES = 100_000\n",
+ "\n",
+ "SEED = 23\n",
+ "\n",
+ "X, y_true, y_score, group = generate_synthetic_data(\n",
+ " n_samples=N_SAMPLES,\n",
+ " n_groups=N_GROUPS,\n",
+ " prevalence=0.25,\n",
+ " seed=SEED)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "ba24bcc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual global prevalence: 26.9%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_true) / len(y_true)\n",
+ "print(f\"Actual global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "5615f135",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Example predictor that predicts the synthetically produced scores above\n",
+ "predictor = lambda idx: y_score[idx].ravel()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6af00a5e",
+ "metadata": {},
+ "source": [
+ "## Construct the fair optimal classifier (derived from the given predictor)\n",
+ "- Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);\n",
+ " - optionally, this constraint can be relaxed by some small tolerance;\n",
+ "- Optimality is measured as minimizing the expected loss,\n",
+ " - parameterized by the given cost of false positive and false negative errors;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "48f713ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=FAIRNESS_CONSTRAINT,\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " false_pos_cost=FALSE_POS_COST,\n",
+ " false_neg_cost=FALSE_NEG_COST,\n",
+ " max_roc_ticks=100,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "3dbca6de",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:ROC convex hull contains 36.6% of the original points.\n",
+ "INFO:root:ROC convex hull contains 41.6% of the original points.\n",
+ "INFO:root:ROC convex hull contains 36.6% of the original points.\n",
+ "INFO:root:ROC convex hull contains 38.6% of the original points.\n",
+ "INFO:root:cvxpy solver took 0.00032425s; status is optimal.\n",
+ "INFO:root:Optimal solution value: 0.15335531408011688\n",
+ "INFO:root:Variable Global ROC point: value [0.10552007 0.71687162]\n",
+ "INFO:root:Variable ROC point for group 0: value [0.23852472 0.69338557]\n",
+ "INFO:root:Variable ROC point for group 1: value [0.11605835 0.69338557]\n",
+ "INFO:root:Variable ROC point for group 2: value [0.04159198 0.74338557]\n",
+ "INFO:root:Variable ROC point for group 3: value [0.03632111 0.74338557]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 144 ms, sys: 6.76 ms, total: 151 ms\n",
+ "Wall time: 149 ms\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO, force=True)\n",
+ "clf.fit(X=X, y=y_true, group=group)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "599af3ba",
+ "metadata": {},
+ "source": [
+ "## Plot solution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "41a84db6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"whitegrid\", rc={'grid.linestyle': ':'})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "5ccb923e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydd3gUVReHfzNbkmx6T0gCCSV0kN6liyBVAQVEKQqKlA9BQVREQAE7YAOkI71DaEqXKr1IbymkJ5u2fWe+P5YddrYkuynU8z4Pmpm5986d2TMz99xz7jkMz/M8CIIgCIIgCIIgCKKMYB93BwiCIAiCIAiCIIhnG1I8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIcWTIAiCIAiCIAiCKFNI8SQIgiAIgiAIgiDKFFI8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiCeeHQ63ePuwlMF3S+CIAh6FxLEk4b0cXeAIJ4XNBoNTpw4gcOHD+P8+fPIzMxEZmYmWJaFv78//P39UaNGDbRo0QLNmzeHj4/PY+3v3Llz8fPPPwvb165deyz92L59O1asWIHVq1fbPX7ixAm89dZbwvayZcvQpEmTR9W9JwqtVosFCxYgPT0dX3755ePujktcvnwZ69evx6lTp3D//n3odDoEBwejfPny6NSpE7p06QJfX98y7UNKSgrWrVuHI0eO4M6dOygoKICfnx/CwsLQpk0b9OjRA1FRUU63t3PnTvzvf/8rVl8uX74MqfTZ+0RPnDgRmzZtAgBERERg3759j7lHzw4DBw7EyZMnAQCNGzfG8uXLH3OPHh937tzB9OnTMWzYMIffg3bt2iEpKQkA0KtXL8ycOfNRdpEgnkueva8aQTxh6PV6LF68GAsXLoRSqbRbRqVSISkpCZcuXcLatWvh5uaG1157DWPGjIGfn98j7e+Tws2bN/Hll1/i5MmTiIiIeNzdeeLZv38/pk+fjsTERPTq1etxd8dpNBoNvvzyS2zcuNHmWFJSEpKSknDs2DHMmTMH06ZNQ4cOHcqkH0uWLMGPP/4IjUYj2p+eno709HRcvHgRv//+O0aMGIHhw4dDIpEU2eZ///1XJn0lCMI+Go0Gv/76KxYtWgS9Xo9hw4Y97i4RBGEBKZ4EUYbk5ORg+PDhOHv2rM0xT09PeHt7g2EY5OTkQKVSCce0Wi1WrlyJv/76C/Pnz0eNGjUeZbefCP744w9h9p4ommnTpgmz908LWq0WQ4cOxalTp0T7vby8oFAokJGRAY7jAABZWVn44IMPMGPGDLz66qul2o9vvvkGCxcuFO2Ty+UICAhAVlaW4K6n1+sxe/ZsJCQkYMaMGUW2a6l4ent7w9/f3+k+MQzjdFmCIEycP38e8+bNe9zdIAjCAaR4EkQZwfM8xowZI1I6a9asibfeegvNmzdHSEiIqHxycjIOHjyIxYsX4+7duwBM1pahQ4diw4YNKFeu3KPsPkGUOdOnTxcpnY0bN8ZHH32EOnXqAADy8vKwfv16zJ49G2q1GgAwefJkVKpUCXXr1i2VPmzbtk2kdEZEROCTTz5BmzZtIJPJYDAYsH//fsyYMUNQ7Ddu3IiqVati0KBBhbZtqXiOGDECQ4YMKZU+EwRBEMTTCAUXIogyYsuWLTh27Jiw/frrr2P9+vXo2bOnjdIJAOHh4XjjjTewbds2vPLKK8L+rKwsTJ069ZH0+WmkSZMmuHbtmvDveV3f+bRx/vx5rFu3Tthu27YtlixZIiidgMlKOHjwYCxbtgwKhQKAyerojLXRGfLz80XruiIjI7F27Vp07NgRMpkMACCVStGxY0ds2LABlSpVEsrOnTsXWVlZDttOTk4WHX8evRYI4klm3759wneD1ncSxKOBFE+CKCNWrVol/B0TE4PJkyeDZYt+5ORyOWbOnInKlSsL+/bv3487d+6UST8J4nGwYMEC8DwPwORaO2PGDIfrJuvUqYNJkyYJ22fPnsWRI0dK3IeNGzciIyND2J42bRqCgoLslvX398fcuXOFgD/5+flYunSpw7YvX74s2ibFkyAIgnjeIcWTIMoAjUaDixcvCttt27Z1KUKlXC7H0KFDRfuOHj1aav0jiMdJTk6OKJppz549i1z/2KtXLwQHBwvb27ZtK3E/zNFVASA2NhbNmzcvtHylSpXQvn17p/pg6WZbvnz5xx6lmiAIgiAeN7TGkyDKgNzcXBiNxhK10aJFC9F2WlqaU/Xu3r2LTZs24d9//0V8fDyUSiU8PDwQEBCAunXronXr1ujUqVOppGooTmqEjRs34pNPPhG29+7di8jISAC2qVHMJCUloWrVqsK2ZYCZ4qRTUavV2LZtG/755x9cvnwZWVlZMBqNCAgIQExMDJo3b47u3bsjNDS0yOux7NeOHTtQqVIlaDQa7NixA7t27cLNmzeRkZEBd3d3hIWFoUWLFujZs6eoXnGxTnljZtOmTSKlyvIeW6NUKrF582YcP34cV69eRXZ2NhiGQUBAAKpUqYKWLVuiW7dupRpd+ciRI6Lnw5lItVKpFK1bt8b69esBAH/99RemT59ebDnOyMjAlStXhG1LhbIw2rdvj927dwMwyeWFCxdE7sFmLBXPx2ntTExMFF3bhQsX4Obmhh07dmD+/Pm4c+cO/P39ERsbi86dO6Nbt25272lKSgq2bt2Kf/75B/fu3UNWVhbc3NwQGBiIunXrok2bNujUqZNT0X5d5ejRozh69ChOnz6NlJQUKJVK6PV6IWBTnTp10Lx5c7z88suQy+V22xg9erTwuwGmycDff/+90PMeO3YMgwcPFizzUVFR2Lx5M7y8vOyW53ke+/fvx759+3DmzBlkZGRApVLBz88PUVFRaNGiBbp3747y5cu7dP1ZWVnYsGEDDh48iBs3bqCgoAABAQGIjY1Fz5490blz5zK579akpqZi06ZNOHHiBG7evAmlUgmZTIbAwEBUr14drVq1QteuXeHh4VFoO5bvbG9vb2Gd982bN7F69WocOXIEKSkp4DgOoaGhqFevHnr27IlmzZo5bNMyNYollt8G6xQzzqRTsXxPm9+j+fn52Lp1K3bu3Il79+4hOzsbgYGBiIqKQvfu3dGtWze4u7uL2jl69Cg2bNiAixcvIiUlBTKZDJGRkWjVqhUGDhxY6LemOGlynEmHZlnG8vrPnz+PDRs24NSpU0hJSQHLsggNDUXDhg3Rr18/VKtWTdROVlYWNm7ciD179iAhIQF5eXnw9/dH7dq18eqrr6J9+/YULI0QIMWTIMqAgIAAyGQy6PV6AKYP1tixYx0OiuwRGhqKuLg4+Pr6ws/PT1hz5gilUonp06cjLi5OiARqRq/XIzc3F3fv3sWWLVsQFRWFSZMmoV27dq5f3FPO6tWr8eOPP9pNbZOcnIzk5GQcPXoUc+fOxYABA1z+3c6cOYOJEyfi3r17ov1arRY5OTm4du0alixZgjfeeAOfffbZIxkw2sNoNGLevHlYsGCBKKKyGXMqkwMHDmD27NkYNmwY3n333VIZQFh6AzAMY1dxs8cLL7wgKJ75+fm4ceMGqlevXuw+mBUKAKhXr57TfbDkzJkzdvtv6Wpbs2bNYvWxrFiyZIlonaxZ7i9duoQePXqIyup0Ovz0009YsWIFtFqtzbG8vDzhvRITE4MvvviiUAXBFY4dO4aZM2fi6tWrdo9nZWUhKysLt27dwqZNm/D9999j5syZds8/depUnDlzBunp6QBMyxfi4uJE6+ktycnJwYQJEwQZkUql+OGHHxwqnWfPnsWXX34pmswwY07Jc+bMGfz222/o06cPJk6caKOc2GPlypX47rvvUFBQINqfmpqK1NRUHD58GMuXL8f3339fZFvFRa1W4/vvv8fq1auFb5oZnU6HgoICxMfHY/fu3Zg9ezbGjh2L1157zaVzLFu2DN98841N+/fu3cO9e/ewefNmNG/eHDNnznRqQrCsOHr0KCZOnIjU1FTRfvMzdPLkSaxYsQLz5s1DWFgYcnJy8Pnnn4smPQDT9+Dq1au4evUqVq9ejdmzZ9tMNj9qCgoK8NVXX2HDhg02x/Ly8nDz5k2sXbsWEydOxNtvvw0A+Pvvv/Hpp5/afE/T0tKwd+9e7N27Fx06dMCPP/7o0neUeHYhV1uCKAOkUqloVvDevXsYNWqUMOhxlsqVKyM4OLhIpTM+Ph7du3fHtm3bREqnTCZDaGiojZtfQkICRowYgd9++82l/pQ17u7uKF++PMqXLw9PT09hv1QqFfaXL1/e4eCvMDiOw/jx4/HFF1+IPpIMw8DPzw8hISEiJVCr1WLRokV46623Cg0iY8m5c+cwePBgQelkWRbBwcEICAiw6cvKlStLHDTK19dXuCeWVipPT0/R/bKWH61Wi8GDB2P27NkipZNlWQQFBSEoKEi0HjkvLw/ff/89RowYYZPnsjjcuHFD+LtcuXKi37owYmJiRNu3bt0qlT4AEAUOKozIyEjR/bx9+7ZNmczMTJGHQs2aNZGYmIg5c+agX79+aNKkCWrVqoWWLVuif//++PXXX532aCgpN27cwHfffWf3WNu2bUW/e05ODgYPHoyFCxeKlE6ZTIawsDD4+/uLJiLu3LmDd955R7S+vbhs2bIF77zzjo3S6evri4iICAQFBdlMgqSkpODdd9/FpUuXbNrz8/PD119/Ldo3ffp0ZGdn2z3/F198IVIuxowZ43CCZNu2bXjrrbdslE4/Pz+Eh4fDzc1N2GcwGLBq1Sr0798fmZmZdtsz88033+DLL78UKZ3md4qlB8K5c+fw9ttvO/2ecoXs7Gz07dsXy5cvFymFEokEISEhNp4Q6enpmDRpEiZPnmwzAeqI5cuX46uvvhLal0qlCA0NtbGcHj16FH369EFCQoJNGxEREShfvrxN4L6QkBDhPWgvqJ8rHDp0CO+++64gFyzLIiQkBN7e3qJyV69exejRo5Gfn4/BgwcLSqf5t7P+Hufl5WH06NG4f/9+ifpXEvR6Pd5//32R0qlQKBAWFib6LnIch6+//hoHDx7Etm3bMHLkSOF7ai5v7THx999/O3znEM8fZPEkiDJi0KBBGDdunLB94MABtG3bFu3bt0fHjh3RokULl/L6OSIrKwtDhgwRDZJq1KiB0aNHo0WLFsIsY3x8PFatWiUMIHiex08//YSgoCD06dOnxP0oDerWrYu//voLgNiNNzQ0VNhfXL766ivRmjwvLy8MHz5ctHawoKAAf//9N2bPni24YJ09exZjxozB4sWLi3Tr/OKLL6DX6+Hn54eRI0eia9euwm+cmpqKxYsXY/HixUL5NWvW2HVdcpa33npLcCWzdBt76aWXHEZpNKf5OXHihLAvKCgII0eORJcuXeDr6wvAZEGPi4vDzz//LAxo9+3bh88//xzffvttsfprJiUlRfg7LCzM6XrWlo6SDNQs+8AwjNNWFIlEgqCgICQnJwOAXfc+a8Vn7dq1+Ouvv2zc782WsNOnT2PevHl49913MWLECKeCkBWXWbNm2ViVzFi65PI8j3HjxonS3TRq1AjvvfceGjduLLxXMjIysH37dvz2229QKpUwGAyYOnUqIiIi8OKLLxarj0lJSfjiiy9gMBgAmAa0Y8aMQdeuXUXBn/Lz83Ho0CHMnj1bSEGl1+vxww8/YNGiRTbtvvjii+jfvz9WrlwJwPTu/Oqrr2wGxZs3b8bOnTuF7aZNm+Kdd96x29dTp05h4sSJor6+++676NWrF8LDwwGYvAvOnj2L+fPn4+DBgwBMFvExY8ZgyZIldt8r27dvF6X5USgUGDFiBPr06SMoe3fv3sUff/yB9evXIzEx0fENLSYajQbvvvsurl+/LuwrX748xowZg3bt2gmRps0uuPPmzRMmstasWYOAgAD873//K/QcKpVKsL77+flh7Nix6N69OxQKBTiOw4kTJzBr1ixBqU9NTcXIkSOxbt06kQXN7H5qvfTiu+++K7VI59OnT4fRaERoaCjGjBmDV155Be7u7uB5HidPnsTHH38svFfOnz+PXr16IT4+Hu7u7vjggw/Qp08f4Xtw+fJlfPHFF4L3R35+PpYsWSIKovYo2blzp/B+6t69O4YNG4YqVaoAME1AzZkzBytWrBDKf/HFF8jIyADP82jQoAE+/PBD1K9fHyzLQq1WY8WKFfjpp5+E52LVqlUYPnw4AgMDH/3FEU8UZPEkiDKiS5cuNgMvvV6PXbt2Ydy4cWjWrBm6du2KyZMnY/PmzXZncZ3hp59+EtXt2rUr1q5di7Zt24o+zOXLl8eECROwcOFCYcAAmFzQHudM66Pg3Llzoo9meHg41q5di2HDhokC1nh6eqJHjx7YvHkzGjRoIOw/efKk3YGsNXq9HuXKlcPmzZsxcOBA0cRCaGgoJk6cKBqI8TyP7du3l/DqXGPHjh3Yv3+/sB0bG4vNmzejX79+gtIJmAaBAwYMwKZNm0TWwK1bt2LHjh0l6oOlpceVyRdr64o9d+ni9MHb27tIrwJH/cjJybE5brm+EwB27dolDOpkMhnCw8NtrLwajQZz587FBx984FAxLA3Ma8UGDhyIPXv24Ny5c9iyZQuGDBkiCq60cuVKHD58WNgeMmQIli9fjpYtW4reK0FBQRg0aBA2bNiAChUqADBZRT755BMb11xnmTdvnpC3lWEY/PLLLxg0aJBNxGEvLy906dIFa9euFVmzjh8/jry8PLttf/zxxyLL+bZt2wRlEDApvdOmTRO2/f398c0339idDNDpdBg3bpwwuA4JCcHGjRsxYsQIQekETJMVDRs2xPz58zFmzBhh/7///it6L5nRarWiiSOFQoGlS5fi3XffFcledHQ0pk+fXmbptpYtWyZyi2/atCk2bdqErl27ir4hoaGheO+997BmzRrR+/T333/HuXPnCj2H0WiE0WhEWFgY1q1bhzfeeENom2VZNGvWDGvWrEHLli2FOmb31EeN0WhEVFQU1q5di9dee01wlWYYBk2aNLFxd46Pj4dMJsOiRYswbNgw0buuZs2aWLx4sUgRO3DgwCO5DnuY308ffvghvv32W0HpBExeBp9//jmaNm0q7EtOToZer0f79u2xbNkyNGzYUHhGPDw88O6774pkXafTlUokcuLphxRPgigjWJbF3Llz0aVLF7vHeZ7HjRs3sGbNGkyYMAEdOnRA27Zt8emnn2Lfvn1ODT4TExNFrjHVq1fHjBkzCh1EN2nSBF988YWwrdPpsGDBAheu7Olj9uzZwt8SiQQ//fRToa6VPj4++Pnnn0UD3cWLFwuD4cL48ssvRYNOa4YOHSpyzTp//nyRbZYWPM9jzpw5wrZCocCvv/4qGixaExYWhp9//lm0Hu3XX38VrY90FUv3XssBbFFYl7Ve9/Yo+mBd3l4frBVPwBS5d926dbh48SIOHDiAM2fOYOfOnRg0aJDoed23b59I8SkL3nvvPXz22WeoUKECPDw8UK1aNUyYMEH4jQ0GA/744w+hfOPGjTFhwoRC1/dGRkaKBt4ZGRnCelxX4DhO5N3Qpk2bIqMN+/r6omfPnsK20Wi0a4kGTIPib7/9VmRl/PLLL6FSqcBxHD7++GPk5+cLx77++muH1vBNmzaJLOffffedjTu4NSNGjEDbtm2F7YULF0Kn04nKxMXFiZZljB8/vtB10H379kWvXr0KPa+rFBQUiGQgNDQUc+bMKXSZQ2xsLH744QdBTniex6+//lrkuViWxQ8//OAw6JKbmxu+++47kZK2ZMmSEr2DisvEiRMdemk0bNgQUVFRon0DBw4UTWJa4u3tjZdfflnYvnfvXrEna0qDmjVrYtiwYQ6PW8uYu7t7oQHeevfuLdq2Xt5APJ+Q4kkQZYi7uzt+/PFH/Prrr04FGLl//z7Wr1+P999/H23atMGSJUsKVUD37dsnzLYDwMiRI51awN+zZ09RnlB7AYmeFXJycnD8+HFhu02bNjYBYuwREBCAQYMGCdtZWVn4559/Cq0TFhaGVq1aFVpGLpeLAuI4WmNWFly7dk1wSQRMAwPrgZI9KlasKBp03Lhxw24QFWexlGlXotJKJBKR8mMp+4+qD9bl7fXBMrCQTCbDr7/+ilmzZqFOnTqi/lesWBGffPIJlixZIlJm16xZI3JxLU0UCkWhg0vAtJbO0gvCXqRpe9SuXVsUpGnXrl0u989oNOKHH37A9OnT8d5779mklXKEtdJiL2CWZT/ff/99YTspKQlz587FokWLRPf9zTffLDQAm+WkX9WqVZ126XzzzTeFv9PS0mysgpb3zcfHx6mlEO+9955T53aW48ePi6z5Q4YMEXlEOKJx48aid+ChQ4eKfMe1adPGoXJmxt/fH/369RO2k5KSRNbYR0FISEiREbhjY2NF25YTIvYwewmYsedB8ah4/fXXC51cso7E/uKLL9rEL7AkICBAtJ71cV4b8eRAiidBPALat2+PjRs3YuvWrRg1ahReeOGFIge7GRkZmDFjBvr27SusJ7PGMrenQqFAmzZtnO6TZTTHnJycEikSTzInTpwQKdWOoljao1u3bjZtFYa1YuEISwtjaQTrcZZjx46Jtl25F127dhVtF3UvCsPSUvG4wuyXZR++/fZbzJo1C6NGjcKPP/5YZKqWhg0birwQADhlKSoOderUKTKYk7XS60pU3vr16wt/nz9/3saaVxQymQzNmjVDnz59MHbsWDRq1KjIOjzP27jWFpXO6v3330fdunWF7eXLl4s8I2JjY/Hxxx87rK9SqYodubh+/foimTO7PwOmazl9+rSw3axZM6cmE6Ojo0slRZOZ0npX8DyPf//9t9Dy1u9ZR1grfZb37VFQu3btIstYerPI5XKRy6o9rJ9FV5+X0qSo6OLW1m5n0kRZXt/jvDbiyYGCCxHEI6Rq1aqoWrUqRo4ciYKCApw5cwanTp3CqVOncP78ebvWzf/++w8DBgzA+vXrbWYX79y5I/xdrVo1lyw31h/R27dvP3FpH0oDy3sEALVq1XK6blhYGIKDgwW3N3sRTK3LO4PlQPJRWpot74VEInEpv2StWrXAsqzQ36LuRWHIZDLBpcwVq6XRaBQpjJbRQovTBzOuWk4ty9vrQ4MGDYq04FjTvXt3/Prrr0JE5JMnTyI/P18Y7Fnm8isKezn7zDgzeLZ2FR44cKDTAY9yc3OFv7VaLdLS0hzmkC0O2dnZSExMREJCAm7duoUrV67g/PnzyMjIEJUr6rmSSCT45ptv0KtXL6hUKtG71+ypUph83bhxQyQHf/31V7Gt1JaBgVJSUkSuvtYWtMKoXr16ob+9K1i+K0JDQwt1x7fG3relMCwnAAqjcuXKojRlJYlqXRzKlStXZBnLCQVfX98in5uyDCTmKoUtEQFsJ+icWZ//JF0f8WRAiidBPCY8PT3RqlUrwS1Jo9HgxIkT2L17N7Zt2yaaHUxKSsLXX39tE33RMriKKwMDe+VLEqjlScbazcvV+xQUFCQonkXdI2fTgjwuLO+Fj4+PS3nV3N3d4eXlJSgWJZEXLy8vQfF0Zt2sGev1lEUlqi+qD2Zc6YN1P0rSB0tYlsWLL74oROfU6/W4evUqGjZsWCrtm7EO0GMP67QcJYmYqlQqi614chyHY8eO4a+//sKlS5dw584dkVJWUqKjozFhwgQba/PHH38sWopgD+t7lJeX5zCgUVFYPkvWKbcKc2W0pqTpQiyxfFeU5beFYZgiFR4zMpkMPj4+QmCwotLRlDauvt+ftryVrqYpe9quj3gyoKkIgnhCcHd3R+vWrfH1119j7969ogAUgCkaqXXSastBmKsfResBs6uD76cFy3vEMIzLgWQs71NR98gy39mTiOW9cPU+AK7di8KwDBLiigJrvUbIGSXKmT7k5uYW6ZrpqB+lmR7Aer1tWQysrXMO2qM0lbvC1loWxpkzZ9CjRw8MGTIEq1atwsWLF+32SyaToVGjRnjppZeKdR57gYOcUbSLq2Taw3Iiw9od0ZWJjeLkN3ZESd4VrnxbPDw8XLKKWQY5e9Sum66uBX/aeNavj3gyICkjiDJArVYjKysLmZmZCA0NdTpHoJmQkBD8+uuvePvttwX3OqPRiJMnT4rWwygUCsEC5WqEz9K0HrmCKwP80sBy0MTzPFQqlUsDqbKwbj0uLK+7OApBad2LiIgIITdgWlqa0/WsJ15cfa6s+2CG4zhkZGQ41Z7RaBS5dbqSh7QoLAfV5nOVNs6sZ7XsR1BQ0CNPg3Dw4EG7aWVCQ0NRpUoVxMTEoGLFiqhevTqqV68Od3d3bNmyBXv27HHpPFlZWfjss89s9i9ZsgTt2rUrdH2ptfxPmTJFFPymuFhbkVx5TkszDU9J3hWufFtc7bNl28WZPHteeNTfWYJwFlI8CaKUuX37Njp37ixsDxkyBBMmTHC5HZZlMXToUNG6LuuBt5+fn6B4WrtoFYV1WyW13Di7VrG4FpDiYp37MT093SaSYGFYKkauuL09iVjei9zcXGi1WqfXSebn54sGfSW5F5UqVRJyiSYmJkKn0znltmW9VsyV9W/2+mDdtjOKZ0JCgmiw7Ch4SH5+PrKyshAREeG0JdzaLdxyDZXZBfdRYJ2nlOO4R7ZWKzs7Gx9//LFwj1mWxeDBg9G/f/9CXXaLk4Zi8uTJokkEhUIhpFWZMGECtm7d6tCKaP1eKa3o1NYy6IrVuzSXS1heX0m/LYW9K/R6vWgtc2FotVqRpbk0J32eFp7U7yxBOAu52hJEKRMSEiKyKlhGKHQV64GWtZJgOei9cuWKS0FSrEPRO8qhVhiWg1FnB36Wee8eBdbKyYULF5yum5CQIBpQuqKwPolYyovRaBRF5SyKS5cuiQL7lOReWAYTMRgMTvfDMu2El5cXoqOji90H6wjEzsqFdeoL60AqP//8M+rUqYMGDRqgY8eOLt9jMwzDlGqUUlewVMr1er1gnXaGnJycEkVq3rx5s0iBGj16ND7++OMi14lav1eKyvG4ceNGUb7Q3r17Y/LkycJ2UlISpk+f7rB+xYoVRduu/M48zyM9Pd1uH0NDQ0VpS1xp9+rVq06XLQrLd0VqaqqNMlkY1t+Wot4Vzvb76tWrIkve43o+HjVPw3eWIJyFFE+CKGW8vLxEeRrPnz9vM1h1Fsuci4CtdcXSFUytVmPfvn1OtcvzPOLi4oRtLy8vVKtWzeX+WbpQObtOztkBfmmluGjQoIGoLcvrLgrrsq5GKn3SsHYd3LFjh9N1re9FSYLeNGvWTLSeaO/evUXWMRgMOHTokLDdvHnzEq1J8vf3F0U4dqYPAETPmHUbgCnypeXg0LLPhaFUKkUurdWqVXtsFnZrOXElH+ewYcNQt25dNGvWDH379nVZCT1//rxo+4033nCqnnXKjsIUz6SkJHz11VfCdmhoKCZOnIhevXqhZcuWwv5NmzaJlFNLAgMDRQr60aNHnV73+c8//6Bly5aoU6cOXnrpJaxatUp0vGnTpsLfx48fF0UKdkR2drbNvSsJpfWuYBimyPem2fuhKHbv3i3abt68uU2Zx5WeqSyx/M46a1l/1DlOCcJZSPEkiDLgtddeE21PnTrV5WAsPM9j0aJFwnZwcLDNYP/ll18WpYX45ZdfnAq4sHnzZpFS26FDh2IN4i2jFxoMhiIHPpcvX8aZM2ecattyAFGU9aIw/P39RYPJgwcP4uzZs0XWy8rKwrJly4RtT09PvPjii8XuR1ljOSvu6H7VqFFDNFjesGED4uPji2z71q1b2Lp1q7AdGRnpUloaa7y9vdG6dWthe926dUW6CW7atEnk8ldUYnZnsMw3eP78+SLTldy6dUukoPbo0cPGBbV169aiZ2n16tVOBeuZPXu2yD2uf//+RdYpK1q3bi2yuq1cudIpi9f+/fuFSbasrCx4eXnZrFstCmvlzRk35b1799r8do7WDprdaC1/k2nTpglBl6ZOnSpaO/j555/bpGox0717d+FvlUqF33//vci+chyHOXPmADAFx7l3756N5a5Xr17C3xqNBgsXLiyy3SVLlpRqsJ1WrVqJ3G0XLVrklCvviRMnRPmlGzZsWGQQsA0bNthECbYmPT0d69evF7br169vE4wLsE3fUZJvx5OC5Xf2/v37RVoz//77b9y/f7+su0UQxYIUT4IoA/r27Styxbp8+TIGDBiAmzdvOlVfq9Vi4sSJIjfd999/30Y5DA8PFwUbunr1KiZNmlSoy+2///6LadOmCdsymQzvvPOOU/2yxjJZPAD89ttvDtegpKWlYeLEiU6vUbGc5S1plM3hw4cLf3Mch7Fjx9rk97QkPz8fo0aNEq2vevPNN0s1amRp48z9YhgGw4YNE7ZVKhVGjhzpcGANmNzsRo0aJbJcDRs2rMRr/oYOHSr8rVQqMWbMGIcD5wsXLuDrr78WtmNjY22iPheH3r17iwbX48aNQ1JSkt2ySqUSo0aNEp4tNzc3vPXWWzblAgMD8corrwjb6enpRT6TS5cuxcqVK4XtypUrl4piXVw8PT0xcOBAYTsnJwcjRowoVDm4e/cuPv30U9E+S1lzFsugT4BJKSmMY8eOYdKkSTb7HcnSokWLRNbRHj16iCZBIiIiMH78eGE7OzvbbgAiwDQ5YBkleOHChUX2d9asWSKvj0aNGtm8R1u3bi3KsbtgwYJCAyft378ff/zxR6HndRUPDw+RDKSlpWHMmDGFBrG7efMmxo0bJ1L23nvvvSLPlZ2djfHjxzu0jhcUFGDs2LGiaNLvv/++3bLWEx2lGaH5cWEpHxzH4ddff3VY9tatW5g6deqj6BZBFAtSPAmiDJDL5Zg7dy58fHyEfZcvX0b37t0xevRobN261SZoBM/zuHr1Kv744w907NgRmzdvFo61adPGoQVk4sSJovVP27ZtQ9++fXHgwAHR4CshIQHffvstBg8eLBo8jBo1ymGAlKKoX7++KKn2oUOHMHLkSFFi77y8PPz555949dVXcf36dafTvli6Gebm5rrkImtNo0aNREpCcnIy+vTpgwULFoisaCqVCtu2bUPPnj1FyeCrV6+OESNGFPv8jwLL+3XixAmHydV79OiBDh06CNvXrl1Dz549sXr1atHALicnBytXrkSvXr1EbbVq1Qp9+/YtcX8bNGggshgdP34cffv2xfHjx4WBa35+PpYsWYK33npLsAZKJBJMnjy5UMW3Xbt2qFq1qvDPUXoMLy8vkZKRlpaG3r17Y/PmzcKzYzQa8ffff+PVV18V3Yf333/fRkky8/HHH4sCA+3evRv9+/fHsWPHRO7oly5dwujRo0VKtYeHB7755pvHniNv+PDhovWrly5dQq9evbBu3TqRVTI3Nxd//vknXn/9ddE7rVevXiKXUWfp1KmTaPu7777DDz/8IJocMRgMOH36ND755BMMGTLEriXOnsJx9epVzJ49W9gODg62q7T2799f5F2yf/9+rFmzxqacj4+P6LfjeR6TJk3CuHHj8N9//4n2X7hwAe+99x6WLFki7Pfw8LDJIQqYrHbTpk0TvFmMRiP+97//4euvvxZZslJTU/Hdd99h5MiRLq3vd5Zhw4ahTp06wvbx48fRq1cvbN++XWSdT09Px/z589G3b1/R+/T1118XeZsUxpEjR/D666/jn3/+EZ4Rg8GAffv2oU+fPqLJgq5duzr0PrEOkrd+/fpSjfb7OGjbtq3ICr9mzRp89tlnIlnIzMwUfoPU1NQnPqc08fxCUW0JooyoXLkyVqxYgQ8++AAJCQkATAOI3bt3C2tVZDIZAgMDodfrkZOTY3fw0LFjR3z33XcO1674+vpi3rx5GDZsmGCtuXz5MoYPHy60r9Fo7A7Ohg4dKrIGuopUKsXEiRMxZswYQVnYu3cv9u7dK7jZWQ4YZTIZfvnlFwwaNKjItmvWrCna/vDDDzFz5kwAwODBgzFkyBCX+jphwgRkZWVh+/btAEwK8XfffYfvv/8e/v7+kMlkyMzMtPkNqlWrhvnz57vsMvioqVGjBo4fPw7AdG3dunVDWFgY1Go15s2bJwwgGYbBrFmz8MEHHwjl09PT8cUXX+DLL78UBm6ZmZk21ulmzZrhp59+KrV1VFOmTEFSUpJg2b9y5QrefvttKBQKeHt7IyMjw2bd8CeffFJomgtX6dOnD27cuIGlS5cCMLmITpgwAZ999hkCAwORnZ1tE9Dj5ZdfLtSSExQUhIULF2LQoEHC+rzz589j0KBB8PDwgL+/P5RKpU3kSYVCgXnz5tnI/uNALpfjl19+wbBhw4TgLykpKfjss8/wxRdfICAgACzLIj093UZOmjdvjilTphTrvC1atECHDh3w999/AzApH/PmzcO8efPg7e0Nd3d3u7JZs2ZN/Pfff8J7yNodUafT4eOPPxZNxn3xxRc20WkB0zMyffp09OjRQ/jtZ86ciWbNmtkEYXvppZfw6aefYubMmYKsbt++Hdu3b4dCoRB+a2tLoZubG3744QeHk361atXCt99+i/Hjx8NgMMBoNGLp0qVYunQpAgMDwTAMMjMzhesNDAxEy5YtsWXLlkLvryvI5XL8/PPPIhm4d+8exo0bB6lUKny7srOzbVxau3btKgrWVBixsbG4fv06rl69iqFDh8LDwwN+fn7IysqyefaaNm1aaNCnsLAwBAYGCpMg+/fvR5MmTeDn5wd/f/8iLdJPIn5+fhg9erTw/QNMyxPWrVsnyK/l993HxwezZs1yaBUmiMcJWTwJogypWrUqtm7dihEjRoisn2b0ej1SUlLsKjwRERGYNWsWfv755yKVnsqVK2P9+vXo3LmzSCkwt2+tdEZEROCXX37Bxx9/XPyLe0CnTp0wc+ZMm+vLz88XKZ0RERFYtGgRmjVr5lS7rVu3tpktT0tLQ1pamij6p7NIpVJ8//33+PTTT0WDTZ7nkZWVhdTUVNFvIJfLheT1ISEhLp/vUfPOO++I+mk0GpGUlISsrCyR9QUwWfoWLlyI999/X+Siy3Ec0tPTbZQJT09PjBs3Dn/88Uepuht7enrijz/+QK9evURyq1KpkJqaKlI6fXx88O2334rc/0qLSZMm4eOPPxbdC/OzYznwlUgkGDJkCH744Ycile+aNWti06ZNaNy4sWi/Wq3G/fv3bZTORo0aYe3atTblHyehoaFYtWoV+vXrJ1pLbjQakZ6ejtTUVJGcyGQyDB8+HPPmzSvRRM13331nY/kETBMq1rIpl8vx3nvvYfXq1aLoqdZrPn/66Sdcu3ZN2O7SpQs6duzosA8xMTEYNWqUsK1SqfDxxx/bDaD21ltvYcGCBTaRblUqFZKSkmyUzqpVq2LFihVo166dw/MDQOfOnbF06VIbZTczMxMZGRmCshcVFYUFCxYgPDy80PaKgyMZMBgMSE1NRVZWlkjpDAgIwPTp0/H99987HTdg0qRJGDhwoPBMqdVqJCcni549s2z98ccfheYFZRgGEyZMED2fBQUFSEpKwn///edyrIUnhcGDB+Ojjz6yiWyvVCpF3/dq1aphxYoVJUo1RRBlCVk8CaKMUSgUGDNmDN577z0cPnwYJ0+exJUrV5CUlCRYU1iWhY+PD6KiolC7dm20adMGzZo1czr/H2D64P/000+4fv064uLicOLECSQmJkKpVEIikSAsLAy1atVCx44dix1MyBE9e/bEiy++iA0bNmD//v24e/cucnNzERgYiJiYGHTu3Bldu3Z1yf2HYRj89ttvWLJkCXbs2IHExESo1Wp4eXmVKGDEW2+9hVdffRXbtm3DP//8g6tXryIrKwt6vR6+vr6oUqUKWrZsiR49eoiCOjzpBAYGYuPGjZg3bx4OHTqEtLQ0GAwG+Pv72x1sSaVS/O9//8PAgQOxdetWHDlyBLdu3UJWVhaMRiMCAwNRrVo1vPjii+jWrZvdiZPSQKFQYObMmXjzzTexdetWHDt2DGlpacjPz4e3tzeqVKmCVq1aoXfv3mUa5XXo0KHo2rUrNm7ciIMHDyIhIQFKpRLu7u4oX748mjRpgj59+tjk/yyMyMhILF++HGfOnEFcXBxOnz6N5ORk5Ofnw8fHRwgY1rFjR6cnZB41CoUCU6ZMwbvvvovt27fj2LFjuHv3LrKzs8FxHHx9fVG5cmU0bdoUvXr1cioXalF4eHhgzpw5OHHiBDZt2oRz584hNTUVWq0WCoUCgYGBqFy5MurVq4fu3bsLEy4dOnQQ1joeO3YM8fHxKF++PE6dOoXFixcL7fv7++Pzzz8vsh9DhgzBrl27hImus2fPYv78+XYtSS1atEBcXBz27duHAwcO4Ny5c0hPT0d+fj48PDwQGhqKOnXqoFOnTmjVqpXT7/aGDRtix44diIuLw86dO3H58mUolUp4e3ujQoUKePnll9G7d294eXkVug60JJhl4J133sG2bdtw9OhR3Lt3T4iwGhwcjJo1a6Jt27bo0qWLy5MOLMvis88+Q/fu3bFq1SqcPHkSaWlpkMvliImJQatWrdCnTx/Rso7CML+7ly5disuXLyM7OxtyuRyhoaFISUlBTEyMy/fgSeCdd95B586dsWHDBhw8eBCJiYlQqVQIDg5GlSpV8Morr+Dll1+GXC53uLyAIB43DP8shPwiCIIgCIIgnnhOnDghWnO/bNkyNGnS5DH2iCCIRwW52hIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQRAEQRAEQZQppHgSBEEQBEEQBEEQZQopngRBEARBEARBEESZQoonQRAEQRAEQRAEUaZQHk+CIAiCIAiCIAiiTCGLJ0EQBEEQBEEQBFGmkOJJEARBEARBEARBlCmkeBIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQTyxGI3Gx92FMqEsr+tZvWfPIvRbOQ/dq+LBcdzj7gJBCJDiSRDPGQUFBejQoQPat28PnU4nOnb79m2MGTMGLVq0QK1atdCyZUtMnTq1xOccOHAgqlatioEDB5a4LeL5gOM4rFixAjNmzHgs52/Xrh2qVq2KiRMnlnrbcXFx+Oijj0q93bJum3CNwmQoPT0dY8eOxenTp22OVa1aFVWrVsXcuXMfRTefCo4ePYp33nnncXfjiaMwWbl37x4GDx6M+/fvl8q5bt26hZo1a2L06NGl0h7xfEKKJ0E8Z3z99ddISEjARx99BLlcLuzPzMxEv379sGvXLmRkZECv1yM9PR3u7u6PsbfE88pHH32EadOmIT8//3F3pVT58ccf8eGHHyI9Pf2papsoPbKystClSxfs2LEDlEq9aNasWYPBgwfj3r17j7srTw1Xr15Ft27dcPTo0VJrs1KlSujXrx92796NzZs3l1q7xPOF9HF3gCCIR8epU6ewfv161KtXDy+//LLo2L59+6BUKgEAn376Kbp06QKGYUTKaXEJCQlB+fLlERISUuK2iOeDtLS0x3r+iIgISCQSBAYGlmq7qamppdreo2qbcB1HMqRSqZCbm+uwXvny5QEAvr6+Zdq/p4XH/S54knEkKzk5OdBqtaV+vg8++ACbNm3CjBkz0Lp1a/j7+5f6OYhnG1I8CeI5ged5TJs2DQAwZswYm+NmK4mfnx/eeuutUj33999/X6rtEURZs3z58sfdBeIpp7gy9Ndff5VyT4hnlUctK/7+/hg4cCB+++03zJkzB1988cUjPT/x9EOutgTxnLBr1y5cvXoVsbGxaNasmc1xc+AGT0/PR901giAIgiCeAvr37w+pVIp169aV2vpR4vmB4WmBAUE8F7z22mu4dOkSPvnkEwwaNEjYP3HiRGzatMluncaNG4tm7fPz87F+/XocOnQI169fh1KphEwmQ1BQEOrXr48BAwagTp06Nu0MHDgQJ0+etGnPfO5u3bphzJgx+OKLL3D69GnI5XJUrlwZc+bMwe3btwUL7LVr13Dr1i388ccfOHbsGDIyMuDr64uGDRtiyJAhqFu3rsPrz87OxtKlS7F//34kJCTAaDQiPDwcrVq1wpAhQxAeHm63nlqtxqpVq7Bnzx7cuHEDWq0Wfn5+qFGjBrp06YJu3bpBIpHY1FMqlVi+fDn279+PO3fuwGAwICAgAHXq1EGPHj3QoUMHh30tiqSkJKxduxb79+9HUlISjEYjoqKi0LZtWwwZMgR+fn526506dQqrVq3CmTNnkJ6eDoVCgZiYGHTo0AEDBgyAQqGwqWP+jXr16oWZM2ciLi4Oa9aswbVr16BWqxEREYGOHTti6NChdl0DeZ7Hzp07sXnzZly6dAk5OTnw8vJCTEwM2rZti/79+8Pb29vmfPa4du0agIfy9N577+Gll17C1KlT8d9//0GhUKBWrVr47bffBBfxrKwsrF69GkeOHMGdO3eQm5sLNzc3hISEoHHjxnjrrbdQqVIlm3O1a9cOSUlJwnWX9H7MnTsXP//8s93r2rt3LyIjI0XnjYiIwL59++yWt8aZtp151g4fPoxPPvnEpk+WJCYmon379gCAGTNm4NVXX7UpU9xnrTDM/e/SpQt++OEHrFy5EmvXrsW9e/fg5eWF2NhYvPnmm2jXrl2h7Rw4cADr1q3D+fPnoVQq4enpidjYWHTp0gW9e/eGTCazW+/WrVtYtmwZjh8/jvv370MqlSIkJASNGjXCgAEDUL16dZs69mSoatWqdtu3V2bkyJEYNWoU0tPT0bp1axiNRowbNw7Dhg1zeH1vvvkm/v33XzRt2hRLly4VHbt//z6WLFmCw4cPIzk5GQzDCO+NQYMGFctt0nyN06dPR3h4OL755hvcvn0bvr6+aNq0qcjbJSkpCatXr8axY8eQmJiIvLw8KBQKlCtXDs2bN8fbb7+NsLAwofzGjRsFebRm2bJlaNKkibDN8zzi4uKwZcsWXL58Gbm5ufDz80PdunXRt29ftG7d2uVrO3HihPDtuXDhAq5du4Zff/0VZ8+ehU6nQ1RUFDp37owBAwbAx8fHYTtnz57Fxo0bcfr0aaSlpUGj0cDLywuVKlVC+/bt8cYbb9i8e83XHhoait27d2PGjBnYuXMn9Ho9oqKiMGnSJDRr1sxGViyfT2tGjhyJqKgoTJgwwe49tESj0aBZs2ZQqVQ2YwYAeP/997Fv3z4MGjTI4W9EEPYgV1uCeA64dOkSLl26BADo1KlTsdq4ePEi3nvvPWRkZIj26/V6xMfHIz4+Hlu2bMH06dPRu3dvl9rOycnB22+/jaSkJACmj152djaCg4Nx+/Ztody+ffswduxYaDQaYV9GRgZ27dqF3bt3Y9asWejRo4dN+8ePH8fo0aORk5Mj2n/nzh3cuXMHa9euxTfffGNzb5RKJQYOHIjr16+L9qenp+PgwYM4ePAgNmzYgPnz58PDw0M4npCQgIEDByI5OVlULyUlBSkpKdizZw+6dOmC77//HizrmuPJzp07MWnSJKhUKtH+69ev4/r169i4cSMWLVqE2NhY4RjHcZgyZQrWrFkjqpOTk4Nz587h3LlzWLlyJX777TdUq1bN7nl5nsfHH3+MLVu2iPbfvn0b8+bNw/bt27Fq1SqEhoaKjn/00UfYtm2baJ9SqcTZs2dx9uxZ/Pnnn1i2bBmio6Ndug+A6T6//fbbyMvLAwAhSrNZ6Tx48CD+97//2dwrvV6P/Px83L59Gxs3bsQvv/yCF1980aVzF/d+PG4Ke9ZKg+I+a64wfvx4bN++XdhWq9VIT0/HkSNH8Oqrr2L69Ok2k0FqtRrjxo3D3r17RfuVSiVOnjyJkydPYuXKlfj9998REREhKnPgwAGMGjVKFAVcp9Ph7t27uHv3LtavX4/PPvsMb775ZrGvqTCCg4PRrFkz/PPPP4iLi3OoeKakpODUqVMAYPMejIuLwyeffGKz7u/atWu4du0aVq9ejV9++QUNGzYsVh/PnTuHL7/8Enq9HoDpvWzpPbNu3TrRcTO5ubnIzc3F1atXsX79eixduhQ1atRw6dy5ubkYOXIkTpw4Idqfnp6Ov//+G3///Te6d++Or776qtgxC/bv34/x48eL+m++d+vXr8eiRYtQoUIFUR2j0YgpU6Zg7dq1Nu1lZ2fj1KlTOHXqFDZt2oRVq1bBy8vLphzP8xg7diz2798v7Lt58yZiYmKKdR0vvfQSvvzyS6hUKsTFxTlUPPft2weVSgWJRIJXXnnF5ninTp2wb98+bNq0CR9++CHc3NyK1R/i+YNcbQniOWDHjh0AgMqVK9tYG6ZOnYozZ85g+PDhAIBy5crhzJkzOHPmDBYsWADAZOl8//33kZGRgaCgIHz11VfYs2cPjh8/ji1btmDUqFHw8PAAz/P46quvbAb6RXHo0CGkpaVh6tSpOHLkCNauXWt3FvXDDz+En58fZs2ahUOHDuHQoUOYPHmycG57UVCvX7+O4cOHIycnB5GRkfjmm29w6NAhHDt2DPPnz0etWrWg0Wjw4Ycf2qQ2+OGHH3D9+nUoFApMnjwZf/31F44fP45Nmzahe/fuAICTJ0/aWBamTJmC5ORkBAUF4ZtvvsHff/+NY8eOYfXq1WjZsqXwm8TFxbl0n86cOYOxY8dCpVIhKioK33//PQ4fPox9+/bhs88+g6enJ9LT0/HBBx+IBslff/21oHQ2a9YMS5cuxbFjx/DXX39h3LhxUCgUuH//PgYNGoSUlBS75969eze2bNmCNm3aYOXKlcJvbx6UJCUl4aeffhLV2b59u6B0vv3229i6dSuOHz+O3bt3Y+zYsZBKpUhNTRWl7DHLY4MGDQAA3bp1E+TRmri4OPA8j9mzZ+Po0aNYsmQJRowYAcBk3RkzZgxUKhWio6Px448/Cr/Dhg0bMHDgQEilUuh0umKlDHL1fgwfPhxnzpxBt27dAAANGjQQrstS0YmKikJMTAyioqKc7ouzbQPOP2vFoSTPmrMcOHAA27dvR/Xq1bF48WIcP34c69atEyxaGzdutGv9/fDDDwWls3PnzlizZg1OnDiBHTt2YNiwYZBKpbh+/TqGDBkieoeoVCpMmDABOp0OderUwaJFi3Do0CEcPnwYv/76K6Kjo8HzPGbOnInExMQi+3/mzBnRcz9//nycOXOmSBk0K5JXr17FrVu37JbZvn07eJ6Hu7s7XnrpJWH/kSNHMH78eGi1WlSrVg2//PILjh49isOHD+PHH39EdHQ0lEolhg0bhrt37xZ5DfZYv349AgMDsWjRIhw9ehS//vqrkD7rwoUL+Pzzz6HX61GrVi3MmzcP+/fvx5EjR7B69Wr07NkTgEmBtPQu6N69u8Nvk1lBNhqN+OCDD3DixAlIpVK8++672L59O06cOIEtW7bgzTffBMMw2Lp1K6ZPn16sawOATz75BDKZDJ988gkOHTokTILKZDIkJibi3XfftUlPtmTJEkHpfOWVV7BmzRocOXIE+/btw/z581GvXj0ApudmyZIlds+blpaG/fv3Y8CAAdi/fz927dqFr7/+WmQZtiQiIgJnzpzB/PnzhX1xcXHCfVQoFIK3ze7du2EwGOy2Y35vN2vWzO6kVKtWrcAwDHJycko1ci7xHMATBPHM07VrVz42NpafNGmSwzJz5szhY2Nj+bZt29ocW7FiBR8bG8vHxsbyp06dslt/yZIlQpnDhw+Ljr355pt8bGws/+abb4r2T5gwQajzww8/2G33+PHjQpmGDRvy9+/ftynz559/CmV27dolOta/f38+NjaWb9euHZ+VlWVTV6PR8L179+ZjY2P5bt26iY41adKEj42N5X/55RebehzH8QMHDuRjY2P5rl27Cvvz8vL4qlWr8rGxsfzmzZtt6mm1Wr5Tp058bGwsP3z4cLvX7Ihu3brxsbGxfJs2bfjMzEyb43v27BHuw6ZNm3ie5/mrV68K/RkzZgxvNBpt6p05c4avWbMmHxsby48ePVp0zPI3GjVqlN1+me9f/fr1eY7jhP2jRo3iY2Nj+bfffttuvblz5/KxsbF81apVbX4bs8xMmDDBpp75WGxsLL927Vq7bc+aNYuPjY3la9asycfHx9st89VXXwnt3L59W3Ssbdu2ds9fkvthWd/6WSgNCmvbmWdtw4YNQpmEhAS7ZRISEoQyGzZsEB0rybPm7LWZn7f8/HzRcaPRyA8fPpyPjY3l69Spw6empgrH9u3bJ9SdOXOm3fZ37dollJk1a5awf//+/cL+5ORkm3rx8fF8tWrV+NjYWH7RokWiY45kyPIeHj9+3KZN87E5c+YI+1QqFf/CCy/Y7LekZ8+efGxsLP/hhx8K+wwGg9CP3r178xqNxqZedna2UMbVd5K5XmxsLH/kyBG7ZUaPHs3HxsbyTZs25ZVKpd0yI0aM4GNjY/lq1arxarVadKywb9O6deuE8+/evdtu24sWLRLKXLp0yelrs/z2VKtWjT927JhNmR07dghlFi9eLOw3Go188+bN+djYWH7w4ME27wGeN/2mrVq14mNjY/nXX39ddMzyWezXr5/DPtqTFeu+Wz/Lhw8fFo4dOHDApk2lUil8D8zfEXt06NCBj42N5b/88kuHZQjCGrJ4EsQzTn5+Pm7evAkAIvdLVwgPD8eAAQPQr18/wRJljaXLTlZWlsvn6Ny5c5FlevToYXd9WNu2bYW/La0ON27cEFzPRowYYXcNk5ubG8aOHQvA5Dp1/vx54Zh5BtvavRgAGIbB559/jqVLl+L3338X9hsMBiE3n716crkc33zzDf7880+XLG03btwQ1jiOHj0aAQEBNmU6duyIRo0aiX6LdevWged5yOVyTJ482a5rb7169dC/f38AwJ49e5CZmWm3D++9957d/W3atAFgkrXs7Gxhv/n+KZVKuzPr/fv3x/z58xEXFyda5+ksDMM4dNmMjY3F66+/jnfffdeh9bBx48bC38WRWVfvx5OCM8+aq5T0WXMFs3XfEpZl8emnn4JhGGg0GlG0T7PVKTg4GB9++KHdNjt16iRYgtauXSsEW7O0YtnLjxoVFYX58+dj3bp1Li8xcAUPDw9B1u15Sty6dQv//fcfAAjeGABw+PBhwa163Lhxdl0i/fz88P777wMwWZSLkwfWz8/PbtA6AKhfvz569+6NDz74wGGKGPOzyHGcjZt2YaxatQoA0KhRI5GV15K33npLsPzbc3t1hh49eqBp06Y2+zt37iz03dL9u6CgAH369EHXrl0xfPhwMAxjU9fDwwO1a9cGUPj7xzr1WUmxtGLak6U9e/ZAr9fDw8MDHTt2dNhOlSpVAKDYzzHxfEJrPAniGefu3bvgOA4AULFixWK10a5du0KDdmRkZODs2bPCtnnQ5iwymUz4iBWGo+BBlnny1Gq18PfJkyeFv2NjY1FQUGC3frVq1SCRSGA0GnH69GnhPI0aNcKBAwfw559/IjU1Fa+88gpatGghDJ6qVKli028/Pz9UqVIFN27cwPfff4/r16+jU6dOaNq0qRBAwl4ApqI4duyY8LdZsbHHihUrRNv//vsvANPAzp6yaqZLly5YunQpOI7D6dOnbQZxbm5uDtd/Wt5/y/W3jRo1wv79+3HlyhX07dsXvXv3xosvvigErQkICChW0A8zkZGRDoN69OzZU3Dhs0dycrIwUAdcl9ni3I8nAWefNVcp6bPmLMHBwQ7XpUVFRaFKlSq4fv06jh07hgEDBgB4+Ay0a9fOYfAgwPQM/P3338jLy8PVq1dRs2ZNvPDCC5DJZNDr9Rg8eDDeeOMNtG3bFi+88IKwjrRVq1YuXUNx6dGjBzZt2oQ7d+7gv//+E62FNCs9gYGBaNGihbDfct1jYb9LrVq1AJjWFJ45c8blNbjVqlWzq1wBJjf7wrh7967IfdiR+6c1+fn5wjNco0YNh9cGALVr10ZSUpJdl31n6NKli8Njbdu2xcmTJ3Hp0iXk5ubCx8cH3t7e+N///uewjsFgwJUrV4RJvsKu2dU1r0UhkUjQrVs3LFq0CHv37oVWqxVNSJjdbDt06FBolPuKFSti7969uHPnTqn2j3i2IcWTIJ5xLNfslTQhuV6vx7///ovLly8LAYVu375tk+CbdzFYtq+vr93IsNY4UpwsA0ZYnjshIUH421lrhGVAoIkTJ+L8+fPIzs4WglRIJBLUrl0brVq1QseOHe1GqZwyZQreeecdqNVqbN68GZs3b4ZMJkP9+vXRunVrdOzYUUj87SypqakATIqtK9Enzb+/vcitllgetxci39fX12EgJMv7b57kAIABAwZg9+7dOH/+PC5fvozLly8DAGJiYtCyZUu0b98eTZo0cTnAkpnCFGkzGo0Gx44dw9WrVxEfH4+EhATcvHnTxhJZHJl19X48CTj7rLlKSZ81ZylKaa5QoQKuX78uyH1+fr4QfMqVZyA5ORk1a9ZESEgIxo0bh5kzZyIvLw8LFizAggUL4OPjg2bNmqF169Zo3769w0jSpUmTJk0QFhaGlJQUxMXFiRQSs+XqlVdegVT6cGhn6QHiyCJpTXF+F2eexby8PBw9ehTXr18XnsVbt24hNzdXVM7ZZzEpKUl4vpYuXWqz1t4exbk2wHE0YgBCUCGe55GWlmYzGZaUlIQTJ07g9u3biI+Px71793Dnzh2bQE+OKE604aLo0aMHFi1ahPz8fBw4cECYaEhNTRUmaiwt5/YwjycKCgqQn59vNzgSQVhDiidBPONYBvopyYdh586d+Oqrr2zcsBiGQcWKFVG3bl2HaTCKwtmIeJYDKmewDjTkap2YmBhs374dv//+O3bs2IHMzEwYjUYhEuzcuXPRsGFDfPXVV6KorA0bNsTWrVvx22+/4a+//kJeXh70ej1OnDiBEydO4JtvvkG7du0wbdo0BAUFOdUvs/uZu7t7sa7HXqoUSyyj8toLDlWYpcgR7u7uWLFiBZYvX47169cLEYrNEU6XL1+OiIgITJkyxeWoskDRcrNixQr89NNPguJhhmVZVK9eHdHR0di5c6fL5wWKdz+eBMoq+mRJnzVnKcol2/x8mH9zSyuYK8+AZb3BgwejevXqWLhwIY4dOwa9Xo/c3Fzs3r0bu3fvhkwmw8CBAzF+/PgyUerNsCyLbt26YcGCBdi5cyfGjx8PhmFw4cIF3Lt3D4BtNNtH9bsUJlccx2Hu3LlYuHChjbIlk8lQr149+Pj44ODBg2Xez+LUAQqXO0u5sXzXKJVKTJ48GXv27LFRpj09PdG0aVOkp6eLPC/sURbPbLVq1RAbG4vr168jLi5OUDx37NgBjuMQFBQkspzbw/KeFBQUkOJJOAUpngTxjGPp/lTcQdGePXswduxY8DyPgIAAdOzYEbVq1ULFihURGxsLHx8f3Lt3r9iKZ1lhqaRduHChWB/woKAgfPbZZ5g0aRIuXryII0eO4OjRozh79iwMBgNOnTqFQYMGYefOnaIBSPny5TFjxgwhSuvRo0dx5MgRXLp0CTzPY9++fUhLS8P69esduqhZYm7bVddNhUKB3NzcIiMNuzJAdwW5XI6hQ4di6NChuHv3rnD/jh07hoKCAiQlJWHEiBFYs2YNatasWWrnXbJkCWbMmAHAFA2zQ4cOqF69OipVqoQqVapAoVDg6NGjxVY8n1ccWWlK41lzBuvIodaY5dxsJbKU5ZI8A02bNkXTpk2Rn58vyO8///yD+Ph46PV6LFq0CDzPY+LEiS5dj6v06NEDCxYsQFJSEs6ePYv69esLbraVKlUSXGbNmH+XoKAgHDlypEz75ogZM2Zg2bJlAEzume3atUPVqlWFZ1Eul2PdunUuK56W79spU6agX79+pdpvS7RarcP3oqVcmeVOr9dj6NChQhqzxo0bo1mzZoiNjUXFihURHR0NlmUxfvz4IhXPsqJHjx749ttvceDAARQUFMDT01OwnHfp0qXI8YLl8gRnvmEEAZDiSRDPPJZrNCzXP7rC999/D57nERkZifXr19t1/XkSg6iUK1dO+DsxMbFQVzue5wv9eLIsi7p166Ju3boYMWIEsrKyMGvWLGzevBnJycn466+/7LomyWQyNGnSBE2aNMHYsWORnJyMzz77DP/88w8uXbokSh1SGOagSkqlUlhHZI9du3bh7t27qFy5Mjp06IBy5cohNzfXYQoGM+YAVID4vpUm0dHRiI6OxoABA6DT6bBq1SrMmDEDer0eq1atKlG6A0s0Go2QUqNOnTpYvny5XUvxkyizjxNL12HrfItmHN2z0nzWCsPSpdce5vVm5mAyXl5e8PHxKbVnwMvLCy+99JKwBvrChQv43//+h6SkJKxcuRLjx4932TPDFapUqYKaNWvi8uXL2LNnD+rVqydMnth7/5ivIzs7GyqVqlQnlZwhOTlZWHfesWNHzJ49265CU5xn0TKliDmAkiNKInOASe4cubyaPTlkMpmQt3fXrl2C0jlx4kQMHjzYbt3H+Q7q1q0bvv/+e2i1Whw5cgR169bFxYsXARTtZguI+17YWlCCsISi2hLEM45lFFjzOkFXyMrKEnK7vfTSSw4/vpbBb56UdW2WydCtE8dbcubMGdStWxedOnUSBnEXLlxAv3790LhxY9y4ccOmTkBAACZNmiRsm+/tgQMH0Lt3bzRu3NjGxRMw/R7jxo2zqVcU9evXF/4+fPiww3ILFizAjz/+KER7NN+DkydPFho5cdeuXQBMM9cvvPCCU30qDLVajaFDh+LFF1/En3/+aXNcLpfj7bffFiItF0c2HXHjxg3h3vfs2dOhe/LjkNmytAyUtG1LpcSRrFgGEbOkJM+aK9y6dcthvsw7d+4ISoA5ABfDMMLEzr59+xwq1MDDZ8DT01OQy3nz5qFr164OrWl16tTBW2+9BcBkFXMmImtJfyezUrB//36cPn0aaWlpYBhGyONqiWW+ywMHDjhsc9u2bahXrx5eeeUVITpxaXD+/Hnh2erdu7dDK5rls2jtlurofgUEBKBy5coATL+to7WhHMfhlVdeQatWrfDRRx+5fA2AKf+tI/bt2wfAZNU0W2Etn5PXX3/dbj21Wo1z584JfSxNnJGx0NBQIVLv/v37sX//fgAmq7Q52m5hKJVKAKa1nqR4Es5CiidBPOOYXXoAID4+3uX6lrP3jiwGV69eFSWsLmxw9yipU6cOqlevDsCkkNlLjq7RaDBz5kxotVokJSUJEWfDw8Nx4cIF5OTkYPny5Xbbv3LlivC3OVhQYGAgLl68iJycHKxcudLpekVRt25dwYo0Z84cu2uV9u7dK8yyv/LKKwCAPn36ADC5KE6dOtXuAOfChQuCotq6dWuEhIQ41afC8PDwQGpqKlJTU7FmzRq7Lpo5OTlCICPr+2CWu+LIkqXMWlqxLDly5Ag2btwobD8qmTUPvMvifCVt2xwkBYBdpTArK8vhs1CSZ80VeJ7HN998Y6NkGAwGwWLu5+cnSrHUt29fAKZ0KD/88IPddv/++29BYe7Zs6ewhlcqleLGjRs4e/asw4io5ufZy8vLqSA7lvJZnN+qa9eukEqluHv3Lv744w8ApgjSZiuvJe3btxfWkX/33Xd2JxSysrIwZ84cqFQqZGRkCL9jaeDMs7hhwwYcPXpU2LZ2pzbLtT03a/P77datW1i4cKHd9pctW4Zbt24hLS1NUFRdZenSpXatqlu2bBGUzF69etn0GbB/3RzHYerUqcJ7vLTfB5bnL6xt85rggwcPCgq0M9ZO4KGVubjR8onnE1I8CeIZx8PDQxhIFGctiY+PjzBAPHjwIKZPn45bt24hOzsbV69exU8//YQ33nhDtM6lsLD2j5rJkydDKpUiNzcXr7/+OlasWIHExERkZmbin3/+waBBg4Q8ZEOHDhUGb8HBwcIHeM2aNfjkk09w4cIFZGVlISEhARs2bMD48eMBmJRU80C3du3aQl632bNnY9asWbhy5QqysrJw584dLFmyBF999RUAkzJpvSbLEea8oSzL4u7du+jXrx/27t0rWKQXLlwo9Kd69epC36tVq4aBAwcCMCkTQ4cOxYkTJ5CdnY2EhAQsXLgQgwYNgl6vh6+vL6ZMmVLSWy4wdOhQAKacjYMHD8bhw4cFZfTgwYMYMmQI8vLyIJFIbKwC5iihp06dwr1791zKsxkbGysoz6tXr8avv/4qtHHhwgVMnz4dw4YNE61RelQya76ua9eu4fLly8jOzhYNDN9++228/PLLRaagKE7bRVG1alUhSNaKFSvw888/IzExEampqdi2bRv69u2LrKwsh+6axX3WXGX37t14//33ceHCBSiVSpw5cwbvvPMO/vnnHwDAhAkTRIFOLNNBLVq0CGPHjsX58+ehVCpx+/Zt/PTTT0Lqi6ioKFGuz9deew1+fn7geR4jRozAihUrcPv2bWRlZeHq1auYNm0aNm/eDADo16+fU5Ymy+jiu3btglKpdCl3pWXgF7OVypGyIJfL8emnnwIwKQq9e/fG5s2bhedwz549GDhwoDApOW7cuFK1XjVo0EDwOPj555/x559/IjExERkZGfj3338xYcIEkecIYPssmuU6IyMDR44cQU5OjjCR1b9/fyG677fffotJkybh0qVLUCqVuHbtGmbMmIGZM2cCME3Cmt+FrpKbm4v+/fsjLi5O+AbMnTtX6Hvjxo1FFueWLVsKf48bNw579+5FWlqasCzjzTffFE18lfb7xzLKclxcHHJzc+1OVnbs2BEeHh7IzMzEoUOHHFrO7WG21lp64xBEUdAaT4J4DmjRogUuX74shEl3lcmTJ+Ott96CSqXC8uXL7Vo9evfujWPHjiEpKUmIsPgkUL9+fcyZMwfjx4+HUqnEtGnTMG3aNJtyffr0wejRo0X7Jk2ahNu3b+PcuXPYuHGjaKBgJigoCL///rsohca3336Lt99+G3fv3sWiRYuwaNEim3rR0dGYPXu2S9fSrFkzzJgxA5999hmuX7+OESNG2JSpXLkyfv/9d5GlYeLEidDpdFizZg2OHj0qsi6YiYqKwuzZs0Wu2SWlV69eOH/+PFatWoXTp0/jnXfesSkjk8kwbdo0wbXRTJMmTbBjxw6kpKQI6+n27t0r5AAtDIlEgqlTp2LkyJEwGAyYPXu2zb1mWRbDhw/H4sWLodPpHpnMNmnSBAsWLIBKpcKrr74KwGSRMeemTEhIQFJSUpFBdIrTtjN8+eWXGDZsGLRaLebOnYu5c+cKx2QyGWbOnInZs2fb9Z4oybPmLMHBwahUqZLINdAMwzD46KOPhGu35LvvvsP48eOxb98+7NixAzt27LApU7NmTcyePVuktPr5+eGnn37CiBEjkJ2dbfd6AFMuR2evyd3dHS+88ALOnTuHdevWYd26dWjcuLFDa7I9evToIQTjcXNzw8svv+ywbJcuXZCbm4vp06cjKSkJEyZMsCnDMAw++OADwTpcWvj7+2PixIn48ssvoVarMXXqVJsycrkcQ4YMwe+//w4AuHfvnsga3qhRIyH365AhQwCYAha9+uqrkMvlmD9/PkaMGIELFy5gw4YN2LBhg805oqOjsWDBgmKvce3atSvi4uJEkxJmGjduLKwpN9O6dWu88soriIuLQ3x8vN13dUhICNq1a4fVq1dDrVYjNTVVWCNaUipUqIDw8HAkJycLz3GvXr0EJdyMp6cnOnTogG3btoHneTRo0MCpd6x58gV4dHlsiWcDsngSxHOA2e0yISHBrgtcUdSuXRubNm3Cq6++ivDwcEilUri7uyMqKgqvvPIKli1bhq+++krIE7d///4nxt0WMLmb7dmzB8OHD0f16tXh5eUFmUyGkJAQdOrUCYsWLcL06dNt1h95e3vjzz//xJQpU9CkSRP4+/tDKpXC19cXtWvXxujRo7Fr1y5Uq1ZNVC8sLAybNm3C+PHjhVQBUqkU/v7+aNiwIT755BNs3bq1WEpez549sWPHDgwYMADR0dFwc3ODh4cHatasiY8++gjr168XBd0ATO5uU6dOxYoVK9C1a1eEh4dDJpMhMDAQDRo0wOTJk7Fly5ZSjSprZsqUKZg/fz5eeuklhIWFQSaTQaFQICYmBm+++Sa2b98uclEz07dvX4waNQrlypWDTCZDcHCwKCdtUbRt2xZr1qxB586dERwcDKlUCoVCgYoVK6J3797YsGEDPvzwQ2H93549e0rtmgujVatWmDx5MqKjoyGTyRAQEICMjIwnpu2mTZtiy5YteO211wQ5CQkJQdeuXbF+/Xp07dq10PrFfdacRS6XY+HChfjoo49QqVIluLm5ISIiAl27dsWGDRsEK7s1np6e+O233/DLL7+gffv2CA4OFvrVvHlzzJo1C6tXr0ZUVJRN3WbNmiEuLg6DBg1CbGwsFAqFULddu3aYM2eOzeRTUfz4449o164dvL294ebmVmTEXWvat28vKMht27YtMs3MG2+8gZ07d2LgwIGoXLmycA0RERHo0aMH1q5di1GjRrnUB2fp168fFi9ejDZt2sDf3x8SiURYRztw4EBs27YNY8eOFVy9//rrL1H9ypUr44cffkBsbCzc3Nzg6+srCmwTHByM1atXY9asWWjVqhUCAwMhlUrh5eWFevXqYeLEidiyZYvLuZMt6du3L5YtW4aWLVvCy8sLvr6+aNCgAWbOnIlFixbZzZH9/fffY+rUqahXrx48PT0hlUrh5+eHevXqYdy4cdi+fTuGDx8uLIWxvu6SIJVK8fvvv6NJkyZQKBRQKBQOraqWKXicdbM9efIkANO9d2ViiyAY3tWs2QRBPJX0798fp0+fxujRo/HBBx887u4QBEE4zcSJE7Fp0yZEREQIa9EIoiw5ceKEEDjKVc+Bp4kjR45gyJAhkMlkOHLkiF0l2po33ngDZ8+exahRozBy5MhH0EviWYEsngTxnGB29dm8efMTE3WWIAiCIIjHx7Zt2wCY1kI7o3TevHkTZ8+ehaenZ7HXzBLPL6R4EsRzQsuWLVGnTh3Ex8e7nKibIAiCIIhni7t37wpphMwRgoti3bp1AExeVM4oqgRhCQUXIojniPHjx+Ptt9/Gb7/9Jko3QBAEQRDEs8++fftw/fp1aLVarF27Fmq1GtWqVRNF4nVEWloa1qxZg4CAACHQE0G4AimeBPEc0aRJEwwYMAArVqzA33//jQ4dOjzuLhEEQRAE8YhITk7Gjz/+KGzL5XJMmzbNqVRAc+bMgVqtxsyZM53KWUsQ1pCrLUE8Z4wfPx4VKlTArFmzipWygSAIgiCIp5OqVasiJCQE7u7uqFevHhYvXixKX+OIW7duYePGjejcuXOh6XsIojAoqi1BEARBEARBEARRppDFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMkT7uDhCPH51OB6VSKWy7ublBIpE8vg4RBEEQBEEQBPFYMBqN0Gq1wrafnx/kcnmJ2yXFk4BSqURCQsLj7gZBEARBEARBEE8gISEhJW6DXG0JgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIVdbAm5ubqLtqKgoKBSKx9QbID4+HkajERKJBOXLl39s/SCeHkhmCFchmSFchWSGcBWSGcJVnhSZUalUomV41rpCcSHFk7AJJKRQKODl5fWYegMYDAbo9XrIZLLH2g/i6YFkhnAVkhnCVUhmCFchmSFc5UmVmdIKOkqutsQTB8uywj+CcAaSGcJVSGYIVyGZIVyFZIZwlWddZhie5/nH3Qni8ZKfn49r164J21WrVn2iZlkIgiAIgiAIgng0lJVu8Gyq0wRBEARBEARBEMQTAymeBEEQBEEQBEEQRJlCiidBEARBEARBEARRplBUW+KJIy0tTQglHRIS8ri7QzwFkMwQrkIyQ7gKyQzhKiQzhKs86zJDiifxxJGSkiKEkn4WHzqi9CGZIVyFZIZwFZIZwlVIZghXedZlhlxtCYIgCIIgCIIgiDKFLJ7EE0d0dDQ4jntmcxgRpQ/JDOEqJDOEq5DMEK5CMkO4yrMuM6R4Ek8cPj4+j7sLxFMGyQzhKiQzhKuQzBCuQjJDuMqzLjPPpjpNEARBEARBEARBPDGQ4kkQBEEQBEEQBEGUKeRqSzxx6PV68DwPhmEgk8ked3eIpwCSGcJVSGYIVyGZIVyFZIZwlWddZkjxJJ44rly5IoSSrlOnzuPuDvEUQDJDuArJDOEqJDOEq5DMEK7yrMsMudoSBEEQBEEQBEEQZQpZPIknDl9fXxgMBkilJJ6Ec5DMEK5CMkO4CskM4SokM4SrPOsy82xeFfFUU6FChcfdBeIpg2SGcBWSGcJVSGYIVyGZIVzlWZcZcrUlCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRTPQvjyyy9RtWpVzJ07t1TaS0pKwvTp09GpUyfUrl0bjRs3Rp8+fbBkyRJoNJpSOQdBEARBEARBEMSTBq3xdMCxY8ewevXqUmvv4MGDGDt2LAoKCoR9Op0OFy5cwIULF7Bhwwb89ttviIyMLLVzPq3cunVLWFhdqVKlx90d4imAZIZwFZIZwlVIZghXIZkhXOVZlxlSPO1w6dIljBw5EhzHlUp7165dw6hRo6DVaiGRSNC7d280bNgQBQUF2LJlC86ePYvr169jxIgRWLNmDTw8PErlvE8rBQUFQg4jgnAGkhnCVUhmCFchmSFchWSGcJVnXWbI1daKgwcPYvDgwcjPzy+1NqdMmSIonb/99humTp2K7t27o1+/fli1ahXefPNNACYFddmyZaV2XoIgCIIgCIIgiCcBsng+QKfT4ffff8dvv/1WapZOADh79izOnDkDAOjZsydat24tOs4wDD799FMcO3YMt27dwqJFizBkyJBndqbDGWrVqvW4u0A8ZZDMEK5CMkO4CskM4SokM4SrPOsyQxZPAEePHkXnzp3xyy+/gOM4KBQKDB48uFTa3rFjh/B3//797ZZhWVY4plQqcfz48VI599MKy7LCP4JwBpIZwlVIZghXIZkhXIVkhnCVZ11mns2rcpGtW7ciMTERgGmmYd26dWjbtm2ptP3vv/8CAHx9fVGjRg2H5Zo2bSr8ffjw4VI5N0EQBEEQBEEQxJMAudo+ICAgACNHjsQbb7wBiUSCzMzMErdpNBpx69YtAEClSpUKnb2IiYmBRCKB0WjE1atXS3xugiAIgiAIgiCIJwVSPAEMGDAAU6ZMgbu7e6m2m5GRAZ1OBwCIiIgotKxEIkFwcDBSUlJw//79Uu3H00ZWVhY4jgPLsggICHjc3SGeAkhmCFchmSFchWSGcBWSGcJVnnWZIcUTQO3atcuk3aysLOFvf3//Isv7+voiJSUFSqWyTPrztJCYmCiEkn4WHzqi9CGZIVyFZIZwFZIZwlWeJ5nhOA7gAZ7jwfEAz3HgABgNRoDnIZMwAMOAkUoB3lRHJpdAo9ZDq9ZBl5sHTqcDZ+Sg1xkBD0+wbm7gOYDnOfAcwPE8jHo91MmpMOr1kICHv4/EdE4j/6AcD293ICffgNx8A3iOB8/z4DkOOj0Pjc4InuOBB+1xHA/wPHge4B6chwWHcF8Ocv8A+NevB543ddg3xA2pyTmIv5WJ3Os3wOXmg+EZGIwA/ELgHhpmOhfPI0eTD51BC6PeAH1SCiR6DlJIEOGWCTdWCt5gAG/QgzfqweiSkG1wQwYbBQPPw11RgHqvvfxMygwpnmWIWq0W/nZzcyuyvLmMRqMpsz45w82bN1GpUiV4e3sL+7RaLa5duwYA8PPzQ/ny5W3qqFQqAECdOnVExzIyMgQrblRUlEgJNxqNuHz5MgDA29sbMTExorp3795Fbm4uAKBGjRqQSh+KrFKpRHx8PAAgPDwcwcHBoroXL14Ez/Pw8PBAlSpVRMcSExOFiYHY2FiRtTs/Px+3b98GAAQHByM8PFxU98qVK8KHpHr16qJjycnJSE9PBwBUrFgRXl5ewjGNRoPr168DMLl2R0ZGiureuHEDarUaDMPYTIakp6cjOTkZAFC+fHn4+fkJxwwGA/777z8AgI+PD6Kjo0V179y5g7y8PABAzZo1IZFIhGPZ2dlISEgAAJQrVw5BQUGiuhcuXAAAKBQKVK5cWXQsPj5emCSpWrWqSMbz8vJw584dAEBoaChCQ0NFdf/77z8YDAbI5XJUq1ZNdOz+/fvIyMgAYHJR9/T0FI6p1WrcuHEDABAYGGjjSWAwGHDhwgWwLGsTGS4tLQ0pKSkAgOjoaPj4+AjH9Ho9rly5AsA0AVShQgVR3Vu3bqGgoACAaR24pdt8VlaWsEY8MjJS9KHgOA6XLl0CAHh6etokg7537x5ycnIAANWrVxdFs87NzcXdu3cBAGFhYQgJCRHVvXTpEjiOg7u7O2JjY0XHkpKShOUCVapUEeUGLigoEJYABAUFoVy5cqK6V69ehU6ng1QqtVmXnpqaitTUVACm5QFP+zsCMP32N27coHfEc/KOuH79OjQaTbHeEXq9HoBJJq15Ft8RPM8jMDAI5cLDwfMAz/MwGDhcu3YdWq0OUokElavEmgbxDwbw6RkZSE/PgEQKVIypAG+Le8hxBty4eQMFuQZ4ursjyNsHHMeBN3JQq41Iyc+DTqMFzwMVKkSDf9CmPicXytRU5ObkwtOdR3iIPxQeHiZlg+Mhl3JIvZ+A1GwGMpkMPt4+grKRrzIiLy8fOp0e4AFPLy8wwANlhodOp4dGo4GPXItgfw+ENWoEmb8/wPPw9HZDUvJt3LiUA+gMkKamg+MB8DzUnBQGvwDoOQ48D3h5eYFlWfA8oM/NhSolDQaDAd5MPnyYAjAMg4wtR8HzgDtrgEyViiv6KOh5GSQykyLG84CWl0BvZMA9UHQYhgUYBg82wT+QGR8uF0FQIqhhQ3hXjQX/oL+MLBdH9yYiJ10N5OSCM5qyNBggBe/hCY5hAAAsKwHDMCYlyWiEQW0ad3oachCiuQ+GZWE+qdSoRbn8m7gQ0ByZ7uXAw9QGGAY8GNG2I9z1uQjPuwX38HIIbt0SACCTSeAdpcHxPUlIua13WLcw5AYVInKv2eyPyTqHWwH1cS+grostmp5bCWdAeeVlSDw9Uc7t4fv97wtbkXmTR3h8DZhUKL+HVbO0wO17Dtp98MzzHOQpd22ORuQowXiUQ1rYg++QHtD9uQ8NGjV6bO8I83eqtCHFswyx/DjJ5fIiy5vLGAyGMuuTMxiNRpuUMjzPF/rRNRgMwnFrOI4TjtlLVWM+Zr7uyMhIwc0gKytLOG6ecbLXJ0ft8jwvGoja629x2nXmWgtr195vbG6XsfPyLkm7pfnbWGI0Gh32ybJde/Ki1+thMBjsrnsurF1HcmiWmfv370Ov1xfZbmHy/SjvYWFy6Mw95DhOpCSYKc49tO6TdT3rdh/nO8JRu648y5GRkYLiY69fz9o7QqfTCe0LM/wW16pR68BxPNQqHVhWYlIy9Byy0guQlakCOEDG5sOglT2Y0Qc4jkfa/QKwEiAgiEV+nlZol4FJDnKy1dCojXDn7kPCsOA5DlqNHrlqA9KycsDzQGYycN9PC47jwRkM0GYrkXo/GQyMCPKXQJauBjgOPGeyZhh1WUhNykWeikHG2VRIpVLwHA+9nkOeSo/c3DyAB2QyGdzd3ASlieMAVUEBwBsQ5qmB8WYmfGvVNN0HHpC565F6vwCpiRrc2J8AXq0x3QcjA52bF9QsCx6AhGVx+d8TJmXLaIQ2PQNalRo8xyFKmoY0r5OmBh8oN/58FtIKgHtcOCTsRTCsSZHgwEDDSWE0cqZ7xjBgmDMPxvsM+Ae/Hc/ziDLcw13PQyjX9RXgQf2wKA+k3i/AheNKMNo74LTaB6dlYJTIwVtYllj21sP29AbT/wFEFdzEJWanSRnjTcVD1AkwcsDJ0JcBJAA4a1eWTcTb3Rueex03DAUIe/klyB5MgpSv6IeCPC32bkkrpD0TJ5BhZy+DkLw7uK8/L9rrp06FnzoVpyu//WBPgVU9+YN/ANKt32syADIEFmQj92oClAiAooJp0qxclB/0ej2uns+BQc8D8BBXzbTM966yatc0oWRQqcBrTMeUD/ql0OUgLP8O0spXh1ruA+jsXupDrLvMAhKdGu4qHdgUJYwhpvZ5nke27D4yMgtQoHzQB8tPoZa3aMzqvcU+GH/yEhgMnPi40QheowHHAUa2pKn+Hl4MzwNzLi6FV14MAlC+kDqF4VjZdXzE+XZ5gw6qW+fA67XgDTogKAFA4UvnnGnX3n6tVCHaU8A9nBR+HOOI0kwtaQkpnmWI5eyuo0GIJeb1oI87h6dEIrEZuDMMI/TLnoBKpVKH/WZZVjhmTyEwHzMriJazwbm5ucJx68GWZZ8ctcvzvN1+Wfa3OO1a/t/RtRbWrj1lWCaTwWAw2B1UlqTd0vxtLJFIJA77ZNmuPXmRyWRgGMbldh3JoVlmzBYqe9di2W5h8v0o72FhcljUPZRIJGDAgGUl0OuMJremB25OOg0Ho4GFVAIY9Ca3JfMHieN4SFgpNGojVPkGZGeqhMGtWqWHMlMPnc4IlgXu3MgwDdh5HjwHZGfnITtLD08fKQrydACnFtplJRxYVorMFA00ubnQZt0Fx5ncm/LydMjIzRWsDtrcWwBM7liGAhXys7KRn5cPP28e0nQtshQeJuWI4+AuB/iUeNxNZiGXShF/LOmB2xSPPJUBBQVqGPQG8ABuHEwTXKZM1hkjNFot/N11yA+4i6y6dSDz9QXPA75+7pDL5bhwMgu8LgcXtlwTFCq1UQKDwhMGzjQSP/fPKeH3MajU0ObkwGjg4CfJR4r7KVyWyQSFS8Hq4a5OwXlNBah5N/wjuSIMtXScBAbu4dBrL+6arAQW1gye5+HD5SKYycatOnXhVSkGPABvb3fIvWT4Z08ystM0+OvPTYJVhAMLXiIV2mCQ8kCZMl0PeB5gGHgachCqTcJJs6zxgIzTIjL/Gs77tUC6RyT2rE+1I+Vm7CkDgLs+D+F5N3EjPBzBrVs9kG0JyleR4/YVFe7dKMAxZNmtayIH9hQYuUGHgtyruGel+MRknUNyQH3cDagLQPvgnyWWAzjrwZMCEk4Pyd1byLqjRDmPMOFI5Ro+yFcacfuKWXGx9FSy/oarLf6WAPACeB5+GbeQhzxRSUnONag9wpEeVgswwvTPksKUDMb0T1ughyFfA+88jckaBYDnPMBAgoI8o6kPjOJhWzwAvWVjlidlhXKcwQgjJ9Z8OHUpel1ZXU/ZjW9sJ8qK1YrFwF2r1yJRlwq+BG0XVpMphT5b9tfAGTDv5mrE6JrBEwGF1CqMslXkYKUYSVgJSvLbOa7JlKhdoX2DHtqk68K2xEdTSpJmS65boPjcePjdL6txhEwmA8dxDsezZQEpnmWIpfuPVmv9YbTFXKa0gxy5SuXKlUXuX4BJibZ2j7Ou44igoCAb9ywzEomk0HatXcIs8fPzE7mTWVPY2t3IyEgbNzYzXl5ehfbJ2nXOkvDwcBu3OzPu7u6Ftmvt6mdJcHCwXTdBwPTSKaxda9dES/z9/Qtdf1xYu+XLl7dxpzTj7e1daN3CUguVK1fOxv3TjIeHR6HtWruKWBISEmLjZmJGJpMV2q61a4slAQEBDtdhsCxbaLvWLr1mjEYO3l7eKBdaETevpeHsnXTkKuORk62GMksNVYH1FPlNu+3UreWH1HMnYVCrYFRrwGk0CONSYchX4QBfD8B9AJcd9g9Itrs3PPcG7hh2IaxTR8j8/QAAlauFoHKlqti24u8HpRIctnoJSrv7Q/JuI10vVjJM1owU/Fd50IM9+Va1JA/+AbYjehaAB/Qp6dBcu4183hue0aZ7zhl9Ubt2bexcsxsatR4my4cFOZaDb+v3t+kdzeYrIUkVW2/M1gxl+SpQyX2AohxY7CgaOj0PjaoAeenZkJQzvafc3KSoWaUK/pGmQ6tVm/prOcaw0K9sBsrmwYiRA6/Vio5yRi34AhXgbTsb7jJWpy1fvjyCgpS4d8PaAlWs5iwonUGldRvBwUGIiNDg4r/KUmi78HOVRjNeXl6oVKkijv5VtAXRieZE+0qmZDxs11IWVQYN1H5l49FVciXOVjHKVCmxIn4rqnEdIUXRXmuFtmuXkihctv1lzOZNpnRVI140m1HCtqyacJe5gXdB2MzyxPD8gzkZHgzP2fz+BhZgoIfMoDLbLsGABw8GHCMRrogR2jTP/pnalfAGSKCGG8NDwZrdnk1rPw1yDfK9M+Gfp4eHlgMLHjxYcFI5pHKAkUgg8w9DpioLKk4PluehKDBAbuTBgoebJBtuvIVayQD6AEDKiL9t5j4WdxwBmJZWFFbXermBJcHBwaJYNaUFKZ5liOX6J7P/dWGYyzyLi4kJgjBhNHDIzlIhIzUPmekFyFVqULVWKDRqPTRqAzRqPXQ6Axq3iMH9BCX2bPmv2OfK+Oco5JxYacrNv2f6oJWvV+x2zR9qy0GlyahW0uGq/fplMagUjpSoy49uUGn+s8S32NG5SkMxEvXXPFgr5Q7DrBiVgpXExiUZJdO4CrnWspDhBGUSbiYnlU67NpRWfx/uuaNMwMpb61AdHR8c480OxQAYMBIJwDxUBgycaTKE5XlIOFNDEt4ACac3tc4wYACwDA8jC3jocmCWaLOyYWRl4MFYXCX/QDZ54TdhGAZuUMNDboSfvwe8Az1NVuYHuma+XzrcNSxCM3WQsaY+GlkPeESVh9TNzaQ4cHrcyLwDMIC71gjffCPkrARe8jz4ugPuMvcHrtQMJJAgPisRHvwtyHUmq7pC7gGWYcAz7pDKPIRr4AGkqzJgft8yADzdFPDw1SIgxA0VG1SAT2woGAaQylkgAUgPv4U8v3hEpeoQ7uYPqUQKVuKBiJoNIffzNbXNMlh2fh0MnBEyA4ewDD1CvQKgcGPh5xmISkHRYFgGLMOClTBYezUNat1VgL8NngGi/SPh6eYJGeuOSkEVTWVZFiwYbLi6A3l6FcDw4BigUlAFBHj5QqGoiBdrtYbUXQquIBvG/Eysu6lGStR/SI24Ag8th1qMJ0I4BqxBh8Y6I1hdPhQV68KrRjP8fm0HUo0qMDygMepR2yMYIekp4PMyUTdf/J37x9cD2bK7UPB3kC9lEa3WI0xnBAOgvEYPFoA8rCKCXhqKc1cPIo/TgQGg4gwIkXrAM/ke9Mk34WPgRN7K4RkMjEwOWLeLgByQ8TxkeODRzEog8fCG1DcYIa++BG3SDTBSOViZGxiZHIzUDUatCrymFiRe/sjjpJB6+cLf3zTmj/t2Ae6nPDwXx5SNxfFxQ4pnGRISEgJPT08UFBQUmSLFaDQKC3kdWXueFyz9ysvK1E88WzwpMsPzPDRqPXKy1cjKUCHlfg6UWSrkKjXIz9WiIF8LrcZ2xl/uJoFEKu63RqOHj7+HTVnXeHSDSvB8qStFplOUQaMwuRxzHFcyxchuVdNOxo6S6zKiNh7Ouhe7uULqlkp/wT8YXAMsazqZRMpCLpeY1h9yRgj2NKkcrFwKwFTedF0MwHEwqlUAx0Fm1EBm1MJaChiJBG6cBj5ak+uvWYHgwcLwYA2apaInKBgwKy9G+Ej1kHl6IjjUW7inZ1Mv4bYmDT6VAMm9ZLgVaMEyDDiwgF8wPKMiAYYBywBpBZnI0+WD54xQpOXCTc9DwrLw8tbD64ESAYYBwzLQeftBpStAkPYcePCQSaRwk7qBBwOpzBcSlhGUqFxtHgr0qgf3iYdMKoWHzAPe5fQIDyqHmNphYGVSMAD+Tt6PbfH74Fk5AMFZOkTlS+Cv8AMA+AXHIKx+AzBgwLDA6fsXcTTxFAAgNFOHIL0Mwd6B8CjPIiaoCrzdvcAwLBiWwU2lP44nngbH7QLPMFC4KVApoAIgASK9y8Nf4QNWwoJhWVzPvI2D946DY03TUJ7uCtQOqwpW6oNqEQ0RW+sFsG5yMACOJebCeE+HS43iINVxCIE7WsU0BcCgZrnqqFqxjvA8nrl/ETMP/2r63YwcFDIPdK7aDmBjUTu0KqoHP/QQupx2HV/u/xHAPwAAuUSO7tVMym314MqoHfowONXNzLuY9PcsYZtlWLxaozMAH1QOjMEL4TWFY4k5ycB/QGKlc6a6AF6r0QUMw6CifxQaRtQVymYUZGHE9tWip6FHtU6QsiEI8g1H08j6wrcpT5uPoZs/AvBQy+ga2x7uMneU8w5FywqNhP06ox5vrh8tavflym3g4eYJT89AVI9pLDomY6XQBSphYFj8F8kjsnI9+Hv4wt/DD82tJhv38Z4wckZwPIcCvRrlomsiSBEAT5kHqoWKA3pVr8JDb9SD4znk61SoHVoNAW4+kBr0KCf1gFGdB1auAOvmgW7lX4TRoAVv0EOj0yCYdQOuHIfhbiKyzm0Utfs+A7C8SXFz+OXW5EDi5o6h/raeUqr0HOjybT0KW+aobfZZw6lywUjliHXzszmmdcuCRuIG1t0DrJsHWDcFWA8veLl7gVX4QKLwgcTTF/KQ8pAofCFR+ICRe4i+JzJf+x5WgClo25WLF8EwiahTpw58fX0hgTgIKcc8myras3lVTxCVKlXChQsXhCiSjrh9+7aw8Lcwd8HngUuXLgkRIQtzESAIM49SZnieh15nhEajh1ZtgF+AAgl3s7Br82XkZKtNYeBdJGHn35AZ1Ijo0R14MGDXqPXwK6ni6Ugx4p0MGiAoI5YDfx4sbwTLGSGVMJDJTNERWQkDlmXg7eMGTquFIT9fGOgbGSlkvj6mj/KDATYYk6XBWJAPo1oDBjzcDAVwMxQ89BRjABmvA8OyCFAnA5YKBA/oJW7gGVbYZhj7yoYfnwcfqRYhwe7wifAFAKRmJEJ19j4iYtzhyXhCeeas4Galk7jDs1p1yDw98FAxMv1fl5mJgtu3wTAMfDzy4efBCtfCMICM8YGPpDqqG7OgZ3ItrhXQQQoOJjcv5sF/WObhcRYAGBYKPz185YEIaBwNv1qmQBZSqckxq2O3GijIykXW8RPgNBowDAMDI4VXrVrwCA6CKQgm++D/DIwFBcg5cxZgeMilXvB0rwOGZR6WYVm4yVsgQs/ACAYMa1IoWJYBzzAwRTIxrcViJSzAsGCkDCQMC0bCQiJhwEhYMJLacA8Kgkf4wzWTANCpR0281LUatJmZ4HQGMBLTBct8fSBViINpADCtVdbpTfeEZQE7MQfsYeCM0Bl1UMjEz8yemwdxT5mEbHUO7uelomZwLEK9w2DgQtG9+suigeLU/WtxKfMaEAggEKgRXAU1Qkzf425VO+DGlevCeyZLnY4Ld4+bKkYDsYEVUSesOvQoh6ZV2sDb7eFylT9Or8Kem4cAmKyTFf3Lo345U7svVWoFPw9foeyK8xvx99W/hO3yvhFoHFkdRkQjNqY5gjwfekTJs6QwynTIDUhBbgCg8Q5Ds/KmdutVaIww74cD3/ir15CrNrnO5wYCuV7BiKgQDSOAkPINEOnzcInIrZuHcPn0ZZhd1wMVElSMMS2rCI94AdH+D5epJN+V4C5zRNj2c2dRq1IYjADcwqMgUzxcOiSTPHQPN7ixyJXLYPQ3eYYxvl6i38K09s8EL2FhZAE8kAPOep0gI167xlm83zird52UFQ97LddIWpeVSaTwdfOG5EGwLSPPwVvuCZlEBg8rOXOXuqFxxAuQshJojTpoDTpUDCiP5IQkKPOycEl5Sfg2uUvd8NYLr0HCSKAz6qE16vBCaA24y9xs5FfGSvFVh48hZaXgOCOM4BHiGQC5RA4pY7tm788+c232OeKTFz94eB84I3i9Dtq0eBjS06C8ewNcQQ4M6lxwqjw01hSA0+SD06rBG3TgDXHgtCpwABIftOFZvTm8ar2ICiL3TBaAHgU6HfQ6WwVR7sR8l1GVB1ZqPzME42C/CFYCiacfJB7ekCi8wXp4mxRH7wBI/YLhWbXJA6uk6R8rlQMSaZl4awAmpfPixYvChPmFCxeeq7EuKZ5lTKNGjXDhwgVkZmbaDdlv5vjx46I6BEE8elQFOmSk5SMzvQDZGQVQZquRl6N+YK3UoXm7SuCMnCnwzQPqNIgEK2GRkWq99tB5tDojJHotjBoNJArTwEOj1iO0nA/KVwyALDcDhusX4W4ogLuhABLeiFrTJoOVSsAKCoRJ8Ulcsx5ZR4+C4QGZUQWJhIXEwx0SDwWkXp6QR0VB5uuDGJ9MyAP8IFV4ACwLlmVNypCENblXSSUmJYRhTQM+QVlhwbDRYOUyeFaqBIlVqqixX3SEoaAA2owMgJWYFCq5HG5BQUJQFEuMWi04g/GBUsM4VDZaFPvuOrjnF9Kg1+tRs4Gf6aM/qHTPUDbZoU2RNhHlB9R1NgpkMFAvuox64xyMRAJ3B+urbcqyLIxSFjqjFkYjB73OIFK2AGDVhS24nX0P2epcZKiyUCesOiJ9wsEyLF6r0Vk0YDyReBYXUx+mWwhSBMDXw5Tiw8AZTMrQAyyVRaBwBcZSMbI+bh1Z0lrZ4UTKjnVZcbuFKUY2CpfFQl/OyqtBYvU8ia6NK1w54wrpg3V/OZ574P5q+6wrZB4o5x0KKSuFzqiDu9QdwYoAMAwDD6k4tkWgwh/tYppDwkqg0qvBMiyqBVUCy7AIVojlIdw7GO83GggpK4XaoAHPc6gdVh0sw8LTSpGL8AnF7C5fCsokwzDwc/cxvfOsFI1Qr2As6PmNzXXYw8vNE+NbDrfZfyFbahNcUiaRoWvVDk61yzAMqgQ6jtPgCE6vhbEgB5xWBaMqB1xBLoyqHBgLciAPqQCJdwD0WffB67XgdFrwRlMf8y8ehEFZWICxQs6pzgMjs78WlpE5oSA6wGjRLsNKTMrhA/dV3miExM0DrMIbEg+TFdL0LwBSbz9IfALBunkWqkRKPLwdHittrJVOwOTxmJycDMgeb3yXRwUpnmVMp06dsHDhQgDA8uXLMXXqVJsyRqMRK1euBGBaF9qyZctH2scnDU9PTxgMBrvRuwjCHq7ITH6eFvG3M5GVoUKuUo3sTBXSknOhVukfhJF3TG62Ggov8YdVo9bD1891yyTDGyEzaiEzaqDQ5sJXm46oQCCwegTcPWRwd5dBImEx6IPmSD9yFNePnxHqsm5yRIS6Q2aRI8+Md8920DStCbfgYLiHhkDyIL/co0Tq6QmpRXC1wpC4uUFS/DFJsaH3zKOD4zhkqLPBPXDrM3BGlPcTpyT4+cQSXM+4jRxNHtQGDRpG1EW0X6RdZfJm1l1cTL0qbKt0Jrc6U9tWyqRcrExqjTrR32LFUyyznNWaVUuZkepdsbJZK5OFKLQPlEmWYU0KHMvCTSIX1gdaEqjwR5XAGEhZKVQ6FUI8gxDhEwoGLNytHqqK/hXQrWoHSFkpcrV58HHzRp3Q6mAZRmRxBYDaoVXxUcv3IGUlUOk1cJPIEe0f+UCRE1upG0bUxR89v4WUlYAFAwkrEd1TS2qFVsVPXabYPWZNpE843ms80Kmyvu4+aFuxuVNlZRIZwr2dmwQpDUrrPcPzHHi9zqQo6jVQ3zkPfWaySZlU5YJT58GoKQCnUYHXmaySDvtUowW8araCITfT5pgjxdEZjKo8sA4UTLvtSqRgZe5g3TzAyD0gcfeEPDQGEoXPA6ukt8lK6ekLWVAk5MHlwUie3vd1VlaWkDfTkuDgYMTGxiL+r+LHc3iaeHp/waeEunXrol69ejh79izWrVuHZs2aoXPnzsJxnucxffp0IRl5//79H3tU28dNYRFECcIehckMZ+SQo9TA188dp4/HY+fGS8U+j0ajh8JLDt7IQa9UQpuZiRsn98Ij/hLg3fnhAjyeh5tRBQlngJTTQW5Qwd1QAA99Hjz0ufDUKeFmUEFilerBj8tFYLCXzXl9a1RH5VEj4FGuHDyiIiHzdjxD61WxIrwqViz2NT4v0Hum9NAb9dAadPCyUtzmHl+MG5l3kKnKhp4zoGlU/QeWSQZRvuVEilS2Ogcp+Q8TlmsNJrc8jueg5wyQF2KZLFyZFJfVWQzIdQY9LIOVVvCNRO3QanCXukGpyUWlgPKC8itlJSKZyUvWItDDH1JWimy1EmFeIagcGA2WYW3cMDtUaoUG5WpDwkig1qvh5eaFYM9AsGDgYWXleK1GF7xWs4tdi6E1L0Y3wYvRTYosBwDVgiuhWrBzMh/sGYhgz8CiCwKQS2Si34YQ4+g9w3EcjPnZMOZmwKjKAzgDjAU5giJpLMiBe1Q1yPzDoUuPNymdFlbsklgmjapcxwqiM66rdmDdFGDk7pAofCALCAcrfRBQRyYHK3WDe7kqMNbvBImnH6TeAZB6B4CVPz9j3cKUzurVq4NlWSg1uQAeZoAoq7QtjxtSPEtIYmIi2rdvDwCIiIjAvn37bMp8/vnneP3116HX6zF27Fjs27cPLVu2hEajwebNm3HmjMmSER0djeHDbV01CIJwDY1aj4y0fGRnqqDMUsFo5FC3YSTCInyLrlwIWf/dhK4gBfrcPIAzQsrpwWgzIdWkolbBAciNarg/WKfIFvLZYOVyyEKDIff3h1tQINxCQ+BRLhx+L9S1W17u74/QDu1L1HeCKA323DyEu8pEpOSnIyknGXXCqiPYMxAyVopeNV4Wlc1QZYmUyYeWSb5IZVJnfOieqDPoRGV95M4rk9WDq8DIc/Bx84TOqEekTzhqBFeBXCqHj5t4Aqdj5VboWLmVU/fhhfAaeCHccVooS8K8ghHmZT8dljUUUO/phOd5wGgAp9c8cF/VgNfrkH/lCPSZ92FU54JTF4DTFpjWSeo1dqNsW7UKqW8IOL3t2sgSua4W5IBxoPSxMjcwUjkYuTtY+YOgOu6eYD28IHH3MrmxKnwhC42GVOEN1sMHEg8vkSVSFvB8B8i0xpHSGRISgurVqwsTcJxNzuFnE1I8HwE1a9bETz/9hI8++ggqlQpbt27F1q1bRWUqVKiAP/74Q5T7kyAI58nOVOHU0bu4djkV1WqFQioTu7dlZagQUzkQbu5Su5FlLZG7SeChkMPTSw42JwOIvwE3fT58tRnw0OdByukg4Q2i2D2hBXfttsVIJJAHBkIRFQnvqlXhW7cOvKpUAmsnmTNBPA7uZCcgJT8NyXlpuJV1DzH+UfBz94XeqEfn2LaiskfiT+FK+g1hO1udg2DPQOg5A3RGvUhBDLRai6c2PMyNWpQyqX2gTMolMhg48fPaMKIOgjz94S33goE3ItwrBBX8IuAmkdu4eTYv3wDNyzdw5XYQhEN4gx76rGToMhKgS0+APiMRiioNwcjk0KXb5i4uuHKsZJZJBwqi84onY1r/qPAxRV/19IHMPxxS3xAoKjcwKZpytwcWSjegZW+wLH2bSovMzExcvny5SKUTgCh2xLMMKZ6PiA4dOiAuLg6LFy/GoUOHkJKSAoZhEBMTg06dOmHgwIGkdBKEi+TnanH62F38dyEZ6SkPg/tkpOXbWDezM1WoVDUYFWODcOtaOiLK+8PX3wNu6mxok+8jsmUjhEQFIjDEC+4eMuGDkLLnL9w6c8K5DjEMZH5+cAsOgmdMDHxqVIdvrRqQBwaWWYQ8gigKlV6NPG0B9EY9NAYtKgdGi47//u9y3Ml+OGjWGnSIDTK5a9sqk/6iupbKpFqvFpUNsiqr0quhkLnDXepmE/ymTUxT1AipAh83U1qPYM8ABHj42XU5rRNWHXXCqjt59QThOkadGtqkG9Al34QuLR76rGQYCpQw5mXZRAVn3TygqGrf5bnElkk79VmpHDK/EHDqfEjcPYX1kKynL6Se/pB4+0PqHQipT5ApuI6DdZFSL79i940omszMTFy6dMkm2Jg9pRMADHzhE+LPCqR4OqBJkya4du1akeUiIyOdKgeY8nN++umn+PTTT0vavWeae/fuCYvxK1So8Li7QzxhqFU6nDkej//OJyMlKceut1Jaiq3iyTCm9Z5dXq0N5GcjccWfUP5zAYa8fHgBiOlUHf7RtlGnPaKiwLqZUoRYI/X2hjwwAB4R5eBdpTK8a9SAR7lwSL28SNF8wnnW3zObr+zGpdRrSMpNQaY6G/XDa6NiQHkwAKL9o0QBb8K9Q0WKp0rvmjIplDVoYfnUNYtqgAp+EQhSBMBLpkCIV5DDwDMVAyqgYsCT/Ts86zLzPMIb9TCq8pB/5Ri0SddMCmZuBjhVHpxdZafLSIRXrRftHtM74z0pkUHqHSC4sZpzREp9gyELjIC3wudBJFd307pJskg+8ThSOkNDQ1GtWjW74wPryM7P6giCFE/iiSMnJ0fIlUYQgGn9zN1bmTj81w3E38kCZyx8QKDMVIHjeJSL9IV/kCf8AxSQu5led57ebshNVCL79FkY1Q8HzXnXb8C/fj2btuR+fpAHBkCvzIE8wB/u4WHwrBANr6pVoIiMgDww0CalCPHk8zS+Z3ieR7YmB0k5ybicdh0+7t7wcfNGvq4AHSu1EqX4uJ0VjwupV4TtPJ3JI4AHkK8rgJ/7w4jI5ayifKoND58LlV4DX4uy1YIqoV3FFghSBEDCsIj0CUO14MrwkHnYRG+N8Y9CjH9UqVz7k8DTKDOECU6rBqctAM8Zoc9KNkWCVeXCqCkAABT8dwT6zKRita3LSAQsgvIwrASs3B2MzA067zAwPAO4eSKwXHlIvPxNAXZ8AiH1DoTELxgSeeFR0SXu5A33NJGRkYHLly+7pHQCgJtRDblBJWzLOI3dck87pHgSBPHEYjRwuHzuPo4fvI2U+7lFlmdYIKqCP2rVj0TdhhGQye2/4hQVysOjfBTyr10X9uVdte+5IA/wR5X/jYJbUBBkPj5gadBJPALMOQYtmX1sIY4mnBa2qwZVQu3QagCAAp0KPu4Pg+VYp4zI1xU8/FsrVjwjfMIQ4hloUiZZCaJ8wtGgXG14yNwR4OEnaqd+udqoX66sspQSRMkxqvOgTbkNXfJtaFNuQZt8GwZlKjxi6sK3WQ9oEm3f9azCB3BB8ZR4B0IeHAlZUBTkQZGQB0dCHlgOrNwNjIVV/64kVJisCKpTp1Suj3iyyczMdFnpBAB/aT4ich8GY5PAcUqcpxlSPIknjurVq9sddBHPF5fP3sfurZeRn2vr4moJwzIIDfdGtdqheKFxFHx8FdDn5iF12zYY8gsQ/fabNnWkCgX86tQWFE+pjzc8Y6Ltti9xc4NP1aolvh7iyeJJe8+odCqcSb4MvVEPmUSGLLUSL1dpI3JztU5xkad9uK45T1dQuOKpLYBC5g4vuafIMgoALco3QovyjUrzcp5JnjSZIUy5IzX3b0Bz7zK0929Al5EATmV/klKXkQCJwn5kc4nCNicyALDuXpD6BkHqHw55cBQ8omvDLTQarJvCbnlrSGaeP2JjY8FxHFJTTUGlwsLCULVq1SJlICAoAPGyh5MfcsmzKTOkeBJPHOTG9PzCcTzSU/Lg6+8BubvUsdLJACGh3qhWJwwNmlWAt49pbUTejZu4vngHMg4fAW8wgJFKEdGrO2Q+toOKwBbNoc3IRPCLreD7Qh1KY/Cc8aS8Z/be+ge7bh5EvDIJPHjE+EehQTmTZSRbrUSoRRqOcO9QUV2RFdPibwCIDaqI12t1Q7h3KPw9fBHlE26TZ5NwjSdFZp5ntKl3UXDtBLSJV6FNuweuIMfpusa8LFHaDzMMGMgCy0EeVhGygDDIgyvALbwS3MpVhsTDcc5kZyCZef5gGAbVqlUT/nZG6QQARWQoFMEPFU93N3khpZ9eSPEkCOKxYzAYkZyYi6R72dBo9Iis4I/KVYMRFOqFjNSHVh3/QAVeaBSF2vUj4BdomnHmdDqk7TuA+9vjUHDrtqhd3mBAyu6/ENXnNZtzesVEI/Z/o8r2wggCAMdzUGpykZafgWi/SLjLHgaRUBu0uKdMFLazVErh70yVWPE0r8WUS2Twd/eFv4cvqgdXhrfc0ybabDnvULxWs0sZXRFBPBp4ngenzoMhJwOG3AzkXTwA1TUno4xbw7DgtCrIAyMgUfiANacYUXibFNK2tt4xBFEcrJVP4iGkeBIE8VgwGIw4ezweWq1R2DaTnJiD6EqBaNIqBnHrL6JCpQA0fbEiqtQIBcuaXuKa1FTc374DaX/vg1GlsnsOAEiO24nIV3uCobyZxCOC53kk56fhUupVHLx7AhzPoV54LQCAh8wdFfwihbKxgTGiujnaPOiNBsgkUmSps0XHKgZUwK9dv0KAwn6aEYJ4GjHkZUObcgu6lNvQJt+GPisJ4W99Dc3tczDkZYLTP/R8cdbFFawUbqHRkIdXhFtYJbiFV4QsKBKsVA5ExJbRlRDPG4W5UZPCaR9SPIknjtzcXHAcB5Zl4WPHRZJ4usnP0+DIvls4dzIBWo0Bvv4eqNsoUlTGaORwPyEHdRpGIjzSF+Wi/AAAPMch88S/uL95K3L/u2KndQtYFoqoSAS1agWQGy1hRVm+Z47E/4s5xxcL2zKJDC+E1QTDMEjNzxApntH+UZCwEhg5I1iGRYCHH0I9g1AlKNrGiimXyBDkGVCqfSWch75NJceQlwVt8i1o79+EJuk69OnxMBYobcvlpkOXdd9mv8TTz7ZRVgKJpy9k/mGQh0TDPao6PKJrOVy3+SghmXl2SUtLw71791CnTh24lUJk+zRZJg5UvSds+3EMOpe41ScPUjyJJ467d+8KUeDqUBS4Z4a05Fwc2nMDVy+lgOMeRnzLyVYjL1cjrNMEAF8/D3j5uEEmk6BclB90OTm4v2Ub0vbuh16pLPQ8Eg8PeFWuhMAWzRHQsAHcgoPK6pKIp5iSvmcKdAXI0eYjLT8Dfu4+iLZIG1ItuLKorN6oh1KTC38PX6QVZIhmyeUSGd5r+CZCvYIQ418ebtJnc13PswB9m5yH53kYHyiZmqRr0CbdgC79Hjh1ftGVAejTE8C6KcBpxd4sjFQGWVAUWLk75CHl4VYuFu5R1SD1CzFZM58wSGaeTdLS0nDlyhXwPI/z5//P3n3Hx3GX+QP/zMz2XUmr3rtkq9iSXGM7jtOc3jsJSWgJPzg4Djg4ONrdAUfn4A4udC5AEiCFFNITp7jFcYslW8VW720l7a6275TfH4pGGjWr7mx53q+XX9Z8Z2b1yH40u8/Mt9SipqYGOt3K8s9mFyEOTs0Y7mYXnlgxUlHhSQhZM5IkobVpCAdeb0F3x9i8x/V22lG+MRMpaRbkFCQiIXFiXbOxU3Xoe+ZZOOpOQxKEec8HAFit0OTlovjaa5BQUQZtwtyzFxKyHJIkocvRi/f663G46wS6Hb24fv1eaDkt0s0pisIzxZSEzLg09I8PyW0TTzqzkWZOgSCJ0DBTXb8vLtwR0p+FkLUgSSJEzzgEtx2+vhbYXnho2a/lH2iDIasEgfcLT1ZnnJhdNj4F8ZuuAGdOAMPS8AkSetOLTgDweDw4deoUNm3atKLJpFxOBqkDxfI2r1vcTZpIQ4UnCTsZGRkQBAEcjcmLWHxQwOmTvTjwejPso94Fj7Umm1BRnYXtuwtgME5ctMdOnUL7b/8P3u6eBc9ltFqYiwph2FQNQ9l6GDIykJKZuWo/B4leS73OeHkfvvzqdyFIotw27B5BVnwGbJ5R8KIAzbQPwhvTy+AL+rEhfT2y4tKxM3cLsuLT53ppEiHovWniBgzvHJ5YI7O/FeaKCyG4xsA7bRDcDkii8P5xIsBqAJFf1OsyWgP0GYXQZRRBn1kEQ04ZIEnQpuRCk5AKVm+KyDFzlDPRZXBwEI2Ns4f5WK1WaDQrK6n4QTuAqSWzjD5x3mMjGRWeJOykpaWd/yASlvy+II683Y7jhzvgds2/+DHDAJk5Cdh+USEqq7PAaSbGYLq7utD2y9/AWd+w4PfRWhOQuG0r0q+8ApbCArA0ZT1ZormuM4IoYMQ7Bpt7DO6gB9uyq+V9Jq0R61OK0TDcLLcNvV94CpKIEc+oYgba+6pvw8c2fyAiPyyTucXae5MkSQjaB+HrakRgsB3BkR74+9sgesflY1hTPFidAfz4qOJchmHBWawQnLbZL8xpwJkToYlLhDY1D9YLboA2KTMqn2DGWs5Es/mKzuzsbJSUlKz4Wh8nKksy7jydvCIVFZ6EkFVx5mQvXn2uAa7x+cclaLQs8ouSsfPSIhQWp4B5f4Za/+goOn73MGyHDgOSNPfJLAtLUSHSr9iLlEv2QGMwzH0cIUvgDnhQO9CId3vew3v9Z1CZtg6FiXkAgA1p62GctvRJTWalovAc9owizZyMNHMKzDrlbJs0VpNEEkmSEBzpha+rAb6ecwgMtSM42g8puPA4s8BAG8zlu2YVngDAWRIhuB3QWKzg4pKhTc6GPrMYuoxCaOOSJrrLcnTTkIS/tS46AUDHKkuyaL1lSYUnIWRFBF4Ep2HRcnZ43qLTaNKitDwd2y4qQFZOgnyRDrrd6PrTYxh87XVI/NxdsjiTEck7LkDWzTfBnJ+3Zj8HiU2/OvYojvSclLcHxoflwnPQNawYu1mTUYnXWw+gJrMSZcnFqMmshEVvDnnMhKyUGPBCcNkhuB0YeetRBPpaIPHz91KZj7+/FfHbrlO0sTojOIsViZnFE+MyLUlgjRYwtAQQiUADAwNoamqa1Z6Tk4Pi4uJV69UiiMrfDzFKf1+o8CSELNtAnxOtTUOo2pqDvdeX4+yZAfh9UwVkYWkKqrZkY11FOoxm5RMgwe/H6S/+K7y9vXO+NqPVIu2Si5H/4fuhtdCHe7J8QYHHsGcEA+NDKEkuRLzeIu/blFmpKDwH3TaIkgiWYdHvGlIUnvnWbPzsum9R91kSMSRJAu8YghT0QxJFBIY6ILgdEAM++RjR7Vhy0ckaLNBnFkGfWQJNQipMRdXgzFZwZitYHfVGIdEhVEUnABiT0oCBqW2Ji84SLTp/KhLRzpw5I08/vmHDBrXDIXMQeBHNjUMY6HMAABpr+7F5Zx4uu6YMLz19BiVlqbjsunJkZM2/bhmr0yGhpmp24cmySNxUg8IHPwrjIicKopwhM414xnCstxZvtR+GJ+jD7vztAACT1oT4VIucM0Yox5XxIg8/70dVRjmy4zIU+6jgjG2RcJ3hx0cRGOyYWCezrxn+/haIHidMJVuQsONGBMcGZ53DWRIRHJn7BiAAMBoduLhkmEo2w5BbDn1mETQJaYrfB42ZZhGfSyTkDJlbKItOANAmxgNwy9sMF53vN1R4krAjiqL8h4Qfj9uP+vf64XZPdav1eAJobhjC5p15SEo1o2hdynkvygzDIPP66zB29Dj8w8MAwyBuXSny7rsHCRs2LOmiTjlDpjvV34Dv7P+ZvM2AQUAIQsdp0T8+iLLUYjlfTFojylKKYdDoUZVRjvKUUhQn56sYPQlX4XadEXxu+Drq4O1sgH+gDcGRXsXEP9P5+pqRaJq7OOQsifLXjEYPTUIKtMnZ0GUWwZBTDn16AViDmW68LEO45QxZnP7+fpw9e3ZWe25uLoqKitbkd4HVmTG98JSicLItgApPEoYMBgM4jlvRekhkbRw92I533mrDhs1Z4Djl+AOWY8EyDIrXpyrax5tbwGo1MBcUzHo9Y2YGUi/dg9EjR5F7zweQfMF2MOzSxzVQzsQmSZIw5nOAF3ikWVLk9nUphdCwGvDvL+UgQcKgaxi5CVkY8Y4hIAQVOfPvl30ebJSOpyGrR83rjCSJ8Pe3wdN8HP6+ZgSGuyGMjwKYZzK2GUSPExCU4+gZlgNntk5M+pNeAENeBXTpBWBpYqxVQ+9NkWd4eDjkRScAcAblkCKGjc4SLTp/KhLR1q1bp3YIZAZBEPH3v9ai7sREd6yWxiGsq0wHwzDQaDisq0hDWqayW623vx+df3oUI4feQVzZemz83n/OumAzDIPsW25B3gfuArOCdc4oZ2KHIAo40XcGb7UfRmFiHiRIsBricWXJHvkYk9aIjelleK//jNw24BrG5swNyIxLAySJcoYsWahzRvR7EbB1IzjSC358FL7uRnhb31vWa7GmeAh+D4x5FeDMCeDMiWCNZprwZ43RdSbyWK1WWCwWuFwuuS0vLw+FhYVr+tR/wKnsBu+Xgmv2vdREhSchZEHjTh/+/NujGOh1ym2DfeOItxpRWp6OyppMGE3KO+SjJ06i8dvfBd7vXjTedBajx08gedvWWa+vMRnX9gcgUePhk4/jQOdRjAcmuiOJkoiipHzYfU64Am5YdFN3jLdnV+OcrRWbszaiJLkQO7JrkGiyqhQ5Iec3uaQJqzfB23YKvMMGadoTTS4uaXEvxGlhyCqBPqsE+qxS6LNKZo3JJITMTavVorq6GrW1tXC5XCEpOgHALyon+BLnW1ouwlHhSQiZV0eLDU/84QS8ntl33nhexKbtueA0s++YW4qKwBkMEDweua39t79H0uZNK3qySWJHUAhCw2oUb/Z2n1MuOgGgd3wQRUkT4zH7nINYl1Ik77uo4AJcXLgTmigdJ0OigyQK8HU1wH3uKDxnj4J32pD94E8RdAzPOpYzWwGGBaTp4wUZcHGJ0KXkQp9VAkP+BhjyysHS+piELNtk8Tk0NISsrKyQ3LQRgzOWlIvOupMKT0LIbJIk4a2Xz+LgvhbMvOnGsAy27srH1TdXznsx1iVakXzhLgy99vrEOVotjBkZ4L1eaC2WOc8hZMhlQ8tIBwRJxKDbhr3Fu2E1THXh3p5Tg8PdJ6aOd9sQFIJINCbMKjB19MGbhCkx6J8oNJtPwNv2HkSvS7Hf39MIjdkK3m1XtDMsB11qLhitHvrMYhjyymEsqAJnjAth9ITEBq1Wi+zs7JB9v0DvIID0qe8fjM4JqajwJGGnt7cXgiCA47iQ/tKTCV53AH/5/TF0d4zN2qc3aHDp1euxbXcBGIYB73JBM08hmXHVFbCfPAl9aioSt21F2sV71qzopJyJXN6gDwc638WhruNoGm5BkjERlxbtAgD0OgcUhWdNZqU8aVBufCZKkgtwaeFOZMalL/mONOUMWaqV5IzgccLVcBjuhkPw9Z4DRH7eY91nj8J64a3g3XYwnBa65GxoU7KhiU9B0p67VvpjkBCi60x4GxkZQWJiIthlTGq42oyS8uYpS088CQmNkZERed0rulCHlscdwMP/exi2QdesfYnJJuy9vhxlGzMgeL1o/93DsB04iE0/+ykM6Wmzjjfn56HwgY/CXFgIQ3rasmarXSzKmci1r+0Q/njqSXl7xDsGX9AHg9aAXucAKtOmJucwaY347M6PoSAxF2nm5BV9X8oZslRLzZnA2CBcp9+C5+y7CAx1YbF953jnMHQpOeDMCdAmZoCh7uIRi64z4au3txfNzc1ISUlBRUWF6sWnXgyAE6bGeXIzxnxGCyo8CSEAgHGHD4/8+t05i86S8lRce+tGJCQa0f/CS+h69M/y+M3WX/wSlf/+jVnnsDodUnbtXPO4SeSQJAkBIQj9tOUaLi3cib+efg7+aW+4fe+P3XT6XXIROml7Tk0oQyZkSSSBR9A+BNsLv4Cvu2HR5+kyimBetx3m9duhTc0DwzDgTPHnP5EQsmQ9PT1oaWkBANhsNjQ0NKhefCZqHMhzTM1sy4EKT0JCorS0FJIk0Qx8ITTu8OHh/z2MsRGPol2jZXHp1etxwZ4iuJpb8N7Xfw5vT4/iGPt7tbC9cwQpO3eEMmQFypnw5gp40OccQPtYN3ScVu5KCwBmnQkXF+zAq637AQAaloNBa8COnE3IiEtbs7GalDNkqebLGTHgRXCkH8HRXgTHBiGJAqTzphUDjTUNlopdiN98FTQJqec7gUQgus6En+lF5ySbzQabzYa0tNm9t0IljtMB8Mnb0drPgQpPEnaMRlpeI5Q87gAe+dWRWUVnvNWAO+7fgszcBHQ98ij6nnkOkiDMfgGWhaPutKqFJ+VMeBpy2fBs06t4q+MIajIqkG/NAQCMeR1INCbIx1297hKMeu24rGgXNqaVQa/Vr3lslDNkqSZzZmJyoGPw956DpeoSuOoPzjpWm5wNf9eMJ54sB21SFowFG2Gp3A19ZjEYjj6GRTO6zoSXuYpOACgsLFS16IwldMUjJMbZRz1wOnyKtqQUM+77xA4Y4UfdP38J7ra2Oc815mQj74N3I/mC7aEIlUSQx888j6fqX5TXIWwZ6UBeQjYYhkHzSLuiy2xOfCb+5aJPqhQpIecneMfhaT4B97mj8LadghT0AwDMFReCAaNYbxOYWPqE0ZsAgYcuLR/G4k0wV1wIXXIWGEb9iUwIiTXd3d1obW2d1V5YWIj8/HwVIopNVHgSEqMkSUJn6wgyshNw/yd34tHfvAuPK4DkVDM+9A87wbntqP3qNxAYGZl1Lmc2I+e2W5B54/XgtLRsBZmtwJqj+DA+5nNg1GtHsikRdp8DoiSCpQ/gJIwFRnoxXvsGPC0nEbT1zFg/c4K3vRZcfDJ4p01uY8BAa01F6nWfhCG3AhqLNYRRE0Jmmq/oLCoqQl5engoRxS4qPEnYcbvd8pgIs9msdjhRSRIlnGsYRH+vA4N9TtRsz8WHP7ULf/9rLW69dzNg60fdv30TvNM561zrls1Y97nPQBsXPmvHUc6oR5IktI11IdlohXVa99ktWRuRakrCsGdUbgsIAezJ3450S6rqY54oZ8hMkiTB190I1+m34G2vA+8YPu857rNHkXzZfRDcDmiTMqBNyoI2KRNsCLqLk/BH1xn1dXV1oW2OXlvhVnT6YEf+WL28HdBF57hgKjxJ2GltbZWnH6+qqlI7nKgjSRKazgxgsH+iqPR6g6g93oOabbn48Kd3wdnQgDPf+i4Er1dxHmvQo/BjH0HGlVeoEfaCKGdCT5IkHOo6Dm/QizGfE0lGKy4r2iU/xeRYDleVXoynGl7CpYW7cGnhTnmMZzignCHARB57zh7BeP1B+DrrIXrHF3ciw8KQVw7z+h3QZRZBn11Ky56QWeg6o65IKToBwB7kMJZQLm9LDM1qSwiJcJIkoaVpSC46J3k9QYw7fWA6z+Ls938EMaC84Gni4lDx719HXElxKMMlYapttAu/PfFntIx2YHPmRhQl5WHUa0f7WDeKk6bGylxZvAdXFO+BcdpyKISoTZIkCK4xBIa7EBjuhuOdZyC47ec/j9UgmFIEMasc6y+9mZY7ISSMzVd0FhcXIzc3V4WIFuYOGtGSUiNvG4Kze5xFAyo8SdhJSUmBIAjgOLp7vNqe/cspuF0BZOdZ5TaWZVBRnQWx4T00/8/PIPHKmWt1yUmo/NZ/wJSdFeJoF49yJnSeqn8Rj595Xh6/WT90FrkJmdByWpwebEJuQpa8BIohjAtOypnYI3hdCAy2IzDcDWHak01tau68hSej0UGfWQzTuu1wpa6HTmcCx3FUdJJFoeuMOjo7O9He3j6rPVyLTgAISNL5D4oCVHiSsJOVFb4FTiTb90Ij6o73AgD4oIC8oiRwHIvKmiwEjh1E229+B4jKyTMMmRnY8J1vQZ+UpEbIi0Y5EzrrUooUkwb5hQCabK3YlbsFm7M2rNm6m6uNciY2BO1DcDcchH+gDdZdt8E7c4kTALrUPPg6TsvbrMEMQ245TGW7YCnfIY/XtIYqaBI16DoTeoFAAD0z1hsHgJKSEuTkhM9wj5nMuthYeocKT0JiwNGD7Tj0xtSMbp2toxB4CdffWQXPGy+h67G/zDrHlJ+HDd/5FrQWSyhDJWFGFEWw7NTssxvTy7AlayNO9E18UI/XW1CVXoYrS/aAozFuJAzwLjvcjYfgqj8If+85uT1h581gWA6SqOzVwRrM0GeVQpucBUvlRTAUVitynhASOXQ6Haqrq1FbW4tgMAgg/ItOANCzypIsOqcWosKTkKjX0zGGV5+bfZc/vzgJruefQP/fX5i1L279OlT8xzegocWvY5af96N5pB0d9h5cWbwHOo1O3ndf9a04a2vDjWVX4JqSS6CnGTyJysSgH+PvvY7x028hMNgx59InnqZ3oUsvQMA28TSEM5ihS82DNjUPiRfdqfpMy4SQ1WGxWOTiMz8/P+yLTgAQReX1R4rS6xEVnoREMZ83iMcfPg5RUI4dqNqcjbzWN9C/741Z5yTUVKP8q18Gp9PN2keiX69zAL8+/hgACZVp6wEATbZWVGVMzbaXFZ+BX9zwHeg1lCNEXZ7WWjhPvARvRx2koH/BY10NB5FRdQlYvQm61DxwcUlUbBISpSwWC7Zv3w5thKw1zkA5J4LAREbcS0WFJwk7TU1N4HkeGo0GZWVlaocTsSRJwlN/OgnXuPLDWH5xEtZ17cPQkXdmnZO8ayfW/fNnwWoi69JAObNyLr8bT9S/gFdb3oYgiWAZFvnWHFh0ZjSPtKM4KR9mnUk+PtKLTsqZyBW0D8Fx9Hm4m45AGB857/Gs0QJz2U5YKi6ENikLuuTsZX1fyhmyVJQz6oqUohOI3q61M0XWp0sSEwKBAILBIERxdlcpsnhH3m5D61nlAuhx8Xps6HkNY/V1s45P23s5Sj71CTAROLaJcmblXAE3Xm3dD+H9LoqiJOL0YBN25m6BBAnD7hFF4RnpKGciiyQKCI72Y/SNP8HTcgI4zwyQDKeFuXwnLBW7YSyqArMKk15RzpClopxZO5IkoaOjAyzLIj8///wnhDtN5BTJK0GFJwk7Go0GkiRBE2FP3cJJb+cYXn+hSdHGcQwqbe/A1zWj6GQYZFxzNYoe/GhEFp0A5cxqyIhLwzUll+D5c/vkNpt7FImGBFyQU4N4Q5yK0a0+ypnIILgd8A+0ITDUCTHohyTwCxad2qRMmCt3I2HLNeDMCasaC+UMWSrKmbUhSRLa29vR1dUlt0V68cmG8fJjq4l+E0jYqaioUDuEiOb1BPDEH09AEpUfzrZfmI/Ut9+Ce1obw3HIvO4aFHz4/ogtOgHKmaXyBn1oGG5GSVI+EgxT6xHeWnkN3uo4Aj/vx1WlF+OSgp3Isy6vW2K4o5wJX2LAB4kPwH32KPgZXWm1afnwttcpJg9i9WaYSrcgftt1MGSVrFlclDNkqShnVt9cRWd7ezsYhkFeXp6Kka3MuG8cQHgvXbcaqPAkJIpIooRnHjsFp92naC8oScYl15ZD3P1lnPnqN+DrHwCj1SLn9luRc9stYGhx65jQ7xzCC+f2IclkBS8K8AZ92J2/Td5v0ZnxmR0fRVZ8OtLMySpGSmKNJEnw95yF89TrcDceRuYH/wOC2z7rOFarhzYpE8GxARiy1yFu016YKy8CS0v5EBL15io6J0XSeM65BCVesb3wYILIRYUnIVHk0JutaG4cUrSlZ8XjhruqoNVyQHIySj7zj2h96BfIvfN2pFy0m2Z1jAG+oA/PNr2GZ5teBS/y2FNwAdLMKegbH4TNM4oU09Rd1ppMukNPQocfH4PrzNsYr92H4Eif3O468zaMBRvhH+xQHK+JT0bS5R+CPqsYGrM1tMESQlQjSRLa2trQ3d09a9/69euRmZmpQlSrZ44VoKISFZ6ERImOFhvefEk5rtNs0eGeB7YjLmFq7EB8+XpUff870JjNoQ6RqCAoBPGFV76NIfdUl8W6gUZcXjRx06FhqBl7Ci5QMUISa0QhiPHaN+E6tQ/+gbY5P3G5zhxAwtZr4R/sAKszQpeeD316EThTdI01JoScX7QXnQAQlIJqhxASVHiSsDM4OAhBEMBxHNLT09UOJ2IM9o8ru2YwwC0f3KwoOgGAYZioKzopZ+an5bTYW3wRHqt7Rm6z+5zocvTi0sJdqEgrVS84FVHOhB7vHMbYwafgbjgE0e9Z8FjR70FwfBRxGy+GxpoGhlF/DDrlDFkqypmVkyQJra2t6OnpmbWvrKwMGRkZKkS1+vRcZC9RtlhUeJKwMzg4iGAwCK1WSxfqRZAkCa1nh1G+MQOp6Rb87dH34HEFUJPuQ0Hh6s7qGK4oZ6ZIkgRBFKDhpi7vN6zfi3e6T6B9rBsMGNRkVOCeqpuRHR8db9jLQTkTGpIkwdt5BvZDT8HXWX/e/mTapEzEVV8OS9Ul0FgSQxTl4lDOkKWinFmZWCk6AUAvCmCmT5oWpX1vqfAkJMIN9DrR0zmGwT4nNl2Qhwc/dxFe+s8/Iungq6jtPoTyr38VhtQUtcMkIeAL+nCy/wyCwsQ4zsnxuxzL4ZPb7sdfTj+LD1bfgtyELJUjJbHA29WA4b//HLx9cOEDWQ0sG3YjrvpyGHLLadw5ISSmik4ASNKMoWCsX97mEABwp3oBrREqPEnYKSwshCiKYCN4eY9Q8XoCaGmamEwoGBRw+mQvklsPI/fcqwAAT2cXTv3jZ1H25S/CWlOtZqhrKtZzRpIk/K3hJQy7R5FksgIA2se6UJQ0ta5ZQWIOvrznUypFGH5iPWfWkuB2wNfTBF/PWfCO4XmP0ySkwlKxG/EXXB8REwVRzpClopxZHkmS0NLSgt7e3ln7ysvLo/LpcbzZAjBTKxJwUZoyVHiSsBMXR5NHLIYkSTjXMARBmOqO4bLZ4XzpTZimHycIYCJ8mvHzieWcGXaP4JdHH8HpoSYYtQZcWbwHWk6L2oFGZFjSYNIZ1Q4xLMVyzqwFSRLBjw3C39+CwPuz0zJaPbSpuQgOdU4dyHIw5KyHdcdNMJVuVSna5aGcIUtFObM8ra2tMVV0AkBCaR4s3TZ526DXqxjN2qHCk5AIxPMC2s7aMDbiVrRnFaYg/u4b0P34UxDcE/ty774LCZW0REY06nH04yuvfx8+3g8A8AZ9OD3YhM1ZG8EyLFxBDxWeZM0InnGM1+4DJAn6rBJ4uxpmHaPPLEFwqBOswQxT6TZYd90KXUq2CtESQiJFfHw8GIaBJE1NmRjNRWcsocKTkAj02nMNOH64C8XrU5CZmwCGYWAwaFG6IQuamlzEb9iAlv/+GQxZWci++Ua1wyVrJDs+AyVJBTgzdFZuaxvrwu68bdhbchEMmui8Y0rU5etrgfPES3DXH4IkBMHqTch+4MfAHIWnJiEViZd8EHGbroCGlkIhhCxCWloaAKChYeKaUlFRIbeRyEaFJwk7fr8fkiSBYRjoo7SrwUrUv9eHY4cmuq61NA3DYfeitCIdBSXJ0Gg4AEBcSTGqfvR9SDwPJgbGlsRKzkiSBAkS2PeXlmAYBv9v2wfxhZe/Db8QQKIxAbeWX4MrS/bQBC3nESs5s1qEoA/jx1+Gq+EQAgNtin2i3wNv2yloLIngXWMAAFajgz6rBPqsUrA6w1wvGXEoZ8hSUc4sX1pamvxvFwtF55jGgfrcqYmULCyHa1SMZ61Q4UnCztmzZ+Xpx6uqqtQOJ6zYhlz4+xO1iraRITfWVQDpmfGKdk6vB2LkjS4WcsYVcONk3xkkmxJRmbZObk+3pOKeqpvR6ejF/dW3UdfaRYqFnFkNgaFOjB16Cp7m45CC/nmPc554GcnXfAIAoMsogj49HwwXXWPLKWfIUlHOrEwsda0dcvvRxefK22YEVYxm7VDhSUiECAYEPPmHEwj4BUV7SXkqqrbmgGHpCVc0CghB/OnUUzBqDdCwGgy5R5Abn4l4w1S3xWvWXapihCTaiKIId9M7cL77HPx9rQCk+Q9mNbBU7EL8lquhyyqBMWfd/McSQsg0kiTB7XbDYrGoHYrqxh1a5LTXyNu83qVeMGuICk8SdqxWKwRBAMdxaocSNiRJwvNP1GFoYFzRHic4kDTmQnLyZpUiCw/RmjODrmF8d///om98EDnxmdiRuxmiJOJE32lcUriTutOuQLTmzEoIfi8c7z6L8VNvQBgfWfBYLi4Z8ZuvRFzNXmgs1tAEqDLKGbJUlDPzkyQJ586dw+DgIDZs2ICkpCS1Q1KVf2gMgFXeNvgWuOEXwajwJGEnLy9P7RDCzjtvteL0SeXU4nomiCRHO9juZtT1nkD51/4V+hi9cEdjztQONOC/Dv8G3uDEul49zn70OvuRHZ8JV8ADd9ADi86scpSRKxpzZrlEvwf+vhaMvPkIAv2tCx6rTc5G/PbrEF+zFwwbWx+mKWfIUlHOzE2SJJw9exYDAwMAgDNnzsR88WmZMZJBw1PhSQhRQUerDW+8eFbRxjJA6lgzEr2DMPIuuFtdaPjmf2LTT3+sUpRktaVbUmf1cHyvvx4X5m1DTWYldFE2fo6EliRJEJw2+PqaEbT1QJIk6FLz5y48OQ1MhdVI2HkzjHm0NBMhZPlmFp3ARPf++vp67NixA9ooX3d8PgZOp9iO1v5MVHgSEsZ83iCefvQURFFZgaS52pHtPAtLwA4AYDgORQ9+TIUIyVrJsKTi49vuwX+/83sAQKYlDR/ZfBdqMumDP1k+SRQgBvxwNx4CPz6q2MfFJ4OzJEKYnJnWGAfLxoth3XULNGarCtESQqLJXEUnMDFDe3l5ecwWnQAgispSU4rS0pMKT0LClCRJeO6vtRh3+BTtqYwD6wcPQSNOzXiWffutSKikgiTaXJi3DacHmhAUeTyw5W4YtdGxLAUJPTHoh+v027AfeRZJl9wDiMKsYxiGgT6rFMGxfsRvvRZxNZeDjbHutISQtSFJEpqamjA4OKhoZxgGlZWVSElJUSmy8KCxKLsZC1Haq4kKTxJ2WlpawPM8NBoNSkpK1A5HNUf2t6PptPKuYIIJqKh7Dhrwcpu5sAC5H7gz1OGFlUjOmYAQhI7TQpREnLW1oigxH3rNVJebB7feA44+/K+6SM6ZpRC843CeeAXO4y9CcDsAAPZ3nkXKdZ8Ef+6ofBzDctCnFyJ+81UxM1nQUsVKzpDVQzkzYaGic8OGDUhOTlYpsvBhTE8GWtzyNquhJ56EhITH45HXvYpV3e2j2Pd8o6LNYNRgY+tTiqKT0WlR+vl/AsuyoQ4xrERqzrSMdOCn7/wWd1ZeDxEShtwjGHaPYnf+NrDMxP8pFZ1rI1JzZrECQ50YO/gUPC0nIAWVvSYCA60QPU6wetP7TzlLoEsvBKuNjXV/lyvac4asPsqZiaKzsbERQ0NDinYqOpVYTgdgqvBElM5aT4UnIWEm4Ofx5J9OKsd1MsBmsRF6t3JMVvbNN8FMs+ZFHFES8fzZffhz3TMQJBG/Ov4Y9hbvhllnwoBrGE3DLahIo/UQydJ5O+sxtv8v8HU1YqH1Nz3Nx5B40V1gjWYwTGzfuCKErI35ik6WZVFZWUlF5zRcfDKAMXlbmjHZULSgwpOEnaqqKrVDUI0kSfB6grji+nL8/Yk6BAMT47A2FXIwvnpQcawpPx+5d92hRphhJ9Jypm6gEY/U/k3eDopBvNvzHi4p3AmWYdE43IKCxFyYtEYVo4xukZYzC5EkCe6mI7AfehKBwY4FjzUWVcO642YYCjbSOrBLFE05Q0IjlnNmoaIz1pdOmYvNqeyGzEv8PEdGNio8CQkjnW2j6GixoaQsDQ98djee/MMJmAwskvf/WvHsgtXpUPLpT4LV0K9wJKrOqMDu/O042DltjB3DICgEkWhMwI7czVR0kvOSRAHO916H451nwDuG5j+QYWGpuBAJO26CPqMwdAESQmKSJEloaGjA8PCwop2Kzvm5g17FNi+JKkWytuhTKyFhYmzEg86WEQBAS9MQ8gqT8NHPXIi6f/s2Aj7lBSnjmqsRt65UjTDJKmAYBg9uuRstI+0YdNlwS8VV2JhWgRHvKLbn1MCgobF2ZH6SJIF3DGHgr99F0NY9/4EsB1PxZiRecg/0adQlnxASGoODg1R0LpEkRGehORMVnoSEAb+PR2NdP6RpzzW7O8ag6WtFoOmM4lhzUSHy7/9gqEMkK2T3OhCvj5MngjJqDfjszgfgCrhRlVEOSZIgQZInFSJkJkkSEbT1wtdzFvz4CDQJqXMWnoxWD3P5LiTuuQvahFQVIiWExLL09HS4XC709PQAmCg6N27ciMTERJUjC1++/kEAU9drbSA6C1EqPEnYsdlsEEURLMvGxLpOkiihsa4fgYCyP39BcRKGvv8TRRur02H9Fz9PXWxnCNecOd5bhwxLKvpdQ+gY60Z5aik2pK+X9xclTT2FYhgGTJQuGB2OwjVn5iIJPPwDbfD3noPgm5r1UJdeAF9nPSTeDwBgjXGwVF0C64W3Q2O0qBVu1IqknCHhIVZzhmEYFBcXAwD6+vqo6FwEQ1A5GRwz/9xwEY0+vZKw09fXJ08/HgsX6mf/WotgkEdqepzclpxiBld3GP5B5bit9CsuhzErK9Qhhr1wy5mgEMQjtU/jpeY3kWpKwkUFF4BlWDTZWpAdn4FEY4LaIca8cMuZufj722A/8gysO2+Gr7MeIh9Q7Gc4DfRZJQiODSB+85VIuOAGWhJlDUVCzpDwEss5M1l8ZmVlwWQyqR1O2DPMeMAZrbehqfAkREV1x7tRd3yiK4ozz4fCdSkwmXQoLoxD3Q8fVxyrTYhH3r33qBEmWYJh9wh+dPBXaLdPdIEc9oyicbgFlWnrIEoSjvacwt7i3bQ+J5mTJEnwttfBceQZeNvrAACMRou4DRfD261c25czmJF06QehyywGy9HbOSEkvDAMQ0XnIlm5EeSP9svbHAIAblcvoDVC71Qk7OTm5spdU6KZzxfEK89NfZDs7bLDNe7Hhz+1Ez0P/xaCVzmhUPatt0BDF/A5hVPOmLRGuAJuRVvjcDOy4zOQYkpEnpWeWIeDcMoZABCFIMbfex3jp/YhMNiu2Oc6cwDWnbeAYVhIkgiNJRH67HXQpeaCoRsYIRNuOUPCX7TnjCiKaG5uRl5eHoxGmol9JSycBix88rYGgorRrB0qPEnYiZVxAC8+eRpet7LrXNnGDGicwxjef0DRbsrLRdYN14UyvIgSTjlj1pnwTzs/hm+88WOIkggtq8WWrI3YlFGBjellMGgNaodIED45Iwb9sB9+Gs4TL0H0uuY5SMB47Rswl+0EZ0mAJj6V1uBUQbjkDIkc0Zwzoiiivr4eIyMjGB0dRU1NDRWfK8DNmFgwWud8oMKTEBV0tY2g/lSfoi0xxYQrri/HmX/9KiBO6+zPMCh88GNgOHqyEY48AS/6xgdRklwgt61LKcIHNt6ItzuO4HM7H0BWXDo01BWSTCMXnMdfguibp+AEwJmtiN92HeI3XwmOJgwihISB6UUnAPj9fpw6dYqKT3Je9EmIkBATRRHPP3ka0rQZyxgGuPHOaowdO4bxs+cUxydu3Qxr1cYQR0nOR5IktI91o3agAUGRR5zejHTL1FToN5ZdgWtKL4Veo1MxShJuFltwapMykbDjJlg2XgyWcogQEiZEUcSZM2cwOjqqaOd5HoFAgApPsiAqPEnYEYSpfu1cFD7lO3qgA7ZB5QfOiuos5BVYcfw7v1e0s3o9ih78WCjDi0ihzhlBEPCjw7+CQaNHZlw6gImlU64s2QMtpwUAsAxLRWcYC3XOSKKAsYNPwnnsxQULTo01DYkX3QXLhoto/GaYifb3JrL6oi1n5is6OY5DVVUVEhJoxvblCmIcmc4WeVvURud6KlR4krBTX18vTz9eVVWldjirKhjgceD1ZkWbwajBtbdtQPeTTyFgsyn2pe+9DIb09FCGGJFCmTO8wONn7z6ME32nwTIs9uRfgBRzEtxBLxqHW1CVUb6m35+sjlDljCSJCAx2wtdVD/fZo/MWnRprOhIvugPmDRdH7UQkkS6a35vI2oimnKGic205BBEenVXeFjiaXIgQskIHXm+B1xNUtO3eWwou4EXvU88o2rWJibR8SpgJ8AH88NAvUTswMRuxKIk41HUMFxfuxKbMSpSllqgcIQkXkiQhONoPb3sdBI8DAGDIK0dwqBPA1J1sKjgJIeFOEAScOXMGY2NjinaO41BdXY34+HiVIoseTr8F9Vmb5W1D0KliNGuHCk8SduLi4sDzPDSa6EpPnzeIE+90KtoSk03YsacQnQ//EaLfr9iXe+fttHzKIoUqZzScBgkG5RusIInIic/AtuzqNf3eZHWtZc6IfADu+oMIOoYV7ZwxDtq0fASHOiYKzt13wLyRCs5IEa3vTWTtREPOUNEZGn6RVzuEkIjc3wQStQoLC9UOYU0c3Df7aefe68vBsizy7r0HnMmE/r+/AN7lgrmoEBlXX6lSpJEnVDnDMiw+se0+uAMenOg7Db1Gjy9c+P9QTd1rI85a5ExwtB+jbz0KY8nWeSfCt1ReCM3266ngjEDR+t5E1k6k58x8RadGo0FVVRUVnatIr4uNSZmo8CQkBBxjXrx7QLkofHlVBsqrMgEAnE6HvA/cibTLL0Pnw39A5g3Xg6EPpWFBkiTFmokalsPndj6A/znyf7i5/CrFMiokNgluB8YOPA7ne68BogB/bzMyP/gfCDrelo/RmK0wFlZBk5hBa3ASQsIeFZ2hZeaUkxFG67sEFZ6EhMChN1og8FNrc7Isg8uuLZt1nCE1Beu/+M+hDI0sQJIkvNd/BgaNHuWppXLBoNPo8IXd/0/l6IjaBL8XzuMvwn74aUgBr9zOO21wn3sXupQc8OOjMBZshC4tnwpOQkhEEAQBp0+fht1uV7RrNBpUV1cjLi5OncCimDRjEtvonNOWCk9C1lzAz6PuRK+ibcvOPCSn0mLw4ax9tAsO/zhaRifG5QYEHtUZ5VQ8EIiiAMfhZ+A48ixEv3vOY5wnX0X2R38IVqenZVEIIRGPis61JUkGxbbARudybFR4krDT0dEhD8YvKChQO5wV0+o43PeJC3DicBfOnOqFwIvYdSnNfrqaVjtnjvXW4ieHf4Ps+ExszaoCwzA4N9IGURKwOWvjygMmqltuzozXH8TYG38C77TNuZ/htIjffh2sO28BZ6DJwaJJtL03kbUXqTnDcRw2btwoP/WkonPtsVHbuVaJCk8SdpxOp7zuVTRobhwCHxSw67JiXH5dGXo6x2DWiRg9dhxJ27aqHV5UWM2cebPtMH55/BFIkoROew90nBZV6eVgGQZp5pRViJaEg6XmjK/nHGyv/AaBgbZ5jmBgqboYSRffDU085Uk0irb3JrL2IjlnJovPxsZG5OfnU9G51pjYmNeDCk9C1pDPG8RArwOiKGFoYBwaDYeK6ky0/+5hDO17A5bSEhT9vwcRV0pPQMPBmNeB35/8K6Rpgy2aR9qRbEzErRVXIychU8XoiBoEtwPDLzwET8uJ2YNw3qdNzUPajf8IfUZRiKMjhJC1w3EcNmzYoHYYMYE1xUZhT4UnCTsVFRWzZhKNVD2dYxDFqQ+roiiBdY9i+K2J2S5dzS2o+8KXkHPHbci/9x61wox4q5UzicYEfG7XA/jBwV9ClCYmg6rOqMAN6/eiIDF3NUIlYWIxOeNtP43Bp34A0e+Zcz9nToB1zwcQV7OXlkaJAdH03kRCIxJyhud5MAwDjqOx6GryeMcBWNUOY81R4UnCTiQvtDwdHxTQ3+NQtGXmxKPntw9BEoSpRoZB/IaKEEcXXVYzZzZnbcQ/bL8fP3/3YdxUdiXuqbo5rD80kOU5X874Bzvg7Twz58yCjFaP+K3XIPGiO8Fq9WsTIAk70fLeREIn3HOG53nU1dWBZVls3LiRik8V+cSAYptmtSWELIlt2A1BmFpChWEYZOcloj87B+PNLRC9PgCAtboKiTU1KkUZ2yRJwllbG/ISsmCatnjznoILkBOfgaKkfBWjI2qQBB6e1vfgH2gDWBam0q1wn9k/sZNhYS7fieQrPwqN2apqnIQQshKTRafT6QQAnD59mopPsuao8CRkjbzyTD10eg6pGRZoNBySU8wwmXUo/sSDyLr5BnT+4U+wn6pF0SceVDvUmCRJEs4MnUXjcAvaxjpxccEOmHVTs5BS0Rl7BO843A2Hwbvtcps2MQO69AJIPI/Um/8JBhrHSQiJcDOLTgCw2+04e/YsKiqoB5YaAgKvdgghQYUnCTt2u10eE2G1WtUOZ1n6usbQ2ToCAGhtGkZqhgVFt0wN0DdmZKDsS19EwOGALiFBrTCjxlJzxul34fv7H0JRUh7i9Ba4Ah682f4OLinYAYvevPYBE9VN5gwAaLproc9ZD8+5oxADvlnHWnffAVPpVrAcvWXGsmh4byKhFY45M1fRCQBarRb5+XTDVS1aJjaeNNO7KAk7XV1d8vTj4XKhXqp33p5ackEUJYyNeJCRFT/rOCo6V8dScsbmHsW33v5v9I8PoXd8AJcU7oRJa4Q36MWYz0GFZ4zo6uoC77TB0vAKNMMtMBZVI/HieyZmr30fw3IwlW6FPr1AvUBJ2IiG9yYSWuGWMzzPo7a2FuPj44p2nU6H6upqmM30/qcWI5QT1EXrzBJUeBKyyviAgHMNQ4q2wpIU6AyRt45XtBlwDeM/3vgJRrxjAABP0IsDnUdxScFO7M7fhtyELJUjJKEgSSI0HcdgbngdjDAxoYO3rRbm8guhTyuAf6gDnCkelvJd4Mx0c4gQEvmo6AxvCewIcuxTnx05BBY4OnJR4UnCTmZmJkRRjNjlCU4c6UIwICjaLthTqFI0sWGxOZOgj4PVGC8XnsBEEbIupQiFtFxKTAiM9GH4hYdg6G6ctW903x+Q84n/Bqs3wpBXDoajm0VkSqS/N5HQC5ecCQaDqKurm7PorKmpgclkmudMEirxBj20ol3e1lLhSUhopKamqh3CitQd71FsJyYZEHjhL/DdfScMaWkqRRXdFpszRq0B/7rn0/jGvh+hb3wQ2fEZ+MpFn0aqJXmNIyRqk0QBYwefgP3Q04A4exIHzpKIlGv+HzTmRGgKE1WIkIS7SH9vIqEXDjlDRWdksK4rgLnvlLxt0EfnUl1UeBKyipx2Lwb6lGt3ZktDGH7jTQy/9TYSt2xG3j0fgKWInoCGii/og0FrkLfj9RZ87ZLP4A/vPYmPb70HcXqLitGRUPAPtGHo6Z8gONo35/646suQtPfD4AzU1YwQEj2CwSBqa2vhcrkU7VR0hh9Ww4KZ9mCcidKOFVR4ErKKjh3qgDRt1V+WZZBU//rEhihi7NhxCD4fNn77P9QJMMYMuUdwsPMoqjMqUDxteZQUUxL++cKPqxgZCQVJ4DH61mNwvPt3QBJn7dfEpyDlun+AqahahegIIWTtUNFJwhEVnoSsoobafsV2spGH1jPjCeiNN4QypJjVZe/F8b468KKAE32nIYgC1qXQGoyxwtffgqGnfwJ+bGDO/YbccqTe8I/QJqaHODJCCFl7TU1Ns4pOvV6P6upqKjrDkJtzYyB16v3KGKXLd0XnT0Ui2unTp+Xpxzdu3Kh2OItmG3RhbMSjaEsdblBsG3NzkLhtSyjDigkzc6Z+8By+e+DnqM6oQL41BwBwaqABFp0JWfEZKkdL1trIG4/AceQZKLofvI81xiHxojvQpcvGQHsvtD1DEXWdIeqJ1Pcmoh41c6akpAQulwt+vx/ARNFZU1MDo9EY0jjI4vQHXHgnLk7eThB5fFi9cNYMFZ4k7EiSJP+JJHUnlJMK6XUMUlprFW2Z11wNhonW1ZnUMz1nOsZ68KPDv0JACOJYby0EUURRUh5y4jOREUeTO0UzSZIQ6G9FYKBtjqKTgbGoGinX/QO08cmQ6uogSULEXWeIeiL1vYmoR82cMRqNqKmpwalTpwCAis4w5xjRoaRht7zN610LHB25qPAkYcdoNEKj0UCrjZylDCRRwumTvYq2HL4PWikob2ssFqRfsTfUocWEyZzxSD58Z//P4A5MPXk+2X8aWXFp2JGzCWy0jtYnEHxueM4dQ9A+CF12KQLDXRBcE8vmsKYEJO65C/GbrwDzfg5E4nWGqItyhiyV2jkzWXxOfk3Cl2/MAcAqb+sC0XmDiwpPEnZKS0vVDmHJOttG4BjzKtqSO48pt3fvAqujDyxrYTJneIFHjfsM3mp/R963LrkId2y4XvV11MjakCQJ/v5WeNtrIQkTy6QwDAtT6TaM1+6DsbAKKVc9OGssZyReZ4i6KGfIUoVDzlDBGRkM48plvqjwJITMq+6E8mlngjYAi39E3mY4Djm33BziqGKPhtPgk9vuQ4YlFX85/RzKU0vxlT2fhl6jUzs0sspEvwfejtPQxKfA03Ji1n7OYkXaDf8Ic/kOMBzd8CGERKdAIICBgQHk5ubSUJ4IZtEYFNvR+j9JhSchKyRJEob6nYq2NFuD4qIRX1kBQwbNnhkKDMPg1oprkJeQhbLUEio6o5Cn5QSGX/wVBNcYsj70n+BM8RA8U7+DrN4Ic+k2aJMyVYySEELWViAQwKlTp+DxeBAIBFBcXEzFZ6SKzgecs1DhScgKuV0BfOBj2+AY86LueA9OH+1A2uhZxTHZt92iUnTRz88H0OXoRXFSvmIM59ZsWpsx2giecYy89nu4zuyX22wv/gLpt38ZrtNvQ4IEfUYRTEU1YDT0lJMQEr2mF50A0NMzMcEhFZ+RSdLGKbZ5NjpvmlPhScJOT08PeJ6HRqNBTk6O2uGcV0ezDbZhFxKsRtRsz0PagT/CJ0xNbmPIykRiDRVBa8HPB/B2xxF0DfXglPY0alIrUFpQonZYZA24zhzAyOv/B8GtXBc3MNQFV/0BGIuqwZkToE1c3HI5kXadIeqjnCFLtVY54/f7UVtbKxedk2w2G/Lz82kCrAhkyc0EutzyNquNzpsHVHiSsDM6OiqvexXub+58UMCIbeJC4bB7Mdo7gkCvA/HTjkm5aPfcJ5MVOTN4Fo+feR4VqaXwer1wu1ywjY8iLiUBGZZUtcMjqyToHMHwc/8NX2f9nPuNhdWwbNgDrXVpS+VE0nWGhAfKGbJUa5Ez8xWdBoMBNTU1VHSSsEaFJyErYB/1Ktbncre1ItE/Jm8zWi3SLrtEhcii25DLhp8c/i3GAy6MeMdQos8FCwYahoNFZ1I7PLIKJEmC48hzGNv/V0i8f9Z+Vm9C8hUfgaXqUupWRgiJCX6/H6dOnYLXq5xF32g0orq6GgaDYZ4zSbjTJeUAmBqmJWmi8/+SCk8SdtatWwdJkiLiw+TY6FS3CEiA0NIIFqLcZC4sgCGdJhVaTZ6AF9898L8YD0wsrjzsHoEv6MPegt24sngPLDqzyhGSlQrahzD45PcRGOyYc79p3TakXP1xaOKSlv09Iuk6Q8ID5QxZqtXMmYWKzpqaGuj1+hV/D6Ieu3NIsS1I/DxHRjYqPEnYiZQ7dpIkYWxkqquLf3gY2rF+xTHJF2ynDymrrHWsE0Mum6LNakzAdeWXI94QN89ZJFJ4uxow+MT3IPrcs/YxGj3it12LpEs/uOLfq0i5zpDwQTlDlmq1coaKzuhnD4wrtoOSoFIka4tWVCdkmd54sQmH32xFb5cdAT8PV3MrTMGpJR008XFI3LZVxQij08b0MvzHZf+MREMCACAvIRvfuvwLVHRGAeepfeh/9D/mLDp1mcXI+vB/Ivmye+lmDiEkZvh8Pio6SdSgJ56ELNPpk71w2n1w2n1oPTuMFJcH6cLUG0PculKYcrJVjDB6lSQX4LtXfBm/Pv4oPrblAzBpjWqHRFbI19sM24u/BCRR0c7ojEi86E4kXHADFZyEkJgyWXT6fD5Fu8lkQnV1NRWdUcTfPwwgUd7WBMX5D45gVHiSsONyueQxERaLRe1w5tTVNgKnfdobgQQkuXsgfyxmGKRedikYjlMjvJiQZLLiy3s+BSAycobMLzjaD297LYzFm+BtOSG3a6zpyLz769AmZa7696ScIUtFOUOWaiU5Q0VnbNF4AoptNjrrTio8Sfhpa2uTpx+vqqpSO5w5HTvcqdjWSDwyx5vlbUMmrd25miRJwllbK9IsKUgyWmftj4ScIXPzD3bAc+4oJEmCPrMYgtuOQH8r9LllyLjzK+AMazNZFOUMWSrKGbJUK8kZr9eLQEBZjJhMJtTU1ECn061mmCQMmFjlg4po7d9DhSchSyQKIlqbhhVtie5uaKYNBE/cVA2NmWZXXSkf78e4z4VuZz9aRjuAQSA3IROVaesRr6cnDpFMEgV42+vg6z2naDcWbYIhez2SLr8PrIY+XBFCYlNiYiI2bNiA06dPQ5IkKjqjXBxGkOUYkbc5BBY4OnJR4UnCTmpqKkRRBMuG59xXzY1D8HmDirYsx9SHZ1avR/KFu0IdVtQRJREPvftH1A02Ynt2DVLME0tndDv60T8+hOvX74WOm1goO9xzhigFhrsACbOKTgDQZxTAvG47GHZtu6lTzpClopwhS7XSnElKSsKGDRvQ3t6OqqoqKjqjWJyGhV5wydtaKjwJCY3MzNUfz7Wa3nu3S7GtE31I8vbJ26b8PJgL8kMdVtR5qv5FHOk5CQDY33kEmzI3oDAxDwyArVlVctEJhH/OkAmSwGPk9YfhPPEK0u/6CnSpeRNF6PsM2etgLKoJySRClDNkqShnyFKtRs4kJycjKSmJJleLclpGeXMiWv+36bYdIUvABwW0t4wo2pJc3YpfJOumGupmu0In+07jifoX5G1RklA30ISAEMCO3M3Is9JswZFG8I6j/y/fhvP4S4AkYviZn0CXkgXOlACG5WAu3QZT8Sb6cEUIiTmiuPBMMnRdJNGCCk9CluD0yV4EA8pFfbMdTfLX2sREJG/fFuqwok5ZSgk2ZW6QtxmGwUc334nLCnchNyFLxcjIcgSGu9H7f1+Gr+O03Cb63Bh86scwr9+OuKpLoc8sUjFCQghRh9frxdGjRzE0NKR2KISsOepq+z5JkvD888/jqaeeQmNjIzweD1JTU7Ft2zZ88IMfXJUZ7E6ePIlHH30UJ06cgM1mg16vR35+Pi677DLce++9sFqtK/9ByJpqb7YptuNMLHJyE+BqGwVEEXGlxTDl56kUXfQw6Yz40u5P4rHTz+C5ptfwoZrbcXnxbrXDIsswfuYAbC/+ElJQuSQAw2lhvfA2aOKSVIqMEELU5fV6cerUKfj9fjQ0NAAA0tLSVI6KqEGADynunqkGLjrXU6HCExNrJf3TP/0T3nrrLUV7b28vent78fe//x2f/exn8fGPf3zZ3+MHP/gBfve73ynagsEg6uvrUV9fj7/85S/42c9+hk2bNi37e0SLxsZGefrx8vJytcOR8byA5kblHclNu4tRfdW1cLV1oPeZZ5G0bQtYrXaeVyALkSQJfiEAg2ZibTKWZXFv9a3YmlWN9SkLPw0L15yJZZIkYWTfH+B89++z9nGWRKTf/iUYsktViGwC5QxZKsoZslQL5YzH40FtbS38fr/ieI7jkJycHOpQicqcogdawStvB6K0TyoVngC++tWvykVncXEx7rzzTqSkpMgFocfjwY9//GOkp6fjpptuWvLr/+53v5OLTq1WizvvvBMbN26E0+nEa6+9hmPHjmF4eBgf//jH8be//Q25ubmr+eNFnGAwiGAweP4DQ6z1rA1+Hz/VwABbdkxMImQpKsD6z/8TpPOM0yDzqx1oQI9zAJcU7IBFPzVGtiy1+LznhmvOxCrB78XgE9+Dr/PMrH36zBKk3/4v0MSr+8GKcoYsFeUMWar5csbj8eDUqVOz1uk0m82Ij48PVXgkjIz5ElBfcKe8bQg6ca2K8ayVmC88Dx06hOeffx4AsGPHDvz617+GXj/xxOX666/H7bffjnvuuQd2ux3f+c53cPnll8NiWfz6gQ6HAz//+c8BAAkJCfjTn/6E9evXy/vvv/9+/Pd//zd+8YtfwOl04qc//Sl+/OMfr+JPGHm07z8x1IbZk8OG2j7Fdl5hEuISDIo2hqbZX5aB8SGcG2kHALzZ/g4uLtyxpHU6wzVnYlHA1ouBv3wbvGP2eCVDQRUy7vwyWK1ehciUKGfIUlHOkKWaK2fmKzotFguqq6spv2JUIEYeXMR84fn73/8eAKDRaPDtb39bLjonFRcX4+tf/zr++Z//GXa7HU888QQ+8pGPLPr1Dx06BI/HAwB44IEHFEUnMDFpymc+8xm88MIL6Orqwr59+8DzPDSa2P2vCccuTHxQwLn6QUVbRTVNrb8axv1uvNq6HwbNRBHv5X3Y33EEV5deCs0i13IMx5yJRe6W9zD09I8hBbyz9lk27EHKdZ8EqwmPdegoZ8hSUc6QpZqre+1cRWdcXByqqqqo6IxhsfK5P6Yfz9jtdhw+fBgAcNFFF83bxfXaa6+V+9u//PLLS/oePT1TA4XLysrmPIZlWWzYMDGDp9frxdjY2JK+B1l7DrtX+XSTAcqrqPBcDQ+/9zieP7sPx3pOwc9PvBmvSy5adNFJwoPj2AsYfOK7s4tOToOkvR9G6o2fCZuikxBCQo2KTrKQOK1RsR2tC+jERnk9j+PHj8trJ+3YsWPe41iWxbZt2/Dyyy+jtrYWDocDCQkJi/oe07vldnd3z3tcX99EN06O4xb92iR0WJbFhz65Ey6XHydeOAan3QuTPlovC6HTONyMA51HAQCdjl70u4ZwccFOlCQVqBsYWRLX2Xcx8urvZ7Wzxjik3/oFGAs2zHEWIYTEBrfbjdra2jmLzurq6ph52kVITD/xbG5ulr9et27dgseWlJQAmJip8dy5c4v+HtOXYXnkkUcUs5dNOnr0KOrq6gAA27dvh05HTwXCTUvjEI4d7kBHywh0zSeRcehRHL3vI2j64Y/h7uhUO7yIFBSC+PWxxxRtDBhclL8NLI2VjQiSJMHbVY/AYAcM+ZWKfdrkLGQ/8CMqOgkhMY2KTrIYgqgc6sez0fkEPKY/3fX29spfZ2dnL3hsRkbGnOedz4YNG7Bnzx4AQFtbG+69914cOXIE4+PjGBgYwGOPPYZPfepTEEURFosFX/ziF5f4U0Sf/v5+9Pb2or+/X+1QAACucT/c7okbBl6XHwMjPARGA9Hvx8jBwxh+e7/KEUYmjuVwzbpLYdROdWG+u+omlKWWLPm1wi1nYoEkifA0H4e3Y2LmWn1uBbSpE8MVjIVVyP7oD6GNT1EzxAVRzpClopwhS9XW1ob9+/djZGRE0R4fH09FJ1HgZpVk0dmrLqYzfnR0VP46MTFxwWOtVqv8td1uX9L3+elPf4rPf/7zeOutt1BXV4cPfehDs47ZvHkzvva1r6GysnKOV4gtw8PD8rpXmZnqj6Ps73HIX/ttNnBBL/SCR25LumC7GmFFPJZhcWXJHmzNrsL/nXwcNvcori65ZFmvFW45E+0kgYe78R0ERqdmemYYBqbSbUDJFiRe8sGwf2pNOUOWinKGLEUwGMTJkycRCATAcRzi4uIATBSdVVVVVHSSmBTenwzWmM/nk7+eOZvtTNO7v04/bzHMZjO+973vyU8+Z2IYBoWFhYriloQHURAx1O+UtwWvF1atX74PpbUmwFJcpE5wUSLJaMU/X/hxfOPSz4Z9sUIA3mmDr6dJUXQCE92kzeu2Ifmy++j/kRAS87RaLZKSkhRtVHSS+bDm2JjfJaYzn+d5+evzjaucvn/6eYvx4osv4l//9V/h8/mQnp6OO+64A8XFxXC73Thw4ABeffVVPPXUU3j55Zfx8MMPK8aFqqGlpQXFxcXy3TkA8Pv9OHv2LICJp795eXmzzplcNmZm/DabTZ48KTc3V/F0WRAE1NfXA5gY71BYWIiioiJIkgSGYdDR0QGnc6Lwq6ioUFys7XY7urq6AACZmZlITU1VfN/Tp09DkiQYjUaUlpYq9vX09MhPvNetWweDYaq7p8vlQltbGwBAy1kQDAryPlN+Hqyb7oY42APxbAtSkpPATpuJrr+/H8PDwwCAoqIixeRSPp9PHh+clJSEnJwcRUzNzc3wer1gGAYbN25U7BseHpa7d+Xl5SluUvA8j4aGBgATb2oFBQWKc9vb2zE+Pg4AqKysBMdNzRY7NjYmT3qVlZWFlBRl18jJsccmk0ke5zypq6tLfvq/fv16xc2b8fFxtLdPrMuZnp6O9PR0eZ8kSdj/3iFYuTjo9Xp5tufJLrd9fX2w2WwAJpYzMpvN8rler1cem52cnCx3kZ/MmZ6eHtTV1Slmip40NDSEgYEBAEBBQYFike5gMIjGxkYAE+vt5ufnK85tbW2F2+0GMNF9fnphNTo6Ks9enZOTo/igIYoizpyZ6IpqNptRXFyseN3Ozk44HBNP1MvLyxWzGjqdTnR0dACY6OqflpamOPfMmTMQRREGg2HWGPXe3l65a1dpaSmMxqnZ8txuN1pbWwEAKSkpyMrKUpzb1NSEQCAAjUaDiooKuV2SRPS8+DsE6l6Hd+f9SDfFg/NN/G4yLAdt4SacG3EDI3Vrfo2YbrnXiKKiIrS1tUGSJDQ3Ny/7GpGamjrr6VdjY6P8ZGzmcgp0jZiw0DUCABoaGsDzPHQ63awZ4ZdzjZh07tw5+Hy+ZV0jJEmCRqOByWTCTHSNmDA4OIjBwYmlxwoLC1X7HDGdmp8jkpOTYTab5UkpN27cCI1GQ9eI90XbNWIlnyNGRoYAzO5JodY1YjIHV1tMF57TLxLBYHDB4nP6oPClTP6zb98+fOELX4AgCLjgggvw0EMPKS4id9xxBw4ePIhPfepTcLvdeOCBB/DCCy/MuviFkiAI8my/kyRJQjAYlPfPxPO8vH8mURTlfTNfF4C8b7Kgn/7vMzAwIO+XJGnemOZ73ckPCgvFu9DrnjzYA/tIAEkpZiSlmpGVkwBW74eQmQldXh4KZrw5Tv9ZF3rduW5eBINBBINBMMzsfv0red3V/L+ZThCEeWOa/roz86XT3oO60SaYORMqE5Vv5Od73fnycDJnJr/vXE/cpr/uQvkdyn/DhfJwoX/DydcVRVHxAWDScv4NZ8Y0/Twx4MPQc/+D4Nl3wQAwHH8c3B1fg8bWBtHvgaVyN3h9HIID9ed93bms1b/hQtcIi8UCnucVx6zG607Gu5ifla4RC+c3z/Pn/V1ean5P/hsu5xox+TPO9e8f69eIuV5Xzc8R872uGp8jcnJykJ+fj5SUFPl16BoxIdquESv5N/SKyslHp0etxjVirv/L1RDThef0u5Z+v3/Rhef5uuVOkiQJ3/3udyEIAhISEvA///M/iqJq0u7du/HFL34R3/rWt+BwOPD73/8eX/rSl5bwk6wujuNm/cIxDCPfRZkrQTUazbxrULEsK++b6xd5ct9cF/bprzvzQjo9pvleV5KkOeNazOtKkoTBXjf8PgFOuw8dLSPgLixAQblWEfd8P+tC8c71s2q1WvA8P+cbxkped63+bziOmzem6a87PV9snlG8118PluPgFr14z9GApJEUlCYXLup1z5eHWq0WgiDM+bNMf92F8juU/4YL5eF8/4bTX1cUxTnjWsm/oUajgSiKcry804aBx7+HwGD7VGx+F1yv/ALZ9/0HIIrgzAkQ/P6Yu0acL166Riz9GjH9dRmGWfLr0jVC+bqhuEbM97r0OWLqdadPUDk9XrpG0DVi8rWYBSYTUuMasVZDZhhprltWMeIb3/gG/vrXvwIAXn/9deTm5s577BNPPIGvfe1rAIAf/ehHuOGGG877+g0NDbjlllsAAPfccw/+7d/+bd5jA4EAtm/fDq/Xi+LiYrz44otL+VFWxOVyyd1fgInuDnMVyLGmu2MU//ezw4q2ez9xAYpK1XsaHclO9p3Bf7/zO2xML0NuQpZ8gdyVtwU58TRRRzjy9pzF4BPfg+hxKncwLJKv/BgStl6tTmCEEBJGxsfHwTAMfXYiy/an7/0a7cNT3do1gg9f+entqsWzVrVBTM8AMb0P+/mmR5/s0w1g1niH+Uz2qwbOv06oTqeT+21PjgWJVT6fD16vd8mTOK22+veUk6foDRoUFCerFE1k8wV9+N2JP8PL+3C09xQOdh6FK+BBYWLuqhSd4ZIz0cT53mvo/9PXZxWdrMGCzLu/HvFFJ+UMWSrKGTKX8fFx1NbWora2Fi6XS7GPcoYsFhuly6fMFNNdbacP0G1ubsb27fMvizE5EJlhmFkDzBfD7/ef95jJx9pzPQ6PJefOnZMH3as50VJbs02xnZ1npdk6l+nxM89j2DO1fNGg24Zx/zhqMioWOGvxwiVnooEkibC99BuMv/fqrH3a5Cxk3Pmv0CYt7uZbOKOcIUtFOUNmmiw6J8fe1dbWorq6Wn4yRDlDFsvMKYf7RWsZGtOfojdt2iT3a3733XfnPU4QBBw7dgwAUFZWppjFaiHTZ+CanJFqPjzPy7MkLvaJKlk7HncAI0PKO5e6U2/i3E/+B6PHTkBc4szGsUyURIx47Yq2yrR1+OS2+6Dl5h7vQNQh+Nzo+8PX5iw6dZklyPrw96Ki6CSEkJWaWXQCE5O1dHZ2qhgViVRmaQTp463yn1R3+/lPikAx/cQzPj4eO3bswIEDB/DGG2+gr69vzqLvhRdekKfMvuaaaxb9+hs3boTFYoHL5cK+ffvQ398/76LTzz77rNxF48ILL1zGTxM9kpKSwPO8qutcNdb1Y/roZ0YSkTxYj+E+L4bfehtpey9H6T/+g2rxRRKWYfG5XQ9gd+82/O7EXzDud+HBrfdAp1n87NDnEw45E+kCth70P/ZNCOMjs/bpc8qRev0nwRnMc5wZmShnyFJRzpBJTqcTdXV1s2YZTUxMVCztQTlDFivBwMEUnBraokVggaMjV8z/Jnz4wx/GgQMHEAwG8fnPfx6//e1vFYNnW1pa8J//+Z8AJtbPueOOOxb92jqdDvfeey9++ctfwuPx4LOf/Sx+8YtfzFpQ+OTJk/jOd74DYGKGqQ996EOr8JNFrpnrUqnhbP2gYtsYcMIgeOXtpG1bQh1SxNuWXY3KtHU4Z2tHVlz6+U9YgnDImUgWHBtE35++AdHjUO5gGMRVXYbkKz8KVmeY++QIRTlDlopyhgATRWdtbe2s5SkSExOxYcMGxXApyhmyWElFuTB21cvbhiUs3RhJYr7w3L17N6666iq88soreO+993DTTTfh7rvvRmZmJhoaGvDnP/9ZXvD1X/7lX2YVje+++y7uv/9+AMD27dvxpz/9SbH/E5/4BPbv34+GhgacOnUK1157LW655RaUlZVBEAQcOXIEL7zwgnzX7Ktf/eqsxWxJaImihO72UUVbgm9I/pozGmHdsjnUYUWcAB+A0+9Cinnqd8akNaImc3XGdZLVwbvG0Penr80qOhmNDkmX34/4LVfPOTU/IYTEmqUUnYQsBWfUg5u2WiOnj8733ZgvPAHg+9//PtxuNw4ePIienh788Ic/VOxnGAaf/vSn8YEPfGDJr200GvG73/0On/vc53DkyBGMjY3h97///azjtFotvvKVr+Duu+9e9s9BVkdvlx1+n7L7TLJnaqZhc1EhuHnWYiJTTvafQbejD+tTilGZtg4cS2/I4UYSeHjOHQOjVa5NzJrikX77l2DMLZvnTEIIiS0OhwN1dXWzis6kpCRUVlZS0UnIIlDhiYni8Le//S3+/ve/45lnnkFjYyPGx8dhtVqxZcsW3H///diyZfldK5OSkvDwww9j3759eO6551BbW4uRkRHodDpkZ2fjwgsvxH333UdPOsNEc6Oym60p4ECyZ2pplYRqmpnufLodfehyTPybNdlaMeAaxs7czYjT0xpn4UISBbgb3wHvGoO5/EJ4zh5B0NYD1hiHrPu+BV0KdREjhBBg4aJzw4YNNOM9WbEA54c3bmo1BVEXnQ84qPB8H8MwuPHGG3HjjTcu6bwLLrhAscDqQq+/d+9e7N27d7khxozm5mZ5+vHlLF2zUi0NQ4rtVHcXNFJwYoNlkbxj/mV3COD0u/DQ0T9iXXIRzDoTAMAT9ELDrt3lRu2ciTSSJMJz7hgCoxM3BxiWhalsB/xdDUje+5GYKDopZ8hSUc7EppUUnZQzZLH6xDE8mzfV2y6JD+A2FeNZK1R4krDj9XoRDAZnzRYXCk6HFwN9TkVbsrtb/lqfmgoTTRawoCfOPI/W0U50jHWjPLUU65KLsDlnA4zatZucRs2ciTSSJMFz7jj8Q8op/zmtHmm3fB4aS6JKkYUW5QxZKsqZ2LPSJ52UM2SxRgb1qDwxtXIGr3ctcHTkor4BJOwwDCP/CbWWRuXTTo0YUEwsFLe+FAyN45hX+1g3Xm3dDwAQJBFnhs7i3EgbchPWdu1HNXMmkkiiAME7Dn5cOXkWw3KwVF4UM0UnQDlDlo5yJvb09fXNKjqTk5MX3b2WcoYslv/9iUwncbw0z5GRjZ54krCzceNG1b73QK/yaWeSuwcspn75Uy66KNQhRZS/nvk7pGkLoGo5LT62+a41f9NVM2cihSSJGH7+IQRtPUi77YvwthwH73aAYVhYKi6EJiFV7RBDinKGLBXlTOxZv349BEGAzTYx9i45ORmVlZWLHtNJOUMWSzOsLDyNvugsPOmJJyHTXHRFKf7hSxfj6lsqkWn0Ic3dJe/TWCxI3FyjXnAR4NMXfAhXFu8Bg4lC89byq5GdkKlyVESSJNhe/g1cp9+Cv78Fg49/B8bizdDEJcNcsQvaJPo/IoSQmViWRUVFBZKTk5dcdBKyFAk6s2I7Wp+R0xNPQt4niRLOvNcHPiggNd2CcvsxwNUu748rWw9WQ78yC7HozHhg6924pHAn/n72ddxYdoXaIcU8SZIwuu+PGD/5qtwWGOrE4JM/QNZHvgeWo5wmhJD5sCyLyspK+WtCyPLRbxAh77OPeeD3BSEIIvo7R9HuiUOAm5oQx7p5k4rRhbfp3WsBoCS5AJ/b9QC0XHROBx5JHEeehePd55SNrAZJl9xNRSchhLxv5vvYdCzLUtFJ1pTIGBXbAhudn5/oUwcJO8PDwxBFESzLIjU1dOPOhgenZhDz9PZCF/RAL/gmGhgGyTsvCFkskcTudeBIz3vYnLkBaZYUVWJQK2fCnf3o8xh940/KRoZF2i2fhalk+WsTRwPKGbJUlDPRa2xsDB0dHdiwYQO02tX7wE85QxYrLjcb6PXK24w2Om90UOFJwk5/f7+87lWoLtSSJGFk2sBuX/8ALIExeVufkgJ9UlJIYokkoiTieF8dnH4X3uo4gsLEXFSnl0On0YU0DjVyJty5z76L0df/MKs99YZPwVK2U4WIwgvlDFkqypnoNDY2htOnT0MURdTV1aGqqmrVik/KGbJoXHQWmjPFxk9JyHm4xv3w+4LydmBkBKaAQ962lJaoEVbYO9B5FCMeu7zdPtaN1rHO+U8gIeHra8bQMz8BJFHRnnjJPYjbeIk6QRFCSJgZHR2Vi04AGB8fR11dHa27SUJOa1VO8idp9CpFsrboiScJO3l5eZAkKaTrXr3w5Gn4vEEkpZhgNnJgnKPQin55v7WmOmSxRIph9wh+dexRxOnM2JS1AUlGK+L1FqxLLgp5LGrkTLgK2ocw8OdvQeKDinZj8SYk7LxFpajCD+UMWSrKmegyOjqKM2fOyEXnJIPBAG6V1uumnCGL5fE4FNuSJMxzZGSjwpOEHavVGtLv5/MG0dwwCEkCutpGoeGAIlGcmsqaZZG4dXNIY4oEf3jvSfAijzGfA2+0HUJxUj4+t/MBcOzqvGEvRahzJlwJPjf6H/kGRJ9yPTBdeiHSb/siTY4xDeUMWSrKmegxX9GZlpaG8vLyVSsUKWfIYg37xhTbfio8CYlODbX9mD6ZnSBISPT2y9v61FToaHynwsm+0zjae0rRlmxMVG1yIQJIfBD9j/0HeMewol2TkIqMD3wNrDY6u+0QQshSjIyMoL6+fs2LTkLIbHT7m8S8+lN9im2T4II5OG18Z3ERvRHNYNaZkB2fIW/H6S34xLZ7VYwotkmSiMGn/wuB/lZFO2uMQ/od/wqNxapOYIQQEkZGRkZC8qSTkKXyjyifeHL8/Mv7RDIqPEnY4XkewWAwJIP7RUFET6fylz1xvBvT33riN1aueRyRZn1KMX545VdxT9XN0HFa3Fd9Kyx6s2rxhDJnwlFwdAC+rnpFG6M1IPXGf4Q+PV+lqMJbrOcMWTrKmcg2WXTOXK8zPT19zYpOyhmyWMzYuGKbE6Kz8KSutiTsNDQ0yNOPV1VVren36u4cQzCg7Eef4WyRv2Y0GiRuofGdc9FwGtxcfhUuyt+OJKNV1VhCmTPhRhIF+LoaYKm+DO4zByC47QCrQdKlH4Q5xtfqXEgs5wxZHsqZyLVQ0VlWVrZmTzopZ8hixWkMiu1offZOhSeJac0NQ4ptLSMgPjAibxvS02CgtbdkDp8TcTqLYpKaZFOiihHFNkmS4Gk+Dn58BKzOCEvVpXCfPQJz6TbEb71a7fAIIUR1NpsN9fX1IS86CVkKkzCCFNfUU0+N5F/g6MhFhScJO/Hx8eB5HhrN2qdnV9uIYtviH1XcZTKXlIChmUABALwo4O2Od8ExLMpTS1FgzQmbWVJDmTPhxNfVAP9gh7zNaLSI33wV4jdfCYYJj/+bcBWrOUOWj3Im8oyOjs5ZdGZkZGD9+vVrXnRSzpDFitdJiAuMytsaBFSMZu3QbwIJOwUFBav6el1to8grmj0rrSRKGOh1KtriXVMTDdkNaVi3jboqTmod7YCPn7gDd7yvDk22Fuwt2g2dRqdyZKufM5HAP9AOb+cZRRvDaRC3YQ/NYLsIsZgzZGUoZyKP2WyG0WiEx+OR20JVdAKUM2Tx9IxyKbpovXUcrT8XIQCAt145i4f/9zAOvTE1btPZ0AgAaG+2geeVM9slu3sAAB3WjTiRcx1OOxJnnReL7F4Hnm18DYI4NR7WojOHRdEZa3jXGMYOPgnWaFEUmAwYmNdfAM6coGJ0hBASPvR6Paqrq2E0GgGEtugkhMxGTzxJ1OpqG8X+V5sBAPteaAIA5A6eQPdfHkf+/ffiwGCG4nijRkCCfxiDG69GqzcTAHDwzXaUVGSCfe9tdP7xEeR+4E7k3X1XaH+QMPC3xldwvK8WDcPnUJ5ainxrNjakrVc7rJgj+r0Y+Ot3EBhoQ2CoA8lXfATupiMQvC4YizdBl5KjdoiEEBJW9Ho9ampq0NfXh4KCAio6CVERFZ4kauUVJeHy68rkonPfC00otjWiAMC5R59CV+FdmD5vWKK9A13WDXLRCQCXX1cmF50A0P2Xx2GtrkJ8RXkIfxJ1jXkdeKPtIADAE/TiRF8dRElAksmqbmAxRhJ4DP7tRwgMtAEA3I3vQHA7kHrTZyG4xmDIKlE5QkIICU96vR6FhYVqh0HIvCQmiHifTd5mWWGBoyMXFZ4k7LS3t8uD8Vf6RpFboCw+W1O2AgACGgOkGZNV8xIj7wcmis78sdNy0QkA+fffG1NFJwA83fAyAkJQ3mYZFvfV3K5iRLOtZs6EI0mSMPzir+BtO6Vo550jYFiOis5liPacIauPcia8OZ1OxMXFhdUTTcoZsljjkgMpnh5526cLnzxeTVR4krAzPj4ur3u1Em+9chb7X23G5deVzS4+RXHW8UNxRYpt24la4OBj8nb+/fci57ZbVhRTJNqZtxmdjh40Dk+Mk720cBdy4jPOc1ZorVbOhKux/X+Fq+4NRRtrjEPGB74GjcWqTlARLtpzhqw+ypnwNTQ0hMbGRqSlpYXVEimUM2SxbF4rmorulbf1/DguVzGetUKTC5GoNNf4zsuvK5s6YBHLgNQO6GE3pAGI3aITAMpTS/Hvl34eX9nzj1ifUozbKq9RO6SY4nzvNdgPPqFoYzQ6ZNz1FeiSs1SKihBCwsPg4CAaGhogSRIGBwdx9uzZWcunEBLueFGCwGrlPyITnc8Go/OnIhGtsrJyxa8x1/jOy68rw+7LS3BwX8t5zp5QbDsOq28opovOSQzDoCazAjWZFWqHMqfVyJlw5G4+AdtLv1I2MgzSbvk8DNnr1AkqSkRrzpC1QzkTfgYHB9HYqJxxfmBgAImJiUhPT1cpqimUM2SxpBhZe5sKTxJ2OI47/0GLcOFlE+PephefuYWJC50iK7YdR4H9NOIqymO26BzzOmDUGmDQhP+akKuVM+HE19eCob/9EJhx5z6u+nKY121TKaroEY05Q9YW5Ux4mavoBIDs7GykpaWpENFslDNksax6s2I7PDqLrz4qPElUm1l8drePnfecgtFTKLCfBgC4W1oRGBuDLnFxBWu0ECUR7/a8B0/Qi5KkAqxLKYqIAjRaBMcGMPDnb0Hig4p2Q245rBfeqlJUhBASHgYGBtDU1DSrPScnB8XFxWEzxpMQohQbz3VJTLvwshLl+M7zmN6vXgwE0Pv0s2sRVljrcfTD6XeBFwU02Vrx4rk34PA51Q4rJghuB/of/XeIPpeiXZuWj+SrHoTWqn73MUIIUQsVnSQaCaJyAiohSsd4UuFJws7Y2BhGRkYwNnb+p5OLVb01B4t9L+pJKIOfM8rb/S+8hMAqxhLuztpa8buTf4E36JPbLDoT4vVxKka1sLXIGTWIQT/6//wt8I5hRbvGmo6UKz8KfXq+SpFFn2jJGRI6lDPqi7Sik3KGLBY3oxNqtI75jM5ymkS07u5uefrxxFXq4vryL1+CJC1uOnOR1aDLugGlI8cAABLPo/G7P0D1D767KrGEu7/UPYfG4Racs7WhOKkA61OKUZG2Luze0Kdbi5xRw9AzP0VgsF3RxpoTkHT5/TDk0SQVqylacoaEDuWMuvr7+3H27NlZ7bm5uSgqKgrL9yjKGUKUorOcJmSa/uOn0di/tFTvTihXPPV0nT2HkXePrnZoYef0YBPqh88BAARJxLmRNtg8I8iOC691O6OR4HWBi08Go9HJbYzehKSL74F5/QVh+aGKEEJCIRKLTkKWgjWGb6+y1URPPEnYycrKgiiKYBex1uZivHzECYld2sxyEsvhTPol2NL3ktzmrG9A8gXbVyWmcPVU/YuK7SSjFZ/cdn/Yv6mvds6slK+7EYbc8kUfLwa8cJ15G1LAB0v15XDX74fEB5C46zbEVV8a9v/+kSjccoaEP8oZdfT19eHcuXOz2vPy8lBYWBjW10fKGbJYPO8HsLieeZGMCk8SdlJSUlbttd54sWlRM9nOxW7KQGvSJhSPvgcA6H/+RWTfclNUz3D76Qs+jCcbXsRb7e9AlETcXnktDNrwn812NXNmpUb3/xX2A48j6dJ7Yd11/qV4RD4A1+n9cJ87Bl/HaejzKmCpvhwMp0XCBdeDWeJNE7I44ZQzJDJQzoReMBhEW1vbrPZIKDoByhmyeM6gB4BF3pbmPzSi0S0YErW62kZxcF/Lil6jI6kGdsPEemCSIKDpBz9ejdDCVoo5CZ/Ydi9+cs2/4drSS3FJ4S61Q4oovu5G2A88DgAYffMR2A8/veDxkhCE68wBuJrega9jYgkff1cDGEhIvOh2MBzdGySExC6tVouNGzcq1sPMz8+PiKKTEDIbFZ4kaiWlmBY9k+28JBHG4Li8Od7QGBNjPTPj0vDhzXdCQ0/blsSQW46kS++VtxcqPkW/F4LbAXfDIbnoBABT6VYk7rkL7LSxnoQQEqsSEhJQVVUFjuOQn5+PgoICKjpJ1OEFQe0QQoIKTxK1Th3rgVY/44mRpOy8oBH80PNucEJA0c6JAWhFP/SSH0PpVeBMExMNsUYDvN09axq3GuoGGjHksqkdRlSw7rrlvMUn7xhG968+g+EXfwlve63cbizejNQb/hGszghCCCETEhISsG3bNio6SdQSIaodQkhQPy4Sdurq6uTpx6uqqpb9OgwDBHy8vL3r0iIcflM5VqS671VY/RMFV4d1I1pTtgIABFaHS64rw4WXlcjHOhsaEV+x+AljIsWQewRNtlY02VqRFZeOqoxyxOst5z8xjKxWzqyWybGdo28+ovjbuusWCF4X+v/ybQjjo/COj8rnmEq2IOW6fwBnjKx/+0gVbjlDwh/ljLoMBoPaISwZ5QxZrHitWbEdrbdXqPAkUamrbRT7XphaZPry68qQnKr8pWYhwhR0ytsF9tNg9To0x028Oex7oQm5BUnIK0oCgKgsOgVRQG1/g7zdNz6IMa8D1627jGbhW6G5ik9JFOBtr0XQpnxqbiyoQvodX6KJhAghMau3txcAkJ2drXIkhISegbch0eOWtzWSX8Vo1g4VniTsmEwm8DwPjWb56ZlXlIQ9V5Zi/6vNuPz9J5dvvaJcA0wn+qERg8rzBk8gobISx7s47LmyVC46w5UoTnUdZtml3x97/MzzONR1DJVp65Fsmpittzy1JOKKztXImbUws/gce/vPs45hTfFIu/XzVHSGWLjmDAlflDNrp6enBy0tU5MBRkvxSTlDFitBJ8LqG5K3NQgscHTkot8EEnZKSkrOf9AiXHLVehSVpsrF41D/uGK/LuACO8eE1Qlv/BHX3nwftl61flXiWCuBoID/e74eXh8Po0GDj1xfCZ128cWLj/fjjfZDcPjGMdR+GJlx6diZuxlFSXlrGPXaWK2cWQszi8/pGJ0R2R/9PrgYWTg6nIRzzpDwRDmzNmYWnc3NzWAYBllZWSpGtTooZ8hiJedno7tzar1avTY6S7TIeqxByBJNf2JpH/Uo9hkDDsV2yp7d8tf+Z/6EnqcWXgpDbc3ddgSDIrqHxhEMimjuti/p/NdaDsDhmyrG+8cHkROfCZahy8Jq02evm7M9675vQZuQFuJoCCEkPHR3dyuKzknBYHCOowmJXtoEC7RmyH90cdHZC4o+YZKYIEkSRm1uRVvmeKtiO/++DyL//qnZSDv/+EhYF59n2mwY9wbg8fEY9wZQ3zay6HMlScJb7YcVbTUZFdidv221w4x5YtCPgce/O+c+b9up0AZDCCFhoru7G62trbPai4qKkJ+fr0JEhJC1RoUniQlOuw8Bv3KNJHPALn/N6vXQp6Yi57ZbIqL4HBr1YHjMizHnxODzMacfQ2MeDM14qjsfhmHw7b3/gg9W3YIE/UQ3zzs2XL9m8cayvj9+DVLAO+e+hdb5JISQaNXV1TVv0ZmXF3nDPQhZKYkVwOqd8h9G7z7/SREoOjsQk4jW1dUFQRDAcdyqvQE1PPUKpqe7Bjz0wlSRpktOktcGy7ltYkxe5x8fUfw92a6Gt0/2oL1vqmtwkBfB8yJcngBMBg1cngB4XsSz+1uh1UzdTyrMSsDFm3PmfE2j1oCbyq/E1aWX4L3+MyhNLlzzn2OtrEXOrIahv/8cgQHlEj5cXBLiavbCfuBxAMqlVkjohGvOkPBFObM6urq60NbWNqs9GotOyhmyWF3MMB5d75K3k4MirlYxnrVChScJO3a7XV73ajUu1M6GRrQfOAmkbJfb4lmfYo0kQ5pynN1cxWd8eZkqS6oIgoj6thEMznia6fXzYFgGOWlxaOmxo8/mhlGv/JX2+Hnsrs4Cx83fuUGv0WFH7uY1iT1UVjtnVsPo23+Bq+5NZSPLIXnvR2Cp2AVWo5tznU8SGuGYMyS8Uc6s3HxFZ3FxMXJzc1WIaG1RzpDFGh3SYd2pS+VtSbe4HmyRhgpPEvXiK8rBlG0CbFNtJt+o4hjDHFO3Ty8+cz9wp2rreI6N+yEBMBk06BlygRdEMAyg13LIz4iDVsMiPyMO/TY3XN4AJAnQcCxy0iyQpInzU6xG+fVs7lEIkoA0c4r8lJesrrHDf4P94BOz2s1lO2Au3wFg7nU+p7cTQkg06ezsRHt7+6z2aC06CVkKnzcIXSBR3hZFUcVo1g4VniTsrF+/HpIkrWpRdPNnr0PPsQZ4TSkYGhiH669vKfab8+e+E5lz2y2qPemclGI14uaLi/HKkU7odRx6hlxwe4NITTTBZNACAEwGLVITTegeHIfZqEVOmgUJZj2u3JGvKDpFUcSJvtNw+Mdh1hpRmJiLgsRcmLTG+b59RFiLnFku++GnMfbmo7PaNdZ0JF12P5hpswZT8amecMoZEhkoZ5YvVotOyhmyWEy/HcBU7zujjwpPQkJCr9ev+ms2nOqHj7fAJIjISGQx5B5Q7DeXFM97rppF56TsVAs+cMU6vHa0CxqORffgOEadPsSbdfIxo46J7dz0OOSmx+GK7XlyYQoAoiTi7EgrHP6JJVTcQS/ODJ2DRWdGnjWyF+tei5xZDl9349zrdWp0sO6+HdqElFn75io+DbllMOSqn3fRLFxyhkQOypnlma/oLCkpQU7O3HMQRAvKGbJYVq1Zsc3OXmY+KtCstiTqSZIEjzuAYFCAw+5FV2MPRGZqfSRGo4EpN/zf/EwGLS7dMnFnWHr/gjTi8KJ32IURhxdgptov3ZKrKDoB4GDHUfz40G/Qae+BKE3cSbMa4pGTkBmynyHaGXLLkbDrNgCANr0QrHFixmDz+h2wlO+a9zzrrluQdOnEbMrWi+6kopMQEjW0Wu2stlgoOglZilh5Jk5PPEnU8/t4CMJUl4Wg3QGz4Je3tQnx4HS6uU4NO8NjE4PNvX4egijC7Q0i3qzDwIgHDANwLCsfN/1pqCiJeLbpVTj94zjWW4vG4WZUZVTg8qILwTJ0/2k16dLzYSrfBU1cMgAJvMOGhJ03gdUZFjzPuusWetJJCIk6WVlZAIBz584BAEpLS5E9x7wKhMQyEcqn4wITnSVadP5UJKKNj49DFEWwLIu4uLgVv57HHVBsi047OCkob+uSk1b8PUJlaMwLnhfBC6I8gZDZqIXbG5QnHuJ5EUNjXhTnWOXzjvacQrezX952BTzIjstAsilxju8SeVY7Z5YrMNoHf2/z+0UnwOoMMK/fBl3a4hZDp6IzdMIlZ0jkoJxZvqysLEjvd8mJpaKTcoYsljkrC+ib+rzKaLkFjo5cVHiSsNPe3i5PP15VVbXi13ON+xXbjHNkwaVUwtnwmAfeAK+YQGhLeRqONw7JEw95AzyG7cppuN/qOKLYzkvIxm2V14Qy9DW12jmzHKIQhLvxHXmb0WjBcFqYSrbSxBJhKBxyhkQWypmViaWCcxLlDFksVq8FMO1BSZR+bKDCk0S95oZBuN0BmM06cBoWnH1Ysd+QGTljHAuy4tHR70ScSaeYQKgkxypPPCSKEgoy4wEAHWM9KEjMwRcu/H842vMeXm5+C022VtxScRV1sV0B/2AH9OkF8jbvGAbvtkP0TkzcxLAsGE4DY8FGcEaLSlESQkjoSJIEv98Pg2HhYQWEkNm08akA3PK2xEXGELClosKThJ309HQIggCOW3k3A0mS8O7+dvD8xBhPvZ5DcVB5jCmCpnKvKklFfkY8ugfHUVmUDIZh0DTcgrLUEtywuwj17SPIS49DgkUPu9eBb771U/zX1V+H1ZiAXXlbsStvKzrGepCbkCmfFw1WM2fOh3eNof/Rf0POx38KjSUR3o7T6P/ztxC/5SpYNl4CX3cjRK8Lmrgk6LNL1zwesjyhzBkSHShn5idJEtrb29Hb24uqqiokJCSoHVJYoJwhixUMKnvngYnOaW2p8CRhJz09fdVey/H+mMhJfr8AU9A5dQDLwpgTWd1/Eix6JFgmBqE/fuZ5PFn/Au6puhk3l1+FjcVTy3U82/QaXAE3nmt6Dfdvul1uL0jMwTONr+Cxumdwe+V1uHPD9SH/GVbbaubM+TjeeQai1wXHkWdh3X0Hhv7+M0AU4Dz2Inyd9Ui54dNgOS1YY5xizU4SXkKZMyQ6UM7MbbLo7OrqAgDU1dVR8fk+yhmyWH1uZW88n8irFMnaok9FJKr1dtkV2ywDmAOj8rYmzgJNXGR2hWwabsGT9S8AAB6rewbPNL4i77N7HXi1dT8A4JWWtzEwPiTvmyw6AeDJ+hfQNNwSuqAjHO8ag/PkqwAA54lXMPz8QxCcI/L+wFAnfJ310KXmQmOxqhQlIYSEhiRJaGtrk4tOABAEAadPn0YwGFzgTEJILKLCk0S1gV6HYtvA8tBIgrytjY+HNkLvypalluCeqpvl7enF57NNryEoTLzpB0UeP3/3DzjYeQyP1v5NLjoB4J6qm6Omu20oON55BhI/Mfhf4gPwnFVO2mTI34CE7depERohhITUZNHZ3d09a19xcfGc63cSQubmH3cptlmRaTp4iQABAABJREFUutoSEnGGBsYV2wZBOdurLjkZnF65dlIkubn8KgCQi8nH6p6BL+iTn3ZOah3twKstb6PJ1iq3TXbPJYsz/WnnXFi9CWk3/iN1ryWERD1JktDa2oqenp5Z+8rKypCRkaFCVIREsMERAFNDvzRBKjwJCYmGhgZ5+vGKiooVvdaoza3YNnhHFdvG9xe2jmQzi8+/Nb486xhBEqO66FzNnJnP9Kedc0m5+uPQxKfMu5+El1DkDIkulDMTqOhcPMoZsljxWrNiO0pXU6HCk4QfnufB8/yK1z6UJAmOMa+izeQeUmybC/NX9D3CxczicyHRVnQCq5cz877+eZ52GvI3wly5e02+N1kba50zJPpQzlDRuVSUM2SxdMFRxHunZrbVSv4Fjo5cVHiSsKPT6cCyLDSalaWn0+EDHxQVbRbfiHK7pHhF3yOc3Fx+FU72nVY82ZypLKU46opOYPVyZj7ne9opBjzw9zTBkFu+Jt+frL61zhkSfWI9ZyRJQktLC3p7e2ftKy8vpxlc5xDrOUMWL1EXRLK3T97WYP7PHJGMfhNI2CkrK1uV1+nvtiu2WQawBMbkbc5shj41dVW+Vziwex1oHeta8Ji2sS7YvQ5YjZE5odJ8Vitn5nK+p50AEBjsAGuMW7MYyOpby5wh0SmWc4aKzuWJ5ZwhS2NglSVZtM4WEa0/FyGwjyq72cbFaZF35SVI2LgB+vQ06FNToLFE5lIqc5k+k+18AkIQzzW9FqKIosP5nnYCAEQB46deD01AhBASQpIkobm5mYpOQsiK0RNPErWGB5Uz2hasT0fJB6a6mUqiGDXjLqav23k+r7bux41lV0TdU8+1sJinnZOcJ15Bwo6boLEkrnFUhBASOkNDQ+jr61O0MQyD8vJypKWlqRQVISQSqfLE0+Vy4ZlnnsE3vvENPPDAA7jjjjvw7LPPyvt/8YtfYP/+xX2IJmQ+wwPKNZFS05VdIRk2eh74L+Zp5yR66rl4i3ra+T6JD8Bx5NnzH0gIIREkLS1NMWkQFZ2ErD6GEWAIuuQ/et59/pMiUEifeIqiiIceeggPP/ww3O6Jf1BJksAwDEZHp5a5ePTRRzEyMoLq6mr88Ic/RG5ubijDJCrr6+uDIAjgOA5Zy1zuRJKkWU88UzOip1vtdEt52jkp2p56rkbOzLSUp52T6Kln5FiLnCHRLVZzhmEYrF+/HpIkYWhoCBUVFUiNovkR1lKs5gxZOoc0hqzxFnnbp4uOHnkzhazwDAQC+PjHP453330XkjT/oqh+vx82mw0Mw+DUqVO444478Oijj6K4OHpmHyULs9ls8rpXy71Qe91B+H28om3mE89osZSnnZMmn3rev+n2NYoqtFYjZ2ZaytPOSZNPPZP3fnhVYiBrZy1yhkS3WM4ZhmFQVlaG7OxsxMfHqx1OxIjlnCFLY/fFoT3nenlbK7pxuYrxrJWQ9TX8t3/7Nxw5cgSSJMFgMOCuu+7C9773vVnHSZKEe+65B1qtFgzDwG6347Of/Sx4np/jVQmZm2vch+nDNxkGiE8wqBfQGrF7HXip+c1lnftS85uwex2rHFF0WM7TzknOE6+Ad42d/0BCCIkgDMNQ0UnIGvELLJyGVPmPW5ukdkhrIiRPPOvq6vD000+DYRiUlpbiV7/6FTIzMwEAX/7ylxXHGgwGfOMb38D999+PT37yk2hvb0dLSwuef/553HzzzaEIl6isuLhY7oK9XClpFnzxW1fB7+PhGvdhfNQFho2+bgv/dfg3ECXx/AfOQZBE/Nfh3+Cbl39hlaMKvdXImemW87RzEj31jAyrnTMk+kV7zkiShI6ODmRlZUGv16sdTlSI9pwhq0eIkRwJSeH55JNPTnwzjQY///nP5aJzIQUFBfj5z3+OG2+8EaIo4uWXX6bCM0aYzeYVv4bT4cOpY90AAI5jYX/7TYx+ax90SYnQp6Yi6YLtyL7phhV/HzUd66lFk611Ra/RZGvFsZ5abMupXqWo1LEaOTNp4mnnKyt6DRrrGf5WM2dIbIjmnJEkCWfPnsXAwACGhoZQU1NDxecqiOacIasrQWdSbEdrGRqSwvPo0aNgGAZ79uxBXl7eos8rLi7GpZdeitdffx2NjY1rGCGJNnxw6imgIIjw2x2QeB7+oWH4h4ahS478Lgy94wMwaPTw8X7oOC0CM8Z5xust0LBz/4p7gz54eR8MGj16xwewDZFdeK4m58lXwRoskIIBSKIw0cgwYBgWjFa/6HcDV92bsO66de0CJYSQVTC96AQAr9eL2tpaVFdXU/FJSIiwTPSstLCQkBSeQ0NDACYWGl6q0tJSvP766xgbozFTZPF4XpjakCSITuVYRsMinrqHu5vLr8LN5VehabgFL557E0d6Tsr71icX4Vt7v7jg+U3DLShLLVnrMCOKJPDwtJyAPqsE1ovvQXCwAwFbNzhTHOKrLwdroLvXhJDoIUkSmpqaMDg4qGj3er1wu91UeBISIoKoLMkEhlMpkrUVksJzchZbjlv6P+Jkv3itVruqMZHw5fV65TERRqNxWa/B81NPPHm3B+yMp4Gm3JwVxRhOylJLcLS3FnE6M8YDE8sUXVRwwaLOixarkTMAMHboKQT6WxHob4W/txlJVz4A87pt0FrTqeiMMquVMyR2RFvOzFd0MgyDDRs2ICkp8nsGqS3acoasHQ7KOkeiwnP5UlJS0NPTg5aWlvMfPENdXZ38GiQ2NDc3y9OPV1VVLes1+ODUE0+N2Yyij9yLbAzD3d4BX/8AzEWFqxVuWLi/5jbcs/EmvDdQjwMdR7Erd4vaIYXUauSMr/cc7AeflLcFtx32/X9Gzsd/AoaNzjeAWLYaOUNiSzTljCRJaGxslHukTZosOpOTk1WKLLpEU84QshpCUnhu3boV3d3deOONNzA6Orrou2gNDQ04fPgwGIbBpk2b1jhKEk2aTg/A7fJDZ9BAr9fAlJ2C9I0b1Q5rTWk4DbZlV2NbNo3XXCox4MPQs/8DTJ8hmOWQeuNnqOgkhESV+YpOlmVRWVlJRSchKmBipFdVSArP66+/Hk8//TR8Ph/+5V/+BQ899BB0Ot2C53R1deHTn/40RFEEwzC45pprQhEqCQPJyckQBGFZXbMBwO8L4ujBDkVbakbcKkQWfkRJBAMm5qdqX2nO2F7+DfixfkVb4u47YMiKnu7IRGmlOUNiTzTkzEJFJ3WvXX3RkDMkNCRIaocQEiEpPC+88EJceOGFOHToEA4dOoRbb70VH/7wh1FRUSEfI4oixsfH0dzcjNdeew1//etf4fV65aedF198cShCJWEgOzt7Rec77b5ZbXHxhhW9ZrjqGOvBuZE25MRnIi8hC/GG6Cywz2clOeNqfAeu028p2vTZpbBeSDPSRrOVXmdI7In0nJEkCQ0NDRgeHla0U9G5diI9Z0jo2H1OAFOfVaO1DA1J4QkA//Vf/4W77roLHR0daG1txde//nUAE+MJJEnCj370I/zoRz+Sj5+ckCgtLQ0/+clPQhUmiQJOh7Lw1GhZGIzROTlVt6MPTr8LDcPNaBhuxrrkItRkVpz/RAIA4F12DL/wkKKN4bRIvYG62BJCoocoimhsbKSikxCiqpAtGpOQkIDHH38ce/fuhSRJ8h9gaubame2bNm3C448/jvT09FCFSaLA+IzCU2/QQG8I2T2WkLF7nRh0KT9EpJgSVYom8kiShKFnfgLJ71G0WzbugTYp8pfbIYQQYOGic+PGjVR0EhIGBFE8/0FRIKSfxuPj4/Hzn/8cdXV1ePLJJ3H06FF0dnbKhSYApKamYtu2bbj55puxZ8+eUIZHooRjzKvY5oJ+BHu6ICavB6uJngL0NyceQ5OtFfkJ2cizZiNeb0FGXJraYUUM54lX4Os8o2jTJmcjae9HYn7MLCEkeoiiCJ9PeUN2suhMTKSblYSEA0ESzn9QFFDlU3hVVZU8rbQgCHA4HBAEAQkJCeeddIhEv3PnzsnTj69bt27J59tHlU+wJPsIWr71CNoZEfFl67Hxu99erVBVE+ADODN4Fl7ehzNDZ3Fm6CyuX3c5NDHaPXSpORMYHcDo6w8r2hitHinXfgKcntZaiwUrvc6Q2BOpOaPRaFBVVYXa2lq4XC4qOkMoUnOGhJ5Za1JsR+vtb9Uf/3Act2A3j2AwiNbWVthsNuzevTuEkRG1+Hw+BINBCMLy7v447MonnhrRD1biAQmQlvma4eZYXy28/NQdbAYM9hZfpGJE6lpKzkiigKG//RCSEFS0x2+9BsY8Gh8bK1Z6nSGxJ5JzRqvVorq6GmfOnEFBQQEVnSESyTlDQsvAO2DxT3W31Yh+FaNZOyEpPMvKysCyLL74xS/iIx/5yJLO/d///V/86le/QmpqKvbv379GEZJwwrKs/Gc5Zo7x1PE++c6RPiM6xgvX9jcqtjekr0dWfHT8bMuxlJwZO/gkAoMdijZ9ZgkSL7pzjaIj4Wil1xkSeyI9Z7RaLWpqamgoQQhFes6Q0EnU+pHqHpO3NQioGM3aCdkTz+njOJfCaDRCkiSMjo6uckQkXG3YsGFF57vGlXeJ9IJb/tqUnbOi1w4Xn9x+Hy4r2oW3Oo7gne4TuLhgh9ohqWqxOSMKPMZr31C0sQYzkq9+EKxWvxahkTC10usMiT2RkDPi+xOUzFfoUNEZWpGQMyQ8JGWlo6u1Xd7WaaJz6JTqXW3nI0kSenp68PzzzwMATCbTec4gBAgGBfh9vKLN6p1aKNuUnxvqkNYEwzAoSy1BWWoJPrrpTvowsUiBgTaY1m+Hv6sRgcGJC3zCBTfCkFWicmSEELIyoiiivr4eAFBZWUlP2QiJIPrUROitU4WnQR+2JdqKrNpPxfM8brnlFrS0tMy5X5Ik/OAHP8APfvCDJb82wzA0KJssysxutgCQ6B2QvzaXFIcynJDQaWhCrsUQPE54zh0Dw3Aw5G+ANikTEh9AwgU3qB0aIYSsiCiKOHPmjNw7rKGhARUVFVR8EkLCyqpdkTQaDb75zW8CUK7HOb2L7cz2xf4BgAcffHC1QiVRzDmj8OTEADTSxCQyrE4HQ0qKGmGtGlEScc7WBrvPuezu67FIEgW46g9C5N+fUIhhoE3ORvLeD1EXW0JIRJtZdAKAzWbD2bNnVYyKELIUHAsYWJ/8R8/RGM/z2rRpEz70oQ/h1VdfVbT39fWBYRjEx8fDbDaf93UYhgHHcbBYLMjJycGdd95JM9rGkKGhIQiCAI7jkJa2tHUpx2fMaKvnp5ZW0VqtqxGeqsa8DpwaaAAAGDUGZMSlYkvmxpi9q+3rboQht/y8OePtOIOgfarLtehxwFR+IbRJWaEMl4SRlVxnSGwKx5yZq+gEJlYMyMqi65vawjFnSHhqZwbxh8oReTuZl3CZivGslVXvQPzlL38ZX/7ylxVtZWVlAIBPfOITS57VlsSegYEBed2rpV6oZz7xNPBTEwvpEq2rEZ6qBl3D8tde3ocRz1jMFp2j+/8K+4HHkXTpvRiwFM+ZM5IkQRR48E6b3BYYaIWvqwGa+FSYSreoEToJAyu5zpDYFG45IwgCzpw5g7GxMUU7x3GoqqpCQkKCSpGRSeGWMyR8OUY1yDm3Td7WaGYPHYsGIfvESt0CSSgE/AIYdmqiHf20wlMb4euWjXjG8Pezr8PhG5fbMiyx+Ubm626E/cDjAIDRNx+BtuXgnMe56g+g/w9fhSYxE6aSzQgMtMPXNfHE2H7oSfi6G+c8jxBCwtlCRWd1dTUVnYREGLdLQLwjXf6jdyarHdKaCMmUSU1NTaH4NiRKFBQUQBTFZT3Ju/jKUmy/qADBgICT3/gu+LFeeZ8uKWk1wwy5d7pO4ETfaQBAvN6CwsQ87MnfrnJU6jDkliPp0nsx+uYjAAB94z5YrVaYt14vH8M7hjHy8m8g+j0Y/Mu3YMirgK/rjLw/6dJ7YcgtD3nsJDys5DpDYlO45Mx8RadGo0FVVRXi4+NViozMFC45Q8KfOGgHkCpvG32iarGspeicq5dEtJW8abrdAZx4pxMAMMhbwJiyYHI4wADQp0R44dlzUv7a6XeBY1ikmKPzjthiWHfdAgBy8el95ykYDUZg1y2QJBFDz/0Mon9ijK/EB+BtOyWfm3TpvfL5JDbRh3OyVOGQM1R0Rhb6/yCLZWUMim0uOutOdQvPmbPeTraJogie5+H1emG321FfX49nnnkGv/vd71SKlESK6Wt48kEeHMNhsuOtPoLHVwy7R9A80q5ou7r0EmjY6FxgeLFmFp+Tf4Pj4Ouqn/McKjoJIZFIEAScPn0adrtd0a7RaFBdXY24uDh1AiOErBjHxMZT8ZAWnq+++ioee+wx1NfXw+1207hPsup83onlMkR/ABBFaAW/vM+Qka5WWCvGMAyuXXcZjnSfxKjXDrPOhA3pZWqHFRbmLD7nuYBT0UkIiURUdBIS3URR+SBBZKLzwULICs+f/OQn+PWvfw1geRMNMQxz/oNIVAgGg5AkCQzDQKvVLulcr2di3SPeNTEBj0acXnhmrl6QIZZiSsKHN92B+2tuwzlbG2ye0Zh/2jmdedv14AUBzv1/nmiQZvdRoaKTTLeS6wyJTWrmTFNTExWdEYiuM2SxTOlZwMDUZxdJE52jIUPyU507d27eonOyoJyvXaPR4IYbbqB1PGNIY2OjPP14VVXVks71eSaeePKuibF9WnGiEGV1Omgs519DNtyxDIuy1BK1wwg7jY2NCJoKEWfNhsbeO2s/FZ1kppVcZ0hsUjNn8vPzYbfbEQxOvMdR0RkZ6DpDFouzGAFMrcQQrT1vQ/JjPfHEE3JhuWXLFjzxxBOoq6vDU089BUmSwHEcDh8+jFOnTuGNN97Ad77zHWRmZkKSJPA8jw0bNuDaa68NRagkgg32O3G2fhAjQy44x9wQGA6a97vaciYTPTWPcozLBs4xMKudNVio6CSERDSLxYLq6mpotVpoNBrU1NRQ0UlIFNGYrYptiYvOJ54hKTyPHz8OYOLC+dBDD2Hjxo3Q6XSorKxEfHw8BEHAoUOHYDAYkJWVhVtvvRXPPvss1q1bB0mS8MMf/hA2m+0834VEi4SEBFit1iWvQ9Z+zoaG2n7Un+rHuSEOQ5ZC+YmnJs6yFqGGhCfgxUvn3sSp/noMuoYhilE61dkKJCQkIKHxFTCSMGuf6HPBfvhpFaIi4Wy51xkSu9TOmcnis6amBhZL5L6nxRK1c4ZEDmbG8CkmSh95huSnGhgYAMMwuOSSS2b98lVWVgIATpw4oWiPi4vDj3/8YzAMA5/Ph8cffzwUoZIwkJ+fj+LiYuTn5y/pvLFRj2KbE4PyE09tBE9p3jbWhfGAG+dG2vF2x7t4qflNmphrhiRnB5iRTmXjtIv46JuPUPFJFJZ7nSGxKxxyxmKxUNEZQcIhZ0hk6HIqe2x5xaBKkaytkBSe4+MTE70UFhbO2ldSUgJJktDU1DRrX2lpKbZu3QpJknDs2LE1j5NENseMwlMjBsBJE8uraCP0buOo146WkQ5FW7olhboNTyMG/bC99GtlI8sh9x/+F0mX3is3UfFJCAl3PM+jv79f7TAIISEmzTEpYjQKSeFpNBoBYM4ZvQoKCgAAra2tc567YcOGBfcTMsnp8Cm2dbxXXsNTl5gY+oBWwbff+h88d/ZVnB5sgt3rgCRJKE2efQMnlvU/+u+Qgsr/e+sFN0KbkArrrluo+CSERASe51FXV4ezZ8+is7Pz/CcQQqIG7/crtpko7dgWksLTarUCwJzjNHNzcwEALpcLQ0NDs/ZPds11OBxrFyCJCi6n8pdWL3jlr3XJSaEOZ8X6xgfR4+yHK+DBWVsrXm87CEBCgiFyuw2vNtvrD8Pfe07RpolPgfXiu+RtKj4JIeFusuh0Op0AgPb2dio+CYkhQvegYlsbiM4noCGZMqmiogLd3d04fPjwrH15eXny13V1ddi7d69i/8DARJ9nGtMWO1pbW8HzPDQaDYqLixd1jiRK8LgDijYDPzUttT41ZVVjDIV3upTjnhP0cbhu/eUqRRN+7IefhvPdv89qT77qAbCcsnfF5Ky2o28+ovibZruNXcu5zpDYtlY5w/M8amtr5WFJk3p6epCVlUXrP0Ywus6QxTJrDIrtaB1QFZInnrt27QIAtLS04KGHHlLsy8/Pl7viPvfcc4p9Xq8Xr7/+OgAgJSXyCgeyPG63Gy6XC263+/wHy+cEIIrKmxOG4NSbuD4tbdXiC5Xm0Q7F9o7czbDoIn8t0tXg626Ui0cA4BNzIZiTwacUwbxu25znzPXk09fduOaxkvC0nOsMiW1rkTPzFZ06nQ41NTVUdEY4us6QxdLxLhgDjqk/QafaIa2JkBSeN910E5KSJro6/uxnP8Ptt9+Offv2AQAYhsFll10GSZLw2muv4dvf/jbOnTuHd999Fw888ABsNhsYhkFNTU0oQiURymn3KhskCQbeNfE1w8CQkR76oFboS7s/ie9d8WXcWHYFUk1J2Jm7Re2QwoY+Zz2MxZsBAIaCjRBTi+DP3gjfljsWPG968Wm96E4YcsvXPFZCCJlLMBhcsOg0m+lGIyGxIknrQYarTf6T5mlXO6Q1EZKutgaDAd/85jfxT//0TxAEAfX19Th27Bguv3yi2+DHP/5xvPTSS5AkCY8++igeffTRWa9x9913hyJUEgYmJ5RaivEZEwtxYhBaYaLrLWcwQBuBC20zDIOipHwUJeXjg1XUJXQ6f38b9Fkl4MwJ0CSkQi9JMBVtgj679LznWnfdAkNuGRWdMW451xkS21YzZ4LBIOrq6uYtOk0m06p9L6Ieus6QxTJxWgBTD1G4+Q+NaCFbnXTv3r146KGHkJ2dDUmSkJOTI+9bv349vvrVrwKYGMs5/Q8APPjgg9i2be7ucyT6sCwr/1ksp11ZeMZbDSi67XqkXXE5knftBMNF9q8wwzC0hMr7JD4IX8dpAIAmIXXib7MVhpzSRecMFZ1kOdcZEttWK2fO96STis7oQdcZQpRC8sRz0sUXX4zXXnsNx44dQ3q6suvjBz/4Qaxbtw6//vWvUVtbi0AggLKyMtx///249tprQxkmiUBOp7LwzChMR/E9kdk1lRd4nOw/g5z4DKRbUsGxkV00rzbR74G5bAc8re9B8E58cDOVbALD0Bs7ISS8TRadLpdL0U5FJyEkFoS08AQm7v5ccMEFc+7btm0bPdkkyzI+Y4xnvNUwz5Hhr298EB32HnTYe6BlNchJyMTWrCp64gnA39eCvj9+DfHbr4N15y0I2nogeJzQWiNvDC8hJLbMV3Tq9XpUV1dT0UlIDGMggRN5eZtl+AWOjlwhLzyXa3R0VJ6giES30dFRiKIIlmUX/X/unDHGMy4+cgvPLkev/HVQ5OEN+qjoBCBJ/5+9O4+Por7/B/6a2Xs3901IIFxJIJAAyqGCeCsgoKh4W22/2tpaW/VXz1ar1tZq1dZqrfa01qPeByACigqIgEII4QwhQC5yb3Y3e83OzO+PdSc7ySbZTXZ3djfv5+Phw8zs7Mw74Z3JvudzCWhf/w+IPIfube/DtvcLZF7wfSRNPX1YOUNGN8oZEqqR5MxgRefMmTOl2f1JYqH7DAlWDzox3rxP2nZpE/NzX1wUnm+++SaeeuopbN++XelQSBQ0NDSA4zhoNJrgC88AYzzjUW3ncXxc8zkKUsYgw5AGhmEwLjVf6bBigq3qc7gaD0vbvK0Lni7vOr/DyRkyulHOkFCNJGcsFku/JTWo6Ex8dJ8hwepyG9Ccs0DaZuEc5Oj4FdHCs7OzE7W1tWhra0NmZiZmzpwJnU4X9Ptramrw0EMPYffu3RGMkiQCVsWAZRlpLc+U1Pj8Q769fjdqOupQ01EHo8aAKZlFuHTqhUqHpTjB2SNbtxMANBljkDp3mUIREUJI8DIzMzF16lTs378fABWdhBA5B6dFc0rvzPz6BF3HMyKFZ319PZ555hmsX78ePM9L+/V6Pb73ve/hpz/9KVSDzDLqdDrx5z//GS+//DJ4nocoitTVcBQpKCiQuqYE66rvz4Faw4L38OisbUBWRvwtui2KIrY39D5ksXMOpBtSoVHF3/cSbp1f/g98T7dsX+b5N4FRe382w8kZMrpRzpBQjTRncnJyAABHjx5FRUUFFZ2jAN1nSLA4iEqHEBVhLzwrKytx6623wmw2S8uhAN7lIBwOB1588UXs3bsXL730UsDi8/PPP8cjjzyC5uZmWcHpu2GTxBdqdxRRFLGvsgk8L4B3ONDy3nvIs9ZCz3qgMhhQ/uTjMOTF/uQzx80NaLa1yvZdMGmRQtHEDlfrCVi+WSvbZ5xyKoyTe2ctpi5MJFSUMyRU4ciZnJwcZGVlUSEyStB9hgQrRTs6JhcL653P7XbjrrvuQldXl7RPq9UiKytL2hZFEV999RWef/552Xvtdjvuv/9+3HrrrWhqauoNkGVxww03YO1a+QdPQnzcLh48LwAAPDY7eFYNleCByHHwWCzQpCQrHGFwUnTJuLxsCfKTvUVytjEDkzLGKxyVskRRRPvaFwC/h1hgVUg/61rlgiKEkEH4P3QPhIpOQkhf6j5L5yVqP8+wtni+8847aGxsBMMw0Ov1eOCBB7B8+XJotVrYbDa88soreO6558DzPP71r3/h+9//PpKSknDy5En84Ac/wNGjR6VWTlEUUV5ejocffhhTp9Ji72RgDrtb+pq328GIAlQiBwBgtVqo4qQ7U4YxDaumL8MVZRejvrsJnY7uUd/FvGf/FtmEQgCgH1cGbdZYhSIihJCBud1uVFVVYcKECcjMzFQ6HEJInOAF+QMpIUHXJg9r4bl161bp6z/84Q8499xzpe2kpCTceuutSElJwaOPPgqn04lPP/0U8+bNw5VXXonW1t4uhsnJybjjjjtw1VVXRfWDtyiKWL16Nd555x0cOHAAdrsd2dnZmDNnDq699lqUl5eP+BpOpxNvvPEGPvnkE9TV1cFmsyEzMxOnnHIKrrvuOsyePTsM30l8EwRB+jqYJ8MOOyd9zTsc0PBu6UmRymiIu+KNYRiMSxuLcWmju7gS3E60r/+nbB+jMyL9zCvB9HkyGGrOEEI5Q0I1VM64XC7s2bMHdrsd+/btw/Tp06mr5ShH9xkSLBXkk68KTFwsPBKysH5XR44cAQAUFxfLik5/V199NV566SW0trbi22+/xXvvvYeWlhaplfOCCy7Agw8+KOueGw1OpxM/+9nP8Pnnn8v2NzY2orGxER999BF+/vOf45Zbbhn2NQ4ePIif/vSnOHHihGz/yZMnsWbNGqxduxY/+tGP8POf/3zY10gE1dXV0vTjwRT7Tkdv4ZlUPAUFs6ZgYjbgbmuHKPCDvDN2uDxuaFRqsAn6hGs4Oj9/HYJdPqtbctlC6AtK+h0bas4QQjlDQjVYzvgXnYC34KiursaMGTOQnp6uRLgkBtB9hhC5sBaeHR0dYBgGc+bMGfAYlmVx6qmnYs2aNVizZo10k05KSsLDDz+MJUuWhDOkoD3wwANS0Tlp0iSsWrUKWVlZ2LdvH9544w3Y7XY89dRTyM3NxYoVK0I+f319PW666SZ0dnYCAE477TScf/75SEtLw65du/DWW2/B5XLhhRdeQF5eHq666qpwfnsJ7UBVM8yddmj1auh0auSNzUHq1DFAHPXQ/rapCq09HcgxZSEvKRv5yTnQa+JzLdJwcHc29ZtQSJ2ag7Qzr4y7FmxCSGJzuVyorKyEw+GQ7dfpdDAaR8eEIYSQERoln/nCWnj6brpDtVYWFBQA8E4oJIoiJk6ciBdffBGFhYXhDCdoW7duxerVqwEA8+fPx0svvSStN3rxxRfj8ssvxzXXXAOz2Yzf/va3OPfcc5GUlBTSNR5++GGp6LzrrrtkLadLly7FsmXLcN1114HjODzzzDNYuXIltFptmL7D+GIymeDxeKBWB5eeh6pPwmpxSdtJKXpMLR8TqfDCThAFtPZ0wM1zaLA0o8HSjLljK1CUrszvQyxo++h5QBT89jBIW7gKalNqwONDzRlCKGdIqALlzEBFp8FgCHntcpJ46D5DgsWqRkeOhPW79Hg8YBhmyButyWSSvs7Ly8Mrr7yi6CD8f/7TO45MrVbjN7/5Tb/4J02ahF/96le46667YDab8dZbb+Gmm24K+vw7duzA5s2bAQArV64M2F135syZuOqqq/DKK6/AbDZj27ZtWLRodC6lMWnSpJCOd/h1tQWAtIz4mEzIp8nSApfHLWvJy03KVjAiZdn2bYWr4aBsn358GZJnnDnge0LNGUIoZ0io+uYMFZ1kKHSfIcEyOy0A/FYBUS6UiFJkQJn/k5/bb79d0aLTbDbjq6++AgAsXLhwwFbXJUuWSHGuW7cupGv4WlN1Oh3uuOOOAY+7/PLLcdVVV+HWW2+l2fCC5HRw8HCCbF9GlmmAo2PTfyrfxsc1m7C7qRrN1lYkaY0wjJIuF32JogiPvRua7HHSPkajQ9aF/9dvQiFCCFEKFZ2EkHASIAx9UAJQvF33rLPOUvT633zzjTTr2Pz58wc8jmVZzJkzB+vWrcOePXvQ3d2N1NTA3f762rhxIwDg9NNPR05OzoDHlZaW4uGHHw4hetLRauu3LysntG7QShIEAbWdx2HnHKjtOo7aruNI1cXHuqORwLU3QHBYYSqdD8+YSbDX7kLStIXQZo/ebseEkNjidDqxZ8+efkWn0WhERUUFFZ2EkJAJQqK2ccopPoWm0rO91dTUSF8XFxcPeuzkyZMBeFtlDh8+POixPq2trejo6ADg7U7rw3EcDhw4gC+//BLV1dXweDwhRk4AoKO9R7atYkXYd++E5dBhuM3mIRfyVlpNZx2sbvn3sKTkHIWiUZbo4WCv3S1tq1OzkTp3OdLPvlrBqAghpJfT6QzY0klFJyFkJDzi6KgDFG/xVHqGysbGRunrsWMHXzcxLy9P9r7BZu/18S0xA3gnVeI4Dn/961/x2muvSZMNAUBaWhpuvvlm3HTTTVCpRneXwuPHj0uD8cePHz/osd1d8j/+KrcDh//wb2m74o9/QNKECZEIMyz2tcofYBSm5iPHNDq7WTuO7YXglv97mqbMhiqIbseh5AwhAOUMCd3hw4dRU1MDjuOQlpYm7TcajZg5c+aonRCQDIzuMyRYBrX8s06izt+veOGpNP/ib6jWV/8/NGazOajznzx5Uvpaq9XiuuuuQ2VlZb/jzGYznnzySVRWVuKZZ56BRqMJ6vyJqLu7W1r3aijWbqdsW8O7ZNu67NiepOfSqRfh1Pxy7GquxrdNe1GWM0XpkBTB93TD1XREtk+TngdNVnBdbEPJGUIAyhkSGo7jUF1dDafTKXs4TEUnGQzdZ0iwdLwDWo9d2tYIzkGOjl+jvvB0Onv/YYfqIuP/h8X/fYPp6entRvnEE0+gvr4eU6ZMwf/7f/8Pc+bMAc/z2Lx5M5588kk0Nzdjw4YN+OMf/4hf/OIXIX4n4XPkyBFMmjQJycm9Yw1dLhcOHToEwFuAjxs3rt97fGuy9l0kub29HU1NTQCAwsJCWYHP8zz27dsHAEhOTsaEPq2Tx44dg8ViAQBMmzZNNjGV2WxGY32r7HgN7/fvotFgf20tjEYjpkyRF3QNDQ3SQ4fi4mLo9b1Pmmw2G44ePQoAyM7Oxpgx8qVZDhw4IP0hmTpVvlhoc3Mz2traAAATJ06ULbvjdDqlLtoZGRkoKCgAwzAYlzYW49LGokw9EXa7HXv37sWMGTNk521ra0NzczMAYNy4cbKHIB6PB/v37wcApKSkoKioSPbeuro6WK1WAEBZWZnsQ1NXVxfq6+sBAPn5+f2WQqqqqgLg/XDl62ruc+LECekBTElJiez3x2q1oq6uDgCQm5uL3Nxc2Xv3798Pj8cDrVaLkuIpEFkVjMWnwnF0D7q7OmB3OMEZizDJbpfNgu1wOKTu8ZmZmf16KXg8HlRVVYFlWUyfPl32Wmtrq/QgqKioCCkpKdJrvq7vAJCamtrvyXRtba30uzx9+nSwbO8ohc7OTjQ0NADw9mrIyMiQXvMtIg94Z/PuO8Ph8ePH0d3dDQCYOnWq7MOJxWLBsWPHAHh7W/QdH15dXQ1BEKDX6/sNE2hsbJS6+E+ZMgUGQ+9Mzz09PaitrQXgXfoqPz9f9t6DBw/C7XZDrVZj2rRpstdaWlrQ0tICAJgwYUJc3CNOnDgBABgzZgyyAzyI4jgONTU1MXuP8FdTUwOHwwGGYUbVPaK0tFT2WlNTE9rb2wF4Zw0N5R5x+PBhOJ3OkO8RoijCYDDA6XRK80KYTCZUVFRAq9XSPeI7iXaP2Lt3r/RvP5x7BMfJZ933oXuEVyLdI0b6OULrasFYS5u0TwU3AOXuEb4cDLeIFJ7V1dV4//33B33dZ7Dj+rrkkkuGH9QA/MdWDvXE0v/1YMdk+m6iAFBfX4+pU6fiv//9r+xGsnTpUsyePRsrV65EZ2cn/v3vf+Oaa64ZsutvpPA8L/1h9RFFUbqB8jzf7z0ej2fAG6wgCNJrfc8LQHrN9zOdOnUqRFEEwzA4fvy49Hrf8ZqiKMLpkP87aP0LT612wLj89wc671DxBvO9DnbeQPnDcZy0JFE4zxvOfxt/PM8PGJP/eQPli+97ZVkWll3r0bX5TWScfS2ST7kQ3d9sglvrhodRD/q9+p/XlzOHDx+Gy+WS3dADxTtYfkfzZzhYHgbzMxQEIWDX/MH+bYL9XQ40PjrYn2Gk7xEDnTeU3+WpU6dKHyrj6R7Bcdyou0eEct6h8tD3Mwz1HgFAKkocDoes6AToHhHovPF+j/CdVxTFgOtwBnveQA+n6B7hlUj3iJH+DI1JSWA1vTWDVtX7b6jEPSLQv2U4RKTwXLt2LdauXTvoMb5fivvuuy+oczIME5HC0/8JFcdxgxafbrdb+jrYbjV9k+DRRx+VFZ0+Y8aMwe23345f//rX8Hg8eP/99/GTn/wkqGuEm0ql6vcLxzCM9BQlUIKq1eoBu5KwLCu9FugX2fea78bufx7/8/a9kTIM0+98JndX73X1emg0moBxDXXeYOINdF7/73Ww86rVapwwe8cX5yXnQKvyxjlQ4RnKeQf7Xgc7bzD/Nv5UKtWAMfmfN1C+aDQaMAwDtcCh68s3IDhsaF/zAqy7NkA1ZyWYJD00DDPo9+p/Xt8+rVYLQRACfi/+8Q6W39H8GQ6Wh8H8DAVBCBjXYP82wfwuC4Iw5L+5kveIgc4byu+y794gimLM3iMCnXfU3SNCPO9QeajRaMDz/LDuEVqtFvn5+XC73bKiE6B7RKDzxvs9wnfekd4jAn0OoXuEV6LdI0byM9TmZcDY0Vt46nW99xcl7hGBvv9wYMQwTvtZWloKhmEiMpMowzBSE3Y4/fznP8fHH38MwLu0in+3kL42bNiA2267DQBw//3343vf+96Q53/55Zfx29/+FoC3Wf6TTz4Z8NjOzk6cdtppAIAFCxbgH//4R9Dfx0jYbDap+wvg7e4QqDiORc/9bhM6/Wa2nX5yE3JtxwAASVOmoOIPjysU2eBEUcTHNZtgc9vBMgyyjBmYkVuKTKOyszxHW/v6f8Kyc41s35jrHoFhfJlCERFCCCGERFfdp2tQ+dkuaVuvY7D4wV8qFk+kaoOwtngGM8trrPHvn202mwctPP0nFPIfozEY/3+kvuMO+srIyEBaWhrMZjNaW1sHPZZ42azysbZaT++sqOpkU9/DY4bV3QOb2/tkSxBFtPZ0gGUUX90oqtztDbB8u062z1R6GhWdhBBF+ZZK8R/3SAghZOTCWni+8sor4TxdVPgPoG5ubkZh4cCzaPrPUNt3sP1A+g78Hoqv606k+lbHA4vFInWX9H8w0Jfb5YHbJe+zruN7uymoB3mIoLSNRzajtacDWcZ0sAwLg1qPNP3A32si6vz0P4DQ++/HqDTIOPf6YZ0r2JwhxIdyhgTicDikmednzpwpKz4pZ0ioKGdIsFo1Hfi85Li0nSYwWKxgPJEy6me19Z8dqqamBnPnzh3wWN8sWAzD9JvdbCD+s0T5rxkaCM/zUqtq39m7RpNjx45Js731ndnOn9XSf2ZhnV+LpyY1NSLxjZQgClhb8xksLhs0rBq5Sdm4YPJCxde0jSZ77W7Yj3wr25c6bxk0acPL+2BzhhAfyhnSl91uR2VlpTSfQ2Vlpaz4pJwhoaKcIcFqNwsQWnpnIu5hXYMcHb9GV9++AGbNmiUNqt2+ffuAx/E8j507dwLwjmUN9slVenq6VKTW1NTIWk372rdvn/QHr++0xqQ/t4tHSqoeLOst2FQCB5XYO+OXJi02C8+6rnpYXDYAACd40GBpRlHauCHelThEgUfH+n/K9rE6E1LmLFEoIkLIaNe36AS8y3/4lhUhhJBIslkYZJ+cJP1nbE/Mz4WjvsUzJSUF8+fPx+bNm/HZZ5+hqakpYDfaNWvWSOs1LV4cWuP30qVL8cc//hGiKOJvf/sbfvWrXwU87r///a/0dajXSCR5eXngeT7gDFz+0jONuOHHp0GrUYHjOOy49eey17WpaZELcgS+bdor2x6TnIPS7EkDHJ14LN9+Aq6zSbbPMKEcKsPwB60HmzOE+FDOEJ9ARSfgXROypKRE2qacIaGinCHB8rSYAWRK2wZnYg65G/UtngBw4403AvAup3LnnXfCZrPJXj9y5Agee+wxAN7FW6+44oqQzn/VVVdJkxG9/vrr+OCDD/od8/7770v7Z8+ejYqKilC/jYSRk5ODMWPG9Fvotq/2Vhuqvm3AN18fx66tR2HVyRct1mYGNwFUtGUa0jAxvfdJ1iljZgxydGLhHTZ0ffG6bJ/KlIbkWeeDUQWeZjwYweYMIT6UMwQYvOgsLy+XLTNAOUNCRTlDgpUsyNsCVf2X3UwIo77FE/AuXXLhhRfik08+we7du7FixQpcffXVGDNmDPbv34/XX38dPT3eJTvuvvvufjPabt++HTfccAMAYO7cuf0mWUpPT8cjjzyCn/3sZ+B5HnfffTc+/vhjnHPOOdBqtdi0aRPWrfPO7qnT6fDoo49G4buOf25Xb7dawekEK8gX1tWmx+bSJOdOWoBzJy1Ap8OMXU3VmJxRpHRIUdP1xRsQXHbZPmPJPOjHTVUoIkLIaNXT04M9e/YELDorKioCrplHCCGRoGXl95tEnfWD7qrf+f3vf4+enh5s2bIFDQ0NePLJJ2WvMwyD2267DVddddWwzn/++efjqaeewi9/+UvYbDZs2rQJmzZtkh2TlpaGF154AZMnTx729zGa+BeevNMFtchJ26xOB1WMT4WfYUjDeZMWKB1G1LjbG2DZJV/HVpNVgNRTF4NVawd4FyGEhF9PTw8qKyvBcZxsPxWdhBAl8IK8E6qQoEvs0Z31OwaDAX//+9/x0Ucf4f3338eBAwdgtVqRlpaGU045BTfccANOOeWUEV1j8eLFOOWUU/Dqq6/is88+Q2NjIxiGQWFhIc477zxcc801Qa8PSgC3u7cfAm93QCX0foBQ6fVQ6XVKhEUG0L7ub4DoN2aBYZEy83xoskJbcogQQkZioKIzJSUF5eXlVHQSQqLOkJED+M0/KqoS8z6UmN/VMDEMg+XLl2P58uUhvW/evHk4dOhQUMfm5OTgjjvuwB133DGcEEeF6upqafrx6dOnD3gc5194OhzQ+nW1ZfU6sLrYKzz3thyEnXMg05CODGMa0nQpYNnEfKrlr+fIt3Aer5bt0xeWIrni7LAsIxNszhDiQzkzOo2k6KScIaGinCHB0qSnAOiRthlVYna2pcKTxBxBEKT/BnPkYCt4XoBGq4Kz2+U3F5i3xZPVxl73zUbLSVhcNhw3e9d0nT1mOiZnFikbVBR4utugSkoHb+sCADAaPdIWXAFWbwrL+YPNGUJ8KGdGH5vNhj179gy7pZNyhoSKcoYEi9Wa4F94imxizoRMhSeJOXq9HiqVSjabYCA1B1oh8OJ3WyYkaZIAt3fJG5XJBCbGWhLdHre0fqdPhjFNmWCiiLdbINitSJp5Htytx+Cs2wtTyTwYisL39DfYnCHEh3Jm9Dl+/Hi/ojM1NRUzZswIqnst5QwJFeUMCZaqz4N4hk3MEi0xvysS14qLi4c8xung/IpOLz3XO1uqJmn4a0JGgiiKuG/j78EyLMYk5SA3KQt6tQ5puhSlQ4soURRhr/kGoiiAYRjocidAl1WI5NkXgQnjwPlgcoYQf5Qzo09paSk4joPZbAYQWtEJUM6Q0FHOkGCdtLTItl0iN8CR8Y0KTxKXLGZHv31avrc1UZ0SWwVdfXcT6rubAADHzQ1gGRZXz1iR8OM73S3HwHW3yfbpx5dBk5o5wDsIISQyVCoVZsyYgb1790IUxZCKTkIIiSSXIF/WSRDFAY6Mb4rccU+cOIGPPvoIu3btQlNTE7q7u/GTn/wE1157LQDg17/+NUpLS7Fy5UpoY3CcHlGexeKU7xBFaPnefZrU1ChHNLhvmqpk25mGNFxcfK5C0USHwLngqNsj28fqjDCML1MoIkLIaOcrPn1fE0JILBA4+Vr0SMy6M7qFp91ux6OPPooPP/xQGmgtiiIYhpEt4Lxu3Tr873//w9/+9jc89dRTmDlzZjTDJHHA2i0vPFWiB/5th9q02Co8dzXJZ3Q9Jb888T/0sCx0Y4vhPLEfouCdgdg4+RQwKhrrQghRTsLfewkhccfd2AIgV9rWcIk5IVXU+vlZLBZceeWVeP/998HzPERRhBigGbmnp0caf9HY2Igbb7wR33zzTbTCJDGgsbERJ06cQGNj44DH9Fhdsm3/NTwBQJMZW+uh/nT+jbhp1ipU5E2FmlVjdv4MpUOKKPvRSjT9+wEwDIOUUy6EJj0X2qwCaDPzI3K9YHKGEH+UM4nLarWiuroaPM8PfXAIKGdIqChnSLAMovyBGJugLZ5RKzzvuusu1NTUQBRFZGVl4c4778R//vOffsdpNBr84he/QEaGt3BwOp24++674XD0H9NHElNHRwfa2trQ0dEx4DH2HnlfeHWfwlOflRWR2IYrNykbi4vPxgOLbsc/LnkS03NLlA4pYkRRROdn/4X7ZC2a/vNLtH/8EnQFU2EqmRexawaTM4T4o5xJTFarFXv27EF7ezv27t0b1uKTcoaEinKGBEsnuKHi/f7rM+YzUUSl8Ny6dSs2b94MhmEwd+5cfPLJJ7jlllswd+7cfsdqtVr84Ac/wOrVq6Uuts3NzXjvvfeiESqJE44eeaHp/wvK6nQxN7mQP4NGD3WCrs8EAPYj38LdUidt9xz4Cs5je8GoaBIPQkjkWCwW7NmzBx6Pd6yU2WwOe/FJCCGRkK7uxrjufdJ/BdYDSocUEVH5JPjhhx8CAAwGA55++mmYTEMvGp+eno4//elPuOCCC+B2u/Hpp5/immuuiXSoJAZMmTJFGvs7EKdDXnj6t3iq9Hqog8ixaHHzHERRhE6d+BNliaII8+Y3Zfs0GflIrjg7otcNJmcI8Uc5k1gsFguqqqqkotMnnP++lDMkVJQzJFjJKi2A3vlLErV5IiqF57fffguGYXD22WcjK4QukLm5uTjvvPOwZs0aHDp0KIIRklhiMBiGPEalljfW55dNwPjzroO7owOiCKhNxkiFF7IT5kbsbq5GuiEVuUnZGJOcgyxjbI1BDRdH7W64mmtl+9IWXAYmwi28weQMIf4oZxKHr6Wzb8tmeno6pk+fHrbJhChnSKgoZwiRi0rh2d7eDgCYNGlSyO+dMGECAKC7uzusMZH45nTIn2rnTZuAgnMmKxTN4BotJyEC6HR0o9PRDQfnTMjCUxRFdHz6smyfOj0PSWULFYqIEJLoBio6MzIyUFZWRjPYEkJIDIlK4em78fuWUAkFx3m7UOr1+rDGROKb0yEfdG00xV43VlEUse3Et2iytkDl1+KXl5StYFSRYz+8E1x7g2xf6vwVEW/tJISMTt3d3aiqqgpYdE6fPh0sG7X5EwkhhAQhKoVnTk4Ojh07hgMHQh8o61tKJScnJ9xhkRjV09MjjYkYaDywvc/kQgZj7K0N2WxtwR+//gdUrAo5xkyMSc5BafYkjE3JUzq0sBNFEZ1fvCbbx+pNSCo9LSrXDyZnCPFHORPflCg6KWdIqChnSLCcMGN81z5p261NzHHBUSk8582bh7q6Onz55ZdoaGhAQUFBUO/76quvpPGhp556aoSjJLGitrYWHMdBo9GgvLw84DEOu7zF02CMvRbPb5uqAQC8wKPZ1gqLy4ZlJefJWj8ThePoHnBt9bJ9SWULoTImR+X6weQMIf4oZ+KXUi2dlDMkVJQzJFhmToWu1KnStsjQcirDtnLlSgCAx+PBz372M5jN5iHf8+233+LOO++UtpcvXx6p8EicEQQRajULhu19GmSIwa62u5r3yrbnF87GtJxihaKJrM5Nr8i2GZ0RqaddqlA0hJBEZTabAxadmZmZ1L2WEBK3ejgDjmTNkf5rTJmhdEgREZUWz/Lycixfvhwffvgh9u/fj6VLl2LVqlWYNm2adIzZbMbBgwdRU1ODDRs24NNPPwXP89JsuKeccko0QiUxICsrCzzPDzgpBMsyuOWuM8EwAM950HXkOJK1sbVOm288M8MwEEURAHBK/vSEnFLdfrQS7pZjsn2mkvnQpAY/g/VIDZUzhPRFORN/uru7A67LmZmZibKysogXnZQzJFSUMyRY7u8+Kya6qK3o/pvf/AYNDQ3YtWsXOjs78de//hVA7xpbL730El566SXpeN+H9cmTJ+OJJ56IVpgkBuTn5w95TOWOevC8AL7HjqaPViPfUgOD6ITKaETFHx6HPk/ZcZQsy+Khs++AzdWDypP7sKt5H6bnlioaU6R0fta/tTN9weVRjSGYnCHEH+VM/NFqtVCr1bLCM1pFJ0A5Q0JHOUOCZdKOjqV3otYnRavV4uWXX8b3vvc9qFQqiKIoFZc+vn2+gdhLly7F66+/jqSkpGiFSeKAKIjgeW+LoqenBwDAijxEnofHZoM6NVXJ8GSSdCYsGD8Xt8+/CXq1Tulwwi5ga2fpfGjSc5UJiBCSsAwGA2bOnAmdznsvzcrKilrRSQghkaRj5W2Bidc/zitqLZ4AoNFocN999+H73/8+3n//fezYsQO1tbXo7u6Gx+NBamoqCgoKMGfOHFxyySXDWveTJD5f0QkAnh47AG/hCQCsTgsVLb0TNV1fvCHbZrQGZCy8UqFoCCGJzld81tfXY/LkyVR0EkISgiDIS00xAYdmAVEuPH1yc3Pxwx/+ED/84Q+VuDyJcx5Pb+HJOxwAAEb07lMZjIqPo+R4DltPfIMsYwayTRnINKRDrVLkVy2iBJcd+vHTAVYFV9MRQPAgaerpUEdxbCchZPQxGAwoLk7MidoIIaMTA3mjCc/E3jKB4RCVT8MnT55EnsJj7kj8OHjwIDweD9RqNUpL+4+L5Lje8T0p00qRNHkSZpZeDXdrG0Re+UmGOuxdaO3pQGtPB9AGqFkVLim9MOGezDvrD4JRa2CYUA5dQQnczbVIO/MqRWIZKmcI6YtyJrbZ7XYYDAbFHyT6o5whoaKcIcGKnTtdZEWl8DznnHMwd+5crFixAhdccAEtoksG5Xa7wXGcNDNsX8ePtKOpvhsaDQu1RoXkFB1SpkwGpkyOcqSBtdk7Zdtp+tSEKzoFlwOuk0elbVajQ+q8ZdCkZCgSz1A5Q0hflDOxq7OzE9XV1cjPz8ekSZNipviknCGhopwhQVMnZgtnX1EpPAVBwPbt27F9+3Y8/PDDOPfcc7F8+XIsXLgw4T6Qk5FTq9UQRRFqdeD0PFjdgiMHWqXtwgnp0QotKBuObAYAZBnTodfokWWMrfjCwdlwEKLQ27rMMAz0hVMHeUdkDZUzhPRFORObfEWnIAhoaGgAgJgpPilnSKgoZ0iwWM3omJ8kKr8Jubm5aGlpAQA4nU6sXbsWa9euRUZGBi6++GIsX74cZWVl0QiFxAH/9V0Dcdg52bZeHztPiZweF3Y0VkL4bsxpktaEKRlFygYVZgLngqu5VrZPmzsBKr1yPRmGyhlC+qKciT3+RadPQ0MDkpOTkZur/EzZlDMkVJQzJFhWpxWAMr3GoikqzY1ffPEFXnnlFVx55ZVIS0uTlkzp6OjAf/7zH1x++eW4+OKL8be//Q0nT56MRkgkjjnsbtm23hA7hWdNR51UdAKAnXOgOGuighGFnygISJp2BtQpmQCUb+0khMS/jo6OfkUnAOTk5CAnJ0ehqAghJDo40SPbFgc4Lt5FrZ/rnDlz8PDDD2PLli148cUXcfHFF8NgMEhFaG1tLZ5++mmcc845+N73vof33nsPPd+t0UiIP6dD/stpMMZO4XmgrUa2PTF9HExao0LRhJ/r5FGc+PMtsFZtgnHKXCSXnwXDhHKoDLTWLiFkeAYqOnNzczF16tSY6GZLCCGRJI6SYcBR73SuVquxaNEiLFq0CE6nE5999hk++ugjbNmyBRzHQRRF7NixAzt27KDxoCQgt0ve1VZob4Z5L6BNS4U+NxesVqtQZMDYlDzMGlOGg221cHicmJodGxMehUvXlrchuuwwb30H3TvXIP2My5B2+kqlwyKExClf0SmK8uf7ubm5KC0tpaKTEDIqcCI39EEJQNHRznq9HkuWLMGSJUtgsVjwySefYM2aNdi5cyd4npeNB83MzMSWLVuUDJdESUtLC3ieh0qlCjiux+WUL5li+XIT9q0+BACY/puHkTpjelTiDOSMcXNwxrg54AUex82NMGoNisUSbq6WY7Af2i5ti25nvw+LShkqZwjpi3JGee3t7di3b1/cFJ2UMyRUlDMkWDqVco0m0RQz02ylpKTgiiuuwBVXXIHOzk68++67+Mtf/gKHwyGNByWjQ0tLCziOg0aj6Xej9nA8eF7eH0HLO6WvNelp0QhxSCpWhYkZ45QOI6zMW9+WbbP6JKSeulihaOQGyxlCAqGcUdZARWdeXh5KSkpirugEKGdI6ChnSLB0Ag/Gr78tm6B9b2Om8ASA+vp6bNy4EZ999hl2794NnueHfhMZVfrOaAsAWt4hfa1JS4tiNHIegYeaVSl2/UhynaxDz4GvZftS514MVpc441cJIdERj0UnIYREUoa6C0VdzdK2Cm4Aq5QLKEIULzxbW1ul7rR79+6V9vv+IOXm5mLZsmW45JJLFIqQRNuECRMgCELAMb32PjPaAoDOYwcAMGo11EblCqFtJ76FxWVFtikTWcYMjEnOgSFB1mXq2PBP+M+xxuqMSJmzRLmA+hgsZwgJhHJGGW1tbdi/f39cFp2UMyRUlDMkWCmmJIDp7cGnStCUUaTw7OrqksZzfvvtt9IfIN//DQYDLrjgAqxYsQKnnXZaTP8hIuGXnJw84Gt9WzxVghu677rasjotGIVu7oIooN3eCU7woMfcgGPmBswvmIVxaWMViSecnE1H4DyxX7YveeZ5iq7b2ddgOUNIIJQz0cdxHA4ePNiv6BwzZgyKi4tj/m895QwJFeUMCVbqlHFIqm+XtvU6nYLRRE7UCk+bzYaNGzdizZo12LZtm9SN1vcHiGVZzJ8/HytWrMCFF14IgyFxJmUh4ePokbd4aj1OqL5b+0ilU651sdtpBSfIl3nJNmUqFE14dX76H/kOlRrJMTK2kxASPzQaDcrKymRLp8RL0UkIIWTkolJ43nbbbdi8eTPcbm/R4P+0c8qUKVi+fDmWL19OA6/JkBx9utpqBJf0tUrBhxXrajbh6/rdyDJlIMuYgcLUMQnRzTZQa6epeC60abSgOyEkdBkZGZg+fTr27t2LvLw8KjoJIWQUiUrhuXHjRjAMIxWcGRkZWLp0KS655BKUlZVFIwQSR1wuF0RRBMMw0PXpatC3q62G9y88lSv0Giwn0WxrRbOtFQAwa8x0XFxynmLxhEvnZ6/Af2wnVGpknHO9YvEMZLCcISQQyhnlZGRk4JRTToHJZIqropNyhoSKcoYEq0vdjX2FDdJ2EqtCIvYti1pXW61Wi7PPPhuXXHIJFi5cCJUqMWf/JCN36NAhafrx8vJy2Wv2nkFaPE3KjDkURAEH247I9p1eeIoisYQT13UyYGunJgZbOwfLGUICoZxRVlJSktIhhIxyhoSKcoYEq7XHhROeQmnbhP6rOCSCqBSejz76KC666CIaZE1GTOBFMCwDUfC2wqn9WjzVChWejZaTsLp7ZPum5kxRJJZw6tryFuC/jhTDIuPs65QLiBASN1paWgCAhtAQQkgQrN0aFNTNlLY9OptywURQVArPK664IhqXIQkiLS0NPM8HbBVfdGExTj9nEkRBxJ4HfwOu67j0mlqhJ+jp+lT8eO4NqOmow+GOOtg5B7KNGYrEEi6C29lv3U79+DJo0mPzQ+RgOUNIIJQzkdPS0oIDBw4AABiGQU5O7PWSGA7KGRIqyhkSLFdrF4A0aVvvFAc8Np4pvo4nIX2NGzduwNea6rtxoq7D+7WQCYPegZweb/GpTlGmRT1JZ8JZE07DWRNOAwB4BD6uxi0FYtn1CUTOKduXdvplCkUztMFyhpBAKGciw7/oBID9+73d9ROh+KScIaGinCHBSnLJt9UeKjyHdMMNNwDwPuF8+eWX++0fib7nJKMTx/HS1yLnASv2bmtSUpQIqR81G99PNkVRBKPRwzT9TLiaauDpbIYmcyyME2YoHRohJIadPHkSBw8e7LffYrEkROFJCCGRoldpZdvx3XwxsLAWnjt27AjY0jPQ/mD5ZgQjxO3qXStT8HigEnoHX2tSo194CqIAq8uGZF0SWIaN+vUjwWNpA99jhiY9D5r0PPB2KwxF05UOixASwwYqOgsKCjBp0iQFIiKEkPghCPI6R0zQ0jPsXW0HKhL91+4kZLhcTm/hKQoCIPBQywrPtKjHY3P14JMjX0LNqpCqS0a6IRUz88rAsvFbhLoaa2Tb2ow8mErmKhQNISTWDVV00oNjQggZnDpJPjcIr9IoFElkhbXw/PTTT0PaT0ggR44cgcfjgVqtxuTJk2WvuZzeQlNweZdV8W/x1GakRS1GH7PTAsA7rrPDYYadc2J2fvx2SRWcPeDaG2X7dGOLwcR4a+5gOUNIIJQz4dHc3IxDhw71219YWIiJEycmVNFJOUNCRTlDgmXIzQSO9K6QwKoT597pL6yF59ixY0PaT0ggdrtdWvdKtt/mwvGjHdBoVIDTDpfKAJXQu66nJj092qGi3d4p2043xMY40+FyNh+BiN7eCYxKDW1ukXIBBWmgnCFkIJQzIzeaik6AcoaEjnKGBItVaQH4Lc2XYPdPn5if1ZbjONTW1qK9vR0LFixQOhyioNaTVhw50Na7I6UEU9p3AAAYtRpqozGq8QiigD9t+yd0ai0yDGnIMKZjYnr8zmAniiL0Y4vBsGq4mmshuB3Q5RaBVWuHfjMhZFQZqOgcN24cJkyYkHBFJyGERJIqJRNAl7QtqhLzs1dUCs/S0lKwLItf/OIXuOmmm0J67/PPP48XX3wR2dnZ+PLLLyMUIYkl5eXlAfdbuuXLe7CiB6rvZrVldVowUV4n66S1FQ6PEw6PE2anBUe7TmDl1IuiGkM4WXeth7X6S6TOXYqUUy+Cp/MkVMnRb0UejoFyhpCBUM4MX1NTEw4fPtxvf6IXnZQzJFSUMyRY7ZYW2bZH9AxwZHyLWovncCcXMhgMEEURnZ2dQx9MEprd5pZtqwSPNOeXSqeP+oedwx11su10QyomZYyPagzhIooiur9ZC669Aa0NB6FKzkTmBTchKSd+W3AJIeE3WotOQgiJpB7OIdv2iIJCkURWzHa1FUURDQ0NWL16NQDAGOVulCT2OBycbFvl9zSI1euiHU6/wrM4M37HNDnqqsC1N0jbvLUDrNagYESEkFjk8fR/Cj9+/HgUFRXF7f2PEEKUJvKJWWj2FbbC0+Px4NJLL8WRI0cCvi6KIp544gk88cQTIZ+bYRgUFxePNEQS53wz2vqohN4PQCpD9Iuk7828HAvHz0FNRx0Ot9ehIm9a1GMIF8vONbJtTVYBDBMqFIqGEBKrxo0bB1EUUVfnffBGRSchhIycs7kFQLa0rXEnZiEatsJTrVbjkUcewTXXXDNgt9rhdrdlGAY333zzSMIjcaS9vR2CIIBlWWRlZUn7XQ75k3b/Fk+VMfqFp06txdTsKZiaPSXq1w4nrrMJ9iPfyvalnrokrj5IDpQzhAyEcmb4xo/3DikQRRFFRUXKBhNFlDMkVJQzJFh6Tl4jMcMrmWJeWLvazpo1C9/73vewfv162f6mpiYwDIOUlBSYTKYhz8MwDFQqFZKSklBQUIBVq1bRjLajSFNTkzT9uKzwdPUpPP3W8FQbh84rEljHZ/+VbbN6E5JmLFIomuEZKGcIGQjlzMj4is/RhHKGhIpyhgRL36eBM34e/Ycm7GM87733Xtx7772yfaWlpQCAH/3oRyHPakuIj3uwwjOIBxrhZHFaYXZakGlMh1FjiKvWQX+8vbtfa2dS2UKwWr1CERFCYgWtP0gIIdGRpurA+M5maVsFN4DLlQsoQmJ+Vlsy+hQWFkpdU/z1Lzx7t9VJ0S086y3N2NfqndlRr9ZhQnohZuSWRjWGcOja+i7A+/9cGSTPOk+xeIZroJwhZCCUM4NraGjA8ePHUVFRgaSkJKXDiQmUMyRUlDMkWEkqNVj0LhuoBq9gNJETlcLz4MGD0bgMSRDp6YHXjtRo5et0jplWhPzT0+GxWZFaEd2JcDrsvYv8Oj0u8EL8DQIXeA9se7+Q7dONmQRd7gSFIhq+gXKGkIFQzgysvr4etbW1AIA9e/ZQ8fkdyhkSKsoZEiwVI384wSRoZ9uYXU6FkL64PjN8jZ0/ExNOi/44I5urB3VdJ6BX964dmmlMi3ocI2Xb8ykEh1W2L2X+MoWiIYTEAv+iE/B2t92zZw/mzp1L3W4JIYSMSFgLz6amJunr/Pz8gPtHwv+cZPTpO7mQTqfMc5OdTXuw5vBn0LBqZBjSkJuUjYuLz1UklpHo3rlWtq1KzoCp9HSFoiGEKO3EiRM4evRov/2FhYVUdBJCCBmxsH5yP+ecc8AwDBiGwf79+/vtH4m+5ySJi+d7+7WrVL3da/uu46nVK1N4Hu08AQDgBA9aetqRZcqAQRNfk/E4TuwH194g25dccV7cjkMZKGcIGQjljNxARefEiRMxbtw4BSKKPZQzJFSUMyRYHKwYYzkibQuaxJwbJ+yf3MO9hicZffbt2yfNplheXi7tdzljo8WzpqNOtl2eOzXuZrU1f/WubJvR6JAax91sB8oZQgZCOdNroKJz0qRJKCwsVCCi2EQ5Q0JFOUOC1c0LsGvTpG1eRZMLDWnOnDkh7SckFJxb/kuoVaDw5AUePW67bN+UzPiajMdjt8BRVyXbZyqeC5XOqFBEhBClHD9+HHV1df32U9FJCCHRY3ElYV/+bGlbz1kUjCZywvrJ/ZVXXglpPyGBJCcnw+PxQK3uTU9RFPGzX50L3iOAczjBOdzIyDJEPTYVq8KfL34UnXYzDnccxeGOOkzOiK+F1HlrB/Tjp8PdfASCswcAg9TTVyod1ogEyhlCBkM5M3DROXnyZBQUFCgQUWyjnCGhopwhwXIJnqEPSgD0m0BizoQJ/VsQeV7At9uOAwBsNUfQ9e0uFFoOQK9hoR+Th/Infgc2ipNfZBjTMN84G/MLZw99cIzhuk5CX1AC3dgp8HSdhOjhoMuJ7zFcgXKGkMGM9pyhojN0oz1nSOgoZ0iwdNroN6YogQpPEhcEvneMMO90AQBYngfvccHTYwdDTxODIvIcuPZGAADDsNBk5MM4aZbCURFCounYsWM4duxYv/1UdBJCiDJMKq1sO75mDgmeIp/WB+p2sGPHDnzwwQc4efIkcnNzceGFF2LRokUKREhijSD0Fp6Cy1t4MqJ3XU+VXh+1yX2qTh4Ay7DIMWUiw5gONRtfs9S52xshCr1jZRmGgTY7vls7CSHBa21tDVh0TpkyBWPHjo1+QIQQQtB3DtZEnZI1qoXntm3b8OKLL6KmpgZbt26Vvfbcc8/h+eefl+177733sGjRIvzpT3+CTqeLZqgkxvi3eEqFJ74rPI3R6Z4giAKOdB6DR+Cxv60GLMNi4fg5yE3Kjsr1w8Hdely2rU7LBauNr6VgCCHDl5WVhaysLLS3t0v7qOgkhBBliaL8sxjPagc4Mr5FrfB866238OCDD0IURTAMA7PZjLS0NADA7t278dxzzwV83xdffIF7770XzzzzTLRCJQo7duyY1CpeVFQEAOAFQXo9fc4pSCmbimmTloAzm6FOTY1KXGaHBR6/1kJBFJCqS47KtcNBFAUAIhgwEL97lqbNia+JkQYSKGcIGcxozRmWZTFt2jTs27cPHR0dKC4uRn5+vtJhxYXRmjNk+ChnSLDYhO1cKxeVwrOtrQ2PPfaYtK3X69HZ2SkVnv/6178AeLv9FRcX40c/+hE6Ozvx/PPPo7OzE+vWrcN1112HU045JRrhEoVZLBZp3Ssfa7cTHa02sCoWKhUDnT4JGaeWRTWuLcd3osnagkxDGnRqHVJ0SdBr4qO1UOBc6Pr8NSTPOh+m4rlwt52Au70B2qzEaOUIlDOEDGY05wzLsigrK0NXVxcyMzOVDidujOacIcNDOUOCxrBKRxAVUSk833rrLTidTjAMg+XLl+ORRx6BXu/9wN7T04PPP/8cAKBSqfC3v/0NOTk5AIDTTz8dl1xyCdxuN1avXk2F5yjW3GDGvspmadtg1ODCFdEtPL+q/wZHu04AAJK0Rpw/6cyoXn8kbPu2oHvHanTvWA190QyknroYKTPPUzosQohCWJalopMQQmIEa4yfHnQjEZXCc9u2bQCA/Px8/O53v4NK1Tshy1dffQW32w2GYTB//nyp6AS801CfddZZ+OSTT7Bjx45ohEpiwLRp06Qu2T5uNy87RqWO7pMhjudwortJ2ra57XGzfqcoirB887G07Ty2FwyrgqlknoJRhVegnCFkMImeM6IoorGxEbm5udTaEiaJnjMk/ChnSLDsDiuANKXDiLiofHqvq6sDwzA4++yzZUUnAGzevFn6euHChf3eO2XKFADe7rpkdFCr1dBoNLKZj92uPoWnKrqF5zFzAzx9FvedllMc1RiGy9V4CO4W+Xp9KacuViiayAiUM4QMJpFzRhRFHD16FEeOHMGePXvAcZzSISWERM4ZEhmUMyRYTsEt207UWW2j8um9u7sbAGStmT5btmyRvj7ttNP6ve57SmS32yMUHYkHXJ8WT3WUWzx5QcC07CnQfbfOUkHKGJi0xqjGMFyWb9bJttVpObR2JyEJyld01tfXAwBsNhsVn4QQQmJCVB7BaLVaeDweOBwO2f6jR4+iqakJDMMgIyMDxcX9W5CamrzdG5OSkqIRKolRbpe8tZHxuNFzoh7ajHSoTaaId2MpzZ6EX59zJ3iBR313E2zu+HgQwlk7YDvwlWxfyikXgYmz9UcJIUMTRRG1tbVoaGiQ7bfZbOju7kZWVpZCkRFCCBmMm/cMfVACiErhWVhYiEOHDmH//v2y/b5JhQBgwYIF/d7ncrnw5ZdfgmEYmoZ6FDGbzdKYCN/Mxxwnb/F0Nzei8qcvAQBmPfdHGAsLoxKbilWhKD061woH89Z3Ab8lYBi1BskV5ygYUWQEyhlCBpNoOTNQ0QkApaWlVHSGQaLlDIk8yhkSLA0zOhoEolJ4zps3DwcPHsSWLVvw5Zdf4swzz0R7eztefvll6Zjzzz9f9h5BEPDb3/4WbW1tYBgG8+YlzkQoZHAnTpyQph+XCs8+XW3Z74opRqOBSm+IaDzxOjGA4OFgq/5Stk83ZjJUhsSbOS1QzhAymETKmaGKzry8PAWiSjyJlDMkOihnSLAMfUY/xt+nzuBEpfC84oor8Morr0AQBNx6660oLi5GY2MjrFYrGIZBXl4ezjrrLOn4l156CWvXrsWhQ4cAABqNBpdffnk0QiUxqm+LJyt6t1mtFqxOG9FrN1lbUHXyADKN6cgyZiDLlIEUXex3/bZWboDokncJTpl7sULREEIiQRRFHDlyBI2Njf1emzp1KnJzcxWIihBCSChS2Q4UmFulbRXcgxwdv6JSeE6ePBm33XYbnn32WfA8j4MHDwLw/sFUqVT49a9/LZvx64033kBzczNE0Tun0z333IPCKHWlJMobM2YMBEEAy/Y+/enX4il6+8KzWi1YbWQLz06HGVZ3D6zuHhwzNyDHlImzJvSfCCvWBJpUKJGWUPEXKGcIGUwi5AwVndGVCDlDootyhgQrRa+DRjBL2xoqPEfmxz/+McaOHYu//OUvOH78OADvH8b/9//+H8444wzZsRMnTkRTUxOysrJw//33Y8mSJdEKk8SA7Ozsfvs0GnnfdwNnA/Bd4RnhNeosLqtsO8OQFtHrhYPjxH5wHfIPo8nl58Rll+FgBMoZQgYT7zkjiiJqamqkCfj8UdEZGfGeMyT6KGdIsNKKi2BqqpS29TqdcsFEUFQXFlqxYgVWrFiB7u5uqFSqAWeqveaaa3DVVVdh0aJFtPA1AQAIgnxFIx3vnSFZpdeBUUV2QPbnR7dBxaqQok9Gqi45LrrZmr96T7bNaPVInUfdbAlJBAMVnQzDYOrUqQGXLiOEEBK7WDULxq9hnEnQRnJFVrRNTU0d9PVzzkm8WTfJyPQd46kSvF1tVYbIrqVp5xzY03JAtq88b2pErzlSHpsZjro9sn3GKXPAaiM7CRMhJPKo6CSEEBKvFCk8/XEch+7ubjAMg+TkZGgjPF6PxKe+YzxV343xVBkjW0w1dDfLtlmGRWnWpIhec6TM296TLaECMEg74zLF4iGEhI/H44HZbJbto6KTEELiW4+qByezT0rbBpXiJVpEKPJdbdu2DW+//Ta++eYbtLa2yl7Lzs7GzJkzsXTpUlx44YVKhEcUtnfvXmn68RkzZgAItJyKt/BUm0wRjeVEt7xVYUxyDjSq2O3+LYoiuPYGbx8NUQAA6PInQ5ed2JNzBcoZQgYTrzmj0WhQUVGBPXv2wG63g2EYTJs2jcaSRUG85gxRDuUMCVaz24Ztyb3L3aUKHtyoXDgRE9XCs7OzE3fddRe+/vpraZ9v5lqftrY2bNiwARs2bMC8efPwxBNP0FPcUUYURek/H7fbIzvG1+KpTo7smpTZpgycXngK6rub0GRtwbjUsRG93kh5LG3QjS2GJnsc3C11cDXXImXuUqXDirhAOUPIYOI5Z3Q6HSoqKlBVVYWioiIqOqMknnOGKINyhgSru0OLyfsXSNsenU3BaCInaoVnR0cHVq1ahaamJtkvoFqtRkpKCnieh81mA8/3tmx9/fXXWLVqFd59911kZGREK1SiMIPBALVaLZtY6qbbTofHI2D3L+6H2+6CkbMAADQpkS08K/KmoSJvGgDAw3tg9zgjer2R4lrrAQCsVg994VQYp8yBaeoZQ7wr/gXKGUIGE+85o9PpcOqppybsTNWxKN5zhkQf5QwJlrOrG0CatK11J+bDiqgVnnfeeae01lhSUhKuv/56LF68GFOmTJH+cHo8HtTU1GDdunV49dVXYbPZcPLkSdxzzz3429/+Fq1QicKmTJnSb9+h6hbY7W40q/LAGDmobW5oBDc0qSlRi0utUiNFFbsz2oqiAHd7vWyfLm/CqFg/LFDOEDKYeMgZ30PagYpLKjqjKx5yhsQWyhkSLL1V3rOPCs8R2Lx5M7Zv3w6GYVBYWIh//vOfKCgo6B+MWo2pU6di6tSpWLVqFb7//e/j+PHj2LJlC7Zu3dpvvU8yevCCCJEXAIGHyLBg4P2F1KSlKRtYDPGYWyFwLtk+bYKP7SQkUYmiiEOHDkEURZSWllKRSQghCSxJrZdtJ+odPypNIatXrwYAqFQqPP/88wGLzr7Gjh2L5557Dmq1tzb+8MMPIxojiW0CL0Bwu6Vt5ruJczTp6RG7ps3dg48ObsTndduwq6kaRzqOQfjuurGI62iUbauT0qEyRLYrMiEk/ERRxMGDB3Hy5Em0tLTg4MGDNEaMEEIS2Si5xUel8Ny1axcYhsHChQtD6nYwZcoULFy4EKIoYteuXRGMkMQ6nhchuHpb81jfjK0RHPtrcVrh8DjR2tOBI53HUN16CEyMPoMSeQ76CeVInrEIutwJYNUaaHPGKR0WISREvqKzpaVF2tfS0oLDhw8rGBUhhJBIEjXyhgIPm5jLS0alq217ezsAoKysLOT3lpWVYdOmTbI/wiSxNTQ0wOPxQK1Wo6CgAKIoQhAE8M7eiX0YUQCj0UBtMkYsDotLPqNYii45Zru72ao3o3PTq0gqW4Ck6WfCMHm21B15NOibM4QMJRZzJlDRCXjHcmZlZSkUFfGJxZwhsY1yhgQrqXAMcKJH2mY1sfl5c6TiZnVSlUqldAgkSjo7O6V1rwoKCuC0czB3OuDussPN6sBAAAMRrFYLVqeLWBzvH/gENrcdqfpkpOiSMT4tdpdSsVV/Cb7HjO4dq9G9YzVSZl+IrMW3KB1W1PTNGUKGEms5I4oiDhw40G9ta5ZlUVZWhszMTIUiIz6xljMk9lHOECIXlcIzOzsb9fX12LdvX8jv9b2H1ikbvVpPWlH1TYN3I20aGFHA5I7dUOl0YCM0RbkgCtjXehguvndc6cT02Jyox2PthONYtWyffnzovQsIIcoYrOicPn06LSdGCCEJTptRAOCQtC32mWwoUUSl8Jw5cyZOnDiBzZs34+jRo5g4cWJQ76utrcXmzZvBMAxmzZoV4ShJrCguLoYoilK3VpdLPsU0IwpgRAGsIXK/lG09HbKiEwBOHVsRseuNhG3/FviPSme0BhinnKpcQAromzOEDCVWcoaKzvgRKzlD4gflDAmW2SL/G8CLngGOjG9RmVzokksuAQDwPI/bbrstqPGaLS0t+MlPfgKPx/uDX7JkSSRDJDFEr9fDYDBAr/cWli4nJ3udEQUwEKDSGyIWQ313k2w7SWtCmj56a4aGwla9WbZtKp0HVhO5LsixqG/OEDKUWMgZQRCwf/9+KjrjRCzkDIkvlDMkWGa3VbbNibxCkURWVArP008/HXPnzoUoiqirq8Py5cvx/PPPo6amRjZFvCiKqKmpwXPPPYdly5bh+PHjYBgGs2fPxqJFi6IRKolBbpf8l4+FAAaA2hi5wjM3KRsrp12EU8dWINeUhfFpY2PyiaWrrQHuk0dl+5LKzlQoGkJIsARBwIEDB9DW1ibbz7IsZsyYQUUnIYSQhBO1yYWefPJJXH311WhqaoLFYsFzzz0nrdOZnOydQthqtUotnL6CNC8vD88880y0wiQxyN2vq623EFWZTBG7ZmFqPq6asULaFoTYXL/Tunu9bJvVGaEvKFUoGkJIMIYqOtMjuD4xIYSQ2ONqbgPQe+9Xc7H5uXOkotLiCQC5ubl48803MWfOHIiiKP3HcRy6urrQ1dUFjuOk/QAwZ84c/O9//0NOTk60wiQxwGazwWq1wmbzLmfidvdp8fxuDU91BAvPvlg2ar8qQRNFET0HvpLt0+ZOAKsdXd1sgf45Q8hQlMyZw4cPU9EZh+g+Q0JFOUOCpbbL5xVhE7PujO5yKllZWXjllVewdetWrF69Gl9//TWam5tl3W3z8/Nxyimn4NJLL8Xpp58ezfBIjDh69Kg0/Xh5eXm/Fk/2uxZPdXJSxGLwCDzUbGwv4eNqPAze1iXbZyqdp1A0yuqbM4QMRcmcyc/PR1tbG3jeey9jWRbl5eVIS0uLahwkNHSfIaGinCHBMvb5zBl7g7vCQ5F1PM844wycccYZALwTDnV3d0MURaSkpEAToeUxSPzq1+IpeLc133XRDjdBFPDBgU+gU+uQoktCqj4ZJZkTodfE1uQA1j2bZNusIRmGyacoFA0hJFgpKSkoLy9HVVUVRFGkopMQQka5ZHQgv7tD2lbBPcjR8UuRwtOfSqWiSRSITHZ2NgRBkLq3cn0nF/puiml1SmRmmbW57eBFAXbOATvnwElbG0qyJkXkWsMl8h70HOzfzVaTOjrXu+2bM4QMRemcSU1NRXl5OURRpKIzTiidMyT+UM6QYCWrWej43i7ZGio8h6e9vR0nT56EWq1GQUEBkpIi1z2SJIYxY8bItlVqeYeD1MwkZBTOg2nChIhcv9tpkW3r1Tro1bE1btJRtweCs0e2z1h8KpgY7x4cKX1zhpChxELOpKamKh0CCUEs5AyJL5QzJFgaRv5wgrrahkAURbz22mt44403cOTIEWk/y7KYOXMmbrnlFloehQTNbwgwACD/1OmYuuLKiF3v9ar30WRtRao+GSm6ZEzLnhKxaw2Xde+Xsm1VcgYM48oUioYQEoggCOjs7ERWVpbSoRBCCCGKC3vh2dPTg5tvvhm7d+8GANnEQTzPY9euXfjRj36ElStX4je/+U1Mro1IYgvXZ4ynRhvZVr3j3U1o6+lAk7UFAFCUVhjR64VKcDtgP7xDtk+bPR6a9DyFIiKE9CUIAqqrq9HZ2YkpU6Zg7NixSodECCGEKCrshef/+3//D7t27QLDMLKi08e3791330VGRgbuuuuucIdAEkzfwlOrjVwPcQfnRFtPh2zfKfnTI3a94RCcPdDmjIeruRYQBQAMjJNmgtXG1uRHhIxW/kUnANTU1AAAFZ+EEEIC4uFEVk9D7w5VYq6nEtZP8Lt378amTZukonP58uW47rrrMHHiRKhUKhw8eBD/+c9/8PHHH0MURfzrX//Cddddh9zc3HCGQeLcgQMHpOnHp06dCrdbvpyKRhO5QfoNlmbZNsuwyE+JrZZElSkNxuI50I0vA9feAMFpg66gVOmwFNU3ZwgZSqRyhud5VFdXo6tLvtRRXV0dsrOzodVqw3YtEl10nyGhopwhwbIIdmh4h7TtTtD5qMJaeK5fv176+t5778WNN94oe33WrFmYNWsW8vPz8Y9//AM8z+ODDz7ALbfcEs4wSJzjOA4cx/lt9+1qG7kWzxxTJn489wac6G5CfXcjPAIPrSq2lvjhOpsh8h6wai10eRPBgIE2q0DpsBTVN2cIGUokcmagolOlUqG8vJyKzjhH9xkSKsoZEqwuZyr2Fa2StvWcBUsUjCdSwt7iCQBTpkzpV3T6+9nPfoa3334bFosFlZWV4QyBJADfWq6+/1969UzYrXbwAgMPD2TlRG5m5FR9Cs6acFrEzh8O7rYTsm11Ws6o72bbN2cIGUq4c2agolOtVqO8vBwpEVr+iUQP3WdIqChnSLDcQmJ2re0rrIVnQ0MDGIbB6aefPuhxWq0Wp512GtatWyeNfSHEp293lNrD7ajf+CUcdXVQqRjkih3Inz4RJXf+TKEIlSPyHLhOeXdgbXZsTX6kBOrCREIV7u61e/fuhdlslu2nojOx0H2GhIpyhgRLrY74CpcxIazfpdVqBQCkp6cPeWxRUREAwGKxDH4gGfV4jwDe5YbAsBAEwGO1wBOhvDE7upGkNUGtis0bANfVAlHo7XrMMAw0o7ybLSFKGqzorKioQHJysjKBkbARBAE2mw0WiwVutxs8zw/9JkJIXFOpVNBqtUhJSUFSUhJYNrKDLpM1Btl2oq75EdZP1263G0BwXQqSkrzdJXt6esIZAklAPC9A+C63AIARBagj8GGOF3hsPLoFoigiSWtCmiEFFXnTYOxzM1CKu6MJ6tQcpMw8D+72erjb6qEyJoPV6JQOjZBRiYrOxGe1WtHY2Bhwln5CSOLyeDxwuVywWq1gGAZjx46le3oYhLXwFEURDMMEtTan78kBPTkkQ/F4BAh+g/NZkYcmJfy//BaXDcJ3Hy6s7h5Y3T04Nb887NcZDlEU0fLW4+B7zDCVnoak6QuRMmcJwHuGfjMhJOyo6Ex8gYpOhmGgUkV2LWlCiPJ4npd+90VRRGNjY0SLT16QNyJ42MQcFxyb/QnJqNbc3AxBEMCyLHJz8yCKIjLnzwNvd0Dg3CjKmYXs8vCPmzA75d13k7RGaGJkRlv3yTpwHY0AAGvlRlgrNyL/e7+FvqBE4chig3/OjBkzRulwSBwYSc7wPI+qqip0d3fL9lPRmTgEQZAVnUlJSUhOTobBYADDMDRDMQmK26+3FuVMfBFFEXa7HZ2dnbDZbFLxWVxcHJFutyr0PWdidralwpPEnLa2Nmndq4z0LNisLqj0JrCmZGhYBmPOmQyDMfw38Lf3rcGh9qNI1ScjRZeMirzYWRvTtu9L2bY6NQe6scUKRRN7/HOGCk8SjJHkTFdXV8Cic+bMmdIwEhLffB80AW/RWVBQAIfDAY/HQ4UnCZrH45F6A1LOxBeGYWAymWA0GtHQ0CDdE2w2G00YNwJUeJKYZu12Ytc2+fIhcxdORCRGXZod3bC4rLC4vJNkTc4YH4GrhE4UeNj2bZHtSypbEFSXdkJI+GVlZaG4uBiHDx8G4J3XoKKigorOBOI/8WFGRgbdbwkZpRiGQUZGBmw2GwDvvSEShSdrSg37OWMRFZ4k5kycOFF6Qmju6L/wsl4f/vE1giig3iJfpqQsJza6sTqP7wNvk68NmDT9TIWiiU3+OUNIMEaaM/n5+QCAuro6KjoTkK+LJMMwMBqNAACdjiZyI6GhnEkMRqMRDMNAFEVZ9+lwcrl6ACR+S2pECs/u7m40NTUNeYxPc3NzUDPG+f7Qk8Tm/wGutalN/iIDqDXhLzzbezrh9Lhk+8alxUa+Wau/kG1rcyfQ2p190Id+Eqpw5Ex+fj5ycnJGzfpro4lv4kOVSiU9nKBJhUioKGcSg29SMY/HE7FJUXs8TvgXnok6j3ZE/lq++OKLePHFF4M6VhRFnHPOOUMexzAM9u/fP9LQSJxxOeWztqpUbEQGdafqU/Crs36GJksLmqwtaLd3Il2vfLcHweNGz4GvZfu0WQUQBR4MS3/QCIm0oVpFqegkhBBCghOxv5hDtWD6L7sy2LG+pm0yOrlcfQpPloHg5sBqwzvbrE6txYzcUszIjZ0JhQDAXvMtRM4p26cdM4mKTkKiwOPxYN++fSgqKkJqqvIPogghhCQmbpQsjxf2piNRFIMqFH3HDXVstIpOURTx0Ucf4cYbb8S8efMwY8YMnHPOObjnnntQVVUVses+/PDDKCkpQUlJbIwnjAVOpxMOhwNOpxPuPoWn6OjBtiuuAvfdIO9EZ93zmWxbnZoD44TYWFs0lvjnDCHBGCpnPB4P9uzZg66uroBLp5DRRxAE6T9CgkE5Q4LFJujyKX2FtcXz4MGD4Txd1DidTvzsZz/D559/Ltvf2NiIxsZGfPTRR/j5z3+OW265JazX/frrr/H666+H9ZyJ4PDhw9IyB263UfYaIwoAw0BlNA7w7uFpt3dCp9LCpDFGpCvvcPAOGxx1e2T7dHkTockcq1BEscs/Z8rLqTAnQxssZ3xFp9XqneHat25neXk5tXyOYk6nU+p6bQzz3yCSmChnSLBMKvlyO4lahtLgFAAPPPCAVHROmjQJq1atQlZWFvbt24c33ngDdrsdTz31FHJzc7FixYqwXLOnpwcPPPAAdSMeAtenxZMVPWDU6rAXh9tO7ILD4wTLMDBpjJhTUIEsY0ZYrxEq277NgOA3iJ1hYZpxJhgV/doSEikcx6GqqkoqOn1UKhU0mvB28SeEEEIAwCR2INdqlrZVYmRmz1XaqP8Eu3XrVqxevRoAMH/+fLz00kvS9NcXX3wxLr/8clxzzTUwm8347W9/i3PPPTcssyH+4Q9/QENDw4jPk4gyMjLg8XigVqvRXCfv3saKAlhNeNOW4zk4PN7udoIowurugYZV/lfDWvmpbFuTmQ9j0QyFoolt/jlDSDAC5cxARadWq8XMmTOpxWKUU6vVtGwTCUm85QzHcXjzzTfx0UcfoaamBhzHIS8vD2eccQauv/56TJw4UekQE1aqXgUj17t+sAZUeCakf/7znwC8N4ff/OY3/dZcmjRpEn71q1/hrrvugtlsxltvvYWbbrppRNf072KbnJzc70POaFdQUCB9fbhKPpZTyzvBarR93zIiFpdN9oeBAZCkNYX1GqHizC1wt9TJ9hkmzQarow++gfjnDCHB6JszHMdhz5490iLhPlR0Eh+tNrx/e0jii6ec6erqws0334y9e/fK9h8/fhzHjx/Hu+++i4cffhiXXHKJMgEmuIyJhTCc2Cdt6+Mod0IRG4PZFGI2m/HVV18BABYuXIjCwsBrIy5ZsgSZmZkAgHXr1o3omv5dbFesWIGpU6eO6HwJr89DQq3HEfYZbbec2IkPD27Ap0e3YkdDJRq6m6FSeNZYy8618h0qDVJnX6hMMIQkOCo6SbxztRxTOgQSx3iex2233SYVnRUVFXjooYfw5JNP4qqrroJGo4HT6cQDDzyA7du3KxxtYlIZdFDp0PufPj5ayUM1qgvPb775RpppbP78+QMex7Is5syZAwDYs2fPiGY39HWxzc7Oxv333z/s84wWnFu+UK9K5MBqdQMcPTw9bjs4gUOXw4wT3Y2wuGNgxlyVBpqcIuC78Zy6/EnQZOQpGxMhCWigolOn01HRSeKCx9aF5lcfgsfWpXQoJE698847+OabbwAAy5cvxxtvvIFrrrkGy5cvx8MPP4x//etf0Ol08Hg8ePjhh2mWXjJso7rwrKmpkb4uLi4e9NjJkycD8C67cvjw4WFdz7+L7UMPPYS0tLRhnWc08XDymxsr8mDD3P2gydoi256YPi6s5w8Vb7eAUWtgKpmL1HnLYSw9DalzLlY0JkISERWdJBF0b3sfgsOG7q8/UDoUEqd8w85SU1Px0EMP9ZvAcc6cOfjJT34CAKitrcXGjRujHmOic6tccCS3S//Zk8xKhxQRo7rwbGxslL4eO3bwJSry8npbm/zfFyz/LraLFy/G+eefH/I5Rouamhrs378fNTU14D19C08BrC68hWezRV545ifnhvX8oXK310tfMyo19GOnwFQ6T8GIYp9/zhASjAMHDmDdunU4fvy4bL+v6DQYDApFRmJVLK4X7LF1wbJrPQDA8u0n1OoZY2IxZ/o6cOAA6uq8c0osW7ZswAk0r776aqhU3mFIIx12RvprErrwwTiP9N/GrB6lQ4qIUT25UGdnp/R1enr6oMf6t06azeaQr+XrYpueno4HH3ww5PePJg6HAxzHwePxgOcDtHjq9WG93r1n/gSNlhY0WU+iydKCyZlFYT1/qLh2+YMNbWYBGGZUPyMakn/OEDIUj8eDQ4cOwW63Sx+kACo6yeAEQYi5GUq7t70P0eOd/VL0uNH99QfIPO9GZYOKsObmZvzzn//El19+iaamJhgMBpSUlODKK6/ExRdfjJdeeglPPfUUAODQoUOy95aUlAAAfvazn2HVqlV45JFHsGXLFgBAYWEh/u///g/Lli2TjhcEARs2bMCHH36IqqoqdHV1wWQyYfz48TjrrLNw3XXXISUlJWCc119/PXbs2AEA2L1794Dfz7333ov33nsPAPDpp5/KJj7zvZabm4svv/wSJ06cwAsvvICvvvoKHR0dSEtLw5w5c3DjjTeioqIi1B8lAEgxAsBpp5024HEpKSmYNm0a9u7dK/3MSPh0tOhQ9u1iaduji4FhXxEwqgtP/ydQfWez7ct/ZrJQn1z5d7H91a9+hYwMZdeHjHUMw0j/LTh3MlL3fQZr3QmIDAsDZ4FKN3i36FBlmzKRbcrEzDHTwnre4eAdtn5PrDXZNGPrUPxzhpChqFQqGAwGOBwOaR8VnSTe+Ld2+li+/QSp81dAnTT4w/R4tX37dtx6663o6eltDXK73dixYwd27NiBDRs2SMXlYGw2G6699locO3ZM2nfw4EFZEXny5Enccccd2LVrl+y9ZrMZZrMZe/bswcsvv4wnn3wSZ5555si/uSHs2rULP/zhD2Gx9C650dbWhrVr1+Ljjz/GPffcM6xVF/x7Ck2ZMmXQYydPnoy9e/eiu7sbTU1NyM/PD/l6JDBXTw+ANGlb5REViyWSRnXh6d86MtSU1/6vh9Kq4t/F9txzz8XSpUtDDzTKjhw5gkmTJiE5OVna53K5pCeHaWlpGDduXL/32O12AEB5ebnstfb2djQ1NQHwPlH0b13meR779nmnj05OTsaECRMwY0bvWpWbN1WhxcYAGu8fA63HAZXB2+JpNptx4sQJAMCYMWOQnZ0tu+7evXshiiIMBkO/m2lDQ4PU4l1cXAy9XyuqzWbD0aNHAQDZ2dkYM2aM7L0HDhwAx3HQaDT9ZiVubm5GW1sbAGDixImyLitOp1MaH5yRkdFvOYeamho4O1ug7rYjN9U7tozV6KBOzUZbWxuam5sBAOPGjZO1wHs8Huzfvx+A94lkUVGR7Lx1dXXSkj1lZWWyFp6uri7U13u79ubn5yMrK0v23qqqKgCA0WiUxjn7nDhxQmr9LykpkT28sVqtUted3Nxc5ObKuy/v378fHo8HWq0WpaWlsteamprQ3t4OwLuckcnUu7SNw+GQ/khmZmZKXeR9OXP48GFUVVWBZVlMnz5ddt7W1lacPHkSAFBUVCT7gMFxHA4cOADAO8Zl/PjxsvfW1tZKH3SmT58uG//S2dkprclbUFAge7AkCAKqq6sBACaTCZMmTZKd9/jx49JkZVOnToVG0ztjs8VikT4U5eXlIScnR/be6upqCIIAvV7fb4x6Y2MjOjo6AHg/SPgXUz09PaitrQUAZGVl9fvgcPDgQbjdbqjVakybJn8Y09LSgpYWb9f0CRMmKHaP8Hfs2DHpg9i0adNk63IOdI9gGAYXXHAB1q9fD7PZDKvVinnz5sl+TrF6j3A4HGAYRnafBED3iO8MdI/wOXz4MJxO55D3CP/fRQDSZCoMw8h+Pj5Op1M6xmAwyB6CeTweuN3eVkmtVivLUVEUpQcgLMvK8gzw/l7xvHeSPb1eL7v3dH31ntTaKZ3Pr9XT4XBAFMWA53W73dJnmb7n5XkeLpcLgHepub6fj3znZRim34MajuPAcRwA78Mc/5+VIAjSg3uVStXvgb//z7Dv+GrfeOxbbrlFOse5556Lc845BxqNBl999RVWr16NdevWYevWrQP+DH3++9//wuVy4fTTT8dFF10Ei8WCLVu2YMGCBQCA7u5u3HTTTdLveX5+Pi677DJMnDgR3d3d2LhxI7Zs2QKz2Yxbb70VL7zwgqz45Hleds2+34//z7Av/38bUfQWH3a7HbfffjssFgumTp2KFStWIC0tDbt378Y777wDj8eDxx9/HBqNBitXrhzwZ+j7t/HPQ9/wMZZlkZaWBpfL1e/fxvcz9K3wAEAqPP3zW6PR9Pvd8d33Q81v/zwMdN7B8tD/ZzhYHgbKb18eBjovz/NwOByoqqoK++cIvqELQO/9yuAUpXiV+Bzh+zsVbqO68PT/BeA4btDi0/dLBYS2LpOvi21qaip+/etfDyvOaON5vt+MZaIoSjesvjdwwPuH1fd6X4IgSK8FmgnN91qggt7t8sAjAFB5f+YCq4LquxuBf0wDnVcURdkf+b7x2nkHTlpbkcVmwqgxgGXYoM4bzPfq+4Ph43/eQN8rx3EQulvgyJuG1BnTwbU3AKIIhmFHdN5I/dvwPD9gTP7nDZQvvm6xfScwGOq8Q+Wh799mqPMOlt/R/Bn6n3c4P0NBEAJ+CB7Jz9AXU9/39T1vrNwjBvsZDva7zDAMsrKyIIoi8vLy+n3AGO55ffFG6h7BcVzAD6t0j4C0HY57RN8Puf7XCvS7MdT+wd470Pv6vtefx9YF2+71Ad7R2+opsroB3z+SmAZ7PRLfq88TTzwBp9MJhmHw29/+ViqwRFHEeeedh2XLluH222/vtzZ6oPO6XC6cddZZeO6556TPdzfeeKN0P33yySelovPss8/G7373O9kDsauvvhpvvvkmHnroIXg8Htxzzz3YsGHDgOMjQ/1e+75mtVphtVpx+eWX45577oFKpYJarcall16KZcuW4eabb4bD4cCf//xnnHfeebKHgoOdF+gddmY0GqFWqwfNF/9Cy3/YWTDfSyR+bwbr+j7S8w7Ed48J9+cIIyO/5/h/V0p8jojUzMWjeuCY/9Mg31OVgfgXnkN1y/Xx72J777339nvSEKtUKlW/P8oMw0hPnAIlqFqtDvhECvA+5fK9FuiPve+1QAUiy7KAf/KLIlR6Q7+YBjtvoJh88XbyFnzVuAtrD2/Cu/vXYVfT3hGd1/977Xsz9D9voO9Vw9mRvPM1pH76DNrX/AWe7lbo8ieN+LyR+rdRqVQDxuR/3kD5MtzzDpWHg/3b+J93sPyO5s/Q/7zD/RkO9b2G+jMc7HsN9mcYzXvEYD/DoX6XtVot8vPzZS1m4ThvxO4RETov3SP6nzeQobr0D/Sa//sGez2Ua3rHdgb+EOtr9QzmmsOJabDXI/G9At5xiHv27AEAXHbZZVLR6f/e2bNn46677gr6vDfffHPA11paWvD+++8D8E48+dhjjwXsgn/JJZfguuuuA+At3v73v/8F/L5C/V79X/dXUlKChx56CGq1Wvb6nDlzcNtttwHwFoMffvhhSOf1tf7pdLoh/938P//6D1UY7r/rYO9VOkcHizcSnyMG+16U+BwR6H4fDow41GOtCBBFEd9++y2+/fZbNDU1obu7G8uXL8c555wDAHj33XdRUVHRrzk53B588EHpRrFx40YUFhYOeOxbb72FX/7ylwC8rZj+g88D6enpwfLly9HQ0ICFCxfi73//e8Dj/Aef9x0EHy02m0127ZKSkqCf2kXa3m8bsPcf/wPv8HbVyLA3ofyyc1G46vKwnP+rE9+iwdIsbZdkTURFnjJjPbt3rkXH+n9I26zOiPF3/BOMKvCHIELI0HwPFYN9YEgI4O3W7PF4oFarhxz3Fm0eWxfqn/9xv262/hi1FoU/+UvCjPX83e9+h3//+98AgDVr1vTr1u3jdruxcOFCqTVuoMmFNBoNdu3aFbAH27vvvov77rsPgLfRYLBxk+3t7Vi0aBE8Hg9mz54tNTYAwX++C2ZyIQB4/PHHcemllwY8h9Vqxemnnw63243TTjtN+lkF49xzz0VDQwPy8/OxadOmQY99++238cADDwAAfv/73+OSSy4J+jrxLtL3hLVP/wffNPYO1dHyDtz7xyvCfp1gRao2iHpX2/feew/PP/98vyVJ/GfjevbZZ9Ha2oqLLroIDz74YMTWu/Qf59Lc3Dxo4ekb9wEgqMHU1dXV0rivzZs3BzXY3XfM2LFj8dlnnw15fKJqa2uDIAhgWRaiCIh+3QMYiFCFcW29DnunbDtZ27/lI1p6Dn4t2zYWz6GiM0j+OdN3rC8ZvVwuF/bs2QNRFDFz5kxZ8Uk5Q0Ll301uoFbRaPCfyXYgiTbD7c6dOwF4VyAYqOgEvL0YZs+ePeRnqMLCwgGHTVVWVkpfz58/f9DzZGVlYfLkyTh48KA0r0SglivfmO+ROP300wd8LTk5GcXFxaiurpZahoPlG3Y2UDdQf/69/5T8HUhEyYVjgUa/VmRNYnZKjdp3JYoi7r33Xtx///1obGyU+lD3bXDlOA6tra0QRREff/wxrrjiCmkyi3Dzb1Edav0/3+sMw8Tc089E09zcjIaGBjQ3N8Pl5OARRAhgIcKbRypTeApPu9uBV/a8i48ObsCmo1/hm8Y9YBVatoR3WOGsPyDbZyoZ/A8e6eWfM4QA3qKzsrISdrsdDocDlZWVsiEVlDMkVBzHwe12B/UBPVICzWQ7kERa17O1tRVAcA/++05sFshAS6AA8qX2BmuQ6HsMx3GyGWf9jTRnjEZjvwm4+vL9bOx2uzShT7DnBoYecgYMb9gZCZIqMQvNvqLW4vnUU09JfeYZhsGCBQswc+ZMPPfcc7LjfN0kvvjiCzAMg/r6etxxxx147bXXwh7TrFmzoNFowHEctm/fjmuvvTbgcTzPS0/bSktLB71h+UyZMgXPP//8kMf98Y9/lIpa3/F9Z/0azTZ/egS2lDJpWyXwUBvD0yrZZPU+0HDxbrgcbnQ5u5GblDXEuyLDUbcXEHvHsjJqLQwTh7cmFyGjna/o9B+D5HA4cPjw4X6zwRIST4Jp7fRJpFZPX9fZYD4fBXPMYJNE+i/VEszySv7XczgcSE1NHfI9oQo0Dn2wOGw2W79ZbQfi+0xrs9mkrqQD8Z9QiJYGDC9N2hgAR6RtUZ2YhX1UCs+jR4/iX//6FxiGQW5uLp599llpOv2+hafJZMKLL76InTt34o477kB7ezt2796NjRs34rzzzgtrXCkpKZg/fz42b96Mzz77bMA1idasWSM9AVu8eHG/1wPJyMgIKt6XX35Z+jrc31+8GjdunNRdReDlrRGMyEMdxA04GL7C0yfHlAmDRpk1/KxV8m5B+sKpYDWJedOJBP+cIaNboKIT8H6A9J8unnKGhCqUGe0jIZTWTp9EWddTp9OB47h+v9eBhLrWel/+xabD4RhyXJt/6+JARe9guRNqS+NQcTAME9IQtaKiImzZsgWCIKClpaXfEkT+/IedDXYcCZ3d3i3bFsX+s9Amgqi0677xxhvgeR4Mw+DPf/5zvzXcApkzZw7+/Oc/S9sfffRRRGK78cYbAXi7Qdx5552w2Wyy148cOYLHHnsMgLcovuIK5Qb6jhZpaWlIT09HWloaBF7eFZsVBaiTIlN45qfkheW8oRJFEa5GeVdvdcaYAY4mgfjnDBm9nE7ngEVn3zGelDMkVGq1WvpPCaG0dvr4Wj3jXV6e9++zb73fwQRzzGD816r1rWE7mOPHjwPwFp3+95NgH2r1Xf4lEIvFImuJDcQ3r0haWlpID0n8h50dOXJkkCN7h52lpqYO2fWXhKbNKe8W76LCc/i2bdsGhmFw2mmnhdTNadasWTjjjDMgiiL27t0bkdgWLFiACy+8EACwe/durFixAn//+9+xZs0aPPnkk1i1apXUteDuu+/u17Vg+/btKCkpQUlJCa6//vqIxDia8bx8HSFW5KFODs+Mu1eULcWfljyMexb+GNdXXIZFRfPCct5QuVvqIDjlDzxMxXMViYWQeDVQ0Wk0GvsVnYTEm+G0dvokwlhP3wSUZrMZtbW1Ax4nCAJ27949omv5f079+uuvBznSu/SKb71P/x4VgLyVs2+jhr+hij3A+4B6sEmD/H8uc+eG9vnB//jBvl+LxYIDB7xzUcyZMyekaxDiE5XC09c0H0xLZ19lZd7xfR0dHWGNyd/vf/97LFiwAID3idGTTz6JO++8E3//+9/R09MDhmHw05/+FFdddVXEYiCBiULfFk8ealN4Ck8Vq8KY5Byckj8Dy0rPw2mFp4TlvKHqObBNts1oDdCPLxvgaEJIX76is28XO6PRiIqKCio6SdwbTmunTyK0el500UXS16+++uqAx61btw5tbW0jutaiRYukGVtfffXVQbv3/utf/4Lw3VrjZ511luy1zMxM6WtfwdZXZWVl0BOc+S/V0tdrr70mTWB07rnnBnU+n8mTJ2PixIkAvCtPDNSy+uqrr4L/bpWBYIedkeC5OuQPh1SeqK92GRVRKTx9fdOHM2mO74lRpBYyBbzdsP7+97/jySefxBlnnIGMjAxoNBpkZ2fjoosuwquvviotzksiz+PxgOM4eDweCH0KT4YRodIn1odIR12VbFubWwRWpUxXrnjlnzNkdBms6ByspZNyhoRKFEUIgtBvNv5IG0lrp0+8t3ouWLAApaWlALwF2Nq1a/sdc+jQITz66KMjvlZOTo60Vnt9fT1+8YtfBBw3+v7770vzdGRmZuLqq6+Wve7fcvrCCy/0u9ecPHkS999/f9BxrV+/PmDRvXXrVrzwwgsAvOM1h1MU+tYq7erqwr333ttvTOnOnTula4wdOxYXXHBByNcgg2O65F2uVXxiFp5R+XSbmZmJ5uZmHDt2LOT3+hYvjfTsWQzDYPny5Vi+fHlI75s3b96gCwMP5ZVXXhn2exPV/v37pTWv+tSdUIdpHhBBEHC06wSSdCakaJNg0OgVmWRE9HBwtRyT7TMWhd4zYLTzz5nh9Kwg8WmoonOwcU6UMyRUDodDmpAq2BlDw8FWtQmsYeQ9fWxVm5B2+sowRBR9LMvikUcewbXXXguO43DHHXfg448/xqJFi6DT6VBZWYm33noLLpcLKpUKPM+PqMHivvvuw86dO1FfX48NGzZgyZIluOyyyzBhwgRYLBZs3LgRmzdvlmJ77LHH+n1OXbx4Mf7whz/A4XBg+/btWLVqFS677DIkJydj//79ePvtt2G1WjFjxoyghpMxDINHHnkEmzdvxvnnnw+1Wo1t27bhgw8+gCAI0Gg0+PWvfz2sSbAuv/xyvPXWW6iqqsL69etx+eWX44orrkBaWhp27dqFt956CxzHgWGYYV+DDC5ZLW+cS9Rp76JSeJaXl6OpqQmbNm2C3W4P+oZdX1+Pzz//HAzD0BT4o1DfbrYAwIap8uzh7NjVXC1tq1kVlpWcB40qugsi2+uqAEH+FNRYQuM7CRnKQEWnyWRCRUUFfTAiCSPt9JVxWzCGU0VFBZ555hncfffdsNvtWL9+Pdavl7cEX3755WhsbMS2bdtGdA9ISUmRertVVVWhsbERzz77bL/j0tLS8PTTT+OMM87o91pmZiYeeeQRPPDAA3C73di3bx/27dsnO+aGG27AzJkzceeddw4Z0913341nnnkGmzZtwqZNm2SvmUwmPPvsszjttNNC/E69WJbFiy++iP/7v//Dvn37cOjQIfzmN7+RHaPRaPDQQw/hzDPPHNY1yOCMfAeybL2tnmpx6NmO41FUCs/Fixdj3bp16O7uxsMPP4zf//73Q77HbDbj9ttvl56wULP+6JGSkvJdl5T+TyvVYVpg1+qSD/RXs6qoF50AYD+8XbatSs6ANmfoxa+JnC9nlJptkkRfbW3tiIpOyhkSKpVKRUvwKOz888/HRx99hH//+9/YvHkzTp48Ca1Wi2nTpuG6667D+eefL63JHsya64PJzc3Fm2++ibVr12LNmjXYu3cvurq6kJaWhsLCQixevBiXXHLJoNe58MILUVJSgldeeQXbtm1Da2srUlJSMGPGDFx33XVYsGAB1qxZE1Q8F1xwARYsWIC//vWv2L59O7q7u5Gfn4+zzz4b3//+90c8y2xGRgbefPNN/O9//8Pq1atRW1sLu92O7OxszJs3DzfddBNKSkpGdA0ysBStiGR3p7StxvDGdMe6qPzFvfDCCzF9+nRUV1fjww8/RFtbG26++WZMmzat37Gtra3YsGEDXnrpJbS2toJhGEyaNIkGMo8iRUVFAACngwOwX/ZaVumk/m8YhvruJrh5Dtrvis0kbXgmLAqV47j86acubxIYJipDrxOKL2fI6FFSUgKn0yktRRBqSyflDAkVTVIVGwoKCvDLX/5ywNd9k1GOGdN/WbJQh0YxDIOlS5di6dKloQX5HZ1Oh5KSkn6th/5COX9xcTGefvrpYcUSDLVajWuvvVYq3kn06BiVbDtRPwlG7VHvn/70J1x55ZVob2/Htm3bsG2bfCbPF154AX/5y19kU06LooikpCT88Y9/pCeMoxDvEfrtm/aj74Xl3O8e+AR1XSegV+uQpDXhrKL5YTlvKESBB6s3gVFrpdkKDRNorBkhwVCr1SgvL8eePXsgiiJ1ryUkgX3wwQdYvXo1CgsL8cMf/nDA1r3a2lppPpFAjRuEEGVFrfAcO3YsXn/9ddxxxx2oru4dW+crKK1Wa7+Z4saNG4c//elPmDx5crTCJDGk7xqeAKAKU1fbLocZAOD0uOD0uJCXnBOW84ZC5D0wTj4F4qTZ4G1d8JhbYJyszJIuhMQjjUYjre/nW/6AEJJ4UlJS8OWXXwLwNko89NBD/Y6x2Wx44IEHpM+SF198cVRjJIQMLaqDWwoLC/Hmm29i3bp1eOedd7Br165+6yOp1WqUlZXhkksuwcqVK6lryyjmCdDiqVaPvPC0cw6YnRbZvonp0R9X6bG0A/A+fFEnZ0CTmg11albU4yAknlHBSUjiO+OMM1BQUICGhga89tpr2L9/Py644ALk5eXB4XDg6NGj+OCDD9De7v27esUVV+DUU09VOGpCgicyHFKc7dI2y/IKRhM5UZ9VgWVZLFmyBEuWLAHP82hqaoLZbAbP80hJSUF+fv6w1vskiaOurg4ejwc9lv6/dGwYWjzbejrAMiwE0VvYMgyD3KToF3yebvki1+qUTDCsaoCjyWB8OaNWqzFhwgSlwyFhZLfbUV9fjylTpoR1PWfKGRIql8slTS5ED8WjS6vV4vnnn8ePfvQjNDc3o7KyEpWVlQGPvfrqq0NaHzOSKGdIsKxiN7LsDdK2U5uYQwwVnc5PpVKhsLAQhYWFSoZBYozVagXHceixyrteMywDlh35L+L4tAL897I/4WRPG5osLehydCsyo62nu122rU6h1s7h8uUMtX4lFrvdjsrKSrjdbrjdbpSVlYWt+KScIaHieZ5mtVVQaWkpPv74Y7z99tv49NNPcfjwYXR3d8NkMiE3NxezZs3C5ZdfHlPr8lLOkGC1O9JwcOJ10rbOY8W5CsYTKTSPPIlZRpMal98wG7xHAM+LEAKs6zlcapUaBSljUJDSf9a7aBB5D3hbp2yfOjVbkVgIiUX+RSfgnaly3759YS0+CSHxxWAw4Prrr8f111+vdChR8fjjj+Pxxx9XOgwSBR5BBM/2PggVmMQs0aLyXTU1NYXlPPn5+WE5D4ltZWVlAACBF7DhydfgqG8AwzJgWBbGqjyU3nKjsgGGgQgg5dTF8HS3w9PdBo+lHeqUTKXDilu+nCGJoW/R6eN2uyEIQlgKT8oZEiqDwaB0CCTOUM6QYImjZCm9qBSe55xzzoi7GTAMg/379w99IIl7KpV3nKMoAjarCy6Xb5IhHq7WtoHfGKTj5gbwAo8krQlJOhMMan1Uu8EIHjdOPHsLdPmTYZw4E4YJFTAWz6GuOCPgyxkS/3p6erBnz55+RWdycjIqKiqgVofnzxblDAkV3aNJqChnSLDSdCbZdqJmTtTacfsulULIUEQRQJ8lVVSakadsTUcdOh3d0vbsMdMxObNoxOcNlrP+AASHFY7a3XDU7gYYFuPv+CdUhuSoxUBILOrp6UFlZSU4jpPtD3fRSQghhJDoi8pf8Tlz5gR1nMvlQltbG5qbmwF4nxSdd955NCX2KCUKIkRBXniyIyw8RVGEzW2X7UvSGkd0zlA5ju6RbevGTKKik4x6AxWdKSkpKC8vp6KTEEJIwuIF+UR3PI3xHL5XXnklpOPb29vx4osv4tVXX8UXX3yBSy+9FOecc06EoiOxpqurC4IgwMMJSJ5aCo/VCpHnIfI8suYXjejcJ21taLG1I1lrglrlTf+kPt0bIs1xtFK2bZhYEdXrJyJfzrAsi/T0dKXDISFSouiknCGh8ng80tf0IIQEg3KGBEvVpyRL1DGfMflbkJWVhQceeAA5OTl46qmncN999+Gjjz5CTk6O0qGRKKivrwfHcRAFFoaCfNkYiYy5k0d07q/rd+HTo1sAAAaNHmOTx+DysiUjOmcoPNYuuFuPy/YZJ86M2vUTlS9nNBoNFRFxxmazYc+ePVFv6aScIaFyu93S0hhURJBgUM4QIhfT5fT//d//oaCgABaLBa+++qrS4ZAoqz9qx+YNR7B5Qw22fHoEVd80jHigfru9dwkTB+dEblIm2Cg+VXIck3ezZbQG6PKnRO36hMQSpYpOQgghJJawo2TIVUwXngzD4KyzzoIoivjss8+UDodESX5+PgoLC5Fk8v4SiiIgfLeOJzvCwrPJ2iLbLkyN7hI99ppvZNuajHyIAh/VGBKRL2doyaX4MVDRmZqaGpWik3KGhEqj0UCr1UKj0Qx9MCGgnCHB83hcSocQFTH/ODkz07u2YbjWAiWxLysrCwCg05pl+1mWBcOOrPB08xwYMBDhnWU5Pzl3ROcLhSgKcNTtle1Tp2aBUWujFkOi8uUMiR+Bei+kpqZixowZUWnppJwhoaLigYSKcoYEy8LZASRJ24m6FkjMF54nTpwAQGshjUYeT58ZbVUjz4HHzrsbbo8bzbZWNFlbUJo1acTnDJa75TgEp022zzChnHKbjEomkwkVFRVSq6evpZPW1ySEEEISU0wXng0NDfj444/BMAzGjRundDgkyvi+hecIWzt9tGotxqcVYHxaQVjOFyx77S7ZNqs3wTBuWlRjICSWJCUloaKiAsePH0dpaSkVnYQQQkYlDz86hl3F3BhPt9uNlpYWvPvuu7j22mvhdDoBgJZTGYU8HvkvobO+Hm1fbFYompHrN74zPQ/q9DyFoiEkNiQlJaGsrIyKTkIIIaOWAGHogxJAVFo8p06dOqL3p6Sk4Prrrw9TNCTWVVVVgeM4tLZaZPsZgQdG0OjZaDmJ1p52pOqSkapPQaouWVrLM9IEzgVXc61sn25sMVga3xkWvpzRaDQoLy9XOhzSh8vlgk6nUzoMGcoZEiq73S4tjWE0GpUOh8QByhkSrBSNfE35RB2EFZVP3aI4/CGyycnJeO6555CamhrGiEg8EHh53jCiAHYEH16bra042nVC2h6fNhbzCmYN+3yhcByvBmSz1zIwTjk1KtcmREkWiwVVVVUoKChAUVGR0uEQQgghMUfvaUe6vUfaVouJOcttVArPUKarV6lU0Ov1GDNmDObPn4+VK1ciLS0tcsGRmGM0GuHxeMDAKtvPigJY7fALz26nvAU1VZcy7HOFyn5ou2xblZIJXV70JjZKdL6coXUfY4vFYsGePXvA8zyOHTsGhmEwfvx4pcMCQDlDQseyrNR6RUgwKGdIsFK1AtKcrdK2Gm4Fo4mcqPzFpTU4SSgmT54MAKjebgXQOwusRnCC1Q6vayov8NjbeggmjQFJWhNUrApp+ugt1utsOiLb1maPg8o4OhYLjgZfzpDY4V90+tTV1UGv1yM3N3rLGA2EcoaESq/XKx0CiTOJkDM//OEP8fnnn+N3v/sdVq5cqXQ4CStz/FjUHz8sbes0iflQNCrf1aFDh6BSqegPPQlJ35mvjJwVKt3wCs9WWwe+OtE7uY9JY8TZE04fQXShSa44F1xHA7iuk/B0tcA4OTpdfAlRQnd3N6qqqmRFJwBkZGTQ+pmERMCxrgYUpUd3pnaS+N599118/vnnSocxKmhSk+A/zFOrS8wJ96Iyq+3zzz+PZcuWYdmyZdi4cWM0LkkSgIfzyLYZkQczzDGe7Y5O2bYgCsgypg87tlDwdgsEpw0qUxr0BaVImrEIpuJ5Ubk2IdE2WNE5ffp0mr2WkDAzO7rxyOd/hNnRrXQoJIF88cUXePDBB5UOgySYqBSeVVVVEEURR44cQXp6dD7sk/jHc/IPrqwoQDXMwvOktU22nZuUFbUxF1xHk2yb1RqgSs6IyrUJiaahik6WjbkVvAiJex8c3ACbuwcfHtygdCgkQbz77ru47bbbwHGc0qGMGiLLg9VZpP8YXc/Qb4pDUelq29XVJX1dVlYWjUuSOHbixAnwPI8em/yXjhV5sPrhFZ68yCNNnwLzdxMM5SXljDjOYLk7GmTbmsx8mmggzHw5o1KpMG7cOKXDGZUGKjozMzNRVlYWc0Un5QwJlcvVO8tkrCwPZHZ0Y33tlwCA9bVfYnnp+Ugz0CoAsSIWc2YwVqsVTz75JP73v/8pHcqoc4Jpw6slvfOaZHICLlIwnkiJSuFZVFSEQ4cOAQCam5sxYcKEaFyWxCmz2QyO4+B2yZ+0MRDBqjXDOudFU87CRVPOgpNzoqWnHSwTnQ/BgtsB3iLv5qvNDH6WZxIcX85oNBoqIhRgNpuxd+/euCk6AcoZEjqe52NuhtIPDm4Ax3v/Vrp5Dh8e3IAbZl2ucFTEJxZzZiCrV6/Gb3/7W3R0dADw9lS54IIL8MYbbygc2ejQ2apFceXZ0raotSsYTeRE5dPAj3/8Y+mX7oknnuj34YSQQCbkeVDc9jWmtO/ApI5vkMZ1gFGNLGX1Gj3GpxWgMDU6xR+j1iJp+gLo8iaC1erBqNRQpyk/oych4RKPRSchicC/tdNnfe2XCT/Ws7m5GY899hguvPBCzJgxA3PnzsX111+P1atXAwBeeukllJSUoKSkpN97ffv/8pe/oL29Hbfffjtmz56N2bNnY8WKFfjoo49kxwuCgE8++QQ/+clPsHDhQkyfPh3z5s3DqlWr8Je//AUWi6XfNXyuv/56zJo1C7Nnzx70+7n33nuluBoaGgK+duaZZwLw9tS47777sGjRIkyfPh0LFizAHXfcgT179gT1sxvM//73P6noXLBgAd577z1UVFSM+LwkOE4HB63bKP2nccb/jMiBRKXF88ILL8Sf/vQnPPjgg/j8889x6aWXYtWqVZg5cyYKCgqQkpJCH06IpKSkBKIoQlVvg03gwEAEIwpgGYCNszX3Oj/7L1SmVBgmzoRh8ikQnT1gWJpcJdx8ORMPT5UTidlsRlVVFQRBkO3PysrCtGnTYvq+TjlDQhVrS2P4t3b6JHqr5/bt23Hrrbeip6d3KI7b7caOHTuwY8cObNiwIWDB2ZfNZsO1116LY8eOSfsOHjyIlJTe9b1PnjyJO+64A7t27ZK912w2w2w2Y8+ePXj55Zfx5JNPSoXhQMKRO7t27cIPf/hDWbHb1taGtWvX4uOPP8Y999yDm266aUTXGDt2LO666y4sXbp0pOGSEDHNZgC9w8AMTmHAY+NZVD7F33zzzQCAwsJCmM1m1NTU4LHHHgvpHAzDYP/+/ZEIj8QY3zgIl9MDpyapd78IYJgfZL9prIJerYNRY4BRa0CWIR1qVWTTX3A50L1zLSB4gM9egcqUhryrfknrd0ZAPIydSTQcx6G6ujoui06AcoaELpZyOlBrp0+ijvWsrq7GLbfcAqfTCQA499xzcc4550Cj0WDHjh14//33sW7dOmzdunXIc/33v/+Fy+XCggULsGzZMpjNZnzxxRdYsGABAO+Y9ZtuuglHjx4F4C3IVq5ciYkTJ6K7uxsbN27Eli1bYDabceutt+Kvf/0rFi5cOOD1Rpo7drsdt99+OywWC8rKynDZZZchJSUFO3fuxDvvvAOPx4PHH38cRqMRV1555bCuceedd2LGjBlQx9kD/kSR5r+WCgBWVCiQCItKdm3evFl6quz7vygm6E+UhA3fZ4wnyzDDap1w8xyOdp2Q7Vsy5WwkRbjwdByv9had3+EdNmgy8iJ6TUKiRaPRoLi4GAcOHJDu5/FSdBIS7wK1dvokaqvnb37zGzidTjAMg9/+9rdYuXKl9NqKFStw6aWX4pZbboHVah3yXC6XC2eddRb++te/Sp8rbrzxRun1J598Uio6zzvvPDz11FOyVsurr74a7733Hu6//354PB7cfffd2LBhA5KSkhAJVqsVVqsVV1xxBR5++GFpWSrfUoU333wzHA4Hnn76aSxevFjWchusWbNofXEljZa+N1H5dJCfn48xY8bI/svPzw/pvzFjxkQjVBJD+D7reLKq4f1a2jlHv30GTeS7TDnq5GMu9IUlYLWGiF+XkGjJycnB1KlTwTAMsrOzqegkJAoGa+30SbSxnl9//TV2794NALjiiitkRafPqaeeinvuuSfoc958880BH2a3tLTg/fffBwAUFBTgD3/4Q8CuspdeeqlUrHZ2dkZ8JtiSkhL8+te/7rcW8pw5c3DbbbcB8HYDfvfddyMaB4kMAfJeODyTmC3PUfmuPvvss2hchiQIq9UKQRDgsssLxuF+oN3XeghN1hYkaY0waYwwaY1QRWGcpeOovPA0TJgZ8WuOVr6cYVkWycnUlTmacnJyoNVq426sPuUMCZX/DKV9P/xH02CtnT6J1uq5adMm6evvfe97Ax536aWX4umnn4bZbB70fBqNBuXl5QFf27p1q7R+5XXXXQeDYeAHxj/4wQ/wn//8Bx6PBxs3bsQPfvCDgMf5lm4aiZtuumnAbrBXXnkl/vSnP8HtduPzzz+Xtd6S+GDKzwea3NI2o0nM+UDC+inhvvvuw3333YctW7aE87RklKmrq8ORI0dgsci7ywy3xfOrE9/iqxPfYP2RL/HegXU41F4bjjAH5WqrB9fZJNtnnDgz4tcdrXw5U1dXp3Qoo1JaWlpcFZ0A5QwJncvlkv5TSjCtnT6J1Oq5c+dOAEB6ejomT5484HFarXbIWWQB75wjWq024GuVlZXS1/Pnzx/0PFlZWVI8e/fuHXAYWThy5vTTTx/wteTkZBQXFwNAWGa4JdHH6vosF5igfW/D+knhvffew/vvv4+amppwnpaMUofMGTieNh0nUstQnzoNdtXwWiU67WbZdnnu1DBEN7ieffKHL6zOBG1eUcSvS0gkdHZ2StPsE0KUE0xrp4+v1TMRtLa2AvAO3RpKMOvyDjYGsrOzd+3twsLCIc/lO4bjuEGXVxkJo9GI3NzBl2Lz/Wzsdjvs9sRcAzKRaVKyZduiKvCDkXiXmB2ISVzLzc0Fz/PgxSYIrN8jHzH0bgeiKKLZ1io/f1L2AEeHT9/xnZrsAjBMfLUIxRNfzijZ/S1RdXZ2orq6GqIoYvr06cjMzFQ6pLCgnCGh0mg0ii7BE0prp0+izHDr6zobzLIkwRwzUGsnANlSLYN1sw10PYfDgdTU/j9rjUbTb18oTCbTkMf4x2Gz2WA0Gkd0TRJdHNenVZxJzElY6ZMwiTm5ubnIz89H3xWMhjPDt5vnUJgyBqm63tbSvOTIFp4Cz8Hdely2zzCBFmGOJF/ODPVEmISmo6NDWjJFFEVUV1fLWgPiGeUMCZVGo4FWqx1xETFcobR2+iRKq6dv+SOHo/9kgX35llsZLv9iM5jr+bcuDlT0DpYzwXTDdbvdQx7ji4NhGKSlpQ15PIktTT1tsm2n4BngyPhGLZ4kJomCiL4d3NXDGOOpU2vx6Hm/AOCd3bbF1o5sY0Y4QhyQo7YSokf+RyJp2hkRvSYh4eYrOv3HLImiiNbWVmRkRPZ3iBAiN5zWTp9EaPXMy8vDkSNH0NTUNOSxwRwzmKysLOnr+vp6TJ06+PCc48e9D5r1er2s4PNvGfd4PANODBTM8i8WiwU9PT2Dtnw2NDQA8I65H6xFlxAlUYsniUk837e9E1CPsEucUWPAhPTCiM9o23Nou2xblZQObVZBRK9JSDgFKjoBbythSUmJQlERMnoNp7XTJxFaPSsqvL2GzGYzamsHniBQEARp2ZXhmjFjhvT1119/PeixLS0t0nqfvsl9fPyLP5vNNuA5jhw5MmRMoigOOmmQ/89l7ty5Q56PxB6XVZ4jrEBdbQmJmkCFpypO2ued9Qdk27qxxQMcSUjsaW9vH7DoLC0tVWx8GyGj1UhaO33ifYbbiy66SPr61VdfHfC4devWoa2tbcDXg7Fo0SKpa+yrr746aHfbf/3rXxAE7+eVs846S/aa/3j4Awfknwt8Kisr0dzcHFRcr7/++oCvvfbaa9ISMOeee25Q5yMxpkU+gZ+ao8KTkKjYv38/9uzZ22+/dhhrGh1sO4KtJ3aiuuUgTpgbYXP3DP2mEfD0mOHpapHtM04+JaLXJL6c2YP9+/crHUpca29vx759+0ZF0Uk5Q0LlcDhgt9uDGvcXTp8f+xrJWhMyDGnD/i9Ja8LnxwZvvYtlCxYsQGlpKQBvAbZ27dp+xxw6dAiPPvroiK+Vk5ODZcuWAfB2tf3FL34RcNzo+++/j5dffhmAt8i8+uqrZa/7t5w+//zz8HjkY/ZOnjyJ+++/P+i41q9fH7Do3rp1K1544QUAQFFRERYvXhz0OUnsSNHIu1Enzl9buYi0Ib3++uuyxX7DgWEY6RecJDaPxwO3q3+XIs0wCs8WWztaetrRCG8xWJZTjLKcyLVAervZ+n1oZ1iYSudF7HrEy+PxwOPxJFRhFG0DFZ15eXkoKSlJuJ8t5QwJlSiKA67TGEmXTL0Ql0y9MOrXjSUsy+KRRx7BtddeC47jcMcdd+Djjz/GokWLoNPpUFlZibfeegsulwsqlQo8z49obeH77rsPO3fuRH19PTZs2IAlS5bgsssuw4QJE2CxWLBx40Zs3rxZiu2xxx7rN/Z98eLF+MMf/gCHw4GdO3di1apVuOyyy5CcnIz9+/fj7bffhtVqxYwZM7B3b/+H7X0xDINHHnkEmzdvxvnnnw+1Wo1t27bhgw8+gCAI0Gg0+PWvf03jO+OUlutEiqN3oimNqNx6wZEUkcKzvr4e9fX1YTufktOXk+jTarVQq/rP5qXWhJ6uFpe8z7z/7LaR4KiVjy3RZORDpU+K6DWJN2dYlh1w8gYyuLa2Nuzfv3/UFJ0A5QwJHcMwCfm7EC8qKirwzDPP4O6774bdbsf69euxfv162TGXX345GhsbsW3bthEVYCkpKXj11Vdx2223oaqqCo2NjXj22Wf7HZeWloann34aZ5zRfwLBzMxMPProo7j//vvhdruxb98+7Nu3T3bMDTfcgJkzZ+LOO+8cMqa7774bzzzzDDZt2tSvccdkMuHZZ5/FaaedFuJ3SmJFupZDpqN3Yiw1hp7JOB5F5C+uEk8ESeIoLS1Fa7MFgHxmuqSC0JY96HE7UN16CEaNASatESaNAcm6odfCGgld4VSIHg5cVws83a3QF9BELNHg64JFQjdQ0TlmzBgUFxcn7AdtyhkSqmDWdCSRdf755+Ojjz7Cv//9b2zevBknT56EVqvFtGnTcN111+H888/HtddeC8BbPI5Ebm4u3nzzTaxduxZr1qzB3r170dXVhbS0NBQWFmLx4sW45JJLBr3OsmXLMGPGDPzzn//E1q1b0draipSUFMyYMQPXXXcdFixYgDVr1gQVzwUXXIAFCxbgr3/9K7Zv347u7m7k5+fj7LPPxve//31aGirO6Vl5SZaoYyEjUnguXboUCxYsiMSpySjR99kFwwCTr1oZ0jnabO3Y3Vwt27e89LyRhjYgURTBCAJ0Y4uhG1sMUeBhmjInYtcjZKRGa9FJCIlfBQUF+OUvfzng6x0d3klaxowZ0++1Q4cOhXQthmGwdOlSLF26NLQg/RQVFeGRRx4Z8PVQzl9cXIynn3562LGEauXKlVi5MrTPXoQMJiKF5/Tp03HppZdG4tRklOg7q61KFfqznw6nWbadqk+BSRu5Fk/BYYXgt34nw6qgzcyP2PUIGSmr1UpFJyEk5n3wwQdYvXo1CgsL8cMf/nDA1r3a2locO3YMADBt2rQoRkgICQYNbiExyePpU3iqQy8823rkU1PnGCO76L3H0i7bZrUGMDpjRK9JyEhMmDABgiBIC4/n5+djypQpVHQSQmJKSkoKvvzSu6SMKIp46KGH+h1js9nwwAMPSA/TLr744qjGSMhIMAwPPdc7L4mGGd66vbGOCk8Sc5qamnCyWb7e2HAKT4Naj0np49Fq74DVZUN2Ula4QgzIY+mzBlNKJn2Aj5KmpibwPA+VSoX8fGplDhbDMJg0aRIA78Lro6nopJwhoXK7e3u00Myh0XXGGWegoKAADQ0NeO2117B//35ccMEFyMvLg8PhwNGjR/HBBx+gvd37APiKK67AqaeeqnDUlDMkeN1iF/KtR6RtpzYx/xZT4UliTnt7Ozo6rLJ96mF0tV00YT4WTZgPAHBwTrj5yM4Qxmi0YHVGCC47AECdEtlCl/Rqb28Hx3HQaDRURITIv/gcLUUnQDlDQufxeKRZ9qmIiC6tVovnn38eP/rRj9Dc3IzKykpUVlYGPPbqq68OaX3MSKKcIcEyO5NRV9DbSq8RenCugvFEChWeJCaZktUonZmK7Kwc8LwArS70NTz9GTR6GDT6MEXXn+P4Pqh0JqTOXQrR7YTH0gFVUnrErkdIqHyte4GMpoKTEBKfSktL8fHHH+Ptt9/Gp59+isOHD6O7uxsmkwm5ubmYNWsWLr/8cpSXlysdKiEhc/EsLPpsaVvP6RSMJnKo8CQxZ9KkSbBmOWFZ8zKcEMCqVPCoGViLWCRPmax0eAF1fvYKXE01YA3JMEwoR+q85dAaaP3OaJk0aRKt9zuIlpYWHD16FDNnzqQlIb5DOUNCpdMl5gfBeGIwGHD99dfj+uuvVzqUoIw0Zx5//HE8/vjjYYqGxDJ+lPwtCnvhSWt4kpEymUyw2wR0dTgA0TvJkIZ3wd3ZGdJ5thzfCa1K423tVOtRmJoPnTr8XV14uxWuJm+/fMFhRc/+rUiZGbllW0h/JlNk12eNZy0tLThw4AAAoLKykorP71DOkFAN1GOAkIFQzpBgpWrlk1Emahka1sLzP//5DwBg3Lhx4TwtGYUEQZQt5smIIlht8E8OPbwHTdYW2b6cpKyIFJ6OY1UA/GJVa6ErpMXpifJOnjyJgwcPStsulwuVlZU45ZRTaLwRIYQQEiNYJvS5TOJRWAvPuXPnhvN0ZBTj3R7IijkIYPXBF552j7PfPqM6MmM8HUf3yLb148vARqDAJSQUfYtOn5ycHGg0GgUiIoQQQkggvCAvyXgmMVvLaYwniTkOhwP2nh4YiorAiCJEQYARTugyM4M+R3XLQdR2HodJY4BJa0SaPgVqVfjTXRRF2Ovkhadx4sywX4cMzuFwSOP1qBsp0NzcjEOHDvXbX1hYiIkTJ9K4RlDOkNAJgiDlDMuOjtYJMjKUMyRYKsgfCItUeBISHTU1NWht6gE/YTxyc3MBABmZJuhzsod4Z6/q1sPY3VwtbU/NnozLypaEPVauoxG8pV22T180I+zXIYOrqamRlsYY7TMaUtEZHMoZEiqn0ykVEUajceg3kFGPcoYQOSo8SUxqPuFEwzEHGmqdYFgG+QWpKD+1IOj3m50W2fbU7CnhDhEA4DhaKdtmtAYIzp6IXIuQoQxUdI4bNw4TJkygopMQQgiJQYx+dEx4R4UniTmZmZlgWQs4Vw84lxsA0GNzh3SONpu8FTLHFHw33VDYj+ySbWvSc6FJz4vItcjAMjMzB12ncjRoamrC4cOH++2nojMwyhkSKrVaTUvwkJBQzpBgiRgdq4JQ4UliztixY2EwtAIwS/tYNrSb9oT0cVCxKrT1dMDq7olI4Sl6ODjr98v2abIKoUpKD/u1yODGjh2rdAiKGqjoHD9+PIqKiuhDTwCjPWdI6GgmaBIqyhkSLG9Pvd5JMBO1DKXCk8QkURBk20yIheeP590gfW3nHNCw4U91Z8NBiB5Ots9QNIM+5JOoamxsRE1NTb/9VHQSQgghJJZQ4UlikiDIn/WwI/jwbNREZsZK+9Hdsm1VUjp0uRMici1CAmlvb6eikxBCCIlzfJ8Gl0RFczuTmORs75Rt9xzp/+FaafYj8sJTnZ4HTXquQtGQ0Sg9PR1paWmyfUVFRTSmkxBCCIkjvMgrHUJUUIsniTmHDx9Gj9UGoHdshOByBf3+TocZlc37YdIaYNIYkKRNQlF68DPiBoPv6QbXdkK2T5c7AewomZUs1hw+fFhaGqO4uFjpcKJGpVJhxowZ2Lt3L8xmM4qKilBUVKR0WHFhtOYMGT7/pTH0ev3QbyCjHuUMCZZJI19uJ1EfHVPhSWKO0+mE4JE/+QlliKfVZUO7vRPtdu92ii78haejrkq+Q6WGgdbvVIzT6QTHceD50fHE0J+v+Gxra0NeHs2oHKzRnDNkeARBoBlKSUgoZ0iw9J5uJLl6u9uqheAbXOIJFZ4k5rAsC7HPdF6h3LN73A7ZdiTGeDI6AzSZY8GZWwDeA3VqDjRZ4S1uSfBYlpX+G41UKhUVnSEa7TlDQucrHqiIIMGinCHBSte4kN3TJW2rEdoygvGCCk8Sc6ZPn47t2iOAs3efCsG3SnxxbBu6nVYYtUaYNAaMTw3/sgnqpAyYpp0BURDAWzvAqDQ0vlNB06dPVzqEiGttbUVmZiatOxkmoyFnSHgZDJGZqI4krnjLmZaWFrz22mvYvHkz6uvr4XA4kJaWhunTp2PZsmVYvHgxPayLkIz8XJyorZO2terE/FtPhSeJSTqVfHYvI4LrciCKIrae+AZuvneZk6K08LdEujsaAAAMy0Kdmg1tdiEYNjFvEkR59fX1qK2tRWpqKsrLy6n4JIQQElZr1qzBL3/5S9jtdtn+trY2bNq0CZs2bcLrr7+OZ599FhkZGQpFmbh02enQpfUWnnpdYpZoifldkbgn8PK+tsGu42lxWWVFJwCU500NW1wAIHo4eLpaZPu0mbQYPYmMEydO4OjRowCA7u5u7N27FzNmzKDikxAi6ak7BtOEIqXDIHFq8+bN+MUvfgGe58EwDC644AIsXLgQJpMJdXV1eOedd9DY2IidO3fixz/+MV555RVoNBqlwyZxiNrLSUwS+qxnxAZZeLb1yJdhUTEsMgxp4QoLAMB1NUMUe+NjGBbqjDFhvQYhgLzo9DGbzejo6FAoIkJIrHF3daH6Vw/B3dU19MGE9MFxHB555BHwPA+VSoUXXngBzz77LK644gosWbIEP/nJT/DRRx9h/vz5AIDdu3fjjTfeUDjq/8/encc3Uef/A3/N5E56H7RASwuFlhtUwANUFHUFReQUBF11FXU9EHdlXdn1wGO9/S6uu+rP9VxPUEARD8CDU0Ch5T5arrb0btM2dzIzvz9Cppk0SZM2aY6+n48HDzIzn3zmk/bTybznc8UfGQuoWYv4TyWLzzGeFHiSqFNbWwu73SHZF+istnJWjvNzzsGA1H5IUOqQrk2FLMRdYDlTKxi3ia7lKZlg5Uo/7yDhVltbi6qqKtTW1ka6KCHjLegEgIKCAvTq1SsCJYov8VhnSHjZ7XbYbDbY7faOE3ejyi9Ww9FqQOWqNZEuCvEQrXXG3fbt23H6tHN5uAULFuCyyy5rl0an0+Gll14Sl4RZsWJFt5axJzjB1OC9YQ3iv8/zajp+UwyirrYk6lRXV8PukAaegXa1zU/NwZ/GLxS3bY7QPjHirSaocwdD1Wcg7A1nYG+ogIK62UZcdXW1uCZjPARlp06dwokTJ9rtLygoQG5ubgRKFH/irc6Q8LPb7eLSGNHSzdDW1ITqb78HAFR/8x36Tp8GZWpqhEtFXKKxznjavn27+HratGk+02VkZGDMmDHYsmULjhw5AovFQmuThlBzoxw5R8eK23K5xU/q2EWBJ4lKGUwTVPpqCAwLgWGQksZ3/CYvlCFuiWzavAKtxRugzh8B7YDR0BacA3lyZkjPQXo2X0HnwIEDkZNDS/YQQtpUfrEavM35gJW32VC5ag3633ZLZAsVZlVVVXj77bexadMmnDlzBhqNBkVFRbjhhhtw7bXX4s0338RLL70EADhy5IjkvUVFRQCARYsWYc6cOVi2bBm2bNkCAMjNzcXtt9+OqVOniul5nsf69evx5ZdfYu/evWhqaoJOp0NeXh4mTpyIBQsWICkpyWs5b7rpJuzcuROAs3uqLw8//DBWrVoFANi4caPkOu86lpWVhU2bNuH06dP4z3/+g23btqGhoQEpKSkYO3YsbrnlFowaNSrYHyUAQK1Wo3///qiurkZ+fr7ftMnJyeLrlpYWCjxDyGjgkNTctjoCpzBEsDThQ4EniTr5+floVHFQmSoACGAgILlXdIyhNJ8oBm81wXRkB0xHdiBlwmykXTo30sXq8fLz88HzfMxP837y5EmcPHmy3X4KOkMvXuoM6T4qlUpsvYoG7q2dLvHe6rljxw7cfffdMBqN4j6bzYadO3di586dWL9+vRhc+mMwGDB//nzJ9fbw4cOSILK6uhqLFy/G7t27Je/V6/XQ6/UoKSnBe++9hxdeeAGXXHKJ3/OpVKoAP6Fvu3fvxp133omWlhZxX11dHdatW4dvvvkGf/nLX3DrrbcGne+iRYuwaNGigNKWlpYCcK5LmpKSEvS5iG98jR5AW0OGxtK5BpdoR4EniTpJSUkwCWq0qDPEfalsYE/VtpzaCavDhkRVAhKUWuQk90GSKiEk5XK0NsFWe1qyTztgdEjyJl3j64lzLKGgs3vFQ50h3SvaZpJ2b+10iedWz/3792PhwoWwWJxdECdNmoTLL78cCoUCO3fuxOrVq/Htt99i69atHeb1v//9D1arFRMmTMDUqVOh1+vx888/Y8KECQCcM4jfeuut4jj7vn37YsaMGRgwYACam5uxYcMGbNmyBXq9HnfffTdef/11XHzxxT7P19W6YzKZcP/996OlpQXDhg3DzJkzkZSUhF27duHzzz+Hw+HAs88+C61WixtuuKFL5/Jl//79YgvykCFDoFTS3BahlMJI73Nl8Rl3UuBJopPAcZJtNsCFdBvNelgcNjSY9QCAFE1yyAJP84kSyTaj0kLVd1BI8iY9m6+gc9CgQejbl8YQE0KkvLV2usRrq+dTTz0Fi8UChmHwzDPPYMaMGeKxadOmYfr06Vi4cCFaW1s7zMtqtWLixIl4/fXXxRbsW265RTz+wgsviEHnFVdcIZlYBwDmzZuHVatW4ZFHHoHD4cCSJUuwfv16JCSE5n7DU2trK1pbWzF79mw88cQTYiA7depUTJ06FXfccQfMZjNefvllTJ48OeQP1niex9NPPy1uu3dHJqEhY3pG75ue8SlJzOE56aMeRt5xVbU5bLB4TCaUqNSFrEzm48WSbU3+CDAhnjGX9CyCIODEiRMUdBJCguKttdPF1eoZT3755RdxnOTs2bMlQafLmDFj8Je//CXgPO+44w6v3aZramqwevVqAEBOTg5efPFFr2MZp0+fLgarjY2N+PTTTwM+d2cUFRXh8ccfb9d6OnbsWNx7770AnN2Av/jii5Cf+5VXXhG7HGdnZ+PGG28M+Tl6Op6X/l55Jj7vLynwJFHHbre3CzzZALqplDaewr6awzjeeBrVhjoYbSboFNqQlEkQeJg8Ak9t/84N5CehFwtT1nvjcDhQXV3dbj8FneEXq3WGRA7P8+K/SPLX2ulS/c13cbWu548//ii+/v3vf+8z3fTp0wMae6hQKDBy5Eivx7Zu3SpeFxYsWACNRuMznz/84Q+Qy52dBzds2OAzXSjqzK233iqey9MNN9wgdn396aefunwudx988AHefPNNAM4uwy+88AJNKhQG2qw+km3Bx+861lHgSaLOoUOHYLVaJfsC6Wpba6zHkfoy7K7ahy2nduKX8t0hmzjEVnMSvFnafUcQ4rQDfgw6dOgQ9u3bh0OHDkW6KEFRKBQYPXq0ZOKJwsJCCjq7QazWGRI5FosFZrNZHGMYKf5aO13irdVz165dAIDU1FQMHDjQZzqlUolzzz23w/xyc3N9jlEsLi4WX19wwQV+88nIyBDLs2/fPgiC4DVdKOrMRRdd5PNYYmIiCgsLAQAlJSU+0wXr/fffl3SxXbJkCcaNGxey/EkbWYL0AUe89ryN049FYt0ZWR9UJQ5EVeJAVCcUoMnh+4mjS5O5WbKdkxy6mXDNx6UXcladAEVqdsjyJz2XRqMRg8/CwkL06dOn4zcRQnqkQFo7XeKp1bO2thYAAro+9uvXr8M0/sZANjY2iq8DWTfZlcZut0tmnA0lrVaLrKwsv2lcPxuTyQSTydTlc/7rX//C008/LQbTf/zjHyXjYEloyXUpkm1BFp8tnvH5qUhMS05OhoXRwKZo68phZzq+mNeZGiXbmdq0kJXJs5utPDUL8sTQ5U+6Jjk5GQ6Hw2c3pGin0Wgwbty4qJs1M57Fep0h3U8mk0V8OZVAWjtd4mmGW71eDwABdfEMJI2/GVndl2rx183W2/nMZrNkrUuXrl7bdbqO56twL4fBYIBW27mhRhzH4bHHHsOKFSvEfffeey/uu+++TuVHAuM5ZwgTp02e9I1Lok5eXh7A/CrZF8hFe0BqP4zrOxp1pgbUGxuRoUsPSXl4mwWWisOSfYrUbMgSKPCMFnl5eZEuQodcT4193bRS0Nm9YqHOkOgSirUYuyKY1k6XeJnhVqVSwW63w2w2d5i2q91a3YNNs9nc4Uy17q2LvoJef3XHc2iRN7YAHja4ytGVNTatVisWLVokjqllGKbT64OS4Jxukc73YObjc/4BCjxJVBIEBnC7P2cDmNX2ioIJuKJggrjNh2gMpuX0AYBzuO1hoEzvC1YTnmnTSfwRBAHHjx8Hz/MYOHBg1CxATwiJHcG0drrES6tndnY2SktLcebMmQ7TBpLGn4yMtjXEy8vLMWTIEL/pT506BcAZdLoHfO7XeX+9KwJZ/qWlpQVGo9Fvy2dFRQUAICUlpVNrbFosFtx555345ZdfAAByuRxPPvmk1xmESej1lHlD4rMdl8Q8z+H5sk50h2ND1E3B5DG+U5aUDnlKFgUPJCCuoLO8vByVlZUoKyvzOQEFIYR405nWTpd4GOs5apRzFnm9Xo+ysjKf6XieF5dd6awRI0aIr11BmC81NTXiep+uyX1c3IM/g8HgM4/S0tIOyyQIgt9Jg9x/Lp2Z/IfjOCxatEj8vCqVCsuXL6egsxs5PFq+mTi9TaDAk0QpaVAnC6DFM1w8JxZSpGbT+E4SEEEQUFZWhvLycnFfRUWFeKNCCCGB6Exrp0s8zHB79dVXi68//PBDn+m+/fZb1NXVdelcl156KRQKhXguf91733nnHXGplIkTJ0qOpae3DffxNXt2cXExqqqqAirXxx9/7PPYRx99JC4BM2nSpIDyc/fvf/9bXIZFrVbj9ddf71Q+pPO48hrJtsIWny2gFHiSqFNWVualxdP/+LcmczPWHtmIH45vw46KPThQezQkZXG01MPeUCHZJ0/NgiItdDPmkq4rKyvDkSNH/D4J726uoNPV/cldIBNFkPCKxjpDopvFYhH/daeutHa6xHqr54QJEzB48GAAzgBs3bp17dIcOXIETz75ZJfP1atXL0ydOhWAs6vtQw895PV3vnr1arz33nsAnEHmvHnzJMfdW05fe+01OBwOyfHq6mo88sgjAZfr+++/9xp0b926Ff/5z38AAPn5+Zg8eXLAeQLOn9vrr78OwNk9+Pnnn/e7dAsJD51cOj44XvvU0RhPEnWMRiMEzxZPhf+qarSbYLKbYbKbUW8CdAoNhvUq9PueQNgbq8Ao1RBszi8dRq6EMiMHsqSMDt5JupPRaITdbhefUkeaIAgoLS1FZWVlu2NDhgzpcFp8En7RVmdI9ON5PiKz2tZu/BHyxK7PKVC78UfkzIrNrpMsy2LZsmWYP38+7HY7Fi9ejG+++QaXXnopVCoViouLsWLFClitVshkMnAc16V1vP/6179i165dKC8vx/r16zFlyhTMnDkT/fv3R0tLCzZs2IDNmzeLZXv66aeRlibtCTV58mS8+OKLMJvN2LVrF+bMmYOZM2ciMTERBw8exMqVK9Ha2ooRI0Zg3759HZaJYRgsW7YMmzdvxpVXXgm5XI7t27djzZo14HkeCoUCjz/+eNDjO9944w0xKB46dChkMhk2bNjQ4fvOPffcdp+ZdJ7SYYDG1tbIouA7nnQqFlHgSaKTxxe7XOG/xdNkk3aF0So6ngI9EOp+Q5EyfibsTdVwNNVAEHiosvrT+E7iEwWdhJBQypk1I2YDxlAaNWoUXnnlFSxZsgQmkwnff/89vv9e2hI8a9YsVFZWYvv27Z2aYMclKSkJH374Ie69917s3bsXlZWVWL58ebt0KSkpePnllzF+/Ph2x9LT07Fs2TIsXboUNpsNBw4cwIEDByRpbr75ZowePRoPPvhgh2VasmQJXnnlFfz444/irLMuOp0Oy5cvx4UXXhjU5zQajZKf4YEDB3DPPfcE9N73338f559/flDnI76lKUzINjSI2zJ0rmt9tKPAk0Sd4cOHYw1OSvbJNf7X5fqlYg9KG05Aq9BCq9QgXROaqePtTTUQHHbIE9MhT3SO11D2yg9J3iR0hg8fHukiAKCgM5ZES50hsSOQNR1JeF155ZX46quv8O6772Lz5s2orq6GUqnE0KFDsWDBAlx55ZWYP38+AGfw2BVZWVn47LPPsG7dOnz99dfYt28fmpqakJKSgtzcXEyePBnXX3+93/NMnToVI0aMwDvvvIOtW7eitrYWSUlJGDFiBBYsWIAJEybg66+/Dqg8V111FSZMmIDXX38dO3bsQHNzM/r06YPLLrsMt912W6e+X44fPy6ODSWRpZUpALQ1osTrAmsUeJKow7IsWLkcHNc2sLrP2JF+31PZXIXD9W1jtdQyJSYVtH8CGSxb7UnJtjwxHTJtYpfzJaHVlS5VoSIIAo4dO+Z1Kv+hQ4eiV69eESgV8SUa6gyJLdTTJTrk5OTgb3/7m8/jDQ3OVqPevdvPxXDkyJGgzsUwDK655hpcc801wRXS7f39+/fHsmXLfKYJJv/CwkK8/PLLnSqLNyNGjAj6Z0JIV1DgSaKSa5Y4F5b1/4Wvt7ZItgvSur44PO+wwd4gDSKUWfldzpfEH19BJ8MwGDJkCAWdhBDSBWvWrMHatWuRm5uLO++802frXllZGU6ePAnA+cCPEBJdKPAkUUfgBXguc9hR4NlkbpZsp2lTulwOe30FBJ4TtxmGgTIzt8v5kvhCQSchhIRXUlISNm3aBMB5zX3sscfapTEYDFi6dKm4TvK1117brWUkpCsYCJDxbTMfs4zDT+rYRYEniTr1DQ3t9rEy/4HnuL6j0WBugt7cgiZLM9I0KV0uhzIzF4xCDUdTNexN1ZBpE8EqVF3Ol4ReY2MjeJ4Hy7LdPsteaWmp16Bz6NChyMzM7NaykMBFss6Q2ORwOMRZbeVyun3qTuPHj0dOTg4qKirw0Ucf4eDBg7jqqquQnZ0Ns9mM48ePY82aNaivrwcAzJ49G2PGjIlwqanOkMAZ0Yg8fdvkU1ZlfHbtp78CEnUqytuve9hRi+ftY+b5PR4sU9ketPz6DTQDRjv/FZwDCPG5mG88qKioEJfG6O4gIj09HVVVVWL3cAo6Y0Mk6wyJTTabjYKICFEqlXjttddw1113oaqqCsXFxSguLvaadt68eUGtjxlOVGdIoJpsGlT1miBus+je9YK7C/0VkOjDMOjdTw2GYZCYmASeF6BUdm9VNR37FabS32Aq/Q0AoBs6HlnTO57unPQ8aWlpGD58OPbv3w9BECjoJISQMBg8eDC++eYbrFy5Ehs3bsTRo0fR3NwMnU6HrKwsnHPOOZg1axZGjvQ/GSEh0chsV6IqaZC4rba3+EkduyjwJFGnd2oaBug3g5WxUFpVYGUyyBxFALqvm6v5RIlkW5XVv9vOTYKXk5MjdpuMBFfwyfM8MjIyIlIGEpxI1xkSe5RKpdh6RSJDo9Hgpptuwk033RTpogSkq3Xm2WefxbPPPhviUpFoZIfQcaI4QIEniTpamQxnTjZJ9g0zmqBOTfaavtpQh+KqA1DLVVDKlEhS6TA8a3Cnz2/X18DeWCXZpxkwqtP5kfCLhq6S0VAGEjj6fZFgUVdJEiyqMyRQSUptpIvQLehRL4k6vJ1rt4+V+15K12Qzo8VqQK2xARUtVag21HXp/Obj0tZOVptEy6gQCIKA5ubmjhMSQgghhARBzkrvc+O1XwUFniTq8HZ7u30ypdJnehtnk2wrZb7TBsJ4dJdkW9t/FBiG/lR6MkEQcPjwYezZswc1NTWRLg4hhBBC4gjHS+8z+Ti976Q+ACT6KBVQpmcAAu9cz1MQ/Aae207/hlPNldDIVVDL1UjvwlIqAs/BcvqAZJ8ivU+n8yPdwzWjLICQj9kTBAGHDh1CbW0tAODQoUNgGIbW54xx4awzJD4JbgtM0zhPEgiqMyRQMo95THgmPkO0+PxUJKYdr68HP2wIWBmL7KwsAIBMo/aZ/mjDcRxvOi1u907sfEBgqTwGwW6V7FP2yu90fqR77N+/X1waI5QzGnoGnS6HDx9GSkoKlH4eiJDoFq46Q+KX2WwWJ4rRanvGeCzSNVRnCJGiwJNEHYuJw5nTZrAMg8aaKjAMgwmTBvlM32o1SLb7p+Z2+tzGIzsk26w2Gaq+vs9N4pevoJNlWQwfPpyCTkIIIYSEhsJ3A0s8ocCTRB2ZTAVji3OCodZmZ1DJ+uihIggCmizStY5S1EmdPre5bI9kW5mZA5kupdP5ke6h0+ngcDhCNoOgIAg4ePAg6uqkE1W5gk6aETX2hbrOkPhHXbJJsKjOkECxsp7xXdQzPiWJKb2z+wA4JdnHyrxfvB28AxP7Xwi9uRlNlmbozS1I6+QYT85ihL2+QrJPkz+SxmXEgIKCgpDlxfM8Dh06REFnnAtlnSE9g1rdM1okSOhQnSGB0ltaALStAx6vq3pS4EmijuA26QcA+Iv7FDIFFo65MSTnNR3bBcmfOiuDdvAFIcmbxAZ/QeeIESOQmpoaoZIRQgghJF7x4DtOFAco8CRRh+M8nvN0U4uj8bB0fKc8pReUNKNtj8HzPA4ePIj6+nrJfgo6CSGEEBJOPB+vbZxS1PmcRJ3WEyelO3gu7OcUBAGW8kOSfeqcIlq/s4egoJMQQgghkeIQHJEuQregFk8SdepPlwPu6xkJvp8CNZr12FlRDJVMCZVcBa1CjdG9hwV9TlvtKfDmVsk+XeH5QedDIuPUqVPiRDF5eXlBvddf0Dly5EikpKSEsKQkWnSlzpCeyWq1iktjqFSqjt9AejyqMyRQGrl0PHC8zi5CgSeJOhazFe6BJ+NniLXFbkGL23IqWoWmU4GnwHNIOOdKOJqq4WiqAW81QlNwTtD5kMhobm4W12QMVkNDAwWdPVBX6gzpmTiOE4MIQgJBdYYESsWZoXSYxG0Fb4lgacKHAk8SdXjOY3IhP93ezQ6rZFst79zaio7GKsgTUiFPSAVyh0CR1gesnG5Ie4LMzEwMGDAAx48fBwDIZDKMGDGCgk5CCCGEdItUuQF9W9omNpTBFsHShA8FniTqJCclA1Xue3xHnj8c34qKlmpo5Cqo5SqkqBODPp8gCHC0SFu8lBk5QedDImfIkCFdeqrcr18/CIKA06dPU9DZQ3S1zpCeh5bGIMGKtTpTXl6O999/H1u3bkVlZSXkcjn69OmDyy+/HDfccAP69KEJF8MlLSMNpxWV4rZSFp/fTRR4kqijUfAAZOK23M+A6701h1FjaHtClJ8SfMDIW03g7dKWU3lyZtD5kMgJRXfJvLw8ZGVlxdyNAukc6mJLgsWyNNkcCU4s1ZnVq1fjscceg8Ui7eJ59OhRHD16FO+//z7+9re/YebMmREqYXzT5mRBm9kWeKpVnevBF+0o8CRRh3dIA09/YzxbrNIJgQozBgR9Pq61UbLNypVg1bqg8yGxj4JOQkgsqj7Tguw+SZEuBolRmzZtwl//+lfwPA+GYXDNNddg7NixkMlkKCkpwapVq2AymbB06VKkpKRg0qRJkS4yiVGx8yiG9Bi8xzqevgJPq8MGs136ZC5FHfwXL6vSQpU9APKEVDAMA1liKnW/i0Ou2WsNBkPHiQkhJEYYWiz44D/bYWiJz8lISHhxHIfHH38cPM+DZVm88cYbeOmllzB37lzMnj0bTz31FN5//30oFAoIgoB//OMf4Hm+44wJ8YJaPM8SBAFr167F559/jkOHDsFkMiEzMxNjx47F/PnzMXLkyC7nv3HjRqxZswZ79+5FY2MjFAoF+vbti/Hjx+Pmm2+mvvNn2awWAG1dDHwFng7egSsKLobe3Ay9pQVNlmakaJKDPp+1+jiUGTmQDxoD8BwER3wO6I5nLS0t4pdmUlL7hw8cx2H//v1oampCY2MjRo8ejYSEhAiUlESLjuoMIZ7cZyiVyWQdv6GbbP2xDGaTHdt+Oo6rrhsa6eIQN9FaZ9xt2bIFlZXOLp6zZ8/GpZde2i7NeeedhxkzZuDTTz9FeXk59u3bh1GjRnV3UeNaraIBPxWdErdTeAaTI1iecKHAE4DFYsGiRYvw008/SfZXVlaisrISX331FR544AEsXLiwU/k3Nzdj8eLF2Lp1q2S/zWYT+85/+OGHePLJJ3H99dd38lPEj9ZWI4C2G0FfjY86pRYLx9zYpXPxVjNqVj4PCDxYbRLUfQuRMflOsCptl/Il3evkyZPi0hieD4ncg04AcDgcKCkpwahRoyj47MH81RlCvHFfk1GrjY7vCEOLBb9tc96s/rrtJC6aOAAJSTRkIFpEY53xZLPZcN5556G0tBRXX321z3RFRUXi68rKSgo8Q6xez4OvGSFuG1mrn9SxiwJPAEuXLhWDzoKCAsyZMwcZGRk4cOAAPvnkE5hMJrz00kvIysrCtGnTgsqb53ncc8892LVrFwCgT58+mDlzJgYMGACj0YgtW7bg+++/h81mw8MPP4ykpCRcfvnlof6IMUUBO1JMVQDDQAADnSJ8XTqsVaWA4MyfN7XAVFZM4zvjiGfQ6cLzPHUVIoTEvK0/lsHhcF7LHHa+R7R6VlVV4e2338amTZtw5swZaDQaFBUV4YYbbsC1116LN998Ey+99BIA4MiRI5L3uoKnRYsWYc6cOVi2bBm2bNkCAMjNzcXtt9+OqVOniul5nsf69evx5ZdfYu/evWhqaoJOp0NeXh4mTpyIBQsW+OwxcdNNN2Hnzp0AgD179vj8PA8//DBWrVoFANi4cSNycnLaHcvKysKmTZtw+vRp/Oc//8G2bdvQ0NCAlJQUjB07FrfcckunA8Err7wSV155ZYfpampqxNeZmTQBY6gZWhhkVheI2w5lfA4L6vGB59atW7F27VoAwAUXXIA333wTKpUKAHDttddi1qxZuPHGG6HX6/HMM89g0qRJQbWSrFq1Sgw6L7jgAvznP/+RPPWaPXs2fvjhB9x3331wOBx4/PHHMX78eLEMPVEvHQOh4VcAzm622qyMsJ3LUiH9UlJl5YNV9NyffazKzs4Gx3GSrky+gk65XI6RI0dS98oezludIcQf1xi3aJkDwL210yXeWz137NiBu+++G0ajUdxns9mwc+dO7Ny5E+vXr5e0zPliMBgwf/58nDx5Utx3+PBhyfdCdXU1Fi9ejN27d0veq9frodfrUVJSgvfeew8vvPACLrnkEr/nC8Us2rt378add96JlpYWcV9dXR3WrVuHb775Bn/5y19w6623dvk83lRUVOCzzz4D4Lx2Umtn6Dlq9ADSxW2NJT4fjvf4wPPtt98G4LwZfeqpp9oFfAUFBfj73/+OP/3pT9Dr9VixYkVQf9iffvopAEClUuHFF1/02tXi8ssvx4IFC/Duu++ipqYGmzZtCujpU7wSZBo06Nqe+CXINF7TndZXYl/NYWgUamgUaqSqUzA4s8BrWl+slUcl26qcwuALTCKuV69ekm2O47Bv3z7o9XrJfrlcjlGjRiExMfj1Xkl88awzhHQk2pbgcW/tdInnVs/9+/dj4cKF4nIfkyZNwuWXXw6FQoGdO3di9erV+Pbbb9sNa/Lmf//7H6xWKyZMmICpU6dCr9fj559/xoQJEwA4h0jdeuutOH78OACgb9++mDFjBgYMGIDm5mZs2LABW7ZsgV6vx913343XX38dF198sc/zdbXumEwm3H///WhpacGwYcMwc+ZMJCUlYdeuXfj888/hcDjw7LPPQqvV4oYbbujSuQDnvCRmsxnl5eVYt24dPv74YzQ3N0Mul+OJJ56AUhmfS31EUiIvDclkXIQKEmY9OvDU6/XYtm0bAODiiy9Gbm6u13RTpkzBM888g4aGBnz77bcBB54GgwF79+4FAFx00UV+uyZcffXVePfddwEAJSUlPTrw5DnpX5uvp8smuxnGs/8AwOawBxV4CoIAi0fgqe7b8ZNSEt0o6CSExDtvrZ0u8drq+dRTT8FisYBhGDzzzDOYMWOGeGzatGmYPn06Fi5ciNbWVj+5OFmtVkycOBGvv/66eI9xyy23iMdfeOEFMei84oor8NJLL0mW25o3bx5WrVqFRx55BA6HA0uWLMH69evDNm9Aa2srWltbMXv2bDzxxBNiT42pU6di6tSpuOOOO2A2m/Hyyy9j8uTJXe7R8/333+P++++X7MvLy8MTTzyBCy+8sEt5E++UrDQki45+FaHXo5dT+fXXX8VxXhdccIHPdCzLYuzYsQCcQWFzc3NA+Tc1NWHEiBHIzMzEgAH+15dMTm6bjdW9G0VPJHDSJ7gM6/3Pz+yQTh2vUQT3JWtvrAJvln5BKbL7B5UHiS4UdBJCegJvrZ0urlbPePLLL7+I4yRnz54tCTpdxowZg7/85S8B53nHHXd4fbBdU1OD1atXAwBycnLw4osvel3jefr06WKw2tjYKPZwC5eioiI8/vjj7YYHjB07Fvfeey8AZ4PKF1980eVzVVVVtdtXW1uLL7/8EnV1dV3On7TH8dKQjGfiM0SLz08VoGPHjomvCwv9d7EcOHAgAGcr2dGjR/2mdcnNzcWKFSuwZcsWLFmyxG/asrIy8XVKSkpA+ccrwWPSF18tnj8e34YDtUdQ1ngKlS3VEITg+sObT5RIz6NQQ65LDa6wJGpwHIe9e/dS0EkIiWv+Wjtdft12Mq7W9fzxxx/F17///e99pps+fXpA91D+ZrPeunUr7HY7AGDBggXQaLwP9wGAP/zhD5DLnS1VGzZs6PC8XXHrrbeK5/J0ww03iN1fPVdo6Iz8/Hw88cQTeOWVV/DAAw8gNzcXZrMZX3zxBWbOnIkzZ850+RxESpMmHf4hyOKzU2qPDjxd6xYBzv77/mRnZ3t9X6h8/vnn4uuePmi7pVna4usr8DxQexSH6kqxp2o/tpf/1q4FtCOWUwck2/KUXpCpo3O6c+Lf3r17sXbtWsnDJMAZdI4ePZqCTtLO/v37sWfPHuzfvz/SRSExwmw2w2QywWw2R7Qc/lo7XeKt1dM1SWNqaqrYEOCNUqnEueee22F+ubm5PscpFhcXi6/99YYDgIyMDLE8+/btgyB4X3c8FHXmoosu8nksMTFRbEApKSnxmS5QEydOxNy5czFlyhTcfffd+Prrr3HZZZcBcLYIL126tMvnIFKKVGn3aEYWn51te3Tg2djYKL5OTfXf0uX+BM2zRaWrNm/eLD7NS09Px/jx40Oaf6zROzSo1+aiXpuDBm1f1CO5XRoHz6HVZpTs65/aL6jzWKvLJNvKXnnBF5ZEHMdxOHnyJIxGo+RLX6FQYPTo0bRWJ/HKtaQOLatDAiUIgvgvUgJp7XSJp1bP2tpaAM4l6TrSr1/H9wL+xkC63xv6mvvDnSuN3W73OVSqq3VGq9UiKyvLbxrXz8ZkMsFkMnXpfJ5UKhVeeuklZGQ4VxnYtm2bpKce6TpWKV3KT2Djc8b1Hh14umZGA9Dh8iXuT8bc39dVVVVVkjEJd999t9exBD2JWVCjVZ2BVnUmWtS90Cy0X1ez2dL+4p6qbh+g+sLbzHDopeMU1P2GBF9YEnEMw0Cj0UAul4vdkBQKBUaNGkVBJ/FJrVaL/wgJBMuy4r9ICaS10yWeWj1dD/wD+XsNJI2/WVndl2rx183W2/l8tWx2tc7odB2vL+5eDoMh9GtA6nQ6XHvtteK25zIzpGtkHmvIM2x8drWNz08VIIfDIb7uaGpo9+Pu7+uKxsZG3HbbbWhoaAAAjB8/HgsWLAhJ3l1RWlqKgoICSfdEq9UqLsSckpLS7oliaWmp+ITNc9xEfX29OB4gNzdX0rrMcRwOHHB2eU1MTET//v0hlysAt4lteYHH3r17MXToUDGwYBkWl+aej+qmWhgcRlhhR4JK+kfr6vai0WgwaNAgybHy3ZsAuD2BZBho8p1dnA0GgzibXWZmJnr37i1576FDh2C326FQKDBkiDRYraqqEgfeDxgwQBL4WCwWcXxwWlqaZJFowDnm2Gw2g2EYjBgxQnKsrq5OHOzfr18/SQu8w+HAwYMHATif4ubn50vee+LECXGWv2HDhkkmJmhqakJ5eTkA59NS19NMF9eszFqttl33ptOnT4s3A0VFRZKHN62trThx4gQAICsrq92T2oMHD8LhcECpVGLw4MGSY2fOnEF9fT0A53JG7l+4ZrNZ7E6bnp6Ovn37gmVZTJo0CQcPHsSRI0dQX1+P/Pz8dkFnbW0tqqurATjHr7g/8bbb7Th06BAA50RfeXnS1u+ysjLxZmT48OGSm4jGxkZUVFQAcE5EkZaWJh7jeV7syqnT6VBQIJ11+dSpU+JkZUOGDJFMud/S0iKuMZednd1u+Y/9+/eD53mo1ep2Y9QrKyvF68qgQYMkN09Go1F8Up2RkdGuBeHw4cOw2WyQy+UYOlS6JENNTY24iHj//v0jdo1wd/LkSbGVwf0aAThvVk+fPg0A6N27t2Rm8cLCQuzbtw8WiwXHjh1rd42oqKgQWz4KCwvb3dTRNcIpFq4R7o4ePQqLxQKWZTF8+HDJMfdrhOfyF+6t496CCIvFIh7XaDSSISIOhwM2mw2A817CvY66lq1w5esZNFmtVnBnZ3p32JiAWztdft12Eude2BcZmdIHszabTbyXUavVks/EcRysVisA53AFz/sjs9ksrmfqGZjZ7XZxfKRKpZLUJZ7nxQf3Mpms3QN/95+h59JzKpUKdrsdRqMRDofD589QJpO1axxw/xl6cv/dKBQKKBQKyWdqaGhAQkKC19+N62foPouuKw3HcZJzer7X/Wfo+ll75uv6bK59gPRn6Pm7cV1fGYbx2pji/rvxVw+9/W5cP0P3vyfXd4y3n6E7V7k6qt/+6qG3fP3VQ/efob966K1+u+qht3w5joPZbMbevXtDfh9x8PRhAG0/d6tgF8sbifuIcE0i1aMDT/c/ALvd7jf4dP1RAR0HqYGoq6uTrBGVl5eHF198MSoWpuY4rl33M0EQxAuWtwu4w+EQj3vieV485q1bm+uY6yLBe3RJYeA8t3tXlVRNMm4cMk38+eXk5ID1mAHM9R5vg/G5ikOSbZkuFYrUXu0+q6/yBvJZPbvWuOfr7eGFK19vdaAr+Ybyd+OO4zifZXLP11t9sdvtcDgcXm/g/OXrqx6yLIuhQ4eiqqoKOp2u3ax/nvn6q9/d+TN0z7czP0Oe5zv8rIH+DD3L5K1rWKA/w3BfI3zl6++z+srX1zWiq/nSNSK6rhHu+drt9g7z9bbuoutcvrpN+tvv773+umG6v3f7T8cDbu10cdh57Nx8ClNmSB/2dKVM/o6H6rN6ysrKgsFg8Drbqnu+giC0m/imo+7RnsfcH65UVFSgqKjI52cRBEF8uKVWqyUPfDwfPngGeq48vS3/4nm+lpYWGI1GaDQanz9f1wPQ5ORkn5MQefscb7/9Nn799VfU19fj7bff9vq34Sqve5Ds/sAnkJ9vOP5uXIFnOPL1xXWNCfV9hJWzwT3wdL8XjsR9RLiGofTowNP9iZrVag048OyoW25HTp8+jdtvvx2nTjmfXPbu3RvvvPOOpKUkkmQyWbsLD8Mw4hextwoql8t9LpDMsqx4zNsFzXXMdaH0nJyWOZvG8+LiXiZf+QqC4LVcTMMp9/ZOKDJzwZwNXAPJ1/1/d+6f1V95vX0pKBQKOBwOrxfRruQbyt+NO5lM5rNM7vl6qy+u32ew+fqrhyzLIi8vT2zN8Jevv/rdnT9D93w78zPked5ruTr7M3SVief5Dn83kbxG+Mo3lNeIrubr/r87uka0z7e7rhGufDmO6/Aa4Y3rXL5udP3t9/defw+cXe81tlrx2/bTPtP5U7yzApdcUShZ17MrZfJ8v6/9nf2s3owcORJlZWVobm5GWVkZioqK2r0XcN54u5ZdCSRfb2UaMWKEuDTKrl27MHjwYJ+fpa6uTmxR8mwxcr+nNBgMXoNShmFQWlraYZkEQUBJSQkuuOACrz9fvV4v9mQ577zzgqqjxcXF2LhxIwBnjxfP3hSu9zEMI5mMzX2ZwEB+vt35d9PVfP3VGdd1KdT3EQznEey6bUbiPiJcQwoYIZKj5CPs0UcfFS8uGzZs8DuIfMWKFfjb3/4GAHjxxRcxderUTp1z7969uOuuu8QuCn379sV7770X0AD2cDEYDGIXOcDZJSqSY+PeXfIuTnNtTxzT5Cbc+9yckOUvCAJOvrgAgq2tO07KhNlIu3RuyM5BwsPhcPgMFAghJFSOHTsmtlJ5dsOOhO/WHMCOTSc6/f4LLh2Aq64b2nHCKLVp0ybccccdAID58+fj0Ucf9Zpu3bp1WLx4sbjtfm8DQAxYx40bhw8++MBrHrW1tbj88stht9uRm5uLr776yudYz2effRbvvPMOAOD+++/HPffcIx77y1/+Iq4H+u677+LCCy9s9/7i4mLccMMN4vbGjRslXewffvhhrFq1CgBw1VVX4dVXX/Vajn//+9/45z//CQB4/vnnMW3aNK/pvHG/v505cyaeeeYZr+lOnTqFa665Bna7HSkpKdi8eXNIegDGinBfE9578b84VdU25EDGW7D0lVkhP0+gwhUb9OjJhdzHufjqvuHiGvcBBDarmjebN2/G73//ezHoHDhwID7++OOIBp3RyLM7gLeHTgdqj+LrIxvxw/Gt2F7+G040lQecv8PQBFadALh1zdUO6NlL2MQCh8OBkpISlJSUtOuuUllZidOnT4dlqSMSn6jOkGDZbDZYrVZJD6juEMxMtr7E+gy3EyZMEMf6fvzxx1i3bl27NEeOHMGTTz7Z5XP16tVLbFwoLy/HQw895HVSydWrV+O9994D4BxPPG/ePMlx95bDf//73+26SVZXV+ORRx4JuFzff/89Pvzww3b7t27div/85z8AnPe1kydPDjhPAJgyZYo4/n3VqlVef7Y1NTW45557xO/ehQsX9qigsztoBI9eXHHaLNiju9q6D9A9duwYxo0b5zOta7IChmE69aTjhx9+wP333y/+0Y4aNQpvvPFGh8u49EQOjgfc/v4YtI88jTYTjHYzjHbnYHi1XAUgsABesJmROOpyCDwHztgM3qiHsk/kn2gT3+x2O/bu3SuOhSkpKcGoUaPEls+GhgZxMpeO1uQlBKA6Q4Ln6nHBMEy33nQX76qARtf18xXvqsCESb7XwIxmLMti2bJlmD9/Pux2OxYvXoxvvvkGl156KVQqFYqLi7FixQpYrVbIZDKf3akD9de//hW7du1CeXk51q9fjylTpmDmzJno378/WlpasGHDBmzevFks29NPP91uuNTkyZPx4osvwmw2Y+fOnZgzZw5mzpyJxMREHDx4ECtXrkRraytGjBiBffv2dVgmhmGwbNkybN68GVdeeSXkcjm2b9+ONWvWiN0lH3/88aDrpk6nw1NPPYU//vGP4DgODz74IL777jtceumlUCqVOHDgAFasWCF+/15yySW49dZbgzoH6ZiKt0HGtT3UkvHd+4Cru/TowPOcc86BQqGA3W7Hjh07MH/+fK/pOI4TFy8ePHiw3/WfvNm5cycWLVokBp3jx4/Hv/71r3azthEXzzE77VNYHNJZ4DTywJdEcDQ7Z+piWBnkiWlQ5A4GK+vRfwpRzTPoBJxdQHyNRSGEkHgyYdLAmA0YQ2nUqFF45ZVXsGTJEphMJnz//ff4/vvvJWlmzZqFyspKbN++vUsPB5KSkvDhhx/i3nvvxd69e1FZWYnly5e3S5eSkoKXX37Z6/rr6enpWLZsGZYuXQqbzYYDBw6IM3S73HzzzRg9ejQefPDBDsu0ZMkSvPLKK/jxxx/Ftd9ddDodli9f7rU7byAmTpyIl19+GX/9619hMpnw7bff4ttvv22X7vrrr8eyZcsiuqRQvEqVN6Nfc424LQMFnnEnKSkJF1xwATZv3owffvgBZ86c8dqN9uuvvxan1Q+2C0NDQwMWLVokds257LLLsHz5cuqi4AfrMQCaYdr3N/j5xC9wCA6o5Wqo5SqM6FXULo0vrsDTRZ6c6SMliTS73Y6SkpJ2a5IplUpJj4VBgwb5nd2OEE9UZ0iw1Go11ZkIu/LKK/HVV1/h3XffxebNm1FdXQ2lUomhQ4diwYIFuPLKK8VGhGAbCTxlZWXhs88+w7p16/D1119j3759aGpqQkpKCnJzczF58mRcf/31fs9z7bXXYtiwYXjvvfewdetW1NbWIikpCSNGjMCCBQswYcIEfP311wGV56qrrsKECRPw+uuvY8eOHWhubkafPn1w2WWX4bbbbmu3JFGwrr76apxzzjn44IMP8PPPP6OiogIcxyEzMxNjx47FnDlzcO6553bpHMS3RJkSQFuX7vZTAcWHHh14AsAtt9yCzZs3w26348EHH8Rbb70lGTxbWlqKp59+GoDzidLs2bODyv/JJ58Ug9aRI0fin//8JwWdHeh3yThUuU2i0HuEtBusIAg4WHcMnNA2FvSy/oE95RN4DpyhSbJPnpThIzWJJH9B5+jRoyU9BgJZ5JsQd1RnSLColSc65OTkiJPheOOaR8NzfV2g/WRDHWEYBtdccw2uueaa4Ap5FsuyKCgowLJly3ymCSb/wsJCvPzyy50qSyCysrLw5z//GX/+85/Ddg7Ss/X4wHPChAn43e9+h++++w579uzBtGnTMG/ePPTu3RsHDx7Exx9/LC74umTJknZ9+Hfs2IGbb74ZQPtZ0srKyiRdFa6++mpxTIA/KSkpGDNmTCg+XkziPaaUliukz31abUZJ0AkAucmBTfjEGZsl6xwxYCBPTO9kSUm4+Ao6VSoVRo0aRd3UCSGkB1mzZg3Wrl2L3Nxc3HnnnT5b98rKysTlTYYOjd1ZfAmJVz0+8ASA5557DkajEVu2bEFFRQVeeOEFyXGGYXDvvfdi7tzglttYvXq1JMh5/vnnA3qfv2m+ewLPFX48uzXpzc3S42CQrA6sS40sIRXJY68BZ9SDMzSBt1nAyGlpjmjiL+gcPXo0tVQRQkgPk5SUhE2bNgFw3iM89thj7dIYDAYsXbpUvIe49tpru7WMhJCOUeAJZ5ert956C1999RVWr16NQ4cOobW1FSkpKTjvvPNw880347zzzgs636NHj4ahtPHPZpMulcGy0sBTLVfhqoGXQG9uQZOlGQ7eATkbWG/4hvVvg7eYoO5bCFVOEdT96IloNLHb7SguLhZ7Gbh0FHQajUZx7JVOp+uOopIYR3WGBMt9qS9vi7GT8Bk/fjxycnJQUVGBjz76CAcPHsRVV12F7OxsmM1mHD9+HGvWrEF9fT0AYPbs2VHRc4zqDAmUBXrkNbVNPmVTxudYcgo8z2IYBtdddx2uu+66oN53/vnn+xwz8MYbb4SiaD1Oc7NHi6ZH4NkrIQO3nyddLysQgiDAeHAbOKMehn0/AQAyr7sPiSMmdrKkJJRsNhtKSkqCDjoBZ/cq19IYI0eODHdRSRygOkOCZbVaxYcV1N2/eymVSrz22mu46667UFVVheLiYhQXF3tNO2/evKDWxwwnqjMkUHq7DE3JQ8RtgaFZbQnpFiqNDAnJckBwftnoElQhydfRXAfOqJfsU/ctDEnepGt8BZ1qtRqjRo2i7rWEENLDDR48GN988w1WrlyJjRs34ujRo2huboZOp0NWVhbOOecczJo1ix4kkZhktGtQmjFa3FbbWyJXmDCiwJNEnSK1HrmZLZDJZUhMSkRGL67jNwXAWint+sxqEiFPbT/rHel+x44d8xp0jh49Gmp1x2u0ZmRkgOM46spEAkZ1hgRLLqdbpkjTaDS46aabcNNNN0W6KAHpap159tln8eyzz4aoNCSa2YT2SwfGI7qKkqhTuWUfmgy8uF1QrUfWiLZ1OndVlqDWUA+NwrmGZ7+UvshJ6jiAtFRKu0Sr+xbSemxRYtCgQTAajTCZTACCCzoBeF1/lxB/qM6QYNFSaCRYVGdIoHTKntGzixalItHH46GP5xhPo80Eo92MelMTKlqqYbSZAsrWcuqgZFtF3WyjhlKpFJdJCTboJIQQQgiJZSpW2hYYr80i1OJJoo4Az+VUpM9HLA6rZFsj7zhA4R022OpOS/ax2sCWYCHdw7VGpyAIFHQSQgghpMfgeWmoKcRpjzwKPEnUkesSwHL2sy2fAuRaaRCy6eQOyFk5NAoV1HIVBJzTYZ7WqjJA4CX7VFn5oSs0CQmVKjQTSRFCCCGExAoG0ntdjonPNeYp8CRRh714PBRNFrAsi4yMDGQOyhCPmWxmlDaelKSfPmRyh3l6drNltclQ0MRC3c5qtaKyshL9+/cP6fjaw4cPw+FwQC6XY/DgwSHLl8QvqjMkWGazWXxNM22TQFCdIYGKz/bN9ijwJFGnptKIliYrGJaFsaURCUlq5A1IBwDore2nl85OzOwwT0u5NPCUJ2eA1SSEpsAkIFarFcXFxTCbzbBarRg8eHDIgk+bzQa73Q6e5ztOTAiozpDgCYIgrslISCCozpCAyeOzhdMTBZ4k6jTWWdHSZAcANNRY0SurLUDUm5slaTVy58y2HbFWH5dsKzP70RdBN3IPOgGgpqYGAEIWfMrlcgiCQMsdkIBRnSHBcl2r6LuDBIrqDAkUq+gZc1vQNy6JOiqlCoBd3Ha/YCepEnHVwEugN7dAb2mBUtbxEyJHSwN4k7SlVN13UMjKS/yzWCwoKSmRdDkCgJaWFjgcDigUXX/KN3To0C7nQXoWqjMkWNRVkgSL6gwJVKulFUBapIsRdhR4kqjjuYSu+3IqOcm9cft584LKz1JxWJqfXAFlHwo8u4PFYkFxcTEsFotkv1arxahRo0ISdBJCCCGExDK74JBse94Lxwtax5NEHYH3XE6la11UzKel4ztlielQJHc8LpR0TUdBJ81gSwghhBDSbuGFuEWBJ4k69mbpOE57Y0OX8rOWS1s8FSm9wKppYqFw8hd0jh49moJOQgghhJCz7IK940RxgLrakqhjN5kBeWLbtl4vvt5yaieaLa1Qy1XQKNQYkJaH7AT/rZe6IReBUWvBtTTA0doIZfYAGugfRh0FnUqlMuTnrKmpAcdxkMlkyMrKCnn+JP5QnSHBstvt4gylNEyABILqDAmUShb6e6NoRIEniULSoNA9SDTazDDanf9gBvokZneYm0yXBE3ecADOqc01ecNCW1wi8hV06nQ6jBo1KixBJ+AMIux2OxQKBQURJCBUZ0iwKIggwaI6QwKl4jkwbv1t2Tjte0uBJ4k6ngOqWbcO4WaHNKDRKPx32RQ4BzhDk7jNMAwUKb26WkTihdlsRnFxMaxWq2R/uINOQgghhJBYliZvQn5Tlbgtgw3AnMgVKEwo8CRRyHuLp9VhxbbTv0EtV53taqsCy/gfpswZ9RCEtlCWAQN5QvxPV93dIh109u/fHzzPg2Vp2DoJDNUZEiyVSiW2XpHYVFRUBAAYN24cPvjgg5DmXVFRgUmTJgEApk+fjmeffTYidcZbOUj0S9IlAExb44osTr+aKPAkUUch2GCBTtxO0Dj/+potrTipL5ekveWc2X7zcrRIJyaS6ZLAyKm7S6jZ7XY4HNKpwLuzpTMxMbHjRIS4oTpDgiWTySJdBBJjqM6QQCUP6oeE8npxWx2nkzDGaTxNYpng0eIpkzm3m62tkv0KVo4UdbLfvBiZHHJdMpizecoS00NYUuKSlJSEUaNGiV+yCQkJYZtIiBBCCCGExB5q8SRRjz0bzOgtLZL9Keokv91XHC0NkGmTkHju7wDOAYehEYycAqFwSUpKwsiRI3H8+HEMHz6cJlIghBBCCCEiCjxJ1PFs8XQN40zXpOLqgRPRZGmG3tyMFI3/1s7mXV+j+Zc1kCWkQtW3EAnDLkbCkAvDVWwCIDk5GaNHj+72MVBWq1UcR0NrhJJAUJ0hweJ5txkno2hsMM+3zWPAsjT+NJpEa50h0adJ3owDuRXidgIrw+QIlidcKPAkUaf9rLbOi/WAtH4YkNYv4HyslUcBAJyhCaYjO6DMyAUo8Owyh8MBudz3pSMSE28cOXJEXBpj5MiR3X5+EnuozpBgWSwW8WGFVquNdHEAADY7h3fWHoDZ4oBGLcet1w6DUkHjCqNFNNYZEp1qjVacduSK2zrYI1ia8KHAk0QdBWeDgjFDYBgADGQyXYfv8SRwDliryiT71DmFISphz2UymVBcXIy8vDz07ds30sUhhJAe7Vi5HnY7j/LaVvTvnYxj5XoMGxDfcxlUVVXh7bffxqZNm3DmzBloNBoUFRXhhhtuwLXXXos333wTL730EgDnA6ZgNTU14eOPP8bPP/+MEydOwGQyIS0tDSNHjsTUqVPxu9/9LuC8vvrqK6xcuRJlZWVgWRb9+/fHlClTMG/ePKjVar/vPXbsGL744gvs2LEDVVVVaG1thVqtRmZmJsaMGYO5c+di2DBalzxetDYrkHNitLjtUBkiV5gwosCTRJ0R9ZvBOzgAAAMBfXstDDoPW81JCA6bZJ+qDwWeXeEKOm02G44dOwYAURN8pqSkgOM4mkGQBIzqDAlWNNaV/cfr0Wq2wWRxoNVsw4HjDXEdeO7YsQN33303jEajuM9ms2Hnzp3YuXMn1q9fLy6Z0hnr16/HI488gpYW6ZwSNTU1WL9+PdavX4+xY8di+fLlSEvzvTQbx3F44IEH8M0330j27927F3v37sWHH36It956C/n5+e3ey/M8nnnmGXz44YeSrrqAcwb51tZWHD9+HJ999hkWL16Mu+66q9Ofl0QPa20TgBRxW23x7P8XHyjwJFGnVpsLu1vVzD37x/fD8W0w283OdTwVKhSlFyBD5/3CbznbzdZFkdYHMi0tn9BZRqMRJSUlsNnagvljx45BoVCgV69eESyZU79+gXfBJgSgOkOCF21jgWsbTahrMqOpxbl+clOLFbVaE2obTeiVFn/dOvfv34+FCxfCYnGudThp0iRcfvnlUCgU2LlzJ1avXo1vv/0WW7du7VT+P/74IxYtWgSOcz74njBhAiZNmoSUlBQcP34cX3zxBSorK7Fr1y4sWLAAK1asgE7nvUfWN998A7vdDq1Wi7lz52L48OGor6/HypUrcfToUZSXl+PWW2/FV199hYSEBMl7//nPf4prjKalpWH69Ono378/VCoVKisrsW7dOhw96rzH+b//+z9MmDABw4cP79RnJtEjQboMOuQOCjwJiQhW5qymRpsJZocFRrsZMAP9U33fOJqPF0u2ldkDwlnEuOYt6ASc6yD6e+JLCCEkdH7eXYETZ5rFbbuDh8PBw2CyQauWw2CyweHgsWZTGRTytols+vdJxqXn5kSiyCH11FNPwWKxgGEYPPPMM5gxY4Z4bNq0aZg+fToWLlyI1tZWP7l4ZzAY8PDDD4u9IP7xj39g2rRpkjR/+MMfsHjxYvz4448oKyvDc889h2XLlnnNz263IzMzEx988AH69+8v7r/xxhvxpz/9Cd999x3OnDmD1157DX/5y1/E442NjXj77bcBOHsUff7550hNTZXkfeedd2Lp0qX44osvIAgCvv76awo844BaJl11IV6nCaMptkj0ETye8rAMeIGHlZM+DlLLfT999hzfySpoGZXOMBqNYvdad651O/1NMkQIISQ0OI7HgeMNOHGmRfxXUWvAmXojGJZBTq9EMCyDM/VGVNQaJOkOnGgAx/EdnySK/fLLL9izZw8AYPbs2ZKg02XMmDGSIC4Yn3zyCfR6PQDgtttuaxd0AoBGo8HLL78sDjH54osvUFNT4zPPf/zjH5KgEwAUCgWeeeYZZGZmAgA+//xzWK1t9zY//vij+H37xz/+sV3QCTgnXFy4sG0I0okTJwL8lCSa8bw01PRc4SFeUOBJopDHcioMiyZzM3ZV7sX+miM41nAC5c1nIGe9j7fhjM3gjHrJPnW/IeEqbNxyBZ12u3RmNdd6nRR0EkJI92hqtUIAoFXL0dhiQW2TCXV6E+wODnnZiVDIWeRlJ8Lu4FCnN6G2yYTGFgu0ajkEwfn+WPbjjz+Kr3//+9/7TDd9+nSkpKQEnf/PP/8MAJDL5bj11lt9ptNqtViwYAEAZ6vmpk2bvKYbNGgQLr74Yq/HEhISMH36dABAc3Mzdu/eLR677rrr8P333+Ott97C1Vdf7bMcOTltLdiurscktskTpD3IOFl8roVOgSeJOoJHiyfLMjDYjDjRdBqH60tRUn0QOyr2QC3z3uJpPrVfuoOVQ92PuqEEw2AwxFTQWVpaisOHD6O0tDTSRSExguoMCZbFYoHZbI7IjX5GigbXX1qAzFQtCnKSodMoIAhAZqoWWrXzBlWrViAzVQtBAHQaBQpyktErVYvrLy1ARoqm28scSrt27QIApKamYuDAgT7TKZVKnHvuuUHnX1JSAgAYOHAg0tP9T8504YVty7Lt3bvXa5px48YB8F1n3MvonodCoUBeXh4uvvjidmM/AaC6uhobNmzAc889J+5zjUklsU2TJa13rDw+Wzyj6+6READNqkxwrKtqCjDbBQg2kySNTqGBUu69+6z5hPSLQJ6UBnlS/M7yF2oGgwElJSXtgs7k5GSMGDEi6oJOwDnjrmtNRkICQXWGBIvneXFNxkjom5mAuVcWYv3O05DLWJTXtKKxxYIkXdt3YWOzczs3KxG5WYm4clw/MTCNZbW1tQCAPn36dJg22InDDAaD2N01Nze3g9TSNPX19V7TuLrj+qoz7p+jrq7Oax67d+/Gtm3bUFZWhlOnTuHUqVMwGOJziQ0CsDIlgLbZmhGh60y4Rd8dJOnx6nW54Nm2qtlq4sFbpZMFJKl8z1BrPXNMsq3IzAXjo1sukYrFoJMQQnoKrVqBy87LxfvrDorTITQ0m2GxcVArZQDTNk3CZeflxkXQCUAcf9nR2peBpnHnvjSLRtNxy7B7/mazuVNlcD+P+xhPwDlm8+GHH0ZxcbHX9/bp0wcTJ07ERx991GFZSeyQJaUDaBK3BVl8zk1Cd5EkqniuWQU4B9Kna9NxVcElaLa2osVqQLomxev7BZ6DraFSsk/dt/NrevUkru61DodDsj8Wgs6RI0dGuggkxlCdIcHSaqNjiZK6JmcPILPVAY7nYTTbkaRTorrBBIYBZCwrpnNvDY1lKpUKdrvdZ6DnLtiu0O5BYCD5m0xtPbB8BZiuCYJ81Rn3PNy71NbW1uLGG29EY2MjACA9PR0XXnghBg8ejEGDBmHw4MHIzs4Gx3EUeMaZ+hbpRFUOweEjZWyL3jtJ0jMJQruZvFgZi4Hp+RiYnt/h2y1nSgFO+seqHTA6hAWMTw6HAyUlJV6DzpEjR0blwumEENIT1TaZ4XDwcHA85DIWOb0SoNMoYDTbUVFrgINzLrNS22RGQU5KpIsbEtnZ2SgtLcWZM2c6TBtIGneJiYlQqVSwWq0oLy/vMP3JkyfF11lZWV7TuLoG++J+nuzsbPH1q6++KgadN9xwA/7+9797HQ7Q0tLSYTlJbDHapQ89HEJsz0TtC00uRKKK4HC0W7yIkQVeTT3X72TVCVBm5Xe9YHFOLpe3m/Y9JSWFgk5CCIkydU0mmG0OyQRCl5zTVzLxkNnmQJ3e1HFmMWLUqFEAnF1uy8rKfKbjeV5cdiVQDMOI62CWlpaioaHBb/pffvlFfF1U5L1Hla9Jh1x27NghvnZ9NqBt9l61Wo1HHnnE5xj0w4cPi689J2QksUmI8SWPAkWBJ4kuggDPyJNlAx9gbW+skgzIVqT3ofGdAerTpw8KCwsBOIPOESNGUNBJCCFRJr9PEnRqBfJ7J6F/n2TccGUhRg7MxNwrC9G/TzLye7cdjxfuS4t8+OGHPtN9++23Pifr8WfSpEkAnL1/3nnnHZ/pjEYjPv74YwDOYUCXXnqp13S7d+/GkSNHvB5rbGzEl19+CQDo3bs3RowYIR5zjWWVy+VQqXyvVf7ee++Jrz17KpHYZKmSdrVV2OIzEKWutiSq8BwPz2d3MpkMW07tRIvVAKVMCbVciYHp/ZGdkNnu/Zp+QyFPzgRn0MPR2gBN/oh2aYhvffr0gVKpRGpqakwFnfX19eB5HizLIiMjI9LFITGA6gwJlvuka5GcDXnkwEzkZSehvKYVwwakizOmatUKTJ0wAAdONKBfViKSE3wHLrFmwoQJGDx4MA4fPoyPP/4YY8aMwZQpUyRpjhw5gieffLJT+c+ePRtvvPEGmpub8fbbb6OwsBDXXXedJI3FYsGf//xnsSvv9ddfL85e64nneTz44IN46623xOuLQqGAyWTC4sWL0dzcDAC45ZZbJN+1ffv2xcmTJ2EwGLBu3Tpcc801knwdDgdeeOEFybqmnpMTkdiktkvvfpk4bcimwJNEF45DuxZPGQuDzQSDzQTA2XWoX3L7i73gsIMz6MHI5JAnZ0CenIGEoRd1Q6HjSyzehJ85c0ZcGiMWy0+6H9UZEiy73S4ujRHpZXiSE1ReA0uWZTCiIP7qM8uyWLZsGebPnw+73Y7Fixfjm2++waWXXgqVSoXi4mKsWLECVqsVMpkMHMeBZQPv1JeUlIRnnnkG9913HziOw0MPPYQvv/wSkyZNQnJyMk6ePImVK1eistI5eWFeXh6WLl3qM7+0tDSUlpZi1qxZmDFjBvr374+GhgZ8+umn4vjOcePG4eabb5a8b/r06XjllVcAAEuWLMG2bdtwzjnnQC6X48SJE/jqq6/EMri0tkpn/SexSe3RwBmfi6lQ4EmijCDw7dYuYmQMbJxNss/bGp6OlnoIbu2lDMNCnkjrd3pqaWkBz/NISUmJdFEIIYSQgIwaNQqvvPIKlixZApPJhO+//x7ff/+9JM2sWbNQWVmJ7du3Q6kMbkbfK664Av/85z/x17/+FQaDAZs3b8bmzZvbpbvwwgvx8ssvS2aj9XTbbbdh69at2L59O9588812x8ePH4/ly5e3C45vu+027Nq1C1u2bIHD4cDKlSuxcuVKSRqZTIY//vGPOHToEDZs2IAzZ87AYDD4LQ+JfimyBuQ1VonbMtgAzIpcgcKEAk8SVQSOa7+TZbDt9G9QypRQyZ3/4GUwPWdslmzLElPByKiKu2tpaUFJSQkA53ISycnJES5RaOTm5ordJgkJBNUZEqxgAxkSeldeeSW++uorvPvuu9i8eTOqq6uhVCoxdOhQLFiwAFdeeSXmz58PwNmKGayrrroKY8aMwUcffYSffvoJp0+fhsViQXZ2NgYPHoxZs2bh4osvFrs3+6JQKPDf//4X7733HlatWoXTp09DpVKJeUydOtVrHkqlEm+++SZWrFiBL7/8EkePHoXJZIJOp0NOTg7GjBmDuXPnoqCgAB9++CE2bNgAjuPw3XffYebMmUF/XhI9EmRysGhbCkgOL/fDcYARaDqsHs9gMEgGwRcVFUXsyZnDYsUzS9dL9s29azj+tvs5yb5XpyxDVqJ0jKfxyE5Ya06I26rsAdAVjg1fYWNMc3Mz9u7dC+5scC+TyeIq+CSEkFA5duwYHA4H5HI5Bg0aFOnikCBcffXVOHHiBEaNGoXPPvss0sUhcSLc14Q9//dP7C9pWyZHCRtueKdzY5ZDIVyxATUHkegib18l7bL2z0bStant9qlzipwTC5lbwJtaIU+Kv3EuneUZdAIAx3GoqKigwJMQQkhUW7NmDdauXYvc3FzceeedPtfPLCsrE9fZHDp0aDeWkBASCAo8SVTx1v5udBgl21qFBnKPLrS83Qr99lVQ9sqHMisfmn5DwcgiO/lDtPAWdALOyQ+GDBkSoVIRQgghgUlKSsKmTZsAONetfOyxx9qlMRgMWLp0qbiu5bXXXtutZSSEdIwCTxJVBL595JmoSsBVBZegxWpAi7UVSi8Bpa2uHM07vhK3GZkCeX9+H6yXSYh6En9B5/Dhw+NmfJv754ulZWBI5FCdIcFyH5nU0Rg/Elrjx49HTk4OKioq8NFHH+HgwYO46qqrkJ2dDbPZjOPHj2PNmjWor68H4FweZcyYMREuNdUZEjg7WtG7pVTc5hXxORKSAk8SVbwNOe6TlIXb82Fku7kAAGUXSURBVOb5fZ+t9qRkW56c2eODTr1ej3379rULOtPT0zFs2LC4CToB4MCBA+LSGCNHjox0cUgMoDpDgmU2m8XlVLRabaSL06MolUq89tpruOuuu1BVVYXi4mIUFxd7TTtv3jw88sgj3VtAH6jOkEA1czxMyhRxm5PF5+RCFHiSqOKtqy0TQHxkqzkl2Vb2ygtRiWJTTwo6CSGExL/Bgwfjm2++wcqVK7Fx40YcPXoUzc3N0Ol0yMrKwjnnnINZs2bRgyQSk1qsCTjQ51xxW21v8ZM6dlHgSaKKHA5MnagEx/OQKeTI6t0HGk3H1dRW6xF4ZuWHqYTRT6/XY+/eveB56WrE8Rx0JiYmirPNERIIqjMkWDKZTGy9IpGh0Whw00034aabbop0UQJCdYYEyso7Il2EbkHfuCSqGMsrsf+LHeL2fgAFD/0OerkBSpkSSpkCeSl9kZeSI6YRBAE2t2VUgJ7b4tnU1IR9+/a1CzozMjIwdOjQuAw6AaB///6RLgKJMVRnSLBUKlWki0BiDNUZEiiVUhPpInQLCjxJVBE4vt0+C2eFgTcBMAEAMnVpkuNcawN4q0myT6bteUuE9NSgkxBCCCEklulk0nlJ4rWNnO5ESVQRhPaBp12QjlNUevxxWquOS98gU0CWKA1Oe4L6+noKOgkhhBBCYoznHCfxOacttXiSKOOtxfPX6n2wyW1iV9vhmYWS49YzxyTbMl0y5Lqe1+I5cOBAcByH6upqAEBmZiaGDBlCQSchhBBCSBQTBLVkm2Pjc2UGCjxJVEkcXITEq68Cx3FgGRYpSUn4Uf8uDEKrmGZi/gWS91irpS2e8qR0MPL2a33GO4ZhUFRUBMC5RmFPCjpPnjwpThSTn58f6eKQGEB1hgTLarWKE8XQ2D0SCKozJFBs3HaulaLAk0QVm8WBumoDBIEHy7Jw2OUwy82A2/rumbp06XvqKyTbirQ+3VHUqOQefPakWfRaWlrENRkJCQTVGRIsjuNohlISFKozJGCBrB0YByjwJFHF0GpB1WmzuH3mlBnCOZAEngkqnfiat1vBtTRI8ugJM9r6+yKjLzhCCCGEkNjBahMjXYRuQYEniSqeg6sBYGL/C2CEEQabEQabCQnKtsDTVlcOzyHYqt4Dw1zKyGpsbERZWRlGjhxJXXfOGjp0KD1VJkGhOkOCpdFoqM6QoFCdIYEymVsBpES6GGFHgSeJKhzXPvK8bcwNUKq8V1XP9TtZTQIUyRlhKVs0aGhowP79+yEIAoqLizF69GgKPgHI5XQpI8GhOkOCxTAMBRAkKFRnSKAsvE2yHa+z2vaMDsUkZghemjz9XbPbz2ibAjZOZ7R1DzoBwGw2o7i4GHa7PcIlI4QQQgghxD8KPElUsTQ0tNvHsL4jT1abBFlSBiBzThAiT8oAK4+/Kajr6+slQadLUlIStdwQQgghhMQwG+eIdBG6Bd2xkqhiPCWdoRaCgG+P/QS1UgWlTIEMbSqG9mpbx1PbfxQYmQKCIECwmqBIzermEodffX09Dhw40C7ozMrKwuDBg6kbDwC9Xi+Oo0lJSYl0cUgMoDpDguVwtN0Y0gM/EgiqMyRQCkbWcaI4QH8FJKoIvDS4YiDAaDfDxDlnupV5rEvJmVqc6RgGjFoXd0up+Ao6s7OzUVRUREHnWadPnxaXxqAgggSC6gwJls1mEx9WUBBBAkF1hgRK49EJNV7v7uivgEQV3tu0tm6UMmk3Ws7YLNmWaeNnfGddXR0OHjxIQSchhBBCSBxLZhuQo68Vt2Ww+UkduyjwJFGF53iPPQIO1B6BUq6ASq5Emial7QjPgbcYJKlluqTwF7Ib+Ao6e/fujcLCQgo6PfTu3Rs8z4Nladg6CQzVGRIshUIR6SKQGEN1hgQqSa2CgteL2woKPAkJPxkjDbRYgcfh+lKxz0HvhF7iMd5saBeYxUOLJwWdwcvMzIx0EUiMoTpDgkVBBAlWIHXm4YcfxqpVqwAAR44cCXeRYpL7z2jjxo3Iyclpl+a7777D+++/j9LSUhgMBiQmJuL666/Hww8/3N3F7ZSUwnzozhSL2+o4XSqPAk8SVRh4jvHkJR3dsxPbbhZlumSkXDANnKkFnLEZvM0ERh7bNwa1tbU4dOgQBZ2EEEIIIQH49NNP8eijj0r2NTU1QamMnVUOWDkLxq0DDhOnnXEo8CRRhfeYXAgeAViCUudMZ7fizLsPQ5HZD6pe+VD2yoMmf0R3FTMsGhsbvQadffr0waBBgyjoJIQQQgjx8OqrrwJwTjS5YMECjB49GlarFSNGxPZ9YTyiwJNEFYHjJNsMgPNzzoHRZoLRbkKqxtmV1l5XDlvtadhqT8N4YAsABvkP/Q8MYrfFMykpCQkJCWhtbRX3UdBJCCGEEOJdU1MT6urqAACTJk3C3/72twiXqHOMMiOqM6vFbY0sPkO0+PxUJGbxHnMLMQD+NH5hu3TW2pOSbUVaNlilOnwF6wZyuRyjRo1CSUkJWltbKegMwr59+8SlMegJJwkE1RkSLJPJJC6NodVqI10cEgOozoSf2WwWXw8cODCCJemaKpsB2xMTxe1k3oFbIlecsKHAk0QVQZBGnp5jPl1stack28peeWErU3eSy+UYOXIkqqurkZOTQ0FngARBEP8REgiqM4QQEvt4txaLWF4rtblBiYEHJ4jbDpXBT+rYFbu/IRKXshOBi058BjAMBAhQJCQCmN0una3GM/DM754CdgOFQoHc3NxIFyOmaDQayOVymnWSBIzqDAkWy7Ji6xXpfkVFRQCARYsWYc6cOVi2bBm2bNkCAMjNzcXtt9+OqVOniumNRiM+//xzbNmyBUeOHIFerwcAJCcnY+jQobjqqqtw3XXXeQ1WbrrpJuzcuRMXXngh3n33XZw+fRrvvvsuNm/ejJqaGmg0GgwdOhQzZszAtdde67NOsCyLlpYWfPTRR/jhhx9w8uRJKJVKDBo0CPPmzcN1110X0GfneR7r16/Hl19+ib1796KpqQk6nQ55eXmYOHEiFixYgKQk78vJuT7LhAkT8N///hdlZWV4++23sX37dtTV1SE9PR3jxo3DnXfeiYKCAgCAxWLB+++/j6+++grl5eWQyWQYOnQobr31Vlx++eUBldnfZ9m0aRNWrFiBI0eOiD/PwsJCTJ48GbNnzw5oUqBXX30V//rXvyT7/vWvf4n7pk+fjmeffbZLZe1OlqZmACnittIWnw9FKfAkUcVi41CVPKhth0KGDWVboJQpoJQpcH7OOQAAW80JyftircWzqakJycnJtIZgiAwaNKjjRIS4oTpDgqVWx/ZwjnhhMBgwf/58nDx5Utx3+PBhSeC1ZcsW/OlPfxKDTXcWiwU1NTX48ccf8cknn+Ctt97yGbQBwIYNG/DQQw/BZDKJ+6xWK7Zt24Zt27bh66+/xquvvur1IVZlZSVuu+02VFdXS967e/du7N69Gz/99FOHrXTV1dVYvHgxdu/eLdmv1+uh1+tRUlKC9957Dy+88AIuueQSv3mtXbsWjzzyCKxWq7ivqqoKa9aswcaNG/HOO+8gOzsbt99+e7ulXXbu3ImdO3di6dKluPnmm/2ex5empiYsWrQIO3bskOy32WzYtWsXdu3aJf5OsrKyOnWOWKVudUi2KfAkpBu0m9UWAhrNegCAUqYAwzBwtNSDt5qk73NYESuqq6tx+PBhpKenY9iwYRR8EkJIHLDZOr/gu0wmg0wm83rMbrd3ukt4uPJlWTZi3Rr/97//wWq1YsKECZg6dSr0ej1+/vlnTJjg7KZYWlqKu+66C3a7HTKZDJMmTcK4ceOQnp6Ouro6lJSU4JtvvgHP8ygpKcHy5ct9Tkhz6tQp/OlPf4LNZsOUKVMwYcIEyOVy7NixA6tWrQLP8/jxxx/x4Ycf4pZbbpG8t7a2FjfeeKMY/I4dOxbXXHMNEhMTceDAAXzyySf4+uuv/bbuNTc349Zbb8Xx48cBAH379sWMGTMwYMAANDc3Y8OGDdiyZQv0ej3uvvtuvP7667j44ou95lVWViauaTljxgycf/75aG5uxsqVK3H06FEYDAY8/vjjkMlkOHLkCC688EJMnjwZGo0GmzdvxpdffgkAeP7553HNNdcgPT094N8Z4Pz7WLBgAUpLSwE4W6lnzJiBvLw81NTUYMWKFTh+/DiOHj2Ku+++G5999pnfOjZlyhQMGTIEDQ0N4lIqU6ZMwTXXXAPAuQxdLEmQSx9sxWu/Cgo8SXTxNrvQWUqZ82miZzdbyBSQJ8XGYvCuoBMAGhoacODAAQo+CSEkDmzbtq3T7x00aBD69u3r9djOnTtht9s7lW9+fj7y8/O9HtuzZ4+kFS8Yffr0QWFhYafe21VWqxUTJ07E66+/LnZxdQ/6/vnPf4o/r1deeQW/+93v2uUxe/Zs3HrrrRAEAWvXrvUZeJ45cwYKhQL/7//9PzGwBYBp06Zh7NixYiC3cuXKdoHnK6+8Igadd911FxYvXiweu/baazFnzhzcdNNN4oys3rzwwgti0HnFFVfgpZdekrS8z5s3D6tWrcIjjzwCh8OBJUuWYP369UhISGiXV1VVFRQKBd58801cdNFF4v6ZM2fiqquuEu9JvJX3uuuuQ0ZGBt5++23Y7Xb88MMPmD27/TAof9544w0x6LziiivwyiuvSILum266CQsXLsS2bdtw4MABfPnll5gxY4bP/AoKClBQUICKigpx34ABA3DFFVcEVa6oEZ8NnO3Q3S6JKoJH4MkJPI7WH8fJpnLUGxsBAFaPbrYyXTLkiandVsbOqqqqEoNOl4aGBtTW1kaoRIQQQkjsueOOO7yOqzSbzfj5558BAGPGjPEadALAhRdeiNGjRwNwdv/01iXX5cYbb5QEnS7Tp08XHxYcO3YMFotFPNbY2IjVq1cDAEaOHIkHHnig3fv79++Pp59+2ud5a2pqxDxycnLw4osveu3uPX36dDHobWxsxKeffuozz9mzZ0uCTgBISEgQWwkB58OKRYsWtXvvrFmzxNeuADJQHMfhgw8+AABkZmbiueeea9fSq1Ao8I9//EN8EL927dqgzhHrBEWiZNvBdjzONRZRiyeJKp5dbXmBw96aQwCAgWn5AADrGekFT6ZLhkyX0h3F67Sqqqp24yUAZ1eTnjaOIRwqKirgcDggl8uRk5MT6eKQGEB1hgTLZrOJkwsFMvkJCQ+FQoGRI0d6PabRaPDDDz/g9OnTXlv93PXt2xd79uwBAEnQ6Omqq67yeaywsBCVlZUAgJaWFjEw3LJlizjb6syZM2G3273WmUsvvRT5+fmS8aouW7duFVtuFyxYAI1G47Mcf/jDH/D+++/D4XBgw4YN+MMf/uA1nXuA6c79GnjZZZd57YXl3nXVfb3xQOzZswfNzc0AnN18ff1usrOz8de//lWcbKgnScjtDZw2itusIj4721LgSaKKxSbALHddkATwbFv3ogxtGgDAViftaitP7gVWoequIgbNV9DZr18/9O/fn2ZIDIHGxkZxTUYKIkggqM6QYDkcDgo8o0Bubq7fn39GRgYyMjK8HjMajThy5Ah+++03MegEnC1yvrhmevXGPYByONomhykpKRFfDxs2DA6Hw2eZx4wZ4zXwLC4uFl9fcMEFPssAOD/zwIEDcfjwYezbt8/n7Mv9+/f3+v5Et/Ujfc2q7x748p7Dojqwb98+8fW5557rN21nJy4isYECTxJValtZVCe1zTap4EwATgIAdEoteLsVjmbpeAhlZr9uLGFwzpw5g6NHj7bbT0EnIYTEF88ujMHwNQEQAIwbN65Lkwv5cs4553RpcqFI8TcDrbva2lps2LABhw4dwsmTJ3Hq1CnU1tZ6/cz+fg7uQZkn98lv3IOx+vp68XV2drbfcvbr5/0eprGxUXwdyBJrubm5OHz4MOx2O1paWpCcnNwujbd9nny1rHblfsX959GnT59O5xPPlGk5ANoaKQR5fM6iTYEniSq8x8WfATC8VxGMNhOyEzJhrysHPNKoeg/oxhIGjoLO7lNYWEjr65GgUJ0hwepoOZVwtYKGa63ZWF3DtqOfs8PhwIsvvogPPvhA0grpotFocP7556Ourk6cTMefzsze694VNSUlxe8DAJ1O53W/0djW7dJfN1sX9/ppNpu9BpmRmonY1c0WoGWJfNG3SOf74IT2dTceUOBJoorg0XuDZRg8etkD4nZL8QbpcU0CFMm9uqFkwfEVdObl5SE/P59udkOMvshIsKjOkGDR7OOx4eGHH8ZXX30FwBlcjxkzBiNGjMCgQYNQWFiIgQMHQi6X46GHHgoo8OwM91ZZq9Xqd7ypr2V43INNs9nc4ZhV9xmKo+365l4ef+NpezK9TTpu1i747v4dyyjwJFHFs8XTk7XquGRbpk2BTNdx15HuVFlZiWPHjrXbT0EnIYQQEj67d+8Wg87c3Fy88847PrupBjtBTjAyM9uWeKuoqMDgwYN9pvU1s737ONXy8nIMGTLE7zlPnXLOf6FWq5GSkhJEacPPfc3PqqoqvxMHlZWVwWg0ol+/flH3OUjX0eM7El08mjw9QzRN/nCo84ZDkZELVpMIWWIaWK3v8RfdzVfQmZ+fT91rCSGEkDD66aefxNf33HOP37GRhw4dEl93dqyrL+edd574eseOHX7T7t692+v+ESNGiK9/+eUXv3nU1NSI631G42yww4YNE1+7T5rkzauvvorZs2fjwgsvhMFgCHPJooe1Sjp/idwe3AROsYICTxJVeEEamAngsenkDmwv/w0tllbIE9Og7jcUuiEXImnMZOiGXAiGiY5q7HA4xCeO7vwt4E1Cw2AwoLW1tUd9SZGuoTpDgsVxnPiPRCf39Ti1Wq3PdN9++y2qq6vFbW9jQbvikksugUrlnG3/o48+gtls9ppu//79khlw3V166aXiONwPP/zQZx4A8M4774iTG02cOLELJQ+PMWPGiF2F16xZA6vV6jVdS0sLNm3aBMC5/mlH3Yvjidwk7XLNxmfcSYEniS6CxzqeEARUG+pQ3lwFB8+BM+glh+UJqd1XuA7I5XKMGjVKMmEDBZ3d4/jx4zh69Kj4xJeQjlCdIcGyWq2wWCw+b5pJ5PXt21d8vWLFCq8tmdu2bcOjjz4q2Rfq36lWqxWXBTl58iSWLl3aLritq6vDQw895DOPXr16YerUqQCcXW0feughr+MjV69ejffeew+As0vrvHnzQvUxQkar1WLOnDkAnD3DHn300XY/D5vNhkcffVScVCkaP0c4aVnpBFTx2j+OxniSqOIZd7r/5SllCnBGveSwTJcS7iIFRafTYdSoUSgpKUFOTg7y8vIiXSRCCCGkR5gyZQpeffVV2O12bN68GbNnz8bUqVORmZmJ2tpa/Pzzz9i+fXu7gDQcPR/uuecebNiwASdOnMDXX3+NY8eOYdasWcjMzMTRo0fx8ccfQ6/XIz09HQ0NDV7z+Otf/4pdu3ahvLwc69evx5QpUzBz5kz0798fLS0t2LBhAzZv3gzAOfnV008/jbS0tJB/llC477778NNPP+H48eNYvXo1Dhw4gOnTp6N3794oLy/HF198Ia5neuGFF2LatGkhO/err76Kf/3rXwCAe++9F/fdd1/I8g6VRDSgT3NbPZDB+6RTsY4CTxJV2j2dFHicbCqHUqYAIwjgTC2Sw/KElO4rXIASEhIwduxYWmC8G2VmZoLneZp1kgSM6gwJVqSWoiCBy83NxWOPPYbHHnsMHMdh37592LdvX7t0Y8aMwbXXXovHH38cAHDkyBGMGTMmpGXRaDR455138Mc//hEHDx7E0aNH8cwzz0jSTJgwAePGjcPLL7/sNY+kpCR8+OGHuPfee7F3715UVlZi+fLl7dKlpKTg5Zdfxvjx40P6GUJJq9Xi/fffx9133419+/bh2LFjeP7559ulu+iii/Dqq6/2uDkxEuUsVFzbAxAFBZ6EhJ9KowCa3HYIFvx6Zi8A4O7Rs8ElpIEz6iHwzjE20dbi6UJBZ/fq3bt3pItAYgzVGRIsuq7HhtmzZ6OoqAjvvvsufvvtNzQ0NEAulyM9PR1Dhw7FtGnTcPnll6O1tRVPP/007HY7vvnmG8yfPz/kZenduzc+/fRTrFixAl9++aW4zFp+fj6mT5+O+fPn49133/WbR1ZWFj777DOsW7cOX3/9Nfbt24empiakpKQgNzcXkydPxvXXXy9ZwiVaZWZm4rPPPsOXX36JtWvX4tChQ2huboZOp8Pw4cMxffp0TJkypUc+EFR4zFcSr2E3I4R6Ki8ScwwGA44cOSJuFxUVRWxA9zfLV2PXqbbnIWruDH69cA80CjX+e9WjZwNNAbzZCM7cAmV6X595hVN5eTk4jqPxm4QQEoeOHTsGh8MBuVyOQYMGRbo4hJAIC/c1Yc///RP7S9p69Slhww3vPBny8wQqXLEBtXiSKOP9GY9OocHp5QvBqrVQ9sqDslceUifM7uayOZ0+fVoyIQkFn4QQQgghhPhHgSeJKknDhwGnDovblj7J6J+ai2RGAQg8eLMBllMHYDl1EGkTb+z28nkGnSdPngTDMDSJECGEEEII6RQOFmQYK9p2yOJzPRUKPElU4T2mtS3MGIC5V92AluKNqEfbAsry1CywSk23lu3UqVM4ceJEu/09cSxCtDl06BDsdjsUCgWGDBkS6eKQGEB1hgTLbDZDEAQwDAONpnu/f0hsojpDAtXCm6Dg2tZqtcXprSUFniSqeI44Zlln11tb7UnJflVWfvcU6CxfQWdBQQFyc3O7tSykPbvdDrvdHulikBhCdYYESxAEr+tCEuIL1RkSqCZLMg7kzxG31fYWTIlgecKFAk8SVc69IBcKrQF2uwMKuQKDhxQCAGy1pyTplL26r2vryZMnxbWl3A0cOBA5OTndVg7im0KhkPxPSEeozpBguZZ36GnLPJDOozpDAmXj47NrrScKPElUKf9lL2pLKmC0mWDn7Sg/eAQ5Vw8EW38SvdzSKdL6dEt5KOiMDdRVkgSL6gwJFnWVJMGiOkMC1VPWCY7THsQk1jl4DnbOAZPdjNN1ZTBw0oV0eZvZxztDx1fQOWjQIAo6CSGEEEJISCQqpA8p4rWNvGeE1yRmmGtqYWvSQ7CbwQocZGo7OIMNCvcxEjI5FJn9wlYGQRBw8uRJnDp1qt2xQYMGoW/fyKwdSgghhBBCSKyiwJNEFePxE7Cc0YPF2eZ4G4dKvYAst0c/Ml0K5AkpYTk/BZ2EEEIIIaQ7cbxKsu1g43P+AQo8SVSRJSYC0IvbTawVv1r0GCRv6xUu0yVDpk0Oy/l9BZ2FhYXo06d7xpWS4FVVVYHnebAsi969e0e6OCQGUJ0hwbLZ2oZ8KJXKCJaExAqqMyRQsnajH+Ozsy0FniSqWHkWNpnauSEIcLDO5Q5S7W2zfcmTMsAq1WE5f0JCAhiGkUx/TkFn9KurqxPXZKQgggSC6gwJlsPhENdkpCCCBILqDCFSFHiSqFJuSUFlcpq4zbA1AOqg4dsCQWVm+NbNzMzMxJAhQ3Do0CEIgoCioiK6KSWEkB5GJpPB4XCA4zgxcCCE9EyCIIDjOADOa0M4sLrw9OSLNhR4kqii6tMHaKwWt+3JaqTaOWi4thZPZa/+YS1Dr17OhVs4jqOgM0YMGDCAbg5JUKjOEH+USiWsVisEQYDJZIJOp4NKper4jYS4oToTH0wmk9gTLlwt11arEUBSWPKOJhR4kqji3sUVAAaoU3HLqQZxm1UnQJGSGfZyuIJPEhsSEhIiXQQSY6jOEH+SkpLQ2toKAGhsbIRWqw1bSweJX1RnYp8gCGhsbBS3k5LCExwaHRa4B56C76QxjdbxJFFF4D3+1DzW65TpUiALQXcEQRBgNBq7nA8hhJD44xrvDwAGgwEVFRUwGo3tHo4SQuKT6z6xoqICBoMBAMAwDD207CJq8SRRhXc4JNuKlEwk5F8JzqAHZ9RDnpAKVtu1p02CIKCsrAyVlZUYPnw40tPTu5QfIYSQ+MKyLPr27YvKykoIggCDwQCDwQCGYagVi5AewDW+24VhGPTt2xcsG542Ozvn6DhRHKDAk0QVW0urZFvfVIsTgxgMynaO62RVGrDyzvevdwWdFRUVAID9+/dT8BkHLBaLOF5PrQ7PjMckvlCdIR1JTEyUBJ88z4NhGPF/QjriGbiQ2OQKOhMTE8N2DjZOl0/xRIEniSqevZhsDivqODMGIQWAs6tt5/MWUFpaisrKSsm+AwcO4IILLqCpzmPY0aNHxaUxRo4cGenikBhAdYYEIjExEYWFhTAYDCgrKxODznDegJL40draKj7gojoTW2QyGZRKJZKSkpCQkBC2lk4XnUx6DxqvYSgFniSq2A0GAG2zwLEWKxRM2x+7PCmjU/l6CzpdioqKKOgkhBDiFcuySEpKgkwmA8/zkMvlGDRoUKSLRWLA3r17Ybfbqc6QDumEBmS16sVtmWCLXGHCiAJPElU4kwXugadgtcHA28VteXLwgacgCDh27BjOnDnT7tiQIUOQlZXVqbKS6JGWlgaHwwG5nC5pJDBUZ0iwqM6QYFGdIYFKVsugtbeI2wpQ4ElI2MkhHVztEEw4zXJglRoIdivkicGNxfQVdDIMgyFDhtCyKXEiJycn0kUgMYbqDAkW1RkSLKozJFBpA3KhOX1A3FbHaU88CjxJVJGBl2wzsCGn9xAkj5gKwWYBwwY+myAFnYQQQgghJNrJNCrIVG7bqvgc5UnreJKo0m6FNEaAedNKVLx+PzhjU+D5CAKOHj1KQSchhBBCCCFRgFo8SVQRBHhM5SVAw/OwN1dBlpAaYB7OoLOqqkqyn2EYDB06FJmZmSErLyGEEEIIIV1hk1lhTqwXt3mlIoKlCR8KPElUETwmkBYYASqehzw1C6xS0/H7KejskY4dOyYujUEzB5JAUJ0hwaI6Q4JFdYYE6gzfhDX92uY5SXPYMDOC5QkXCjxJVGnX1RaAmhegysoP6P319fUUdPZAZrMZdrsdDoej48SEgOoMCR7VGRIsqjMkUA01Kgz7bbK47VAZIlia8KHAk0SVIVwZ+lbvhMAwABhoUg3oa3FA2SsvoPdnZGQgNzcX5eXlAJxB57Bhw5CR0bn1P0lsYBhG/EdIIKjOkGBRnSHBojpDAmU1GgGkiNsyh7emmNhHgSeJKq2CBs3qXmDOtn1yLAcGrZCn9Q7o/QzDYMCAAQCAiooKCjp7iBEjRkS6CCTGUJ0hwaI6Q4JFdYYESl5nlGxrLBR4EhJ2nADwbkumGOVyCGAgT0wLOA9X8JmdnQ2dTheOYhJCCCGEEBISyUrp/Wq8tpHTciokqgjtRnkKkAsClNkDgsqHYRgKOgkhhBBCCIkSFHiSqCJ46VkgU2kh85jRVhAElJaWwmQydVPJCCGEEEIICT2ekd7nciwtpxLXBEHA2rVr8fnnn+PQoUMwmUzIzMzE2LFjMX/+fIwcObLL5zh69Cjeeecd7NixA7W1tUhMTERBQQGuv/56TJ8+HTKZrONMepgEnoNcmyzZJwgCDh06hNraWtTV1WH06NHQaDpeaoXEr7q6OvA8D5ZlafZiEhCqMyRYVGdIsKjOkEAl5vYFKs3iNqOIz7ZBCjwBWCwWLFq0CD/99JNkf2VlJSorK/HVV1/hgQcewMKFCzt9jhUrVuCJJ56A3W4X9zU2NqKxsRG7du3CqlWr8NprryElJaXT54gHdkEGjnH9sQlI4CAZ3+kedAKA1WpFcXExBZ89XFVVlbhWGn25k0BQnSHBojpDgkV1hgRMFp+BpicKPAEsXbpUDDoLCgowZ84cZGRk4MCBA/jkk09gMpnw0ksvISsrC9OmTQs6/82bN+Pvf/87BEGARqPB3LlzMXz4cDQ0NGDlypU4evQofv31Vzz44IN46623wLI9o/J5c1KRD7M6QdxuZFiMSHaO1RQEAQcPHkRdXZ3kPXa7HRaLhQJPQgghhBAScxQpvQGUituCXBW5woRRjw88t27dirVr1wIALrjgArz55ptQqZy/7GuvvRazZs3CjTfeCL1ej2eeeQaTJk1CQkKCvywlbDYbHn/8cQiCAK1Wi//9738YNmyYeHzevHl48MEHsX79emzduhXr1q3DtddeG9oPGUPaD/EUIE/NAs/zOHToULugk2VZDB8+HKmpqd1VRBKF+vXrB0EQaK00EjCqMyRYVGdIsKjOkECZTM2SbUHgIlSS8Oq5TWtnvf322wAAuVyOp556Sgw6XQoKCvD3v/8dAKDX67FixYqg8v/+++9RUVEBALj99tslQScAKJVKPPfcc2IX2zfeeKMzHyNuCB4TSLMQIE/r4zPoHDFiBNLSAl9qhcSnlJQUpKam9viu6iRwVGdIsKjOkGBRnSGBqrM0SbatFHjGH71ej23btgEALr74YuTm5npNN2XKFKSnpwMAvv3226DOsW7dOgDO5T3mzZvnNY1Op8OMGTMAOCcgOnHiRFDniGcMeBxv4X0GndTSSQghhBBCSPTr0YHnr7/+Cp7nATi72frCsizGjh0LACgpKUFzc7PPtJ527doFACgqKvLbMud+/k2bNgWcf/xpa/EUIEDNcGiyOCQpKOgkhBBCCCHxwtogbfGUObysLxgHenTgeezYMfF1YWGh37QDBw4E4Jzg5ujRowHlX1NTg5aWFgDAoEGD/KYtKCgQXx8+fDig/OORIP4vAPIm2BQMGKatmrIsi5EjR1LQSSQcDgfsdjscDkfHiQkB1RkSPKozJFhUZ0igmKZWybaMi8/As0dPLlRZWSm+7tu3r9+02dnZkve5WkD9cY3tDCT/rKwssCwLnudx5syZDvOOZ66gEzILBLcB+a6gk8ZKEE8HDx4Up6wPxZq7JP5RnSHBojpDgkV1hgQqUa6WbMfrdFQ9OvBsbGwUX3fUguYe7Oj1+oDyb2pqazbvKH+FQgGtVguDwRBw/vGIB8SgEwD0fAY2b9oHhmWhkKfg9F4OgsMGztwKzmwD16IHCwcEQYBJLsCUroI80YikzBqMackBxzv/dI1VzWipN6BO1htmeRIcPAfWLahVy5QABAhnn0oysEEGOwRBgE3gwQDQ8C3o5TgGFZsNB6MQ32sFjwY2EyZFGuw8B0uaBozSebyPNg0sI4PD0Aje5oBd3wyZYAUEAWZGgCFDCZnWAXWf07jI0Bu8w/k+S6MJ+somNLFpMCgyYeM5MAzAnL0UqVg5GFYGwW47WwoH5LA6y8NzYCBALjjQ174XKjYdDkYrltcGHs1sMloU2bDxHGyJKgg656RamaokqFU62JtrAY6HpbEZct65oLFN4NCcrgSjkkGbV4pzzRlQWp352g1WNJ1qRLOghV7ZB3aBBwSIM/kpWBlkrAKC3Sr+puVoy1cQBLBgkGMrhobRwcEmi+V1QEAro0ajIhcOCLCqZeCTnedNVeiQoEuFqeYUBEGAo9mEncJPzjIJPFqTZOATlFD3OYlhvA7J5iQAAGfj0FRaBwMnQ60yHxwE8IIg1gkFK4NcpgBvtwKCsyVeAaOYLy/wYMEgy34YSQIPhyzDrQ4LMIFFtbIAHATYlSwcKTqAARLkaqQmpMPRXAeB52BtMoC1tYKBAIfAw6Bl4UhRQZV5BgOUAnob2vJtPFwDk92BM4pB4BkGnMCL5ZUxLBQyBQTODvDOp6QymMR8ubPlTXOcQiqvBy/rLeYrALCAR5WiAA5GBrsMsKdpAZaFWqZApi4dnKkVvN0Ce6sZgqkZLJx5mpQMLOkqKFMb0TuxFQNb2vJtOdGAVoMFNYp82FklHHxbeVkwUMqVAM9B4Liz+yxgwYEXBNjP/s0lcTXI5CohyPrC/WvYDB518lxYZRrYGQHWVC0YuQwyhkVvXUZA1whVcjlGNWRBgAw7t/1E14g4v0bYm6qcP7f6Zsi5tr/lYK4Rzr8j529/i+w3ukbE+TUiFPcRLG8FD8AOHluwka4RcX6N6Mp9hMmRjQxZWyOXXLAiHvXowNNisYivPWez9aRUKr2+zx+z2Rxw/q40BoMh4PzjFtPWvUBgZBDMcsCeBl5Q4Xid8ewRtfOfLEn63gagDpU4kH4MfU83wC64LsCAw5IAfUIGTEwKIJO+rdl1So/97tJMlUip2ouKJCVscumaoXptBgxMhvP9bkOAT8J14Tj7JIv1WIqnCWixNqOs7yEMqKiB3Z4IALAZAJspAXpNOpqVvbyXi/dR3rP7VA4jhlXtQK1OBoNKK0nSrEpDoytf09l/ACrBAWhpKy+jlZ6jGeAZHrvzS5BdxUFhdI5bdlgAi0ELgzIVDaos74/qfJXXzZDynTAodWjSSstrkic68wUAG4Czc03VAKhBE4Cz9cDti8b5Rue//dlHkVhvQFqj8xfNOwBTqwZWmQaN6izvheHQ4WCEfjVHwXN21CVKy+tgFG35OgDUO182AmiEHoDi7D814HZDChuAWuBYchU4cw34M203JoZmNQQwaExr+2KS4OH8ufv5Gac31UJpqEF5irbdscaUXuBZufPbsaGtOC1wdf9x/c25PUTjAdQBFSoDahX10JS35WtqlIN3JKAxORMORt2+XPzZ//2UV2O0IaH+GE6kaiW9HwCgKTEDVubs35Pb0JjjCOwa0ZhuwYAGC+yCAk2w0TUi7q8RrtYEj7pI1wgJukYgtPcRHmnoGgG6RnhwXSO4RCUSubYGMTlsft4Vu3p04One5949sPTG/XigffU5rm0q5I7yd08T6bEApaWlKCgoQGJiorjParXiyJEjAJytv/369Wv3HpPJedXx7E5SX18vdh/Ozc2VtP5yHIcDBw4AABITE9HXdBxWgwJVGRkAawUEBrCngxE6/vkRQgghhBAS62Rnn7zwPI/9+/cDcK6C4T4nDACcOnVKnPR0yJAhUCjaHka1tLTg5MmTAJxDBnv16iV57/79+8HzPNRqdbu5bjxXkwiVHh14qtVt/antdrvf4NBma3vyEEgQCUhbOe12e4fpXedwrzSRwHGcONuviyAI4mdwD6hdXAPoveF5XjzmmS/Q9rNxOBw4P78VDTsOQ6+ZAbOWAbgECjoJIYQQQkiPke7WccD9PtmT+/23IEgnJHK///Z2726328HzPGSy9s3I3u7XQ6FHB55at2Z4q9UacOAZSLdZb/l3xJXGPSCOBJlMBpaV9g1gGEYMiL1VULlc7jNgZllWPOaZL9AWaMvlchQseRzl/3sLGcUNMNp1sAkNMKeoARkLlUIpGZthN1nANeshgwMCA5jlgCldhd6JRhSxSUjK0IAXWDAsC15uQUu9AVamHirBBjvvAAPnWAeGYTzGZggAb3WO3wJgh+AcvyVrgb63Bskww8E43y9jZbCCh52th1LgYecdMCarAYUMMpkMfXXp4tgMzmqHrUkv9tu3sIAhQwm11oEJgg7JGSng7M6fLasToHc0gWcbIBdY2HjXmBHn6AyVTCEZmyEIdsgFZxdtGwRxbIa+twY62KFgnF2hZKwMdvAAKwMjKGHjOVh0cnAaJVgZiyx1imRshrm+SRybYWcEcWzGBEGH9PQkyDTOvxmZg0WzrRGsAPCCBnaehwBBLK9CJpeMzeAFDgrBJObrGpvRmqWECgJSz5aXZVnwAOQMBwdfA4fAw6KWwZ6gAsOyyFAlSsZmmGr1UHAGAICDgTg2YwyrRO+UBGhZZ3nljBwt5gYYOBssfI3b+C1n3x6lTC4Zm8ELPOSCEczZfF1jM6xpPBQC21ZehgEYBiawSDubr1XOwJasBsMwSFbpJOO3zA0tYG2tYCGAYyCO3xquFJAnS0dqhlL8G9EYG2CyO5DGVYNnGDgETiyvnJVJxm8J4MHyZuc4KwbiZxMSzbDpVG3lBQOGZWEBjzShFg5eBhsrwJKsBlgWCSq1ZPyWrdkI3tQCGTjwDMTxWwO0NmSp2srLymRIdLSi1WBBGupgF5Sw85z4NydjWMn4LQECGN4s5usQnH9zCnUTDL21SGVaIYABCwYsy8IMHqlMPayCETaBp2sEXSPoGkHXCLpG0DUiLq4RMpZFau8UnLdkCVzc75M9ud9/Mx7dzd3vv73duysUCvA87/X+3dv9eij06MAzKamtX79er5d0LfXkPuGPv/U4feXf0dqfdrtd7KoaaP7hMnDgQCQkSMcQqFQqvzOyuZab8SYjIwMZGRlej8lksnb55t1yN24LoryEEEIIIYTEG9eKDr7k5eX5PJaUlOT3vcOHD/d5LDMzUzIJa6j06MAzPz9ffF1VVYXc3Fyfaaurq8XXffr06VT+/tTU1IjN2oHmH69OnDgBh8MBuVyO/v37R7o4JAZQnSHBojpDgkV1hgSL6gwJVrzXmR4deLoP0D127BjGjRvnM+2xY8cAOJuxBw0aFFD+qampSE9PR0NDg/h+X0pLS8XXngN8e5rW1lZx3StCAkF1hgSL6gwJFtUZEiyqMyRY8V5nwtOBN0acc8454i92x44dPtNxHIddu3YBAAYPHizpQtuRsWPHAgAOHTqE1tZWn+l++eUX8bW/AJgQQgghhBBCYk2PbvFMSkrCBRdcgM2bN+OHH37AmTNnvHZz/frrr8V+zpMnTw7qHL/73e/w7bffwuFw4OOPP8bChQvbpTEYDFi1ahUAoH///hg8eHAnPk38GDZsWKSLQGIM1RkSLKozJFhUZ0iwqM6QYMV7nenRLZ4AcMsttwBwTu7z4IMPwmAwSI6Xlpbi6aefBuBcP2f27NlB5X/FFVcgJycHAPDaa6/h119/lRy32WxYsmSJOHnRrbfe2olPEV9kMpn4j5BAUJ0hwaI6Q4JFdYYEi+oMCVa815ke3eIJABMmTMDvfvc7fPfdd9izZw+mTZuGefPmoXfv3jh48CA+/vhjGI1GAMCSJUvazTi7Y8cO3HzzzQCcXWQ/+OADyXGlUomlS5fij3/8IywWC2655RbMnj0b5557LvR6PT777DMcPXoUAHDuuedi1qxZ3fCpCSGEEEIIIaT79PjAEwCee+45GI1GbNmyBRUVFXjhhRckxxmGwb333ou5c+d2Kv/LL78cjz32GJ5++mnY7XZ89NFH+OijjyRpRowYgX//+99x+4SDEEIIIYQQ0nNR4AlAo9HgrbfewldffYXVq1eLEwGlpKTgvPPOw80334zzzjuvS+eYN28exowZg/feew/btm1DXV0dFAoFCgsLMXXqVMyZMyduZ7AKVlNTE3ieB8uySE1NjXRxSAygOkOCRXWGBIvqDAkW1RkSrHivMxR4nsUwDK677jpcd911Qb3v/PPPx5EjRwJKO2jQIDz11FOdKV6PUl5eLk4lHY9/dCT0qM6QYFGdIcGiOkOCRXWGBCve60yPn1yIEEIIIYQQQkh4UYsniTp9+vQRuxkQEgiqMyRYVGdIsKjOkGBRnSHBivc6Q4EniToZGRmRLgKJMVRnSLCozpBgUZ0hwaI6Q4IV73UmPsNpQgghhBBCCCFRgwJPQgghhBBCCCFhRYEnIYQQQgghhJCwojGeJOrs3btXnEp65MiRkS4OiQFUZ0iwqM6QYFGdIcGiOkOCFe91hlo8CSGEEEIIIYSEFbV4kqij1WrhcDggl1P1JIGhOkOCRXWGBIvqDAkW1RkSrHivM4wgCEKkC0Eiy2Aw4MiRI+J2UVEREhISIlgiQgghhBBCSCSEKzagrraEEEIIIYQQQsKKAk9CCCGEEEIIIWFFgSchhBBCCCGEkLCKz5GrJKadPn0aHMdBJpOhX79+kS4OiQFUZ0iwqM6QYFGdIcGiOkOCFe91hlo8SdTR6/VobGyEXq+PdFFIjKA6Q4JFdYYEi+oMCRbVGRKseK8zFHgSQgghhBBCCAkr6mpLok5RUREEQQDDMJEuCokRVGdIsKjOkGBRnSHBojpDghXvdYYCTxJ1VCpVpItAYgzVGRIsqjMkWFRnSLCozpBgxXudoa62hBBCCCGEEELCigJPQgghhBBCCCFhRV1tSdRpbW0Fz/NgWRaJiYmRLg6JAVRnSLCozpBgUZ0hwaI6Q4IV73WGAk8CjuMk2yaTKUIlcSorKxPXMBo4cGBEy0JiA9UZEiyqMyRYVGdIsKjOkGBFS53xjAU8Y4XOYgRBEEKSE4lZtbW1KC8vj3QxCCGEEEIIIVEmNzcXvXr16nI+NMaTEEIIIYQQQkhYUeBJCCGEEEIIISSsaIwnQUpKimRbpVJBJpNFpjCEEEIIIYSQiOE4DlarVdz2jBU6i8Z4EkIIIYQQQggJK+pqSwghhBBCCCEkrCjwJIQQQgghhBASVhR4EkIIIYQQQggJKwo8CSGEEEIIIYSEFQWehBBCCCGEEELCigJPQgghhBBCCCFhRYEnIYQQQgghhJCwosCTEEIIIYQQQkhYUeBJCCGEEEIIISSsKPAkhBBCCCGEEBJWFHgSQgghhBBCCAkrCjwJIYQQQgghhIQVBZ6EEEIIIYQQQsKKAk9CCCGEEEIIIWFFgSchhBBCCCGEkLCiwJMQQgghhBBCSFhR4EkIIYQQQgghJKwo8CSEEEIIIYQQElYUeBJCCCGEEEIICSsKPAkhhBBCCCGEhBUFnoQQQgghhBBCwooCT0IIIYQQQgghYSWPdAFI/BEEAWvXrsXnn3+OQ4cOwWQyITMzE2PHjsX8+fMxcuTILp/j6NGjeOedd7Bjxw7U1tYiMTERBQUFuP766zF9+nTIZLIQfBLSXcJdZwRBwMaNG7FmzRrs3bsXjY2NUCgU6Nu3L8aPH4+bb74Zffr0CdGnId2hO64z3jzxxBP46KOPAABHjhwJyzlIeHRHnbFYLPjkk0/w3Xff4cSJEzAYDEhPT8d5552HBQsW4Nxzzw3BJyHdpTvqzO7du/Hhhx/it99+Q319PVQqFfLy8nD55ZdjwYIFSElJ6foHIRHl+t649957cd9993U5v8rKSrzzzjvYvHkzzpw5A41Gg7y8PFxzzTWYO3cu1Gp1CEodHowgCEKkC0Hih8ViwaJFi/DTTz95PS6TyfDAAw9g4cKFnT7HihUr8MQTT8But3s9PmbMGLz22mt0sY4R4a4zzc3NWLx4MbZu3eozjVKpxJNPPonrr7++U+cg3as7rjPe/PLLL7jlllvg+tqkwDN2dEedOXz4MO677z6cPn3a63GGYXDXXXfhgQce6PQ5SPfpjjrz/PPP47///a/P45mZmXj11VdxzjnndPocJLK2b9+O2267DTzPhyTw/Pnnn7F48WIYjUavxwsLC/Gf//wHOTk5XTpPuFDgSULqT3/6E9auXQsAKCgowJw5c5CRkYEDBw7gk08+gclkAuC82E6bNi3o/Ddv3ow77rgDgiBAo9Fg7ty5GD58OBoaGrBy5UocPXoUADB+/Hi89dZbYFnqTR7twllneJ7HzTffjF27dgEA+vTpg5kzZ2LAgAEwGo3YsmULvv/+e/A8D4Zh8O9//xuXX355aD8gCblwX2e8MRqNuO6661BRUSHuo8AzdoS7zpSXl2POnDlobGwEAFx44YW48sorkZKSgt27d2PFihWwWq0AnK0fc+fODdEnI+ES7jrz3//+F88//zwAQKFQYM6cORgxYgRaWlqwfv168XsrKSkJX3zxBXJzc0P0yUh32b9/P37/+9/DYDAAQJcDzyNHjmD27NmwWq2QyWSYNWsWxowZA6PRiDVr1mDPnj0AgKKiInz66afQaDQh+RwhJRASIlu2bBEKCwuFwsJC4eabbxYsFovkeGlpqTBu3DihsLBQGDdunNDa2hpU/larVbj88suFwsJCYfTo0cL+/fvbHb/nnnvEMnz11Vdd/kwkvMJdZ1auXCnJ32g0tkuzceNGYejQoUJhYaFw8cUXtysDiS7hrjO+PP744+J5Xf9IbOiOOvOHP/xBPMcbb7zR7viePXuEYcOGieewWq2d/jwk/MJdZ/R6vTB69GihsLBQGDt2rHD48GHJcZ7nhVdeeUUsw4MPPtjlz0S6108//SSMGTNG8p2xfPnyLuU5d+5cobCwUBgyZIjw008/SY7xPC8sW7ZMPNfrr7/epXOFCzUHkZB5++23AQByuRxPPfUUVCqV5HhBQQH+/ve/AwD0ej1WrFgRVP7ff/+92Npw++23Y9iwYZLjSqUSzz33nNjF9o033ujMxyDdKNx15tNPPwUAqFQqvPjii9Bqte3SuMbRAEBNTQ02bdoU9Ocg3SfcdcabX375BR9//DEAIDExscv5ke4V7jqzc+dObN68GQAwY8YMr10vR48eLbZy6vV6bN++PejPQbpPuOvM1q1bxRbT22+/HUVFRZLjDMPg/vvvR79+/QAAGzduhMPh6NRnId3LZrNh+fLluOuuu9DS0hKyfPfs2YPdu3cDAK6//npceumlkuMMw2Dp0qUoKCgA4KzDvoakRRIFniQk9Ho9tm3bBgC4+OKLfXYJmTJlCtLT0wEA3377bVDnWLduHQDnH9e8efO8ptHpdJgxYwYA5wREJ06cCOocpPuEu84YDAbs3bsXAHDRRRchMzPTZ9qrr75afF1SUhLwOUj36o7rjCej0YilS5dCEARMmzYNQ4YM6VJ+pHt1R51xdcdUqVRYvHixz3SzZs3C3Llzcffdd4vnItGnO+qMe5f9wYMHe03DsiyGDx8OADCbzWhqagrqHKT7bdu2DZMnT8Zrr70Gnueh1Wpx6623hiRv1z0wANx4441e07AsKx7T6/X45ZdfQnLuUKLAk4TEr7/+Cp7nAQAXXHCBz3Qsy2Ls2LEAnDf4zc3NAZ/DNd6hqKgIaWlpPtO5n59ar6JXuOtMU1MTRowYgczMTAwYMMBv2uTkZPF1KJ9QktDqjuuMpxdffBEVFRXIzMzEI4880ul8SGR0R53ZsGEDAOcDrl69evlMN3jwYDzxxBN44IEHxICCRJ/uqDMJCQni6/Lycp/pzpw5A8A5kZH79xSJTl9++aX4UGH48OFYsWIFLrvsspDk7boHTk5OxtChQ32mc6+zrp4Y0YQCTxISx44dE18XFhb6TTtw4EAAzmnKXZMBdaSmpkYMCAYNGuQ3raubAeCcZZBEp3DXmdzcXKxYsQJbtmzBkiVL/KYtKysTX9NsyNEr3HXGk3sX28cee4zqRgwKd52pra1FQ0MDAGd3Whe73Y5Dhw5h06ZN2L9/P3WTjCHdcZ1xX4blf//7nzjxlLudO3eKvXbGjRsHpVIZcP4kctLS0vDoo4/is88+E+tHV3EcJ96nFBQU+J04s3///uKSgtF4D0yBJwmJyspK8XXfvn39ps3Ozvb6Pn/cu6V0lH9WVpb4R+l6WkiiT7jrTDA+//xz8fWoUaNCnj8Jje6sM+5dbCdPnowrr7wy6DxI5IW7zpSWloqvc3JyYLfb8eqrr+KSSy7B9ddfjzvuuAMzZ84UZ1rnOC7IT0C6W3dcZ4YPH45LLrkEAHD8+HEsWLAAv/zyC1pbW1FdXY2PPvoI99xzD3ieR0JCAh566KEgPwWJhPnz5+PHH3/E/PnzQ7qefH19PWw2G4CO66RMJhOHFkXjPbA80gUg8cE1hTwApKam+k3r3mqg1+sDyt99bENH+SsUCmi1WhgMhoDzJ90v3HUmUJs3b8aPP/4IAEhPT8f48eNDmj8Jne6sM64utqmpqXj00UeDfj+JDuGuM9XV1eJrpVKJBQsWoLi4uF06vV6PF154AcXFxXjllVegUCgCyp90v+66zvzf//0fHnzwQfz000/Yu3cvfv/737dLc+655+Jvf/tbu8kUSXQaMWJEWPINpk4Czu641dXVUXkPTC2eJCQsFov42nP2N0/u3UXc3+eP2WwOOH/3NIHmT7pfuOtMIKqqqvCXv/xF3L777ruhVqtDlj8Jre6qM+5dbP/+97/7HVNOolu464z7Iu7PP/88iouLMWjQILzxxhvYvXs3du3ahZdffhm9e/cGAKxfvx7/93//F8QnIN2tu64zOp0Ozz77rNjy6YlhGPTv35+6+JO4ugemwJOEhPv4lY7GIbgfD3Tci3v3pEDGObjS0Lia6BXuOtORxsZG3HbbbeL4rPHjx4vLqpDo1B11xr2L7aRJk3DNNdcEX1ASNcJdZ1xLYgDOSWKGDBmCTz75BBMnToROp0NSUhKuueYafPzxx+IDjHfffTcsQwZIaHTXd9O6deswceJEbNq0CVlZWbj33nvxyiuv4KmnnsLvfvc7AM5hIFOnThXHepKeKZ7ugSnwJCHh3krU0bpBrn7qQGB/QID0CU8g6xK5zkHdmaJXuOuMP3V1dbj55ptx/PhxAEBeXh5efPFFMAzT5bxJ+HRHnXF1sU1OTsbjjz8edBlJdAl3nREEQbL95JNPSmYsdenduzfuv/9+AM6bwdWrVweUP+l+3XGd2bhxI/785z/DYrHg/PPPx7p163DfffdhypQpmD17NpYvX4633noLarUaRqMRt99+O+rq6oL/MCQuxNM9MAWeJCS0Wq342tvsbO7cL9SBdBkINn/3NNRtMnqFu874cvr0acyfP1+cubB379545513qDtlDAh3nXHvYvvwww/7XRqDxIZw1xmNRiO+zs/P9zvGy9WKBUBcCJ5En3DXGUEQ8I9//AMcxyE5ORnLly/3+rBiwoQJ4qRCzc3NePvttwPKn8QfnU4nvo71e2AKPElIJCUlia87GszsfjzQm333/DtaK8tut4vdnyiYiF7hrjPe7N27F3PnzsWpU6cAOGeH++CDDzqcJY5Eh3DWGfcuthdffDFmzJjR2WKSKBLu64x7wNC/f3+/adPS0sTxerW1tQHlT7pfuOvMoUOHxLU7r7nmGr9jOOfMmSM+3Pj5558Dyp/En8TERPF1IOvFutJE4z0wzWpLQiI/P198XVVVhdzcXJ9p3WcB/P/t3X1cjff/B/BX6EiS+7mJYYoQVm5CRYWZWcNabidse5i23G2+mM1dG3MzExJbmc19tSFEMh1WrIRIGXKTVFTSke50qvP74zy6fufsnOocdaXxej4ePR7XdZ3PdV2f61zXdbre1+eubdu2z7X9iqSnpwuDP+u6fap5Yl8z/xYREYHZs2cLLyXMzc3xyy+/oFWrVs+1Pap5Yl4z8fHxwrBNERER6Nq1a6XrlKUxMzNDeHh4pemp5on9O9OuXTu98lNWHbPsfxTVPmJfM0lJScJ0ZeOESiQSdO7cWe33iV49r732Gho2bIi8vLxKh0gpKSkRqmXXxmdglnhStejcubMwrTr4sjZlnxsYGMDCwkKn7Tdt2hTNmzfXafuq46pV9qNOL47Y14yq8PBweHh4CEFn7969sXv3bgad/zE1ec3Qy0Hsa0b1f0xlHQaVlJQIJWT87am9avJ3Rpdqk2XjklfnuJD031N2Xd6+fbvCdHfu3BE6I6qNz8As8aRqYW1tDUNDQ8jlckRHR2Py5Mla05WUlCAmJgYAYGlpqValpTL9+vVDaGgo/vnnHzx9+lSt6oGqqKgoYbp///56HAXVpJq4ZgDg/PnzmDNnjtAg387ODj4+PmrteOi/QcxrxsLCAlu2bKk0nbe3t/CwWZa+NrajISWxf2eaNm0KCwsLJCYmIjExEQ8fPkTr1q21pk1ISBDaBNbGB0JSEvuaUX3pEB8fX2Ha4uJioRO82lh6RTWnX79+iIuLQ1ZWFhITE8t90aH6DNyvX7+ayp7OWOJJ1cLU1BQDBgwAoCxdKq8qQEhIiDAQ7siRI/XaR1nHDMXFxUIHIP+Wm5uLgwcPAlC2t7G0tNRrH1RzauKaycrKwpw5c4SHPScnJ2zbto1B53+UmNdMs2bNMGzYsEr/VAfvLltmb29fxSMjsdTE70zZkDsKhQJ+fn7lptu9e7cwre8+qOaIfc307NlTaBt86tSpCpsPBQcHIzc3F4DypSm9ulQ7J9u1a5fWNCUlJdi7dy8AZbvQ2vi/iYEnVZtp06YBUHbu88UXXwg/lmVu3bqFlStXAlD20OXm5qbX9ocNGya0p9myZQsuXLig9nlRUREWLFggVGWaPn36cxwF1SSxr5lvv/1WeDDo1asXNm7cWC3DsdCLI/Y1Qy8fsa+ZCRMmCJ147Nu3D8HBwRppDh06JCy3sbFB79699T0MqkFiXjMSiUQYMzo/Px9z584V/k+punTpElatWgVAOSzG1KlTn+dQ6CXRu3dvWFtbAwCCgoJw/Phxtc8VCgW+++47oYR80qRJtbI2joHi34NQEVXB7NmzceLECQDKThcmTpyINm3a4Nq1a9i3bx/y8vIAACtWrMCECRPU1o2Ojoa7uzsAZRVZbW90wsPD8dlnn0GhUMDQ0BBubm6wsbGBTCZDYGAgbt68CUD5j3337t1sE/EfINY1c/v2bYwaNUoYZ2/BggXo0KFDpflp0qQJ+vbtWy3HRuIQ+3emIlOmTMH58+cBADdu3KjqoVANEfuaOXnyJObMmSO0rXJycoKzszMkEgmkUilCQ0MBKIfcOHDgAMzNzUU7VqoeYl4zBQUFmDRpEq5duwZAWWV77NixsLS0RElJCaKiohASEoLi4mIAwPLlyzFx4kRRj5fEoXoteHp6YtasWVrTpaSkYOjQoQDK77AuISEB48ePh1wuh4GBAVxcXGBvb4/CwkIcOnRIGKapY8eOOHDggNowLLUF23hStVqzZg3y8vIQGRmJlJQUrFu3Tu1zAwMDeHp6avxI68rZ2RnLli3DypUrIZfLsXfvXqFaQZmePXvC19eXQed/hFjXzKFDh9QGd1+7dq1O6z1PMEI1S+zfGXr5iH3NDB8+HOvXr8c333yD3NxcSKVSSKVStTRNmjTB1q1bGXT+R4h5zTRo0ADbt2/HvHnzEBUVhezsbK3jdBoaGmLx4sUMOgkA0KNHD3h7e+N///sf8vPzcfjwYRw+fFgtTYcOHeDv718rg06AgSdVswYNGsDf3x9HjhzBoUOHhI6AmjRpgj59+sDd3R19+vSp0j4mTpyIvn374rfffsO5c+eQmZkJQ0NDdOnSBS4uLhg3bhwMDQ2r6YhIbGJdM2Wl3/TyqYnfGXq51MQ1M3LkSPTp0wd79uxBeHg4UlNTYWBggPbt22PYsGGYNGlSrRxXj7QT+5pp1qwZfv31V5w6dQqHDx/GlStXkJWVBYlEAjMzM9jZ2WHKlCkcZ5rUDBs2DCEhIdixYwf++usvPHz4EAYGBujUqRNGjBiBKVOm1NqgE2BVWyIiIiIiIhIZOxciIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiKiaieXy190FqgCPD9EVNPqvegMEBGReKKjo+Hu7v7c65uZmSE8PLwac/T/nJ2dkZqaCgC4ceOGKPuoSZs3b4aPj0+l6erVqwcjIyO0aNECXbt2ha2tLUaPHg0TE5MayGXVqF5PY8eOxerVqzXSFBYWwsfHBw0bNoSHh4fG54sWLcLBgwcBADt37oStra24mRaZPveYgYEBJBIJTE1NYWZmhp49e2Ls2LHo0aOHyLn8f5WdHyIisbDEk4iIqAYVFxcjNzcXSUlJOHHiBLy8vDB06FCEhYW96KxV2Y0bNzBq1Cj4+fmhuLj4RWen1lEoFHj27BkyMzNx+fJl7Nq1C66urli6dClKS0tF3z/PDxG9SCzxJCJ6RTRu3BiffvqpXus0atRIpNy83KysrPDOO+9o/aykpAT5+fm4f/8+wsLCUFRUBJlMhjlz5mDr1q1wdHSs2cxWo4SEBKSkpLzobLwwld1jpaWlyM3Nxe3btxEZGYmCggIoFAoEBATAyMgIixcvFjV/r/r5IaIXi4EnEdErwsTEBB9//PGLzsYrwcLCQqfv+uHDh/joo49w+/ZtlJaWYtmyZQgLC0P9+vVrIJf6s7W1rXK16NWrV2utovsy0Ocek8lkWLRoEaRSKQBlteNx48bB3NxczCwSEb0wrGpLRET0grRu3RpbtmxBnTrKf8cPHz4UrU0t1S5NmjTBpk2b8PrrrwNQVsPdv3//C84VEZF4GHgSERG9QJ06dYKdnZ0w//fff7/A3FBNkkgkeO+994T5l6GTLSKi8rCqLRERPZc7d+7g8OHDiImJQXJyMp48eQIDAwOYmprCwsICDg4OcHNzq1JvrYmJiQgKCkJ0dDTu37+PoqIiNGnSBB07dsTAgQPh5uaG1157rdLtPHjwAPv370dkZCRSUlKQl5eHpk2bonv37hg+fDhGjx4NQ0PD585nVXXu3BkREREAlKWe5Xn8+DECAgIQERGBO3fuIDc3F6ampujQoQMcHBwwYcIENGvWrMJ9FRUV4ciRIzh58iTi4+Mhk8lQv359tGjRAtbW1njrrbfg7Oysdd3yerXV1qOvj4+PsMzT0xOzZs0CoL1X29LSUjg5OQnHfujQIXTr1q3C4wgMDMSSJUsAAK6urli1apVGmoKCAgQFBSE8PBy3bt2CTCaDiYkJOnbsiCFDhmDixIlo0qRJhfsRW4sWLYTpjIyMCtNevXoVx44dw4ULF/DgwQPIZDIYGhqicePGsLS0hJOTE8aOHQuJRKK2nj7nR1V2djYCAgJw5swZ3Lt3Dzk5OWjcuDHMzc3h7OyMcePGoUGDBs976ET0imHgSUREepHL5fj2228RFBSktSfOwsJCZGRk4OzZs/j555/h6+sLa2trvffj6+uLzZs3a+wjMzMTmZmZiImJwc8//4yvv/4a48aNK3c7v/zyC7y9vfHs2TO15RkZGcjIyMDp06fh5+eHTZs2oWvXrnrnszqUVbUFgLp162pNExAQgNWrVyM/P19teVZWFrKysnDp0iX4+/tj8eLF+OCDD7Ru4/79+5gxYwbu3Lmjtlwulws97R48eBBvvvkmtm7dWmkQW13q1KkDFxcX+Pn5AQBCQkIqDTyPHDkiTI8ZM0bj83PnzmHBggXIzMxUW56dnY3s7GzExsZi+/btWLFiBUaNGlX1g3hO9+7dE6ZVg1BVubm5WLRoEU6ePKnxmVwuR35+Ph48eACpVAo/Pz/4+fmhU6dOVcrXkSNH4OXlhZycHLXljx49wqNHjxAVFQU/Pz/88MMPGDBgQJX2RUSvBgaeRESkl4ULFyIkJASAckxKe3t7WFpaomHDhsjJycGVK1cQExMDhUKBx48fY9asWQgNDdWr5DM4OBgbN24EoAxK7O3t0b17dxgbGyM9PR2nT59GamoqCgsLsWTJErRr1w6DBg3S2M66devg7+8vzFtbW6Nv374wMTFBWloapFIpMjIykJSUhIkTJ2Lv3r2wtLSs4jekP9UqlmVt/lT9/PPPWL9+vTDfrl07ODk5oUWLFsjMzIRUKkVqairy8vLw9ddf4/Hjx5gxY4baNoqKijBz5kwh6GzTpg0cHR3Rpk0b5Ofn4+bNmzh9+jRKS0tx+fJleHp6Yu/evTrl387ODsbGxoiPj8exY8eEZWVViHV58TBmzBgh8Dx27Bjmz59fbtr09HRcuHABgHKs2X79+ql9furUKcyZMwdyuRwA0KFDBwwePBgtW7aETCZDZGQkbt68iadPn+LLL79Efn4+3NzcdDrW6pSTk4Pg4GBhXlsAV1paik8++QSxsbEAACMjIwwZMgTm5uYwMjJCdnY2zp8/j/j4eADKlwtz5szBoUOHhBca+p6fPXv2wMvLS5jv2rUrBg0ahKZNmyIzMxNnzpxBcnIyMjMz8cknn2Dr1q1wcHCoxm+GiF5GDDyJiEhnUVFRQtBpamqKnTt3ai2Zio6OxqeffoqCggJkZmbizz//1FoqVR5fX18AyqBT2xAjX331FRYvXozDhw8DALZt26YReJ46dUoIOps0aYIff/xRrS0lADx79gzr1q3Drl27kJeXh9mzZ+Po0aMaVRXFlJiYiKioKGF+8ODBap9HRUWpBZ2zZs3CzJkzUa/e//8LX7RoETZv3oyffvoJALBhwwb07t0btra2QpoTJ07g1q1bAID+/fvD399fo/fcuLg4TJ06Ffn5+bh48SJiYmI0gjptbGxsYGNjgwMHDgiBjbW1tV69KJubm6NHjx5ISEhAamoqLl++jDfffFNr2mPHjgkl4S4uLjAwMBA+S0tLw6JFiyCXy1GnTh0sXLgQ7u7uaqXKCxcuxIEDB7B06VLI5XJ4eXnBxsYGnTt31jm/VZWcnIwFCxbg8ePHAJRDF02ePFkj3cGDB4Wg08zMDDt37kS7du000oWEhGD+/PkoLS3FjRs3cPHiReHc6XN+4uPj8f333wMA6tevj1WrVuHdd99VS/PVV19h+/bt+PHHHyGXyzF//nwcP368xkrIiei/iYEnEdErIjc3F9u3b9c5/fjx4zVKKcva5gHKAKi86pC2trYYO3asUGIWHx+vc+Apk8mQlJQEAOjSpYvWcS0NDQ3h5eWFkydPoqCgADdv3kRRUZEQMCoUCmzYsEFIv2nTJrUgrEz9+vXxzTff4P79+zh9+jTu3buH4ODgGiv9io+Px9y5c1FSUgIA6NGjh0Zw7O3tLUxPnz4dnp6eGtsxNDTEF198gby8POzevRulpaXw9vbGvn37hDRXrlwRpqdOnap1yJZevXrho48+go+PD+rUqYO4uDidAs/qMmbMGCQkJAAAjh49Wm7gefToUWFatXMeQFk6XFY99PPPP8e0adO0buP9999HdnY21q5di6KiImzbtg3r1q2rUv4ru8cKCgogk8lw7do1xMXFCSWyEokE69ev1xq4qd5zX3/9tdagEwBGjRqF4OBgnDlzBoByzM7nOXcbN24U8rVixQqNoBNQVgefMWMGHj58iD179kAmk2Hnzp2YO3eu3vsjolcHA08iolfEkydPsHbtWp3TjxgxQiPwfPvtt9GpUyekpKRoPPD/m2p7yby8PJ33q1qSl5qaiszMTLRs2VIjXYMGDfDHH3+gadOmGg/ssbGxSExMBKAs2dEWdKry8PDA6dOnAQCHDx+ucuCZmJhYbgDy7NkzZGVlIS4uDnFxccJyY2NjjfOTkpIilHYZGxtrDTpVzZs3DwcOHEB+fj4uXbqEO3fu4I033gCg3nY0NjYWw4YN07oNd3d3vPvuuzAzM6vRkl8AePfdd7FmzRoUFxcjNDQUixcvViupBICkpCShWqmVlZVaKWVRUZFQdVUikWD69OkV7s/d3R0+Pj7Iz89HaGgoVq5cWaVj1vceA5TB/pIlS9CrVy+tn0+YMAEDBgxARkaG1pcwqrp27SoEnrm5uXrlA1BWYS7r5Kp169aVvizy8PDAnj17ACjvGwaeRFQRBp5ERKQzJycnODk5VZouPz8fKSkpwnxxcbHO+zAxMUG3bt3wzz//4OnTp3B1dcXUqVPh6OioURWyvKqRMTExwnSPHj0q3Wf37t0hkUhQVFSEuLg4FBcXqwXA+oqPjxeCI1107NgR3t7eMDc3V1uuWgXX3t6+0nayJiYmsLe3R1hYGADgwoULQuDZr18//PrrrwAAf39/pKamYvTo0bC1tYWxsbGwjcaNG6Nx48Y65706NWvWDA4ODpBKpcjMzMT58+c12j2qlnaOHj1a7bOEhASh86WOHTuiYcOGFe7P0NAQVlZWOH/+PIqKinD16lX06dOnmo6mfNbW1rCzs4OjoyN69uxZYVptJY7aPHnyBOnp6cK8PvdcmbK22QDQrVs3tSrM2rRs2RJmZmZITU1Famoq0tPT0apVK733S0SvBgaeRESvCDMzM4SHh1frNvPy8nD37l0kJyfj/v37uHv3Lq5fv47ExES1B9+yh1ldzZ8/HzNmzEBJSQnS09Oxdu1arF27Fm3btoW9vT0cHBwwaNCgcgOxsraMALB7927s3r1b530XFhbi8ePHOg3T8jyMjIxgYmKC1q1bo0ePHnB0dISjo6NGyR4AteBd106PLC0thcDz/v37wnJnZ2f0798f58+fBwAcP34cx48fh6GhIWxsbGBvbw9HR0d06dKlKodXZaNHj4ZUKgWgbLdYXuBZr149jd5oVc/7zZs39e6l+MGDB8+TZYG2e6ywsBC3bt3Cr7/+KvTEm5iYCBcXl0qDTm2ePHmCpKQkJCcnIzk5GXfu3MH169dx+/ZttftM33sOUP/+pFKp3t9fWloaA08iKhcDTyIi0ktpaSmCg4Oxd+9exMfHax1SBVBW7Sxru6gve3t7+Pr6YtmyZWrjWqalpSEwMBCBgYGQSCRwdHTE9OnTYWNjo7b+kydPnmu/qutXJfBUHeOyKmQymTCt63iTqulUv4c6derA19cX3333HYKDg4XARC6XIzo6GtHR0Vi/fj06dOiA999/H+7u7moloTVl6NChMDU1RU5ODsLCwrB06VJhjNWEhATcvXsXgPIaad68udq61XHeq5uRkRGsrKzwww8/wMrKCt9//z1yc3Ph5eWFzMxMnaqnFhUVYf/+/QgKCsLNmzfLTVeVew6ond8fEb08GHgSEZHO8vLy4OnpiXPnzqktNzAwQOvWrWFubg4rKyv0798fKSkpWLJkyXPvy9HRESdPnsSZM2cQFhaGyMhIoQdQQPkwHhYWhrCwMHz++eeYPXu28Jnqw/fbb79dbvu58vw7oHlRnqfUqrwXAYCy59Q1a9bg888/R0hICKRSKa5evaq2zr1797BhwwYEBgaW24OqmCQSCUaOHImAgADIZDKcO3cOQ4YMAVBxNVtA/bz36NFD7/E5y+vMqLpMmzYN9+/fF0rgt27dirZt21Y4Dm3ZkCXXr19XW16nTh2YmZnBwsICPXv2hK2tLSIjI4UeoZ+H6vc3cOBAvYdIqerYoUT0cmPgSUREOlu5cqUQdDZs2BDu7u5wcHAQxvFUVdbpSFVIJBIMHz4cw4cPh0KhwI0bNxAVFYWIiAhERUUJ1Xm3bNmC/v37C9UyTU1NhW1YW1uX27Npbafa1jI7O1undVTTqX4Pql5//XV4eHjAw8MDOTk5OH/+PM6dOwepVIq0tDQAyo6dFi1apFc15ery3nvvISAgAICyuu2QIUOgUChw/PhxAMoAeujQoRrrqR5vq1at9BrOpaYsXLgQMTExwtitK1euRJ8+fcptrzx//nwh6GzevDmmTZuGQYMGwcLCQqNn4lOnTlUpb6rfn7m5ea38/ojov0uzQQkREZEW6enpOHToEABlCeeOHTswd+5c9OnTR2snLqoB0POU3P2bgYEBLC0tMW3aNGzfvh3h4eFqbdDKejMFgPbt2wvTZb3bVka1NLW26NChgzBdFqhU5p9//hGmVb+H8piammLYsGFYunQpwsPD1UqpY2JihEC0JvXt21fIu1QqRXFxMS5evCi0wRwxYoTW4WBUj1e1vWJFnjx5UmEpcXWTSCRYvXq10HlVYWEhFi5cqDUPV65cETqYMjY2RkBAAGbMmAErKyutx6/ry4nyPM/3l52dXS33NxG9/Bh4EhGRTq5evSpUxevWrRt69+5dYfro6GhhWp8H01OnTuHjjz+Gk5MTfvrpp3LTtWrVCjNnzhTmVXv07Nu3rzB95swZYVzC8ly9ehUDBw6EtbU1XF1dn6tHUDGoHkdkZGSlQ2Q8ffoUf//9tzBfVnW0pKQECxcuxPvvvw87OzsUFRVpXd/AwAAffvihWumbahvbylTWC6o+yqrS5uTkICYmBqGhoRqf/Zu1tbUQ0CUnJ1carD979gwjRoxAr1698NZbb2lUZxVL9+7d1YZ6uXr1qjDmrarLly8L03Z2dhW+SFAoFELHUYD2KteVnR/V6+3ixYuVvozJyMiAg4MDevfujZEjR9bKlzdEVHsw8CQiIp2oBiuqnd5o8+eff6o9BOsTyCkUCkRGRiItLQ0hISEVrqtawqPam+bAgQPRunVrAMo2cuWNqVm2v/Xr1wNQDgPTrl27Kg2lUp06dOgAa2trAMq8+fj4VJh+48aNKCgoAABYWFgIJcJ169bF9evXkZCQgEePHlVYJbO0tFTt/OrTS6lqz7xV6eQGUA8uT506hT///BOAsufYfv36aV2nYcOGGD58uDC/du3aCl96+Pv7Izs7G3K5HPn5+RrD2YjJ09MTZmZmwvyGDRuQkZGhlkb1nqusNHPnzp2VDmFU2fnp3Lmz0B66qKgIGzZsqHCf3t7ekMvlePbsGRo2bKgxni4RkSoGnkREpBPV4TzS0tLw22+/aaQpLS1FUFAQvvzyS7XlZcGQLgYPHoyWLVsCUFYv9fLyQmFhoUa6u3fvqgVib731ljBtaGiIzz77TJjfuHEjduzYoVEKVFBQgBUrVgilhPXq1YOHh4fOea0Jc+bMEUqqduzYAR8fH42gori4GJs2bcKuXbsAKEu2Fi9erJbG1dVVmF6+fDni4uI09qVQKLBmzRpkZWUBUHbQoxocVUZ1eJvU1FSd19Pm9ddfF4LuP/74Q6hm6+LiUmHJnYeHByQSCQBlKfH//vc/jZJihUKBoKAgtY54PDw8avSFg5GREZYuXSrM5+bmYtWqVWppVO+5ixcv4uTJkxrbKSoqwrZt27BmzRq15druOV3Oz+zZs4XvNzAwEGvWrNEoIS8uLoavry/++OMPYdmsWbO0bo+IqEzteKVLRES13htvvAF7e3tERkYCAFatWoXjx4/D2toaJiYmSE9Px19//SUECIaGhkIV18pKSFVJJBJ89dVX+OKLLwAAAQEBCA8Px+DBg9G2bVsAyjEaT58+jWfPngEAhgwZAicnJ7XtjB8/HhcuXMDhw4dRWlqK1atXY//+/Rg8eDCaNWuGtLQ0SKVSZGZmCut8+eWXOo+XWVMGDhwIT09PbN68GQCwefNmHDx4EE5OTmjRogUePXoEqVSqVtr12WefYdCgQWrbmTBhAn7//XfcuHEDMpkMbm5usLOzQ5cuXdCsWTNkZWUhMjJSaNtnaGioEbxWRrUH3CNHjqBRo0Zo1aoVLCws4OzsrPexjxkzBrGxscjPzxeWvffeexWu07VrVyxduhRLliyBQqHAkSNHEBERgaFDh6J9+/Z4/PgxoqOj1arhOjk5YdKkSXrnr6ocHR0xfPhwIaA8fvw4XF1dhd5kyzoRSkxMhEKhgKenJ+zt7dG9e3fUr18fqampkEqlQmloZfecLufHwcEBM2fOxNatWwEAv/zyC44dOwYnJye0atUKGRkZiIiIUBsj9sMPPxR6HiYiKg8DTyIi0tnatWsxffp04aE9NjYWsbGxGum6dOmC1atXY/z48ZDL5UhMTERRUZFQElWZUaNGITs7G6tXr4ZcLkdmZqZa6YqqESNGaJT2lFmzZg3atm2L7du3Qy6XIykpCUlJSRrpjIyMMH/+fEyZMkWn/NU0T09PNG3aFD/88APy8/ORkpIilG6qMjY2xvLly7W2gZRIJPD394eHhwfi4+MBAGfPnsXZs2c10rZo0QLfffedWps/XXTp0gXW1taIjY2FQqEQejZ2dnZ+rsDznXfewcqVK4USNysrq3J7f1Xl5uaGRo0aYdmyZZDJZJDJZOVeP66urli+fHm1tk/VxzfffIOzZ88KwbWXlxeOHj2K+vXro27duti8eTM++ugjoZOnyMhI4eWPqr59+2LevHmYPHkyAOWYp/+m6/mZO3cumjdvjvXr16OgoAAPHz7Evn37NLZXt25dfPLJJ5g3b17Vvwgieukx8CQiIp01b94cQUFBCAgIQGhoKG7duoXc3FwYGRmhZcuWsLS0xLBhwzBy5EjUq1cPAwYMQEREBAoKCnDixAm4uLjovK8PP/wQgwcPxu+//47o6GgkJSUhNzcXDRo0QMuWLdG/f3+4uLhUGBzVqVMH8+bNwwcffIDAwECcO3cOKSkpyM3NhbGxMTp27IhBgwZh/PjxQmlqbTV58mSMGDEC+/fvR2RkJO7du4ecnBwYGxujc+fOcHR0xLhx4ypsZ/faa68hMDAQoaGhOHHiBK5du4ZHjx6huLgYzZo1Q6dOneDk5ARXV1c0atRI7zwaGBjAz88P3t7eCA8PR2ZmplopnL5MTU3h5OSEEydOACi/UyFt3n77bdjb2yMoKAh//fUXEhMTIZPJYGhoiDZt2qBPnz5wc3PTe4zX6ta6dWvMmjVLeHmSnJwMX19fIZjr1KkTgoODsXv3boSHh+Pu3bsoKChAgwYN0KZNG3Tr1g3vvPMOHB0dYWBggDfeeAN37txBcnIyLl26BBsbG2Ff+pyfKVOmCOOpnj17FklJSXjy5Anq16+P9u3bw9bWFuPHj9fpRQAREQAYKNgHNhEREREREYmInQsRERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkaj+DyKO3UJD3PRyAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ ")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "493d213c",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Plot realized ROC points\n",
+ "> realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "fcd2aaf9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set group-wise colors and global color\n",
+ "palette = sns.color_palette(n_colors=N_GROUPS + 1)\n",
+ "global_color = palette[0]\n",
+ "all_group_colors = palette[1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "4c70252e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydd3gUVReHfzNbkmx6T0gCCSV0kN6liyBVAQVEKQqKlA9BQVREQAE7YAOkI71DaEqXKr1IbymkJ5u2fWe+P5YddrYkuynU8z4Pmpm5986d2TMz99xz7jkMz/M8CIIgCIIgCIIgCKKMYB93BwiCIAiCIAiCIIhnG1I8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIcWTIAiCIAiCIAiCKFNI8SQIgiAIgiAIgiDKFFI8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiCeeHQ63ePuwlMF3S+CIAh6FxLEk4b0cXeAIJ4XNBoNTpw4gcOHD+P8+fPIzMxEZmYmWJaFv78//P39UaNGDbRo0QLNmzeHj4/PY+3v3Llz8fPPPwvb165deyz92L59O1asWIHVq1fbPX7ixAm89dZbwvayZcvQpEmTR9W9JwqtVosFCxYgPT0dX3755ePujktcvnwZ69evx6lTp3D//n3odDoEBwejfPny6NSpE7p06QJfX98y7UNKSgrWrVuHI0eO4M6dOygoKICfnx/CwsLQpk0b9OjRA1FRUU63t3PnTvzvf/8rVl8uX74MqfTZ+0RPnDgRmzZtAgBERERg3759j7lHzw4DBw7EyZMnAQCNGzfG8uXLH3OPHh937tzB9OnTMWzYMIffg3bt2iEpKQkA0KtXL8ycOfNRdpEgnkueva8aQTxh6PV6LF68GAsXLoRSqbRbRqVSISkpCZcuXcLatWvh5uaG1157DWPGjIGfn98j7e+Tws2bN/Hll1/i5MmTiIiIeNzdeeLZv38/pk+fjsTERPTq1etxd8dpNBoNvvzyS2zcuNHmWFJSEpKSknDs2DHMmTMH06ZNQ4cOHcqkH0uWLMGPP/4IjUYj2p+eno709HRcvHgRv//+O0aMGIHhw4dDIpEU2eZ///1XJn0lCMI+Go0Gv/76KxYtWgS9Xo9hw4Y97i4RBGEBKZ4EUYbk5ORg+PDhOHv2rM0xT09PeHt7g2EY5OTkQKVSCce0Wi1WrlyJv/76C/Pnz0eNGjUeZbefCP744w9h9p4ommnTpgmz908LWq0WQ4cOxalTp0T7vby8oFAokJGRAY7jAABZWVn44IMPMGPGDLz66qul2o9vvvkGCxcuFO2Ty+UICAhAVlaW4K6n1+sxe/ZsJCQkYMaMGUW2a6l4ent7w9/f3+k+MQzjdFmCIEycP38e8+bNe9zdIAjCAaR4EkQZwfM8xowZI1I6a9asibfeegvNmzdHSEiIqHxycjIOHjyIxYsX4+7duwBM1pahQ4diw4YNKFeu3KPsPkGUOdOnTxcpnY0bN8ZHH32EOnXqAADy8vKwfv16zJ49G2q1GgAwefJkVKpUCXXr1i2VPmzbtk2kdEZEROCTTz5BmzZtIJPJYDAYsH//fsyYMUNQ7Ddu3IiqVati0KBBhbZtqXiOGDECQ4YMKZU+EwRBEMTTCAUXIogyYsuWLTh27Jiw/frrr2P9+vXo2bOnjdIJAOHh4XjjjTewbds2vPLKK8L+rKwsTJ069ZH0+WmkSZMmuHbtmvDveV3f+bRx/vx5rFu3Tthu27YtlixZIiidgMlKOHjwYCxbtgwKhQKAyerojLXRGfLz80XruiIjI7F27Vp07NgRMpkMACCVStGxY0ds2LABlSpVEsrOnTsXWVlZDttOTk4WHX8evRYI4klm3759wneD1ncSxKOBFE+CKCNWrVol/B0TE4PJkyeDZYt+5ORyOWbOnInKlSsL+/bv3487d+6UST8J4nGwYMEC8DwPwORaO2PGDIfrJuvUqYNJkyYJ22fPnsWRI0dK3IeNGzciIyND2J42bRqCgoLslvX398fcuXOFgD/5+flYunSpw7YvX74s2ibFkyAIgnjeIcWTIMoAjUaDixcvCttt27Z1KUKlXC7H0KFDRfuOHj1aav0jiMdJTk6OKJppz549i1z/2KtXLwQHBwvb27ZtK3E/zNFVASA2NhbNmzcvtHylSpXQvn17p/pg6WZbvnz5xx6lmiAIgiAeN7TGkyDKgNzcXBiNxhK10aJFC9F2WlqaU/Xu3r2LTZs24d9//0V8fDyUSiU8PDwQEBCAunXronXr1ujUqVOppGooTmqEjRs34pNPPhG29+7di8jISAC2qVHMJCUloWrVqsK2ZYCZ4qRTUavV2LZtG/755x9cvnwZWVlZMBqNCAgIQExMDJo3b47u3bsjNDS0yOux7NeOHTtQqVIlaDQa7NixA7t27cLNmzeRkZEBd3d3hIWFoUWLFujZs6eoXnGxTnljZtOmTSKlyvIeW6NUKrF582YcP34cV69eRXZ2NhiGQUBAAKpUqYKWLVuiW7dupRpd+ciRI6Lnw5lItVKpFK1bt8b69esBAH/99RemT59ebDnOyMjAlStXhG1LhbIw2rdvj927dwMwyeWFCxdE7sFmLBXPx2ntTExMFF3bhQsX4Obmhh07dmD+/Pm4c+cO/P39ERsbi86dO6Nbt25272lKSgq2bt2Kf/75B/fu3UNWVhbc3NwQGBiIunXrok2bNujUqZNT0X5d5ejRozh69ChOnz6NlJQUKJVK6PV6IWBTnTp10Lx5c7z88suQy+V22xg9erTwuwGmycDff/+90PMeO3YMgwcPFizzUVFR2Lx5M7y8vOyW53ke+/fvx759+3DmzBlkZGRApVLBz88PUVFRaNGiBbp3747y5cu7dP1ZWVnYsGEDDh48iBs3bqCgoAABAQGIjY1Fz5490blz5zK579akpqZi06ZNOHHiBG7evAmlUgmZTIbAwEBUr14drVq1QteuXeHh4VFoO5bvbG9vb2Gd982bN7F69WocOXIEKSkp4DgOoaGhqFevHnr27IlmzZo5bNMyNYollt8G6xQzzqRTsXxPm9+j+fn52Lp1K3bu3Il79+4hOzsbgYGBiIqKQvfu3dGtWze4u7uL2jl69Cg2bNiAixcvIiUlBTKZDJGRkWjVqhUGDhxY6LemOGlynEmHZlnG8vrPnz+PDRs24NSpU0hJSQHLsggNDUXDhg3Rr18/VKtWTdROVlYWNm7ciD179iAhIQF5eXnw9/dH7dq18eqrr6J9+/YULI0QIMWTIMqAgIAAyGQy6PV6AKYP1tixYx0OiuwRGhqKuLg4+Pr6ws/PT1hz5gilUonp06cjLi5OiARqRq/XIzc3F3fv3sWWLVsQFRWFSZMmoV27dq5f3FPO6tWr8eOPP9pNbZOcnIzk5GQcPXoUc+fOxYABA1z+3c6cOYOJEyfi3r17ov1arRY5OTm4du0alixZgjfeeAOfffbZIxkw2sNoNGLevHlYsGCBKKKyGXMqkwMHDmD27NkYNmwY3n333VIZQFh6AzAMY1dxs8cLL7wgKJ75+fm4ceMGqlevXuw+mBUKAKhXr57TfbDkzJkzdvtv6Wpbs2bNYvWxrFiyZIlonaxZ7i9duoQePXqIyup0Ovz0009YsWIFtFqtzbG8vDzhvRITE4MvvviiUAXBFY4dO4aZM2fi6tWrdo9nZWUhKysLt27dwqZNm/D9999j5syZds8/depUnDlzBunp6QBMyxfi4uJE6+ktycnJwYQJEwQZkUql+OGHHxwqnWfPnsWXX34pmswwY07Jc+bMGfz222/o06cPJk6caKOc2GPlypX47rvvUFBQINqfmpqK1NRUHD58GMuXL8f3339fZFvFRa1W4/vvv8fq1auFb5oZnU6HgoICxMfHY/fu3Zg9ezbGjh2L1157zaVzLFu2DN98841N+/fu3cO9e/ewefNmNG/eHDNnznRqQrCsOHr0KCZOnIjU1FTRfvMzdPLkSaxYsQLz5s1DWFgYcnJy8Pnnn4smPQDT9+Dq1au4evUqVq9ejdmzZ9tMNj9qCgoK8NVXX2HDhg02x/Ly8nDz5k2sXbsWEydOxNtvvw0A+Pvvv/Hpp5/afE/T0tKwd+9e7N27Fx06dMCPP/7o0neUeHYhV1uCKAOkUqloVvDevXsYNWqUMOhxlsqVKyM4OLhIpTM+Ph7du3fHtm3bREqnTCZDaGiojZtfQkICRowYgd9++82l/pQ17u7uKF++PMqXLw9PT09hv1QqFfaXL1/e4eCvMDiOw/jx4/HFF1+IPpIMw8DPzw8hISEiJVCr1WLRokV46623Cg0iY8m5c+cwePBgQelkWRbBwcEICAiw6cvKlStLHDTK19dXuCeWVipPT0/R/bKWH61Wi8GDB2P27NkipZNlWQQFBSEoKEi0HjkvLw/ff/89RowYYZPnsjjcuHFD+LtcuXKi37owYmJiRNu3bt0qlT4AEAUOKozIyEjR/bx9+7ZNmczMTJGHQs2aNZGYmIg5c+agX79+aNKkCWrVqoWWLVuif//++PXXX532aCgpN27cwHfffWf3WNu2bUW/e05ODgYPHoyFCxeKlE6ZTIawsDD4+/uLJiLu3LmDd955R7S+vbhs2bIF77zzjo3S6evri4iICAQFBdlMgqSkpODdd9/FpUuXbNrz8/PD119/Ldo3ffp0ZGdn2z3/F198IVIuxowZ43CCZNu2bXjrrbdslE4/Pz+Eh4fDzc1N2GcwGLBq1Sr0798fmZmZdtsz88033+DLL78UKZ3md4qlB8K5c+fw9ttvO/2ecoXs7Gz07dsXy5cvFymFEokEISEhNp4Q6enpmDRpEiZPnmwzAeqI5cuX46uvvhLal0qlCA0NtbGcHj16FH369EFCQoJNGxEREShfvrxN4L6QkBDhPWgvqJ8rHDp0CO+++64gFyzLIiQkBN7e3qJyV69exejRo5Gfn4/BgwcLSqf5t7P+Hufl5WH06NG4f/9+ifpXEvR6Pd5//32R0qlQKBAWFib6LnIch6+//hoHDx7Etm3bMHLkSOF7ai5v7THx999/O3znEM8fZPEkiDJi0KBBGDdunLB94MABtG3bFu3bt0fHjh3RokULl/L6OSIrKwtDhgwRDZJq1KiB0aNHo0WLFsIsY3x8PFatWiUMIHiex08//YSgoCD06dOnxP0oDerWrYu//voLgNiNNzQ0VNhfXL766ivRmjwvLy8MHz5ctHawoKAAf//9N2bPni24YJ09exZjxozB4sWLi3Tr/OKLL6DX6+Hn54eRI0eia9euwm+cmpqKxYsXY/HixUL5NWvW2HVdcpa33npLcCWzdBt76aWXHEZpNKf5OXHihLAvKCgII0eORJcuXeDr6wvAZEGPi4vDzz//LAxo9+3bh88//xzffvttsfprJiUlRfg7LCzM6XrWlo6SDNQs+8AwjNNWFIlEgqCgICQnJwOAXfc+a8Vn7dq1+Ouvv2zc782WsNOnT2PevHl49913MWLECKeCkBWXWbNm2ViVzFi65PI8j3HjxonS3TRq1AjvvfceGjduLLxXMjIysH37dvz2229QKpUwGAyYOnUqIiIi8OKLLxarj0lJSfjiiy9gMBgAmAa0Y8aMQdeuXUXBn/Lz83Ho0CHMnj1bSEGl1+vxww8/YNGiRTbtvvjii+jfvz9WrlwJwPTu/Oqrr2wGxZs3b8bOnTuF7aZNm+Kdd96x29dTp05h4sSJor6+++676NWrF8LDwwGYvAvOnj2L+fPn4+DBgwBMFvExY8ZgyZIldt8r27dvF6X5USgUGDFiBPr06SMoe3fv3sUff/yB9evXIzEx0fENLSYajQbvvvsurl+/LuwrX748xowZg3bt2gmRps0uuPPmzRMmstasWYOAgAD873//K/QcKpVKsL77+flh7Nix6N69OxQKBTiOw4kTJzBr1ixBqU9NTcXIkSOxbt06kQXN7H5qvfTiu+++K7VI59OnT4fRaERoaCjGjBmDV155Be7u7uB5HidPnsTHH38svFfOnz+PXr16IT4+Hu7u7vjggw/Qp08f4Xtw+fJlfPHFF4L3R35+PpYsWSIKovYo2blzp/B+6t69O4YNG4YqVaoAME1AzZkzBytWrBDKf/HFF8jIyADP82jQoAE+/PBD1K9fHyzLQq1WY8WKFfjpp5+E52LVqlUYPnw4AgMDH/3FEU8UZPEkiDKiS5cuNgMvvV6PXbt2Ydy4cWjWrBm6du2KyZMnY/PmzXZncZ3hp59+EtXt2rUr1q5di7Zt24o+zOXLl8eECROwcOFCYcAAmFzQHudM66Pg3Llzoo9meHg41q5di2HDhokC1nh6eqJHjx7YvHkzGjRoIOw/efKk3YGsNXq9HuXKlcPmzZsxcOBA0cRCaGgoJk6cKBqI8TyP7du3l/DqXGPHjh3Yv3+/sB0bG4vNmzejX79+gtIJmAaBAwYMwKZNm0TWwK1bt2LHjh0l6oOlpceVyRdr64o9d+ni9MHb27tIrwJH/cjJybE5brm+EwB27dolDOpkMhnCw8NtrLwajQZz587FBx984FAxLA3Ma8UGDhyIPXv24Ny5c9iyZQuGDBkiCq60cuVKHD58WNgeMmQIli9fjpYtW4reK0FBQRg0aBA2bNiAChUqADBZRT755BMb11xnmTdvnpC3lWEY/PLLLxg0aJBNxGEvLy906dIFa9euFVmzjh8/jry8PLttf/zxxyLL+bZt2wRlEDApvdOmTRO2/f398c0339idDNDpdBg3bpwwuA4JCcHGjRsxYsQIQekETJMVDRs2xPz58zFmzBhh/7///it6L5nRarWiiSOFQoGlS5fi3XffFcledHQ0pk+fXmbptpYtWyZyi2/atCk2bdqErl27ir4hoaGheO+997BmzRrR+/T333/HuXPnCj2H0WiE0WhEWFgY1q1bhzfeeENom2VZNGvWDGvWrEHLli2FOmb31EeN0WhEVFQU1q5di9dee01wlWYYBk2aNLFxd46Pj4dMJsOiRYswbNgw0buuZs2aWLx4sUgRO3DgwCO5DnuY308ffvghvv32W0HpBExeBp9//jmaNm0q7EtOToZer0f79u2xbNkyNGzYUHhGPDw88O6774pkXafTlUokcuLphxRPgigjWJbF3Llz0aVLF7vHeZ7HjRs3sGbNGkyYMAEdOnRA27Zt8emnn2Lfvn1ODT4TExNFrjHVq1fHjBkzCh1EN2nSBF988YWwrdPpsGDBAheu7Olj9uzZwt8SiQQ//fRToa6VPj4++Pnnn0UD3cWLFwuD4cL48ssvRYNOa4YOHSpyzTp//nyRbZYWPM9jzpw5wrZCocCvv/4qGixaExYWhp9//lm0Hu3XX38VrY90FUv3XssBbFFYl7Ve9/Yo+mBd3l4frBVPwBS5d926dbh48SIOHDiAM2fOYOfOnRg0aJDoed23b59I8SkL3nvvPXz22WeoUKECPDw8UK1aNUyYMEH4jQ0GA/744w+hfOPGjTFhwoRC1/dGRkaKBt4ZGRnCelxX4DhO5N3Qpk2bIqMN+/r6omfPnsK20Wi0a4kGTIPib7/9VmRl/PLLL6FSqcBxHD7++GPk5+cLx77++muH1vBNmzaJLOffffedjTu4NSNGjEDbtm2F7YULF0Kn04nKxMXFiZZljB8/vtB10H379kWvXr0KPa+rFBQUiGQgNDQUc+bMKXSZQ2xsLH744QdBTniex6+//lrkuViWxQ8//OAw6JKbmxu+++47kZK2ZMmSEr2DisvEiRMdemk0bNgQUVFRon0DBw4UTWJa4u3tjZdfflnYvnfvXrEna0qDmjVrYtiwYQ6PW8uYu7t7oQHeevfuLdq2Xt5APJ+Q4kkQZYi7uzt+/PFH/Prrr04FGLl//z7Wr1+P999/H23atMGSJUsKVUD37dsnzLYDwMiRI51awN+zZ09RnlB7AYmeFXJycnD8+HFhu02bNjYBYuwREBCAQYMGCdtZWVn4559/Cq0TFhaGVq1aFVpGLpeLAuI4WmNWFly7dk1wSQRMAwPrgZI9KlasKBp03Lhxw24QFWexlGlXotJKJBKR8mMp+4+qD9bl7fXBMrCQTCbDr7/+ilmzZqFOnTqi/lesWBGffPIJlixZIlJm16xZI3JxLU0UCkWhg0vAtJbO0gvCXqRpe9SuXVsUpGnXrl0u989oNOKHH37A9OnT8d5779mklXKEtdJiL2CWZT/ff/99YTspKQlz587FokWLRPf9zTffLDQAm+WkX9WqVZ126XzzzTeFv9PS0mysgpb3zcfHx6mlEO+9955T53aW48ePi6z5Q4YMEXlEOKJx48aid+ChQ4eKfMe1adPGoXJmxt/fH/369RO2k5KSRNbYR0FISEiREbhjY2NF25YTIvYwewmYsedB8ah4/fXXC51cso7E/uKLL9rEL7AkICBAtJ71cV4b8eRAiidBPALat2+PjRs3YuvWrRg1ahReeOGFIge7GRkZmDFjBvr27SusJ7PGMrenQqFAmzZtnO6TZTTHnJycEikSTzInTpwQKdWOoljao1u3bjZtFYa1YuEISwtjaQTrcZZjx46Jtl25F127dhVtF3UvCsPSUvG4wuyXZR++/fZbzJo1C6NGjcKPP/5YZKqWhg0birwQADhlKSoOderUKTKYk7XS60pU3vr16wt/nz9/3saaVxQymQzNmjVDnz59MHbsWDRq1KjIOjzP27jWFpXO6v3330fdunWF7eXLl4s8I2JjY/Hxxx87rK9SqYodubh+/foimTO7PwOmazl9+rSw3axZM6cmE6Ojo0slRZOZ0npX8DyPf//9t9Dy1u9ZR1grfZb37VFQu3btIstYerPI5XKRy6o9rJ9FV5+X0qSo6OLW1m5n0kRZXt/jvDbiyYGCCxHEI6Rq1aqoWrUqRo4ciYKCApw5cwanTp3CqVOncP78ebvWzf/++w8DBgzA+vXrbWYX79y5I/xdrVo1lyw31h/R27dvP3FpH0oDy3sEALVq1XK6blhYGIKDgwW3N3sRTK3LO4PlQPJRWpot74VEInEpv2StWrXAsqzQ36LuRWHIZDLBpcwVq6XRaBQpjJbRQovTBzOuWk4ty9vrQ4MGDYq04FjTvXt3/Prrr0JE5JMnTyI/P18Y7Fnm8isKezn7zDgzeLZ2FR44cKDTAY9yc3OFv7VaLdLS0hzmkC0O2dnZSExMREJCAm7duoUrV67g/PnzyMjIEJUr6rmSSCT45ptv0KtXL6hUKtG71+ypUph83bhxQyQHf/31V7Gt1JaBgVJSUkSuvtYWtMKoXr16ob+9K1i+K0JDQwt1x7fG3relMCwnAAqjcuXKojRlJYlqXRzKlStXZBnLCQVfX98in5uyDCTmKoUtEQFsJ+icWZ//JF0f8WRAiidBPCY8PT3RqlUrwS1Jo9HgxIkT2L17N7Zt2yaaHUxKSsLXX39tE33RMriKKwMDe+VLEqjlScbazcvV+xQUFCQonkXdI2fTgjwuLO+Fj4+PS3nV3N3d4eXlJSgWJZEXLy8vQfF0Zt2sGev1lEUlqi+qD2Zc6YN1P0rSB0tYlsWLL74oROfU6/W4evUqGjZsWCrtm7EO0GMP67QcJYmYqlQqi614chyHY8eO4a+//sKlS5dw584dkVJWUqKjozFhwgQba/PHH38sWopgD+t7lJeX5zCgUVFYPkvWKbcKc2W0pqTpQiyxfFeU5beFYZgiFR4zMpkMPj4+QmCwotLRlDauvt+ftryVrqYpe9quj3gyoKkIgnhCcHd3R+vWrfH1119j7969ogAUgCkaqXXSastBmKsfResBs6uD76cFy3vEMIzLgWQs71NR98gy39mTiOW9cPU+AK7di8KwDBLiigJrvUbIGSXKmT7k5uYW6ZrpqB+lmR7Aer1tWQysrXMO2qM0lbvC1loWxpkzZ9CjRw8MGTIEq1atwsWLF+32SyaToVGjRnjppZeKdR57gYOcUbSLq2Taw3Iiw9od0ZWJjeLkN3ZESd4VrnxbPDw8XLKKWQY5e9Sum66uBX/aeNavj3gyICkjiDJArVYjKysLmZmZCA0NdTpHoJmQkBD8+uuvePvttwX3OqPRiJMnT4rWwygUCsEC5WqEz9K0HrmCKwP80sBy0MTzPFQqlUsDqbKwbj0uLK+7OApBad2LiIgIITdgWlqa0/WsJ15cfa6s+2CG4zhkZGQ41Z7RaBS5dbqSh7QoLAfV5nOVNs6sZ7XsR1BQ0CNPg3Dw4EG7aWVCQ0NRpUoVxMTEoGLFiqhevTqqV68Od3d3bNmyBXv27HHpPFlZWfjss89s9i9ZsgTt2rUrdH2ptfxPmTJFFPymuFhbkVx5TkszDU9J3hWufFtc7bNl28WZPHteeNTfWYJwFlI8CaKUuX37Njp37ixsDxkyBBMmTHC5HZZlMXToUNG6LuuBt5+fn6B4WrtoFYV1WyW13Di7VrG4FpDiYp37MT093SaSYGFYKkauuL09iVjei9zcXGi1WqfXSebn54sGfSW5F5UqVRJyiSYmJkKn0znltmW9VsyV9W/2+mDdtjOKZ0JCgmiw7Ch4SH5+PrKyshAREeG0JdzaLdxyDZXZBfdRYJ2nlOO4R7ZWKzs7Gx9//LFwj1mWxeDBg9G/f/9CXXaLk4Zi8uTJokkEhUIhpFWZMGECtm7d6tCKaP1eKa3o1NYy6IrVuzSXS1heX0m/LYW9K/R6vWgtc2FotVqRpbk0J32eFp7U7yxBOAu52hJEKRMSEiKyKlhGKHQV64GWtZJgOei9cuWKS0FSrEPRO8qhVhiWg1FnB36Wee8eBdbKyYULF5yum5CQIBpQuqKwPolYyovRaBRF5SyKS5cuiQL7lOReWAYTMRgMTvfDMu2El5cXoqOji90H6wjEzsqFdeoL60AqP//8M+rUqYMGDRqgY8eOLt9jMwzDlGqUUlewVMr1er1gnXaGnJycEkVq3rx5s0iBGj16ND7++OMi14lav1eKyvG4ceNGUb7Q3r17Y/LkycJ2UlISpk+f7rB+xYoVRduu/M48zyM9Pd1uH0NDQ0VpS1xp9+rVq06XLQrLd0VqaqqNMlkY1t+Wot4Vzvb76tWrIkve43o+HjVPw3eWIJyFFE+CKGW8vLxEeRrPnz9vM1h1Fsuci4CtdcXSFUytVmPfvn1OtcvzPOLi4oRtLy8vVKtWzeX+WbpQObtOztkBfmmluGjQoIGoLcvrLgrrsq5GKn3SsHYd3LFjh9N1re9FSYLeNGvWTLSeaO/evUXWMRgMOHTokLDdvHnzEq1J8vf3F0U4dqYPAETPmHUbgCnypeXg0LLPhaFUKkUurdWqVXtsFnZrOXElH+ewYcNQt25dNGvWDH379nVZCT1//rxo+4033nCqnnXKjsIUz6SkJHz11VfCdmhoKCZOnIhevXqhZcuWwv5NmzaJlFNLAgMDRQr60aNHnV73+c8//6Bly5aoU6cOXnrpJaxatUp0vGnTpsLfx48fF0UKdkR2drbNvSsJpfWuYBimyPem2fuhKHbv3i3abt68uU2Zx5WeqSyx/M46a1l/1DlOCcJZSPEkiDLgtddeE21PnTrV5WAsPM9j0aJFwnZwcLDNYP/ll18WpYX45ZdfnAq4sHnzZpFS26FDh2IN4i2jFxoMhiIHPpcvX8aZM2ecattyAFGU9aIw/P39RYPJgwcP4uzZs0XWy8rKwrJly4RtT09PvPjii8XuR1ljOSvu6H7VqFFDNFjesGED4uPji2z71q1b2Lp1q7AdGRnpUloaa7y9vdG6dWthe926dUW6CW7atEnk8ldUYnZnsMw3eP78+SLTldy6dUukoPbo0cPGBbV169aiZ2n16tVOBeuZPXu2yD2uf//+RdYpK1q3bi2yuq1cudIpi9f+/fuFSbasrCx4eXnZrFstCmvlzRk35b1799r8do7WDprdaC1/k2nTpglBl6ZOnSpaO/j555/bpGox0717d+FvlUqF33//vci+chyHOXPmADAFx7l3756N5a5Xr17C3xqNBgsXLiyy3SVLlpRqsJ1WrVqJ3G0XLVrklCvviRMnRPmlGzZsWGQQsA0bNthECbYmPT0d69evF7br169vE4wLsE3fUZJvx5OC5Xf2/v37RVoz//77b9y/f7+su0UQxYIUT4IoA/r27Styxbp8+TIGDBiAmzdvOlVfq9Vi4sSJIjfd999/30Y5DA8PFwUbunr1KiZNmlSoy+2///6LadOmCdsymQzvvPOOU/2yxjJZPAD89ttvDtegpKWlYeLEiU6vUbGc5S1plM3hw4cLf3Mch7Fjx9rk97QkPz8fo0aNEq2vevPNN0s1amRp48z9YhgGw4YNE7ZVKhVGjhzpcGANmNzsRo0aJbJcDRs2rMRr/oYOHSr8rVQqMWbMGIcD5wsXLuDrr78WtmNjY22iPheH3r17iwbX48aNQ1JSkt2ySqUSo0aNEp4tNzc3vPXWWzblAgMD8corrwjb6enpRT6TS5cuxcqVK4XtypUrl4piXVw8PT0xcOBAYTsnJwcjRowoVDm4e/cuPv30U9E+S1lzFsugT4BJKSmMY8eOYdKkSTb7HcnSokWLRNbRHj16iCZBIiIiMH78eGE7OzvbbgAiwDQ5YBkleOHChUX2d9asWSKvj0aNGtm8R1u3bi3KsbtgwYJCAyft378ff/zxR6HndRUPDw+RDKSlpWHMmDGFBrG7efMmxo0bJ1L23nvvvSLPlZ2djfHjxzu0jhcUFGDs2LGiaNLvv/++3bLWEx2lGaH5cWEpHxzH4ddff3VY9tatW5g6deqj6BZBFAtSPAmiDJDL5Zg7dy58fHyEfZcvX0b37t0xevRobN261SZoBM/zuHr1Kv744w907NgRmzdvFo61adPGoQVk4sSJovVP27ZtQ9++fXHgwAHR4CshIQHffvstBg8eLBo8jBo1ymGAlKKoX7++KKn2oUOHMHLkSFFi77y8PPz555949dVXcf36dafTvli6Gebm5rrkImtNo0aNREpCcnIy+vTpgwULFoisaCqVCtu2bUPPnj1FyeCrV6+OESNGFPv8jwLL+3XixAmHydV79OiBDh06CNvXrl1Dz549sXr1atHALicnBytXrkSvXr1EbbVq1Qp9+/YtcX8bNGggshgdP34cffv2xfHjx4WBa35+PpYsWYK33npLsAZKJBJMnjy5UMW3Xbt2qFq1qvDPUXoMLy8vkZKRlpaG3r17Y/PmzcKzYzQa8ffff+PVV18V3Yf333/fRkky8/HHH4sCA+3evRv9+/fHsWPHRO7oly5dwujRo0VKtYeHB7755pvHniNv+PDhovWrly5dQq9evbBu3TqRVTI3Nxd//vknXn/9ddE7rVevXiKXUWfp1KmTaPu7777DDz/8IJocMRgMOH36ND755BMMGTLEriXOnsJx9epVzJ49W9gODg62q7T2799f5F2yf/9+rFmzxqacj4+P6LfjeR6TJk3CuHHj8N9//4n2X7hwAe+99x6WLFki7Pfw8LDJIQqYrHbTpk0TvFmMRiP+97//4euvvxZZslJTU/Hdd99h5MiRLq3vd5Zhw4ahTp06wvbx48fRq1cvbN++XWSdT09Px/z589G3b1/R+/T1118XeZsUxpEjR/D666/jn3/+EZ4Rg8GAffv2oU+fPqLJgq5duzr0PrEOkrd+/fpSjfb7OGjbtq3ICr9mzRp89tlnIlnIzMwUfoPU1NQnPqc08fxCUW0JooyoXLkyVqxYgQ8++AAJCQkATAOI3bt3C2tVZDIZAgMDodfrkZOTY3fw0LFjR3z33XcO1674+vpi3rx5GDZsmGCtuXz5MoYPHy60r9Fo7A7Ohg4dKrIGuopUKsXEiRMxZswYQVnYu3cv9u7dK7jZWQ4YZTIZfvnlFwwaNKjItmvWrCna/vDDDzFz5kwAwODBgzFkyBCX+jphwgRkZWVh+/btAEwK8XfffYfvv/8e/v7+kMlkyMzMtPkNqlWrhvnz57vsMvioqVGjBo4fPw7AdG3dunVDWFgY1Go15s2bJwwgGYbBrFmz8MEHHwjl09PT8cUXX+DLL78UBm6ZmZk21ulmzZrhp59+KrV1VFOmTEFSUpJg2b9y5QrefvttKBQKeHt7IyMjw2bd8CeffFJomgtX6dOnD27cuIGlS5cCMLmITpgwAZ999hkCAwORnZ1tE9Dj5ZdfLtSSExQUhIULF2LQoEHC+rzz589j0KBB8PDwgL+/P5RKpU3kSYVCgXnz5tnI/uNALpfjl19+wbBhw4TgLykpKfjss8/wxRdfICAgACzLIj093UZOmjdvjilTphTrvC1atECHDh3w999/AzApH/PmzcO8efPg7e0Nd3d3u7JZs2ZN/Pfff8J7yNodUafT4eOPPxZNxn3xxRc20WkB0zMyffp09OjRQ/jtZ86ciWbNmtkEYXvppZfw6aefYubMmYKsbt++Hdu3b4dCoRB+a2tLoZubG3744QeHk361atXCt99+i/Hjx8NgMMBoNGLp0qVYunQpAgMDwTAMMjMzhesNDAxEy5YtsWXLlkLvryvI5XL8/PPPIhm4d+8exo0bB6lUKny7srOzbVxau3btKgrWVBixsbG4fv06rl69iqFDh8LDwwN+fn7IysqyefaaNm1aaNCnsLAwBAYGCpMg+/fvR5MmTeDn5wd/f/8iLdJPIn5+fhg9erTw/QNMyxPWrVsnyK/l993HxwezZs1yaBUmiMcJWTwJogypWrUqtm7dihEjRoisn2b0ej1SUlLsKjwRERGYNWsWfv755yKVnsqVK2P9+vXo3LmzSCkwt2+tdEZEROCXX37Bxx9/XPyLe0CnTp0wc+ZMm+vLz88XKZ0RERFYtGgRmjVr5lS7rVu3tpktT0tLQ1pamij6p7NIpVJ8//33+PTTT0WDTZ7nkZWVhdTUVNFvIJfLheT1ISEhLp/vUfPOO++I+mk0GpGUlISsrCyR9QUwWfoWLlyI999/X+Siy3Ec0tPTbZQJT09PjBs3Dn/88Uepuht7enrijz/+QK9evURyq1KpkJqaKlI6fXx88O2334rc/0qLSZMm4eOPPxbdC/OzYznwlUgkGDJkCH744Ycile+aNWti06ZNaNy4sWi/Wq3G/fv3bZTORo0aYe3atTblHyehoaFYtWoV+vXrJ1pLbjQakZ6ejtTUVJGcyGQyDB8+HPPmzSvRRM13331nY/kETBMq1rIpl8vx3nvvYfXq1aLoqdZrPn/66Sdcu3ZN2O7SpQs6duzosA8xMTEYNWqUsK1SqfDxxx/bDaD21ltvYcGCBTaRblUqFZKSkmyUzqpVq2LFihVo166dw/MDQOfOnbF06VIbZTczMxMZGRmCshcVFYUFCxYgPDy80PaKgyMZMBgMSE1NRVZWlkjpDAgIwPTp0/H99987HTdg0qRJGDhwoPBMqdVqJCcni549s2z98ccfheYFZRgGEyZMED2fBQUFSEpKwn///edyrIUnhcGDB+Ojjz6yiWyvVCpF3/dq1aphxYoVJUo1RRBlCVk8CaKMUSgUGDNmDN577z0cPnwYJ0+exJUrV5CUlCRYU1iWhY+PD6KiolC7dm20adMGzZo1czr/H2D64P/000+4fv064uLicOLECSQmJkKpVEIikSAsLAy1atVCx44dix1MyBE9e/bEiy++iA0bNmD//v24e/cucnNzERgYiJiYGHTu3Bldu3Z1yf2HYRj89ttvWLJkCXbs2IHExESo1Wp4eXmVKGDEW2+9hVdffRXbtm3DP//8g6tXryIrKwt6vR6+vr6oUqUKWrZsiR49eoiCOjzpBAYGYuPGjZg3bx4OHTqEtLQ0GAwG+Pv72x1sSaVS/O9//8PAgQOxdetWHDlyBLdu3UJWVhaMRiMCAwNRrVo1vPjii+jWrZvdiZPSQKFQYObMmXjzzTexdetWHDt2DGlpacjPz4e3tzeqVKmCVq1aoXfv3mUa5XXo0KHo2rUrNm7ciIMHDyIhIQFKpRLu7u4oX748mjRpgj59+tjk/yyMyMhILF++HGfOnEFcXBxOnz6N5ORk5Ofnw8fHRwgY1rFjR6cnZB41CoUCU6ZMwbvvvovt27fj2LFjuHv3LrKzs8FxHHx9fVG5cmU0bdoUvXr1cioXalF4eHhgzpw5OHHiBDZt2oRz584hNTUVWq0WCoUCgYGBqFy5MurVq4fu3bsLEy4dOnQQ1joeO3YM8fHxKF++PE6dOoXFixcL7fv7++Pzzz8vsh9DhgzBrl27hImus2fPYv78+XYtSS1atEBcXBz27duHAwcO4Ny5c0hPT0d+fj48PDwQGhqKOnXqoFOnTmjVqpXT7/aGDRtix44diIuLw86dO3H58mUolUp4e3ujQoUKePnll9G7d294eXkVug60JJhl4J133sG2bdtw9OhR3Lt3T4iwGhwcjJo1a6Jt27bo0qWLy5MOLMvis88+Q/fu3bFq1SqcPHkSaWlpkMvliImJQatWrdCnTx/Rso7CML+7ly5disuXLyM7OxtyuRyhoaFISUlBTEyMy/fgSeCdd95B586dsWHDBhw8eBCJiYlQqVQIDg5GlSpV8Morr+Dll1+GXC53uLyAIB43DP8shPwiCIIgCIIgnnhOnDghWnO/bNkyNGnS5DH2iCCIRwW52hIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQRAEQRAEQZQppHgSBEEQBEEQBEEQZQopngRBEARBEARBEESZQoonQRAEQRAEQRAEUaZQHk+CIAiCIAiCIAiiTCGLJ0EQBEEQBEEQBFGmkOJJEARBEARBEARBlCmkeBIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQTyxGI3Gx92FMqEsr+tZvWfPIvRbOQ/dq+LBcdzj7gJBCJDiSRDPGQUFBejQoQPat28PnU4nOnb79m2MGTMGLVq0QK1atdCyZUtMnTq1xOccOHAgqlatioEDB5a4LeL5gOM4rFixAjNmzHgs52/Xrh2qVq2KiRMnlnrbcXFx+Oijj0q93bJum3CNwmQoPT0dY8eOxenTp22OVa1aFVWrVsXcuXMfRTefCo4ePYp33nnncXfjiaMwWbl37x4GDx6M+/fvl8q5bt26hZo1a2L06NGl0h7xfEKKJ0E8Z3z99ddISEjARx99BLlcLuzPzMxEv379sGvXLmRkZECv1yM9PR3u7u6PsbfE88pHH32EadOmIT8//3F3pVT58ccf8eGHHyI9Pf2papsoPbKystClSxfs2LEDlEq9aNasWYPBgwfj3r17j7srTw1Xr15Ft27dcPTo0VJrs1KlSujXrx92796NzZs3l1q7xPOF9HF3gCCIR8epU6ewfv161KtXDy+//LLo2L59+6BUKgEAn376Kbp06QKGYUTKaXEJCQlB+fLlERISUuK2iOeDtLS0x3r+iIgISCQSBAYGlmq7qamppdreo2qbcB1HMqRSqZCbm+uwXvny5QEAvr6+Zdq/p4XH/S54knEkKzk5OdBqtaV+vg8++ACbNm3CjBkz0Lp1a/j7+5f6OYhnG1I8CeI5ged5TJs2DQAwZswYm+NmK4mfnx/eeuutUj33999/X6rtEURZs3z58sfdBeIpp7gy9Ndff5VyT4hnlUctK/7+/hg4cCB+++03zJkzB1988cUjPT/x9EOutgTxnLBr1y5cvXoVsbGxaNasmc1xc+AGT0/PR901giAIgiCeAvr37w+pVIp169aV2vpR4vmB4WmBAUE8F7z22mu4dOkSPvnkEwwaNEjYP3HiRGzatMluncaNG4tm7fPz87F+/XocOnQI169fh1KphEwmQ1BQEOrXr48BAwagTp06Nu0MHDgQJ0+etGnPfO5u3bphzJgx+OKLL3D69GnI5XJUrlwZc+bMwe3btwUL7LVr13Dr1i388ccfOHbsGDIyMuDr64uGDRtiyJAhqFu3rsPrz87OxtKlS7F//34kJCTAaDQiPDwcrVq1wpAhQxAeHm63nlqtxqpVq7Bnzx7cuHEDWq0Wfn5+qFGjBrp06YJu3bpBIpHY1FMqlVi+fDn279+PO3fuwGAwICAgAHXq1EGPHj3QoUMHh30tiqSkJKxduxb79+9HUlISjEYjoqKi0LZtWwwZMgR+fn526506dQqrVq3CmTNnkJ6eDoVCgZiYGHTo0AEDBgyAQqGwqWP+jXr16oWZM2ciLi4Oa9aswbVr16BWqxEREYGOHTti6NChdl0DeZ7Hzp07sXnzZly6dAk5OTnw8vJCTEwM2rZti/79+8Pb29vmfPa4du0agIfy9N577+Gll17C1KlT8d9//0GhUKBWrVr47bffBBfxrKwsrF69GkeOHMGdO3eQm5sLNzc3hISEoHHjxnjrrbdQqVIlm3O1a9cOSUlJwnWX9H7MnTsXP//8s93r2rt3LyIjI0XnjYiIwL59++yWt8aZtp151g4fPoxPPvnEpk+WJCYmon379gCAGTNm4NVXX7UpU9xnrTDM/e/SpQt++OEHrFy5EmvXrsW9e/fg5eWF2NhYvPnmm2jXrl2h7Rw4cADr1q3D+fPnoVQq4enpidjYWHTp0gW9e/eGTCazW+/WrVtYtmwZjh8/jvv370MqlSIkJASNGjXCgAEDUL16dZs69mSoatWqdtu3V2bkyJEYNWoU0tPT0bp1axiNRowbNw7Dhg1zeH1vvvkm/v33XzRt2hRLly4VHbt//z6WLFmCw4cPIzk5GQzDCO+NQYMGFctt0nyN06dPR3h4OL755hvcvn0bvr6+aNq0qcjbJSkpCatXr8axY8eQmJiIvLw8KBQKlCtXDs2bN8fbb7+NsLAwofzGjRsFebRm2bJlaNKkibDN8zzi4uKwZcsWXL58Gbm5ufDz80PdunXRt29ftG7d2uVrO3HihPDtuXDhAq5du4Zff/0VZ8+ehU6nQ1RUFDp37owBAwbAx8fHYTtnz57Fxo0bcfr0aaSlpUGj0cDLywuVKlVC+/bt8cYbb9i8e83XHhoait27d2PGjBnYuXMn9Ho9oqKiMGnSJDRr1sxGViyfT2tGjhyJqKgoTJgwwe49tESj0aBZs2ZQqVQ2YwYAeP/997Fv3z4MGjTI4W9EEPYgV1uCeA64dOkSLl26BADo1KlTsdq4ePEi3nvvPWRkZIj26/V6xMfHIz4+Hlu2bMH06dPRu3dvl9rOycnB22+/jaSkJACmj152djaCg4Nx+/Ztody+ffswduxYaDQaYV9GRgZ27dqF3bt3Y9asWejRo4dN+8ePH8fo0aORk5Mj2n/nzh3cuXMHa9euxTfffGNzb5RKJQYOHIjr16+L9qenp+PgwYM4ePAgNmzYgPnz58PDw0M4npCQgIEDByI5OVlULyUlBSkpKdizZw+6dOmC77//HizrmuPJzp07MWnSJKhUKtH+69ev4/r169i4cSMWLVqE2NhY4RjHcZgyZQrWrFkjqpOTk4Nz587h3LlzWLlyJX777TdUq1bN7nl5nsfHH3+MLVu2iPbfvn0b8+bNw/bt27Fq1SqEhoaKjn/00UfYtm2baJ9SqcTZs2dx9uxZ/Pnnn1i2bBmio6Ndug+A6T6//fbbyMvLAwAhSrNZ6Tx48CD+97//2dwrvV6P/Px83L59Gxs3bsQvv/yCF1980aVzF/d+PG4Ke9ZKg+I+a64wfvx4bN++XdhWq9VIT0/HkSNH8Oqrr2L69Ok2k0FqtRrjxo3D3r17RfuVSiVOnjyJkydPYuXKlfj9998REREhKnPgwAGMGjVKFAVcp9Ph7t27uHv3LtavX4/PPvsMb775ZrGvqTCCg4PRrFkz/PPPP4iLi3OoeKakpODUqVMAYPMejIuLwyeffGKz7u/atWu4du0aVq9ejV9++QUNGzYsVh/PnTuHL7/8Enq9HoDpvWzpPbNu3TrRcTO5ubnIzc3F1atXsX79eixduhQ1atRw6dy5ubkYOXIkTpw4Idqfnp6Ov//+G3///Te6d++Or776qtgxC/bv34/x48eL+m++d+vXr8eiRYtQoUIFUR2j0YgpU6Zg7dq1Nu1lZ2fj1KlTOHXqFDZt2oRVq1bBy8vLphzP8xg7diz2798v7Lt58yZiYmKKdR0vvfQSvvzyS6hUKsTFxTlUPPft2weVSgWJRIJXXnnF5ninTp2wb98+bNq0CR9++CHc3NyK1R/i+YNcbQniOWDHjh0AgMqVK9tYG6ZOnYozZ85g+PDhAIBy5crhzJkzOHPmDBYsWADAZOl8//33kZGRgaCgIHz11VfYs2cPjh8/ji1btmDUqFHw8PAAz/P46quvbAb6RXHo0CGkpaVh6tSpOHLkCNauXWt3FvXDDz+En58fZs2ahUOHDuHQoUOYPHmycG57UVCvX7+O4cOHIycnB5GRkfjmm29w6NAhHDt2DPPnz0etWrWg0Wjw4Ycf2qQ2+OGHH3D9+nUoFApMnjwZf/31F44fP45Nmzahe/fuAICTJ0/aWBamTJmC5ORkBAUF4ZtvvsHff/+NY8eOYfXq1WjZsqXwm8TFxbl0n86cOYOxY8dCpVIhKioK33//PQ4fPox9+/bhs88+g6enJ9LT0/HBBx+IBslff/21oHQ2a9YMS5cuxbFjx/DXX39h3LhxUCgUuH//PgYNGoSUlBS75969eze2bNmCNm3aYOXKlcJvbx6UJCUl4aeffhLV2b59u6B0vv3229i6dSuOHz+O3bt3Y+zYsZBKpUhNTRWl7DHLY4MGDQAA3bp1E+TRmri4OPA8j9mzZ+Po0aNYsmQJRowYAcBk3RkzZgxUKhWio6Px448/Cr/Dhg0bMHDgQEilUuh0umKlDHL1fgwfPhxnzpxBt27dAAANGjQQrstS0YmKikJMTAyioqKc7ouzbQPOP2vFoSTPmrMcOHAA27dvR/Xq1bF48WIcP34c69atEyxaGzdutGv9/fDDDwWls3PnzlizZg1OnDiBHTt2YNiwYZBKpbh+/TqGDBkieoeoVCpMmDABOp0OderUwaJFi3Do0CEcPnwYv/76K6Kjo8HzPGbOnInExMQi+3/mzBnRcz9//nycOXOmSBk0K5JXr17FrVu37JbZvn07eJ6Hu7s7XnrpJWH/kSNHMH78eGi1WlSrVg2//PILjh49isOHD+PHH39EdHQ0lEolhg0bhrt37xZ5DfZYv349AgMDsWjRIhw9ehS//vqrkD7rwoUL+Pzzz6HX61GrVi3MmzcP+/fvx5EjR7B69Wr07NkTgEmBtPQu6N69u8Nvk1lBNhqN+OCDD3DixAlIpVK8++672L59O06cOIEtW7bgzTffBMMw2Lp1K6ZPn16sawOATz75BDKZDJ988gkOHTokTILKZDIkJibi3XfftUlPtmTJEkHpfOWVV7BmzRocOXIE+/btw/z581GvXj0ApudmyZIlds+blpaG/fv3Y8CAAdi/fz927dqFr7/+WmQZtiQiIgJnzpzB/PnzhX1xcXHCfVQoFIK3ze7du2EwGOy2Y35vN2vWzO6kVKtWrcAwDHJycko1ci7xHMATBPHM07VrVz42NpafNGmSwzJz5szhY2Nj+bZt29ocW7FiBR8bG8vHxsbyp06dslt/yZIlQpnDhw+Ljr355pt8bGws/+abb4r2T5gwQajzww8/2G33+PHjQpmGDRvy9+/ftynz559/CmV27dolOta/f38+NjaWb9euHZ+VlWVTV6PR8L179+ZjY2P5bt26iY41adKEj42N5X/55RebehzH8QMHDuRjY2P5rl27Cvvz8vL4qlWr8rGxsfzmzZtt6mm1Wr5Tp058bGwsP3z4cLvX7Ihu3brxsbGxfJs2bfjMzEyb43v27BHuw6ZNm3ie5/mrV68K/RkzZgxvNBpt6p05c4avWbMmHxsby48ePVp0zPI3GjVqlN1+me9f/fr1eY7jhP2jRo3iY2Nj+bfffttuvblz5/KxsbF81apVbX4bs8xMmDDBpp75WGxsLL927Vq7bc+aNYuPjY3la9asycfHx9st89VXXwnt3L59W3Ssbdu2ds9fkvthWd/6WSgNCmvbmWdtw4YNQpmEhAS7ZRISEoQyGzZsEB0rybPm7LWZn7f8/HzRcaPRyA8fPpyPjY3l69Spw6empgrH9u3bJ9SdOXOm3fZ37dollJk1a5awf//+/cL+5ORkm3rx8fF8tWrV+NjYWH7RokWiY45kyPIeHj9+3KZN87E5c+YI+1QqFf/CCy/Y7LekZ8+efGxsLP/hhx8K+wwGg9CP3r178xqNxqZedna2UMbVd5K5XmxsLH/kyBG7ZUaPHs3HxsbyTZs25ZVKpd0yI0aM4GNjY/lq1arxarVadKywb9O6deuE8+/evdtu24sWLRLKXLp0yelrs/z2VKtWjT927JhNmR07dghlFi9eLOw3Go188+bN+djYWH7w4ME27wGeN/2mrVq14mNjY/nXX39ddMzyWezXr5/DPtqTFeu+Wz/Lhw8fFo4dOHDApk2lUil8D8zfEXt06NCBj42N5b/88kuHZQjCGrJ4EsQzTn5+Pm7evAkAIvdLVwgPD8eAAQPQr18/wRJljaXLTlZWlsvn6Ny5c5FlevToYXd9WNu2bYW/La0ON27cEFzPRowYYXcNk5ubG8aOHQvA5Dp1/vx54Zh5BtvavRgAGIbB559/jqVLl+L3338X9hsMBiE3n716crkc33zzDf7880+XLG03btwQ1jiOHj0aAQEBNmU6duyIRo0aiX6LdevWged5yOVyTJ482a5rb7169dC/f38AwJ49e5CZmWm3D++9957d/W3atAFgkrXs7Gxhv/n+KZVKuzPr/fv3x/z58xEXFyda5+ksDMM4dNmMjY3F66+/jnfffdeh9bBx48bC38WRWVfvx5OCM8+aq5T0WXMFs3XfEpZl8emnn4JhGGg0GlG0T7PVKTg4GB9++KHdNjt16iRYgtauXSsEW7O0YtnLjxoVFYX58+dj3bp1Li8xcAUPDw9B1u15Sty6dQv//fcfAAjeGABw+PBhwa163Lhxdl0i/fz88P777wMwWZSLkwfWz8/PbtA6AKhfvz569+6NDz74wGGKGPOzyHGcjZt2YaxatQoA0KhRI5GV15K33npLsPzbc3t1hh49eqBp06Y2+zt37iz03dL9u6CgAH369EHXrl0xfPhwMAxjU9fDwwO1a9cGUPj7xzr1WUmxtGLak6U9e/ZAr9fDw8MDHTt2dNhOlSpVAKDYzzHxfEJrPAniGefu3bvgOA4AULFixWK10a5du0KDdmRkZODs2bPCtnnQ5iwymUz4iBWGo+BBlnny1Gq18PfJkyeFv2NjY1FQUGC3frVq1SCRSGA0GnH69GnhPI0aNcKBAwfw559/IjU1Fa+88gpatGghDJ6qVKli028/Pz9UqVIFN27cwPfff4/r16+jU6dOaNq0qRBAwl4ApqI4duyY8LdZsbHHihUrRNv//vsvANPAzp6yaqZLly5YunQpOI7D6dOnbQZxbm5uDtd/Wt5/y/W3jRo1wv79+3HlyhX07dsXvXv3xosvvigErQkICChW0A8zkZGRDoN69OzZU3Dhs0dycrIwUAdcl9ni3I8nAWefNVcp6bPmLMHBwQ7XpUVFRaFKlSq4fv06jh07hgEDBgB4+Ay0a9fOYfAgwPQM/P3338jLy8PVq1dRs2ZNvPDCC5DJZNDr9Rg8eDDeeOMNtG3bFi+88IKwjrRVq1YuXUNx6dGjBzZt2oQ7d+7gv//+E62FNCs9gYGBaNGihbDfct1jYb9LrVq1AJjWFJ45c8blNbjVqlWzq1wBJjf7wrh7967IfdiR+6c1+fn5wjNco0YNh9cGALVr10ZSUpJdl31n6NKli8Njbdu2xcmTJ3Hp0iXk5ubCx8cH3t7e+N///uewjsFgwJUrV4RJvsKu2dU1r0UhkUjQrVs3LFq0CHv37oVWqxVNSJjdbDt06FBolPuKFSti7969uHPnTqn2j3i2IcWTIJ5xLNfslTQhuV6vx7///ovLly8LAYVu375tk+CbdzFYtq+vr93IsNY4UpwsA0ZYnjshIUH421lrhGVAoIkTJ+L8+fPIzs4WglRIJBLUrl0brVq1QseOHe1GqZwyZQreeecdqNVqbN68GZs3b4ZMJkP9+vXRunVrdOzYUUj87SypqakATIqtK9Enzb+/vcitllgetxci39fX12EgJMv7b57kAIABAwZg9+7dOH/+PC5fvozLly8DAGJiYtCyZUu0b98eTZo0cTnAkpnCFGkzGo0Gx44dw9WrVxEfH4+EhATcvHnTxhJZHJl19X48CTj7rLlKSZ81ZylKaa5QoQKuX78uyH1+fr4QfMqVZyA5ORk1a9ZESEgIxo0bh5kzZyIvLw8LFizAggUL4OPjg2bNmqF169Zo3769w0jSpUmTJk0QFhaGlJQUxMXFiRQSs+XqlVdegVT6cGhn6QHiyCJpTXF+F2eexby8PBw9ehTXr18XnsVbt24hNzdXVM7ZZzEpKUl4vpYuXWqz1t4exbk2wHE0YgBCUCGe55GWlmYzGZaUlIQTJ07g9u3biI+Px71793Dnzh2bQE+OKE604aLo0aMHFi1ahPz8fBw4cECYaEhNTRUmaiwt5/YwjycKCgqQn59vNzgSQVhDiidBPONYBvopyYdh586d+Oqrr2zcsBiGQcWKFVG3bl2HaTCKwtmIeJYDKmewDjTkap2YmBhs374dv//+O3bs2IHMzEwYjUYhEuzcuXPRsGFDfPXVV6KorA0bNsTWrVvx22+/4a+//kJeXh70ej1OnDiBEydO4JtvvkG7du0wbdo0BAUFOdUvs/uZu7t7sa7HXqoUSyyj8toLDlWYpcgR7u7uWLFiBZYvX47169cLEYrNEU6XL1+OiIgITJkyxeWoskDRcrNixQr89NNPguJhhmVZVK9eHdHR0di5c6fL5wWKdz+eBMoq+mRJnzVnKcol2/x8mH9zSyuYK8+AZb3BgwejevXqWLhwIY4dOwa9Xo/c3Fzs3r0bu3fvhkwmw8CBAzF+/PgyUerNsCyLbt26YcGCBdi5cyfGjx8PhmFw4cIF3Lt3D4BtNNtH9bsUJlccx2Hu3LlYuHChjbIlk8lQr149+Pj44ODBg2Xez+LUAQqXO0u5sXzXKJVKTJ48GXv27LFRpj09PdG0aVOkp6eLPC/sURbPbLVq1RAbG4vr168jLi5OUDx37NgBjuMQFBQkspzbw/KeFBQUkOJJOAUpngTxjGPp/lTcQdGePXswduxY8DyPgIAAdOzYEbVq1ULFihURGxsLHx8f3Lt3r9iKZ1lhqaRduHChWB/woKAgfPbZZ5g0aRIuXryII0eO4OjRozh79iwMBgNOnTqFQYMGYefOnaIBSPny5TFjxgwhSuvRo0dx5MgRXLp0CTzPY9++fUhLS8P69esduqhZYm7bVddNhUKB3NzcIiMNuzJAdwW5XI6hQ4di6NChuHv3rnD/jh07hoKCAiQlJWHEiBFYs2YNatasWWrnXbJkCWbMmAHAFA2zQ4cOqF69OipVqoQqVapAoVDg6NGjxVY8n1ccWWlK41lzBuvIodaY5dxsJbKU5ZI8A02bNkXTpk2Rn58vyO8///yD+Ph46PV6LFq0CDzPY+LEiS5dj6v06NEDCxYsQFJSEs6ePYv69esLbraVKlUSXGbNmH+XoKAgHDlypEz75ogZM2Zg2bJlAEzume3atUPVqlWFZ1Eul2PdunUuK56W79spU6agX79+pdpvS7RarcP3oqVcmeVOr9dj6NChQhqzxo0bo1mzZoiNjUXFihURHR0NlmUxfvz4IhXPsqJHjx749ttvceDAARQUFMDT01OwnHfp0qXI8YLl8gRnvmEEAZDiSRDPPJZrNCzXP7rC999/D57nERkZifXr19t1/XkSg6iUK1dO+DsxMbFQVzue5wv9eLIsi7p166Ju3boYMWIEsrKyMGvWLGzevBnJycn466+/7LomyWQyNGnSBE2aNMHYsWORnJyMzz77DP/88w8uXbokSh1SGOagSkqlUlhHZI9du3bh7t27qFy5Mjp06IBy5cohNzfXYQoGM+YAVID4vpUm0dHRiI6OxoABA6DT6bBq1SrMmDEDer0eq1atKlG6A0s0Go2QUqNOnTpYvny5XUvxkyizjxNL12HrfItmHN2z0nzWCsPSpdce5vVm5mAyXl5e8PHxKbVnwMvLCy+99JKwBvrChQv43//+h6SkJKxcuRLjx4932TPDFapUqYKaNWvi8uXL2LNnD+rVqydMnth7/5ivIzs7GyqVqlQnlZwhOTlZWHfesWNHzJ49265CU5xn0TKliDmAkiNKInOASe4cubyaPTlkMpmQt3fXrl2C0jlx4kQMHjzYbt3H+Q7q1q0bvv/+e2i1Whw5cgR169bFxYsXARTtZguI+17YWlCCsISi2hLEM45lFFjzOkFXyMrKEnK7vfTSSw4/vpbBb56UdW2WydCtE8dbcubMGdStWxedOnUSBnEXLlxAv3790LhxY9y4ccOmTkBAACZNmiRsm+/tgQMH0Lt3bzRu3NjGxRMw/R7jxo2zqVcU9evXF/4+fPiww3ILFizAjz/+KER7NN+DkydPFho5cdeuXQBMM9cvvPCCU30qDLVajaFDh+LFF1/En3/+aXNcLpfj7bffFiItF0c2HXHjxg3h3vfs2dOhe/LjkNmytAyUtG1LpcSRrFgGEbOkJM+aK9y6dcthvsw7d+4ISoA5ABfDMMLEzr59+xwq1MDDZ8DT01OQy3nz5qFr164OrWl16tTBW2+9BcBkFXMmImtJfyezUrB//36cPn0aaWlpYBhGyONqiWW+ywMHDjhsc9u2bahXrx5eeeUVITpxaXD+/Hnh2erdu7dDK5rls2jtlurofgUEBKBy5coATL+to7WhHMfhlVdeQatWrfDRRx+5fA2AKf+tI/bt2wfAZNU0W2Etn5PXX3/dbj21Wo1z584JfSxNnJGx0NBQIVLv/v37sX//fgAmq7Q52m5hKJVKAKa1nqR4Es5CiidBPOOYXXoAID4+3uX6lrP3jiwGV69eFSWsLmxw9yipU6cOqlevDsCkkNlLjq7RaDBz5kxotVokJSUJEWfDw8Nx4cIF5OTkYPny5Xbbv3LlivC3OVhQYGAgLl68iJycHKxcudLpekVRt25dwYo0Z84cu2uV9u7dK8yyv/LKKwCAPn36ADC5KE6dOtXuAOfChQuCotq6dWuEhIQ41afC8PDwQGpqKlJTU7FmzRq7Lpo5OTlCICPr+2CWu+LIkqXMWlqxLDly5Ag2btwobD8qmTUPvMvifCVt2xwkBYBdpTArK8vhs1CSZ80VeJ7HN998Y6NkGAwGwWLu5+cnSrHUt29fAKZ0KD/88IPddv/++29BYe7Zs6ewhlcqleLGjRs4e/asw4io5ufZy8vLqSA7lvJZnN+qa9eukEqluHv3Lv744w8ApgjSZiuvJe3btxfWkX/33Xd2JxSysrIwZ84cqFQqZGRkCL9jaeDMs7hhwwYcPXpU2LZ2pzbLtT03a/P77datW1i4cKHd9pctW4Zbt24hLS1NUFRdZenSpXatqlu2bBGUzF69etn0GbB/3RzHYerUqcJ7vLTfB5bnL6xt85rggwcPCgq0M9ZO4KGVubjR8onnE1I8CeIZx8PDQxhIFGctiY+PjzBAPHjwIKZPn45bt24hOzsbV69exU8//YQ33nhDtM6lsLD2j5rJkydDKpUiNzcXr7/+OlasWIHExERkZmbin3/+waBBg4Q8ZEOHDhUGb8HBwcIHeM2aNfjkk09w4cIFZGVlISEhARs2bMD48eMBmJRU80C3du3aQl632bNnY9asWbhy5QqysrJw584dLFmyBF999RUAkzJpvSbLEea8oSzL4u7du+jXrx/27t0rWKQXLlwo9Kd69epC36tVq4aBAwcCMCkTQ4cOxYkTJ5CdnY2EhAQsXLgQgwYNgl6vh6+vL6ZMmVLSWy4wdOhQAKacjYMHD8bhw4cFZfTgwYMYMmQI8vLyIJFIbKwC5iihp06dwr1791zKsxkbGysoz6tXr8avv/4qtHHhwgVMnz4dw4YNE61RelQya76ua9eu4fLly8jOzhYNDN9++228/PLLRaagKE7bRVG1alUhSNaKFSvw888/IzExEampqdi2bRv69u2LrKwsh+6axX3WXGX37t14//33ceHCBSiVSpw5cwbvvPMO/vnnHwDAhAkTRIFOLNNBLVq0CGPHjsX58+ehVCpx+/Zt/PTTT0Lqi6ioKFGuz9deew1+fn7geR4jRozAihUrcPv2bWRlZeHq1auYNm0aNm/eDADo16+fU5Ymy+jiu3btglKpdCl3pWXgF7OVypGyIJfL8emnnwIwKQq9e/fG5s2bhedwz549GDhwoDApOW7cuFK1XjVo0EDwOPj555/x559/IjExERkZGfj3338xYcIEkecIYPssmuU6IyMDR44cQU5OjjCR1b9/fyG677fffotJkybh0qVLUCqVuHbtGmbMmIGZM2cCME3Cmt+FrpKbm4v+/fsjLi5O+AbMnTtX6Hvjxo1FFueWLVsKf48bNw579+5FWlqasCzjzTffFE18lfb7xzLKclxcHHJzc+1OVnbs2BEeHh7IzMzEoUOHHFrO7WG21lp64xBEUdAaT4J4DmjRogUuX74shEl3lcmTJ+Ott96CSqXC8uXL7Vo9evfujWPHjiEpKUmIsPgkUL9+fcyZMwfjx4+HUqnEtGnTMG3aNJtyffr0wejRo0X7Jk2ahNu3b+PcuXPYuHGjaKBgJigoCL///rsohca3336Lt99+G3fv3sWiRYuwaNEim3rR0dGYPXu2S9fSrFkzzJgxA5999hmuX7+OESNG2JSpXLkyfv/9d5GlYeLEidDpdFizZg2OHj0qsi6YiYqKwuzZs0Wu2SWlV69eOH/+PFatWoXTp0/jnXfesSkjk8kwbdo0wbXRTJMmTbBjxw6kpKQI6+n27t0r5AAtDIlEgqlTp2LkyJEwGAyYPXu2zb1mWRbDhw/H4sWLodPpHpnMNmnSBAsWLIBKpcKrr74KwGSRMeemTEhIQFJSUpFBdIrTtjN8+eWXGDZsGLRaLebOnYu5c+cKx2QyGWbOnInZs2fb9Z4oybPmLMHBwahUqZLINdAMwzD46KOPhGu35LvvvsP48eOxb98+7NixAzt27LApU7NmTcyePVuktPr5+eGnn37CiBEjkJ2dbfd6AFMuR2evyd3dHS+88ALOnTuHdevWYd26dWjcuLFDa7I9evToIQTjcXNzw8svv+ywbJcuXZCbm4vp06cjKSkJEyZMsCnDMAw++OADwTpcWvj7+2PixIn48ssvoVarMXXqVJsycrkcQ4YMwe+//w4AuHfvnsga3qhRIyH365AhQwCYAha9+uqrkMvlmD9/PkaMGIELFy5gw4YN2LBhg805oqOjsWDBgmKvce3atSvi4uJEkxJmGjduLKwpN9O6dWu88soriIuLQ3x8vN13dUhICNq1a4fVq1dDrVYjNTVVWCNaUipUqIDw8HAkJycLz3GvXr0EJdyMp6cnOnTogG3btoHneTRo0MCpd6x58gV4dHlsiWcDsngSxHOA2e0yISHBrgtcUdSuXRubNm3Cq6++ivDwcEilUri7uyMqKgqvvPIKli1bhq+++krIE7d///4nxt0WMLmb7dmzB8OHD0f16tXh5eUFmUyGkJAQdOrUCYsWLcL06dNt1h95e3vjzz//xJQpU9CkSRP4+/tDKpXC19cXtWvXxujRo7Fr1y5Uq1ZNVC8sLAybNm3C+PHjhVQBUqkU/v7+aNiwIT755BNs3bq1WEpez549sWPHDgwYMADR0dFwc3ODh4cHatasiY8++gjr168XBd0ATO5uU6dOxYoVK9C1a1eEh4dDJpMhMDAQDRo0wOTJk7Fly5ZSjSprZsqUKZg/fz5eeuklhIWFQSaTQaFQICYmBm+++Sa2b98uclEz07dvX4waNQrlypWDTCZDcHCwKCdtUbRt2xZr1qxB586dERwcDKlUCoVCgYoVK6J3797YsGEDPvzwQ2H93549e0rtmgujVatWmDx5MqKjoyGTyRAQEICMjIwnpu2mTZtiy5YteO211wQ5CQkJQdeuXbF+/Xp07dq10PrFfdacRS6XY+HChfjoo49QqVIluLm5ISIiAl27dsWGDRsEK7s1np6e+O233/DLL7+gffv2CA4OFvrVvHlzzJo1C6tXr0ZUVJRN3WbNmiEuLg6DBg1CbGwsFAqFULddu3aYM2eOzeRTUfz4449o164dvL294ebmVmTEXWvat28vKMht27YtMs3MG2+8gZ07d2LgwIGoXLmycA0RERHo0aMH1q5di1GjRrnUB2fp168fFi9ejDZt2sDf3x8SiURYRztw4EBs27YNY8eOFVy9//rrL1H9ypUr44cffkBsbCzc3Nzg6+srCmwTHByM1atXY9asWWjVqhUCAwMhlUrh5eWFevXqYeLEidiyZYvLuZMt6du3L5YtW4aWLVvCy8sLvr6+aNCgAWbOnIlFixbZzZH9/fffY+rUqahXrx48PT0hlUrh5+eHevXqYdy4cdi+fTuGDx8uLIWxvu6SIJVK8fvvv6NJkyZQKBRQKBQOraqWKXicdbM9efIkANO9d2ViiyAY3tWs2QRBPJX0798fp0+fxujRo/HBBx887u4QBEE4zcSJE7Fp0yZEREQIa9EIoiw5ceKEEDjKVc+Bp4kjR45gyJAhkMlkOHLkiF0l2po33ngDZ8+exahRozBy5MhH0EviWYEsngTxnGB29dm8efMTE3WWIAiCIIjHx7Zt2wCY1kI7o3TevHkTZ8+ehaenZ7HXzBLPL6R4EsRzQsuWLVGnTh3Ex8e7nKibIAiCIIhni7t37wpphMwRgoti3bp1AExeVM4oqgRhCQUXIojniPHjx+Ptt9/Gb7/9Jko3QBAEQRDEs8++fftw/fp1aLVarF27Fmq1GtWqVRNF4nVEWloa1qxZg4CAACHQE0G4AimeBPEc0aRJEwwYMAArVqzA33//jQ4dOjzuLhEEQRAE8YhITk7Gjz/+KGzL5XJMmzbNqVRAc+bMgVqtxsyZM53KWUsQ1pCrLUE8Z4wfPx4VKlTArFmzipWygSAIgiCIp5OqVasiJCQE7u7uqFevHhYvXixKX+OIW7duYePGjejcuXOh6XsIojAoqi1BEARBEARBEARRppDFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMkT7uDhCPH51OB6VSKWy7ublBIpE8vg4RBEEQBEEQBPFYMBqN0Gq1wrafnx/kcnmJ2yXFk4BSqURCQsLj7gZBEARBEARBEE8gISEhJW6DXG0JgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIVdbAm5ubqLtqKgoKBSKx9QbID4+HkajERKJBOXLl39s/SCeHkhmCFchmSFchWSGcBWSGcJVnhSZUalUomV41rpCcSHFk7AJJKRQKODl5fWYegMYDAbo9XrIZLLH2g/i6YFkhnAVkhnCVUhmCFchmSFc5UmVmdIKOkqutsQTB8uywj+CcAaSGcJVSGYIVyGZIVyFZIZwlWddZhie5/nH3Qni8ZKfn49r164J21WrVn2iZlkIgiAIgiAIgng0lJVu8Gyq0wRBEARBEARBEMQTAymeBEEQBEEQBEEQRJlCiidBEARBEARBEARRplBUW+KJIy0tTQglHRIS8ri7QzwFkMwQrkIyQ7gKyQzhKiQzhKs86zJDiifxxJGSkiKEkn4WHzqi9CGZIVyFZIZwFZIZwlVIZghXedZlhlxtCYIgCIIgCIIgiDKFLJ7EE0d0dDQ4jntmcxgRpQ/JDOEqJDOEq5DMEK5CMkO4yrMuM6R4Ek8cPj4+j7sLxFMGyQzhKiQzhKuQzBCuQjJDuMqzLjPPpjpNEARBEARBEARBPDGQ4kkQBEEQBEEQBEGUKeRqSzxx6PV68DwPhmEgk8ked3eIpwCSGcJVSGYIVyGZIVyFZIZwlWddZkjxJJ44rly5IoSSrlOnzuPuDvEUQDJDuArJDOEqJDOEq5DMEK7yrMsMudoSBEEQBEEQBEEQZQpZPIknDl9fXxgMBkilJJ6Ec5DMEK5CMkO4CskM4SokM4SrPOsy82xeFfFUU6FChcfdBeIpg2SGcBWSGcJVSGYIVyGZIVzlWZcZcrUlCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRTPQvjyyy9RtWpVzJ07t1TaS0pKwvTp09GpUyfUrl0bjRs3Rp8+fbBkyRJoNJpSOQdBEARBEARBEMSTBq3xdMCxY8ewevXqUmvv4MGDGDt2LAoKCoR9Op0OFy5cwIULF7Bhwwb89ttviIyMLLVzPq3cunVLWFhdqVKlx90d4imAZIZwFZIZwlVIZghXIZkhXOVZlxlSPO1w6dIljBw5EhzHlUp7165dw6hRo6DVaiGRSNC7d280bNgQBQUF2LJlC86ePYvr169jxIgRWLNmDTw8PErlvE8rBQUFQg4jgnAGkhnCVUhmCFchmSFchWSGcJVnXWbI1daKgwcPYvDgwcjPzy+1NqdMmSIonb/99humTp2K7t27o1+/fli1ahXefPNNACYFddmyZaV2XoIgCIIgCIIgiCcBsng+QKfT4ffff8dvv/1WapZOADh79izOnDkDAOjZsydat24tOs4wDD799FMcO3YMt27dwqJFizBkyJBndqbDGWrVqvW4u0A8ZZDMEK5CMkO4CskM4SokM4SrPOsyQxZPAEePHkXnzp3xyy+/gOM4KBQKDB48uFTa3rFjh/B3//797ZZhWVY4plQqcfz48VI599MKy7LCP4JwBpIZwlVIZghXIZkhXIVkhnCVZ11mns2rcpGtW7ciMTERgGmmYd26dWjbtm2ptP3vv/8CAHx9fVGjRg2H5Zo2bSr8ffjw4VI5N0EQBEEQBEEQxJMAudo+ICAgACNHjsQbb7wBiUSCzMzMErdpNBpx69YtAEClSpUKnb2IiYmBRCKB0WjE1atXS3xugiAIgiAIgiCIJwVSPAEMGDAAU6ZMgbu7e6m2m5GRAZ1OBwCIiIgotKxEIkFwcDBSUlJw//79Uu3H00ZWVhY4jgPLsggICHjc3SGeAkhmCFchmSFchWSGcBWSGcJVnnWZIcUTQO3atcuk3aysLOFvf3//Isv7+voiJSUFSqWyTPrztJCYmCiEkn4WHzqi9CGZIVyFZIZwFZIZwlWeJ5nhOA7gAZ7jwfEAz3HgABgNRoDnIZMwAMOAkUoB3lRHJpdAo9ZDq9ZBl5sHTqcDZ+Sg1xkBD0+wbm7gOYDnOfAcwPE8jHo91MmpMOr1kICHv4/EdE4j/6AcD293ICffgNx8A3iOB8/z4DkOOj0Pjc4InuOBB+1xHA/wPHge4B6chwWHcF8Ocv8A+NevB543ddg3xA2pyTmIv5WJ3Os3wOXmg+EZGIwA/ELgHhpmOhfPI0eTD51BC6PeAH1SCiR6DlJIEOGWCTdWCt5gAG/QgzfqweiSkG1wQwYbBQPPw11RgHqvvfxMygwpnmWIWq0W/nZzcyuyvLmMRqMpsz45w82bN1GpUiV4e3sL+7RaLa5duwYA8PPzQ/ny5W3qqFQqAECdOnVExzIyMgQrblRUlEgJNxqNuHz5MgDA29sbMTExorp3795Fbm4uAKBGjRqQSh+KrFKpRHx8PAAgPDwcwcHBoroXL14Ez/Pw8PBAlSpVRMcSExOFiYHY2FiRtTs/Px+3b98GAAQHByM8PFxU98qVK8KHpHr16qJjycnJSE9PBwBUrFgRXl5ewjGNRoPr168DMLl2R0ZGiureuHEDarUaDMPYTIakp6cjOTkZAFC+fHn4+fkJxwwGA/777z8AgI+PD6Kjo0V179y5g7y8PABAzZo1IZFIhGPZ2dlISEgAAJQrVw5BQUGiuhcuXAAAKBQKVK5cWXQsPj5emCSpWrWqSMbz8vJw584dAEBoaChCQ0NFdf/77z8YDAbI5XJUq1ZNdOz+/fvIyMgAYHJR9/T0FI6p1WrcuHEDABAYGGjjSWAwGHDhwgWwLGsTGS4tLQ0pKSkAgOjoaPj4+AjH9Ho9rly5AsA0AVShQgVR3Vu3bqGgoACAaR24pdt8VlaWsEY8MjJS9KHgOA6XLl0CAHh6etokg7537x5ycnIAANWrVxdFs87NzcXdu3cBAGFhYQgJCRHVvXTpEjiOg7u7O2JjY0XHkpKShOUCVapUEeUGLigoEJYABAUFoVy5cqK6V69ehU6ng1QqtVmXnpqaitTUVACm5QFP+zsCMP32N27coHfEc/KOuH79OjQaTbHeEXq9HoBJJq15Ft8RPM8jMDAI5cLDwfMAz/MwGDhcu3YdWq0OUokElavEmgbxDwbw6RkZSE/PgEQKVIypAG+Le8hxBty4eQMFuQZ4ursjyNsHHMeBN3JQq41Iyc+DTqMFzwMVKkSDf9CmPicXytRU5ObkwtOdR3iIPxQeHiZlg+Mhl3JIvZ+A1GwGMpkMPt4+grKRrzIiLy8fOp0e4AFPLy8wwANlhodOp4dGo4GPXItgfw+ENWoEmb8/wPPw9HZDUvJt3LiUA+gMkKamg+MB8DzUnBQGvwDoOQ48D3h5eYFlWfA8oM/NhSolDQaDAd5MPnyYAjAMg4wtR8HzgDtrgEyViiv6KOh5GSQykyLG84CWl0BvZMA9UHQYhgUYBg82wT+QGR8uF0FQIqhhQ3hXjQX/oL+MLBdH9yYiJ10N5OSCM5qyNBggBe/hCY5hAAAsKwHDMCYlyWiEQW0ad3oachCiuQ+GZWE+qdSoRbn8m7gQ0ByZ7uXAw9QGGAY8GNG2I9z1uQjPuwX38HIIbt0SACCTSeAdpcHxPUlIua13WLcw5AYVInKv2eyPyTqHWwH1cS+grostmp5bCWdAeeVlSDw9Uc7t4fv97wtbkXmTR3h8DZhUKL+HVbO0wO17Dtp98MzzHOQpd22ORuQowXiUQ1rYg++QHtD9uQ8NGjV6bO8I83eqtCHFswyx/DjJ5fIiy5vLGAyGMuuTMxiNRpuUMjzPF/rRNRgMwnFrOI4TjtlLVWM+Zr7uyMhIwc0gKytLOG6ecbLXJ0ft8jwvGoja629x2nXmWgtr195vbG6XsfPyLkm7pfnbWGI0Gh32ybJde/Ki1+thMBjsrnsurF1HcmiWmfv370Ov1xfZbmHy/SjvYWFy6Mw95DhOpCSYKc49tO6TdT3rdh/nO8JRu648y5GRkYLiY69fz9o7QqfTCe0LM/wW16pR68BxPNQqHVhWYlIy9Byy0guQlakCOEDG5sOglT2Y0Qc4jkfa/QKwEiAgiEV+nlZol4FJDnKy1dCojXDn7kPCsOA5DlqNHrlqA9KycsDzQGYycN9PC47jwRkM0GYrkXo/GQyMCPKXQJauBjgOPGeyZhh1WUhNykWeikHG2VRIpVLwHA+9nkOeSo/c3DyAB2QyGdzd3ASlieMAVUEBwBsQ5qmB8WYmfGvVNN0HHpC565F6vwCpiRrc2J8AXq0x3QcjA52bF9QsCx6AhGVx+d8TJmXLaIQ2PQNalRo8xyFKmoY0r5OmBh8oN/58FtIKgHtcOCTsRTCsSZHgwEDDSWE0cqZ7xjBgmDMPxvsM+Ae/Hc/ziDLcw13PQyjX9RXgQf2wKA+k3i/AheNKMNo74LTaB6dlYJTIwVtYllj21sP29AbT/wFEFdzEJWanSRnjTcVD1AkwcsDJ0JcBJAA4a1eWTcTb3Rueex03DAUIe/klyB5MgpSv6IeCPC32bkkrpD0TJ5BhZy+DkLw7uK8/L9rrp06FnzoVpyu//WBPgVU9+YN/ANKt32syADIEFmQj92oClAiAooJp0qxclB/0ej2uns+BQc8D8BBXzbTM966yatc0oWRQqcBrTMeUD/ql0OUgLP8O0spXh1ruA+jsXupDrLvMAhKdGu4qHdgUJYwhpvZ5nke27D4yMgtQoHzQB8tPoZa3aMzqvcU+GH/yEhgMnPi40QheowHHAUa2pKn+Hl4MzwNzLi6FV14MAlC+kDqF4VjZdXzE+XZ5gw6qW+fA67XgDTogKAFA4UvnnGnX3n6tVCHaU8A9nBR+HOOI0kwtaQkpnmWI5eyuo0GIJeb1oI87h6dEIrEZuDMMI/TLnoBKpVKH/WZZVjhmTyEwHzMriJazwbm5ucJx68GWZZ8ctcvzvN1+Wfa3OO1a/t/RtRbWrj1lWCaTwWAw2B1UlqTd0vxtLJFIJA77ZNmuPXmRyWRgGMbldh3JoVlmzBYqe9di2W5h8v0o72FhcljUPZRIJGDAgGUl0OuMJremB25OOg0Ho4GFVAIY9Ca3JfMHieN4SFgpNGojVPkGZGeqhMGtWqWHMlMPnc4IlgXu3MgwDdh5HjwHZGfnITtLD08fKQrydACnFtplJRxYVorMFA00ubnQZt0Fx5ncm/LydMjIzRWsDtrcWwBM7liGAhXys7KRn5cPP28e0nQtshQeJuWI4+AuB/iUeNxNZiGXShF/LOmB2xSPPJUBBQVqGPQG8ABuHEwTXKZM1hkjNFot/N11yA+4i6y6dSDz9QXPA75+7pDL5bhwMgu8LgcXtlwTFCq1UQKDwhMGzjQSP/fPKeH3MajU0ObkwGjg4CfJR4r7KVyWyQSFS8Hq4a5OwXlNBah5N/wjuSIMtXScBAbu4dBrL+6arAQW1gye5+HD5SKYycatOnXhVSkGPABvb3fIvWT4Z08ystM0+OvPTYJVhAMLXiIV2mCQ8kCZMl0PeB5gGHgachCqTcJJs6zxgIzTIjL/Gs77tUC6RyT2rE+1I+Vm7CkDgLs+D+F5N3EjPBzBrVs9kG0JyleR4/YVFe7dKMAxZNmtayIH9hQYuUGHgtyruGel+MRknUNyQH3cDagLQPvgnyWWAzjrwZMCEk4Pyd1byLqjRDmPMOFI5Ro+yFcacfuKWXGx9FSy/oarLf6WAPACeB5+GbeQhzxRSUnONag9wpEeVgswwvTPksKUDMb0T1ughyFfA+88jckaBYDnPMBAgoI8o6kPjOJhWzwAvWVjlidlhXKcwQgjJ9Z8OHUpel1ZXU/ZjW9sJ8qK1YrFwF2r1yJRlwq+BG0XVpMphT5b9tfAGTDv5mrE6JrBEwGF1CqMslXkYKUYSVgJSvLbOa7JlKhdoX2DHtqk68K2xEdTSpJmS65boPjcePjdL6txhEwmA8dxDsezZQEpnmWIpfuPVmv9YbTFXKa0gxy5SuXKlUXuX4BJibZ2j7Ou44igoCAb9ywzEomk0HatXcIs8fPzE7mTWVPY2t3IyEgbNzYzXl5ehfbJ2nXOkvDwcBu3OzPu7u6Ftmvt6mdJcHCwXTdBwPTSKaxda9dES/z9/Qtdf1xYu+XLl7dxpzTj7e1daN3CUguVK1fOxv3TjIeHR6HtWruKWBISEmLjZmJGJpMV2q61a4slAQEBDtdhsCxbaLvWLr1mjEYO3l7eKBdaETevpeHsnXTkKuORk62GMksNVYH1FPlNu+3UreWH1HMnYVCrYFRrwGk0CONSYchX4QBfD8B9AJcd9g9Itrs3PPcG7hh2IaxTR8j8/QAAlauFoHKlqti24u8HpRIctnoJSrv7Q/JuI10vVjJM1owU/Fd50IM9+Va1JA/+AbYjehaAB/Qp6dBcu4183hue0aZ7zhl9Ubt2bexcsxsatR4my4cFOZaDb+v3t+kdzeYrIUkVW2/M1gxl+SpQyX2AohxY7CgaOj0PjaoAeenZkJQzvafc3KSoWaUK/pGmQ6tVm/prOcaw0K9sBsrmwYiRA6/Vio5yRi34AhXgbTsb7jJWpy1fvjyCgpS4d8PaAlWs5iwonUGldRvBwUGIiNDg4r/KUmi78HOVRjNeXl6oVKkijv5VtAXRieZE+0qmZDxs11IWVQYN1H5l49FVciXOVjHKVCmxIn4rqnEdIUXRXmuFtmuXkihctv1lzOZNpnRVI140m1HCtqyacJe5gXdB2MzyxPD8gzkZHgzP2fz+BhZgoIfMoDLbLsGABw8GHCMRrogR2jTP/pnalfAGSKCGG8NDwZrdnk1rPw1yDfK9M+Gfp4eHlgMLHjxYcFI5pHKAkUgg8w9DpioLKk4PluehKDBAbuTBgoebJBtuvIVayQD6AEDKiL9t5j4WdxwBmJZWFFbXermBJcHBwaJYNaUFKZ5liOX6J7P/dWGYyzyLi4kJgjBhNHDIzlIhIzUPmekFyFVqULVWKDRqPTRqAzRqPXQ6Axq3iMH9BCX2bPmv2OfK+Oco5JxYacrNv2f6oJWvV+x2zR9qy0GlyahW0uGq/fplMagUjpSoy49uUGn+s8S32NG5SkMxEvXXPFgr5Q7DrBiVgpXExiUZJdO4CrnWspDhBGUSbiYnlU67NpRWfx/uuaNMwMpb61AdHR8c480OxQAYMBIJwDxUBgycaTKE5XlIOFNDEt4ACac3tc4wYACwDA8jC3jocmCWaLOyYWRl4MFYXCX/QDZ54TdhGAZuUMNDboSfvwe8Az1NVuYHuma+XzrcNSxCM3WQsaY+GlkPeESVh9TNzaQ4cHrcyLwDMIC71gjffCPkrARe8jz4ugPuMvcHrtQMJJAgPisRHvwtyHUmq7pC7gGWYcAz7pDKPIRr4AGkqzJgft8yADzdFPDw1SIgxA0VG1SAT2woGAaQylkgAUgPv4U8v3hEpeoQ7uYPqUQKVuKBiJoNIffzNbXNMlh2fh0MnBEyA4ewDD1CvQKgcGPh5xmISkHRYFgGLMOClTBYezUNat1VgL8NngGi/SPh6eYJGeuOSkEVTWVZFiwYbLi6A3l6FcDw4BigUlAFBHj5QqGoiBdrtYbUXQquIBvG/Eysu6lGStR/SI24Ag8th1qMJ0I4BqxBh8Y6I1hdPhQV68KrRjP8fm0HUo0qMDygMepR2yMYIekp4PMyUTdf/J37x9cD2bK7UPB3kC9lEa3WI0xnBAOgvEYPFoA8rCKCXhqKc1cPIo/TgQGg4gwIkXrAM/ke9Mk34WPgRN7K4RkMjEwOWLeLgByQ8TxkeODRzEog8fCG1DcYIa++BG3SDTBSOViZGxiZHIzUDUatCrymFiRe/sjjpJB6+cLf3zTmj/t2Ae6nPDwXx5SNxfFxQ4pnGRISEgJPT08UFBQUmSLFaDQKC3kdWXueFyz9ysvK1E88WzwpMsPzPDRqPXKy1cjKUCHlfg6UWSrkKjXIz9WiIF8LrcZ2xl/uJoFEKu63RqOHj7+HTVnXeHSDSvB8qStFplOUQaMwuRxzHFcyxchuVdNOxo6S6zKiNh7Ouhe7uULqlkp/wT8YXAMsazqZRMpCLpeY1h9yRgj2NKkcrFwKwFTedF0MwHEwqlUAx0Fm1EBm1MJaChiJBG6cBj5ak+uvWYHgwcLwYA2apaInKBgwKy9G+Ej1kHl6IjjUW7inZ1Mv4bYmDT6VAMm9ZLgVaMEyDDiwgF8wPKMiAYYBywBpBZnI0+WD54xQpOXCTc9DwrLw8tbD64ESAYYBwzLQeftBpStAkPYcePCQSaRwk7qBBwOpzBcSlhGUqFxtHgr0qgf3iYdMKoWHzAPe5fQIDyqHmNphYGVSMAD+Tt6PbfH74Fk5AMFZOkTlS+Cv8AMA+AXHIKx+AzBgwLDA6fsXcTTxFAAgNFOHIL0Mwd6B8CjPIiaoCrzdvcAwLBiWwU2lP44nngbH7QLPMFC4KVApoAIgASK9y8Nf4QNWwoJhWVzPvI2D946DY03TUJ7uCtQOqwpW6oNqEQ0RW+sFsG5yMACOJebCeE+HS43iINVxCIE7WsU0BcCgZrnqqFqxjvA8nrl/ETMP/2r63YwcFDIPdK7aDmBjUTu0KqoHP/QQupx2HV/u/xHAPwAAuUSO7tVMym314MqoHfowONXNzLuY9PcsYZtlWLxaozMAH1QOjMEL4TWFY4k5ycB/QGKlc6a6AF6r0QUMw6CifxQaRtQVymYUZGHE9tWip6FHtU6QsiEI8g1H08j6wrcpT5uPoZs/AvBQy+ga2x7uMneU8w5FywqNhP06ox5vrh8tavflym3g4eYJT89AVI9pLDomY6XQBSphYFj8F8kjsnI9+Hv4wt/DD82tJhv38Z4wckZwPIcCvRrlomsiSBEAT5kHqoWKA3pVr8JDb9SD4znk61SoHVoNAW4+kBr0KCf1gFGdB1auAOvmgW7lX4TRoAVv0EOj0yCYdQOuHIfhbiKyzm0Utfs+A7C8SXFz+OXW5EDi5o6h/raeUqr0HOjybT0KW+aobfZZw6lywUjliHXzszmmdcuCRuIG1t0DrJsHWDcFWA8veLl7gVX4QKLwgcTTF/KQ8pAofCFR+ICRe4i+JzJf+x5WgClo25WLF8EwiahTpw58fX0hgTgIKcc8myras3lVTxCVKlXChQsXhCiSjrh9+7aw8Lcwd8HngUuXLgkRIQtzESAIM49SZnieh15nhEajh1ZtgF+AAgl3s7Br82XkZKtNYeBdJGHn35AZ1Ijo0R14MGDXqPXwK6ni6Ugx4p0MGiAoI5YDfx4sbwTLGSGVMJDJTNERWQkDlmXg7eMGTquFIT9fGOgbGSlkvj6mj/KDATYYk6XBWJAPo1oDBjzcDAVwMxQ89BRjABmvA8OyCFAnA5YKBA/oJW7gGVbYZhj7yoYfnwcfqRYhwe7wifAFAKRmJEJ19j4iYtzhyXhCeeas4Galk7jDs1p1yDw98FAxMv1fl5mJgtu3wTAMfDzy4efBCtfCMICM8YGPpDqqG7OgZ3ItrhXQQQoOJjcv5sF/WObhcRYAGBYKPz185YEIaBwNv1qmQBZSqckxq2O3GijIykXW8RPgNBowDAMDI4VXrVrwCA6CKQgm++D/DIwFBcg5cxZgeMilXvB0rwOGZR6WYVm4yVsgQs/ACAYMa1IoWJYBzzAwRTIxrcViJSzAsGCkDCQMC0bCQiJhwEhYMJLacA8Kgkf4wzWTANCpR0281LUatJmZ4HQGMBLTBct8fSBViINpADCtVdbpTfeEZQE7MQfsYeCM0Bl1UMjEz8yemwdxT5mEbHUO7uelomZwLEK9w2DgQtG9+suigeLU/WtxKfMaEAggEKgRXAU1Qkzf425VO+DGlevCeyZLnY4Ld4+bKkYDsYEVUSesOvQoh6ZV2sDb7eFylT9Or8Kem4cAmKyTFf3Lo345U7svVWoFPw9foeyK8xvx99W/hO3yvhFoHFkdRkQjNqY5gjwfekTJs6QwynTIDUhBbgCg8Q5Ds/KmdutVaIww74cD3/ir15CrNrnO5wYCuV7BiKgQDSOAkPINEOnzcInIrZuHcPn0ZZhd1wMVElSMMS2rCI94AdH+D5epJN+V4C5zRNj2c2dRq1IYjADcwqMgUzxcOiSTPHQPN7ixyJXLYPQ3eYYxvl6i38K09s8EL2FhZAE8kAPOep0gI167xlm83zird52UFQ97LddIWpeVSaTwdfOG5EGwLSPPwVvuCZlEBg8rOXOXuqFxxAuQshJojTpoDTpUDCiP5IQkKPOycEl5Sfg2uUvd8NYLr0HCSKAz6qE16vBCaA24y9xs5FfGSvFVh48hZaXgOCOM4BHiGQC5RA4pY7tm788+c232OeKTFz94eB84I3i9Dtq0eBjS06C8ewNcQQ4M6lxwqjw01hSA0+SD06rBG3TgDXHgtCpwABIftOFZvTm8ar2ICiL3TBaAHgU6HfQ6WwVR7sR8l1GVB1ZqPzME42C/CFYCiacfJB7ekCi8wXp4mxRH7wBI/YLhWbXJA6uk6R8rlQMSaZl4awAmpfPixYvChPmFCxeeq7EuKZ5lTKNGjXDhwgVkZmbaDdlv5vjx46I6BEE8elQFOmSk5SMzvQDZGQVQZquRl6N+YK3UoXm7SuCMnCnwzQPqNIgEK2GRkWq99tB5tDojJHotjBoNJArTwEOj1iO0nA/KVwyALDcDhusX4W4ogLuhABLeiFrTJoOVSsAKCoRJ8Ulcsx5ZR4+C4QGZUQWJhIXEwx0SDwWkXp6QR0VB5uuDGJ9MyAP8IFV4ACwLlmVNypCENblXSSUmJYRhTQM+QVlhwbDRYOUyeFaqBIlVqqixX3SEoaAA2owMgJWYFCq5HG5BQUJQFEuMWi04g/GBUsM4VDZaFPvuOrjnF9Kg1+tRs4Gf6aM/qHTPUDbZoU2RNhHlB9R1NgpkMFAvuox64xyMRAJ3B+urbcqyLIxSFjqjFkYjB73OIFK2AGDVhS24nX0P2epcZKiyUCesOiJ9wsEyLF6r0Vk0YDyReBYXUx+mWwhSBMDXw5Tiw8AZTMrQAyyVRaBwBcZSMbI+bh1Z0lrZ4UTKjnVZcbuFKUY2CpfFQl/OyqtBYvU8ia6NK1w54wrpg3V/OZ574P5q+6wrZB4o5x0KKSuFzqiDu9QdwYoAMAwDD6k4tkWgwh/tYppDwkqg0qvBMiyqBVUCy7AIVojlIdw7GO83GggpK4XaoAHPc6gdVh0sw8LTSpGL8AnF7C5fCsokwzDwc/cxvfOsFI1Qr2As6PmNzXXYw8vNE+NbDrfZfyFbahNcUiaRoWvVDk61yzAMqgQ6jtPgCE6vhbEgB5xWBaMqB1xBLoyqHBgLciAPqQCJdwD0WffB67XgdFrwRlMf8y8ehEFZWICxQs6pzgMjs78WlpE5oSA6wGjRLsNKTMrhA/dV3miExM0DrMIbEg+TFdL0LwBSbz9IfALBunkWqkRKPLwdHittrJVOwOTxmJycDMgeb3yXRwUpnmVMp06dsHDhQgDA8uXLMXXqVJsyRqMRK1euBGBaF9qyZctH2scnDU9PTxgMBrvRuwjCHq7ITH6eFvG3M5GVoUKuUo3sTBXSknOhVukfhJF3TG62Ggov8YdVo9bD1891yyTDGyEzaiEzaqDQ5sJXm46oQCCwegTcPWRwd5dBImEx6IPmSD9yFNePnxHqsm5yRIS6Q2aRI8+Md8920DStCbfgYLiHhkDyIL/co0Tq6QmpRXC1wpC4uUFS/DFJsaH3zKOD4zhkqLPBPXDrM3BGlPcTpyT4+cQSXM+4jRxNHtQGDRpG1EW0X6RdZfJm1l1cTL0qbKt0Jrc6U9tWyqRcrExqjTrR32LFUyyznNWaVUuZkepdsbJZK5OFKLQPlEmWYU0KHMvCTSIX1gdaEqjwR5XAGEhZKVQ6FUI8gxDhEwoGLNytHqqK/hXQrWoHSFkpcrV58HHzRp3Q6mAZRmRxBYDaoVXxUcv3IGUlUOk1cJPIEe0f+UCRE1upG0bUxR89v4WUlYAFAwkrEd1TS2qFVsVPXabYPWZNpE843ms80Kmyvu4+aFuxuVNlZRIZwr2dmwQpDUrrPcPzHHi9zqQo6jVQ3zkPfWaySZlU5YJT58GoKQCnUYHXmaySDvtUowW8araCITfT5pgjxdEZjKo8sA4UTLvtSqRgZe5g3TzAyD0gcfeEPDQGEoXPA6ukt8lK6ekLWVAk5MHlwUie3vd1VlaWkDfTkuDgYMTGxiL+r+LHc3iaeHp/waeEunXrol69ejh79izWrVuHZs2aoXPnzsJxnucxffp0IRl5//79H3tU28dNYRFECcIehckMZ+SQo9TA188dp4/HY+fGS8U+j0ajh8JLDt7IQa9UQpuZiRsn98Ij/hLg3fnhAjyeh5tRBQlngJTTQW5Qwd1QAA99Hjz0ufDUKeFmUEFilerBj8tFYLCXzXl9a1RH5VEj4FGuHDyiIiHzdjxD61WxIrwqViz2NT4v0Hum9NAb9dAadPCyUtzmHl+MG5l3kKnKhp4zoGlU/QeWSQZRvuVEilS2Ogcp+Q8TlmsNJrc8jueg5wyQF2KZLFyZFJfVWQzIdQY9LIOVVvCNRO3QanCXukGpyUWlgPKC8itlJSKZyUvWItDDH1JWimy1EmFeIagcGA2WYW3cMDtUaoUG5WpDwkig1qvh5eaFYM9AsGDgYWXleK1GF7xWs4tdi6E1L0Y3wYvRTYosBwDVgiuhWrBzMh/sGYhgz8CiCwKQS2Si34YQ4+g9w3EcjPnZMOZmwKjKAzgDjAU5giJpLMiBe1Q1yPzDoUuPNymdFlbsklgmjapcxwqiM66rdmDdFGDk7pAofCALCAcrfRBQRyYHK3WDe7kqMNbvBImnH6TeAZB6B4CVPz9j3cKUzurVq4NlWSg1uQAeZoAoq7QtjxtSPEtIYmIi2rdvDwCIiIjAvn37bMp8/vnneP3116HX6zF27Fjs27cPLVu2hEajwebNm3HmjMmSER0djeHDbV01CIJwDY1aj4y0fGRnqqDMUsFo5FC3YSTCInyLrlwIWf/dhK4gBfrcPIAzQsrpwWgzIdWkolbBAciNarg/WKfIFvLZYOVyyEKDIff3h1tQINxCQ+BRLhx+L9S1W17u74/QDu1L1HeCKA323DyEu8pEpOSnIyknGXXCqiPYMxAyVopeNV4Wlc1QZYmUyYeWSb5IZVJnfOieqDPoRGV95M4rk9WDq8DIc/Bx84TOqEekTzhqBFeBXCqHj5t4Aqdj5VboWLmVU/fhhfAaeCHccVooS8K8ghHmZT8dljUUUO/phOd5wGgAp9c8cF/VgNfrkH/lCPSZ92FU54JTF4DTFpjWSeo1dqNsW7UKqW8IOL3t2sgSua4W5IBxoPSxMjcwUjkYuTtY+YOgOu6eYD28IHH3MrmxKnwhC42GVOEN1sMHEg8vkSVSFvB8B8i0xpHSGRISgurVqwsTcJxNzuFnE1I8HwE1a9bETz/9hI8++ggqlQpbt27F1q1bRWUqVKiAP/74Q5T7kyAI58nOVOHU0bu4djkV1WqFQioTu7dlZagQUzkQbu5Su5FlLZG7SeChkMPTSw42JwOIvwE3fT58tRnw0OdByukg4Q2i2D2hBXfttsVIJJAHBkIRFQnvqlXhW7cOvKpUAmsnmTNBPA7uZCcgJT8NyXlpuJV1DzH+UfBz94XeqEfn2LaiskfiT+FK+g1hO1udg2DPQOg5A3RGvUhBDLRai6c2PMyNWpQyqX2gTMolMhg48fPaMKIOgjz94S33goE3ItwrBBX8IuAmkdu4eTYv3wDNyzdw5XYQhEN4gx76rGToMhKgS0+APiMRiioNwcjk0KXb5i4uuHKsZJZJBwqi84onY1r/qPAxRV/19IHMPxxS3xAoKjcwKZpytwcWSjegZW+wLH2bSovMzExcvny5SKUTgCh2xLMMKZ6PiA4dOiAuLg6LFy/GoUOHkJKSAoZhEBMTg06dOmHgwIGkdBKEi+TnanH62F38dyEZ6SkPg/tkpOXbWDezM1WoVDUYFWODcOtaOiLK+8PX3wNu6mxok+8jsmUjhEQFIjDEC+4eMuGDkLLnL9w6c8K5DjEMZH5+cAsOgmdMDHxqVIdvrRqQBwaWWYQ8gigKlV6NPG0B9EY9NAYtKgdGi47//u9y3Ml+OGjWGnSIDTK5a9sqk/6iupbKpFqvFpUNsiqr0quhkLnDXepmE/ymTUxT1AipAh83U1qPYM8ABHj42XU5rRNWHXXCqjt59QThOkadGtqkG9Al34QuLR76rGQYCpQw5mXZRAVn3TygqGrf5bnElkk79VmpHDK/EHDqfEjcPYX1kKynL6Se/pB4+0PqHQipT5ApuI6DdZFSL79i940omszMTFy6dMkm2Jg9pRMADHzhE+LPCqR4OqBJkya4du1akeUiIyOdKgeY8nN++umn+PTTT0vavWeae/fuCYvxK1So8Li7QzxhqFU6nDkej//OJyMlKceut1Jaiq3iyTCm9Z5dXq0N5GcjccWfUP5zAYa8fHgBiOlUHf7RtlGnPaKiwLqZUoRYI/X2hjwwAB4R5eBdpTK8a9SAR7lwSL28SNF8wnnW3zObr+zGpdRrSMpNQaY6G/XDa6NiQHkwAKL9o0QBb8K9Q0WKp0rvmjIplDVoYfnUNYtqgAp+EQhSBMBLpkCIV5DDwDMVAyqgYsCT/Ts86zLzPMIb9TCq8pB/5Ri0SddMCmZuBjhVHpxdZafLSIRXrRftHtM74z0pkUHqHSC4sZpzREp9gyELjIC3wudBJFd307pJskg+8ThSOkNDQ1GtWjW74wPryM7P6giCFE/iiSMnJ0fIlUYQgGn9zN1bmTj81w3E38kCZyx8QKDMVIHjeJSL9IV/kCf8AxSQu5led57ebshNVCL79FkY1Q8HzXnXb8C/fj2btuR+fpAHBkCvzIE8wB/u4WHwrBANr6pVoIiMgDww0CalCPHk8zS+Z3ieR7YmB0k5ybicdh0+7t7wcfNGvq4AHSu1EqX4uJ0VjwupV4TtPJ3JI4AHkK8rgJ/7w4jI5ayifKoND58LlV4DX4uy1YIqoV3FFghSBEDCsIj0CUO14MrwkHnYRG+N8Y9CjH9UqVz7k8DTKDOECU6rBqctAM8Zoc9KNkWCVeXCqCkAABT8dwT6zKRita3LSAQsgvIwrASs3B2MzA067zAwPAO4eSKwXHlIvPxNAXZ8AiH1DoTELxgSeeFR0SXu5A33NJGRkYHLly+7pHQCgJtRDblBJWzLOI3dck87pHgSBPHEYjRwuHzuPo4fvI2U+7lFlmdYIKqCP2rVj0TdhhGQye2/4hQVysOjfBTyr10X9uVdte+5IA/wR5X/jYJbUBBkPj5gadBJPALMOQYtmX1sIY4mnBa2qwZVQu3QagCAAp0KPu4Pg+VYp4zI1xU8/FsrVjwjfMIQ4hloUiZZCaJ8wtGgXG14yNwR4OEnaqd+udqoX66sspQSRMkxqvOgTbkNXfJtaFNuQZt8GwZlKjxi6sK3WQ9oEm3f9azCB3BB8ZR4B0IeHAlZUBTkQZGQB0dCHlgOrNwNjIVV/64kVJisCKpTp1Suj3iyyczMdFnpBAB/aT4ich8GY5PAcUqcpxlSPIknjurVq9sddBHPF5fP3sfurZeRn2vr4moJwzIIDfdGtdqheKFxFHx8FdDn5iF12zYY8gsQ/fabNnWkCgX86tQWFE+pjzc8Y6Ltti9xc4NP1aolvh7iyeJJe8+odCqcSb4MvVEPmUSGLLUSL1dpI3JztU5xkad9uK45T1dQuOKpLYBC5g4vuafIMgoALco3QovyjUrzcp5JnjSZIUy5IzX3b0Bz7zK0929Al5EATmV/klKXkQCJwn5kc4nCNicyALDuXpD6BkHqHw55cBQ8omvDLTQarJvCbnlrSGaeP2JjY8FxHFJTTUGlwsLCULVq1SJlICAoAPGyh5MfcsmzKTOkeBJPHOTG9PzCcTzSU/Lg6+8BubvUsdLJACGh3qhWJwwNmlWAt49pbUTejZu4vngHMg4fAW8wgJFKEdGrO2Q+toOKwBbNoc3IRPCLreD7Qh1KY/Cc8aS8Z/be+ge7bh5EvDIJPHjE+EehQTmTZSRbrUSoRRqOcO9QUV2RFdPibwCIDaqI12t1Q7h3KPw9fBHlE26TZ5NwjSdFZp5ntKl3UXDtBLSJV6FNuweuIMfpusa8LFHaDzMMGMgCy0EeVhGygDDIgyvALbwS3MpVhsTDcc5kZyCZef5gGAbVqlUT/nZG6QQARWQoFMEPFU93N3khpZ9eSPEkCOKxYzAYkZyYi6R72dBo9Iis4I/KVYMRFOqFjNSHVh3/QAVeaBSF2vUj4BdomnHmdDqk7TuA+9vjUHDrtqhd3mBAyu6/ENXnNZtzesVEI/Z/o8r2wggCAMdzUGpykZafgWi/SLjLHgaRUBu0uKdMFLazVErh70yVWPE0r8WUS2Twd/eFv4cvqgdXhrfc0ybabDnvULxWs0sZXRFBPBp4ngenzoMhJwOG3AzkXTwA1TUno4xbw7DgtCrIAyMgUfiANacYUXibFNK2tt4xBFEcrJVP4iGkeBIE8VgwGIw4ezweWq1R2DaTnJiD6EqBaNIqBnHrL6JCpQA0fbEiqtQIBcuaXuKa1FTc374DaX/vg1GlsnsOAEiO24nIV3uCobyZxCOC53kk56fhUupVHLx7AhzPoV54LQCAh8wdFfwihbKxgTGiujnaPOiNBsgkUmSps0XHKgZUwK9dv0KAwn6aEYJ4GjHkZUObcgu6lNvQJt+GPisJ4W99Dc3tczDkZYLTP/R8cdbFFawUbqHRkIdXhFtYJbiFV4QsKBKsVA5ExJbRlRDPG4W5UZPCaR9SPIknjtzcXHAcB5Zl4WPHRZJ4usnP0+DIvls4dzIBWo0Bvv4eqNsoUlTGaORwPyEHdRpGIjzSF+Wi/AAAPMch88S/uL95K3L/u2KndQtYFoqoSAS1agWQGy1hRVm+Z47E/4s5xxcL2zKJDC+E1QTDMEjNzxApntH+UZCwEhg5I1iGRYCHH0I9g1AlKNrGiimXyBDkGVCqfSWch75NJceQlwVt8i1o79+EJuk69OnxMBYobcvlpkOXdd9mv8TTz7ZRVgKJpy9k/mGQh0TDPao6PKJrOVy3+SghmXl2SUtLw71791CnTh24lUJk+zRZJg5UvSds+3EMOpe41ScPUjyJJ467d+8KUeDqUBS4Z4a05Fwc2nMDVy+lgOMeRnzLyVYjL1cjrNMEAF8/D3j5uEEmk6BclB90OTm4v2Ub0vbuh16pLPQ8Eg8PeFWuhMAWzRHQsAHcgoPK6pKIp5iSvmcKdAXI0eYjLT8Dfu4+iLZIG1ItuLKorN6oh1KTC38PX6QVZIhmyeUSGd5r+CZCvYIQ418ebtJnc13PswB9m5yH53kYHyiZmqRr0CbdgC79Hjh1ftGVAejTE8C6KcBpxd4sjFQGWVAUWLk75CHl4VYuFu5R1SD1CzFZM58wSGaeTdLS0nDlyhXwPI/z5//P3n3Hx3GX+QP/zMz2Xa1Wq967LcmyJPcaJ06cXkhCCoQktMAPDo4DDg7uKFfg6BxwQOhcKAHSSE8gidNc4h5LtiTL6r1L2+uU3x+KVhpLstV2Z8vzfr38suY7RY/sR7P77HxLPerq6qDRrCz/xmwixOGZGcPd7MUnVoxVVHgSQsJGkiS0nxvBgVfa0Ns1ueBx/d02VK7PRlqGCXlFKUhOmVrXbPJ0Awaeehr2hjOQBGHB8wEAFgtUBfkoveF6JFdVQJ08/+yFhCyHJEnosffj7cFGHO45iV57P25auw9qTo1MY5qs8EwzWJGdlIFB50iobepJZy4yjGkQJBEqZqbr9+XF2yP6sxASDpIkQvQ4Ibht8A20Yez5B5d9Lf9QB3Q5ZQi8U3iyGv3U7LLmNJg3XA3OmAyGpeETJPJmF50A4PF4cPr0aWzYsGFFk0m5HAzSh0pD27xmcR/SxBoqPEnUycrKgiAI4GhMXszigwLOnOrHgVdaYZvwXvRYS6oBVbU52Lq7CDr91E178vRpdP76/+Dt7bvouYxaDWNJMXQbaqGrWAtdVhbSsrNX7ecg8Wup9xkv78MXX/omBEkMtY26x5FjzsKYZwK8KEA1643w+swK+IJ+VGeuRU5SJnbkb0KOOXO+S5MYQa9NUx/A8I7RqTUyB9thrNoFwTUJ3jEGwW2HJArvHCcCrAoQ+UVdl1HroM0qhiarBNrsEujyKgBJgjotH6rkdLBaQ0yOmaOciS/Dw8Nobp47zMdisUClWllJxQ/bAMwsmaX3iQseG8uo8CRRJyMj49IHkajk9wVx5I1OnDjcBbdr4cWPGQbIzkvG1suKsa42B5xqagymu6cHHT//FRyNTRf9PmpLMlK2bEbmNVfDVFwElqasJ0s0331GEAWMeycx5p6EO+jBltza0D6DWo+1aaVoGm0NtY28U3gKkohxz4RsBtr7at+ND298T0y+WSbzS7TXJkmSELQNw9fTjMBwJ4LjffAPdkD0OkPHsAYzWI0OvHNCdi7DsOBMFgiOsbkX5lTgjClQJaVAnV4Ay7abobZmx+UTzETLmXi2UNGZm5uLsrKyFd/rk0R5ScZdopNXrKLCkxCyKs6e6sdLzzTB5Vx4XIJKzaKwJBU79paguDQNzDsz1PonJtD1m4cwdugwIEnzn8yyMJUUI/PqfUi7Yg9UOt38xxGyBO6AB/VDzTja9zbeHjyLdRlrUJxSAACozlgL/aylT+qy18kKz1HPBDKMqcgwpsGokc+2SWM1SSyRJAnB8X74eprg6zuPwEgnghODkIIXH2cWGOqAsXLnnMITADhTCgS3HSqTBVxSKtSpudBml0KTVQx1knWquyxHHxqS6BfuohMANKy8JIvXjyyp8CSErIjAi+BULNpaRhcsOvUGNcorM7HlsiLk5CWHbtJBtxs9f/gThl9+BRI/f5cszqBH6vZtyLn1XTAWFoTt5yCJ6RfHH8aRvlOh7SHnaKjwHHaNysZu1mWtwyvtB1CXvQ4VqaWoy14Hk9YY8ZgJWSkx4IXgskFw2zH++sMIDLRB4hfupbIQ/2A7zFtulLWxGj04kwUp2aVT4zJNVrB6ExhaAojEoKGhIZw7d25Oe15eHkpLS1etV4sgyn8/xDj9faHCkxCybEMDDrSfG0HN5jzsu6kSLWeH4PfNFJDF5Wmo2ZSLNVWZ0BvlT4AEvx9nPv+v8Pb3z3ttRq1GxhWXo/AD90Ntojf3ZPmCAo9RzziGnCMoSy2GWWsK7duQvU5WeA67xyBKIliGxaBrRFZ4Flpy8eMbv0bdZ0nMkCQJvH0EUtAPSRQRGOmC4LZDDPhCx4hu+5KLTlZngja7BNrsMqiS02EoqQVntIAzWsBqqDcKiQ+RKjoBQG/NAIZmtiUuPku0+PypSEw7e/ZsaPrx6upqpcMh8xB4Ea3NIxgasAMAmusHsXFHAa68vgIvPnkWZRXpuPLGSmTlLLxuGavRILmuZm7hybJI2VCH4o98CPpFThREOUMuNO6ZxPH+erzeeRieoA+7C7cCAAxqA8zpplDO6CEfV8aLPPy8HzVZlchNypLto4IzscXCfYZ3TiAw3DW1TuZAK/yDbRA9DhjKNiF5+y0ITg7POYczpSA4Pv8HgADAqDTgklJhKNsIXX4ltNklUCVnyH4fVEaaRXw+sZAzZH6RLDoBQJ1iBuAObTNcfL7eUOFJoo4oiqE/JPp43H40vj0It3umW63HE0Br0wg27iiANd2IkjVpl7wpMwyD7JtuxOSxE/CPjgIMg6Q15Si47x4kV1cv6aZOOUNmOz3YhG+8+ePQNgMGASEIDafGoHMYFemloXwxqPWoSCuFTqVFTVYlKtPKUZpaqGD0JFpF231G8Lnh62qAt7sJ/qEOBMf7ZRP/zOYbaEWKYf7ikDOlhL5mVFqoktOgTs2FJrsEurxKaDOLwOqM9MHLMkRbzpDFGRwcREtLy5z2/Px8lJSUhOV3gdUYMbvwlOJwsi2ACk8ShXQ6HTiOW9F6SCQ8jh3sxFuvd6B6Yw44Tj7+gOVYsAyD0rXpsnZnaxtYtQrGoqI519NnZyF97x5MHDmG/Hveg9RtW8GwSx/XQDmTmCRJwqTPDl7gkWFKC7WvSSuGilWBf2cpBwkShl2jyE/Owbh3EgEhKMuZ/7jys2DjdDwNWT1K3mckSYR/sAOe1hPwD7QiMNoLwTkBYIHJ2C4gehyAIB9Hz7AcOKNlatKfzCLoCqqgySwCSxNjrRp6bYo9o6OjES86AYDTyYcUMWx8lmjx+VORmLZmzRqlQyAXEAQRzz5Sj4aTU92x2ppHsGZdJhiGgUrFYU1VBjKy5d1qvYOD6P7Dwxg/9BaSKtZi/bf+e84Nm2EY5N52GwreczeYFaxzRjmTOARRwMmBs3i98zCKUwogQYJFZ8Y1ZXtCxxjUeqzPrMDbg2dDbUOuUWzMrkZ2UgYgSZQzZMkinTOi34vAWC+C4/3gnRPw9TbD2/72sq7FGswQ/B7oC6rAGZPBGVPA6o004U+Y0X0m9lgsFphMJrhcrlBbQUEBiouLw/rUf8gh7wbvl4Jh+15KosKTEHJRTocPf/71MQz1O0JtwwNOmC16lFdmYl1dNvQG+SfkEydPofnr3wTe6V7kPNeCiRMnkbpl85zrqwz68P4AJG48dOpRHOg+BmdgqjuSKIkosRbC5nPAFXDDpJn5xHhrbi3Oj7VjY856lKUWY3tuHVIMFoUiJ+TSppc0YbUGeDtOg7ePQZr1RJNLsi7uQpwaupwyaHPKoM0phzanbM6YTELI/NRqNWpra1FfXw+XyxWRohMA/KJ8gi9xoaXlYhwVnoSQBXW1jeGx352E1zP3kzeeF7Fhaz441dxPzE0lJeB0OggeT6it89e/hXXjhhU92SSJIygEoWJVshd7m88RKjoBoN85jBLr1HjMAccw1qSVhPZdVrQNlxfvgCpOx8mQ+CCJAnw9TXCfPwZPyzHwjjHkfuSHCNpH5xzLGS0AwwLS7PGCDLikFGjS8qHNKYOusBq6gkqwtD4mIcs2XXyOjIwgJycnIh/aiMELlpSLz7qTCk9CyFySJOH1v7Xg4P42XPihG8My2LyzENfdum7Bm7EmxYLUXTsx8vIrU+eo1dBnZYH3eqE2meY9h5AR1xjaxrsgSCKG3WPYV7obFt1MF+6teXU43Hty5nj3GIJCECn65DkFpobeeJMoJQb9U4Vm60l4O96G6HXJ9vv7mqEyWsC7bbJ2huWgSc8Ho9ZCm10KXUEl9EU14PRJEYyekMSgVquRm5sbse8X6B8GkDnz/YPxOSEVFZ4k6vT390MQBHAcF9FfejLF6w7gL789jt6uyTn7tDoV9l63Flt2F4FhGPAuF1QLFJJZ114N26lT0KanI2XLZmRcvidsRSflTOzyBn040H0Uh3pO4NxoG6z6FOwt2QkA6HcMyQrPuux1oUmD8s3ZKEstwt7iHchOylzyJ9KUM2SpVpIzgscBV9NhuJsOwdd/HhD5BY91txyDZdft4N02MJwamtRcqNNyoTKnwbrn7pX+GCSC6D4T3cbHx5GSkgJ2GZMarja9JP/wlKUnnoRExvj4eGjdK7pRR5bHHcBDPz2MsWHXnH0pqQbsu6kSFeuzIHi96PzNQxg7cBAbfvxD6DIz5hxvLCxA8QMfgrG4GLrMjGXNVrtYlDOxa3/HIfz+9OOh7XHvJHxBH3RqHfodQ1iXMTM5h0Gtx6d3fBhFKfnIMKau6PtSzpClWmrOBCaH4TrzOjwtRxEY6cFi+87xjlFo0vLAGZOhTskCQ93FYxbdZ6JXf38/WltbkZaWhqqqKsWLT60YACfMjPPkLhjzGS+o8CSEAACcdh/++Muj8xadZZXpuOH29UhO0WPw+RfR8/CfQ+M323/2c6z7j6/OOYfVaJC2c0fY4yaxQ5IkBIQgtLOWa9hbvAOPnHkG/lkvuAPvjN10+F2hInTa1ry6SIZMyJJIAo+gbQRjz/8Mvt6mRZ+nySqBcc1WGNduhTq9AAzDgDOYL30iIWTJ+vr60NbWBgAYGxtDU1OT4sVnisqOAvvMzLYcqPAkJCLKy8shSRLNwBdBTrsPD/30MCbHPbJ2lZrF3uvWYtueErha2/D2V34Cb1+f7Bjb2/UYe+sI0nZsj2TIMpQz0c0V8GDAMYTOyV5oOHWoKy0AGDUGXF60HS+1vwkAULEcdGodtudtQFZSRtjGalLOkKVaKGfEgBfB8UEEJ/oRnByGJAqQLplWDFSWDJiqdsK88VqoktMvdQKJQXSfiT6zi85pY2NjGBsbQ0bG3N5bkZLEaQD4Qtvx2s+BCk8SdfR6Wl4jkjzuAP74iyNzik6zRYc779+E7Pxk9PzxYQw89QwkQZh7AZaFveGMooUn5Ux0GnGN4elzL+H1riOoy6pCoSUPADDptSNFnxw67ro1V2DCa8OVJTuxPqMCWrU27LFRzpClms6ZqcmBjsPffx6mmivgajw451h1ai78PRc88WQ5qK050Beth2ndbmizS8Fw9DYsntF9JrrMV3QCQHFxsaJFZyKhOx4hCc424YHD7pO1WdOMuO9j26GHHw3//AW4OzrmPVefl4uC970Xqdu2RiJUEkMePfscnmh8IbQOYdt4FwqSc8EwDFrHO2VdZvPM2fiXyz6uUKSEXJrgdcLTehLu88fg7TgNKegHABirdoEBI1tvE5ha+oTRGgCBhyajEPrSDTBW7YImNQcMo/xEJoQkmt7eXrS3t89pLy4uRmFhoQIRJSYqPAlJUJIkobt9HFm5ybj/4zvw8K+OwuMKIDXdiPf/ww5wbhvqv/RVBMbH55zLGY3Ie/dtyL7lJnBqWraCzFVkyZO9GZ/02THhtSHVkAKbzw5REsHSG3ASxQLj/XDWvwpP2ykEx/ouWD9zirezHpw5FbxjLNTGgIHako70Gz8OXX4VVCZLBKMmhFxooaKzpKQEBQUFCkSUuKjwJFHH7XaHxkQYjUalw4lLkijhfNMwBvvtGB5woG5rPj7wiZ149pF63H7vRmBsEA3//l/gHY4551o2bcSaz3wK6qToWTuOckY5kiShY7IHqXoLLLO6z27KWY90gxWjnolQW0AIYE/hVmSa0hUf80Q5Qy4kSRJ8vc1wnXkd3s4G8PbRS57jbjmG1Cvvg+C2Q23NgtqaA7U1G2wEuouT6Ef3GeX19PSgY55eW9FWdPpgQ+FkY2g7oInPccFUeJKo097eHpp+vKamRulw4o4kSTh3dgjDg1NFpdcbRP2JPtRtyccHPrkTjqYmnP3aNyF4vbLzWJ0WxR/+ILKuuVqJsC+KcibyJEnCoZ4T8Aa9mPQ5YNVbcGXJztBTTI7lcG355Xii6UXsLd6JvcU7QmM8owHlDAGm8tjTcgTOxoPwdTdC9DoXdyLDQldQCePa7dBkl0CbW07LnpA56D6jrFgpOgHAFuQwmVwZ2pYYmtWWEBLjJElC27mRUNE5zesJwunwgeluQcu3vwcxIL/hqZKSUPUfX0FSWWkkwyVRqmOiB78++We0TXRhY/Z6lFgLMOG1oXOyF6XWmbEy15TuwdWle6CftRwKIUqTJAmCaxKB0R4ERnthf+spCG7bpc9jVQimlUDMqcTavbfScieERLGFis7S0lLk5+crENHFuYN6tKXVhbZ1wbk9zuIBFZ4k6qSlpUEQBHAcfXq82p7+y2m4XQHkFlhCbSzLoKo2B2LT22j93x9D4uUz12pSrVj3tf+EITcnwtEuHuVM5DzR+AIePftcaPxm40gL8pOzoebUODN8DvnJOaElUHRRXHBSziQewetCYLgTgdFeCLOebKrT8xcsPBmVBtrsUhjWbIUrfS00GgM4jqOikywK3WeU0d3djc7Ozjnt0Vp0AkBAki59UBygwpNEnZyc6C1wYtn+55vRcKIfAMAHBRSUWMFxLNbV5SBw/CA6fvUbQJRPnqHLzkL1N74GrdWqRMiLRjkTOWvSSmSTBvmFAM6NtWNn/iZszKkO27qbq41yJjEEbSNwNx2Ef6gDlp3vhvfCJU4AaNIL4Os6E9pmdUbo8ithqNgJU+X20HhNS6SCJnGD7jORFwgE0HfBeuMAUFZWhry86BnucSGjJjGW3qHCk5AEcOxgJw69OjOjW3f7BARewk131cDz6ovo+dNf5pxjKCxA9Te+BrXJFMlQSZQRRREsOzP77PrMCmzKWY+TA1Nv1M1aE2oyK3BN2R5wNMaNRAHeZYO7+RBcjQfh7z8fak/ecSsYloMkynt1sDojtDnlUKfmwLTuMuiKa2U5TwiJHRqNBrW1taivr0cwGAQQ/UUnAGhZeUkWn1MLUeFJSNzr65rES8/M/ZS/sNQK13OPYfDZ5+fsS1q7BlX/+VWoaPHrhOXn/Wgd70SXrQ/XlO6BRqUJ7buv9na0jHXgloqrcX3ZFdDSDJ5EYWLQD+fbr8B55nUEhrvmXfrEc+4oNJlFCIxNPQ3hdEZo0gugTi9AymV3KT7TMiFkdZhMplDxWVhYGPVFJwCIovz+I8Xp/YgKT0LimM8bxKMPnYAoyMcO1GzMRUH7qxjc/+qcc5LralH5pS+C02jm7CPxr98xhF+e+BMACesy1gIAzo21oyZrZra9HHMWfnbzN6BVUY4QZXna6+E4+SK8XQ2Qgv6LHutqOoismivAag3QpBeAS7JSsUlInDKZTNi6dSvUMbLWOAP5nAgCExtxLxUVniTqnDt3DjzPQ6VSoaKiQulwYpYkSXjiD6fgcsrfjBWWWrGmZz9Gjrw155zUnTuw5p8/DVYVW7cGypmVc/ndeKzxebzU9gYESQTLsCi05MGkMaJ1vBOl1kIYNYbQ8bFedFLOxK6gbQT2Y8/Bfe4IBOf4JY9n9SYYK3bAVLULamsONKm5y/q+lDNkqShnlBUrRScQv11rLxRb7y5JQggEAggGgxDFuV2lyOIdeaMD7S3yBdCTzFpU972MycaGOcdn7LsKZZ/4GJgYHNtEObNyroAbL7W/CeGdLoqiJOLM8DnsyN8ECRJG3eOywjPWUc7EFkkUEJwYxMSrf4Cn7SRwiRkgGU4NY+UOmKp2Q19SA2YVJr2inCFLRTkTPpIkoaurCyzLorCw8NInRDtV7BTJK0GFJ4k6KpUKkiRBFWNP3aJJf/ckXnn+nKyN4xisG3sLvp4Lik6GQdb116HkIx+KyaIToJxZDVlJGbi+7Ao8d35/qG3MPYEUXTK25dXBrEtSMLrVRzkTGwS3Hf6hDgRGuiEG/ZAE/qJFp9qaDeO63UjedD04Y/KqxkI5Q5aKciY8JElCZ2cnenp6Qm2xXnyyUbz82Gqi3wQSdaqqqpQOIaZ5PQE89vuTkET5m7OtuwqR/sbrcM9qYzgO2Tdej6IP3B+zRSdAObNU3qAPTaOtKLMWIlk3sx7h7euux+tdR+Dn/bi2/HJcUbQDBZbldUuMdpQz0UsM+CDxAbhbjoG/oCutOqMQ3s4G2eRBrNYIQ/kmmLfcCF1OWdjiopwhS0U5s/rmKzo7OzvBMAwKCgoUjGxlnD4ngOheum41UOFJSByRRAlP/ek0HDafrL2oLBVX3FAJcfcXcfZLX4VvcAiMWo28O25H3rtvA0OLWyeEQccInj+/H1aDBbwowBv0YXfhltB+k8aIT23/EHLMmcgwpioYKUk0kiTB39cCx+lX4G4+jOz3/ScEt23OcaxaC7U1G8HJIehy1yBpwz4Y110GlpbyISTuzVd0Toul8ZzzCUq8bPvigwliFxWehMSRQ6+1o7V5RNaWmWPGzXfXQK3mgNRUlH3qH9H+4M+Qf9cdSLtsN83qmAB8QR+ePvcynj73EniRx56ibcgwpmHAOYwxzwTSDDOfstZl0yf0JHJ45yRcZ9+As34/guMDoXbX2TegL1oP/3CX7HiVORXWq94PbU4pVEZLZIMlhChGkiR0dHSgt7d3zr61a9ciOztbgahWzzwrQMUlKjwJiRNdbWN47UX5uE6jSYN7HtiKpOSZsQPmyrWo+fY3oDIaIx0iUUBQCOJzf/86RtwzXRYbhppxVcnUhw5NI63YU7RNwQhJohGFIJz1r8F1ej/8Qx3zvuNynT2A5M03wD/cBVajhyazENrMEnCG+BprTAi5tHgvOgEgKAWVDiEiqPAkUWd4eBiCIIDjOGRmZiodTswYHnTKu2YwwG3v2ygrOgGAYZi4KzopZxam5tTYV3oZ/tTwVKjN5nOgx96PvcU7UZVRrlxwCqKciTzeMYrJg0/A3XQIot9z0WNFvwdB5wSS1l8OlSUDDKP8GHTKGbJUlDMrJ0kS2tvb0dfXN2dfRUUFsrKyFIhq9Wm52F6ibLGo8CRRZ3h4GMFgEGq1mm7UiyBJEtpbRlG5PgvpmSb89eG34XEFUJfpQ1Hx6s7qGK0oZ2ZIkgRBFKDiZm7vN6/dh7d6T6JzshcMGNRlVeGemluRa46PF+zloJyJDEmS4O0+C9uhJ+DrbrxkfzK1NRtJtVfBVHMFVKaUCEW5OJQzZKkoZ1YmUYpOANCKApjZk6bFad9bKjwJiXFD/Q70dU9ieMCBDdsK8JHPXIYX//v3sB58CfW9h1D5lS9Bl56mdJgkAnxBH04NnkVQmBrHOT1+l2M5fHzL/fjLmafxvtrbkJ+co3CkJBF4e5ow+uxPwNuGL34gq4KpejeSaq+CLr+Sxp0TQhKq6AQAq2oSRZODoW0OAQB3KRdQmFDhSaJOcXExRFEEG8PLe0SK1xNA27mpyYSCQQFnTvUjtf0w8s+/BADwdPfg9D9+GhVf/DwsdbVKhhpWiZ4zkiThr00vYtQ9AavBAgDonOxBiXVmXbOilDx8cc8nFIow+iR6zoST4LbD13cOvr4W8PbRBY9TJafDVLUb5m03xcREQZQzZKkoZ5ZHkiS0tbWhv79/zr7Kysq4fHpsNpoAZmZFAi5OU4YKTxJ1kpJo8ojFkCQJ55tGIAgz3TFcYzY4XnwNhtnHCQKYGJ9m/FISOWdG3eP4+bE/4szIOejVOlxTugdqTo36oWZkmTJg0OiVDjEqJXLOhIMkieAnh+EfbEPgndlpGbUW6vR8BEe6Zw5kOejy1sKy/V0wlG9WKNrloZwhS0U5szzt7e0JVXQCQHJ5AUy9Y6FtnVarYDThQ4UnITGI5wV0tIxhctwta88pToP5vTej99EnILin9uW/924kr6MlMuJRn30Q//bKt+Hj/QAAb9CHM8PnsDFnPViGhSvoocKThI3gccJZvx+QJGhzyuDtaZpzjDa7DMGRbrA6IwzlW2DZeTs0abkKREsIiRVmsxkMw0CSZqZMjOeiM5FQ4UlIDHr5mSacONyD0rVpyM5PBsMw0OnUKK/OgaouH+bqarT96MfQ5eQg99ZblA6XhEmuOQtl1iKcHWkJtXVM9mB3wRbsK7sMOlV8fmJKlOUbaIPj5ItwNx6CJATBag3IfeD7wDyFpyo5HSlXvA9JG66GipZCIYQsQkZGBgCgqWnqnlJVVRVqI7GNCk8Sdfx+PyRJAsMw0MZpV4OVaHx7AMcPTXVdazs3CrvNi/KqTBSVpUKl4gAASWWlqPnetyHxPJgEGFuSKDkjSRIkSGDfWVqCYRj8vy3vw+f+9nX4hQBS9Mm4vfJ6XFO2hyZouYREyZnVIgR9cJ74G1xNhxAY6pDtE/0eeDtOQ2VKAe+aBACwKg20OWXQ5pSD1ejmu2TMoZwhS0U5s3wZGRmhf7tEKDonVXY05s9MpGRiOVyvYDzhQoUniTotLS2h6cdramqUDieqjI248Oxj9bK28RE31lQBmdlmWTun1QIJ8kKXCDnjCrhxauAsUg0pWJexJtSeaUrHPTW3otvej/tr301daxcpEXJmNQRGujF56Al4Wk9ACvoXPM5x8m9Ivf5jAABNVgm0mYVguPgaW045Q5aKcmZlEqlr7Yjbjx4+P7RtRFDBaMKHCk9CYkQwIODx351EwC/I2ssq01GzOQ8MS0+44lFACOIPp5+AXq2DilVhxD2OfHM2zLqZbovXr9mrYIQk3oiiCPe5t+A4+gz8A+0ApIUPZlUwVe2EedN10OSUQZ+3ZuFjCSFkFkmS4Ha7YTKZlA5FcU67GnmddaFtXutSLpgwosKTRB2LxQJBEMBxnNKhRA1JkvDcYw0YGXLK2pMEO6yTLqSmblQosugQrzkz7BrFN9/8KQacw8gzZ2N7/kaIkoiTA2dwRfEO6k67AvGaMysh+L2wH30aztOvQnCOX/RYLikV5o3XIKluH1QmS2QCVBjlDFkqypmFSZKE8+fPY3h4GNXV1bBarUqHpCj/yCQAS2hb57vIB34xjApPEnUKCgqUDiHqvPV6O86ckk8trmWCsNo7wfa2oqH/JCq//K/QJuiNOx5zpn6oCf9z+FfwBqfW9epzDKLfMYhcczZcAQ/cQQ9MGqPCUcaueMyZ5RL9HvgH2jD+2h8RGGy/6LHq1FyYt94Ic90+MGxivZmmnCFLRTkzP0mS0NLSgqGhIQDA2bNnE774NF0wkkHFU+FJCFFAV/sYXn2hRdbGMkD6ZCtSvMPQ8y64211o+q//xoYffl+hKMlqyzSlz+nh+PZgI3YVbEFd9jpo4mz8HIksSZIgOMbgG2hFcKwPkiRBk144f+HJqWAorkXyjluhL6ClmQghy3dh0QlMde9vbGzE9u3boY7zdccXouM0su147c9EhSchUcznDeLJh09DFOUVSIarE7mOFpgCNgAAw3Eo+ciHFYiQhEuWKR0f3XIPfvTWbwEA2aYMfHDj3ajLpjf+ZPkkUYAY8MPdfAi8c0K2jzOngjOlQJiemVafBNP6y2HZeRtURosC0RJC4sl8RScwNUN7ZWVlwhadACCK8lJTitPSkwpPQqKUJEl45pF6OO0+WXs6Y8fa4UNQiTMznuXecTuS11FBEm92FWzBmaFzCIo8Htj0XujV8bEsBYk8MeiH68wbsB15GtYr7gFEYc4xDMNAm1OO4OQgzJtvQFLdVWATrDstISQ8JEnCuXPnMDw8LGtnGAbr1q1DWlqaQpFFB5VJ3s1YiNNeTVR4kqjT1tYGnuehUqlQVlamdDiKOfJmJ86dkX8qmGwAqhqegQp8qM1YXIT899wV6fCiSiznTEAIQsOpIUoiWsbaUZJSCK1qpsvNRzbfA47e/K+6WM6ZpRC8TjhO/h2OEy9AcNsBALa3nkbajR8Hf/5Y6DiG5aDNLIZ547UJM1nQUiVKzpDVQzkz5WJFZ3V1NVJTUxWKLHroM1OBNndom1XRE09CIsLj8YTWvUpUvZ0T2P9cs6xNp1dhffsTsqKT0ahR/tl/AsuykQ4xqsRqzrSNd+GHb/0ad627CSIkjLjHMeqewO7CLWCZqf9TKjrDI1ZzZrECI92YPPgEPG0nIQXlvSYCQ+0QPQ6wWsM7TznLoMksBqtOjHV/lyvec4asPsqZqaKzubkZIyMjsnYqOuVYTgNgpvBEnM5aT4UnIVEm4Ofx+B9Oycd1MsBGsRlat3xMVu6t74KRZs2LOaIk4rmW/fhzw1MQJBG/OPEn7CvdDaPGgCHXKM6NtqEqg9ZDJEvn7W7E5Jt/ga+nGRdbf9PTehwpl90NVm8EwyT2B1eEkPBYqOhkWRbr1q2jonMWzpwKYDK0LV0w2VC8oMKTRJ2amhqlQ1CMJEnweoK4+qZKPPtYA4KBqXFYG4o56F86KDvWUFiI/LvvVCLMqBNrOdMw1Iw/1v81tB0Ugzja9zauKN4BlmHRPNqGopR8GNR6BaOMb7GWMxcjSRLc547AduhxBIa7LnqsvqQWlu23Qle0ntaBXaJ4yhkSGYmcMxcrOhN96ZT5jDnk3ZB5iV/gyNhGhSchUaS7YwJdbWMoq8jAA5/ejcd/dxIGHYvUN38pe3bBajQo++THwaroVzgW1WZVYXfhVhzsnjXGjmEQFIJI0Sdje/5GKjrJJUmiAMfbr8D+1lPg7SMLH8iwMFXtQvL2d0GbVRy5AAkhCUmSJDQ1NWF0dFTWTkXnwtxBr2ybl0SFIgkvetdKSJSYHPegu20cANB2bgQFxVZ86FO70PDvX0fAJ78hZV1/HZLWlCsRJlkFDMPgI5vei7bxTgy7xnBb1bVYn1GFce8EtubVQaeisXZkYZIkgbePYOiRbyI41rvwgSwHQ+lGpFxxD7QZ1CWfEBIZw8PDVHQukSTEZ6F5ISo8CYkCfh+P5oZBSLOea/Z2TUI10I7AubOyY40lxSi8/32RDpGskM1rh1mbFJoISq/W4dM7HoAr4EZNViUkSYIEKTSpECEXkiQRwbF++PpawDvHoUpOn7fwZNRaGCt3ImXP3VAnpysQKSEkkWVmZsLlcqGvrw/AVNG5fv16pKSkKBxZ9PINDgOYuV+rA/FZiFLhSaLO2NgYRFEEy7IJsa6TJEpobhhEICDvz19UasXIt38ga2M1Gqz9/Gepi+0FojVnTvQ3IMuUjkHXCLome1GZXo7qzLWh/SXWmadQDMOAidMFo6NRtObMfCSBh3+oA/7+8xB8M7MeajKL4OtuhMT7AQCsPgmmmitg2XUHVHqTUuHGrVjKGRIdEjVnGIZBaWkpAGBgYICKzkXQBeWTwTELzw0X0+jdK4k6AwMDoenHE+FG/fQj9QgGeaRnJoXaUtOM4BoOwz8sH7eVefVV0OfkRDrEqBdtORMUgvhj/ZN4sfU1pBusuKxoG1iGxbmxNuSas5CiT1Y6xIQXbTkzH/9gB2xHnoJlx63wdTdC5AOy/QyngjanDMHJIZg3XoPkbTfTkihhFAs5Q6JLIufMdPGZk5MDg8GgdDhRT3fBA854/RiaCk9CFNRwohcNJ6a6ojgKfChekwaDQYPS4iQ0fPdR2bHqZDMK7r1HiTDJEoy6x/G9g79Ap22qC+SoZwLNo21Yl7EGoiThWN9p7CvdTetzknlJkgRvZwPsR56Ct7MBAMCo1EiqvhzeXvnavpzOCOve90GTXQqWo5dzQkh0YRiGis5FsnDjKJwYDG1zCAC4Q7mAwoReqUjUyc/PD3VNiWc+XxB/f2bmjWR/jw0upx8f+MQO9D30awhe+YRCubffBhXdwOcVTTljUOvhCrhlbc2jrcg1ZyHNkIICCz2xjgbRlDMAIApBON9+Bc7T+xEY7pTtc509AMuO28AwLCRJhMqUAm3uGmjS88HQBxgRE205Q6JfvOeMKIpobW1FQUEB9HqaiX0lTJwKLHyhbRUEBaMJHyo8SdRJlHEALzx+Bl63vOtcxfosqByjGH3zgKzdUJCPnJtvjGR4MSWacsaoMeCfdnwYX331+xAlEWpWjU0567EhqwrrMyugU+uUDpEgenJGDPphO/wkHCdfhOh1LXCQAGf9qzBW7ABnSobKnE5rcCogWnKGxI54zhlRFNHY2Ijx8XFMTEygrq6Ois8V4C6YWDBe53ygwpMQBfR0jKPx9ICsLSXNgKtvqsTZf/0SIM7q7M8wKP7Ih8Fw9GQjGnkCXgw4h1GWWhRqW5NWgvesvwVvdB3BZ3Y8gJykTKioKySZJVRwnngRom+BghMAZ7TAvOVGmDdeA44mDCKERIHZRScA+P1+nD59mopPckn0ToiQCBNFEc89fgbSrBnLGAa45a5aTB4/DmfLednxKZs3wlKzPsJRkkuRJAmdk72oH2pCUOSRpDUi0zQzFfotFVfj+vK90Ko0CkZJos1iC061NRvJ298F0/rLwVIOEUKihCiKOHv2LCYmJmTtPM8jEAhQ4UkuigpPEnUEYaZfOxeHT/mOHejC2LD8DWdVbQ4Kiiw48Y3fytpZrRYlH/lwJMOLSZHOGUEQ8L3Dv4BOpUV2UiaAqaVTrinbAzWnBgCwDEtFZxSLdM5IooDJg4/DcfyFixacKksGUi67G6bqy2j8ZpSJ99cmsvriLWcWKjo5jkNNTQ2Sk2nG9uUKwolsR1toW1TH53oqVHiSqNPY2BiafrympkbpcFZVMMDjwCutsjadXoUb3l2N3sefQGBsTLYvc9+V0GVmRjLEmBTJnOEFHj8++hBODpwBy7DYU7gNaUYr3EEvmkfbUJNVGdbvT1ZHpHJGkkQEhrvh62mEu+XYgkWnypKJlMvuhLH68ridiCTWxfNrEwmPeMoZKjrDyy6I8GgsoW2Bo8mFCCErdOCVNng9QVnb7n3l4AJe9D/xlKxdnZJCy6dEmQAfwHcP/Rz1Q1OzEYuSiEM9x3F58Q5syF6HivQyhSMk0UKSJAQnBuHtbIDgsQMAdAWVCI50A5j5JJsKTkJItBMEAWfPnsXk5KSsneM41NbWwmw2KxRZ/HD4TWjM2Rja1gUdCkYTPlR4kqiTlJQEnuehUsVXevq8QZx8q1vWlpJqwPY9xeh+6PcQ/X7Zvvy77qDlUxYpUjmj4lRI1slfYAVJRJ45C1tya8P6vcnqCmfOiHwA7saDCNpHZe2cPgnqjEIER7qmCs7dd8K4ngrOWBGvr00kfOIhZ6jojAy/yCsdQkTE7m8CiVvFxcVKhxAWB/fPfdq576ZKsCyLgnvvAWcwYPDZ58G7XDCWFCPrumsUijT2RCpnWIbFx7bcB3fAg5MDZ6BVafG5Xf8PtdS9NuaEI2eCE4OYeP1h6Ms2LzgRvmndLqi23kQFZwyK19cmEj6xnjMLFZ0qlQo1NTVUdK4irSYxJmWiwpOQCLBPenH0gHxR+MqaLFTWZAMAOI0GBe+5CxlXXYnuh36H7JtvAkNvSqOCJEmyNRNVLIfP7HgA/3vk/3Br5bWyZVRIYhLcdkweeBSOt18GRAH+/lZkv+8/EbS/ETpGZbRAX1wDVUoWrcFJCIl6VHRGlpGTT0YYr68SVHgSEgGHXm2DwM+szcmyDK68oWLOcbr0NKz9/D9HMjRyEZIk4e3Bs9CptKhMLw8VDBqVBp/b/f8Ujo4oTfB74TjxAmyHn4QU8IbaeccY3OePQpOWB945AX3RemgyCqngJITEBEEQcObMGdhsNlm7SqVCbW0tkpKSlAksjkkXTGIbn3PaUuFJSNgF/DwaTvbL2jbtKEBqOi0GH806J3pg9zvRNjE1Ljcg8KjNqqTigUAUBdgPPwX7kach+t3zHuM49RJyP/RdsBotLYtCCIl5VHSGlyTpZNsCG5/LsVHhSaJOV1dXaDB+UVGR0uGsmFrD4b6PbcPJwz04e7ofAi9i516a/XQ1rXbOHO+vxw8O/wq55mxszqkBwzA4P94BURKwMWf9ygMmiltuzjgbD2Ly1T+Ad4zNu5/h1DBvvRGWHbeB09HkYPEk3l6bSPjFas5wHIf169eHnnpS0Rl+bNx2rpWjwpNEHYfDEVr3Kh60No+ADwrYeWUprrqxAn3dkzBqREwcPwHrls1KhxcXVjNnXus4jJ+f+CMkSUK3rQ8aTo2azEqwDIMMY9oqREuiwVJzxtd3HmN//xUCQx0LHMHAVHM5rJe/Fyoz5Uk8irfXJhJ+sZwz08Vnc3MzCgsLqegMNyYx5vWgwpOQMPJ5gxjqt0MUJYwMOaFScaiqzUbnbx7CyP5XYSovQ8n/+wiSyukJaDSY9Nrx21OPQJo12KJ1vBOp+hTcXnUd8pKzFYyOKEFw2zH6/IPwtJ2cOwjnHer0AmTc8o/QZpVEODpCCAkfjuNQXV2tdBgJgTUkRmFPhSeJOlVVVXNmEo1Vfd2TEMWZN6uiKIF1T2D09anZLl2tbWj43BeQd+e7UXjvPUqFGfNWK2dS9Mn4zM4H8J2DP4coTU0GVZtVhZvX7kNRSv5qhEqixGJyxtt5BsNPfAei3zPvfs6YDMue9yCpbh8tjZIA4um1iURGLOQMz/NgGAYcR2PRleTxOgFYlA4j7KjwJFEnlhdano0PChjss8vasvPM6Pv1g5AEYaaRYWCuropwdPFlNXNmY856/MPW+/GTow/hXRXX4J6aW6P6TQNZnkvljH+4C97us/POLMiotTBvvh4pl90FVq0NT4Ak6sTLaxOJnGjPGZ7n0dDQAJZlsX79eio+FeQTA7JtmtWWELIkY6NuCMLMEioMwyC3IAWDuXlwtrZB9PoAAJbaGqTU1SkUZWKTJAktYx0oSM6BYdbizXuKtiHPnIUSa6GC0RElSAIPT/vb8A91ACwLQ/lmuM++ObWTYWGs3IHUaz4EldGiaJyEELIS00Wnw+EAAJw5c4aKTxJ2VHgSEiZ/f6oRGi2H9CwTVCoOqWlGGIwalH7sI8i59WZ0/+4PsJ2uR8nHPqJ0qAlJkiScHWlB82gbOia7cXnRdhg1M7OQUtGZeASvE+6mw+DdtlCbOiULmswiSDyP9Fv/CToax0kIiXEXFp0AYLPZ0NLSgqoq6oGlhIDAKx1CRFDhSaKOzWYLjYmwWCxKh7MsAz2T6G4fBwC0nxtFepYJJbfNDNDXZ2Wh4gufR8BuhyY5Wakw48ZSc8bhd+Hbbz6IEmsBkrQmuAIevNb5Fq4o2g6T1hj+gInipnMGAFS99dDmrYXn/DGIAd+cYy2774ShfDNYjl4yE1k8vDaRyIrGnJmv6AQAtVqNwkL6wFUpaiYxnjTTqyiJOj09PaHpx6PlRr1Ub70xs+SCKEqYHPcgK8c85zgqOlfHUnJmzD2Br73xIww6R9DvHMIVxTtgUOvhDXox6bNT4Zkgenp6wDvGYGr6O1SjbdCX1CLl8numZq99B8NyMJRvhjazSLlASdSIh9cmElnRljM8z6O+vh5Op1PWrtFoUFtbC6ORXv+Uood8grp4nVmCCk9CVhkfEHC+aUTWVlyWBo0u9tbxijdDrlH856s/wLh3EgDgCXpxoPsYrijagd2FW5CfnKNwhCQSJEmEqus4jE2vgBGmJnTwdtTDWLkL2owi+Ee6wBnMMFXuBGekD4cIIbGPis7olsyOI882896RQ+AiR8cuKjxJ1MnOzoYoijG7PMHJIz0IBgRZ27Y9xQpFkxgWmzPJ2iRY9OZQ4QlMFSFr0kpQTMulJITA+ABGn38Qut7mOfsm9v8OeR/7EVitHrqCSjAcfVhEZsT6axOJvGjJmWAwiIaGhnmLzrq6OhgMhgXOJJFi1mmhFm2hbTUVnoRERnp6utIhrEjDiT7ZdopVh8Dzf4HvvXdBl5GhUFTxbbE5o1fr8K97Pomv7v8eBpzDyDVn4d8u+yTSTalhjpAoTRIFTB58DLZDTwLi3EkcOFMK0q7/f1AZU6AqTlEgQhLtYv21iUReNOQMFZ2xwbKmCMaB06FtnTY+l+qiwpOQVeSweTE0IF+7M1caweirr2H09TeQsmkjCu55D0wl9AQ0UnxBH3RqXWjbrDXhy1d8Cr97+3F8dPM9SNKaFIyORIJ/qAMjT/4AwYmBefcn1V4J674PgNNRVzNCSPwIBoOor6+Hy+WStVPRGX1YFQtm1oNxJk47VlDhScgqOn6oC9KsVX9ZloG18ZWpDVHE5PETEHw+rP/6fyoTYIIZcY/jYPcx1GZVoXTW8ihpBiv+eddHFYyMRIIk8Jh4/U+wH30WkMQ5+1XmNKTd+A8wlNQqEB0hhIQPFZ0kGlHhScgqaqoflG2n6nmoPRc8Ab3l5kiGlLB6bP04MdAAXhRwcuAMBFHAmjRagzFR+AbbMPLkD8BPDs27X5dfifSb/xHqlMwIR0YIIeF37ty5OUWnVqtFbW0tFZ1RyM25MZQ+83qlj9Plu+LzpyIx7cyZM6Hpx9evX690OIs2NuzC5LhH1pY+2iTb1ufnIWXLpkiGlRAuzJnG4fP45oGfoDarCoWWPADA6aEmmDQG5JizFI6WhNv4q3+E/chTkHU/eAerT0LKZXeiR5OLoc5+qPtGYuo+Q5QTq69NRDlK5kxZWRlcLhf8fj+AqaKzrq4Oer0+onGQxRkMuPBWUlJoO1nk8QHlwgkbKjxJ1JEkKfQnljSclE8qpNUwSGuvl7VlX38dGCZeV2dSzuyc6Zrsw/cO/wIBIYjj/fUQRBEl1gLkmbORlUSTO8UzSZIQGGxHYKhjnqKTgb6kFmk3/gPU5lRIDQ2QJCHm7jNEObH62kSUo2TO6PV61NXV4fTp0wBARWeUs49rUNa0O7TNa10XOTp2UeFJoo5er4dKpYJaHTtLGUiihDOn+mVtefwA1FIwtK0ymZB59b5Ih5YQpnPGI/nwjTd/DHdg5snzqcEzyEnKwPa8DWDjdbQ+geBzw3P+OIK2YWhyyxEY7YHgmlo2hzUkI2XP3TBvvBrMOzkQi/cZoizKGbJUSufMdPE5/TWJXr5JOwBLaFsTiM8PuKjwJFGnvLxc6RCWrLtjHPZJr6wttfu4fHv3TrAaesMSDtM5wws86txn8XrnW6F9a1JLcGf1TYqvo0bCQ5Ik+Afb4e2shyRMLZPCMCwM5VvgrN8PfXEN0q79yJyxnLF4nyHKopwhSxUNOUMFZ2zQOeXLfFHhSQhZUMNJ+dPOZHUAJv94aJvhOOTddmuEo0o8Kk6Fj2+5D1mmdPzlzDOoTC/Hv+35JLQqjdKhkVUm+j3wdp2BypwGT9vJOfs5kwUZN/8jjJXbwXD0gQ8hJD4FAgEMDQ0hPz+fhvLEMJNKJ9uO1/9JKjwJWSFJkjAy6JC1ZYw1yW4a5nVV0GXR7JmRwDAMbq+6HgXJOahIL6OiMw552k5i9IVfQHBNIuf9/w3OYIbgmfkdZLV6GMu3QG3NVjBKQggJr0AggNOnT8Pj8SAQCKC0tJSKz1gVnw8456DCk5AVcrsCeM+Ht8A+6UXDiT6cOdaFjIkW2TG5775Noejin58PoMfej1JroWwM5+ZcWpsx3ggeJ8Zf/i1cZ98MtY298DNk3vFFuM68AQkStFklMJTUgVHRU05CSPyaXXQCQF/f1ASHVHzGJkmdJNvm2fj80JwKTxJ1+vr6wPM8VCoV8vLylA7nkrpaxzA26kKyRY+6rQXIOPB7+ISZyW10OdlIqaMiKBz8fABvdB1Bz0gfTqvPoC69CuVFZUqHRcLAdfYAxl/5Pwhu+bq4gZEeuBoPQF9SC86YDHXK4pbLibX7DFEe5QxZqnDljN/vR319fajonDY2NobCwkKaACsGmfKzgR53aJtVx+eHB1R4kqgzMTERWvcq2l/c+aCA8bGpG4Xd5sVE/zgC/XaYZx2Tdtnu+U8mK3J2uAWPnn0OVenl8Hq9cLtcGHNOICktGVmmdKXDI6sk6BjH6DM/gq+7cd79+uJamKr3QG1Z2lI5sXSfIdGBcoYsVThyZqGiU6fToa6ujopOEtWo8CRkBWwTXtn6XO6OdqT4J0PbjFqNjCuvUCCy+DbiGsMPDv8azoAL495JlGnzwYKBiuFg0hiUDo+sAkmSYD/yDCbffAQS75+zn9UakHr1B2Gq2UvdygghCcHv9+P06dPweuWz6Ov1etTW1kKn0y1wJol2GmsegJlhWpIqPv8vqfAkUWfNmjWQJCkm3kxOTsx0i4AECG3NYCGGmozFRdBl0qRCq8kT8OKbB34KZ2BqceVR9zh8QR/2Fe3GNaV7YNIYFY6QrFTQNoLhx7+NwHDXvPsNa7Yg7bqPQpVkXfb3iKX7DIkOlDNkqVYzZy5WdNbV1UGr1a74exDl2Bwjsm1B4hc4MrZR4UmiTqx8YidJEibHZ7q6+EdHoZ4clB2Tum0rvUlZZe2T3RhxjcnaLPpk3Fh5Fcy6pAXOIrHC29OE4ce+BdHnnrOPUWlh3nIDrHvft+Lfq1i5z5DoQTlDlmq1coaKzvhnCzhl20FJUCiS8KIV1QlZpldfOIfDr7Wjv8eGgJ+Hq7UdhuDMkg4qcxJStmxWMML4tD6zAv955T8jRZcMAChIzsXXrvocFZ1xwHF6PwYf/s95i05NdilyPvDfSL3yXvowhxCSMHw+HxWdJG7QE09ClunMqX44bD44bD60t4wizeVBpjDzwpC0phyGvFwFI4xfZalF+ObVX8QvTzyMD296DwxqvdIhkRXy9bdi7IWfA5Ioa2c0eqRcdheSt91MBSchJKFMF50+n0/WbjAYUFtbS0VnHPEPjgJICW2rguLCB8cwKjxJ1HG5XKExESaTSelw5tXTMQ6HbdYLgQRY3X0IvS1mGKRfuRcMxykRXkKwGiz44p5PAIiNnCELC04MwttZD33pBnjbTobaVZZMZL/3K1Bbs1f9e1LOkKWinCFLtZKcoaIzsag8Adk2G591JxWeJPp0dHSEph+vqalROpx5HT/cLdtWSTyyna2hbV02rd25miRJQstYOzJMabDqLXP2x0LOkPn5h7vgOX8MkiRBm10KwW1DYLAd2vwKZN31b+B04ZksinKGLBXlDFmqleSM1+tFICAvRgwGA+rq6qDRaFYzTBIFDKz8QUW89u+hwpOQJRIFEe3nRmVtKe5eqGYNBE/ZUAuVkWZXXSkf74fT50KvYxBtE13AMJCfnI11GWth1tITh1gmiQK8nQ3w9Z+XtetLNkCXuxbWq+4Dq6I3V4SQxJSSkoLq6mqcOXMGkiRR0RnnkjCOHPt4aJtD4CJHxy4qPEnUSU9PhyiKYNnonPuqtXkEPm9Q1pZjn3nzzGq1SN21M9JhxR1REvHg0d+jYbgZW3PrkGacWjqj1z6IQecIblq7DxpuaqHsaM8ZIhcY7QEkzCk6AUCbVQTjmq1g2PB2U6ecIUtFOUOWaqU5Y7VaUV1djc7OTtTU1FDRGceSVCy0giu0rabCk5DIyM5e/fFcq+ntoz2ybY3og9U7ENo2FBbAWFQY6bDizhONL+BI3ykAwJvdR7AhuxrFKQVgAGzOqQkVnUD05wyZIgk8xl95CI6Tf0fm3f8GTXrBVBH6Dl3uGuhL6iIyiRDlDFkqyhmyVKuRM6mpqbBarTS5WpxTM/IPJ+L1f5s+tiNkCfiggM62cVmb1dUr+0WybKijbrYrdGrgDB5rfD60LUoSGobOISAEsD1/IwosNFtwrBG8Tgz+5etwnHgRkESMPvUDaNJywBmSwbAcjOVbYCjdQG+uCCEJRxQvPpMM3RdJvKDCk5AlOHOqH8GAfFHfXPu50NfqlBSkbt0S6bDiTkVaGTZkV4e2GYbBhzbehSuLdyI/OUfByMhyBEZ70f9/X4Sv60yoTfS5MfzE92FcuxVJNXuhzS5RMEJCCFGG1+vFsWPHMDIyonQohIQddbV9hyRJeO655/DEE0+gubkZHo8H6enp2LJlC973vvetygx2p06dwsMPP4yTJ09ibGwMWq0WhYWFuPLKK3HvvffCYrGs/AchYdXZOibbTjKwyMtPhqtjAhBFJJWXwlBYoFB08cOg0eMLuz+OP515Cs+cexnvr7sDV5XuVjossgzOswcw9sLPIQXlSwIwnBqWXe+GKsmqUGSEEKIsr9eL06dPw+/3o6mpCQCQkZGhcFRECQJ8SHP3zTRw8bmeChWemFor6Z/+6Z/w+uuvy9r7+/vR39+PZ599Fp/+9Kfx0Y9+dNnf4zvf+Q5+85vfyNqCwSAaGxvR2NiIv/zlL/jxj3+MDRs2LPt7xIvm5ubQ9OOVlZVKhxPC8wJam+WfSG7YXYraa2+Aq6ML/U89DeuWTWDV6gWuQC5GkiT4hQB0qqm1yViWxb21t2NzTi3Wpl38aVi05kwikyQJ4/t/B8fRZ+fs40wpyLzjC9DllisQ2RTKGbJUlDNkqS6WMx6PB/X19fD7/bLjOY5DampqpEMlCnOIHqgFb2g7EKd9UqnwBPClL30pVHSWlpbirrvuQlpaWqgg9Hg8+P73v4/MzEy8613vWvL1f/Ob34SKTrVajbvuugvr16+Hw+HAyy+/jOPHj2N0dBQf/ehH8de//hX5+fmr+ePFnGAwiGAweOkDI6y9ZQx+Hz/TwACbtk9NImQqKcLaz/4TpEuM0yALqx9qQp9jCFcUbYdJOzNGtiK99JLnRmvOJCrB78XwY9+Cr/vsnH3a7DJk3vEvUJmVfWNFOUOWinKGLNVCOePxeHD69Ok563QajUaYzeZIhUeiyKQvGY1Fd4W2dUEHblAwnnBJ+MLz0KFDeO655wAA27dvxy9/+UtotVNPXG666SbccccduOeee2Cz2fCNb3wDV111FUymxa8faLfb8ZOf/AQAkJycjD/84Q9Yu3ZtaP/999+PH/3oR/jZz34Gh8OBH/7wh/j+97+/ij9h7FG/88RQHWVPDpvqB2TbBcVWJCXrZG0MTbO/LEPOEZwf7wQAvNb5Fi4v3r6kdTqjNWcSUWCsH0N/+Tp4+9zxSrqiGmTd9UWwaq0CkclRzpClopwhSzVfzixUdJpMJtTW1lJ+JahAgjy4SPjC87e//S0AQKVS4etf/3qo6JxWWlqKr3zlK/jnf/5n2Gw2PPbYY/jgBz+46OsfOnQIHo8HAPDAAw/Iik5gatKUT33qU3j++efR09OD/fv3g+d5qFSJ+18TjV2Y+KCA843DsraqWppafzU4/W681P4mdKqpIt7L+/Bm1xFcV74XqkWu5RiNOZOI3G1vY+TJ70MKeOfsM1XvQdqNHwerio516ChnyFJRzpClmq977XxFZ1JSEmpqaqjoTGCJ8r4/oR/P2Gw2HD58GABw2WWXLdjF9YYbbgj1t//b3/62pO/R1zczULiiomLeY1iWRXX11AyeXq8Xk5OTS/oeJPzsNq/86SYDVNZQ4bkaHnr7UTzXsh/H+07Dz0+9GK9JLVl00Umig/348xh+7Jtzi05OBeu+DyD9lk9FTdFJCCGRRkUnuZgktV62Ha8L6CRGeb2AEydOhNZO2r59+4LHsSyLLVu24G9/+xvq6+tht9uRnJy8qO8xu1tub2/vgscNDEx14+Q4btHXJpHDsize//EdcLn8OPn8cThsXhi08XpbiJzm0VYc6D4GAOi292PQNYLLi3agzFqkbGBkSVwtRzH+0m/ntLP6JGTe/jnoi6rnOYsQQhKD2+1GfX39vEVnbW1twjztIiShn3i2traGvl6zZs1Fjy0rKwMwNVPj+fPnF/09Zi/D8sc//lE2e9m0Y8eOoaGhAQCwdetWaDT0VCDatDWP4PjhLnS1jUPTegpZhx7Gsfs+iHPf/T7cXd1KhxeTgkIQvzz+J1kbAwaXFW4BS2NlY4IkSfD2NCIw3AVd4TrZPnVqDnIf+B4VnYSQhEZFJ1kMQZQP9ePZ+HwCntDv7vr7+0Nf5+bmXvTYrKysec+7lOrqauzZswcA0NHRgXvvvRdHjhyB0+nE0NAQ/vSnP+ETn/gERFGEyWTC5z//+SX+FPFncHAQ/f39GBwcVDoUAIDL6YfbPfWBgdflx9A4D4FRQfT7MX7wMEbfeFPhCGMTx3K4fs1e6NUzXZjfW/MuVKSXLfla0ZYziUCSRHhaT8DbNTVzrTa/Cur0qeEK+uIa5H7ou1Cb05QM8aIoZ8hSUc6Qpero6MCbb76J8fFxWbvZbKaik8hwc0qy+OxVl9AZPzExEfo6JSXlosdaLJbQ1zabbUnf54c//CE++9nP4vXXX0dDQwPe//73zzlm48aN+PKXv4x169bNc4XEMjo6Glr3Kjtb+XGUg3320Nf+sTFwQS+0gifUZt22VYmwYh7LsLimbA8259bg/049ijH3BK4ru2JZ14q2nIl3ksDD3fwWAhMzMz0zDAND+RagbBNSrnhf1D+1ppwhS0U5Q5YiGAzi1KlTCAQC4DgOSUlJAKaKzpqaGio6SUKK7ncGYebz+UJfXzib7YVmd3+dfd5iGI1GfOtb3wo9+bwQwzAoLi6WFbckOoiCiJFBR2hb8HphUftDn0OpLckwlZYoE1ycsOot+OddH8VX93466osVAvCOMfj6zsmKTmCqm7RxzRakXnkf/T8SQhKeWq2G1WqVtVHRSRbCGhNjfpeEznye50NfX2pc5ez9s89bjBdeeAH/+q//Cp/Ph8zMTNx5550oLS2F2+3GgQMH8NJLL+GJJ57A3/72Nzz00EOycaFKaGtrQ2lpaejTOQDw+/1oaWkBMPX0t6CgYM4508vGXBj/2NhYaPKk/Px82dNlQRDQ2NgIYGq8Q3FxMUpKSiBJEhiGQVdXFxyOqcKvqqpKdrO22Wzo6ekBAGRnZyM9PV32fc+cOQNJkqDX61FeXi7b19fXF3rivWbNGuh0M909XS4XOjo6AABqzoRgUAjtMxQWwLLhvRCH+yC2tCEt1Qp21kx0g4ODGB0dBQCUlJTIJpfy+Xyh8cFWqxV5eXmymFpbW+H1esEwDNavXy/bNzo6GureVVBQIPuQgud5NDU1AZh6USsqKpKd29nZCafTCQBYt24dOG5mttjJycnQpFc5OTlIS5N3jZwee2wwGELjnKf19PSEnv6vXbtW9uGN0+lEZ+fUupyZmZnIzMwM7ZMkCW++fQgWLglarTY02/N0l9uBgQGMjY0BmFrOyGg0hs71er2hsdmpqamhLvLTOdPX14eGhgbZTNHTRkZGMDQ0BAAoKiqSLdIdDAbR3NwMYGq93cLCQtm57e3tcLvdAKa6z88urCYmJkKzV+fl5cneaIiiiLNnp7qiGo1GlJaWyq7b3d0Nu33qiXplZaVsVkOHw4Guri4AU139MzIyZOeePXsWoihCp9PNGaPe398f6tpVXl4OvX5mtjy324329nYAQFpaGnJycmTnnjt3DoFAACqVClVVVaF2SRLR98JvEGh4Bd4d9yPTYAbnm/rdZFgO6uINOD/uBsYbwn6PmG2594iSkhJ0dHRAkiS0trYu+x6Rnp4+5+lXc3Nz6MnYhcsp0D1iysXuEQDQ1NQEnueh0WjmzAi/nHvEtPPnz8Pn8y3rHiFJElQqFQwGAy5E94gpw8PDGB6eWnqsuLhYsfcRsyn5PiI1NRVGozE0KeX69euhUqnoHvGOeLtHrOR9xPj4CIC5PSmUukdM5+BqS+jCc/ZNIhgMXrT4nD0ofCmT/+zfvx+f+9znIAgCtm3bhgcffFB2E7nzzjtx8OBBfOITn4Db7cYDDzyA559/fs7NL5IEQQjN9jtNkiQEg8HQ/gvxPB/afyFRFEP7LrwugNC+6YJ+9r/P0NBQaL8kSQvGtNB1p98oXCzei1331ME+2MYDsKYZYU03IicvGazWDyE7G5qCAhRd8OI4+2e92HXn+/AiGAwiGAyCYeb261/JdVfz/2Y2QRAWjGn2dS/Ml25bHxomzsHIGbAuRf5CfqnrLpSH0zkz/X3ne+I2+7oXy+9I/hteLA8v9m84fV1RFGVvAKYt59/wwphmnycGfBh55n8RbDkKBoDuxKPg7vwyVGMdEP0emNbtBq9NQnCo8ZLXnU+4/g0vdo8wmUzgeV52zGpcdzrexfysdI+4eH7zPH/J3+Wl5vf0v+Fy7hHTP+N8//6Jfo+Y77pKvo9Y6LpKvI/Iy8tDYWEh0tLSQtehe8SUeLtHrOTf0CvKJx+dHbUS94j5/i9XQ0IXnrM/tfT7/YsuPC/VLXeaJEn45je/CUEQkJycjP/93/+VFVXTdu/ejc9//vP42te+Brvdjt/+9rf4whe+sISfZHVxHDfnF45hmNCnKPMlqEqlWnANKpZlQ/vm+0We3jffjX32dS+8kc6OaaHrSpI0b1yLua4kSRjud8PvE+Cw+dDVNg5uVxGKKtWyuBf6WS8W73w/q1qtBs/z875grOS64fq/4ThuwZhmX3d2vox5JvD2YCNYjoNb9OJtexOs42koTy1e1HUvlYdqtRqCIMz7s8y+7sXyO5L/hhfLw4X+DWdfVxTFeeNayb+hSqWCKIqheHnHGIYe/RYCw50zsfldcP39Z8i97z8BUQRnTIbg9yfcPeJS8dI9Yun3iNnXZRhmydele4T8upG4Ryx0XXofMXPd2RNUzo6X7hF0j5i+FnORyYSUuEeEa8gMI833kVWC+OpXv4pHHnkEAPDKK68gPz9/wWMfe+wxfPnLXwYAfO9738PNN998yes3NTXhtttuAwDcc889+Pd///cFjw0EAti6dSu8Xi9KS0vxwgsvLOVHWRGXyxXq/gJMdXeYr0BONL1dE/i/Hx+Wtd37sW0oKVfuaXQsOzVwFj966zdYn1mB/OSc0A1yZ8Em5Jlpoo5o5O1rwfBj34Locch3MCxSr/kwkjdfp0xghBASRZxOJxiGofdOZNn+8K1fonN0plu7SvDh3354h2LxhKs2SOgZIGb3Yb/U9OjTfboBzBnvsJDpftXApdcJ1Wg0oX7b02NBEpXP54PX613yJE6rrfFt+eQpWp0KRaWpCkUT23xBH35z8s/w8j4c6z+Ng93H4Ap4UJySvypFZ7TkTDxxvP0yBv/wlTlFJ6szIfu9X4n5opNyhiwV5QyZj9PpRH19Perr6+FyuWT7KGfIYrFxunzKhRK6q+3sAbqtra3YunXhZTGmByIzDDNngPli+P3+Sx4z/Vh7vsfhieT8+fOhQfdKTrTU0Tom284tsNBsncv06NnnMOqZWb5o2D0Gp9+Juqyqi5y1eNGSM/FAkkSMvfgrON9+ac4+dWoOsu76V6iti/vwLZpRzpClopwhF5ouOqfH3tXX16O2tjb0ZIhyhiyWkZMP94vXMjSh30Vv2LAh1K/56NGjCx4nCAKOHz8OAKioqJDNYnUxs2fgmp6RaiE8z4dmSVzsE1USPh53AOMj8k8uNadfw/kf/C8mjp+EuMSZjROZKIkY99pkbesy1uDjW+6Dmpt/vANRhuBzY+B3X5636NRklyHnA9+Ki6KTEEJW6sKiE5iarKW7u1vBqEisMkrjyHS2h/6kuzsvfVIMSugnnmazGdu3b8eBAwfw6quvYmBgYN6i7/nnnw9NmX399dcv+vrr16+HyWSCy+XC/v37MTg4uOCi008//XSoi8auXbuW8dPED6vVCp7nFV3nqrlhELNHPzOSiNThRowOeDH6+hvI2HcVyv/xHxSLL5awDIvP7HwAu/u34Dcn/wKn34WPbL4HGtXiZ4e+lGjImVgXGOvD4J/+C4JzfM4+bV4l0m/6ODidcZ4zYxPlDFkqyhkyzeFwoKGhYc4soykpKbKlPShnyGIl6zgYgjNDW9QIXOTo2JXwvwkf+MAHcODAAQSDQXz2s5/Fr3/9a9ng2ba2Nvz3f/83gKn1c+68885FX1uj0eDee+/Fz3/+c3g8Hnz605/Gz372szkLCp86dQrf+MY3AEzNMPX+979/FX6y2HXhulRKaGkclm3rAw7oBG9o27plU6RDinlbcmuxLmMNzo91Iicp89InLEE05EwsC04OY+APX4Xosct3MAySaq5E6jUfAqvRzX9yjKKcIUtFOUOAqaKzvr5+zvIUKSkpqK6ulg2Xopwhi2UtyYe+pzG0rVvC0o2xJOELz927d+Paa6/F3//+d7z99tt417vehfe+973Izs5GU1MT/vznP4cWfP2Xf/mXOUXj0aNHcf/99wMAtm7dij/84Q+y/R/72Mfw5ptvoqmpCadPn8YNN9yA2267DRUVFRAEAUeOHMHzzz8f+tTsS1/60pzFbElkiaKE3s4JWVuybyT0NafXw7JpY6TDijkBPgCH34U048zvjEGtR1326ozrJKuDd01i4A9fnlN0MioNrFfdD/Om6+admp8QQhLNUopOQpaC02vBzVqtkdPG5+tuwheeAPDtb38bbrcbBw8eRF9fH7773e/K9jMMg09+8pN4z3ves+Rr6/V6/OY3v8FnPvMZHDlyBJOTk/jtb3875zi1Wo1/+7d/w3vf+95l/xxkdfT32OD3ybvPpHpmZho2lhSDW2AtJjLj1OBZ9NoHsDatFOsy1oBj6QU52kgCD8/542DU8rWJWYMZmXd8Afr8igXOJISQxGK329HQ0DCn6LRarVi3bh0VnYQsAhWemCoOf/3rX+PZZ5/FU089hebmZjidTlgsFmzatAn3338/Nm1aftdKq9WKhx56CPv378czzzyD+vp6jI+PQ6PRIDc3F7t27cJ9991HTzqjRGuzvJutIWBHqmdmaZXkWpqZ7lJ67QPosU/9m50ba8eQaxQ78jciSUtrnEULSRTgbn4LvGsSxspd8LQcQXCsD6w+CTn3fQ2aNOoiRgghwMWLzurqaprxnqxYgPPDmzSzmoKoic8HHFR4voNhGNxyyy245ZZblnTetm3bZAusXuz6+/btw759+5YbYsJobW0NTT++nKVrVqqtaUS2ne7ugUoKTm2wLFK3L7zsDgEcfhcePPZ7rEktgVFjAAB4gl6o2PDdbpTOmVgjSSI8548jMDH14QDDsjBUbIe/pwmp+z6YEEUn5QxZKsqZxLSSopNyhizWgDiJpwtmettZ+QDerWA84UKFJ4k6Xq8XwWBwzmxxkeCwezE04JC1pbp7Q19r09NhoMkCLuqxs8+hfaIbXZO9qEwvx5rUEmzMq4ZeHb7JaZTMmVgjSRI850/APyKf8p9Ta5Fx22ehMqUoFFlkUc6QpaKcSTwrfdJJOUMWa3xYi3UnZ1bO4LWuixwdu6hvAIk6DMOE/kRaW7P8aadKDMgmFkpaWw6GxnEsqHOyFy+1vwkAECQRZ0dacH68A/nJ4V37UcmciSWSKEDwOsE75ZNnMSwH07rLEqboBChnyNJRziSegYGBOUVnamrqorvXUs6QxfK/M5HpNI6XFjgyttETTxJ11q9fr9j3HuqXP+20uvvAYuaXP+2yyyIdUkx55OyzkGYtgKrm1PjwxrvD/qKrZM7ECkkSMfrcgwiO9SHj3Z+Ht+0EeLcdDMPCVLULquR0pUOMKMoZslSUM4ln7dq1EAQBY2NTY+9SU1Oxbt26RY/ppJwhi6UalReeel98Fp70xJOQWS67uhz/8IXLcd1t65Ct9yHD3RPapzKZkLKxTrngYsAnt70f15TuAYOpQvP2yuuQm5ytcFREkiSM/e1XcJ15Hf7BNgw/+g3oSzdClZQKY9VOqK30f0QIIRdiWRZVVVVITU1dctFJyFIka4yy7Xh9Rk5PPAl5hyRKOPv2APiggPRMEyptxwFXZ2h/UsVasCr6lbkYk8aIBza/F1cU78CzLa/gloqrlQ4p4UmShIn9v4fz1EuhtsBIN4Yf/w5yPvgtsBzlNCGELIRlWaxbty70NSFk+eg3iJB32CY98PuCEAQRg90T6PQkIcDNTIhj2bhBweii2+zutQBQllqEz+x8AGouPqcDjyX2I0/DfvQZeSOrgvWK91LRSQgh77jwdWw2lmWp6CRhJTJ62bbAxuf7J3rXQaLO6OgoRFEEy7JIT4/cuLPR4ZkZxDz9/dAEPdAKvqkGhkHqjm0RiyWW2Lx2HOl7Gxuzq5FhSlMkBqVyJtrZjj2HiVf/IG9kWGTc9mkYypa/NnE8oJwhS0U5E78mJyfR1dWF6upqqNWr94afcoYsVlJ+LtDvDW0z6vj8oIMKTxJ1BgcHQ+teRepGLUkSxmcN7PYNDsEUmAxta9PSoLVaIxJLLBElEScGGuDwu/B61xEUp+SjNrMSGpUmonEokTPRzt1yFBOv/G5Oe/rNn4CpYocCEUUXyhmyVJQz8WlychJnzpyBKIpoaGhATU3NqhWflDNk0bj4LDQvlBg/JSGX4HL64fcFQ9uB8XEYAvbQtqm8TImwot6B7mMY99hC252TvWif7F74BBIRvoFWjDz1A0ASZe0pV9yDpPVXKBMUIYREmYmJiVDRCQBOpxMNDQ207iaJOLVFPsmfpNIqFEl40RNPEnUKCgogSVJE1716/vEz8HmDsKYZYNRzYBwTUIv+0H5LXW3EYokVo+5x/OL4w0jSGLEhpxpWvQVmrQlrUksiHosSOROtgrYRDP35a5D4oKxdX7oByTtuUyiq6EM5Q5aKcia+TExM4OzZs6Gic5pOpwO3Sut1U86QxfJ47LJtSRIWODK2UeFJoo7FYono9/N5g2htGoYkAT0dE1BxQIkozkxlzbJI2bwxojHFgt+9/Th4kcekz45XOw6h1FqIz+x4ABy7Oi/YSxHpnIlWgs+NwT9+FaJPvh6YJrMYme/+PE2OMQvlDFkqypn4sVDRmZGRgcrKylUrFClnyGKN+iZl234qPAmJT031g5g9mZ0gSEjxDoa2tenp0ND4TplTA2dwrP+0rC1Vn6LY5EIEkPggBv/0n+Dto7J2VXI6st7zZbDq+Oy2QwghSzE+Po7GxsawF52EkLno42+S8BpPD8i2DYILxuCs8Z2lJfRCdAGjxoBcc1ZoO0lrwse23KtgRIlNkkQMP/k/CAy2y9pZfRIy7/xXqEwWZQIjhJAoMj4+HpEnnYQslX9c/sST4xde3ieWUeFJog7P8wgGgxEZ3C8KIvq65b/sKc5ezH7pMa9fF/Y4Ys3atFJ895ov4Z6aW6Hh1Liv9naYtEbF4olkzkSj4MQQfD2NsjZGrUP6Lf8IbWahQlFFt0TPGbJ0lDOxbbrovHC9zszMzLAVnZQzZLGYSadsmxPis/CkrrYk6jQ1NYWmH6+pqQnr9+rtnkQwIO9Hn+VoC33NqFRI2UTjO+ej4lS4tfJaXFa4FVa9RdFYIpkz0UYSBfh6mmCqvRLuswcguG0Aq4J17/tgTPC1Oi8mkXOGLA/lTOy6WNFZUVERtiedlDNksZJUOtl2vD57p8KTJLTWphHZtpoRYA6Mh7Z1mRnQ0dpbIXafA0kak2ySmlRDioIRJTZJkuBpPQHeOQ5Wo4epZi/cLUdgLN8C8+brlA6PEEIUNzY2hsbGxogXnYQshUEYR5pr5qmnSvJf5OjYRYUniTpmsxk8z0OlCn969nS8U2RKErb0PQeN4JV9ymQsKwNDM4ECAHhRwBtdR8ExLCrTy1FkyYuaWVIjmTPRxNfTBP9wV2ibUalh3ngtzBuvAcNEx/9NtErUnCHLRzkTeyYmJuYtOrOysrB27dqwF52UM2SxzBoJSYGJ0LYKAQWjCR/6TSBRp6ioaFWv19MxgYIS+ay0kijh1z86iMG+qUmEjIFJmP1jsmNsugys2UJdFae1T3TBx099AndioAHnxtqwr2Q3NCqNwpGtfs7EAv9QJ7zdZ2VtDKdCUvUemsF2ERIxZ8jKUM7EHqPRCL1eD4/HE2qLVNEJUM6QxdMy8qXo4vWj43j9uQgBALz+9xY89NPDOPTqzLhNR1MzhoecoaITAEz+Cdl54/psnMy7EWfsKbLzEpXNa8fTzS9DEGfGw5o0xqgoOhMN75rE5MHHwepNsgKTAQPj2m3gjMkKRkcIIdFDq9WitrYWer0eQGSLTkLIXPTEk8Stno4JvPlSKwBg//PnAAD5wyfR+5dH4dp3P4CZT5fYCxbqFVg1AODga50oq8oG+/Yb6P79H5H/nrtQ8N67I/MDRJG/Nv8dJwbq0TR6HpXp5Si05KI6Y63SYSUc0e/F0CPfQGCoA4GRLqRe/UG4zx2B4HVBX7oBmrQ8pUMkhJCootVqUVdXh4GBARQVFVHRSYiCqPAkcaugxIqrbqwIFZ37nz+H0rFmFAFobRwEjDNv0gMqvezcFO8wIEm46qbKUNEJAL1/eRSW2hqYqyoj9WMobtJrx6sdBwEAnqAXJwcaIEoCrAaLsoElGEngMfzX7yEw1AEAcDe/BcFtR/q7Pg3BNQldTpnCERJCSHTSarUoLi5WOgxCFiQxQZh9M0O+WFa4yNGxiwpPEnU6OztDg/FX+kKRXyQvPtvTNkMCYNNnyY6z6zIgYWb6arXox1XbLCicPBMqOgGg8P57E6roBIAnm/6GgBAMbbMMi/vq7lAworlWM2eikSRJGH3hF/B2nJa1845xMCxHRecyxHvOkNVHORPdHA4HkpKSouqJJuUMWSynZEeapy+07dNETx6vJio8SdRxOp2hda9W4vW/t+DNl1px1Y0VsuKzI23znGN5TgeXJgVJgclQm+vIAXR3nAxtF95/L/LefduKYopFOwo2otveh+bRqXGye4t3Is+cdYmzImu1ciZaTb75CFwNr8raWH0Sst7zZahMFmWCinHxnjNk9VHORK+RkRE0NzcjIyMjqpZIoZwhizXmteBcyb2hbS3vxFUKxhMuVHiSuDR7fGfPQ79HgdCLqwD4vDwGzOXoTN045xybPktWeOo66yGCBQsRnMGAwedfwODzL4T2p+3eheIPfSDcP4riKtPL8R97P4v6oWY80fQC3r3ueqVDSiiOt1+G7eBjsjZGpUHW3f8GTWqOQlERQkh0GB4eRnNzc+hrhmFoAiESc3hRCs0vAgAiE58lWnz+VCSmrVu3bkXn//3pRjTVD0KrU8HvDaI7pRo9mLlmkJ1/Jtb21E3oTlm/4HUznZ0oHz8e2h4/fCQhCk8AYBgGddlVqMuuUjqUea00Z6KVu/Ukxl78hbyRYZBx22ehy12jTFBxIl5zhoQP5Uz0mV10ThsaGkJKSgoyMzMVimoG5QxZLClB1t6mwpNEHY7jLn3QAiRJQnPDIJx231QDwyCgMizqXIFVyz5tutCIqVBWeAYmJxF0OKA2m5cdbzSb9NqhV+ugU0X/mpAryZlo5Rtow8hfvwtcsPB5Uu1VMK7ZolBU8SMec4aEF+VMdJmv6ASA3NxcZGRkKBDRXJQzZLEsWqNsO16f11PhSeKK1x2E2xkIy7X9KgMCrBYa0Y/UnTtQ9IH74rboFCURR/vehifoRZm1CGvSSmKiAI0XwckhDP35a5D4oKxdl18Jy67bFYqKEEKiw9DQEM6dOzenPS8vD6WlpdTNlpAoRYUniSsGkwb/8IXL8cpzzWhuGFq162a4OlE2dgLm/Exkv++9MFVWIAAg4HCs2veIJv3OIYw6xgEA9f1NODvQgj35W2HWmhSOLDpotVpoteEpxAW3HYMP/wdEn0vWrs4oROq1H4Haonz3MUIIUQoVnSQeCaK8x51AYzwJiYzJyUmIogiWZZGSkrLk81NSjbjz/ZvR1T6Ol55qxNDA8otDk38ca0aPIlXlhuWum2DcvhUCy8Juty/7mtGu09GHF7pfQ74pG1puajxsksYI0cvD7ovOn9vr9Ya+1uv1Fzly5RiGgdlsDkvhKQb9GPzz18DbR2XtKksm0q75ELSZhav+PRPVSu8zJPFQzigv1opOyhmyWNwFJVm8jvmkwpNEnd7e3tD04yu5UReVpuKBz1yG+uO9eOHxegji4l+QNLwHpeOnkO1sAwMJktUKtq4GXp9v2fHEiue7XkWnqw9dzn7kGTJRYMzGWlOJrLiLNl1dXRAEARzHoaioKKzfy2BY3Jjh5Rh56ocIDHfK2lhjMqxX3Q9dAU1SsZpW6z5DEgfljLIGBwfR0tIypz0/Px8lJSVRV3QClDOEXCg+y2lC3sGyDLI4OwReuvTBs5SOn0SOsxUMps6TJibgb2wKR4hRpd3Zg07X1ALGIkT0eAYxGXAiXUsvmOEmeF3gzKlgVDOzLjNaA6yX3wPj2m1R+aaKEEIiIRaLTkKWgtUnKR1CRNATTxJ1cnJyQl1TVsPfjjiAJV5rOKkEOc42WVug6Ry066JzOZHV8vrQUdm2WW3CbQVXR/2LutVqhSRJUROnr7cZuvzKRR8vBrxwnX0DUsAHU+1VcDe+CYkPIGXnu5FUuzdqfq54str3GRL/KGeUMTAwgPPnz89pLygoQHFxcVTfHylnyGLxvB/AwisrxAsqPEnUSUtLW7VrvfrCOfR2Ti75vAl9DnwqI3S8O9TmP3ESxuuuBpsUv59KvbvwWrw+dAxvTzRChIQrMreFxnlGM3MUzS488eYjsB14FNa998Ky87ZLHi/yAbjOvAn3+ePwdZ2BtqAKptqrwHBqJG+7CQxL0/GHw2reZ0hioJyJvGAwiI6OjjntsVB0ApQzZPEcQQ+AmQkcl9ZPL3bQRzAkbvV0TODg/rZLHzgfhsFgUqm8TZJg//2fVh5YFLNozLi1YB8+VXk/dqTVYWNqfD/hXW2+3mbYDjwKAJh47Y+wHX7yosdLQhCuswfgOvcWfF1nAAD+niYwkJBy2R1gOPpskBCSuNRqNdavXy9bD7OwsDAmik5CyFxUeJK4ZU27+CQwuqATlcMHoQs6590/mFQ+5xMnobs7asZ6ipKEHz7ZhW8/0oEfPtkFUVq9z8dStSm4Ie8KcAw9bVsKXX4lrHvvDW1frPgU/V4IbjvcTYdCRScAGMo3I2XP3WBV0f+kmRBCwi05ORk1NTXgOA6FhYUoKiqiopPEHV4QlA4hIujjdBK3Th/vg0rDgQ/M/WXOcrRh7egRAIBNm44hcxmkC7o0ejVmTOhzkOodmGlkWQgjo0AUTDA6NOFH36hPtp2TqlvWtdqc3UjVWJCiTV6t8BLWdPfaidf+KPt7drdb3j6K/t/9GzQZhfB21ofa9aUbkX7zP4LVhHdJGEIIiSXJycnYsmULtFotFZ0kLokQlQ4hIqjwJFGnoaEhNP14TU3Nsq/DMJhbdEoi1o68hTznedh0GWDFIKrGDqNq7DDOZF6OkaQS2eH23bcgs/VF8F3dYHQ6JN3/PmjKLuiCq5D2AY98e9CzrMJz0m9Hj2sAPRhAmi4FpUmFMKpiq/CJ5HIqi3Gx4lPwujD4l69DcE7A65wInWMo24S0G/8BnN4094Jk1a3WfYYkDsoZZel0y/tgVUmUM2SxzGqjbDteP16hwpPEpZ6OCex/Xr7IdFqGEWMjbnSmboBbm4LB5DXY2flIaP/64TfQBh+6k2bGNSZnJSH5ygfgO3IMmup14JKjZxKb9sELCs8BDy6rti7pGoIoos3ZHdoe803CGXRjR/oGsHG6eHGkzFd8SqIAb2c9gmN9smP1RTXIvPMLNJEQISRh9ff3AwByc3MVjoSQyNPxY0jxzExoqZL8CkYTPlR4kqhjMBjA8zxUquWnZ0GJFXuuKcebL7Vi91WlMJl1cDv9OPBKGwIqA/osVdCJXqjEoOy8suGj0Bfm4dyEGWuqLVi7fmr9Sv2uHSv6mVabKElzCs+OQQ9ESQK7hG5Irw6/hTOTLSg25SNZPfWkrdCUG3NFp1arDT3xjCYXFp+Tb/x5zjGswYyM2z9LRWeErcZ9hiQWypnw6evrQ1vbzGSA8VJ8Us6QxUrWiLD4RkLbKgQUjCZ86DeBRJ2ysrJVuc4V165FSXk6CkqmngI++tAJ2X5NwAV2ngmrc489AesVNyN/Z/mqxBEOQxN+eP3y8QAev7ikcZ4BIYhT441w8R5MTjQiTWtBdfIa5OgzwxFyWGVnZysdwoIuLD5nYzR65H7o2+ASZOHoaLJa9xmSOChnwuPCorO1tRUMwyAnJ0fBqFYH5QxZrNTCXPR2z6xXq1XHZ4kWW481CFmi6aITAGwT8ieE+oBdtq2pq53Z9/qz8Lz2RniDW4ELx3eG2gfnb5/P8fEGuPiZ48f8NqTrrUt6YkoWR5u7Zt72nPu+BnVyRoSjIYSQ6NDb2ysrOqcFg8F5jiYkfqmTTVAbEfqjSYrPXlDxWU4TcgFJkjAx5pa1ZTvbZdvG66+BKjsLnhf/DgChvw17L49MkLM889Yw6jvmX+YFADz++afdfvHYKF6vn5h3HwDUliThlh2ZkCQJpybky8KUJxWiJqVieQGTBYlBP4Ye/ea8+7wdp6HNKo5wRIQQorze3l60t7fPaS8pKUFBQYECERFCwo0KT5IQHDYfAhcUa8aAbWZDowZrsYSKTCWLT0mS0NDhhN3NL/ncAC8hwC983plOJ27ZkQmGYfDR8rtxbKwBh0ZPwc17sDdr+0rCJgsY+P2XIQW88+6bb6kVQgiJdz09Pejo6JjTTkUnSVQSK4DVOkLbjDY+S7T4/KlITOvp6QlNFLNaL0BNT/wds9NdBR5aYaabKWs2h9YGU7r49PgFOL3hWUjY4RHg9vEw6lTQchpclrkZ29Jrcd7RhXxj9I6TvJTR0VGIogiWZZGenq50OCEjz/4EgSH5mysuyYqkun2wHXgUABWfSgnHfYbEN8qZ1ZFIRSflDFmsHmYUD691hbZTgyKuUzCecKHCk0Qdm80WWvdqNW7UjqZmdB44BaRtDbWZWZ9sjSTOmiI7Z77iU11UCHVx0YrjuRSjToV/uasYzx0dxZnOhbvbLlVNcRJu3JYOo07+a69h1ai2RO9ESovhdrtDL+7RUnhOvPEXuBpekzeyHFL3fRCmqp1gVZp51/kkkbHa9xkS/yhnVm6horO0tBT5+fkKRBRelDNksSZGNFhzem9oW9Isfs6OWEKFJ4l75qpKMBUbgLGZNoNPPg6Sm6dYmV186vddGZGic1qqWYP3X52L9gEP/npoCMOTy59WOzNFg9t3ZaE0xwAAsAUcECUJKZqZp7xkdU0e/itsBx+b026s2A5j5VSX5vnW+ZzdTggh8aS7uxudnZ1z2uO16CRkKXzeIDSBmYcgoihe5OjYRYUniTpr166FJEmrWhTd+ukb0Xe8CV5DGkaGnHA98rpsP5c1/xIihr2XR+xJ53xKcwz453cX49XT49h/ehxBfu7yLwtRqxhcVZeKK+tSwbJT/5aiJKLF0Ql30AMdp0W2IQPZ+nToOG24foSIiKY132yHn8Tkaw/PaVdZMmG98n4ws9ZIpeJTOeG4z5D4RjmzfIladFLOkMViBm0AZma51/uo8CQkIrTa1S+Cmk4PwsebYBBEZKWwGHEPyfarLlK4KFV0TmNZBvs2psGg5fDXQ8OLPu/mbRnYuW7Wp2eShB73ANzBqe4bPsGPTmcv9JwOWfrYLjzVarXSIQAAfL3N86/XqdLAsvsOqJPT5uybr/jU5VdAl18Z3mATXDjuMyS+Uc4sz0JFZ1lZGfLy8hSIKHIoZ8hiWdRG2Ta7+OcMMYXW8SRxT5IkeNwBBIMC7DYvepr7IDKz1kfiOHCZ0b+W4pmupY33vPD4+olz+EvX8xjyjkGUpu5oJrURGbrUVYsx0enyK5G8890AAHVmMVh9EgDAuHY7TJU7FzzPsvM2WPfeO/X1ZXdR0UkIiRvzfTCYCEUnIUuRKM/E6YkniXt+Hw9BmOmyELTZYRT8oW0uyQQ2Sp6YLWTCGURb/9IGmrf1ezDpCiLFpIYoSTg4egJu3otmRzu63H0oSyrEptRqsNQFaFVpMgthqNwJVVIqAAm8fQzJO94FVqO76HmWnbfRk05CSNzJyckBAJw/fx4AUF5eHlXDIwiJBiLkT8cFJj5LtPj8qUhMczqdoaUxkpKSVnw9j1s+MY/osIGTgqFtLjl5xd8j3E612rHUXhcSgJPn7di3MQ3N9jaM+MZD+7yCH2k6K5I1K//3jQZerzc0jkav14fvG0ki+Oe/jwkhCKfeiJwPfks2ZjMwMQB/f+s7RSfAanQwrt0CTUbhoi5PRWfkrPZ9hsQ/ypnly8nJgfROT5tEKjopZ8hiGXNygIGZ96uMmrvI0bGLCk8SdTo7O0PTj9fU1Kz4ei6nX7bNOMZlXRpUqdYVf49wkiQJx8/b592n07DYVpGMo+fs8AXmDkR/5WwfWg0vw6SWF2OZujRckbktLPEqYXh4OLScSlFRUfi+kX0Y0ngvJAB+GxAY6YE2c+r7iUIQ7ua3QocyKjUYTg1D2WaaWCIKrfZ9hsQ/ypmVSaSCcxrlDFksVqsGMOtBSZy+baAxniTutTYNw2H3QeCnCjPONirbr4qSdR8X0jXsxbgjOKc9L02Hz91RhJu3Z+JzdxQhL23uJAa8T4feUT+uzN6BuwqvR6FxqsvTnswt1MV2GdhR+fpzvp5GAABvH0VguAuid2pcLcOyYDgV9EXrwelNEY+TEEIiTZIk+Hw+pcMgJCapzfL3ohKnUSiS8KInniTqZGZmhp5erZQkSTj6Zif4d4pOrZZD6QU1nCo7a8XfJ5yOt8ifdmrVLC5bn4JrN6WBYRh0u/pRaMrFp24rwt9PjOHg2Un4gzNPP4WxXPS4B7AjfQPWp6zFoHcUGbrU0HnxwGKxhLozhRMzKp+Z0dvdCE16AQb//DWYN10L0/or4Otthuh1QZVkhTa3PKzxkOVbzfsMSQyUMwuTJAmdnZ3o7+9HTU0NkmNgCEskUM6QxQoG5b3zwMTntLZUeJKok5k5/5qay2Gf9IaKTgDw+wUYgo6ZA1gW6sxMCKv2HVffhjIzGrtdcPsEFGXqcc+V2bAmTX0S9urgW3ht+Ciuzt6FPZlbcP2WdGyrSMaPXmyE26YHVAFwqYPodPmwI30DACBbn443h4/j5cFD2Ju5DVdm71Dyx1sVFosl/N9EEucUnr7us/ANtAKiAMfxF+DrbkTazZ8Ey6nB6pNk4z9JdFnN+wxJDJQz85suOnt6egAADQ0NVHy+g3KGLNaAW94bzyfyCkUSXlR4krjW32OTbbMMYAxMhLY5oxGc0RDVhWd5rhGffXcRznS6sKPKAo6d6iLb7erHa8NHAQAvDx4CMNWF1mJSQ11xFOrBDHApw2A0fnQ63RAlCSzDhIpOgCXUcgABAABJREFUAHht+ChKkwri5slnWNmHwQS9sibR5wZ87tB2YKQbvu5GWLbdHOnoCCEk4iRJQkdHB3p7e0NtgiDgzJkz2LZtW9SssUwIiQ5UeJK4NtQv76aqY3mopJkyU5WUBNZkAvjo/mQp2ajG7uoUWVuhKRdXZ+8KFZHTf5ebi+AXfVBl9oSO9Yl+HBw5AS/vw8HRk6H2q7N3UdG5SBeO75yPrrAayVtvjEA0hBCirPmKzmmlpaVUdBKyBH6nC8DMsmusSF1tCYk5I0NO2bZOkK+FqbamgNVoor7wXMiezC0AICs+O5w98x57YuwMJmd1M57unkumsPXPg+07s/ABAe/C+wAADIJjfej58f+TtZqqdiF13wdWHB8hhEQLSZLQ3t6Ovr6+OfsqKiqQlRXdcycQEnWGxwHMPAhQBanwJCQimpqaQtOPV1VVrehaE2Nu2bbOOyHb1kT5xELzebH/DZy1tcratKwGfnFqGu5219xPnwHIik4tq8HRsXocHasPtVVb1uD63D1hiDj8ent7wfM8VCoV8vPzl34BSQLbdxaM13HpYxe+CAS3bU6r+9wRKjyj0GreZ0hioJyZQkXn4lHOkMUyq42y7Xhdd4AKTxJ1eJ4Hz/MrXvtQkiTYJ+VPqQzuEdm2rmAZRYqCJElCo60VjqBrRdfxi4FQoTqtydYas4WnIAgQRRGCsMzRugEP4F/Zv+lCeNckBI8DnMEcluuT5Vmt+wxJHJQzVHQuFeUMWSxNcAJm78zMtmrJf5GjYxcVniTqaDQasCwLlWpl6emw+8DPWlYEAEy+cdm2vrgYc1fIjF4ewQcXf6kun8vj5D1w814YVfqwXD+cVCoVGIZZ/pT1WiP4az4D7syLYPsbVy0uY8UOWK+6j4rOKLRa9xmSOBI9ZyRJQltbG/r7++fsq6yspBlc55HoOUMWL0UTRKp3ILStQuAiR8cu+k0gUaeiomJVrjPYa5NtswxgCkyGtjmjEZpUK3hRhMFgWJXvGW4GGPCFDR/Fc12vomGiZdWuW5NagZsKr0SqzrJq14ykNWvWrPwiBgNw1UcgDrVBOP4kMDn3zdViaTKLkXr1B6EvXLfyuEhYrNZ9hiSORM4ZKjqXJ5FzhiyNjpWXZPG6GBsVniRu2SbkTwaTktQouOYK+Pr74RsZAafXw2C1QhWIrU+VkpOT8anMD6FlvAN/aX4Wvc6BS5+0gPykHLyn8masTS1ZxQhjXPImSOUb4G8+CPdbT0BawrhPzmhByhXvRVLNXjAsLRhOCIl9kiShtbUVAwNzX2uo6CSELAUVniRujQ7LZ7QtWpuJsvdcG9qWRBEMy0Kn0114akzYYq7DpsIavN71Fh6ufwrOwOLHKJq1JtxTcyuuKNoBlo3Xz9VWaMdNsHHAxMv/t+hTknfeBnPdvjAGRQghkTUyMjKn6GQYBpWVlcjIyFAoKkJILFLkHafL5cJTTz2Fr371q3jggQdw55134umnnw7t/9nPfoY333xTidBIHBkdkhdi6ZlJsm0mDgoulmVxZckuFKcsbZKkYks+rizZRUXnJdiPPruk4x1LPJ4QQqJdRkaGbNIgKjoJWX0MI0AXdIX+aHn3pU+KQRF94imKIh588EE89NBDcLun/kElSQLDMJiYmFnm4uGHH8b4+Dhqa2vx3e9+d3nLI5CYNTAwAEEQwHEccnJylnUNSZLmPPFMzzKtRnhRx+a148zwuSWd0zB8DjavHRZ9cpiiiqzVyJkL+QbaIDjGlnQO7xiDb6ANupyyVYmBhE84cobEt0TNGYZhsHbtWkiShJGREVRVVSE9PV3psGJCouYMWTq7NIkcZ1to26eJz5mQI/a4IxAI4EMf+hB++tOfwuVyQZIkSNLcxVH9fj/Gxqbe7J0+fRp33nkn2tvbIxUmiQJjY2MYGRkJ5cFyeN1B+H28rO3CJ57x4s9nnoGEpS00LEHCI2fi5+ncauTMhcZf+u3yznt5eeeRyApHzpD4lsg5wzAMKioqsGHDBio6lyCRc4Ysjc2XhON5N4X+nEu7QumQwiJihee///u/48iRI5AkCTqdDnfffTe+9a1vzTlOkiTcc889UKvVYBgGNpsNn/70p8Hz/DxXJWR+LqcPs5fNYhjAnBybYzkvxua14/XOt5Z17qudh2Hz2lc5ovgQdE7A37+8WYP9fS0IOicufSAhhMQQhmFgNtPSUISEg19g4dClh/641ValQwqLiHS1bWhowJNPPgmGYVBeXo5f/OIXyM7OBgB88YtflB2r0+nw1a9+Fffffz8+/vGPo7OzE21tbXjuuedw6623RiJcorDS0tJQF+zlSssw4fNfuxZ+Hw+X0wfnhAsMG3/dFr5/6JdLfto5TYKE7x/6Jb627/OrHFXkrUbOzLaUCYXmPf+Vh5B522dXJRYSHqudMyT+xXvOSJKErq4u5OTkQKvVKh1OXIj3nCGrR0iQHIlI4fn4449PfTOVCj/5yU9CRefFFBUV4Sc/+QluueUWiKKIv/3tb1R4Jgij0bjiazjsPpw+3gsA4DgWtjdew8TX9kNjTYE2PR3WbVuR+66bV/x9lHS8rx4t4x0rukbLeAeO99VjS17tKkWljNXImWm8axLuc8t7ijzN3fwW+KsnoTKlrFJUZLWtZs6QxBDPOSNJElpaWjA0NISRkRHU1dVR8bkK4jlnyOpK1sjXk4/XMjQiXW2PHTsGhmGwZ88eFBQULPq80tJS7N27F5Ikobm5OYwRknjDB8XQ14Igwm+zQ+J5+EdG4Whsgqut7SJnx4Z+5xA4ZuFfYbPWBKveEvpjVBvm3Mg4hkW/cyi8gcYYx6mXwGpnvVlgGECtBas1gjNZwSXN/cMakwFu+nM8BqzOCFfDa4rETwghSzG76AQAr9eL+vp6+P1+hSMjJHGwF3k/F08i8sRzZGQEwNRCw0tVXl6OV155BZOTk6sdFoljPC/MbEgSRId8LKNuEU/do92tldeizFqI7x36JTxBr2zf2tSSebvQjrjH8eMj/4eWsXYY1Hp8btdHUZ1ZEamQo54k8PC0nYSuoBJJm2+E+8zrYE0WqIzJMNdeBVa38KfXkijAcfLvMFZshyopPsdmEELiiyRJOHfuHIaHh2XtXq8XbrebnnoSEiGCKC/JBIZTKJLwikjhOT17Lcct/R9xul+8Wq1e1ZhI9PJ6vaExEXq9flnX4PmZJ5682wNWCMr2G/LzVhRjtKjOrMD/XP9V/PjIQ+ie7IUr6AEAXFa0bd7jM4yp+I+9n8HL7QewNa8OVr0lgtGGz2rkDABMHnoCgcF2BAbb4e9vhfWaB6BOToXaknnRohMAGJZD8pYblv29SWStVs6QxBFvObNQ0ckwDKqrq2G10gdoKxVvOUPCh4O8zpGo8Fy+tLQ09PX1oW0Z3RsbGhpC1yCJobW1FcFgEGq1GjU1Ncu6Bh+ceeKpMhpR8sF7kYtRuDu74BscgrGkeLXCVZxVb8G/7/00eIHH20ONONB1DDvzNy14PMdyuK78isgFGAGrkTO+/vOwHXw8tC24bbC9+WfkffQHYNj4fAFIZKuRMySxxFPOTA9hmu6RNm266ExNTVUosvgSTzlDyGqISOG5efNm9Pb24tVXX8XExMSiP0VramrC4cOHwTAMNmzYEOYoSTw5d2YIbpcfGp0KWq0Khtw0ZK5fr3RYYaXiVNiSW4stubE9UZASxIAPI0//LyDNPCkHyyH9lk9R0UkIiSsLFZ0sy2LdunVUdBKiAOYSvariRUQKz5tuuglPPvkkfD4f/uVf/gUPPvggNBrNRc/p6enBJz/5SYiiCIZhcP3110ciVBIFUlNTIQjCsrpmA4DfF8Sxg12ytvSspFWILPqIkggGTMJP1b7SnBn726/ATw7K2lJ23wldTtlqhEei0EpzhiSeeMiZixWd1L129cVDzpDIWO7SeLEmIoXnrl27sGvXLhw6dAiHDh3C7bffjg984AOoqqoKHSOKIpxOJ1pbW/Hyyy/jkUcegdfrDT3tvPzyyyMRKokCubm5KzrfYfPNaUsy61Z0zWjVNdmH8+MdyDNnoyA5B2ZdfBbYl7KSnHE1vwXXmddlbdrcclh23b6yoEhUW+l9hiSeWM8ZSZLQ1NSE0dFRWTsVneET6zlDIsfmcwCYea8ar2VoRApPAPif//kf3H333ejq6kJ7ezu+8pWvAJgaTyBJEr73ve/he9/7Xuj46QmJMjIy8IMf/CBSYZI44LDLC0+VmoVOH5+TU/XaB+Dwu9A02oqm0VasSS1BXXbVpU8kAADeZcPo8w/K2hhOjfSbqYstISR+iKKI5uZmKjoJIYqK2KIxycnJePTRR7Fv3z5IkhT6A8zMXHth+4YNG/Doo48iMzMzUmGSOOC8oPDU6lTQ6iL2GUvE2LwODLvkbyLSDCkKRRN7JEnCyFM/gOT3yNpN6/dAbY395XYIIQS4eNG5fv16KjoJiQKCKF76oDgQ0XfjZrMZP/nJT9DQ0IDHH38cx44dQ3d3d6jQBID09HRs2bIFt956K/bs2RPJ8EicsE/K17Tkgn4E+3ogpq4Fq4qfAvRXJ/+Ec2PtKEzORYElF2atCVlJGUqHFTMcJ/8OX/dZWZs6NRfWfR9M+DGzhJD4IYoifD75B7LTRWdKCn1YSUg0ECTh0gfFAUXehdfU1ISmlRYEAXa7HYIgIDk5+ZKTDpH4d/78+dD042vWrFny+bYJ+RMsyTaOtq/9EZ2MCHPFWqz/5tdXK1TFBPgAzg63wMv7cHakBWdHWnDTmqugStDuoUvNmcDEECZeeUjWxqi1SLvhY+C0tNZaIljpfYYknljNGZVKhZqaGtTX18PlclHRGUGxmjMk8oxqg2w7Xj/+VvzxD8dxF+3mEQwG0d7ejrGxMezevTuCkRGl+Hw+BINBCMLyPv2x2+RPPFWiH6zEAxIgLfOa0eb4QD28/Mwn2AwY7Cu9TMGIlLWUnJFEASN//S4kIShrN2++HvoCGh+bKFZ6nyGJJ5ZzRq1Wo7a2FmfPnkVRUREVnRESyzlDIkvH22Hyz3S3VYl+BaMJn4gUnhUVFWBZFp///OfxwQ9+cEnn/vSnP8UvfvELpKen48033wxThCSasCwb+rMcF47x1PC+0CdH2qz4GC9cP9gs267OXIscc3z8bMuxlJyZPPg4AsNdsjZtdhlSLrsrTNGRaLTS+wxJPLGeM2q1GnV1dTSUIIJiPWdI5KSo/Uh3T4a2VQgoGE34ROyJ5+xxnEuh1+shSRImJiZWOSISraqrq1d0vssp/5RIK7hDXxty81Z07Wjx8a334cqSnXi96wje6j2Jy4u2Kx2SohabM6LAw1n/qqyN1RmRet1HwKq14QiNRKmV3mdI4omFnBHfmaBkoUKHis7IioWcIdHBmpOJnvbO0LZGFZ9DpxTvarsQSZLQ19eH5557DgBgMBgucQYhQDAowO/jZW0W78xC2YbC/EiHFBYMw6AivQwV6WX40Ia76M3EIgWGOmBYuxX+nmYEhqdu8MnbboEup0zhyAghZGVEUURjYyMAYN26dfSUjZAYok1PgdYyU3jqtFFboq3Iqv1UPM/jtttuQ1tb27z7JUnCd77zHXznO99Z8rUZhqFB2WRRLuxmCwAp3qHQ18ay0kiGExEaFU3ItRiCxwHP+eNgGA66wmqordmQ+ACSt92sdGiEELIioiji7Nmzod5hTU1NqKqqouKTEBJVVu2OpFKp8F//9V8A5Otxzu5ie2H7Yv8AwEc+8pHVCpXEMccFhScnBqCSpiaRYTUa6NLSlAhr1YiSiPNjHbD5HMvuvp6IJFGAq/EgRP6dCYUYBurUXKTuez91sSWExLQLi04AGBsbQ0tLi4JREUKWgmMBHesL/dFyNMbzkjZs2ID3v//9eOmll2TtAwMDYBgGZrMZRqPxktdhGAYcx8FkMiEvLw933XUXzWibQEZGRiAIAjiOQ0bG0taldF4wo62Wn1laRW2xrEZ4ipr02nF6qAkAoFfpkJWUjk3Z6xP2U21fbzN0+ZWXzBlv11kEbTNdrkWPHYbKXVBbcyIZLokiK7nPkMQUjTkzX9EJTK0YkJND9zelRWPOkOjUyQzjd+vGQ9upvIQrFYwnXFa9A/EXv/hFfPGLX5S1VVRUAAA+9rGPLXlWW5J4hoaGQuteLfVGfeETTx0/M7GQJsWyGuEpatg1Gvray/sw7plM2KJz4s1HYDvwKKx778WQqXTenJEkCaLAg3eMhdoCQ+3w9TRBZU6HoXyTEqGTKLCS+wxJTNGWM4Ig4OzZs5icnJS1cxyHmpoaJCcnKxQZmRZtOUOil31ChbzzW0LbKtXcoWPxIGLvWKlbIImEgF8Aw85MtKOdVXiqY3zdsnHPJJ5teQV2nzPUlmVKzBcyX28zbAceBQBMvPZHqNsOznucq/EABn/3JahSsmEo24jAUCd8PVNPjG2HHoevt3ne8wghJJpdrOisra2lopOQGON2CTDbM0N/tI5UpUMKi4hMmXTu3LlIfBsSJ4qKiiCK4rKe5F1+TTm2XlaEYEDAqa9+E/xkf2ifxmpdzTAj7q2ekzg5cAYAYNaaUJxSgD2FWxWOShm6/EpY996Lidf+CADQNu+HxWKBcfNNoWN4+yjG//YriH4Phv/yNegKquDrORvab917L3T5lRGPnUSHldxnSGKKlpxZqOhUqVSoqamB2WxWKDJyoWjJGRL9xGEbgPTQtt4nKhZLOMXnXL0kpq3kRdPtDuDkW90AgGHeBMaQA4PdDgaANi3GC8++U6GvHX4XOIZFmjE+PxFbDMvO2wAgVHx633oCep0e2HkbJEnEyDM/huifGuMr8QF4O06HzrXuvTd0PklM9OacLFU05AwVnbGF/j/IYlkYnWybi8+6U9nC88JZb6fbRFEEz/Pwer2w2WxobGzEU089hd/85jcKRUpixew1PPkgD47hMN3xVhvD4ytG3eNoHe+UtV1XfgVUbHwuMLxYFxaf03+D4+DraZz3HCo6CSGxSBAEnDlzBjabTdauUqlQW1uLpKQkZQIjhKwYxyTGU/GIFp4vvfQS/vSnP6GxsRFut5vGfZJV5/NOLZch+gOAKEIt+EP7dFmZSoW1YgzD4IY1V+JI7ylMeG0wagyozqxQOqyoMG/xucANnIpOQkgsoqKTkPgmivIHCSITnw8WIlZ4/uAHP8Avf/lLAMubaIhhmEsfROJCMBiEJElgGAZqtXpJ53o9U+se8a6pCXhU4uzCM3v1goywNIMVH9hwJ+6vezfOj3VgzDOR8E87ZzNuuQm8IMDx5p+nGqS5fVSo6CSzreQ+QxKTkjlz7tw5KjpjEN1nyGIZMnOAoZn3LpIqPkdDRuSnOn/+/IJF53RBuVC7SqXCzTffTOt4JpDm5ubQ9OM1NTVLOtfnmXriybumxvapxalClNVooDJdeg3ZaMcyLCrSy5QOI+o0NzcjaChGkiUXKlv/nP1UdJILreQ+QxKTkjlTWFgIm82GYHDqNY6KzthA9xmyWJxJD2BmJYZ47XkbkR/rscceCxWWmzZtwmOPPYaGhgY88cQTkCQJHMfh8OHDOH36NF599VV84xvfQHZ2NiRJAs/zqK6uxg033BCJUEkMGx50oKVxGOMjLjgm3RAYDqp3utpyBgM9NY9zjGsMnH1oTjurM1HRSQiJaSaTCbW1tVCr1VCpVKirq6Oik5A4ojJaZNsSF59PPCNSeJ44cQLA1I3zwQcfxPr166HRaLBu3TqYzWYIgoBDhw5Bp9MhJycHt99+O55++mmsWbMGkiThu9/9LsbGxi7xXUi8SE5OhsViWfI6ZJ3nx9BUP4jG04M4P8JhxFQceuKpSjKFI9SI8AS8ePH8azg92Ihh1yhEMU6nOluB5ORkJDf/HYwkzNkn+lywHX5SgahINFvufYYkLqVzZrr4rKurg8kUu69piUTpnCGxg7lg+BQTp488I/JTDQ0NgWEYXHHFFXN++datWwcAOHnypKw9KSkJ3//+98EwDHw+Hx599NFIhEqiQGFhIUpLS1FYWLik8yYnPLJtTgyGnniqY3hK847JHjgDbpwf78QbXUfxYutrNDHXBayOLjDj3fLGWTfxidf+SMUnkVnufYYkrmjIGZPJREVnDImGnCGxocch77HlFYMKRRJeESk8nc6piV6Ki4vn7CsrK4MkSTh37tycfeXl5di8eTMkScLx48fDHieJbfYLCk+VGAAnTS2voo7RTxsnvDa0jXfJ2jJNadRteBYx6MfYi7+UN7Ic8v/hp7DuvTfURMUnISTa8TyPwcFBpcMghESYNM+kiPEoIoWnXq8HgHln9CoqKgIAtLe3z3tudXX1RfcTMs1h98m2Nbw3tIanJiUl8gGtgq+//r94puUlnBk+B5vXDkmSUJ469wOcRDb48H9ACsr/7y3bboE6OR2WnbdR8UkIiQk8z6OhoQEtLS3o7u6+9AmEkLjB+/2ybSZOO7ZFpPC0WCwAMO84zfz8fACAy+XCyMjInP3TXXPtdnv4AiRxweWQ/9JqBW/oa02qNdLhrNiAcxh9jkG4Ah60jLXjlY6DACQk62K32/BqG3vlIfj7z8vaVOY0WC6/O7RNxSchJNpNF50OhwMA0NnZScUnIQlE6B2WbasD8fkENCJTJlVVVaG3txeHDx+es6+goCD0dUNDA/bt2yfbPzQ01eeZxrQljvb2dvA8D5VKhdLS0kWdI4kSPO6ArE3Hz0xLrU1PW9UYI+GtHvm452RtEm5ce5VC0UQf2+En4Tj67Jz21GsfAMvJe1dMz2o78dofZX/TbLeJazn3GZLYwpUzPM+jvr4+NCxpWl9fH3Jycmj9xxhG9xmyWEaVTrYdrwOqIvLEc+fOnQCAtrY2PPjgg7J9hYWFoa64zzzzjGyf1+vFK6+8AgBIS4u9woEsj9vthsvlgtvtvvTBoXMCEEX5hxO64MyLuDYjY9Xii5TWiS7Z9vb8jTBpYn8t0tXg620OFY8AwKfkQzCmgk8rgXHNlnnPme/Jp6+3Oeyxkui0nPsMSWzhyJmFik6NRoO6ujoqOmMc3WfIYml4F/QB+8yfoEPpkMIiIoXnu971LlitU10df/zjH+OOO+7A/v37AQAMw+DKK6+EJEl4+eWX8fWvfx3nz5/H0aNH8cADD2BsbAwMw6Curi4SoZIY5bB55Q2SBB3vmvqaYaDLyox8UCv0/9m78/go6vt/4K+ZvTf3HULCTRKuBFEOEQTBCxRQFNSKB23V2lqt+vNuq+JRv+JRrdajra21eB+oXAKKcoiAQhLCGUKA3Pdms9l7Zn5/rDvZSXY3u8neeT8fjzzYmZ2d+ezy3tl5z+d6YNbteOaiB7G48CJkaFNxbt7Z4S5SxFDlFkAzegoAQD1iEviMUbAMnQTz2cu8vs41+UyevRzqvHFBLyshhLhjs9m8Jp1xcXSjkZDBIlVhRLbhpPiXaawKd5GCIiRNbdVqNVatWoW77roLHMfh0KFD2LdvH+bPdzQbvPXWW7Fx40YIgoA1a9ZgzZo1vfZx3XXXhaKoJAI4B5TyR2ePgYVkvA0KztH0VqZWQxGFE20zDINRqcMxKnU4ri+iJqGuLPUnocoZA1lcEuRJGVAJArSjzoJq6Ng+X5s880qo8wop6Rzk+nOeIYNbIGPGZrOhrKzMY9Kp1WoDdiwSPnSeIb7SyhQAuitRZJ43jWohm530wgsvxN///ncMHToUgiAgNzdXfK6goACPPPIIAEdfTtc/ALjlllswdar75nMk9rAsK/75Sq+TJp6JyWqMuupyZF40H2kzzwUji+6vMMMwNIXKzwS7DeZTBwEA8qQMx79xyVDnjvU5ZijpJP05z5DBLVAx01dNJyWdsYPOM4RIhaTG02nOnDnYsmUL9u3bh6wsadPH66+/Hvn5+XjzzTdRWloKq9WKwsJC3HjjjVi4cGEoi0mikF4vTTyzR2Zh9C+is2mqnbNjf305chOzkRWfARkb3UlzoPEWI+IKZ8BYeQCcyXHhph1zFhiGftgJIZHNmXQaDAbJeko6CSGDQUgTT8Bx92f69Olun5s6dSrVbJJ+6ezRxzMxWe1hy8hX19mIU7oanNLVQMHKkZs0BOfkFFGNJwBL3QnU/fePSJx2GZLPvRK2lhpwRj0UydHXh5cQMrh4SjpVKhWKi4sp6SRkEGMgQMbbxWWWsXvZOnqFPPHsr7a2NnGAIhLb2trawPM8WJb1+f9c36OPZ0Ji9CaeZzpqxcc23g6TzUxJJwBB4NGy+V8QOBs6dq+F4eB3SLv4l4gfN7NfMUMGN4oZ4q+BxIy3pHPy5Mni6P4kttB5hviqC20YrjskLluUsXndFxWJ54cffojnn38ee/bsCXdRSAjU1NTAZrNBoVD4nni66eMZjSrbTmNjxbfITRyCVE0yGIbBsKSccBcrIhjKvoWl9ri4zBnaYW93zPPbn5ghgxvFDPHXQGJGr9f3mlKDks7YR+cZ4qt2qwb1mbPEZRZmL1tHr6Amnm1tbaisrERzczPS0tIwefJkqFQqn19fUVGBRx99FAcOHAhiKUksYGUMWJYR5/JMTIrOH/I91QdQ0VqFitYqaBUajE0bgSvHXRLuYoUdb+6SzNsJAIrUIUiatihMJSKEEN+lpaVh3LhxOHz4MABKOgkhUiabEvWJ3SPzq2N0Hs+gJJ7V1dV48cUXsXnzZnAcJ65Xq9W46aab8Pvf/x4yL6OMms1m/O1vf8Pbb78NjuMgCAI1NRxEcnNzxaYpvrr2l1MhV7Dg7BzaKmuQnhp9k24LgoA9Nd03WYw2E1I0SVDIou+9BFrb9g/AdXVI1qVdtBKM3PHZ9CdmyOBGMUP8NdCYyczMBACcPHkSxcXFlHQOAnSeIb6yQQh3EUIi4IlnSUkJbr/9duh0OnE6FMAxHYTJZMIbb7yBgwcP4s0333SbfH777bdYtWoV6uvrJQmn84RNYp+/zVEEQcChkjpwHA/OZELjZ58hu7MSatYOmUaDotXPQJMd+YPPnNbVoN7QJFl38eg5YSpN5LA0nYH+xw2Sddqx50A7pnvUYmrCRPxFMUP8FYiYyczMRHp6OiUigwSdZ4ivEpWDY3CxgJ75rFYr7r33XrS3t4vrlEol0tPTxWVBEPD999/j1VdflbzWaDTi4Ycfxu233466urruArIsbrzxRmzYIL3wJMTJauHAcTwAwG4wgmPlkPF2CDYb7Ho9FIkJYS6hbxJVCbh6wkLkJDiS5AxtKkanDg9zqcJLEAS0bHgNcLmJBVaGlLnXh69QhBDihetNd3co6SSE9CTvMXVerLbzDGiN5yeffILa2lowDAO1Wo1HHnkEixcvhlKphMFgwDvvvINXXnkFHMfh3//+N375y18iPj4eDQ0N+NWvfoWTJ0+KtZyCIKCoqAiPP/44xo2jyd6JZyajVXzMGY1gBB4ywQYAYJVKyKKkOVOqNhnLJy7CsgmXo7qjDm2mjkHfxLzr8E7JgEIAoB42Acr0oWEqESGEeGa1WlFWVoaRI0ciLS0t3MUhhEQJjpfekOJjdG7ygCaeu3btEh8/99xzmD9/vrgcHx+P22+/HYmJiXjiiSdgNpvx9ddfY/r06bjmmmvQ1NTdxDAhIQF33303rr322pBeeAuCgHXr1uGTTz7BkSNHYDQakZGRgalTp+L6669HUVHRgI9hNpvx/vvv46uvvkJVVRUMBgPS0tJw9tlnY8WKFZgyZUoA3kl043lefOzLnWGT0SY+5kwmKDireKdIptVEXfLGMAyGJQ/FsOTBnVzxVjNaNr8lWceotEg5/xowPe4M+hszhFDMEH/1FTMWiwWlpaUwGo04dOgQJk6cSE0tBzk6zxBfySAdfJVnomLiEb8F9F2dOHECAJCfny9JOl1dd911ePPNN9HU1ISffvoJn332GRobG8Vazosvvhh//vOfJc1zQ8FsNuOuu+7Ct99+K1lfW1uL2tpafPnll/jDH/6AW2+9td/HOHr0KH7/+9/jzJkzkvUNDQ1Yv349NmzYgN/85jf4wx/+0O9jxILy8nJx+HFfkn2zqTvxjM8fi9yzxmJUBmBtboHAc15eGTksdisUMjnYGL3D1R9t374H3igd1S1hwmyocwt6betvzBBCMUP85S1mXJNOwJFwlJeXY9KkSUhJSQlHcUkEoPMMIVIBTTxbW1vBMAymTp3qcRuWZXHOOedg/fr1WL9+vXiSjo+Px+OPP46FCxcGskg+e+SRR8Skc/To0Vi+fDnS09Nx6NAhvP/++zAajXj++eeRlZWFJUuW+L3/6upqrFy5Em1tbQCAc889FxdddBGSk5Oxf/9+fPTRR7BYLHjttdeQnZ2Na6+9NpBvL6YdKauHrs0IpVoOlUqO7KGZSBo3BIiiFto/1ZWhqasVmXHpyI7PQE5CJtSK6JyLNBCsbXW9BhSSJ2Ui+fxroq4GmxAS2ywWC0pKSmAymSTrVSoVtNrBMWAIIWSABsk1X0ATT+dJt6/aytzcXACOAYUEQcCoUaPwxhtvIC8vL5DF8dmuXbuwbt06AMCMGTPw5ptvivONXn755bj66qvxi1/8AjqdDk8//TTmz5+P+Ph4v47x+OOPi0nnvffeK6k5veyyy7Bo0SKsWLECNpsNL774IpYuXQqlUhmgdxhd4uLiYLfbIZf7Fp7HyhvQqbeIy/GJaowrGhKs4gUcL/Bo6mqFlbOhRl+PGn09pg0txoiU8HwfIkHzl68CAu+yhkHy7OWQxyW53d7fmCGEYob4y13MeEo6NRqN33OXk9hD5xniK1Y2OGIkoO/SbreDYZg+T7RxcXHi4+zsbLzzzjth7YT/1luOfmRyuRxPPvlkr/KPHj0af/rTn3DvvfdCp9Pho48+wsqVK33e/969e7Fjxw4AwNKlS9021508eTKuvfZavPPOO9DpdNi9ezfmzBmcU2mMHj3ar+1NLk1tASA5NToGE3Kq0zfCYrdKavKy4jPCWKLwMhzaBUvNUck69fAJSJh0vsfX+BszhFDMEH/1jBlKOklf6DxDfKUz6wG4zAISvqIEVVg6lLne+bnzzjvDmnTqdDp8//33AIDZs2d7rHVduHChWM5Nmzb5dQxnbapKpcLdd9/tcburr74a1157LW6//XYaDc9HZpMNdhsvWZeaHudh68j035KPsbFiGw7UlaO+swnxSi00g6TJRU+CIMBu7IAiY5i4jlGokH7Jr3sNKEQIIeFCSSchJJB48H1vFAPCXq87d+7csB7/xx9/FEcdmzFjhsftWJbF1KlTsWnTJpSWlqKjowNJSe6b/fW0detWAMDMmTORmZnpcbvCwkI8/vjjfpSetDYZeq1Lz/SvGXQ48TyPyrbTMNpMqGw/jcr200hSRce8o8Fga6kBb+pEXOEM2IeMhrFyP+LHz4YyY/A2OyaERBaz2YzS0tJeSadWq0VxcTElnYQQv/F8rNZxSoV9CM1wj/ZWUVEhPs7Pz/e67ZgxYwA4amWOHz/udVunpqYmtLa2AnA0p3Wy2Ww4cuQItm/fjvLyctjtdj9LTgCgtaVLsixjBRgP7IP+2HFYdbo+J/IOt4q2KnRape9hYcG8MJUmvAS7DcbKA+KyPCkDSdMWI+WC68JYKkII6WY2m93WdFLSSQgZCLswOPKAsNd4hnuEytraWvHx0KHe503Mzs6WvM7b6L1OzilmAMegSjabDa+//jreffddcbAhAEhOTsYtt9yClStXQiYb3E0KT58+LXbGHz58uNdtO9qlP/4yqwnHn/uPuFz81+cQP3JkMIoZEIeapDcw8pJykBk3OJtZm04dBG+V/n/GjZ0CmQ/Njv2JGUIAihniv+PHj6OiogI2mw3Jycnieq1Wi8mTJw/aAQGJZ3SeIb7SyKXXOrE6fn/YE89wc03++qp9df2h0el0Pu2/oaFBfKxUKrFixQqUlJT02k6n02H16tUoKSnBiy++CIVC4dP+Y1FHR4c471VfOjvMkmUFZ5EsqzIie5CeK8ddinNyirC/vhw/1R3EhMyx4S5SWHBdHbDUnZCsU6RkQ5HuWxNbf2KGEIBihvjHZrOhvLwcZrNZcnOYkk7iDZ1niK9UnAlKu1FcVvBmL1tHr0GfeJrN3f+xfTWRcf1hcX2dN11d3c0on332WVRXV2Ps2LH4f//v/2Hq1KngOA47duzA6tWrUV9fjy1btuCvf/0r7rvvPj/fSeCcOHECo0ePRkJCd19Di8WCY8eOAXAk4MOGDev1GuecrD0nSW5paUFdXR0AIC8vT5LgcxyHQ4cOAQASEhIwskft5KlTp6DX6wEA48ePlwxMpdPpUFvdJNlewbn8vygUOFxZCa1Wi7FjpQldTU2NeNMhPz8fanX3nSaDwYCTJ08CADIyMjBkiHRqliNHjog/JOPGSScLra+vR3NzMwBg1KhRkml3zGaz2EQ7NTUVubm5YBgGw5KHYljyUEyQj4LRaMTBgwcxadIkyX6bm5tRX18PABg2bJjkJojdbsfhw4cBAImJiRgxYoTktVVVVejs7AQATJgwQXLR1N7ejurqagBATk5Or6mQysrKADgurpxNzZ3OnDkj3oApKCiQfH86OztRVVUFAMjKykJWVpbktYcPH4bdbodSqURB/lgIrAza/HNgOlmKjvZWGE1m2LQjMNpolIyCbTKZxObxaWlpvVop2O12lJWVgWVZTJw4UfJcU1OTeCNoxIgRSExMFJ9zNn0HgKSkpF53pisrK8Xv8sSJE8Gy3b0U2traUFNTA8DRqiE1NVV8zjmJPOAYzbvnCIenT59GR0cHAGDcuHGSixO9Xo9Tp04BcLS26Nk/vLy8HDzPQ61W9+omUFtbKzbxHzt2LDSa7pGeu7q6UFlZCcAx9VVOTo7ktUePHoXVaoVcLsf48eMlzzU2NqKxsREAMHLkyKg4R5w5cwYAMGTIEGS4uRFls9lQUVERsecIVxUVFTCZTGAYZlCdIwoLCyXP1dXVoaWlBYBj1FB/zhHHjx+H2Wz2+xwhCAI0Gg3MZrM4LkRcXByKi4uhVCrpHPGzWDtHHDx4UPy/7885wmaTjrrvROcIh1g6Rwz0OkJpacRQfbO4TgYrgPCdI5wxGGhBSTzLy8uxdu1ar887eduupyuuuKL/hfLAtW9lX3csXZ/3tU+m8yQKANXV1Rg3bhz+97//SU4kl112GaZMmYKlS5eira0N//nPf/CLX/yiz6a/wcJxnPjD6iQIgngC5Tiu12vsdrvHEyzP8+JzPfcLQHzO+ZmOGzcOgiCAYRicPn1afL5nf01BEGA2Sf8flK6Jp1LpsVyu693tt6/y+vJeve3XXfzYbDZxSqJA7jeQ/zeuOI7zWCbX/bqLF+d7ZVkW+v2b0b7jQ6RecD0Szr4EHT9ug1VphZ2Re32vrvt1xszx48dhsVgkJ3R35fUW36H8DL3FoS+fIc/zbpvme/u/8fW77K5/tK+fYbDPEZ726893edy4ceJFZTSdI2w226A7R/iz377i0PkZ+nuOACAmJSaTSZJ0AnSOcLffaD9HOPcrCILbeTh93a+7m1N0jnCIpXPEQD9DbXw8WEV3zqCUdf8fhuMc4e7/MhCCknhu2LABGzZs8LqN80vx0EMP+bRPhmGCkni63qGy2Wxek0+r1So+9rVZTc8geOKJJyRJp9OQIUNw55134rHHHoPdbsfatWvxu9/9zqdjBJpMJuv1hWMYRryL4i5A5XK5x6YkLMuKz7n7Ijufc57YXffjut+eJ1KGYXrtL87a3n1ctRoKhcJtufrary/ldbdf1/fqbb9yuRxndI7+xdkJmVDKHOX0lHj6s19v79Xbfn35v3Elk8k8lsl1v+7iRaFQgGEYyHkb2re/D95kQMv619C5fwtkU5eCiVdDwTBe36vrfp3rlEoleJ53+15cy+stvkP5GXqLQ18+Q57n3ZbL2/+NL99lnuf7/D8P5znC0379+S47zw2CIETsOcLdfgfdOcLP/fYVhwqFAhzH9escoVQqkZOTA6vVKkk6ATpHuNtvtJ8jnPsd6DnC3XUInSMcYu0cMZDPUJmdCm1rd+KpVnWfX8JxjnD3/gOBEQI47GdhYSEYhgnKSKIMw4hV2IH0hz/8ARs3bgTgmFrFtVlIT1u2bMEdd9wBAHj44Ydx00039bn/t99+G08//TQAR7X8V1995XHbtrY2nHvuuQCAWbNm4V//+pfP72MgDAaD2PwFcDR3cJccR6JX/rINbS4j205s2IYswykAQPzYsSh+7pkwlcw7QRCwsWIbDFYjWIZBujYVk7IKkaYN7yjPoday+S3o962XrBuyYhU0wyeEqUSEEEIIIaFV9fV6lHyzX1xWqxgs+PMfw1aeYOUGAa3x9GWU10jj2j5bp9N5TTxdBxRy7aPhjet/Us9+Bz2lpqYiOTkZOp0OTU1NXrclDoZOaV9bpb17VFR5QlzPzSNGp7ULBqvjzhYvCGjqagXLhH12o5CyttRA/9Mmybq4wnMp6SSEhJVzqhTXfo+EEEIGLqCJ5zvvvBPI3YWEawfq+vp65OV5HkXTdYTanp3tPenZ8bsvzqY7wWpbHQ30er3YXNL1xkBPVosdVou0zbqK626mIPdyEyHctp7YgaauVqRrU8AyLDRyNZLVnt9rLGr7+r8A3/3/x8gUSJ1/Q7/25WvMEOJEMUPcMZlM4sjzkydPliSfFDPEXxQzxFdNilZ8W3BaXE7mGSwIY3mCZdCPaus6OlRFRQWmTZvmcVvnKFgMw/Qa3cwT11GiXOcMdYfjOLFWtefoXYPJqVOnxNHeeo5s56pT33tkYZVLjaciKSko5RsoXuCxoeIb6C0GKFg5suIzcPGY2WGf0zaUjJUHYDzxk2Rd0vRFUCT3L+59jRlCnChmSE9GoxElJSXieA4lJSWS5JNihviLYob4qkXHg2/sHom4i7V42Tp6Da62fW6cddZZYqfaPXv2eNyO4zjs27cPgKMvq693rlJSUsQktaKiQlJr2tOhQ4fEH7yewxqT3qwWDolJarCsI2GT8TbIhO4RvxTJkZl4VrVXQ28xAABsvB01+nqMSB7Wx6tih8BzaN38lmQdq4pD4tSFYSoRIWSw65l0Ao7pP5zTihBCSDAZ9AwyGkaLf9qW2LwuHPQ1nomJiZgxYwZ27NiBb775BnV1dW6b0a5fv16cr2nBAv8qvy+77DL89a9/hSAI+Mc//oE//elPbrf73//+Jz729xixJDs7GxzHuR2By1VKmhY3/vZcKBUy2Gw27L39D5LnlUnJwSvkAPxUd1CyPCQhE4UZoz1sHXv0P30FW1udZJ1mZBFkmv53Wvc1ZghxopghTu6STsAxJ2RBQYG4TDFD/EUxQ3xlb9QBSBOXNebY7HI36Gs8AeDmm28G4JhO5Z577oHBYJA8f+LECTz11FMAHJO3Llu2zK/9X3vtteJgRO+99x4+//zzXtusXbtWXD9lyhQUFxf7+zZiRmZmJoYMGdJrotueWpoMKPupBj/+cBr7d51Ep0o6abEyzbcBoEItTZOMUSndd7LOHjLJy9axhTMZ0P7de5J1srhkJJx1ERiZ+2HGfeFrzBDiRDFDAO9JZ1FRkWSaAYoZ4i+KGeKrBF5aFyjrPe1mTBj0NZ6AY+qSSy65BF999RUOHDiAJUuW4LrrrsOQIUNw+PBhvPfee+jqckzZcf/99/ca0XbPnj248cYbAQDTpk3rNchSSkoKVq1ahbvuugscx+H+++/Hxo0bMW/ePCiVSmzbtg2bNjlG91SpVHjiiSdC8K6jn9XS3ayWN5vB8tKJdZUpkTk1yfzRszB/9Cy0mXTYX1eOMakjwl2kkGn/7n3wFqNknbZgOtTDxoWpRISQwaqrqwulpaVuk87i4mK3c+YRQkgwKFnp+SZWR/2gs+rP/u///g9dXV3YuXMnampqsHr1asnzDMPgjjvuwLXXXtuv/V900UV4/vnn8cc//hEGgwHbtm3Dtm3bJNskJyfjtddew5gxY/r9PgYT18STM1sgF2ziMqtSQRbhQ+GnapJx4ehZ4S5GyFhbaqDfL53HVpGei6RzFoCVKz28ihBCAq+rqwslJSWw2WyS9ZR0EkLCgeOljVD5GJ1ij86sP9NoNPjnP/+JL7/8EmvXrsWRI0fQ2dmJ5ORknH322bjxxhtx9tlnD+gYCxYswNlnn401a9bgm2++QW1tLRiGQV5eHi688EL84he/8Hl+UAJYrd3tEDijCTK++wJCplZDplaFo1jEg5ZN/wAElz4LDIvEyRdBke7flEOEEDIQnpLOxMREFBUVUdJJCAk5TWom4DL+qCCLzfNQbL6rfmIYBosXL8bixYv9et306dNx7Ngxn7bNzMzE3Xffjbvvvrs/RRwUysvLxeHHJ06c6HE7m2viaTJB6dLUllWrwKoiL/E82HgURpsJaZoUpGqTkaxKBMvG5l0tV10nfoL5dLlknTqvEAnFFwRkGhlfY4YQJ4qZwWkgSSfFDPEXxQzxlSIlEUCXuMzIYrOxLSWeJOLwPC/+eXPiaBM4jodCKYO5w+IyFpijxpNVRl7zzVp9A/QWA07rHHO6ThkyEWPSRoS3UCFg72iGLD4FnKEdAMAo1EietQysOi4g+/c1ZghxopgZfAwGA0pLS/td00kxQ/xFMUN8xSrj4Jp4CmxsjoRMiSeJOGq1GjKZTDKaoDsVR5rAc8LPS3GIV8QDVseUN7K4ODARVpNotVvF+TudUrXJ4SlMCHFGPXhjJ+InXwhr0ymYqw4irmA6NCMCd/fX15ghxIliZvA5ffp0r6QzKSkJkyZN8ql5LcUM8RfFDPGVrMeNeIaNzRQtNt8ViWr5+fl9bmM22VySTge1rXu0VEV8/+eEDAZBEPDQ1v8Dy7AYEp+JrPh0qOUqJKsSw120oBIEAcaKHyEIPBiGgSprJFTpeUiYcimYAHac9yVmCHFFMTP4FBYWwmazQafTAfAv6QQoZoj/KGaIrxr0jZJli2DzsGV0o8STRCW9ztRrnZLrrk2UJ0ZWQlfdUYfqjjoAwGldDViGxXWTlsR8/05r4ynYOpol69TDJ0CRlObhFYQQEhwymQyTJk3CwYMHIQiCX0knIYQEk4WXTuvEC4KHLaNbWM64Z86cwZdffon9+/ejrq4OHR0d+N3vfofrr78eAPDYY4+hsLAQS5cuhTIC++mR8NPrzdIVggAl171OkZQU4hJ592NdmWQ5TZOMy/Pnh6k0ocHbLDBVlUrWsSotNMMnhKlEhJDBzpl8Oh8TQkgk4G3SuegRm3lnaBNPo9GIJ554Al988YXY0VoQBDAMI5nAedOmTfjggw/wj3/8A88//zwmT54cymKSKNDZIU08ZYIdrnWHyuTISjz310lHdD07pyj2L3pYFqqh+TCfOQyBd4xArB1zNhgZ9XUhhIRPzJ97CSFRx1rbCCBLXFbYYnNAqpC189Pr9bjmmmuwdu1acBwHQRAguKlG7urqEvtf1NbW4uabb8aPP/4YqmKSCFBbW4szZ86gtrbW4zZdnRbJsuscngCgSIus+VB/P+NmrDxrOYqzx0HOyjElZ1K4ixRUxpMlqPvPI2AYBolnXwJFShaU6blQpuUE5Xi+xAwhrihmYldnZyfKy8vBcVzfG/uBYob4i2KG+EojSG+IsTFa4xmyxPPee+9FRUUFBEFAeno67rnnHvz3v//ttZ1CocB9992H1FRH4mA2m3H//ffDZOrdp4/EptbWVjQ3N6O1tdXjNsYuaVt4eY/EU52eHpSy9VdWfAYW5F+AR+bciX9dsRoTswrCXaSgEQQBbd/8D9aGStT9949o2fgmVLnjEFcwPWjH9CVmCHFFMRObOjs7UVpaipaWFhw8eDCgySfFDPEXxQzxlYq3Qsa5/PXo8xkrQpJ47tq1Czt27ADDMJg2bRq++uor3HrrrZg2bVqvbZVKJX71q19h3bp1YhPb+vp6fPbZZ6EoKokSpi5poun6BWVVqogbXMiVRqGGPEbnZwIA44mfYG2sEpe7jnwP86mDYGQ0iAchJHj0ej1KS0thtzv6Sul0uoAnn4QQEgwp8g4M6zgk/uV2Hgl3kYIiJFeCX3zxBQBAo9HghRdeQFxc35PGp6Sk4KWXXsLFF18Mq9WKr7/+Gr/4xS+CXVQSAcaOHSv2/fXEbJImnq41njK1GnIfYixUrJwNgiBAJY/9gbIEQYBux4eSdYrUHCQUXxDU4/oSM4S4opiJLXq9HmVlZWLS6RTI/1+KGeIvihniqwSZEkD3+CWxWj0RksTzp59+AsMwuOCCC5DuRxPIrKwsXHjhhVi/fj2OHTsWxBKSSKLRaPrcRiaXVtbnTBiJ4ReugLW1FYIAyOO0wSqe387oanGgvhwpmiRkxWdgSEIm0rWR1Qc1UEyVB2Cpr5SsS551FZgg1/D6EjOEuKKYiR3Oms6eNZspKSmYOHFiwAYTopgh/qKYIUQqJIlnS0sLAGD06NF+v3bkyJEAgI6OjoCWiUQ3s0l6Vzt7/EjkzhsTptJ4V6tvgACgzdSBNlMHTDZzTCaegiCg9eu3JevkKdmInzA7TCUihMQ6T0lnamoqJkyYQCPYEkJIBAlJ4uk88TunUPGHzeZoQqlWqwNaJhLdzCZpp2ttXOQ1YxUEAbvP/IS6zkbIXGr8suMzwliq4DEe3wdbS41kXdKMJUGv7SSEDE4dHR0oKytzm3ROnDgRLBuy8RMJIYT4ICSJZ2ZmJk6dOoUjR/zvKOucSiUzMzPQxSIRqqurS+wT4ak/sLHH4EIabeTNDVnf2Yi//vAvyFgZMrVpGJKQicKM0RiamB3uogWcIAho++5dyTpWHYf4wnNDcnxfYoYQVxQz0S0cSSfFDPEXxQzxlRk6DG8/JC5blbHZLzgkief06dNRVVWF7du3o6amBrm5uT697vvvvxf7h55zzjlBLiWJFJWVlbDZbFAoFCgqKnK7jckorfHUaCOvxvOnunIAAMdzqDc0QW8xYFHBhZLaz1hhOlkKW3O1ZF38hNmQaRNCcnxfYoYQVxQz0StcNZ0UM8RfFDPEVzqbDO1J48RlgaHpVPpt6dKlAAC73Y677roLOp2uz9f89NNPuOeee8TlxYsXB6t4JMrwvAC5nAXDdt8N0kRgU9v99QclyzPypmB8Zn6YShNcbdvekSwzKi2Szr0yTKUhhMQqnU7nNulMS0uj5rWEkKjVZdPgRPpU8a82cVK4ixQUIanxLCoqwuLFi/HFF1/g8OHDuOyyy7B8+XKMHz9e3Ean0+Ho0aOoqKjAli1b8PXXX4PjOHE03LPPPjsURSURID09HRzHeRwUgmUZ3Hrv+WAYgLPZ0X7iNBKUkTVPm7M/M8MwEAQBAHB2zsSYHFLdeLIE1sZTknVxBTOgSPJ9BOuB6itmCOmJYib6dHR0uJ2XMy0tDRMmTAh60kkxQ/xFMUN8Zf35WjHWhWxG9yeffBI1NTXYv38/2tra8PrrrwPonmPrzTffxJtvvilu77xYHzNmDJ599tlQFZNEgJycnD63KdlbDY7jwXUZUfflOuToK6ARzJBptSh+7hmos8Pbj5JlWTx6wd0wWLpQ0nAI++sPYWJWYVjLFCxt3/Su7UyZdXVIy+BLzBDiimIm+iiVSsjlckniGaqkE6CYIf6jmCG+ilMOjql3QtYmRalU4u2338ZNN90EmUwGQRDE5NLJuc7ZEfuyyy7De++9h/j4+FAVk0QBgRfAcY4aRXtXFwCAFTgIHAe7wQB5UlI4iycRr4rDrOHTcOeMlVDLVeEuTsC5re0snAFFSlZ4CkQIiVkajQaTJ0+GSuU4l6anp4cs6SSEkGBSsdK6wNhrH+cQshpPAFAoFHjooYfwy1/+EmvXrsXevXtRWVmJjo4O2O12JCUlITc3F1OnTsUVV1zRr3k/SexzJp0AYO8yAnAkngDAqpSQ0dQ7IdP+3fuSZUapQersa8JUGkJIrHMmn9XV1RgzZgwlnYSQmMDz0lRTiMGuWUCIE0+nrKws3HbbbbjtttvCcXgS5ez27sSTM5kAAIzgWCfTaMPej9LG2bDrzI9I16YiIy4VaZoUyGVh+aoFFW8xQj18IsDKYKk7AfB2xI+bCXkI+3YSQgYfjUaD/PzYHKiNEDI4MZBWmnBM5E0TGAghuRpuaGhAdpj73JHocfToUdjtdsjlchQW9u4XabN19+9JHF+I+DGjMbnwOlibmiFw4R9kqNXYjqauVjR1tQLNgJyV4YrCS2Luzry5+igYuQKakUVQ5RbAWl+J5POvDUtZ+ooZQnqimIlsRqMRGo0m7DcSXVHMEH9RzBBfRc6ZLrhCknjOmzcP06ZNw5IlS3DxxRfTJLrEK6vVCpvNJo4M29PpEy2oq+6AQsFCrpAhIVGFxLFjgLFjQlxS95qNbZLlZHVSzCWdvMUES8NJcZlVqJA0fREUialhKU9fMUNITxQzkautrQ3l5eXIycnB6NGjIyb5pJgh/qKYIT6Tx2YNZ08hSTx5nseePXuwZ88ePP7445g/fz4WL16M2bNnx9wFORk4uVwOQRAgl7sPz6PljThxpElczhuZEqqi+WTLiR0AgHRtCtQKNdK1kVW+QDDXHIXAd9cuMwwDdd44L68Irr5ihpCeKGYikzPp5HkeNTU1ABAxySfFDPEXxQzxFasYHOOThOSbkJWVhcbGRgCA2WzGhg0bsGHDBqSmpuLyyy/H4sWLMWHChFAUhUQB1/ld3TEZbZJltTpy7hKZ7RbsrS0B/3Of03hlHMamjghvoQKMt1lgqa+UrFNmjYRMHb6WDH3FDCE9UcxEHtek06mmpgYJCQnIygr/SNkUM8RfFDPEV53mTgDhaTUWSiGpbvzuu+/wzjvv4JprrkFycrI4ZUprayv++9//4uqrr8bll1+Of/zjH2hoaAhFkUgUMxmtkmW1JnISz4rWKjHpBACjzYT89FFhLFHgCTyP+PHnQZ6YBiD8tZ2EkOjX2traK+kEgMzMTGRmZoapVIQQEho2wS5ZFjxsF+1C1s516tSpePzxx7Fz50688cYbuPzyy6HRaMQktLKyEi+88ALmzZuHm266CZ999hm6fp6jkRBXZpP0y6nRRk7ieaS5QrI8KmUY4pTaMJUm8CwNJ3Hmb7eis2wbtGOnIaFoLjQjiyDT0Fy7hJD+8ZR0ZmVlYdy4cRHRzJYQQoJJGCTdgEPe6Fwul2POnDmYM2cOzGYzvvnmG3z55ZfYuXMnbDYbBEHA3r17sXfvXuoPStyyWqRNbfmWeugOAsrkJKizssAqlWEqGTA0MRtnDZmAo82VMNnNGJcRGQMeBUr7zo8hWIzQ7foEHfvWI+W8q5A8c2m4i0UIiVLOpFMQpPf3s7KyUFhYSEknIWRQsAm2vjeKAWHt7axWq7Fw4UIsXLgQer0eX331FdavX499+/aB4zhJf9C0tDTs3LkznMUlIdLY2AiO4yCTydz267GYpVOm6Ldvw6F1xwAAE598HEmTJoaknO6cN2wqzhs2FRzP4bSuFlqlJmxlCTRL4ykYj+0RlwWrudfFYrj0FTOE9EQxE34tLS04dOhQ1CSdFDPEXxQzxFcqWfgqTUIpYobZSkxMxLJly7Bs2TK0tbXh008/xd///neYTCaxPygZHBobG2Gz2aBQKHqdqO02DhwnbY+g5MziY0VKciiK2CcZK8Oo1GHhLkZA6XZ9LFlm1fFIOmdBmEoj5S1mCHGHYia8PCWd2dnZKCgoiLikE6CYIf6jmCG+UvEcGJf2tmyMtr2NmMQTAKqrq7F161Z88803OHDgADiO6/tFZFDpOaItACg5k/hYkZwcwtJI2XkOclYWtuMHk6WhCl1HfpCsS5p2OVhV7PRfJYSERjQmnYQQEkyp8naMaK8Xl2WwAlgevgIFSdgTz6amJrE57cGDB8X1zh+krKwsLFq0CFdccUWYSkhCbeTIkeB53m2fXmOPEW0BQGU3AgAYuRxybfgSod1nfoLe0omMuDSka1MxJCETmhiZl6l1y1twHWONVWmROHVh+ArUg7eYIcQdipnwaG5uxuHDh6My6aSYIf6imCG+SoyLB5juFnyyGA2ZsCSe7e3tYn/On376SfwBcv6r0Whw8cUXY8mSJTj33HMj+oeIBF5CQoLH53rWeMp4K1Q/N7VlVUowYTq58wKPFmMbbLwdXboanNLVYEbuWRiWPDQs5Qkkc90JmM8clqxLmHxhWOft7MlbzBDiDsVM6NlsNhw9erRX0jlkyBDk5+dH/G89xQzxF8UM8VXS2GGIr24Rl9UqVRhLEzwhSzwNBgO2bt2K9evXY/fu3WIzWucPEMuymDFjBpYsWYJLLrkEGk3sDMpCAsfUJa3xVNrNkP0895FMFb7axQ5zJ2y8dJqXjLi0MJUmsNq+/q90hUyOhAjp20kIiR4KhQITJkyQTJ0SLUknIYSQgQtJ4nnHHXdgx44dsFodSYPr3c6xY8di8eLFWLx4MXW8Jn0y9Whqq+At4mNZGG9WbKrYhh+qDyA9LhXp2lTkJQ2JiWa27mo74/KnQZlME7oTQvyXmpqKiRMn4uDBg8jOzqakkxBCBpGQJJ5bt24FwzBiwpmamorLLrsMV1xxBSZMmBCKIpAoYrFYIAgCGIaBqkdTg55NbRWca+IZvkSvRt+AekMT6g1NAICzhkzE5QUXhq08gdL2zTtw7dsJmRyp824IW3k88RYzhLhDMRM+qampOPvssxEXFxdVSSfFDPEXxQzxVbu8A4fyasTleFaGWGxbFrKmtkqlEhdccAGuuOIKzJ49GzJZbI7+SQbu2LFj4vDjRUVFkueMXV5qPOPC0+eQF3gcbT4hWTcz7+ywlCWQbO0Nbms7FRFY2+ktZghxh2ImvOLj48NdBL9RzBB/UcwQXzV1WXDGnicux6H3LA6xICSJ5xNPPIFLL72UOlmTAeM5AQzLQOAdtXBylxpPeZgSz1p9AzqtXZJ14zLHhqUsgdS+8yPAdR4phkXqBSvCVyBCSNRobGwEAOpCQwghPujsUCC3arK4bFcZwleYIApJ4rls2bJQHIbEiOTkZHAc57ZWfM4l+Zg5bzQEXkDpn5+Erf20+Jw8THfQU9RJ+O20G1HRWoXjrVUw2kzI0KaGpSyBwlvNvebtVA+fAEVKZF5EeosZQtyhmAmexsZGHDlyBADAMAwyMyOvlUR/UMwQf1HMEF9ZmtoBJIvLarPgcdtoFvZ5PAnpadiwYR6fq6vuwJmqVsdjPg0atQmZXY7kU54Ynhr1eFUc5o48F3NHngsAsPNcVPVbcke//ysINrNkXfLMq8JUmr55ixlC3KGYCQ7XpBMADh92NNePheSTYob4i2KG+CreIl2W2ynx7NONN94IwHGH8+233+61fiB67pMMTjYbJz4WbHawQveyIjExHEXqRc5G951NQRDAKNSIm3g+LHUVsLfVQ5E2FNqRk8JdNEJIBGtoaMDRo0d7rdfr9TGReBJCSLCoZUrJcnRXX3gW0MRz7969bmt6PK33lXNEMEKslu65Mnm7HTK+u/O1Iin0iScv8Oi0GJCgigfLsCE/fjDY9c3gunRQpGRDkZINztgJzYiJ4S4WISSCeUo6c3NzMXr06DCUiBBCogfPS/McIUZTz4A3tfWUJLrO3UlIf1nMjsRT4HmA5yCXJJ7JIS+PwdKFr05sh5yVIUmVgBRNEiZnTwDLRm8SaqmtkCwrU7MRVzAtTKUhhES6vpJOunFMCCHeyeOlY4NwMkWYShJcAU08v/76a7/WE+LOiRMnYLfbIZfLMWbMGMlzFrMj0eQtjmlVXGs8lanJISujk86sB+Do19lq0sFoM2NKTvQ2SeXNXbC11ErWqYbmg4nw2lxvMUOIOxQzgVFfX49jx471Wp+Xl4dRo0bFVNJJMUP8RTFDfKXJSgNOdM+QwMpj59zpKqCJ59ChQ/1aT4g7RqNRnPdKst5gwemTrVAoZIDZCItMAxnfPa+nIiUl1EVFi7FNspyiiYx+pv1lrj8BAd2tExiZHMqsEeErkI88xQwhnlDMDNxgSjoBihniP4oZ4itWpgTgMjVfjJ0/nSJ+VFubzYbKykq0tLRg1qxZ4S4OCaOmhk6cONLcvSKxAGNb9gIAGLkccq02pOXhBR4v7X4LKrkSqZpkpGpTMColekewEwQB6qH5YFg5LPWV4K0mqLJGgJUr+34xIWRQ8ZR0Dhs2DCNHjoy5pJMQQoJJlpgGoF1cFmSxee0VksSzsLAQLMvivvvuw8qVK/167auvvoo33ngDGRkZ2L59e5BKSCJJUVGR2/X6Dun0Hqxgh+znUW1ZlRJMiOfJauhsgsluhsluhs6sx8n2M1g67tKQliGQOvdvRmf5diRNuwyJ51wKe1sDZAmhr0XuD08xQ4gnFDP9V1dXh+PHj/daH+tJJ8UM8RfFDPFVi75RsmwX7B62jG4hq/Hs7+BCGo0GgiCgra2t741JTDMarJJlGW8Xx/ySqdQhv9g53lolWU7RJGF06vCQliFQBEFAx48bYGupQVPNUcgS0pB28UrEZ0ZvDS4hJPAGa9JJCCHB1GUzSZbtAh+mkgRXxDa1FQQBNTU1WLduHQBAG+JmlCTymEw2ybLM5W4Qq1aFuji9Es/8tOjt02SqKoOtpUZc5jpbwSo1YSwRISQS2e2978IPHz4cI0aMiNrzHyGEhJvAxWai2VPAEk+73Y4rr7wSJ06ccPu8IAh49tln8eyzz/q9b4ZhkJ+fP9AikijnHNHWScZ3XwDJNKFPkm6afDVmD5+KitYqHG+pQnH2+JCXIVD0+9ZLlhXpudCMLA5TaQghkWrYsGEQBAFVVY4bb5R0EkLIwJnrGwFkiMsKa2wmogFLPOVyOVatWoVf/OIXHpvV9re5LcMwuOWWWwZSPBJFWlpawPM8WJZFenq6uN5ikt5pd63xlGlDn3iq5EqMyxiLcRljQ37sQLK11cF44ifJuqRzFkbVhaSnmCHEE4qZ/hs+3NGlQBAEjBgxIryFCSGKGeIvihniK7VNmiMx/UuZIl5Am9qeddZZuOmmm7B582bJ+rq6OjAMg8TERMTFxfW5H4ZhIJPJEB8fj9zcXCxfvpxGtB1E6urqxOHHJYmnpUfi6TKHp1zbd1wR91q/+Z9kmVXHIX7SnDCVpn88xQwhnlDMDIwz+RxMKGaIvyhmiK/UPSo4o+fWv38C3sfzwQcfxIMPPihZV1hYCAD4zW9+4/eotoQ4Wb0lnj7c0AgkvbkTOrMeadoUaBWaqKoddMUZO3rVdsZPmA1WqQ5TiQghkYLmHySEkNBIlrVieFu9uCyDFcDV4StQkET8qLZk8MnLyxObprjqnXh2L8vjQ5t4VuvrcajJMbKjWq7CyJQ8TMoqDGkZAqF916cA5/q5Mkg468Kwlae/PMUMIZ5QzHhXU1OD06dPo7i4GPHx8eEuTkSgmCH+opghvoqXycGie9pAObgwliZ4QpJ4Hj16NBSHITEiJcX93JEKpXSeziHjRyBnZgrshk4kFYd2IJxWY/ckv2a7BRwffZ3Aec4Ow8HvJOtUQ0ZDlTUyTCXqP08xQ4gnFDOeVVdXo7KyEgBQWlpKyefPKGaIvyhmiK9kjPTmBBOjjW0jdjoVQnqy9Rjha+iMyRh5buj7GRksXahqPwO1vHvu0DRtcsjLMVCG0q/Bmzol6xJnLApTaQghkcA16QQczW1LS0sxbdo0anZLCCFkQAKaeNbV1YmPc3Jy3K4fCNd9ksGn5+BCKlV47pvsqyvF+uPfQMHKkapJRlZ8Bi7Pnx+WsgxEx74NkmVZQiriCmeGqTSEkHA7c+YMTp482Wt9Xl4eJZ2EEEIGLKBX7vPmzQPDMGAYBocPH+61fiB67pPELo7rbtcuk3U3r+05j6dSHZ7E82TbGQCAjbejsasF6XGp0CiiazAe05nDsLXUSNYlFF8Ytf1QPMUMIZ5QzEh5SjpHjRqFYcOGhaFEkYdihviLYob4yoZODNGfEJd5RWyOjRPwK/dAz+FJBp9Dhw6JoykWFRWJ6y3myKjxrGitkiwXZY2LulFtdd9/KllmFCokRXEzW08xQ4gnFDPdPCWdo0ePRl5eXhhKFJkoZoi/KGaIrzo4HkZlsrjMyWhwoT5NnTrVr/WE+MNmlX4JlWFIPDmeQ5fVKFk3Ni26BuOxG/UwVZVJ1sXlT4NMpQ1TiQgh4XL69GlUVVX1Wk9JJyGEhI7eEo9DOVPEZbVNH8bSBE9Ar9zfeecdv9YT4k5CQgLsdjvk8u7wFAQBd/1pPjg7D5vJDJvJitR0TcjLJmNl+NvlT6DNqMPx1pM43lqFManRNZE619kK9fCJsNafAG/uAsAgaebScBdrQNzFDCHeUMx4TjrHjBmD3NzcMJQoslHMEH9RzBBfWXh73xvFAPomkIgzcmTvGkSO4/HT7tMAAEPFCbT/tB95+iNQK1ioh2Sj6Nm/gA3h4Bep2mTM0E7BjLwpfW8cYWztDVDnFkA1dCzs7Q0Q7DaoMqO7D5e7mCHEm8EeM5R0+o7neRgMBigUCgiCALvdjoqKinAXi0QRipnoI5PJoFQqkZiYiPj4+KCPgaFShr4yJRwo8SRRgee6+whzZgsAgOU4cHYL7F1GMHQ30ScCZ4OtpRYAwDAsFKk50I4+K8ylIoSE0qlTp3Dq1Kle6ynp7K2zsxO1tbU0TgUhg4zdbofFYkFnZycYhsHQoUORkJAQtOPFyZSS5egaOcR3Ybla99TsYO/evfj888/R0NCArKwsXHLJJZgzZ04YSkgiDc93/+jzFkfiyQiOeT1lanXIBvcpazgClmGRGZeGVG0K5Gx0jVJnbamFwHf3lWUYBsqM6K7tJIT4rqmpyW3SOXbsWAwdOjT0BYpg7pJOhmFodFJCBgGO48TvviAIqK2tDWry2fPeVqze6gpp4rl792688cYbqKiowK5duyTPvfLKK3j11Vcl6z777DPMmTMHL730ElQqVSiLSiKMa42nmHji58RTG5rmCbzA40TbKdh5DoebK8AyLGYPn4qs+IyQHD8QrE2nJcvy5CywyuiaCoYQ0n/p6elIT09HS0uLuI6Szt54npcknfHx8UhNTYVWq426UcwJIf4TBAFGoxFtbW0wGAxi8pmfnx+UZreCIL0W41ilhy2jW8gSz48++gh//vOfIQgCGIaBTqdDcnIyAODAgQN45ZVX3L7uu+++w4MPPogXX3wxVEUlYXbq1CmxVnzEiBEAAI7nxedTpp6NxAnjMH70Qth0OsiTkkJSLp1JD7tLbSEv8EhSBa/ZRaAJAg9AAAMGws/30pSZ0TUwkifuYoYQbwZrzLAsi/Hjx+PQoUNobW1Ffn4+cnJywl2siOO80AQcSWdubi6sVissFgsYhqGb4cQnFotFvO6lmIkuDMMgLi4OWq0WNTU14jnBYDAgMTEx4MdjY7ZxrVRIEs/m5mY89dRT4rJarUZbW5uYeP773/8G4PhPzs/Px29+8xu0tbXh1VdfRVtbGzZt2oQVK1bg7LPPDkVxSZjp9Xpx3iunzg4zWpsMYGUsZDIGKnU8Us+ZENJy7Ty9D3WdjUjTJEMlVyFRFQ+1IjpqC3mbBe3fvouEsy5CXP40WJvPwNpSA2V6bNRyuIsZQrwZzDHDsiwmTJiA9vZ2pKWlhbs4EUmv757KIDU1FQzDiE3vqMaT+IpiJvoxDIPU1FQYDAYAjnNDMBJPMMEdvChShCTx/Oijj2A2m8EwDBYvXoxVq1ZBrXZcsHd1deHbb78F4BhB6h//+AcyMzMBADNnzsQVV1wBq9WKdevWUeI5iNXX6HCopF5c1mgVuGRJaBPP76t/xMn2MwCAeKUWF40+P6THHwjDoZ3o2LsOHXvXQT1iEpLOWYDEyReGu1iEkDBhWZaSTi+sVisAx0WnVktzHBMymDmb2AuCIJ4bAo3VRk8LuoEISeK5e/duAEBOTg7+8pe/SDrmf//997BarWAYBjNmzBCTTsAx3P3cuXPx1VdfYe/evaEoKokA48eP73WH0GrlJNvI5KG9M2TjbDjTUScuG6zGqJm/UxAE6H/cKC6bTx0Ew8oQVzA9jKUKLHcxQ4g3sR4zzv5IWVlZg7JWd6A4zvGbI5PJxBjRaDQxHTMk8ChmYoNzUDG73S6eGwLNaOoEkByUfUeSkFy9V1VVgWEYXHDBBb1Gg9uxY4f4ePbs2b1eO3bsWACO5rpkcJDL5VAoFJKRj62WHomnLLSJ5yldDew9Jvcdn5kf0jL0l6X2GKyN0vn6Es9ZEKbSBIe7mCHEm1iOGUEQcPLkSZw4cQKlpaWw2WzhLlJMYBgGLMtSEkF8RjFDfGXmpTWpsTqqbUiu3js6OgBAUpvptHPnTvHxueee2+t555fVaDQGqXQkGth61HjKQ1zjyfE8xmeMherneZZyE4cgThkdza/0P26SLMuTM2nuTkJilDPprK6uBuAYJIeST0IIIZEgJLd6lUol7HY7TCaTZP3JkydRV1cndtzNz+9dg1RX52jeGB8fH4qikghltUhrGxm7FV1nqqFMTYE8Li7odxMLM0bjsXn3gOM5VHfUwWCNjhshts5WGI58L1mXePalYKJs/lFCSN8EQUBlZSVqamok6w0GAzo6OpCenh6mkhFCCPHGytn73igGhCTxzMvLw7Fjx3D48GHJeuegQgAwa9asXq+zWCzYvn07GIYZVMPdD3Y6nU7sE+Ec+dhmk9Z4WutrUfL7NwEAZ73yV2jz8kJSNhkrw4iU0BwrEHS7PgVcpoBh5AokFM8LY4mCw13MEOJNrMWMp6QTAAoLCynpDAC7vfvCMBabaJPAo5ghvlIwg6NCICTfgunTp+Po0aPYuXMntm/fjvPPPx8tLS14++23xW0uuugiyWt4nsfTTz+N5uZmMAyD6dNjZyAU4t2ZM2fEaQ7ExLNHU1v252SKUSggU2uCWp5oHRiAt9tgKN8uWacaMgYyTeyNnOYuZgjxJpZipq+kMzs7Owylij1Wq1X8PaAkgviCYob4StOj92P0XXX6JiTfgmXLluGdd94Bz/O4/fbbkZ+fj9raWnR2doJhGGRnZ2Pu3Lni9m+++SY2bNiAY8eOAQAUCgWuvvrqUBSVRKieNZ6s4FhmlUqwKmVQj13X2YiyhiNI06YgXZuK9LhUJKoiv+l3Z8kWCBZpk+DEaZeHqTSEkGAQBAEnTpxAbW1tr+fGjRuHrKysMJSKEEKIP5LYVuTqmsRlGYIzbUu4hSTxHDNmDO644w68/PLL4DgOR48eBeD4wZTJZHjsscckd4Lef/991NfXQxAcYzo98MADyAtRU0oSfkOGDAHP82DZ7rs/vWo8BUfzFVapBKsMbuLZZtKh09qFTmsXTulqkBmXhrkjew+EFWncDSoUS1OouHIXM4R4EwsxQ0lnaNG0NMRf0RYzNpsNH374Ib788ktUVFTAZrMhOzsb5513Hm644QaMGjUq3EWMWYlqFRS8TlxWUOI5ML/97W8xdOhQ/P3vf8fp06cBOH4Y/9//+38477zzJNuOGjUKdXV1SE9Px8MPP4yFCxeGqpgkAmRkZPRap1BI275rbAYAPyeeQT6x6y2dkuVUTXJQjxcIpjOHYWuVXowmFM2LyibDvnAXM4R4E+0xIwgCKioqxAH4XFHSGRzRlkSQ8IummGlvb8ctt9yCgwcPStafPn0ap0+fxqefforHH38cV1xxRXgKGOOS80cgrq5EXFarVOErTBCFtMH5kiVLsGTJEnR0dEAmk3kcqfYXv/gFrr32WsyZMyeqvrQkeHheOqORinOMkCxTq8DIgtsh+9uTuyFjZUhUJyBJlRAVzWx1338mWWaUaiRNp2a2hMQCT0knwzAYN26c26nLSGyzNJ6CKmtEuItBohTHcbjjjjvEpLO4uBhXXHEF4uPj8dNPP+GTTz6B2WzGI488giFDhtC4K0HAylkwLg1wmOhtjONVWHo6JyUleX1+3rzYG3WTDEzPPp4y3tHUVqYJ7lyaRpsJpY1HJOuKsscF9ZgDZTfoYKoqlazTjp0KVhncQZgIIcFHSSfpyW5oR/2aR5F7618hj08Jd3FIFPrkk0/w448/AgAWL16M//u//xO7ISxevBiXX345fvWrX8FiseDxxx/HunXrorqbAgmfsEeNzWZDS0sLWltbYbXGZntmMnA9+3jKfu7jKdMGN5mq6aiXLLMMi8L00UE95kDpdn8mmUIFYJB83lVhKw8hJHDsdjt0Op1kHSWdg1vH7rXgTQZ0/PB5uItCotRbb70FwFEx9Oijj/ZKKqdOnYrf/e53AIDKykps3bo15GWMdV2yLjRkNIh/jSnN4S5SUISlxnP37t34+OOP8eOPP6KpqUnyXEZGBiZPnozLLrsMl1xySTiKR8Ls4MGD4jQHkyZNAuBuOhVH4imPiwtqWc50SGsVhiRkQiGL3ObfgiDA1lLjaKMh8AAAVc4YqDJie3AudzFDiDfRGjMKhQLFxcUoLS2F0WgEwzAYP3581PdZjQZGo1GcGkOrDW5rG1/ZDe3Q798MAND/9BWSZiyhWs8IEokx09ORI0dQVVUFAFi0aJHHbnDXXXcdXnrpJXAch02bNuHiiy8OZTFjXr3VgN0J3dPdJfF23By+4gRNSBPPtrY23Hvvvfjhhx/Edc6Ra52am5uxZcsWbNmyBdOnT8ezzz5Ld3EHGUEQxD8nq9Uu2cZZ4ylPCO6clBlxqZiZdzaqO+pQ19mIYUlDg3q8gbLrm6Eamg9FxjBYG6tgqa9E4rTLwl2soHMXM4R4E80xo1KpUFxcjLKyMowYMYKSzkGsY/daCHZHazHBbkXHD58j7cKbw1uoIKuvr8dbb72F7du3o66uDhqNBgUFBbjmmmtw+eWX480338Tzzz8PAOK0fE4FBQUAgLvuugvLly/HqlWrsHPnTgBAXl4efv3rX2PRokXi9jzPY8uWLfjiiy9QVlaG9vZ2xMXFYfjw4Zg7dy5WrFiBxMREt+W84YYbsHfvXgDAgQMHPL6fBx98EJ995hiX4euvv0Zubm6v57KysrB9+3acOXMGr732Gr7//nu0trYiOTkZU6dOxc0334zi4mJ/P0oAEMsIAOee63nE/sTERIwfPx4HDx4UPzMSOB2tSow5PEtctqsMYSxN8IQs8WxtbcXy5ctRV1cn+aGXy+VITEwEx3EwGAzguO6arR9++AHLly/Hp59+itTU1FAVlYSZRqOBXC6XDCy18o6ZsNt5HLjvYViNFmhtegCAIjG4iWdx9ngUZ48HANg5O4x2c1CPN1C2pmoAAKtUQ503DtqxUxE37rw+XhX93MUMId5Ee8yoVCqcc845MTtSdSRiWVasvYoErrWdTrFe67lnzx7cfvvt6OrqEtdZrVbs3bsXe/fuxZYtW8Tk0huDwYDrr78ep06dEtcdPXpUkkQ2NDTg7rvvxv79+yWv1el00Ol0KC0txdtvv43Vq1fj/PPP93q8QPSH3L9/P2677Tbo9XpxXXNzMzZs2ICNGzfigQcewMqVK/3eb0VFhfh47NixXrcdM2YMDh48iI6ODtTV1SEnJ8fv4xH3zO0dAJLFZaU1+m6K+iJkiec999wjzjUWHx+PG264AQsWLMDYsWPFk7jdbkdFRQU2bdqENWvWwGAwoKGhAQ888AD+8Y9/hKqoJMzcnfiOlTfCaLSiXpYNRmuD3GCFgrdCkeT+TmMwyGVyJMoid0RbQeBhbamWrFNljxwUAwD09WNJSE/REDPOm7SeEp1ISYAGC7VaHe4iSLjWdjrFcq1neXk5br31VpjNjhvA8+fPx7x586BQKLB3716sXbsWmzZtwq5du/rc1//+9z9YLBbMmjULixYtgk6nw3fffYdZsxw1Th0dHVi5ciVOnjwJABg6dCiWLl2KUaNGoaOjA1u3bsXOnTuh0+lw++234/XXX8fs2bM9Hm+gsWM0GnHnnXdCr9djwoQJuOqqq5CYmIh9+/bhk08+gd1uxzPPPAOtVotrrrnGr307r81ZlsWQIUO8bpudnS0+psQzsNSd0pZ9lHgOwI4dO7Bnzx4wDIO8vDy89dZbkqYEYmHkcowbNw7jxo3D8uXL8ctf/hKnT5/Gzp07sWvXrl7zfZLBg+MFCBwP8BwEhgUDxxdSkZwc3oJFELuuCbzNIlmnjPG+nYTEKkEQcOzYMQiCgMLCQkoyiYS72k6nWK31fPLJJ2E2m8EwDJ5++mksXbpUfG7JkiW48sorceutt6Kzs9PLXhwsFgvmzp2L119/Xfxu3XzzzeLzq1evFpPOCy+8EM8//7wkebzuuuvw2Wef4eGHH4bdbsf999+PLVu2eOwfOVCdnZ3o7OzEsmXL8Pjjj0P28zRyixYtwqJFi3DLLbfAZDLhhRdewIIFCzw2/3Wnra0NABAXFwelUul122SXa66eg5yRgYmXS29OxOoZPyRVIevWrQMAyGQyvPrqq26Tzp6GDh2KV155BXK5Izf+4osvglpGEtl4jgfvMuox8/PAOYqU4P2wGqxd+PLoVnxbtRv768pxovUU+J+PG4lsrbWSZXl8CmSa4DZFJoQEniAIOHr0KBoaGtDY2IijR49GZV9UEjzuajudnLWeseSHH34Q+0kuW7ZMknQ6nXPOOXjggQd83uctt9zi9oZOY2Mj1q5dCwDIzc3Fc88957bG8sorrxST1ba2NnzwwQc+H7s/CgoK8Nhjj4lJp9PUqVNxxx13AHAkg59++qlf+3XWIKtUqj63dU1MTSaTX8chfRgkp/iQJJ779+8HwzCYPXu2X82bxo4di9mzZ0MQhF5t7MngwnECeEt3bR7rHLE1iH1/9eZOmOxmNHW14kTbKZQ3HQMTofegBM4G9cgiJEyaA1XWSLByBZSZw8JdLEKIn5xJZ2Njo7iusbERx48fD2OpSCTxVtvppP/pK9gN7SEqUfBt27ZNfHzTTTd53O7KK6+U1Mp5olAoUFRU5Pa5Xbt2wWazAQBWrFgBjcbztG2/+tWvxAqSYE8xsnLlSvFYPV1zzTViUvjtt9/6tV+73dHEs6/azp7buI7JQgZOUEgrCuxs3/8f0SgkiWdLSwsAYMKECX6/1vka1x9hEttqampw6tQp1NTUAHBciPE8D87cPbAPI/BgFArI44I3PLneIh1RLFGVELHN3QzlO1D9t99A/+NGyBPTkDh9MVRDInu+0UDqGTOE9CUSY8Zd0gk4+nKmp6eHqVTEyWq1wmKxhH3OcW+1nU6xVuu5b98+AEBKSgrGjBnjcTulUokpU6b0ub+8vDyPiVZJSYn4eMaMGV73k56eLpbn4MGDHlsmBCJmZs6c6fG5hIQE5OfnAwBKS0v92q+zNteZbHvj+j6idWC2SBWfJ+1fyyoi83pzoKJm1JGeTQtI7Gpra0Nra6vY78BstEHXZoK+3Qgrq4KNVYCBAFapBOtD05D+WnvkK5Q1HMFpXQ3aTR2IU3q+6xluhvLt4Lp06Ni7DrVv3Y+2zW+BieD5RgOtZ8wQ0pdIixlBEHDkyJFeSSfLspg4cSLS0tLCVDLiZLfbxb+wlcGH2k6nWKr1dM757stgNsOG9d3ax1sfSNdzQl5e3+MkOLex2WySEWddDTRmtFotsrKyvG7j/GyMRiOMRqNf+wYc/V774pp4+tI0l5CeQjK4UEZGBqqrq3Ho0CG/X+t8Dc1TNng1NXSi7MefayWSx4MReIxpPQCZSgU2SHfceIHHoabjsHDdJ9lRKZE5UI+9sw2mU+WSderh/rcuIISEhzPpdF5cOzmTTppOjDj5UtvpFEsj3DoHsvFldFhftvHWrNR1qhZvzWzdHc9kMiEpKanP1/grLi7Or3IYDAYxoeyLMwk3GAyw2+0em/MC0gGF6LwUWMrUXADd884K8sgaRTtQQpJ4Tp48GWfOnMGOHTtw8uRJjBo1yqfXVVZWYseOHWAYBmeddVaQS0kiRX5+vmSuNItFeqeQEXgwAg9WE7wvZXNXqyTpBIBzhvZvcuZgMxzeCdde6YxSA+3Yc8JXoDDoGTOE9CVSYoaSzugR7ulU/KntdIqVEW5VKhVsNptPA9qYzQObb9s12TSZTH2OVOtau+gpRrzFjr81jX2Vg2EYn/q5Oo0YMQI7d+4Ez/NobGzE0KFDPW7b0NAgPva2HfGfTi/9DeCE8LWsCKaQNLW94oorADg6It9xxx0+9ddsbGzE7373O7F5wsKFC4NZRBJB1Go1NBqNeKK2mKX9DhiBBwMeMnXwmr5Wd9RJluOVcUhWh27OUH8YyndIluMKp4NVDK4mMD1jhpC+RELM8DyPw4cPU9IZJViWFf/CwZ/aTqdY6evpnD+yrq6ujy1928Yb1/7U1dXVXrZ0OH36NADHOcU14XO9qcXznkfE92X6F71eL6mJdcfZXz05OdmngYKcRo/uHg/ixIkTXretqKgAACQlJfXZ9Jf4R2eVxoFNiM3Bm0Jy9pw5cyamTZsGQRBQVVWFxYsX49VXX0VFRYWkI7YgCKioqMArr7yCRYsW4fTp02AYBlOmTMGcOXNCUVQSgawW6ZePBQ8GgFwbvMQzKz4DS8dfinOGFiMrLh3Dk4eGvWbEHUtzDawNJyXr4iecH6bSEEJ8xfM8jhw5gubmZsl6lmUxadIkSjqJRH9qO51ioa9ncbGjxZFOp0NlZaXH7XieF6dd6a9JkyaJj3/44Qev2zY2NorzfToH93FyTf4MBulgha76SvYAx/Wxt0GDXD+XadOm9bk/V67be3u/er0eR44cAeCYwoWQ/gjZbbvVq1cjJycHgiBAr9fjlVdeweLFi1FUVISZM2di5syZKCoqEpNSvV4PQRCQlZWFF198MVTFJBHI2quprSMRlfnQ56G/8pJycO2kJbh/1m/wt8ufwJ/m3BW0Yw1E5wHphQir0kKdWxim0hBCfNFX0pkSxPmJSXTqT22nUyzUel566aXi4zVr1njcbtOmTb2+V/6aM2eOOGLrmjVrvDbv/fe//y3WZs6dO1fynOuAYM6EraeSkhLU19f7VK733nvP43PvvvuuOCrt/Pnzfdqf05gxY8QucJ999pnHmtU1a9aIU6gsWLDAr2OQvlnqpXErt0XuvPEDEbLEMysrCx9++CGmTp0KQRDEP5vNhvb2drS3t8Nms4nrAccdlQ8++ACZmZmhKiaJAAaDAZ2dneIdQqu1R43nz3N4yoOYePYUrqZV3giCgK4j30vWKbNGglUOrma2QO+YIaQv4YyZ48ePU9IZhTiOE/9CaSC1nU7RXus5a9YsFBY6bqq+99572LBhQ69tjh07hieeeGLAx8rMzMSiRYsAOJra3nfffW77ja5duxZvv/02AEeSed1110med605fe2113qNbNvQ0ICHH37Y53Jt3rzZbdK9a9cuvPbaawAc/TX7kxSuXLkSANDe3o4HH3ywV5/Sffv2iccYOnQoLr74Yr+PQbyTG6WfORubeWdoBhdySk9PxzvvvINdu3Zh3bp1+OGHH1BfXy9pbpuTk4Ozzz4bV155pdc5i0jsOnnyJGw2mzjBc88aT/bnGk95gvcO/wNh5znI2ciewsdSexxcjwuJuMLpYSpNePWMGUL6Es6YycnJQXNzs5jAsCyLoqIivwYEIaFnsVjEAal8HTE0EAxl28BqBv57ZyjbhuSZSwNQotBjWRarVq3C9ddfD5vNhrvvvhsbN27EnDlzoFKpUFJSgo8++ggWiwUymQwcxw3ohvFDDz2Effv2obq6Glu2bMHChQtx1VVXYeTIkdDr9di6dSt27Nghlu2pp57q1Tx+wYIFeO6552AymbBnzx4sX74cV111FRISEnD48GF8/PHH6OzsxKRJk3Dw4ME+y8QwDFatWoUdO3bgoosuglwux+7du/H555+D53koFAo89thjfvXvdLr66qvx0UcfoaysDJs3b8bVV1+NZcuWITk5Gfv378dHH30Em80GhmH6fQzinbbHNWfkde4KjJAmnk7nnXcezjvvPACOO4gdHR0QBAGJiYk0IS3ppVeNJ+9YViQkBOV4vMDj8yNfQSVXIVEVjyR1AgrSRkGtiKyBazpLt0mWWU0CNGPODlNpCCG+SkxMRFFREcrKyiAIAiWdxKvkmUujNmEMpOLiYrz44ou4//77YTQasXnzZmzeLK0Jvvrqq1FbW4vdu3cPKDlKTEzEmjVrcMcdd6CsrAy1tbV4+eWXe22XnJyMF154QbymdZWWloZVq1bhkUcegdVqxaFDh3pNK3jjjTdi8uTJuOeee/os0/33348XX3wR27Ztw7Zt0t//uLg4vPzyyzj33HP9fKcOLMvijTfewK9//WscOnQIx44dw5NPPinZRqFQ4NFHH8X559M4EsGQgFbkdLSKyzL0r2l9pAtL4ulKJpPRIApEIiMjAzzPi3crbT0HF/p5iGm5lwmgB8JgNYITeBhtJhhtJjQYmlGQPrrvF4aQwNnRdbR3M1tF0uCc77ZnzBDSl3DHTFJSEoqKiiAIAiWdUcLb/IYkNC666CJ8+eWX+M9//oMdO3agoaEBSqUS48ePx4oVK3DRRRfh+uuvB9A9P2V/ObuIbdiwAevXr8fBgwfR3t6O5ORk5OXlYcGCBbjiiiu8HufSSy/FuHHj8Pbbb2P37t1oampCYmIiJk2ahBUrVmDWrFlYv369T+W5+OKLMWvWLLz++uvYs2cPOjo6kJOTgwsuuAC//OUvBzzKbGpqKj788EN88MEHWLduHSorK2E0GpGRkYHp06dj5cqVKCgoGNAxiGcJchYqrrvrh4ISz/5paWlBQ0MD5HI5cnNz+5wPiZAhQ4ZIlmVyaYODpLR4pOZNR9zIkUE5fodZL1lWy1VQyyOr36SpqhS8WToAgDb/HDAR3jw4WHrGDCF9iYSYCcZE8yR4qHlhZMjNzcUf//hHj8+3tjpqjdx9x48dO+bXsRiGwWWXXYbLLrvMv0L+TKlUYuzYsb1qD135s//8/Hy88MIL/SqLL+RyOa6//noxeSeho2CkN0Gpqa0fBEHAu+++i/fff18yTDTLspg8eTJuvfVWmh6F+MylCzAAIOeciRi35JqgHe+9srWo62xCkjoBiaoEjM8YG7Rj9Vfnwe2SZVlCKjTDJoSpNIQQd3ieR1tbm2ReQEKI/z7//HOsW7cOeXl5uO222zzW7lVWVuLUqVMAgPHjx4ewhIQQXwQ88ezq6sItt9wizqPkOnAQx3HYv38/fvOb32Dp0qV48sknI3JuRBJZbD36eCqUwa3VO91Rh+auVtR1NgIARiTnBfV4/uKtJhiP75WsU2YMhyIlO0wlIoT0xPM8ysvL0dbWhrFjx2Lo0KHhLhIhUSsxMRHbtztuuAqCgEcffbTXNgaDAY888oh43Xn55ZeHtIyEkL4FPPH8f//v/2H//v1gGEaSdDo513366adITU3FvffeG+gikBjTM/FUKoPXQtxkM6O5q1Wy7uyciUE7Xn/w5i4oM4fDUl8JCDwABtrRk8EqI2vwI0IGK9ekEwAqKioAgJJPQvrpvPPOQ25uLmpqavDuu+/i8OHDuPjii5GdnQ2TyYSTJ0/i888/R0tLCwBg2bJlOOecc8JcakJ8x8GM9K6a7hWy2JxPJaBX8AcOHMC2bdvEpHPx4sVYsWIFRo0aBZlMhqNHj+K///0vNm7cCEEQ8O9//xsrVqwYcIdoEluOHDkiTnMwbtw4WK3S6VQUiuANBlKjl07kzDIschIjqyZRFpcMbf5UqIZPgK2lBrzZAFVuYbiLFVY9Y4aQvgQrZjiOQ3l5OdrbpVMdVVVVISMjg/oJRjGTySROp6LRaMJdnEFFqVTi1VdfxW9+8xvU19ejpKQEJSUlbre97rrr/JofM5goZoiv9LwRCs4kLltjdKzEgCaersNaP/jgg7j55pslz5911lk466yzkJOTg3/961/gOA6ff/45br311kAWg0Q5m80Gm83mstyzqW3wajwz49Lw22k34kxHHao7amHnOShlkTXFj62tHgJnBytXQpU9CgwYKNNzw12ssOoZM4T0JRgx4ynplMlkKCoqoqQzygmC4LYlFwmNwsJCbNy4ER9//DG+/vprHD9+HB0dHYiLi0NWVhbOOussXH311RE1lzPFDPFVuzkJh0YsF5fVNj0WhrE8wRLwGk8AGDt2bK+k09Vdd92Fjz/+GHq93uMdKzJ4Oedydf575XWTYew0guMZ2DkgPTN4IyMnqRMxd2T/5sEKFWvzGcmyPDlz0Dez7RkzhPQl0DHjKemUy+UoKioa8NQOJPycY1LQ2BTho9FocMMNN+CGG24Id1F8MtCYeeaZZ/DMM88EskgkQln52Gxa21NAE8+amhowDIOZM2d63U6pVOLcc8/Fpk2bxL4vhDj1bPZWebwF1Vu3w1RVBZmMQZbQipyJo1Bwz11hKmH4CJwNtjZpc2BlRmQNfhQO1LyW+CvQzWsPHjwInU4nWU9JZ2yhppLEXxQzxFeDZZ7ggLYg7uzsBACkpKT0ue2IESMAAHq93vuGZNDj7Dw4ixU8w8LGM7Dr9bAHKW50pg7YOXvfG4aJrb0RAt/d9JhhGCgGeTNbQsLJW9JZXFxMSSchhJA+JSikNylitV1FQNNrq9UKwLemS/HxjuaSXV1dgSwCiUEcx4P/ObYAgBF4yBMSAn8cnsPWkzshCALilXFI1iSiOHs8tIrIuGNpba2DPCkTiZMvhLWlGtbmasi0CWAVqnAXjZBBqa+kMyEI5ylCCCEkWgU08XSO3OVLW3aWdVS2chzXx5ZksLPbefAug4CwAgdFYuAv6PQWA/ifBwHotHah09qFc3IiY5ACQRDQ+NEz4Lp0iCs8F/ETZyNx6kIggmtnCYlllHQSQggJFI6XViLY2dgcs2JwNCgmUaW+vh48z4NlWWRlZUMQBKTNmA7OaAJvs2JE5lnIKAp8nz6dWdp8N16phSJCRrS1NlTB1loLAOgs2YrOkq3IuelpqHMLwlyyyOAaM0OGDAl3cUgUGEjMcByHsrIydHR0SNZT0hnbrC4tb2iEYuILihniK1mv3o+x2diWEk8ScZqbm8X59VJT0mHotECmjgMblwAFy2DIvDHQaAN/Av/40HocazmJJHUCElUJKM6OnLkxDYe2S5blSZlQDc0PU2kij2vMUOJJfDGQmGlvb3ebdE6ePFnsRkJij91uF1t2URJBfEExQ4gUJZ4konV2mLF/t3T6kGmzRyEYvS51pg7oLZ3QWxyDZI1JHR6Eo/hP4DkYDu2UrIufMIuG9CckTNLT05Gfn4/jx48DcIxrUFxcTEknIYSQfmHjksJdhJCgxJNEnFGjRol3CHWtvSd4V6tlAT8mL/Co1kunKZmQGRnNWM2nD4EzSOcGjJ94fphKE5lcY4YQXww0ZnJycgAAVVVVlHQOEioVDeRG/EMxQ3xlsXQBiP1R0IOSeHZ0dKCurq7PbZzq6+sh/DyoizfOH3oS21wv4JrqmqVPMoBcEfjEs6WrDWa7RbJuWHJkxFtn+XeSZWXWSJq7swe66Cf+CkTM5OTkIDMzc9DMvzbYyWSB/+0hsY1ihviqy26Ga+LZd1YUnYLya/nGG2/gjTfe8GlbQRAwb968PrdjGAaHDx8eaNFIlLGYpaO2ymSsOCJyICWpE/GnuXehTt+Ius5GtBjbkKIOf7MH3m5F15EfJOuU6bkQeA4MSz9ohARbX7WilHQSQgghvgnaL2ZfNZiu065425ZhGJ9qQ0lsslh6JJ4sA95qA6sM7GizKrkSk7IKMSkrcgYUAgBjxU8QbGbJOuWQ0ZR0EhICdrsdhw4dwogRI5CUFP4bUYQQQmKTbZBMjxfwqiNBEHxKFJ3b9bVtqJJOQRDw5Zdf4uabb8b06dMxadIkzJs3Dw888ADKysqCdtzHH38cBQUFKCiIjP6EkcBsNsNkMsFsNsPaI/EUTF3Yvexa2AyGMJUutDpLv5Esy5MyoR0ZGXOLRhLXmCHEF33FjN1uR2lpKdrb291OnUIGH57nxT9CfEExQ3zFxuj0KT0FtMbz6NGjgdxdyJjNZtx111349ttvJetra2tRW1uLL7/8En/4wx9w6623BvS4P/zwA957772A7jMWHD9+XJzmwGrVSp5jBB5gGMi0Wg+v7p8WYxtUMiXiFNqgNOXtD85kgKmqVLJOlT0KirShYSpR5HKNmaIiSsxJ37zFjDPp7Ox0jHDtnLezqKiIaj4HMbPZLDa91gb4N4jEJooZ4qs4mXS6nVhNQ6lzCoBHHnlETDpHjx6N5cuXIz09HYcOHcL7778Po9GI559/HllZWViyZElAjtnV1YVHHnmEmhH3wdajxpMV7GDk8oAnh7vP7IfJbgbLMIhTaDE1txjp2tSAHsNfhkM7AJ7rXsGwiJt0PhgZfW0JCRabzYaysjIx6XSSyWRQKALbxJ8QQggBgDihFVmdOnFZJljDV5ggioyqnTDatWsX1q1bBwCYMWMGPvvsM9x88824/PLL8cADD+Djjz9GcnIyAODpp5+GIUBNPJ977jnU1NQEZF+xJjU1FWlpaUhNTYXVykmeYwUerCKwiZeNs8FkdzS34wUBndYuKNjwJ3edJV9LlhVpOdCOmBSm0kQ215ghxBfuYsZT0qlUKjF58mSqsRjk5HK5+EeIL2IhZm677TYUFBTg008/DXdRYlqSWgatTS/+xdv14S5SUAz6xPOtt94C4Dg5PPnkk73mXBo9ejT+9Kc/AQB0Oh0++uijAR/TtYltQkLCgPcXa3JzczFixAjk5uZC0WPqFCVnBqtQenhl/+gtBknNMwMgXhkX0GP4y6ZrhLWxSrJOM3oKWBVd+LrjGjOE+KJnzNhsNknzWidKOomTUqmESqWCUhnY3yASu6I9Zj799NNe3dBIcKSOyoMmDeJf/JDojJm+DOrEU6fT4fvvvwcAzJ49G3l57udGXLhwIdLS0gAAmzZtGtAxXZvYLlmyBOPGjRvQ/mJej0buSrsp4CPa7jyzD18c3YKvT+7C3poS1HTUQxbmUWP1+zZIV8gUSJpySXgKQ0iMcyadPVu0UNJJosWpdmpBRQLru+++w5///OdwF2PQkGlUkKnQ/aeOzV6egzrx/PHHH8WRxmbMmOFxO5ZlMXXqVABAaWnpgEY3dDaxzcjIwMMPP9zv/QwWth5NbWWCDaxS5WHr/umyGmHjbWg36XCmoxZ6awSMmCtTQJE5Avi5P6cqZzQUqdnhLRMhMchT0qlSqSjpJFFBZ+rAqm//Cp2JRl4mgfHpp5/ijjvugM1mC3dRSIyJ3kbnAVBRUSE+zs/P97rtmDFjADimXTl+/LiYiPrDtYnto48+KvYdJZ7ZbdIhyFmBAxvgJit1nY2S5VEpwwK6f39xRj0YuQJxBdMgcFNga6tH/PjzwlomQmJRX0mnRqMJU8kI8d3nR7fAYO3CF0e34Mazrg53cUgU6+zsxOrVq/HBBx+EuyiDjlVmgSmhRVzmA9y6L1IM6sSztrZWfDx0qPcpKrKzu2ubamtr/U48XZvYLliwABdddJF/hR1EKioqxGkOOHvPxJMHqwps4lmvlyaeOQlZAd2/v6wt1eJjRiaHeuhYxBVOD2OJIp9rzIwdOzbcxSFR4MiRIzhx4gSsVqvYlQKgpJN45jo1hlqtDndxADhqOzdXbgcAbK7cjsWFFyFZQ1P+RIpIjBlP1q1bh6effhqtra0AHAOwXXzxxXj//ffDXLLBoY5vx+fDumdySLVbcVUYyxMsgzrxbGtrEx+npKR43da1dlKn0/l9LGcT25SUFGoz3weTyQSbzQa73Q6Oc1PjGeCT94Pn/w61+kbUdTagTt+IMWkjArp/f9laaiXLyrRcMMygbhXfJ9eYIaQvdrsdx44dg9FohEzW3Z+bkk7iDc/zYhIRKT4/ugU2ztEc0srZBkWtZ319Pd566y1s374ddXV10Gg0KCgowDXXXIPLL78cb775Jp5//nkAwLFjxySvLSgoAADcddddWL58OVatWoWdO3cCAPLy8vDrX/8aixYtErfneR5btmzBF198gbKyMrS3tyMuLg7Dhw/H3LlzsWLFCiQmJrot5w033IC9e/cCAA4cOODx/Tz44IP47LPPAABff/21ZJA853NZWVnYvn07zpw5g9deew3ff/89WltbkZycjKlTp+Lmm29GcXGxvx+lxAcffCAmnbNmzcJTTz2F77//nhLPEGltVGHCTwvEZbsqArp9BcGgTjzNZrP4uOdotj25jkjm+jpfuDax/dOf/kRTPvSBYRjxb9b8MUg69A06q85AYFhobHrIVN6bRfsrIy4NGXFpmDxkfED32x+cyQC7oV2yTpFBI7X2xTVmCOmLTCaDRqOByWQS11HSSaKNa22nU6zXeu7Zswe33347urq6xHVWqxV79+7F3r17sWXLFjG59MZgMOD666/HqVOnxHVHjx6VJJENDQ24++67sX//fslrdToddDodSktL8fbbb2P16tU4//zzB/7m+rB//37cdttt0Ou7p9lobm7Ghg0bsHHjRjzwwANYuXLlgI4xdOhQ3HvvvbjssssGWlziJ0tXF4BkcVlmFzxuG80GdeLpWjvS11DXrs/7U6vi2sR2/vz5UfFlPnHiBEaPHi2Z6sVisYh3DpOTkzFs2LBerzEajQCAoqIiyXMtLS2oq6sD4Lij6Fq7zHEcDh06BMAxtczIkSMxaVL3XJU7tpWh0cAACsePgdJugkzjqPHU6XQ4c+YMAGDIkCHIyMiQHPfgwYMQBAEajaZX88uamhqxxjs/P1/SBMZgMODkyZMAgIyMDAwZMkTy2iNHjojNOnuOSlxfX4/m5mYAwKhRoxAfHy8+Zzabcfz4cQCOJiw9p/6oqKiAua0R8g4jspIcA5qwChXkSRlobm5GfX09AGDYsGGSGni73Y7Dhw8DABITEzFixAjJfquqqsQpIiZMmCCp4Wlvb0d1taNpb05ODtLT0yWvLSsrAwBotVqxn7PTmTNnxNr/goICyc2bzs5OVFU5poPJyspCVpa0+fLhw4dht9uhVCpRWFgoea6urg4tLY5+DqNHj0ZcXPfUNiaTSeybnZaWJjaRd8bM8ePHUVZWBpZlMXHiRMl+m5qa0NDQAAAYMWKE5ALDZrPhyJEjAICkpCQMHz5c8trKykrxQmfixIlg2e4a6La2NnFO3tzcXMmNJZ7nUV5eDgCIi4vD6NGjJfs9ffq0OFjZuHHjoFB09+nQ6/XiRVF2djYyMzMlry0vLwfP81Cr1b36qNfW1op3rseOHStJprq6ulBZWQkASE9PR05OjuS1R48ehdVqhVwux/jx0psxjY2NaGx0NE0fOXJk2M4Rrk6dOiVeiI0fP14yX56ncwTDMLj44ouxefNm6HQ6dHZ2Yvr06ZLPKVLPESaTCQzDSM6TAOgc8TNP5win48ePw2w293mOcP0uAhAHImQYRvL5OJnNZnEbjUYjuQlmt9thtTomg1cqlZIYFQRBvAHCsmyv5pgWiwUc5xhkT61WS849a498JdZ2OrnWeppMJgiC4Ha/VqtVvJbpuV+O42CxWAA4pprreX3k3C/DML1u1NhsNnFAGpVKJfmseJ4Xb9zLZLJeN/xdP8Oeg3o5+2Pfeuut4j7mz5+PefPmQaFQ4Pvvv8e6deuwadMm7Nq1y+Nn6PS///0PFosFM2fOxKWXXgq9Xo+dO3di1qxZAICOjg6sXLlS/J7n5OTgqquuwqhRo9DR0YGtW7di586d0Ol0uP322/Haa69Jkk+O4yTH7Pl+XD/Dnlz/b5xTvRmNRtx5553Q6/UYN24clixZguTkZBw4cACffPIJ7HY7nnnmGSgUCixdutTjZ+j8v3EXh7/97W8xYcIEjxUxVqsVRqPRa3wrFIpe3x3ned/f+HaNQ3f79RaHrp+htzh0F9/OOHS3X47jYDKZUFZWFvDrCK6mHUD3+UpjFsTyhuM6wvk7FWiDOvF0/QLYbDavyafzSwX0naS6cjaxTUpKwmOPPdavcoYax3Hiyd9JEATxhNXzBA44TjyeRj/jeV58rud+AYjPuUvorRY77DwAmeMz51kZZD+fCFzL5Gm/giC4nbjZWV4jZ0JDZxPS2TRoFRqwDOvTfn15r65zg/Ysr7v3arPZwHc0wpQ9HkmTJsLWUgMIAhiGHdB+g/V/w3GcxzK57tddvDibxbqeeH3Zb19x6Py/6Wu/3uI7lJ+h63778xnyPO/2Inggn6GzTD1f13O/kXKO8PYZevsuMwyD9PR0CIKA7OzsXhcY/d2vs7zBOkfYbDa3F6t0joC4HIhzRM+LXNdjuftu9LXe22s9va7na13pTB3YUrnT7WuctZ5KQeHx9QMpk7fng/FenZ599lmYzWYwDIOnn35aTLAEQcCFF16IRYsW4c477+w1F6+7/VosFsydOxevvPKKeH138803i+fT1atXi0nnBRdcgL/85S+SG2LXXXcdPvzwQzz66KOw2+144IEHsGXLFsmNJG/6eq89n+vs7ERnZyeuvvpqPPDAA5DJZJDL5bjyyiuxaNEi3HLLLTCZTPjb3/6GCy+80OMc8d7+35w3BH35v/V1v67PBeN7463p+0D364nzHBPo6wgtIz3nuL6rcFxHuDvfB8Kg7jjmejfIeVfFE9fEs69muU6uTWwffPDBXncaIpVMJuv1o8wwjHjHyV2AyuVyt3ekAMddLudz7n7snc+5SxBZlgVcg18QIFNrepXJ237dlclZ3jZOj+9r92PD8W349PAm7K87OKD9ur7XnidD1/26e68KmxEJ+95F0tcvomX932HvaIIqZ/SA9xus/xuZTOaxTK77dRcv/d1vX3Ho7f/Gdb/e4juUn6Hrfvv7Gfb1Xv39DL29V18/w1CeI7x9hn19l5VKJXJyciQ1ZoHYb9DOEUHaL50jeu/Xnb6a9Ht6zvV13p7355ifH90CG+/+ItZZ6+nLMftTJm/PB+O9AsDevXtRWloKALjqqqvEpNP1tVOmTMG9997r835vueUWt881NjZi7dq1ABxNT5966im3TfCvuOIKrFixAoCjxsqfkWD7E0sFBQV49NFHIZfLJc9PnToVd9xxBwBHK48vvvgi4DHq7bW+PhfK700g9uutvMG4jvD2XsJxHeHufB8IjNDXba0gEAQBP/30E3766SfU1dWho6MDixcvxrx58wA45g8qLi7uVZ0caH/+85/FE8XWrVuRl5fncduPPvoIf/zjHwE4ajFdO5+709XVhcWLF6OmpgazZ8/GP//5T7fbuXY+79kJPlQMBoPk2AUFBT7ftQu2gz/V4OC/PgBncjTVSDXWoeiq+chbHpjBE74/8xNq9PXickH6KBRnh6evZ8e+DWjd/C9xmVVpMfzut8DIYnNIbUJCwXlT0dcbhoQAjmbNdrsdcrk84kbK1pk68Lv1f+rVzNaVUqbAK5c9ETN9Pf/yl7/gP//5DwBg/fr1vZp1O1mtVsyePVts4u1pcCGFQoH9+/e7bcH26aef4qGHHgLgqDTw1m+ypaUFc+bMgd1ux5QpU8TKBsD36ztfBhcCgGeeeQZXXnml2310dnZi5syZsFqtOPfcc8XPaqBcP4u//OUvvRL+wSTY54QNL/wXP9Z2d9VRciY8+NdlAT+Or4KVG4S8qe1nn32GV199VTKVCQDJaFwvv/wympqacOmll+LPf/5z0Oa7dO3nUl9f7zXxdPb7ANCrT5Q75eXlYr+vHTt2+NTZ3bnN0KFD8c033/S5faxqbm4Gz/NgWRaCAAguzQMYCJAFcEL3VmObZDlB2bvmI1S6jv4gWdbmT6Wk00euMdOzry8ZvCwWC0pLSyEIAiZPnixJPilmiL9cm8l5qhUNBdeRbD2JtRFu9+3bB8AxA4GnpBNwtGKYMmVKn9dQeXl5HrtNlZSUiI9nzJjhdT/p6ekYM2YMjh49Ko4r4a7mytnneyBmzpzp8bmEhATk5+ejvLxcrBkm0SUhbyhQ2z3gHaOIzUapIXtXgiDgwQcfxMMPP4za2lqxDXXPClebzYampiYIgoCNGzdi2bJl4mAWgeZao+ocjMAT5/MMw0Tc3c9YU19fj5qaGtTX18NitsHOC+DBQoAjjmRxgUk8jVYT3in9FF8e3YJtJ7/Hj7WlYMM0bQln6oS5+ohkXVyB9x880s01ZggBHElnSUkJjEYjTCYTSkpKJF0qKGaIv2w2G6xWq8d+WqHgbiRbTzZXbofO1BHkEoVGU1MTAN9u/Pcc2MwdT1OgANKp9rxVSPTcxmazSUacdTXQmNFqtb0G4OrJ+dkYjUZxQB8SRWSxmWj2FLIaz+eff15sM88wDGbNmoXJkyfjlVdekWznbCbx3XffgWEYVFdX4+6778a7774b8DKdddZZUCgUsNls2LNnD66//nq323EcJ95tKyws9HrCcho7dixeffXVPrf761//Kia1zu0jfZLhUNrx9QkYEieIyzKeg1wbmFrJuk7HDQ0LZ4XFZEW7uQNZ8el9vCo4TFUHAaG7LysjV0IzamBzchEyWDmTTtfpUkwmE44fP95rNFhCookvtZ1OsVTr6Ww668v1kS/beBsk0nWqFl+mV3I9nslkQlJS4Js3u+uH7q0cBoOh16i2JLIpkocAOCEuC/LY7B4SksTz5MmT+Pe//w2GYZCVlYWXX35ZHD2rZ+IZFxeHN954A/v27cPdd9+NlpYWHDhwAFu3bsWFF14Y0HIlJiZixowZ2LFjB7755hvU1dW5vZu2fv168Q7YggULej3vTmpqqk/lffvtt8XHgX5/0WrYsGFicxWek9ZGMAIHuQ8nYF84E0+nzLg0aBThmcOvs0zaLEidNw6sIjZPOsHgGjNkcHOXdAKOC0jX4eIpZoi//BnRPhj8qe10ipV5PVUqFWw2W6/vtTv+zrXek2uyaTKZ+uzX5lq76Cnp9RY7fQ1uCUgHuOyrHAzDBK2LGgkeo1HaOkEQeo9CGwtCUq/7/vvvg+M4MAyDv/3tb73mcHNn6tSp+Nvf/iYuf/nll0Ep28033wzA0QzinnvugcFgkDx/4sQJPPXUUwAcSfGyZeHr6DtYJCcnIyUlBcnJyeA5aVNsVuAhjw9O4pmTmB2Q/fpLEARYaqVNveWpQzxsTdxxjRkyeJnNZo9JZ88+nhQzxF9yuVz8Cwd/ajudnLWe0S472/H77Jzv1xtftvHGda5a5xy23pw+fRqAI+l0PZ/4elOr5/Qv7uj1eklNrDvOcUWSk5PDfpOE+K/Z3C5ZtlDi2X+7d+8GwzA499xz/WrmdNZZZ+G8886DIAg4ePBgUMo2a9YsXHLJJQCAAwcOYMmSJfjnP/+J9evXY/Xq1Vi+fLnYxOP++++XTA4PAHv27EFBQQEKCgpwww03BKWMgxnHSecRYgUO8oTAjLi7bMJleGnh43hg9m9xQ/FVmDNiekD26y9rYxV4s/SGR1z+tLCUhZBo5Snp1Gq1vZJOQqJNf2o7nWKhr6dzAEqdTofKykqP2/E8jwMHDgzoWK7XqT/88IOXLR1Trzjn+3RtUQFIazl7Vmq4OnHihMfnnARB8DpokOvnMm0aXT+QyBWSxNM5IqwvNZ09TZjg6N/X2toa0DK5+r//+z/MmjULgOOO0erVq3HPPffgn//8J7q6usAwDH7/+9/j2muvDVoZiHsC37PGk4M8LjCJp4yVYUhCJs7OmYRFhRfi3LyzA7Jff3Ud2S1ZZpQaqIdP8LA1IaQnZ9LZs4mdVqtFcXExJZ0k6vWnttMpFmo9L730UvHxmjVrPG63adMmNDc3D+hYc+bMEUegXbNmjdfmvf/+97/B/zzX+Ny5cyXPpaWliY+PHJEOHuhUUlLi8wBnrlO19PTuu++KAxjNnz/fp/2RyGJpldZ4yuwhn+0yJEKSeDrbpvdn0BznHaNgTWQKOJph/fOf/8Tq1atx3nnnITU1FQqFAhkZGbj00kuxZs0acXJeEnx2ux02mw12ux18j8STYQTI1LF1EWmqKpMsK7NGgJWFpylXtHKNGTK4eEs6vdV0UswQfwmCAJ7ne43GH2wDqe10ivZaz1mzZqGwsBCAIwHbsGFDr22OHTuGJ554YsDHyszMFOdqr66uxn333ee23+jatWvFcTrS0tJw3XXXSZ53rTl97bXXep1rGhoa8PDDD/tcrs2bN7tNunft2oXXXnsNgGOaQF/HIiGRhWmXNrmWcbGZeIbk6jYtLQ319fU4deqU3691Tl7as4lroDEMg8WLF2Px4sV+vW769OleJwbuyzvvvNPv18aqw4cPi3Ne9cg7IQ/QOCA8z+Nk+xnEq+KQqIyHRqEOyyAjgt0GS+MpyTrtCP9bBgx2rjHTn5YVJDr1lXR66+dEMUP8ZTKZxAGpQjli6LenfgjIHNPfnvoBV4y7JAAlCj2WZbFq1Spcf/31sNlsuPvuu7Fx40bMmTMHKpUKJSUl+Oijj2CxWCCTycBx3IAqLB566CHs27cP1dXV2LJlCxYuXIirrroKI0eOhF6vx9atW7Fjxw6xbE899VSv69QFCxbgueeeg8lkwp49e7B8+XJcddVVSEhIwOHDh/Hxxx+js7MTkyZN8qk7GcMwWLVqFXbs2IGLLroIcrkcu3fvxueffw6e56FQKPDYY49R/84olSCXVs7F6rB3IUk8i4qKUFdXh23btsFoNPp8wq6ursa3334LhmFoCPxBqGczWwBgA5R5dtmM2F9fLi7LWRkWFVwIhSy0k4Ibq8oAXnoXVFtA/TMI6YunpDMuLg7FxcV08UVixhXjLonahDGQiouL8eKLL+L++++H0WjE5s2bsXnzZsk2V199NWpra7F79+4BnQMSExPF1m5lZWWora3Fyy+/3Gu75ORkvPDCCzjvvPN6PZeWloZVq1bhkUcegdVqxaFDh3Do0CHJNjfeeCMmT56Me+65p88y3X///XjxxRexbds2bNu2TfJcXFwcXn75ZZx77rl+vlMSKbRcK9IN3bWecqHv0Y6jUUia2jqr/Ts6OvD444/79BqdToc777xTbLN+8cUXB618JLIkJiYiKSkJcfEJvZ6TB2iC3U6LtKO/nJWFPOkEAOPxPZJlWUIqlJl9T35NpJwx48scuyQ2VFZWDijppJgh/pLJZOIfCY+LLroIX375JW644QaMGDECarVanBrvlVdewVNPPSVeNw70u52VlYUPP/wQL7zwAubPn4/MzEyxG9aUKVPwyCOPYMuWLW6TTqdLLrkEH3/8MZYtW4bc3FwolUqkp6fjggsuwL/+9S888sgjPpfn4osvxieffILLLrsM6enpUCgUGD58OG6++WZs3LhRHKuERKdEpYAEa1v3n6297xdFoZDUeF5yySWYOHEiysvL8cUXX6C5uRm33HILxo8f32vbpqYmbNmyBW+++SaamprAMAxGjx5NbdYHkREjRgAAzCYbgMOS59ILRwfkGNUddbByNih/TjbjlYEZsMhfptPSu5+q7NFgmJDcD4opzpghg0dBQQHMZrM4FYG/NZ0UM8RfNEhVZMjNzcUf//hHj887B6McMqT3tGT+do1iGAaXXXYZLrvsMv8K+TOVSoWCggI8+eSTHrfxZ//5+fl44YUX+lWW/li6dCmWLl0asuMNZipGekMrVq8EQzaCyUsvvYRrrrkGLS0t2L17N3bvlo7k+dprr+Hvf/+7ZMhpQRAQHx+Pv/71rzTJ9yDE2fle68b/5qaA7PvTI1+hqv0M1HIV4pVxmDtiRkD26w+B58Cq48DIlRDsjgG4NCOprxkhvpDL5SgqKkJpaSkEQaDmtYTEsM8//xzr1q1DXl4ebrvtNmRlZbndrrKyUhxPxF3lBiEkvEKWeA4dOhTvvfce7r77bpSXd/etcyaUnZ2dvUaKGzZsGF566SWMGTMmVMUkEaTnHJ4AIAtQU9t2kw4AYLZbYLZbkJ2QGZD9+kPg7NCOORvC6CngDO2w6xqhHROeKV0IiUYKhUKc3885/QEhJPYkJiZi+3bHyL6CIODRRx/ttY3BYMAjjzwiXktefvnlIS0jIaRvIZ2zIS8vDx9++CE2bdqETz75BPv37+81P5JcLseECRNwxRVXYOnSpdS0ZRCzu6nxlMsHnngabSbozHrJulEpoe9Xade3AHDcfJEnpEKRlAF5UnrIy0FINKOEk5DYd9555yE3Nxc1NTV49913cfjwYVx88cXIzs6GyWTCyZMn8fnnn6OlxfG7umzZMpxzzjlhLjUhvhMYGxLNLeIyy3JhLE3whHyyQJZlsXDhQixcuBAcx6Gurg46nQ4cxyExMRE5OTn9mu+TxI6qqirY7XZ06Xt/6dgA1Hg2d7WCZVjwgiOxZRgGWfGhT/jsHdJJruWJaWBYGrSiP5wxI5fLMXLkyHAXhwSQ0WhEdXU1xo4dG9D5nClmiL8sFos4nQrdFA8tpVKJV199Fb/5zW9QX1+PkpISlJSUuN32uuuu82t+zGCimCG+6hQ6kG6sEZfNytjsYhjWWeplMhny8vKQl5cXzmKQCNPZ2QmbzYauTmnTa4ZlwLID/yIOT87F/656CQ1dzajTN6Ld1BGWEW3tHS2SZXki1Xb2lzNmqPYrthiNRpSUlMBqtcJqtWLChAkBSz4pZoi/OI4TkwgSeoWFhdi4cSM+/vhjfP311zh+/Dg6OjoQFxeHrKwsnHXWWbj66qsjal5eihniqxZTMo6OWiEuq+ydmB/G8gRLWBNPQrzRxslx9Y1TwNl5cJwA3s28nv0ll8mRmzgEuYm9R70LBYGzgzO0ScuUlBGWshASiVyTTsAxUuWhQ4cCmnwSQqKLRqPBDTfcgBtuuCHcRQmJZ555Bs8880y4i0FCwM4L4NjuG6E8E5spWkjeVV1dXUD2k5OTE5D9kMg2YcIEAADP8diy+l2YqmvAsAwYloW2LBuFt94c3gIGgAAg8ZwFsHe0wN7RDLu+BfLEtHAXK2o5Y4bEhp5Jp5PVagXP8wFJPClmiL80Gk24i0CiDMUM8ZUwSKbSC0niOW/evAE3M2AYBocPH+57QxL1nJNzCwJg6LTAYnEOMsTB0tTs+YU+Oq2rAcdziFfGIV4VB41cHdJmMLzdijMv3wpVzhhoR02GZmQxtPlTqSnOANCE7rGjq6sLpaWlvZLOhIQEFBcXQy4PzM8WxQzxF52jib8oZoivklVxkuVYjZyQ1eP2nCqFkL4IAoAeU6rIFAMP2YrWKrSZOsTlKUMmYkzaiAHv11fm6iPgTZ0wVR6AqfIAwLAYfvdbkGkSQlYGQiJRV1cXSkpKYLPZJOsDnXQSQgghJPRC8is+depUn7azWCxobm5GfX09AMedogsvvJCGxB6kBF6AwEsTT3aAiacgCDBYjZJ18UrtgPbpL9PJUsmyashoSjrJoOcp6UxMTERRURElnYQQQmIWx0sHuuOoj2f/vfPOO35t39LSgjfeeANr1qzBd999hyuvvBLz5s0LUulIpGlvbwfP87DbeCSMK4S9sxMCx0HgOKTPGDGgfTcYmtFoaEGCMg5ymSP843s0bwg208kSybJmVHFIjx+LnDHDsixSUlLCXRzip3AknRQzxF92u118TDdCiC8oZoivZD1Ssljt8xmR34L09HQ88sgjyMzMxPPPP4+HHnoIX375JTIzM8NdNBIC1dXVsNlsEHgWmtwcSR+J1GljBrTvH6r34+uTOwEAGoUaQxOG4OoJCwe0T3/YO9thbTotWacdNTlkx49VzphRKBSUREQZg8GA0tLSkNd0UswQf1mtVnFqDEoiiC8oZgiRiuh0+te//jVyc3Oh1+uxZs2acBeHhFj1SSN2bDmBHVsqsPPrEyj7sWbAHfVbjN1TmJhsZmTFp4EN4V0l0ylpM1tGqYEqZ2zIjk9IJAlX0kkIIYREEnaQdLmK6MSTYRjMnTsXgiDgm2++CXdxSIjk5OQgLy8P8XGOL6EgAPzP83iyA0w86zobJct5SaGdosdY8aNkWZGaA4HnQlqGWOSMGZpyKXp4SjqTkpJCknRSzBB/KRQKKJVKKBSKvjcmBBQzxHd2uyXcRQiJiL+dnJbmmNswUHOBksiXnp4OAFApdZL1LMuCYQeWeFo5GxgwEOAYZTknIWtA+/OHIPAwVR2UrJMnpYORK0NWhljljBkSPdy1XkhKSsKkSZNCUtNJMUP8RckD8RfFDPGV3mYEEC8ux+pcIBGfeJ45cwYAzYU0GNntPUa0lQ08Bp668H5Y7VbUG5pQ19mIwvTRA96nr6yNp8GbDZJ1mpFFFNtkUIqLi0NxcbFY6+ms6aT5NQkhhJDYFNGJZ01NDTZu3AiGYTBs2LBwF4eEGNcz8RxgbaeTUq7E8ORcDE/ODcj+fGWs3C9ZZtVx0AwbH9IyEBJJ4uPjUVxcjNOnT6OwsJCSTkIIIYOSnRsc3a4iro+n1WpFY2MjPv30U1x//fUwm80AQNOpDEJ2u/RLaK6uRvN3O8JUmoHr1b8zJRvylOwwlYaQyBAfH48JEyZQ0kkIIWTQ4sH3vVEMCEmN57hx4wb0+sTERNxwww0BKg2JdGVlZbDZbGhq0kvWMzwHDKDSs1bfgKauFiSpEpCkTkSSKkGcyzPYeJsFlvpKyTrV0Hyw1L8zIJwxo1AoUFRUFO7ikB4sFgtUKlW4iyFBMUP8ZTQaxakxtFptuItDogDFDPFVokI6p3ysdsIKyVW3IPS/i2xCQgJeeeUVJCUlBbBEJBrwnDRuGIEHO4CL1/rOJpxsPyMuD08eium5Z/V7f/4wnS4HJKPXMtCOPSckxyYknPR6PcrKypCbm4sRI0aEuziEEEJIxFHbW5Bi7BKX5UJsjnIbksTTn+HqZTIZ1Go1hgwZghkzZmDp0qVITk4OXuFIxNFqtbDb7WDQKVnPCjxYZf8Tzw6ztAY1SZXY7335y3hsj2RZlpgGVXboBjaKdc6YoXkfI4ter0dpaSk4jsOpU6fAMAyGDx8e7mIBoJgh/mNZVqy9IsQXFDPEV0lKHsnmJnFZDmsYSxM8IfnFpTk4iT/GjBkDACjf0wmgexRYBW8Gq+xf01SO53Cw6RjiFBrEK+MgY2VIVodusl5z3QnJsjJjGGTawTFZcCg4Y4ZEDtek06mqqgpqtRpZWaGbxsgTihniL7VaHe4ikCgTbTHT2NiId999Fzt27EB1dTVMJhOSk5MxceJELFq0CAsWLADLRtzwMDEhbfhQVJ8+Li6rFLF5UzQk7+rYsWOQyWT0Q0/80vPUprV1QqbqX+LZZGjF92e6B/eJU2hxwciZAyidfxKK58PWWgNbewPs7Y3QjglNE19CwqGjowNlZWWSpBMAUlNTaf5MQoKgq+oU4kaOCHcxSBRbv349/vjHP8JoNErWNzc3Y9u2bdi2bRvee+89vPzyy0hNTQ1TKWOXIikert08larYHHAvJLctXn31VSxatAiLFi3C1q1bQ3FIEgPsNrtkmRE4MP3s49liapMs8wKPdG1Kv8vmD86oB282QBaXDHVuIeInzUFc/vSQHJuQUPOWdE6cOJFGryUkwKzt7Sj/06OwtreHuygkSu3YsQP33XcfjEYjGIbBJZdcgieffBIvvvgi7rzzTgwdOhQAsG/fPvz2t7+FzWYLc4lJtApJjWdZWRkEQcCJEyeQkhKai30S/Tib9MKVFXjI+pl4NnQ2S5az4tND1ufC1lonWWaVGsgS6G4hiT19JZ3URIuQwKv9dC3snQbUfvY5Rv7y5nAXh0QZm82GVatWgeM4yGQyvPrqq7jgggsk29x888347W9/ix9++AEHDhzA+++/T7NNBJjAcmBV3WORMKrYbGobkquAdpe7cBMmTAjFIUkUO3PmDKqqqtBl6JKsZwUOrLp/iScncEhWdw8mlB2fOaAy+sPaWiNZVqTl0EADAeaMmTNnzvS9MQkKT0lnWlpaRCadFDPEXxaLRfyLFNb2djRs2gwAaNj4FdV6RphIjJmedu/eLZ4HV6xY0SvpBIC4uDg8//zzYp/Vjz76KKRlHAzOMM1YU2AQ/z4f2tb3i6JQSNLpESNG4NixYwCA+vp6jBw5MhSHJVFKp9PBZrPBapE25WAggJUr+rXPS8fOxaVj58JsM6OxqwUsE5qLYN5qAqeXnjyUab6P8kx844wZhUKBYcOGhbs4g45Op8PBgwfdJp0TJkyIuKQToJgh/uM4LuJGKK39dC14q2P0S95qpVrPCBOJMdPT7t27xcdLlizxuF16ejrOOecc7Ny5E8eOHYPZbI66wZMiWVuTEvkl3Um/oDR62Tp6heRq4Le//a34pXv22Wd7XZwQ4s7IbDvym3/A2Ja9GN36I5JtrWBkAwtZtUKN4cm5yEsKTfLHyJWInzgLquxRYJVqMDI55MnhH9GTkECJxqSTkFjgWtvpNBhqPevr6/HUU0/hkksuwaRJkzBt2jTccMMNWLduHQDgzTffREFBAQoKCnq91rn+73//O1paWnDnnXdiypQpmDJlCpYsWYIvv/xSsj3P8/jqq6/wu9/9DrNnz8bEiRMxffp0LF++HH//+9+h1+t7HcPphhtuwFlnnYUpU6Z4fT8PPvigWK6amhq3z51//vkAHC01HnroIcyZMwcTJ07ErFmzcPfdd6O0tNSnz84dtVqNkSNHQqPR9DnXclJSkvjY23sn/jObbFBateKfwhybSX1IajwvueQSvPTSS/jzn/+Mb7/9FldeeSWWL1+OyZMnIzc3F4mJiXRxQkQFBQUQBAGyagMMvA0MBDACD5YB2Cibc6/tm/9BFpcEzajJ0Iw5G4K5CwxLg6sEmjNmIvmucizS6XQoKysDz/OS9enp6Rg/fnxEn9cpZoi/Iq12x7W20ynWaz337NmD22+/HV1d3V1xrFYr9u7di71792LLli1uE86eDAYDrr/+epw6dUpcd/ToUSQmdnfJaWhowN133439+/dLXqvT6aDT6VBaWoq3334bq1evFhNDTwIRO/v378dtt90mSfiam5uxYcMGbNy4EQ888ABWrlzp937vuusu3HXXXT5te+KEY2o4hmGQnJzs97GIZ0y9DkB3NzCNmfe4bTQLyVX8LbfcAgDIy8uDTqdDRUUFnnrqKb/2wTAMDh8+HIzikQij+nkAIYvZDrMivnu9AKCfF7I/1pZBLVdBq9BAq9QgXZMCuSy44c9bTOjYtwHg7cA370AWl4zsa/9I83cGgaqfg06R/rPZbCgvL4/KpBOgmCH+i6SYdlfb6dSw8SsMvXIJlDE2mGN5eTluvfVWmM1mAMD8+fMxb948KBQK7N27F2vXrsWmTZuwa9euPvf1v//9DxaLBbNmzcKiRYug0+nw3XffYdasWQAcfdZXrlyJkydPAgCGDh2KpUuXYtSoUejo6MDWrVuxc+dO6HQ63H777Xj99dcxe/Zsj8cbaOwYjUbceeed0Ov1mDBhAq666iokJiZi3759+OSTT2C32/HMM89Aq9XimmuuGdCxPCkvLxe7zY0bNw7Kfs6rTtxLdp1LBQArhKkgQRaSxHPHjh3iXWXnv4IQo58oCRiuRx9PlmH6VTth5Ww42S4dQGTh2AsQH+TE03S63JF0/owzGaBIzQ7qMQkJFYVCgfz8fBw5ckQ8n0dL0klItHNX2+kUq7WeTz75JMxmMxiGwdNPP42lS5eKzy1ZsgRXXnklbr31VnR2dva5L4vFgrlz5+L1118Xrytuvvlm8fnVq1eLSeeFF14oGVgHAK677jp89tlnePjhh2G323H//fdjy5YtiI+PRzB0dnais7MTy5Ytw+OPPy5OS+WcqvCWW26ByWTCCy+8gAULFkhqbgOB53lJhdGiRYsCun8CDJa2NyG5OsjJycGQIUMkfzk5OX79DRkyJBRFJRGE6zGPJyvr39fSaDP1WqdRBL/JlKlK2udCnVcAVqkJ+nEJCZXMzEyMGzcODMMgIyODkk5CQsBbbadTrPX1dE7jAQDLli2TJJ1O55xzDh544AGf93nLLbe4vZnd2NiItWvXAgByc3Px3HPPuW0qe+WVV4rJaltbGz744AOfj90fBQUFeOyxx3rNhTx16lTccccdABzNgD/99NOAH/vFF18UmxxnZ2fjF7/4RcCPMdjxkLbC4Zjo6lrmq5C8q2+++SYUhyExorOzEzzPw2KUJoz9vaA91HQMdZ2NiFdqEafQIk6phSwE/SxNJ6WJp2bk5KAfc7ByxgzLskhIoKbMoZSZmQmlUhl1ffUpZoi/XEco7XnxH0reajudYq3Wc9u2beLjm266yeN2V155JV544QXodDqv+1MoFCgqKnL73K5du2CzOVpcrVixAhqN5xvGv/rVr/Df//4XdrsdW7duxa9+9Su32znnyByIlStXQu5hnItrrrkGL730EqxWK7799ltJ7e1AvfPOO3jzzTcBADKZDKtXr464/s6xIC4nB6jr/l4zitgcDySgVwkPPfQQHnroIezcuTOQuyWDTFVVFU6cOAG9Xtpcpr81nt+f+Qnfn/kRm09sx2dHNuFYS2UgiumVpbkatrY6yTrtqMlBP+5g5YyZqqqqcBdlUEpOTo6qpBOgmCH+i4Q5GX2p7XSKpVrPffv2AQBSUlIwZswYj9splco+R5EFHGOOeOqjWFJSIj6eMWOG1/2kp6eL5Tl48KDHbmSBiJmZM2d6fC4hIQH5+fkAMKARbnv673//K2lie//992PatGkB2z/pxqp6TBcYo21vA3ql8Nlnn2Ht2rWoqKgI5G7JIHVMl4rTyRNxJmkCqpPGwyjrX61Em1EnWS7KGheA0nnXdUh684VVxUGZPSLoxyUkGNra2tDa2hruYhAy6PlS2+nkrPWMBU1NTQAcXbf64su8vN76QLa1dc+9nZeX1+e+nNvYbLagTTGi1WqRleV9KjbnZ2M0GmE0DnwOyFdeeQVPPfWUmEz/9re/DWhNKpFSJGZIlgVZbA7eFJsNiElUy8rKAsdx4IQ68KzLLR/B/2YHgiCg3tAk3X98hoetA6dn/05FRi4YJrpqhKKJM2bC2fwtVrW1taG8vByCIGDixIlIS0sLd5ECgmKG+EuhUIR1Ch5/ajudYmWEW2fTWV+aePqyjbcRWV2navHWzNbd8Uwmk2SuSyeFQtFrnT/i4uL63Ma1HAaDAVqttl/H4jgOjz76KD766CNx3R133IHf//73/dof8Y3N1qNWnInNQVjpSphEnKysLOTk5KDnDEb9mcLTytmQlzgESaru2tLshOAmnjxng7XptGSdZmRxUI852Dljpq87wsQ/ra2t4pQpgiCgvLxcUhsQzShmiL8UCgWUSuWAk4j+8qe20ylWaj2d0x+ZTL0HC+zJOd1Kf7kmm74cz7V20VPS6y1mfGmGa/Xh/91ZjoHMsWmxWPC73/1OTDoZhsGDDz5ISWcI1HU1S5bNvN3DltGNajxJRBJ4AT0buMv70cdTJVfiiQvvA+AY3bbR0IIMbWogiuiRqbIEgl36IxE//rygHpOQQHMmna59lgRBQFNTE1JTg/sdIoRI9ae20ykWaj2zs7Nx4sQJ1NXV9bmtL9t4k56eLj6urq7GuHHeu+ecPu240axWqyUJn2vNuN1u9zgwkC/Tv+j1enR1dXmt+aypqQHg6HPfnzk2zWYzbrvtNvzwww8AALlcjieeeMLtCMKE9BfVeJKIxHE96zsB+QCbxGkVGoxMyQv6iLZdx/ZIlmXxKVCm5wb1mIQEkrukE3DUEhYUFISpVIQMXv2p7XSKhVrP4mJHqyGdTofKSs8DBPI8L0670l+TJk0SHzuTME8aGxvF+T6dg/s4uSZ/BoPB4z5OnDjRZ5kEQfA6aJDr59KfwX84jsNdd90lvl+VSoWXX36Zks4QsnRKY4TlqaktISHjLvGURUn9vLn6iGRZNTTfw5aERJ6WlhaPSWdhYWHY+rcRMlgNpLbTKdpHuL300kvFx2vWrPG43aZNm9Dc3OzxeV/MmTNHbBq7Zs0ar81t//3vf4PnHdcrc+fOlTzn2h/+yBHpdYFTSUkJ6uvrfSrXe++95/G5d999V5wCZv78+T7tz9Xf//53fPvttwAcNbevv/56v/ZDBqBROoCf3EaJJyEhcfjwYZSWHuy1XtmPOY2ONp/ArjP7UN54FGd0tTBYu/p+0QDYu3SwtzdK1mnHnB3UYxJnzJTi8OHD4S5KVGtpacGhQ4cGRdJJMUP8ZTKZYDQafer3F0hNX2+DPCEeyrTUfv/JE+LR9PW2vg8WoWbNmoXCwkIAjgRsw4YNvbY5duwYnnjiiQEfKzMzE4sWLQLgaGp73333ue03unbtWrz99tsAHEnmddddJ3neteb01Vdfhd0u7bPX0NCAhx9+2Odybd682W3SvWvXLrz22msAgBEjRmDBggU+7xNwfG6vv/46AEfz4Geffdbr1C0kOBIV0mbUsfNrKxWUOqT33ntPMtlvIDAMI37BSWyz2+2wWmy91iv6kXg2GlrQ2NWCWjiSwQmZ+ZiQGbwaSEczW5eLdoZFXOH0oB2PONjtdtjt9phKjELNU9KZnZ2NgoKCmPtsKWaIvwRB8DhPYzDlXr0UuVcP7iaPLMti1apVuP7662Gz2XD33Xdj48aNmDNnDlQqFUpKSvDRRx/BYrFAJpOB47gBzS380EMPYd++faiursaWLVuwcOFCXHXVVRg5ciT0+v/P3n3HR1Hn/wN/zczWbMqmkZACCZDQiwIqihUbKCpSTkTsZ/c875RTua9dT892Z/md53n2cgoKgh1sNAVUEjoJgYT0vkm2787M7491Jztbkt1kky15Px8PHuzMzn7ms8knu/Oez+fz/nRi48aN2Lx5s1S3xx57zGfu+9y5c/H000/DYrFg586dWLJkCRYuXIikpCTs378fq1evRldXFyZPnow9e3xvtntjGAYPP/wwNm/ejHPOOQcKhQI//vgjPvnkEwiCAKVSiQcffDDk+Z3//ve/paB4woQJ4DgOGzdu7PV1xx9/PM33DyOVow3Jlu5EU0oxcusFD6QBCTyrq6tRXV0dtvIimb6cDD6VSgUF55vNS6EMvbl22uRj5j2z2w4ES4V8bokyLQecJnFAz0lcbYZl2YDJG0jPmpubsX///iETdALUZkjoGIaJy7+FWDF16lQ899xzWLFiBcxmM77++mt8/bV8CPKiRYtQW1uLH3/8sU8JdtySk5Px7rvv4rbbbsPu3btRW1uL559/3uc4vV6PZ599Fqec4ptAMD09HY888gjuu+8+2O127Nu3D/v27ZMdc+WVV2LatGn405/+1GudVqxYgeeeew7fffedT+eOTqfD888/j1mzZoX0Pk0mk+xnuG/fPtx6661Bvfatt97CiSfSjfVwSVU5kG7pToylQN/mdEe7AfnGjcQdQRI/xo0bh6b6TgDyzHSJeaEte2CyW7C36RASlFroVAnQKbVIUve+FlZ/qPPHQ3Q64GhvhLOjCZo8SsQyGNxDsEjoAgWdw4cPR3FxcdxeaFObIaEKZk1HMrDOOeccrF+/Hm+88QY2b96MhoYGqFQqTJgwAVdccQXOOeccLFu2DIAreOyPrKwsfPjhh/j888/x2WefYc+ePWhvb4der0d+fj7mzp2LSy65pMfzzJ8/H5MnT8Zrr72GrVu3oqmpCcnJyZg8eTKuuOIKzJ49G5999llQ9Tn33HMxe/ZsvPzyy9i+fTs6OjqQk5ODM888E9dee22floY6cuSINDeURJaGlYdk8ToXckACzwsuuACzZ88eiKLJEOF974JhgDGXhTbUqNnYgl31e2X7Lhp3dn+rFpAoimAEAercYqhziyEKPHRFMwfsfIT011ANOgkhsSsvLw9//etfAz7f2upK0jJ8+HCf5w4dOhTSuRiGwQUXXIALLrggtEp6KCgowMMPPxzw+VDKLy4uxrPPPtvnunibPHlyyD8TQvpjQALPSZMmYcGCBQNRNBkivLPaclzo935arQbZdoomGTrVwPV4CpYuCB7rdzIsB1V6zoCdj5D+6urqoqCTEBL1PvnkE3z66afIz8/HjTfeGLB3r6KiApWVlQBc8xUJIdGFJreQqOR0egWeitADz2aTPDX1sISBnQTv7GyRbbMqLRh1woCek5D+KCwshCAI0sLjOTk5KCoqoqCTEBJVkpOTsWnTJgCu0UUPPPCAzzFGoxErV66UbqZdeOGFg1pHQvqDYXhoHN15SZRMfA6BpsCTRJ26ujo01HfI9vUl8NQqNBidOhJN5lZ02YzITMwIVxX9cnZ6rcGUnE4X8IOkrq4OPM+D4zjk5FAvc7AYhsHo0aMBuBZeH0pBJ7UZEiq7vXtES38S15DQnXLKKcjLy0NNTQ3ee+897N+/H+eeey6ys7NhsVhw5MgRfPLJJ2hpcd0AXrx4MWbMmBHhWlObIcHrENuR03VY2raq4vO7mAJPEnVaWlrQ2tol26fow1Db0wtPwumFJwEALA4r7PzAZghjlCqw6gQINjMAQJE8sIEu6dbS0gKHwwGlUklBRIg8g8+hEnQC1GZI6JxOp5Rln4KIwaVSqfDSSy/hpptuQn19PUpKSlBSUuL32KVLl4a0PuZAojZDgmWwJuFoXncvvVIwYU4E6zNQKPAkUUmXpMC4aSnIzBgGnhegUoe+hqcnrVIDrVITptr5slTtA6fWIeWECyDarXB2toJLTB2w8xESKnfvnj9DKeAkhMSmcePG4YsvvsDq1avxzTffoKysDB0dHdDpdMjKysJxxx2HRYsWYcqUKZGuKiEhs/EsOjWZ0rbGoY5gbQYOBZ4k6owePRpdGVZ0fvYmrBDAchycCgZdBSySisZEunp+tX37Nmx15WC1SdAWTkHKiRdBpaX1OwfL6NGjab3fHjQ2NuLIkSOYNm0aLQnxG2ozJFRqdXxeCMYSrVaL5cuXY/ny5ZGuSlD622aeeOIJPPHEE2GqDYlm/BD5Lgp74ElreJL+0ul0MBsFtLdaANGVZEjJ22BvawupnC1VO6HilK7eToUG+Sk5UCvCP9SFN3fBVucaly9YumDavxXJ0wZu2RbiS6cb2PVZY1ljYyMOHDgAACgpKaHg8zfUZkioAo0YICQQajMkWCkqeTLKeA1Dwxp4vvXWWwCAESNGhLNYMgQJgihbzJMRRbCq4O8cOnkn6roaZfuGJWYMSOBpqdwNwKOuChXU+bQ4PYm8hoYGHDx4UNq22WwoKSnB9OnTab4RIYQQEiVYJvRcJrEorIHnCSecEM7iyBDG252QBXMQwGqCDzzNTqvPvgTFwMzxtBwplW1rRk4EOwABLiGh8A463YYNGwalUhmBGhFCCCHEH16Qh2Q8E5+95TTHk0Qdi8UCs8kEbUEBGFGEKAhIgBXq9PSgy9jbeBAVbVXQKbXQqRKg1yRDwYW/uYuiCPNReeCZMGpa2M9DemaxWKT5ejSMFKivr8ehQ4d89ufn52PUqFE0rxHUZkjoBEGQ2gzLDo3eCdI/1GZIsDjIbwiLFHgSMjjKy8vRVGcCXzgSWVlZAIC0dB00wzJ7eWW3vU1l2FW/V9oenzkGCyfOC3tdHa214DtbZPs0BZPDfh7Ss/LycmlpjKGe0ZCCzuBQmyGhslqtUhCRkJDQ+wvIkEdthhA5CjxJVKo/ZkVNpQU1FVYwLIOcvBRMmZEX9OsN1k7Z9vjMonBXEQBgOVIi22ZUWghW04Cci5DeBAo6R4wYgcLCQgo6CSGEkCjEaIZGwjsKPEnUSU9PB8t2wmEzwWGzAwBMRntIZTQb5b2Qw3TBD9MNhfnwr7JtZWoWlKnZA3IuElh6enqP61QOBXV1dSgrK/PZT0Gnf9RmSKgUCgUtwUNCQm2GBEvE0FgVhAJPEnVyc3Oh1TYBMEj7WDa0D+3C1BHgWA7NplZ02U0DEniKTges1ftl+5QZ+eASU8N+LtKz3NzcSFchogIFnSNHjkRBQQFd9Pgx1NsMCR1lgiahojZDguUaqdedBDNew1AKPElUEgVBts2EGHjecuKV0mOzwwIlG/6mbq05CNHpkO3TFkymi3wyqGpra1FeXu6zn4JOQgghhEQTCjxJVBIE+b0eth8XzwnKgclYaT6yS7bNJaZCnVU4IOcixJ+WlhYKOgkhhJAYx3t1uMQryu1MopK1pU22bTrse3EdaebD8sBTkZoNZWpWhGpDhqLU1FTo9XrZvoKCAprTSQghhMQQXuQjXYVBQT2eJOqUlZXB1GUE0D03QrDZgn59m8WAkvr90Km00Cm1SFQloiA1+Iy4weBNHXA0H5PtU2cVgh0iWcmiTVlZmbQ0RnFxcaSrM2g4jsPkyZOxZ88eGAwGFBQUoKCgINLViglDtc2QvvNcGkOj0fT+AjLkUZshwdIp5cvtxOutYwo8SdSxWq0QnPI7P6FM8eyyGdFibkOL2bWdrA5/4Gk5ulu+g1NAS+t3RozVaoXD4QDPD407hp7cwWdzczOysymjcrCGcpshfSMIAmUoJSGhNkOCpXF2INHWPdxWIQTf4RJLKPAkUYdlWYhe6bxC+cw22S2y7YGY48motVCm58JhaAR4JxQpw6DMCG9wS4LHsqz0byjiOI6CzhAN9TZDQucOHiiIIMGiNkOClaq0IdPULm0rENoygrGCAk8SdSZNmoTtqsOAtXsfh+B7JX6o/BEd1i4kqBKgU2oxMiX8yyYoEtOgm3AKREEA39UKhlPS/M4ImjRpUqSrMOCampqQnp5O606GyVBoMyS8tNqBSVRH4lestZnq6mq89dZb2Lp1K2pra6FQKJCTk4OzzjoLv/vd75CTkxPpKsattJwsHKs4Km2rFPH5XU+BJ4lKak6e3SsBwQ05EEURW4/9DDvfvcxJgT78PZH21hoAAMOyUKRkQpWZD4aNzw8JEnnV1dWoqKhASkoKpkyZQsEnIYSQsFq7di0eeOABWK1W2f6ysjKUlZXhrbfewl//+lcsXLgwQjWMb+rMVKj13YGnRh2fIVp8visS8wRePtY22HU8O21dsqATAKZkjw9bvQBAdDrgbG+U7VOl02L0ZGAcO3YMR44cAQB0dHRgz549mDx5MgWfhBBJQ10nsnOSI10NEqM2bdqEe++9F4IggGEYXHDBBZg5cyY4jkNpaSnWrFkDs9mMlStXQq/XY86cOZGuMolRFHiSqCR4rWfEBhl4Npvky7BwDIs0rT5c1QIAONrrIYrd9WMYFoq04WE9ByGAPOh0MxgMaG1txbBhwyJUK0JINDF2WvH2v37EzXefjsRkypxKQsPzPB588EEIggCWZfHyyy/j9NNPl55fvHgxFixYgKuuugoOhwN/+9vfcOaZZ9L8+DDjWEDDdvc2q+P05jK1GhJ1mpqa4HA4ZfuCzWqrYBU4Me84jEodgUSVDukJqeDCPASWN3eB8Uh0rdBnglWoengFGWhNTU2or69HU1NTpKsSNv6CTgAYPXo0BZ1hEI9thgwsh8MBu90Oh8PR+8GDaOt3FbCYHdj2ve/nBYmsaG0znrZs2YLa2loAriDTM+h0mz59Oi699FIArqkfe/bsGdQ6DgVHmUa8ObFV+vfRyMbeXxSDqMeTRJ2GhgY4nPLAM9ihtgWpefjzKTdI23ZneLOCCTYzNPnjoM4ZA0drHRytNVDSMNuIa2hokNZkjIegrKqqCkePHvXZP3r0aOTn50egRvEn3toMGXgOh0NaGkOpVEa6OgBcvZ2/bKsCAPy8rRInnzGKej2jSDS2GW92ux3Tp0/H4cOHcf755wc8buzYsdLj2tpaTJ06dTCqN2R0tCmQVzZT2lYorD0cHbso8CRRKYNph9rQAJFhITIM9GlC7y/yQxXmnsj2zavQVbIRmoLJSBg1DQmjj4MiJTOs5yBDW6Cgc8yYMcjLoyV7CCHdtn5XAafT9f3odAjY9v0RnHvRhAjXamDV19fjtddew6ZNm1BXVwetVouxY8fid7/7HS688EK88soreOaZZwAAhw4dkr3WHTzdcccdWLJkCR5++GFs2bIFAJCfn4/rr78e8+fPl44XBAEbNmzAunXrsHv3brS3t0On02HkyJE444wzcMUVVyA52f/c2uXLl2PHjh0AgF27dgV8P/fccw/WrFkDAPjmm29kn/Pu57KysrBp0yYcO3YM//rXv7Bt2za0trZCr9dj5syZuPrqq/scCJ5zzjk455xzej2usbG7By4zk657ws1k5JHc0b06Aq80RrA2A4cCTxJ1CgoK0KbmoTbXABDBQETKsOiYQ2k5WgLBZob50HaYD22HfvZipJ1+WaSrNeQVFBRI81NiWWVlJSorK332U9AZfvHSZsjgUavVUu9VNPDs7XSL917P7du34+abb4bJZJL22e127NixAzt27MCGDRtkPXOBGI1GLFu2TPZ5e/DgQVkQ2dDQgDvvvBO//vqr7LUGgwEGgwGlpaV488038dRTT+G0007r8XxqtTrIdxjYr7/+ihtvvBGdnZ3SvubmZnz++ef44osv8Je//AXXXHNNv8/jT01NDT788EMAQHZ2NvV2DgCh0QCgO6DXWvvW4RLtKPAkUSc5ORlmUYNOTYa0L5UN7kt0S9UO2Jx2JKkTkahKQF5KDpLViWGpl7OrHfamY7J9CaOmhaVs0j+B7jjHEgo6B1c8tBkyuKItk7Rnb6dbPPd67t27FzfccIO03MecOXNw1llnQalUYseOHVi7di2+/PJLbN26tdey3nnnHdhsNsyePRvz58+HwWDADz/8gNmzZwNwZRC/5pprpHn2ubm5uPTSSzFq1Ch0dHRg48aN2LJlCwwGA26++Wa8/PLLOPXUUwOer79tx2w24w9/+AM6OzsxceJELFy4EMnJydi5cyc++ugjOJ1OPPHEE0hISMDvfve7fp0LcC1NZ7FYUF1djc8//xzvv/8+Ojo6oFAo8NBDD0GlorwW4aZn5Ne5XHzGnRR4kugk8rxsmw1yId02iwFWpx2tFgMAQK9NCVvgaTlaKttm1AlQ5xaFpWwytAUKOouKipCbS3OICSFy/no73eK11/PRRx+F1WoFwzB4/PHHpWQ3AHDxxRdjwYIFuOGGG9DV1dVrWTabDWeccQZefvllqQf76quvlp5/6qmnpKDz7LPPxjPPPAONpvvnuXTpUqxZswb33XcfnE4nVqxYgQ0bNiAxMTzXG966urrQ1dWFxYsX46GHHpIC2fnz52P+/Pn4/e9/D4vFgmeffRZz587t9421r7/+Gn/4wx9k+0aOHImHHnoIs2bN6lfZxD+OGRqjb4bGuyQxR+Dlt3oYRe9N1e60w+qVTChJpQtbnSxHSmTb2oLJYMKcMZcMLaIo4ujRoxR0EkJC4q+3083d6xlPfvrpJ2me5OLFi2VBp9uMGTPwl7/8Jegyf//73/sdNt3Y2Ii1a9cCAPLy8vD000/Lgk63BQsWSMFqW1sbPvjgg6DP3Rdjx47Fgw8+6NN7OnPmTNx2220AXMOAP/74436fq76+3mdfU1MT1q1bh+bm5n6XT3wJgvz3KjDxeX1JgSeJOg6HwyfwZIMYpnK4rQp7Gg/iSNsxNBibYbKboVMmhKVOoijA7BV4JhTSHIdoEQsp6/1xOp1oaGjw2U9B58CL1TZDIkcQBOlfJPXU2+n287ZKGDvjJyvmd999Jz2+6qqrAh63YMEC6PX6XstTKpWYMmWK3+e2bt0qfS5cccUV0Gq1Acu57rrroFC4Bg9u3Lgx4HHhaDPXXHONdC5vv/vd76Thr99//32/z1VQUICHHnoIzz33HP74xz8iPz8fFosFH3/8MRYuXIi6urp+n4PIJWTlyLbFAL/rWEeBJ4k6Bw4cgM1mk+0LZqhtk6kFh1oq8Gv9Hmyp2oGfqn8NW+IQe2MlBIt8+I4oxukA/Bh04MAB7NmzBwcOHIh0VUKiVCoxbdo0WeKJ4uJiCjoHQay2GRI5VqsVFotFmmMYKT31drrFW6/nzp07AQCpqakYM2ZMwONUKhWOP/74XsvLz88POE+xpKREenzSSSf1WE5GRoZUnz179kAURb/HhaPNnHzyyQGfS0pKQnFxMQCgtLQ04HHBOuOMM3DZZZdh3rx5uPnmm/HZZ5/hzDPPBODqEV65cmW/z0HkuET5DY54HXkbp2+LxLo6Lgf1SWNQnzQGDYmj0e4MfMfRrd3SIdvOSwlfJlzLEfkHOatJhDI1O2zlk6FLq9VKwWdxcTFycnJ6fxEhZEgKprfTLZ56PZuamgAgqM/HESNG9HpMT3Mg29rapMfBrJvsPsbhcMgyzoZTQkICsrKyejzG/bMxm80wm81hPb9arcYzzzyDjAxX0sdt27ahoqIirOcY6hQ6vWxb5KjHk5BBkZKSAiujhVWZBKsyCRZVMhxM73+AzeY22XZmQlrY6uQ9zFaRmgVFUvjKJ/2TkpICvV6PlJSUSFelT7RaLU444QQKOgdRrLcZMvg4jpP+RUowvZ1u8dTraTAYAMDvXEtvwRzTU1ZWz6Vaehpm6+98FovF7zH9bTM6Xe/5KjzrYTSGfw1InU6HCy+8UNr2XmaG9I93zhAmTrs84zOcJjFt5MiRAPOzbF8wH9qjUkfghNxpaDa3osXUhgxdeljqI9itsNYclO1TpmaDS6TAM1qMHDky0lXolXsIVqA1AKNtqYZ4FwtthkSXcKzF2B+h9Ha6xUuGW7VaDYfDETCw89TfYa2ewabFYuk1U61n72KgoLentuM9tcgfu93e6zHuejAME9Q8174oLCyUHre2tg7IOYaqY53yfA8WIT7zD1DgSaKSKDKAx/U5G0RW27NHz8bZo2dL20KY5mBaj+0DeKfHHgaq9Fyw2oFJm07ijyiKOHLkCARBwJgxY6JmAXpCSOwIpbfTLV7W9czOzsbhw4eDSmrT38Q37uGkAFBdXY3x48f3eHxVletmgEajkQV8np/zTqczYGKgYJZ/6ezshMlk6rHns6amBgCg1+tDWmfztddewy+//ILW1la8//77PX4/eQbJwfTCkuANlbwh8dmPS2Ke9/R8rg/ZvdgwDVMwe83v5JLTodBnUfBAguIOOqurq1FbW4uKioqACSgIIcSfvvR2usXDXM+pU11Z5A0GQ49zCwVBkJZd6avJkydLj3/66acej21sbJTW+3Qn93HzDP56Gvp6+PDhXuskimKPSYM8fy4nnHBCr+V5KikpwcaNG7Fr1y7s27evx2N3794tPR41alRI5yE9c3r1fDNxeplAgSeJUvKgjguix3OgeCcWUqZm0/xOEhRRFFFRUYHq6mppX01NjXShQgghwehLb6dbPMz1PP/886XH7777bsDjvvzyy36vM3n66adDqVRK5+ppeO/rr78uLZVyxhlnyJ5LT++e7hMoe3ZJSYnfNTP9ef/99wM+995770lLwMyZMyeo8txOPfVUWTmBVFVV4auvvgLg6lWdOXNmSOchPeOrG2XbSnt89oBS4EmiTkVFhZ8ez57nv7VbOvDpoW/w7ZFt2F6zC/uaysJSF2dnCxytNbJ9itQsKNPClzGX9F9FRQUOHToUVVn23EGne/iTJxqiFHnR2GZIdLNardK/wdSf3k63WO/1nD17NsaNGwfAFYB9/vnnPsccOnQIjzzySL/PNWzYMMyfPx+Aa6jt3Xff7fd3vnbtWrz55psAXEHm0qVLZc979py+9NJLcDqdsucbGhpw3333BV2vr7/+2m/QvXXrVvzrX/8C4Fp/c+7cuUGXCQDz5s1DZmYmAGDNmjV+f7aNjY249dZbpeD2hhtuCGk4L+mdTiGfHxyvY+pojieJOiaTCaJ3j6ey56ZqcphhdlhgdljQYgZ0Si0mDivu8TXBcLTVg1FpINpdXzqMQgVVRh645IxeXkkGk8lkgsPhkO5SR5ooijh8+DBqa2t9nhs/fnyvafHJwIu2NkOinyAIEEVx0KdZlOysgVbX/4v8kp01mD0n8BqY0YxlWTz88MNYtmwZHA4H7rzzTnzxxRc4/fTToVarUVJSglWrVsFms4HjOPA83691vO+9917s3LkT1dXV2LBhA+bNm4eFCxeisLAQnZ2d2LhxIzZv3izV7bHHHkNamnwk1Ny5c/H000/DYrFg586dWLJkCRYuXIikpCTs378fq1evRldXFyZPnow9e/b0WieGYfDwww9j8+bNOOecc6BQKPDjjz/ik08+gSAIUCqVePDBB0MOCHU6HR599FHccsst4Hkef/rTn/DVV1/h9NNPh0qlwr59+7Bq1SppLuppp52Ga665JqRzkN6pnEZo7d2dLEqh96RTsYgCTxKdvL7YFcqeezzNdvlQmARl7ynQg6EZMQH6UxbC0d4AZ3sjRFGAOquQ5neSgCjoJISE0+w5Y2I2YAynqVOn4rnnnsOKFStgNpvx9ddf4+uvv5Yds2jRItTW1uLHH3/sV49ccnIy3n33Xdx2223YvXs3amtr8fzzz/scp9fr8eyzz+KUU07xeS49PR0PP/wwVq5cCbvdjn379vnMobzyyisxbdo0/OlPf+q1TitWrMBzzz2H7777Dt99953sOZ1Oh+effx6zZs0K8Z26nHHGGXj22Wdx7733wmw248svv8SXX37pc9wll1yChx9+uF9BPfEvTWlGtrE7UzCH3jMZxyIKPEnUmTRpEj5BpWyfQttzKvifanbhcOtRJCgTkKDSIl2bGpa6ONobITodUCSlQ5Hkmq+hGlYQlrJJ+EyaNCnSVQBAQWcsiZY2Q2JHMGs6koF1zjnnYP369XjjjTewefNmNDQ0QKVSYcKECbjiiitwzjnnYNmyZQBcwWN/ZGVl4cMPP8Tnn3+Ozz77DHv27EF7ezv0ej3y8/Mxd+5cXHLJJT2eZ/78+Zg8eTJef/11bN26FU1NTUhOTsbkyZNxxRVXYPbs2fjss8+Cqs+5556L2bNn4+WXX8b27dvR0dGBnJwcnHnmmbj22mv7/f1y/vnn47jjjsPbb7+NH374ATU1NeB5HpmZmZg5cyaWLFmC448/vl/nIIElcEoA3Z0o8brAGgWeJOqwLAtWoQDPd0+szpk5pcfX1HbU42BL91wtDafCnNG+dyBDZW+qlG0rktLBJST1u1wSXtFw91UURZSXl/tN5T9hwgQMGzYsArUigURDmyGxhUa6RIe8vDz89a9/Dfi8e33J4cN9czEcOnQopHMxDIMLLrgAF1xwQWiV9Hh9YWEhHn744YDHhFJ+cXExnn322T7VJRhZWVm46667cNdddw3YOcjQRoEniUruLHFuLNvzF77B1inbHp3W/8XhBacdjlZ5EKHKKuh3uST+BAo6GYbB+PHjKegkhJB++OSTT/Dpp58iPz8fN954Y8DevYqKClRWVgJw3fAjhEQXCjxJ1BEFEd7LHPYWeLZbOmTbaQn6ftfD0VIDUeClbYZhoMrM73e5JL5Q0EkIIQMrOTkZmzZtAuD6zH3ggQd8jjEajVi5cqW0TvKFF144qHUkpD8YiOCE7szHLOPs4ejYRYEniTotra0++1iu58DzhNxpaLW0w2DpRLu1A2lafb/rocrMB6PUwNneAEd7A7iEJLBKdb/LJeHX1tYGQRDAsqxPZsGBdvjwYb9B54QJE6QU9ST6RLLNkNjkdDqlrLYKBV0+DaZTTjkFeXl5qKmpwXvvvYf9+/fj3HPPRXZ2NiwWC44cOYJPPvkELS0tAIDFixdjxowZEa41tRkSPBPaMNLQnXzKporPof30V0CiTk2177qHvfV4Xj9jaY/Ph8pcsQudP38B7ahprn+jjwPE+FzMNx7U1NRIS2MMdhCRnp6O+vp6aXg4BZ2xIZJthsQmu91OQUSEqFQqvPTSS7jppptQX1+PkpISlJSU+D126dKlIa2POZCozZBgtdu1qB82W9pmEbvr7vaE/gpI9GEYDB+hAcMwSEpKhiCIUKkGt6may3+G+fAvMB/+BQCgm3AKshb0nu6cDD1paWmYNGkS9u7dC1EUKegkhJABMG7cOHzxxRdYvXo1vvnmG5SVlaGjowM6nQ5ZWVk47rjjsGjRIkyZ0nMyQkKikcWhQn1ykbStcXT2cHTsosCTRJ3hqWkYZdgMlmOhsqnBchw451gAgzfM1XK0VLatzioctHOT0OXl5UnDJiPBHXwKgoCMjIyI1IGEJtJthsQelUol9V6RyNBqtVi+fDmWL18e6aoEpb9t5oknnsATTzwR5lqRaOSA2PtBcYACTxJ1EjgOdZXtsn0TTWZoUlP8Ht9gbEZJ/T5oFGqoOBWS1TpMyhrX5/M7DI1wtNXL9mlHTe1zeWTgRcNQyWioAwke/b5IqGioJAkVtRkSrGRVQqSrMCjoVi+JOoKD99nHKgIvpWu2W9BpM6LJ1Iqazno0GJv7dX7LEXlvJ5uQTMuoEIiiiI6Ojt4PJIQQQggJgYKVX+fG67gKCjxJ1BEcDp99nEoV8Hg7b5dtq7jAxwbDVLZTtp1QOBUMQ38qQ5koijh48CB27dqFxsbGSFeHEEIIIXGEF+TXmUKcXnfSGAASfVRKqNIzAFFwrecpij0GntuO/YKqjlpoFWpoFBqk92MpFVHgYT22T7ZPmZ7T5/LI4HBnlAUQ9jl7oijiwIEDaGpqAgAcOHAADMPQ+pwxbiDbDIlPoscC0zTPkwSD2gwJFueVx0Rg4jNEi893RWLakZYWCBPHg+VYZGdlAQA4rSbg8WWtR3Ck/Zi0PTyp7wGBtbYcosMm26caVtDn8sjg2Lt3r7Q0RjgzGnoHnW4HDx6EXq+HqocbIiS6DVSbIfHLYrFIiWISEobGfCzSP9RmCJGjwJNEHauZR90xC1iGQVtjPRiGwew5RQGP77IZZduFqfl9Prfp0HbZNpuQAnVu4HOT+BUo6GRZFpMmTaKgkxBCCCHhoQzcwRJPKPAkUYfj1DB1uhIMdXW4gko2wAgVURTRbpWvdaTXJPf53JaKXbJtVWYeOJ2+z+WRwaHT6eB0OsOWQVAURezfvx/NzfJEVe6gkzKixr5wtxkS/2hINgkVtRkSLJYbGt9FQ+NdkpgyPDsHQJVsH8v5//B2Ck6cUTgLBksH2q0dMFg6kdbHOZ681QRHS41sn7ZgCs3LiAGjR48OW1mCIODAgQMUdMa5cLYZMjRoNEOjR4KED7UZEiyDtRNA9zrg8bqqJwWeJOqIHkk/AKCnuE/JKXHDjMvDcl5z+U7I/tRZDgnjTgpL2SQ29BR0Tp48GampqRGqGSGEEELilQCh94PiAAWeJOrwvNd9nkHqcTQdlM/vVOiHQUUZbYcMQRCwf/9+tLS0yPZT0EkIIYSQgSQI8drHKUeDz0nU6TpaKd8h8AN+TlEUYa0+INunyRtL63cOERR0EkIIISRSnKIz0lUYFNTjSaJOy7FqwHM9IzHwXaA2iwE7akqg5lRQK9RIUGowbfjEkM9pb6qCYOmS7dMVnxhyOSQyqqqqpEQxI0eODOm1PQWdU6ZMgV6vD2NNSbToT5shQ5PNZpOWxlCr1b2/gAx51GZIsLQK+XzgeM0uQoEniTpWiw2egSfTwxRrq8OKTo/lVBKU2j4FnqLAI/G4c+Bsb4CzvRGCzQTt6ONCLodERkdHh7QmY6haW1sp6ByC+tNmyNDE87wURBASDGozJFhq3gKV0yxtKwVrBGszcCjwJFFH4L2SC/Uw7N3itMm2NYq+ra3obKuHIjEVisRUIH88lGk5YBV0QToUZGZmYtSoUThy5AgAgOM4TJ48mYJOQgghhAyKVIURuZ3diQ052CNYm4FDgSeJOinJKUC9557Akee3R7aiprMBWoUaGoUaek1SyOcTRRHOTnmPlyojL+RySOSMHz++X3eVR4wYAVEUcezYMQo6h4j+thky9NDSGLFv7NixAIATTjgBb7/9dljLrqmpwZw5cwAACxYswBNPPBGRNuOvHiT6pWWk4ZiyVtpWcfH53USBJ4k6WqUAgJO2FT1MuN7deBCNxu47RAX60ANGwWaG4JD3nCpSMkMuh0ROOIZLjhw5EllZWXRxOUTQEFsSKpalZHMkNNRmSLAS8rKQkNkdeGrUfRvBF+3oL4JEHcHpNdS2hx7PTps8IVBxxqiQz8d3tcm2WYUKrEYXcjkk9lHQSQghhBAyMCjwJFFH8FrHM1DgaXPaYXHIJ1/rNckhn49VJ0CdPQqKxFQwDAMuKZWG38Uhd/Zao9HY+8GEEEIIISSsaKjtb0RRxKeffoqPPvoIBw4cgNlsRmZmJmbOnIlly5ZhypQp/S7/m2++wSeffILdu3ejra0NSqUSubm5OOWUU3DllVciJycnTO8mttltVgDdQwwCBZ5OwYmzR58Kg6UDBmsn2q0d0GtTQj6freEIVBl5UBTNAAQeojM+J3THs87OTgiCAJZlkZzse/OB53ns3bsX7e3taGtrw7Rp05CYmBiBmpJo0VubIcSbZ4ZSjuN6f8Eg8Vx4nmXppmk0idY2Q6JPk7IV34+tkrb1AoO5EazPQKHAE4DVasUdd9yB77//Xra/trYWtbW1WL9+Pf74xz/ihhtu6FP5HR0duPPOO7F161bZfrvdjrKyMpSVleHdd9/FI488gksuuaSP7yJ+dHWZAHRfCAbqfNSpEnDDjMv7dS7BZkHj6r8DogA2IRma3GJkzL0RrDqhX+WSwVVZWSktjeF9k8gz6AQAp9OJ0tJSTJ06lYLPIaynNkOIP55rMiYkRMd3hN3B4/VP98FidUKrUeCaCydCpaQAJ1pEY5sh0anFIEBonCxtm1hbD0fHLgo8AaxcuVIKOkePHo0lS5YgIyMD+/btw//+9z+YzWY888wzyMrKwsUXXxxS2YIg4NZbb8XOnTsBADk5OVi4cCFGjRoFk8mELVu24Ouvv4bdbsc999yD5ORknHXWWeF+izFFCQf05nqAYSCCgU4p9P6iPrLVHwZEV/mCuRPmihKa3xlHvINON0EQIAgD164IIWQwlFcb4HAIqG7qQuHwFJRXGzBxVHqkqzWg6uvr8dprr2HTpk2oq6uDVqvF2LFj8bvf/Q4XXnghXnnlFTzzzDMAgEOHDoVcfnt7O95//3388MMPOHr0KMxmM9LS0jBlyhTMnz8f5513XtBlrV+/HqtXr0ZFRQVYlkVhYSHmzZuHpUuX9ppToLy8HB9//DG2b9+O+vp6dHV1QaPRIDMzEzNmzMBll12GiRNDX7ecRCdjJ4PMhtHStlMVn9OChnzguXXrVnz66acAgJNOOgmvvPIK1Go1AODCCy/EokWLcPnll8NgMODxxx/HnDlzQuolWbNmjRR0nnTSSfjXv/4lu+u1ePFifPvtt7j99tvhdDrx4IMP4pRTTpHqMBQN0zEQW38G4Bpmm5CVMWDnstbIv5TUWQVglUP3Zx+rsrOzwfO8bChToKBToVBgypQpNLxyiPPXZgjpiVKpjLolePYeaUGXxQ6z1Ykuix37jrTGdeC5fft23HzzzTCZTNI+u92OHTt2YMeOHdiwYYO0ZEpfbNiwAffddx86Oztl+xsbG7FhwwZs2LABM2fOxPPPP4+0tLSA5fA8jz/+8Y/44osvZPt3796N3bt3491338Wrr76KgoICn9cKgoDHH38c7777rs8NUofDga6uLhw5cgQffvgh7rzzTtx00019fr8kejgbDQC6/3a11vi8OT7kA8/XXnsNgOti9NFHH/UJ+EaPHo3/+7//w5///GcYDAasWrUK11xzTdDlf/DBBwAAtVqNp59+2u9Qi7POOgtXXHEF3njjDTQ2NmLTpk0455xz+vGuYpvIadGq614WJZHT+j3umKEWexoPQqvUQKvUIFWjx7jM0X6PDcRWWybbVucVh15hEnHDhg2TbfM8jz179sBgMMj2KxQKTJ06FUlJoa/3SuKLd5shpDfRtgRPU5sZze0WtHe6huS1d9rQlGBGU5sZw9Lib1jn3r17ccMNN8BqdSUVnDNnDs466ywolUrs2LEDa9euxZdffukzrSlY3333He644w7wPA8AmD17NubMmQO9Xo8jR47g448/Rm1tLXbu3IkrrrgCq1atgk7nf4TUF198AYfDgYSEBFx22WWYNGkSWlpasHr1apSVlaG6uhrXXHMN1q9f79OZ8c9//lNaYzQtLQ0LFixAYWEh1Go1amtr8fnnn6OszHXt8o9//AOzZ8/GpEmT+vSeSfRIEuQhGcdHqCIDbEgHngaDAdu2bQMAnHrqqcjPz/d73Lx58/D444+jtbUVX375ZdCBp9FoxO7duwEAJ598MjIzA68Nef755+ONN94AAJSWlg7pwFPg5X9tge4umx0WmH77BwB2pyOkwFMURVi9Ak9Nbt/vlJLoQEEnISQe/fBrDY7WdUjbDqcAp1OA0WxHgkYBo9kOp1PAJ5sqoFR0L1pQmJOC048PfY3raPPoo4/CarWCYRg8/vjjuPTSS6XnLr74YixYsAA33HADurq6eijFP6PRiHvuuUcaBfG3v/3NZ2rVddddhzvvvBPfffcdKioq8OSTT+Lhhx/2W57D4UBmZibefvttFBYWSvsvv/xy/PnPf8ZXX32Furo6vPTSS/jLX/4iPd/W1iZ1iOTm5uKjjz5CamqqrOwbb7wRK1euxMcffwxRFPHZZ59R4BkHVKw8JIuecRXhNaSXU/n555+lYQwnnXRSwONYlsXMmTMBuILCjo6OgMd6am9vx+TJk5GZmYlRo3peXzIlpTsbq/cQj6FG5L3W8QyQpc/ilC+lolWGtgajo60egkX+BaXMLgxwNIkFFHQSQuIRzwvYd6QVR+s6pX81TUbUtZjAsAzyhiWBYRnUtZhQ02SUHbfvaCt4PraH7f3000/YtWsXANcUJc+g023GjBmyIC4U//vf/6TvjWuvvdZvPg+tVotnn30Wubm5AICPP/4YjY2NAcv829/+Jgs6AVev+eOPPy51RHz00Uew2bqTyHz33Xew212Z9W+55RafoBNwXZN6Jrs8evRokO+SRDNekIdkAhOfIVp8vqsglZeXS4+Li3seYjlmzBgArl4y9xCH3uTn52PVqlXYsmULVqxY0eOxFRUV0mO9Xh9U+fFK9JrTEKjH87sj27Cv6RAq2qpQ29kAUQzti9VytFR+HqUGCp3vhzyJDTzPY/fu3RR0EkLiTnuXDSKABI0CbZ1WNLWb0Wwww+HkMTI7CUoFi5HZSXA4eTQbzGhqN6Ot04oEjQKi6Hp9LPvuu++kx1dddVXA4xYsWNCna6gffvgBgOv7oqdRbQkJCbjiiisAuHo1N23a5Pe4oqIinHrqqX6fS0xMxIIFCwC4Vj349ddfpecuuugifP3113j11Vdx/vnnB6xHXl53D7Z76DGJbdo0+fQPkYvPQanx+a6CVFtbKz1238EKJDs7W/Y6dw9ouHz00UfS46lTp4a17FjT2SHv8Q0UeO5rKkOXvTvBwHHDJ4R0HmvVPtm2Qj8MnCb+5sUMBbt378bRo0dhs9lkc/cUCgWt2Un82rt3r7ScCg1TI8GwWCxSciGt1n/ugYGSodfiktNH46ufqqBWcahpMsJkcSAzNQEJGtfc0wSNEpmpCahu7IJOq0TesESk6NQ496SRyNAPbn3DzZ2kMTU1VeoI8EelUuH444/Ht99+G1L5paWuG9FjxoxBenrPyZlmzZolPd69ezcWL17sc8wJJ5wAIHCbOf7442VluMtUKpUYOXIkRo4c6ffcDQ0N2Lt3L3766SdpH8/H6WTAIUaZmgyg+5qW4eJzsO2QDjzb2tqkx/6GM3jyvIPm3aPSX5s3b5bu5qWnp+OUU04Ja/mxxuDUoiUhE4AIBiKcfka6OwVeFnQCQGHqiJDOY2uokG2rhvn/oCfRjed5VFZWwmQyyTKUKpVKWquTBOReUoeW1SHBEkURoihG7Py5mYm47JxibNhxDAqORXVjF9o6rUjWqaRj2jpc2/lZScjPSsI5J4yQAtNY1tTUBMC1JF1vRowI7VrAaDRKw10D5frw5HlMS0uL32PcnRmB2ozn+2hubvZbxq+//opt27ahoqICVVVVqKqqgtEYn0tsEIBV6eAZeIpsfGZcH9KBp+fwhN6WL1Gpuj/Ywzmsob6+XjYn4eabb+51bad4ZxE16NJ4LKEimn2O6bD6zoNN1aT47AtEsFvgNMg/7DUjxgdfSRI13HeSrVarFHhS0El6o9FowHFc1GUqJdGLZdmIL6eSoFHizOn5eOvz/XDHM60dFljtPDQqDmAg7T9zen5cBJ1A9w3/YK6PQr2G8lyaJZiebM/yLRZLj8cEajOe5/Gc4wm45mzec889KCkp8Vt2Tk4OzjjjDLz33nu91pXEDs5rDXmGjc8QLT7fVZCcTqf02DOw9Mfzec/X9UdbWxuuvfZatLa2AgBOOeUUae5AJB0+fBijR4+WzYmz2WzSQsx6vd7njuLhw4dhNrsCxClTpsiea2lpQV1dHQDXnULP3mWe57Fvn2vIa1JSEgoLC6FQKAGPkSOCKGD37t2YMGECFApXk2UZFqfnn4iG9iYYnSbY4ECiWv5Hu2fPHoiiCK1Wi6KiItlz1b9uAuBxF5JhoC1wDXE2Go04cuQIACAzMxPDhw+XvfbAgQPSEL3x4+XBan19vXT3ctSoUbLAx2q1SvOD09LSZHM0ANecY4vFAoZhMHnyZNlzzc3NqK+vB+C6m+vZA+90OrF//34AQHJyss+6YEePHpWy/E2cOFHWK9je3o7q6moAri+zjAz5mqnurMwJCQk+w5uOHTsmXQyMHTtWdvOmq6tLSniQlZWFrKws2Wv3798Pp9MJlUqFcePGyZ6rq6uT7iKPHj1alq7eYrFIc7PT09ORm5sLlmUxZ84c7N+/H4cOHUJLSwsKCgp8gs6mpiY0NDQAAAoKCmTreDocDhw4cACAK9GX9zCniooK6eJk0qRJYNnu6fFtbW2oqakB4Jp347m2myAI2Lt3LwBAp9Nh9Gh51uWqqiopWdn48eNlQVBnZycqKysBuIb6ey//sXfvXgiCAI1G4zNHvba2VvpcKSoqkl3kmEwmaU55RkaGTw/CwYMHYbfboVAoMGGCfPh6Y2OjlEyjsLAwYp8RniorK6WEbJ6fEYDrYvXYsWMAgOHDh8syixcXF2PPnj2wWq0oLy/3+YyoqamRRsUUFxfLLjbpM6JbLHxGeCorK4PVagXLsj5DrD0/I7xvSHj2jnv+/btZrVbpea1WKws0nE6nlDBGpVLJ2qgoilLwwrKsT9Bks9mkoZQajQYsy6K53fV3ZLE54HAKMJptSNKp0dBqA8MA3G/1q2loR8HwJL/l2u126VrGXa4bz/NSMKRQKHyuj3oacuxwOOBwOAC4buh7tiVBEKQb9xzH+dzw9/wZei89p1ar4XA4YDKZ4HQ6A/4MOY7z6Rzw/Bl6876e8w4k3Z9Znj9D9z7A1U7MZrPPz9dqtUrH+fsZeo648/wMaGpqwuWXXy49n56ejlmzZmHcuHEoKipCcXEx9Ho9eJ73G3hardaAnSOev5ue2qG/343nz7Cn9q1UKn3+dvz9DP2V21M79FduT+3Qs3331A79/W7c7dBfuTzPw2KxYPfu3WG/jth/7CCA7p+7TXRI9Y3EdUSgnvj+GtKBp+cfgMPh6DH4dP9RAb0HqcFobm7GNddcI128jBw5Ek8//XRULEzN87zP8DNRFKUPLH8f4E6nU3remyAI0nP+hrW5n3N/SAhew1IYuM7tOVwlVZuCy8dfLP388vLywHplAHO/xvPDVXqPNQdk25wuFcrUYT7vNVB9g3mv3sNrPMv1d/PCXa6/NtCfcsP5u/HE83zAOnmW66+9OBwOOJ1OvxdwPZUbqB2yLIsJEyagvr4eOp1O9iXjr9ye2vdg/gw9y+3Lz1AQhF7fa7A/Q+86+RseFuzPcKA/IwKV29N7DVRuoM+I/pZLnxHR9RnhWa7D4ei1XH894e5zBRpu29P+nl7b0/Bdf0M1m9otcDoFOJ0iOJZBToYOSTo1LDYeNU1GOHnXMivN7RaMzE4MeM6+1qmn58P9Xt2ysrJgNBqlmyuByhVFUbqJFUy5gOtiXq1Ww2azSTdZ/JXr5r6QB1zrAfsru6mpqcdzum9WAvIcIi+88IIUdC5cuBD333+/7FpVEARYLJaAqx/09l7783vrS7mezw3E301PIxAG8r26v3/97Qf69jlr4+3wDDw9r4UjcR0xUNNQhnTg6XlHzWazBR149jYstzfHjh3D9ddfj6qqKgCuO/Gvv/66rKckkjiO8/lSZhhG+iL210AVCkXAIWssy0rP+fuydz/nvvjzTk7L/HaM94eLZ50ClSuKot96Ma1Vnv2dUGbmg/ktcA2mXM//PXm+157q6+9CV6lUwul0+v0Q7U+54fzdePIcpuhdJ89y/bUX9+8z1HJ7aocsy2LkyJFSb0ZP5fbUvgfzZ+hZbl9+hoIg+K1XX3+G7joJgtDr7yaSnxGByg3nZ0R/y/X83xN9RviWO1ifEe5yeZ7v9TPCH/e5Al3o9rS/p9f2dMPZ87Vuze1mWOxO6LQKZKcnIFmnxIzx2Sgpb5USD1nsTrR0Wv2+vr91ClSvgXivblOmTEFFRQU6OjpQUVGBsWPH+rwWcF14u5ddCaZcoPvG5a5du3D48GG0trZKCYb8vRfPxD5FRUV+y96zZ0+P5/z555+lx54JJd35PjQaDe666y7/1y8MI1tdwTPY6O299qeN9qVcz+cG8++mv+X29H7dn0vhvo5geK9g12MzEtcR/j4jw4ERIzlTPsLuv/9+fPDBBwCAjRs39jipfNWqVfjrX/8KAHj66acxf/78Pp1z9+7duOmmm6RhcLm5uXjzzTeDmtA+UIxGozREDnANiYrk3Lg3VryBY3z3cK40hRm3PbkkbOWLoojKp6+AaO8ejqKfvRhpp18WtnOQgeF0OgMGCoQQEi7l5eXSkE7vYdiRtvtwM77/pQYsy8gSCJmtDmzYcQzVjV0QBBFnTM/DlDGZvRcYAzZt2oTf//73AIBly5bh/vvv93vc559/jjvvvFPa9ry2ASAFrCeccALefvttaf9///tf/P3vfwcA/P73v8ddd93lt3yTyYQLL7wQdXV1YFkWGzdulIZz19TUYM6cOQBcF+1r1671CZAB17DK888/Hx0dHRg+fDi++eYbKSiYNGkSHA4HEhMT8fPPPwcMfm666SYpSD3uuOPwv//9T3rOsx4LFizAE0884bcMEpqB/kx48+n/oqq+e8oBJ1ix8rlFYT9PsAYqNhjS63h6znMJNHzDzT3vAwguq5o/mzdvxlVXXSUFnWPGjMH7778f0aAzGnkPB/D3ubuvqQyfHfoG3x7Zih+rf8HR9mrfgwJwGtvBahIBj6G5CaOG9hI2scDpdKK0tBSlpaU+w1Vqa2tx7Ngx2RJJhPSE2gwJld1uh81mk42AioQpYzJx1QUTcMbxebjo1FGy5VTmzx6F04/Pw1UXTIiboBMAZs+eLc31ff/99/H555/7HHPo0CE88sgjfSp/8eLFSElxJSh87bXXsG7dOp9jrFYr7rrrLmko7yWXXBJwKT5BEPCnP/0JdXV1sjZjNptx5513SnPyrr76allPlLs8o9Ho9z06nU787W9/k61r6p2ciMQmreg1iitOuwWH9FBbzwm65eXl0rpL/riTFTAM06c7Hd9++y3+8Ic/SBfMU6dOxb///e9el3EZipy8AHj8/TF+llMx2c0wOSwwOVyT4TUKNYDgAnjRbkHS1LMgCjx4UwcEkwGqnOi6o03kHA4Hdu/eLSVAKS0txdSpU6Wez9bWVimZS29r8hICUJshoXOPuGAYJiy5HvojJVGNlETfaT8sy2Dy6Aw/r4htLMvi4YcfxrJly+BwOHDnnXfiiy++wOmnnw61Wo2SkhKsWrUKNpsNHMcFHE4dSHJyMh5//HHcfvvt4Hked999N9atW4c5c+YgJSUFlZWVWL16tXSjauTIkVi5cmXA8tLS0nD48GEsXrwYl156KQoLC9Ha2ooPPvhAmkd6wgkn4Morr5S9bsGCBXjuuecAACtWrMC2bdtw3HHHQaFQ4OjRo1i/fr3PzTL39yKJbWrBDo7vvqnFCZG9wTVQhnTgedxxx0GpVMLhcGD79u1YtmyZ3+N4npcWLx43bpwsi1UwduzYgTvuuEMKOk855RS8+OKLPlnbiJv3nB3fI6xO+R0+rSL49OnODlemLobloEhKgzJ/HFhuSP8pRDXvoBNw3Q0+ePCgT2ZPQggh8Wnq1Kl47rnnsGLFCpjNZnz99df4+uuvZccsWrQItbW1+PHHH0O+OXD22Wfjn//8J+69914YjUZs3rwZmzdv9jlu1qxZePbZZ3scdnjttddi69at+PHHH/HKK6/4PH/KKafg+eef9wmOr732WuzcuRNbtmyB0+nE6tWrsXr1atkxHMfhlltuwYEDB7Bx40bU1dXBaDTS8mExLlXRgREdjdI2Bwo8405ycjJOOukkbN68Gd9++y3q6ur8DqP97LPPpCxjc+fODekcra2tuOOOO6RhFmeeeSaef/75iN8tjWas1wRohvEdb/DD0Z/gFJ3QKDTQKNSYPMx3HkUg7sDTTZESP8OR4o3D4UBpaanPotkqlUo2YqGoqCji6+uR2EJthoRKo9FQm4mwc845B+vXr8cbb7yBzZs3o6GhASqVChMmTMAVV1yBc845R+pECLWTAADOPfdczJgxA++99x6+//57HDt2DFarFdnZ2Rg3bhwWLVqEU089tdc2oFQq8d///hdvvfUW1qxZg6qqKqjVaqmM+fPn+y1DpVLhlVdewapVq7Bu3TqUlZXBbDZDp9MhLy8PM2bMwGWXXYbRo0fj3XffxcaNG8HzPL766issXLgw5PdLokcSpwLQnXvENxVQfBjSyYUAYMuWLbjuuusAuHpAX331Vdldo8OHD2PZsmUwGAzQ6XTYuHFjSNln//jHP+KLL74A4MrK9s477/Q7K264RVtyoa8+2Yftm45K21Nn5OLipcdJ26Io4vJVt4MXu+eC3nfabZg2fGKvZYsCD8PWj2RZ4JImnw5lanYPryKR0FPQOW3aNBoxQAgZMNGcXIj07Pzzz8fRo0cxdepUfPjhh5GuDokTA/2ZsOsf/8Te0u5lclSw43ev923OcjgMVGwwpHs8AdeE9fPOOw9fffUVdu3ahYsvvhhLly7F8OHDsX//frz//vvSgq8rVqzwCTq3b98ujdH3zpJWUVGBL7/8Uto+//zz/Q7b8KbX6zFjxoxwvL2YJHillFYo5fd9uuwmWdAJAPkpwSV84k0d8tTjYKBISu9jTclACRR0qtVqTJ06lYJOQggZQj755BN8+umnyM/Px4033oisrCy/x1VUVEjrbE6YMGEQa0gICcaQDzwB4Mknn4TJZMKWLVtQU1ODp556SvY8wzC47bbbcNlloS23sXbtWlmQ407V3RvvAHao8e6E9x6OYrB0yJ8HgxRNcENquMRUpMy8ALzJAN7YDsFuBaOgpTmiSU9B57Rp06DVaiNUM0IIIZGQnJyMTZs2AXBdIzzwwAM+xxiNRqxcuVK6hrjwwgsHtY6EkN5R4AlAq9Xi1Vdfxfr167F27VocOHAAXV1d0Ov1mD59Oq688kpMnz495HI9F/glwbPb5UtlsKw88NQo1Dh3zGkwWDrRbu2AU3BCwQY3Gr51w2sQrGZocouhzhsLzQi6IxpNHA4HSkpKpFEGbr0FnSaTSZp7pdPpBqOqJMZRmyGh8lzqy99i7GTgnHLKKcjLy0NNTQ3ee+897N+/H+eeey6ys7NhsVhw5MgRfPLJJ2hpaQHgWh4lGkaOUZshwbLCgJHt+6Rtuyo+55JT4PkbhmFw0UUX4aKLLgrpdSeeeKLPAsVu//73v8NRtSHHvb6VG+MVeA5LzMD105eGXK4oijDt3wbeZIBxz/cAgMyLbkfS5DP6WFMSTna7HaWlpSEHnYBreJV7aYwpU6YMdFVJHKA2Q0Jls9mkmxU03H9wqVQqvPTSS7jppptQX1+PkpISlJSU+D126dKluO+++wa3ggFQmyHBMjg4tKeMl7ZFhrLaEjIo1FoOiSkKQHR92ej8rFXWF86OZvAmg2yfJrc4LGWT/gkUdGo0GkydOpWG1xJCyBA3btw4fPHFF1i9ejW++eYblJWVoaOjAzqdDllZWTjuuOOwaNEiupFEYpLJocXhjGnStsbRGfjgGEaBJ4k6YzUG5Gd2glNwSEpOQsYwvvcXBcFWKx/6zGqToEgdHpaySf+Ul5f7DTqnTZsGjab3NVozMjLA8zwNZSJBozZDQqVQ0CVTpGm1WixfvhzLly+PdFWCQm2GBMs+RBYZob8IEnVqt+xBu1GQtkc3GJA1uXudzp21pWgytkCrdK3hOUKfi7zk3gNIa618SLQmt5jWY4sSRUVFMJlMMJvNAEILOgH4XX+XkJ5QmyGhovW3SaiozZBg6VRDY2QXG+kKEOLD66aP9xxPk90Mk8OCFnM7ajobYLKbgyrWWrVftq2mYbZRQ6VSScukhBp0EkIIIYTEMjUr7wuM124R6vEkUUeE93Iq8vsjVqdNtq1V9B6gCE477M3HZPvYhOCWYCGDw71GpyiKFHQSQgghZMgQBHmoKcbpiDwKPEnUUegSwfKO33o+RSgS5EHIpsrtULAKaJVqaBRqiDiu1zJt9RWAKMj2qbMKwldpEhZqdXgSSRFCCCGExAoG8mtdnonPNeYp8CRRhz31FCjbrWBZFhkZGcgsypCeM9stONxWKTt+wfi5vZbpPcyWTUiBkhILDTqbzYba2loUFhaGdX7twYMH4XQ6oVAoMG7cuLCVS+IXtRkSKovFIj2mTNskGNRmSLDis3/TFwWeJOo01prQ2W4Dw7IwdbYhMVmDkaPSAQAGm2966eykzF7LtFbLA09FSgZYbWJ4KkyCYrPZUFJSAovFApvNhnHjxoUt+LTb7XA4HBAEofeDCQG1GRI6URSlNRkJCQa1GRI0RXz2cHqjwJNEnbZmGzrbHQCA1kYbhmV1B4gGS4fsWK3Cldm2N7aGI7JtVeYI+iIYRJ5BJwA0NjYCQNiCT4VCAVEUKXU9CRq1GRIq92cVfXeQYFGbIcFilUMjtwV945Koo1apATikbc8P7GR1Es4dcxoMlk4YrJ1Qcb3fIXJ2tkIwy3tKNblFYasv6ZnVakVpaalsyBEAdHZ2wul0Qqns/12+CRMm9LsMMrRQmyGhoqGSJFTUZkiwuqxdANIiXY0BR4EniTreS+h6LqeSlzIc109fGlJ51pqD8vIUSqhyKPAcDFarFSUlJbBarbL9CQkJmDp1aliCTkIIIYSQWOYQnbJt72vheEHreJKoIwrey6n0b4iK5Zh8fieXlA5lSu/zQkn/9BZ0UgZbQgghhBCfhRfiFgWeJOo4OuTzOB1trf0qz1Yt7/FU6oeB1VBioYHUU9A5bdo0CjoJIYQQQn7jEB29HxQHaKgtiToOswVQJHVvGwzS4y1VO9Bh7YJGoYZWqcGotJHITuy591I3/mQwmgTwna1wdrVBlT2KJvoPoN6CTpVKFfZzNjY2gud5cByHrKyssJdP4g+1GRIqh8MhZSilaQIkGNRmSLDUXPivjaIRBZ4kCsmDQs8g0WS3wORw/YMFyEnK7rU0TpcM7chJAFypzbUjJ4a3ukQSKOjU6XSYOnXqgASdgCuIcDgcUCqVFESQoFCbIaGiIIKEitoMCZZa4MF4jLdl43TsLQWeJOp4T6hmPQaEW5zygEar7HnIpsg7wRvbpW2GYaDUD+tvFYkfFosFJSUlsNlssv0DHXQSQgghhMSyNEU7CtrrpW0OdgBLIlehAUKBJ4lC/ns8bU4bth37BRqF+rehtmqwTM/TlHmTAaLYHcoyYKBIjP901YMt0kFnYWEhBEEAy9K0dRIcajMkVGq1Wuq9IvFt+fLl2LFjBwDg0KFDfS4n2tvMwYMHUVVVhfPOO0+2v6amBnPmzAEALFiwAE888UQkqjekJOsSAaa7c4WL06+mOH1bJJYpRbtsO1HraqYd1i5UGqpxsOUwShr24cfqX6FguR7LcnbKExNxumQwChruEm4OhwNOpzwV+GD2dCYlJSElJQVJSUm9H0wIqM2Q0HEcB4VCAY7r+XuHELdobTMOhwPPPvssFi5ciLKyskhXhwBIKRqBxOGQ/iWPiM8kjNTjSaKO6NXjyXGu7Q5bl2y/klVAr0npsSyGU0ChSwFv6oQIEVxSengrSwAAycnJmDp1KkpLS8HzPBITE2mdTkLIkGKz2XxGfcQ7tVpNWcpjUGNjI/79739HuhpkCKLAk0Q99rc7hQZrp2y/XpPc4/AVZ2cruIRkJB1/HsA74TS2gVHQPMOBkpycjClTpuDIkSOYNGkSBZ2EkCHFZrOhs7NTNr0jnjEMg+TkZAo841BeXl6/hhgTEggFniTqePd4uqdxpmtTcf6YM9Bu7YDB0gG9tufezo6dn6Hjp0/AJaZCnVuMxImnInH8rIGqNgGQkpKCadOmDfp8FpvNJs2joYsgEgxqMyRUguCRcTLA3GBRFGE2mwerShGVkJAQ6SpEvWDaDCEA0K7owL78Gmk7keUwN4L1GSgUeJKo45vV1vVhPSptBEaljQi6HFuta94Cb2yH+dB2qDLyAQo8+83pdEKhCPzREYkkCocOHZKWxpgyZcqgn5/EHmozJFRWq1W6WUFBFwkGtRkSrCaTDcec+dK2Do4I1mbgUOBJoo6St0PJWCAyDAAGHKcLuQyRd8JWXyHbp8krDlMNhy6z2YySkhKMHDkSubm5ka4OIYSQIWLs2LEAgDvuuANLlizBww8/jC1btgAA8vPzcf3112P+/Pmy12zbtg0fffQRfv31V7S0tECr1aKgoABz5szBsmXLkJiY2Of6tLW1YfXq1di6dSuOHDkCg8EAhUIBvV6PyZMnY/78+Tj55JNlr7FarbjoootQVVUFAFi5ciWuvPJKn7J5nsdll12G3bt3AwAeffRRLF68WHaM3W7HunXr8MMPP2Dfvn1ob2+H0+lESkoKioqKcOaZZ2LJkiXQaDTSazyz1bq9+OKLePHFFwEAb731Fk488cSgs9o2NDTgnXfewZYtW1BdXQ2Hw4GMjAwcf/zxWLhwIWbN8n+zf/v27dL7fvfddzF9+nSsWbMGa9asQXl5OcxmM7Kzs3Haaafhuuuuw/Dhw/3/EuJIV4cSeUenSdtOtTFylRlAFHiSqDO5ZTMEJw8AYCAid9gNIZdhb6yE6JRnx1XnUODZH+6g0263o7y8HACiJvjU6/XgeT7qMgeS6EVthoSK2kp0MBqNWLZsGSorK6V9Bw8eRHJysrRttVpxzz334IsvvpC91m63o7S0FKWlpXjzzTfxwgsvYPr06SHXYe3atXjooYd8hlXb7XaYzWbU1dXhq6++wmmnnYbnnntOGiWk0Wjw2GOPYfny5RBFEf/85z9x/vnnY9gw+fri//3vf6Wg8/TTT/cJOg8cOIBbbrkFdXV1PnVrbm5Gc3Mztm3bhnfeeQdvvPEGcnJyQn6PvXnvvffwxBNP+CTUqq2tRW1tLdavX4/zzjsPTz75JLRabcBybDYbrrvuOmzdulW2v6qqCm+//TZWr16Nf/3rXwGD2Hhha2oHoJe2Ndb4nCtOgSeJOk0J+XB4NM383/74vj2yDRaHxbWOp1KNsemjkaHzvyantVaeHlyZlgMugZZN6CuTyYTS0lLY7d3BfHl5OZRKpc8XZiSMGBH8EGxCAGozJHQ0Fzg6vPPOO7DZbJg9ezbmz58Pg8GAH374AbNnzwbgmld56623Sr2hOTk5WLhwIUaNGgWTyYRt27bhyy+/RGtrK6655hp88MEHGD9+fNDn37p1K+655x6IogiVSoULLrgAU6ZMgV6vR0NDA3766Sf88MMPAIBNmzZh9erVuPrqq6XXz5w5E0uXLsV7770Ho9GIv/3tb3juueek5ysqKqQeSL1ej0cffVR2/k76rcQAAHQNSURBVLa2Nlx11VXo6OgAAJx88sk4/fTTkZmZCYPBgAMHDmDt2rVwOByoqqrCI488gn/9618AgPT0dLz00ktobW3F/fffDwCYN28eLrjgAgBAUVFRUD+D9957Dw899BAA1/Sa8847D7Nnz0ZCQgIOHjyIVatWob29HV999RXa29vxxhtvBLxx88gjj+Do0aPIzc3F4sWLMXLkSDQ0NOCDDz5AZWUlLBYL7r77bmzYsKHHADbWJXolxFY4KfAkJCJYztVMTXYzLE4rTA4LYAEKUwNfOFqOlMi2VdmjBrKKcc1f0Am41kFMS/Mf+BNCCCEDwWaz4YwzzsDLL78s5RTwDOzcQz8B4Oyzz8YzzzwjG266ePFiLFmyBDfffDMsFgvuuusufPrpp0HnJ3jmmWcgiiKUSiXefvttTJs2Tfb8tddei9WrV2PlypUAgHXr1snqBwB33XUXfvjhB9TW1uLzzz/HwoULMXv2bPA8j/vuu0/qRXzggQd8bu6+8sorUtB5zz334JprrvGp41VXXYVFixbBarVi06ZN6OrqQlJSErRaLc4++2zU1HQnsRk1ahTOPvvsoN474Bqu+/jjjwNwJZh66aWXZEOKL7jgAlx77bW44YYbsHv3buzYsQOvvvoqbrzxRr/lHT16FKeddhqef/55WWC5ZMkSLF26FGVlZWhubsYPP/yA888/P+h6xhoNJ191YfCzZQwOSrFFoo93KnqWgSAKsPHy20EaReC7z97zO1klLaPSFyaTSRpe68m9bmdPSYYIIYSQgfD73//eb6DodDrx2muvAQCys7N9gk63WbNm4frrrwcAHD58GN99911Q562ursa+ffsAuHoKvYNOt0WLFiEzMxMAZEOC3XQ6HR5++GFp+9FHH4XD4cCbb76JkpISqfx58+b5vParr74C4JrqctVVV/k9f1FRkRRMOp1OHDt2LKj3F4z//ve/cDhciW9WrFjhM48VAFJTU/Hiiy9Kc2hff/11WK1Wv+UplUo88cQTPr2ZiYmJsoB9z549YXoH0UkQ5O3Ze4WHeEGBJ4lCXsupMCzaLR3YWbsbexsPobz1KKo76qBg/Q/b4E0d4E0G2T7NiOCH0RAXd9Dp/oJxc6/XSUEnIYSQwdZTJurS0lLU19cDcAVu/oJOt4ULF0qPv//++6DOnZeXh02bNuGdd97B7bff3uuxAAIGXLNnz8all14KwNXr9+STT+L5558HAGRmZuKBBx7w+7qPP/4Yq1atwj/+8Y8el2hxnx8ALBZLj3UNhXsYsV6vl/0MvWVlZeGSSy4BALS3t+PXX3/1e9yMGTOQnp7u9zl3QikA6Orq6mONY4MiUT6CjOficy10unIkUUcURVnsybIMjHYTjrbL79jdfuLVfl9vqdor38EqoBkxKcy1jG9GoxGlpaUxE3QePnxYWuZlzJgxka4OiQHUZkioPJfG6CmgIQMrPz8fKpX/UUzuhDyA6+bpxo0beyxLo9HAarVi7969PR7nxjAMsrKykJWV5ff5jo4OHDhwAD///LPU08nzPKxWq982c++992LLli1oamrC22+/Le1/7LHHoNfr/Z4jNTUVqampfp+z2WwoKytDSUkJvv32W2m/53qi/dHc3Iza2loAwPTp0wP+HtxmzZqFd955B4Drd+Ovd3T06NEBX5+U1J2bw/t6JN5os9KBwyZpm1XEZ49ndF09EgKgQ50JnnU3TREWhwjRLs8cp1NqoVL4/8CzHN0t21Ykp0GR7P9uGvEVKOhMSUnB5MmToy7oBFwZd91rMhISDGozJFSCIEiBJ4kcz+y13hobG6XHH3zwAT744IOgymxrawu5HseOHcO3336LQ4cOobKyEseOHUNLS4vfYwMFfsnJyXjwwQdxyy23SPsWL16M008/vdfzd3R0YOPGjdi7dy8qKytRVVWF+vp6v+cSvacw9VFra6v0OD8/v4cjXTx7XQP9bHpa0sYzIVG43kO0YjkVgO7AE3H6ORN9V5BkyGvR5UNgu5tml1mAYJMPsUhWB85Qa6srl20rM/PBBBiWS+RiMegkhBAydPTUy2Y09m3tQ5PJ1PtBHsc+9NBDWLdund9gKDk5GSeffDL2798f1NzKoqIiKJVK6Xs3mGV7XnnlFfy///f//A6hVSqVOP744yGKInbs2BHEOwqe588pmAyznscEGu5L1xUuXHI6gHZpW+TiMzcJ/bZJVPF3p45lWaQnpOPc0aehw9aFTpsR6Vq939eLAg97a61snyZ3rN9jiZzRaERJSQmcTqdsfywEnYHm+xASCLUZEqqEhIRIV4H0wnM463/+8x+cdtppYS1fEATceOON2LlzJwBXYHXSSSdhwoQJGDNmDMaOHYvCwkKwLIvLL79cCjwDtR1RFLFy5UrZzd4PPvgA8+bNw4knnuj3Nc899xxefvllAK7ro2nTpmHq1KkoLi7GmDFjMG7cOKhUKvzjH/8Ie+Dp+T6CmTfquc5pPC+FEg4tnY2ybafoDHBkbIveK0kyNImiTyYvlmMxJr0AY9ILen25te4wwMv/WBNGTQtjBeOT0+lEaWmp36BzypQptHA6IYSQqOeZpKa5uTns5X/22WdS0Dl16lS8/PLLAZcVCyYZzv/+9z8pOJw9eza2b98Oh8OBv/71r1i/fr3PvND6+nr85z//AeBK7vP6669jwoQJfT5/qDIyMqTH1dXVvR7vmdE3Gtb8jmYmhzyQd4rhmZcbbSirLYkqotPps3gRwwXfTL3X72Q1iVBlFfS/YnFOoVCgsLBQtk+v11PQSQghJGZ4jmTorbevvb0dt956Kx577DGsW7cuqPI9s9/eddddAYNOi8UiC7r8Dcmtr6/HU089BcD1ffvUU0/h2muvBeCaP/rcc8/5vGbTpk3geR4AsHz58oBBJwAcOHCgx/P3RWZmJrKzswEAv/zyi89Sa95++ukn6bFnhlriS+TjM9D0RoEniS6iCO/Ik2WDn2DtaKuXTchWpufQ/M4g5eTkoLi4GIDrS3Dy5MkUdBJCCIkZ06dPl7LBfvnll1IGVn/eeustbNy4EW+99VbQa0QaDAbpcU9Dr9977z1ZUOYvI+v9998vzZlcsWIF0tLScPPNNyM3N1eqn3tNz1DPv3v3buzatUva9h7N5LkMS6gZb+fMmSPV5aOPPgp4XGNjI9avXw/AtW7pzJkzQzrPUGOtlw+1VdrjMxClwJNEFYEX4H1fjuM4bKnagc/LvsXGii3YUrUDDUb/Q2i0IyYgZdYCJE45C5rCqUgoPmHgKx1HcnJyMGnSpJgLOltaWtDU1BQwax4h3qjNkFA5HA7pH4lOGo0Gy5cvB+Ba/ubWW2/1+ze+efNmaciqQqHAlVdeGVT57qAQAD788EO/x6xfvx7/+Mc/ZPu8kxetXbsWmzZtAuBax9K9nqdWq8X//d//AXAFhCtXrpQFsJ7n/+STT/z2OO7fvx933HGHLKC02WyyYzyH8HZ2dvp9H4FceeWVUjbwv//97/jxxx99jjEYDLj99tul933ttdfSHOleaBzyq18mTpP40hxPEl14Hj49nhwLo90Mo90MwDVRfURKrs9LRacDvNEAhlNAkZIBRUoGEif4rhlFeuY5hyNW1NXVSUtjxGL9yeCjNkNC5XA4pOVUaBme6HXjjTdi06ZNKC0txYEDBzBv3jwsXLgQEydOhMlkwo4dO/D5559Lgdkdd9wR1NIgAHDxxRdLS7R88MEHqK2txVlnnQW9Xo+6ujps3LjRp5cScA3rda+92dzcjL/97W8AXBloH3roIdkSPWeeeSbOOeccbNiwAYcPH8ZLL72EO++8EwBwxhlnQK/Xw2Aw4ODBg7jooouwePFiDB8+HG1tbfjpp5/w3Xff+fRwes/3TE1NldYwXbNmDYqKipCcnIxp06YhJyenx59BQUEB/vKXv+DRRx+F2WzGtddei/POOw+zZ8+GVqtFWVkZPvzwQ2mJmuOOOw433XRTUD/foUzj1cEZn4upUOBJoowoCj5rFzEcAzsvv6vnbw1PZ2cLRI/+UoZhoUii9Tu9dXZ2QhCEgItTE0IIIbFKqVTitddew5133olNmzaho6MDr732ms9xLMvi5ptvxg033BB02dOnT8dtt92GF198EQCwZcsWbNmyxee4c889F+PGjcPzzz8PACgvL8eoUaMAAA8//LA0ZPa6667DmDFjfF6/cuVKbN26FWazGa+++irOP/98jB8/HomJifj73/+OP/zhD7BarTh69Cj+/ve/+7y+uLgYN998sxSwHjp0SPY8wzCYO3cu1qxZA5PJhAceeAAA8MADD+Dyyy/v9eewfPlysCyLJ554Ana7HV988QW++OILn+MuvPBCPPLII1GdFT9a6LlWjGyrl7Y52AEsilyFBgi1BBJVxN8mzcuwDLYd+wUqTgW1wvUPfibK86YO2TaXlAqGoybuqbOzE6WlpQBcSRhSUlIiXKPwyM/PhyAIsnkrhPSE2gwJVU/rR7oxDDNkhhQyUbzAfWJiIv7zn//ghx9+wLp167Br1y60tLSAYRhkZ2fjxBNPxNKlSzF+/PiQy7799ttx3HHH4d1338Xu3bthMBigUqkwbNgwTJ48GQsXLsSsWbNw+PBhKfDcuHEjzjvvPHz55Zf4+uuvAbg+g26++Wa/5xg+fDhuv/12PPnkk3A6nbj33nuxevVqKBQKnH766fj444/x2muv4aeffkJjYyNYlkVaWhrGjh2LuXPnYt68eeA4DpmZmWhubsbXX3+Nu+++W/Z59+CDDyIlJQVfffUVWlpaoNFoQhp2u2zZMpx55pl45513sGXLFtTW1oLneQwfPhxTp07F4sWLMX369JB/vkNVIqcAC6u0rYCf6+E4wIjhSnVFYpbRaJTdDRs7diwSExMjUhen1YbHV26Q7bvspkn4669Pyva9MO9hZCVlyvaZDu2ArfGotK3OHgVdMU1md+vo6MDu3buljHgcx8VV8EkIIeFSXl4Op9MJhUKBoqKioF5js9l85tLFO7VaDbVaHelqEDLg+vKZEIpd//gn9pZ2B/4q2PG71x8J+3mCNVCxAXUHkejiZziGg/O9N5KekOqzT5M3FoqUTPCWTgjmLiiSad6Wm3fQCQA8z6OmpoYCT0IICQMKwgghpGcUeJKo4q//3eSUZ4NLUGqh8BpCKzhsMPy4BqphBVBlFUA7YgIYjpI/AP6DTgBIS0vr0zAjQgghhBBCQkWBJ4kqouAbeSapE3Hu6NPQaTOi09YFlZ+A0t5cjY7t66VthlNi5F1vgfWThGgo6SnonDRpUtzMb/N8f7G0DAyJHGozJFSeM5OieX4jiR7UZkiwHOjC8M7D0ragjM+ZkBR4kqjib8pxTnIWrh+5tMfX2ZsqZduKlMwhH3QaDAbs2bPHJ+hMT0/HxIkT4yboBIB9+/ZJS2NMmTIl0tUhMYDaDAmVxWKRllMZKgmESP9QmyHB6uAFmFV6aZvn4jO5EAWeJKr4G2rLBBEf2RurZNuqYSPDVKPYNJSCTkIIIYSQWNZpS8S+nOOlbY0j+AzDsYQCTxJVFHBi/hkq8IIATqlA1vAcaLW9N1N7k1fgmVUwQDWMfgaDAbt375YWx3aL56AzKSlJyjZHSDCozZBQcRwn9V4REgxqMyRYNsEZ6SoMCvrGJVHFVF2LvR9vl7b3Ahh993kwKIxQcSqoOCVG6nMxUp8nHSOKIuwey6gAQ7fHs729HXv27PEJOjMyMjBhwoS4DDoBoLCwMNJVIDGG2gwJFWWsJaGiNkOCpVZpI12FQUGBJ4kqIi/47LPyNhgFMwAzACBTlyZ7nu9qhWAzy/ZxCUNviZChGnQSQgghhMQyHSfPSxKvfeR0JUqiiij6Bp4OUT5PUeX1x2mrPyJ/AacElyQPToeClpYWCjoJIYQQQmKMd46T+MxpSz2eJMr46/H8uWEP7Aq7NNR2Umax7HlbXblsm9OlQKEbej2eY8aMAc/zaGhoAABkZmZi/PjxFHQSQgghhEQxUdTItnk2PldmoMCTRJWkcWORdP654HkeLMNCn5yM7wxvwCh2ScecUXCS7DW2BnmPpyI5HYzCd63PeMcwDMaOHQvAtUbhUAo6KysrpUQxBQUFka4OiQHUZkiobDablCiG5u6RYFCbIcFi43ZwrRwFniSq2K1ONDcYIYoCWJaF06GARWEBPNZ3z9Sly1/TUiPbVqblDEZVo5Jn8DmUsuh1dnZKazISEgxqMyRUPM9ThlISEmozJGjBrB0YByjwJFHF2GVF/TGLtF1XZYF4HGSBZ6JaJz0WHDbwna2yMoZCRtuevsjoC44QQgghJHawCUmRrsKgoMCTRBXvydUAcEbhSTDBBKPdBKPdjERVd+Bpb66G9xRs9fAxA1zLyGpra0NFRQWmTJlCQ3d+M2HCBLqrTEJCbYaESqvVUpshIaE2Q4JltnQB0Ee6GgOOAk8SVXjeN/K8dsbvoFL7b6re63ey2kQoUzIGpG7RoLW1FXv37oUoiigpKcG0adMo+ASgUNBHGQkNtRkSKoZhKIAgIaE2Q4JlFeyy7XjNajs0BhSTmCH66fLs6TPbN6OtHmycZrT1DDoBwGKxoKSkBA6HI8I1I4QQQgghpGcUeJKoYm1t9dnHsIEjTzYhGVxyBsC5EoQokjPAKuIvBXVLS4ss6HRLTk6mnhtCCCGEkBhm552RrsKgoCtWElVMVfIMtRBFfFn+PTQqNVScEhkJqZgwrHsdz4TCqWA4JURRhGgzQ5maNcg1HngtLS3Yt2+fT9CZlZWFcePG0TAeAAaDQZpHo9frI10dEgOozZBQOZ3dF4Z0w48Eg9oMCZaS4Xo/KA7QXwGJKqIgD64YiDA5LDDzrky3nNe6lLy503Ucw4DR6OJuKZVAQWd2djbGjh1LQedvjh07Ji2NQUEECQa1GRIqu90u3aygIIIEg9oMCZbWaxBqvF7d0V8BiSqCv7S2HlScfBgtb+qQbXMJ8TO/s7m5Gfv376egkxBCCCEkjqWwrcgzNEnbHOw9HB27KPAkUUXgBa89IvY1HYJKoYRaoUKaVt/9jMBDsBplR3O65IGv5CAIFHQOHz4cxcXFFHR6GT58OARBAMvStHUSHGozJFRKpTLSVSAxhtoMCVayRg2lYJC2lRR4EjLwOEYeaLGigIMth6UxB8MTh0nPCRajT2AWDz2eFHSGLjMzM9JVIDGG2gwJFQURJFTBtJl77rkHa9asAQAcOnRooKsUkzx/Rt988w3y8vJ8jvnqq6/w1ltv4fDhwzAajUhKSsIll1yCe+65Z7Cr2yf64gLo6kqkbU2cLpVHgSeJKgy853gKsoHu2UndF4ucLgX6ky4Gb+4Eb+qAYDeDUcT2hUFTUxMOHDhAQSchhBBCSBA++OAD3H///bJ97e3tUKliZ5UDVsGC8RiAw8TpYBwKPElUEbySC8ErAEtU6VzHOWyoe+MeKDNHQD2sAKphI6EtmDxY1RwQbW1tfoPOnJwcFBUVUdBJCCGEEOLlhRdeAOBKNHnFFVdg2rRpsNlsmDw5tq8L4xEFniSqiDwv22YAnJh3HEx2M0wOM1K1rqG0juZq2JuOwd50DKZ9WwAwKLj7HTCI3R7P5ORkJCYmoqurS9pHQSchhBBCiH/t7e1obm4GAMyZMwd//etfI1yjvjFxJjRkNkjbWi4+Q7T4fFckZgleuYUYAH8+5Qaf42xNlbJtZVo2WJVm4Co2CBQKBaZOnYrS0lJ0dXVR0BmCPXv2SEtj0B1OEgxqMyRUZrNZWhojISEh0tUhMYDazMCzWCzS4zFjxkSwJv1Tbzfix6QkaTtFcOLqyFVnwFDgSaKKKMojT+85n272pirZtmrYyAGr02BSKBSYMmUKGhoakJeXR0FnkERRlP4REgxqM4QQEvsEjx6LWF4rtaNVhTH7Z0vbTrWxh6NjV+z+hkhcyk4CTj76IcAwECFCmZgEYLHPcfZG78CzYHAqOAiUSiXy8/MjXY2YotVqoVAoKOskCRq1GRIqlmWl3isy+MaOHQsAuOOOO7BkyRI8/PDD2LJlCwAgPz8f119/PebPny8dbzKZ8NFHH2HLli04dOgQDAYDACAlJQUTJkzAueeei4suushvsLJ8+XLs2LEDs2bNwhtvvIFjx47hjTfewObNm9HY2AitVosJEybg0ksvxYUXXhiwTbAsi87OTrz33nv49ttvUVlZCZVKhaKiIixduhQXXXRRUO9dEARs2LAB69atw+7du9He3g6dToeRI0fijDPOwBVXXIHkZP/Lybnfy+zZs/Hf//4XFRUVeO211/Djjz+iubkZ6enpOOGEE3DjjTdi9OjRAACr1Yq33noL69evR3V1NTiOw4QJE3DNNdfgrLPOCqrOPb2XTZs2YdWqVTh06JD08ywuLsbcuXOxePHioJICvfDCC3jxxRdl+1588UVp34IFC/DEE0/0q66DydreAUAvbavs8XlTlAJPElWsdh71KUXdO5QcNlZsgYpTQsUpcWLecQAAe+NR2etircezvb0dKSkptIZgmBQVFfV+ECEeqM2QUGk0sT2dI14YjUYsW7YMlZWV0r6DBw/KAq8tW7bgz3/+sxRserJarWhsbMR3332H//3vf3j11VcDBm0AsHHjRtx9990wm83SPpvNhm3btmHbtm347LPP8MILL/i9iVVbW4trr70WDQ0Nstf++uuv+PXXX/H999/32kvX0NCAO++8E7/++qtsv8FggMFgQGlpKd5880089dRTOO2003os69NPP8V9990Hm80m7auvr8cnn3yCb775Bq+//jqys7Nx/fXX+yztsmPHDuzYsQMrV67ElVde2eN5Amlvb8cdd9yB7du3y/bb7Xbs3LkTO3fulH4nWVlZfTpHrNJ0OWXbFHgSMgh8stpCRJvFAABQcUowDANnZwsEm1n+OqcNsaKhoQEHDx5Eeno6Jk6cSMEnIYTEAbu97wu+cxwHjuP8PudwOPo8JHygymVZNmLDGt955x3YbDbMnj0b8+fPh8FgwA8//IDZs13DFA8fPoybbroJDocDHMdhzpw5OOGEE5Ceno7m5maUlpbiiy++gCAIKC0txfPPPx8wIU1VVRX+/Oc/w263Y968eZg9ezYUCgW2b9+ONWvWQBAEfPfdd3j33Xdx9dVXy17b1NSEyy+/XAp+Z86ciQsuuABJSUnYt28f/ve//+Gzzz7rsXevo6MD11xzDY4cOQIAyM3NxaWXXopRo0aho6MDGzduxJYtW2AwGHDzzTfj5Zdfxqmnnuq3rIqKCmlNy0svvRQnnngiOjo6sHr1apSVlcFoNOLBBx8Ex3E4dOgQZs2ahblz50Kr1WLz5s1Yt24dAODvf/87LrjgAqSnpwf9OwNcfx9XXHEFDh8+DMDVS33ppZdi5MiRaGxsxKpVq3DkyBGUlZXh5ptvxocffthjG5s3bx7Gjx+P1tZWaSmVefPm4YILLgDgWoYuliQq5De24nVcBQWeJLr4yy70GxXnupvoPcwWnBKK5NhYDN4ddAJAa2sr9u3bR8EnIYTEgW3btvX5tUVFRcjNzfX73I4dO+BwOPpUbkFBAQoKCvw+t2vXLlkvXihycnJQXFzcp9f2l81mwxlnnIGXX35ZGuLqGfT985//lH5ezz33HM477zyfMhYvXoxrrrkGoiji008/DRh41tXVQalU4j//+Y8U2ALAxRdfjJkzZ0qB3OrVq30Cz+eee04KOm+66Sbceeed0nMXXnghlixZguXLl0sZWf156qmnpKDz7LPPxjPPPCPreV+6dCnWrFmD++67D06nEytWrMCGDRuQmJjoU1Z9fT2USiVeeeUVnHzyydL+hQsX4txzz5WuSfzV96KLLkJGRgZee+01OBwOfPvtt1i82HcaVE/+/e9/S0Hn2Wefjeeee04WdC9fvhw33HADtm3bhn379mHdunW49NJLA5Y3evRojB49GjU1NdK+UaNG4eyzzw6pXlEjPjs4fdDVLokqolfgyYsCylqOoLK9Gi2mNgCAzWuYLadLgSIpddDq2Ff19fVS0OnW2tqKpqamCNWIEEIIiT2///3v/c6rtFgs+OGHHwAAM2bM8Bt0AsCsWbMwbdo0AK7hn/6G5LpdfvnlsqDTbcGCBdLNgvLyclitVum5trY2rF27FgAwZcoU/PGPf/R5fWFhIR577LGA521sbJTKyMvLw9NPP+13uPeCBQukoLetrQ0ffPBBwDIXL14sCzoBIDExUeolBFw3K+644w6f1y5atEh67A4gg8XzPN5++20AQGZmJp588kmfnl6lUom//e1v0o34Tz/9NKRzxDpRmSTbdrK9z3ONRdTjSaKK91BbQeSxu/EAAGBMWgEAwFYn/8DjdCngdPrBqF6f1dfX+8yXAFxDTYbaPIaBUFNTA6fTCYVCgby8vEhXh8QAajMkVHa7XUouFEzyEzIwlEolpkyZ4vc5rVaLb7/9FseOHfPb6+cpNzcXu3btAgBZ0Ojt3HPPDfhccXExamtrAQCdnZ1SYLhlyxYp2+rChQvhcDj8tpnTTz8dBQUFsvmqblu3bpV6bq+44gpotdqA9bjuuuvw1ltvwel0YuPGjbjuuuv8HucZYHry/Aw888wz/Y7C8hy66rneeDB27dqFjo4OAK5hvoF+N9nZ2bj33nulZENDSWL+cOCYSdpmlfE52JYCTxJVrHYRFoX7A0mEwHYPL8pISAMA2JvlQ20VKcPAKtWDVcWQBQo6R4wYgcLCQsqQGAZtbW3SmowURJBgUJshoXI6nRR4RoH8/Pwef/4ZGRnIyMjw+5zJZMKhQ4fwyy+/SEEn4OqRC8Sd6dUfzwDK6exODlNaWio9njhxIpxOZ8A6z5gxw2/gWVJSIj0+6aSTAtYBcL3nMWPG4ODBg9izZ0/A7MuFhYV+X5/ksX5koKz6noGv4D0tqhd79uyRHh9//PE9HtvXxEUkNlDgSaJKUxeLhuTubJNK3gygEgCgUyVAcNjg7JDPh1BljhjEGoamrq4OZWVlPvsp6CSEkPjiPYQxFIESAAHACSec0K/kQoEcd9xx/UouFCk9ZaD11NTUhI0bN+LAgQOorKxEVVUVmpqa/L7nnn4OnkGZN8/kN57BWEtLi/Q4Ozu7x3qOGOH/GqatrU16HMwSa/n5+Th48CAcDgc6OzuRkpLic4y/fd4C9az253rF8+eRk5PT53LimSotD0B3J4WoiM8s2hR4kqgieH34MwAmDRsLk92M7MRMOJqrAa9j1MNHDWINg0dB5+ApLi6m9fVISKjNkFD1tpzKQPWCDtRas7G6hm1vP2en04mnn34ab7/9tqwX0k2r1eLEE09Ec3OzlEynJ33J3us5FFWv1/d4A0Cn0/ndbzJ1D7vsaZitm2f7tFgsfoPMSGUidg+zBWhZokAMnfJ8H7zo23bjAQWeJKqIXqM3WIbB/Wf+UdruLNkof16bCGXKsEGoWWgCBZ0jR45EQUEBXeyGGX2RkVBRmyGhouzjseGee+7B+vXrAbiC6xkzZmDy5MkoKipCcXExxowZA4VCgbvvvjuowLMvPHtlbTZbj/NNAy3D4xlsWiyWXuesemYojrbPN8/69DSfdigz2OXzZh1i4OHfsYwCTxJVvHs8vdnqj8i2uQQ9OF3vQ0cGU21tLcrLy332U9BJCCGEDJxff/1VCjrz8/Px+uuvBxymGmqCnFBkZnYv8VZTU4Nx48YFPDZQZnvPearV1dUYP358j+esqnLlv9BoNNDr9SHUduB5rvlZX1/fY+KgiooKmEwmjBgxIureB+k/un1HootXl6d3iKYtmATNyElQZuSD1SaBS0oDmxB4/sVgCxR0FhQU0PBaQgghZAB9//330uNbb721x7mRBw4ckB73da5rINOnT5ceb9++vcdjf/31V7/7J0+eLD3+6aefeiyjsbFRWu8zGrPBTpw4UXrsmTTJnxdeeAGLFy/GrFmzYDQaB7hm0cNWL89fonCElsApVlDgSaKKIMoDMxECNlVux4/Vv6DT2gVFUho0IyZAN34WkmfMhW78LDBMdDRjp9Mp3XH01NMC3iQ8jEYjurq6htSXFOkfajMkVDzPS/9IdPJcjzMhISHgcV9++SUaGhqkbX9zQfvjtNNOg1rtyrb/3nvvwWKx+D1u7969sgy4nk4//XRpHu67774bsAwAeP3116XkRmeccUY/aj4wZsyYIQ0V/uSTT2Cz2fwe19nZiU2bNgFwrX/a2/DieKIwy4dcs/EZd1LgSaKL6LWOJ0QRDcZmVHfUwynw4I0G2dOKxNTBq1wvFAoFpk6dKkvYQEHn4Dhy5AjKysqkO76E9IbaDAmVzWaD1WoNeNFMIi83N1d6vGrVKr89mdu2bcP9998v2xfu32lCQoK0LEhlZSVWrlzpE9w2Nzfj7rvvDljGsGHDMH/+fACuobZ333233/mRa9euxZtvvgnANaR16dKl4XobYZOQkIAlS5YAcI0Mu//++31+Hna7Hffff7+UVCka38dASmDlCajidXwczfEkUcU77vT8y1NxSvAmg+xpTqcf6CqFRKfTYerUqSgtLUVeXh5GjhwZ6SoRQgghQ8K8efPwwgsvwOFwYPPmzVi8eDHmz5+PzMxMNDU14YcffsCPP/7oE5AOxMiHW2+9FRs3bsTRo0fx2Wefoby8HIsWLUJmZibKysrw/vvvw2AwID09Ha2trX7LuPfee7Fz505UV1djw4YNmDdvHhYuXIjCwkJ0dnZi48aN2Lx5MwBX8qvHHnsMaWlpYX8v4XD77bfj+++/x5EjR7B27Vrs27cPCxYswPDhw1FdXY2PP/5YWs901qxZuPjii8N27hdeeAEvvvgiAOC2227D7bffHraywyUJrcjp6G4HHPwnnYp1FHiSqOJzd1IUUNleDRWnBCOK4M2dsqcVifrBq1yQEhMTMXPmTFpgfBBlZmZCEATKOkmCRm2GhCpSS1GQ4OXn5+OBBx7AAw88AJ7nsWfPHuzZs8fnuBkzZuDCCy/Egw8+CAA4dOgQZsyYEda6aLVavP7667jllluwf/9+lJWV4fHHH5cdM3v2bJxwwgl49tln/ZaRnJyMd999F7fddht2796N2tpaPP/88z7H6fV6PPvsszjllFPC+h7CKSEhAW+99RZuvvlm7NmzB+Xl5fj73//uc9zJJ5+MF154YcjlxEhSsFDz3TdAlBR4EjLw1Fol0O6xQ7Ti57rdAICbpy0Gn5gG3mSAKLjm2ERbj6cbBZ2Da/jw4ZGuAokx1GZIqOhzPTYsXrwYY8eOxRtvvIFffvkFra2tUCgUSE9Px4QJE3DxxRfjrLPOQldXFx577DE4HA588cUXWLZsWdjrMnz4cHzwwQdYtWoV1q1bJy2zVlBQgAULFmDZsmV44403eiwjKysLH374IT7//HN89tln2LNnD9rb26HX65Gfn4+5c+fikksukS3hEq0yMzPx4YcfYt26dfj0009x4MABdHR0QKfTYdKkSViwYAHmzZs3JG8IKr3ylcRr2M2I4U7lRWKO0WjEoUOHpO2xY8dGbEL3F8+vxc6q7vshGr4OP8/aBa1Sg/+ee/9vgaYIwWICb+mEKj03YFkDqbq6GjzP0/xNQgiJQ+Xl5XA6nVAoFCgqKop0dQghETbQnwm7/vFP7C3tHtWngh2/e/2RsJ8nWAMVG1CPJ4ky/u/x6JRaHHv+BrCaBKiGjYRq2Eikzl48yHVzOXbsmCwhCQWfhBBCCCGE9IwCTxJVkidNBKoOStvWnBQUpuYjhVECogDBYoS1ah+sVfuRdsblg14/76CzsrISDMNQEiFCCCGEENInPKzIMNV07+Dicz0VCjxJVBG80toWZ4zCZef+Dp0l36AF3QsoK1KzwKq0g1q3qqoqHD161Gf/UJyLEG0OHDgAh8MBpVKJ8ePHR7o6JAZQmyGhslgsEEURDMNAqx3c7x8Sm6jNkGB1CmYo+e61Wu1xemlJgSeJKt4zjlnWNfTW3lQp26/OKhicCv0mUNA5evRo5OfnD2pdiC+HwwGHwxHpapAYQm2GhEoURb/rQhISCLUZEqx2awr2FSyRtjWOTsyLYH0GCgWeJKocf1I+lAlGOBxOKBVKjBtfDACwN1XJjlMNG7yhrZWVldLaUp7GjBmDvLy8QasHCUypVMr+J6Q31GZIqNzLOwy1ZR5I31GbIcGyC/E5tNYbBZ4kqlT/tBtNpTUw2c1wCA5U7z+EvPPHgG2pxDCP45RpOYNSHwo6YwMNlSShojZDQkVDJUmoqM2QYA2VdYLjdAQxiXVOgYeDd8LssOBYcwWMvHwhXcFuCfDK8AkUdBYVFVHQSQghhBBCwiJJKb9JEa995EMjvCYxw9LYBHu7AaLDAlbkwWkc4I12KD3nSHAKKDNHDFgdRFFEZWUlqqqqfJ4rKipCbm5k1g4lhBBCCCEkVlHgSaKK6chRWOsMYPFbd7ydR61BRJbHrR9Op4ciUT8g56egkxBCCCGEDCZeUMu2nWx85h+gwJNEFS4pCYBB2m5nbfjZakCRontUOKdLAZeQMiDnDxR0FhcXIydncOaVktDV19dDEASwLIvhw4dHujokBlCbIaGy27unfKhUqgjWhMQKajMkWJzP7Mf4HGxLgSeJKjaBhZ3TuDZEEU7WtdxBqqM725ciOQOsSjMg509MTATDMLL05xR0Rr/m5mZpTUYKIkgwqM2QUDmdTmlNRgoiSDCozRAiR4EniSrVVj1qU9KkbYZtBNAMrdAdCKoyB27dzMzMTIwfPx4HDhyAKIoYO3YsXZQSQsgQw3EcnE4neJ6XAgdCyNAkiiJ4ngfg+mwYCKxuYEbyRRsKPElUUefkAG0N0rYjRYNUBw8t393jqRpWOKB1GDbMtXALz/MUdMaIUaNG0cUhCQm1GdITlUoFm80GURRhNpuh0+mgVqt7fyEhHqjNxAez2SyNhBuonmubzQQgeUDKjiYUeJKo4jnEFQBGaVJxdVWrtM1qEqHUZw54PdzBJ4kNiYmJka4CiTHUZkhPkpOT0dXVBQBoa2tDQkLCgPV0kPhFbSb2iaKItrY2aTs5eWCCQ5PTCs/AUwx8aEyjdTxJVBEFrz81r/U6OZ0eXBiGI4iiCJPJ1O9yCCGExB/3fH8AMBqNqKmpgclk8rk5SgiJT+7rxJqaGhiNRgAAwzB007KfqMeTRBXB6ZRtK/WZSCw4B7zRAN5kgCIxFWxC/+42iaKIiooK1NbWYtKkSUhPT+9XeYQQQuILy7LIzc1FbW0tRFGE0WiE0WgEwzDUi0XIEOCe3+3GMAxyc3PBsgPTZ+fgnb0fFAco8CRRxd7ZJds2tDfhaBGDomzXvE5WrQWr6Pv4enfQWVNTAwDYu3cvBZ9xwGq1SvP1NJqByXhM4gu1GdKbpKQkWfApCAIYhpH+J6Q33oELiU3uoDMpKWnAzsHG6fIp3ijwJFHFexST3WlDM29BEfQAXENt+162iMOHD6O2tla2b9++fTjppJMo1XkMKysrk5bGmDJlSqSrQ2IAtRkSjKSkJBQXF8NoNKKiokIKOgfyApTEj66uLukGF7WZ2MJxHFQqFZKTk5GYmDhgPZ1uOk5+DRqvYSgFniSqOIxGAN1Z4FirDUqm+49dkZzRp3L9BZ1uY8eOpaCTEEKIXyzLIjk5GRzHQRAEKBQKFBUVRbpaJAbs3r0bDoeD2gzplU5sRVaXQdrmRHvkKjOAKPAkUYU3W+EZeIo2O4yCQ9pWpIQeeIqiiPLyctTV1fk8N378eGRlZfWpriR6pKWlwel0QqGgjzQSHGozJFTUZkioqM2QYKVoOCQ4OqVtJSjwJGTAKSCfXO0UzTjG8mBVWogOGxRJoc3FDBR0MgyD8ePH07IpcSIvLy/SVSAxhtoMCRW1GRIqajMkWGmj8qE9tk/a1sTpSDwKPElU4SDIthnYkTd8PFImz4dot4Jhg88mSEEnIYQQQgiJdpxWDU7tsa2Oz1metI4niSo+K6QxIiybVqPm5T+AN7UHX44ooqysjIJOQgghhBBCogD1eJKoIorwSuUlQisIcHTUg0tMDbIMV9BZX18v288wDCZMmIDMzMyw1ZcQQgghhJD+sHM2WJJapG1BpYxgbQYOBZ4kqoheCaRFRoRaEKBIzQKr0vb+ego6h6Ty8nJpaQzKHEiCQW2GhIraDAkVtRkSrDqhHZ+M6M5zkua0Y2EE6zNQKPAkUcVnqC0AjSBCnVUQ1OtbWloo6ByCLBYLHA4HnE5n7wcTAmozJHTUZkioqM2QYLU2qjHxl7nStlNtjGBtBg4FniSqjOcrkNuwAyLDAGCgTTUi1+qEatjIoF6fkZGB/Px8VFdXA3AFnRMnTkRGRt/W/ySxgWEY6R8hwaA2Q0JFbYaEitoMCZbNZAKgl7Y5p7+umNhHgSeJKl2iFh2aYWB+6/vkWR4MuqBIGx7U6xmGwahRowAANTU1FHQOEZMnT450FUiMoTZDQkVthoSK2gwJlqLZJNvWWinwJGTA8SIgeCyZYlIoIIKBIikt6DLcwWd2djZ0Ot1AVJMQQgghhJCwSFHJr1fjtY+cllMhUUX0meUpQiGKUGWPCqkchmEo6CSEEEIIISRKUOBJooroZ2QBp04A55XRVhRFHD58GGazeZBqRgghhBBCSPgJjPw6l2dpOZW4JooiPv30U3z00Uc4cOAAzGYzMjMzMXPmTCxbtgxTpkzp9znKysrw+uuvY/v27WhqakJSUhJGjx6NSy65BAsWLADHcb0XMsQkCjwUCSmyfaIo4sCBA2hqakJzczOmTZsGrbb3pVZI/GpuboYgCGBZlrIXk6BQmyGhojZDQkVthgQrKT8XqLVI24wyPvsGKfAEYLVacccdd+D777+X7a+trUVtbS3Wr1+PP/7xj7jhhhv6fI5Vq1bhoYcegsPhkPa1tbWhra0NO3fuxJo1a/DSSy9Br9f3+RzxwCFy4Bn3H5uIRB6y+Z2eQScA2Gw2lJSUUPA5xNXX10trpdGXOwkGtRkSKmozJFTUZkjQuPgMNL1R4Alg5cqVUtA5evRoLFmyBBkZGdi3bx/+97//wWw245lnnkFWVhYuvvjikMvfvHkz/u///g+iKEKr1eKyyy7DpEmT0NraitWrV6OsrAw///wz/vSnP+HVV18Fyw6NxudPpbIAFk2itN3GsJic4pqrKYoi9u/fj+bmZtlrHA4HrFYrBZ6EEEIIISTmKPXDARyWtkWFOnKVGUBDPvDcunUrPv30UwDASSedhFdeeQVqteuXfeGFF2LRokW4/PLLYTAY8Pjjj2POnDlITEzsqUgZu92OBx98EKIoIiEhAe+88w4mTpwoPb906VL86U9/woYNG7B161Z8/vnnuPDCC8P7JmOI7xRPEYrULAiCgAMHDvgEnSzLYtKkSUhNTR2sKpIoNGLECIiiSGulkaBRmyGhojZDQkVthgTLbO6QbYsiH6GaDKyh27X2m9deew0AoFAo8Oijj0pBp9vo0aPxf//3fwAAg8GAVatWhVT+119/jZqaGgDA9ddfLws6AUClUuHJJ5+Uhtj++9//7svbiBuiVwJpFiIUaTkBg87JkycjLS34pVZIfNLr9UhNTR3yQ9VJ8KjNkFBRmyGhojZDgtVsbZdt2yjwjD8GgwHbtm0DAJx66qnIz8/3e9y8efOQnp4OAPjyyy9DOsfnn38OwLW8x9KlS/0eo9PpcOmllwJwJSA6evRoSOeIZwwEHOkUAgad1NNJCCGEEEJI9BvSgefPP/8MQRAAuIbZBsKyLGbOnAkAKC0tRUdHR8Bjve3cuRMAMHbs2B575jzPv2nTpqDLjz/dPZ4iRGgYHu1Wp+wICjoJIYQQQki8sLXKezw5p5/1BePAkA48y8vLpcfFxcU9HjtmzBgArgQ3ZWVlQZXf2NiIzs5OAEBRUVGPx44ePVp6fPDgwaDKj0ei9L8IKNphVzJgmO5myrIspkyZQkEnkXE6nXA4HHA6nb0fTAiozZDQUZshoaI2Q4LFtHfJtjk+PgPPIZ1cqLa2Vnqcm5vb47HZ2dmy17l7QHvintsZTPlZWVlgWRaCIKCurq7XsuOZO+gEZ4XoMSHfHXTSXAnibf/+/VLK+nCsuUviH7UZEipqMyRU1GZIsJIUGtl2vKajGtKBZ1tbm/S4tx40z2DHYDAEVX57e3e3eW/lK5VKJCQkwGg0Bl1+PBIAKegEAIOQgc2b9oBhWSgVehzbzUN02sFbusBb7OA7DWDhhCiKMCtEmNPVUCSZkJzZiBmdeeAF15+uqb4DnS1GNHPDYVEkwynwYD2CWg2nAiBC/O2uJAM7ODggiiLsogAGgFboxDBnOdRsNpyMUnqtDQJa2UyYlWlwCDysaVowKtfzOQlpYBkOTmMbBLsTDkMHONEGiCIsjAhjhgpcghOanGM42TgcgtP1OmubGYbadrSzaTAqM2EXeDAMwPz2UaRmFWBYDqLD/lstnFDA5qqPwIOBCIXoRK5jN9RsOpxMglRfOwR0sCnoVGbDLvCwJ6kh6lxJtTLVydCodXB0NAG8AGtbBxSCa0Fju8ijI10FRs0hYeRhHG/JgMrmKtdhtKG9qg0dYgIMqhw4RAEQIWXyU7IcOFYJ0WGTftMKdJcriiJYMMizl0DL6OBkU6T6OiGii9GgTZkPJ0TYNByEFNd5U5U6JOpSYW6sgiiKcHaYsUP83lUnUUBXMgchUQVNTiUmCjqkWJIBALydR/vhZhh5Dk2qAvAQIYii1CaULAcFp4TgsAGiqydeCZNUriAKYMEgy3EQyaIAJ5fh0YZFmMGiQTUaPEQ4VCyceh3AAIkKDVIT0+HsaIYo8LC1G8Hau8BAhFMUYExg4dSroc6swyiViOHG7nLbDjbC7HCiTlkEgWHAi4JUX45hoeSUEHkHILjuknIwS+Xyv9U3zVmFVMEAgRsulSsCsEJAvXI0nAwHBwc40hIAloWGUyJTlw7e3AXBYYWjywLR3AEWrjLNKgbWdDVUqW0YntSFMZ3d5XYebUWX0YpGZQEcrApOobu+LBioFCpA4CHy/G/7rGDBQxBFOH77m0vmG5HJ10LkcuH5NWyBgGZFPmycFg5GhC01AYyCA8ewGK7LCOozQp1SjamtWRDBYce27+kzIs4/Ixzt9a6fW0sHFHz333IonxGuvyPXb38L9wt9RsT5Z0Q4riNYwQYBgAMCtuAb+oyI88+I/lxHmJ3ZyOC6O7kUog3xaEgHnlarVXrsnc3Wm0ql8vu6nlgslqDLdx9jNBqDLj9uMd3DC0SGg2hRAI40CKIaR5pNvz2jcf3jkuWvbQWaUYt96eXIPdYKh+j+AAac1kQYEjNgZvQAJ39Zh/uUXvs9pZlroa/fjZpkFewK+ZqhhoQMGJkM1+s9pgBXwv3B8dudLNZrKZ52oNPWgYrcAxhV0wiHIwkAYDcCdnMiDNp0dKiG+a+XEKC+v+1TO02YWL8dTToORnWC7JAOdRra3OWaf/sHoBY8gM7u+jIJ8nN0AAIj4NeCUmTX81CaXPOWnVbAakyAUZWKVnWW/1t1gerrYXz1DhhVOrQnyOtrViS5ygUAO4Dfck01AmhEO4Df2oHHF43rha5/e7PLkNRiRFqb6xctOAFzlxY2Tos2TZb/yvDodTLCiMYyCLwDzUny+joZZXe5TgAtrodtANpgAKD87Z8G8LgghR1AE1CeUg/e0gihrvvCxNihgQgGbWndX0wyAlw/9x5+xuntTVAZG1GtT/B5rk0/DAKrcH07tnZXpxPu4T/uvzmPm2gCgGagRm1Ek7IF2urucs1tCgjORLSlZMLJaHzrJfz2fw/11ZrsSGwpx9HUBNnoBwBoT8qAjfnt78ljaswRBPcZ0ZZuxahWKxyiEu2w02dE3H9GuHsTvNoifUbI0GcEwnsd4XUMfUaAPiO8uD8j+CQVkvjuDjEF7D28KnYN6cDTc8y9Z2Dpj+fzwY7V5/nuVMi9le95TKTnAhw+fBijR49GUlKStM9ms+HQoUMAXL2/I0aM8HmN2ez61PEeTtLS0iINH87Pz5f1/vI8j3379gEAkpKSkGs+AptRifqMDIC1ASIDONLBiL3//AghhBBCCIl13G93XgRBwN69ewG4VsHwzAkDAFVVVVLS0/Hjx0Op7L4Z1dnZicrKSgCuKYPDhg2TvXbv3r0QBAEajcYn1433ahLhMqQDT42mezy1w+HoMTi027vvPAQTRALyXk6Hw9Hr8e5zeDaaSOB5Xsr26yaKovQePANqN/cEen8EQZCe8y4X6P7ZOJ1OnFjQhdbtB2HQXgpLAgPwiRR0EkIIIYSQISPdY+CA53WyN8/rb1GUJyTyvP72d+3ucDggCAI4zrcb2d/1ejgM6cAzwaMb3mazBR14BjNs1l/5vXEf4xkQRwLHcWBZ+dgAhmGkgNhfA1UoFAEDZpZlpee8ywW6A22FQoHRKx5E9TuvIqOkFSaHDnaxFRa9BuBYqJUq2dwMh9kKvsMADk6IDGBRAOZ0NYYnmTCWTUZyhhaCyIJhWQgKKzpbjLAxLVCLdjgEJxi45jowDOM1N0MEBJtr/hYAB0TX/C2uE4bhWqTAAifjej3HcrBBgINtgUoU4BCcMKVoACUHjuOQq0uX5mbwNgfs7QZp3L6VBYwZKmgSnJgt6pCSoQfvcP1sWZ0Ig7MdAtsKhcjCLrjnjLhmZ6g5pWxuhig6oBBdQ7TtEKW5GYbhWujggJJxDYXiWA4OCADLgRFVsAs8rDoFeK0KLMciS6OXzc2wtLRLczMcjCjNzZgt6pCengxO6/qb4ZwsOuxtYEVAELVwCAJEiFJ9lZxCNjdDEHkoRbNUrntuRleWCmqISP2tvizLQgCgYHg4hUY4RQFWDQdHohoMyyJDnSSbm2FuMkDJGwEATgbS3IwZrArD9YlIYF31VTAKdFpaYeTtsAqNHvO3XGN7VJxCNjdDEAUoRBOY38p1z82wpQlQimx3fRkGYBiYwSLtt3JtCgb2FA0YhkGKWiebv2Vp7QRr7wILETwDaf7WJJWIkVw6UjNU0t+I1tQKs8OJNL4BAsPAKfJSfRUsJ5u/JUIAK1hc86wYSO9NTLLArlN31xcMGJaFFQLSxCY4BQ52VoQ1RQOwLBLVGtn8LXuHCYK5Exx4CAyk+VujEuzIUnfXl+U4JDm70GW0Ig3NcIgqOARe+pvjGFY2f0uECEawSOU6RdffnFLTDuPwBKQyXRDBgAUDlmVhgYBUpgU20QS7KNBnBH1G0GcEfUbQZwR9RsTFZwTHskgdrsf0FSvg5nmd7M3z+pvxGm7uef3t79pdqVRCEAS/1+/+rtfDYUgHnsnJ3eP6DQaDbGipN8+EPz2txxmo/N7W/nQ4HNJQ1WDLHyhjxoxBYqJ8DoFare4xI5t7uRl/MjIykJGR4fc5juN8yh159c24NoT6EkIIIYQQEm/cKzoEMnLkyIDPJScn9/jaSZMmBXwuMzNTloQ1XIZ04FlQUCA9rq+vR35+fsBjGxoapMc5OTl9Kr8njY2NUrd2sOXHq6NHj8LpdEKhUKCwsDDS1SExgNoMCRW1GRIqajMkVNRmSKjivc0M6cDTc4JueXk5TjjhhIDHlpeXA3B1YxcVFQVVfmpqKtLT09Ha2iq9PpDDhw9Lj70n+A41XV1d0rpXhASD2gwJFbUZEipqMyRU1GZIqOK9zQzMAN4Ycdxxx0m/2O3btwc8jud57Ny5EwAwbtw42RDa3sycORMAcODAAXR1dQU87qeffpIe9xQAE0IIIYQQQkisGdI9nsnJyTjppJOwefNmfPvtt6irq/M7zPWzzz6TxjnPnTs3pHOcd955+PLLL+F0OvH+++/jhhtu8DnGaDRizZo1AIDCwkKMGzeuD+8mfkycODHSVSAxhtoMCRW1GRIqajMkVNRmSKjivc0M6R5PALj66qsBuJL7/OlPf4LRaJQ9f/jwYTz22GMAXOvnLF68OKTyzz77bOTl5QEAXnrpJfz888+y5+12O1asWCElL7rmmmv68C7iC8dx0j9CgkFthoSK2gwJFbUZEipqMyRU8d5mhnSPJwDMnj0b5513Hr766ivs2rULF198MZYuXYrhw4dj//79eP/992EymQAAK1as8Mk4u337dlx55ZUAXENk3377bdnzKpUKK1euxC233AKr1Yqrr74aixcvxvHHHw+DwYAPP/wQZWVlAIDjjz8eixYtGoR3TQghhBBCCCGDZ8gHngDw5JNPwmQyYcuWLaipqcFTTz0le55hGNx222247LLL+lT+WWedhQceeACPPfYYHA4H3nvvPbz33nuyYyZPnoz/9//+X9ze4SCEEEIIIYQMXRR4AtBqtXj11Vexfv16rF27VkoEpNfrMX36dFx55ZWYPn16v86xdOlSzJgxA2+++Sa2bduG5uZmKJVKFBcXY/78+ViyZEncZrAKVXt7OwRBAMuySE1NjXR1SAygNkNCRW2GhIraDAkVtRkSqnhvMxR4/oZhGFx00UW46KKLQnrdiSeeiEOHDgV1bFFRER599NG+VG9Iqa6ullJJx+MfHQk/ajMkVNRmSKiozZBQUZshoYr3NjPkkwsRQgghhBBCCBlY1ONJok5OTo40zICQYFCbIaGiNkNCRW2GhIraDAlVvLcZCjxJ1MnIyIh0FUiMoTbz/9u776im7v4P4O+ghClO6kCLlqniwFkFFFBrrbWuqjiKoz4+0uJqrVqtVm1t1Wq1zlpR+7QupA7co4AKWhAVi1gHTgQHqERlB5LfHzncXyIBEsgNSN+vczjnJvebe783+STkk+8ifTFmSF+MGdIXY4b0VdVjpmqm00RERERERFRpMPEkIiIiIiIiUTHxJCIiIiIiIlFxjCdVOvHx8cJU0q1bt67o6tBrgDFD+mLMkL4YM6Qvxgzpq6rHDFs8iYiIiIiISFRs8aRKx9LSEvn5+aheneFJumHMkL4YM6QvxgzpizFD+qrqMSNRKpXKiq4EVayMjAxcv35duO3i4gJra+sKrBEREREREVUEsXIDdrUlIiIiIiIiUTHxJCIiIiIiIlEx8SQiIiIiIiJRVc2Rq/RaS0pKQkFBAapVq4Y333yzoqtDrwHGDOmLMUP6YsyQvhgzpK+qHjNs8aRKRyaT4dmzZ5DJZBVdFXpNMGZIX4wZ0hdjhvTFmCF9VfWYYeJJREREREREomJXW6p0XFxcoFQqIZFIKroq9JpgzJC+GDOkL8YM6YsxQ/qq6jHDxJMqHTMzs4quAr1mGDOkL8YM6YsxQ/pizJC+qnrMsKstERERERERiYqJJxEREREREYmKXW2p0nn58iUUCgVMTExQo0aNiq4OvQYYM6QvxgzpizFD+mLMkL6qesww8SQUFBRo3M7KyqqgmqjcunVLWMPI0dGxQutCrwfGDOmLMUP6YsyQvhgzpK/KEjOv5gKv5gplJVEqlUqDHIleW6mpqbh//35FV4OIiIiIiCqZJk2a4I033ij3cTjGk4iIiIiIiETFxJOIiIiIiIhExTGehFq1amncNjMzQ7Vq1SqmMkREREREVGEKCgqQm5sr3H41VygrjvEkIiIiIiIiUbGrLREREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmqekVXgKoepVKJgwcPYvfu3bh69SqysrJga2uLjh07YuTIkWjdunW5z3Hjxg1s2bIFMTExSE1NRY0aNeDg4IABAwZg4MCBqFatmgGuhIxF7JhRKpUICwtDaGgo4uPj8ezZM5iamsLOzg4eHh7w9/dHo0aNDHQ1ZAzG+JzRZsGCBdi+fTsA4Pr166Kcg8RhjJjJycnBzp07cezYMdy5cwcZGRmoW7cu2rdvj1GjRqFdu3YGuBIyFmPEzMWLF7Ft2zZcuHABT548gZmZGezt7eHr64tRo0ahVq1a5b8QqlCF/zcCAwMxadKkch8vJSUFW7ZsQWRkJB48eAALCwvY29ujb9++8PPzg7m5uQFqLQ6JUqlUVnQlqOrIycnBlClTcPLkSa37q1WrhqlTp2LChAllPkdISAgWLFgAuVyudX+HDh2wdu1afli/JsSOmefPn2PatGk4c+ZMsWWkUim++eYbDBgwoEznIOMyxueMNtHR0RgzZgwK/20y8Xx9GCNmrl27hkmTJiEpKUnrfolEgokTJ2Lq1KllPgcZjzFiZunSpdi0aVOx+21tbbF69Wq4u7uX+RxUsf766y+MGzcOCoXCIInnqVOnMG3aNGRmZmrd7+zsjPXr16Nx48blOo9YmHiSQX3++ec4ePAgAMDBwQFDhw5FvXr1cOXKFezcuRNZWVkAVB+2/fv31/v4kZGR+M9//gOlUgkLCwv4+fnBzc0NT58+xR9//IEbN24AADw8PBAUFAQTE/Ymr+zEjBmFQgF/f3/ExsYCABo1aoTBgwfjrbfeQmZmJqKionD8+HEoFApIJBKsW7cOvr6+hr1AMjixP2e0yczMxAcffIDk5GThPiaerw+xY+b+/fsYOnQonj17BgDo0qULevXqhVq1auHixYsICQlBbm4uAFXrh5+fn4GujMQidsxs2rQJS5cuBQCYmppi6NChaNWqFV68eIETJ04I/7dsbGywZ88eNGnSxEBXRsaSkJCA0aNHIyMjAwDKnXhev34dQ4YMQW5uLqpVq4YPP/wQHTp0QGZmJkJDQxEXFwcAcHFxQXBwMCwsLAxyHQalJDKQqKgopbOzs9LZ2Vnp7++vzMnJ0dh/8+ZNZadOnZTOzs7KTp06KV++fKnX8XNzc5W+vr5KZ2dnZdu2bZUJCQlF9n/66adCHQ4cOFDuayJxiR0zf/zxh8bxMzMzi5QJCwtTtmjRQuns7Kz08vIqUgeqXMSOmeLMnz9fOG/hH70ejBEzH3/8sXCODRs2FNkfFxenbNmypXCO3NzcMl8PiU/smJHJZMq2bdsqnZ2dlR07dlReu3ZNY79CoVCuWLFCqMNnn31W7msi4zp58qSyQ4cOGv8zVq1aVa5j+vn5KZ2dnZXNmzdXnjx5UmOfQqFQLly4UDjXzz//XK5ziYXNQWQwmzdvBgBUr14d3377LczMzDT2Ozg4YO7cuQAAmUyGkJAQvY5//PhxobVh/PjxaNmypcZ+qVSKJUuWCF1sN2zYUJbLICMSO2aCg4MBAGZmZli2bBksLS2LlCkcRwMAjx8/xunTp/W+DjIesWNGm+joaOzYsQMAUKNGjXIfj4xL7Jg5d+4cIiMjAQCDBg3S2vWybdu2QiunTCbDX3/9pfd1kPGIHTNnzpwRWkzHjx8PFxcXjf0SiQSTJ0/Gm2++CQAICwtDfn5+ma6FjCsvLw+rVq3CxIkT8eLFC4MdNy4uDhcvXgQADBgwAN27d9fYL5FIMGfOHDg4OABQxXBxQ9IqEhNPMgiZTIazZ88CALy8vIrtEvLee++hbt26AICjR4/qdY7Dhw8DUL25hg8frrWMlZUVBg0aBEA1AdGdO3f0OgcZj9gxk5GRgfj4eABA165dYWtrW2zZd999V9j++++/dT4HGZcxPmdelZmZiTlz5kCpVKJ///5o3rx5uY5HxmWMmCnsjmlmZoZp06YVW+7DDz+En58fAgIChHNR5WOMmFHvsu/q6qq1jImJCdzc3AAA2dnZSE9P1+scZHxnz55Fnz59sHbtWigUClhaWmLs2LEGOXbhd2AAGDFihNYyJiYmwj6ZTIbo6GiDnNuQmHiSQZw/fx4KhQIA8PbbbxdbzsTEBB07dgSg+oL//Plznc9RON7BxcUFderUKbac+vnZelV5iR0z6enpaNWqFWxtbfHWW2+VWLZmzZrCtiF/oSTDMsbnzKuWLVuG5ORk2NraYvbs2WU+DlUMY8TMn3/+CUD1A9cbb7xRbDlXV1csWLAAU6dOFRIKqnyMETPW1tbC9v3794st9+DBAwCqiYzU/09R5bR//37hRwU3NzeEhITAx8fHIMcu/A5cs2ZNtGjRothy6jFb2BOjMmHiSQaRmJgobDs7O5dY1tHREYBqmvLCyYBK8/jxYyEhcHJyKrFsYTcDQDXLIFVOYsdMkyZNEBISgqioKMyYMaPEsrdu3RK2ORty5SV2zLxKvYvt119/zdh4DYkdM6mpqXj69CkAVXfaQnK5HFevXsXp06eRkJDAbpKvEWN8zqgvw7J161Zh4il1586dE3rtdOrUCVKpVOfjU8WpU6cO5s2bh127dgnxUV4FBQXC9xQHB4cSJ85s1qyZsKRgZfwOzMSTDCIlJUXYtrOzK7FsgwYNtD6uJOrdUko7fv369YU3ZeGvhVT5iB0z+ti9e7ew3aZNG4MfnwzDmDGj3sW2T58+6NWrl97HoIondszcvHlT2G7cuDHkcjlWr16Nbt26YcCAAfjPf/6DwYMHCzOtFxQU6HkFZGzG+Jxxc3NDt27dAAC3b9/GqFGjEB0djZcvX+LRo0fYvn07Pv30UygUClhbW+OLL77Q8yqoIowcORIREREYOXKkQdeTf/LkCfLy8gCUHpPVqlUThhZVxu/A1Su6AlQ1FE4hDwC1a9cusax6q4FMJtPp+OpjG0o7vqmpKSwtLZGRkaHz8cn4xI4ZXUVGRiIiIgIAULduXXh4eBj0+GQ4xoyZwi62tWvXxrx58/R+PFUOYsfMo0ePhG2pVIpRo0bh0qVLRcrJZDL88MMPuHTpElasWAFTU1Odjk/GZ6zPmZUrV+Kzzz7DyZMnER8fj9GjRxcp065dO3z11VdFJlOkyqlVq1aiHFefmARU3XEfPXpUKb8Ds8WTDCInJ0fYfnX2t1epdxdRf1xJsrOzdT6+ehldj0/GJ3bM6OLhw4eYOXOmcDsgIADm5uYGOz4ZlrFiRr2L7dy5c0scU06Vm9gxo76I+9KlS3Hp0iU4OTlhw4YNuHjxImJjY/Hjjz+iYcOGAIATJ05g5cqVelwBGZuxPmesrKywePFioeXzVRKJBM2aNWMXf6pS34GZeJJBqI9fKW0cgvp+Xce9qHdP0mWcQ2EZjqupvMSOmdI8e/YM48aNE8ZneXh4CMuqUOVkjJhR72Lbo0cP9O3bV/+KUqUhdswULokBqCaJad68OXbu3Alvb29YWVnBxsYGffv2xY4dO4QfMH799VdRhgyQYRjrf9Phw4fh7e2N06dPo379+ggMDMSKFSvw7bffonfv3gBUw0D69esnjPWkf6eq9B2YiScZhHorUWnrBhX2Uwd0ewMBmr/w6LIuUeE52J2p8hI7ZkqSlpYGf39/3L59GwBgb2+PZcuWQSKRlPvYJB5jxExhF9uaNWti/vz5eteRKhexY0apVGrc/uabbzRmLC3UsGFDTJ48GYDqy+C+fft0Oj4ZnzE+Z8LCwjB9+nTk5OSgc+fOOHz4MCZNmoT33nsPQ4YMwapVqxAUFARzc3NkZmZi/PjxSEtL0/9iqEqoSt+BmXiSQVhaWgrb2mZnU6f+Qa1LlwF9j69eht0mKy+xY6Y4SUlJGDlypDBzYcOGDbFlyxZ2p3wNiB0z6l1sZ82aVeLSGPR6EDtmLCwshO2mTZuWOMarsBULgLAQPFU+YseMUqnE999/j4KCAtSsWROrVq3S+mOFp6enMKnQ8+fPsXnzZp2OT1WPlZWVsP26fwdm4kkGYWNjI2yXNphZfb+uX/bVj1/aWllyuVzo/sRkovISO2a0iY+Ph5+fH+7duwdANTvc77//XuoscVQ5iBkz6l1svby8MGjQoLJWkyoRsT9n1BOGZs2alVi2Tp06wni91NRUnY5Pxid2zFy9elVYu7Nv374ljuEcOnSo8OPGqVOndDo+VT01atQQtnVZL7awTGX8DsxZbckgmjZtKmw/fPgQTZo0Kbas+iyAjRo1KtPxS/L48WNh8Wddj0/GJ3bMvCoyMhKTJ08WfpRwdHTE5s2bUb9+/TIdj4xPzJhJSEgQlm2KjIyEi4tLqY8pLGNnZ4fw8PBSy5Pxif0507hxY73qU9gds/B/FFU+YsfM3bt3he3S1gmVSqVwcHDQ+Hyif5833ngDVlZWyMzMLHWJlIKCAqFbdmX8DswWTzIIBwcHYVt98WVtCvdLJBI4OTnpdPzatWujbt26Oh1ffV210j7UqeKIHTPqwsPDERAQICSdbdq0wdatW5l0vmaMGTNUNYgdM+r/Y0qbMKigoEBoIeNnT+VlzM8ZXbpNFq5Lbsh1Ien1UxiXt27dKrHc7du3hcmIKuN3YLZ4kkG4u7vD1NQUcrkcMTExGDlypNZyBQUFiI2NBQC4urpqdGkpTceOHXH06FFcvXoVL1++1Oh6oC46OlrY7tSpkx5XQcZkjJgBgHPnzmHKlCnCgHwPDw+sWbNGYxwPvR7EjBknJyesXbu21HIrV64UvmwWlq+M42hIRezPmdq1a8PJyQmJiYlITEzEo0eP0KBBA61lr1y5IowJrIxfCElF7JhR/9EhISGhxLL5+fnCJHiVsfWKjKdjx46Ij4/H06dPkZiYWOwPHerfgTt27Gis6umMLZ5kEDY2Nnj77bcBqFqXiusKcOjQIWEh3D59+uh1jsKJGfLz84UJQF6VkZGBvXv3AlCNt3F1ddXrHGQ8xoiZp0+fYsqUKcKXPR8fH/z8889MOl9TYsZMnTp10LNnz1L/1BfvLrzP09OznFdGYjHG50zhkjtKpRIbN24sttzWrVuFbX3PQcYjdsy0atVKGBscFhZW4vCh0NBQZGRkAFD9aEr/XuqTk/3+++9ayxQUFGD79u0AVONCK+P/JiaeZDBjxowBoJrc57PPPhM+LAvdvHkTixYtAqCaoWvIkCF6Hb9nz57CeJq1a9fi/PnzGvvz8vIwY8YMoSvT2LFjy3AVZExix8w333wjfDFo3bo1fvrpJ4Msx0IVR+yYoapH7Jjx8/MTJvHYsWMHQkNDi5TZt2+fcH+7du3Qpk0bfS+DjEjMmJFKpcKa0VlZWZg6darwf0rdxYsX8d133wFQLYsxevToslwKVRFt2rSBu7s7ACAkJARHjhzR2K9UKvHtt98KLeQjRoyolL1xJMpXF6EiKofJkyfj2LFjAFSTLgwfPhwNGzbEP//8gx07diAzMxMAsGDBAvj5+Wk8NiYmBv7+/gBUXWS1/aITHh6OTz75BEqlEqamphgyZAjatWsHmUyGXbt24caNGwBU/9i3bt3KMRGvAbFi5tatW+jbt6+wzt6MGTNgb29fan1q1aqFDh06GOTaSBxif86U5KOPPsK5c+cAANevXy/vpZCRiB0zJ06cwJQpU4SxVT4+PvD19YVUKkVERASOHj0KQLXkxp49e+Do6CjatZJhiBkz2dnZGDFiBP755x8Aqi7bAwcOhKurKwoKChAdHY1Dhw4hPz8fADB//nwMHz5c1OslcajHQmBgICZNmqS1XHJyMnr06AGg+Anrrly5gmHDhkEul0MikaBfv37w9PRETk4O9u3bJyzT1LRpU+zZs0djGZbKgmM8yaCWLFmCzMxMREVFITk5GT/88IPGfolEgsDAwCIf0rry9fXF119/jUWLFkEul2P79u1Ct4JCrVq1wrp165h0vibEipl9+/ZpLO6+dOlSnR5XlmSEjEvszxmqesSOmV69emH58uX46quvkJGRgYiICERERGiUqVWrFtavX8+k8zUhZsxYWFhg06ZNmDZtGqKjo5Genq51nU5TU1PMnj2bSScBAFq2bImVK1fiiy++QFZWFvbv34/9+/drlLG3t0dQUFClTDoBJp5kYBYWFggKCsKBAwewb98+YSKgWrVqoX379vD390f79u3LdY7hw4ejQ4cO+N///oezZ88iLS0NpqamcHZ2Rr9+/TB06FCYmpoa6IpIbGLFTGHrN1U9xvicoarFGDHTp08ftG/fHtu2bUN4eDhSUlIgkUjQpEkT9OzZEyNGjKiU6+qRdmLHTJ06dfDrr78iLCwM+/fvx99//42nT59CKpXCzs4OHh4e+Oijj7jONGno2bMnDh06hC1btuD06dN49OgRJBIJmjVrht69e+Ojjz6qtEknwK62REREREREJDJOLkRERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klEREQGJ5fLK7oKVAK+PkRkbNUrugJERCSemJgY+Pv7l/nxdnZ2CA8PN2CN/p+vry9SUlIAANevXxflHMa0evVqrFmzptRy1atXh7m5OerVqwcXFxd07twZ/fv3h7W1tRFqWT7q8TRw4EAsXry4SJmcnBysWbMGVlZWCAgIKLJ/1qxZ2Lt3LwDgt99+Q+fOncWttMj0eY9JJBJIpVLY2NjAzs4OrVq1wsCBA9GyZUuRa/n/Snt9iIjEwhZPIiIiI8rPz0dGRgbu3r2LY8eOYeHChejRoweOHz9e0VUrt+vXr6Nv377YuHEj8vPzK7o6lY5SqURubi7S0tJw6dIl/P777xg8eDDmzZsHhUIh+vn5+hBRRWKLJxHRv0TNmjXx3//+V6/H1KhRQ6TaVG1ubm547733tO4rKChAVlYW7t+/j+PHjyMvLw8ymQxTpkzB+vXr4e3tbdzKGtCVK1eQnJxc0dWoMKW9xxQKBTIyMnDr1i1ERUUhOzsbSqUSwcHBMDc3x+zZs0Wt37/99SGiisXEk4joX8La2hoff/xxRVfjX8HJyUmn5/rRo0cYN24cbt26BYVCga+//hrHjx+HmZmZEWqpv86dO5e7W/TixYu1dtGtCvR5j8lkMsyaNQsREREAVN2Ohw4dCkdHRzGrSERUYdjVloiIqII0aNAAa9euhYmJ6t/xo0ePRBtTS5VLrVq1sGrVKrz55psAVN1wd+7cWcG1IiISDxNPIiKiCtSsWTN4eHgIt//6668KrA0Zk1QqxQcffCDcrgqTbBERFYddbYmIqExu376N/fv3IzY2FklJSXj+/DkkEglsbGzg5OQELy8vDBkypFyztSYmJiIkJAQxMTG4f/8+8vLyUKtWLTRt2hRdunTBkCFD8MYbb5R6nIcPH2Lnzp2IiopCcnIyMjMzUbt2bbRo0QK9evVC//79YWpqWuZ6lpeDgwMiIyMBqFo9i/Ps2TMEBwcjMjISt2/fRkZGBmxsbGBvbw8vLy/4+fmhTp06JZ4rLy8PBw4cwIkTJ5CQkACZTAYzMzPUq1cP7u7ueOedd+Dr66v1scXNaqttRt81a9YI9wUGBmLSpEkAtM9qq1Ao4OPjI1z7vn370Lx58xKvY9euXZg7dy4AYPDgwfjuu++KlMnOzkZISAjCw8Nx8+ZNyGQyWFtbo2nTpujevTuGDx+OWrVqlXgesdWrV0/YTk1NLbHs5cuXcfjwYZw/fx4PHz6ETCaDqakpatasCVdXV/j4+GDgwIGQSqUaj9Pn9VGXnp6O4OBgnDp1Cvfu3cOLFy9Qs2ZNODo6wtfXF0OHDoWFhUVZL52I/mWYeBIRkV7kcjm++eYbhISEaJ2JMycnB6mpqThz5gx++eUXrFu3Du7u7nqfZ926dVi9enWRc6SlpSEtLQ2xsbH45ZdfMGfOHAwdOrTY42zevBkrV65Ebm6uxv2pqalITU3FyZMnsXHjRqxatQouLi5619MQCrvaAkC1atW0lgkODsbixYuRlZWlcf/Tp0/x9OlTXLx4EUFBQZg9ezY+/PBDrce4f/8+JkyYgNu3b2vcL5fLhZl29+7di7Zt22L9+vWlJrGGYmJign79+mHjxo0AgEOHDpWaeB44cEDYHjBgQJH9Z8+exYwZM5CWlqZxf3p6OtLT0xEXF4dNmzZhwYIF6Nu3b/kvoozu3bsnbKsnoeoyMjIwa9YsnDhxosg+uVyOrKwsPHz4EBEREdi4cSM2btyIZs2alateBw4cwMKFC/HixQuN+588eYInT54gOjoaGzduxLJly/D222+X61xE9O/AxJOIiPQyc+ZMHDp0CIBqTUpPT0+4urrCysoKL168wN9//43Y2FgolUo8e/YMkyZNwtGjR/Vq+QwNDcVPP/0EQJWUeHp6okWLFrC0tMTjx49x8uRJpKSkICcnB3PnzkXjxo3RtWvXIsf54YcfEBQUJNx2d3dHhw4dYG1tjQcPHiAiIgKpqam4e/cuhg8fju3bt8PV1bWcz5D+1LtYFo75U/fLL79g+fLlwu3GjRvDx8cH9erVQ1paGiIiIpCSkoLMzEzMmTMHz549w4QJEzSOkZeXh4kTJwpJZ8OGDeHt7Y2GDRsiKysLN27cwMmTJ6FQKHDp0iUEBgZi+/btOtXfw8MDlpaWSEhIwOHDh4X7CrsQ6/LDw4ABA4TE8/Dhw5g+fXqxZR8/fozz588DUK0127FjR439YWFhmDJlCuRyOQDA3t4e3bp1g62tLWQyGaKionDjxg28fPkSn3/+ObKysjBkyBCdrtWQXrx4gdDQUOG2tgROoVBg/PjxiIuLAwCYm5uje/fucHR0hLm5OdLT03Hu3DkkJCQAUP24MGXKFOzbt0/4QUPf12fbtm1YuHChcNvFxQVdu3ZF7dq1kZaWhlOnTiEpKQlpaWkYP3481q9fDy8vLwM+M0RUFTHxJCIinUVHRwtJp42NDX777TetLVMxMTH473//i+zsbKSlpeHPP//U2ipVnHXr1gFQJZ3alhj58ssvMXv2bOzfvx8A8PPPPxdJPMPCwoSks1atWvjxxx81xlICQG5uLn744Qf8/vvvyMzMxOTJk3Hw4MEiXRXFlJiYiOjoaOF2t27dNPZHR0drJJ2TJk3CxIkTUb36//8LnzVrFlavXo0NGzYAAFasWIE2bdqgc+fOQpljx47h5s2bAIBOnTohKCioyOy58fHxGD16NLKysnDhwgXExsYWSeq0adeuHdq1a4c9e/YIiY27u7tesyg7OjqiZcuWuHLlClJSUnDp0iW0bdtWa9nDhw8LLeH9+vWDRCIR9j148ACzZs2CXC6HiYkJZs6cCX9/f41W5ZkzZ2LPnj2YN28e5HI5Fi5ciHbt2sHBwUHn+pZXUlISZsyYgWfPngFQLV00cuTIIuX27t0rJJ12dnb47bff0Lhx4yLlDh06hOnTp0OhUOD69eu4cOGC8Nrp8/okJCTg+++/BwCYmZnhu+++w/vvv69R5ssvv8SmTZvw448/Qi6XY/r06Thy5IjRWsiJ6PXExJOI6F8iIyMDmzZt0rn8sGHDirRSFo7NA1QJUHHdITt37oyBAwcKLWYJCQk6J54ymQx3794FADg7O2td19LU1BQLFy7EiRMnkJ2djRs3biAvL09IGJVKJVasWCGUX7VqlUYSVsjMzAxfffUV7t+/j5MnT+LevXsIDQ01WutXQkICpk6dioKCAgBAy5YtiyTHK1euFLbHjh2LwMDAIscxNTXFZ599hszMTGzduhUKhQIrV67Ejh07hDJ///23sD169GitS7a0bt0a48aNw5o1a2BiYoL4+HidEk9DGTBgAK5cuQIAOHjwYLGJ58GDB4Vt9cl5AFXrcGH30E8//RRjxozReoxBgwYhPT0dS5cuRV5eHn7++Wf88MMP5ap/ae+x7OxsyGQy/PPPP4iPjxdaZKVSKZYvX641cVN/z82ZM0dr0gkAffv2RWhoKE6dOgVAtWZnWV67n376SajXggULiiSdgKo7+IQJE/Do0SNs27YNMpkMv/32G6ZOnar3+Yjo34OJJxHRv8Tz58+xdOlSncv37t27SOL57rvvolmzZkhOTi7yhf9V6uMlMzMzdT6vekteSkoK0tLSYGtrW6SchYUFdu/ejdq1axf5wh4XF4fExEQAqpYdbUmnuoCAAJw8eRIAsH///nInnomJicUmILm5uXj69Cni4+MRHx8v3G9paVnk9UlOThZauywtLbUmneqmTZuGPXv2ICsrCxcvXsTt27fx1ltvAdAcOxoXF4eePXtqPYa/vz/ef/992NnZGbXlFwDef/99LFmyBPn5+Th69Chmz56t0VIJAHfv3hW6lbq5uWm0Uubl5QldV6VSKcaOHVvi+fz9/bFmzRpkZWXh6NGjWLRoUbmuWd/3GKBK9ufOnYvWrVtr3e/n54e3334bqampWn+EUefi4iIknhkZGXrVA1B1YS6c5KpBgwal/lgUEBCAbdu2AVC9b5h4ElFJmHgSEZHOfHx84OPjU2q5rKwsJCcnC7fz8/N1Poe1tTWaN2+Oq1ev4uXLlxg8eDBGjx4Nb2/vIl0hi+saGRsbK2y3bNmy1HO2aNECUqkUeXl5iI+PR35+vkYCrK+EhAQhOdJF06ZNsXLlSjg6Omrcr94F19PTs9RxstbW1vD09MTx48cBAOfPnxcSz44dO+LXX38FAAQFBSElJQX9+/dH586dYWlpKRyjZs2aqFmzps51N6Q6derAy8sLERERSEtLw7lz54qMe1Rv7ezfv7/GvitXrgiTLzVt2hRWVlYlns/U1BRubm44d+4c8vLycPnyZbRv395AV1M8d3d3eHh4wNvbG61atSqxrLYWR22eP3+Ox48fC7f1ec8VKhybDQDNmzfX6MKsja2tLezs7JCSkoKUlBQ8fvwY9evX1/u8RPTvwMSTiOhfws7ODuHh4QY9ZmZmJu7cuYOkpCTcv38fd+7cwbVr15CYmKjxxbfwy6yupk+fjgkTJqCgoACPHz/G0qVLsXTpUjRq1Aienp7w8vJC165di03ECscyAsDWrVuxdetWnc+dk5ODZ8+e6bRMS1mYm5vD2toaDRo0QMuWLeHt7Q1vb+8iLXsANJJ3XSc9cnV1FRLP+/fvC/f7+vqiU6dOOHfuHADgyJEjOHLkCExNTdGuXTt4enrC29sbzs7O5bm8cuvfvz8iIiIAqMYtFpd4Vq9evchstOqv+40bN/Sepfjhw4dlqbJA23ssJycHN2/exK+//irMxJuYmIh+/fqVmnRq8/z5c9y9exdJSUlISkrC7du3ce3aNdy6dUvjfabvew7QfP4iIiL0fv4ePHjAxJOIisXEk4iI9KJQKBAaGort27cjISFB65IqgKprZ+HYRX15enpi3bp1+PrrrzXWtXzw4AF27dqFXbt2QSqVwtvbG2PHjkW7du00Hv/8+fMynVf98eVJPNXXuCwPmUwmbOu63qR6OfXnwcTEBOvWrcO3336L0NBQITGRy+WIiYlBTEwMli9fDnt7ewwaNAj+/v4aLaHG0qNHD9jY2ODFixc4fvw45s2bJ6yxeuXKFdy5cweAKkbq1q2r8VhDvO6GZm5uDjc3Nyxbtgxubm74/vvvkZGRgYULFyItLU2n7ql5eXnYuXMnQkJCcOPGjWLLlec9B1TO54+Iqg4mnkREpLPMzEwEBgbi7NmzGvdLJBI0aNAAjo6OcHNzQ6dOnZCcnIy5c+eW+Vze3t44ceIETp06hePHjyMqKkqYARRQfRk/fvw4jh8/jk8//RSTJ08W9ql/+X733XeLHT9XnFcTmopSllar4n4IAFQzpy5ZsgSffvopDh06hIiICFy+fFnjMffu3cOKFSuwa9euYmdQFZNUKkWfPn0QHBwMmUyGs2fPonv37gBK7mYLaL7uLVu21Ht9zuImMzKUMWPG4P79+0IL/Pr169GoUaMS16EtXLLk2rVrGvebmJjAzs4OTk5OaNWqFTp37oyoqChhRuiyUH/+unTpovcSKeVdO5SIqjYmnkREpLNFixYJSaeVlRX8/f3h5eUlrOOprnDSkfKQSqXo1asXevXqBaVSievXryM6OhqRkZGIjo4WuvOuXbsWnTp1Erpl2tjYCMdwd3cvdmbTyk59rGV6erpOj1Evp/48qHvzzTcREBCAgIAAvHjxAufOncPZs2cRERGBBw8eAFBN7DRr1iy9uikbygcffIDg4GAAqu623bt3h1KpxJEjRwCoEugePXoUeZz69davX1+v5VyMZebMmYiNjRXWbl20aBHat29f7Hjl6dOnC0ln3bp1MWbMGHTt2hVOTk5FZiYOCwsrV93Unz9HR8dK+fwR0eur6IASIiIiLR4/fox9+/YBULVwbtmyBVOnTkX79u21TuKingCVpeXuVRKJBK6urhgzZgw2bdqE8PBwjTFohbOZAkCTJk2E7cLZbUuj3ppaWdjb2wvbhYlKaa5evSpsqz8PxbGxsUHPnj0xb948hIeHa7RSx8bGComoMXXo0EGoe0REBPLz83HhwgVhDGbv3r21Lgejfr3q4xVL8vz58xJbiQ1NKpVi8eLFwuRVOTk5mDlzptY6/P3338IEU5aWlggODsaECRPg5uam9fp1/XGiOGV5/tLT0w3y/iaiqo+JJxER6eTy5ctCV7zmzZujTZs2JZaPiYkRtvX5YhoWFoaPP/4YPj4+2LBhQ7Hl6tevj4kTJwq31Wf07NChg7B96tQpYV3C4ly+fBldunSBu7s7Bg8eXKYZQcWgfh1RUVGlLpHx8uVL/PXXX8Ltwq6jBQUFmDlzJgYNGgQPDw/k5eVpfbxEIsGoUaM0Wt/Ux9iWprRZUPVR2JX2xYsXiI2NxdGjR4vse5W7u7uQ0CUlJZWarOfm5qJ3795o3bo13nnnnSLdWcXSokULjaVeLl++LKx5q+7SpUvCtoeHR4k/JCiVSmHiKEB7l+vSXh/1eLtw4UKpP8akpqbCy8sLbdq0QZ8+fSrljzdEVHkw8SQiIp2oJyvqk95o8+eff2p8CdYnkVMqlYiKisKDBw9w6NChEh+r3sKjPptmly5d0KBBAwCqMXLFralZeL7ly5cDUC0D07hx43ItpWJI9vb2cHd3B6Cq25o1a0os/9NPPyE7OxsA4OTkJLQIV6tWDdeuXcOVK1fw5MmTErtkKhQKjddXn1lK1WfmLc8kN4BmchkWFoY///wTgGrm2I4dO2p9jJWVFXr16iXcXrp0aYk/egQFBSE9PR1yuRxZWVlFlrMRU2BgIOzs7ITbK1asQGpqqkYZ9fdcaa2Zv/32W6lLGJX2+jg4OAjjofPy8rBixYoSz7ly5UrI5XLk5ubCysqqyHq6RETqmHgSEZFO1JfzePDgAf73v/8VKaNQKBASEoLPP/9c4/7CZEgX3bp1g62tLQBV99KFCxciJyenSLk7d+5oJGLvvPOOsG1qaopPPvlEuP3TTz9hy5YtRVqBsrOzsWDBAqGVsHr16ggICNC5rsYwZcoUoaVqy5YtWLNmTZGkIj8/H6tWrcLvv/8OQNWyNXv2bI0ygwcPFrbnz5+P+Pj4IudSKpVYsmQJnj59CkA1QY96clQa9eVtUlJSdH6cNm+++aaQdO/evVvoZtuvX78SW+4CAgIglUoBqFqJv/jiiyItxUqlEiEhIRoT8QQEBBj1Bwdzc3PMmzdPuJ2RkYHvvvtOo4z6e+7ChQs4ceJEkePk5eXh559/xpIlSzTu1/ae0+X1mTx5svD87tq1C0uWLCnSQp6fn49169Zh9+7dwn2TJk3SejwiokKV4yddIiKq9N566y14enoiKioKAPDdd9/hyJEjcHd3h7W1NR4/fozTp08LCYKpqanQxbW0FlJ1UqkUX375JT777DMAQHBwMMLDw9GtWzc0atQIgGqNxpMnTyI3NxcA0L17d/j4+GgcZ9iwYTh//jz2798PhUKBxYsXY+fOnejWrRvq1KmDBw8eICIiAmlpacJjPv/8c53XyzSWLl26IDAwEKtXrwYArF69Gnv37oWPjw/q1auHJ0+eICIiQqO165NPPkHXrl01juPn54c//vgD169fh0wmw5AhQ+Dh4QFnZ2fUqVMHT58+RVRUlDC2z9TUtEjyWhr1GXAPHDiAGjVqoH79+nBycoKvr6/e1z5gwADExcUhKytLuO+DDz4o8TEuLi6YN28e5s6dC6VSiQMHDiAyMhI9evRAkyZN8OzZM8TExGh0w/Xx8cGIESP0rl95eXt7o1evXkJCeeTIEQwePFiYTbZwEqHExEQolUoEBgbC09MTLVq0gJmZGVJSUhARESG0hpb2ntPl9fHy8sLEiROxfv16AMDmzZtx+PBh+Pj4oH79+khNTUVkZKTGGrGjRo0SZh4mIioOE08iItLZ0qVLMXbsWOFLe1xcHOLi4oqUc3Z2xuLFizFs2DDI5XIkJiYiLy9PaIkqTd++fZGeno7FixdDLpcjLS1No3VFXe/evYu09hRasmQJGjVqhE2bNkEul+Pu3bu4e/dukXLm5uaYPn06PvroI53qZ2yBgYGoXbs2li1bhqysLCQnJwutm+osLS0xf/58rWMgpVIpgoKCEBAQgISEBADAmTNncObMmSJl69Wrh2+//VZjzJ8unJ2d4e7ujri4OCiVSmFmY19f3zIlnu+99x4WLVoktLi5ubkVO/uruiFDhqBGjRr4+uuvIZPJIJPJio2fwYMHY/78+QYdn6qPr776CmfOnBGS64ULF+LgwYMwMzNDtWrVsHr1aowbN06Y5CkqKkr48Uddhw4dMG3aNIwcORKAas3TV+n6+kydOhV169bF8uXLkZ2djUePHmHHjh1FjletWjWMHz8e06ZNK/8TQURVHhNPIiLSWd26dRESEoLg4GAcPXoUN2/eREZGBszNzWFrawtXV1f07NkTffr0QfXq1fH2228jMjIS2dnZOHbsGPr166fzuUaNGoVu3brhjz/+QExMDO7evYuMjAxYWFjA1tYWnTp1Qr9+/UpMjkxMTDBt2jR8+OGH2LVrF86ePYvk5GRkZGTA0tISTZs2RdeuXTFs2DChNbWyGjlyJHr37o2dO3ciKioK9+7dw4sXL2BpaQkHBwd4e3tj6NChJY6ze+ONN7Br1y4cPXoUx44dwz///IMnT54gPz8fderUQbNmzeDj44PBgwejRo0aetdRIpFg48aNWLlyJcLDw5GWlqbRCqcvGxsb+Pj44NixYwCKn1RIm3fffReenp4ICQnB6dOnkZiYCJlMBlNTUzRs2BDt27fHkCFD9F7j1dAaNGiASZMmCT+eJCUlYd26dUIy16xZM4SGhmLr1q0IDw/HnTt3kJ2dDQsLCzRs2BDNmzfHe++9B29vb0gkErz11lu4ffs2kpKScPHiRbRr1044lz6vz0cffSSsp3rmzBncvXsXz58/h5mZGZo0aYLOnTtj2LBhOv0QQEQEABIl58AmIiIiIiIiEXFyISIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiIS1f8B8dliV35QgI0AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "from error_parity.roc_utils import compute_roc_point_from_predictions\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ " plot_relaxation=True,\n",
+ ")\n",
+ "\n",
+ "# Compute predictions\n",
+ "y_pred_binary = clf(X, group=group)\n",
+ "\n",
+ "# Plot the group-wise points found\n",
+ "realized_roc_points = list()\n",
+ "for idx in range(N_GROUPS):\n",
+ "\n",
+ " # Evaluate triangulation of target point as a randomized clf\n",
+ " group_filter = group == idx\n",
+ "\n",
+ " curr_realized_roc_point = compute_roc_point_from_predictions(y_true[group_filter], y_pred_binary[group_filter])\n",
+ " realized_roc_points.append(curr_realized_roc_point)\n",
+ "\n",
+ " plt.plot(\n",
+ " curr_realized_roc_point[0], curr_realized_roc_point[1],\n",
+ " color=all_group_colors[idx],\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ " )\n",
+ "\n",
+ "realized_roc_points = np.vstack(realized_roc_points)\n",
+ "\n",
+ "# Plot actual global classifier performance\n",
+ "global_clf_realized_roc_point = compute_roc_point_from_predictions(y_true, y_pred_binary)\n",
+ "plt.plot(\n",
+ " global_clf_realized_roc_point[0], global_clf_realized_roc_point[1],\n",
+ " color=global_color,\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ ")\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8db9a56",
+ "metadata": {},
+ "source": [
+ "### Compute distances between theorized ROC points and empirical ROC points"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "be73972d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Group 0: l2 distance from target to realized point := 0.199%\n",
+ "Group 1: l2 distance from target to realized point := 0.000%\n",
+ "Group 2: l2 distance from target to realized point := 0.003%\n",
+ "Group 3: l2 distance from target to realized point := 0.092%\n",
+ "Global l2 distance from target to realized point := 0.036%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Distances to group-wise targets:\n",
+ "for i, (target_point, actual_point) in enumerate(zip(clf.groupwise_roc_points, realized_roc_points)):\n",
+ " dist = np.linalg.norm(target_point - actual_point, ord=2)\n",
+ " print(f\"Group {i}: l2 distance from target to realized point := {dist:.3%}\")\n",
+ "\n",
+ "# Distance to global target point:\n",
+ "dist = np.linalg.norm(clf.global_roc_point - global_clf_realized_roc_point, ord=2)\n",
+ "print(f\"Global l2 distance from target to realized point := {dist:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "### Compute performance differences\n",
+ "> assumes FP_cost == FN_cost == 1.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "6991bf75",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual accuracy: \t\t\t84.678%\n",
+ "Actual error rate (1 - Acc.):\t\t15.322%\n",
+ "Theoretical cost of solution found:\t15.336%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "from error_parity.roc_utils import calc_cost_of_point\n",
+ "\n",
+ "# Empirical\n",
+ "accuracy_val = accuracy_score(y_true, y_pred_binary)\n",
+ "\n",
+ "# Theoretical\n",
+ "theoretical_global_cost = calc_cost_of_point(\n",
+ " fpr=clf.global_roc_point[0],\n",
+ " fnr=1 - clf.global_roc_point[1],\n",
+ " prevalence=y_true.sum() / len(y_true),\n",
+ ")\n",
+ "\n",
+ "print(f\"Actual accuracy: \\t\\t\\t{accuracy_val:.3%}\")\n",
+ "print(f\"Actual error rate (1 - Acc.):\\t\\t{1 - accuracy_val:.3%}\")\n",
+ "print(f\"Theoretical cost of solution found:\\t{theoretical_global_cost:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f2e16086",
+ "metadata": {},
+ "source": [
+ "### Compute empirical fairness violation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "fce51ec0",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Maximum fairness violation is between group=0 (p=[0.69338557]) and group=2 (p=[0.74338557]);\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Empirical true_positive_rate_parity violation: 0.05\n",
+ "Theoretical true_positive_rate_parity violation: 0.05\n",
+ "Max theoretical constraint violation:\t 0.05\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import evaluate_fairness\n",
+ "\n",
+ "empirical_metrics = evaluate_fairness(\n",
+ " y_true=y_true,\n",
+ " y_pred=y_pred_binary,\n",
+ " sensitive_attribute=group,\n",
+ ")\n",
+ "\n",
+ "disparity_metric_map = {\n",
+ " \"equalized_odds\": \"equalized_odds_diff\",\n",
+ "\n",
+ " \"true_positive_rate_parity\": \"tpr_diff\",\n",
+ " \"false_negative_rate_parity\": \"tpr_diff\",\n",
+ "\n",
+ " \"false_positive_rate_parity\": \"fpr_diff\",\n",
+ " \"true_negative_rate_parity\": \"fpr_diff\",\n",
+ " \n",
+ " \"demographic_parity\": \"ppr_diff\",\n",
+ "}\n",
+ "\n",
+ "disparity_metric = disparity_metric_map[FAIRNESS_CONSTRAINT]\n",
+ "\n",
+ "# Calculate empirical fairness violation\n",
+ "empirical_constraint_violation = empirical_metrics[disparity_metric]\n",
+ "\n",
+ "# Check if empirical and theoretical results are reasonably close\n",
+ "print(f\"Empirical {FAIRNESS_CONSTRAINT} violation: {empirical_constraint_violation:.3}\")\n",
+ "print(f\"Theoretical {FAIRNESS_CONSTRAINT} violation: {clf.constraint_violation():.3}\")\n",
+ "print(f\"Max theoretical constraint violation:\\t {clf.tolerance:.3}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "485d5b1f",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "---\n",
+ "# Plot Fairness-Accuracy Pareto frontier achievable by postprocessing"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "790f18c6",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Using `n_jobs=9` to compute adjustment curve.\n",
+ "INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13\n",
+ " 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ].\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c6ae1586f8254b69b2162256afe47031",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/28 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=predictor,\n",
+ " fit_data=(X, y_true, group),\n",
+ " eval_data={\n",
+ " \"fit\": (X, y_true, group),\n",
+ " },\n",
+ " fairness_constraint=FAIRNESS_CONSTRAINT,\n",
+ " y_fit_pred_scores=predictor(X),\n",
+ " predict_method=\"__call__\", # for callable predictors\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "a17d1107",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG2CAYAAABiR7IfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACa0ElEQVR4nOydd3xUVfr/PzOTKQkhkAAhARN6GpEO0hUUVtFdQMEVxUV3UVlksSyKWJC1gCBYgAWVFRuWVXFVRCmWFWGlCoTAJKT33qffuXN+f/Cb+01IMifJzJ1CnvfrlRdk5uSeZ95z595nzj33OQrGGANBEARBEAThEqWvAyAIgiAIgggEKGkiCIIgCIJoA5Q0EQRBEARBtAFKmgiCIAiCINoAJU0EQRAEQRBtgJImgiAIgiCINkBJE0EQBEEQRBugpIkgCIIgCKINBPk6AH/k9OnTYIxBrVb7OhSCIAiCINqIIAhQKBQYOXKkLNunkaYWYIyhMxRKF0XR1yH4PeSIDzniQ474kCM+5IiP3OdvGmlqAecI09VXX+3jSORDEARUV1cjIiKCRtRagRzxIUd8yBEfcsSHHPERBAHnz5+HSqWSrQ9KmjoparUavXv39nUYfg054kOO+JAjPuSIDznio1arZU2YALo812kRRRH19fU03OsCcsSHHPEhR3zIER9yxEcURTgcDln7oKSpk2K1WpGRkQGr1errUPwWcsSHHPEhR3zIER9yxMdqtcJut8vah4J1hhnP7eTcuXMAruw5TQ6HA4IgQK1WQ6mk3LklyBEfcsSHHPEhR3zIER+Hw4HU1FQoFArZzt80p8lNRFGEIAi+DqPD2Gw2X4fg9/irI29cv+ehVCqh1Wp9GoO/Q474kCM+5IiPUqmEQqGQtQ9KmjoIYwylpaWora31dSgdgjEGURShUqlk38kClUBw1L17d0RFRfksPpvNhtLSUkRFRUGj0fgkBn+HHPEhR3zIER+bzQa73Y6gIPlSG0qaOogzYYqMjERISIjfnlRbw+FwwGazQaPR0FBvK/izI8YYTCYTysvLAQDR0dE+iUMURRgMBpqc6gJyxIcc8SFHfERRlL3GIs1pagHenCZRFHHx4kVERkaiR48e3gyNIJpQVVWF8vJyxMXF+fxSHUEQhK+Re06yf319DhCcc5hCQkJ8HAnR2XHug4E8r44gCCJQ8Puk6c0338Tdd9/tsk1NTQ3+/ve/Y+zYsRg3bhz+8Y9/wGw2yx5boF2Sa4woijCZTDTU64JAcOTrfdBkMuHs2bMwmUw+jcOfIUd8yBEfcsTHZDLJfuOOX89p+vDDD/Haa69hzJgxLtstX74cZrMZ7777Lurr6/HUU0/BZDJh/fr1Xoo08FAoFAgKCvL5SdefIUd81Go1IiMjaVkHF5AjPuSIDzni4407iv0yaSorK8Ozzz6LY8eOoX///i7bnj59GsePH8e3336LQYMGAQCee+45LF68GI8++iiVnW8FpVJJd2BwIEd81Gq1zyahBwrkiA854kOO+HTaZVTOnz8PtVqNr7/+GsOHD3fZ9uTJk+jVq5eUMAHAuHHjoFAocOrUKblDDVict9N74z6AU6dO4eTJk7L342ncdXTs2DHEx8ejsLDQw5H5D3RHDx9yxIcc8SFHfLxxTvPLpGn69OnYsmULYmJiuG3LysqaZd8ajQbdu3dHSUmJW3E0nhdlNpula6UOhwMOh0N6cxwOR5Md2fk80PzE2562Lf1tR9oCTdfkcba1WCxSO17b1rbLe60OhwN33nkn8vPzPebFW74bO3L+3h7fw4cPx+HDhxEVFdXu96Yjvm02m8t9tvH8LEEQmsyNsFgs7WrrXMrBYrEgPT1det5ut7fa1lkmwbnMgbOtM36r1QqLxSL9rclkkia4t6etcy6a09PlXtrTluewLW2tVivS09NRV1fn0ktbfLfFoSd8O714wrfZbOa2dTqqr69v837Y3v27NS/u+r7cizu+G3u5vK3RaER6ejrMZnO799mO7t+eOEa05tBTvhsfI2pra2W/KcYvk6b2YDabW7yEotVq3VqjRxRFZGRkSL/n5OSgtLQUwKUdxG63NzmZNu7LarVKbxxjDBaLRdq5nCdiJzabrcmb3Lit3W5v1rbxJDeLxSLtXJdvVxCEZm0bx2C1WqHT6aBUKiEIQrP4nW0dDgcsFou0017etnEMzrZOL3a7vdl2nW2dXly1vdyhp3y78tK4rd1uh0qlkmo0tce31WqFSqVCr169pL9tzWFjL5f7vtzL5b6tVqvUtqKiApmZmVLb7OxslJWVSa9br9dLB8zKyspm+7fzS4bdboder4fBYABw6UaL9PR0qW1eXh6Ki4sBQJpf4fRfW1sLvV4vtS0oKJBG2hhj0Ov1UvJQX18PvV4vva+FhYUoKCiQ/lav10vFYw0GA/R6vfTaS0pKkJubK7VNT09HdXU1AMBoNEKv10sxlZaWIicnR2qbkZGByspKAJeOH3q9XnJcXl6OrKwsqW1WVhYqKiok93q9XnrfKyoqWj1GOH2bTCbodDpERkYiPz9fapubm+vSd1pamtQ2Pz8fRUVFAC6953q9Hg0NDa36bs1hQ0NDE99FRUVNYkpLS0NNTU2bfF+8eBFVVVUALp249Hq9tP+35NuVw6ysLOh0OiQlJaGoqEiqPWa1Wrn7bONjsl6vh9FoBABUV1c32Wdd+Xa1zzp919fXAwDq6uqg1+ulz5yrfdbp23l8KS4uRl5entQ2PT3dpe/LHRoMBiQlJUkxOX2XlZUhOztbapuZmenSt7eOEUePHsX+/fuRnp7O3Wc9dYzIzc2Vf84X83NWrlzJFi5c2Orzzz33HJs3b16zx8ePH8/eeeedDvWZkpLCUlJSmMlkkh4zmUzMarUyxhgzGo0sNTVVel4URWa32xljjBkMBlZfX8/q6+uZwWBgDQ0NrK6ujjU0NEjP1dXVMYPBIP3u3K7D4WAWi4U1NDQwk8nEHA4Hs9vtzOFwcLfbuK0zJlEUpfjtdrv0e+O2cXFx7P3332fz5s1jycnJ7JZbbmEHDhxo0vaHH35g8+fPZyNGjGATJ05kL774IjObzVI/P/30E5s7dy4bNmwYGz9+PHv88cdZbW0tE0WRxcXFST+PP/54izEwxqQ45s+fz5KTk9nNN9/MDh48KLV97bXX2J133skefvhhNnLkSLZmzRrGGGO//fYbu/vuu9moUaPYuHHj2MqVK1llZaW0XYvFwl599VV23XXXsWHDhrG5c+eyQ4cOSdtNT09nixcvZiNGjGCTJk1ijzzyCCsrK5NeW1ZWFvvzn//MRo0axUaMGMHuvfdelpaWJsX/3//+t8lrX7lyJautrWV2u539+uuvLC4ujuXn5zO73c6uu+469q9//Ys9+OCDbMSIEWzcuHHs+eefZxaLRfJy6NAhNnv2bMnBZ599xuLi4lhBQUGz99W5X5w/f56ZzWZmtVpb3WdFUWRGo1HaT202GzMajVJb59+3ta3FYpFiMBqNTBAExhhjgiC0u23j98q5Xzk/Zzabrd1t7XY7MxqNkqfLvbSnLc+hO74v9+KO78ZePOHb6cUTvk0mk8d8N/birm+nF3d9X+7FHd+Nvbjj+3IvnvDd3mPEnj172Jo1a9j333/v1WOE8/wtFwGfNL311lts6tSpTR6zWq0sISGB7d27t0N98qSbzWZ24cKFJm+eEwDt/vn000+lv//0008ZAHbttdc22W7Pnj1dbqO9iKLIrFYri4uLYyNGjGC7du1iWVlZ7OWXX2YJCQns1KlTjDHGDhw4wBISEtg///lPlp2dzb7//ns2efJk9te//pUxxlhVVRVLTk5mu3btYoWFhezkyZNs+vTp7Mknn2SMMVZeXs7i4uLYu+++y+rr61uNhxfH5s2bWVxcHHvhhRdYfn4+y8nJYWfPnmVDhw5lzz33HMvMzGS//voru+mmm9jcuXOlD/Ozzz7Lxo8fz7777juWl5fHXnnlFZacnMyysrJYaWmplLhkZmayc+fOsfvvv59NmzZNOtDMnj2bPfHEEywnJ4dlZGSwxYsXsxtuuKFNr/3o0aNNEp5p06axq6++mr333nssPz+fff755yw+Pp795z//YYwxduHCBZaUlMTWr1/PsrKy2DfffMPGjh3bZBuX42pf9AZWq5UVFBRIB1OiOeSIDzniE2iO0tLS2IEDB1hGRobX+rRarez06dOyJk1+efdcexg7diw2btyIvLw89OvXDwBw/PhxAMDo0aN9GZrf4xw2vvXWW3HXXXcBAFasWIHjx49j165dGDVqFN566y3MmDEDS5cuBQAMGDAAjDE8+OCDyMzMlC5L9enTB3379kXfvn3xxhtvSNt2Xp7q2rUrunbt6jIeV3E4Wb58ubSdhx9+GPHx8XjmmWcAAIMGDcIrr7yC2bNn4/Dhwxg9ejQ+//xzPPPMM7jxxhsBAI888ggYYzAYDPj6668RFRWFp59+Wtr+a6+9hvHjx2Pfvn2YM2cOCgoKMGnSJPTt2xdqtRpr165FdnY2HA4HysrKXL72lpg8eTL+9Kc/AQBiYmLwwQcf4LfffsOcOXPw7rvvIjk5GY8//jgAYODAgaiqqsKLL77IfS99hSiKqK2tpcr4LiBHfMgRn0BzFB8fj/j4eK/2KYqitF6oXARc0iSKIqqrq9G1a1fodDoMHz4co0aNwiOPPII1a9bAZDJh9erVmDNnjk/KDTiv8baHxitXz507FwaDodlaZ43nE3gCpVKJ4OBgAMA111zT5LmRI0fiyJEjAC7NXbj55pubPD9u3DjpuVmzZuGWW27BkiVL0KtXL0yaNAnXXXcdZsyY0WK/q1evxp49e6TfH3jgASxZsoQbBwD06NGjSeJ18eJFTJo0qcnfJCQkoGvXrkhPT0dERAQEQWh2B+ajjz4KANi6dSsyMjIwcuTIJs9brVZkZWVBqVTi0Ucfxdq1a/Hxxx9j3LhxmDJlCm655RYolUokJia267UDaHKXJ3ApmXTOvblw4QImTpzY5PmxY8e2ui1/IDg4GMnJyb4Ow68hR3zIER9yxCc4OFj2MjEBlzSVlJTg+uuvx7p163DrrbdCoVBg69at+Mc//oFFixZBq9XixhtvxKpVq3wSX5cuXdz6+6CgoBZXaHZ3u7w+GyOKopS0sRZu33ROynP+3aZNm/Dggw/i0KFD+N///ofHHnsMo0ePxnvvvdfsbx966CH85S9/kX7v1q1bm+IAAJ1O1+T5lmJzPq5Wq7kTAh0OB8aPH49nn3222XPO5Oyuu+7CjTfeiJ9//hm//vorNm/ejO3bt+PLL79Ez5492/XaAbT4gXa+DpVK1eROOYIgiEDFeaevUqn0uwXP3cHvk6aXXnqpye9XXXVVk1n6wKURiM2bN3szrIDHeecVcGmBw+nTp0vPnT59GkOHDgVwaYj1t99+wz333CM976y5NGjQIJw9exZ79+7Fk08+iYEDB+Kee+7B119/jcceewxVVVXNhpJ79OjR6vCyqzhaIj4+vlktrrS0NBgMBgwaNAj9+vWDWq3GuXPnkJCQILW5/fbbMWvWLAwZMgTffvstoqOjpWSmtrYWK1euxL333otBgwZhy5YtWLJkCW699VbceuutKCsrw9SpU3H8+HH07dvX5WtvLwkJCUhJSWny2OnTp9u9HW9iNpuRlZWFQYMGSSOXRFPIER9yxCfQHO3fvx/Hjx/H5MmTcf3113ulT2cJBTlHm/w+aSLkw3nd97333sPAgQORnJyMTz/9FOnp6dI8msWLF+Ohhx7Ctm3bcNNNNyE3NxfPP/88pk2bhkGDBiErKwsfffQR1Go1br/9dlitVnz77bfo378/wsPDAVxaVDYrKws1NTXSYy3hKo6WuPfee3HnnXfi+eefx5133onKyko8//zzSEpKwoQJE6BWq7Fw4UK8/vrriIiIwJAhQ/D555/j4sWLeOmll6BWq/Hvf/8bK1askOZsrV+/Hunp6YiLi0NoaCgOHz6M4uJi/P3vf0doaCi++OILqNVqJCcnQxAE7mtvD3/+858xZ84cbNy4EbfddhsyMzOlLwP+upSLSqVCeHi47FV4AxlyxIcc8SFHfFQqVedcRoWQn8ZLhNxxxx149913cfHiRSQkJODtt9+WRmZ+97vf4ZVXXsH27duxbds2RERE4JZbbsHy5csBQBqN2bp1Kz766CMolUqMHz8eO3bskIZk//znP+Nf//oXsrKy8MYbb7Qak6s4WmL48OH417/+hddeew1z5sxBaGgobrjhBvz973+XLs09+uijUKlUePbZZ9HQ0ICEhAS89dZbGDhwIABg165d2LRpExYsWACVSoVRo0bh/fffR0REBABgx44dWL9+Pe655x6YzWYkJibirbfeQmxsLABwX3t7iIuLw9atW/HKK6/g3XffxYABA7Bw4UJs2bLFb9eb0mg06Nu3r6/D8GvIER9yxCfQHM2YMQPTp0/3apKn0Whk70/BWpsY0ok5d+4cAODqq69u8XmLxYKcnBwMGDCg2TybQIExBofDgaSkJGl+mC+Jj4/3izga43SkVCq9MtKTkpKCoKAgJCUlSY/t2bMHTz75JE6fPt3iXDdf74vOYpzOQqlEc8gRH3LEhxzxcTgcSE1NhUKhaPX87S5kvpPi/AASrXN5hXO50ev1+NOf/oQffvgBxcXF+PXXX7FlyxbcfPPNLSZM/sDlFYeJ5pAjPuSIDzniY7FYZF9GxT+PxITsKJXKgB0l8xZOR976Vnf77bejoqICa9euRVlZGXr06IGbb75ZuhTqj2i1WiQkJDQpm0E0hRzxIUd8As1RRkYGCgsL0a9fP2k6hNxotVrZpzJQ0tRJUSgUUKlUze5E9BX+EkdjnI682d+yZcuwbNkyr/XpLiqVStZyGFcC5IgPOeITaI4yMzOlu+e8lTSpVCrZp1LQ5blOisPhgM1mo7pALiBHfARBQHFxsexD4oEMOeJDjvgEmqN+/fph7NixuOqqq7zWpyAILldk8ASUNLlBoM+hd66oTbSOvzvy9T5ot9tRWVnp9558CTniQ474BJqjpKQkzJo1y6tLqdjtdtmTJro81wGck3IDZedtCaVSiZCQEF+H4dcEgiPnPuirieLBwcEYNmyYT/oOFMgRH3LEhxzx8cYyKjTS1AGcBbTq6+t9HQrRyamvr/dKQTeCIAiCRpo6hEKhQGRkJEpKSqDVatGlSxe/rdjcGs75OhqNhmp+tII/O2KMwWg0or6+HtHR0T7b/8xms1QnKhCWdvAF5IgPOeITaI727dsnTQRvvDyWnJjNZgiCIOsddJQ0dZBu3brBbDajsrISFRUVvg6n3TDGIIqiV+42CFT83ZFCoUD37t2bLHrsbVQqFUJDQ2mkywXkiA854hNojhhj0o+38MaxmiqCtwCvInhjRFEMmLsZiCsLtVodMAdQgiA6F85CkxqNxqu1pdpz/u4INNLkJoE6n8SfLz35C+SIDzniQ474kCM+geZIp9N5vYCyw+EAY0zW0Sb/N0/IgsViwfnz56kkvwvIER9yxIcc8SFHfMgRH1pGhZANrVaLuLi4gCnJ7wvIER9yxIcc8SFHfALNUXZ2NoqLixETE4N+/fp5pU9vLKNCI02dFJVKha5duwbkpUVvQY74kCM+5IgPOeITaI4uXryIH374AZmZmV7rk5ZRIWRDEASUlpbSJHYXkCM+5IgPOeJDjvgEmqO+fftixIgRiI6O9lqftIwKIRuB9gH0BeSIDzniQ474kCM+gebo6quvxuzZs5GUlOS1Pr2RNFHJgRaQ+5ZFgiAIgiA8j9znbxppIgiCIAiCaAOUNHVSLBYL0tLS6PZVF5AjPuSIDzniQ474BJqjgwcPYt26dfj555+91qc3Sg5Q0tRJUSgU0Ol0frk8iL9AjviQIz7kiA854hNojkRRhM1mg91u91qfCoWCllHxBTSniSAIgiA6jslkgsVigU6nQ0hIiNf6pTlNhCwwxiAIglcXUww0yBEfcsSHHPEhR3wCzVFISAgiIiK8mjB5ww0lTZ0Us9mMlJQUmM1mX4fit5AjPuSIDzniQ474kCM+ZrMZNptN1j5oGZVOilarxeDBgwOmJL8vIEd8yBEfcsSHHPEJNEd5eXkoLS1Fnz59EBMT45U+tVotgoLkTWtopKmTolKp0K1bt4Apye8LyBEfcsSHHPEhR3wCzZFer8e+fftw8eJFr/WpUqmgVMqb1lDS1EkRBAHl5eUBU13WF5AjPuSIDzniQ474BJqjqKgoDB06FL179/Zan96oCE6X5zopgiCgsLAQoaGhsq8KHaiQIz7kiA854kOO+ASaoxEjRmDEiBFe7dOZNMk5GkclB1qASg4QBEEQROBBJQcIgiAIgiD8AEqaOikWiwUXL14MmJL8voAc8SFHfMgRH3LEJ9Ac/fTTT9i0aRN++eUXr/VJy6gQsqFQKBAUFBQwJfl9ATniQ474kCM+5IhPoDmyWq0wGAyy101qTMAso2Kz2TB8+HCsW7cOc+bM8UBYvoXmNBEEQRBEx2loaIDJZEKXLl0QGhrqtX7lPn977O45mk8eWDDG4HA4oFQqA+abi7chR3zIER9yxIcc8Qk0R127dkXXrl292icto0LIhtlsxpkzZ6gkvwvIER9yxIcc8SFHfMgRH1pGhZANjUaDgQMHQqPR+DoUv4Uc8SFHfMgRH3LEJ9AcFRYWoqKiAr1790afPn280qdGo5F9GRVKmjopQUFBCA8P93UYfg054kOO+JAjPuSIT6A5Sk1NxbFjxzB58mSvJU1BQUG0jAohD3a7HZWVlbDb7b4OxW8hR3zIER9yxIcc8Qk0R7169UJcXBx69uzptT7tdjscDoesfdBIUyfFZrMhLy8PISEhsg9nBirkiA854kOO+JAjPoHmaPTo0Rg9erRX+7TZbLDb7bJewvR/84QsBAcHY9SoUb4Ow68hR3zIER9yxIcc8SFHfIKDg2Wf8+XW5bk333wTmzZtavLYyZMncf/998NkMrkVGCEvziJggXDrqq8gR3zIER9yxIcc8SFHfLzhxq2kSavVYseOHVi7di0UCgWOHj2K++67DzabTfbJWIR7WK1WZGZmwmq1+joUv4Uc8SFHfMgRH3LEJ9Ac/fzzz9i8eTP+97//ea1Pq9Uq+zIqbl2eu+eee6BWq/HCCy8AAL766itMnDgR27Ztg1ar9UiABEEQBEEEFmazGTU1NVdcXSmPLKPy6aef4tlnn8W1116LzZs3B0wdidagZVQIgiAIouPU1NTAYDAgLCwM3bp181q/AbGMyu23344JEyYgKioKarXaE5skZKZxrkzXyFuGHPEhR3zIER9yxCfQHIWHh3u9rlRALaMSExNDCVMAYTab8dtvv11xQ6eehBzxIUd8yBEfcsSHHPGhZVQI2dBoNOjXr1/AX0qVE3LEhxzxIUd8yBGfQHNUUlKCqqoq9OrVC7179/ZKn7SMCiEbQUFBXq3UGoiQIz7kiA854kOO+ASao7Nnz0rLqHgraaJlVAjZsNvtqKmpCZiS/L6AHPEhR3zIER9yxCfQHEVERKB///5endfkjWVUKGnqpNhsNmRnZ8t+/TeQIUd8yBEfcsSHHPEJNEfjxo3DokWLvFrF3LmMipx4pOTAlUZnKDnAGIPD4YBSqQyIOzF8ATniQ474kCM+5IgPOeLDGENqaioAPy85QAQeCoUCKpXK12H4NeSIDzniQ474kCM+5IiP3y+jQgQuVqsV2dnZAVOS3xeQIz7kiA854kOO+ASao8OHD2P79u04duyY1/q0Wq2yX57zyEhTXV0dzGZzixOw+vTp44kuCA/DGIPdbvdKMbBAhRzxIUd8yBEfcsQn0BwZDAaUl5fDYDB4rU/GmOx+3JrTlJeXh5UrV+Ls2bOtttHr9e3ersPhwNatW/HZZ5+hoaEBY8eOxerVqxETE9Ni+6qqKqxduxZHjhwBYwwTJ07EE0880eHbHDvDnCaCIAiCkIuqqirU1dWhe/fuiIiI8Fq/fr2MyvPPP4/c3FwsW7YMUVFRHquPsG3bNnz00Ud46aWXEBUVhZdffhmLFy/Gnj17Wizs9fDDD8Nut+Odd94BYwz/+Mc/8OCDD+Lzzz/3SDwEQRAEQbSdHj16oEePHr4Ow+O4lTSdOHECL774Im655RZPxQObzYadO3dixYoVuO666wAAr776KqZMmYIDBw4066u+vh7Hjx/H9u3bkZiYCAC4//77sXTpUtTW1qJ79+4ei+1KwmQyIS0tDQkJCQgJCfF1OH4JOeJDjviQIz7kiA854mMymWCz2WStmu7W0FBoaKjHVy9OS0uD0WjEhAkTpMfCwsKQlJSEEydONGuv0+nQpUsXfPnllzAYDDAYDPjqq68wYMAAhIWFeTS2Kwm1Wo2rrrqK1gt0ATniQ474kCM+5IhPoDkqLy9Heno6KioqvNanWq2W/Q5Dt5Km2bNn48MPP/ToxKvS0lIAQHR0dJPHIyMjpecao9Fo8NJLL+H48eMYM2YMxo4di7Nnz2LHjh1uXy5svDBi44UAHQ4HTCYTRFEEAAiCAJPJJLW1WCzSHQ6MsXa3dc7+t9vtMJlMkl+r1dquthaLRerHZDJBEAQAgCiKEAQBvXr1glqt5rY1mUzSJH+bzdbMS3vattWhu76dXtzx7XA4EBYWJh2k3PF9uRd3fF/uxRO+LRZLh3wHBQUhNDRUutXX6aUjvl05dNd3Yy/u+m7spS1t1Wo1wsPDpT5b8+JvxwhP+W7LMUKtViMyMhJ2uz2gjhEteZHrGAFcOg8qlcqAOEacOHECn3zyCVJSUlr04infjY8RgiD4d9IUHByMU6dOYcaMGXjkkUewatWqJj9PPvlku7fpfEMvH17TarUt3mrJGINer8fIkSPx4Ycf4r333kOfPn2wdOlSt2bti6KIjIwM6fecnBwpabPZbNDr9dIbX1VVhYsXL0ptc3NzUVJSAuDSG6nX66VYampqkJaWJrXNz89HUVERgEs7ol6vR0NDAwCgtra2yUT6goICFBQUSL/r9XrU1tYCABoaGqDX66UPR1FREfLz86W2aWlpqKmpAXDprga9Xo/q6mqIooiSkhLk5uZKbS9evIiqqioAl3ZKvV4vfVhKS0uRk5Mjtc3IyJC+SVgsFuj1emmnrqioQFZWltQ2KysL5eXlAC7t/Hq9Xnq/KysrW/UtCAL0ej2MRiMAoLq6Gunp6W3y3ZLDwsLCJr7r6+sBXLoLVK/XSx/QgoIC5OTkSAeGlnw7nysuLkZeXp7UT3p6ejPfzgNBSUlJM4eVlZUALu3/jX2XlZUhOztbapuZmenSd2ZmptQ2OzsbZWVlAP5vn3Xl29U+29h3Xl4eiouLm2y3rq6O69v5WXW2ra+vb7LPFhYWtrp/t+Sw8T6bnp6O6upqAIDRaIRer5cOpi3ts5f7dh5bysvLm+2zrny35RghiiKKiooC8hjRmm9PHyNEUURdXV3AHSNc7bOePkZUVFSgrq5OauvvxwgA6Nu3L0JDQ7n7rCePEXIvo+LW3XPTp093vXGFAj/88EO7trl//34sX74cZ8+ehU6nkx5/6KGHYLPZsH379ibtv/32Wzz77LP46aefEBoaCuDSjj1t2jQsX74c99xzT7v6B/5v9v3gwYMRHBwM4NLBVaVSQaPRwOFwwGKxQKvVQqVSQRAECIIgXWe2WCxQKBTQarVgjMFsNrerrXOlZue3ruDgYCgUCunA3ta2jDHJoclkglqthlqthiiKqK2tRW5uLhITE6FSqVy2tVqt0Ol0UCqVsNlsEEWxiZegoKA2t22rQ3d9O72447u2thZZWVlITExESEgITCZTh31f7sXhcHTY9+VePOHbYrFAqVS227fRaERaWhri4uLQtWtXyUtH9+/WHLrru7EXd3039mK327ltnSf/AQMGSHcRBcIxwmq1esR3W44RzpPlwIED0aVLl4A5RrTkRa5jhN1uR0ZGBuLj46FUKgPmGNGaQzmOEXV1dcjNzYVGo5Ht7jm/W0YlJSUF8+fPx8GDBxEbGys9vmDBAsTHx2PNmjVN2j/33HNITU3Fp59+2uTx2267DcOGDcOzzz7b7hg6Q8kBZ82PoKAgKsnfCuSIDzniQ474kCM+5IhPwCyjcujQIRw/fhz19fWIiIjA6NGjMWXKlA5tKyEhAaGhoTh27JiUNNXX1+PChQtYuHBhs/ZRUVHYu3cvrFYrtFotgEvZZ2FhIf7whz90/EVd4SgUioCZUOgryBEfcsSHHPEhR3zIER9vJJNuJU02mw1Lly7F4cOHoVKpEB4ejpqaGrz55psYP3483nzzzXbf+qfRaLBw4UJs3LgRERER6Nu3L15++WVERUVh5syZEEUR1dXV6Nq1K3Q6HebMmYO3334bDz/8MB566CEAwGuvvQatVotbb73VnZd3RWO1WlFSUoLo6Ggp2SSaQo74kCM+5IgPOeITaI6OHj2K8+fPY/jw4RgzZoxX+nQuoxIUJN+yum5NBN+yZQtOnTqFDRs2ICUlBYcPH8bZs2exbt06nDlzptn8o7ayfPlyzJs3D08//TQWLFgAlUqFt99+G2q1GiUlJZg8eTK+/fZbAJfuJvjoo4/AGMOiRYtw7733Qq1W46OPPkLXrl3deXlXNIwxWCyWgCnJ7wvIER9yxIcc8SFHfALNUW1tLQoLC6VJ3d7A75dRmTZtGhYuXIi//OUvzZ57++238fHHH+P77793K0Bf0BnmNBEEQRCEXJSXl6OmpgYRERHo1auX1/r162VUqqurkZSU1OJzSUlJ0q2MBEEQBEF0HiIjIxEZGenrMDyOW5fnYmNjcerUqRafO3HiRLMClYT/YDKZcObMmSZFxoimkCM+5IgPOeJDjviQIz7OZVTkxK2RpjvuuAMvvfQSdDodbr75ZvTs2ROVlZX45ptvsGPHDixbtsxTcRIeRq1WIyoqiu7GcAE54kOO+JAjPuSIT6A5qqqqQn19Pbp16ybVJ5Mbbyyj4tacJofDgWeeeQa7d+9ucqsfYwxz587F2rVrA7KeBM1pIgiCIIiOs2/fPhw7dgyTJ0/G9ddf77V+/XpOk1KpxIsvvoh7771XqtPUrVs3jBs3DoMGDfJUjIQMONc6CgkJkT0zD1TIER9yxIcc8SFHfALNUWhoKCIjI6WVOryBs7q8nIM1HilmMHjwYAwePNgTmyK8hNVqxcWLF6UlQojmkCM+5IgPOeJDjvgEmqPJkydj8uTJXu3TarVCEIR214dsD+2+PLdq1SosXboUMTExWLVqleuNKxRYu3atWwH6gs5wec7hcMBms0Gj0UCpdOt+gCsWcsSHHPEhR3zIER9yxMfhcCA1NRUKhcJ/Ls8dO3YMixYtkv7vikCcz9RZcC74SLQOOeJDjviQIz7kiA854qNUKmXPO9qdNP34448t/p8ILGw2G0pLSxEVFSXrUGYgQ474kCM+5IgPOeITaI6OHz+OtLQ0JCcnY9SoUV7p02az+fcyKidOnIDRaGzxufr6euzdu9edzRMyIooiDAYDRFH0dSh+CzniQ474kCM+5IhPoDmqrq5GTk4OampqvNancyK4nLhVciAxMRH//ve/MWzYsGbPHT16FPfffz9SUlLcCtAXdIY5TQRBEAQhF8XFxaiqqkKvXr0QFRXltX79ruTAypUrUVJSAuBSPaY1a9a0eEthbm4uevbs6X6EBEEQBEEEFH369EGfPn18HYbHafflud/97nfNVhJ2/u78USqVGDFiBNatW+fRYAnPYTabkZKSArPZ7OtQ/BZyxIcc8SFHfMgRH3LEx2w2+98yKtOnT8f06dMBAHfffTfWrFlDhSwDkKCgIPTs2VPWCXOBDjniQ474kCM+5IhPoDmqra2FwWBA165d0a1bN6/0GRQU5N/LqDipqqqCzWaTRp8cDgfMZjNOnjyJBQsWuB2kt6E5TQRBEATRcWgZlRZIS0vDihUrkJWV1eLzCoUiIJOmzoAoirBYLNDpdAFRkt8XkCM+5IgPOeJDjvgEmqPg4GB0794dwcHBXuvTG8uouFVyYMOGDairq8PKlSsxbtw4TJ48Gc888wyuvfZaKBQKvP/++56Kk/AwVqsVaWlpsFqtvg7FbyFHfMgRH3LEhxzxCTRH1157LR566CFMnDjRa306l1GRE7cuz40ePRqrVq3CvHnz8O9//xt79uzBrl27AADLly+HQqHA66+/7rFgvUVnuDzncDikby1Ukr9lyBEfcsSHHPEhR3zIER9vLKPilnmbzYb+/fsDAPr374+0tDTpuVtvvRVnzpxxZ/OEjCiVSoSEhNCHzwXkiA854kOO+JAjPuSIjzeWUXHLfp8+fVBQUADgUtJkMBhQWFgIANBoNKirq3M/QkIWbDYbioqKZL89M5AhR3zIER9yxIcc8Qk0R6dOncLHH3+Ms2fPeq1Pm80me8V0t5KmmTNnYtOmTdi/fz969+6NgQMH4rXXXkN6ejp27tyJmJgYT8VJeBhRFFFTUxMwJfl9ATniQ474kCM+5IhPoDmqqKjAxYsXUVlZ6bU+RVGU3Y9bc5qsVisee+wxmM1m7NixA7/88guWLVsGm80GlUqFV155BTNnzvRkvF6hM8xpIgiCIAi5KCwsRHl5OaKiorxaGVzu87dH6jQJggC1Wg0AKCgoQGpqKoYOHYrY2Fi3A/QFlDQRBEEQROAh9/nbIzPKnAkTAMTExOCmm24K2ISps2A2m5Gamkol+V1AjviQIz7kiA854kOO+PjlMipbt25tc1uFQoEHH3ywvV0QXkClUqF79+4BUSTNV5AjPuSIDzniQ474BJqjhoYGmEwmdOnSBaGhoV7pU6VS+d8yKgkJCW3fuEIBvV7f7qB8DV2eIwiCIIiOQ8uo/H8a12IiAheHwwGr1QqtVkt1P1qBHPEhR3zIER9yxCfQHGk0GnTp0gUajcZrfTocDtmXUfHIcsmHDh3C8ePHUV9fj4iICIwePRpTpkzxxKYJmbBYLNDr9UhMTERISIivw/FLyBEfcsSHHPEhR3wCzdH06dMxffp0r/ZpsVggCIKsiZpbd8/ZbDYsXboUhw8fhkqlQnh4OGpqauBwODB+/Hi8+eabXs0yPUVnuDwniiLMZjOCg4MD5hq5tyFHfMgRH3LEhxzxIUd8RFHE+fPn/XcZlS1btuDUqVPYsGEDUlJScPjwYZw9exbr1q3DmTNnsH37dk/FSXgYlUqF0NBQ+vC5gBzxIUd8yBEfcsSHHPFRqVT+vYzKN998g2XLluEPf/iD9EYGBQVhzpw5WLZsGfbs2eORIAnPIwgCSkpKZF8ROpAhR3zIER9yxIcc8Qk0R2fPnsXu3buRmprqtT4FQfDvZVSqq6uRlJTU4nNJSUkoKytzZ/OEjAiCgPLy8oD5APoCcsSHHPEhR3zIEZ9Ac1RSUoLU1FSv5gHeSJrcmggeGxuLU6dOYcKECc2eO3HiBKKjo93ZPCEjISEhGD58uK/D8GvIER9yxIcc8SFHfALNUWJiIsLDw726hEpISIjs86jdSpruuOMOvPTSS9DpdLj55pvRs2dPVFZW4ptvvsGOHTuwbNkyT8VJEARBEESA0K9fP/Tr18/XYXgct5KmBQsW4MKFC9i4cSM2bdokPc4Yw9y5c3H//fe7HSAhD2azGTk5ORgwYACCg4N9HY5fQo74kCM+5IgPOeJDjviYzeYma+HKgVtJk1KpxIsvvoh7771XqtPUrVs3jBs3DoMGDfJUjIQM0J0YfMgRH3LEhxzxIUd8As2RyWSC1WqFTqfzWpLnjbvn3KrTdKXSGeo0EQRBEIRc0DIq/59Vq1Zh6dKliImJwapVq1y2VSgUWLt2bYeDI+TD4XBIw5iBUJLfF5AjPuSIDzniQ474BJojlUoFjUbj1ZExv1xG5dixY1i0aJH0f1fIPUxGdJxAK8nvC8gRH3LEhxzxIUd8As3RjBkzMGPGDK/26ffLqIiiGDDXV9tDZ7g8J4oijEYjunTpckW+h56AHPEhR3zIER9yxIcc8RFFEampqVAqlf65jMrkyZPxwgsvSEkGETioVCqEhYXRh88F5IgPOeJDjviQIz7kiI9KpZL90qVbW7/llluwf/9+3H777bjxxhvxxhtvoKioyFOxETIiCALKysoCprqsLyBHfMgRH3LEhxzxCTRH586dw1dffQW9Xu+1Pv1+GZWnnnoKhw4dws6dOzFmzBi88847mDFjBhYuXIjPPvsMDQ0NnoqT8DCCIKC4uDhgPoC+gBzxIUd8yBEfcsQn0BwVFRXhzJkzKC4u9lqf3kiaPFpyQBAEHDlyBHv37sV3332HoKAgnDlzxlOb9xqdYU4TQRAEQchFVlYWiouLERMTg/79+3utX78rOdAadrsdhw8fxnfffYdDhw4BQItr0hEEQRAEcWUzaNCgK7LItVtJE2MMR48exd69e3Hw4EHU1dVh2LBhWL58OWbNmoXw8HBPxUl4GIvFgtzcXPTv3x86nc7X4fgl5IgPOeJDjviQIz7kiI+z5IDfLqMyZcoUVFVVoU+fPrjzzjsxe/Zsrw7DER1HoVBAp9NRLS0XkCM+5IgPOeJDjvgEmiOr1SrVTJKzblJjFAqF7H7cSpqmT5+OP/zhDxgzZoyn4iG8hFarpQSXAzniQ474kCM+5IhPoDn66aefvL6MilarRVCQx2YdtYhbW3/uuec8FQfhZRhjsNvtCAoKCphvLt6GHPEhR3zIER9yxCdQHXkzVm8spev/C9gQsmA2m5GSkgKz2ezrUPwWcsSHHPEhR3zIEZ9Ac3TjjTfi2WefxfTp073Wp9lshs1mk7UPSpo6KRqNBoMGDfLateZAhBzxIUd8yBEfcsSHHPHRaDT+fXmOCFyCgoLQvXt3X4fh15AjPuSIDzniQ474kCM+QUFB/r2MitVq9VQchJcRBAEVFRUBU13WF5AjPuSIDzniQ474BJqjCxcu4LvvvsPFixe91qffL6MyadIkPPvss0hJSfFUPISXEAQB+fn5AfMB9AXkiA854kOO+JAjPoHmKD8/H8ePH0dBQYHX+vT7ZVS2bduGr776Cvn5+RgwYABuvfVWzJ49G7169fJkjF6HllEhCIIgiI6TkZGBgoIC9OvXz6uVweU+f3tk7bnffvsN//nPf7Bv3z6YzWZMnDgRt912G6ZPn96hypwOhwNbt26VFv0dO3YsVq9ejZiYmBbbC4KAzZs348svv0RDQwOSk5Px1FNPITExsUOvh5ImgiAIggg85D5/e2TG1KhRo/D888/jyJEjeP3112E2m/Hwww9j8uTJWL9+PYqKitq1vW3btuGjjz7C888/j08++QQOhwOLFy9u9VbCNWvW4IsvvsDatWuxe/duRERE4L777kNDQ4MnXt4VicViQUZGBiwWi69D8VvIER9yxIcc8SFHfMgRH+cyKnLisWnmJSUl2LlzJzZv3owTJ06gf//+uPXWW3Ho0CHMmjUL3377bZu2Y7PZsHPnTixfvhzXXXcdEhIS8Oqrr6K0tBQHDhxo1r6goAC7d+/Giy++iClTpmDQoEF44YUXoNFokJqa6qmXd8WhUCigVCoDqkiatyFHfMgRH3LEhxzxCTRHdrsdVqsVdrvda316YxkVty7PGQwG7N+/H19++SVOnToFnU6HG2+8EfPmzcOoUaOkdg888ADOnz+Pw4cPc7eZkpKC+fPnY9++fRgwYID0+IIFCxAXF4d//OMfTdp/8skn2LRpE44dO+axWw3p8hxBEARBdJx9+/Z5fRkVwM8vz02aNAlPP/00BEHAc889h8OHD2Pt2rVNEibgUvBtzf5KS0sBANHR0U0ej4yMlJ5rTE5ODmJiYnDgwAHceuutmDRpEu677z5kZWV18FX9H40rrzauNOpwOGAymaRZ+oIgwGQySW0tFotUjoEx1u62zszcbrfDZDJJpeGtVmu72jYexjWZTNKwpSiKMBqNsNvtYIxx25pMJjgcDgCXRgIv99Ketm116K5vpxd3fFsslia/u+P7ci/u+L7ciyd8WyyWDvl2OBxoaGiQ4nd66YhvVw7d9d3Yi7u+G3tpS1vGGCwWC4xGo0sv/naM8JTvthwjGGPSc4F0jGjJi1zHCJvNBlEUpe36+zGi8V1sLXnxlO/Gx4jGnzG5cCtpuuuuu7B371588sknmDdvHkJCQlpsd++99+K///1vm7bpfEMvr3qq1WpbrAtlMBiQl5eHbdu24dFHH8X27dsRFBSEO++8E1VVVe17QY0QRREZGRnS7zk5OVLSZrPZoNfrpTe+qqqqSS2K3NxclJSUALj0Rur1ehgMBgBATU0N0tLSpLb5+fnSnC+HwwG9Xi/NxaqtrYVer5faFhQUNLl9U6/Xo7a2FgDQ0NAAvV4vfTiKioqQn58vtU1LS0NNTY3kLC0tDWfPnoXZbEZJSQlyc3OlthcvXpTcmUwm6PV66cNSWlqKnJwcqW1GRgYqKioAXNr59Xq9tFNXVFQ0SV6zsrJQXl4O4NLOr9frpfe7srKyVd+CIECv10sfiOrqaqSnp7fJd0sOCwsLm/iur68HANTV1UGv10sf0Pz8/CYxtuTbeWAoLi5GXl6e1E96enoT33q9XjoQlJSUNHNYWVkJ4NL+39h3WVkZsrOzpbaZmZkufWdmZkpts7OzUVZWBuD/9llXvl3ts4195+Xlobi4GABgNBqb7C+ufDPGoNfrUVdXBwCor69vss8WFha2un+35LDxPpueno7q6mopJr1eLx1MW9pnL/ftPLaUl5c322dd+W7LMcJsNuP8+fMBd4xw5dvTxwiz2YwzZ84E3DHC1T7r6WNEaWkpzpw5I8Xr78eI+Ph4PPnkk5g8eTJ3n/XUMSItLU32ZVTA3OD48ePMYDC0+FxdXR375ptv2r3Nffv2sbi4OGY2m5s8vnz5crZkyZJm7VevXs3i4uJYZmam9JjZbGbjxo1jO3bsaHf/jDGWkpLCUlJSmMlkkh4zmUzMarUyxhgTRZEZjUZmt9sZY4zZbDZmNBqb9G+xWBhjjDkcjna3FQSBMcaYIAjMaDQyh8PBGGPMYrG0q21jh0ajkdlsNsYYY3a7ndXV1bHKykomCAK3rdFoZKIoMsYYs1qtzby0p21bHbrr2+nFHd8Gg4GVlpZKz7vj+3Iv7vi+3IsnfJvN5g75ttlsrLi4WHo9Ti8d8e3Kobu+G3tx13djL21pKwgCKy8vZ/X19S69+NsxwlO+23KMEASBVVVVsYaGhoA6RrTkRa5jhMlkYlVVVcxisQTUMaI1h57y3fgYUVdXx86cOcNSUlKYXLg1pykxMRH//ve/MWzYsGbPHT16FPfff3+7C1865zQdPHgQsbGx0uMLFixAfHw81qxZ06T99u3bsXXrVpw/f77J4/PmzUNycnKz9m2B5jQRBEEQROAh9/m73WvPrVy5UhqiY4xhzZo1CA0NbdYuNzcXPXv2bHdACQkJCA0NxbFjx6Skqb6+HhcuXMDChQubtR87dizsdjvOnTsnSbJYLCgoKMDNN9/c7v47C3a7HXV1dejWrZvsCxwGKuSIDzniQ474kCM+gebo4sWLyM/PR//+/TF48GCv9Gm32+FwOGRdf67dW545cyYYY2g8QOX83fmjVCoxYsQIrFu3rt0BaTQaLFy4EBs3bsQPP/yAtLQ0PPLII4iKisLMmTMhiiIqKiqka7RjxozBxIkTsXLlSpw8eRKZmZl4/PHHoVKpMHv27Hb331mw2WzIzc2V//pvAEOO+JAjPuSIDzniE2iOsrOzceTIkSbzuOTGZrPJXuLArctzd999N9asWePxEumiKOKVV17BF198AYvFIlUEv+qqq1BYWIjrr78e69atw6233grg0gSwjRs3Yt++fbBYLBg1ahSefPLJDme3neHynDPB9UZdi0CFHPEhR3zIER9yxCfQHKWlpSEvLw8DBw7EkCFDvNInY0yqz+g3y6isWrUKS5cuRUxMDFatWuV64woF1q5d61aAvqAzJE0EQRAEcaXhd3Oajh07hkWLFkn/d0UgZMOdFavVisLCQlx11VXQarW+DscvIUd8yBEfcsSHHPEhR3ycFcjlnPPV7i3/+OOPLf6fCCwYY3A4HHDj6uwVDzniQ474kCM+5IhPoDlqHKe3BlAun28tB27NaXrmmWcwb948DB8+3JMx+Ry6PEcQBEEQHYeWUWmBr7/+2itlywmCIAiCIHyNW0nTyJEjufOaCP/EZDLh1KlTTdYAIppCjviQIz7kiA854hNojqZPn47HHnsMU6dO9VqfjdculAu3ZkvFx8fj7bffxr59+5CQkNBs7blAvXuuM6DRaNCvX79ma/wR/wc54kOO+JAjPuSIT6A50mg0Xo9Vo9HIXvjTra0fPHgQkZGREARBuo7YGLp7zn8JCgrqUMX2zgQ54kOO+JAjPuSIDzniExQUJGs1cMDNpInungtc7HY7Ghoa0LVr14Aoye8LyBEfcsSHHPEhR3wCzVFmZiaKiooQGxuLAQMGeKVPv1xGpSWqqqpQUlKC4uJiFBcXo7CwEBkZGfj44489sXlCBmw2G7KzswOmJL8vIEd8yBEfcsSHHPEJNEeZmZn473//i+zsbK/16ffLqKSlpWHFihXIyspqeeMKBS5cuNDh4HxFZyg5wBiDKIpQqVR0GbUVyBEfcsSHHPEhR3wCzVFqaipycnIwZMgQJCQkeKVPbyyj4tYY34YNG1BXV4eVK1fip59+gkajwbRp03Do0CEcOnQI77//vqfiJDyMQqEIiCFeX0KO+JAjPuSIDzniE2iOkpOTkZyc7NU+vZFMunV57uzZs3jooYdwzz33YNasWTCbzbjzzjvxxhtv4IYbbsAHH3zgqTgJD2O1WpGTkwOr1errUPwWcsSHHPEhR3zIER9yxMe5jIqcuJU02Ww29O/fHwDQv39/pKWlSc/deuutOHPmjDubJ2SEMQabzRYwJfl9ATniQ474kCM+5IgPOeLjjWVU3Eqa+vTpg4KCAgCXkiaDwYDCwkIAl+ol1NXVuR8hIQs6nQ7x8fHQ6XS+DsVvIUd8yBEfcsSHHPEJNEcHDhzAiy++iJ9++slrfep0OqjValn7cCtpmjlzJjZt2oT9+/ejd+/eGDhwIF577TWkp6dj586diImJ8VScBEEQBEEECA6HQyoBcCXhVtK0bNkyjBo1Cp9//jkAYNWqVTh48CDmzJmDo0eP4m9/+5tHgiQ8j8lkwunTpwOmJL8vIEd8yBEfcsSHHPEJNEfXXnstHn74YUyaNMlrfXpjGRW3Sg44EQRBGhIrKChAamoqhg4ditjYWLcD9AWdoeSAIAioqalBeHi47MOZgQo54kOO+JAjPuSIDzniIwgCzp8/D5VK5Z8lB5wcO3YMJ06cQG1tLXr06IEJEyYEbMLUWVCr1YiMjPR1GH4NOeJDjviQIz7kiA854qNWq6FSqWTtw62kqa6uDg888ADOnDmDoKAgdO/eHbW1tdi+fTumTp2KLVu2BMzigp0NURRhMBgQGhoq+04WqJAjPuSIDzniQ474BJqjnJwclJaWom/fvl4bRBFF0b+XUVm7di1ycnKwdetWnDt3DocPH0ZKSgpef/11nDlzBq+++qqn4iQ8jNVqRWZmJtX8cAE54kOO+JAjPuSIT6A5Sk9Px4EDB5CRkeG1Pr1Rp8mtOU3XXHMNVqxYgfnz5zd77pNPPsHWrVtx+PBhtwL0BZ1hTpPzzgZvrAodqJAjPuSIDzniQ474BJqjlJQUZGVlIS4uDkOHDvVKnw6HA6mpqVAoFP45p4kxhp49e7b4XHR0dMDM8u+MKJVKunTKgRzxIUd8yBEfcsQn0BwNGzYMw4YN82qfSqVS9qVU3EpX586di+3bt8NoNDZ53G63Y9euXZg7d65bwRHyYbPZkJeXFzArZvsCcsSHHPEhR3zIER9yxMdms8l+ec6tkabg4GDk5ubi+uuvx/XXX4/evXujpqYGP//8M0pLS9GtWzesWrUKwKWF9NauXeuRoAn3cTgcMJlMV1zhMU9CjviQIz7kiA854kOO+DgcDtmXUXFrTtP06dPb3pFCgR9++KGjXXmVzjCniSAIgiDk4ocffsCpU6cwfvx4TJ061Wv9yn3+dmuk6ccff/RUHARBEARBXCEIggCz2QxBEHwdikfx/yn4hCyYTCacPXuWJuu7gBzxIUd8yBEfcsQn0BxNnjwZS5cuxfjx473WpzeWUfFY0iSKIhITE3H+/HlPbZKQEWd1WSrH3zrkiA854kOO+JAjPoHmKDQ0FL169UKXLl281qffVwS/HLknYBGeQ61WIzo62tdh+DXkiA854kOO+JAjPuSIjzeSJro810lxluQXRdHXofgt5IgPOeJDjviQIz6B5qigoAAnT55EUVGR1/oURVH2wRtKmjopVqsV6enpAVOS3xeQIz7kiA854kOO+ASao/Pnz2Pv3r1IS0vzWp9Wq1X2ieceuzynVCqxbNkyWoU5QNDpdBg6dGhAVZj1NuSIDzniQ474kCM+geaod+/eSEhIQK9evbzWp06nk33Ol0eSpqysLBw5cgQWiwUOhwMnT55EQkICQkNDPbF5QgaUSiV0Op2vw/BryBEfcsSHHPEhR3wCzdHIkSMxcuRIr/bpjWVU3EqaHA4HVq9ejd27d4MxBoVCgZtuugnbtm1Dfn4+du3ahaioKE/FSngQm82GsrIy9O7dO2C+uXgbcsSHHPEhR3zIER9yxMe5jEpQkEfvcWuCW3Oatm3bhj179uCFF17AkSNHpAlYjz32GBwOB1599VWPBEl4HlEUUV9fHzCTCn0BOeJDjviQIz7kiA854uONieBuLaMybdo0LFy4EH/5y18giiKGDh2K3bt3Y+jQofjyyy+xceNGHD582JPxegVaRoUgCIIgOs5///tfnD59GuPGjcOkSZO81q/c52+3RpoqKyuRmJjY4nO9e/dGfX29O5snCIIgCCIAsVgsqK+vh8Vi8XUoHsWtpKlfv374+eefW3zu+PHj6NevnzubJ2TEbDbj3LlzMJvNvg7FbyFHfMgRH3LEhxzxCTRHEyZMwH333YexY8d6rU+z2Sz7MipuzZZatGgRVq9eDUEQMG3aNCgUCuTl5eHYsWPYuXMnnnjiCU/FSXgYlUqFiIgI2aunBjLkiA854kOO+JAjPoHmqFu3bujWrZtX+1SpVLL7cWtOEwC8+eab2L59O6xWqzQBS61WY/HixXjooYc8EqS3oTlNBEEQBBF4yH3+djtpAgCDwYDTp0+jtrYWYWFhGD58OLp37+6B8HxDZ0iaHA4HLBYLdDodlEoqDN8S5IgPOeJDjviQIz6B5qioqAiVlZWIjIz02pp5DocDqampUCgU/jkR/MSJEzAajQgNDcWUKVPw+9//Htdeey26d++O+vp67N2711NxEh7GYrFAr9dfcZP0PAk54kOO+JAjPuSIT6A5OnfuHL788ktcuHDBa31aLBbZl1FxK2n605/+hKysrBafu3DhAlatWuXO5gkZ0el0SExMDKgKs96GHPEhR3zIER9yxCfQHPXo0QODBg1CRESE1/r0y2VUVq5ciZKSEgAAYwxr1qxpcbmU3Nxc9OzZ0/0ICVlQKpUICQnxdRh+DTniQ474kCM+5IhPoDkaO3asV++cA7yzjEq7R5p+97vfgTHWpOqm83fnj1KpxIgRI7Bu3TqPBkt4DpvNhqKiItlvzwxkyBEfcsSHHPEhR3zIER+bzSZ7xfR2jzRNnz4d06dPBwDcfffdWLNmDQYNGuTxwAh5EUUR1dXVXh06DTTIER9yxIcc8SFHfMgRH1EUIYqirGUHPHL3XFVVFWw2mzT65HA4YDabcfLkSSxYsMDtIL1NZ7h7jiAIgiDk4pdffkFKSgpGjx6N8ePHe61fuc/fbhW3TEtLw4oVK1qdDK5QKAIyaSIIgiAIouMYjUZUVlbCaDT6OhSP4tbdcxs2bEBdXR1WrlyJcePGYfLkyXjmmWdw7bXXQqFQ4P333/dUnISHMZvNOH/+fMCU5PcF5IgPOeJDjviQIz6B5mjcuHG45557MGrUKK/1aTab/bvkwNmzZ/HQQw/hnnvuwaxZs2A2m3HnnXfijTfewA033IAPPvjAU3ESHkalUiEsLCxgSvL7AnLEhxzxIUd8yBGfQHMUERGBfv36ITw83Gt9qlQq/7t7rjE2mw39+/cHAPTv3x9paWnSc7feeivOnDnjzuYJGdFoNIiJiYFGo/F1KH4LOeJDjviQIz7kiA854qPRaBAU5NasIy5uJU19+vRBQUEBgEtJk8FgQGFhIYBLwdfV1bkfISELzpL8DofD16H4LeSIDzniQ474kCM+geaotLQUer0e5eXlXuvT4XDAA/e2ucStpGnmzJnYtGkT9u/fj969e2PgwIF47bXXkJ6ejp07dyImJsZTcRIexmKx4Pz58wFTkt8XkCM+5IgPOeJDjvgEmqMzZ87g008/le5m8wZ+v4zKsmXLMGrUKHz++ecAgFWrVuHgwYOYM2cOjh49ir/97W8eCZLwPFqtFvHx8dBqtb4OxW8hR3zIER9yxIcc8Qk0R+Hh4YiNjUX37t291qdWq5V9GRW36jQ988wzmDdvHpKSkqRACwoKkJqaiqFDhyI2NtZjgXoTqtNEEARBEIGH3Odvt0aavv76axiNxiaZXUxMDG666Sa3EiaHw4HNmzdjypQpGDFiBO677z5p7lRbYoqPj5fmVhEtIwgCSkpKZB/KDGTIER9yxIcc8SFHfMgRH0EQZF9Gxa2kaeTIkTh69KinYpHYtm0bPvroIzz//PP45JNP4HA4sHjxYu6aO0VFRXjuuec8Hs+ViCAIKC8vpw+gC8gRH3LEhxzxIUd8yBEfbyRNbl2eW7duHT788EP07dsXCQkJzVZgVigUWLt2bbu2abPZMH78eKxYsQJ33nknAKC+vh5TpkzBiy++iFtuuaXFv3M4HFi4cCHUajWOHj2KH374AVdddVWHXhddniMIgiCIjvO///0PqampGDFiBMaNG+e1fv16GZWDBw8iMjISgiC0OEO+I0Wm0tLSYDQaMWHCBOmxsLAwJCUl4cSJE60mTW+88QYEQcCyZctkGf0iCIIgCKJt1NfXo6SkBIMGDfJ1KB7FraTpxx9/9FQcEqWlpQCA6OjoJo9HRkZKz11OSkoKdu7cic8//xxlZWUei8VsNiM4OFj6v0qlgkajkeplaLVaqFQqCIIAQRCkkTaLxQKFQgGtVgvGGMxmc7vaOgt02e122Gw2BAcHQ6FQwGq1AkCb2zLGoNPpAAAmkwlqtRpqtRqiKEo79MCBA6FQKFy2tVqt0Ol0UCqVsNlsEEWxiZegoKA2t22rQ3d9O72447u+vh4FBQUYNGgQdDodTCZTh31f7sXhcHTY9+VePOHbYrFAqVS227fZbEZ2djb69++PLl26SF46un+35tBd3429uOu7sRe73c5tKwgCsrOz0adPH+lOokA4RlitVo/4bssxQqFQICcnB9HR0QgJCQmYY0RLXuQ6RoiiiMLCQsTGxkKhUPj9MeLqq6/GoEGD0L179xa9yHGMaGhogCAIst5B59acJjlwrqtzedVTrVYrHRAaYzKZsGLFCqxYsUKqTu4JRFFERkaG9HtOTo6UtNlsNuj1ephMJgBAVVUVLl68KLXNzc1FSUkJAMBut0Ov18NgMAAAampqmlROz8/PR1FREYBLlxj1ej0aGhoAALW1tdDr9VLbgoKCJhPi9Xo9amtrAQANDQ3Q6/VS4bOioiLk5+dLbdPS0lBTUwMAMBgMyM7ORnBwMJRKJUpKSpCbmyu1vXjxIqqqqgBc8qvX66X5ZKWlpcjJyZHaZmRkoKKiAsClnV+v10t1RCoqKpos5pyVlSUVOrNardDr9dL7XVlZ2apvQRCg1+ulhR+rq6uRnp7eJt8tOXTeJOD0XV9fDwCoq6uDXq+XiqOVlZVBFEUolcpWfTuvnxcXFyMvL0/qJz09vYlvvV4Pu90OACgpKWnmsLKyEsCl/b+x77KyMmRnZ0ttMzMzXfrOzMyU2mZnZ0tfIpz7rCvfrvbZxr7z8vJQXFwMAGCMwWKxSJ8FV74ZY9Dr9VLR2/r6+ib7bGFhYav7d0sOG++z6enpqK6uBnBpoVC9Xi/N/Whpn73ct/PYUl5e3myfdeW7LccIpVIJhULRJN5AOEa48u3pY4RSqURISAgKCgoC6hjhap/19DGirq4OISEh0r7l78cIm82GIUOGIDw8nLvPeuoYkZ2dLfsyKmAewm63s4SEBJaamurWdvbt28fi4uKY2Wxu8vjy5cvZkiVLmrVftWoVu//++6Xfjx49yuLi4lhBQUGHY0hJSWEpKSnMZDJJj5lMJma1WhljjImiyIxGI7Pb7Ywxxmw2GzMajVJbs9nMLBYLY4wxh8PR7raCIDDGGBMEgRmNRuZwOBhjjFkslna1bezQaDQym83GGLv0XrW3rSiKjDHGrFZrMy/tadtWh+76dnpx1/flXtzx3diLO74v9+IJ32az2SO+nV485dvpxV3fjb2467uxFzpG0DGCjhH+dYxwnr/lwq2J4I0RRRFDhw7F7t27MXTo0A5vJyUlBfPnz8fBgweblC1YsGAB4uPjsWbNmibt4+Pjm6w303hYecmSJViyZEm7Y+gME8EdDgfsdjuCgoKkkRSiKeSIDzniQ474kCM+geaosrIStbW1CA8PR48ePbzSp8PhQGpqKhQKhX/WaZKDhIQEhIaG4tixY9Jj9fX1uHDhAsaOHdus/YEDB/DNN9/gyy+/xJdffokXXngBAPDWW2/hjjvu8FrcgYbFYsG5c+cCpiS/LyBHfMgRH3LEhxzxCTRHJ0+exIcffogzZ854rU9vLKMi73LAHUCj0WDhwoXYuHEjIiIi0LdvX7z88suIiorCzJkzIYoiqqur0bVrV+h0OvTr16/J3zuvcTeedEk0R6vVYvDgwQFTkt8XkCM+5IgPOeJDjvgEmqOwsDBERUWha9euXutTq9VKV53kwmNbVyqVWLZsGSIjI93e1vLly2G32/H000/DYrFg7NixePvtt6FWq1FYWIjrr78e69atw6233uqByDsnKpUK3bp183UYfg054kOO+JAjPuSIT6A5mjhxIiZOnOjVPlUqleyXLj0ypykrKwtHjhxBeXk57r77bhQUFEiX2QKRzjCnSRAE1NTUIDw8XPYFDgMVcsSHHPEhR3zIER9yxEcQBJw/fx4qlco/i1s6HA6sXr0au3fvBmMMCoUCN910E7Zt24b8/Hzs2rULUVFRnoqV8CCCIKCoqAihoaH0AWwFcsSHHPEhR3zIER9yxMe5jIpKpZKtD7dGmrZu3YodO3Zg9erVuO666zBp0iTs3r0bSqUSDz74IMaOHYv169d7Ml6v0BlGmgiCIAhCLo4dO4YLFy5g2LBhGD16tNf6lfv87dbFv927d2P58uW47bbbmky6TkxMxPLly3HkyBF34yMIgiAIIsCoqalBfn6+VHzySsGtpKmyshKJiYktPte7d2+piirhf1gsFqSnpwfM7au+gBzxIUd8yBEfcsQn0ByNGDEC8+fP9+oVG2+UHHAraerXrx9+/vnnFp87fvx4s3IAhP+gUCig0WjkLzkfwJAjPuSIDzniQ474BJqjqKgoJCUleeSO+raiUChk9+PWRPBFixZh9erVEAQB06ZNg0KhQF5eHo4dO4adO3fiiSee8FSchIfRarUYMGCAr8Pwa8gRH3LEhxzxIUd8yBEfv6/TNH/+fFRXV2P79u34+OOPwRjDo48+CrVajcWLF2PBggWeipPwMIwx6S6DQPnm4m3IER9yxIcc8SFHfALNUXV1NRoaGtCtWzevFZr20KpwLnE7JXvggQdw11134fTp06itrUVYWBiGDx9O1bj9HOfq7omJiQgJCfF1OH4JOeJDjviQIz7kiE+gOTp+/DiOHTuGyZMn4/rrr/dKn2azGTabDRqNRrY+3EqanFlvaGgopkyZ4qmYCC+g0WgwcOBAWXeuQIcc8SFHfMgRH3LEJ9AchYSEoEePHl5N8DQajeyX59yq0zRhwgTcfPPNmD179hVV04jqNBEEQRBE4OHXdZpuueUW7N+/H7fffjtuvPFGvPHGGygqKvJUbISM2O12VFZWwm63+zoUv4Uc8SFHfMgRH3LEhxzxsdvtcDgcsvbhVtL01FNP4dChQ9i5cyfGjBmDd955BzNmzMDChQvx2WefoaGhwVNxEh7GZrMhLy8PNpvN16H4LeSIDzniQ474kCM+5IiPzWaTPan0yIK9TgRBwJEjR7B371589913CAoKwpkzZzy1ea9Bl+cIgiAIouOcPHkS6enpGDp0KEaMGOG1fv368lxj7HY7Dh8+jG+//RaHDh0CcGnOE0EQBEEQnYvKykpkZmaiqqrK16F4FLemmTPGcPToUezduxcHDx5EXV0dhg0bhuXLl2PWrFkIDw/3VJyEh7FYLCgoKEBMTAx0Op2vw/FLyBEfcsSHHPEhR3wCzdHVV1+N6Ohor1YEdy6jolarZevDraRpypQpqKqqQp8+fXDnnXdi9uzZ6N+/v4dCI+REoVBAqVQGRJE0X0GO+JAjPuSIDzniE2iO+vbti759+3q1T28so+LWnKbVq1dj9uzZGD16tCdj8jk0p4kgCIIgAg+5z9/tHmlatWoVli5dipiYGAiCgM8//xyff/55i20VCgXWrl3rdpCE52GMgTHmlcw8UCFHfMgRH3LEhxzxCTRHdXV1MJlM6NKlC8LCwrzSp18uo3Ls2DEsWrRI+r8rAuGN7awEWkl+X0CO+JAjPuSIDzniE2iOfv31V1pGBQB+/PHHFv9PBBYajQb9+/cPmJL8voAc8SFHfMgRH3LEJ9Ac6XQ6hIWFQavVeq1Pv19G5cSJE0hKSkKXLl2aPVdfX49ffvkFN998s1sB+gKa00QQBEEQgYdf12n605/+hKysrBafu3DhAlatWuXO5gkZsdvtqK6uppL8LiBHfMgRH3LEhxzxIUd8vLGMSrvHsVauXImSkhIAlyZdrVmzBqGhoc3a5ebmomfPnu5HSMiCzWZDTk4OEhMTZR/ODFTIER9yxIcc8SFHfMgRH+cyKnJewmz35bkff/wR77zzDoDWL8+pVCqEhYXhrrvuwjXXXOO5aL1EZ7g8xxiDw+EIqLof3oYc8SFHfMgRH3LEJ9AcnT59GhkZGUhISMCwYcO80idjDKmpqQD8qOTA9OnTMX36dADA3XffjTVr1mDQoEEeD4yQF4VCAZVK5esw/BpyxIcc8SFHfMgRn0BzVFZWBr1ejx49enitT28kk27Nafrggw8oYQpQrFYrsrKyYLVafR2K30KO+JAjPuSIDzniE2iOkpKSMGvWLMTHx3utT6vVKvucL7eKW/ImelNxS//FOdTrjWJggQo54kOO+JAjPuSIT6A5io2NRWxsrFf7dBYAlRMqbtlJ0el0GDJkiK/D8GvIER9yxIcc8SFHfMgRH51OJ+tivQAVtyQIgiAIop3U1dW5vL3fZDLBarVCq9W2WsFcp9MhODhYrhBlwe37Fg0GA4xGI3r37g1BEPDBBx+guLgYv/vd7zB27FhPxEjIgMlkCqiS/L6AHPEhR3zIER9yxMefHNntdpSXl7ucX3X27FlkZmYiPj4eycnJzZ4XRRHR0dEeTZpMJpP/LaPSmLNnz2Lx4sW444478Pe//x0vvPAC/v3vfyMsLAwfffQRtmzZ4rU1Z4j2oVarERsbK/tQZiBDjviQIz7kiA854uNPjkRRhCiKCAsLa7VmVGhoKLRaLUJDQxEREdHs+bq6Oo/HpVarZb/D0K2751577TUMGjQIt99+O8xmM7766ivceeedOH78OObNm4c33njDU3ESHkatVqNXr15+8QH0V8gRH3LEhxzxIUd8/MmRw+GAw+FwmaCMHTsWf/rTnzBq1CivxeX3SdPZs2fx17/+FTExMThy5AisVitmz54NAJg1axYyMjI8EiTheex2O2pra6kkvwvIER9yxIcc8SFHfPzJkSiKYIz53c1e3lhGxa2kSalUSisY//LLLwgLC5MqfxoMBuh0OvcjJGTBZrMhKysLNpvN16H4LeSIDzniQ474kCM+/uSoLYnJtm3bsGTJEvz8889eiOgSzmVU5MStOU3Jycn47LPPoNPpsG/fPlx33XVQKBSoqqrCjh07Wpz8RfgHwcHBGDZsGK1h5AJyxIcc8SFHfMgRH39y1Jak6ciRI/jvf/+L6667Tv6A/j/BwcGyTgIH3EyaHnvsMSxevBh79+5FREQE/vrXvwIAbrnlFjgcDrz99tseCZLwPAqFwi+ujfsz5IgPOeJDjviQIz7+5KgtozmTJk1CcHAwEhISvBDRJbxxudCtpGno0KE4ePAgsrKyMGTIEOk2yDVr1mDUqFHo1auXR4IkPI/VakVJSQmio6OlS6xEU8gRH3LEhxzxIUd8/MmR3W7nTrheunSpl6L5P5zLqMg5Guf2lkNDQ1FXV4dt27ahvr4e4eHhGD16NCVMfg5jDBaLJWBK8vsCcsSHHPEhR3zIER9/ciQIApRKt6ZEy4I3llFRMDd6sNlsWLp0KQ4fPgyVSoXw8HDU1NTA4XBg/PjxePPNN2W/vigH586dAwBcffXVPo6EIAiCIPyL7OxsMMZaLUxpNBphMpnQs2fPVi+Z1dbWomfPnoiMjPRobHKfv91KFbds2YJTp05hw4YNSElJweHDh3H27FmsW7cOZ86cwfbt2z0VJ0EQBEEQPsa5aLCr+UP79+/HiBEjcNddd7XahjEWkIMqbiVN33zzDZYtW4Y//OEP0vXNoKAgzJkzB8uWLcOePXs8EiTheUwmE06fPg2TyeTrUPwWcsSHHPEhR3zIER9/ceSsBu7q8lxVVRUUCgV69+7dahvGmMfnHjmXUZETtyKurq5GUlJSi88lJSWhrKzMnc0TMqJWq9GnTx+/uRvDHyFHfMgRH3LEhxzx8RdHbakGft9992HRokUwm80tPi+KIlQqlceTJr+vCB4bG4tTp061+NyJEycQHR3tzuYJGVGr1ejdu7fPP4D+DDniQ474kCM+5IiPvzhqy0gTAGg0GnTr1q3F55x3uHW6pOmOO+7Am2++iX/9618oKSmBIAgoKSnBjh07sGPHDtx2222eipPwMKIoor6+HqIo+joUv4Uc8SFHfMgRH3LEx18cOQtbulMTSRRFBAUFeTzBEUXRv5dRWbBgAf7whz9g48aNmD59OoYNG4bp06dj06ZNuOWWW3D//fd7Kk7Cw1itVmRkZMBqtfo6FL+FHPEhR3zIER9yxMdfHPGSElEUMW/ePDz00EMwGo0ttrHb7dDpdB4vRums0yQnbpUccJKVlYXjx4+jrq4O3bp1w7hx4zBo0CBPxOcTOkPJAYfDAUEQoFar/bLehj9AjviQIz7kiA854uMvjmpqalBcXIzw8PAWny8sLMQ111wDtVqNrKysFkeTampqEB0djYiICI/G5nA4kJqaCoVCIdv52yMXFEtKSlBaWora2lrYbDbU1NR4YrOEjDRebJloGXLEhxzxIUd8yBEff3EkiqLLEaKCggIAQN++fV1efpOjardSqZR9KRW3oq6rq8MDDzyAM2fOICgoCN27d0dtbS22b9+OqVOnYsuWLQFZh6EzYLPZUFpaiqioKHqPWoEc8SFHfMgRH3LEx18c2Ww2lyNd+fn5AICYmJgWn3fWeJJjQrvNZpN9GRW3xvjWrl2LnJwcbN26FefOncPhw4eRkpKC119/HWfOnMGrr77qqTgJDyOKIgwGg88nFfoz5IgPOeJDjviQIz7+4oi37lxhYSGAS3fXt/b3ctw5B1xyJPcyKm4lTf/973+xYsUK3HDDDdKQmFKpxMyZM/HII49QcUs/Jjg4GElJSa2WwSfIUVsgR3zIER9yxMcfHDHGYLfb3RppciZdciRNwcHBspdkcCtpYoyhZ8+eLT4XHR3t88qlBEEQBEF4BmdhS1dJk3OkqbWkSRRFaLVa2eceyYVbSdPcuXOxffv2ZrcV2u127Nq1C3PnznUrOEI+TCYTzp49S4mtC8gRH3LEhxzxIUd8/MFRW5Im3kiTIAjQ6XSyxOf3y6gEBwcjNzcX119/Pa6//nr07t0bNTU1+Pnnn1FaWopu3bph1apVAC4Vwlq7dq1HgibcR61WIzIy0ufVZf0ZcsSHHPEhR3zIER9/cMSrBm6z2VBSUgLA9URwuV6DNyqCu5U0ff311wgNDQUA/Prrr02ei4qKwm+//Sb9HqhDcVcqarWalrnhQI74kCM+5IgPOeLjD454684VFxeDMQadTodevXq12EahUMh2d5vfJ00//vijp+IgvIwoijCbzQgODpZ9JwtUyBEfcsSHHPEhR3z8wRHv7rTGl+ZaGiiR8865xvHJOUjjl6VXHQ4HNm/ejClTpmDEiBG47777pIJZLZGRkYH7778f11xzDSZMmIDly5ejuLjYixEHHlarFenp6T4vye/PkCM+5IgPOeJDjvj4gyO73e4yIeFNApc7abJarRAEQZZtO/FY0iSKIhITE3H+/Hm3t7Vt2zZ89NFHeP755/HJJ5/A4XBg8eLFLU7wqqmpwb333gudTocPPvgAO3bsQHV1NRYvXkwfQBfodDokJSXJNiHvSoAc8SFHfMgRH3LExx8cmc1ml6NcvEngci3U60Sn08k+58uj6Z4nikrZbDbs3LkTK1aswHXXXQcAePXVVzFlyhQcOHAAt9xyS5P233//PUwmEzZs2CDtTC+//DKuu+46/Pbbb5gwYYLbMV2JKJVKqonCgRzxIUd8yBEfcsTH144cDgfMZrPLpOSaa66B2Wxu9bxrt9vRrVs3uUL0yjIqfnd5Li0tDUajsYn0sLAwJCUl4cSJE83aT5gwAdu2bWuSfTtn9tfX18sfcIBis9lQWFgo++2ZgQw54kOO+JAjPuSIj68dCYIgLRjcGtOmTcM//vEP3HjjjS0+73A4ZF0CxmazyV4x3e+SptLSUgBodpdAZGSk9FxjrrrqKowfP77JY2+99RZ0Oh3Gjh3rVixms7nJ/507q8PhgMlkkt4cQRCa1M6wWCzSpUHGWLvb2u12AJeycpPJJI3gWa3WdrW1WCxSPyaTSbrW6yzHX1NTA1EUuW1NJhMcDgeASzvl5V7a07atDt317fTijm+z2Sw5cnrpqO/Lvbjj+3IvnvBtsVg65Ntut6O6ulr6W6eXjvh25dBd3429uOu7sZe2tBVFETU1NU3q2QXCMcJTvttyjBBFEbW1tTAajQF1jGjJi1zHCKvVitraWilebx8j6urqYDabERQUJI06tfZZuNyh2WyWvDhfj6d8Nz5GeGOZGY8lTUqlEsuWLUNkZKRb23GKvzwb1Wq1bZqj9MEHH2DXrl1YsWIFIiIiOhyHKIrIyMiQfs/JyZGSNpvNBr1eL73xVVVVuHjxotQ2NzdXqlVht9uh1+thMBgAXJqDlZaWJrXNz89HUVERgEs7rV6vR0NDAwCgtrYWer1ealtQUNBkQrxer0dtbS0AoKGhAXq9XvpwFBUVSdeXgUsjeDU1NQAAg8GAnJwcJCQkIDg4GCUlJcjNzZXaXrx4EVVVVQAu7ZR6vV76YJWWliInJ0dqm5GRgYqKCgCXdn69Xi/t1BUVFcjKypLaZmVloby8HMClnV+v10vvd2VlZau+BUGAXq+XTjrV1dVIT09vk++WHDonKzp9O0ck6+rqoNfrpQ9oZWUldDqdNCTekm/nB7S4uBh5eXlSP+np6U186/V66UBQUlLSzGFlZSWAS/t/Y99lZWXIzs6W2mZmZrr0nZmZKbXNzs5GWVkZgP/bZ135drXPNvadl5cn3Wih0Wikb6A834wx6PV61NXVAbg0Etx4ny0sLGx1/27JYeN9Nj09HdXV1QAAo9EIvV4vxdTSPnu5b+expby8vNk+68p3W44RwcHB6NWrV5P9IxCOEa58e/oYERwcjOTkZBQVFQXUMcLVPuvpY4TBYEBycrL0OfL2MaLxe26325GRkSH5rqurw2+//YZff/0VRqMRhYWF0nad59L6+noolUrptbbk291jRE5OjuyLGSuYByYiZWVl4ciRIygvL8fdd9+NgoICJCQkSDWc2sP+/fuxfPlynD17tsklt4ceegg2mw3bt29v8e8YY3j99dexfft2/PWvf8XDDz/c0ZeDc+fOAQAGDx4snTCdE+A0Gg0cDgcsFgu0Wi1UKpV00ggJCQFwaUdVKBTQarVSlt2ethqNBkFBQbDb7bDZbAgODoZCoZAO7G1t66yXAVw6sKnVaqjVaml0qT1tdTodlEqlNPzZ2EtQUFCb27bVobu+nV7c9X25F3d8N/bicDg67PtyL57wbbFYoFQq3fbt9OIp304v7vpu7MVd34292O12OkbQMeKKP0YwxpCWlgbGGLp37w6HwwGr1QqNRiO1/eKLL/Doo49i9OjR+PTTT5s4tFgsUuITExMDh8Mh2zHC+aXn6quvhhy4lTQ5HA6sXr0au3fvlmojfP7559i0aRPy8/Oxa9cuREVFtWubKSkpmD9/Pg4ePNhkleQFCxYgPj4ea9asafY3giBg1apV+Oabb/DEE0/gnnvu6ehLAvB/SZNc0v0Bs9mMrKwsDBo0iCZgtgI54kOO+JAjPuSIjy8dWa1W5ObmIjg4uNVyAf/+97+xYcMGzJo1C88//3yz500mE5RKJQYMGCDbZG2z2YwLFy5Ao9HIdv526/Lctm3bsGfPHrzwwgs4cuSINGT52GOPweFw4NVXX233Np0jVMeOHZMeq6+vx4ULF1qdo/T4449j37592LRpk9sJU2dBpVIhPDycCsm5gBzxIUd8yBEfcsTHl46c9Y9c1Vf64x//iJMnT+Lpp59u8Xm73Q6dTifr3W0qlcq/K4Lv3r0by5cvx2233dZk8lViYiKWL1+OjRs3tnubGo0GCxcuxMaNGxEREYG+ffvi5ZdfRlRUFGbOnAlRFFFdXY2uXbtCp9Phiy++wLfffovHH38c48aNk67lApDaEM3RaDTo27evr8Pwa8gRH3LEhxzxIUd8fOnIefmeh/MyW0uIoij7+dh5uVBO3BppqqysRGJiYovP9e7du8O3/C9fvhzz5s3D008/jQULFkClUuHtt9+GWq1GSUkJJk+ejG+//RYA8M033wAANmzYgMmTJzf5cbYhmnP5XRVEc8gRH3LEhxzxIUd8fOWIMQaj0ehygrXFYmlTnUa5KoE7cTgcHqkX6Qq3XkG/fv3w888/Y+LEic2eO378OPr169eh7apUKjz22GN47LHHmj131VVXNbkrYufOnR3qo7PjvKsiMTFRmpBHNIUc8SFHfMgRH3LEx1eObDabNBm7NbZv3463334by5Ytw5IlS5o975zzLHfSZLFYIAiCrHfQufUKFi1ahNWrV0MQBEybNg0KhQJ5eXk4duwYdu7ciSeeeMJTcRIeRqvVIiEhodWhVIIctQVyxIcc8SFHfHzlyGazQRAEdO3atdU2J06cQE1NTauX35zzoeRe4kSr1fr3Mirz589HdXU1tm/fjo8//hiMMTz66KNQq9VYvHgxFixY4Kk4CQ+jUqnQpUsXX4fh15AjPuSIDzniQ474+MqRsyRAa4iiiFOnTgEAxowZ02Ibm83mlYRGpVLJvoyK22NlDzzwAO666y789ttvqKurQ1hYGIYPH47u3bt7IDxCLgRBQEVFBXr16iX7jhyokCM+5IgPOeJDjvj4whFjDAaDweXoVkpKCgwGA8LCwlqd4ywIAnr06CFXmE36EUVR1sngHrnAGBoaiqlTp3piU4SXsNvtqKysRHh4OB2kWoEc8SFHfMgRH3LExxeOnPOZXN31dujQIQDAxIkTW0xWnBOzvXEnu91u9++kKSEhgTsU1rhcOuE/BAcHY9iwYb4Ow68hR3zIER9yxIcc8fGFI2d9JlfzmX755RcAwJQpU1p83mazQaPRyL68CXDJkdz9uJU0Pfjgg82SJqPRiN9++w35+flYsWKFW8ERBEEQBOEbjEajy1Ebk8mEkydPAkCrV5ucyypdKSOIbiVNf/vb31p97vHHH0dqaipuu+02d7ogZMJsNiMnJwcDBgygZQtagRzxIUd8yBEfcsTH247sdjuMRqPL+UzHjh2DIAjo27cvBgwY0Op2OrIObUcwm80QBEHWBM2t4paumDt3LhWX9GNUKhVCQ0Np2QIXkCM+5IgPOeJDjvh425HVapXuemsN56W5qVOntjhVxzmfyRuX5oAAuXuuNfLz82G32+XaPOEmGo2myYLIRHPIER9yxIcc8SFHfLztyGw2S0UpW8M5Cby1+UxWqxVardZrtaU0Go3sBTTd2vrWrVubPeZwOFBaWopvv/0W06ZNc2fzhIw4HA5pgl5b1hTqjJAjPuSIDzniQ474eNMRYwwNDQ0uk52KigrpRq/Jkye32EYQBISGhsqeyDhxLqMi52iTx5Mm4FIJghtuuAGrVq1yZ/OEjNCyBXzIER9yxIcc8SFHfLzpyGq1wmKxuJyLdPjwYQDA0KFDW63BJAiCVwty+v0yKmlpaZ6Kg/AyWq0WcXFxtGyBC8gRH3LEhxzxIUd8vOnIYrFw6x1lZWUBaP2uOYfDAaVS6dX31BtVxxXMjSWBn3nmGcybNw/Dhw/3ZEw+59y5cwCAq6++2seREARBEIR3KSgogMlkclmfCQCqq6tht9sRGRnZ7Dmz2QwA6N+/v1cn+Mt9/nbrwujXX38No9HoqVgILyIIAkpLSyEIgq9D8VvIER9yxIcc8SFHfLzlyGazwWw2t2mEKCIiosWECbgUb0hIiFcTJucyKnLiVtI0cuRIHDt2zFOxEF6EDlJ8yBEfcsSHHPEhR3y85chZasDVvKC2XKCy2+1en5/mjaTJrctz69atw4cffoi+ffsiISGhmSCFQoG1a9e6HaS3octzBEEQRGektLQU1dXV6N69e6ttHnjgAVRVVWHlypUYO3Zss+dFUYTBYED//v29XqxU7vO3WxPBDx48iMjISAiCIAXaGLmLTBEEQRAE4RlEUeRWAbfb7fjvf/8Lg8HQajvnSNWVOLHfraTppZdeQlJSUou3JdbX10vVQgn/w2KxIDc3F/379/fK6tOBCDniQ474kCM+5IiPNxxZLBZYLBZ069at1TYqlQr79u3DkSNHkJyc3GIbm82GiIgIr9fccpYc8NtlVBYtWoTs7OwWn7tw4QLVafJjFAoFdDodjQa6gBzxIUd8yBEfcsTHG45MJhMAuEx2FAoFBgwYgIULF7baThRFn6whqFAo/G8ZlZUrV6KkpATApclga9asaXGkKTc3Fz179nQ/QkIWtFot+vfv7+sw/BpyxIcc8SFHfMgRH7kdiaKI+vp6t0ex7HY7goKCvLbeXGO0Wq3s1cfbPdL0u9/9DoyxJrPnnb87f5RKJUaMGIF169Z5NFjCczDGIAhCm+6C6KyQIz7kiA854kOO+MjtyGw2w2KxuEyaDAYD7r//frz//vtwOBwttvHlfCZv7D/tTsmmT5+O6dOnAwDuvvturFmzBoMGDfJ4YIS8mM1mWraAAzniQ474kCM+5IiP3I4aGhq4l7d+/fVX7N27F+fPn8ef/vSnFtvYbDb07NnTJ5dazWYzt1yCu7g1jvXBBx94Kg7Cy2i1WgwePPiKvLvBU5AjPuSIDzniQ474yOlIEAQYDAbuPKQDBw4AaH2BXuDS8im+mM8EeOfynHeWHib8DpVK5fIOCYIctQVyxIcc8SFHfOR0ZDKZYLVaXS6uazQa8dVXXwEA5syZ02Ib551rvpjPBFxyJPcde969H5DwGwRBQHl5OVXgdQE54kOO+JAjPuSIj5yO6uvrubfpO5dNGzBgAMaPH99iG5vNBq1W67Okye+XUSECF0EQUFhYSAcpF5AjPuSIDzniQ474yOXIYrHAaDRy75r78MMPAQB33nlnq/OVBEFAaGioz0pH+P0yKlcqtIwKQRAE0RkoKytDZWUlwsPDW22j1+txww03ICgoCCdPnkSvXr2atWGMoaamBv3792+xDJG3kPv8TSNNBEEQBNEJMZvNqK2tdTmXCQA+/vhjAMDMmTNbTJiAS6M8Go3GZ5fmvAUlTZ0Ui8WCixcvwmKx+DoUv4Uc8SFHfMgRH3LERw5HtbW1sNvtLhMdi8WC3bt3A7h0aa41bDYbdDqdT5Mm5zIqckJJUydFoVAgKCiIli1wATniQ474kCM+5IiPpx2ZzWbU1dVxR5k+++wz1NbWom/fvpg6dWqr7QRBQNeuXT0SW0fxy2VUiCsDrVaLgQMH+joMv4Yc8SFHfMgRH3LEx9OOamtr4XA4XI4MCYKAf/7znwCABx54ACqVqsV2oihCoVD4vM6WXy6jQlwZMMYgiiItW+ACcsSHHPEhR3zIER9POjKZTG0aZfrPf/6DgoIC9OzZ0+WlOZPJhNDQUJ8VtXTijf2HkqZOitlsxpkzZ2A2m30dit9CjviQIz7kiA854uMpR4wx1NXVweFwcGszNTQ0oEuXLnjggQdaTYica+J169bN55dXncuoyAmVHGiBzlBywG63o6GhAV27dpV9ODNQIUd8yBEfcsSHHPHxlCOTyYS8vDyEhIRwkyYAqKmpgVarbXW9O2cS169fP5+/d3a7HefPn4dSqZTt/E17ZyclKCjIZV0Oghy1BXLEhxzxIUd8POHIWUuJMdamhAkAt0+z2Yzo6GifJ0zAJUe0jAohC3a7HZWVlbDb7b4OxW8hR3zIER9yxIcc8fGEI7PZjPr6em7xyePHj+N///sfd46Q1WqFRqPxaTHLxtjtdjgcDln7oKSpk2Kz2ZCXlyf79d9AhhzxIUd8yBEfcsTHXUeNR5lcjQoxxvDss89i/vz5eO+991xu02QyoVu3bj6/a86JzWaTPfH2/Xga4ROCg4MxatQoX4fh15AjPuSIDzniQ474uOvIecccb1TIYrFg1KhRKCgowO9///tW2wmCAJVKhbCwsA7H5GmCg4NlL65JI02dFGcRMF/f7eDPkCM+5IgPOeJDjvi444gxhtraWgDgzj0KDg7Giy++iBMnTqBHjx6ttjOZTOjatSt3oV9v4o39h5KmTorVakVmZiasVquvQ/FbyBEfcsSHHPEhR3zccdTWUabGuKq5JIoiHA6HX5QZaIzVaqVlVAiCIAiC6BiMMVRXV0vLsLhi48aNOHv2LHebzmKWvOKYVyJUp6kFOkOdJoIgCOLKx2AwIC8vD2FhYa0ugwIAJ06cwJw5c6BWq3Hy5En07NmzxXbOS30xMTF+NZ/Jidznb5oI3klpnCv70/CqP0GO+JAjPuSIDzni0xFHzjvmlEqly4QJADZv3gwAmDdvXqsJE3CpbIFOp/PLUSZaRoWQDbPZjN9++42WLXABOeJDjviQIz7kiE9HHBmNRjQ0NHDnMp07dw4//vgjlEolHnzwQZdtLRYLIiIiuEmYL/DGMiqUNHVSNBoN+vXrJ/vtmYEMOeJDjviQIz7kiE97HYmiiKqqqjaNMr3yyisAgDlz5mDAgAGttnOOMvlLMcvL0Wg0slcmp8tznZSgoCCXQ7AEOWoL5IgPOeJDjvi011FdXR0aGhrQvXt3l+3+85//4MCBA1CpVFi+fLnLtmazGVFRUW1egsXb0DIqhGzY7XbU1NTQsgUuIEd8yBEfcsSHHPFpjyOr1Yrq6moEBwe7TCIKCwuxatUqAMDDDz+MIUOGtNrWYrFAo9Gga9eu7Q/eS9AyKoRs2Gw2ZGdn07IFLiBHfMgRH3LEhxzxaasjZ4kBi8XistaS3W7H8uXL0dDQgNGjR7scZWKMwWQyISIiwm+WTGkJbyyjQiUHWqAzlBxgjMHhcECpVNLdKq1AjviQIz7kiA854tNWR1VVVSgpKUFYWJjL+T0bN27Eq6++ii5duuDAgQPo379/q21NJhMUCgViY2P99tIccMlRamoqAPnO3zTS1ElRKBRQqVR0gHIBOeJDjviQIz7kiE9bHBkMBlRUVCAkJMRlwnT48GG89tprAID169e7TJhEUYTFYkGPHj38OmECaBkVQkasViuys7Np2QIXkCM+5IgPOeJDjvjwHFksFpSVlUGhULhcD66yshJ/+9vfwBjDHXfcgblz57baljGGuro6RERE+GUhy8uxWq2yX56jpKmTwhiD3W73SjGwQIUc8SFHfMgRH3LEx5Ujs9mMoqIiWK1W7kTtM2fOoK6uDkOGDMHzzz/vsq1zvbpevXrJfleaJ2CMyb4P0ZymFugMc5oIgiAIeXCeVj3xb2vPOf/vcDhQWVkJQRDQrVu3NsV34cIFqFQqxMfHt9rGaDRCoVCgb9++LieU+xu0jApBEARxRePJJMMT/zpvW2/8b+MEpqXnG/97+ViEO0lSazDGoFAowBiDRqPhJkzOSeQAkJSU5LKt8zLXVVddFVAJkzegpKmTYjKZkJaWhoSEBISEhPg6HL+EHPEhR3zkcOTrpKItSUZ7/jWZTMjKysKgQYMQHBzsdjzu4pxQ3NF/L9+OM1lxZ3tmsxmZmZkYPHhwuxOZ3bt344033sCGDRswcuRIl23tdjtMJhOioqL8uiZTS5hMJthsNlkry/tl0uRwOLB161Z89tlnaGhowNixY7F69WrExMS02L6mpgYvvPACDh06BIVCgZtvvhmPP/44ZcguUKvVuOqqq/z+bghfQo74BIojXyYVgiAgNDQUBoMBFosFgPtJhjsjGa396xy1cPVv4/4uf7zxv+1JBhQKBdRqNaKjo6FWq6FQKDySZHgSpyfn9u12OywWCxQKRZNEuKKiQiqw6PwRRbHJ75c/FxMTI1X6rqmpwfnz5xESEoJRo0ZJ2/3ll19QV1cHg8GArKwsKBSKVrfn/P/IkSMxfPhwMMbw3Xff4cKFC3jppZfw0UcftbqsCmMM9fX16NGjB8LDw2VxKSdqtVr2NfH8Mmnatm0bPvroI7z00kuIiorCyy+/jMWLF2PPnj0tZpDLly+H2WzGu+++i/r6ejz11FMwmUxYv369D6IPDNRqNSIjI30dhl/TmR215Zu881JC9+7d4XA4YLVa/XYkw1dJRuN/KyoqmiUZzom9KpVKukVcEAQYjUYp/saXhkRRbPL/xs8lJiZK283KykJtbS369euHyMhIKBQK1NTUICUlBYyxVk/ijU++zna33nqrVNDw8OHDSEtLw6hRo6STekVFBT766KNmJ+7GMTbenvOxv//979Ln65tvvsH+/fsxdepUzJ8/HwBQXV2NFStWtPr3jbff+Ofll19GcnIyAOCzzz7Dli1bMH36dKxZswbApYTnmmuuafXvnX01fo4xhn/961+46aabAAB79uzBsmXLMGXKFHzyySfSfnXttdeirq4O7WH9+vVYuHAhgEvzcRYsWIDExER8//33UptVq1YhJyenXdt97LHHMHz4cCgUCmzYsAFjxozBfffd5zKpqKurQ9euXQNm4vfldMqkyWazYefOnVixYgWuu+46AMCrr76KKVOm4MCBA7jllluatD99+jSOHz+Ob7/9FoMGDQIAPPfcc1i8eDEeffRR9O7d29svISAQRREGgwGhoaF+uVq1P9BeR55MFHjJSlvaWywW2Gw2OBwO2O126STg/H9LP6GhodK3XpvNhvT0dDDGpJMQYwwZGRmorKyURlFMJhM0Gk2Tk7EzGXD2GRUVhTFjxkixfvbZZ2CMYc6cOdDpdGCM4ddff0VaWlqTE9XliUHjk6fD4UBsbKx0wlEoFHjxxRdhMpnw8MMPS5/9b7/9Fvv372/2t41/Lj9JxsbGSnVsFAoF/vKXvyA/Px+vvvoqhg0bBgD49NNP8eqrr7Z6om0piejRowdOnDghvZdz587F8ePHsWPHDsyaNQsA8OWXX3JXmr8clUqF/Px86fdNmzbhu+++w0svvYS7774bwKXJv87/t4cbb7xRSpr27NmDXbt2YcWKFU2Spg0bNrR7u/fdd5+UNJ0/fx5ffPEFwsLCpKRJEATs37+/3ds1GAzS/+vr65GVlYWhQ4dKjymVSpSWlrZ7u42X53AmFJcv2REUFAS1Wg2lUtnkx1lfSaVSNXuu8UhVly5dEBcX16xuUnJyMiIiIsAYQ1BQkLSdlrbn7Gvw4MHS30dERGDJkiUuX5/BYIBWq0Xv3r1lX/RWLpyfNTkTPr8zk5aWBqPRiAkTJkiPhYWFISkpCSdOnGiWNJ08eRK9evWSEiYAGDduHBQKBU6dOiUdiIimWK1WZGZmIjEx0eU8i8u/3TU+Kbh6rE+fPtKoYHl5OcrLyxEeHo6+ffsCuHRC/u2336STtfNEe/l2Gz8viiKmTJkindT1ej1OnDiB2NhYTJ06VTqxvvnmm01O3I2Hy1uK2W63Y/78+dI39dOnT+Pjjz9G3759MWnSJAwZMgTBwcFYtWoVDAZDs4Tg8hNl4xPoPffcg+nTpwMAUlJS8I9//AMxMTF45ZVXpARnyZIlyM/Pd/nN//IEYvHixVi8eDEA4OLFi5g3bx7Cw8Px888/S+/dokWLcOrUqXbtF3fffTeeffZZAEBtbS3mzJkDhUKBzMxMaYRky5Yt2LdvX7u2+/vf/x4zZswAcOnA5rzV+Y9//KN0GeCXX37BBx980K7tTpw4EX/961+l37/++mvU1tZi2bJl0n6dk5ODb7/9tl3bbWhoaJIoZ2dnIzMzUxoBAi7dXdQ4UWkLly+B0dLJ9/JLTK2dGJ2VoVUqVbOkPjIyEv3792+yGn1YWBiGDh3a7G8bn2hbOhE3PoGOGDECBoOhyV1X4eHhuOuuu1pNClr6UalUTS7/TJo0CWazGVOnTm0S7/r167nxXZ6UNI5t1qxZSE5ORo8ePZr43bdvXzOXvCSnscubb74ZmZmZzZKLlJSUlt72NjN69Gj89NNPzR5/4403YDabkZGRIR2PPIUoijCZTGCMoU+fPi5rPPk7zgnsnWpOk/MbQHR0dJPHIyMjW/x2UFZW1qytRqNB9+7dUVJS4lYsZrNZ2jnNZjNUKhU0Gg0cDgcsFgu0Wi1UKhUEQYAgCNJB2nmtW6vVgjEGs9kstT169CjeeustKJVKiKIIQRCaXEpwHlSdJ3u73Q6lUom9e/dK8yHWrl2LH3/8EUuXLsVtt90mbXfp0qXSdlxdV3cmIowxnDp1CqGhoWCMYfXq1XjnnXewfPlyPP744wgKCkJqaiomT57cbnc//fQTYmNj4XBcmp/2+uuv484778SaNWugUqlQUVHRJDFuK++99x5GjhwJQRCwe/durF27FjfccAN69+4tvTcrVqxo93b79++P7t27QxAEnDt3Du+88w7GjBmDuXPnQhAE2O127NmzBzU1Ne3a7o033giFQgFBEGCxWHDu3DmYzWYoFApp3yosLGz30LtCoUDXrl2luizOZEqj0UjbbW10rHFl4ctPEM5KwlarFRqNBtHR0VL8zv27d+/eGDx4sHRCcfYVFBQknfCd37adl57i4uIkB0FBQZg5cyYUCgUsFgsEQYBCocDQoUMxe/ZsaYjd4XBApVI1mS+l0Wik7SoUCgwaNAiCIEifz2XLlsFisUCtVsNisUCpVGLChAno0qULtFqt9LkLCgqSDqyiKEKr1SIoKEj6LEZERMBqtUrbXbt2LcxmM/r06QOTyQSVSoXrrrsOH330kbQoqiAIUKvVTbar0WigUqkgiiIUCgW6dOkCi8UCq9UKhUKBN954Q/pmbDQape2ePXsWXbp0gUKhkIoZOkfzrFar5Mh5DNFqtTCbzdLx45lnnsHTTz8Nq9UKg8EAlUqFwYMH45NPPoFOp5O2yxiTTpJms1kaKRFFETabTWpbW1sLxhhmz56N2bNnw2w2o66uDmq1GqGhoVi5cqXk12azQRTFJsfOy7frfB9ramogiiJGjBiB5ORkaVFa52f5xhtvlBw6P4eNt6tUKqW2zn1WpVJJC9t27doVQ4cOhcViQVVVlXRMjoqKglqtRlBQkHT8dm738uO3cz+y2WwwmUwQBEHyYjQaW3QYFBQkHb+1Wm2T99E5amexWKT92/k+Or04R4gvb+vc/+rr66W2giBAFEUpBmdb5/7c2PflbZ3xdu/eHd27d5c+H62d1xr7bu85UKPRSF5sNlu72gYHB7e4z5pMJqjVaqjVaunLrNzzK/0uaTKbzQDQLFPUarUtXit2Cr4crVbrVnVZURSRkZEhDcXn5OQgNDQUsbGxsNls0Ov1iIuLQ9euXVFVVYXS0lKMGDECAJCbmwudTof+/fvDbrdDr9dj8ODB6NatG86cOYN33nmn3fHk5OQgLy9PSnSOHDmCpKQkDBkyBBEREbhw4YJUn6I9FBQUwGKxwGKxoLa2FhaLBTk5OUhNTUWPHj1QUFDQpu04v7k6T77V1dUQBAENDQ1QKpUIDw+HyWRCbm4uoqKi0NDQgMjISOnA5RzRanwCCgoKanLACQ4Ohk6nQ1VVFcrLy9GnTx9MnjwZ0dHRqKioQN++feFwODBhwgSEhoZKHySr1Yrw8HCoVCrpxBQWFiadDMLCwtCvXz/U19ejqKgIAwcOxJIlSxASEoLS0lLExsYCAObMmYOQkBCEhobCarWivr4e0dHRUKlUqK+vh8PhQGRkpDT8361bN4wdOxZVVVXIy8tDnz59sHXrVlgsFqSlpUnD5/fffz+0Wi0iIiJgs9lQVlaG2NhYaLVaaeHNAQMGQKFQoKCgAGFhYRg4cCAqKiqQnZ2N2NhY/Pzzz6iursaFCxcQFxcHAFixYgW6dOmCvn37Sot9Dhw4EKGhoaioqEBVVRUSEhKkOTA6nQ59+/ZFfX09Ll68iNjYWPz444+oqqrC+fPnpduU//jHP+Kuu+5CTEwM7HY70tPTERMTg27duqGmpgZFRUXS5by8vDwAQL9+/WAymXDhwgVcddVV2Lx5M2pra5GXl4eQkBCoVCqMHDkSI0eOlC5NpKamok+fPoiIiEBdXR0KCgoQHx8PtVqNwsJC2Gw2DBw4EFarFWlpaYiMjMTdd9+NhoYG5OXlISwsTLrcMHHiRGkFd71ejx49eiAyMhJGoxE5OTkYPHgwdDodSkpK0NDQgLi4ONjtduTk5CAsLAwjR46E2WxGVlYWunTpIh3wQ0NDpRHKjIwMdOnSBX369IHFYkFmZib69u0r+a6oqMCAAQPAGENBQQG0Wi2uuuoqCIKA9PR0xMbGIiwsDPX19SgtLUVycjIYYygsLERQUBBiY2PBGENmZqbku66uDsXFxZJv5xfFfv36SSOETocGgwEFBQVISkqCUqmUJi0PGDAAwKXRtOjoaPTo0QNmsxm5ublITExEUFAQKisrYbVapRH9vLw89OrVC5GRkbBYLMjNzUVcXByCgoJQVlYGk8kk+S4qKkJ4eDh69+4Nm82G3NxcDB48GFqtFlVVVairq0N8fDy0Wi0uXryIsLAwREdHw2KxoKCgAAMHDoRWq0VtbS2qqqqk/TAvL6/J/p2VlSWNrhkMBpSVlUm1eoqLi6HVahEeHg5BEJCVlYV+/fohJCQEVVVVKC4ulo715eXlUCqV6NGjB0RRRE5ODmJjY9G1a1dUV1ejpKQEV199NZRKJaqqquBwONCrVy/JYUxMDMLCwlBXV4fCwkIMHToUQUFByM/PhyAI0mXjc+fOITo6Gt27d0d9fT0KCwuRmJgIjUaDgoICmM1mxMXFQaFQ4Pz58+jVqxd69+4No9GIzMxMxMfHQ6fToaioCA0NDdIo/oULFxAeHo6ePXvCZDJJo1NdunRBSUkJDAaDdExLS0tDz549ERMTA5vNhvPnzyM+Ph6hoaGorKxEeXk5hg8fDuDSOSgkJAT9+vVrdl5zfu6dd+bl5eVBo9FgwIABEEURer0eAwcORHh4uPS5Hz16tHQOUiqVGDRoEBhj0Ov16N+/P3r06IH6+nrk5ORgxIgRUKlUKCwshMPhaPJZjo2NRa9evaRJ8nKOMgF+WNxy//79WL58Oc6ePdtkmPChhx6CzWbD9u3bm7R//vnnkZKSgs8++6zJ4xMmTMADDzyAe+65p90xOJOPxrd2emqk6bfffpO+7TXO6ht/I3Vmzs63RqvVYsGCBdK3yJSUFBQXF2PIkCHSgaqiogInT56ETqeTtqNUKqV+nN9inDuU2WyG0WjE+PHjpaTFZDLBaDRCrVajZ8+eUKvVsFqtqKyslEYgnNl8ly5doFKppG+9Go0GoijCarVKfTq/LXXE4eVtrVZrh77VXN7W+Q2/Ld9qGhoapGRMq9VKc3eCgoKkb8xt+QbE88Jre/m39ssdOhPNtrR15bAj+7fFYkFhYSH69OmDkJAQ2O32dn/jbM2h2Wxu8i2yvb5b89IR31qttkUvl498tOTQbrejqKgIERER0iUpV8eIth5PWnPoPGa0xTcArsOO7N+uRppaaqtUKlFSUoLw8HAEBwd36BjR0ZGPjoySuPLSkVGS1o4Rjds6HJeKWDrngbXnGNGetq4c+vtIk8FgQE5ODoKCgmQrbul3SVNKSgrmz5+PgwcPStkwACxYsADx8fHSHRBOduzYgV27djWZy2Gz2TB8+HBs2rSpQ3OaOkNFcOe3w/79+wf0NWw5IUd8yBEfcsSHHPEhR3wsFgsuXLgAtVot2/nb7+4pTEhIQGhoKI4dOyY9Vl9fjwsXLmDs2LHN2o8dOxalpaXSZQAAOH78OABIw39Ec3Q6HRISEujD5wJyxIcc8SFHfMgRH3LER6fTdb45TRqNBgsXLsTGjRsRERGBvn374uWXX0ZUVBRmzpwJURRRXV2Nrl27QqfTYfjw4Rg1ahQeeeQRrFmzBiaTCatXr8acOXOo3ABBEARBEB7D70aagEvFKufNm4enn34aCxYsgEqlwttvvw21Wo2SkhJMnjxZuoVYoVBg69atuOqqq7Bo0SI8/PDDmDp1arPLeERTTCYTzpw5A5PJ5OtQ/BZyxIcc8SFHfMgRH3LEx7mMipz43Zwmf6AzzGkSBAFVVVXo0aOH3y+B4SvIER9yxIcc8SFHfMgRH0EQcP78eahUqs4zEdwf6AxJE0EQBEFcach9/vbLy3OE/IiiiIaGBoii6OtQ/BZyxIcc8SFHfMgRH3LEx1m0WU4oaeqkWK1WXLx40a0CoFc65IgPOeJDjviQIz7kiI/VaoUgCLL2QZfnWqAzXJ67vLw+0RxyxIcc8SFHfMgRH3LEx+FwIDU1FQqFQrbzt9+VHCC8g7NaONE65IgPOeJDjviQIz7kiI9zOS9Z+5B164TfYrPZkJ+fL/vtmYEMOeJDjviQIz7kiA854mOz2WC322Xtg5KmToooijAYDDSp0AXkiA854kOO+JAjPuSIjzcmgtOcphboDHOaCIIgCOJKg0oOEARBEARB+AE0EbwFBEEAY0zKWK9EGGMQBAFqtVr2iXOBCjniQ474kCM+5IgPOeLjdCSnH0qaWqAz7JAKhQIajcbXYfg15IgPOeJDjviQIz7kiI9CoZB+ZOuD5jQRBEEQBEHwoTlNBEEQBEEQbYCSJoIgCIIgiDZASRNBEARBEEQboKSJIAiCIAiiDVDSRBAEQRAE0QYoaSIIgiAIgmgDlDQRBEEQBEG0AUqaCIIgCIIg2gAlTQRBEARBEG2AkiaCIAiCIIg2QEkTQRAEQRBEG6CkiSAIgiAIog1Q0nQF4HA4sHnzZkyZMgUjRozAfffdh4KCghbbbtmyBfHx8S3+rFq1qll7xhj+8pe/4O6775b7ZciKHI5ycnJw//33Y+TIkZg0aRKee+45mM1mb70kjyOHo//973+47bbbMGLECNxwww14++23vfVyZKE9jgCgqqoKf//73zF+/Hhcc801eOSRR1BWVtakzXfffYdZs2Zh2LBhmDNnDn799Ve5X4aseNqRw+HAv/71L/zud7/DiBEjcPPNN+Ozzz7zxkuRDTn2Iyc2mw2///3v8cQTT8gVvleQw1FKSgruuusuDBs2DNdeey02b94Mh8PRvsAYEfBs2bKFXXPNNeynn35ier2e/fnPf2YzZ85kVqu1WVuDwcDKy8ub/Kxfv56NGDGCpaWlNWv/zjvvsLi4OLZw4UJvvBTZ8LSj6upqNnHiRPbXv/6VZWRksCNHjrDJkyezZ5991suvzHN42lFWVhZLTk5mW7ZsYfn5+Wzv3r1s2LBhbNeuXd5+aR6jPY4YY2zhwoXsjjvuYBcuXGDnz59nt99+O7vtttuk53/99Vc2dOhQ9t5777HMzEz20ksvseTkZJaZmemtl+RxPO1o27ZtbMyYMWzv3r0sLy+PffLJJywpKYn95z//8dIr8jyedtSY559/nsXFxbGVK1fK+RJkx9OOsrOz2fDhw9kzzzzDcnJy2L59+9jIkSPZW2+91a64KGkKcKxWKxs5ciT78MMPpcfq6urYsGHD2J49e7h/f/78eTZ06FD2xRdfNHsuLS2NjRkzht1+++0BnTTJ4Wjz5s1s6tSpzGKxSI99+umnbO7cuczhcHj2BXgBORy98847bNy4cU3aPfjgg+yBBx7wXOBepL2O6urqWFxcHPvhhx+kx77//nsWFxfHampqGGOM/fnPf2YPPfRQk7/74x//yJ555hlZXoPcyOFoypQpbNu2bU3+btWqVezOO++U50XIjByOnBw6dIhNnDiR3XzzzQGdNMnhaOXKley2225rcnx+/fXX2ZIlS9oVG12eC3DS0tJgNBoxYcIE6bGwsDAkJSXhxIkT3L9/7rnnMGbMGMydO7fJ41arFStWrMDy5csxYMAAj8ftTeRwdPjwYcyYMQNarVZ6bP78+fjiiy+gUCg8+wK8gByOevTogdraWnzzzTdgjCE9PR2nTp3C8OHDZXkNctNeRzqdDl26dMGXX34Jg8EAg8GAr776CgMGDEBYWBgcDgd+++23JtsDgGuuuaZNzv0RORytX7++2fFJqVSivr5e9tcjB5525KS6uhqrVq3C888/j/DwcK+8FrmQw9Hhw4dxyy23NDk+L1++HNu3b29XbJQ0BTilpaUAgOjo6CaPR0ZGSs+1xk8//YTTp09j5cqVzZ57+eWXERkZiYULF3ouWB8hh6OcnBxERkZi3bp1uO666zBjxgxs2LABVqvVs8F7CTkc3XTTTZg/fz4ee+wxDB06FH/4wx8wadIkLFmyxLPBe4n2OtJoNHjppZdw/PhxjBkzBmPHjsXZs2exY8cO6aRvMpkQFRXVpu0FAp52pFQqMWHChCaOiouLsXfvXkyePFneFyMTnnbk5KmnnsK0adMwffp0eV+AF/C0I4PBgIqKCnTt2hVPPvkkJk+ejFmzZuGtt96CKIrtio2SpgDHOfFYo9E0eVyr1XJP4O+88w6mTZuGxMTEJo8fOnQIe/bswdq1awNy1ORy5HBkMBiwY8cOWK1WbN26FY899hj27NmDp59+2rPBewk5HFVVVaGoqAjLly/H559/jhdffBE///wztmzZ4tngvUR7HTHGoNfrMXLkSHz44Yd477330KdPHyxduhQGgwEWi6Vd2wsEPO3ociorK3HfffehR48e+Otf/yrPi5AZORx98sknyMrKavFmnkDE046cntavX48+ffpgx44dWLx4Md588812H4+COviaCD9Bp9MBuHTHhPP/wKXLa8HBwa3+XXFxMY4dO4a33nqryePV1dV48sknsWbNGvTu3VueoL2Mpx0BQFBQEAYMGIA1a9YAAJKTkyGKIh5++GE88cQT6NGjh2dfhMzI4eipp55CdHS0dHJLSkoCYwxr1qzBwoULERER4eFXIS/tdfTdd99h165d+OmnnxAaGgoAeOONNzBt2jR8/vnnmD17trS9xvCc+zOednTPPfdIbbOzs3H//fdDFEW8//77TS5NBRKedjR16lS8/PLLePvttxESEuKdFyEznnZ0yy23AAAmTpyIZcuWAQASExNRXV2Nf/7zn3jooYfaPEBAI00BjnP4sry8vMnj5eXlLpOe77//HhEREZg0aVKTx3/++WdUVFTgySefxMiRIzFy5Ejs2bMHJ0+exMiRI1FcXOz5FyEznnYEAFFRURgyZEiTx5y/FxUVuRuy15HD0alTp3D11Vc3eWzEiBGw2+0oLCz0QNTepb2OTp48iQEDBkgHcQDo1q0bBgwYgLy8PHTv3h0hISHtdu7PeNqRk1OnTuGOO+5AcHAwPvnkE8TExMj0CuTH046+/fZbGI1G3HvvvdIx++TJk9izZw9Gjhwp74uRCU87Cg8Ph1arRVxcXJO/GzJkCEwmE6qrq9scGyVNAU5CQgJCQ0Nx7Ngx6bH6+npcuHABY8eObfXvTp48iXHjxiEoqOlg44wZM3DgwAF8+eWX0s/06dORnJyML7/8EpGRkbK9FrnwtCMAGDt2LFJSUsAYkx67ePEiVCoVrrrqKs++AC8gh6PevXsjPT29yWPp6elQKBTo16+f54L3Eu11FBUVhby8vCaXE0wmEwoLC9G/f38oFAqMGjUKx48fb/J3x44dw5gxY+R7ITLiaUfApdo6ixcvxpAhQ/Dhhx8GbELpxNOOFi5ciP379zc5ZicnJ2P69On48ssvvfGSPI6nHalUKowaNQpnz55t8nfp6ekICwtD9+7d2x5cu+61I/ySV155hY0bN459//33TepZ2Gw2ZrfbWXl5OTObzU3+5vrrr292G29rrFy5MqBLDjDmeUdZWVlSzY/s7Gx26NAhNnXqVPbEE0944+XIgqcdOevpvPfeeyw/P58dPHiQTZo0if3jH//wxsuRhfY4KisrY+PGjWNLlixher2e6fV69sADD7ApU6aw+vp6xhhjv/zyC0tMTGQ7d+5kmZmZbP369WzYsGEBXafJk44EQWAzZsxg119/PcvPz29SF6yqqsrHr7TjeHo/upyFCxcGdMkBxjzv6OjRoywxMZFt3ryZ5eXlsb1797LRo0ezLVu2tCsuSpquAOx2O9uwYQMbP348GzFiBLvvvvtYQUEBY4yxgoICFhcXx3bv3t3kb4YNG8Y++uijNm3/Skia5HB09uxZdtddd7Grr76aTZw4kb300kutFl4LBORw9J///If94Q9/YMOHD2czZ85k//znP5nNZpP1dchJex1lZmayBx54gI0bN46NHz+eLVu2TGrv5D//+Q+bMWMGu/rqq9ncuXPZ//73P6++Jk/jSUenTp1icXFxLf5MmzbNJ6/PE8ixHzXmSkia5HB06NAhNnfuXDZ06FB23XXXsTfffJOJotiuuBSMNbq+QBAEQRAEQbQIzWkiCIIgCIJoA5Q0EQRBEARBtAFKmgiCIAiCINoAJU0EQRAEQRBtgJImgiAIgiCINkBJE0EQBEEQRBugpIkgCIIgCKINUNJEEARBEATRBihpIgiCIAiCaAOUNBEE4REsFgs2bdqEmTNnIjk5GaNGjcK9994LvV4vtWGM4d1338VNN92EYcOGYcaMGXj77belhY95z8fHx2PLli1N+t2yZQvi4+ObPDZ9+nSsXbsWixYtwrBhw/DUU095JL7169dj2LBhaGhoaNLftm3bMHr0aJjNZrc9vvbaa/j000/d3g5BEJ6n+dLkBEEQHeDxxx/HyZMn8eijjyI2NhZ5eXl4/fXX8fe//x179+6FQqHAhg0b8N577+Hee+/FpEmTcO7cOWzcuBF2ux0PPPAA9/n28OGHH+Lee+/Ffffdhy5dungkvnnz5mHnzp3Yt28f5s+fL/X11VdfYdasWQgODnbbo8Hw/9q5n5Cm/ziO48/pNiVDwRChmrKEMBRzDUYMDxEqsoigPBj5Bwz04C2agk0vwhxEeAmjQ6KC6GniQQw6FM4uCoIoRB7UJoqihIdNcFT7HUJ/Cb+ffmVTf/B7Pa7vfb/f1/cDg9d3332/ETo7OzGbzTx8+DDh/YlI8qg0iUjCYrEY0WgUn8+Hx+MBwOVyEYlECAQCbG9vk5aWxuDgILW1tXi9XgDcbjdbW1vMzMzw+PHjI+cnLU2XL1/m+fPnScvX3NxMQUEBDoeDsbGxg9I0OzvLysoKgUDAUK69vb0j516vl2g0yosXL7BYLNy/f/9E5y0ip0elSUQSZrVaeffuHQCbm5ssLy+zsrLCx48fgd+l5cuXL/z48YPKyspD2/p8PgAmJyePnJ/UjRs3kppv36NHj+jo6GBtbY0rV64wOjqK3W7H4XAcmykajXLr1i3D59DW1sbt27fJyckxvI2InB6VJhFJilAohN/vZ2lpiYyMDAoLC7lw4QLw+79COzs7AGRnZ//j9sfNT2r/2MnKt8/j8eD3+xkbG+Pp06dMTEzQ1NRkKFNaWhrd3d3Hfm5qaorx8XEqKiqSth4ikjiVJhFJWDgcpqWlhfLyct6+fYvNZsNkMjE0NEQoFAIgMzMTgO/fv3Pt2rWDbdfX1wmHwwcF5t/mTqcTgJ8/fx469u7u7pnkczqdWCwWMjIyqKqqYmJiguvXr7O7u8uDBw8MrZOR/yl9/vyZDx8+UF5ezqtXr0hNTTW0bxE5fXp6TkQStrCwwN7eHk1NTeTl5WEymQAOCkk8HqekpASLxXJwS2xfX18fz549w+FwHDlPTU3l4sWLbG5uHprPzs6eSb4/y0t1dTWLi4sMDAzgdrvJzc01skyGvHnzBrfbTU9PD2azrmtF/kv0jRSRhBUVFWE2m3n58iWNjY3EYjGCwSCfPn0Cfv8aZLPZqK+vp7+/H6vVisvlYm5ujuHhYVpbW7l06dKR85SUFO7cucP4+Dg3b94kPz+fYDDIt2/fziRfSsrf15hOpxO73c709DQ9PT1JXcve3l7S09OxWq1J3a+IJM4U338BiYhIAt6/f8/r168Jh8NkZWVRWlpKfX09dXV1dHR08OTJE+LxOH19fYyMjLCxscHVq1dpaGigpqYG4Nj59vY2XV1dTE5OYjab8Xg8FBcX4/P5+Pr160GWu3fv4nK5Dj3Rlox8fwoEAgSDQaamplRwRP4nVJpERE4oHo9z7949ysrKaG9vP+84InJGdHtORMSgSCRCf38/8/PzrK6uUldXd96RROQMqTSJiBiUnp7OyMgIv379wu/3Y7PZzjuSiJwh3Z4TERERMUCvHBARERExQKVJRERExACVJhEREREDVJpEREREDFBpEhERETFApUlERETEAJUmEREREQNUmkREREQMUGkSERERMUClSURERMQAlSYRERERA/4CS+zU/qJLi30AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=disparity_metric,\n",
+ " show_data_type=\"fit\", # synthetic data example on the same data as used to fit the model\n",
+ " constant_clf_perf=max((y_true == const_pred).mean() for const_pred in {0, 1}),\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(FAIRNESS_CONSTRAINT.replace(\"_\", \"-\") + r\" violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "46ca150d",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt
new file mode 100644
index 0000000..27a8636
--- /dev/null
+++ b/_sources/index.rst.txt
@@ -0,0 +1,56 @@
+.. error-parity documentation master file, created by
+ sphinx-quickstart on Thu Nov 23 16:53:42 2023.
+ You can adapt this file completely to your liking, but it should at least
+ contain the root `toctree` directive.
+
+Welcome to error-parity's documentation!
+========================================
+
+The :code:`error-parity` package allows you to easily achieve error-rate
+fairness between societal groups.
+It's compatible with any score-based predictor, and can map out all of its
+attainable fairness-accuracy trade-offs.
+
+Full code available on the `GitHub repository`_,
+including various `jupyter notebook examples`_ .
+
+Check out the following sub-pages:
+
+.. toctree::
+ :maxdepth: 1
+
+ Readme file
+ API reference
+ Example notebooks
+
+
+Citing
+------
+
+The :code:`error-parity` package is the basis for the following `publication`_:
+
+.. code-block:: bib
+
+ @inproceedings{
+ cruz2024unprocessing,
+ title={Unprocessing Seven Years of Algorithmic Fairness},
+ author={Andr{\'e} Cruz and Moritz Hardt},
+ booktitle={The Twelfth International Conference on Learning Representations},
+ year={2024},
+ url={https://openreview.net/forum?id=jr03SfWsBS}
+ }
+
+All additional supplementary materials are available on the `supp-materials`_ branch of the `GitHub repository`_.
+
+
+Indices
+=======
+
+* :ref:`genindex`
+* :ref:`modindex`
+
+
+.. _GitHub repository: https://github.com/socialfoundations/error-parity
+.. _jupyter notebook examples: https://github.com/socialfoundations/error-parity/tree/main/examples
+.. _publication: https://arxiv.org/abs/2306.07261
+.. _supp-materials: https://github.com/socialfoundations/error-parity/tree/supp-materials
diff --git a/_sources/modules.rst.txt b/_sources/modules.rst.txt
new file mode 100644
index 0000000..c4eb9ae
--- /dev/null
+++ b/_sources/modules.rst.txt
@@ -0,0 +1,7 @@
+API reference
+=============
+
+.. toctree::
+ :maxdepth: 2
+
+ error_parity
diff --git a/_sources/notebooks.rst.txt b/_sources/notebooks.rst.txt
new file mode 100644
index 0000000..0f4ce5e
--- /dev/null
+++ b/_sources/notebooks.rst.txt
@@ -0,0 +1,8 @@
+Notebooks Gallery
+=================
+
+.. nbgallery::
+ examples/relaxed-equalized-odds.usage-example-folktables.ipynb
+ examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb
+ examples/usage-example-for-other-constraints.synthetic-data.ipynb
+ examples/example-with-postprocessing-and-inprocessing.ipynb
diff --git a/_sources/readme.rst.txt b/_sources/readme.rst.txt
new file mode 100644
index 0000000..a1c8bea
--- /dev/null
+++ b/_sources/readme.rst.txt
@@ -0,0 +1,5 @@
+README.md
+=========
+
+.. include:: ../README.md
+ :parser: myst_parser.sphinx_
diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js
new file mode 100644
index 0000000..8141580
--- /dev/null
+++ b/_static/_sphinx_javascript_frameworks_compat.js
@@ -0,0 +1,123 @@
+/* Compatability shim for jQuery and underscores.js.
+ *
+ * Copyright Sphinx contributors
+ * Released under the two clause BSD licence
+ */
+
+/**
+ * small helper function to urldecode strings
+ *
+ * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL
+ */
+jQuery.urldecode = function(x) {
+ if (!x) {
+ return x
+ }
+ return decodeURIComponent(x.replace(/\+/g, ' '));
+};
+
+/**
+ * small helper function to urlencode strings
+ */
+jQuery.urlencode = encodeURIComponent;
+
+/**
+ * This function returns the parsed url parameters of the
+ * current request. Multiple values per key are supported,
+ * it will always return arrays of strings for the value parts.
+ */
+jQuery.getQueryParameters = function(s) {
+ if (typeof s === 'undefined')
+ s = document.location.search;
+ var parts = s.substr(s.indexOf('?') + 1).split('&');
+ var result = {};
+ for (var i = 0; i < parts.length; i++) {
+ var tmp = parts[i].split('=', 2);
+ var key = jQuery.urldecode(tmp[0]);
+ var value = jQuery.urldecode(tmp[1]);
+ if (key in result)
+ result[key].push(value);
+ else
+ result[key] = [value];
+ }
+ return result;
+};
+
+/**
+ * highlight a given string on a jquery object by wrapping it in
+ * span elements with the given class name.
+ */
+jQuery.fn.highlightText = function(text, className) {
+ function highlight(node, addItems) {
+ if (node.nodeType === 3) {
+ var val = node.nodeValue;
+ var pos = val.toLowerCase().indexOf(text);
+ if (pos >= 0 &&
+ !jQuery(node.parentNode).hasClass(className) &&
+ !jQuery(node.parentNode).hasClass("nohighlight")) {
+ var span;
+ var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg");
+ if (isInSVG) {
+ span = document.createElementNS("http://www.w3.org/2000/svg", "tspan");
+ } else {
+ span = document.createElement("span");
+ span.className = className;
+ }
+ span.appendChild(document.createTextNode(val.substr(pos, text.length)));
+ node.parentNode.insertBefore(span, node.parentNode.insertBefore(
+ document.createTextNode(val.substr(pos + text.length)),
+ node.nextSibling));
+ node.nodeValue = val.substr(0, pos);
+ if (isInSVG) {
+ var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect");
+ var bbox = node.parentElement.getBBox();
+ rect.x.baseVal.value = bbox.x;
+ rect.y.baseVal.value = bbox.y;
+ rect.width.baseVal.value = bbox.width;
+ rect.height.baseVal.value = bbox.height;
+ rect.setAttribute('class', className);
+ addItems.push({
+ "parent": node.parentNode,
+ "target": rect});
+ }
+ }
+ }
+ else if (!jQuery(node).is("button, select, textarea")) {
+ jQuery.each(node.childNodes, function() {
+ highlight(this, addItems);
+ });
+ }
+ }
+ var addItems = [];
+ var result = this.each(function() {
+ highlight(this, addItems);
+ });
+ for (var i = 0; i < addItems.length; ++i) {
+ jQuery(addItems[i].parent).before(addItems[i].target);
+ }
+ return result;
+};
+
+/*
+ * backward compatibility for jQuery.browser
+ * This will be supported until firefox bug is fixed.
+ */
+if (!jQuery.browser) {
+ jQuery.uaMatch = function(ua) {
+ ua = ua.toLowerCase();
+
+ var match = /(chrome)[ \/]([\w.]+)/.exec(ua) ||
+ /(webkit)[ \/]([\w.]+)/.exec(ua) ||
+ /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) ||
+ /(msie) ([\w.]+)/.exec(ua) ||
+ ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) ||
+ [];
+
+ return {
+ browser: match[ 1 ] || "",
+ version: match[ 2 ] || "0"
+ };
+ };
+ jQuery.browser = {};
+ jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true;
+}
diff --git a/_static/basic.css b/_static/basic.css
new file mode 100644
index 0000000..f316efc
--- /dev/null
+++ b/_static/basic.css
@@ -0,0 +1,925 @@
+/*
+ * basic.css
+ * ~~~~~~~~~
+ *
+ * Sphinx stylesheet -- basic theme.
+ *
+ * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
+ * :license: BSD, see LICENSE for details.
+ *
+ */
+
+/* -- main layout ----------------------------------------------------------- */
+
+div.clearer {
+ clear: both;
+}
+
+div.section::after {
+ display: block;
+ content: '';
+ clear: left;
+}
+
+/* -- relbar ---------------------------------------------------------------- */
+
+div.related {
+ width: 100%;
+ font-size: 90%;
+}
+
+div.related h3 {
+ display: none;
+}
+
+div.related ul {
+ margin: 0;
+ padding: 0 0 0 10px;
+ list-style: none;
+}
+
+div.related li {
+ display: inline;
+}
+
+div.related li.right {
+ float: right;
+ margin-right: 5px;
+}
+
+/* -- sidebar --------------------------------------------------------------- */
+
+div.sphinxsidebarwrapper {
+ padding: 10px 5px 0 10px;
+}
+
+div.sphinxsidebar {
+ float: left;
+ width: 230px;
+ margin-left: -100%;
+ font-size: 90%;
+ word-wrap: break-word;
+ overflow-wrap : break-word;
+}
+
+div.sphinxsidebar ul {
+ list-style: none;
+}
+
+div.sphinxsidebar ul ul,
+div.sphinxsidebar ul.want-points {
+ margin-left: 20px;
+ list-style: square;
+}
+
+div.sphinxsidebar ul ul {
+ margin-top: 0;
+ margin-bottom: 0;
+}
+
+div.sphinxsidebar form {
+ margin-top: 10px;
+}
+
+div.sphinxsidebar input {
+ border: 1px solid #98dbcc;
+ font-family: sans-serif;
+ font-size: 1em;
+}
+
+div.sphinxsidebar #searchbox form.search {
+ overflow: hidden;
+}
+
+div.sphinxsidebar #searchbox input[type="text"] {
+ float: left;
+ width: 80%;
+ padding: 0.25em;
+ box-sizing: border-box;
+}
+
+div.sphinxsidebar #searchbox input[type="submit"] {
+ float: left;
+ width: 20%;
+ border-left: none;
+ padding: 0.25em;
+ box-sizing: border-box;
+}
+
+
+img {
+ border: 0;
+ max-width: 100%;
+}
+
+/* -- search page ----------------------------------------------------------- */
+
+ul.search {
+ margin: 10px 0 0 20px;
+ padding: 0;
+}
+
+ul.search li {
+ padding: 5px 0 5px 20px;
+ background-image: url(file.png);
+ background-repeat: no-repeat;
+ background-position: 0 7px;
+}
+
+ul.search li a {
+ font-weight: bold;
+}
+
+ul.search li p.context {
+ color: #888;
+ margin: 2px 0 0 30px;
+ text-align: left;
+}
+
+ul.keywordmatches li.goodmatch a {
+ font-weight: bold;
+}
+
+/* -- index page ------------------------------------------------------------ */
+
+table.contentstable {
+ width: 90%;
+ margin-left: auto;
+ margin-right: auto;
+}
+
+table.contentstable p.biglink {
+ line-height: 150%;
+}
+
+a.biglink {
+ font-size: 1.3em;
+}
+
+span.linkdescr {
+ font-style: italic;
+ padding-top: 5px;
+ font-size: 90%;
+}
+
+/* -- general index --------------------------------------------------------- */
+
+table.indextable {
+ width: 100%;
+}
+
+table.indextable td {
+ text-align: left;
+ vertical-align: top;
+}
+
+table.indextable ul {
+ margin-top: 0;
+ margin-bottom: 0;
+ list-style-type: none;
+}
+
+table.indextable > tbody > tr > td > ul {
+ padding-left: 0em;
+}
+
+table.indextable tr.pcap {
+ height: 10px;
+}
+
+table.indextable tr.cap {
+ margin-top: 10px;
+ background-color: #f2f2f2;
+}
+
+img.toggler {
+ margin-right: 3px;
+ margin-top: 3px;
+ cursor: pointer;
+}
+
+div.modindex-jumpbox {
+ border-top: 1px solid #ddd;
+ border-bottom: 1px solid #ddd;
+ margin: 1em 0 1em 0;
+ padding: 0.4em;
+}
+
+div.genindex-jumpbox {
+ border-top: 1px solid #ddd;
+ border-bottom: 1px solid #ddd;
+ margin: 1em 0 1em 0;
+ padding: 0.4em;
+}
+
+/* -- domain module index --------------------------------------------------- */
+
+table.modindextable td {
+ padding: 2px;
+ border-collapse: collapse;
+}
+
+/* -- general body styles --------------------------------------------------- */
+
+div.body {
+ min-width: 360px;
+ max-width: 800px;
+}
+
+div.body p, div.body dd, div.body li, div.body blockquote {
+ -moz-hyphens: auto;
+ -ms-hyphens: auto;
+ -webkit-hyphens: auto;
+ hyphens: auto;
+}
+
+a.headerlink {
+ visibility: hidden;
+}
+
+a:visited {
+ color: #551A8B;
+}
+
+h1:hover > a.headerlink,
+h2:hover > a.headerlink,
+h3:hover > a.headerlink,
+h4:hover > a.headerlink,
+h5:hover > a.headerlink,
+h6:hover > a.headerlink,
+dt:hover > a.headerlink,
+caption:hover > a.headerlink,
+p.caption:hover > a.headerlink,
+div.code-block-caption:hover > a.headerlink {
+ visibility: visible;
+}
+
+div.body p.caption {
+ text-align: inherit;
+}
+
+div.body td {
+ text-align: left;
+}
+
+.first {
+ margin-top: 0 !important;
+}
+
+p.rubric {
+ margin-top: 30px;
+ font-weight: bold;
+}
+
+img.align-left, figure.align-left, .figure.align-left, object.align-left {
+ clear: left;
+ float: left;
+ margin-right: 1em;
+}
+
+img.align-right, figure.align-right, .figure.align-right, object.align-right {
+ clear: right;
+ float: right;
+ margin-left: 1em;
+}
+
+img.align-center, figure.align-center, .figure.align-center, object.align-center {
+ display: block;
+ margin-left: auto;
+ margin-right: auto;
+}
+
+img.align-default, figure.align-default, .figure.align-default {
+ display: block;
+ margin-left: auto;
+ margin-right: auto;
+}
+
+.align-left {
+ text-align: left;
+}
+
+.align-center {
+ text-align: center;
+}
+
+.align-default {
+ text-align: center;
+}
+
+.align-right {
+ text-align: right;
+}
+
+/* -- sidebars -------------------------------------------------------------- */
+
+div.sidebar,
+aside.sidebar {
+ margin: 0 0 0.5em 1em;
+ border: 1px solid #ddb;
+ padding: 7px;
+ background-color: #ffe;
+ width: 40%;
+ float: right;
+ clear: right;
+ overflow-x: auto;
+}
+
+p.sidebar-title {
+ font-weight: bold;
+}
+
+nav.contents,
+aside.topic,
+div.admonition, div.topic, blockquote {
+ clear: left;
+}
+
+/* -- topics ---------------------------------------------------------------- */
+
+nav.contents,
+aside.topic,
+div.topic {
+ border: 1px solid #ccc;
+ padding: 7px;
+ margin: 10px 0 10px 0;
+}
+
+p.topic-title {
+ font-size: 1.1em;
+ font-weight: bold;
+ margin-top: 10px;
+}
+
+/* -- admonitions ----------------------------------------------------------- */
+
+div.admonition {
+ margin-top: 10px;
+ margin-bottom: 10px;
+ padding: 7px;
+}
+
+div.admonition dt {
+ font-weight: bold;
+}
+
+p.admonition-title {
+ margin: 0px 10px 5px 0px;
+ font-weight: bold;
+}
+
+div.body p.centered {
+ text-align: center;
+ margin-top: 25px;
+}
+
+/* -- content of sidebars/topics/admonitions -------------------------------- */
+
+div.sidebar > :last-child,
+aside.sidebar > :last-child,
+nav.contents > :last-child,
+aside.topic > :last-child,
+div.topic > :last-child,
+div.admonition > :last-child {
+ margin-bottom: 0;
+}
+
+div.sidebar::after,
+aside.sidebar::after,
+nav.contents::after,
+aside.topic::after,
+div.topic::after,
+div.admonition::after,
+blockquote::after {
+ display: block;
+ content: '';
+ clear: both;
+}
+
+/* -- tables ---------------------------------------------------------------- */
+
+table.docutils {
+ margin-top: 10px;
+ margin-bottom: 10px;
+ border: 0;
+ border-collapse: collapse;
+}
+
+table.align-center {
+ margin-left: auto;
+ margin-right: auto;
+}
+
+table.align-default {
+ margin-left: auto;
+ margin-right: auto;
+}
+
+table caption span.caption-number {
+ font-style: italic;
+}
+
+table caption span.caption-text {
+}
+
+table.docutils td, table.docutils th {
+ padding: 1px 8px 1px 5px;
+ border-top: 0;
+ border-left: 0;
+ border-right: 0;
+ border-bottom: 1px solid #aaa;
+}
+
+th {
+ text-align: left;
+ padding-right: 5px;
+}
+
+table.citation {
+ border-left: solid 1px gray;
+ margin-left: 1px;
+}
+
+table.citation td {
+ border-bottom: none;
+}
+
+th > :first-child,
+td > :first-child {
+ margin-top: 0px;
+}
+
+th > :last-child,
+td > :last-child {
+ margin-bottom: 0px;
+}
+
+/* -- figures --------------------------------------------------------------- */
+
+div.figure, figure {
+ margin: 0.5em;
+ padding: 0.5em;
+}
+
+div.figure p.caption, figcaption {
+ padding: 0.3em;
+}
+
+div.figure p.caption span.caption-number,
+figcaption span.caption-number {
+ font-style: italic;
+}
+
+div.figure p.caption span.caption-text,
+figcaption span.caption-text {
+}
+
+/* -- field list styles ----------------------------------------------------- */
+
+table.field-list td, table.field-list th {
+ border: 0 !important;
+}
+
+.field-list ul {
+ margin: 0;
+ padding-left: 1em;
+}
+
+.field-list p {
+ margin: 0;
+}
+
+.field-name {
+ -moz-hyphens: manual;
+ -ms-hyphens: manual;
+ -webkit-hyphens: manual;
+ hyphens: manual;
+}
+
+/* -- hlist styles ---------------------------------------------------------- */
+
+table.hlist {
+ margin: 1em 0;
+}
+
+table.hlist td {
+ vertical-align: top;
+}
+
+/* -- object description styles --------------------------------------------- */
+
+.sig {
+ font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace;
+}
+
+.sig-name, code.descname {
+ background-color: transparent;
+ font-weight: bold;
+}
+
+.sig-name {
+ font-size: 1.1em;
+}
+
+code.descname {
+ font-size: 1.2em;
+}
+
+.sig-prename, code.descclassname {
+ background-color: transparent;
+}
+
+.optional {
+ font-size: 1.3em;
+}
+
+.sig-paren {
+ font-size: larger;
+}
+
+.sig-param.n {
+ font-style: italic;
+}
+
+/* C++ specific styling */
+
+.sig-inline.c-texpr,
+.sig-inline.cpp-texpr {
+ font-family: unset;
+}
+
+.sig.c .k, .sig.c .kt,
+.sig.cpp .k, .sig.cpp .kt {
+ color: #0033B3;
+}
+
+.sig.c .m,
+.sig.cpp .m {
+ color: #1750EB;
+}
+
+.sig.c .s, .sig.c .sc,
+.sig.cpp .s, .sig.cpp .sc {
+ color: #067D17;
+}
+
+
+/* -- other body styles ----------------------------------------------------- */
+
+ol.arabic {
+ list-style: decimal;
+}
+
+ol.loweralpha {
+ list-style: lower-alpha;
+}
+
+ol.upperalpha {
+ list-style: upper-alpha;
+}
+
+ol.lowerroman {
+ list-style: lower-roman;
+}
+
+ol.upperroman {
+ list-style: upper-roman;
+}
+
+:not(li) > ol > li:first-child > :first-child,
+:not(li) > ul > li:first-child > :first-child {
+ margin-top: 0px;
+}
+
+:not(li) > ol > li:last-child > :last-child,
+:not(li) > ul > li:last-child > :last-child {
+ margin-bottom: 0px;
+}
+
+ol.simple ol p,
+ol.simple ul p,
+ul.simple ol p,
+ul.simple ul p {
+ margin-top: 0;
+}
+
+ol.simple > li:not(:first-child) > p,
+ul.simple > li:not(:first-child) > p {
+ margin-top: 0;
+}
+
+ol.simple p,
+ul.simple p {
+ margin-bottom: 0;
+}
+
+aside.footnote > span,
+div.citation > span {
+ float: left;
+}
+aside.footnote > span:last-of-type,
+div.citation > span:last-of-type {
+ padding-right: 0.5em;
+}
+aside.footnote > p {
+ margin-left: 2em;
+}
+div.citation > p {
+ margin-left: 4em;
+}
+aside.footnote > p:last-of-type,
+div.citation > p:last-of-type {
+ margin-bottom: 0em;
+}
+aside.footnote > p:last-of-type:after,
+div.citation > p:last-of-type:after {
+ content: "";
+ clear: both;
+}
+
+dl.field-list {
+ display: grid;
+ grid-template-columns: fit-content(30%) auto;
+}
+
+dl.field-list > dt {
+ font-weight: bold;
+ word-break: break-word;
+ padding-left: 0.5em;
+ padding-right: 5px;
+}
+
+dl.field-list > dd {
+ padding-left: 0.5em;
+ margin-top: 0em;
+ margin-left: 0em;
+ margin-bottom: 0em;
+}
+
+dl {
+ margin-bottom: 15px;
+}
+
+dd > :first-child {
+ margin-top: 0px;
+}
+
+dd ul, dd table {
+ margin-bottom: 10px;
+}
+
+dd {
+ margin-top: 3px;
+ margin-bottom: 10px;
+ margin-left: 30px;
+}
+
+.sig dd {
+ margin-top: 0px;
+ margin-bottom: 0px;
+}
+
+.sig dl {
+ margin-top: 0px;
+ margin-bottom: 0px;
+}
+
+dl > dd:last-child,
+dl > dd:last-child > :last-child {
+ margin-bottom: 0;
+}
+
+dt:target, span.highlighted {
+ background-color: #fbe54e;
+}
+
+rect.highlighted {
+ fill: #fbe54e;
+}
+
+dl.glossary dt {
+ font-weight: bold;
+ font-size: 1.1em;
+}
+
+.versionmodified {
+ font-style: italic;
+}
+
+.system-message {
+ background-color: #fda;
+ padding: 5px;
+ border: 3px solid red;
+}
+
+.footnote:target {
+ background-color: #ffa;
+}
+
+.line-block {
+ display: block;
+ margin-top: 1em;
+ margin-bottom: 1em;
+}
+
+.line-block .line-block {
+ margin-top: 0;
+ margin-bottom: 0;
+ margin-left: 1.5em;
+}
+
+.guilabel, .menuselection {
+ font-family: sans-serif;
+}
+
+.accelerator {
+ text-decoration: underline;
+}
+
+.classifier {
+ font-style: oblique;
+}
+
+.classifier:before {
+ font-style: normal;
+ margin: 0 0.5em;
+ content: ":";
+ display: inline-block;
+}
+
+abbr, acronym {
+ border-bottom: dotted 1px;
+ cursor: help;
+}
+
+.translated {
+ background-color: rgba(207, 255, 207, 0.2)
+}
+
+.untranslated {
+ background-color: rgba(255, 207, 207, 0.2)
+}
+
+/* -- code displays --------------------------------------------------------- */
+
+pre {
+ overflow: auto;
+ overflow-y: hidden; /* fixes display issues on Chrome browsers */
+}
+
+pre, div[class*="highlight-"] {
+ clear: both;
+}
+
+span.pre {
+ -moz-hyphens: none;
+ -ms-hyphens: none;
+ -webkit-hyphens: none;
+ hyphens: none;
+ white-space: nowrap;
+}
+
+div[class*="highlight-"] {
+ margin: 1em 0;
+}
+
+td.linenos pre {
+ border: 0;
+ background-color: transparent;
+ color: #aaa;
+}
+
+table.highlighttable {
+ display: block;
+}
+
+table.highlighttable tbody {
+ display: block;
+}
+
+table.highlighttable tr {
+ display: flex;
+}
+
+table.highlighttable td {
+ margin: 0;
+ padding: 0;
+}
+
+table.highlighttable td.linenos {
+ padding-right: 0.5em;
+}
+
+table.highlighttable td.code {
+ flex: 1;
+ overflow: hidden;
+}
+
+.highlight .hll {
+ display: block;
+}
+
+div.highlight pre,
+table.highlighttable pre {
+ margin: 0;
+}
+
+div.code-block-caption + div {
+ margin-top: 0;
+}
+
+div.code-block-caption {
+ margin-top: 1em;
+ padding: 2px 5px;
+ font-size: small;
+}
+
+div.code-block-caption code {
+ background-color: transparent;
+}
+
+table.highlighttable td.linenos,
+span.linenos,
+div.highlight span.gp { /* gp: Generic.Prompt */
+ user-select: none;
+ -webkit-user-select: text; /* Safari fallback only */
+ -webkit-user-select: none; /* Chrome/Safari */
+ -moz-user-select: none; /* Firefox */
+ -ms-user-select: none; /* IE10+ */
+}
+
+div.code-block-caption span.caption-number {
+ padding: 0.1em 0.3em;
+ font-style: italic;
+}
+
+div.code-block-caption span.caption-text {
+}
+
+div.literal-block-wrapper {
+ margin: 1em 0;
+}
+
+code.xref, a code {
+ background-color: transparent;
+ font-weight: bold;
+}
+
+h1 code, h2 code, h3 code, h4 code, h5 code, h6 code {
+ background-color: transparent;
+}
+
+.viewcode-link {
+ float: right;
+}
+
+.viewcode-back {
+ float: right;
+ font-family: sans-serif;
+}
+
+div.viewcode-block:target {
+ margin: -1px -10px;
+ padding: 0 10px;
+}
+
+/* -- math display ---------------------------------------------------------- */
+
+img.math {
+ vertical-align: middle;
+}
+
+div.body div.math p {
+ text-align: center;
+}
+
+span.eqno {
+ float: right;
+}
+
+span.eqno a.headerlink {
+ position: absolute;
+ z-index: 1;
+}
+
+div.math:hover a.headerlink {
+ visibility: visible;
+}
+
+/* -- printout stylesheet --------------------------------------------------- */
+
+@media print {
+ div.document,
+ div.documentwrapper,
+ div.bodywrapper {
+ margin: 0 !important;
+ width: 100%;
+ }
+
+ div.sphinxsidebar,
+ div.related,
+ div.footer,
+ #top-link {
+ display: none;
+ }
+}
\ No newline at end of file
diff --git a/_static/binder_badge_logo.svg b/_static/binder_badge_logo.svg
new file mode 100644
index 0000000..327f6b6
--- /dev/null
+++ b/_static/binder_badge_logo.svg
@@ -0,0 +1 @@
+ launch launch binder binder
\ No newline at end of file
diff --git a/_static/broken_example.png b/_static/broken_example.png
new file mode 100644
index 0000000..4fea24e
Binary files /dev/null and b/_static/broken_example.png differ
diff --git a/_static/check-solid.svg b/_static/check-solid.svg
new file mode 100644
index 0000000..92fad4b
--- /dev/null
+++ b/_static/check-solid.svg
@@ -0,0 +1,4 @@
+
+
+
+
diff --git a/_static/clipboard.min.js b/_static/clipboard.min.js
new file mode 100644
index 0000000..54b3c46
--- /dev/null
+++ b/_static/clipboard.min.js
@@ -0,0 +1,7 @@
+/*!
+ * clipboard.js v2.0.8
+ * https://clipboardjs.com/
+ *
+ * Licensed MIT © Zeno Rocha
+ */
+!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return o}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),c=n.n(e);function a(t){try{return document.execCommand(t)}catch(t){return}}var f=function(t){t=c()(t);return a("cut"),t};var l=function(t){var e,n,o,r=1
+
+
+
+
diff --git a/_static/copybutton.css b/_static/copybutton.css
new file mode 100644
index 0000000..f1916ec
--- /dev/null
+++ b/_static/copybutton.css
@@ -0,0 +1,94 @@
+/* Copy buttons */
+button.copybtn {
+ position: absolute;
+ display: flex;
+ top: .3em;
+ right: .3em;
+ width: 1.7em;
+ height: 1.7em;
+ opacity: 0;
+ transition: opacity 0.3s, border .3s, background-color .3s;
+ user-select: none;
+ padding: 0;
+ border: none;
+ outline: none;
+ border-radius: 0.4em;
+ /* The colors that GitHub uses */
+ border: #1b1f2426 1px solid;
+ background-color: #f6f8fa;
+ color: #57606a;
+}
+
+button.copybtn.success {
+ border-color: #22863a;
+ color: #22863a;
+}
+
+button.copybtn svg {
+ stroke: currentColor;
+ width: 1.5em;
+ height: 1.5em;
+ padding: 0.1em;
+}
+
+div.highlight {
+ position: relative;
+}
+
+/* Show the copybutton */
+.highlight:hover button.copybtn, button.copybtn.success {
+ opacity: 1;
+}
+
+.highlight button.copybtn:hover {
+ background-color: rgb(235, 235, 235);
+}
+
+.highlight button.copybtn:active {
+ background-color: rgb(187, 187, 187);
+}
+
+/**
+ * A minimal CSS-only tooltip copied from:
+ * https://codepen.io/mildrenben/pen/rVBrpK
+ *
+ * To use, write HTML like the following:
+ *
+ * Short
+ */
+ .o-tooltip--left {
+ position: relative;
+ }
+
+ .o-tooltip--left:after {
+ opacity: 0;
+ visibility: hidden;
+ position: absolute;
+ content: attr(data-tooltip);
+ padding: .2em;
+ font-size: .8em;
+ left: -.2em;
+ background: grey;
+ color: white;
+ white-space: nowrap;
+ z-index: 2;
+ border-radius: 2px;
+ transform: translateX(-102%) translateY(0);
+ transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1);
+}
+
+.o-tooltip--left:hover:after {
+ display: block;
+ opacity: 1;
+ visibility: visible;
+ transform: translateX(-100%) translateY(0);
+ transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1);
+ transition-delay: .5s;
+}
+
+/* By default the copy button shouldn't show up when printing a page */
+@media print {
+ button.copybtn {
+ display: none;
+ }
+}
diff --git a/_static/copybutton.js b/_static/copybutton.js
new file mode 100644
index 0000000..2ea7ff3
--- /dev/null
+++ b/_static/copybutton.js
@@ -0,0 +1,248 @@
+// Localization support
+const messages = {
+ 'en': {
+ 'copy': 'Copy',
+ 'copy_to_clipboard': 'Copy to clipboard',
+ 'copy_success': 'Copied!',
+ 'copy_failure': 'Failed to copy',
+ },
+ 'es' : {
+ 'copy': 'Copiar',
+ 'copy_to_clipboard': 'Copiar al portapapeles',
+ 'copy_success': '¡Copiado!',
+ 'copy_failure': 'Error al copiar',
+ },
+ 'de' : {
+ 'copy': 'Kopieren',
+ 'copy_to_clipboard': 'In die Zwischenablage kopieren',
+ 'copy_success': 'Kopiert!',
+ 'copy_failure': 'Fehler beim Kopieren',
+ },
+ 'fr' : {
+ 'copy': 'Copier',
+ 'copy_to_clipboard': 'Copier dans le presse-papier',
+ 'copy_success': 'Copié !',
+ 'copy_failure': 'Échec de la copie',
+ },
+ 'ru': {
+ 'copy': 'Скопировать',
+ 'copy_to_clipboard': 'Скопировать в буфер',
+ 'copy_success': 'Скопировано!',
+ 'copy_failure': 'Не удалось скопировать',
+ },
+ 'zh-CN': {
+ 'copy': '复制',
+ 'copy_to_clipboard': '复制到剪贴板',
+ 'copy_success': '复制成功!',
+ 'copy_failure': '复制失败',
+ },
+ 'it' : {
+ 'copy': 'Copiare',
+ 'copy_to_clipboard': 'Copiato negli appunti',
+ 'copy_success': 'Copiato!',
+ 'copy_failure': 'Errore durante la copia',
+ }
+}
+
+let locale = 'en'
+if( document.documentElement.lang !== undefined
+ && messages[document.documentElement.lang] !== undefined ) {
+ locale = document.documentElement.lang
+}
+
+let doc_url_root = DOCUMENTATION_OPTIONS.URL_ROOT;
+if (doc_url_root == '#') {
+ doc_url_root = '';
+}
+
+/**
+ * SVG files for our copy buttons
+ */
+let iconCheck = `
+ ${messages[locale]['copy_success']}
+
+
+ `
+
+// If the user specified their own SVG use that, otherwise use the default
+let iconCopy = ``;
+if (!iconCopy) {
+ iconCopy = `
+ ${messages[locale]['copy_to_clipboard']}
+
+
+
+ `
+}
+
+/**
+ * Set up copy/paste for code blocks
+ */
+
+const runWhenDOMLoaded = cb => {
+ if (document.readyState != 'loading') {
+ cb()
+ } else if (document.addEventListener) {
+ document.addEventListener('DOMContentLoaded', cb)
+ } else {
+ document.attachEvent('onreadystatechange', function() {
+ if (document.readyState == 'complete') cb()
+ })
+ }
+}
+
+const codeCellId = index => `codecell${index}`
+
+// Clears selected text since ClipboardJS will select the text when copying
+const clearSelection = () => {
+ if (window.getSelection) {
+ window.getSelection().removeAllRanges()
+ } else if (document.selection) {
+ document.selection.empty()
+ }
+}
+
+// Changes tooltip text for a moment, then changes it back
+// We want the timeout of our `success` class to be a bit shorter than the
+// tooltip and icon change, so that we can hide the icon before changing back.
+var timeoutIcon = 2000;
+var timeoutSuccessClass = 1500;
+
+const temporarilyChangeTooltip = (el, oldText, newText) => {
+ el.setAttribute('data-tooltip', newText)
+ el.classList.add('success')
+ // Remove success a little bit sooner than we change the tooltip
+ // So that we can use CSS to hide the copybutton first
+ setTimeout(() => el.classList.remove('success'), timeoutSuccessClass)
+ setTimeout(() => el.setAttribute('data-tooltip', oldText), timeoutIcon)
+}
+
+// Changes the copy button icon for two seconds, then changes it back
+const temporarilyChangeIcon = (el) => {
+ el.innerHTML = iconCheck;
+ setTimeout(() => {el.innerHTML = iconCopy}, timeoutIcon)
+}
+
+const addCopyButtonToCodeCells = () => {
+ // If ClipboardJS hasn't loaded, wait a bit and try again. This
+ // happens because we load ClipboardJS asynchronously.
+ if (window.ClipboardJS === undefined) {
+ setTimeout(addCopyButtonToCodeCells, 250)
+ return
+ }
+
+ // Add copybuttons to all of our code cells
+ const COPYBUTTON_SELECTOR = 'div.highlight pre';
+ const codeCells = document.querySelectorAll(COPYBUTTON_SELECTOR)
+ codeCells.forEach((codeCell, index) => {
+ const id = codeCellId(index)
+ codeCell.setAttribute('id', id)
+
+ const clipboardButton = id =>
+ `
+ ${iconCopy}
+ `
+ codeCell.insertAdjacentHTML('afterend', clipboardButton(id))
+ })
+
+function escapeRegExp(string) {
+ return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string
+}
+
+/**
+ * Removes excluded text from a Node.
+ *
+ * @param {Node} target Node to filter.
+ * @param {string} exclude CSS selector of nodes to exclude.
+ * @returns {DOMString} Text from `target` with text removed.
+ */
+function filterText(target, exclude) {
+ const clone = target.cloneNode(true); // clone as to not modify the live DOM
+ if (exclude) {
+ // remove excluded nodes
+ clone.querySelectorAll(exclude).forEach(node => node.remove());
+ }
+ return clone.innerText;
+}
+
+// Callback when a copy button is clicked. Will be passed the node that was clicked
+// should then grab the text and replace pieces of text that shouldn't be used in output
+function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") {
+ var regexp;
+ var match;
+
+ // Do we check for line continuation characters and "HERE-documents"?
+ var useLineCont = !!lineContinuationChar
+ var useHereDoc = !!hereDocDelim
+
+ // create regexp to capture prompt and remaining line
+ if (isRegexp) {
+ regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)')
+ } else {
+ regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)')
+ }
+
+ const outputLines = [];
+ var promptFound = false;
+ var gotLineCont = false;
+ var gotHereDoc = false;
+ const lineGotPrompt = [];
+ for (const line of textContent.split('\n')) {
+ match = line.match(regexp)
+ if (match || gotLineCont || gotHereDoc) {
+ promptFound = regexp.test(line)
+ lineGotPrompt.push(promptFound)
+ if (removePrompts && promptFound) {
+ outputLines.push(match[2])
+ } else {
+ outputLines.push(line)
+ }
+ gotLineCont = line.endsWith(lineContinuationChar) & useLineCont
+ if (line.includes(hereDocDelim) & useHereDoc)
+ gotHereDoc = !gotHereDoc
+ } else if (!onlyCopyPromptLines) {
+ outputLines.push(line)
+ } else if (copyEmptyLines && line.trim() === '') {
+ outputLines.push(line)
+ }
+ }
+
+ // If no lines with the prompt were found then just use original lines
+ if (lineGotPrompt.some(v => v === true)) {
+ textContent = outputLines.join('\n');
+ }
+
+ // Remove a trailing newline to avoid auto-running when pasting
+ if (textContent.endsWith("\n")) {
+ textContent = textContent.slice(0, -1)
+ }
+ return textContent
+}
+
+
+var copyTargetText = (trigger) => {
+ var target = document.querySelector(trigger.attributes['data-clipboard-target'].value);
+
+ // get filtered text
+ let exclude = '.linenos';
+
+ let text = filterText(target, exclude);
+ return formatCopyText(text, '', false, true, true, true, '', '')
+}
+
+ // Initialize with a callback so we can modify the text before copy
+ const clipboard = new ClipboardJS('.copybtn', {text: copyTargetText})
+
+ // Update UI with error/success messages
+ clipboard.on('success', event => {
+ clearSelection()
+ temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_success'])
+ temporarilyChangeIcon(event.trigger)
+ })
+
+ clipboard.on('error', event => {
+ temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_failure'])
+ })
+}
+
+runWhenDOMLoaded(addCopyButtonToCodeCells)
\ No newline at end of file
diff --git a/_static/copybutton_funcs.js b/_static/copybutton_funcs.js
new file mode 100644
index 0000000..dbe1aaa
--- /dev/null
+++ b/_static/copybutton_funcs.js
@@ -0,0 +1,73 @@
+function escapeRegExp(string) {
+ return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string
+}
+
+/**
+ * Removes excluded text from a Node.
+ *
+ * @param {Node} target Node to filter.
+ * @param {string} exclude CSS selector of nodes to exclude.
+ * @returns {DOMString} Text from `target` with text removed.
+ */
+export function filterText(target, exclude) {
+ const clone = target.cloneNode(true); // clone as to not modify the live DOM
+ if (exclude) {
+ // remove excluded nodes
+ clone.querySelectorAll(exclude).forEach(node => node.remove());
+ }
+ return clone.innerText;
+}
+
+// Callback when a copy button is clicked. Will be passed the node that was clicked
+// should then grab the text and replace pieces of text that shouldn't be used in output
+export function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") {
+ var regexp;
+ var match;
+
+ // Do we check for line continuation characters and "HERE-documents"?
+ var useLineCont = !!lineContinuationChar
+ var useHereDoc = !!hereDocDelim
+
+ // create regexp to capture prompt and remaining line
+ if (isRegexp) {
+ regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)')
+ } else {
+ regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)')
+ }
+
+ const outputLines = [];
+ var promptFound = false;
+ var gotLineCont = false;
+ var gotHereDoc = false;
+ const lineGotPrompt = [];
+ for (const line of textContent.split('\n')) {
+ match = line.match(regexp)
+ if (match || gotLineCont || gotHereDoc) {
+ promptFound = regexp.test(line)
+ lineGotPrompt.push(promptFound)
+ if (removePrompts && promptFound) {
+ outputLines.push(match[2])
+ } else {
+ outputLines.push(line)
+ }
+ gotLineCont = line.endsWith(lineContinuationChar) & useLineCont
+ if (line.includes(hereDocDelim) & useHereDoc)
+ gotHereDoc = !gotHereDoc
+ } else if (!onlyCopyPromptLines) {
+ outputLines.push(line)
+ } else if (copyEmptyLines && line.trim() === '') {
+ outputLines.push(line)
+ }
+ }
+
+ // If no lines with the prompt were found then just use original lines
+ if (lineGotPrompt.some(v => v === true)) {
+ textContent = outputLines.join('\n');
+ }
+
+ // Remove a trailing newline to avoid auto-running when pasting
+ if (textContent.endsWith("\n")) {
+ textContent = textContent.slice(0, -1)
+ }
+ return textContent
+}
diff --git a/_static/css/badge_only.css b/_static/css/badge_only.css
new file mode 100644
index 0000000..c718cee
--- /dev/null
+++ b/_static/css/badge_only.css
@@ -0,0 +1 @@
+.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}
\ No newline at end of file
diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff b/_static/css/fonts/Roboto-Slab-Bold.woff
new file mode 100644
index 0000000..6cb6000
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff differ
diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff2 b/_static/css/fonts/Roboto-Slab-Bold.woff2
new file mode 100644
index 0000000..7059e23
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff2 differ
diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff b/_static/css/fonts/Roboto-Slab-Regular.woff
new file mode 100644
index 0000000..f815f63
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff differ
diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff2 b/_static/css/fonts/Roboto-Slab-Regular.woff2
new file mode 100644
index 0000000..f2c76e5
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff2 differ
diff --git a/_static/css/fonts/fontawesome-webfont.eot b/_static/css/fonts/fontawesome-webfont.eot
new file mode 100644
index 0000000..e9f60ca
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.eot differ
diff --git a/_static/css/fonts/fontawesome-webfont.svg b/_static/css/fonts/fontawesome-webfont.svg
new file mode 100644
index 0000000..855c845
--- /dev/null
+++ b/_static/css/fonts/fontawesome-webfont.svg
@@ -0,0 +1,2671 @@
+
+
+
+
+Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016
+ By ,,,
+Copyright Dave Gandy 2016. All rights reserved.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/_static/css/fonts/fontawesome-webfont.ttf b/_static/css/fonts/fontawesome-webfont.ttf
new file mode 100644
index 0000000..35acda2
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.ttf differ
diff --git a/_static/css/fonts/fontawesome-webfont.woff b/_static/css/fonts/fontawesome-webfont.woff
new file mode 100644
index 0000000..400014a
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff differ
diff --git a/_static/css/fonts/fontawesome-webfont.woff2 b/_static/css/fonts/fontawesome-webfont.woff2
new file mode 100644
index 0000000..4d13fc6
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff2 differ
diff --git a/_static/css/fonts/lato-bold-italic.woff b/_static/css/fonts/lato-bold-italic.woff
new file mode 100644
index 0000000..88ad05b
Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff differ
diff --git a/_static/css/fonts/lato-bold-italic.woff2 b/_static/css/fonts/lato-bold-italic.woff2
new file mode 100644
index 0000000..c4e3d80
Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff2 differ
diff --git a/_static/css/fonts/lato-bold.woff b/_static/css/fonts/lato-bold.woff
new file mode 100644
index 0000000..c6dff51
Binary files /dev/null and b/_static/css/fonts/lato-bold.woff differ
diff --git a/_static/css/fonts/lato-bold.woff2 b/_static/css/fonts/lato-bold.woff2
new file mode 100644
index 0000000..bb19504
Binary files /dev/null and b/_static/css/fonts/lato-bold.woff2 differ
diff --git a/_static/css/fonts/lato-normal-italic.woff b/_static/css/fonts/lato-normal-italic.woff
new file mode 100644
index 0000000..76114bc
Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff differ
diff --git a/_static/css/fonts/lato-normal-italic.woff2 b/_static/css/fonts/lato-normal-italic.woff2
new file mode 100644
index 0000000..3404f37
Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff2 differ
diff --git a/_static/css/fonts/lato-normal.woff b/_static/css/fonts/lato-normal.woff
new file mode 100644
index 0000000..ae1307f
Binary files /dev/null and b/_static/css/fonts/lato-normal.woff differ
diff --git a/_static/css/fonts/lato-normal.woff2 b/_static/css/fonts/lato-normal.woff2
new file mode 100644
index 0000000..3bf9843
Binary files /dev/null and b/_static/css/fonts/lato-normal.woff2 differ
diff --git a/_static/css/theme.css b/_static/css/theme.css
new file mode 100644
index 0000000..19a446a
--- /dev/null
+++ b/_static/css/theme.css
@@ -0,0 +1,4 @@
+html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*!
+ * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome
+ * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
+ */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block}
\ No newline at end of file
diff --git a/_static/custom.js b/_static/custom.js
new file mode 100644
index 0000000..a0626c9
--- /dev/null
+++ b/_static/custom.js
@@ -0,0 +1,14 @@
+// File: custom.js
+
+/**
+ * This function will make sure all links in the document open as separate tabs
+ * instead of opening on the current user window.
+ */
+window.onload = function () {
+ let links = document.getElementsByTagName('a');
+ for (let l of links) {
+ if (l.classList.contains("reference") && l.classList.contains("external")) {
+ l.target = '_blank'; // Open links in a new tab
+ }
+ }
+};
diff --git a/_static/doctools.js b/_static/doctools.js
new file mode 100644
index 0000000..4d67807
--- /dev/null
+++ b/_static/doctools.js
@@ -0,0 +1,156 @@
+/*
+ * doctools.js
+ * ~~~~~~~~~~~
+ *
+ * Base JavaScript utilities for all Sphinx HTML documentation.
+ *
+ * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
+ * :license: BSD, see LICENSE for details.
+ *
+ */
+"use strict";
+
+const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([
+ "TEXTAREA",
+ "INPUT",
+ "SELECT",
+ "BUTTON",
+]);
+
+const _ready = (callback) => {
+ if (document.readyState !== "loading") {
+ callback();
+ } else {
+ document.addEventListener("DOMContentLoaded", callback);
+ }
+};
+
+/**
+ * Small JavaScript module for the documentation.
+ */
+const Documentation = {
+ init: () => {
+ Documentation.initDomainIndexTable();
+ Documentation.initOnKeyListeners();
+ },
+
+ /**
+ * i18n support
+ */
+ TRANSLATIONS: {},
+ PLURAL_EXPR: (n) => (n === 1 ? 0 : 1),
+ LOCALE: "unknown",
+
+ // gettext and ngettext don't access this so that the functions
+ // can safely bound to a different name (_ = Documentation.gettext)
+ gettext: (string) => {
+ const translated = Documentation.TRANSLATIONS[string];
+ switch (typeof translated) {
+ case "undefined":
+ return string; // no translation
+ case "string":
+ return translated; // translation exists
+ default:
+ return translated[0]; // (singular, plural) translation tuple exists
+ }
+ },
+
+ ngettext: (singular, plural, n) => {
+ const translated = Documentation.TRANSLATIONS[singular];
+ if (typeof translated !== "undefined")
+ return translated[Documentation.PLURAL_EXPR(n)];
+ return n === 1 ? singular : plural;
+ },
+
+ addTranslations: (catalog) => {
+ Object.assign(Documentation.TRANSLATIONS, catalog.messages);
+ Documentation.PLURAL_EXPR = new Function(
+ "n",
+ `return (${catalog.plural_expr})`
+ );
+ Documentation.LOCALE = catalog.locale;
+ },
+
+ /**
+ * helper function to focus on search bar
+ */
+ focusSearchBar: () => {
+ document.querySelectorAll("input[name=q]")[0]?.focus();
+ },
+
+ /**
+ * Initialise the domain index toggle buttons
+ */
+ initDomainIndexTable: () => {
+ const toggler = (el) => {
+ const idNumber = el.id.substr(7);
+ const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`);
+ if (el.src.substr(-9) === "minus.png") {
+ el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`;
+ toggledRows.forEach((el) => (el.style.display = "none"));
+ } else {
+ el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`;
+ toggledRows.forEach((el) => (el.style.display = ""));
+ }
+ };
+
+ const togglerElements = document.querySelectorAll("img.toggler");
+ togglerElements.forEach((el) =>
+ el.addEventListener("click", (event) => toggler(event.currentTarget))
+ );
+ togglerElements.forEach((el) => (el.style.display = ""));
+ if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler);
+ },
+
+ initOnKeyListeners: () => {
+ // only install a listener if it is really needed
+ if (
+ !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS &&
+ !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS
+ )
+ return;
+
+ document.addEventListener("keydown", (event) => {
+ // bail for input elements
+ if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return;
+ // bail with special keys
+ if (event.altKey || event.ctrlKey || event.metaKey) return;
+
+ if (!event.shiftKey) {
+ switch (event.key) {
+ case "ArrowLeft":
+ if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break;
+
+ const prevLink = document.querySelector('link[rel="prev"]');
+ if (prevLink && prevLink.href) {
+ window.location.href = prevLink.href;
+ event.preventDefault();
+ }
+ break;
+ case "ArrowRight":
+ if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break;
+
+ const nextLink = document.querySelector('link[rel="next"]');
+ if (nextLink && nextLink.href) {
+ window.location.href = nextLink.href;
+ event.preventDefault();
+ }
+ break;
+ }
+ }
+
+ // some keyboard layouts may need Shift to get /
+ switch (event.key) {
+ case "/":
+ if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break;
+ Documentation.focusSearchBar();
+ event.preventDefault();
+ }
+ });
+ },
+};
+
+// quick alias for translations
+const _ = Documentation.gettext;
+
+_ready(Documentation.init);
diff --git a/_static/documentation_options.js b/_static/documentation_options.js
new file mode 100644
index 0000000..e986f15
--- /dev/null
+++ b/_static/documentation_options.js
@@ -0,0 +1,13 @@
+const DOCUMENTATION_OPTIONS = {
+ VERSION: '0.3.10',
+ LANGUAGE: 'en',
+ COLLAPSE_INDEX: false,
+ BUILDER: 'html',
+ FILE_SUFFIX: '.html',
+ LINK_SUFFIX: '.html',
+ HAS_SOURCE: true,
+ SOURCELINK_SUFFIX: '.txt',
+ NAVIGATION_WITH_KEYS: false,
+ SHOW_SEARCH_SUMMARY: true,
+ ENABLE_SEARCH_SHORTCUTS: true,
+};
\ No newline at end of file
diff --git a/_static/file.png b/_static/file.png
new file mode 100644
index 0000000..a858a41
Binary files /dev/null and b/_static/file.png differ
diff --git a/_static/jquery.js b/_static/jquery.js
new file mode 100644
index 0000000..c4c6022
--- /dev/null
+++ b/_static/jquery.js
@@ -0,0 +1,2 @@
+/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */
+!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML=" ",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML=" ";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML=" ",y.option=!!ce.lastChild;var ge={thead:[1,""],col:[2,""],tr:[2,""],td:[3,""],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML=" ",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document);
\ No newline at end of file
diff --git a/_static/js/html5shiv.min.js b/_static/js/html5shiv.min.js
new file mode 100644
index 0000000..cd1c674
--- /dev/null
+++ b/_static/js/html5shiv.min.js
@@ -0,0 +1,4 @@
+/**
+* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed
+*/
+!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML=" ",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document);
\ No newline at end of file
diff --git a/_static/js/theme.js b/_static/js/theme.js
new file mode 100644
index 0000000..1fddb6e
--- /dev/null
+++ b/_static/js/theme.js
@@ -0,0 +1 @@
+!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap(""),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(' '),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t
+
+launch launch lite lite
\ No newline at end of file
diff --git a/_static/language_data.js b/_static/language_data.js
new file mode 100644
index 0000000..367b8ed
--- /dev/null
+++ b/_static/language_data.js
@@ -0,0 +1,199 @@
+/*
+ * language_data.js
+ * ~~~~~~~~~~~~~~~~
+ *
+ * This script contains the language-specific data used by searchtools.js,
+ * namely the list of stopwords, stemmer, scorer and splitter.
+ *
+ * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
+ * :license: BSD, see LICENSE for details.
+ *
+ */
+
+var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"];
+
+
+/* Non-minified version is copied as a separate JS file, if available */
+
+/**
+ * Porter Stemmer
+ */
+var Stemmer = function() {
+
+ var step2list = {
+ ational: 'ate',
+ tional: 'tion',
+ enci: 'ence',
+ anci: 'ance',
+ izer: 'ize',
+ bli: 'ble',
+ alli: 'al',
+ entli: 'ent',
+ eli: 'e',
+ ousli: 'ous',
+ ization: 'ize',
+ ation: 'ate',
+ ator: 'ate',
+ alism: 'al',
+ iveness: 'ive',
+ fulness: 'ful',
+ ousness: 'ous',
+ aliti: 'al',
+ iviti: 'ive',
+ biliti: 'ble',
+ logi: 'log'
+ };
+
+ var step3list = {
+ icate: 'ic',
+ ative: '',
+ alize: 'al',
+ iciti: 'ic',
+ ical: 'ic',
+ ful: '',
+ ness: ''
+ };
+
+ var c = "[^aeiou]"; // consonant
+ var v = "[aeiouy]"; // vowel
+ var C = c + "[^aeiouy]*"; // consonant sequence
+ var V = v + "[aeiou]*"; // vowel sequence
+
+ var mgr0 = "^(" + C + ")?" + V + C; // [C]VC... is m>0
+ var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1
+ var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1
+ var s_v = "^(" + C + ")?" + v; // vowel in stem
+
+ this.stemWord = function (w) {
+ var stem;
+ var suffix;
+ var firstch;
+ var origword = w;
+
+ if (w.length < 3)
+ return w;
+
+ var re;
+ var re2;
+ var re3;
+ var re4;
+
+ firstch = w.substr(0,1);
+ if (firstch == "y")
+ w = firstch.toUpperCase() + w.substr(1);
+
+ // Step 1a
+ re = /^(.+?)(ss|i)es$/;
+ re2 = /^(.+?)([^s])s$/;
+
+ if (re.test(w))
+ w = w.replace(re,"$1$2");
+ else if (re2.test(w))
+ w = w.replace(re2,"$1$2");
+
+ // Step 1b
+ re = /^(.+?)eed$/;
+ re2 = /^(.+?)(ed|ing)$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ re = new RegExp(mgr0);
+ if (re.test(fp[1])) {
+ re = /.$/;
+ w = w.replace(re,"");
+ }
+ }
+ else if (re2.test(w)) {
+ var fp = re2.exec(w);
+ stem = fp[1];
+ re2 = new RegExp(s_v);
+ if (re2.test(stem)) {
+ w = stem;
+ re2 = /(at|bl|iz)$/;
+ re3 = new RegExp("([^aeiouylsz])\\1$");
+ re4 = new RegExp("^" + C + v + "[^aeiouwxy]$");
+ if (re2.test(w))
+ w = w + "e";
+ else if (re3.test(w)) {
+ re = /.$/;
+ w = w.replace(re,"");
+ }
+ else if (re4.test(w))
+ w = w + "e";
+ }
+ }
+
+ // Step 1c
+ re = /^(.+?)y$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ stem = fp[1];
+ re = new RegExp(s_v);
+ if (re.test(stem))
+ w = stem + "i";
+ }
+
+ // Step 2
+ re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ stem = fp[1];
+ suffix = fp[2];
+ re = new RegExp(mgr0);
+ if (re.test(stem))
+ w = stem + step2list[suffix];
+ }
+
+ // Step 3
+ re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ stem = fp[1];
+ suffix = fp[2];
+ re = new RegExp(mgr0);
+ if (re.test(stem))
+ w = stem + step3list[suffix];
+ }
+
+ // Step 4
+ re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/;
+ re2 = /^(.+?)(s|t)(ion)$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ stem = fp[1];
+ re = new RegExp(mgr1);
+ if (re.test(stem))
+ w = stem;
+ }
+ else if (re2.test(w)) {
+ var fp = re2.exec(w);
+ stem = fp[1] + fp[2];
+ re2 = new RegExp(mgr1);
+ if (re2.test(stem))
+ w = stem;
+ }
+
+ // Step 5
+ re = /^(.+?)e$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ stem = fp[1];
+ re = new RegExp(mgr1);
+ re2 = new RegExp(meq1);
+ re3 = new RegExp("^" + C + v + "[^aeiouwxy]$");
+ if (re.test(stem) || (re2.test(stem) && !(re3.test(stem))))
+ w = stem;
+ }
+ re = /ll$/;
+ re2 = new RegExp(mgr1);
+ if (re.test(w) && re2.test(w)) {
+ re = /.$/;
+ w = w.replace(re,"");
+ }
+
+ // and turn initial Y back to y
+ if (firstch == "y")
+ w = firstch.toLowerCase() + w.substr(1);
+ return w;
+ }
+}
+
diff --git a/_static/minus.png b/_static/minus.png
new file mode 100644
index 0000000..d96755f
Binary files /dev/null and b/_static/minus.png differ
diff --git a/_static/nbsphinx-broken-thumbnail.svg b/_static/nbsphinx-broken-thumbnail.svg
new file mode 100644
index 0000000..4919ca8
--- /dev/null
+++ b/_static/nbsphinx-broken-thumbnail.svg
@@ -0,0 +1,9 @@
+
+
+
+
diff --git a/_static/nbsphinx-code-cells.css b/_static/nbsphinx-code-cells.css
new file mode 100644
index 0000000..a3fb27c
--- /dev/null
+++ b/_static/nbsphinx-code-cells.css
@@ -0,0 +1,259 @@
+/* remove conflicting styling from Sphinx themes */
+div.nbinput.container div.prompt *,
+div.nboutput.container div.prompt *,
+div.nbinput.container div.input_area pre,
+div.nboutput.container div.output_area pre,
+div.nbinput.container div.input_area .highlight,
+div.nboutput.container div.output_area .highlight {
+ border: none;
+ padding: 0;
+ margin: 0;
+ box-shadow: none;
+}
+
+div.nbinput.container > div[class*=highlight],
+div.nboutput.container > div[class*=highlight] {
+ margin: 0;
+}
+
+div.nbinput.container div.prompt *,
+div.nboutput.container div.prompt * {
+ background: none;
+}
+
+div.nboutput.container div.output_area .highlight,
+div.nboutput.container div.output_area pre {
+ background: unset;
+}
+
+div.nboutput.container div.output_area div.highlight {
+ color: unset; /* override Pygments text color */
+}
+
+/* avoid gaps between output lines */
+div.nboutput.container div[class*=highlight] pre {
+ line-height: normal;
+}
+
+/* input/output containers */
+div.nbinput.container,
+div.nboutput.container {
+ display: -webkit-flex;
+ display: flex;
+ align-items: flex-start;
+ margin: 0;
+ width: 100%;
+}
+@media (max-width: 540px) {
+ div.nbinput.container,
+ div.nboutput.container {
+ flex-direction: column;
+ }
+}
+
+/* input container */
+div.nbinput.container {
+ padding-top: 5px;
+}
+
+/* last container */
+div.nblast.container {
+ padding-bottom: 5px;
+}
+
+/* input prompt */
+div.nbinput.container div.prompt pre,
+/* for sphinx_immaterial theme: */
+div.nbinput.container div.prompt pre > code {
+ color: #307FC1;
+}
+
+/* output prompt */
+div.nboutput.container div.prompt pre,
+/* for sphinx_immaterial theme: */
+div.nboutput.container div.prompt pre > code {
+ color: #BF5B3D;
+}
+
+/* all prompts */
+div.nbinput.container div.prompt,
+div.nboutput.container div.prompt {
+ width: 4.5ex;
+ padding-top: 5px;
+ position: relative;
+ user-select: none;
+}
+
+div.nbinput.container div.prompt > div,
+div.nboutput.container div.prompt > div {
+ position: absolute;
+ right: 0;
+ margin-right: 0.3ex;
+}
+
+@media (max-width: 540px) {
+ div.nbinput.container div.prompt,
+ div.nboutput.container div.prompt {
+ width: unset;
+ text-align: left;
+ padding: 0.4em;
+ }
+ div.nboutput.container div.prompt.empty {
+ padding: 0;
+ }
+
+ div.nbinput.container div.prompt > div,
+ div.nboutput.container div.prompt > div {
+ position: unset;
+ }
+}
+
+/* disable scrollbars and line breaks on prompts */
+div.nbinput.container div.prompt pre,
+div.nboutput.container div.prompt pre {
+ overflow: hidden;
+ white-space: pre;
+}
+
+/* input/output area */
+div.nbinput.container div.input_area,
+div.nboutput.container div.output_area {
+ -webkit-flex: 1;
+ flex: 1;
+ overflow: auto;
+}
+@media (max-width: 540px) {
+ div.nbinput.container div.input_area,
+ div.nboutput.container div.output_area {
+ width: 100%;
+ }
+}
+
+/* input area */
+div.nbinput.container div.input_area {
+ border: 1px solid #e0e0e0;
+ border-radius: 2px;
+ /*background: #f5f5f5;*/
+}
+
+/* override MathJax center alignment in output cells */
+div.nboutput.container div[class*=MathJax] {
+ text-align: left !important;
+}
+
+/* override sphinx.ext.imgmath center alignment in output cells */
+div.nboutput.container div.math p {
+ text-align: left;
+}
+
+/* standard error */
+div.nboutput.container div.output_area.stderr {
+ background: #fdd;
+}
+
+/* ANSI colors */
+.ansi-black-fg { color: #3E424D; }
+.ansi-black-bg { background-color: #3E424D; }
+.ansi-black-intense-fg { color: #282C36; }
+.ansi-black-intense-bg { background-color: #282C36; }
+.ansi-red-fg { color: #E75C58; }
+.ansi-red-bg { background-color: #E75C58; }
+.ansi-red-intense-fg { color: #B22B31; }
+.ansi-red-intense-bg { background-color: #B22B31; }
+.ansi-green-fg { color: #00A250; }
+.ansi-green-bg { background-color: #00A250; }
+.ansi-green-intense-fg { color: #007427; }
+.ansi-green-intense-bg { background-color: #007427; }
+.ansi-yellow-fg { color: #DDB62B; }
+.ansi-yellow-bg { background-color: #DDB62B; }
+.ansi-yellow-intense-fg { color: #B27D12; }
+.ansi-yellow-intense-bg { background-color: #B27D12; }
+.ansi-blue-fg { color: #208FFB; }
+.ansi-blue-bg { background-color: #208FFB; }
+.ansi-blue-intense-fg { color: #0065CA; }
+.ansi-blue-intense-bg { background-color: #0065CA; }
+.ansi-magenta-fg { color: #D160C4; }
+.ansi-magenta-bg { background-color: #D160C4; }
+.ansi-magenta-intense-fg { color: #A03196; }
+.ansi-magenta-intense-bg { background-color: #A03196; }
+.ansi-cyan-fg { color: #60C6C8; }
+.ansi-cyan-bg { background-color: #60C6C8; }
+.ansi-cyan-intense-fg { color: #258F8F; }
+.ansi-cyan-intense-bg { background-color: #258F8F; }
+.ansi-white-fg { color: #C5C1B4; }
+.ansi-white-bg { background-color: #C5C1B4; }
+.ansi-white-intense-fg { color: #A1A6B2; }
+.ansi-white-intense-bg { background-color: #A1A6B2; }
+
+.ansi-default-inverse-fg { color: #FFFFFF; }
+.ansi-default-inverse-bg { background-color: #000000; }
+
+.ansi-bold { font-weight: bold; }
+.ansi-underline { text-decoration: underline; }
+
+
+div.nbinput.container div.input_area div[class*=highlight] > pre,
+div.nboutput.container div.output_area div[class*=highlight] > pre,
+div.nboutput.container div.output_area div[class*=highlight].math,
+div.nboutput.container div.output_area.rendered_html,
+div.nboutput.container div.output_area > div.output_javascript,
+div.nboutput.container div.output_area:not(.rendered_html) > img{
+ padding: 5px;
+ margin: 0;
+}
+
+/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */
+div.nbinput.container div.input_area > div[class^='highlight'],
+div.nboutput.container div.output_area > div[class^='highlight']{
+ overflow-y: hidden;
+}
+
+/* hide copy button on prompts for 'sphinx_copybutton' extension ... */
+.prompt .copybtn,
+/* ... and 'sphinx_immaterial' theme */
+.prompt .md-clipboard.md-icon {
+ display: none;
+}
+
+/* Some additional styling taken form the Jupyter notebook CSS */
+.jp-RenderedHTMLCommon table,
+div.rendered_html table {
+ border: none;
+ border-collapse: collapse;
+ border-spacing: 0;
+ color: black;
+ font-size: 12px;
+ table-layout: fixed;
+}
+.jp-RenderedHTMLCommon thead,
+div.rendered_html thead {
+ border-bottom: 1px solid black;
+ vertical-align: bottom;
+}
+.jp-RenderedHTMLCommon tr,
+.jp-RenderedHTMLCommon th,
+.jp-RenderedHTMLCommon td,
+div.rendered_html tr,
+div.rendered_html th,
+div.rendered_html td {
+ text-align: right;
+ vertical-align: middle;
+ padding: 0.5em 0.5em;
+ line-height: normal;
+ white-space: normal;
+ max-width: none;
+ border: none;
+}
+.jp-RenderedHTMLCommon th,
+div.rendered_html th {
+ font-weight: bold;
+}
+.jp-RenderedHTMLCommon tbody tr:nth-child(odd),
+div.rendered_html tbody tr:nth-child(odd) {
+ background: #f5f5f5;
+}
+.jp-RenderedHTMLCommon tbody tr:hover,
+div.rendered_html tbody tr:hover {
+ background: rgba(66, 165, 245, 0.2);
+}
+
diff --git a/_static/nbsphinx-gallery.css b/_static/nbsphinx-gallery.css
new file mode 100644
index 0000000..365c27a
--- /dev/null
+++ b/_static/nbsphinx-gallery.css
@@ -0,0 +1,31 @@
+.nbsphinx-gallery {
+ display: grid;
+ grid-template-columns: repeat(auto-fill, minmax(160px, 1fr));
+ gap: 5px;
+ margin-top: 1em;
+ margin-bottom: 1em;
+}
+
+.nbsphinx-gallery > a {
+ padding: 5px;
+ border: 1px dotted currentColor;
+ border-radius: 2px;
+ text-align: center;
+}
+
+.nbsphinx-gallery > a:hover {
+ border-style: solid;
+}
+
+.nbsphinx-gallery img {
+ max-width: 100%;
+ max-height: 100%;
+}
+
+.nbsphinx-gallery > a > div:first-child {
+ display: flex;
+ align-items: start;
+ justify-content: center;
+ height: 120px;
+ margin-bottom: 5px;
+}
diff --git a/_static/nbsphinx-no-thumbnail.svg b/_static/nbsphinx-no-thumbnail.svg
new file mode 100644
index 0000000..9dca758
--- /dev/null
+++ b/_static/nbsphinx-no-thumbnail.svg
@@ -0,0 +1,9 @@
+
+
+
+
diff --git a/_static/no_image.png b/_static/no_image.png
new file mode 100644
index 0000000..8c2d48d
Binary files /dev/null and b/_static/no_image.png differ
diff --git a/_static/plus.png b/_static/plus.png
new file mode 100644
index 0000000..7107cec
Binary files /dev/null and b/_static/plus.png differ
diff --git a/_static/pygments.css b/_static/pygments.css
new file mode 100644
index 0000000..84ab303
--- /dev/null
+++ b/_static/pygments.css
@@ -0,0 +1,75 @@
+pre { line-height: 125%; }
+td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
+span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
+td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
+span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
+.highlight .hll { background-color: #ffffcc }
+.highlight { background: #f8f8f8; }
+.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */
+.highlight .err { border: 1px solid #FF0000 } /* Error */
+.highlight .k { color: #008000; font-weight: bold } /* Keyword */
+.highlight .o { color: #666666 } /* Operator */
+.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */
+.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */
+.highlight .cp { color: #9C6500 } /* Comment.Preproc */
+.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */
+.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */
+.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */
+.highlight .gd { color: #A00000 } /* Generic.Deleted */
+.highlight .ge { font-style: italic } /* Generic.Emph */
+.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
+.highlight .gr { color: #E40000 } /* Generic.Error */
+.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
+.highlight .gi { color: #008400 } /* Generic.Inserted */
+.highlight .go { color: #717171 } /* Generic.Output */
+.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
+.highlight .gs { font-weight: bold } /* Generic.Strong */
+.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
+.highlight .gt { color: #0044DD } /* Generic.Traceback */
+.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
+.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
+.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
+.highlight .kp { color: #008000 } /* Keyword.Pseudo */
+.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
+.highlight .kt { color: #B00040 } /* Keyword.Type */
+.highlight .m { color: #666666 } /* Literal.Number */
+.highlight .s { color: #BA2121 } /* Literal.String */
+.highlight .na { color: #687822 } /* Name.Attribute */
+.highlight .nb { color: #008000 } /* Name.Builtin */
+.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
+.highlight .no { color: #880000 } /* Name.Constant */
+.highlight .nd { color: #AA22FF } /* Name.Decorator */
+.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */
+.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */
+.highlight .nf { color: #0000FF } /* Name.Function */
+.highlight .nl { color: #767600 } /* Name.Label */
+.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
+.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
+.highlight .nv { color: #19177C } /* Name.Variable */
+.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
+.highlight .w { color: #bbbbbb } /* Text.Whitespace */
+.highlight .mb { color: #666666 } /* Literal.Number.Bin */
+.highlight .mf { color: #666666 } /* Literal.Number.Float */
+.highlight .mh { color: #666666 } /* Literal.Number.Hex */
+.highlight .mi { color: #666666 } /* Literal.Number.Integer */
+.highlight .mo { color: #666666 } /* Literal.Number.Oct */
+.highlight .sa { color: #BA2121 } /* Literal.String.Affix */
+.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
+.highlight .sc { color: #BA2121 } /* Literal.String.Char */
+.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */
+.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
+.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
+.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */
+.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
+.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */
+.highlight .sx { color: #008000 } /* Literal.String.Other */
+.highlight .sr { color: #A45A77 } /* Literal.String.Regex */
+.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
+.highlight .ss { color: #19177C } /* Literal.String.Symbol */
+.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
+.highlight .fm { color: #0000FF } /* Name.Function.Magic */
+.highlight .vc { color: #19177C } /* Name.Variable.Class */
+.highlight .vg { color: #19177C } /* Name.Variable.Global */
+.highlight .vi { color: #19177C } /* Name.Variable.Instance */
+.highlight .vm { color: #19177C } /* Name.Variable.Magic */
+.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
\ No newline at end of file
diff --git a/_static/searchtools.js b/_static/searchtools.js
new file mode 100644
index 0000000..92da3f8
--- /dev/null
+++ b/_static/searchtools.js
@@ -0,0 +1,619 @@
+/*
+ * searchtools.js
+ * ~~~~~~~~~~~~~~~~
+ *
+ * Sphinx JavaScript utilities for the full-text search.
+ *
+ * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS.
+ * :license: BSD, see LICENSE for details.
+ *
+ */
+"use strict";
+
+/**
+ * Simple result scoring code.
+ */
+if (typeof Scorer === "undefined") {
+ var Scorer = {
+ // Implement the following function to further tweak the score for each result
+ // The function takes a result array [docname, title, anchor, descr, score, filename]
+ // and returns the new score.
+ /*
+ score: result => {
+ const [docname, title, anchor, descr, score, filename] = result
+ return score
+ },
+ */
+
+ // query matches the full name of an object
+ objNameMatch: 11,
+ // or matches in the last dotted part of the object name
+ objPartialMatch: 6,
+ // Additive scores depending on the priority of the object
+ objPrio: {
+ 0: 15, // used to be importantResults
+ 1: 5, // used to be objectResults
+ 2: -5, // used to be unimportantResults
+ },
+ // Used when the priority is not in the mapping.
+ objPrioDefault: 0,
+
+ // query found in title
+ title: 15,
+ partialTitle: 7,
+ // query found in terms
+ term: 5,
+ partialTerm: 2,
+ };
+}
+
+const _removeChildren = (element) => {
+ while (element && element.lastChild) element.removeChild(element.lastChild);
+};
+
+/**
+ * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping
+ */
+const _escapeRegExp = (string) =>
+ string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string
+
+const _displayItem = (item, searchTerms, highlightTerms) => {
+ const docBuilder = DOCUMENTATION_OPTIONS.BUILDER;
+ const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX;
+ const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX;
+ const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY;
+ const contentRoot = document.documentElement.dataset.content_root;
+
+ const [docName, title, anchor, descr, score, _filename] = item;
+
+ let listItem = document.createElement("li");
+ let requestUrl;
+ let linkUrl;
+ if (docBuilder === "dirhtml") {
+ // dirhtml builder
+ let dirname = docName + "/";
+ if (dirname.match(/\/index\/$/))
+ dirname = dirname.substring(0, dirname.length - 6);
+ else if (dirname === "index/") dirname = "";
+ requestUrl = contentRoot + dirname;
+ linkUrl = requestUrl;
+ } else {
+ // normal html builders
+ requestUrl = contentRoot + docName + docFileSuffix;
+ linkUrl = docName + docLinkSuffix;
+ }
+ let linkEl = listItem.appendChild(document.createElement("a"));
+ linkEl.href = linkUrl + anchor;
+ linkEl.dataset.score = score;
+ linkEl.innerHTML = title;
+ if (descr) {
+ listItem.appendChild(document.createElement("span")).innerHTML =
+ " (" + descr + ")";
+ // highlight search terms in the description
+ if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js
+ highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted"));
+ }
+ else if (showSearchSummary)
+ fetch(requestUrl)
+ .then((responseData) => responseData.text())
+ .then((data) => {
+ if (data)
+ listItem.appendChild(
+ Search.makeSearchSummary(data, searchTerms, anchor)
+ );
+ // highlight search terms in the summary
+ if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js
+ highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted"));
+ });
+ Search.output.appendChild(listItem);
+};
+const _finishSearch = (resultCount) => {
+ Search.stopPulse();
+ Search.title.innerText = _("Search Results");
+ if (!resultCount)
+ Search.status.innerText = Documentation.gettext(
+ "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories."
+ );
+ else
+ Search.status.innerText = _(
+ "Search finished, found ${resultCount} page(s) matching the search query."
+ ).replace('${resultCount}', resultCount);
+};
+const _displayNextItem = (
+ results,
+ resultCount,
+ searchTerms,
+ highlightTerms,
+) => {
+ // results left, load the summary and display it
+ // this is intended to be dynamic (don't sub resultsCount)
+ if (results.length) {
+ _displayItem(results.pop(), searchTerms, highlightTerms);
+ setTimeout(
+ () => _displayNextItem(results, resultCount, searchTerms, highlightTerms),
+ 5
+ );
+ }
+ // search finished, update title and status message
+ else _finishSearch(resultCount);
+};
+// Helper function used by query() to order search results.
+// Each input is an array of [docname, title, anchor, descr, score, filename].
+// Order the results by score (in opposite order of appearance, since the
+// `_displayNextItem` function uses pop() to retrieve items) and then alphabetically.
+const _orderResultsByScoreThenName = (a, b) => {
+ const leftScore = a[4];
+ const rightScore = b[4];
+ if (leftScore === rightScore) {
+ // same score: sort alphabetically
+ const leftTitle = a[1].toLowerCase();
+ const rightTitle = b[1].toLowerCase();
+ if (leftTitle === rightTitle) return 0;
+ return leftTitle > rightTitle ? -1 : 1; // inverted is intentional
+ }
+ return leftScore > rightScore ? 1 : -1;
+};
+
+/**
+ * Default splitQuery function. Can be overridden in ``sphinx.search`` with a
+ * custom function per language.
+ *
+ * The regular expression works by splitting the string on consecutive characters
+ * that are not Unicode letters, numbers, underscores, or emoji characters.
+ * This is the same as ``\W+`` in Python, preserving the surrogate pair area.
+ */
+if (typeof splitQuery === "undefined") {
+ var splitQuery = (query) => query
+ .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu)
+ .filter(term => term) // remove remaining empty strings
+}
+
+/**
+ * Search Module
+ */
+const Search = {
+ _index: null,
+ _queued_query: null,
+ _pulse_status: -1,
+
+ htmlToText: (htmlString, anchor) => {
+ const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html');
+ for (const removalQuery of [".headerlinks", "script", "style"]) {
+ htmlElement.querySelectorAll(removalQuery).forEach((el) => { el.remove() });
+ }
+ if (anchor) {
+ const anchorContent = htmlElement.querySelector(`[role="main"] ${anchor}`);
+ if (anchorContent) return anchorContent.textContent;
+
+ console.warn(
+ `Anchored content block not found. Sphinx search tries to obtain it via DOM query '[role=main] ${anchor}'. Check your theme or template.`
+ );
+ }
+
+ // if anchor not specified or not found, fall back to main content
+ const docContent = htmlElement.querySelector('[role="main"]');
+ if (docContent) return docContent.textContent;
+
+ console.warn(
+ "Content block not found. Sphinx search tries to obtain it via DOM query '[role=main]'. Check your theme or template."
+ );
+ return "";
+ },
+
+ init: () => {
+ const query = new URLSearchParams(window.location.search).get("q");
+ document
+ .querySelectorAll('input[name="q"]')
+ .forEach((el) => (el.value = query));
+ if (query) Search.performSearch(query);
+ },
+
+ loadIndex: (url) =>
+ (document.body.appendChild(document.createElement("script")).src = url),
+
+ setIndex: (index) => {
+ Search._index = index;
+ if (Search._queued_query !== null) {
+ const query = Search._queued_query;
+ Search._queued_query = null;
+ Search.query(query);
+ }
+ },
+
+ hasIndex: () => Search._index !== null,
+
+ deferQuery: (query) => (Search._queued_query = query),
+
+ stopPulse: () => (Search._pulse_status = -1),
+
+ startPulse: () => {
+ if (Search._pulse_status >= 0) return;
+
+ const pulse = () => {
+ Search._pulse_status = (Search._pulse_status + 1) % 4;
+ Search.dots.innerText = ".".repeat(Search._pulse_status);
+ if (Search._pulse_status >= 0) window.setTimeout(pulse, 500);
+ };
+ pulse();
+ },
+
+ /**
+ * perform a search for something (or wait until index is loaded)
+ */
+ performSearch: (query) => {
+ // create the required interface elements
+ const searchText = document.createElement("h2");
+ searchText.textContent = _("Searching");
+ const searchSummary = document.createElement("p");
+ searchSummary.classList.add("search-summary");
+ searchSummary.innerText = "";
+ const searchList = document.createElement("ul");
+ searchList.classList.add("search");
+
+ const out = document.getElementById("search-results");
+ Search.title = out.appendChild(searchText);
+ Search.dots = Search.title.appendChild(document.createElement("span"));
+ Search.status = out.appendChild(searchSummary);
+ Search.output = out.appendChild(searchList);
+
+ const searchProgress = document.getElementById("search-progress");
+ // Some themes don't use the search progress node
+ if (searchProgress) {
+ searchProgress.innerText = _("Preparing search...");
+ }
+ Search.startPulse();
+
+ // index already loaded, the browser was quick!
+ if (Search.hasIndex()) Search.query(query);
+ else Search.deferQuery(query);
+ },
+
+ _parseQuery: (query) => {
+ // stem the search terms and add them to the correct list
+ const stemmer = new Stemmer();
+ const searchTerms = new Set();
+ const excludedTerms = new Set();
+ const highlightTerms = new Set();
+ const objectTerms = new Set(splitQuery(query.toLowerCase().trim()));
+ splitQuery(query.trim()).forEach((queryTerm) => {
+ const queryTermLower = queryTerm.toLowerCase();
+
+ // maybe skip this "word"
+ // stopwords array is from language_data.js
+ if (
+ stopwords.indexOf(queryTermLower) !== -1 ||
+ queryTerm.match(/^\d+$/)
+ )
+ return;
+
+ // stem the word
+ let word = stemmer.stemWord(queryTermLower);
+ // select the correct list
+ if (word[0] === "-") excludedTerms.add(word.substr(1));
+ else {
+ searchTerms.add(word);
+ highlightTerms.add(queryTermLower);
+ }
+ });
+
+ if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js
+ localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" "))
+ }
+
+ // console.debug("SEARCH: searching for:");
+ // console.info("required: ", [...searchTerms]);
+ // console.info("excluded: ", [...excludedTerms]);
+
+ return [query, searchTerms, excludedTerms, highlightTerms, objectTerms];
+ },
+
+ /**
+ * execute search (requires search index to be loaded)
+ */
+ _performSearch: (query, searchTerms, excludedTerms, highlightTerms, objectTerms) => {
+ const filenames = Search._index.filenames;
+ const docNames = Search._index.docnames;
+ const titles = Search._index.titles;
+ const allTitles = Search._index.alltitles;
+ const indexEntries = Search._index.indexentries;
+
+ // Collect multiple result groups to be sorted separately and then ordered.
+ // Each is an array of [docname, title, anchor, descr, score, filename].
+ const normalResults = [];
+ const nonMainIndexResults = [];
+
+ _removeChildren(document.getElementById("search-progress"));
+
+ const queryLower = query.toLowerCase().trim();
+ for (const [title, foundTitles] of Object.entries(allTitles)) {
+ if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) {
+ for (const [file, id] of foundTitles) {
+ let score = Math.round(100 * queryLower.length / title.length)
+ normalResults.push([
+ docNames[file],
+ titles[file] !== title ? `${titles[file]} > ${title}` : title,
+ id !== null ? "#" + id : "",
+ null,
+ score,
+ filenames[file],
+ ]);
+ }
+ }
+ }
+
+ // search for explicit entries in index directives
+ for (const [entry, foundEntries] of Object.entries(indexEntries)) {
+ if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) {
+ for (const [file, id, isMain] of foundEntries) {
+ const score = Math.round(100 * queryLower.length / entry.length);
+ const result = [
+ docNames[file],
+ titles[file],
+ id ? "#" + id : "",
+ null,
+ score,
+ filenames[file],
+ ];
+ if (isMain) {
+ normalResults.push(result);
+ } else {
+ nonMainIndexResults.push(result);
+ }
+ }
+ }
+ }
+
+ // lookup as object
+ objectTerms.forEach((term) =>
+ normalResults.push(...Search.performObjectSearch(term, objectTerms))
+ );
+
+ // lookup as search terms in fulltext
+ normalResults.push(...Search.performTermsSearch(searchTerms, excludedTerms));
+
+ // let the scorer override scores with a custom scoring function
+ if (Scorer.score) {
+ normalResults.forEach((item) => (item[4] = Scorer.score(item)));
+ nonMainIndexResults.forEach((item) => (item[4] = Scorer.score(item)));
+ }
+
+ // Sort each group of results by score and then alphabetically by name.
+ normalResults.sort(_orderResultsByScoreThenName);
+ nonMainIndexResults.sort(_orderResultsByScoreThenName);
+
+ // Combine the result groups in (reverse) order.
+ // Non-main index entries are typically arbitrary cross-references,
+ // so display them after other results.
+ let results = [...nonMainIndexResults, ...normalResults];
+
+ // remove duplicate search results
+ // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept
+ let seen = new Set();
+ results = results.reverse().reduce((acc, result) => {
+ let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(',');
+ if (!seen.has(resultStr)) {
+ acc.push(result);
+ seen.add(resultStr);
+ }
+ return acc;
+ }, []);
+
+ return results.reverse();
+ },
+
+ query: (query) => {
+ const [searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms] = Search._parseQuery(query);
+ const results = Search._performSearch(searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms);
+
+ // for debugging
+ //Search.lastresults = results.slice(); // a copy
+ // console.info("search results:", Search.lastresults);
+
+ // print the results
+ _displayNextItem(results, results.length, searchTerms, highlightTerms);
+ },
+
+ /**
+ * search for object names
+ */
+ performObjectSearch: (object, objectTerms) => {
+ const filenames = Search._index.filenames;
+ const docNames = Search._index.docnames;
+ const objects = Search._index.objects;
+ const objNames = Search._index.objnames;
+ const titles = Search._index.titles;
+
+ const results = [];
+
+ const objectSearchCallback = (prefix, match) => {
+ const name = match[4]
+ const fullname = (prefix ? prefix + "." : "") + name;
+ const fullnameLower = fullname.toLowerCase();
+ if (fullnameLower.indexOf(object) < 0) return;
+
+ let score = 0;
+ const parts = fullnameLower.split(".");
+
+ // check for different match types: exact matches of full name or
+ // "last name" (i.e. last dotted part)
+ if (fullnameLower === object || parts.slice(-1)[0] === object)
+ score += Scorer.objNameMatch;
+ else if (parts.slice(-1)[0].indexOf(object) > -1)
+ score += Scorer.objPartialMatch; // matches in last name
+
+ const objName = objNames[match[1]][2];
+ const title = titles[match[0]];
+
+ // If more than one term searched for, we require other words to be
+ // found in the name/title/description
+ const otherTerms = new Set(objectTerms);
+ otherTerms.delete(object);
+ if (otherTerms.size > 0) {
+ const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase();
+ if (
+ [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0)
+ )
+ return;
+ }
+
+ let anchor = match[3];
+ if (anchor === "") anchor = fullname;
+ else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname;
+
+ const descr = objName + _(", in ") + title;
+
+ // add custom score for some objects according to scorer
+ if (Scorer.objPrio.hasOwnProperty(match[2]))
+ score += Scorer.objPrio[match[2]];
+ else score += Scorer.objPrioDefault;
+
+ results.push([
+ docNames[match[0]],
+ fullname,
+ "#" + anchor,
+ descr,
+ score,
+ filenames[match[0]],
+ ]);
+ };
+ Object.keys(objects).forEach((prefix) =>
+ objects[prefix].forEach((array) =>
+ objectSearchCallback(prefix, array)
+ )
+ );
+ return results;
+ },
+
+ /**
+ * search for full-text terms in the index
+ */
+ performTermsSearch: (searchTerms, excludedTerms) => {
+ // prepare search
+ const terms = Search._index.terms;
+ const titleTerms = Search._index.titleterms;
+ const filenames = Search._index.filenames;
+ const docNames = Search._index.docnames;
+ const titles = Search._index.titles;
+
+ const scoreMap = new Map();
+ const fileMap = new Map();
+
+ // perform the search on the required terms
+ searchTerms.forEach((word) => {
+ const files = [];
+ const arr = [
+ { files: terms[word], score: Scorer.term },
+ { files: titleTerms[word], score: Scorer.title },
+ ];
+ // add support for partial matches
+ if (word.length > 2) {
+ const escapedWord = _escapeRegExp(word);
+ if (!terms.hasOwnProperty(word)) {
+ Object.keys(terms).forEach((term) => {
+ if (term.match(escapedWord))
+ arr.push({ files: terms[term], score: Scorer.partialTerm });
+ });
+ }
+ if (!titleTerms.hasOwnProperty(word)) {
+ Object.keys(titleTerms).forEach((term) => {
+ if (term.match(escapedWord))
+ arr.push({ files: titleTerms[term], score: Scorer.partialTitle });
+ });
+ }
+ }
+
+ // no match but word was a required one
+ if (arr.every((record) => record.files === undefined)) return;
+
+ // found search word in contents
+ arr.forEach((record) => {
+ if (record.files === undefined) return;
+
+ let recordFiles = record.files;
+ if (recordFiles.length === undefined) recordFiles = [recordFiles];
+ files.push(...recordFiles);
+
+ // set score for the word in each file
+ recordFiles.forEach((file) => {
+ if (!scoreMap.has(file)) scoreMap.set(file, {});
+ scoreMap.get(file)[word] = record.score;
+ });
+ });
+
+ // create the mapping
+ files.forEach((file) => {
+ if (!fileMap.has(file)) fileMap.set(file, [word]);
+ else if (fileMap.get(file).indexOf(word) === -1) fileMap.get(file).push(word);
+ });
+ });
+
+ // now check if the files don't contain excluded terms
+ const results = [];
+ for (const [file, wordList] of fileMap) {
+ // check if all requirements are matched
+
+ // as search terms with length < 3 are discarded
+ const filteredTermCount = [...searchTerms].filter(
+ (term) => term.length > 2
+ ).length;
+ if (
+ wordList.length !== searchTerms.size &&
+ wordList.length !== filteredTermCount
+ )
+ continue;
+
+ // ensure that none of the excluded terms is in the search result
+ if (
+ [...excludedTerms].some(
+ (term) =>
+ terms[term] === file ||
+ titleTerms[term] === file ||
+ (terms[term] || []).includes(file) ||
+ (titleTerms[term] || []).includes(file)
+ )
+ )
+ break;
+
+ // select one (max) score for the file.
+ const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w]));
+ // add result to the result list
+ results.push([
+ docNames[file],
+ titles[file],
+ "",
+ null,
+ score,
+ filenames[file],
+ ]);
+ }
+ return results;
+ },
+
+ /**
+ * helper function to return a node containing the
+ * search summary for a given text. keywords is a list
+ * of stemmed words.
+ */
+ makeSearchSummary: (htmlText, keywords, anchor) => {
+ const text = Search.htmlToText(htmlText, anchor);
+ if (text === "") return null;
+
+ const textLower = text.toLowerCase();
+ const actualStartPosition = [...keywords]
+ .map((k) => textLower.indexOf(k.toLowerCase()))
+ .filter((i) => i > -1)
+ .slice(-1)[0];
+ const startWithContext = Math.max(actualStartPosition - 120, 0);
+
+ const top = startWithContext === 0 ? "" : "...";
+ const tail = startWithContext + 240 < text.length ? "..." : "";
+
+ let summary = document.createElement("p");
+ summary.classList.add("context");
+ summary.textContent = top + text.substr(startWithContext, 240).trim() + tail;
+
+ return summary;
+ },
+};
+
+_ready(Search.init);
diff --git a/_static/sg_gallery-binder.css b/_static/sg_gallery-binder.css
new file mode 100644
index 0000000..420005d
--- /dev/null
+++ b/_static/sg_gallery-binder.css
@@ -0,0 +1,11 @@
+/* CSS for binder integration */
+
+div.binder-badge {
+ margin: 1em auto;
+ vertical-align: middle;
+}
+
+div.lite-badge {
+ margin: 1em auto;
+ vertical-align: middle;
+}
diff --git a/_static/sg_gallery-dataframe.css b/_static/sg_gallery-dataframe.css
new file mode 100644
index 0000000..fac74c4
--- /dev/null
+++ b/_static/sg_gallery-dataframe.css
@@ -0,0 +1,47 @@
+/* Pandas dataframe css */
+/* Taken from: https://github.com/spatialaudio/nbsphinx/blob/fb3ba670fc1ba5f54d4c487573dbc1b4ecf7e9ff/src/nbsphinx.py#L587-L619 */
+html[data-theme="light"] {
+ --sg-text-color: #000;
+ --sg-tr-odd-color: #f5f5f5;
+ --sg-tr-hover-color: rgba(66, 165, 245, 0.2);
+}
+html[data-theme="dark"] {
+ --sg-text-color: #fff;
+ --sg-tr-odd-color: #373737;
+ --sg-tr-hover-color: rgba(30, 81, 122, 0.2);
+}
+
+table.dataframe {
+ border: none !important;
+ border-collapse: collapse;
+ border-spacing: 0;
+ border-color: transparent;
+ color: var(--sg-text-color);
+ font-size: 12px;
+ table-layout: fixed;
+ width: auto;
+}
+table.dataframe thead {
+ border-bottom: 1px solid var(--sg-text-color);
+ vertical-align: bottom;
+}
+table.dataframe tr,
+table.dataframe th,
+table.dataframe td {
+ text-align: right;
+ vertical-align: middle;
+ padding: 0.5em 0.5em;
+ line-height: normal;
+ white-space: normal;
+ max-width: none;
+ border: none;
+}
+table.dataframe th {
+ font-weight: bold;
+}
+table.dataframe tbody tr:nth-child(odd) {
+ background: var(--sg-tr-odd-color);
+}
+table.dataframe tbody tr:hover {
+ background: var(--sg-tr-hover-color);
+}
diff --git a/_static/sg_gallery-rendered-html.css b/_static/sg_gallery-rendered-html.css
new file mode 100644
index 0000000..93dc2ff
--- /dev/null
+++ b/_static/sg_gallery-rendered-html.css
@@ -0,0 +1,224 @@
+/* Adapted from notebook/static/style/style.min.css */
+html[data-theme="light"] {
+ --sg-text-color: #000;
+ --sg-background-color: #ffffff;
+ --sg-code-background-color: #eff0f1;
+ --sg-tr-hover-color: rgba(66, 165, 245, 0.2);
+ --sg-tr-odd-color: #f5f5f5;
+}
+html[data-theme="dark"] {
+ --sg-text-color: #fff;
+ --sg-background-color: #121212;
+ --sg-code-background-color: #2f2f30;
+ --sg-tr-hover-color: rgba(66, 165, 245, 0.2);
+ --sg-tr-odd-color: #1f1f1f;
+}
+
+.rendered_html {
+ color: var(--sg-text-color);
+ /* any extras will just be numbers: */
+}
+.rendered_html em {
+ font-style: italic;
+}
+.rendered_html strong {
+ font-weight: bold;
+}
+.rendered_html u {
+ text-decoration: underline;
+}
+.rendered_html :link {
+ text-decoration: underline;
+}
+.rendered_html :visited {
+ text-decoration: underline;
+}
+.rendered_html h1 {
+ font-size: 185.7%;
+ margin: 1.08em 0 0 0;
+ font-weight: bold;
+ line-height: 1.0;
+}
+.rendered_html h2 {
+ font-size: 157.1%;
+ margin: 1.27em 0 0 0;
+ font-weight: bold;
+ line-height: 1.0;
+}
+.rendered_html h3 {
+ font-size: 128.6%;
+ margin: 1.55em 0 0 0;
+ font-weight: bold;
+ line-height: 1.0;
+}
+.rendered_html h4 {
+ font-size: 100%;
+ margin: 2em 0 0 0;
+ font-weight: bold;
+ line-height: 1.0;
+}
+.rendered_html h5 {
+ font-size: 100%;
+ margin: 2em 0 0 0;
+ font-weight: bold;
+ line-height: 1.0;
+ font-style: italic;
+}
+.rendered_html h6 {
+ font-size: 100%;
+ margin: 2em 0 0 0;
+ font-weight: bold;
+ line-height: 1.0;
+ font-style: italic;
+}
+.rendered_html h1:first-child {
+ margin-top: 0.538em;
+}
+.rendered_html h2:first-child {
+ margin-top: 0.636em;
+}
+.rendered_html h3:first-child {
+ margin-top: 0.777em;
+}
+.rendered_html h4:first-child {
+ margin-top: 1em;
+}
+.rendered_html h5:first-child {
+ margin-top: 1em;
+}
+.rendered_html h6:first-child {
+ margin-top: 1em;
+}
+.rendered_html ul:not(.list-inline),
+.rendered_html ol:not(.list-inline) {
+ padding-left: 2em;
+}
+.rendered_html ul {
+ list-style: disc;
+}
+.rendered_html ul ul {
+ list-style: square;
+ margin-top: 0;
+}
+.rendered_html ul ul ul {
+ list-style: circle;
+}
+.rendered_html ol {
+ list-style: decimal;
+}
+.rendered_html ol ol {
+ list-style: upper-alpha;
+ margin-top: 0;
+}
+.rendered_html ol ol ol {
+ list-style: lower-alpha;
+}
+.rendered_html ol ol ol ol {
+ list-style: lower-roman;
+}
+.rendered_html ol ol ol ol ol {
+ list-style: decimal;
+}
+.rendered_html * + ul {
+ margin-top: 1em;
+}
+.rendered_html * + ol {
+ margin-top: 1em;
+}
+.rendered_html hr {
+ color: var(--sg-text-color);
+ background-color: var(--sg-text-color);
+}
+.rendered_html pre {
+ margin: 1em 2em;
+ padding: 0px;
+ background-color: var(--sg-background-color);
+}
+.rendered_html code {
+ background-color: var(--sg-code-background-color);
+}
+.rendered_html p code {
+ padding: 1px 5px;
+}
+.rendered_html pre code {
+ background-color: var(--sg-background-color);
+}
+.rendered_html pre,
+.rendered_html code {
+ border: 0;
+ color: var(--sg-text-color);
+ font-size: 100%;
+}
+.rendered_html blockquote {
+ margin: 1em 2em;
+}
+.rendered_html table {
+ margin-left: auto;
+ margin-right: auto;
+ border: none;
+ border-collapse: collapse;
+ border-spacing: 0;
+ color: var(--sg-text-color);
+ font-size: 12px;
+ table-layout: fixed;
+}
+.rendered_html thead {
+ border-bottom: 1px solid var(--sg-text-color);
+ vertical-align: bottom;
+}
+.rendered_html tr,
+.rendered_html th,
+.rendered_html td {
+ text-align: right;
+ vertical-align: middle;
+ padding: 0.5em 0.5em;
+ line-height: normal;
+ white-space: normal;
+ max-width: none;
+ border: none;
+}
+.rendered_html th {
+ font-weight: bold;
+}
+.rendered_html tbody tr:nth-child(odd) {
+ background: var(--sg-tr-odd-color);
+}
+.rendered_html tbody tr:hover {
+ color: var(--sg-text-color);
+ background: var(--sg-tr-hover-color);
+}
+.rendered_html * + table {
+ margin-top: 1em;
+}
+.rendered_html p {
+ text-align: left;
+}
+.rendered_html * + p {
+ margin-top: 1em;
+}
+.rendered_html img {
+ display: block;
+ margin-left: auto;
+ margin-right: auto;
+}
+.rendered_html * + img {
+ margin-top: 1em;
+}
+.rendered_html img,
+.rendered_html svg {
+ max-width: 100%;
+ height: auto;
+}
+.rendered_html img.unconfined,
+.rendered_html svg.unconfined {
+ max-width: none;
+}
+.rendered_html .alert {
+ margin-bottom: initial;
+}
+.rendered_html * + .alert {
+ margin-top: 1em;
+}
+[dir="rtl"] .rendered_html p {
+ text-align: right;
+}
diff --git a/_static/sg_gallery.css b/_static/sg_gallery.css
new file mode 100644
index 0000000..7222783
--- /dev/null
+++ b/_static/sg_gallery.css
@@ -0,0 +1,342 @@
+/*
+Sphinx-Gallery has compatible CSS to fix default sphinx themes
+Tested for Sphinx 1.3.1 for all themes: default, alabaster, sphinxdoc,
+scrolls, agogo, traditional, nature, haiku, pyramid
+Tested for Read the Docs theme 0.1.7 */
+
+/* Define light colors */
+:root, html[data-theme="light"], body[data-theme="light"]{
+ --sg-tooltip-foreground: black;
+ --sg-tooltip-background: rgba(250, 250, 250, 0.9);
+ --sg-tooltip-border: #ccc transparent;
+ --sg-thumb-box-shadow-color: #6c757d40;
+ --sg-thumb-hover-border: #0069d9;
+ --sg-script-out: #888;
+ --sg-script-pre: #fafae2;
+ --sg-pytb-foreground: #000;
+ --sg-pytb-background: #ffe4e4;
+ --sg-pytb-border-color: #f66;
+ --sg-download-a-background-color: #ffc;
+ --sg-download-a-background-image: linear-gradient(to bottom, #ffc, #d5d57e);
+ --sg-download-a-border-color: 1px solid #c2c22d;
+ --sg-download-a-color: #000;
+ --sg-download-a-hover-background-color: #d5d57e;
+ --sg-download-a-hover-box-shadow-1: rgba(255, 255, 255, 0.1);
+ --sg-download-a-hover-box-shadow-2: rgba(0, 0, 0, 0.25);
+}
+@media(prefers-color-scheme: light) {
+ :root[data-theme="auto"], html[data-theme="auto"], body[data-theme="auto"] {
+ --sg-tooltip-foreground: black;
+ --sg-tooltip-background: rgba(250, 250, 250, 0.9);
+ --sg-tooltip-border: #ccc transparent;
+ --sg-thumb-box-shadow-color: #6c757d40;
+ --sg-thumb-hover-border: #0069d9;
+ --sg-script-out: #888;
+ --sg-script-pre: #fafae2;
+ --sg-pytb-foreground: #000;
+ --sg-pytb-background: #ffe4e4;
+ --sg-pytb-border-color: #f66;
+ --sg-download-a-background-color: #ffc;
+ --sg-download-a-background-image: linear-gradient(to bottom, #ffc, #d5d57e);
+ --sg-download-a-border-color: 1px solid #c2c22d;
+ --sg-download-a-color: #000;
+ --sg-download-a-hover-background-color: #d5d57e;
+ --sg-download-a-hover-box-shadow-1: rgba(255, 255, 255, 0.1);
+ --sg-download-a-hover-box-shadow-2: rgba(0, 0, 0, 0.25);
+ }
+}
+
+html[data-theme="dark"], body[data-theme="dark"] {
+ --sg-tooltip-foreground: white;
+ --sg-tooltip-background: rgba(10, 10, 10, 0.9);
+ --sg-tooltip-border: #333 transparent;
+ --sg-thumb-box-shadow-color: #79848d40;
+ --sg-thumb-hover-border: #003975;
+ --sg-script-out: rgb(179, 179, 179);
+ --sg-script-pre: #2e2e22;
+ --sg-pytb-foreground: #fff;
+ --sg-pytb-background: #1b1717;
+ --sg-pytb-border-color: #622;
+ --sg-download-a-background-color: #443;
+ --sg-download-a-background-image: linear-gradient(to bottom, #443, #221);
+ --sg-download-a-border-color: 1px solid #3a3a0d;
+ --sg-download-a-color: #fff;
+ --sg-download-a-hover-background-color: #616135;
+ --sg-download-a-hover-box-shadow-1: rgba(0, 0, 0, 0.1);
+ --sg-download-a-hover-box-shadow-2: rgba(255, 255, 255, 0.25);
+}
+@media(prefers-color-scheme: dark){
+ html[data-theme="auto"], body[data-theme="auto"] {
+ --sg-tooltip-foreground: white;
+ --sg-tooltip-background: rgba(10, 10, 10, 0.9);
+ --sg-tooltip-border: #333 transparent;
+ --sg-thumb-box-shadow-color: #79848d40;
+ --sg-thumb-hover-border: #003975;
+ --sg-script-out: rgb(179, 179, 179);
+ --sg-script-pre: #2e2e22;
+ --sg-pytb-foreground: #fff;
+ --sg-pytb-background: #1b1717;
+ --sg-pytb-border-color: #622;
+ --sg-download-a-background-color: #443;
+ --sg-download-a-background-image: linear-gradient(to bottom, #443, #221);
+ --sg-download-a-border-color: 1px solid #3a3a0d;
+ --sg-download-a-color: #fff;
+ --sg-download-a-hover-background-color: #616135;
+ --sg-download-a-hover-box-shadow-1: rgba(0, 0, 0, 0.1);
+ --sg-download-a-hover-box-shadow-2: rgba(255, 255, 255, 0.25);
+ }
+}
+
+.sphx-glr-thumbnails {
+ width: 100%;
+ margin: 0px 0px 20px 0px;
+
+ /* align thumbnails on a grid */
+ justify-content: space-between;
+ display: grid;
+ /* each grid column should be at least 160px (this will determine
+ the actual number of columns) and then take as much of the
+ remaining width as possible */
+ grid-template-columns: repeat(auto-fill, minmax(160px, 1fr));
+ gap: 15px;
+}
+.sphx-glr-thumbnails .toctree-wrapper {
+ /* hide empty toctree divs added to the DOM
+ by sphinx even though the toctree is hidden
+ (they would fill grid places with empty divs) */
+ display: none;
+}
+.sphx-glr-thumbcontainer {
+ background: transparent;
+ -moz-border-radius: 5px;
+ -webkit-border-radius: 5px;
+ border-radius: 5px;
+ box-shadow: 0 0 10px var(--sg-thumb-box-shadow-color);
+
+ /* useful to absolutely position link in div */
+ position: relative;
+
+ /* thumbnail width should include padding and borders
+ and take all available space */
+ box-sizing: border-box;
+ width: 100%;
+ padding: 10px;
+ border: 1px solid transparent;
+
+ /* align content in thumbnail */
+ display: flex;
+ flex-direction: column;
+ align-items: center;
+ gap: 7px;
+}
+.sphx-glr-thumbcontainer p {
+ position: absolute;
+ top: 0;
+ left: 0;
+}
+.sphx-glr-thumbcontainer p,
+.sphx-glr-thumbcontainer p a {
+ /* link should cover the whole thumbnail div */
+ width: 100%;
+ height: 100%;
+}
+.sphx-glr-thumbcontainer p a span {
+ /* text within link should be masked
+ (we are just interested in the href) */
+ display: none;
+}
+.sphx-glr-thumbcontainer:hover {
+ border: 1px solid;
+ border-color: var(--sg-thumb-hover-border);
+ cursor: pointer;
+}
+.sphx-glr-thumbcontainer a.internal {
+ bottom: 0;
+ display: block;
+ left: 0;
+ box-sizing: border-box;
+ padding: 150px 10px 0;
+ position: absolute;
+ right: 0;
+ top: 0;
+}
+/* Next one is to avoid Sphinx traditional theme to cover all the
+thumbnail with its default link Background color */
+.sphx-glr-thumbcontainer a.internal:hover {
+ background-color: transparent;
+}
+
+.sphx-glr-thumbcontainer p {
+ margin: 0 0 0.1em 0;
+}
+.sphx-glr-thumbcontainer .figure {
+ margin: 10px;
+ width: 160px;
+}
+.sphx-glr-thumbcontainer img {
+ display: inline;
+ max-height: 112px;
+ max-width: 160px;
+}
+.sphx-glr-thumbcontainer[tooltip]:hover:after {
+ background: var(--sg-tooltip-background);
+ -webkit-border-radius: 4px;
+ -moz-border-radius: 4px;
+ border-radius: 4px;
+ color: var(--sg-tooltip-foreground);
+ content: attr(tooltip);
+ padding: 10px;
+ z-index: 98;
+ width: 100%;
+ height: 100%;
+ position: absolute;
+ pointer-events: none;
+ top: 0;
+ box-sizing: border-box;
+ overflow: hidden;
+ backdrop-filter: blur(3px);
+}
+
+.sphx-glr-script-out {
+ color: var(--sg-script-out);
+ display: flex;
+ gap: 0.5em;
+}
+.sphx-glr-script-out::before {
+ content: "Out:";
+ /* These numbers come from the pre style in the pydata sphinx theme. This
+ * turns out to match perfectly on the rtd theme, but be a bit too low for
+ * the pydata sphinx theme. As I could not find a dimension to use that was
+ * scaled the same way, I just picked one option that worked pretty close for
+ * both. */
+ line-height: 1.4;
+ padding-top: 10px;
+}
+.sphx-glr-script-out .highlight {
+ background-color: transparent;
+ /* These options make the div expand... */
+ flex-grow: 1;
+ /* ... but also keep it from overflowing its flex container. */
+ overflow: auto;
+}
+.sphx-glr-script-out .highlight pre {
+ background-color: var(--sg-script-pre);
+ border: 0;
+ max-height: 30em;
+ overflow: auto;
+ padding-left: 1ex;
+ /* This margin is necessary in the pydata sphinx theme because pre has a box
+ * shadow which would be clipped by the overflow:auto in the parent div
+ * above. */
+ margin: 2px;
+ word-break: break-word;
+}
+.sphx-glr-script-out + p {
+ margin-top: 1.8em;
+}
+blockquote.sphx-glr-script-out {
+ margin-left: 0pt;
+}
+.sphx-glr-script-out.highlight-pytb .highlight pre {
+ color: var(--sg-pytb-foreground);
+ background-color: var(--sg-pytb-background);
+ border: 1px solid var(--sg-pytb-border-color);
+ margin-top: 10px;
+ padding: 7px;
+}
+
+div.sphx-glr-footer {
+ text-align: center;
+}
+
+div.sphx-glr-download {
+ margin: 1em auto;
+ vertical-align: middle;
+}
+
+div.sphx-glr-download a {
+ background-color: var(--sg-download-a-background-color);
+ background-image: var(--sg-download-a-background-image);
+ border-radius: 4px;
+ border: 1px solid var(--sg-download-a-border-color);
+ color: var(--sg-download-a-color);
+ display: inline-block;
+ font-weight: bold;
+ padding: 1ex;
+ text-align: center;
+}
+
+div.sphx-glr-download code.download {
+ display: inline-block;
+ white-space: normal;
+ word-break: normal;
+ overflow-wrap: break-word;
+ /* border and background are given by the enclosing 'a' */
+ border: none;
+ background: none;
+}
+
+div.sphx-glr-download a:hover {
+ box-shadow: inset 0 1px 0 var(--sg-download-a-hover-box-shadow-1), 0 1px 5px var(--sg-download-a-hover-box-shadow-2);
+ text-decoration: none;
+ background-image: none;
+ background-color: var(--sg-download-a-hover-background-color);
+}
+
+.sphx-glr-example-title:target::before {
+ display: block;
+ content: "";
+ margin-top: -50px;
+ height: 50px;
+ visibility: hidden;
+}
+
+ul.sphx-glr-horizontal {
+ list-style: none;
+ padding: 0;
+}
+ul.sphx-glr-horizontal li {
+ display: inline;
+}
+ul.sphx-glr-horizontal img {
+ height: auto !important;
+}
+
+.sphx-glr-single-img {
+ margin: auto;
+ display: block;
+ max-width: 100%;
+}
+
+.sphx-glr-multi-img {
+ max-width: 42%;
+ height: auto;
+}
+
+div.sphx-glr-animation {
+ margin: auto;
+ display: block;
+ max-width: 100%;
+}
+div.sphx-glr-animation .animation {
+ display: block;
+}
+
+p.sphx-glr-signature a.reference.external {
+ -moz-border-radius: 5px;
+ -webkit-border-radius: 5px;
+ border-radius: 5px;
+ padding: 3px;
+ font-size: 75%;
+ text-align: right;
+ margin-left: auto;
+ display: table;
+}
+
+.sphx-glr-clear {
+ clear: both;
+}
+
+a.sphx-glr-backref-instance {
+ text-decoration: none;
+}
diff --git a/_static/sphinx_highlight.js b/_static/sphinx_highlight.js
new file mode 100644
index 0000000..8a96c69
--- /dev/null
+++ b/_static/sphinx_highlight.js
@@ -0,0 +1,154 @@
+/* Highlighting utilities for Sphinx HTML documentation. */
+"use strict";
+
+const SPHINX_HIGHLIGHT_ENABLED = true
+
+/**
+ * highlight a given string on a node by wrapping it in
+ * span elements with the given class name.
+ */
+const _highlight = (node, addItems, text, className) => {
+ if (node.nodeType === Node.TEXT_NODE) {
+ const val = node.nodeValue;
+ const parent = node.parentNode;
+ const pos = val.toLowerCase().indexOf(text);
+ if (
+ pos >= 0 &&
+ !parent.classList.contains(className) &&
+ !parent.classList.contains("nohighlight")
+ ) {
+ let span;
+
+ const closestNode = parent.closest("body, svg, foreignObject");
+ const isInSVG = closestNode && closestNode.matches("svg");
+ if (isInSVG) {
+ span = document.createElementNS("http://www.w3.org/2000/svg", "tspan");
+ } else {
+ span = document.createElement("span");
+ span.classList.add(className);
+ }
+
+ span.appendChild(document.createTextNode(val.substr(pos, text.length)));
+ const rest = document.createTextNode(val.substr(pos + text.length));
+ parent.insertBefore(
+ span,
+ parent.insertBefore(
+ rest,
+ node.nextSibling
+ )
+ );
+ node.nodeValue = val.substr(0, pos);
+ /* There may be more occurrences of search term in this node. So call this
+ * function recursively on the remaining fragment.
+ */
+ _highlight(rest, addItems, text, className);
+
+ if (isInSVG) {
+ const rect = document.createElementNS(
+ "http://www.w3.org/2000/svg",
+ "rect"
+ );
+ const bbox = parent.getBBox();
+ rect.x.baseVal.value = bbox.x;
+ rect.y.baseVal.value = bbox.y;
+ rect.width.baseVal.value = bbox.width;
+ rect.height.baseVal.value = bbox.height;
+ rect.setAttribute("class", className);
+ addItems.push({ parent: parent, target: rect });
+ }
+ }
+ } else if (node.matches && !node.matches("button, select, textarea")) {
+ node.childNodes.forEach((el) => _highlight(el, addItems, text, className));
+ }
+};
+const _highlightText = (thisNode, text, className) => {
+ let addItems = [];
+ _highlight(thisNode, addItems, text, className);
+ addItems.forEach((obj) =>
+ obj.parent.insertAdjacentElement("beforebegin", obj.target)
+ );
+};
+
+/**
+ * Small JavaScript module for the documentation.
+ */
+const SphinxHighlight = {
+
+ /**
+ * highlight the search words provided in localstorage in the text
+ */
+ highlightSearchWords: () => {
+ if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight
+
+ // get and clear terms from localstorage
+ const url = new URL(window.location);
+ const highlight =
+ localStorage.getItem("sphinx_highlight_terms")
+ || url.searchParams.get("highlight")
+ || "";
+ localStorage.removeItem("sphinx_highlight_terms")
+ url.searchParams.delete("highlight");
+ window.history.replaceState({}, "", url);
+
+ // get individual terms from highlight string
+ const terms = highlight.toLowerCase().split(/\s+/).filter(x => x);
+ if (terms.length === 0) return; // nothing to do
+
+ // There should never be more than one element matching "div.body"
+ const divBody = document.querySelectorAll("div.body");
+ const body = divBody.length ? divBody[0] : document.querySelector("body");
+ window.setTimeout(() => {
+ terms.forEach((term) => _highlightText(body, term, "highlighted"));
+ }, 10);
+
+ const searchBox = document.getElementById("searchbox");
+ if (searchBox === null) return;
+ searchBox.appendChild(
+ document
+ .createRange()
+ .createContextualFragment(
+ '' +
+ '' +
+ _("Hide Search Matches") +
+ "
"
+ )
+ );
+ },
+
+ /**
+ * helper function to hide the search marks again
+ */
+ hideSearchWords: () => {
+ document
+ .querySelectorAll("#searchbox .highlight-link")
+ .forEach((el) => el.remove());
+ document
+ .querySelectorAll("span.highlighted")
+ .forEach((el) => el.classList.remove("highlighted"));
+ localStorage.removeItem("sphinx_highlight_terms")
+ },
+
+ initEscapeListener: () => {
+ // only install a listener if it is really needed
+ if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return;
+
+ document.addEventListener("keydown", (event) => {
+ // bail for input elements
+ if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return;
+ // bail with special keys
+ if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return;
+ if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) {
+ SphinxHighlight.hideSearchWords();
+ event.preventDefault();
+ }
+ });
+ },
+};
+
+_ready(() => {
+ /* Do not call highlightSearchWords() when we are on the search page.
+ * It will highlight words from the *previous* search query.
+ */
+ if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords();
+ SphinxHighlight.initEscapeListener();
+});
diff --git a/error_parity.html b/error_parity.html
new file mode 100644
index 0000000..939dabf
--- /dev/null
+++ b/error_parity.html
@@ -0,0 +1,1099 @@
+
+
+
+
+
+
+ error_parity package — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+error_parity
package
+
+error_parity.threshold_optimizer module
+Solver for the relaxed equal odds problem.
+
+
+class error_parity.threshold_optimizer. RelaxedThresholdOptimizer ( * , predictor , constraint = 'equalized_odds' , tolerance = 0.0 , false_pos_cost = 1.0 , false_neg_cost = 1.0 , max_roc_ticks = 1000 , seed = 42 ) [source]
+Bases: Classifier
+Class to encapsulate all the logic needed to compute the optimal equal
+odds classifier (with possibly relaxed constraints).
+Initializes the relaxed equal odds wrapper.
+
+Parameters:
+
+predictor (callable [ ( np.ndarray ) , float ] ) – A trained score predictor that takes in samples, X, in shape
+(num_samples, num_features), and outputs real-valued scores, R, in
+shape (num_samples,).
+constraint (str ) – The fairness constraint to use. By default “equalized_odds”.
+tolerance (float ) – The absolute tolerance for the equal odds fairness constraint.
+Will allow for tolerance difference between group-wise ROC points.
+false_pos_cost (float , optional ) – The cost of a FALSE POSITIVE error, by default 1.0.
+false_neg_cost (float , optional ) – The cost of a FALSE NEGATIVE error, by default 1.0.
+max_roc_ticks (int , optional ) – The maximum number of ticks (points) in each group’s ROC, when
+computing the optimal fair classifier, by default 1000.
+seed (int ) – A random seed used for reproducibility when producing randomized
+classifiers.
+
+
+
+
+
+constraint_violation ( constraint_name = None ) [source]
+Theoretical constraint violation of the LP solution found.
+
+Parameters:
+constraint_name (str , optional ) – Optionally, may provide another constraint name that will be used
+instead of this classifier’s self.constraint;
+
+Returns:
+The fairness constraint violation.
+
+Return type:
+float
+
+
+
+
+
+
+cost ( false_pos_cost = None , false_neg_cost = None ) [source]
+Computes the theoretical cost of the solution found.
+NOTE: use false_pos_cost==false_neg_cost==1 for the 0-1 loss (the
+standard error rate), which is equal to 1 - accuracy .
+
+Parameters:
+
+false_pos_cost (float , optional ) – The cost of a FALSE POSITIVE error, by default will take the value
+given in the object’s constructor.
+false_neg_cost (float , optional ) – The cost of a FALSE NEGATIVE error, by default will take the value
+given in the object’s constructor.
+
+
+Returns:
+The cost of the solution found.
+
+Return type:
+float
+
+
+
+
+
+
+demographic_parity_violation ( ) [source]
+Computes the theoretical violation of the demographic parity constraint.
+That is, the maximum distance between groups’ PPR (positive prediction
+rate).
+
+Returns:
+The demographic parity constraint violation.
+
+Return type:
+float
+
+
+
+
+
+
+equalized_odds_violation ( ) [source]
+Computes the theoretical violation of the equal odds constraint
+(i.e., the maximum l-inf distance between the ROC point of any pair
+of groups).
+
+Returns:
+The equal-odds constraint violation.
+
+Return type:
+float
+
+
+
+
+
+
+error_rate_parity_constraint_violation ( error_type ) [source]
+Computes the theoretical violation of an error-rate parity constraint.
+
+Parameters:
+error_type (str ) –
+One of the following values: ”fp”, for false positive errors (FPR or TNR parity);
+“fn”, for false negative errors (TPR or FNR parity).
+
+
+
+
+Returns:
+The maximum constraint violation among all groups.
+
+Return type:
+float
+
+
+
+
+
+
+fit ( X , y , * , group , y_scores = None ) [source]
+Fit this predictor to achieve the (possibly relaxed) equal odds
+constraint on the provided data.
+
+Parameters:
+
+X (np.ndarray ) – The input features.
+y (np.ndarray ) – The input labels.
+group (np.ndarray ) – The group membership of each sample.
+Assumes groups are numbered [0, 1, …, num_groups-1].
+y_scores (np.ndarray , optional ) – The pre-computed model predictions on this data.
+
+
+Returns:
+Returns self.
+
+Return type:
+callable
+
+
+
+
+
+
+property global_prevalence : ndarray
+Global prevalence, i.e., P(Y=1).
+
+
+
+
+property global_roc_point : ndarray
+Global ROC point achieved by solution.
+
+
+
+
+property groupwise_prevalence : ndarray
+Group-specific prevalence, i.e., P(Y=1|A=a)
+
+
+
+
+property groupwise_roc_data : dict
+Group-specific ROC data containing (FPR, TPR, threshold) triplets.
+
+
+
+
+property groupwise_roc_hulls : dict
+Group-specific ROC convex hulls achieved by underlying predictor.
+
+
+
+
+property groupwise_roc_points : ndarray
+Group-specific ROC points achieved by solution.
+
+
+
+
+predict ( X , * , group ) [source]
+Generate predictions for the given input data.
+
+Parameters:
+
+
+Returns:
+A sequence of predictions, one per input sample and input group.
+
+Return type:
+np.ndarray
+
+
+
+
+
+
+
+
+error_parity.pareto_curve module
+Utils for computing the fairness-accuracy Pareto frontier of a classifier.
+
+
+error_parity.pareto_curve. compute_inner_and_outer_adjustment_ci ( postproc_results_df , perf_metric , disp_metric , data_type = 'test' , constant_clf_perf = None ) [source]
+Computes the interior/inner and exterior/outer adjustment curves,
+corresponding to the confidence intervals (by default 95% c.i.).
+
+Returns:
+postproc_results_df – A tuple containing (xticks, inner_yticks, outer_yticks).
+
+Return type:
+tuple[np.array, np.array, np.array]
+
+
+
+
+
+
+error_parity.pareto_curve. compute_postprocessing_curve ( model , fit_data , eval_data , fairness_constraint = 'equalized_odds' , bootstrap = True , tolerance_ticks = array([0., 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) , tolerance_tick_step = None , predict_method = 'predict_proba' , n_jobs = None , ** kwargs ) [source]
+Computes the fairness and performance of the given classifier after
+adjusting (postprocessing) for varying levels of fairness tolerance.
+
+Parameters:
+
+model (object ) – The model to use.
+fit_data (tuple ) – Data triplet to use to fit postprocessing intervention, (X, Y, S),
+respectively containing the features, labels, and sensitive attribute.
+eval_data (tuple or dict [ tuple ] ) – Data triplet to use to evaluate postprocessing intervention on (same
+format as fit_data ), or a dictionary of <data_name>-><data_triplet>
+containing multiple datasets to evaluate on.
+fairness_constraint (str , optional ) – _description_, by default “equalized_odds”
+bootstrap (bool , optional ) – Whether to compute uncertainty estimates via bootstrapping, by default
+False.
+tolerance_ticks (list , optional ) – List of constraint tolerances to use when computing adjustment curve.
+By default will use higher granularity/precision for lower levels of
+disparity, and lower granularity for higher levels of disparity.
+Should correspond to a sorted list of values between 0 and 1.
+Will be ignored if tolerance_tick_step is provided.
+tolerance_tick_step (float , optional ) – Distance between constraint tolerances in the adjustment curve.
+Will override tolerance_ticks if provided!
+predict_method (str , optional ) – Which method to call to obtain predictions out of the given model.
+Use predict_method=”__call__” for a callable predictor, or the default
+predict_method=”predict_proba” for a predictor with sklearn interface.
+n_jobs (int , optional ) – Number of parallel jobs to use, if omitted will use os.cpu_count()-1 .
+
+
+Returns:
+postproc_results_df – A DataFrame containing the results, one row per tolerance tick.
+
+Return type:
+pd.DataFrame
+
+
+
+
+
+
+error_parity.pareto_curve. fit_and_evaluate_postprocessing ( predictor , tolerance , fit_data , eval_data , fairness_constraint = 'equalized_odds' , false_pos_cost = 1.0 , false_neg_cost = 1.0 , max_roc_ticks = 200 , seed = 42 , y_fit_pred_scores = None , bootstrap = True , bootstrap_kwargs = None ) [source]
+Fit and evaluate a postprocessing intervention on the given predictor.
+
+Parameters:
+
+predictor (callable ) – The callable predictor to fit postprocessing on.
+tolerance (float ) – The tolerance (or slack) for fairness constraint fulfillment.
+fit_data (tuple ) – The data used to fit postprocessing.
+eval_data (tuple or dict [ tuple ] ) – The data or sequence of data to evaluate postprocessing on.
+If a tuple is provided, will call it “eval” data in the returned results
+dictionary; if a dict is provided, will assume {<key_1>: <data_1>, …}.
+fairness_constraint (str , optional ) – The name of the fairness constraint to use, by default “equalized_odds”.
+false_pos_cost (float , optional ) – The cost of a false positive error, by default 1.
+false_neg_cost (float , optional ) – The cost of a false negative error, by default 1.
+max_roc_ticks (int , optional ) – The maximum number of ticks (precision) to use when computing
+group-specific ROC curves, by default 200.
+seed (int , optional ) – The random seed, by default 42
+y_fit_pred_scores (np.ndarray , optional ) – The pre-computed predicted scores for the fit_data ; if provided, will
+avoid re-computing these predictions for each function call.
+bootstrap (bool , optional ) – Whether to use bootstrapping when computing metric results for
+postprocessing, by default True.
+bootstrap_kwargs (dict , optional ) – Any extra arguments to pass on to the bootstrapping function, by default
+None.
+
+
+Returns:
+
results – A dictionary of results, whose keys are the data type, and values the
+metric values obtained by postprocessing on that data type.
+For example:
+>>> {
+>>> “validation”: {“accuracy”: 0.7, “…”: “…”},
+>>> “test”: {“accuracy”: 0.65, “…”: “…”},
+>>> }
+
+
+Return type:
+dict[str, dict]
+
+
+
+
+
+
+error_parity.pareto_curve. get_envelope_of_postprocessing_frontier ( postproc_results_df , perf_col = 'accuracy_mean_test' , disp_col = 'equalized_odds_diff_mean_test' , constant_clf_perf = 0.5 , constant_clf_disp = 0.0 ) [source]
+Computes points in envelope of the given postprocessing frontier results.
+
+Parameters:
+
+postproc_results_df (pd.DataFrame ) – The postprocessing frontier results DF.
+perf_col (str , optional ) – Name of the column containing performance results, by default “accuracy_mean_test”
+disp_col (str , optional ) – Name of column containing disparity results, by default “equalized_odds_diff_mean_test”
+constant_clf_perf (float , optional ) – The performance of a dummy constant classifier (in the same metric as
+perf_col ), by default 0.5.
+constant_clf_disp (float , optional ) – The disparity of a dummy constant classifier (in the same metric as
+disp_col ), by default 0.0; assumes a constant classifier fulfills
+fairness!
+
+
+Returns:
+A 2-D array containing the points in the convex hull of the Pareto curve.
+
+Return type:
+np.ndarray
+
+
+
+
+
+
+error_parity.plotting module
+Utils for plotting postprocessing frontier and postprocessing solution.
+
+
+error_parity.plotting. plot_polygon_edges ( polygon_points , ** kwargs ) [source]
+
+
+
+
+error_parity.plotting. plot_postprocessing_frontier ( postproc_results_df , * , perf_metric , disp_metric , show_data_type , constant_clf_perf , model_name = None , color = 'black' ) [source]
+Helper to plot the given post-processing frontier results.
+Will use bootstrapped results if available, including plotting confidence
+intervals.
+
+Parameters:
+
+postproc_results_df (pd.DataFrame ) – The DataFrame containing postprocessing results.
+This should be the output of a call to compute_postprocessing_curve(.) .
+perf_metric (str ) – Which performance metric to plot (horizontal axis).
+disp_metric (str ) – Which disparity metric to plot (vertical axis).
+show_data_type (str ) – The type of data to show results for; usually this will be “test”.
+constant_clf_perf (float ) – Performance achieved by the constant classifier; this is the point of
+lowest performance and lowest disparity achievable by postprocessing.
+model_name (str , optional ) – Shown in the plot legend. Name of the model to be postprocessed.
+color (str , optional ) – Which color to use for plotting the postprocessing curve, by default “black”.
+
+
+
+
+
+
+
+error_parity.plotting. plot_postprocessing_solution ( * , postprocessed_clf , plot_roc_curves = False , plot_roc_hulls = True , plot_group_optima = True , plot_group_triangulation = True , plot_global_optimum = True , plot_diagonal = True , plot_relaxation = False , group_name_map = None , figure = None , ** fig_kwargs ) [source]
+Plots the group-specific solutions found for this predictor.
+
+Parameters:
+
+postprocessed_clf (RelaxedThresholdOptimizer ) – A postprocessed classifier already fitted on some data.
+plot_roc_curves (bool , optional ) – Whether to plot the global ROC curves, by default False.
+plot_roc_hulls (bool , optional ) – Whether to plot the global ROC convex hulls, by default True.
+plot_group_optima (bool , optional ) – Whether to plot the group-specific optima, by default True.
+plot_group_triangulation (bool , optional ) – Whether to plot the triangulation of a group-specific solution, when
+such triangulation is needed to achieve a target ROC point.
+plot_global_optimum (bool , optional ) – Whether to plot the global optimum ROC point, by default True.
+plot_diagonal (bool , optional ) – Whether to plot the ROC diagonal with FPR=TPR, by default True.
+plot_relaxation (bool , optional ) – Whether to plot the constraint relaxation bounding box, by default False.
+group_name_map (dict , optional ) – A dictionary mapping each group’s value to an appropriate name to show
+in the plot legend, by default None.
+figure (matplotlib.figure.Figure , optional ) – A matplotlib figure to use when plotting, by default will generate a new
+figure for plotting.
+
+
+
+
+
+
+
+error_parity.evaluation module
+A set of functions to evaluate predictions on common performance
+and fairness metrics, possibly at a specified FPR or FNR target.
+Based on: https://github.com/AndreFCruz/hpt/blob/main/src/hpt/evaluation.py
+
+
+error_parity.evaluation. eval_accuracy_and_equalized_odds ( y_true , y_pred_binary , sensitive_attr , display = False ) [source]
+Evaluate accuracy and equalized odds of the given predictions.
+
+Parameters:
+
+y_true (np.ndarray ) – The true class labels.
+y_pred_binary (np.ndarray ) – The predicted class labels.
+sensitive_attr (np.ndarray ) – The sensitive attribute data.
+display (bool , optional ) – Whether to print results or not, by default False.
+
+
+Returns:
+A tuple of (fairness, equalized odds violation).
+
+Return type:
+tuple[float, float]
+
+
+
+
+
+
+error_parity.evaluation. evaluate_fairness ( y_true , y_pred , sensitive_attribute , return_groupwise_metrics = False ) [source]
+Evaluates fairness as the ratios between group-wise performance metrics.
+
+Parameters:
+
+y_true (np.ndarray ) – The true class labels.
+y_pred (np.ndarray ) – The discretized predictions.
+sensitive_attribute (np.ndarray ) – The sensitive attribute (protected group membership).
+return_groupwise_metrics (Optional [ bool ] , optional ) – Whether to return group-wise performance metrics (bool: True) or only
+the ratios between these metrics (bool: False), by default False.
+
+
+Returns:
+A dictionary with key-value pairs of (metric name, metric value).
+
+Return type:
+dict
+
+
+
+
+
+
+error_parity.evaluation. evaluate_performance ( y_true , y_pred ) [source]
+Evaluates the provided predictions on common performance metrics.
+
+Parameters:
+
+
+Returns:
+A dictionary with key-value pairs of (metric name, metric value).
+
+Return type:
+dict
+
+
+
+
+
+
+error_parity.evaluation. evaluate_predictions ( y_true , y_pred_scores , sensitive_attribute = None , return_groupwise_metrics = False , ** threshold_target ) [source]
+Evaluates the given predictions on both performance and fairness metrics.
+Will only evaluate fairness if sensitive_attribute is provided.
+
+
Note
+
The value of log_loss may be inaccurate when using scikit-learn<1.2 .
+
+
+Parameters:
+
+y_true (np.ndarray ) – The true labels.
+y_pred_scores (np.ndarray ) – The predicted scores.
+sensitive_attribute (np.ndarray , optional ) – The sensitive attribute - which protected group each sample belongs to.
+If not provided, will not compute fairness metrics.
+return_groupwise_metrics (bool ) – Whether to return groupwise performance metrics (requires providing
+sensitive_attribute ).
+
+
+Returns:
+A dictionary of (key, value) -> (metric_name, metric_value).
+
+Return type:
+dict
+
+
+
+
+
+
+error_parity.evaluation. evaluate_predictions_bootstrap ( y_true , y_pred_scores , sensitive_attribute , k = 200 , confidence_pct = 95 , seed = 42 , ** threshold_target ) [source]
+Computes bootstrap estimates of several metrics for the given predictions.
+
+Parameters:
+
+y_true (np.ndarray ) – The true labels.
+y_pred_scores (np.ndarray ) – The score predictions.
+sensitive_attribute (np.ndarray ) – The sensitive attribute data.
+k (int , optional ) – How many bootstrap samples to draw, by default 200.
+confidence_pct (float , optional ) – How large of a confidence interval to use when reporting lower and upper
+bounds, by default 95 (i.e., 2.5 to 97.5 percentile of results).
+seed (int , optional ) – The random seed, by default 42.
+
+
+Returns:
+A dictionary of results
+
+Return type:
+dict
+
+
+
+
+
+
+error_parity.binarize module
+Module to binarize continuous-score predictions.
+Based on: https://github.com/AndreFCruz/hpt/blob/main/src/hpt/binarize.py
+
+
+error_parity.binarize. compute_binary_predictions ( y_true , y_pred_scores , threshold = None , tpr = None , fpr = None , ppr = None , random_seed = 42 ) [source]
+Discretizes the given score predictions into binary labels.
+If necessary, will randomly untie binary predictions with equal score.
+
+Parameters:
+
+y_true (np.ndarray ) – The true binary labels
+y_pred_scores (np.ndarray ) – Predictions as a continuous score between 0 and 1
+threshold (Optional [ float ] , optional ) – Whether to use a specified (global) threshold, by default None
+tpr (Optional [ float ] , optional ) – Whether to target a specified TPR (true positive rate, or recall), by
+default None
+fpr (Optional [ float ] , optional ) – Whether to target a specified FPR (false positive rate), by default None
+ppr (Optional [ float ] , optional ) – Whether to target a specified PPR (positive prediction rate), by default
+None
+
+
+Returns:
+The binarized predictions according to the specified target.
+
+Return type:
+np.ndarray
+
+
+
+
+
+
+error_parity.classifiers module
+Helper functions to construct and use randomized classifiers.
+
+
+class error_parity.classifiers. BinaryClassifier ( score_predictor , threshold ) [source]
+Bases: Classifier
+Constructs a deterministic binary classifier, by thresholding a
+real-valued score predictor.
+Constructs a deterministic binary classifier from the given
+real-valued score predictor and a threshold in {0, 1}.
+
+
+
+
+class error_parity.classifiers. BinaryClassifierAtROCDiagonal ( target_fpr = None , target_tpr = None , seed = 42 ) [source]
+Bases: Classifier
+A dummy classifier whose predictions have no correlation with the input
+features, but achieves whichever target FPR or TPR you want (on ROC diag.)
+
+
+
+
+class error_parity.classifiers. Classifier [source]
+Bases: ABC
+
+
+
+
+class error_parity.classifiers. EnsembleGroupwiseClassifiers ( group_to_clf ) [source]
+Bases: Classifier
+Constructs a classifier from a set of group-specific classifiers.
+Constructs a classifier from a set of group-specific classifiers.
+Must be provided exactly one classifier per unique group value.
+
+Parameters:
+group_to_clf (dict [ int | str , callable ] ) – A mapping of group value to the classifier that should handle
+predictions for that specific group.
+
+
+
+
+
+
+class error_parity.classifiers. RandomizedClassifier ( classifiers , probabilities , seed = 42 ) [source]
+Bases: Classifier
+Constructs a randomized classifier from the given classifiers and
+their probabilities.
+Constructs a randomized classifier from the given classifiers and
+their probabilities.
+This classifier will compute predictions for the whole input dataset at
+once, which will in general be faster for larger inputs (when compared
+to predicting each sample separately).
+
+Parameters:
+
+classifiers (list [ callable ] ) – A list of classifiers
+probabilities (list [ float ] ) – A list of probabilities for each given classifier, where
+probabilities[idx] is the probability of using the prediction from
+classifiers[idx].
+seed (int , optional ) – A random seed, by default 42.
+
+
+Returns:
+The corresponding randomized classifier.
+
+Return type:
+callable
+
+
+
+
+static construct_at_target_ROC ( predictor , roc_curve_data , target_roc_point , seed = 42 ) [source]
+Constructs a randomized classifier in the interior of the
+convex hull of the classifier’s ROC curve, at a given target
+ROC point.
+
+Parameters:
+
+predictor (callable ) – A predictor that outputs real-valued scores in range [0; 1].
+roc_curve_data (tuple [ np.array ... ] ) – The ROC curve of the given classifier, as a tuple of
+(FPR values; TPR values; threshold values).
+target_roc_point (np.ndarray ) – The target ROC point in (FPR, TPR).
+
+
+Returns:
+rand_clf – A (randomized) binary classifier whose expected FPR and TPR
+corresponds to the given target ROC point.
+
+Return type:
+callable
+
+
+
+
+
+
+static find_points_for_target_ROC ( roc_curve_data , target_roc_point ) [source]
+Retrieves a set of realizable points (and respective weights) in the
+provided ROC curve that can be used to realize any target ROC in the
+interior of the ROC curve.
+NOTE: this method is a bit redundant – has functionality in common with
+RandomizedClassifier.construct_at_target_ROC()
+
+
+
+
+static find_weights_given_two_points ( point_A , point_B , target_point ) [source]
+Given two ROC points corresponding to existing binary classifiers,
+find the weights that result in a classifier whose ROC point is target_point.
+May need to interpolate the two given points with a third point corresponding
+to a random classifier (random uniform distribution with different thresholds).
+
+Returns:
+Returns a tuple of numpy arrays (Ws, Ps), such that Ws @ Ps == target_point.
+The 1st array, Ws, corresponds to the weights of each point in the 2nd array, Ps.
+
+Return type:
+tuple[np.ndarray, np.ndarray]
+
+
+
+
+
+
+
+
+error_parity.cvxpy_utils module
+A set of helper functions for using cvxpy.
+
+
+error_parity.cvxpy_utils. compute_fair_optimum ( * , fairness_constraint , tolerance , groupwise_roc_hulls , group_sizes_label_pos , group_sizes_label_neg , groupwise_prevalence , global_prevalence , false_positive_cost = 1.0 , false_negative_cost = 1.0 ) [source]
+Computes the solution to finding the optimal fair (equal odds) classifier.
+Can relax the equal odds constraint by some given tolerance.
+
+Parameters:
+
+fairness_constraint (str ) –
The name of the fairness constraint under which the LP will be
+optimized. Possible inputs are:
+
+
+’equalized_odds’ match true positive and false positive rates across groups
+
+
+
+
+tolerance (float ) – A value for the tolerance when enforcing the fairness constraint.
+groupwise_roc_hulls (dict [ int , np.ndarray ] ) – A dict mapping each group to the convex hull of the group’s ROC curve.
+The convex hull is an np.array of shape (n_points, 2), containing the
+points that form the convex hull of the ROC curve, sorted in COUNTER
+CLOCK-WISE order.
+group_sizes_label_pos (np.ndarray ) – The relative or absolute number of positive samples in each group.
+group_sizes_label_neg (np.ndarray ) – The relative or absolute number of negative samples in each group.
+global_prevalence (float ) – The global prevalence of positive samples.
+false_positive_cost (float , optional ) – The cost of a FALSE POSITIVE error, by default 1.
+false_negative_cost (float , optional ) – The cost of a FALSE NEGATIVE error, by default 1.
+
+
+Returns:
+(groupwise_roc_points, global_roc_point) – A tuple pair, (<1>, <2>), containing:
+1: an array with the group-wise ROC points for the solution.
+2: an array with the single global ROC point for the solution.
+
+Return type:
+tuple[np.ndarray, np.ndarray]
+
+
+
+
+
+
+error_parity.cvxpy_utils. compute_halfspace_inequality ( p1 , p2 ) [source]
+
+Computes the halfspace inequality defined by the vector p1->p2, such that Ax + b <= 0,
+where A and b are extracted from the line that goes through p1->p2.
+
+
+As such, the inequality enforces that points must lie on the LEFT of the
+line defined by the p1->p2 vector.
+In other words, input points are assumed to be in COUNTER CLOCK-WISE order
+(right-hand rule).
+
+Parameters:
+
+
+Returns:
+Returns an array of size=(n_dims + 1), with format [A; b],
+representing the inequality Ax + b <= 0.
+
+Return type:
+tuple[float, float, float]
+
+Raises:
+RuntimeError – Thrown in case if inconsistent internal state variables.
+
+
+
+
+
+
+error_parity.cvxpy_utils. compute_line ( p1 , p2 ) [source]
+Computes the slope and intercept of the line that passes
+through the two given points.
+The intercept is the value at x=0!
+(or NaN for vertical lines)
+For vertical lines just use the x-value of one of the points
+to find the intercept at y=0.
+
+Parameters:
+
+
+Returns:
+A tuple pair with (slope, intercept) of the line that goes from p1 to p2.
+
+Return type:
+tuple[float, float]
+
+Raises:
+ValueError – Raised when input is invalid, e.g., when p1 == p2.
+
+
+
+
+
+
+error_parity.cvxpy_utils. make_cvxpy_halfspace_inequality ( p1 , p2 , cvxpy_point ) [source]
+Creates a single cvxpy inequality constraint that enforces the given
+point, cvxpy_point , to lie on the left of the vector p1->p2.
+Points must be sorted in counter clock-wise order!
+
+Parameters:
+
+p1 (np.ndarray ) – A point p1.
+p2 (np.ndarray ) – Another point p2.
+cvxpy_point (Variable ) – The cvxpy variable over which the constraint will be applied.
+
+
+Returns:
+A linear inequality constraint of type Ax + b <= 0.
+
+Return type:
+Expression
+
+
+
+
+
+
+error_parity.cvxpy_utils. make_cvxpy_point_in_polygon_constraints ( polygon_vertices , cvxpy_point ) [source]
+Creates the set of cvxpy constraints that force the given cvxpy variable
+point to lie within the polygon defined by the given vertices.
+
+Parameters:
+
+polygon_vertices (np.ndarray ) – A sequence of points that make up a polygon.
+Points must be sorted in COUNTER CLOCK-WISE order! (right-hand rule)
+cvxpy_point (cvxpy.Variable ) – A cvxpy variable representing a point, over which the constraints will
+be applied.
+
+
+Returns:
+A list of cvxpy constraints.
+
+Return type:
+list[Expression]
+
+
+
+
+
+
+error_parity.roc_utils module
+Helper functions to solve the relaxed equal odds problem.
+
+
+error_parity.roc_utils. calc_cost_of_point ( fpr , fnr , prevalence , false_pos_cost = 1.0 , false_neg_cost = 1.0 ) [source]
+Calculates the cost of the given ROC point.
+
+Parameters:
+
+fpr (float ) – The false positive rate (FPR).
+fnr (float ) – The false negative rate (FNR).
+prevalence (float ) – The prevalence of positive samples in the dataset,
+i.e., np.sum(y_true) / len(y_true)
+false_pos_cost (float , optional ) – The cost of a false positive error, by default 1.
+false_neg_cost (float , optional ) – The cost of a false negative error, by default 1.
+
+
+Returns:
+cost – The cost of the given ROC point (divided by the size of the dataset).
+
+Return type:
+float
+
+
+
+
+
+
+error_parity.roc_utils. compute_global_roc_from_groupwise ( groupwise_roc_points , groupwise_label_pos_weight , groupwise_label_neg_weight ) [source]
+Computes the global ROC point that corresponds to the provided group-wise
+ROC points.
+The global ROC is a linear combination of the group-wise points, with
+different weights for computing FPR and TPR – the first related to LNs, and
+the second to LPs.
+
+Parameters:
+
+groupwise_roc_points (np.ndarray ) – An array of shape (n_groups, n_roc_dims) containing one ROC point per
+group.
+groupwise_label_pos_weight (np.ndarray ) – The relative size of each group in terms of its label POSITIVE samples
+(out of all POSITIVE samples, how many are in each group).
+groupwise_label_neg_weight (np.ndarray ) – The relative size of each group in terms of its label NEGATIVE samples
+(out of all NEGATIVE samples, how many are in each group).
+
+
+Returns:
+global_roc_point – A single point that corresponds to the global outcome of the given
+group-wise ROC points.
+
+Return type:
+np.ndarray
+
+
+
+
+
+
+error_parity.roc_utils. compute_roc_point_from_predictions ( y_true , y_pred_binary ) [source]
+Computes the ROC point associated with the provided binary predictions.
+
+Parameters:
+
+
+Returns:
+The resulting ROC point, i.e., a tuple (FPR, TPR).
+
+Return type:
+tuple[float, float]
+
+
+
+
+
+
+error_parity.roc_utils. roc_convex_hull ( roc_points ) [source]
+Computes the convex hull of the provided ROC points.
+
+Parameters:
+roc_points (np.ndarray ) – An array of shape (n_points, n_dims) containing all points
+of a provided ROC curve.
+
+Returns:
+hull_points – An array of shape (n_hull_points, n_dim) containing all
+points in the convex hull of the ROC curve.
+
+Return type:
+np.ndarray
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/examples/README.html b/examples/README.html
new file mode 100644
index 0000000..19d47f9
--- /dev/null
+++ b/examples/README.html
@@ -0,0 +1,157 @@
+
+
+
+
+
+
+ Example jupyter notebooks — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+Example jupyter notebooks
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/examples/brute-force-example_equalized-odds-thresholding.html b/examples/brute-force-example_equalized-odds-thresholding.html
new file mode 100644
index 0000000..040ed2b
--- /dev/null
+++ b/examples/brute-force-example_equalized-odds-thresholding.html
@@ -0,0 +1,565 @@
+
+
+
+
+
+
+ Comparison between error-parity’s LP solver and a brute-force solver — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+ Comparison between error-parity
’s LP solver and a brute-force solver
+
+ View page source
+
+
+
+
+
+
+
+
+Comparison between error-parity
’s LP solver and a brute-force solver
+Out of curiosity, this notebook compares the performance and efficiency of the error-parity
LP formulation against a baseline brute-force solver.
+NOTE : this notebook has extra requirements, install them with:
+ pip install "error_parity[dev]"
+
+
+
+
+
+
+
+
+
+
+Notebook ran using `error-parity==0.3.8`
+
+
+
+Given some data (X, Y, S)
+
+
+
+
+
+
+
+
+Actual global prevalence: 27.2%
+
+
+
+
+
+
+Given a trained predictor (that outputs real-valued scores)
+
+
+
+
+Comparing LP vs brute-force solution
+
+1. Brute-force solver
+
+Run solver:
+
+
+
+
+
+
+
+CPU times: user 3min 56s, sys: 5.15 s, total: 4min 2s
+Wall time: 4min 2s
+
+
+
+
+
+
+{'group_thresholds': ((0.7000000000000001, 0.8), (0.7000000000000001, 0.9)),
+ 'accuracy': 0.80763,
+ 'eq_odds_violation': 0.04660537497114363}
+
+
+
+
+2. LP solver
+
+
+
+
+
+
+
+CPU times: user 111 ms, sys: 3.29 ms, total: 115 ms
+Wall time: 114 ms
+
+
+
+
+Compare accuracy and constraint violation
+Assumes FP_cost == FN_cost == 1.0
.
+
+
+
+
+
+
+Accuracy for dummy constant classifier: 72.8%
+
+
+Evaluate predictions realized by LP solution.
+
+
+
+
+
+
+Realized LP accuracy: 82.2%
+Realized LP eq. odds violation: 5.0%
+
+
+
+Evaluate predictions realized by brute-force solution.
+
+
+
+
+
+
+Realized BF accuracy: 80.8%
+Realized BF eq. odds violation: 4.7%
+
+
+Conclusion: brute-force solver took 4 minutes to exhaustively search over 4356 combinations while the LP solver took 114ms to achieve a superior solution (because of the finer search grid).
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/examples/brute-force-example_equalized-odds-thresholding.ipynb b/examples/brute-force-example_equalized-odds-thresholding.ipynb
new file mode 100644
index 0000000..70f5d01
--- /dev/null
+++ b/examples/brute-force-example_equalized-odds-thresholding.ipynb
@@ -0,0 +1,580 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e2b69330",
+ "metadata": {},
+ "source": [
+ "# Comparison between `error-parity`'s LP solver and a brute-force solver\n",
+ "\n",
+ "Out of curiosity, this notebook compares the performance and efficiency of the `error-parity` LP formulation against a baseline brute-force solver.\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with:\n",
+ "```\n",
+ "pip install \"error_parity[dev]\"\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1509e4cf",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%pip install \"error-parity[dev]\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "f2866f8f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.8`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "70b33f87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_synthetic_data(n_samples: int, n_groups: int, prevalence: float, seed: int):\n",
+ " \"\"\"Helper to generate synthetic features/labels/predictions.\"\"\"\n",
+ "\n",
+ " # Construct numpy rng\n",
+ " rng = np.random.default_rng(seed)\n",
+ " \n",
+ " # Different levels of gaussian noise per group (to induce some inequality in error rates)\n",
+ " group_noise = [0.1 + 0.3 * rng.random() / (1+idx) for idx in range(n_groups)]\n",
+ "\n",
+ " # Generate predictions\n",
+ " assert 0 < prevalence < 1\n",
+ " y_score = rng.random(size=n_samples)\n",
+ "\n",
+ " # Generate labels\n",
+ " # - define which samples belong to each group\n",
+ " # - add different noise levels for each group\n",
+ " group = rng.integers(low=0, high=n_groups, size=n_samples)\n",
+ " \n",
+ " y_true = np.zeros(n_samples)\n",
+ " for i in range(n_groups):\n",
+ " group_filter = group == i\n",
+ " y_true_groupwise = ((\n",
+ " y_score[group_filter] +\n",
+ " rng.normal(size=np.sum(group_filter), scale=group_noise[i])\n",
+ " ) > (1-prevalence)).astype(int)\n",
+ "\n",
+ " y_true[group_filter] = y_true_groupwise\n",
+ "\n",
+ " ### Generate features: just use the sample index\n",
+ " # As we already have the y_scores, we can construct the features X\n",
+ " # as the index of each sample, so we can construct a classifier that\n",
+ " # simply maps this index to our pre-generated predictions for this clf.\n",
+ " X = np.arange(len(y_true)).reshape((-1, 1))\n",
+ " \n",
+ " return X, y_true, y_score, group"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "0d326b40",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "N_GROUPS = 2\n",
+ "# N_SAMPLES = 1_000_000\n",
+ "N_SAMPLES = 100_000\n",
+ "\n",
+ "SEED = 23\n",
+ "\n",
+ "X, y_true, y_score, group = generate_synthetic_data(\n",
+ " n_samples=N_SAMPLES,\n",
+ " n_groups=N_GROUPS,\n",
+ " prevalence=0.25,\n",
+ " seed=SEED)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "ba24bcc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual global prevalence: 27.2%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_true) / len(y_true)\n",
+ "print(f\"Actual global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "5615f135",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Example predictor that predicts the synthetically produced scores above\n",
+ "predictor = lambda idx: y_score[idx].ravel()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb54b73d",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "---\n",
+ "# Comparing LP vs brute-force solution"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1dc0899f",
+ "metadata": {},
+ "source": [
+ "## 1. Brute-force solver"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "2cb73fc8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from itertools import product\n",
+ "from collections.abc import Iterable\n",
+ "from error_parity.evaluation import eval_accuracy_and_equalized_odds\n",
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "def binarize_predictions(y_score, group_membership, group_thresholds: dict, seed: int = 42):\n",
+ " \"\"\"Binarizes score predictions using different group thresholds.\"\"\"\n",
+ " # Random number generator\n",
+ " rng = np.random.default_rng(seed)\n",
+ "\n",
+ " # Results array\n",
+ " y_pred_binary = np.zeros_like(group_membership, dtype=int)\n",
+ "\n",
+ " for group_key, group_thrs in group_thresholds.items():\n",
+ " \n",
+ " # Single threshold provided (no randomization)\n",
+ " if not isinstance(group_thrs, Iterable):\n",
+ " low_thr, high_thr = group_thrs, group_thrs\n",
+ " \n",
+ " # Two thresholds provided (partial randomization)\n",
+ " else:\n",
+ " assert len(group_thrs) == 2, f\"Provide exactly 2 thresholds, got {len(group_thrs)}\"\n",
+ " low_thr, high_thr = group_thrs\n",
+ "\n",
+ " # Boolean numpy filter for samples of the current group\n",
+ " group_filter = group_membership == group_key\n",
+ " group_score_preds = y_score[group_filter]\n",
+ "\n",
+ " # Below low_thr -> negative pred.\n",
+ " y_pred_binary[group_filter & (y_score < low_thr)] = 0\n",
+ "\n",
+ " # Above high_thr -> positive pred.\n",
+ " y_pred_binary[group_filter & (y_score > high_thr)] = 1\n",
+ "\n",
+ " # Between low_thr and high_thr -> random uniform prediction\n",
+ " if not np.isclose(low_thr, high_thr):\n",
+ " middle_scores_filter = ((y_score >= low_thr) & (y_score <= high_thr))\n",
+ " y_pred_binary[group_filter & middle_scores_filter] = rng.integers(\n",
+ " low=0, high=2, # sampled in [low, high)\n",
+ " size=np.sum(group_filter & middle_scores_filter),\n",
+ " )\n",
+ "\n",
+ " # Return binarized predictions\n",
+ " return y_pred_binary\n",
+ "\n",
+ "\n",
+ "def solve_brute_force(\n",
+ " *,\n",
+ " predictor,\n",
+ " tolerance: float,\n",
+ " data_tuple: float,\n",
+ " threshold_ticks_step: float = 1e-2,\n",
+ " ) -> dict:\n",
+ " \"\"\"Brute-force solution for equalized odds problem.\"\"\"\n",
+ "\n",
+ " # Unpack data tuple\n",
+ " X_feats, y_labels, s_group = data_tuple\n",
+ "\n",
+ " # Generate unique threshold combinations\n",
+ " unique_groups = np.unique(s_group)\n",
+ " group_threshold_combinations = product(*[\n",
+ " ### Deterministic thresholds\n",
+ " # np.arange(0, 1 + threshold_ticks_step, threshold_ticks_step)\n",
+ "\n",
+ " ### Randomized thresholds (full search)\n",
+ " [\n",
+ " (lo_thr, hi_thr)\n",
+ " for lo_thr, hi_thr in product(\n",
+ " np.arange(0, 1 + threshold_ticks_step, threshold_ticks_step),\n",
+ " np.arange(0, 1 + threshold_ticks_step, threshold_ticks_step),\n",
+ " )\n",
+ " if lo_thr <= hi_thr\n",
+ " ]\n",
+ " for _ in range(N_GROUPS)\n",
+ " ])\n",
+ "\n",
+ " ### Characterizing the best result\n",
+ " ### NOTE: \"best\" is defined as maximizing accuracy constrained by eq_odds <= tolerance\n",
+ "\n",
+ " # Threshold combination of the best result\n",
+ " best_combi: tuple = None\n",
+ " \n",
+ " # Accuracy of the best result\n",
+ " best_accuracy: float = None\n",
+ " \n",
+ " # Constraint violation of the best result\n",
+ " best_eq_odds_violation: float = None\n",
+ "\n",
+ " # Evaluate all threshold combinations\n",
+ " num_determ_thrs = np.ceil(1 / threshold_ticks_step) + 1\n",
+ " total_combinations = int((num_determ_thrs * (num_determ_thrs + 1) / 2) ** len(unique_groups))\n",
+ "\n",
+ " for combi in tqdm(group_threshold_combinations, total=total_combinations):\n",
+ " thrsh_dict = dict(zip(unique_groups, combi))\n",
+ " \n",
+ " # Binarize predictions with this threshold combination\n",
+ " binarized_preds = binarize_predictions(\n",
+ " y_score=y_score,\n",
+ " group_membership=s_group,\n",
+ " group_thresholds=thrsh_dict,\n",
+ " )\n",
+ " \n",
+ " # Evaluate results\n",
+ " curr_result = eval_accuracy_and_equalized_odds(\n",
+ " y_true=y_labels, y_pred_binary=binarized_preds,\n",
+ " sensitive_attr=s_group,\n",
+ " )\n",
+ " \n",
+ " curr_accuracy, curr_eq_odds_violation = curr_result\n",
+ "\n",
+ " if best_combi is None or (\n",
+ " best_accuracy < curr_accuracy\n",
+ " and curr_eq_odds_violation <= tolerance):\n",
+ " \n",
+ " # New best found\n",
+ " best_combi = combi\n",
+ " best_accuracy = curr_accuracy\n",
+ " best_eq_odds_violation = curr_eq_odds_violation\n",
+ "\n",
+ " # Return solution that fulfills target tolerance optimally\n",
+ " return {\n",
+ " \"group_thresholds\": best_combi,\n",
+ " \"accuracy\": best_accuracy,\n",
+ " \"eq_odds_violation\": best_eq_odds_violation,\n",
+ " }"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "670a04f2",
+ "metadata": {},
+ "source": [
+ "Run solver:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "04da756a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "759999d9e0934feebe59c009450e1a91",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/4356 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 3min 56s, sys: 5.15 s, total: 4min 2s\n",
+ "Wall time: 4min 2s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "{'group_thresholds': ((0.7000000000000001, 0.8), (0.7000000000000001, 0.9)),\n",
+ " 'accuracy': 0.80763,\n",
+ " 'eq_odds_violation': 0.04660537497114363}"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "brute_force_solution = solve_brute_force(\n",
+ " predictor=predictor,\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " data_tuple=(X, y_true, group),\n",
+ " threshold_ticks_step=0.1,\n",
+ ")\n",
+ "\n",
+ "brute_force_solution"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "52c03426",
+ "metadata": {},
+ "source": [
+ "## 2. LP solver"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "44ef577c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "def solve_lp(predictor, tolerance: float, data_tuple: tuple):\n",
+ " clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=\"equalized_odds\",\n",
+ " tolerance=tolerance,\n",
+ " max_roc_ticks=None, # use full precision\n",
+ " seed=SEED,\n",
+ " )\n",
+ "\n",
+ " X, y_true, group = data_tuple\n",
+ " clf.fit(X=X, y=y_true, group=group)\n",
+ " return clf"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "2905dbe7",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 111 ms, sys: 3.29 ms, total: 115 ms\n",
+ "Wall time: 114 ms\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "postproc_clf = solve_lp(\n",
+ " predictor=predictor,\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " data_tuple=(X, y_true, group),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "## Compare accuracy and constraint violation\n",
+ "Assumes `FP_cost == FN_cost == 1.0`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "c6488eea",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy for dummy constant classifier: 72.8%\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f\"Accuracy for dummy constant classifier: {max(np.mean(y_true==label) for label in {0, 1}):.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0be46537",
+ "metadata": {},
+ "source": [
+ "Evaluate predictions realized by LP solution."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "67746b4e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Realized LP accuracy: 82.2%\n",
+ "Realized LP eq. odds violation: 5.0%\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred_binary_lp = postproc_clf.predict(X, group=group)\n",
+ "\n",
+ "lp_acc, lp_eq_odds = eval_accuracy_and_equalized_odds(y_true, y_pred_binary_lp, group)\n",
+ "\n",
+ "print(f\"Realized LP accuracy: {lp_acc:.1%}\")\n",
+ "print(f\"Realized LP eq. odds violation: {lp_eq_odds:.1%}\\n\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cce2e2bb",
+ "metadata": {},
+ "source": [
+ "Evaluate predictions realized by brute-force solution."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "6706b353",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Realized BF accuracy: 80.8%\n",
+ "Realized BF eq. odds violation: 4.7%\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred_binary_brute_force = binarize_predictions(\n",
+ " y_score=y_score, group_membership=group,\n",
+ " group_thresholds=dict(zip(range(N_GROUPS), brute_force_solution[\"group_thresholds\"])),\n",
+ ")\n",
+ "\n",
+ "bf_acc, bf_eq_odds = eval_accuracy_and_equalized_odds(y_true, y_pred_binary_brute_force, group)\n",
+ "\n",
+ "print(f\"Realized BF accuracy: {bf_acc:.1%}\")\n",
+ "print(f\"Realized BF eq. odds violation: {bf_eq_odds:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9f926646",
+ "metadata": {},
+ "source": [
+ "**Conclusion:** brute-force solver took 4 minutes to exhaustively search over 4356 combinations while the LP solver took 114ms to achieve a superior solution (because of the finer search grid)."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/examples/example-with-postprocessing-and-inprocessing.html b/examples/example-with-postprocessing-and-inprocessing.html
new file mode 100644
index 0000000..8559638
--- /dev/null
+++ b/examples/example-with-postprocessing-and-inprocessing.html
@@ -0,0 +1,725 @@
+
+
+
+
+
+
+ Example usage of error-parity with other fairness-constrained classifiers — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+Example usage of error-parity
with other fairness-constrained classifiers
+Contents: 1. Train a standard (unconstrained) model; 2. Check attainable fairness-accuracy trade-offs via post-processing, with the error-parity
package; 3. Train fairness-constrained model (in-processing fairness intervention), with the fairlearn
package; 5. Map results for post-processing + in-processing interventions;
+
+NOTE : This notebook has the following extra requirements: fairlearn
lightgbm
.
+Install them with pip install fairlearn lightgbm
+
+
+
+
+Some useful global constants:
+
+
+Fetch UCI Adult data
+We’ll use the sex
column as the sensitive attribute. That is, false positive (FP) and false negative (FN) errors should not disproportionately impact individuals based on their sex.
+
+Download data.
+
+Split in train/test/validation data.
+
+Log the accuracy attainable by a dummy constant classifier.
+
+
+
+
+
+{'train': 0.7607125098715961,
+ 'test': 0.7607315908005187,
+ 'validation': 0.7607125098715961}
+
+
+
+
+Train a standard (unconstrained) classifier
+
+
+
+
+
LGBMClassifier(verbosity=-1) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
+
+
+
+
+
+
+
+In-processing model:
+> accuracy = 0.87
+> equalized odds = 0.0673
+
+
+
+
+
+Map attainable fairness-accuracy trade-offs via (relaxed) post-processing
+By varying the tolerance (or slack) of the fairness constraint we can map the different trade-offs attainable by the same model (each trade-off corresponds to a different post-processing intervention).
+Post-processing fairness methods intervene on the predictions of an already trained model, using different (possibly randomized) thresholds to binarize predictions of different groups.
+We’ll be using the `error-parity
<https://github.com/socialfoundations/error-parity >`__ package [Cruz and Hardt, 2023] .
+
+
+
+
+Plot post-processing adjustment frontier
+
+
+
+
+
+
+
+
+
+
+
+Let’s train another type of fairness-aware model
+In-processing fairness methods introduce fairness criteria during model training.
+Main disadvantage : state-of-the-art in-processing methods can be considerably slower to run (e.g., increasing training time by 20-100 times).
+We’ll be using the `fairlearn
<https://github.com/fairlearn/fairlearn >`__ package [Weerts et al., 2020] .
+
+Fit the ExponentiatedGradient
[Agarwal et al., 2018] in-processing intervention (note : may take a few minutes to fit).
+
+
+
+
+
+
+CPU times: user 1min 19s, sys: 1min 21s, total: 2min 40s
+Wall time: 39.2 s
+
+
+
+
+
+
ExponentiatedGradient(constraints=<fairlearn.reductions._moments.utility_parity.EqualizedOdds object at 0x11bd3abc0>,
+ estimator=LGBMClassifier(verbosity=-1), max_iter=10,
+ nu=0.000851617415307666) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
+
+Evaluate in-processing model on test data.
+
+
+
+
+
+
+In-processing model:
+> accuracy = 0.867
+> equalized odds = 0.0498
+
+
+
+We can go one step further and post-process this in-processing model :)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/examples/example-with-postprocessing-and-inprocessing.ipynb b/examples/example-with-postprocessing-and-inprocessing.ipynb
new file mode 100644
index 0000000..602f3db
--- /dev/null
+++ b/examples/example-with-postprocessing-and-inprocessing.ipynb
@@ -0,0 +1,762 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example usage of `error-parity` with other fairness-constrained classifiers\n",
+ "\n",
+ "Contents:\n",
+ "1. Train a standard (unconstrained) model;\n",
+ "2. Check attainable fairness-accuracy trade-offs via post-processing, with the `error-parity` package;\n",
+ "3. Train fairness-constrained model (in-processing fairness intervention), with the `fairlearn` package;\n",
+ "5. Map results for post-processing + in-processing interventions;\n",
+ "\n",
+ "---\n",
+ "\n",
+ "**NOTE**: This notebook has the following extra requirements: `fairlearn` `lightgbm`.\n",
+ "\n",
+ "Install them with ```pip install fairlearn lightgbm```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "error-parity==0.3.8\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"error-parity=={__version__}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(palette=\"colorblind\", style=\"whitegrid\", rc={\"grid.linestyle\": \"--\", \"figure.dpi\": 200, \"figure.figsize\": (4,3)})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Some useful global constants:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SEED = 2\n",
+ "\n",
+ "TEST_SIZE = 0.3\n",
+ "VALIDATION_SIZE = None\n",
+ "\n",
+ "PERF_METRIC = \"accuracy\"\n",
+ "DISP_METRIC = \"equalized_odds_diff\"\n",
+ "\n",
+ "N_JOBS = max(2, os.cpu_count() - 2)\n",
+ "\n",
+ "np.random.seed(SEED)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Fetch UCI Adult data\n",
+ "\n",
+ "We'll use the `sex` column as the sensitive attribute.\n",
+ "That is, false positive (FP) and false negative (FN) errors should not disproportionately impact individuals based on their sex."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SENSITIVE_COL = \"sex\"\n",
+ "sensitive_col_map = {\"Male\": 0, \"Female\": 1}\n",
+ "\n",
+ "# NOTE: You can also try to run this using the `race` column as sensitive attribute (as commented below).\n",
+ "# SENSITIVE_COL = \"race\"\n",
+ "# sensitive_col_map = {\"White\": 0, \"Black\": 1, \"Asian-Pac-Islander\": 1, \"Amer-Indian-Eskimo\": 1, \"Other\": 1}\n",
+ "\n",
+ "sensitive_col_inverse = {val: key for key, val in sensitive_col_map.items()}\n",
+ "\n",
+ "POS_LABEL = \">50K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Download data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from fairlearn.datasets import fetch_adult\n",
+ "\n",
+ "X, Y = fetch_adult(\n",
+ " as_frame=True,\n",
+ " return_X_y=True,\n",
+ ")\n",
+ "\n",
+ "# Map labels and sensitive column to numeric data\n",
+ "Y = np.array(Y == POS_LABEL, dtype=int)\n",
+ "S = np.array([sensitive_col_map[elem] for elem in X[SENSITIVE_COL]], dtype=int)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Split in train/test/validation data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "X_train, X_other, y_train, y_other, s_train, s_other = train_test_split(\n",
+ " X, Y, S,\n",
+ " test_size=TEST_SIZE + (VALIDATION_SIZE or 0),\n",
+ " stratify=Y, random_state=SEED,\n",
+ ")\n",
+ "\n",
+ "if VALIDATION_SIZE is not None and VALIDATION_SIZE > 0:\n",
+ " X_val, X_test, y_val, y_test, s_val, s_test = train_test_split(\n",
+ " X_other, y_other, s_other,\n",
+ " test_size=TEST_SIZE / (TEST_SIZE + VALIDATION_SIZE),\n",
+ " stratify=y_other, random_state=SEED,\n",
+ " )\n",
+ "else:\n",
+ " X_test, y_test, s_test = X_other, y_other, s_other\n",
+ " X_val, y_val, s_val = X_train, y_train, s_train"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Log the accuracy attainable by a dummy constant classifier."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'train': 0.7607125098715961,\n",
+ " 'test': 0.7607315908005187,\n",
+ " 'validation': 0.7607125098715961}"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "def compute_constant_clf_accuracy(labels: np.ndarray) -> float:\n",
+ " return max((labels == const_pred).mean() for const_pred in np.unique(labels))\n",
+ "\n",
+ "constant_clf_accuracy = {\n",
+ " \"train\": compute_constant_clf_accuracy(y_train),\n",
+ " \"test\": compute_constant_clf_accuracy(y_test),\n",
+ " \"validation\": compute_constant_clf_accuracy(y_val),\n",
+ "}\n",
+ "constant_clf_accuracy"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Train a standard (unconstrained) classifier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "LGBMClassifier(verbosity=-1) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "LGBMClassifier(verbosity=-1)"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from lightgbm import LGBMClassifier\n",
+ "\n",
+ "unconstr_clf = LGBMClassifier(verbosity=-1)\n",
+ "unconstr_clf.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In-processing model: \n",
+ "> accuracy = 0.87\n",
+ "> equalized odds = 0.0673\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import evaluate_predictions_bootstrap\n",
+ "\n",
+ "unconstr_test_results = evaluate_predictions_bootstrap(\n",
+ " y_true=y_test,\n",
+ " y_pred_scores=unconstr_clf.predict(X_test, random_state=SEED).astype(float),\n",
+ " sensitive_attribute=s_test,\n",
+ ")\n",
+ "\n",
+ "print(\n",
+ " f\"In-processing model: \\n\"\n",
+ " f\"> accuracy = {unconstr_test_results['accuracy_mean']:.3}\\n\"\n",
+ " f\"> equalized odds = {unconstr_test_results['equalized_odds_diff_mean']:.3}\\n\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Map attainable fairness-accuracy trade-offs via (relaxed) post-processing\n",
+ "\n",
+ "By varying the tolerance (or slack) of the fairness constraint we can map the different trade-offs attainable by the same model (each trade-off corresponds to a different post-processing intervention).\n",
+ "\n",
+ "**Post-processing** fairness methods intervene on the predictions of an already trained model, using different (possibly randomized) thresholds to binarize predictions of different groups.\n",
+ "\n",
+ "We'll be using the [`error-parity`](https://github.com/socialfoundations/error-parity) package [[Cruz and Hardt, 2023]](https://arxiv.org/abs/2306.07261)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "1da832ca83be43929491a5b6a3123648",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "# Data to fit postprocessing adjustment\n",
+ "fit_data = (X_train, y_train, s_train)\n",
+ "# fit_data = (X_val, y_val, s_val)\n",
+ "\n",
+ "# Common kwargs for the `compute_postprocessing_curve` call\n",
+ "compute_postproc_kwargs = dict(\n",
+ " fit_data=fit_data,\n",
+ " eval_data={\n",
+ " \"validation\": (X_val, y_val, s_val),\n",
+ " \"test\": (X_test, y_test, s_test),\n",
+ " },\n",
+ " fairness_constraint=\"equalized_odds\",\n",
+ " tolerance_ticks=np.hstack((\n",
+ " np.arange(0.0, 0.1, 1e-2),\n",
+ " np.arange(0.1, 1.0, 1e-1),\n",
+ " )),\n",
+ " bootstrap=True,\n",
+ " n_jobs=N_JOBS,\n",
+ " seed=SEED,\n",
+ ")\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=unconstr_clf,\n",
+ " y_fit_pred_scores=unconstr_clf.predict_proba(fit_data[0])[:, -1],\n",
+ " **compute_postproc_kwargs,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot post-processing adjustment frontier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SHOW_RESULTS_ON = \"test\"\n",
+ "# SHOW_RESULTS_ON = \"validation\"\n",
+ "\n",
+ "ax_kwargs = dict(\n",
+ " xlim=(constant_clf_accuracy[SHOW_RESULTS_ON] - 5e-3, 0.885),\n",
+ " ylim=(0.0, 0.3),\n",
+ " title=\"Random Hyperparameter Search (val.)\",\n",
+ " xlabel=PERF_METRIC + r\"$\\rightarrow$\",\n",
+ " ylabel=\"equalized odds (diff.) $\\leftarrow$\" if DISP_METRIC == \"equalized_odds_diff\" else DISP_METRIC,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLUAAAKACAYAAABqokocAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1xT1/8/8FeCQdmI4kLc4sY96t6KolL3rqvW9XFrh7VWbW1dVeuq1j3q1jqqiEK1uMW66kIRlSWiyBYI5P7+4Jv7S0gCARIC8fV8PHx4c++55557z80leecMiSAIAoiIiIiIiIiIiAoRqakLQERERERERERElFMMahERERERERERUaHDoBYRERERERERERU6DGoREREREREREVGhw6AWEREREREREREVOgxqERERERERERFRocOgFhERERERERERFToMahERERERERERUaHDoBYRERERERERERU6DGoREREREREREVGhw6AWEREREREREREVOgxqERERERERERFRocOgFhERERERERERFToMahERERERERERUaHDoBYRERERERERERU6DGoREREREREREVGhw6AWEREREREREREVOgxqERERERERERFRocOgFhGZFblcbuoiEBVogiAgPT3d1MXIEb6v8w+vNRERERUmDGoRmbGjR4+iRo0a2f6rXbs2GjZsiE6dOuGLL77Atm3b8O7dO1MXP0dev36NSZMm4d9//zV1UaiACQ0NFe/1ESNGmLo4RnXv3j3UqVMHn3zyCeLj4zW2P3v2DMOHD0dERIQJSpdzaWlp2Lp1K3766SdTF6VQ++qrr8T3wPXr17WmMfYz9O7du6hZsybatWuH2NhYoxyDiIiIPj4MahER0tPTkZSUhNDQUFy4cAFLly5F586dsXfvXlMXTS9//fUXPDw84Ovra+qiEJlMUlISZs+ejbS0NEyfPh12dnZq27dv3w4vLy8EBASYqIQ58/r1a/Tr1w/Lli1DUlKSqYtj1vLjGVq/fn306dMHr1+/xvfff2+04xAREdHHpYipC0BE+cPV1RVDhgzRuk2hUODDhw+IiIiAj48PEhISkJSUhEWLFkEqlercr6Dw9/fnl1766K1evRovX76Em5sb+vfvr7Hdz8+vUHUte/nyJR4/fmzqYnwU8usZOmPGDHh7e+P06dPw8PBA165djX5MIiIiMm8MahF9JMqWLYuxY8dmm+6rr77C5MmTcfPmTQDAsmXL0LlzZzg7Oxu7iERGUb58eTx58sTUxTCqx48fY8+ePQCAmTNnwsLCwsQlItJUpkwZjBgxAr///juWLFmC1q1bw9ra2tTFIiIiokKM3Q+JSI2DgwPWr18PW1tbABldmo4fP27iUhFRVpYtW4b09HTUqVMHHTp0MHVxiHQaM2YMrKysEBERge3bt5u6OERERFTIMahFRBocHBzg6ekpvr569aoJS0NEWQkICMDly5cBAMOGDTNxaYiy5uTkBA8PDwDAjh07tE5oQERERKQvdj8kIq2qVq0qLr9+/VpnuoSEBBw5cgQXLlxAYGAgYmNjYWNjg/Lly6NVq1YYNGgQXFxcsjyWQqGAj48PTp8+jfv37+Pt27coUqQInJyc4O7ujg4dOqBnz54aXapGjBiBGzduqK0bOXKkuLxr1y40b948J6cNAOjYsSPCwsLQrFkz7N69G2/fvsW2bdvg6+uL169fw8LCAlWqVEHXrl0xdOhQsVVbZkePHsXXX38NADhw4AAqVqyIZcuWwdfXF+np6ahQoQK6du2KiRMnqu2XmpqKEydO4Pz583jw4AHev38PKysrlClTBi1atMDAgQNRvXp1vc7l5cuXOHjwIC5fvoyXL19CLpfD0dERtWvXhqenp9brmtndu3dx9OhRXL9+HW/evEF6ejpKliyJxo0bo3fv3mjdunW25Xj69CkOHTqE69evIyQkBKmpqXB0dESlSpXwySefYMCAAShVqpTO/XN7jwAZsx926tQJAMQ6VaW8jypXrgxvb2+kpqbi0KFDOHPmDJ4/f474+HiUKFECjRs3xoABA9CiRYtsz/fNmzfYvXs3Lly4gJCQEEgkEpQvXx6dOnXCqFGj4OjoiO7duyM4OBguLi7w8/PLNk9dfv/9dwCAjY2NGCxQpbyfVSmvBwD4+vqifPnyGvuZqt5V3zdKx44dw7FjxwAAn376KX7++edsj60tv5y8DwVBwNmzZ3HmzBncu3cP7969g6WlJcqWLYsWLVpg8ODBas9JXS5duoQTJ07g9u3biIyMhEQigZOTkzgT4KeffoqiRYtq7JfdfZtZjRo1ACBH91NOn6Gpqak4efIkzp07h//++w8xMTEoWrQoSpYsiYYNG6Jr167o2LFjtsft378/jh49iri4OOzbtw/jx4/Xq7xEREREmTGoRURaqQYHdAU9zp8/j2+//Rbv379XWx8TE4OYmBj8999/2L59OyZNmqTxhVEpOjoakyZNwu3bt9XWp6amijMynj59Ghs2bMDmzZtRoUKFPJ5Zzty/fx8TJ05EVFSUxvr79+9j165d2LJlC2rWrJllPnK5HOPGjcN///0nrnv48CFcXV3V0gUEBGDu3LkaQQi5XI64uDgEBgZiz549GDp0KL7++msUKaL9Ma5QKLBq1Sps3boV6enpatuioqJw8eJFXLx4Ebt27cKGDRu0BpRSUlIwf/58rd1PQ0NDERoaiuPHj6NNmzZYuXIlHBwctJZlw4YNWLt2LRQKhUY5oqKicPPmTWzevBnz5s3DwIEDNfbPz3skJCQEkyZNQmBgoNr6iIgInDp1CqdOncLgwYPx/fffQyKRaM3D398fU6dO1Rh4OzAwEIGBgTh06BDWrl2b6zKqCgsLwz///AMgI3hliPGJCkq9G4O+78OwsDBMmzYN9+/fV1ufkpKC+Ph4BAYGYu/evRg9ejRmzZoFqVSz4XtycjJmzZqF8+fPa2wLDw9HeHg4/Pz8sH79eqxfvx7u7u4GOkvjCAkJwfjx4/H8+XO19XK5HAkJCXjx4gWOHTuGBg0aYOPGjXByctKZV+PGjVGuXDmEh4fjwIEDGDdunNZrSERERJQdBrWISCvVWce0BQlOnTqF2bNnQxAEAICzszM6duyIcuXKISYmBv7+/nj27BlSU1OxevVqREREYNGiRRr5zJw5UwxWFC9eHB07doSrqyvkcjlevHgBHx8fyOVyBAcHY8yYMTh9+jQsLS0BAEOGDEH79u1x+vRp8Uvq4MGDxfLmNQD29u1bMaBlY2ODbt26oUKFCggPD8fZs2cRGxuLqKgoDB8+HHv27MkysLVp0ya1L9JK3bt3F5dv3LiBsWPHIjU1FQBgb2+Pjh07omLFikhKSsK1a9dw//59KBQK7NmzByEhIfjtt9+0fhmcN28ejh49Kr52c3ND69atYWNjg+DgYJw9exZyuRz379/H6NGjceTIERQrVkxMn5qaitGjR+PWrVsAAJlMhjZt2qB27dqQSCQICgrChQsXkJSUBH9/fwwbNgz79+/XaLV2/PhxrFmzBgAglUrRunVr1K5dG9bW1oiMjMSFCxcQFhaG5ORkzJ8/H+XLl0fLli3V8sjLPZITSUlJGDduHF68eAF7e3t07twZFSpUQFxcHHx9ffHy5UsAwP79+1GrVi0MHjxYI4+LFy9i8uTJ4iyDLi4u6Ny5MxwdHREUFARfX1+8ffsWn3/+uUG+xB8/flwMGrVt21ZrmgkTJiA+Ph779u1DSEiIuM7e3h4A4OjoKKYtCPVer149zJ07F69evcL+/fsBAHXr1kWPHj0AQO9Witro8z4MCQnBkCFDxEC2o6MjOnTogIoVKyI5ORn37t3D1atXkZ6eji1btiAqKgrLli3TyHPx4sViQMvGxgYdOnRA5cqVIZFIEBoairNnzyIxMRFv3rzB2LFj4ePjg+LFi+f63HJD32doamoqJkyYIAa0ypYti/bt26Ns2bJISkpCYGAgLly4AIVCgTt37mDKlCn4448/sjx269atcfDgQYSGhiIgIADNmjUz4pkSERGR2RKIyGwdOXJEcHNzE9zc3IThw4frvV9UVJTQqFEjcd8DBw6obX/+/LlQp04dcfv8+fOFpKQktTQKhULYtWuXUKtWLTHdsWPH1NLcunVL3Obh4SG8f/9eoywvX74UWrVqpTMPQRCEL7/8Utx+7do1vc9Tlw4dOoj5ubm5CX379hVev36tlubdu3fC0KFDxTSDBw/WyEf1+ru5uQkNGjQQjh07JsTHxwuvX78Wtm/fLiQmJgqCIAgxMTFC06ZNxbQTJkzQej1Onz4tuLu7i+nWrVunkebMmTPi9tq1a2vUnyAIwosXL4S2bduK6dauXau2fcmSJeI2Ly8v4eXLlxp5REZGCsOHDxfTzZ07VyNN165dBTc3N6FmzZrC33//rbE9NTVVmD17tpjHiBEj1LYb4h4JCQnJ8n2geg5ubm7CxIkThdjYWLU0aWlpavdZ165dNfJJSkpSu6bz588XUlJSNMri6empdrwOHTpo5KWvvn37ivlERUVlmVb1PENCQrSmKSj1LgiCcO3aNXH7l19+meW5ZSUn78O0tDShX79+YtpZs2YJ8fHxGnnevXtXaNOmjZju8OHDatvDw8OFmjVrCm5ubkKrVq2EV69eaeTx7t07oWfPnjrfg9ndt5lldT9l94zMbvuJEyfUypKcnKz1mjRo0EBMd+PGjSzL+9dff4lplyxZku35EREREWnDtt5EpObly5cYP348EhISAAClSpVCnz591NKsW7dObInStWtXLFq0CFZWVmppJBIJRowYgdmzZ4vrfv31V6SlpYmv7969Ky4PHDhQrcWIUoUKFTBz5kwxz8zdgYzN2dkZW7duRenSpdXWOzk54bfffkOZMmUAAP/++y8uXLiQZV6LFy+Gl5cXbG1tUbp0aYwaNUrsLrZ161bExsYCANzd3bF27Vqt18PDw0OtVciWLVvE/ZSUYywBwKxZs7R27apYsSJWrlwpvj5w4IC4HBkZib1794rnuXXrVq2t3kqVKoWNGzfC2dkZAHDixAm8ePFC3B4TEyO+dnNzQ/v27TXykMlkavdPYGCg2FINyP97pFKlSli9erXYiknJwsIC8+fPh42NDQDgxYsXiIiIUEuze/ducfy51q1bY9GiRRotxsqXL49t27ZpPY+cSkhIwMOHDwEAJUuWRMmSJfOUX0Gqd2PK6n149uxZ8f5p0aIFli1bpnXMPHd3d6xbt07sgrp+/Xq1br7KFpVAxns2c/dGIOMaz58/X3z94MEDw52kgam+Dz/77DOtY4C5u7tjzJgxADJa5927dy/LPGvVqiUuX79+3UAlJSIioo8Nux8SfSQiIiKwdetWrdvkcjnev3+Phw8fIiAgQPwyZmFhgWXLlql9gUlJScG5c+cAZAQQ5s6dm+VxR40ahT179iAsLAxhYWG4evUq2rRpI+avdOfOHZ15eHh4wN3dHa6urlq/TBnTxIkTdQYg7OzsMHr0aPz0008AAB8fH61f4IGMLkzK7lPanDp1SlyePXu2zrGyAKBbt25o3Lgxbt26haSkJJw5c0bsChcZGSl2IypevDiGDx+uM58mTZqgZcuWEAQBlSpVQkJCAmxtbXHs2DExaDlw4MAsx8axtbXFyJEjsXLlSigUCpw6dQpTpkwBALVzCAsLQ1RUlBgIUWVlZYUjR46gePHiGsfK73ukX79+Orsu2tjYoE6dOuLA2lFRUShbtqy43dvbW1yePn26zmM4Ozvjs88+E7vn5ZZq4MTNzS1PeQEoUPVuLNm9Dw8fPiwujx8/Pssuou7u7mjVqhUuXbqEsLAw3Lp1S+xCp3rf3r9/H2lpaVrf002bNsXx48fh6uoqBkwLItXzuX37Njp37qw13ciRI+Hp6QkXF5dsuwBXrFgRxYoVQ3JyMgIDA/HhwweNH0eIiIiIssOgFtFHIiQkROu4L7o4Oztj+fLl+OSTT9TW//vvv0hJSQEA1K5dW2sLBFVSqRRdu3bF9u3bAWQMhK4MaqmOoXLmzBnExcVhwIABaNWqlVpLGSsrK1SrVk3vshtSVl+AgYxZ5JRBrUuXLulMV79+fZ1fkENCQsSB4R0dHfWasdHDw0Mc9+jmzZtiUOvy5ctimlatWmX7xVJZL6pu3rwpLteuXTvbsjRo0EBcVpYJyAh81KpVC48ePUJ8fDz69euHzz77DO3bt9eYNU7XLHL5fY9kN1i3avBFtWXR27dvxZY2pUqVQr169bLMp1u3bnkOagUHB4vLVapUyVNeQMGqd2PJ6n2YlpamNhmBPtegYcOG4vteNajVoEEDyGQyyOVy3L59G4MHD8awYcPQpk0btRZ1Uqk020kmCoKmTZtix44dADJah4aFhaFPnz5o3ry52uQEDg4OOicOyEwqlaJSpUp4/Pgx0tPTERISYpDgLBEREX1cGNQiIlhaWsLW1hbOzs6oU6cOWrZsiW7dumkNiISGhorL+n4ZU02nHKhaub5Pnz7iLGuXL1/G5cuXYWFhgXr16qFNmzZo27Yt6tWrp3OmOWNycXHJduBmV1dXsbXBmzdvdLbIKF++vM48cnNNVbvuqO6v2iUut0GeZ8+eictTp07N0b7h4eFqr2fPno3x48cjPT0dkZGRWLZsGZYtW4Zy5cqhdevWaNOmDVq2bKm1ixeQ//dIdl34VFuSqM7qpxxEHtCv1VTlypVhaWmZpy53qnWtbyAhKwWp3o0lq/dheHi42oyVLVq0yFHeqvVRokQJfP7559iwYQOAjNZaX331FSQSCWrWrInWrVujbdu2aNSoUZatMguKjh07olmzZmIrxTNnzuDMmTOQyWRo1KgRWrdujfbt2+c4KKV630ZERDCoRURERDlW8D9JEZFBNGvWDLt3785zPjExMeKyvl+kVQNDmcd/+uGHH1CiRAns2rVLHG8rPT0dd+7cwZ07d7B27VqULl0avXv3xpgxY3LcTSkhIUFtvCht7OzstI47VaJECb2OYWdnh+TkZAiCgHfv3mmMv6VMo8v79+/FZX2vqWqXSNU6iY6OFpczjwulr8x1lJd9W7dujQ0bNmDBggXieFNARgDh4MGDOHjwICwtLdG+fXuMHj0ajRo10sjT2PeIKtUZILMj/N/MnwDw7t07cTmrulaSSqVwcHAQZ9jLjfj4+BwdMzsFrd6NIavrpPo+yo3M+0+dOhVWVlZYv349kpOTAWTcM48ePcKjR4/w+++/i90hP//8c5QrVy5PxzcmqVSKDRs24IcffsDx48fFe18ul+P69eu4fv06Vq5ciYoVK6Jv374YOXKkWgsuXVTrQ/V+JiIiItIXg1pElCOqX+T1pTqAcmaWlpb48ssvMWrUKJw5cwa+vr64ffu2OLYPkDFO1O+//45Dhw5h69atqFu3rt7HjomJybbbpYuLi9aglr4tKFRb7MhkMq1pDN0aQ/WaqrZQUr1uuaU6mP/48eNzNKi5tvGs2rdvj3PnzuHixYvw8fHBpUuX1IJvqamp8PHxgY+PDyZPnqzRSsjY94ghqLa4Ur0fspKb95KuY+oTQMhOQat3Y8jqfaj6nrKzs8PEiRNzlHfFihXVXkskEowfPx4DBw6Et7c3fH19cePGDTHABWQ8n/744w8cPXoUv/76K9q1a5ejYyrl9V7Sh52dHZYuXYrJkyfjr7/+wt9//602rhuQ0WJx1apVOHjwIHbt2pVlyzhA/b7Nr4kCiIiIyLwwqEVEOaLakkjflg2qLZF0tR5SzkI2atQoJCUl4datW7hy5Qr+/vtvceygmJgYTJs2DT4+PmoDFxuLcgbIrCgUCrGFgUwmy7a7ojaq1ySv11R1ObctHxwcHPD27VsAGWN36TO2UHYsLS3RpUsXdOnSBYIg4MmTJ7h27Rr8/f1x7do1MaCyfv16NGvWTGvXr4J4jyipvi/i4uKyTS8IQp5bpqi2KjNEQKCg1nt+UX3vCIKAsWPHGiRfR0dHDB48GIMHD0Zqairu3LmDq1ev4sKFC+LslcnJyZg5cyb+/vtvrc/I7IJWynEO80OFChUwceJETJw4EXFxcbhx44b4PlR2Qw0LC8NXX32FPXv2ZJmXarlz0kqSiIiISEn3tD5ERFqotkZ48uSJXvs8evRIXM5uYHkg49f7Nm3a4Msvv4S3tzd+/fVXsQVUaGgo/v33X73LW758eTx58iTLf35+flr3ffnypVrrFW2Cg4PFgIKLi0uuxnXKzTV9/PixuKx6TVWXnz9/nm0+f/75J7799lts3rxZTK+ax9OnT7PNIzU1Va8AoJJyXKFRo0Zh69at8PPzQ40aNcTtyvGzsmLIe8QQVMcvUx2bSpeQkJA8ByJUx6NKTEzMU15A4ah3YypXrpzYkishIQGRkZHZ7pOQkJCjgKKlpSWaNWuGadOm4dixY9i7d6/YBS8hIUHtWaQalM3uGHnpxpoX9vb26Ny5M7777jv4+flh/vz54rabN29qjLWWmeoYZgV59kciIiIquBjUIqIcqV+/vhg8ePjwIV69epVleoVCgfPnz4uvVWdM++mnnzBo0CA0bdo0yy+Q3bp1U5uFUXWMHgBGG0Q+JSUF169fzzKNr6+vuNyxY8dcHcfV1VUchysmJgbXrl3Ldh9vb29xWfWaqo5NdOXKlSy7fgLAiRMncOjQIaxcuRJv3rwBADRp0kTcrlp3uuzevRuNGzdG8+bN8d1334nrfX19MXbsWHTo0AGbNm3SuX/p0qUxYcIE8bXqvWCoe8TYypYtKwaFoqKixJkQddEVSM0JFxcXcdkQ51uQ6h0w3vtaFysrK9SpU0d87ePjk+0+s2bNQv369dGuXTscPnxYXL9582YMGzYMLVq0yDLA2qRJE3h6eoqvVetRteWSardNbe7fv59tWbOS1bVOT0/Hl19+ib59+6JVq1Y6A2wSiQTDhw9Xm9Eyu/tSdXt2XRWJiIiItGFQi4hyxMrKCt26dQOQ0SVm+fLlWabftWuXOCuYo6MjWrVqJW4LCQnBnTt3EBcXh5MnT2aZj+qXuswDsUul//9Rpu94RvrauHGjzq4/MTEx2Llzp/jaw8Mj18f59NNPxeWVK1dm2ULs3LlzuH37NoCMMYKU9QEA1atXF2dGjIqKwpEjR3TmExQUJAbQihcvLgbEvLy8xC+558+fR0BAgM483r9/j61btwLIuB6qLW8EQcClS5cQHh6Ov/76K8tzUu1OqVq/hrpH8kPfvn3F5XXr1ulMl5CQgB07duT5eJUrVxaXVWcV1UW15Y+290lBqndA/X2dXXDWULy8vMTlzZs3ZxlMunnzJi5cuACFQoHIyEjUr19f3BYVFYWAgAC8f/8+1/eto6OjOOZUaGio2gybqtLT07Fly5Ysj5GdrJ6hFhYWePz4MR48eIC3b9+qBfIzUygUal2os3ofCoKAsLAwABnPsQoVKuSy9ERERPQxY1CLiHJs4sSJ4sDQPj4++O677/Dhwwe1NIIgYN++fWqDtM+ZM0dtQOl+/fqJy2vWrMHFixe1Hm/Hjh3477//AAClSpVSa5kEqHfDCg0Nzd1J6XDz5k3MmzdPo6vYmzdvMH78eHEMIk9PT7i7u+f6OCNHjhTH47p37x7+97//aR1f69y5c5g7d674evz48ShVqpRamkmTJonLP/74o9YWJxEREZg2bZoYLPjss89gaWkJIKMrXc+ePQFkfEmdPHkyLl++rJFHZGQkJk6cKM78V65cOfTv31/c3rZtWzg7OwPI6Fa5aNEitUGylYKDg9WCQF27dhWXDXWP5Idhw4aJM2b6+flhyZIlGgP3R0dHY8KECWKgNy/q1q0rdpdT7Y6qi+r7RBlMUFWQ6l2f8hpD3759xeDKmzdvMGbMGK2tUW/fvo3p06eLr7t164bq1auLr1Xv23379uHw4cNag+Nnz57FuXPnAGS0zGrbtq24TSKRoFmzZgAynqffffedxnVMSEjArFmzsm0ZmJ3snqGq5/P999/j3r17GmkEQcDSpUvF+6JOnTpqrQkzCw4OFrsf1qlTR+ckG0RERERZ4UDxRJRj1apVw4IFCzBv3jwIgoADBw7Az88PHTt2RLly5RAbGwt/f3+1cXk+/fRTtS++ANCpUye0adMG/v7+SE1Nxfjx49GwYUPUrVsXzs7OiI2Nxc2bN8UvUBKJBF999ZUYfFFS7bayYsUKhIWFQSaToWvXrmpfNHNDJpPhyJEjuHLlCrp06YISJUrg5cuXOHv2rDiOUYUKFfDNN9/k6TglSpTAihUrMGHCBMjlcvj5+aFLly7o1KkTKlasiA8fPuDatWu4e/euuE+LFi0wZcoUjby6du2KIUOGYN++fUhOTsb//vc/NGzYEM2bN4eVlRWCgoJw7tw5MRDZsGFDjUGxFy5ciMePH+PZs2eIiYnBmDFj0LhxYzRt2hQymQzPnz/H+fPnxWBf0aJFsWLFCrWgpaWlJb7++mvMnDkTAMT7pG3btihXrhwAIDAwEBcuXBDzadeuHTp06CDmYah7JD84ODhg8eLFmDJlChQKBXbu3AlfX1907twZxYsXx6tXr+Dj44P4+HhYWVmJ1z+33eysra1Rr1493L59G2/fvkVoaGiWXbhUt33zzTfo168fBEHAoEGDxMBoQal34P+PUScIAm7duoU5c+agevXqKFWqlFqLKkMqVqwY1qxZg+HDhyMxMRGPHj1Cjx490L59e9SsWRMpKSl48OCBWrDPxcUFCxYsUMunZs2aGDRoEA4cOABBEDBv3jzs2rULjRs3RpkyZZCUlITbt2+rdW+eMmWKGBRV+uyzz3DhwgUAwLVr19ClSxd069YNTk5OCAkJwblz5xAfH49y5crB2dlZ7fmQE9k9QwcPHozDhw/jyZMniImJwYABA9CqVSu4ubnByckJ7969w6VLl8Tx5GQyWbbPRNXAWPPmzXNVbiIiIiIGtYgoV/r16wc7OzvMnz8fMTExiIqKwoEDBzTSyWQyzJgxA2PGjNGaz+rVqzFt2jRcunQJQEYLCGXXOlU2Njb4+uuvxZYkqrp37461a9ciNjYWMTEx2Lhxo7hPXoNaq1atwpw5cxAREYFdu3ZpbG/SpAnWrl0LJyenPB0HAFq3bo0dO3Zg9uzZiIiIQFxcHI4dO6aRTiKRYPTo0Zg5c6bOGf4WLFgAR0dH/P7770hLS9N5Xdu3b48VK1ZoBIFsbW2xb98+zJ07F3///TcA4NatW7h165ZGHmXKlMHy5cvRuHFjjW09e/bE+/fv8fPPP0Mul2fZJbJbt25YunSpxnpD3CP5pVOnTvj555/x/fffIykpCaGhoRpdDcuWLYvvvvsOEydOBIA8BeA6deokXovLly9j0KBBOtP27dsXe/bsgVwuR3h4ONauXQsgIwDTpUsXAAWr3u3s7NCzZ0+cOnUKQMb4bwBQo0YNowW1AKB27drYv38/pk+fjqCgIMjlcpw7d05sUaWqYcOGWL16tdb3//z585Gamiq+h5UTU2Qmk8kwadIkfP755xrbWrZsia+++grLly9Heno63rx5g927d6ulqVq1KtauXYuVK1fm9pSzfYZaWlpiy5YtmDhxotgi8vLly1pb8pUsWRI//PCD2hht2qjuq7z/iIiIiHKKQS0iyrWuXbuiZcuWOHjwIC5cuICgoCDExsbC0tISlSpVQps2bTBw4MAsu6DY2tpi69atuHjxIk6dOoX79+8jMjISqampKF68OFxdXdGuXTv07dtXo5udkrOzM/bt24fVq1cjICAAcXFxsLGxydHMbLp06dIFJ0+exO+//45Lly7hzZs3sLW1hbu7O7y8vODh4WHQAa2bNGkCHx8fHD16FH5+fnj06BHev3+PIkWKwNXVFS1atMDAgQOzDdZJJBJMnz4dffr0wf79+3HlyhVEREQgOTkZTk5OaNCgAfr164d27drpzMPe3h6//fYbAgICcOLECdy8eRNv3rxBSkoK7O3tUaNGDXTq1AmffvppljOXDR8+HG3btsXhw4dx/fp1vHjxAgkJCbCysoKzszOaNWuGXr166fwSbIh7JD/16dMHTZs2xd69e3Hx4kWEh4dDoVDA1dUV3bp1w6hRo9QGRVeOm5QbvXv3xi+//AKFQoG///47y6CWm5sbdu3ahfXr1+O///5DQkIC7O3tNbq5FpR6BzImCihfvjzOnDmD169fiy23BEEw6kDybm5uOHnyJM6cOQMfHx/8999/ePfuHRQKBUqWLIl69erB09MTnTt3VhuPSpVMJsPPP/+M/v374/jx47hz5w7CwsLE61iuXDm0adNGrcujNqNHj0br1q2xZ88eXLlyBZGRkbCyskLlypXh4eGBQYMGqQ0qnxv6PENLlSqFgwcPwtvbG2fPnsXDhw/x9u1bpKWlwcnJCZUrV0aHDh3EHzyykpaWJgapK1eunKeu20RERPRxkwi6RkAmIvpIdezYURzDR1vLCqK8unv3LgYOHAggo7VcVrMEZmfSpEnw9fWFTCbDpUuX4OjoaKBSEhnHxYsXMX78eAAZXWE/++wzE5eIiIiICisOFE9ERGQAf/zxB44cOYJbt25lOwtnYGCguKw6i2FuKLv2yuXybGfaIyoIjh49CiBjHLrMYy0SERER5QSDWkRERAbg6+uLb775BkOHDs1ywG6FQoF9+/aJr7Mbeyg7TZo0QcuWLQEAe/bs0TrLHlFB8fr1a5w/fx5ARkA2qy6sRERERNlhUIuIiMgAVGdw+/nnn/H+/XuNNB8+fMC8efPw4MEDAEClSpXQtm3bPB971qxZkEgkePHihdYBzYkKiu3btyMtLQ3Ozs7sdkhERER5xjG1iIgy4ZhalBvx8fHo0aMH3rx5AyBjAPiOHTvC1dUVUqkU4eHh+Pvvv8WB2WUyGfbs2YMGDRoY5PgLFizA/v374ebmhhMnThh1IHWi3IiMjESXLl2QkpKCVatWoUePHqYuEhERERVynP1QB0EQcOrUKRw5cgSPHj1CUlISnJ2d0bRpUwwbNizPM/UoFAqcOnUKx48fx4MHD5CQkIASJUqgVq1a8PLyQrdu3fT6QhIYGIjt27fj+vXrePPmDezs7FC1alV4eXnh008/hYWFRZ7KSURE+rGzs8POnTsxZcoUBAUFISkpCadOndKatmzZslizZg3q169vsOPPnj0bFy9eRGBgII4dO4a+ffsaLG8iQ1izZg1SUlLQoUMHBrSIiIjIINhSS4vk5GRMmzYNFy5c0LrdwsIC06dPF2fuyanY2FhMnjwZN2/e1JmmefPmWLVqFUqUKKEzzaFDh7Bw4ULI5XKt25s0aYL169dzJiyiHGJLLcoLuVyOv/76Cz4+Pnj48CGio6NhYWGBUqVKoWLFiujZsye6deuGYsWKGfzYt27dwsiRI+Ho6Ahvb2/Y2dkZ/BhEuXHv3j0MHDgQzs7OOH78OJycnExdJCIiIjIDDGppMWvWLPHX9apVq2LgwIEoWbIkHjx4gP379yMpKQkAsGzZMvTp0ydHeSsUCgwfPhy3bt0CALi4uKB///5wdXVFREQE/vzzTwQFBQEAGjZsiF27dsHS0lIjH39/f3z++ecQBAFWVlYYPHgw6tati3fv3uHw4cPizFqtWrXCli1bIJVy+DQiIiIiIiIiMh8MamVy+fJlcXr0Fi1aYPPmzShatKi4PSgoCEOHDkVMTAwcHR3h6+sLW1tbvfM/fPgw5s2bByCjNdbmzZvVfq2Xy+WYNm0afH19AQA//fSTRheS1NRUeHh4IDQ0FNbW1tizZw/q1Kmjtn3mzJniYMErV66Ep6dnDq8EEREREREREVHBxeY7mWzbtg0AUKRIEfzwww9qAS0go+XW/PnzAQAxMTE4dOhQjvLfv38/gIwujMuWLdPofiKTybBgwQLx9enTpzXy8PHxQWhoKABg3LhxagEtALC0tMTSpUvFboebNm3KURmJiIiIiIiIiAo6BrVUxMTE4MqVKwCANm3awNXVVWu6Hj16iGNdeXt7651/eno6ypUrh8qVK6Nx48YoU6aM1nSlS5cWx5oIDw/X2K4MdEkkEgwZMkRrHjY2NmILr8DAQAQHB+tdTiIiIiIiIiKigo5BLRUBAQFQKBQAMroe6iKVStG0aVMAwN27dxEbG6tX/hYWFvj111/h7e2N3bt360yXmJiI+Ph4AEDJkiU1tisHmK9Ro0aWA62qnsM///yjVxmJiIiIiIiIiAoDBrVUPH36VFx2c3PLMm21atUAAIIgiIOyG8q6devEGQ27d++uti0yMhJxcXEAgOrVq2eZT9WqVcXlx48fG7SMRERERERERESmVMTUBShIwsLCxGUXF5cs06p2HQwLCxNbbuVGeno63r59i/v372PXrl24fv06AKBZs2bo37+/WlrlWFr6lLF06dKQSqVQKBRauzESERERERERERVWDGqpiI6OFpeLFy+eZVrlIOxAxlhceeHl5aXW2ksikWDYsGGYOXMmLC0t1dK+f/9e7zLKZDJYW1sjISEhz2UkIiIiIiIiIipIGNRSkZycLC5nnvUwM9Vgk+p+uREREaH2WhAEXLt2DRcuXEDPnj3Vtn348EHvMirTJCQk5LmMOZWamqoWSCtatCgsLCzytQxEREREpFt6ejpSUlLE146Ojho/qBIRERVkDGqpSEtLE5ez+4Ouul11v9wc87PPPkOVKlWQnJyMK1eu4PTp03j27BlmzpyJp0+fYvr06WL69PR0vcuomiYvZcyNmJgYhISE5OsxiYiIiChvSpUqZZB8FAoFEhISEBcXh9TUVLXPsERE9PGwsLCApaUl7O3tYWtrC6nUsEO7M6ilolixYuKyXC7PMmiUmpoqLuflF60iRYrgf//7n/i6X79+6N+/P7744gukpKRg48aNaN26NZo0aQJAvXWWcjD5rCjLKZPJcl1GIiIiIiJ9xcfHIywsDIIgmLooRERkYmlpaUhJSUF8fDwkEglcXFxgZ2dnsPwZ1FJhbW0tLqekpOgd1NKnG2BOfPLJJ5g6dSqWL18OANizZ48Y1Mpcxuwo06gG7IiIiIiIjEFbQEsikXAYCiKij1R6err4N0EQBISFhRk0sMWglgp7e3txOSYmJsuLrDpelJOTk8HLMmDAAKxcuRIKhQL//vuv1jLGxsZmmYdcLkdSUpLRypiVzIE+V1dXtYAcFXzPnj1Deno6LCwsUK1aNVMXh/KI9Wk+WJfmg3VpXgpjfSYlJakNF5HXH2oVCoVaQMvW1hZOTk6wtraGRCLJU95ERFQ4CYKApKQkREdHIyEhQQxsubm5GaQrIoNaKipVqiQuR0REwNXVVWfa169fi8vlypUzeFkcHBxQokQJREVFqc3KmLmMWYmMjIRCoTBaGbOS+dc4a2tr2Nra5msZKG+kUinS09MhlUpZd2aA9Wk+WJfmg3VpXsyhPvPamkr5ZQXICGiVL1+ewSwioo+cRCKBjY0NrK2tERoaKv6tSEhIUGu0k1sMaqmoWrWquPz06VM0a9ZMZ9qnT58CyKig6tWr65V/UFAQtmzZgpCQEHz66afo169flumVXQdtbGzEdcWLF0eJEiXw7t07sQy6PHv2TFx2c3PTq4wfM2UEWRV/WSQiIjIvCoUCu3btUlv36aefwsHBwUQlMh9xcXHispOTEz9DERGRSCKRwMnJCQkJCQAy/mYwqGVgDRs2hEwmg1wux/Xr1zFs2DCt6dLT03Hz5k0AQM2aNfWuiPT0dBw9ehRAxq9XWQW1goODxQ8GlStXVtvWtGlTeHt749GjR4iPj9fZTfLatWviclYBOsqQlJSEFStWqK2bPXu2WlCRiIiICjdBEPDy5Uu1dfk9S7S5Uo45K5FIOOwEERFpUDYaEQRBbZzyvGBQS4W9vT1atGgBf39/+Pn5ITw8XGu3vb/++kvsEujh4aF3/tWrV0fZsmUREREBf39/hISE6Ozi+Pvvv4vLnTt3VtvWrVs3eHt7Iy0tDfv27cP48eM19k9ISMCxY8cAZATFatasqXc5iQCgVq1aEASBv7KaCdan+WBdmg/WpXlhfWb8gAtkdGP8mK8DERFpp5w4JC0tTfybkVd5H5XLzIwaNQpAxiDrM2fOFJvGKT179gw//vgjgIxugQMGDNA7b4lEgs8++wxAxi+Cc+bM0cgfAHbu3IkjR44AAJydnTFkyBC17Z07d0b58uUBAOvXr0dAQIDa9tTUVMydO1cczH706NF6l5FISSaTwdLSEjKZzNRFIQNgfZoP1qX5YF2aF9YnERFR/mNLrUxat26Nbt264ezZs7h9+zb69OmDIUOGoGzZsnj48CH27duHxMREAMDcuXM1ZhW8fv06Ro4cCSCjy9/u3bvVtg8fPhznz59HQEAAbt++DU9PTwwaNAiVKlVCdHQ0vL29cePGDQAZH45WrVql0f3N0tIS8+bNw6RJk5CcnIxRo0ZhwIABaNSoEWJiYnDw4EEEBgYCABo1aoT+/fsb5VoRERERFTYSiUSjpT2HGiAiIiqcGNTSYunSpUhMTMSlS5cQGhqK5cuXq22XSCSYMmUKBg8enOO8ZTIZNm7ciBkzZuDSpUuIiIjA6tWrNdKVKFECq1evRtOmTbXm07FjRyxYsAA//vgj5HI5/vjjD/zxxx9qaerVq4cNGzbkeSYbIiIiInMhlUo51igREZGZYFBLCysrK2zZsgUnT57En3/+KQ7I7ujoiMaNG2PkyJFo3LhxrvO3t7fHli1bcP78eRw5cgT3799HbGwsbGxsUKVKFXTq1AlDhgzJ9lfDIUOGoEmTJti5cyeuXLmCqKgoyGQyuLm5oVevXhg4cCCbwFOuRUVFQaFQQCqVwtnZ2dTFoTxifZoP1qX5YF2aF9YnERFR/mNQSweJRILevXujd+/eOdqvefPmePLkiV75d+nSBV26dMltEQFkDD7/ww8/5CkPIm0iIiIgl8shk8n44dwMsD7NB+vSfLAuzQvrk4iIKP9xoHgiIiIiIiIiIip0GNQiIiIiIiIiIqJCh0EtIiIiIiIiKrAEQcAff/yBqKgoUxeF8kGNGjVQo0YNjBgxwtRFMbm0tDRs3rwZvXr1QsOGDVG3bl20bdsWp0+fNvixEhISDJ5nfuCYWkRERET00VAoFNi/f7/aOk9PT9jb25uoRESUlZcvX+Kbb75BQEAA2rZta+riEOWrL7/8EqdOnVJbFxkZaZS/WWvWrMGcOXNgaWlp8LyNiUEtIiIiIvpoCIKAp0+fqq2Ty+UmKg0RZefEiRMICAgwdTGI8l1QUJAY0HJwcMCYMWNQoUIFxMfHo169egY9VlpaGk6cOIHWrVujXbt2Bs3b2BjUIiIiIiIiIqIC4cmTJ6YuQoHw7NkzcXny5Mn47LPPjHas69evIyYmBmfPni10QS2OqUVEREREREREVIB8+PBBXK5WrZpRj+Xj4wMA8PPzQ3p6ulGPZWhsqUVEREREHw2JRILOnTurrbO2tjZRaYiIiLRTKBTicpEixgvdCIIAX19fAMD79+9x48YNfPLJJ0Y7nqExqEX0f4oWLYr+/ftrrPtYFStWDBYWFpDJZKYuChkA69N8sC7NB+vSNKRSKVq1amXwfFmfVBDVqFEDADBhwgTMmDEDPj4+2LVrFwIDA/HhwwdUqFABnTt3xujRo+Ho6Kgzn6SkJBw6dAjnz59HYGAgEhMT4ejoiJo1a8LDwwNeXl6wsLDQuf/r16+xZ88eXLp0CS9fvkRaWhqcnJxQu3ZtdO3aFb1799bYf+3atVi3bp3auk6dOgEAXFxc4Ofnl+/XQpnHtGnTMHDgQCxatAiXLl0CALi6umLcuHHo1auXwa4bAKSmpuLcuXM4evQonj9/jqioKNja2qJOnTro06cPPD09IZXq7oCVnp6OY8eO4cyZM3j8+DFiY2Ph4OCAWrVqwdPTE717985y/9zUXV73VV7nZs2aYffu3Vq3TZs2DZMmTcL169exd+9e3LlzB9HR0ShevDiaNm2KESNGoGHDhlle24iICGzbtg3//PMPwsPDYWVlhRo1amDQoEHw9PTE5s2bsXLlSgC57xKZm3tgxIgRuHHjhtq6kSNHiss//fQT+vbtm6vyaPPvv/+qzSzq4+NTqIJaEkEQBFMXgsxPQkKC2hu/Ro0asLW1NWGJiIiIiEiVoT+vPX36FGlpaShSpAiqV69uiCJSHqkGctLS0rBlyxat6UqVKoXt27dr7eIUEBCAWbNm4fXr1zqP4+bmhg0bNsDV1VVj25UrVzB58mQkJSVlWc7t27ejRIkS4jptQS2lvAa1cnstlHmMHTsWvr6+ePHihdr2zZs3i+MR5fW6AUBoaCgmTZqUZUClefPm2LBhg9b3bmhoKCZOnIjAwECd+9etWxcbN25EqVKlNLbltu7yuq++Qa2UlBRs2rQJ2kIaEokEM2fOxPjx47Ue+/r165g4cSISExO1bu/evTtq1KiBNWvWAMhdUCu394C2oJYqQwe1fvrpJ+zYsUN87ezsDH9/f0gkEoMdQ5Wh/1YwqEVGwaAWERERUcHGoJb5UwYAKleujODgYEilUnh5eeGTTz5BYmIijh8/jtu3bwMAHB0dcfLkSbXgxv379zFy5EgxMNGwYUN4eHjA2dkZYWFhOH78uDibaMmSJXH06FGULl1a3D86Ohrdu3dHbGwsLC0t0a9fP9SvXx9FixZFaGgoDh06hFevXgEA2rVrh82bN4v7BgUFITg4GH/99RdOnz4NAFi0aBFKlCiBYsWKoXXr1vl6LVTzKFq0KFJSUtC6dWv06tULMTExuHjxIrZs2QILC4s8XzfltevVqxfevn0LAKhZsyZ69+6NMmXKICQkBPv27RODJR07dsTGjRvV9n/37h0+/fRTREZGAgAaNGgADw8PlCpVCm/fvsXp06fF861UqRKOHDmi9v7PS93lZV/V65xVUEtZjzY2Nujfvz/c3d2RlJSEU6dO4fr16wAyAltHjhxBnTp11PL477//MGzYMCQnJwPIaAHYsWNHyGQy3LhxA3/++SfS0tJgZ2eH+Ph4ADkPauXlHggICEBMTAyuXbsmnv+0adPg5uYGAKhduzbKlSuXo/JkpWPHjggLC1Nbt2/fPjRq1Mhgx1DFoBYVCgxqERERERVsBSGopdrlxZgsLS3h4OCgdVtsbCxSU1PF19bW1rCxsdGaNjo6Os+DKDs7O+dp/5xQBgCAjEDMhg0b1IJBgiDgxx9/FL849+3bFz/99BOAjG5rPXv2RHBwMABg1qxZGq1e0tLSsGjRIhw4cAAA0Lp1a2zdulXcvmPHDjG/VatWoUePHmr7JycnY+jQoXjw4AEA4Pz58xqtllRbbPn6+qJ8+fL5fi205dG+fXv89ttvGq1ZDHHdAOCrr77CsWPHAADDhg3Dt99+q9ZNMCEhAUOGDBFbYe3atQvNmzcXt0+ZMgXnzp0DAMycORNffPGFxjVR7V43ePBgLFy4UNyWl7rLa73rE9QCMlrs7dq1S+Oe+Prrr3H06FHx2n333Xdq2wcPHozbt29DIpFgyZIlGq2eAgICMH78eLVWXDkJahnqHjh69Ci+/vprAJr1q6/Dhw9jz549WluzARnjdmlryVe6dGkUL15cZ75169bFN998o/NZmRVDB7U4+yEREREREZlEqVKl8uXfuHHjdJZh3LhxammXL1+uM22bNm3yXBZTmTp1qkbrJolEgq+//loMFPz555+Ijo4GkDGujvJLeY8ePbR24ypSpAgWLFgAd3d3AMClS5dw//59cbtyfwBitzxVxYoVw+eff46KFSuidevWeP/+fR7PUj85vRbafP7551q7ZxniukVHR+P48eMAgFq1amHevHka417Z2tqqBaFOnTolLj9//hznz58HAHTt2lVrQAsAxo8fj2bNmgEAjh07pna+eam7/Kr3b775RmuQc9KkSeKy6nUFgGvXrokt1AYMGKC1G1+TJk3w5Zdf5qpMgGHuAUPp378/Jk+ejIiICDx+/Fjjn66uqZGRkVrTP378GE2bNsWCBQtyFdAyBga1iEir4OBgPH36VO2PEhVerE/zwbo0H6xL88L6pILM2toaQ4cO1brNwsJC3KZQKODv7w8AuHjxopgmq6CghYWF2nZlMAWA2oDrW7du1dpaxMPDAz4+Pti6dav4Bd+YcnMtMpPJZDrLaojr9s8//4gz3w0ZMkTnQOyNGjXCtGnT8PPPP2P48OHi+rNnz4rXul+/fjrLoLo9JSUFV65cEdfnpe7yo94tLS3Rvn17rdtcXV3FgEtcXJzatr///ltc/uyzz3Tm/+mnn2Y5eUJWDHEPGFKXLl1w7NgxNGjQIE/5ODg4YP369fj2229haWlpmMIZAGc/JCKt4uPjIZfLOYuTmWB9mg/WpflgXZqGQqHAkSNH1NZ1794ddnZ2ecqX9UkFWcOGDWFtba1ze+PGjcXlu3fvok+fPrhz5w4AwN7eXmNMosxatGghLqu2Nunevbs4kPf69etx+vRpdO3aFW3btkWDBg1QpEj+fx3NzbXIzNXVVeeXekNct//++09czm5cI9VWSarlVgoJCckyWKLaSurBgwfw9PQEkLe6y496r1SpUpb52NraIjExEWlpaWrrb968CQAoXry41skAlCwtLdGoUaMcT0gAGOYeMDQXFxfs3bsXv/zyC7Zt26azO6IuDRs2xC+//GLQsbwMhUEtov+TmJiIFStWqK2bPXt2gWlWSURERHknCAIePnyotq5jx44mKg1R/qhUqVKW28uWLSsuKwcmV3ZF02cMKwcHBzg4OCA2NlbcH8joOjdt2jSsXr0aQEaLxk2bNmHTpk2ws7NDq1at0LVrV3Tq1AnFihXL4Vll37KlUaNGcHJyUluXm2uRmb29vc79DXHdVJdzE0R48+aNuPzDDz/ovd+7d+/E5bzUnbHrHUC24/8pA16ZgzfKa6PPda1QoUKuymaIe8AYihQpgrlz56J58+b48ssv9er2KZFIMHbsWMyYMcMkQWh9FMxSERERERGR2VP98m1MWXWV2bJlCzZs2CC+zqoVj7+/f54HijeF7H6ktbKyEpeVg2Mr/1fdlpVixYohNjYWHz58UFs/ceJENGjQAFu2bMHVq1fF6xcfHw9vb294e3ujePHimD9/Pnr27Kn3OQHA5MmTs9yubXDt3FyLzLK6nwxx3WJjY9W251RCQkKO9wE0zzcvdWfMegeQ6wBLTEwMAP2ua24DboZ67xhLu3btcPz4cXh6emp0z8zsxx9/zLYLq6kxqEVERERERCaRnzMB6qJrVkRtMrf6KSxUZ3fUJikpSVxWjiNkZWWF+Ph4vb9oK/PQFgj45JNP8MknnyA6Ohr//PMPLl++jKtXr4qzX75//x6zZs2Cra2t1oHFDSk31yInDHHdVJeTk5Nz3HNEdf979+6haNGiOdpfVV7qriDVu1LRokUhl8v1qp/k5ORcHcOQ7x1jkcvl2Qa0APXWewUVg1pERERE9NGQSCQaX570/TWdqLB6/fp1lttDQ0PFZeUMjSVLlkR8fLzaNl2io6MRHx8PAChdurTOdE5OTvDy8oKXlxcEQcCdO3ewYcMG/PPPPxAEARs3bsxRcOPJkyd6p1XKzbXICUNctxIlSojLr1+/RtWqVXXm8eDBA0ilUri6uopd8lT3f/PmDVxdXXN8Hpnlpe4MXe95UaZMGTx79gzh4eHZptUnjTbGeO8Ymr6D0p87d07r7I0FCWc/JCIiIqKPhlQqRfv27dX+ZdXdjMgc3LlzJ8uBoQMCAsTlZs2aAQDq1asHIGP2uAcPHmSZ/7Vr18TlGjVqAMgYy+jMmTNYt24dduzYobGPRCJBw4YNsWHDBjF4lJsgVU7l5lrkRF6vGwC1wcVv376dZR7ff/89vLy80KVLF3Gd6myCN27cyLYM06dPx4oVK8Rzz0vdFdR6V6pfvz6AjG6IQUFBOtMpFIpsr70uhrgHjM3Hx0djnba/hffv3882EGxqDGoRERERERGZsdevX+Pvv//Wuk0ul2Pfvn0AMr7UtmzZEgDQqVMnMc2WLVt05p2eno5t27aJrzt06AAgI3ixcuVKrF27Fhs2bNDZ7U8mk4nd67R1s5NIJOJyTmds0yY31yIn8nrdAKBNmzaQSjO+qh86dEjneb98+VKcMe+TTz7RWoZdu3ZBLpfrLMe6detw5swZ/P777+J4U3mpO0PVu7F0795dXN67d6/OdN7e3mI3yZwyxD1gTG/fvtUI2HXr1g0XL17E/Pnz1caMEwRBawCsIGFQi4iIiIiIyMwtWLAAL168UFuXnp6OhQsXii1Wxo4dK46/1KVLF1SsWBEAcPr0aWzevFkjz/T0dCxatEgMrDRv3hxNmjQRtysDCLGxsViyZInW4Mz58+cRHBwMAGr7Kql2D1YdQD0vcnotcsIQ1618+fJiy6s7d+6IswiqSkhIwLx588RrOnToUHGbu7u72Mrs8ePHmD9/vtbA1q+//oqbN28CyJgVUjWokpe6M0S9G0vr1q1Rs2ZNAMC+fftw+vRpjTRPnjzB4sWLc30MQ9wDxnT+/HkoFAoAGWOMfffdd/j1119hb2+P4cOH4+DBg2qzhJ47dy5fypVbHFOLiIiIiIjIjEkkErx58wZ9+/bF4MGDUbduXURHR+Po0aNi96hq1arh888/F/exsLDAihUrMGzYMKSmpmLlypXw8/NDjx49ULJkSURERODPP/9EYGAggIxB1ZcuXap23DFjxuDQoUOIiYnBvn37cPfuXXh4eMDFxQWxsbG4deuWGFQoWrQoJkyYoFH2MmXKiMs//fQThg0bBgDo0aNHvl2LnDDEdQOAb7/9FgEBAXj37h1+++03XL9+HT179kTx4sXx4sULHDhwQJw9tF+/fhoBkZ9++gn9+vVDTEwMjh07htu3b6Nv375wdXXFmzdvcPbsWfz7778AMmYS/PHHH2FhYSHun5e6M0S9G4tUKsWiRYswbNgwyOVyzJgxA2fOnEG7du1QtGhR3LlzB4cOHUJKSgosLCyQnp4utprTl6HuAWNRBqmqVKmCVatWiUE+pVq1auHYsWNYuHAh/vzzT9y6dQvR0dEFdqIMBrWISKuSJUsiPT1d7Y8bFV6sT/PBujQfrEvzwvqkgqxRo0YoXbo0Tp8+ja1bt2psb9iwITZu3KjRMsnd3R3bt2/H9OnTERUVhdu3b2sdZ6hWrVpYu3YtypYtq7beyckJv/32GyZOnIj379/j4cOHePjwocb+9vb2WLp0qcaXawBo2bIlHB0dERMTg4CAAAQEBEAikeR6PLzcXoucyOt1AzIGqd+zZw8mTJiAly9f6syjV69eWLhwocb68uXLY+/evZg8eTJevHiBFy9e4JdfftFIZ2dnh6VLl2oExfJSd4aod2OqX78+Vq1ahblz5yIpKQk+Pj4aXez69++PsLAwXL16Va07nr4McQ8YQ3x8PK5fv46+ffti/vz5Ot9D1tbWWLp0KVq2bInvv/8evr6+GDBgQL6UMacY1CIircqVK2fqIpABsT7NB+vSfLAuzQvrkwoyCwsLrFq1Cu3atcMff/yBp0+fAsj4Qu3l5YW+ffuiSBHtXw2bNGmCs2fP4sCBA/D19cWzZ8+QmJiIUqVKoXr16vDy8kLnzp0hk8m07t+wYUOcPn0a+/fvxz///IPg4GAkJCTA1tYW5cuXR4cOHTB48GCULFlS6/7FixfHzp07sXz5cty7dw9JSUlwcnJCRERElrMCGuNa5ERerxuQ0ZLm1KlTOHToELy9vREYGIjExEQ4ODigfv36GDRoUJazBlarVg0nT57EsWPH4OPjgydPniAmJgaWlpaoVKkS2rZti2HDhsHZ2Vnr/nmpu7zWu7F16dIFJ0+exI4dO+Dv74/Xr1/D0tIStWvXxvDhw9GlSxexVaC9vX2ujmGIe8DQbty4gSVLlqB37956pe/Tpw/q16+PY8eOGblkuScRDDHaHlEmCQkJarNY1KhRQ5xitqBKTEzEihUr1NbNnj07XwcuJCIiIuNSKBQ4ceKE2rrOnTsX+M8pxmDoz2tPnz5FWloaihQpgurVqxuiiJRHytnUmjVrht27d5u4NKbFa0E51b17dwQHB6N+/fo4ePCgqYtjEAqFIsfdKfOynzaG/lvBllpERERE9NEQBAF3795VW9emTZuPMqhFRPSxOX78OE6dOgVXV1d88cUXKF26tNZ0QUFB4mQCtWvXzscSGlduA1OGCmgZA4NaRERERERERGT27O3t8c8//wDI+JFjwYIFGmkyzyzp6emZr2WknGFQi4i0unfvHuRyOWQyGdzd3U1dHMoj1qf5YF2aD9aleWF9EhEVfK1atUL58uURGhqKP/74Aw8fPkTXrl1RpkwZfPjwAc+fP8fx48fx9u1bAMCAAQM0BtGngoVBLSIiIiL6aEgkEnzyySdq64oVK2ai0hARUX6ytLTE+vXrMWHCBERERODOnTu4c+eO1rRDhgzBN998k78FpBxjUIvo/1haWsLDw0NjHREREZkPqVSKrl27mroYRERkIjVr1sSZM2dw+PBh+Pr6IjAwELGxsbCxsUHp0qXRsGFD9O/fn61uCwkGtYj+j0wmQ7NmzUxdDCIiIiIig1Cd3fJjx2tBqqysrDBixAiMGDHC1EWhPCq4Q9gTERERERERERHpwKAWEREREREREREVOgxqERERERERERFRocOgFhERERERERERFTocKJ6IiIiIPhoKhQJnzpxRW9euXTvY2tqaqERERESUWwxqEf2fpKQkrF+/Xm3d5MmTYW1tbaISERERkaEJgoCAgAC1dS1atGBQi4iIqBBiUIvo/wiCgKSkJI11H6vKlStDoVBAKmUvZXPA+jQfrEvzwbo0L6xPIiKi/MegFhFpZWdnZ+oikAGxPs0H69J8sC7NC+uTiIgo/zGoRUREREQfDYlEgiZNmqitK1q0qIlKQ0RERHnBoBYRERERfTSkUil69uxp6mIQERGRATCoRURaxcfHi2ODsEtF4cf6NB+sS/PBujQvrE8iIqL8x6AWEWkVHBwMuVwOmUwGd3d3UxeH8oj1aT5Yl+aDdWleWJ9ERET5r0AEtZKSkqBQKACA0ykTEREREREREVG2CkRQq1+/fnjx4gUkEgkePnxo6uIQEREREREREVEBVyCCWgAgCIKpi0BERERERERERIVEgQlqEREREREZm0KhwPnz59XWtWrVCjY2NiYqEREREeUWg1pERERE9NEQBAFXr15VW9e4cWMGtYjIbKSlpWHbtm04efIkQkNDIZfL4eTkhK+++go9evTIc/41atQAADRr1gy7d+/Oc37aCIKAffv2oUuXLnB2djbKMcg8MKhFRERERET5LioqSpws6mMjlUrz/Yt6UFAQ9u3bhxs3biAiIgLJyckoWbIkatasiZ49e6JHjx6QSqVZ5jFixAjcuHFD72P6+vqifPnyWrfFx8dj8+bN8PHxQXh4OKysrNCgQQOMGzcOzZo1yzbvV69eoVevXkhOTsbmzZvRrl07vctl7r788kucOnVKbV1kZCTs7e1NVKKcefnyJb755hsEBASgbdu2pi4OFXAMahERERERUb5TKBRISkqCXC43dVHylUwmg7W1db4dLz09HatWrcKWLVs0xjEODw9HeHg4/Pz8sHfvXqxevRqlS5c2epmio6MxbNgwPH/+XFyXmpqKixcvwt/fHwsXLsTAgQOzzGPBggVITk5Gjx49GNBSERQUJAa0HBwcMGbMGFSoUAHx8fGoV6+eiUunnxMnTiAgIMDUxaBCgkEtIiIiIvpoSCQS1K9fX21d0aJFTVQaksvlSEhIgIWFhamLki/S09Nha2ubr8dctGgR9u/fDwCwsLCAh4cHWrRoARsbG4SGhuLkyZMIDAzEv//+i7Fjx+KPP/7Qq0XP+vXrs01TokQJret//PFHMaDl4eGBdu3aISoqCjt27MC7d++waNEiNG3aFJUrV9a6/59//okrV67AwcEB8+bNy7YcH5Nnz56Jy5MnT8Znn31m8GM8efLE4HkS5RaDWkT/RyaTafzKI5PJTFQaIiIiMgapVAovLy9TF4NUWFhYfDRj5kRFReXr8S5fviwGtKytrfH777+jSZMmamnGjh2L77//HgcPHsTTp0/xyy+/4Pvvv882786dO+eqTO/fv8eZM2cAAIMGDcKiRYvEbV27doWnpyfkcjkOHDiAr776SmP/6Oho/PzzzwCAOXPmoGTJkrkqh7n68OGDuFytWjUTloQofzCopYMgCDh16hSOHDmCR48eISkpCc7OzmjatCmGDRsGd3f3POfv6+uL48eP4969e4iOjoZMJoOLiwtatWqFkSNHoly5clnm0bFjR4SFhel1vEuXLn00HxZyy9LSEu3btzd1MQqMvN7jVLCwPs0H69J8sC7NC+uTCqIdO3aIy9OmTdMIaAEZQcUFCxbg5s2bCA4OxsGDBzFu3DidY2Hl1X///Yf09HQAwMiRI9W2VapUCR07dsTZs2dx584drfv//PPPeP/+PZo1a4b+/fsbpYyFmeo4dUWK8Os+mT/e5VokJydj2rRpuHDhgtr6sLAwhIWF4eTJk5g+fTrGjx+fq/xjY2MxY8YMXL58WW19amoqAgMDERgYiL1792Lx4sU6f0lMSEhAeHh4ro5PRERERETmTaFQiIO6SySSLFsoFilSBL1798aaNWuQnp6O06dP5/q7Tnbev38vLmsLnLm6umqkU7py5QqOHz8OS0tLLFq0CBKJxChlTE1Nxblz53D06FE8f/4cUVFRsLW1RZ06ddCnTx94enrqHFQ/KSkJhw4dwvnz5xEYGIjExEQ4OjqiZs2a8PDwgJeXl87utspZBadNm4ZJkybh+vXr2Lt3L+7cuYPo6GgUL14cTZs2xYgRI9CwYUO1fbUN4q8aNPzpp5/Qt2/fvFwWjXJqm/0wL+ewdu1arFu3Tm1dp06dAAAuLi7w8/PTKEt6ejqOHTuGM2fO4PHjx4iNjYWDgwNq1aoFT09P9O7dW2ddqZZ14MCBWLRoES5dugQg4z7s0qUL1q5dCyCjy2xWQdSEhAR88sknSE1NRdu2bfH777/rTEuGxaCWFvPmzRMDWlWrVsXAgQNRsmRJPHjwAPv370dSUhJWrlyJ0qVLo0+fPjnKW6FQYPLkybh58yYAoFy5cujXrx+qVKmCxMREXLp0CT4+PkhNTcVXX30Fe3t7dOzYUSOfJ0+eiAM9TpgwIdtB/xwcHHJUTiIiIiIiKrxiYmKQnJwMAHBycoKjo2OW6VXHr/Lz8zNaUEt1kPzY2FgUK1ZMbbsymGVlZaW2Pjk5Gd999x0AYOLEiTrH28qr0NBQTJo0SWPcqPfv3+PSpUu4dOkSDh8+jA0bNmiMjxYQEIBZs2bh9evXauujoqIQFRUFf39/7NixAxs2bBCDd7qsWrUKmzZtUhvc/82bN/jrr79w+vRpzJw502h1ZCjGPofQ0FBMnDgRgYGBauvfvn0Lf39/+Pv7Y/fu3di4cSNKlSqlM5+EhAQMGzYML168ENc9fvwYo0aNgoWFBdLT0+Ht7Z1lUOv8+fNITU0FAHh6eub6nCjnGNTK5PLly+JsES1atMDmzZvFwUM9PT3Rv39/DB06FDExMViyZAk6deqUo8Eejx07Jga0WrRogY0bN6o92AcMGAA/Pz/873//Q1paGr7//nu0atVKYwBT1Yesl5eX0R7qRERERERU+GSe6TAnMgcJtPniiy/w8OFDvH//HlZWVihVqhQaNmwIT09PtGjRQud+VapUEZf9/PwwZMgQ8XVqaqrYm6Vq1apq+61duxYhISGoXr06Pv/885yekl6io6MxaNAgvH37FgBQs2ZN9O7dG2XKlEFISAj27duH169f4/r165gzZw42btwo7nv//n18/vnnSEpKAgA0bNgQHh4ecHZ2RlhYGI4fP46nT58iMDAQgwcPxtGjR3XONHnixAkEBwfDxsYG/fv3h7u7O5KSknDq1Clcv34dgiDgl19+QatWrVCnTh0AGa2NYmJicO3aNbH11LRp0+Dm5gYAqF27tlGumS65OYcePXqgVq1aYtALyJjooESJEhrBz3fv3mHo0KGIjIwEADRo0AAeHh4oVaoU3r59i9OnT+P27dv477//MGLECBw5ckTn9/Y9e/YgJSUFrVu3Rq9evRATE4OLFy+id+/eOHnyJC5fvoxr164hJiZGZ3BYWV4rK6tcjzdHucOgVibbtm0DkNEE94cfftAIJlWtWhXz58/HrFmzEBMTg0OHDmH06NF653/gwAEAGbPsrFixQut0vh07dsTw4cOxY8cOREZG4p9//kGXLl3U0iiDWkWLFkXFihVzdI5E+ggPD0d6ejosLCyyHd+NCj7Wp/lgXZoP1qV5YX1SQePg4ACZTAa5XI7o6GixW5Yuqq1UEhMTERkZqTPoAkBtqBa5XI64uDg8e/YMhw4dQosWLbB8+XKtrWOqVKmCWrVq4dGjR/jll1/g4OCANm3a4N27d1i+fLnYyqlnz57iPo8fP8aOHTsglUqxePFio03mtGzZMjGgNWzYMHz77bdqXdeGDx+OIUOGIDAwEH5+frh+/TqaN2+O9PR0zJkzRwxozZo1S6MF0ujRo7Fo0SIcOHAAb9++xTfffIOtW7dqLUdwcDBcXFywa9cutS6aAwcOxNdff42jR49CEAQcOXJEDAgpx0uLi4sT0zdu3BjNmzc3wJXJudycQ9WqVVG1alU8evRITN+qVSut3VQXLFggBrRmzpyJL774Qm37yJEjsXnzZqxcuRIvXrzA8uXLsXDhQq1lTUlJQfv27fHbb7+JXVpHjRoFAOjVqxcuX74MuVyO8+fPa22tFRsbiytXrgAAOnToABsbG30vExmA9s6lH6mYmBjxZmzTpo3OJqE9evQQp6f19vbWO/+EhATcu3cPANCyZcssB27v3r27uHz37l2N7cqgVrVq1XT2ESbKi7dv3+LNmzfiH3Yq3Fif5oN1aT5Yl6ahUChw4cIFtX/KL6J5wfqkgqZIkSJo0KABgIxWW8ePH9eZNj09HSdOnFBbpxocUeXg4AAPDw/MmTMHK1aswKpVq/DVV1+hXbt2YkDg2rVrGDx4sM7ZHufPnw+ZTIa4uDjMmDEDTZo0Qbdu3XD+/HkAGeMoKYdgUSgU+Pbbb5GWlobBgwdrjMNkKNHR0eI1qlWrFubNm6fxPcvW1lYtMKLs4ePj44Pg4GAAGd8VtXWpK1KkCBYsWCBOKnHp0iXcv39fZ3m++eYbrcGcSZMmictZ7V8QGOscnj9/Lt4rXbt21QhoKY0fPx7NmjUDkNFjKjo6Wmeen3/+udYx2rp06SI2dNH13d/HxwdyuRwAux6aAltqqQgICBBni8iqyaxUKkXTpk3h7e2Nu3fvZvurh9L79+9Rr149REREqDW71UY1v8x/UARBwNOnTwFAbE5Keffhwwds375dbd3o0aM1+vMTERFR4SUIAi5evKi2rl69elpbzxMVdgMHDhSHPlm1ahXq1aunERRSKBRYvHgxnj9/rrY+ISFBI7+ZM2eiTp06sLS01Ng2evRo3L9/H1OnTkV4eDjCwsLwzTffaB0wu3HjxtiyZQsWLFig1kJMJpNh8ODBmDt3rrhu9+7duH//PkqXLo1Zs2aJ6y9evIht27bhwYMHkMvlqFSpEvr27Ythw4blata/f/75R/wuOGTIEJ2DuTdq1AjTpk1D2bJlxS59qs+UcePG6TyGhYUFxo0bh6lTpwLIGIdJ29jIWc3K7urqChsbGyQmJuoMPBYExjyHs2fPit1r+/Xrl2Xafv364caNG0hJScGVK1e0Bp1kMpnOGWxtbW3RoUMHeHt76+yCeObMGQCAo6Mj2rRpk+PzobxhUEuFMlAEZB8sqlatGoCMD0aBgYFo2rRptvm7urri0KFDepUlKChIXM78pgkLCxP/yFSvXh1Axh+dx48fIzExEaVKlYKbm5vOBzFpp1AoNH5NUp0Sl4iIiIioMPH09MTx48dx6dIlJCUlYfjw4fDw8ECLFi1gY2OD0NBQnDx5Ek+ePIGTkxNSUlKQmJgIAFp7g2TXSqpevXrYsmULvLy8kJqain/++Qf37t3TGjBo0aIFzp49i6dPnyI8PBxWVlaoXbu22rhHERERWL16NQDgu+++E7dt27YNS5cuBZAxHIulpSUeP36MJUuW4Pr161i3bl2Oe7P8999/4nKjRo2yTKva0ggA7ty5AwCwt7cXu9Lpotp4QlcrpUqVKmUZmLO1tUViYiLS0tKyPJYpGfMcVHsyhYSEiK22tFGdRfPBgwdag1qurq5aA7VKvXr1gre3t9YuiNHR0bh27RqAjFZjWeVDxpHvQa2goCD8/PPPWLlyJezt7XWmk8vlmDt3LgYPHpxv/YDDwsLEZRcXlyzTlilTRm0/fYJaOXHkyBFxuX79+mrbVAeJl0qlmDJlCvz8/JCeni6ud3R0xPDhw/H5559rDKpHRERERETmTyqVYs2aNfjqq69w7tw5pKWl4eTJkzh58qRaOmdnZ2zYsAFjx44V12X1XS0rVatWRZ8+fcQf8y9cuKCzFQyQ8SO98of6zBYuXIikpCR06dJFHHz7wYMHWLFiBYCMVlHTpk2DTCbDmTNnMHfuXPj6+mLv3r0YMWJEjsqt2nU4p+PiKbu1aetql5mDgwMcHBwQGxurs7tydhORKYNFeZkMwNiMeQ5v3rwRl3/44Qe993v37p3W9dnd623bthXrLPMsiGfPnhW/h7ProWnk62BMz58/x6hRo3Dp0iWMGTNGa5NWAEhLS8P06dNx5swZTJgwAdevX8+X8qn2sS1evHiWaVVbT8XExBi0HP7+/vj7778BACVKlECrVq3UtqsGtX7++WecO3dOLaClLNO6deswYsSILPsOExEREX1MJBIJateurfaPv6yTObO1tcW6deuwfft29OrVC+XLl0exYsVgbW0NNzc3TJ48GadOnUKtWrXEVloSiQQlS5bM9TFVGyWo9kDJidOnT+Pvv/+Gra0t5s+fL67fs2cP0tPTUblyZcyePRuWlpaQSCTo0aMHvLy8AAA7d+7M8fFiY2PF5Zw2ClBeN32HLVHm/+HDB63bc9N9sqAx5jnoiiNkR1lPmWX3N8DS0hLdunUDALELopJy1sMyZcoYvKEL6Sdf3y1FixYVZ6p48OABxowZI842qKRQKDBjxgz4+voCyOh3nF9jGiUnJ6uVNSuqN77qfnkVERGBL7/8Unw9ceJEjYeqalBLJpNh9OjR8PLygqurqzj96Jo1axAVFYV79+5hxowZ2L59OweUJyIioo+eVCrFgAEDTF0MonzXsmVLtGzZUuf2J0+eiD+UV6pUCXZ2drk+lpOTk7gcHx+f4/3j4uKwZMkSABkzCarOwqgcI6xbt24aA3t3794dhw4dQkhISLazN2am+p0rOTk5RzPYWVlZIT4+XmeQKjPl5BTsUZM7qtft3r172X53NwRPT08cPHhQrQtiVFQUAgICAGRMEMDv26aRr0EtFxcX7Ny5EyNHjkRERATu37+PsWPHqgWFZsyYgXPnzgHI+FVh69atWTZXNSTV/rz6RGu17ZcX0dHRGDNmjNgsslWrVhg+fLhGOuXUpUWLFsW2bdvE6VsBoFSpUhgwYADatm2LgQMH4vXr17h27RpOnz5t0uaQz549y/JNbm1tLY5TprqPPrMRlS5dWu0PVnp6Oh48eKBXuapWrZrlH6yHDx9qfUhKpVLUrVtXbV1oaKhereIcHBxQsWJFtXWPHj0SZ8zISvny5dU+JCQnJyMwMDDb/YCMWVxUpz+OiopCRESEzvTK8mi7v4ODg/X6gFKyZEmN5tvKGUCzU7lyZbUPU/Hx8eKsMtnJ/MwIDw/XazYqOzs7VK5cWW1dYGCgXoHrsmXLqs1oKpfL1aYjzoqbm5vaH+fo6GiEhoZmu59MJkOtWrXU1r18+VLtl0bV8ij/v3fvHpycnDSayP/33396jSNXoUIFtdaqiYmJev8KW6dOHbXx/iIjI8VnWlYKyjMiJiYGr169ynY/Yz4jMtelqvx8RigVK1ZMYxxKPiM0aXtGZFWXqvLjGZEZnxG5/xyRXX0CBedzREpKSrb70Mfjxo0b4nJeW5yojmOUm+DY8uXLERUVhYYNG2LIkCFq25TPBG0Bq7Jly4rLr1+/zlFQSzm7vXLfqlWr6kz74MEDSKVSuLq6wtbWFiVLlkR8fLxez+bo6Gjxb2ROykf/n2pdvXnzBq6urkY/ZtOmTVGmTBm8fv0a586dQ//+/eHj4yP+XezVq5fRy0Da5Xu7RldXV+zatQsjRoxAZGSkxh99Hx8fAICNjQ1+//13jfGkjEn1A6NcLs8ysJWamiouG6LJelRUFEaPHi3OOlKxYkWsWLFC67Si+/fvR0JCAuLj49Ue3KpKly6Nb7/9FlOmTAEAHDx40KRBrfT0dI0ukqq0BU7S0tL0+oCmLV999gOy78Mtl8u1BuO0rdO3vNrOVfXLTVYyf5kQBCHX56pQKPTaV9s1yo+6yXyu+pZXVznMsW600adu5HK5znPV5wtr5vLm5Fwzy0vdmOIZoe+55tczIvM6U9yH2iYl4TNCk7a6yZyPLvn9jFCmy4zPCE26Pkdkt39B+RxBpCQIAo4ePSq+zmtrRtXhYzL/GJCdgIAAHDp0CDKZDD/88IPW70OA9q57urqX6aNOnTriOGC3b9/OMqj1/fffiz8SXr16FfXq1UNwcDDi4uLw4MGDLAeLVw4qDgA1atTIdXk/Zu7u7rhy5QqAjGBsVkGta9euYf/+/Shfvjzat2+v1iAkJ6RSKXr27ImtW7fi2rVrSE5Ohre3NwCgSpUq4kyYlP9M0llXNbClHORN+bASBEEMaGU3u4ahqU7lnJKSondQK6/NHV+9eoVx48bh5cuXADJ+Ydi+fbvaL2mZ2draZjv4XseOHWFra4uEhATcvn0bCoXCZE0iLSwssjy2tj7XRYoUUWs1kFXememzHwCdfyRV89GWl7Zz0be82s5V3/JmPq5EIsn1uUql0iz3VX441naN8qNuMp9rduXNrhx5qZusArKq5VNlzLpRLVtmuupG9cuOTCbTea76fOHJXN6cnGtmeakbUzwj9D1XYz4jMtdlVsctaPdhZh/7MyJzPrqYom74jMjb54js9i8onyOIlPbv34+HDx8CAJo1a5annjLBwcE4fvy4+LpDhw5675uamor58+dDEAR8/vnnGi0wgYwf70NCQvDs2TONbarrctoKqk2bNpBKpVAoFDh06BD69eun9T3+8uVLcdbCTz75BADQqVMnnDhxAgCwZcsWrFq1Susx0tPT1Ybfycm1+ZioXndtPx506tQJv/32GwBg165d6N27t87n4Lp168Quqw0aNMhTuXr16oWtW7eKAa1bt24B4ADxpmayEegqVKggBraioqIA/P+A1ubNm7OdRtUYVGc9iImJybKprOrgcFkFn7Jz7949TJgwQexyqOyimd3si/qwsLBAxYoV8eDBA6SmpiImJiZPZc2LatWqZRuE07ZPblhYWBisy2rt2rX17k9fvnx5vWY80SZz9xB9FStWLNfn6uzsrNYVJrPg4GCkpaVp/fCc01/cVOW2vHZ2drnet1y5cjmexUYpc7cqfclkslyX18nJKdfv1cxdUpRU61NX/WXuCqMvGxubXJ9r5m4/OWGKZ4Sjo6Nat6qcMNQzQp+6VDLmMyIrfEZkTyaTwcnJSe+6VGWMZ4Q++IzImp2dXa7qU8kUnyPyYxwaMr07d+7onBBBEAQcPHhQnEHO2toaP/74o9Z8du3ahbp162b5Pe3hw4eYMmWK2LW1devWOep589tvv+H58+eoXLkyJk6cqDVNkyZNEBISgtOnT2P69OniMyI9PR179uwBkPF+Up2tXh/ly5dHly5dcPbsWdy5cwerV6/GjBkz1NIkJCRg3rx5YqBl6NChAIAuXbqgYsWKePnyJU6fPo1atWph/Pjxavump6dj0aJFYkCsefPmuW41ZO5Ux9SOjY3VaInl7u6OZs2a4caNG3j8+DHmz5+PxYsXawS2fv31VzGgValSpTwHEWvVqoVq1arh2bNn+OWXX8Qftdj10LRMOq1CxYoV1QJbVlZW2LRpExo3bmyS8lSqVElcjoiIyLIZ4+vXr8Xl3H4Q9vf3x9SpU8XxHqpVq4Zt27YZtG91bn8ZJcrLl1IqeFif5oN1aT5Yl+aF9UkF1caNG/Hvv/+ibdu2qFevHkqVKgW5XI6QkBD4+PiIk1AVK1YMa9asQYUKFbTmc+3aNfz444+oUKECPvnkE7i5ucHR0RFSqRRv3rzBtWvXcPHiRbFFp4uLizjYuz6CgoKwefNmSCQSLF68WGevmaFDh+L48eNITk7G8OHDMXr0aNjY2ODYsWPieHgjR47MySUSffvttwgICMC7d+/w22+/4fr16+jZsyeKFy+OFy9e4MCBA2JPo379+olBKQsLC6xYsQLDhg1DamoqVq5cCT8/P/To0QMlS5ZEREQE/vzzT3GcS0dHRyxdujRXZcyr69evi9enWbNm2L17t0nKkRXVgORPP/2EYcOGAcgYjF11fb9+/RATE4Njx47h9u3b6Nu3L1xdXfHmzRucPXsW//77L4CMFq4//vij1pa5OeXp6YnVq1eLY7u5u7vrfM8AheN6F3Ymnyu0UqVK+OOPPxAQEICaNWvm+pcmQ1DtN/306VM0a9ZMZ9qnT58CyGgaWb169Rwfy8/PD1OnThW7kdSvXx+bNm1C8eLFs9wvJCQEfn5+ePfuHRo1aoT27dtnmV75ZpPJZHBwcMhxOYmIiIjMiUKhwNWrV9XWNWrUKN9m2yYyhbi4OJw6dQqnTp3Sur1atWpYvHixXr1lXr16le2kKa1bt8aSJUv0/rFeEATMnz8fcrkcAwYMyHKgend3d0ydOhWrV6/Gq1evsHDhQrXtHTp00DrZlj5KlSqFPXv2YMKECXj58iVu376N27dva6Tr1auXxnHd3d2xfft2TJ8+HVFRUTr3rVWrFtauXatzbGTKmKnT0dERMTExCAgIQEBAACQSCdq3by8OGVS+fHns3bsXkydPxosXL/DixQv88ssvGnnZ2dlh6dKlBmsVpwxqqb4m0zJ5UAvIGGMrP2YsyE7Dhg0hk8kgl8tx/fp1MSKcWXp6utiMsWbNmmrdFvVx48YNTJs2TQxotWrVCuvWrVMb00uXN2/eiL94dOzYMcugVnBwsDhzVb169QwSmSYiIiIqzARBwPnz59XW1axZk0EtE0pPTxeHIzF3+ozBZ2jTpk1DvXr1cPPmTYSGhuLdu3eQSCQoUaIE6tSpgy5duqB79+5ah5xQ9dVXX6FDhw64d+8eHj9+jHfv3uH9+/eQy+WwtbWFi4sLGjZsiF69euV4sq8DBw7g1q1bKFmyJObOnZtt+okTJ8LNzQ07duzAw4cPIZfLUalSJfTt2xfDhw/P0/eeKlWq4NSpUzh06BC8vb0RGBiIxMREODg4oH79+hg0aBDatWundd8mTZrg7NmzOHDgAHx9ffHs2TMkJiaiVKlSqF69Ory8vNC5c2f2pslG8eLFsXPnTixfvhz37t1DUlISnJycEBERodYQpVq1ajh58iSOHTsmtjqMiYmBpaUlKlWqhLZt22LYsGG5Hk5BG1dXVzRs2BC3b9+GhYWFWusxMg2JkN30bx+ZcePGwd/fHzKZDD4+Plq7Fp44cQJz5swBAMycORNffPGF3vm/e/cOnp6e4pTNHTp0wK+//qr3DIopKSlo2bIlEhISsiwjAMydO1ccpHHhwoUYPHiw3uXMq4SEBLEpM5Axs0dOx9TKb4mJiVixYoXautmzZ+s9phYREREVfOnp6eL4QUpTpkxRmyL+Y2Hoz2tPnz4VxxXTpydDZGQkkpKScj07ZmElk8lgbW1t0CFHiIgKi5z+rchOgWipVZCMGjUK/v7+kMvlmDlzJrZs2aL2x/3Zs2fi4Ik2NjY5nu528eLFYkDL3d0da9as0TugBWQM6Dlw4EBs27YNcrkcs2bNwu+//67xAWTr1q1iQKtSpUr49NNPc1ROosDAQMjlcshkslwPhEwFB+vTfLAuzQfr0rywPnNOKpXq1VPBHHEmSiIiw2BQK5PWrVujW7duOHv2LG7fvo0+ffpgyJAhKFu2LB4+fIh9+/YhMTERQEZLqMyzD2U1EFxQUBC8vb3F1927d4e/v3+2ZXJ0dFTrAzxp0iT8/fffCA4Oxr///ouePXti0KBBqFSpEt6/f4/Tp08jICAAQEbgbcWKFZzdhnIsOTkZcrncJM3kyfBYn+aDdWk+WJemoW08VEN0BWJ95pwhuwQREdHHiUEtLZYuXYrExERcunQJoaGhWL58udp2iUSCKVOm5Lg7359//gnV3p7Lli3Ta7/MwTE7Ozts374dU6ZMwX///YfXr19jzZo1GvuVLVsWK1euRL169XJUzo9VkSJFNAYQzG5sASIiIipcpFIphg4daupiEBERkQHwG7sWVlZW2LJlC06ePIk///wTjx49Qnx8PBwdHdG4cWOMHDkSjRs3znG+yilcDaFs2bI4cOAATp06hb/++gsPHjxAXFwcbG1tUalSJXTt2hWDBg3ieFA5ULRoUfTs2dPUxSAiIiIiIiIiPTCopYNEIkHv3r3Ru3fvHO3XvHlztQE3VW3atMkQRRMVKVIEXl5e8PLyMmi+REREREREREQFHUcoJCIiIiIiIiKiQodBLSIiIiIiIiIiKnQY1CIiIiIiIiIiokKHY2oRERER0UdDEATcvHlTbZ27uzuKFStmohIRERFRbjGoRfR/kpOTsX//frV1gwcP5odcIiIiMyIIAs6cOaO2rmrVqvx7T0REVAgxqEUfldGjR+PVq1eQSCQ4f/682rb09HS8fPlSY93HqmzZslAoFJBK2UvZHLA+zQfr0nywLs0L65OIiCj/MahFH5XXr18jLCwMEonE1EUp8JydnU1dBDIg1qf5YF2aD9aleWF9EhER5T8GteijUqpUKaSkpJi6GERERGRCFStWVHtdpAg/EhuChYUF0tLSkJ6eDkEQ+CMiERGpEQRB7A1lYWFhkDz5F5w+Kjt37jR1EYiIiMiEpFIpRo0aZepimCVLS0ukpKRAEAQkJSXBxsbG1EUiIqICJCkpCYIgAMj4m2EI7PRPRFrJ5XKkpqZCLpebuihkAKxP88G6NB+sS/PC+gTs7e3F5ejoaPGLCxERkSAIiI6OFl+r/s3IC7bUIrOSmJio8avg69ev8ebNG7i7u5uoVIXTo0ePIJfLIZPJeO3MAOvTfLAuzQfr0rywPgFbW1tIJBIIgoCEhASEhobCyckJ1tbW7IpIRPSRUrbejY6ORkJCAgBAIpHA1tbWIPmbLKgVFxeHgIAA3L17Fy9evEBERATi4+ORmpqKYsWKwdbWFuXLl0flypXRoEEDNG7cGFZWVqYqLhVwR44cwaZNm1C3bl388ssvatv8/PywePFiuLq6Ys6cOejSpYuJSklERERkvqRSKVxcXBAWFiYGthISEiCRSAw2dgoRERUuynEWlSQSCVxcXAw2W3C+BrVSU1Nx+vRpHDt2DLdu3RIHCNPl3r174rKFhQVat26N3r17o0uXLpDJZMYuLhUSP/zwA/bu3QtBEGBtba2xPTQ0FIIg4NWrV5g6dSq+/PJLjqVBREREZAR2dnZqgS0g41f6tLQ0E5eMiIhMTRnQsrOzM1ie+RLUSkxMxI4dO7Br1y7ExcUBQI772KelpeHixYu4ePEiSpYsiREjRmDYsGEcgPIj5+/vjz179gAA6tati88//1wjzf/+9z80a9YMGzZswL1797B8+XI0btwY9erVy+/iEhEREZk9Ozs7uLm5ISEhAXFxcUhNTc32x2wiIjJPFhYWsLS0hL29PWxtbQ3WQkvJqEEtQRDwxx9/4Ndff0VcXJxaIKtq1aqoWbMmatSogSpVqsDR0RG2trawsbFBSkoKkpKSEBERgdDQUDx8+BD37t1DSEgIACAqKgqrVq3Cjh07MGHCBAwfPtzgF4YKhz/++AMA0KpVK/z2229aW/BZWVmhffv2aNOmDUaNGoWbN29i586dWLFiRX4Xl4iIiExMEATcvXtXbV3NmjVRrFgxE5XIPEmlUtjb2xtsIGAiIiJtjBbUevLkCb7++ms8evQIgiBAIpGgZcuW8PT0RKtWrVC6dOls88g8yGZISAguXLiAkydP4t69e4iOjsZPP/2Eo0ePYvHixWx58xG6d+8eJBIJpk6dmm2XVAsLC/zvf//DyJEjcePGjXwqIRERERUkgiDg+PHjautcXV0Z1CIiIiqEjBLU2rZtG1avXo3U1FRYW1tj6NChGDJkCFxcXPKUr6urK0aMGIERI0YgKCgIO3fuxIkTJ/D48WMMGTIE06ZN09r9jMxXbGwsAKBixYp6pa9WrRoA4P3790YrExEREREREREZn1H67C1btgwKhQLDhw/H+fPnMXv27DwHtDKrWrUqFi1ahPPnz4vdDzPPekfmz9nZGQDw+vVrvdIrg1mGmj6UiIiIiIiIiEzDKEGttm3b4uTJk/j222/h5ORkjEOISpYsiW+//RYnT55Eu3btjHosKnhq1KgBADh48KBe6Y8dOwYAqFWrltHKRERERAVbuXLl1P5ZWFiYukhERESUC0bpfrh582ZjZJulihUr4rfffsv345Jp9e3bFxcuXMC+ffvg6uqK0aNH60x78OBBbNu2DRKJBL1799bYbmFhgdq1a2usIyIiIvMhlUo5XAUREZGZkAiqUxISGUhCQgKePHkivq5Ro4ZRuvwJgoBx48bh8uXLkEgkcHV1Rdu2bVG5cmUUK1YMycnJePXqFS5duoTnz59DEAQ0btwYe/bsgUQiMXh5zElycrI4yQMHzy38WJ/mg3VpPliX5qUw1md+fV4jIiIyFga1yCjy80NSXFwcZsyYgcuXLwOA1mCV8jZv3rw51qxZA0dHR6OUhYiIiKiwYFCLiIgKO6N0PyTKT/b29ti6dSvOnz+PkydP4tq1a+KsiABgY2ODhg0bom/fvvDw8GALLSIiIiIiIiIzUGiCWn/++ae47OXlZbJyUMHVuXNndO7cGQCQkpKCmJgYWFtbw87OzsQlIyIiIiIiIiJDKzRBra+++kpsYcOgFmmTkpKCt2/fwsXFBUWLFkXp0qUBAEFBQXjy5Anat28Pa2trE5ey8IiOjoZCoYBUKjX6LKZkfKxP88G6NB+sS/PC+iQiIsp/hSaoBUAcfJNIVXp6OtavX49du3ahZcuW+PXXX9W2X7lyBUuWLIG1tTX+97//YdSoUaYpaCETGhoKuVwOmUzGD+dmgPVpPliX5oN1aRqCIODhw4dq66pVq4aiRYvmKV/WJxERUf4rVEEtIm1mzJiBc+fOQRAEPH/+XGP727dvIQgCEhMTsXTpUkRERODrr7/WSJecnIyTJ0+qrevVq1ehmcGIiIiIsicIAg4fPqy2bsqUKXkOahEREVH+k5q6APp6/PgxHj9+jEePHpm6KFSA/PXXX/Dx8YEgCOjUqROWLFmikWbGjBk4deoUunTpAkEQsGvXLly9elUjXXp6Oh4+fKj2Lz09PT9Og4iIiIiIiIhyyChBrXv37iE8PNwYWROpOXz4MCQSCXr27In169fD3d1da7pq1aph7dq16Nq1KwRBwJ49e/K5pERERERERERkSEYJas2ZMwedOnXC8uXL1daHh4cjPDwciYmJxjgsfYSUY2J8/vnneqUfN24cAOD27dtGKxMREREVbM7Ozmr/LCwsTF0kIiIiygWjjKn15s0bAIC9vb3a+o4dO0IikWDu3LkYPXq0MQ5NH5mkpCQAQNmyZfVKX6FCBQBAXFyc0cpEREREBZdUKsWkSZNMXQwiIiIyAKO01JLL5QD+f8CByFhKly4NAHj58qVe6V+/fg0AcHR0NFaRiIiIiIiIiCgfGCWopZzG2NfXl4EtMqq6desCALZv365XeuVYWvXq1TNamYiIiIiIiIjI+IzS/dDd3R3nz59HUFAQOnTogMqVK8PS0lLcvm/fPvz999+5ylsikWDnzp2GKioVcgMGDIC3tze8vb1RokQJzJo1C1ZWVhrpUlNTsX79enFg+f79+5ugtERERERERERkKEYJan322Wfw8/ODIAiIi4vD3bt3xW2CICAkJAQhISE5zlcQBEgkEkMWlQq5Vq1awcvLC3/++Sf27t2LY8eOoVmzZqhUqRKsrKzw4cMHhISE4ObNm+I4Wl26dEGnTp1MXPKCTyaTqf1PhRvr03ywLs0H69K8sD6JiIjyn1GCWk2bNsXKlSuxfPlyhIeHa2wXBMEYh6WP1KJFi2BpaYlDhw4hMTERFy5c0EijvOe8vLywcOHCfC5h4VSrVi1TF4EMiPVpPliX5oN1aV5Yn0RERPnPKEEtAPDw8ICHhwfi4uKQmJiI9PR0dO7cGRKJBF988QUGDBhgrEPTR8bS0hKLFi3CoEGD8Ndff+HatWuIjIxEbGwsrKysUKZMGTRq1Aj9+vWDu7u7qYtLREREJiQIAp4+faq2rlKlSmpDZRAREVHhYLSglpK9vT3s7e3V1jk4OMDFxcXYh6aPTJ06dVCnTh1TF4OIiIgKMEEQsG/fPrV1U6ZMQYkSJUxUIiIiIsotowS17t27h5IlS6JcuXJq65s2bQoAKFOmjDEOS0REREREREREHwmjBLXmzJmDV69eYcyYMZgzZ464funSpQAyWmoRmUpUVBR8fHwwbNgwUxelQHv58iXS0tJQpEgRVKxY0dTFoTxifZoP1qX5YF2aF9YnERFR/jNKUOvNmzcAoNHtsGPHjpBKpZgzZw5Gjx5tjEPTRygxMRE7d+6Ev78/oqOjkZ6erjEZgSAISE1NRWJiIpKTkyGRSBjUykZsbCzkcjlncTITrE/zwbo0H6xL08n8A6tUKs1znqxPIiKi/GeUoJZcLgcAJCUlaWzjzIdkSB8+fMDQoUMRGBgIQPf9JZFI1LZp+/BqYWGh8cuqhYWFAUtLREREpiaVSjF9+nRTF4OIiIgMwChBLScnJ0RFRcHX1xdffPEFrK2tjXEYIuzfvx9PnjwBAJQuXRr16tXD27dvcefOHdSuXRtVq1bF+/fvcefOHSQkJEAikWDw4MEYP368Rl7FihXDqFGj8vkMiIiIiIiIiCg3jBLUcnd3x/nz5xEUFIQOHTqgcuXKatMk79u3D3///Xeu8pZIJNi5c6ehikqFnK+vLwCgYcOG2L59O4oVK4b79+9jwIABKFWqFJYvXw4ASE5OxsKFC3Hs2DH4+flh5syZpiw2EREREREREeWRUYJan332Gfz8/CAIAuLi4nD37l1xmyAICAkJQUhISI7zFQQBEonEkEWlQi4oKAgSiQQTJ05EsWLFAAC1a9dG0aJFERAQIKYrVqwYlixZgpcvX+L27ds4cOAAxo0bZ6piExEREREREVEe5X1UTC2aNm2KlStXomzZshAEQfynpLouJ/+IMouPjwcAVK9eXVxnYWGBypUrIzExES9evBDXSyQSjB49GoIgiC28iIiIiIiIiKhwMkpLLQDw8PCAh4cH4uLikJiYiPT0dHTu3BkSiQRffPEFBgwYYKxD00fEysoKCQkJKFq0qNr6ihUr4smTJwgKCkKlSpXE9fXq1QMABAcH52cxiYiIiIiIiMjAjBbUUrK3t4e9vb3aOgcHB7i4uBj70PQRKFWqFBISEhAaGgonJydxfYUKFQAAT58+RadOncT1ytkMExIS8regREREVCAIgoCXL1+qrXNxcYFMJjNRiYiIiCi3jB7UUtW0aVMAQJkyZfLzsGTGGjdujKCgIOzatQsrVqwQ11epUgWCIODq1auYMGGCuP7+/fsAII6/pSolJQXnz59XW9e5c2eNVmBERERUeAmCoDHp0JQpU1CiRAkTlYiIiIhyK1+DWrt3787Pw9FHoG/fvjh48CD++usvxMTE4IsvvkDTpk3RvHlzSCQS3LhxAzt37sSgQYPw7Nkz/Pzzz5BIJGpjcCmlpaWpDS4PAO3bt/9og1pOTk5IS0tDkSL5+pggI2F9mg/WpflgXZoX1icREVH+M8pf3fDwcHG5XLlyWtfnhWqe9HFr0KABBgwYgEOHDuHy5csoXrw4mjZtinLlyqFLly7w8fHBzz//jJ9//hnA/59Bs2/fviYuecFXvnx5UxeBDIj1aT5Yl+aDdWleWJ9ERET5zyhBrY4dO0IikUAikeDhw4ca6/Mic55ECxcuRKVKlbB9+3a4urqK6xcvXoywsDA8ePBALX2PHj04UQEREdFHzNraWu11Xj+fEhERkWkYrX20IAg5Wk+UW1KpFGPHjsWYMWOQmJgorndwcMCBAwfg7e2N27dvw8LCAq1bt0bbtm1NWFoiIiIyJalUijlz5pi6GERERGQARglqKQeE13d9QSQIAk6dOoUjR47g0aNHSEpKgrOzM5o2bYphw4bB3d09z/n7+vri+PHjuHfvHqKjoyGTyeDi4oJWrVph5MiRenWzDAwMxPbt23H9+nW8efMGdnZ2qFq1Kry8vPDpp5+Ks/19DCQSCWxtbdXWFSlSBJ6envD09DRRqYiIiIiIiIjIGCQCm05pSE5OxrRp03DhwgWt2y0sLDB9+nSMHz8+V/nHxsZixowZuHz5ss40lpaWWLx4Mby8vHSmOXToEBYuXAi5XK51e5MmTbB+/Xo4Ojrmqpx5kZCQgCdPnoiva9SooRFwKmgSExPVZlAEgNmzZ8PGxsZEJTKt//77D3K5HDKZDHXr1jV1cSiPWJ/mg3VpPliX5qUw1mdh/LxGRESkitOzaDFv3jwxoFW1alUMHDgQJUuWxIMHD7B//34kJSVh5cqVKF26NPr06ZOjvBUKBSZPnoybN28CyBj0vl+/fqhSpQoSExNx6dIl+Pj4IDU1FV999RXs7e3RsWNHjXz8/f0xf/58CIIAKysrDB48GHXr1sW7d+9w+PBhBAYGIiAgADNnzsSWLVsglUrzfF3o46JQKMR/VPixPs0H69J8sC7NC+uTiIgo/zGolcnly5dx6tQpAECLFi2wefNmFC1aFADg6emJ/v37Y+jQoYiJicGSJUvQqVOnHP2idezYMTGg1aJFC2zcuFFtsNIBAwbAz88P//vf/5CWlobvv/8erVq1EssAAKmpqfj+++8hCAKsra2xZ88e1KlTR9w+ZMgQzJw5E+fOncPly5dx+vRpdr8jIiIiIiIiIrPC5juZbNu2DUDGWEw//PCDWjAJyGi5NX/+fABATEwMDh06lKP8Dxw4AAAoWrQoVqxYoTH7DpAxS+Tw4cMBAJGRkfjnn3/Utvv4+CA0NBQAMG7cOLWAFpDRdXHp0qVit8NNmzblqIxERERERERERAWdUVpqhYeHGyNbkT4DqOdGTEwMrly5AgBo06YNXF1dtabr0aMHlixZgnfv3sHb2xujR4/WK/+EhATcu3cPANCyZUs4OzvrTNu9e3fs2LEDAHD37l106dJF3Hb69GkAGQOjDxkyROv+NjY26Nu3L7Zt24bAwEAEBwejcuXKepWTiIiIyFwJgqDxWbV06dIoUoQdGIiIiAobo/z17tixIyQSiTGyhkQiwcOHD42Sd0BAgDgOQosWLXSmk0qlaNq0Kby9vXH37l3ExsbCwcEh2/zfv3+PevXqISIiAlWqVMkyrWp+cXFxatuU3Rdr1KgBJycnnXm0aNFCbHn2zz//MKhFREREHz1BELBlyxa1dVOmTEGJEiVMVCIiIiLKLaP9JFUYJ1V8+vSpuOzm5pZl2mrVqgHIOM/AwEA0bdo02/xdXV317q4YFBQkLqvOXhgZGSkGuapXr55lHlWrVhWXHz9+rNdxiYiIiIiIiIgKA6MEtbIL8AQGBiIuLg6CIEAqlaJ27dpwc3ND8eLFIZPJkJCQgKCgINy5cwcfPnyARCJBxYoV0bZtW2MUVxQWFiYuu7i4ZJm2TJkyavvpE9TKiSNHjojL9evXF5eVY2kB2ZexdOnSkEqlUCgURu8Saipz5syBtbU1Ro4cqRbEIyIiIiIiIiLzZpSg1u7du3VuO3jwoDhzX9++fTFt2jSULl1aa9qEhAT8/vvv+P333/Hy5UsUL14cEydONEaRAQDR0dHicvHixbNMq9p6KiYmxqDl8Pf3x99//w0AKFGiBFq1aiVue//+vd5llMlksLa2RkJCgsHLWFBcvXoV7969Q/v27RnUIiIiIr3IZDJTF4GIiIgMIF9HxHz69CkWL14MQRAwefJk/O9//8syva2tLWbMmIFSpUph8eLFWLt2LZo0aWLwVlFKycnJ4nLmWQ8zs7S01LpfXkVERODLL78UX0+cOBHFihUTX3/48EHvMirTJCQkGLSMBUlsbCwA9dZsuSWVSjUG75dKOUEoERGROZFKpfjmm29MXQwiIiIygHwNau3YsQNyuRxVqlTBlClT9N5v2LBhOHLkCB4+fIidO3caLaiVlpYmLqsGrbRR3a66X15ER0djzJgxePfuHQCgVatWGD58uFqa9PR0vcuomsZQZcytZ8+eZRkgsra2FscpU90nKSkpy3zLli2LkJAQPHnyBJ988gmAjGv04MEDvcpVtWpV2NjYAACsrKwwdOhQvHr1StyuOs6aKqlUirp166qtCw0NVWvtp4uDgwMqVqyotu7Ro0eQy+XZ7lu+fHm1yQGSk5MRGBiY7X4AUKtWLbVfpqOiohAREaEzvUKhgIWFBSwsLDS2BQcHIz4+PttjlixZUmO2UuUMoNmpXLky7OzsxNfx8fEIDg7Wa193d3e11+Hh4Xj79m22+9nZ2WlMqBAYGKhXULhs2bJqQVG5XI5Hjx7pVV43Nze14HV0dLRaV2NdZDIZatWqpbbu5cuXYrBXlbI+FQoF7t27BycnJ5QvX14tzX///SdOlpGVChUqqLVWTUxMVBsHMCt16tRRu6ciIyMRGRmZ7X65fUYAGV2xVVsE5/YZAWS0zFV9RuhizGdE5rpUlZ/PCKVixYppjEPJZ4Qmbc+IrOpSVX48IzLjMyLnz4gKFSogISEBb9++zfY+LiifI1JSUrLdh4iIqCDL16DW1atXIZFI0L59+xzPjtimTRs8fPgQd+/eNVLpoPaBUS6XZxk0Sk1NFZf1CS5lJyoqCqNHj8bz588BABUrVsSKFSs0rpNq6yx9Prwoy2nqZvbp6elqAbnMtAXd0tLSsj3HoUOHYsWKFfjmm2/w008/ibNW6nNtAM0JDQRB0GtfbQE6fcqrTJeZXC7Xa9/MXyb0La8ybea89NlX272j77lqq3N9y5v5XPUtr65ymGPdaKNP3aSnp+s8V32+sOb2faOrLLmtm/y4Dwv6MyLzuZniPtQW+OYzQpO2ulE9/6z+Rub3M0KZLjM+IzSpnqujoyMEQUBkZGSW9QkUnM8RREREhV2+BrWioqIAAPb29jneVxk4MubYUNbW1uJySkqK3kEtfboBZuXVq1cYN24cXr58CSDj19zt27er/ZKmq4zZUaZRDdiZgoWFRZYttYoU0bwVixQpkm0wLiYmBt26dcNff/2F0aNHw8HBATVr1oRUKs022Dhp0iSNoKFEItErAKjtXPQprzJdZvoGHTMfV9/yKtNmzkuffbWl0fdctX3Zze256lteXeXIS91k9+VEWT5VBb1udJ2rPl94cvu+0SYvdZMf9yGfEXxGqOIzgs+IzAr7M4KIiKiwkwiZf04zok8++QQxMTHw8PDAL7/8kqN9x48fj3/++QelSpXCP//8Y5Tyfffddzhw4AAA4Pz583B1ddWZ9tChQ/j2228BACtWrECvXr1ydcx79+5hwoQJYpdDFxcX7Ny5U+exb9++jcGDBwMAJk+ejKlTp+rMWy6Xw93dHQqFAq1atcK2bdtyVcbcSEhIwJMnT8TXNWrUgK2trcGPU7NmTfEDpfJWzq4VoCAIkEgkencNIyIiIjJH+fV5jYiIyFjytaVWnTp1cOnSJfj6+uLFixeoVKmSXvvdvHkT/v7+kEgkaNSokdHKp1qeiIiILINar1+/FpczjweiL39/f0ydOlUc76FatWrYtm2bztkgtZUxK5GRkeIvqrktY0FnrudVECQmJooBQNUxhahwYn2aD9al+WBdmhfWJxERUf7L16CWl5cXLl26hNTUVIwbNw6//fabxqCemV29ehXTp08XPyQMGjTIaOWrWrWquPz06VM0a9ZMZ1rlAOISiQTVq1fP8bH8/PwwdepUcfyD+vXrY9OmTShevHiW+xUvXhwlSpTAu3fvdA5irvTs2TNxOfMgvubCz8/P1EUwW0FBQZDL5ZDJZBqDKlPhw/o0H6xL88G6NA1BEMQhMZScnJy0duvLCdYnERFR/svXoFbPnj2xf/9+BAQEICwsDJ9++ik6duyItm3bomrVquIsRrGxsXjy5AnOnz+Pq1evQqFQQCKRwMvLS5zhzhgaNmwImUwGuVyO69evY9iwYVrTpaen4+bNmwAyur/ldIywGzduYNq0aWJAq1WrVli3bp3aeFlZadq0Kby9vfHo0SPEx8erzf6k6tq1a+JyVgE6ypCamoorV66orWvZsqVBJgIgIiKigkEQBGzcuFFt3ZQpU1CiRAkTlYiIiIhyK1+DWhKJBBs2bMDQoUPx7NkzyOVy+Pj4wMfHR+c+ynGS2rRpgx9++MGo5bO3t0eLFi3g7+8PPz8/hIeHa+3e9tdff4lTLnt4eOToGO/evcO0adPEgeY7dOiAX3/9NUeBk27dusHb2xtpaWnYt28fxo8fr5EmISEBx44dA5Ax7XnNmjVzVM7CShAEPH78GOHh4UhKSoKVlRVcXFzg5uamdSBYVXK5HBcvXlRb17RpUwa1iIiIiIiIiAqgfA1qARmBo0OHDmHjxo3YsWOH2iyC2tjZ2WH69OkYOnRotgOAG8KoUaPg7+8PuVyOmTNnYsuWLWoDZj579gw//vgjAMDGxgYDBgzIUf6LFy8WA2Lu7u5Ys2ZNjoMmnTt3Rvny5REaGor169ejUaNGaNKkibg9NTUVc+fOFWeKHD16dI7yL4wSExOxceNGHDx4EPHx8RrbbWxs4OXlhRkzZnCcCyIiIiIiIiIzkO9BLQCwsrLCzJkzMXbsWPj7++Py5csIDw/Hu3fvIJFIULJkSbi4uKB9+/Zo06YNihYtmm9la926Nbp164azZ8/i9u3b6NOnD4YMGYKyZcvi4cOH2LdvHxITEwEAc+fOhZOTk9r+169fx8iRIwFkdPnbvXu3uC0oKAje3t7i6+7du8Pf3z/bMjk6OqoFrSwtLTFv3jxMmjQJycnJGDVqFAYMGIBGjRohJiYGBw8eRGBgIACgUaNG6N+/f+4vSCEQHh6OsWPH4sWLF9A1mWdCQgL27t0Lf39/bN26FeXLl8/nUhIRERERERGRIZkkqKXk4OAAT09PeHp6mrIYGpYuXYrExERcunQJoaGhWL58udp2iUSCKVOmYPDgwTnK988//1QLuixbtkyv/TIHxwCgY8eOWLBgAX788UfI5XL88ccf+OOPP9TS1KtXDxs2bMi2211hlpaWhgkTJiA4OBhARiu2Hj16oEqVKrC2tkZiYiKePXsGb29v+Pr64tWrV5g+fTr279+f5wFhiYiIqPCRSqVYsGCBqYtBREREBsBv9VpYWVlhy5YtOHnyJP78809xQHZHR0c0btwYI0eOROPGjXOcr7L1lKEMGTIETZo0wc6dO3HlyhVERUVBJpPBzc0NvXr1wsCBAyGTyQx6zILm8OHDCAwMRJEiRfDLL7+ga9euGmlq1aqFXr164fz585g+fToePHiA06dPo3fv3iYoMREREREREREZglGCWt999x1mzpwJR0dHY2SvVWxsLFatWoXvv//eIPlJJBL07t07x4GP5s2b48mTJ1q3bdq0yRBFU1O9enWjD6BfkJ0+fRoSiQRjx47VGtBS1blzZ4wbNw6//fYbjh8/zqAWERERERERUSEmNUamBw8eRLdu3bBt27ZsB4LPq9TUVGzfvh3dunXDgQMHjHosKniUrd/69OmjV3plumfPnhmtTERERERERERkfEYJag0fPhxxcXFYvnw5unbtij/++ANJSUkGPUZMTAw2bdqETp06YdmyZYiJicGgQYMMegwq+BISEgAAJUuW1Cu9cmD/9+/fG61MRERERERERGR8Rul++O2336Jdu3b49ttv8fr1ayxevBgrVqxAz5490aNHDzRp0iRXYz0lJyfj0qVLOHnyJC5cuIDU1FQIgoCSJUtiwYIF6NKlixHOhgqy4sWL4+3bt3jx4gXc3d2zTf/y5UsAGZMUUNbq1Klj6iKQAbE+zQfr0nywLs0L65OIiCj/GW2g+DZt2sDb2xtr167Frl27kJSUhMOHD+Pw4cOwsrJCkyZNULNmTbi5uaFKlSpwcHCAnZ0drK2tkZqaisTERLx+/RohISF49OgR7t69izt37kAulwMABEGATCbD4MGDMW3aNNja2hrrVKgAq1+/Pnx9fbFz506sXLky2/Q7duwQ96OsmfOsmR8j1qf5YF2aD9alaQiCgNjYWLV1dnZ2ea4P1icREVH+M+rsh1ZWVpg79/+xd+fhTVTrH8C/0zbddwpl34rsoCxVFEFuwYsouwJlFa6IChUEEUFwBVFUFH8KqCCCqGwiiKDsiOyCAlUKlCJbWyjdku7NNr8/ejM3aZI2bZPJwvfzPH1IJmdm3nDSdPLmnPfMwujRo7F06VJs27YNWq0WRUVFOHToEA4dOlSl44miCADw9fXFwIED8eyzz6Jhw4aOCJ3cxBNPPIG9e/fi559/Rr169TB9+nSLF5U6nQ4ffvihVFh+6NChToiWiIiInE0URXz88ccm2xISElCrVi0nRURERETV5dCklkGDBg2wcOFCTJ8+HRs3bsSPP/6I69evV/k4MTExGDRoEB5//HFeeBAAoFevXoiLi8P+/fvx5ZdfYtu2bYiLi0NMTAwCAwNRVFSEy5cvY//+/cjMzAQAxMXFIS4uzsmRExEREREREVFNyJLUMqhduzamTJmCKVOmICUlBSdOnEBiYiKuXLmC9PR0FBQUQK1Ww8/PD8HBwWjQoAGaNWuGe+65B/fddx+aNm0qZ7jkJj788ENMnz4dBw4cwO3bty2ugmkY5RcXF4f3339f7hDdUkZGBnQ6Hby9vREdHe3scKiG2J+eg33pOdiXnoX9SUREJD9Zk1rGWrRogRYtWmD06NHOCoE8hL+/P5YvX44DBw5g06ZNOHnyJPLz86XHQ0ND0blzZ4wYMQL/+te/nBipe8nIyIBGo4FCoeDFuQdgf3oO9qXnYF96FvYnERGR/JyW1CKyt3/9619S0qqwsBAFBQUICgqyeREBQRAQGBhoto2IiIg8hyAImDNnjsm26qzKTURERM7HpBa5tU8//RQA8Oyzz8LH538v56CgIAQFBZm1LygowNtvv42ioiKzIrGBgYF46aWXHBswEREROZUgCPD19XV2GERERGQHTGqRW/v0008hCAKeeuopk6SWNaIoYsuWLWYjsoiIiIiIiIjIvTCpRW5BFEXcvHnT6uM3b96Ev79/hcfQaDTYvn07AE4rJCIiIiIiInJ3TGqRWxAEAfPmzcOxY8fMtgPAY489VqVjdejQwa7xEREREREREZG8vJwdAJGtXn/9dSgUCoiiWKOfunXr4pVXXnH20yEiIiIiIiKiGuBILXIbTZo0waZNm6BSqQCUTUl88sknIQgCPv/88wqnHwqCAG9vb4SHh6NJkybw9vaWK2wiIiJyIaIooqioyGRbQEAAvLz4XS8REZG7YVKL3EqrVq0sbo+NjUVAQECNjq3RaHD69GmTbZ06deIy30RERB5EFEV88MEHJtsSEhJQq1YtJ0VERERE1cWkFrm1ffv2AUCFCS21Wg0fH59Kv4FVq9X45ZdfTLa1a9fujk1qBQYGQqvV2rSqJLk+9qfnYF96DvalZ2F/EhERyY9/dcmtNWjQAABw+fJlfPXVVwgPD8fMmTNN2mzfvh0LFizAI488goSEBNSvX98ZobqdFi1aODsEsiP2p+dgX3oO9qVnYX8SERHJj8UDyO1t374dQ4YMwebNm3Hq1Cmzx2/cuIGioiJs2bIFAwYMwO+//+6EKImIiIiIiIjInlxypJYoivjjjz+QkZGB6Oho3H333XfsFDCq2OXLlzFnzhxoNBoEBwejc+fOZm3+/e9/o6SkBJs3b0ZeXh6ef/55bNu2DdHR0U6ImIiIiJxJEASzUd01rctJREREzuGUpJZWq8WOHTvw119/Yd68eSaPJSUlYdq0aUhNTZW21alTB7Nnz0a/fv3kDpVc3JdffgmNRoMmTZpg1apV0nREY23atEGbNm0wduxYjBs3Dmlpafjqq68we/ZsJ0RMREREziQIAoKCgpwdBhEREdmB7NMPb9y4gUcffRSzZ8/Gd999B7VaLT2Wm5uLCRMm4MaNGxBFUfrJyMjAiy++iB9++EHucMnFnThxAoIgYNasWRYTWsbq16+PGTNmQBRFHDhwQKYI3VdKSgouXLiAlJQUZ4dCdsD+9BzsS8/BvvQs7E8iIiL5yZrU0uv1mDRpEq5fvy4lrG7cuCE9vmrVKqhUKgiCAB8fH/Ts2RPt27eX9l24cCGysrLkDJlc3O3btwEAnTp1sql9ly5dAAA3b950WEyeoqioCIWFhSgqKnJ2KGQH7E/Pwb70HOxLz8L+JCIikp+sSa0dO3bgypUrEAQBtWvXxsKFC9GwYUPp8W3btkm3P/zwQ3zxxRf4/vvvpWlihYWFHK1FJkJCQgCUvTZsIYoiAMDX19dhMRERERERERGR48ma1DJM+VIoFPjuu+8wZMgQ+Pn5AQASExORkZEBQRDQrFkz/Pvf/5b2Gz9+PDp27AhRFHHw4EE5QyYX16RJEwDA3r17bWpveA0a9iMiIiIiIiIi9yRrUisxMRGCIODhhx9Go0aNTB777bffpNv/+te/zPaNjY0FAFy/ft2xQZJbeeyxxyCKIj799FOcPXu2wrYXL17EkiVLpNcgERER3XlEUYRarTb5MYzkJiIiIvci6+qHOTk5AIBmzZqZPXb48GHp9gMPPGD2eFhYGICyYvJEBkOGDMGaNWtw48YNjB49GoMGDUKvXr3QtGlT+Pv7o6SkBNevX8ehQ4ewZcsWlJaWIjo6GmPHjnV26EREROQEoijinXfeMdmWkJCAWrVqOSkiIiIiqi5Zk1parRZA2fRDY/n5+fjrr7/KAvLxkYp5G8vMzAQAaboiEQAEBQXh008/xVNPPYWsrCz88MMPVuuuiaKIWrVq4fPPP+dS3kRERERERERuTtbph1FRUQBgsuIhABw5cgQ6nQ6CIKBz587w9/c329eQ9IqOjnZ8oORWWrVqhZ9//hljxoxBrVq1pJU1jX8CAgIQHx+PH3/8Ea1bt3Z2yERERERERERUQ7KO1OrQoQPS09Oxf/9+5OfnSyvXbdq0SWoTFxdntt9vv/2GM2fOQBAEdOjQQbZ4yX2EhoZi3rx5mDt3LpKTk5GRkQGVSoWAgADUq1cPrVu3hre3t7PDJCIiIiIiIiI7kTWp1a9fP+zatQu5ubkYOXIkhg8fjjNnzuDIkSMAAG9vbzz66KNS+9u3b2P79u34+OOPpW2PPfaYnCGTmxEEAa1atUKrVq2cHQoRERG5IEEQMG3aNJNthi9aiYiIyL3ImtTq27cv7rnnHpw5cwaXL1+WinQKggAAGDduHGrXri2179+/P/Lz86UVaR588EH07NlTzpDpDhIUFITXX3/d2WG4jOjoaOh0Oo5w8xDsT8/BvvQc7EvnEAQB4eHhdj8u+5OIiEh+sia1BEHA8uXLMX36dBw/ftzksUGDBmH69Okm25o3b44zZ84AAHr06IElS5bIFCm5ojlz5gAoq8324osvmmyrKkEQsHDhQrvF5olYv86zsD89B/vSc7AvPQv7k4iISH6CaBgGJbPTp0/j7Nmz8Pb2RmxsrMXi3e+++y5u3LiBxx9/3GKtLXJdBQUFuHjxonS/VatWCA4OrtExW7duDUEQ0LhxY+zatctkW1WIoghBEHD+/PkaxUNERETkzhxxvUZERCQnWUdqGevUqRM6depUYZvZs2fLFA25g/r16wMA6tSpY7aNiIiIiIiIiO4sTktqEVXV/v37bdpG9qHT6aTbrA/i/tifnoN96TnYl56F/UlERCQ/hyS10tPTHXFYCUfnEDneuXPnoNFooFAo0LFjR2eHQzXE/vQc7EvPwb70LOxPIiIi+TkkqRUXF1flOke2EgQBSUlJDjk23dm0Wq1JXQmgrLaEjw8HNBIREXkKvV6P+fPnm2xLSEhArVq1nBQRERERVZfDPq07qf48ebCTJ0/a9XixsbEm90tLS/H999+bbJs5cyaTWkREREREREQuyCGf1ssnC8pLTk5GXl4eRFGEl5cX2rZti5YtWyIiIgIKhQIFBQW4fPkyzpw5g+LiYgiCgCZNmqBnz56OCJfcxNixY+02ApAj/oiIiIiIiIjcm0OSWmvXrrX62MaNG/HGG29AFEUMHToU06ZNQ3R0tMW2BQUFWLFiBVasWIFr164hIiICzz33nCNCJjdh6whAb29vBAYGQq1Wo7S0VNouCAIUCoWjwiMiIiIiIiIimcg6r+rSpUuYP38+RFHElClT8Pzzz1fYPjg4GNOnT0edOnUwf/58fPLJJ+jatWulI8HIM+3bt8/i9m+//RarVq1CaGgoJk6ciD59+qBZs2bSqK7MzEwcPHgQy5YtQ0ZGBqZNm4annnpKztCJiIjIRQiCYPYlaVhYmJOiISIiopqQNam1evVqaDQaNG/eHAkJCTbvN3r0aGzevBlJSUlYs2YNk1p3qAYNGpht+/333/HVV18hOjoa3333ncU2tWvXxhNPPIE+ffogPj4eH3zwAZo3b45//etfcoRNRERELkQQBNSpU8fZYRAREZEdeMl5smPHjkEQBPTq1avKtZF69OgBADh79qwjQiM3tWLFCgBlBd0tJbSMhYeHY+bMmRBFEatWrZIjPCIiIiIiIiJyEFmTWpmZmQCA0NDQKu/r6+sLAFAqlfYMidxcYmIiAKB79+42te/SpQsA4Pz58w6LiYiIiIiIiIgcT9akVnBwMICy1Q+ryjBCKyIiwq4xkXvTarUAYFIMviL5+fkAygrJExEREREREZH7krWmVrt27XD48GHs27cPV69eRdOmTW3a7+TJkzh06BAEQUDnzp0dGyS5lSZNmuD8+fPYuXMnJkyYUGn7zZs3AwCaN2/u6NDcXkxMDERRrPJUYXJN7E/Pwb70HOxLz8L+JCIikp+sI7UGDx4MAFCr1Zg4cSJSUlIq3efYsWNISEiAKIoAgBEjRjgyRHIzjz32GERRxP/93//h0KFDFbbdunUrVq5cCUEQ8MQTT8gUofsKCgpCcHAwgoKCnB0K2QH703OwLz0H+9KzsD+JiIjkJ+tIrcceewzr16/HqVOnkJaWhiFDhiAuLg49e/ZETEwMQkJCAAAqlQoXL17E3r17cezYMej1egiCgMGDB+P++++XM2RycfHx8di4cSOuXbuGSZMm4YEHHkDPnj3RpEkT+Pv7o7i4GP/88w/27t2LM2fOQBRFdO7cGYMGDXJ26EREROQEer0e7777rsm2Z555BrVq1XJSRERERFRdsia1BEHAsmXLMGrUKKSkpECj0WD37t3YvXu31X0MI7R69OiBBQsWyBUquYmgoCCsXLkSEydOxLVr13D06FEcPXrUrJ3hdRQbG4tPP/0UPj6yvvSJiIjIhWg0GmeHQERERHYg+yf70NBQbNq0CcuXL8fq1auhVqsrbB8SEoIXXngBo0aNYo0CsqhRo0bYvn07vv32W2zfvh3nzp2TklgA4OXlha5du+Lxxx+XpsBS5ZRKpVQbJDw83NnhUA2xPz0H+9JzsC89C/uTiIhIfk4ZrhIQEIAZM2bgqaeewqFDh3DkyBGkp6cjOzsbgiAgKioKDRo0QK9evdCjRw/4+fk5I0xyIwqFAuPHj8f48eNRUFCAjIwM5OXlISwsDHXr1kVgYKCzQ3Q7169fh0ajgUKh4MW5B2B/eg72pedgX3oW9icREZH8nDoHKywsDP3790f//v2dGQZ5mODgYAQHBzs7DCIiInJBgiBg4sSJJtvCwsKcFA0RERHVBAsLWSGKIrZv347Nmzfj/PnzKCoqQu3atREbG4vRo0ejY8eOdj/n2bNnER8fj3r16mH//v2Vth87dix+//13m469YcMG3HPPPTWM0PUlJibizz//xM2bN1FYWCjVYdu1axc6duyIevXqWd03MDAQM2fONNtGREREnkMQBDRo0MDZYRAREZEdMKllQUlJCaZNm4Zff/3VZHtaWhrS0tLw008/4YUXXsCkSZPsds7CwkLMmzcPer3e5n2Sk5Ptdn53d/r0abz55pu4ePGiyXZDUuujjz5CWloaJk6ciKlTp1qszyYIApfhJiIiIiIiInITDklqpaenO+Kwkvr16zv0+HPnzpUSWjExMRg+fDiioqJw7tw5rF+/HkVFRVi8eDGio6MxaNCgGp9PrVZj8uTJVUpSZWRkQKlUAgCGDx+Ohx56qML2zZo1q0mILm337t2YMWMGdDodRFGEt7c3dDqdSeIqPT0dGo0Gn332GbKzs/HWW285MWIiIiIiIiIiqimHJLXi4uIctlKhIAhISkpyyLEB4MiRI9i+fTsAoFu3bvjiiy+kQvX9+/fHE088gVGjRkGpVGLhwoXo3bt3jeo3ZWdnY9q0aTh58mSV9rtw4YJ0u2/fvnjwwQerHYM7u3XrFmbNmgWtVouOHTti+vTpaNWqFR544AGTdqtXr8aiRYtw9uxZbNq0Cf369cP999/vpKiJiIiIiIiIqKa8HHVgURQd9uNIq1atAgD4+PhgwYIFZisvxsTE4NVXXwVQtnTzpk2bqn2uY8eOYejQoVVOaAEwmWZ31113VTsGd7dq1SqUlJSgQ4cO+Oabb3D//ffD39/frF3nzp3x9ddfS3XF1q9fL3OkRERERERERGRPDhmpFRsbW+HjycnJyMvLgyiK8PLyQtu2bdGyZUtERERAoVCgoKAAly9fxpkzZ1BcXAxBENCkSRP07NnTEeFKlEoljh49CgDo0aMHGjVqZLHdo48+ioULFyI7Oxs7d+7EhAkTqnSenJwcvPrqq9i7d6+07fHHH8fhw4eRkZFh0zEMSa3w8HBER0dX6fye5NChQxAEAc8//zx8fX0rbOvn54eEhARMnDgRZ86ckSdAIiIiIiIiInIIhyS11q5da/WxjRs34o033oAoihg6dCimTZtmNSlTUFCAFStWYMWKFbh27RoiIiLw3HPPOSJkAMCpU6ekQu3dunWz2s7LywuxsbHYuXMnzp49C5VKVaWloC9duiQltIKCgjBnzhwMGzYMcXFxNh/DUH+rZcuWNu/jiW7evAkA6NChg03t27ZtC6AssVieTqfDjRs3TLY1atQI3t7eNYySiIiIXIVer8fixYtNtj311FOIjIx0UkRERERUXbKufnjp0iXMnz8foihiypQpeP755ytsHxwcjOnTp6NOnTqYP38+PvnkE3Tt2rXSkWA1ic+gsmRRixYtAJRNs0xOTq5yTF5eXhg0aBCmT59e5ZFWGo0GV65cAfC/qYfFxcW4cOEC8vLyEBERgdatW1c6cskTGBJOGo3GpvbFxcUAYHGKYklJCdasWWOybebMmXfsioheXl7SD7k/9qfnYF96Dval8xQVFZnct0d5C/YnERGR/GRNaq1evRoajQbNmzdHQkKCzfuNHj0amzdvRlJSEtasWeOwpFZaWpp0u0GDBhW2rVu3rsl+VYmpadOm2LVrFxo3blz1IAFcvnxZSuKEhIRgzpw52LFjB0pLS6U2QUFBGDp0KJ5//vkqjSJzN40aNcLFixfx+++/o3///pW2N6xqaW1qKf1P+/btnR0C2RH703OwLz0H+9KzsD+JiIjkJ+tXSceOHYMgCOjVq1eVV0fs0aMHAODs2bOOCA2A6ZS0iIiICtuGh4dLt5VKZZXOEx0dXe2EFmBaJP6zzz7DDz/8YJLQAoDCwkKsXbsWw4YNM5tS50l69eoFURTx8ccfIy8vr8K2169fxyeffAJBEKTXExERERERERG5J1lHamVmZgIAQkNDq7yvYSpdVRNIVVFSUiLdLr/qobV4yu8nB+OkliAIGD58OEaOHIlmzZqhqKgIx48fx8cff4yrV6/i2rVrePbZZ/H9998jICBA1jjlMH78eKxbtw6pqal4/PHHMWXKFJPVIDUaDVJTU7Fv3z6sWLECKpUKQUFBGDdunBOjJiIiImcRBAFPPvmkybbqXJsSERGR88ma1AoODoZSqZSKnFeFYYRWZSOoakKr1Uq3K6tHZfy48X5yMKyQKAgCPvroI/Tr1096zN/fH48++ih69OiBsWPH4vz580hJScHXX3+NZ555RtY4jaWkpFRYYyIwMFCqU2a8T/maF5a88cYbmDNnDm7cuIE5c+ZI20VRNCsg7+XlhYSEBKSlpSEtLQ0xMTEV1sxKSkqymOD08vIym2aQmppqsQB9eWFhYWjSpInJtvPnz9tUF6xhw4YmhWxLSkps/n1q06YNFAqFdD8zM1MqtF8Rf39/sxpzV65cQX5+fqX7RkVFoX79+ibbEhMTbYq3WbNmCAkJke7n5+dLteQq07FjR5P76enpyMrKqnS/kJAQNGvWzGRbcnKyTYnrevXqoXbt2tJ9jUaD8+fP2xRvy5YtTeq85eTkIDU1tdL9FAoF2rRpY7Lt2rVrUKlUle4bGRmJhg0bmmz7+++/pcUyKtK4cWOT0aqFhYW4fPlypfsBQLt27UwWX8jIyLBp1deavEdER0eb1C7U6XQ4d+6cTfGWf49QKpW4fv16pfvxPYLvEeXxPcK13yOMX/t30ntE+ZH+RERE7kbWpFa7du1w+PBh7Nu3D1evXkXTpk1t2u/kyZM4dOgQBEFA586dHRaf8QWjRqOpMLGlVqul23IXZF+8eDEWLFiArKwsq7WhQkJCsHDhQgwZMgRA2aqTzkxq6XQ66HQ6q49bSgxqtVqbLtDuvvtubNy4EW+++Sb++OMPq+2aNGmC8ePHo2XLltJxKysMq9FoLCbjLG2zNV5Lz1Wj0di0b/kPE6Io2lwkv/xz1ev11TonYPtztdTntsZb/ry2xmstDk/sG0tq+jq05QNr+Xir8lzLq0nfyPE6rO5zvZPeIyytEMv3CHN8j/D894jU1FQUFha61XsEERGRu5M1qTV48GAcPnwYarUaEydOxGeffWb2rVp5x44dwwsvvABRFCEIAkaMGOGw+AIDA6XbpaWlNie1Kpuq6AgBAQGVFjtv27Yt7rrrLly6dAmpqanIyMio8kqL9uLt7V3hSC0fH/OXoo+Pj8k3pxUdu2XLlvj222+RkpKC48eP48yZMygqKoKfnx+ioqLQtm1bxMTEmO1bWW03hUJhMQZLz8XWeC09V1v2s3ReQRBs3rf8c/Xy8qpwX8PFsaUL4Kr0TXnVfa6VxVtZHDXpm4oSssbxGXNk3xjHVp61vjH+sKNQKKw+V1s+8JSPtyrPtbya9I0cr8PqPldHvkeU78uKzutqr8Py7vT3iPLHscYZfcP3iKr/3uTk5Ei/n5Xt7yrXEURERO5OEO2xhrGNRFHE2LFjcerUKQiCAB8fH8TFxaFnz56IiYmRphGoVCpcvHgRe/fuxbFjx6DX6yEIAgYPHox33nnHYfG99tpr2LBhAwBg7969FSaNNm3ahHnz5gEAPvjgAwwYMKDG54+Li0NaWhoaNGiA/fv31/h4ADB16lTs2rULQFnM5adcOEpBQYFJ7a9WrVohODjY7udZvXo16tSpgz59+tR4xFxhYSE++OADk20zZ86scHqiJ0tMTIRGo4FCoZDtdUOOw/70HOxLz8G+9Czu2J9yXa8RERE5iqwjtQRBwLJlyzBq1CikpKRAo9Fg9+7d2L17t9V9DDm3Hj16YMGCBQ6Nz3g65M2bNytMat26dUu6Xb4eiCux9G2eJ1m7di3S09Px1ltvYdiwYc4Oh4iIiIiIiIhkIvsY5NDQUGzatAmTJk2Cr68vRFGs8CckJASvvvoqPv/8c4vDw+3JeHrapUuXKmxreFwQBJPV9hwtJycH33zzDZYsWYKtW7dW2t64uGqdOnUcGJlzGFbUfOihh5wcCRERERERERHJySnDeAICAjBjxgw89dRTOHToEI4cOYL09HRkZ2dDEARERUWhQYMG6NWrF3r06CFbzapOnTpBoVBAo9HgxIkTGD16tMV2Op0OJ0+eBAC0bt1a1mWgNRoN5s+fD6BsiPjgwYOtts3Pz8fff/8NoGxln7p168oRoqwiIyORkZEBlUrlkUk7IiIisi+9Xo//+7//M9n25JNPOnSFbSIiInIMp85NCwsLQ//+/dG/f39nhiEJDQ1Ft27dcOjQIezfvx/p6ekWpxbu2LFDWnK5X79+ssYYHR2Npk2b4urVq7h48SLOnDmDe+65x2LbVatWScuMDxo0SMYo5TN+/Hi8++67WLBgAZYuXco6EERERFQplUplcp+rAhIREbknlyi4dP36ddy4cUO6wAgNDUWjRo3QpEkT2WMZP348Dh06BI1GgxkzZmDlypUmiZKUlBS8/fbbAICgoCCn1HEaO3asNFrr5Zdfxtdff222quGOHTvwxRdfAADCw8Mxfvx4ucOURe/evXH16lWsX78eDz30ELp37442bdogMjKy0hF+FY1yIyIiIiIiIiLX5rSkllKpxOrVq7F582ZkZWVZbBMREYFHH30Uzz33HGrVqiVLXA8++CD69u2LXbt24fTp0xg0aBBGjhyJevXqISkpCevWrUNhYSEAYNasWYiMjDTZ/8SJExg3bhwA4N5778XatWvtHmN8fDx++eUXnDp1ClevXsXAgQMxYsQItG7dGgUFBdi/fz8OHDgAoKxQ/Lvvvivb/5/c/v3vfwMoq21WWFiIPXv2YM+ePZXuZ1hNk4iIiIiIiIjck1OSWidPnsT06dORnZ0N4H8rHJaXk5ODb7/9Fjt37sR7772HBx54QJb4Fi1ahMLCQhw+fBipqal4//33TR4XBAEJCQmIj4+XJZ7yfHx8sHz5ckyfPh2HDx+GUqnE559/btYuPDwcb7/9Nv71r385IUp5lH/tWHstEREREQFl13EjR4402RYSEuKkaIiIiKgmZE9qJSYmYuLEiVCr1VICIjw8HK1bt0Z4eDj0ej1yc3Nx8eJF5OXlQRRFZGVl4dlnn8WGDRvQpk0bh8cYEBCAlStX4qeffsLWrVtx/vx55OfnIzw8HF26dMG4cePQpUsXh8dRkdDQUKxcuRL79u3D1q1bcfbsWeTm5iIwMBANGzZEXFwcRo4c6bEjtAz27dtnt2MFBATgueeeM9t2pwoLC4NWq4WPj0vMUqYaYn96Dval52BfOocgCGjZsqXdj8v+JCIikp8gyji0RaPRoF+/fkhNTQUAtG3bFi+99BLuv/9+i+2PHDmCDz/8EOfOnQMANGnSBNu3b4dCoZArZKqmgoICXLx4UbrfqlUrFnEnIiIiciG8XiMiInfnJefJtm7ditTUVAiCgIceeggbNmywmtACgO7du2PDhg3o1asXgLKC8tu3b5cpWiIiIiIiIiIiclWyjo82TBULCQnBokWLbBpx5ePjg0WLFuHhhx9Gfn4+du3ahSFDhjg6VHJDFy5cwPbt23H06FFkZGQgPz8fERERaNCgAXr16oXHHnsMDRo0cHaYRERERERERGQHsia1zp8/D0EQ0Lt3b4SHh9u8X1hYGHr37o0tW7bg77//dlyA5JZKS0vx+uuvY9u2bRBF0aRYfEZGBjIyMnD69GksXboUkyZNwpQpU5wYLRERERERERHZg6xJrdzcXABltbGqyrCPUqm0Z0jk5nQ6HRISEnD48GGIooiAgADcd999aNq0Kfz9/VFUVIQrV67g5MmTKCkpwaeffor8/HzMnj3b2aG7vPPnz0Oj0UChUMiyQAM5FvvTc7AvPQf70rOwP4mIiOQna1LLz88PGo0GRUVFVd7XsE9gYKC9wyI3tmPHDhw6dAiCIGD06NF48cUXLb5GCgoK8M4772Dz5s1Ys2YNevfujdjYWJM2er0eWVlZJtuioqLg5SVr6TmXodFooNFonB0G2Qn703OwLz0H+9I59Ho9PvvsM5Nto0aNqtIsAkvYn0RERPKTNalVv359XLx4ESdOnKjyvoZ96tata++wyI1t2LABgiBg8ODBePXVV622Cw4Oxttvv42ioiL88ssv+Prrr82SWsXFxVi+fLnJtpkzZyIoKMghsRMREZFzZGZmmtzX6XROioSIiIhqQtYhKPfddx8AIDExEfv377d5v3379uHs2bMQBEE6BhEA/PPPPwCA//znPza1nzRpEoCy1yARERERERERuS9Zk1ojRoyAIAgAgJdeegm//vprpfscOHAAs2bNAgAIgoBhw4Y5MkRyM6WlpQDKpgnaon79+gCAvLw8h8VERERERERERI4n6/TDmJgYjBw5Et999x2Kiorw3HPPITY2Fn379kXr1q2lWga5ubm4ePEidu7ciVOnTkEURQiCgCeeeAItW7aUM2RycS1atMBff/2FP//8E7179660fXJyMgCgWbNmjg6NiIiIXJDhmtJYcHCwk6IhIiKimpA1qQUAs2fPRlpaGg4ePAhBEHDy5EmcPHnSantRFAEADzzwAF577TW5wiQ38eSTT+LFF1/EokWLcM8996BWrVpW22o0Gnz44YdSUXkiIiK68wiCgHbt2jk7DCIiIrID2Zd18/X1xbJlyzBlyhQEBgZCFMUKfwIDAzF58mSsWLECPj6y5+DIxT322GN45plncP36dQwdOhRbt25FSUmJWbtTp05h7NixOHPmDAYOHIjHH3/cCdESERERERERkb04JUvk7e2N559/HmPHjsWBAwdw/PhxpKamQqlUQhRFhIaGomnTpujSpQv69u2L0NBQZ4RJbiA+Ph4AEBAQgIyMDMyZMwfz5s1DgwYNEBoaitLSUqSlpaGoqEjaZ9u2bdi2bZvF44miiJEjR8oSOxERERERERFVn1OHPoWHh2PIkCEYMmSIM8MgN3bmzBmT+6IoQqvV4tq1a84JiIiIiIiIiIhkwfl85NYSEhLsdiy1Wo2jR4/a7XjurmHDhtDr9fDykn2WMjkA+9NzsC89B/vSs7A/iYiI5MekFrk1eya1CgsLkZ+fb7fjubvIyEhnh0B2xP70HOxLz8G+9CzsTyIiIvkxqUVEREREdwy9Xo8vv/zSZNuwYcMQHh7unICIiIio2pjUIiIiIqI7Snp6usl9nU7npEiIiIioJpjUIiKLSkpKIIoiBEGAv7+/s8OhGmJ/eg72pedgX3oW9icREZH8mNQiIouSk5Oh0WigUCjQsWNHZ4dDNcT+9BzsS8/BvvQs7E8iIiL5MalFRERERHcMQRAwaNAgk21BQUFOioaIiIhqgkktov/y9/fHk08+abaNiIiIPIcgCLjnnnucHQYRERHZAZNaRP/l7e2Npk2bOjsMIiIiIiIiIrKBl7MDICIiIiIiIiIiqiomtcitbd26FVu3boVer7epfVFRET799FMsXLjQwZERERERERERkSM5ZPphenq6Iw4rqV+/vkOPT+5j9uzZ8PLyQt++fREQEFBpe51Oh08//RQhISF45ZVXZIiQiIiIiIiIiBzBIUmtuLg4CILgiENDEAQkJSU55NjknkRRtOn1ptVqsWfPHuk2EREREREREbkvhxWKF0XRUYemO5Ber8cTTzyB8+fPm2w3JLM6depk87EEQUCrVq3MtouiiKKiIpNtgYGBDkvQEhERkfz0ej2+/vprk21DhgxBWFiYkyIiIiKi6nJIUis2NrbCx5OTk5GXlwdRFOHl5YW2bduiZcuWiIiIgEKhQEFBAS5fvowzZ86guLgYgiCgSZMm6NmzpyPCJTfg5eWFt956C8OHD7e5fpY1gYGBePHFF822FxUV4YMPPjDZNnPmTAQFBdXofERERORarl27ZnKfI7iJiIjck0OSWmvXrrX62MaNG/HGG29AFEUMHToU06ZNQ3R0tMW2BQUFWLFiBVasWIFr164hIiICzz33nCNCJjfQvn17fP7558jKypK2zZkzB4Ig4I033oCvr6/VfQVBgLe3N8LDw9G+fXtERETIEbJba9Omjc1TO8n1sT89B/vSc7AvPQv7k4iISH4Om35oyaVLlzB//nyIoogpU6bg+eefr7B9cHAwpk+fjjp16mD+/Pn45JNP0LVr10pHgpHn6tGjh8n9OXPmAAAGDhxoU6F4sp1CoXB2CGRH7E/Pwb70HOxLz8L+JCIikp+sSa3Vq1dDo9GgefPmSEhIsHm/0aNHY/PmzUhKSsKaNWuY1CKJoSaGv7+/kyMhIiIidyAIAvr162eyjaUGiIiI3JOsSa1jx45BEAT06tWrykOze/TogaSkJJw9e9ZB0ZE7uvfee50dAhEREbkRQRB4/UBEROQhZE1qZWZmAgBCQ0OrvK+hXpJSqbRnSORBkpKSkJqaiuLiYptW3xw8eLDjg3JjmZmZ0Ov18PLyQu3atZ0dDtUQ+9NzsC89B/vSs7A/iYiI5CdrUis4OBhKpRLJyclV3tcwQosFvqm8EydO4LXXXsP169dt3kcQBCa1KnHz5k1oNBooFApenHsA9qfnYF96DvalZ2F/EhERyc9LzpO1a9cOoihi3759uHr1qs37nTx5EocOHYIgCOjcubPjAiS3888//+Dpp5/G9evXIYpilX6IiIiIiIiIyH3JOlJr8ODBOHz4MNRqNSZOnIjPPvsMLVq0qHCfY8eO4YUXXpCWSB4xYoRM0ZI7WLFiBdRqNXx8fDB+/Hj06tULtWrVkqarEhEREREREZFnkjWp9dhjj2H9+vU4deoU0tLSMGTIEMTFxaFnz56IiYlBSEgIAEClUuHixYvYu3cvjh07Br1eL00Xu//+++UMmVycYfGByZMnY/Lkyc4Oh4iIiIiIiIhkImtSSxAELFu2DKNGjUJKSgo0Gg12796N3bt3W93HME2sR48eWLBggVyhkpvIzs4GwKLvREREZBu9Xo/169ebbOvfv3+1FjIiIiIi55I1qQWUrXy4adMmLF++HKtXr4Zara6wfUhICF544QWMGjUKgiDIFCW5i/DwcGRlZcHf39/ZoRAREZGbuHTpksl9jUbjpEiIiIioJmRPagFAQEAAZsyYgaeeegqHDh3CkSNHkJ6ejuzsbAiCgKioKDRo0AC9evVCjx494Ofn54wwyQ106dIFu3btwp9//ok+ffo4OxwiIiIiIiIikolTkloGYWFh6N+/P/r37+/MMMiN/ec//8GePXvw8ccf44EHHkBgYKCzQyIiIiIiIiIiGTg1qUVUUx07dsRrr72Gt956C4MHD8bo0aNx9913IzIyEj4+Fb+869evL1OURERE5CoEQTAb3c0vxYiIiNyTSyS19Ho9cnJyoFKpEBkZiYiICGm7l5eXk6MjV9a7d28AgLe3N27cuIF3333Xpv0EQUBSUpLJNj8/PzzxxBNm2+5U/v7+8Pb2hkKhcHYoZAfsT8/BvvQc7EvnEAQB3bt3t/tx2Z9ERETyc1pSS6vV4scff8S2bduQmJiIkpISAMCsWbMwYcIEAMCIESPQqFEjPPvss2jZsqWzQiUXlpaWZrdj+fj4oF27dnY7nrvj75xnYX96Dval52Bfehb2JxERkfycktS6ePEipk6diuvXrwMARFEEALPVDVNSUvD3339j9+7dmDlzJsaPHy93qOTi3nnnHWeHQEREREREREROIHtSKzk5GaNHj0ZhYaGUzPL19YVarTZpl5ubi+LiYgiCAK1Wi0WLFkGhUGD06NFyh0wubMiQIc4OgYiIiIiIiIicQNaCVVqtFs8//zwKCgogiiJ69eqFDRs24NSpU2ZtIyIisGnTJtx3330AykZzffDBB7h165acIRMRERERERERkQuSNan1448/4tq1axAEAePGjcNnn32Gu+++G76+vhbbd+jQAatXr0Z8fDwAoKSkBBs3bpQzZPJAOp0OBw8edHYYLu/KlSu4dOkSrly54uxQyA7Yn56Dfek52Jeehf1JREQkP1mnH+7ZswcAUKdOHcycOdPm/WbPno29e/ciOzsbR44cwdSpUx0VIrkhURSxbds2HDp0CLm5udBqtdLUVuM2Go0GhYWFSE1NRWlpqdnqh2QqPz8fGo2Gqzh5CPan52Bfeg72pXPo9Xps3rzZZNsjjzyCkJCQGh2X/UlERCQ/WZNaSUlJEAQBvXr1sjo6yxJ/f3/ExcVh48aNuHr1quMCJLej1Wrx9NNP4/jx42aPWVqAwNqiBABQWFiIDz74wGTbzJkzERQUZM+QiYiIyMnKf7EVFxfnpEiIiIioJmRNauXm5gIAGjRoUOV969evD6As8UBksGXLFhw7dgxAWfKzWbNmKCoqwrVr19CoUSPUrl0bubm5uHr1KkRRhCAI6N+/vzSllYiIiIiIiIjck6w1tQwjXgoKCqq8b05ODgDUeGg4eZadO3cCAO666y7s3bsXW7Zswdtvvw0AaNeuHb777jv88ssvOHDgALp37w5RFJGUlIQOHTo4M2wiIiIiIiIiqiFZR2o1bNgQSqUSJ0+erNJ+oiji4MGDEAQBDRs2dFB05I4uXLgAQRCQkJCAqKgoAEDHjh3h4+NjMiWxbt26WL58OR5//HGkpKRg8+bNGDlypLPCJiIiIicRBAEPPfSQybaAgAAnRUNEREQ1IetIrQcffBAAcObMGWnKmC3WrFmDa9euAQAeeOABh8RWniiK+OmnnzB+/Hjcd9996NChA+Li4vDyyy8jMTHRIec8e/Ys2rRpU6W6DmlpaViwYAH69u2LDh064N5778WwYcOwevVqlJSUOCROV5KXlwcAaNu2rbTN19cXTZs2hUqlQlpamsn2iRMnQhRF/PLLL7LHSkRERM5nqO9q/BMYGOjssIiIiKgaZE1qxcfHw8/PDwAwY8YMnDp1qsL2Op0OX3zxBd5//30AgI+PD4YNG+bwOEtKSvDss89i5syZOHbsGJRKJdRqNdLS0rB161bEx8fjiy++sOs5CwsLMW/ePOj1epv3OXjwIAYMGIC1a9fi6tWrUKvVUKlUSExMxDvvvINhw4YhNTXVrnG6GsOCA8HBwSbbmzRpAgBISUkx2d6lSxcAwOXLl2WIjoiIiIiIiIgcRdbph3Xr1sW0adPw3nvvQalUYuzYsejUqZPJKJvExESsWbMGKSkp+PXXX5GVlSUV+H7qqadkmX44d+5c/PrrrwCAmJgYDB8+HFFRUTh37hzWr1+PoqIiLF68GNHR0Rg0aFCNz6dWqzF58mQkJyfbvM/Fixfx/PPPo7S0FN7e3njiiSfQtWtXFBYW4scff8Tp06eRnJyMyZMnY8OGDR47rD4qKgrXr19HRkYGIiIipO2NGzcGUJbUMp5iYPgmVqVSyRsoEREREREREdmVrCO1AOA///kPnnrqKYiiCFEUcfr0aXz77bcQBAFAWeHvd999F99//72U0AKAgQMH4oUXXnB4fEeOHMH27dsBAN26dcOWLVswfvx49O/fHy+//DK+//57hIeHAwAWLlxYraL3xrKzs/Gf//zHpP6TLd544w0pobV8+XK89dZbGDhwIEaOHIl169ZhzJgxAMqSX19//XWNYnRl99xzDwBg8+bNJtubNWsGURTNRgMaEocKhUKW+IiIiIiIiIjIMWRPagHASy+9hKVLl+Kuu+6SklvWfurWrYu33noLixYtkiW2VatWASib6rhgwQJpuqRBTEwMXn31VQCAUqnEpk2bqn2uY8eOYejQoVUunH/69Gn8+eefAIDBgwebFTsVBAFz585FTEwMgLLnpNFoqh2nK+vfvz9EUcQ333yD1157Df/88w8AoGvXrgCA3377DXv37gVQlkA0TGVt1qyZcwJ2I1FRUahTp45UgJ/cG/vTc7AvPQf70rOwP4mIiOQn6/RDY71790bv3r1x+vRpnDx5EikpKVCpVNBqtQgLC0OjRo3QtWtX3H///fDxkSdMpVKJo0ePAgB69OiBRo0aWWz36KOPYuHChcjOzsbOnTsxYcKEKp0nJycHr776qpRsAYDHH38chw8fRkZGRqX7//zzz9LtUaNGWWzj5eWFUaNGYf78+VAqlTh+/Dh69OhRpTjdQY8ePdCrVy/8+uuv2LRpEwoKCvDhhx+iefPmuO+++3DixAk8//zziIiIgEqlgl6vhyAIeOyxx5wdusurX7++s0MgO2J/eg72pedgX3oW9icREZH8nJbUMujUqRM6derk7DAAAKdOnZIKtXfr1s1qOy8vL8TGxmLnzp04e/YsVCoVwsLCbD7PpUuXpIRWUFAQ5syZg2HDhtm86qFhZFdYWJhJPbLyjJ/DoUOHPDKpBQBLlizBe++9h40bN5rUXHvnnXcwZswYpKenIycnR9oeGxuLJ5980hmhEhERkZPp9Xps27bNZFufPn3MFp0hIiIi1ydrUmvr1q0AgO7du6N27dpV2nfVqlV4//33IQgCkpKSHBBdWbLJoGXLlhW2bdGiBQBAFEUkJycjNja2Sufy8vLCoEGDMH36dERHR9u8n06nk1bui4mJgZeX9RmkzZo1g7e3N3Q6HS5cuFCl+NyJv78/XnvtNcyYMQP5+fnS9vr16+PHH3/Ed999h9OnT8Pb2xsPPvggnnjiCdlG/xEREZHrOXv2rMn9Hj16MKlFRETkhmT9ZD979mwIgoDatWvj008/RceOHau0v6FovKOkpaVJtxs0aFBh27p165rsV5WkVtOmTbFr1y5phb6qyMrKglqttilGb29v1K5dG7du3UJ6enqVz+VugoODzS5IQ0JC8Mwzz5i1VavV8PX1lSs0IiIiIiIiIrIzpwxXuX37NsaMGYM333wTQ4YMcUYIFhlPUYuIiKiwrWEFRKCsFldVVGVkVnlViREom6J469atKsfoLsaNGwdBELBixQqbklRKpRJDhw6Ft7c39uzZI0OE7isxMREajQYKhaLKCWhyPexPz8G+9BzsS8/C/iQiIpKf0+ZgqdVqvPLKK0hKSsKcOXMqnEYnl5KSEul2+VUPyzNOoBjv52jFxcXS7cpiNG4jZ4xy+v333yEIAnQ6nU3t9Xo90tPTbfq/IyIiIs90//33m9z39/d3UiRERERUE05JarVr1w7nz5+HXq/HN998g0uXLmHJkiUmo5+cQavVSrcrG/Vj/Ljxfo5mnLyxZWSSoY2cMVqSkpJSYeIyMDBQqlNmvE9RURGAsmTUkSNHpEL+5f3000/Sc9Xr9SZTSQ20Wq1UZN/X1xeJiYmIiYlBUFCQtK1Xr17Izc2V9klOToa3t7fZsby8vNC+fXuTbampqSYj6awJCwtDkyZNTLadP38eGo2m0n0bNmyIyMhI6X5JSQmSk5Mr3Q8A2rRpA4VCId3PzMzEzZs3rbY3xGPptXPlyhWT+mXWREVFma0GlZiYaFO8zZo1Q0hIiHQ/Pz8fV65csWnf8t+Qp6enIysrq9L9QkJC0KxZM5NtycnJNiWF69WrZ1IrUKPR4Pz58zbF27JlS5MPVDk5OUhNTa10P4VCgTZt2phsu3btGlQqlVlbQ39qNBokJiYiMjLSZGEFAPj777+t/o4Za9y4scn7dWFhoVTrrzLt2rUz+Z3KyMiwadXXyt4jKhIdHW0yQlan0+HcuXM2xWv8HgGUjfa8fv16pfs58j2ifF8ak/M9wsDf39+sDiXfI8xZeo+oqC+NyfEeUZ6nvUd8/fXXWLt2rcV9vb29MXPmTMyYMQNAzd4jgMr7E3Cd64jS0tJK9yEiInJlTklq9e/fH9OmTcOMGTNQWFiIEydOYNiwYVi6dGmlBdodyfiCUaPRVJg0MtS1AmxLLtmL8QgjWy5eDHEaf1BxBp1OV+FoKkuJE61Wa/IcL1y4YHXK4Ouvv25yv7L6a/fccw80Go1JO8N0gX/++UfaptfrLV7AW0rQlY/XGkvP1fjDTUXKxyKKok37GdqWP5Yt+1r6v7T1uVrqc1vjLf9cbY3XWhye2DeW2NI3Go3G6nO15QNr+Xir8lzLq0nfyPE6rO5zles9ovw2Z7wOLSX++R5hzlLflD+ONXK/RxjalefO7xF5eXm4ffu21f3z8vJM7lf398bW/V3lOoKIiMjdOW36Yc+ePbFhwwY8++yzuHHjBm7cuIERI0bg3XffRd++fZ0SU2BgoHS7tLTU5qSWnFPZjL8NtOXbNUMbZw+r9/b2rnCklqXVCH18fEyScWPGjMHJkyct1gezZREBLy8vhISEoF27dvjPf/4DhUIBQRBM2giCYFMC0NJzKR+vNZaeq61Jx/LntTVeQ9vyx6poX8PFcfn9ANufq6UPu9V9rpXFW1kcNekbW6a3ytk3xrGVZ61vjD/sKBQKq8/Vlg881f29saQmfSPH69AV3yPK92VF53W112F5d/p7RPnjWOOMvvG094jQ0FDUqVMHQNmiO3q9Hl5eXoiKioK3tzdCQ0NN9q3u742t+7vKdQQREZG7E0RHLylopHXr1hAEAbNmzcKECRMAACqVCs8//zx+//33soAEAc8++yymTZtmsu+qVavw3nvvQRAEm6f0VNVrr72GDRs2AAD27t2LRo0aWW27adMmzJs3DwDwwQcfYMCAATU+f1xcHNLS0tCgQQPs37/fYpvbt2+jR48eAIDBgwdj0aJFFR7zoYcewq1bt6QVF+VSUFCAixcvSvdbtWrlkKWyDa+pP//8EwEBAXY//p2MBW89C/vTc7AvPQf70jmOHTuG0tJS+Pn5mdXWqgl37E+5rteIiIgcxelf14SFheGrr75CfHw8gLIRN5999hkmT56MwsJCqZ0c3yw1bdpUul1ZHZFbt25Jt8vXA3GkOnXqSKO10tPTK2yr0+mQmZkJQN4Y5VS/fn3Ur1+f3zwSERGRTe6//3706tXLrgktIiIicg6XyAR4e3vjjTfewKuvvioNqT5w4ABGjBghFeSVoyZUTEyMdPvSpUsVtjU8LggC7rrrLofGVZ4hzsqKrv7zzz/SlAhn1ipzpP3792Pfvn1czZCIiIiIiIjoDuMSSS2D0aNH44svvpDqGqSkpGDYsGH4/fffZZla1qlTJyl5duLECavtdDqdtIpe69atzeowOFpsbCwAIDs7u8Lk2/Hjx832udOUlpZi+/bt+PLLL7Fnzx6nrwJJREREzqXX67Fjxw6Tn4KCAmeHRURERNXgtELx1jzwwANSAfmrV69CpVLhqaeewr/+9S+Hnzs0NBTdunXDoUOHsH//fqSnp1uctrdjxw5pyeV+/fo5PK7y+vbtiy+//BIAsHbtWrz11ltmbXQ6Hb777jsAZUuQP/jgg7LGKKfS0lKsWbMGO3bswGeffYZ69eoBKFu2fMKECSZTSevVq4fPPvvM4si1oqIiLF261GTblClTTBYQICIiIvd28eJFnDp1ymRbt27dWEuKiIjIDbnUSC2Dpk2b4vvvv0f37t0BlC1dvGfPHlnOPX78eABlq0vNmDHD7Ju7lJQUvP322wDKViIcNmyYLHEZu/vuu9GpUycAZQXrf/nlF5PHRVHEggUL8M8//wAARo0a5fTVDx1Fr9fj6aefxkcffYTk5GTcuHFDemzu3LlIT0+HKIrST3p6Op566imL38iKooiioiKTHxnXUXA5zZo1Q4sWLdCsWTNnh0J2wP70HOxLz8G+dI5///vfDjku+5OIiEh+LpnUAoDg4GCsWLECY8eOlTWx8OCDD6Jv374AgNOnT2PQoEFYuXIlduzYgffffx/Dhw+HUqkEAMyaNQuRkZEm+584cQKtWrVCq1atMHbsWIfF+eqrr0pLa0+fPh0vvfQSfvzxR2zYsAGjRo2SRmk1bdoUzzzzjMPicLZt27bh999/hyiKuPfee1GrVi0AQHJyMk6dOgVBEDBkyBD8/vvvWL16NaKiopCVlYVvvvnGyZG7vpCQEISFhSEkJMTZoZAdsD89B/vSc7AvPQv7k4iISH6yTj801HWqW7euTe29vLwwd+5ctGzZEm+++aZs9ZAWLVqEwsJCHD58GKmpqXj//fdNHhcEAQkJCdKKjc7Qrl07LFmyBC+99BKKioqwbds2bNu2zaRNkyZNsHLlSmm1RE/0yy+/QBAEDBw4EIsWLZK2G0b2eXt74+WXX5amlk6fPh1z587F/v378eyzzzorbCIiInKS+Ph45Ofnw8/PDw888AAAcMEZIiIiNyVrUmvt2rXV2m/YsGFo27YtkpOT7RyRZQEBAVi5ciV++uknbN26FefPn0d+fj7Cw8PRpUsXjBs3Dl26dJEllor06dMHO3bswFdffYXffvsNt27dgiAIaNasGfr27YuxY8d6dEILAM6dOwcAmDBhgsn2Q4cOASgr/h8eHi5tv/feewGU1dsiIiKiO0/5LyuJiIjIfblcoXhr2rVrh3bt2sl2PsPon4EDB1Zpv/vuuw8XL16s1jn3799f5X3q16+PuXPnYu7cudU6p7tTqVQAIBWHB4C8vDz89ddfEARBqstmYEjyFRYWyhekm8rPz4der4eXlxenUngA9qfnYF96DvalZ2F/EhERyc9tklpElvj5+UGr1SIvLw9hYWEAgCNHjkCn00EQBGlagUFqaiqAspUuqWJXrlyBRqOBQqFAx44dnR0O1RD703OwLz0H+9KzsD+JiIjk55CkVnp6unS7fv36FrfXhPEx6c5211134cyZMzhy5IhU42zHjh0AgFq1apldVK5fvx4A0LJlS3kDJSIiIiIiIiK7ckhSKy4uDoIgQBAEJCUlmW2vifLHpDvbww8/jNOnT+O9996DUqlEVlYW9u7dC0EQ8Oijj0rtLl++jK+//ho//PADBEFAv379nBg1EREROcsjjzyC27dvo06dOti5c6ezwyEiIqIacNj0Q1EUq7SdqDpGjRqFLVu24NKlS/j444+l7RERESarG44aNQp5eXkAgLvvvhvDhg2TPVYiIiJyvr///htpaWlo0KCBs0MhIiKiGnJIUis2NrZK24mqy9/fH9988w0WL16MPXv2QK1WIzY2FrNnz0ZkZKTUrnnz5vjrr78wYMAAzJ07F15eXk6MmoiIiJzFz88PjzzyCIKDg7F7924AQPfu3T1+xWgiIiJP5JCk1tq1a6u0nagmwsLC8NZbb+Gtt96y2uaVV15BvXr1EBUVJWNkRERE5GouXbqE+fPnAwCOHTsGAOjSpQuTWkRERG6Iqx/SHaFDhw7ODoGIiIiIiIiI7IhzsIiIiIiIiIiIyO1wpBa5PVEUsW3bNuzcuROpqakoKSmBXq+vcB9BELB3716ZIiQiIiJXcvfdd5vc9/Pzc1IkREREVBMOSWq1adPGEYcFUJaMSEpKctjxyb3odDo899xzOHToEADbV9cUBMFsm0KhwEMPPWS2jYiIiDzHypUrUVBQgODgYEyaNMnZ4RAREVENOCSpZWtigaimNm3ahN9++w0AEBAQgLvvvhu1atWCr69vlY/l6+uLXr162TlC99WxY0dnh0B2xP70HOxLz8G+dI633noLaWlpaNCggV2TWuxPIiIi+TkkqVW/fn1HHJbIzNatWwEAbdu2xcqVKxEZGencgIiIiIiIiIhIFg5Jau3fv98RhyUyc+nSJQiCgNmzZzOhRURERJX67LPPUFxcjICAAGeHQkRERDXEQvHk1gxTXVu1auXkSIiIiMgd9O/f39khEBERkZ0wqUVurUmTJrhw4QKysrIQFhbm7HA8Snp6OnQ6Hby9vTml2AOwPz0H+9JzsC89C/uTiIhIfm6X1CopKYG/v7+zwyAX0a9fP5w/fx6bN2/GrFmznB2OR8nKyoJGo4FCoeDFuQdgf3oO9qXnYF86hyiKOHjwoMm2e++9F4GBgTU6LvuTiIhIfk5LaqnVavzzzz8oKCiAVqu1uGKiXq+HVqtFcXExlEolzp07hz179uD48eNOiJhc0fjx47F9+3asWbMGDRs2RHx8PLy8vKp1rOLiYnz11Vcm2yZMmMCaG0RERB4kKyvLLKnVoUOHGie1iIiISH6yJ7WKi4uxePFi/PDDDyguLpb79ORhfv75ZwwdOhQff/wx5s+fj08++QRt27ZFZGQkfHysv7wFQcDChQtNtun1emRmZpptIyIiIs/RuXNnTJw40dlhEBERkR3IntSaOnUqDh8+bHFkli28vb3tHBG5s9mzZ0MQBABl0wlyc3Nx9OjRCvcRRdFiUouIiIiIiIiI3IesSa2DBw/i0KFDUhIiNDQUzZs3R2FhIS5dugQfHx906tQJJSUlyMnJQVpamrSvQqHAa6+9hoceekjOkMnFsWYFERERVUWfPn2Qm5sLX19fxMbGAgB8fX2dHBURERFVh6xJrZ9//lm6PWbMGLz88stQKBRITU1Fnz59oNPpMH/+fDRt2hQAkJqainfeeQf79u2DVqvFuXPnMGzYMDlDJhe3f/9+Z4dAREREbqR8/UwiIiJyX9WrqF1NZ86cAVA2uuaVV16BQqEAADRs2BD16tUDABw5ckRq37BhQyxduhR9+/aFKIrYuHEjLly4IGfIRERERERERETkgmRNauXm5kIQBPTs2dNshbo2bdoA+F/iy9ibb74JX19fiKKIzZs3yxEquTGVSoULFy7gzz//xIULF5CXl+fskIiIiIiIiIjIzmSdflhUVAQA0qgsYy1atMD+/ftx8eJFs8fCw8Px0EMPYc+ePUhMTHR4nOR+9Ho9NmzYgHXr1uHSpUtmjzdr1gzDhw/HuHHjzBKqREREREREROR+ZE1qBQcHQ6VSQa/Xmz3WuHFjAMC1a9ek1emMNW/eHABw/fp1xwdKbkWlUmHKlCn4448/rK6q+c8//2DRokXYvXs3li5dioiICJmjdD8hISHQarXw8ZF9kVRyAPan52Bfeg72pXOMHj0aWVlZiIqKwrfffmu347I/iYiI5CfrX93atWtDpVKZrGpoYEhqqdVqXLt2TSoWb2Cov1VQUODwOMm9TJ06FadOnQIAtG3bFo888ghiYmIQGBiIwsJCpKSkYNeuXTh//jxOnz6NWbNmYcWKFU6O2vU1a9bM2SGQHbE/PQf70nOwL53j4MGDSEtLQ4MGDex6XPYnERGR/GRNat1zzz24dOkSfv31V6jVapPlk5s0aSLd/vPPP82SWlevXgUAfvtFJnbs2IETJ05AEAS8/PLLGD9+vFmbPn364Nlnn8WaNWvw7rvv4vDhw9i3bx969+4tf8BERERUKVEUUVJSYnF0vz2O/cADDyA0NBQHDhwAAHTo0AEBAQF2P5cxPz8/XscSERHZmax/WXv16oVNmzYhKysLU6dOxcKFCxEZGQkAiI6ORu3atZGVlYVvvvkGAwYMkEZn3bhxA7t374YgCKhfv76cIZOL27ZtGwRBwIgRIywmtIw9+eSTuHr1KtatW4fNmzczqUVEROSiCgsLkZeXZ7WsQE3s3bsXGzduBAD89ttvAMquQ8PCwux+LmNeXl6Ijo5mbU8iIiI7kjWp1bt3b9x1111ISUnBwYMHERcXh4SEBEycOBEA0L9/f3z11Vc4f/484uPjMWTIEOTm5mLdunVQq9UQBAH333+/nCGTizt37hwAID4+3qb28fHxWLduHS5cuODIsIiIiKgGSktLUVxcDJVKZfdjWxr9lZWVhZKSErufy8DHxwdRUVHQarUmMxWIiIioZmQfA71kyRKMGjUKKpUKpaWlyM/Plx57+umn8cMPPyAvLw9JSUlISkoCAOlbOn9/fzz55JNyh0wuTKlUAoDNI/gMK29mZWU5KiSPkZycDI1GA4VCgZYtWzo7HKoh9qfnYF96DvaldVqtVko+2XsElVarNdsWEhKC0NDQGh33ypUrUqF44/paJSUl0Ol0NTo2ERERWSZ7UismJgbbtm3Dhx9+iF27dqFhw4bSY5GRkVi2bBmmTp2K7Oxsk/38/Pzw/vvvo1GjRnKHTC4sNDQUubm5SE9Pt+liND09HUDZxStVrKSkBBqNhhfiHoL96TnYl56DfWmZKIrQ6XTSqCZ717o6evQokpOT0aVLF4SHhwMoW6HbnucxPpZWq2UfExEROYhTqlVGR0dj0aJFePPNN6HRaEwe69KlC3bs2IFNmzbh7NmzUKvVaN26NYYPH26SACMCgHbt2uHw4cP4/vvvMW/evErbG2potGnTxuwxHx8fdO3a1WwbERERyccwkkqn08Hb29vux1+2bBkOHDiAW7duYe3atXY/PhEREcnHqZ/Y/f394e/vb7Y9PDwcTz/9tBMiInczYMAAHDp0CN999x1iYmIwcuRIq22/++47rFu3DoIgYMCAAWaP+/n54bHHHnNkuERERFQJQ1JLq9XCz8/P7sc/ePAgAODXX3+1+7GJiIhIXhyGQm6tf//+WLduHU6fPo233noLmzdvRt++fRETE4PAwEAUFRXh8uXL2LVrF86dOwdRFHHPPfdg4MCBzg6diIiILDDU09Lr9XYfqXXq1CmpVpder8cff/yBLl262PUcREREJB9Zk1qGekY1ZWtRcPJ8Xl5eWLp0KZ5++mmcO3dO+inPsNhA+/btsWzZMgiCIHeoREREVIEPP/wQeXl58PHxwZgxYwDA7kmtzZs3m913RFLr888/R0FBAYKDgzFq1Ci7H5+IiIjKyJrUiouLq3EyQRAEaVVEIqBsgYH169djw4YN2LRpE5KTk6UkFlD2mrnrrrswYsQIjBgxAgqFwonREhERkSUffvgh0tLSUK9ePamcQFVrW5aWlmLx4sW4fPmy2WN5eXk4evSoybavv/4aly5dsrjYTIsWLTBjxoxqTYH84osvcOvWLdStW5dJLSIiIgeSffqhcbKByF4UCgXGjBmDMWPGQKVSISMjAwUFBQgMDES9evXsvhw4EREROY5Wq4W3t3eVvgwVRRF+fn544YUXMHfuXGlxmMr2KZ/oAoARI0Zg2rRp8PPzgyiKHOFNRETkomRNasXGxtrUrrS0FJmZmbh58yaAspE2ffr0MVuZjsjYzZs3kZ2djfbt25sksf766y8cP34c/fr14wqaRERELi4jIwMPPfQQ3nnnHfTt21fafv36dQwZMgQA0K9fPyxYsMBkvwkTJuCvv/4CAPzxxx946KGH8PLLL6OgoMCknSAIZteUf/31F0pKSuDj44OPP/4YgwcPlh6bMWMGfvvtNwDAnj17EBkZKT22Z88ezJ49GwAQHx9vEi8RERE5nqxJraoum5yVlYXPP/8c3377LQ4ePIghQ4YgLi7OQdGRuyosLMRbb72F7du3o2fPnli+fLnJ43/88Qc+/PBDLFmyBKNGjcLs2bMt1ugoKSnB+vXrTbbFx8dbXKGTiIiIHEOv1yMjIwM6nc5ku06nw61btwAAKpXKbL/s7GzpcQAYPHgwOnfujMmTJ+P06dPSdkEQzFY7/ueff1BSUoIuXbqYJLQAIDc3Vzpu+RkHJSUl0mPFxcVVfKZERERUUy69+mFUVBTmzp2LOnXqYPHixZgzZw5++ukn1KlTx9mhkYvQ6XR4+umncfr0aYiiiKtXr5q1MUxh0Gq1+Oabb5CZmYklS5ZYPNa1a9fMtt2p6tWrB71eDy8vL2eHQnbA/vQc7EvPwb60zMvLC1FRUQgICDDZ7u3tjbp16wKAxbICtWrVkh4HyhJQjRs3xtatW/Hvf/8bFy9etHpOhUKBunXron79+mbTDSMiIqTjlp+G6O/vLz0WHR2NevXqsT+JiIhk5NJJLYOJEydiw4YNSEtLw7fffovp06c7OyRyERs3bsSff/4JQRAwduxYTJw40azNxIkTER8fj08++QRff/01du3ahV27dnGKQCVq167t7BDIjtifnoN96TnYl5bVqVMHO3bsQEREhMn2xo0b448//rC63+rVq03uGxJQPj4+6N27d4VJreHDh+Pll1+2+NhHH31kdb+HH34YDz/8sNXHiYiIyLHc4qskQRDQq1cviKKI/fv3OzscciE//fSTlNCaO3cuoqOjLbYLDg7GnDlzMGzYMIiiiA0bNsgcKREREVVFVVc+rIjx9aNhZLfxz+HDh+12LiIiIpKPW4zUAsqGlANAenq6kyMhV5KcnAygrPaVLUaNGoWNGzfi3LlzjgyLiIiIqmjGjBm4efMmFAoFBEGwWP+yOv755x9cuHBBuu/j44O//voLiYmJ0Gg00vYrV66gWbNmdjnnpEmTUFBQgODgYLscj4iIiCxzm6TW9evXAZjXMqA7m+Fi1HgloooY6l4UFRU5LCZPodFopLoiCoXC2eFQDbE/PQf70nOwL00Zkloqlcok2VRTP//8s3Q7JiYGy5cvR7t27XDu3Dk899xzuHz5stRuypQp1T6PcX8+88wz0vb8/PzqB09EREQVcovph6mpqfjll18gCAIaN27s7HDIhRiSVJcuXbKpvaGQvK1JsDvZ+fPn8ddff+H8+fPODoXsgP3pOdiXnoN9aUqr1UIURWi1WrsWW9+xYweAslHdu3btQrt27QAA7dq1w86dO6XR3oZ21XXp0iVcuHDB5msSIiIiqjmXTWqp1WpkZGTghx9+wOjRo1FSUgIAiIuLc3Jk5Eq6dOkCURSxbNkys2W2Lfniiy8gCAK6dOkiQ3RERERkK8OKwzqdzm71tFJTU3H16lUsX74cixcvNltRMTAwEIsXL8by5ctx5coVpKWl2eW8REREJA9Zpx+2adOmRvuHhoZi7NixdoqGPEF8fDx++OEHHD9+HAkJCXjllVfQoEEDs3a3b9/Ge++9h/3790MQBIwaNcoJ0RIREZE1hpFa9kxqpaenY8+ePWjYsKG0bd68eVCpVAgLC8OCBQsAAAMHDkSnTp2Qnp5u8TqCiIiIXJOsSS1bRtJYExISgk8//RRhYWF2jIjcXceOHfH0009jxYoV2L9/Pw4cOIAWLVqgadOmCAgIQHFxMW7cuIHk5GTo9XoAwOjRo9G1a1cnR05ERETGNBoNtFotANitSPy9995rtu2XX37BrVu3ULduXSmpJYoiGjVqhEaNGtnlvERERCQPWZNa9evXt7mtt7c3/P39Ua9ePXTr1g1Dhw5FeHi444IjtzVjxgwEBwdj2bJlKC0tRXJyskk9C0My1cfHB8888wwSEhKcFSoREdEdz1A3S6PRmPwYtgOw20gta+655x6EhYVJqyg3bdoUvr6+Dj0nERER2Z+sSa39+/fLeTq6QxhWGRoyZAj27NmD48ePIyMjAyqVCgEBAahbty46d+6MQYMGITo62tnhEhER3TFEUTRLXhlWNjQksQwJLsO/Pj4+di0UX97mzZuxZ88eAMDBgwcBAHXq1GFSi4iIyA3JmtQicqQ6depg9OjRGD16tLNDISIiuuPo9Xqz5JVh5JUhuWWcwDLU0ALKRmb5+PggODjYrJi7vXElbSIiIs/BpBYRERERVYlOpzNLYBlWLyyfwDJObgGAQqGAj48PAgIC4OPjA4VCAUEQnPVUiIiIyI0xqUVEREREVlmqf2VYfMUwOqv8CCygrDyAQqGAr68vgoKCpNFYrpDAioqKMrlvr8L0REREJC9Zk1rp6ekOP0dVitFXRBRFbN++HZs3b8b58+dRVFSE2rVrIzY2FqNHj0bHjh1rfI7k5GR89dVXOHHiBG7fvo2QkBDExMRg8ODBGDJkSKUXWHFxcUhLS7PpXIcPH0bt2rVrHLMn8/b2Rtu2bc22ERER3SmME1hqtVoq4A78b3SWcQLLMDqrfALLMBrLFR0/fhwRERHw9fXFAw884OxwiIiIqAYE0XClIoPWrVs79Ns5QRCQlJRU4+OUlJRg2rRp+PXXXy0+7u3tjRdeeAGTJk2q9jk2bdqEN998UyqWWl7Xrl2xdOlSqys+FhQUoGvXrrC1++ROahUUFODixYvS/VatWiE4OFi281PNlZSUQBRFCIIAf39/Z4dDNcT+9BzsS8/hzL6saAVCAGbF27VarTQ6y8vLS5o2aPyvu+jSpQtu3bqFunXr4o8//rDbca31Z35+PkpLSxEVFYWoqCiXKkjP6zUiInJ3sl+ByJhDq7a5c+dKCa2YmBgMHz4cUVFROHfuHNavX4+ioiIsXrwY0dHRGDRoUJWPf+jQIbz66qsQRREBAQGIj49H+/btkZ2dje+//x7Jyck4deoUZsyYgZUrV1pcAejixYvS/+Wzzz6LDh06VHjOsLCwKsdJdzZ+WPYs7E/Pwb70HHL1ZUUrEAIwS14ZJ7e8vb3h4+ODwMBAKYHljqOYP//8c3zxxRcAgNu3b0v/dunSBQAwadIkPPPMMzU6B383iYiI5CdrUmvGjBkAgBMnTuDIkSPS9nbt2qFdu3aoVasWfH19kZ+fj3/++QcnT55EYWEhBEGAn59fpYkbezhy5Ai2b98OAOjWrRu++OIL+Pn5AQD69++PJ554AqNGjYJSqcTChQvRu3fvKn2jpVar8cYbb0AURQQGBuKbb75Bu3btpMdHjhyJGTNmYM+ePThy5Ah+/vln9O/f3+w4xt+qDR48GM2aNavuUyYiIiIPUdkKhIaaV5YSWMYrEBoSWJa+WHNHBQUFuHXrlsk2vV4vbSsoKHBGWERERFRDsia1Jk2ahC1btuD48eMAympCzZ492+rSysXFxfjyyy+xfPlylJaWIjY2FlOnTnVojKtWrQJQdmG3YMECKaFlEBMTg1dffRUvvvgilEolNm3ahAkTJth8/N27dyM1NRUAMHHiRJOEFgD4+vpi0aJFOHnyJJRKJT7//PMKk1p+fn5o0qRJlZ4jERERub+qrEBo+NfAkLTy9/e/I1YgDA4ORt26dSt8nIiIiNyPrEmt5ORkvP7669Dr9Rg5ciRef/31CtsHBAQgISEBderUwWuvvYbPPvsMPXr0QKdOnRwSn1KpxNGjRwEAPXr0QKNGjSy2e/TRR7Fw4UJkZ2dj586dVUpq/fzzzwDK6n+NHDnSYpugoCAMHToUq1atQnJyMq5cuWI2EsuQ1GrRooXHfItKriUnJwd6vR5eXl6IjIx0djhUQ+xPz8G+9BxV6UtDAstQvL0qKxAaRmAFBATcEQksS5555pkaTy+sTG5urlRTKyIiwqHnIiIiojKyJrVWr14NtVqNhg0bYu7cuTbvN3z4cHz//fdITEzEmjVrHJbUOnXqlHSB2K1bN6vtvLy8EBsbi507d+Ls2bNQqVQ216w6efIkgLJCnBVdwHbr1k0aNfbbb7+ZJLVEUcSlS5cAAC1btrTpvERVlZqaCo1GA4VCwQ/OHoD96TnYl57DWl9aKuBuuD6pygqEhmTWnZbAqowoirhy5YrJtoYNG9a4gPvNmzeh1Wrh4+PDpBYREZFMZE1qHT9+HIIg4OGHH67yKjndu3dHYmIiTp065aDoICWKgMqTRS1atABQdmGUnJyM2NjYSo+fkZGBvLw8AMBdd91VYduYmBjp9oULF0weS0tLk2o/GI5TUFCACxcuoLCwEHXq1EHLli3dspCrM5WUlOCnn34y2TZgwAAWfiUiIocwrnGlUqmqtQKh8fRBd1qB0Jl0Oh02bdoEb29veHl5wdvbG2PGjEGtWrWcHRoRERFVkaxXP5mZmQCqtxKfIUGTn59v15iMpaWlSbcbNGhQYVvjugxpaWk2JbUMtbRsOX50dDS8vLyg1+uRnp5u8phxkXgvLy8kJCRg//790je1ABAeHo4xY8bg6aefZlLGRjqdDklJSSbbHn30USdFQ0REnsTSCoRZWVnQaDTw8fGRklrGo7Q8bQVCV6HVavF///d/JtsGDRrEpBYREZEbkjWpFRQUBJVKZTbyyBanT58GANSuXdveYUlycnKk25UNGw8PD5duK5VKm46fm5tr8/EVCgUCAwNRUFBgdnzjpNa7775rcX+lUolPP/0Uv/32Gz7//HNOUSEiIpKJrSsQFhQUoKSkBACQlZUFwLNXIHQVxl8CGnCUGxERkXuS9S94+/btcfjwYezfvx+XL182mWJXkRMnTuDo0aMQBAH33Xefw+IzXFgCMFv1sDzjugvG+1WkuLjY5uMb2hhf8BoYJ7UUCgUmTJiAwYMHo1GjRlAqlTh48CA+/vhjZGZmIjExEdOnT8dXX33Fi2IiIiI7q8kKhGq1Gl5eXvD390dkZCR8fHz4t1oGhgSjMY58IyIick+yJrUGDBiAw4cPQ6PR4Omnn8ayZcvQunXrCvc5duwYXnjhBYiiCC8vL6srBtqD8UVOZcVCjR+3dHFkifE3g7YUIzW0KX/8jIwMAGVJr1WrVqFr167SY3Xq1MGwYcPQs2dPDB8+HLdu3cLx48fx888/o3///jbF6QgpKSkVXqgHBgZKdcqM9ykqKqr02NHR0YiOjpbu63Q6nDt3zqa4YmJiEBQUZPXxpKQkiwlILy8vtG/f3mRbamqqyWg/a8LCwtCkSROTbefPnzf5oGNNw4YNTUbdlZSUIDk5udL9AKBNmzZQKBTS/czMTNy8edNqe0M8ll7fV65csWkqcFRUFOrXr2+yLTEx0aZ4mzVrhpCQEOl+fn6+WWFfazp27GhyPz09XRoFUZGQkBCzlUaTk5NtSlzXq1fPZCSpRqPB+fPnbYq3ZcuWJtOEc3JyTKYrW6NQKNCmTRuTbdeuXYNKpTJra+hPjUaDxMREREZGomHDhiZt/v77b6leT0UaN25sMlq1sLAQly9frnQ/AGjXrp3Jh8eMjAzpPa0irvIeoVQqcf369Ur3c+R7RPm+NCbne4SBv7+/WR1KT32PCAwMRMOGDaXklVqtxqVLl1BaWgq9Xg+dTicVbjdObgmCgLp166JOnTrSCoQAcPv2benYKSkpVs/bvHlzk/eI3Nxcm/pGoVCY1fBMTU2V6ntWJDw83KxvLly4YNN7RIMGDUxKTRQVFeHq1auV7geULaRj/B6RmZkpla+oSEBAgNn795UrV0y+UDSw9B5p/NrX6XQmXyBWpGnTpggMDDTZptVqTcoZFBYWQq1W4/bt24iIiJBG37nCdURpaWml+xAREbky2ZNa69evx+nTp3Hz5k088cQTiIuLQ8+ePdGiRQvp4lSpVOLixYvYu3cvjh07Ji2PPGbMGLMLAHsyvmDUaDQVJp7UarV029bVcoyTI7ZceBjOYXyhBQDr169HQUEB8vPzUa9ePYv7RkdHY968eUhISAAAbNy40alJLZ1OZ3G4v4GlxEn5b7QrOnZ5tuwHQKpXYo1Go7GYjLO0zdZ4LT1XwwekypT/MGEYBWCL8s/VMD2mqvsB8vRN+edqa7zW4vDEvrHElr4xngpVfrstH1jLx1uV51peTfrGGe8Rtj5Xud4jym9zxuvQ0ggXT3iPMEwRNP4JCgpCYGCgyQqEOTk5KCoqkuIRBEGqgWUo3u7t7Y3w8HCTRI/xdYThfNZYeh3a+oVaeYbnUhlLfWNcqL4i9ozXkCi0pZ2t+2o0GoSFhUnXJnq93ux1bGu81q4jjPc3JDqNfy9c5TqCiIjI3cma1PLy8sKyZcsQHx+Pa9euQafTYc+ePdizZ4/VfQwXC48++ijmzJnj0PiMv2krLS21Oally1RCS8evjKGNpULvwcHBCA4OrnD/uLg4BAcHo6CgAKdPn4Zer3fatAbDCkPWWKplYfhAYMuxy7NlPwCVLnOuUCgsHsvSc7E1XkvP1dZ4y5/XsHy7Lco/Vy8vrwr3NVwcW/o/kqNvyj/XyuKtLI6a9E1FCVnj+Iw5sm+MYyvPWt8Yf9ixtkqaQqGw6QNP+Xir8lzLq0nfOOM9wtbn6sj3iPJ9WdF5Xe11WJ4rvEeIogi9Xm+WwDJcfxgeM/y/375922QFQm9vb6mAuyGBZUu85f+/K6rpZOl1aEsNKGt9Y8u+lp6Hj49Ptd8jqluzypAgtKWdrftGRUXh+++/l+7Xrl3brNaprfFau44w3t/w/2b4vbBWJ80Z1xFERETuThArG6riAEVFRfjkk0+wdu3aSr8Jq1WrFhISEhw67dDgtddew4YNGwAAe/fuRaNGjay23bRpE+bNmwcA+OCDDzBgwIBKj3/69GnEx8cDAKZMmYKpU6dabavRaNCxY0fo9Xp0794dq1atqspTkQwdOlSaZnPs2DHZCsYXFBSYDN1v1apVpUk4ZyssLMQHH3xgsm3mzJkVTk/0ZImJidBoNFAoFGZTdcj9sD89B/uy+iytQGicwCpf+8p4ZFL50Vf2WIEwKSkJWq0WPj4+aNu2bY2fHzmXtf7Mz89HaWkpoqKiEBUVZfMIfzm44/UaERGRMacs9RIYGIiXX34ZkyZNwoEDB3D06FFkZGQgOzsbXl5eCA8PR4sWLXDvvfeiT58+sv3xb9q0qXT75s2bFSa1bt26Jd0uX3PC1uNXJCMjQ7qQtvX4llR39ASR4bXD15BnYH96DvalbWxdgdA4iWVIbhkSWEFBQQ5dgZB96VnYn0RERPJz6vrFERERGDp0KIYOHerMMCTGqzFeunQJ9957r9W2ly5dAlA27Lx8EVZrIiIiUKtWLWRnZ0v7W2NcMNa4AO+NGzewf/9+ZGdno3PnzujVq1eFxzEUYFYoFCa1PIgqU74AObk39qfnYF+aM05gqdXqSlcgNB6dZZiOFxwc7NAEliW2Xj+Qe2B/EhERyc+pSS0DvV6PnJwcqFQqREZGSnUN5K4B1alTJygUCmg0Gpw4cQKjR4+22E6n0+HkyZMAgNatWyM0NNTmc8TGxmLnzp04f/488vPzTVZuMnb8+HHptnFy7fbt21i4cCGAsppZFSW1rly5Io0I69ChA5erJiIit2co0m78Y0hgGZJb5RNYwP/qOvn4+EgrECoUikprKxIRERGR63JatUitVovNmzfjySefRJcuXdCjRw/0798fW7duldqMGDECM2bMsHk58poKDQ1Ft27dAAD79+9Henq6xXY7duyQllzu169flc7Rt29fAGXPf926dRbbFBQUYMuWLQDKlixv3bq19Fj79u2lWgeHDh2yGiMALF++XLo9aNCgKsVJRETkbFqtFsXFxcjLy0N2djZu3bqFjIwM5OTkQKlUQqlUQqVSITc3F5mZmbh9+zZyc3NRUFAAvV4PX19fhIWFoVatWqhTpw5q1aqFsLAwBAYGwtfXlwktIiIiIjfnlJFaFy9exNSpU3H9+nUA/1vhsPzFZUpKCv7++2/s3r0bM2fOxPjx4x0e2/jx43Ho0CFoNBrMmDEDK1euNCmYmZKSgrfffhsAEBQUhGHDhlXp+H369EHDhg2RmpqKpUuXonPnzujatav0uFqtxqxZs6BUKgEAEyZMMNnfz88Pw4cPx6pVq6DRaPDiiy9ixYoVZkU9v/zyS/z4448Aymp5DRkypEpxEhERycVQ46r8CCzD9YFhdJZxG+MVCH18fODv729SyJ3ImhMnTuDUqVMICQmRXjuuUgqDiIiIqkb2q77k5GSMHj0ahYWF0sWqr68v1Gq1Sbvc3FwUFxdDEARotVosWrQICoXC6pRAe3nwwQfRt29f7Nq1C6dPn8agQYMwcuRI1KtXD0lJSVi3bh0KCwsBALNmzTJbTfDEiRMYN24cgLJpg2vXrjV53NfXF3PnzsXkyZNRUlKC8ePHY9iwYejcuTOUSiU2btwojUzr3LkznnjiCbMYJ0+ejAMHDuDKlSv4888/8dhjj2HEiBFo2rQpcnNz8fPPP+PUqVMAyhJvH3zwAfz8/Oz+f0We7dq1a9IqTk2aNHF2OFRD7E/P4e59WZMVCL28vKBQKBAYGGi3FQidKTU1VerLhg0bOjucO0JBQQFmzJiBq1evStvq1atnl6QW+5OIiEh+sia1tFotnn/+eRQUFAAAevXqheeeew5t2rQxW5Y8IiICmzZtwuLFi3H8+HGIoogPPvgAvXv3Rt26dR0a56JFi1BYWIjDhw8jNTUV77//vsnjgiAgISEB8fHx1Tp+XFwcXn/9dbz99tvQaDT47rvv8N1335m06dChA5YtW2bxYj0kJARfffUVEhIS8Pfff+PWrVv4+OOPzdrVq1cPixcvRocOHaoVJ93ZVCoVNBoNV3HyEOxPz+FOfanX66HVaqXi7dVZgdBTEliW5OXlSUkQksfrr79uktACYLdRWuxPIiIi+cn6V/fHH3/EtWvXIAgCxo4di1deeaXC9h06dMDq1avxxhtvYP369SgpKcHGjRsxdepUh8YZEBCAlStX4qeffsLWrVulou7h4eHo0qULxo0bhy5dutToHCNHjkTXrl2xZs0aHD16FJmZmVAoFGjZsiUGDBiA4cOHV/iBpV69etiwYQO2b9+OHTt24Ny5c8jLy0NwcDCaNm2Kf//73xgxYgSCgoJqFOedxNvb22zUg6d9gCIichTjFQgtJbBcdQVCurNMnToVf/31F86dOweg7Fpz+vTpTo6KiIiIqkvWpNaePXsAAHXq1MHMmTNt3m/27NnYu3cvsrOzceTIEYcntYCy0VgDBw7EwIEDq7Tffffdh4sXL9rU9q677sKCBQuqEx6Asg8BgwcPxuDBg6t9DPoff39/Weq2ERG5O65ASO6qSZMm+PHHHzFnzhzs2bMHK1asQEBAgLPDIiIiomqSNamVlJQEQRDQq1cv+Pr62ryfv78/4uLisHHjRrMh40REROQ4lgq4G2pcGSew1Go1tFqtlNwSBAEKhQK+vr4ICgqSkllMYJGzBQQE4KOPPkJ6ejoaNGjg7HCIiIioBmRNauXm5gJAtS4g6tevDwBSkXYiIiKyn6quQGicwOIKhORuBEFgQouIiMgDyHrFGRQUBJVKJRWKr4qcnBwAZUXSiYiIqPpqugKhIYGlUCg8soA7EREREbkHWZNaDRs2hFKpxMmTJ6u0nyiKOHjwIARB4BLJREREVVA+gWWYJmh47E5fgZA81+bNm3H8+HHMnz8f/v7+zg6HiIiIHEDWpNaDDz6Iv//+G2fOnMGxY8dw//3327TfmjVrpFUTH3jgAQdHSURE5J64AiFRmaSkJMyaNQslJSX4+++/sWLFCn4xSkRE5IFkTWrFx8fjq6++glqtxowZM/DJJ5+ga9euVtvrdDp8+eWX+PjjjwGUXXAPGzZMrnDpDlNaWoq9e/eabOvTpw/8/PycFBERkXU6nQ4lJSVWVyA0ro9lvAIhAKnmFVcgJE+kUqnw9NNPo6SkBACQmJiIvn37Yv/+/YiOjnZydERERGRPsia16tati2nTpuG9996DUqnE2LFj0alTJ7Rt21Zqk5iYiDVr1iAlJQW//vorsrKyIIoiBEHAU089xW/ZyGG0Wi1OnTplsq1Xr153bFIrMjISWq2WxZ49BPvTvRknqARBgF6vhyiKyMnJMVmBsHwCiysQurbw8HDodDpO6bQjvV6PadOmma2WPXDgQIcntNifRERE8pP9081//vMfZGdn48svvwQAnD59GqdPn5YusHfu3ImdO3dK7Q3TIgYOHIgXXnhB7nCJ7lhMIHsW9qf7KD99sPwKhEFBQfDz84NGo0FmZqY0OsuQwPLz80NQUBBXIHQDhpWdyX4++eQT7Nmzx2Rbp06d8MYbbzj83OxPIiIi+Tnlavell15C586dsWTJEly6dKnCtnXr1sXkyZMxfPhwmaIjIiJyPEORdmsJLFtXIDRMH2QCi+50Bw8exPvvv2+yrVatWvjiiy/u2FHXREREns5pV8C9e/dG7969cfr0aZw8eRIpKSlQqVTQarUICwtDo0aN0LVrV9x///28UCciIrdWfgVCw4/hMa5ASFQzN27cwOTJk6XfG6As+bts2TKOoCIiIvJgTs8WderUCZ06dXJ2GERERHbBFQiJ5FVSUoJJkyZBqVSabJ8zZw4efPBB5wRFREREsnB6UouIXNPff/8NjUYDhUKB9u3bOzscqiH2p2PodDqzBJahxlX5BJZxcguo/gqEFy5ckIr+t27d2mHPjRyPfWkfr776KhITE0229evXD88995yscbA/iYiI5MekFhFZpNfrpR9yf+zPmrNU/8rw/ynnCoTsS8/Bvqy57777Dt99953JtubNm+Ojjz6SfZVP9icREZH8mNQiIiIqxziBpVarzVYgLJ/AKr8CoSGBxQLuRI5z9uxZzJs3z2RbYGAgVq5ciZCQECdFRURERHLilTYREd2xuAIhkXv67bffMGXKFJSWlpps/+CDD9CqVSsnRWWZIelNRERE9serbyIiuiNUtAIhALPaV1yBkMj16HQ6LFmyBB999JHJSocAMHHiRAwaNMhJkVlWUlKCkpIShIaGQhAEJr6JiIjsjH9ZiYjI41S2AqGh5pWlBBZXICRyTVlZWUhISMChQ4fMHrvvvvvMpiI6m06nQ15eHvz8/BAYGIjQ0FC+lxAREdkZk1pEROTWqrICoeFfA0PSyngKodzFpYmocr///juee+453Lp1y+yxvn37YsmSJVAoFE6IzDJRFKFUKiEIAsLCwhAQEICgoCBnh0VERORxmNQiIiK3YUhgGYq3V2UFQsMIrICAACawiNyEKIr47LPP8M4775jVpvL29sYrr7yCZ555xuV+l/Pz86HVahEZGQlfX1+Eh4c7OyQiIiKPxKQWERG5JEsF3A0JrKqsQGhIZrnah14iqphSqcT06dOxe/dus8fq1q2L5cuX495773VCZBUrLS1FUVERQkND4evri4iICL7/EBEROQiTWkT/5eXlhdq1a5ttIyLH4gqERFReYmIiJk2ahBs3bpg91qNHD3z66aeIiopyQmQV0+l0KCgogL+/v1RHy5WmRRIREXkaXvkT/VdAQAAmT57s7DBcRuPGjSGKIr9d9hCu0p+WViDUarVWE1hcgdBcgwYNXKIvqebYl5apVCoMHz4c+fn5JtsFQcCMGTMwbdo0l/zdr1+/PnJychAWFsY6WkRERDJhUouILGL9D8/ijP7kCoSOERYW5uwQyE7Yl5aFhYVhzpw5eOWVV6RtkZGRWLp0KXr27OnEyCrm5eWFoKAgREZGQqFQ8O8oERGRDJjUIiKiGqvpCoSGBJZh+iATWER3tnHjxuHEiRP48ccfERsbi+XLl6NevXrODsuq4uJi1tEiIiJyAia1iIioSsonsNRqNVcgJCK7EgQB7733Htq1a4dJkya5dF0qrVaLvLw8qY5WWFiYS8dLRETkSZjUIiKLCgsLpVovrAni/qrbn1yB0PUUFRVJfRkYGOjscKgG7tS+LCwsRGpqKm7duoVbt25hxIgRFtsFBwdjypQpMkdXNaIoQqVSwdvbGwqFAjqdTppGTURERI7HpBYRWXT58mVoNBooFAp07NjR2eFQDVXWn5WtQFh+dBZXIHSeq1evQqvVwsfHB23btnV2OFQD7t6XGo0GSqUSOTk5yM3NRU5OjvSjUqkwb948i4nsPXv2SMkqQRBQr149l66VVZG8vDxotVpERkbin3/+QUhICHJzc/l3k4iISCb81EH0X2q1GkePHjXZ9sADD8DX19dJERE5RlVXIDROYHEFQiLPpNVqpQSV4ad8ospw3/BvXl5ehcecMWOGxZGhkZGR0m1RFJGQkIBdu3a5dM0sS4qLi1FcXIywsDD4+voiLCyMo7SIiIhkxqQW0X9pNBocPHjQZFtsbCyTWuTWDDWuioqKUFxcDAC4efMmgMpXIDQksAzTB7kCIZF7MExptOTHH3/EgQMHzJJUKpXK7nHk5ORUmtQCgOzsbMycORPffvut3WNwFOM6WgEBAQgLC0NmZqbJIhhERETkeExqmrSpKgAANzRJREFUERF5CEMCy1C83XgFwvz8fJSUlAAAVCqVlMwyJLCMVyBkAovIdRhGUKlUKsTExFhss2/fPixZsgQ5OTlQKpVo2bIltmzZYrHt2bNnsWnTJkeGLMnJyUGjRo3MtkdERAAAwsLCEBERgc6dO2Pq1KmyxGQPoihCqVTC29sbYWFhCAwMvKNqohEREbkSJrWIiNxQ+RpXxgksSysQZmdnQ6fTwcfHR6rhwxUIieSl0+lMalCdPXsWubm5KCgogEKhMJvql5ubC6VSCQBQKBS4cuWKxd/VwsJC/Pnnn9L97OxsqzGUHyVlL6GhoYiMjERERAQiIiIQGRlpdVGK+vXr49q1a25bey8vLw86nQ61atWCQqFAWFiYs0MiIiK6Y7nn1QQR0R2kohUI9Xo91Gp1pSsQBgcHAwD8/PxQq1Ytpz0XIk+TlpaGtLQ0q/WnjO+rVKpq11zSaDQoKChASEiI2WPlE1W5ublWj2MYJVURSwkqw7+GH+P74eHhUCgUNj8XQRDcNqFlXEdLoVAgMjKSXwoQERE5kXteURAReSBbVyA0bmPrCoT+/v7QarX88EVkg8uXL+PkyZNSQqpu3bqYOHGixbYffvgh1q9fL0tcOTk5NiW1lEoldDqdxUUc2rdvj6efftpicsqQxKpKgupOYqijFRAQgICAAISHh7ttco6IiMhT8C8xEZET1GQFQi8vLygUCq5ASGSBXq+HSqUym8ZXfgSVVqvF119/bfEYR48exezZs6X7nTt3tprUctR0PkuUSiWaNGlitr1hw4Z45513TEZSWUtg33333bj77rsdHarHMa6jFRoaisDAQAQEBDg7LCIiojsek1pERA6m1+uh1Wql4u2GJBVg+wqETGDRnciQoCqflLKUpDL8KJVKKQFcEW9vb+j1eosLIpRPVOXk5Fg9ji3T+SwJDg5GcHAwQkJCEB4ejkaNGlU4xS8iIsLqaryhoaEYN25cteIg26hUKqmOlq+vL+toERERuQgmtYiI7Mh4BUJLCazyo6+4AiHdKfR6PfLy8pCTkwNBENCsWTOL7RYtWoRffvlFSljZkqCqDp1Oh7y8PISHh5s9Zmk6nzWGgujlE1HG9agsPebn54ekpCRp4Ya2bdva+RmSvRQXF6OkpESqoxUREcGp3ERERC6CSS0isqhdu3bODsHlVXUFQkNyy1AkWc4VCFu1auWwY5O8XKEvDQkq41FSGo0Gjz76qMX2K1euxFtvvSX9fsTFxWHt2rUW22ZnZ+PSpUsOi91YTk6OxaRWnTp10LFjR5OElCiKFn9HR4wYgfj4+Gqd3xX6kiqm0WhsrqPFv5tERETyY1KLiCziFDdTla1AaEhcGVYitLQCYVBQkJTMkvtbfvan57B3X4qiKI2gsrRin6Wpfrm5udJr3CAiIsJqUiswMNCkvSOm81k7b0UF0S0ltAAgJiYGv/zyi03nqMnvMn8vXZsoilCpVPDx8UFoaCiCgoIqrKPF/iQiIpIfk1pEREaqugKhcQKrshUIiZzh4MGDuHDhgtUkVW5urjSKsCYqWnHPHjWqAgICKqw3ZWmqn7+/f82eFN2x9Hq99Jo21NEKDQ11dlhERERUDj9tEdEdq6YrEBoSWAqFggXcye6sTXcDgAMHDuCXX36RElRdunTBK6+8YrHtN998g59//tmRoQL436gWS6sBlt9WUlJi9Th9+vRBvXr1zJJWXGmO5KLT6aR6bpGRkfD19WUdLSIiIhfFpBYRWZSRkSGNuoiOjnZ2ODVWPoFlmCZoeMzTVyDMzMyU+rN27drODueOI4oiCgoKzKb2VTTVLzw8HL/++qvZsTIzM/H777/j22+/lbb5+flZPbelJJM9+fv7Swmo4uJii23atWuHXbt22ZSgatGiBVq0aOGocF0Kfy9dj1arRW5uLoCy3x0/Pz9ERkbaNOrW0/5uEhERuQMmtYjIooyMDGg0GigUCre7OOcKhOYyMzOlVdb44blmDAkqS0kpa0mq3NxcaDSaKp1HrVZb3J6ZmWn2mqxoOl9VklrGCSpLU/wsTf+zZQRVUFAQ2rdvb3Mcdwr+XroWjUaD3NxceHl5SStU1qpVy+YvMdz57yYREZG7YlKL6L8EQUBgYKDZNnJtla1AaFwfy3gFQgBSzSu5ViAk15WdnY0bN25ISai6deuie/fuFtuOHj0aBw8edHhMKpVK+oBcXlhYmMl9w8gSS1q2bIkHH3yw0uSUrQkqIk9UWloKpVIJhUKB8PBwKaHlCV9qEBEReTImtYj+KzAwEC+99JKzw6AK2LoCYfkElqusQEiOJYoiioqKrI6aCggIQEJCgsV9v/jiC3z66afS/YEDB1pNaslZLFqpVFocwdOwYUMMGDAAMTExiIyMRJ06daweY8iQIRgyZIgjwyRyayUlJVCpVFAoFNIIrcjISCa0iIiI3ACTWkTkksonr2xdgdCQwPLz80NQUBBXIHRToiiiuLi4wql9lqb6lZaWWj1m48aNrSa1yq+4Z6/pfJb4+vqajJCqaIpf+RFZBg0bNsTUqVPRtm3bGsVCdKcrLi6GSqWCv78/wsLCEBAQwKLwREREboSf9IjIqQxF2q0lsGxdgdAwfZAJLNcjiiJ0Op3Vvlm2bBn++usvkySVUqmscIW86qhKoqqitsYJMIVCYZaQqmh6X2RkJAIDA/mBmcgFFBYWIj8/H4GBgQgNDUVAQADCw8P5+0lERORG+OmPiGRTfgVCw4/hMU9fgdBTGEZQqdVqNGvWzGKblStXYuPGjdIoquHDh+Odd96x2PbQoUP47bffHBkyAKCgoAClpaUWVwqMjIw0SVDFxMRYPc6ECRMwYsQIREZGIigoiB+AidxQfn4+CgsLERQUhJCQEAQFBVkdGUlERESui0ktInIIrkDoHgwJKuPpfBVN9cvNzZVGUHXo0AE7d+60eNycnBycO3fO5L41NZ3OZ4mhNk75EVRardZiUisuLg5XrlyxKUEVFRVl93iJSD4qlQrFxcVSMiskJAQhISHODouIiIiqgUktIqqxilYgLJ/AMk5uAVyB0BGSk5Nx69YtKRmVm5uLlJQUKJVK5OfnQ61WS0mqmkzxq2jFPXvWqPLx8TGZyldRDSrD/eDg4Cq9jpg0JfJ8oihCqVSitLRUqp8VFhaGoKAgZ4dGRERE1cSkFtF/aTQanD592mRbp06doFAonBSRa+IKhM5x6tQp/P3331IyKjY2FoMGDbLY9oUXXsDZs2cdHlNVElUVJcB69uyJoKAgq0mqkJAQvk6IqEZEUURubi40Gg3Cw8Ph7++PiIgIBAQEODs0IiIiqgEmtYj+S61W45dffjHZ1q5duzs2qRUYGCiN4snLy4Nara7yCoRMYJUpKSkxm8pnWK3PeJpfkyZN8O6771o8xpYtW7B69WrpvlqttprUcsR0PktKS0tRUlICf39/s8diY2OxZMkSKTFVu3Ztq8d5+OGH8fDDDzsyVI8SEBAAnU7HmnIegH0pD71ej9zcXGi1WkRERMDPzw+RkZEWpyLXRGBgILRaLRcsISIikhH/6hKRxRUIg4KCEBgYCABQKpVcgfC/SkpKLNafKv+v8eNFRUU2Hbtt27ZWHys/na8qU/9s4e3tbTa1r/x0v/LT/kJDQ61O22vcuDEaN25c5TioctaK85P7YV86nk6nQ25uLvR6vZTIioyMhK+vr93P1aJFC7sfk4iIiCrmuZ88iciiilYgBGBW+8qTVyAsLS2VEk9hYWFo0KCBxXYTJ07EX3/9hZycHJsTVNVRUaKq/Oiriqb+1a5dG7Vq1bJYa8pa4qqiBBURkTvSarXS+6ohoVWrVi2P/uKFiIjoTsO/6laIoojt27dj8+bNOH/+PIqKilC7dm3ExsZi9OjR6NixY43PkZycjK+++gonTpzA7du3ERISgpiYGAwePBhDhgyxKVlgj2OQ56psBUJDzStLCSx3W4FQrVabjaAKCQnBQw89ZLH9jBkzsGHDBun+5MmTMXfuXIttb926hdTUVIfEbSw3NxeiKFqcptmkSRPce++9UkKqZcuWVo/z2muv4bXXXnNkqERELk2tVkOpVMLLy0uaclirVi1eFxEREXkYJrUsKCkpwbRp0/Drr7+abE9LS0NaWhp++uknvPDCC5g0aVK1z7Fp0ya8+eabJiNkDB/GT548iS1btmDp0qUIDw936DHIc1RlBULDvwaGpJVhCqGPj49TE1iGBJWlqXzGt43vFxQUmB3n/vvvt5rUCg4ONrlflVFS1SUIgtWRUobb1pJavXv3Ru/eve0SBxGRpxFFEWq1GqWlpVCr1dBqtfD19UV4eLiU0HLlL2aIiIioepjUsmDu3LlSQismJgbDhw9HVFQUzp07h/Xr16OoqAiLFy9GdHS01ULNFTl06BBeffVViKKIgIAAxMfHo3379sjOzsb333+P5ORknDp1CjNmzMDKlSstXoTZ4xjkvgwJLEPx9qqsQGhIWgUEBEjJLEtJlCtXrkgFjO1d92XTpk1IT0+3Wo8qPz/fLuepSt2pqqzkB5T9X4aHh1tdsc9STaqwsDCnjRJwZH+SvNiXnoN9WTN6vR6lpaXSjyiK8Pb2hq+vL4KDg+Hn5yfV0JLjOiglJUUqFM/6WkRERPJgUqucI0eOYPv27QCAbt264YsvvpBWx+nfvz+eeOIJjBo1CkqlEgsXLkTv3r3NRnxURK1W44033oAoiggMDMQ333yDdu3aSY+PHDkSM2bMwJ49e3DkyBH8/PPP6N+/v92PQe6jfAF34wSWI1cgLC4uNlvFydooIgD49ttvceLECWkEVXx8PMaMGWOx7ccff4wrV65U5b+hWmxNagmCYDJyrbwnn3wS/fr1M0lYOTNBVR2W+pPcE/vSc7Avq87whY5hRBYA6e+cn5+ftGKxn58f/P39ERgYKNvKu0VFRdBoNHfsqslERETOwKuoclatWgWgbDrWggULzJZ7jomJwauvvooXX3wRSqUSmzZtwoQJE2w+/u7du6XaPBMnTjRJRgFlF2aLFi3CyZMnoVQq8fnnn5slpOxxDHI9llYgNK5xVX7qYE1XINRoNFAqlVZX7Lty5QqUSiXy8/NRUlKCnJwcPPjgg1ixYoXF4x0/fhw//PCDdP++++6zeu7IyEiHJbUEQUBYWBgiIyMRHR1ttd3AgQPx4IMP2pSg6tSpkyNCJSK6oxj+nlm6b+02UPb3z5DI0ul0EAQBvr6+CAsLg5+fH7y8vODl5SUlsgzbiIiIyPMxqWVEqVTi6NGjAIAePXqgUaNGFts9+uijWLhwIbKzs7Fz584qJbV+/vlnAGUfvEeOHGmxTVBQEIYOHYpVq1YhOTkZV65cMZmWYI9jkHNZWoFQq9XalMCytAKhKIpQKpW4efOmxfpTlqb45eXlVTnu7Oxsq49VZXW+qtSoCg8PN5vOZ22qX1VGUBnaExFVxJbES3WSNYYaUIYRtsXFxbKf39r+jjp/TXh7e0vTCX19faXp9P7+/vD394evr69dzkNERETuhUktI6dOnZISB926dbPazsvLC7Gxsdi5cyfOnj0LlUqFsLAwm85x8uRJAECrVq0q/EDdrVs3adTYb7/9ZpKQsscxSD7VXYEwLS0N2dnZyMvLQ15eHu655x7cc889Fr99vvvuu5GVleXw52KvGlWdOnWCKIqVJqnCwsI4LYeoiuRKfFhLVrjq+at7HkfKy8uTamqpVCqr7Yynz1m7XZV25beX/7c6t6tzflv3MYxGNozQMiSy3GkKOBERETkGPy0auXTpknS7ZcuWFbY1FAAVRRHJycmIjY2t9PgZGRnS6Ji77rqrwrYxMTHS7QsXLtj1GOQ45VcgLC4ulkZKZWdnIzMzE9nZ2cjKykJ2djaaNm0qLTZgqHkVHBwMhUKBWbNmYd++fdKxZ82ahc6dO1s8b3h4uCxJrYoSVbGxsXjmmWekxFTz5s2ttp02bZojwiM35chkhy3JCnskPuQcDZOTkwOtVgtvb29kZGRUemxnqGniw5YkiCAIdk22VLRPVY9la7usrCypplb56dJy1YGyRU3/P6ub/DLua8MoLVf6fyEiIiLnY1LLSFpamnS7QYMGFbatW7euyX62JLUMdbBsOX50dDS8vLyg1+uRnp5u12NQ9eh0Oik5lZWVhdu3byMjIwOZmZnST3Z2tsm0v4q+eQeA3r17Y8KECRZXICw/Cq+iUVI1nUYXGhpqtlKfKIoIDg5GREQE2rVrV+l0ve7du6N79+41isOduNuUoMLCQunDc15ensdMSbIne344t9SmfBKmOucUBAEBAQFSX4aEhNh8/qrEb8/n7yyOSrbYc//Q0FCpsHhYWJjLxkxERETkqpjUMmI8CqX8VKrywsPDpdtKpdKm4xsnJSo7vkKhQGBgIAoKCkyOb49jkO0effRR3Lp1C1lZWcjNzbX7B3GVSmW1DkhVpvMZJ5ssJajK3w8PDzeZ4me8UpPhOZ4/fx4ajQY+Pj5o06aNtF2tVnvUlKSajvJxpqp8aFWr1dDpdFI9N0vtyu/vrClJd+qHdlufQ3BwsJTUMp767uzEhyvt7y4CAwOlpFZVVlImIiIiojJMahkpKSmRbpdf9bA840SE8X4VMS4CW9nxDW0KCgpMjm+PY8hBp9OZ3C8qKpL1/NVRXFxslkgqLS1FQEAAGjVqZHXhgJqoXbu21WmDjRs3xv3334+goCCEhISgbdu2uH37tlk7URTx0ksv4eWXX5aKxxs/VhG9Xm91BFhxcTH0ej20Wq3dpjbac6pPRe0sbS8/SsbWY1Unzoq2W0oU2eP8lYmKipJq9xiP7rEnOZJX1dnf2fvYe3RTRESE1JcBAQFV3t+eXD3x6+oMdTz1ej0KCgqcHA3VlDv2Z/nrs/LXb0RERK6OSS0jhuLdACpdRcf4ceP9KmJ8oWDLKj2GNsbHt8cx5FBaWmpy/8aNG7Kev7rKT5+TYzqdYdRMeY888ggeeeQRk23WLjaNR2vY64OlI5J4/ADsPKGhodLtilaxJPeh0+lw8eJFZ4dBdsC+9Czu3J/lr9+IiIhcnfkyancwf39/6ba1RIOBWq2Wbtu6jLTxyKrKjm98DuOpYfY4BhERERERERGRu2NSy0hgYKB0u7JvqoyTWrZMA6zq8Y3bGCfb7HEMIiIiIiIiIiJ3x+mHRoyn5yiVygrrzhgXXrd15Tnj41e2Kp5Go5HqHJQvAl7TY8jBuJA+UJb48/b2ljUGIiIiIrJOp9OZfEla/vqNiIjI1TGpZaRp06bS7Zs3b1ZYU+jWrVvS7fr161fr+BXJyMiQCo4aH98ex5CDr68v6tSpI+s5iYiIiIiIiOjOwemHRmJiYqTbly5dqrCt4XFBEHDXXXfZdPyIiAjUqlXLpuOnpKRIt1u2bGnXYxARERERERERuTsmtYx06tRJKqh+4sQJq+10Oh1OnjwJAGjdurXJlMDKxMbGAgDOnz+P/Px8q+2OHz8u3b733nvtfgwiIiIiIiIiInfGpJaR0NBQdOvWDQCwf/9+pKenW2y3Y8cO5OTkAAD69etXpXP07dsXAKDVarFu3TqLbQoKCrBlyxYAQLNmzdC6dWu7H4OIiIiIiIiIyJ0xqVXO+PHjAZQVWZ8xYwYKCgpMHk9JScHbb78NAAgKCsKwYcOqdPw+ffqgYcOGAIClS5fi1KlTJo+r1WrMmjVLKkQ/YcIEhxyDiIiIiIiIiMidCaIois4OwtVMnToVu3btAgA0bNgQI0eORL169ZCUlIR169ahsLAQAPDmm28iPj7eZN8TJ05g3LhxAMqm/K1du9bs+Pv378fkyZMhiiIUCgWGDRuGzp07Q6lUYuPGjUhOTgYAdO7cGd98843FVQPtcQwiIiIiIiIiInfFpJYFxcXFSEhIwOHDhy0+LggCEhISkJCQYPaYLUktAFi3bh3efvttaDQai4936NABK1asQEREhNU47XEMIiIiIiIiIiJ3xKSWFaIo4qeffsLWrVulguzh4eHo0qULxo0bhy5duljcz9akFlC2euGaNWtw9OhRZGZmQqFQoGXLlhgwYACGDx8uFa2viD2OQURERERERETkbpjUIiIiIiIiIiIit8NC8URERERERERE5HaY1CIiIiIiIiIiIrfDpBYREREREREREbkdJrWIiIiIiIiIiMjtMKlFRERERERERERuh0ktIiIiIiIiIiJyO0xqERERERERERGR22FSi4iIiIiIiIiI3A6TWkRERERERERE5HaY1CIiIiIiIiIiIrfDpBYREREREREREbkdJrWIiIiIiIiIiMjtMKlFRERERERERERuh0ktIiIiIiIiIiJyOz7ODoCIzImiiO3bt2Pz5s04f/48ioqKULt2bcTGxmL06NHo2LFjlY+ZmpqK3r17Vyueixcv2u0YxuLi4pCWlmbT/ocPH0bt2rWrdW5nc0R/lvfnn3/i22+/xR9//IGsrCz4+fmhSZMmiIuLw5gxYxAeHl7pMZKTk/HVV1/hxIkTuH37NkJCQhATE4PBgwdjyJAh8Pb2luUYrswd+lIURezbtw8//vgjEhMTkZOTA4VCgQYNGqB79+4YN24c6tevX+Ex7oTfTXfoS3v1g6f/XgKu25/8u0lERORYgiiKorODIKL/KSkpwbRp0/Drr79afNzb2xsvvPACJk2aVKXjVvfCWhAEXLhwwW7HMCgoKEDXrl1h61uQu16cO6o/jb333nv48ssvrT5eu3ZtfPLJJ+jUqZPVNps2bcKbb74JjUZj8fGuXbti6dKlFX4It8cxXJk79KVKpcL06dNx5MgRq8fw9fXF/PnzMXjwYIuP3wm/m+7Ql/bqB0//vQRcuz/5d5OIiMixmNQicjEvvvgitm/fDgCIiYnB8OHDERUVhXPnzmH9+vUoKioCUHaBPWjQIJuPW1xcXOEHXWPLli3DuXPnAABTp07FlClT7HYMgz/++AOjRo0CADz77LPo0KFDhcfr2bMnfH19bTq3K3FUfxp8+eWXeO+99wAACoUCw4cPR4cOHZCXl4c9e/bg5MmTAIDQ0FD88MMPaNSokdkxDh06hKeffhqiKCIgIADx8fFo3749srOz8f333yM5ORkA0L17d6xcuRJeXuYz1+1xDFfn6n2p1+sxbtw4qV39+vXx+OOPo3nz5igsLMThw4exe/du6PV6CIKAZcuWIS4uziyOO+F309X7ErBPP9wJv5eAa/cn/24SERE5mEhELuPw4cNiy5YtxZYtW4rjxo37//buPDyq6v7j+GcCCZJg2I0Q9mCIIoS9lrAZLQqIQDVRMIC2YAukomhBW6tiRbAVrWvrBongEzBaKwi4JSxhf2gtgYpaZAlBTJEkQAIx2/z+yDP3N0OSSTK5k8zNvF9/3eGe+d4z9/sc7sw395xrLyoqctl/+PBh+7Bhw+yRkZH2YcOG2c+fP296H9atW2f0Yfbs2fby8nKvxHjnnXeMNkeOHDGj6z7H2/nMz8+3DxgwwB4ZGWkfOnSo/auvvnLZX15ebn/++eeNPixYsKBSjB9//NEeGxtrj4yMtA8YMMB+8ODBSvvnzZtnxFi/fr1XYvg6K+Tyvffec+ljYWFhpTZpaWn2a665xh4ZGWkfOXJkpc9htzf9sWmFXNrt9c+DP4xLu906+awJ100AADxjzT/JAU3UihUrJEnNmzfXU089pRYtWrjsj4iI0B/+8AdJUn5+vlJTU009fk5Ojp588klJUtu2bfX000/LZrN5JYZjrRDHmiRNkbfzuWPHDuMOhFmzZqlPnz4u+202m+677z5169ZNkpSWlqbS0lKXNp9++qmys7ONGH379nXZHxQUpGeeecaYmvTaa69V6ocZMXydFXK5du1aSRVj6tlnn1VwcHCl4zjW/pEqxuq2bdsqtWnqY9MKuZTqnwd/GJeSdfLpDtdNAAA8R1EL8BH5+fnauXOnJGnkyJFVTkeRpPHjx6t9+/aSpI8//tjUPixZskTnzp2TJC1atEgdOnTwWgzHl/PevXtbdsqLOw2RT8cPVkmKioqqsk1AQICuvfZaSRXTYPLy8lz2b9y4UVLFD7OpU6dWGSMkJEQ///nPJVUsOH306FHTY/gyK+SyoKBAmZmZkqThw4e7XUfn5ptvNrb3799faX9THptWyKVDffPQ1MelZK18usN1EwAAz3FFBHzEvn37VF5eLkm67rrrqm0XEBCgoUOHSqr4QXr27FlTjr9r1y598sknkqTBgwdrypQpXotht9v13//+V5IUGRnpYY99W0Pks1WrVsb2iRMnqm333XffSapYLLl169Yu+xxrwfTp00ft2rWrNobzZ7j07h4zYvgyK+QyLy9P/fr1U8eOHdWrVy+3x3J+n+OHtENTH5tWyKVkTh6a+riUrJNPd7huAgBQPxS1AB/h+LIq1fyFtXfv3pIqvuQ6Fvqtr2effdbYfvjhh70a4+TJkyooKJAkXXXVVZIq7jTZt2+ftm7dqkOHDqmsrMyjPviKhsin8yPqV69erR9//LFSm7179xp38AwbNsxl0eCcnByjqOHIQ3UiIiKMbecncpkRw9dZIZddu3ZVamqqtm/froULF7o91rfffmtsX/rEu6Y+Nq2QS6n+efCHcSlZJ5/ucN0EAKB+mjd2BwBUOHnypLEdHh7utu2VV17p8j7HX6A99fnnn+vgwYOSpBtvvNHlS7w3YjimUEgVf0FPTExUenq6yxfyNm3aKCEhQbNnz9Zll11W5/40tobI57XXXqtRo0Zp27ZtOnLkiBISEvTggw+qb9++KiwsVHp6up5//nmVl5erVatW+u1vf+vyfudpNTX1MSwsTAEBASovLzfuSDArhq+zQi7r4v333ze2o6OjXfY19bFplVzWNw/+MC4l6+SzOlw3AQCoP4pagI/Izc01ttu2beu2rfPdFfn5+fU+dlJSkrE9a9Ysr8dw/nK+bNmyKtvk5+fr5Zdf1rZt2/Taa6+5nT7jixoqn3/5y1+0YMECbdmyRZmZmZo5c2alNoMGDdKjjz5aaaFo53VfaupjYGCggoODVVBQ4NJHM2L4OivksrYyMjK0efNmSVL79u0VExPjsr+pj02r5LK+efCHcSlZJ5/V4boJAED9Mf0Q8BFFRUXG9qVPb7qU89QG5/d54quvvjLWXhk4cKAGDhzo9RjOX84DAwN17733auPGjTpw4IAyMjL01FNPGQtdZ2Zm6oEHHjDWTbGKhspnSEiIli1bplGjRlW532azqWfPnpWmmUkVCxrXto/ObZz7aEYMX2eFXNbGqVOntGjRIuP1nDlzKt3N0dTHplVyWd88+MO4lKyTz6pw3QQAwBzcqQX4COdHgNe0Hofz/ro+OvxSb7/9trHt6V1adY2Rk5MjqeJHyIoVKzRkyBBj3xVXXKG4uDiNGjVK8fHx+v7777V7925t3LhRt9xyi0f9awwNlc+NGzfqkUceUVFRkcLCwhQXF6eIiAgVFhYqIyNDn376qd5//319/PHHSkpKcpne4jxtpTZrwDjaOPfRjBi+zgq5rElubq5+8Ytf6MyZM5KkmJgYJSQkVGrX1MemVXJZ3zz4w7iUrJPPqnDdBADAHBS1AB/hfMdESUmJ2y/oxcXFxnZdFqS9VGFhoT766CNJUufOnRUbG9sgMdasWaOCggKdP39enTp1qrJNWFiYHn30USUmJkqS3n33XUt9OW+IfKalpemhhx5SWVmZfvKTn+jVV191eVJXXFyctm/frnnz5qmwsFCzZs3Shg0bjL/mO9/ZUFJSUuPxHP0MDAw0/s2MGL7OCrl05/Tp07rnnnt05MgRSVL37t317LPPymazVWrb1MemVXJZ3zz4w7iUrJPPS3HdBADAPEw/BHxEcHCwsV3V05WcOX85r83UkupkZGQYxxo7dqwCAur+X4KnMVq1alXtF3OH2NhY48fDF198YampFN7Op91u19KlS1VWVqbWrVvrxRdfdPmh5TBixAhj4eKzZ89qxYoVHvXRuY3zD0kzYvg6K+SyOllZWbrrrruMp8R16tRJK1eudLvWTlMem1bKZX3y4A/jUrJWPp1x3QQAwDwUtQAfERoaamzXtIit8/76LASbnp5ubN90002NFqM6zZo1U/fu3SVV/CCx0iLG3s7noUOHdOLECUnShAkT3K7lEh8fr5YtW0qStm7dWmUfz5496/Z4JSUlunDhQqU+mhHD11khl1XJzMzUnXfeqePHj0uqeDrcqlWranxKXG1YdWxaNZfVqS4P/jAuJevmk+smAADmoagF+IgePXoY26dOnXLb9vvvvze2O3fu7NHxysrKjC/eYWFhHi0Qb0aMmlhtOoyDt/N57NgxYzsyMtJt26CgIEVEREiSsrOzPepjTk6O8Rd/5z6aEcPXWSGXl8rIyNDMmTONNbR69+6tlJQUde3atVZ9qg0rjk0r5rImVeXBH8alZM18ct0EAMBcFLUAH+H4MizJmCpUHcd+m82mq666yqPjHTx40PgLbmxsbJXr63gjxokTJ5ScnKznnntOW7ZsqbG9Y3HcwMBAtW7dus59bCwNmc/aTC9yTG9p1qyZ8W9t27ZV+/bta9XHw4cPG9vOP+7MiOHrrJBLZ+np6ZozZ45x9010dLRWr16tsLAwt3H9YWxaIZdm5MEfxqVkjXxeiusmAADmoqgF+IiBAwcaf13ds2dPte3KysqMx4BHRUW5TL+oiy+++MLYjo6ObrAY//vf//T000/rtdde09q1a922PXr0qPHX9379+rn9oeBrvJ1P5wLFwYMH3bYtLS01Fgm/9A6FoUOHSqqYZnP+/PlqY+zevdvYHjZsmOkxfJlVcilJe/fu1fz5843FwWNiYpSUlKS2bdvW2A9/GJtWyKVZeWjq41KyRj4vxXUTAABzUdQCfERoaKiuu+46SRV3Wnz33XdVttuwYYNyc3MlSePGjfP4eAcOHDC2+/bt22Axrr32WmMR24yMjGo/pyT99a9/NbYnTZrkUR8bi7fz2a9fP+M8pqWluZ168+GHH6qgoEBSRZHDmWM9l9LSUqWkpFT5/oKCAn3wwQeSpJ49eyoqKsr0GL7MKrk8c+aM5s+fbyyIff311+tvf/uby2La7vjD2LRCLs3KQ1Mfl5I18nkprpsAAJiLohbgQ+6++25JFQv3LliwwPiC7HD48GEtWbJEkhQSEqK4uDiPj+WYchIYGOgyhcPbMVq0aKH4+HhJFZ/zwQcfrPQ5Jemtt97Shx9+KKli3ZQpU6Z41MfG5M18BgUFKSEhQZJ04cIF3X///caPNmf/+te/9PTTT0uqyNPMmTNd9t94443q0qWLJOmVV17Rvn37XPYXFxdr4cKFxnSZe+65p9IxzIjh66yQyz/+8Y/G+/r3768XXnhBQUFBte6Hv4xNX8+lWXnwh3Ep+X4+L8V1EwAAc9nsdru9sTsB4P/dd999+uSTTyRJXbp00dSpU9WpUyd9+eWXSklJUWFhoSRp8eLFuvPOO13eu2fPHs2YMUNSxTSSVatWVXucgQMH6sKFC+rYsaO2b9/uUV89jXH+/HnFxcXp6NGjkqQrr7xSd9xxh3r06KG8vDxt3LjR+AEWEhKi5ORk9evXz6M+NjZv5vPixYuaNm2avvzyS0kV6+hMmTJFUVFRKisr0+7du7VhwwaVlpZKkp544glNnTq1Uh/T09M1d+5c2e12BQYGKi4uToMGDVJ+fr7effddffPNN5KkQYMGafXq1VVOZzEjhq/z5Vx+++23mjBhghyX9IULFxpPQHOnTZs2GjJkiPHaX8amL+dSMi8P/jAuJd/PpzOumwAAmIuiFuBjLl68qMTExGq/7NpsNiUmJioxMbHSvtoWtQoKCjR48GBJUq9evbRp06Y697O+MU6dOqXExES365R06tRJy5cvN45jRd7OZ25urh544AGXdXEuFRgYqN/97neaNm1atW1SUlK0ZMkSYy2mS/Xr109vvPGG27WZzIjhy3w5l8uXL9frr79el49TbV/8YWz6ci4dzMpDUx+XkjXyKXHdBADAG5o3dgcAuGrZsqXefPNNrV+/Xv/4xz+MRX7btGmjwYMHa8aMGfX+sur4q7Ukjxear2+MTp06ae3atfroo4+0YcMG/ec//9G5c+fUqlUr9ejRQ2PHjtUdd9yhkJAQj/rnK7ydz3bt2ikpKUlpaWlat26d9u/frzNnzigoKEjh4eGKiYnR9OnTFR4e7jbO1KlTNWTIECUnJ2vnzp06ffq0AgMDFRkZqYkTJyo+Pr7Gx8SbEcOX+XIuHXfcmMEfxqYv59LBrDw09XEpWSOfEtdNAAC8gTu1AAAAAAAAYDksFA8AAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy6GoBQAAAAAAAMuhqAUAAAAAAADLoagFAAAAAAAAy2ne2B0AADQ8u92utLQ0bdmyRf/+9791+vRpFRQUKDg4WO3atVN0dLTGjx+vMWPG1Bjr0KFDSk1N1d69e5Wdna3S0lK1b99e0dHRmjx5smJjY70SIzY2VidPnpQkff31127jT58+XXv37pUkpaWlqUuXLlXGGjFihN566y198skneuWVV3Ts2DG1bdtW0dHRmjt3rqKiooz3mHkO63oOtm7dqnvvvVeSFB4ervT09Brjz549W9u2bZMkpaamqn///rXqV30dOnRIHTp0UMeOHRvkeAAAAPAfNrvdbm/sTgAAGs63336r+++/X998802NbUeOHKkXXnhBISEhlfYVFRVp8eLF+vvf/+42xqhRo/T888+rVatWpsbwVlErPj5e8+fP16WXx/Xr1ysyMlKSeedQ8uwclJWVafTo0Tp9+rQkac2aNRo4cGC1783NzdXIkSNVWlqqXr16adOmTTX22wyZmZn65S9/qfbt2+vtt9/WFVdc0SDHBQAAgH/gTi0A8CM5OTmaNm2a8vPzJUkdO3bU6NGjFR4eroCAAJ06dUoZGRlGsSgjI0PLly/XY4895hKnrKxMc+fO1Y4dO4x/GzhwoIYOHaqgoCB99dVXSk9PV3l5ubZt26Z58+Zp5cqVCggIMDWG2c6ePavHHnusUkErIiLCKGiZdQ4lz89Bs2bNNHHiRK1YsUKStGHDBrdFrQ0bNqi0tFSSNGnSJM9PUB0tXrxY586d07lz5zRjxgwlJycrLCyswY4PAACApo2iFgD4keeee84oxowaNUovvfSSLrvsMpc2paWlWrZsmVatWiVJ+uCDD7Rw4UKXdklJSUYhJjg4WMuXL680RTAzM1N33323CgsLtXv3bn344YeaMmWKqTHMduDAAUnSmDFjtHDhQnXq1ElffvmlcnNzjTZmnUOpfudg0qRJRlFr06ZNeuSRR9SsWbMqP9f69eslSTabTRMnTvTk1Hjk1Vdf1YwZM3Ts2DEdPXpUM2bM0Ntvv01hCwAAAKZgoXgA8BMXL17Uxx9/LElq0aKFli5dWqnIIknNmzfXwoULFRoaKkm6cOGCjhw5YuwvLy/XW2+9ZbxetmxZlWte9e/f3+XupLVr15oaw1siIyP18ssvKyIiQsHBwRoyZIjGjh0rybxzKNX/HERFRRlrfP3www/avXt3lZ8nKytL+/fvlyQNHTpU4eHhtTsRJggLC9Pq1asVEREhSTp27JimT5+unJycBusDAAAAmi6KWgDgJ0pKSvT73/9e9957rxITE9WhQ4dq2wYFBalXr17G68LCQmP7iy++0JkzZyRJffr00U033VRtnPHjx+uaa67RyJEjNWDAAGNanxkxvCUuLk6BgYFV7jPrHErmnAPnu9Y++uijKt+7bt06Y/vWW2+t9hje0rFjR61atUpXXXWVJOn48eNKSEjQ999/3+B9AQAAQNPC9EMA8BOhoaGKj4+vVdvs7GxduHDBeO1Yj0mSdu7caWzX9GS/oKAgffDBB5X+3YwY3jJgwIBq95l1DiVzzsEtt9yiP//5zyotLdVnn32mxYsXKygoyKWNY+phixYtdPPNN9eq71LF2mEzZ86sdfuaOBf1srKylJCQoHfeeYepiAAAAPAYRS0A8GM5OTk6duyYsrKylJWVpcOHD+vQoUM6deqUSzvnu6Oc9/Xu3duj45oRw1sufTJiTTw5h5I556BDhw6KiYnR1q1bdf78eW3btk033nijsT8zM1PHjh2TJN1www26/PLLax27pKRER48e9ahftXHixAkdOHCAohYAAAA8RlELAPzMmTNn9Oabb2r9+vU6ffp0te2aNWumsrKySv/uvGh669atPeqDGTG8xbEOljv1PYeSeedg8uTJ2rp1q6SKKYjORS3nqYcN+dTD2ggNDTXW2gIAAAA8QVELAPzIP//5T82dO9d4ep9DUFCQevToocjISA0YMEAxMTF6/PHHtXfv3koxSkpK6t0PM2LURV3W4Wre3P2l0YxzKJl3Dm644QaFhobq3Llz2rx5swoLCxUSEqKysjJt2rRJktSuXTuNGDGiTnG7dOmir7/+2pQ+FhUVad68edq+fbukiiLeypUr1bNnT1PiAwAAwD9R1AIAP5GXl6ff/OY3RjHm6quvVkJCggYNGqTu3burWbNmLu0vXrxYZRznO5nOnTvnUV/MiOHMbrfLZrNVu//HH3+s9zEk886hZN45aNGihcaNG6e1a9eqqKhI6enpmjhxovbs2aMffvhBkjRhwoQai3XecvHiRc2ZM0e7du2SJLVp00YrV67UNddc0yj9AQAAQNNBUQsA/ERqaqrxtL2+fftqzZo1lRYVd+Y8Pc75TqeuXbsa20eOHKnxuCtXrtTx48fVtWtX3XLLLQoLCzMlRkDA/z/At7i4WC1atKj2/e6mCNaFWedQMuc8OkyaNElr166VJKWlpWnixIlKT0932d8YLly4oF/96lfG3Wpt2rRRUlKSrr766kbpDwAAAJqWgJqbAACagv379xvbkydPdluMyc7O1smTJ43X5eXlxvagQYOM7YyMjBqPu2bNGqWkpOhPf/qTiouLTYvRsmVLY79z8ehSp0+frrRou6fMOoeSOefAYfDgwerWrZsRq7i4WFu2bJEk9erVS/369asxvjfMmTPHpaCVnJxMQQsAAACmoagFAH7CuRCSl5fntu3SpUtdXpeWlhrbw4cPV4cOHSRJBw4c0I4dO6qNs2PHDuPpe5GRkcbdSWbEuPLKK13aVOf111+vdl9dmXUOJXPOgTPH3VgFBQVKSUnRiRMnXP69Mdx1110KDAxU27ZtlZycrKioqEbrCwAAAJoeiloA4CecCwopKSnKysqq1CYvL0/z58/X559/7vLvzmtDBQUFadasWcbrBQsWaN++fZViffPNN1q0aJHxevbs2abGuO6664ztF154wSjiOJSXl+uNN97Q6tWrK8X1lFnnUDLnHDibNGmSsa7Yiy++KEmy2Wy69dZba/pYXjN27Fi99NJLFLQAAADgFTZ7XR4JBQCwrBMnTmjChAnGoulBQUEaO3asevbsqeLiYh05ckRbt2417kYKDAw0ntD3+OOPa9q0aUYsu92uX//618YUN5vNpuHDh2vAgAFq3ry5Dh06pPT0dOPupJtuuskotJgVIy8vTz/72c90/vx5SdJll12mcePGqVu3bsrNzdXmzZuVnZ2twMBAjR492igypaWlqUuXLi59iY2NNaYKunvin5nn0Kzz6Oyuu+5yKYwNGzZMq1atqrY9AAAAYGUUtQDAj3z22Wd66KGHVFRUVG0bm82m+Ph49e3bV4899pgk6fbbb9eSJUtc2hUXF+vJJ5/Ue++9V2kRdGe33XabnnjiiSrXn6pvjL179yoxMVFnz56t8n2hoaFaunSpsrOzjemA9SlqSeaeQ8mc8+iQmpqqRx991Hi9ZMkS3X777W4/DwAAAGBVFLUAwM8cP35cycnJ2rVrl7777juVlZUpJCRE3bp1U3R0tG677TZdffXVysnJ0ZgxY1ReXq7WrVtry5YtCg4OrhTv4MGDSk1N1Z49e5STk6PS0lJ17NhRQ4YM0R133KHBgwfX2Kf6xMjLy9OqVauUnp6urKws2e12hYeH6/rrr1dCQoLCwsKUlJRkWlHLG+fQrPNYUFCgn/70p8bTIHfu3KlWrVrV+D4AAADAiihqAQDQRGRnZ+uGG26QJE2YMEHPPfdcI/cIAAAA8B4WigcAoIlYt26dsT1lypRG7AkAAADgfRS1AABoAkpKSvTee+9Jkjp37qyYmJhG7hEAAADgXRS1AACwoOLiYuPJimfPntXDDz9srAs2bdo0BQRwiQcAAEDT1ryxOwAAAOru6NGjuu222xQaGqr8/HyVlZVJksLDwzVt2rRG7h0AAADgfRS1AACwoM6dO6ukpERnzpwx/q1ly5Z65plnFBIS0og9AwAAABoGcxMAALCgyy+/XMOHD1dwcLBat26t0aNHa/Xq1Ro6dGhjdw0AAABoEDa73W5v7E4AAAAAAAAAdcGdWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsByKWgAAAAAAALAciloAAAAAAACwHIpaAAAAAAAAsJz/AzZgCcQBIySaAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "\n",
+ "# Plot unconstrained model results with 95% CIs\n",
+ "unconstr_performance = unconstr_test_results[f\"{PERF_METRIC}_mean\"]\n",
+ "unconstr_disparity = unconstr_test_results[f\"{DISP_METRIC}_mean\"]\n",
+ "\n",
+ "sns.scatterplot(\n",
+ " x=[unconstr_performance],\n",
+ " y=[unconstr_disparity],\n",
+ " color=\"black\",\n",
+ " marker=\"*\",\n",
+ " s=100,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_test_results[f\"{PERF_METRIC}_low-percentile\"], unconstr_test_results[f\"{PERF_METRIC}_high-percentile\"]),\n",
+ " (unconstr_disparity, unconstr_disparity),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"|\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_performance, unconstr_performance),\n",
+ " (unconstr_test_results[f\"{DISP_METRIC}_low-percentile\"], unconstr_test_results[f\"{DISP_METRIC}_high-percentile\"]),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"_\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "# Plot postprocessing of unconstrained model\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=PERF_METRIC,\n",
+ " disp_metric=DISP_METRIC,\n",
+ " show_data_type=SHOW_RESULTS_ON,\n",
+ " constant_clf_perf=constant_clf_accuracy[SHOW_RESULTS_ON],\n",
+ " model_name=r\"$\\bigstar$\",\n",
+ ")\n",
+ "\n",
+ "# Vertical line with minimum \"useful\" accuracy on this data\n",
+ "curr_const_clf_acc = constant_clf_accuracy[SHOW_RESULTS_ON]\n",
+ "plt.axvline(\n",
+ " x=curr_const_clf_acc,\n",
+ " ls=\"--\",\n",
+ " color=\"grey\",\n",
+ ")\n",
+ "plt.gca().annotate(\n",
+ " \"constant predictor acc.\",\n",
+ " xy=(curr_const_clf_acc, ax_kwargs[\"ylim\"][1] / 2),\n",
+ " zorder=10,\n",
+ " rotation=90,\n",
+ " horizontalalignment=\"right\",\n",
+ " verticalalignment=\"center\",\n",
+ " fontsize=\"small\",\n",
+ " \n",
+ ")\n",
+ "\n",
+ "# Title and legend\n",
+ "ax_kwargs[\"title\"] = f\"Post-processing ({SHOW_RESULTS_ON} results)\"\n",
+ "ax_kwargs[\"xlim\"] = (curr_const_clf_acc - 1e-2, 0.885)\n",
+ "\n",
+ "plt.legend(\n",
+ " loc=\"upper left\",\n",
+ " bbox_to_anchor=(1.03, 1),\n",
+ " borderaxespad=0)\n",
+ "\n",
+ "plt.gca().set(**ax_kwargs)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Let's train another type of fairness-aware model\n",
+ "\n",
+ "**In-processing** fairness methods introduce fairness criteria during model training.\n",
+ "\n",
+ "_Main disadvantage_: state-of-the-art in-processing methods can be considerably slower to run (e.g., increasing training time by 20-100 times).\n",
+ "\n",
+ "We'll be using the [`fairlearn`](https://github.com/fairlearn/fairlearn) package [[Weerts et al., 2020]](https://arxiv.org/abs/2303.16626)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from fairlearn.reductions import ExponentiatedGradient, EqualizedOdds\n",
+ "\n",
+ "inproc_clf = ExponentiatedGradient(\n",
+ " estimator=unconstr_clf,\n",
+ " constraints=EqualizedOdds(),\n",
+ " max_iter=10,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Fit the `ExponentiatedGradient` [[Agarwal et al., 2018]](https://proceedings.mlr.press/v80/agarwal18a.html) in-processing intervention (**note**: may take a few minutes to fit)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 1min 19s, sys: 1min 21s, total: 2min 40s\n",
+ "Wall time: 39.2 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "ExponentiatedGradient(constraints=<fairlearn.reductions._moments.utility_parity.EqualizedOdds object at 0x11bd3abc0>,\n",
+ " estimator=LGBMClassifier(verbosity=-1), max_iter=10,\n",
+ " nu=0.000851617415307666) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "ExponentiatedGradient(constraints=,\n",
+ " estimator=LGBMClassifier(verbosity=-1), max_iter=10,\n",
+ " nu=0.000851617415307666)"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "inproc_clf.fit(X_train, y_train, sensitive_features=s_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Evaluate in-processing model on test data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In-processing model: \n",
+ "> accuracy = 0.867\n",
+ "> equalized odds = 0.0498\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import evaluate_predictions_bootstrap\n",
+ "\n",
+ "inproc_test_results = evaluate_predictions_bootstrap(\n",
+ " y_true=y_test,\n",
+ " y_pred_scores=inproc_clf.predict(X_test, random_state=SEED).astype(float),\n",
+ " sensitive_attribute=s_test,\n",
+ ")\n",
+ "\n",
+ "print(\n",
+ " f\"In-processing model: \\n\"\n",
+ " f\"> accuracy = {inproc_test_results['accuracy_mean']:.3}\\n\"\n",
+ " f\"> equalized odds = {inproc_test_results['equalized_odds_diff_mean']:.3}\\n\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**We can go one step further and post-process this in-processing model :)**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7f6f6af0fdaf4cdc868d9845219cf4dc",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "inproc_postproc_results_df = compute_postprocessing_curve(\n",
+ " model=inproc_clf,\n",
+ " y_fit_pred_scores=inproc_clf._pmf_predict(fit_data[0])[:, -1],\n",
+ " predict_method=\"_pmf_predict\",\n",
+ " **compute_postproc_kwargs,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLUAAAKACAYAAABqokocAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1hT1/8H8HeCoAwBUcABinujuPdGRVGpe1etWldrtdW2WmvVVuuqtm7rHnVQt0VEwYFaUayKG0VEQFAUggyBAPn9wTf3l5AEAgkrvl/P4+PNveeee3JPCOSTcz5HJJPJZCAiIiIiIiIiIipBxEXdACIiIiIiIiIiorxiUIuIiIiIiIiIiEocBrWIiIiIiIiIiKjEYVCLiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShwGtYiIiIiIiIiIqMRhUIuIiIiIiIiIiEocBrWIiIiIiIiIiKjEYVCLiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShwGtYiIiIiIiIiIqMRhUIuIiIiIiIiIiEocBrWIiIiIiIiIiKjEYVCLiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShwGtYiISgCpVFrUTSAq1mQyGTIyMoq6GXnCn2siIiIi3TCoRUQlztGjR1G3bt1c/zVo0AAuLi7o3r07Pv/8c+zYsQPv3r0r6ubnSXR0NKZNm4b//vuvqJtCxUxERITwWh8zZkxRN6dABQUFoWHDhmjbti0SEhJUjj979gyjR49GVFRUEbQu79LT07F9+3YsW7ZM7fE///wTdevWxeeff17ILSMiIiIqWRjUIiKDlZGRgeTkZERERODixYtYvnw5evTogf379xd107Tyzz//wM3NDb6+vkXdFKIik5ycjG+++Qbp6en46quvULZsWaXjO3fuhIeHBwIDA4uohXkTHR2NQYMGYcWKFUhOTlZb5tNPP0W1atVw8eJF/PXXX4XcQiIiIqKSo1RRN4CISBeOjo4YMWKE2mOZmZn48OEDoqKi4OPjg8TERCQnJ2Px4sUQi8Uazysu/P39NX7oJfpYrF27FmFhYahTpw4GDx6sctzPz69ETeMLCwvD48ePcyxjYmKCb775Bl988QVWrlyJrl27olKlSoXUQiIiIqKSg0EtIirRKlWqhM8++yzXct999x2mT5+OmzdvAgBWrFiBHj16wNbWtqCbSFQgHBwc8OTJk6JuRoF6/Pgx9u3bBwCYPXs2jIyMirhFhadnz55o0qQJ7t69i6VLl2LdunVF3SQiIiKiYofTD4noo2BlZYUNGzbAwsICQNaUphMnThRxq4goJytWrEBGRgYaNmyIrl27FnVzCt306dMBAD4+PiVmeiURERFRYWJQi4g+GlZWVnB3dxce//vvv0XYGiLKSWBgIK5evQoAGDVqVBG3pmh06tQJjo6OAIDff/+9iFtDREREVPxw+iERfVRq1qwpbEdHR2ssl5iYiCNHjuDixYsIDg5GfHw8zM3N4eDggPbt22PYsGGoUqVKjtfKzMyEj48PvLy8cO/ePbx9+xalSpWCjY0NnJ2d0bVrV/Tt21dlStWYMWNw48YNpX1jx44Vtvfs2YPWrVvn5WkDALp164bIyEi0atUKe/fuxdu3b7Fjxw74+voiOjoaRkZGqFGjBnr27ImRI0cKo9qyO3r0KL7//nsAwKFDh1CtWjWsWLECvr6+yMjIQNWqVdGzZ09MnTpV6by0tDScPHkS58+fx4MHDxAXFwdTU1NUrFgRbdq0wdChQ1G7dm2tnktYWBgOHz6Mq1evIiwsDFKpFNbW1mjQoAHc3d3V3tfs7t69i6NHjyIgIABv3rxBRkYGKlSogObNm6N///7o0KFDru14+vQpPD09ERAQgPDwcKSlpcHa2hpOTk5o27YthgwZAjs7O43n5/c1AmStfti9e3cAEPpUkfx1VL16dXh7eyMtLQ2enp44c+YMnj9/joSEBJQvXx7NmzfHkCFD0KZNm1yf75s3b7B3715cvHgR4eHhEIlEcHBwQPfu3TFu3DhYW1ujd+/eCA0NRZUqVeDn55drnZr8+eefAABzc3O4ubmpHJe/nhXJ7wcA+Pr6wsHBQeW8oup3xZ8buWPHjuHYsWMAgE8++QS//vqr0nGRSIRBgwZh7dq1uHHjBu7evYsmTZrk2j4iIiKijwWDWkT0UVEMDmgKepw/fx4//PAD4uLilPZLJBJIJBLcv38fO3fuxLRp01QCN3KxsbGYNm0abt++rbQ/LS1NWJHRy8sLGzduxNatW1G1alUdn1ne3Lt3D1OnTkVMTIzK/nv37mHPnj3Ytm0b6tWrl2M9UqkUEydOxP3794V9Dx8+FEaXyAUGBmLu3LkqQQipVIr3798jODgY+/btw8iRI/H999+jVCn1v54yMzOxZs0abN++HRkZGUrHYmJicOnSJVy6dAl79uzBxo0b1QaUUlNTsWDBArXTTyMiIhAREYETJ06gY8eOWL16NaysrNS2ZePGjVi3bh0yMzNV2hETE4ObN29i69atmD9/PoYOHapyfmG+RsLDwzFt2jQEBwcr7Y+KisLp06dx+vRpDB8+HD/99BNEIpHaOvz9/fHll1+qLF4QHByM4OBgeHp66i3vU2RkJC5fvgwgK3hlZmamc53Fpd/zyt3dHWvXrgUAHDhwgEEtIiIiIgUMahHRR0Vx1TF1QYLTp0/jm2++gUwmAwDY2tqiW7duqFy5MiQSCfz9/fHs2TOkpaVh7dq1iIqKwuLFi1XqmT17thCsKFeuHLp16wZHR0dIpVK8ePECPj4+kEqlCA0NxYQJE+Dl5QUTExMAwIgRI9ClSxd4eXkJwaLhw4cL7dU1APb27VshoGVubo5evXqhatWqePXqFc6ePYv4+HjExMRg9OjR2LdvX46BrS1btigFtOR69+4tbN+4cQOfffYZ0tLSAACWlpbo1q0bqlWrhuTkZFy/fh337t1DZmYm9u3bh/DwcGzevBliseoM+fnz5+Po0aPC4zp16qBDhw4wNzdHaGgozp49C6lUinv37mH8+PE4cuQIypQpI5RPS0vD+PHjcevWLQCAsbExOnbsiAYNGkAkEiEkJAQXL15EcnIy/P39MWrUKBw8eFBl1NqJEyeE6WBisRgdOnRAgwYNYGZmhtevX+PixYuIjIxESkoKFixYAAcHB7Rr106pDl1eI3mRnJyMiRMn4sWLF7C0tESPHj1QtWpVvH//Hr6+vggLCwMAHDx4EPXr18fw4cNV6rh06RKmT58urDJYpUoV9OjRA9bW1ggJCYGvry/evn2LSZMmqe23vDpx4oQQNOrUqZPaMlOmTEFCQgIOHDiA8PBwYZ+lpSUAwNraWihbHPq9cePGmDt3Ll6+fImDBw8CABo1aoQ+ffoAgMZRio6OjnBycsKLFy/g7e2Nn376Sek1TURERPRRkxERlTBHjhyR1alTR1anTh3Z6NGjtT4vJiZG1qxZM+HcQ4cOKR1//vy5rGHDhsLxBQsWyJKTk5XKZGZmyvbs2SOrX7++UO7YsWNKZW7duiUcc3Nzk8XFxam0JSwsTNa+fXuNdchkMtm3334rHL9+/brWz1OTrl27CvXVqVNHNnDgQFl0dLRSmXfv3slGjhwplBk+fLhKPYr3v06dOrKmTZvKjh07JktISJBFR0fLdu7cKUtKSpLJZDKZRCKRtWzZUig7ZcoUtffDy8tL5uzsLJRbv369SpkzZ84Ixxs0aKDSfzKZTPbixQtZp06dhHLr1q1TOr506VLhmIeHhywsLEyljtevX8tGjx4tlJs7d65KmZ49e8rq1Kkjq1evnuzChQsqx9PS0mTffPONUMeYMWOUjuvjNRIeHp7jz4Hic6hTp45s6tSpsvj4eKUy6enpSq+znj17qtSTnJysdE8XLFggS01NVWmLu7u70vW6du2qUpe2Bg4cKNQTExOTY1nF5xkeHq62THHpd5lMJrt+/bpw/Ntvv83xucktXLhQOOf8+fNanUNERET0MWCieCL6KISFhWHy5MlITEwEANjZ2WHAgAFKZdavXy+MROnZsycWL14MU1NTpTIikQhjxozBN998I+z7448/kJ6eLjy+e/eusD106FClESNyVatWxezZs4U67927p9sTzCNbW1ts374d9vb2SvttbGywefNmVKxYEQDw33//4eLFiznWtWTJEnh4eMDCwgL29vYYN26cMF1s+/btiI+PBwA4Oztj3bp1au+Hm5sbVqxYITzetm2bcJ6cPMcSAHz99ddqp3ZVq1YNq1evFh4fOnRI2H79+jX2798vPM/t27erHfVmZ2eHTZs2wdbWFgBw8uRJvHjxQjgukUiEx3Xq1EGXLl1U6jA2NlZ6/QQHBwsj1YDCf404OTlh7dq1wigmOSMjIyxYsADm5uYAgBcvXiAqKkqpzN69e4X8cx06dMDixYtVRow5ODhgx44dap9HXiUmJuLhw4cAgAoVKqBChQo61Vec+j2/6tevL2wHBAToXB8RERGRoeD0QyIq0aKiorB9+3a1x6RSKeLi4vDw4UMEBgYK05mMjIywYsUKlC5dWiibmpqKc+fOAcgKIMydOzfH644bNw779u1DZGQkIiMj8e+//6Jjx45C/XJ37tzRWIebmxucnZ3h6Oio1JbCMHXqVI0BiLJly2L8+PFYtmwZAMDHx0ftB3gga4qXfPqUOqdPnxa2v/nmG425sgCgV69eaN68OW7duoXk5GScOXNGmAr3+vVrYZpjuXLlMHr0aI31tGjRAu3atYNMJoOTkxMSExNhYWGBY8eOCUHLoUOHwsbGRmMdFhYWGDt2LFavXo3MzEycPn0aM2bMAACl5xAZGYmYmBghEKLI1NQUR44cQbly5VSuVdivkUGDBmmcumhubo6GDRsKixPExMSgUqVKwnFvb29h+6uvvtJ4DVtbW3z66ac6r9Inn4oKZAWPdFWc+j2/FO9DUFCQXuokIiIiMgQMahFRiRYeHq40wic3tra2WLlyJdq2bau0/7///kNqaioAoEGDBiqJzrMTi8Xo2bMndu7cCSArEbo8qNWqVSuh3JkzZ/D+/XsMGTIE7du3VxopY2pqilq1amnddn3KKRAFZK0iJw9qXblyRWO5Jk2aaMyhFB4eLiSGt7a21mrFRjc3NyHv0c2bN4Wg1tWrV4Uy7du3zzW3lLxfFN28eVPYbtCgQa5tadq0qbAtbxOQFfioX78+Hj16hISEBAwaNAiffvopunTporS6JgCVx3KF/RpxdnbO8bhi8EVxZNHbt2/x4MEDAFkjmRo3bpxjPb169dI5qBUaGips16hRQ6e6gOLV7/mlWJ/i/SEiIiL62DGoRUQGy8TEBBYWFrC1tUXDhg3Rrl079OrVS21AJCIiQtjObcU/deXkiarl+wcMGCCssnb16lVcvXoVRkZGaNy4MTp27IhOnTqhcePGGleaK0hVqlRBuXLlcizj6OiIMmXKICUlBW/evEF6erraUVYODg4a68jPPVWcZqV4vuKUuPwGeZ49eyZsf/nll3k699WrV0qPv/nmG0yePBkZGRl4/fo1VqxYgRUrVqBy5cro0KEDOnbsiHbt2qkkGpcr7NdIblP4FKfZKq7qJ08iD2g3aqp69eowMTHRacqdYl9rWoEwL4pTv+dX2bJlIRaLkZmZCYlEguTkZL2sCElERERU0jGoRUQlWqtWrbB3716d65FIJMK2th+kFQND2fM//fzzzyhfvjz27Nkj5NvKyMjAnTt3cOfOHaxbtw729vbo378/JkyYkOdpSomJiUr5otQpW7as2rxT5cuX1+oaZcuWRUpKCmQyGd69e6eSf0teRpO4uDhhW9t7qjglUrFPYmNjhe3seaG0lb2PdDm3Q4cO2LhxIxYuXCjkmwKygiCHDx/G4cOHYWJigi5dumD8+PFo1qyZSp0F/RpRlJfV8mT/W/kTAN69eyds59TXcmKxGFZWVoiJiclbAxUkJCTk6Zq5KW79nh8ikQgWFhZ4//49gKyffwa1iIiIiBjUIiICoPxBXlsZGRkaj5mYmODbb7/FuHHjcObMGfj6+uL27dtCbh8gK0/Un3/+CU9PT2zfvh2NGjXS+toSiSTXaZdVqlRRG9TKKa+VIsURO8bGxmrLaFuXthTvqeIIJcX7ll+KyfwnT56cp6Tm6vJZdenSBefOncOlS5fg4+ODK1euKAXf0tLS4OPjAx8fH0yfPl1llFBBv0b0QXHEleLrISf5+VnSdE19BG6KW7/nl5mZmRDU0kfyeSIiIiJDwKAWERGURxIpjhDKieJIJE2jh+SrAY4bNw7Jycm4desWrl27hgsXLgi5cSQSCWbOnAkfHx+lBOIFRb4CZE4yMzOFETPGxsa5TldUR/Ge6HpPFbcVR/LkhZWVFd6+fQsgK3eXNvmVcmNiYgJXV1e4urpCJpPhyZMnuH79Ovz9/XH9+nUhoLJhwwa0atUKbdq0UamjOL5G5BR/LuQBlZzIZLJ894+c4qgyfQRvimu/55U85x+Qt5F3RERERIZMfXZfIqKPTLVq1YTtJ0+eaHXOo0ePhO3cEssDWSMtOnbsiG+//Rbe3t74448/hBFQERER+O+//7Rur4ODA548eZLjPz8/P7XnhoWFKY1eUSc0NFQIKFSpUiVfeZ3yc08fP34sbCveU8Xt58+f51rP8ePH8cMPP2Dr1q1CecU6nj59mmsdaWlpWgUA5UQiEerVq4dx48Zh+/bt8PPzQ926dYXj8vxZOdHna0QfFPOXKeam0iQ8PFwp+JIfivmokpKSdKoLKBn9ro3k5GRhW985u4iIiIhKKga1iIiQtYqfPHjw8OFDvHz5MsfymZmZOH/+vPBYccW0ZcuWYdiwYWjZsiVev36tsY5evXoprcKomKMHQIElkU9NTUVAQECOZXx9fYXtbt265es6jo6OQh4uiUSC69ev53qOt7e3sK14TxVzE127di3HqZ8AcPLkSXh6emL16tV48+YNAKBFixbCccW+02Tv3r1o3rw5WrdujR9//FHY7+vri88++wxdu3bFli1bNJ5vb2+PKVOmCI8VXwv6eo0UtEqVKglBoZiYGGElRE00BVLzokqVKsK2Pp5vcep3IH8/17GxsUKwsEKFChypRURERPQ/DGoRESFr9bdevXoByJpCtXLlyhzL79mzR1ilzdraGu3btxeOhYeH486dO3j//j1OnTqVYz2KuXiyJ2IXi///LVrbfEba2rRpk8bcRxKJBLt37xYeu7m55fs6n3zyibC9evXqHEeInTt3Drdv3waQlatL3h8AULt2bWFlxJiYGBw5ckRjPSEhIUIArVy5ckJAzMPDQwgonD9/HoGBgRrriIuLw/bt2wFk3Q/FkTcymQxXrlzBq1ev8M8//+T4nBSnUyr2r75eI4Vh4MCBwvb69es1lktMTMSuXbt0vl716tWFbcVVRTVRnI6p7uekOPU7oPxznVtwVk5xJVDF+0NERET0sWNQi4jof6ZOnSokhvbx8cGPP/6IDx8+KJWRyWQ4cOCAUpL2OXPmKCWUHjRokLD9+++/49KlS2qvt2vXLty/fx8AYGdnpzQyCVCeYqT4oVYfbt68ifnz56tMFXvz5g0mT54s5CByd3eHs7Nzvq8zduxYIR9XUFAQvvjiC7X5tc6dO4e5c+cKjydPngw7OzulMtOmTRO2f/nlF/j4+KjUExUVhZkzZwrBgk8//RQmJiYAsqbS9e3bF0BW8GP69Om4evWqSh2vX7/G1KlThZX/KleujMGDBwvHO3XqBFtbWwBZ0yoXL16MlJQUlXpCQ0OVgkA9e/YUtvX1GikMo0aNElbM9PPzw9KlS1US98fGxmLKlClCoFcXjRo1EhYgUJyOqoniz0lkZKTK8eLU79q0V52HDx8K20XxGiAiIiIqrpgonojof2rVqoWFCxdi/vz5kMlkOHToEPz8/NCtWzdUrlwZ8fHx8Pf3V8rL88knnyh98AWA7t27o2PHjvD390daWhomT54MFxcXNGrUCLa2toiPj8fNmzcRFBQEIGs60nfffScEX+QcHByE7VWrViEyMhLGxsbo2bMnateurdNzNTY2xpEjR3Dt2jW4urqifPnyCAsLw9mzZ4U8RlWrVsW8efN0uk758uWxatUqTJkyBVKpFH5+fnB1dUX37t1RrVo1fPjwAdevX8fdu3eFc9q0aYMZM2ao1NWzZ0+MGDECBw4cQEpKCr744gu4uLigdevWMDU1RUhICM6dOycEIl1cXPDZZ58p1bFo0SI8fvwYz549g0QiwYQJE9C8eXO0bNkSxsbGeP78Oc6fPy8E+0qXLo1Vq1YpBS1NTEzw/fffY/bs2QAgvE46deqEypUrAwCCg4Nx8eJFoZ7OnTuja9euQh36eo0UBisrKyxZsgQzZsxAZmYmdu/eDV9fX/To0QPlypXDy5cv4ePjg4SEBJiamgr3P7/TZ83MzNC4cWPcvn0bb9++RUREhNLPQnaKx+bNm4dBgwZBJpNh2LBhQmC0uPQ78P856mQyGW7duoU5c+agdu3asLOzg4eHh9rnKH8dAEDr1q21vZVEREREBo9BLSIiBYMGDULZsmWxYMECSCQSxMTE4NChQyrljI2NMWvWLEyYMEFtPWvXrsXMmTNx5coVAMDt27eFqXWKzM3N8f333wsjSRT17t0b69atQ3x8PCQSCTZt2iSco2tQa82aNZgzZw6ioqKwZ88eleMtWrTAunXrYGNjo9N1AKBDhw7YtWsXvvnmG0RFReH9+/c4duyYSjmRSITx48dj9uzZGlf4W7hwIaytrfHnn38iPT1d433t0qULVq1apRIEsrCwwIEDBzB37lxcuHABAHDr1i3cunVLpY6KFSti5cqVaN68ucqxvn37Ii4uDr/++iukUmmOUyJ79eqF5cuXq+zXx2uksHTv3h2//vorfvrpJyQnJyMiIkJlqmGlSpXw448/YurUqQCgUwCue/fuwr24evUqhg0bprHswIEDsW/fPkilUrx69Qrr1q0DANSrVw+urq4Aile/ly1bFn379sXp06cBZOV/A4C6detqDGpdu3YNQFaAkUEtIiIiov/HoBYRUTY9e/ZEu3btcPjwYVy8eBEhISGIj4+HiYkJnJyc0LFjRwwdOlQpoXV2FhYW2L59Oy5duoTTp0/j3r17eP36NdLS0lCuXDk4Ojqic+fOGDhwoMo0OzlbW1scOHAAa9euRWBgIN6/fw9zc/M8rcymiaurK06dOoU///wTV65cwZs3b2BhYQFnZ2d4eHjAzc1Nr4nqW7RoAR8fHxw9ehR+fn549OgR4uLiUKpUKTg6OqJNmzYYOnRorsE6kUiEr776CgMGDMDBgwdx7do1REVFISUlBTY2NmjatCkGDRqEzp07a6zD0tISmzdvRmBgIE6ePImbN2/izZs3SE1NhaWlJerWrYvu3bvjk08+gbm5ucZ6Ro8ejU6dOuHvv/9GQEAAXrx4gcTERJiamsLW1hatWrVCv379lBKVK9LHa6QwDRgwAC1btsT+/ftx6dIlvHr1CpmZmXB0dESvXr0wbtw4paToZmZm+b5W//798dtvvyEzMxMXLlzIMahVp04d7NmzBxs2bMD9+/eRmJgIS0tLlWmuxaXfgayFAhwcHHDmzBlER0cLI7dkMpnKz93jx4+FaZ29e/cuktF6RERERMWVSKYpUzARERmUbt26CTl8njx5UsStIUN09+5dDB06FEDWaLmcVgnMzbRp0+Dr6wtjY2NcuXIF1tbWemplybJy5Ups27YNAHDixAnUq1eviFtEREREVHwwUTwRERFp9Ndff+HIkSO4detWrqtwBgcHC9u6rtInn9orlUpzXSHSUKWnpwvTE9u1a8eAFhEREVE2DGoRERGRRr6+vpg3bx5GjhyplNA/u8zMTBw4cEB4nNP0O220aNEC7dq1AwDs27cPH+PA8rNnz+LNmzcAgC+++KKIW0NERERU/DCoRURERBopJib/9ddfERcXp1Lmw4cPmD9/Ph48eAAAcHJyQqdOnXS+9tdffw2RSIQXL17g3LlzOtdX0mzfvh1A1tThZs2aFXFriIiIiIof5tQiIvpIMKcW5UdCQgL69OkjjBgyMzNDt27d4OjoCLFYjFevXuHChQtCYnZjY2Ps27cPTZs21cv1Fy5ciIMHD6JOnTo4efKkXhcwKM7OnTuHGTNmwNTUFKdOnYKjo2NRN4mIiIio2GFQSwOZTIbTp0/jyJEjePToEZKTk2Fra4uWLVti1KhRcHZ21qn+zMxMnD59GidOnMCDBw+QmJiI8uXLo379+vDw8ECvXr20+sM9ODgYO3fuREBAAN68eYOyZcuiZs2a8PDwwCeffAIjIyOd2klEhoNBLcqv58+fY8aMGQgJCcmxXKVKlfD777+jSZMmert2QkIC+vXrh6ioKCxbtgwDBw7UW93FlVQqRf/+/fH8+XN89913GD9+fFE3iYiIiKhYYlBLjZSUFMycORMXL15Ue9zIyAhfffUVJk+enK/64+PjMX36dNy8eVNjmdatW2PNmjUoX768xjKenp5YtGgRpFKp2uMtWrTAhg0bPtoVo4hIGYNapAupVIp//vkHPj4+ePjwIWJjY2FkZAQ7OztUq1YNffv2Ra9evVCmTBm9X/vWrVsYO3YsrK2t4e3tjbJly+r9GsXJ9u3bsWLFCnTo0AHbtm37aEanEREREeUVg1pqfP311zh9+jQAoGbNmhg6dCgqVKiABw8e4ODBg0hOTgYArFixAgMGDMhT3ZmZmRg9ejRu3boFAKhSpQoGDx4MR0dHREVF4fjx48I34S4uLtizZw9MTExU6vH398ekSZMgk8lgamqK4cOHo1GjRnj37h3+/vtvYQWq9u3bY9u2bRCLmT6NiIiIiIiIiAwHg1rZXL16VVhGvE2bNti6dStKly4tHA8JCcHIkSMhkUhgbW0NX19fWFhYaF3/33//jfnz5wPIGo21detWpW+1pVIpZs6cCV9fXwBQO9UiLS0Nbm5uiIiIgJmZGfbt24eGDRsqHZ89e7aQVHf16tVwd3fP450gIiIiIiIiIiq+OHwnmx07dgAASpUqhZ9//lkpoAVkjdxasGABAEAikcDT0zNP9R88eBBA1hTGFStWqEzTMDY2xsKFC4XHXl5eKnX4+PggIiICADBx4kSlgBYAmJiYYPny5cK0wy1btuSpjURERERERERExR2DWgokEgmuXbsGAOjYsaPGlYb69Okj5Lry9vbWuv6MjAxUrlwZ1atXR/PmzVGxYkW15ezt7WFjYwMAePXqlcpxeaBLJBJhxIgRauswNzcXRngFBwcjNDRU63YSERERERERERV3DGopCAwMRGZmJoCsqYeaiMVitGzZEgBw9+5dxMfHa1W/kZER/vjjD3h7e2Pv3r0ayyUlJSEhIQEAUKFCBZXj8gTzdevWFYJf6ig+h8uXL2vVRiIiIiIiIiKikoBBLQVPnz4VtuvUqZNj2Vq1agEAZDKZkJRdX9avXy+saNi7d2+lY69fv8b79+8BALVr186xnpo1awrbjx8/1msbiYiIiIiIiIiKUqmibkBxIl/qHshalTAnilMHIyMjhZFb+ZGRkYG3b9/i3r172LNnDwICAgAArVq1wuDBg5XKynNpadNGe3t7iMViZGZmqp3GSERERERERERUUjGopSA2NlbYLleuXI5l5UnYgaxcXLrw8PBQGu0lEokwatQozJ49GyYmJkpl4+LitG6jsbExzMzMkJiYqHMbiYiIiIiIiIiKEwa1FKSkpAjb2Vc9zE4x2KR4Xn5ERUUpPZbJZLh+/TouXryIvn37Kh378OGD1m2Ul0lMTNS5jXmVlpamFEgrXbo0jIyMCrUNRERERKRZRkYGUlNThcfW1tYqX6gSEREVZwxqKUhPTxe2c/uFrnhc8bz8XPPTTz9FjRo1kJKSgmvXrsHLywvPnj3D7Nmz8fTpU3z11VdC+YyMDK3bqFhGlzbmh0QiQXh4eKFek4iIiIh0Y2dnp5d6MjMzkZiYiPfv3yMtLU3pb1giIvp4GBkZwcTEBJaWlrCwsIBYrN/U7gxqKShTpoywLZVKcwwapaWlCdu6fKNVqlQpfPHFF8LjQYMGYfDgwfj888+RmpqKTZs2oUOHDmjRogUA5dFZ8mTyOZG309jYON9tJCIiIiLSVkJCAiIjIyGTyYq6KUREVMTS09ORmpqKhIQEiEQiVKlSBWXLltVb/QxqKTAzMxO2U1NTtQ5qaTMNMC/atm2LL7/8EitXrgQA7Nu3TwhqZW9jbuRlFAN2REREREQFQV1ASyQSMQ0FEdFHKiMjQ/idIJPJEBkZqdfAFoNaCiwtLYVtiUSS401WzBdlY2Oj97YMGTIEq1evRmZmJv777z+1bYyPj8+xDqlUiuTk5AJrY06yB/ocHR2VAnJU/D179gwZGRkwMjJCrVq1iro5pCP2p+FgXxoO9qVhKYn9mZycrJQuQtcvajMzM5UCWhYWFrCxsYGZmRlEIpFOdRMRUckkk8mQnJyM2NhYJCYmCoGtOnXq6GUqIoNaCpycnITtqKgoODo6aiwbHR0tbFeuXFnvbbGyskL58uURExOjtCpj9jbm5PXr18jMzCywNuYk+7dxZmZmsLCwKNQ2kG7EYjEyMjIgFovZdwaA/Wk42JeGg31pWAyhP3UdTSX/sAJkBbQcHBwYzCIi+siJRCKYm5vDzMwMERERwu+KxMREpUE7+cWgloKaNWsK20+fPkWrVq00ln369CmArA6qXbu2VvWHhIRg27ZtCA8PxyeffIJBgwblWF4+ddDc3FzYV65cOZQvXx7v3r0T2qDJs2fPhO06depo1caPmTyCrIjfLBIREZVMR44cQUJCgvC4e/fucHR0RGZmJvbs2aNU9pNPPoGVlVVhN9HgvH//Xti2sbHh31BERCQQiUSwsbFBYmIigKzfGQxq6ZmLiwuMjY0hlUoREBCAUaNGqS2XkZGBmzdvAgDq1aundUdkZGTg6NGjALK+vcopqBUaGir8YVC9enWlYy1btoS3tzcePXqEhIQEjdMkr1+/LmznFKCjLMnJyVi1apXSvm+++UYpqEhEREQlQ0REhFK6CPkXVzKZDGFhYUplC3uVaEMlzzkrEomYdoKIiFTIB43IZDKlPOW6YFBLgaWlJdq0aQN/f3/4+fnh1atXaqft/fPPP8KUQDc3N63rr127NipVqoSoqCj4+/sjPDxc4xTHP//8U9ju0aOH0rFevXrB29sb6enpOHDgACZPnqxyfmJiIo4dOwYgKyhWr149rdtJBAD169eHTCbjt6wGgv1pONiXhoN9aVjYn1lf4AJZ0xg/5vtARETqyRcOSU9PF35n6Er3rFwGZty4cQCykqzPnj1bGBon9+zZM/zyyy8AsqYFDhkyROu6RSIRPv30UwBZ3wjOmTNHpX4A2L17N44cOQIAsLW1xYgRI5SO9+jRAw4ODgCADRs2IDAwUOl4Wloa5s6dK3w7OX78eK3bSCRnbGwMExMTGBsbF3VTSA/Yn4aDfWk42JeGhf1JRERU+DhSK5sOHTqgV69eOHv2LG7fvo0BAwZgxIgRqFSpEh4+fIgDBw4gKSkJADB37lyVVQUDAgIwduxYAFlT/vbu3at0fPTo0Th//jwCAwNx+/ZtuLu7Y9iwYXByckJsbCy8vb1x48YNAFl/HK1Zs0Zl+puJiQnmz5+PadOmISUlBePGjcOQIUPQrFkzSCQSHD58GMHBwQCAZs2aYfDgwQVyr4iIiIiKqy5dugj5SQHAzs4OQNaXjNlH2jPVABERUcnEoJYay5cvR1JSEq5cuYKIiAisXLlS6bhIJMKMGTMwfPjwPNdtbGyMTZs2YdasWbhy5QqioqKwdu1alXLly5fH2rVr0bJlS7X1dOvWDQsXLsQvv/wCqVSKv/76C3/99ZdSmcaNG2Pjxo06r2RDREREVNI0adJE7X6xWMxco0RERAaCQS01TE1NsW3bNpw6dQrHjx8XErJbW1ujefPmGDt2LJo3b57v+i0tLbFt2zacP38eR44cwb179xAfHw9zc3PUqFED3bt3x4gRI3L91nDEiBFo0aIFdu/ejWvXriEmJgbGxsaoU6cO+vXrh6FDh3IIPOVbTEwMMjMzIRaLYWtrW9TNIR2xPw0H+9JwsC8NC/uTiIio8DGopYFIJEL//v3Rv3//PJ3XunVrPHnyRKv6XV1d4erqmt8mAshKPv/zzz/rVAeROlFRUZBKpTA2NuYf5waA/Wk42JeGg31pWNifREREhY+J4omIiIiIiIiIqMRhUIuIiIiIiIiIiEocBrWIiIiIiIio2JLJZPjrr78QExNT1E2hQlC3bl3UrVsXY8aMKeqmFLn09HRs3boV/fr1g4uLCxo1aoROnTrBy8tL79dKTEzUe52FgTm1iIiIiMjgnDhxAklJScLjTp06wcHBAZmZmTh48KBSWXd3d1haWhZ2E4lIC2FhYZg3bx4CAwPRqVOnom4OUaH69ttvcfr0aaV9r1+/LpDfWb///jvmzJkDExMTvdddkBjUIiIiIiKD8+LFC0gkEuGxfOVqmUyGp0+fKpWVSqWF2TQiyoOTJ08iMDCwqJtBVOhCQkKEgJaVlRUmTJiAqlWrIiEhAY0bN9brtdLT03Hy5El06NABnTt31mvdBY1BLSIiIiIiIiIqFp48eVLUTSgWnj17JmxPnz4dn376aYFdKyAgABKJBGfPni1xQS3m1CIiIiIiIiIiKkY+fPggbNeqVatAr+Xj4wMA8PPzQ0ZGRoFeS984UouIiIiIDE6HDh2QkpIiPLa1tQUAiEQi9OjRQ6msmZlZobaNiIgoN5mZmcJ2qVIFF7qRyWTw9fUFAMTFxeHGjRto27ZtgV1P3xjUIvqf0qVLY/DgwSr7PlZlypSBkZERjI2Ni7oppAfsT8PBvjQc7MuCJc+hlZ1YLEb79u31fj32JxVHdevWBQBMmTIFs2bNgo+PD/bs2YPg4GB8+PABVatWRY8ePTB+/HhYW1trrCc5ORmenp44f/48goODkZSUBGtra9SrVw9ubm7w8PCAkZGRxvOjo6Oxb98+XLlyBWFhYUhPT4eNjQ0aNGiAnj17on///irnr1u3DuvXr1fa1717dwBAlSpV4OfnV+j3Ql7HzJkzMXToUCxevBhXrlwBADg6OmLixIno16+f3u4bAKSlpeHcuXM4evQonj9/jpiYGFhYWKBhw4YYMGAA3N3dIRZrnoCVkZGBY8eO4cyZM3j8+DHi4+NhZWWF+vXrw93dHf3798/x/Pz0na7nyu9zq1atsHfvXrXHZs6ciWnTpiEgIAD79+/HnTt3EBsbi3LlyqFly5YYM2YMXFxccry3UVFR2LFjBy5fvoxXr17B1NQUdevWxbBhw+Du7o6tW7di9erVAPI/JTI/r4ExY8bgxo0bSvvGjh0rbC9btgwDBw7MV3vU+e+//5RWFvXx8SlRQS2RTCaTFXUjyPAkJiYq/eDXrVsXFhYWRdgiIiIiIlKk77/Xnj59ivT0dJQqVQq1a9fWRxNJR4qBnPT0dGzbtk1tOTs7O+zcuVPtFKfAwEB8/fXXiI6O1nidOnXqYOPGjXB0dFQ5du3aNUyfPh3Jyck5tnPnzp0oX768sE9dUEtO16BWfu+FvI7PPvsMvr6+ePHihdLxrVu3CvmIdL1vABAREYFp06blGFBp3bo1Nm7cqPZnNyIiAlOnTkVwcLDG8xs1aoRNmzbBzs5O5Vh++07Xc7UNaqWmpmLLli1QF9IQiUSYPXs2Jk+erPbaAQEBmDp1qtIquYp69+6NunXr4vfffweQv6BWfl8D6oJaivQd1Fq2bBl27dolPLa1tYW/vz9EIpHerqFI378rGNSiAsGgFhEREVHxxqCW4ZMHAKpXr47Q0FCIxWJ4eHigbdu2SEpKwokTJ3D79m0AgLW1NU6dOqUU3Lh37x7Gjh0rBCZcXFzg5uYGW1tbREZG4sSJE8JqohUqVMDRo0dhb28vnB8bG4vevXsjPj4eJiYmGDRoEJo0aYLSpUsjIiICnp6eePnyJQCgc+fO2Lp1q3BuSEgIQkND8c8//8DLywsAsHjxYpQvXx5lypRBhw4dCvVeKNZRunRppKamokOHDujXrx8kEgkuXbqEbdu2wcjISOf7Jr93/fr1w9u3bwEA9erVQ//+/VGxYkWEh4fjwIEDQrCkW7du2LRpk9L57969wyeffILXr18DAJo2bQo3NzfY2dnh7du38PLyEp6vk5MTjhw5ovTzr0vf6XKu4n3OKagl70dzc3MMHjwYzs7OSE5OxunTpxEQEAAgK7B15MgRNGzYUKmO+/fvY9SoUcIU9e7du6Nbt24wNjbGjRs3cPz4caSnp6Ns2bJISEgAkPegli6vgcDAQEgkEly/fl14/jNnzkSdOnUAAA0aNEDlypXz1J6cdOvWDZGRkUr7Dhw4gGbNmuntGooY1KISgUEtIiIiouKtOAS1FKe8FCQTExNYWVmpPRYfH4+0tDThsZmZGczNzdWWjY2N1TmJsjy/W2GQBwCArEDMxo0blYJBMpkMv/zyi/DBeeDAgVi2bBmArGlrffv2RWhoKADg66+/Vhn1kp6ejsWLF+PQoUMAsnLZbd++XTi+a9cuob41a9agT58+SuenpKRg5MiRePDgAQDg/PnzKqOWFEds+fr6wsHBodDvhbo6unTpgs2bN6uMZtHHfQOA7777DseOHQMAjBo1Cj/88IPSNMHExESMGDFCGIW1Z88etG7dWjg+Y8YMnDt3DgAwe/ZsfP755yr3RHF63fDhw7Fo0SLhmC59p2u/axPUArJG7O3Zs0flNfH999/j6NGjwr378ccflY4PHz4ct2/fhkgkwtKlS1VGPQUGBmLy5MlKo7jyEtTS12vg6NGj+P777wGo9q+2/v77b+zbt0/taDYgK2+XupF89vb2KFeunMZ6GzVqhHnz5ml8r8yJvoNaXP2QiIiIiIiKhJ2dXaH8mzhxosY2TJw4UansypUrNZbt2LGjzm0pKl9++aXK6CaRSITvv/9eCBQcP34csbGxALLy6sg/lPfp00ftNK5SpUph4cKFcHZ2BgBcuXIF9+7dE47LzwcgTMtTVKZMGUyaNAnVqlVDhw4dEBcXp+Oz1E5e74U6kyZNUjs9Sx/3LTY2FidOnAAA1K9fH/Pnz1fJe2VhYaEUhDp9+rSw/fz5c5w/fx4A0LNnT7UBLQCYPHkyWrVqBQA4duyY0vPVpe8Kq9/nzZunNsg5bdo0YVvxvgLA9evXhRFqQ4YMUTuNr0WLFvj222/z1SZAP68BfRk8eDCmT5+OqKgoPH78WOWfpqmpr1+/Vlv+8ePHaNmyJRYuXJivgFZBYFCLiNQKDQ3F06dPlX4pUcnF/jQc7EvDwb40LOxPKs7MzMwwcuRItceMjIyEY5mZmfD39wcAXLp0SSiTU1DQyMhI6bg8mAJAKeH69u3b1Y4WcXNzg4+PD7Zv3y58wC9I+bkX2RkbG2tsqz7u2+XLl4WV70aMGKExEXuzZs0wc+ZM/Prrrxg9erSw/+zZs8K9HjRokMY2KB5PTU3FtWvXhP269F1h9LuJiQm6dOmi9pijo6MQcHn//r3SsQsXLgjbn376qcb6P/nkkxwXT8iJPl4D+uTq6opjx46hadOmOtVjZWWFDRs24IcffoCJiYl+GqcHXP2QiNRKSEiAVCrlKk4Ggv1pONiXhoN9WbD++ecfpQTF7du3R+XKlZGZmYkjR44ole3duzfKli2r0/XYn1Scubi4wMzMTONxxdVC7969iwEDBuDOnTsAAEtLS5WcRNm1adNG2FYcbdK7d28hkfeGDRvg5eWFnj17olOnTmjatClKlSr8j6P5uRfZOTo6avxQr4/7dv/+fWE7t7xGiqOSFNstFx4enmOwRHGU1IMHD+Du7g5At74rjH53cnLKsR4LCwskJSUhPT1daf/NmzcBAOXKlVO7GICciYkJmjVrlucFCQD9vAb0rUqVKti/fz9+++037NixQ+N0RE1cXFzw22+/6TWXl74wqEX0P0lJSVi1apXSvm+++abYDKskIiIi7T179gwSiUR4LB8JIJPJ8PDhQ6Wy3bp1K8ymERU6JyenHI9XqlRJ2JYnJpdPRdMmh5WVlRWsrKwQHx8vnA9kTZ2bOXMm1q5dCyBrROOWLVuwZcsWlC1bFu3bt0fPnj3RvXt3lClTJo/PKveRLc2aNYONjY3Svvzci+wsLS01nq+P+6a4nZ8gwps3b4Ttn3/+Wevz3r17J2zr0ncF3e8Acs3/Jw94ZQ/eyO+NNve1atWq+WqbPl4DBaFUqVKYO3cuWrdujW+//VaraZ8ikQifffYZZs2aVSRBaG0Uz1YREREREZHBU/zwXZBymiqzbds2bNy4UXic0ygef39/nRPFF4XcvqQ1NTUVtuXJseX/Kx7LSZkyZRAfH48PHz4o7Z86dSqaNm2Kbdu24d9//xXuX0JCAry9veHt7Y1y5cphwYIF6Nu3r9bPCQCmT5+e43F1ybXzcy+yy+n1pI/7Fh8fr3Q8rxITE/N8DqD6fHXpu4LsdwD5DrDIv+zQ5r7mN+Cmr5+dgtK5c2ecOHEC7u7uKtMzs/vll19yncJa1BjUIiIiIiKiIlGYKwFqomlVRHWyj/opKRRXd1RHcaquPI+QqakpEhIStP6gLa9DXSCgbdu2aNu2LWJjY3H58mVcvXoV//77r7D6ZVxcHL7++mtYWFioTSyuT/m5F3mhj/umuJ2SkpLnmSOK5wcFBaF06dJ5Ol+RLn1XnPpdrnTp0pBKpVr1T0pKSr6uoc+fnYIilUpzDWgByqP3iisGtYiIiIjI4LRu3VrpA0n58uUBZE2lyP7hSdtv04lKqujo6ByPR0RECNvyFRorVKiAhIQEpWOaxMbGIiEhAQBgb2+vsZyNjQ08PDzg4eEBmUyGO3fuYOPGjbh8+TJkMhk2bdqUp+DGkydPtC4rl597kRf6uG/y9ysgq701a9bUWMeDBw8gFovh6OgoTMlTPP/NmzdwdHTM8/PITpe+03e/66JixYp49uwZXr16lWtZbcqoUxA/O/qmbVL6c+fOqV29sTjh6odEREREZHDatGmDLl26CP8qVKgAABCLxUr7u3TpkuN0MyJDcOfOnRwTQwcGBgrbrVq1AgA0btwYQNbqcQ8ePMix/uvXrwvbdevWBZCVy+jMmTNYv349du3apXKOSCSCi4sLNm7cKASP8hOkyqv83Iu80PW+AVBKLn779u0c6/jpp5/g4eEBV1dXYZ/iaoI3btzItQ1fffUVVq1aJTx3XfquuPa7XJMmTQBkTUMMCQnRWC4zMzPXe6+JPl4DBc3Hx0dln7rfhffu3cs1EFzUGNQiIiIiIiIyYNHR0bhw4YLaY1KpFAcOHACQ9aG2Xbt2AIDu3bsLZbZt26ax7oyMDOzYsUN43LVrVwBZwYvVq1dj3bp12Lhxo8Zpf8bGxsL0OnXT7EQikbCd1xXb1MnPvcgLXe8bAHTs2BFicdZHdU9PT43POywsTFgxr23btmrbsGfPHkilUo3tWL9+Pc6cOYM///xTyDelS9/pq98LSu/evYXt/fv3ayzn7e0tTJPMK328BgrS27dvVQJ2vXr1wqVLl7BgwQKlnHEymUxtAKw4YVCLiIiIiIjIwC1cuBAvXrxQ2peRkYFFixYJI1Y+++wzIf+Sq6srqlWrBgDw8vLC1q1bVerMyMjA4sWLhcBK69at0aJFC+G4PIAQHx+PpUuXqg3OnD9/HqGhoQCgdK6c4vRgxQTqusjrvcgLfdw3BwcHYeTVnTt3hFUEFSUmJmL+/PnCPR05cqRwzNnZWRhl9vjxYyxYsEBtYOuPP/7AzZs3AWStCqkYVNGl7/TR7wWlQ4cOqFevHgDgwIED8PLyUinz5MkTLFmyJN/X0MdroCCdP38emZmZALJyjP3444/4448/YGlpidGjR+Pw4cNKq4SeO3euUNqVX8ypRUREREREZMBEIhHevHmDgQMHYvjw4WjUqBFiY2Nx9OhRYXpUrVq1MGnSJOEcIyMjrFq1CqNGjUJaWhpWr14NPz8/9OnTBxUqVEBUVBSOHz+O4OBgAFlJ1ZcvX6503QkTJsDT0xMSiQQHDhzA3bt34ebmhipVqiA+Ph63bt0SggqlS5fGlClTVNpesWJFYXvZsmUYNWoUAKBPnz6Fdi/yQh/3DQB++OEHBAYG4t27d9i8eTMCAgLQt29flCtXDi9evMChQ4eE1UMHDRqkEhBZtmwZBg0aBIlEgmPHjuH27dsYOHAgHB0d8ebNG5w9exb//fcfgKyVBH/55RcYGRkJ5+vSd/ro94IiFouxePFijBo1ClKpFLNmzcKZM2fQuXNnlC5dGnfu3IGnpydSU1NhZGSEjIwMYdSctvT1Gigo8iBVjRo1sGbNGiHIJ1e/fn0cO3YMixYtwvHjx3Hr1i3ExsYW24UyGNQiIrUqVKiAjIwMpV9uVHKxPw0H+9JwsC8NC/uTirNmzZrB3t4eXl5e2L59u8pxFxcXbNq0SWVkkrOzM3bu3ImvvvoKMTExuH37tto8Q/Xr18e6detQqVIlpf02NjbYvHkzpk6diri4ODx8+BAPHz5UOd/S0hLLly9X+XANAO3atYO1tTUkEgkCAwMRGBgIkUiU73x4+b0XeaHrfQOyktTv27cPU6ZMQVhYmMY6+vXrh0WLFqnsd3BwwP79+zF9+nS8ePECL168wG+//aZSrmzZsli+fLlKUEyXvtNHvxekJk2aYM2aNZg7dy6Sk5Ph4+OjMsVu8ODBiIyMxL///qs0HU9b+ngNFISEhAQEBARg4MCBWLBggcafITMzMyxfvhzt2rXDTz/9BF9fXwwZMqRQ2phXDGoRkVqVK1cu6iaQHrE/DQf70nCwLw0L+5OKMyMjI6xZswadO3fGX3/9hadPnwLI+kDt4eGBgQMHolQp9R8NW7RogbNnz+LQoUPw9fXFs2fPkJSUBDs7O9SuXRseHh7o0aMHjI2N1Z7v4uICLy8vHDx4EJcvX0ZoaCgSExNhYWEBBwcHdO3aFcOHDxcWc8iuXLly2L17N1auXImgoCAkJyfDxsYGUVFROa4KWBD3Ii90vW9A1kia06dPw9PTE97e3ggODkZSUhKsrKzQpEkTDBs2LMdVA2vVqoVTp07h2LFj8PHxwZMnTyCRSGBiYgInJyd06tQJo0aNgq2trdrzdek7Xfu9oLm6uuLUqVPYtWsX/P39ER0dDRMTEzRo0ACjR4+Gq6urMCrQ0tIyX9fQx2tA327cuIGlS5eif//+WpUfMGAAmjRpgmPHjhVwy/JPJNNHtj2ibBITE5VWsahbt66wxGxxlZSUhFWrVint++abbwo1cSERERHph4+PD5KTk4XHrVu3RqVKlZCZmYmTJ08qle3Ro0ex/zulIOj777WnT58iPT0dpUqVQu3atfXRRNKRfDW1Vq1aYe/evUXcmqLFe0F51bt3b4SGhqJJkyY4fPhwUTdHLzIzM/M8nVKX89TR9+8KjtQiIiIiIoPz6NEjYSUvIGsURqVKlSCTyXD37l2lsh07dvwog1pERB+bEydO4PTp03B0dMTnn38Oe3t7teVCQkKExQQaNGhQiC0sWPkNTOkroFUQGNQiIiIiIiIiIoNnaWmJy5cvAwBkMhkWLlyoUib7ypLu7u6F2kbKGwa1iEitoKAgSKVSGBsbw9nZuaibQzpifxoO9qXhYF8aFvYnEVHx1759ezg4OCAiIgJ//fUXHj58iJ49e6JixYr48OEDnj9/jhMnTuDt27cAgCFDhqgk0afihUEtIiIiIjI4zZo1w4cPH4TH8qXIRSIR2rZtq1S2TJkyhdo2IiIqGiYmJtiwYQOmTJmCqKgo3LlzB3fu3FFbdsSIEZg3b17hNpDyjEEtov8xMTGBm5ubyj4iIiIqeTp27Kh2v1gsRs+ePQu5NUREVFzUq1cPZ86cwd9//w1fX18EBwcjPj4e5ubmsLe3h4uLCwYPHsxRtyUEg1pE/2NsbIxWrVoVdTOIiIiIiPRCcXXLjx3vBSkyNTXFmDFjMGbMmKJuCumo+KawJyIiIiIiIiIi0oBBLSIiIiIiIiIiKnEY1CIiIiIiIiIiohKHQS0iIiIiIiIiIipxmCieiIiIiAzOhQsXkJycLDxu0aIF7O3tkZmZiTNnziiV7dy5MywsLAq7iURERKQjBrWI/ic5ORkbNmxQ2jd9+nSYmZkVUYuIiIgov4KCgiCRSITHtWrVgr29PWQyGQIDA5XKtmnThkEtIiKiEohBLaL/kclkSt/oyvd9rKpXr47MzEyIxZylbAjYn4aDfWk42JeGhf1JRERU+BjUIiK1ypYtW9RNID1ifxoO9qXhYF8aFvYnERFR4WNQi4iIiIgMjrOzs9IIbGtrawCASCRCixYtlMqWLl26MJtGREREesKgFhEREREZnK5du6rdLxaL0bdv30JuDRERERUEBrWISK2EhAQhNwinVJR87E/Dwb40HOxLw8L+JCIiKnwMahGRWqGhoZBKpTA2Noazs3NRN4d0xP40HOxLw8G+NCzsTyIiosJXLIJaycnJyMzMBAAup0xERERERERERLkqFkGtQYMG4cWLFxCJRHj48GFRN4eIiIiIiIiIiIq5YhHUAgCZTFbUTSAiIiIiIiIiohKi2AS1iIiIiIj0xd/fHx8+fBAeu7i4wNbWFpmZmTh//rxS2fbt28Pc3Lywm0hEREQ6YlCLiIiIiAzOf//9B4lEIjyuVq0abG1tIZPJ8O+//yqVbd68OYNaRGQw0tPTsWPHDpw6dQoRERGQSqWwsbHBd999hz59+uhcf926dQEArVq1wt69e3WuTx2ZTIYDBw7A1dUVtra2BXINMgwMahERERERUaGLiYkRFov62IjF4kL/oB4SEoIDBw7gxo0biIqKQkpKCipUqIB69eqhb9++6NOnD8RicY51jBkzBjdu3ND6mr6+vnBwcFB7LCEhAVu3boWPjw9evXoFU1NTNG3aFBMnTkSrVq1yrfvly5fo168fUlJSsHXrVnTu3Fnrdhm6b7/9FqdPn1ba9/r1a1haWhZRi/ImLCwM8+bNQ2BgIDp16lTUzaFijkEtIiIiIiIqdJmZmUhOToZUKi3qphQqY2NjmJmZFdr1MjIysGbNGmzbtk0lj/GrV6/w6tUr+Pn5Yf/+/Vi7di3s7e0LvE2xsbEYNWoUnj9/LuxLS0vDpUuX4O/vj0WLFmHo0KE51rFw4UKkpKSgT58+DGgpCAkJEQJaVlZWmDBhAqpWrYqEhAQ0bty4iFunnZMnTyIwMLCom0ElBINaRERERGRw6tevj+TkZOGxfISCSCRCkyZNlMqWLl26UNtG/08qlSIxMRFGRkZF3ZRCkZGRAQsLi0K95uLFi3Hw4EEAgJGREdzc3NCmTRuYm5sjIiICp06dQnBwMP777z989tln+Ouvv7Qa0bNhw4Zcy5QvX17t/l9++UUIaLm5uaFz586IiYnBrl278O7dOyxevBgtW7ZE9erV1Z5//PhxXLt2DVZWVpg/f36u7fiYPHv2TNiePn06Pv30U71f48mTJ3qvkyi/GNQi+h9jY2OVb3mMjY2LqDVERESki549e6rdLxaL4eHhUbiNoRwZGRl9NDlzYmJiCvV6V69eFQJaZmZm+PPPP9GiRQulMp999hl++uknHD58GE+fPsVvv/2Gn376Kde6e/Toka82xcXF4cyZMwCAYcOGYfHixcKxnj17wt3dHVKpFIcOHcJ3332ncn5sbCx+/fVXAMCcOXNQoUKFfLXDUCkukFGrVq0ibAlR4WBQSwOZTIbTp0/jyJEjePToEZKTk2Fra4uWLVti1KhRcHZ21rl+X19fnDhxAkFBQYiNjYWxsTGqVKmC9u3bY+zYsahcuXKOdXTr1g2RkZFaXe/KlSsfzR8L+WViYoIuXboUdTOKDV1f41S8sD8NB/vScLAvDQv7k4qjXbt2CdszZ85UCWgBWUHFhQsX4ubNmwgNDcXhw4cxceJEjbmwdHX//n1kZGQAAMaOHat0zMnJCd26dcPZs2dx584dtef/+uuviIuLQ6tWrTB48OACaWNJppinrlQpftwnw8dXuRopKSmYOXMmLl68qLQ/MjISkZGROHXqFL766itMnjw5X/XHx8dj1qxZuHr1qtL+tLQ0BAcHIzg4GPv378eSJUs0fpOYmJiIV69e5ev6RERERERk2DIzM4Wk7iKRKMcRiqVKlUL//v3x+++/IyMjA15eXvn+rJObuLg4YVtd4MzR0VGlnNy1a9dw4sQJmJiYYPHixRCJRAXSxrS0NJw7dw5Hjx7F8+fPERMTAwsLCzRs2BADBgyAu7u7xqT6ycnJ8PT0xPnz5xEcHIykpCRYW1ujXr16cHNzg4eHh8bptvJVBWfOnIlp06YhICAA+/fvx507dxAbG4ty5cqhZcuWGDNmDFxcXJTOVZfEXzFouGzZMgwcOFCX26LSTnWrH+ryHNatW4f169cr7evevTsAoEqVKvDz81NpS0ZGBo4dO4YzZ87g8ePHiI+Ph5WVFerXrw93d3f0799fY18ptnXo0KFYvHgxrly5AiDrdejq6op169YByJoym1MQNTExEW3btkVaWho6deqEP//8U2NZ0i8GtdSYP3++ENCqWbMmhg4digoVKuDBgwc4ePAgkpOTsXr1atjb22PAgAF5qjszMxPTp0/HzZs3AQCVK1fGoEGDUKNGDSQlJeHKlSvw8fFBWloavvvuO1haWqJbt24q9Tx58kRI9DhlypRck/5ZWVnlqZ1ERERERFRySSQSpKSkAABsbGxgbW2dY3nF/FV+fn4FFtRSTJIfHx+PMmXKKB2XB7NMTU2V9qekpODHH38EAEydOlVjvi1dRUREYNq0aSp5o+Li4nDlyhVcuXIFf//9NzZu3KiSHy0wMBBff/01oqOjlfbHxMQgJiYG/v7+2LVrFzZu3CgE7zRZs2YNtmzZopTc/82bN/jnn3/g5eWF2bNnF1gf6UtBP4eIiAhMnToVwcHBSvvfvn0Lf39/+Pv7Y+/evdi0aRPs7Ow01pOYmIhRo0bhxYsXwr7Hjx9j3LhxMDIyQkZGBry9vXMMap0/fx5paWkAAHd393w/J8o7BrWyuXr1qrBaRJs2bbB161Yheai7uzsGDx6MkSNHQiKRYOnSpejevXuekj0eO3ZMCGi1adMGmzZtUnpjHzJkCPz8/PDFF18gPT0dP/30E9q3b6+SwFTxTdbDw6PA3tSJiIiIiKjkyb7SYV5kDxKo8/nnn+Phw4eIi4uDqakp7Ozs4OLiAnd3d7Rp00bjeTVq1BC2/fz8MGLECOFxWlqaMJulZs2aSuetW7cO4eHhqF27NiZNmpTXp6SV2NhYDBs2DG/fvgUA1KtXD/3790fFihURHh6OAwcOIDo6GgEBAZgzZw42bdoknHvv3j1MmjRJWKDCxcUFbm5usLW1RWRkJE6cOIGnT58iODgYw4cPx9GjRzWuNHny5EmEhobC3NwcgwcPhrOzM5KTk3H69GkEBARAJpPht99+Q/v27dGwYUMAWaONJBIJrl+/LoyemjlzJurUqQMAaNCgQYHcM03y8xz69OmD+vXrC0EvIGuhg/Lly6sEP9+9e4eRI0fi9evXAICmTZvCzc0NdnZ2ePv2Lby8vHD79m3cv38fY8aMwZEjRzR+bt+3bx9SU1PRoUMH9OvXDxKJBJcuXUL//v1x6tQpXL16FdevX4dEItEYHJa319TUNN/55ih/GNTKZseOHQCyhuD+/PPPKsGkmjVrYsGCBfj6668hkUjg6emJ8ePHa13/oUOHAGStsrNq1Sq1y/l269YNo0ePxq5du/D69WtcvnwZrq6uSmXkQa3SpUujWrVqeXqORNp49eoVMjIyYGRklGt+Nyr+2J+Gg31pONiXhoX9ScWNlZUVjI2NIZVKERsbK0zL0kRxlEpSUhJev36tMegCQClVi1Qqxfv37/Hs2TN4enqiTZs2WLlypdrRMTVq1ED9+vXx6NEj/Pbbb7CyskLHjh3x7t07rFy5Uhjl1LdvX+Gcx48fY9euXRCLxViyZEmBLea0YsUKIaA1atQo/PDDD0pT10aPHo0RI0YgODgYfn5+CAgIQOvWrZGRkYE5c+YIAa2vv/5aZQTS+PHjsXjxYhw6dAhv377FvHnzsH37drXtCA0NRZUqVbBnzx6lKZpDhw7F999/j6NHj0Imk+HIkSNCQEieL+39+/dC+ebNm6N169Z6uDN5l5/nULNmTdSsWROPHj0Syrdv317tNNWFCxcKAa3Zs2fj888/Vzo+duxYbN26FatXr8aLFy+wcuVKLFq0SG1bU1NT0aVLF2zevFmY0jpu3DgAQL9+/XD16lVIpVKcP39e7Wit+Ph4XLt2DQDQtWtXmJuba3ubSA/UTy79SEkkEuHF2LFjR41DQvv06SMsT+vt7a11/YmJiQgKCgIAtGvXLsfE7b179xa27969q3JcHtSqVauWxjnCRLp4+/Yt3rx5I/xip5KN/Wk42JeGg31ZsK5fv46LFy8K/+T3OTMzU2n/xYsXhQ+iumB/UnFTqlQpNG3aFEDWqK0TJ05oLJuRkYGTJ08q7VMMjiiysrKCm5sb5syZg1WrVmHNmjX47rvv0LlzZyEgcP36dQwfPlzjao8LFiyAsbEx3r9/j1mzZqFFixbo1asXzp8/DyArj5I8BUtmZiZ++OEHpKenY/jw4Sp5mPQlNjZWuEf169fH/PnzVT5nWVhYKAVG5DN8fHx8EBoaCiDrs6K6KXWlSpXCwoULhUUlrly5gnv37mlsz7x589QGc6ZNmyZs53R+cVBQz+H58+fCa6Vnz54qAS25yZMno1WrVgCyZkzFxsZqrHPSpElqc7S5uroKA100ffb38fGBVCoFwKmHRYEjtRQEBgYKq0XkNGRWLBajZcuW8Pb2xt27d3P91kMuLi4OjRs3RlRUlNKwW3UU68v+C0Umk+Hp06cAIAwnJd19+PABO3fuVNo3fvx4lfn8REREVPwFBARAIpEIjytVqoQKFSpAJpPh0qVLSmUbN26sdvQ8UUk3dOhQIfXJmjVr0LhxY5WgUGZmJpYsWYLnz58r7U9MTFSpb/bs2WjYsCFMTExUjo0fPx737t3Dl19+iVevXiEyMhLz5s1TmzC7efPm2LZtGxYuXKg0QszY2BjDhw/H3LlzhX179+7FvXv3YG9vj6+//lrYf+nSJezYsQMPHjyAVCqFk5MTBg4ciFGjRuVr1b/Lly8LnwVHjBihMZl7s2bNMHPmTFSqVEmY0qf4njJx4kSN1zAyMsLEiRPx5ZdfAsjKw6QuN3JOq7I7OjrC3NwcSUlJGgOPxUFBPoezZ88K02sHDRqUY9lBgwbhxo0bSE1NxbVr19QGnYyNjTWuYGthYYGuXbvC29tb4xTEM2fOAACsra3RsWPHPD8f0g2DWgrkgSIg92BRrVq1AGQFmIKDg9GyZctc63d0dISnp6dWbQkJCRG2s//QREZGCr9kateuDSDrl87jx4+RlJQEOzs71KlTR+MbMamXmZmp8m2S4pK4REREREQlibu7O06cOIErV64gOTkZo0ePhpubG9q0aQNzc3NERETg1KlTePLkCWxsbJCamoqkpCQAUDsbJLdRUo0bN8a2bdvg4eGBtLQ0XL58GUFBQWoDBm3atMHZs2fx9OlTvHr1CqampmjQoIFS3qOoqCisXbsWAPDjjz8Kx3bs2IHly5cDyErHYmJigsePH2Pp0qUICAjA+vXr8zyb5f79+8J2s2bNciyrONIIAO7cuQMAsLS0FKbSaaI4eELTKCUnJ6ccA3MWFhZISkpCenp6jtcqSgX5HBRnMoWHhwujttRRXEXzwYMHaoNajo6OagO1cv369YO3t7faKYixsbG4fv06gKxRYznVQwWj0INaISEh+PXXX7F69WpYWlpqLCeVSjF37lwMHz680OYBR0ZGCttVqlTJsWzFihWVztMmqJUXR44cEbabNGmidEwxSbxYLMaMGTPg5+eHjIwMYb+1tTVGjx6NSZMmqSTVIyIiIiIiwycWi/H777/ju+++w7lz55Ceno5Tp07h1KlTSuVsbW2xceNGfPbZZ8K+nD6r5aRmzZoYMGCA8GX+xYsXNY6CAbK+pJd/UZ/dokWLkJycDFdXVyH59oMHD7Bq1SoAWaOiZs6cCWNjY5w5cwZz586Fr68v9u/fjzFjxuSp3YpTh/OaF08+rU3dVLvsrKysYGVlhfj4eI3TlXNbiEweLNJlMYCCVpDP4c2bN8L2zz//rPV57969U7s/t9d6p06dhD7Lvgri2bNnhc/hnHpYNAo1GdPz588xbtw4XLlyBRMmTFA7pBUA0tPT8dVXX+HMmTOYMmUKAgICCqV9inNsy5Url2NZxdFTikPb9cHf3x8XLlwAAJQvXx7t27dXOq4Y1Pr1119x7tw5pYCWvE3r16/HmDFjcpw7TERERGSIatWqhQYNGgj/ypYtCwAQiURK+xs0aMBv1smgWVhYYP369di5cyf69esHBwcHlClTBmZmZqhTpw6mT5+O06dPo379+sIoLZFIhAoVKuT7moqDEhRnoOSFl5cXLly4AAsLCyxYsEDYv2/fPmRkZKB69er45ptvYGJiApFIhD59+sDDwwMAsHv37jxfLz4+XtjO66AA+X3TNm2JvP4PHz6oPZ6f6ZPFTUE+B01xhNzI+ym73H4HmJiYoFevXgAgTEGUk696WLFiRb0PdCHtFOpPS+nSpYWVKh48eIAJEyYIqw3KZWZmYtasWfD19QWQNe+4sHIapaSkKLU1J4ovfMXzdBUVFYVvv/1WeDx16lSVN1XFoJaxsTHGjx8PDw8PODo6CsuP/v7774iJiUFQUBBmzZqFnTt3MqE8ERERfTQUV05TJBaLMWTIkEJuDVHRa9euHdq1a6fx+JMnT4Qvyp2cnIRAcH7Y2NgI2wkJCXk+//3791i6dCmArJUEFVdhlOcI69Wrl0pi7969e8PT0xPh4eG5rt6YneJnrpSUlDytYGdqaoqEhASNQars5ItTcEZN/ijet6CgoFw/u+uDu7s7Dh8+rDQFMSYmBoGBgQCyFgjg5+2iUahBrSpVqmD37t0YO3YsoqKicO/ePXz22WdKQaFZs2bh3LlzALK+Vdi+fXuOw1X1SXE+rzbRWnXn6SI2NhYTJkwQhkW2b98eo0ePViknX7q0dOnS2LFjh7B8KwDY2dlhyJAh6NSpE4YOHYro6Ghcv34dXl5eRToc8tmzZzn+kJuZmQl5yhTP0WY1Int7e6VfWBkZGXjw4IFW7apZs2aOv7AePnyo9k1SLBajUaNGSvsiIiK0GhVnZWWFatWqKe179OiRsGJGThwcHJT+SEhJSUFwcHCu5wFZq7goLn8cExODqKgojeXl7VH3+g4NDdXqD5QKFSqoDN+WrwCam+rVqyv9MZWQkCCsKpOb7O8Zr1690mo1qrJly6J69epK+4KDg7UKXFeqVElpRVOpVKq0HHFO6tSpo/TLOTY2FhEREbmeZ2xsjPr16yvtCwsLU/qmUbE98v+DgoJgY2OjMkT+/v37WuWRq1q1qtJo1aSkJK2/hW3YsKFSvr/Xr18L72k5KS7vERKJBC9fvsz1vIJ8j8jel4oK8z1CrkyZMip5KPkeoUrde0ROfamoMN4jsuN7RP7/jsitP4Hi83dEampqrufQx+PGjRvCtq4jThTzGOUnOLZy5UrExMTAxcUFI0aMUDomf09QF7CqVKmSsB0dHZ2noJZ8dXv5uTVr1tRY9sGDBxCLxXB0dISFhQUqVKiAhIQErd6bY2Njhd+ReWkf/T/Fvnrz5g0cHR0L/JotW7ZExYoVER0djXPnzmHw4MHw8fERfi/269evwNtA6hX6uEZHR0fs2bMHY8aMwevXr1V+6fv4+AAAzM3N8eeff6rkkypIin8wSqXSHANbaWlpwrY+hqzHxMRg/Pjxwqoj1apVw6pVq9QuK3rw4EEkJiYiISFB6Y1bkb29PX744QfMmDEDAHD48OEiDWplZGSoTJFUpC5wkp6ertUfaOrq1eY8IPc53FKpVG0wTt0+bdur7rkqfrjJSfYPEzKZLN/PNTMzU6tz1d2jwuib7M9V2/Zqaoch9o062vSNVCrV+Fy1+cCavb15ea7Z6dI3RfEeoe1zLaz3iOz7iuJ1qG5REr5HqFLXN9nr0aSw3yPk5bLje4QqTX9H5HZ+cfk7gkhOJpPh6NGjwmNdRzMqpo/J/mVAbgIDA+Hp6QljY2P8/PPPaj8PAeqn7mmaXqaNhg0bCnnAbt++nWNQ66effhK+JPz333/RuHFjhIaG4v3793jw4EGOyeLlScUBoG7duvlu78fM2dkZ165dA5AVjM0pqHX9+nUcPHgQDg4O6NKli9KAkLwQi8Xo27cvtm/fjuvXryMlJQXe3t4AgBo1aggrYVLhK5LJuoqBLXmSN/mblUwmEwJaua2uoW+KSzmnpqZqHdTSdbjjy5cvMXHiRISFhQHI+oZh586dSt+kZWdhYZFr8r1u3brBwsICiYmJuH37NjIzM4tsSKSRkVGO11Y357pUqVJKowZyqjs7bc4DoPGXpGI96upS91y0ba+656pte7NfVyQS5fu5isXiHM+V/3Gs7h4VRt9kf665tTe3dujSNzkFZBXbp6gg+0axbdlp6hvFDzvGxsYan6s2H3iytzcvzzU7XfqmKN4jtH2uBfkekb0vc7pucXsdZvexv0dkr0eTougbvkfo9ndEbucXl78jiOQOHjyIhw8fAgBatWql00yZ0NBQnDhxQnjctWtXrc9NS0vDggULIJPJMGnSJJURmEDWl/fh4eF49uyZyjHFfXkdBdWxY0eIxWJkZmbC09MTgwYNUvszHhYWJqxa2LZtWwBA9+7dcfLkSQDAtm3bsGbNGrXXyMjIUEq/k5d78zFRvO/qvjzo3r07Nm/eDADYs2cP+vfvr/F9cP369cKU1aZNm+rUrn79+mH79u1CQOvWrVsAmCC+qBVZBrqqVasKga2YmBgA/x/Q2rp1a67LqBYExVUPJBJJjkNlFZPD5RR8yk1QUBCmTJkiTDmUT9HMbfVFbRgZGaFatWp48OAB0tLSIJFIdGqrLmrVqpVrEE7dOflhZGSktymrDRo00Ho+vYODg1YrnqiTfXqItsqUKZPv52pra6s0FSa70NBQpKenq/3jOa/fuCnKb3vLli2b73MrV66c51Vs5LJPq9KWsbFxvttrY2OT75/V7FNS5BT7U1P/ZZ8Koy1zc/N8P9fs037yoijeI6ytrZWmVeWFvt4jtOlLuYJ8j8gJ3yNyZ2xsDBsbG637UlFBvEdog+8ROStbtmy++lOuKP6OKIw8NFT07ty5o3FBBJlMhsOHDwsryJmZmeGXX35RW8+ePXvQqFGjHD+nPXz4EDNmzBCmtnbo0CFPM282b96M58+fo3r16pg6daraMi1atEB4eDi8vLzw1VdfCe8RGRkZ2LdvH4CsnyfF1eq14eDgAFdXV5w9exZ37tzB2rVrMWvWLKUyiYmJmD9/vhBoGTlyJADA1dUV1apVQ1hYGLy8vFC/fn1MnjxZ6dyMjAwsXrxYCIi1bt0636OGDJ1iTu34+HiVkVjOzs5o1aoVbty4gcePH2PBggVYsmSJSmDrjz/+EAJaTk5OOgcR69evj1q1auHZs2f47bffhC+1OPWwaBXpsgrVqlVTCmyZmppiy5YtaN68eZG0x8nJSdiOiorKcRhjdHS0sJ3fP4T9/f3x5ZdfCvkeatWqhR07duh1bnV+vxkl0uVDKRU/7E/Dwb40HOxLw8L+pOJq06ZN+O+//9CpUyc0btwYdnZ2kEqlCA8Ph4+Pj7AIVZkyZfD777+jatWqauu5fv06fvnlF1StWhVt27ZFnTp1YG1tDbFYjDdv3uD69eu4dOmSMKKzSpUqQrJ3bYSEhGDr1q0QiURYsmSJxlkzI0eOxIkTJ5CSkoLRo0dj/PjxMDc3x7Fjx4R8eGPHjs3LLRL88MMPCAwMxLt377B582YEBASgb9++KFeuHF68eIFDhw4JM40GDRokBKWMjIywatUqjBo1CmlpaVi9ejX8/PzQp08fVKhQAVFRUTh+/LiQ59La2hrLly/PVxt1FRAQINyfVq1aYe/evUXSjpwoBiSXLVuGUaNGAchKxq64f9CgQZBIJDh27Bhu376NgQMHwtHREW/evMHZs2fx33//Acga4frLL7+oHZmbV+7u7li7dq2Q283Z2VnjzwxQMu53SVfka4U6OTnhr7/+QmBgIOrVq5fvb5r0QXHe9NOnT9GqVSuNZZ8+fQoga2hk7dq183wtPz8/fPnll8I0kiZNmmDLli0oV65cjueFh4fDz88P7969Q7NmzdClS5ccy8t/2IyNjWFlZZXndhIRERGVRLdu3VJK4l+/fn3Y2NggMzMT//77r1LZZs2aFdpq20RF4f379zh9+jROnz6t9nitWrWwZMkSrWbLvHz5MtdFUzp06IClS5dq/WW9TCbDggULIJVKMWTIkBwT1Ts7O+PLL7/E2rVr8fLlSyxatEjpeNeuXdUutqUNOzs77Nu3D1OmTEFYWBhu376N27dvq5Tr16+fynWdnZ2xc+dOfPXVV4iJidF4bv369bFu3TqNuZEpa6VOa2trSCQSBAYGIjAwECKRCF26dBFSBjk4OGD//v2YPn06Xrx4gRcvXuC3335Tqats2bJYvny53kbFyYNaio+paBV5UAvIyrFVGCsW5MbFxQXGxsaQSqUICAgQIsLZZWRkCMMY69WrpzRtURs3btzAzJkzhYBW+/btsX79eqWcXpq8efNG+MajW7duOQa1QkNDhZWrGjdurJfINBEREVFJcOXKFaV0ERUqVICNjQ1kMhnOnz+vVLZevXoMahWhjIwMIR2JodMmB5++zZw5E40bN8bNmzcRERGBd+/eQSQSoXz58mjYsCFcXV3Ru3dvtSknFH333Xfo2rUrgoKC8PjxY7x79w5xcXGQSqWwsLBAlSpV4OLign79+uV5sa9Dhw7h1q1bqFChAubOnZtr+alTp6JOnTrYtWsXHj58CKlUCicnJwwcOBCjR4/W6XNPjRo1cPr0aXh6esLb2xvBwcFISkqClZUVmjRpgmHDhqFz585qz23RogXOnj2LQ4cOwdfXF8+ePUNSUhLs7OxQu3ZteHh4oEePHpxNk4ty5cph9+7dWLlyJYKCgpCcnAwbGxtERUUpDUSpVasWTp06hWPHjgmjDiUSCUxMTODk5IROnTph1KhR+U6noI6joyNcXFxw+/ZtGBkZKY0eo6IhkuW2/NtHZuLEifD394exsTF8fHzUTi08efIk5syZAwCYPXs2Pv/8c63rf/fuHdzd3YUlm7t27Yo//vhD6xUUU1NT0a5dOyQmJubYRgCYO3eukKRx0aJFGD58uNbt1FViYqIwlBnIWtkjrzm1CltSUhJWrVqltO+bb77ROqcWERERFR+///67UlBr+PDhqFu3LjIyMoT8QXIzZsxQWiL+Y6Hvv9eePn0q5BXTZibD69evkZycnO/VMUsqY2NjmJmZ6TXlCBFRSZHX3xW5KRYjtYqTcePGwd/fH1KpFLNnz8a2bduUfrk/e/ZMSJ5obm6e5+VulyxZIgS0nJ2d8fvvv2sd0AKyEnoOHToUO3bsgFQqxddff40///xT5Q+Q7du3CwEtJycnfPLJJ3lqJ1FwcDCkUimMjY3znQiZig/2p+FgXxoO9qVhYX/mnVgs1mqmgiHiSpRERPrBoFY2HTp0QK9evXD27Fncvn0bAwYMwIgRI1CpUiU8fPgQBw4cQFJSEoCskVDZVx/KKRFcSEgIvL29hce9e/eGv79/rm2ytrZWmgM8bdo0XLhwAaGhofjvv//Qt29fDBs2DE5OToiLi4OXlxcCAwMBZAXeVq1axdVtKM9SUlIglUqLZJg86R/703CwLw0H+7JgOTk5CX+zARBGXqvLh6qPqUDsz7zT55QgIiL6ODGopcby5cuRlJSEK1euICIiAitXrlQ6LhKJMGPGjDxP5zt+/DgUZ3uuWLFCq/OyB8fKli2LnTt3YsaMGbh//z6io6Px+++/q5xXqVIlrF69Go0bN85TOz9WpUqVUkkgmFtuASIiIiqeBgwYoHa/WCzGyJEjC7k1REREVBD4iV0NU1NTbNu2DadOncLx48fx6NEjJCQkwNraGs2bN8fYsWPRvHnzPNcrX8JVHypVqoRDhw7h9OnT+Oeff/DgwQO8f/8eFhYWcHJyQs+ePTFs2DDmg8qD0qVLo2/fvkXdDCIiIiIiIiLSAoNaGohEIvTv3x/9+/fP03mtW7dWSripaMuWLfpomqBUqVLw8PCAh4eHXuslIiIiIiIiIirumKGQiIiIiIiIiIhKHAa1iIiIiIiIiIioxGFQi4iIiIiIiIiIShzm1CIiIiIig3P37l2kpqYKj2vXro1y5cpBJpPh5s2bSmWdnZ1RpkyZwm4iERER6YhBLaL/SUlJwcGDB5X2DR8+nH/kEhERlUAXL16ERCIRHltZWQlBrTNnziiVrVmzJn/fExERlUAMatFHZfz48Xj58iVEIhHOnz+vdCwjIwNhYWEq+z5WlSpVQmZmJsRizlI2BOxPw8G+NBzsS8PC/iQiIip8DGrRRyU6OhqRkZEQiURF3ZRiz9bWtqibQHrE/jQc7EvDwb40LOxPIiKiwsegFn1U7OzslPJrEBERkWFycHCAlZWV8NjMzEzYrlatmlLZUqX4JzEREVFJxN/g9FHZvXt3UTeBiIiICsGgQYPU7heLxRg3blzhNoaIiIgKBINaRKSWVCqFTCaDSCSCsbFxUTeHdMT+NBzsS8PBvjQs7E8iIqLCx6AWGZSkpCSYm5sr7YuOjsabN2/g7OxcRK0qmR49egSpVApjY2PeOwPA/jQc7EvDwb40LOxPIiKiwldkQa33798jMDAQd+/exYsXLxAVFYWEhASkpaWhTJkysLCwgIODA6pXr46mTZuiefPmMDU1LarmUjF35MgRbNmyBY0aNcJvv/2mdMzPzw9LliyBo6Mj5syZA1dX1yJqJRERERERERHpS6EGtdLS0uDl5YVjx47h1q1byMjIyLF8UFCQsG1kZIQOHTqgf//+cHV15bBuEvz888/Yv38/ZDKZUhJYuYiICMhkMrx8+RJffvklvv32W+bSICIiIiIiIirhCiWolZSUhF27dmHPnj14//49AEAmk+WpjvT0dFy6dAmXLl1ChQoVMGbMGIwaNUplqhl9XPz9/bFv3z4AQKNGjTBp0iSVMl988QVatWqFjRs3IigoCCtXrkTz5s3RuHHjwm4uEREREREREelJgQa1ZDIZ/vrrL/zxxx94//69UiCrZs2aqFevHurWrYsaNWrA2toaFhYWMDc3R2pqKpKTkxEVFYWIiAg8fPgQQUFBCA8PBwDExMRgzZo12LVrF6ZMmYLRo0dDLBYX5FOhYuqvv/4CALRv3x6bN29WO4LP1NQUXbp0QceOHTFu3DjcvHkTu3fvxqpVqwq7uURERFRIHj58iLS0NOFx9erVYWVlBZlMhrt37yqVrVevHsqUKVPYTSQiIiIdFVhQ68mTJ/j+++/x6NEjYSWYdu3awd3dHe3bt4e9vX2udWRPshkeHo6LFy/i1KlTCAoKQmxsLJYtW4ajR49iyZIlHHnzEQoKCoJIJMKXX36Z65RUIyMjfPHFFxg7dixu3LhRSC0kIiKionDu3DlIJBLh8fDhw4Wg1okTJ5TKOjo6MqhFRERUAhVIUGvHjh1Yu3Yt0tLSYGZmhpEjR2LEiBGoUqWKTvU6OjpizJgxGDNmDEJCQrB7926cPHkSjx8/xogRIzBz5ky108/IcMXHxwMAqlWrplX5WrVqAQDi4uIKrE1EREREREREVPAKZM7eihUrkJmZidGjR+P8+fP45ptvdA5oZVezZk0sXrwY58+fF6YfZl/1jgyfra0tACA6Olqr8vJgloWFRYG1iYiIiIiIiIgKXoEEtTp16oRTp07hhx9+gI2NTUFcQlChQgX88MMPOHXqFDp37lyg16Lip27dugCAw4cPa1X+2LFjAID69esXWJuIiIio6Nnb26Ny5crCP8XphYr7K1euDCMjoyJsKRHlRp6rOSYmpqibQoWgbt26qFu3LsaMGVPUTSly6enp2Lp1K/r16wcXFxc0atQInTp1gpeXV1E3rdgokOmHW7duLYhqc1StWjVs3ry50K9LRWvgwIG4ePEiDhw4AEdHR4wfP15j2cOHD2PHjh0QiUTo37+/ynEjIyM0aNBAZR8RERGVPMOHD1e7XywWM10FUQkSFhaGefPmITAwEJ06dSrq5hAVqm+//RanT59W2vf69WtYWloWUYuKnwJd/ZCooLm6uqJ9+/a4evUqVqxYgQMHDqBTp06oXr06ypQpg5SUFLx8+RJXrlzB8+fPIZPJ0Lx5cwwYMEClrjJlymDIkCFF8CyKpzp16giLPFDJx/40HOxLw8G+NCzsT6KCcfLkSQQGBhZ1M4gKXUhIiBDQsrKywoQJE1C1alUkJCRwkTwFDGpRiSYSibBmzRrMmjULV69excuXL7F//36VcjKZDADQunVr/P777/yDUwtcBcqwsD8NB/vScLAvDQv7k4hIP548eVLUTSgWnj17JmxPnz4dn376aRG2pvgqkJxaRIXJ0tIS27dvx/r169GrVy9YWlpCJpMJ/8zMzNChQwf89ttv2LVrF6ytrYu6yUREREREREQaffjwQdiuVatWgV1n3bp1Qh6zkqjEjNQ6fvy4sO3h4VFk7aDiq0ePHujRowcAIDU1FRKJBGZmZihbtmwRt4yIiIiIiIhIe5mZmcJ2qVIlJnRT6ErMnfnuu++EKWMMapE6qampePv2LapUqYLSpUvD3t4eQNZc5CdPnqBLly4wMzMr4laWHLGxscjMzIRYLC7wVUyp4LE/DQf70nCwLw0L+5OKI/nIiylTpmDWrFnw8fHBnj17EBwcjA8fPqBq1aro0aMHxo8fn+NshuTkZHh6euL8+fMIDg5GUlISrK2tUa9ePbi5ucHDwyPHBZaio6Oxb98+XLlyBWFhYUhPT4eNjQ0aNGiAnj17on///irnr1u3DuvXr1fa1717dwBAlSpV4OfnV+j3Ql7HzJkzMXToUCxevBhXrlwBADg6OmLixIno16+f3u4bAKSlpeHcuXM4evQonj9/jpiYGFhYWKBhw4YYMGAA3N3dIRZrnoCVkZGBY8eO4cyZM3j8+DHi4+NhZWWF+vXrw93dHf3798/x/Pz0na7nyu9zq1atsHfvXrXHZs6ciWnTpiEgIAD79+/HnTt3EBsbi3LlyqFly5YYM2YMXFxccry3UVFR2LFjBy5fvoxXr17B1NQUdevWxbBhw+Du7o6tW7di9erVAPI/JTI/r4ExY8bgxo0bSvvGjh0rbC9btgwDBw7MV3sMUYkJagFg8k1SKyMjAxs2bMCePXvQrl07/PHHH0rHr127hqVLl8LMzAxffPEFxo0bVzQNLWEiIiIglUphbGzMP84NAPvTcLAvDQf7smA9ffoUaWlpwuOqVauibNmykMlkePjwoVLZWrVqoXTp0jpdj/1Jxd3KlSuxbds2pX3Pnj3Ds2fPcPToUezcuVPtFKfAwEB8/fXXiI6OVtofExODmJgY+Pv7Y9euXdi4cSMcHR1Vzr927RqmT5+O5ORkpf3R0dGIjo6Gn58fdu7ciZ07d6J8+fJ6eKa5y++9kEtMTMSoUaPw4sULYd/jx4+VVqTT9b4BWe8r06ZNUwmoxMXF4cqVK7hy5Qr+/vtvbNy4ERYWFmrPnzp1KoKDg5X2v337Fv7+/vD398fevXuxadMm2NnZqZyvS98VRr+vWbMGW7ZsEfInA8CbN2/wzz//wMvLC7Nnz8bkyZPVnhsQEICpU6ciKSlJ2JeWloYbN27gxo0bOHfunM7T8fTxGqDclaigFpE6s2bNwrlz5yCTyfD8+XOV42/fvoVMJkNSUhKWL1+OqKgofP/99yrlUlJScOrUKaV9/fr1Y+JXIiKiEsjLywsSiUR4PHz4cNStWxcymQx///23UtkZM2boHNQiKs7Onj2L0NBQiMVieHh4oG3btkhKSsKJEydw+/ZtvHnzBqNGjcKpU6eUghv37t3DpEmThMCEi4sL3NzcYGtri8jISJw4cQJPnz5FcHAwhg8fjqNHjwqzJYCsEYxfffUVkpOTYWJigkGDBqFJkyYoXbo0IiIi4OnpiZcvX+LJkyf4/vvvsXXrVuHcPn36oH79+kKAAgAWL16M8uXL6/T3eX7vhaJ9+/YhNTUVHTp0QL9+/SCRSHDp0iV06NBBL/dNfu+GDRuGt2/fAgDq1auH/v37o2LFiggPD8eBAwcQHR2NgIAAzJkzB5s2bVI6/927dxg5ciRev34NAGjatCnc3NxgZ2eHt2/fwsvLC7dv38b9+/cxZswYHDlyRCkwpkvf6XKutk6ePInQ0FCYm5tj8ODBcHZ2RnJyMk6fPo2AgADIZDL89ttvaN++PRo2bKh07v379zF58mSkpKQAyBoB2K1bNxgbG+PGjRs4fvw4vL29cfXq1Ty3S06X18DMmTMhkUhw/fp1YaTazJkzUadOHQBAgwYN8t0uQ1RiglqPHz8u6iZQMfTPP//Ax8cHQNab0eeff65SZtasWejXrx9+//13nDt3Dnv27EGXLl3Qtm1bpXIZGRkq39z26dOn4BpPRERE9LGLiSmc65iYAFZW6o/FxwMKo/pgZgaYm6svGxsLZGTo1hZbW93Oz4fQ0FCULl0aGzduFAIvQFaw95dffsHevXshkUiwZs0aLFu2DEDW38Zz5swRPpR//fXXKqNexo8fj8WLF+PQoUN4+/Yt5s2bh+3btwvHT548ifj4eADA8uXLVf62Hjt2LEaOHIkHDx7g0qVLCA8PF0as1KxZEzVr1sSjR4+E8u3bt4eDg0Oh34vsUlNT0aVLF2zevFmYSSSfDaKP+wYAK1asEAJao0aNwg8//KA0TXD06NEYMWIEgoOD4efnh4CAALRu3Vo4vnDhQiGgNXv2bJXPSWPHjhWm17148QIrV67EokWLhOO69J0u52orNDQUVapUwZ49e5ReE0OHDsX333+Po0ePQiaT4ciRIypBrZ9//hkpKSkQiURYunSp0lS+AQMG4JNPPsHkyZORkJCQpzbJ6foaaNGiBQDg/fv3QvnmzZsr9S/9vwJZ/TAoKAivXr0qiKqJlPz9998QiUTo27cvNmzYAGdnZ7XlatWqhXXr1qFnz56QyWTYt29fIbeUiIiIiFTY2RXOv4kTNbdh4kTlsitXai7bsaPubSkiX375pVIQBwBEIhG+//57YZrV8ePHERsbCwDw8fFBaGgogKwvetVN4ypVqhQWLlwo/A1+5coV3Lt3TzguPx8AOnfurHJ+mTJlMGnSJFSrVg0dOnRAXFycjs9SO3m9F+pMmjRJbWocfdy32NhYnDhxAgBQv359zJ8/XyXvlYWFhVIQ6vTp08L28+fPcf78eQBAz5491X7xDwCTJ09Gq1atAADHjh1Ter669F1h9fu8efPUBjmnTZsmbCveVwC4fv06bt++DQAYMmSI2txULVq0wLfffpuvNgH6eQ2Q9gokqDVnzhx0794dK7P9Qnj16hVevXqlNG+VSBfykVWTJk3SqvzE//1BI38jIyIiIsNUvnx52NraCv9MTEyEY4r7bW1tc03UTFTSmZmZYeTIkWqPGRkZCccyMzPh7+8PALh06ZJQZmIOQUEjIyOl4/JgCgClhOvbt29Xyn0k5+bmBh8fH2zfvl3jF9T6lJ97kZ2xsbHGturjvl2+fFlY+W7EiBEa36OaNWuGmTNn4tdff8Xo0aOF/WfPnhXu9aBBgzS2QfF4amoqrl27JuzXpe8Ko99NTEzQpUsXtcccHR1h/r/RloqjnQDgwoULwvann36qsf5PPvkkx8UTcqKP1wBpr0CmH7558wYAlBLlAUC3bt0gEokwd+5cjB8/viAuTR8Z+ZDOSpUqaVW+atWqAFTf3IiIiMiwKH7AUyQWi5W+xSf6GLi4uOS4Cnjz5s2F7bt372LAgAG4c+cOgKzPdNmnb2XXpk0bYVtxtEnv3r2FRN4bNmyAl5cXevbsiU6dOqFp06YoVarws+Hk515k5+joqBQoV6SP+3b//n1hu1mzZjnWoe797O7du8J2eHh4jsESxVFSDx48gLu7OwDd+q4w+t3JySnHeiwsLJCUlIT09HSl/Tdv3gQAlCtXLsfFAExMTNCsWbM8r7IJ6Oc1oE/qVlPUJLfk+MVx5cUCeReRSqUAoLLSAZG+2dvbIzIyEmFhYVpF+OUrT+Q36k5EREREVNI4OTnleFzxC2J5Hif5VDRtclhZWVnBysoK8fHxwvlA1tS5mTNnYu3atQCypqVt2bIFW7ZsQdmyZdG+fXv07NkT3bt3z1fy99xGtjRr1kxlNdL83Ivssg/eUKSP+6a4Xbly5VzryU4+yATIyh+lrXfv3gnbuvRdQfc7ALWrPSqSB7yyjxKT3xtt7qt8QERe6eM1QNorkKCWjY0NYmJi4Ovri88//zzHSDiRLho1aoTIyEjs3LkTa9asybW8PJdW48aNC7ppRERERJQbhQ/fBUrDqBoAwLZtwMaN//84p88u/v66J4ovAuaaEt//j6mpqbAtTxUj/1/xWE7KlCmD+Ph4fPjwQWn/1KlT0bRpU2zbtg3//vsvMv53/xISEuDt7Q1vb2+UK1cOCxYsQN++fbV+TgAwffr0HI/v2bNHJbl2fu5FdppGaSmeo8t9kydZlx/Pq8TExDyfA6g+X136riD7HUC+R3vJV8XV5r7mN+Cmr58dfZGvpqiJ4gqjGzZsyLGu4rjyYoEEtZydnXH+/HmEhISga9euqF69utIP/oEDB5TmsuaFSCTC7t279dVUKuGGDBkivCmWL18eX3/9tdo3j7S0NGzYsEFILD948OAiaC0RERERKSmClQBVaFoVUZ1so35KijTF1R3VUJxhI5/RYGpqioSEBK0/aMvrUBcIaNu2Ldq2bYvY2FhcvnwZV69exb///ouY/61+GRcXh6+//hoWFhZqE4vrU37uRV7o474pbqekpOQaiMtO8fygoCCULl06T+cr0qXvilO/y5UuXRpSqVSr/klJScnXNfT5s6MP8tUUNVFcYbRHjx4F0oaCVCBBrU8//RR+fn6QyWR4//690pxemUyG8PBwhIeH57lemUymdoUJ+ni1b98eHh4eOH78OPbv349jx46hVatWcHJygqmpKT58+IDw8HDcvHlTyKPl6uqK7t27F3HLiz9jY2Ol/6lkY38aDval4WBfGhb2JxVn8hQcmkRERAjbdv9bobFChQpISEhQOqZJbGwsEhISAGSlB9HExsYGHh4e8PDwgEwmw507d7Bx40ZcvnwZMpkMmzZtylNw48mTJ1qXlcvPvcgLfdy38uXLC9vR0dGoWbOmxjoePHgAsVgMR0dHYUqe4vlv3ryBo6Njnp9Hdrr0nb77XRcVK1bEs2fP8OrVq1zLalNGnYL42SHNCiSo1bJlS6xevRorV65U+0JQt/oBUX4tXrwYJiYm8PT0RFJSEi5evKhSRv6a8/DwUFr6ljSrX79+UTeB9Ij9aTjYl4aDfWlY2J9UnN25cyfHAQKBgYHCdqtWrQBkpesIDQ3F+/fv8eDBgxwTXl+/fl3Yliealslk8Pb2RkhICCwsLDBu3Dilc0QiEVxcXLBx40Z069YNb968yVeQKq/ycy/yQtf7BgANGzaEp6cngKxV23MKav30008ICgqCjY0N/v33XwBZM6fkKxneuHEjx6DW9evXcfDgQTg4OKBLly5o0aKFTn1XXPtdrkmTJnj27BkkEglCQkI03tvMzEzcvn07X9fQx2uAtFdgy024ubnBzc0N79+/R1JSEjIyMtCjRw+IRCJ8/vnnGDJkSEFdmj4yJiYmWLx4MYYNG4Z//vkH169fx+vXrxEfHw9TU1NUrFgRzZo1w6BBgwplmWAiIiIqeqGhocLiRUBWUmALCwvIZDI8ffpUqayTk1OOOXKISrro6GhcuHAB3bp1UzkmlUpx4MABAICZmRnatWsHAOjevTtOnjwJANi2bZvG/LUZGRnYsWOH8Lhr164AsoIXq1evRnh4OKysrDBy5Ei1P2fGxsbC9Dp10+wUg0/6GByRn3uRF7reNwDo2LEjxGIxMjMz4enpiUGDBqkNwoWFhQkr5rVt21apDZs3bwaQlVesf//+GkeRrl+/XlgRsGnTpgB06zt99XtB6d27N44cOQIA2L9/P3788Ue15by9vYVpknmlj9cAaU9c0BewtLREpUqVlDL/W1lZoUqVKvn+R6ROw4YNMXfuXBw9ehRXr17F/fv3cfPmTZw6dQqLFi1iQIuIiOgjcvLkSRw4cED4FxkZCSDrQ7Hi/gMHDghTP4gM2cKFC/HixQulfRkZGVi0aBFCQkIAAJ999pmQf8nV1RXVqlUDAHh5eWHr1q0qdWZkZGDx4sVCYKV169ZK+Xt69+4NICvx+dKlS9UGpc6fP4/Q0FAA6nP/KObLVUygrou83ou80Md9c3BwgKurK4CskWXyVQQVJSYmYv78+cI9HTlypHDM2dlZGGX2+PFjLFiwQCnIL/fHH38IAS0nJyeloIoufaePfi8oHTp0QL169QBk5fqWJ0hX9OTJEyxZsiTf19DHa4C0VyAjtYKCglChQgWVZTJbtmwJIGseKxERERERERU8kUiEN2/eYODAgRg+fDgaNWqE2NhYHD16FA8ePAAA1KpVC5MmTRLOMTIywqpVqzBq1CikpaVh9erV8PPzQ58+fVChQgVERUXh+PHjCA4OBpCVVH358uVK150wYQI8PT0hkUhw4MAB3L17F25ubqhSpQri4+Nx69YtIahQunRpTJkyRaXtip8dly1bhlGjRgEA+vTpU2j3Ii/0cd8A4IcffkBgYCDevXuHzZs3IyAgAH379kW5cuXw4sULHDp0CG/+t3rooEGDVAIiy5Ytw6BBgyCRSHDs2DHcvn0bAwcOhKOjI968eYOzZ8/iv//+A5C1kuAvv/wCIyMj4Xxd+k4f/V5QxGIxFi9ejFGjRkEqlWLWrFk4c+YMOnfujNKlS+POnTvw9PREamoqjIyMkJGRAbE4b2OB9PUaIO0USFBrzpw5ePnyJSZMmIA5c+YI++UdZZWXFUaI9CwmJgY+Pj7CL0RSLywsDOnp6ShVqpTwTQOVXOxPw8G+NBzsS8PC/qTirFmzZrC3t4eXlxe2b9+uctzFxQWbNm1SGZnk7OyMnTt34quvvkJMTAxu376tNs9Q/fr1sW7dOlSqVElpv42NDTZv3oypU6ciLi4ODx8+xMOHD1XOt7S0xPLly4URNIratWsHa2trSCQSBAYGIjAwECKRCF26dIGZmVleb0W+70Ve6HrfgKwk9fv27cOUKVMQFhamsY5+/fqpzRns4OCA/fv3Y/r06Xjx4gVevHiB3377TaVc2bJlsXz5cpWgmC59p49+L0hNmjTBmjVrMHfuXCQnJ8PHxwc+Pj5KZQYPHozIyEj8+++/+Zqero/XAGmnQIJa8oixpaWl0v5u3bpBLBZjzpw5GD9+fEFcmj5CSUlJ2L17N/z9/REbG4uMjAyVIa4ymQxpaWlISkpCSkoKRCIRg1q5iI+Ph1Qq5SpOBoL9aTjYl4aDfVmwLC0tlf4eULzP2b9gzeu38OqwP6k4MzIywpo1a9C5c2f89ddfQl65+vXrw8PDAwMHDkSpUuo/GrZo0QJnz57FoUOH4Ovri2fPniEpKQl2dnaoXbs2PDw80KNHD42vfRcXF3h5eeHgwYO4fPkyQkNDkZiYCAsLCzg4OKBr164YPnw4KlSooPb8cuXKYffu3Vi5ciWCgoKQnJwMGxsbREVF5ZhAvSDuRV7oet8AoEaNGjh9+jQ8PT3h7e2N4OBgJCUlwcrKCk2aNMGwYcNyXDWwVq1aOHXqFI4dOwYfHx88efIEEokEJiYmcHJyQqdOnTBq1CjY2tqqPV+XvtO13wuaq6srTp06hV27dsHf3x/R0dEwMTFBgwYNMHr0aLi6ugqfF7PHNbSlj9cA5U4kK4ClCBs1aoSMjAxMnjwZs2bNEvbXq1cPIpEIc+fOZVDLwCUmJiqtYlG3bl1hiVl9+vDhA4YPHy4M3dT0chaJRErHjIyMhOHFcikpKTh48KDSvuHDh6NMmTJ6bnXJEBQUJPxxznxkJR/703CwLw0H+9KwlMT+1Pffa0+fPhVGq9WuXVsfTSQdyVdTa9WqFfbu3VvErSlavBeUV71790ZoaCiaNGmCw4cPF3VzDIa+f1cUyEgtGxsbxMTEwNfXF59//nm+hoUSaePgwYPCH2P29vZo3Lgx3r59izt37qBBgwaoWbMm4uLicOfOHSQmJkIkEmH48OGYPHmySl1lypRRWXKWiIiIiIiIDMOJEydw+vRpODo64vPPP4e9vb3aciEhIcJiAg0aNCjEFlJeFUhQy9nZGefPn0dISAi6du2K6tWrK81DPXDgAC5cuJCvukUiEXbv3q2vplIJ5+vrCyBreOvOnTtRpkwZ3Lt3D0OGDIGdnR1WrlwJIGsU1qJFi3Ds2DH4+flh9uzZRdlsIiIiIiIiKmSWlpa4fPkygKxZPgsXLlQpk31lSXd390JtI+VNgQS1Pv30U/j5+UEmk+H9+/e4e/eucEwmkyE8PBzh4eF5rlcmk0EkEumzqVTChYSEQCQSYerUqcI0wQYNGqB06dIIDAwUypUpUwZLly4VkiweOnQIEydOLKpmExERERERUSFr3749HBwcEBERgb/++gsPHz5Ez549UbFiRXz48AHPnz/HiRMn8PbtWwDAkCFDVJLoU/FSIEGtli1bYvXq1Vi5ciVevXqlcrwA0njRRyohIQEAlObiGhkZoXr16njy5AlevHgBJycnAFmj/MaPH4///vsPvr6+DGoRERERERF9RExMTLBhwwZMmTIFUVFRuHPnDu7cuaO27IgRIzBv3rzCbSDlWYEEtQDAzc0Nbm5ueP/+PZKSkpCRkYEePXpAJBLh888/x5AhQwrq0vQRMTU1RWJiosqSu9WqVcOTJ08QEhIiBLUAoHHjxgCA0NDQwmwmERERERERFQP16tXDmTNn8Pfff8PX1xfBwcGIj4+Hubk57O3t4eLigsGDB5eYRT8+dgUW1JKztLRUWQLTysoKVapUKehL00fAzs4OiYmJiIiIgI2NjbC/atWqALJWVujevbuw38jICEDWPGkiIiIyXBEREUhPTxce29nZwczMDDKZDGFhYUplq1SpwiXVySAprm75seO9IEWmpqYYM2YMxowZU9RNIR0VeFBLUcuWLQEAFStWLMzLkgFr3rw5QkJCsGfPHqxatUrYX6NGDchkMvz777+YMmWKsP/evXsAIOTfUpSamorz588r7evRo4fKKDAiIiIq/o4ePYq4uDjh8fDhw1G3bl3IZDKVRYdmzJiB8uXLF3YTiYiISEeFGtTau3dvYV6OPgIDBw7E4cOH8c8//0AikeDzzz9Hy5Yt0bp1a4hEIty4cQO7d+/GsGHD8OzZM/z6668QiURKObjk0tPTlZLLA0CXLl0+2qCWjY0N0tPTUapUob5NUAFhfxoO9qXhYF8aFvYnERFR4SuQ37qKyeErV66sdr8uFOukj1vTpk0xZMgQeHp64urVqyhXrhxatmyJypUrw9XVFT4+Pvj111/x66+/Avj/FTQHDhxYxC0v/hwcHIq6CaRH7E/Dwb40HOxLw8L+JCIiKnwFEtTq1q0bRCIRRCIRHj58qLJfF9nrJFq0aBGcnJywc+dOODo6CvuXLFmCyMhIPHjwQKl8nz59uFABERGRgTM1NUVqaqrwWJ5XEwDMzMyUyur69ykREREVjQIbHy2TyfK0nyi/xGIxPvvsM0yYMAFJSUnCfisrKxw6dAje3t64ffs2jIyM0KFDB3Tq1KkIW0tERESFYdKkSWr3i8VizJkzp5BbQ0RERAWhQIJa8oTw2u4vjmQyGU6fPo0jR47g0aNHSE5Ohq2tLVq2bIlRo0bpvLynTCaDr68vTpw4gaCgIMTGxsLY2BhVqlRB+/btMXbsWK2mWQYHB2Pnzp0ICAjAmzdvULZsWdSsWRMeHh745JNPlL6VNHQikQgWFhZK+0qVKgV3d3e4u7sXUauIiIiIiIiIqCAUSFBLU0L4kpIoPiUlBTNnzsTFixeV9kdGRiIyMhKnTp3CV199hcmTJ+er/vj4eMyaNQtXr15V2p+Wlobg4GAEBwdj//79WLJkCTw8PDTW4+npiUWLFkEqlQr7YmNjERsbi5s3b+LYsWPYsGEDrK2t89VO+rjdv38fUqkUxsbGaNSoUVE3h3TE/jQc7EvDwb40LOxPIiKiwsflWdSYP3++ENCqWbMmhg4digoVKuDBgwc4ePAgkpOTsXr1atjb22PAgAF5qjszMxPTp0/HzZs3AWQlvR80aBBq1KiBpKQkXLlyBT4+PkhLS8N3330HS0tLdOvWTaUef39/LFiwADKZDKamphg+fDgaNWqEd+/e4e+//0ZwcDACAwMxe/ZsbNu2DWKxWOf7Qh+XzMxM4R+VfOxPw8G+NBzsS8PC/iQiIip8DGplc/XqVZw+fRoA0KZNG2zduhWlS5cGALi7u2Pw4MEYOXIkJBIJli5diu7du6tMecvJsWPHhIBWmzZtsGnTJqVkpUOGDIGfnx+++OILpKen46effkL79u2FNgBZI7p++uknyGQymJmZYd++fWjYsKFwfMSIEZg9ezbOnTuHq1evwsvLi9PviIiIiIiIiMigcPhONjt27ACQlYvp559/VgomAVkjtxYsWAAAkEgk8PT0zFP9hw4dAgCULl0aq1atUll9B8haJXL06NEAgNevX+Py5ctKx318fBAREQEAmDhxolJACwBMTEywfPlyYdrhli1b8tRGIiIiIiIiIqLirkBGar169aogqhVok0A9PyQSCa5duwYA6NixIxwdHdWW69OnD5YuXYp3797B29sb48eP16r+xMREBAUFAQDatWsHW1tbjWV79+6NXbt2AQDu3r0LV1dX4ZiXlxeArMToI0aMUHu+ubk5Bg4ciB07diA4OBihoaGoXr26Vu0kIiIiKulev36N9PR04XH58uVRpkwZyGQylb9V7e3tUaoUJzAQERGVNAXy27tbt24QiUQFUTVEIhEePnxYIHUHBgYKeRDatGmjsZxYLEbLli3h7e2Nu3fvIj4+HlZWVrnWHxcXh8aNGyMqKgo1atTIsaxife/fv1c6Jp++WLduXdjY2Giso02bNsLIs8uXLzOoRURERB+NQ4cOIS4uTng8fPhw1K1bFzKZDNu2bVMqO2PGDJQvX76wm0hEREQ6KrCvpGQyWUFVXWCePn0qbNepUyfHsrVq1QKQ9TyDg4PRsmXLXOt3dHTUerpiSEiIsK24euHr16+FIFft2rVzrKNmzZrC9uPHj7W6LhERERERERFRSVAgQa3cAjzBwcF4//49ZDIZxGIxGjRogDp16qBcuXIwNjZGYmIiQkJCcOfOHXz48AEikQjVqlVDp06dCqK5gsjISGG7SpUqOZatWLGi0nnaBLXy4siRI8J2kyZNhG15Li0g9zba29tDLBYjMzOzwKeEFpU5c+bAzMwMY8eOVQriEREREREREZFhK5Cg1t69ezUeO3z4sLBy38CBAzFz5kzY29urLZuYmIg///wTf/75J8LCwlCuXDlMnTq1IJoMAIiNjRW2y5Url2NZxdFTEolEr+3w9/fHhQsXAGTlf2jfvr1wTHEYfW5tNDY2hpmZGRITE/XexuLi33//xbt379ClSxcGtYiIiEhQqlQpGBsbC4/F4v9fH0lxPxEREZVchZoR8+nTp1iyZAlkMhmmT5+OL774IsfyFhYWmDVrFuzs7LBkyRKsW7cOLVq00PuoKLmUlBRhO/uqh9mZmJioPU9XUVFR+Pbbb4XHU6dORZkyZYTHHz580LqN8jKJiYl6bWNxEh8fD0B5NFt+icVileT9in8AExERUckxbdo0tfvFYjHmzZtXyK0hIiKiglCoQa1du3ZBKpWiRo0amDFjhtbnjRo1CkeOHMHDhw+xe/fuAgtqKa6Qoxi0UkfxuOJ5uoiNjcWECRPw7t07AED79u0xevRopTIZGRlat1GxjL7amF/Pnj3LMUBkZmYm5ClTPCc5OTnHeitVqoTw8HA8efIEbdu2BZB1jx48eKBVu2rWrAlzc3MAgKmpKUaOHImXL18KxxXzrCkSi8Vo1KiR0r6IiAil0X6aWFlZoVq1akr7Hj16BKlUmuu5Dg4OSosDpKSkIDg4ONfzAKB+/fpK30zHxMQgKipKY/nMzEwYGRnByMhI5VhoaCgSEhJyvWaFChVUViuVrwCam+rVq6Ns2bLC44SEBISGhmp1rrOzs9LjV69e4e3bt7meV7ZsWZUFFYKDg7UKCleqVEkpKCqVSvHo0SOt2lunTh2l4HVsbKzSVGNNjI2NUb9+faV9YWFhQrBXkbw/MzMzERQUBBsbGzg4OCiVuX//vrBYRk6qVq2qNFo1KSlJKQ9gTho2bKj0mnr9+jVev36d63n5fY8AsqZiK44Izu97BJA1MlfxPUKTgnyP+D/27ju8qbL9A/j3JE33prTsVTaCrCqCbBWBMhUoS+EFFRVFUHlBQBAUxYH6igxBBAEFKorsWcWy4ceoslo2baHQvWizzu+PmEPSpm06ctKE7+e6uEhOnnPOnT5penLnee6nYF+akvM9wsjd3b1QHUq+RxRm6T2iuL40Jcd7REF8jyj9e0SdOnWQnZ2N5OTkEl/HleU6Ij8/v8R9bOrePcCK15RTUiiAYlZCJyoPrVaLlStXYuvWrYiPj4dGo0FgYCCmTZuGPn36lPv4TZo0AQA89thjxc7SKg9RFPHzzz/j6aefLjTwgMiUrEmtI0eOQBAEdOvWrdSrI3bu3Bnnz5/H2bNnbRQdzC4YNRpNsUkjtVot3bYmuVSSe/fuYezYsbh69SoAoG7duvj8888L/ZxMR2dZc/FijNPew+x1Op1ZQq4gS0k3rVZb4nMcMWIEPv/8c7z33nv4+OOPpVUrrfnZAIUXNBBF0ap9LSXorInX2K4gjUZj1b4FP0xYG6+xbcFjWbOvpdeOtc/VUp9bG2/B52ptvEXF4Yx9Y4k1faPT6Yp8rtZ8YC3r701RsZS1b+R4HVb294iCz80er0NLiW++RxRmqW9Mn39xfyPlfo8wtiuI7xGFmT5Xf39/iKKIpKSkYvsTqDzXEXan1wO5uUAZXx8OS6UCPD1lP+2VK1fw888/4/jx47h9+zby8vIQFBSEpk2bom/fvujTp0+JsxRGjx6N48ePW33O/fv3F0qQG2VlZeG7777Dnj17kJiYCA8PD7Ru3Rrjx4/HY489VuKxb968iX79+iEvLw/fffcdunbtanVczu6///0vtm3bZrYtKSkJvr6+doqodG7cuIH33nsPJ0+etHldbXJ8sia17t27BwBl+mUyJo5sWRvK0+SPS35+vtVJLWumARbn5s2bGD9+PG7cuAHA8G3uDz/8YPZNWlExlsTYxjRhZw9KpbLYP5IuLoVfigVrYViSnp6OXr16Yfv27Rg7diz8/PzQtGlTKBSKEpONr732WqGkoSAIViUALT0Xa+I1tivI2qRjwfNaG6+xbcFjWbOvpTbWPldLH3bL+lytjbeoOMrTNyV9ODHGZ6qy901Rz9WaDzxl/b2xpDx9I8frkO8RfI8wxfcIvkcU5OjvEZWCRgNkZwMW+sEp6XSAt7fMp9Thyy+/xIoVKwolnRMTE5GYmIioqCisW7cOX331VZH1jitSamoqRo4cKX2hDxg+Xx04cADR0dH44IMPMHTo0GKPMXv2bOTl5aFPnz5MaJm4cuWKlNDy8/PDf/7zH9SpUwdZWVlo2bKlnaOzzpYtW3Dy5El7h0EOQtaklre3N9LT062eCmHKOEKrpOLo5WGabEtPTzeb1lCQaXLNUvLJWjExMZgwYYI05bBmzZpYvXp1kSsbmsZY0vQBjUYjDbsvT4wVoWHDhvAu5R/wgtMILBk6dCgEQYAgCBBFEenp6Th27Fix+4iiCEEQsHTp0kKP+fv7m02ZKI1atWoV+U1USQpOD7GWu7t7oWk01qpatWqZh/IWnH5TGmWN18fHp8z71qhRo9AUJ2sVnFZlLZVKVeZ4AwMDy/w7W3BKSmkUnApjLS8vrzI/14LTfkrDmvcIS5RKZZnj5XuEdfgeUTK+R1iH7xHWKet7RHm/mK0wSuXDMxXv3y/55TR37lysX78egOH13bt3b3To0AFeXl6Ij4/H1q1bERsbi1OnTmHcuHH46aefrBqE8O2335bYpkqVKha3f/TRR1JCq3fv3ujatSvu3buHVatWISUlBXPnzkVYWFiRf082b96Mw4cPw8/PDzNmzCgxjofJ5cuXpduvv/46XnzxxQo/x6VLlyr8mERlJWtSq0WLFjh48CD279+P69evo169elbtd+LECURHR0MQBLRt29Zm8ZnGc/v2bdSuXbvItnfu3JFul/VCODo6Gm+++aaUeGrYsCFWrlxZ7MVbwRiLk5SUJH2jWtYYKztnfV6VQU5OjpQANK0pRI6J/ek82JfOg33pXNifVBkdOnRISmh5enpi+fLlaN++vVmbcePGYc6cOdi4cSPi4uKwcOFCzJkzp8RjP/XUU2WKKS0tDTt37gQADBs2DHPnzpUee+aZZxAeHg6NRoMNGzZg2rRphfZPTU3FJ598AgB49913ERQUVKY4nJXpwmJlTe4TORJZk1oDBw7EwYMHoVarMX78eCxdurTEX7QjR47grbfeki4Shg0bZrP4QkNDpdtxcXHFzuU2FhAXBAGNGjUq9bmioqLw5ptvSvUPHn30USxbtqzEkWgBAQGoUqUKUlJSiixibmSapS/rN8mVXVRUlL1DcFpXrlyBRqMp12gCqjzYn86Dfek82Je2lZKSYjY11M/PD25ubhBFUSqJYRQYGGhxWl9psD+pMlq1apV0e9KkSYUSWoBh9Nbs2bNx4sQJXLt2DRs3bsT48ePLPHKwJP/884/0u/nCCy+YPVavXj306NEDu3fvxpkzZyzu/8knnyAtLQ2PPfYYnn/+eZvE6MhMp4mX932NyBHI+irv27cv1q9fj5MnTyIhIQGDBg1Cjx490KVLF4SGhkrT/TIyMnDp0iXs27cPR44cgV6vhyAIGDhwoLTCnS20adMGKpUKGo0Gx44dw8iRIy220+l0OHHiBACgadOmpa4Rdvz4cUyaNElKaHXq1AmLFi0yq5dVnLCwMOzatQsXLlxAVlZWkdMkjx49Kt22ptjiw06tVuPw4cNm2zp27FghCwEQERGRvNatW4e0tDTpfkREBJo0aQJRFLFkyRKzthMnTixymhSRo9Lr9VJRd+NnqaK4uLigf//++Prrr6HT6bBjxw68/PLLNonL9PfSUuLMOFvGtJ3R4cOH8fvvv8PV1RVz584t9eJj1lKr1di7dy9+/fVXXL16Fffu3YO3tzdatGiBAQMGIDw8vMgadbm5uYiMjMS+ffsQGxuLnJwc+Pv7o2nTpujduzcGDhxosZYf8GBVwUmTJuG1117DsWPHsG7dOpw5cwapqakICAhAWFgYRo8ejTZt2pjta6mIv2nS8OOPP8bgwYPL82MpFKel1Q/L8xy++eYbLFq0yGxbz549ARjK9Fga0KDT6fDbb79h586duHjxIjIyMuDn54dmzZohPDwc/fv3L7KvTGMdOnQo5s6di4MHDwIwvA6ffvppfPPNNwAMU2aLS6JmZ2fjiSeegFqtRpcuXbB8+fIi21LFkjWpJQgCFi9ejBEjRuDy5cvQaDTYs2cP9uzZU+Q+xmKGnTt3xocffmjT+Hx9fdGhQwdER0cjKioKiYmJFqe3bd++XVpyuXfv3qU6R0pKCiZNmiQVmu/evTv+97//lSpx0qtXL+zatQtarRY///yzxT842dnZ+O233wAYaps0bdq0VHE6KlEUcfHiRSQmJiI3NxceHh6oWbMmGjduXOQfDyONRoMDBw6YbQsLC2NSi4iIiIgcTnp6OvLy8gAYRiOWVO/NtH5VVFSUzZJapl/kZ2RkFFrQypjM8vDwMNuel5eH999/HwDw6quvlqt+Y3Hi4+Px2muvFaoblZaWhoMHD+LgwYP45ZdfsHjx4kI1g0+ePIm3337brFQNYFgw7d69e4iOjsaqVauwePHiYkvdAMCXX36JZcuWmRX3v3v3LrZv344dO3ZgypQpNuujimLr5xAfH49XX321UM3u5ORkREdHIzo6GmvWrMGSJUsQHBxc5HGys7MxcuRIXL9+Xdp28eJFjBkzBkqlEjqdDrt27So2qbVv3z7pM354eHiZnxOVnuzjEX19fREZGYklS5Zg1apVZqsIWuLj44O33noLI0aMsFkm3tSYMWMQHR0NjUaDKVOmYMWKFWZvVpcvX8ZHH30EwFD4dMiQIaU6/rx586SEWKtWrfD111+XOmny1FNPoVatWoiPj8e3336Ltm3bmg0lVqvVmDp1qlTMfuzYsaU6viPKycnBkiVLsHHjRmRlZRV63MvLCwMHDsTkyZNZ54KIiIiInF7BlQ5Lw5qFvV555RWcP38eaWlp8PDwQHBwMNq0aYPw8HB06NChyP0aNGgg3Y6KisLw4cOl+2q1GocOHQJgXhoGMIziuXXrFho1aoSXXnqptE/JKqmpqRg2bBiSk5MBGGbl9O/fH9WqVcOtW7fw888/486dOzh27Bjeffdds1Gff//9N1566SWpXnKbNm3Qu3dvVK1aFQkJCfj9998RFxeH2NhYRERE4Ndffy2ylvKWLVtw7do1eHl54fnnn0erVq2Qm5uLbdu24dixYxBFEQsXLkSnTp3QokULAIbRRunp6Th69Kg0emrSpElSGZrmzZvb5GdWlLI8hz59+qBZs2ZS0gswLHRQpUqVQsnPlJQUjBgxAklJSQCA1q1bo3fv3ggODkZycjJ27NiB06dP459//sHo0aOxadOmIhcuW7t2LfLz8/Hkk0+iX79+SE9Px4EDB9C/f39s3boVhw4dwtGjR5Genl5kctgYr4eHR5nrzVHZ2GWSrYeHB6ZMmYJx48YhOjoahw4dQmJiIlJSUiAIAoKCglCzZk1069YNnTt3lnVllieffBK9evXC7t27cfr0aQwYMADDhw9H9erVcf78efz888/IyckBAEydOrXQ6kPHjh2ThnkWHI555coV7Nq1S7r/7LPPIjo6usSY/P39zZJWrq6umDFjBl577TXk5eVhzJgxGDJkCNq2bYv09HRs3LhR+kPUtm1bp59rnpiYiHHjxuH69etF/vHOzs7GunXrEB0dje+//95mNQKIiIiIiCoDPz8/qbRKamqqNC2rKKajVHJycpCUlFTsAlZ//vmndFuj0SAzMxOXL19GZGQkOnTogM8++8zi6JgGDRqgWbNmuHDhAhYuXAg/Pz907twZKSkp+Oyzz6RRTn379pX2uXjxIlatWgWFQoF58+ZBpVKV4idhvU8//VRKaI0cORIzZ840m7o2atQoDB8+HLGxsYiKisKxY8fw+OOPQ6fT4d1335USWm+//XahEUhjx47F3LlzsWHDBiQnJ+O9997D999/bzGOa9euoWbNmvjxxx/NPrcMHToU06dPx6+//gpRFLFp0yYpIWT8vJiZmSm1b9euHR5//PEK+MmUXlmeQ2hoKEJDQ3HhwgWpfadOnSx+dps9e7aU0JoyZQpeeeUVs8dfeOEFfPfdd/jiiy9w/fp1fPbZZ/jggw8sxpqfn49u3bph6dKl0kCaMWPGAAD69euHQ4cOQaPRYN++fRY/W2dkZEhlbLp3785BFDKza+U4Pz8/hIeHV7rheQsWLEBOTg4OHjyI+Ph4fPbZZ2aPC4KAiRMnIiIiolTH3bx5s1nS5dNPP7VqP0tzlXv06IHZs2fjo48+gkajwU8//YSffvrJrE3Lli2xePHiEqfdOTKtVosJEybg2rVrAAyj2Pr06YMGDRrA09MTOTk5uHz5Mnbt2oX9+/fj5s2beOutt7B+/XoWTiQiInJib775psXtCoUCs2fPljkaIvm5uLigdevWOHHiBERRxO+//16oMLuRTqfDli1bzLZlZmZaTGr5+fmhY8eOeOSRRxASEgKlUomkpCQcOXIEf/31F0RRxNGjRxEREYENGzagatWqhY4xa9YsvPjii8jMzMTkyZMLPd6zZ0/06NEDgKE22MyZM6HVajFixIhCdZgqSmpqKn7//XcAQLNmzTBjxoxCtZi8vb3xwQcfSKPLtm3bhscffxx79uyRPo/06dPH4pQ6FxcXzJ49GxcuXEBMTAwOHjyIv//+Gy1btrQYz3vvvWcxmfPaa6/h119/BWAYHVaZ2eo5XL16Ffv27QNgWDGzYELL6OWXX0Z0dDSOHz+O3377DZMmTSo0KMXopZdesjgz7Omnn8bs2bORn59f5BTEPXv2SPWyK1tu42HAT/UWeHh4YMWKFdi6dSs2b94sFWT39/dHu3bt8MILL6Bdu3alPq41w3hLY/jw4Wjfvj1Wr16Nw4cP4969e1CpVGjcuDH69euHoUOH2uxbjMril19+QWxsLFxcXLBw4UI888wzhdo0a9YM/fr1w759+/DWW2/h3Llz2LFjB/r372+HiImIiIiI5DF06FBpgasvv/wSLVu2LJQU0uv1mDdvHq5evWq2PTs7u9DxpkyZghYtWlgsnzJ27Fj8/fffePPNN5GYmIiEhAS89957Fgtmt2vXDitWrMDs2bPNRoipVCpERERg6tSp0rY1a9bg77//RkhICN5++21p+4EDB7By5UqcO3cOGo0G9erVw+DBgzFy5MgyfXn9119/SSsHDh8+vMiBAW3btsWkSZNQvXp1aUqfaV3e8ePHF3kOpVKJ8ePHS0n3ffv2WUxqubq6olu3bhaPUbt2bXh5eSEnJ8dsVFZlY8vnsHv3bmmwyHPPPVds2+eeew7Hjx9Hfn4+Dh8+bDHpVNyqtd7e3ujevTt27dpV5BTEnTt3AjDMsOrcuXOpnw+Vj02SWu+//z6mTJlSYjHCipSRkYEvv/wSc+bMqZDjCYKA/v37lzrx8fjjjxcqKmi0bNmyigjNTKNGjWxeQL8y27FjBwRBwLhx4ywmtEw99dRTGD9+PJYuXYrff/+dSS0iIiIicmrh4eH4/fffcfDgQeTm5mLUqFHo3bs3OnToAC8vL8THx2Pr1q24dOkSAgMDkZ+fL5VasbRiXEmjpFq2bIkVK1Zg4MCBUKvV+OuvvxATE2MxYdChQwfs3r0bcXFxSExMhIeHB5o3b25W9+j27dv46quvABg+YxofW7lyJRYsWAAAcHNzg6urKy5evIj58+fj2LFjWLRoUZEr3hXln3/+kW63bdu22Lavvfaa2f0zZ84AMNSPNk6lK4ppvbGiRinVq1ev2MSct7c3cnJyoNVqiz2XPdnyOZw9e1a6fevWLWnUliWmq2ieO3fOYlKrdu3axda57tevH3bt2mVxCmJqaiqOHj0KwDBqjIuMyc8mSa2NGzdi9+7deOWVVzBq1Cibdqxarca6deuwbNkyZGRkVFhSixyDcfTbgAEDrGo/YMAALF26FJcvX7ZlWEREREREdqdQKPD1119j2rRp2Lt3L7RaLbZu3YqtW7eatatatSoWL16McePGSdt8fX3LdM7Q0FAMGDAAkZGRAAy1t4oaBQMYvqRv1KiRxcc++OAD5Obm4umnn5aKb587dw6ff/45AMOoqEmTJkGlUmHnzp2YOnUq9u/fj3Xr1mH06NGlittYSwsAatSoUap9jQuBWVO318/PD35+fsjIyDA7p6miCpobGZNF5VkMwNZs+Rzu3r0r3S7NAI+UlBSL20t6rXfp0kXqs4JTEHfv3g2dTgeAUw/tpXTpayuNGjUKmZmZ+Oyzz/DMM8/gp59+kormVZT09HQsW7YMPXv2xKeffor09HQMGzasQs9BlZ9xWHRQUJBV7Y1zqE0z9kREREREzsrb2xuLFi3CDz/8gH79+qFWrVpwd3eHp6cnGjdujNdffx3btm1Ds2bNpFFaxsW7ysq0OPmVK1fKdIwdO3bgjz/+gLe3N2bNmiVtX7t2LXQ6HerXr4933nkHrq6uEAQBffr0wcCBAwEAq1evLvX5MjIypNsFV9orifHn5uHhYVV74/Hv379v8XFnqP1ry+dgaWqsNYz9VFBJg3BcXV3Rq1cvAJCmIBoZVz2sVq0awsLCyhQXlY9NXmkzZ85E165dMXPmTNy5cwfz5s3D559/jr59+6JPnz5o3759mWo95eXl4eDBg9i6dSv+/PNPqNVqiKKIoKAgzJ49G08//bQNng1VZgEBAUhOTsb169eL/QbI6MaNGwBQ7MovZFDS0GlyLOxP58G+dB7sS+fC/qTKrmPHjujYsWORj1+6dEkacVKvXj34+PiU+VymxbizsrJKvX9mZibmz58PwLCSoGnBemONsF69ehUq7P3ss88iMjISt27dKnH1xoJME1l5eXmlWsHOw8MDWVlZRSapCjIO+Cht8owMTH9uMTExcHNzs/k5w8PDsXHjRrMpiPfu3cPJkycBGBYIKO2UV6oYNkufdu7cGbt27cI333yDH3/8Ebm5ufjll1/wyy+/wMPDA+3bt0fTpk3RuHFjNGjQAH5+fvDx8YGnpyfUajVycnJw584d3Lp1CxcuXMDZs2dx5swZaVUBURSlQoKTJk0qcXgjOadHH30U+/fvx+rVq/HFF1+U2H7VqlXSflQ8Z14182HE/nQe7Evnwb60rczMTKnoMwB4eXlBpVJBFEWzERkA4OPjU+7+YH+Sozt+/Lh0u7wjTkxnRZQlOfbZZ5/h3r17aNOmjbTSoFFSUhIAWExYVa9eXbp9586dUiW1qlSpYrZvaGhokW3PnTsHhUKB2rVrw9vbG0FBQcjKykJ8fHyJ50lNTZUSfaWJjx4w7au7d++idu3aNj9nWFgYqlWrhjt37mDv3r14/vnnsWfPHunvTL9+/WweA1lm03GNHh4emDp1KkaOHIlvv/0WW7ZsgVarRW5uLqKjoxEdHV2q4xnn27q6uqJ///6YMGGCVfOWyXk9//zz2LdvH3bs2IHq1atj8uTJFi8qdTodFi5cKBWWHzx4sB2iJSIiIrmsWrXK7IN1REQEmjRpAlEU8fXXX5u1nThxotmHJKKHjSiK+PXXX6X7Q4YMKdfxjh07Jt2uX79+qfY9efIkIiMjoVKp8OGHHxYajWVkaVRUUdPLrNGiRQupDtjp06eLTWrNmTMHMTExCAwMxJEjR9CyZUtcu3YNmZmZOHfuXLEjN41FxQGgSZMmZY73YdaqVSscPnwYgCEZW1xS6+jRo1i/fj1q1aqFbt26oX379mU6p0KhQN++ffH999/j6NGjyMvLw65duwAADRo0kFbCJPnJMj6uZs2amD9/Pv744w+88cYbqFOnDkRRLPW/0NBQTJkyBX/88Qc+/PBDJrQI3bp1Q48ePSCKIr7//nt0794dc+bMwZo1a7Bp0yasWbMGc+bMQffu3bFy5UoAQI8ePdCjRw87R05EREREVDmsX78e58+fBwA89thjVpX1KMq1a9fw+++/S/e7d+9u9b5qtRqzZs2CKIp46aWX0LBhw0JtjKObLC38ZLqttKOgOnfuLE0fi4yMLLKA+Y0bN6RVC5944gkAQM+ePaXHV6xYUeQ5dDqd9JkEKN3P5mFimsi01A+mP+8ff/xRms1lyaJFi7Bz504sX77crBZWWRhHYxkTWv/3f/8HgAXi7U3WCnRVq1bF66+/jtdffx2XL1/GsWPHEBMTg2vXriExMRHZ2dlQq9Vwc3ODt7c3atasifr166N169Z4/PHHUa9ePTnDJQexcOFCTJ48GX/88Qfu3r2LDRs2FGpjfDPs0aMHPvvsM7lDdEhJSUnQ6XRQKpUcGu0E2J/Og33pPNiXzoX9SZXVmTNn0Lx5c4vFsEVRxMaNG6UV5Dw9PfHRRx9ZPM6PP/6IRx55BG3bti3yXOfPn8fEiRORn58PAHjyySdLVfZj6dKluHr1KurXr49XX33VYpv27dvj1q1b2LFjB9566y3p902n02Ht2rUADKsQVqtWzerzGvd5+umnsXv3bpw5cwZfffUVJk+ebNYmOzsbM2bMkD5bjBgxAgDw9NNPo27durhx4wZ27NiBZs2a4eWXXzbbV6fTYe7cuVJC7PHHHy/zqCFnZ1pwPyMjo9BIrFatWuGxxx7D8ePHcfHiRcyaNQvz5s0rVLf7f//7n1SDrV69euVOIjZr1gwNGzbE5cuXsXDhQqkGHace2pfdllVo2LAhGjZsiJEjR9orBHIS7u7uWLJkCf744w9ERkbixIkTZgUpfX190bZtWwwbNozfhpRCUlISNBoNVCoVL86dAPvTebAvnQf70rmwP6myWrJkCU6dOoUuXbqgZcuWCA4Ohkajwa1bt7Bnzx5cunQJgOGa+uuvv0adOnUsHufo0aP46KOPUKdOHTzxxBNo3Lgx/P39oVAocPfuXRw9ehQHDhyQagwZZ+tY68qVK/juu+8gCALmzZtX5Ip0I0aMwO+//468vDyMGjUKY8eOhZeXF3777TecO3cOAPDCCy+U5kckmTlzJk6ePImUlBQsXboUx44dQ9++fREQEIDr169jw4YNuHv3LgDgueeek5JSSqUSn3/+OUaOHAm1Wo0vvvgCUVFR6NOnD4KCgnD79m1s3rwZsbGxAAB/f38sWLCgTDGW17Fjx6Sfz2OPPYY1a9bYJY7imCYkP/74Yyln0KdPH7Ptzz33HNLT0/Hbb7/h9OnTGDx4MGrXro27d+9i9+7dOHXqFADDSowfffRRhdQ+DA8Px1dffSXVdmvVqlWRvzOAY/y8HZ3jrxVK9K/u3btLSaucnBxkZ2fDy8vL6kUEBEGAp6dnoW1ERETkeF599VWzaSvG5eUFQcD06dPN2pZlVW4iR5KZmYlt27Zh27ZtFh9v2LAh5s2bV+woLKObN2/i5s2bxbZ58sknMX/+fKsTvKIoYtasWdBoNBgyZEixhepbtWqFN998E1999RVu3ryJDz74wOzx7t27Y9SoUVadt6Dg4GCsXbsWEyZMwI0bN3D69GmcPn26ULt+/foVOm+rVq3www8/4K233sK9e/eK3LdZs2b45ptvzIrak7mOHTvC398f6enpOHnyJE6ePAlBENCtWzfp81qtWrWwbt06vP7667h+/TquX7+OhQsXFjqWj48PFixYUGGj4oxJLdP7ZF9MapFDW7RoEQBgwoQJ0sUqYFjhyNIyvNnZ2fjoo4+Qm5tbqEisp6cn3n33XdsGTERERLIoKlElCEKRI0DITnQ64N49e0chj3+nK8lp0qRJaNmyJU6cOIH4+HikpKRAEARUqVIFLVq0wNNPP41nn33W7FrakmnTpqF79+6IiYnBxYsXkZKSgrS0NGg0Gql0TJs2bdCvX79SrzS+YcMG/N///R+CgoIwderUEtu/+uqraNy4MVatWoXz589Do9GgXr16GDx4MEaNGlWuETkNGjTAtm3bEBkZiV27diE2NhY5OTnw8/PDo48+imHDhqFr164W923fvj12796NDRs2YP/+/bh8+TJycnIQHByMRo0aYeDAgXjqqaeYSC9BQEAAVq9ejc8++wwxMTHIzc1FYGAgbt++bVbAv2HDhti6dSt+++03adRheno6XF1dUa9ePXTp0gUjR45E1apVKyy22rVro02bNjh9+jSUSqXZ6DGyD0EsqgIeUTlkZ2dLQ5kBw8oe1o6YKo2mTZtCEAScOnXKbO51UbKyshAWFgZPT09pOCpZFhMTI02jKE+xUKoc2J/Og33pPNiXzsUR+7Oir9fi4uKg1Wrh4uKCRo0albxDUhKQmwsUU+TZKalUgKcnwGmqRPQQKvXfihJwpBY5BFEUcfv27SIfv337Ntzd3Ys9hkajkYZcc1ohERERkZ0pFIbkzsNIIcsi9ERETo9JLXIIgiBg5syZOHLkSKHtANC3b99SHatly5YVGh8RERERlVIFTgkiIqKHE78iIIcxe/ZsqFQqiKJYrn/VqlXDe++9Z++nQ0RERERERETlwJFa5DDq1q2LyMhIZGRkADBMSXzxxRchCAKWLVtW7PRDQRCgVCrh7++PunXrVshyrkRERFR55ebmmq1+6ObmBhcXF4iiiNzcXLO2Hh4eUHA6GBERkcNhUoscSpMmTSxuDwsLs6pQfHE0Gk2hZXfbtGnD1UmIiIgc0IoVK5CWlibdj4iIQJMmTSCKIj7//HOzthMnTkSVKlXkDpGIiIjKiUktcmj79+8HgGITWmq1Gi4uLiV+A6tWq7Fz506zbS1atHhok1qenp7SqhTk+NifzoN96TzYl86F/UlERCQ//tUlh1azZk0AwJUrV/DDDz/A398f77zzjlmbbdu24cMPP8Szzz6LiRMnokaNGvYI1eE0bNjQ3iFQBWJ/Og/2pfNgXzoX9icREZH8WDyAHN62bdswaNAgbNq0CSdPniz0+K1bt5Cbm4vffvsN/fr1w/Hjx+0QJRERERERERFVpEo5UksURfzf//0fkpKSEBISgkcfffShnQJGxbty5QqmT58OjUYDb29vtG3btlCbZ555Bnl5edi0aRMyMzPxxhtvYMuWLQgJCbFDxERERCSH8ePHFyoUDxgWjyk4qru8dTmJiIjIPuyS1NJqtdi+fTv+/vtvzJw50+yx8+fPY9KkSYiPj5e2BQcHY9q0aejdu7fcoVIl9/3330Oj0aBu3bpYuXKlNB3RVLNmzdCsWTOMHj0aL7zwAhISEvDDDz9g2rRpdoiYiIiI5ODp6WlxuyAI8PLykjkaIiIisgXZpx/eunULffr0wbRp0/DTTz9BrVZLj6WlpWHs2LG4desWRFGU/iUlJeHtt9/Gr7/+Kne4VMkdO3YMgiBg6tSpFhNapmrUqIEpU6ZAFEX88ccfMkXouC5fvoyLFy/i8uXL9g6FKgD703mwL50H+9K5sD+JiIjkJ2tSS6/X4+WXX8bNmzelhNWtW7ekx1euXImMjAwIggAXFxd06dIFjzzyiLTv/PnzkZycLGfIVMndvXsXANCmTRur2rdr1w4AcPv2bZvF5Cxyc3ORk5OD3Nxce4dCFYD96TzYl86Dfelc2J9ERETykzWptX37dly7dg2CIKBq1aqYP38+atWqJT2+ZcsW6fbChQvx3Xff4ZdffpGmieXk5HC0Fpnx8fEBYHhtWMNYW8PV1dVmMRERERE9jJRKJQBAp9OZ1TMjIiICDJ/HdTodgAd/M8pL1qSWccqXSqXCTz/9hEGDBklFO2NiYpCUlARBEFC/fn0888wz0n5jxoxBq1atIIoiDhw4IGfIVMnVrVsXALBv3z6r2htfg8b9iIiIiKhiGL80FEWRI9aIiKiQ3NzcCh9oImtSKyYmBoIg4Omnn0bt2rXNHvvrr7+k2927dy+0b1hYGADg5s2btg2SHErfvn0hiiIWLVqEs2fPFtv20qVL+Oqrr6TXIBERETkvjUYDtVot/dPr9QAMCRfT7Wq1mqOKKoivr690OzU1lT9XIiKSiKKI1NRU6b7p34zykHX1Q+MTqF+/fqHHDh48KN3u2LFjocf9/PwAGIrJExkNGjQIq1evxq1btzBy5EgMGDAA3bp1Q7169eDu7o68vDzcvHkT0dHR+O2335Cfn4+QkBCMHj3a3qETERGRDS1ZssTsujEiIgJNmjSBKIr4+OOPzdpOnDgRVapUkTtEp+Pt7Q1BECCKIrKzsxEfH4/AwEB4enpCEAR7h0dERHZgHL2bmpqK7OxsAIaViL29vSvk+LImtbRaLQDD9ENTWVlZ+Pvvvw0BubhIxbxN3bt3DwCk6YpEAODl5YVFixZh3LhxSE5Oxq+//lpk3TVRFFGlShUsW7aMS3kTERERVTCFQoGaNWsiISFBSmxlZ2dDEIQKq51CRESOpWCdRUEQULNmTSgUFTNxUNakVlBQEG7fvm224iEAHDp0CDqdDoIgoG3btnB3dy+0rzHpFRISIkus5DiaNGmCHTt24H//+x927dplcYVMT09P9O/fHxMnTkRQUJAdoiQiIiJyfj4+PmaJLcDwxaLxy20iInp4GRNaxgXfKoKsSa2WLVsiMTERUVFRyMrKkp5IZGSk1KZHjx6F9vvrr79w5swZCIKAli1byhYvOQ5fX1/MnDkTM2bMQGxsLJKSkpCRkQEPDw9Ur14dTZs25TeERERERDLw8fFB48aNkZ2djczMTKjVamm1KyIiergolUq4urrC19cX3t7eFTZCy0jWpFbv3r2xe/dupKWlYfjw4Rg6dCjOnDmDQ4cOATA82T59+kjt7969i23btuHrr7+WtvXt21fOkMnBCIKAJk2aoEmTJvYOhYiIiOxozJgxUnF4AFLpAUEQMGnSJLO2FfmNMRkoFAr4+vpWWCFgIiIiS2RNavXq1QutW7fGmTNncOXKFalIp7Fw5AsvvICqVatK7cPDw5GVlSUNXX7yySfRpUsXOUOmh4iXlxdmz55t7zAqjZCQEOh0Oo5wcxLsT+fBvnQe7EvbKiqZIggC/P39K/x87E8iIiL5yZrUEgQBS5YsweTJk3H06FGzxwYMGIDJkyebbWvQoAHOnDkDAOjcuTO++uormSKlymj69OkADLXZ3n77bbNtpSUIAubPn19hsTkj1q9zLuxP58G+dB7sS+fC/iQiIpKfIJqWoZfR6dOncfbsWSiVSoSFhaFp06aF2nzyySe4desWnnvuOYu1tqjyys7OxqVLl6T7TZo0KfeSnU2bNoUgCKhTpw52795ttq00RFGEIAi4cOFCueIhIiIicmS2uF4jIiKSk6wjtUy1adMGbdq0KbbNtGnTZIqGHEGNGjUAAMHBwYW2EREREREREdHDxW5JLaLSioqKsmobVQzTVYpYH8TxsT+dB/vSebAvnQv7k4iISH42SWolJiba4rASjs4hsr1z585Bo9FApVKhVatW9g6Hyon96TzYl86Dfelc2J9ERETys0lSq0ePHqWuc2QtQRBw/vx5mxybHm5ardasrgRgqC3h4sIBjURERI7mf//7H9LS0qT7ERERaNKkCfR6PebNm2fWduLEiahSpYrcIRIREVE52ezTup3qz5MTO3HiRIUeLywszOx+fn4+fvnlF7Nt77zzDpNaRERERERERJWQTT6tF0wWFBQbG4vMzEyIogiFQoHmzZujcePGCAgIgEqlQnZ2Nq5cuYIzZ87g/v37EAQBdevWRZcuXWwRLjmI0aNHV9gIQI74IyIiIiIiInJsNklqrVmzpsjHNm7ciDlz5kAURQwePBiTJk1CSEiIxbbZ2dlYvnw5li9fjhs3biAgIACvvvqqLUImB2HtCEClUglPT0+o1Wrk5+dL2wVBgEqlslV4RERERERERCQTWedVxcXFYd68eRBFEa+//jreeOONYtt7e3tj8uTJCA4Oxrx58/DNN9+gffv2JY4EI+e0f/9+i9vXrVuHlStXwtfXF+PHj8dTTz2F+vXrS6O67t27hwMHDmDx4sVISkrCpEmTMG7cODlDJyIiIpmNHDnSbEVCPz8/AIYvuAp+SWp8jIiIiByLrEmtVatWQaPRoEGDBpg4caLV+40cORKbNm3C+fPnsXr1aia1HlI1a9YstO348eP44YcfEBISgp9++slim6pVq+L555/HU089hYiICHz++edo0KABunfvLkfYREREZAdFFX4XBAHBwcEyR0NERES2oJDzZEeOHIEgCOjWrVupayN17twZAHD27FlbhEYOavny5QAMBd0tJbRM+fv745133oEoili5cqUc4RERERERERGRjcia1Lp37x4AwNfXt9T7urq6AgDS09MrMiRycDExMQCATp06WdW+Xbt2AIALFy7YLCYiIiIiIiIisj1Zk1re3t4ADKsflpZxhFZAQECFxkSOTavVAoBZMfjiZGVlATAUkiciIiIiIiIixyVrTa0WLVrg4MGD2L9/P65fv4569epZtd+JEycQHR0NQRDQtm1b2wZJDqVu3bq4cOECdu3ahbFjx5bYftOmTQCABg0a2Do0hxcaGgpRFEs9VZgqJ/an82BfOg/2pXNhfxIREclP1pFaAwcOBACo1WqMHz8ely9fLnGfI0eOYOLEiRBFEQAwbNgwW4ZIDqZv374QRRH/+9//EB0dXWzbzZs3Y8WKFRAEAc8//7xMETouLy8veHt7w8vLy96hUAVgfzoP9qXzYF86F/YnERGR/GQdqdW3b1+sX78eJ0+eREJCAgYNGoQePXqgS5cuCA0NhY+PDwAgIyMDly5dwr59+3DkyBHo9XoIgoCBAwfiiSeekDNkquQiIiKwceNG3LhxAy+//DI6duyILl26oG7dunB3d8f9+/dx9epV7Nu3D2fOnIEoimjbti0GDBhg79CJiIjIhhYvXmxWi3XIkCFo1KgR9Ho9PvnkE7O2r7zySpGrJRIREVHlJWtSSxAELF68GCNGjMDly5eh0WiwZ88e7Nmzp8h9jCO0OnfujA8//FCuUMlBeHl5YcWKFRg/fjxu3LiBw4cP4/Dhw4XaGV9HYWFhWLRoEVxcZH3pExERkcy0Wi00Go10X6/XS7dNtxMREZHjkv2Tva+vLyIjI7FkyRKsWrUKarW62PY+Pj546623MGLECNYoIItq166Nbdu2Yd26ddi2bRvOnTsnJbEAQKFQoH379njuueekKbBUsvT0dKk2iL+/v73DoXJifzoP9qXzYF86F/YnERGR/OwyXMXDwwNTpkzBuHHjEB0djUOHDiExMREpKSkQBAFBQUGoWbMmunXrhs6dO8PNzc0eYZIDUalUGDNmDMaMGYPs7GwkJSUhMzMTfn5+qFatGjw9Pe0dosO5efMmNBoNVCoVL86dAPvTebAvnQf70rmwP4mIiORn1zlYfn5+CA8PR3h4uD3DICfj7e0Nb29ve4dBREREdjRs2DBotVrpvrFmliAIGD9+vFlbPz8/WWMjIiKiisHCQkUQRRHbtm3Dpk2bcOHCBeTm5qJq1aoICwvDyJEj0apVqwo/59mzZxEREYHq1asjKiqqxPajR4/G8ePHrTr2hg0b0Lp163JGWPnFxMTg1KlTuH37NnJycqQ6bLt370arVq1QvXr1Ivf19PTEO++8U2gbEREROZ6QkBCL2wVBQM2aNWWOhoiIiGyBSS0L8vLyMGnSJPz5559m2xMSEpCQkICtW7firbfewssvv1xh58zJycHMmTPNipiWJDY2tsLO7+hOnz6NDz74AJcuXTLbbkxqffnll0hISMD48ePx5ptvWqzPJggCl+EmIiIiIiIichA2SWolJiba4rCSGjVq2PT4M2bMkBJaoaGhGDp0KIKCgnDu3DmsX78eubm5+OKLLxASEoIBAwaU+3xqtRqvvfZaqZJUSUlJ0jLVQ4cORdeuXYttX79+/fKEWKnt2bMHU6ZMgU6ngyiKUCqV0Ol0ZomrxMREaDQaLF26FCkpKZg7d64dIyYiIiIiIiKi8rJJUqtHjx42W6lQEAScP3/eJscGgEOHDmHbtm0AgA4dOuC7776TCtWHh4fj+eefx4gRI5Ceno758+ejZ8+e5arflJKSgkmTJuHEiROl2u/ixYvS7V69euHJJ58scwyO7M6dO5g6dSq0Wi1atWqFyZMno0mTJujYsaNZu1WrVmHBggU4e/YsIiMj0bt3bzzxxBN2ipqIiIiIiIiIykthqwOLomizf7a0cuVKAICLiws+/PDDQisvhoaGYtasWQAMSzdHRkaW+VxHjhzB4MGDS53QAmA2za5Ro0ZljsHRrVy5Enl5eWjZsiXWrl2LJ554Au7u7oXatW3bFj/++KNUV2z9+vUyR0pEREREREREFckmI7XCwsKKfTw2NhaZmZkQRREKhQLNmzdH48aNERAQAJVKhezsbFy5cgVnzpzB/fv3IQgC6tatiy5dutgiXEl6ejoOHz4MAOjcuTNq165tsV2fPn0wf/58pKSkYNeuXRg7dmypzpOamopZs2Zh37590rbnnnsOBw8eRFJSklXHMCa1/P39iyyE+jCIjo6GIAh444034OrqWmxbNzc3TJw4EePHj8eZM2fkCZCIiIiIiIiIbMImSa01a9YU+djGjRsxZ84ciKKIwYMHY9KkSUUmZbKzs7F8+XIsX74cN27cQEBAAF599VVbhAwAOHnypFSovUOHDkW2UygUCAsLw65du3D27FlkZGSUainouLg4KaHl5eWF6dOnY8iQIejRo4fVxzDW32rcuLHV+zij27dvAwBatmxpVfvmzZsDMCQWC9LpdLh165bZttq1a0OpVJYzSiIiIpLb8uXLpfqjADBo0CA0bNgQer0eX3zxhVnbcePGITAwUOYIiYiIqLxkXf0wLi4O8+bNgyiKeP311/HGG28U297b2xuTJ09GcHAw5s2bh2+++Qbt27cvcSRYeeIzKilZ1LBhQwCGaZaxsbGljkmhUGDAgAGYPHlyqUdaaTQaXLt2DcCDqYf379/HxYsXkZmZiYCAADRt2rTEkUvOwJhw0mg0VrW/f/8+AFicopiXl4fVq1ebbXvnnXce2hURFQqF9I8cH/vTebAvnQf70rbu37+P3Nxc6b5Op5Num24HUCHlLdifRERE8pM1qbVq1SpoNBo0aNAAEydOtHq/kSNHYtOmTTh//jxWr15ts6RWQkKCdLtmzZrFtq1WrZrZfqWJqV69eti9ezfq1KlT+iABXLlyRUri+Pj4YPr06di+fTvy8/OlNl5eXhg8eDDeeOONUo0iczS1a9fGpUuXcPz4cYSHh5fY3riqZVFTS+mBRx55xN4hUAVifzoP9qXzYF86F/YnERGR/GT9KunIkSMQBAHdunUr9eqInTt3BgCcPXvWFqEBMJ+SFhAQUGxbf39/6bbp0HZrhISElDmhBZgXiV+6dCl+/fVXs4QWAOTk5GDNmjUYMmRIoSl1zqRbt24QRRFff/01MjMzi2178+ZNfPPNNxAEQXo9EREREREREZFjknWk1r179wAAvr6+pd7XOJWutAmk0sjLy5NuF1z1sKh4Cu4nB9OkliAIGDp0KIYPH4769esjNzcXR48exddff43r16/jxo0bmDBhAn755Rd4eHjIGqccxowZg59//hnx8fF47rnn8Prrr5utBqnRaBAfH4/9+/dj+fLlyMjIgJeXF1544QU7Rk1ERES2NnjwYGi1Wul+cHAwAMO104svvmjWtizXpkRERGR/sia1vL29kZ6eLhU5Lw3jCK2SRlCVh+mFT0n1qEwfN91PDsYVEgVBwJdffonevXtLj7m7u6NPnz7o3LkzRo8ejQsXLuDy5cv48ccf8corr8gap6nLly8XW2PC09NTqlNmuk/BmheWzJkzB9OnT8etW7cwffp0absoioUKyCsUCkycOBEJCQlISEhAaGhosTWzzp8/bzHBqVAoCk0ziI+Pt1iAviA/Pz/UrVvXbNuFCxesqgtWq1Yts0K2eXl5Vv8+NWvWDCqVSrp/7949qdB+cdzd3QvVmLt27RqysrJK3DcoKAg1atQw2xYTE2NVvPXr14ePj490PysrS6olV5JWrVqZ3U9MTERycnKJ+/n4+KB+/fpm22JjY61KXFevXh1Vq1aV7ms0Gly4cMGqeBs3bmxW5y01NRXx8fEl7qdSqdCsWTOzbTdu3EBGRkaJ+wYGBqJWrVpm2/755x9psYzi1KlTx2y0ak5ODq5cuVLifgDQokULs8UXkpKSrFr1tTzvESEhIWa1C3U6Hc6dO2dVvAXfI9LT03Hz5s0S9+N7BN8jCuJ7hPzvEXl5eWbvEUWN6A4JCTF77T9M7xEFR/oTERE5GlmTWi1atMDBgwexf/9+XL9+HfXq1bNqvxMnTiA6OhqCIKBt27Y2i8/0glGj0RSb2FKr1dJtuQuyf/HFF/jwww+RnJxcZG0oHx8fzJ8/H4MGDQJgWHXSnkktnU5nVqC1IEuJQa1Wa9UF2qOPPoqNGzfigw8+wP/93/8V2a5u3boYM2YMGjduLB23pMKwGo3GYjLO0jZr47X0XDUajVX7FvwwIYqi1UXyCz5XvV5fpnMC1j9XS31ubbwFz2ttvEXF4Yx9Y0l5X4fWfGAtGG9pnmtB5ekbOV6HZX2uD9N7hKUVYvkeURjfI5z/PSI+Ph45OTkO9R5BRETk6GRNag0cOBAHDx6EWq3G+PHjsXTp0kLfqhV05MgRvPXWWxBFEYIgYNiwYTaLz9PTU7qdn59vdVKrpKmKtuDh4VFisfPmzZujUaNGiIuLQ3x8PJKSkkq90mJFUSqVxY7UcnEp/FJ0cXEx++a0uGM3btwY69atw+XLl3H06FGcOXMGubm5cHNzQ1BQEJo3b47Q0NBC+5ZU202lUlmMwdJzsTZeS8/Vmv0snVcQBKv3LfhcFQpFsfsaL44tXQCXpm8KKutzLSnekuIoT98Ul5A1jc+ULfvGNLaCiuob0w87KpWqyOdqzQeegvGW5rkWVJ6+keN1WNbnasv3iIJ9Wdx5K9vrsKCH/T2i4HGKYo++4XtE6X9vUlNTpd/PkvavLNcRREREjk4QK2INYyuJoojRo0fj5MmTEAQBLi4u6NGjB7p06YLQ0FBpGkFGRgYuXbqEffv24ciRI9Dr9RAEAQMHDsTHH39ss/jef/99bNiwAQCwb9++YpNGkZGRmDlzJgDg888/R79+/cp9/h49eiAhIQE1a9ZEVFRUuY8HAG+++SZ2794NwBBzwSkXtpKdnW1W+6tJkybw9vau8POsWrUKwcHBeOqpp8o9Yi4nJweff/652bZ33nmn2OmJziwmJgYajQYqlUq21w3ZDvvTebAvnQf70rk4Yn/Kdb1GRERkK7KO1BIEAYsXL8aIESNw+fJlaDQa7NmzB3v27ClyH2POrXPnzvjwww9tGp/pdMjbt28Xm9S6c+eOdLtgPZDKxNK3ec5kzZo1SExMxNy5czFkyBB7h0NEREREREREMpF9DLKvry8iIyPx8ssvw9XVFaIoFvvPx8cHs2bNwrJlyywOD69IptPT4uLiim1rfFwQBLPV9mwtNTUVa9euxVdffYXNmzeX2N60uKpx1R9nYlxRs2vXrnaOhIiIiIiIiIjkZJdhPB4eHpgyZQrGjRuH6OhoHDp0CImJiUhJSYEgCAgKCkLNmjXRrVs3dO7cWbaaVW3atIFKpYJGo8GxY8cwcuRIi+10Oh1OnDgBAGjatKmsy0BrNBrMmzcPgGGI+MCBA4tsm5WVhX/++QeAYWWfatWqyRGirAIDA5GUlISMjAynTNoRERFR2fzwww9mKz32798fDRo0gF6vx//+9z+zti+++KJNV9gmIiIi27Dr3DQ/Pz+Eh4cjPDzcnmFIfH190aFDB0RHRyMqKgqJiYkWpxZu375dWnK5d+/essYYEhKCevXq4fr167h06RLOnDmD1q1bW2y7cuVKaZnxAQMGyBilfMaMGYNPPvkEH374Ib799lvWgSAiIiIAhi/3TJNapossmG4HuCogERGRo6oUBZdu3ryJW7duSRcYvr6+qF27NurWrSt7LGPGjEF0dDQ0Gg2mTJmCFStWmCVKLl++jI8++ggA4OXlZZc6TqNHj5ZGa/33v//Fjz/+WGhVw+3bt+O7774DAPj7+2PMmDFyhymLnj174vr161i/fj26du2KTp06oVmzZggMDCxxhF9xo9yIiIiIiIiIqHKzW1IrPT0dq1atwqZNm5CcnGyxTUBAAPr06YNXX30VVapUkSWuJ598Er169cLu3btx+vRpDBgwAMOHD0f16tVx/vx5/Pzzz8jJyQEATJ06FYGBgWb7Hzt2DC+88AIA4LHHHsOaNWsqPMaIiAjs3LkTJ0+exPXr19G/f38MGzYMTZs2RXZ2NqKiovDHH38AMBSK/+STT2T7+cntmWeeAWCobZaTk4O9e/di7969Je5nXE2TiIiIiIiIiByTXZJaJ06cwOTJk5GSkgLgwQqHBaWmpmLdunXYtWsXPv30U3Ts2FGW+BYsWICcnBwcPHgQ8fHx+Oyzz8weFwQBEydOREREhCzxFOTi4oIlS5Zg8uTJOHjwINLT07Fs2bJC7fz9/fHRRx+he/fudohSHgVfO0W9loiIiOjh0q9fP7Mph8aSEoIgYPjw4WZtfXx8ZI2NiIiIKobsSa2YmBiMHz8earVaSkD4+/ujadOm8Pf3h16vR1paGi5duoTMzEyIoojk5GRMmDABGzZsQLNmzWweo4eHB1asWIGtW7di8+bNuHDhArKysuDv74927drhhRdeQLt27WweR3F8fX2xYsUK7N+/H5s3b8bZs2eRlpYGT09P1KpVCz169MDw4cOddoSW0f79+yvsWB4eHnj11VcLbXtY+fn5QavVwsWlUsxSpnJifzoP9qXzYF/aVv369S1uFwQBjRs3rvDzsT+JiIjkJ4gyDm3RaDTo3bs34uPjAQDNmzfHu+++iyeeeMJi+0OHDmHhwoU4d+4cAKBu3brYtm0bVCqVXCFTGWVnZ+PSpUvS/SZNmrCIOxEREVElwus1IiJydAo5T7Z582bEx8dDEAR07doVGzZsKDKhBQCdOnXChg0b0K1bNwCGgvLbtm2TKVoiIiIiIiIiIqqsZB0fbZwq5uPjgwULFlg14srFxQULFizA008/jaysLOzevRuDBg2ydajkgC5evIht27bh8OHDSEpKQlZWFgICAlCzZk1069YNffv2Rc2aNe0dJhERERERERFVAFmTWhcuXIAgCOjZsyf8/f2t3s/Pzw89e/bEb7/9hn/++cd2AZJDys/Px+zZs7FlyxaIomhWLD4pKQlJSUk4ffo0vv32W7z88st4/fXX7RgtEREREREREVUEWZNaaWlpAAy1sUrLuE96enpFhkQOTqfTYeLEiTh48CBEUYSHhwcef/xx1KtXD+7u7sjNzcW1a9dw4sQJ5OXlYdGiRcjKysK0adPsHXqld+HCBWg0GqhUKlkWaCDbYn86D/al82BfOhf2JxERkfxkTWq5ublBo9EgNze31Psa9/H09KzosMiBbd++HdHR0RAEASNHjsTbb79t8TWSnZ2Njz/+GJs2bcLq1avRs2dPhIWFmbXR6/VITk422xYUFASFQtbSc5WGRqMxWwqdHBv703mwL50H+9K21q5di8zMTOl+7969Ub9+fej1eixdutSs7YgRI0o1i8AS9icREZH8ZE1q1ahRA5cuXcKxY8dKva9xn2rVqlV0WOTANmzYAEEQMHDgQMyaNavIdt7e3vjoo4+Qm5uLnTt34scffyyU1Lp//z6WLFlitu2dd96Bl5eXTWInIiIi20lNTZVmCQCAWq2Wbt+7d8+srU6nky0uIiIiqjiyDkF5/PHHAQAxMTGIioqyer/9+/fj7NmzEARBOgYRAFy9ehUA8J///Meq9i+//DIAw2uQiIiIiIiIiByXrEmtYcOGQRAEAMC7776LP//8s8R9/vjjD0ydOhUAIAgChgwZYssQycHk5+cDMEwTtEaNGjUAwGw6AhERERERERE5HlmnH4aGhmL48OH46aefkJubi1dffRVhYWHo1asXmjZtKtUySEtLw6VLl7Br1y6cPHkSoihCEAQ8//zzaNy4sZwhUyXXsGFD/P333zh16hR69uxZYvvY2FgAQP369W0dGhEREdlR7969zaYcGr/YMl5TmvL29pY1NiIiIqoYsia1AGDatGlISEjAgQMHIAgCTpw4gRMnThTZXhRFAEDHjh3x/vvvyxUmOYgXX3wRb7/9NhYsWIDWrVujSpUqRbbVaDRYuHChVFSeiIiInFejRo0sbhcEAS1atJA5GiIiIrIF2Zd1c3V1xeLFi/H666/D09MToigW+8/T0xOvvfYali9fDhcX2XNwVMn17dsXr7zyCm7evInBgwdj8+bNyMvLK9Tu5MmTGD16NM6cOYP+/fvjueees0O0RERERERERFRR7JIlUiqVeOONNzB69Gj88ccfOHr0KOLj45Geng5RFOHr64t69eqhXbt26NWrF3x9fe0RJjmAiIgIAICHhweSkpIwffp0zJw5EzVr1oSvry/y8/ORkJCA3NxcaZ8tW7Zgy5YtFo8niiKGDx8uS+xEREREREREVHZ2Hfrk7++PQYMGYdCgQfYMgxzYmTNnzO6LogitVosbN27YJyAiIiIiIiIikgXn85FDmzhxYoUdS61W4/DhwxV2PEdXq1Yt6PV6KBSyz1ImG2B/Og/2pfNgXzoX9icREZH8mNQih1aRSa2cnBxkZWVV2PEcXWBgoL1DoArE/nQe7Evnwb50LuxPIiIi+TGpRUREREROZ/369WZfVj3zzDOoW7cu9Ho9vv/+e7O2Q4YMgb+/v8wREhERUXkxqUVERERETufu3btIS0uT7puujpyYmGjWVqfTyRYXERERVRwmtYjIory8PIiiCEEQ4O7ubu9wqJzYn86Dfek82JfOhf1JREQkPya1iMii2NhYaDQaqFQqtGrVyt7hUDmxP50H+9J5sC+dC/uTiIhIfkxqEREREZHTeeqpp6BWq6X71apVAwAIgoABAwaYtfXy8pI1NiIiIqoYTGoR/cvd3R0vvvhioW1ERETkeJo3b25xuyAIaN26tbzBEBERkU0wqUX0L6VSiXr16tk7DCIiIiIiIiKygsLeARAREREREREREZUWk1rk0DZv3ozNmzdDr9db1T43NxeLFi3C/PnzbRwZEREREREREdmSTaYfJiYm2uKwkho1atj0+OQ4pk2bBoVCgV69esHDw6PE9jqdDosWLYKPjw/ee+89GSIkIiIiIiIiIluwSVKrR48eEATBFoeGIAg4f/68TY5NjkkURateb1qtFnv37pVuExEREREREZHjslmheFEUbXVoegjp9Xo8//zzuHDhgtl2YzKrTZs2Vh9LEAQ0adKk0HZRFJGbm2u2zdPT02YJWiIiIrKdTZs2ISsrS7rfs2dP1K5dG3q9Hj/++KNZ20GDBsHPz0/uEImIiKicbJLUCgsLK/bx2NhYZGZmQhRFKBQKNG/eHI0bN0ZAQABUKhWys7Nx5coVnDlzBvfv34cgCKhbty66dOlii3DJASgUCsydOxdDhw61un5WUTw9PfH2228X2p6bm4vPP//cbNs777wDLy+vcp2PiIiI5JeQkIC0tDTpvukXVzdu3DBryxHcREREjskmSa01a9YU+djGjRsxZ84ciKKIwYMHY9KkSQgJCbHYNjs7G8uXL8fy5ctx48YNBAQE4NVXX7VFyOQAHnnkESxbtgzJycnStunTp0MQBMyZMweurq5F7isIApRKJfz9/fHII48gICBAjpAdWrNmzaye2kmVH/vTebAvnQf70rmwP4mIiORns+mHlsTFxWHevHkQRRGvv/463njjjWLbe3t7Y/LkyQgODsa8efPwzTffoH379iWOBCPn1blzZ7P706dPBwD079/fqkLxZD2VSmXvEKgCsT+dB/vSebAvnQv7k4iISH6yJrVWrVoFjUaDBg0aYOLEiVbvN3LkSGzatAnnz5/H6tWrmdQiibEmhru7u50jISIiosqka9euyM/Pl+4HBwcDMIze7t27t1lblhogIiJyTLImtY4cOQJBENCtW7dSD83u3Lkzzp8/j7Nnz9ooOnJEjz32mL1DICIiokro0UcftbhdEARePxARETkJWZNa9+7dAwD4+vqWel9jvaT09PSKDImcyPnz5xEfH4/79+9btfrmwIEDbR+UA7t37x70ej0UCgWqVq1q73ConNifzoN96TzYl86F/UlERCQ/WZNa3t7eSE9PR2xsbKn3NY7QYoFvKujYsWN4//33cfPmTav3EQSBSa0S3L59GxqNBiqVihfnToD96TzYl86Dfelc2J9ERETyU8h5shYtWkAURezfvx/Xr1+3er8TJ04gOjoagiCgbdu2tguQHM7Vq1fx0ksv4ebNmxBFsVT/iIiIiIiIiMhxyTpSa+DAgTh48CDUajXGjx+PpUuXomHDhsXuc+TIEbz11lvSEsnDhg2TKVpyBMuXL4darYaLiwvGjBmDbt26oUqVKtJ0VSIiIiIiIiJyTrImtfr27Yv169fj5MmTSEhIwKBBg9CjRw906dIFoaGh8PHxAQBkZGTg0qVL2LdvH44cOQK9Xi9NF3viiSfkDJkqOePiA6+99hpee+01e4dDRERERERERDKRNaklCAIWL16MESNG4PLly9BoNNizZw/27NlT5D7GaWKdO3fGhx9+KFeo5CBSUlIAsOg7ERERmfv999+Rk5Mj3e/SpQtq1aoFvV6P9evXm7UNDw8v00JGREREZF+yJrUAw8qHkZGRWLJkCVatWgW1Wl1sex8fH7z11lsYMWIEBEGQKUpyFP7+/khOToa7u7u9QyEiIqJK5MaNG0hLS5Put2vXTrodFxdn1laj0cgWFxEREVUc2ZNaAODh4YEpU6Zg3LhxiI6OxqFDh5CYmIiUlBQIgoCgoCDUrFkT3bp1Q+fOneHm5maPMMkBtGvXDrt378apU6fw1FNP2TscIiIiIiIiIpKJXZJaRn5+fggPD0d4eLg9wyAH9p///Ad79+7F119/jY4dO8LT09PeIRERERERERGRDOya1CIqr1atWuH999/H3LlzMXDgQIwcORKPPvooAgMD4eJS/Mu7Ro0aMkVJREREcuvUqRPy8vKk+1WrVgVgqPFacHQ3vxQjIiJyTJUiqaXX65GamoqMjAwEBgYiICBA2q5QKOwcHVVmPXv2BAAolUrcunULn3zyiVX7CYKA8+fPm21zc3PD888/X2jbw8rd3R1KpRIqlcreoVAFYH86D/al82Bf2pZpDS1TgiCgU6dOFX4+9icREZH87JbU0mq1+P3337FlyxbExMRI36RNnToVY8eOBQAMGzYMtWvXxoQJE9C4cWN7hUqVWEJCQoUdy8XFBS1atKiw4zk6/s45F/an82BfOg/2pXNhfxIREcnPLkmtS5cu4c0338TNmzcBAKIoAkCh1Q0vX76Mf/75B3v27ME777yDMWPGyB0qVXIff/yxvUMgIiIiIiIiIjuQPakVGxuLkSNHIicnR0pmubq6Qq1Wm7VLS0vD/fv3IQgCtFotFixYAJVKhZEjR8odMlVigwYNsncIRERERERERGQHshas0mq1eOONN5CdnQ1RFNGtWzds2LABJ0+eLNQ2ICAAkZGRePzxxwEYRnN9/vnnuHPnjpwhExERERERERFRJSRrUuv333/HjRs3IAgCXnjhBSxduhSPPvooXF1dLbZv2bIlVq1ahYiICABAXl4eNm7cKGfI5IR0Oh0OHDhg7zAqvWvXriEuLg7Xrl2zdyhUAdifzoN96TzYl86F/UlERCQ/Wacf7t27FwAQHByMd955x+r9pk2bhn379iElJQWHDh3Cm2++aasQyQGJoogtW7YgOjoaaWlp0Gq10tRW0zYajQY5OTmIj49Hfn5+odUPyVxWVhY0Gg1XcXIS7E/nwb50HuxL29qxYwdycnKk+506dUKNGjWg1+uxadMms7bPPvssfHx8ynU+9icREZH8ZE1qnT9/HoIgoFu3bkWOzrLE3d0dPXr0wMaNG3H9+nXbBUgOR6vV4qWXXsLRo0cLPWZpAYKiFiUAgJycHHz++edm29555x14eXlVZMhEREQkg8uXLyMtLU2636pVK+l2wS+2evToIVtcREREVHFkTWoZLyxq1qxZ6n1r1KgBAGbfuBH99ttvOHLkCABD8rN+/frIzc3FjRs3ULt2bVStWhVpaWm4fv06RFGEIAgIDw+XprQSERERERERkWOStaaWccRLdnZ2qfdNTU0FgHIPDSfnsmvXLgBAo0aNsG/fPvz222/46KOPAAAtWrTATz/9hJ07d+KPP/5Ap06dIIoizp8/j5YtW9ozbCIiIiIiIiIqJ1lHatWqVQvp6ek4ceJEqfYTRREHDhyAIAioVauWjaIjR3Tx4kUIgoCJEyciKCgIgGF6gYuLi9mUxGrVqmHJkiV47rnncPnyZWzatAnDhw+3V9hERERkY4899hjy8vKk+1WqVAFgKEHQtWtXs7YeHh6yxkZEREQVQ9ak1pNPPol//vkHZ86cwZEjR/DEE09Ytd/q1aulVRM7duxo4ygNRFHEtm3bsGnTJly4cAG5ubmoWrUqwsLCMHLkSLO6DBXl7NmziIiIQPXq1REVFWXVPgkJCfjhhx8QHR2NxMREeHh4oG7duujbty8iIiLg7u5e4XFWJpmZmQCA5s2bS9tcXV1Rr149XLlyBQkJCdJ0V1dXV4wfPx7//e9/sXPnTia1iIiInFiHDh0sbjfWdyUiIiLHJ+v0w4iICLi5uQEApkyZgpMnTxbbXqfT4bvvvsNnn30GAHBxccGQIUNsHmdeXh4mTJiAd955B0eOHEF6ejrUajUSEhKwefNmRERE4LvvvqvQc+bk5GDmzJnQ6/VW73PgwAH069cPa9aswfXr16FWq5GRkYGYmBh8/PHHGDJkCOLj4ys0zsrGuOCAt7e32fa6desCMBSJNdWuXTsAwJUrV2SIjoiIiIiIiIhsRdaRWtWqVcOkSZPw6aefIj09HaNHj0abNm3MRtnExMRg9erVuHz5Mv78808kJydLBb7HjRsny/TDGTNm4M8//wQAhIaGYujQoQgKCsK5c+ewfv165Obm4osvvkBISAgGDBhQ7vOp1Wq89tpriI2NtXqfS5cu4Y033kB+fj6USiWef/55tG/fHjk5Ofj9999x+vRpxMbG4rXXXsOGDRucdlh9UFAQbt68iaSkJAQEBEjb69SpA8CQ1DKdYuDp6QkAyMjIkDdQIiIiIiIiIqpQso7UAoD//Oc/GDduHERRhCiKOH36NNatWwdBEAAYCn9/8skn+OWXX6SEFgD0798fb731ls3jO3ToELZt2wbAMGz9t99+w5gxYxAeHo7//ve/+OWXX+Dv7w8AmD9/fpmK3ptKSUnBf/7zH7P6T9aYM2eOlNBasmQJ5s6di/79+2P48OH4+eefMWrUKACG5NePP/5Yrhgrs9atWwMANm3aZLa9fv36EEWx0GhAY+JQpVLJEh8RERERERER2YbsSS0AePfdd/Htt9+iUaNGUnKrqH/VqlXD3LlzsWDBAlliW7lyJQDDVMcPP/xQmi5pFBoailmzZgEA0tPTERkZWeZzHTlyBIMHDy514fzTp0/j1KlTAICBAwcWKnYqCAJmzJiB0NBQAIbnpNFoyhxnZRYeHg5RFLF27Vq8//77uHr1KgCgffv2AIC//voL+/btA2BIIBqnstavX98+ATuQoKAgBAcHSwX4ybGxP50H+9J5sC+dC/uTiIhIfrJOPzTVs2dP9OzZE6dPn8aJEydw+fJlZGRkQKvVws/PD7Vr10b79u3xxBNPwMVFnjDT09Nx+PBhAEDnzp1Ru3Zti+369OmD+fPnIyUlBbt27cLYsWNLdZ7U1FTMmjVLSrYAwHPPPYeDBw8iKSmpxP137Ngh3R4xYoTFNgqFAiNGjMC8efOQnp6Oo0ePonPnzqWK0xF07twZ3bp1w59//onIyEhkZ2dj4cKFaNCgAR5//HEcO3YMb7zxBgICApCRkQG9Xg9BENC3b197h17p1ahRw94hUAVifzoP9qXzYF86F/YnERGR/OyW1DJq06YN2rRpY+8wAAAnT56UCrUXtWIOYEgYhYWFYdeuXTh79iwyMjLg5+dn9Xni4uKkhJaXlxemT5+OIUOGoEePHlbtbxzZ5efnZ1aPrCDT5xAdHe2USS0A+Oqrr/Dpp59i48aNZjXXPv74Y4waNQqJiYlITU2VtoeFheHFF1+0R6hEREQkkz179iA3N1e6//jjj6N69erQ6/XYsmWLWdunnnqq0KIzREREVPnJmtTavHkzAKBTp06oWrVqqfZduXIlPvvsMwiCgPPnz9sgOkOyyahx48bFtm3YsCEAQBRFxMbGIiwsrFTnUigUGDBgACZPnoyQkBCr99PpdNLKfaGhoVAoip5BWr9+fSiVSuh0Oly8eLFU8TkSd3d3vP/++5gyZQqysrKk7TVq1MDvv/+On376CadPn4ZSqcSTTz6J559/XrbRf0RERGQfFy9eRFpamnS/WbNmqF69OgDg7NmzZm07d+7MpBYREZEDkvWT/bRp0yAIAqpWrYpFixahVatWpdrfWDTeVhISEqTbNWvWLLZttWrVzPYrTVKrXr162L17t7RCX2kkJydDrVZbFaNSqUTVqlVx584dJCYmlvpcjsbb27vQBamPjw9eeeWVQm3VajVcXV3lCo2IiIiIiIiIKphdhqvcvXsXo0aNwgcffIBBgwbZIwSLTKeoBQQEFNvWuAIiYKjFVRqlGZlVUGliBAxTFO/cuVPqGB3FCy+8AEEQsHz5cquSVOnp6Rg8eDCUSiX27t0rQ4SOKyYmBhqNBiqVqtQJaKp82J/Og33pPNiXzoX9SUREJD+7zcFSq9V47733cP78eUyfPr3YaXRyycvLk24XXPWwINMEiul+tnb//n3pdkkxmraRM0Y5HT9+HIIgQKfTWdVer9cjMTHRqp8dEREROa62bdua1dQKDAyUbj/xxBNmbd3d3WWLi4iIiCqOXZJaLVq0wIULF6DX67F27VrExcXhq6++Mhv9ZA9arVa6XdKoH9PHTfezNdPkjTUjk4xt5IzRksuXLxebuPT09JTqlJnuY7wY1ev1OHTokFTIv6CtW7dKz1Wv15tNJTXSarVSkX1XV1fExMQgNDQUXl5e0rZu3bqZ1d+IjY2FUqksdCyFQoFHHnnEbFt8fLzZSLqi+Pn5oW7dumbbLly4AI1GU+K+tWrVMrsoz8vLQ2xsbIn7AYZaIiqVSrp/79493L59u8j2xngsvXauXbtmVr+sKEFBQYVWg4qJibEq3vr168PHx0e6n5WVhWvXrlm1b8FvyBMTE5GcnFzifj4+Pqhfv77ZttjYWKuSwtWrVzerFajRaHDhwgWr4m3cuLHZB6rU1FTEx8eXuJ9KpUKzZs3Mtt24cQMZGRmF2hr7U6PRICYmBoGBgWYLKwDAP//8U+TvmKk6deqYvV/n5ORItf5K0qJFC7PfqaSkJKtWfS3pPaI4ISEhZiNkdTodzp07Z1W8pu8RgGG0582bN0vcz5bvEQX70pSc7xFG7u7uhepQ8j2iMEvvEcX1pSk53iMKcob3iGrVqknvET/++CNGjx5tcV+lUol33nkHU6ZMAVC+9wig5P4EKs91RH5+fon7EBERVWZ2SWqFh4dj0qRJmDJlCnJycnDs2DEMGTIE3377bYkF2m3J9IJRo9EUmzQy1rUCrEsuVRTTEUbWXLwY4zT9oGIPOp2u2NFUlhInWq3W7DlevHixyCmDs2fPNrtfUv211q1bQ6PRmLUzThe4evWqtE2v11u8gLeUoCsYb1EsPVfTDzfFKRiLKIpW7WdsW/BY1uxr6Wdp7XO11OfWxlvwuVobb1FxOGPfWGJN32g0miKfqzUfWAvGW5rnWlB5+kaO12FZn6tc7xEFt9njdWgp8c/3iMIs9U3B4xRF7vcIY7uCHPk9IjMzE3fv3i1y/8zMTLP7Zf29sXb/ynIdQURE5OjsNv2wS5cu2LBhAyZMmIBbt27h1q1bGDZsGD755BP06tXLLjF5enpKt/Pz861Oask5lc3020Brvl0ztrH3sHqlUlnsSC1LqxG6uLiYJeNGjRqFEydOWKwPZs0iAgqFAj4+PmjRogX+85//QKVSQRAEszaCIFiVALT0XArGWxRLz9XapGPB81obr7FtwWMVt6/x4rjgfoD1z9XSh92yPteS4i0pjvL0jTXTW+XsG9PYCiqqb0w/7KhUqiKfqzUfeMr6e2NJefpGjtdhZXyPKNiXxZ23sr0OC3rY3yMKHqco9ugbZ3uP8PX1RXBwMADDojt6vR4KhQJBQUFQKpXw9fU127esvzfW7l9ZriOIiIgcnSDaeklBE02bNoUgCJg6dSrGjh0LAMjIyMAbb7yB48ePGwISBEyYMAGTJk0y23flypX49NNPIQiC1VN6Suv999/Hhg0bAAD79u1D7dq1i2wbGRmJmTNnAgA+//xz9OvXr9zn79GjBxISElCzZk1ERUVZbHP37l107twZADBw4EAsWLCg2GN27doVd+7ckVZclEt2djYuXbok3W/SpIlNlso2vqZOnToFDw+PCj/+w4wFb50L+9N5sC+dB/vSPo4cOYL8/Hy4ubkVqq1VHo7Yn3JdrxEREdmK3b+u8fPzww8//ICIiAgAhhE3S5cuxWuvvYacnBypnRzfLNWrV0+6XVIdkTt37ki3C9YDsaXg4GBptFZiYmKxbXU6He7duwdA3hjlVKNGDdSoUYPfPBIREZFVnnjiCXTr1q1CE1pERERkH5UiE6BUKjFnzhzMmjVLGlL9xx9/YNiwYVJBXjlqQoWGhkq34+Liim1rfFwQBDRq1MimcRVkjLOkoqtXr16VpkTYs1aZLUVFRWH//v1czZCIiMiZLVwI1KpV9L+FC+0dIREREdmB3WpqWTJy5EjUr18fkydPRmZmJi5fvowhQ4bgm2++kWVqWZs2baBSqaDRaHDs2DGMHDnSYjudTietote0adNCdRhsLSwsDDExMUhJSUFcXFyRSbWjR4+a7fMwys/Px969e5GUlIQ6deqge/fuFmtREBERUSWWmQlYWNnY7PEC/vjjD7MVUtu3b4+QkBDo9Xrs3LnTrG3Xrl057Y6IiMgBVbpP9x07dpQKyF+/fh0ZGRkYN24cunfvbvNz+/r6okOHDoiOjkZUVBQSExMtTtvbvn27tORy7969bR5XQb169cL3338PAFizZg3mzp1bqI1Op8NPP/0EwLAE+ZNPPilrjHLKz8/H6tWrsX37dixduhTVq1cHYFi2fOzYsWZTSatXr46lS5daHLmWm5uLb7/91mzb66+/braAABEREdmBry9Qs2bxjxfw999/Iy0tTbrfsGFDhISE4NKlSzh58qRZ2w4dOjCpRURE5IAqXVILMNS2+uWXXzBp0iQcOnQIWq0We/fuleXcY8aMQXR0NDQaDaZMmYIVK1aYXeRcvnwZH330EQDDSoRDhgyRJS5Tjz76KNq0aYPTp08jMjISTzzxhFlyTRRFfPjhh7h69SoAYMSIEXZf/dBW9Ho9XnrpJWnk3K1bt6Sk1owZMwrVHUtMTMS4ceOwc+fOQhevoiiafaNr3Pawql+/vrQ6FDk+9qfzYF86D/ZlKUyZYvhXAZ555hmMHz++Qo5liv1JREQkv0r7V9fb2xvLly/H6NGjZU0sPPnkk+jVqxcA4PTp0xgwYABWrFiB7du347PPPsPQoUORnp4OAJg6dSoCAwPN9j927BiaNGmCJk2aYPTo0TaLc9asWdLS2pMnT8a7776L33//HRs2bMCIESOkUVr16tXDK6+8YrM47G3Lli04fvw4RFHEY489hipVqgAAYmNjcfLkSQiCgEGDBuH48eNYtWoVgoKCkJycjLVr19o58srPx8cHfn5+8PHxsXcoVAHYn86Dfek82JfOhf1JREQkP1lHahnrOlWrVs2q9gqFAjNmzEDjxo3xwQcfQKvV2jI8yYIFC5CTk4ODBw8iPj4en332mdnjgiBg4sSJ0oqN9tCiRQt89dVXePfdd5Gbm4stW7Zgy5YtZm3q1q2LFStWSKslOqOdO3dCEAT0798fCxYskLYbR/YplUr897//laaWTp48GTNmzEBUVBQmTJhgr7CJiIiorMaOBVJSgCpVgB9+KLJZy5YtzUZg+/v7AwAiIiKQlZUFNzc3dOzYEQC44AwREZGDkjWptWbNmjLtN2TIEDRv3hyxsbEVHJFlHh4eWLFiBbZu3YrNmzfjwoULyMrKgr+/P9q1a4cXXngB7dq1kyWW4jz11FPYvn07fvjhB/z111+4c+cOBEFA/fr10atXL4wePdqpE1oAcO7cOQDA2LFjzbZHR0cDMBT/N17EAsBjjz0GwFBvi4iIiBzQ3r2GovHF1dgCiqzHWvDLSiIiInJclbKmliUtWrRAixYtZDufcfRP//79S7Xf448/jkuXLpXpnFFRUaXep0aNGpgxYwZmzJhRpnM6uoyMDACQ6mgBQGZmJv7++28IgoBOnTqZtTcm+XJycuQL0kFlZWVJtUE4lcLxsT+dB/vSebAvnQv7k4iISH4Ok9QissTNzQ1arRaZmZnw8/MDABw6dAg6nQ6CIEjTCozi4+MBGFa6pOJdu3YNGo0GKpUKrVq1snc4VE7sT+fBvnQe7MsyOnsW0OuBSlaQnf1JREQkP5sktUxXnKtRo4bF7eVhekx6uDVq1AhnzpzBoUOHpBpn27dvBwBUqVKl0EXl+vXrAQCNGzeWN1AiIiKqGP8uCkNERERkk6RWjx49IAgCBEHA+fPnC20vj4LHpIfb008/jdOnT+PTTz9Feno6kpOTsW/fPgiCgD59+kjtrly5gh9//BG//vorBEFA79697Rg1ERER2cuzzz6Lu3fvIjg4GLt27bJ3OERERFQONpt+KIpiqbYTlcWIESPw22+/IS4uDl9//bW0PSAgwGx1wxEjRiAzMxMA8Oijj2LIkCGyx0pERET2988//yAhIQE1Syg0T0RERJWfTZJaYWFhpdpOVFbu7u5Yu3YtvvjiC+zduxdqtRphYWGYNm0aAgMDpXYNGjTA33//jX79+mHGjBlQVLI6HERERGSlbduA+/cBDw8gPLzIZgcPHkRubq50v02bNqhatSrc3Nzw7LPPwtvbG3v27AEAdOrUyelXjCYiInJGNklqrVmzplTbicrDz88Pc+fOxdy5c4ts895776F69eoICgqSMTIiIiKqcBMmAAkJQM2awL8LwFhy6tQppKWlSffr1q2LqlWrIi4uDvPmzQMAHDlyBADQrl07JrWIiIgcEFc/pIdCy5Yt7R0CEREREREREVUgJrWIiIiISH56veFfac2YAWRnA97egFZbdLuCdVx1OkN7S+fUaos/ljW02sLnJCIiIptiUoscniiK2LJlC3bt2oX4+Hjk5eVBX8JFsiAI2Ldvn0wREhEREUQRUKuB/HwgL6/sSaQBAx7cvnu3yGZN69RBbtWq0n1frdbQXq/Ho40ambV1y8oyJL3KwSU1FaJeD4SElOs4REREZD2bJLWaNWtmi8MCMCQjzp8/b7Pjk2PR6XR49dVXER0dDcD61TUFQSi0TaVSoWvXroW2ERERURlptQ+SWGq1IbGl0z1IbpVlpJaVnimQuAIApKZiRWQksnNz4e3piZeNqyHn5Rn+lYMyKwtaDw8IanW5jkNERETWs0lSy9rEAlF5RUZG4q+//gIAeHh44NFHH0WVKlXg6upa6mO5urqiW7duFRyh42rVqpW9Q6AKxP50HuxL5+GUfanXGxJWeXmGpJVO92CEljGRZRyh5eoKKJWyhzh32TIkJCWhZkgIXo6IqJiDarVoUr8+EBwMmKy+TERERLZlk6RWjRo1bHFYokI2b94MAGjevDlWrFiBQF5IEhERyUujeZDEMo5S0mofJLc0GkNiS6k0JLK8vAA3N0ChsE+8xtHaggD4+VXMMbOzgdzcijkWERERWc0mSa2oqChbHJaokLi4OAiCgGnTpjGhRUREJAe9/sGUQuMUQuMILWNiS6czJI1UKkNBdzc3wKWCLjufeAK4cweoVg04cqTUuy/95BPcz8uDh7t7xcRDREREdsNC8eTQjFNdmzRpYudIiIiInJQomo/G0mgM2zWaB0ks4wgtFxdDAsvV1fC/hRqW5WY8XxlrV4U//XQFB0RERET2wqQWObS6devi4sWLSE5Ohl9FTSEgAEBiYiJ0Oh2USiWnFDsB9qfzYF86j0rdlzrdgyRWfr4hsWUcoWVMZOn1hqSVqyvg62tIYslRI6tpUyAoyPCvErl79y40Gg2EvDzUaNDA3uEQERE9FBwuqZWXlwd3Dhenf/Xu3RsXLlzApk2bMHXqVHuH41SSk5Oh0WigUqkq34ctKjX2p/NgXzqPStWXovggYWUs5m4coWVMYhlHaKlUgIeHIYmlUtlmNFZx1q2zqtnRf/5BXn6+dP+R0FAE+ftDFEUcOHXKrO1jLVrAs5zXl+np6cjT6yEATGoRERHJxG5JLbVajatXryI7Oxtardbiiol6vR5arRb3799Heno6zp07h7179+Lo0aN2iJgqozFjxmDbtm1YvXo1atWqhYiICCjKWHj2/v37+OGHH8y2jR07Fh4eHhURKhERUeWi1ZoXeBdFwwgt09FYomgo6O7qCnh62rfAeykd/+cfpGVlSferBwUhyN8fySkphZJaLUNDy53UIiIiIvnJntS6f/8+vvjiC/z666+4f/++3KcnJ7Njxw4MHjwYX3/9NebNm4dvvvkGzZs3R2BgIFyKKUgrCALmz59vtk2v1+PevXuFthERETkF0+mD+fmGBJZxhJaxRpVWa2hrukqhSmXfuCtY22efxfhXXrF3GERERFQBZE9qvfnmmzh48KDFkVnWUMpRq4EcxrRp0yD8O+1BFEWkpaXh8OHDxe4jiqLFpBYREZHTMa5IaExcAYbElXGbRmNIbCmVhkSWt7fhfwcZjUVEREQPN1mTWgcOHEB0dLSUhPD19UWDBg2Qk5ODuLg4uLi4oE2bNsjLy0NqaioSEhKkfVUqFd5//3107dpVzpCpkrN7DRIiIqLKxHT6YH6+YXSWcYSWcTSWTmeog6VSAT4+hiRWMaObK51584CMDMDPD5g1q8hmDWvXRo7JrAAfT08AwFOdOyMtORmurq4Ie/RRAICrk41GIyIieljIegWzY8cO6faoUaPw3//+FyqVCvHx8Xjqqaeg0+kwb9481KtXDwAQHx+Pjz/+GPv374dWq8W5c+cwZMgQOUOmSi4qKsreIRAREdmPKJqPxjIWczcmsIz/AEPiyt3dkMRydZW/wHtF2bwZuHMHqFat2KRWn06dLG7/4csvbRQYERERyU3WseVnzpwBYBhd895770H177ditWrVQvXq1QEAhw4dktrXqlUL3377LXr16gVRFLFx40ZcvHhRzpCJiIiIKhetFsjJAVJTDcmdlBTDyKXMTCA9Hbh71/BYbq4hceXnB1StCgQFGUZmubk5bkKLiIiIyISsSa20tDQIgoAuXboUWqGuWbNmAB4kvkx98MEHcHV1hSiK2LRpkxyhkgPLyMjAxYsXcerUKVy8eBGZmZn2DomIiKjsRNGwSmFGBpCUZEhapac/SGSlpAD37hnu63SGVQoDA4HgYCAgAPDwMNTMchYbNgBRUYb/iYiI6KEm6/TD3NxcAJBGZZlq2LAhoqKicOnSpUKP+fv7o2vXrti7dy9iYmJsHic5Hr1ejw0bNuDnn39GXFxcocfr16+PoUOH4oUXXiiUUCUiIqp0NBrzAu+iaBihZZxqaNymUBhGXnl6Gv5/GP7GNWxo7wiIiIiokpA1qeXt7Y2MjAzo9fpCj9WpUwcAcOPGDWl1OlMNGjQAANy8edP2gZJDycjIwOuvv47/+7//K3JVzatXr2LBggXYs2cPvv32WwQEBMgcpePx8fGBVquFiyMVD6YisT+dB/vSeZj1pbGYe36+YVSWXm9IWhkTWPn55gXejasUssB5qY2cOBHJqakICgzEukWLKuy4Xl5ecPH2hsLHp8KOSURERMWT9Yq4atWqyMjIMFvV0MiY1FKr1bhx44ZULN7IWH8rOzvb5nGSY3nzzTdx8uRJAEDz5s3x7LPPIjQ0FJ6ensjJycHly5exe/duXLhwAadPn8bUqVOxfPlyO0dd+dWvX9/eIVAFYn86D/al86hfs+aDJNadO4aNGs2DJJZGY0hsKZWGUViurqyHVQEOHDmChDt3ULNatQo9bs2aNQ1TPgMDK/S4REREVDRZk1qtW7dGXFwc/vzzT6jVari6ukqP1a1bV7p96tSpQkmt69evAwC/mSYz27dvx7FjxyAIAv773/9izJgxhdo89dRTmDBhAlavXo1PPvkEBw8exP79+9GzZ0/5AyYiooeXTvcgiaVWG0ZjGUdoGRNZer0haeXqaijq7upqWLXwISOKIvLy8iyOwFacPm34ebm6Qt+mTZHHOBsXh3zjapAAGtWujQAfH4iiiI4dO8LXxwd//vulWMvQUHi4uZU94NxcCPfvQ8zNhejmZujrAtzc3HgdS0REVMFk/cvarVs3REZGIjk5GW+++Sbmz5+PwH+/zQoJCUHVqlWRnJyMtWvXol+/ftLorFu3bmHPnj0QBAE1atSQM2Sq5LZs2QJBEDBs2DCLCS1TL774Iq5fv46ff/4ZmzZtYlKLiIhsSxQfJKvy8gw1sQDDNtPRWIBhGqGHhyGJ5er60I/Gys3NRVZWlsWkVvDEiVDevQtdcDDu7thR5DGO/PMPsv6t5woA7i4uUOj1iFq/HusPHAAAHDh9GgAQ4ucHf2/vMscr5ORAyMuD3tUVekEA3N0LtVEoFAgJCWFtTyIiogoka1KrZ8+eaNSoES5fvowDBw6gR48emDhxIsaPHw8ACA8Pxw8//IALFy4gIiICgwYNQlpaGn7++Weo1WoIgoAnnnhCzpCpkjt37hwAICIiwqr2ERER+Pnnn3Hx4kVbhkVERA8rrdZ8NJYoGkbtqNWGbRqNYTSWQmFIXnl6Gv53ptUJK0B+fj7y8vKQlZVV6LEgvR5KGBaJSU5OLvIY+gKjpTIzM5GsVEJvIVGWlpYGbV5emeNV5OZCyMuDThShVasNo7VMuLi4ICgoCFqt1mymAhEREZWP7GOgv/rqK4wYMQIZGRnIz883u1h56aWX8OuvvyIzMxPnz5/H+fPnAUD6ls7d3R0vvvii3CFTJZaeng4AVo/gM668WdxFMBnExsZCo9FApVKhcePG9g6Hyon96TzYl5WMXv8gYWUs5m4coWUcjWUcoWWaxHJ1xZUrV6RC8aGhofZ9HpWMTqeTFhbyKVB4Pfu55yDk5ED08ir0mCmhwIgoDw8PqTh/QV5eXvDx8ipzvIJCgdtJSbiv10PU6VC3SRPpsby8POgsTEckIiKi8pM9qRUaGootW7Zg4cKF2L17N2rVqiU9FhgYiMWLF+PNN99ESkqK2X5ubm747LPPULt2bblDpkrM19cXaWlpSExMhK+vb4ntExMTARS+QKbC8vLyoNFoeCHuJNifzoN9WQloNA+SWGq1YZtWaz4ay1jg3dUV8PIyFHgvkGTJz8+HVqtlXxYgiiJ0Oh10Oh1UKhXcC0zly3/5Zel24Ul+D9QMCsL9/Hzpvq+3N9zd3XHy5EnciI1Fq5Yt4efnBwDw9vQsdJ7SEAr0oYeHh3SbfUxERGQ7dqlWGRISggULFuCDDz6AxqSAJwC0a9cO27dvR2RkJM6ePQu1Wo2mTZti6NChZgkwIgBo0aIFDh48iF9++QUzZ84ssf3GjRsBAM2aNSv0mIuLC9q3b19oGxERPeSMxdyNiSxjgXfjSCy12jBCSxAMtbG8vQ1JLP4NKRPjSCqdTgdlOaZldmvd2uL2ZT/+iOhDh5DcqRO++9//ynx8IiIisj+7Xm25u7tb/FbM398fL730kh0iIkfTr18/REdH46effkJoaCiGDx9eZNuffvoJP//8MwRBQL9+/Qo97ubmhr59+9oy7m2bkgAAgMhJREFUXCIicgSiaD4ay/gFnEbzIIllHKHl4mJIYLm6Gv5/yAu8VwRjUstW9ad2HzkCDYBdR45U+LGJiIhIXvwKkRxaeHg4fv75Z5w+fRpz587Fpk2b0KtXL4SGhsLT0xO5ubm4cuUKdu/ejXPnzkEURbRu3Rr9+/e3d+hERFSZ6HQPklj5+YbElnGEljGRpdcbklauroCvryGJxQLvFc5YT0sUxXKN1LLk7Nmz0P1bq0un1yMmJgatWrWq0HMQERGRfGRNahnrGZWXtUXByfkpFAp8++23eOmll3Du3DnpX0HGxQYeeeQRLF68GAK/SScieriJ4oOElbGYu3GEljGJZRyhpVIBHh6GJJZKxdFYNrJw2TJkZmdDpVTiheeeAwCLSa0qo0ZBkZICfZUqSFm7tlTn2LFjB3wAiACEf+/bIqm1bNkyZGdnw9vbGyNGjKjw4xMREZGBrEmtHj16lDuZIAiCtCoiEWBYYGD9+vXYsGEDIiMjERsbKyWxAMNrplGjRhg2bBiGDRsGlUplx2iJiMhutFrzAu+iaBihZToaSxQNBd2NKxVaKPBOtrHwu++QcOcOqgcHY+TAgQAsJ7UUKSlQ3r1r8RhqtRrLli3D9evXCz2WnZ2NEydPwtNkW2RkJK5duwZvb+9C7evVq4dXXnmlTFMgv/vuO9y5cwfVqlVjUouIiMiGZJ9+aJpsIKooKpUKo0aNwqhRo5CRkYGkpCRkZ2fD09MT1atXl1Y3IiKih4jp9MH8fEMCyzhCy1gX69/6TWarFPLLD7vTarVQKBQWvwzVV6li9r+RKIpwdXXF+PHjsWDBAmzZurXE84gATpw8WWj7gP79MX78eLi6ukIURY7wJiIiqqRkTWqFhYVZ1S4/Px/37t3D7du3ARhG2jz11FOFVqYjMnX79m2kpKTgkUceMUti/f333zh69Ch69+7NFTSJiJydcUVCY+IKMCSujNs0GkNiS6k0JLK8vQ3/czRWpZGUnIwnn3sOn06fjme6dZO230xIwMDx4wEAvbt3x0dTp5rtN2bKFPx98SIA4NTOnXjkscewc9cuqNVqqAH8ExeH9PR0+AqC2TWlHsCRv/9Gfl4evJRK/G/uXDz77LPS45M/+AB/HTsGANj3888I9PeXHtv711/478cfA6KIF55+Gr369KnYHwYREREVS9ak1po1a0rVPjk5GcuWLcO6detw4MABDBo0CD169LBRdOSocnJyMHfuXGzbtg1dunTBkiVLzB7/v//7PyxcuBBfffUVRowYgWnTplmczpCXl4f169ebbYuIiLC4QicREVUSptMH8/MNo7OMI7SMo7F0OkMdLJUK8PExJLFcuFZOZaXX65GUnCwVdDfS6fW4/e+0w/TMzEL7paSlSY8DgMbNDY89/bR0/85PPyE1PR0QBDxZYLXjs1ev4n5eHlq0amWW0AKAtIwM6bj6AjMO8vLzpcfu5+eX8pkSERFReVXqK7qgoCDMmDEDwcHB+OKLLzB9+nRs3boVwcHB9g6NKgmdToeXXnoJp0+fhiiKFmtoaLVaKJVKaLVarF27Fvfu3cNXX31l8Vg3btwotO1hVb16dej1eig4esEpsD+dx0Pfl6JoPhrLWMzdmMAy/gMMiSt3d0MSy9W10hV4DwkJebj7sggKhQJBgYFwd3Mz265UKFD932tAf1/fQvtVCQiQHgcMUwvNjvvvv8LpMMBVpUK14GBUDwkpNN0wwM9POq6iwGvI3c3N8JgoIqhKFQQHB0MMCLD6uRIREVH5VOqkltH48eOxYcMGJCQkYN26dZg8ebK9Q6JKYuPGjTh16hQEQcDo0aMx/t9pCabGjx+PiIgIfPPNN/jxxx+xe/du7N69G7169bJDxI6jatWq9g6BKhD703k8lH1pOn0wP/9BgXdjckutNozOUigMo7H8/AxJLAujciuTKgVqQpFBcFAQ9vz4Y6F6mHVq1sSpnTuL3G/1l1+a3S+YwvQHEALAUon5seHheOPVVy0e96s5c4o859NduuDpLl0g5ORAuH8f+ipVoDeZnkhERES25RBfDQqCgG7dukEURURFRdk7HKpEtm7dKiW0ZsyYgZCQEIvtvL29MX36dAwZMgSiKGLDhg0yR0pERFYTRcMqhRkZQFIScPcukJ5uuJ+ZCaSkAPfuGe7rdIZVCgMDgeBgICAA8PCo9AktKsa/U/wslQoAAK+VK+H9zTfwWrmy2MMEBwSgepUqqF6lCtLu3EHe/fsAAJUo4sb167hx/ToS//134vjxin0OREREJAuHGKkFPPg2MzEx0c6RUGUSGxsLwFD7yhojRozAxo0bce7cOVuGRUREpaXRmBd4F0XDCC3T0ViiaBiN5eZmSGS5ubHAuxOZ8vLLuHP3LlQuLoAgFJnU8oyMhPLuXeiCg5Hzn/8UebyebdsCAG7evIk5b7whbQ9WKpH4f/+HCxcuQGNc/RLArVu3ULt27Qp5Li+//DKys7Ph7e1dIccjIiIiyxwmqXXz5k0A4JLKZEbzby2VwMBAq9pXq1YNAJCbm2uzmJyFRqOR6oqouLy9w2N/Og+n6UtjMff8fMOoLL3ekLQyJrDy880LvBtXKXTk51yA0/RlBZnyyitISkpCVlaW9Pe9Iuzfv1+6Xa9uXXzyySdo3LgxYmNjMW3aNFz/t57m/v37MWbMmDKfR6PVQq/RQK/R4JVXXpG2Z2VllfmYREREVDyHSGrFx8dj586dEAQBderUsXc4VIlUq1YNN2/eRFxcHMLCwkpsbywkb20S7GF24cIFaDQaqFQqtGrVyt7hUDmxP52HQ/elMVmVl/egwLtG82C7RmNIbCmVhlFYrq6G/530C624uDhotVq4uLigefPm9g7H7rRaLURRhFarLbZ4fvqCBRDUaoiurlYd15jUGjhgAKZOnSqtaty4cWOsW7cOn332GTb//nu5k1q3bt7E/bQ0iAEBaNq6dZmPQ0RERNartEkttVqNtLQ0HDp0CF9//TXy8vIgCAJ69Ohh79CoEmnXrh1u3LiBxYsXY+XKlSWO5Pvuu+8gCALatWsnU4RERA8xne5BEstYzN04QsuYyNLrDUkrV1fAx8fwv0ulvTwhGzKuOKzT6eBWYOVDU5pSJHNv376NW7du4ZOPP8YzzzxT6HEPDw+8//776NChAz766CPcuXNHGtVNRERElZ+sV43NmjUr1/6+vr4YPXp0BUVDziAiIgK//vorjh49iokTJ+K9995DzZo1C7W7e/cuPv30U0RFRUEQBIwYMcIO0RIROTlRNB+NZaxXpFabj8YCDNMIPTwMSSxXV6cdjUXW0+l0EEURer0eLhWU2ExKSsL69etRvXp1aduMTz9FemYm/H198dHUqQCAZ555Bo888giSkpKY1CIiInIgsia1xH9XsykLHx8fLFq0qNDyzvRwa9WqFV566SUsX74cUVFR+OOPP9CwYUPUq1cPHh4euH//Pm7duoXY2Fjo9XoAwMiRI9G+fXs7R05E5CS0WvPRWKJoGKGlVj+YZqjXGwq6u7oaCry7unJ1QipEo9FIo7WKKhJfWq0tTAPc+ccfuH33LqoHB0tJLVEUUaNGDdSoUaNCzktERETykDWpVZoLBaVSCXd3d1SvXh0dOnTA4MGD4e/vb7vgyGFNmTIF3t7eWLx4MfLz8xEbG4u4uDjpcWMy1cXFBa+88gomTpxor1CJiByfXv8gYWUs5m4coWUcjWUcoWWaxLKy/hE5P2PdLK1WC41GI/1v3A4Un9RSXr8OQaeDqFRCV69eke2uJiZC82+SDABqBgXB28MDgCHZ5efjg0u3bgEA6lWrBjcW6yciInI4sia1oqKi5DwdPSQEQcArr7yCQYMGYe/evTh69CiSkpKQkZEBDw8PVKtWDW3btsWAAQMQEhJi73CJiByPRvMgiaVWG7ZpteajsYwF3l1dAS8vQ4H3Yop908NBFEWzxJXxf+NjOp1OSnBptVpotFoolcpiC8UHvvoqlHfvQhccjHs7dxbZ7tiFC8g0We24V1gYvD088Ovy5dh9+jQA4M8zZwAAw7p3Z1KLiIjIAbESKzmN4OBgjBw5EiNHjrR3KEREjs1YzN2YyDIWeDeOxFKrDSO0BMFQG8vb25DEYoH3h5pery+UwDKOvDIdnSX9M47yg2FklouLC7w8PaXVCW2lTo0awL9JLSIiInJsvPokIiJ62Imi+WgsYzF3jeZBEss4QsvFxZDAcnU1/M8C7w8lnU5XKIFlrIdVMIFlWisLMJQDcHFxgbu7u3S7pNWLTeX16gUhMxOir2+FPy8iIiJyLExqERERPYx0ugdJrPx8Q2LLOELLmMjS6w1JK1dXwNfXkMRigfeHTsGpg1qtVlp8Ra/XFxqBJSWwBAEqFxe4urpKySulUlmqBJYlWW+9ZVW7QB8fsymFria3qxZYeEjJqbJEREQOSdakVmJios3PUVGr1oiiiG3btmHTpk24cOECcnNzUbVqVYSFhWHkyJFo1apVuc8RGxuLH374AceOHcPdu3fh4+OD0NBQDBw4EIMGDSpx5Z8ePXogISHBqnMdPHgQVatWLXfMzkypVKJ58+aFthEROQVRfJCwMhZzN47QMiaxjCO0VCrAw8OQxFKpOBrrIVIwgWUs4A6gUP0r0+RWwQSWSqWy+9/QXo89ZnH70VOnEODiAjdXV3TkashEREQOTRCNVyoyaNq0abm/nSuOIAg4f/58uY+Tl5eHSZMm4c8//7T4uFKpxFtvvYWXX365zOeIjIzEBx98IBVLLah9+/b49ttvi1zxMTs7G+3bt4e13Sd3Uis7OxuXLl2S7jdp0gTe3t6ynZ/KLy8vD6IoQhAEm9c3IdtjfzqPUvWlVmte4F0UDSO0TEdjiaKhoLtxOiELvMvGnr+Xxa1ACJhPLzT+Mz4mCII08kquBJZnMbW28vLykGtSEL4kbXv3xu27d1E9OBiniik0XxpCTg40GRnQBgZCDAiAm8lIsKysLOTn5yMoKAhBQUFwrUQrgfJ6jYiIHJ3s0w9lzKGV2YwZM6SEVmhoKIYOHYqgoCCcO3cO69evR25uLr744guEhIRgwIABpT5+dHQ0Zs2aBVEU4eHhgYiICDzyyCNISUnBL7/8gtjYWJw8eRJTpkzBihUrLK4AdOnSJelnOWHCBLRs2bLYc/oVGGZPVBImPpwL+9N5FNuXptMH8/MNCSzjCC1jXax/C3ebrVLIVd/sQq7fy+JWIARQaPSVxjiKD4BCoYCLiws8PDzMphDKzd3dHa5aLXDxovkDTZsC7u4lJrWWrl2L79atAwAkJSdL/7ft3RsA8PLIkZgwalS5YnR1dYWLuzv0bm7lOg4RERFZT9ak1pQpUwAAx44dw6FDh6TtLVq0QIsWLVClShW4uroiKysLV69exYkTJ5CTkwNBEODm5lZi4qYiHDp0CNu2bQMAdOjQAd999x3c/r04CQ8Px/PPP48RI0YgPT0d8+fPR8+ePUv1jZZarcacOXMgiiI8PT2xdu1atGjRQnp8+PDhmDJlCvbu3YtDhw5hx44dCA8PL3Qc02/VBg4ciPr165f1KRMRkSMzrkhoTFwBhsSVcZtGY0hQKJWGRJa3t+F/jsZySiWtQFhwCqFpAst0BUJjAsvSF2t2c/Ei0K+f+batW4FHHilx1+ycHNy+e9dsm16vl7Zl5+RUWJhEREQkH1mTWi+//DJ+++03HD16FIChJtS0adNQp04di+3v37+P77//HkuWLEF+fj7CwsLw5ptv2jTGlStXAjCszPPhhx9KCS2j0NBQzJo1C2+//TbS09MRGRmJsWPHWn38PXv2ID4+HgAwfvx4s4QWYPiWb8GCBThx4gTS09OxbNmyYpNabm5uqFu3bqmeIxEROTDT6YP5+YbRWcYRWsbRWDqdoQ6WSgX4+BiSWC5cG8bZlGYFQtPkFmBIYKlUKri5uZVpBUJH4+3lherBwcU+TkRERI5H1ivc2NhYzJ49G3q9HsOHD8fs2bOLbe/h4YGJEyciODgY77//PpYuXYrOnTujTZs2NokvPT0dhw8fBgB07twZtWvXttiuT58+mD9/PlJSUrBr165SJbV27NgBwFCPYvjw4RbbeHl5YfDgwVi5ciViY2Nx7dq1QiOxjEmthg0bVq5vUclppKamQq/XQ6FQIDAw0N7hUDmxPx2YKJqNxkq7e9dQh0mrRYCn54NEFmBIXLm7G5JYrq4s8F7JpaWlSTW1AgICim1rTGAZ/5VmBUKXf0dgubu7PxQJLEsmjBpV7umFJcnMyoLWxQV6AP7Vqtn0XERERGQga1Jr1apVUKvVqFWrFmbMmGH1fkOHDsUvv/yCmJgYrF692mZJrZMnT0oXiB06dCiynUKhQFhYGHbt2oWzZ88iIyPD6ppVJ06cAGAoxFncB8sOHTpIo8b++usvs6SWKIqIi4sDADRu3Niq8xKVVnx8PDQaDVQqFZMgToD96WBMpw/m5z8o8K5W425cHLS5uVApFAho2tQwGsvPz5DE4oqtDuX27dvQarVwcXExS2oVrH1lmsAqzQqExvpXD1sCy+hmUhI0xuQegGqBgfByd4coirh6+7ZZ29rBwXAt52jG5Hv3cD8vD2JeHpNaREREMpE1qXX06FEIgoCnn34aLqW8cOjUqRNiYmJw8uRJG0UHKVEElJwsatiwIQBDgik2NhZhYWElHj8pKQmZmZkAgEaNGhXbNjQ0VLp9sUBR1ISEBGRnZ5sdJzs7GxcvXkROTg6Cg4PRuHFjuy+l7Wjy8vKwdetWs239+vVjgW0isj1jMff8fMNqhcYC78ZRWGq1oTYWAGi1EN3dofXwAIqZTkWVn+kUwczMzDKtQGicPijHCoSO5tA//yDTpIB8r7AweFWrBp1Oh407d0KpUEChVEKpUOCF8HBUKWLFaSIiIqq8ZE1q3bt3D0DZVuIzXqhlZWVVaEymEhISpNs1a9Ystm01k2/gEhISrEpqGWtpWXP8kJAQKBQK6PV6JCYmmj1mWiReoVBg4sSJiIqKejDVAIC/vz9GjRqFl156iUkZK+l0Opw/f95sW58+fewUDRE5PY3GvMC7KBpGaBmnGhq3KRSGFQo9PQE3N+hSU6HXaqFgjSyHYmkFwtTUVGi1WiiVSmRlZZklsCrjCoTW8Fy7FoqcHOi9vJBbyul+np6eRV6zFPdlqIuLi8URqEWVZ9DqdPjf4sVm2wZ17WoxqVWe50NERES2J+sVsZeXFzIyMgqNPLLG6dOnAQBVq1at6LAkqamp0u2Salv4m1z4pKenW3X8tLQ0q4+vUqng6emJ7OzsQsc3TWp98sknFvdPT0/HokWL8Ndff2HZsmWcbkREZG/GYu7G0Vh6/YMRWsZElmmBd+MqhSqVvSOnUrJ2BcLc3Fzk5eUBeHANUulXICyB17p1UN69C11wcKmTQO7u7nDVag2rHFqyebPFbQoArhaaFzXp0vRLQCNlEUmz8jwfIiIisj1Zk1qPPPIIDh48iKioKFy5csVsil1xjh07hsOHD0MQBDz++OM2i894YQmg0KqHBbm6Prh8Mt2vOPfv37f6+MY22dnZhY5vmtRSqVQYO3YsBg4ciNq1ayM9PR0HDhzA119/jXv37iEmJgaTJ0/GDz/84FAXxURETsGYrMrLezB9UKN5sF2jMSS2lErDaCxXV8P/D2kNJEdUnhUI1Wo1FAoF3Nzc4O/vD6VSyb/VFy8C/fpZ3/777w3/LAhcuBBKPz+pP1T/Jq60FpJaLpV05BsREREVT9akVr9+/XDw4EFoNBq89NJLWLx4MZo2bVrsPkeOHMFbb70FURShUCiKXDGwIpheaJomrSwxfdx0v+KYfjNY0vFN2xQ8flJSEgBD0mvlypVo37699FhwcDCGDBmCLl26YOjQobhz5w6OHj2KHTt2IDw83Ko4beHy5cvFXqh7enpKdcpM98k1qYVRlJCQEISEhEj3dTodzp07Z1VcoaGh8CpmGe/z589bTEAqFAo88sgjZtvi4+PNRvsVxc/PD3Xr1jXbduHCBWiMH3iLUatWLbNRd3l5eYiNjS1xPwBo1qwZVCYjPu7du4fbBQrlmjLGY+n1fe3aNaumAgcFBaFGjRpm22JiYqyKt379+vDx8ZHuZ2Vl4dq1a1bt26pVK7P7iYmJSE5OLnE/Hx+fQiuNxsbGWpW4rl69utlIUo1GgwsXLlgVb+PGjc2m3KSmpppNVy6KSqVCs2bNzLbduHEDGRkZhdoa+1Oj0SAmJgaBgYGoVauWWZt//vnnQcHpYtSpU8dstGpOTg6uXLlS4n4A0KJFC7NpU0lJSdJ7WnEqy3tEeno6bt68WfQOOh0EtRouWi2ahYYaRmP9O0Lr9s2byLp3z3BfEKBXqSCqVBALFHj39fUt1DdxcXGFfie1Wm2hKdPVq1c3Gwmcl5eHq1evWvVcGzVqZPYekZKSYlXfuLm5FfqS6ubNm1Ltx+IEBgaaTecHUOg5FaVOnTrw9vaW7mdnZxffNyaaN29udv/OnTtWvX97eHigevXqUgJLo9Hg2rVryM/PNxuBZRypZfy7LwgCgoODERQUJK1ACMAs/uLe3+rWrWv2tygjI8OqvlGpVIXe027fvm3V+7efn5/Z7w1g+J0r6T0iQKuFEoAiORlVe/dGxrx5yGjRArdu3QIAuN+9i0c/+AAAkNy+Pa6YrCDdunVruM6bV2Js1hq1bRs0KhWOjBmDxkuXImD+fADA6QKLFfUF8Mjo0VAoFMh+6SVkDxggvacZn49Wq7X497Z27drw8PAw21bwdzMnJwdqtRp3795FQEAAVCpVpbmOyM/PL3EfIiKiykz2pNb69etx+vRp3L59G88//zx69OiBLl26oGHDhtIH2PT0dFy6dAn79u3DkSNHpOWuR40aVegCoCKZfqjUaDTFJp7UxuXTYV2CCjAfnWXNhYfxHKoCU0/Wr1+P7OxsZGVloXr16hb3DQkJwcyZMzFx4kQAwMaNG+2a1NLpdBaH+xtZSpwYPzRYc+yCrNkPgFRwtygajcZiMs7SNmvjtfRcjR+OSlLww4SxRos1Cj5X44eu0u4HyNM3BZ+rtfEWFYcz9o0l1vSNcTSJpe3WJLUKxlua51pQefrGHu8RhZ6rKELQaCCo1VCo1RB0OojGc2ZmPhiNBUCfnw+1UgnR3R2iSvVgNJaxlpbJ87IUb1E/g5LitfaLF0uvQ2v2tVTbqeCIpKJY6htr47X0HmHtvpbiKLivccSV8bnodDp4enrCw8PDbHt6ejru378vxSMIglQDy1i8XalUwtfX1yxRX/A1WNzfSEv9Wlz74piOJCuOpTY6na7E9wipkL1eD+Xdu4BabRavXqOBm3GqZXa22XlEUQQsJOXLLCoKLkolhIED4ZKZKZ1Xp9HA39dXujbx02qh+veLD+HfRLnpaDvj/5Z+JkVdR2gL/E4bXzPGfq8s1xFERESOTtaklkKhwOLFixEREYEbN25Ap9Nh79692Lt3b5H7GC8W+vTpg+nTp9s0Pk9PT+l2fn6+1Ukta6YSWjp+SYxtLBVN9fb2NvuG15IePXrA29sb2dnZOH36NPR6vd2mNZQ0pcJSAVjjBwJrjl2QNfsBKHGZc5VKZfFYlp6LtfFaeq7WxlvwvIIglPm5KhSKYvc1Xhxb+hnJ0TcFn2tJ8ZYUR3n6xpoPgHL2jWlsBRXVN6YfdlQqVZHP1ZoPPAXjLc1zLag8fWOP9whBEKAShAdJLOP0Qb3esE2jgaDRQAEAubmG6YSenoCrKwS93qri7iW9R5h+oC3Y1lK81q42bOl1aM2+RfWNNfta6htr47X0HlHalZUBw3WGMflnmqwyTWaYJumSk5PNViBUKBTw8PCQamEV9bfO0nuEqeIKv1vqV2sKxRf1HmHNvpbaKJXKEv9uGh8XFQrog4IMr32TeBUqFfL/HSmk8/Y2O48gCEAZFhMqNh6dDlVjYqD19ZXOGxgYiN+XLZPa1I2Lg27RIkPc/16rGeMyPp+ifuZF/TxMX4suLi7Q6/XSe5ZxpJalfeS+jiAiInJ0si+dFBAQgN9++w3ffPMN1vx/e3ceH0V5/wH8M3tmd5NsTkIuDsGIyn0VxROs1nrgBYogaj1akYqixbZalf7EW1vbamsVkYKiYms9wBPkEkGpKCLIIVfCEUKSzb3X7Pz+mMxk9swm2U12k8/79coruzuzzzy7w7LZzz7P91m8uNVvVbOzszFr1qy4TjtUpKenq5cdDoffN6qBtMXboy3Crm0/1PQgLY/Ho06raW+Rd71ej759++L777+H2+2Gw+HosoLxAwcObDWEC3Wf9tDr9UHTz9rrlFNOiTg9UauoqChoylC0AqeQRSslJaXdjzU3Nzfiwgtbt26Fx+MJ+cdz4HSWtmhvf9PS0tp934KCgqBpkNEqKSlp1/2MRmO7+5uVldXu12rglBSFcj4j9au9I2FtNlu7H2vg1MC26LT/I3w+uQaW04kMlwsZvXvLQZbb3VIbS3kvM5n8fzQ68u/wxBNPVC9v374dXq8XBoMhaBpdoJSUlFb3CSc7OxvZ2dntum+fPn3adT8geGpgtFJTU1u9rzLSrrGx0a+Au8FgQEFBgV99rMBwSwnNtD96vR45OTnt6q9yf1EUodfr2/R/jd1ub9dK0oA8RTXcKO/WRPOaU94zfDk5qPjgAwCABZr/S0tKUN38ZaYegPZRp6SkAK++Gr5Q/NtvAy+/3OZ+99uxA45nnoGyXM8JgTuUlKDioovUq3pNf5XHYzAYoj5HBoMBgzT/Fuvq6uByuZCTk4OcnJywX5p2xd8R0X4xS0RElKi6ZD1wq9WKe++9F7feeis+++wzbNiwAeXl5aisrIROp0NGRgYGDhyIsWPH4rzzzot6el9H9evXT7185MgRFBcXh9336NGj6uVoP6QEth9JeXm5OmKivR+CgOi/uSMKpPzb4b+h7oHns408Hrm4u7IyISAHV83hll+Bd5MJsNnkAu+dMAqC5zI60a5AqPx4vF75nKIlwLLGeQVCnkt/TqcTSEkBtAG7KEL43/9g+PRTCCtWRN2WpNdDGjsW7nPPRe3pp8eht8H0yii4dowYJCIiovbp0nfdzMxMXHHFFbjiiiu6shsqbaHb3bt3Y+zYsWH33b17NwB52Ln2G/RIMjMzkZ2djcrKSvX+4ezZs0e9rP1msLS0FKtWrUJlZSVGjhyJc845J2I7SiFZo9HY7m91qWdq77e+lJh4PlvRXMxdDbKUAu/KSCy3GxBFuQ6W0QikpsohVhd8eI32Pacn0QZYbre79RUIRVENsJRpg7Y4B1ihdGTUa6JqmDYNuoYG+KIc5azV2Ngoj1J3OmH+8kuYV6+Gee1a6KurW78zAMlshuu00+A85xy4zjwTkmZBi/Zqy+Pp26cPfDk58MXguERERBSdhPgqyefzoaqqCjU1NcjKylJXbursGlAjRoyA0WiEx+PBpk2bMG3atJD7iaKIr776CgAwaNAgv2mFrRkzZgw+/PBD7NixA3V1dWGnOG7cuFG9rA3Xjh07hkeaV++ZMGFCxFBr37596oiwIUOGRFVDg4ioR5Ak/9FYSs0xj6clxFJGaBkMcoBlMsm/W6kpRPGlnSKo/FaLkDcXi9f+qDXxBAGG5gBLWYHQYDC0WiOK2qZx+vQO3T/1H/+AdckS6JqaortDWhrE889H7WmnwTVuHBCwEmFHdfTxEBERUXx1Wajl9Xrxzjvv4N1338XWrVvlIecA5s6dixubl3e++uqrUVxcjF/96lftrmvTFunp6Rg3bhzWrVuHVatW4fDhwyGn/i1fvlxdcvnCCy9s0zEuuOACfPjhh/B6vVi6dCluvfXWoH3q6+vx9ttvA5C/xR00aJC6bfDgwWrx93Xr1oXtIwD8/e9/Vy9PmjSpTf0kIup2RLElxHK51ALv6nW3W74uCHKAlZ4uh1j8QqDLaIMr5bcyNT9w+qB2GwQBRoMBJpPJr/4VA6zE57Naow+0AGDxYojDhsHV/HcZERER9SxdEmrt3LkTd9xxBw4ePAgAfqsIae3Zswfbtm3Dxx9/jHvuuQc33HBD3Pt2ww03YN26dfB4PJgzZw5eeuklvwLne/bswfz58wHIxZEnT57cpvbPO+88FBUVoaysDM899xxGjhyJ0aNHq9vdbjfmzp2rFqJXAj6F2WzGlClT8PLLL8Pj8eDuu+/Giy++GFSEfcGCBXjnnXcAyLW8Lr/88jb1k4go6UlSS2ClFHNXRmgpIZYyQstolEd4mM3yZYYfnUo7RVAbYil/HwTVv9JsU1Z4NJvN6upxHJmcoCQJ+v37Yf7iCzROnRrydeY65xzg2WeDbvcNGgTd8OHA66/7b2jHud64ZQs2f/st0lJTYdDrkWI248qf/7zN7RAREVHX6/RQa9euXZg2bRoaGhrUP0hNJhPcyjSPZtXV1WhqaoIgCPB6vXj88cdhNBrDTgmMlTPOOAMXXHABPvroI2zZsgWTJk3C1KlTkZ+fj+3bt2Pp0qVoaGgAII8qC1yhbNOmTZgxYwYAedrg4sWL/babTCbcd999mDlzJpxOJ2644QZMnjwZI0eOhMPhwJtvvoldu3YBAEaOHImrrroqqI8zZ87EZ599hn379uHrr7/GRRddhKuvvhr9+vVDdXU1VqxYgc2bNwOQg7ennnqKq9tQmx04cEBdFSzcinqUPHrM+fR6/Qu8S5I8Qks7GkuS5ILuJhNgtXZagfdYKSsrU89le1dK60rKCoSBBdy1AVa4FQgFQYDRaITFYvEbgZWsjhw5op7L9q5ImBRcLqS+8AJSVq+G4cABAIB75Eh4NSPRFWKfPvAMGADDvn3wDBsG57nnwnX22bAPHQrTtm3BoVYb1Tc04K6HHsL+sjL1toK8vJiEWuXHjsHZ1AQ0NKBQU6eViIiI4qdTQy2v14tf//rXqK+vBwCcc845uO2223DyyScHLa+emZmJZcuW4emnn8bGjRshSRKeeuopTJw4Eb17945rPx9//HE0NDRg/fr1KCsrw5NPPum3XRAEzJo1C9dcc0272p8wYQIefPBBzJ8/Hx6PB6+99hpee+01v32GDBmC559/PuQf62lpaVi4cCFmzZqFbdu24ejRo3g2xLea+fn5ePrppzFkyJB29ZN6tpqaGng8Hq7K1U102/OpnT7ocskBljJCS6mL1bziHUwmucC7ySSPxkpStbW1ahCS6JQaVx6Pp90rEHaXACuUuro6iKIIvV7fvUMtkwkpn34Kw6FD6k0pq1ejPkSoBQA18+bBl5cHX8AXhxg0CHjvveDb2uCBp5/2C7QA4Iqf/axNbYTTUF+PJkGAlMT/vxARESWbTv2L+J133sGBAwcgCAKuu+46/P73v4+4/5AhQ/DKK6/goYcewuuvvw6n04k333wTd9xxR1z7abFY8NJLL+G9997Df//7X7Woe0ZGBkaNGoUZM2Zg1KhRHTrG1KlTMXr0aCxatAgbNmxARUUFjEYjSkpKcMkll2DKlCkRP3zm5+fjjTfewPvvv4/ly5fj+++/R21tLVJTU9GvXz+cf/75uPrqq2Frx+pDPZVerw8awdLdPkARdQvKioRKcAXIwZVym8cjByN6vX+QlUSjsZKRdgXCUAFWoq5ASB0kSdBVVkJfVgYpJSXk6CsIAlznnAPDq6+qN5lXr0b9r34VsklviNVanU4nkJICDB4celuUZv/iF/juhx+wbedOAMCQQYMwJ0R9UyIiIkoOnRpqffLJJwCAXr164Z577on6fr/97W/x6aeforKyEp9//nncQy1AHo116aWX4tJLL23T/X7yk59gZ/MfSq058cQT8fDDD7enewAAg8GAyy67DJdddlm726AWKSkpnVK3jYjaSDt90OWSR2cpI7SU0ViiKNfnMRqBtDQ5xEqCkUzJiisQ9jBeL/Tl5dCXlUFfWgpDWZl8uflHKezuHjoUVQsXhmzCee65sDWHWmKvXnCPGCEH0FGOampsbERjY2OHH0rfoiK8+/LL+O2jj+KTdeuw4MknYUlJ6XC7RERE1DU69S/+7du3QxAEnHPOOTCZTFHfLyUlBRMmTMCbb76J/fv3x6+DRETU9STJfzSWUsxdCbCUH0AOrlJS5BDLZGKB9ziItAKhNsAK3MYVCJOM0wnDoUN+YZWhOcTSHz4MQQkmIzBt3QpdRQV8ublB2zxDh6Lul7+E64wz5JFYXfjvwJKSgj8/9BAOl5ejMM4lLYiIiCi+OjXUqq6uBgAUFha2+b4FBQUAoBZpJyKibkQ7fdDlainwroRbbrc8Oksp8G63y785RThm2roCoTbA4gqEyUGorW0JqwJHXR07FpNjmNeuRdOVVwZv0OvREKNpfvb77oPO4YAvIwM1zStSt5UgCAy0iIiIuoFODbVsNhtqamrUQvFtUVVVBUAukk5ERElOKebucsmrFSr1lbQjsZQRWkajvEqhMhqLOqyjKxAqAZbRaOyWBdy7G+sbbyD1hRegq6mJ2zEkoxFiQQF0DkfcjqEwff019MeOQezVK+7HIiIiosTWqaFWUVERHA4HvvrqqzbdT5IkrFmzBoIgJOXy5UREBDmk0hZ4lyR5hJZ2NJYkyaOxzGY5yDKbWeC9gwIDLOWysq2nr0CYrHSVlTCvXKmOtBKcTlQ//3zIfSWjMSaBls9mg1hUBLGoCN7m32JxMbxFRfD16pVwIyffWrECX/zvf5g/dy5SzOau7g4RERHFQaeGWmeccQa2bduGb775Bl988QVOO+20qO63aNEiddXE008/Pc69JCKimFCKuSujsXy+lhFaSpClLfCurFIYZeFoCsYVCLsHoalJrWvlHjsWUoiVjHUVFbA//rh6XRIE+XUVYjSjWFwc9bHF7OywwZWUkZEQdeuOv/WW/O82Ql+2796N3zz8MJwuF7bt3ImXnnwSxfn5ndhLIiIi6gydGmpdc801WLhwIdxuN+bMmYO//vWvGD16dNj9RVHEggUL8OyzzwKQV/ubPHlyZ3WXehiXy4VPP/3U77bzzjsPZn67SxQ9JaxyOlumD3o8Lbd7PPKHUb1eHoVlMsm/E+CDcrIRfT44nc6wKxAGTiEUNYW+ldCKKxB2EUmCUFODtD17YDpyBLaKCtg1QZb++HF118pXXoFnyJCgJsSAkeuCJEF/6BDE/v2D9vVq9pV0Ooi9e0MsLvYPrpp/JKs1hg80PkKFfFo1dXW46Z574HS5AABbd+zABdOm4bM33kBeiCL2RERElLw6NdTq3bs3Zs+ejSeeeAIOhwPXXXcdRowYgVNOOUXdZ+vWrVi0aBH27NmD1atX4/jx45AkCYIg4KabbuL0Q4obr9eLzZs3+912zjnn9NhQKysrC16vFwZDp/43QXESt/Mpii0hllLMXRmhpQRZPp8cWplMQFqa/Jv/rtpEG1wJggCfzwdBkuBwOPxWIAwKsLgCYdfx+aCrqJALs5eWBq0oqKuvR14UzehLS0OGWlJqKnwZGX41rAxlZSFDLV9eHqr+8hc5yMrP79ajIX0+H+544AHsLyvzu/3Sn/407oFWaloaTHY7JLs9rschIiKiFp3+qeIXv/gFKisrsWDBAgDAli1bsGXLFvUP7A8//BAffvihur9SmPbSSy/FnXfe2dndJeqxGCB3LzE7n0oxdyXIap7aphZ3V0ZjAfIHZ4ulpcA7g5SoBE4fDFyB0Gq1wmQywev1orKyUl2BMDDA4gqEncDjgf7IEf9VBJUQ6/BhCM0jhTpCHxDOaDnPOgtCU5M6RdBTUhJ6R50O7vHjO9yXZPCXhQvx8dq1freNHDwY8+6+O+7H7pWbC19ODnwZGXE/FhEREcm65Kvy3/zmNxg5ciT+/Oc/Y/fu3RH37d27N2bOnIkpU6Z0Uu+IiMiP1+s/GkuS5BFabnfLNEOfTy7objK1rFTIQCUibY2rcAFWNCsQMsDqfMZt22D/3e+gP3oUghIqxoGYkxNxoYTaBx+M27ETmXnVKghOJ6SUFLgmTFBvX/3FF3ji73/32zc7MxMvPvEEzFw5lYiIqFvqsvkfEydOxMSJE7FlyxZ89dVX2LNnD2pqauD1emG321FcXIzRo0fjtNNO4/QnIqLO5PO1BFZKMXdlhJYyGksZoaUNsfihMazAFQiV38o2rkCYAEQRKR991DJFsKwMjvnz4QtRXNyXlgbD4cMdPqSk10PMzw9dmL2wUB7pSEHSn3wS+mPHIPbqhYrmUKv08GHMvO8+NfgF5NfOPx55BAV50Uz0JCIiomTU5WnRiBEjMGLEiK7uBhFRz+bxtIRYbrd8m9frPxpLKfBuMgE2m1zgnavjBeEKhAlIFKE7dgyG0lKIBQVBRdYBADod0h99FLrGRvUmQ2kp3CFCLbGgAJJOF9UoLclsDlpFUC3M3rt3t65v1VmcLhdunjsX1TU1frf/ftYsnDF2bBf1ioiIiDpDl4daRJSYtm3bBo/HA6PRiMGDB3d1d6iDgs6nUsxdCbKUAu/KSCy3Wx6hJQjyh+7UVDnE4shZP9opgoErEAYGWB6PJyYrEO7ZsweiKEKv12PgwIFxe2xJx+2G/tAhv6Ls6qirw4chNI+Mq/v1r9Fwww3B9xcEiMXF0O3cqd6kLysDQoUiRiN8eXnQHzkCAPDZ7UGrCHqbVxf05eSErSfHc9k+9bfdpk4/BID7nngCW3fs8NvnwnPPxcwZMzq1X/v370dTZSWkzEyUDB3aqccmIiLqqfjphIhC8vl86g8lP58oQnK5gKYmoKKipZi7x9MSYikjtAwGOcAym1ngXSNw6qDX61VfH525AqHyuuyJKxgKdXX+YVXzSoKGsjLojh2DoJl6Fk6kwutiURGM2lCrtDTsvjUPPQSfzQaxqAhSWlrbHkiznnwuO6Lp0kvVy6++/TZe++9//bYP6NsXzz70UKc/r8r5lPi+SURE1GkYahERdVeiqI7EMhw/Dng88lS22tqWIMvnk0MrkwlIT5eDLNZrCgqwAgu4BwZYXIEwRiQJuspK/+CqeeSVoawMOoejw4eIFGq5hw6F4HSqo67cw4aF33f06A73hTrmm+3bcd8TT/jdZrVYsODJJ5GWmtpFvSIiIqLOxFCLiKi7kCQ5rFJ+lGLjHg909fXQNzXJ/+nn5MhTCi0WOcQyGnvsaCyuQJggPB5kz5gBfWkpdE1NcTuMz2KJuKBB4/TpaJw+PW7Hp9hZs3EjZt53H1zKCNNmzzzwAE4aMKCLehWadtoxERERxRZDLSKiZOb1+hd4lyR5hJYSbDXfJrhcgF4P0WoFevXqkQXeI61ACAQHWFyBsONMmzfDsHOnOtKq8aqr4Dr77OAdjUboKitjEmiJmZkha1uJRUXwZWX12AC3uxBFEX966SU88+KLfisdAsAt116LSeef30U9C83pdMLpdCI9PV0NwomIiCh2+M5KRJRMlALvyo+ycp62LlbzSnswmeQC7yYTxKoqiF4vBIOhRwRara1AGDiFUBtgcQXC6Ai1tfJUPp0O3kGDQu5jXbwYKevXq9c9p54aOtSCXM9KX1nZ6nElQYAvLy/sioISp511W8erqnD7/ffj1U2b8BSAMgDFzdt+MmIE/nDHHV3Yu2CiKKK2thZmsxlWqxXp6en8v4SIiCjGGGoRESU6ZUVCJbgC5OBKuc3jkQMZvV6eTtgcZPWE8Apo2wqE2nALkAMso9GoTiGMdgXCHkGSoDt+XB5lFWJFQV1NDQDAOX48HH/5S8gmxKIiv+utFWnHt9/KhzYaIRYU+I2yEouK5PCqsDDiFELqnjZt2YJf/e53OFpREbTtgrPPxl/mzYPRaOyCnoUmSRIcDgcEQYDdbofFYoHNZuvqbhEREXU7DLWIiBKNdvqgyyWPzlJGaCmjsURRnkZlNAJpafKH/B4wrUUJsJSftqxAaGgegZWSksIAS+HxQH/0qF8xdm1wJbhcrTZhaC2o0ogUajVMnYqmSy6Bt6gIvl69uGABAZDDob8vXoxH/vY39fX8NYBSAMcBPDB7Nn513XVd+1r2eCA0NUFq/jcrAairq4PX60VWVhZMJhMyMjK6rn9ERETdWPf/BERElOgkyX80llLnSQmwlB9ADq5SUuQQy2Tq1vWBAmtfaQOstqxAqNS/6qkBltDU1DLKqrTUL7jSHz0KoYNFrPWHD8sha4gQyjtgANzDhqmjrLwDB4Ztx3vyyR3qB3U/jtpa3PnQQ/hozRq/2ycB6J2bi388+ihuGzGiazqncLvlUYtGIzypqfAJApw+HxobG5Geng6TyYTMzMwe+/8PERFRvDHUImqm0+mQm5sbdBtRXGinD7pcLQXelXDL7ZZHZ+l0cnhlt8u/u+HoFa5AGB/pf/wjzOvXR1Wnqr0knQ5ibi6E2lpImZlB291jx6Jq7Ni4HZ+6r2937MAtc+ei9PDhoG1n/eQneO7hh5GTldUFPdNwOqGrq4NkNEKy2yE5HHCaTKhvaEBKSopaRyuRpkUSERF1Nwy1iJpZLBbMnDmzq7uRMPr06QNJkvjtcqwoxdxdLnm1QqXAu3YkljJCy2QCrNaW0VgxUFhYmBDnM9QKhNqQiisQRqbfvx8nbdkCQ1kZTEeOACefjIabbgq5r9DQEJNASzKZ/Aqxq7Wtiosh5ufLU2CpXfLz8xPidZloaurqMPmXv0RdQ4Pf7YIg4O5bb8WdN93U5a99oakJQn09JLMZUloapJQU5J50EvTV1bBnZLCOFhERUSdhqEVEIbH+Rwx4PP4F3iVJHqGlHY0lSfJoLLNZDrLM5rgUeLfb7TFvszVcgbCNPB7oDx+GrqoKnjBTqlLWrEGapii7q7Y2bKgVWM8qEl9amn9YpVwuKoIvN7fHLDrQ2dLS0rq6CwnJnpaG+379a/z2scfU27IyMvD8/Pk4e9y4LuyZTGhogNDYCMligZSaKv+226GrrYXNZkNWVhaMRiPfR4mIiDoBQy0iolhRirkro7F8vpYRWkqQpS3wrqxS2A1GunR0BUIlwFKmD3bXAEtobGwpxB6woqD+6FEIPh98ViuOrV0bsl6aNyCoilikvbjY/3pODsTi4uBRV8XFkLog9CSKZMZVV2Hjli3470cfYcywYXjhsceQ36sXACDtiSegq62FLz0ddXPndmq/hLo6CE4nJKsVks0m/6SloampiXW0iIiIugBDLSKijlDCKqezZfqgx9Nyu8cjB1sGgzwKy2SSfyfxh53AAMvj8XAFQoUkQXA45GLsgSsKlpZCX1XVahO6xkboqqvhC1EvKHD0le7YMfnfmdkctK/rJz9B9dNPy8FVYSFgsbT/cRF1MkEQ8OR99+HUkhL8cto0v7pUKZ99Bv2xYxB79eq8UEuS5EDL5WoZnZWWBslmg9frRW1trVpHy263s44WERFRJ2GoRUQhNTQ0qLVeWBNEQxRbQiylmLsyQksJsnw+ObQymYC0NPm3oWv/u21sbFTPp9Vqjfp+XIEwBFGE7tgxv5FW2hUFdQF1gNpDX1YWNtRyn3ACPAUF8qitfv3kf28h+PLz4crP73BfKH6amprU16WlB4WODY2NKDtyBEeOHUN5RQWuvvTSkPul2myYdcMNndu5UCQJQm0tBI8HvrQ0ICVFLgxvsUCSJNTU1ECv18NoNEIURbVGIBEREcUfQy0iCunHH3+Ex+OB0WjE0KFDu7o7XUcp5q4EWcq0OaW4uzIaC5CnEVosLQXeEyjA2b9/P7xeLwwGA0455ZSg7dGsQBiuuHtPWYHQ8p//wLZkCfSHD0NQznkc+Ox2CLW1IbdJNhs2zp8PURSh1+tRUlISt35Q/JWWlib1ufR4PHDU1qLK4UBVTY38u/mnprYWf5g9O2SQ/fHatZh5330A5P8/evfq1aZaWVUvvdSyOmy8+XwQamogiCJ86emA2Qyf3Q6kpAAAamtr4fV6kZWVhb179yItLQ3V1dU9+32TiIioEzHUImrmdruxYcMGv9tOP/10mGK0+hwlEa/XfzSWJMkjtNzulmmGygcq7UqFSRLktHUFQu227rYCoeBwwLR5szrqSvB4UPPHP4be1+OB4cCBmBxXzMvzK8au1LYSi4ogsXg4dQGv1wtHbS0qNcFUteZylcOB6oDgqra+PmKbd996K2whRoZmaQqoS5KE2++/H5+89ppaM6s1YmFhmx5bu2kDLbsdMJngy8hQp/s2NTWhqakJdrsdJpMJdrudo7SIiIg6GUMtomYejwdr1qzxu23MmDEMtXoCn68lsFKKuSsjtJTRWMoILW2IlQT/NpQVCJuamuB0OgEA5eXlAFpfgVAJsKzJugKhJEFXVQV9WRk8gwaFrDtlKC1F5r33ttzFYEDNAw+EnC4aWKQ94qENBogFBX5hlRpiFRSoozyI4kGZ0hjKfz/6CJ9t2BAUUtXU1cW8H1UOR6uhFgBUVldjzh//iKV/+1vM+9BuogidwwEA8GVmAkaj+huAXx0ti8UCu92OiooKeOI4ipOIiIiCMdQiop7J42kJsdxu+Tav1380liTJo69MJsBmk0ORBA51lADL6/XC7Xb7FWlvaGhQQ626ujo5xFLCO/ivQJhUAZbXC315ud8qgtpaV7qmJgDA8VdfhXfQoOC7BwRVQnN7oUaCBBZp91ksclgVYkVBMS+vy+uoUfegjKCqqavDgL59Q+6zcv16/Omll9SgquSEE/DOggUh9/12+3a8+f778eyyqtLhQHFBQdDtmc2rbdrT0pCVkYGRQ4bgjl/8olP6FBWPB7qaGkCnaxmhlZmpvqYlSYLD4YBer4fdbofVam1TrUIiIiKKHf7FTUQ9g1LMXQmylALvykgst1seoSUI8jfxqalyiJWgwUTgCoTaACvUCoRVVVXw+XzQ6/Vqba2kWYHQ6YT+8OHQhdkPHYKgrK4Ygb6sLGSoJWVkwGez+RV315eVhQ61CgrgmDcPYvPIK19WVkLVTaPEJ4oiqptrUFU7HNi2fTuqa2pQ19AAvdEYcqqfo7m+mtFgwIGNG0O+VhsaG/G/775Tr1dWV4ftQ+AoqVhJT01FVkYGMu12ZGVkICsjA6lhgp7C3r1RumkTDO38/9W0ebP8f7bJBPfo0R3pdjAl0NLr/QMtzTTr2tpaiKKI7OxsGI1G2JtDOiIiIup8iflpjYiooyTJfzSWMiXE42kJsZQRWgaDHGCZzQlX4B2IvAKhdnRWpBUIlRUszWYzMjMzu+qhhCXU1vqHVaWlLZePHetw+4bSUrhCHliAe8QICE6nGlaFrddjNMJ58cUd7gt1L4eOHkXZkSNB9aZCXXfU1ra75pLH60V9QwPSUlODtgUGVdU1NWHbyYwigAkVUGU2/1av2+3Ibr6ckZ4OY/O0vGgoi0u0l/0Pf4D+2DGIvXqh4oMP2t1OEJcLutpaeaqh3S4Xhc/I8Buhq62jZTQakZWVldhfChAREXVzDLWIqPsQxZYQy+WSgy1lhJYSZPl8cmhlMgHNK1klSoH3aFcg1O4T7QqEZrNZHcmVKAzff4/0xx+HobRU/iAZJ5LRCKF5GmIojmefjduxKTn9eOAAvvzmGzWQ6p2bi1uuvTbkvk//859Y+s47ndKvKocjdKgVEFQ7mkcShVrEYfCgQbh12jS/cCorIwPZzZczm8OaRGNdsgS2V18FAOiOH1d/5154IQCgYdo0NE6f3v4DOJ3Q1dVBMpkgpadDMpshZWb6fcmh1NGyWCywWCzIyMjoUDhHREREHcd3YiJKXpLUElgpxdyVEVpKiKWM0DIaAYtFDrGMxi4fjdWRFQgFQYDRaEzMFQi9Xpi+/NJv1FXt/ffLU/UCmUwwff99TA7rs9mCirIr1329eiV0LTSKLZ/Ph5q6uvAjphwOVDocEEURi8MEmp9v3ox7H3lEvT5qyJCwoVa8pvOFUl1bi1BVtYp698Zjv/udOnIqKyMj7Oih4aecguGnnBLfjsaBrqEhaNSm4POpt2mnELeV0NQEob4eUkoKpLQ0+bfd7vc+oa2jlZ6eDqvVCovF0u5jEhERUWww1CKi5OL1+hd4lyR5hJZ2NJYkySGGslJhFxd4V2pceTwev6AKiH4FwkQJsISmJujLyuDLzIQvJyd4B50OmXffDUGZ2gmgYcaMkKFW2Gl+YYjZ2f6rCGqKtEsZGV0eVFLsKQFVqGBKvR6wzVFb2zIFNwK9Xg+fzxdyQYTAoKqqeRW8UKKZzhdKqs2GVKsV9tRU2NPTUVxY6DfdLzvE9D9TmBFU6WlpuP6qq9rVj2Ths9kg9uoVcXt7CA0NEBobIVkskFJTIVmtkNLTg/arqalR62iZTCbW0SIiIkoQDLWIKLFppw+6XHKApYzQUupiNQdEMJnkAu8mk7rseud31xdyBBbgP71Q/Um0FQglCUJNTejaVmVl0DdP+6m9+240hhq5otNBLCiAYf9+9SZ9aSk8w4cHH8pqhZidDX1lpXxdp4OYnx8yuBILCyFxdbGk5vP5UFtfjyqHA4IgoH9xccj9Hnv+eaxYtUodZRVNQNUeoiiitr4eGSECjLbUqMrKyIDNag2azhdYd0pblyrTbofZZMKuXbvUaYIlJSWxfojdSuP06R2bXhiCUFcHwemEZLPJYVZqKqQQ0zubmprgdDrVOlqZmZmso0VERJQgGGoRUUinnnpq1x1cWZFQCa4AeRqhcrvHIwdBer08CktZqbCTP2S0dQVCtaaVIMDQHGB11gqEAwYMaLni80FXUSFPEQxcUbC0FLr6+lbb05eVhd3mLSryC7UMEfatnTtXDreKiiDm53dZGJlM/M5lF1ECKnUEVXU13F4vLpowIeT+L772Gub9+c/qa2DC+PF49S9/Cbnv8aoq7N63L25916pyOEKGWnk5ORh68skto6YyMyFJUsjX6DWXXoqpkya16/iJcC57JEmSAy2Xq2W6YXp6yODc4/FEXUerS983iYiIeiiGWkQUUqdOcdNOH3S55NFZyggtZTSWKMqhldEIpKXJo7E6sUBvaysQBhZ4D7UCoXb6YNy/5fd4oD9yJGiklaG0FPrDhyG4Qq4FGLVIQZX3pJPgqaxUR1q5x4wJu6/rvPM61I+eKNavTUmS1BFUftP6QkztU0Ks6uapWFqZdnvYUMtqsfjtH2k6XyxrVFktlpAjqLIyMpBlt4cMtABgQN+++GjJkqiO0ZHXcsLUwutJmkejCl4vfM2LhfjsdrnmYtCuEmpqamAwGJCeng6bzRaxjhbPJxERUedjqEVEnU+S/EdjKcXclQBL+QHk4ColRQ6xTKa4j8Zq6wqE2gCrtRUI487lQuadd8oB1tGjEOI0bQuQ69CEUz9zJupnzozbsaltVn/xBX748cfQRdNralDtcMjTYDso0op7balRlRWmVpElJSUolMoKMbVPG2KlmM0deUjU3YgihNpaCKLoH2ilpATt6vP54GheUECpo5UeJgQlIiKirsNQi4g6h9frPxpLKfCuhFtutzw6SynwbrfLv+MYCnV0BUIlwDIajXEt4G7YuROGH39Upwg2XXwx3GPHBu9oMsG4fXtU0wdbI+n1wfWtmlcW9BYWhhzVQLEVbrobAKzasAEffPaZGk6NHjIE991xR8h9l7z9NpavXBnPrgJoXh2uthbZmZlB2wJDLafTGbadiWecgfy8vKDaVJYQwQNR1Dwe6GpqAEGALyMDMJnU34FEUUR1dTV8Ph+ysrJgMplYR4uIiChBMdQiopDKy8vVURd5eXltb0Ap5u5yyasVKgXRtSOxlBFayiqFymisOAgMsJTLyrYuW4HQ54OuvByCKEIsKgq5S9qf/wzzl1+q1739+oUOtQQBYnExdDt2RHVoyWxuKcZeVARvc2glFhVB7N2b9a1iSJIk1Dc0RDW1T/nJSE/H2rfeCmqrsrISX33zDZb85z/qbeYIr5tYTucLJcVsVsMnZ5hprYNPOgmfvPZaVAHVif3748T+/ePV3YRSWVmprsCYnZ3d1d3ptoSmJgj19ZCMRnllQ6NRDrRC/B/n9XpRXV0NAMjKyoLZbEZWVlbYOlpaHX7fJCIiojZjqEVEIZWXl8Pj8cBoNEb/x7nH41/gXZLkEVra0ViSJI/GMpvlIMtslq/HUMKtQOh2Q3/okP8qgkqtq8OHIXg8cJ57LhxPPRXy7mJREaAJtVor0m7UhFo+ux3eoiI40tPR2KsXXPn5yBk9GmJREXw5OZ1eXL87UAIqJYSqDBNKVQcEVh5llc4ouZUpuAEqKythDPg3GasaVdqAKtRKfqG2WaMYtWezWjH4pJOi7kdPUVlZqYYgDLXiQFsQ3mKRVzc0mSBlZIR83/F4PKiuroZOp0NmZibMZjOys7Oj/hKjXe+bRERE1CEMtYiaCYIAa8DKR5xq0AqlmLsyGsvnaxmhpQRZ2gLvqanySKwYjgBqbQXCwCmE2mLVSmgVixUIhfp6/2LsmhUFdeXlEJpDs3AiBlXFxX7XIxVpb7rqKrgmTFBHYEnNNWB27dqlfni2l5S04ZH1DMerq1F2+LA6eio/NxfjwxS4nzprFtZs3Bj3PtXU1akfkAOlp6b6Xa+uqQnbTkn//jhz7NhWw6loAyqipOD1yoGWKMKXlgakpECy2SClpYXc3eVyweFwwGg0IiMjQw20OvylBhEREcUVQy2iZlarFb/5zW+6uhuJTwmrnM6W6YMeT8vtHo8cbBkM8igsk0n+HYOAMNoVCIMCrFisQChJ0FVW+oVV+ubwylBWBl2EkTLR0JeVyc9biD6JffvC26ePOkXQO2hQ2Hbco0d3qB/JTJIkNDY1tUztq672GyllSUnBr2+8MeR9//nqq/jrwoXq9Unnnx821LKH+VAcD47aWuSGGMFTnJ+PSeedhxP69UNWRgbycnLCtnHFhRfiigsvjGc3iRKLywVdXR2g08GXmQkYDGELwgNyjbeamhoYjUZ1hFZWVhYDLSIioiTAUIuIIhNFoLFRDrGUYu7KCC0lyPL55DDGZALS0uTfUdQfiSQwvIp2BcLAAKujKxCmPfMMTF9+CX1ZGXRNTR16TBEJAoTaWkghVn5znX02XGefHb9jJyBJktDkdLZM7dPWogqzil+VwwFXmCl7ANCnsDBsqBW44l6spvOFYjIao5vil5kJe5jV1voUFGDOTTehhKPuiPwIDQ0QGhvlaYbN70e+jIyw70lNTU2oqalBSkoK7HY7LBYLi8ITERElEYZaROSvuZi7rr4ehoYGGAQBcDhairsro7EAeRqhxdJS4L0dHwK0Na7CBVjRrEDYlgBLd/QojDt3qqOuvP37o2nKlJD76svKYNy9u82PKxQxM7OlEHtxsV+Rdl9WVretb6UU4g9XaPm5RYvw3Q8/BIVU4YqOt1dbgqpI+2ZqAjCjweAXUIWc3tf8O1szxY8fmIlizOeTpxu63ZCsVnmqodks188K83praGhAXV0drFYr0tPTYbFYkJGRwdcnERFREmGoRURyMXdlSmFzMXddfT2kpibofT7g2DF5NJZO579SYRtHQAWuQKj8VrbFagVCobYWuspKiGFWULO8+y7SXnhBve467bSwoVa4FQlDPj5BgC8vTw6rmlcS1AZXUkAdpGSlTPHzeL3oH1DvS/Hia6/hzfffV0Oqqy+5BI/97nch9127aRPWbtoUzy4DAOobGuByu0OuFJiVkeEXUA3o2zdsO7+4+mpcc+mlyMrIgM1q5Qdgoq7m8UBXWwtIkjzNsHmUlmSzhb1LXV0dGhoaYLPZkJaWBpvNBnuIkbJERESU2BhqEfVEPp8cXjmdLcXcm0doKaOxDFVV8u0pKS0hVogwIPwh4rgCoSRBd/x4UFF2tb5VTQ18djuOrVoVsm9iQBATqUh7YKglGY0QCwv9wipvc4AlFhS06TlKBI1NTWGn8oW7roygGjJoED5+9dWQ7VY5HNi2c6ff9XCyOzidLxSjwRByxJTX6w0Zak0YPx4HNm6MKqDKycqKeX+JqJ2cTrl+lsEAX3o6YDTKwZbZHPYuNTU1aGpqUsOstLQ0pHVirTwiIiKKHYZaRD2Fx9MSYil1h7zelnBLKfCu1wMmE8S0NHiVOlmtjDCKtAJhYIDl8XiiW4HQ64X+yBE5rCotlQuza4IroZWpabqaGgh1dSFXugoMqvSHD8vPRYjpca6xY1Fz//3qqCtfr15tHqHW2Xbu3Yvyigq/UOrHffvgqK1FbX09XB5PUEDVHpFW3Mtsw3S+1mpUGfT6oKl8oab6ZWuup9psbRpBxYLQRElGkiDU10NwOiGlpMgjYZX6WWH+j5YkCQ6HAy6XS62fZbfbYYswoouIiIgSG0MtomYejwdbtmzxu23EiBEwGo1d1KMO8vlaQiylmLsyQksJtkRRrjViNMrBldmsBjuS2SwHPQFiugKhxwPjoUN+qwgqIZb+6FEImvCrPfRlZfCefHLwYygqgpid3TLSqqhIDvVChFpiv35o6tevQ/2Ihc1bt/rVnRo7fDgmnX9+yH1nP/ggvt2+Pe59ilWNqrPHjYPNZlNDquyA0CotNZVT/Iiohc8HoaYGgtcLKTUVksUi/6Snh62fJUkSqqur4fF4kJGRgZSUFGRmZsJisXRy54mIiCiWGGoRNXO73fjggw/8bjv11FOTJ9SSJP/RWEoxd4+nJcRSRmgZDHKAZTaHLfBusVjgah7FU1dXB4/H0+4VCJX6V4IgIGX5clj/8x85vDp+PH5Ph04HfUVFyFBLysxExccfx+3YgZwuV8ipfNoV/SodDvQrKsLjv/99yDb+88EHWPjmm+p1t8cTNtTq6Op80XK53XC6XEgJMc1n7LBheHbePHX0VG52dth2fnrWWfjpWWfFs6vdisVigSiKHVrVkxIDz2U7KPWzAHlUlskEKT0dUoRwyufzobq6Gl6vF5mZmTCbzcjKyoI5whTF9rBarfB6vWEXxSAiIqLY47suUTITRf/RWJIkj8ZSrrvd8nVlGmF6uhxkBXyACrUCodVqVb/Brq2tjbgCocnthn3vXqQcOQLz0aPQeb2ou+uukF3WVVXB9M03MXn4ktkMb2Fhy4qC2vpW+fnyCLQYc7pcYYOpKocDVSHqUTU2NUXVdmV1ddhtmQEFjDsynS8UvV6PTLs9uA6VZuRUpt2OrMxM9XJ6amrYaXt9CgvRp7Cwzf2g1hWHKc5PyafbnktJUmsk+v1WLoe7XZIghGtDec9xOuW6Wdr6WRFqGYqiiOrqavh8PjXIysrKgikO9Q8HDhwY8zaJiIgoMoZaRMlEkloCK5dLnh6oLfDudreM0DIaAYtFDrGMRnU0liRJ8LjdIVcgBPzrYykrEApuN4zHjsGbnw9DSkrQCoSmzZuRNXu22oYvJQV1d94ZcgRYW1YTBABfWpp/WKVZUdCXmyuvyNhOLrdbDZ7SU1NRlJ8fcr9f3HOPOvUv2oCqPSLVqGrLdL7crCxkN4dPgbWntHWnog2oiCjBhAmEYhEaBd03xHYh3PFjRfveIQgt1wVBnmZos0EymyFlZER8D/B6vahu/rJACbSys7M5koqIiKgb4bt6GJIk4f3338e///1v7NixA42NjcjNzcWYMWMwbdo0DB06tMPH2LVrFxYuXIhNmzbh2LFjSEtLw4ABA3DZZZfh8ssvj2o6QizaoASnTB9URl5JkjxCK/A2nU7+ttpqlYMsna5lBcLGxpArEGqnEIp1ddAdPAjT4cMwHzmC9KNHYT5yBKYjR2AoL4fg86Hirbcg5uUFddEbMNpA53RCd/y4HDoFCBVqibm5fmGVWFysXpaiXGLd7fH4jZqqrqlBqs2Gc047LeT+d82bh9fffVe9fvv11+P+O+4IuW95RQXKjhyJqh8dUeVwQJKkkPWj+hUVYezw4erIqZIBA8K28+Bdd+HBMCPliCgK8QiNtL9babsrQyP1CxDtfkpw1LxdCmwnMHhqpe2Ix4+CZLOFXAREy+12w+FwQKfTqVMOs7Oz+XcRERFRN8NQKwSn04nZs2dj9erVfrcfOnQIhw4dwnvvvYc777wTt956a7uPsWzZMsybN89vhExVVRWqqqrw1Vdf4e2338Zzzz2HjAjTiGLRBiUg7fRBl0sOsJQRWspoLKWAu7IyockEUadrGXlVUxO8AqHHA9/x49AdPAhd82qCKc2hlfnIERgiTH1TGEpLIfbvH9zl3FxIJhMEpWYX5CLtoUItb1ERau+6q2XUVWGhPKJMQwmoqisqULV7t1pzqjrE1D7lcn1DQ9CxTh81KmyoZbNa/a5Xx3g6XyiCIARN8csOWNEvXKg18YwzMPGMM2LSD6IuF6vQKFQb2u0MjUJv74hIx4uy/61dliLdV68POTpLkiS43W64XC64m0cjm0wmZGRkqIEWR6MSERF1Pwy1QrjvvvvUQGvAgAGYMmUKcnJy8P333+P1119HY2Mjnn76aeTl5WHSpEltbn/dunX4wx/+AEmSYLFYcM0112Dw4MGorKzEW2+9hV27dmHz5s2YM2cOXnrppZB/hMWiDUogyoqESnAFyCO0lNs9HvkDl14PmM0QLRZ4dDp4vF54XC54GxrkIu2iCOHoUeDAAXnUVfOKgsbDh2E6cgT6xsYOdVNfVhZ6g04H78CBgMuljrTyZWaG3tdiwSsZGTj844+o/vpr/5Cq+XddiICqPSLWnQoYAVbZxlBLEARkpKf7TfELnOoXeN2eltZlowRKS0vVgtTdto5PDxHVuWRo5B+sxCo0Crwt0u1RCHkuowiN1McXq9BIuz3S402wVUh9Ph9cLpf6I0mSPCXeZEJqairMZrNaQ6sz/g7as2ePWiie9bWIiIg6B0OtAJ9//jnef/99AMC4cePwz3/+U10d5+KLL8ZVV12Fa6+9Fg6HA4888ggmTpyI1NTUqNt3u9146KGHIEkSrFYrlixZglNPPVXdPnXqVMyZMweffPIJPv/8c6xYsQIXX3xxzNugLqadPuhyyaOzlBFaymgsUQQEAV6dDh6DQf4tSfA6neoqg6IoQvf990h/4QUYDh2C8ehR6DQj92JNd+xY2G3PXn45Nn3zjRxMbdmCqX374rp+/ULvu2AB9h48GKdetoi2RpUgCPAoo99CuGHyZFx47rl+IVVGenpSTWNpamriKmux1NbQKGC7EKkN7f1D7OMtL4fo9ULS66GzWjsnNFJ+hwt+EjQ0Cqm10CbeoZHmck1FBbyiCIPRiMK8vIQLjRKRx+PxG5EFACaTCTabDWazWV2x2Gw2IyUlBVarFaFGv8ZDY/NU/6RZNZmIiKgbYKgV4OWXXwYAGAwGPPzww0HLPQ8YMAB/+MMfcPfdd8PhcGDZsmW48cYbo27/448/RlnzaJebb77ZL4wC5D/MHn/8cXz11VdwOBx44YUXggKpWLRBnUwp5q6EWErwpCnwLrlc8IoivAA8kgRpzx5IZWXQN//U/frXcKekBK1AaKmtRf7GjTHrqiM1FcesVuwTBPwoCNgjSdgtSfi2oQFDDh3CgjD327hlC/69YoV6fdzIkWGPkZWREbdQSzuCqldOTtj9LvnpTzF+zBhkZWS0GlCNGDw4Hl2lSCIFPlEEPx0JjYCAkUYhtndYB0Ijn9EInyBAMBggpaS0ft8Q25M2NAr1+NrTRqLQ6+V/V7F67hOcFPAa0l4PdxmQC74rQZYoihAEASaTCXa7HWazGTqdDjqdTg2ylNuIiIio+2OopeFwOLBhwwYAwJlnnhl2WsfPf/5zPPLII6isrMSHH37YplBrRfOHfkEQMHXq1JD72Gw2XHHFFXj55Zexa9cu7Nu3D/01dYxi0QZ1Aq/XfzSWUuDd7YbU1ARPWRlEQYDHYoFXr4dHECAZjYBeD9HpRMGMGRCaR2QBwOEJE9BUUgKdTgeDwaCuQGg85ZQ2dcsN4KAgYLckYQ+AHzU/+wA46+uB+vqQ9y2IUHerLavztaVGVeAUv3BT+5SfaEdQZWdmIjvcFMmeoCtCo4DtQqRRTh0Vj5FGAW1EFcqE26cDRIsFos8HGAxyseyOhkYhbus2oVEMRBO8tCesUWpAKfUPm8KsrBrP44e7f7yO3xF6vV6dTmgymSAIAgwGA1JSUpCSkgKTyRST4xAREVFyYailsXnzZnVa17hx48Lup9PpMGbMGHz44Yf49ttvUVNTA3uUK7R99dVXAICTTjoJWVlZYfcbN26cOmps7dq1foFULNqgOJCklgDL6ZR/HzoE3+7dEPfsgfTjjxBKSyEcOgTd4cMwOZ2o+c1vUHfVVS2jr5xOeRqcJCEzOxvWigq1+bodO5B32mnB3z6bzXAIAjI0HxzqIYdUgaHVHgClAHzt/JARaTpfZsBrIFKoNWLwYEiSFDqk0gZUaWnJu/R6pJE+XRAaGR0O6L1e6PV66DT/rtqtg6ERgFaDk64KjSIeLwFCI3dVlVq3x9erV1DX4xZ8aEL2UO3F/fgR7h9Nu+09TjzV1taq04JrIvz/qp0+F+5yW/YLvD3wd3sut+f40d5H+TJHGaGlBFmcTk1ERERJ+mkxPnbv3q1eLikpibivUgBUkiTs2rULY8aMabX98vJy1NbWAgBOPPHEiPsOGDBAvfzDDz/EtA2KodpaYNcuYOdOYM8e+Pbtg7R3L4QDByAcOgRBFKEDEG4SxPerViFt4kQA8rfQBoMBNqsVRqMROzwejNLsW/7118i/+eaQ7TyTmYn9VVVqiBW+8lXHRAqqxg4bhl9Nn64GVSf07Rt23ztvuik2HQo30ieWoVGE7Qk10ijwB/6hkS8lBaIoQtLr5dE9yva2hkaBfevI4wsTDmn7rVyWAh6PpJmypb0c2J72fuEeb9DxOzoyRRP+xGM0TFVzqKXX61FeXt5q212ho8FHNCGIIAgxDVsi3aetbUW73/Hjx9WAMi8vL6rjd4WOPp/tDb+051oZpZVIzwsRERF1PYZaGocOHVIvFxYWRty3d+/efveLJtQq06wc11r7eXl50Ol08Pl8OHz4cEzboDZyOIAff4Rv1y40ffcdPNu3Q9i7F6ayMlgCpuO1tYKHb/9+ZGRkqN9Aax2323HA4VBHWTktFgwP085Hffrgy6qqNh69RXpqatB0PkGSkGazISM9HSeXlCDLbpdXDGweSaZqDnPGDx2K8UOG+IdGymqL4YKfZA2N0ByWBIZHQFCgoj1GqLAmbECDDoYgAceoFQSIggC9TodazXEk7X0kKbj/rYRNgZd9YY4f9NzE+nzGQCw/nIfaJzCEac8xBUGAxWJRg5C05oAymuO3pf+xfPxdJV5hSyzvn56erhYWt9vtCdtnIiIiokTFUEujShMKZLZSaydDUxPIEWH0ila1JgBprX2j0Qir1Yr6+nq/9mPRBkWvtqAAtuaRcToAthi3n9PQAKNSKNjn8wtw3j7tNLxw4IC671UpKZjsdKrb1Y8bkoRszQfbdJsNWXa7HE6lp6thVGZamno9My0N2enpyEpPh91mg9FgCAqb9u3bB6/HA73BgP79+6vBh3jsmN++YUesBARFfmENwo+eiRj8tLJPYNuBt4cKm6SAx+03ysb/gfk/zhCPMVyfWg3LAi5rn6ugfTTHFjRT+gRN6BbqQ2u91QpRFGEwGOBsXrE1mhBEe10I2BbvKVFtuX93+NAe7WNITU1VQy3t1PeuDj4S6f7Jwmq1qqFWW1ZSJiIiIiIZQy0NpxIYAEGrHgbSFiTV3i8SbRHY1tpX9qmvr/drPxZtdAZRFP2uNyojdhJYU1NTUFBoOPlk1HfwuWsAUAbgEIDDzb+VH2NODp4KM4quX2EhThs7FqlWK9KsVgwZOBBVx4InFkoAfn/zzbj/l7+E1WKBQa9vCU604QjgH5xAHmnkAORATbOPJAios1ggms3Q6fWoaG4zSIjAJehy4P7KxaBNQvC+2rAm2mNqQx1N8CNpjyEIao0nQXMfCZrgRglytDXMtEFSa/0Pc7t21E447ZkS1ZqcnBy1do92dE8sdUZ41Z77d/V9Yj26KTMzUz2XFoulzfePpa6qRdVdKHU8fT4f6sMs0EHJIxnPZ+DfZ4F/vxERESU6hloaXq9XvdzaKjra7dr7RaL9QyGaVXqUfbTtx6KNzuByufyul5aWdurx22v8+PF+1w8GXO+IwuafwImqDWH2/+nUqfhpwOqWodfGApSPtWLzTyzkaApQd+6/nk4gSfJKlD1Ienq6ermysrILe0KxIooidu7c2dXdoBjguexekvl8Bv79RkRElOjaWgKoW0tJSVEvezyeiPu63W71crTLSGtHVrXWvvYYRqMxpm0QERERERERESU7hloaVqtVvdzaN1XaUCuaaYBtbV+7jzZsi0UbRERERERERETJjtMPNbTTcxwOR8S6M9rC61lZWW1uv6amJuK+Ho9HrXOgbT8WbXQGbSF9QA7+9Hp9p/aBiIiIiMITRdHvS9LAv9+IiIgSHUMtjX79+qmXjxw5guLi4rD7Hj16VL1cUFDQrvYjKS8vVwuOatuPRRudwWQyoZemJhMRERERERERUSxx+qHGgAED1Mu7d++OuK+yXRAEnHjiiVG1n5mZiezs7Kja37Nnj3q5pKQkpm0QERERERERESU7hloaI0aMUAuqb9q0Kex+oijiq6++AgAMGjTIb0pga8aMkde+27FjB+rq6sLut3HjRvXy2LFjY94GEREREREREVEyY6ilkZ6ejnHjxgEAVq1ahcOHD4fcb/ny5aiqqgIAXHjhhW06xgUXXAAA8Hq9WLp0ach96uvr8fbbbwMA+vfvj0GDBsW8DSIiIiIiIiKiZMZQK8ANN9wAQC6yPmfOHNTX1/tt37NnD+bPnw8AsNlsmDx5cpvaP++881BUVAQAeO6557B582a/7W63G3PnzlUL0d94441xaYOIiIiIiIiIKJkJkiRJXd2JRHPHHXfgo48+AgAUFRVh6tSpyM/Px/bt27F06VI0NDQAAObNm4drrrnG776bNm3CjBkzAMhT/hYvXhzU/qpVqzBz5kxIkgSj0YjJkydj5MiRcDgcePPNN7Fr1y4AwMiRI7FkyZKQqwbGog0iIiIiIiIiomTFUCuEpqYmzJo1C+vXrw+5XRAEzJo1C7NmzQraFk2oBQBLly7F/Pnz4fF4Qm4fMmQIXnzxRWRmZobtZyzaICIiIiIiIiJKRgy1wpAkCe+99x7++9//qgXZMzIyMGrUKMyYMQOjRo0Keb9oQy1AXr1w0aJF2LBhAyoqKmA0GlFSUoJLLrkEU6ZMUYvWRxKLNoiIiIiIiIiIkg1DLSIiIiIiIiIiSjosFE9EREREREREREmHoRYRERERERERESUdhlpERERERERERJR0GGoREREREREREVHSYahFRERERERERERJh6EWERERERERERElHYZaRERERERERESUdBhqERERERERERFR0mGoRURERERERERESYehFhERERERERERJR2GWkRERERERERElHQYahERERERERERUdJhqEVEREREREREREmHoRYRERERERERESUdQ1d3gIiCSZKE999/H//+97+xY8cONDY2Ijc3F2PGjMG0adMwdOjQNrdZVlaGiRMntqs/O3fujFkbWhMmTMChQ4eiuv/69euRm5vbrmN3tXicz0Bff/01Xn31Vfzvf//D8ePHYTab0bdvX0yYMAHTp09HRkZGq23s2rULCxcuxKZNm3Ds2DGkpaVhwIABuOyyy3D55ZdDr9d3ShuJLBnOpSRJWLlyJd555x1s3boVVVVVMBqNKCwsxPjx4zFjxgwUFBREbKMnvDaT4VzG6jx099clkLjnk++bRERE8SVIkiR1dSeIqIXT6cTs2bOxevXqkNv1ej3uvPNO3HrrrW1qt71/WAuCgB9++CFmbSjq6+sxevRoRPtfULL+cR6v86n1xBNPYMGCBWG35+bm4q9//StGjBgRdp9ly5Zh3rx58Hg8IbePHj0azz33XMQP4bFoI5Elw7msqanBXXfdhc8//zxsGyaTCf/3f/+Hyy67LOT2nvDaTIZzGavz0N1fl0Bin0++bxIREcUXQy2iBHP33Xfj/fffBwAMGDAAU6ZMQU5ODr7//nu8/vrraGxsBCD/gT1p0qSo221qaor4QVfr+eefx/fffw8AuOOOO3D77bfHrA3F//73P1x77bUAgF/96lcYMmRIxPbOOussmEymqI6dSOJ1PhULFizAE088AQAwGo2YMmUKhgwZgtraWnzyySf46quvAADp6en4z3/+g+Li4qA21q1bh1tuuQWSJMFiseCaa67B4MGDUVlZibfeegu7du0CAIwfPx4vvfQSdLrgmeuxaCPRJfq59Pl8mDFjhrpfQUEBrrzySpxwwgloaGjA+vXr8fHHH8Pn80EQBDz//POYMGFCUD96wmsz0c8lEJvz0BNel0Bin0++bxIREcWZREQJY/369VJJSYlUUlIizZgxQ3I6nX7b9+zZI40dO1YqKSmRxo4dK9XV1cW8D++++67ah1tuuUXy+XxxaePVV19V99m7d28sup5w4n0+HQ6HNHz4cKmkpEQaM2aM9MMPP/ht9/l80p/+9Ce1D3PmzAlqw+VySRMmTJBKSkqk4cOHS9u2bQvafvvtt6ttvPfee3FpI9Elw7l86623/PrY0NAQtM/KlSulU045RSopKZHOPPPMoMchSd3/tZkM51KSOn4eesLrUpKS53y2hu+bRERE7ZOcX8kRdVMvv/wyAMBgMODhhx+G2Wz22z5gwAD84Q9/AAA4HA4sW7YspscvLy/HH//4RwBAZmYmHnnkEQiCEJc2lFohSk2S7ije5/Pzzz9XRyDcfPPNOOmkk/y2C4KAO+64A3369AEArFy5El6v12+fjz/+GGVlZWobp556qt92k8mExx9/XJ2a9MILLwT1IxZtJLpkOJdvvPEGAPk19dRTT8FqtQYdR6n9A8iv1bVr1wbt091fm8lwLoGOn4ee8LoEkud8RsL3TSIiovZjqEWUIBwOBzZs2AAAOPPMM0NORwGAn//858jOzgYAfPjhhzHtw/z581FbWwsAuPfee5GTkxO3NpQ/zgcOHJi0U14i6YzzqXxgBYBBgwaF3Een02Hw4MEA5Gkw1dXVfttXrFgBQP5gNnXq1JBt2Gw2XHHFFQDkgtP79u2LeRuJLBnOZX19PbZu3QoAOP300yPW0fnZz36mXv7222+Dtnfn12YynEtFR89Dd39dAsl1PiPh+yYREVH78R2RKEFs3rwZPp8PADBu3Liw++l0OowZMwaA/IG0pqYmJsf/4osv8NFHHwEARo0ahcsvvzxubUiShN27dwMASkpK2tnjxNYZ5zM1NVW9XFpaGna/w4cPA5CLJdvtdr9tSi2Yk046CVlZWWHb0D6GwNE9sWgjkSXDuayursaQIUOQm5uLE044IeKxtPdTPkgruvtrMxnOJRCb89DdX5dA8pzPSPi+SURE1DEMtYgShPLHKtD6H6wDBw4EIP+RqxT67ainnnpKvfzb3/42rm0cOnQI9fX1AIATTzwRgDzSZPPmzVizZg127NgBURTb1YdE0RnnU7tE/ZIlS+ByuYL2+fLLL9URPGPHjvUrGlxeXq6GGsp5CGfAgAHqZe2KXLFoI9Elw7ksLi7GsmXLsH79esydOzfisX788Uf1cuCKd939tZkM5xLo+HnoCa9LIHnOZyR83yQiIuoYQ1d3gIhkhw4dUi8XFhZG3Ld3795+91O+gW6vTz/9FNu2bQMAnHfeeX5/xMejDWUKBSB/gz5r1iysWrXK7w/yjIwMTJ8+HbfccgtSUlLa3J+u1hnnc/DgwTjrrLOwdu1a7N27F9OnT8fdd9+NU089FQ0NDVi1ahX+9Kc/wefzITU1Fb/5zW/87q+dVtNaH/Py8qDT6eDz+dQRCbFqI9Elw7lsi3//+9/q5WHDhvlt6+6vzWQ5lx09Dz3hdQkkz/kMh++bREREHcdQiyhBVFVVqZczMzMj7qsdXeFwODp87FdeeUW9fPPNN8e9De0f54899ljIfRwOB/72t79h7dq1eOGFFyJOn0lEnXU+//znP2POnDlYvXo1tm7diuuvvz5on5EjR+L+++8PKhStrfvSWh+NRiOsVivq6+v9+hiLNhJdMpzLaK1btw6fffYZACA7Oxvjx4/3297dX5vJci47eh56wusSSJ7zGQ7fN4mIiDqO0w+JEoTT6VQvB67eFEg7tUF7v/b44Ycf1NorI0aMwIgRI+LehvaPc6PRiFtvvRUrVqzAd999h3Xr1uHhhx9WC11v3boVd911l1o3JVl01vm02Wx47LHHcNZZZ4XcLggC+vfvHzTNDJALGkfbR+0+2j7Goo1ElwznMhpHjhzBvffeq16/7bbbgkZzdPfXZrKcy46eh57wugSS53yGwvdNIiKi2OBILaIEoV0CvLV6HNrtbV06PNC//vUv9XJ7R2m1tY3y8nIA8oeQl19+GaNHj1a39erVC5MnT8ZZZ52FKVOm4OjRo9i4cSNWrFiBiy++uF396wqddT5XrFiB3/3ud3A6ncjLy8PkyZMxYMAANDQ0YN26dfj444/x73//Gx9++CFeeeUVv+kt2mkr0dSAUfbR9jEWbSS6ZDiXramqqsIvfvELVFZWAgDGjx+P6dOnB+3X3V+byXIuO3oeesLrEkie8xkK3zeJiIhig6EWUYLQjpjweDwR/0B3u93q5bYUpA3U0NCA999/HwBQUFCACRMmdEobr7/+Ourr61FXV4f8/PyQ++Tl5eH+++/HrFmzAABvvvlmUv1x3hnnc+XKlbjnnnsgiiJ+8pOf4Pnnn/dbqWvy5MlYv349br/9djQ0NODmm2/G8uXL1W/ztSMbPB5Pq8dT+mk0GtXbYtFGokuGcxlJRUUFbrzxRuzduxcA0LdvXzz11FMQBCFo3+7+2kyWc9nR89ATXpdA8pzPQHzfJCIiih1OPyRKEFarVb0canUlLe0f59FMLQln3bp16rHOP/986HRt/y+hvW2kpqaG/cNcMWHCBPXDw5YtW5JqKkW8z6ckSXj00UchiiLsdjv+8pe/+H3QUpxxxhlq4eKamhq8/PLL7eqjdh/tB8lYtJHokuFchnPw4EFMmzZNXSUuPz8fCxcujFhrpzu/NpPpXHbkPPSE1yWQXOdTi++bREREscNQiyhBpKenq5dbK2Kr3d6RQrCrVq1SL19wwQVd1kY4er0effv2BSB/IEmmIsbxPp87duxAaWkpAOCiiy6KWMtlypQpsFgsAIA1a9aE7GNNTU3E43k8HjQ2Ngb1MRZtJLpkOJehbN26Fddccw0OHDgAQF4dbvHixa2uEheNZH1tJuu5DCfceegJr0sgec8n3zeJiIhih6EWUYLo16+fevnIkSMR9z169Kh6uaCgoF3HE0VR/cM7Ly+vXQXiY9FGa5JtOowi3udz//796uWSkpKI+5pMJgwYMAAAUFZW1q4+lpeXq9/4a/sYizYSXTKcy0Dr1q3D9ddfr9bQGjhwIJYuXYri4uKo+hSNZHxtJuO5bE2o89ATXpdAcp5Pvm8SERHFFkMtogSh/DEMQJ0qFI6yXRAEnHjiie063rZt29RvcCdMmBCyvk482igtLcWiRYvwzDPPYPXq1a3urxTHNRqNsNvtbe5jV+nM8xnN9CJleoter1dvy8zMRHZ2dlR93LNnj3pZ++EuFm0kumQ4l1qrVq3Cbbfdpo6+GTZsGJYsWYK8vLyI7faE12YynMtYnIee8LoEkuN8BuL7JhERUWwx1CJKECNGjFC/Xd20aVPY/URRVJcBHzRokN/0i7bYsmWLennYsGGd1saxY8fwyCOP4IUXXsAbb7wRcd99+/ap374PGTIk4geFRBPv86kNKLZt2xZxX6/XqxYJDxyhMGbMGADyNJu6urqwbWzcuFG9PHbs2Ji3kciS5VwCwJdffonZs2erxcHHjx+PV155BZmZma32oye8NpPhXMbqPHT31yWQHOczEN83iYiIYouhFlGCSE9Px7hx4wDIIy0OHz4ccr/ly5ejqqoKAHDhhRe2+3jfffedevnUU0/ttDYGDx6sFrFdt25d2McJAH//+9/Vy5MmTWpXH7tKvM/nkCFD1Odx5cqVEafevPPOO6ivrwcghxxaSj0Xr9eLpUuXhrx/fX093n77bQBA//79MWjQoJi3kciS5VxWVlZi9uzZakHsc889F//4xz/8imlH0hNem8lwLmN1Hrr76xJIjvMZiO+bREREscVQiyiB3HDDDQDkwr1z5sxR/0BW7NmzB/PnzwcA2Gw2TJ48ud3HUqacGI1Gvykc8W7DbDZjypQpAOTHeffddwc9TgBYsGAB3nnnHQBy3ZTLL7+8XX3sSvE8nyaTCdOnTwcANDY24s4771Q/tGl9/fXXeOSRRwDI5+n666/3237eeeehqKgIAPDcc89h8+bNftvdbjfmzp2rTpe58cYbg44RizYSXTKcy//7v/9T7zd06FA8++yzMJlMUfejp7w2E/1cxuo89ITXJZD45zMQ3zeJiIhiS5AkSerqThBRizvuuAMfffQRAKCoqAhTp05Ffn4+tm/fjqVLl6KhoQEAMG/ePFxzzTV+9920aRNmzJgBQJ5Gsnjx4rDHGTFiBBobG5Gbm4v169e3q6/tbaOurg6TJ0/Gvn37AAC9e/fG1VdfjX79+qG6uhorVqxQP4DZbDYsWrQIQ4YMaVcfu1o8z2dTUxOuvfZabN++HYBcR+fyyy/HoEGDIIoiNm7ciOXLl8Pr9QIAHnroIUydOjWoj6tWrcLMmTMhSRKMRiMmT56MkSNHwuFw4M0338SuXbsAACNHjsSSJUtCTmeJRRuJLpHP5Y8//oiLLroIylv63Llz1RXQIsnIyMDo0aPV6z3ltZnI5xKI3XnoCa9LIPHPpxbfN4mIiGKLoRZRgmlqasKsWbPC/rErCAJmzZqFWbNmBW2LNtSqr6/HqFGjAAAnnHACPvjggzb3s6NtHDlyBLNmzYpYpyQ/Px9PP/20epxkFO/zWVVVhbvuusuvLk4go9GI3//+97j22mvD7rN06VLMnz9frcUUaMiQIXjxxRcj1maKRRuJLJHP5dNPP41//vOfbXk4YfvSE16biXwuFbE6D939dQkkx/kE+L5JREQUD4au7gAR+bNYLHjppZfw3nvv4b///a9a5DcjIwOjRo3CjBkzOvzHqvKtNYB2F5rvaBv5+fl444038P7772P58uX4/vvvUVtbi9TUVPTr1w/nn38+rr76athstnb1L1HE+3xmZWXhlVdewcqVK/Huu+/i22+/RWVlJUwmEwoLCzF+/Hhcd911KCwsjNjO1KlTMXr0aCxatAgbNmxARUUFjEYjSkpKcMkll2DKlCmtLhMfizYSWSKfS2XETSz0hNdmIp9LRazOQ3d/XQLJcT4Bvm8SERHFA0dqERERERERERFR0mGheCIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSDkMtIiIiIiIiIiJKOgy1iIiIiIiIiIgo6TDUIiIiIiIiIiKipMNQi4iIiIiIiIiIkg5DLSIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSjqGrO0BERJ1PkiSsXLkSq1evxjfffIOKigrU19fDarUiKysLw4YNw89//nOcc845rba1Y8cOLFu2DF9++SXKysrg9XqRnZ2NYcOG4bLLLsOECRPi0saECRNw6NAhAMDOnTsjtn/dddfhyy+/BACsXLkSRUVFIds644wzsGDBAnz00Ud47rnnsH//fmRmZmLYsGGYOXMmBg0apN4nls9hW5+DNWvW4NZbbwUAFBYWYtWqVa22f8stt2Dt2rUAgGXLlmHo0KFR9aujduzYgZycHOTm5nbK8YiIiIio5xAkSZK6uhNERNR5fvzxR9x5553YtWtXq/ueeeaZePbZZ2Gz2YK2OZ1OzJs3D//5z38itnHWWWfhT3/6E1JTU2PaRrxCrSlTpmD27NkIfHt87733UFJSAiB2zyHQvudAFEWcffbZqKioAAC8/vrrGDFiRNj7VlVV4cwzz4TX68UJJ5yADz74oNV+x8LWrVtx0003ITs7G//617/Qq1evTjkuEREREfUMHKlFRNSDlJeX49prr4XD4QAA5Obm4uyzz0ZhYSF0Oh2OHDmCdevWqWHRunXr8PTTT+OBBx7wa0cURcycOROff/65etuIESMwZswYmEwm/PDDD1i1ahV8Ph/Wrl2L22+/HQsXLoROp4tpG7FWU1ODBx54ICjQGjBggBpoxeo5BNr/HOj1elxyySV4+eWXAQDLly+PGGotX74cXq8XADBp0qT2P0FtNG/ePNTW1qK2thYzZszAokWLkJeX12nHJyIiIqLujaEWEVEP8swzz6hhzFlnnYW//vWvSElJ8dvH6/Xisccew+LFiwEAb7/9NubOneu33yuvvKIGMVarFU8//XTQFMGtW7fihhtuQENDAzZu3Ih33nkHl19+eUzbiLXvvvsOAHDOOedg7ty5yM/Px/bt21FVVaXuE6vnEOjYczBp0iQ11Prggw/wu9/9Dnq9PuTjeu+99wAAgiDgkksuac9T0y7PP/88ZsyYgf3792Pfvn2YMWMG/vWvfzHYIiIiIqKYYKF4IqIeoqmpCR9++CEAwGw249FHHw0KWQDAYDBg7ty5SE9PBwA0NjZi79696nafz4cFCxao1x977LGQNa+GDh3qNzrpjTfeiGkb8VJSUoK//e1vGDBgAKxWK0aPHo3zzz8fQOyeQ6Djz8GgQYPUGl/Hjx/Hxo0bQz6egwcP4ttvvwUAjBkzBoWFhdE9ETGQl5eHJUuWYMCAAQCA/fv347rrrkN5eXmn9YGIiIiIui+GWkREPYTH48F9992HW2+9FbNmzUJOTk7YfU0mE0444QT1ekNDg3p5y5YtqKysBACcdNJJuOCCC8K28/Of/xynnHIKzjzzTAwfPlyd1heLNuJl8uTJMBqNIbfF6jkEYvMcaEetvf/++yHv++6776qXL7300rDHiJfc3FwsXrwYJ554IgDgwIEDmD59Oo4ePdrpfSEiIiKi7oXTD4mIeoj09HRMmTIlqn3LysrQ2NioXlfqMQHAhg0b1MutrexnMpnw9ttvB90eizbiZfjw4WG3xeo5BGLzHFx88cV48skn4fV68cknn2DevHkwmUx++yhTD81mM372s59F1XdArh12/fXXR71/a7Sh3sGDBzF9+nS8+uqrnIpIRERERO3GUIuIqAcrLy/H/v37cfDgQRw8eBB79uzBjh07cOTIEb/9tKOjtNsGDhzYruPGoo14CVwZsTXteQ6B2DwHOTk5GD9+PNasWYO6ujqsXbsW5513nrp969at2L9/PwBg4sSJSEtLi7ptj8eDffv2tatf0SgtLcV3333HUIuIiIiI2o2hFhFRD1NZWYmXXnoJ7733HioqKsLup9frIYpi0O3aoul2u71dfYhFG/Gi1MGKpKPPIRC75+Cyyy7DmjVrAMhTELWhlnbqYWeuehiN9PR0tdYWEREREVF7MNQiIupB/ve//2HmzJnq6n0Kk8mEfv36oaSkBMOHD8f48ePx4IMP4ssvvwxqw+PxdLgfsWijLdpSh8tgiPzWGIvnEIjdczBx4kSkp6ejtrYWn332GRoaGmCz2SCKIj744AMAQFZWFs4444w2tVtUVISdO3fGpI9OpxO333471q9fD0AO8RYuXIj+/fvHpH0iIiIi6pkYahER9RDV1dX49a9/rYYxJ598MqZPn46RI0eib9++0Ov1fvs3NTWFbEc7kqm2trZdfYlFG1qSJEEQhLDbXS5Xh48BxO45BGL3HJjNZlx44YV444034HQ6sWrVKlxyySXYtGkTjh8/DgC46KKLWg3r4qWpqQm33XYbvvjiCwBARkYGFi5ciFNOOaVL+kNERERE3QdDLSKiHmLZsmXqanunnnoqXn/99aCi4lra6XHakU7FxcXq5b1797Z63IULF+LAgQMoLi7GxRdfjLy8vJi0odO1LODrdrthNpvD3j/SFMG2iNVzCMTmeVRMmjQJb7zxBgBg5cqVuOSSS7Bq1Sq/7V2hsbERv/zlL9XRahkZGXjllVdw8sknd0l/iIiIiKh70bW+CxERdQfffvutevmyyy6LGMaUlZXh0KFD6nWfz6deHjlypHp53bp1rR739ddfx9KlS/HEE0/A7XbHrA2LxaJu14ZHgSoqKoKKtrdXrJ5DIDbPgWLUqFHo06eP2pbb7cbq1asBACeccAKGDBnSavvxcNttt/kFWosWLWKgRUREREQxw1CLiKiH0AYh1dXVEfd99NFH/a57vV718umnn46cnBwAwHfffYfPP/88bDuff/65uvpeSUmJOjopFm307t3bb59w/vnPf4bd1laxeg6B2DwHWsporPr6eixduhSlpaV+t3eFadOmwWg0IjMzE4sWLcKgQYO6rC9ERERE1P0w1CIi6iG0gcLSpUtx8ODBoH2qq6sxe/ZsfPrpp363a2tDmUwm3Hzzzer1OXPmYPPmzUFt7dq1C/fee696/ZZbbolpG+PGjVMvP/vss2qIo/D5fHjxxRexZMmSoHbbK1bPIRCb50Br0qRJal2xv/zlLwAAQRBw6aWXtvaw4ub888/HX//6VwZaRERERBQXgtSWJaGIiChplZaW4qKLLlKLpptMJpx//vno378/3G439u7dizVr1qijkYxGo7pC34MPPohrr71WbUuSJPzqV79Sp7gJgoDTTz8dw4cPh8FgwI4dO7Bq1Sp1dNIFF1ygBi2xaqO6uho//elPUVdXBwBISUnBhRdeiD59+qCqqgqfffYZysrKYDQacfbZZ6sh08qVK1FUVOTXlwkTJqhTBSOt+BfL5zBWz6PWtGnT/IKxsWPHYvHixWH3JyIiIiJKZgy1iIh6kE8++QT33HMPnE5n2H0EQcCUKVNw6qmn4oEHHgAAXHXVVZg/f77ffm63G3/84x/x1ltvBRVB17ryyivx0EMPhaw/1dE2vvzyS8yaNQs1NTUh75eeno5HH30UZWVl6nTAjoRaQGyfQyA2z6Ni2bJluP/++9Xr8+fPx1VXXRXx8RARERERJSuGWkREPcyBAwewaNEifPHFFzh8+DBEUYTNZkOfPn0wbNgwXHnllTj55JNRXl6Oc845Bz6fD3a7HatXr4bVag1qb9u2bVi2bBk2bdqE8vJyeL1e5ObmYvTo0bj66qsxatSoVvvUkTaqq6uxePFirFq1CgcPHoQkSSgsLMS5556L6dOnIy8vD6+88krMQq14PIexeh7r6+tx2mmnqatBbtiwAampqa3ej4iIiIgoGTHUIiIi6ibKysowceJEAMBFF12EZ555pot7REREREQUPywUT0RE1E28++676uXLL7+8C3tCRERERBR/DLWIiIi6AY/Hg7feegsAUFBQgPHjx3dxj4iIiIiI4ouhFhERURJyu93qyoo1NTX47W9/q9YFu/baa6HT8S2eiIiIiLo3Q1d3gIiIiNpu3759uPLKK5Geng6HwwFRFAEAhYWFuPbaa7u4d0RERERE8cdQi4iIKAkVFBTA4/GgsrJSvc1iseDxxx+HzWbrwp4REREREXUOzk0gIiJKQmlpaTj99NNhtVpht9tx9tlnY8mSJRgzZkxXd42IiIiIqFMIkiRJXd0JIiIiIiIiIiKituBILSIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSDkMtIiIiIiIiIiJKOgy1iIiIiIiIiIgo6TDUIiIiIiIiIiKipMNQi4iIiIiIiIiIkg5DLSIiIiIiIiIiSjoMtYiIiIiIiIiIKOkw1CIiIiIiIiIioqTDUIuIiIiIiIiIiJIOQy0iIiIiIiIiIko6DLWIiIiIiIiIiCjpMNQiIiIiIiIiIqKkw1CLiIiIiIiIiIiSDkMtIiIiIiIiIiJKOv8Ppm7VvylRGj4AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plot unconstrained model results with 95% CIs\n",
+ "sns.scatterplot(\n",
+ " x=[unconstr_performance],\n",
+ " y=[unconstr_disparity],\n",
+ " color=\"black\",\n",
+ " marker=\"*\",\n",
+ " s=100,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_test_results[f\"{PERF_METRIC}_low-percentile\"], unconstr_test_results[f\"{PERF_METRIC}_high-percentile\"]),\n",
+ " (unconstr_disparity, unconstr_disparity),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"|\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (unconstr_performance, unconstr_performance),\n",
+ " (unconstr_test_results[f\"{DISP_METRIC}_low-percentile\"], unconstr_test_results[f\"{DISP_METRIC}_high-percentile\"]),\n",
+ " color=\"black\",\n",
+ " ls=\":\",\n",
+ " marker=\"_\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "# Plot postprocessing of unconstrained model\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=PERF_METRIC,\n",
+ " disp_metric=DISP_METRIC,\n",
+ " show_data_type=SHOW_RESULTS_ON,\n",
+ " constant_clf_perf=constant_clf_accuracy[SHOW_RESULTS_ON],\n",
+ " model_name=r\"$\\bigstar$\",\n",
+ ")\n",
+ "\n",
+ "# Plot inprocessing intervention results with 95% CIs\n",
+ "sns.scatterplot(\n",
+ " x=[inproc_test_results[f\"{PERF_METRIC}_mean\"]],\n",
+ " y=[inproc_test_results[f\"{DISP_METRIC}_mean\"]],\n",
+ " color=\"red\",\n",
+ " marker=\"P\",\n",
+ " s=50,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (inproc_test_results[f\"{PERF_METRIC}_low-percentile\"], inproc_test_results[f\"{PERF_METRIC}_high-percentile\"]),\n",
+ " (inproc_test_results[f\"{DISP_METRIC}_mean\"], inproc_test_results[f\"{DISP_METRIC}_mean\"]),\n",
+ " color='red',\n",
+ " ls=\":\",\n",
+ " marker=\"|\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "plt.plot(\n",
+ " (inproc_test_results[f\"{PERF_METRIC}_mean\"], inproc_test_results[f\"{PERF_METRIC}_mean\"]),\n",
+ " (inproc_test_results[f\"{DISP_METRIC}_low-percentile\"], inproc_test_results[f\"{DISP_METRIC}_high-percentile\"]),\n",
+ " color='red',\n",
+ " ls=\":\",\n",
+ " marker=\"_\",\n",
+ " lw=1,\n",
+ " ms=3,\n",
+ ")\n",
+ "\n",
+ "# Plot postprocessing of inprocessing model\n",
+ "plot_postprocessing_frontier(\n",
+ " inproc_postproc_results_df,\n",
+ " perf_metric=PERF_METRIC,\n",
+ " disp_metric=DISP_METRIC,\n",
+ " show_data_type=SHOW_RESULTS_ON,\n",
+ " constant_clf_perf=constant_clf_accuracy[SHOW_RESULTS_ON],\n",
+ " model_name=r\"$+$\",\n",
+ " color=\"red\",\n",
+ ")\n",
+ "\n",
+ "# Vertical line with minimum \"useful\" accuracy on this data\n",
+ "curr_const_clf_acc = constant_clf_accuracy[SHOW_RESULTS_ON]\n",
+ "plt.axvline(\n",
+ " x=curr_const_clf_acc,\n",
+ " ls=\"--\",\n",
+ " color=\"grey\",\n",
+ ")\n",
+ "plt.gca().annotate(\n",
+ " \"constant predictor acc.\",\n",
+ " xy=(curr_const_clf_acc, ax_kwargs[\"ylim\"][1] / 2),\n",
+ " zorder=10,\n",
+ " rotation=90,\n",
+ " horizontalalignment=\"right\",\n",
+ " verticalalignment=\"center\",\n",
+ " fontsize=\"small\",\n",
+ " \n",
+ ")\n",
+ "\n",
+ "# Title and legend\n",
+ "ax_kwargs[\"title\"] = f\"Post-processing ({SHOW_RESULTS_ON})\"\n",
+ "ax_kwargs[\"xlim\"] = (curr_const_clf_acc - 1e-2, 0.885)\n",
+ "\n",
+ "plt.legend(\n",
+ " loc=\"upper left\",\n",
+ " bbox_to_anchor=(1.03, 1),\n",
+ " borderaxespad=0)\n",
+ "\n",
+ "plt.gca().set(**ax_kwargs)\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/examples/parse-folktables-datasets.html b/examples/parse-folktables-datasets.html
new file mode 100644
index 0000000..6821ad7
--- /dev/null
+++ b/examples/parse-folktables-datasets.html
@@ -0,0 +1,534 @@
+
+
+
+
+
+
+ Obtaining parsed folktables datasets — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+Obtaining parsed folktables datasets
+
+NOTE : use MAX_SENSITIVE_GROUPS=2
to generate datasets for binary-group experiments.
+
+
+Change these paths according to where you want the data to be saved to.
+
+
+
+
+According to the dataset’s datasheet, train/test splits should be stratified by state (at least for ACSIncome, the remaining tasks seem ambiguous).
+
+
+
+
+
+
+
+
+
+Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSIncome'.
+Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSPublicCoverage'.
+Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSMobility'.
+Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSEmployment'.
+Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSTravelTime'.
+
+
+
+Log the constant classifier accuracy for each dataset and data type
+The constant classifier always predicts either class 1 or 0 (whichever has highest prevalence in the dataset).
+
+
+
+
+
+
+{
+ "ACSIncome": {
+ "train": 0.6308792859288503,
+ "test": 0.6315490137178332
+ },
+ "ACSPublicCoverage": {
+ "train": 0.7028697217125459,
+ "test": 0.7021789994933921
+ },
+ "ACSMobility": {
+ "train": 0.736245988197536,
+ "test": 0.7358789362364587
+ },
+ "ACSEmployment": {
+ "train": 0.5450051516946736,
+ "test": 0.5446858522526532
+ },
+ "ACSTravelTime": {
+ "train": 0.5621626781395467,
+ "test": 0.5626382117978613
+ }
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/examples/parse-folktables-datasets.ipynb b/examples/parse-folktables-datasets.ipynb
new file mode 100644
index 0000000..8f041bc
--- /dev/null
+++ b/examples/parse-folktables-datasets.ipynb
@@ -0,0 +1,514 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a4d0fb85",
+ "metadata": {},
+ "source": [
+ "# Obtaining parsed folktables datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "5f222039",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys\n",
+ "import logging\n",
+ "from pathlib import Path\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from folktables import ACSDataSource"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "00d4bd71",
+ "metadata": {},
+ "source": [
+ "**NOTE**: use `MAX_SENSITIVE_GROUPS=2` to generate datasets for binary-group experiments."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "811ad844",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Important constants!\n",
+ "TRAIN_SIZE = 0.7\n",
+ "TEST_SIZE = 0.3\n",
+ "VALIDATION_SIZE = None\n",
+ "\n",
+ "MAX_SENSITIVE_GROUPS = None # keep samples from all groups\n",
+ "\n",
+ "SEED = 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "377fc203",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "assert TRAIN_SIZE + TEST_SIZE + (VALIDATION_SIZE or 0.) == 1 # sanity check"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dae0cfba",
+ "metadata": {},
+ "source": [
+ "**Change** these paths according to where you want the data to be saved to."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "60b5f503",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "root_dir = Path(\"~\").expanduser()\n",
+ "data_dir = root_dir / \"data\" / \"folktables\"\n",
+ "data_dir.mkdir(parents=True, exist_ok=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "ae28e462",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# download 2018 ACS data\n",
+ "from folktables.load_acs import state_list\n",
+ "\n",
+ "data_source = ACSDataSource(\n",
+ " survey_year='2018', horizon='1-Year', survey='person',\n",
+ " root_dir=str(data_dir),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "8afe4020",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(3236107, 286)"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# data is 3236107 rows x 286 columns\n",
+ "acs_data = data_source.get_data(states=state_list, download=True) # use download=True if not yet downloaded\n",
+ "acs_data.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6ea8d039",
+ "metadata": {},
+ "source": [
+ "According to the dataset's datasheet, train/test splits should be stratified by state\n",
+ "(at least for ACSIncome, the remaining tasks seem ambiguous)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "c4e23b32",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "STATE_COL = \"ST\"\n",
+ "\n",
+ "ACS_CATEGORICAL_COLS = {\n",
+ " 'COW', # class of worker\n",
+ " 'MAR', # marital status\n",
+ " 'OCCP', # occupation code\n",
+ " 'POBP', # place of birth code\n",
+ " 'RELP', # relationship status\n",
+ " 'SEX',\n",
+ " 'RAC1P', # race code\n",
+ " 'DIS', # disability\n",
+ " 'ESP', # employment status of parents\n",
+ " 'CIT', # citizenship status\n",
+ " 'MIG', # mobility status\n",
+ " 'MIL', # military service\n",
+ " 'ANC', # ancestry\n",
+ " 'NATIVITY',\n",
+ " 'DEAR',\n",
+ " 'DEYE',\n",
+ " 'DREM',\n",
+ " 'ESR',\n",
+ " 'ST',\n",
+ " 'FER',\n",
+ " 'GCL',\n",
+ " 'JWTR',\n",
+ "# 'PUMA',\n",
+ "# 'POWPUMA',\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "a37a6792",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from copy import deepcopy\n",
+ "from typing import Tuple\n",
+ "from functools import reduce\n",
+ "from operator import or_\n",
+ "\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from folktables import BasicProblem\n",
+ "\n",
+ "def split_folktables_task(\n",
+ " acs_data: pd.DataFrame,\n",
+ " acs_task: BasicProblem,\n",
+ " train_size: float,\n",
+ " test_size: float,\n",
+ " validation_size: float = None,\n",
+ " max_sensitive_groups: int = None,\n",
+ " stratify_by_state: bool = True,\n",
+ " save_to_disk: Path = None,\n",
+ " file_prefix: str = \"\",\n",
+ " seed: int = 42,\n",
+ " ) -> Tuple[pd.DataFrame, ...]:\n",
+ " \"\"\"Train/test split a given folktables task (for train/test/validation).\n",
+ " \n",
+ " According to the dataset's datasheet, (at least) the ACSIncome\n",
+ " task should be stratified by state.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " acs_data : pd.DataFrame\n",
+ " acs_task : folktables.BasicProblem\n",
+ " train_size : float\n",
+ " test_size : float\n",
+ " validation_size : float\n",
+ " max_sensitive_groups : int, optional\n",
+ " If the number of protected groups exceeds this, discard samples belonging to\n",
+ " the groups with lowest relative size.\n",
+ " stratify_by_state : bool, optional\n",
+ " Whether to stratify splits by state.\n",
+ " seed : int, optional\n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " (train_data, test_data, validation_data) : Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]\n",
+ " \"\"\"\n",
+ " # Sanity check\n",
+ " assert train_size + test_size + (validation_size or 0.0) == 1\n",
+ " assert all(val is None or 0 <= val <= 1 for val in (train_size, test_size, validation_size))\n",
+ "\n",
+ " # Add State to the feature columns so we can do stratified splits (will be removed later)\n",
+ " remove_state_col_later = False # only remove the state column later if we were the ones adding it\n",
+ " if stratify_by_state:\n",
+ " if STATE_COL not in acs_task.features:\n",
+ " acs_task = deepcopy(acs_task) # we're gonna need to change this task object\n",
+ " acs_task.features.append(STATE_COL)\n",
+ " remove_state_col_later = True\n",
+ " else:\n",
+ " remove_state_col_later = False\n",
+ "\n",
+ " # Pre-process data + select task-specific features\n",
+ " features, label, group = acs_task.df_to_numpy(acs_data)\n",
+ "\n",
+ " # Make a DataFrame with all processed data\n",
+ " df = pd.DataFrame(data=features, columns=acs_task.features)\n",
+ " df[acs_task.target] = label\n",
+ "\n",
+ " # Correct column ordering (1st: label, 2nd: group, 3rd and onwards: features)\n",
+ " cols_order = ([acs_task.target, acs_task.group] +\n",
+ " list(set(acs_task.features) - {acs_task.group}))\n",
+ " if remove_state_col_later:\n",
+ " cols_order = [col for col in cols_order if col != STATE_COL]\n",
+ "\n",
+ " # Save state_col for stratified split\n",
+ " if stratify_by_state:\n",
+ " state_col_data = df[STATE_COL]\n",
+ "\n",
+ " # Enforce correct ordering in df\n",
+ " df = df[cols_order]\n",
+ "\n",
+ " # Drop samples from sensitive groups with low relative size\n",
+ " # (e.g., original paper has only White and Black races)\n",
+ " if max_sensitive_groups is not None and max_sensitive_groups > 0:\n",
+ " group_sizes = df.value_counts(acs_task.group, sort=True, ascending=False)\n",
+ " big_groups = group_sizes.index.to_list()[: max_sensitive_groups]\n",
+ "\n",
+ " big_groups_filter = reduce(\n",
+ " or_,\n",
+ " [(df[acs_task.group].to_numpy() == g) for g in big_groups],\n",
+ " )\n",
+ " \n",
+ " # Keep only big groups\n",
+ " df = df[big_groups_filter]\n",
+ " state_col_data = state_col_data[big_groups_filter]\n",
+ " \n",
+ " # Group values must be sorted, and start at 0\n",
+ " # (e.g., if we deleted group=2 but kept group=3, the later should now have value 2)\n",
+ " if df[acs_task.group].max() > df[acs_task.group].nunique():\n",
+ " map_to_sequential = {g: idx for g, idx in zip(big_groups, range(len(big_groups)))}\n",
+ " df[acs_task.group] = [map_to_sequential[g] for g in df[acs_task.group]]\n",
+ "\n",
+ " logging.warning(f\"Using the following group value mapping: {map_to_sequential}\")\n",
+ " assert df[acs_task.group].max() == df[acs_task.group].nunique() - 1\n",
+ "\n",
+ " ## Try to enforce correct types\n",
+ " # All columns should be encoded as integers, dtype=int\n",
+ " types_dict = {\n",
+ " col: int for col in df.columns\n",
+ " if df.dtypes[col] != \"object\"\n",
+ " }\n",
+ " \n",
+ " df = df.astype(types_dict)\n",
+ " # ^ set int types right-away so that categories don't have floating points\n",
+ " \n",
+ " # Set categorical columns to start at value=0! (necessary for sensitive attributes)\n",
+ " for col in (ACS_CATEGORICAL_COLS & set(df.columns)):\n",
+ " df[col] = df[col] - df[col].min()\n",
+ "\n",
+ " # Set categorical columns to the correct dtype \"category\"\n",
+ " types_dict.update({\n",
+ " col: \"category\" for col in (ACS_CATEGORICAL_COLS & set(df.columns))\n",
+ " # if df[col].nunique() < 10\n",
+ " })\n",
+ "\n",
+ " # Plus the group is definitely categorical\n",
+ " types_dict.update({acs_task.group: \"category\"})\n",
+ " \n",
+ " # And the target is definitely integer\n",
+ " types_dict.update({acs_task.target: int})\n",
+ " \n",
+ " # Set df to correct types\n",
+ " df = df.astype(types_dict)\n",
+ "\n",
+ " # ** Split data in train/test/validation **\n",
+ " train_idx, other_idx = train_test_split(\n",
+ " df.index,\n",
+ " train_size=train_size,\n",
+ " stratify=state_col_data if stratify_by_state else None,\n",
+ " random_state=seed,\n",
+ " shuffle=True)\n",
+ "\n",
+ " train_df, other_df = df.loc[train_idx], df.loc[other_idx]\n",
+ " assert len(set(train_idx) & set(other_idx)) == 0\n",
+ "\n",
+ " # Split validation\n",
+ " if validation_size is not None and validation_size > 0:\n",
+ " new_test_size = test_size / (test_size + validation_size)\n",
+ "\n",
+ " val_idx, test_idx = train_test_split(\n",
+ " other_df.index,\n",
+ " test_size=new_test_size,\n",
+ " stratify=state_col_data.loc[other_idx] if stratify_by_state else None,\n",
+ " random_state=seed,\n",
+ " shuffle=True)\n",
+ "\n",
+ " val_df, test_df = other_df.loc[val_idx], other_df.loc[test_idx]\n",
+ " assert len(train_idx) + len(val_idx) + len(test_idx) == len(df)\n",
+ " assert np.isclose(len(val_df) / len(df), validation_size)\n",
+ "\n",
+ " else:\n",
+ " test_idx = other_idx\n",
+ " test_df = other_df\n",
+ "\n",
+ " assert np.isclose(len(train_df) / len(df), train_size)\n",
+ " assert np.isclose(len(test_df) / len(df), test_size)\n",
+ " \n",
+ " # Optionally, save data to disk\n",
+ " # Warning: depends on global notebook variables\n",
+ " if save_to_disk:\n",
+ " subfolder_name = f\"train={train_size:.2}_test={test_size:.2}\"\n",
+ " if validation_size:\n",
+ " subfolder_name = f\"{subfolder_name}_validation={validation_size:.2}\"\n",
+ " if max_sensitive_groups is not None and max_sensitive_groups > 0:\n",
+ " subfolder_name = f\"{subfolder_name}_max-groups={max_sensitive_groups}\"\n",
+ "\n",
+ " # Create folder\n",
+ " save_to_disk = save_to_disk / subfolder_name\n",
+ " save_to_disk.mkdir(parents=True, exist_ok=True)\n",
+ "\n",
+ " print(f\"Saving data to folder '{str(save_to_disk)}' with prefix '{file_prefix}'.\")\n",
+ " train_df.to_csv(save_to_disk / f\"{file_prefix}.train.csv\", header=True, index_label=\"index\")\n",
+ " test_df.to_csv(save_to_disk / f\"{file_prefix}.test.csv\", header=True, index_label=\"index\")\n",
+ " \n",
+ " if validation_size:\n",
+ " val_df.to_csv(save_to_disk / f\"{file_prefix}.validation.csv\", header=True, index_label=\"index\")\n",
+ "\n",
+ " return (train_df, test_df, val_df) if validation_size else (train_df, test_df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "6d0b1d1b",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/5 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSIncome'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSPublicCoverage'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSMobility'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSEmployment'.\n",
+ "Saving data to folder '/Users/acruz/data/folktables/train=0.7_test=0.3' with prefix 'ACSTravelTime'.\n"
+ ]
+ }
+ ],
+ "source": [
+ "import folktables\n",
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "all_acs_tasks = [\n",
+ " 'ACSIncome',\n",
+ " 'ACSPublicCoverage',\n",
+ " 'ACSMobility',\n",
+ " 'ACSEmployment',\n",
+ " 'ACSTravelTime',\n",
+ "]\n",
+ "\n",
+ "const_predictor_acc = {}\n",
+ "\n",
+ "# Generate data and save to disk, for all tasks\n",
+ "for task_name in tqdm(all_acs_tasks):\n",
+ "\n",
+ " # Dynamically import/load task object\n",
+ " task_obj = getattr(folktables, task_name)\n",
+ "\n",
+ " # Process data\n",
+ " data = split_folktables_task(\n",
+ " acs_data,\n",
+ " task_obj,\n",
+ " train_size=TRAIN_SIZE,\n",
+ " test_size=TEST_SIZE,\n",
+ " validation_size=VALIDATION_SIZE,\n",
+ " max_sensitive_groups=MAX_SENSITIVE_GROUPS,\n",
+ " stratify_by_state=True,\n",
+ " seed=SEED,\n",
+ " save_to_disk=data_dir,\n",
+ " file_prefix=task_name,\n",
+ " )\n",
+ " \n",
+ " const_predictor_acc[task_name] = {\n",
+ " curr_type: max(curr_data[task_obj.target].mean(), 1-curr_data[task_obj.target].mean())\n",
+ " for curr_type, curr_data in zip([\"train\", \"test\", \"validation\"], data)\n",
+ " }"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c550577",
+ "metadata": {},
+ "source": [
+ "## Log the constant classifier accuracy for each dataset and data type\n",
+ "The constant classifier always predicts either class 1 or 0 (whichever has highest prevalence in the dataset)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "5bc9927c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{\n",
+ " \"ACSIncome\": {\n",
+ " \"train\": 0.6308792859288503,\n",
+ " \"test\": 0.6315490137178332\n",
+ " },\n",
+ " \"ACSPublicCoverage\": {\n",
+ " \"train\": 0.7028697217125459,\n",
+ " \"test\": 0.7021789994933921\n",
+ " },\n",
+ " \"ACSMobility\": {\n",
+ " \"train\": 0.736245988197536,\n",
+ " \"test\": 0.7358789362364587\n",
+ " },\n",
+ " \"ACSEmployment\": {\n",
+ " \"train\": 0.5450051516946736,\n",
+ " \"test\": 0.5446858522526532\n",
+ " },\n",
+ " \"ACSTravelTime\": {\n",
+ " \"train\": 0.5621626781395467,\n",
+ " \"test\": 0.5626382117978613\n",
+ " }\n",
+ "}\n"
+ ]
+ }
+ ],
+ "source": [
+ "import json\n",
+ "print(json.dumps(const_predictor_acc, indent=2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "714cd7d7",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.16"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/examples/relaxed-equalized-odds.usage-example-folktables.html b/examples/relaxed-equalized-odds.usage-example-folktables.html
new file mode 100644
index 0000000..7b7dff2
--- /dev/null
+++ b/examples/relaxed-equalized-odds.usage-example-folktables.html
@@ -0,0 +1,908 @@
+
+
+
+
+
+
+ Achieving equalized odds on real-world ACS data (ACSIncome) — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+Achieving equalized odds on real-world ACS data (ACSIncome)
+NOTE : this notebook has extra requirements, install them with: pip install "error_parity[dev]"
+DATA : the data used in this notebook can be easily downloaded and parsed using the companion notebook parse-folktables-datasets.ipynb
;
+
+
+
+
+
+
+
+Notebook ran using `error-parity==0.3.9`
+
+
+
+Given some data (X, Y, S)
+
+
+
+
+
+
+
+
+
+
+
+Global prevalence: 37.2%
+
+
+
+
+
+
+Given a trained predictor (that outputs real-valued scores)
+
+
+
+
+
+
+
+CPU times: user 2min 7s, sys: 2.08 s, total: 2min 10s
+Wall time: 18.5 s
+
+
+
+
+
+
RandomForestClassifier(n_jobs=-2) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
+
+
+
+
+Construct the fair optimal classifier (derived from the given predictor)
+
+Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);
+
+
+Optimality is measured as minimizing the expected loss,
+
+
+
+
+
+
+
+
+
+
+
+INFO:root:ROC convex hull contains 8.7% of the original points.
+INFO:root:ROC convex hull contains 9.7% of the original points.
+INFO:root:ROC convex hull contains 6.9% of the original points.
+INFO:root:ROC convex hull contains 11.0% of the original points.
+INFO:root:cvxpy solver took 0.000577791s; status is optimal.
+INFO:root:Optimal solution value: 0.20063396358747293
+INFO:root:Variable Global ROC point: value [0.14018904 0.69752148]
+INFO:root:Variable ROC point for group 0: value [0.14441478 0.70148158]
+INFO:root:Variable ROC point for group 1: value [0.12562792 0.65148158]
+INFO:root:Variable ROC point for group 2: value [0.10094174 0.70148158]
+INFO:root:Variable ROC point for group 3: value [0.14712885 0.65148158]
+
+
+
+
+
+
+
+CPU times: user 16.4 s, sys: 213 ms, total: 16.6 s
+Wall time: 2.67 s
+
+
+
+
+
+
+<error_parity.threshold_optimizer.RelaxedThresholdOptimizer at 0x15fc63040>
+
+
+
+
+Plot solution
+
+
+
+
+
+
+
+
+
+
+
+Theoretical results:
+
+
+
+
+
+
+INFO:root:Maximum fairness violation is between group=1 (p=[0.12562792 0.65148158]) and group=2 (p=[0.10094174 0.70148158]);
+
+
+
+
+
+
+
+Accuracy: 79.9%
+Unfairness: 5.0% <= 5.0%
+
+
+
+
+
+
+Plot realized ROC points
+
+realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Group 0: l2 distance from target to realized point := 0.034% (size=259521)
+Group 1: l2 distance from target to realized point := 0.000% (size=29518)
+Group 2: l2 distance from target to realized point := 0.060% (size=19386)
+Group 3: l2 distance from target to realized point := 0.227% (size=12570)
+Global l2 distance from target to realized point := 0.034%
+
+
+
+assumes FP_cost == FN_cost == 1.0
+
+
+
+
+
+
+
+Actual accuracy: 79.955%
+Actual error rate (1 - Acc.): 20.045%
+Theoretical error rate: 20.063%
+
+
+
+
+
+
+
+
+
+
+Best (train) unfair accuracy is 80.198%, with threshold t=0.5
+
+
+
+
+
+
+
+
+Best (unconstrained) single-threshold classifier:
+ Accuracy: 80.20%
+ Unfairness: 36.11%
+Best (constrained) multi-threshold classifier:
+ Accuracy: 79.85%
+ Unfairness: 7.30%
+
+
+
+
+
+
+
+Fit and plot similar example but using “Equal Opportunity” fairness metric
+
+equal opportunity is achieved by setting fairness_constraint="true_positive_rate_parity"
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/examples/relaxed-equalized-odds.usage-example-folktables.ipynb b/examples/relaxed-equalized-odds.usage-example-folktables.ipynb
new file mode 100644
index 0000000..46706d4
--- /dev/null
+++ b/examples/relaxed-equalized-odds.usage-example-folktables.ipynb
@@ -0,0 +1,960 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "be6d19dc",
+ "metadata": {},
+ "source": [
+ "# Achieving _equalized odds_ on real-world ACS data (ACSIncome)\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with: ```pip install \"error_parity[dev]\"```\n",
+ "\n",
+ "**DATA**: the data used in this notebook can be easily downloaded and parsed using the companion notebook `parse-folktables-datasets.ipynb`;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "from pathlib import Path\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "ba678d67",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.9`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "8ecf4a84",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ACS_TASK = \"ACSIncome\"\n",
+ "SEED = 42\n",
+ "\n",
+ "data_dir = Path(\"~\").expanduser() / \"data\" / \"folktables\" / \"train=0.6_test=0.2_validation=0.2_max-groups=4\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "c617827f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ACS_CATEGORICAL_COLS = {\n",
+ " 'COW', # class of worker\n",
+ " 'MAR', # marital status\n",
+ " 'OCCP', # occupation code\n",
+ " 'POBP', # place of birth code\n",
+ " 'RELP', # relationship status\n",
+ " 'SEX',\n",
+ " 'RAC1P', # race code\n",
+ " 'DIS', # disability\n",
+ " 'ESP', # employment status of parents\n",
+ " 'CIT', # citizenship status\n",
+ " 'MIG', # mobility status\n",
+ " 'MIL', # military service\n",
+ " 'ANC', # ancestry\n",
+ " 'NATIVITY',\n",
+ " 'DEAR',\n",
+ " 'DEYE',\n",
+ " 'DREM',\n",
+ " 'ESR',\n",
+ " 'ST',\n",
+ " 'FER',\n",
+ " 'GCL',\n",
+ " 'JWTR',\n",
+ "# 'PUMA',\n",
+ "# 'POWPUMA',\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "034be8ef",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import folktables\n",
+ "\n",
+ "def split_X_Y_S(data, label_col: str, sensitive_col: str, ignore_cols=None, unawareness=False) -> tuple:\n",
+ " ignore_cols = ignore_cols or []\n",
+ " ignore_cols.append(label_col)\n",
+ " if unawareness:\n",
+ " ignore_cols.append(sensitive_col)\n",
+ " \n",
+ " feature_cols = [c for c in data.columns if c not in ignore_cols]\n",
+ " \n",
+ " return (\n",
+ " data[feature_cols], # X\n",
+ " data[label_col].to_numpy().astype(int), # Y\n",
+ " data[sensitive_col].to_numpy().astype(int), # S\n",
+ " )\n",
+ "\n",
+ "def load_ACS_data(dir_path: str, task_name: str, sensitive_col: str = None) -> pd.DataFrame:\n",
+ " \"\"\"Loads the given ACS task data from pre-generated datasets.\n",
+ "\n",
+ " Returns\n",
+ " -------\n",
+ " dict[str, tuple]\n",
+ " A list of tuples, each tuple composed of (features, label, sensitive_attribute).\n",
+ " The list is sorted as follows\" [, , ].\n",
+ " \"\"\"\n",
+ " # Load task object\n",
+ " task_obj = getattr(folktables, task_name)\n",
+ "\n",
+ " # Load train, test, and validation data\n",
+ " data = dict()\n",
+ " for data_type in ['train', 'test', 'validation']:\n",
+ " # Construct file path\n",
+ " path = Path(dir_path) / f\"{task_name}.{data_type}.csv\"\n",
+ " \n",
+ " if not path.exists():\n",
+ " print(f\"Couldn't find data for '{path.name}' (this is probably expected).\")\n",
+ " continue\n",
+ "\n",
+ " # Read data from disk\n",
+ " df = pd.read_csv(path, index_col=0)\n",
+ "\n",
+ " # Set categorical columns\n",
+ " cat_cols = ACS_CATEGORICAL_COLS & set(df.columns)\n",
+ " df = df.astype({col: \"category\" for col in cat_cols})\n",
+ " \n",
+ " data[data_type] = split_X_Y_S(\n",
+ " df,\n",
+ " label_col=task_obj.target,\n",
+ " sensitive_col=sensitive_col or task_obj.group,\n",
+ " )\n",
+ "\n",
+ " return data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "caaec009",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load and pre-process data\n",
+ "all_data = load_ACS_data(\n",
+ " dir_path=data_dir, task_name=ACS_TASK,\n",
+ ")\n",
+ "\n",
+ "# Unpack into features, label, and group\n",
+ "X_train, y_train, s_train = all_data[\"train\"]\n",
+ "X_test, y_test, s_test = all_data[\"test\"]\n",
+ "if \"validation\" in all_data:\n",
+ " X_val, y_val, s_val = all_data[\"validation\"]\n",
+ "else:\n",
+ " print(\"No validation data.\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "b5206c61",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "n_groups = len(np.unique(s_train))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "4e391ba2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Global prevalence: 37.2%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_train) / len(y_train)\n",
+ "print(f\"Global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "6e709bb8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.ensemble import RandomForestClassifier\n",
+ "\n",
+ "rf_clf = RandomForestClassifier(n_jobs=-2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "0ed640b6",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 2min 7s, sys: 2.08 s, total: 2min 10s\n",
+ "Wall time: 18.5 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "RandomForestClassifier(n_jobs=-2) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "RandomForestClassifier(n_jobs=-2)"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "rf_clf.fit(X_train, y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "85ba7bf6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "predictor = lambda X: rf_clf.predict_proba(X)[:, -1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6af00a5e",
+ "metadata": {},
+ "source": [
+ "## Construct the fair optimal classifier (derived from the given predictor)\n",
+ "- Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);\n",
+ " - optionally, this constraint can be relaxed by some small tolerance;\n",
+ "- Optimality is measured as minimizing the expected loss,\n",
+ " - parameterized by the given cost of false positive and false negative errors;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "3235a0d0-fd42-4537-ba2d-9e7b4678da5b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "if \"validation\" in all_data:\n",
+ " X_fit, y_fit, s_fit = X_val, y_val, s_val\n",
+ "else:\n",
+ " X_fit, y_fit, s_fit = X_train, y_train, s_train"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "48f713ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "postproc_clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=\"equalized_odds\",\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " false_pos_cost=FALSE_POS_COST,\n",
+ " false_neg_cost=FALSE_NEG_COST,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "3dbca6de",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:ROC convex hull contains 8.7% of the original points.\n",
+ "INFO:root:ROC convex hull contains 9.7% of the original points.\n",
+ "INFO:root:ROC convex hull contains 6.9% of the original points.\n",
+ "INFO:root:ROC convex hull contains 11.0% of the original points.\n",
+ "INFO:root:cvxpy solver took 0.000577791s; status is optimal.\n",
+ "INFO:root:Optimal solution value: 0.20063396358747293\n",
+ "INFO:root:Variable Global ROC point: value [0.14018904 0.69752148]\n",
+ "INFO:root:Variable ROC point for group 0: value [0.14441478 0.70148158]\n",
+ "INFO:root:Variable ROC point for group 1: value [0.12562792 0.65148158]\n",
+ "INFO:root:Variable ROC point for group 2: value [0.10094174 0.70148158]\n",
+ "INFO:root:Variable ROC point for group 3: value [0.14712885 0.65148158]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 16.4 s, sys: 213 ms, total: 16.6 s\n",
+ "Wall time: 2.67 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO, force=True)\n",
+ "postproc_clf.fit(X=X_fit, y=y_fit, group=s_fit)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "599af3ba",
+ "metadata": {},
+ "source": [
+ "## Plot solution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "b5ed8e16",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"whitegrid\", rc={'grid.linestyle': ':'})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "ee9d0214",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "all_groups_name_map = {\n",
+ " 0: \"White\",\n",
+ " 1: \"Black\",\n",
+ " 2: \"American Indian\",\n",
+ " 3: \"Alaska Native\",\n",
+ " 4: \"American Indian\",\n",
+ " 5: \"Asian\",\n",
+ " 6: \"Native Hawaiian\",\n",
+ " 7: \"other single race\",\n",
+ " 8: \"other multiple races\",\n",
+ "}\n",
+ "\n",
+ "largest_groups_name_map = {\n",
+ " 0: \"White\",\n",
+ " 1: \"Black\",\n",
+ " 2: \"Asian\",\n",
+ " 3: \"other\",\n",
+ "}\n",
+ "\n",
+ "group_name_map=all_groups_name_map if len(np.unique(s_fit)) > len(largest_groups_name_map) else largest_groups_name_map"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "5ccb923e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wT9f8H8NdddtK9J7SMskGUqaBMkQ0KKijIEFBk/BQURL8oS4aLISoOBEGW7KkoIChTNhTKhpbSne7s3P3+CDlyTdI2paUF38/Hgwe95O7yyeWTy73v8/m8PwzP8zwIIYQQQgghhJAKwlZ2AQghhBBCCCGEPNoo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEEEIIIYQQUqEo8CSEVHkmk6myi/BQoeNFCCF0LiSkqpFWdgEI+a8wGAw4evQo/v77b5w5cwZZWVnIysoCy7Lw9/eHv78/6tevj6eeegpPPvkkfHx8KrW8ixYtwldffSUsX7p0qVLKsX37dqxcuRJr1qxx+fzRo0cxePBgYfnnn39Gy5YtH1TxqhSj0Yjvv/8eGRkZmDZtWmUXxyPx8fFYv349jh8/jjt37sBkMiE4OBjVqlVDly5d0K1bN/j6+lZoGVJTU/Hrr7/i4MGDuHHjBgoLC+Hn54ewsDC0a9cOvXv3RnR0dKn3t2vXLvzf//1fmcoSHx8PqfTR+4mePHkyNm3aBACIjIzE3r17K7lEj45Bgwbh2LFjAIAWLVpgxYoVlVyiynPjxg3MnDkTI0eOdPt70KFDByQnJwMA+vbtizlz5jzIIhLyn/To/aoRUsWYzWb89NNP+PHHH5GTk+NyHZ1Oh+TkZJw/fx7r1q2DQqHACy+8gPHjx8PPz++BlrequHr1KqZNm4Zjx44hMjKysotT5e3btw8zZ87E7du30bdv38ouTqkZDAZMmzYNGzdudHouOTkZycnJOHz4MBYuXIgZM2agU6dOFVKOZcuW4csvv4TBYBA9npGRgYyMDJw7dw7ffvstRo8ejVGjRkEikZS4zwsXLlRIWQkhrhkMBnz99ddYunQpzGYzRo4cWdlFIoQ4oMCTkAqUm5uLUaNG4dSpU07PaTQaeHt7g2EY5ObmQqfTCc8ZjUasWrUKf/zxB7777jvUr1//QRa7Svjhhx+Eu/ekZDNmzBDu3j8sjEYjhg8fjuPHj4se9/LyglqtRmZmJjiOAwBotVq89dZbmD17Np5//vlyLce8efPw448/ih6Ty+UICAiAVqsVuuuZzWYsWLAASUlJmD17don7dQw8vb294e/vX+oyMQxT6nUJITZnzpzBkiVLKrsYhBA3KPAkpILwPI/x48eLgs4GDRpg8ODBePLJJxESEiJaPyUlBfv378dPP/2EmzdvArC1tgwfPhwbNmxARETEgyw+IRVu5syZoqCzRYsWePfdd9G4cWMAQH5+PtavX48FCxZAr9cDAKZOnYqaNWuiSZMm5VKGbdu2iYLOyMhIvP/++2jXrh1kMhksFgv27duH2bNnC4H9xo0bUadOHQwZMqTYfTsGnqNHj8awYcPKpcyEEELIw4iSCxFSQbZs2YLDhw8Lyy+99BLWr1+PPn36OAWdABAeHo6XX34Z27ZtQ/fu3YXHtVotpk+f/kDK/DBq2bIlLl26JPz7r47vfNicOXMGv/76q7Dcvn17LFu2TAg6AVsr4dChQ/Hzzz9DrVYDsLU6lqa1sTQKCgpE47qioqKwbt06dO7cGTKZDAAglUrRuXNnbNiwATVr1hTWXbRoEbRardt9p6SkiJ7/L/ZaIKQq27t3r/C7QeM7CXkwKPAkpIKsXr1a+Ds2NhZTp04Fy5b8lZPL5ZgzZw5q1aolPLZv3z7cuHGjQspJSGX4/vvvwfM8AFvX2tmzZ7sdN9m4cWNMmTJFWD516hQOHjx432XYuHEjMjMzheUZM2YgKCjI5br+/v5YtGiRkPCnoKAAy5cvd7vv+Ph40TIFnoQQQv7rKPAkpAIYDAacO3dOWG7fvr1HGSrlcjmGDx8ueuzQoUPlVj5CKlNubq4om2mfPn1KHP/Yt29fBAcHC8vbtm2773LYs6sCQFxcHJ588sli169ZsyY6duxYqjI4drOtVq1apWepJoQQQiobjfEkpALk5eXBarXe1z6eeuop0XJ6enqptrt58yY2bdqEf//9F4mJicjJyYFKpUJAQACaNGmCZ555Bl26dCmXqRrKMjXCxo0b8f777wvLe/bsQVRUFADnqVHskpOTUadOHWHZMcFMWaZT0ev12LZtG/755x/Ex8dDq9XCarUiICAAsbGxePLJJ9GrVy+EhoaW+H4cy7Vz507UrFkTBoMBO3fuxG+//YarV68iMzMTSqUSYWFheOqpp9CnTx/RdmVVdMobu02bNomCKsdjXFROTg42b96MI0eOICEhAdnZ2WAYBgEBAahduzbatGmDnj17lmt25YMHD4q+H6XJVCuVSvHMM89g/fr1AIA//vgDM2fOLHM9zszMxMWLF4Vlx4CyOB07dsTvv/8OwFYvz549K+oebOcYeFZma+ft27dF7+3s2bNQKBTYuXMnvvvuO9y4cQP+/v6Ii4tD165d0bNnT5fHNDU1FVu3bsU///yDW7duQavVQqFQIDAwEE2aNEG7du3QpUuXUmX79dShQ4dw6NAhnDhxAqmpqcjJyYHZbBYSNjVu3BhPPvkknnvuOcjlcpf7GDdunPC5Ababgd9++22xr3v48GEMHTpUaJmPjo7G5s2b4eXl5XJ9nuexb98+7N27FydPnkRmZiZ0Oh38/PwQHR2Np556Cr169UK1atU8ev9arRYbNmzA/v37ceXKFRQWFiIgIABxcXHo06cPunbtWiHHvai0tDRs2rQJR48exdWrV5GTkwOZTIbAwEDUq1cPbdu2RY8ePaBSqYrdj+M529vbWxjnffXqVaxZswYHDx5EamoqOI5DaGgomjZtij59+qB169Zu9+k4NYojx9+GolPMlGY6FcfztP08WlBQgK1bt2LXrl24desWsrOzERgYiOjoaPTq1Qs9e/aEUqkU7efQoUPYsGEDzp07h9TUVMhkMkRFRaFt27YYNGhQsb81ZZkmpzTToTmu4/j+z5w5gw0bNuD48eNITU0Fy7IIDQ1Fs2bNMGDAANStW1e0H61Wi40bN2L37t1ISkpCfn4+/P390ahRIzz//PPo2LEjJUsjAgo8CakAAQEBkMlkMJvNAGw/WG+//bbbiyJXQkNDsWPHDvj6+sLPz08Yc+ZOTk4OZs6ciR07dgiZQO3MZjPy8vJw8+ZNbNmyBdHR0ZgyZQo6dOjg+Zt7yK1ZswZffvmly6ltUlJSkJKSgkOHDmHRokV45ZVXPP7cTp48icmTJ+PWrVuix41GI3Jzc3Hp0iUsW7YML7/8Mj788MMHcsHoitVqxZIlS/D999+LMirb2acy+euvv7BgwQKMHDkSI0aMKJcLCMfeAAzDuAzcXHnssceEwLOgoABXrlxBvXr1ylwGe0ABAE2bNi11GRydPHnSZfkdu9o2aNCgTGWsKMuWLRONk7XX+/Pnz6N3796idU0mE+bPn4+VK1fCaDQ6PZefny+cV2JjY/HRRx8VGyB44vDhw5gzZw4SEhJcPq/VaqHVanHt2jVs2rQJn3/+OebMmePy9adPn46TJ08iIyMDgG34wo4dO0Tj6R3l5uZi0qRJQh2RSqX44osv3Aadp06dwrRp00Q3M+zsU/KcPHkS33zzDfr374/Jkyc7BSeurFq1Cp999hkKCwtFj6elpSEtLQ1///03VqxYgc8//7zEfZWVXq/H559/jjVr1gi/aXYmkwmFhYVITEzE77//jgULFuDtt9/GCy+84NFr/Pzzz5g3b57T/m/duoVbt25h8+bNePLJJzFnzpxS3RCsKIcOHcLkyZORlpYmetz+HTp27BhWrlyJJUuWICwsDLm5ufjf//4nuukB2H4PEhISkJCQgDVr1mDBggVON5sftMLCQsyaNQsbNmxwei4/Px9Xr17FunXrMHnyZLz22msAgD///BMffPCB0+9peno69uzZgz179qBTp0748ssvPfodJY8u6mpLSAWQSqWiu4K3bt3C2LFjhYue0qpVqxaCg4NLDDoTExPRq1cvbNu2TRR0ymQyhIaGOnXzS0pKwujRo/HNN994VJ6KplQqUa1aNVSrVg0ajUZ4XCqVCo9Xq1bN7cVfcTiOw8SJE/HRRx+JfiQZhoGfnx9CQkJEQaDRaMTSpUsxePDgYpPIODp9+jSGDh0qBJ0syyI4OBgBAQFOZVm1atV9J43y9fUVjoljK5VGoxEdr6L1x2g0YujQoViwYIEo6GRZFkFBQQgKChKNR87Pz8fnn3+O0aNHO81zWRZXrlwR/o6IiBB91sWJjY0VLV+7dq1cygBAlDioOFFRUaLjef36dad1srKyRD0UGjRogNu3b2PhwoUYMGAAWrZsiYYNG6JNmzYYOHAgvv7661L3aLhfV65cwWeffebyufbt24s+99zcXAwdOhQ//vijKOiUyWQICwuDv7+/6EbEjRs38Prrr4vGt5fVli1b8PrrrzsFnb6+voiMjERQUJDTTZDU1FSMGDEC58+fd9qfn58fPvnkE9FjM2fORHZ2tsvX/+ijj0TBxfjx493eINm2bRsGDx7sFHT6+fkhPDwcCoVCeMxisWD16tUYOHAgsrKyXO7Pbt68eZg2bZoo6LSfUxx7IJw+fRqvvfZaqc9TnsjOzsaLL76IFStWiIJCiUSCkJAQp54QGRkZmDJlCqZOnep0A9SdFStWYNasWcL+pVIpQkNDnVpODx06hP79+yMpKclpH5GRkahWrZpT4r6QkBDhPOgqqZ8nDhw4gBEjRgj1gmVZhISEwNvbW7ReQkICxo0bh4KCAgwdOlQIOu2fXdHf4/z8fIwbNw537ty5r/LdD7PZjDfffFMUdKrVaoSFhYl+FzmOwyeffIL9+/dj27ZtGDNmjPB7al+/aI+JP//80+05h/z3UIsnIRVkyJAhmDBhgrD8119/oX379ujYsSM6d+6Mp556yqN5/dzRarUYNmyY6CKpfv36GDduHJ566inhLmNiYiJWr14tXEDwPI/58+cjKCgI/fv3v+9ylIcmTZrgjz/+ACDuxhsaGio8XlazZs0Sjcnz8vLCqFGjRGMHCwsL8eeff2LBggVCF6xTp05h/Pjx+Omnn0rs1vnRRx/BbDbDz88PY8aMQY8ePYTPOC0tDT/99BN++uknYf21a9e67LpUWoMHDxa6kjl2G3v22WfdZmm0T/Nz9OhR4bGgoCCMGTMG3bp1g6+vLwBbC/qOHTvw1VdfCRe0e/fuxf/+9z98+umnZSqvXWpqqvB3WFhYqbcr2tJxPxdqjmVgGKbUrSgSiQRBQUFISUkBAJfd+4oGPuvWrcMff/zh1P3e3hJ24sQJLFmyBCNGjMDo0aNLlYSsrObOnevUqmTn2CWX53lMmDBBNN1N8+bN8cYbb6BFixbCeSUzMxPbt2/HN998g5ycHFgsFkyfPh2RkZF4+umny1TG5ORkfPTRR7BYLABsF7Tjx49Hjx49RMmfCgoKcODAASxYsECYgspsNuOLL77A0qVLnfb79NNPY+DAgVi1ahUA27lz1qxZThfFmzdvxq5du4TlVq1a4fXXX3dZ1uPHj2Py5Mmiso4YMQJ9+/ZFeHg4AFvvglOnTuG7777D/v37AdhaxMePH49ly5a5PK9s375dNM2PWq3G6NGj0b9/fyHYu3nzJn744QesX78et2/fdn9Ay8hgMGDEiBG4fPmy8Fi1atUwfvx4dOjQQcg0be+Cu2TJEuFG1tq1axEQEID/+7//K/Y1dDqd0Pru5+eHt99+G7169YJarQbHcTh69Cjmzp0rBPVpaWkYM2YMfv31V1ELmr37adGhF5999lm5ZTqfOXMmrFYrQkNDMX78eHTv3h1KpRI8z+PYsWN47733hPPKmTNn0LdvXyQmJkKpVOKtt95C//79hd+D+Ph4fPTRR0Lvj4KCAixbtkyURO1B2rVrl3B+6tWrF0aOHInatWsDsN2AWrhwIVauXCms/9FHHyEzMxM8z+OJJ57AO++8g8cffxwsy0Kv12PlypWYP3++8L1YvXo1Ro0ahcDAwAf/5kiVQi2ehFSQbt26OV14mc1m/Pbbb5gwYQJat26NHj16YOrUqdi8ebPLu7ilMX/+fNG2PXr0wLp169C+fXvRD3O1atUwadIk/Pjjj8IFA2DrglaZd1ofhNOnT4t+NMPDw7Fu3TqMHDlSlLBGo9Ggd+/e2Lx5M5544gnh8WPHjrm8kC3KbDYjIiICmzdvxqBBg0Q3FkJDQzF58mTRhRjP89i+fft9vjvP7Ny5E/v27ROW4+LisHnzZgwYMEAIOgHbReArr7yCTZs2iVoDt27dip07d95XGRxbejy5+VK0dcVVd+mylMHb27vEXgXuypGbm+v0vOP4TgD47bffhIs6mUyG8PBwp1Zeg8GARYsW4a233nIbGJYH+1ixQYMGYffu3Th9+jS2bNmCYcOGiZIrrVq1Cn///bewPGzYMKxYsQJt2rQRnVeCgoIwZMgQbNiwAdWrVwdgaxV5//33nbrmltaSJUuEeVsZhsHixYsxZMgQp4zDXl5e6NatG9atWydqzTpy5Ajy8/Nd7vu9994TtZxv27ZNCAYBW9A7Y8YMYdnf3x/z5s1zeTPAZDJhwoQJwsV1SEgINm7ciNGjRwtBJ2C7WdGsWTN89913GD9+vPD4v//+Kzov2RmNRtGNI7VajeXLl2PEiBGiuhcTE4OZM2dW2HRbP//8s6hbfKtWrbBp0yb06NFD9BsSGhqKN954A2vXrhWdT7/99lucPn262NewWq2wWq0ICwvDr7/+ipdfflnYN8uyaN26NdauXYs2bdoI29i7pz5oVqsV0dHRWLduHV544QWhqzTDMGjZsqVTd+fExETIZDIsXboUI0eOFJ3rGjRogJ9++kkUiP31118P5H24Yj8/vfPOO/j000+FoBOw9TL43//+h1atWgmPpaSkwGw2o2PHjvj555/RrFkz4TuiUqkwYsQIUV03mUzlkomcPPwo8CSkgrAsi0WLFqFbt24un+d5HleuXMHatWsxadIkdOrUCe3bt8cHH3yAvXv3luri8/bt26KuMfXq1cPs2bOLvYhu2bIlPvroI2HZZDLh+++/9+CdPXwWLFgg/C2RSDB//vxiu1b6+Pjgq6++El3o/vTTT8LFcHGmTZsmuugsavjw4aKuWWfOnClxn+WF53ksXLhQWFar1fj6669FF4tFhYWF4auvvhKNR/v6669F4yM95di91/ECtiRF1y067u1BlKHo+q7KUDTwBGyZe3/99VecO3cOf/31F06ePIldu3ZhyJAhou/r3r17RYFPRXjjjTfw4Ycfonr16lCpVKhbty4mTZokfMYWiwU//PCDsH6LFi0wadKkYsf3RkVFiS68MzMzhfG4nuA4TtS7oV27diVmG/b19UWfPn2EZavV6rIlGrBdFH/66aeiVsZp06ZBp9OB4zi89957KCgoEJ775JNP3LaGb9q0SdRy/tlnnzl1By9q9OjRaN++vbD8448/wmQyidbZsWOHaFjGxIkTix0H/eKLL6Jv377Fvq6nCgsLRXUgNDQUCxcuLHaYQ1xcHL744guhnvA8j6+//rrE12JZFl988YXbpEsKhQKfffaZKEhbtmzZfZ2Dymry5Mlue2k0a9YM0dHRoscGDRokuonpyNvbG88995ywfOvWrTLfrCkPDRo0wMiRI90+X7SOKZXKYhO89evXT7RcdHgD+W+iwJOQCqRUKvHll1/i66+/LlWCkTt37mD9+vV488030a5dOyxbtqzYAHTv3r3C3XYAGDNmTKkG8Pfp00c0T6irhESPitzcXBw5ckRYbteunVOCGFcCAgIwZMgQYVmr1eKff/4pdpuwsDC0bdu22HXkcrkoIY67MWYV4dKlS0KXRMB2YVD0QsmVGjVqiC46rly54jKJSmk51mlPstJKJBJR8ONY9x9UGYqu76oMjomFZDIZvv76a8ydOxeNGzcWlb9GjRp4//33sWzZMlEwu3btWlEX1/KkVquLvbgEbGPpHHtBuMo07UqjRo1ESZp+++03j8tntVrxxRdfYObMmXjjjTecppVyp2jQ4iphlmM533zzTWE5OTkZixYtwtKlS0XH/dVXXy02AZvjTb86deqUukvnq6++Kvydnp7u1CroeNx8fHxKNRTijTfeKNVrl9aRI0dErfnDhg0T9Yhwp0WLFqJz4IEDB0o8x7Vr185tcGbn7++PAQMGCMvJycmi1tgHISQkpMQM3HFxcaJlxxsirth7Cdi56kHxoLz00kvF3lwqmon96aefdspf4CggIEA0nrUy3xupOijwJOQB6NixIzZu3IitW7di7NixeOyxx0q82M3MzMTs2bPx4osvCuPJinKc21OtVqNdu3alLpNjNsfc3Nz7CiSqsqNHj4qCandZLF3p2bOn076KUzSwcMexhbE8kvWU1uHDh0XLnhyLHj16iJZLOhbFcWypqKw0+xVZhk8//RRz587F2LFj8eWXX5Y4VUuzZs1EvRAAlKqlqCwaN25cYjKnokGvJ1l5H3/8ceHvM2fOOLXmlUQmk6F169bo378/3n77bTRv3rzEbXied+paW9J0Vm+++SaaNGkiLK9YsULUMyIuLg7vvfee2+11Ol2ZMxc//vjjojpn7/4M2N7LiRMnhOXWrVuX6mZiTExMuUzRZFde5wqe5/Hvv/8Wu37R86w7RYM+x+P2IDRq1KjEdRx7s8jlclGXVVeKfhc9/b6Up5Kyixdt7S7NNFGO768y3xupOii5ECEPUJ06dVCnTh2MGTMGhYWFOHnyJI4fP47jx4/jzJkzLls3L1y4gFdeeQXr1693urt448YN4e+6det61HJT9Ef0+vXrVW7ah/LgeIwAoGHDhqXeNiwsDMHBwUK3N1cZTIuuXxqOF5IPsqXZ8VhIJBKP5pds2LAhWJYVylvSsSiOTCYTupR50mpptVpFAaNjttCylMHO05ZTx/VdleGJJ54osQWnqF69euHrr78WMiIfO3YMBQUFwsWe41x+JXE1Z59daS6ei3YVHjRoUKkTHuXl5Ql/G41GpKenu51Dtiyys7Nx+/ZtJCUl4dq1a7h48SLOnDmDzMxM0Xolfa8kEgnmzZuHvn37QqfTic699p4qxdWvK1euiOrBH3/8UeZWasfEQKmpqaKuvkVb0IpTr169Yj97TzieK0JDQ4vtjl+Uq9+W4jjeAChOrVq1RNOU3U9W67KIiIgocR3HGwq+vr4lfm8qMpGYp4obIgI436Arzfj8qvT+SNVAgSchlUSj0aBt27ZCtySDwYCjR4/i999/x7Zt20R3B5OTk/HJJ584ZV90TK7iyYWBq/XvJ1FLVVa0m5enxykoKEgIPEs6RqWdFqSyOB4LHx8fj+ZVUyqV8PLyEgKL+6kvXl5eQuBZmnGzdkXHU5Y0UX1JZbDzpAxFy3E/ZXDEsiyefvppITun2WxGQkICmjVrVi77tyuaoMeVotNy3E/G1JycnDIHnhzH4fDhw/jjjz9w/vx53LhxQxSU3a+YmBhMmjTJqbX5vffeEw1FcKXoMcrPz3eb0Kgkjt+lolNuFdeVsaj7nS7EkeO5oiJ/WxiGKTHgsZPJZPDx8RESg5U0HU158/T8/rDNW+npNGUP2/sjVQPdiiCkilAqlXjmmWfwySefYM+ePaIEFIAtG2nRSasdL8I8/VEsesHs6cX3w8LxGDEM43EiGcfjVNIxcpzvrCpyPBaeHgfAs2NRHMckIZ4EsEXHCJUmiCpNGfLy8krsmumuHOU5PUDR8bYVcWFddM5BV8ozuCturGVxTp48id69e2PYsGFYvXo1zp0757JcMpkMzZs3x7PPPlum13GVOKg0gXZZg0xXHG9kFO2O6MmNjbLMb+zO/ZwrPPltUalUHrWKOSY5e9BdNz0dC/6wedTfH6kaqJYRUgH0ej20Wi2ysrIQGhpa6jkC7UJCQvD111/jtddeE7rXWa1WHDt2TDQeRq1WCy1Qnmb4LM/WI094coFfHhwvmnieh06n8+hCqiJatyqL4/suS0BQXsciMjJSmBswPT291NsVvfHi6feqaBnsOI5DZmZmqfZntVpF3To9mYe0JI4X1fbXKm+lGc/qWI6goKAHPg3C/v37XU4rExoaitq1ayM2NhY1atRAvXr1UK9ePSiVSmzZsgW7d+/26HW0Wi0+/PBDp8eXLVuGDh06FDu+tGj9//jjj0XJb8qqaCuSJ9/T8pyG537OFZ78tnhaZsd9l+Xm2X/Fg/6dJaS0KPAkpJxdv34dXbt2FZaHDRuGSZMmebwflmUxfPhw0biuohfefn5+QuBZtItWSYru635bbko7VrGsLSBlVXTux4yMDKdMgsVxDIw86fZWFTkei7y8PBiNxlKPkywoKBBd9N3PsahZs6Ywl+jt27dhMplK1W2r6FgxT8a/uSpD0X2XJvBMSkoSXSy7Sx5SUFAArVaLyMjIUreEF+0W7jiGyt4F90EoOk8px3EPbKxWdnY23nvvPeEYsyyLoUOHYuDAgcV22S3LNBRTp04V3URQq9XCtCqTJk3C1q1b3bYiFj2vlFd26qJ10JNW7/IcLuH4/u73t6W4c4XZbBaNZS6O0WgUtTSX502fh0VV/Z0lpLSoqy0h5SwkJETUquCYodBTRS+0igYJjhe9Fy9e9ChJStFU9O7mUCuO48VoaS/8HOe9exCKBidnz54t9bZJSUmiC0pPAtaqyLG+WK1WUVbOkpw/f16U2Od+joVjMhGLxVLqcjhOO+Hl5YWYmJgyl6FoBuLS1ouiU18UTaTy1VdfoXHjxnjiiSfQuXNnj4+xHcMw5Zql1BOOQbnZbBZap0sjNzf3vjI1b968WRRAjRs3Du+9916J40SLnldKmuNx48aNovlC+/Xrh6lTpwrLycnJmDlzptvta9SoIVr25HPmeR4ZGRkuyxgaGiqatsST/SYkJJR63ZI4nivS0tKcgsniFP1tKelcUdpyJyQkiFryKuv78aA9DL+zhJQWBZ6ElDMvLy/RPI1nzpxxulgtLcc5FwHn1hXHrmB6vR579+4t1X55nseOHTuEZS8vL9StW9fj8jl2oSrtOLnSXuCX1xQXTzzxhGhfju+7JEXX9TRTaVVTtOvgzp07S71t0WNxP0lvWrduLRpPtGfPnhK3sVgsOHDggLD85JNP3teYJH9/f1GG49KUAYDoO1Z0H4At86XjxaFjmYuTk5Mj6tJat27dSmthL1pPPJmPc+TIkWjSpAlat26NF1980eMg9MyZM6Lll19+uVTbFZ2yo7jAMzk5GbNmzRKWQ0NDMXnyZPTt2xdt2rQRHt+0aZMoOHUUGBgoCtAPHTpU6nGf//zzD9q0aYPGjRvj2WefxerVq0XPt2rVSvj7yJEjokzB7mRnZzsdu/tRXucKhmFKPG/aez+U5PfffxctP/nkk07rVNb0TBXJ8Xe2tC3rD3qOU0JKiwJPQirACy+8IFqePn26x8lYeJ7H0qVLheXg4GCni/3nnntONC3E4sWLS5VwYfPmzaKgtlOnTmW6iHfMXmixWEq88ImPj8fJkydLtW/HC4iSWi+K4+/vL7qY3L9/P06dOlXidlqtFj///LOwrNFo8PTTT5e5HBXN8a64u+NVv3590cXyhg0bkJiYWOK+r127hq1btwrLUVFRHk1LU5S3tzeeeeYZYfnXX38tsZvgpk2bRF3+SpqYvTQc5xs8c+ZMidOVXLt2TRSg9u7d26kL6jPPPCP6Lq1Zs6ZUyXoWLFgg6h43cODAErepKM8884yo1W3VqlWlavHat2+fcJNNq9XCy8vLadxqSYoGb6Xpprxnzx6nz87d2EF7N1rHz2TGjBlC0qXp06eLxg7+73//c5qqxa5Xr17C3zqdDt9++22JZeU4DgsXLgRgS45z69Ytp5a7vn37Cn8bDAb8+OOPJe532bJl5Zpsp23btqLutkuXLi1VV96jR4+K5pdu1qxZiUnANmzY4JQluKiMjAysX79eWH788cedknEBztN33M9vR1Xh+Dt7586dElsz//zzT9y5c6eii0VImVDgSUgFePHFF0VdseLj4/HKK6/g6tWrpdreaDRi8uTJom66b775plNwGB4eLko2lJCQgClTphTb5fbff//FjBkzhGWZTIbXX3+9VOUqynGyeAD45ptv3I5BSU9Px+TJk0s9RsXxLu/9ZtkcNWqU8DfHcXj77bed5vd0VFBQgLFjx4rGV7366qvlmjWyvJXmeDEMg5EjRwrLOp0OY8aMcXthDdi62Y0dO1bUcjVy5Mj7HvM3fPhw4e+cnByMHz/e7YXz2bNn8cknnwjLcXFxTlmfy6Jfv36ii+sJEyYgOTnZ5bo5OTkYO3as8N1SKBQYPHiw03qBgYHo3r27sJyRkVHid3L58uVYtWqVsFyrVq1yCazLSqPRYNCgQcJybm4uRo8eXWxwcPPmTXzwwQeixxzrWmk5Jn0CbEFJcQ4fPowpU6Y4Pe6uLi1dulTUOtq7d2/RTZDIyEhMnDhRWM7OznaZgAiw3RxwzBL8448/lljeuXPninp9NG/e3Ok8+swzz4jm2P3++++LTZy0b98+/PDDD8W+rqdUKpWoDqSnp2P8+PHFJrG7evUqJkyYIAr23njjjRJfKzs7GxMnTnTbOl5YWIi3335blE36zTffdLlu0Rsd5ZmhubI41g+O4/D111+7XffatWuYPn36gygWIWVCgSchFUAul2PRokXw8fERHouPj0evXr0wbtw4bN261SlpBM/zSEhIwA8//IDOnTtj8+bNwnPt2rVz2wIyefJk0finbdu24cUXX8Rff/0luvhKSkrCp59+iqFDh4ouHsaOHes2QUpJHn/8cdGk2gcOHMCYMWNEE3vn5+fjl19+wfPPP4/Lly+XetoXx26GeXl5HnWRLap58+aiICElJQX9+/fH999/L2pF0+l02LZtG/r06SOaDL5evXoYPXp0mV//QXA8XkePHnU7uXrv3r3RqVMnYfnSpUvo06cP1qxZI7qwy83NxapVq9C3b1/Rvtq2bYsXX3zxvsv7xBNPiFqMjhw5ghdffBFHjhwRLlwLCgqwbNkyDB48WGgNlEgkmDp1arGBb4cOHVCnTh3hn7vpMby8vERBRnp6Ovr164fNmzcL3x2r1Yo///wTzz//vOg4vPnmm05Bkt17770nSgz0+++/Y+DAgTh8+LCoO/r58+cxbtw4UVCtUqkwb968Sp8jb9SoUaLxq+fPn0ffvn3x66+/ilol8/Ly8Msvv+Cll14SndP69u0r6jJaWl26dBEtf/bZZ/jiiy9EN0csFgtOnDiB999/H8OGDXPZEucq4EhISMCCBQuE5eDgYJdB68CBA0W9S/bt24e1a9c6refj4yP67Hiex5QpUzBhwgRcuHBB9PjZs2fxxhtvYNmyZcLjKpXKaQ5RwNZqN2PGDKE3i9Vqxf/93//hk08+EbVkpaWl4bPPPsOYMWM8Gt9fWiNHjkTjxo2F5SNHjqBv377Yvn27qHU+IyMD3333HV588UXR+fSll14S9TYpzsGDB/HSSy/hn3/+Eb4jFosFe/fuRf/+/UU3C3r06OG290nRJHnr168v12y/laF9+/aiVvi1a9fiww8/FNWFrKws4TNIS0ur8nNKk/8uympLSAWpVasWVq5cibfeegtJSUkAbBcQv//+uzBWRSaTITAwEGazGbm5uS4vHjp37ozPPvvM7dgVX19fLFmyBCNHjhRaa+Lj4zFq1Chh/waDweXF2fDhw0WtgZ6SSqWYPHkyxo8fLwQLe/bswZ49e4Rudo4XjDKZDIsXL8aQIUNK3HeDBg1Ey++88w7mzJkDABg6dCiGDRvmUVknTZoErVaL7du3A7AFxJ999hk+//xz+Pv7QyaTISsry+kzqFu3Lr777juPuww+aPXr18eRI0cA2N5bz549ERYWBr1ejyVLlggXkAzDYO7cuXjrrbeE9TMyMvDRRx9h2rRpwoVbVlaWU+t069atMX/+/HIbR/Xxxx8jOTlZaNm/ePEiXnvtNajVanh7eyMzM9Np3PD7779f7DQXnurfvz+uXLmC5cuXA7B1EZ00aRI+/PBDBAYGIjs72ymhx3PPPVdsS05QUBB+/PFHDBkyRBifd+bMGQwZMgQqlQr+/v7IyclxyjypVquxZMkSp7pfGeRyORYvXoyRI0cKyV9SU1Px4Ycf4qOPPkJAQABYlkVGRoZTPXnyySfx8ccfl+l1n3rqKXTq1Al//vknAFvwsWTJEixZsgTe3t5QKpUu62aDBg1w4cIF4TxUtDuiyWTCe++9J7oZ99FHHzllpwVs35GZM2eid+/ewmc/Z84ctG7d2ikJ27PPPosPPvgAc+bMEerq9u3bsX37dqjVauGzLtpSqFAo8MUXX7i96dewYUN8+umnmDhxIiwWC6xWK5YvX47ly5cjMDAQDMMgKytLeL+BgYFo06YNtmzZUuzx9YRcLsdXX30lqgO3bt3ChAkTIJVKhd+u7Oxspy6tPXr0ECVrKk5cXBwuX76MhIQEDB8+HCqVCn5+ftBqtU7fvVatWhWb9CksLAyBgYHCTZB9+/ahZcuW8PPzg7+/f4kt0lWRn58fxo0bJ/z+AbbhCb/++qtQfx1/3318fDB37ly3rcKEVCZq8SSkAtWpUwdbt27F6NGjRa2fdmazGampqS4DnsjISMydOxdfffVViUFPrVq1sH79enTt2lUUFNj3XzTojIyMxOLFi/Hee++V/c3d1aVLF8yZM8fp/RUUFIiCzsjISCxduhStW7cu1X6feeYZp7vl6enpSE9PF2X/LC2pVIrPP/8cH3zwgehik+d5aLVapKWliT4DuVwuTF4fEhLi8es9aK+//rqonFarFcnJydBqtaLWF8DW0vfjjz/izTffFHXR5TgOGRkZTsGERqPBhAkT8MMPP5Rrd2ONRoMffvgBffv2FdVbnU6HtLQ0UdDp4+ODTz/9VNT9r7xMmTIF7733nuhY2L87jhe+EokEw4YNwxdffFFi8N2gQQNs2rQJLVq0ED2u1+tx584dp6CzefPmWLdundP6lSk0NBSrV6/GgAEDRGPJrVYrMjIykJaWJqonMpkMo0aNwpIlS+7rRs1nn33m1PIJ2G6oFK2bcrkcb7zxBtasWSPKnlp0zOf8+fNx6dIlYblbt27o3Lmz2zLExsZi7NixwrJOp8N7773nMoHa4MGD8f333ztlutXpdEhOTnYKOuvUqYOVK1eiQ4cObl8fALp27Yrly5c7BbtZWVnIzMwUgr3o6Gh8//33CA8PL3Z/ZeGuDlgsFqSlpUGr1YqCzoCAAMycOROff/55qfMGTJkyBYMGDRK+U3q9HikpKaLvnr1u/fDDD8XOC8owDCZNmiT6fhYWFiI5ORkXLlzwONdCVTF06FC8++67Tpntc3JyRL/vdevWxcqVK+9rqilCKhK1eBJSwdRqNcaPH4833ngDf//9N44dO4aLFy8iOTlZaE1hWRY+Pj6Ijo5Go0aN0K5dO7Ru3brU8/8Bth/8+fPn4/Lly9ixYweOHj2K27dvIycnBxKJBGFhYWjYsCE6d+5c5mRC7vTp0wdPP/00NmzYgH379uHmzZvIy8tDYGAgYmNj0bVrV/To0cOj7j8Mw+Cbb77BsmXLsHPnTty+fRt6vR5eXl73lTBi8ODBeP7557Ft2zb8888/SEhIgFarhdlshq+vL2rXro02bdqgd+/eoqQOVV1gYCA2btyIJUuW4MCBA0hPT4fFYoG/v7/Liy2pVIr/+7//w6BBg7B161YcPHgQ165dg1arhdVqRWBgIOrWrYunn34aPXv2dHnjpDyo1WrMmTMHr776KrZu3YrDhw8jPT0dBQUF8Pb2Ru3atdG2bVv069evQrO8Dh8+HD169MDGjRuxf/9+JCUlIScnB0qlEtWqVUPLli3Rv39/p/k/ixMVFYUVK1bg5MmT2LFjB06cOIGUlBQUFBTAx8dHSBjWuXPnUt+QedDUajU+/vhjjBgxAtu3b8fhw4dx8+ZNZGdng+M4+Pr6olatWmjVqhX69u1bqrlQS6JSqbBw4UIcPXoUmzZtwunTp5GWlgaj0Qi1Wo3AwEDUqlULTZs2Ra9evYQbLp06dRLGOh4+fBiJiYmoVq0ajh8/jp9++knYv7+/P/73v/+VWI5hw4bht99+E250nTp1Ct99953LlqSnnnoKO3bswN69e/HXX3/h9OnTyMjIQEFBAVQqFUJDQ9G4cWN06dIFbdu2LfW5vVmzZti5cyd27NiBXbt2IT4+Hjk5OfD29kb16tXx3HPPoV+/fvDy8ip2HOj9sNeB119/Hdu2bcOhQ4dw69YtIcNqcHAwGjRogPbt26Nbt24e33RgWRYffvghevXqhdWrV+PYsWNIT0+HXC5HbGws2rZti/79+4uGdRTHfu5evnw54uPjkZ2dDblcjtDQUKSmpiI2NtbjY1AVvP766+jatSs2bNiA/fv34/bt29DpdAgODkbt2rXRvXt3PPfcc5DL5W6HFxBS2Rj+UUj5RQghhBBCqryjR4+Kxtz//PPPaNmyZSWWiBDyoFBXW0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYoCT0IIIYQQQgghFYrm8SSEEEIIIYQQUqGoxZMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgghhBBCSIWiwJMQQgipAFartbKLUCEe1fdFCCGkYlHgSQh5aBQWFqJTp07o2LEjTCaT6Lnr169j/PjxeOqpp9CwYUO0adMG06dPv+/XHDRoEOrUqYNBgwbd977IfwPHcVi5ciVmz55dKa/foUMH1KlTB5MnTy73fe/YsQPvvvtuue/3v2jjxo2oU6cO6tSpg9u3b4uesz++aNGiSiqdZ44ePer2vVS2yZMnl/kcfvv2beF9HT169L7LYjKZ0LlzZ3To0AEFBQX3vT9CHjYUeBJCHhqffPIJkpKS8O6770IulwuPZ2VlYcCAAfjtt9+QmZkJs9mMjIwMKJXKSiwt+a969913MWPGjEfuwvLLL7/EO++8g4yMjMouCiEPJblcjvfeew/JycmYNWtWZReHkAdOWtkFIISQ0jh+/DjWr1+Ppk2b4rnnnhM9t3fvXuTk5AAAPvjgA3Tr1g0Mw4iC07IKCQlBtWrVEBISct/7Iv8N6enplfr6kZGRkEgkCAwMLNf9pqWllev+iHvVqlUDAPj6+lZySUh569y5Mx5//HFs3LgRffv2RYsWLSq7SIQ8MBR4EkKqPJ7nMWPGDADA+PHjnZ63t8D4+flh8ODB5fran3/+ebnuj5CKtmLFisouArlPf/zxR2UXgVSgcePGYciQIZgxYwa2bNkClqUOiOS/gWo6IaTK++2335CQkIC4uDi0bt3a6Xl7shONRvOgi0YIIYR4pHXr1qhduzYuX76MXbt2VXZxCHlgqMWTEFLl/fDDDwCAF154QfT45MmTsWnTJmE5OTkZderUAQC0aNFC1PJTUFCA9evX48CBA7h8+TJycnIgk8kQFBSExx9/HK+88goaN27s9NqDBg3CsWPHnPZnf+2ePXti/Pjx+Oijj3DixAnI5XLUqlULCxcuxPXr14UW2EuXLuHatWv44YcfcPjwYWRmZsLX1xfNmjXDsGHD0KRJE7fvPzs7G8uXL8e+ffuQlJQEq9WK8PBwtG3bFsOGDUN4eLjL7fR6PVavXo3du3fjypUrMBqN8PPzQ/369dGtWzf07NkTEonEabucnBysWLEC+/btw40bN2CxWBAQEIDGjRujd+/e6NSpk9uyliQ5ORnr1q3Dvn37kJycDKvViujoaLRv3x7Dhg2Dn5+fy+2OHz+O1atX4+TJk8jIyIBarUZsbCw6deqEV155BWq12mkb+2fUt29fzJkzBzt27MDatWtx6dIl6PV6REZGonPnzhg+fLjLLo08z2PXrl3YvHkzzp8/j9zcXHh5eSE2Nhbt27fHwIED4e3t7fR6dps2bRKWL126BOBefXrjjTfw7LPPYvr06bhw4QLUajUaNmyIb775RugirtVqsWbNGhw8eBA3btxAXl4eFAoFQkJC0KJFCwwePBg1a9Z0KneHDh2QnJwsvO/7PR6LFi3CV199JSwfO3ZM+J7t2bMHUVFRoteNjIzE3r17XX6OJTl16hR++eUXHD9+HFlZWVCpVIiLi0P37t3Rr18/yGQyt9teuHABP/30E06cOIHMzEyEhoaia9eueOONN/Dbb7/h/fffdyrbxo0b8f777zu9F0e3b99Gx44dAQCzZ8/G888/77LcGzduxIkTJ5Ceng6DwQAvLy/UrFkTHTt2xMsvv+yyjrpjP75jxozB2LFjATjXr5K4ej937tzBsmXL8PfffyMlJQUMwwjfvyFDhsDf39/t/rRaLX7++Wfs2bMHt2/fhlKpRPPmzTF69OhSl8kdq9WKHTt2YOvWrYiPj0d+fj58fX3RoEED9OrVC927dwfDMG63P3XqFJYtW4Zz584hMzMT4eHh6Nq1K0aOHFniaxcUFGDt2rXYvn07bt26BalUisaNG2PEiBGIjIwsdtszZ84I9TU9PR0KhQLh4eFo1aoVBg8eLHSZdqVfv36YPXs2fvjhB3Tv3r3EchLyKKDAkxBSpZ0/fx7nz58HAHTp0qVM+zh37hzeeOMNZGZmih43m81ITExEYmIitmzZgpkzZ6Jfv34e7Ts3NxevvfYakpOTAQAGgwHZ2dkIDg7G9evXhfX27t2Lt99+GwaDQXgsMzMTv/32G37//XfMnTsXvXv3dtr/kSNHMG7cOOTm5ooev3HjBm7cuIF169Zh3rx5TscmJycHgwYNwuXLl0WPZ2RkYP/+/di/fz82bNiA7777DiqVSng+KSkJgwYNQkpKimi71NRUpKamYvfu3ejWrRs+//xzj7uH7dq1C1OmTIFOpxM9fvnyZVy+fBkbN27E0qVLERcXJzzHcRw+/vhjrF27VrRNbm4uTp8+jdOnT2PVqlX45ptvULduXZevy/M83nvvPWzZskX0+PXr17FkyRJs374dq1evRmhoqOj5d999F9u2bRM9lpOTg1OnTgkB0s8//4yYmBiPjgNgO86vvfYa8vPzAUDI0mwPOvfv34//+7//czpWZrMZBQUFuH79OjZu3IjFixfj6aef9ui1y3o8KhLHcZg3bx5++ukn0eMmkwn//vsv/v33X6xbtw7ffvuty3KtWrUKM2fOFE31kpiYiCVLlmDv3r0ef69Ly2q14uOPP8a6deucnsvOzsbx48dx/PhxbNq0CatXr4aXl1eFlKMolmWdxrjv2LED77//PoxGo+jxS5cu4dKlS1izZg0WL16MZs2aOe3v/PnzGDlyJLKysoTHdDodfv/9d+zduxcDBw4sc1mzsrIwZswYnDx5UvR4ZmamcK5at24dFi5c6PLG1Ndff40FCxaIHrt58ya++eYb/PHHH4iOjnb72klJSXj99ddx8+ZN0eN///03/vnnHwwdOtTttmvXrsVHH30EnueFx8xmM65cuYIrV65gzZo1mD9/vtsbdV26dMHs2bNx4cIFnD171uWNT0IeNdTVlhBSpe3cuRMAUKtWLaeWvenTp+PkyZMYNWoUACAiIgInT57EyZMn8f333wOw3c1+8803kZmZiaCgIMyaNQu7d+/GkSNHsGXLFowdOxYqlQo8z2PWrFlOF/olOXDgANLT0zF9+nQcPHgQ69atE1pQHL3zzjvw8/PD3LlzceDAARw4cABTp04VXttVFtTLly9j1KhRyM3NRVRUFObNm4cDBw7g8OHD+O6779CwYUMYDAa88847OHHihGjbL774ApcvX4ZarcbUqVPxxx9/4MiRI9i0aRN69eoFwNZytXz5ctF2H3/8MVJSUhAUFIR58+bhzz//xOHDh7FmzRq0adNG+Ex27Njh0XE6efIk3n77beh0OkRHR+Pzzz/H33//jb179+LDDz+ERqNBRkYG3nrrLdFUOZ988okQdLZu3RrLly/H4cOH8ccff2DChAlQq9W4c+cOhgwZgtTUVJev/fvvv2PLli1o164dVq1aJXz29laG5ORkzJ8/X7TN9u3bhaDztddew9atW3HkyBH8/vvvePvttyGVSpGWliaassdeH5944gkAQM+ePYX6WNSOHTvA8zwWLFiAQ4cOYdmyZULL0Z07dzB+/HjodDrExMTgyy+/FD6HDRs2YNCgQZBKpTCZTGWaMsjT4zFq1CicPHkSPXv2BAA88cQTwvtybBGKjo5GbGxssRf67ixcuFAIOp999lmsWrUKR48exZ9//onJkyfDy8sLFy5cwKhRo5wCp4MHD2LatGmwWq2Ii4sTehVs3rwZPXr0wJUrV7Bw4UKPy1Qay5YtE4LO7t27Y+3atTh48CD27t2L7777Dk2bNgVg+y4vW7bsvl7LXr/c/XM874wfP16UEO3gwYOYOHEijEYj6tati8WLF+PQoUP4+++/8eWXXyImJgY5OTkYOXKkUxCWnZ2N4cOHIysrC35+fpgxYwYOHDiA/fv3Y+rUqVAqlU7nkdIymUwYOXIkTp48CYZhMHDgQGzevBlHjx7F5s2b8dJLLwGwTdcyevRoWCwW0fYbN24Ugs5mzZph5cqVOHLkCDZv3oy+ffvi6tWr2Ldvn9vXtgedSqUS7777Lvbu3YuDBw9i3rx5CA4OxtKlS11um5ycjBkzZoDnebRt2xa//PILDh48iH379uHTTz9FcHAwzGYzPvjgA7fZrcPDw1G7dm0AoO625L+DJ4SQKqxHjx58XFwcP2XKFLfrLFy4kI+Li+Pbt2/v9NzKlSv5uLg4Pi4ujj9+/LjL7ZctWyas8/fff4uee/XVV/m4uDj+1VdfFT0+adIkYZsvvvjC5X6PHDkirNOsWTP+zp07Tuv88ssvwjq//fab6LmBAwfycXFxfIcOHXitVuu0rcFg4Pv168fHxcXxPXv2FD3XsmVLPi4ujl+8eLHTdhzH8YMGDeLj4uL4Hj16CI/n5+fzderU4ePi4vjNmzc7bWc0GvkuXbrwcXFx/KhRo1y+Z3d69uzJx8XF8e3ateOzsrKcnt+9e7dwHDZt2sTzPM8nJCQI5Rk/fjxvtVqdtjt58iTfoEEDPi4ujh83bpzoOcfPaOzYsS7LZT9+jz/+OM9xnPD42LFj+bi4OP61115zud2iRYv4uLg4vk6dOk6fjb3OTJo0yWk7+3NxcXH8unXrXO577ty5fFxcHN+gQQM+MTHR5TqzZs0S9nP9+nXRc+3bt3f5+vdzPBy3L/pduF83btzg69aty8fFxfEzZsxwuc6ZM2f4evXq8XFxcfzSpUtFz3Xt2pWPi4vjn332WT4vL89p26lTpwrvu+g5YsOGDcJzSUlJLl87KSlJWGfDhg3C41arlX/yySf5uLg4fujQoU7Hi+d5XqfT8W3btuXj4uL4l156qdSvbX984cKFLstU1L///uv2e2CxWIQ60a9fP95gMDhtn52dLaxT9Ls9Y8YMoT5euHDBadszZ84Ir13ccXRlxYoVwnYrV650uc7SpUtdrqPX64XjP2DAAN5oNDpt6/g9KVpvf/rpJ+G5v/76y2nbpKQkvlmzZsI6R44cEZ6z/6489thjLl/36NGjwna///672/c/ZcoUPi4uju/evbvbdQh5lFCLJyGkyiooKMDVq1cBQNT90hPh4eF45ZVXMGDAAKElqqiWLVsKf2u1Wo9fo2vXriWu07t3b5djMdu3by/87Tjx+pUrV3D8+HEAwOjRo12OvVIoFHj77bcB2LrLnTlzRnjO3mpYtHsxADAMg//9739Yvnw5vv32W+Fxi8UidBtztZ1cLse8efPwyy+/eNTSduXKFWGM47hx4xAQEOC0TufOndG8eXPRZ/Hrr7+C53nI5XJMnTrVZdfepk2bCt38du/eLeoK6OiNN95w+Xi7du0A2Opadna28Lj9+OXk5Di1sgDAwIED8d1332HHjh2icZ6lxTCM267jcXFxeOmllzBixAi3rYeOUzCUpc56ejwq0tq1a8FxHFQqlVCfi2rcuDG6desGAKJurQkJCbh27RoA23hIV5/F5MmTK2RaksLCQvTv3x89evTAqFGjXI5BVKlUaNSoEYCyfU6lcfv2bYwdOxZmsxl169YVjesFbN1G7UMBJkyYAIVC4bQPPz8/vPnmmwCAv/76S8gUzvO80Oukb9++qFevntO2jRs3djnutTTsn2WDBg3wyiuvuFxn6NChqF+/PgBgzZo1wuNHjhwRzlMTJ050OX3WO++8Ax8fH5f7tfdoeOqpp/DMM884PR8VFYURI0a43NZ+frBYLC6/Jy1atMDixYuxadMmoaeIK/YWz2vXrj1y8/4S4gqN8SSEVFk3b94Ex3EAgBo1apRpHx06dECHDh3cPp+ZmYlTp04Jy45jxEpDJpMJFw/FcZc8yHGuRb1eL/x97Ngx4e+4uDgUFha63L5u3bqQSCSwWq04ceKE8DrNmzfHX3/9hV9++QVpaWno3r07nnrqKeECvHbt2k7l9vPzQ+3atXHlyhV8/vnnuHz5Mrp06YJWrVoJiVHKMg7p8OHDwt/2wMaVlStXipb//fdfALaLOFfBql23bt2wfPlycByHEydO4NlnnxU9r1Ao3I7/dDz+juNvmzdvjn379uHixYt48cUX0a9fPzz99NNCspaAgACXF6ulFRUV5faCuE+fPujTp4/bbVNSUnDhwgVh2dM6W5bjUZHsdd3+HXdX15s0aYJt27bh+vXryM7Ohr+/P44cOSI8726sq0qlQvv27bF58+ZyLbe3tzf+7//+z+3zFosFFy9eFG6GuLqBcb8KCwvx5ptvQqvVws/PD4sXLxaN2QZs3VTtijuXNGzYEIAt2Dx58iS6dOmCy5cvC+Uvbixxp06dnMZhlyQnJ0cYg150buaiunbtigsXLuDy5ctOn723tzcef/xxl9splUq0adNGCJ7t8vPzER8fD6D499WxY0eXU2rZx8GaTCa88MILGDBgANq3b4969eoJNyBKk4TNXuc5jsOtW7fQoEGDErch5GFGgSchpMpyHLN3vy0WZrMZ//77L+Lj44WEQtevX0d6erpoPd4hUURp+Pr6uswMW5S7wMnxLr3jayclJQl/lzYximNCoMmTJ+PMmTPIzs7Gn3/+iT///BMSiQSNGjVC27Zt0blzZyFzpqOPP/4Yr7/+OvR6PTZv3ozNmzdDJpPh8ccfxzPPPIPOnTsXm6nRlbS0NAC2wLa4rJlF2T9/V5lbHTk+f+fOHafnfX193SZCcjz+9pscAPDKK6/g999/x5kzZxAfHy9cpMbGxqJNmzbo2LEjWrZsWeb594oLpO0MBgMOHz6MhIQEJCYmIikpCVevXnVqYSlLnfX0eFQke0t/fHy82wCiqNTUVPj7+4vqVnHniLL2mCit5ORkHD16FNevX0diYiJu3bqFGzduOI1HLU/83SRRly9fhlQqxYIFC9xm5bVzNR2VK/ZzieM5uLjvfUnfUVfS0tKEulvSjUXH5+2fvb2MJZ2PXJXN8bWL2z42Nla4seeoUaNGGDRoEFasWIGMjAwsXLgQCxcuRGBgIJ566im0b98e7dq1KzGTsWOypNTUVAo8ySOPAk9CSJXlmOjnfrJB7tq1C7NmzRK6j9kxDIMaNWqgSZMmHk1T4MhVtzVXpFLPTrdl6XbluE1sbCy2b9+Ob7/9Fjt37kRWVhasVquQCXbRokVo1qwZZs2aJcrK2qxZM2zdulXICJmfnw+z2YyjR4/i6NGjmDdvHjp06IAZM2YgKCioVOWyZ+RVKpVlej8lXbw5tvC4Sg5V3BQc7iiVSqxcuRIrVqzA+vXrhQzF9mzCK1asQGRkJD7++GOPs8oCJdeblStXYv78+ULWWzuWZVGvXj3ExMSUOSFJWY5HRbqfum4/PiXVLXety/crJycHU6dOxe7du51uAGg0GrRq1QoZGRmiFuryMn/+fPz5558AbDeaWrVq5XK9+zm+eXl5wmNFW1IdlaW7uWO5SpqD2fEcYG+xLe1n7+q3o7Tvi2VZqNVqp+8hAHz44Ydo3rw5VqxYgRMnToDjOGRlZWHr1q3YunUrNBoN3nrrLQwfPrxUZfM0sR0hDyMKPAkhVZbjmKnStCq6snv3brz99tvgeR4BAQHo3LkzGjZsiBo1aiAuLg4+Pj64detWmQPPiuJ4MXX27NlSB7iOgoKC8OGHH2LKlCk4d+4cDh48iEOHDuHUqVOwWCw4fvw4hgwZgl27dokuvqpVq4bZs2cLWTQPHTqEgwcP4vz58+B5Hnv37kV6ejrWr19f7Nx6dvZ9e9p1U61WIy8vr8QLMseug57MlVgSuVyO4cOHY/jw4bh586Zw/A4fPozCwkIkJydj9OjRWLt2bbm2VCxbtgyzZ88GYMvU3KlTJ9SrVw81a9ZE7dq1oVarcejQoUcmE6ZSqURBQQG6deuGL7/80qNt7Rfujt3UXXHMlOwpd62WZrMZw4cPF6Z7atGiBVq3bo24uDjUqFEDMTExYFkWEydOLPfA035TCQCef/55DBo0yO269nNJUFAQDh486NHrOLYiF/c9LMvxdQw23XX/dfW8/TtuL1tZPvvSvi9329t16dIFXbp0gVarFc4PBw8eRFpaGgoLCzFv3jzI5XK3n49jr4LSnEsJedhR4EkIqbIcL0xKurhw5/PPPwfP84iKisL69etddvV8UElUPBERESH8ffv27WK7svE8X+xFC8uyaNKkCZo0aYLRo0dDq9Vi7ty52Lx5M1JSUvDHH38IU6w4kslkaNmyJVq2bIm3334bKSkp+PDDD/HPP//g/PnzoqlDimNPqpSTk4O8vDy3rU+//fYbbt68iVq1aqFTp06IiIhAXl6ekDzGHXsCKkB83MpTTEwMYmJi8Morr8BkMmH16tWYPXs2zGYzVq9ejZkzZ5bL6xgMBnz11VcAbONpV6xY4bJFpyrW2bKKiIjA5cuXhQQ47riq59WrVwdga1XPysoSjVF1lJiY6PJxxy7HZrPZ5TrujvVvv/0mBJ2TJ092O+djeX9WZ8+exQcffADANu512rRpxa5v/05kZ2dDp9N5dHPGcbqc69evux0b7Dg0oLTCwsLAMAx4nhfNeeyKq++4/X97LgB33ccduxo7vjbLsuA4DtevX0fHjh1dbpuenl6q7tIBAQHo2bMnevbsCZ7ncfDgQbzzzjvIzc3FihUr3AaejnWjpFZfQh4FlNWWEFJlOWaBtY/l8oRWqxXmpHv22Wfdji90TH7zoMa1lcRxEvc9e/a4Xe/kyZNo0qQJunTpIrSAnT17FgMGDECLFi1w5coVp20CAgIwZcoUYdl+bP/66y/069cPLVq0cNm1LDw8HBMmTHDariSO4/b+/vtvt+t9//33+PLLL7F69WoA947BsWPHis0I+ttvvwGwtRg89thjpSpTcfR6PYYPH46nn34av/zyi9Pzcrkcr732mjBusCx1050rV64Ix75Pnz5uuxFWRp2tqBYZ++ccHx/vdi5WAJg6dSpatmyJF154Qeim6ZgF2d7t1JUDBw64fNwxCHNXxxyTj7l73D7fZFF6vR6nT58GUD6fU1paGt566y0YDAYEBwdj0aJFLrO5OrIfX6vVir/++svtetu2bUPTpk3RvXt3IaN2zZo1heCzuPOQu+NbHHsyM+Ded9id33//HYBtCIF9XKS9i7tOp8OhQ4dcbsdxHP755x+nxzUajXBcyvK+Zs6ciS5duuCdd95xeo5hGLRp00a4mVfc+cEx8HSV9ZyQRw0FnoSQKsveVQ1w32JRHMdxle5azRISEvDdd98Jy+5aPR60xo0bC1MXfP/9906TugO21rE5c+bAaDQiOTlZyDgbHh6Os2fPCnfbXbl48aLwtz25RmBgIM6dO4fc3FysWrWq1NuVpEmTJkKL7cKFC12OOduzZ4/QetS9e3cAQP/+/QHYurpNnz7d5YX72bNnhUD1mWeeQUhISKnKVByVSoW0tDSkpaVh7dq1Lls8cnNzhURGRY+Dvd6VpS451lnHVh5HBw8exMaNG4XlB1Vn7d3dy/v1XnzxRQC2rK/Tpk1zmaX3zJkz2LRpE3JycuDn5yd0sa1Ro4YwtnHRokVO47gB4JdffnHbomZvMQXgsuuyVqt1+x1y7P7v6rPiOA7Tp08X6vv9Hjej0Yi33noL6enpUCgUWLx4MUJDQ0vcrmPHjsJ47M8++8xlgK3VarFw4ULodDpkZmaKpk2xT5Wyc+dO0Q0Pu6SkJPz8889lek/2zz4+Pt7lTR4AWL58uXDesZ8TAFvmafvnN3fuXJfnlWXLlrltSX/hhRcA2G4gOH6f7HJycvD111+73JbjONy8eRP79u3DrVu3nJ7neV6YQqq486T9HCKRSERj7Ql5VFHgSQipslQqlXABVJYxUj4+PkIwtn//fsycORPXrl1DdnY2EhISMH/+fLz88suiMT4ljTV6kKZOnQqpVIq8vDy89NJLWLlyJW7fvo2srCz8888/GDJkiDB35/Dhw4WWieDgYOFu+9q1a/H+++/j7Nmz0Gq1SEpKwoYNGzBx4kQAtiDVPpdoo0aNhPkhFyxYgLlz5+LixYvQarW4ceMGli1bhlmzZgGwBZP26RdKYp83lGVZ3Lx5EwMGDMCePXuEFukff/xRKE+9evWEstetW1foorZr1y4MHz4cR48eRXZ2NpKSkvDjjz9iyJAhMJvN8PX1xccff3y/h1xgTwhy6dIlDB06FH///bcQjO7fvx/Dhg1Dfn4+JBKJU2uXvUXm+PHjuHXrlkfzN8bFxQnB85o1a/D1118L+zh79ixmzpyJkSNHioKzB1Vn7e/r0qVLiI+PR3Z2tiiYeu211/Dcc8/htdde82i/9erVE+Zi3bt3LwYPHox//vkHWq0WiYmJWLFiBUaMGAGz2QyFQoF3331XtP3UqVOhUqmQkZGBl156Cbt27RK2/eKLL4rtBl2nTh3hgn/lypX46quvcPv2baSlpWHbtm148cUXodVqXXZPdZyfccKECdizZw/S09OF7uuvvvqqKKC538/JPlabYRjMmTMHTZo0gclkQmFhoct/9rGJcrlc6JqbnJyMfv36YfPmzUJ93r17NwYNGiTc3JswYYKo2+eIESMQExMDjuPw5ptv4ocffsCdO3eQmZmJzZs3Y8CAAWUeCvHSSy8J55EZM2Zg2rRpSEhIQG5uLhISEjBt2jRhvHPTpk1FdYtlWUybNg0Mw+Dy5csYMGAA9u/fj+zsbFy7dg2zZ8/GvHnz3OYH6N27N5o3bw7Alijoiy++EL5rf/75J15++WWkpKS4bOkfNGgQ5HI5dDodhg4dik2bNiExMRFarRZnzpzBhAkThGmC7HXblZMnTwIA6tev73HyNUIeRjTGkxBSpT311FOIj48X5nT01NSpUzF48GDodDqsWLHCZetFv379cPjwYSQnJ7u8e11ZHn/8cSxcuBATJ05ETk4OZsyYgRkzZjit179/f4wbN0702JQpU3D9+nWcPn0aGzdudHlHPygoCN9++62oq96nn36K1157DTdv3sTSpUuxdOlSp+1iYmKwYMECj95L69atMXv2bHz44Ye4fPkyRo8e7bROrVq18O2334pa/SZPngyTyYS1a9fi0KFDLrvURUdHY8GCBeXaVa1v3744c+YMVq9ejRMnTuD11193Wkcmk2HGjBlOU3W0bNkSO3fuRGpqqjCn6J49e1xOdVGURCLB9OnTMWbMGFgsFixYsMDpWLMsi1GjRuGnn36CyWR6YHW2ZcuW+P7776HT6YRWsJ9//lno7pqUlITk5OQyJZqZMmUKTCYT1q9fj+PHj7vMBKrRaPDFF184jTOsWbMmvvnmG4wZMwbJyclOc2uGhYWhevXqovksHU2bNg0jR46E0WjEokWLsGjRIuE5mUyGOXPmYMGCBU69Lp555hl0794dO3bsQGJioss6HRISgg4dOmDNmjXQ6/VIS0srVStlUcnJydi+fTsA242cDz/8EBMnTix2Dte+fftizpw5AGxz3ebl5WHmzJlITk7GpEmTnNZnGAZvvfWW0Appp1Ao8OOPP2LEiBG4fv06Pv30U3z66afC8yzLYtKkSUKA6Am5XI4lS5bgrbfewunTp7Fq1SqXvS3atGmDTz/91Ck7eOvWrTFnzhzhvDJy5EjR85GRkejcuTOWLVvm8v1+9dVXeOONN3Dq1CksWbIES5YsEa0zceJELFy40KlOx8bGYtasWZgyZQqSk5MxefJkl+/v5ZdfxoABA9y+f3vg6XgTg5BHGbV4EkKqNHu3y6SkJJfdTUvSqFEjbNq0Cc8//zzCw8MhlUqhVCoRHR2N7t274+eff8asWbOE+e327dtXZbrbArZucrt378aoUaNQr149eHl5QSaTISQkBF26dMHSpUsxc+ZMp7v63t7e+OWXX/Dxxx+jZcuW8Pf3h1Qqha+vLxo1aoRx48bht99+c7qIDwsLw6ZNmzBx4kQ0bdoUPj4+kEql8Pf3R7NmzfD+++9j69atZQry+vTpg507d+KVV15BTEwMFAoFVCoVGjRogHfffRfr169HWFiYaBupVIrp06dj5cqV6NGjB8LDwyGTyRAYGIgnnngCU6dOxZYtWypk/ruPP/4Y3333HZ599lmEhYVBJpNBrVYjNjYWr776KrZv346+ffs6bffiiy9i7NixiIiIgEwmQ3BwcLFjF4tq37491q5di65duyI4OBhSqRRqtRo1atRAv379sGHDBrzzzjtCYqfdu3eX23suTtu2bTF16lTExMRAJpMhICAAmZmZ5bJvmUyGWbNmCZ9zZGQk5HI5lEolateujWHDhmHnzp1o166dy+1bt26NnTt3YtCgQYiMjIRMJkN4eDgGDRqEzZs3F5t0qlWrVtiyZQteeOEFoX6FhISgR48eWL9+PXr06OF2288//xzTp09H06ZNodFoIJVK4efnh6ZNm2LChAnYvn07Ro0aJQwZ+OOPP8p0fBynauE4DoWFhcUGna68/PLL2LVrFwYNGoRatWpBrVZDJpMhMjISvXv3xrp16zB27FiX29qTs02ePBkNGjSARqOBj48P2rZtixUrVgjn6bIICgrCqlWrMHfuXLRp0wYBAQGQyWSIiIhA+/bt8dVXX+H77793O/dtnz59hM8vOjoacrkcERERGDRoEDZu3Og24RRga8X/+eefMXPmTDRt2hS+vr7C+M/FixdjxIgRbrft1asXNm3ahJdeegmxsbFQKpVCvevevTuWLVtWbOKn69evC13De/bsWcqjRcjDjeE9nXmaEEIesIEDB+LEiRMYN24c3nrrrcouDiHkITN58mRs2rQJkZGR2Lt3b2UXhxB88cUXWLJkCVq0aOF2HDEhjxpq8SSEVHn2LmybN2+uMllnCSGEkLKwWq3C3NFvvvlmJZeGkAeHAk9CSJXXpk0bNG7cGImJidi/f39lF4cQQggps7/++gvp6el47LHH8OSTT1Z2cQh5YCjwJIQ8FCZOnAiGYfDNN99UdlEIIYSQMuF5HosXLwbDMC7nASXkUUaBJyHkodCyZUu88sorOHPmTLETxRNCCCFV1bZt2xAfH4+BAwcKGaEJ+a+gwJMQ8tCYOHEiqlevjrlz55ZpygZCCCGksphMJsyfPx9RUVHC3MWE/JdQVltCCCGEEEIIIRWKWjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoCjwJIYQQQgghhFQoaWUXgFQ+k8mEnJwcYVmhUEAikVRegQghhBBCCCGVwmq1wmg0Cst+fn6Qy+X3vV8KPAlycnKQlJRU2cUghBBCCCGEVEEhISH3vQ/qaksIIYQQQgghpEJR4EkIIYQQQgghpEJRV1sChUIhWo6OjoZara6k0gCJiYmwWq2QSCSoVq1apZWDPDyozhBPUZ0hnqI6QzxFdYZ4qqrUGZ1OJxqGVzRWKCsKPIlTIiG1Wg0vL69KKg1gsVhgNpshk8kqtRzk4UF1hniK6gzxFNUZ4imqM8RTVbXOlFfSUepqS6oclmWFf4SUBtUZ4imqM8RTVGeIp6jOEE896nWG4Xmer+xCkMpVUFCAS5cuCct16tSpUndZCCGEEEIIIQ9GRcUGj2Y4TQghhBBCCCGkyqDAkxBCCCGEEEJIhaLAkxBCCCGEEEJIhaKstqTKSU9PF1JJh4SEVHZxyEOA6gzxFNUZ4imqM8RTVGeIpx71OkOBJ6lyUlNThVTSj+KXjpQ/qjPEU1RniKeozhBPUZ0hnnrU6wx1tSWEEEIIIYQQUqGoxZNUOTExMeA47pGdw4iUP6ozxFNUZ4inqM4QT1GdIZ561OsMBZ6kyvHx8ansIpCHDNUZ4imqM8RTVGeIp6jOEE896nXm0QynCSGEEEIIIYRUGRR4EkIIIYQQQgipUNTVllQ5ZrMZPM+DYRjIZLLKLg55CFCdIZ6iOkM8RXWGeIrqDPHUo15nKPAkVc7FixeFVNKNGzeu7OKQhwDVGeIpqjPEU1RniKeozhBPPep1hrraEkIIIYQQQgipUNTiSaocX19fWCwWSKVUPUnpUJ0hnqI6QzxFdYZ4iuoM8dSjXmcezXdFHmrVq1ev7CKQhwzVGeIpqjPEU1RniKeozhBPPep1hrraEkIIIYQQQgipUBR4EkIIIYQQQgipUBR4FmPatGmoU6cOFi1aVC77S05OxsyZM9GlSxc0atQILVq0QP/+/bFs2TIYDIZyeQ1CCCGEEEIIqWpojKcbhw8fxpo1a8ptf/v378fbb7+NwsJC4TGTyYSzZ8/i7Nmz2LBhA7755htERUWV22s+rK5duyYMrK5Zs2ZlF4c8BKjOEE9RnSGeojpDPEV1hnjqUa8zFHi6cP78eYwZMwYcx5XL/i5duoSxY8fCaDRCIpGgX79+aNasGQoLC7FlyxacOnUKly9fxujRo7F27VqoVKpyed2HVWFhoTCHESGlQXWGeIrqDPEU1RniKaozxFOPep2hrrZF7N+/H0OHDkVBQUG57fPjjz8Wgs5vvvkG06dPR69evTBgwACsXr0ar776KgBbgPrzzz+X2+sSQgghhBBCSFVALZ53mUwmfPvtt/jmm2/KraUTAE6dOoWTJ08CAPr06YNnnnlG9DzDMPjggw9w+PBhXLt2DUuXLsWwYcMe2TsdpdGwYcPKLgJ5yFCdIZ6iOkM8RXWGeIrqDPHUo15nqMUTwKFDh9C1a1csXrwYHMdBrVZj6NCh5bLvnTt3Cn8PHDjQ5TosywrP5eTk4MiRI+Xy2g8rlmWFf4SUBtUZ4imqM8RTVGeIp6jOEE896nXm0XxXHtq6dStu374NwHan4ddff0X79u3LZd///vsvAMDX1xf169d3u16rVq2Ev//+++9yeW1CCCGEEEIIqQqoq+1dAQEBGDNmDF5++WVIJBJkZWXd9z6tViuuXbsGAKhZs2axdy9iY2MhkUhgtVqRkJBw369NCCGEEEIIIVUFBZ4AXnnlFXz88cdQKpXlut/MzEyYTCYAQGRkZLHrSiQSBAcHIzU1FXfu3CnXcjxstFotOI4Dy7IICAio7OKQhwDVGeIpqjPEU1RniKeozhBPPep1hgJPAI0aNaqQ/Wq1WuFvf3//Etf39fVFamoqcnJyKqQ8D4vbt28LqaQfxS8dKX9UZ4inqM4QT1GdIZ76r9QZnueBu/8YiQSc2Qye4wCOE57jLRZYzWbbY1YOYBmwUtnd7TjwHA+AB8/xsBoM4ExGgLM9x3E8YN8fx4PnefCcBYyEhTIs1Pac1QpIpQAYgONgzEiHMSMLPMeBt1jAyngoQ4Jsr2W1AgzASORQhgQi/9pNmLNzbOvyHHiDDhaDHpa8QvCcFRKVLxiZHHI/H/AcB6vVArPVArPFBFPWHUhMFkBvAsvxAMOAkcjA8zwsVgvyrEbozVYYIYWZl0IVEQIJJwdrlcCiCYaVVcNk5pGfr4dMGw+L1QL4y1G/V+9Hss5Q4FmB9Hq98LdCoShxffs6BoOhwspUGlevXkXNmjXh7e0tPGY0GnHp0iUAgJ+fH6pVq+a0jU6nAwA0btxY9FxmZqbQihsdHS0Kwq1WK+Lj4wEA3t7eiI2NFW178+ZN5OXlAQDq168PqfRelc3JyUFiYiIAIDw8HMHBwaJtz507B57noVKpULt2bdFzt2/fFm4MxMXFiVq7CwoKcP36dQBAcHAwwsPDRdtevHhR+CGpV6+e6LmUlBRkZGQAAGrUqAEvLy/hOYPBgMuXLwOwde2OiooSbXvlyhXo9XowDON0MyQjIwMpKSkAgGrVqsHPz094zmKx4MKFCwAAHx8fxMTEiLa9ceMG8vPzAQANGjSARCIRnsvOzkZSUhIAICIiAkFBQaJtz549CwBQq9WoVauW6LnExEThJkmdOnVEdTw/Px83btwAAISGhiI0NFS07YULF2CxWCCXy1G3bl3Rc3fu3EFmZiYAWxd1jUYjPKfX63HlyhUAQGBgoFNPAovFgrNnz4JlWafMcOnp6UhNTQUAxMTEwMfHR3jObDbj4sWLAGw3gKpXry7a9tq1aygsLARgGwfu2G1eq9UKY8SjoqJEPxQcx+H8+fMAAI1G4zQZ9K1bt5CbmwsAqFevniibdV5eHm7evAkACAsLQ0hIiGjb8+fPg+M4KJVKxMXFiZ5LTk4WhgvUrl1bNDdwYWGhMAQgKCgIERERom0TEhJgMpkglUqdxqWnpaUhLS0NgG14wMN+jgBsn/2VK1foHPEfOUdcvnwZBoOhTOcIs9kMwFYni6JzhM2jdI7geR7nTpwAZzBCwQBRwSGw6nSw6HTQ3UpETloa9Lm5gNEEjVoNCcsKAZTFbLa9l/AwsOFhgESCzELd3ec53ElKgv74STBGI5QKBXirBT51a0Ae4IvCgnzoCgrBS6QIrhaNwPq1cfXbXwDw4KxWGA0GwGIGLFawHA+eBxipDKxUCgtsdYoBD7lMDt5iAmc2gjNawFmttiAQthkVAOZu0AfbvjkeUm85VJE+kN09RvLwWmAAFOTno/DCNXDZeQADgAeUQSooA5WwWq2wWi0AI4FMpURgg3Ak7rgIS4EJFc0qByShDJQcDykPyMNrgJUrYTSakJeUCibj3tSIBd4sJAGAt5WD0mHyCk04kHKTAZvF39svGJglSlhYOcysAhZJBiysDBZWAYtEhgDdHTDg4WMUD8vLVobiWmAzmCRKmCUKcAwLjpEAzN3zAQMgxWGDTMetZYjO84KUtwAFQPwvv+KJZs0q7Rxh/50qbxR4ViDHHye5XF7i+vZ1LBZLhZWpNKxWq9OUMjzPF/uja7FYhOeL4jhOeM7VVDX25+zvOyoqSuhmoNVqheftJ0xXZXK3X57nRT8yrspblv2W5r0Wt19Xn7F9v7YfhPLbb3l+No6sVqvbMjnu11V9MZvNsFgsLsc9F7dfd/XQXmfu3LkDs9lc4n6Lq98P8hgWVw9Lcww5jhMFCXZlOYZFy1R0u6L7rcxzhLv9evJdjoqKEgIfV+Wic4Tzfh/mc4Tjfst6jrBzNSyHzhHO+62scwTHceB0eoBlwFutMGZpYczOBqwWGMPCYWWAtD/3wFJQCF12FnQZmYBBj+uFelw3m8GbLeAsVvAWiy0wA1AIQOv0qvfkunlclnYN8msAAx53pAooImxBg7WgEFxiMniTBfbQyJqTCOnd+N9eO3OvAKbTQP7lYl7cDX0xzzl/cjZGox5crgFKKw8WAKP0AcMw4HR6WMwGsEKgCmRYDZDrDfC1cJDefYwz5UF/Ix1GK+Bc68qfiWGQL5ci0GSF3CqH3qKCBRoUmnhkS6UIkKWAAQ+1OQ8mloFFykLJ8ShgQ3BDWg8GRg1TvhImHyk4Hwk4RgKekYBnnM8PjqyMBDLO7BR4WlkZclUhbrYqmYwzQmGxfXJc9r3vQmWcI8pzaklHFHhWIMe7u+5Opo7s40Erew5PiUTi9KPMMIxQLlcVVCqVui03y7LCc65+7O3P2QNEx7vBeXl5wvNFL7Ycy+RuvzzPuyyXY3nLsl/H/9291+L26yoYlslksFgsLi8q72e/5fnZOJJIJG7L5LhfV/VFJpOBYRiP9+uuHtrrjL2FytV7cdxvcfX7QR7D4uphaY4hx3Euy1WWY+hYJo7jSvxsKvMc4W6/nnyXAwICkJycTOcI/DfOEY77tVqt93WOUKvVTtvSOcJ5v56eIyQsC4nJAl5fiLyEBFjyC2DJL4C5oAB5GemwpmeADQtBfmoSTJwZvNUKRqqExaAHfysRpqOnkW6xIv3uBbZXNSUYCQPeaoGM4wCGQeL+n8DAgqx4d6FX+WJ4Hoz9pfh7F/IMw8AKXjS1RKaMhUIK+Fk4iD4R5697hcmXsjDJJYgymiHnYAu8GQYMw8DE8HC85VLIstBLGWis9wJPe1BqZRhI3Ia3AAdGaE20sjIorLaWboVVHC5nK0OR4VUdBqkXjBIlOFYGKyMBx0jBsRLb35AAirtHstBhYzWHWO8zkFmNUOfm3Yu2GcAADe5IY+2F8ThK5hkJOMY5MJNwJV/rl7BjhOVfAwseesW92lEZ54iKms6F4V3dsiI4evQoBg8eDAAYM2YMxo4d6/E+rl27hm7dugEAXnvtNUyZMqXY9Xv16oVLly7Bx8dHmIblQSgoKBC6vwC2LlGO3b8IIYQQQlzheR6cwQCLTgdroQ5WvR6WwkLok+/AUpAPS6EOVp0OrFwOzmyBVVcIS2GhrdtqXi4sOj2sOr1t3F8JlP641yqo9oE8OEooQ9aRi6J1VcGApMj1tEwDSJVAxrlyeeslyg6QgPdjUM1gASRSKKPudWe8c/IS5MZ7rVDJEVLIVAyqG8yQ3L0ylygAVRCQ+oAuCXO8WZhCJIg0mqHgAEV0XTAsCysHJF9KhDzXNhRMyluQGiQF68sgwmiGHkHIZMOgY71gVamQny8Dz0thZaSwslJwjASc/X+GBc/cC4JYzozqOeehsOgQmSdu2r3tUxeXQlqX+f1E5ZyBlDchKi8e2b4S8EEsQkwWGKyROCLrVOb9+hoTIIEJAeZzAHgEmXmoTIBR6o9DgT1K3J4BBwnDQcoCEgkDKQuYDQWIyLgIjTUNnDwPFjmD/kvWlLmM96uiYgNq8axAjmMb7P2vi2Nf51EcTEwIIYSQqoczm2E1GGxdTM1mcGYzzLm50B791xYk6vSw6vUI7dwRvMW2jm1dE7xqxUKXeBPXvl76QMoqairh7gVtDMOAYVlbQhthZRfbcwBTxj6gZglgkrGABJBxPFQ8D9Y+fO9uQ9MdhRQFUhY8Y3t5kw8DpQaQ5lvASgFVRJBQ3uycVGj1tiY6ngF0/iwCZICsgIMMACQSSGRSSL1kSGpgxnXFvf36WnlE6q2obuAhY1ioouuCVcohVatwvPAOThek2oZwMoAvB8QagBomFgbeF3lsIHSMFwy8Apk8kM0DPCQALwMLKaSsDFdlEnC8BFyuDFarLcePJLQZdLGXwUkLYfRKhFwlR31NADRyP2hTQnEhMfDugQLgwSQRvESKf+urYZVKkR0SDC+pAk/710RT32hIU7xx6e+y5z1JbV4DVtaEm7V8oZQo0LHGk4jyjUBhKosjS46Wej8SCQOJlIVUKoFEyqJO885Qe8tQq8FwKBVy+Ci8wbIsjHoL/M+kgGUZWK0cFEoZVCoZlCoZlGopVBo5VEoZWAmLnJwcMAwDX19fAED81u9x+a+rsNVgBgrFoxmiPZrvqooICQmBRqNBYWFhiVOkWK1WYSBv0YH8/zWO/corqqmfPFqozhBPUZ0hnnpY6ozVYIBJmw1jZgZMmVkwZmbBlJ0Nc04uzHl5sOTlw1JYAKtOh9AuXSBRKmxZQq0WW2TGWWHOz0f6n/tF++XybwKcGbzVYluXsyLXm3fsQVrhHF+L58Rj1jgJA8fej2lSFjIZEGzhwLAAw9iCRFYCpITLkK2UwCRjYJIx8OE5BJosqGG0QqJWw6teM8h8vCD388ZP2edxwpwGjrVFlzWtUtRiFOjK+kMiVUDiEwSJ2gesTI5DWedwMC9RKEOsMgCNfKIQFt4UGo0fZEFRYCQSgJVg77kt2H15r7BuTf/qCI9oiJp1OkIlVcJssiIvx4C8XD2yz/+DpMQrkJrlkFjkMMp9YND4IV3iBauFh0XPwZxnhcXCgZfFQut7CUZlIfICUxDpE4bq0U8gtmZbnNhzB8f2XRMdt7tphgSWu/+csFIow8NgkunBRqsRpAlA3WrNEB1UA7p/s4DEeM8+TPvnyDNoX6stWBnQoHUwlFIlAtX+kEtkuBKfAfx93ON9sqwtUHwy9nFovJV4onU1UTfUXKsebTvXBgPAYuGgUEmhUEhtAeLdfyq1DGq1DEqVHBJp6b7vKrUcT7SuXuJ62dnZOHfuHBiGQePGjeHr6wtfiRJhxntHXlKFzzH3gwLPClazZk2cPXtWyBDnzvXr14WBv0UzS/3XnD9/XsgIWTSzHSGuUJ0hnqI6QzxVWXWG53lY9XqYsrJgSEuHMT0DJq0WvNUKc14+zLm59/7l5IIzGku97+yjuyCRcgBngcTLH7IAW4ZmzuwiiUleNtiirYU8nB8rLwxgZQGrhIFZysAsAYz+LFgfBnEGMyQaGbxrx4KVK8Aqldgrz0WSJR9GOQO9gkWEXwBifYLxRGBdsHIFpD5BkCg1YKRyrL+wGScy7nXrrB9UE96hddGwfjenmwqaY3pwN9LvFSs4Ct7hDRBQtzOUUvGMBf6nDIBD4FnIM8g0SXAui0OcJgwF1wtQkG9EQYEJyPFHHNMAOqYAjLcZUb5hiPIJA8uw2Lr2DM78e9thzzKEQ5xBWA9AL6QmukfBStEu5knIvHnENPSFj8ILwZpAqGUqyO+jFY3ngLYxLaDRKNC8TYzoObmi5F59xfFReEPjpUCtQHFGYv8gNR5rEQ0AsJg5yJUSKBRSKJS2IFGhlN5rUVTJbC2KKhmksuIrpa+/Cu2fq3NfZS4re9Bpv5F19uxZNG7cGDqDDMlsA2E9uYtkQI8CCjwrWPPmzXH27FlkZWW5TNlvd+TIEdE2hBBCCHm08RwHq8EIzmiA1WCAzMcHBVeuInX3HzBn58CkzYYpO9ujYNKj1zeYgLtjJnmHC13GRSISV0lYeA5gi+YlYe91Z2UYgJWykHr7QuqjhsxbjQQ+H5msGTlSK3QSHmG8FQFmBo8xcki91JAHhUMRHAKplw8+yzyFK4Z7mUObBNRArcBY1GrcG3Kp+IULVBm4mnxGWA4JDoMsJA6+LoJJ78RAwGG2CNPd1lMTZ4aSFQeTXnKNaNlsNYO5+396UiHSU/KRkZaPgjwDCrL98ERhN1hMPGBhwZl55FkZHIAWB/CPaD8+fkp0atEZoeE+qNdYPCWTUlX2JJM8xyNYEwBfHxUeCxdPWaNQlP0uAWe1zZ9pdTEW1y9AhZp1bFPRWK0c5HIJ5Aop5HeDRLlCCqVSBqXKoVVRLYNaLYdKJYVU7jocCQ33Qa+XmpS5zFVN0aATsPV4TElJQa5BgQvye9f/Gj6/MopY4SjwrGBdunTBjz/+CABYsWIFpk+f7rSO1WrFqlWrANjGhbZp0+aBlrGq0Wg0sFgsLrN3EeIK1RniKaozxFOe1Bl7K6WloADWQh30d1KQvmcvzHl5MOflgzebEd6zOziTSTRw0b/Z49CnJCPr4OGKfCv3yukYQ3BWMFIJWIkEjISFPNAHrIQFI5PCZCmEyUcPVs7Am+fBMABYgJXaWjz/7uSNm95y5MhZcBIGjS1SRElU6KqMgMwvBJp6T4KRysHK5FhzdCkStDdgj2LlYQ0QEBiDGvW7Qlqk+dTvnwwg+V7gaZZIwMiVsHAWyCEOzjRycbZhk9WWYdRVMKmRqsGapVBZNFBxXlCbgmHMU2Pf1UswGTjoC03Q68wwGCyQq4PxSo0h8AqQoladUPir/OAt14BhGOw5chpnj9+GmGPnVfcpaS1m28E3m51btlTqkqfgc8dqsdUni8U5QPT2VSIkzPvuFJ48ZHIp5DIJZAoJ5PJ7gaJCIYVCJYVSKYVSJbcFjGoZ/APUkLloTYypFYSYWkFOj5N7tFqtMG+mo+DgYMTFxeHg8auix61lHYxcxdEvbgVr0qQJmjZtilOnTuHXX39F69at0bVrV+F5nucxc+ZMYTLygQMHupwj7L+k6OS4hJSE6gzxFNUZ4qmaNWvaxk9maZFz9hxMmVkwpKbBkJ4OU1YWTNpshHV9FgzDwlJYKGpBNOfmIvvESdH+Ci+fBGfSgTPowZv04HkOuvObwJvuc0oGB/a561mp7W9WZvtbIrP9LdUAUoUteGS9pPB9oh4YVgJGJsfGmjxuGHOgNevAwRvN2AjEKP3ROSAOEo0fZAERkPoEQqL2hv6fr6HNuHfhzEbFQR0Yi8B6z0EqEV9q+qh8RctGq20qOZPFBKlcJXrOW+Hlel2rCeq7TbVWK4fCfCOCuFDU8Y6DiTNCpZajZkB1NAiJA8uw+PvPK7iakIFcrQ4GgxlmkxL1+S7CfjkAN6DDDSSiKB8/JWrWCkWoygfV/cQtkyp12Vsm7QGn2eQceKo1DvtlAJlMIrQi2gLCu11LVTLIlfbxiVIo7rYmRlX3dxkg1m8SgfpN/tt5RCpDcUFnvXr1bC3yag0c54PhK6wPe+WiwPM+3b59Gx07dgQAREZGYu/evU7r/O9//8NLL70Es9mMt99+G3v37kWbNm1gMBiwefNmnDxp+zGKiYnBqFGjHmj5CSGEkP863mqFKScHpiyt7Z/W9s+YpYUpKwvG9HSYsnNK7PJacO0GZL4aWAtyAJ4DI1OAN5tg1euc1tVdiwdb5CqMYwFJcY1dDMBKGUjUash8vaAI8IZErYBUrYRErYA1JwnWnCTbqndbIxkGYBRqSDV+uOatQZpChjQpg0zGgiaKIIT7hOKxsAaQ+ARCHhAGsFIwDAPt7gvILLh3IWwNrQ4moDq8XbRMOgeId1sbrWanwLPouqa7waTRIZi0axxaD0qJHAVGPZRmDXzNgVDe8MEfJ69Am1GI7CwdTHenJAkI1qBj026IjPVD7Xqhov1oMwqRdENbzIF1r/gA0bOWSZZlILsbQCpVMgQFe0HlYh8NHotAjbhgYSyjRPJoJpr5L3AXdIaEhKBevXpC0qPc1HQA97p121uuHzUUeD4ADRo0wPz58/Huu+9Cp9Nh69at2Lp1q2id6tWr44cffoBGo3GzF0IIIYR4ymowwJCWbgsmHYJKffIdmLTZMOfmwlJQUGSujrLJO/0XZErbfliNL+RBkQBsvZvAMKLXEHVzvZtxFbAFnprwu62S8nutk/bWS4lGA9/m3cCAASNXgJWrwMnkyOWtyNQGIsjUAIG+YZD5BkPiGwxZQDgkCls31MW7Z+N6diJgi/WgCogE5+uLlrGNICkSTAZ7BeJa9i1hudCkAw+gwFQIP6WPaF1vuetg0uQimHyy2hOI8YuC3mKAj8IL4V4hCPcJhbdcA12BCZnpBUhPzUPanTxkppuQkxWA/DwjeI7HHRTCsVXIkaWYANFVcFdaFpP7LrEBgRpEVvcDy7JgGNzNhiqHWiODxksOjbcCGi8FvH2V8PFRQqmSgWHdd78VyquW31d3W1I1ZGVlIT4+vsSgEwDy9QVwDDxdTQf0KKDA8wHp1KkTduzYgZ9++gkHDhxAamoqGIZBbGwsunTpgkGDBlHQSQghhJQSZzbbWiUzMmHMzIRf48awGg3gjMa7CXuM8KpZE9pjx3BlwVcPpEy8QysFbzGBYVmwChkkChm8akaAlUkg1ajAm7LBWtIhUdiCSft0H3Y+1VhIvPwh9Q2C1CcYAAepTwik/qGQBURAGVETjEwBhmEx7+9vcCrlPKx3I9mnopsh2luKPnEtnJLqhGiCbIHnXfZgstCkg4/S22ldRzqzHkqpAiaLyel9d6n1DFpHPw6O5+Cn9EGA2g9ecg1YxrmlrmFwHTQKrQue452CsC1rT+DKhXSnbUrDHnDax046Kq5LLMMwkMlZ0RhH+3QaKrUMGi8F6jUOdzmvYoOmEWjQlLquEmdZWVk4f/687aaTA1dBJwCYeJeT2DxyKPB0o2XLlrh06VKJ60VFRZVqPcA2P+cHH3yADz744H6L90i7deuWkMChevWS50MihOoM8RTVmarNotOj8OZNSFQqMAyEQNKeAdaQmobEX1aLtons9zxYh8Q/vo0bQeqlgTwgoPwLyNwdM8naurTaWyVlXoBcc/cxFQ+/lvcuMH3rxwibm9JvwZBkhETjC6mXPyQ+gVCExkIeUh1S32AczbmBy9qbuJ2bgkydFk9GP4G4oJpoGFoHcok4iJKwEiHoBIBMfTbCfUJRaNY5dWsN8QoULevMegBAnqnAKfB8MvpxVPeNhJSVIMw7GBHeYVBIXbfCxfhHiZZ5jkdutt7WepmSj7SUPFvXWK0O3j5K2xQZPI+WT9cQbRcY7IUrKFvgaTFzYMCA45ybimrWsXVbBQNIJSy8vJXw8lHA20cJtUYGibRixtPReea/yV3QGRoairp16zoFncAj28DphAJPUuXk5uYKc6URUhpUZ4inqM5UPlNuLgqv34QuMRH65GQYUtNgysyEKTsHVp1tTGRwh3ZQhoQ4bcuZnRPwcHoDWG9boMVIpbDk5SHjn3+gu3XVaV23WBYyLyWkGhWk3irAWgiYsmE12VokJQpAqryXpIeV3usiK8IwYBUyW3dXjS8kKi9wMiW0nAkppjzcCfZHaIuOCNIEIswvErIiweSR+E04dvu0sByfcQUsK0GNgGpOgWeIRhxMFppsxy7fVOgUeFbzjUStgBgAgEqqQLRvBGoHxkAtE3eHBYAaAdVRI6D4YEmvMyEroxAZqfm2rrFpBdBmFSIv1wDO6vpSmrPy0OtsraZWKycavxgYXHzPL6mMhVoth9pLDj9/FfyDNPD1VyEi2hdBwd5QKKUuu7JGRPshItqv2H1XBDrP/PdkZmYiPj7eo6ATAFgXN0weRRR4EkIIIaRCWI1G6JOToUu8DcOdO9CnpMKQmgrdrcRSzU1p1RtcPs7KZGCkUvCWe93TzPk54PRZsORlwVqYg5wjRnD6fPB3h+axUocxk/J7YywlCinUtRpAHR4AVWSQ6MLQmHIN+qsnXJaBUagh8wuFzD8UUv8wyPxCwcqVYAMioQyJBlukdfCzg0tEwWTdoJpoGFoXQZoA+DkFk+JurvZgUm82OI2vdFxXwkrA3J3CI99YAHiLk+w8HdMST8e0BMdzLrvBltbhv67h4N5r0BU6d7stiUFvBsdxYFkW+kITvHzuZfIPDPGCRMLCP9A2JtXbVwn/QDWCQrwQGuED/0A11Bo5ZHKJ2wt4QipTVlaWx0EnAHjx4lb3R7V2U+BJqpx69eqB53n6USGlRnWGeIrqTPmy6vXQJSYh/8oVFFy7Dv3tZJi02TBlZd1X0h5X2WABgOesYJUKWAssAMuClTAoiD8EmfremElWAkg0tmQ93lFuWiYBABb4PlELjIvpC6Q+QZD6h0PqHQDWJxBSvzDIw2tCExUHVuWNbH0urmhv4HRKPG5lnUK0bzhCmAL0CImGosi+QtRFWyZt3VxdB5NF1jXfW7eoFlGPoWZAdRSYdAB4+Ci84a3QwFfh7bSuXdGgk+d55OcakH635TI9NR8mowXNn4qBvtCMek3CwTq0JLIStkxBp51eZ4bGSwGdziwKPKvFBuD9OV3BsrYus2wpEvFUZXSe+e+Ji4sDx3FIS0sDAISFhaFOnTol1gG5mx4CjxoKPEmVQ11SiKeozhBPUZ0pO3NuLrT/noAuKQn6pCTokm7DmJ5RIa/FW6wAp4e1IBO8WQdlRCxgNYLnzYh47om704goYcm8CcOts/D4+p5hIVF7Q6L2gcw/DBKlF1ilBqzSC6xSDVZ2L3x0FUCsOrsZB24dFZYtnAWB6gDkGHIR6hUsWjfEq0grptneiql3KlYN/2poU70FLFYzpKwUoV7BiPWPhpdc7bSuv8oX/kXmxnTHaDAjIzUfqXfykJ6Sj6yMAmRn6ZGfa4DVKk7KwzAMQsK9bYkQdUFQe91rwS2pS6ydRMpCrZZB7SWHj58KAYFqBIV6IzzKF14+Cmg04vBcFNw+5EEnQOeZ/yKGYVC3bl3h79IEnQDAPrJtnGIUeBJCCCFExFJQCFapACORwFqogyknG+bsHIBlIVEocHXR4vJ5IYaBVKOBzM8P8kB/yHxUkKoYSKVGwJoFa85FWG7G29ZlJVAE1gbDOCe4YSyBMCY6PWx/FrKAcMhDq0PmHw6pfxhYpRdkgRGQBYaDLTKZpslqxs2cZJy6dRDXtInQyFWo7heFNtWaI0DtJ1o3xj9aFHjmGPKE/50Cz7utmHKJHGqZEgEqPwSo/CAtOpkngLigGogLquH0uKeSE3Nw6mgi0lPzkZGaD6Oh9JkzeZ6HQW+BSi2DTmcqEnjeGztqn0ZErZHDy0cB/0ANAoM1CAn3RmCwBmqNwjb2klr9yH9E0eCzNFiV+x4KjxIKPAkhhJD/OJ7ncePHn1B4/Tp0t5Nhyc1D1Ev9IJErRIl8pBoNQp/t5PH+FaEhUEdFQRkeBmV4OCQqGXhDFhhzBjhDLszaFFiyzwFGAEbAecZEAJwVnC4fEo1z657wGMNC4h0AeUCErUtsXDPIQ6qDlTsnz3Fna8JurDu/XVgOUgcg1CsYOYZc58DTT5zNNc9YAI7jhADUUcOQOlja9zMoJHJIWMl9jbHkeR75eUak3M5Beko+YmoFwqA3o1psABTKe61sBXkGnDziNiIvkb7QBJVaBn2RbrW+/iq8NKw5gkI04Dj+7ryTMlGiIEIedcV1o/b0Rgsr/W+0jlPgSaqcvLw8IfGAj49PyRuQ/zyqM8RT/7U6Y8rJtU1PopBD5ucPq04HS2EhrDqd8HfGXwdgyc8XttHduAVNjVjRfiyFhQDDQBESAmN6kWkv7rZeygP8oQgLg7paNAJbtYQqKhIMb4ElPwv6a6eQe3wTDPnZKMsEAtbCHCHIZBjWljHWyx8SL3+oazSFIrK2qHuso1xDHs6lXcKlzGswWIyoE1QTNQOqI9Y/WrRejF+003Y8zyNZm4oA1ldUZ2L8o6CRqRDmFQI/pQ9i/G0to0FFxmgCgFwqhxyupyNxx2gwIyU5F2l3bC2W2sxC5Gj1KMgzwGK51zW25dOxUCilCAjSiAJPx5bJ0mAlDNRqOTTeCvj6KREe5YuQcB/4+IkDd5ZlUKdBqJu9ELv/2nnmvyQ9PR23bt1C48aNoVC4Pud4QqIsso9HtIMABZ6kyrl586aQfrxx48aVXRzyEKA6Qzz1qNYZq8GAvIRLyL94EQXXbsCQkgJjZhY4gy0pjVdcbfg/3tTltjIfH1Hgac5zbrUDAHNOLvwffwymnFyoo6Ogjo6GKjoKyohwsCwL3qyH1VAAa2EOLHl3UHDqHDjL3ekzCnNgzdd6/L5YpQZS3xAowmtCXbOpLdhU+7hMCOTK4aQT+PLQD8KySqpEsCYQfjofp8Cz6LKZs6DQrMd17Q2oc6WiOuMl12Bp38/vuxup0WBB0k0t0lPzcetaFnKydMjPM8Kgd542xhW9zgSFUgq9Try+f6AaDMuALzJVg1Ilg+buuEv/QDWCQr0QEu6D4BBb11iJlFouy8Ojep75r0tPT8fFixfB8zzOnDmDxx57DHK5ZzeVijJxZjAOmW2Z+0jKVpVR4EkIIYQ8hCw6HQpv3EDhtRvIOXMWhTduwKTNLjaLrMVNMAkAUl8fIDlZWHYMPFm5HHJ/P8j8/CBRKlDzzVH39pmfjcKLh5D57yoYU2/AWpANryYdIfVxbvVj1T6ARApY3Yw1ZCWQB0VBHhoLRVgspAERkAdFQeob7DK443gON7NvIz79Eu7kp6FBSBwC1f6oF1xbtF60T4RoWW8xwGAxuuwSG6Dyg6/CGwqpAr4Kb0T7RaBV1GPIT84BOKfVPQ46eZ4Hx/GibqnZWYVY9f0xj/bjSFdohl8AhPkx7SRSFq2ejoVKLYdMxsLXX4XQSF94+ygglZYuaCeE3OMYdAKATqfD6dOn0bRp0/tKJiVRZyMm+9751yq1AOh/v8WtcijwJFVOWFgYrFYrJBL6USSlQ3WGeOphqzO81YqC6zeQn3AJeRcTUHjtOgypqR7vx5zrPvBUhYeBYVkoQ0OgqlYNXrExkAcGQu7vB4laLQRY5tx05J/7C4bEizAkxsOsTXHalyU/02XgyTAspN4BsOSk27rm+gRBHlwN6trNoQivCVlwlNP8l+7czk3BlD/nwmC5Nx+ot8ILFs7qFHhGeIdCLpHBZL3XIphjyINGpnKa05JhGHzdcxZkRebWTEd6qeuMfXqS5KQc3L6ZjdTkPGSmF+CJVtXASlgEhWhQt1G4sH5AUOmyxBbFsgzUGjk0XnKERTh3iQWAzj3rl2nf5P49bOcZUry0tDRcvHjR6XE/Pz9IpfcXUhmtJsisDnMbS0rX2+FhQ4EnqXJCQkIquwjkIUN1hniqqtcZq9GI/EuXof33OPIvXEThrUTw5vu7EGEkErAKW6Zaqbc3pBo1pBoNJGo1pBo1JGoNZD7eYB26jPE8D1PaTeSf+BeG5EswZyXDklvy1CnWPC0QKX6MlSsh9QmCb6s+kGh8oIppAonSeXoQRwXGQkhZCQrNegSq/UXPhWgCRYEkYAsm1TKVU9IPlmVR3S8Kt3KS4af0Rrh3KBqF1EW9kFouX7do0Am4rzMWixXpKflIuqFFclKuMBbTbHJOkZRyJxeh4T4oyBe3TMoVUvj4KpGX6zxPJwAoVVJ4+Sjh66dCQLAGwaFeCI30QWiYD+QKupSrqqr6eYaUnrugMzIyErVq1brv7vYyqQ7Ruff2n+v9aN6soLMVIYQQUsnMefnIT0hA3oWLyLuQgIJr18BbSj/1RVFSHx8ow0KhjoqCuno1qGNjoKkWDamXF9gSuoNxRj0suenI2vMzDMmXwRt1Hr++tSAbUu9ASH0CIfUOhMQnEKxCXeLFmYWz4tjt0zibdhHnUhOQoctCt7gOCFL7o3tcR9H2cqkckd6hSMq71+Kao89DkDoAerMB6iKZbN9r8wa85V5g2bKPX+Q4HjeuZCLtTh4Sr2ch7U4e8nINxfVuFinMNwHhgK7QBJ7jwTjMVRlRzQ9euQZoNHKoveUIDvFGaIQ3wiP9RFOZEEIerIoOOgGA1RWIl2mMJyGEEELKA8/zsBYWwpilhczHG1cWfIWcU6c93g8jkUBdrRo0NWIg0WjgHVcbvg3qQx4QUOp9cEYdzDnpsORmwJKbAavelmDInJ1a6qCTUagh8w8Tkv8oYxtD4sEUJnYsw+D7E6tQaLr3upmFWqhlKuSbCuGjEGdpjfGPRlJeipAsqGZgdbSKagqpxPnyxlfpWVZRk9ECo9ECbx+l8BgD4Nflx2EyupzwpUSF+baudBzHQaczQeN1L5Pli0OalWmfhJCKk5qaioSEBKfHo6KiULNmzXKbnzaEl6PQYVllocCTEEIIIR7iOQ4F166j8NYtqMLCYMrSwpiVBc5oC0J86tWFT/16pQo8ZX5+8H/icXjXrQOvmjWgrhZdYgtmUSZtCgovHIT+1nmA46Cs3sDlelLfYFiyXY8jZVXeUEbXg6p6Ayij60MeWr3EDLM8zyO9MBPx6VcQ7WPLgBvjFwWJw3Ysw6JeUC0cv3NWeCxDl4VqfpFIL8h0CjxfatQLrzZ5Hv4q57k9S4vneeRm63HrWhYuX0hHcmI2wiJ9ERbpA7lciifb1xTWZVgGIeE+uH0zu1T7lkhYePko4OevQlCoFyKi/VGthj80XgoolHQJRkhV9qCCTgBQWhhR4Ckt272tKo/OeqTKOX/+vJB+vGHDhpVdHPIQoDpDPFWRdYbneVgKCpBz5hySN22GPjEJnMkEVqlERO+eThcrxqws+NSr67wjloUqMgJyf39416uLgGZPwKtmDTAeJirhzEYYkhKgv3EauqunYM5MEp5jZAooqtV3eQEl9bs3Po2RKyEPrgZVTCN4NWgDWVAUGKb0XVbXnNuK/TeOIEtvC9gahNRBveBa8JKrEeoVLFq3fkhtUeCp1edCxkph5pzHuIa4mC+zJBazFcmJObh+JROJ17VIu5PnNG2JUiVDWKQPTCYLTEYL5ArpvTqjdN0FWqmSwsfXNgYzJNwHkdV8ER7pC7WXAiz7iE7KR4pFv00PrwcZdAKA2SJHive9MedShpILEfJAcBwn/COkNKjOEE+VZ53hOQ6m7ByYMjNhzMiAMSMTVoMB5rx8FF69du81DQZYCgog8/YWbW/SZiPwydaQaNTQxMbCp349+DaoD6+4OEjVnndX5TgO5vRb0N88B/2N0zAkXgRvMblclzcbwenyINGIWwxZqQyq6AaQKL2grt0Miqg6YEs5Z2bRxD4AoDPrhaATADILs4DgWkgryHQKPBuG1MFjYfUR7RuBYE0gHgurjxBNUJnHZuZk63DzShZuXM3EncQcaLN0TvNaFmXvEgsAhQVGyBVSob74B8pgrOaH0HBvsBIW4ZE+iIoJQECQmqYoISL02/RwSklJwaVLl5wej46ORo0aNco96AQArVmDC6FthWWV2X0G8ocZBZ6kylEqlZBIJPc1HxL5b6E6Qzx1P3VGn5qG7H//Re65eBRcuw6/xx+DwsWYSqm3F1iFQuhSCwCmjExR4MkqFJAHBIBhWbRcsczj1kw7c74WhecPQHftFIwp18Cb9KXe1pKbDplvEKS+wZD6hkDqGwKJl2+JLZocx+Fmzm2cSDmH82kJ0MjUqB8Sh7jAWMQF1RCtWz+4Nn678pewnKnPBsdzSC/MdNpvjH80pjwzttTld+fAH1dw4vAt5LvJFFscXaEJHMdBKpUK4zntdSauoTd6PB933+Ujjz76bXr4ZGRkPPCgEwAsjDiBGMc8mjexKPAkVU5cHP2gE89QnSGeKm2d4Xkeups3of33BHLj41F4/SYseeI70caUVJeBJ8MwUAQHQ3/7NgBAotFAolHDu04c5AEBUAQFQqLRlOlCxpacKBeW7BTorp5EzqFNADxIRiGRQR4cDWW1+vCq/xQUEbU86joLALuu7MPy0+uFZW+5BjH+0aKWTbt6wfe6kCkkcgRpAsAyLHwU3i5bSEtLX2iC1cohL9cAtUYOv4B707NYLFaPgk6pjIWPnwrBoV7wD1SjSbNoBARqhMyzdJ4hnqI68/Dx8/ODl5cXCgruZZmtVq0aYmNjKyzoBAAzJz7/UuBJCCGEPOJ4joMuMQl5Fy4i68hRFFy5Aquu+NZDY6Zzqx0ASJRKBD3VCoxECr/Hm8KrRmyZWzQBgLeYYc5Jg1mbAnN2CjijrVw8ALAswBWTjYJhoYioBVVsE6hiG0ERURustPgpOniex538NJitZsglMkT4hImerxssngMz31QIg9mALF2O0758lT4Y12ooIr3DYOU5BGkC4Kvw9uhCjrNyuHE1CzeuZOL2rWxkpOaD43i0fDoWABAe6SsKPKOq+7vbFQBA4yWHf5AG4ZG+qFYjAFExfvD2VoKVlH26FULIw00mk6FJkyY4c+YMCgoKHkjQCQCm4s7fjxAKPAkhhPxn8TwPffId5J49Z/t3/jws+QUlb+jAmJkFnuMg9/OFPCgYiuAgKIKDIPXyuu+LFWP6LeSf+hP6G2cgD6kGWVC00zqMROoyA63EOwDqWk9AVaMJVNUbQaLyctq2KIPZgBMp53A48STOp1+ChbOgZ53OCPUKcgo8Y/yioJIqobfca1XM0GmhlCmhM+uhlonHp7ap3sKTtw7ANqVJ/JkUXDh9B0k3tS6nMTEaLFAopcjLEbduOgaeCqUUXt4KBId5IyrGH7G1AhEU4g2Z/NFsVSCElJ09+ExPT0dERESFB50AUGg1ipYfzclUKPAkhBDyH6NPTUXmP4eQe+YsCq9fh6WgsOSNimBkMqgiwuFVqxZ8GzdEQIvmkKrVJW9YCmbtHRQmHEH+uf0wZ96+9wQrcRl4AoAsIByW3AzIg6OhimkETd0nIY+o5XFCnnxTIRYcXip6LPv/2bvr+EbuM3/gnxkxWGCZmZmWGbLZMDfYNE3h2l577RWv/V352iu3ubZXvEIKYWbm5WyWzGtmBsmyGGZ+fziWPZYMsmVLlp93X3515zugr+wnIz3zJccERKwIbq8bEtHMWDURK0JhXA6GLKPQymOQE5uJzcllyNSlQiGWz730klnMDlSf6cXF2kEM9E2A8y78FcxssiM+KQY2qwsej9c3wY9SJcXNH96MhOQYGAwqMCJmTb5AEkLWP4lEgtTU1DV7PTe1eBISHn19ffB6vRCJRGv6Hz1ZvyhmyELc5klM1NZhorYWpvPVcAwGXptyIaxcDmV6GmIKC6DbVAVteTlEsoW7qi4Vz/Nwj/bAevEUrBdPwTXcFfA4j3EQPM8JxmKK5CpI9MlQFmxHwo1fhki+cPLL8zw6Tb1wez2wuW2oShau4RmvMiAlJhH9k0O+siHLKGIVOozYxpESkyg4/j/2fhpS0conTjGOWdFUN4Sas70Y7AtuNsdJsxMZ2bGI0crh9XCCmWVLq1JWXLdpdJ8hwaKYiWxjY2PQ6/XLnjE7lPiobeMUosSTRJyxsTHfuld0oyZLQTFDAhl44SUMvf4GrB2dAB/ch7osIQGakmLIk5OgqyyHuqAA7ArGZ87FcRwcXbWwVL8FR38rPMaBRc/hPS5wFhPk6cWQxCZDEpsMVrG0cZJn+qrxXl81zvTVYNJlxe6MrUiJSUSeIQtqqUpwbEVSsSDxnHROIk2TBCnrn2CGIuk0m+z4zY/eWvLxSpUUcYlqpKTrkJ1vQEZWLGSK1Z81lO4zJFgUM5Grr68PLS0tiIuLQ0lJSdiTT4YST0IIIWR94HkebqMJ9oF+OPoHoMzKgnN0FNb2jiWdL9Hroassh7aiHLqKcsji4xc/aRl1dPQ2wXzmBdg7asHZJ5d0HiOWQpZWCFXhDqhL90KkiFn8pDmeb3oDDSMtvu0hywhSYhIxbBmFOlaYeG5NqcCwZRS5sZkoSchHUVweREtcw3MxdpsLo0MWpGToIHp/Eh+NToHE5BgMDcz/+9DHKZGTH4eKrWlIy9RTl1lCyLL19vaitbUVADA6OoqGhoawJ59agx6YNSE4H6XDzynxJBEnPz9/RdPrk42HYmZjmZp5thvGcxdgaWlF/MH9cAwMwmufmX2WkUigq6xA35NPB7wGI5FAnpYKdVEREvftgaakeFXih+d5eCfH4BrpgXusD47+FlgbTix6nkilhbJgB5QFW6HILAMrkQX1mnPfS2VSyZzEc2om3kHLKHJiMwXHViQVoyKpeMmvtxC7zYW68/1oqBmATCZGUqoGAKBQSRGXMDPZUUFZkiDxZFkG8UkxyC9OQOW2NBjiF58YabXRfYYEi2Im8sxOOqeNjo5idHQUCQkJYaoVIGOEvTbC3/l3dVDiSSKOQqFY/CBCZqGY2Rh4noe1rQ113/k+vNaZCYGkcQa/iX2cwyPQb9sKRiwG7/GAlUqhKSmGtrICmtISqDIzIZIvPZkLBsdx8FrG4R7pgWu0x7fsCQCIdYmASAJ43X7niWIMUBXtgKpoJ+RpRWCW2Mro8rhwqvc8hi2j0Cu0yDdkI0Mn7NZXmVSMh2qf8W17OA/iFHq/MZuhYBq3ofq9XjTVD2Ko3+zr5axUSX2J59iwRZB4FpYm4uzJLhSUJCIr14DcwnioYlbn77NcdJ8hwaKYiSyBkk4AyM7ODmvSCQCSOa2t0fqoghJPQgghEWe6lYDzeOAcGoZ9YACO/gG4JyfBuVyCY51DwxBnZwnP93rhMU0g99OfhDw5GTGFBWAlqzsO0NHfCvPZl2BrOQd5Vjmkcf5juhhWBIkhBe73JxBiFWrIM8uh3XI55JllgomDFjNkGcEzF1/Dsa7TcHickItluKbgUjAM65d4ZunTsT2tCjn6TOTGZqAsoTBk3Wd5nsdAzwSqz/Sg9eIIjGO2gMfZrC7YbS4olFKMDltQwPFg2KmvV8lpWnz5u5eBZaP16xYhJJx6enrQ1tbmV56dnY3MzMwAZ6wtkUoHYGZJFYaJzr62lHgSQggJO4/NDnNDA0znL8B0oRraslLEFBfDOTwM3jszzTzDspAnJsDe2+crcwwNQfV+4ilWq6FISYY8JQXyhHgoUkM3q2nAepvHYGk4jskLr8M9NlMn90hXwMQTABTpxZDGpSOm4hLIsyuWPa7I6XHh9bajvm2Hx4khywgYhoHJPgGdQuvbxzIs/mPPvy7rdQLxejm0NY2g9mwvOlrGYLO6Fj8JwNiwFTkFShjiVfB4OUjeT34ZhgH1RiSErIb5ks6cnBxkZGSEoUb+GLEMsxPPaL0hUuJJIo7VavW1dqhUqsVPIBsexcz643W5MFFTB+PZszDXN8DW0wtwnG8/z/OQ6HQBz5W9n3iKVCrIkxKhKS2BfvMmyJOTIdEsbeKdlcSM12GF9eJJWOqOwtFVj0BLfbvHB8B73GDEU62sIkUMpPHpkMSlQ6TShmTMV4YuFTn6DLQbu31lnaZeJMUkoNPUh6pZiWeoGMdsePvlJrQ0DsNh9+8uHAjDMDAkqHyTAyWnan0tnesJ3WdIsChmwq+7uxvt7e1+5ZGUdG4klHiSiNPW1uabfryioiLc1SHrAMXM+sBzHEaPHUf/cy/A2t4O3jP/gtnO4RHwHAcmQGtgTGEBDDt3QFNSAnliwrK60AYbM163A5aat2FvPQdbRzXg9Sx8AueF1zKOmIpLII3PgEgVfBLYaezBG+3HUWDIgYhlsTm5DHKJXHDMwexdvsQzQRWHkoR87M7YErKxm3MnRpFIRag93xco1xYQi1kkpGiQXxSP8i1p0BuU636CFbrPkGBRzITXeko67ZMTmD2yk/PO//m4nlHiSQghZFV5rFYMv/EWBl58CY6BwSWdw7vdcI0bIYszAABk8fHvd6FNhkQbmhbDxXBeD2yNJzBZ8xYc3Y3gA0wINBcjkUORVQZ11aVQ5m1dVjfa493v4ZnGV9Fp6gUANI22YWtqJWIVOhTF5wmO3ZuxDRaXDTvTN0MjVUEjD36pldl4nsdQvxlWixNuF4fxUSu27c2CRDLVJVYdI0Naph69nUa/c+UKMVLSdSgsTURxZTLUMXK/YwghZC3Ml3Tm5uYiPT09DDVaGOPsRua4aVaBC8DN4arOqqHEk0ScuLg4eL1eiEK4WDuJbhQzkcnW3Y2BF17C8NtHwDkci5/AspAZDJAlJkCVlQlFWhpkcQZoK8ohkoV2htOFYsZrn4RzoA3Wi6cwef61Ra/FSBVQFe2Eung35JmlQS19EsiIddyXdAJAr3kAVcmlaBvvQkFcDthZExCpZSrcUnr1il7P6+XQ3jSCuvP9aG8ZhXXSiZQMHfKKptYyHR+xIjFF4zu+sDTRl3jqDUokp2lRUpGMvJIESKXR+7WC7jMkWBQz4dHV1YWODv81nCM16QQAN+eChJsZK8+zSxvKsN5E7ycEWbdSUlZ3MhASfShmIgfv9WLojbcw/OZbmGy8uOjxEr0eyswMaIoKoS0vhzwxHhKtFqxUuqr1nBszPM/DYxqCs68FrvF+AACr0oKRyMC7nf4XEImhzN0Mddl+KPM2LyvZ9HJeWFxWaOUaQfn+rB14qPYZ8O+vQ+LhvOg1D0KsE2NwchgpmqSgXysQt8uLd4924MRbbX7jNceGLcgtjAPDMBgbsQgSz5LKFEilYhSUJkKr3zjLRdB9hgSLYmbtuVwu9Pb2+pXn5eUhLS0tDDVaGqnYjkxTnW/bLovOlTwp8SSEELJizvFx9D7+JEbfOQqPxbLgsYr0dOg3b0LiFZdDkZIU1rF/XrsFzr5muE1D8NrMgn0Mw0ISnwFXf4uvTBKbDHXlIWg2XQ6RQj33couadFrwcsvbeK+vBttTqyCXSN9fAmXmdxCr0KEqqQTnB+qhlCiQqUtFSVweihPyoVfolv1ep1ktTpx4sw1nT3XB5Qw8jsjp8MA66YJaI8P4qA0cx/uWOtEblNi2N2vF9SCEkFCTSqWorKxEdXU13O6pB2qRnnQCgJdzwKSeSTZdUko8CSGEEAFLaxsGXngJI0eOgvcsMOEOy8KwcweSr70KmpKSsE804xjsgOnYY7C3noM4Nhmqop0Bj5PGZ8A7OQ5l/hZoNl8BWWLW8l7P48Tfzz+Go53vws1N/Z6SY+KRqknGmM2IOFWs4PibS67GNQWXIkWTiBipGjLxyluAx0etOPJqM+ov9MPrXXh2IKlMDIlUhLyiBMQlqGl9TULIuqFWq33JZ2ZmZsQnnQCQkZ6O5sRm37ZIFp0pWnS+K0IIIauG93oxevwkBp5/EZNNTQseK9FqkHj5ZUi68grfREHhwvM8HN0NMJ18Gva2c75y92gPOGclWNlMt1FWLIE0MRvSzdkQX/tvK35tmUiK5tF2X9IJAJ3GXqRqktFj7vdLPAviclb8mtP6uk04+lozmhuHF5yNVqmSIilVg6rt6SgoTYzq8ZqEkOimVquxfft2SJYx63k4qERSGNwznw/ROi6YPlVIxLl48SI8Hg/EYjGKiorCXR2yDlDMrB2e51H79W9hsql5weOkcXFIvOxSpN1807KWOwkl3uOGpeEYJk6/ANeQ/4QT4Hk4B1qhyCqHSBEDWWoBZImZYETLqzfP8+DBCyYBYhgG1xZeij++d7+vbNAyAqfbAafHFegyK+ZyevDQX0+jq218weNi41Wo2paGLbsyoVCu7tja9YzuMyRYFDPhtV6STgCAWwoHl+rbFC2yYtd6RYkniTgulwtutxvcrMXkCVkIxczq89rtmKitg0SrhW7zpoCJJyMWQ52fh+Rrr0Hc7p0B1+BcSx6LEZPnX4P57CvwWk0LHsswDGLKD0CsS1x2N2CzYxJn+2vh5TmkahJRHJ8v2L83czseqnkGFpcVGdpU7M3cjoPZuxAjW52F5aUyMbh5utQyDJCYosHWPVkoq0qBNEq7dYUS3WdIsChmVg/P8+js7ATLssjMzAx3dVZsaFKCU/LLfNsq3oxLw1if1UKfNCTiiMVi8DwPsZjCkywNxczq4TweTDY1wdxwEbzHA1YiQeLlh9H/7HPwWm0AAKkhFklXXoHEyy+DVKcNc40BW2cdTMcfh6OrHuDn/8LHs2JwiXlIv/LjkKfkLvv1BieH8Vj9CzjZcxYMGFxTcClsbjsKDDkQsTPdpaQiCb6w61+QqkmCXhH635Pb5YXV4oQuVukr231JLh752xnftkjEIi1Lhx37c5BflACRODonsFgNdJ8hwaKYWR08z6OjowPd3d2+svWefHpY4brHHENdbQlZEyUlJeGuAllnKGZCi3O7MfzGW5DGx8He2wevzSbYZ+voRMp112L8vTNIu/kmGHbuABMB41EsjSdhOv44XEOdCx4n1idBu+0aqMsPQCRfWWuj0T6BL770PXCzEtxOUw/yDNnoMvUhJzZDcHxZYuGKXm8u84Qd59/tQXKaFkP9ZrAsg537c3wJZUFJIuIS1HA43NixLxu5hfFISNbQZEHLQPcZEiyKmdALlHR2dHSAYRhkZGQscGZk46QKAPaZbTY6U7TofFeEEEKCxrndGHr1dfQ8+jjcJhPUBfnQb97kd5y1oxMp11+H9DtuC/vstDzPw2McgL27EeazLy+YdMozy6Ddfi2UeZvBsKFJlPUKLTYll+Jsf62vrGWsE7mxWeg1D/glnqEy0DeBY6+3oKluCBzHo2xzCmLjVPB6p/alZeoBAAzL4PaPb4VWr4BYHP6HA4QQslyBks5p62o8ZwBWkxnAzHuYb5jEekeJJyGEEHhsNrT+5vcYO3HSV2Zta4emuAgixfuzvTIMVNlZ0JaXQ6xUzHOltcHzHNwjPXD0NMJjnQAAyFIL4RpsFx7IsFCX7oN25/XLXgplmsVlhYgRQSERdom6rvCwL/FkwCA5Jh5VySXIN2Sv6PXm4nkebU0jeOulJgz0Tgj29XYaERun8v07JV3na9U0xAe/3ighhEQSnufR3t6Onp4ev32FhYVITk4OQ61Cx2geB5Do215glMi6RoknIYRsYO6JCZgvNsHW2QVpbOzUrDP81JNW3uuF+WIT9JuqIE9MgG5TFaR6fVjr63XZ4R7thbO3CV6HVbBPpIyBxJAG91gvGIkMqqJd0O+7FRJ90rJfb8Q6hqcbX0H/5BBKEwqQrc/AlpRywTHF8fkoSyhEtj4dO9I3IT82O6QtwRzHo7F6AO+81ozRIUvAY0zjdkyaHdBoFdDqFfB6OLBSauEkhKx/0Z50AoCb94a7CmuCEk8ScYaGhuD1eiESiZCYmLj4CWTDo5gJnnNkFObGi7D39fnKxGoVVNlZsLZPLTkijTNAW1qChEsOQJa4/NleQ4Fzu2A6/gQmzrwIeUYJZEmB17lU5FZBkbcJ+j03Q6SImfd6i8XMuM2Ef1x4HO/2ngP3fiKerk1Bh7EHxfF5UEpmWnwZhsG3D34h5L8ft8uLC+/14MRbbZgw2uc9jmUZJKVqkJ4Vi6KyJMgV67vLWaSi+wwJFsXMyvE8j7a2NvT29vrtKyoqQlLS8h8sRhJuoUWWowglniTiDA0Nwe12QyKR0I2aLAnFzNJ4HA70PfYEXONGyBLiAx6jKSmGx2JF/CUHkHTF5ZAZYte4lkK814OJMy/DdPwxcPap1j5HdwOkCZmCcZoiRQzk6cWQJmQsafzmYjEjF8twYaDel3QCQOtYJ6qSS9E02oZNyWWC40OZdNosLrx3vBOnj3XAbnPPe5xYwiIjOxabd2UivygBEmrhXFV0nyHBophZmY2SdAIANsiSO5R4EkJIlPPY7eh5+FEMvfIavHY7WJkMydddA3bOFP+MSATdpiqk33EbJDHztxauBZ7zwlJ/FMajj8FjHBTuc9rgGuyALCUP4phYyNOLITGkhjT5U0oVuDRnD55vfsNX1mnqRVVyKSSrNNug3ebC2y834fzpHnjc838JkSvEKCpPwv7LC6DVKcI+wRMhhITahko6AWiZOZ/HYarHaqPEk0Sc7OxscBwHNsyLz5P1g2JmfqPHT6Ltj/8Hj3nSV8Y5nbC2tSGmcGppD1YigbogHzEF+RDJ5fNdak3wPAdr40kYjz4K96j/F45pnH0SMWX7INYnLyvxys7OxpjNiEm3FRMOM+xuB5JiEgTHXFVwCV5oeRNSVoIsXTouy9uHHWmbIBNLg369pZBIRGisGZw36VRrZMgrSsDeS3MRG0cTBq01us+QYFHMLA/P82htbUXfrKEg04qLi6Oy9Vi0wMPGaEKJJ4k4MWFuaSHrD8WMP6fRiJZf/QYTF6oD7jc3NkFbUQ5NSQnUuTlgwzwVPc/zsDaegOn4E3ANd817nFiXCP3em6GuOLTslr5OYw+eufgqTvacg16uxcHsXVBJlbi64BKwzMwXxHiVAf+x519REp8PuVgGUYiWYJmPWCLC9n3ZePPFi4JyvUGJrDwDNu3IQGq6DgytwRkWdJ8hwaKYWZ62trYNlXQCgBgb4+EEJZ6EEBJFeJ5H3zPPoeehR8A5HAGPUaSlIvUDNyHh4H4wovCOC5xOOMffftCvS+1sspR8aLZfB1XRDrCi5X90XRxpxXfevMe3PWY3Ytg6hkSGwbBl1K/Vc1tq5bJfKxCvh0NPlxFZuQYAgMfjhUjE+pLoLbsycPT1Fng9HMo2pSA1Uw+tXoHsvDgaw0kI2RA0Gg0YhgE/a4x9NCedAMDKVOGuwpqgxJMQQqKEc2QUzb/6X5jr6gPulyUmIPNDdyJu/96IGBdoaz2Hsdf/DveY/5PtadLEbOgP3AFl3paQ1LkgLgfJ6gQMWIZ9ZS1j7UhUx6HD1OOXeIaK0+HG2ZPdePdoByxmB265ewvcbi9M4zaUVKYgLmGq66xCKcUHPrQJSalaaPUK8DwfEX8rQghZKwkJU/fhhoYGAEBJSYmvLFox4o0xGzklniTiOJ1O35ctmUwW7uqQdWCjxwzPcRh86RV0/vP+gK2cjESCpCsuR+bdH4IoAn4/XpsZ9u56WOuOzZt0SuLTod9/O1SFO8AwwXdB8ng96J7oR6xCC51C6ytnGRbXFB7CX84+7NtWShSQiWTQyELfLW5ywoF3j3bg7MkuOB0eX/nxt1qRVzT1RaqtaQSxBiVY0dT7LCybmTSDks7IsdHvMyR4FDPLl5CQ4PvdRXvSCQBipUJYEKX3fko8ScRpamryTT9eUVER7uqQdWAjx4yttxdtv/sjzA2NAfercrKR9/nPQZ2dtbYVC8BrnYC9pwHu4R7w4CGOTwPbowFnM/uOYRUx0O3+ALTbr1nSsihzjduMeLDmadg9TmTq0pCjz8DWVGFM7M/aiadrX0GBKgt6mQaXbb4ESep4wfjOlRoenMTJt9tQe64PnNd/fbbBXjMycwyQSEWw21zo7TIhIye8S9eQhW3k+wxZHoqZlYnmrrVzuXkvgFmfeXx0rutJiSchhKxDnMeDvqeeQc/Dj4L3ePz2i9VqpN16M1JuuC7srWYe8xgcfc1wj0wlnNMYhoU8swy2xhNg5SrEVF4K3b5bIZIpg36NcbsJTze+gtfbjsLDeSETy5CmSUbPRD+qkkognjUuVC6W4V9zbofH44FEIkFKTGi+3PA8j672cZx8qw0tjcMLHqvWyOB2e33jNm1WV0jqQAgh6wXP87BarVCraZZuXjqGNNOIb5sT+X+uRwNKPEnE0el08Hq9EIV50hOyfmy0mJlsaUXzPb+EYyDwZDwJhy9F9sfuhjjMH+aO/haMvfo3cPZJqEr3BjxGmpAFaWwytDtvgEi+/MkVxmxGvNzytm/b6XGiw9iDPEMWes0DyNKnC47X6/UhixmO43GxdgAn3m5Hf7dpwWPjElRIy9JDq1MiNl4FnV4BvUEJtSa8y9iQxW20+wxZOYqZ+fE8j+bmZgwNDaGsrAyxsRu7x4eHd0PCzTyA9LKUeBKyJjIyMsJdBbLObJSY8Tqd6Pz7fRh86eWA3XDkSYnI/bdPQ1cZ3i5dXrsFoy//CdbGkwA/tTaZxzwGscbgO4YRSSBPzYcstQCsZOVjn/IN2ahILEbN0EyX4+axdmxLrYRc7H/9UMSM2+1F9Xs9OPl2O4xjtnmPY1gGSSkxSMvUQ62RIylVi7RMHRTK1VkPlKyOjXKfIaFDMRMYz/NoamrC4ODUw9O6uroNn3xKpE5kj1/wbU/ERGeKFp3vihBCooypphatv/09nEMBunAyDFJuuA4Zd94R1smDeJ6DpfYIxt+8D16rSbDP0VUHdfmBFSecHM/B5XGBAw+lRDgZw82lV6FmqBEiRoQCQzZuLbsWZYmFK3lLC7JZXHjpqXrwXOCxOGIJi5R0HVLStYjRKpCaoUNymhYSCbV+EEI2prlJJwBwHIf6+nrs3LkTkjCvKR0uXss4Zg+KYWiMJyGEkLXmsVjR+Y9/YujV1wPul2i1yPr4R5Bw8MAa10zI0d+KsVf+Amd/S8D93slxSOPSoMzfuqyEs328Cw/XPgcePArjcpGqScSu9C2CY4rj83F31c3YmbYZcarVf3Ku1StQVpWC2nPCmXllcjHSsvRIStFAF6tEWqYe8UkxYNnonKWQEEKWIlDSCUzN3l1cXLxhk04ASGUUsM7aVgaYlC4aUOJJCCERauzUu2j745/hNhr9d7IstBXlyPjg7dAUrV6r3mI8FiPG33oQlpo3Ax/AsFAWbofh8o9DEmMIfMwCBieH8bfzj+L8wNTapAzDIDUmCT0TAygwGGFQ6gXHX1t4OOjXWIzV4oRSJYXZ5MBArwm5RQm+Vstdl+T6Es/kNC1S0rVQqWSIS1RPjeXUK8I+uRMhhIQbz/O4ePEihoaGBOUMw6C0tBRxcXFhqllkkLo5QeIp9lDiSciaaG1thcfjgVgsRl5eXrirQ9aBaIyZsVPv4uKPfxZwnzIjHSnXX4v4A/vBSsMzTpDzuGB8+yGYz70K3u2/digAKHKqoN93G+Rpy0+M5WIZ6oaafNs8z6NprA2bkstQM9iIg9m7lpXYLRYzPM+j9eIITrzVhqF+Mw5ckQ+7zQ0AUMXIkZ41lfAmpWiw73A+MnMNyM43wDLphEjEQqmi8ZvRJhrvM2R1UcxMWSjpLCsrg8EQ/EPJaMNwUphlM8k3y3rDWJvVQ4kniTg2m8237hUhSxFNMcN7vTBdqIYyIx2q3BxY29p9+1i5HFl3fwhJV10Jhg3dmpPBstQdxdjrf/cbxzlNEpsMw+GPQZm/JeD+YOgUWlyasxcvt77tK+szD6IysRhqmQocz0HEBD9mcr6Y8Xo41F3ox/E3WjE6bPGVtzWNICVdBwAY6DEhLVPnS3gvuWomsY6h2WmjVjTdZ8jaoJiZSjobGxsxPCycn4CSTqFhhxrvpV/n21a4zbgijPVZLZR4EkJIhPDa7Rg9fhLOkRFYu7qR/fGPoe7b3wU4DrrNm5D7mU9BnpAQvvq5HRh84Ptw9jUF3M9I5dDvvRXa7deAES39ixbHceie6EP/5DD0Cg2K4/MF+68vvgyvtR+FUixHviEbl+bsQVF8HmJkoVsuxulw4+zJbpx8uw1Wi/+amr1dJiSnacEwDGw2F0zjNugNy1/+hRBCot18SSfLsigtLaWkcxavSDj3Ac+E7+HyaqLEk0SciorwLgVB1p/1HDM8zwMcB+O587C0tvnKOacT9t5eZNx5B2TxcYg/sD9sYwV5nodrqBP2jmrwfODuP6qy/TAcuhviGH3A/fM50nkKD9Y8A5ZhcTB7F0Zt4ygw5EDEzrRixilj8fV9n0VBXA5kImlIfg/TMTM54cDLT9fh/Ls9cLvm79rEeTg4bG7ExqmQnK6DOoZaNjea9XyfIeGxkWNmoaRzoy+dEojLK0w0vUx0pmjR+a4IIWQdsHV3o/lXv4G2vAwiuX8i4zabEX9wf1hbOT2T47C1noNncgwAIM8og3u4G7xnqlVQpIlD7KEPQ12yJ6iEcNxmwp/PPoiz/bW+shHrGOJVBvRMDCBLnyY4viKpOATvZsbwgBlvvdyE5obheZdDAQCFSoL0rFgUlychPTsWeoOSJgsihJAF8DyPhoYGjIyMCMop6ZyfF9E5mdBclHgSQsga49xudD/4MPqefhbgOLhGx5B4+WEwoplWPpFCgfj9+yCNDa4FMXR1dMLeWQvXQDv4WR+IrEQKeVY5HF310Gy5AvoDd4AVBz+RjkQkxsXRNkFZ40gr4lUGdBi7/RLPUOB5Ht3t4zjxdhtaGgKshzqLRidHdn4cyjalIjVDB7li447RIoSQYAwNDVHSGSSz2y7YjtY0lBJPQghZQ5zLhY6//RODL77kK3NPTMB8sQna0hIAU0ln0pWXB2wFXfX6eVwYf+M+eCbHIE3IDHiMunQP4q74JCS6+GW/ToxMjdvLrsO95x7xlTk9ThTF5aIofnVmf+ztMuEfvz+54DFxCSoUlSehdFMq4hPUYEXROc6GEEJWS2JiIiwWC3p7ewFMJZ3l5eXQ68PzIHU98HDROYvtXJR4kogzOjoKjuPAsuyGX9eJLM16iRlbdw9Gj5+AWK2CRKeF2zTh22fv7oFh505oS4uhzEgXtH6uFWvzexh96U/wWsYBkQRiXQJYqcK3X6SIgTK3CpLYlKCua7JPwOy0IEOXKii/LHcfXms9ArPTgqsLDuG6wsMQi0L7seT1cBCJp5LHtEwdklI0GOw3C45hWAbJqRpU7chAUVkS1DGyQJciG9x6uc+QyLFRY4ZhGOTm5gIA+vv7KelcAi5q2ziFKPEkEae/v983/fhGulGT5Yv0mPFYLDCeOw97Xz8AgGFZxG7fhqHX3gAAaEpLkPnhuxBTmB+W8YO8143xtx/CxKln4evg43XD3n4BqqJdYFgRFJmlkKUWgGGXnhD3m4fwSN1zSI1JhFgkRrzKAIVkphVXxIrwpT2fRKxcB+WsBHelOI7DhNGOnk4jnA4Ptu7OBMMwYBgGuy7JxVMPnAcASKQM4pLlOHxVJTKyY30JKiGBRPp9hkSejRwz08lnSkoKlEpluKsT8XieEk9CCCEr4HU6YWlthbm+EbxX2I1GGhsL3eYq6LdsQdJll4KVBj9OMhRcw90YfubXcA13+u1zj/SArTwMTdUhsLKlf3Hwcl482fASnmx4GV7ei62plcjSpaF26CK2p1UJjk3TJK/wHcwYGZrEO680Y6jfjJKqZF8SbxyzITZuaumTkspknDvVBY2BR0qWFAqFDNn5G+sLISGErAWGYSjpXCJtrBYwzWzza9/paU1Q4kkiTnp6uq9rCiFLEYkx0//Ci+h+4GHE7d0N6TxdjPI+86+QxS9/nORK8JwXE6efx/jbDwJej99+UUwsDJf/C9RFO4O+9s+O/RHnB+p823VDF5Eak4ROUy/yDFmIVehWUnU/TocbLz9dj5ozvZh+aGw2OaDVT7Wi9nSM+xJPkYjFR/5tN4xGY8TFDIlskXifIZEt2mOG4zi0tLQgIyMDCkXoeq1sRDKR8OFzdEYMJZ4kAtE4ABKsSIoZzuNB08/vwfip0wCA8dNnkHjZpWDe/+LBymTQb6qCMiszbMtyuE3DGHnuN3B0N/jvZEWIqboUhss+tqzZagHgkuxdgsTT4XGiZawdt5VdB40sZrnV9sNzPM6c6MKbL12E0yFMnns6jb7E0zLphMvpgVQ285EXSTFD1geKGRKsaI4ZjuNQX1+PsbExjI+Po6qqipLPFZDNGcYSrYt2UeJJCCEh4p6YQP1//Tes7R0zZUYjJpuaoSkphjovF7qK8rB1q+V5HhPvPgvjOw/71uGcTRKfgYTrPw9ZUvaKXmdH2iZsTa3Emb5qMADKE4vwia13Ikkdutbd7o5xPP9oDUaHLQH3G0etYFkGeUUJSEzRQESz0xJCSEjMTjoBwOl04sKFC5R8roBIHgNg5gEqw0TnZxYlnoQQEgKTbW1o/N4P4Z6Y8NvnGh9H4mWHITOEb/0yj3kMQ0/+As6+5gB7GWh3Xgf9gQ8G1crp4bxoHGlBtj4daqlq5moMg09svgOTjkl8uOpmFMTlhOAdTJmccODFJ2vRVDcUcD/DAMnpOhy6qhDZeXFg2Gh9bkwIIWuP4zjU1dVhfHxcUO7xeOByuSjxXCZGpgQwa8Z1SjwJWRveWZOwiMKwpARZf8IdM8PvHEHr//4OvGfOWEmWhWH3LhR85YthHeMzWfsORl/+E3iXw2+fWBuP+Ov+HYrM0iVfj+d5vNp6BE2jbUiKScC4zYT9WTsEXYdjlTr89+GvhqT+AOBxe3HszVaceLMNHg8X8BhDggqHri5CUVnSot2Ywx0zZP2hmCHBiraYmS/pFIlEqKiogFarDVPNyHpBiSeJOPX19b7pxysqKsJdHbIOhCtmeK8XHff+AwPPv+C3T6RQIOvjH50a3xmmsZy81wN7Zy0cXQ3gXU6//YrcTUi86ctBzVhrtE/gN6f+hrrhJohYES7P3Y8hjKLT1ItsfXooqw9gKsltqhvCa881wDhmC3iMQinBtj1Z2HMoDxLp0r7c0X2GBItihgQrmmKGks7V5XEIP984LvAD1vWOEk9CCFkGj8WCpl/8EqbzF/z2SePikPfvn4G+qmrN6zXNYzHC2ngSXvskRJpYyNKL4eyZmkyIkcig23MLdLtvDGocyYTDjC+//H1YXVMfkF7Oi/MDddiTsQ21Q43I0KZAFMQ6n4vhOR4P/vU02i6OBNwvErMoKEnA4WuLoTeoAh5DCCFkZbxeL+rq6mA0GgXlIpEIlZWV0Gg0YapZ9HCaO5AyMSv5ZPznYYgGlHiSiBMTEwOPxwOxmMKTLM1ax4ytuxuNP/wpHIODfvvUeXnI/ffPQJ2VtSZ1mYvneTj7W2HvqAbPzXTzkmeUwGMcgEipRcKNX4Q0PvjWSa1cgx2pVXiz44SvbNAyAqfHiSvzD4Q06QQAhmUQF68OmHimpGtx4IoC5BUmLGscJ91nSLAoZkiwoiFmKOlcGzxckHkp8SRkzWVnr2xGTbLxrGXMjJ16F82//F9wjjnjJVkWsdu3IftfPgp5QsKa1Wc2t3kMju4GuMf7/faxYgnir/ks5DkVYFeQIH646macH6yH0T4BpUSB6woP48biK0KadDodbsjkEgDAgSsKUHuuDzbr1IdwaoYOJZXJ2LIrU7A8SrDoPkOCRTFDgrXeY2a+pFMsFqOiooKSzhASi23IMM5ahkwWnRPjUeJJCCFLwHMceh5+FD2PPOa3T6LToeArX0RMQT5EcnkYagdY6o5g5KX/gzytGLLUfME+sVoPVdFOiJRL/5Jgc9vRPNqBisQiwcRIKqkSn9r6IRzveg8f3XwbNDJ1SOrP8zxsFhe62scwMmTB1l2ZUMXIIFdIcMlVhTj6WgsOX1eM0qqUsI2ZJYSQjYKSzrXFua3wimd6KXHi6Pyco8STEEIW4bHZ0PTz/4Hp3Hm/fer8PBT959cgizOEoWYA5/Vg5PnfwVp3BABg76iGSBsHsXpq4XJ5WiEUWeVgltgi6fV6cV/NkwDPQylVQi6Woig+T3DMlpRybEkpD0n9jWM2vPxUHaRyMeLi1eDBAwC62sdQUpkCANi0IwPlm1NX1MJJCCFkabxeL2pra2EymQTlYrEYlZWViImJCU/FolhKZjpaMlt922yUft5F57sihJAQsff1o+H7P4Bj0H/dyPhLDiLv3/4VrHTpa1+Gktc+iaEn74Gjs3amkOdgu3gS2m3XQl26B5LYlCVfr9vUh3tO/AkDk8PQK3Q4lL0b9cPNSNEkhaxlc5rL6cHbLzfh9LFOcBwPVsRg254syORTH0sjgxZYc51QqWVgWYaSTkIICSNKOleXSiSFzj17+Z3o/MyLzndF1rXOzk7fYPysME3QQtaX1YqZ8ffOounn94BzzlmKhGWR/fGPIPnaa8LW7dM13IXBx34Kj8k/IRbHGKAuPwCJbuljTeuGmvDTo7+H0zs1ltJoN6FlrAMFcTmoG7qI3RlbQ1Jvnudx5kQX3n65CXab21fOeXl0tIyiqDwJwNSMtTaLCyq1LCSvOxfdZ0iwKGZIsNZrzIhEIpSXl/taPSnpXH0KyKDyKHzbInd0pmjR+a7IumY2m33rXhGyFKGOGZ7n0ffEU+i6/0GA5wX7WKkU6R+8HSnXXRuS11oOy8WTGHn2t+DdcyY4YljEbL4Mhss/DpYN7vaeoUuFSqqE0z4zk179cDP2Z+3A1pTQrD/X1jSCl5+qw9iINeB+46gNPAdk5xuQmqmHRLJ6C67TfYYEi2KGBGs9x8x08tnY2IjMzExKOldZr1GC1xS3+bZVvBnbw1if1UKJJyGEzOJ1ONDyv7/D2PETfvskOi3Sbr8VSZcdDkPNAJ7nYHznYZiOP+G3T6TSIe7qT0NVsG1Z19bI1PjS7k/gv978H3h5DmqpCh+u+gD2Z+1YabXBeTm89FQ9zp7sCnwAA6Rl6LHnUC5yC+MhXsWEkxBCyNKIRCKUlZWFuxobAi9WCLeDWGN7PaHEk0SckpIS8DxPM1eSJQtVzDiGhtD4o5/C1umfICmzMpHz6U9BU1QYltj02swYeuIXcHTX++2TpeQj8eavQqxZ+gRHLq8bUpHwKXxhXC4+WHEjuif68InNH4RcsvJurhNGO564/xx6O40B9+sNSuy7LB9lVSlrmnDSfYYEi2KGBGs9xIzH4wHDMBCJ6IFfOLlYGYCZYT1edv21ki8FJZ4k4qznhZZJeIQiZhzDw6j+yv+DZ3JSuINhkPnhDyH5+mshClN3KedINwYf/D68Fv/kTV1xCHFXfRKseGkTHLm9HnSbelEzdBEHsnciVqET7L+u8HDIviRdrB3Es49Uw2F3++2TKyTYeTAHu/ZnQyJd+//m6T5DgkUxQ4IV6THj8XhQU1MDlmVRXl5OyWcYeRzCuSR4LkwVWWWR/V8EIYSsAde4EaNHjsGwayeGXn3NVy5SKVH4lS9Bv2Vz2OpmbX4Pw0//Erx77gRHIhgu+xg0W65ccqI4MDmCnxz5LeJVBhTE5eBk91lclrsP0llJayiSTo/bi9eea8R7xzv99jEMkJFrwC0f3rxqEwcRQghZ2HTSaTabAQC1tbWUfIbR0OgQgETfNufl5z94HYvODsSEELJEHosVI+8cAed2Q5GWCm3F1PqUirQ0VP7ip2FNOp1D3Rh64hd+SScjkSHpjm9Bu/WqJSeKZ/tr8Z+v/ggDlmHUDl3EmM0Iq9uO030XwPOh/YB78oHzAZNOmVyMym3puOzaYko6CSEkTOYmnQBgMpnQ1NQUxlptbG5EaRPnHNTiSSKOyWTyjYnQ6XThrg5ZB5YbM27zJIbfehtex9TssF6bDYmHD0GRkozMj3wYYqVylWq8hLqND8DW+h4UuVWwt5zxlYtUOiTe9nXIU/KWfK3ByWH87NgffAkmDx6nes7hcO4+qKWqkI9B2ntpHpobhgRPbAtKE5GZa0D5phSoNfKQvdZy0X2GBItihgQrEmMmUNIJABKJBJmZmWGqFeGitW/tHJR4kojT3d3tm348Um7UJLItJ2ZcpgmMzEo6p3ksVuR86hNgwtTdiOd5OPtbYG+faomUJeXAa52Aq78F0vgMJH3wWxDHLH0SIQBIiknATcVX4smGl3xlIlaEkvg8VCWXhvotICVdh0uvKcZrzzZALGZx5U2l2LQjA0BouvKGAt1nSLAoZkiwIi1mPB4PqqurMTlnLgOpVIrKykqoVKow1YzwlHgSQkj08VisaP7lryFPSoJYLfyQlWi1iD94IHxJp8cNa8sZuEa6BeWKnEpI49NhuPxfIJIur7XwttJr0TTahvrhZmxKLsPHN9+GRHV8KKoNAPB6OXS2jiEzNxZisQg792XDbLRj084MJCTR+m+EEBJOlHRGNs0GSck2xrsk60pycjI4jgPL0hBksjRLjRnn2Bjqv/M92Hv7II6JQcLhQxDJpsYaSmP1iD94wLe91pyDHXD0NMJrn/TbJ0vIgmrfbWDYpSXEo9Zx6BRaiGcdz7IsvrDz43ivrwaHc/euuOWR53k0XBhAcWUyPG4v6s73wTzhgM3iRNmmVDAsgytuDH1raqjQfYYEi2KGBCtSYsbtdqOmpiZg0llVVQVlGIeVkClil7DFMzL6BoUeJZ4k4sTHh64VhmwMS4kZe38/ar/xbbiNJgCAZ3ISo0eOIf6SA5AnJiDh4AGw0qUtSRJKPM9j/M37MPHuc1CV7IEkNlmwX5FeDHlW+ZISRaPNhNrhJgxZRpCpS8O21ErBeTqFFpfl7VtxnW0WF5555AJaGoaxuy8X6hgZHI6pJVPGRq1obRpGfnHiIlcJL7rPkGBRzJBgRULMUNK5PkiYjfFAixJPQkjU4zkOtu5egBPO3uqxWuG12ZBwyUGwYVijk3M7MfTYT2HvqAYAWC+eQkzVpRApNWDFEigLd0BqSF3Stc711+F/T90LlmFxac5edJp6EafUIyc2tJNFdLaN4an7z2HSPDXT7om32lC5LQ1avcJ3zFD/JNKzYiFXROcC2IQQsh643W5UV1fDYrEIyinpjDysVLH4QVFgY6TXhJANyzkygr6nn4W1owNxB/ZB9P4HrTgmBomHL0XmXXeGJen02iYx8MB/+ZLOqUI3rPXHwMpUiNl0+ZKSTo7n8ET9i/jp0d/D5rbD4rLiXH8teJ7H+YF6mJ2WRa+xFJyXw9uvNOG+P5z0JZ3TLtYOgvNOdROSKyTYtCOdkk5CCAkjSjrXF0ayMZYYoxZPQkjUcplMGHnnKDj3VDdQsVKJ+AP7YbpwAWm33YL4/fvAitf+Nuga68PgIz+Cxzjot0+RuwmarVeCFS2tXl7OizN9NeAx05rbY+5HoikO1xUdRox05RNGmE12PPnAeXS3j/vtk0hFyC9JACtiodEqULYpBVIZfbQQQkg4Xbx40S/plMlkqKyspKQzAokVcyYOjJAZ4EONvh2QiFNbW+ubfry8vDzc1SHrQKCY8djsgqRzmkSnRcGXvwh1fl5Ylvawd9Zi6Imfg3NYhTtYEWIPfgi6XTcEdT2JSIIv7f4E/t+rP4LVbQcApMQk4pbSq0PSzbapfgjPPnwBdpvbb5/OoERRWSKkMjESkmJQWJYEkWh9dKSh+wwJFsUMCVY4YyYvLw8WiwVO51QPFZlMhqqqKigUG6NL57rj932ED3jYekeJJ4k4PM/7fghZirkxM3bqXbiMRnhtNr9jEy+9BLIwTfhgvvA6Rl/6E8B5BeWimFgk3PAFKDLLlnXdBHUcPrP9bvzPiT/j1tJrcFXBJVBKVvblwuPx4o3nL+Ldox3+OxkgK8+A9Cw95Aop8osTYIhXRcwanUtB9xkSLIoZEqxwxoxCoUBVVRUuXLgAAJR0Rji7aBSJkxO+bZ71f9gbDSjxJBFHoVBALBZDEoZxd2R9mo4ZsViM7kceQ8+DD0OZnYXY7dt8yRArlSLlhuvC0rWW47wYe+WvmDz3it8+aVIOkm79T4g1hiVch0Pt8EXo5Vpk6ITjP7enVeHXV/9XSNbmHBux4In7zmGwz+y3TyYXo7giCRqdAsmpWhSUJIJh10/COY3uMyRYFDMkWOGOmenkc/rfJHIxjAtK98xnrlfsCWNtVg8lniTi5Ofnh7sKZJ3Jz88Hz/Po+uf96HnyaQCAraMTrFgM3eZNkMSokXjZ4bAknV6HFYMP/Tec/S1++5QF25FwwxfASuUBzhSqGWzESy1vIVufATErgl6hRYxMLTgmFElnzZlevPBELdwur9++uAQ1CkoTIJaIkJ4Vi5yCuHXVyjkb3WdIsChmSLAiIWYo4VwfWIkDaRMXfduTqvUxbCVYlHgSQtY9nuPQ/qe/YvCllwXllpZWqLKzkXLt1RDJF0/uQs01PojBB/8LnokRv33aXTci9pIPgVlk7S6e5/FC8xu4v/pJcDwPEStChjYVp3rO41DObohYUcjqe+KtNrz+fKNfOcsyyCmMR3KaBgzDIDs/DhnZses26SSEkGjhcrkwODiI9PR0uievY5x9AlKvw7ct5kL32R5JKPEkhKxrvNeL1t/+HsNvvu23T791C9Ju+QAkGs2a18s9MYz+e78GzjlnEiGGQdyVn4Rm8xVLus5fzz6MV9uO+LbP9tdCJ9eCZViM202IVy3eRXepyjal4PibrYKJhOIS1KjYmgqPhwMDBnnFCUjN0IXsNQkhhCyPy+XChQsXYLPZ4HK5kJubS8nnOpUAKVyztuVcdI4lj852XELIhsC53Wj6xS/9k06GQez2bci48w7IExPWvF6eiRFYG05AmpQtrJZYirhrPrvkpBMAsvTpgm0v50WnsQeX5uwJadIJABqdAtffUeXb3rwzA5/80j7sOpgLfawSRRVJlHQSQkgEmJ10AkBvby/a2tpo8qt1Su4UDm+RuKPz70gtniTi9Pb2wuPxQCwWIy0tLdzVIRHK63Si6ae/gPHsOeEOhoFh104kHDoIdW7OmtfLNdwFa9Np8DwHWXoxvPZJuIe7wCpikHjL16DIKAnqeodz96J1vBNvth8HAGxLrcS/7/go5JLV6TpcWJqIvYfzkJikQemmFF95xda0qHqSTvcZEiyKGRKs1YoZp9OJ6upqX9I5bXR0FJmZmTQB1jqkYCQwMjPda6O1ZZASTxJxxsfHfete0Yc7CcRjs+Pij36Cido64Q6WQdzePYjbsxv6LZvXtE48z8PR3QB710ydGIaBMn8rnEoN4q/+NCT6pEWvw/Ec2DnjPj+++XYMWUZwed5+7ErfsuK69nSMIyFZA5l85iPA6ZiaQU8mF+PQVUV+50RT0gnQfYYEj2KGBGs1Yma+pFMul6OqqoqSznWqz6bGO7l3+7YVbjP2hrE+q4UST0LIuuKxWNDw/R9isqlZuINlIa4oQ9zu3VPLqLBr97yQ57ywNZ+Bc7jTb580Lg2xe28FI174ywDHcagfaca4zYR9WdsFyadUJMF3Dn5xxckfx/E4+noLjrzajLLNqbjpzk0AAJvVhdPHOsCyLHYdzIFEEp2TGhBCyHrmdDpx4cIF2O12QblCoUBlZSXkYZhEj4QGJ5r7t4uuh73TKPEkEaegoAA8z0ddCwtZOffEBOq/+9+wdnQIylmFHPrdu6GtqkDsjrVNOt0TIxh85EeQpRVCrNYL9slT8qDI3bTozLVDkyP48dHfYVNyGRQSOeqGmlCRVCw4ZqX/PZgn7HjqgfPoahsHANSe7YMhXg29QYmxEQuA99cJPduHiq2pEIujO/mk+wwJFsUMCVYoY2ahpLOqqgoymWzFr0HCx+kVfuZ62OhsuabEk0QcemJHAnGOjaH+O9+DvbdPUC7WaFD6vW9DGhsLiUazpkmnY6ANgw//AJzNDI9pGDFVl4KVq8CAgSK3CvLUgkWvMWQZwTde/ykmXVY4PS4cyNqJi6Nt0Cu0SNemLHr+UjQ3DOGZhy4IZqsFgCOvNWPLrkwolDMfcOYJO4690YqDVxSG5LUjFd1nSLAoZkiwQhUzlHSSaBGtY1cJIVHEMTSE2q9/yy/plOj1KP/h96HOyYFUp1vbpLO/FQP3fxeczQwA4N0OWOqPguc4qEr3LCnp7J0YwHfevAeTrqklV8bsRlQPNQAA3F73QqcuicfjxctP1eHhv77nl3SCATKyYyFX+D9/zC9e+5mACSGE+HM4HJR0bgAmt/DvG51z2lKLJyEkwtl6e1H/ne/BNTYuKJclxKP0+/8FRfLiE/aEmrO/FYMP/zd4l/CDAl4vlDlVkBpSl3YhBvBwwinUhy2jqEgsRE5s5orqOD5qxcP3vofRIYvfPplcjKKKJGh1Cl8Zy7KI0ciQlWeA3qBa0WsTQghZuemk0+FwCMqVSiUqKysp6YwiHt67+EFRgBJPEnEsFotvTIRarQ53dUgYWTs6Uf/d78E9YRaUSw0G5H/x876kcy1jxtHTiIGHf+iXdIpiYpH8of9aetIJIE2TjG/u/3d87+1fwu52ICUmEV/e/Ulk6JZ+jUBqz/bi+cdr4Xb5f5AZElQoKE2ERCICyzKINagQnxQDQ4Iq6sd1zkb3GRIsihkSrJXEDCWdG4uX58JdhTVBiSeJOO3t7b7pxysqKsJdHRImk03NqP/eD+C1WgXlEp0Wcfv2QBZn8JWtVczY2qsx9NhPwHtcwjolZCLpjm9BEhMb9DVzYjPw9X2fw2P1z+NLuz8BtXT5rY0upwcvPVWH6vd6/fYxLIPcwjikZugQG6dGfFIM4uJVEG/QGWzpPkOCRTFDgrWSmLHb7XC5hJ81SqUSVVVVkEqloawmiQA8H62da4Uo8SSERJyJ2jo0/ODH4OY86ZXGxiLuwD4YdmyHPDFxTetkbTqNoafuAbweQbkiqxyJt/4nWOnik0iM2YwAAINSOPttUXwuvnXg8yua+XCwbwJP3HcOYyNWv30KlQTFFcnYuisThgQ1LZdCCCERTq/Xo6ysDLW1teB5npLOKKfWxACmmW0+SmfhocSTRJz4+HhwHAd2DSeKIZHDePYcLv7k5+DmPOmVxccjbv9e6DdVQVNcJNi32jFjOv0Cxl//OzCnK4wyfysSPvAVsOLFvwg0DLegbrgJUpEEB7N3QSfXCPavJOlsbx7FQ389Da/Hv6tOaoYOxRXJ2LwzA3JFdE7Pvhx0nyHBopghwVppzMTGxqKsrAwdHR2oqKigpDOKyWXCv220rtpEiSeJOMnJyeGuAgmT0RMn0XzPr8B7hK2Kus2bkPmhO+Cx2qApK/U7bzVjxnjscRjfecivXFWyBwnXfx6MaPHb6MO1z+KZxlexN3M74lWxONL5Lg5l74ZatvJJfDiOR1qmDjq9QtDaKZWJce0t5cgvSYRUJqK1B+eg+wwJFsUMCVYoYsZgMCA2Npbu4VFOMWfdzmh9vBWt74sQss6MHD2Opp/f45d0xu7cgeJv/D+o8/Kgq6xY0w/fsTfuC5h0xlQeQsINX1g06eR5Hk82vIQnG16Cl/fiePd7MNon4PA4cXG0dcX1mzQ7cOZEJ0xGO26+ewtE4qlbekq6Fp/68j6UbU6FTC6mLyyEEBLBOG7hiWXoHh79WKlCWMBEZ4oWne+KELKueB0OuMbGIJqz2Hb8wf0o+tpXwErWvouo6cTTmDj1tF+5Mn8b4q75DBh28XGSJ3vO4uHaZ33bHs6Do13vwuFxYnNy+bLrxvM8eruMOP9uN2xWF5rrh6DTK3D59SXYeSAHH/vcHsTG0ZIohBAS6ex2O06fPo3h4eFwV4WEEauYO/wmOlM06mr7Pp7n8fzzz+OJJ55AY2MjbDYb4uPjsW3bNnzoQx8KyQx2586dwwMPPICzZ89idHQUMpkMmZmZOHToEO666y7odLqVvxFC1hmXaQKjR47Ca7cjbv8+jL4z9e/EKy5H7qc/CSYM46kcfc3wumwQ6xLhMQ35ylWFOxH/gS8v+QNhe9ombE2txJm+al9ZgSEHd1bcuKwxP5MTDoyNWjDQa4bT4faVezxeNNYMYOuuTDAsPRknhJD1wG6348KFC3A6nWhoaAAAJCQkhLlWhKweSjwxtVbSF77wBbz99tuC8r6+PvT19eG5557DF7/4RXzqU59a9mv87Gc/w1//+ldBmdvtRn19Perr6/Hwww/jN7/5DTZt2rTs14gWjY2NvunHi4uLw10dsors/f0YO3EKnHsqiZLqdIg7sA8imRxZH7t7yd2LQhkzjr5m2NrOg2FFUJXsgaXuCLzmUajLDyL+us8F1eVJzIrwxV3/gp8e/R1qh5rw0U234oq8AxAtobV0rpbGITz1wHlIZWJUbk3zSzA5jofb7YVURrf1paD7DAkWxQwJ1kIxY7PZUF1dDafTKTheJBLBYDDMvRSJcvycGfP5KF3Xk76hAPjmN7/pSzpzc3Nx2223IS4uzpcQ2mw23HPPPUhMTMQNN9wQ9PX/+te/+pJOiUSC2267DeXl5TCbzXjttdfw3nvvYWRkBJ/61Kfw5JNPIj09PZRvb91xu91wu92LH0jWLZ7nMdnUDNOFamDO2lXyxETE7dkdVIIXqphxDrTB1nbet82IxFCX7gPDMNAfvHNZ42ykIgm+uufTqBtuxtbU4HtOeD0c3njxIk690w4AcNg96GwbQ3Z+nO+Y9KxYZOfHgaXWziWj+wwJFsUMCdZ8MWOz2XDhwgW/dTpVKhU0Go3f8ST6WUZaEGeZST5ZOBc4ev3a8Inn8ePH8fzzzwMAdu7ciT/96U+QyWQAgGuvvRa33HIL7rzzTphMJvzoRz/CpZdeCrVaveTrT0xM4Le//S0AQKvV4r777kNhYaFv/913341f//rX+MMf/gCz2Yxf/epXuOeee0L4Dtcfyfvj+SRhGNdHVh/P8+h56JGAc4VLDQbE79sDkUIR4Mz5hSJmnEOdsLWc9StX5W+BPH1prRuDlhH0m4ewKblUkKTKJfJlJZ3jo1Y8ef859PdMCMp7OozQxSqRmKxBUXkSjedcBrrPkGBRzJBgBYqZ+ZJOtVqNyspKiq8NihU5EeOa9VnPuOY/eB3b8InnvffeCwAQi8X4wQ9+4Es6p+Xm5uLb3/42vvKVr8BkMuGxxx7Dxz72sSVf//jx47DZbACAT3ziE4KkE5iaqezzn/88XnjhBXR3d+ONN96Ax+OBWLxx/zTUhSm6tf3hTxh65VVoqyqgKZpZj1OZmQHDju1gRMF3Q11pzJjPvQaPeRSYM+5SkVW+pKTT4rLiifoXoZQowb//v83JZSuaibDuXB+ef7wWLqfHb58hXoX0LD02bc/wzWRLgkP3GRIsihkSrEDdawMlnTExMaioqKCkcwNjWBuSzTOz3TujdMnWDf2NxWQy4cSJEwCAffv2zdvF9eqrr/b1t3/55ZeDeo3e3l7fv4uKigIew7IsysrKAEwNNDcajUG9BiHrRdd9D2DolVcBABMXajBRUwue56EpLYFh185lJZ0rZXr3OYy+9H+w1B8VjLFQZJRAkVGy+PkOM7752s/wQvObOD9QB57n0TbehfMD9eDndCNeCpfTg2cfqcaTD5z3SzoZhkFuUTyuvqUcW3dnUdJJCCHrBCWdZCGMywKFZ+ZH5rUuftI6tKG/tZw5c8a3dtLOnTvnPY5lWWzbtg0AUF1djYmJiXmPnWt2t9yenp55j+vv7wcAiEQiaLXaJV+fkPVi/NwF9D7+pKDM3HgRbpMJuorysKxTNln7Nsbf+AcAHh7TECx174DzuCBPK4Q8s2zR80et4/jum/dgwDI1DX7reCcaRloAAC6vCzyCSzyH+s34y6+O4cJp/3uFQinBph3p2Hc4H9l5cQHOJoQQEomsVuu8SSd1ryUAEJuehO5cie9nNFe++Enr0IZOPFtaWnz/LigoWPDYvLw8AFPj05qbm5f8GrOXYbn//vsFs5dNO336NGpqagAA27dvh1Qape3rZMNym82wd3VBWyUc52jYuQM5n/pEWOrkGGzH6At/FExu5DWPgXfaoMiuXFIi3GsewLBlVFDWYexGakwitqdVgV3isis8z+PMiU785dfHMDps8dufmBKDzTszULU9HRnZsUu6JiGEkPCzWq2orq6eN+ncyEOryAydVAkdx/l+YqNzUtuNnXj29fX5/p2amrrgsUlJSQHPW0xZWRn2798PAGhvb8ddd92FU6dOYXJyEoODg3jwwQfx2c9+FhzHQa1W46tf/WqQ7yL6DAwMoK+vDwMDA+GuCgkB9+Qkht98G16HA5qiIui3bQEAxO3fh4L/+BLYEHzoBhsz7olhDD3yI/Be4WyDirzNMFzxySW3vlYll+JzOz8KBlPHxyp0+NTWD2F3xtYlJ512mwuP/eMsXnyiDl6P8JNGJGJQWJaIwrIkFJUnIy1Tv6RrksXRfYYEi2KGBKu9vR1HjhzB2NiYoFyj0VDSSQR0YjlSnF7fT7LLG+4qrYoNHfHj4+O+f+v1C3+h0+l0vn+bTKagXudXv/oVvvzlL+Ptt99GTU0NPvKRj/gds3nzZnzrW99CaWlpUNeORiMjI751r5KTk8NdHbICHqt1Kum0231l6txcqPPzkfaBG0OSdALBxYzXbsHgwz+E1yIcSy1LK0Tirf8PLBvc87g9GdtgdzvwUvNb+ObBzyNWoVvyuRNGO/7+uxOYMNr99sXGq5BbEAelSoaC0kQkp1EX/FCi+wwJFsUMCYbb7ca5c+fgcrkgEokQExMDYCrprKiooKSTCHSOiPGa4i7ftgoWlIexPqtlQ7d4OhwO37/nzmY71+zur7PPWwqVSoWf/OQnvpbPuRiGQXZ2tiC5JWS989jsU0nn+7M6T5MaYqeSzjCMaeE8Lgw99hO4R3sF5fKMEiR/8Dtg2YW/CDjcDpgcZr/yw7n78JPLvx5U0gkAGq084FIoO/Zn49P/sR/FFckoLE+ipJMQQtYZiUSC2Fjh0AhKOsl8eIkSXkYy6yc6YyQ639USeTwzM0YuNq5y9v7Z5y3Fiy++iK9//etwOBxITEzErbfeitzcXFitVhw9ehSvvvoqnnjiCbz88sv4+9//LhgXGg6tra3Izc31PZ0DAKfTiaamJgBTrb8ZGRl+50wvGzO3/qOjo77Jk9LT0wWty16vF/X19QCmxjtkZ2cjJycHPM+DYRh0dnbCbJ76ol9SUiK4WZtMJnR3dwMAkpOTER8fL3jd2tqpGVMVCgXy8/MF+3p7e30t3gUFBZDLZwZxWywWtLe3AwDi4+P9nmw3Njb6nnrPnSp9YGAAIyMjAICcnBzB5FIOh8M3Pjg2NhZpaWmCc1taWmC328EwDMrLhc+5RkZGfN27MjIyBA8pPB4PGhoaAEx9qGVlZQnO7ejowOTkJACgtLQUolkzxxqNRt+kVykpKYiLE05aMz32WKlU+sY5T+vu7va1/hcWFgoe3gxdqEHX66+DEYuhUql8vweJTof4A/txsaUFHo8HUqnUb7bn/v5+jI5OjZvMzc2FSjWTmNntdt/YbIPB4OsiPx0zvb29qKmpEcwU7avT0CBML/4ekv5GQbkkPh2GG7+CuotTfxutVovMzEzBMW1tbRiaGEaDuQ3xiQm4NGcP1LKpeo2Pj/tmr05LSxN80eA4DnV1dQCmHkDl5uYKrtvV3YX8Sin6e1g4HRwUSglu+GAVCkoSYTabYbb1w2wDWHESEhISBOfW1dWB4zjI5XK/Mep9fX2+rl35+flQzFoX1Wq1oq2tDQAQFxeHlJQUwbkXL16Ey+WCWCxGSYlwVt+hoSEMDQ0BALKzs8N2j5htufeInJwctLe3g+d5tLS00D1ije8Rk5OT6OjoAAAkJiYiMTFRcG5DQ0NI7xHTmpub4XA4At4jhoeHMTg4CADIysqCRqPx7XO73eB5HmKxGEqlEnO1tbXBap2ahbKsrEzQc2JF94iuLt+EhsXFxYJJaMxmMzo7OwFMDQeie0Ro7xHAyr9HGAwGqFQqTExMQKvVory8HGKxmO4R74u2e0Rj49T3i/m+Ryx0jxgwWgHM1NPDTOUd4bpHTMdgqG3oxHP2TcLtdi+YfM4eFB7M5D9vvPEG/uM//gNerxc7duzA73//e8FN5NZbb8WxY8fw2c9+FlarFZ/4xCfwwgsv+N381pLX6/XN9juN53m43W7f/rk8Ho9v/1wcx/n2zb0uAN++6YR+9u9ncHDQt3/u0hSz6zTfdae/KCxU3+VcdynvdaHrBnp4MX3dQOMLV3LdUP5tZvN6vQHrZO3sQvuPfwrO4wFbVgr+/S9pEq0WCYcOQiSTwe12w+PxBOzWOt91577X2XE4HTPT7yfQdR1H7oekv15QJlLHIvn2b4KTKRd8rycGz+H1/uMojclDjEeLI13v4lD2bsgl8mX/Dl1OD9oujsPusKFylw6DXTw+8KHN0OgUgvcy973Ovi7HcYIvANOW8zucNh0vgZaCmX3dcN4j5rtuMP8tq9VqeDwewTGhuO50fekesXAcLiW+Q3mPmH3d+e4Ri8X39HsM9PsPR3zTPWLGatwjpq+70u8RaWlpyMzMRFxcnO86dI+YEm33iJX8DrkAdZldp6VcN5T3iEB/y1DY0Inn7KeWTqdzyYnnYt1yp/E8jx//+Mfwer3QarX43//9X0FSNW3v3r346le/iv/+7//GxMQE7r33Xvy///f/gngnoSUSifz+g2MYxvcUJVCAisXieacDZ1nWty/Qf8jT+wLd2Gdfd+6NdHad5rsuz/MB67XS687+/9lmv9eFrhvovUokEng8noAfGCu57mr9bUQikV+dnOPjqP/Of4F7vzs6V1sLj1wGcUoKEi45ANH7/+1IJBIwDLPk6wZ6r4HiUCKRwOv1+r2X8bcehLf5pPBaUgWS7vgmxNp435PnQO/19bajeK73TQBAvaUViZ4kMAyDcwP12J2xZUm/Q87Lw26duYmPDlnQ3DAEy4QHDieH1Ew57vxkheAeNPu6871XjuMC/m1X8jsUi8XgOG7Rvw3dI+geMV2n+a67UBwuJb7X8h4x97oLxfda/g4XikO6R8yI9HvE7AkqZ9eX7hF0j5i+ltlsAjDTgur1zCSR4bhHBDvfxVIx/HJWOI8S3/nOd/DII48AAF5//XWkp6fPe+xjjz2Gb33rWwCAX/ziF7juuusWvX5DQwNuuukmAMCdd96J7373u/Me63K5sH37dtjtduTm5uLFF18M5q2siMVi8XV/Aaa6OwRKkAlZiMdiRfVX/x8c/cIZH+Upyaj4xU8hmdXVZS2ZL7yJ0Rd+D8xeU5MVIemOb0KZXbnguUc638Vv3/27oEwr1+DGoitwac5Ui+dijGNWPHH/eVgnnfiXL+xBX5cJA33CtYAlEhG27s6CTL6hnwUSQsi6NDk5CYZh6LsTWbb77/kz2vtnhm2IvQ5841e3hK0+q5UbbOjJhWb3YV9sevTpPt0A/MY7zGe6XzWw+DqhUqnU1297eizIRuVwOGC324OexImEj9fpRMP3f+CXdEp0OpR851urnnTOFzP2zjqMvvRHCJJOALrdNy2adAJAVVIJUjXCJ9UZ2hQczt2zpKSz/kI//vQ/R9HfbcKE0Y77/vgu+ntNfscxDAOHPXAXHLI66D5DgkUxQwKZnJxEdXU1qqurYbEI12GmmCFL5eGjdOHOOTZ04jl7gO70QOP5TO9nGMZvgPlSOJ3ORY+ZbtYO1By+kTQ3N6OhocE3gJ5ENs7jQdPP7sFkk/DvJVarUfT1r0GRnDTPmaETKGZ4zgt7Zy0YkbALiap0L/T771jSdTXyGHz7wBeQoDIAAK4vvAxf3/dZyMQLd7d3u7x4/rEaPHHfOTgdM2MyRgYnMdArnBU3LkGNrbszodUr5l6GrCK6z5BgUcyQuaaTzulxdnOTT4oZslQbpQPqhk48N23a5OvX/O677857nNfrxXvvvQcAKCoqEsxitZDZM3BNz0g1H4/H45slcaktqoSEG89xaP3N72A8c1ZQzsrlyPzIXdAUFYanXjwH68VTAMtCXXUpWMXUf7OytCLEX/fvAce/zCdWqcO3D34BH998O+6q+gDEooW7ww4PmPGXXx3FuVPdfvsUSglitFNJq1gsQmFpEkqrUiCVURdbQghZT2YnndPcbje6urrCWCuyXqk2SEq2ob/taDQa7Ny5E0ePHsWbb76J/v7+gEnfCy+84Jsy+6qrrlry9cvLy6FWq2GxWPDGG29gYGBg3kWnn3nmGd9Tsj179izj3USP2NhYeDweWucqwvE8j457/4GRt48IyhmJBMlXXYGESw6uWV1mxwzP87C3nYfr/bU6RXIV1JWH4BpsQ+LNXwW7QOLYbeqDxWVFSYKwa3yiOh5X5h9csA48z+PcqW688nQ9PB7/LjMJyTHIK06AWDz14bJlVwYUyqXPkE1Ci+4zJFgUM2Sa2WxGTU2N3yyjer1esLQHxQxZKqlb2OK59Mfj68uG/y/hox/9KI4ePQq3240vf/nL+Mtf/iIYPNva2oof/vCHAKbWz7n11luXfG2pVIq77roLf/zjH2Gz2fDFL34Rf/jDH/wWFD537hx+9KMfAZiaYeojH/lICN7Z+jV3XSoSmXoffxIDzz0vKGNEIsQf2IekKy8HO8/sbathdszYuxvg6G8V7BfJVUi88UsQyQOPNeV4Du90nMKobRw8AJYRoSg+N+CxgTjsbjz/WA0aqv3HirMiBvnFCUhMmWp1NcSpUFyZDLF4Y3epDze6z5BgUcwQYCrprK6u9lueQq/Xo6ysTDBcimKGLJWUWjw3hr179+KKK67AK6+8gvPnz+OGG27ABz/4QSQnJ6OhoQEPPfSQb8HXr33ta35J47vvvou7774bALB9+3bcd999gv2f/vSnceTIETQ0NODChQu4+uqrcdNNN6GoqAherxenTp3CCy+84Htq9s1vftNvMVtCIs3gy6+i+/4HBWWMSATDnt2QJyZCnrT64zoDcQ52wN5ZK6wXw0JdugcilTbgORzH4WfH/oBzA3XYnlaFDG0qaoYaIWZFyDNkLfqavV1GPHn/OZjG7X77VDEyFFckQR0jR2qGDulZeupWSwgh61QwSSchwWBEG6MHFH0DAvDTn/4UVqsVx44dQ29vL37+858L9jMMg8997nO4446lTUgym0KhwF//+ld86UtfwqlTp2A0GnHvvff6HSeRSPCNb3wDH/zgB5f9PghZC6PHT6Dtj3/yK8/7/Geh37IZ4jBNJz9+5GE4uhshSy/2jeFkwEBVuAMSXWLAcziOw+9O/wPnBqbGYJ/uvQAGDNK1KbC4bIu+5qkj7Xj9uUZwnP+kACkZOuQVxSElXY/MHAMtlUIIIevYxMQEampq/JLO2NhYlJaWUtJJVoSVK8NdhTVB34QwlRz+5S9/wXPPPYenn34ajY2NmJychE6nw5YtW3D33Xdjy5Yty75+bGws/v73v+ONN97As88+i+rqaoyNjUEqlSI1NRV79uzBhz/8YWrpJBFv7OQpNN/zK2DO7GvZn/wXJBw8EJ5KATBfeAOmo48D4ME5LFDkbQXDslDkVkGakDHveSd6zuBo12lB2Zm+GuzN2IrKpOIFX/Pdox149ZkGv3K5QoL8kgSUVCQjM9cAuWLtuhwTQggJvYWSzrKyMt+qBIQsl0g2p8UzSgd5UuL5PoZhcP311+P6668P6rwdO3YIFlhd6PqHDx/G4cOHl1vFDaOlpQVutxsSiWRZS9eQ1WGqrkHTL34Jfs4Hb/odtyHl2qvDVCvA1n4BIy/+Ecz7a3W6hjrBOe0wXPlJyFMXXj93T8Y2tI514sWWtwAAIkaE28uuw470zQu/psWJM8c7/cozcmJx052boFJLIZbQ0+9IRvcZEiyKmY1pJUknxQxZKmaDtJhT4kkijt1uh9vt9pstjoTPZEsrGn/4E/Bz/iZJV1+J9DtuC1OtALdxEMNP/wrMnIWXZSl5UOZULXo+wzD4yKZbwfE83mg/hq/u/TSqkksXPMfpcOPCe73Yd1k+3j3SgYHeCQDAvsP5OHB5PlgRPfleD+g+Q4JFMbPxrLSlk2KGLJWTMUFvs/q2GcYVxtqsHko8ScRhGMb3Q8LPOTKChv/6b3BOp6BcXViAnE/+S9j+Tl7bJAYf/iE4+6SgXJ5egvjrPx+wXjzPw815IBXNdH9lGAYf23wbLsvbh3Ttwmvoer0c6s73w+XyYHzUg03b0yGTiZFdEId9h+lp9npC9xkSLIqZjae/v98v6TQYDCgtLV1S91qKGbJUjMQBnWPYt+0VR+fDCko8ScQpLy8PdxXI+3ivFxd/eg88768xO02RloaS73wTTJjGtXBuJwYf+zHc4/2CcmliNpLu+EbAtTp5nkft0EX0mQdxMHsXFBK5bx/DMIsmnTzPo7l+CJNmh6/MYnFi294sFJWHZxZfsnx0nyHBopjZeAoLC+H1ejE6OgoguKQToJghS8exdiRYOn3bVmV0PqygxJMQMq/+51+EpaVFUCZLiEfZD/4LkjDNXsvzPEae+y2cvcKx1dKETKR8+PtgpQq/cziOw/3VT0IqloJlWLzdcRIHsndCKfE/dj49HUYMDZgFZQqlFHnFCfQ0mxBCohDLsigpKUF9fT0ABJV0EhIM1mWG2mXybXul0TnmkxJPQkhAjqEhdD/wkKBMnpyE0u9/F1K9Pky1AiZOPgVr4wlBmSjGgKTbvwlW5j8dOc/z+PWpe3Gy5yxSYhKxM20zJl1WHOl8F5fl7oOIXfjmbre58M4rzVOz087KL8ViEco2pUBCkwgRQkjUYlkWpaWlvn8Tshp0EGH2bBVS3n+ZtmhA/wURQvzwPI+23/+f37jOvH//LOQJCWGqFWCufgPjbz0oKGNkSiTf8U2INQa/43mexwM1T+Fkz1kAQP/kEE70nAXHeVEUl7do0ul2e/HAn97F6WOdqK/uB+ed+lhgwKC4IgkqtSxE74wQQkg48Qt80WdZlpJOsqqUNuFYYqkrOhNPavEkEWdkZAQcx4FlWcTHx4e7OhvSyNvvwHShWlCWdOXl0JaWhKlGgKO/DWMv/wXA7Jsxg8SbvowJRgluaMgvZtrGu/DcxdcF1xmyjCBeZUCWPm3B1+O8HB7/x1n090zNWjs2bEXtuX6UViWjoDQJhvjwdDUmoUH3GRIsipnoZTQa0dnZibKyMkgkoVt7mWKGLFWMSIrZs2lIQIknIWtiYGDAt+4V3ajXnss0gfY/3ysok8bGIvPuu8JUI8Brt2DosR+D9winF9ftvw3K3E1orakJGDN5hix8bd9n8OuTf4XD4wQDBndW3IhLc/cu+Ho8z+P5x2rQ0jgsKLfbXNDFKpGeFb6uxiQ06D5DgkUxE52MRiNqa2vBcRxqampQUVERsuSTYoYsVb9NhROZt/i2FR4LdoWxPquF+g0QQgQYEQtFWqqgLPuTH4dYpQpLfXiex+AjP4TXYhSUy1LyodtzyzxnzdiSUo4fXPpVJKri8G/b78YNxZcves4bL17Ehfd6BWUiMYvyzanYtCODJhMihJAoMD4+7ks6AWBychI1NTW07iZZc16RHA5JzMyPODzfuVYbtXiSiJORkQGe5+nLfZi4jUboN1VBkZyMiZpaKDLSoUxPD1t9XANtEGnigIF2gJv6MiBS66cmE3p/zM1iMZOhS8X/XPUdSESLP8U+9U47TrzZJihjWQZlm1JQtT0DIhE9r4sGdJ8hwaKYiS7j4+Ooq6vzJZ3T5HI5RKLQTBpHMUOWyu4RpmQeVhqmmqwuSjxJxNHpdOGuwobFuVwwnj0PAJAnJSKmqADuyUnIkxLDUh+vdQK29guQxqVBpIiBteE4eI8Libf+J0TKGN9x0zHD8RxO915Ali4NCeo4wbWWknTWnu3Fq882+JUXVyRh+95sJKdpV/aGSMSg+wwJFsVM9Jgv6UxISEBxcXHIEkWKGUKEKPEkhPgYz1fD63D4tt2mCcTt2QU2hJMtLBXv9cDSeBI8NzXTm0ilhbrqMGRJ2ZCn5Pkfz/M411+HTlMvuif6UJVUitzYzCV/gWi9OIxnHq72Ky8oTcT+ywsQnxgT4CxCCCHrydjYGOrr61c96SQkGGaPXbAdnVML0RhPQsj77P39sLa3C8oUKSlQhKmbrb29Gl7bhKBMmVmKmNLAEwPdV/0kfnf6HzA7J8HxPM4N1KF26OKSXquv24jH/nEWHCe81WflGXDwykJKOgkhJAqMjY2tSUsnIcFyz4nJaEWJJ4k4Ho8HbrebBvevEc7thnN0DOOnzwjKGZEI+i2bw/JB7BrthWOgVVAmVmmhyKkMePx7PRfwfNPrsLpseLP9BAYnh8EyDJJiFl9zdHTIggf/fBpul3ANrYLSRBy6ughJKZrlvxESseg+Q4JFMbO+TSedc9frTExMXLWkk2KGLJWH9y5+UBSgrrYk4jQ0NPimH6+oqAh3daJe31PPoPeJp6AtL4MqJ9v34StPSoJYvfazqllbz8LacBxi3cy4UoYVQVW0CwzrP+FDz0Q/fn1qZvkXD+fB8e4z+MqeTyFBZVjwtcwmOx7487uw29yC8rJNKbjpzk1gWHr6Ha3oPkOCRTGzfi2UdBYVFa3aA1aKGbJk0dq3dg5q8SRkA7P19qLnkUfBORwwvncGI2+9DffkJAAgbs/aryDlMY9i5OlfwVL7DuztF8C/3/VEmbsZIlXgiX1UEiUMUp2gbH/WDmxLDdw6Oo3neTz2z7OYMArHVeQUxOOGO6oo6SSEkCgwOjoalqSTkGDIVXLBNh+lGVqUvi2ynmk0Gmi1Wmg01MVxNfEch5Zf/w68Z6Z7h3NkFPB6kXj5ZWBCNJ38UnFeDwYf+RE4p22qLn3NsNS8BbE2HtKk7HnPi1Xq8NmyD6NcXwgA2JuxDf+2/e5Fv0wwDIPKbemQK2YmTkpJ1+K2j26BSEy3xmhH9xkSLIqZ9Wd8fBz19fV+SWdSUtKaJJ0UM2SpFAqlYDtan4dQV1sScbKyssJdhQ3BPjgEzukUlMUUFiDh8KWQGWLXvD6mdx6Ga7hLUMZK5VCX7Fn0y0FBbj6+lfMFvNF+HPszty/py0R3+zgsZgfKN6egsXYQMpkYH/zEdkhldFvcCOg+Q4JFMbP+qFQqKBQK2Gw2X1lSUhIKCwvXpKWTYoYslWrOkm/R+vg7Wt8XIWQBXqcTo+8cgWHXDsQd2AeRUgmRSoWkq6+EOi93zetj76iB6eTTgjJGqkDizV8FK5H5He/lvH5PsBmGweHcvZCKF190ubfLiPaWEQCAQiVF6aYUXHJVIVRq/9cihBCyPslkMlRWVkKhUABY26STkGAworkPvaMzRunRPiEbkLm+wfdvRXIyZFddAYBH3O5da/6B7Jk0YviZX0Ewsp5hEHflJyGN91/Khed5vNdXDQ/nxfa0KkhFwa0x2tdtQuvFYUGZTCaGVq+c5wxCCCHrlUwmQ1VVFfr7+5GVlUVJJ4lIIrUBgNm3HWgyxWhAiSchG4zHYoGlRbhUCSuRIPnqK8FKgkviVornOYw89xt4rcL1OmMvuQsx5Qf8ju81D+BY53tg2anOGq+3HcXu9C3QKQJPPDTb8OAkvB4OLY1DfvvyihKQmqFb3psghBAS0WQyGbKz558rgBCyNijxJBGno6MDHo8HYrGYPihWwURtnW+22GnJ11wNiSZm7ety+gXYO6oFZcq8LdDuvN7v2EmnBT9+57cYsY0jLzYbFUlFsLhsONJ1GiWSbPAcP2/M1J7txVMPXkBWngHp2XrBE++cgnikZepD/+ZIRKP7DAkWxUxkM5vNiImJiagWTYoZslxzhxNFC0o8ScSZnJz0rXtFQss5Ng5rp3ACn5jCgrAknY6BNoy/db+gTBQTi/jr/h0MIxx+7uG8+J8Tf8aIbRwA0DregUmXBTvTNmFPxlaMdQ7PGzOtF4fx9MNTyW1n6xhcLg9yC+PBMAyy8uKQkb32EymR8KP7DAkWxUzkGh4eRmNjIxISEiJqiRSKGbJUlqFWaBwzyaaYd4WxNquHEk9CNgje60X9d78HZWYGFKmpYBgGrEQCTWnJmtfF67Rh6JEfAV7PrFIGCdd/HiKlfxJ8rr8W9cPNgjKXx4WiuDykapIwhmG/c4CpSYQe/dsZ8NzMzby/ewK6WCU278hEZg4lnYQQsp4NDQ2hsbHR92+GYWgCIbLusKwVBptppoChxJOQNVFaWhruKkSlwddeh72nF/aeXsji46DbVAX95k0QydZ+JteRZ34Nr9UkKNPuvB6KrPKAx29Pq8K/bb8bfzrzIDycBzq5Bh/fchs2pUzFSqCYGR2y4ME/vwuPR9itODVDh6pt6cjON9AXkw2M7jMkWBQzkWd20jltcHAQer0eiYmJYarVDIoZslQ8Y4PB2uvbdkuoqy0ha0Ikis6ZvMLJ63Cg+/4HfdvOkVGMv/se0m6/dc3rYj7/GmwtZwRlIk0c9AfuWPC8g9m7kByTgP89eS++tPuTyDNkzZw/J2bMJjvu++NJOOweQXl8Ugz2XZbv62pLNi66z5BgUcxElkBJJwCkpqYiISEhDDXyRzFDlkrktULtHPVt22k5FULIetXz6BPwTFoEZXH79kIeF7em9fDYzBh7/e/CQlaEhBu+CHYJ628WxuXi11d/D2K/9a5m2G0u3Pd/pzBpdgrK9QYl9h7KRX5xAiWdhBCyjg0ODuLixYt+5WlpacjNzaV7PFl31Ak6dGfMGgssjc6HFuzihxBC1jPn2Dj6n3lWUCZPSkJ6GFo7nd2NUOZvAyOR+8q0O66DIqPY79jByWEMW0b9yhdKOt0uLx7+63sYG7YKymM0Mhy6pghlm1PpCwkhhKxjlHSSaKRTaqCU8L4ftTQ645haPEnEMRqN4DgOLMtCr6dlLlaq4y9/Be+Z1eWUYZB83dovn+Ia7YVzuBOS2GTEbLkC9pazYMQS6A9+SHCch/PC4rTgRM9ZcDyHzcnlyInNWPDaRqMRHo8XLz3RhJ5Oo2CfQinB/ssKUFKeTF9IiA/dZ0iwKGbCb70lnRQzZKniJUp4Zg0PYqO0bZASTxJxenp6fNOP0416ZSztHRg7cUpQpsrJQcKhS9a0HpzLIRjXyUpkUJfvR0zFIbCs8Ob6t7OP4NxALXakb4ZSosCZ/hqYnRZUJhXP+6Wiu7sbZ4+NorfdLihXx8iw51Auqrang2Ej6wsJCS+6z5BgUcyE18DAAJqamvzK09PTkZOTE3FJJ0AxQ5aub1yEo7JrfdsK2BF4usX1jRJPQqIUz/Po/Ps/BWWMWIzUG6+HWKlc03rYWs6AcwvHXCrztkAcI/wgfrX1HbzWfhQA8Eb7cexO3wKDUg+j3bTgazScm/BLOuUKCe761x1ISNas/E0QQggJm/WYdBISDDergEmkmtnmJ8NYm9VDiSeJOCkpKb6uKWT5jGfPYaK6RlCmKSlG3J5da1oP11AnXGN9gjJpXBqkCZmCsrqhi7j33KO+bafHiWNdp3FL6TXYkb5p3i8Wp95pR0udWVAmFrO44+PbKOkk86L7DAkWxUx49Pf3o7m52a88IyMD2dnZEZ10UsyQpbJzUgAzXW09rGT+g9cxSjxJxIlb45lWoxHv9aLzb8LWTqkhFsXf+jqYNZze3dHbhInTz0FsSPN9OWAlMijztvh9WTAoY5Gkjkf/5JCvbEf6ZlyWtw9KiWLe1/C4vWAYgH9/ySuGZXDz3VuQkRMb+jdEogbdZ0iwKGbWntvtRnt7u1/5ekg6AYoZsnSsWIzZiSciPLaXix7BEBKFBl99HfbeXkFZ5l13QiSTrVkdOI8Lw0//EtbGk7A1ngDncgAAlPlbwUrlfscnxyTgh4e/hsqkqRlubyq+Ev+27cNQS1V+x04b6J2A18ujtCoFItHU7ey6WytQWBr+hcMJIYSsjEQiQXl5uWA9zMzMzHWRdBISjOEBYc8wr5sPU01WF7V4EhJlPDYbeh56WFCmyslG/MEDa1qPsVf/Cs/ECADAPdYHz8Qo9AfugDQubd5zVFIl/nPfZ/FO5ykczN4Flpn/2VhftxEtjcMAgNh4Fcq3pIDngcqt81+fEELI+qLValFRUYGamhqkpaUhKyuLkk4SdRxez+IHRQFKPAmJMn1PPg33hHDMY9bHPgJmDceYOPqaMXnhDUEZK1MgpvKQoMxon4BOrhF8iRCxIhzK2bPg9bs7xtHePCIo0+gUSM3QA/R9hBBCoopWq8W2bdsgk8ko6SRRyc1T4klIWNTU1PimH6+oqAh3ddYVl2kC/c88JyjTVlZAVxGaSbkdPY2QpxcveAzncWHk+d/NDLp8n+HKT0GkUPu2x2xGvNVxAknqBGxLrYRMLF309d1OD+qrB2Ay2gTlQ0ND0BnEsLkcYJiEIN4R2ajoPkOCRTETXnK5/xCNSEcxQ5YsOnvW+qExnoREke4HHwLncs0UMAxSrrsmJNceP/II+v/5LZhOPLXgccZ3HoJ7tNev3DXc6fv3sGUUz158DRzPo39yCK+2HsGwZXTB63o9HP70y6Nom9PSCQDxSXLEJdGTcEIIWa/6+vrQ19e3+IGERCH5Bkk8qcWTRBylUgmPxwOxmMIzGM6xMQy//qagTJ2bA/3mTSu+tqOnEaajU0udjL91PwBAt/sm/+P6mjHx7vMBr2E6+iiU2RWQphbip8f+gN6JAZQmFKAwLhd2jwPD1jEkqOefAfC15xowNmLF2KgVBSWJSEqdWiolrygBDreIYoYEhe4zJFgUM6unt7cXra2tvu3U1NQw1iZ0KGbIUkm8wu1ofYxO/yWQiJOXlxfuKqxLPY8+Dt47687Fski54fqQLJ8iTy9G7CV3+ZLOQMkn73Fj5IXfAzwX8Bqxl9wFeXoxHq17Hj0T/QCAuuEmjNjGcWXeAZQk5M/7+p2tYzh9rPP9FwKa64fA8zz2Hc5HWqYegH7F75FsLHSfIcGimFkdc5POlpYWMAyDlJSUMNYqNChmyFIp+I3RCZUST0KigGNoCMOvCSfzUeflInb71pC9xnSSOV/yaTzxJNwjPQHPjb3kLuh234TWsU48Uf+iYN+k04KtKRXzzmDrsLvxxP1nBWUMAySmaN5POgkhhKxHPT09aGtr8yt3u91hqA0hYcSu3Rrr4bQx0mtColzPw48KWjtZqRQFX/kSRCGejEG3+ybEXnKXb3v8rfthOvEU7N2NMB17POA500knAOToM3BL6dVg3u9EwjIsPr/z40iMiZ/3NZ97pBrWSZegLL8kEQcuK1jp2yGEEBIm8yWdOTk5yMzMDEONCAkfkSIm3FVYE9TiScg6Z+vtxfDbRwRlSVddAUVS4qq8XqCWT1auCtjFdnbSCQAsy+LWsmtRHJ+P/z11L64puBSbU8rmfa3ac71orB0UlGn1Clx5UylEYnpuRggh61F3dzfa29v9ynNycpCRkRGGGhESXoxkY6RkG+NdknWlu7sbXq8XIpGIPoCWoPvBRwBuJulj5XKkfsB/4p9Qmpt8cg6r3zFzk87ZyhILcc+V34ZKqpz3NcwTdrzweK2gTCRmcem1xdDphedRzJBgUcyQYFHMhMZGSjopZshSiSQSYUGUzi5ETQYk4phMJoyPj8NkMoW7KmFnbmhccL+lvQNjx08IylKuuwaO/v7VrBaAqeRTs/3awPv23eZLOjmOg81t9zsmRqaed1wnz/F49uFquJzCad4qtqSitCLZ73iKGRIsihkSLIqZlZsv6czNzY3KxIxihiyVExaonWO+H6XbFO4qrQpKPAmJUN0PPYLar38LvU/Mv25m94MPC7ZFKiUYkQi1X/8Wuh96ZLWrCJHaf3IfRiJH7P7bfdtNY214peUdtIx1gJtnxtu5Th/rQHuzcF3PpBQNLr2mCAwbpY8BCSEkinV1dc2bdKanp4ehRoREDlZmQ7y12/ejdQaerHG9o662JOIUFhaC53kwzMZNMMwNjeh5eGrdzK5/TnVnTbt5qgXR2tEJVXYWXCYTJmpqBOfF5Of7zut5+FHoKiugKSkOWb2cQ52QJWYBANymYdhbz/kdw7sdMJ14CrrdN+HdnvPoNPWAYVicH6hHl6kXW1MroZNr5n2NkcFJvP7CReH70srxoX/dCaVKGvAcihkSLIoZEiyKmeXr6upCR0eHX3m0J50UM2SpPLwNOvvMnBZ2BR/G2qweavEkEUcmk0Eul0Mmk4W7KmGjKSlG5t0zs8d2/fN+9D7xFFxGI+q+/V24jEYwDIOkq69CTHERGJEIjEgE04Vq3zmZd98V0qTTYzFi4IHvwmMxgue8GHv1r3B01/v2M6KZ8Qnjb92P6rf+jl+e/AteaT2CcbsJAGC0TyzY6slzPJ57tAZej/CYG+6ogkodOOkEKGZI8ChmSLAoZpZnvqQzLy8vqpNOgGKGLJ2ItyLWPuj7UbtGFz9pHaIWT0Ii1HQL53SLZ9c/78f4e2fgmbSg98mnocpIh0gmg66yAmAYTM4aD5p5912+80Nl4uTT4OwWTJx6BpzbBVvLGd8+eUYpYg99GI6uOoy/dT/cDPDnnuPgZGJYXFa81X4CJQn5uL7oMsQqdPO+xpmTXejtMgrKduzPRk5BXEjfCyGEkLUhmTtpCqaSzrS0tDDUhpDIpPYI57SQ8NHZ4kmJJyERbG7yOdk41QV18KVXkHz1lRApFDA3Nq560umxGGE+9yoAYOK9FwFu5gYpSy+GqmQPZCm5kKfmAwDur3kKw7KZ2wsPHgwYlCUUzvsakxMOvP6ccDKl2DglDl1dFMq3QgghZA2lpKQAAJqbmwEA+fn5SE1NDWeVCIk4aicP26xtqZsST0LWxOTkJDiOA8uyiInZGAvqLmRu8gkAvNsN88UmiOQyTFTPLDmyGkknMNXayXtcUxuzk860YigySqDK3wrm/RlqdbtvwmG3Fe2db6NXPvWkO1Wixqe33QWJyP/J9zSO55Ceo0dndgR4YwABAABJREFU6xg479QN95pbKiCRiBatH8UMCRbFDAkWxczypaSkgH+/BWcjJZ0UM2SpNJAKEk9JdOadlHiSyNPR0QG32w2JRIKKiopwVyciJBw6iO4HHgLvnUn6LE3NgmNWI+nkOB4eixGms6/6LSklTc6DPK0AstQCiDUGwb6iA3fhG2IFnqh5Bkd1CtzW1gVpzVFgnnU9AaCnw4i0TD3iEtRoaRiGXClBZq5h3uNno5ghwaKYIcGimFmZjZRwTqOYIUs16lTgQvJh37aMs2F3GOuzWijxJGQd6HvyaUHSOddqJJ0utxd/e74epvaLYM2VuF55FhJmZtIfj3kUrEwBRVZ5wPPj9tyM2xkWu995ACqOx/hb90OeXgR5uv+ER5NmB0aHLQAAuUKCss0pyMw1gKWlUwghZF3geR5OpxNyuTzcVSFk3XFAjjFVkm9b4TaHsTarhxJPEnESExPh9XohEi3exXIjcBmNGHz51Xn3i1SqFSWdjp7GgMlgS48JTpsd3cOTSGVF6PbEIVcy7NvPWU1gJXKwkqnZ+sZtJqilSkjFM7PP6t5v4Rx/637o9t0W8HUAoKttTLAtlYqRkR275PdAMUOCRTFDgkUxMz+e59HR0YG+vj5UVFRAq9WGu0oRgWKGLJWDEw5F8rLzD01azyjxJBEnMTEx3FWIKH1PPg3O5Zp3v9dqRe8TTy0r+Rw/8ghMRx9F7CV3+ZLEaXXtozD2dcHJiWFjpGjzJAgSTwCYbDgB7Y7rwHEcTvacBQDsSt+CWKXOd4xu903ztnQCwtbOaWlZeojFS/+gppghwaKYIcGimAlsOuns7u4GANTU1FDy+T6KGbJUPC/s4cX7DXCKDrSOJyERbLHWzmnT63wGw9HTCNPRRwFMtUiaTsycPzxuw/CwCWNjU109zLwCRk6Nca9KWL/+ZliaTuO9vmpY3XZY3Xa82XECLWMdgvU6AyWdHo8X/T0mv9ZOiUSE1AxdUO+FEELI2uN5Hu3t7b6kEwC8Xi9qa2vhdrvDWDNC1her1xnuKqwJavEkJIIt1to52/Sst0tt+ZSnFyP2krsw/tb9OOvMQt8LDZDXMpCn5sPt4WAd6IKNk0DOuGHjZPCwLN52FEM8a5xnqmgchtbj+KOlGbmxmShLKIJEJEaHsRt5sVkLvv6x11tx5LUWpGRokZUXB7F46jlYelZsUK2dhBBC1t500tnT0+O3Lzc3N+D6nYSQwJycR7AdpZPaUuJJSCQwNzRCUyJsFVxqa+dswSafut03wcsBbS+2YMyrBtr7ITEBIk0sJobNYBgxEkUT6PYaMMLFQAbhjdHGS/CKsQmQMGgb70K/eQibU8pxSfYuMMz83USGBydx7M1WAEB/9wTGhq0oLEtEfGIMUjKoexYhhEQynufR1taG3t5ev31FRUVISkoKcBYhZD5ubv4JJKMJJZ4k4jQ0NPimHy8pKQl3dVZd90OPoOfhR/1mpg2mtXO2YJNPvuxKyC4wkPd1YtirhXd0AuyEHWKeQYrIBDHDIUVkwog3BnZeBh6AiOGQIJpAj0yCCV4OBlNdROweBxRiGeJV8y+DwnM8nn+sxrdWJwA4nR6IJaJlt3ZutJghK0cxQ4JFMTOFks6lo5ghRIjGeJKI4/F4fD/RztzQiJ6Hp8ZZzh6n6TIaMfDCS0Fdi5k1a14wYz7jdArcdvthpGRmIU00DgXrAud2Qc9aIWemxujIGTf0rBU8AAXrQppoHLGsFSWaJkjEDt+1CuNy8aHKhRPeMye70NtpFJSlZ+mhj1Uuu7VzI8UMCQ2KGRIsihlKOoNFMUOWSiITdk3no3NuIUo8SeSRSqWQyWSQSqWLH7zOaUqKkXn3Xb7t6YSx/c/3LrhuZyC814uYWd11u/55P8wNjUs6NzVejY989BrkF+UgmTVBxTph5hSCYyY4JVSsE8msCaliI65Q1OIa2wi+1D2OPJsLYjD4zLa7oJIq530d84Qdb7xwUVAmV0iQkROLgtLEZY/t3EgxQ0KDYoYEa6PHDM/zaG1tDZh0FhcXU9IZwEaPGbJ0KrVw8sZozdCoqy2JOEVFReGuwpqa7hI73UW265/3C1ovg2FtbUParTej97EnkH7HbX7jRheilEtw+VV78H/NbZiekNbEKeHiRZAyXjDgwQNgGGCbtN3XGmrwePEv/SYMKeRIYGULvsZLT9bB5RQ++c0vSUB6ViziE2OCeq+zbbSYIStHMUOCtZFjZjrp7Ovr89tXXFxMy4bMYyPHDAmOes73p2idYjFK82lC1pe0m28StHwG29o5jXO5wLlcKP/xD5DxwduDPr/z6MsAz8PJS2DnpRjzqsGBxZhXDTsvhZOf6goyzgmfzDEAkuwOTJx6Zt5rN9YMoKluSFCWmBKDtAw9cgvjg64rIYSQ1cfzPFpaWijpJGQ1sRsjJdsY75KQdSDt5puQduvNK77O4EuvQJ4cfJcnj8WInvoaeHgWXp6FiOGQLDYiSTSBZLERIoaDl2cxyYhwRqaDg/UfgGA++wo8FqNfucPuxktP1QnKJBIR8ooSUVyZDJGIbkWEEBKJhoeH0d/fLyhjGAYlJSWUdBISImKN8AE8w0Znp9SwvCuLxYLXX38d586dQ39/PyYmJnDXXXfhhhtuAAD84Q9/QGlpKfbv3x+O6hESNiK5HCKlAl6bff5jlAqIFIp59wPA8BtvIe2WDwT12paatzDOqeHkxVCwLiSwZqhZB0okfWhwp0EKLwZ5HcYlSvCsHu/GTiBxQo8SyTiYOdfR7Ra+9hsvNMJiFi6OfOjqQmTmGqCOWbh7LiGEkPBJSEiA0WjE4OAggKmks7i4GAkJCWGuGSFkvVnTxJPjOPz+97/H3//+d1itVgBTXTgYhsH4+LjvuAceeABjY2OorKzEz3/+c6Snp69lNUmY9ff3w+v1QiQSISUlJdzVWVNpt3wAabd8AL1PPOUb8zlbxoc/hPQgE8qlY5CCYfQxaigZE1KUbuyQtiBxx+VIP/Ys3nHloVYugUaiQnJVOWyDFTjTD4guy8AVV1bMe9Wu9jGcPdntV263uZGUGpo1OzdyzJDloZghwdqoMcMwDAoLC8HzPIaHh1FSUoL4eBoesRQbNWbIyk3NqhF91izxdLlc+NSnPoV3330XPD//L9PpdGJ0dBQMw+DChQu49dZb8cADDyA3N3etqkrCbHR01Lfu1Ua9URt27fRLPBmpZNWSTtOJpzD+1v3IlwDJIhPG4zehvDgXitQroMzbAlaqwGj9s/CCw4TCgq7eeGjrNgEA3n2tG2qpEnsO5fld1+Px4oXHagO+5pHXWpBTEI+MnNgV159ihgSLYoYEayPHDMMwKCoqQmpqKjQaTbirs25s5JghwbGO9kLuAabzTTGCX8d9PVizgVXf/e53cerUKfA8D7lcjttvvx0/+clP/I7jeR533nknJBIJGIaByWTCF7/4RVoDiWwozff8yq+Md7mXvDZnMKaTzmlxOQWoKMmASCqDImuqJbMrpxC1GjlEGiMYiRs9yn44Mzt857zxwkUcf7PV79pHXm3B6LAl4Oteek1RSJJOQgghq49hGEo6CVklYowj2dyG5Mmpn3hLW7irtCrWpMWzpqYGTz31FBiGQX5+Pv7v//4PycnJAID//M//FBwrl8vxne98B3fffTc+85nPoKOjA62trXj++edx4403rkV1SZjl5ub6umBvRD2PPg5Lq38SB8wsuTK9BMtKzU065VnlkKdPLcEiTy8GI56axfZkzznBeTKOw2HXMXjLMnCibmrS7+n1OadbPt0uD86e7Ar4updeUxSwhXS5NnrMkOBRzJBgRXvM8DyPzs5OpKSkQCajsfehEO0xQ0LHxduhcYz6tj1iLoy1WT1r0uL5+OOPAwDEYjF++9vf+pLOhWRlZeG3v/0tRO+vZ/jyyy+vah1J5FCpVFCr1VCpVIsfHGV6n3gK3Q885Fced2Bmoq2uf94fkpZPR0/jvEknK1NCljKTGP7r1g/hczs+ihjp1N/k6lELMp0e5PT/Ewf2zLRazm75HOyfRNWOdL/Jg0KddAIbO2bI8lDMkGBFc8zwPI+mpiZ0dXXhwoULcDqdi59EFhXNMUNCSwIb4my9vh+tczDcVVoVa5J4nj59GgzDYP/+/cjIyFjyebm5ubjkkkvA8zwaGxtXsYaEhN98Ewop0lKR//nPCtb5DEXyKU8vhm7fbQAAkTYesuSZcdSKzDIw7MzyxQzDYH/WDvzyqu/ijvLrccXmqWVfdPtuw4EP7Mal18wskv3GCxfxxguNaG8ewWDvBCyTM19gDl5REPKkkxBCyPJNJ53Ts9ba7XZUV1dT8knIGpLFyNGXJPb9jCbRcirLNjw8DGBqoeFg5efn4/XXX4fR6L82ICHRYr6kEwDSb7sVrFjs6147fVwout1qt18L08mn4Z0Ygfm9FyFLL4IydzOkiZkBj9fIY/CBkqsAAMqMYl8L6XQyOd3d9vibbRBLWHjcM11Fdh3Mwf7LC5ZdV0IIIaHF8zwuXryIoaEhQbndbofVaqUut4SskXh9LIyqmS7ZIplogaPXrzVJPKdnsZ3uNhuM6X7xEokkpHUikctut/vGRCgWWa8yGiyUdIo1Ghh27/Rthzr5HH/rAcAzNXMa73HB0VGDmPKDYBgWPRP9sLisKIzLBcv4d46YTjqnzU0+Zyedm3am47LrSpZVx6XYaDFDVo5ihgQr2mJmvqSTYRiUlZUhNpYmf1upaIsZsnr0YgUyHG7ftijA965osCaJZ1xcHHp7e9E6z4QpC6mpqfFdg2wMLS0tvunHKyrmXx8yGpgbGgVJJyuVgnPNTKGdcOgg2DkPXQIln5riImhKgutR4LVPwlLzlqBMEp8Bddl+ONwOnO2vhcvrRp95CNtTK6GRxyx6zT2H8vDOq82CpFMiFeHam1f377iRYoaEBsUMCVY0xcz0EKbpHmnTppNOg8EQpppFl2iKGbK6jJNi1Ej2+rblvAtV4avOqlmTdHrr1q3geR5vvvkmxsfHl3xeQ0MDTpw4AYZhsGnTplWsISHhoSkpRvodU+MsDXt2C5JOAEi64rKA56XdfJNvzGf6HbcFnXQCgOnk0+A9wteLveQu8DyPX578CyYckwCAcbsJr7UdxaQz8LIosz1872lB0gkAbpcXJ96OzmnBCSFkvZkv6WRZlpJOQsLE6pWjR5zv++nH0ufEWU/WpMXz2muvxVNPPQWHw4Gvfe1r+P3vfw+pVLrgOd3d3fjc5z4HjuPAMAyuuuqqtagqiQAGgwFer3dZXbPXo4wP3g5dZQU6/vYPQbm2sgKKBRacTrv5pmW1dAKAZ3Ic5vdeFJQpcjZBlb8FTza8jPMD9agbakJ5YjGy9elI0SYiRqZe8JovPlmL5vqZLzJiMQuPZyoJnbvUSqhttJghK0cxQ4IVDTGzWNJJ3WtDKxpihqwNJy8FMPPg3svQ5ELLtmfPHuzZswfHjx/H8ePH8YEPfAAf/ehHUVIyM+aL4zhMTk6ipaUFr732Gh555BHY7XZfa+eBAwfWoqokAqSmpoa7CmtOpFTC0twiKEu87NJFz1tO0gkAxmOPCVs7GRZxV3wcNpcdLza/CQBwcx6cG6jFqG0MNxZfseD1jr/ZijPHhWt2yuRiVFYk4eyJbgCrm3xuxJghK0MxQ4K13mOG53k0NDRgZGREUE5J5+pZ7zFD1pBCAcDq2+RZGuO5Iv/zP/+D22+/HZ2dnWhra8O3v/1tAFPjCXiexy9+8Qv84he/8B0/PSFRQkICfvnLX65VNQkJi4EXXxJss3L5gq2dK+E2DmLywhuCspjKQ5DEpuChC0/A7JwU7NufuQMy8fw9FI6/2epLKmdLTtPiyhvKoNMrfftXu+WTEEKIP47j0NjYSEknIRFqrKcPgM637fXwYavLalqzdFqr1eLRRx/F4cOHwfO87weYmbl2bvmmTZvw6KOPIjExca2qScia89rtGHnrHUGZOjcXyoz0VXk94zsPA5zXt82IpdC/v57ntQWXYk/GVt++8sQiXF98+bzXmi/plEpF2LEvGyIxiz2H8vzW+Tz+ZvATjRFCCAneQklneXk5JZ2ERACbZ866udGZd65diycAaDQa/Pa3v0VNTQ0ef/xxnD59Gl1dXb5EEwDi4+Oxbds23Hjjjdi/f/9aVo+QsBg5etxvUiHD7h1+s9mGgr2rAZb6Y4IyzdYrIdZMTSYRq9ThC7v+BZfm7MX91U/iU1vvnPda8yWdAJCVF4fM3JkJKuYutUItn4QQsjY4joPD4RCUTSeder0+TLUihMzm4j3hrsKaCMvI1YqKCt+00l6vFxMTE/B6vdBqtYtOOkSiX3Nzs2/68YKCgnBXZ9UNvfKqYFuekoyY/PxVea2x1+7F7MdojEwJ3a4P+B1XlliIH1/2n77eCHN1t4/Pm3TK5GJs2Z0JsUQ4mUKg5DM9KxYZOSt/2r7RYoasHMUMCdZ6jRmxWIyKigpUV1fDYrFQ0rmG1mvMELJawj5yVSQSITY2FvHx8QGTTrfbjYsXL+LYsWMBzibRyOFw+H6i3WRLKyytwqVGkq+5GjGFof+AsjafgWuow7fdLxUjpuIgeJkC43aT3/HzJZ0AIJWLsf/ywMlxdl4cMudJJmd3u91/eX5Ikk5gY8UMCQ2KGRKs9RwzEokElZWV0Gq1lHSuofUcM2RtSfgo7Vs7x5oknkVFRSgpKcHf/va3oM/93e9+h5tuugnf+MY3VqFmJBKxLOv7iXZDr7wm2JbGxSH5qoVnkA3GxZGZsZTGo4/6/j0pYvGXVB2YLVei09SLN9qO4Vx/HVxet995c1nMDtz3h5PYsiMDuliFYJ9SLUXl9nRIZfN3pthzKA8f/exuHLyicLlvy89GihkSGhQzJFjrPWYkEgmqqqoo6VxD6z1myNpReIUP++d/9L++rVlXW36ZmbxCoQDP8xgfHw9xjUikKisrC3cV1oTHasXIkaOCsqTLD4MJ0Xpfj9Y9j8frX8CdFTfiSnUmXIMzLavv6JWwiVg81XkECSoDeACt453oNQ/A5DDj+abXcUvpNbit7Fq/6x5/qw12mxvPPV4D07hdsO+KG0qQVxS/aN1C1dI5baPEDAkdihkSrPUQMxw3tQ7gfInOQj1ZSOith5ghkUHGbYyHExH7LnmeR09PD55//nkAgFKpDHONCAmtkbePgHPOmsWMZZFwePG1O5fi4kgrHq9/AQDwYM3TeLb9KFRl+yHSxGNSxOKUZqql8rXWo3il5QjMTgsA4MJAA55veh0A8Hj9C34tnxazA2dPTK3X2doonCExPikGZVWpEIki9rZCCCFRi+M41NfXo76+3peAEkLWh43ySChkLZ4ejwc33XQTWlsDd9HjeR4/+9nP8LOf/SzoazMMQ4OySVTheR4DL74sKDPs2AaZITQtgUXxebiz4kY8WPM0AODxwXPwxuTgispL8OJILTyesal6gMeIbQyvtR5BrEKHMbvRd407K25EUbxw1tnjb7XB4wn8heaSKwvBsBvl1kkIIZGD4zjU1dX5eoc1NDSgpKSEungSsk6wKh0wFu5arL6Q3ZHEYjG+//3vAxCuxzm7i+3c8qX+AMAnP/nJUFWVkLAzX7wIe2+voCzxsstC+ho3Fl+BOytu9G0/NdmOZ8ztOOYx+h3Lg/dLOm8sFo41nd3aOVdymhaFZbTeLiGErLW5SScAjI6OoqmpKYy1IoQEgxWHZphVpAvpGM9NmzbhIx/5CF59Vbg8RH9/PxiGgUajgUqlWvQ6DMNAJBJBrVYjLS0Nt912G/bu3RvKqpIINjw8DK/XC5FIhISEhHBXZ1U4+gYgVqvhsUx1cRWpVBBrNSF/netz98Pe+f/Zu+/oOMpzf+Df2d606r1Yli3ZcpHlhk0LYMAEDDZxgBAgBG5CbkjIpeQmgZCQBJL8TkIIJJRcIAmXEAI39G5jMAY3bOMmy+qyJKv37X12fn+sd7Sj3ZV2pe16Puf4WO/szOy70qPRPPO2E3jD4Bnf+YH59LTHBEo6gWlaOy9fFNexQ3MhZkhkUcyQcCVizARKOgHPigFFRUVxqhXxSsSYIYlJPHlljxTtQBbxyYXuvfde3HvvvYJtixd7lk/47ne/i1tvvTXSb0lSzMDAAL/uVapeqBkRg4JNl8M+OAhT2ykoigqhmV8e8fex97biMnUpwHF4w3hq2v2DJZ1TtXYCQE6eZlb1nK25EDMksihmSLgSLWZYlkV9fT3Gx4W9WMRiMWpqapCenh6nmhGvRIsZkrgcnBUyn4f7Es4Rx9pET8LPaktIqrEPD8M2OASGYaAoKICioACZa1ZHbDZbL9ZhhbW3FQBwmaYMdbYRtDsNQfdfnLMgYNIJTN3aCQA73m3EtTevnl2FCSGEhGSqpHPFihXQaiPfg4YQEj1ipRHFhl6+zEpccaxN9MQk8WxqaorF25AUUV5eDrfbnbKTIuhPNgjKYqUSmor5EX+f0e1/g7XzBBSli2HWZuO00zTl/qfGT0Nn1SNDKXxKPl1rJwC0NgzCZLBBo1XMut4zkeoxQyKPYoaEK1FiJljSKZFIUFNTQ0lnAkmUmCGJz85aoXbo+LKNSc2ZqWPW4klIqFL5j6ZTr4etf0CwTVu9OPKtnRYjzA17wbkcMJ/cg/cKsuHUTP0eDtaJt5t24OaV1wi2T9faCQAupxv7dp3Cxs1LZl33mUjlmCHRQTFDwpUIMUNJZ3KhnwcJlURkRZapky/rmdScbCiuj2A4joPb7Rb8Y1kWTqcTVqsVY2NjOHXqFN555x1861vfimdVCYkIS7dwJluRXA71goqIv8/47n+Dc3nGBxjFIuxXhfar/mH7Z9BZ9Xw5lNZOry/2dcJksIVfWUIIIdNiWRYnTpwImHRS91pCkpvcLrx/ErtTc4hiTFs8P/zwQ/zrX//CyZMnYTabadwnmVNYux2GRmG3c1VZKUSSyP4aul0OmOo/48ufZqrgCnF9zcmtnqG0dnrFu9WTEEJSlTfp1Ol0gu3epDMtLS0+FSOERESmSwyLT1nhSs0cKWaJ56OPPopnnnkGwMwmGornUg0ktpxOJziOA8MwkEql8a5OxAx9/AlO//NfkOflQT2/HMqSYqhKSyL+Pqa6XXDbPOM5jWIRPtcqwzr+w/bPsHnxpZA45SG3dnp9sa8T51xYEfOxnqkaMyR6KGZIuOIZM01NTZR0JiG6zpBQqd0iQeIpTc0hnrFJPFtaWoImnd6EMth2iUSCq666itbxnEMaGxv56cdramriXZ2IGfp4JwDAPjQE+9AQlH2lmHfTDRF9D87NQrf/Db4cTmunl7fVM/90dcitnV7xavVM1Zgh0UMxQ8IVz5iZN28edDodnE4nAEo6kwVdZ0ioTA4lWrPX8GUZZ8c5caxPtMRkjOcrr7zCJ5arV6/GK6+8grq6Orz22mvgOA5isRj79u3DsWPHsHPnTvz2t79FYWEhOI6Dy+XCsmXLcMUVV8SiqoREhX14GKa2dsG2zNUrwUR4pjtTw164dEMAPK2d+8Js7fT68ORefBFma6cXjfUkhJDI0mg0WLFiBaRSKSQSCWpraynpJCSFGN1KnM5czv/rTauKd5WiIiaJ5xdffAHAc+F86qmnsHz5cshkMixduhRarRYsy2Lv3r1QKBQoKirC1q1b8dZbb6Gqqgocx+Hhhx/GyMhILKpKEkB6ejoyMjJSavFrY/spMD7dbBipFLkXfimi78Fxbuj2TbR2vlighTvM1k6vrL75YMNs7fTytnrGUirGDIkuihkSrnjHjDf5rK2thUajiUsdSHjiHTMkeTggE5TdTGouPBKTTzUwMACGYXDhhRf6/fItXboUn3/+OQ4fPoyrrrqK356WloZHHnkEmzdvhs1mw7///W9873vfi0V1SZzNmzcv3lWIOEVODoqv3gxrbx/MnZ2QqDVQlZZG9D0srYfhHD4NAGhQydCplE1zRGAShxxZQ7P7GcR6rGcqxgyJLooZEq5EiBlKOJNLIsQMSQ6sW9hQ4GZSc+3XmCSeRqMRADB//ny/1xYuXIj9+/ejqanJ77XKykqsWbMGhw4dwqFDh6JeT0KigeM4GFtawYjFUJWVQlVWCkVxcURns+U4DuOfvsSXh2QSyDnAzgBKiQJK6UQCyIEDg+AtofKBfLASB8DKIHIL15GSysSQSsUQS6a/IB471IPzLl44g09DCCFzk8vlwvDwMAoLC+NdFUJIDNlYZ7yrEBMxSTyVSiVMJlPAGb3Ky8sBAO3t7X6vAcCyZctw6NChoK8TkuhsAwNw6vWCbWkRXrvT3LgfjqGJMZkX6iy49kvfQm9BCRbnhp/8HWpuwLZnT8F3yq/ieRlYvqoYa84ph2iGXXgJIYQE5nK5UFdXB4PBAIfDQa1lhMwhVrcw8UzNxVRiNMYzIyMDAAKO0yw9093QZDJhaGjI73Vv11z9pBt3QpKFsbFZUJZq06AoiuzT7PG9rwrKIoUGooWrkSbXwO0Of6zm6YM2+E40LRIxKC3PRGV1HiWdhBASYb5JJwB0dHSgq2tmE7wRQpKPw+2KdxViIiYtnkuWLEF3dzf27dvn91pZWRn/dV1dHS655BLB6wMDAwBmtvYnSU7t7e1wuVyQSCRYsGBBvKszK47xcdgGBwXb0hYtiui6tJbOE3AOCW9Q0mouwmnTAE4MNkMulqEsowjlGaXIVE4/wcFgnwEnj/UJti1fXYx5C3KQma2OWL0jKZVihsQGxQwJV7RixuVy4fjx4/ywJK+enh4UFRXR+o9JjK4zhAjFpMXznHM8K9G0tbXhqaeeErw2b948KJWeJR/efvttwWtWqxUfffQRACAnJycGNSWJwGw2w2QywWw2x7sqs6avPykoi+RyqOeXR/Y99r0uKDNSBdyrN6JjvBsAYGcdaB3tRPtYZ0jn+2SbsIVWrpBg4+YlWLQ0PyL1jYZUihkSGxQzJFzRiJlgSadMJkNtbS0lnUmOrjMkVCKJcE4NLkU7l8Uk8dyyZQuysrIAAI8//jiuueYafPzxxwAAhmGwYcMGcByHHTt24Ne//jVaWlpw4MABfPvb38bIyAgYhkFtbW0sqkpIxNjHdWh97HGM7NkHa28fOLcbaZULwYjF0x8cIs7lhKywEop5y8DIPA9w1NXr8fjRl/B/9e+gabgdDpcDAFCeMf0sur2ndWg5KWyhPfvCCihVM5shlxBCSGBOp3PKpFOtTsweJoSQyNOmT1qXNzUntY1NV1uFQoEHH3wQd955J1iWxcmTJ3Ho0CFcfPHFAIDvfOc7+OCDD8BxHF588UW8+OKLfuf4+te/HouqkgSwbNmyeFchIga3fwjO5YK1pwfWnh6IVSoUb7lq+gPDYB/sACMWQ1G2BPKSxXCN9sK04kto2v8/AID6oSY0Drdg48ILkK3KnPZ8uya1dipVUqw7P7ITIUVDqsQMiR2KGRKuSMaM0+lEXV1d0KRTpVJF7L1I/NB1hoRKyQh7N6Ro3hm7z3XJJZfgqaeeQnFxMTiOQ0lJCf/aokWLcP/99wPwjOX0/QcAt912G9auXRurqpI4E4lE/L9kNrp3v6CsKCqEJIJrsHGcG/beFr7MiERQV5+NjwbrBfvJJXKsL1k17bjSrlOjaG8eFmw7d8NCyBWJv4hxqsQMiR2KGRKuSMXMdC2dlHSmDrrOkFCJJ8VIiva0jU2Lp9cFF1yAHTt24NChQ8jPF44Xu/HGG1FVVYVnnnkGx48fh8PhwOLFi3HzzTfjiiuuiGU1CZk129AQLN3dgm05554T0fdwjvaBtQnHjciKFmLgqHDN2y9XXoDqvOmXVPn801OCsjpNjrXnls+6noQQQjy8SafJZBJsp6STkLlNos0BMHFPx4gS/6H/TMT8U4lEIqxbty7ga2vXrqWWTZIS+t/fDt/1SBiJBPkbL5niiPD5tnYCgESTCWl6Hh646C60jXbi/ZadONR7HBsXXhDS+c46dz4sJgf6evRgXW6Uzc+E3e6CVBa5MamEEDJXBUs65XI5VqxYQUknIXMZMzfutZImnR4bG+MnKCKpbWxsDG63GyKRKGl/5mMHDgjKmsqFkEawm63LpINTL+wWKy+u4rvTLswux3+d/R+wOK1QSZXTns/tcuN05xiKyzKQX5SGkSEzCoq0UCiT4xKRCjFDYotihoRrNjEzVdJZW1vLz+5PUgtdZ8hMpeoikklxV/nvf/8bjzzyCA5MupknqamnpwdOpxNSqTQpL9ROoxG2/gHBttwLzo/oe4y89xRYqxGywoUQKzUQyRSQ5frPWhtK0gkAvd3jsFudAACZXIqyiiyUVmRDIkmOJ3DJHjMk9ihmSLhmEzMGg8FvSQ1KOlMfXWdIqMy6IYjdE+M8RW5HHGsTPVFNPMfGxtDe3o7h4WFkZ2ejtrYWcrk85ONbW1vxi1/8AkePHo1iLQmJLGNTs18329wvRS7xdOmHYWk/CpyZXEiSWYjM86+B0WkFOA5aRdr0J/HhdrnR2T52prKAWOK58M2bT38kCSEkErKzs1FdXY2GhgYAlHQSQoQk7CDKdGMTGxhKPEPW3d2NRx99FB9++CFYluW3KxQKfPOb38QPfvADiKdYy9Bms+Hxxx/H888/D5ZlwXHctDNyktRRUlLCd01JRoaGRkE5bVEVJBFcj0237w2Ac/Nll24QiuLFODjYiF7DIEq0BVicsxBZqoyQztfXo4fV7LnAiUQiMAywbGUxGFHy/M4le8yQ2KOYIeGabczk5eUBAE6dOoUVK1ZQ0jkH0HWGhMrhtkPhnOiK7xa74lib6Il44nns2DHcfvvt0Ol0/HIoAMAwDKxWK55++mmcOHECzzzzTMDkc9euXXjwwQfR398vSDi9F2yS+pK9O4rhpDDx1C5dErFzc24Wpsa9gm2K0sXQyaXo7RsEAPQYBtBjGMD6kpUoyygOei4364Zu3IrO9lHPBgaQSETQpCmQnZtcC5cne8yQ2KOYIeGKRMzk5eUhJyeHEpE5gq4zJFRSxoJMYxtftspT8xoR0U/lcDjwwx/+EOPj4/w2mUyGnJwcvsxxHPbt24cnn3xScKzFYsFPf/pT3H777ejr65uooEiEm2++Ge+//34kq0pIVLB2O0xtbYJt2iXVETu/peUQ3Fbh5BRc7UW454MHcbivDnqbZ104mViKwrSpH9bUHe7FU7/bhZPHeuGwuyAWiwAGmFeRRT0MCCFkhnwfugdCSSchZDKRjMNQloT/N56ZHHNshCuiV7/XXnsNvb29YBgGCoUCv/71r/HFF19gz549OHToEO68806IxWJwHIfnnnuOn91tYGAA1157Ld544w2+lZPjONTU1ODVV1/FT3/6U6gj2FWRkGgxNreA8+leDpEIaYsWRez8+sPbBGVZQQX2wAQ760DHeDd2tH+GvacPYUHmPEjF0qDnYV1ufPphC9xuDoN9Rhw91IPBPgPUajly8iM3+y4hhMwlDocDhw8fxujoaLyrQghJIkX5BUAmw/+TZyXF/K9hi+in2rt3ogvgH/7wB1x88cV8WaPR4Pbbb4dWq8VDDz0Em82Gjz/+GOvWrcPXvvY1DA0N8fumpaXh7rvvxvXXXx/TlheO4/Duu+/itddeQ2NjIywWC3Jzc7F27VrceOONqKmpmfV72Gw2vPzyy9i+fTs6OjpgMpmQnZ2N1atX46abbsKqVasi8EmSm9s9MX4x2Z4MTx7fqamYD4kqMuN4HCM9sHWeEGxTrfkydrQLk9E0mRpVORVTnuvowdPQj1v5MufmoFBJUbYgOVs7kzlmSHxQzJBwTRczdrsdx48fh8ViwcmTJ7Fs2TLqajnH0XWGhCpdrECBfWJcpzhF4yWiiWfbmS6GVVVVgqTT19e//nU888wzGBoawuHDh/HGG29gcHCQb+XcuHEjHnjgAUH33Fiw2Wy48847sWvXLsH23t5e9Pb24p133sFdd92F73znOzN+j6amJvzgBz/A6dOnBdsHBgbw3nvv4f3338d3v/td3HXXXTN+j1RQX1/PTz8eiWQ/lkY/Fy75kxbBbraGSa2dIpUWfXmFMDdbBNtvW3Mj5BJZ0PM4nSw+29Eq2KbNUKCoNAN5+eHNiJsokjlmSHxQzJBwTRUzvkkn4Ek46uvrsXz5cmRmZsajuiQB0HWGhMpik6JXtJQvy3x7z6WQiCaeo6OjYBgGa9euDbqPSCTCmjVr8N577+G9997jL9IajQa/+tWvcMUVV0SySiG7//77+aRzwYIFuO6665CTk4OTJ0/i5ZdfhsViwSOPPIL8/Hxs2bIl7PN3d3fj1ltvxdiYZ6rks88+G5deeikyMjJw5MgRvPLKK7Db7fjLX/6CgoICXH/99ZH8eCQGWKcT1u5uwTZ5hB6guO1WGOt2CbZpay9GeeESPHnVb/Bh22fY0b4b5RnFmDfFhEIAcHhfF0wGu2Bb+cJszKvITqqZbAkhJBHY7XYcO3YMVqtVsF0ul0OlUsWpVoSQZDJuk6NBNpE/qTljHGsTPRFNPL0X3elaK0tKSgB4JhTiOA4VFRV4+umnUVpaGsnqhGzv3r149913AQDr16/HM888w683euWVV+Kaa67BDTfcAJ1Oh9/+9re4+OKLodGENw7uV7/6FZ90/vCHPxS0nG7atAlXXXUVbrrpJjidTjz66KPYunUrZLLgrVapTK1Ww+VyQSJJrv7thvqT4FzCJ1RZa1dH5NzGup3gHD43NYwIaas2et5DmYHrl2/G1iWXw2Cb+kLlsLuw52Ph5EcZWUrkF6Ujv0gbkbrGQ7LGDIkfihkSrkAxEyzpVCqVYa9dTlIPXWdIqByccF4OlknNyYUi+pvgcrnAMMy0F1rfiYIKCgrwwgsvIDs7O5JVCcvf//53AIBEIsGvf/1rv/ovWLAAP//5z/HDH/4QOp0Or7zyCm699daQz3/w4EHs3r0bALB169aA3XVra2tx/fXX44UXXoBOp8P+/ftxwQUXzOJTJa8FCxbEuwozMv7FEUFZmpEORWHhrM/LcZxn7U4fqsrVkKYLZ62ViaXIUU89nujA7g5YzMJFicsX5iA7Vw1RErd2JmvMkPihmCHhmhwzlHSS6dB1hoRMpQZg5oucKDUTz7iMXPV98vNf//VfcU06dTod9u3bBwA4//zzg7a6XnHFFXw9t23bFnCfYLytqXK5HHfffXfQ/a655hpcf/31uP322+P6PSEzY+3vE5RV8+ZFZKIec9PnYE3jgm3qJedjwDQMN+cOcpQ/m9WJ/bvaBdsKS9KhzVAgryA5x3YSQkg8UNJJCIkk/cCQoMy6pl6WKVnFve3/wgsvjOv7f/HFF/ysY+vXrw+6n0gkwtq1a7Ft2zYcP34cer0e6enpIb3HRx99BAA455xzkJcXfG3FxYsX41e/+lUYtSeJgnO7YWoRTtiTe8GXInJu/YG3BWWRSgtL6UJ81nkAaTI1FucuxLz04mlnzNu/6xRsVpdg2+VfWQaFSoqMLBqHRAghobDZbDh+/Lhf0qlSqbBixQpKOgkhYTNaTQB8lo5MzbwzPi2evuI921tr60SyUFVVNeW+CxcuBODp+tjS0hLS+YeGhvj1vGpra/ntTqcTjY2N+Oyzz1BfXw+XyxXkDCQZWLp74DKaBNsyapbN+ryO0T7Ye4UJrbr6XDSPdQIAjA4zDvUex67Oz6c8j9lkx4HPTgm2VdcUoqQ8Ezl5tG4nIYSEwmazBWzppKSTEDIbDm5u5AFxb/GM95qBvb29/NfFxVPPBlpQUCA4bqrZe728S8wAnkmVnE4n/ud//gf/+te/+MmGACAjIwO33XYbbr31VojFqdmvO1RdXV38YPx58+bFuzohMTQ0CMry3BzIc3NnfV7HwClIc4rhHO0FOA4QSbC7IAc769/Bwuz5KNTkgWEYlKZPPZZ07852OBwTEx8xDHDhl6d+0JJMkjFmSHxRzJBwtbS0oLW1FU6nExkZGfx2lUqF2traOTshIAmOrjMkVCnawOkn7olnvPkmf9O1vvr+odHpdCGdf2BggP9aJpPhpptuwrFjx/z20+l0ePjhh3Hs2DE8+uijkEqlfvvMFXq9nl/3KlkYGpoEZe2SJbM+J8dxYM06qKvPgdthhWOgA4wyDTt7vsCQeRRD5lFoZCqsKVqB+ZllQc9j1Nvwxd5Owbblq0uQm6RrdgaSjDFD4otihoTD6XSivr4eNptN8HCYkk4yFbrOkFCJ3HMj9ZzziafNZuO/nq6LjO8fFt/jpmI2T8xQ9fvf/x7d3d2orKzEf//3f2Pt2rVgWRa7d+/Gww8/jP7+fuzYsQOPPfYYfvSjH4X5SSKnra0NCxYsQFraRGJit9vR3NwMwJOAl5WV+R3jXZN18iLJIyMj6OvzTLxTWloqSPBZlsXJkycBAGlpaZg/f77g2M7OThgMBgDAkiVLBBNT6XQ6nD59GgBQWFiI3EktjCdOnADHcVAqlaisrBS81tPTwz90qKqqgkKh4F8zmUw4dcrTLTU3NxeFk2ambWxs5P+QVFdXAwCMjY2CfQzpaTCZTIJld2w2G99FOysri19WyKu1tRVWqxUMw2D58uVwjfeDtXnix+Z0wyTPRmNWPoaGJiYIMjksSDfnoqHe8z3UarUoLy8XnPe9Nw7D5ZqYhEgkYnDBxkqcPjWGtEwG3WfWHi0qKvJbCqmurg6A5+bK29Xc6/Tp0/wDmEWLFgl+f4xGIzo6OgAA+fn5yM/PFxzb0NAAl8sFmUyGxYsXC17r6+vDyMgIAM+MgL6zYFutVr57fHZ2tl8vBZfLhbq6OohEIixbJuzqPDQ0xD8IKi8vh1Y7sXyMt+s7AKSnp/s9mW5vb+d/l5ctWyYYTzs2Noaenh4Anl4NWVkTMwt7F5EHPLN5T57hsKurC3q9HgBQXV0tuDkxGAzo7OwE4OltMXl8eH19PdxuNxQKhd8wgd7eXr6Lf2VlJZRKJf+a2WxGe7snhnJyclBUVCQ4tqmpCQ6HAxKJBEsmPUAZHBzE4OAgAGD+/PlJf40APD/71tbWqF8jvPr7+zE8PAwAqKiomNU1wtfw8DD6+/sBAGVlZYIHpS6XCw1nemUEukZ0dHTAaPQsxbR06VJBYjU+Pp5S14iWlhbYbLawrxHevyU2m42fF0KtVmPFihWQyWR0jTgj1a4Rs72PcDqdCISuER6pdI2Y7X2ExCqMFW9/0HhdI7wxGGlRSTzr6+vx5ptvTvm611T7TXb11VfPvFJB+I6tnO6Jpe/roY7J9F5EAaC7uxvV1dX45z//KbiQbNq0CatWrcLWrVsxNjaG//3f/8UNN9wwbdffaGFZlv/D6sVxHH8BZVnW7xiXyxX0Aut2u/nXJp8XAP+a93taXV0NjuPAMAy6urr41zlO+DTIt07BzstxXMD1s3zrO5Pz+n5W29AQ7MMjwnMUFU153kDx4z2vt/u5vb9deKxEiaPmLsExC0dWof0gC2ntOBYs0fidl+M4WIzCn8uiZQU4eawfO99vwtrzSpBXxk75WYPVl2XZoN9D3595oHhxOp1wuVwBJ0Sa6rzB4tAbMy0tLbDb7dOed6r4DvRZIxnfwc47k++h2+0O2DV/Jt/DyXWafNzk88bzGhHsvOH8LldXV/M3lYHqFclrhC/fzzrba0Skzhutn00iXSN8z+t0OsO+RgDgkxKr1SpIOgG6RgQ6b7JfI7znne19RKCHU3SN8Eila8Rsv4cSl//3zrdOoZw3kteIQD/LSIhK4vn+++/j/fffn3If7y/FfffdF9I5GYaJSuLp+4TK6XROmXw6HBPrH4barWZyEDz00EOCpNOrsLAQ//Vf/4Vf/vKXcLlcePPNN/H9738/pPeINLFY7PcLxzAM/xQlUIBKJJKgXUlEIhH/WqBfZO9r3gu773l8zzv5Qupbp2Dn5TguYL1me17f/3VHjwt3kMkgzcuf8ryB/ohJpVJ+LVy3zQznaL/gWCa7FFdrV6NfOoZdPQcw3G2G4pTnj1nTMSNEIjHWnOu/DE9BiQYQsRgfdsBqdsNitmPn+56uwYf29OD8L+chO18R0s/Gl1gsDvo99P2ZB4oXqVQKhmHCPm+wOPRuk8lkcLvdAT+L73mniu9AdYpkfAc770y+h263O2C9ZvI99K2T2+2e9mcTz2tEsPOG87sslUpjdo3w5ftZZ3ONiOR5o/WzSaRrhO95WZad0TVCJpOhqKgIDodDkHQCdI0IdN5kv0Z4zzvba4T3WhOovnSNSK1rxGy+h+Ip5nuNxzViupUSZorhAj2ymqHFixeDYZiAT8Fmi2EYvgk7ku666y588MEHADxLq/h2C5lsx44duOOOOwAAP/3pT/HNb35z2vM///zz+O1vfwvA0yy/ffv2oPuOjY3h7LPPBgCcd955+Nvf/hby55gNk8nEd38BPN0dAiXHJLDWPz+JoY938mVlSQlWPvHYrCbOsnaegPX0xIRFjFiKjPVXgRF7Lg4cx6FxuBUjdRx2fTAx6+3Fmxbj3A0TXVlOd4yhqc6TwDIiBj1d4+juGA+6PyGEEEIIia1tj76Mgz0T995S1ob7HrsmbvWJVm4Q0RbPUGZ5TTS+/bN1Ot2UiafvhEK+YzSm4vtDmjzuYLKsrCxkZGRAp9NhaGhoyn1J4sg6ex3ESgXswyOwD49As6BiVkmn22mH4djHkGTkgRF5nlDJ8+bxSSfgeRCzJK8KuAQQi8T4+D1PC6b3/3M3LITF7EBrwyB/TH+PnpJOQgiZhnepFN9xj4QQEk0iydyYgCqiiecLL7wQydPFhO8A6v7+fpSWlgbd13eG2smD7YOZPPB7Ot6uO9HqW50MDAYD313S98FAojK3tUOi0UCi0UA9vxza6sXTHzQFw9EdMJ/cDUYigyx/PmSFFRDnlwftQupNHn2TT44D5AoJ2DNjBvp69Dh9amIG51RLOpMtZkj8UcyQQKxWKz/zfG1trSD5pJgh4aKYIaESKyZNcBrf1SajJjodeJOI7+xQ3lmugvG+zjCM3+xmwfjOEuW7ZmggLMvyraqTZ++aSzo7O9He3s7PxJXI3AEGisuy/cdZhsNUtwsAwLkcsPc2w9p+FL0uM95t+Qh1A40wOcx+x5y7YSEu3jSR8O58vwn1Rz0zAPZ261I66QSSK2ZIYqCYIZNZLBYcPXoUdrsddrsdx44d41s/AYoZEj6KGRIqh9sJhnP7/EvN5VXmfOK5cuVKflDtgQMHgu7HsiwOHToEwDOWNdQnV5mZmXyS2traKmg1nezkyZP8BEaTpzUmickeYLrp2SSejrEBOAY7BdvUS7+EtrFO2FwONI2044OWT3B8oMHv2MnJZ3fHGL7Y10XdawkhZBoWiwXHjh0TTCJot9v5ZUUIISSaxKpxlI8f5/8VmOunPygJzfnEU6vVYv369QCAnTt38utETfbee+/x6zVdfvnlYb3Hpk2bAHgmhHn22WeD7vfPf/6T/zrc90glBQUFKCoqQkFBQbyrMi1bv/BBgjQjHRLVzMcFmRv2APB5yiWW4FluEId6j8PJnpkuG0CaTB3w+HM3LERmtoov+67fmcpJZzLFDEkMFDPEK1DSCXjWhFy0aBFfppgh4aKYIaGysw5IWTv/T8zZ4l2lqIjKcirJ5pZbbsHu3bvhdDpxzz334K9//atgUqC2tjb85je/AeBZvPXaa68N6/zXX389/vGPf2BsbAwvvfQSampqsGXLFsE+b775Jt566y0AwKpVq7BixYpZfqrkNXmB20Rmm9SCrSoLPkZ4OhzHwVT/mWDbyPwlODLomc355FALyjNKsK6kFuUZgd/HZLRBN271265USVM26QSSK2ZIYqCYIcDUSWdNTY1gmQGKGRIuihkSKqnEglL9xOod+jT/5U9SASWe8Cxdctlll2H79u04evQotmzZgq9//esoLCxEQ0MDXnrpJZjNnnF1P/7xj/1mtD1w4ABuvvlmAMBZZ53lN8lSZmYmHnzwQdx5551gWRY//vGP8cEHH2DDhg2QyWT45JNPsG3bNgCAXC7HQw89FINPTWbL0NiEkX2fQ56bA1l2NkQSCRSzeKpp72uFc1Q4DnhfTjow4kluXW4Xeg39qC28Kej6Sgc+6wDn9h8XYLU4sXdnW0onn4QQEg6z2Yzjx48HTDpXrFgRcM08QgiJBpHFJCyn6BhPuqqe8bvf/Q5msxl79uxBT08PHn74YcHrDMPgjjvuwPXXXz+j81966aV45JFH8LOf/QwmkwmffPIJPvnkE8E+GRkZ+Mtf/oKFCyk5SAbDn+2Bof6kp8AwUM8vR+nXwmsN92U8LowHa1Y+Doy1CbZ9ueoilKUHnlGZc3M4uKdTsI0RMXwi6rvUCiGEzGVmsxnHjh2Dc9IEcZR0EkLiIY+TwXfqSKWLEs+UplQq8de//hXvvPMO3nzzTTQ2NsJoNCIjIwOrV6/GzTffjNWrV8/qPS6//HKsXr0aL774Inbu3Ine3l4wDIPS0lJccskluOGGG0JeH5TEn7GpaaLAcZBmpIMJ0hI5HbfTfmZ854TCZRfh54tW4P2WT3Co7zgkjBibKjcEXSP0rZePwelgBds2fXUZrBZnwHU+CSFkLgqWdGq1WtTU1FDSSQiJOYWLESSeEjborkmNrq4+GIbB5s2bsXnz5rCOW7duHZqbm0PaNy8vD3fffTfuvvvumVRxTqivr4fT6YRUKsWyZcviXZ2A3CwLS3ePYJt22dIZn8/SchBuu8VnCwNtzYXISs/FkrwqDJlG0DbWBa0iLeDxe3e2oe6wsJuuOk2G5auKIZV5fs1TOflMhpghiYViZm6aTdJJMUPCRTFDQuV0ydCfNnFfJmH8l+tLBZR4koTjdrv5f4mKNVugnl8O+8gInOM6gOOQtWrljM+n/+IDQVk5fzkk6bl8OU+TgzxNTsBj9+5s45NJX4uWFvBJpzfJTNXkMxlihiQWipm5x2Qy4fjx4zNu6aSYIeGimCGhGnOq0ZB/Pl9WOg1xrE30UOJJEo5CoYBYLBbMJphoWKsFmWcSTbfTCadOD2XpzGa0dY4PwN4jbDHXLPtSSMcGSzqlUjG+tLFSsC2Vk89kiBmSWChm5p6uri6/pDM9PR3Lly8PqXstxQwJF8UMCZWLkQnKboZmtSUkJqqqquJdhWnZR0b5r0VSKdIWV0E0w3FB+oPvCjeIpahXySDqOYqitHwUaHIhFfv/0Tp9aixg0gkAy1YVQZvuv55ooOSztDwLZRXJPbY4GWKGJBaKmbln8eLFcDqd0Ol0AMJLOgGKGRI+ihkSKqdbOEdIqiaeM5sJhZA5zjE6KijLs7NndB6O42Bu3CfYJi2pRL/DgC5dL/Z3H8FbTTswYBr2O7asIsuvVdNr9dnzgr7nuRsW4uJNiwEAX9pYmfRJJyGEhEIsFmP58uXIyMgIO+kkhJBocrhTdDahSeJyxT19+jTeeecdHDlyBH19fdDr9fj+97+PG2+8EQDwy1/+EosXL8bWrVshk8mmORshscVxnKDFEwBkM0w8rR11YM36iXMD2JGfA8ZmhFqmOvN+bmQq0gMef+Fli3CqZRg9nTp+W2FJOopKM6Z833M3LEyJlk5CCAmHN/n0fk0IIYnAzNoF5dRcTCXGiafFYsFDDz2Et99+mx9ozXEcGIYRLOC8bds2/N///R+effZZPPLII6itrY1lNQmZEms2w20XXiDkOTNLPBmJDOql58Mx2AnnaC86tVpsG2sCxpqQr8nF/MxSrCxYCrkk8AOYsRETert0gm2rzy4L6b0p6SSEzEWUcBJCEo2TWjwjy2Aw4MYbb0RbWxs4LngebzabodPpwDAMent7ccstt+Cvf/0r1qxZE6uqkjjr7e0Fy7IQi8UoLi6Od3X8WAcGBWWRXA6xWh32eTiOg2OoC9KsQkizCuF22nHU0glY+gEAg6ZhWJ1WbKrcEPQcu3e0wffXSSaXYNnKxPueRVuixwxJPBQzqctoNKKrqwvV1dURTTIpZki4KGZIqLiUbeMUitkYzx/+8IdobW0Fx3HIycnBPffcg3/84x9++0mlUvzoRz9CVpanNcZms+HHP/4xrFZrrKpK4mx0dBTDw8MYnTSOMlG0/OFR9L+/DWMHv4C5oxNilRIMw4R9HtY4CtYy0c3WKhbhqG1IsM+Viy5BRVbgFkyO43CqdUSwrXxBNmTyuTdmKdFjhiQeipnUZDQacfz4cYyMjODEiRNg2ci1IlDMkHBRzJBQMZR4Rs7evXuxe/duMAyDs846C9u3b8d3vvMdnHXWWX77ymQyfOtb38K7777Ld7Ht7+/HG2+8EYuqEjIll8UK28AAXAYDzKdOYezAQbgdM1vk197XLihzMgUumn8uVFLPbLQSkQQbKs4NOKMtAOjGrFixthiLlxcgPdNzzJpzg08qRAghqcxgMOD48eNwuVwAAJ1OF/HkkxBCoiE9O1NQ5lJ0REBMmkbefvttAIBSqcQf//hHqEPolpiZmYk//elP2LhxIxwOBz7++GPccMMN0a4qSQCVlZX82N9EY2xpgaBvK8MgfdmSsM/jdtrhGOkWbMsrXYpvl1bjG7VfxefdRzBsGYNWrgl6jvqjvRCJRMgrTENeYRoYMFiwKDfsuqSCRI4ZkpgoZlKLwWBAXV0dn3R6RfLnSzFDwkUxQ0IlZ4SNDKm67EhMEs/Dhw+DYRhcdNFFyMnJCfm4/Px8XHLJJXjvvffQ3NwcxRqSRKJU+q8/mSgMJ+oFZVlmJuS54Sd7jqEucD4DyRlGBFn+fACAXCLDBfPXT3m8y8XCzQq7ZSxYnDtn/7glcsyQxEQxkzq8LZ2TWzYzMzOxbNmyiI3zpJgh4aKYIaGSioSpZqrezcUkoR4Z8YxDW7BgQdjHzp/vuRnX6/XT7ElI9OnrGwRleV4uJJrgrZKBuN0sRrb/zZN8sp6n85LsIohkitDrMW71G4ieX6gNqx6EEJLsgiWdWVlZEU06CSEkmsTqDEGZYVLz2hWTFk/vhd+7hEo4nE7P+DmFIvSbckKigWNZmE+dEmxTlc8Lu5XR0rgfjv42OPrbALEU0twSNGSokN/fgEU5FVBKp4/1kUGT3zapLDUvUoQQEoher0ddXV3QpFMkStXOaoSQVMNI5AB8lupL0R5sMUk88/Ly0NnZicbGxrCP/eKLL/hzkLnBbDbzYyJCGQ8cK+auLrh91psFgLSqqrDPYzj64USBdWLQqoOOAfSjp9A21omKzFLU5FdDIg7868m63BgZEiaeCxbN7d+PRI0ZkrgoZpJbPJJOihkSLooZQoRikniuW7cOHR0d+Oyzz9DT04OSkpKQjtu3bx8/PpTW8Zw72tvb4XQ6IZVKUVNTE+/q8AwNTYKyPDcHGSvCqx/rsMLWIxyv3FO2gG81dXNuDJlHIRYFb718+e+HoB+3oqBEi8xsFRiGQW5+eN19U02ixgxJXBQzySteLZ0UMyRcFDMkVFajHr4jO90pOht3TPqhbN26FQDgcrlw5513QqfTTXvM4cOHcc899/DlzZs3R6t6hITE2ChMPNOXL4M8Jzusc9g66gB2YtbFMbEI/7Kexsen9qJl5BQsTisWZpUH7b5r0FtxqmUYI0Mm1B/pw8HdneDcHBTKwEuuEEJIKtHpdAGTzuzsbOpeSwhJWoz9NOaNHef/Fenq4l2lqIhJi2dNTQ02b96Mt99+Gw0NDdi0aROuu+46LFkysQyFTqdDU1MTWltbsWPHDnz88cdgWZafDXf16tWxqCpJADk5OWBZNqEmheA4DoZJXcXTqheHfR5T4z5BuaWkFIAV41Ydxq06NA634pqlVwQ9/tiBbsFqLi4ni7KK8JLfVJSIMUMSG8VM8tHr9QHX5czOzsbSpUujnnRSzJBwUcyQUDndDkjdE8O5ONHM1ohPdDFJPAHg17/+NXp6enDkyBGMjY3hf/7nfwBMrLH1zDPP4JlnnuH3587cXS9cuBC///3vY1VNkgCKioriXQU/9uFhOEbHBNu01dVhncPttMPS8oVg24k0JWCz8uWVhcugkQUeB8K5ORz5/LRgW25BGopK08OqRypKxJghiY1iJvnIZDJIJBJB4hmrpBOgmCHho5ghoZJJrJinm1iyzypPzd4bMftUMpkMzz//PL75zW9CLBaD4zg+ufTybvMOxN60aRNeeuklaMJcroKQSDM2CsdlStI0UBaH9wfF0n4EnNPGl20iMYbcdsE+F1WcE/T4U60jMOhtgm0LFuVCqZKFVQ9CCElGSqUStbW1kMvlADytSbFKOgkhJJpYtw06jYj/Z1Sn5nUtZi2eACCVSnHffffhP/7jP/Dmm2/i4MGDaG9vh16vh8vlQnp6OkpKSrB27VpcffXVM1r3k5Bo8Otmu3gxmDBvdswNewXljLIleHrLz1E/2Ix93V+gYagFK/KDt6Ie3t8lKKvTZFiwODesOhBCSDLzJp/d3d1YuHAhJZ2EkJRQVlqKlvwWviyWxzRFi5m4fKr8/Hz853/+J/7zP/8zHm9PSNgMkyYW0iwM76GI22GDpfWw8BzV50AiEqO2cAlqC5fAzbkhYgLfRJmMdrScHBRsKyxOR16BNqx6EEJIslMqlaiawVJWhBCSqNRiGbKdE5NPpuq44JgkngMDAygoKIjFW5EU0NTUBJfLBYlEgsWLw5/AJ9JcZjMsXcKxlfahIbB2O8RnunxNx3h8JziXzxqgjAj64gqIHRaoZSoACJp0AsDxQ91wuye6pkskIqw5txwqNXWzBRIvZkjio5hJbBaLBUqlMugM3/FAMUPCRTFDQuaUweYu5oti1xT7JrGYJJ4bNmzAWWedhS1btmDjxo20iC6ZksPhgNPphNvtjndVAADG5hYIppIViaAsKws56QQA06RutpbiCqikMj7pnArHcTh6oFuwbUltEaqW5If8/qku0WKGJD6KmcQ1NjaG+vp6FBUVYcGCBQmTfFLMkHBRzJBQDRql+FxxKV9WcwZcHMf6REtMEk+3240DBw7gwIED+NWvfoWLL74Ymzdvxvnnn0/jM4gfiUQCjuMgkSRG//bJ3WxlWZlQFoSe9LmdDtj72wXbRvKK4NZ1o1PnSSgL0/JQnVsZ8Piu9lGMjZgF21atKwv5/eeCRIsZkvgoZhKTN+l0u93o6ekBgIRJPilmSLgoZkioXCKFoOxmqKvtjOXn52Nw0DM+zWaz4f3338f777+PrKwsXHnlldi8eTOWLl0ai6qQJOC7vmsiME5KPOV5eZDn5IR8vLlpP8BOrMfEAdDlFcNhGee3aeVpQY+fvIRKTr4GpfMzQ37/uSDRYoYkPoqZxOObdHr19PQgLS0N+fnx7+FBMUPCRTFDQuWWKQFMLK/nFqXmw4qYNDd++umneOGFF/C1r30NGRkZ/JIpo6Oj+Mc//oFrrrkGV155JZ599lkMDAzEokqEhMTtcnm62voo3nIV1PPLQz6HuXG/oHw4Pw8njL0w2SdaMRflVAQ81mpxoPGE8Hdi1bqyhHj6TwghkTI6OuqXdAJAXl4e8vLy4lQrQgiJDbPOICi7WS7InsktZv1c165di1/96lfYs2cPnn76aVx55ZVQKpV8Etre3o4//vGP2LBhA775zW/ijTfegNlsnv7EhESRuaMTbodDsE27pBpMGLONKcqXQ730fMgKFoCRKXAwXYkTg03Y1rYLO9o+w6hlHBpZ4HHPB3d3gHVN3IiJxSLUrC6Z2YchhJAEFCzpzM/PR3V1NT1oI4SkvHHDmKDMpeiw4Ji340okElxwwQW44IILYLPZsHPnTrzzzjvYs2cPnE4nOI7DwYMHcfDgQRoPSuLO0CBcv1NZUgypNvQlTFirCW6bCdKsQkizCqF3LUP38EQLqN5uRFFafsAbK47jcGTSpEIVi3Kg0tBMtoSQ1OBNOjlO+HQ/Pz8fixcvpqSTEDInODk23lWIibh2IFYoFLjiiitwxRVXwGAwYPv27Xjvvfdw6NAhsCwrGA+anZ2NPXv2xLO6JEYGBwfBsizEYnHcx/VMHt+ZFuZ06M6xPkG5ntXD9/ZKLpHj8qqLAh6r19mQnqmEzeKE0+m5IFVU5Yb1/nNFIsUMSQ4UM/E3MjKCkydPJk3SSTFDwkUxQ0LlRmp2rZ0sYUauarVaXHvttbj22msxNjaG119/HU899RSsVis/HpTMDYODg3A6nZBKpXG9UHMcB0OTMPHULgkv8XQMCycGmp+zAJdkZuNQzzHo7UasKlwGmVga8NiRQSMqqnJQvjAbo0Mm6MasWE2z2QaUKDFDkgfFTHwFSzoLCgqwaNGihEs6AYoZEj6KGRKyObLkTsIkngDQ3d2Njz76CDt37sTRo0fBsnOj2ZkkJtvAIJzjOsE2bXXoiafbYQM7qc9+VdkKLMsuxrdXXY+W0VOQiYN3mzXoPLObiUQMcgvSsHJdGSSy1JxemxAydyRj0kkIIdGUzghTslS9CsY98RwaGuK70544cYLf7v2DlJ+fj6uuugpXX311nGpIYm3+/Plwu91xH9M7uZutWKkERKEnfs7xAXA+XScYsQTSzAIAgEgkwuLchUGPtVmdMOhtgm1ZOYEnICKJEzMkeVDMxMfw8DAaGhqSMumkmCHhopghoRI7qcUzasbHx/nxnIcPH+b/AHn/VyqV2LhxI7Zs2YKzzz47of8QkchLSwu+pmUsGVuEy6jIsrPCikXd/jfAuZyQZBZAJJVDmpEPJsTEdWTIJChLJGJkZKlCfu+5JlFihiQPipnYczqdaGpq8ks6CwsLUVVVlfB/6ylmSLgoZkioJLFbaCSuYpZ4mkwmfPTRR3jvvfewf/9+vhut9w+QSCTC+vXrsWXLFlx22WVQKpWxqhohAeVfthFgGNiHR+AYGYG8oADynOyQjmWtJpgb9p2ZD5uBWJuNwfVfBnqOoSKrDNnKzClvskYGhYlnTp4aIlFi35QRQshUpFIpli5dKlg6JVmSTkIIiSaRfG70aotJ4nnHHXdg9+7dcJxZD9H3aWdlZSU2b96MzZs308BrklDsA4OQarWe5VMWVEBZXBTy+p2mhj0+izBxcBjH0CMFXLoedOp6kKFIw6qi5chRZfkd2940hOEBI6TyiffKyaOnpoSQ5JeVlYVly5bhxIkTKCgooKSTEEIAMJLAE02mmpgknh999BEYhuETzqysLGzatAlXX301li5dGosqkCRit9vBcRwYhoFcLo9LHTiOg21gQLBNUVAQ8vGW5oOCcndePlw+FxWdzQiFxP+zuVk3Xn/xKKxWJ7Jy1Cgo1iI3Pw2ZOdTNdiqJEDMkuVDMxE9WVhZWr14NtVqdVEknxQwJF8UMCZVENamnZxJdG8MRs662MpkMF110Ea6++mqcf/75EIfYckTmnubmZn768ZqamrjUwanXg7UJJ/cJNfHkODfsgx182QXgb2luKNs+RbG2AMXaQizKroBG5t+toq15GFaLEwAwNmzG2LAZl16ZAbF4bvT9n6lEiBmSXChm4kuj0cS7CmGjmCHhopghoXJyLACf3IhLzXU9Y5J4PvTQQ/jyl79Mg6xJ0rD1C1s7JWo1JGmh3SjZ+9rhthj48imVDE5wcNpNMAy3oXG4DeeWrQl47JHPhet+pqUrULEoN8zaE0JIfA0ODgIADaEhhJAQcLJRlOiG+bJb7IpjbaInJonntddeG4u3ISkiIyMDLMvGtVXc3NklKCsKC0LuEmZp+0JQbsjOAjAxTXZ5Rgmqc/yXUjEb7WhrHBJsKyjWIjt3bgw4n41EiBmSXChmomdwcBCNjY0AAIZhkJeXF+caRQbFDAkXxQwJlYtzQup28GVWRIknITFRVlYW1/c3trdjdN9+yHNzIMvKAiMWhze+s+2IoNyjUgCshS+fN29twDW96g73wO2e6FohEjGoWpIPiZT+YE0n3jFDkg/FTHT4Jp0A0NDQAAApkXxSzJBwUcyQUElldswfO8aX9WmpmaJF9FPdfPPNADxPOJ9//nm/7bMx+ZyERMvwzl3Q153wFEQiqOeVoeSrXwnpWJdxDI6BU4JtD625FT0aJQ70HMPBnqM4q7jW7ziO43D0YLdgW06+BoUl6TP6DIQQEmsDAwNoamry224wGFIi8SSEkGhhTWPw7VfH0BjP6R08eDBgd8Rg20PlnRGMkFgwtbZNFNxuQCSCSCYL6djJrZ0iuQqq0sVYJJZgUc4CfGPF1oCx3Hta57d2Z2FJOnLykm8CDkLI3BMs6SwpKcGCBQviUCNCCEkexYwSZp+yiqXEMyTBkkQuRTN3klo4joO5SzjBT0btipCPNzXsEZSVC1aCEU/8mgV7gHJsUmtnZrYKl15VDZk8NbtaEEJSx3RJJz04JoSQqcmcbkHiKXGlZt4U0bvajz/+OKzthATS1tYGl8sFiUSChQv9J+GJJqfRCFVpCezDI3DqdACArDWBZ6CdjHXaYeueGNvkAmAsnIdctzvgmE7+PR0s6o/2CbbVnlUKlZrW/ApVPGOGJCeKmcjo7+9Hc3Oz3/bS0lJUVFSkVNJJMUPCRTFDQsW4ZTDIc/iySMTGsTbRE9HEs7i4OKzthARisVj4da9izaU3IHP1KgCA2+GAU6eHpiq0PxaWpgMAOzEL2YhMjC6xAyeaPkSxtgAl2gIUaf0nKWqs64fD7jN7GQOsWFMyuw8yx8QzZkhyopiZvbmUdAIUMyR8FDMkVEM2DQ6VXsWXlU4DLotjfaIl4VeldzqdaGpqwp49e6bfmZBZsg9NLGciksmQXrMMIkloz2fMzfsF5ZM52RAr0+B0u9Cp60H72OmAx02eVGjBolxoM5Rh1pwQQmInWNJZVlaWkkknIYREEysW9nLjmIRP0WYkJgPIFi9eDJFIhB/96Ee49dZbwzr2ySefxNNPP43c3Fx89tlnUaohSSQ1NTVxe2/bkHAdTXmIMzFyHAfb6YlutgNSMU6pVSi36pGh0IJhGBRr/RdSHx02oat9VLBt5VmlM6j53BbPmCHJiWJm5vr6+tDS0uK3vaysDPPnz0/ZpJNihoSLYoaEysEKE02WSc05PmL2qWY6uZBSqQTHcRgbG4twjQgRYu12OHV6wTZFiImn226BcuFquMb64Bzrx3GlG+2cBe2n9kAlVWJ+Zhm2LN7od9zuHW2CslIlRdVS/wSVEEISwVxNOgkhJJpYpOZkQpMlbDrNcRx6enrw7rvvAgBUKlWca0RSnbVXOMEPIxZDlpUZ0rGu8QFIM/IgzciDsqIWbUOHANYzP5nFaQUDQC4RLsnidrvR0jAo2FZclgGJRDzzD0EIIVHkcrn8ts2bNw/l5eWUdBJCyAwZnFZBOVXT0Iglni6XC1/5ylfQ1tYW8HWO4/D73/8ev//978M+N8MwqKqqmm0VCZkSN+mGihGJwIhDSwKdYxNJ64jLim7WLHh965Iv+x1jNNiwpLYQw/1GDA0YYbe5sGwVTcRFCElcZWVl4DgOHR0dACjpJISQSHC5U3MW28kilnhKJBI8+OCDuOGGG4J2q51pd1uGYXDbbbfNpnokiYyMjMB9ZgmSnJyc6Q+IkNMvvgRrby+k6emQZmRAURBal1eOdcE5PtFyKWYYXFF6Fg6PncKgeQQamRrVuZV+x40MmqFJk0OTJkd5ZTaMBjuWrSyK2OeZS+IVMyR5UczM3Lx58wB4/qaXl5fHtzIxRDFDwkUxQ0LlTtk2TqGIdrVduXIlvvnNb+LDDz8UbO/r6wPDMNBqtVCr1dOeh2EYiMViaDQalJSU4LrrrsN5550XyaqSBNbX18dPPx7LC7W5sxNOnR724REAQNFXtoR0nEs/BM7nSVWWWImb127BNyUydOl6MWQegVgkbDnlOA7Dg0a+zDAMltUWT7neJwkuXjFDkhfFzOx4k8+5hGKGhItihoRqpo1zySbiYzzvvfde3HvvvYJtixcvBgB897vfDXtWW0JigbVa/SYW0ixYENKxztF+QVmszYZI6pkWuzyzBOWZ/mtymgx22KxOwbbcAk04VSaEkKii9QcJISQ20rPSAd1EmUvR6T4SflZbMveUlpbyXVNixXSqQ7iBYZBWtXDa49ysC8b6TyHWZEEk96y9Kcuevrvs0IBRUFaqZNCkyYPsTaYTj5ghyY1iZmo9PT3o6urCihUroNHQQzGAYoaEj2KGhEouFk5AmaoRE5PEs6mpKRZvQ1JEZmZoM8lGkrFZuDyAJE0DWXb2tMfZOupgbtgLABBrMtGWlQ1pfj7KxjUoSsuHbNJMtoDnIczIoDDxzM3X0OQcsxCPmCHJjWImuO7ubrS3twMAjh8/TsnnGRQzJFwUMyRU8klDslL1jjBVE2pCwmI+dUpQlmdnQySZ/rmMqWk//7XLNI4e2xgGHEYc7D2Ot5t34LSu1++YhmP9aGkYgs020dU2tyBtFrUnhJDI8E06AU932+PHj8PpdE5xFCGEkNkQK4T3gQyTmilaRFs8+/omlpQoKioKuH02fM9JSCTZBoTraSpCjDVb10n+60GpGC5tFnCm5dLNcchUpvsdc3BPB7o7x9HROgJthgILFudRN1tCSNydPn0apyY9hAM83QVprCchhEQPI1cBMPhsoMRzWhs2bADDMGAYBg0NDX7bZ2PyOUnqYtmJGWLFIa6jORscx8HaJ5wgKOe8c6Y9jjXr4dIN8eU38tIwJLKguL8BxdoCVGSWIk0u7J5mszrRe1rHlw06G2QyMXWznaVYxwxJfhQzQsGSzoqKCpSVlcWhRomHYoaEi2KGEKGIj/GM9BqeZO45efIkP5tiTU1N1N/PMTIK1mwWbNMsnH5GW2tHHXBm3SUHA/TJpXC6XWgb60DbWAcyFP7dZ49/0Q23e+J3gWGA2rWls/sAJOYxQ5IfxcyEYEnnggULUFpK1ycvihkSLooZEiqXzSIou93uONUkuiKaeK5duzas7YQkAnNXl6AsVqkgz82d9jjLqaP81y0qGZyiiVZLESPClxde4HdM3RfCMZ85+WnIK6TxnYSQ+Ojq6kJHR4ffdko6CSEkduyGDhTpfZJPxhG/ykRRRBPPF154IazthASSlpYGl8sFSQiT+0SCpVOYeKrmlU3b9ZXj3LCeOsaXO5XC2WuX5FYiW50l2GYy2NDfI1wrtLI6j7rZRkCsY4YkP4qZ4EnnwoULUVLiv/7wXEcxQ8JFMUNCxcEBOUuJJyExN3/+/Ji+n7mzU1BWl8+b9hjHQCdY80QSuWnEhCsv/yEOG07jYM8xnFVS63fMyWPCSbZEYga1Z1GLQiTEOmZI8pvrMUNJZ/jmesyQ8FHMkFBJJBaUjdfzZZs8NRslKPEkc57Zr8Vz+sTT0n5EUJZlFaG0rAYVqMG1y66Em/Pvm18/KfGcX5mD7Fz1DGpMCCEz19nZic5JD9wASjoJISRe3E4zWMnEZFRuCSWeEROs28HBgwfx1ltvYWBgAPn5+bjssstwwQX+4+QIiRS30wlrj3DcpbJ4+qVULK1fCI9ZUCsoiyZNgz0+akZvl06w7azzyqmbLSEkpoaGhgImnZWVlSguLo59hQghhKBoXila57XxZZE8NdsGY/qp9u/fj6effhqtra3Yu3ev4LUnnngCTz75pGDbG2+8gQsuuAB/+tOfIJfTOock8oytbcCkGZenm1jIZTXC3j9xceiTSaAtWTTlMfVHha2dSpUUFVXTT2BECCGRlJOTg5ycHIyMjPDbKOkkhJD4UotlyHD6Lr9DieesvPLKK3jggQfAcRwYhoFOp0NGRgYA4OjRo3jiiScCHvfpp5/i3nvvxaOPPhqrqpI46+zs5FvFy8vLo/pehpPCtWElGg0UBflTHmNp2McnqyYRg5MaBXqs/cg7tRcl2kIsyJoHsUi4XtfkxHPJiiKIxam5OHA8xDJmSGqYqzEjEomwZMkSnDx5EqOjo6iqqkJR0fS9PMjcjRkycxQzJFRKyKF2Kfmy2EmJ54wNDw/jN7/5DV9WKBQYGxvjE8/nnnsOAMAwDKqqqvDd734XY2NjePLJJzE2NoZt27bhpptuwurVq2NRXRJnBoOBX/cq2syT1q6T5+VO2/3V3HqI/3pIJoFYqYFIrsSIZRxmhxWV2cLJBEaGTBgeMAq2LVtJN3qRFMuYIalhLseMSCTC0qVLMT4+juzs7HhXJ2nM5ZghM0MxQ0LVMy7FDuV1fFnNGXBWHOsTLTFpcnnllVdgs9kAAJs3b8b+/ftRUVEBADCbzdi1axcAQCwW49lnn8Xll1+OG2+8ES+++CLfxfbdd9+NRVXJHOMymQVl9YKKKffnOA723hbP1wB2ZaqgT8sAd6YFtFhb4Je41n3RIyhr0uQomy9caoUQQmJJJBJR0kkIIQmCkyiFZSY1e8XFpMVz//79AICioiL8v//3/yAWT3RD3LdvHxwOBxiGwfr165GXl8e/Nn/+fFx44YXYvn07Dh48GIuqkgSwZMkSvkt2tFm6hUlhZu2KKfdnzTpIc0vhGhtAh8uEFrUccI3hWPNHKErLxzll/q3yjSf6BeWi0gwwIppUKJJiGTMkNaR6zHAch97eXuTn51NrS4SkesyQyKOYIaFyiOQA7HyZFaXmdTsm6XRHRwcYhsFFF10kSDoBYPfu3fzX559/vt+xlZWVADzddcncIJFIIJVKo77gstNghHN8XLBNVVY25TGsYRTK8hqkrdqI9qpl/HY764DOZkChJk+wv8lgw+iQsFW1dH7mLGtOJotVzJDUkcoxw3EcTp06hba2Nhw/fhxOpzPeVUoJqRwzJDooZkioXDa7oBxgVb6UEJPEU6/XA4CgNdNrz549/Ndnn3223+vep0QWiyVKtSNzleX0aUGZkUigKCqc8hjn2ETr5XGHTvDa+eXr/CYVUqplWHtuOeYtzIYmTQ6xRISqpVNPXkQIITPlTTq7u7sBACaTiZJPQghJcIMjg4Kym+WC7JncYvIIRiaTweVywWq1CrafOnUKfX19YBgGWVlZqKqq8ju2r88zG6hGo4lFVckcYukSJp6q0hKIpngqyblZOPVDAAAX50aNIhtSqNFt9rTGryup9TvGbLRDqZZiXkUW5lVkwelkkZmlityHIISQMziOQ3t7O3p6hEMITCYT9Ho9cnJy4lQzQgghU3EiRZs4J4lJ4llaWorm5mY0NAiXrvBOKgQA5513nt9xdrsdn332GRiGoWmo5xCdTsePifDOfBwN5smJ53TdbE3j4FgXAEDCiLBVuwAZ67dgzGXBiYEmLMia53eMQW8TlDMyVJBIxX77kdmJVcyQ1JFqMRMs6QSAxYsXU9IZAakWMyT6KGZIqNyp2rd2kpgknuvWrUNTUxP27NmDzz77DF/60pcwMjKC559/nt/n0ksvFRzjdrvx29/+FsPDw2AYBuvWrYtFVUkCOH36ND/9eFQTz44OQVk1b+rE06kTdoOQqNMhkimQI1PgoopzAh5j0Alb+bUZihnUlEwnVjFDUkcqxcx0SWdBQUEcapV6UilmSGxQzJBQcZR4Rs61116LF154AW63G7fffjuqqqrQ29sLo9EIhmFQUFCACy+8kN//mWeewfvvv4/m5mYAgFQqxTXXXBOLqpI5guM4WLq6BNtEyqmTQsdwt6AsSfcfszyZXids8dRmKIPsSQgh4eM4Dm1tbejt7fV7rbq6Gvn5NKacEEISnTY2KVncxeRTLly4EHfccQf+/Oc/g2VZNDU1AfD8wRSLxfjlL38pmPHr5ZdfRn9/P7824k9+8hOUlpbGoqokARQWFsLtdkMkit7cV46REbjtDsE2ZUHwiYVYixGj2/8KkVILQ2YOOjRKzM8vQqlVjwyFNuBU6TarE3abcEKPdEo8oyIWMUNSSyrEDCWdsZUKMUNii2KGhEriELZ4puoCPDFLr7/3ve+huLgYTz31FLrOtDRVV1fjv//7v3HuuecK9q2oqEBfXx9ycnLw05/+FFdccUWsqkkSQG5ubvTfhGGQsXIFnDo9HHo9WIsVqvLgXW3NzQcAjoPbokcfZ8WAVQarZRhN7btRoMnFl8qFXcG7To3ixOFeiMQMVGoZAEAqFUOpTs11meItJjFDUkqyxwzHcWhtbeUn4PNFSWd0JHvMkNijmCGhkjJz4+FETNt1t2zZgi1btkCv10MsFgedqfaGG27A9ddfjwsuuIAWvibRwQFpixb5FiFLTw+6u/XUUX6/EakYYqUaIqknocxSZvjtf+xgN44f8oy3UqqkKCnPxLLaIlpEmhAya8GSToZhUF1dHXDpMkIIIYlLJJsbPeLi0qE4fYobfADYsGFDjGpC5iqnwSAoy7RaMOLgs83a+08BALrlEmzPViNPIkOJYQB56hwUpAmfaLpZN5pPTkxEZLU44WbdSEuniYUIIbNDSSchhKQeRiqPdxViIu4jWZ1OJ/R6PRiGQVpaGmQyWbyrROYAp14vKEvTtUH3Zc16uM6s39mhlMIuFqGbs6O7+zA0MhW+XrNZsH9XxxhsFuHYzuw8DYpKMyJTeULInOVyuaDT6QTbKOkkhJDkJpk8wWWK9pCLS+K5f/9+vPrqq/jiiy8wNDQkeC03Nxe1tbXYtGkTLrvssnhUj8TZiRMn+OnHly9fHpX3mNziKdEGTzytXfX8120q4ROpNUUrIJrUL7/hmLAlQpMmx6KlBZDJ4/6cJ2XFImZIaknWmJFKpVixYgWOHz8Oi8UChmGwZMkSGksWA8kaMyR+KGZIyPwSTS4u1Yi2mN4Jj42N4Yc//CE+//xzfpt35lqv4eFh7NixAzt27MC6devw+9//np7izjEcx/H/osWpFyae0qnGd3Z6Ek8HA3QohGOOVxUtE5Q5jkNTvXC9z5x8DYrLMmZRWzKdWMQMSS3JHDNyuRwrVqxAXV0dysvLKemMkWSOGRIfFDMkVFbxCPKNE73xOJFzir2TV8wSz9HRUVx33XXo6+sT/AJKJBJotVqwLAuTyQSWZfnXPv/8c1x33XV4/fXXkZWVFauqkjhTKpWQSCRRm1jKaTLBZTKB8ZnefKquttbOOs8+HPCDnjF0rzgHzTIGLSOnsDx/sWDf/h49zEa7YNui5dTaGW3RjhmSepI9ZuRyOdasWUMTlsVQsscMiT2KGRIqhnFA5ZxoFGElrjjWJnpidjd8zz338GuNaTQafOMb38Dll1+OyspK/g+ny+VCa2srtm3bhhdffBEmkwkDAwP4yU9+gmeffTZWVSVxVllZGdXzn/7Xyxjc9iEk6VpI09OhLC6GNC0t4L4u/TBc4wMAPGsq5TtYrFq+GfLCCjhZJ6Ri4R+TpvoBQTkjS4UVq0ui8jnIhGjHDEk9yRAz3oe0wZJLSjpjKxlihiQWihkSKpHUhhJ9E182qlNzeZWYJJ67d+/GgQMHwDAMSktL8fe//x0lJf434xKJBNXV1aiursZ1112H//iP/0BXVxf27NmDvXv3+q33SchMmJpbwbEsnGPjcI6NQ6JWB53R1nd8JwCIFBrICsoBwC/pBIDmE8LEs7qmAAolPekkhISH4zg0NzeD4zgsXryYkkxCCElhbqseMtbGlyXu4CstJLOYpNPvvvsuAEAsFuPJJ58MmHROVlxcjCeeeAISiSc3fvvtt6NaRzJ32EeGBWVFQfCF1k0ndwMAnAxgETFQzFsKJsgiv2MjZgwPmgTbFi0rmGVtCSFzDcdxaGpqwsDAAAYHB9HU1ERjxAghJIXlQbiqh8Kdmtf8mCSeR44cAcMwOP/888PqdlBZWYnzzz8fHMfhyJEjUawhmStcNhucOuFSKtrq6oD7chwHe18bAGBYKsHeDBX2yN041n8SQ6YRv/2bJ3WzVWtkKJmXGaGaE0LmAm/SOTg4MUnZ4OAgWlpa4lgrQggh0aSws4Ky1JmaiWdMutqOjHhu0pcuXRr2sUuXLsUnn3wi+CNMUltPTw9cLhckEklIrePh4Fg3iq7eDKdOD6deD6dOj/SamoD7OgZOwW0zAwDGpZ5nNI7MXLSMdsDstCBPkyPYv/mkMEarluRDJKLucbEQzZghqSkRYyZQ0gl4xnLm5OQEOYrESiLGDElsFDMkVEpGinFmonttao7wjNM6njMhDjIGj6SesbExft2rSF+oXTodxAoFxAUKKAryIZJKIc/NDrivueUQAM9KSh0KKWQiCcRaz7IFeWrhTaDF5EB3x5hg26Ll1M02VqIZMyQ1JVrMcByHxsZGv7WtRSIRli5diuzswNcpEjuJFjMk8VHMkFD1WjT4dMHNfFnpNOC8ONYnWmKSUHvXGDt58mTYx3qPoXXKSCQ4dOOCsjQjPeikHY6hLgBAr0yMPZlqfKqVY2/3YTSPtCNLmSHYt+nkAHyHYInFDHLzNRGtOyEkNU2VdC5btoySTkIISXFusWLSltTsMReTFs/a2lqcPn0au3fvxqlTp1BRURHSce3t7di9ezcYhsHKlSujXEuSKKqqqsBxXFRmcXSM6QRlaUZG0H2V5cshySzAwHgb4B4BywADpiGYHRZkKtIF+5482icoZ2arkaadfBEh0RLNmCGpKVFiZrqkk9awThyJEjMkeVDMkFDZWWHPTpcoNVdEiEmL59VXXw0AYFkWd9xxR0jjNQcHB/H9738fLpdnAdUrrrgimlUkCUShUECpVEKhiHzi5pzU4inLCjz5j9thA2s1QiRToF040RhWFS2DSCT81Vm+qhgVi3KQnqkEAJSUZ0Aipe7hsRLNmCGpKRFixu12o6GhgZLOJJEIMUOSC8UMIUIxafE855xzcNZZZ+HgwYPo6OjA5s2bcfPNN2Pjxo1YuHAh/ySI4zi0tbVh+/bt+Mc//gGj0QiGYbBq1SpccMEFsagqSWFuhwMuk1mwTZYROPF0GSZmrTW6nYLXluZV+e3vdLIomZeJknmZcDpYlC+krnGEkODcbjcaGxsxPCxc3kkkEmH58uXIzKQZsQkhZK7QOa2CcmrOaRvDyYUefvhhfP3rX0dfXx8MBgOeeOIJfp3OtLQ0AIDRaORbOL1rlhUUFODRRx+NVTVJCjO2tcPS0wNpejokajVEEgmk6dqA+7r0EzeD/529EpY0Lbqyc3BysAXL8hcJ9rXbXDCb7HxZKhMjryDweQkhhJJOQgghvlwcO/1OKSBmiWd+fj7+/e9/4+6778ahQ4f47U6nE+Pjnu6PkxfIXrt2Lf7whz8gLy8vVtUkCcBkMvFjIjSayE3Qozt8BKN79gEAGLEYqvJylH7t2oD7+iaeAJCdXYaSsqU4t2yt/3nHLYKyRCKGNp261cRStGKGpK54xkxLSwslnUmIrjMkXBQzJFQs5453FWIipsup5OTk4IUXXsDevXvx7rvv4vPPP0d/f78g4SwqKsLq1avxla98Beecc04sq0cSxKlTp/jpx2uCrLE5E+au0/zXHMtCJA0c/m6XA6xJJ9gmSQ8+q/LIgElQTs9UgqH1O2MqWjFDUlc8Y6aoqAjDw8NgWc8TbpFIhJqaGmRMMdkZiT+6zpBwUcyQUE1ufEtVcVnH89xzz8W5554LwDPhkF6vB8dx0Gq1kEpTcxYnEn+2/n5BWVlcFHA/c+M+WE4dgyQ9F91KObIVWqRrgowFdbEYHRGOG83Jo6eahJDgtFotampqUFdXB47jKOkkhJA5TqNNA3QTZS4m07/GXlwST19isZhm7iMCubm5cLvdfjPHzpZ9ZERQVs8vD7ifuekA7L3N0PW34HCGCpL0XGQ15yBXnYWzimshk3imueU4Dh+/1wSH3QWNVg6GYSASMcih9TtjLloxQ1JXvGMmPT0dNTU14DiOks4kEe+YIcmHYoaESiEXLqGQqivwRD3xHBkZwcDAACQSCUpKSqiPO5lWYWFhxM9pHxmB22YXbNNUVQbed6AdADAu8SyHIlao4XS7MGrRQSqeaJEfGTLhwGcdAACZXIzsXA3WnDMPUlpGJeaiETMktSVCzKSnp0+/E0kYiRAzJLlQzJBQKSet25mqjyqiknhyHId//etfePnll9HW1sZvF4lEqK2txXe+8x1aHoXElLG1XVBmxGJo5lf47ecy68AaRgEAn6crYBGJUKzNAQDkqrMFi0A31k103XXYWYwOm1FYQjeShBAPt9uNsbEx5OTkxLsqhBBCEphIphRuYFIz9Yz4pzKbzbjxxhvx61//Gm1tbeA4jv/HsiyOHDmC7373u7j//vvnzEBaEn/OsTFBWV6QD5HMfzyxvbcVAMACOJqmRH2aAttHG7Gj7TO4WJdg34bjwjGjOXka6mZLCAHgSTrr6+tRX1+P3t7eeFeHEEJIAhMphcvwMZR4hua///u/ceTIEQCBZ2jyJqGvv/46/vjHP0b67QkJyNLdLSinLVwYcD9bdyMAoFcugdNnZlq93YjK7Pl82WSwYajfKDh2fmUOJBLqZkvIXOdNOsfOPPBqbW2l5JMQQsicF9GutkePHsUnn3wChmHAcRw2b96Mm266CRUVFRCLxWhqasI//vEPfPDBB+A4Ds899xxuuukm5OfnR7IaJMk1Njby049XV1dH5JyW08LEU1VWGnA/b+LZrhIO8i7RFqJQO7GebOOJAcHrYrEIS2oKIlFVMgPRiBmS2qIVMyzLor6+nl+f2qujowO5ubmQyWRBjiSJjq4zJFwUMyRU3KRedVyKrusZ0cTzww8/5L++9957ccsttwheX7lyJVauXImioiL87W9/A8uyeOutt/Cd73wnktUgSc7pdMLpdEb0nNaeHkFZWVrit4/bYYO93zMWNNvBospsR1eaGna3C0vzqgT7tjYOCcrZuWrkFQq7SZDYiUbMkNQWjZgJlnSKxWLU1NRQ0pnk6DpDwkUxQ0JlGm5Fjmki+RTBPsXeySviLZ4AUFlZ6Zd0+rrzzjvx6quvwmAw4NixY5GsAkkB3rVcI7Wmq9NohFNvEGxTlfgnnvbeFsDtWdC9xmxHjcWJkhv+jA7TINQyFb+fw+5CR6twaZb1F1ZALEnN/vjJINIxQ1JfpGMmWNIpkUhQU1MDrZYeTCU7us6QcFHMkFCJxHakOfQTGxhH/CoTRRFNPHt6esAwDM4555wp95PJZDj77LOxbds2tLa2RrIKJAVEujuKtbdPUGbEYsjz8/z2s/UJY1FeUAGZQoNFCuGEQe3Nw2BdE10gRCIGi5dRN9t4oi5MJFyR7l574sQJ6HQ6wXZKOlMLXWdIuChmSKgYkQWFhomVQOwp2kEmoomn0eiZbCUzM3PafcvLywEABoNh6h0JmSVjU4ugrCgogEjiH/re8Z1e8uLA63w21wvHd85bkA2Fkp5mEjIXTZV0rlixAmlpafGpGIkYt9sNk8kEg8EAh8MBlmXjXSVCSJSJxWLIZDJotVpoNBqIRNHt1cY4TFC6TD4VYILvnMQimng6HJ5m4VC6FGg0nlYks9kcySoQ4sfU3iYoixTygPvZez0JartSChfDoFylRprLAblk4rGTm3X7je9ctIwmxyJkLqKkM/UZjUb09vbS8m+EzDEulwt2ux1GoxEMw6C4uDiq1/Ss0gK0L5i4X2XkEU3REkZEPxXHcWAYBgwzfZbufXJATw5JtNn6hS2UigCzKDv1I3DbzOAA9MkksIlFGIcZJ5o+xLqSWszL8IwJPd0xBqtFOFHAoqXUzZaQuYaSztQXKOlkGAZiMS2bRUiqY1mW/93nOA69vb1RTT4zZCpkuCeGcYlTc1LbyCaehERCf38/3G43RCIRCgsLZ30++7BwIiBlqf9SKrbOOs//IgY2sQhgRBBrcwAAmYp0fr8v9nUJjiso1iI9UznrOpLZiXTMkNQ3m5hhWRZ1dXXQ6/WC7ZR0pg632y1IOjUaDdLS0qBUKsEwDM1QTELi7QkIgGImyXAcB4vFgrGxMZhMJj75rKqqikq32wyJAkX2icY4EZOaDXOUeJKEMzw8zK97Ndskwu1ywTlpHLF6/jy//axnxnfuS1fipFoOLSMBazMgX5ODNPnE5EKnWoYFxxWXTT+emURfJGOGzA2ziZnx8fGASWdtbS0/jIQkN++NJuBJOktKSmC1WuFyuSjxJCFzuVx8b0CKmeTCMAzUajVUKhV6enr4a4LJZIrKhHGdwxLsUN7El9UwYXnE3yX+aP0HktJsA4OAW9hfIX2J/yxzEnUmZPnl6FUpMSCXoEUG7Orcj5NDLXzX8eFBE2xW4QK/ZRVZ0as8ISQh5eTkoKpqYm1fqVRKSWeK8Z34MCsrK6QhRISQ1MMwDLKyJu71ojUpKidVgWWkPv9Ss20wNT8VSWoVFRX8E8LZsvb2CsrSjAxI09P99hOnZUJVdRaGhj4HWBu/fX3JyolzWRyYtyALBp0NRr1nn+rlNL4zEUQyZsjcMNuYKSoqAgB0dHRgxYoVlHSmGG8XSYZhoFJ51nGWywNPTEdIMBQzqUGlUoFhGHAcJ+g+HUk2yABMnNvFpGYLeVQST71ej76+vmn38erv7w9pxjjvH3qS2iJ5A2ftESaeypJiv304lxNuixEmtxMjPkknAFTlLOC/Zl1uzFuQ7TmG4yCTSSCR0iQTiYBu+km4IhEzRUVFyMvLgyTA8kwkuXknPhSLxfzDCZpUiISLYiY1eCcVc7lc0ZsUlUvR2YQmicpfy6effhpPP/10SPtyHIcNGzZMux/DMGhoaJht1cgcY530AERZ7P/wwmUaBwcOYjD4urYSp10mdEtFGDKPoCR9YuyX0TCRlDIMg4Ji/5ZTQkhqma5VlJJOQgghszUw2A8gly+zrtRcwilqfzGna8H0XXZlqn29TduEzIRtYFBQVhT4d41ljWMAAKVIggvUxZBoMqFdtREu1gWJyPO0kuM4vnutV1q6Ikq1JoQkApfLhZMnT6K8vBzpAbroE0IIIZHgdLum3ykFRDzxDDVJjPR+s8VxHN5991289tpraGxshMViQW5uLtauXYsbb7wRNTU1UXnfX/3qV/jXv/4FAGhubo7KeyQbm83GtzIoFLNL7vwTT/81PF3GUUFZkubpTisRT/x62KxOOJ3C7hVaSjwTRiRjhswN08WMy+XC8ePHYTQaYTAYUFNTQ8nnHOf2maguGsspkNRDMUNC5aKutuFramqK5Olixmaz4c4778SuXbsE23t7e9Hb24t33nkHd911F77zne9E9H0///xzvPTSSxE9ZypoaWnhlzmYTcLPOhxwjAjX8JRnZwvKHMfBqRfuI07zn6l2cmunVCqGXEFd7BJFpGKGzB1TxYxv0glMrNtJyefc5vuwwjvhECFToZghoZorvTvpzhnA/fffzyedCxYswHXXXYecnBycPHkSL7/8MiwWCx555BHk5+djy5YtEXlPs9mM+++/f84EWjxYu7v9tkmzhUmlY6AD47teBKfOwOcZKmQqtJg3bxFyzaPIUWVCxHieUI4MmQRjvbTpCppBlZAU5HQ6UVdXxyedXmKxGFKpNE61IoQQksrUc2SFy7nxKaewd+9evPvuuwCA9evX44033sAtt9yCK6+8Ej/5yU/w6quvIiMjAwDw29/+FiaTKSLv+4c//AE9PT0ROVeqycrKQnZ2tmDdpJmwdAkTT5Fc5tfiae2sA9wsDJZxmMxj6NH1oN7Qjc86Pxc8FHj3lRM48GkHTh7rQ3fHGESSOf+rk1AiFTNk7ggUM8GSTplMhtraWmqxmOMkEgn/j8TO448/jkWLFmHRokX429/+Nu3+L774Ir//okWL8P777097zK9//Wt+/w8//BAHDhzgy48//viM6n3gwAGsXLkSq1atwjPPPBNwn7GxMbzwwgszOj9JLTKnsCEqVZs25vzd89///ncAnj8ov/71r/3WXFqwYAF+/vOfAwB0Oh1eeeWVWb+nbxfbtLS0WZ8v1ZSUlKC8vBwlJSWzOo9qfjmKtlyFvIs3IGvdWchcs8avldLe2wIAMIk9vwoihRoMw0AjU0N8ZmIh/ZgFNqsTDgeL0SEzOlpHIZPRFOmJJFIxQ+aOyTHjdDoF3Wu9KOkkXjKZDHK5HDJZaq6vl6jWrVvHf338+PFp99+3b5+gvH///mmPOXz4MADPOEzf94uUQMuqvP3227j88svx4YcfRvz9SPKRzZGUbG58yiB0Oh1/gTr//PNRWloacL8rrrgC2WdayrZt2zar9/TtYrtlyxZUV1fP6nwkONZigViphDw3B+r55chau9pvH8eoZ53Pd3I0OKRVoFkhQaeuByKfZ02NJwYEx0gkIpSVU8saIanCm3RO7tFCSSdJFvbBznhXIWpqa2v5RoFjx45NuS/Lsjhw4ACAicl89u7dO+UxZrOZn9yxuro6ZuO4H3vsMeh0upi8F0l8jHhuPNCa04nnF198wc84tn79+qD7iUQirF27FoDnaZter5/xe3q72Obm5uKnP/3pjM9DpucymQVliVotKHNuFi79MABgRCaGQSJGF2fDF73HMW4z8Pt1d44JjkvPUkKupLFehKSCYEmnXC6npJMkBZdpHP0v/gIu03i8qxIV3gdAADA4OIiBgYGg+544cYLvtbBx40YAnokiu7q6gh5z7NgxsKxn1vqzzz47QrX2tNQ2NzejubkZP/jBDyJ2XpKaRIq58bdmTieera2t/NdVVVVT7rtw4UIAnlmnWlpaZvR+vl1sf/GLX/BjR0l0sOZJiadGIyg7R3rBOe0wiEUwSYTdYM6ft5b/eqDXIHhNm6GMcE0JIfFASSdJBfr9b8JtNUH/+VvxrkrUnHXWWfzXU7V6els35XI5vvWtb/HbJ3e/9XXkyBH+66kaIQiJJrF8Uotnig7ynNOJZ29vL/91cXHxlPsWFBQEPC5Uvl1sL7/8clx66aVhn2OuaG1tRUNDg+DBwEzYBoVreIontXjaB9oBAD1y4UQRSqkCBWl5AACXi4VeZxW8vqSmcFb1IpEXqZghc0djYyO2bdvm1xLiTTqVSnrARIRsNhusVitsNtv0O8eIyzQOwxHPGEHD4e0p2+rpmxBOlXh6x3OuXLkSy5cv54dJTZV4esd3SqVSrFmzJgK1nZCIMUMSExNgHHAqmtNTs42NTXShzMzMnHJf39bJmfTJ93axzczMxAMPPBD28XOJ1WqF0+mEy+Wa8Tm4M91mfE3uamvv9ySeFVYnvtU7jsGS+RgqLodMJOWXUenvMcDN+sw0xgBLVlDimWgiETNk7nC5XGhubobFYhFM+kFJJ5mK2+0WLKuVCPT73wTncgAAOJcD+s/fQvYlt8S3UlFQU1MDhUIBm80WNPG0WCz8a2effTYYhsH69evx3nvv4fPPPwfLsn6T/LAsy09YNNXvPsdxeOutt/D666+jubkZNpsNBQUFuOiii3DzzTejqKjI75gDBw7g5ptvBgD853/+J+655x4AwIYNGwQNGAcPHsSiRYsAAHfccUfAbrnbt2/H22+/jbq6OoyPj0Oj0aCyshKXXXYZrrvuOprwKgXYGR0yLRM99RjGEcfaRM+cTjx9n0BNns12Mt9f6nCfXPl2sf35z39OSz5Mg2EY/t9M2QaHYO3vh1ipgkSlBCOVQjyp25y9/xQAQMFxqLQ6cVbRamSee41gn54u4dPj3Pw0KFV0gU80kYgZMneIxWIolUpYrRO9GSjpJMnGt7XTy3B4O9LXb4FEM/XD9GQjk8mwcuVK7N+/Hw0NDXA6nX7r6h46dAhOpxMAcM455wDwJKDvvfceDAYD6uvrsWLFCsExjY2NsFgsAIJ3s7VYLPiP//gPv1bTzs5OPPfcc3jjjTfwl7/8BatWrYrIZ/Wl0+nwgx/8AAcPHhRsHx8fx8GDB3Hw4EH84x//wF/+8hcsWLAg4u9PYoeR2pBhG+LLrCQ1H6TP6cTTt3VkuqdFvq+H06ri28X24osvxqZNm8KvaIy1tbVhwYIFgqVe7HY7P+tbRkYGysrK/I7xXrxramoEr42MjKCvrw8AUFpaKmhdZlkWJ0+eBOBZWmb+/PlYvnw5/3pnZycMBs8YyyVLlgjWT9PpdDh9+jQAoLCwELm5ufxr+vqTGPl0N1+WaLUo+/rX+HL36S44+tsFXejlhZ6LtslkwqlTnqS0rUm4tELJvAw0Njbyf/Qmz0rc39+P4WHPhEUVFRXQ+Iwrtdls/PjgrKwsv6U/WltbYbVawTCM4HsAAMPDw+jv7wcAlJWVCVrgXS4XGhoaAABarRbl5eWCYzs6OvjJFpYuXSp44js+Po7ubs96p0VFRcjJyREcW1dXBwBQqVT8OGev06dP863/ixYtEjy8MRqN6OjoAADk5+cjPz9fcGxDQwNcLhdkMhkWL14seK2vrw8jIyMAPMsZqX1aqq1WK9+dNjs7m+8i7/1+tbS0oK6uDiKRCMuWLROcd2hoiJ+Uory8HFqtln/N6XSisbERAJCeno558+YJjm1vb4f5zJjhZcuW8bMlAp6eE941eUtKSgQPltxuN+rr6wEAarXa78agq6uLn6ysurpacCNlMBjQ2dkJwNPVPy8vT3BsfX093G43FAqF3xj13t5ejI6OAgAqKysFyZTZbEZ7u6e1Pycnx+9JfVNTExwOByQSCZYsWSJ4bXBwEINnurDPnz8/btcIXzO5RjAMg40bN+LDDz+ETqeD0WjEunXrBN+nnp4evldMVVUVFAoF/5rvNSI3NxeFhcJeEHSN8Eika4RXS0sLbDbbtNeIyUmNdyJChmECLo1hs9n4fZRKpeAhmMvlgsPhab2QyWSCGOU4jn8AIhKJBHEGeH6vvBPfKBQKwbVnfN8bfGsnfz6fVk+r1QqO4wKe1+Fw8Pcyk8/LsizsdjsAz1Jzk++PvOdlGMbvQY3T6eSTP7lcLvheud1u/sG9WCz2e+Dv+z2cPL7a6XTyiafdbkdjYyN/HfF+Dz/99FMAnhj3/mx9k8lPP/0UNTU1gp/NoUOH+K+9k0hO9vzzz4NlWeTm5uLaa69FRUUF+vv78X//93/o6emBTqfDj370I7z//vv8Z/L9HgLCeHrwwQeh1+vx0EMPYXx8HJWVlbjrrrsAeK6r3p+NzWbDLbfcwl9XKysrcdVVVyE/Px96vR6fffYZ9uzZg66uLtx444148803kZGRMeX30PuzmSoOA/1sfONwqviWSqV+vzve63648e37PQx03qni0De+p4rDQPHtjcNA52VZFlarFXV1dRG/j9CZBpFn6uS3mVUMX9943Ed4/05F2pxOPH1/AZxO55TJp/eXCpg+SfXl7WKbnp6OX/7ylzOqZ6yxLMtfuLw4juMvWGyAbqwul4t/fTK3282/Nvm8APjXAiX0vuflOOHiur51mnxe+9CQoCxWKAQXSufwaTBuz/u54RnsLC+o8DvvUJ9w0pGSeZlwOnUhfdap6hvos3r/KARqtZvNeaP1s2FZNmidfM8bKF683WJ9L7yhnHe6OPR+D6c771TxHcvv4VTxHcr30O12B7wJns330FunycdNPm+yXyMYhkFOTg44jkNBQYHfDcZMz+utL10jkvsaMfkm1/e9Av1uTLd9qmODHTf5WF8u0zhMRwOv/+ht9eRE8qDHz6ZOU70ejc/q5Tv+8tixY4IHWBzH8cuorFu3jv/5lpaWori4GL29vfj8889xxx13CH5/jh49CsCTpE1+mOPFsixWrVqFZ555RvCw7ZprrsHNN9+M1tZW9PT0YO/evdiwYcO0n/W8886DxWLBww8/DMAz1OuSSy7hX3c4HOA4Dk888QSfdN5www342c9+BoZh+ATx+uuvx/bt2/GTn/wE4+Pj+NnPfobHH3982u9xsO3T/dxmcl7f16LxezNV1/doflbv399A24GZXWdFTiM0Dh2/jfVZLz4e9xGBrveRMKcnF/J9GuT7ZCoQ38Rzum65Xr5dbO+9916/Jw2JSiwW+/1RZhiGf+IUKEAlEknAJ1KA5ymX97VAf+y9r/k+fQt03skXF986TT6vfWRU+B7aNEFZPOJ50u4G8GmmCp9naXFkvAPtY11wuV2QSqVwORiYTcKLREl5Jv+e033Wqeob6LNG67zR+tmIxeKgdfI9b6B4mel5p4vDqb6HvuedKr5j+T2cKr5D/R5O91nD/R5O9VlD/R4mwzUC8DxELCoqErSYReK8dI3wSOZrRCDTdekP9prvcVO9Hs57esZ2Br6J9bZ6hvKeM6nTVK9H47N6LVu2jG8w8I7L9BodHUVbWxsA/yVR1q1bB8DTOu/bvR6YSDxXrlwZ9OculUrx29/+VpB0AoBGo8FNN93El729Cnw/TzDTDQsxGo147bXXAHg+9wMPPMDHs+/3afPmzbj66qsBALt370ZbW1tUYzTc887m2HjH6FT1jcZ9RKZbeL2S+SSR8biPCHS9j4S4tHhyHIfDhw/j8OHD6Ovrg16vx+bNm/knRa+//jpWrFgR9f7qvk3kOp3O76Liy3dCoVDGaPp2sT3//POxdevWWdU1lhYuXCjo/gV4ku3J3eMmHxNMTk6OX/csL7FYPOV5J3cJ85WRkRF0SRqOZSGSy+H2dtOYtCC0wjwEMwCzWAQXw8Ci1qBD14MOXQ+2LN6Impoa1B/pBdA3cYxSipxcDXLzhV3nfBUWFvp1u+OPVyim/KyVlZVBX8vNzRV0JfYlkUimPO/krom+MjMzp5xYa6rzlpWV+XWn9EpLS5vy2MldOH0VFRUFnKgB8HTxmeq8Uy2LlJeXF/Thj1QqnfK8U12LsrKygl4TRCLRlOed3BXHl1arnfLYyd0EfRUXFwedqVutVk953sndGn0F6hLplajXCG9LZqAHhsFaOABPt+nJXV29NBrNlHWa3L3WF10jPBL9GtHa2ipoXRCJRFMurzO5C6EviUQS8IYR8NysTnXeQHEbaGznZNON9ZTJZEF7b4nF4inrNNU46KkS99l8D6VSKdLT07F69Wrs3btXMMEQwzB8Agn4J57nn38+Xn/9dTidTnzxxRe44IILAADd3d0YOtM76rzzzgta75UrVwb8HfFdXxQQdk0M1F3Vl1KpDHpjL5PJcPDgQb476NatW/mEItD38Ktf/Spef/11AJ7Ze4Nd16Z7qBJuHHpNFd+Af5ffUM87mzicKr5nE4disRhpaWkBr8WzvY/Il6rg28dO5uD4+sbjPiI3N1cwCWukxDzxfOONN/Dkk0/6LUniO+D7z3/+M4aGhvDlL38ZDzzwQNTWu/S9Yenv70dpaWnQfX0XLA72B89XfX09P+5r9+7d/IxlU/HuU1xcjJ07d067f6oaHh72dDsQiYLeSE0n90vnQVlUCI5lwVqtUE/6o+EY8oz7GpCJwQEQqzyJqUamglziuVi1Nwv7t2flqMCIaPKaRBSJmCGpx2634/jx4+A4DrW1tYKbHIoZEi7fbnLBbuBjwXcm22BSdYbbs846C3v37kVPTw9GR0f9lkspLCxERUWF4Jj169eDYRhwHIeDBw/yiad3GRXAP1n1NdVDM9/eEr494yYL1M1xKt6x04DnWvXRRx8F3dfss2a5dzw8ST5pYpkg8ZRi6u7uySpmiSfHcbjvvvvw1ltv8WUvwdg7pxNDQ0PgOA4ffPABTpw4gX/+859Bn7LPhu/Th9bWVsECxZN5JytgGGbKp85k9vr7+/mJOWZ6Q8haPU8KGbEYEo0GivyJli7OzcI5PggOwAuF6eDAIIOxInuwGeeXT0wu0NetE5wzLT34UzASX5GIGZJa7HY7jh07xnetO3bsmCD5pJgh4fKOffZ2qYuHUFo7vVJxhltvt1nA003WOzbSu35noAQyKysLVVVVaG5uxhdffMFvP3LkCABPz4ipenr49o6bzPf+dapxgeGOlxv0WYf8L3/5S8jHeSeVI8mnz6LGvnkTKysoXSYEfxySvGKWeD7yyCN48803AXh+Uc877zzU1tbiiSeeEOzncDhw/vnn49NPPwXDMOju7sbdd9+Nf/3rXxGvk7dPv9PpxIEDB3DjjTcG3I9lWX7ms8WLF095EfKqrKzEk08+Oe1+jz32GJ/UevefqpmfhIadtOSNyOd7yrnd0K7aiH7DIBxuz2yNwy4Lhkfa8JXqywAAbtaN8TGL4ByFJcLuuoSQxDQ56QQ8MyC2tLRM2b2WkEQXSmunVyq2ei5fvhwqlQoWiwXHjx/HJZdcgra2Nj5RC9ZyefbZZ6O5uRknT56E1WqFUqnkE89169ZNOVZwqm6k0WIymabfKQDf1k+SXFixAjbpxJA/hlo8Z+7UqVN47rnnwDAM8vPz8ec//5nvczw58VSr1Xj66adx6NAh3H333RgZGcHRo0fx0UcfCWb9igStVov169dj9+7d2LlzJ/r6+gJ2o33vvff4fs6XX355SOfOysoKqb7PP/88/3WkP1+yKisrm/Ui3e5JiadYOZF4ui16iJQa9MMC6Cb20co1qC1cCgAQiUW4eNNiDPYZYNDZYNDbUDaf1l9NVJGIGZIaAiWdgGc8kO/4PooZEq5wZrSPhnBaO71SrdVTIpFg1apV2LNnD98d1dvaCUydeP7v//4vnE4njh07hqVLlwadjCgaAk3sMhXfBoj333+f1uicA6wuYUrmEqXmmvExmdX25ZdfBsuyYBgGjz/++JQDXb3Wrl2Lxx9/nC+/8847UanbLbfcAsDTheaee+7xe8rU1taG3/zmNwA8SfG1114blXqQCRkZGcjMzJzx2F6O4+Ca9NRPrJgYhO4yeh4i9DiFP+sFWfP4m1C3m4Pd5oI2Q4mS8kwsWVGIzGz/mS9JYphtzJDUYLPZgiadk8d4UsyQcHknUYlHCxgQXmunl7fVM5V4u9t610z0dp+trKwM2m1+zZo1/M+tvr4ex44d47vGxiLxDHeGUO/YVSB66ykSEg8xSTz3798PhmFw9tlnh9XNaeXKlTj33HPBcRxOnDgRlbqdd955uOwyT/fKo0ePYsuWLfjrX/+K9957Dw8//DCuu+46fkbbH//4x36zVx44cACLFi3CokWL8I1vfCMqdSThYS0Wv21in6eHLqNnDMSWtPl4KHcdbi+/EJsXX4qzS1fz+1gtDrjdwm4OKk1qPn0iJBUESzpVKpVf0klIsplJa6eX4fB2uEzjEa5R/HgTT71ej+7ubn6SoKkSSI1Gw99/tra28suxFBYWTjkzdrz4NtAcPHhwyn3b2trwgx/8AL/73e+wa9euKNeMRIvBJfzblZodbWPU1dY7I2woLZ2TLV26FHv37o3qgOnf/e53MJvN2LNnD3p6evhFfb0YhsEdd9yB66+/Pmp1IJGjr6uHvv4kxCoVJColJBoNxKqJFk/2TIsnwzDIlShRXrYG8kJhNxazSfhUWa6QQioNr6sMISQ2vEmnbVIXe5VKhRUrVlDSSZLeTFo7vVJtrOfSpUuhVqthNpvx4Ycf8i2C55xzzpTHnX322Th69ChaW1v5BoX169dHu7pBTfSw8p946IILLoBEIoHL5cK///1v3HrrrUGX/HvmmWfw4YeehxLRmIiTxIYzzAmoklVMWjy9U0zPZNIc75iKaC1kCni6Yf31r3/Fww8/jHPPPRdZWVn8TIdf/vKX8eKLL+KOO+6I2vsTIZfLBafTKVhDLRy6ujoY6k9i/OAhDO/6DLpjx8GciR+30w7WKuxiK07zH7t5qkXYtUVNrZ0JbbYxQ5LXVEnnVC2dFDMkXBzHwe12Tzl7aTTMprXTK5VaPSUSCVav9vRQ8k48KZFIsHbt2qkO41tE29vb+V50sUo8A8WMdx1Kg8Hg91p+fj42b94MwNPV9q677go4cdCrr77KrxaRnp6Or371q5GsNokhFxfekjvJKiYtntnZ2ejv70dnZ2fYxzY3NwNA0AXaI4VhGGzevJn/RQ/VunXr+DrOxAsvvDDjY1NVQ0MDv8zBTFrJ7SPC1nFpxsRstLauk3DqBsGoM2ATi6ARyyFW+c9SLJq0XqdKTYlnIpttzJDkNF3SOdVkMBQzJFxWq5WfkGqqBegjzVT3CURKTUTOk3HO1gjUKP7OOussfPbZZ/x66cuXL4dGM/X3qLa2FkqlElarFXa7HUBsxncCCPiAKz8/H62trWhpacGjjz6K6upqFBUV8dej++67D4cOHUJ3dzf27NmDyy+/HNdccw0WLlyI8fFxfPrpp/j000/58z3wwANBW0VJEkjVvrWTxCTxrKmpQV9fHz755BNYLJaQL9jd3d3YtWsXGIahKfBJyJxnZiD2kvlMHmI49jEszZ/DIBbhYHY6FBn5KO0sRqYyAysKqsEwDE4c7sGp5mGkpSug0sjAMAwUyvgtFk4I8Rcs6VSr1VixYkXcZyAlJFIyztmaMgljpPiu5wlM380W8PSgW716Nfbs2QMAqKioiGvX1E2bNvF1+Z//+R8AnpUTHnvsMQCelRdefPFFfP/738eJEycwODgYcJk+uVyO+++/H1deeWXM6k4iT6FWCFZa4GLSJzX2YvKxvEuQ6PV6/OpXvwrpGJ1Oh//6r/+C0+kEAGzcuDFq9SOJRavVIj09PaT1UgNxnBm74SXzaS13Dp8GABgkInAuB1iRCMOWMfQbB/nxFvs/PYWWhiEc3n8a+z45hcE+AwqKZ1YXEhuzjRmSfNrb22eVdFLMkHCJxWL+H4mvpUuXClo4Q0k8AWHX2liO7wy0bNPWrVvxi1/8AgsXLoRcLodCofC7puXn5+OVV17BH//4R1xyySXIz8+HVCqFSqVCVVUVbrnlFrz77rv42te+FquPQqJEqRQ2yqXqSl8xafG87LLLsGzZMtTX1+Ptt9/G8PAwbrvtNixZssRv36GhIezYsQPPPPMMhoaGwDAMFixYEPL6mST5zWaGOY7j4NQLx0vIzkxLzrlZOPVDcANoUcrgZABVmue1TKWnO67LyWKo38gfy7rc0KTJIZHQjUYiS8RZCUl0LVq0CDabDUaj5/c13JZOihkSLpqkKnGIxWJ+Nttw3Hbbbbjtttum3S/UYVQlJSVB9wvlHDfccANuuOGGKfdhGAabNm3Cpk2bpq0PSV5qsbBnXYo2eMYm8QSAP/3pT/ja176GkZER7N+/X7DgLwD85S9/wVNPPSVYR5PjOGg0Gjz22GO0yDcJCWuxgDvTSu4lz8sDADjH+gHWhWGZGB/meJ6Uqo1dyOoxYkmuZ2H5/l6D3zIqRaUZ0a84ISQsEokENTU1OH78ODiOo+61hBBCkhYjnpySpWbeE7OEuri4GC+99BKWLVsGjuP4f96E0mg0wmg0Cl4rKyvDCy+8gIULF8aqmiTJOQIsu5O5qhYA4BzpBQD0yCeeKpldNhhsRpRoPeM8erqEs/6p1DJkZsduEglCSOikUilWrFgx7URChBBCSCITa7IFZUaUmj3tYtbiCQClpaX497//jW3btuG1117DkSNH/Bb7lkgkWLp0Ka6++mps3bqVuraQsPjNaJuuhfjMMj6OM+M7e+TCsF+UuwAZZ7ra9nQKE09thgLqNIpBQhKVVEoTfxFCCCHJIKaJJ+BZj/OKK67AFVdcAZZl0dfXB51OB5ZlodVqUVRUNKP1Pknq6OjogMvlgkQiwfz588M6dnKLp3d8JwA4RroBAE4RAzHHgT3T2r4gcx6/z+QWzwWLcqFNV4ZVBxJ7s4kZktgsFgu6u7tRWVkZ0fWcKWZIuOx2O99Tix6Kk1BQzJCZivV6wbES88TTl1gsRmlpKUpLS+NZDZJgjEYjv75euOyjk5ZS8U08z7R4XjNkxNVDRtgv+hoG8wtRlV0BANCPW2HUC2eUq1lTArkirr8mJASziRmSuCwWC44dOwaHwwGHw4GlS5dGLPmkmCHhYllWMESIkOlQzJBQmQbboLVNJJsSzhHH2kQP3VGTlDK5xVOe7VlKhWOdcI728dslAMpKa7C8dDG/bXJrp0IpRU7u7BftJoSEzzfpBIDR0VGcPHkyosknIYQQkghEIjOyLbqJDQwlnjPW19c3/U4hKCoqish5SGJbunTpjI8N1tXWOdYPuFnBa9JcYUv75MSzeF4GGBE9pUwGs4kZkngmJ51eDocDbrc7IoknxQwJl1JJwy5IeChmSKg4xoJscw9fdkqpq+2MbdiwYdbdDBiGQUNDQ4RqRBLZbBbntpzuEZRFZ7rRWTvqAACDMjHcAHJkaRAr1IJ9J08sVDIvc8b1ILFFC7qnDrPZjOPHj/slnWlpaVixYgUkksj82aKYIeGi7pIkXBQzJFRi1gyNfYQvW1N0OZWYdbVN1UGyJLE4DQZB2XVm1mT7YAcAz1IqY1IxxColOlp3oaagGkVp+XC5WAz0Co+lxJOQ2DKbzTh27Bick9bijXTSSQghhCQSTV4GTpf5zDkgS82HozH5K7527dqQ9rPb7RgeHkZ/fz8Az5OiSy65BGvWrIlm9UiKYO12uO12wTbxmVnkvGt4msWeJ0gihQYGuwluzg0A6O8xgGXdEwcyQMm8jOhXmhACIHjSqdVqUVNTQ0knIYSQlJWh0mLEp3utSEYtnjP2wgsvhLX/yMgInn76abz44ov49NNP8ZWvfAUbNmyIUu1IohkfH+fHcWVmht7qOHl8JwCk1ywHALh0Q9CJGXQqZNCwbmSptAAArcwzedDk8Z1qtQwDvQbMWyBc0JckppnGDEkM8Ug6KWZIuFwuF/81PQghoaCYIaHKlargsk7EiwipOYleQv4W5OTk4P7770deXh4eeeQR3HfffXjnnXeQl5cX76qRGOju7uaXOQjnhtA+Ikw8RXI55Lm5cLNOuF0OdChlaNB4WkAZSzeyO8y4ZskVnvfsEC7DkpaugFItm+UnIbEy05gh8WcymXD8+PGYt3RSzJBwORwOfmkMSiJIKChmSKh6x8TYLb+SLythxfI41idaEjqd/va3v42SkhIYDAa8+OKL8a4OSXCTWzwV+XmQZaSDs1uRvu4qWOZPzGLJAchUaPnZMbNz1MjIUkJ8pitueqYSWdmqmNWdkLkoXkknIYQQkkicIiV04lz+nwGp+UA0of+qMwyDCy+8EP/85z+xc+dO3H333fGuEomBoqKiGS2Z4BgVtlp6l1JhzToAQB8nHP+5IKuc/7qkPBNiqQgcx8FiciCvUAuJNDUHdqeimcYMiZ9gSWd6ejqWL18e9aSTYoaESyqVTr8TIT4oZkiorG4ZgImuti5RasZOQieeAJB9JnmI1FqgJPHl5OTM6LjJXW0nEk89AEArkiFbrMAoawMAlGV41oXlOA6jw2YAnocd6jQ5CkvSZ1QHEh8zjRkSP4GWGYhV0glQzJDwURJBwkUxQ0Ilkkjgm3giRZfiSfjE8/Tp0wBoLSQyvcldbeU5ZxJPi2eZlK+lV+JrqARXUI7RrFzkqT2vm4x2OBwuwbHZucI1PgkhkaVWq7FixQq+1TM9PR01NTW0viYhhJA5Z6i/F8DEhJasMzWXoUzoxLOnpwcffPABGIZBWVlZvKtDEpw9aFdbvWC7RpuH7Jz5fNmgswleV6pkUKpoYiFCok2j0WDFihXo6urC4sWLKekkhBAyJ9lY1/Q7pYCESzwdDgfGx8exd+9e/OlPf4LNZgPDMLScCpmWY3REUJbnZINjXXBbTYLtYrWwG61RL0w8temK6FSQEOJHo9Fg6dKl0+9ICCGEpCgnR4lnxFRXV8/qeK1Wi2984xsRqg1JdHV1dfwyBzU1NSEd43Y64dQJWzadOh1svS2wdJ2ASamGUaFAujIDKpmCD3y3m/NLPNMo8Uw6M4kZEjt2ux1yuTze1RCgmCHhslgs/NIYKhXNek6mRzFDQpaaPWv9xCTx5LiZfzfT0tLwxBNPID2dJnshwTnGxv22iWQyWLvqYT/dgC6lFB1KGURSBdLzc1CWXoT1pauwf1c79nzUhrQMBbQZCmRkqajFk5AIMhgMqKurQ0lJCcrLy+NdHUIIISThKCjxjJyioqKQ9xWLxVAoFCgsLMT69euxdetWZGRkRK9yJOGoVCq4XK6wZrZ06nSCMiMWQ5KRDnvLfgCAWexZMkEkVwIAlFJPctnVPgq73QX7oAkjgyYUlqRDk5ZYLTNkejOJGRJ9BoMBx48fB8uy6OzsBMMwmDdvXryrBYBihoRPJBLxrVeEhIJihoRKygrLqRoxMfmLu3Pnzli8DUkRCxcuDPsYTVUlSq67BqzVCtZqhdvhgEShhGl8ECyAYxoFJByHDLkSas6NNJkGANDXLeyem5uvgUhM6/olm5nEDIku36TTq6OjAwqFAvn5+XGsmQfFDAmXQkG9YeLpG9/4Bg4ePBj0dZFIhPT0dGRnZ2PNmjW48sorsXbt2oD73nvvvXjjjTcAAB9//DFKSkqiUueZxMzjjz+OJ554AgDwj3/8A+vWrYt0tUgCUnJz494zJolnc3MzxGIx/aEnUeO22cCIRJCo1ZCoPUuhSDRquG0mjEnFaNScacXk9GAatuGc0tXQj1thMTsE5ykuz4x11QlJOXq9HnV1dYKkEwCysrJo/UxCoqBzvAflmdFJnpKF2+3G+Pg4xsfH0dbWhpdffhlbt27FQw89RD0bSOITzY1Z3WPym/jkk09ix44dWLhwIe68805ccsklsXhbMoe4LBa/bbLsLLgMoxhWCH+Z1TIVirUFaD4xKNgukYhQMo8ST0JmY6qkc9myZRCJ5sZTXUJiRWfV48Fdj+GPX/45MpRzYz6MBx98ENnZ2YJtDocDOp0OLS0teOutt2CxWPD6669Do9Hg/vvvj1NNCQmNWJkW7yrEREwSz7q6OnAch7a2NmRm0o09iTzWbBaUJRo1XIZhwM1iWCYcs1maXgixSIzuTuGERNoMJdLTlVGvKyGpipJOQmLvraYdMDnMeLtpB25eeU28qxMT55577pTdY7/1rW/hmmuugU6nwwsvvIAbbrgB8+fPD7o/IfHGSOdGq3xM7gLGxydu8Gm9NjKd06dPo6OjA6dPnw75GJdZ2OIpUavhHOkFAGhYNyosDmhYz5RhRWkFAICeLmHiuWxVMZRq6WyqTuJkJjFDIitY0pmdnZ2QSSfFDAmX3W7n/yUKnVWPD9s/AwB82P4ZdFb9NEfMDaWlpfjWt74FwLOywptvvhmXeiRizJDEJJZOuv9M0dmFYpJel5eXo7m5GQDQ399PT53IlHQ6Hb++XllZWUjHuCa1eIpVKjjH+gAAq402rDbaoCithvaa++BiXXC5WAz0GATHlJZn0sxzSWomMUMiR6fT4cSJEwGTzqVLlyZc0glQzJDwsSybcDOUvtW0A07WCQBwsM451eo5nbPPPpv/ur29PS51SMSYIYnJDhM0Pg8oxHDGsTbRE5PE83vf+x7uuusuAMDvf/97PPHEExCL58YgWhJ9HMtidP8BuB0OiFVKSFQqT+J5ulewnzS7GBqZZ+Kh7s5xsKx74kUGKJmXEcNaE5IakjHpJCQV+LZ2en3Y/hk2L750zoz1nIpSObuhM2azGa+99hr27NmD5uZm6M4s25aeno4lS5Zg48aN2Lx587QTFx0+fBhvvPEGGhoa0N/fD6lUioqKClx66aW44YYboNFowqqXyWTCN77xDTQ0NAAAbrjhBvziF7+Y0WckiUMktyDXPHHfykpccaxN9MQk8bzsssvwpz/9CQ888AB27dqFr3zlK7juuutQW1uLkpISaLVaujkhvEWLFoX1hNCh02Hoo48F29JrV8Ax4p94ek3uZpuXnwa5grrZJqtwY4ZEhk6nQ11dHdxut2B7Tk4OlixZktDXdYoZEq5EW07Ft7XTi1o9J5w6dYr/etGiRWEdu2fPHvzwhz/kk01fNpsNg4OD+OSTT/Dyyy/jr3/9K7Rard9+VqsVP/3pT/HBBx8IttvtdtTV1aGurg4vvfQSnn322ZBXfbDb7bj99tv5pHPr1q144IEHwvpsJDG5OAsyrAN82ark4lib6IlJ4nnbbbcB8PS51+l0aG1txW9+85uwzsEwDP+LRlKbXC6fficf9pER4QaRCIq8POiGOmFnGJxWSKBiOYjlMqhYJ2RiKXomTSxUTK2dSS3cmCGz53Q6UV9fn5RJJ0AxQ8KXSDEdqLXTi1o9Pdenv//97wAAqVSKr371qyEf29bWhu9+97twOp0Qi8W4+OKLcdZZZyE7OxvDw8M4fvw4PvjgA7jdbhw/fhx//vOf8bOf/czvPLfffjv2798PwHNdvOaaa1BZWYnx8XG8++67OHbsGPr6+vDtb38b77zzDtLSpp7VlGVZ3HPPPfxappdffjl+85vf0MOzFCHmzND6JJ76FO0ZGpPEc/fu3fwvhvd/jkvNTJ7Enn1wSFAWK5UA4wDntMMoFaNTKQMAdFsHoWrZiS2LN/q1eNIyKoSERyqVoqqqCo2Njfz1PFmSTkKSXaDWTq+52urpdruh0+nQ0NCAv/zlLzh69CgA4L777kNRUVHI5/nTn/4Ep9PzvX300Udx2WWX+e1z7bXX4tZbbwXHcXj33Xf9Es/XX3+dTzpXrlyJZ555RtAqetNNN+GnP/0pXn/9dfT39+N///d/8YMf/GDKej3wwAP46KOPAAAXXXQRHn74YbrWphCNSzhcRZqieVJMEs9wfuEJCRfnckGamQnWaoXbZoNYpQSr80wsZBZ7nwQyEGsyoJVrYNTbYNTbhOfgADfrhkhMF3FCQpWXlwcAaGxsRE5ODqqrq+lGiJAom6q10yvVWz0vvvjiafdRq9X45S9/ic2bN4d8XqvVik8//RQAsGbNmoBJJ+CZuKi2thZHjx7F+Pg4dDodMjIy+Nefe+45AJ7u2Y899phfV1yGYfCLX/wCO3bsgNFoxLvvvjtl4vmHP/wBr776KgDgnHPOwZ///GdIJ8+CSpKaxs7Bd30GmZMSzxnbuXNnLN6GpAij0Qi32w2RSDRt1xMA0FRWouCySwF4JhpipFI4h7sBAIfSlNBJRdBAAqnThnKZyq+1UyIRwWyygxFRd5VkFW7MkMjJy8uDTCZLurH6FDMkXL4zlMZzgsSpWju95mqrpy+r1YqPPvoI1dXVqKysDOkYpVKJnTt34vTp09NO+lNcXMy3qtpsEw+z+/v70dLSAsCTIOfk5IBlWb+YUSgU+NnPfgaLxYKKioqg7/Pcc8/h2WefBQCsXr0aTz31FGQyWUifhyQPLWSCxFOamnlnZBPP++67DwCwadMmnHfeeZE8NZlDOjo6+GUOampqpt3fdykVRiyGPDsbHDsIkToDTWoJTJIzN8Ntu6BVaJDWKbxgp6UrkJGppHESSSzcmCGR5fukP1lQzJBw2e12PvFUqVRxqUMorZ1eqdzq+eCDDyI7O1uwzeVywWg0oqenB5999hkaGhqwfft27N27F88++yxWrVoV0rlzcnKQk5MT8DWz2Yzm5mYcPnyYTzoBCGb1PnHiBP/18uXLYbfbg8bM1VdfPWVd3nrrLbz++ut8+Uc/+tGsZ+sliWnErsSxwkv4stxtwTlxrE+0RDTxfOONN8AwDKqqqijxJDFjaGgUlCVqFeSZ8yGr3QDT4B7Ba6sKlqFkYTE4jsPQgBFGnQ0ZWUqkZ8XnJoKQZDA2NgaO4/xu9AghsRVKa6dXKrd6nnvuuSgpKQn6+l133YW//e1vePjhh2EymfC9730P27dvR3p66En40NAQPvroIzQ2NqKzsxNdXV0YGhoKOEeJ77YRnwkPCwsLQ36/QF577TVB+eGHH8aLL75ID8pTkA0KjKoL+LLSaZhi7+QVk662hIQjPz8/YLeUYCQqFRw+i+6KZDKw1lEMsVbBfgwYlKQXgnMBCqUUZfOz+NcyKfFMauHGDAnd2NgY6uvrwXEcli1bljLJJ8UMCZdUKo3rEjzhtHZ6pXKr51QYhsG3v/1tfP7559i9ezfGx8fx5ptv4pvf/Oa0x7pcLvzhD3/ACy+8AJfLfy1FpVKJdevWYXh4GCdPnvR7Xa/X81+r1WpIpdJZxcy8efOQlZWFo0eP4vDhw3j11Vdx7bXXzvh8JDHZ3MIxu6woNcfwUuJJEk5+fv6sjne73WDsRkghwrnKAgy4LBiEEyqZCjKJDIPDwqdIEokYmjRaWiGZzTZmSGCjo6M4efIkv2RKfX09li9fjqysrGmOTHwUMyRc8Z7MJZzWTq9UbvUMxeWXX47du3cDAA4fPhxS4nnvvffinXfeAeD5ma9ZswbLly9HZWUlqqqqsHDhQkgkEvzoRz8KmHj6doV1uVyzGo9ZXFyM559/HmazGVdffTWcTif+8Ic/4OKLL06J6zCZwHHChxMcUrNVmxJPkvRcFougrMjPhb2zHYVSNb6RsRgAoF1zORxnbhp0o8L90zOVNLEQIZOMjo7yLZ1eHMdhaGiIbngIibGZtHZ6zdVWT2Bi5m3AMz5zOkeOHOGTztLSUjz33HMoLS0NuK/RaAy43ff62N/fP+X79fT0YHh4GGVlZQF7k/zyl7/ku+t+4xvfwN///nfodDr8v//3//Dwww9P+3lI8jCz9ul3SgHJMwUhIQFY+/sxsmcv9PUnYWo/BWtfP0SMcC0khhFBrNRAJfU8hdSNC7vgZlA3W0IEAiWdgKeVcNGiRXGqFSFz10xaO728rZ5zke94y1CGCezatYv/+vvf/37QpBPwLCPl5XutXLp0Kf/1sWPHpny/l156Cddffz3OOecctLa2+r0ul0/0xrrjjjv4nhpvv/02v04oSQ12t7Bbd4pOakuJJ0lu5s4umNtPwVB/EuOHvsDYgYPgOOEvr0ihBsN4Qt1uc8JqcQhez8iiGeII8RoZGQmadC5evJgmtSAkxmbT2un1Yftn0Fn10++YYrZv385/vXr16mn31+l0/NdTzVy8bds2DAwM8GXfsaAVFRUoKysDAHz00UcYGxsLeA6Xy4Vt27YB8LTMLly4cMq6qdXq/8/encdHUd//A3/N7JXNfRCuEK6QhBtUQFQ8Kp6Icih+VaxXrd/a1uLx06/VVq1ttVqvitZqrWc98QDEW0QFUUC5IZBwQwi5r032mOv3x7qTnWQ32YVs9sjr+XjwYGdn9rOfTd6Znfd8Ltx555369n333QePx9PJKyieSKrS9UEJgIknxZzt27dj06ZN2L59e5fHuiurDNumZDscW1egtewHrDu0CVtrduGQpxn1zkY0Nzmx7tv9aG3x6BfVHN+ZGMKJGQqupqYG27Zt6xVJJ2OGwuV0OtHa2gqn09n1wd3oq33fI82agmx75lH/S7Wm4Kt93/dovaPt3XffxYoVKwAAaWlpOO+887p8TV5env540aJFAWewXb16Ne655x7Dc26/CQ4FQdDHkra0tOCWW27pkHyqqopHHnkEhw4dAgBcdtllIZ1fZ8yYgZNP9i6ysW/fPvzrX//q8jVEsSQiYzzfeOMN/Y+9uwiCgJdffrlby6TYJMsyZFkO6STsrq4xbJtTUuA+VILWmoPYl5UCNAJWzY2U3SkY7hyFLz/a4T3OIiK7TwqmnjY8oS6me6twYoYCC5Z09u/fH8XFxQn3s2XMULg0TQuYiETa7FHnYvaoc3v8fWPZt99+G7DrrCRJqKqqwooVKwxdUW+99daQllKZMWMGFi5cCEmSsHLlSsybNw8XXnghcnNzUVVVha+//hrfffddhzhwOByG7SuuuAKffvop1q5di++//x5z587FpZdeiqFDh+LIkSP46KOP9PU+R4wYgeuvvz7kz/6HP/wBs2bNgiRJeO655zBz5kwMHz485NdTbLLYjJOXaQn61RSRxPPgwYM4ePBgt5UXzenLqedZrVaIogizuevw9NTVGrYt6elQmg+gxdTWmG9KToMoCKgpb7tLLUsqJI+C5NSjn22OYkc4MUMdVVdXY/v27b0m6QQYMxQ+QRAS8m8hHrVvcQzGarViwYIFuOKKK0I6Pj8/H/feey/uvfdeKIqCLVu26Amiv0mTJmHmzJm47777AAA7d+7EpEmT9P2iKOKZZ57BggULsGrVKlRUVOAf//hHh3JGjx6NZ555xjCWsysFBQW45ppr8O9//xuSJOHee+/Fq6++GvLrKTalpKYYn0jQPqkR+caNxh1BShwjR44M+VhPfYNh25yWBtXVgg2ZydiRbEWyoqKPWUCqIKJ8v/HY9MwkpKSym20iCCdmyChY0jlgwAAUFRUl7IU2Y4bC5b9MBsUeQRCQlJSE9PR0FBQUYPLkyZg1a5ah+2wo5s2bh+LiYrz00kv48ccfUVtbC7PZjJycHIwePRqzZs3CmWeeiebmZvz1r3+FJEn4+OOPMX/+fEM5qamp+M9//oPly5dj8eLF2LhxI+rr62G321FUVISZM2fi4osvPqrlVn79619j2bJlqKiowNq1a/Hee+9h7ty5YZdDsSNVNF6PJuoK0xFJPC+44AJMmzYtEkUTGajtBtZbc9KBGqDCZkZ5krfbQlndbjQLFojlxoH73sSTLZ7Ue/XWpJOI4k93tur97W9/w9/+9reg+8ePH4/HHnus0zIyMjKwdevWLt9r+vTpmD59esh1u+mmm3DTTTd1ekxycrJhBl5KAGKCNnG2E5HEc+zYsZgzZ04kiiYykBqbDNv23DS4aoAGs/FeUaFlJMraTUWflsEWT+rdmpubmXQSERFFmTk9F0DbNa0gJuYwkN6RXlNC0lQVUn294TkBbmgAqq3GxNPSmGrYzspJxtCCPrBYE7UzA1HXhg0bhkGDBunbAwcOZNJJREREEZGY6TTFtcOHD0NRFJhMJgwcODDocVJTMzSl3bpHcjNUAKc1tKLaYkJtZjaqRA2uauOF9NARORgxsm8Eak/REGrMkJEgCCgoKADgnd6/sLCw1ySdjBkKl/+aiUczLo96H8YMHS0NiTlfDhNPijk1NTWQJAkWi6XTC8L2M9pCFKE6a2EC8LP6VgBA9tjZyJg6C0/8ebnh0EFDsrq72hRFocYMdeSffPaWpBNgzFD4ZFnWZ9lnEkGhYMxQqFpqDiFJBnz5phmeTo+PV0w8KW556ozdbC0ZGZAbjhifyxqApgYXmhtdhucHDWXiSb2Lr3UvkN6UcBIREcUaM+owoMnvulZg4knUIwoKCkJau9VTU2PYtmZlQnHsNTxnyR6AffuNCWqS3YI+ucYxnxTfQo2Z3qqyshJ79uzBxIkTuSTETxgzFK5w1lokAhgzFDqP5kS6q+26VjarUaxN5HR74sk1POlYpaSkdH0QgNYDBw3bqsfbqrkvyYJWUYBN06CoTuzZ3Wo4Lm9IJgSRF5uJJNSY6Y0qKytRUlICANi4cSOTz58wZihcwXoMEAXDmKFQWdCKrNZD+rbTlpjzv3Zr4vnKK68AAAYPHtydxRIF5G7X1VYQvHeHaiwm1FtMEEwW1FeX4siuJMNxHN9JvcWRI0ewY8cOfdvtdmPjxo044YQTON6IiIgoRtjSklDevy0tU5l4dm3KlCndWRxRp9ovpSKava3t7p9aM0WrDYosoLHabTyOrZ3UC7RPOn369u0Li8UShRoRERFRILlZ2ahPabs+NdkSs7WcYzwp5jidTn3sVWddAqXGJsO2IMpoFQWsTbfDpmpItlmQuqcOmpZtOK7/wPSI1JuiJ9SY6S0qKiqwc+fODs/n5+dj+PDhHNcIxgyFT1VVPWZEMTFbI6h7MWYoVFlmOwa7JH3bJCRmvDDxpJhTVlamL3Mwfvz4oMcpTqdh256Xi6o0CyptvnHGHmQdPoSi9P5odUjQVA32FAuGFvaJYO0pGkKNmd6ASWdoGDMULpfLpScRycnJ0a4OxQHGDIWqvtmMzZZp+naS5sHE6FUnYph4UlzSFAVSY6PhubTiUThobQTqt+nP2VPNOKFoCFRVg7PFA4vVDIslMbsvEAVLOgcPHoxhw4Yx6SQiIopBLUoSDpoL9e0UrTmKtYkcJp4Uc3JycjpdcxAAPA0NQLsZlE0WDXWKcTxnupAJwDuuMyXNhqEj2NqZiEKJmUR3+PBhlJaWdnieSWdgjBkKl9ls5hI8FBbGDIXKrVkBtC2hogiJmaIl5qeiuJaXl9flMZ72M9qaTBCTrBgipeHclMGoU1xoSk5FzhFjopmayjW1ElEoMZPIgiWdQ4YMwdChQ3nRE0BvjxkKH2eCpnAxZihkdjuAFn1TS9AxwUw8KS55amsN25bMdAiCgAJrBgqsGRAtNtiPuwDffb3HcFxqOhNPSizl5eUoKyvr8DyTTiIiovhQe7AcQKa+rcha0GPjWWKm05Tw2rd4WtJTDdtiUioczcZut2azCbYk3muhxFFTU8Okk4iIKM61ysZrViRm3snEk+KTu6bGsG1OMc4WZ7KnoaXZY3guJdXKC3FKKFlZWcjMzDQ8N3ToUI7pJCIiiiMeTY52FXoEm38o5pSWlurLHBQVFQU8xnW4wrDtLN+P5q2N2JGaBFhsyLaZsGGNE6oHSMuwIzXNhr4D0nqi+hQFocRMIjKZTBg3bhy2bNmChoYGDB06FEOHDo12teJCb40ZOnr+S2MkJSVFuzoUBxgzREZMPCnmuFwuSJIERVGCHuOpN3a1heqBUn8Eh7VkeEQBR+pyUHkwCZoKVFU4AAD9B6ZHstoURaHETKLyJZ/V1dXo379/tKsTN3pzzNDRUVWVM5RSWBgzFCqLlqB9a9th4kkxRxRF/V8wqkcybAuCChmAR/Se3BU1G5pqfE3+sOzurirFiFBiJpGZTCYmnWHq7TFD4fMlD0wiKFSMGQqVXTHGSKJGDBNPijljx47t8pghP78CTSU7oLhc8NRWQipfh82pNmxJtSFJ0ZBeacw6rTYTu9omsFBiJt5VVVUhJyeH6052k94QM9S97HZ7tKtAAcyYMQO7d+8GAMycOROPPvpoRN9v4cKFeOqppwAAr7zyCk488cSgxzJmKFQ2tXfcBO0dn5ISjuJ0QRBFmJOTYU6xwWwDqqxmVFnNOGC3oL7SOLFQRqYdZjMv2Ck+HTx4ENu3b8fmzZvZNZSI6CdbtmzRk04A+Pzzz9HU1BTFGhEdnURt4WyPiSfFJcXZqj9WXa0QTIDD3BbOFrfxLmO/vIweqxtRdzpw4IB+YdXY2IgtW7Yw+SQig5a9+6JdhahYsmQJAKBPnz4AALfbjaVLl0azSkRHRUzJjHYVegQTT4pLitOpP1ZdDggmoMHXoqkBSa3GiYRGjx/Qk9Uj6hYHDhzAnj17DM81NDSgtrY2SjUioljjqa/H1j/e23HSvQQnyzI+/PBDAMB5552nz+j9zjvvRPR9b7rpJuzcuRM7d+7stJstUTjEXtIrj4knxZyqqipUVFSgqqoq4H5N06A4Xfq26mqBKAKTm5w4o74FJ2AgzIrV8JoBg9jimci6ipl4FCjpBICCggL07ds3CjVKLIkYMxRZkiTB4/FAkqSuD+5B5e8thtzsQPn7S6JdlR61cuVK1NXVAQBOOOEEnHXWWQCAkpISbN26NZpV08VqzFDsMVmN162J2veWiSfFnCNHjuDw4cM4cuRIwP2qxwPNr6uh6mqBYAImONw4r7YFZydNNhxvT7YgPZPrZyWyrmIm3uzfvz9o0pmfnx+FGiWeRIsZijxJkvR/scJTX48jn3wGADjy8ae9qtVz8eLFAACz2YxTTjkF5557rr4v0q2eoYrFmKHY5NGcsMot+j+L4uz6RXGIs9pS3Kn74Uc4du2GyW6HyW6H0uKA4NegWdOaDKBtcoH+eRmcypzixv79+7F3794Oz48YMQKDBg2KQo2IKFaVv7cYqsc7mZ7q8aD8/SUYdt010a1UD2hubsaKFSsAeFs7MzIyMH78eAwePBgHDhzAsmXLcOeddyIpKfhNZ1mWsXjxYnz88cfYtm0bmpubkZaWhkGDBmHatGm44oorAvYuCWVWW4/Hg6VLl2L58uXYsWMHGhoaIMsyMjIyUFhYiJ/97Ge49NJLA9bvzjvvxPvvv4/Bgwfj888/R01NDV566SV8+eWXOHz4MCwWC0aMGIELL7wQl156KcxmXsonApO9GXlN5fq2YpajWJvIYbRSzBk6dChUVQ26vl7N19+g/ocf9W1LKpCW17a/qsF4PLvZJr6uYiZe7Nu3D/v27evwPJPO7pcoMUM9x2azQdO0mLmR6d/a6XPk40+RN2cWrFlZUapVz/j444/hdrsBeJdT8bnwwgvx9NNPo7m5GZ988glmz54d8PVNTU345S9/iY0bNxqer6+vR319PbZs2YIXX3wRf//733HOOeeEVbeSkhL8+te/xuHDhzvsq66uRnV1NVavXo3//ve/eOmllzBw4MCgZW3YsAG//vWv9S7FAOB0OrF+/XqsX78e77//Pl588UWkpqaGVUeKPW7FiRRPg77tEtTgB8cxJp4Uc9LT0zvd766uMWyLFqDJJKI02Qq7quHQYYdh/wDOaJvwuoqZeMCks2clQsxQz4q1NXT9Wzt9ekurp282W4vFgvPPP19/3pd4At7utsESz/vvv19POqdMmYJzzz0Xffr0QX19PVatWoUvvvgCLpcLt912Gz7//HP0798/pHrV1dXh6quvRmNjIwDg5JNPxumnn47c3Fw0NDSgpKQEixcvhiRJ2L9/P/785z/jmWeeCVhWU1OTnnSedtppmD59OlJSUrBp0ya8/fbbcLvd2Lx5M5544gn84Q9/CKl+FLvMohPZjn36dqMQW+eb7sLEk+JO+zEsJgvQahJQbzGhVkuFx2m8S2RPaTdgmyjGBEs6CwsLkZeX1/EFRNSrBWrt9En0Vs9Dhw7hxx+9vZ5OO+00ZGS03VweNmwYxo4di61bt2LdunXYt2+fPtutT11dHT766CMAwOmnn45nn33W0Ip9+eWX49///jceeeQReDwevP322/jd734XUt2ee+45Pem88847ce2113Y45uqrr8Yll1wCl8uFb775Ru/i215DQwMA4IEHHsDFF1+sP3/hhRfirLPOwjXXXANN07BkyRLceeed7HIb52xul2HbpGpRqklksY8RxZ2kvn1hzc6Gye5dq1MwAc6fustJHuN4DJNJQN/+7IJCsUnTNOzdu5dJJxGFJVBrp4+v1TNRLVmyBJrmvSi/8MILO+y/6KKL9MeBJhk6ePCgvhbyaaedFrDr9NVXX40hQ4bguOOOg91u77A/mE8//RQAkJeXh6uvvjrgMYWFhfoMvLIs48CBA0HLO+usswxJp8/UqVMxadIkAN6W0f3794dcR4pNWbKxhTNJTszEk7dHKOZIkqSPo7FYLB329zl1GmSHtztt8/ZvYZLLsSrDjmqbGRlNObD5HZuanoSUVFuHMiixdBUzsUqW5YCzqjLpjLx4jRmKHlVt600TzbHBnbV2+iRyq+fSpUsBAKmpqTjzzDM77J85cyYeeughKIqCxYsX4+abbza0BmZmZuqP3333XcyYMQPZ2dmGMqxWKz77rPOfcSDvvfceDh48CMAbI8Fixn/4hNMZfPbSzsaXFhcXY926dQC8ySfFtxRVRKvftiUxh3gy8aTYU1JSAkmSYLFYMH78eMM+7xqebSdpU1IqkjLyUWt3o8oMeJKbkJVai0wxG4LbgqycZAhibEwEQZHTWczEMovFgokTJ2Ljxo36RBlFRUWdTjZB3SNeY4aix+Vy6TcrkpOTo1aPzlo7fRJ1rOfGjRv1HiLnnHMObLaON5ZzcnJw8sknY+XKlaiursZXX32ltzACwJAhQzBq1CiUlJRg+/btOPvss3HmmWfijDPOwMknn4ysY0jWs7KyDK/3jxmTyYTS0lJs3LgRX375pX6Mf3LaXkFBQdB9/hMKyXJizoDamzg8dpTlTNK3rZobJ0exPpHCxJPiSvs1PE3J6UgpHgVHwzpAlaBYJLSk1+K4IQXon5aLfgM6jpsgiiV2u11PPocMGcKkk4iCCqW10ycRWz19kwoB3iVLnnvuuYDH+bdwvvPOO4bEEwAeeughXHXVVWhoaIDD4cDSpUuxdOlSiKKICRMm4Mwzz8SMGTOOemK3xsZGfPHFF9i4cSP279+PgwcP4siRIwGTTF+34UACjf308f+MnSWvFB+aVTsOZA3Xt+1SYrZiM/GkmJORkQFZlgMOlFdaW9s9IUE2i3Co3sWZzZL37mey1TsmIy0j9LEZFL86i5l4YLfbMWXKlJibNTORxXvMUM8zmUxRX04llNZOn0Rr9ZQkSZ8UCACWLVuGZcuWdfm6b775BlVVVYY1OYuLi7Fs2TI888wz+PDDD/WJfFRVxYYNG7BhwwY89thjuPjii/HHP/6x0/VA23vuuefwz3/+M2AXWovFguOPPx6apmHt2rVdlsXvhN7DA+NEmKqQmN9NifmpKK4NGTIk6D6lte1ErmkaBBGAIODy9ELUym7UJg2G0ywh2ez9kkhN4/jO3qCzmIkVvrvawS5aeYHRs+IhZii2BOrW2ZPCae30SaRWz6+//lpPEMOhKAref/99/O///q/h+dzcXNxzzz2466678MMPP2DlypVYvXo1SkpKoGkaNE3DO++8g9bWVjz++OMhvdfjjz+Of/3rXwC8YzonTpyICRMmoKioCCNGjMDIkSNhtVrxxBNPhJR4Uu+hqMZrA1VIzPlfmXhSXJH9WzxVGYLVBJtowukpeWh1A2UDx0Lwa8FIYeJJMUDTNOzZsweqqmLEiBExswA9EcWPcFo7fRKp1dO/m+0rr7yCE088sdPjv/32W1x33XUAvJMI3XDDDQHPvWazGVOnTsXUqVMBAJWVlXjvvffw1FNPQZZlfPTRR/jd736HYcOGdfp+FRUV+Pe//w3AO4HRiy++iNGjRwc8trm5udOyqPdxKVK0q9AjEjOdpoRV+dnnqFu7Do1btsJRtguqu+0P1eUxQTC1JZ22JAssFrYiUXT5ks6DBw+ivLwcu3fv7nRMDxFRe0fT2ulz5ONPO6x/HW8aGxuxYsUKAN6WysmTJ3f5mpNOOknvXrt//369hXHbtm14+eWXce+998Lx0wz5/vr164cbb7zRsBxKaWlpl+/3zTff6Mu0/PznPw+adALeyc18+H1AAOBUjYlnokYFE0+KK007dqJlz140bduOho1b4Glo+9JodCUBfjczU1KsAUog6jmapmH37t369PqAd/HzPXv2RLFWRBRvjqa10ycR1vX86KOPIEneC/PzzjsvpOVsRFHEzJkz9e1FixYBAL766is88MADePPNN7Fq1aqgr/dfdiWUWYz9uwF3dvzmzZuxYcMGfZsz0hIAeNTeEQdMPCnm7N69Gzt37sTu3bs77JMbjbN8KU3lKN25Eit2rcOHq4HVK3Zh4w8HsG9XLcxWhndv0VnMRIsv6Tx06FCHfSkpKVGoEfmLxZih2OZyufR/PelYWjt94r3V07+b7QUXXBDy62bNmqU//uyzz9DU1ITzzjtPf+6hhx5CbW1th9c1NDTg7bffBgAkJSVh7NixXb6X/9rLS5Ysgcfj6RAz27dvx4IFCwyz0PqW0iLqDTjGk2JOS0uLvr6eP03TILe0GJ4TBTfqHbU4rA0AAMiShqY6N5rr3Zh+wageqzNFV7CYiRZN07Br1y6Ul5d32Ddq1Cj069cvCrUif7EWMxT7VFWNyqy2VctXwJyW2vWBIZQz6JK53VCjnnXgwAG9hTAvLw8TJ04M+bUjR45EcXExdu7cCbfbjQ8++ADz58/H7NmzsXjxYhw+fBjnnnsu5s2bh4KCApjNZuzduxeLFi3SE9JrrrkmpLU9zzjjDGRmZqKhoQE7duzARRddhNmzZ6Nv375oaGjA+vXrsWLFig4tnBzvSQAgmo1Dw7QEnQqCiSfFDbmlBVq7E7bJBrgFAZLT+KWQnGpFRmbo058TdRcmnUTUnQZdMjcuE8bu4t/aed5554Wd+M+aNQsPP/wwAO+anvPnz8e9996LmpoarFq1Cs3NzXjhhRcCvvbSSy/FggULQnqf1NRUPPzww/jd734Hl8uFvXv3BpwNt6ioCDfeeCNuueUWAMDOnTvD+jyUmNIz0oBqvycStNMeE0+KOcG6tLirqjs8JyYBn+SkILu5L/zTzNQ0G5JTOcaztwilG1RPYNIZP2IlZih+2O1cFzoali5dqj+eMWNG2K+fOXMmHn30USiKgu3bt2Pbtm0YM2YMnn/+eXzyySdYtmwZtm3bhtraWphMJuTm5mLSpEm4+OKLMWnSpLDe6/TTT8d7772HF154Ad9//z0qKyshiiKys7NRXFyM888/HzNmzNDfp7q6Gp999hluv/32kMatUuKyC8beN4kaDYLG6bR6PYfDYbjjVlxcjNTUY+/W090aNm3Gtnv+pG8LJgFJk4G/Dc/FiM2nIcmVpu8bObY/Lr02vC8MomOhaRrKyspw+PDhDvtGjx5tWLyciGJbWVkZZFmG2WxGYWFhtKtDRFEW6XPC8ucW4dudbTe3rHDhzkcv6fb3CVWkcoNETagpAXnq6gzbJquGRqsJgirC5jJO1lI4mhf51HOCJZ2CIDDpJCIiok6Z0/sYtgUxMTulMvGkuOGpbzBsixagwWxCUmsaBP9QFoAxEwf2bOWo1+os6Rw1ahSTTiIiIuqc0DvWnU/MdJriWl1dHVRV1cdF+MhNxqVURAswyCVjaovNMB47p08KrDaGdm8SLGZ6wq5du4K2dObm5vZoXSh00YwZik+yLOuz2prN/I6hrjFm6Ggl6jhI/hVQzDl06JC+zIH/BaHU7DAcJ5qBLFlBRku6IfEcMCijh2pKsSJYzPSEnJwcVFRU6OuyMemMD9GMGYpPHo+HSQSFhTFDoWppqIJJbeu9J6qeKNYmcvhXQHFDdnRMPAGgSTEmmv0GpvdUlYiQnZ2NsWPHYuvWrdA0jUknERERhcWsVGJwg99cJgITT6IeMWjQIL0LnL/2kwsJP+1uUoyJZp++sTcjL0VWsJjpKb7kU1VV9OnTp+sXUNRFO2Yo/litVr31iigUjBkKlUd1I0lqa2BRTXInR8cvJp4Uc4J1e/PU1Bq2NRXYZbXDpSUbnk/LSAL1LrHQVTIW6kCh4++LwsWukhQuxgyFyiK0Iqt5l77ttCXmTVH+RVDcUFwuw7ZoBqq1jt1qk1MsHZ4jOlaapqGpqQkZGRxDTERERN1HtGqoym5Ly2RrYraSJ2Y6TQlH0zQo7naJpwVwKFmG5yw2Eckptp6sGvUCmqZhx44d2LBhAyorK6NdHSIiIkogA/v1B7IE/Z8tOzHbBhPzU1Fc880OCkAff6V6PICiGo47kmJCqSkH/u1PSXYzLJbesRYStQkUM91F0zSUlJSgqqoKAFBSUgJBELg+Z5yLZMxQYtK0tgUOOGaPQsGYoVBlmJLQ3902rtOUoN9LTDwp5mzdulVf5mD8+PEAALndUioAUDeoL2rEKqhSMsyKBUlaMvoOHApB5Mm9twkUM92hfdLps2PHDmRmZsJqtXbbe1HPilTMUOJyOp36RDHJycldv4B6PcYMharVZUG5OEbftipKFGsTOUw8KS7Izc0dnmsaMBBadSOkpFZIALLTk1E8akDPV44SUrCkUxRFjB07lkknERERdYt6lw3brZP17RSt43VvImDiSTEnJSUFsiwbZoOT2iWepiQr6lQ3RLWtW22yxQ6rlSHdGwWKmWOhaRq2b9+O6upqw/O+pJMzosa/7o4ZSnzskk3hYsxQqDyacWJMRUjMYWP8xqWYU1BQ0OE52WHsamuyW/GzlDz0bdJQZ7PCk5SMnORMWG2J+YdKnQsUM0dLVVWUlJQw6Uxw3Rkz1DskJXGpLgoPY4ZClpwCoEXf1MTEvJ5l4klxoX3iKSZZMcyaAadmRv9UO2wDvBeRScns/khHr7Okc9y4ccjKygrySiIiIqKj03ikCkCKvq3IWvCD4xj7AFBckJrad7W1QVGBFrcAwdTWPSEj097TVaMEoapq0O61TDqJiIgoUpqd7SbRTMy8k4knxQfHrl2GbdEk4kitCKe7rTuCIAhIz2C3FgqfL+msqakxPM+kk4iIiCLNo8ldH5QA2NWWYs7+/fv1ST+GDBkCAJAdLYZjXJVH8PVmB5yOXGBvC6xJuzG8uC9MZt5L6Y0CxUyoOks6x48fj8zMzG6sKcWKY4kZ6p3cbre+NIbNZot2dSgOMGYoVAnawNkBE0+KOY2Njfr6ej6aJBmOUaHA4/adxAV4XCqsViadvVWgmAlVbW0tk85e6FhihnonRVH0JIIoFIwZCpWo9o7Uk1fqFBdUt9u4nSxAlY3jOfv2T+/JKlGCyM3NxfDhw/Vtk8nEpJOIiIh6TKpmnMU2UW9VsMWTYs6oUaM63CEcOHsWnIcOQfG40fjdMqwelAKt0dhS0a9/Rk9XlWJEoJgJx+DBg6FpGg4cOIBx48Yx6ewFjjVmqPfh0hiJQdM0vPHGGzj77LORm5tr2Ldw4UI89dRTAIBXXnkFJ5544jG9F2OGQmVVekeLJxNPijmBur5psgTBZIIgAqIZaLS2n+xFQ/+8tJ6pIMWc7uguOWTIEPTr148XCr0Eu9hSuESRncTi3f79+3HXXXfhhx9+wGmnnRbx92PMUKjEhG3jNOJfBMUF9acxnprk7XLrQqphvy3NhORUDtynY8Okk4ji0ZHDTdGuQlxYunQpfvjhh2hXg6gD0d47Gk+YeFJcUD0/JZ4eFzQALtU4njMjO4ld5qhTvtlrHQ5H1wcTEcUJR5MLrz7zHRxNrmhXhYiOkmjuHb1w2NX2J5qmYdmyZXj33XdRUlKC1tZW5ObmYvLkyZg/fz7Gjx9/zOUvX74cS5YswebNm1FXVweLxYK8vDyccsopuOqqqzBw4MBu+jTxrampCaqqQhRFpKd7E0zfrLaq5P1iHeKwodbvNX37cmKh3ixQzPhTFAVbt25FfX096urqMHHiRKSmpgYoiXqLrmKGqD3/GUpNJlPXL+gh367YDWerhNVf7cE5F42OdnXIT6zGDMUeU1K7XnsJ2pbCxBOAy+XCggUL8NVXXxmeLy8vR3l5OT744APcfPPNuOGGG46q/MbGRtxyyy349ttvDc97PB6UlpaitLQUr732Gv785z9j9uzZR/kpEse+ffv0ZQ7Gjx8PTdOgyt6FdTWPGwIAQTImDQMGZEehphQr2seMP/+kEwBkWcamTZswYcIEJp+9WGcxQxSI/5qMycnJ0a4OAG9r54+r9wMAfli9DyefMRyp6RwyECtiMWYoNnlUCYLfzLaClpiTDTHxBHD33XfrSWdBQQEuvfRS9OnTB9u2bcObb76J1tZWPProo+jXrx9mzZoVVtmqquI3v/kN1q1bBwAYOHAgLr74YgwfPhwtLS1YtWoVPvvsM3g8Htx5551IT0/HmWee2d0fMa7Jzc1o2bsPosUMT20dFA/QrBlbKLJzeEKnjtonnT6qqkJV1SjVioioe3y7Yjdk2XsukyW1V7R6tra2YtGiRfjiiy9QWlqKlpYWZGZmYuTIkTj//PMxe/bsDq2L/rPV+kyfPh0AkJeXhy+//DLoe7388sv49NNPsX//fpjNZuTn5+OCCy7AFVdcAbvdHvB1Pvv378ebb76JNWvWoLKyEgAwYMAAvadbfn5+wNf56msymbB9+3a8//77ePbZZ3Ho0CFkZWVh3LhxeOSRR5jMJhBTcj2G1pfr24pZBjAvehWKkF6feH777bdYtmwZAGDq1Kl47rnnYLN5m7tnzpyJSy65BFdccQUaGhrwwAMPYPr06WG1krz//vt60jl16lQ888wzhhPFvHnz8OWXX+Kmm26CLMu47777cMopp+h16I369+8PRVH0Lw7nkUrUfb9G3y8LFrgzjSf77NyUHq0jxZb2MQMETzrNZjPGjx/P7pW9XKCYIeqMxWKJqSV4/Fs7fRK91fOHH37AbbfdhiNHjhier66uRnV1NVauXImXXnoJ//znP4MmdaHau3cvfv/736O8vNzw/LZt27Bt2zYsWbIEL774InJycgK+/rnnnsM//vEPyD/12PLZvXs3du/ejTfeeAO///3vMX/+/E7r8cYbb+C+++7Tt6uqqlBVVcWkM8G4FQ8sit+a9SYpepWJoF6feL7wwgsAvBejf/nLXzokfAUFBfjjH/+I2267DQ0NDVi0aBGuvfbakMt/6623AAA2my3o3akzzzwTV155JV566SVUVlbim2++wdlnn30Mnyq+9e3b17CtOJoN201J7brVCkBGVud3HSmxdYgZRcGWLVvQ0NBgeN5sNmPChAlIS+sds8dRcO1jhqgrsbYEj39rp08it3pu2bIFv/zlL9Ha2goAOO6443D++ecjNzcX5eXlWLJkCcrKylBaWorLLrsM7733Hvr16wcAmDFjBkaNGoUPP/wQH330EQDg/vvvR05OTtDZzO+//34oioJRo0Zh1qxZyMnJ0YdGtba2YufOnXjggQfw6KOPdnjtM888gyeeeAIAkJycjLlz52L8+PEQBAFbtmzBu+++i5aWFtx///0QRRGXX355wDqoqooHHngA6enpuOaaazBo0CD8+OOPGDdu3LH+OCnGWMytyG8s0bcb0xLzpmivTjwbGhqwevVqAMCpp54a9O7YjBkz8MADD6C2thaffPJJyImnw+HA5s2bAQAnn3xyh4WK/Z133nl46aWXAACbNm3q1Ylne1KTcRZSh824hqfZKsBiScw/UAofk04iSnSBWjt9ErHVU1EU3H777XrSedttt3WYd+Paa6/F/fffj7feegs1NTW466678J///AeAtxGhoKAAJSVtF/annHIKBg0a1Ol7Xn311fj9739vaOWeM2cOLr74YjidTnz88ce45557kJGRoe/ftm0bFi5cCAAYOnQo/vOf/xje56KLLsK1116La6+9Fvv27cODDz6I0047DXl5eR3qoGkaJEnCq6++iokTJwJA2EO+KD6IrcZrXTFBx3j26uVUfvjhB32c19SpU4MeJ4oiJk+eDMCbFDY2NoZUfn19PcaNG4fc3FwMHz6802P9T1pNTVyPy0iDJTMDppQUQAQctkzDXnuKOWa6PlF0Mekkot4gUGunj6/VM5F89tln2Lt3LwBvY0CgyR7NZjPuvfdefbKwVatWYcuWLUf9noWFhfi///u/DtcXBQUFOO+88wB4v3N27txp2P/CCy9AURQIgoB//OMfAZPbgQMH4s9//jMA7wREr776atB6TJ06VU86KXH11ayGbbvMxDPhlJWV6Y+Lioo6PXbEiBEAvHefSktLQyo/Pz8fixYtwqpVq3DHHXd0euzu3bv1x5mZmSGV31ukDh+G/uediwEXnI/U/kBlprHF05ag3REoPIqiYPPmzUw6iSihddba6fPD6n0Jta7n119/rT++/vrrgx5nMpkM+7/44oujfs9zzz036BjwUaNG6Y9ramr0x7IsY/ny5QCAMWPGYOTIkUHLnzJlit7TbsWKFUGPmzRpUlj1pviUJBtvcJiVKFUkwnp1V1v/AeOBujj469+/v+F1vhbQ7vLuu+/qjydMmNCtZcebrVu36sscjB07FqrHO8BaU2UIGTlQLAdQl+qESbbCJFswdljijWWh8GzevBl79+6F2+02jN0zm81cs5MCan+eIeqK0+nUJxfqajbTSOqstdMn0cZ6bty4EQCQnp6OMWPGdHqsfw+2Y2nx9DU4BOL/neJ2t00Is3PnTjidTgDeMcEffvihvi/QpJGZmZk4ePAg9u3bB4fDEfC7qqsec5QYJNmKirS2mDMLnFwo4dTV1emPs7KyOjnS2ArZvkXlWK1cuVK/25WTk4NTTjmlW8uPN76lLnzdoFXppz8+TYOcngPVbYFilqCYvc8fP44n5d5MURTs27cPLS0thrvTFouFa3VSUO3PM0Rd0TQNWpTHXYXS2umTSGM9fddrnY3J9MnIyEBGRgYaGxsNrZHh6mzmc//ut/4x4VsyBQA2bNiADRs2hPx+9fX1Ab+v2Fund6iTUrC936n6tl1KzGF3vbqrrcvV1g2lq+VLrNa2vtf+rztWFRUV+L//+z99+8Ybbww6w1pvkZSUpP8D/BJPVUGrIkPz6wdvNpmRlcGTcm/ma30wm80wm7330ph0Ulfan2eIuiKKov4vWkJp7fRJpLGeLS0tABByS7Pv79rX+ng0fN8n4XA4HF0fFITvM7bnf/1JiUsWjL9nVUjMYWS9usXTf22lrv6w/fe3X5PpaNXV1eG6665DbW0tAO8Ma1deeWW3lH0sdu3ahYKCAsNdNrfbrQ+gz8zMxODBgzu8xjfbnG9gv09NTQ0OHz4MwDvu1b91WVEUbNu2DYD3rt6wYcMM42337duHurIyKJWVyE5Ngl20o8CWhYE2G1pUGZLFjt17diJ/cF6HWYO3bNkCTdNgt9tRWFho2Hfo0CH9DmpRUZHh4tPhcGDPHu+XdW5uLgYMGGB4bUlJid5Fz3+cB+C9kVBdXQ3A2z3GP/FxuVz6+ODs7OwOd27LysrgdDohCEKHqdKrq6tRUVEBABg8eLChBV6WZWzfvh2A9w7t0KFDDa/du3cvmpu9S9KMGTPG0CpYX1+PgwcPAvBOdtCnTx/Da32zMicnJ3fodnTgwAG99b+4uNhw86a5uVmfCKJfv376lPY+27dvhyzLsFqtHcbAHD58WL9LXVBQgJSUtjVanU6nPjY7JycHeXl5EEUR06dPx/bt27Fz507U1NRg6NChHZLOqqoqfe23oUOHGu5mS5Kkz3aYkZGBIUOGGF67e/du/aJg7NixhgvPuro6HDp0CID3bnx2dttyP6qqYuvWrQCAlJQUFBQUGMrdv3+/PlnZqFGjDMs1NDU1Yd++fQC8Xf3bL/+xdetWqKqKpKSkDmPUy8vL9fNKYWGh4WKtpaVFH1Pep08fDBw40PDaHTt2wOPxwGw2Y/RoYze9yspK/Y7+sGHDonaO8Ldv3z59QrbRo0cbLhYbGhpw4MABAN5F2/3PEUVFRdiyZQtcLhfKysp4jkjgc4S/0tJSuFwuiKLYoYu1/zmi/dIp/q3jgRJPl8ul77fb7YYWMVmW4fF4AHivJfxjVNM0PTkSRbHDjRC32w1F8Q72kj1CyK2dPj+s3ofjT8pDn9wMw/Mej0e/lklKSjJ8JkVR9O6jZrO5w/VRZ12OJUmC9NPNYpvNZoglVVX1G/cmk6nDDX//n2H7pefsdjuam5vR0tICWZaD/gx95frONUlJSYafYfsWa//fTaDlcnzlBPrd+Hg8HqiqClEUDT+Pa665BgsWLAj7Z+jxePSfYXv+P8NA5Xb2M/T/3XQWh4F+N/4/w87i22KxdPg5dvYz9C+3szgMVG5XP0NffHcWh539DAOVqygKnE4nNm/e3O3XEQ0OY6OWL/GM1nWE73uqu/XqxNP/D0CSpE6TT98fFdA9d5+qq6tx7bXX6hcvQ4YMwSOPPBITs7MqitKh+5lvSm/f/vZkWe70ROnbF6hbm29foIRelmXILhdURYGmyACsyLQkoa81FQpMaEnKhKrJQcvVNC3gXUv/+rb/IvL/rMHKDeWzdlZuoM/qKzdQDBxLuZH63SiKErRO/uUGihdJkiDLcsALuM7KDRaHoihi9OjRqKioQEpKSsAJIfzL7Sy+e/Jn2FkchvIzVFW1y88a6s+wfZ0CdSkM9WfY0+eIY/lb5jmid5wj/MuVJKnLcgMlIb73CtbdtrPnO3ttZ913/V/73Vd7Qm7t9JElFWtX7seMucabPcdSp872d9dnba9Pnz5obm42zM0RqFxN01BXV6ffSOnXr1+XXaRD2Rfq6/1vPNbU1IT0c+rOOh1tuaH83iL1MzzWOgW7bo7kZ/V9/wZ6HjjK86wavFErGtcRkRqG0qsTT/+7QW63O+TEs6tuuV05cOAArr/+euzf771zOWDAALz44ouGE1Y0mUymDl/KgiDoX8SBAtRsNgddXFsURX1foC97375AF39msxnann3QamrQYjPDIZmhZnv/8ASTCUl2792qYOVqmhawXv71bX/S8v+sndU3ULn+n7WzcgN9VovFAlmWA55Ej6XcSP1uTCZT0Dr5lxsoXiwWCwRBCLvczuJQFEUMGTJEb83orNzO4rsnf4adxWEoP0NVVQPW62h/hr46qara5e8mls4Rx/K3zHNE7zlH+MpVFKXLc0QgvvcKdqHb2fOdvbazG86+17Y0u/HjdweCHteZjWsP4bSzigxjPY+lTu1fH+z5o/2sgYwZM0Zvmd++fXuHXhP+7/n999/rzxcXF3dabih1CvUYoK3XhSzLWL9+fZev+fOf/wyLxYJBgwbhuuuu0+P9aOt0tJ81lN9bpH6Gkfi7OdZyO/u8vvNSd19HODVjUumfQkbjOiJSQwoELdoj5aPonnvuwVtvvQXAO+W2b1rrQBYtWoQ//OEPAIBHHnkEF1544VG95+bNm/GrX/1K7waXl5eHl19+udP3jjSHw2FYh6q4uDimxsat/83v4Dzkvct5ML0Y7oEFyBicBXt6GvLGjsbY4zqfkZgShyzLQRMFIqLuUlZWpnfpbN8NOxo+XbINa77Ze9Svn3r68Lie4faTTz7BggULAHjX8Xz88ccDHqcoCv7nf/5Hn832tddeMyxH8tRTT2HhwoUAAl/3LVy4EE899RQA4JVXXsGJJ54Y8H3ee+89/P73vwcAPPjgg5g7d66+75e//CW++eYbAMATTzyB888/P2AZ3333Ha655hoAwMiRI7FkyZKw60E9J9LnhFf+8jT21bd1zzUrLtz1xCXd/j6hilRu0KsnF/If5+IbGxOMb9wHgA5jokK1cuVKXH311XrSOWLECLzxxhtRTTpjUXl5OQ4cOKB3qVH9piqvSC/EfrkfNu+xYs1GFzZvDW+8C8UvWZaxadMmbNq0qUN3lfYxQ9QVxgyFy+PxwO12G3pA9YRwZrINJt7X9Tz77LP1MXMfffQRnnvuuQ7HKIqC+++/X086TzzxxA5rYPqP2fONi+tu/uuI3nPPPVi3bl2HmDl8+LBhYslrr702InWh+KGhd7QD9uqutv4DdMvKyjBlypSgx/omKxAE4ajudHz55Zf43e9+p18wT5gwAc8++2yXy7j0RrW1tfrEHHl5eVDcbSdsj8l/oLcACyek7BUkScLmzZv1cTubNm3ChAkT9JbP9jFD1BXGDIXL1+NCEIQenWl047pDsKcc+/ttXHcI06YHX5sylplMJjzyyCOYP38+PB4PHn30UXz55ZeYMWMG+vTpg4qKCixevFifnCszMxMPPfRQh3L812R/8MEHMX/+fADeVtTucuKJJ+Kaa67BSy+9hKamJlxzzTU499xzMW3aNIiiiJKSErz99tv6pDunnnoqZs2a1W3vT/FJYOKZ+I477jhYLBZIkoQ1a9boJ6D2FEXBunXrAHi7Q3S2tlMga9euxYIFC/Sk85RTTsFTTz3VYcYxCkz1u1MomYyZZkYOM89E1z7pBLxdQHbs2NFhZk8iokQzbfqIuE0Yu9P48ePx4osv4uabb0Z1dXXQdTJHjRqFhQsXdphtGgBOPvlkZGZmoqGhAT/88AN++OEHCIKAM844o1uvye68807YbDb8+9//hizL+PDDD/Hhhx92OO5nP/sZHnvssZiYWJKiKyMnC6hv29YSczWV3p14pqenY+rUqVi5ciW+/PJLHD58OGA32g8//FCfVj9YX/1gamtrsWDBAr2bxc9+9jM8+eSTXJepE4WFhYaZyrSfEnZJsEAVjSGbnMmxfolMkiRs2rSpw9poVqvV0GOhfcwQdYUxQ+FKSkpizETZpEmT8Omnn+Ktt97C8uXLsWvXLrS0tKBv374oLCzE7NmzcdZZZwWdByArKwsvv/wy/v73v2Pz5s1obW1FdnY2KioqOixTcSwEQcCtt96KCy64AG+++SbWrFmDI0eOwOPxIDs7GxMmTMCcOXNw5plndtt7UnyzCcaYTdSxkL16ciEAWLVqFX7xi18A8LaAPv/884bBs7t27cL8+fPR0NCAlJQUfPHFF2HNPnvzzTfj448/BuC9W/ff//73mGfF7W6xPLmQKkn47pLLAADN1iysHTzbsP/qO07AkH4d72pS/Oss6Zw4cSJ7DBBRxMTa5EJEFF2RPicsf24Rvt3ZNpzMChfufDTxJhfq1S2eADBt2jSce+65+PTTT7FhwwbMmjULl19+OQYMGIDt27fjjTfe0Bd8veOOOzoknWvWrMFVV10FAJgyZQpeffVVfd/u3bvxySef6NvnnXceVq5c2WWdMjMzOwyI760UZ9tkCG6zMdGQzW4M7tu//UsoAQRLOm02GyZMmMCkk4iIiBKGKSUTQNtkmoKQmH1te33iCQAPPfQQWlpasGrVKhw6dAh///vfDfsFQcBvf/tbXHbZZWGVu3jxYsNirg8//HBIr2ufwPZmitOpP3aZjXda1CQPuzwloM6SzokTJxpmJSQiIiKKd4LZBv/EEwl6fcvEE97ptZ9//nl88MEHWLx4MUpKStDc3IzMzEyccMIJuOqqq3DCCSeEXa5vdjUKT0tLS9s4Gmer/rzLnGI4rk9OWk9XjSJMkiRs3LhR72Xg01XS6R8zKSkpAY8h8seYoXApiqI/DrQYO1F7jBkiIyaePxEEARdddBEuuuiisF534oknGvpA+3v22We7o2q9zu7du/VlDoaa2wZbuy3GFs9RQ4b1dNUogjweDzZt2hR20gkYY2b8+PGRriolAMYMhcvtdus3K9jdn0LBmKFQOZsbAbS1cqp+Ny0SCRNPimnGrrbGVomMLHa5TBTBks6kpCRMmDCB3WuJiIgoYQnuAxhS1+D3hAfAxdGqTsQw8aSY06dPHyiKApPJBE/JDv359mM8MzKZjCSKsrKygEnnxIkTkZTU9Vqt/jFDFArGDIXLbOYlE4WHMUOhklQPLGrbuvWaKEWxNpHDvwiKOf5rqR742jsLsAoBrnaz2u6tLccocCmVRFBYWIiWlha0tnrH9IaTdAIIuP4uUWcYMxQurr9N4WLMUKisZieGNGzVt522xFzJMzE/FSUM+adWMI85GRCM4epSWgO9hOKQ1WrVl0kJN+kkIiIiimeK6kJDqqj/a05JzBSNLZ4U05RW7xjP9uM7IajIyGFX20TiW6NT0zQmnURERNRrDM7PR2m/ttUwTLbETNES81NRwlAlb393p9m4dIpqkmFL4disRGOz2aJdBSIiIqIelWKyIkeS9e1EnX+AiSfFnB07dkCWZZjNZpis3kQk01WJIXWbUJGdjKpsOzQAg3OnRreiFDa3243y8nIMGzbMu05rN/GPmZEjR3ZbuZS4GDMULqffLOucaZtCwZihkElWuNQ8fdMkd3JsHGPiSTHH4/FAkiSoqgqr0zuO02OyQ4QKzeSGJ0mDZpOQn8mJheKJ2+3Gxo0b4XQ64Xa7MXLkyG5LPv1jhigUjBkKl6Zp+pqMRKFgzFCoKpst+D7pbH07RWvC9CjWJ1KYeFLMMZvN0DQNZrMZitMFAPCYvGP+VNF78rbZRZ7I44h/0gkAlZWVANBtyad/zBCFgjFD4fKdq/jdQ6FizFCoZNE4t4UqsKstUY8YPXq0/nhz638BALLJOyV5P1sKUq3JyB6YEZW6UfhcLhc2bdpk6HIEAE1NTZBlGRaL5Zjfwz9miELBmKFwsaskhYsxQ6FSrXYAbddJqpiYKVpifipKGMpPyYosehPPPtYU5NkyMKFwcjSrRSFyuVzYuHEjXC6X4fnk5GRMmDChW5JOIiIionjW0tAEoO2aSFW06FUmghJzkRhKGIrTBQ1tiadg8oasPTU5irWiUHSVdHIGWyIiIiKgvqnOsK0l6PQDbPGkmKa0tqLVnIZmWzbMqgc2RYBFA+xpTDxjWWdJ58SJE2G1WqNUMyIiIqLYImlKtKvQI5h4UsyprKyEoigwmUxQ3G402IeiOnUoAKCiDhAbZIx0V2N4yuDoVpQCikbS6R8z/fr16/byKfEwZihckiTpM5RymACFgjFDoVKRmF1r22PiSTGnsrISkiTBYrFAk2U4LamG/YLJgxapNUq1o84ESzpTUlIwYcKEiLV0+scMkwgKBWOGwsUkgsLFmKGQ9ZKlvZh4UszSFAXQNHhMxm61gsmDFAu72sYap9OJjRs3wu12G56PdNJJREREFM8yBGNKlqgL8DDxpJgzbNgwfVH32gsvwJYdgH8PBKdFhsg1sWJKtJNOX8yIIudLo9AwZihcNptNb72i+FRcXAwAmDJlCl599dVuLfvQoUOYPn06AGDOnDn429/+FpWYCVQPin0miS2eRFGRlpYGwNvi2ZiSAlV0AX5jrpuTWpGVlB6l2lEgkiRBlmXDcz3Z0umLGaJQMWYoXCZTYi7oTpHDmKFQmXvJQiO941NSXFJ/SmQ8mvHELac0IcOeEY0qURDp6emYMGGC/iWbmprK2WuJiIiIQiDaUqJdhR7BxJNilqZ4ux24VeOAfIutd3RHiDfp6ekYP348MjIyMGHCBE6kQERERBQCwdw7rpnY1ZZijtvthqZpUJyt0DRAQpJh//E5nIEyVmVkZGDixIk9PgbKFzOCIMBms/Xoe1N8YsxQuFS/WSdjaWywqrZNgiCKHH8aS2I1Zij2mJPtxicSdCw5E0+KOTt37oQkSTC5PUhVARXGrrZnDh4VpZoRAMiyDLM5+KkjGhNv+GLGYrFg/PjxPf7+FH8YMxQul8ul36xITo6NmdU9koIXl22D0yXDnmTGtTPHwGrhuMJYEYsxQ7FJ0hTA/3pXS8x1PZl4UszSWlvRVN0IwNjvPTWbEwtFS2trKzZu3IghQ4YgLy8v2tUhIurVyg42QJJUHKxqxrABGSg72IAxw3OiXa2IqqiowAsvvIBvvvkGhw8fht1uR3FxMf7nf/4HM2fOxHPPPYdHH30UgPcGU7jq6+vxxhtv4Ouvv8bevXvR2tqK7OxsjB8/HhdeeCHOPffckMv64IMP8M4772D37t0QRRHDhg3DjBkzcPnllyMpKanT15aVleG9997DmjVrUFFRgebmZiQlJSE3NxeTJk3CZZddhjFjxoT9+Sg2adZaDGqo1rdVk9zJ0fGLiSfFnMzMTCiKAmfZLuz5fiMwaKC+zwwJ9nQmntHgSzo9Hg/KysoAIGaST1/McAZBChVjhsIVi7GydU8Nmp0etLpkNDs92LanNqETzzVr1uDGG29ES0uL/pzH48HatWuxdu1afP755/qSKUfj888/x1133YWmpibD85WVlfj888/x+eefY/LkyXjyySeRnZ0dtBxFUXDzzTfj448/Njy/efNmbN68Ga+99hqef/55DB06tMNrVVXFAw88gNdee83QVRfwziDf3NyMPXv24O2338Ytt9yCX/3qV0f9eSl2yJoEi+rRtxWRiSdRjxg8eDAAoHzrdrhNxj7vmqigtOYwxuYOjkbVeq2WlhZs2rQJHk/bSbGsrAwWiwV9+/aNYs28fDFDFCrGDIUr1sYCV9W1orreifom7/rJ9U1uVCW3oqquFX2zE69b59atW3HDDTfA5XIBAKZPn44zzzwTFosFa9euxeLFi/HJJ5/g22+/ParyV6xYgQULFkBRvOu3TZs2DdOnT0dmZib27NmD9957D+Xl5Vi3bh2uvPJKLFq0CCkpgWci/fjjjyFJEpKTk3HZZZdh7NixqKmpwTvvvIPS0lIcPHgQ1157LT744AOkpqYaXvuPf/xDX2M0Ozsbc+bMwbBhw2Cz2VBeXo6PPvoIpaWlAIAnnngC06ZNw9ixY4/qM1PssFjdGFa3Ud9uTEvMFC0xPxUlBNXlgsds/PLUBAWyNba+/BNdoKQT8K6D2NkdXyIi6j5frz+EvYcb9W1JViHLKhytHiQnmeFo9UCWVSz5Zjcs5raJbIYNzMDpxw+KRpW71V/+8he4XC4IgoAHHngAc+fO1ffNmjULc+bMwQ033IDm5uawy3Y4HLjzzjv1XhAPPvggZs2aZTjmF7/4BW655RasWLECu3fvxkMPPYT7778/YHmSJCE3Nxevvvoqhg0bpj9/xRVX4LbbbsOnn36Kw4cP4+mnn8b//d//6fvr6urwwgsvAPD2KHr33XeRlZVlKPt///d/cffdd+O9996Dpmn48MMPmXgmAMVRB/8ZMoQEHePJKbYoZmmqCrfFeDdREBUkpXLh957S0tKid6/151u3s7NJhoiIqHsoiopte2qx93CT/u9QlQOHa1ogiAIG9U2DIAo4XNOCQ1UOw3Hb9tZCUeJ7GbLvv/8eGzZsAADMmzfPkHT6TJo0yZDEhePNN99EQ0MDAOC6667rkHQCgN1ux2OPPaYPMXnvvfdQWVkZtMwHH3zQkHQCgMViwQMPPIDc3FwAwLvvvgu3263vX7Fihf59++tf/7pD0gl4Z8e94YYb9O29e/eG+CkpluUJxh5+yQoTT6IelT35BIgDjWMIXWYFda6G6FSol/ElnZIkGZ73rdfJpJOIqGfUN7uhAUhOMqOuyYWq+lZUN7RCkhUM6Z8Gi1nEkP5pkGQF1Q2tqKpvRV2TC8lJZmia9/XxbMWKFfrjq6++Ouhxc+bMQWZmZtjlf/311wAAs9mMa6+9NuhxycnJuPLKKwF4WzW/+eabgMcVFhbi1FNPDbgvNTUVc+bMAQA0NjZi/fr1+r6LLroIn332GZ5//nmcd955QesxaFBbC7av6zHFN6tkvDlklhMz8eSVI8WcXbt2QZZlaIcrMD6zFoddR6DCDMlsQWO6CrOJYRtpDocDmzZtipuk0xczZrMZI0aMiHZ1KA4wZihc/ktjdDUjaXfrk2nH7NML8On3+2GzmnCoyoEWp4TcrGQkJ3kXnk9OsiA3KxkHK5uRYrdgUN9UZKTYcM7UIeiTae/iHWLbunXrAABZWVmd/r1arVYcf/zx+PLLL8Mqf9OmTQCAESNGICen88mZTjrpJP3x5s2bMW/evA7HTJkyBUDwmDn++OMNZfjKtFgsGDJkCIYMGRLwvY8cOYKtW7fi+++/15/zjUml+CaoVjTZ+ujbopiYv9fYunokgnf2VEmSILa2QrClQBNqIUCBZpYgWYHclMSdsS8WBEs6MzIyMG7cuJhLOoG2mLFYLNGuCsUJxgyFS1VVPYmIhrzcVFx2dhE+X3sAZpOIg5XNqGtyIT3Fqh9T1+jdzu+Xhvx+aTh7ymA9MY1nVVVVAICBAwd2cWT4E4c5HA69u2t+fn6Xx/sfU1NTE/AYX3fcYDHj/zmqq6sRyPr167F69Wrs3r0b+/fvx/79++FwOLqsH8WnKlcq1uVfqG/bpSaEvnBP/Ii9K0iin2iqCo/UNp20BkATVaRaE2+2vlgRj0knEVFvkZxkwc9OyMcrH23X15evbXTC5VGQZDUBQtu68z87IT8hkk4A+vjLUFqaw22N9l+axW7vumXYv3yn03lUdfB/H/8xnoB3zOadd96JjRs3BnztwIEDccYZZ+D111/vsq4UPxSTceJMTUjM0ZC8iqSYM378eABAg9mCraWHMMCcAgUaJKsJORnJSLOldlECHQ2Hw4GNGzdClo1rR8VD0umLGaJQMWYoXMnJsXHTs7q+FQDgdMtQVBUtTgnpKVYcqW2FIAAmUdSP828NjWc2mw2SJAVN9PyFO+bRPwkMpfzW1lb9cbAE0zdBULCY8S/DfzmVqqoqXHHFFairqwMA5OTk4KSTTsLIkSNRWFiIkSNHon///lAUhYlngvEoxkRTEWL3mutYJOanooSgKQokxYQ0k7eLitlsx/C8EUgyczmV7ibLMjZt2hQw6Rw/fnxMLpxORNQbVdU7IcsqZEWF2SRiUN9UpNgtaHFKOFTlgKx4l1mpqneiYFBmtKvbLfr3749du3bh8OHDXR4byjH+0tLSYLPZ4Ha7cfDgwS6P37dvn/64X79+AY/xdQ0Oxv99+vfvrz9euHChnnT+z//8D/74xz8GHA7Q1NTUZT0pvihIzMmE2kvMdlxKCM1lu9Bc64Dc6obs9ECVZSQnyN3bWGM2mztM+56Zmcmkk4goxlTXt8LpkZFit6BgUAb6ZiXjtOPykJuVjIJBGUixW+D0yKhuaO26sDgxYcIEAN4ut7t37w56nKqq+rIroRIEQV8Hc9euXaitre30eP+JfYqLiwMes3nz5k7LWLNmjf7Y99mAttl7k5KScNdddwUdg75jxw79sZag6z32Nk2SsbU9UX+rTDwpZpWv3YTDDSY0NSloqXfB1eREcipbOyNl4MCBKCoqAuBNOseNG8ekk4goxgwdmI6UJAuGDkjHsIEZ+J+zizB+RC4uO7sIwwZmYOiAtv2Jwn9pkddeey3ocZ988knQyXo6M336dADe3j8vvvhi0ONaWlrwxhtvAPCup3n66acHPG79+vXYuXNnwH11dXVYunQpAGDAgAEYN26cvs83ltVsNsNmC3698/LLL+uP2/dUovgkq4k5i217TDwp5tTU1KCqqgoVnlRUpRWgIr0IhzJHY48yANvqtka7eglt4MCBGDt2bNwlnb6YCTbDIFF7jBkKlyRJ+r9oGj8iF1dfMBpnHD8IF5063LCcyoXThuP04wfh6gtGY/yI3KjWsztNmzYNI0eOBAC88cYb+Oijjzocs3PnTvz5z38+qvLnzZuHjIwMAMALL7ygJ4b+XC4X/t//+396V97Zs2frs9e2p6oqbr31VlRUVBhiprW1FbfccgsaGxsBANdcc43hu9ZXnsPhCPgZZVnGgw8+aFjXtP3kRBSf1IRt4zTiGE+KOYcPH4YkSWhQjbPLiZDQJDdEp1K9SJ8+fbo+KMb4YsZiscRl/annMWYoXJIk6UtjRHsZnoxUGzIC9AASRQHjChIvnkVRxP3334/58+dDkiTccsst+Pjjj3H66afDZrNh48aNWLRoEdxuN0wmExRFgSiG3raSnp6OBx54ADfddBMURcHtt9+OpUuXYvr06cjIyMC+ffvwzjvvoLy8HAAwZMgQ3H333UHLy87Oxq5du3DJJZdg7ty5GDZsGGpra/HWW2/p4zunTJmCq666yvC6OXPm4PHHHwcA3HHHHVi9ejWOO+44mM1m7N27Fx988IFeB5/m5uaQPyfFrt7SZZqJJ8UsVTN+aQhQYLWlRKk2iaOpqQmqqiIzMzPaVSEiIgrJhAkT8Pjjj+OOO+5Aa2srPvvsM3z22WeGYy655BKUl5fju+++g9Ua3pwQZ511Fv7xj3/g97//PRwOB1auXImVK1d2OO6kk07CY489ZpiNtr3rrrsO3377Lb777js899xzHfafcsopePLJJzskx9dddx3WrVuHVatWQZZlvPPOO3jnnXcMx5hMJvz6179GSUkJvvjiCxw+fBgOh6PT+lDsy8jOABratrX46XQWFiaeFHPy8/Ohqip+ENYanldFGeUSF08+Fk1NTdi0aRMA73ISvq5F8c4XM+Hc4abejTFD4Qo3kaHud/bZZ+ODDz7ASy+9hJUrV+LIkSOwWq0YPXo0rrzySpx99tmYP38+AG8rZrjOOeccTJo0Ca+//jq++uorHDhwAC6XC/3798fIkSNxySWX4NRTT4UgCJ2WY7FY8J///Acvv/wy3n//fRw4cAA2m00v48ILLwxYhtVqxXPPPYdFixZh6dKlKC0tRWtrK1JSUjBo0CBMmjQJl112GQoKCvDaa6/hiy++gKIo+PTTT3HxxReH/XkpdthMxvNLon4zCVpvaduloBwOh2EQfHFxcUzcOXv+t8/gsC1f35aT9mHA+Um4cdr1UaxV/GpsbMTmzZuhKN4B7CaTKaGSTyKi7lJWVgZZlmE2m1FYWBjt6lAYzjvvPOzduxcTJkzA22+/He3qUIKI9Dlh+XOL8O3OtiFmVrhw56OXdPv7hCpSuUGiJtSUABTNeDdQtrowMHtQlGoT39onnQCgKAoOHToUxVoRERF1bcmSJfjlL3+J+++/H5WVlUGP2717t77O5ujRo3uodkTHzpSUZtgWhMRM0djVlmKWBGMHd8UsI63dHyZ1LVDSCXgnPxg1alSUakVERBSa9PR0fPPNNwC8k7Dce++9HY5xOBy4++679UlaZs6c2aN1JDoWgi0ZQJPfE0w8iXqEL0GS24XnINWDoZn5gV5CQXSWdI4dOzZhxrf5f754WgaGoocxQ+HyH5nU1Rg/6l6nnHIKBg0ahEOHDuH111/H9u3bcc4556B///5wOp3Ys2cPlixZoi+PNG/ePEyaNCnKtWbMELXHxJNizrZt2+BxuSCLxunqx0LD8OzBUapV/GloaMCWLVs6JJ05OTkYM2ZMwiSdgDdmfEtjjB8/PtrVoTjAmKFwOZ1OfTmV5OTkaFenV7FarXj66afxq1/9ChUVFdi4cSM2btwY8NjLL78cd911V89WMAjGDIVKdrUatlVVjVJNIouJJ8UmWYYsGmf4stkZrqHqTUknERElvpEjR+Ljjz/GO++8g+XLl6O0tBSNjY1ISUlBv379cNxxx+GSSy7hjSSKS+6mvRjY6Jd8Cp7oVSaCeCVPMSctLQ1uSeqQeCYlMVxD0dDQgM2bN3e4W5bISWdaWpo+2xxRKBgzFC6TyaS3XlF02O12/PznP8fPf/7zaFclJIwZCpUGD2wKE0+iHjds2DA0my1QxQrD8zs9rRjhakY6JxgKqr6+Hlu2bOmQdPbp0wejR49OyKQT8MYMUTgYMxQum80W7SpQnGHMUKjM5lYMrt+qb7tsiXmzgoknxSRnY2uH5xrtGhQtMfu8d4femnQSERERxTNVaoFibhsepZqZeBL1mNamjomnOVmDzWQNcDQBQE1NDZNOIiIiojgzcEg+yobs0rdFW2KmaIn5qSjutTQ6jU9oKvab3LCamXgGM2LECCiKgiNHjgAAcnNzMWrUKCadRERERDEsxWRFpuS/zFdipmiJ+akoru3btw9udy3y67dAFUxQBRM8ZhN2WlSYRa63F4wgCCguLgbgXaOwNyWd+/bt0yeKGTp0aLSrQ3GAMUPhcrvd+kQxHLtHoWDMUKjssCFFtuvbJikxU7TE/FQU15qamtDa6IBZkwFN9j4pCsjN7BvdisUB/+SzN82i19TUpK/JSBQKxgyFS1EUzlBKYWHMUKgO1Vvwuf1SfTtFa8KUKNYnUnpHcwjFHVWWDduaqCHVZg9ydO+jaVrQfYIg8EuOiIiIKE5oZuM1riYkZorGFk+KOaNHj8buPUewH3v152yiiKK+xVGsVeyoq6vD7t27MX78eHbd+cno0aN5V5nCwpihcNntdsYMhYUxQ6HyiDYAbn1bEROzN05iptMU18xmM1S/AdYAkGIyYVr+pCjVKHbU1tZiy5YtaGlpwcaNG+F2u7t+US9gNpthsVhgNvNeGoWGMUPhEgQBoigyiaCQMWYoVLLLeD2XqKsHMvGkmCS5XIZtkwkQzIl59ydUtbW12Lp1q97N1ul0YuPGjZAkKco1IyIiIqKjVVlTadhWleBDquIZb/VSTKquccJlToGoKRBVBQIAoRcvpVJTU4Nt27Z1GNuZnp7OFhsiIiKiOCYhQZs42+EVK8WchoYGlFQIqEsv0p9zuvej1t2EXEtuFGsWHcGSzn79+mHkyJHswgNvzPjG0WRmZka7OhQHGDMULtlv0jve8KNQMGYoVGqi9q1th38FFHMOHDgAjwzAL58SNRckVQn6mkQVLOns378/iouLmXT+5MCBA/rSGEwiKBSMGQqXx+PRb1YwiaBQMGYoVBoTT6LoUTSTIfE0wQ1rL+tqW11dje3btzPpJCIiIkpg6b0kJesdn5LiyoABA6Cad8G/u3tzigJV7R13g4DgSeeAAQNQVFTEpLOdAQMGQFVViCLnS6PQMGYoXBZL757gjsLHmKFQmT3Ga9xEvcpj4kkxJzc3FxAFQ+JZk+5BssUe/EUJhEln+HJze9/YXzo2jBkKF5MIClcoMXPnnXfi/fffBwDs3Lkz0lWKS/4/o+XLl2PQoEEdjvn000/xyiuvYNeuXXA4HEhLS8Ps2bNx55139nR1j4pF6B03QZl4UkxSVGNypZlcSLEmR6k2PaeqqgolJSVMOomIiIhC8NZbb+Gee+4xPFdfXw+rNX6GaInW3tG4wsSTYpKiGu/8mE1awpAQ8xwAAFxPSURBVCdddXV1AZPOgQMHorCwMOE/PxEREVG4Fi5cCAAQBAFXXnklJk6cCLfbjXHjxkW5ZqETLLZoV6FHMPGkmKPIKjQYE88RtsRv7UxPT0dqaiqam5v155h0EhEREQVWX1+P6upqAMD06dPxhz/8Ico1Ojpme5LxiQS97mPiSTFn48bNHZ47KT3xx2OZzWZMmDABmzZtQnNzM5POMGzZskVfGiOe7nBS9DBmKFytra360hjJyYl/M5SOHWMm8pxOp/54xIgRUazJMepwracFPCzeMfGkmCN5Os5ea7HFTz/9Y2E2mzF+/HgcOXIEgwYNYtIZIk3T9H9EoWDMEBHFP/8VD+J5rVSnqQb9mhv1bU2UolibyInf3xAlLHOA9Trl2oaer0iUWCwW5OfnR7saccVut8NsNnPWSQoZY4bCJYqi3npFPa+4uBgAsGDBAlx66aW4//77sWrVKgBAfn4+rr/+elx44YX68S0tLXj33XexatUq7Ny5Ew0NDQCAjIwMjB49Gueccw4uuuiigMnKz3/+c6xduxYnnXQSXnrpJRw4cAAvvfQSVq5cicrKStjtdowePRpz587FzJkzg8aEKIpoamrC66+/ji+//BL79u2D1WpFYWEhLr/8clx00UUhfXZVVfH5559j6dKl2Lx5M+rr65GSkoIhQ4bgjDPOwJVXXon09PSAr/V9lmnTpuE///kPdu/ejRdeeAHfffcdqqurkZOTgylTpuB///d/UVBQAABwuVx45ZVX8MEHH+DgwYMwmUwYPXo0rr32Wpx55pkh1bmzz/LNN99g0aJF2Llzp/7zLCoqwvnnn4958+aFNCnQwoUL8dRTTxmee+qpp/Tn5syZg7/97W/HVNeeJAgeJEtN+rZilqNYm8hh4kkxJzdnAIB9+ragqah0O1AYtRp1v/r6emRkZHANwW5SWJhI0UE9gTFD4UpKSur6IIo4h8OB+fPnY9++ffpzO3bsMCReq1atwm233aYnm/5cLhcqKyuxYsUKvPnmm3j++eeDJm0A8MUXX+D2229Ha2ur/pzb7cbq1auxevVqfPjhh1i4cGHAm1jl5eW47rrrcOTIEcNr169fj/Xr1+Orr77qspXuyJEjuOWWW7B+/XrD8w0NDWhoaMCmTZvw8ssv4+9//ztOO+20TstatmwZ7rrrLrjdbv25iooKLFmyBMuXL8eLL76I/v374/rrr++wtMvatWuxdu1a3H333bjqqqs6fZ9g6uvrsWDBAqxZs8bwvMfjwbp167Bu3Tr9d9KvX7+jeo94JVpcGNS4Q99uTknM60MmnhRzJI9i2BY0FR5z4vwBHjlyBDt27EBOTg7GjBnD5JOIKAF4PJ6jfq3JZILJZAq4T5Kko+4SHqlyRVGMWrfG//73v3C73Zg2bRouvPBCNDQ04Ouvv8a0adMAALt27cKvfvUrSJIEk8mE6dOnY8qUKcjJyUF1dTU2bdqEjz/+GKqqYtOmTXjyySeDTkizf/9+3HbbbfB4PJgxYwamTZsGs9mMNWvW4P3334eqqlixYgVee+01XHPNNYbXVlVV4YorrtCT38mTJ+OCCy5AWloatm3bhjfffBMffvhhp617jY2NuPbaa7Fnzx4AQF5eHubOnYvhw4ejsbERX3zxBVatWoWGhgbceOON+Ne//oVTTz01YFm7d+/W17ScO3cuTjzxRDQ2NuKdd95BaWkpHA4H7rvvPphMJuzcuRMnnXQSzj//fNjtdqxcuRJLly4FADz88MO44IILkJOTE/LvDPD+fVx55ZXYtWsXAG8r9dy5czFkyBBUVlZi0aJF2LNnD0pLS3HjjTfi7bff7jTGZsyYgVGjRqG2tlZfSmXGjBm44IILAHiXoYsnqrMRVsWlb5vVwH+38Y6JJ8Uct9vYr13QVJiTE2OMpy/pBIDa2lps27aNyScRUQJYvXr1Ub+2sLAQeXl5AfetXbsWknR0472GDh2KoUOHBty3YcMGQyteOAYOHIiioqKjeu2xcrvdOOOMM/Cvf/1L7+Lqn/T94x//0H9ejz/+OM4999wOZcybNw/XXnstNE3DsmXLgiaehw8fhsViwb///W89sQWAWbNmYfLkyXoi984773RIPB9//HE96fzVr36FW265Rd83c+ZMXHrppfj5z3+uz8gayN///nc96TzrrLPw6KOPGlreL7/8crz//vu46667IMsy7rjjDnz++edITU3tUFZFRQUsFguee+45nHzyyfrzF198Mc455xz9miRQfS+66CL06dMHL7zwAiRJwpdffol58+YFrXcgzz77rJ50nnXWWXj88ccNSffPf/5z3HDDDVi9ejW2bduGpUuXYu7cuUHLKygoQEFBAQ4dOqQ/N3z4cJx11llh1StW9IUV/reuktTEnH+AV7sUc5xOY792TVRRkxn/47AqKir0pNOntrYWVVVVUaoRERFR/PnlL38ZcFyl0+nE119/DQCYNGlSwKQTAE466SRMnDgRgLf7Z6AuuT5XXHGFIen0mTNnjn6zoKysDC5XW2tVXV0dFi9eDAAYP348br755g6vHzZsGP76178Gfd/Kykq9jEGDBuGRRx4J2N17zpw5etJbV1eHt956K2iZ8+bNMySdAJCamqq3EgLemxULFizo8NpLLrlEf+xLIEOlKApeffVVAEBubi4eeuihDi29FosFDz74oH4jftmyZWG9R7xLcht7+1mkxEw82eJJMcea5IZd3AUPBHjvjSiQk+N7Yd2KiooO4yUAb1eT3jaOIRIOHToEWZZhNpsxaNCgaFeH4gBjhsLl8Xj0yYVCmfyEIsNisWD8+PEB99ntdnz55Zc4cOBAwFY/f3l5ediwYQMAGJLG9s4555yg+4qKilBeXg4AaGpq0hPDVatW6bOtXnzxxZAkKWDMnH766Rg6dKhhvKrPt99+q7fcXnnllbDb7UHr8Ytf/AKvvPIKZFnGF198gV/84hcBj/NPMP35nwN/9rOfBeyF5d911X+98VBs2LABjY3eGVvnzp0b9HfTv39//P73v9cnG+pN7IIF9UJb99pEbRlk4kkxp9nRDEH0QNS8J21BkNA3N/CXTDwIlnQOHjwYw4YN4wyJ3aCurk5fk5FJBIWCMUPhkmWZiWcMyM/P7/Tn36dPH/Tp0yfgvpaWFuzcuRM//vijnnQC3ha5YHwzvQbin0DJcltvrU2bNumPx4wZA1mWg9Z50qRJARPPjRs36o+nTp0atA6A9zOPGDECO3bswJYtW4LOvjxs2LCAr09LS9MfB5tV3z/x9V/CJBRbtmzRHx9//PGdHnu0ExfFu/LWVHxd0PbZ7VITOrazxz8mnhRzVFltN+GBgiRbStTqcywOHz6M0tLSDs8z6SQiSiztuzCGI9gEQAAwZcqUY5pcKJjjjjvumCYXipbOZqD1V1VVhS+++AIlJSXYt28f9u/fj6qqqoCfubOfg39S1p7/5Df+yVhNTY3+uH///p3Wc/DgwQGfr6ur0x+HssRafn4+duzYAUmS0NTUhIyMjA7HBHquvWAtq8dyveL/8xg4cOBRl5PIVFP7btSJeX3IxJNizsD+A5BtSoICDSoAk6iiX0bfaFcrbEw6e05RURHX16OwMGYoXF0tpxKpVtBIrTUbr2vYdvVzlmUZjzzyCF599VVDK6SP3W7HiSeeiOrqan0ync4czey9/l1RMzMzO70BkJIS+MZ6S0uL/rizbrY+/vHpdDoDJpnRmonY180W4LJEwbgVY4zIYnz+fXaFiSfFHFHTkGluG9OZagIGZcdXV7hgSeeQIUMwdOhQXux2M36RUbgYMxQuzj4eH+6880588MEHALzJ9aRJkzBu3DgUFhaiqKgII0aMgNlsxu233x5S4nk0/Ftl3W53p+NNgy3D459sOp3OLses+s9QHGvnN//6dDaelhIfE0+KOe7GZiguCRAECAIgmCUIlvgZT1NeXo6ysrIOzzPpJCIiipz169frSWd+fj5efPHFoN1Uw50gJxy5ubn640OHDmHkyJFBjw02s73/ONWDBw9i1KhRnb7n/v37AXiTvMzMzDBqG3n+a35WVFR0OnHQ7t270dLSgsGDB8fc54ikBslp2E7MOW0Td9IkimPVe8rhqHOipcaBluomtO4/AtESH7PaBks6hw4dyu61REREEfTVV1/pj3/zm990OjaypKREf3y0Y12DOeGEE/THa9as6fTY9evXB3x+3Lhx+uPvv/++0zIqKyv19T5jcTbYMWPG6I/9J00KZOHChZg3bx5OOukkOByOCNcsdsha8AmuEgkTT4o5m3Y4cChzNA5mjcWBrPGoSs6HHAeRKsuyfsfRX2cLeFP3cDgcaG5u7lVfUnRsGDMULkVR9H8Um/zX40xOTg563CeffIIjR47o24HGgh6L0047DTab94b566+/DqfTGfC4rVu3GmbA9Xf66afr43Bfe+21oGUAwIsvvqhPbnTGGWccQ80jY9KkSXpX4SVLlsDtdgc8rqmpCd988w0A7/qnXXUvTiSKFt5MwfEqDi7nqbfxeCTDtqjJEONgdi+z2YwJEyYYJmxg0tkz9uzZg9LSUv2OL1FXGDMULrfbDZfLFfSimaIvLy9Pf7xo0aKALZmrV6/GPffcY3iuu3+nycnJ+rIg+/btw913390hua2ursbtt98etIy+ffviwgsvBODtanv77bcHHB+5ePFivPzyywC8XVovv/zy7voY3SY5ORmXXnopAG/PsHvuuafDz8Pj8eCee+7RJ1WKxc8RSd3d6h6rOMaTYo6iGpNMUfPAJAafES6WpKSkYMKECdi0aRMGDRqEIUOGRLtKREREvcKMGTOwcOFCSJKElStXYt68ebjwwguRm5uLqqoqfP311/juu+86XORHoufDb37zG3zxxRfYu3cvPvzwQ5SVleGSSy5Bbm4uSktL8cYbb6ChoQE5OTmora0NWMbvf/97rFu3DgcPHsTnn3+OGTNm4OKLL8awYcPQ1NSEL774AitXrgTgnfzqr3/9K7Kzs7v9s3SHm266CV999RX27NmDxYsXY9u2bZgzZw4GDBiAgwcP4r333tPXMz3ppJMwa9asbnvvhQsX4qmnngIA/Pa3v8VNN93UbWV3l9T0NKChbVtL0KZBJp4Uc2TNmHgKkONqbGRqaiomT57MBcZ7UG5uLlRV5ayTFDLGDIUrWktRUOjy8/Nx77334t5774WiKNiyZQu2bNnS4bhJkyZh5syZuO+++wAAO3fuxKRJk7q1Lna7HS+++CJ+/etfY/v27SgtLcUDDzxgOGbatGmYMmUKHnvssYBlpKen47XXXsNvf/tbbN68GeXl5XjyySc7HJeZmYnHHnsMp5xySrd+hu6UnJyMV155BTfeeCO2bNmCsrIyPPzwwx2OO/nkk7Fw4cK4uu7rDkk24zVjon58nkUp5ggCDNN5CULwcQ2xiklnzxowYEC0q0BxhjFD4eJ5PT7MmzcPxcXFeOmll/Djjz+itrYWZrMZOTk5GD16NGbNmoUzzzwTzc3N+Otf/wpJkvDxxx9j/vz53V6XAQMG4K233sKiRYuwdOlSfZm1oUOHYs6cOZg/fz5eeumlTsvo168f3n77bXz00Uf48MMPsWXLFtTX1yMzMxP5+fk4//zzMXv2bMMSLrEqNzcXb7/9NpYuXYply5ahpKQEjY2NSElJwdixYzFnzhzMmDGjV94QtLdbtzNRfwKC1ls6FVNQDocDO3fu1LeLi4ujOqD7gdvfg6y2fcEPb12OK595PGr1CeTgwYNQFIXjN4mIElBZWRlkWYbZbEZhYWG0q0NEURbpc8KKl5ZhpV/jvFXw4M5H5nb7+4QqUrkBWzwp5qiq8T6PKMbWTF8HDhwwTEjC5JOIiIiIjpZoTwfQpG8LQmK2eSbmp6K4pWkaVBgnEko1xU5H9/ZJ5759+wIuoUJERERERG3Y4kkxRVU0oN3SKX0slsAH97D9+/dj7969HZ7vjWMRYk1JSQkkSYLFYsGoUaOiXR2KA4wZCpfT6YSmaRAEAXa7PdrVoTjAmKFQaYpxeRktQdf1ZOJJMUWWOy7MbbZEfymVYElnQUEB8vPzo1Aj8idJEiRJ6vpAop8wZihcmqb1mrX2qHswZihUjuoy9HG0JZ8iEnO9YCaeFFMkqeMdHos1uonnvn379LWl/I0YMQKDBg3q+QpRB5afWsUtMdI6TrGPMUPh8i3v0NuWeaCjx5ihUIkmN9I8jW1PCJ7oVSaCmHhSTHG7OrZANDc1R6EmXkw64wO7SlK4GDMULnaVpHAxZihUgtiKAU279G13gq7exMSTYkqgFk+YotNNJVjSWVhYiLy8vJ6vEBERERElHMHjgF12tD0RQxNrdicmnhRTZKnjGE+TqWfDVNO0oLPVMukkIiIiou6Und8fuwvaWjwFW2KmaIn5qShutU88BU2Faum5uz5MOomIiIioJ2Vak5GptvX6MyXmpLZMPCm2ZOWkIMO9G0keQIMAQADy0nrs/YMlnUVFRRg4cGCP1YPCU1FRAVVVIYoiBgwYEO3qUBxgzFC4PJ62yT6s1gQdgEXdijFDoco0J2Ggu63xRRQ69gBMBEw8KaaYzAKsigPJfmM9MwcN77H3T01NhSAIhunPmXTGvurqan1NRiYRFArGDIVLlmV9TUYmERQKxgyFal+1GZ/br9S3U+DAuCjWJ1LEaFeAyJ9b9kBsN5eQ1Z7cY++fm5uLUaNG6VOfFxcXM+kkIuplTCbvMl6KonAdRqJeTtM0KIq3BdJ3buj297AkQxEsfv8Ss20wMT8VxTEBNs1vTKcGpKT0XFdbAOjbty8A7wUHW0Liw/Dhw/W7ykShYMxQZ6xWK9xuNzRNQ2trK1JSUmCz2aJdLYozjJnE0Nraqt+AilTLtQtWAG1ds2UhMVvImXhSTDHDBIsmwNfRVoQKe3LPJp5AW/JJ8SE1NTXaVaA4w5ihzqSnp6O52buGdF1dHZKTkyPW0kGJizET/zRNQ11dnb6dnp4eoTdK0NmE2mFXW4opqixDU9u6NQmaCjEpqdvfR9M0tLS0dHu5REQU/3zj/QHA4XDg0KFDaGlpYbdbol7Cd5146NAhOBze9TUFQYjYTcsjlRWGbUVOzHMNWzwppricHsiaAAEiBKgQoEG0dG93A03TsHv3bpSXl2Ps2LHIycnp1vKJiCi+iaKIvLw8lJeXQ9M0OBwOOBwOCILAViyiXqD9+G5BEJCXlwdRjEybnaTKESk31jDxpJjyw/elOJDZNo+X3dMIxe3p5BXh8SWdhw4dAgBs3bqVyWcCcLlc+ni9pAi0kFPiYcxQV9LS0gzJp6qqEARB/5+oK+0TF4pPvqQzLS1yQ7/kXtLVloknxRSno9mwLWgaTHZ7t5StaRp27dqF8vJyw3Pbtm3D1KlTOdV5HCstLdWXxhg/fny0q0NxgDFDoUhLS0NRUREcDgd2796tJ52RvAClxNHc3Kzf4GLMxBeTyQSr1Yr09HSkpqZGrKXTp7d042fiSTFFckmGbREKTMkpx1xuoKTTp7i4mEknEREFJIoi0tPTYTKZoKoqzGYzCgsLo10tigObN2+GJEmMGepSSi+ZdoeJJ8WURrcTQFsLpypqsBzjXUJN01BWVobDhw932Ddq1Cj069fvmMqn6MvOzoYsyzCbeUqj0DBmKFyMGQoXY4ZCZZWMLZ6J2jGbfwkUUxRRMWzLVjfMqUff4hks6RQEAaNGjeKyKQli0KBB0a4CxRnGDIWLMUPhYsxQqKy9pMWzd3xKihuiaLzHY4ELwlH2q2fSSURERESxTjD1jiFfbPGkmKJIxlm9REGFcBRdVDRNQ2lpKSoqjOsiMekkIiIiolgiJiVHuwo9gi2eFFOSYbzjY0f409Z3lnSOHj2aSScRERERxQyTrV2LZ4IO8mSLJ8WUFMH4h5cV5uzSXSWdubm5x1pFikFlZWX60hicOZBCwZihcDFmKFyMGQqVYDJFuwo9goknxRRZUgG0/fGZwmyTr6mpYdLZCzmdTkiSBFmWo10VihOMGQoXY4bCxZihULmFBmS1tujbguCJYm0ih4knxRR3sxNAqr4tNzrDen2fPn2Qn5+PgwcPAvAmnWPGjEGfPn26s5oUYwRB0P8RhYIxQ+FizFC4GDMUKsHiQqarSt9WzIl5s4KJJ8WUJpdx26mFN8uXIAgYPnw4AODQoUNMOnuJcePGRbsKFGcYMxQuxgyFizFDoVJFJ/o69unbLcmJebOCiSfFFKXDmE410GGd8iWf/fv3R0rK0a8BSkREREQUaaKnCameBn1bsSbmmE/OaksxRdWMISkeReIJeJNPJp1EREREFOsyYUw0rVqYs2vGCSaeFFNkk7FrgZwe+I6PpmnYtWsXWltbe6JaREREREQRkdyqGLatnsRMPNnV9ieapmHZsmV49913UVJSgtbWVuTm5mLy5MmYP38+xo8ff8zvUVpaihdffBFr1qxBVVUV0tLSUFBQgNmzZ2POnDkw9ZKplDujJh+ByWH5aUuAkNrS4RhN01BSUoKqqipUV1dj4sSJsNvtPVtRiinV1dVQVRWiKHL2YgoJY4bCxZihcDFmKFRpJiscftsWMPFMWC6XCwsWLMBXX31leL68vBzl5eX44IMPcPPNN+OGG2446vdYtGgR/vSnP0GSJP25uro61NXVYd26dXj//ffx9NNPIzMz86jfIxGYbS7AbzrpjDTj5EL+SScAuN1ubNy4kclnL1dRUaGvlcYvdwoFY4bCxZihcDFmKFSHW1Owesgl+rZdduCkKNYnUph4Arj77rv1pLOgoACXXnop+vTpg23btuHNN99Ea2srHn30UfTr1w+zZs0Ku/yVK1fij3/8IzRNg91ux2WXXYaxY8eitrYW77zzDkpLS/HDDz/g1ltvxfPPPw9R7MU9oNtNOW5KTdcfa5qG7du3o7q62nCMJElwuVxMPImIiIgo7iimJLgsafq2wBbPxPTtt99i2bJlAICpU6fiueeeg81mAwDMnDkTl1xyCa644go0NDTggQcewPTp05GamtpZkQYejwf33XcfNE1DcnIy/vvf/2LMmDH6/ssvvxy33norPv/8c3z77bf46KOPMHPmzO79kHGkjzkFbtE7blMDkGb1ThCkqipKSko6JJ2iKGLs2LHIysrq6apSDBk8eDA0TeNaaRQyxgyFizFD4WLMUKicsjElk8XwlhOMF724ac3rhRdeAACYzWb85S9/0ZNOn4KCAvzxj38EADQ0NGDRokVhlf/ZZ5/h0KFDAIDrr7/ekHQCgNVqxUMPPaR3sX322WeP5mMkDK2lP2Q1H7KaD0XNhw05nSad48aNQ3Z2dpRqS7EiMzMTWVlZvb6rOoWOMUPhYsxQuBgzREa9OvFsaGjA6tWrAQCnnnoq8vPzAx43Y8YM5OTkAAA++eSTsN7jo48+AuBd3uPyyy8PeExKSgrmzp0LwDsB0d69e8N6j0RS3yKiSUnW/7V6ELB7rS/pZEsnEREREcWzJtlp2E7Mjra9PPH84YcfoKredSKnTp0a9DhRFDF58mQAwKZNm9DY2Bjye6xbtw4AUFxc3GnLnP/7f/PNNyGXn2g0WW57DA0Vh/ehpqbGcAyTTiIiIiJKFJJ6dOvWx5tenXiWlZXpj4uKijo9dsSIEQC8E9yUlpaGVH5lZSWampoAAIWFhZ0eW1BQoD/esWNHSOUnIt96uRo0wFyPVkE27BdFEePHj2fSSQayLEOSJMiy3PXBRGDMUPgYMxQuxgyFStaUrg9KAL16cqHy8nL9cV5eXqfH9u/f3/A6XwtoZ3xjO0Mpv1+/fhBFEaqq4vDhw12WnbA0TU86YXJBVdtO1r6kk2MlqL3t27frU9Z3x5q7lPgYMxQuxgyFizFDIUvUvrXt9OrEs66uTn/cVQuaf7LT0NAQUvn19fUhl2+xWJCcnAyHwxFy+YnIP+kEgAZ3Mr7/5EeYICLZk4zS90pg1dzoJx9GtnIETgtQawM8ZgtcyIEo2NGqDYYoWKHKCqCq0GQJGjQoogBJBBQAAgARAiyiCanZaRDcLtjgRj9zLQbYq1ABCTX1LbDWS2g1ZQNiChy2ITCnta3DpbQ2QoMGFzTIbhlQvGcNEYAJAswQYYICm+ZGhlKLQfJ+tJhUNNpFtJpMcAuZEIQ0uLX+0IRUaIr60z8PoAGyoEE2CfCl3iIEWAQBaVnpgCwjCU6kownFqYdxAG7Ut7ogVjjhMWVAFtPhtPSHmNk2bll1OaCpCpxQIUsKIKl6fUUIsECEAA12OJGktKBQ2gmHoMKRYkKTCEimdKjIgqRlQxWyoakaNFmBpsiApkIWNCgmAZJeX8AEEekZqdCgIVlzwqI6MTF9Hw5DQr3sgbq/CbIpFR4xG24hE1rOCH32P9XdCk2R4IYKWVGhuhRA8P7uBAA2mAAASXACioTRzvVoETR8nmZFrUmDak6FpOVARipUYQCgaVAlBZoqA6oKBRoUswCPX30FCEhPTYFoFmFTXRAUN45P24MG0YN6yGjdUw+ISXCKuZCFZMiZIyGavadRVXJBk9zwQIOsqVBaJUAQOtTXBjdMqoQiTwk0OOFKMqHSrAIWO1xaX2iwwYPBECFAlWRomgIoClR4f75uQfuppt7fW4o9CdYkKyyyC6LqxqiUg1DNDjRCQfXBetgUE5qF/oBoRWvaKFhsSd6/NUWC6m6FDA0SNMitbWsMiwAsEH+KCw8smoTB0h7Y1Qa4rQKOWFVoliQ4tVyIsKAVw2ESRO/PV1MAWYYKDaoowC1q0Pzqm2S1wJ6WDNHjglVzY4jtCFJtDaiBhOrKRthagRYxF4JoQ1NyMazJ3unlNU2B6nRAgQYPNEguCYLaVl/v35sAM+SQzhGqYoKmKICqYbW2hueIBD9HiKqMcZ5NaIWK1mTTUZ0jhJ8iOSXJhh+XlPAckeDniO64jqisbYK1XoZTzMI2SzrPEQl+jjiW64i65hz40xK0T2qvTjxdLpf+uP1stu1ZrW3TGvu/rjNOZ9tA4a7K9x3jcDhCLj8RaQAgtN32kU1JkDU7IGXDKdjw0zkCYmM9UuubYQLQ96djK9Ky4LSIqM1Ig2xKaiu0syhXgboaAPAeL0s1SFX2osFmgeDQ0KdSRlVKDhw2G2oz0uExTHdtPEn46hZIP6eKPpVbYAKQ/dO/muRkNCWJaEhNQas1I6RyoAH1+v2SNOQqEvKO7EaD3QKPG8gvl1CflIr65CQ0pqTDUe9f38yQ65sq1yKvYh1EAOk//WuymVGTkgOH3Y5Ge4j1BdA2JDoVSWoLRlQtR1OSGS2agMHlElosFlSmJaHFloa6BovfK9ONBXXyexREFYUHVsEEILnKiWQALrOCw+l94bEmoTrVr74iOh1k0OzwPfIu5VNYvQKNVgVNZhH9DkvQoOBg5mC4zak44h9nSP3pX9f1hQkYcHgjkiUHrADyAShCK/ZnDYTbZEVlRqbfh+u8rGYnACcAJAMA+tWuh2iqQYPZhPQjCtKcKpqyhkEWrThiSgVa/Svot/ZtF7/H9Oq9sLR4/+a8/Tcc2J/ZD7Iooiq73Y21zurrAVAL/b3ttbuhYh8arGbYalX0aVDgSh8Ij9mGKjEdmttXMTMAv/Oo0HmdQzpHdFEGAJ4jgojHc0TB/pUAvH8px3KOcLgAuACeI4wS8hwRQn07O0eYHRr6VcqoSsnlOQK95xxxdNcRaYYyEnUFnl6dePr3ufdPLAPx3x9qX31Faeuv3VX5/sdEeyzArl27UFBQgLS0tj8Ct9uNnTt3AvC2/g4ePLjDa1pbvd9W7buT1NTU6N2H8/PzDa2/iqJg27ZtAIC0tDSIJgWQsgFLHSC6AU0ApBwIWmKuZ0RERERE5M8Mb2uyqqrYunUrAO8qGP5zwgDA/v379UlPR40aBYulLfFuamrCvn37AHiHDPbt29fw2q1bt0JVVSQlJXWY66b9ahLdpVcnnklJbXezJEnqNDn0eDz641CSSMDYyilJUidHGt/DP2iiQVEUfbZfH03T9M/gn1D7+AbQB6Kqqr6vfblA289GlmVMKLTghzIBmpTt7XKrpDLpJCIiIqJeY0Cq3vXAcJ3cnv/1t6YZB4r6X38HunaXJAmqqsJk6tjkHOh6vTv06sQzOTlZf+x2u0NOPEPpNhuo/K74jvFPiKPBZDJBFI19CARB0BPiQAFqNpuDJsyiKOr72pcLtCXaZrMZ5/1yNrIXL8f3q/dCcwuA5oQAAWYAZsGkj83ITXHCkpQKh6iiLkmAZLHCI4gQBRU5WjNEwQ3J7QFUDYIqAwIMYzMADSIEmAUR6VnpECT3T2MzBCTbhsAuO9GQ5EKVWYHLrMEsupFja4I5zQaP5IGmaRA8rRBFwTA2Q9O85ZoAWAQRJqjesRnWetgGpKEZChrtApxmMySTFYKgIlNrQYYgQPZI0FQVUGSIgtBubIb2U28qAWmZ6RBV9aexGU6kpA6H3eOA5PSgSvVAMptgEl3IsDQhKzMDkuw9sQgeJ0yiYBybobX9LKyCCBHwjs0QWpA8IB2NquQdm2ESoFqSoUFFquZEstAIRZKhKgqgKhChQRZgGJsh/FRuWloKRFHUx2akDipAkqcFTkVClasVisUGk+hCitCM5EwJiqpAURQIshuipsIjaG1jM2CsrwBBH5uRPCAdzaqMVruAOrMAWNOhagqscGGA0AhFUaFKEqCqEKBCBQKO30pLtsNstehjM9L6D0Gr4oBNk1HjbIZgskMUnbAJAvLSXNBEwftlIEswaTIkAYbxW9C85VohQBREffxWWh8bFDUZTpuAKgsgWpOhQIYJHvRDA6ABiscDaCoETYUGtBu/5S3XbrXCnmLXx29l982FS7PArkloVJrhUs0QBCcsooL+yQ6YrFbvF5EqwyR7vH8X/uO3fqqvBQJMgqiP38rM1CCmpcBpBqptGjSrHR6oEKGiL+phguj9m9NUCKoCTYBh/Jb+ezOZkJqZpo/f6puTApt5EOyKGw1iK6pTAcUkwSyK6JvUBEtyqvf8q6kQJe/P2zB+66f68hzBcwTPETxH8BzBc0TcnyMgY0CuFef+5oqA18nt+V9/C+365/pffwe6drdYLFBVNeD1e6Dr9e7QqxPP9PS2vt8NDQ2GrqXt+U/409l6nMHK72rtT0mS9K6qoZYfKSNGjEBqaqrhOZvN1umMbL7lZgLp06cP+vTpE3CfyWTqUO7Ui8/B1IvDqHAEjInu24ct+E8/NhV0fUhMKY52BSjm8BwRWTxHULzjOSKyess5wreiQzBDhgwJui89Pb3T144dOzbovtzcXMMkrN2lVyeeQ4cO1R9XVFQgPz8/6LFHjhzRHw8cOPCoyu9MZWWl3qwdavmJau/evZBlGWazGcOGDYt2dSgOMGYoXIwZChdjhsLFmKFwJXrM9OrE03+AbllZGaZMmRL02LKyMgDeZuzCwsKQys/KykJOTg5qa2v11weza9cu/XH7Ab69TXNzs77uFVEoGDMULsYMhYsxQ+FizFC4Ej1mEnSVmNAcd9xx+i92zZo1QY9TFAXr1q0DAIwcOdLQhbYrkydPBgCUlJSgubk56HHff/+9/rizBJiIiIiIiCje9OoWz/T0dEydOhUrV67El19+icOHDwfs5vrhhx/q/ZzPP//8sN7j3HPPxSeffAJZlvHGG2/ghhtu6HCMw+HA+++/DwAYNmwYRo4ceRSfJnGMGRNvIyMo2hgzFC7GDIWLMUPhYsxQuBI9Znp1iycAXHPNNQC8k/vceuutcDgchv27du3CX//6VwDe9XPmzZsXVvlnnXUWBg0aBAB4+umn8cMPPxj2ezwe3HHHHfrkRddee+1RfIrEYjKZ9H9EoWDMULgYMxQuxgyFizFD4Ur0mOnVLZ4AMG3aNJx77rn49NNPsWHDBsyaNQuXX345BgwYgO3bt+ONN95AS0sLAOCOO+7oMOPsmjVrcNVVVwHwdpF99dVXDfutVivuvvtu/PrXv4bL5cI111yDefPm4fjjj0dDQwPefvttlJaWAgCOP/54XHLJJT3wqYmIiIiIiHpOr088AeChhx5CS0sLVq1ahUOHDuHvf/+7Yb8gCPjtb3+Lyy677KjKP/PMM3Hvvffir3/9KyRJwuuvv47XX3/dcMy4cePwz3/+M2HvcBARERERUe/FxBOA3W7H888/jw8++ACLFy/WJwLKzMzECSecgKuuugonnHDCMb3H5ZdfjkmTJuHll1/G6tWrUV1dDYvFgqKiIlx44YW49NJLE3YGq3DV19dDVVWIooisrKxoV4fiAGOGwsWYoXAxZihcjBkKV6LHDBPPnwiCgIsuuggXXXRRWK878cQTsXPnzpCOLSwsxF/+8pejqV6vcvDgQX0q6UT8o6Pux5ihcDFmKFyMGQoXY4bClegx0+snFyIiIiIiIqLIYosnxZyBAwfq3QyIQsGYoXAxZihcjBkKF2OGwpXoMcPEk2JOnz59ol0FijOMGQoXY4bCxZihcDFmKFyJHjOJmU4TERERERFRzGDiSURERERERBHFxJOIiIiIiIgiimM8KeZs3rxZn0p6/Pjx0a4OxQHGDIWLMUPhYsxQuBgzFK5Ejxm2eBIREREREVFEscWTYk5ycjJkWYbZzPCk0DBmKFyMGQoXY4bCxZihcCV6zAiapmnRrgRFl8PhwM6dO/Xt4uJipKamRrFGREREREQUDZHKDdjVloiIiIiIiCKKiScRERERERFFFBNPIiIiIiIiiqjEHLlKce3AgQNQFAUmkwmDBw+OdnUoDjBmKFyMGQoXY4bCxZihcCV6zLDFk2JOQ0MD6urq0NDQEO2qUJxgzFC4GDMULsYMhYsxQ+FK9Jhh4klEREREREQRxa62FHOKi4uhaRoEQYh2VShOMGYoXIwZChdjhsLFmKFwJXrMMPGkmGOz2aJdBYozjBkKF2OGwsWYoXAxZihciR4z7GpLREREREREEcXEk4iIiIiIiCKKXW0p5jQ3N0NVVYiiiLS0tGhXh+IAY4bCxZihcDFmKFyMGQpXoscME0+CoiiG7dbW1ijVxGv37t36GkYjRoyIal0oPjBmKFyMGQoXY4bCxZihcMVKzLTPBdrnCkdL0DRN65aSKG5VVVXh4MGD0a4GERERERHFmPz8fPTt2/eYy+EYTyIiIiIiIoooJp5EREREREQUURzjScjMzDRs22w2mEym6FSGiIiIiIiiRlEUuN1ufbt9rnC0OMaTiIiIiIiIIopdbYmIiIiIiCiimHgSERERERFRRDHxJCIiIiIioohi4klEREREREQRxcSTiIiIiIiIIoqJJxEREREREUUUE08iIiIiIiKKKCaeREREREREFFFMPImIiIiIiCiimHgSERERERFRRDHxJCIiIiIioohi4klEREREREQRxcSTiIiIiIiIIoqJJxEREREREUUUE08iIiIiIiKKKCaeREREREREFFFMPImIiIiIiCiimHgSERERERFRRDHxJCIiIiIioohi4klEREREREQRxcSTiIiIiIiIIoqJJxEREREREUWUOdoVoMSjaRqWLVuGd999FyUlJWhtbUVubi4mT56M+fPnY/z48cf8HqWlpXjxxRexZs0aVFVVIS0tDQUFBZg9ezbmzJkDk8nUDZ+EekqkY0bTNCxfvhxLlizB5s2bUVdXB4vFgry8PJxyyim46qqrMHDgwG76NNQTeuI8E8if/vQnvP766wCAnTt3RuQ9KDJ6ImZcLhfefPNNfPrpp9i7dy8cDgdycnJwwgkn4Morr8Txxx/fDZ+EekpPxMz69evx2muv4ccff0RNTQ1sNhuGDBmCM888E1deeSUyMzOP/YNQVPm+N37729/ipptuOubyysvL8eKLL2LlypU4fPgw7HY7hgwZggsuuACXXXYZkpKSuqHWkSFomqZFuxKUOFwuFxYsWICvvvoq4H6TyYSbb74ZN9xww1G/x6JFi/CnP/0JkiQF3D9p0iQ8/fTTPFnHiUjHTGNjI2655RZ8++23QY+xWq3485//jNmzZx/Ve1DP6onzTCDff/89rrnmGvi+Npl4xo+eiJkdO3bgpptuwoEDBwLuFwQBv/rVr3DzzTcf9XtQz+mJmHn44Yfxn//8J+j+3NxcLFy4EMcdd9xRvwdF13fffYfrrrsOqqp2S+L59ddf45ZbbkFLS0vA/UVFRXjmmWcwaNCgY3qfSGHiSd3qtttuw7JlywAABQUFuPTSS9GnTx9s27YNb775JlpbWwF4T7azZs0Ku/yVK1fil7/8JTRNg91ux2WXXYaxY8eitrYW77zzDkpLSwEAp5xyCp5//nmIInuTx7pIxoyqqrjqqquwbt06AMDAgQNx8cUXY/jw4WhpacGqVavw2WefQVVVCIKAf/7znzjzzDO79wNSt4v0eSaQlpYWXHTRRTh06JD+HBPP+BHpmDl48CAuvfRS1NXVAQBOOukknH322cjMzMT69euxaNEiuN1uAN7Wj8suu6ybPhlFSqRj5j//+Q8efvhhAIDFYsGll16KcePGoampCZ9//rn+vZWeno733nsP+fn53fTJqKds3boVV199NRwOBwAcc+K5c+dOzJs3D263GyaTCZdccgkmTZqElpYWLFmyBBs2bAAAFBcX46233oLdbu+Wz9GtNKJusmrVKq2oqEgrKirSrrrqKs3lchn279q1S5syZYpWVFSkTZkyRWtubg6rfLfbrZ155plaUVGRNnHiRG3r1q0d9v/mN7/R6/DBBx8c82eiyIp0zLzzzjuG8ltaWjocs3z5cm306NFaUVGRduqpp3aoA8WWSMdMMPfdd5/+vr5/FB96ImZ+8Ytf6O/x7LPPdti/YcMGbcyYMfp7uN3uo/48FHmRjpmGhgZt4sSJWlFRkTZ58mRtx44dhv2qqmqPP/64Xodbb731mD8T9ayvvvpKmzRpkuE748knnzymMi+77DKtqKhIGzVqlPbVV18Z9qmqqt1///36e/3rX/86pveKFDYHUbd54YUXAABmsxl/+ctfYLPZDPsLCgrwxz/+EQDQ0NCARYsWhVX+Z599prc2XH/99RgzZoxhv9VqxUMPPaR3sX322WeP5mNQD4p0zLz11lsAAJvNhkceeQTJyckdjvGNowGAyspKfPPNN2F/Duo5kY6ZQL7//nu88cYbAIC0tLRjLo96VqRjZu3atVi5ciUAYO7cuQG7Xk6cOFFv5WxoaMB3330X9uegnhPpmPn222/1FtPrr78excXFhv2CIOB3v/sdBg8eDABYvnw5ZFk+qs9CPcvj8eDJJ5/Er371KzQ1NXVbuRs2bMD69esBALNnz8bpp59u2C8IAu6++24UFBQA8MZwsCFp0cTEk7pFQ0MDVq9eDQA49dRTg3YJmTFjBnJycgAAn3zySVjv8dFHHwHw/nFdfvnlAY9JSUnB3LlzAXgnINq7d29Y70E9J9Ix43A4sHnzZgDAySefjNzc3KDHnnfeefrjTZs2hfwe1LN64jzTXktLC+6++25omoZZs2Zh1KhRx1Qe9ayeiBlfd0ybzYZbbrkl6HGXXHIJLrvsMtx44436e1Hs6YmY8e+yP3LkyIDHiKKIsWPHAgCcTifq6+vDeg/qeatXr8b555+Pp59+GqqqIjk5Gddee223lO27BgaAK664IuAxoijq+xoaGvD99993y3t3Jyae1C1++OEHqKoKAJg6dWrQ40RRxOTJkwF4L/AbGxtDfg/feIfi4mJkZ2cHPc7//dl6FbsiHTP19fUYN24ccnNzMXz48E6PzcjI0B935x1K6l49cZ5p75FHHsGhQ4eQm5uLu+6666jLoejoiZj54osvAHhvcPXt2zfocSNHjsSf/vQn3HzzzXpCQbGnJ2ImNTVVf3zw4MGgxx0+fBiAdyIj/+8pik1Lly7VbyqMHTsWixYtws9+9rNuKdt3DZyRkYHRo0cHPc4/Zn09MWIJE0/qFmVlZfrjoqKiTo8dMWIEAO805b7JgLpSWVmpJwSFhYWdHuvrZgB4Zxmk2BTpmMnPz8eiRYuwatUq3HHHHZ0eu3v3bv0xZ0OOXZGOmfb8u9jee++9jI04FOmYqaqqQm1tLQBvd1ofSZJQUlKCb775Blu3bmU3yTjSE+cZ/2VY/vvf/+oTT/lbu3at3mtnypQpsFqtIZdP0ZOdnY177rkHb7/9th4fx0pRFP06paCgoNOJM4cNG6YvKRiL18BMPKlblJeX64/z8vI6PbZ///4BX9cZ/24pXZXfr18//Y/Sd7eQYk+kYyYc7777rv54woQJ3V4+dY+ejBn/Lrbnn38+zj777LDLoOiLdMzs2rVLfzxo0CBIkoSFCxfitNNOw+zZs/HLX/4SF198sT7TuqIoYX4C6mk9cZ4ZO3YsTjvtNADAnj17cOWVV+L7779Hc3Mzjhw5gtdffx2/+c1voKoqUlNTcfvtt4f5KSga5s+fjxUrVmD+/Pndup58TU0NPB4PgK5j0mQy6UOLYvEa2BztClBi8E0hDwBZWVmdHuvfatDQ0BBS+f5jG7oq32KxIDk5GQ6HI+TyqedFOmZCtXLlSqxYsQIAkJOTg1NOOaVby6fu05Mx4+tim5WVhXvuuSfs11NsiHTMHDlyRH9stVpx5ZVXYuPGjR2Oa2howN///nds3LgRjz/+OCwWS0jlU8/rqfPME088gVtvvRVfffUVNm/ejKuvvrrDMccffzz+8Ic/dJhMkWLTuHHjIlJuODEJeLvjHjlyJCavgdniSd3C5XLpj9vP/taef3cR/9d1xul0hly+/zGhlk89L9IxE4qKigr83//9n7594403IikpqdvKp+7VUzHj38X2j3/8Y6djyim2RTpm/Bdxf/jhh7Fx40YUFhbi2Wefxfr167Fu3To89thjGDBgAADg888/xxNPPBHGJ6Ce1lPnmZSUFPztb3/TWz7bEwQBw4YNYxd/SqhrYCae1C38x690NQ7Bf3+o4178uyeFMs7BdwzH1cSuSMdMV+rq6nDdddfp47NOOeUUfVkVik09ETP+XWynT5+OCy64IPyKUsyIdMz4lsQAvJPEjBo1Cm+++SbOOOMMpKSkID09HRdccAHeeOMN/QbGSy+9FJEhA9Q9euq76aOPPsIZZ5yBb775Bv369cNvf/tbPP744/jLX/6Cc889F4B3GMiFF16oj/Wk3imRroGZeFK38G8l6mrdIF8/dSC0PyDAeIcnlHWJfO/B7kyxK9Ix05nq6mpcddVV2LNnDwBgyJAheOSRRyAIwjGXTZHTEzHj62KbkZGB++67L+w6UmyJdMxommbY/vOf/2yYsdRnwIAB+N3vfgfAezG4ePHikMqnntcT55nly5fj//2//weXy4UTTzwRH330EW666SbMmDED8+bNw5NPPonnn38eSUlJaGlpwfXXX4/q6urwPwwlhES6BmbiSd0iOTlZfxxodjZ//ifqULoMhFu+/zHsNhm7Ih0zwRw4cADz58/XZy4cMGAAXnzxRXanjAORjhn/LrZ33nlnp0tjUHyIdMzY7Xb98dChQzsd4+VrxQKgLwRPsSfSMaNpGh588EEoioKMjAw8+eSTAW9WTJs2TZ9UqLGxES+88EJI5VPiSUlJ0R/H+zUwE0/qFunp6frjrgYz++8P9WLfv/yu1sqSJEnv/sRkInZFOmYC2bx5My677DLs378fgHd2uFdffbXLWeIoNkQyZvy72J566qmYO3fu0VaTYkikzzP+CcOwYcM6PTY7O1sfr1dVVRVS+dTzIh0zJSUl+tqdF1xwQadjOC+99FL95sbXX38dUvmUeNLS0vTHoawX6zsmFq+BOastdYuhQ4fqjysqKpCfnx/0WP9ZAAcOHHhU5XemsrJSX/w51PKp50U6ZtpbuXIlfve73+k3JUaMGIEXXngB/fr1O6ryqOdFMma2bt2qL9u0cuVKFBcXd/ka3zF5eXn48ssvuzyeel6kzzODBg0Kqz6+7pi+7yiKPZGOmX379umPu1on1Gq1oqCgwHB+ot6nb9++SElJQUtLS5dLpCiKonfLjsVrYLZ4UrcoKCjQH/svvhyIb78gCCgsLAyp/KysLOTk5IRUvv+6al2d1Cl6Ih0z/r788kvceOONetI5YcIE/Pe//2XSGWd6MmYoMUQ6Zvy/Y7qaMEhRFL2FjOee2NWT55lQuk361iXvznUhKf744nL37t2dHrdnzx59MqJYvAZmiyd1i+OOOw4WiwWSJGHNmjWYP39+wOMURcG6desAACNHjjR0aenK5MmT8cknn6CkpATNzc2Grgf+vv/+e/3xlClTwvgU1JN6ImYAYO3atViwYIE+IP+UU07BU089ZRjHQ/EhkjFTWFiIp59+usvjnnjiCf1i03d8LI6jIa9In2eysrJQWFiIsrIylJWV4ciRI+jfv3/AY7dt26aPCYzFC0LyinTM+N902Lp1a6fHyrKsT4IXi61X1HMmT56MzZs3o7a2FmVlZUFvdPhfA0+ePLmnqhcytnhSt0hPT8fUqVMBeFuXgnUF+PDDD/WFcM8///yw3sM3MYMsy/oEIO05HA68//77ALzjbUaOHBnWe1DP6YmYqa2txYIFC/SLvZ/97Gf417/+xaQzTkUyZrKzs3HWWWd1+c9/8W7fc9OmTTvGT0aR0hPnGd+SO5qm4d///nfQ4/773//qj8N9D+o5kY6ZcePG6WODly9f3unwoSVLlsDhcADw3jSl3st/crL/3979x9V0P34Af4V7S5L8mh8xTAhhlWlUVJiZNazl1yZse5i2/NoMs/nVxpSZ0LKtzOZ3tVFIyXSZWAn5EUN+JBW66NbqVvem+/3jPjrfe3dvdVM3Pryef90f73PP+9xzTt3Xeb/P+71161a9ZR49eoQdO3YAUN8X+jT+b2LwpDozdepUAOrBfT799FPhj2WFa9euYcWKFQDUI3R5e3vX6POHDRsm3E/zww8/4NSpU1rvKxQKzJ8/X+jKNG3atMfYCqpPxj5mvv76a+GHQd++fbFu3bo6mY6FnhxjHzP07DH2MTNhwgRhEI+dO3ciOjpap0xUVJTwuoODA/r161fTzaB6ZMxjRiwWC3NGy+VyzJkzR/g/penMmTNYuXIlAPW0GFOmTHmcTaFnRL9+/WBvbw8AiIyMRGxsrNb7KpUK33zzjdBCPmnSpKeyN46J6r+TUBHVwqxZs3Dw4EEA6kEXJk6ciHbt2uHSpUvYuXMnioqKAADLly/HhAkTtJZNTk6Gj48PAHUXWX1XdBISEvDxxx9DpVJBJBLB29sbDg4OkMlkiIiIwNWrVwGo/7Fv27aN90T8DzDWMXP9+nWMGjVKmGdv/vz56NSpU7X1sbKyQv/+/etk28g4jP13piqTJ0/GyZMnAQBXrlyp7aZQPTH2MXPo0CHMnj1buLfK3d0dHh4eEIvFkEgkiIuLA6CecmP37t2wsbEx2rZS3TDmMVNcXIxJkybh0qVLANRdtseOHQtbW1s8evQISUlJiImJQVlZGQBg2bJlmDhxolG3l4xD81jw8/PDzJkz9ZbLysrC0KFDAVQ+YN3Fixcxfvx4KJVKmJiYwNPTEy4uLigpKUFUVJQwTVPnzp2xe/durWlYnha8x5PqVEBAAIqKipCYmIisrCysXr1a630TExP4+fnp/JE2lIeHB5YuXYoVK1ZAqVRix44dQreCCn369EFISAhD5/8IYx0zUVFRWpO7BwYGGrTc44QRql/G/jtDzx5jHzPDhw/HmjVr8NVXX6GwsBASiQQSiUSrjJWVFTZu3MjQ+T/CmMdM48aNsWnTJsydOxdJSUnIy8vTO0+nSCTCokWLGDoJANC7d28EBQXh888/h1wux969e7F3716tMp06dUJYWNhTGToBBk+qY40bN0ZYWBj27duHqKgoYSAgKysrODo6wsfHB46OjrVax8SJE9G/f3/89ttvOHHiBKRSKUQiEbp37w5PT0+MGzcOIpGojraIjM1Yx0xF6zc9e+rj7ww9W+rjmBk5ciQcHR2xfft2JCQkIDs7GyYmJujYsSOGDRuGSZMmPZXz6pF+xj5mWrRogV9//RWHDx/G3r17ce7cOTx48ABisRjW1tZwdnbG5MmTOc80aRk2bBhiYmKwefNm/PXXX7h79y5MTEzQpUsXjBgxApMnT35qQyfArrZERERERERkZBxciIiIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiIiIiIyKwZOIiIiIiIiMisGTiIiIiIiIjIrBk4iIiOqcUql80lWgKnD/EFF9a/SkK0BERMaTnJwMHx+fx17e2toaCQkJdVij/+fh4YHs7GwAwJUrV4yyjvq0YcMGBAcHV1uuUaNGMDMzQ6tWrdCjRw84OTlh9OjRsLCwqIda1o7m8TR27FisWrVKp0xJSQmCg4PRpEkT+Pr66ry/cOFC7NmzBwCwZcsWODk5GbfSRlaTc8zExARisRiWlpawtrZGnz59MHbsWPTu3dvItfx/1e0fIiJjYYsnERFRPSorK0NhYSEyMjJw8OBB+Pv7Y+jQoYiPj3/SVau1K1euYNSoUQgNDUVZWdmTrs5TR6VSobS0FFKpFGfPnsXWrVvh5eWFJUuWoLy83Ojr5/4hoieJLZ5ERM+JZs2a4aOPPqrRMk2bNjVSbZ5tdnZ2eOONN/S+9+jRI8jlcty+fRvx8fFQKBSQyWSYPXs2Nm7cCDc3t/qtbB26ePEisrKynnQ1npjqzrHy8nIUFhbi+vXrSExMRHFxMVQqFcLDw2FmZoZFixYZtX7P+/4hoieLwZOI6DlhYWGBDz744ElX47nQrVs3g77ru3fv4v3338f169dRXl6OpUuXIj4+HqampvVQy5pzcnKqdbfoVatW6e2i+yyoyTkmk8mwcOFCSCQSAOpux+PGjYONjY0xq0hE9MSwqy0REdET0rZtW/zwww9o0ED97/ju3btGu6eWni5WVlZYv349XnzxRQDqbri7du16wrUiIjIeBk8iIqInqEuXLnB2dhae//3330+wNlSfxGIx3nrrLeH5szDIFhFRZdjVloiIHsuNGzewd+9epKSkIDMzE/n5+TAxMYGlpSW6desGV1dXeHt712q01vT0dERGRiI5ORm3b9+GQqGAlZUVOnfujIEDB8Lb2xsvvPBCtZ9z584d7Nq1C4mJicjKykJRURGaN2+OXr16Yfjw4Rg9ejREItFj17O2unbtimPHjgFQt3pW5uHDhwgPD8exY8dw48YNFBYWwtLSEp06dYKrqysmTJiAFi1aVLkuhUKBffv24dChQ0hLS4NMJoOpqSlatWoFe3t7vPbaa/Dw8NC7bGWj2uob0Tc4OFh4zc/PDzNnzgSgf1Tb8vJyuLu7C9seFRWFnj17VrkdERERWLx4MQDAy8sLK1eu1ClTXFyMyMhIJCQk4Nq1a5DJZLCwsEDnzp0xZMgQTJw4EVZWVlWux9hatWolPM7Nza2y7IULF3DgwAGcOnUKd+7cgUwmg0gkQrNmzWBrawt3d3eMHTsWYrFYa7ma7B9NeXl5CA8Px9GjR3Hr1i0UFBSgWbNmsLGxgYeHB8aNG4fGjRs/7qYT0XOGwZOIiGpEqVTi66+/RmRkpN6ROEtKSpCbm4vjx4/j559/RkhICOzt7Wu8npCQEGzYsEFnHVKpFFKpFCkpKfj555/x5ZdfYty4cZV+zi+//IKgoCCUlpZqvZ6bm4vc3FwcOXIEoaGhWL9+PXr06FHjetaFiq62ANCwYUO9ZcLDw7Fq1SrI5XKt1x88eIAHDx7gzJkzCAsLw6JFi/DOO+/o/Yzbt29j+vTpuHHjhtbrSqVSGGl3z549ePnll7Fx48ZqQ2xdadCgATw9PREaGgoAiImJqTZ47tu3T3g8ZswYnfdPnDiB+fPnQyqVar2el5eHvLw8pKamYtOmTVi+fDlGjRpV+414TLdu3RIea4ZQTYWFhVi4cCEOHTqk855SqYRcLsedO3cgkUgQGhqK0NBQdOnSpVb12rdvH/z9/VFQUKD1+v3793H//n0kJSUhNDQU3333HV599dVarYuIng8MnkREVCMLFixATEwMAPWclC4uLrC1tUWTJk1QUFCAc+fOISUlBSqVCg8fPsTMmTMRFxdXo5bP6OhorFu3DoA6lLi4uKBXr14wNzfHvXv3cOTIEWRnZ6OkpASLFy9Ghw4dMGjQIJ3PWb16NcLCwoTn9vb26N+/PywsLJCTkwOJRILc3FxkZGRg4sSJ2LFjB2xtbWv5DdWcZhfLinv+NP38889Ys2aN8LxDhw5wd3dHq1atIJVKIZFIkJ2djaKiInz55Zd4+PAhpk+frvUZCoUCM2bMEEJnu3bt4Obmhnbt2kEul+Pq1as4cuQIysvLcfbsWfj5+WHHjh0G1d/Z2Rnm5uZIS0vDgQMHhNcquhAbcuFhzJgxQvA8cOAA5s2bV2nZe/fu4dSpUwDUc82+8sorWu8fPnwYs2fPhlKpBAB06tQJgwcPRuvWrSGTyZCYmIirV6/i33//xWeffQa5XA5vb2+DtrUuFRQUIDo6WniuL8CVl5fjww8/RGpqKgDAzMwMQ4YMgY2NDczMzJCXl4eTJ08iLS0NgPriwuzZsxEVFSVc0Kjp/tm+fTv8/f2F5z169MCgQYPQvHlzSKVSHD16FJmZmZBKpfjwww+xceNGuLq61uE3Q0TPIgZPIiIyWFJSkhA6LS0tsWXLFr0tU8nJyfjoo49QXFwMqVSKP//8U2+rVGVCQkIAqEOnvilGvvjiCyxatAh79+4FAPz44486wfPw4cNC6LSyssL333+vdS8lAJSWlmL16tXYunUrioqKMGvWLOzfv1+nq6IxpaenIykpSXg+ePBgrfeTkpK0QufMmTMxY8YMNGr0///CFy5ciA0bNuCnn34CAKxduxb9+vWDk5OTUObgwYO4du0aAGDAgAEICwvTGT33/PnzmDJlCuRyOU6fPo2UlBSdUKePg4MDHBwcsHv3biHY2Nvb12gUZRsbG/Tu3RsXL15EdnY2zp49i5dffllv2QMHDggt4Z6enjAxMRHey8nJwcKFC6FUKtGgQQMsWLAAPj4+Wq3KCxYswO7du7FkyRIolUr4+/vDwcEBXbt2Nbi+tZWZmYn58+fj4cOHANRTF7377rs65fbs2SOETmtra2zZsgUdOnTQKRcTE4N58+ahvLwcV65cwenTp4V9V5P9k5aWhm+//RYAYGpqipUrV+LNN9/UKvPFF19g06ZN+P7776FUKjFv3jzExsbWWws5Ef1vYvAkInpOFBYWYtOmTQaXHz9+vE4rZcW9eYA6AFXWHdLJyQljx44VWszS0tIMDp4ymQwZGRkAgO7du+ud11IkEsHf3x+HDh1CcXExrl69CoVCIQRGlUqFtWvXCuXXr1+vFcIqmJqa4quvvsLt27dx5MgR3Lp1C9HR0fXW+pWWloY5c+bg0aNHAIDevXvrhOOgoCDh8bRp0+Dn56fzOSKRCJ9++imKioqwbds2lJeXIygoCDt37hTKnDt3Tng8ZcoUvVO29O3bF++//z6Cg4PRoEEDnD9/3qDgWVfGjBmDixcvAgD2799fafDcv3+/8FhzcB5A3Tpc0T30k08+wdSpU/V+xttvv428vDwEBgZCoVDgxx9/xOrVq2tV/+rOseLiYshkMly6dAnnz58XWmTFYjHWrFmjN7hpnnNffvml3tAJAKNGjUJ0dDSOHj0KQD1n5+Psu3Xr1gn1Wr58uU7oBNTdwadPn467d+9i+/btkMlk2LJlC+bMmVPj9RHR84PBk4joOZGfn4/AwECDy48YMUIneL7++uvo0qULsrKydH7w/5fm/ZJFRUUGr1ezJS87OxtSqRStW7fWKde4cWP88ccfaN68uc4P9tTUVKSnpwNQt+zoC52afH19ceTIEQDA3r17ax0809PTKw0gpaWlePDgAc6fP4/z588Lr5ubm+vsn6ysLKG1y9zcXG/o1DR37lzs3r0bcrkcZ86cwY0bN/DSSy8B0L53NDU1FcOGDdP7GT4+PnjzzTdhbW1dry2/APDmm28iICAAZWVliIuLw6JFi7RaKgEgIyND6FZqZ2en1UqpUCiErqtisRjTpk2rcn0+Pj4IDg6GXC5HXFwcVqxYUattruk5BqjD/uLFi9G3b1+970+YMAGvvvoqcnNz9V6E0dSjRw8heBYWFtaoHoC6C3PFIFdt27at9mKRr68vtm/fDkB93jB4ElFVGDyJiMhg7u7ucHd3r7acXC5HVlaW8LysrMzgdVhYWKBnz574559/8O+//8LLywtTpkyBm5ubTlfIyrpGpqSkCI979+5d7Tp79eoFsVgMhUKB8+fPo6ysTCsA11RaWpoQjgzRuXNnBAUFwcbGRut1zS64Li4u1d4na2FhARcXF8THxwMATp06JQTPV155Bb/++isAICwsDNnZ2Rg9ejScnJxgbm4ufEazZs3QrFkzg+tel1q0aAFXV1dIJBJIpVKcPHlS575HzdbO0aNHa7138eJFYfClzp07o0mTJlWuTyQSwc7ODidPnoRCocCFCxfg6OhYR1tTOXt7ezg7O8PNzQ19+vSpsqy+Fkd98vPzce/ePeF5Tc65ChX3ZgNAz549tbow69O6dWtYW1sjOzsb2dnZuHfvHtq0aVPj9RLR84HBk4joOWFtbY2EhIQ6/cyioiLcvHkTmZmZuH37Nm7evInLly8jPT1d64dvxY9ZQ82bNw/Tp0/Ho0ePcO/ePQQGBiIwMBDt27eHi4sLXF1dMWjQoEqDWMW9jACwbds2bNu2zeB1l5SU4OHDhwZN0/I4zMzMYGFhgbZt26J3795wc3ODm5ubTsseAK3wbuigR7a2tkLwvH37tvC6h4cHBgwYgJMnTwIAYmNjERsbC5FIBAcHB7i4uMDNzQ3du3evzebV2ujRoyGRSACo71usLHg2atRIZzRazf1+9erVGo9SfOfOncepskDfOVZSUoJr167h119/FUbiTU9Ph6enZ7WhU5/8/HxkZGQgMzMTmZmZuHHjBi5fvozr169rnWc1PecA7e9PIpHU+PvLyclh8CSiSjF4EhFRjZSXlyM6Oho7duxAWlqa3ilVAHXXzop7F2vKxcUFISEhWLp0qda8ljk5OYiIiEBERATEYjHc3Nwwbdo0ODg4aC2fn5//WOvVXL42wVNzjsvakMlkwmND55vULKf5PTRo0AAhISH45ptvEB0dLQQTpVKJ5ORkJCcnY82aNejUqRPefvtt+Pj4aLWE1pehQ4fC0tISBQUFiI+Px5IlS4Q5Vi9evIibN28CUB8jLVu21Fq2LvZ7XTMzM4OdnR2+++472NnZ4dtvv0VhYSH8/f0hlUoN6p6qUCiwa9cuREZG4urVq5WWq805Bzyd3x8RPTsYPImIyGBFRUXw8/PDiRMntF43MTFB27ZtYWNjAzs7OwwYMABZWVlYvHjxY6/Lzc0Nhw4dwtGjRxEfH4/ExERhBFBA/WM8Pj4e8fHx+OSTTzBr1izhPc0f36+//nql989V5r+B5kl5nFaryi4EAOqRUwMCAvDJJ58gJiYGEokEFy5c0Frm1q1bWLt2LSIiIiodQdWYxGIxRo4cifDwcMhkMpw4cQJDhgwBUHU3W0B7v/fu3bvG83NWNphRXZk6dSpu374ttMBv3LgR7du3r3Ie2oopSy5fvqz1eoMGDWBtbY1u3bqhT58+cHJyQmJiojAi9OPQ/P4GDhxY4ylSajt3KBE92xg8iYjIYCtWrBBCZ5MmTeDj4wNXV1dhHk9NFYOO1IZYLMbw4cMxfPhwqFQqXLlyBUlJSTh27BiSkpKE7rw//PADBgwYIHTLtLS0FD7D3t6+0pFNn3aa91rm5eUZtIxmOc3vQdOLL74IX19f+Pr6oqCgACdPnsSJEycgkUiQk5MDQD2w08KFC2vUTbmuvPXWWwgPDweg7m47ZMgQqFQqxMbGAlAH6KFDh+osp7m9bdq0qdF0LvVlwYIFSElJEeZuXbFiBRwdHSu9X3nevHlC6GzZsiWmTp2KQYMGoVu3bjojEx8+fLhWddP8/mxsbJ7K74+I/nfp3lBCRESkx7179xAVFQVA3cK5efNmzJkzB46OjnoHcdEMQI/TcvdfJiYmsLW1xdSpU7Fp0yYkJCRo3YNWMZopAHTs2FF4XDG6bXU0W1OfFp06dRIeVwSV6vzzzz/CY83voTKWlpYYNmwYlixZgoSEBK1W6pSUFCGI1qf+/fsLdZdIJCgrK8Pp06eFezBHjBihdzoYze3VvF+xKvn5+VW2Etc1sViMVatWCYNXlZSUYMGCBXrrcO7cOWGAKXNzc4SHh2P69Omws7PTu/2GXpyozON8f3l5eXVyfhPRs4/Bk4iIDHLhwgWhK17Pnj3Rr1+/KssnJycLj2vyw/Tw4cP44IMP4O7ujp9++qnScm3atMGMGTOE55ojevbv3194fPToUWFewspcuHABAwcOhL29Pby8vB5rRFBj0NyOxMTEaqfI+Pfff/H3338Lzyu6jj569AgLFizA22+/DWdnZygUCr3Lm5iY4L333tNqfdO8x7Y61Y2CWhMVXWkLCgqQkpKCuLg4nff+y97eXgh0mZmZ1Yb10tJSjBgxAn379sVrr72m053VWHr16qU11cuFCxeEOW81nT17Vnjs7Oxc5YUElUolDBwF6O9yXd3+0TzeTp8+Xe3FmNzcXLi6uqJfv34YOXLkU3nxhoieHgyeRERkEM2wojnojT5//vmn1o/gmgQ5lUqFxMRE5OTkICYmpsplNVt4NEfTHDhwINq2bQtAfY9cZXNqVqxvzZo1ANTTwHTo0KFWU6nUpU6dOsHe3h6Aum7BwcFVll+3bh2Ki4sBAN26dRNahBs2bIjLly/j4sWLuH//fpVdMsvLy7X2b01GKdUcmbc2g9wA2uHy8OHD+PPPPwGoR4595ZVX9C7TpEkTDB8+XHgeGBhY5UWPsLAw5OXlQalUQi6X60xnY0x+fn6wtrYWnq9duxa5ublaZTTPuepaM7ds2VLtFEbV7Z+uXbsK90MrFAqsXbu2ynUGBQVBqVSitLQUTZo00ZlPl4hIE4MnEREZRHM6j5ycHPz22286ZcrLyxEZGYnPPvtM6/WKMGSIwYMHo3Xr1gDU3Uv9/f1RUlKiU+7mzZtaQey1114THotEInz88cfC83Xr1mHz5s06rUDFxcVYvny50ErYqFEj+Pr6GlzX+jB79myhpWrz5s0IDg7WCRVlZWVYv349tm7dCkDdsrVo0SKtMl5eXsLjZcuW4fz58zrrUqlUCAgIwIMHDwCoB+jRDEfV0ZzeJjs72+Dl9HnxxReF0P3HH38I3Ww9PT2rbLnz9fWFWCwGoG4l/vzzz3VailUqFSIjI7UG4vH19a3XCw5mZmZYsmSJ8LywsBArV67UKqN5zp0+fRqHDh3S+RyFQoEff/wRAQEBWq/rO+cM2T+zZs0Svt+IiAgEBATotJCXlZUhJCQEf/zxh/DazJkz9X4eEVGFp+OSLhERPfVeeukluLi4IDExEQCwcuVKxMbGwt7eHhYWFrh37x7++usvISCIRCKhi2t1LaSaxGIxvvjiC3z66acAgPDwcCQkJGDw4MFo3749APUcjUeOHEFpaSkAYMiQIXB3d9f6nPHjx+PUqVPYu3cvysvLsWrVKuzatQuDBw9GixYtkJOTA4lEAqlUKizz2WefGTxfZn0ZOHAg/Pz8sGHDBgDAhg0bsGfPHri7u6NVq1a4f/8+JBKJVmvXxx9/jEGDBml9zoQJE/D777/jypUrkMlk8Pb2hrOzM7p3744WLVrgwYMHSExMFO7tE4lEOuG1Opoj4O7btw9NmzZFmzZt0K1bN3h4eNR428eMGYPU1FTI5XLhtbfeeqvKZXr06IElS5Zg8eLFUKlU2LdvH44dO4ahQ4eiY8eOePjwIZKTk7W64bq7u2PSpEk1rl9tubm5Yfjw4UKgjI2NhZeXlzCabMUgQunp6VCpVPDz84OLiwt69eoFU1NTZGdnQyKRCK2h1Z1zhuwfV1dXzJgxAxs3bgQA/PLLLzhw4ADc3d3Rpk0b5Obm4tixY1pzxL733nvCyMNERJVh8CQiIoMFBgZi2rRpwo/21NRUpKam6pTr3r07Vq1ahfHjx0OpVCI9PR0KhUJoiarOqFGjkJeXh1WrVkGpVEIqlWq1rmgaMWKETmtPhYCAALRv3x6bNm2CUqlERkYGMjIydMqZmZlh3rx5mDx5skH1q29+fn5o3rw5vvvuO8jlcmRlZQmtm5rMzc2xbNkyvfdAisVihIWFwdfXF2lpaQCA48eP4/jx4zplW7VqhW+++Ubrnj9DdO/eHfb29khNTYVKpRJGNvbw8His4PnGG29gxYoVQoubnZ1dpaO/avL29kbTpk2xdOlSyGQyyGSySo8fLy8vLFu2rE7vT62Jr776CsePHxfCtb+/P/bv3w9TU1M0bNgQGzZswPvvvy8M8pSYmChc/NHUv39/zJ07F++++y4A9Zyn/2Xo/pkzZw5atmyJNWvWoLi4GHfv3sXOnTt1Pq9hw4b48MMPMXfu3Np/EUT0zGPwJCIig7Vs2RKRkZEIDw9HXFwcrl27hsLCQpiZmaF169awtbXFsGHDMHLkSDRq1Aivvvoqjh07huLiYhw8eBCenp4Gr+u9997D4MGD8fvvvyM5ORkZGRkoLCxE48aN0bp1awwYMACenp5VhqMGDRpg7ty5eOeddxAREYETJ04gKysLhYWFMDc3R+fOnTFo0CCMHz9eaE19Wr377rsYMWIEdu3ahcTERNy6dQsFBQUwNzdH165d4ebmhnHjxlV5n90LL7yAiIgIxMXF4eDBg7h06RLu37+PsrIytGjRAl26dIG7uzu8vLzQtGnTGtfRxMQEoaGhCAoKQkJCAqRSqVYrXE1ZWlrC3d0dBw8eBFD5oEL6vP7663BxcUFkZCT++usvpKenQyaTQSQSoV27dnB0dIS3t3eN53ita23btsXMmTOFiyeZmZkICQkRwlyXLl0QHR2Nbdu2ISEhATdv3kRxcTEaN26Mdu3aoWfPnnjjjTfg5uYGExMTvPTSS7hx4wYyMzNx5swZODg4COuqyf6ZPHmyMJ/q8ePHkZGRgfz8fJiamqJjx45wcnLC+PHjDboQQEQEACYqjoFNRERERERERsTBhYiIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqBg8iYiIiIiIyKgYPImIiIiIiMioGDyJiIiIiIjIqP4PkpRIwAOMKVMAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=postproc_clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ " group_name_map=group_name_map,\n",
+ ")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0e66e388",
+ "metadata": {},
+ "source": [
+ "#### Theoretical results:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "eed1f839",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Maximum fairness violation is between group=1 (p=[0.12562792 0.65148158]) and group=2 (p=[0.10094174 0.70148158]);\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy: 79.9%\n",
+ "Unfairness: 5.0% <= 5.0%\n"
+ ]
+ }
+ ],
+ "source": [
+ "acc_val = 1 - postproc_clf.cost(1.0, 1.0)\n",
+ "unf_val = postproc_clf.constraint_violation()\n",
+ "\n",
+ "print(f\"Accuracy: {acc_val:.1%}\")\n",
+ "print(f\"Unfairness: {unf_val:.1%} <= {EPSILON_TOLERANCE:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "493d213c",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Plot realized ROC points\n",
+ "> realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "fcd2aaf9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set group-wise colors and global color\n",
+ "palette = sns.color_palette(n_colors=n_groups + 1)\n",
+ "global_color = palette[0]\n",
+ "all_group_colors = palette[1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "4c70252e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8wAAAPbCAYAAACJ+wJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1xT1/sH8E8mEFbYSxAcOFDce++6pXVUrdZRR62jrVat9at11VWt27pn3QrujXtgFUVFcStDmWHIDsn9/cGP21ySMAMh8LxfL19yT+5Nntyc3NznnnPP4TEMw4AQQgghhBBCCCEcfH0HQAghhBBCCCGElEWUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEIIIYQQQogGlDATQgghhBBCCCEaUMJMCCGEEEIIIYRoQAkzIYQQQgghhBCiASXMhBBCCCGEEEKIBpQwE0IIIYQQQgghGlDCTAghhBBCCCGEaEAJMyGEEEIIIYQQogElzIQQQgghhBBCiAaUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEIIIYQQQogGlDATQgghhBBCCCEaUMJMCKkQMjMz9R2CQaH9RQghdCwkhABCfQdACCm49PR0BAQE4MaNGwgKCkJcXBzi4uLA5/NhZWUFKysr1K5dG61atULLli1hYWGh13jXrl2LdevWscsvXrzQSxynTp3C3r17ceDAAY2PBwQEYPjw4ezy7t270axZs9IKr0zJyMjAli1bEBMTg3nz5uk7nEIJDg7GkSNHcP/+fXz8+BGZmZmws7ODm5sbunXrhh49esDS0rJEY4iMjMThw4dx69YtvHv3DikpKZBKpXB0dET79u3Rt29fuLq6Fvj5zp49ix9//LFIsQQHB0MoLH8/8zNnzoSvry8AwMXFBf7+/nqOqPwYNmwY7t27BwBo2rQp9uzZo+eI9Ofdu3dYuHAhxo4dq/X3oGPHjoiIiAAA+Pj4YMmSJaUZIiGklJS/X1JCyiG5XI4dO3Zg27ZtSEhI0LhOamoqIiIi8PTpUxw6dAhGRkb46quvMGXKFEil0lKNt6x4/fo15s2bh3v37sHFxUXf4ZR5V65cwcKFCxEeHg4fHx99h1Ng6enpmDdvHo4dO6b2WEREBCIiInDnzh2sWbMGCxYsQOfOnUskjp07d+Kvv/5Ceno6pzwmJgYxMTF48uQJ/v77b0yYMAHjxo2DQCDI9zmfPXtWIrESQjRLT0/Hhg0bsH37dsjlcowdO1bfIRFC9IwSZkLKuMTERIwbNw4PHz5Ue8zU1BTm5ubg8XhITExEamoq+1hGRgb27duHixcvYvPmzahdu3Zphl0mbN26lW0tIflbsGAB21piKDIyMjB69Gjcv3+fU25mZgaJRILY2FgolUoAgEwmww8//IDFixfjyy+/1Gkcy5Ytw7Zt2zhlYrEY1tbWkMlkbLdOuVyO1atXIywsDIsXL873eVUTZnNzc1hZWRU4Jh6PV+B1CSHZgoKCsGnTJn2HQQgpQyhhJqQMYxgGU6ZM4STLXl5eGD58OFq2bAl7e3vO+p8+fcK1a9ewY8cOvH//HkB269bo0aNx9OhRODs7l2b4hJS4hQsXcpLlpk2b4pdffoG3tzcA4PPnzzhy5AhWr16NtLQ0AMCcOXNQtWpV1KtXTycxnDx5kpMsu7i44Ndff0X79u0hEomQlZWFK1euYPHixewFiWPHjqFGjRoYMWJEns+tmjBPmDABo0aN0knMhBBCCCkYGvSLkDLs+PHjuHPnDrs8aNAgHDlyBP369VNLlgHAyckJX3/9NU6ePImePXuy5TKZDPPnzy+VmA1Rs2bN8OLFC/ZfRb1/2dAEBQXh8OHD7HKHDh2wc+dONlkGsltlR44cid27d0MikQDIbuUtSOtuQSQnJ3PuW6xUqRIOHTqELl26QCQSAQCEQiG6dOmCo0ePomrVquy6a9euhUwm0/rcnz594jxeEXuJEFKW+fv7s78bdP8yIeUXJcyElGH79+9n//bw8MCcOXPA5+f/tRWLxViyZAmqVavGll25cgXv3r0rkTgJ0YctW7aAYRgA2V2wFy9erPW+YG9vb8yaNYtdfvjwIW7dulXsGI4dO4bY2Fh2ecGCBbC1tdW4rpWVFdauXcsOxJWcnIxdu3Zpfe7g4GDOMiXMhBBCSOmjhJmQMio9PR1Pnjxhlzt06FCoEW/FYjFGjx7NKbt9+7bO4iNEnxITEzmjI/fr1y/f+3t9fHxgZ2fHLp88ebLYceSM1gwAnp6eaNmyZZ7rV61aFZ06dSpQDKrdsd3c3PQ+6j0hhBBSEdE9zISUUUlJSVAoFMV6jlatWnGWo6OjC7Td+/fv4evri3///RehoaFISEiAiYkJrK2tUa9ePbRr1w7dunXTyZQ1RZki5tixY/j111/Z5cuXL6NSpUoA1KeIyhEREYEaNWqwy6oDPxVlWqm0tDScPHkSN2/eRHBwMGQyGRQKBaytreHh4YGWLVuiT58+cHBwyPf9qMZ15swZVK1aFenp6Thz5gzOnTuH169fIzY2FsbGxnB0dESrVq3Qr18/znZFlXvqrxy+vr6cZFB1H+eWkJAAPz8/3L17FyEhIYiPjwePx4O1tTWqV6+O1q1bo3fv3jodrf3WrVuc70dBRr4WCoVo164djhw5AgC4ePEiFi5cWOR6HBsbi+fPn7PLqolwXjp16oTz588DyK6Xjx8/5nQjz6GaMOuzdTk8PJzz3h4/fgwjIyOcOXMGmzdvxrt372BlZQVPT090794dvXv31rhPIyMjceLECdy8eRMfPnyATCaDkZERbGxsUK9ePbRv3x7dunUr0OjhhXX79m3cvn0bDx48QGRkJBISEiCXy9mB1Ly9vdGyZUt88cUXEIvFGp9j8uTJ7OcGZF/E/Pvvv/N83Tt37mDkyJFsTwhXV1f4+fnBzMxM4/oMw+DKlSvw9/dHYGAgYmNjkZqaCqlUCldXV7Rq1Qp9+vSBm5tbod6/TCbD0aNHce3aNbx69QopKSmwtraGp6cn+vXrh+7du5fIfs8tKioKvr6+CAgIwOvXr5GQkACRSAQbGxvUqlULbdq0Qa9evWBiYpLn86ges83NzdlxDF6/fo0DBw7g1q1biIyMhFKphIODAxo0aIB+/fqhRYsWWp9TdYooVaq/Dbmn2irItFKqx+mc42hycjJOnDiBs2fP4sOHD4iPj4eNjQ1cXV3Rp08f9O7dG8bGxpznuX37No4ePYonT54gMjISIpEIlSpVQps2bTBs2LA8f2uKMl1YQaaFVF1H9f0HBQXh6NGjuH//PiIjI8Hn8+Hg4IDGjRtj8ODBqFmzJud5ZDIZjh07hgsXLiAsLAyfP3+GlZUV6tatiy+//BKdOnWiQQyJXlHCTEgZZW1tDZFIBLlcDiD7h/ann37SejKniYODA06fPg1LS0tIpVL2nkptEhISsHDhQpw+fZodWTiHXC5HUlIS3r9/j+PHj8PV1RWzZs1Cx44dC//mDNyBAwfw119/aZzi69OnT/j06RNu376NtWvXYujQoYX+3AIDAzFz5kx8+PCBU56RkYHExES8ePECO3fuxNdff43Zs2eXyomuJgqFAps2bcKWLVs4I7TnyJnS6erVq1i9ejXGjh2LMWPG6OTER7X3BY/H05hwalK/fn02YU5OTsarV69Qq1atIseQkwgBQIMGDQocg6rAwECN8at2yfby8ipSjCVl586dnPvAc+r906dP0bdvX866mZmZWLVqFfbu3YuMjAy1xz5//sweVzw8PDB37tw8E5vCuHPnDpYsWYKQkBCNj8tkMshkMrx58wa+vr5YsWIFlixZovH158+fj8DAQMTExADIvs3l9OnTnPEiVCUmJmLGjBlsHREKhVi5cqXWZPnhw4eYN28e5yJMjpypyQIDA7Fx40YMGDAAM2fOVEuqNNm3bx/+/PNPpKSkcMqjoqIQFRWFGzduYM+ePVixYkW+z1VUaWlpWLFiBQ4cOMD+puXIzMxESkoKQkNDcf78eaxevRo//fQTvvrqq0K9xu7du7Fs2TK15//w4QM+fPgAPz8/tGzZEkuWLCnQhcyScvv2bcycORNRUVGc8pzv0L1797B3715s2rQJjo6OSExMxP/+9z/OxRog+/cgJCQEISEhOHDgAFavXq12kby0paSkYNGiRTh69KjaY58/f8br169x6NAhzJw5E99++y0A4NKlS/jtt9/Ufk+jo6Nx+fJlXL58GZ07d8Zff/1VqN9RQnSJumQTUkYJhULOVdgPHz5g0qRJ7MlaQVWrVg12dnb5JsuhoaHo06cPTp48yUmWRSIRHBwc1LqDhoWFYcKECdi4cWOh4ilpxsbGcHNzg5ubG0xNTdlyoVDIlru5uWk9ac2LUqnEtGnTMHfuXM6PO4/Hg1Qqhb29PSd5zcjIwPbt2zF8+PA8B3dS9ejRI4wcOZJNlvl8Puzs7GBtba0Wy759+4o9mJulpSW7T1RbBU1NTTn7K3f9ycjIwMiRI7F69WpOsszn82FrawtbW1vO/fafP3/GihUrMGHCBLV5iovi1atX7N/Ozs6czzovHh4enOU3b97oJAYAnAG98lKpUiXO/nz79q3aOnFxcZweIV5eXggPD8eaNWswePBgNGvWDHXq1EHr1q0xZMgQbNiwocA9SIrr1atX+PPPPzU+1qFDB87nnpiYiJEjR2Lbtm2cZFkkEsHR0RFWVlacCyjv3r3Dd999xxm/oaiOHz+O7777Ti1ZtrS0hIuLC2xtbdUu3kRGRmLMmDF4+vSp2vNJpVL88ccfnLKFCxciPj5e4+vPnTuXkxRNmTJF64WdkydPYvjw4WrJslQqhZOTE4yMjNiyrKws7N+/H0OGDEFcXJzG58uxbNkyzJs3j5Ms5xxTVHt8PHr0CN9++22Bj1OFER8fj4EDB2LPnj2cZFYgEMDe3l6t50lMTAxmzZqFOXPmqF241WbPnj1YtGgR+/xCoRAODg5qLdW3b9/GgAEDEBYWpvYcLi4ucHNzUxtQ097enj0OahpsszCuX7+OMWPGsPWCz+fD3t4e5ubmnPVCQkIwefJkJCcnY+TIkWyynPPZ5f49/vz5MyZPnoyPHz8WK77ikMvl+P777znJskQigaOjI+d3UalU4o8//sC1a9dw8uRJTJw4kf09zVk/dw+VS5cuaT3mEFIaqIWZkDJsxIgRmDp1Krt89epVdOjQAZ06dUKXLl3QqlWrQs3Lqo1MJsOoUaM4J3e1a9fG5MmT0apVK/aqbmhoKPbv38+e+DAMg1WrVsHW1hYDBgwodhy6UK9ePVy8eBEAt7u3g4MDW15UixYt4txzamZmhnHjxnHujU1JScGlS5ewevVqtqvew4cPMWXKFOzYsSPf7r9z586FXC6HVCrFxIkT0atXL/YzjoqKwo4dO7Bjxw52/YMHD2rs4lZQw4cPZ7scqnYv7Nq1q9ZRX3OmOwsICGDLbG1tMXHiRPTo0QOWlpYAsnssnD59GuvWrWNPxP39/fG///0Py5cvL1K8OSIjI9m/HR0dC7xd7pal4pxgqsbA4/EK3GolEAhga2uLT58+AYDGbqC5E7ZDhw7h4sWLardp5LQ8PnjwAJs2bcKYMWMwYcKEAg0OWFRLly5Va8XLodp1m2EYTJ06lTPtV5MmTTB+/Hg0bdqUPa7Exsbi1KlT2LhxIxISEpCVlYX58+fDxcUFbdu2LVKMERERmDt3LrKysgBkn4hPmTIFvXr14gzKlpycjOvXr2P16tXsVHxyuRwrV67E9u3b1Z63bdu2GDJkCPbt2wcg+9i5aNEitZN5Pz8/nD17ll1u3rw5vvvuO42x3r9/HzNnzuTEOmbMGPj4+MDJyQlAdm+Ohw8fYvPmzbh27RqA7B4IU6ZMwc6dOzUeV06dOsWZ7kwikWDChAkYMGAAm6S+f/8eW7duxZEjRxAeHq59hxZReno6xowZg5cvX7Jlbm5umDJlCjp27MiOXJ/TVXvTpk3sBbiDBw/C2toaP/74Y56vkZqayvZ2kEql+Omnn9CnTx9IJBIolUoEBARg6dKl7MWIqKgoTJw4EYcPH+a0WOZ0U859i86ff/6ps5kTFi5cCIVCAQcHB0yZMgU9e/aEsbExGIbBvXv3MH36dPa4EhQUBB8fH4SGhsLY2Bg//PADBgwYwP4eBAcHY+7cuWxvm+TkZOzcuZMzuGFpOnv2LHt86tOnD8aOHYvq1asDyL5wtmbNGuzdu5ddf+7cuYiNjQXDMGjUqBF+/vlnNGzYEHw+H2lpadi7dy9WrVrFfi/279+PcePGwcbGpvTfHKnwqIWZkDKsR48eaieMcrkc586dw9SpU9GiRQv06tULc+bMgZ+fn8ar5gWxatUqzra9evXCoUOH0KFDB84JhZubG2bMmIFt27axJzpAdldFfV7ZLg2PHj3i/Ng7OTnh0KFDGDt2LGcgKVNTU/Tt2xd+fn5o1KgRW37v3j2NJ+C5yeVyODs7w8/PD8OGDeNcEHFwcMDMmTM5J5AMw+DUqVPFfHeFc+bMGVy5coVd9vT0hJ+fHwYPHswmy0D2yevQoUPh6+vLaX09ceIEzpw5U6wYVFvWCnPRKHdrlqZu9UWJwdzcPN9eHNriSExMVHtc9f5lADh37hx7MioSieDk5KTWqp6eno61a9fihx9+0JrQ6kLOvZDDhg3DhQsX8OjRIxw/fhyjRo3iDHq2b98+3Lhxg10eNWoU9uzZg9atW3OOK7a2thgxYgSOHj2KypUrA8huhfr111/VunAX1KZNm9h5t3k8HtavX48RI0aojWBuZmaGHj164NChQ5zWw7t37+Lz588an3v69OmcngonT55kk1ggO1lfsGABu2xlZYVly5ZpvIiRmZmJqVOnskmBvb09jh07hgkTJrDJMpB9kaVx48bYvHkzpkyZwpb/+++/nONSjoyMDM4FL4lEgl27dmHMmDGcuufu7o6FCxeW2LSDu3fv5tw+0bx5c/j6+qJXr16c3xAHBweMHz8eBw8e5BxP//77bzx69CjP11AoFFAoFHB0dMThw4fx9ddfs8/N5/PRokULHDx4EK1bt2a3yenGXNoUCgVcXV1x6NAhfPXVV2yXeh6Ph2bNmql1iw8NDYVIJML27dsxduxYzrHOy8sLO3bs4CSQV69eLZX3oUnO8ennn3/G8uXL2WQZyO7V8b///Q/Nmzdnyz59+gS5XI5OnTph9+7daNy4MfsdMTExwZgxYzh1PTMzUyczGxBSFJQwE1KG8fl8rF27Fj169ND4OMMwePXqFQ4ePIgZM2agc+fO6NChA3777Tf4+/sX6KQ5PDyc04WqVq1aWLx4cZ4n/82aNcPcuXPZ5czMTGzZsqUQ78zwrF69mv1bIBBg1apVeXbBtbCwwLp16zgn6Dt27GBP4vMyb948zslybqNHj+Z04QsKCsr3OXWFYRisWbOGXZZIJNiwYQPnJDc3R0dHrFu3jnO/5YYNGzj3/xaWajdw1RPv/OReN/d9naURQ+71NcWQO2EGskcCP3z4MJ48eYKrV68iMDAQZ8+exYgRIzjfV39/f07CVhLGjx+P2bNno3LlyjAxMUHNmjUxY8YM9jPOysrC1q1b2fWbNm2KGTNm5Hn/eqVKlTgJQ2xsLHu/eWEolUpOb5L27dvnO3q5paUl+vXrxy4rFAqNLf9A9sn88uXLOa268+bNQ2pqKpRKJaZPn47k5GT2sT/++ENr7wNfX19OT4U///xT7baB3CZMmIAOHTqwy9u2bUNmZiZnndOnT3Nu35k2bVqe9/kPHDgQPj4+eb5uYaWkpHDqgIODA9asWZPn7TCenp5YuXIlW08YhsGGDRvyfS0+n4+VK1dqHQzNyMgIf/75Jye53LlzZ7GOQUU1c+ZMrb1iGjduDFdXV07ZsGHDOBdfVZmbm+OLL75glz98+FDki0y64OXlhbFjx2p9PHcdMzY2znPgxf79+3OWc98GQ0hpoYSZkDLO2NgYf/31FzZs2FCggX8+fvyII0eO4Pvvv0f79u2xc+fOPBNnf39/tnUDACZOnFiggTX69evHmedZ00Bh5UViYiLu3r3LLrdv315t4CZNrK2tMWLECHZZJpPh5s2beW7j6OiINm3a5LmOWCzmDFSl7R7KkvDixQu26yqQfUKT+wRPkypVqnBOll69eqVxcKOCUq3ThRnlWiAQcJI21bpfWjHkXl9TDKoDfolEImzYsAFLly6Ft7c3J/4qVarg119/xc6dOzlJ+MGDBzldoXVJIpHkeVIMZN8rqtrrRNPI9ZrUrVuXM3jauXPnCh2fQqHAypUrsXDhQowfP15tej1tcidbmgayU43z+++/Z5cjIiKwdu1abN++nbPfv/nmmzwHRlS9WFmjRo0Cd/395ptv2L+jo6PVWmFV95uFhUWBbpkZP358gV67oO7evcvpPTFq1ChODxRtmjZtyjkGXr9+Pd9jXPv27bUmlTmsrKwwePBgdjkiIoLT+l0a7O3t8x3R39PTk7OseiFHk5xeGTk09VgpLYMGDcrzoljumR3atm2rNj6HKmtra8792vp8b6Rio4SZEAPRqVMnHDt2DCdOnMCkSZNQv379fE/SY2NjsXjxYgwcOJC9XzI31bmZJRIJ2rdvX+CYVEeHTUxMLFYCVJYFBARwLgZoGxVXk969e6s9V15yJ0TaqLbo6mIQrYK6c+cOZ7kw+6JXr16c5fz2RV5UW4b0Nd1IScawfPlyLF26FJMmTcJff/2V75RVjRs35vT6AFCglrmi8Pb2zneQtdzJemFG+W7YsCH7d1BQkFrraX5EIhFatGiBAQMG4KeffkKTJk3y3YZhGLUu2PlN6/f999+jXr167PKePXs4PVE8PT0xffp0rdunpqYWeST0hg0bcupcTjd5IPu9PHjwgF1u0aJFgS6Curu762Squhy6OlYwDIN///03z/VzH2e1yZ2squ630lC3bt1811HtPSQWizldmzXJ/V0s7PdFl/KbrSB374KCTJen+v70+d5IxUaDfhFiYGrUqIEaNWpg4sSJSElJQWBgIO7fv4/79+8jKChIY2vys2fPMHToUBw5ckTtau67d+/Yv2vWrFmolrLcP/5v374tc9Pf6ILqPgKAOnXqFHhbR0dH2NnZsd0jNY2InHv9glA9AS7Nln3VfSEQCAo1P3CdOnXA5/PZePPbF3kRiURs18PCtBIrFApOoqs6+nBRYshR2JZq1fU1xdCoUaN8W8xy69OnDzZs2MCOsH7v3j0kJyezJ6mqc7HmR9OcqzkKctKfu0v5sGHDCjwQWVJSEvt3RkYGoqOjtc4BXhTx8fEIDw9HWFgY3rx5g+fPnyMoKAixsbGc9fL7XgkEAixbtgw+Pj5ITU3lHHtzegblVb9evXrFqQcXL14scq8A1QG7IiMjOV3Cc7dY5qVWrVp5fvaFoXqscHBwyPO2jdw0/bbkRfXCRV6qVavGma6xOKPkF4Wzs3O+66heCLG0tMz3e1OSA/wVVl63EgHqFxYLMv5EWXp/pOKihJkQA2Zqaoo2bdqw3dfS09MREBCA8+fP4+TJk5yrsREREfjjjz/URnNVHfSoMCc0mtYvzgBKZVnu7oCF3U+2trZswpzfPiro9Ej6orovLCwsCjUvprGxMczMzNiEqDj1xczMjE2YC3JfeI7c9wvnnnamsDHkKEwMueMoTgyq+Hw+2rZty472K5fLERISgsaNG+vk+XPkHjhLk9zTExVnBOaEhIQiJ8xKpRJ37tzBxYsX8fTpU7x7946TTBaXu7s7ZsyYoda6P336dM4tK5rk3kefP3/WOtBYflS/S7mnHsyry2tuxZ02SZXqsaIkf1t4PF6+iVoOkUgECwsLdsC+/Kbl0rXCHt8Nbd7hwk7XaGjvj1RcdNmGkHLE2NgY7dq1wx9//IHLly9zBoYBskc3Vp06CgDn5LGwP+a5T/QLmzQYCtV9xOPxCj3Ak+p+ym8fqc5XWRap7ovC7gegcPsiL6qD9xQm8c59D1xBkr+CxJCUlJRvF15tcehympTc95OXREKQe85YTXSZlOZ1L3FeAgMD0bdvX4waNQr79+/HkydPNMYlEonQpEkTdO3atUivo2lAr4JcIChqcqyJ6gWY3N1WC3NBpijz02tTnGNFYX5bTExMCtUKqTr4YGl38S3sWAeGpry/P1JxUc0mpIxKS0uDTCZDXFwcHBwcCjzHaw57e3ts2LAB3377LdsNU6FQ4N69e5z7vSQSCdviV9gRg3XZWlcYhUlMdEH1ZI9hGKSmphbqBLAkWhP1RfV9FyWR0dW+cHFxYed2jY6OLvB2uS8YFfZ7lTuGHEqlErGxsQV6PoVCwen+W5h5pPOjmgzkvJauFeR+bdU4bG1tS306mGvXrmmcXsvBwQHVq1eHh4cHqlSpglq1aqFWrVowNjbG8ePHceHChUK9jkwmw+zZs9XKd+7ciY4dO+Z5/3Tu+v/7779zBqUqqtytdoX5nupyOrLiHCsK89tS2JhVn7soF/0qitL+nSWkLKOEmZAy6O3bt+jevTu7PGrUKMyYMaPQz8Pn8zF69GjOfYu5EwapVMomzLm78uUn93MVt6WsoPfiFrXFqahyz90bExOjNjJpXlQTusJ0jyyLVPdFUlISMjIyCnwfcHJyMudktTj7omrVquxc0OHh4cjMzCxQ977c90IW5v5OTTHkfu6CJMxhYWGck3xtg/okJydDJpPBxcWlwD0Pct8+oHqPYE5X7dKQe55ppVJZavcixsfHY/r06ew+5vP5GDlyJIYMGZJn1+6iTMczZ84czsUPiUTCTi81Y8YMnDhxQmurbe7jiq5Gu89dBwvTy0CXt9Wovr/i/rbkdayQy+Wce/XzkpGRwWnZ1+XFKkNRVn9nCSnLqEs2IWWQvb09pxVHdcTTwsp9gpg7uVE9WX/+/HmhBi/KPSWHtjkw86J6El3QE1bVeUtLQ+6k6vHjxwXeNiwsjHMiXJhEuyxSrS8KhYIzym9+nj59yhlwqzj7QnWQn6ysrALHoTr9jpmZGdzd3YscQ+4RzQtaL3JPAZR7gKN169bB29sbjRo1QpcuXQq9j3PweDydjnpcGKoXE+RyOdsboCASExOLNfK7n58fJ/GbPHkypk+fnu990LmPK/nN0Xvs2DHOfM/9+/fHnDlz2OWIiAgsXLhQ6/ZVqlThLBfmc2YYBjExMRpjdHBw4EzfVJjnDQkJKfC6+VE9VkRFRaklwXnJ/duS37GioHGHhIRwWk719f0obYbwO0tIWUYJMyFlkJmZGWee3aCgILWT7IJSnTMXUG/NUu0ymJaWBn9//wI9L8MwOH36NLtsZmaGmjVrFjo+1a52Bb0PtKCJia6m+mnUqBHnuVTfd35yr1vYkY/LmtxdTM+cOVPgbXPvi+IMRtWiRQvO/XKXL1/Od5usrCxcv36dXW7ZsmWx7rmzsrLijJhekBgAcL5juZ8DyB5JV/WkVjXmvCQkJHC6PtesWVNvPRpy15PCzKc8duxY1KtXDy1atMDAgQMLnTwHBQVxlr/++usCbZd76qK8EuaIiAgsWrSIXXZwcMDMmTPh4+OD1q1bs+W+vr6cpFqVjY0N58LC7du3C3xf882bN9G6dWt4e3uja9eu2L9/P+fx5s2bs3/fvXuXM/K4NvHx8Wr7rjh0dazg8Xj5Hjdzepvk5/z585zlli1bqq2jr2nqSpLq72xBezKU9hzVhJRllDATUkZ99dVXnOX58+cXepAkhmGwfft2dtnOzk4tSfniiy840+OsX7++QAOh+Pn5cZLxzp07Fyn5UB0NNSsrK98TtuDgYAQGBhbouVVPfPJrLcqLlZUV5yT42rVrePjwYb7byWQy7N69m102NTVF27ZtixxHSVNthdC2v2rXrs05yT969ChCQ0Pzfe43b97gxIkT7HKlSpUKNT1Xbubm5mjXrh27fPjw4Xy7k/r6+nK6hvbr16/Ir59Ddb7YoKCgfKdtevPmDSex7tu3r1pX5Xbt2nG+SwcOHCjQIFqrV6/mdKMcMmRIvtuUlHbt2nFaOfft21egFsYrV66wFwdlMhnMzMzU7svOT+6ksyDd2S9fvqz22Wm7Nzanu7XqZ7JgwQJ2MLT58+dz7o393//+pzZlVY4+ffqwf6empuLvv//ON1alUok1a9YAyB606sOHD2otpT4+Puzf6enp2LZtW77Pu3PnTp0OgtWmTRtOt+zt27cXqMt3QEAAbt++zS43btw438H5jh49qjbqeG4xMTE4cuQIu9ywYUO1QfIA9WmMivPbUVao/s5+/Pgx39bjS5cu4ePHjyUdFiEGgxJmQsqogQMHcrrsBQcHY+jQoXj9+nWBts/IyMDMmTM53bm///57taTWycmJMwhYSEgIZs2alWfX7H///RcLFixgl0UiEb777rsCxZVbw4YNOcsbN27Ueo9VdHQ0Zs6cWeB7sFSvqhd31N5x48axfyuVSvz0009q8zOrSk5OxqRJkzj3D37zzTc6HYVW1wqyv3g8HsaOHcsup6amYuLEiVoTAiC7O+akSZM4LYVjx44t9j2to0ePZv9OSEjAlClTtJ7wP378GH/88Qe77OnpqTaKfFH079+fkxRMnToVERERGtdNSEjApEmT2O+WkZERhg8frraejY0NevbsyS7HxMTk+53ctWsX9u3bxy5Xq1ZNJxcEisrU1BTDhg1jlxMTEzFhwoQ8k5r379/jt99+45Sp1rWCUh2MDchOpvJy584dzJo1S61cW13avn07pzW6b9++nIs3Li4umDZtGrscHx+vcWAwIPuihuqo49u2bcs33qVLl3J62TRp0kTtONquXTvOHOlbtmzJc0CzK1euYOvWrXm+bmGZmJhw6kB0dDSmTJmS5+CSr1+/xtSpUzlJ6vjx4/N9rfj4eEybNk1rb4SUlBT89NNPnNHpv//+e43r5r5Ao8sR3/VFtX4olUps2LBB67pv3rzB/PnzSyMsQgwGJcyElFFisRhr166FhYUFWxYcHIw+ffpg8uTJOHHihNpgLgzDICQkBFu3bkWXLl3g5+fHPta+fXutLU4zZ87k3N938uRJDBw4EFevXuWcNIaFhWH58uUYOXIk56Rn0qRJWgcuyk/Dhg3h7OzMLl+/fh0TJ07Emzdv2LLPnz/jn3/+wZdffomXL18WePor1e6oSUlJhepKnVuTJk04yc2nT58wYMAAbNmyhdNqmZqaipMnT6Jfv364f/8+W16rVi1MmDChyK9fGlT3V0BAAOczUNW3b1907tyZXX7x4gX69euHAwcOcE5IExMTsW/fPvj4+HCeq02bNhg4cGCx423UqBGnhe7u3bsYOHAg7t69y55wJycnY+fOnRg+fDjb+ioQCDBnzpw8E/aOHTuiRo0a7D9t0wSZmZlxkqPo6Gj0798ffn5+7HdHoVDg0qVL+PLLLzn74fvvv1dL7nJMnz6dM2DX+fPnMWTIENy5c4dz28LTp08xefJkzsUAExMTLFu2TO9znI4bN45zf/bTp0/h4+ODw4cPc1qBk5KS8M8//2DQoEGcY5qPjw+na3FBdevWjbP8559/YuXKlZyLOllZWXjw4AF+/fVXjBo1SmPLp6ZEKSQkBKtXr2aX7ezsNCbbQ4YM4fTmuXLlCg4ePKi2noWFBeezYxgGs2bNwtSpU/Hs2TNO+ePHjzF+/Hjs3LmTLTcxMVGbAxrIbiVdsGAB23tIoVDgxx9/xB9//MFpOYyKisKff/6JiRMnFmr8ioIaO3YsvL292eW7d+/Cx8cHp06d4vSGiImJwebNmzFw4EDO8XTQoEGc3j15uXXrFgYNGoSbN2+y35GsrCz4+/tjwIABnIscvXr10trbJ/fglUeOHNHp6OH60KFDB06vh4MHD2L27NmcuhAXF8d+BlFRUYWeZpKQ8oxGySakDKtWrRr27t2LH374AWFhYQCyT3zOnz/P3oslEolgY2MDuVyOxMREjSc9Xbp0wZ9//qn13ixLS0ts2rQJY8eOZVvHgoODMW7cOPb509PTNZ5Ujh49mtP6WlhCoRAzZ87ElClT2CTn8uXLuHz5MtsdU/VEVyQSYf369RgxYkS+z+3l5cVZ/vnnn7FkyRIAwMiRIzFq1KhCxTpjxgzIZDKcOnUKQHYi/+eff2LFihWwsrKCSCRCXFyc2mdQs2ZNbN68udBdS0tb7dq1cffuXQDZ7613795wdHREWloaNm3axJ748ng8LF26FD/88AO7fkxMDObOnYt58+axJ5xxcXFqvQFatGiBVatW6ew+wd9//x0RERFsT4rnz5/j22+/hUQigbm5OWJjY9Xui//111/znO6nsAYMGIBXr15h165dALK7Es+YMQOzZ8+GjY0N4uPj1Qba+eKLL/JsObO1tcW2bdswYsQI9v7ToKAgjBgxAiYmJrCyskJCQoLaSLYSiQSbNm1Sq/v6IBaLsX79eowdO5YdlCkyMhKzZ8/G3LlzYW1tDT6fj5iYGLV60rJlS/z+++9Fet1WrVqhc+fOuHTpEoDspGnTpk3YtGkTzM3NYWxsrLFuenl54dmzZ+xxKHe31czMTEyfPp1zEXHu3Llqo10D2d+RhQsXom/fvuxnv2TJErRo0UJtcMSuXbvit99+w5IlS9i6eurUKZw6dQoSiYT9rHO3zBoZGWHlypVaL1bWqVMHy5cvx7Rp05CVlQWFQoFdu3Zh165dsLGxAY/HQ1xcHPt+bWxs0Lp1axw/fjzP/VsYYrEY69at49SBDx8+YOrUqRAKhexvV3x8vFrX5169enEGUcuLp6cnXr58iZCQEIwePRomJiaQSqWQyWRq373mzZvnORibo6MjbGxs2Is3V65cQbNmzSCVSmFlZZVvD4CySCqVYvLkyezvH5B9G8vhw4fZ+qv6+25hYYGlS5dqbYUnpKKhFmZCyrgaNWrgxIkTmDBhAqe1OYdcLkdkZKTGRM3FxQVLly7FunXr8k3WqlWrhiNHjqB79+6cZCbn+XMnyy4uLli/fj2mT59e9Df3/7p164YlS5aovb/k5GROsuzi4oLt27ejRYsWBXredu3aqbVOREdHIzo6mjOacEEJhUKsWLECv/32G+ckmWEYyGQyREVFcT4DsViMUaNGYf/+/bC3ty/065W27777jhOnQqFAREQEZDIZp7ULyG5Z3bZtG77//ntOV26lUomYmBi1JMjU1BRTp07F1q1bddot3dTUFFu3boWPjw+n3qampiIqKoqTLFtYWGD58uWcbqK6MmvWLEyfPp2zL3K+O6on7AKBAKNGjcLKlSvzvWjg5eUFX19fNG3alFOelpaGjx8/qiXLTZo0waFDh9TW1ycHBwfs378fgwcP5oyVoFAoEBMTg6ioKE49EYlEGDduHDZt2lSsC0x//vmnWkszkH0hKHfdFIvFGD9+PA4cOMAZjTn3Pc2rVq3Cixcv2OUePXqgS5cuWmPw8PDApEmT2OXU1FRMnz5d48CGw4cPx5YtW9RGzk5NTUVERIRaslyjRg3s3bsXHTt21Pr6ANC9e3fs2rVLLUmPi4tDbGwsm6S6urpiy5YtcHJyyvP5ikJbHcjKykJUVBRkMhknWba2tsbChQuxYsWKAo+LMWvWLAwbNoz9TqWlpeHTp0+c715O3dq6dWue8zrzeDzMmDGD8/1MSUlBREQEnj17VuixRMqKkSNH4pdfflGbKSMhIYHz+16zZk3s3bu3WFPuEVLeUAszIQZAIpFgypQpGD9+PG7cuIF79+7h+fPniIiIYFuv+Hw+LCws4Orqirp166J9+/Zo0aJFgedvBbJPVFatWoWXL1/i9OnTCAgIQHh4OBISEiAQCODo6Ig6deqgS5cuRR7kS5t+/fqhbdu2OHr0KK5cuYL3798jKSkJNjY28PDwQPfu3dGrV69CdRPj8XjYuHEjdu7ciTNnziA8PBxpaWkwMzMr1kAuw4cPx5dffomTJ0/i5s2bCAkJgUwmg1wuh6WlJapXr47WrVujb9++nMFWyjobGxscO3YMmzZtwvXr1xEdHY2srCxYWVlpPEkUCoX48ccfMWzYMJw4cQK3bt3CmzdvIJPJoFAoYGNjg5o1a6Jt27bo3bu3xgs+uiCRSLBkyRJ88803OHHiBO7cuYPo6GgkJyfD3Nwc1atXR5s2bdC/f/8SHTV69OjR6NWrF44dO4Zr164hLCwMCQkJMDY2hpubG5o1a4YBAwaozd+cl0qVKmHPnj0IDAzE6dOn8eDBA3z69AnJycmwsLBgB/Lr0qVLgS8klTaJRILff/8dY8aMwalTp3Dnzh28f/8e8fHxUCqVsLS0RLVq1dC8eXP4+PgUaC7r/JiYmGDNmjUICAiAr68vHj16hKioKGRkZEAikcDGxgbVqlVDgwYN0KdPH/ZCUefOndl7ee/cuYPQ0FC4ubnh/v372LFjB/v8VlZW+N///pdvHKNGjcK5c+fYC3QPHz7E5s2bNbbctWrVCqdPn4a/vz+uXr2KR48eISYmBsnJyTAxMYGDgwO8vb3RrVs3tGnTpsDH9saNG+PMmTM4ffo0zp49i+DgYCQkJMDc3ByVK1fGF198gf79+8PMzCzP+5yLI6cOfPfddzh58iRu376NDx8+sCM229nZwcvLCx06dECPHj0KfbGEz+dj9uzZ6NOnD/bv34979+4hOjoaYrEYHh4eaNOmDQYMGMC5/ScvOcfuXbt2ITg4GPHx8RCLxXBwcEBkZCQ8PDwKvQ/Kgu+++w7du3fH0aNHce3aNYSHhyM1NRV2dnaoXr06evbsiS+++AJisVjrbSiEVEQ8pjwM/0cIIYQQQiqEgIAAzpgSu3fvRrNmzfQYESGkPKMu2YQQQgghhBBCiAaUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEIIIYQQQogGlDATQgghhBBCCCEaUMJMCCGEEEIIIYRoQPMwE0IIIYQQQgghGlALMyGEEEIIIYQQogElzIQQQgghhBBCiAaUMBNCCCGEEEIIIRpQwkwIIYQQQgghhGhACTMhhBBCCCGEEKIBJcyEEEJIGaVQKPQdQokor++LEEJI+UMJMyGkQklJSUHnzp3RqVMnZGZmch57+/YtpkyZglatWqFOnTpo3bo15s+fX+zXHDZsGGrUqIFhw4YV+7lIxaBUKrF3714sXrxYL6/fsWNH1KhRAzNnztT5c58+fRq//PKLzp+3Ijp27Bhq1KiBGjVqIDw8nPNYTvnatWv1FF3hBAQEaH0v+jZz5swiH8PDw8PZ9xUQEFDsWDIzM9GlSxd07NgRycnJxX4+Qkj+KGEmhFQof/zxB8LCwvDLL79ALBaz5XFxcRg8eDDOnTuH2NhYyOVyxMTEwNjYWI/Rkorql19+wYIFC8rdCfFff/2Fn3/+GTExMfoOhRCDJBaLMX36dERERGDRokX6DoeQCkGo7wAIIaS03L9/H0eOHEGDBg3wxRdfcB7z9/dHQkICAOC3335Djx49wOPxOEl1Udnb28PNzQ329vbFfi5SMURHR+v19V1cXCAQCGBjY6PT542KitLp8xHt3NzcAACWlpZ6joToWpcuXdCwYUMcO3YMPj4+aNq0qb5DIqRco4SZEFIhMAyDBQsWAACmTJmi9nhOi5dUKsXw4cN1+torVqzQ6fMRUtL27Nmj7xBIMV28eFHfIZASNHnyZIwYMQILFizA8ePHwedTp1FCSgp9uwghFcK5c+cQEhICT09PtGjRQu3xnEGITE1NSzs0QgghpFBatGiB6tWr4+XLlzh79qy+wyGkXKMWZkJIhbB161YAwFdffcUpnzlzJnx9fdnliIgI1KhRAwDQtGlTTktbcnIyjhw5guvXr+Ply5dISEiASCSCra0tGjZsiKFDh8Lb21vttYcNG4Z79+6pPV/Oa/fu3RtTpkzB3Llz8eDBA4jFYlSrVg1r1qzB27dv2RbvFy9e4M2bN9i6dSvu3LmD2NhYWFpaonHjxhg1ahTq1aun9f3Hx8dj165duHLlCsLCwqBQKODk5IQ2bdpg1KhRcHJy0rhdWloa9u/fjwsXLuDVq1fIyMiAVCpF7dq10aNHD/Tu3RsCgUBtu4SEBOzZswdXrlzBu3fvkJWVBWtra3h7e6Nv377o3Lmz1ljzExERgUOHDuHKlSuIiIiAQqGAq6srOnTogFGjRkEqlWrc7v79+9i/fz8CAwMRExMDiUQCDw8PdO7cGUOHDoVEIlHbJucz8vHxwZIlS3D69GkcPHgQL168QFpaGlxcXNClSxeMHj1aY9dXhmFw9uxZ+Pn54enTp0hMTISZmRk8PDzQoUMHDBkyBObm5mqvl8PX15ddfvHiBYD/6tP48ePRtWtXzJ8/H8+ePYNEIkGdOnWwceNG9lYCmUyGAwcO4NatW3j37h2SkpJgZGQEe3t7NG3aFMOHD0fVqlXV4u7YsSMiIiLY913c/bF27VqsW7eOXb537x77Pbt8+TIqVarEeV0XFxf4+/tr/Bzz8/DhQ/zzzz+4f/8+4uLiYGJiAk9PT/Ts2RP9+/eHSCTSuu2zZ8+wY8cOPHjwALGxsXBwcED37t0xfvx4nDt3Dr/++qtabMeOHcOvv/6q9l5UhYeHo1OnTgCAxYsX48svv9QY97Fjx/DgwQNER0cjPT0dZmZmqFq1Kjp16oSvv/5aYx3VJmf/Tpw4EZMmTQKgXr/yo+n9fPz4ETt37sSNGzfw6dMn8Hg89vs3YsQIWFlZaX0+mUyG3bt34/LlywgPD4exsTGaNGmCCRMmFDgmbRQKBU6fPo0TJ04gODgYnz9/hqWlJby8vNCnTx/07NkTPB5P6/YPHz7Ezp078eTJE8TGxsLJyQndu3fH2LFj833t5ORkHDx4EKdOncKHDx8gFArh7e2NMWPGwMXFJc9tg4KC2PoaHR0NIyMjODk5oXnz5hg+fDjbtV6T/v37Y/Hixdi6dSt69uyZb5yEkKKhhJkQUu49ffoUT58+BQB069atSM/x5MkTjB8/HrGxsZxyuVyO0NBQhIaG4vjx41i4cCH69+9fqOdOTEzEt99+i4iICABAeno64uPjYWdnh7dv37Lr+fv746effkJ6ejpbFhsbi3PnzuH8+fNYunQp+vbtq/b8d+/exeTJk5GYmMgpf/fuHd69e4dDhw5h2bJlavsmISEBw4YNw8uXLznlMTExuHbtGq5du4ajR49i8+bNMDExYR8PCwvDsGHD8OnTJ852kZGRiIyMxIULF9CjRw+sWLGi0N0Iz549i1mzZiE1NZVT/vLlS7x8+RLHjh3D9u3b4enpyT6mVCrx+++/4+DBg5xtEhMT8ejRIzx69Aj79u3Dxo0bUbNmTY2vyzAMpk+fjuPHj3PK3759i02bNuHUqVPYv38/HBwcOI//8ssvOHnyJKcsISEBDx8+ZBO73bt3w93dvVD7Acjez99++y0+f/4MAOyo7znJ8rVr1/Djjz+q7Su5XI7k5GS8ffsWx44dw/r169G2bdtCvXZR90dJUiqVWLZsGXbs2MEpz8zMxL///ot///0Xhw4dwt9//60xrn379mHhwoWcKa9CQ0OxadMm+Pv7F/p7XVAKhQK///47Dh06pPZYfHw87t+/j/v378PX1xf79++HmZlZicSRG5/PVxvD4fTp0/j111+RkZHBKX/x4gVevHiBAwcOYP369WjcuLHa8z19+hRjx45FXFwcW5aamorz58/D398fQ4YMKXKscXFxmDhxIgIDAznlsbGx7LHq0KFDWLNmjcYLahs2bMDq1as5Ze/fv8fGjRtx8eJFuLq6an3tsLAwfPfdd3j//j2n/MaNG7h58yZGjhypdduDBw9i7ty5YBiGLZPL5Xj16hVevXqFAwcOYNWqVVovMHbr1g2LFy/Gs2fP8PjxY40XbAkhxUddsgkh5d6ZM2cAANWqVVNrSZ0/fz4CAwMxbtw4AICzszMCAwMRGBiILVu2AMhuPfj+++8RGxsLW1tbLFq0CBcuXMDdu3dx/PhxTJo0CSYmJmAYBosWLVJLUPJz/fp1REdHY/78+bh16xYOHTrEtlip+vnnnyGVSrF06VJcv34d169fx5w5c9jX1jSq8suXLzFu3DgkJiaiUqVKWLZsGa5fv447d+5g8+bNqFOnDtLT0/Hzzz/jwYMHnG1XrlyJly9fQiKRYM6cObh48SLu3r0LX19f9OnTB0B2S+GuXbs42/3+++/49OkTbG1tsWzZMly6dAl37tzBgQMH0Lp1a/YzOX36dKH2U2BgIH766SekpqbC1dUVK1aswI0bN+Dv74/Zs2fD1NQUMTEx+OGHHzhThv3xxx9sstyiRQvs2rULd+7cwcWLFzF16lRIJBJ8/PgRI0aMQGRkpMbXPn/+PI4fP4727dtj37597Gef06oTERGBVatWcbY5deoUmyx/++23OHHiBO7evYvz58/jp59+glAoRFRUFGfqspz62KhRIwBA79692fqY2+nTp8EwDFavXo3bt29j586dbEvdx48fMWXKFKSmpsLd3R1//fUX+zkcPXoUw4YNg1AoRGZmZpGmTivs/hg3bhwCAwPRu3dvAECjRo3Y96XaAufq6goPD488ExRt1qxZwybLXbt2xb59+xAQEIBLly5h5syZMDMzw7NnzzBu3Di1hO/WrVuYN28eFAoFPD092V4cfn5+6NWrF169eoU1a9YUOqaC2LlzJ5ss9+zZEwcPHsStW7fg7++PzZs3o0GDBgCyv8s7d+4s1mvl1C9t/1SPO1OmTOEMVHjr1i1MmzYNGRkZqFmzJtavX4/bt2/jxo0b+Ouvv+Du7o6EhASMHTtWLXmMj4/H6NGjERcXB6lUigULFuD69eu4du0a5syZA2NjY7XjSEFlZmZi7NixCAwMBI/Hw5AhQ+Dn54eAgAD4+flh0KBBALKnrZowYQKysrI42x87doxNlhs3boy9e/fi7t278PPzg4+PD16/fo0rV65ofe2cZNnY2Bi//PIL/P39cevWLSxbtgx2dnbYvn27xm0jIiKwYMECMAyDNm3a4J9//sGtW7dw5coVLF++HHZ2dpDL5fjtt9+0jpbv5OSE6tWrAwB1yyakJDGEEFLO9erVi/H09GRmzZqldZ01a9Ywnp6eTIcOHdQe27t3L+Pp6cl4enoy9+/f17j9zp072XVu3LjBeeybb75hPD09mW+++YZTPmPGDHablStXanzeu3fvsus0btyY+fjxo9o6//zzD7vOuXPnOI8NGTKE8fT0ZDp27MjIZDK1bdPT05n+/fsznp6eTO/evTmPNWvWjPH09GTWr1+vtp1SqWSGDRvGeHp6Mr169WLLP3/+zNSoUYPx9PRk/Pz81LbLyMhgunXrxnh6ejLjxo3T+J616d27N+Pp6cm0b9+eiYuLU3v8woUL7H7w9fVlGIZhQkJC2HimTJnCKBQKte0CAwMZLy8vxtPTk5k8eTLnMdXPaNKkSRrjytl/DRs2ZJRKJVs+adIkxtPTk/n22281brd27VrG09OTqVGjhtpnk1NnZsyYobZdzmOenp7MoUOHND730qVLGU9PT8bLy4sJDQ3VuM6iRYvY53n79i3nsQ4dOmh8/eLsD9Xtc38Xiuvdu3dMzZo1GU9PT2bBggUa1wkKCmJq1arFeHp6Mtu3b+c81r17d8bT05Pp2rUrk5SUpLbtnDlz2Ped+xhx9OhR9rGwsDCNrx0WFsauc/ToUbZcoVAwLVu2ZDw9PZmRI0eq7S+GYZjU1FSmTZs2jKenJzNo0KACv3ZO+Zo1azTGlNu///6r9XuQlZXF1on+/fsz6enpatvHx8ez6+T+bi9YsICtj8+ePVPbNigoiH3tvPajJnv27GG327t3r8Z1tm/frnGdtLQ0dv8PHjyYycjIUNtW9XuSu97u2LGDfezq1atq24aFhTGNGzdm17l79y77WM7vSv369TW+bkBAALvd+fPntb7/WbNmMZ6enkzPnj21rkMIKR5qYSaElGvJycl4/fo1AHC66RaGk5MThg4disGDB7Mtf7k1a9aM/VsmkxX6Nbp3757vOn379tV4r3GHDh3Yv8PDw9m/X716hfv37wMAJkyYoPHeQiMjI/z0008AsrtVBgUFsY/ltNLm7oYOADweD//73/+wa9cu/P3332x5VlYW271Q03ZisRjLli3DP//8U6iWzVevXrH38E6ePBnW1tZq63Tp0gVNmjThfBaHDx8GwzAQi8WYM2eOxi7gDRo0YLuDXrhwgdNlVNX48eM1lrdv3x5Adl2Lj49ny3P2X0JCglqrFgAMGTIEmzdvxunTpzn3MRcUj8fTeouBp6cnBg0ahDFjxmhtrVWdiqYodbaw+6MkHTx4EEqlEiYmJmx9zs3b2xs9evQAAE7355CQELx58wZA9v2+mj6LmTNnlsj0TCkpKRgwYAB69eqFcePGabzH1sTEBHXr1gVQtM+pIMLDwzFp0iTI5XLUrFmTc986kN29OOeWkalTp8LIyEjtOaRSKb7//nsAwNWrV9mZBxiGYXv5+Pj4oFatWmrbent7a7yvuyByPksvLy8MHTpU4zojR45E7dq1AQAHDhxgy+/evcsep6ZNm6ZxGsGff/4ZFhYWGp83pwdJq1at0K5dO7XHK1WqhDFjxmjcNuf4kJWVpfF70rRpU6xfvx6+vr5szxxNclqY37x5U+7mbSekrKB7mAkh5dr79++hVCoBAFWqVCnSc3Ts2BEdO3bU+nhsbCwePnzILqveA1kQIpGIPenJi7ZBvVTnyk1LS2P/vnfvHvu3p6cnUlJSNG5fs2ZNCAQCKBQKPHjwgH2dJk2a4OrVq/jnn38QFRWFnj17olWrVmziUL16dbW4pVIpqlevjlevXmHFihV4+fIlunXrhubNm7MDFhXlPrs7d+6wf+ckZJrs3buXs/zvv/8CyD751JRk5+jRowd27doFpVKJBw8eoGvXrpzHjYyMtN7frLr/Ve8vb9KkCa5cuYLnz59j4MCB6N+/P9q2bcsOomRtba3xJLugKlWqpPVEvl+/fujXr5/WbT99+oRnz56xy4Wts0XZHyUpp67nfMe11fV69erh5MmTePv2LeLj42FlZYW7d++yj2u7l9vExAQdOnSAn5+fTuM2NzfHjz/+qPXxrKwsPH/+nL2Io+nCS3GlpKTg+++/h0wmg1Qqxfr16zljEgDZ3Zlz5HUsqVOnDoDsJDkwMBDdunXDy5cv2fjzule+c+fOauMM5CchIYEdY+GLL77Ic93u3bvj2bNnePnypdpnb25ujoYNG2rcztjYGK1bt2aT/hyfP39GcHAwgLzfV6dOnTROLZhzn3dmZia++uorDB48GB06dECtWrXYCycFGRwxp84rlUp8+PABXl5e+W5DCCkcSpgJIeWa6j2pxW0hksvl+PfffxEcHMwO9PX27VtER0dz1mNUBnApCEtLS40jTeemLeFTbRVRfe2wsDD274IOWKQ6UNfMmTMRFBSE+Ph4XLp0CZcuXYJAIEDdunXRpk0bdOnShR2JV9Xvv/+O7777DmlpafDz84Ofnx9EIhEaNmyIdu3aoUuXLnmO/KpJVFQUgOyEPK9ReHPL+fw1jQStSvXxjx8/qj1uaWmpdYAy1f2fc3EGAIYOHYrz588jKCgIwcHB7Mm1h4cHWrdujU6dOqFZs2ZFnj81rwsAOdLT03Hnzh2EhIQgNDQUYWFheP36tVqLVlHqbGH3R0nK6VkRHBysNfHJLTIyElZWVpy6ldcxoqg9VAoqIiICAQEBePv2LUJDQ/Hhwwe8e/dO7X5rXWL+f/C2ly9fQigUYvXq1VpH+c6haVo+TXKOJarH4Ly+9/l9RzWJiopi625+F0RVH8/57HNizO94pCk21dfOa3sPDw/2gqSqunXrYtiwYdizZw9iYmKwZs0arFmzBjY2NmjVqhU6dOiA9u3b5zsyuuogZpGRkZQwE1ICKGEmhJRrqgNwFWd02bNnz2LRokVsN8McPB4PVapUQb169Qo1XYsqTd0bNREKC3fILkr3PNVtPDw8cOrUKfz99984c+YM4uLioFAo2JGl165di8aNG2PRokWcUZ4bN26MEydOsCPMfv78GXK5HAEBAQgICMCyZcvQsWNHLFiwALa2tgWKK2eEb2Nj4yK9n/xOOlVb1DQN2pbXVETaGBsbY+/evdizZw+OHDnCjnieMzr5nj174OLigt9//73Qo1QD+debvXv3YtWqVewo2jn4fD5q1aoFd3f3Ig8UVJT9UZKKU9dz9k9+dUtba35xJSQkYM6cObhw4YLahQtTU1M0b94cMTExnB4BurJq1SpcunQJQPYFsubNm2tcrzj7NykpiS3L3XKtqii3JajGZWpqmue6qseAnBbygn72mn47Cvq++Hw+JBKJ2vcQAGbPno0mTZpgz549ePDgAZRKJeLi4nDixAmcOHECpqam+OGHHzB69OgCxVbYAScJIQVDCTMhpFxTvSewIK24mly4cAE//fQTGIaBtbU1unTpgjp16qBKlSrw9PSEhYUFPnz4UOSEuaSongQ+fvy4wIm5KltbW8yePRuzZs3CkydPcOvWLdy+fRsPHz5EVlYW7t+/jxEjRuDs2bOck0Y3NzcsXryYHZX39u3buHXrFp4+fQqGYeDv74/o6GgcOXIkz7lRc+Q8d2G7+EokEiQlJeV7IqnaxbQwc93mRywWY/To0Rg9ejTev3/P7r87d+4gJSUFERERmDBhAg4ePKjTlqGdO3di8eLFALJHfu/cuTNq1aqFqlWronr16pBIJLh9+3a5GVnX2NgYycnJ6NGjB/76669CbZuTcKjezqCJ6sjrhaWtlVgul2P06NHstHdNmzZFixYt4OnpiSpVqsDd3R18Ph/Tpk3TecKcczEMAL788ksMGzZM67o5xxJbW1vcunWrUK+j2mqf1/ewKPtXNUnW1k1c0+M53/Gc2Iry2Rf0fWnbPke3bt3QrVs3yGQy9vhw69YtREVFISUlBcuWLYNYLNb6+aj24ijIsZQQUniUMBNCyjXVE6r8Toq0WbFiBRiGQaVKlXDkyBGNXYJLa3CjwnB2dmb/Dg8Pz7PLI8MweZ5s8fl81KtXD/Xq1cOECRMgk8mwdOlS+Pn54dOnT7h48SI71ZQqkUiEZs2aoVmzZvjpp5/w6dMnzJ49Gzdv3sTTp085UyjlJWews4SEBCQlJWlt7Tt37hzev3+PatWqoXPnznB2dkZSUhI7qJM2OQPDAdz9pkvu7u5wd3fH0KFDkZmZif3792Px4sWQy+XYv38/Fi5cqJPXSU9Px7p16wBk3y++Z88ejS1oZbHOFpWzszNevnzJDkyljaZ6XrlyZQDZvRji4uI492CrCg0N1Viu2jVdLpdrXEfbvj537hybLM+cOVPrnL26/qweP36M3377DUD2fd3z5s3Lc/2c70R8fDxSU1MLdVFJddqwt2/far33XfUWkoJydHQEj8cDwzCcOes10fQdz/k/Z6wLbbcZqHZJV31tPp8PpVKJt2/folOnThq3jY6OLlC3emtra/Tu3Ru9e/cGwzC4desWfv75ZyQmJmLPnj1aE2bVupFfKzshpGholGxCSLmmOqp0zr2KhSGTydg5Rbt27ar1/lnVQalK677N/OQMKgMAly9f1rpeYGAg6tWrh27durEtjo8fP8bgwYPRtGlTvHr1Sm0ba2trzJo1i13O2bdXr15F//790bRpU41dEJ2cnDB16lS17fKjel/qjRs3tK63ZcsW/PXXX9i/fz+A//bBvXv38hxh+Ny5cwCyW2jq169foJjykpaWhtGjR6Nt27b4559/1B4Xi8X49ttv2ftii1I3tXn16hW77/v166e1u6k+6mxJtYDlfM7BwcFa59IGgDlz5qBZs2b46quv2O68qqOq53RP1uT69esay1WTR211THVQQG3lOfMF55aWloZHjx4B0M3nFBUVhR9++AHp6emws7PD2rVrNY4OrSpn/yoUCly9elXreidPnkSDBg3Qs2dPdoT+qlWrsklzXschbfs3LzmDDAL/fYe1OX/+PIDsW01y7vvNuRUiNTUVt2/f1ridUqnEzZs31cpNTU3Z/VKU97Vw4UJ069YNP//8s9pjPB4PrVu3Zi9C5nV8UE2YNc2iQAgpPkqYCSHlWk6XRkB7C1FeVO8b1tZKGRISgs2bN7PL2lqZSpu3tzc7hcuWLVvYxF9Veno6lixZgoyMDERERLAjWDs5OeHx48ds64Ymz58/Z//OGfTGxsYGT548QWJiIvbt21fg7fJTr149toV8zZo1Gu+pvHz5Mtta17NnTwDAgAEDAGR3iZw/f77GhOPx48dsgt2uXTvY29sXKKa8mJiYICoqClFRUTh48KDGFqbExER2gLHc+yGn3hWlLqnWWdVWNVW3bt3CsWPH2OXSqrM5t0Xo+vUGDhwIIHsU6Xnz5mkc9TsoKAi+vr5ISEiAVCplu2JXqVKFvXd37dq1auMUAMA///yjtQUzp4UagMYu7jKZTOt3SPU2EU2flVKpxPz589n6Xtz9lpGRgR9++AHR0dEwMjLC+vXr4eDgkO92nTp1Yscb+PPPPzVeGJDJZFizZg1SU1MRGxvLmT4qZ8qoM2fOcC7U5AgLC8Pu3buL9J5yPvvg4GCNF6cAYNeuXexxJ+eYAGSPZJ/z+S1dulTjcWXnzp1aey589dVXALIvfKh+n3IkJCRgw4YNGrdVKpV4//49rly5gg8fPqg9zjAMO5VeXsfJnGOIQCDgjCVBCNEdSpgJIeWaiYkJe+JWlHsALSws2CTy2rVrWLhwId68eYP4+HiEhIRg1apV+Prrrzn3sOV3L11pmjNnDoRCIZKSkjBo0CDs3bsX4eHhiIuLw82bNzFixAh27uXRo0ezLUF2dnZs68bBgwfx66+/4vHjx5DJZAgLC8PRo0cxbdo0ANnJdc5c0HXr1mXn9129ejWWLl2K58+fQyaT4d27d9i5cycWLVoEIDsJzpmGJj858z7z+Xy8f/8egwcPxuXLl9keANu2bWPjqVWrFht7zZo12a6MZ8+exejRoxEQEID4+HiEhYVh27ZtGDFiBORyOSwtLfH7778Xd5ezcgbqefHiBUaOHIkbN26wSfS1a9cwatQofP78GQKBQK11MacF7P79+/jw4UOh5t/19PRkk/4DBw5gw4YN7HM8fvwYCxcuxNixYzlJZWnV2Zz39eLFCwQHByM+Pp6TBH777bf44osv8O233xbqeWvVqsXOpe3v74/hw4fj5s2bkMlkCA0NxZ49ezBmzBjI5XIYGRnhl19+4Ww/Z84cmJiYICYmBoMGDcLZs2fZbVeuXJlnd/kaNWqwicrevXuxbt06hIeHIyoqCidPnsTAgQMhk8k0dmNWnV936tSpuHz5MqKjo9nbHL755htOIlbczylnLAIej4clS5agXr16yMzMREpKisZ/OffeisVitgt3REQE+vfvDz8/P7Y+X7hwAcOGDWMvSk6dOpXTPXjMmDFwd3eHUqnE999/j61bt+Ljx4+IjY2Fn58fBg8eXORbZgYNGsQeRxYsWIB58+YhJCQEiYmJCAkJwbx589j7+Rs0aMCpW3w+H/PmzQOPx8PLly8xePBgXLt2DfHx8Xjz5g0WL16MZcuWaR3/om/fvmjSpAmA7AG8Vq5cyX7XLl26hK+//hqfPn3S2LNi2LBhEIvFSE1NxciRI+Hr64vQ0FDIZDIEBQVh6tSp7HRpOXVbk8DAQABA7dq1Cz0oIiGkYOgeZkJIudeqVSsEBwezc/IW1pw5czB8+HCkpqZiz549GluL+vfvjzt37iAiIkJja4G+NGzYEGvWrMG0adOQkJCABQsWYMGCBWrrDRgwAJMnT+aUzZo1C2/fvsWjR49w7NgxjS0otra2+PvvvzldOpcvX45vv/0W79+/x/bt27F9+3a17dzd3bF69epCvZcWLVpg8eLFmD17Nl6+fIkJEyaorVOtWjX8/fffnFbWmTNnIjMzEwcPHsTt27c1dr10dXXF6tWrddql0cfHB0FBQdi/fz8ePHiA7777Tm0dkUiEBQsWqE1Z1KxZM5w5cwaRkZHsnNCXL1/WOOVPbgKBAPPnz8fEiRORlZWF1atXq+1rPp+PcePGYceOHcjMzCy1OtusWTNs2bIFqampbKvj7t272W7RYWFhiIiIKNIAULNmzUJmZiaOHDmC+/fvaxxZ2NTUFCtXrlS7j7Zq1arYuHEjJk6ciIiICLW5kR0dHVG5cmXOfMSq5s2bh7FjxyIjIwNr167F2rVr2cdEIhGWLFmC1atXq/VyadeuHXr27InTp08jNDRUY522t7dHx44dceDAAaSlpSEqKqpArcK5RURE4NSpUwCyL0DNnj0b06ZNy3MObh8fHyxZsgRA9lzlSUlJWLhwISIiIjBjxgy19Xk8Hn744Qe21TeHkZERtm3bhjFjxuDt27dYvnw5li9fzj7O5/MxY8YMNrEtDLFYjE2bNuGHH37Ao0ePsG/fPo29W1q3bo3ly5erzTbQokULLFmyhD2ujB07lvO4i4sLunTpgp07d2p8v+vWrcP48ePx8OFDbNq0CZs2beKsM23aNKxZs0atTnt4eGDRokWYNWsWIiIiMHPmTI3v7+uvv8bgwYO1vv+chFn14gshRLeohZkQUu7ldM8NCwvT2C05P3Xr1oWvry++/PJLODk5QSgUwtjYGK6urujZsyd2796NRYsWsfOTXrlypcx0ywayu1NeuHAB48aNQ61atWBmZgaRSAR7e3t069YN27dvx8KFC9VaUczNzfHPP//g999/R7NmzWBlZQWhUAhLS0vUrVsXkydPxrlz59SSD0dHR/j6+mLatGlo0KABLCwsIBQKYWVlhcaNG+PXX3/FiRMnipSc9uvXD2fOnMHQoUPh7u4OIyMjmJiYwMvLC7/88guOHDkCR0dHzjZCoRDz58/H3r170atXLzg5OUEkEsHGxgaNGjXCnDlzcPz48RKZv/T333/H5s2b0bVrVzg6OkIkEkEikcDDwwPffPMNTp06BR8fH7XtBg4ciEmTJsHZ2RkikQh2dnZ53pubW4cOHXDw4EF0794ddnZ2EAqFkEgkqFKlCvr374+jR4/i559/Zgdcu3Dhgs7ec17atGmDOXPmwN3dHSKRCNbW1oiNjdXJc4tEIixatIj9nF1cXCAWi2FsbIzq1atj1KhROHPmDNq3b69x+xYtWuDMmTMYNmwYXFxcIBKJ4OTkhGHDhsHPzy/PweCaN2+O48eP46uvvmLrl729PXr16oUjR46gV69eWrddsWIF5s+fjwYNGsDU1BRCoRBSqRQNGjTA1KlTcerUKYwbN469teTixYtF2j+qU1YplUqkpKTkmSxr8vXXX+Ps2bMYNmwYqlWrBolEApFIBBcXF/Tt2xeHDh3CpEmTNG6bM2jizJkz4eXlBVNTU1hYWKBNmzbYs2cPe5wuCltbW+zbtw9Lly5F69atYW1tDZFIBGdnZ3To0AHr1q3Dli1btM5d3q9fP/bzc3V1hVgshrOzM4YNG4Zjx45pHQgOyO41sXv3bixcuBANGjSApaUle3/z+vXrMWbMGK3b9unTB76+vhg0aBA8PDxgbGzM1ruePXti586deQ7I9vbtW/YWgt69exdwbxFCCovH5J70jxBCyqEhQ4bgwYMHmDx5Mn744Qd9h0MIMTAzZ86Er68vXFxc4O/vr+9wCMHKlSuxadMmNG3aVOt98oSQ4qMWZkJIhZDT1dHPz6/MjGJNCCGEFIVCoYCvry8A4Pvvv9dzNISUb5QwE0IqhNatW8Pb2xuhoaG4du2avsMhhBBCiuzq1auIjo5G/fr10bJlS32HQ0i5RgkzIaTCmDZtGng8HjZu3KjvUAghhJAiYRgG69evB4/H0ziPMyFEtyhhJoRUGM2aNcPQoUMRFBSES5cu6TscQgghpNBOnjyJ4OBgDBkyhB1hnhBScmhaqf/HMAxOnTqFo0eP4vnz50hNTYWdnR2aNGmCoUOHsvOwFkZ4eDg6depUpHhyJqtX1bFjR0RERBRo+5s3b8LOzq5Ir01IeTZt2jTcuHEDS5cuRdu2bTnTIRFCCCFlWWZmJlatWoVKlSqxc88TQkoWjZINID09HVOmTMHVq1c1Pi4QCPDjjz+qzc2Xn6ImzDweDyEhIZyy5ORkNG7cGAX9uChhJoQQQgghhJDioRZmAL/99hubLFetWhUDBw6Era0tgoODceDAAaSmpmLFihVwcHBA3759C/y8NjY2WL9+fYHW3bBhA4KDgwFA4xyGL168YJPl8ePHo27dunk+n6WlZYHjJIQQQgghhBCirsK3MN+6dQujRo0CADRv3hybN2+GkZER+/ibN28wZMgQJCQkQCqV4vLlyzAzM9NpDCdPnmS71bRr1w6bNm0Cj8fjrLNv3z528vpz587Bw8NDpzEQQgghhBBCCOGq8IN+bd++HQAgFAqxcOFCTrIMZLc4/+9//wMAJCQk4PDhwzp9/aioKMyfPx8AYGVlhT/++EMtWQb+u6fZyMgIlStX1mkMhBBCCCGEEELUVeiEOSEhAbdv3wYAtGnTBq6urhrX69GjB2xsbABkt+7q0qJFi5CUlAQAmDFjBmxtbTWul5MwV6tWDXx+hf7YCCGEEEIIIaRUVOjM6/79+1AqlQCyu2Nrw+fz0aRJEwBAUFAQEhMTdfL6d+7cwfnz5wEAjRo1go+Pj8b1GIbBq1evAACenp46eW1CCCGEEEIIIXmr0AlzThIK5J+IVqtWDUB28vry5UudvP6ff/7J/j1z5kyt60VERCA5ORkAUL16dQDZo2bfv38f165dw/Pnz6FQKHQSEyGEEEIIIYSQbBV6lGzVOY1dXFzyXNfR0ZGzXU6Lc1FdunQJT58+BQB07tw5z3meVedk5vP5mDhxIvz9/TlJslQqxTfffIMxY8bA2Ni4WLERQgghhBBCCKngCbNMJmP/trKyynNdqVTK/p2QkFDs1965cyf793fffZfnuqoJ85IlSzSuk5CQgHXr1uH69evYtGkTrK2tix1jYSgUCqSlpbHLJiYmEAgEpRoDIYQQQgghRP/KU25QoRPm9PR09u/co2PnJhaLNW5XFCEhIfj3338BAA0aNECDBg3yXF81YRaJRBg5ciT69esHV1dXJCQk4Nq1a1i9ejViYmLw+PFj/PTTT9ixY0epDg6WnJyM169fs8uurq6QSCSl9vqEEEIIIYSQsiE1NRVhYWHscrVq1WBpaanHiIquQifMWVlZ7N+qCbEmqo+rblcUu3fvZv/Or3UZyJ56CshO6rdv347GjRuzj9nb22PAgAFo27YtBg4ciMjISNy9exdnzpxBr169ihVnYWRkZHCWVb8ghBBCCCGEkIord65gSCr0oF+q9/rK5fI8183MzGT/zi+5zktKSgpOnToFAHB2dkbHjh3z3ebAgQN48OABzp8/z0mWVTk4OGD27Nns8qFDh4ocIyGEEEIIIYSQCp4wq3YZzu+qh2rCnF/37bzcuHGDfa2uXbsWuNu0mZkZnJyc8lynY8eOMDMzAwA8fPiQnTKLEEIIIYQQQkjhVegu2RYWFuzfCQkJMDc317qu6kBfxRlQy9/fn/27W7duRX4eTQQCASpXrozg4GBkZmYiISGh1Ab/yn0RoTTvYQ4NDYVCoYBAIICbm1upvCYp36hOFUzo/gNICHrCKas8bCgsvWrrKaKyi+pU/jKi3iHuwnaAc7GXB4vmfWBWo6ne4iqO5IwUXH1/ByKBGCJ+9mA3zSo1gKm4+L+PZaFOMQyDR/+G4dE97m1Y1ram6PlVXQhF/w3wo1QyYBgGAkGFbqsp08pCnSLlR+57mIvT4KhvFTphdnd3Z//+9OkTXF1dta4bGRnJ/u3s7Fyk11MoFLh27RqA7C7U+Q32VRQikUjnz1kQuUe9k0gkbGt3ScvKyoJcLodIJCq11yTlG9Wp/Mn+vY/4U2c5ZTatWsClmWEmNiWN6lTespJiEev3J4TpyZxy84bdYNco/1uXyiozMzP0NOuMa+8D4GRuj0bOdXX23PquUwzD4NKp57hz9a3aY3Ub2MFSagEej1fqcZGi03edIuWboY6QDVTwhLlq1ars369evULTptpP9F69egUA4PF4qF69epFe7+nTp2xLdceOHQv0QxIWFgZ/f3/ExcWhYcOGaN++fZ7r5wwQJhKJDHYkusLi8/nsP0J0gepU3rJSU/Fm4yZOmdDMDFXG5j+IYUVFdUo7ZVYmPv0zD8pcybJxZS/YdButp6gKLl2ejlR5OqwlUo2PmxuZoWvVNhAJdHtBW591ilEyOOv7FPdvf1B7rG2X6mjfrUapx0SKj45ThGhWoRPmBg0aQCQSQS6XIyAgAEOHDtW4nkKhYKeBqlmzJqcrd2E8fPiQ/btevXoF2iY6Ohp//PEHgOwkO6+E+d27d/j06RMAoG7dugZ9Jacw6tSpo+8QSDlDdSpvH3bvRWacjFPmPupbiFXmqydcVKc0YxgGUUeWQy77yCkXSh3gMGAm+Pyy/TuWmZWJpTc3Ijo5FnM6/AgHMzuN64mFRR8sVBt91SmlQokThx7j8f1wtceq1bKDkYkI6WlyGJvop8cbKTo6ThGiWYW+hGRhYYHmzZsDyL63+OPHjxrXO336NGSy7JPD7t27F/n1njz5714/Ly+vAm1Tp04dtlvMjRs3tMYIABs3bmT/7tu3bxGjJIQQ7RKDnyHy7HlOmWnVKrBp0VxPERFDlvr6AdLePuKU8Y0kcBz0GwRGpTMORlHJFXKsuL0ZwdEvEZMqw+xLyxGRFJn/hgZMkaXE0b0PNSbLnl4OcHaVIiNdjuBHH8EwjB4iJIQQ3avQCTMAjBgxAkD2tFI///wzkpO5XcJev36NRYsWAQBMTU0xYMCAIr/W69evAWR3l1btDp4XIyMjDBw4kI1x6tSpajECwLZt23D8+HEA2fdm+/j4FDlOQgjRRJmZidfrNnLKeAIBLGrVhCIlRU9REUOVlRyPzKj3MKvXATzx/0/zyBfAru9kiG1d9BtcAex/cgIPPwWzy4kZn7HsxkYomfI5Q4VcrsDBnffx/PEnTjmPB9TydoSjS3bvO6FQgGo17en+ZUJIuVGhu2QDQOvWrdGtWzecP38eDx8+RN++fTF48GA4OTnh2bNn2L9/P1L+/0Rw+vTpaqNOBwQEYPjw4QCApk2bYs+ePVpfKzQ0FAAglUoL1V16woQJuHLlCt69e4fAwED07NkTgwYNgru7O+Lj43HmzBncv38fQHZS/+effxr0SHSEkLIp7OBhpOfq5WLpXQdCMzOIbW31FBUxRMrMdCQH3wSjVEBobgPz+l2Q8vwWLBp1h2n1JvoOr0D61eyKx5HPEJqY/Z0Q8YWo61ATkZ+j4WzhqOfodCszIwsHtv+L96/jOOU8Pg9e9ZxgbWcKALC2MUW1WvaQmOq+CzohhOhLhU+YAWDp0qVISUnBzZs3ER4ejuXLl3Me5/F4mDhxIr7++usiv0ZycjJSU1MBIM/pqzQxNzfHjh07MHHiRDx9+hSRkZFYvXq12npOTk5YsWIF6tbV3SichiA6OpqdBsHe3l7f4ZBygOqUupR37xHhe5xTJra2hln16rBp0Zxak/JBdeo/jFKB5Ge3oMxIZcv4Riaw6ToapjWa6TGywrEwNodPrS+wJ+gYkjI+o3XlprAwNsdr2Qc4mTuU+HeitOpUepoc+7bcQ/iHeE45X8BDnQbOkFpLIBDwUaeBC6xsynY3epI3Ok4RohklzABMTEywdetWnDx5En5+fnj+/Dk+f/4MqVSKRo0aYfjw4WjUqFGxXiNFpbtiUQYNc3JywsGDB3Hq1CmcPn0awcHBSEpKgpmZGdzd3dG1a1cMGjQIpqamxYrTEEVGRrLTINABnugC1SkuRqHAq7UbwCgU/xXyeLBq2hgmTk6QVKb5OvNDdeo/aW8fISspllMmtLCFqWcTg7vw0sK1ERSMAs9iXsPaRApbiRVaujYqlfdRWnXq8unnasmyQMhH3YbOsJCaQCDgo25DF0itKVk2dHScIkQzSpj/H4/HQ58+fdCnT59CbdesWTO8ePEi3/UcHBwKtF5ehEIh+vXrh379+hXreQghpDA+njiFlDdvOGUWtWvByNoaVo0bGlySQ/QnMyYMYgcPZMZFQJmRBiB7kC+z2i3BK+MjYmvC5/PRunJTGAuNkZie3cosFJSvU6tOPWvhY2gCPkUkAQBEIgHqNnKGmYUxJcuEkAqhfB3VSYXk7u4OpVJJ8wYSnaE69Z+0T5EI3XeAUya0sIBF7Vowr1UToiJOs1fRUJ0CPj+5ipgT62DV7mtYNOmBlGe3oUhJgFnt1uCLTfQdXp5CEyLgJtU8EBmfx0cTl3qQK7Mg1vFcy3kprTolEgvQoLkbEs+/RJZcgbqNXGBqZgSBgA/vRpVgaVW2PztScHScIkQzSpiJwSvqvNiEaEN1KhvDMHiz4W8oMzM55dZNG0NkmZ00k4Kp6HUqPeIlYk//DYBB/LX9yIwJhW2P8WAy0iA0t9J3eHk6GXIJe4OO4btGg9GlWhuN6/B4vFJNloHSqVMMwyD40Uckf86AdyMXKBRKmEjEEAoFqNvQhZLlcqaiH6cI0YYuIRFCCNEo+tJlJD5+wikzq14NRra2sGrUEHwhXXMl+ctKikPUkWVgFHK2LOXZLaS9fQShhY0eI8vf+VfXsCfoKBgw2PJgH06FXNJ3SKWKx+PB1t4MACA2ErLJsncjSpYJIRUHJcyEEELUZMri8W7HLk6ZQCKBpXddmFSqBBNnZz1FRgyJMisTUUeWQZHMHTTKonEPmNVqqaeoCuaN7AO2BXJvR9gddBRvZO/1E1AJ+xiWgKN7ApElV3DKnV2l8KztACB7jmXvxi6wkFKyTAipOKh5gBg8uVwOhmHA4/EgEpVulzhSPlGdAt5u3gJFSiqnzKpxIwhMTGDVsL5+gjJgFbFOMQyDqMNLkfHpNafcxL0ubLqM0E9QhVDFyg1f1e6Bo8/OsGXeDrUQmxoPDys38Hn6bXPQZZ0KfSvDvq33kJmRhSy5Av2/bQSB4L/35+wqBQCYWxjD3NK4WK9Fyq6KeJwipCAoYSYG7/nz5+w0CN7e3voOh5QDFb1Oxd25i7g7AZwySWU3mDg7wbKOF4QVcPq64qqIdSr++gGkvX3EKRNaOcLeZ6pBjIjN4/HQqWorvIp7i8dRIaht5wlP2yr4mBSFZLtUWBiZ6TU+XdWpNy9icHDHv8iSKwEAL4KjcHz/I/Qb0gB8/n8j4OckzaT8qojHKUIKghJmQgghrKzkZLzZtIVTxjcygrRhA4gsLWHuWV1PkRFDkvLqPhJuHeUWCoRw+OoXCCTm+gmqCGwl1hjRcCBOvbgMK2NLCPkCtHFvqvdkWVdePI3Ekd2BUCiUnPLUlEwoFErwDeDCBiGElDRKmInBs7S0RFZWFoQ0ABHRkYpcp97t2A15fAKnTNqgPgRGRrBu0gg8AZ1AF0VFqlPy+E+I9vsLYBhOuVWbgTBycNdPUMVQycIJ/Wp2xd3wh2jh2hC2Emt9hwSg+HXq6cMI+O57BEbJ/ZyqeNri61FNIBTRd72iqUjHKUIKg74RxOBVrlxZ3yGQcqai1qmEx08Qfekyp8zYyQmSym4wreIBIzs7PUVm+CpKnVJkpuPT/gVgMtM55ZIazSBt+aWeospfaEIEHM3sIBaKNT7uaG6Pnp4dISrlqaPyUpw69TAgFCcPPwa4uTLsHM3g6mGNlORMGgW7AqooxylCCotGySaEEAJFRgberN/IKeMJhbBq3BACIyNI69fTU2TEUDAMg+hjK5AVH8UpF9lWgn3fKeDxeFq21K/38WGY678CS25sQLo8Xet6ZSlZLo6A629x8pB6suzoYoGadR3BMAxePI1Ua3kmhJCKihJmQgghUKanw8S1EqfMsl5dCE1NIa1fDwIjIz1FRgxF/M3DSHsTyCnjm5jDccCv4IvKZv0JT/yEBdfWIEWehqfRL/A//xVIzUzTd1gl5salVzh//JlaubObFNVr24PH40EsFsKrgTN4/LJ5gYMQQkobJcyEEEIgsrREtUkTYdOiOfhGRhDb2sKsWjUY2drAtIqHvsMjZVxm3Eck3DjMLRQIYdfrB4isHfUTVD6USiVW3N6MzxnJbNmHhHDse+Knv6BKCMMwuHwmBFfOvlB7zNXDClVr2ILH48HISIj6TVxhalY2L3AQQog+0D3MxOC9efOGHaSiatWq+g6HlAMVrU4xSiUiz56DPOkzJJXdYOToAEaeBR6fD6smjctsV1pDUp7rFKNUID3sGUxrt0Lqi7tgsuQAAGnLL2Hq2UTP0WnH5/MxufkoLLy2hk2a7STWsJVYIzI5Bo5mZfue/YLWKUbJ4PzxYNy7+V7tMfdqNnCrkj2ImZGREPWauEJiqvk+blL+lefjFCHFQS3MxOClpKQgOTkZKSkp+g6FlBMVrU4lBT+DPOkzuywwMoLQzBTmntUhlkr1F1g5Up7rVNrbR8hKioPI2glm9TuDL7GApHoTWLUZoO/Q8uVh5YrZ7SbBWGgEaxMpWro1QaZCjuvvA/LfWM8KWqcunwnRmCxXrWH3X7JsLKJkmZTr4xQhxUEJMyGEVHAiqRROPbtzygQmJrCsW0dPERFDkRH1HukfX7PLAhNzSJv3gV3fKeDxDOMUw8PKDbPbT0EHj5YQCbI73rV0baTnqHSnflNXmJpxE2FPL3u4VJYCyE6W6zepRMkyIYRoQV2yicGrU4dO6oluVYQ6xSiVUKSnQyiRwMTFGYrUVM7jtq1agi8qH6MClwXlsU5lfY5H6qv7nDIeXwCzOu0hMDKsKYk8bTwgNbbA1Xd3YG9qg0qWTvoOKV8FrVO29mYYNLIJ9vx9F/IsBWrWcYS9kzkAwNhYhHpNKsFEQskyKZ/HKUJ0gRJmYvD4fMNoxSCGoyLUqcjzFxB++CiqjBsLm2bc+0xdfPpCYGysp8jKp/JWp5TyDDAKOXh8ARilgi2XVG8MobmVHiPTLE2ejqjkWLhbVdK6jr2pDXp5doJEbBjJfkHrVEZ6Fj6GJ8CroTPkGVmwsTcDABibiFC/iSuMTejCGMlW3o5ThOgKfTMIIaSCyYiNw4dde5EZJ0PIH0sQsmwF5MkpsPCqDZd+fShZJnnKSopF2MZJSHsXBPOGXSE0y06QjZ2rwcjBXb/BaZCRlYklN9Zjrv8KBEe/zHNdQ0mWC+NjeAJSUzJhYWnMJssmlCwTQkiBUcJMCCEVCMMwePP3JijS/ptrNu7WbWRERkLqXRcCk/KXMBDdUcozEHVkGRSf4xB75m/I/PfCrE5bmLjXhUmV+voOT02mQo7lN//G85jXSMtKx6Jra3D9/V19h1UiUlMyce/GOzAMwyl3r2oDR2dLdtnEJHuAL0qWCSGkYKhLNjF4MpkMSqUSfD4f1tbW+g6HlAPluU4pMzKgzJRzyuw7dYS0fj09RVQxlIc6xTAMYs9tRsanN2zZ54cXIDAxhXWHb/QYmXYnQi7icdRzdjlLqcD2wEOoaVsd9mY2eoys+FTrlFgowd5NAYiO/Iy0NDnadfVk1+PxeKjh5QCAQWJCOuo3qQQjY0qWibrycJwipCRQwkwMXnh4OORyOUQiER3giU6U5zrFZCkgrV8PFjVr4NOZs+AJhPAY9a2+wyr3ykOdSrp/FsmPr3LKRNZOsGzho5+ACqBPzS4IiXnNJs0igQgt3RrjbnggOlZpCTOxqZ4jLLqcOiXP4OH+tQTIYrMH7rt2/iXEYgFatP9vHl0en4caXo6QyxUQG9GpH9GsPBynCCkJ1CWbEEIqCIZhILt3D8qMDIDHQ6VBA1B9ykQIzcz0HRop41LfBSHu4g5OGU9sDIf+MyAwLrtJp1ggwvQ236O6jQeEfCHaVG4KqbEFLIzMIBYY/sjQKZ+zcONcFJss57h38z0y0rM4ZTw+j5JlQggpAjpyEoNXqVIltgsRIbpQXutU8us3SI+KZpcVySlglEo9RlRxGHKdkifGIOrocoDh1hX73pMgtnPVU1QFJxaIMLf9jzj18jKylApUsnBCs0r1IeAL9B1asZgYWeOCfzDSUhSccompGN9OaAEjYzrFI4VjyMcpQkoSHU2JwaNuQ0TXymudUqSkcJYFEgmk3nX1FE3FYqh1SinPQOT+BWAy0jjlFs36wLRmcz1FVXhioRi9anTGW9kHeNpWAZ9n2AnBp/BE+O0NRloqdzwCiakYzdp6QJ6p0LIlIdoZ6nGKkJJm2L8YhBBC8qXMyu6aKa1fD/Yd20Nomt2F1qZZE/DFht8tlZQMhmEQdXQ55HERnHKRtTOkLfrpJ6g8PI0KURshWpVYIEJNu2oGnyyHvZNh98Y7asmymbkR6jWpBIVCiVfPo7VsTQghpLAM+1eDEEJInpJCXiBwwiTEBz4EABg7OMCxezfYtGgOY0dHPUdHyjKZ/x6kvXnIKeObmMG+3xQITS21bKUfx59fwPyrq7Hy9mYolOW3dfXty1js3Rygdn+yhdQY3o1dIBJndzPnC3j6CI8QQsolSpiJwVMqlew/QnShvNQppVyO1+s2ICMqGs/mLcTLv1ZDnpQEvkgEU/fK+g6vQjG0OpUSEoDEgBPcQoEQNl1Hw8ipmn6C0uLcq6v457EvACAg/BGW3thYLpPml8+isH/bPbXu1lJrE9Rt6AKh6L97sm3taSA/UniGdpwipLTQPczE4D19+pSdBsHb21vf4ZByoLzUqfAjx5AWFs4ux1y9DtMqVeDSt7ceo6qYDKlOZcZHIfrkWiBX92Zp6/4wr9NWT1Fp9ulzNHYEHuKUPYoMxrlXV9GzRic9RaV7wY8+wvefh1AquZ+JqbkAdi5CCIT/tX9UqmyFqp52pR0iKQcM6ThFSGmiFmZCCCmHUkNDEX7kKKfMtGoVOPfqoaeIiCFQKrIQdWAhmEzuIF+mtVrCqlV/PUWlnZO5PYbX/wo8/NcFuZ5jbQCAXCHXtplBCfo3DMf2Bqoly+aWQji5GYPPz37vIpEA9Zu4olpNe/D41CWbEEJ0hVqYicEzNTVFVlYWhEKqzkQ3DL1OMQoFXq5aCyZLpesmn49qEyeAJzDsqXQMlaHUqYzwFxDZVoI8IQr4/27NIltX2PWdDB6vbCZhPWt0Ao/Hw65HR1DbzhNNXLzRpnIziAQifYemEyamYvB4PM6AZg7O5rBzEoNhGPD5fEhMxajb0AUmEhrEjxSdoRynCClt9I0gBq9q1ar6DoGUM4Zepz6eOoOUN285ZU69esCsioeeIiKGUKfk8ZFI/xAMsYM7+KaWSH12G+ABjoNmgV/Gk88enh1hZWyJDEUmWro1hriMx1sYnrUd0HdwffjuewgwgLOrJarWtGMvYFjbmKJ2PSfOPcyEFIUhHKcI0QdKmAkhpBxJj4rGhz3/cMqE5mY03zLJkzIjFSkhd8EguxVTaGYF84ZdYOLhDZHUXs/RFUwLt0ZQMkqDnzZKE5GID8/aDkhLzYR7NRs2WXZxk6JaDeqCTQghJYkSZkIIKScYhsGrNevAyLn3btq2awtpg/r6CYqUeYxSgeTnt6GUZ3DKTas3gbFrTT1Fpe5V7DtIxCZwsdA+HVp5TJYBwL2aLWSxqcjMzJ5OisfjoVpNO7i4Wek5MkIIKf/K5y8LIYRUQNGXryDpaTCnzLRaVVTy6Qc+3ZNGtFCkJEGRksQpE9u4wKhSDT1FpO5V7DvMu/oX5vqvQFjiR32HUyKUSgbhH+I1PmZsIoJXfWfw+TwIhQLUbehCyTIhhJQSOoMiBu/Dhw/sIBWVK9PcsqT4DLFOZSYk4t3W7ZwygYkJXAd8BSNbGz1FRXKU1TqVEHASIitHWDTogpTnt5CVkgiBsSkkNZqWmUG+Xse9x/xrq5GpkCNTIcdc/5WY13EqXC2d9B2azigVShw/EISnjz5i4LeNUKOOeiu6pZUJank7wdTUCBIzcZmtU8RwUZ0iRDNKmInBS0xMZOcNJEQXDLFOvVm/EYo07lRAtm1aw7pJYz1FRFSVxTqV+vYRZJd2AWAgbdUf0lZfIe1dEIycqoEvLBujLTMMg/UBu5CR9V938eTMFGx9sA+/d/i5zCT1xZGVpcDRPYF48TQKAHBkdyC+Ht0EVWuoz6Vs52DO/l0W6xQxbFSnCNGMumQTQoiBi75yFbJ7/3LKTNxc4fr1AJpGimgkT4hGtN9fwP8P8pVw6wiiji6HpHojCM3LTldfHo+HGW0nwNLIgi1zMLPD902GlYtkWZ6pwMHt99lkGQAUCiWO7nmA9LTyMY80IYQYOmphJgavVq1aYBimXJw8kbLBkOqUIj0dbzdt5ZTxxWK4DR4EIxvqil1WlKU6pZRnIOrocijTkjnlJm61wSuDg2Y5mtlhQaepmOu/EiKBEHPa/wg7U2t9h1VsGely7N/2L0LfyjjlfD4PbTpXh7FJ3q18ZalOkfKB6hQhmlHCTAwedR0iumZIdSr0wCG1rtjSBvVh06ypniIimpSVOsUwDGJOb0RmJHeebkmNZrBs0U8/QRWAo7k95nb8GcYCMawlUn2HU2xpqZn4Z8s9fAxN4JQLBDx4NXBBZoYCsdHJsLU30/ocZaVOkfKD6hQhmlHCTAghBio1PAKfTpzilBk52MO+Uwfqik00Srx7HCnBNzhlIhtn2PeeWOZblZzNDWM+6Pwkf87AP5vuIurTZ065UMhHnUYusLA0hpGJECb5tDATQggpHZQwE0KIAWIYBu+2bAOjUPxXyOfDqlFDWDVqqL/ASJmVFhoM2ZV/OGU8kREcvpoOvpFET1FxxaTEwUZiVW7nU05KSMOev+8iLiaFUy4SC1C3kQvMzI1gKTWBV31niI3oFI0QQsoCOhoTg5eUlASlUgk+nw8LC4v8NyAkH4ZQp2R3A5DwKIhTZu5ZHdJ63jTnchmk7zqVlZyAqMPLAEbJKbds1htiO9dSj0eTgLCHWH13O7pWbYtv6vlAKChf9Tg+LgV7/r6LBBn3FgqxkRDejV0gMRXD0dkCnrUdwBfkf8FA33WKlD9UpwjRrHz9GpEK6f379+w0CN7e3voOh5QDZb1OKTIy8G7bDk6ZwMQEFnW8YOFVW09Rkbzos04xSgUiDy6EMj3XIF9V6sOqzcBSjUWbN7L3WHN3O7KUWTjzyh+xqTJ832QYTMtIy3dxxUR9xt6/7+JzUgan3NhEhLqNXCCRiOFR3RauHlYF7hpf1o9TxPBQnSJEs/LZ54kQQsqx8MNHkRETyymTNqgHc8/qEJmba9mKVFSx57YiM/Idp0wodYB9vx/B4+v/Xvf4tEQsurYOcmUWW3Yv4hGOBJ/WY1S6ExmRiF3r76glyyamItRrUglm5kbwqu8MtyrWZf4+ckIIqYiohZkYPEdHRygUCghokCOiI2W5TqV9/IgI3+OcMiN7e5i4ucGSWpfLLH3Vqc9PruHzwwucMp7YBPb9foLApGxcXDE3MoO3Yy3cDr3PlnlIXfGlV3c9RqUbqcmZuHbhFVJTMjnlpuZGqNvQGeaWJqjbwBlmFsaFfu6yfJwihonqFCGaUcJMDJ69ffkYOZWUHWW1TjEMg7dbtoPJ+q8lDjwerBo1gFmVKhCaaZ+ChuiXPupU+sdXiDm9gVvI48O64zcwdqle6vFoI+QLMKX5KDib2ePIszOwk9jgxxbfwdzI8Ovz21cxsHcyQ2qKFcLexQMAzC2NUaehM2xsTeFV3wVGxkU7FSurxyliuKhOEaIZJcyEEGIgZAH3kBD4kFNm5lkdIqmUWpcJB8MwSLx3GlBkccrN6raDRcNueopKOx6Ph4F1e8PV0hn2pjZwsigfJ+7u1Wzh5mGNhs3ccPHkc0SEJsCrgTOcK1miRh1HCAowuBchhBD9ooSZEEIMRNQlf84y39gYlnW8YFbFA0IzUz1FRcoieVwERNZOMK3TDqkv7oKRZ8DIuTpsun1Xpu+TbeHWSN8h6JSZuREA4HNSOhxdLGBjb4oq1e3ofmVCCDEgdGmTEEIMRK1fp8Oha2fwRCIAgLR+PQiMjGhkbMKhzExD6utAAIDIygHmDbtC7FQVDgNmQiAu/L2ypPiMjIRo3NIdbTt7onJVG0qWCSHEgFALMzF4T58+ZadBqFOnjr7DIeVAWa1TiowMGNnawqnHF0h5+w6Sym4wreIBoSm1Lpd1pVWnGEaJlJC7UGb+N9cvX2wCmw7fQGgmLbHXLagXsW9xNPgMvmv8NexNbfUdjs59Ck+ElY0ExiYiTrnYSPenW2X1OEUMF9UpQjSjFmZi8JRKJfuPEF0oq3Uq6dlzMEpl9pzLXrXBFwhgUbuWvsMiBVBadSo9LATyhGhOmcjKAcbu+j/5jUqOwZLr6/AoMhjzr6zCy9i3+g5JpxLj0/DPlgBsWXkDURFJJf56ZfU4RQwX1SlCNKOEmRg8Y2Nj9h8hulAW65QyMxMpb7lz6ZpWrUKtywaipOsUwzCQJ0TByMEdQgsbtpxvZALTGs3B4+n35z45IwULrq5Gijy75Ts6JQ5Lb2zA/YjHeo1LV+SZChzc8S9SkzMRL0vFtjU38SQwokRfsywep4hhozpFiGbUJZsYPE9PT32HQMqZslin+GIxHLt3Q1LwM6S8/wAen0+tywakpOtU8uMriDm7CTadR8K8QWekf3iKjIiXMKvZAvwycN9yaOJHyNISOWWmYkm56JbNMAxOHgpCpEqrclaWEjcuvkKlylJY2ZTMRa2yeJwiho3qFCGaUQszIYSUUdH+V/D51Wt2WWRuDpvmzeDUozusmzaGUCLRY3SkrMiMDkXsuS2AIgtx57cgxm8VjJ2rw6JxDwgt7fQdHgCgtn11LOg4Fabi7DpraWSOUQ2/hpvUWc+RFd/tK2/w9OFHTpmJRARPL3uEv4/XU1SEEEJ0hRJmQggpg9KjovBm42Y8/mUmXm/4G/Kkz+xjIgtzmLq76y84UmYoM9MQdexPMFmZbFlKyB2kfQiGwMRMj5Gpq2rjjmVdZ6GatTsGe/dFPUfD7yHxOiQal8+EcMoEQj68GjjD3NIENb2d9BQZIYQQXaEu2YQQUga927YDyszsJCjq/EXI7gag4d/rqVWZsBiGQey5LZDHce+VtWj0BUxrNNVTVHmzM7XBH11mgGEYg59aKS4mGUf3BAIMt7xWXUeYWxijTgNniEQC/QRHCCFEZyhhJgYvIiICCoUCAoEALi4u+g6HlAP6rlMJj4IgC/iXU2bbuhUlywasJOpU0v2zSH5yjVMmdqwC687f6uT5S5KhJ8sZ6XIc3HEfGelZnHL3ajawtjNFLW8nmJoZlWgM+j5OkfKH6hQhmlGXbGLw4uLiEBMTg7i4OH2HQsoJfdcpC6/aqDz8G/CNsk+4RZYWcBsyWC+xEN3QdZ3KiHyLuEs7OWU8IwkcvpwKvlCsk9coqoikSDyPeQWGYfJf2QAxSga++x4hNiqZU27nYAZXDyt4VLOFrX3Jd4fX93GKlD9UpwjRjFqYCSGkjOGLRKj0lQ94QiGi/a/CumljCEyMy0U3VlJ8ioxURB5aDCgVnHKbDkMhsnLUU1TZEtOTsPDaGiSlJ+PL2l/Ap9YX4PPL17X5axde4mVwFKfM1FwMTy8H2DtawK2KtZ4iI4QQUhIoYSYGr3r16pRIEJ0qO3WKgU3zpmAYBh9PnYZVg/qQuLnpOSZSFLqqUwzDINr3Lyg+yzjlxm61YV6/c7Geu7gyszIx/+pqxKVmjwx9KPgUolPiMKrhIBjpudVbV54//oTrF19xyoQiPrzqO8PSygQ16ziW2nGj7BynSHlBdYoQzShhJgbPxMRE3yGQcqYs1CllVhYUqWkAsu/3VKSmQZGRmc9WpKzSVZ1KvHcKaW8COWUCM2vY9/0RPIF+f9J3PTqCsMT/pldiGAaPIoPxKu4d6jjU0GNkuhH9KQl++x9xC3lA7XpOMLcwhld9ZwiEpdeaXhaOU6R8oTpFiGblq58UIYSUE1nJyRDkOnkxdnDQUzSkJKWHPS/Yep/eQOa/h1soEMGu1/cQWtiUQGSFM8S7H7wd/psqSiIywZe1vkBt++p6jEp3rl98BXkmtxt8VU87WNmYonY9Z5hIykcrOiGEEC5KmAkhRM+UcjlSQ0M5ZWKpFE49u8PCqzZ4AgGM7O0gNC9b8+qS4pNdP4iPu2cj4bZvnuspMlIRdWiJ2n3LRk5VIanasCRDLDBTsQSz2k2ET60vYCw0whfV2qNjlVbg88rHqUbfwfXh6m7FLjs4m8PZzRLVatrByoZGsCeEkPKKumQTg5eSksLec2NqaqrvcEg5UNp16uPxk/jwz3449ewOt8GDIPz/1+SLRJB614VZFQ8wSrqvzJBpqlPpYc+RcOMQAEB2ZS8AQNrSR+P20b4roUiWqZVnhIcgPew5jF1radiq9PF5fPSu0Rk1bKvAy74GRAKRvkPSGZFIgG/GN8OpQ0/w4W0cqteyh3MlKZxdpXqJh377iK5RnSJEM0qYicF78+YN5HI5RCIRvL299R0OKQdKs05lxMQi7NARQKnEp5OnEXv9JqpN/gHWjRux6wjNqGXZ0GmqU8autWDd4Rs2WdaWNGclxYInFAN8IaDkzvtr3eGbMpMs5zAzMkVD57r6DqNEiERC9BtSH29fxSIpPg3Va9nr7UIW/fYRXaM6RYhmlDATQogevduxE8qMDHZZnpQEkaWlHiMipSknOdaWNCsz05H8/DbE9pWRlRyPzIiX7LbWHb7R2iJdGirqaLo8Hg9VPe2gVDLg8yve+yeEkIqGEmZi8GxtbaFQKCAQCPQdCiknSqtOJTwKQtytO5wyh66dYV69Wom+Lil9edUpbUmzZYu+SHlxF8qMNKSHPS9TyfKxZ2fxRvYBg+r0gZvUWW9xlJTU5EyIxAKIxNqPAfpOlum3j+ga1SlCNKOEmRg8Z+fyd7JG9Ks06pRSLsfbLds4ZXwTY7j49Cvx1yalL786pSlplifGQGBqifSw50h//4Rd16rDUL0my4Efn+LAkxMAgIikSAzw6olmlRpAqOdprXRFkaXEwZ33kZmRhYEjGpfZAb3ot4/oGtUpQjQrH0NXEkKIgfl48jTSwiM4ZZZeXoi9cRMJQY+hlMv1FBnRF2lLH1h3+IZd/hx4Hol3/LjJcttBsGr5pT7CAwB8+hyNVXe2sssfP0dhx8PDuB0WmMdWhuWc31OEvZMh6mMSNq24jjch0foOiRBCiB5RwkwIIaUsIy4OYQcPc8rE1tYwreIBRqFA0rPniL//QE/REX2StvSBRbPe7DKTlcn+bdmiH6zaDNRHWKyXsW+RoRITAHhYVUJ9x7I18FhRPbjzAQ/u/DfFW2ZGFnz3PUJCfKoeoyKEEKJPlDATQkgpe79jF5Tp6ZwyaaMG4PH//5DM48GidvlIQEjhMAo50j88VSvniU1g03GYHiLiaufRHLPaTYJEZAIAqGThhEF1+sDC2FzPkRVf6FsZzh7j7ns+n4eadR3w+nk0GIbRU2SEEEL0qXzccEQqtJCQEGRlZUEoFKJmzZr6DoeUAyVZpxIeP0HsjVucMtMqHjCysWGXzT2r00jZ5UxB65Ts2gFkRr5TK2cy05Bw21ev9y7nqOdYC8u6zsLeoGNo79ECVa0r6zukYkuMT8PhXfehVHKTYk8vB1haSVDL26nMjQhOv31E16hOEaIZJczE4GVmZkIul0OpVOo7FFJOlFSdUmZl4e3mrZwyvlgMS+//5qzlGxnBwqu2Tl+X6F9B6lTa+ydIvOPHLeTxgP9v2dQ2T7M+2JvZ4udWY/Udhk7I5Qoc2nkfKcncruaV3K1g72SOWt5OMDUz0lN02tFvH9E1qlOEaEZdsonBEwqF7D9CdKGk6tSn02eQFhbOKbOoWwcCY2N22bJuHQiMyt7JOSme/OpUVkoSIg8v5Rby+HAZ/SdnIDDZlb1IuO1bkqFWKAzD4NThx/gUnsgpt7KRwKO6DTyq2cLW3kxP0eWNfvuIrlGdIkQz+kYQg1e7NrXGEd0qiTqVKYtH2P5DnDKxtTXMqlZhl0WWlpxlUn7kVacYhsHHnTPAZKZxyq07DYeRgzuMHNwBqM/TXNItzanyNGQpFTAXm5a57si6cvf6Ozx5wB2t3lgiQk1vR9g7WsCtirWeIssf/fYRXaM6RYhmlDATQkgpeL9zNxRp3IRI2rD+fwN9AbDKtUwqhshDi5GVwJ26yMSjHiyb9mSXNc3TrFqua0pGiXUBu/Am7j06V22Nnp6dIBGblMhr6cubFzG4dPIZp0wg4MOrvhOsrCWoWcex3F4oIIQQUnCUMBNCSAlLDA5GzLXrnDKJhzuMbG3ZZRMXFxg7OpZ2aETPYi/uQNpr7hRiPKEY1p2Gg8fjXjwpzaT52LOzuB8RxP4dkRSF/nV6oJKFk85fSx9ksSk4uicQuQe+rlnXAVIrCbzqO0MgpItXhBBC6B5mQggpUYxCgbebcg30ZSSGtJ43u8zj8yFtUK+0QyN6lvb+CZLunVIrt2zel+2GnZu0pY/aPc3pYc91Glfgx6c49PS/uBSMEvc/BuHqu7uQpSbo9LX0ISM9Cwd33Ed6mpxTXrmqNWwdzFG7njNMJGI9RUcIIaSsoRZmYvCioqKgUCggEAjg4OCg73BIOaDLOvXpzFmkfgjllFl4eXEG+jKv4QmRueHPY0u001Snkp/fVlvPyLUmrFr3z/O5VFuapW0GwthVt3N2V7FyRTVrd7yWvWfLmlVqCE8bD1hLpDp9LX24eu4FYiI/c8ps7U3hVsUa1WrawcpGoqfICod++4iuUZ0iRDNKmInBi4qKglwuh0gkogM80Qld1anM+HiE7jvIKRNJLWFWrSq7LDA2pmmkKoDcdSr1zSN8DrzAWYdvYgG7XpPAE+T/0yxt6QNj15o6T5YBQGpiifkdp2Jb4AFcfnsL3g61UNXaDQ2cvHT+WvrQrpsn4mJT8Pp59n3jEjMxatRxhHMlKZxdpfoNrhDot4/oGtUpQjSjhJkQQkrI+117oUhN5ZRZNWrIGdjLsl5d8EWi0g6N6JEi7TOij//FLeTxYNNpGMTWBb+PvSSS5RxCgRDjmnyDFq6NYCY2hdTEAiJB+ainxiYifD2qCY7tDcTLZ1Hwqu8Ea1tTVK9lT4N8EUIIUUMJMzF4Hh4eUCqV4NPowkRHdFGnkp6HIObKVU6ZxL0yjOzsOGWmHh5Ffg1iOFTrVLTvX1CmJXMeN63ZAmbe7fUTXB68HUsuKdcnPp+Hek0qwcLKGJZSCWrXcwZfYFi/IfTbR3SN6hQhmlHCTAyeOd37SXSsuHUqe6CvLZwynkjEGegLAFy+7EctWhVETp1SZqQhzcwKPJExGHk6AEBo5Qib7mPVRsUmJcve0QKWVhJY20ggFAn0HU6h0W8f0TWqU4RoRgkzIYToWOS580h5955TZlnHCwKT7HlsJW6usGnZgpLlCoZhGCQ/vw2+iTlM67RD+vsgKD7LYPvFWAhN9HOiGp70Cc+jX6OVW2OIBSIIC3D/dHlhaVW+5pUmhBBSMirOLyMhhJSCzIREfPhnP6dMZGkJs+rVAADS+vVgUaumPkIjepYe8RKZseEAAL5IDEnN5hBZ2sHEwzufLUtGSmYqlt/4G5+So3H9fQAG1OmJatbukIjLTyIZHfkZV86GoEX7qnB1t6KLVIQQQgqNEmZi8DIyMsAwDHg8HoyMjPQdDikHilOnkoKDoUzP4JRJ/3+gL5NKlWBes4YuQyUGIlUWjeTnd8EosiAQCMDj8yGQWMLcu4Nekjglo8TauzvwKTl7pOgXcW+w4d5utHJrDDdLF9R1qGnwU0jJ5Qoc3f0AMVHJeP86Dk1auaNJK3eYWxrnv7EBoN8+omtUpwjRjBJmYvBevHjBToPg7a2flhpSvhSnTtm2agmeWIx3m7chIzoakspuMLa3g9DMFDbNmlALVwX1LuAyeHGR4Av4sLWzA08ogmmNpuCL9HNS+jTqBQI/PeWUMQwDIV+IVHkazMSGMRdxXi4cD0ZMVPbgahnpWbjl/xpJCWno0L1mueiOTb99RNeoThGiGY0wQgghOqSUy5EWFg67Du1g07IFpPXrgcfnw6ZlS/DFYn2HR0qZIi0ZSYEXoLSqBLlVJQA88IRiGFeqCZFVwaeQ0jVvx1r4scV3MBJk10kjgRgtXBvB0tgcHaq0hFho2HX1WdBHPLgTyimTmInhUtkKFtLy0cJMCCGkdFALMzF4UqkUCoUCAoHhjXJKyqbi1Cm+SASbFs0QdycAEjfX7OdrUB9GNta6DpOUcQzDIPbM30gJuQNTR0+gQS/wXavDSJCpt/uWVbV0awQXCwesvL0F7dxbQMDjo03lpjAWGnZXzARZKk4eeswp4/N5qOXthBpeDuWmlwf99hFdozpFiGaUMBOD5+bmpu8QSDmjWqeSnj2HRe3CzUVr4uQEU/fKyJTJIDAxYQf8IhVL8uMrSAm5k70Q+RL8a1vh0H8GTFzLzqBvlaWVsPKLOeDz+EiTpxv8gF8KhRJH9wYiIz2LU16tlj2qVLeFhdSw358q+u0jukZ1ihDNqEs2IYRoEbr/IJ78OhvhR30LtV34UV88m7cQ6dExsG5K9y1XRHLZJ8Se38otVCohsrTTT0B5EPAF4PF4Bp8sA8DVcy8Q8SGBU2bvZA5nV0t4VC97+54QQkjZRwkzIYRokPTsOcIOHAIAfNi9V2vS/PnVa4QdPAxlZiaA7GT5w+692X8fPIzkV69LJ2BSZjCKLET5/QVGzh0t3a7nBAgtbPQSU5ZSgfSsjPxXNGBvXsTglv8bTpmxRIRqtexRuaoNjIypUx0hhJDCo18PQgjRwKJ2LVQe/g2b/Ob8X+krH3YdRqnE201bkPzqNaL9r8K8di3E+F9hH688/JtCd+cmhk92/SAyP3ETN/P6nWFas5le4rkbFohDT0+hkXMd1HWohboONctdr4fkzxnw2/+IU8bjAbW8HWFmbgTXylb6CYwQQojBo4SZGLzXr18jKysLQqEQ1arRvaKk+Ng6Va9unklz1KXLbAtyemQk0iMj2eeoPPwbTnJNKoa00GAk3j7GKRNaOyGxajvEhYSU+nEqNCEC6wN2IUORiajkGMSlJSItKx1NnOuBzy8fncwYJQO/fY+Q8pnbgu7haQtzC2NUrWEHvqB8vFdV9NtHdI3qFCGaUcJMDF5qaio7byAhuqBap6r9f9KbO2l27t2T/Ts3SpYrJkVaMqJ9/+IW8niwqN8FoZlZpX6cSs5IwbKbfyNDkX27gFyZhZsf7sFIIIapyAR1HMrO4GPFcfvqG7x9GcMps7aVwMVNCitrCWztzfQUWcmi3z6ia1SnCNGs/F1yJYQQHav0lQ8qD/+GXf6wey/CjhyDXds2EEgknHXdhg2lZLkCYhgGMac3QJEczyk3cfeGWZ02eokpLSsdRrnmU3aXVoK7tBJq2FbVS0y6Fv4hHlfOvuCUiY0E8KzjAD6Pj6o17ctd93NCCCGli1qYicHz9tb/fKakfNFUpyrlamkOP3gYfLGYHewLAJx69YBr/y9LJ0hSpnx+fBWpLwI4ZUJLO0jbDoTQ3Bre3qU/D7edqQ0WdfoF6+/tRkD4Q1ibSNHKrQnaujeDSFA+WpBuXnoNpZLhlNWs6wixWAgnV0uYmRv2nNJ5od8+omtUpwjRjBJmQggpoNxJs2qybNe+HTy+G6WXuIh+yWWfEHduM6eMJxTBslkfGLvU0FNU2YxFxvi55RicfnkZteyqw05iDRPR/7F33+FxVOf+wL8z26tWvfcu2bJlWzbYmGJswPTeQwuQkAZpXAg3994kl9wkhFTKD0JCCBCqC9jGvWDj3i3LltV7Lytppe0zvz+EVhppZbXZqvfzPH6sPTt75kh6dXbfOWfOUfq0TWK646EF2PbZORw/WAsASEoLgyFMDalUgtSMCB+3jhBCSDCgKdmEEDIFCXfcBqlWeE8kq1Qi43tP0dTPWYh3OtC69mXwDpugXJO7DLp5K/wiJhiGwY3ZK5Eelgy9Uufr5ohKJpPghjvn4s5vLEBSahjSswf3Wk7JCIdMLvFx6wghhAQDGmEmhJApqF+zFg6TSVDGWSxo+nwj3bs8C3Xt+xi21mpBmTw6FaGX3w1W7v2RXJ7n/SJJ97a8+XHImx8Hu92Jxjoj4hINvm4SIYSQIEEJMwl4HR0d4DgOLMsiIoKm4JGZGy+m6j76BPX//tD1WKrVwGHqB+B+n2YS3HieB6tQg1WHgBvoAQCwSi1Cr7gXMkO04FhP91NOzokjDadgdlhxaeKCoJp2PRUymQQp6eG+boZX0HsfERvFFCHuUcJMAl5TU5NrGwTq4IkY3MVUw5p1gmQ5/o7bkXT/PWj6bMO4+zSTwMbzHJrefg6c1QxWoULco78BwwzfyWRtroDTZIQm7zJYGy/A1lIF3cJroc5YMKYuT/dT75z8FFsq9iA7Ih0m2wCuTFkSdNOvAYDjeLDs7BtBd4fe+4jYKKYIcY8SZkIImUDV3/6B5o2bBGXGkycRffVVYxYCo6Q5eNja6mBtrhQ8VkSnAAAcJiMGLhwBADAsC1XKHKhT5sJwyS2CpNob9lQfxJaKPQCACx2VMFp6YbGbcU3mFTAo9V5tiyeVnGrCwT2VuP3BBQiL0Pi6OYQQQmYJSphJwEtMTHRNISJEDImJiXA6HKh98Tc43N4x5p5lALA0t0AaMpiMUNIcnCy1ZwWPB8qPQhGdAt7pgOnsXnAOO4DBRbUYiQza/MvAKt0ncp7qpzr6u/DW8Q8EZW39HeDBQycPnqSyu3MAGz85A6vFgTf/sA8rrs9GztwY6ENUvm6az9B7HxEbxRQh7tFfBAl4oaGhCA8PR2hoqK+bQoJEaGgoVKZ+WKpr3CbLAKBJT0P3sROuxwl33Ibkhx50Pa7913toWLPO420lnmOuLRE87juzBwBg62iAo6/LVc5IZVDGZUIekTBuXZ7qp8LVoXho/h2QjBjVXpq4ELflrYaEDY5Vop1ODmvfOwGrxQEAsFkd2LKuBLs3X0BpcYurfLah9z4iNoopQtyjEeav8TyPjRs3Ys2aNTh//jwGBgYQGRmJoqIiPPDAA9PazL2hoQFXX331tNpz4cIFt+VlZWV4++23cfjwYbS1tUGn0yE9PR233norbrvtNkgkwfEBiRBfa92xc9znGKkUuqxMaFKSBOXuRpr1uTnQ5+V6rqHEI3ieg6XunKDM0d2Czj0fQD9/JTQ5l8BceRI874RUFwZV+nyftJNhGFyTcQWSQuLx8v43kRKaiCcW3g+5ROaT9njC7s0X0FhnFJRFxeqgNyjR0tSD9tY+FC5Jglan8E0DCSGEBDVKmAFYLBY8/fTT2LNnj6C8sbERjY2N2LBhA5555hk8+eSTXmnPeFuCfPLJJ/jFL34Bu93uKuvq6kJXVxeOHj2KdevW4dVXX4XBYPBKOwkJZtb2jnGf02ZmQBERAXVS0pjnRibNiffeTclygLK11YGzjJ1d0LP/UwyUHkT4dU9AN38FrI1lUKUUgPHxaG5OZAZ+e+3PoJNrIAuiZLnyQjsO7K4UlKnUMmTkRrneK9UaOTQauS+aRwghZBaghBnACy+84EqW09PTcffddyMiIgIlJSX48MMPMTAwgJdffhnR0dG45ZZbJl1veHg4Xn311Ukd+9prr6GkZHD63/e///0xz+/btw8///nPwfM8VCoV7r33XsyZMwednZ349NNPUVZWhmPHjuFHP/oR3nrrrVl1/4nT6XR9TSPsRAwOux09xWfdP8my0GVnIWTuHDDj/J0l3HEbjSwHuNH3L49k72xEy4f/i8jrn4Ku4MpJ1eeNfipMZfBIvb5i6rVg/b9PCspYlkFOQQyk0uG/vYycKDCzcOVseu8jYqOYIsQ9hud53teN8KX9+/fjscceAwBccsklePPNN6FQDE/rqqysxP333w+j0QiDwYCdO3dCq9WK2oYNGzbgJz/5CQDgiiuuwBtvvCEYZbbZbFi9ejUaGhqgVqvx3nvvIT8/X/D8j370I2zfvh0A8PLLL+PGG28UtY0TMZlMgmnk2dnZov+cxnPmzBnXNgjTmTpPyGgnt27DwGtvuH1OFhqKpHvvRvS1q8adDUL8X+f2t2E6f2Dc5zlLP3i79aJ1sGo9GInwurM2bxnCVz4y5lgx+ymO58B6eSVub+M5Hu+9eRjV5cKZHunZkYhPNrgeR8XokDcvzsut8w/03kfERjFFxOTL3EBswf2OOwn/+Mc/AABSqRT/+7//K0iWgcER55///OcAAKPRiE8++UTU87e2tuKXv/wlgMHFFn7961+P+RC+bds2NDQ0AAAef/xxQbIMAHK5HL/97W9dU7HfeMP9B31CyOQ4SsvGf663B+qkJEqWAxjP8zCVHoSzr2vcfxMlywDADfSOeV1/6SGPtZvjOawp+QL7ao7gSMMp2Bw2j53L1/bvrhyTLEfH6RGXFOJ6LJGwSMuK9HbTCCGEzDKzekq20WjEgQODIwzLly9HYmKi2+Ouv/56/PrXv0ZnZye2bNmCRx99VLQ2vPjii+jt7QUA/Md//IfbjeK/+OILAIP3Nt93331u69FoNLj99tvxj3/8A2VlZaiurkZqaqpo7fRnOp0ODocDUumsDmcyBdV/fxsd+8cfXbR1G8d9jndyKPnFryDVqMc8F3HZMqQ+9ogILSSexJn74Ozv8UjdDlM3nAO9kKiF+x+L0U99XrodH53dAJVMiSUJhWg1dWBRfAFidVEzbbZfqa/pxu4twoUvNVo50rIiBBeqElNCoVQFz/3aU0XvfURsFFOEuDer/yKOHTsGjuMADE7HHg/LsigqKsKWLVtw+vRp9PT0ICQkZNzjJ+vgwYPYunUrAGDhwoW47Tb3e7YePXoUwOBUhrCwsHHru+SSS1wj5nv37p01CfNs+T6JOHieR8eBg7B1dk188Dg4iwU2i2VMeeeBQ5Qw+zGO4/Hjv+yF2eKAUvoE/iPjJMwXxBsR1uRcirCrvzEmWQZm3k+VdVThw+LPAQBmuwVfVh/CvJg8OHknrs9aETSrYlvMdqx97wR4bvhuMYYB8ubFQiYfvqdSqZQhMXX898PZgN77iNgopghxb1YnzOXl5a6vs7KyLnpsRkYGgMEP22VlZSgqKprx+X//+9+7vn7uuefcHtPa2uoagc7MzLxofenp6a6vS0tLZ9w+QoKRo68PdqNnRhdt3d2w9/ZCph+bMBHfq23pRUW90fXYcv+TiC26Hp3b34attXra9cqjUxG+6lGokvMnPngaeJ7H2yc+Bsdzw2XgoVfqMD8mL2iSZZ7nseHj0+jpNgvKCxYlQDVqFey0rAhIJLP+rjJCCCFeMKvfbRobG11fx8fHX/TYmJgYt6+brh07duDs2cFVWFeuXDnu4gpD9y5Ppo3R0dGu1bGbmppm3EZCgpFMr8eCV/+M8EvHn1UyHeFLL8WC1/5CybIfK64Q3hNbXNkBVXI+4h/7LSJueAoSzdRnDoVd/TDiH/utx5JlYPB2nJ9e9m3kRw1f2M2NzMT8mFwkGxI8dl5vO3GoDufPtAjKElNCYQgT3v4QYlAhMkbnzaYRQgiZxWb1CHNX1/CUzNDQ0IseO3JvY6PROONz//Of/3R9/fjjj497XHd3t+vridook8mgVqthMplEaSMhwUoZE4Oc536KnrMlqH7rbfRXT390UZOaitTHH0XIHM8lTEQcxZWjEuaKDty8PB0MK4F+/kowDIv2jZPbCnCI09TllT2Yw9QG/PyKp7H2/BaUtF3AAwW3I14fHTSLz/E8j6oy4e9HpZZhXlEienuGR5wZMIPbSAXJ900IIcT/zeqE2TLiHsTRq2OPJpcPTwezuLl3cSpKS0td9yUXFhaisLBw3GPN5uEPChO1cegYk8k04zbOVEVFBdLT06HTDY8CWK1W1/LyBoMBSUlJY14zMDAAAGNG3Ds6Olyj5omJiYKLB9XV1eju7gbDMDAYDGPuwampqXFNa8/LyxMsZmE0GlFXVwcAiI2NRWSkcMXV4uJi197Xo6fENzQ0uC66ZGVlQalUup4zmUyoqqoCAERGRiI2Nlbw2vPnz7u2bsjNFe7V29zcjPb2dgBAWlqaYAl+i8WCsrLBFZzDwsKQkCAcXSovL4fZbAbDMJg7d67gufb2djQ3NwMAkpKSBBeBHA4Hzp07BwDQ6/VISUkRvLa6uhp9fX0AgPz8fMH+jN3d3aivrwcAxMXFjVm47syZMwAAtVrturVhSF1dneviTnZ2tiDG+/r6UP11IhsdHY3o6GjBa8+dOweHwwG5XI6cnBzBc01NTejoGPzwnZ6eDo1G43rObDa7bscIDw/HvJd/i7Zdu1Hzr/fg6O3DVDASCXJ//jwU4eGw2+04f/48ACAkJATJycmCYysrK9Hf3w8AmDNnjmCv9K6uLtdskoSEBMFaBRzHuWajaDQawa0XAFBbW4uensEp5rm5uZDJhqfn9vb2oqamBsDgLJmoKOHiUGfPngXHcVAqlWNuS2lsbERnZyeAwdtBVCqV67n+/n5UVlYCACIiIhAXJ9zWp7S0FDabDVKpFHl5eYLnWltb0draCmDwfjlv9BFOpxPFZ8/idFmb4DXHS9tgsTrQ0tyA3t5eqA5swFRTX+OxzWjSZ0EZGnnRPkKj0YDneUilUqSkpEyrj2BZFnfmX49LQ+ehs7ET5Y09QdVHzF+qR2JKKHZsOg/OyWPVTbmorWlxvZ9FhEcgITkMupDBvtZbfcTo2V1lZWWwWCxgWRZz5swRPNfW1oaWlsFR8pSUFOhHzDgRu4+oqamBw+GARCJx/eypj5h+H1FSUgJgcOGr2fo5oqamBj09PeA4DlKp1O/6CH/9HOGvfcQQX32OGIrBYDCrE2aHw+H6emRC7M7I50e+bjr+9a9/ub6+2OgyINxEfqI2jjxmpm2cKafT6VpQbQjP87Db7a7nR3M4HK7nR+M4zvXc6Hp7e3vB8zx4nnf7fY+sd/S24yPbNLpeYLDzGvqQK3a9k/leL1avu+91qF53oy8zqXe6v5uhNo1Xr9PpHLdNI+t1Fy92ux0Oh0PwhjGZekfHISORIHrVSnR8dQDGU6fdfo/j4Z1ONH22AamPPeKzn+HF4nAyP0OO4wQfXIZM5Wc4XptGv250vd7qIwCgsX0AZpuw3O7g8NXpJqSEOeDs7QDbVee27othnA5IyvfBXnjTRdtrMpngcDhcH0Rm0keAR1D2EXK5HJdckYmktDBUl3dAIpWA53hwzsHXSKQMUjMj3NbryT7CXb12u33Cei8W32L8DHt7e2G32yGVSl31UR/h/X42mD5H9Pb2usrc1e3rPsJfP0e4q9cf+ojRbZpMvWL2Ee7aEahmdcI88kqe3W6/aEJqsw3vdzmZxHU8/f392LhxI4DBq2grVqy46PEjr5SN++FphKF2jrw65AsSiWRMR8EwjKtd7v6wpFLpuO1mWdb1nLsOaGQdF6t39IfEkW1yV69MJgPP827bNdN6R/4/0sjv9WL1uvteZTIZHA6H2w/DM6l3Jr+bi9UrkUjGbdPIet3Fi0wmA8MwU67XXRzaurthPH3G7fc3kZbNWxF/2y1gtFqf/AwvFoeT+RlyHOe2XVP9GY5u09AIxcXq9WYfUd/h/iLi/jNNyFgZA1XDKUx3kq+i7gS4uasu2t7RH0KojxC2aWS9cYkGxCUaYLc70WcyoqHWBp7nkZgaBrlC6rZeT/cRo+t1Op1uv5fJxjf1Ef7XR0z3ZxhsnyNG1y9WvcH+OWJ0vdRHXPzzeqBheHeX92aJZ555Bps3bwYwuMXUyGk/o23fvh3f+973AAA/+9nP8PDDD0/rnFu2bMHTTz8NAHjkkUfw/PPPX/T4L7/8Ek8++eSkz7tw4UKYTCbk5uZi/fr102rjdJhMJtc0KWBwWszIKUCe5HA4wPP8uJ0eIRMp/+uraNuxa9qvj7vlJtpOysfe+uwsvjo9/oKMJrMdVtvYq+MSloFeIwfX3w24eTssVNTgNvXxCc8fsuQmhK98ZNznp9JPHao/AZNtADq5BjG6SCSFxM/qe3b7TVY01HQjMy8aLDt7fw6j0XsfERvFFBGTL3MDsc3qv4aR9w0YjcaLJswjF9G62F7IE9m1a/hD+bXXXjvh8SPbOHR/wXjsdrvr3p2ZtDHQUKdOZsLW3Y323V/OqI6hUWb5BAvzEc/geR77zzShs2fqazc4OR7dfVYAarfPn7YlTyph7j2+FSGX3AKp1n0MTLafajN14PWj78JstyBBH4uFcXOREtqMhbFzoZQpJ64gQDgdHKxWB9SaiWdsabQKZM+JmfC42Ybe+4jYKKYIcS94xsqnYeSCBEOLGIxn6AZ9AGMWr5gsp9OJL78c/GAeHR190cW+ptPG1tZW1/0C020jIbNN645dbu+jAwAwDCQaDTDetCKWhSwsFFKdFm07d3uukeSievttMPZZPVJ3H6eCWR0NiS4MEl0YGKUGGDV5m5EpwKq0MJ2ZWQw4OCf+dPDvMNsHE/+G3mbsqNyHqq567Kk5NH6cBqBdm0vxxst7UVvZ6eumEEIIIRc1qy8ljVwlrry8HIsXLx732KHV8BiGGbPK4WSdPXvWNVK9YsWKSU2xCw0NRXh4ODo7O11tGE9FRYXr69Er1RFC3AvJzwPcLEyhjIlB/q9+AWVUBBwDA6h6429o37NXeBDHIefZn0CfmzPm9cR7QrQKvP4fK/D2xhIcOHPxC4tTsawgDo/cmIeY8NsF5XZjG9o++zOsDaVgVTpE3/5jqFLmjlPL5J1oKkZFV42gLFwdBoVUjjnR2UEzLbuitA0H9wyu/vuv1w/i8lVZWL4qEzarA0qVb9ffIIQQQkab1SPMhYWFrpvUDx8+PO5xTqfTtQ1UTk6OYJr0VJw8edL19bx58yb9uqKiIgCDWwgMLcnvzqFDh1xfXyz5DzZGoxHd3d209zSZllY39y6zGg0i7rkLFvngNUWpWo2sHz6NrB89A4laOHWXRpb9Q0y4Bs8/vBi//s4ypMWFzKiu+DA5fv2dZXju4SLEhGvGPC8zRCHuG79E+DXfRMITf5hUsjyZfmpxwnz8ZNm3oJEPxphOrkFh7BwkG+KRoI8d93WBpK/XgvUfnHI95nngq50VuHC2GUe+qkZL48VvPSLD6L2PiI1iihD3ZnXCrNfrcckllwAYvLd4aH++0TZt2uTaJ2/16tXTPl9xcbHr6/z8/Em/buheZ4fDgQ8++MDtMSaTCevWrQMwuG/h6P3kglldXR2qqqpc+yASMhUyw9jkik1PQ7uEGRNTkVcsx/w/vQzd1yPKUp0OEZdf5pV2ksmZmx6BP/zwCnz/7vkwaCfeu34kpYTHw0tUeOW5azE3PeKixzKsBCFF10Oqm9x6EZPtpxYnzMdL17yAOVHZ+Oll30ZOZDoKYyb/fuHPeI7H+n+fwoDJJii/7OoMtLeawHE8Ss+2oKK0DTwXPNPPPYXe+4jYKKYIcW9WJ8zA4ErVwOCCWT/60Y9gMpkEz1dUVODFF18EMLjZ91133TXtcw1NmZbJZGM2Db+YlStXujaWf/XVV3Hs2DHB8zabDc8++6zriuCjjz467TYSMtt0HT4ieCwLCwUTFgpoxo4sAoAyOgpzX/wl0p78Jub/+Q8wFMx8Ki4Rl4RlcM2SZDx8Q96UXnff0nDcfuvlkEp8+9YYoQnDf131DHIiM7Awbi7k0ulvZehP9u+uRHV5h6AsIycSUhkLbkSC3FDbja7Ofm83jxBCCHFrVt/DDACXXXYZrr32WmzduhUnT57ELbfcgvvuuw+xsbE4d+4cPvjgA/T3D75xP/vss2NWnz58+DAeeughAIPToN99991xzzV0xc5gMLjdy2w8crkcL7zwAr7zne/AYrHgkUcewV133YUFCxbAaDTi448/RllZGQBgwYIFuPPOO6f0Mwh0sbGx4DguqPZ7I94Te9ONaN22HQM1teCdToTk50G1ZDEUiYnjxhQjkSD2huu93FIyEUv9eSgTc12P95yon9Lr99dyuF3umZWoZ3s/VV/dhd1bLgjKdCFKpGZGwGoV7pGdkByK8MjA3HrEm2Z7TBHxUUwR4t6sT5gB4Le//S36+/vx1VdfoaGhAS+99JLgeYZh8L3vfQ/33nvvtM9hMplcWz5dbPuq8axYsQL//d//jRdffBF2ux3//ve/8e9//1twzNy5c/Haa69NKRkPBpGRkb5uAglQPMchfHERtOlpMJ4+g57iszAUFiJ66aW+bhqZoq69H8G472OEXfUgDEtvQ1vXAM5UdEz8whHK6oxo6x5AVKj7LaZmYjb3U+YBG9a+f1IwzZphgAWXJI5JlsPCNUjPmr0/q6mYzTFFPINiihD3KGEGoFKp8NZbb2HDhg1Yv369a3Etg8GAhQsX4qGHHsLChQtndI6hUWoA01407L777sOiRYvwzjvv4MCBA2hvb4dMJkNWVhZuuukm3H333a5FzAghE3NaLOB5HvKwMMSuvhZRV10JeRjtpRxoLPXnYdz3MQCga/d7AIDd/XmYzi5Mu4/X456V2WI2zy2TrR+vHXkXDxTcio6BLqSHJkOrcH8bQCDjeR4bPj6Dnm6zoLxgUcKY349KLUfuvFgwbHCsBk4IISQ4MHwwbexIfMZkMuHCheHpdtnZ2dBqaUod8V88x8Fu7AHP82AYBrIQPZhZNjsjmBgPrHMlyzwP/Nr2DbT1j0281IwFq1WnsMeSj05u7Gyf2AgN3njuao9u4cTzPP5w4G843HAScokM82LykB6WjILoXKSHJQfN9lEAcOxALb5YUywoi0sMQXpOpOD7lEolKFySCM0UF2ojhBDin4IpN6ARZkLIrOS0WDF0vZBVyClZDnCGpbcBGBxhrnJEuU2WcxSteES1CyrWjsWKanzSvxjHbMIFGJs7+nG+pgt5qeEea+uOyq9wuGFwm0Gb046jjadhcVjh4JzoMhuxOGG+x87tTa1Nvdj6WYmgTKmSITk9XJAsM2CQWxBDyTIhhBC/RAkzCXjFxcWw2+2QyWSYO5dWLCYTc5jN4KwW12OJUrjQE8VUYBpKmj/YWCkoVyuluC+6AgV9e11lSsaOb2j3oyg9Fe8UyzFgGb6XdufRetET5qGYkkgl2NnyleA5uUSGxJA4AECyIV7U8/qKzerAmvdOwOngBOW5BTGQyYUXp9KyImiRr2mgfoqIjWKKEPdoGTwS8Hied/0jZCI9xWdx7NEn0LB2PRymfkgUijGjyxRTgcuw9DZcuTgdGmbwgkiqtA3/mVUiSJaHhF5xL66/9zb85cdXITdlcAcEvUaOywvFT1qH4okBg1+s+DGuThvev3tR/DyoZSpkhCUjWhsci+5sXV+CjlbhNo1pWRHQhQgvTsXE6ZGQQusGTAf1U0RsFFOEuEcjzCTgqVQqSKVSWvCMTErNv96D02xG8+cb0bplGxLvuxsJt98mOIZiKrAtu/U2xOnW4cs9h7FMUQZJw9gPf/qFqxF62V0AgOgwNf7vO8uw+WANLp0bi/AQlehtGhlTCqkc3yp6AHOjs1HX04grU5eitL0CBdG5E1cUAHiOh1wp/HgRGq5GXFKIoEwfokJWXnRQ3bPtTdRPEbFRTBHiHiXMJOBlZmb6ugkkQPScL4WprNz1mLPZYGluHXMcxVTgS736NhiUHLr3XBjznCp1HiKue1xQJpGwuPGyNI+1x11MLU1ahKVYBACICZKRZQBgWAbX3pKP1MwIfPbBKTgcHDJyIgV7uyoUUuTPjwMroYlu00X9FBEbxRQh7lHCTAiZNTq+3Cd4zCoViLvlRh+1hngaZzaNLWQliLnv595vDACO58CAmTUjqll50fjWTy5HW3MftHolykpawXEcWJbFnMJ4KJT0EYQQQoj/o0u7hJBZI/raVYi58Xoo4wfvUQ1btAjqhAQft4p4gqW5Ej2HPx/7BOdEz8H1XmvH0L2AraZ27KzcP+vuDdSHqJCRE4WYOD3mFyVAoZAie070mHuZCSGEEH9Fl3cJIbMCz/OQhxoQf9utCF+yGD1nihF5xeW+bhbxkJ5Dn4373NB+zUOranvS+2fWg+M5KCUKgAGqjfVID0t27f89m+gNKhRdlgKplLZwI4QQEjgoYSYBr6GhAQ6HA1KpFAk0WkjGwdls4J0cGIaBJiUFIXPnjJuwUEwFtq7d76P/3H7XY0amhDJlDpQJ2eje/f7Xx3g+aT7VXILPS7cBAPRyHeaEZsHWb4E0W4JQlQF6RXBspdTXa4HV7EBE9MTfDyXL4qF+ioiNYooQ92hKNgl4XV1d6OzsRFdXl6+bQnyk99z5CY9xmkfsu6xSgmGYcV9HMRW4uvevgfHAWtdjZcpchFx6CyKvfwqhS29H2FUPup7r2v0ejAfWeaYd5h68cvifrse9tj4cbTuNjr4uHG44BZ1c45HzehvH8Vj3/kn87U/7cOpIPXieh83qmPiFZMaonyJio5gixD1KmAkhAa3ug49Q/Px/omHN+ImP02oF73QCAFiZDKxMhoY161D8/H+i7oOPvNVU4mHGA+vQveffrsfKlLlQJuZCnVIAqdYAYHBE2RtJc3lnNQbsFkFZgjIGclaG6zKvDJrp2Pt3VaCmohN2mxOff3QaH/z9CA7srhyzBzMhhBASqGhKNgl4WVlZs/J+QDI4slz/4ccAgNp/DU6xTbhDOMW293wp5JGRrviQqJRoWLPOdXz9hx/DMK8A+rzhPXAppgKP8cA61zRrYDhZlmpCoIgXbpUyNA176HhPTM9enDAfL658Fn868BaaTW3Ii8hEXkQmFsYVBM1U7LrqLuzZWiYoq6/uRmS0DmdPNSI1IwJJaWH0d+Qh1E8RsVFMEeIeJcwk4CmVtNrqbKXPy0XyQw+6kt/RSbO5sQnFP/s55AYDYm+8AZFXLkfT5xtdxwFA8kMPCpJlgGIq0FjqzwuSZU3+ZZCFxYEBA3XmIjDs2Ptm3SXNysQcKBNzxxw7XamhifjNNc/jo7MbcEfeaigkcsilctHq9yXzgA3r3j8JnhOu+p0zNwYy+eDPu7qiA7oQJcIigmP6ub+hfoqIjWKKEPcoYSaEBLSh5Nhd0lzzr3cBjoOtqwu1/3oXDWvWwtnf73pt8kMPjhmRJoFHmZgLZWoBLNVnoM5chKibfwCHsRWOvm5I9RHjvm5k0mxYfreoyfIQlUyJRwrvEr1eX+J5Hhs+PoOebrOgPDk9DCGhKtfjuEQDQsPV3m4eIYQQIipKmAkhAc9d0mw3mdB15JjgOEqWg5OjtwPWhsGpwQPlx9D49vOIvPE7UCXnT/haw9LbRB9ZDnbHDtSitLhFUBYSqkJSWpjrsSFUjYycKJraSQghJOBRwkwCnslkct1zo9UGx72BZOpGJ81Na9ePe+xEyTLFVGDp2PYP8CMW2LK1VIF32Cb9ejGSZSfnRJ+tH6XtFVgYNxcyiUzwfLDEVGtTL7Z9fk5QJpWxyJkb40qOlSoZ8ubFgmUpWfakYIkp4j8opghxjxJmEvCqqqpgt9shk8lQUFDg6+YQHxqdNLszmZFliqnA0V9+DAMXDgvKdIUroYzP8lobao0N+N2+/4cFcXOgU2jRbe7BsqRF0Ct1rmOCIaZsVgfWvHsCTgcnKM+eEwOFcvDjhETCYk5hPOQK+njhacEQU8S/UEwR4h5tK0UICSoJd9wGbWaG2+doGnZwcdrM6Nj0uqCMVesRdtUDXmuDxWHFnw7+He0Dndha8SXOtl5Aj7UPO6q+QteA0Wvt8IYt60vQ0SbcLio+2YDwyOFFvXLmxkCrU3i7aYQQQojH0CVgEvAiIyPBcRxYlq7/EMBpNsPc0DimXKrTTjpZppgKDJ1b/w5nv1FQFn71w5CodO5f4AH/PPExGnuH7+ct7aiAQirHJQmFCBkxwhzoMVV8ohGnjtQLyrR6BVIzw12PUzMiEBntvZ/9bBfoMUX8D8UUIe5RwkwCXmxsrK+bQPxIy7YdcJrNY8odfSY0rFk3qaSZYsr/WRorYCreIyiTRSZBO/cKr7XB7rSjy2wUlBmUeuRFZuDSpIWQjNjOKpBjqqujH5s+LRaUSSQMcgtiXB+sQ8PUgkW/iOcFckwR/0QxRYh7dAmJEBI0OLsd9R9+JCwcsUpv7b/eQ8OadV5uFREbz/No3/hXgB+xBzDDInzlw15dlVkmkeG5y7+LB+fdDgnDQilV4M7867EseTHUMtXEFQQAp5PD2vdOwGZ1CMoz8qKgUg/vKZ2cHk4rYhNCCAlKNMJMCAkaZX/4M5wDwtHlqKuvglSjQdNnGwAI92kmgann0OewdzQIytRZi6FOm+/1trAMi5tzViEvMhNdZiMWJ3i/DZ7EsgzmL05Ea3Ofa7Gv6DgdomP1rmPSs6NgCKP9lgkhhAQnSpgJIUGh/tO16DxwUFCmiIyANi0NMddfB1lIiGCfZoCS5kDkMBnRvU84i4BVahCx+kkftWhQRniKT8/vKQzDYNHSFCSmhGHNeyfAcTwWL0tBT48FKrUcC5YkQSaXTFwRIYQQEqAoYSYB7/z5865tEHJzZ76fKgk8DWvWoe7d98eU63Jzoc/PBcMwY7aculjSTDHlvzo2vQbebhWUhS6/B1JNiNfaYHPaIR+1z/JEAj2mouP0ePzpy9BvssIQqkZVeQdiE0IoWfahQI8p4n8opghxjxJmEvDsdjvsdruvm0F8pGHNOrf7LstCQqDNSIc6KclVNtmkmWLKPw2UH8dAxXFBmTw6Ffqi671yfovdgj5rP/bXH0NhbD6SDQmTfm0wxJRcIXXtr5yeHenj1pBgiCniXyimCHGPEmYS8GQymeB/Mnv0njvvNlkGAF1uDvR5uWBGbY/hLmnWf33sEIop/8NxHDq2viUsZKWIvPG7XllsiuM4/Gbfa+i1mrAgdg4ON5xCl9mIedF5k9qChWKKiI1iioiNYooQ9yhhJgGPpg3NXvq8XCTeezfqP/xYUC7RaKDLyoQ2LdXt60YmzYn33i1IlgGKKX9kb6uFKr0QAxXH4eztAADo5l0FRYz737HY1p3fgnPt5QCATnM3lsQXAgD0Ch3Sw5InfH2gxFR9dRfsdifiEg2or+lCelYkWAltqOGPAiWmSOCgmCLEPUqYCSEBLWzJ4jEJsy4na3B0WTL+/ZUJd9w2ZmSZ+CfOboW5+jQkmhBoC66Cra0Gjo4GhK98xCvnL22vxCclm1yPzXYLjjSewsPz70RqaKJX2uAN5gEb1rx7Ar29FqRlRiAuyQBTrxVzCuPpXmVCCCGzFl02JoQEtMa1wn2VWYUCuqwsaDPSJ3wtJcuBwVx9BtzXC30xDANFdCqi7noerFzplfPbnDZo5MPbJjEALk9ejKVJi8AywfE2yvM8Pv/wNHp7LAAPVJV14PTRBnS0mXDicB3MAzZfN5EQQgjxieB4pyeEzErm5hZ0fHVAUKbNyoQ+Lxcs3YMVFBy9nbC2VAnK5BEJUETEe60NBTG5eOnaFzAnKhsAcFP2KtyWtxoKqdxrbfC0Y/trcaGkVVDGsgykMhYMA0hlNMJMCCFkdqIp2STgNTc3g+M4sCyL2NhYXzeHeFHTZ58DPO96zEil0OfkQJedNaN6Kab8h90oTOIYiRTq9EKvtyNMZcB/XvED7K09jMuTl0xqoa+R/DmmWhp7sO3zc4IymUyCnLkxUChkmLsgHjJKmP2OP8cUCUwUU4S4RwkzCXjt7e2ufQOpg589bEYjWnfsEpRp09Ogz8uBRKGYUd0UU/7BXFcCZVwWZIYoDJQfh6PfCFVyPliFeuIXewDLsrgy9dJpvdZfY8pmdWDNuyfgdHKC8uw50VCp5ZhTGAeVOnhG0oOJv8YUCVwUU4S4RwkzISQgNW/YBH7kfpEsC11uDnQ52b5rFBGNvasJLf/+FaQhkQi/7nHoFqyCrbUW8qikiV8sEp7nvbJllS9tXncWne39grKEZAPCI7XInRsDvUHlo5YRQggh/oESZhLw0tLSZsUHWzLM0d+P5k2bBWWa5GSE5OdBqp756CPFlG/xPI+OrX8H77R/nTj/Eto5lyPy5h945XfSNWAEBw4WuxVyyfC98JGa8Gmf3x9jqvh4A04fbRCUafUKpGRGIC0rApExOh+1jEyGP8YUCWwUU4S4RwkzCXhardbXTSBe1rJ1O5xms6BMl5cDXW6OKPVTTPlWf+khmKtOCcokmhCvfIj7qvYIXj/yHhbGz0W8LsZ1TqVUgZuyV067Xn+Lqa6Ofmz6tFhQJpGwyC2IQUJyKBJSQn3UMjJZ/hZTJPBRTBHiHq2STQgJKDzPo33Pl4IyVUI8QubkQ6ajEbFAx1nN6Nz+D0GZRBuG0OX3ePzcLX1t+NuxD2Dn7DhUfwKHG07C7hyc9p8amhg0oy4OhxOf/us4bDanoDwzLwrxSaHIzIkKmu+VEEIImSlKmAkhAYVhGOS88DzCl14KydfTr3W5ObSncpDo2PImnH1dgrLwax4Fq/DsvbQOpwN/Ovh3mB0WV1lDbzNaTR2IUIchP3JmK697Q11V18QHAdi5qRQtjb2Csuh4PdKyIpA3LxYMS8kyIYQQMoSmZJOAZ7FYXPfcKJVKXzeHeIEqOgrZz/4YA7V1aN2+HbrsbMgNBtHqp5jyDUtjGUwl+wRlqrR50ORMb2XqqeDBIysiDVXdda6y7PA0ZEWkYmnigilvIzWap2Nqz9YL2LutHFffkINlKzLGPa7sXCsO760eU65SDW4fJZXS9lGBgvopIjaKKULco4SZBLyysjLXNggFBQW+bg7xEoZhoElJRurj3wTvcIhaN8WU9/E8j/YNrwr21QbDIvTy+7wyPVgmkeGxBfdgbnQOXjvyL4QodHju8u+C4zkoZTP/4OjJmKqr6sLebeUABkePAbhNmm1WBzZ8dNptHTUVnWht6kNSWpiobSOeQ/0UERvFFCHu0ZRsQkhAYxgGrEw28YHEr/Uc3gB7p3DFZk3OEijjM73ajqL4eXjp2hfwk2Xfgkauhk7h/4vgJKWF4eobhhe827mpFPt3VYw5Tq6Q4tb7C6HRjd2n/OobcihZJoQQQtygEWYS8MLCwuBwOCCVUjgTcVBMeZdjoAfd+z4SlLFKLcKvfcIn7YlQi584ejqmhkaUh0aYxxtpTs+OROGSRHy1YzihnmgaN/FP1E8RsVFMEeIe/UWQgJeQkODrJhAvsPf0QBYS4pVzUUx5V8cXb4C3WQRlhsvugFTj+d/3ubYyRGkjPJIkj+SNmJpM0rx/VwUly0GC+ikiNoopQtyjKdmEEL/XV16Bo489gbI/v4KB+oaJX0AChrn2LAYuHBaUyaNTELL4Ro+et6m3BeUdNTjbVoY91YdQ1VXr0fN5y7IVGeNOz96/q8KVRAOULBNCCCGTQSPMhBC/17h2PXiHE+27dqN9126ELSlC+neegtzgnRFn4hk850T7xteEhawE4dc9AYbx3PXcPqsJv9j9J/DgsSShEDqFFseaitFj7UNh7ByPnddb3I00H9hdCfOA3XUMJcuEEELI5NAIMyHEr5kbm9B58JCgzGmxYKA2OEYEZ7O+M7vgMLYKyrR5l0GVkDPOK2aO53m8fvQ9dFt6YLT0YkfVV6g1Ds5aCFUGzwWYZSsykD8/zvWYkmVCCCFkemiEmQS88vJy1zYImZneXVGXeJ6pshKMROLaOoqRyaBNT4cqPt5j56SY8jye58A7HNDkLcNA5Unw1gGw6hCEX/OoR8+7teJLHGsc3lrJyTlRY2zA1WnLkBKa6LHzejumbFYHqsrax5Sr1DJKloME9VNEbBRThLhHCTMJeGazGXa7HQ6R9+Il/iHy8uVQxsai4dO16D5+AtqMdLByORQR4R47J8WU51mbKuAc6IUsPB56QzQs9eegzV8OiUrn0fPmRWYiQR+Lht5mAIBGrsaNWSsxPybfo+f1dkzt21khGFV2tWPAjv27KihpDgLUTxGxUUwR4h4lzCTgMQzj+keCky4zA7nPPwtrewe6T55C2OIij56PYsqzOKsZ5pqzrseMRApd/nLoFlzj8XMnGeLxf6uewz9PfoKdVV/hB5c8ivkx+R7/XXszpjrbTTgwah9mhgF4fvDr8bacIoGF+ikiNoopQtxjeH7oLZSQ6TOZTLhw4YLrcXZ2NrRarQ9bRAjxV/2lh2BtE96Drp+3AtKQSK+2o9bYgGRDcG2jwvM8Xv3NHnR19AvKFy1Nht3uxOmjw6vM073MhBBCPCWYcgNa9IsQQojX8JwTToswmVNEp3g0WXY4HXB3bTjYkmUAWP/BqTHJckKyAWqtHMtXZo675RQhhBBC3KOEmRBCiFfYe9rQX3YE2oKroMlaDFamACuVQZVa4LFzchyHvbVHcLjhJBzO4L4vb+/2MhQfbxSUyRUSJKWHwxCqRmi4+qL7NBNCCCFkLLqHmRDid0yVVVDGREOq0fi6KUREndvexkDZEajSChFx7TehX7Qazv4esHKVR85nd9qx8cJO2LnBRLnX2oelSYuglQdfXO3fVYE9W8rGlKdlRUIqZZGeHem6L9HdPs0jywkhhBAyjEaYScBrb29Ha2sr2tvHbqFCAg/vdKL0ty/h6GNPovyvr8La3uH1NlBMia+//BgGyo4AAMxVJ9Hw5g9hrimGzBDlsXO+fuRdfFD8Gc60nAfHcTBa+nCw7oTb6dme5smYqqvqciW9I4WEqhAZo0V0rB66EKXgOXcjzXVVXaK3jXgO9VNEbBRThLhHI8wk4DU3N7v2DYyM9O6iQUR8HfsPwNraBgBo27ELbbv2IOO7TyH8kiWQar0zMkgxJS7ObkXntr8LyhiFCsqEnHFeMXPHGs/gq7qjAICyziq0D3RiaeJCrEpf7pMVYD0ZU0lpYQiLUKOrY2C4kAEyciIhkbBIzYxw+7qRI82XX5OJpLQwUdtFPIv6KSI2iilC3KOEmRDiN3ieR+Pa9YIyucEAS1sbrJ2dXkuYibiMB9bCYWwTlIVf/RAkKs+sltlr6cPrR/4lKOux9CE7Ih2hqhCPnNOXLpS0CpNlAPGJBmh0CsQnhUKpko372mUrMpCYEkbJMiGEEDIOSphJwEtKSgLP87RvYBAwnjyF/uoaQZkuLwcSpRLqhHivtYNiSjy2jkYYD6wTlCkTc6Gde6XHzqlTaHFn/g149/RaOL6+f/mWnGtwSeICj51zIp6KKbvdia3rzwrKZHIJktPDIJNJJpUIU7IcmKifImKjmCLEPUqYScAzGAy+bgIRScMaYWIl1emgio+HNi0VjETitXZQTImD53m0b/gLwDmHCxkWEdc94dEPZAzDYHXWVciJzMCfDr6FxJA43Dv3Zo+dbzI8FVMHdlfC2GUWlKVlRUAqkyA5PRwymff+boh3UT9FxEYxRYh7lDATQvxCb+kF9J4tEZTpcrPBMAw06Wk+ahWZCVPxHlibhFsWKZPzIYtM8sr5U0MT8dtVz8PJc0E5YsI5ORSfEG4jZQhTISpWB5VKhrhEg28aRgghhAQRSpgJIX6hca1wdFmiUkGTnAxldDRkOp2PWkWmi7MOoHP724IyRq5C+MpHPJK88jyPjoEuRGrCBeVKmXKcVwQ+hmXw4BNLcGhvFY4frAXH8bjroYVwOHmoVDKwbPBdJCCEEEK8jRJmEvAcDofrnhuplEI6EA3UN6Dr8FFBmS47C4xEAm1GutfbQzE1cx3b/gHO0i8o0xeugiI6xSPnK++sxqmWc0gLTcS8mDzIJOMvdOULnogpu80JiZTFshUZmLsgHq3NvYilUeVZg/opIjaKKULco78GEvDOnTvn2gahoKDA180h0zB6ZWxGJoMmPQ0SpRKq+Divt4diamaszZUwFe8RlMnCYmFYfrdHzlfSegFnWkshYSWo6q5HW38nliQUIlwd6pHzTYfYMcVxPKxWh+txTEII4pP95/slnkf9FBEbxRQh7lHCTAjxKWt7B9q/3Cso02VmgJXJoPHyYl9k5nieQ9vnfwF4friQYRG24iFIFCrRz2ey9uP3+98Ex3NYFD8P0doImGwDcI5caCwIWS124OsfsUwugUTC+rZBhBBCSJCihJkEPL1eD4fDQdOHAlTjZxvAO4eTG0YigTYrE2AYaH202BfF1PT1HPkC9o4GQZk6YyHUWUUeOd87pz5Fv31wD+J9tYeREZaCO/KuR5Q2wiPnmy4xY8rhcMJh52AesEGtkUOhoDidjaifImKjmCLEPfqLIAEvJSXF100g02Tv7UPr9h2CMk1aKiRKJZQx0ZBqtT5pF8XU9HAch94TWwVlrFKL8Gu/6ZGFvo40nMKXNYcEZf22ARTE5Ih+rpkSK6b276pAclo4JFIWxScaERWjQ2ZeFDRahSj1k8BB/RQRG8UUIe5RwkwI8ZnmLzaDs1iGCxgGuuxsAIA23fuLfZGZsbdUQZN7KayN5bDUlQCcEyGX3AJZSKRHzpcWloS50dkobr0AAFDJlPjpZd/2uwW/xFJV1o6dm0ohkTBITg9HRLQWxu4BHNtfi4SUUKRne+bnTAghhMxmdNMTIcQnnBYLmjd+IShTJyVCqtVAolJBFRfro5aR6eBsZphrzoBhJVAm5kC/8Dqos4pguORmj50zQh2GF674AR4pvAsyiQyPFd6DhJDgjBung8PmdWcHv3byqCrrwLlTzeB5Hjx4SGX0dk4IIYR4Ao0wE0J8onX7Tjj6+gRlutzBqbS02FfgGag8Bc5hdz1mlRqEFz0CRuLZtxmWYXF91gosTpiPcFXwrhJ9eF81OtuE23TFJoaAYRgolDIk0ArZhBBCiEdQwkwCXnV1tWuRitTUVF83h0wC53Cg6bPPBWXKuFjIDQafLvY1hGJqauxdzbC11wnKFFHJkIXGiH4ui90CDjzUMuGK2xHqMNHPJaaZxFRvjxlfbisTlGn1CsTE6wEAqRnhtEr2LET9FBEbxRQh7lHCTAJeX1+fa99AEhg69n0Fa3uHoEz/9eiyMioSUo3GF81yoZiaGkauglQXBkdfFwCAlcqhSpsv+nl4nseRxtPoMhuxMG4uEkO8v0f3dM0kprZ/fh52m3CbrIzcKDAMA61OiehYvVjNJAGE+ikiNoopQtyjS9KEEK/iOQ6Na9cLyuQR4VBEDi5YFDJ3jg9aRaare/8aOPuN0M2/Gur0BWAkMqjS5oGVK0U/14G642jua4PNacfB+hM43HASNqd94hcGsJqKDpScahKUxcTroQ8Z/PmmZUWAYcVfgZwQQgghg2iEmQS8/Px8XzeBTEH3seMYqKsXlOlzc11fyyN8v38uxdTkmGuK0b3n3+j+8kPoi65H2OX3QB6ZAEYmfrJ8tvUC/nr4H4jVRWNB7FwopHK0mTrB87zo5/KE6cSU08lh89qzgjKplEVKZjgAICxCg7AI387GIL5D/RQRG8UUIe7RCDMJeBKJxPWP+Dee59Hw6TpBmTRED+XXK2Lr8/M8sl/vVFFMTYx32tGx5W9fP+DQe2QjGv/5PBiZQvTfoc1pxz9OfASO59HY24LtlXvR3NeKovgCKKRyUc/lKdOJqaNf1aC91SQoS8kIh1wuBQMGaVm0jdRsRv0UERvFFCHuUcJMCPGa3nPn0XfhgqBMn5MDhmHAKhSu+5iJ/+s5vAH2zkZBWcii1WAY8d9WPir+HA29za7HFocVTo5DjC5K9HP5i75eC/ZsFS70pdEpEJsYAmBwWrZWp/BF0wghhJBZhRJmQojXjL53WaJWQ52cBADQZWeCpYVGAoKtsxHd+z4RlCli06ErXOWR82VFpEEnH556nBgSh+8secgj5/IXOzeeh83qEJRl5EaCYRhIJCxSMsJ91DJCCCFkdqF7mEnA6+7uBsdxYFkWoaG0F6m/6q+pQfex44IyXU4WGJYFK5NBl5npo5aNRTF1cW2f/QW8wzaihEHEdU+CYT0zjW9JQiGyw9Pw+tH3UNxaiqcveQxKaWCNrk4lpuqqunDmuHD0PjpOhxDD4FZaCcmhUCjp4tJsR/0UERvFFCHuUcJMAl59fb1rGwTq4P1X+5f7BI9ZuRyatMH9lrWZGWDl/nMvKsXU+HpPbIOtuUJQpitcCUVchkfPa1CF4Lnl30F9TxOSDPEePZcnTDamOCeHL9YWC8okUhapmYOL4cnlUiSmUkwS6qeI+CimCHGPpmQTQrwi+aEHkfvzn0GbNTiSrM3KBCuVgpFIoMvO8nHryGRwdiu69vxbUMbIFDBcdpfo5zJZ+8esgM0wTEAmy1PR0tSL7o4BQVlaZgTkisHr28np4ZBKaUEeQgghxFtohJkEvLi4ONcUIuK/GIZB2KKFCFu0EL3nSyFRKtFfWwuZXg+JUvxtiGaCYsq97n0fgzP3CcoMl94KmV7c+2ktDit2Ve+HXqFDUfw8aORqUev3hcnGVHSsHg9951Ls3VaG8vNtiIrR4db75qOuphu9RjNiE0K81GLi76ifImKjmCLEPYYPlE0siV8zmUy4MGL14+zsbGi1Wh+2iAQKnuPA0Juz33MM9KH+lW+Bt1tdZVJDNBKeekXUD1c8z+PD4s8gYQev58pYKRbEzUFSSLxfbDnmaf0mKzjn4NtyU70RGp0CCcmDUyM5JwdWQn8rhBBC/F8w5Qb0zksI8SlKlgND1653BckyAIRefo/oIxG7qw9iw4WdqO6uA8/zsHMOVHfXi3oOf2WzOlzJMithkD0nxpUsD5bR3wohhBDibfTuSwgh5KJsXc0wndktKJNHpUCbf5mo5zFaevHuqU/h4Bw43lSMr2qPYMBmRkF0btCPLvMcL9hGSkmrYBNCCCF+gRJmQojH2Ht6fN0EIoLOrW8BPDdcwLAIvfI+0beR+sfxj9BvN7set/Z3wME5EKY2iHoef2S1OsDzg1PSpTIWEim9PRNCCCH+gBb9IgHvzJkzrm0QCgoKfN0c8jXObsepZ34CZVwsIpYthX7uHKgTAuM+VIqpYfaeNphrhNscKZPyoM5YKOp5HJwTcqlwVLUofh4eX3SfqOfxlfFiasBkw4E9FZi/OAkKhRQVF9qh0yuRkhEOmYxWwybjo36KiI1iihD3KGEmhHhE+5d7Yevqgq2rC71nSyAzGBB/260IXTAPqoQEunc5QNg7m6BftBqW2rOwtdYAEhnCVj4s+oUPKSvB95Y8gqWJC/HGsffhcDrwxKL7RT2HP9q1uRQnDtXh1NEGFC1Lgd3mQK/RjLbmXiSlhSM+MYTuXSaEEEJ8iBJmEvDUajUcDgekUgpnf8FzHBrXrheUsTIZnOYBdOw/iJjV10Fu8N/tcSimBjnNJlgby8Eq1FBnLYYiPguMVA5lTJrHzrkgbi7+cN1/obG3BQal3mPn8TZ3MdVYZ8SJw3UABkeav9xahuS0MCRnhMNud6KuqhMx8XqIPPOdBAnqp4jYKKYIcY/+IkjAy8jI8HUTyCiW1jY4zRZBmS4vBwCgio/z62QZoJgaYq45A37EvctSbRj0i64T9Rw8z6PP1g+9YnirCY1cjawIzyXlvjA6pniOx+a1xcCIjR1ZCYOYhOGLBElpNC2bjI/6KSI2iilC3KN5XoQQ0aliY7DwzdeQ/t2noIiKhDw8DMqYGACAPi/Px60jk+HoaYetXbidkyIuAxKVTtTz1PU0Ymv5HhS3lsLJOUWt25+dPFKPpnrhonjJaWFQjFgdOz7Rvy8sEUIIIbMBjTATQjyClckQc81KRK9cAWtnJzizGZa2digiwn3dNDIJnMMGVq4EZxucKcBK5VAmiXuxY8BmxsnmEvAAzrdXoLmvFYvj58OgCu5E0Txgw85N5wVlKrUM8SP2XE7LjKR7lwkhhBA/QO/GhBCPYlgWyshIqJOSELZI3JWViWcMVJ+GVGNASNH1UCXlgWElUCbng5UpRDvH8cYzeH7Hb9A50O0qM1r6YLINiHYOf7V78wWYB+yCsozcSLDs8EJqoRFqbzeLEEIIIW7QCDMJeHV1dXA6nZBIJEhKSvJ1c0gQmM0x5ejrQusnvwUjUyD0srugX7AKith0MCImywM2M/52/AN0mY1oM3UgLyoLWeFpSDbEIyEkVrTz+JOhmDJ2WnHsYK3guchoLULDNYIyrVa8nzcJTrO5nyKeQTFFiHs0wkwCntFoRFdXF4xGo6+bQoLEbI6p7r0fgbdbwQ30onPb39Hwtx8DEikYEZdq/tepT9FlNgIAnDyH4tZStPd3ojB2jmjn8DdGoxGdnZ34akedYKEviYRFalaE4NgFS5LAsP6/XznxrdncTxHPoJgixD1KmAkhorB2dsLc3AzHgBkNn66Ftb3D100iU2Rrr0Pf6V2CMmViLlipXLRzDNjNKGkvF5QVROfiwXm3QSHiefxRQ7UZ3e02QVlyehiUquGFvqJj9dAbVN5uGiGEEELGQVOyScDLzs4Gz/NgGBqR8aWGjz9Fy7btUMXHIyQ/D2AD93rcbI2pzp3vAiO2kWJkCoRefq+o51DLVHjp2hfw4ZnPsLl8DxRSOb5d9GDQL/SVnJSGrZ/uF5Tp9ArEJQ1/3wwYJKWFebtpJEDN1n6KeA7FFCHuUcJMAp5CQff6+ZqtuxutO3cDHA9zfQPM9Q2wdnQibEkRVHFxCJmT7+smTslsjClT6SGYK08IykKW3AypLnScV0yfUqrAIwvuxiWJC9BlNiJCE/xJ4sE9NTD3Cxf6SsuKBDviwlJkjBYauneZTNJs7KeIZ1FMEeIeJcyEkBlr2rAJvH1EMsCyUMXHwdbZBV1mpu8aRiaF5zl07finoIzVhMBw6S0inoOHk3NCKhl+28mJzBCtfn/W2tSLo1/VCMoSUkIREjY89ZoBg+R02nKNEEII8TeBO2eSEOIXHP39aNm8VVCmSUmGRKWCJiUFmtQU3zSMTFrP4Y1w9LQLyrRzLgcrF+9e2vLOamyt+BJtptl3b3tFaRv4EQt9SaUslq3IgEIxfPGARpcJIYQQ/0QjzCTg9fX1geM4sCwLnU7n6+bMOi1btsE5INw7V5eTAwAILQrMfZdnU0w57RYY968RlLHqEIRdId69y71WE4pbS+HkOeypOYTM8BTMjcoRjDYHCp7j8fe/fAWrxQGFUopv/uCyCVe0XrQ0GWqtBPt3VaOrfQDLVmQgOz8aTmckmht6UF/TjeQ0Gl0mUzOb+iniHRRThLgXeJ9WCBmluroadrsdMpkMBQUFvm7OrMLZbGjasFFQpkpMgEyvQ+SVl4OVBmYXM5tiqnvX++AsJkGZYdntYGVKUeovabuADaU7kWJIcN2vW95ZgwR9LCI1gZcktrb0oam+x/W4raUP0XH6cY/nnBxsVidsXDfmL9Ogq0WBpSvSAQxuKZWQHIr4RANtI0WmbDb1U8Q7KKYIcY+mZBNCpq1t9x7Yu42CMn1uDpTR0VDGxPimUWTSHH1d6Du1XVAmDY2FftFqUeq3Omz4f0few4nmYuys+grd5sFEMzM8JSCTZQCorRBOKa+p7Lzo8RaLw/W1TMYiJVsHmUy4pzUly4QQQoj/CszhH0JGiI6OhtPphEQimfhgIhre6UTj2s8EZYroKMjDwmCYPy+gt6WYLTHVsfUt8A7hys3hV38DLCvO9/1R8edo7R9MMHusfdhVtR+rM6/E3OhcUer3hdEJcm1lJ5YsT3V7rN3uhNMxuE1XVFQU5AoG0gCddUH8z2zpp4j3UEwR4h69c5OAFx0d7esmzEqdBw/B0tIiKNPn5kKTkgx5mPhbEXnTbIgpa3MVBsqOCMoU8dnQZC+ZUj0cz+GF7b+D2WGBSqrEi6ueBcuw6DIbsaXiS8GxaWFJuClnFaQiJeTexnM8aiu7BGW1lZ3gOX7MKDHP87COGF1OTIyFVBaY3zfxT7OhnyLeRTFFiHs0JZsQMmU8z6Nh7XpBmSw0FMrYGITMneubRpEp6dj6FgRLNzMsIq755pTrqTM2obK7Fk19rajsrkV9TxMAIExlwIsrn0WyIQEAIGOl+N6SRxCuDtyLKa0tfbCYhSPy5gE72lr60NLU6yorLW7GkX3VrtFlqYwFGKD8fCvMAzavtpkQQgghM0MJMyFkynpOn0F/ZZWgTJ+bA11WJqRajY9aRSbLYeqGPCIBEt3wfcTqrCIo4tIv+rrS9ooxZefaywSPS9qGH6eGJuL/Vv4HrkpdivsKbkG8PrDvax99//KQCyUtePf1gzD1WmC1OLB57Vls/ewcPvj7ETQ39kChkKKxzojGOiOOfFWD0uIWSpwJIYSQAEFTsgkhU9bw6VrBY6lWC01qCvT5eT5qEZkKc/VpSPTh0M5bAXtnI6wNFxA+wejyx2c34tOSTbi/4Fbcmnutq3xkgjz0+PqsFa7HG8t2Ynf1AdyZf4O434QHbP2sBOdON4/7/OjR5SF7t5WD43i88n+7AQA2mxMA0Nbchw//fhT5hbGIiQsBMDg7o6WpB04Hh/zCOJG/A0IIIYSIjRLmr/E8j40bN2LNmjU4f/48BgYGEBkZiaKiIjzwwAOiLK9vsVjw4YcfYuvWraiurobJZEJ4eDgWLlyIBx98EAsWLBj3tXa7HYWFhbDb3X9gG0kul6O4uHjG7Q0U586dc22DkJdHCZun9ZWVo6f4rKBMl5uNkDn5kCgUPmqVuII5puzdLbB3twIAGIaBPCIBIYtWQ6Yff9Xq0vYKfFqyCQDw7zPrAQC35l4LjufGJMzFraU4WHccC+LmYnP5btfxn5ZsQkF0DnIiM8T/pkTA8zzOn2lGX49lyq/luMGp7UOJ8mg15Z3gYAbn5MBKWERGRiIpPWxG7SUkmPsp4hsUU4S4RwkzBhPZp59+Gnv27BGUNzY2orGxERs2bMAzzzyDJ598ctrnKC0txfe//33U1dUJyltaWrBp0yZ88cUX+Pa3v41nnnnG7eurqqomlSzPRg6HAw6HI6BXZQ4kDWvWCR6zSiX0ebnQZmX6qEXiC9aY4nke5uozgjJWroIyPuuir8uJzMD9Bbe6kt+h/+fH5GPAbhYca3FYUdx2AXtqDuJkc4mr/P6CW/02WQYAc78d/X2emSY9MGCHzeYAywBggIgoLXR6cfa5JrNXsPZTxHcopghxjxJmAC+88IIrWU5PT8fdd9+NiIgIlJSU4MMPP8TAwABefvllREdH45Zbbply/fX19Xj00UfR1TW4uuqll16KVatWwWAw4MSJE/jkk09gtVrx+uuvIyYmBvfee++YOi5cuCBob1zc+FP5WHZ23Zoul8vBsixt1+IFAw2N6DosXFlZl50Fw/z5YIPo5x+sMeU0dcPZbxSUqZLngJFM/H0OTcMemTSfbS11e+yZlnNo6x/efmn0NG5/pNbK8Z3/uAI7Np7H+TMtE79gkpLTwxEVq0P/QA84jgPLskhOD8w9qIl/CdZ+ivgOxRQh7jE8P3KZ1Nln//79eOyxxwAAl1xyCd58800oRkwrraysxP333w+j0QiDwYCdO3dCq9VO6RyPP/449u3bBwD48Y9/PGak+tSpU3jwwQdht9thMBiwb98+yOVywTEvvfQS3nrrLbAsi5MnT0Kp9K/RCZPJJEjqs7Ozp/xzIv6v/C+voG3nbtdjRiZD8jfuR9xNN4KZZRdqAg3vsAMsC846AHPNWdja6yBR66FfeC0Yxv3v7p2Tn+Jg/XFBmdlhgdk++WnLKpkSKqmwv1qauBAPFd459W/CS2oqO7FtfYlg5eupYlkGdz+yEO2tJtjtw1O1IyK1mLMgXoxmEkIIIX4rmHKDWf8J9x//+AcAQCqV4n//938FyTIwOOL885//HABgNBrxySefTKn+I0eOuJLl22+/3e207vnz57tGlY1GIw4ePDjmmKGAS0pK8rtkmcwO1s5OtO/ZKyjTZqQjrGgRJcsBoHv/GjT+/VlYm6ugzb0U+vkroclcNG6yzPM8DtWfQJfZKPg3lWQZAMx2y5g6DjWcFONb8piU9HA8/sPluOnuAmi08olf4MZ1t+VDqZYLkmUANLpMCCGEBJhZ/SnXaDTiwIEDAIDly5cjMTHR7XHXX389wsMHP+Rs2bJlSufYuHEjAEChUOCHP/zhuMfdeeeduPfee/HUU0+5zjXSUMKclXXxew0J8ZTGtZ+Bd4748M+yiFi2FMrYWN81ikyKo68bPYc/h62tBi0f/BLNH/wSnN0CaUjkuK/ps/Wjx9rnkfYYLb3otZo8UrdYWJZB4ZIkXH1D7rRe39FqQkNNt6AsPFILXQhd8CSEEEICiU9uUjCZTNixYwdOnDiBpqYm9PT04MEHH3TdH/z6668jPz8fl19+uUfbcezYMXAcB2BwOvZ4WJZFUVERtmzZgtOnT6OnpwchISGTOseOHTsAAEuXLkVUVNS4x+Xk5OAXv/iF2+e6u7vR1tYGgBJm4hsOkwmt27YLyjRpqQhfeiktDhIAuvd+CN5udT02VxcDX/d949ErtPjj6v/Ce6fX4bCII8KXJCzAg/Nug14RGNOyik80Tut1xw/VoWhZMuSK4bfZZFoZmxBCCAk4Xk2YOY7Da6+9hn/+85/o7+8HMDjtj2EY14JYAPD++++js7MT8+bNw0svvTTuyO9MlZeXu76eKBHNyMhwtbesrAxFRUUT1t/W1obOzsGFb+bPn+8qt9vtqKioQHt7O8LCwpCTk3PRBRbKyoa3bcnMHFyJuKurC2VlZbDb7YiJiUFGRsasTVyamprgdDohkUguuhgamb76T9eCs41YQZhhELXiKijCgzMBCKaYsrXXo+/0LkGZbt4KyCMn7lejtZH48bInca6tDP88+QlqjA3TbkeKIQGPFN6FvKjAuehn7BpAdUXHtF7rdHCor+lGevbgKD4rtaOntwOm/sCPKeIfgqmfIv6BYooQ97yWMNtsNjz55JM4fPgwLrbOmNVqRUdHBxiGwalTp3DXXXfh/fffR3p6uuhtamwcHjmIj7/4IiwxMTGC100mYa6oqHB9nZCQALvdjv/3//4f/v3vfwsuEBgMBjzxxBN49NFHIZFIxtQz8oZ5k8mERx55BIcOHRL8HKOjo/H444/jgQcecFtHMOvo6HDtG0gdvPgcFgtavhDeiqBOSkTUFct91CLPC6aY6tj6FsAPjyYzMgVCL79nSnXkRWXhN6uex56ag3j/9Hr02SY/nVqv0OL+gltxZcqlAbeC/5njjcAMlsVsru9BYkoo5AopFGob2tragiKmiH8Ipn6K+AeKKULc89qnl//+7/92JXlKpRL33HMPfvOb34w5jud53H///ZDJZGAYBkajEc888wwcDofobRqZtIaGhl70WIPB4PraaDROqv6WluGtSeRyOR588EG88sorgvMO1ffSSy/h6aefdrvX8ugtpQ4ePDjmokNraytefPFFfOc734HFMrVFeQi5mJZNX4CzWgVlMdddA2mArnQ4m/RfOAJL7VlBWciSmyDVTX1mAMuyWJG2DKmhU5vxk2pIxIq0ZQGXLPM8j9NH62dUB8fxqK/pRliEBioNbdNCCCGEBCKvvIOfOXMG69atA8MwyMzMxBtvvIHYrxcKeu655wTHKpVK/Nd//RceeughPPXUU6iurkZFRQU2btyIW2+9VdR2jUwsR6+OPdrIbZ4mm5AOTTsHgN/97neor69HZmYmfvKTn6CoqAhOpxP79u3DSy+9hObmZmzfvh1/+tOf8NOf/lRQz8iEWaPR4Nvf/jZWr16N6OhotLe3Y9u2bXj11VfR19eHPXv24H/+53/cXozwpoqKCqSnp0On07nKrFar63sxGAxISkoa85qBgQEAQEFBgeC5jo4ONDU1AQASExMFFzhSUlJQXV0NnudRXV2N1NRUwWtramrQ2zu4PUxeXp5g+rvRaERdXR0AIDY2FpGRwkWQiouLwfM8VCqVazr8kIaGBtfFj6ysLMHq5SaTCVVVVQCAyMhIV7wPOX/+vOsqbm6ucFGh5uZmtLe3AwDS0tIES/BbLBbXFP2wsDAkJCQIXlteXg6z2QyGYTB37lzBc+3t7WhubgYwuNr6yItADocD586dAwDo9XqkpKQAAHinEy1btgnqUcREI+rqFa7H3d3dqK8fTCzi4uIQEREhOP7MmTMAALVa7bq1YUhdXZ3rAlR2drbg77Cvrw/V1dUABmdQREdHC1577tw5OBwOyOVy5OTkCJ5rampCR8fgVNr09HRoNBrXc2az2XU7Rnh4+JjZJWVlZeB5HnK5HGlpaYLn2traXBfCUlJSoNfrXc/Z7XacP38eABASEoLk5GTBaysrK119wpw5cwQJZFdXFxoaBqc7JyQkICxsOKHlOA5nzw4mvRqNZsxsm9raWvT09AAAcnNzIZPJAAwmfO3b/iE4lpErEbJkeC/5s2fPguM4KJXKMbelNDY2um4pyczMhEqlgtHcg+Jx9l4ez5nWUhjNPTCoBtd9aG1tRWtrKwAgNTXVK32E0+lESUkJAECn002qj6iv7kZ358CY74dhgKlsxthUZ4RxbjPmzEuHXC533ToTLH3EkOrqavT1DS4Sl5+fL5jpFIx9hMViAcuymDNnjuA5b/YR6enp4HkePM+7foZT6SMAoLe3FzU1NQAGZ9KNXmtlqn3EkP7+flRWVgIAIiIixoxWlpaWwmazQSqVIi8vT/BcoPQRQ4Lpc0R6ejrq6upgs9lQXFxMfUSA9xFDpvs5AphZHzEUg8HAKwnzp59+OngyqRSvvPLKmD96d1JSUvDKK6/g5ptvBsdx2LJli+gJ88hR69H7Ho828vnJjnYPddoAUF9fj9zcXLz33nuCjuuGG27AggULcPvtt6Orqwv//Oc/cf/99wv++IYW/DIYDPjggw8EH+Lj4+Px6KOPYtmyZbj33nvR39+PdevW4Z577kFhYeGk2ukJTqfTtaDaEJ7nXSPoTqdzzGscDofbEXZg8I996LnR9Wo0GtfvxN3vZmS9o0fmR7ZpdL3AYOfF87zbe8xnWu9kvteL1evuex2q19397NOpt6fkHKxtwg7PUDgPkhFvSBf73Qy1abz2Op3Ocds0sl538WK32+FwONyOXF6s3onicGS9I98gR9d7sfieKA5Hm8nPcLw47D22GVyv8Henm3c1JEq1oF6O49zexuHuZ/hB8efgpzhHmQePj4o34FuLHxxTr7f6CGDqP8PRo8tSGYPYBB3qq6e2NzPPA7UVJhRdohIkFMHSRwzx1O/GX/sIu90+Yb2e7iOG+qeRz031PXAyP8Op9BHuvteL/S27u0UvUPoId20K9M8RGo0GPM/D4XBQHxEEfcToNk2mXjH7CHftCFRemSN35MgRMAyDyy+/fMzVwItJT0/HVVddBZ7nXVdcxDTySt54ATjENmLBo4mS6yGjg+5Xv/qV2w27Y2Nj8YMf/ADAYNCuX79e8PzevXtx+PBhbNiwYcyI15CsrCxXHQDw8ccfT6qNniKRSMZ0FAzDQCaTQSaTuf3DkkqlrudHY1nW9Zy7DmjoOXdvSCPrHf0GMLJNF6vXXZs8Ve/I7/Vi9br7XsWu11AwFwW//y1UixYCEgkYQwgS7rtv3Hqn+ruRSCTjtmlkve7iZbr1ThSHF/sZjqz3YvE9URyOJnZ8c3YbuveN6gOUWoRdIfzdTfZ7ZRgGRnMP9lSP3SN+MnZVH4DR3DOmXn/uI+YsiIdKM3iesCgFll4Thab66W2zVVc+gH6TTVAWLH3EEE/9bqiPGPu9ivkeONmf4WT6iPG+16n+LQdKH+GuTfQ5gvqIkfXO9j4i0G7FuhiGv9gKXCJZsGABzGYzvvvd7+J73/ue4LmcnBwwDINnn30Wjz766JjX/vnPf8brr78OuVzumpIhlmeeeQabN28GMLjF1MhpP6Nt377d1faf/exnePjhhyes/5133sGvf/1rAIMj5lu3bh332K6uLlx66aUAgMsuuwx///vfJ/19uKsjOTkZ27Ztm+AV4jGZTIKp49nZ2W4vDpDAZTP2wN7dDU1qiq+bQibQuetd9BxcLygLXfENhF5667Tr/PmOl3Chs2rar88OT8OvVv504gP9SF+PBeeLm7Ho0mRs33geh/dWT7uuS65IwzU35018ICGEEBIEgik38ErqP5STT2f15qErHe6uXMzUyPsGJlrIa+TzI+8LuJiRQTH6fpjRwsLCXPeCDE3Bniox6ghEZrMZAwMDMJvNvm5KUJMbQmZNshzIMeUY6EXvsc2CMqkhCiGLb5x2nUcbTs8oWQaAC51VONpwekZ1eJsuRInFl6VioN+G4wdqZ1TXsQM1aG/tDsiYIv4pkPsp4p8opghxzyv3MEdERKChoUGwzdJkDY0qj14AQAwjFyRobm6+6H7PI1e8nuxS+6MXW5nI0FTvmcz598SFBX9XXl7uWvhi9CIfhExHIMdU1453wNuFq5qHXn4fWMn0u/vGvhZIGBZOXtg3MWAQ+vViXiNZHTYM2AcEdztLGBaNfS0owrxpt8NXTh1tgEojB3hesOAXw469x288drsdu7aeQe780ICLKeKfArmfIv6JYooQ97ySMC9atAj19fXYtWsXurq6Jj1Ce+7cORw4cAAMw3hkAauRq8SVl5dj8eLF4x47tBre0ErfkzFytbiRez6743Q6XaPYI1fxKy0txcGDB9HR0YGVK1de9Odgs9lcdYxepZGQqbJ1dUMWanC78AfxT/auZphK9gnK5NGp0M6Z2Z7Zt+Zei4ywZPx+/xsYsFsgYSRw8k786uqfICvC/boKbf2d+Ouht3GhoxJqmQo/WfYk5kTnuD3W3112dQbMAzYkJIciIXlwZV2lSgaZfHDWlMPhhLHLjPBIzbh/L2fOnJlwrQxCCCGE+B+vJMw33ngj1q1bB4vFgmeffRavvfbahAtn1dXV4Xvf+x44jgPDMFi9erXo7SosLIRMJoPdbsfhw4fxwAMPuD3O6XTi6NGjAAbvuR45lftiQkNDkZmZifLycpSXl6OlpQUxMTFujy0pKXEtLDYy0S4rK3NtEWW1Wi+aMB85csT1gWzevMAbxZmu8PBwOJ3OaU35J2PxPA97Xx9atm6DVKOBOikR6pQUyA1jRxKDVaDGVH/5MTBSOXjb19PpGAZhKx8W5aLHnOgc/GH1f+NIwylcllSEM63nx02WASBKE47/ueqH2F65D4sT5iNMZZhxG3ylorQNB/cMTknPzo/GlddlQxcyuGik08Hhq50VSEgOdd1+ZAhTQyYTxk6gxhTxXxRTRGwUU4S455V7mJctW4Zly5aB53ns378ft99+Oz799FPXfm3A4DTkvr4+nDhxAr/97W9x6623orm52TW6fMUVV4jeLr1ej0suuQQAsGvXLtf+fKNt2rTJtU/eVBP3G264AcBgEvK3v/1t3OPee+8919cjz7FkyRLXKnObNm2CyWRy+3qe5/HGG2+4Ht9yyy1ujwtG8fHxSEpKGrMPHpke44mTOPPT52CqqIStpwe950vRtms3eDfbCQSrQIwpzmoGb7dCv2g1lClzAYkUqpQCqFPmTvzii+B5Hk29LeB5HmEqA67LvBJahQZLkxZN+FoJK8F1mVcGdLLscDixZX2J6/GFklZ89PZRcNxgclxxYXDrrobabpScakLJqSZYzGNHkgMxpoh/o5giYqOYIsQ9r633/Yc//AEpKSngeR6VlZX4+c9/jjvuuAMMw4Dnefz+97/H4sWL8cADD+Cf//wnBgYGwPM8IiMj8cc//tFj7XrkkUcADN5f9qMf/WhMQlpRUYEXX3wRwOD+dHfdddeU6r/33ntdU9A/+OADfPbZZ2OOWb9+vat8wYIFgtHh6OhorFq1CsDgKtjPP/+8YIsrYPBiw4svvogjR44AAIqKinDZZZdNqZ2EDGna+AWsLa3oPnYcTZ9tQF9ZGdRJiWDoirNfM9eeBc85wUikUCbmImTRDQi/5pszrre+pwlf1R3Dzqr96BzoFqGlgeXQl9Xoau8XlC1fmQmWZdDRZkJzg1HwnFQqgUarACGEEEKCg1e2lRrS29uLn/3sZ9ixY8dwA0ZMFRzdlMLCQvzxj38cdxqzWH7wgx+4tnxKSEjAfffdh9jYWJw7dw4ffPAB+vsHPyz94he/wL333it47eHDh/HQQw8BABYvXox33313TP3bt2/H008/7drw+6qrrsKKFSsgl8uxe/dubNmyBQCgUCiwdu1aZGRkCF7f1NSEu+66Cx0dHQCAtLQ03HnnnYiLi0NLSwvWr1+P0tJSAIP3Ln/wwQcXXcDME4Jp6fjZzNzUhBNPfV9QFlq0EOnfegIKui/ebzkHetF7fIugD1XEpEGTVTSjeh1OB7ZU7MGA3eIqy43MwNwAvRd5qnq6zXjtt3tgtw/ProhLNOCbP1gGu92JYwdqYbM5BK+ZUxiPiCjq+wghhMxuwZQbeOUe5iF6vR6vvPIKzpw5g08//RRHjhxBbW2t4ENeZGQkioqKcOutt+Lyyy/3Srt++9vfor+/H1999RUaGhrw0ksvCZ5nGAbf+973xiTLk7Vq1Sq8/PLL+M///E+YTCbs3r0bu3fvFhxjMBjw+uuvj0mWgcFVuf/xj3/g+9//Pmpra1FVVYXf/e53Y47LzMzEn//8Z68nyyR4tO/9SvBYolIidOECyD2wSj0Rj7n6jKAfZVgJVMlzZlzvZ6XbMGC3QCEdXnMikKdXT9W2z88JkmUwwPV3zAEYoOxc65hkOTs/hpJlQgghJMh4NWEeUlBQ4Fqu3ul0oqenB06nEyEhIRMuBuYJKpUKb731FjZs2ID169fj/Pnz6Ovrg8FgwMKFC/HQQw9h4cKFMzrH6tWrsXDhQrz//vvYtWsXGhsbwTAMEhMTsXLlStx///0XXT08Ozsbn3/+OdasWYMtW7agrKwM/f39MBgMyMjIwOrVq3Hbbbf55Ofna2VlZa5tEEYumEamLvHuO6HLykTzxi/QfeIkoq+9BrGrr/N1s7wu0GJKEZcBztIPR78RAKCMzwKrUM2ozjZTB9ac2wyWYZEXmYm0sCTEaqMQp4ue+MVBoKqsHefPNAvKFixJQlyiAc0NPehoE96+ExGlRUz8+AtCBlpMEf9HMUXERjFFiHtenZI9HXa7HZWVlejo6KD7cv2YL6ddDG3XQvsGisvc3AyJQgl5WKivm+J1gRJTnMOGzu1vw7DkZkhDY2Brq4W1sQzagivBSmd28ez3+9/AkYZTrsehyhD836r/QJg6+OPB6eDw/17+Ep1tw/cuq9QyfPe5q8AwwLEDtXA6h/eklsulWLQ0GXLF+NegAyWmSOCgmCJio5giYgqmKdleWfQrJycHeXl5ePvtt6f82ldffRW33XYbfvazn3mgZSQYsCzr+kfEo4qNnZXJMhA4MdV79Av0ndiG+jeeQef2f0CqDYWucNWMk+WzraWCZBkAFicUzopkGQAO76sWJMsAsOL6HKhUMpQWtwiSZQDIyo++aLIMBE5MkcBBMUXERjFFiHtem5I93YFslUoFnudd2zoRMtqcOTO/V5OQkQIhppwDfTDuXzP4gHOg9+gXcHS3IuaemV9cjNFFYWnSIhyoOwYA0Mk1uGfujTOuNxD09Viwd1uZoCw2IQSFS5JQX9ONHqNZ+Fx8yKTuWw6EmCKBhWKKiI1iihD3fHIP82TwPI+GhgZs3LgRAKBWq33cIkKCG+900tZRAcS4/1Nw1gFBmWH53aLUHaEOwzOXfhPXZlyOt098jJXpy6GVa0Sp299t23AONptwz/HVt89Bv8mKmsoOQblKJUN6Dq0eTwghhAQz0RJmh8OB2267DRUVFW6f53kev/vd79yu7jwRhmFo8QFCPGQoUe48eAgOUz/UyUlQJydBShep/Jatqxk9x7YIyjR5y6CMG7vK/kzkRmbiN6ueF7VOf1ZT0YGSk02CsvmLExGXEILjB+vAcSNWIgeDnLmxkErpIhMhhBASzERLmKVSKX75y1/i/vvvH3f69XSnZTMMgyeeeGImzSOEjKP23ffRW3oBiohwKGNjYevuhvH0GURctgzqhHhfN4+40bH5DYAbsaURK0XYVQ/MuN7TLecgYSTIiUiHVDL49jBb7mVzOjlsXlciKFOqpLj6hhxUlXegv98qeC4xNQwhoTNbiZwQQggh/k/UKdmFhYV4+OGHsW3bNkF5U1MTGIaBXq+HRjPxtD6GYSCRSKDVapGQkIC7776bVsgm42pra4PT6YREIkFUVJSvmxNQnFYrWrfvhMNkQh8AiUqFsMVFUMXHQRE5e/de9ueYMtedg6WmWFCmm381ZIaZbfdktPSirKMKPIAaYz0KonORGBIHhmFmVG+gMHYNwDxgE5RddV0ONFoF1Bo5JBLWtdiXTq9ESkb4lOr355gigYliioiNYooQ90S/h/m5557Dc889JyjLyckBAHz729/Go48+KvYpySzX0tLi2gaBOvip6di7Dw7T8H6yTrMZEo0GythYSBQKH7bMt/w1pnieR8eWvwnKGIkM+kXXz6hejuNwsukshuYADdgtONp4GpGacKhkyhnVHSgMoWo8/J1LcWRfDY4frEVkjA4LlyYDAOISDTCEqlF6thmmPhty5saAZad2IcFfY4oELoopIjaKKULc8/tVsgkhnsHzPJo3bRaUKWNiINProElJ8lGryMWYSr6Cvb1OUKbJWwpFZMKM6t1Tcwjrzm/BvJhc6BU6AEBOZMasSZYBwGKxQy6X4rKrMzB/cQIYlhUkxWqtHPMXJ8HUa4FGO3svJhFCCCGzjVcS5tLSUm+chsxSKSkp4Dhu1txrKZbec+fRX10jKNNmZYCRSqGMi/NNo/yEP8YUzznRtetdQRmrUCNsxTdmVK/NYcOac1+gvb8TOyo7kBaagkVxc5EdkT6jegOJzeoA5xy8qMtKGMQmGNwex7IM9Ibp3bfsjzFFAhvFFBEbxRQh7vnttlKETJZer/d1EwJS86YvBI+lWi2UsbFQJySAlc7ursEfY6rn8AY4+zoFZbrCayDVhs6o3g0XdqC9f7BejudR0VWNy5IXQcrOjtWfeY6HzTq8gJpSKfPIefwxpkhgo5giYqOYIsQ9n15C4nkeHMcJ/jmdTtjtdpjNZnR1daGqqgobNmzAN7/5TV82lZCgYu3oROfBw4IybWY6GIaBOiXZR60i43FazTDuXyMok2hDYVh+54zqtTls2FK+R1CWG5mJ1ZlXzajeQGK1OjB0x5BMLgErYdDXY/FtowghhBDiN7w6jLRt2zb8+9//RklJCfr7++m+ZkJ8pGXLVoDjXI8ZiQSa1FSwcjmU0bTQh7/p/vIDcNYBQVnIpbdCIp/ZtkZyqRwvX/dzfH5hB7aW74GNs+PRwrtmxcrY/SYrtqwrweLlKTCEqgEGUCikaKo3ovx8GxKSQ5GWGQFWQlMTCSGEkNnMawnzH//4R7z55psAprcA2Gz4AEemx263g+d5MAwDmcwz0ymDCWe3o3XbdkGZOiUZrFwOhmXB0L1LfhVTTrsFfad3Cspk4fEIWbRalPr1Sh0enHcbbs5eiZL2MqSEJopSr7/buakUJaeaUFrcgqJlyVh2dQbMA3ZUXugAADTUdqO7YwC5BTHQ6me++Jk/xRQJDhRTRGwUU4S455WEuaysbNxkeSgRHq9cKpXipptuon2YybjOnz/v2gahoKDA183xex1f7Ye9p1dQps3MBADo5+T7okl+x59iytHRBN28q2GuLYG9rQYAEHr5vWBEvsdYr9Th0sSFotbprxpqu3HqSD0AwOnkcGhvNZwcj6gYHbgRMy/6+62w2ZyinNOfYooEB4opIjaKKULc80rC/Mknn7iuWC1cuBDPPfccsrOzUV5ejjvuuANSqRR79+6FWq1GV1cXDh06hFdeeQVNTU1wOByYM2cOrr9+ZvuMEkIGjd5KShEVBbkhBACgio3xRZPIOHinA+bas2CVGmiyF8MZnwXO3AdN7qUzrtvJOVHeWQ3JiMQ7UR8LZZBvJcVxPDavPSsok8slSEoLQ3tLn6A8PikUYREabzaPEEIIIX7GKwnzsWPHAABarRavvfYaQkIGP5zn5+dDr9ejr68P+/fvx0033YS4uDjcfvvtWLVqFR544AGUlZXhpZdewjXXXIOIiAhvNJcEmJCQEDgcDkhn+crOk9F3oQym8gpBmTYrY/D/jHRItVpfNMvv+EtMWRrLwNnMrscSrQGGS28R5RaV+p5mnGkVbvkXrw/+CyYnD9ehuaFHULbk8lR0tJgEZWqNHGlZ4r3n+EtMkeBBMUXERjFFiHte+YtoaWkBwzC48sorXcnykPz8fBw6dAjHjx/HTTfd5CrX6XR4+eWXcfPNN8NiseDjjz/Gd77zHW80lwSY5GRa1XmyRo8uS9RqqOLiINPrEbpwgY9a5X/8IaY4uxWWemFCKzNEQxY6s6TW7rRDwkhQ3lktKI/ShEMtm9kiYv5uoN+GXV8If6bhURoo1XJYLXZXGcMwyJ0bC4mIC375Q0yR4EIxRcRGMUWIe15Z3aevb3CaW2pq6pjnMjIywPM8SktLxzyXmZmJRYsWged5HD161OPtJCSY2bq70bH/gKBMm5kOhmURMm8uLfblZ5wDPWN+J6rUeTOu993Ta/HCzt+hsqtGsHZEZvjY/jnY7N5cCvOAXVA2d2GCIFkGgJT0cOhCgntqOiGEEEImxyufkFWqwVELdyvupaSkAAAqKyvdvnbOnDkXfZ4QMjktW7eDdzhcjxmJBJq0NCgiI6CKj/dhy8hotrY6SJRahBTdAFVSHhhWAnlUEqS60BnV2zVgxM7Kr1DZVYtd1QdwrPE0OJ6DVq5GrC64txNrqjfi+KE6QVl6diQ4Jyco04eokJQa5s2mEUIIIcSPeWVKtsFggMlkQkdHx5jnEhMHtzAxmUxoa2tDVJTwQ9vQFO6enp4xryWETA7ncKBlyzZBmTopCRKFAoZ5BbRtmx/hnQ60rvkdnJZ+hC6/G/rCVVDEZohS9/rzW2Hnhi+aNPS14NnUp6BTaMAywTvDgB9a6GvEZgxSGYuYeL3gOImERW5BDBiW/h4IIYQQMsgrCXNeXh7q6+tx4MCBMc8lJSW5vj5z5gxWrlwpeL6lpQXA9PZuJrNDZWWla5GK9PR0XzfHL3UePAx7d7egTJuVAVV8PBSRkT5qlf/yZUz1ntwBe1czAKBz61voPboJsQ/8AlJ9+IzqdXJOFLcJb31ZkboUkdqZ1RsITh2tR2OdUVCWkBIKiVR4kSA9OxIqtdwjbaB+ioiNYoqIjWKKEPe8MqSwdOlSAEBFRQVee+01wXPJycmuKduff/654Dmz2YwdO3YAAK2QTcbV398Pk8mE/v5+XzfFbzVv+kLwWB4RAXlYGAzz5vqoRf7NVzHFWc3o3veRoIxVaCDRzXyKsISV4KVr/xNPFX0DUZpwSFgJbsu9bsb1+jvzgA07NwkvFKjUMiQkGwRl4ZFaxCYIF6UUE/VTRGwUU0RsFFOEuOeVhPmWW25BWNjgB76//vWvuPPOO7Fz504Ag6uRrlixAjzPY/v27fjf//1flJWV4fDhw3j88cfR0dEBhmEwf/58bzSVkKBjqqpC33lhwqDLyoAmNRWyEM8lCGTqjIfWgxvoFZSFXf2QaFPmpawEV6UtxZ+u/wX+56ofIkIT/Pfq7tlyAQP9NkFZek4k2BELqslkEmTnR9OtCYQQQggZwytTspVKJX75y1/i6aefhtPpRElJCY4ePYqrr74aAPDkk09i8+bN4Hke77//Pt5///0xddx3333eaCoJQEMLwxH3mjeO2kpKpYI6ORkhc/N91CL/54uYsvd2oOfgZ4IydeYiqJLF+T3xPA8ePFiGhZSVIDsi+KfbtTT24NiBWkFZVn40ChYmoLHO6LrVJ29eHOQKz74dUj9FxEYxRcRGMUWIe15b5WXlypV47bXXEB8fD57nkZCQ4HouOzsbL7zwAoCvP9SN+AcATzzxBIqKirzVVBJgWJZ1/SNCjAB5EAABAABJREFU9t5etH+5V1CmSU+DPicbUrXaR63yf76IqY7Nb4J3jtjeiGEQdtWDotXf3NeKLeV7UNZRBZvTPvELgkBrU69gL2WplMV1t+YjIycKRUtTEBqmxmVXZyA03PN/C9RPEbFRTBGxUUwR4p5XRpiHXHHFFdi+fTuOHj2K6OhowXMPPPAAsrKy8Oabb+L06dOw2WzIycnBQw89hOuvv96bzSQkaLRs3yHYSgosC31uDnS5Ob5rFBnD0lQBc8UJQZkyMRfyyETRzlHWWQ2TbQCnWs6hpK0M+VFZyIpIE61+f5Q9JwbhUVrs3VaGitJ2XLYyA4awweRYrZVjXpF4P19CCCGEBCevJszA4NWrJUuWuH2uqKiIRpIJEQnvdKJl81ZBmToxEaELF0CiUPioVcSdrp3vQLDnEStB2NUPzbhek60fclaGAYcFbf2drnI754BcIptx/f7M6eRgtzkRYlDhpnvmobWpDynpwX/PNiGEEELE5fWEebq6urpcC4cRMlJXVxc4jgPLshQjI3QdOQZbu3Dvc0PhPOiyMn3UosDhzZiyNJbDUndOUKbJWgxl3Mx/Tx8Wf44jDaewJKEQapkKElYCAFBK5UgMiZtx/f7Mah6eWSGXS5GR49vt06ifImKjmCJio5gixL2ASJg//vhjvPzyyzh8+LCvm0L8UENDA+x2O2QyGXXwI9j7eiHRaOD8ensIbWYGUh7+Bhi6N2lC3oyprl3/EjxmJDKErZj5vcsdA13YVXUADs6BrRVfIkShw8r05WAZBulhKa7kORjZ7U44ndzg1zYHZHLff6/UTxGxUUwRsVFMEeKeRxPmrq4uVFZWor29HeHh4Zg/fz4UU5gKWl5ejv/+7//GyZMnPdhKQoJTzDWrEHn5crR/uRfNmzYj9obVlCz7GUtz5ZjRZXVWEWShMTOue/35rXBww6Os/XYzVqZfBqVUASkbENdKp4XneVgtw993fU03enssSEoNQ0JKqGARMEIIIYSQiXjkU1N9fT3++Mc/Ytu2bXA6na5ypVKJhx9+GN///vchkYx/xd9iseCvf/0r3nnnHTidTvA8T/tjknElJCS4phARIYlSiZhrr0H0NasAjvN1cwKGt2Kqa8c7wgKJDKFXPjDjenmeR+dAt6BsZdplCFeHzrhuf1Zysgn1NV0oWpYCuUIKU58F3V0DAIDqig40N/QgvzAOOr3S622jfoqIjWKKiI1iihD3RE+YT506haeeegpG4/AelwDAMAzMZjPeeOMNFBcX480333SbNO/Zswe//OUv0dzcLEiUo6KixG4qCRI0bWgs3umEtaMDiogIMBLJ4N/RRS5SESFvxNTg6HKJoEyTtQjysJmPLjMMg/9Y/h1c6KjEJ2c34Xx7OW7NvXbG9fozq8WOrZ+VwNRnRcnpZixflQGMukbEcTxUat8sdkb9FBEbxRQRG8UUIe6JegnJZrPhxz/+Mbq7h0c25HI5IiIiXI95nseBAwfw6quvCl47MDCAn/3sZ3jqqafQ1NQ03ECWxUMPPYQvvvhCzKYSErR4nkfbni/hMPWDczjgtFrBj5jpQfyDteECWI1huECk0eWRsiPS8Z9X/gB/vP5/EKY2THh8IPtyWzlMfVYAQH+fFVvWlqCpwSg4JjUzAlIpXTgihBBCyOSJOsK8Zs0aNDY2gmEYKJVKvPDCC7j55pshl8thMpnw7rvv4pVXXoHT6cTbb7+Nxx57DFqtFi0tLfjmN7+Jqqoq16gyz/MoKCjAL37xC+Tm5orZTEKCmqWlBda2dljb2oEjRwEAUVddAWXMzEcuiTg4uxWczQJd4SrYO5tgrSsZ3Hc5LNYj54vShHukXn/R3tKHI/uqBWXhkRqEhKpcj7U6BWLi9N5uGiGEEEICnKgJ8/79+11f//73v8fVV1/teqzVavHUU09Br9fjV7/6FSwWC3bu3IklS5bgnnvuQVtbm+tYnU6HH/7wh7j33nvp3mUyIW7Evbmz/b4bW3c3es6cHVMuCw3ue1fF5umYsjaWgXfawTAM5BHxkIfHQ1+4UtRzHGk4BSkrRWZ4CnQKrah1+xOe57F53Vlw3PAtQCzLIC07QvD+kZ4dCYb13fsJ9VNEbBRTRGwUU4S4J2rCXFFRAQDIysoSJMsj3XfffXjzzTfR1taG48ePY926dWhtbXWNKl9zzTX4r//6L8E0bkIu5uzZs65tEAoKCnzdHJ+q+/dHaNu5C6rEBGjT0yCPiIA2NQWSKaxOTzwbU5zdCktjuaBMHp0EqV68UWCTrR+1xgbwACq6ahCni0Jh7Bxo5GrRzuEvzp1uRk1Fp6AsISUUKrXc9TgiUovQcI23myZA/RQRG8UUERvFFCHuiXr5qLOzEwzDoKioaPwTsiwWLVoEnuexadMm197KWq0Wf/jDH/CXv/yFkmVCpsFpsaDjq/3gnU4M1NSibedu9FdWIXTRQl83jYwwNLo8hAEDVWLejOs1mnvQ0d8FAKjorAU/4rn2/i7IJb5Z7MqTbFYHtn0u3JZLpZYhMWV4RgXDMEjLjvR20wghhBASJEQdYTabzQAwYcKbkJAAYHChL57nkZaWhjfeeAOJiYliNofMEhqNBg6HA1Jp8O4tOxkd+w/AOTAwXMAwSLz/HrCy4EuUPM2TMSWLSIRzoBe2jobBx5GJkGhCZlzvxyWbsLv6AFakLoVapoJsRIKcGpooeBws9u0oR1+PRVCWkhkOiXT4WnB8kgFqjXz0S72O+ikiNoopIjaKKULcE/UvwuFwgGEYKCaY/qnRDE+Ni4mJwbvvvovw8OBelIZ4Tnp6uq+b4Bes7R1gpFLwDgcAIHRBIXT0s5kWT8WU8eB6KBOyoc1bBmd/D8x1JVAlzXx0ub2/E7urD8DJObG9ch8kjAS35F4DpVQBu9OOjLCUmTfez3S0mXDwyypBWUSUFhFRw/dry2QSJKf7x3sL9VNEbBRTRGwUU4S455NLSCOvXP3gBz+gZJkQESTdezdirrsW7bv3oGXbdkRfI+4iUmRmbB0N6Nr9PsBzUKXMhWH53dDmLhWl7nXntsDJDW8dxjIMrsm4HHq5Fm0DndAqfHv/rth4nseWdWfBOYULfaVkhgsW+kpOD4dMRttIEUIIIWT6fD7n4sorr/R1EwgJGnJDCOJvuwVxt94M8PzELyBeY9y/BuAHVyA11xTD0lSB5B+8CVYxs4W4eJ6HUqaEjJXCzg3OLliZvhxhKgMAIE4XPaP6/VFpcQuqyjoEZUlpYYKp12qNHHGJBi+3jBBCCCHBxudrxofSdjeEzBjvdAoeMwwDhraE8Bu2zkaYSr4SlIUUXT/jZBkY/F0/NP8O/PWGX+G6zCuhkalwa+61M67XX9ltTmz9rERQptbIEJ9kEJSlZ0eC9eE2UoQQQggJDj4fYaZ9lslM1dbWuhapSE5O9nVzvM7R34+WrduhSUmGNjMDMp3O100KeGLHlPGrT12jywDAyJUIWXzTjOsdKUxtwGML7sH9BbdCKQ3ebcS+2lmBXqNwoa+rrs+BXCZBZ0c/ACA0XIOwCP+ahj7b+ykiPoopIjaKKULc83nCTMhM9fT0uPYNnI1MlVXgrFb0XShD34UyqJMSEb70UroYNQNixpStrRams/sEZSGLrodELe6FjV6rCSyYoLtfeSSe59FrNAvKUtLDsWBJEhiGQVdHP6rK2pGeHel38T/b+ykiPoopIjaKKULcozmbhAQwe08P+i6UCcpYhcLvkoXZrHPnO8CIXZEZmQIhS24W9Rx9VhO2lO9BfW8T+CC/d/3qG3Nx18MLERGlBcsyuO72Oa54D4vQYOGlydDqgneEnRBCCCHe5ZER5rNnz2L9+vUXfX7IxY4b7dZbb51+o0jQys3NBc/zszJJrH77HXTuPwh1SjK06WmQhYRAl5nh62YFPLFiytZWC3PVGUGZKnWe6KPLm8v3AACKWy+g1tiIZEM8ciMzRT2HP7BZneA5HgnJoXjoqUvQ2dGPqBjhz9Jf+4HZ3E8Rz6CYImKjmCLEPY8kzF988QW++OKLix4z9Mf4/PPPT6pOhmEoYSZuzdapQ5zdjs6Dh8HZbDCVlcNUVo7IK5ZDFhLi66YFPLFiavToMiRShF5534zrbe/vRHt/J/KismBxWAXP9VpNKG69EHQJM8fxsNkcrsdqjRxavdKHLZqa2dpPEc+hmCJio5gixD2PJMzBPiWQEH/Qun0nOItw8aOIKy73UWvIaLb2ujGjy+r0Qigik2Zc95qSL7Cr+gDyo7JwY/ZKxGgj0WJqdz0fqQ6b8Tn8jdVid117kMrobiJCCCGEeIeoCXNRUZGY1RFCLqJly1bBY2VMDEIL5/umMWSMzh2jRpdZKUKvuH/G9baa2vFlzSEAQElbGUrayvDYgntwecoS7K05DAC4IuWSGZ/HnzjsTjjsg6uMO50cSs+2oN9kRd68OERGa2n6ICGEEEI8RtSE+d133xWzOkImpbe3FxzHgWVZ6PV6XzfHK/qrqzFQWycoi7xiOe29LJKZxpStox7m6tOCMnX6fCiiZj66vO7cFjhHbFEll8hwSUIhDKoQ3JG3Ghw/2O5g8flHpxEVo0PevFjwPI+yc60Y6LcBAM6dbkKIQYXMvGi/X+hrNvZTxLMopojYKKYIcY+2lSIBr6amxrUNQkFBga+b4xUNa9cLHrNyOWJvusE3jQlCM42pji1vAfyo0eUrZz66DAAZ4Sk41XIOXWYjAOCa9MthUA3ety5hJZBAIsp5/EH5+VacOlIPADhzrAEFixJgsdgFx/QYzeA4zt3L/cps7KeIZ1FMEbFRTBHiHiXMhAQYp8WKriPHBGUh8wog04m78jKZHktzJSy1JYIyddp8KKKSRal/ZfpyXJFyCXZVHcAXZbtwc84qUer1Nw6HE1vWD/8cW5p60bX1AhYvTxGMoMfGh0AfovJFEwkhhBAyC1DCTAJeTEwMnE4nJJLgGVm7mJZt28cs9hV/i7j7+s52M4kpR2czFIk5sDZVAE67qKPLQ2QSGa7NvALXZFwetPfvHtxThe6OAUFZSkaEIFmOiNIiMy/a202bltnWTxHPo5giYqOYIsQ9SphJwIuKivJ1E7yqY99XgseKyEiEzM33UWuC03RjirNZYDe2QJUyF4qEbNiaKsAq1FBEizO6DABOzoni1gvICk+FWh6cI6vGrgHs21EuKNOHKBEdNzyLIjpWj9yCWG83bdpmWz9FPI9iioiNYooQ9yhhJiSA8E7nmMW+VAnxPmoNGc3aVA6ecwIAWKkcyqQ8GJbcJOo5KrtqUdZZhcquGmSGpyInMgNySXDtnbnt83OuVbEBAAyQkRvpGk1nWRapmRE+ah0hhBBCZpPgWUqVkFnAVFEJzmoVlMXeSIt9+QPeaR+chj2CIjoVrEIt2jlsDhvOtQ+OvDp5DqUdlTjScEq0+v1B5YV2lBa3CMpiE0Kg1StdjxNTQqFUBddFAkIIIYT4J0qYCQkgHQcPCR5LdToYCub4qDVkJFtbHTiHTVCmTMiecb0tpnZsr9gHh9OB0o5K2JzCVaJzIzNmfA5/4XRw2LLurKBMJpcgJSPc9VgulyIxNdTbTSOEEELILEVTsknAO3v2rGsbhDlzgjt57Dl1RvBYnZwEVi73UWuC13RiSh6TCkamgKW+FI6+TsjD4yDRhMy4LWvPbcae6oNYd34LbspeiVRDImp7GsDxPJJC4hCuDp7k8dDeKnS29wvKUjLCIZMNL0CTmhkBqTTwFqSZTf0U8Q6KKSI2iilC3KOEmQQ8juNc/4KZY2AA/bW1gjJterqPWhPcphpTxoPrwVlMCFl8E3Tzr4ajtx2MZOYXMlr62rC35jAAoGOgC2+f/Bh3z7kR12ZcgeLWC5gTPfMRbH/RazRj7/ZRC30ZlIiJ17sea3UKxMTpR780IMyWfop4D8UUERvFFCHuUcJMAp5SqYREIoFMFtz3NPYUnwVGvomxLNTJib5rUBCbSkxxln4Y968BZx1Az5FN0BWugmHpbZBqDTNux9pzW8Dxw79zhUSOVenLoVNosTRp4Yzr9yfbNpyD3eYUlKVnRwq2zUrPjgTDBuY2WrOlnyLeQzFFxEYxRYh7lDCTgJeVleXrJniF8eQpwWNFRAQU4eHuDyYzMpWY6jm+BZx1cL9g3mFD79EvoC9cBWhnPlX68pQlaDG1obSjEgBwbeYVCFEG5gjrxVRXdODcqWZBWXJaGHQhwwt9hUdqERqu8XbTRDNb+iniPRRTRGwUU4S4RwkzIQGi+/hJwWNlbAxU8XE+ag0BBvdd7jmyUVCmybkE8khxRv7nRGcjPyoLZ9su4LPz23Bz9ipR6vUnTieHzWuFC32p1DLc+fBCmPqsqC7rgNXqQFoWbSNFCCGEEO/zScJcV1eHDRs24MSJE2hqakJPTw+++93v4oEHHgAA/M///A9ycnJw++23Q04LGhECc3MLrG1tgjJ1UiLkNMLsU70ntoIb6BWUGZbdLlr9HM+BAYO50TmYG50jWr3+pN9khUwm3LDhqtU50GgV0GgViIjSoqfbDI1W4aMWEkIIIWQ282rCPDAwgF/96lf4/PPPXQsK8DwPhmFgsw1vx7JlyxZ89NFH+Nvf/oaXX34Z8+fP92YzCfE7o6djs0ol9Pl5YFjaGc5XOIcNxv1rBGXqjIVQxKSJdo6qrjrUGhswLyYPEZow0er1JxqNAvc8WoSzJ5vw1c4KGMJUWHBJkut5iYRFWETgTsUmhBBCSGDzWsLc29uLBx54ABUVFeB5ftzj+vv7YTQawTAMGhsb8cgjj+Ctt97CokWLvNVUEmAaGxvhdDohkUgQHx/v6+Z4RPfxE4LHyphoqBMSfNSa4DeZmOo9+gU4i3ALJP3C60Rrg81pR0lbGaxOG3ZVH0CCPgYF0bnQKoIrebRY7GAYBnMXxCN/fiwcDg5sgC7sdTGzoZ8i3kUxRcRGMUWIe14bnvrxj3+M8vJy8DyPiIgI/OhHP8K//vWvMcfJZDL89Kc/RVjY4GiKxWLBs88+C7PZ7K2mkgDT2dmJ9vZ2dHZ2+ropHsHZ7YMrZI+gio2FMibaRy0KfhPFFO90wHjoM0GZNDQGqpS5orWhtL0CVufwzJuG3haYHRbR6vcHNqsDnHPwAiorYRASqkZ4pNbHrfKMYO+niPdRTBGxUUwR4p5XEub9+/dj3759YBgGixcvxtatW/Hkk09i8eLFY46Vy+X45je/iY0bN7qmYjc3N2PdunXeaCohfqevrAyc1Soo0xfMAUvbPvhM78kdY+5d1i24Box0Zr+Tpr5W/PPkJ+gc6EaLSXjPerw+GpGa4Llnned4WK0O1+OebjO6Owd82CJCCCGEkLG8MiX7888/BwCoVCr84Q9/gEYz8ZTC0NBQ/PnPf8Y111wDm82GnTt34v777/d0U0kAyszMdN0LH4yMJ04JHstCDdBlZvqmMbPExWKK55wwHhDeuyzRRwxuJTVDa0s2Y2/tYWyv3IdVactREJOD+p5m2Dk75kbnzrh+f2K1OoCv787hwaOqrAMOhxMRkVqkZUdCrQmuBR+DvZ8i3kcxRcRGMUWIe15JmI8fPw6GYXDVVVchImLyW4NER0dj5cqV2LRpEy5cuODBFpJAplKpfN0Ej+o+eVrwOGL5ZVAnibNtEXHvYjFlOvsVnH1dgjJdwVWQKNQzOmdTXyv21R0BANiddnxRvgtyqQx35t+A9v5O6BXBMVXZ1GfFJ+8cwyWXpyEhORQMAzTX98LhcAIAOtpN6Orsx5LlqVAog2cWRbD3U8T7KKaI2CimCHHPKwlzR0cHACA9PX3Kr01NTQUA9PT0iNomQgKBvacH/VVVgrKwokWQKGiLHV/geQ7d+z4SlEm0odAvun7Gda89t1mwIKJCqsCN2Sshl8gQr4+Zcf3+Yuem86iv7kZ99XHkzI3B0ivT0dwo7N8jo3VBlSwTQgghJHB55R5miUQCAK6tpKbCbrcDAJRKpahtIiQQcHYHYq5dBUV0FICvt5PKDc79eANB/4XDcBhbBWXa/Msg1ehnXPfd+TdiRdoySJjBbnl15pVBM6o8pL6mG6ePNrgelxa3YOcXpYILBSzLIjVz8jORCCGEEEI8ySsjzFFRUaipqcH58+en/Npjx4656iDEnf7+ftc9N5O5Pz6QKCLCkf7Ut8DzPCzNzTA3NNJiX17gLqZ4nkf3lx8KjmPVeuiLbhDlnFHaCHy76EHcnnsdPivdhhuzV4pSr7/gOB6b1xYLymRyCWIShBcbElNCoVQFX4wHcz9FfINiioiNYooQ97ySMC9ZsgTV1dXYu3cvGhoakDDJ/WMPHDjguv+Z9mEm46msrITdbodMJkNBQYGvm+MRDMNAFRcHVVycr5syK4wXU6q0QvCcE46uZgCAJnsJZCGRopyz29wDnUKLKG0EnlgUfAscHj9Yi5ZG4criGTmRUCiG34bkcimSUsO83TSvmA39FPEuiikiNoopQtzzypTs22+/HQDgcDjw9NNPw2g0Tvia48eP40c/+pHr8c033+yp5hHit/pramHv6/N1MwgAe1cTWIUK2vzl0Baugjw2AyGLxRldtjvt2Fd7BFvKd6Omux4cP/XbV/xZv8mK3ZtLBWWh4WqERwmnnKdmRkAi9crbEiGEEELIpHhlhLmgoAA333wzPv/8c5w7dw433HAD7r77buTl5bmOMRqNKC0tRXl5ObZv346dO3fC6XS6VtdeuHChN5pKAlBERAScTqfrXvlg4bRY0HnoMMDzkOn1UMXHQZebQwt+eYG7mLLUD99SItWGQlGQAln45GbLTORCRxUsjsG9to80nkZZZxWuTF0KuSQ4pibv+qIUFrNDUJaaGQGWHd66RKtTICZu5veC+6tg7aeI71BMEbFRTBHiHsOPXG3Fg2w2Gx555BGcOHFiUvu7DTUrMzMTH3zwAbTa4Fr8JtiYTCbB1l/Z2dn0O5shU1U1ug4fcT1mpFIk3H4rGHoj8zpHTzt6T+8SlGmyl0ARnTLjum1OOzZe2AEH53SVxWqjsDxl8Yzr9geNdd34+1/2u/ZcBoDk9HAkpwunXs9blIDQcLpnjhBCCAkGwZQbeG3um1wuxzvvvIOHH34YEokEPM9jdK4+VDa04MANN9xAyTKZlTi7HaZK4XZSypgYSpZ9xNJYJnjMKtSQR85sL+zG3hb8395Xcba1FEqpcNZAQUxwrITOcTy+WHNWkCzL5BLEJYYIjguP1FKyTAghhBC/5JUp2UNkMhmef/55PPbYY1i/fj2OHDmCyspK9PT0wOFwICQkBAkJCSgqKsKtt946rX2bCQkGPWeKUfnq61BEREARHQVlbAzClgTHiGOg4Xke6sxFkGgNsDaWg7NboUzIBsPO7OLFpyWbcLL5LE42n8X8mHxck7EcPACz3YIQZXBMTT55uA7NDcI9lnPnxkAmH/7ZMQyD9CxxFk4jhBBCCBGbVxPmIdHR0fjWt76Fb33rW744PSF+r/vkKYDnYW1vh7W9HY7eXqgef8zXzZp1rC1VaPv8rwhdejs0eUuhjM+GrbUG8ujkGdXb0NuMA3XHXY9PtZQgLSwR9869ZczMm0A10G/Dri/GLvSlD1UJyuISQ6DWyr3ZNEIIIYSQSfNKwtzS0oKYmBhvnIrMQqWlpXA4HJBKpcjJCY6prMaTpwWPIy5bBolS6aPWzD5DMaU89gnY9jq0ffYnSPd+iLAr7oM2/7IZ17/pwi7wI+Ypq6RK3Jg1uO/yZNZ4CAS7N1+AecAuKMufHydY6EsqlSAlPcLbTfOJYOyniG9RTBGxUUwR4p5X7mFesWIFHnnkEaxbtw79/f3eOCWZRWw2G6xWK2w2m6+bIgp7by+sbW2CMkPhfN80Zpay2WywdzaCaTzrKnN0t8De3SJK/Q8X3olvzLsDesXg+gyrs66CVhE89/A21Rtx/FCtoCy3IAZXXJOFlPRwSCSDbz3JaWGC6dnBLNj6KeJ7FFNEbBRThLjnlRFmjuNw+PBhHD58GL/4xS9w9dVX4+abb8by5cvBsrTnJpkZqVQKnuchlfrkDgPRyfT6/8/efce3Vd3/439dbdmWLE95x/F24jh7JwRCBiQQAiWUhtHS0v5oSz8FuqCle3y+LeXTsgu0pRQoqwRCQgaE7L2XnTi2Y8d7W7Jka9/7+0PoWteWh+xrybLez8eDB7pHusdHytvXOvec8z6Y9+a/0FVSCsOZszBdKUdUdlawmxVWZDIZlFVH4T3WK1FGIHrOzaLUr5IpcWvBCqzMWYrPKg7ghskLRal3vOgx2xEZqUC32f2lSy6XYtW6qZDKJMjMiUdyWjTqrhmQmqELbkMDaKJdp0jwUUwRsVFMEeJbQLaVWrZsGZqbm3t/6BdTDmNjY3HLLbdg3bp1mDp16lg3g4yhiZQ6nhBHZxNqX/oewLF8mW7xnYi9/iui1G+2d6O9pxMZ0akTZgq2N6vFgW6TDUf3V+HMsRpcf1M+ltyYE+xmEUIIISRAJlLfIGD7MJ84cQJbt27Fzp07YTAYehvwxZfF7Oxs3Hbbbbj11ltpvXMImki/FMHm6DJBGqGGhO7wBk3L5mdhvriPP2bkKmQ8/BKkEeJkrz5aexo1xgbEqKIxLakASVETJ0u0y8Wi54uRZTCApceB2PgIyGThMfWaEEIIIROrbxCwDrOH0+nEoUOHsGXLFnz++eewWCzuhnzRcWYYht9WatWqVYiMnDjr+iayifRLEWyN23fAaTJDmZgIdXISIjLSIVWrhz6RiMLZ1Yaa578tGF2OyF+ApDt/JEr9HT0G7Lp6UFA2O2UasmNHl3l7vOgx2+FyuT87pUoGhZJu/BBCCCHhZiL1DQL+TUYmk2HZsmVYtmwZrFYrdu/ejS1btuDgwYNwOBzgOA7Hjx/H8ePHab0zCTvOnh44DO59a62NjbA2NkIRG0Md5gDqPPBfQWcZjASRU0a/xthzb/J88yVBuUIqR7o2edT1jwcOh4vvLEskDGRyCWqqOiCTSZCSrgtu4wghhBBCRiCot/5VKhXWrFmDNWvWoKurCzt37sQnn3yCEydOwOVywWq1Ytu2bdi2bRvi4uJw8ODBoSslYae5uRkulwtSqRR6vT7YzRkVa6MwC7NELociLi5IrQk/TrMBpvN7BGXK5GxE5s4dVb21xgb8+dDLuL3wJmTHTILVaUOXzQwAKIjPgUIW2vsQcxwHcIDN0ruNlFItQ2d7D+qqOzE5Nx5N9e4bQfpkLRjJxFu3PZSJdJ0i4wPFFBEbxRQhvo2buXJarRYbNmzAhg0b0NHRgU2bNuHFF1+ExWIBx3Fob28PdhPJONXc3AyHwwG5XB7SF3in2Yyrf/8n5BoNVMlJkKpUUCUngaGZFQFjOPQBwDr5Yw4MtHPXQCJXjqreD0q2odHUgheP/xvJUYn48rRbkReXharOGuTGZY6y1cF34VQ9Ss42YOnKXETr1JDJJZDJpDB32WC3O1FW0nsjSJ8izjrwUDNRrlNk/KCYImKjmCLEt3HTYQaA2tpa7Nq1C7t378aZM2fgcrmC3SRCAsZw9hxMpb3TdRVxcSj42eNBbFF4cVlMMJ39TFDGRichMn/+qOqtNTbgSO1p/rjR3IK6riYsypiDyTHpIZ8l22px4LMtpeg223G1vA3zlmRi2ao8cCyHqoq2fq8P9fdLCCGEkPAS9A5zS0sLP+36woULfLlnvZ9er8ett96K9evXB6mFZLybPHkyWJYN+TXu7UePC44lchkiUibG2tZQYDj8ITinQ1AWPXftqEeXD1w7Dg69uRUj5GqszVsOYGJ0Hvd9eoXfb9nlZHFk71VMzo2HTN4/K3ZcfPgmcZwo1ykyflBMEbFRTBHiW1A6zJ2dnfx65VOnTvGdY8//1Wo1Vq1ahdtuuw0LFy6cEF8qydjRaDTBbsKocRwH4/kLgrLIrCxK9hUgrK0HXad2CMoUiZmIn7V81HV/ZdptyI/PxvsXt+JqZw3W5C1HpCJi1PWOB82NXTh+sFpQlluYiMRkDc4cq+33+oSk0P9dHamJcJ0i4wvFFBEbxRQhvgWsw2w2m7Fr1y588sknOHLkCD/d2tNJlkgkWLBgAW677TasXr0aauookDBiqa+Hw2gUlOlmzghOY8KQ8cQ2cA6boEwz56ZRjy4D7lHk2SnTMCu5CKcaLqAwIWfUdY4HHMdhx6aL4Nje0XOpTIKVtxbi8vkm9N2xMDM7Dkmp0YFuJiGEEELIqASkw/zwww/jwIEDsNvd0/a8v0jl5uZi3bp1WLduHSUYIGGr4/gJwbFUrYZuRnGQWhN+5LEpUOfOga32ElhrN+Tx6dAUXSdK3ReaL4MBg/z4LMxJnTj/piVnGnDtaoegbNEN2eho70FPj11Qnpkdh8yc+EA2jxBCCCFEFAHpMO/atQsMw/Ad5djYWKxduxbr16/H1KlTA9EEMoHZbDZwHAeGYaBUjn5EMBg6jp8UHKtSkqGMpw5GILh6THC01UGZlAWFPhOO1lrIM6bB7uLAsLZRxZTZ3o2ytqtgORZXO69hSkIesmIyQn59mM3qxGdbSgVl0TFqFBYn4fIF4dZo2mgVMrJoa7SJcJ0i4wvFFBEbxRQhvgVsSrZCocANN9yA9evXY+nSpZBK+yeEIWQkysrK+G0QiotDbwSPdThgLq8QlGmnFNJ2UgFirSnlk3IxjATK5GzUyhLhKCkZdUxdbC4Dy7Hun+O042xTKZI1iSG/hnn/Z1dg6hJOYb9xbQGulgmzYkulEhRMS4YkDPdd7ivUr1Nk/KGYImKjmCLEt4B0mH/729/ipptuomQChPhgvFgCzukUlMXOnxek1oQXV48J9pZrgjJVSi5gAuBw+D5pGKxOG1iWRV1Xo6A8JzYz5DvLrU0mHNtfJSjLyosHOMBuF8Zxdn4CIiIVgWweIYQQQoioAtJh3rBhQyB+DAlTOp0OLpcrZGcttB85JjhWxMZCk5MdpNaEF6exRXDMSGVQpuVD19g84piqMdTj57v/jJtyrsd1mfNQ1VmHBlMzFFJ5yCf84jgOOz66CNYr0ZdEymDO4kloqu8SvDYuPhLJaZTkyyPUr1Nk/KGYImKjmCLEt6Dvw0zIaGVkZAS7CaNiPHdOcBw5OZO2kwoA1mmHMjkbsuhEWGtKYW+5BlVKLiRy5ahi6v2ST2BxWPHhpR3YXr4Hd0y5GTdMXgiLwwqlLLRHWy+db0RVebugbN7iTLQ1dwvK5HIp8ouSaEtAL6F+nSLjD8UUERvFFCG+idphvv/++wG4t1F5/fXX+5WPRt86CZkI7J2dsDY1C8qip9O6obHGsS7U/+NHUCROgm7RHYgsmA9VxhQw8tF1aK8Z6nCs7gx/bHXa4GSdSIgM/aRXdpsTOzcLE31pdSosW52H5kYTqiva+JHnvKl6KJR0P5YQQgghoU/UbzTHjx/3OaIwUPlweTL2ETLRtB8TbifFyGSInTc3SK0JH92Xj8LRVgdHWx26Sw8hIm8uEm/93qj3Xb7UWiHYESBSrsaa3OViNDnoDuwqh8loFZStWjcFSpUcGZNjERsXgUsXmqCNViFBT/kqCCGEEDIxiD4EMFDn1nvvZUKIW8ex44JjVXISVPrEILUmPHAcC8Oh/wrKnMY2MMrRJ+O6Kfd6TNMX4IPS7ThUcwJr81cgQjExptfL5FJIpRK4XO6s35Nz41BYnMw/H6VVYfaCDNClnhBCCCETiagd5s8//9yvckLEUFFRAafTCZlMhpyc0EmqxLEsTJcuC8o0Bfm0ndQY6yk/BXtLjaBMt+RLght9I40pm9OOVG0S/mfBA/jSlJsRo5oYSa84jsPshZOQlRePfTuvoLqiHTfdXtTv5qhESrE7kFC9TpHxi2KKiI1iihDfRO0wp6am+lVOiBh6enr4fQNDibmiEi6LRVAWO4+2kxpLHMehc9/bgjJ5fBoi8+cLykYSUzanHdvL90AfFY9piQVI1SaJ0ubxwG5zgWM56GIicMe9s9DTbUd8YlSwmxVSQvU6RcYviikiNoopQnwb98MBDocDly9fxsGDB4PdFEJE1X74qOBYFhUF3bSpQWpNeOi+fLTfvsu6RXeAYUZ/KbzUWgG7y4FaYyN2VOzD2caSCbEUhXWxgv2VrRYH5HLacoQQQggh4SEgaUwLCgogkUjwox/9CA888IBf577wwgt4+eWXkZCQgP37949RC90jT1u3bsUHH3yAS5cuoaenBwkJCZg7dy7uueceFBePPnOx1WrFO++8g507d6KqqgpmsxlxcXGYPXs27r33XsyaNWvIOk6fPo1///vfOHXqFDo7O6HT6VBQUIANGzZg9erVo25jKBLj3yYYOk+fFhxHZE6i7aTGWOf+dwXHErUGkVMW9XudvzFltnejoqOaP2Y5FlanbUIkK7TZnMAX/X5GApSVNMNudSIjKxaTsuMgkYT+ewyEUL1OkfGLYoqIjWKKEN8Ctu/HSEda1Go1OI5DR0eHyC3qZbVa8f3vfx979+4VlNfX16O+vh5btmzBI488gm9961sj/hmXL1/G9773PdTUCNdONjU14ZNPPsG2bdvw0EMP4ZFHHhmwjueffx7PP/+84LNsbW1Fa2srDhw4gFWrVuHpp5+GQhHae72GA2d3N3pq6wRl0cXTgtSa8NBTeQaOtlpBmWbaMkiko5t61tLdjjpjA1iO5cskjARF+vxR1RtsHMfB5WThdLjfFyNhcK2yHTarAwBw7Wo7Otq6UTw7DXIFjTgTQgghZGIatxtlchyHuro6bN26FQAQETH6DLYD+dnPfsZ3lrOzs3HXXXchPj4eJSUleOedd9DT04Onn34aer0et912m9/119bW4oEHHuA7/QsXLsTKlSuh0+lw+vRpvP/++7DZbHjppZeQlJSEu+++u18d7733Hp577jkAgE6nw8aNG5GTk4P6+nq88847qK+vx6effopf//rX+P3vfz/yD4MERPvR4wDb28ECwyB+0YLgNSgMdO5/T3DMKNTQLdkwqjqrOmvx+Kf/iyJ9Pq7PXIhkjTvDOcMwiFJEjqruYHv/9VPQaFWYtzQTCoUMRoMFrc0mwWvkcilk8nG/socQQgghZMQYTqRFdk6nE7fffjsqKir6Pef5EaOZnjh79my8+eabIz5/IIcOHcLXv/51AMCCBQvwyiuvQKns3Yu1srISGzduhMFggE6nw+eff46oKP+S3Tz44IM4cOAAAOAHP/hBv5Hqs2fP4t5774XD4YBOp8OBAwcEo8SdnZ1YsWIFzGYzEhIS8O677woSqZnNZjz44IM4c+YMAOCdd97BzJkz/fsgRslsNqOsrIw/zs/P9/tzCidXnnkOrbv38sfKhATMfvkFMFIaqRsL1oYKNLz2E0GZZsYKJKz99qjqferg33Ci/hx/fGPWEvx/c+8By7GQiLAuOliulDbjnX+49wiP0iqxZHkObDYnv6UU4O4sz1k0CUoVJYchhBBCiNBE6huI9o1OJpPhN7/5DQB3B9n7P4++5cP9DwC++c1vitVUgX/+8598+3/3u98JOsuAe8T55z//OQDAYDDg/fff96v+48eP853lO+64w+e07hkzZvCjygaDAUeOHBE8/95778FsNgMAfvjDH/bLOh4VFYX/+7//47Mavvzyy361MdS1tbWhpaUFbW1twW7KsHWVlAqOVUl66iyPoc69/xEcM1I5Yq67a8DXDyemqjprBZ1lAEiIjAWAkO4sOx0u7PiwhD82d9mwZ0eZey2zl9wpeuos+yEUr1NkfKOYImKjmCLEN1GnZM+cORNf/epX8emnnwrKGxoawDAMtFotIiOHnqbIMAykUimioqKQlpaGu+66C0uWLBGzqQDcndPDhw8DAJYuXYr09HSfr1uzZg3+8Ic/oL29HTt27PArcZlnSrlSqcSjjz464OvuvPNOOBwOxMTEIC4uTvDctm3bAABarRa33nqrz/NTUlKwfPly7Ny5E4cOHYLZbA7Zuzj+amho4LdBiI+PD3ZzhmRrbYWtuUVQpi2i7Nhjxd7RCEv1BUFZRN5cyDRxA5wxvJhqNrciUq5Gt8O9NViUIhI35V4vWruD5dCeShg6egRlmTlxkMl6bwLok7VITNIEumkhLdSuU2T8o5giYqOYIsQ30dcwP/7443j88ccFZQUFBQCAhx56yO8s2WPp5MmTYL9YR7pgwcDrRyUSCebOnYsdO3bg3LlzMBqNiI6OHtbP2LVrFwBg0aJFSExMHPB1BQUF+PWvf92v3Gg08tMZ5s6dC+kgo5Dz58/Hzp07YbfbcfToUaxYsWJYbSSBZTgrHJWURUUiZd0tQWrNxNe5922A814vLkHMdf3zBPhrQfosFOsLsb18D7aW7cIt+TciQh7aWc4NHT049LlwWY1Wp0Zicm/nWKWSI7dw4GsZIYQQQshEMu6zZI+l8vJy/nFeXt6gr83JyQHgfh9XrlzB3Llzh6y/paUF7e3tANzTrj0cDgcqKirQ2tqK2NhYFBQUQCbz/U9RUVHBf3a5ubnDaiPgzsodLh3m9PR0sCwLiSQ0psEazp4XHEdPL4ZsDJPahTOXrRs95ScEZerJ06CITx3gDLfhxFStsQEAcPuUm3Bz7g0hE3+D2bm5BE4nKyjLKUzg808wYFAwLQky2ofZb6F2nSLjH8UUERvFFCG+BaTDfPny5UD8GL/V19fzj/uuC+4rKSlJcN5wOszeCdDS0tLgcDjwt7/9Df/5z38E22TpdDp885vfxAMPPNBvBNm7jWlpaYP+vOTkZP5xQ0PDkO2bKGJiYoLdhGHjWBaGc8IOs87rZgoRl6OtHlEzV8JWXwZ7UxXAsoi57itDnjdUTLEsi3NNpehxWBGliEBBfDYm6Qb//RzvKi63oOxis6AsJT0aUZrevA5pmTHQxdLNnZEIpesUCQ0UU0RsFFOE+DZut5UKBO9O61AXCZ1Oxz82GAzDqr+pqYl/rFAocO+99+Ls2bP9XmcwGPDUU0/h7Nmz+Mtf/sIn7/K3jd7TxIfbRhJYjESCGc88DcPZczCcPQ/juXPQzSgOdrMmJI51wVpXBqkqEhHZs6BKnwLO5YAqdfCZGsNRY6xHj8MKADDbe3Cy4QK0Kg3iI2JHXXcwOJ0ubP/woqBMLpciM6d3nXeURonJOQOv+yaEEEIImYhE7TB7j2qmpKT4LB8N7zrFYLVa+cd9s2P35b3Nk/d5g+nu7uYf/+lPf0JtbS1yc3Pxwx/+EHPnzoXL5cKBAwfw1FNPobGxEZ999hn++te/4kc/+pHPn+XdBl+838Nw2zhWKioqkJ2dDY2md+2jzWbj12PrdDpkZGT0O6enx51sqLhY2Ilsa2vj4yg9PV1w88DlcqGkxJ3VV6PRYPLkyYJzq6ur0dXVBQCYMmWKYPq7wWBATU0NAPcIfUJCguDcCxcugOM4qNXqflPi6+rq+BsaeXl5UKlU/HNmsxlXr14FACQkJAhG/5VxcehISYYjIR5RN62Eqs/a9sbGRrS2tgIAsrKyBMnbrFYrrly5AgCIjY3tN+ugvLwcFosFDMNg2rRpgudaW1vR2NgIAMjIyBDcBHI6nSgtdWfu1mq1yMzMFJxbVVUFk8m9B+/UqVMFMyE6OztRW1sLwP072jdRyPnz7hH1iIgIwbIBAKipqeFv7uTn5wti2GQyoaqqCgCg1+uh1+sF55aWlsLpdEKhUPB5EjwaGhrQUXkRsqYqxMTEQK5QQKJQQTP9ZlgsFn45RlxcXL/ZJVeuXIHVaoVEIkFRUZHguZaWFjQ2NuJUZwnkGiXf3oSIWETLNfx7jY6OxqRJkwTnVlZW8teEoqIiwZS3jo4O1NXVAXDPJImN7e14syyLixfdndnIyEhkZ2cL6r127RqMRiMAoLCwUHDDraurC9XV1QDcs2T65lG4ePEiWJbF1Us96GwTJvpKTo9Ee4c7U2p8fDwKpiVDInW3ubu7G5WVlfxzfa/Nly9fht1uh0wmw5QpUwTPNTc3o7nZPZI9efJkukag/zUCAC5dusQn3yksLBQ8R9cIt9FeIzyZgLOzswUJSUd7jfDcLM/MzIRWq+WfczgcuHTpEoDQu0aoVKp+S9fq6+v5ZWe5ublQq3tzONA1ohddI9zoGuEWTtcITwxOBKJ2mJcvXw6GYcAwDP9L410+Gn3rFIPT2btNylCdUe/nvc8bjOeiDQC1tbUoLCzEm2++KbhwrV27FrNmzcIdd9yBjo4O/Otf/8LGjRv5X76xbuNYcblcfEI1D47j4HA4+Of7cjqd/PN9sSzLP9e3XpfLxT/n631719t3Lb13m/rWC7gvXhzH+VxjPpJ6OY6Dq7sHdrt9wH8j7/c6WL2+znc4HHA4HD5/30ZT70j/bTxtGqhe73+7vm3yrtdXvDgcDjidTp9rrZxOJ9BWDZfLBU+tMm0cZNoEOCyWIet1OByQSCRwuVyCP+pXOq5CaZciRZEIm8IFG9z1FCTkBO0zHCwOh/MZdpscKDndLijXRKugi1fC0uPOAJ6RFSOYmj3c32VfuSu8/80DdY3wvFdPHYPVO1bXCKfTyb8nqVQ6rHqH817pGjGya8Rg9Q4Vh97XiMHqHSy+xfgMPW3zfm4srhEsy/pMODqaz5CuEeLUK/Y1wvPZ0zViYlwj+rZpOPWKeY3w1Y5QJfqU7IGSe43HpF/ed/IcDsegHVK73c4/Hqrj6tH3Pf/2t7/1udVTcnIy/ud//ge/+tWv4HQ68dFHH+G73/2uzzYOxruN3neHgkEqlfa7UDAMw7fL1y+WTCYbsN0SiYR/rm+9nrtxnjoGq7fvHwDvNvm6sMnlcnAc57NdI6nXYTSiaftOuEwmICoSTFwcuGnTBOd7v9fB6vX1XuVyOZxOp88/dKOpd6T/Np42DVSvVCodsE3e9fqKF7lcDoZhfNfLOiCVMGCkUnhqVaUX8jf0hqrXarWCZVmUlJTwoxRXO2rw7LnXkaCMwdL4uVidfj3sMidqjY1IikqA0+kMymc4WBwO5zO8fLYDLqfwWlUwLQlOpxUSqQQRUTKkZgh3BRjO7zLLskP+mwfqGuF5r546Bqt3rK4RlZWVfIwUFxcPq17v/w/0XukaMcJrxCD1Duca4XK5fL6X4ca3GJ9hSUkJHA6H4LyxuEawLOuzXaP5DOkaIU693v/3NtLfZU9MiV1v3/c6WL10jQi97xEDXSMmUvI4hhOxJ3vffffxj9944w2f5aPhXacYHnnkEWzfvh2Ae4sp72k/fX322Wd4+OGHAQA//elP8dWvfnXI+l9//XX84Q9/AOCedrFz584BX9vR0YGFCxcCAJYsWYJ//OMfAID//Oc//HZTL7zwwqCZr41GI+bNmwcAWLFiBV544YUh2ygWs9nMT5MC3NNiArUP9Pnz5/lpSX2nYI03pvIKdJ48xR/LImlLKbFxHAfO5QAjlcHR3gBrTSk4loV29uphz3TxFVN/PPAiTjX07uc8NTEPv7j+kVHPngmmq1da8ebLxwRlsxdOwspbC1F2sQlGgxVzFk2CSh3cG3ATQShdp0hooJgiYqOYImIKZt9AbKKOMA/UoRW7oysW73UDBoNh0A6zdxIt73UBg/EOir7rYfqKjY2FTqeDwWBAS0uLzzZ61hcMxPv54bZxItBoNHA6nQNuzTWe2L9YD+OhTIgf4JVkpCxXz6J1y/PQzl0L7ezV0MxcCc5h86tj2zemrnZcE3SWAWB60pSQ7iy7nGy/RF/qCDluuDkfCqUMRbNSYelxUGdZJKF0nSKhgWKKiI1iihDfwvo3wjshQWNjI9LT0wd8rXfG6+EmHxtqG6i+PFO9vef8923jYLyfFztB2ng21M2I8aJu00ewd3ZAqlSB+WJaiyKeOsxiMxz5EK5uAzr3vgXD4U2IXXY3ouf5N4rfN6bsLgfSo1P4vZc1yijclLNMtDYHg8PhQoJeg/aW3uSEy9cUICLSfR1iGIZ/TEYvVK5TJHRQTBGxUUwR4ltYd5i9s8SVl5fz05l98WTDYximX5bDgXhni/PeT9kXl8vFj2J7Z/HLysoCwzDgOI5vw0C8933um6mOBJetrR3XXnfPtJAoFIicnAn9TaugSkwY4kziD2v9FVivlfDHnN0CRqEa5IzhKUjIwVOrf4ZjdWfw34uf4LrMBVDJR19vMMnkEtx8exGKZqRgz44yKJQyzJyfMfSJhBBCCCFhJCgd5oGmexw/fhybN29GU1MT9Ho9Vq9ejWXLxm4UZ+bMmZDL5XA4HDh27Bjuuecen69zuVw4ceIEAKCgoEAwTXowMTExyM3NRXl5OcrLy9HU1ISkpCSfry0pKeGTdnl3diMiIlBUVIQLFy7g5MmTYFl2wEX0R48eBeBeZD9nzpxhtZEEhuHcOf4xa7ejp64eicuu40eaiTgMRz4SHEujYqEpGv01pNveg2uGesxOnob5aTNDPvMjx3GwWdyZMtMyY7Duy9OhjVFDIgndKeaEEEIIIWMhoOnLjhw5gq997Ws+O8HPP/88vvrVr2LTpk04fPgwPvzwQzz00EN46KGHYLPZxqQ9Wq0WCxYsAADs3r17wP2iP/nkE36fvJtvvtmvn7F27VoA7i+or7766oCve/PNN/nHfX/GqlWrALj3EPQkKeurrq4Oe/bsAQAsWrQI0dHRPl9HgsNw9pzgWFc8jTrLIrM2VKCn7LigLHr+LWBko1+DW9Z2FRdbyrD1yue40HwZdnbwjPXjncPuAsu68z3WVneg8kor6q91wuUM7RsBhBBCCCFiC1iH+f3338fXv/51HD16FB0dHYIkWmfOnMHzzz/vzm7b5799+/bh8ccfH7N2fe1rXwPg3rLpscceg9lsFjxfUVGB3//+9wDcm31v2LDBr/rvvvtuPgHX22+/jc2bN/d7zUcffcSXz5o1C9OnTxc8f+edd/IJyX7729+isrJS8LzZbMZjjz3GbwXwwAMP+NXGUFddXY2Kigp+Y/XxKCo7G1G5ucAXswN0M6cPcQbxV+fe/wDoTfovUUVCO3PliOryjimr04ZqQy0AwMm6UNZ2FVfarorR5KBgWQ42m3t0ubXZhJZGEwCgpcmEM8drYOmxD3Y6GaFQuE6R0EIxRcRGMUWIbwGZkt3a2sp3OgH33sIdHR3Q6XQAgNdeew2Ae31wXl4eHnroIXR0dOCFF15AR0cHduzYgXvvvRezZ88WvW1LlizB6tWrsXPnTpw5cwa33XYbvvKVryA5ORmlpaV4++230d3tTorz4x//uF/26WPHjuH+++8HAMybN69fRvCYmBj85je/wfe//324XC78+Mc/xvbt27F8+XIoFArs2bMHO3bsAAAolUr89re/7dfG2NhYPPLII/jtb3+Lzs5ObNiwARs3bkRhYSEaGxvx9ttvo66uDoB7RHvJkiWif07jWVdXF78NwniVun4dUtevg8NkgvH8RWgLC4LdpAnF3l4PS7Uwi3VE7lxIlBEjqs87psztNjhZF/+chGGQF5c1qvYGC8dysFkdAAeYTTZUV7RDIu2dht3TbYfD7oJ6ZB8bGUQoXKdIaKGYImKjmCLEt4B0mN9//31YrVYwDIN169bhN7/5DVQqd8Kc7u5u7N27F4B7Q+xXX30ViYmJANxTi9evXw+73Y6tW7eOSYcZAP74xz+iu7sbBw8eRF1dHZ566inB8wzD4OGHH8bdd989ovpXrlyJp59+Gk8++STMZjP27NnDT5/20Ol0eOmll5CTk+OzjnvvvRetra14+eWX0d3d7XN697Jly/h9n8n4JNdoEL94YbCbMeF07n0b4LymE0ukiFly56jqLDFVoCA6C3naSTDbu1FrbAAHICM6FREK9egaHASmLiv+9fxhzF2cidwpiSgvbe63Zjm3UA+tLvTeGyGEEELIWAlIh/nIkSMA3Fsd/e///i+kXms3Dx8+DLvdDoZhsGDBAr6zDLjT219//fXYuXMnjh8/3q9esajVavz973/Hli1b8NFHH+HSpUswmUzQ6XSYPXs27r///lF31m+++WbMnj0bb731Fnbv3o36+nowDIP09HSsWLECGzduHHLv5EcffRTLli3DW2+9hZMnT6K9vR1qtRqFhYX40pe+hHXr1oX0vrAjNWXKFHAcN67fe09NLZxmM5QJ8VDExtL6ZRE5zZ3oLj8hKFNnFkMemzziOhVJEdh6aS/2dBzHLYobcXPeDShKzMeV9qvIjp002iYHxa6tl9DZ3oNPPy7FsQNVyMyJQ3RMb+c4JV2H5DTKfTBWQuE6RUILxRQRG8UUIb4FpMNcVVUFhmFwww03CDrLAHDgwAH+8dKlS/udm5ubi507d6K1tXVM2+gZ/V63bp1f582fPx9lZWXDem1iYiIeffRRPProoyNpIgD3GudZs2aN+PyJyFfG9fGmu6oali+SyjESCaKLp9G0bJF07n8XcDm9ShjELBvZbBCPDy/vBAB0O3rw7sUtOHDtOP7v5l9gVsq0UdUbLNeutuPCqd6t7YydFjTVG/kOc7ROjZyCxIFOJyIIhesUCS0UU0RsFFOE+BaQpF9GoxEABKPHHgcPHuQfL1zYf6qq5y5XT0/PGLWOkLHFcRxsbW29xywLqZqmvYrBZbPAfPGAoEyZlgdViu+lDcNR0V6NM40XBWXLsxZDwgR0UwHRsC4W2zcJ349UJsHk3HgAgFIpw9QZKbSlFCGEEEKIDwH5BqhQKAAAFotFUH716lU0NDSAYRjExsYK9h/28Gz1FBUVNfYNJURkzh4LnF1dYO3CzMPKhPggtWhiMRz6AJzDKiiLWeJfJvu+IuQqzE+byR9rlVFYlXPdqOoMppOHr/GZsD0ys+OgUMogkTCYOiMFCiWNKhBCCCGE+BKQb0np6ekoKytDaWmpoNyT7AuAz8zONpsN+/fvB8MwyMzMHONWklBlMBj4NTeezOvjxYXHfwpndw8UMTqo9Hoo9YmQR2shi4wMdtNCHutywHT2M0GZPCEDEdkzBzhjeFK0SfjG1LuwMn0JPqncjaLkAqhkylHVGSzdJhv27BAuGYmMUiAl3b1WmZJ8Bc54vk6R0EQxRcRGMUWIbwHpMM+fPx+XL1/GwYMHsX//flx33XVoa2vD66+/zr9m5Urhfqksy+IPf/gDWltbwTAM5s+fH4imkhBUU1PDb4Mwni7w9o5O9FyrcT9ua4O5vAKJK5YjKjs7yC2bGExndoG1CPdN1y26fdT1chyHA5eOIloShbVx12FafmiuWwaAzz+5DJvVKSjLKUwEI2EoyVeAjdfrFAldFFNEbBRThPgWkA7zhg0b8MYbb4BlWXz7299GXl4e6uvrYTKZwDAMkpKScP311/Ovf+WVV7Bt2zY+mZZcLsedd45uixhCAs1w9pzgmJHLoYiNhTI+LkgtmlgYmQKRRdfBVnsZTmMLZNGJiJwy+j3I23o6UN1TD9blQoI9DimWNMRHDJ7Bfjyqre7E2RO1grLEZA2iY9SU5IsQQgghZJgC0mHOycnBww8/jGeffRYulwuXL18G4B7JkUql+NWvfiXIzPfOO++gsbERHMcBAH7yk58gPT09EE0lISg5ORksy0IiGV9Jmfp2mFX6RDASCZQJCUFq0cTh6jbC2dUGeUwS5DFJcJo6oEovFCUGLrdWQhMVBY7jYGecOFp7BmvybhhXSb9qrnYgI2vgTjzLcti+6YKgTCplEK+PglIpw5TplOQr0MbrdYqELoopIjaKKUJ8C1iml+985ztITU3Fiy++iGvXrgEACgsL8cMf/hCLFy8WvDYrKwsNDQ2Ij4/HT3/6U6xZsyZQzSQhKGEcdkA5lu3fYU7SAwDkMbogtGhisTaUC44VscnQFPXfls5fBmsXGs0tiPBaY54fnzWuOst7d5Zh/6fluHFtARYv950N/PTRGjTVdwnKomPUKD3bCI1GBaWKknwF2ni8TpHQRjFFxEYxRYhvAf3WdNttt+G2226D0WiEVCodMPP1xo0bcffdd2PZsmWQy+WBbCIhoui5VgPHF9upeaj0SdBOncJvlUZGhnXaYW+5JihTJmeDkUgHOGNomy99irmpxTDaTJB51SOXyDE5JmPE9Yqt5moH9n/qvlnw+SfumTp9O809Zjt2b7ssKIuIVKCjzb0137EDVSgsTh50hJoQQgghhLgFZZghOnrwRDPLly8PUEsIGRudZ84KjqWRkZBpoqArDt0EUuOFq6sdYFn+mGEYKJNHnkjtSttVvHX+Q/znwkdYnDEXd065GSnaJACA3eUQdKCDLSMrFjeuLeA7y746zbu3X4bV4hCc19Pdu63ZjWsLqLNMCCGEEDJMQZ9n6HA40NbWhvb2dtj77FVLSKjyNR07dv7cILVm4uA4DvLYZETPvwXqzCJIlGrI41IhUUaMuM73S7bydR+8dhy/3vtXuFgXAEAhHX8zXBYvz8GNawv4488/uYxDuysAAPU1Bpw+VjPguYNN4yaEEEIIIf0FZYT5yJEj+O9//4uTJ0+ipaVF8FxCQgJmzJiBtWvXYvXq1cFoHgkxFy5c4LdBmDYt+CO4LpsNXSXCPcdVyclQp6QEqUUTR9epHegpOwbt3LWIyJ0NVXohOMfIb7SVtVXiXNMlQdmt+StRWlI6rmKqL0+nt+9Ic2qGDvokDZobTf3Ooc5ycI236xQJfRRTRGwUU4T4FtAOc0dHB37wgx/g6NGjfJknE7ZHa2srPvvsM3z22WeYP38+/vSnPyExkbY/IQPjOI7/bzwwXboMzum19y3DQFuYD6lKFbxGTQAcx6LrxCdwdDTCUn0BspgkxK/8OiJyZ4+4zhSNHrcX3oTt5XtgddoQrdJiZfZSlJVeHlcx5YuvTnNmThwWXJeFi2fqUXmljX8tdZaDb7xdp0joo5giYqOYIsS3gHWY29vbcdddd6GhoUHwiyiTyaDVauFyuWA2m+Fyufjnjh49irvuugubNm1CbCytuSO+qdVqyGSycZMgru/6ZUVsLKKysoLTmAnEUnEGjo5G/tjZ2QRGrhhVnRplFDZMXYvlWYvw+dVDSIiIg1KmGHcxNZC+nebqinbUVXfC6exd402d5fEhVGKKhA6KKSI2iilCfAtYh/mxxx5DfX09ACAqKgr33Xcfbr75ZuTm5vJZg51OJ8rLy7Fjxw689dZbMJvNaGpqwk9+8hO8+uqrgWoqCTG5ubnBboJA56nTgmNVkh7qVJqOPVrGE58IjhWJk6CaVDTqei+0XEZ1Zx3mp81E1hcZscdbTA1m8fIcGDp6cOqIe+0ydZbHp1CKKRIaKKaI2CimCPEtIEm/Dhw4gGPHjoFhGGRkZOCjjz7C97//feTl5Qm22JHJZCgsLMSjjz6KzZs3Y9KkSQCAgwcP4tChQ4FoKiGjYu/shKW2TlAWOTkTMq02SC2aGGzN1bBUCROpaeeuHfUWXW09Hahor4aDdeJUwwXsrToCs617VHUGQ3pmLGRy4eVcHSGnzjIhhBBCyCgFpMO8das7C61UKsULL7yAtLS0Ic9JTU3F888/D5nMPQj+8ccfj2kbCRGD4dx5wTEjk0E3YzrtvTxKnQffFxxLIrSIKlo6qjpdrAsn68/De6VWh8UwqjqDpeRcA5wOVlBm6XHw2bMJIYQQQsjIBKTDfPr0aTAMg6VLl/o13SM3NxdLly4Fx3E4ffr00CcQEmSdJ08JjlX6RERkpAepNRODq8eEnisnBWURk6dDIhvd+mWWYxEXESMom5qYjyhl5KjqDSSnw4VX/3IA5aW9uw14jzR7bzlFCCGEEEL8F5A1zG1t7mytU6dO9fvcqVOnYs+ePWhubha7WWSCqKurg9PphEwmG9bshbHCcRwMZ4UjzOrUFCjj44PUoonBcHQzwAqzjmtmrhxxff86/R6mJRViVnIR5qZOR0Z0Ck41XIBcIkde/GQA4yemhrLprTNorDPyx8lpWhQWp4DjWOzZfgVAb0Iwmp4dXKESUyR0UEwRsVFMEeJbUPZhHgmpVBrsJpBxqqOjg983MJgX+J5rNXCahPvfRk+fDoZid8Q4lxOms7sEZQr9ZKgyCkdU3+XWCmwr34Nt5XuQHTMJG4rWYmZyEVZlXwebyw4J4x6dHS8xNZiDn1fg8oUmQZmlx4GUdB2y8uIhkUj67dNMnebgCYWYIqGFYoqIjWKKEN8CMiU7ISEBAFBSUuL3uZ5zPHUQMl71zY4tjYiAtsj/WRWkl7nkAFiL8CaEZuZKMMzILl3vl/Rm2q7svIaXT7wFB+uETCpDpCJiVG0NpEO7K7B72+V+5RlZcUibpAPg7hzfuLaAf46mZxNCCCGE+C8gI8wzZsxATU0NDhw4gKtXryJrmHvSVlZW4sCBA2AYBjNnzhzjVpJQlZeXB47jgp5Yq+OEcJ2tKjkJESnJQWrNxGA4ullwLNXGQVN03YjqutJ2FReahZ3M9YWroZD2329yvMSUL4d2V/Ajxt6iNEoUFidBoey9rPfdp5lGmoNnPMcUCU0UU0RsFFOE+BaQEeb169cDAFwuFx5++OFhrUdubm7Gd7/7XTid7rWLa9asGcsmkhCmUqmgVquhUqmC1gbWboe5XDh6p8nPh0QxusRU4cxaXwZHa62gLKpwMSSKkf07Z8Vk4Dvz7kdSlHu2SowqGjdmL/H52vEQU77UXO3w2VkGgIzJsciYHNuv3NdIc83VjjFrI/FtvMYUCV0UU0RsFFOE+BaQDvOiRYswb948cByHqqoqrFu3Di+88ALKy8vBcb2bunAch/Lycjz//PO49dZbce3aNTAMg1mzZmHZsmWBaCohI2IsvQTO6RSUxc6bE6TWTAydBz8QHDMKNbSzbxpxfbVdjXCxLvz6hsfw3XlfxX0z7vA5ujyeZWTF4rpV/XcaUEXIUVicBHWE7xs03p3m61blIiOrf8eaEEIIIYT0F7CkX0899RS+8pWvoKGhAV1dXXj++ef5fZY1Gg0AwGQy8SPKno50UlIS/vKXvwSqmYSMiLHP/svKhHhocmna60g5TR2wVJ4RlKkzp0Eeox9RfVaHFeeaSmF3OfB51WEUJuSgMD40/31yC/XY/2m5oCw9MwYZWXGDnrd4eQ7SM2Ops0wIIYQQ4oeAjDADgF6vx3vvvYe5c+eC4zj+P4fDgc7OTnR2dsLhcPDlADB37ly8++67SExMDFQzSQgym80wmUwwm81Ba4PhzDnBccL1yyCLigpSa0If57RDNWkqGIXaXSCRQjt37YjrO91YArvLAcC9/3JJyxW09rQP+PrxEFMD6Zu4S6GQIr8oCZrooafQUWc5eMZzTJHQRDFFxEYxRYhvAd1WKj4+Hm+88QYOHTqErVu34ujRo2hsbBRMy05JScHs2bNx++23Y9GiRYFsHglRV69e5bdBKC4uDvjPtxuM6K6qEpTpZk4PeDsmEkd7A1TphVCm5sPRVgfO5YB6hFtJ2Z12GKxGQVlGdAr0UQNn3g92TA2krcWMyxeFW0mlTtJhcs7go8sk+MZrTJHQRTFFxEYxRYhvQdmHefHixVi8eDEAdyIwo9EIjuOg1Wohl4fWmkJC+k7HlqhU0OTlBak1oY9zOmBrrgYAMBIJFIkZUKUXgJGMbD9rhUyBVTnLUNpyBVfar0IukWNGcmhu93VkTyXQe38RSpUMC6/Phi42dLbEIoQQQggJJUHpMHuTSqWIjaVpgmTkEhISwLIsJJKArTAQYB0OKOLjYW9rAwBET5sKCd34GTFbyzVwX0yfBgAGDJTJI1tv/NfDf0dW7CSsyrkOxUmFSI9OgdVpg0qmHPS8YMeUL11GC86dqhOUzVmciZwCWrISCsZjTJHQRjFFxEYxRYhvY95hbmtrQ1NTE2QyGdLS0hBF6zqJyJKTg7vXsX7FciTeeAMs9Q0wnjsHJa25HzGO42BrECa0ksclQ6qK9Luu0pZyHK49hcO1p7Dl8mdYV7AKq3OXIUYdPeS5wY4pX47trwLr6h1elsokmL90chBbRPwxHmOKhDaKKSI2iilCfBuTDjPHcfjPf/6Dd955BxUVvQlqJBIJZsyYgW9961u0TRSZEFw2GzpPnIQqJQXqlGQkr6X9wkcrMncOrA0VcLTVguM4KFP6b6M0HB9e2sE/NtpM+OTK51idG5rXHUuPHaeOXBOUzZibjijN4CPlhBBCCCFkdETvMHd3d+Ob3/wmzpxxbwnjndDL5XLh9OnTeOihh3DHHXfgd7/7HRiGEbsJhASMtbERPbV16KmtAxgGKn0iEq5fRnE9Ao7OJhhPfILoOWsQVbgQrG0G7G21kOn830qqvqsJ55pKBWXrC1eH3L7LHizLYfqcNJw5VgunkwXDAAuvzwp2swghhBBCJjzRO8w//OEPcfr0aTAMI+gse3jKNm3ahNjYWPzgBz8QuwmEBIylvqH3gOPASKXUWR4h44lt6DqxDV0ntiMiZxaiF9wG9aSRJeeKVevw5LL/wSdXPseZxhJolVFYPjl0s+5LJAziEqPw5a/PwbXKDlh6HIiN93+aOiGEEEII8Y+oHeYzZ85gz549fGd53bp1uPfee5GVlQWpVIrLly/j3//+N7Zv3w6O4/Daa6/h3nvvhV7v/wgSIR6XLl3it0EoLBzZ1kMjwblcsDYKt/hRp6YG7OdPJKytB6Zzu7844tBTcQryuJQRd5jPN19Co6kFK7Ovw5rc5bC7HFDIFMM+P1gxNZDa6k70dNvR022HSi1H3lS6Zoaa8RZTJPRRTBGxUUwR4puoHeZPP/2Uf/z444/ja1/7muD5mTNnYubMmUhJScE//vEPuFwubN68Gd/61rfEbAYJMw6HAw6HY+gXisxlsUKm6U1ix7Ec1CmUMGMkTOd2g7NbegsYCbRzbh5RXU6XE/VdTXCyLlztrAEAzE6Z5lcdwYopX+w2J5rqu3qP7U7YrM4gtoiMxHiKKTIxUEwRsVFMEeKbqHnjPeuWc3Nz+3WWvX3/+99HdLQ7U+3Zs2fFbAIJQ3K5nP8vkBq2foLW/QfhMHYhMjMT+pU3QqpWB7QNEwHHumA8uV1QFpE3F/IRrF0GgAZTM5ysiz+WMAxSNf7VFayY8qW+xgCWZfljiYRB2iRd8BpERmQ8xRSZGCimiNgopgjxTdQR5rq6OjAMg0WLBl8rqFAosHDhQuzYsQPl5eWDvpaQoQRr2lDnyVMwl1eg62IJat56G2l33YlJ93wlKG0JZd3lJ+HsFE5tj563dsT1GaxdguPEyHio5Cq/6hgvU9GcThfqawyCMn2yFkoVfZkJNeMlpsjEQTFFxEYxRYhvonaYTSYTACAmJmbI12ZmZgIAurq6Bn8hIeOQ02yGuaJSUBY9rShIrQltxsMfCo5luiQoU/NHXF9xUiGyYyehxliPa4Z6ZESH5rryq1facOlCI5RKKWRyKV+eljn09ZUQQgghhIhD1A6z3W4HgGFN5YiKcq/97O7uFrMJhASE4fwFwCsLvEShgLZg5J28cGVrroatQTjLRJVRCInU/0vT0drTuNxWibV5y5EQGYfChFwUxOeI1dSA2/fpFdRWdUAqkyAlLRqpk3RISdchMor2XiaEEEIICRRRO8wcx4FhmGFtqyORuJdPu1yuIV5JyPgTM3MGCp98Aoaz52A4dx7KuDhIFMPPwkzcjEc+EhwzciW0s2/yux6O4/BB6XZcM9RhR/leLEyfhTum3Iz06BSRWhpYNVUdqK3qAAC4nCxqqzuhjlRg/lLae5kQQgghJJBE34eZkEBrbGwEy7KQSCRITg5MlmqpWg11agp004shUSjAfjG7ggyfq9sI86XDgjJlaj6USZP9rutC82VcM9QBAFiOxaGak1iYPnvEHeZgxJS3Q7srBMcKpQx5hYmIjqGkcqEq2DFFJh6KKSI2iilCfKMOMwl5ra2t/L6BgbrAO81mtO47ADAMlHGxUOr10E4phERGv1LD1XVqJ+CVzRqMBNqZK8FIpAOfNICtZbsEx8lRiZiTWjzitgUjpjxaGrtQXtoiKEvL1GFSTlxA20HEFcyYIhMTxRQRG8UUIb6Juq0UIeHC2tTsfsBxsLW1w1xRCUbqf0cvXHEuB4wntwnKFAkZiMiaPqL6Hpz9FdycewOUUve0+FvyV0DChObl7dAeYTI5mVyCnIIExMZHBqlFhBBCCCHhi4bDSMjLysri188HirVJuA2SSq8P6M8PdeZLR8BaTIKyyKmLIVGNrFMol8pRkJCNJRlzUdp6Bcsy54+qfcGIKQAwdPSg5EyDoCwlXYfJOQkUXyEuWDFFJi6KKSI2iilCfBuTDrPRaERDQ8OQr/FobGwE55VxeCApKaGZwIeMLU/G9UDhWBbWZuGUWVWyPqBtCGUcx/VL9iXVxiNqyuIR13nNUIdaYyNqjY1QSOWo6LiGKYm5I64v0DHl8fknl8GyXtnXJQyycuORkKQJSnuIeIIVU2TiopgiYqOYIsS3Mekwv/zyy3j55ZeH9VqO47B8+fIhX8cwDEpLS0fbNEJGxdrUhM4z5+AwmSBV9m7vo9JTh3m4OKcdjEINMBKAYwEA6snTIYtOHFF9LMeixth7g87ucoD9ot5Q0mO2o+yicOZCUlo0svITIJHQ3X5CCCGEkGAYsynZQ40Ye28/NdhrGYYZ1ugzIYHQdugIrv37TQCAPEaHyMxJiJkzB7JIWl86bC4nIiZPhzI1F7aGSjg7m6CZvnzEU8BautthddoEZRm6VDFaGlDHD1XB6ezt6DMMMDknHsmp0UFsFSGEEEJIeBO9wzzczq3YryPhy2q18mtuVCrVmP4sw7nz/GNHpwHOuDiokmh02R+2xkpw4CBRqKHOLAKyZkCVnD3i+mJV0ZiVXIQaYz3aejoRq46GVjm6aWWBjCkAsNucOHGwWlCWnhmLuYsnQSoLzeRlRCjQMUUmPoopIjaKKUJ8E7XDfPnyZTGrI2RYrly5wm+DUFw88q2EhuKy2dBVeklQpkxKog6zHzjWBVvTVUGZKikTjEzuVz1O1oWXT7yJGyYvRGFCLnLiMpETlwmzvRs25+j3xA5UTHmcOV4LS49DULbmS0XQ6mjf5Yki0DFFJj6KKSI2iilCfKMs2YQMk+nSZXAOr04Nw0ClT4QqcWRrb8ORvbUWrEM4fVqZnON3PYdrTmJf9VHsqz6K7JhJuLVgBRamz0aUIhJRitCaHu9ysTi6T3gTIbcwEYnJ2iC1iBBCCCGEeFCHmYS82NhYOJ1OyGRjG87e07EBQBEbC3VyEiQKxZj+3ImEkcogjYiGq8edJV+u00Ma6d8aXY7jsOXyZ/xxZec1bC/fi0UZc0RrZ6BiCgBKzjTA2GkRlC1aPvIp6mR8CmRMkfBAMUXERjFFiG/0G0FCXlpaWkB+Tt8Os0qfCCVlxx4WjuNgLjmAyPz50M5eDaexFbbGCigSJ/ld14Xmy7hmrBeUrStYKVZTAQQupgCgp9uG1Awd6msM7p89KQYZk2MD9vNJYAQypkh4oJgiYqOYIsQ36jATMgyOri50X60SlCmTkqBOTgpSi0KLpeo8Wjc/g3Z1FLQzV0I7+2ZEFS4aUV158Vn4+qwvY2vZLrR0tyNZk4jZKdNEbnFgdBkssFqdyC5IQGZOHBpqjZi7OHPEGcMJIYQQQoi4qMNMyDAYz18AvDK2MzIZ1El6KGJpJHA4jMe3AgBYixmGwx+ip+IUUh/8vxF1DFUyJW7KvR5FifmoNtRBKVNAwoRmJuna6k7+sVQmQU5hIvKm0qwFQgghhJDxIjS/ZRISYIazwunYyoQEqJKTwEilQWpR6LC3N8BSeVpQpp1106hGUc32bhyuPYWW7ja4WBcaTM1gOXboE8cRS48dbc1mQVlqhg4SCY0uE0IIIYSMFzTCTEJeeXk5vw1Cbm6u6PVzHAfD2XOCMlVSIlS0fnlYuk5uExxLVJGImrZsVHXWGBoAuLeXqjE2oMncinX5KwGR+ppjHVMAUHetExx6Zy3IZFKkpPmXAI2EjkDEFAkvFFNEbBRThPhGHWYS8iwWCxwOB5xO55jUb21qgq21VVCm1NP+y8PhsnbDdG63oEwzcyUkCtWI6+Q4DjV9kn5lRKdAIhFvwsxYx5TD7kJTfZegLDktGjI5zViYqMY6pkj4oZgiYqOYIsQ3mpJNQh7DMPx/Y6HvdGyJSgVVsh4yLe2TOxTTuc/Bee+7zEignblqVHU6WSci5RGQeP17Z0SnjqrOvsY6pj7dUoqWJhO4L9bFMwyD1AzdmPwsMj6MdUyR8EMxRcRGMUWIbzTCTELetGljmyHZeK7PdGy9HuqkJPqDMgSOdcF4/BNBmTwuBazdMsAZA9tffQwOlwNLM+dDIZVjaeY8WJ021Bkb0dLdhriIGLGaDWBsY8rQ0YPTR66B44CIKAXSM2NQNDMVKrV8zH4mCb6xvk6R8EMxRcRGMUWIb9RhJmQQnMsFw/mLgjJVkp6mYw9Dz5WTcHW1CcpUGVOhSEj3qx6ny4n/nP8IHRYD3rnwMW7KvR6rc5YhShmJnLhM5MRlitjqsbdnRxmfcL3HbMeV0hZcvzovuI0ihBBCCCE+0ZRsQgZhrrwKV3e3oEypp4Rfw2E4/rHgWBoVg4j8eWAk/q3TPVx7Ch0WAwDAaDPh3Ytb0GhuEauZAdXTbUfpuUZB2aSsWOhTKNkXIYQQQsh4FJQRZo7jcOrUKZw6dQoNDQ0wGo1Yt24dli9fDgDYtGkTpk+fjuzs7GA0jxCe4Zxw/bJMq4U6JRlStTpILQoNtqYq2GovC8qUqflQp+b7VQ/Hcdhy+TNBWUF8NnLjJo+6jcFw4LNyuJzC7a+WrqBMpIQQQggh41XAO8wffvghXnjhBdTXC7PcTp8+nX/87LPPoqWlBTfddBN+8YtfQKfTBbiVJJS0traCZVlIJBIkJCSIWnf/7aT0UCUlifozJiLjsS2CY0auQlTRUkiU/t9ouGf6HdhS9ikuNJcBANYVrBSljYMZi5hyOFw4c7xWUJacFo3MnDhR6ifj21hep0h4opgiYqOYIsS3gHWYOY7DE088gc2bN/PHHt7JkxwOB1paWsBxHLZv344LFy7gzTffhJ6mwJIBNDY28vsGinmBd1mtMF0SjpKq9HqoEhNF+xkTkdNsgLn0oKBMmZIDdcYUv+tiGAYzkqdgRvIUHKk9hUutFZiVMvZJScYipo7tvwq7TbhVx8Lrsyl5XJgYq+sUCV8UU0RsFFOE+BawNcxPP/00PvroI76jvGTJEjz88MP9Xme327F06VL+dbW1tXj00UcD1UxCeF2ll8C5XL0FDANlYgJkUZHBa1QI6Dq9E2C9PzcJoqYugTRi5NtwdVlNqO9qQowqGhXt1WBZduiTxhGW5XDsQLWgLDYhElOmJwenQYQQQgghZFgCMsJ89epVvPbaa2AYBnq9Hs8++yyKi4sBAM8//7zgtZGRkXj55Zdx4sQJPProo2hra8OZM2ewa9curFixIhDNJSEmIyMDHMeJPlLXdzq2Ii4OErmc9l8egqVKuO5bkZiBiOxZI66P4zicbSoFy3FgOSfONpWi2lCLFdlLIWHG5p6f2DFVeq4B3SaboGzuokmQSGh0OVyM1XWKhC+KKSI2iilCfAtIh/mdd96By+WCRCLBc889N6x93ubOnYvnnnsOX/nKVwAAW7ZsoQ4z8Wms1rj3TfgVlTUZMbNm0h+SQXAch8gpiyGPTYat/goc7Q2IzJ8PmXbk63QbzS1oMrcKylI0+jHrLAPixhTHcTiy96qgLDpGjVkLMkT7GWT8o1wcRGwUU0RsFFOE+BaQKdlHjhwBwzBYuHChX5uiz5w5E4sXLwbHcbhw4cIYtpAQIbvBgJ7qa4Ky1DvWQ5NP++UOxtHRANZigiw6AZFTFkM7/xZETlkyqjpjVNHI1KXxx2qZCgXxOaNtasBUlbehsc4oKFt5ayHkiqBsUkAIIYQQQvwQkA5zU1MTAPDTsP0xdepUAEB7e7uobSJkMMZzwhs0UrUaUbmh00kLFmufraTkuiTIY/1bp9tjt+Dt85vR0WMAAKjlKsxLm4EbsxYjVq3DNH0BZNLQ6Wwe2l0pOI6Nj0DBNFq7TAghhBASCgLyrdNutwMAVCqV3+cqFAoAgEQSsPxkJMQ4nU5+zY1MJk5I912/rC2aColIdU9UTmMrnF1tgjJVeoHfU9h3XT2ADy/twMdln2FJxlzcmr8CGbpUxEXE4MasxWI2eUBixVRDrQFV5cLPZOH12bR2OQyNxXWKhDeKKSI2iilCfAvIb0NcXBwaGxtRXV3t97llZe69V2NjY0VuFZkoSktL+W0QRjKLoS+O4/qtX9bNmD7Aq4kHa7dAIleCdbiTW0mUEVAkpPtVh9PlxLYrewAALtaFfdVHYXXa8IPF3wKAgK0fFyumDu8Rji5HapSYPidtgFeTiUzs6xQhFFNEbBRThPgWkGHb4uJicByHPXv2oKenZ9jn1dbWYu/evWAYxq+1z4SMCssi/e4NiFu8CDKNBgCgm05/OAbjNLZCHp+O6Hm3ICJ7FqSqSKjS8sFIpH7Vc7j2FDosBkHZuoKVIrY0cDiOQ0SUAlEaJV82f+lkyOT+fSaEEEIIISR4AjLCfPPNN2PHjh0wGo349a9/jT/+8Y9DnmMwGPA///M/cDgcYBgGq1atCkBLSSjSarVwOp2iTR9ipFLoV65AZGYmJt1/D5zGLqjTUkWpeyJi7RbUvfoYZDHJiJ63BlFTFkOZkg18sZe6P/Lis7Ayeyn2Vh+Fw+VAYUIOcuMmj0GrBydGTF272oGISAVmLkiHpduB2upOzFk0ScRWklAi9nWKEIopIjaKKUJ8C8hvxOrVq1FUVISLFy/i448/RmtrK775zW9iypQp/V7b0tKCzz77DK+88gpaWlrAMAyys7Nx8803B6KpJARlZmaKXqerpwedp067DxgGpvIK6FfeCKlSOfiJYch0fh9YWw/sTZVo/fg5dOx+C+kPPQuJUu13XUlRCbgp93qkapPQ1tOJYn3hGLR4aKONKZeTRXWFe+0ywzCIiFJg9sJJUKroS0i4GovrFAlvFFNEbBRThPgWsG9vzzzzDL785S+jra0NR44cwZEjRwTPv/TSS3jxxRdhNpv5Mo7jEBUVhb/+9a+09y0JKHtnZ+8Bx4G1WiH5IgEd6cVxLLpOfCIoUyZnjaizDABO1oVzTZfQ47BALVOC5VywOe1QykLrs2/os40UAKRnxtB1jBBCCCEkxAQs9XRqairefvttFBUVgeM4/j/PF0iTyQSTySR4LiMjA2+88QZycmg7HxJY9o5OwbEiljo7vlgqz8LR0SAoi567dsT1XWmrRI/DAgDgAFR0XENrT+htKXe1rLVfWUKSJggtIYQQQgghoxHQ+YHp6el47733sGPHDnzwwQc4ffo0LBaLsEEyGaZOnYr169fjjjvugJKmwJIgkCqVkOt0cBiNAMdBHhMT7CaNS4bDmwTH8oQMqDJHlqCP5VjUGIWd78TIOKRqkkbcvmDh0H/9Nm0lRQghhBASegK+oE4ikWDNmjVYs2YNXC4XGhoaYDAY4HK5oNVqkZKSMqL9mkn4qqqq4pNUTJ48ugRR5qtViEhPgyY/D5r8PHAuF+wGIyQKuUitnThsLddgrb0kKIueu3bEI/ESRoIV2UtR1laJsrZKuFgXZiRNCcrI/khjinWx2LvzCliWFWTDjo2LHItmkhAi5nWKEIBiioiPYooQ34KagUYqlSI9PR3p6f7t1UqIN5PJxO8bOBrOHgvO//AnYORyRBdNhW56MRJXLIcyjvYA98Ww/z3BMSNTQJ090+969lUdRbImEXnxWZBJpJiamIfJunQ0d7dBp44Wq7l+GWlMXbrQhIOfVwAA4vVRSMuMgTZahcl58WPRTBJCxLpOEeJBMUXERjFFiG+UspWQL3SVlIBzucC5XOg8eQqGs+egX7Ui2M0al5w9RnSXnxCUqTOLIdfG+VVPt70H/zj9DqxOG/LjsnBrwUrMSS1GhEKNyYrQupHGcRyO7K3kj9uazbBaHFiyPEewFzMhhBBCCAkdAekwNzQ0DP2iYUhJSRGlHjKxTJ06VZR6DOfOC441BfmQ0vIAn4yHPgRYV28BwyB60e1+1/P51YOwOm0AgLL2q7hy+BU8t+Y3SIwK7ojsSGLqWmU7GmqF2bHTM2OQnBZNCeOIaNcpQjwopojYKKYI8S0gHebly5eP+gsjwzAoLS0VqUVkIpFKpUO/aBj6ZsbWTS8Wpd6JhnU5YTq/R1CmSMqCKi3fr3qcLie2XRHWMz9tZtA7y8DIYurI3quCY5VahgS9BvoUrVjNIiFMrOsUIR4UU0RsFFOE+BawKdkc1z9rLCHjScGPfwCH8UEYzl+E4ew5xMyZFewmjUumM5+BtZoFZdHzbvX7phgLDtdPXoh9VUfRbnHfrLg1PzSnwLc2mVB+qUVQljopBvH6KCiUtPKFEBKanE4nv+2n0+mEy+Ua+iRCSMiSSqWQyWTQaDTQaDSQyeg7DBCgDvPcuXOH9TqbzYbW1lY0NjYCcI8qr1ixAnPmzBnL5hHCkyiVcFl6ELdgHsBysLV30B7MfRhPfCI4lkUnIGrqYr/rsTvtkElkWJu/HCzLotHcity40MzK2Xd0WSaXIClFi6TU4CQtI4SQ0WBZFo2Njejq6gp2UwghAeR0OmGz2dDd3Y2mpiZotVokJydDIpEEu2lBFZAO8xtvvOHX69va2vDyyy/jrbfewr59+3D77bdj+fLlY9Q6Euo6OzvBsiwkEgliRrlfsr2zE/b2DtjbOwAAjFSKtDvvAKjDDADorjwDZ0ejoEwzYwUYxv8L6bnmUrAcix6HFQAwNTEXHMeNi5sT/sSUqcuK86frBGUp6TqoIxSIjaftpIibmNcpQoCxiymWZVFXV4fu7m5BOcMwNGV3gvOeDToe/haTwHO5XII46OrqgsvlQlpaWlh3msflOHt8fDx+9rOfITExEU8//TSeeOIJbNmyBYmJicFuGhmHamtr+W0QRt1h7rOOWRGjAxPGF4i+jEc3C44ZZQSi593idz1dVhNSNElo6+6EzWUHAEQposbNH2h/Yur4gSqwLq8vGRIGKenR0KdoIZGMj/dDgk/M6xQhwNjFVGNjI99Z9nTGtVotlErluLlGk7HR09PD37iOiIgIdnNIEHAcB5vNhq6uLv6mXHd3NxobG5Gamhrs5gXNuO4JPPjgg0hLS0NXVxfeeuutYDeHhAFHp7DDLKcvtjyOY6HKmAp11gxIItyJrKIKFkKi8D+TuFalweSYdH7gXiVTYEpirpjNDQib1YmTh68JyopnpSJ/ahKS02g6NiEktDidTn4atkQiQXp6OhITE6FSqaizTEgYYBgGKpUKiYmJSE9P50eVu7q64HQ6g9y64BmXI8weDMPg+uuvx5tvvondu3fj0UcfDXaTyDiUkpLCT0sbrX4jzLGxo65zonB2NgMcC2VqHhQpuXCZ2hG94DZR6i5KzIdCKhelLjEMN6bOHKuBzer1B4QBFt+Yg/jEqDFuIQk1Yl6nCAHGJqZMJhP/OCYmhkYZw4xcPn7+DpPgi4iIQExMDNrb2wG4rw/hOkNqXHeYASAuLg6AeHs5k4knPn502xBdfeXvgEQC7dQpsBsMkHj9wVDEhueFwRdbU29iK4ZhoErJhSLev+k5dpcDpS3lKNYXQCKRgIEEWTEZyIxJF7u5ozKcmHK5WBw7UCUoy5+ip84y8Wm01ylC+hqLmPLuMGu1tCVeuKEOM+lLq9VShxkh0GGuqakBQMkHyNhgHQ40f74HrNWKxi2fAAyDhGVLoUpKAiOVQq7RBLuJ4wJrt8DRXi8oUyRl+V3PifqzeObIPxEfEYsbJi/EdZkLoB8H+y6PROm5Rhg7LYKyhTdkB6k1hBAyep4plwzDQKlUBrk1hJBg8+Qu4DgurKdkj+u5YXV1ddi+fTsYhkFGRkawm0MmINOVK2Ct1t4CjoNcpwMAyHXRYCgjKADA0dkszJ4pkUKR6P/v5O6rhwAAbT0deL/kE7x84k3R2hhIHMfhyJ5KQVnqJB3SM8PzzishZGLw7LMslUppoIIQIsiOH877sI+7EWa73Y7Ozk4cOnQIzzzzDKxWKxiGoW2lyJgwnD0vOJbrdJCq3EmsFGE67cQXpT4TsqgY2JqrYG+uhjw2GRKZwq86msytuNBcJihbnuX//s3jgcPuQmKyBi1NJrCs+0bCouuz6QsmIYQQQsgEE5AOc2Fh4ajO12q1uO+++0RqDZlozp8/z2+tUVxc7Ne5xnPCDrMqSc8/pg6zm7nkIKy1l6CZcSMismZAnTkNnNPhdz2NXc1I1SahvqsJABCpiMC8tBkit1YcQ8WUQinD+o0zMSkrDmeO18BosEKukMLSY4c6wr8bCSQ8jOY6RYgvFFNEbLStFCG+BaTD7D2V018ajQbPP/88oqNpixYiLqe5G6byCkGZSt/bYaYtpdyMJ7bBVl+GrlM7oEjKQuyyryAiZ5bf9bg4Fxamz0a3vQfN5lYka/TjKjO2v1xOFmazDVn5CeA4DnXXOiFXSDEpKy7YTSOEEEIIISIJSIc5JSVl2K+VSqVQqVRITk7GggULcMcdd0D3xZpSQnyJiIiA0+mETOZfOBsvXgRYtrdAIoEiwZ2AipFIoNDRTRp7ay1s9b3TqO1NV8G5/B9ddrgcqDG6M91HKiKQFTsJ0/T5orVTbMOJqdZmE1wud/wwDAMGDJJSKGaIbyO9ThEyEIopIjaJRMKPMBNCegXkKrt79+5A/BgSpnJyckZ0Xt/1y8qEeEi++OIhj6aEXwBgOve54FgaqUNEzmy/66k1NsLJ9iaLYABk6sbXVlLehhNTTfVdguPYhEgoVfTFlfg20usUIQOhmCJiU32Rw4UQIhSQLNllZWWoqKgY+oWEBJCh7/plmo4twDrsMJ3fJyiLKr4ejNT/TmGEXIWEiFj+OFmjh1oeun+Ye7rtMHT2CMqSUmnPUkIIIeJ57rnnkJ+fj/z8fPzjH/8Y8vVvvfUW//r8/Hxs27ZtyHN+97vf8a//9NNPcezYMf74ueeeG1G7h1NHR0cH3njjjRHVT0igBaTD/MILL+DWW2/Frbfeil27dgXiRxIyKFtrK6wNDYIy74RfskhKdmG+sBesRTiKqp1x44jqStIk4oasRbgp93oUxGcjJy5z9A0MMKvFgZOHr8HhcKGp3ih4Ti6XIi4hKkgtI4QQMhHNnz+ff3zu3LkhX3/48GHB8ZEjR4Y859SpUwDc07G9f95Y+vjjj3HzzTfj008/DcjPI2S0AjJ/8Pz58+A4DhUVFYihkTsyDvQdXZYoFPz+ywAgUSoD3KLxp+u08A+ZPCEd8tjh5yMAAJZjYXc5oJK5P0+tMgrFSaPLmh8sp4/WYNfWS9i7owxJqVokpmigULgvofoULSQSWvNFCCGBZGuuhlKfGexmjJkZM2ZAqVTCZrPh7Nmzg77W5XLh2LFjANydX5ZlcejQoUHP6e7uRlmZO09JYWFhwBLs/vWvf4XBYAjIzyJEDAEZYe7s7OQfT506NRA/koSRmpoaVFVVoaamZtjnGM4K79Qq9YlgJL2/DpGZk0RrXyiydzTA3lwlKIvInet3PReby/D/bX4cr5z8Dyo7ro0qY34g9Y0pl5PFsQPuz6On246rV9pQebmVf31yKiX7IoMbyXWKkMGEe0w5zZ1ofOuXcJo7h35xiFIoFJgxYwYAoLm5GU1NTQO+9sKFCzCZTACAVatWAQDq6+tx7dq1Ac85e/YsXC53fpGFCxfCZrPB4fA/sWdf8+fPR1lZGcrKyvC9731v1PUREmwB6TBnZmbyjxsbGwPxI0kYMRgM6OjoGPbdSo5lYTx/QVDmvX4ZACTy0N3uSAzGox8LjhmpHNFzbva7nt1XD8HitGJX5QE88dn/w7NH/ylWE8dU35i6eLYBJqNV8JrUDB0AQButQqSGZiSQwfl7nSJkKOEeU8YjH4G1mGE8ujnYTRlT8+bN4x8PNsrsGU1WKpX4xje+wZf3nabt7fTp0/zjBQsWwOVy8R1oQkivgHSYv/Od7/Ap6v/0pz/RLyMJqu7qa3AYhWtzvdcvhzuOdaH7knDdkzK9EDJN7ABn+NZlM+N4vXAkPy8ua9TtCzSO43Bkb6WgTKtTQatTAwCSaHSZEEICymnu5JcNdZ3aOaFHmRcsWMA/HqzD7FmvPHPmTEybNg1xcXEABu8we9Yvy+VyzJkzR4TWEjIxBWQN8+rVq/HMM8/gF7/4Bfbu3Yvbb78dd911F2bMmIG0tDRotVpIJAHpu5MJKD8/3699A4191i/LY2Igi+pN2BTunefuS0fAWs2CMu2sVX7Xc6HpElxeW0nJJTIsnTRvkDPGD++YqixrRUujSfB8eqY7F4NEIkFikiYYTSQhxt/rFCFDCeeYMh75CJzTDgDgnHYYj25G3IqvBbdRY6S4uBgqlQpWq3XADnNPTw//3MKFC8EwDBYsWIBPPvkER48ehcvlgrTPVpkul4tPJDZjxgyo1WqwLAtlnxwuHMdh8+bN2LRpE8rKymC1WpGUlIQbbrgB999/P1JS+uc2OXbsGO6//34AwMMPP8xPy16+fDnq6+v51x0/fhz5+fn9Xudt586d+Pjjj3H+/Hl0dnYiKioKubm5WL16Ne666y4oFIphfIqEjE5AOszf/OY3AQDp6ekwGAwoLy/H73//e7/qYBgGpaWlY9E8EuL6XtyH0nf9sio5SXCs+OKubLgyntohOJZqYhGZ739HV6eOxi15N6Ld0onLbZUoTMhFlDJSrGaOKe+YOrL3quA5dYQcsQnu95Ggj4JMTvt1k6H5e50iZCjhGlPeo8seXad2InrBbZBFTbzEsgqFAjNnzsSRI0dQWloKh8MBeZ9lYydOnODXHi9atAiAu+P8ySefoKurCxcvXsT06dMF51y6dAk9Pe7tET2j2BKJRHADpqenB1//+tf7jVJXV1fjtddew4cffoiXXnoJs2bNEvdNw73k4Hvf+x6OHz8uKO/s7MTx48dx/Phx/Pvf/8ZLL72E7Oxs0X8+Id4C0mE+cOAA/wvo+X+oJP8hEwtrt6Or9JKgTNEnc3s4jzA7TR2w1ZUJyiLz54OR+NcpZDkWVZ21UMqVSJEnIVmjR1ZMhphNDYjGOiOqytsEZWmZMfx1jKZjE0JIYHmPLntM9FHmefPm4ciRI7DZbLh06RKKi4sFz3vWL2u1WhQVFQEQTuU+fPhwvw6zZzo24O5c+/L666/D5XIhISEBGzZsQFZWFhobG/Hee++htrYWBoMBP/rRj7Bt27Zh3cD5zW9+A6vVip///Ofo6OhAbm4uHnnkEQDA5MmT+ddZrVbcf//9fAbv3NxcrFu3DmlpaTAajdi9ezf279+Pa9eu4Z577sFHH32EpKQkXz+SEFEEpMPsa7oGIcHQdbkMrN3rDy3DQJmYwB9K5HIow3iE2XhsC8CxvQUSKaLn3uJ3PS3mNvQ4LPwxwzAhufdy37XLcoUU+mT3FGy1Wg5drDoYzSKEkLDka3TZYyKPMnvvj3z27Nl+HWbP+uX58+fzSxzT09ORlpaGuro6HD58GN/+9rcF53gSfkVERPSrz8PlcmHOnDn429/+Bo2md/nRxo0bsXHjRpSVlaGurg6HDh3C8uXLh3wfS5YsAQD84Q9/AADExMRgxYoV/V73l7/8he8sb9y4EU8++aRgSvlXvvIVfPzxx/jJT36Czs5OPPnkk/j73/8+5M8nZKQC0mHevXt3IH7MqHAch61bt+KDDz7gp6kkJCRg7ty5uOeeewa8mAxX33Ubgzl48CASEhL6lYtRx0RkMpnAsiwkEonggu5Lv+nYSXpIve6KKhMTwUjDd4qto6MRkEiBL9YeK5NzII/1/65tl80MCSMB+0XnW6fSIkYdOqOxJpMJho4elJxtEJTPWpCBxGQt2lu7kZQaHZZrB8nI+HOdImQ4wjGmfI0ue0zkUebi4mKo1WpYLBZ+3bFHa2srrly5AqD/SPHChQvx/vvv48yZM+jp6UFERAT/nKfDPGfOHH6Kd98s2XK5HE899VS/+IqKisLXvvY1PPHEEwCA0tLSYXWYh8NoNOLdd98FABQVFeEXv/iFz7+169atw5EjR7Bp0yYcOHAAZWVl/HpoQsQmaqatJ554Ak888QQOHjwoZrVjzmq14qGHHsIPf/hDHDlyBAaDAXa7HfX19fjoo49w991345VXXhlx/WazGQ0NDUO/cIzrmKiqqqpQUVGBqqqqIV/bN+GXIj5ecNx3PXM4cVnMUCRNhnb+rVBnz4I0KgaaGTeOqK68+Czcmr8CM5KmQKuMCrnp2FVVVdi7sxTeK0fkCimWrshF0cxULFyWhZQvtpUiZDj8uU4RMhzhFlODjS57TNSM2XK5nF8n3Dfxl/f64r4dZs96ZofDgRMnTvDltbW1aGlp6XdO332YZ86cOeAs0SlTpvCPW1tb/Xk7g9q3bx8sFvcMtTvuuGPQG9Nf+tKX+Md79+4VrQ2E9CXqCPOHH34IhmGQl5fHT7sIBT/72c/4X7Ts7GzcddddiI+PR0lJCd555x309PTg6aefhl6vx2233eZ3/WVlZfya7YceegjTpk0b9PXR0f1H4sSoI9w5ukwwVwoTOEVPnQKJUgnWZgMAqMO4w2xvdn/pksgUUKbkQJ1RiKii60Zcn1KmQF58FnLjJoNDaOUssNtY1FT2CMpmzktHRKQ7G6dCGZDJOYQQQr4w2Oiyx0QeZZ43bx4OHTqEuro6tLe399s2Kjk5GVlZwq0bFyxYAIZhwHEcjh8/jmXLlgEY3vplAMjJyRnwucjI3iSedvvg/y7+OH++d2CjtbUVu3btGvC13d3d/OOSkhLR2kBIX2H/re/QoUPYunUrAPeF5ZVXXuETF9xyyy248847sXHjRhgMBvzhD3/AjTfeiCivLYiGw7MOAwDWr18vSGwQyDomKr1e73PLhL6MFy7Ce8hQolAg7c47wMhksHd0wt7eLtheKpxwHAtbk3CUQpGYCYlMPsAZvlV31uHdix/jxqzFmJlcBKlECoZhwCC0pi63NQAuZ2+sMAww/7rQ20OajB/DvU4RMlzhFFPDGV32mKhrmb3XMZ85c4Zf++tZv+yr4xsbG4u8vDyUlZXh5MmTfLlnOrZOp0NBQQFfLpfLIZP1dg20Wu2A7fEe+RUzkW9zczP/+KWXXhr2ee3t7aK1gZC+wn7z43/+858AAJlMht/97nf9svxlZ2fj5z//OQB3ivv333/f75/h6ewqlUpMmjRpRO0Uo46JSq/XIyUlBXr94NmtDX3W/WinToFELgfDMFDGxUKTlzuWzRzXHB2NYO0WQZkiyf8O4u6rh3Cq4QL+dPBv+M6Wn2Fr2ediNTFgnE4XSs8Ip5cVFicjJi5igDMIGdpwr1OEDFc4xdRwRpc9PKPME820adP4NciedcwVFRV8B3OgkWJPeUlJCT/V2dNhnj9/vqDj27fD7P04UMxm84jO8x5tJkRsYd1hNhgM/FSWpUuXIj093efr1qxZw0992bFjh8/XDMbT2c3JyeGzFwajjnDXd/2ybsb0AV4ZfhiZHHJdIn8s08RCFqXzqw67044D147xx51WI7rtPYOcMT6ZjDZoolWCslnzQ2sNNiGETBT+jC57TMS1zDKZjF/H7Jm27BldBobuMDscDpw9exZdXV2oqKgY9JxgUql6//5u27YNZWVlw/rvo48+Cl6jyYQX1j2vkydPgmXdWXy996vrSyKRYO7cuQDcd/WMRuOwfwbHcSgvLwcA5OXljaidYtQR7qxNTbA2NQvKdNNHl/l8onB1GyFVa6ApvgHRc9dAnV4IVar/mSaP1p1Gt/dWUmBwQ9YiMZsaEDFxEXjwkSW45/+bj7iESMQlREITrQLrYoc+mRBCiKj8GV32mKijzJ5p2ZcuXQIAfpp1bm7ugDujzJkzhx8pvnjxIs6ePctPoR6PHeY4r609xUwmRshohHWH2dMJBYbuiHoSH3Acx6fvH476+np+eklurnvKr9lsxsmTJ7Fv3z5cunRJkMJ/rOoId8aLpYJjeXQ0IibRqCEAdB76L6498yBaP3kJjo5GqDKnQZHo/2eTGBmP6zMXIiM6FQBQnFSAxMjQ3NOaYRgolTJMnZmCwuIklJxrwJF9V1F3bWKNWBBCyHg2ktFlj4k4yuzpMBuNRtTW1vLJuwbr+EZFRfGJYsvLy/np3MnJycjMzBzbBo+A9zaux48fH/S1FRUV+N73voc//vGPlCWbjKmwTvrlvadxamrqoK9NSurNnlxfX8+POA/FO1mXRCLBww8/jN27dws6uDqdDvfeey+++c1vCqaiiFnHRFZaWgqHwwG5XC7Y5sBb4o03ICo3B8Zz52E4ew6K2BgwNLUdrNMO84X94OxWmM7ugunsLsSu+Cp089f5XVd9VxPiI2MRHxmLosQ8ZMeG7lr7C+cvouxCJziO4e/aOxwuaLTh9btFxDOc6xQh/giHmBrJ6LLHRMyYPXXqVERGRqK7uxuffvopPwLr2T5qIAsXLsSZM2dQXl4Og8EAwPfMSovFAtsXu4aMJc+6ac8sT2/Lli2DTCaD0+nEe++9hwceeGDAfcZfeeUVfPqp+4ZKOKzlJ8EzJh3mt99+G3v27BG1ToZh8Prrr4taZ0dHB/84JmbwbIo6nY5/7LnYDId3Z/f//b//5/M1BoMBzz//PPbv34+XX34ZsbGxotcxkTmdTjidzkH36mMYBpGTMhA5KQMJNyxD0/adaNm7D6qkJKiTkyDTagc9f6LqKTsG1ipMsBGZN8/veozWLrRbDPxxhCIipDvMzQ3dcNhdkEh7b6oUzUxFdIw6iK0ioWw41ylC/DHRY2o0o8seEy1jtkwmw+zZs7F//3785z//4cuGGsRZuHAhXnzxRVRWVqKpqQmA7w4zx3GiZrweiFrt/lva1dXV7zm9Xo9169Zh06ZNaG1txSOPPIJnn31WsI0VAPz3v//F5s3uaffR0dGCPZkJEduYdJhra2tRW1srWn0cx43JHwSr1co/7psduy+FQuHzvKF4d3blcjkeeOABrF+/Hunp6TAYDNi3bx+eeeYZtLa24vz583j00Ufx2muvCRJ7iVFHoFVUVCA7O1twV9Bms/HvRafTISMjo985PT3uJFHeU3IAoK2tDQ0NDQCA9PR0wQ0OuVwOh8MBp9OJqqqqfltuVVdX8xflKVOmwNrYBM7lgrWxCYaqanRZLJAvXoiUlJR+a4AuXLgAjuOgVqv56fAedXV1/E2XvLw8wci+2WzG1avuPZ8TEhKQnJwsOPfSpUv8yEBhYaHgucbGRv6ucVZWlmAbM6vVyi8JiI2NRVpamuDc8vJyWCwWMAzTb6/u1tZWNDY2AgAyMjKg0+lgOie8seWMn4x6oxWZfb5bVFVVwWQyAXDf4fbexqSzsxP7Lh9Bc08zNBoNIiIioJIpkaRxJxHzJCeJiIjot6djTU0NfwMqPz9f8HtoMplQVeXe6kqv1/e7e1xaWgqn0wmFQiHYFgMAGhoa0NbWBsCd6d77D63FYuGXY8TFxfWbXXLxwiW0N1sBBvz7TEjUID4xCi0tLfyXjczMTMGWGw6Hg19XFh0d3S+bfWVlJZ/Fs6ioSPD72dHRgbq6OgBAWlqa4IYXy7K4ePEiAPe+l9nZ2YJ6r127xudVKCwshFzeuxVYV1cXqqurAbhnySQmJgrOvXjxIliWhUql6rcspb6+nt+mIzc3l/+CA7izkVZWVgIA4uPjkZKSIjj38uXLsNvtkMlk/Ua+mpub+ayukydPDsg1wuVy8Xt0ajSaIa8R3plhDQYDampqALinMI70GiGTySCRSPi6Q+Ua4eF0OlFa6l7aotVq+03lHOoa4flOkJKSgvj4eMG5oXaNuHLlCqxWKyQSCYqKigTPBfIaoVAoIJFIIJVK+c9wtNeIviwWCziOg0Qi6Td7zW63w+l0AnAnavJur8vl4kcqZTKZ4DuUd70MwwiuLZ7PyeFwwHzyU0jU/bd67O3QMej71dC7s+f53mg+vwe6RXfw9QLu73Tev+ccx/EZpKVSab/vhDabjZ/Vp1arBd9JnU4nvw+xXC4XfL4A+GuWWJ/hvHnzsH//fj4epk6d2m+7U+96lUolZsyYAbVaLRhBnjFjBux2u+DfZqjv2t6fYd+lgN6foec13rw/Q71ej/Lycly5cgV/+ctfkJeXh4SEBBQVFUEul+OJJ57AiRMnUFtbi4MHD+Kmm27C+vXrkZ2dje7ubuzbtw/79u3j6/7JT34CqVQKlmUH/Ax9/dsMFod9P0PvaxrLsnxfwFd8W61WsCw7aHwPVa+vOPTUCwweh4PFt6849P638RWHLpcLdrvd54yAwb5HTKQ16GPSYQ7E3SkxeH4RAPQL9r68n/c+byieL4ZKpRL//Oc/MWfOHP65xMREbNiwAddddx3uuusuNDU14ejRo9i2bRtuueUWUesINJfL1e8Xi+O4AS+0gPtz9XWRBdwXEc9zfevNy8vjk1j4+rfxrpfjOFi/+DLjOWajtXA6nT4vBA6HAxzH+dxaoW+9A73XgeodznsdrF5f79VTr68/en3rdXQ2w1ItzBxuTSmGZIjP0Fe9qfIEqNRyOFQcLLAjU5cGCSPh2zRQe10u14Dv1bu9vuLFc5PE142hwer1FYfGTgsMHT3IyIpFQ40JLOv+AxofHw+GYTA5L75fvYPF91Bx2Ndg8e15r8OpdySfIcuyPvdx9fcz9NUmX38LhvsZinmNAEb+GQ7nd3k414i+Nx1C4RrhT71j9W8zXq4Rfet1OBxD1jvW1wjPTQCWZXHmzJlh1evvZ+gZcfT1u+xdPtDzgxnoeU+9kXNvQeySLwl+t1iW5b/4y2Syfh0Ki8XCfz59RySHatNQ78X7+b6/P2LUO9i53rz3Y/Z17OtchUKB2bNn4+DBgwDcN3MSEhL61d+3EzbcNnnKh/te16xZw7flb3/7GwBg5cqV+OMf/wjAfVPurbfewne/+11cuHABLS0teOWVV/rVqVQq8ZOf/AQ33XTTiGN0sEE5Md7rSM4d6mePpt6hzh3sPF+vGex7hK/rfagakw7z2rVrsWTJkrGoWlTed1gcDsegnWbPXRtg6M61t3feeQdmsxkmk6nfCIKHXq/Hk08+iYcffhgA8N577wk6u2LUEWhSqbTflwmGYfi7e75+sWQyWb+7fx4SiYR/zteXFM9zvr60CurlONhaeu94MQwDeUICpHL5gPVyHOezXd719r3Yer/Xwdrrq17v9zpYvb7eq1wuH3CKXt96jSe2A94XQqkCSJ069Gfoo16lQokUhXtPUJVWDRnT++87WHulUumA79W7vb7iRf7FHtr+1usrDo/srcTxg9VIStFCpmIREcXw/24p6TpERCr61TtYfI/kMxQjvkfyGbIs67Nd/n6GfdvEsuyQ/zbj8Roxkt/liXqN8Kfesfq3GS/XiL71ulwun+9lol0jPK/3FS8Mwwz5/GC8zxer3oHqHO65g/3M0bRpOPUOt72eEWVPMtiBdnnpe+6CBQv4Tuq8efMG/fwHM9Dzw/mMPOV33HEHbDYb3nrrLdTW1oJhGNhsNsF5er0e77//PrZt24YtW7agpKQEnZ2dkMvlSEtLw6JFi3DPPfdAr9cPmPhWjBgdzXsdTSwN9rNH2qaBDBaH3uW+XjPY94iJtA0uw4k4HFxQUACGYfDjH/8YDzzwgFjVjplHHnkE27dvB+BOzT9QUgEA+Oyzz/jO6E9/+lN89atfFbUtLpcL8+bNg9lshkKhwLlz5/wONDHqGCmz2SyYOp6fn99vitB44bLZYGtuhqWxGdamJiStXglpmCVKA4Ca5x+C09h780CVMQUp9/3WrzraejpwuuEilkyaiwh5aK7v7em245nffQ6HvfcP7qTsWEzKjoNMJsX8pZMhV/T/IkkIIRNNeXk5nE4nZDJZvyUGhJDwNNLrQij1DYYycbr+I+C9tmioRF7ez49FQi2pVMqvZ7Lb7X4lFhOzjonGVF6Bug8+hLnyKrgvpoZIlUpEZGQgbv5cpKy7JSw7y9aGCkFnGQCiipb5Xc/eqqP4+6m38f9tfhwvHvs3yturxGpiwJw8fE3QWQYD6FPc14aMybHUWSaEEEIICWNhva2Ud9KSxsZGpKenD/jaJq91r30T3IhloKlYga4j1DQ0NMDlckEqlfb7t2k/dBj1H27GtX+/CZlGg+Q1NyFj49388xM1u+hQuk7tEBwzCjWiipb6VQfHcdhffRQAYHPZsbf6CGRSGXLjJg9x5vjhdLhw4qCwk5+g18DhtAJWOyTy0LwTSsafwa5ThIwExRQR20iXHxIy0YV1h9k7k2R5eTnmzRt4Ox1PxkyGYYY9HaG2tha7d+9Ge3s7Zs2aheuvv37Q13uSe8nlckRHR4tWx0TX1tbGZ5Pt+6XBcLY3qZXTZAqZhHRjieNY9JSfEJSpJ02FRD54pvi+rrRfRZNZOEp9fabvtVTj1flTdeg2C/f4TM/UobvHiMQUBTo625GWPvge7YQMx2DXKUJGgmKKiM3pdPJJsKjDTEivsO4wz5w5k9+S6NixY7jnnnt8vs7lcuHECXcHo6CgQDCVezAtLS34wx/+AABYvnz5oJ3dqqoqfjuPadOm8ck3xKgjXDmMRnRXCUcPdTOmB6k144el8ixYi3Dv5ajiG/yup8NiRKYuDTXGerAch2RNYkiNLnMshyN7rwrKdLFqRGlVcMEMjS6sL4+EEEIIIQRh3mHWarVYsGABDhw4gN27d6OhocHnXdpPPvmE30vz5ptvHnb9RUVFfCbDAwcODFg/ALz00kv849tuu03UOia67Oxsn9sCsA4nkm6+CYZz52BtaIREpYImj5KYdJ3+VHAsjYxGRO6cAV49MCkjwZzU6SjSF6DW2IBUbVJITXG/UtqM9tZuQVnaFxtQz12YD61OFVLvh4xvA12nCBkpiikitr7bdBFC3ERP+hVqU16/9rWvAXBvK/XYY4/xafo9Kioq8Pvf/x6Ae0+/DRs2DLtupVKJu+66i6//Bz/4Qb/6AeAf//gHNm/eDMC9rvr2228XtY6JLjIyElFRUf32XFTGxyH7oW9i9kvPY9YrLyHtzjtgbW4GO8A+l+GAddphqTonKFNPng6J1L97ZyzHotHUAgBQyZTIjZuMJRlzRWtnIBzuM7ocqVEiJi4CcfGRSEmL9xlThIzUQNcpQkaKYoqITSqV8v8RQnqJOsL873//GwCQkZEhZrVjasmSJVi9ejV27tyJM2fO4LbbbsNXvvIVJCcno7S0FG+//Ta6u92jUD/+8Y/7Zcg+duwY7r//fgDufe3eeOMNwfPf+c53sGfPHlRVVeH06dNYu3YtvvzlLyMzMxOdnZ3Ytm0bTp48CcD9x+/Pf/5zvzt8YtQR7qQKOTinE20HDgEMA2V8PBKWLYUkzJKkdZceAucUrtnVzFzpdz0dFgNsLmE9yZrEUbUtkOqudaK2qkNQdsNN+dBEq5CSFh5r/wkhhBBCyNBE7TAPljRrPPvjH/+I7u5uHDx4EHV1dXjqqacEzzMMg4cffhh33333ADUMTKPR4LXXXsPDDz+MixcvoqmpCc8880y/1yUnJ+Ppp5/GtGnTxqSOcGdtau494Di4LD1h11kGAI51QZ6YCUd7HeByQqbTQ5Ve4Hc9WqUGC9JmotHcgkZTC9QyFSIVEWPQ4rFxeE+l4FgTrcL0OWmQysJ6pz1CCCGEENJHWK9h9lCr1fj73/+OLVu24KOPPsKlS5dgMpmg0+kwe/Zs3H///Zg9e/aI609OTsa7776LrVu34pNPPkFJSQm6uroQFRWFzMxMrFq1Cl/+8pcHnVYlRh0TlcVi4ddxqdVqn69xWSyCY2V8QiCaNu5wTici8+eBc82Co70BSn0mGMb/TqJCKkeGLhUZulSwHAurwzYGrR0bHW3duHyxSVA2f+lkQWd5ODFFiD8opojYKKaI2FiW5WNKIqEbyIR4UIf5CwzDYN26dVi3bp1f582fPx9lZWVDvk4mk2H9+vVYv379CFsoTh0TUXl5Ob+1RnFxcb/nOY6DqeyKoIyRht8fAle3Ea4eIwCAkcqgSMxAVPEyv+vpspqgVWn4YwkjQYQidL6sHd13FfBKtaBQyjBrgXAZyVAxRYi/KKaI2CimiNisVivfYY6ICJ1ZY4SMNeowkwmHc7ngslggi4oCAJgrKvu9hgnDhBb21hrBsUSphkzr30j7NUMdfvzpHzAjaQqWZS7AnJRiKGShs1djt9mGs8drBWWzF2ZApQ6/6fmEEEIIIWRo1GEmIS8uLg4ul4vP6miuqMT5x3+GqOxs6GYUw2W1QRYpvFOqSkkORlODhuO4fh1mRXy639uR7Ks+Bo7jcKaxBGcaS5AenYKnb/q5mE0dUy1NJkilEjidLABAImEwf2n/vaP7xhQho0UxRcRGMUXEJpPJaKsyQnygDjMJeampqYJjw7nzAMvCXF4Oc3k5ZFotktfcxD8vj46GKikp0M0MMg6q9Cmwt9bAaWgGx3FQJE7yqwYX68KBa8cFZbNTQivBXMbkWCy+MQfXrrajrroTMXER6DbbodUJp5T3jSlCRotiioiNYoqITaEInRljhAQSdZjJhGM4d15wrErSC46TVq8Mq7unHMeh+/IxRGTNgDJpMli7FY6ORkijYvyqp66rEVaHVVB2XeZ8MZs65uqudcLpdCE1Q4eUtGg4XSwUShqdIYQQQgghvlGHmUwoLosFpsvCJGwqfW+HOTIrK+zWL9ubq9Cy6c9gZApE5M2FpmgZ1Dkz/b5pMEmXhu/O/yoOXjuO+q5mgHFvLxUq7DYnaqs6+WNGwiAxQYvY+PDLLE8IIYQQQoaHOsxkQukqvQTO6ewtYBgoE3sTW6lTU4LQquAyX9wPAOCcdnSXHoKtvhzpOS/4XQ/HcWjv6USGLg0ZujS4WBfquxqhTcgVu8ljorqyHU6niz9mwCArLz6sZhsQQgghhBD/UIeZhLwrV67wW2vIz54TPKeIi4NE7s6AzEil/aZnT3Qc64L54gFBWVTR0hHtvdxlM6Hb0buftVQiRbImND7PHrMdjXVGQZk+RQONVuXz9d4xlZeXF4gmkgmOYoqIjWKKiM17WymVyvffR0LCEXWYScizWq1wOBxwuVzoHmT9sipJD4ksvELeUn0Rrm6DoCyq6LoR1WWyd0MmkcLJukdpI+RqRIfAlOyOtm5UlrWC43o3X5ZIJMjMiR/wHO+YIkQMFFNEbBRTRGwsy1KWbEJ8CK/eA5mQJBIJJBIJ0N2NnmvCrZO8O8zqtPDLKGo6u0twrEjKgiI+bUR1pWmTkVyQiNaeDjSamqGUKkLij+q2Dy6gqrwNiclapGXqEBmlRNqkmEH3XvbElETi/0g8Ib5QTBGxUUwRsXn+pofC33ZCAok6zCTkFRUVAQBa9u6DyauckcmgiI394oCBOiW81i+zdit6yk8IyiJy54yqTqlEiqSoBCRFJQz94nGgtdmEq1faAADNDV1obujCtFmpWLI8Z9DzPDFFiFgopojYKKaI2NRq9dAvIiQMUYeZTBjGPtOxlfpEMF/ceVfGxUIaZutxusuOgXM6vEoYKJOy/KqD5Vj836FXUaTPx+KMOdAoo8Rt5Bjbu0OYMV0qk2DG/DTI5OGVKZ0QQkhouu+++3D8+PEBn5dIJIiOjkZcXBzmzJmDW265BXPnzvX52scffxwffvghAODzzz9HWtrIZpyNheeeew7PP/88AODf//435s8PrW0rycRGHWYyIXAcB8PZPuuX9d7TscfPH4VA6TsdW6ZLhHrSVL/quNxaieP1Z3G8/ixeP/tfzE6ehofnfxUq+fi/+dBlsKDsYrOgLGNyLCZlDbx2mRBCCAklLMuis7MTnZ2dqKiowDvvvIM77rgDv/3tbyELs7wthIwV+k0iE4Klrh72jg5BmWD9cphtJ+U0G2CtvSQoU2dOg0QZ4Vc9+6uP8o9drAsNpmYoZUpR2jjW9mwvA8v2JvpiGOC6lbmQSGhtFiGETATVnXXIjAmfG+K/+c1vEBcXJyiz2+0wGAy4cuUKNm/ejJ6eHmzatAlRUVH42c9+FqSWEjKxUIeZhLyWlhZ07BdunSRVqyHTuDM4yzQayLXaYDQtaLpO7wC8skJDIkWkn9mxbU47jtSeFpQty1wQEslAHHYXSs81CsrSJsUgIyt2WOe3tLTA5XJBKpUiMTFxLJpIwgzFFBFbuMeUwWLEb/b+Ff9308+hU0cHuzkBsXjx4kGnUX/jG9/AnXfeCYPBgDfeeAMbN27E5MmTh12/w+Hgs2TL5QMnxiQk3FBqRRLympqa0Nln/2VVkp7v2EWEYXbs7pKDgmNFQjpUqbl+1SGTSPH9hd9AcVIhZBIpGDBYkuF7XdR4c/ZELRwO4VYri5fnDLuz39TUhIaGBjQ1NY1F80gYopgiYgv3mNp8+TOY7d34+PJnwW7KuJGeno5vfOMbANxL1T766CO/znc4HPx/hJBe1GEmIY9zucBWXxOUKfXhOx3b3t4AR4dwdDUyfwEkMoVf9UglUsxKKcK81OlYk3cjFmbMxrH6M2joGt9fzjiWw/EDVYIyfYoWk7LjBjiDEEJIKDFYjPi0cj8A4NPK/TBYjEFu0fixcOFC/nFlZWUQW0LIxEFTsknIS3S6YLbbBWWe9csSpRKKuPDqKHWd/lRwzMgU0M5aNaK6euwWGKwmKKRypGj0MNt7oJD61/EOtIqyFrS3dgvKVtxSCKVq+Je7zMxMsCxL+5sS0VBMEbGFc0xtvvwZHC73KKjd5cDHlz/D/TPvDHKrxofRbA2lVCphNpvx4Ycf4vDhwygrK4PBYAAAREdHY8qUKVi1ahXWrVs3ZEKxEydO4N1338WFCxfQ2NgIuVyOrKwsrFy5Ehs3bkRUlH+7bpjNZtx3330oLS0FAGzcuBG//OUvR/Q+CfEXdZhJyHNUCO+gynXR/BZS6tQUfmupcNFTdlRwrEzJgTRyZOu7Gs0tgmOFVI7YCN1ImxYQR/cJR5cTkzTIyvMvM7Y2zNa8k7FHMUXEFq4x5T267PFp5X6sK1gZNmuZB3P16lX+cX5+vl/nHjlyBD/4wQ/4TrI3q9WK5uZm7NmzB++88w7+/ve/+4xBi8WCn/70p9i2bZug3Gaz4fz58zh//jzefvttvPrqq8jJyRlWu2w2G7797W/zneU77rgDv/jFL/x6b4SMBnWYScgz9F2/nJzMPw636dis0wHV5OmwN1fB0VYHzmFDZOHiEdenU2mRFZOBRlMLLE4rkqISIGHG7w2I5oYuVJW3CcrmXzc5JBKVEUIIGZr36LIHjTK7ORwO/POf/wQAyOVyfOlLXxr2uRUVFXjooYfgcDgglUpx4403Yt68eYiLi0NrayvOnTuH7du3g2VZnDt3Ds8++yyefPLJfvV8+9vfxpEjRwAA8fHxuPPOO5Gbm4vOzk5s3boVZ8+eRUNDAx588EFs2bIFmi8StA7E5XLhscce4/eivvnmm/H73/+e/q6TgKIOMwlpzp4emK6UC8o0ee7kVoxUKtiLORw4O5sg08RCpokFlz0TLkMbooqWjri+uIgYxEXEuPe5tnaN+z9Qx/YLR5cjoxSYNiv8kr4RQshE5Gt02SNcR5lZloXBYEBpaSleeuklnDlzBgDwxBNPICVl+IMGzzzzDJ/s6y9/+QtWr17d7zUbNmzAAw88AI7jsHXr1n4d5k2bNvGd5ZkzZ+KVV14RjELfe++9+OlPf4pNmzahsbER//rXv/C9731v0Hb94he/wK5duwAAN9xwA5566qmwXIZAgos6zCSkGS+UACzLHzMyGdSpKbB3dEKl10MSZtsi2Ntq+ccMI4F6chGkqki/6jjbWIIUjR6JUb3TmBmGQcw4/xJiNtlw4XS9oGzOokzI5FK/66KtNYjYKKaI2MIxpnyNLnuEwyjzjTfeOORrIiMj8atf/Qrr1q0bdr0WiwX79u0DAMyePRsrV670+bqFCxdixowZOHPmDDo7O2EwGKDT6fjnX3vtNQCASqXCX//6135TthmGwS9/+Ut89tlnMJlM2Lp166Ad5j//+c/473//CwBYtGgRnn322bCJdTK+UIeZhDTjufOCY01BPt9Jjsob3tqYiYJzOeBobxCUKRIy/KrD6XLiuWP/gslmRmFCLpZlzsei9NlQyVViNnVMXL3SCper9+aJVCrB7IX+vX+PS5cuweFwQC6Xo7i4WKwmkjBGMUXEFm4xNdjoske4jjJ7s1gs2LVrFwoLC5GbO7ztJNVqNXbv3o0rV64gMjISVqsVERERPl+bmprKj2JbrVa+vLGxEVeuXAEArFixAklJST7PV6lUePLJJ9HT04OsrKwB2/Taa6/h1VdfBeDuxL/44otQKMZ30lEycVGHmYQ0wznh+mXdjOlQ6hMRlZMNtdda5nDg6GgEx/buPcwwDOTxaX7VcbapBCabGQBwqbUcl1rLMSUhF0kh0GEunp0GhUKGA7vK0dzQhfikKJSca8ScRZMgldL0LUIICWWDjS57TPRR5t/85jeI67Pzh9PphMlkQl1dHfbv34/S0lLs3LkThw4dwquvvopZs2YNq+74+HhERESA47h+z3V3d6OsrAynTp3iO8uAe32xx4ULF/jHQ/3M9evXD/r85s2bsWnTJv74Rz/60aiyfxMyWtRhJiHL1tYOS51wCq5uejG/hjncyOPToJm2DPbWWjja6iDVxEIiV/pVx95qYYbt/PhsJGkSxWzmmLLZnMidkojMnDiwLAeVWj6iznJ0dDScTueQ22YQMlwUU0Rs4RRTwxld9pjIo8yLFy9GWtrAN8IfeeQR/OMf/8BTTz0Fs9mM73znO9i5cyeio4f3WUilUrS0tGDPnj0oLy9HdXU1rl27hpaWFp8dae+ytrbehJv+rJ325YMPPhAcP/XUU3jrrbfGfR4VMnFN/KssmbD6ji5LIyMRlT3w9J6JzN5aA2vtZUQWLEBk3lxwObPAOexDn+iF4zgkRMQhUhGBbnsPAGBZ5vyxaO6YsFocMLS72y1XuNctJ6WObNuVSZMmidYuQgCKKSK+cIqp4Ywue0z0UebBMAyDBx98EEePHsWBAwfQ2dmJjz76CF/96leHPNfpdOIvf/kL3njjDTidzn7Pq9VqzJ8/H62trSgpKen3vNFo5B+rVKOflTZp0iTExsbizJkzOHXqFP773/9iw4YNo66XkJGgeYokZBnOCtcv64qLwEj9T/A0EZjO7Ubb9pdx7a/fQOPbv0NP+SlIlP5NX2IYBl+deSf+tPKnWJg+C6maJLhYFs3mVp93lsebpoYucOhtp0wmRXxiVBBbRAghZLT8GV32+LRyPwwW49AvnKBuvvlm/vGpU6eGdc7jjz+O1157DU6nE3K5HAsXLsS3vvUtPPXUU9i8eTNOnjyJl19+GdnZ2T7P954y7b22eSRSU1Px+uuv43e/+x2f5OvPf/4zOjo6RlUvISNFHWYSsqRqFaSRvUkpVMkpcPZYgtii4OA4FubSQ18csLBcPQNbY8WI66vsvIZUbTIWZsyG0WbC0dozcHHs0CcGEcdxaK4XfjlKTNbQ2mVCCAlx/owue3hGmcNVYmLvUqru7u4hX3/69Gls2bIFAJCeno7t27fjX//6F37wgx9g3bp1KCgo4Kf+m0wmn3XExsbyjxsbGwf9eXV1dThz5gza29t9Pv+rX/0KycnJyMnJwX333QcAMBgM+N///d8h3wshY4G+TZKQlfOdhzD75ReRuPJGaKcVgXXY0fDxFtha24Y+eQKx1ZXBZRLedY2asmREdZlt3ag1CjNt58ZNhkwyPkfurRYHWBcLY6cFFovwC9VIp2MTQggZH0YyuuwRzqPM3uuJ+yYJ82Xv3r384+9+97tIT08f8LWXLl3iH3vPPps6dSr/+OzZs4P+vLfffht33303Fi1ahPLy8n7PK5W9+Vcefvhh6PV6AMDHH3/M7/NMSCBRh5mENGtTM7oZBg59IrpsNkhkMihiY4LdrIAylxwUHMvj06BIHNl2SkqZAtP0hVDJ3H+sZBIpcmLH7zq5XVsv4bn/3YO9O8vgdPRm64yMVEKjHfkaqsrKSpSVlaGyslKMZhJCMUVEFw4xNZLRZY9wHmXeuXMn/3j27NlDvt5gMPCP5XL5gFOqd+zYgaamJv7Ye61zVlYWMjLc3z127do14PRpp9OJHTt2AHCPhOfkDL4FaGRkJB5//HH++Fe/+hXsdv9ytBAyWtRhJiHNUl8Ph8MBu90Oh8MBVUpyWK1j5lgXzCUHBGUjHV0GALlUjoKEbKzNW47ZKdMwNTEPCtn43Pewx2zH+ZN1MHZacP5kPY7tr0J7q3tLrKRU7aiyaXZ3d8NsNg9rKhshw0ExRcQ20WNqNKPLHuE4yvzBBx9gz549AACNRoObbrppyHNSU1MF53tvF+Vx+PBh/OIXvxCU2Ww2/jHDMHxyse7ubvzwhz+ExSJcJseyLP785z+jrq4OAHD33XcP62/1mjVrsGjRIgBAdXU1/va3vw15DiFioizZJKTFL16EeocDXFMTYDAiYpDtFiainsrTYK3CL0sR2TP9qsPmtEMhlQv+aEklUmSP45FlADh55Bqczt611SzLIUqjAsMw0KfQdGxCCAlle6uPQqOIFKWe9YWrRWhR8B06dMjnFGuHw8FvB+U9Zfmxxx4b1pZSa9aswXPPPQeHw4HDhw/jvvvuw2233YaEhAS0tLRg3759OHLkSL8EoGazWXC8ceNG7Ny5E8ePH8ehQ4ewdu1a3HnnncjMzERTUxO2bdvG79eck5ODBx98cNjv/cknn8Rtt90Gh8OBV155BbfccguyssJzZxQSeNRhJiFNIpdj+o3LAQCcywWJJLwmTZjOfC44lkbFQKHP9KuOV0/+B1c7a7AscwGWZs5DrFonXgPHiNPpwslD1YKyhCQNlCoZ4uIjoVCO7tJWVFQ0qvMJ6YtiiohtosfU+sLVE6ajK5a+I7wDUSgU+P73v4+NGzcO6/Xp6en45S9/iV/+8pdwuVwoKSnxuXXUnDlzcMstt+BXv/oVAKCsrAxz5szhn5dIJHjppZfw2GOPYd++faivr8czzzzTr54pU6bgpZdeEqxVHkp2dja+9rWv4dVXX4XD4cAvf/lLvPHGG8M+n5DRCK/eBZmQJBIJJBIJpHJ5eE3HdjlgqRZuraXKnAZGOvzOotVhxbG6M6jrasRb5z/Et7f8FEdqh7cFRTCVnG2E2WQTlKVN0gEA9CIk+/LEVLjdgCFjh2KKiI1iigDuqdBqtRp6vR6LFi3C97//fezYscOv0VsA2LBhA9555x2sXbsWSUlJkMvlUKvVSEtLw6pVq/DCCy/gjTfewJo1a/itnrZv396vnqioKLzyyit48cUXsWrVKiQmJkIul0Or1WLOnDn41a9+hXfffRdJSUl+v9fvfOc7SE5OBgAcP34cmzZt8rsOQkaC4UJhg1Uy7pnNZpSVlfHH+fn5iIoamz1wS375G0iUCuimT0f09GKoU1NGtV41VJkvHUbLpqcFZUkbf4mIycXDrmNf1VG8cPx1/ljCSPC3df8LnWr8TmnmOA6v/t8BNDV08WXRMWpMn5sGuVyKhddnQyIJv3gghJDRKi8vh9PphEwmQ25ubrCbQwgZB0Z6XQhk32Cs0ZRsElKcZjMM5y8ALIuOYycAAEW/+zWip03sqWm+mM7tFhxLtfFQT5o6wKt9O9dUKjiekTRlXHeWAaC6sl3QWQa8RpdTtNRZJoQQQgghoqEOMwkpxgsXAbY30ZNEoYAjMQFtbW2QSCSIjY0NYusCh3XaYb12UVAWMbkYjJ/7JX9n/v2IVESgrK0S9V1NyIvPgpN1jdt9lwHg2L4qwbE6Qo7YBHdimKTUoZObDEdHRwdYlg2rmCJji2KKiI1iiojN6XSC4zgwDAOZjLoIhHjQbwMJKYZzwjW7moJ8NDQ3w+FwQC6Xh82Xhu5LR8A5hXtTaqYv97ue+q4maJRRmJM6HTOSi2B3OtDR04nEqHixmiqq9lYzrlxqFpQtXZmLybnxMHZaEKUZfgKRwdTV1YVdTJGxRTFFxEYxRcRmt9upw0yID/TbQEJK+pc3QJmUhNY9+2BrbgYjkcBxoQRcfnittTKd3yM4lun0UKbm+VUHx3G43FrZW4dEili1DgmR/besGC+OH6gCvLIuqNRyzJqfAYVSBn3y+J5KTgghhBBCQg91mElIUcTEICI1BXEL5rn3A2RZqCIiEJ2ZGTaZQlmHDdbaS4IyddYMv6djA0CRPh+XWivQYTEAAAoTcsZtAjVLjx1nT9QJymYtyBj1FlK+pKWl8VMdCREDxRQRG8UUEZtCoeBHmAkhvajDTEIKx7Kw1NUDcG+lAKkUCQX50MaPzynEY4G126ApXg57aw0crbVgbT3QzPB/OjbDMEjVJiFFo0drdztqjPVI0ejHoMXiOH20Bg67iz9mJAzmLs4ck59F0xuJ2CimiNgopojYaBo2Ib7RbwYJKfb2drisVkGZOjU1SK0JDkdbLaRROqijdFBlTgOcdiiTskZcH8MwSIyKH7frlgHA5WJx/GC1oGzq9GREx6iD0yBCCCGEEBIWaB4PCSk9X4wue8ijoyHXaoLUmuCwt9bwjxmGgXrSVDDM8H+VzzaW4M1zm1BrbBiL5o2JKyXNMBmFN0rmXzfymwSEEEIIIYQMB40wk5DBcRwsdcI1rOq0VLDe20xN8LVcTrMBrh7hHsSKhAy/6thZsQ+nGi7g48ufYXJMOr40ZQ3mpc0QsZXiyy9Kwl1fm4Oj+6+i5moHtDoVjJ09UEfIERMbAUbkvZfDKaZIYFBMEbFRTBGxcVxvVk1ax0xIL+owk5BgvHAR9s5O2A1GSLzW2ESkpeHixYv81hrFxcVBbOXYc5k7wDAM/0dNolRDqh3+VGqjtQtnG0v446rOWpjtPaK3U2wSCYOCaUmIS4zE0f1XwbFAS5MJLU0mzFsyGRGRClF/XjjFFAkMiikiNoopIjaLxcIn/YqIiAh2cwgZN6jDTEJC3X83wXD2HCCRQBkfD01hATQ52ZDH6IC62mA3L2CUSVmQ6fSw1V6GrbkKSv1kv+4CH6o5CRfXOyqhkMqxIH3mWDR1TDTXd0GjVfHH0Tq16J1lQgghhBBCPKjDTMY91m5HV+kX2yixLGwtLYjKzYE6LRUMwyAyMhJOp3PCZ3fsvnICjo4GRBUuQkTubKgypgB+TsMr0hcgLy4LtV0NsDisSNUmwWg1IUI+/pNn2W1OtP//7N13eFvV/T/wt/b0trxnvBJn74RMEmYIZEBCIGGEb6HQQinwo2WU0lJIS8tsoIxCwl4JkIQkjIQsJyF7O44dz3hv2ZYsa97fH6pudG1Jlm1N+/N6Hh50j849OlI+vtK5ZzVpOWlxiWFeea2hElPEdyimiKdRTBFPo6H9hDhGV1kS8NoLLsBiMFxO4PEgjY2BPDkJAJCRkeGnmvlW+9Ft0JWfRcvPH0GSmIOImTdDnjmxb4UwDMbEjcDo2OGo1zZBKhBDEQSNZQCor2nnzK8SCPhQxSm98lpDJaaI71BMEU+jmCKeJpVKe89EyBBEDWYS8NSnTnOOxREREIaEQBwV5aca+Z5Jo4au4vLcY311ISxGfZ/LKVdbF03j8XiIU6oAAKHSwFxl3DaPyva4rpq72JkqNgRCocAfVSOEEEIIIUMENZhJwFOfPss5lsbFQp6UCN4QGjqkvXAIsJt7zBNJ+967DCApNA5GsxHNOjUAYFpS4M5fPrSvDCUXGjB19jDExCuh1XJvEMQlhvqpZoQQQgghZKigBjMJaMb2DmhLSzlpkthYyP43HHuo0BYc4BzLsyaCL5L0uZxhkakYFpmK9q4OVLRVIyE0zlNV9CiL2YIjeWVoa9WhtKgJoWFSpGZGIiJKAQCQyUQIiwiOoeSEEEIIISR4UYOZBLS2s2cB+30BBQLI4uMgjYlh0yoqKtiFT1JTU/1RTa8yNNeg69J5Tpoyd+aAygyVhmC0dPiAyvCmC+fq0NaqY4/b27rAF1weURCbGObVPSIHe0wR36OYIp5GMUU8Ta/Xs9OhJJK+35QnZLCiBjMJaOqT3PnLkhgVZMlJ4Akuz11ta2tj96IcjDpO/Mg55gnFkA0b5/b5nUYdylsrMVyVCT4vOIaxH9pbxjkOCZUgNMy6GAkPPMQleHc49mCPKeJ7FFPE0yimiKeZzWbO+iGEECtqMJOA1nLsGOdYGhsLyRBa7AsAtBePco4lCZngi9zfe/hQ5Qm8ffQTqBRRmJ06FXPSpiIuJKb3E/2kqqIVVRWtnLTE1Aj2Czw8Sg6pjH4gEkIIIYQQ76MGMwlYuto6GFvVnDRJXCwksbGctBEjRgzaO6KGxkqYWus5aYo+DsfeW34IANCobcbX57ejoq0af5h5v8fq6GmH9nLnrIslQkTHXt4+yheLfQ3mmCL+QTFFPI1iingabStFiGPUYCYBq+30Gc4xXyqFKCwM4vAwTvpgHo7WfuInzjFPKEbI6Dlun1+vaURBYzEnbW7aNI/UzRvaWnUoOFvHSUtMCQefb/1BKBIJEB3jnb2X7Q3mmCL+QTFFPI1iingafwjtPkJIX9BfBglY3fdflsbGIGzUSD/Vxj86uw/HTsoBX+z+HeBWXTsiZJdvMMhFMoyLy/VY/TztyP4yMJbLi7wJBHzEJ13uUU5Jj4RAQJctQgghZMGCBcjJyUFOTg4ee+wxr7/e2rVr2dc7fPiw11+PkEBBvzxJQGLMZqjPdNt/OTYW0m7DsQczfV0ZTG2NnDTlyL4Nx04Oi8f89BmYN2wGMiPTkBKWiIbOZk9W02P0XSacOHSJkzZhWjJGT0yCRCpCVLQCyemRfqodIYSQQKMtK/d3Ffzm7NmzKCkpYY937NiB9vZ2P9aIkMGLGswkIGlKy2DWajlpsuQkSFTRPfK2t7dDrVYPui+KHsOxRRIoR83uUxkV6iqAx0OkLBzj4kdiQsIoxCsDc8GvU0croe8yXU7gAVNnD0NsfCimzkpHzijf7Rk9WGOK+A/FFPG0oR5ThtZWnHvmWRhaW3vPPAht3rwZABAdbf1dpNfrsWXLlgGVaTabYTKZYDabB1w/QgYTajCTgNR9/rIwNATKzAzwHMyvKS8vR0lJCcrLy31UO9/oLD7OOZYmjwBf6P7q2ADQZTKAb7cgTEpYAgR8gYsz/MNiYXAkj7uVVE5uLCKjFQAAPp8HscR3Sy4M1pgi/kMxRTxtqMdU9TebYOrQoPrbzf6uis+ZTCZs27YNAHDdddchLS0NALBx48YBlavX69n/HHnooYdQWFiIwsJCTJ06dUCvRUgwoQYzCUitJ09xjqWxsZAlJvqnMn6gry+HuYM7dFo5alafy5mQMAoLs+djbNwIhElCkBae7KkqelRRfj1amzs5aVPnDPNTbQghhAQyQ2sr6n6wjsKq+/7HIdfLnJeXh5aWFgDAxIkTcdVVVwEACgoKcO7cOX9WjZBBiVbJJgHHrNej48IFTpo0Lg6yeMdDcuPi4mA2myEQBF7PaX8xJgNCJi2AsakShsZLYIwGKEbM6FdZUpEUOdEZyI4K3AbooX3craTiEkOROsx/85UHY0wR/6KYIp42lGOq+ptNsBgMAACLwYDqbzcj/Z67/VspH9q0aRMAQCgUYsaMGUhKSsJ7770HwNrLPGrUqH6VKxKJaKsyQhygBjMJOO3558GY7ObP8HgIHZkLvtjxcOSYmMCckzsQhsZKCGRKCJJHQJo8AqKwWPCF7m8hYrFYemwPEahfgLVVbbhU2sJJmzZnmF/rOxhjivgXxRTxtKEaU/a9yzZ13/+IxCWLII6I8FOtfKejowO7d+8GYO1dDgsLw5gxY5CSkoJLly5h69ateOKJJ1zuqWwymbBp0yZ8//33yM/PR0dHB0JCQpCUlISZM2fi9ttvdxhfa9euxRtvvAEA+OijjxwOyzYYDNiyZQv27t2L/Px8tLa2wmQyISwsDFlZWbjyyiuxfPlyh/V74okn8O233yIlJQU7duxAU1MTPvjgA+zatQs1NTUQiUTIzMzEjTfeiOXLl0MopGYM8Q2KNBJw1N3mLyszMxA5ZbKfauN7Fn0nTO1NnDRJUrbb57fq2vCHH1/A1OTxmJs2HRmRqQHbWAaA8EgZrrw+B0fyyqDVGCCWCMBYGGjau6AMdX8LLUIIIYOffe+yzVDqZf7+++/ZOcYLFixg02+88Ua8+eab6OjowA8//IDFixc7PL+9vR333nsvTp06xUlvbW1Fa2srzp49i/Xr1+Nf//oXrrnmmj7VraCgAL/5zW9QU1PT47nGxkY0Njbi4MGD+OSTT/DBBx8gISHBaVknT57Eb37zG3boOQDodDqcOHECJ06cwLfffov169dDqVT2qY6E9Ac1mEnA6b7gV8TECZBEDZ3thAyNlZxjvlAEUYT722nlVRxBm74DPxXvw0/F+5ARkYo1V/8xYBvNMrkYs67KQmiYFBfO1QEAWls6cepoFabPGQaBkJZaIIQQ4rh32Wao9DLbVscWiUS4/vrr2XRbgxmwDst21mB+7rnn2MbylClTcO211yI6Ohqtra3Yv38/du7cia6uLjz22GPYsWMH4uLc26GipaUFd911F9ra2gAAV1xxBebMmQOVSgW1Wo2CggJs2rQJRqMRFRUV+Nvf/oa33nrLYVnt7e1sY3n27NmYP38+FAoFTp8+ja+++gp6vR5nzpzBa6+9hj/96U9u1Y+QgaAGMwkoBnVbj30Vw8eO8U9l/MSsVXOORVGJ4Lm5sjXDMNhbfoiTlhQWH7CNZZu2Vh1aWzoRmxDKpiWlRVBjmRBCCMtR77LNUOhlrqqqwvHj1h00Zs+ejbCwMPa59PR0jBo1CufOncPRo0dRXl7Orp5t09LSgu3btwMA5syZg3feeYfz++C2227Df//7X7z00kswGAz46quv8Lvf/c6tur377rtsY/mJJ57A6tWre+S56667cMstt6Crqwv79u1jh4J3p1arAQBr1qzBzTffzKbfeOONuOqqq3D33XeDYRhs3rwZTzzxBA3NJl5Hv0ZJQGk7w+1d5kulUGZnuTzn3LlzOHny5KBZGVKRMxVhkxZAljYKQkUYxCr3V7au1TSgso07FGpO2jRPV9GjGIZB2UXuEHSxWIik1HD/VAiDL6aI/1FMEU8bajHlqnfZZrCvmL1582YwDAPA2njs7qabbmIfO9piqrKykt1jefbs2T1uput0OixfvhzJyckYP348ZDKZ23X78ccfAQCJiYm46667HObJyspiV/Q2mUy4dOmS0/KuuuoqTmPZZtq0aZg0aRIAa090RUWF23UkpL+owUwCSvf5y2GjR4Lfy51Di8XC/hfs2o5sRcvez2HWtkKWMhKhE6+DMCLe7fPjlTFYOuI65KqyoBDJIRfJoBQrvFjjgWtt7oS6lbulVMqwSAiF/lv5dTDFFAkMFFPE04ZaTLnqXbax9TIPVlu2bAEAKJVKzJs3r8fzCxcuZFdN37RpE0wmE+f58PBw9vHXX3/NmR8MWG9gC4VCbNmyBV988QXuvfdet+v2zTffYMOGDXjttdd6LDpqLykpiX2s0+mc5nM1fzonJ4d93N7e7nYdCekvGsNAAgbDMFCfOMVJCx87ttfzpFIpBAIBRCL3V5EORAzDoO3IVpjaGqHevxEiVTKir/k/yNJGu11GY2cL+HwBcmOyMUKVBZ2pC6HSwF0Qw1HvslQqQkJSmJMzfGOwxBQJHBRTxNOGUky507tsM1jnMp86dQrl5eUArI1JiUTSI09UVBSuuOIK5OXlobGxEXv27GF7dAEgNTUVI0aMQEFBAc6fP4+rr74a8+bNw9y5c3HFFVdAJpP1e1upiIgIRDj5zPV6PYqKinDq1Cns2rWLTXd1sycjI8Ppc/YLfXW/KUCIN1CDmQSMrppaGLrd7VRmOb9g2mRnu7+CdCDT11yEqa2RPTY2VoIv6zm3x5VL6ir2MY/HQ7wyBhFS/zY+HSkpbERxQQMyh6vQ0d7FeS41Iwp8gX8HvwyWmCKBg2KKeNpQiil3epdtButcZttiX4B166Z3333XYT77+bwbN27kNJgB4MUXX8Sdd94JtVoNjUaDLVu2YMuWLeDz+Rg7dizmzZuHBQsWcHqC+6KtrQ07d+7EuXPnUF5ejoqKCtTW1jpsHNuGlzviaG6zjf17HCojLIh/UYOZBAyeWITwcWOhq62DoakJfLEYgj7Mnwl2mvMHOMeiqASIY1L7VMa4uJGIlkehXF2JBm0z0iKSAnLBrwO7ilFe3IzDeWWIilEgJT0SIWFSyBVixNkt/EUIIWRo60vvss1g62U2Go3sYl0AsHXrVmzdurXX8/bt24eGhgbOnso5OTnYunUr3nrrLWzbto1dYMtiseDkyZM4efIkXnnlFdx888145plnXO7n3N27776L//znPw6HWotEIkyYMAEMw+DIkSO9lmUbWk5IIKAGMwkYli49QobnIGR4DhizGSZtJ2Tx7s/fDWYMY4H2/EFOmiJ3Zp8bu0KBEGkRSUiLSILW0AkRP/D+xOtq2lFe3MweNzdoEaVSICRMirTMaPD4gdfAJ4QQ4h996V22GWy9zHv37mUbtn1hNpvx7bff4te//jUnXaVS4c9//jOeeuopHDt2DHl5eTh48CAKCgrAMAwYhsHGjRvR2dmJV1991a3XevXVV/H2228DAPh8PsaNG4exY8ciOzsbmZmZGD58OMRiMV577TW3GsyEBJLA+zVNhixzVxf4IhEsRiN4AgFCsjLBF4v9XS2f6Cw+AbOm23D03BkDKlMhlg/ofG85vLeUcywSCxATF4KQUClUsYE735oQQohv9ad32WYw9TLbD8f+6KOPMHXqVJf5Dxw4gHvuuQeAdXGv++67z+ENeKFQiGnTpmHaNOtuGvX19fjmm2/wxhtvwGQyYfv27fjd736H9PR0l69XW1uL//73vwCsC4utX78eubm5DvN2dHS4LIuQQESrZJOAEZKVicQlixAzby5CcrKhGJbm1nnV1dW4dOkSqqurvVtBL+o4vYtzLAiJgjja/flDX5zdghM152C2mD1dNY/StHfh3EnutlcJyWHgC/hIz4oOmOHjgyGmSGChmCKeNhRiqj+9yzaDZcXstrY27N69G4C1Z3jy5Mm9njN9+nR2GHZFRQXbo5ufn48PP/wQzz77LDQaTY/zIiIicM899+COO+5g04qKinp9vX379rHbVd1xxx1OG8sAUFBQwD52NYeZkEBCPcwkoPAEAkhjYyGNjXX7nObmZhiNRohEIiQmJnqxdt7BWMzQlXG305KmjnT7/JqOenxz/nsAQJg0FLNSJuOWkTdALg68+d9HD1bAbL68QAePz0N8UhjCI+SIiAqcHvFgjykSeCimiKcN9pgaSO+yzWDoZd6+fTuMRiMA4LrrrnO5ZZMNn8/HwoULsW7dOgDAhg0bMHXqVOzZswf//ve/AVgb1ddddx3nPJPJBIZhOKtQy+W9fzfbDxd3lf/MmTM4efIk5/UICQbUw0yIn2mLjoExcBfICBnbc39FZ/aVH2Yft3W1Y1/FYYiFgTeU3Wg04/jBCk5abHwIxBJhQPUuE0II8b+Gn3dDGKKEOCqy3/8JQ5Ro+Hm3v9/KgNgPx77hhhvcPm/RokXs459++gnt7e2cBvKLL76I5ubmHue1tbXh22+/BWDdumzUqFG9vpb9DZvNmzfD4GBUwPnz5/Hwww9zVrXW6/XuvRlC/Ix6mInfmfV6dNXWQp6a2q9GU1ZWVr/3DQwEPYdjR0LmZg+zhbFgdxl3sbCZKZMh5Afe6pJnj1ejU8v9Ek1MCUeUSomwiMDqDQ/2mCKBh2KKeNpgj6mkW5Yi6Zal/q6GX126dIntkU1MTMS4cePcPnf48OHIyclBYWEh9Ho9vvvuO6xcuRKLFy/Gpk2bUFNTg2uvvRbLli1DRkYGhEIhSktLsXHjRrYhfffddzvdW9ne3LlzER4eDrVajQsXLuCmm27CsmXLEB8fj5aWFhw6dAi7d+/u0aNM85lJsKAGM/G7trPnUPC3NRCFhyN87BiETxiPmLmz3T5fFsRbTzFmE7oqznLSZOljweO5N/jDYrFgfNxInKw7j1adGgCQEdm3rah8gWEYHN7HXewrLTMKOaPiAnIbqWCOKRKYKKaIp1FMDX72vcvXXXddn2+OLFq0CP/85z8BWPdkXrlyJZ599lk0NTVh//796OjoYIdtd7d8+XI8/PDDbr2OUqnEP//5T/zud79DV1cXysrK2Ne1l52djQceeACPPPIIAKCwsLBP74cQf6EGM/E79anTAACjWo3Gvfugb2rqU4M5mGkvHAJj5A5JChk73+3zLYwFKkUU5g+bgXZ9B+o6GhGrVHm6mgNWUtiIxnruAiPT52Ygc3iMkzMIIYSQoW3Lli3s4wULFvT5/IULF+Lll1+G2WzG+fPnkZ+fj5EjR+K9997DDz/8gK1btyI/Px/Nzc0QCARQqVSYNGkSbr75ZkyaNKlPrzVnzhx88803WLduHQ4dOoT6+nrw+XxERkYiJycH119/PRYsWMC+TmNjI3766Sc8/vjjbs3LJsSfeAwtUUc8QKPRcO4U5uTkcBaNcOXoPffBYDePJuX2FUi+dZnH6xiIaj//G3Slp9hjQWg0Uh58y+0e5ovNZThZm88e83l83JhzFSQBNof503cPo6SwkT2OjlXigf83h/ZcJoSQAHLx4kWYTCYIhUJkZWX5uzqEkADQ3+vCQNoGgYZ6mIlfGTs6YO7q4qTJktzfTgkAtFotO49LoVB4snpexZiM6Lp0npMmHzbO7cYyAKSGJ4EHHspaK9Ha1YbE0NiAayw31HVwGssAMHVWekA3loM1pkjgopginkYxRTzNtjUUAAgEgbcWCiH+Qg1m4lfGVjXiFy6AWaNFV3099I1NiJg4vk9llJSUsFtrjBkzxks19bzOstNgTEZOmnKc+6tjA4BYIEJmVBoyo9Kg1rUF5OIvv+wu4RzL5CKMmdS3myK+FqwxRQIXxRTxNIop4ml6vZ69CePOdlKEDBXUYCZ+pautBY/HgzBECWWIEtEzr4BAKvV3tXyCL5YidOpCGJuqYGisBI8vgDQhu9/lhcvCPFg7z2hr7cTZE9WctIlXpEIkojvXhBBCCCEk8FGDmfiVWavlHEtjY/tcRnR0NMxmc9ANHzI0VoIvlkGSkGX9Ly7D7R7iyrYaqBRRkAolXq7lwFRdUiMiWo7mRi3AADwekJjS+xYV/hasMUUCF8UU8TSKKeJpQiE1CwhxhP4yiF911Tdwjnn9+OJPSEjwVHV8xqxtg7mznZMmiUtz61yGYfDKgf+iSdeKaUnjMSdtGnJjssDvw9xnX2AYBp0dBowclwB9lwl11W0wmxnI5CJ/V61XwRhTJLBRTBFPo5giniYWB9YaKIQEisD6hU2GlK66up6JATgH1xsMjZc4x3yJDIKQKLfOLWmpQHVHHfQmPfaWH8Jze15DUVOZN6o5IB1tXdBqrVtmSaRCpGZEYdrsdCSnBX4PMyGEEEIIIQA1mIkftV/ouWG9KDzw5uF6g0XfCR4u3xwQRye7PRz759L9nONYRTRyood5tH6eUFvN7UGXycUYMSY+IBcmI4QQQgghxBEakk38pnFvHhizGeLISIgjI8AXiSBRqfxdLZ9Q5EyFLG0MDE2VMDRWQqxKcfvcBm0z53hy0tiAa4SazRY01nVw0uISQgOunoQQQgghhLhCDWbiF2a9HuqTpwCGYdOyHvldvxpUFy5cYDdUHz58uAdr6R2N378DnkAEZe4MSBKzIU10f2VsC2PB+PiRSAlLRGVbDSrUVUgKjfdibfunsV4Dk+nyfo488BCXGOrHGvVNsMUUCXwUU8TTKKaIp+l0OvaxTCbzY00ICSzUYCZ+0VFYyGksA0Bo7sh+lWUwGGA0GmGxWDxRNa+ydGnRcXoXYDah/eg2CEOjEXvz45AkZLp1fr2mCZ3GLshEUmRHD0N29DBMiB/l5Vr3jcXC4MShCkhlIvD51hsgEdFySKSBv9iXTTDFFAkOFFPE0yimiKcxDMPuw0wIuYwazMQv2s6d5xwLQ0MhUbm36FV3QqEQDMMExXYI2qKjgNnEHpu0aggj3e8hFgmEiFfGoE7TAAZApCws4PZfLjhTg2MHKiASCRCXGIq4pFDEJwbXaq7BFFMkOFBMEU+jmCKeZmsoU4OZEC66yhK/0Fws5hxL4+P6fYHOzc31RJV8QnP+AOdYPmwcBFKF2+dHyyMxK20KOo06lLdWQSmWe7qKA3Y4rxwAYDSaUVneCnVLJ669qX+jB/wlmGKKBAeKKeJpFFPE02gYNiGOUYOZ+EVnBXdbJXmK+4teBSuTth26stOcNEXujH6VJRfJkBuT5YlqeVRbSyeqyls5acPHxIMvoAX5CSGEEEJI8KFfscTnTJ06GJq5Kz2HZAde48/TNGd2Axa7hbCEYiiyJrt1LtNtvnegOri3lHMsEPAwdVa6n2pDCCGEEELIwFAPM/E5TTF3ODZ4PISOyPFPZXxIk5/HORZFJ4EvcW/405fnvkO5ugpz0qZiYsIYiAWBt4CWxWzBuRPVnLTE1AhERrs/5JwQQgghhJBAQg1m4nPt+dwFv0ThYZBER/e7vPr6epjNZggEAsTGxg60el5h0qhhqC/npMkzJ7h1rsViwe6yg2jVteFEzVkoRDL8evIqTEt273xfKSpogK7TyEkbPzU4h9oHQ0yR4EIxRTyNYop4mtFoZFfJFokC78Y8If5CDWbicx2FRZxjiUoFwQAWmqivr4fRaIRIJArYHw0dp38GYDesmi+EcsyVbp17uv48WnVt7LHWqENCSOC9zxOHuPPSQ8OlGDk28PaIdkcwxBQJLhRTxNMopoinUYOZEMdoDjPxOW15OedYnpzkn4r4UPfVscUxKRCFu/cD56fifZzjtPBkpIQneqxunqBu6UTxhQZO2pxrsiEUCfxUI0IIIYQQQgaOepiJTxnb2mBsVXPSlBkZAyozPT0dFosFfH5g3v8xtjfD2FDBSVNkT3Z7G62xcSPBAw8VbdVo1DYjLTzwbjCcOHyJ04EukQoxclxw7b1sL9BjigQfiiniaRRTxNMkEgnbw0wIuYwazMSnNMUlnGOeQABl5sAazCEhIQM639s6Tv3MTRCIoBzt3nDsdr0G7foOpEUkIy0iGVpDJ2amureytq+YzRacOlzJSRszMRFiSfBeXgI9pkjwoZginkYxRTxNIKBRYYQ4QrcliU91FF3kHIsiwiGOjPRTbXxD22M4diqEYe4tctbW1Q4h//IXWJQ8HBkRqR6t30AV5ddD06HnpE2YHlh1JIQQQoYyhmHw2WefobGxscdza9euRU5ODnJycnD48GE/1I6QwBa8XUAkKLVfKOQciyMjIQoP81NtvM+oboCxuYqTpsiZ4vZwp+SwBMQpVahqr0NZ6yVEySMCbvjd0QPlnOOktAjExof6pzKEEEII4aioqMBTTz2FY8eOYfbs2f6uDiFBhxrMxGcYhoG2pJSTJo2PA3+AKzHq9Xp2zo1EIhlQWZ6mKz0F8PgAYwEA8IRihIye26cyRAIR0iOSkR6RDMv/ygkULU1alBc3c9ImDoLe5UCOKRKcKKaIp1FMAXU17YhLoBu0vdmyZQuOHTvmVl6GYWhuPCHdUIOZ+IyhqRmmjg5OmiI9fcDlFhYWsltrjBkzZsDleZIwTIWwaYtgbK6GoakSAkU4hKFR/S6PzwusL7DTR7lzl4VCPhKTg3/EQCDHFAlOFFPE04Z6TGnau/DxW7/ggcfnQBkq9Xd1Bg29Xo+uri7I5XJ/V4WQgBFYv77JoKYpLuYc80QiKFKDvzfSGYtRD31dKXhCEcSxaVCOnIWIWcvdOre8tRI/Fe+FxqD1ci0HJjUzCqMnJiA6RgnwgPjkMERGK/xdLUIIIYPcgd0l0HUacXBPae+ZCSFkAKiH+X8YhsHWrVvx9ddfo6CgAJ2dnVCpVJg8eTJWrlw54Lu38+bNQ3V1tVt59+/fD5VK5fC5oqIirF+/HocPH0ZDQwNCQkKQkZGBxYsXY8mSJQG9wmHHRW6DWZGWCnlq8oDLDQ8Ph9lsDrj3bmyqAmM2scc88CCJc69H/aeSPOwsycMHJzdiUsIYXJs1ByNjsr1V1X5hLAwaajoQEaVARJQCer0J8Ylh4AuC/z5coMYUCV4UU8TThnJMadq7cPygdbvGYwfLccXcYdTL7CECgWBIxhQhrlCDGUBXVxcefvhh7Nmzh5NeXV2N6upqfPfdd/j973+P++67r1/lazQa1NTUDLieGzZswF//+lcYjUY2raWlBS0tLTh69Ci+/fZbvPnmmwgPDx/wa3mDpluDOWzMaEii+j882SYlJWXAZXiDoZl7g0QUnQiBrPdtQAxmI365ZJ1rZLKYcKjqBNIikgKuwdza0omursuxKJEIMSzLvdW/A12gxhQJXhRTxNOGckwd2F0Ck8m6pofJaMHBPaW45qZcP9fKuzo7O7Fhwwbs3LkTRUVF0Gq1CA8Px/Dhw3H99ddj8eLFPRq6a9euxRtvvMFJmz9/PgAgMTERu3bt6vE6IpEIZrMZb731Fn788UdUVFRAKBQiOTkZN9xwA26//XbIZDKXdS0rK8Onn36KAwcOoK6uDgAQHx+PGTNm4M4770RysuPOElt9BQIBzp8/j2+//RbvvPMOqqqqEBERgdGjR+Oll16i4eLE56jBDODpp59mG8sZGRlYvnw5oqOjkZ+fjy+++AKdnZ14+eWXERsbi0WLFvW5/MLCQjAMAwC4//77MXr0aJf5w8J6zgHNy8vDM888A4ZhIJPJsGLFCowaNQrNzc3YuHEjioqKcOzYMTz66KN47733Am6xBsZigaaEuwdzSFamn2rjfdaFWPjg8fhg/rdQlzg6ya1zj1WfgdaoY4954GF26lSv1HMg6qrbOMchoVK6w08IIcSr7HuXbQZ7L/OxY8fw2GOPsY1Pm8bGRjQ2NiIvLw8ffPAB/vOf/zhtjLqrrKwMTz75ZI9Rkfn5+cjPz8fmzZuxfv16RDnp8Hj33Xfx73//m9O5AwAlJSUoKSnB559/jieffBIrV650WY/PP/8cf/nLX9jjhoYGNDQ0UGOZ+MWQbzAfOHAAW7duBQBMmzYN7777Lrva5MKFC3HLLbfg9ttvh1qtxpo1azB//nwolco+vUZh4eWtlBYvXoz0Pi50ZTAY8Je//AUMw0Aul+OTTz7ByJEj2edvu+02PProo9ixYwcOHDiA7du3Y+HChX16DW/rqq2DWdvJSVNmDt4GM4/Hg3LkTDAmI4yttTA210AYGe/WuUIeH4mhcajtaICFsSA+JAahkr7FnLcZDWY0NWg4aXGJtFIpIYQQ77LvXbYZzL3MZ8+exb333ovOTutvqPHjx+P666+HSqVCdXU1Nm/ejIsXL6KoqAgrVqzAN998g9jYWADAggULMGLECGzbtg3bt28HADz33HOIioqCVOr45sJzzz0Hs9mMESNGYNGiRYiKikJRURE+/fRTdHZ2orCwEGvWrMHLL7/c49y33noLr732GgBALpdj6dKlGDNmDHg8Hs6ePYuvv/4aWq0Wzz33HPh8Pm677TaHdbBYLFizZg1CQ0Nx9913IykpCcePH++1w4kQbxnyDeZ169YBAIRCIZ5//vkeWzNkZGTgmWeewWOPPQa1Wo0NGzZg9erVfXoNW4NZIpEgtR+LXP3000+oqrLu5furX/2K01gGALFYjBdffBFHjx6FWq3GO++8E3AN5u7zl0Xh4RBHD3w4dqCq++rvECjCoRg+DbK0URCr+jB0jsfD9OSJMJiNqGyrQYwiEiLBwLbe8iSGYVBf2w6LhWHT+Hw+YmjvZUIIIV7kqHfZZjD2MpvNZjz++ONsY/mxxx7rMT1w9erVeO655/Dll1+iqakJTz31FN5//30A1t+wGRkZKCgoYPPPmDEDSUnOR7yZzWbcddddePLJJ8Hj8dj0JUuW4Oabb4ZOp8P333+PP//5z5wRkfn5+Vi7di0AIC0tDe+//z7ndW666SasXr0aq1evRnl5Of7+979j9uzZSExM7FEHhmFgNBrx8ccfY9y4cQDQrxGehHhKYI3b9TG1Wo2DBw8CAGbNmuV0GMuCBQvYoSc//PBDn1/H1mDOzMzs11Bp211BHo/n9G6cQqHA0qVLAVgXBisrK+vz63hT9xWylVkZnAvxQBQXF+PChQso7vYa/mJqb0bnxWPoOLUTdV88j4rX/g/6+nK3zjVbzKhqrwUAiAUiZESmYmbqFI99Vp5w7mQNNn12Cg217bBYrHf5o2MUEIkGzyIhgRZTJPhRTBFPG4ox5ah32cbWyzyY/PTTT+zvuQULFjhcS0coFOLZZ59lF6fdv38/zp492+/XzMjIwMMPP9zjd0dGRgauu+46ANZGtf3oScDaAWU2m8Hj8fD66687bJQnJCTgb3/7GwDr9lUff/yx03pMmzaNbSwT4m9DusF87Ngx9gf/tGnTnObj8/mYPHkyAOD06dNoa2tzmrc7hmFw8eJFAEB2dv8WbTp69CgAICcnB5GRkU7z2b+Hffv29eu1vKX7gl/KjAyPld3Z2QmtVsvegfU3beFhbgLDQBzd8w6qIwK+AFcNm4nh0RmQi6TgAUgJc+9cXzmSV4aWJi0unK3Hob1lqK1qQ1xi8O+9bC/QYooEP4op4mlDLaZc9S7bHDtYDk17l49q5H179+5lH//qV79ymk8gEHCe37lzZ79fc/78+U5v0o8YMYJ93NTUxD42mUz4+eefAQAjR47E8OHDnZY/ZcoUtoNq9+7dTvNNmjSpT/UmxJuG9JBsW0MW6L0xm/m/+bYMw6CoqIhtQPemuroaGo11rmdWVhYA66rZFy5cgFarRUxMDLKzs50u4V9fX4/29nbO+c5k2DVCL1y44Fb9fIExm6Et5fZ462rrYNJoIOzjfPBgoL3wC+dYnj0ZvD4MqQ6VhmBM3AiMis1BW1cHZKLAGV7WWNeB6ktq9thktEAmFyMiihbhIIQQ4j2uepdtBttc5lOnTgEAQkNDe0zH686+02SgPczO2K/ho9fr2ceFhYXQ6ayLlYpEol4b7OHh4aisrER5eTk0Go3DtYGGDRvW16oT4jVDusFsvwKgozkU9uLi4jjnudtgth+ywufz8eCDD2LXrl0wm81senh4OFatWoV77723xyIMtrnL7tQxNjYWfD4fFovFI9tYeYpZb4Bq7myoT52GoaUVjMkESXQ0BB5a6XCge2R7kqmjFV2XCjhpihznoxdc4fP4iJAFVs/tsW5390ViAUZPSAioIeOeEEgxRQYHiiniaUMpptzpXbYZTHOZW1paAMDlnGObsLAwhIWFoa2tjdP721cqlcrpStT23/W23V8Aa+eOzcmTJ/Hb3/7W7ddrbW112GAOCel9G05CfGVIN5htFyIAiIiIcJnXfm9jtVrt9mvYN5j/8Y9/OMyjVqvxxhtvYN++fXjnnXc4w65bW1vdrqNIJIJcLodGo+lTHb1NKJch9qr5EEdGgmEYmDo0kMaowAuwra88oePcXgCXv0R4Yilkw8b2ep7ZYkaLTg2VInAXQjMazDhzvIqTFpcYisQU13FJCCGEDIQ7vcs2g6mXWavVAkCv+x7bSKVStLW1sb29/SEU9r1pYBtJ2R+299idWCzud5mEeNqQbjB3dV2e59J9dezu7P9w7c/rjX2DWSQSYfXq1Vi8eDGSk5OhVquxd+9evP7662hsbMSZM2fwyCOPYP369eziYPYXvd7qaMuj0Wj6VEdvKC4uRkZGBnuHUCCXQ6iKRk1xMZguPYxGA+IcnGObi9X9znlTUxPba56cnMy5eWA2m5Gfnw/Aekey+7Zd5eXl7LD23NxczpeBWq3GpUuXAADx8fFQqVScc8+ePcvufd19SHxVVRV70yU7OxtSqRTa8wc4eUyyCNQ3tSA+nrulVEFBAYxGI0QiEUaMGIHTdQX4R96bGBmTjbHhw5EIFSQCMYYNG8a589rV1YWioiIAQGRkZI+7zhcvXoROpwOPx+ux/UJjYyNqa60LiqWkpHBuAplMJpw/fx6AdehXWloa59yysjKcO1kLfZeJk56ZEwNdlwZFFysBWBf0iI6O5uQ5c+YMAOsWE5ndthK7dOkSe3MnJyeHE+MdHR3sYiexsbHsNhk258+fh8lkglgs7jFfqqamhr3DnpGRAYVCwT6n0+nY6RhRUVE9Rm4UFRWhq6sLfD4fo0aN4jzX0NDA7oOZlpaG0NDLK4MbjUZ2JdKwsLAeK+KXlJSwPwxGjRrFWQCwpaWFHU2SlJTEuWlmsVhw7tw5ANbF/boPl6uoqGDXVRgxYgREosvD/9vb21FeXg7AOkomJiaGc+65c+dgsVgglUp7TEuprq5Gc3MzAOt0EPsfbFqtFiX/21c9OjoaCQkJnHMvXLgAg8EAoVCI3Fzuj9b6+nq2NyI9PZ3Ti6DX69lrZnh4OFJSuKvLD4ZrhI1Go0FpqXWBIpVK1es1wl5tbS0aGxsBIKCuER0dHQCscxjtpxm1traispKuEcFwjehOp9OBYRjw+fweI+AMBgNMJut3glQq5dTXbDazQ3aFQmGPxo+tXB6P16MxaDQa2T18JRIJdFqj273LNo56me3LFYvFnL9zhmHY31sCgaDH7y29Xs+ODJTJZJyeVpPJBIPBAMD6O8/+8wXAXrP68xlKpVJoNBqH89QdfYa2fBKJhPPYHsMw7HOO/m0MBgP7fPeeZvvRkfaP7f8N7777bjz66KP9+gy7791s4+oztC/XVRw6+rdxFYf2/zYSiYRzTbNYLOzvbEefYVdXFywWi1vx7axcR3FoKxdwHYeu4rs/n6HZbIbBYGBf256r3xG276nBYEg3mG1/CEDvd7Lsn7c/rze2H4YSiQTr1q3jLGIQExODZcuWYfbs2Vi+fDnq6upw6NAhzj7K9hckd+622fL0pY7eYDabOX9Y8uQk8FXRqI0IB0wmiEJ7bkFkMpmcXiwtFgv7nKM/WNtzjt63fbn2Q4hsx72VyzCMwzuu3cs1d3bAUM+dq22ISndarv173Vt+CACQ31CE/IYiJEvjcHvSQpf1dfRebeU6GiJt/xn2tVyTyYSyCx2ctIgoOSKi5AP6tzGbzU7rZF+u/d+Bfbkmk8nhyvOuyrV/r87KNRqNvZbb/b268xn6Or7d+QwtFovDNRQG8hna6tT9vO7luvoMXZXrSDBcI/parjvvNZCuEd74t6FrBNiy/HGNYBiG/c/Zc47KdZbmzvPdy+1L77KNs15mV3Xq7b3YP9/978cT5ToSHR0NjUbDmZ7n7NyWlhb2plVMTIzX6uSI/Q2cpqamfpXr6nlX9e0t3Z336mxa2UDL7e+5vb32QMrt7VxX5znK4+p3hKNrVbAa0g1m+zssRqPRZYPUdtcG6NswkS+++AIajQYdHR09ehBsYmNj8ac//QkPPvggAOCrr75iG8z2d5ecfZE6qmf3u2i+JhAIevyY4PF41nqJRBDZ3c23EQqFTuvN5/PZ57qX29zczP6hOvrRal9u94siWycH5QLWz5FhGIf16l6uJn8/YH9h4fFhSR7jtFzb/7WGThytPsV5fmRYFkQikcv6OnqvIpEIJpPJ4cXf/jPsa7ntahPUzdz4Gz8tBRHRCvD5TK+fobNyBQKB0zrZ19fRhdj2+fS1XPv36qxcW4OiqamJ0xtmX67T+HbyXvsb37Y6uVNufz5Di8XisF4D+QyFQiEsFkuv/zauPkNn5fr6M/TUNUKtVqOjowN8Ph/R0dFulWv/f2fvNVCuEd76twnUa4TZbHb4Xnx5jWhqamJ7sbx1jbDldxQvPB6v1+ddsT/fWbpWY+hz77KNo15mV3Xy1nt1t1xHRo4cifLycnR0dCA/P5+z8Ff3cg8dOsQ+l52d3e86uUp3xjYyx2Qy4cSJE07LtJX7zDPPgM/nIykpCffcc0+P5z1VX0/EaH/LdSe+XdXJl+/Vnc/eWRmufkf0ZyvdQDWkG8z2Q030er3bDWZ3hkbbUyqVDhc0sDdv3jwolUpoNBqcPHkSFosFfD6/Rx17Y8vTfbiFr2VmZvZ4zxKJxOUiJd2H4tmLjo7uMYzPpq6uDmazGSKRqMdQSwA9hg7aCw8P5ww77K77kEV7SUlJnOGOzfn7Oc+LoxIxbMZ88Hg9Lxj2QyzPNxSBz+MDsN7d5/P4uHHStVApe85nlkqlLj9DVyupq1SqHsNJbYRCocty6y9xey2UoRJMnzMMAoH1vbmaX++q3JSUlB7Dbm1CQkJcntt9qK+9hISEHsOEbWQymctys7OzcebMGRiNRtTU1HDiLiYmpsewZhuRSOSyXFcrj0ZGRjrdMo7P57sst/uwTnuhoaEuz+0+nNReYmKi04UGFQqFy3JdbSniaOisjbeuEQKBwGW5vrhG2GJKJBIhOjoaSqXSZZ26D8O2Fx8f7/QGrL+uEY6uvTYRERGD7hrhjC+vETU1NWxMeeoa0X3bTFdzZ8VisdPfTQKBwOnCUb2Vaz909scd+X3uXbbp3svsaEiuDY/Hc1lfV7/7hEKhy3m/rsrt7TO85pprsG3bNgDAe++9h1dffZV93v4zNJvNWLduHXt81VVXcV63e0PHVZ1svYiO8tjfVLF/LJPJcMUVV2Dfvn2oqanB7t27cf3113POtX2Gv/zyCzZs2ADA+l1h21va1Q2j/v7bDCQOXf3bdP993p2r3+Cu4nAg5bqKw4HEt0AggEAg6DHM28bV7wiVSsVZLyqYDZ6mfz/Yzy3qbZEs++dd7YXcXwKBgP1SMxgM7OvZ17G3/Z+NRiM7z8MbdewPxsEQr8HI0qWFvrqIkyZLH+OwsdxdhCwcN2TPx7SkCYhXxiAhJBYSUd9uyniTQW/CmePVnLTxU1PYxjIhhBDiaX1ZGduZYN+X+eqrr2Z/G27fvh3vvvtujzxmsxnPPfccu5XU1KlTe+xhbN8w7O23ZH/Z7wP97LPP4vTp0z3y1NTU4I9//CN7vHr1aq/UhRBPG9I9zPa9CrW1texG6o7YFvEA4PSu9EA5uuPUvY6u1NfXs/MFvFXHvip+4z9oP18AZWYmlFmZiJg4AfLk3rdH6Ivk5GS2R95fNIWHAcbuLjiPD+XImW6dW6GugoAvQFJYPJLC4hEhDUOoJHD2pz53shoG/eUeZh4PmDDVcY/PYBEIMUUGF4op4mmDPaZOHa2CTDHwlZJPHa3CzPnOR6cEMoFAgJdeegkrV66EwWDAyy+/jF27dmHBggWIjo5GbW0tNm3axC70Fx4ejhdffLFHOfYLuv3973/HypUrAQALFizokVckEvVrheqpU6fi7rvvxgcffIC2tjbcfvvtuOGGGzBt2jTw+XwUFBTgq6++Yjt2Zs2ahUWLFvX5dQjxhyHdYLYf/nTx4kVMmTLFaV7bipk8Hs/lkDZ7lZWV2LVrF5qbmzFhwgTMnTvXZX7bAmEikQhhYdb9dyMiIhAVFYXm5ma2Ds4UFxezj10NGfOljqJidNXVo6uuHk37D4AvEnq8wdzbdlu+oDm3j3MsioiDJM75EEV7UfIItHV1oE1vXawjPcL5jRt/OP7LJc5x5vAYhEW4t8VFsAqEmCKDC8UU8bTBHlMz52cGbUPXk8aMGYP169fj97//PRobG3Hy5EmcPHmyR74RI0Zg7dq1DqdrXHHFFQgPD4darcaxY8dw7Ngx8Hg8zJ07t8dQXYFA0K+tpQDgiSeegEQiwX//+1+YTCZs3rwZmzdv7pHvyiuvxCuvvNLnudKE+MvgvC3ppvHjx7O9uocPH3aaz2w24+jRowCs8y1CHazw7EhDQwPWrFmDd955B19++aXLvGVlZWwP8ujRozlzQyZPngzAus2IbQVER+wXfHDV+PcVU2cndNXcobwWkwlddhvcDwYWgw5dlwo4adKUXPAE7i28lhWVjmsyZ+PqjFnIjkpHclhgjA4AgJpKNWqruMO3Jl7hfD4cIYQQQjxr0qRJ+PHHH/HHP/4RkyZNQnh4OEQiERITEzF37ly89tpr2LBhg9ORkhEREfjwww8xc+ZMhIaGQigUQqVS9Tpysa94PB4effRRbNmyBatWrWK3bBOJRIiNjcU111yDt956C2+//bbLObWEBJoh3cMcGhqKadOmIS8vD7t27UJNTY3Doczbtm1jJ613X8TAlVGjRrELeeXl5TktHwDeeust9nH3ISrXXnstfvjhB5hMJnz++efsAgn2NBoNvv32WwDWxVdcLbrjK5riEs6q0eDxYOrQQFddA6mTRX+Ckb6+HLC/ScrjuT0c+/IpPETIwhAhC/No3Qbq+C/c+WNyhRixCe7dMCKEEEKIZygUCtxzzz3sqtJ9NXz4cLz//vsOn3vooYfw0EMP9VrG0qVLsXTp0l7zZWVl4ZlnnulzHd2tByG+NqR7mAHrBuuAdcGsRx99FBqNhvN8cXExXnjhBQDWi9WyZcvcLlsikWD58uVs+Y899liP8gHg/fffZ4espKWlYcmSJZznr7rqKnal1TfffBPHjh3jPG8wGPCHP/yBXSgsUBZRCM0dgTH/+gcip0yGYtgwyFOSwRMIII3zbGPZtqm6oz0kfUGoCEfY1JugyJ0BUUwqRFFJkCQMjmFkcQlhUIRcXoBMFadEaeHg2YjeGX/HFBl8KKaIp1FMEU9zte82IUPZkO5hBoCZM2fi2muvxY8//oiTJ09i0aJFuO222xAfH4/z58/j888/h1arBQD84Q9/6LH69OHDh3HnnXcCsA6D/vjjjznP/+Y3v8Hu3btRVlaGEydO4IYbbsCtt96KtLQ0tLa2Yvv27WwDWKFQ4KWXXuqxvLtYLMbTTz+N3/zmN+jq6sLdd9+NZcuWYcKECVCr1fjqq6/YBR8mTJiAW265xSufVV/xhUIIlQoohqVDMex/83l5PEicbFvSX/n5+W5treEtxuYa8ARCiKISIYpKhDAkCnyx6zm+epMBf9vzOqYkjcOs1CkB17NsM3piIrQaPVpbOlFX1Ya4xDDEJQZmXT3J3zFFBh+KKeJpFFPE03Q6HRiG6XUbIkKGmiHfYAaAF198EVqtFvv370dVVRX+9a9/cZ7n8Xh48MEHsWLFij6XHRISgvXr1+PBBx/EuXPnUFdXh9dff71Hvvj4eLz88stO9/ScN28enn32WbzwwgswGo347LPP8Nlnn3HyjB49Gv/5z38485/9rau+gXMsiY4C38n+c8GIYRgYmrnztMXRjveutXe0+hSKmktR1FyKT898i/FxI/H4zPsh4AfOvx0A1Fa3ATwgIkqOiCg5hEIBYuJC/F0tQgghhBBCfIIazLDuT/fee+/hu+++w6ZNm9jFtcLDwzFx4kTceeedmDhxYr/Lj4+Px5dffomtW7di27ZtyM/PR3t7O5RKJdLS0nDNNdfg1ltvhUKhcFnObbfdhkmTJuHDDz/EwYMH0djYCJFIhOzsbNx4441Yvny5083Q/aWrjrvAlzfmLoeEhMBkMvV7VceBMHe0wGLQcdJEkb0v2rW77Bf2McMwMDPmgGssMxYGddXtnLSY+BAIhIN/Joc/Y4oMThRTxNMopoinCQQCtoeZEHIZXWX/h8fj4aabbsJNN93Up/OmTp2KwsLCXvMJhUIsXrwYixcv7mcNrbKysvD8888PqAxfMXd1wfi/edU2np6/DFgXOfMXS5cGPIEQjNm6T7FAFgK+3PWiWC06Nc7Vc2NmVupUr9Wxv1qatdB3GTlpCUmDfzg24N+YIoMTxRTxNIop4mndpwQSQqyowUy8Rt/AHY7NEwoh7jYHPNiJY1Ihik6CSV0PQ1M1BDJlr3dmQ8QKzBt2BYpbKlDVXgserHsxB5raSu52UqFhUihDpX6qDSGEEEIIIb5HDWbiFe3nC8BU14Axm8H735xqiUrFPh4Mmn5aB7OmFYrh0yDPnACFG0OxAaBe04QIWTgmJ4ZjfPxIqLvakRae5OXauq+8pBlCIQ/NjVpOenxSuH8qRAghhBBCiJ9Qg5l4RdU3m2AsuADw+RCFhSFi0kSEjx/n72p5DGMxQ3NuHyy6DmgLDoInFCNm8e+hyOl9aHVr1+WeWyFfiFxVFhTiwFiNkmEYfP/1WTTWaxAaLkV8UhiiY5UQi4W02BchhBBCCBlyqMFMvMJk22/aYoGxtRV8sQjS2BivvFZ5eTm78ElaWppXXqO7rop8WHQd7DFjMkAc6958stGxwzEsIgUV6mpUqKuQGkC9y5VlrWist/7btau70K7uglgiRO7YhCGx2JeNP2KKDG4UU8TTKKaIp+n1enbRL5rPTMhl1GAmXscTiSCOioIoPNwr5be3t7N7UfqK9sIhzrE4LgOicPdvCCjEcuTGZGGEKhMMGE9Xr9+OH6rgHMvkIoRHyobMYl82/ogpMrhRTBFPo5ginmY2m2mVbEIcoAYz8TpxZCRkcXGD5gLMWMzQFh7mpCmGT+tXWTweDzwExufSqTXg/OlaTlpcUhhCw2QICaPFvgghhBBCyNBDDWbideLICK8NxwaA3Nxcn94R7aq8ALNWzUlzp8G8r/wwhkWmICk03ks1G5jTx6pgNlnYYx6Ph7iEUMQPsd5lwPcxRQY/iiniaRRTxNNkMhnFFCEOUIOZeJ04KtIr+y/bCIW+DWPNub2cY4EiHIJe9l7u0Gvw1tGPYbaYkRGZijlp0zA3bRqkosDouWUYBid+4Q7Hjo5VQioTISZ+6C325euYIoMfxRTxNIop4mk8Ho8ay4Q4QFdb4nXy5CQIlUp/V8MjGMYCbdFRTpo4Lh18qcLleT+XHoDZYgYAlLRU4JK6GrNSp3itnn1VXtLcYxuppNRwxMSFQCgcPFuBEUIIIYQQ0hfUYCZexZdKIU9zb/XoYNBVfRGWznZOmiJnWq93ZH8uPcA5Hp8wKmC2kgKAE79c4hxHxypx3eKRsFicnEAIIYQQQsgQQA1m4lXiyEjI4uO8+hpqtZqdcxPupZW4bTRnucOx+bIQyDImuDyn06BDmCQEbV3t6DLpAQC50Vleq2NfaTv0KDjLXexr4rQUiMRD9/Lgy5giQwPFFPE0iiniaSaTiX1MQ/4JuYz+GohXeXvBLwC4dOkSu7WGN380MAyDzqIjnDRJXDqEIREuz6vpqMeYuBEYFZuDek0TajvqceWwK7xWz746dbQSFvPlra2EQj7GTAqcvaH9wVcxRYYOiiniaRRTxNMMBgN7E4YazIRcRn8NxKvkKckQSANjYauB0teVwqxp5aTJc6b2Ohybx+NBLpKi09iF+JAYTE0aB1mgLPZlYXDiEHc4du64BMjkYj/ViBBCCCGEkMBBDWbiVaEjc73+GvHx8bBYLODz+V59nR7DsaUKyLN6X7grIzIV6RHJaNQ2o0JdjZTwRG9Vsc9KLzahtbmTkzZxWoqfahM4fBVTZOigmCKeRjFFPE0kEvm7CoQEJGowE68RKBRQDvP+gl8qlcrrr8EwDLSFhzhp4tjeh2Pb8Hl8xCpViFV6v659ceIQdyspVVwIktLce0+DmS9iigwtFFPE0yimiKdRg5kQx+i2JPEacVQkJIPkC92sUcOi4267JM+eEtT7FRr0JpQUNnLSwiNlqCht8VONCCGEEOJpOTk5yMnJwR133OHxsquqqtjyn3jiCY+XH2z1IIMTNZiJ18iTk8EfLHcreUDo1IVQjJ4LcXwmBCGRUAyf6vKUDr0GDMO4zONPYokQDzw+BxnDVZDJReDzeVDFKiEU0mWBEEIIIYQQgIZkEy8KHZ7j7yp4jLGxEjweH6LwGIjCYyCQKiAMiXJ5zqsH30Ojthmz06ZiTto0xCijfVRb95iMZpQUNiExJRwJyWHQdRohlogQmxDq76oRQgghhBASEKjBTLyDx0PYuDE+eamzZ8+yW2uMHj3a4+UzDANDUxUnTRSd7HI4doOmCfkNRWDAYEP+NmzI34Y/zfkdxsSN8Hj9+kPXacCxgxUwmy0A/reSt0IMVawSIpHAz7XzP2/HFBl6KKaIp1FMEU/r7Oxkt5WSy+X+rg4hAYMazMQrxBERkCf6ZjVohmHY/7zBrG2DWdfBSRNHu96neGvhz2BwuT5ykQzDVZleqV9/VJS0sI1le/FJYX6oTeDxdkyRoYdiinjaUI8pi+Xy++bzg3c9EUJI4KMGM/EKRXoaeALf9FTKZDIIhUKvre7IGDrBl8hg0esAAAKpAoKQSJfnXGgq5hxnRw2DWBAY87kZhkFrS2eP9NAwKcIiZH6oUeDxdkyRoYdiinjaUI4pg9GM9VvzoesyQSYVYvXCkRDT6KgB4/P5bA8zIeQyajATr5Al+W6v4aysLK+WL4pMQNiUG2HuaIahsRJ8sczll0mnUYdJCWMwLCIVFW1VqGyrwcyUSV6tY1/oOo3Qdxk5aaFhMuSOjacvyf/xdkyRoYdiinjaUI6pi5VqGI0WVDZ0ID0+DBcr1Rg5zPW6IsGutrYW69atw759+1BTUwOZTIacnBzceuutWLhwId599128/PLLAIDCwsI+l9/a2orPP/8ce/fuRVlZGTo7OxEZGYkxY8bgxhtvxLXXXut2WZs2bcIXX3yBoqIi8Pl8pKenY8GCBbjtttsglUpdnnvx4kV88803OHz4MGpra9HR0QGpVAqVSoVJkyZhxYoVGDlyZJ/fHyEDQQ1m4hW+Go7tbW1Ht6Oz+AQUw6dBkTMF8ozxvZ5T29EA8HiIlIcjUh6OifGjMT2AGswbPzoOo9GM2PhQKELEkEpFGD/V9ZxsQgghJFCcK21Ch86Azi4TOnQG5Jc2D+oG8+HDh/HAAw9Aq728vaXBYMCRI0dw5MgR7NixAzk5/V9odceOHXjqqafQ3t7OSa+vr8eOHTuwY8cOTJ48Gf/+978RGel8hJ3ZbMbvf/97fP/995z0M2fO4MyZM/j000/x3nvvIS0trce5FosFa9aswaeffgqLhTtlzGg0oqOjA6Wlpfjqq6/wyCOP4P777+/3+yWkr6jBTLxCGh/n7yp4hOb8fuirCqErPYmm799B5JUrET59sctzhkWkIFIWjgp1FS61VSMhJBYiQWD8qbU2a1Fe3AwAqK5QQ64UY87V2dRYJoQQEhQaWjrR2KpDa7seANDarkeDvBMNLZ2IiRx8C1WdO3cO9913H7q6ugAA8+fPx7x58yASiXDkyBFs2rQJP/zwAw4cONCv8nfv3o2HH34YZrMZADBz5kzMnz8f4eHhKC0txTfffIPq6mocPXoUq1atwoYNG6BQKByW9f3338NoNEIul2PFihUYNWoUmpqasHHjRhQVFaGyshKrV6/Gd999B6VSyTn39ddfx8cffwwAiIyMxJIlS5Ceng6JRILq6mps374dRUVFAIDXXnsNM2fOxKhRo/r1ngnpq8D4FU8GncGw/7KpvRn6KrthTYwFYlVKr+fxeDxEyMIQIQvDmNgRMFlMXqxl35w5Vs05NuhNiE+mhb4IIYQEpr0nqlBW08YeG00WmEwWaDoNkEuF0HQaYDJZsHlfCURCPpsvPSEMcya4XqAzGDz//PPo6uoCj8fDmjVrsHTpUva5RYsWYcmSJbjvvvvQ0dHhohTHNBoNnnjiCZjNZggEAvz973/HokWLOHn+7//+D4888gh2796NkpISvPjii3juuecclmc0GqFSqfDxxx8jPT2dTb/99tvx2GOP4ccff0RNTQ3efPNN/PGPf2Sfb2lpwbp16wAAiYmJ+PrrrxEREcEp+9e//jWefvppfPPNN2AYBtu2baMGM/EZfu9ZCOk7U2fPRaW8paqqCuXl5aiqquo9cx9oCw9zjvkSOWTpfdu6g8/nQywUe7Ja/cYwDE4fq+SkxcSFIDpG6eSMoctbMUWGLoop4mlDIabMZgvyS5tRVtPO/lfVoEFNkxY8Pg9JMSHg8XmoadKiqkHDyZdf1uxwN4hgcujQIZw8eRIAsGzZMk5j2WbSpEmcxmdffPHFF1Cr1QCAe+65B9dffz30ej0MBgObRyaT4ZVXXkHi/6baffPNN6ivr3da5t///ndOYxkARCIR1qxZA5VKBQD4+uuvodfr2ed3797NvuZvfvObHo1lwPp76r777mOPy8rK+vhuCek/ajCToNfS0oLm5ma0tLR4tFzthUOcY3nWJPACZKXr/qiqUEPdouOkJadHQioL3vfkLd6KKTJ0UUwRTxsKMdXaoQcDQC4VoqW9Cw2tnWhUd8JoMiM1LgQiIR+pcSEwmsxoVHeiobUTLe1dkEuFYBjr+cFs9+7d7OO77rrLab4lS5YgPDy8z+Xv3bsXACAUCrF69WqYTCb2P3tyuRyrVq0CYO1F3rdvn8PysrKyMGvWLIfPKZVKLFmyBADQ1taGEydOsM/ddNNN+Omnn/Dee+/huuuuc1rfpKTLIwZsQ9QJ8QVqMBOvEAb5hvdmbRu6Lp3npCmGT3d5zu7Sg1h34kuUtFQE5L6YZ49zeyFkchFSMwbvIimEEEKCW3S4DIvnZEAVIUdGUhgUMhEYBlBFyCGXWm/2yqUiqCLkYBhAIRMhIykMMRFyLJ6Tgejw4N4q8ejRowCAiIgIZGZmOs0nFosxYcKEPpd/+vRpAEBmZiaiolz/Hpg+/fJvoDNnzjjMM2XKFJdl2NfRvgyRSITU1FTMmjWrx9xmAKirq8POnTvx4osvsmm2OdeE+ALNYSZBLzs72+P7Bnac3QPArtHLF0IUm+bynB+K96CstRI/XNyDpNB4rBy7BBMT+jaE21vMJgvyT9Vw0kaOS0BCEs1fdsQbMUWGNoop4mlDJaYSVUqsuDobO45cglDAR2V9B1rauxCquDzdqaXNepwcG4Lk2BBcPSWFbVAHs4aGBgBAQkJCr3lTUnpfY8WeRqNhh0UnJycDgMstn2x5AKCpqclhnsRedkixfx+NjY0O85w4cQIHDx5ESUkJKioqUFFRAY1G47JcQryNGswk6PW2p19/aM5zV5sUq5IgClM5zV/SXI6y1svzg6vaayHkCzxer/66WNAAXSd37+XpczMQGuR3373FGzFFhjaKKeJpQymm5FIRrpyYjI+2n4dtAFdzmw5dBjOkYgHAA5t+5cTkQdFYBsDOL3bn37qv8WC/RZVMZv0twOc7H3hqX75Op+s1jyO21wHAmcMMWOckP/HEEzh16pTDcxMSEjB37lx89tlnLl+DEG+gBjMh3Zh1HTDUlXLS5BkTXN7F335xN+c4VKLE6JjhXqlff5zpNhw7ZVgkIqKCe9g8IYSQoaOx1bqYqE5vgtligVZnRKhCjLrmTvB4gOB/jb3G1k5O73Mwk0gkMBqNThuo9vo6p9e+8epO+Z12i7k6axjbLxbWWxn2Q68bGhpw++23s/Pxo6KiMH36dAwfPhxZWVkYPnw44uLiYDabqcFM/IIazIR0ozm77/KtagDgC6AcNdvlOYkhcRihykKFugqdRh2yo4e5vFPrS7pOA4rOc1e0HDPR9bApQgghJJA0tOpgMllgMlsgFPCRFKOEQiaCVmdEVYMGJrN1u6mGVh0yksL9XV2PiIuLQ3FxMWpqanrN604eeyEhIZBIJNDr9aisrOw1f3l5Ofs4NjbWYR7bEHJn7F8nLi6Ofbx27Vq2sXzrrbfimWeegcjB9qTt7e291pMQbwiMX/SEDIBGo0FHR4fH5rhozu/nHIuiEiCKdr6XY7teAxNjxsiYbFyfdSXmpE3Dgux5HqmLJ+SfqoXFfPkGgEDIR+7Y3udDDWWejilCKKaIpw21mGps7YTOYOIs7DV7fCJnQTCdwYRGte+2tfS2sWPHArAOzS4pKXGaz2KxsNtPuYvH47H7GBcXF6O5uRlms5n9r7tDhy7vHJKTk+OwTGeLgdkcPnx5u07bewMurwYulUrx1FNPOWwsA8CFCxfYx4G4uCoZvKjBTIJeaWkpioqKUFpa2nvmXlj0ndDXFHPS5MNcD8cWC0QYFZODELECPB4PyWHxyI3OGnBdPKX7cOzs3FjaSqoXnowpQgCKKeJ5Qy2m0hJCoZCKkBYfivSEMNx6dTbGZKqw4upspCeEIS3+8vODhf0WS59++qnTfD/88IPTRbRcmT9/PgDAZDJh/fr10Ov16Orq6jG/WKvV4vPPPwdgnec8Z84ch+WdOHEChYWFDp9raWnBli1bAADx8fEYPfryoqi2udpCoRASicRpfT/88EP2cfetrwjxJmowE2JHk58HMJbLCTw+lGMcfzHYSIUS5MZk4bqsuZg/bAYmxI8OmOHYLU1aVJW3ctIyclSwmC1OziCEEEICz5hMFe66IRdzJyThplnDONtK3ThzGOZMSMJdN+RiTKbzBTqDzcyZMzF8uHU9lM8//xzbt2/vkaewsBB/+9vf+lX+smXLEBZm3S1j3bp1Dsvv6urC//t//48d8r148WKnq2FbLBY8+uijPVbR7uzsxCOPPIK2tjYAwN133w2B4PLCqLbyNBqNwzqYTCb8/e9/5+xL3b1RT4g30RxmEvRUKhUsFotHGqkdZ/dxjkWR8RCr3NuqgcfjIUoeMeA6eNLZ49WcY5FIAHVrJ8pLWjAsO9pPtQp8nowpQgCKKeJ5QzGmwpQShCl79kDy+TyMzhh832l8Ph/PPfccVq5cCaPRiEceeQTff/895syZA4lEglOnTmHDhg3Q6/UQCAQwm819iofQ0FCsWbMGDz30EMxmM55++mls374d8+bNQ2RkJMrLy7Fx40ZUV1t/S6SmpuLpp592Wl5kZCSKi4uxePFi3HrrrRg2bBhqamrw5ZdfsvOXp0yZgjvvvJNz3pIlS/Dqq68CAP7whz/g4MGDGD9+PIRCIcrKyvDdd9+xdbDp6Ohw+30SMlDUYCZBLz4+3iPlWMxGGFtqOWmyYeODeo/Lri4jBAIezP+bw6yKU4LP5yEiiraTcsVTMUWIDcUU8TSKqaFh7NixePXVV/GHP/wBnZ2d+Omnn/DTTz9x8txyyy2orq7GL7/8ArG4byuEX3XVVXj99dfx5JNPQqPR4MCBAzhw4ECPfNOnT8crr7zCWd26u3vuuQcHDhzAL7/8gjfeeKPH8zNmzMC///3vHo36e+65B0ePHsX+/fthMpmwceNGbNy4kZNHIBDgN7/5DQoKCrBz507U1NRAo9G4rA8hnkINZkL+x6RuRMiEa2DWtMLYXAVjUw1CJ17rNH9zZysq22oxJnZ4wN7hv3bRSIwcl4C8nRdRX9OOmIRQ8Pl82n+ZEEIICRJXX301vvvuO3zwwQfIy8tDXV0dxGIxcnNzsWrVKlx99dVYuXIlAGuvcV9dc801mDRpEj777DPs2bMHly5dQldXF+Li4jB8+HDccsstmDVrVq8dCCKRCO+//z4+/vhjfPPNN6ioqIBEImHLuPHGGx2WIRaL8e6772LDhg3YsmULioqK0NnZCYVCgaSkJEyaNAkrVqxARkYGPv30U+zcuRNmsxk//vgjbr755j6/X0L6isfQMnPEAzQaDWehh5ycnKC766e9eAz62surUApDoxE6br7T/BvObcWG/G2IkIZhVtoUzE2bjqSwwLvjf7GgAdWXLs9jjoiUY+zkZD/WiBBCSCC6ePEiTCYThEIhsrICZ/FK0rvrrrsOZWVlGDt2LL766it/V4cMIv29LgyGtoFNYHaLEeJjDMPA2MLdw1Ac5XyvYoZhsK/cuj1Ca1cbtlzYgR+L93q1jv2lbuFusREeKfdTTQghhBDirs2bN+Pee+/Fc889h3vb2GwAAF19SURBVPr6eqf5SkpK2H2Sc3NzfVQ7QoYOGpJNgl5BQQGMRiNEIhFGjBjRrzLMWjUseh0nTRTpvLe4rLUS9VruKpAzUyf367W9yaA3QavhriRJDebeeSKmCLFHMUU8jWJq8AsNDcW+fdbFSBmGwbPPPtsjj0ajwdNPP83uS7xw4cJ+v55OpwPDMODxeJDJaOoWITbUYCZBz2g0wmg0DqgMxtAFgVQBc5cWACCQKcGXO58HVNFWhVCJEu16DQBALpIhNSxpQHXwhtZuvctCoQChYVI/1SZ4eCKmCLFHMUU8jWJq8JsxYwaSkpJQVVWFzz77DOfPn8c111yDuLg46HQ6lJaWYvPmzew2TsuWLcOkSZP6/XoMw4BmahLSEzWYSdATiUSc//erjMh4hE6+AZbOdutK2XyBy8Ut5CIZrsmcg/auDlS11yJCFgapqOdWF/5gNJrBAyAUCaBu5jaYwyJk4PGDd9VvX/FETBFij2KKeBrF1OAnFovx5ptv4v7770dtbS1OnTqFU6dOOcx722234amnnhrQ69l+9wTz7iCEeAM1mEnQG+hQNKO6Hk3b3oI8axLkWZMgTR7uMj/DMNDorT3RodIQ5EpDMCF+1IDq4EmnjlRi9/eFyB0bD6GQD4lMyH750XBs99DwRuJpFFPE0yimhobhw4fj+++/x8aNG/Hzzz+jqKgIbW1tUCgUiI2Nxfjx43HLLbdgzJgxA34tGoZNiGPUYCZDXufF49CVn4Wu/Cyad6yHNGUkEu54zml+Ho+H+Rkz/9e7XIfq9jokhsb5sMaunTlehS6dEScOXQIAxCeHIWtEDAAgIooazIQQQkgwkclkuOOOO3DHHXf4uyqEDEnUYCZDXufFY5xjYbjKrfNsvcu5MYGz9UZzowbVFWpOWmS0tZEsEgmgUIr9UCtCCCGEEEKCE20rRYY0i14HXUU+J02e1f8FM/ztzPFqzrFIJEBElAKAtXeZ5iURQgghhBDiPuphJkGvtrYWFosFfD4f8fHOt4JypLP0FGAxXU7gCyFPH+vZCvoIwzA4263BrIpXgs+n+ct9NZCYIsQRiiniaRRTxNMMBgP7WCymEWmE2FCDmQS9xsZGdi/Kvv5o6DjxE+dYmpoLvsR5w/Kvu19FQkgspidPwAhVFgR8Qb/q7A2VZa1Qd9tGKjb+8tZYNH/ZfQOJKUIcoZginkYxRTzNZDKx+zBTg5mQy6jBTIYsi8WMruoiTppYleI0f1VbLfIbipDfUIQdJXkIlSix5qo/IkYZ7e2quuXM8SrOcaRKgUlXpELdooOu0wipjLYeIYQQQgghpC+owUyC3rBhw9g7on3RVXoajLGLk6bMnek0/66yA5xjIV+IaEVkn17TW0xGM86fruWkjZ2UhPikcMQnhfunUkGsvzFFiDMUU8TTKKaIp0kkEn9XgZCARA1mEvSUSmW/ztOc3885FijCIUnIdJr/cOVJznFWVDr4vMBYN6/ofD26dEZO2ugJiX6qTfDrb0wR4gzFFPE0iiniaQJB4EwzIySQBMavfUL8QFd+jnMsTR7u9E49wzCYlTYVo2JyEC61zgseoXLeuPa17qtjp2ZE0SJfhBBCCCGEDBD1MJMhydBcDXNHMydNMXy60/xtXe3g8/gYrsrEcFUmNAYtpiaN93Y13dKpMaC4oIGTNmYi9S4TQgghhBAyUNRgJkGvq6uLnccllUrdOqfjzB7OMU8ohjxnitP8EqEEo2NzUN1ehxZdG+KUKkTKwgdQa8/JP1UDi4Vhj4VCPnLH0oqpA9GfmCLEFYop4mkUU8TTLBYL+5jPp0GohNhQg5kEvaKiInZrjTFjxrh1jq6EOx9ZHDcMfKHzLRRkIilGqLIwQpUFraETnUZdwCy0crrb6tiJqRHo1BohEgnAF9AXXn/0J6YIcYViingaxRTxNPubMHI5TesixIYazGTIMXdpYWio4KTJMye6fb5CLIdCHBhfJE0NGtRcUnPSQkIlOH2sEnw+H2ERMoyZkAgePzAa94QQQgghhAQTajCToBcZGQmTyQSh0L1w1l44BDCXhx2Bx4Ny1Gwv1c67eDzr9lEFZ2th0JshlYkQEWVtzFssFpiMZmos90NfY4qQ3lBMEU+jmCKeJhQKaasyQhygqywJeklJSX3KL1BGIGTCtTC21MDYUgu+SAJRWLTDvE2dLahsq8HomOEQCgLvzyVKpcSi28bh+qWjUHiuDiWFjZwGMq2U3T99jSlCekMxRTyNYop4mljsfGoaIUNZ4LUACPEihmFgaq2FQBEGgSIM0uQRkCaPcJp/b9khfHnuOyjEckxOGIvZaVMxKjbHhzV2j1giRO7YBLQ0d4JhLi8AFh4p82OtCCGEEEJ6euKJJ/Dtt98CAAoLC/1cm8Bk/xn9/PPPDm+S/fjjj/joo49QXFwMjUaDkJAQLF68GE888YSvqzuoUYOZDCkWXQfMOg0nTRyd7DT/wUvHAABaQyf2lP8CiVAckA1mAKiuVHMayzweD+ER1MNMCCGEEDLYfPnll/jzn//MSWttbaWRAl5ADWYypBhbajjHfLEMAmW4w7w1HfWobK/lpE1JGuelmg2MxWxBaVEjJ00iFUIgpFWyCSGEEEIGm7Vr1wKwdpCsWrUK48aNg16vx+jRo/1cs8GHGswk6F28eJHdWiMrK8tlXrO2nXMsiox3urhFS6cakbJwtOjUAKx7MQfK3svd1VS19UiTyekOY3/1JaYIcQfFFPE0iiniabS3d/BobW1FY6O1o2T+/Pn405/+5OcaDW7UYCZBT6fTwWg0wmQy9ZpXkTMF0tSRMDbXwNhSA3F0otO8UqEE84bNQKdRh+r2OvB5fMQpVZ6ser+VFjUiMSUCEqkQZpMFl0pbeuQZlu14ITPSu77EFCHuoJginkYxRTzNYrHQKtlBQqfTsY8zMzP9WJOhgRrMJOjxeDz2P1e0RUdhaLwEeeZESBIyIU10fUe+XW+d6ywXyZAVlY6UsAQI+AKP1bu/tBo9PvvvEfAFPAwfFYe4xFDou0yc1bHHT0lBSCjdHe4vd2OKEHdRTBFPo5giZOiyWC5vj0pby3kffcIk6Lk7V6Pj5A50Fh9H657PIAyNRsTsWxEydp7T/BMSRmF4dAaqO+pQ3V6H5LAET1V5QPJP1sBiYWCxMDh3sgbnT9di2txhEP6vwRylUiIsglbHHgia/0M8jWKKeBrF1NCQk2NdaPThhx/G8uXL8dxzz2H//v0AgOTkZPzqV7/CjTfeyObXarX4+uuvsX//fhQWFkKtVgMAwsLCkJubi2uuuQY33XSTw0bWr3/9axw5cgTTp0/HBx98gEuXLuGDDz5AXl4e6uvrIZPJkJubi6VLl2LhwoUub9Z0dHTgww8/xE8//YTy8nKIxWJkZWXhtttuw0033eTWe7dYLNixYwe2bNmCM2fOoLW1FQqFAqmpqZg7dy5WrVqF0NBQh+fecccdOHLkCGbOnIn3338fJSUlWLduHX755Rc0NjYiKioKU6ZMwa9//WtkZGQAsA5J/+ijj/Ddd9+hsrISAoEAubm5WL16NebNc/570d33sm/fPmzYsAGFhYXs55mdnY3rr78ey5Ytc2uxrrVr1+KNN97gpL3xxhts2pIlS/CPf/xjQHUlPVGDmQwJFqMeuvKz7LGpvQk8gajX8+Ria+9yVlS6N6vXJ2eOV3GOo2IUENot7pWeGeXrKhFCCCHEizQaDVauXIny8nI27cKFC5wG4/79+/HYY4+xjWR7XV1dqK+vx+7du/HFF1/gvffec9rYBICdO3fi8ccfR2dnJ5um1+tx8OBBHDx4ENu2bcPatWshEvX8LVVSUoJ77rkHdXV1nHNPnDiBEydOYM+ePb32itbV1eGRRx7BiRMnOOlqtRpqtRqnT5/Ghx9+iH/961+YPXu2y7K2bt2Kp556Cnq9nk2rra3F5s2b8fPPP2P9+vWIi4vDr371qx5bXB05cgRHjhzB008/jTvvvNPl6zjT2tqKhx9+GIcPH+akGwwGHD16FEePHmX/TWJjY/v1GsS7qMFMhgRd+VkwJsPlBB4fsoxxfqtPfzU1aFBTyV3gKzY+lPNYSUOxCSGEkEHlk08+gV6vx8yZM3HjjTdCrVZj7969mDlzJgCguLgY999/P4xGIwQCAebPn48pU6YgKioKjY2NOH36NL7//ntYLBacPn0a//73v50uFFVRUYHHHnsMBoMBCxYswMyZMyEUCnH48GF8++23sFgs2L17Nz799FPcfffdnHMbGhpw++23s432yZMn44YbbkBISAjy8/PxxRdfYNu2bS57U9va2rB69WqUlpYCABITE7F06VIMGzYMbW1t2LlzJ/bv3w+1Wo0HHngAb7/9NmbNmuWwrJKSEnZP4qVLl2Lq1Kloa2vDxo0bUVRUBI1Gg7/85S8QCAQoLCzE9OnTcf3110MmkyEvLw9btmwBAPzzn//EDTfcgKiovnVKGAwGrFq1CsXFxQCsowKWLl2K1NRU1NfXY8OGDSgtLUVRUREeeOABfPXVVy5vJixYsAAjRoxAc3Mzu6XUggULcMMNNwAA4uPj+1Q/4h5qMJMhofPicc6xNHk4BLIQP9Wm/7r3LovEAkREWfda5vF4SKPeZUIIIT5mMBh6z+SEQCCAQOB4fRCj0QiGYQKqXD6f75c5o3q9HnPnzsXbb7/NDoW2b6y+/vrrMBqNAIBXX30V1157bY8yli1bhtWrV4NhGGzdutVpg7mmpgYikQj//e9/2QY5ACxatAiTJ09mG6AbN27s0WB+9dVX2cby/fffj0ceeYR9buHChVi+fDnuuOMOdoVnR/71r3+xjeWrrroKL7/8MmfV7ttuuw3ffvstnnrqKZhMJvzhD3/Ajh07oFQqe5RVW1sLkUiEd999F1dccQWbfvPNN+Oaa65Bc3Mz8vPzHdb3pptuQnR0NNatWwej0Yhdu3Zh2bJlTuvtyDvvvMM2lq+66iq8+uqrnJsFd9xxB+677z4cPHgQ+fn52LJlC5YuXeq0vIyMDGRkZKCq6vLvwWHDhuGqq67qU71I31CDmQS9xsZGWCwW8Pl8qFQ9V7FmGAbagoOcNHnmRKfl/X3fG1CIFZiWNB7j4nIhFgbG9kyMhcHZ49WctFHjExCpUqK1WYv4pDDaSspDeospQvqKYop4WiDF1MGDB3vP5ERWVhYSEx3vWHHkyBG2EdhXaWlpSEtLc/jcyZMnOUON+yIhIQHZ2dn9Oneg7r33XofzhnU6Hfbu3QsAmDRpksPGMgBMnz4d48aNw8mTJ9Ha2gq1Wo3w8HD2efuFpG6//XZOY9lmyZIlWLt2Laqrq3Hx4kV0dXWxjdmWlhZs2rQJADBmzBj8/ve/73F+eno6XnjhBdx3330O61hfX8+WkZSUhJdeesnhFldLlixBUVER1q1bh5aWFnz55Zf4v//7P4dlLlu2jNNYBgClUokbbrgBH330EQBrvDz88MM9zr3llluwbt06AGAbvu4ym834+OOPAQAqlQovvvhij551kUiEv//977jyyithsViwdetWlw1m4h/UYCZBr7a2lt2L0tGPhq5L52Hp0nDSpEkjHJbV0qnGyVrrncb9FUcgEYjx3Pz/h/SIZM9XvI8qylrQ1qrjpE26Ig3xSWFobdZCrpD4qWaDT28xRUhfUUwRT6OYGlpEIhHGjBnj8DmZTIZdu3bh0qVLDntZ7SUmJuLkyZMArPOa7dn3ul9zzTVOy8jOzkZ1tfUGfnt7O9ug3b9/P9vovvXWW50uCjZnzhykpaVx5mPbHDhwgL1JsmrVKshkzhcx/b//+z989NFHMJlM2Llzp9MGs224cndJSUns4yuvvBJ8Pr9HHvshzh0dHU7r4sjJkyfR1madRrd06VKn/zZxcXF48skn2UXASOChBjMZ9DT5eZxjvkwJcaLjPesOVXIXlxDwBUgODYz5IGePcYdjq+JCEJdonb8cEaXwR5UIIYQQ4gPJycku5/1GR0cjOjra4XNarRaFhYU4fvw421gGrD2gzthWjnbEvuFnvw/46dOn2cfjx493ej5g7Ql31GA+deoU+3jatGkuy4iOjkZmZiYuXLiAs2fPOt1DOj3d8cKtISGXp+YlJzvuGLFvsNv3wLvj7NnLi81OmDDBZd7+LihGfIMazCTopaSkOL1IAoCu7AznWJKYDb6T/ZT3XzrKOVYpAmNOsNFoxvkztZy0MRMTaf9NL+ktpgjpK4op4mkUU0OLqxWt7TU0NGDnzp0oKChAeXk5Kioq0NDQ4HDOdvc0+x5W+8Zkd/ZzuO0bkU1NTezjuLg4l/VMSUlxmN7S0sI+dtaItZecnIwLFy7AaDSivb0dYWFhPfI4SuvOWU/2QP6+7D+PhITA2JqU9A81mEnQs59/052xvRkmdT0nTZ412Wn+uenToBQrUN1Rh0ZtM0aqsiAU+P/PpOhcPfRdl+/iggeMnuB4zhcZOFcxRUh/UEwRTwukmOo+P7QvnC3MBQBTpkwZ0KJfzowfP35Ai375Q2979JpMJrz00kv4+OOPOb2+NjKZDFOnTkVjYyO7yFV39o3D/ixsZj9k2dG8Y3sKheORcVqtln3saji2o9fR6XQOG8f+WKQNADscG+j98yCBzf8tAUK8SHN2DzdBIIIyd4bDvGaLGVqDDplRaciMSoPepMfUJNdDinyl++rYaRlRCA3v/YuEEEII8bbeGnP95WiP30Au15+eeOIJfPfddwCs72/SpEkYPXo0srKykJ2djczMTAiFQjz++ONOG8wDZd8LrtPpXM6ndrayun0jubcyAHAWbwu0Rql9fbrPFyfBhRrMZFDrvHiMcyyOSYFA6viupoAvwA0581HTXofKtlo0djYjNTzJYV5f0nboUVzI3X5hWLaKhuIRQgghBCdOnGAby8nJyVi/fr3T4cx9XbiqL+wXn6uqqsLw4cOd5m1oaHCYbj8Pu7KyEiNGOF6k1aaiogKAtXEaSKMuAHD2bK6trXW5oFdJSQm0Wi1SUlIC7n0QwD/jSgjxIJPJBKPR2GMIktmoh762lJMmSx/rsiyxQIS0iGTMSpuCm3KuhiQAtpQ6d6oGjOXy0DE+n4euLiMKus1pJp7jLKYI6S+KKeJpFFPEZs+ePezj3/72ty7n/hYUFLCPuw9L7+8wdZuJEy9v2Xn48GGXeU+cOOEwffTo0ezjQ4cOuSyjvr6e3a85EFeXHjlyJPvYfjEzR9auXYtly5Zh+vTp0Gg0LvMS36MGMwl658+fx5kzZ3D+/HlOuu7iMcDC/SGhHDnL7XIDYe4yAJzptjp2VIwSQiEfkSrXw5RI/zmLKUL6i2KKeBrFFLFRq9XsY7lc7jTfDz/8gLq6Ova4+82Wvq4C3d3s2bMhkVi3uPzss8+cDrs+d+4cZ0Vte3PmzGGHzH/66afQ6XQO8wHA+vXr2TrPnTt3ADX3jkmTJrFDyjdv3gy9Xu8wX3t7O/bt2wfAun91b8PQie9Rg5kMWprzBzjHwjAVxCr/76fcV9cuHonktAgIRdY/19iEECiUEsTGOV/BkhBCCCFDQ2Li5UVAN2zY4LCn+ODBg/jzn//MSXPWgOsvuVzObo9UXl6OP/3pTz0a5Y2NjXj88cedlhETE4Mbb7wRgHVI9uOPP+5w/u+mTZvw4YcfArAOfb7ttts89TY8Ri6XY/ny5QCA6upq/PnPf+7xeRgMBvz5z39mFzsLxPdBaA4zGQRCQ0NhMpl6rIIoTRoOxmSAsaUWJnUDpMm5Duf8dhm7cLIuH+PjR0EqlPiq2m4TCPhIz45GamYUWpu0iIiUIz0rGjw+zV/2FmcxRUh/UUwRT6OYIjYLFizA2rVrYTQakZeXh2XLluHGG2+ESqVCQ0MD9u7di19++aVHQ7r70F9PrIvy29/+Fj///DNKS0uxefNmFBQU4JZbboFKpUJRURE+//xzqNVqREVFobm52WEZTz75JI4ePYrKykrs2LEDCxYswM0334z09HS0t7dj586dyMvLA2BdtfyFF15AZGTkgOvuDQ899BD27NmD0tJSbNq0Cfn5+ViyZAni4+NRWVmJb775ht2Pevr06Vi0aJHHXnvt2rV44403AAAPPvggHnroIY+VPdTQVZYEvbS0tB5pjMkIxqiHJCELkoQsMGYjFNlTHJ5/si4frx58DyKBCOPicjEjZRKuSJnk5Vq7x2yyoKLE+oXC5/MQFaNEWLgMUSrHC5cRz3AUU4QMBMUU8TSKKWKTnJyMZ599Fs8++yzMZjPOnj2Ls2fP9sg3adIkLFy4EH/5y18AAIWFhZg06fLvHU9smSWTyfDJJ5/g3nvvRX5+PoqKirBmzRpOnpkzZ2LKlCl45ZVXHJYRGhqKTz/9FA8++CDOnDmD6upq/Pvf/+6RLzw8HK+88gpmzHC8+0kgkMvl+Oijj/DAAw/g7NmzuHjxIv75z3/2yHfFFVdg7dq1tJhrgKIGMxmUjOp6MMzluTh8oQSS2HSHefeWWReVMJqNOFp9GgazIWAazNWX1DAYuMN30rOi6YJKCCGEENayZcuQk5ODDz74AMePH0dzczOEQiGioqKQm5uLRYsWYd68eejo6MALL7wAo9GI77//HitXrvR4XaKiovDFF19gw4YN2LJlC4qKigBYb/IsWbIEK1euxAcffOCyjNjYWHz11VfYvn07tm3bhrNnz6K1tRXh4eFITk7G9ddfj8WLF3O2sgpUKpUKX331FbZs2YKtW7eioKAAbW1tUCgUGDVqFJYsWYIFCxb4bY9v0jseM9Al8QiBdVhPYWEhe5yTk+PXRQu0RUehr7u8QrYoPBYhY+b2yGcwG7H6m0dhtFsc7NZRN+LmkQt8UU2XjEYzDu8rg8lkZtMioxUYM9H/W10RQggZfC5evMgO887KyvJ3dQghAaC/14VAaxsMBN3KIIMOwzAwtnK3XBJFxjvM29TZgkhZOHi43GObHTXMq/VzV2VZC6exDFh7lwkhhBBCCCG+QUOySdArKytj73ylp6eDx+MhdPzVMLbUwdhSA2NrvdMGs8FkxKy0qdCbDKjtqIfG0IkcVYaP30FPhefqcOLwJUTHKCESCwAAMXEhCAmV+rlmQ0P3mCJkoCimiKdRTBFP0+v1YBgGPB6P3R6KEEINZjIIdHR0wGg0svv2ac7lQRgeA0lCJiRx6WAsZoDneDCFQixDUmgcajsakBaRjISQWIgFIl9W36F9Oy6itqoNxQUNiIhWIDktAlNm0A8iX+keU4QMFMUU8TSKKeJpZrOZbTATQi6jBjMZVBizEY3fvwPGoANfHgp55gREzLoVovAYh/lViiioFFEwmo2o7WiAVOT/Htw2tQ611W0AAIYBWhq1yBoeA7lS7OeaEUIIIYQQMrRQg5kEvZEjR7KPdZfOgTHoAACWznZozuxB5JV39FqGSCBCSnii1+rYF2eOVQF2S/Hx+TxMnxsY86qHCvuYIsQTKKaIp1FMEU+TyWT+rgIhAYkazCToCQQC9nHnxWOc5yQJWRAqw31co4EpOMNdsCw6VomQMP/3fA8l9jFFiCdQTBFPo5ginkZDsQlxjFbJJoMGwzA9GszyrMDYT9ldzY0a1FW3c9ImTk/1U20IIYQQQggZ2qiHmQwahsZLMKkbOGnyzIkO835y+htUt9dhatJ4TEocA6VY4Ysq9ursiWrOsVwpxsRpKXTXlxBCCCGEED+gBjMJeq2trbBYLNAf38lJ58uUEKmSe+S3MBbkVRxBq64Nx2vOQsDj44Epd2J22lRfVdkhhmFwrluDedS4BPAFNBDE12wxxefzERER4e/qkEGAYop4GsUU8TSTycQ+FgqpiUCIDf01kKBXWVkJo9GI0IvHYD+jSxSdDL6gZ4gXNBSjVdfGHpsZC4ZFpPigpq5VX1KjpamTkzZqQmAsRDbU2GJKJBLRD1HiERRTxNMopoinGQwGdlspajATchl1XZFBgWfoBL+DOxxblj7WYd6thdye6FCJEvEhjred8qXuvcuR0XIkpoT7pzKEEEIIIYQQ6mEmwS8hIQH688XQ2yfyBVDkTneYPzEsHnw+H9XtdajTNCInehgEfP+uNmo2W3DuVA0nbdSERJq77CcJCQnsUEdCPIFiingaxRTxNJFI5O8qkADEMEzvmQY5ajCToBcdHY3aqnOcNFFEHMSRCT3yWhgLpEIxclVZSA1PgslsQpxS5auqOlVa1IROjYGTNmJ0vJ9qQ6Kjo/1dBTLIUEwRT/NGTAkEAphMJpjNZnZoLhk6qMFMurNYLLBYLACG9lZ2dFuSBD3GbEJX1QVOmjQlFzxez/Dm8/i4ZeQNWJA9D+PiciEUCDEpyfHQbV/qPhw7JFSCksJGuqtHCCHEZyQSCQBrj1JHR4efa0MI8TeNRsP+FrVdH4YiajCToKerOAfGyBmQDcVwx8Ox7clEUoyPH4lQidJbVXOLQW/ChXN1nLSY+FBERivo7j4hhBCfCQ8PZx83NTVxVk0mhAwtJpMJTU1N7LH99WGooSHZJOhpzu7lHAuUEZAmZbs8h8fjITms55Btfyi72ASjwXw5gQeo4pSIjvFvQ54QQsjQIpfLIRKJYDQaodfrUV5ejsjISCiVSojFYn9XjxDiAwaDARqNBi0tLTAajQCsw/Xlcrmfa+Y/1GAmQa+96DhnqIQkMRt8scxv9emrnFFxuPmOCTiSV4aGug7IFWLI5GJERA/dC5O/nTlzht2uZcyYMf6uDhkEKKaIp3kjpng8HpKSklBZWQmTyQSj0Yj6+nrU19eDz+fTAmODnNl8+eb9UJ6vOpTZz1m2EQqFSEpKGtKjHqnBTIKaWa+DOTwBjLYZfF0beBYzlLkzHOYtaalAvDIG8gBsTFssDNKzo5GWFQWT0YLIKAUEAvphQgghxLekUinS0tJQVVWFrq4uNt3RD2kyuBgMlxcfpREFBLBeD5KSkob8gnDUYCZBzdzeCKEqFZaoZIAHKEU8yHOm9MhnYSz4R95/oNFrMFyVifHxozA3bRpCpSF+qDWXyWRGa3MnAOvdfZFYgOhYGo7tT3K5HCaTCUIhXSKJZ1BMEU/zZkyJRCKkpaVBr9dDq9VCq9XCaDRSg3mQMxgM7OrodK0amvh8PkQiERQKBRQKBSQSyZDuWbahvwYS1Iyt9YiIjGSPRRFx4At63gXLry9EW1e79XFDEfIbijA5cWxANJhbmjo5P0J4PB4iVQo/1ohkZmb6uwpkkKGYIp7m7Zji8XiQSqWQSqWIiory6msRQkggozGfJGgxDANjK3d1aVFEnMO8By4d4xyHSpSID4nxWt36orlBwzmOiJRDJKK5Q4QQQgghhPgb9TD/D8Mw2Lp1K77++msUFBSgs7MTKpUKkydPxsqVK722SMtf//pXfPbZZwCAwsJCl3nnzZuH6upql3ls9u/fD5VKNeD6BTJLZzss+k5OmrMGc1NnK/g8PiyMtSc3Kyrd6/Vzh8XCoLlRy0mLotWxCSGEEEIICQjUYAbQ1dWFhx9+GHv27OGkV1dXo7q6Gt999x1+//vf47777vPo6x46dAiff/65W3k1Gg1qamo8+vrBji+RQzliOowtdTCqrT3NfHloj3xGsxHDVZkYFpGCBm0TajUNuCJloq+ry8EwDL764BgioxUwWyyQSi8PI6ftpAghhBBCCAkM1GAG8PTTT7ON5YyMDCxfvhzR0dHIz8/HF198gc7OTrz88suIjY3FokWLPPKaWq0WTz/9NBiGcSt/YWEhm/f+++/H6NGjXeYPCwsbcB0DnaHxEsSxaajTASZRNASMGeEOFiYQ8oWYl34FajUNqO2oR3JYAqYlTfBDjS+rqWxD4bl69jgsQobcsfGIUikhkdKfpb9dunQJZrMZAoEAKSkp/q4OGQQopoinUUwRT6OYIsSxIf/L/MCBA9i6dSsAYNq0aXj33XchkUgAAAsXLsQtt9yC22+/HWq1GmvWrMH8+fOhVA68B/Cll15CVVWV2/nth2svXrwY6emBMaTYX0wdrahe9wfwJHIYI1Khj0oDk+q4Eczj8RApD0ekPBwjY7JhMBshcrAwmC+dO8EdWq/vMkEo4lPvcoBQq9Xs/qb0o4F4AsUU8TSKKeJpFFOEODbkF/1at24dAOum3M8//zzbWLbJyMjAM888A8B6IdmwYcOAX9N+KHZIiHurNNsazBKJBKmpqQOuQ7DTlZ0CADD6TgjrCiAv3AW4uey92M+NZYvZgnMnuQ3mmPgQ8Hg82k6KEEIIIYSQADKke5jVajUOHjwIAJg1axaSk5Md5luwYAHWrFmD5uZm/PDDD1i9enW/X9N+KPaiRYtQW1uLI0eO9HqercGcmZkJPn/I3+dAZ+kpzrEsbTSSRuT6pzJ9VHqxCVqNgZMWEx8ChUICuULsp1oRezk5OexelIR4AsUU8TSKKeJpFFOEODakW17Hjh1j97+dNm2a03x8Ph+TJ08GAJw+fRptbW39fk3bUGyVSoWnnnrKrXMYhsHFixcBANnZ2f1+7cGCsZihKz3NSVNmTewxOiBQne02HDs2IRTDR8UhIWXwzzsPFhKJBFKpNGhiigQ+iiniaRRTxNMopghxbEj3MNsaoUDvDdHMzEwA1sZrUVER24DuC/uh2M8++yzCw8PdOq+6uhoajXWv3qysLADWVbMvXLgArVaLmJgYZGdnQyAYGnv3dlUVwqLr4KTJMsY5zPvusc+QFp6ECfGjEK2I9EHtXDPoTbhwlrt39LjJSRiWPbi3ACOEEEIIISQYDekGs/2exomJiS7zxsVd3t+3urq6zw1m+6HY119/Pa6++mq3z7Vf8IvP5+PBBx/Erl27YDab2fTw8HCsWrUK9957L6RSaZ/qFmw05w9wjoWhKojCYnrkq2yrwc6SPPY4JSwRT815EJGycG9X0anC/HoYDZf/3Xg8YOS4BL/VhxBCCCGEEOLckG4wt7S0sI8jIiJc5rXvDVar1X1+LdtQ7IiICPz5z3/u07n2DeZ//OMfDvOo1Wq88cYb2LdvH9555x1ERvq/N9VbusrPco55EXFoa2sDn8/nLKK2t+wwJ1+LTo1wac99mn2p+3DsYdkqKEMH9w2OYNTR0QGLxdIjpgjpL4op4mkUU8TTKKYIcWxIN5i7urrYx73N1xCLLy/GZH+eO+yHYj/zzDN9bszaN5hFIhFWr16NxYsXIzk5GWq1Gnv37sXrr7+OxsZGnDlzBo888gjWr1/v08XB7Hu7Aetw98TERMjlcjbNYDDg0qVLAKyrg8fGxnLOqaqqYj9b2xB4G7VajaamJsCkh9zMB8KT2Oe0kVloKC5my01IsPbYVjfXIFF6+TViJVFob2uHUHg57Ds6OlBfb90POSoqqseNk5KSEjAMA4lE0mNRuIaGBrS3twMAkpOTOTHU2dmJmpoaANabLdHR0dB1GtDSrEaE6vIq3bEpPHa4vU1TUxN7UyYhIYHzGer1elRWVgIAQkNDERPD7VmvrKyEXq8Hj8dDRkYG57nW1lY0NzdbXzc2lvNlaDKZUF5eDgBQKBSIj4/nnFtTU4POzk4AQHp6Omf4v/1nGB0d3WOqQfH//m2kUimSkpI4z9XX16Ojwzq8PiUlhfN3Zv8ZRkZG9vi7KSsrg9lshkgk6rFyvP1nmJiYCJlMxj5n/xmGhYVBpeIOh7906RJ0Oh0AQCAQcGLR/jOMj4+HQqFgn7P/DJVKJWdUCmAdmWIrd9iwYZy/z/b2djQ0NAAAYmJiEBp6+caOxWJBaWkpAEAmk/UYDVNXV8fGUFpaGie+tVotamtrATiO79LSUlgsFojF4h5biDQ2NrLrNXSPb51Ox47QscW3vYqKChiNRggEgh5b4LW0tLA3K7vHt0euEegZ32azGWVlZQAAuVzOXiNsamtrodVqAfT8DD11jbDVwxZTjq4R9srLy2EymSAUCpGWlsZ5jq4RVv68RhgMBvD5fAwbNozznC+vESUlJWxM2dA1InivEe78jrDnjWuELaYA6+4xdI1QAwjea4SNv35H2D57m+5thWDCYxiG8Xcl/OXOO+/E4cPWXsgLFy64XBXwl19+wd133w0AeOihh/Dggw+69RparRY33XQTqqqqMH/+fPznP//hPH/HHXewq2TbN4ztrVixAidPnoREIsG6deswadKkHnnq6+uxfPly1NVZ58e+/PLLWLhwoVt19ISGhgb24kEIIYQQQgghNsnJyT1u4gaLIb1Ktv1cX6PR6DKvwXB5GyD7u1e9sQ3FDgsLw1/+8pc+1xEAvvjiCxw/fhw//vijw8YyYL3T96c//Yk9/uqrr/r1WoQQQgghhBBCrIZ0g7n7EBVX7BvM7i63bz8U+4knnhjQXRWlUtljeEt38+bNg1KpBACcPHmS3TLLF2gLAkIIIYQQQogjwdxWGNJzmO3H96vVapcLHNgv9OXOHGT7VbFnzZqFpUuXDqiu7hAIBEhNTUV+fj4MBgPUarXPFv9SKpXIycnxyWsRQgghhBBCgof9PPBgM6QbzPaLJNTW1vZYjMGebW4wgB6LQThy7tw5VFVVAQDy8vLcakza8iQmJmLXrl295ndEJBL1nskLBAIB27tNCCGEEEIIIYPBkG4w26/+d/HiRUyZMsVp3osXLwIAeDwesrKyvF43m8rKSuzatQvNzc2YMGEC5s6d6zK/bZVBkUiEsLAwH9SQEEIIIYQQQganId1gHj9+PEQiEYxGIw4fPoyVK1c6zGc2m3H06FEAwPDhwzlDuZ3JysrCm2++2Wu+1157jW2M2/LbL0bW0NCANWvWALDOUXbVYC4rK2OXfh89ejRnyX5CCCGEEEIIIX0zpBvMoaGhmDZtGvLy8rBr1y7U1NQ4HG69bds2dk/A66+/3q2yIyMjcdVVV/Wa78MPP2QfO8o/atQoKJVKaDQa5OXlOa0jALz11lvs40WLFrlVT0IIIYQQQgghjg3pVbIBsHsrG41GPProo+zG3TbFxcV44YUXAFg3Yl+2bJlP6yeRSLB8+XK2jo899liPOgLA+++/j82bNwOwzs1esmSJT+tJCCGEEEIIIYMNj2EYxt+V8Lff/e53+PHHHwEASUlJuO222xAfH4/z58/j888/h1arBQD89a9/xYoVKzjnHj58GHfeeScAYMqUKfj444/79Np33HEHjhw5AgAoLCx0mKejowPLli1DWVkZACAuLg633nor0tLS0Nraiu3bt+PYsWMArI36Dz/8EKNHj+5TPQghhBBCCCGEcA3pIdk2L774IrRaLfbv34+qqir861//4jzP4/Hw4IMP9mgs+0pISAjWr1+PBx98EOfOnUNdXR1ef/31Hvni4+Px8ssvU2OZEEIIIYQQQjyAGsyw7gv23nvv4bvvvsOmTZtQUFCAjo4OhIeHY+LEibjzzjsxceJEv9YxPj4eX375JbZu3Ypt27YhPz8f7e3tUCqVSEtLwzXXXINbb70VCoXCr/UkhBBCCCGEkMGChmQTQgghhBBCCCEODPlFvwghhBBCCCGEEEeowUwIIYQQQgghhDhADWZCCCGEEEIIIcQBajATQgghhBBCCCEOUIOZEEIIIYQQQghxgBrMhBBCCCGEEEKIA9RgJoQQQgghhBBCHKAGMyGEEEIIIYQQ4gA1mAkhhBBCCCGEEAeowUwIIYQQQgghhDhADWZCCCGEEEIIIcQBajATQgghhBBCCCEOUIOZEEIIIYQQQghxgBrMhBBCCCGEEEKIA0J/V4AMbgzDYOvWrfj6669RUFCAzs5OqFQqTJ48GStXrsSYMWMG/BpFRUVYv349Dh8+jIaGBoSEhCAjIwOLFy/GkiVLIBAIXJ4/b948VFdXu/Va+/fvh0qlGnCdSf/5Iqa6O336NFasWIH4+Hjs2rXLrXOqq6uxfv165OXloaamBjKZDKmpqbjhhhuwYsUKSKVSj9eT9E8wxNQdd9yBI0eOuFX2l19+iXHjxg2whmQgvB1TDMPg559/xubNm3HmzBm0tLRAJBIhMTERM2bMwJ133omEhIReyxno9yfxnWCIKfo9FVy8HVMWiwVbt27F5s2bkZ+fD41Gg6ioKIwYMQKLFy/GtddeCx6P12s5gXCd4jEMw3j9VciQ1NXVhYcffhh79uxx+LxAIMDvf/973Hffff1+jQ0bNuCvf/0rjEajw+cnTZqEN998E+Hh4Q6f12g0mDRpEtz9M6ALvH/5Iqa602q1WLFiBYqKipCYmOhW42bv3r145JFHoNVqHT6fnZ2Nt956C0lJSR6rJ+mfYImpqVOnQq1Wu1U+NZj9y9sx1dbWhkceeQQHDhxwmkcsFuNvf/sbFi9e7DTPQL8/ie8EQ0zR76ng4ouY+u1vf4ujR486zTN16lS8+uqriIqKcponUK5T1GAmXvPYY49h69atAICMjAwsX74c0dHRyM/PxxdffIHOzk4AwD//+U8sWrSoz+Xn5eXh3nvvBcMwkMlkWLFiBUaNGoXm5mZs3LgRRUVFAIAZM2bgvffeA5/fcwbC8ePHcfvttwMA7r//fowePdrla86ePRtisbjPdSWe4e2Y6s5gMODee+/FoUOHAMCtxk1hYSGWLVsGvV4PgUCAW265BZMmTYJWq8XmzZtx8uRJAEBOTg6+/PJLyGSyAdeT9F8wxFR9fT1mz54NAFi+fDnmzJnjMv/kyZMRFhY24LqS/vFmTFksFtx5553sj9CEhATcfPPNGDZsGLRaLfbv34+ffvoJFosFPB4P//nPfzBv3rwe5Xji+5P4TjDEFP2eCi7ejqlVq1bh+PHjAKzfc7fccguSk5NRW1uLTZs2oaSkBAAwfvx4fPTRRw5jIaCuUwwhXrB//34mOzubyc7OZu68806mq6uL83xxcTEzZcoUJjs7m5kyZQrT0dHRp/L1ej0zb948Jjs7mxk3bhxz7ty5Hs//9re/Zevw3XffOSzn008/ZfOUlpb27U0Sn/J2THXX1NTErFy5kn3N7Oxs5sorr+z1vBUrVjDZ2dnMiBEjmD179nCes1gszHPPPceW9/bbbw+ojmRggiWm9uzZw+bPy8sbUB2Id3k7pjZu3MgpX6vV9sjz888/M7m5uUx2djYza9asHnXw1Pcn8Y1giCmGod9TwcTbMbVhwwa2/DvuuIPR6XSc5w0GA/PAAw+web7++useZQTadYpuGRKvWLduHQBAKBTi+eefh0Qi4TyfkZGBZ555BgCgVquxYcOGPpX/008/oaqqCgDwq1/9CiNHjuQ8LxaL8eKLL7JDNN555x2H5RQWFgIAJBIJUlNT+1QH4lvejil7v/zyC5YuXepyKJEjJ0+exIkTJwAAixcv7tETyOPx8PTTTyMjIwOA9T05G2ZEvC8YYgq4fJ0CgKysrH7XgXift2Pqyy+/BGD9znrppZcgl8t75Jk3bx5WrVoFwDo6Yd++fZznPfX9SXwjGGIKoN9TwcTbMfXFF18AsA7r/uc//9ljzRaRSIRnn32WPd6+fXuPMgLtOkUNZuJxarUaBw8eBADMmjULycnJDvMtWLCAnbfwww8/9Ok1bH9cPB4Pt912m8M8CoUCS5cuBWBdMKCsrKxHHtsFPjMzk4acBTBfxBQAtLS04Le//S3uvvtu1NXVAQBuvvlmxMbGunW+/UXfNjStOz6fzz6nVqvZobnEt4IlpoDL16nw8PA+nUd8y9sxpdFocObMGQDAFVdc4XL+53XXXcc+Pn36NOc5T31/Eu8LlpgC6PdUsPB2TJnNZiQkJCA9PR0TJ05EXFycw3yxsbGIjIwEANTU1PR4PtCuUxTRxOOOHTsGi8UCAJg2bZrTfHw+H5MnTwZgvfi2tbW5/Rq2XpqcnBz2D84R+9fvfkeUYRhcvHgRgHURJhK4fBFTAHDx4kXs3LkTgPVC/Pzzz2PNmjUQCt3bUMAWl2FhYcjNzXWaz/495OXl9amOxDOCJaYAsPO06DoV2LwdU62trRg9ejRUKhWGDRvmMq/9HPb29nbOc574/iS+ESwxRb+ngoe3Y0ogEODf//43fvjhB3z88cdO82m1WnR0dAAAoqOjezwfaNcp2laKeJztogn0fuHMzMwEYL3YFhUVsX+crtTX17MX696GJ9qGvgLAhQsXOM9VV1dDo9FwytFoNLhw4QK0Wi1iYmKQnZ1N22oEAG/HlD0+n49FixbhkUce6VNvntlsZhexyMjIcHmHPT09HQKBAGazuUdcEt8IhpgCAKPRyN41t12ndDodLly4gPb2dkRERGD48OG0eE4A8HZMJScnuz000nYtAsBZPdZT35/EN4IhpgD6PRVMfPnd58obb7zBTkmzH70ABOZ1ihrMxOPs9+BLTEx0mdd+qEZ1dbVbf4y2OQ3ulB8bGws+nw+LxdJjyIf9vEA+n48HH3wQu3btgtlsZtPDw8OxatUq3HvvvbRvrh95O6Zs0tLS8OOPPyIlJaXPdWxqaoLBYHCrjgKBACqVCnV1dQ6HIhHvC4aYAqw/Um0/KkJCQvDkk09i27Zt0Ov1bB7bsLSHHnqIVsf2I1/FlDu+/vpr9vHYsWPZx576/iS+EQwxBdDvqWDir5gym81oamrC2bNn8dFHH+Hw4cMAgClTpuCWW27h5A3E6xQ1mInHtbS0sI8jIiJc5rW/S+nuHqOtra1uly8SiSCXy6HRaHqUb3+B/8c//uHwfLVajTfeeAP79u3DO++843JYCPEeb8eUzUDmh/aljoB1eFtdXV2f60g8IxhiCuBep95++22HebRaLT7++GPs27cP77//vtM5acS7fBVTvcnLy8Pu3bsBAFFRUZgxYwb7nKe+P4lvBENMAfR7Kpj4K6YWL17MTi8CrHOTV65ciUcffbTHCKlAvE7RHGbicV1dXezj7ivvdWf/R2J/nis6nc7t8u3zdC/f/gIvEolw3333Yfv27Th79izy8vLw/PPPswtgnDlzBo888gg774P4lrdjyhM8FZfEN4IhpgDudYrH4+HWW2/Fpk2bcPr0afzyyy949dVXkZaWBgCoqKjA/fffz4lF4juBEFO1tbX44x//yB4/8MADnN48uk4Fl2CIKYB+TwUTf8VUbW0t55hhGBw6dAh79uzpkTcQr1PUYCYeZzKZ2Me9zauzf97+PFfsh/i4M2/Plqd7+fX19QCsf2gffPABHnvsMWRkZEAsFiMmJgbLli3D119/zQ5JOXTokMOl74n3eTumPMFTcUl8IxhiCrh8neLxeHj11Vfx3HPPYcSIEZBKpYiMjMSCBQuwceNGjBgxAgBQXFyMjz76yKd1JFb+jqmWlhbcc889aG5uBgDMmDGD3QrIhq5TwSUYYgqg31PBxB8xZTKZcNddd+GVV17BmjVrsHDhQvD5fBQXF+PRRx/Fa6+9xskfiNcpajATj7O/89jbHrO2OZ+Ae38UAPdukzt72NpeQyQScdK/+OILHD9+HD/++CMmTZrk8NzY2Fj86U9/Yo+/+uort+pIPMvbMeUJnopL4hvBEFMA8PLLL+PUqVPYsWMHrr/+eod5QkJCsGbNGvaYrlP+4c+YamxsxJ133onS0lIAQGpqKl566SXweDxOPrpOBZdgiCmAfk8FE3/ElFAoxEMPPYQbbrgBN998M15++WWsW7eOvR699dZbOHbsGJs/EK9T1GAmHme/6b39wjSO2P8xujPsoq/l2+dxtMiEUqlEfHy8y/PnzZsHpVIJADh58iQNI/IDb8eUJygUCvbxQOOSeF8wxJSNTCbrdV5ybm4uu5poVVUV2+NDfMdfMXXp0iWsXLmSXf02Pj4e69evdzhH1JPfn8T7giGmbOj3VHAIlO++6dOn43e/+x17/Mknn7CPA/E6RQ1m4nGhoaHs494m4Ns/7+4CEPbl97YvnNFoRGdnZ5/K704gECA1NRWA9eJBi5/4nrdjyhNCQkLYx+7sV2jLQwuf+EcwxFRf2e+jSg1m3/NHTJ05cwYrVqxARUUFAOuKsh9//LHTlWV9/f1JBiYYYqov6PeU/wXSd9+yZcvYLThPnDjBpgfidYoazMTjbAvQAD0n+XdXV1fHPk5ISPB4+fX19ewdTHfLd4SGo/mXt2PKE2JiYthe5t62NjCbzWhsbATg2zqSy4IhpvpKKKSNL/zJ1zGVl5eHu+66i51fmpmZic8//9zlaAR/fH+S/guGmOor+j3lX4H03RcWFoaoqCgA3NW7A/E6RQ1m4nH2m4jbb5DuiO15Ho/X6+bkNhEREewfWG/lFxcXs4/tN2ivrKzEhx9+iFdeecXhCn3d2XprRCIR7XPqB96OKU+x1bOkpMRlvtLSUnZRC/u4JL4TDDHV0tKCTz75BK+99ho2bdrUa377XuWYmBgv1ow44suY2rVrFx544AG2Z2Xs2LH45JNPet3GzBPfn8R3giGm6PdUcPF2TJWUlODJJ5/EqlWrOHt3O2MbTm0/rS0Qr1PUYCYeN378ePYOom1jckfMZjOOHj0KABg+fDhnCEZvbJunFxQUoKOjw2m+Q4cOsY+nTJnCPm5oaMCaNWvwzjvv4Msvv3T5WmVlZewdrtGjR0MgELhdT+IZvogpT7DFZXNzs8uLvH1c2s4hvhUMMWU0GvG3v/0Nb731FtatW+cyb0dHB86dOwfAuriObTVa4ju+iqkjR47g4YcfZhfDmTFjBj744AO39n8HBv79SXwnGGKKfk8FF2/HlNlsxjfffIOjR49ix44dLvOWlZWhvb0dAJCens55LtCuU9RgJh4XGhqKadOmAbDesXQ2PHXbtm3sEAxnq786c+211wKwLiH/+eefO8yj0Wjw7bffArD+IQ4fPpx9btSoUezCE3l5eS6H0L711lvs40WLFvWpnsQzfBFTnmCLSwD4+OOPHeYxm8347LPPAFjnPc+cOdMndSNcwRBTsbGx7NC0wsJCnDp1ymnedevWsXtQ0nXKP3wRU83NzXj44YfZxXiuvPJKvP3225xFcnoz0O9P4jvBEFP0eyq4eDumsrKy2MXf8vLyUFlZ6TTvf//7X/bxVVddxXku0K5T1GAmXnH33XcDsPaQPProo9BoNJzni4uL8cILLwCwDsNYtmxZn8q/6qqrkJSUBAB48803OcvRA9bFJP7whz+wCxasXr2a87xEIsHy5cvZOj722GM96ggA77//PjZv3gzAOqdiyZIlfaon8Rxvx5QnjB07FuPHjwcAbNiwAd9//z3neYZh8Pzzz7PbdNx+++20+qwfBUNM3XHHHezjP/7xjw4X89q2bRveffddAEB4eDj7vojveTum/va3v7E/YseMGYPXX3/9/7d352FRlQsYwF9UFgERFxLEEhUVFSvQJBUUcKuM1AiRW6FWj0nhVpZmaclNQ4tEJazATLMUyAUVRVRGE01EQ1lKxQXZFEZhQNYZZO4f83DuTHNYRhax3t9fs5wz55uzwLzn23Se7qWp/z+pdbX1c4q/px49LXlO6enpYebMmQBUYfeDDz4QPR+2bt0qNNm2sLCAj4+Pxvtt7e+UnlKpVLboFuhfa/78+Th8+DAAoFevXvDx8YGVlRX+/PNP7NixA2VlZQCAlStXYsaMGRrrJiYmwtfXF4CqiYVYbV18fDzeeecdKJVK6Ovrw8vLC46OjpDJZIiMjMSVK1cAAI6Ojti+fbtW05979+7By8sLN27cAABYWlrC29sbNjY2KCoqwsGDB4UL1MTEBFu3bsXQoUObcQ+Rrlr6nKqLu7s7cnNzYW1tjfj4+HqXTU9Ph7e3NxQKBfT09ODh4QFnZ2dUVlZi7969wkiQNjY22L17t0a/HWp9bf2cqq6uxsyZM4W/Rebm5vD29oadnR1KS0sRHx8PiUQCQDXoV0hICNzc3Bq/A6jZtdQ5de3aNUyePBm1P9s+/PBDYcTh+pibm2vNjdvU/5/Uutr6OcXfU4+elvzfp1AoMGvWLOGYW1lZCedDYWEhYmNjcfbsWQCqvuxbtmwR7Z7Wlv5OMTBTi6moqIC/vz8SEhJE39fT04O/vz/8/f213mvsD9EdO3Zg1apVdU5sPnToUISFhdXZD+fWrVvw9/cX+v6JsbKyQlBQEIYNG1bnMtQ6WuOcEqNLYAaAo0eP4oMPPhAGT/m73r17Y/Pmzc068ig9mEfhnCopKcGiRYvqLCOg+gG7atUqrWZt1Ppa6pwKCgoSWhLooq5zs6n/P6n1PArnFH9PPVpa+n9fY/5vdevWDcHBwfX2PW4rf6c4BwW1mI4dOyI8PBz79+/H3r17hY775ubmGDZsGHx9fZv8R9PHxwfDhw/H1q1bcfr0aUilUujr62PAgAHw8PDA9OnT653CwMrKChEREThw4ABiYmKQnp6OkpISmJqawsbGBhMnToS3tzdrAduI1jinmsP48eMRExODLVu24LfffsPt27ehp6eHPn36YNKkSXj99dd5TrURj8I5ZWZmhvDwcBw7dgx79+7FxYsXUVRUBGNjY/Tq1Qvu7u7w8fERRhWlh6ulzqna2pTm0tT/n9R6HoVzir+nHi0t/b+v9v/W0aNHsWvXLqSmpqK4uBgmJibo27cvxo0bBx8fnwbPh7byd4o1zEREREREREQiOOgXERERERERkQgGZiIiIiIiIiIRDMxEREREREREIhiYiYiIiIiIiEQwMBMRERERERGJYGAmIiIiIiIiEsHATERERERERCSCgZmIiIiIiIhIBAMzERERERERkQgGZiIiIiIiIiIRDMxEREREREREIhiYiYiIiIiIiEQwMBMRERERERGJYGAmIiIiIiIiEsHATERERERERCSCgZmIiIjaJIVC8bCLQPXg8SGif4MOD7sARETUtiUmJsLX1/eB17e2tkZ8fHwzluj/3N3dkZubCwC4fPlyi2yjNW3cuBEhISENLtehQwcYGRmhe/fuGDhwIJycnDBlyhSYmpq2QimbRv18mjZtGgIDA7WWqaysREhICExMTODn56f1/tKlS7Fnzx4AwLZt2+Dk5NSyhW5hulxjenp6MDAwgJmZGaytrTF06FBMmzYNQ4YMaeFS/l9Dx4eI6J+ENcxERESPmOrqapSWliIzMxOHDx9GQEAAxo0bh7i4uIddtCa7fPkyJk+ejLCwMFRXVz/s4rQ5SqUSVVVVkEqluHDhAn766Sd4enpixYoVqKmpafHt8/gQ0b8Na5iJiKjROnfujLffflundTp16tRCpflns7e3xwsvvCD63v3791FeXo7s7GzExcVBLpdDJpNhwYIF2LRpE1xdXVu3sM0oPT0dOTk5D7sYD01D11hNTQ1KS0tx7do1JCQkoKKiAkqlEhERETAyMsKyZctatHz/9uNDRP8+DMxERNRopqamePPNNx92Mf4V+vfv36h9ffv2bbzxxhu4du0aampq8OmnnyIuLg6GhoatUErdOTk5Nbn5fGBgoGhT7n8CXa4xmUyGpUuXQiKRAFA1T58+fTpsbW1bsohERP8qbJJNRET0CLO0tMQ333yDdu1U/9Jv377dYn3GqW0xNzfHhg0b8MQTTwBQNdfeuXPnQy4VEdE/CwMzERHRI65Pnz4YPXq08Pz3339/iKWh1mRgYICXXnpJeP5PGPyOiKgtYZNsIiJ6aK5fv459+/YhKSkJWVlZKC4uhp6eHszMzNC/f3+4uLjAy8urSaM/Z2RkICoqComJicjOzoZcLoe5uTlsbGwwcuRIeHl54bHHHmvwc27duoWdO3ciISEBOTk5KCsrQ5cuXTB48GBMmDABU6ZMgb6+/gOXs6n69euHkydPAlDVMtelsLAQEREROHnyJK5fv47S0lKYmZmhd+/ecHFxwYwZM9C1a9d6tyWXy7F//34cOXIEaWlpkMlkMDQ0RPfu3eHg4ICJEyfC3d1ddN26RskWGyE8JCREeM3f3x/z5s0DID5Kdk1NDdzc3ITvvnfvXgwaNKje7xEZGYnly5cDADw9PbF69WqtZSoqKhAVFYX4+HhcvXoVMpkMpqamsLGxwdixY+Hj4wNzc/N6t9PSunfvLjwuKCiod9nU1FQcPHgQ586dw61btyCTyaCvr4/OnTvDzs4Obm5umDZtGgwMDDTW0+X4qCsqKkJERAROnDiBmzdvoqSkBJ07d4atrS3c3d0xffp0dOzY8UG/OhFRi2NgJiKiVqdQKPDf//4XUVFRoiP7VlZWoqCgAKdOncL333+P0NBQODg46Lyd0NBQbNy4UWsbUqkUUqkUSUlJ+P777/Hxxx9j+vTpdX7ODz/8gODgYFRVVWm8XlBQgIKCAhw/fhxhYWHYsGEDBg4cqHM5m0Ntk2wAaN++vegyERERCAwMRHl5ucbrd+/exd27d/HHH38gPDwcy5YtwyuvvCL6GdnZ2ZgzZw6uX7+u8bpCoRBG7t6zZw+efvppbNq0qcHw3VzatWsHDw8PhIWFAQBiYmIaDMz79+8XHk+dOlXr/dOnT+PDDz+EVCrVeL2oqAhFRUVITk7G5s2bsXLlSkyePLnpX+IB3bx5U3isHp7VlZaWYunSpThy5IjWewqFAuXl5bh16xYkEgnCwsIQFhaGPn36NKlc+/fvR0BAAEpKSjRev3PnDu7cuYMzZ84gLCwMX331FZ599tkmbYuIqKUwMBMRUatbsmQJYmJiAKjmFHZ2doadnR1MTExQUlKCixcvIikpCUqlEoWFhZg3bx5iY2N1qmmOjo7G+vXrAajClLOzMwYPHgxjY2Pk5+fj+PHjyM3NRWVlJZYvX45evXph1KhRWp/z5ZdfIjw8XHju4OCA4cOHw9TUFHl5eZBIJCgoKEBmZiZ8fHzwyy+/wM7Orol7SHfqTXFr+7Sq+/777xEUFCQ879WrF9zc3NC9e3dIpVJIJBLk5uairKwMH3/8MQoLCzFnzhyNz5DL5Zg7d64Qlq2srODq6gorKyuUl5fjypUrOH78OGpqanDhwgX4+/vjl19+aVT5R48eDWNjY6SlpeHgwYPCa7VNzRtzw2Tq1KlCYD548CAWL15c57L5+fk4d+4cANVc4c8884zG+8eOHcOCBQugUCgAAL1798aYMWNgYWEBmUyGhIQEXLlyBffu3cP777+P8vJyeHl5Neq7NqeSkhJER0cLz8WCZ01NDd566y0kJycDAIyMjDB27FjY2trCyMgIRUVFOHv2LNLS0gCoboosWLAAe/fuFW7E6Hp8fv75ZwQEBAjPBw4ciFGjRqFLly6QSqU4ceIEsrKyIJVK8dZbb2HTpk1wcXFpxj1DRNQ8GJiJiKhVnTlzRgjLZmZm2LZtm2hNYGJiIt5++21UVFRAKpXi6NGjorWAdQkNDQWgCstiUy199NFHWLZsGfbt2wcA+Pbbb7UC87Fjx4SwbG5ujq+//lqjrzAAVFVV4csvv8RPP/2EsrIyzJ8/HwcOHNBq0tqSMjIycObMGeH5mDFjNN4/c+aMRlieN28e5s6diw4d/v8zYOnSpdi4cSO+++47AMC6devw1FNPwcnJSVjm8OHDuHr1KgBgxIgRCA8P1xqNOyUlBTNnzkR5eTnOnz+PpKQkrTAqxtHREY6Ojti9e7cQyBwcHHQald3W1hZDhgxBeno6cnNzceHCBTz99NOiyx48eFBoeeDh4QE9PT3hvby8PCxduhQKhQLt2rXDkiVL4Ovrq1GLv2TJEuzevRsrVqyAQqFAQEAAHB0d0a9fv0aXt6mysrLw4YcforCwEIBqCrdXX31Va7k9e/YIYdna2hrbtm1Dr169tJaLiYnB4sWLUVNTg8uXL+P8+fPCsdPl+KSlpeGLL74AABgaGmL16tV48cUXNZb56KOPsHnzZnz99ddQKBRYvHgxDh061GotEoiIGouBmYiIGq20tBSbN29u9PLe3t5atcK1fU8BVXCrq9msk5MTpk2bJtRQpqWlNTowy2QyZGZmAgAGDBggOi+xvr4+AgICcOTIEVRUVODKlSuQy+VC0FUqlVi3bp2w/IYNGzTCYy1DQ0N88sknyM7OxvHjx3Hz5k1ER0e3Wm1jWloaFi5ciPv37wMAhgwZohXqg4ODhcezZ8+Gv7+/1ufo6+vjvffeQ1lZGbZv346amhoEBwdjx44dwjIXL14UHs+cOVN06qonn3wSb7zxBkJCQtCuXTukpKQ0KjA3l6lTpyI9PR0AcODAgToD84EDB4TH6oNmAara+NpmxO+++y5mzZol+hkvv/wyioqKsHbtWsjlcnz77bf48ssvm1T+hq6xiooKyGQy/Pnnn0hJSRFqwA0MDBAUFCQaONWvuY8//lg0LAPA5MmTER0djRMnTgBQzbn8IMdu/fr1QrlWrlypFZYBVbeBOXPm4Pbt2/j5558hk8mwbds2LFy4UOftERG1JAZmIiJqtOLiYqxdu7bRy0+aNEkrMD/33HPo06cPcnJytILK36n3By4rK2v0dtVrTnNzcyGVSmFhYaG1XMeOHbFr1y506dJFK2gkJycjIyMDgKomTSwsq/Pz88Px48cBAPv27WtyYM7IyKgzOFVVVeHu3btISUlBSkqK8LqxsbHW8cnJyRFqF42NjUXDsrpFixZh9+7dKC8vxx9//IHr16+jb9++ADT7RicnJ2P8+PGin+Hr64sXX3wR1tbWrVrTDgAvvvgi1qxZg+rqasTGxmLZsmUaNcMAkJmZKTQ/tre316gVlsvlQhNnAwMDzJ49u97t+fr6IiQkBOXl5YiNjcWqVaua9J11vcYA1U2K5cuX48knnxR9f8aMGXj22WdRUFAgevNI3cCBA4XAXFpaqlM5AFVT99rB5ywtLRu8yeXn54eff/4ZgOq6YWAmoraGgZmIiFqVm5sb3NzcGlyuvLwcOTk5wvPq6upGb8PU1BSDBg3CX3/9hXv37sHT0xMzZ86Eq6urVpPZuprQJiUlCY+HDBnS4DYHDx4MAwMDyOVypKSkoLq6WiO46yotLU0IdY1hY2OD4OBg2Nraaryu3lTb2dm5wX7gpqamcHZ2RlxcHADg3LlzQmB+5pln8OOPPwIAwsPDkZubiylTpsDJyQnGxsbCZ3Tu3BmdO3dudNmbU9euXeHi4gKJRAKpVIqzZ89q9etVr12eMmWKxnvp6enCoGg2NjYwMTGpd3v6+vqwt7fH2bNnIZfLkZqaimHDhjXTt6mbg4MDRo8eDVdXVwwdOrTeZcVqeMUUFxcjPz9feK7LNVerduwBABg0aJBGU3cxFhYWsLa2Rm5uLnJzc5Gfn48ePXrovF0iopbCwExERI1mbW2N+Pj4Zv3MsrIy3LhxA1lZWcjOzsaNGzdw6dIlZGRkaPxgr/0R3liLFy/GnDlzcP/+feTn52Pt2rVYu3YtevbsCWdnZ7i4uGDUqFF1BsjavroAsH37dmzfvr3R266srERhYWGjpqt6EEZGRjA1NYWlpSWGDBkCV1dXuLq6atWkAtC46dDYwcjs7OyEwJydnS287u7ujhEjRuDs2bMAgEOHDuHQoUPQ19eHo6MjnJ2d4erqigEDBjTl6zXZlClTIJFIAKj65dYVmDt06KA1urX6cb9y5YrOo57funXrQYosELvGKisrcfXqVfz444/CyN4ZGRnw8PBoMCyLKS4uRmZmJrKyspCVlYXr16/j0qVLuHbtmsZ1pus1B2juP4lEovP+y8vLY2AmojaFgZmIiFpdTU0NoqOj8csvvyAtLU10ailA1QS4tm+urpydnREaGopPP/1UY17ivLw8REZGIjIyEgYGBnB1dcXs2bPh6OiosX5xcfEDbVd9/aYEZvU5iptCJpMJjxs7X7D6cur7oV27dggNDcXnn3+O6OhoIVApFAokJiYiMTERQUFB6N27N15++WX4+vpq1Dy3lnHjxsHMzAwlJSWIi4vDihUrhDmy09PTcePGDQCqc6Rbt24a6zbHcW9uRkZGsLe3x1dffQV7e3t88cUXKC0tRUBAAKRSaaOaMcvlcuzcuRNRUVG4cuVKncs15ZoD2ub+IyJqCgZmIiJqVWVlZfD398fp06c1XtfT04OlpSVsbW1hb2+PESNGICcnB8uXL3/gbbm6uuLIkSM4ceIE4uLikJCQIIwoDKhCRFxcHOLi4vDuu+9i/vz5wnvqoeG5556rs39oXf4exB6WB6klrOsGBqAaiXnNmjV49913ERMTA4lEgtTUVI11bt68iXXr1iEyMrLOEZlbkoGBAZ5//nlERERAJpPh9OnTGDt2LID6m2MDmsd9yJAhOs+vXNcgY81l1qxZyM7OFlo8bNq0CT179qx3HvHaqZsuXbqk8Xq7du1gbW2N/v37Y+jQoXByckJCQoIwwvyDUN9/I0eO1HmqqKbO/UxE1NwYmImIqFWtWrVKCMsmJibw9fWFi4uLMA+zutrBgJrCwMAAEyZMwIQJE6BUKnH58mWcOXMGJ0+exJkzZ4Rm39988w1GjBghNN81MzMTPsPBwaHOkZLbOvW+xEVFRY1aR3059f2g7oknnoCfnx/8/PxQUlKCs2fP4vTp05BIJMjLywOgGnBt6dKlOjVnby4vvfQSIiIiAKiaZY8dOxZKpRKHDh0CoAr+48aN01pP/fv26NFDp2mtWsuSJUuQlJQkzL29atUqDBs2rM7++IsXLxbCcrdu3TBr1iyMGjUK/fv31xrp/NixY00qm/r+s7W1bZP7j4hIF9qdnYiIiFpIfn4+9u7dC0BVo7xlyxYsXLgQw4YNEx1cST24PUhN6d/p6enBzs4Os2bNwubNmxEfH6/Rx7J2dGQAePzxx4XHtaNlN0S99rqt6N27t/C4NmA15K+//hIeq++HupiZmWH8+PFYsWIF4uPjNVoFJCUlCQG6NQ0fPlwou0QiQXV1Nc6fPy/0MZ40aZLotFjq31e9P259iouL662Vb24GBgYIDAwUBpWrrKzEkiVLRMtw8eJFYeA3Y2NjREREYM6cObC3txf9/o29qVKXB9l/RUVFzXJ9ExG1BAZmIiJqNampqUKTzUGDBuGpp56qd/nExEThsS4/qI8dO4Y333wTbm5u+O677+pcrkePHpg7d67wXH2E4OHDhwuPT5w4IcwrW5fU1FSMHDkSDg4O8PT0fKARhluC+vdISEhocKqge/fu4ffffxee1zYxvn//PpYsWYKXX34Zo0ePhlwuF11fT08Pr732mkZtp3of8oY0NKqyLmqbXJeUlCApKQmxsbFa7/2dg4ODEESzsrIavMlQVVWFSZMm4cknn8TEiRO1mj23lMGDB2tMeZWamirMWa7uwoULwuPRo0fXewNEqVQKA7oB4k3zGzo+6ufb+fPnG7yJVFBQABcXFzz11FN4/vnn2+RNJyL6d2NgJiKiVqMestQHoxJz9OhRjR/vugRQpVKJhIQE5OXlISYmpt511WvU1EfnHTlyJCwtLQGo+oDWNSdy7faCgoIAqKbD6tWrV5OmlGpOvXv3hoODAwBV2UJCQupdfv369aioqAAA9O/fX6iBb9++PS5duoT09HTcuXOn3qa7NTU1GsdXl1GP1Uf6bsrgU4BmKD527BiOHj0KQDUS9TPPPCO6jomJCSZMmCA8X7t2bb03a8LDw1FUVASFQoHy8nKtab1akr+/P6ytrYXn69atQ0FBgcYy6tdcQ7XH27Zta3Aqt4aOT79+/YT+/nK5HOvWrat3m8HBwVAoFKiqqoKJiYnWfOhERA8bAzMREbUa9WmN8vLysHXrVq1lampqEBUVhffff1/j9doQ1xhjxoyBhYUFAFUz5ICAAFRWVmotd+PGDY0AOXHiROGxvr4+3nnnHeH5+vXrsWXLFq1at4qKCqxcuVKole3QoQP8/PwaXdbWsGDBAqFmcMuWLQgJCdEKQ9XV1diwYQN++uknAKqaxGXLlmks4+npKTz+7LPPkJKSorUtpVKJNWvW4O7duwBUA2eph7qGqE/zlZub2+j1xDzxxBPCzYJdu3YJzbE9PDzqrSn18/ODgYEBAFWt/AcffKBVM69UKhEVFaUxQJafn1+r3igxMjLCihUrhOelpaVYvXq1xjLq19z58+dx5MgRrc+Ry+X49ttvsWbNGo3Xxa65xhyf+fPnC/s3MjISa9as0WqRUF1djdDQUOzatUt4bd68eaKfR0T0MLWN299ERPSv0LdvXzg7OyMhIQEAsHr1ahw6dAgODg4wNTVFfn4+fvvtNyHY6OvrC02hG6qRVmdgYICPPvoI7733HgAgIiIC8fHxGDNmDHr27AlANcfu8ePHUVVVBQAYO3Ys3NzcND7H29sb586dw759+1BTU4PAwEDs3LkTY8aMQdeuXZGXlweJRAKpVCqs8/777zd6vuPWMnLkSPj7+2Pjxo0AgI0bN2LPnj1wc3ND9+7dcefOHUgkEo3axXfeeQejRo3S+JwZM2bg119/xeXLlyGTyeDl5YXRo0djwIAB6Nq1K+7evYuEhASh76q+vr5W6G6I+oja+/fvR6dOndCjRw/0798f7u7uOn/3qVOnIjk5GeXl5cJrL730Ur3rDBw4ECtWrMDy5cuhVCqxf/9+nDx5EuPGjcPjjz+OwsJCJCYmajTXdnNzw3/+8x+dy9dUrq6umDBhghCEDx06BE9PT2F06trBvTIyMqBUKuHv7w9nZ2cMHjwYhoaGyM3NhUQiEWqfG7rmGnN8XFxcMHfuXGzatAkA8MMPP+DgwYNwc3NDjx49UFBQgJMnT2rM8f3aa68JI5kTEbUlDMxERNSq1q5di9mzZwthIzk5GcnJyVrLDRgwAIGBgfD29oZCoUBGRgbkcrlQ89eQyZMno6ioCIGBgVAoFJBKpRq1WeomTZqkVbtWa82aNejZsyc2b94MhUKBzMxMZGZmai1nZGSExYsX4/XXX29U+Vqbv78/unTpgq+++grl5eXIyckRapPVGRsb47PPPhPt42tgYIDw8HD4+fkhLS0NAHDq1CmcOnVKa9nu3bvj888/1+jT2hgDBgyAg4MDkpOToVQqhZHS3d3dHygwv/DCC1i1apVQw2lvb1/naNLqvLy80KlTJ3z66aeQyWSQyWR1nj+enp747LPPmrX/tS4++eQTnDp1SrgpEBAQgAMHDsDQ0BDt27fHxo0b8cYbbwiDryUkJAg3rdQNHz4cixYtwquvvgpANWf13zX2+CxcuBDdunVDUFAQKioqcPv2bezYsUPr89q3b4+33noLixYtavqOICJqAQzMRETUqrp164aoqChEREQgNjYWV69eRWlpKYyMjGBhYQE7OzuMHz8ezz//PDp06IBnn30WJ0+eREVFBQ4fPgwPD49Gb+u1117DmDFj8OuvvyIxMRGZmZkoLS1Fx44dYWFhgREjRsDDw6PeUNeuXTssWrQIr7zyCiIjI3H69Gnk5OSgtLQUxsbGsLGxwahRo+Dt7S3UXrdVr776KiZNmoSdO3ciISEBN2/eRElJCYyNjdGvXz+4urpi+vTp9fYjfeyxxxAZGYnY2FgcPnwYf/75J+7cuYPq6mp07doVffr0gZubGzw9PdGpUyedy6inp4ewsDAEBwcjPj4eUqlUo9ZTV2ZmZnBzc8Phw4cB1D3Yl5jnnnsOzs7OiIqKwm+//YaMjAzIZDLo6+vDysoKw4YNg5eXl85zdDc3S0tLzJs3T7jpk5WVhdDQUCGE9unTB9HR0di+fTvi4+Nx48YNVFRUoGPHjrCyssKgQYPwwgsvwNXVFXp6eujbty+uX7+OrKws/PHHH3B0dBS2pcvxef3114X5sE+dOoXMzEwUFxfD0NAQjz/+OJycnODt7d2oGxhERA+LnpLj+BMRERERERFp4aBfRERERERERCIYmImIiIiIiIhEMDATERERERERiWBgJiIiIiIiIhLBwExEREREREQkgoGZiIiIiIiISAQDMxEREREREZEIBmYiIiIiIiIiEQzMRERERERERCIYmImIiIiIiIhEMDATERERERERiWBgJiIiIiIiIhLBwExEREREREQkgoGZiIiIiIiISAQDMxEREREREZEIBmYiIiIiIiIiEQzMRERERERERCIYmImIiIiIiIhEMDATERERERERiWBgJiIiIiIiIhLBwExEREREREQkgoGZiIiIiIiISAQDMxEREREREZEIBmYiIiIiIiIiEQzMRERERERERCIYmImIiIiIiIhE/A9DdjAveKCl1wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.roc_utils import compute_roc_point_from_predictions\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=postproc_clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ " group_name_map=group_name_map,\n",
+ ")\n",
+ "\n",
+ "# Compute predictions\n",
+ "y_fit_preds = postproc_clf(X_fit, group=s_fit)\n",
+ "\n",
+ "# Plot the group-wise points found\n",
+ "realized_roc_points = list()\n",
+ "for idx in range(n_groups):\n",
+ "\n",
+ " # Evaluate triangulation of target point as a randomized clf\n",
+ " group_filter = s_fit == idx\n",
+ "\n",
+ " curr_realized_roc_point = compute_roc_point_from_predictions(y_fit[group_filter], y_fit_preds[group_filter])\n",
+ " realized_roc_points.append(curr_realized_roc_point)\n",
+ "\n",
+ " plt.plot(\n",
+ " curr_realized_roc_point[0], curr_realized_roc_point[1],\n",
+ " color=all_group_colors[idx],\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ " )\n",
+ "\n",
+ "realized_roc_points = np.vstack(realized_roc_points)\n",
+ "\n",
+ "# Plot actual global classifier performance\n",
+ "global_clf_realized_roc_point = compute_roc_point_from_predictions(y_fit, y_fit_preds)\n",
+ "plt.plot(\n",
+ " global_clf_realized_roc_point[0], global_clf_realized_roc_point[1],\n",
+ " color=global_color,\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ ")\n",
+ "\n",
+ "plt.xlim(0.04, 0.3)\n",
+ "plt.ylim(0.45, 0.75)\n",
+ "plt.legend()\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8db9a56",
+ "metadata": {},
+ "source": [
+ "### Compute distances between theorized ROC points and empirical ROC points"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "be73972d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Group 0: l2 distance from target to realized point := 0.034% (size=259521)\n",
+ "Group 1: l2 distance from target to realized point := 0.000% (size=29518)\n",
+ "Group 2: l2 distance from target to realized point := 0.060% (size=19386)\n",
+ "Group 3: l2 distance from target to realized point := 0.227% (size=12570)\n",
+ "Global l2 distance from target to realized point := 0.034%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Distances to group-wise targets:\n",
+ "for i, (target_point, actual_point) in enumerate(zip(postproc_clf.groupwise_roc_points, realized_roc_points)):\n",
+ " dist = np.linalg.norm(target_point - actual_point, ord=2)\n",
+ " print(f\"Group {i}: l2 distance from target to realized point := {dist:.3%} (size={np.sum(s_fit==i)})\")\n",
+ "\n",
+ "# Distance to global target point:\n",
+ "dist = np.linalg.norm(postproc_clf.global_roc_point - global_clf_realized_roc_point, ord=2)\n",
+ "print(f\"Global l2 distance from target to realized point := {dist:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "### Compute performance differences\n",
+ "> assumes FP_cost == FN_cost == 1.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "6991bf75",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual accuracy: \t\t79.955%\n",
+ "Actual error rate (1 - Acc.):\t20.045%\n",
+ "Theoretical error rate:\t\t20.063%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "from error_parity.roc_utils import calc_cost_of_point\n",
+ "\n",
+ "# Empirical accuracy\n",
+ "accuracy_fit = accuracy_score(y_fit, y_fit_preds)\n",
+ "\n",
+ "print(f\"Actual accuracy: \\t\\t{accuracy_fit:.3%}\")\n",
+ "print(f\"Actual error rate (1 - Acc.):\\t{1 - accuracy_fit:.3%}\")\n",
+ "print(f\"Theoretical error rate:\\t\\t{postproc_clf.cost(1.0, 1.0):.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "485d5b1f",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "148524a8",
+ "metadata": {},
+ "source": [
+ "### Best non-fairness-constrained single-threshold solution --- RESULTS ON *TEST DATA*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "790f18c6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "08708f36f2c54a43aa7f7b5196963b60",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/50 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Best (train) unfair accuracy is 80.198%, with threshold t=0.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "# Compute prediction scores\n",
+ "y_test_scores = predictor(X_test)\n",
+ "\n",
+ "acc_unfair_best, acc_unfair_threshold = max((accuracy_score(y_test, y_test_scores >= t), t) for t in tqdm(np.arange(0, 1, 2e-2)))\n",
+ "print(f\"Best (train) unfair accuracy is {acc_unfair_best:.3%}, with threshold t={acc_unfair_threshold}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "5f28c70a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Best (unconstrained) single-threshold classifier:\n",
+ "\tAccuracy: 80.20%\n",
+ "\tUnfairness: 36.11%\n",
+ "Best (constrained) multi-threshold classifier:\n",
+ "\tAccuracy: 79.85%\n",
+ "\tUnfairness: 7.30%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import eval_accuracy_and_equalized_odds\n",
+ "print(\"Best (unconstrained) single-threshold classifier:\")\n",
+ "\n",
+ "eval_accuracy_and_equalized_odds(\n",
+ " y_true=y_test,\n",
+ " y_pred_binary=predictor(X_test) >= acc_unfair_threshold,\n",
+ " sensitive_attr=s_test,\n",
+ " display=True,\n",
+ ")\n",
+ "\n",
+ "print(\"Best (constrained) multi-threshold classifier:\")\n",
+ "eval_accuracy_and_equalized_odds(\n",
+ " y_true=y_test,\n",
+ " y_pred_binary=postproc_clf(X_test, group=s_test),\n",
+ " sensitive_attr=s_test,\n",
+ " display=True,\n",
+ ");"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ed71b0f1",
+ "metadata": {},
+ "source": [
+ "# Fairness vs Performance trade-off\n",
+ "\n",
+ "Plotting the entire Pareto frontier **may take a few minutes...**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "57bb076e-5c6c-45b1-94b4-322a82492378",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Using `n_jobs=9` to compute adjustment curve.\n",
+ "INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4\n",
+ " 0.5 0.6 0.7 0.8 0.9 ].\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "48a318097ae848f69d244d5843b403ae",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=rf_clf,\n",
+ " fit_data=(X_fit, y_fit, s_fit),\n",
+ " eval_data={\n",
+ " \"test\": (X_test, y_test, s_test),\n",
+ " },\n",
+ " fairness_constraint=\"equalized_odds\",\n",
+ " tolerance_ticks=np.hstack((\n",
+ " np.arange(0.0, 0.1, 1e-2),\n",
+ " np.arange(0.1, 1.0, 1e-1),\n",
+ " )),\n",
+ " y_fit_pred_scores=predictor(X_fit),\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "6f80437c-3b14-48e7-9dc4-9385d9cc952a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVi0lEQVR4nO2deXxTVfr/P0mapaWlC7QUKDsUyr4vCgqMMu4CosKIgjOogIgjooL7NoAL4sIXFAbGFZ1x3EZRFFcEgbIIZUn3jdJ9b7Pd5Ob8/ujvXpMmLU2TNAnneb9evGjvPbk57yf33jw959xzFIwxBoIgCIIgCI5QBroCBEEQBEEQHQ0lQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcAclQARBEARBcEdYoCsQjPz+++9gjEGtVge6KgRBEARBtBGr1QqFQoExY8ZcsCy1ALmBMQZfTZAtiqJPjhOqkD/58wrP7gD5k39g/D35/qYWIDdILT8jRozw6jhWqxXV1dWIi4vjsjWJ/MmfV3+e3QHyJ//A+Z86darNZRW0FpgrUgC9TYAIgiAIgug4PPn+pi4wPyKKIurr67ltCiV/8ufVn2d3gPzJPzT8KQHyIxaLBVlZWbBYLIGuSkAgf/Ln1Z9nd4D8yT80/KkLzA2+6gKz2+2wWq1Qq9VQKvnLNcmf/Hn159kdIH/yD5y/J9/fNAjaS0RRhNVqbbWMIAgdVJvghPwvfn+1Wg2VSuW0TalUQqvVBqhGgYVnd4D8yT80/CkBaieMMZSWlqK2trbVMqIoQqVSQaFQdFzlggTy58s/JiYGiYmJsqsgCCgtLUViYiI0Gk2Aa9ex8OwOkD/5h4Y/JUDtREp+EhISEBER4fYLzm63QxAEaDQabptByf/i92eMwWg0ory8HADQvXt3AE2to42NjUE/ENIf8OwOkD/5h4Y/jQFyw4X6EEVRRGZmJhISEtClS5eOrBpBBC1VVVUoLy9HcnKyS3cYQRBER0CPwfsZacxPREREgGtCEMGDdD1caEwcQRBEMBD0CdBbb72F22+/vdUyNTU1ePDBBzFhwgRMnDgRzzzzDEwmk9/rdqFxHaIowmg0Bn0zoL8gf778m18PRqMRJ0+ehNFoDFCNAgfP7gD5k39o+Af1GKAPPvgAr776KsaPH99quZUrV8JkMuHtt99GfX09HnvsMRiNRrzwwgsdVFP3KBQKhIWFcTEA1h3kz7e/Wq1GQkICl0sB8OwOkD/5h4Z/UCZAZWVleOqpp3D48GH07du31bK///47UlNT8fXXX2PAgAEAgGeffRZLlizBqlWr0K1btw6osXuUSmVQj4D3N+TPt79arZYHRPMGz+4A+ZN/aPgHZRfYmTNnoFar8b///Q+jRo1qtezRo0cRHx8vJz8AMHHiRCgUChw7dszfVW0V6TFoXseZkz/f/qHyJIg/4NkdIH/yDw3/oEyAZs6ciTfeeAO9evW6YNmysjKXTFOj0SAmJgYlJSVe1cNxHJHJZJIntLPb7bDb7fIXm91ud/qgpf12ux1ms9npS7ClsoDrF2bz39tbFmg6IVt6rTdlW6uTKIowm83y/tbKehIXf5VtS1w8jbfk3xHx9rSsv2IoXTcWiwUZGRloaGiQ9xmNRthsNgCAzWaD0WiUX2uxWGA2m+X3MRqN8oBqT8pKY6+kOgqC4HQte1K2+XXvOKbLarW2WNZkMiEjI0MeA2G1Wp3GQ5jNZnmZACkujse9UNnWYuhJ2QvFsL3xrq+vR0ZGBiwWC0wmk8/i7RgXT8q2FkNv4908LjabTT73a2tr2x3D9p7f7uLii3ibzeY2l3X8/FuKoa/i3fwe4QlBmQB5gslkctvNoNVqvVqHRBRFZGVlyb/n5eWhtLQUQNOHbbPZ5JNKFEWn97JYLLBarVAqldDpdLBYLPKJIiUFEoIgOD01IyVMQNMH2rys46zCZrNZPlGaH9dqtbqUbV4H6aSyWq0u9ZfKSl/iLZV1rIPjF770u0KhQGlpKXbv3g2LxSKXZYw5lZVuGs1j6K5sS/F2LNtavC8UF1/E22KxwG63Y+zYsfj0008vGO/mMZTKNo9La/Fufr5Ixz116hSuueYajBo1Chs2bGhTvI8cOSLfKJvHu7Vz1m63Izc3FwCg0+kQGRmJyspK+bh6vR51dXUAmm6Ser1ern9RURHOnTsnH1ev18sTjTY2NkKv18vuJSUlyM/Pl8tmZGSguroaAGAwGKDX6+U6lpaWIi8vTy6blZUl18lkMkGv18t+5eXlyMnJkcvm5OSgoqJC9tTr9XKMKyoqWrxHSNMASG5VVVXIzMyUy+bn58t/oNlsNuj1ejQ2NgJoeqgjPT1dLltYWIjz58/Lx9Pr9XJSWVtbC71eL5c9d+5cizFsaGhwivf58+dRWFgol01PT0dNTU2b4p2ZmYmqqioATV9Cer1ePv9LS0tRXFyMoUOHQqfTISsrq9UYNo+3NJ+UxWKBXq+Xz8PKyspW78l6vR4GgwEAUF1djYyMjDbF210Mi4qKnOJdX18PAKirq4Ner5evz5bOWZ1Oh6SkJOTn58vXRnFxMQoKCuSyGRkZrcb7QuesFO+ysjL5mgOA7OzsVuOdnZ0tl83NzUVZWRmApuv6QvFu7Zx1jHd5eTmio6Oh0+kgiiL0ej327t2Lb7/9FufPn28x3r64R3hC0M8DtGbNGpw/fx7vvfee2/3PPfcc0tLS8PHHHzttnzJlCu655x4sXrzY4/eU5hEYOHAgwsPDATSddCqVChqNBkajEXl5eejfvz/Cw8Pl1qDmNz2lUgnGGOx2O5RKJRQKhUdl3b22PWWBpi8xhULRYp3aW/ZCrgCwaNEi9OzZE+vWrfNJXAIRbykunsa7qqoKkZGR8mSIHRHv5mVXrlyJwsJCvPbaa4iOjkZcXNwF4/L444/jyiuvxPTp09scQ4vFgtzcXHTv3h2xsbEAmm7ACoUCWq1Wbh3SaDQICwuDzWaDIAgIDw+HQqGQ/1rU6XQAmr5Y1Wo11Gq1R2WlhE2n00GpVEIQBIiiKF/LnpR1vO6lhFOr1UKlUsl/CLW1rNVqlacKcBcXT8q2FkMAXsdbiosv4m0ymRAWFuaTeDvGxdt4S3HxNt7N4+JNvB3jYrfb2x3v5nHxRbzNZrM8rrE98d6yZQsMBgPuuusuxMTE+Czeze8RUkLNxVpgiYmJ+P777522CYIgz9LsDdJJ0vxnpVIpf+lIvzvi+AVks9mcngRqqSzQ9NSQ4wRyzX9vb1kAfivbWp2Apr8UpBy7tbKeHNdfZX0dQ7vdjujoaISFhTnt91e8WypbV1eHlJQU9OvXr03HFUUR33//PURRxPTp0z2OoXStCIKAyspK+TpUKBROc2eFhYUhLOyPW1DztYPaW1alUjn93ryF2JOyza97x7LSjdddWZvNhurqaiQkJEClUrmUlW7ggGtcPCnbWly8iXfzuHgab0EQUFRUhISEBKe4+CveFyrbEfEG/oiLIAgoLy9HQkKCfO8PhnPWm3g7xuVCZZVKpeyv0WgQERGBCRMmQBAEREVFOb3WF/F2V7YthHwX2IQJE1BaWurUtJiamgoAGDduXIfXx2AwOP2rr6932db8n9TsCTTdOA0Gg8s8Rhc6hjcMHjwYH3zwAW655RaMGDEC119/PX744Qd5f21tLZ555hlcfvnlGDlyJObPn4/Dhw/L+3/55RfMnTsXo0aNwpQpU7BmzRq5CXPx4sU4cuQIPvvsM8ycObPddZDKvP7665gxYwamTp2K/Pz8C9bNYDDgueeew9SpUzFmzBgsXLgQp0+flvc3NDTgiSeewOTJkzFu3DjccccdcgtgW/xa2wc0/RXy2WefyfX/73//i8WLF2PkyJGYOnUqNm/e7PRe1dXVeOCBBzB+/HhMmjQJL7/8Mu644w688cYbbuN2If+ZM2ciNTUVn3/+OQYPHiw3NbfGwYMHUVtbix9++MGrhVxFUURtbW3QD4T0Bzy7A+RP/q7+l19+Oa688kpERUUFsGbNYEHOI488whYuXCj/brPZWHl5OTOZTIwxxux2O5s/fz6bM2cOO3nyJDt48CCbMWMGW7NmTbvfMy0tjaWlpbW432QysbNnz8p1cASAx//+85//yK//z3/+wwCwyy+/3Om4Xbt2bfUY3pCcnMxGjx7N3n//fZaTk8NeeuklNmTIEHbs2DFms9nYnDlz2HXXXccOHz7MsrKy2BNPPMGGDRvGTp48yaqqqtjw4cPZ+++/z4qKitjRo0fZzJkz2aOPPsoYY6ympobdeuut7P7772dVVVXtqoNjmUmTJrG0tDT2+++/X7BujDG2ZMkSdsUVV7B9+/ax/Px8tmbNGjZhwgRWW1vL7HY7u/XWW9miRYvYiRMnWHZ2Ntu4cSMbNmwYO3PmDGOMtep3IXepzp988on88/jx49nnn3/OCgsL2datW1lycjJLTU1ljDEmiiKbN28emzNnDvv999/Z6dOn2W233cYGDx7MXn/9dZeYtcW/qqpKjn95eTmz2Wwux/nss8/YsmXL5H9XXXUVS05OZsnJyez222+Xt99///0sMzOzxc+wteuCIAiiI7jQ97cjIdcFVlJSgj/96U9Yv3495s6dC4VCgc2bN+OZZ57BokWLoNVqcdVVV2Ht2rWBrmpIMXfuXNx2220AgNWrVyM1NRXvv/8+GhoacObMGXz55ZdITk4GADzzzDM4deoUduzYgaVLl0IQBPTo0QM9e/ZEz5498eabb8qZf0xMDNRqNXQ6HeLi4tpVh7Fjx8plbrzxRrlv95dffmm1bvfffz/27duHHTt2YOrUqQCAp59+Gp07d0ZNTQ3Onj2LEydO4NChQ4iJiQEArFq1CsePH8e7776LDRs2oKysrEW/1va1xOzZs3HjjTcCAJYuXYodO3bg+PHjmDBhAlJTU5GWloZvvvkG/fv3BwC8+uqrLbac7d+/v1X/1157DXFxcXL84+PjW6yTyWTChg0bnAZRA5Bbk/r374+NGzdi0KBBLboRBEG0hNTToVKpgmZy2KBPgKSnViSSkpKcRpsDQJcuXfD66693ZLVaRBoVDzSNAbJYLNBqta2uBu7Yrzlnzhw0Nja6lHd8AsMfTJo0yen3MWPG4MCBA8jMzERUVJT8BQs09dOOHz8e+/fvR0pKCq677josXboU8fHxuPTSSzF9+nRceeWVsj9zGGf/5ptv4q233pJ/v/766/Hss8+2WgdH+vTpI/98obpJT92MHj1a3q/VauXk+PvvvwdjDDNmzHB6D0EQ5MGkrfmFhYW1uA/4Y7Cwo7/jfFUAEBUVJT+tdPbsWURHR8vJDwB07drVaeyOIxfy94QFCxZg4sSJeOCBB1yur5tvvhmPPfaY03iBtmAymZCTk4MBAwZ4/NpQh2d3gPzJ39X/1VdfhcFgwNKlSwM6QbEjQZ8AhRqdOnWSf7bb7dBqtS6DYFujpYFcjsf1B83fU3riyfHL2xHGmPyajRs34t5778W+ffvw22+/4aGHHsK4cePwr3/9y2VQ9Pz583H11VfLv0dGRl6wDo44Dpi7UN0uNCDObrcjMjISn376qcs+x8GCLfm98847re5zh7spGyQPaeB0W2nLZ+MJAwYMwKhRo1wSoKuuuqpdN3GVSoXY2FguV4bn2R0gf/IPDf+QHwQdzEiPDLY1+QkkzQf+/v777xg2bBgGDx6MhoYGpzlMGGM4duwYBg4ciJMnT2LdunXo378/Fi9ejG3btmHdunU4dOgQampqoNFonJo7Y2Ji0KdPH/lfly5dLliHlrhQ3aTWFsfj2mw2zJw5E3v27EFycjIaGxthtVqd6rR9+3Z5AHZrfq3tq6qqkj/3tjb3DhkyBA0NDU7zotTU1DgN8PfE31NEUcTevXsBAJMnT5YnGP3mm288PhbQlOz17NmTy+VAeHYHyJ/8Xf3vu+8+rFmzpsWu+EAQ/N/MIQwLoaUQ3nnnHXz55ZfIy8vDCy+8gIyMDCxatAhTp05FSkoKHnzwQaSmpiInJwfPPvssMjMzsWjRIkRGRmLXrl146aWXUFBQgMzMTHz99dfo27cvYmJiIIoiIiIicP78eXnSMk/r0BIXqlu/fv0wa9YsPPPMMzh06BDy8vLwxBNPwGKxYOLEiZg2bRpSUlLwwAMP4NChQygoKMD69evx6aefyslTa34REREt7ouNjXWaHbktTJo0CaNGjcLDDz+MEydOID09HatXr4bJZHKbRF3I31MOHz4Mg8GAtWvX4u2338YXX3yBq6++Gt9//73Tk4ptpfkstDzBsztA/uTv6q/Vai84HKSjCZ6aXIQ0n6k3mJk/fz7efvtt3HDDDTh69Ch27NiBIUOGQKVSYefOnRg6dChWrFiBm266CVlZWXj77bcxevRoDBgwAG+88QYOHTqE2bNnY8GCBVCpVNi+fTuApkmubr31VmRmZuKGG25odYBwS3VoiQvVDQDWrVuHCRMm4P7778fcuXNRUlKCHTt2IC4uTn798OHD8fe//x033HADjhw5gs2bN2PKlCkA0KrfoEGDWtynVCrdjgG6EG+88QYSExOxePFiLFq0CCNHjkSPHj3crqrcFn9PyMnJwccff4zFixdDoVAgOjoar776Kh555BGkpaV5fLzms9DyBM/uAPmTf2j4B/1M0IFA6jJpaSZJs9mMvLw89OvXz2lMSnNYs5l6g5XBgwfLT9X5Ek/8/VWHQOLp519dXY2TJ09i6tSpcsIjCAImTZqEp556CrNnz/Zzjb2j+XUhLRei0+mCfiyAr+HZHSB/8nf1P3DgAARBwIQJE5zGfvqaC31/O0KDoP2Iu5mReYL8PfMPCwvDAw88gPnz52PBggWwWq3YsWMHNBoNLrvsMj/W1D+oVCq/D94PVnh2B8if/F39Dx48CIPBgKFDh/o1AfIE6gLzI3a7XV7ThUfI3zP/zp07480338SJEycwe/Zs3HrrraisrMS77757wTmUghGr1Yri4mKnhVN5gWd3gPzJ39V/zJgxmDBhgtPyFYGGWoD8jLQWWDDT/LFnX9JWf3/WIZB4+vlPnjwZH330kR9r1HHYbDZUVlYiNjbW7Rimixme3QHyJ39X/z/96U8BrpUrwf3NHOI0XzCON8ifb//w8HCMHDky0NUICDy7A+RP/qHhT11gBEEQBEFwByVAfsRut8NkMnE9Bob8+fU3mUw4e/YsTCZToKvS4fDsDpA/+bv6b9y4Ec8++yzKysoCWDNnKAHygrbMIBBMkz4FAvLnx7/59aBSqRAZGcnlk4A8uwPkT/6u/oyxoJsUmMYAtQNpUOuFZsdVKpVOC53yBvnz5S9dD9L1odFo0Lt370BWKWDw7A6QP/m7+i9duhSMsaAaF8nPn6c+RKVSQaVSob6+vtVy0kR4wZb1dhTkz5d/fX29fG0AoTUTuq/h2R0gf/J39Y+MjERUVFRQtYpRC1A7UCgUSEhIQElJCbRaLTp16uR2pl9RFGGxWKDVaoPqQ+8oyJ8Pf8YYDAYD6uvr0b17d/lakKbDT0lJCaq/+joCnt0B8if/0PCnBKidREdHw2QyobKyEhUVFW7LSH2eCoUiqJfC8Bfkz4+/QqFATEwMoqOj5W1arRbJyclcdQNK8OwOkD/5u/qnpqZCEASMGTMmaGbJpgSonSgUCnTv3h0JCQnczvZJEBJqtdqllUulUiEqKipANQosPLsD5E/+rv779u2DwWDAoEGDKAG6WHAc89Acq9WKqqoqdOnShcvZQMmf/Hn159kdIH/yd/UfPnw4LBYLwsPDA1y7P6BB0H7EarWitLSU2xYi8id/Xv15dgfIn/xd/a+66irceOON6Ny5cwBr5oyC8fKIigecOnUKADBixIgA14QgCIIgiLbiyfc3tQARBEEQBMEdlAD5EbPZjPT0dJjN5kBXJSCQP/nz6s+zO0D+5O/q//rrr2P9+vUoLy8PYM2coQTIjygUCuh0uov+EeiWIH/y59WfZ3eA/Mnf1V8QBAiCEFQTw9IYIDfQGCCCIAiC8B21tbWw2+3o3LmzvFyOP6AxQEECYwxWqzWoMt6OhPzJn1d/nt0B8id/V/+YmBjExcX5NfnxFEqA/IjJZEJaWhpMJlOgqxIQyJ/8efXn2R0gf/IPDf/gScUuQrRaLQYOHMj1dOjkT/48+vPsDpA/+bv6Hz9+HFarFSNGjAia9cEoAfIjKpXKaW0k3iB/8ufVn2d3gPzJ39X/xx9/hMFgQN++fYMmAaIuMD9itVpRXl7O9Wyg5E/+PPrz7A6QP/m7+g8ePBjDhg2DTqcLYM2coRYgP2K1WlFUVITIyEhu14Mhf/Ln0Z9nd4D8yd/V//rrrw9wrVyhx+DdQI/BEwRBEEToQY/BEwRBEARBtAIlQH7EbDYjMzOT6+nQyZ/8efTn2R0gf/J39d+6dSs2btyIioqKANbMGRoD5EcUCgXCwsK4ng6d/MmfR3+e3QHyJ39Xf4PBAIPBALvdHsCaOUNjgNxAY4AIgiAIwndUVFTAbrcjLi7OrwPDPfn+phYgP8IYg91uh1Kp5PIvAfInf179eXYHyJ/8Xf3j4+MDXCtXaAyQHzGZTDhx4kTQTwfuL8if/Hn159kdIH/yDw1/agHyIxqNBv3794dGowl0VQIC+ZM/r/48uwPkT/6u/qdOnYLNZsOQIUMQHh4ewNr9ASVAfiQsLAyxsbGBrkbAIH/y59WfZ3eA/Mnf1f/bb7+FwWBAjx49giYBoi4wP2Kz2VBZWQmbzRboqgQE8id/Xv15dgfIn/xd/QcMGIDk5OSgWiCWWoD8iCAIKCgoQEREBMLC+As1+ZM/r/48uwPkT/6u/nPmzAlwrVyhx+Dd4KvH4B1Dy+uTABLkT/48wbM7QP7kHzh/egw+SODxxHeE/MmfV3h2B8if/EPDn8YA+RGLxYLs7GxYLJZAVyUgkD/58+rPsztA/uTv6v/Pf/4Tr7/+OiorKwNYM2eoBYggCIIgCL9SW1sLg8EAURQDXRUZGgPkBloKgyAIgiB8R3FxMURRRLdu3fw6PxKNAQoSaCAc+UuQP1/+PLsD5E/+rv49evQIVHVahMYA+RGTyYTjx48H/XTg/oL8yZ9Xf57dAfIn/9DwpxYgP6LRaNCnTx+up0Mnf/Ln0Z9nd4D8yd/VPz09HTabDQMHDoROpwtg7f6AEiA/EhYWhq5duwa6GgGD/MmfV3+e3QHyJ39X/6+++goGgwFLly4NmgSIusD8iM1mQ01NDdfToZM/+fPoz7M7QP7k7+rfu3dv9O3bN6haxSgB8iOCICA3NxeCIAS6KgGB/MmfV3+e3QHyJ39X/1tuuQWLFi0KqkVi6TF4N/hyKQy73Q6lUsntkwDkT/48+vPsDpA/+QfOnx6DDxIUCgVUKlWgqxEwyJ/8efXn2R0gf/IPDX/qAvMjFosFubm5XE+HTv7kz6M/z+4A+ZO/q/8777yDrVu3oqqqKoA1c4ZagPwIYww2mw289jKSP/nz6s+zO0D+5O/qX1FRAYPBEFQDw4NyDJDdbsfmzZvx8ccfo6GhARMmTMCTTz6JXr16uS1fVVWFdevW4cCBA2CM4ZJLLsGaNWvQrVu3dr0/LYVBEARBEL6joKAAoigiKSkpaJbCCMousC1btmDXrl147rnn8NFHH8Fut2PJkiUtjqj/+9//juLiYvzrX//Cv/71LxQXF+Pee+/t4FoTBEEQBOGOPn36oH///vQYfGsIgoCdO3di5cqVmD59OoYMGYJNmzahtLQU3333nUv5+vp6pKam4q677kJKSgqGDh2Ku+++G6dOnUJtbW3HCzhgNBpx/PhxGI3GgNYjUJA/+fPqz7M7QP7kHxr+QZcApaenw2AwYMqUKfK2zp07Y+jQoThy5IhLeZ1Oh06dOuHzzz9HY2MjGhsb8cUXX6Bfv37o3LlzR1bdBbVajaSkJKjV6oDWI1CQP/nz6s+zO0D+5O/qn5OTg4yMjKAaGB50CVBpaSkAoHv37k7bExIS5H2OaDQabNiwAampqRg/fjwmTJiAkydPYvv27VAqvdNzXMjNZDLJXXB2ux1GoxGiKAIArFarU6ZrNpthsVigVqsRHx8Pq9V6wbJA08Axo9EoDxKz2WwwGo3yQDKLxeJRWbPZLL+P0WiE1WoFAIii6HFZu90OoKmFrnlcWirLGENUVJR8EXgSw/bE211cvI1387h4UhZoOm+VSqVLDL2Jd/O4eFK2tRj6It5SXICmm2Dnzp2dzof2nrPtOb9biou38XaMS0tlVSoVIiMj5XtQW2J4Md0jbDYbEhISoFarW71HeHPOBvM9Qq1WIy4uDlartd0xDOV7hCiKiI6OhlqtlmP42Wef4aOPPkJVVZVP4938HuEJQZcASR9O835CrVbrNnNkjEGv12PMmDH44IMP8M4776BHjx5Yvnw5Ghsb210PURSRlZUl/56XlycnYIIgQK/Xy8GuqqpCZmamXDY/Px8lJSUQRRHV1dXQ6/VyXWpqapCeni6XLSwsxPnz5wE0nVR6vR4NDQ0AgNraWuj1ernsuXPncO7cOfl3vV4vd/M1NDRAr9fLJ/r58+dRWFgol01PT0dNTQ0AoLGxEXq9Xj7JSkpKkJ+fL5fNzMyUH1U0Go3Q6/XyiV9aWoq8vDy5bFZWFioqKgA0nch6vV4+QcvKypCVlSVfJDk5OSgvLwfQdCLr9Xr5866srGwx3larFXq9HgaDAQBQXV2NjIwMl3gDTReBY7zdxbCoqMgp3vX19QCAuro66PV6+WIrKiq6YLwlt+LiYhQUFMhlMzIyUFVVhbq6OtTX17vEu3kMKysrATSd/47xLisrQ25urlw2Ozu7xXhXVFQgOztbLpubm4uysjIAf5yzrcW7pRjW1NQ4xbugoADFxcUAmq6Tls5ZURSRl5cnx1C6Vuvq6gBAjot0zrYW7wudsxkZGaiurgYAGAwG6PV6+cbo7pxtHm/p3lJeXo6cnBy5bE5OTqvxbumclcpKcWnpHtFSvEP9HpGbm4u6ujr5PtpaDJvH+2K4R4iiiLKysgveI1qLdyjfI/Lz85Gfnw9RFOV7RNeuXdGzZ0/5fHEXb1/cIzyCBRl79uxhycnJzGQyOW1fuXIlW7p0qUv53bt3s/Hjx7OGhgZ5W21tLRszZgz717/+1a46pKWlsbS0NGY0GuVtRqORWSwWxhhjoigyg8HAbDYbY4wxQRCYwWCQy5pMJmY2m5nBYGBHjx5llZWVFyzLGGN2u50ZDAZmtVoZY4xZrVZmMBiY3W5njDFmNps9KusYQ4PBwARBYIwxZrPZPC4riiJjjDGLxeISl5bK1tbWsqNHj8q+nsSwPfF2Fxdv4908Lp6UraurY0ePHmX19fUuMfQm3s3j4knZ1mLoi3hLcZG8jh49ympqatodbyku7Tm/W4qLt/F2jEtLZRsaGuTPvq0xvJjuEdXV1fK139o9wptzNpjvEY73/vbGMJTvEY6ff2v3CF/Eu/k9Qvr+bgtB9xh8Wloabr75Zuzduxe9e/eWty9YsACDBw/G008/7VT+2WefxenTp/Gf//zHaftNN92EkSNH4qmnnvK4Dr5cCsNmsyEsLIzb6dDJn/x59OfZHSB/8g+cf4c/Bi8IAlJSUvD55597fawhQ4YgMjIShw8flrfV19fj7NmzmDBhgkv5xMREFBQUOHWPGY1GFBUVoW/fvl7XxxsUCgXUajWXFwBA/uTPrz/P7gD5k39o+PtsDJCvGpI0Gg0WLlyIl19+GT/88APS09PxwAMPIDExEbNmzYIoiqioqJD7NGfPng2gaS6g9PR0pKenY9WqVdBqtZg7d65P6tReLBYL8vPzg2rUe0dC/uTPqz/P7gD5k7+r/65du7Bjxw55rF4wEHSDoAFg5cqVmDdvHh5//HEsWLAAKpUKO3bsgFqtRklJCaZOnYqvv/4aQNNTNrt27QJjDIsWLcKdd94JtVqNXbt2ISoqKqAejDGYzWaup0Mnf/Ln0Z9nd4D8yd/Vv7i4GEVFRfLDCcGAT8YACYKAkSNHYsOGDXKLTChDS2EQBEEQhO/Izs6GKIro27cvtFqt397Hk+9vWgyVIAiCIAi/MnDgwEBXwYWg7AK7WDAajThx4kTQTwfuL8if/Hn159kdIH/yDw1/agHyI2q1GomJiVxPh07+5M+jP8/uAPmTv6t/YWEhRFFEz549g2ZBVEqA/Ih0EvAK+ZM/r/48uwPkT/6u/v/5z39gMBiwdOlSdOvWLUA1c8arLrC33noLGzdudNp29OhR3H333UHf9NURiKKIhoYGeSp03iB/8ufVn2d3gPzJ39W/a9euSEhIQFhY8LS7eJUAabVabN++HevWrYNCocChQ4dw1113QRAErxcivRiwWCzIzMzkei4I8id/Hv15dgfIn/xd/RcvXoxly5ahS5cuAayZM14/Bv/BBx/g+eefl3+/5JJLsGXLFr8+5uZvfPUYvN1uhyAI0Gg0XCaE5E/+vPrz7A6QP/kHzr9DH4O/7bbboFar8dRTT+Hyyy/H66+/HjQDnAKNUqmETqcLdDUCBvmTP6/+PLsD5E/+oeHvk9TslltuwXfffYc33niDkh8HBEFAYWEhBEEIdFUCAvmTP6/+PLsD5E/+rv7/+c9/8O6776KmpiaANXPGZ6ORevXq5atDXTSIoojGxkauB8KRP/nz6M+zO0D+5O/qX1hYCIPBEFRJoU+WwrjYoKUwCIIgCMJ36PV62Gw2DBo0yK/dY7QUBkEQBEEQQUNKSkqgq+ACf8PTOxCTyYS0tDSYTKZAVyUgkD/58+rPsztA/uQfGv7UAuRHwsLC0LVr16Ca+KkjIX/y59WfZ3eA/Mnf1b+kpASiKKJbt25Bs0QIjQFyA40BIgiCIAjf8fLLL3fIUhiefH9TF5gfEUURBoOB6ycByJ/8efTn2R0gf/J39Y+OjkZMTAxUKlUAa+YMJUB+xGKxID09nevp0Mmf/Hn059kdIH/yd/W/6667cP/996Nr164BrJkzPukCq6urg8lkgt1ud9nXo0cPbw/f4fhyKQyz2QydTsftdOjkT/48+vPsDpA/+QfOv8Megy8oKMAjjzyCkydPtlhGr9d78xYhjVKpRERERKCrETDIn/x59efZHSB/8g8Nf68SoOeeew75+flYsWIFEhMTucx0W0MQBFRUVCA+Pp7LJULIn/x59efZHSB/8nf1/+yzz2A2m3H11VcjJiYmsBX8/3iVAB05cgT/+Mc/cN111/mqPhcVoiiipqYGcXFxga5KQCB/8ufVn2d3gPzJ39U/JycHBoMBM2fODGDNnPFqDNCll16KDRs2YNq0ab6sU8Chx+AJgiAIwnecOnUKVqsVKSkpCA8P9+v7AB3wGPyNN96IDz74ADSVEEEQBEEQLTFixAiMHTvWr8mPp3jVBRYeHo5jx47hyiuvxIgRI1wWOFMoFFi3bp1XFQxlTCYTcnJyMGDAgKD60DsK8id/Xv15dgfIn/xDw9+rBOizzz5DVFQU7Ha72yfBFAqFN4cPeVQqVdBN/NSRkD/58+rPsztA/uTv6l9RUQG73Y4uXboEzRIhtBSGG2gMEEEQBEH4DloKgzPsdnuLE0TyAPmTP6/+PLsD5E/+rv4RERHo1KlTUE2X45N2qH379iE1NRX19fWIjY3FuHHjcNlll/ni0CGN2WyGXq9HSkpKSEwK5WvIn/x59efZHSB/8nf1X758eYBr5YpXXWCCIGD58uXYv38/VCoVYmNjUVNTA7vdjsmTJ+Ott94KyUmgfNUFJooiTCYTwsPDuewLJn/y59WfZ3eA/Mk/cP4d1gX2xhtv4NixY3jxxReRlpaG/fv34+TJk1i/fj1OnDiBrVu3enP4kEelUiEyMpLLCwAgf/Ln159nd4D8yT80/L1KgL766iusWLECN9xwgywaFhaG2bNnY8WKFfjyyy99UslQxWq1oqSkBFarNdBVCQjkT/68+vPsDpA/+bv6f/XVV/jkk09QV1cXwJo541UCVF1djaFDh7rdN3ToUJSVlXlz+JDHarWivLyc64uA/MmfR3+e3QHyJ39X//T0dJw+fRpmszmANXPGq0HQvXv3xrFjxzBlyhSXfUeOHEH37t29OXzIExERgVGjRgW6GgGD/MmfV3+e3QHyJ39X/5kzZ8JqtSIqKipAtXLFqwRo/vz52LBhA3Q6Ha699lp07doVlZWV+Oqrr7B9+3asWLHCV/UkCIIgCCJEGTt2bKCr4IJXCdCCBQtw9uxZvPzyy9i4caO8nTGGOXPm4O677/a6gqGMyWRCXl4e+vXrF9TTgfsL8id/Xv15dgfIn/xDw9+rBEipVOIf//gH/vrXvyI1NRV1dXWIjo7GxIkTMWDAAF/VMWQJlZHw/oL8yZ9Xf57dAfInf1f/2tpaMMbQuXPnoImLx/MArV27FsuXL0evXr2wdu3a1g8eoouh0lIYBEEQBOE7gnEpDI9bgA4fPoxFixbJP7cG74uh2u12WK1WqNXqoJr+u6Mgf/Ln1Z9nd4D8yd/VX6PRwGq1BlVeQIuhusFXLUBGo5Hr6dDJn/x59efZHSB/8g+cf4fNBH3kyBEYDAa3++rr67F7925vDh/yaLVaDBo0CFqtNtBVCQjkT/68+vPsDpA/+YeGv1cJ0B133IGcnBy3+86ePXvBMUIXOyqVKqgGfHU05E/+vPrz7A6QP/mHhr/HY4AeeeQRlJSUAGh63P3pp59GZGSkS7n8/Hx07drV+xqGMFarFdXV1YiLi4NarQ50dToc8id/Xv15dgfIn/xd/ffs2QOLxYLp06cjOjo6wDVswuMWoD//+c9gjMFx6JD0u/RPqVRi9OjRWL9+vU8rG2pYrVYUFxdzPR06+ZM/j/48uwPkT/6u/qdPn8aJEyeCaikMrwZB33777Xj66acvujl/6DF4giAIgvAdhw8fhiAIGDt2LDp16uS39/HrY/COvPfeewCAqqoqCIIgtwrZ7XaYTCYcPXoUCxYs8OYtCIIgCIIIcSZNmhToKrjgVQKUnp6O1atXtzgQWqFQcJ0Amc1m5Ofno2/fvtDpdIGuTodD/uTPqz/P7gD5k39o+HuVAL344ouoq6vDI488gp9++gkajQYzZszAvn37sG/fPrz77ru+qmdIolAooNPpgmrip46E/MmfV3+e3QHyJ39Xf4PBAMYYwsPDg+bpMK/GAI0bNw5r167FvHnz8O9//xtffvkl3n//fQDAypUroVAo8Nprr/mssh0FjQEiCIIgCN8RjEtheDUPkCAI6Nu3LwCgb9++SE9Pl/fNnTsXJ06c8ObwIQ9jDFarFbxOtk3+5M+rP8/uAPmTv6t/MLaGeZUA9ejRA+fOnQPQlAA1NjaiqKgIQNO6H3V1dd7XMIQxmUxIS0uDyWQKdFUCAvmTP6/+PLsD5E/+rv4PPvggnnrqKb+2/niKVwnQrFmzsHHjRnz77bfo1q0b+vfvj1dffRUZGRnYuXMnevXq5at6hiQajQYDBgyARqMJdFUCAvmTP6/+PLsD5E/+oeHv1Rggi8WChx56CCaTCdu3b8evv/6KFStWQBAEqFQqvPLKK5g1a5Yv69sh0BgggiAIggg9PPn+9slq8NKy9wBw7tw5nD59GsOGDUPv3r29PXRA8FUCZLVaUVtbi5iYGG6nQyd/8ufRn2d3gPzJ39X/hx9+gCAIuPTSS9G5c2e/vXeHDYKWcPyAe/Xqhauvvjpkkx9fYrVaUVhYyPV06ORP/jz68+wOkD/5u/r//vvvSE1NDapxUR63AG3evLntB1cocO+993pcqUBDXWAEQRAE4Tv2798PQRAwceJEtwuo+wq/doENGTKkzWUVCgX0er0nhwfQtJTG5s2b8fHHH6OhoQETJkzAk08+2eKgaqvVitdffx2ff/45GhoaMHz4cDz22GNISUnx+L0BSoAIgiAIIhTx61pgjnP9+IstW7Zg165d2LBhAxITE/HSSy9hyZIl+PLLL92OKn/66afx888/Y8OGDejRowdee+013HXXXfjmm28QFRXl9/q2hNlsxrlz59CrV6+gng7cX5A/+fPqz7M7QP7kHxr+Xi2FIbFv3z6kpqaivr4ecXFxGDduHKZNm9auYwmCgJ07d2L16tWYPn06AGDTpk2YNm0avvvuO1x33XVO5c+dO4dPPvkEb775pvyezz//PGbPno3Tp09jypQpXrl5g0KhgFKpDMoJoDoC8id/Xv15dgfIn/xd/aUF09VqNZRKnww/9hqvngITBAHLly/H/v37oVKpEBsbi5qaGtjtdkyePBlvvfWWx/MApKWl4eabb8aePXvQr18/efuCBQuQnJyMZ555xqn8Rx99hI0bN+Lw4cM+Cyp1gREEQRCE77jolsJ44403cOzYMbz44otIS0vD/v37cfLkSaxfvx4nTpzA1q1bPT5maWkpAKB79+5O2xMSEuR9juTl5aFXr1747rvvMHfuXFx66aW46667Wlyh3hMcR6ubTCYIggCgaYyS0WiEKIoAmsYgGY1GuazZbIbFYgFjDDabDQaD4YJlgabpw41GI2w2GwDAZrPBaDTK04lbLBaPyprNZvl9jEajPCJfFEWPy9rtdgBNSW/zuLRU1mKxoLGxUX4fT2LYnni7i4u38W4eF0/KCoIAURTlso4x9CbezePiSdnWYuiLeEuujvskV2/O2fac3y3Fxdt4O8alpbKiKKKhocGj8/BiukdIPoyxVu8R3pyzwXyPYIzBYrHIC4C2J4ahfI8wmUxynKQYSjjeI3wR7+b3CE/wKgH66quvsGLFCtxwww3y6q5hYWGYPXs2VqxYgS+//NLjY0ofTvOWI61WKwfJkcbGRhQUFGDLli1YtWoVtm7dirCwMPzlL39BVVVVO6yaEEURWVlZ8u95eXlyAiYIAvR6vRzsqqoqZGZmymXz8/NRUlICk8mEkydPIj09HY2NjQCAmpoap3FUhYWFOH/+PICmk0qv16OhoQEAUFtb6zSI/Ny5c/LSIwCg1+tRW1sLAGhoaIBer5dP9PPnz6OwsFAum56ejpqaGjlmer1ePslKSkqQn58vl83MzJRjZzQaodfr5RO/tLQUeXl5ctmsrCxUVFQAaDqR9Xq9fIKWlJQgIyND/kxzcnJQXl4OoOlE1uv18r7KysoW4221WqHX62EwGAAA1dXVyMjIcIk30HQR6PV6Od7uYigt1yLFu76+HgBQV1cHvV4vX2xFRUUXjLd0AyguLkZBQYFcNiMjA+Xl5Thx4gSqq6td4t08hpWVlQCazn/HeJeVlSE3N1cum52d3WK8KyoqkJ2dLZfNzc1FWVkZgD/O2dbi3VIMa2pqnOJdUFCA4uJiAE3XSUvnrOQinYeMMej1enmJnPr6eqdztrV4X+iczcjIQHV1NYCmVaf1er18Y3R3zjaPt3RvKS8vd/rjKScnp9V4t3TONjQ0IDMzU77mWrpHtBTvUL9H5Obm4sSJEzCZTK3eIyoqKlzifTHcI0wmE06fPo309PRW7xGtxTuU7xH5+fnysaR7xKJFi/Doo49Co9G0GG9f3CM8gnnByJEj2W+//eZ232+//caGDx/u8TH37NnDkpOTmclkctq+cuVKtnTpUpfyTz75JEtOTmbZ2dnyNpPJxCZOnMi2b9/u8fszxlhaWhpLS0tjRqNR3mY0GpnFYmGMMSaKIjMYDMxmszHGGBMEgRkMBqf3N5vNzGq1ssrKSlZXV3fBsowxZrfbmcFgYFarlTHGmNVqZQaDgdntdsYYY2az2aOyjjE0GAxMEATGGGM2m83jsqIoMsYYs1gsLnFpqazRaGQlJSVyHT2JYXvi7S4u3sa7eVw8KWs0GllVVRUzm80uMfQm3s3j4knZ1mLoi3hLcZF+Li0tZY2Nje2OtxSX9pzfLcXF23g7xqWlshaLhRUXF8txaksML6Z7RENDA6uqqmJWq7XVe4Q352ww3yOsVisrLy9ndXV17Y5hKN8jGhsbWWlpKbNara3eI3wR7+b3COn7uy14NQbo+uuvx5///GesWLHCZd/rr7+Or776Ct99951Hx5TGAO3du9dpMsUFCxZg8ODBePrpp53Kb926FZs3b8aZM2ects+bNw/Dhw93Kd8WaAwQQRAEQYQeHTYGaP78+Xjrrbfwz3/+EyUlJbBarSgpKcH27duxfft23HTTTR4fc8iQIYiMjMThw4flbfX19Th79iwmTJjgUn7ChAmw2WyyNPDHI3h9+vRpn5iPsNlsqKqqkps1eYP8yZ9Xf57dAfInf1f/ffv24fvvv5e7b4MBrxKgBQsW4IYbbsDLL7+MmTNnYuTIkZg5cyY2btyI6667DnfffbfHx9RoNFi4cCFefvll/PDDD0hPT8cDDzyAxMREzJo1C6IooqKiQu7THD9+PC655BI88sgjOHr0KLKzs/Hwww9DpVLhxhtv9EbPawRBQH5+vtxXyxvkT/68+vPsDpA/+bv6p6am4sCBAx4PVPYnPlkMNTs7W54HKDo6GhMnTsSAAQPafTxRFPHKK6/g008/hdlslmeCTkpKQlFREf70pz9h/fr1mDt3LoCmwU8vv/wy9uzZA7PZjLFjx+LRRx/FwIED2/X+vuoCY/9/BLxCoeByPgjyJ39e/Xl2B8if/F39f/rpJwiCgEsuucSvExR3+GrwFxs0BoggCIIgQg+/LoWxdu1aLF++HL169cLatWtbLatQKLBu3TpP3+KiwWKxoKioCElJSdBqtYGuTodD/uTPqz/P7gD5k39o+HucAB0+fBiLFi2Sf24NHpv+HGGMwW63g9dGNvInf179eXYHyJ/8Xf0dfw6W3MCrLjBRFOUJEC8mqAuMIAiCIHzHRbcUxtSpU/H88887PYJOEARBEAQR7HiVAF133XX49ttvccstt+Cqq67Cm2++KU/ZTjRNEX/s2LGgeuyvIyF/8ufVn2d3gPzJ39X/3nvvxUMPPYT4+PgA1swZr58CY4zh0KFD2L17N/bu3YuGhgaMHTsWN954I6666iq/Pu7mL3zVBWaz2VBbW4uYmBiEhXk83CrkIX/y59WfZ3eA/Mk/cP4BewzearXiwIED2L17N7755huEhYXhxIkTvjp8h0FjgAiCIAgi9OiwMUCO2Gw27N+/H19//TX27dsHAJgyZYqvDh+S2Gw21NTUcD0dOvmTP4/+PLsD5E/+rv4HDx7EL7/8Iq8gHwx4lQAxxnDw4EE8/vjjuPTSS7Fs2TLk5+dj5cqV+PXXX7F161Zf1TMkEQQBubm5XE+HTv7kz6M/z+4A+ZO/q/+BAwfw888/w2AwBLBmznjVBTZ16lRUVVWhR48euOGGG3DjjTeib9++PqxeYPDlUhjSVAHBMu9BR0L+5M+rP8/uAPmTv6v/d999B4vFgssvvxydO3f223v7dSZoR2bOnIkbbrgB48eP9+YwFy0KhYLLAXAS5E/+vPrz7A6QP/m7+s+aNStAtWkZr7rAnn32WUp+WsFisSAvLw8WiyXQVQkI5E/+vPrz7A6QP/mHhr/PBkETrjDGIAgC19Ohkz/58+jPsztA/uQfGv60Grwb6DF4giAIgvAdr776KgwGA5YsWXJxLIVBEARBEARxIWw2W9BNC0AJkB8xGo34/fffuZ4OnfzJn0d/nt0B8id/V/+7774bf//739G1a9cA1swZr4epNzY2wmAwoFu3brBarXjvvfdQXFyMP//5z5gwYYIv6hiyqNVq9OzZE2q1OtBVCQjkT/68+vPsDpA/+bv6+/PR9/biVQvQyZMnMWPGDLz//vsAgOeffx4vvvgi/ve//2HRokX44YcffFLJUEWtViMhIYHri4D8yZ9Hf57dAfIn/9Dw9yoBevXVVzFgwADccsstMJlM+OKLL/CXv/wFqampmDdvHt58801f1TMkEUURdXV1EEUx0FUJCORP/rz68+wOkD/5u/ofPXoUBw8eDKqZoL1uAVq2bBl69eqFAwcOwGKx4MYbbwQAXHPNNcjKyvJJJUMVi8WC7OzsoJ8LwV+QP/nz6s+zO0D+5O/q//PPP+O7774LqrXAvBoDpFQqodVqAQC//vorOnfujJEjRwJoGhuk0+m8r2EIo9PpMGLECG5nBCV/8ufVn2d3gPzJ39V/6NChsFgsQZUXePXpDB8+HB9//DF0Oh327NmD6dOnQ6FQoKqqCtu3b8fw4cN9Vc+QRKlUQqPRBLoaAYP8yZ9Xf57dAfInf1f/a665JkC1aRmvusBWr16N3377DfPnz4dKpcKyZcsAANdddx3y8/Px97//3Rd1DFkEQUBBQQHXKwKTP/nz6M+zO0D+5B8a/l63AO3duxc5OTkYNGgQIiIiAABPP/00xo4di/j4eJ9UMlSx2+0wGo2w2+2BrkpAIH/y59WfZ3eA/Mk/NPw9XgqjuLjYozfo0aOHR+WDAVoKgyAIgiB8x//93//BYDBg8eLFSEhI8Nv7ePL97XEL0MyZM6FQKNpcXq/Xe/oWBEEQBEFcRJhMJphMpqBaINXjBGjdunVyAlRXV4eXX34ZU6ZMwdVXX434+HjU1tbixx9/xM8//4w1a9b4vMKhhNFoRFZWllP3IE+QP/nz6s+zO0D+5O/qf+edd8JutyM2NjbAtfsDjxOguXPnyj/fe++9mD17Np5//nmnMtdffz3+8Y9/4JtvvsGtt97qfS1DlFCZDdNfkD/58+rPsztA/uTv6t+lS5cA1sg9Xj0FduDAAVx99dVu902fPh2///67N4cPedRqNbp37871RUD+5M+jP8/uAPmTf2j4e5UAxcbGIi0tze2+Q4cOoVu3bt4cPuQRRRGNjY1cT4dO/uTPoz/P7gD5k7+r/8mTJ3H06FGnFeIDjVcJ0M0334z/+7//w6ZNm/D7778jPz8fR48exfPPP4+dO3di0aJFvqpnSGKxWJCRkcH1dOjkT/48+vPsDpA/+bv67927F7t370ZDQ0MAa+aMx4/BO8IYw4svvoj33ntPzvQYY9DpdFi+fDnuvvtun1W0I/HVY/B2ux2CIECj0UCp9CrXDEnIn/x59efZHSB/8nf1/+KLL2A2m/HnP/8ZMTExfntvT76/vUqAJBoaGnDixAnU1dUhNjYWY8aMCemR7zQPEEEQBEGEHn6dB6iliRAHDBgg/1xbW4va2loAoTkRoq8QBAFlZWXo1q0bl+vCkD/58+rPsztA/uQfGv40EaIfEUUR9fX16Nq1a6CrEhDIn/x59efZHSB/8g8Nf4+7wD799FOPJkIMxXmAqAuMIAiCIHzHtm3bYDAYsHDhQr+uE+rXLjCaCJEgCIIgCE+or6+HwWAIqgVSaSJEP2IymXDq1CmYTKZAVyUgkD/58+rPsztA/uTv6r9w4ULcddddiIuLC2DNnKGJEP2ISqVCXFwcVCpVoKsSEMif/Hn159kdIH/yd/VPTExEjx49gmp2aI+7wByRJkI0m82YPn06YmNjUVlZiT179uDDDz/Eo48+6qt6hiQajQY9e/YMdDUCBvmTP6/+PLsD5E/+oeHvVQK0bNkyNDQ0YMeOHdi2bRuAPyZCvP/++3Hbbbf5pJKhit1uh9lshk6n43YyLPInfx79eXYHyJ/8Xf3PnDkDm82G5ORkhIeHB7iGTXj1ySgUCjzyyCM4ePAgtm3bhpdeegk7duzAb7/9FrKzQPsSs9kMvV4Ps9kc6KoEBPInf179eXYHyJ/8Xf2/+eYbfP7556ivrw9gzZzxyUzQFxu+XAqD/gogf/Lnz59nd4D8yd/V/7///S/MZjOuvfZaxMbG+u29/foYvDv27duH1NRU1NfXIzY2FuPGjcNll13mi0OHNEqlMqSXBPEW8id/Xv15dgfIn/xd/efNmxeg2rSMVwmQIAhYvnw59u/fD5VKhdjYWNTU1GDbtm2YPHky3nrrraCeBtvfCIKAiooKxMfHcxkH8id/Xv15dgfIn/xDw9+rtrk33ngDx44dw4svvoi0tDTs378fJ0+exPr163HixAls3brVV/UMSURRRHV1NURRDHRVAgL5kz+v/jy7A+RP/qHh79UYoBkzZmDhwoX429/+5rJvx44d+PDDD/H99997VcFAQEthEARBEITv+Ne//gWj0Yhbb73Vr2uEddgYoOrqagwdOtTtvqFDh6KsrMybwxMEQRAEcRFQVVUFg8EQVK1CXnWB9e7dG8eOHXO778iRI+jevbs3hw95TCYTzpw5w/V06ORP/jz68+wOkD/5u/rfeuutWLx4sV+fAPMUr1qA5s+fjw0bNkCn0+Haa69F165dUVlZia+++grbt2/HihUrfFXPkESlUqFz585cT4dO/uTPoz/P7gD5k7+rf69evQJYI/d4NQbIbrfjiSeewCeffAKFQiFvZ4xhzpw5WLdundP2UIHGABEEQRBE6OHJ97dPJkLMyclBamoq6urqEB0djYkTJ2LAgAHeHjZg+HIiREEQoNFouJ0Mi/zJn0d/nt0B8if/P/yBpkaRrKwsiKKIvn37QqfTAWiaL8jXjSQdPhHigAEDQjrh8RfSdOApKSlcTopF/uTPqz/P7gD5k3+Tf3JyMqqqqmCz2fDFF1/AbDbjmmuukccBxcbGokuXLgGrp08SIMI9Wq0WgwcPhlarDXRVAgL5kz+v/jy7A+RP/k3+YWFhEAQBCoUCXbt2lVuFVCoV6uvr0blz54DWkxIgP6JSqRAZGRnoagQM8id/Xv15dgfIn/yb/AVBAGMMOp0OV199tVOZYJghOig7J+12O15//XVMmzYNo0ePxl133YVz58616bX/+9//MHjwYBQVFfm5lhfGarWipKQEVqs10FUJCORP/rz68+wOkD/5h4Z/UCZAW7Zswa5du/Dcc8/ho48+gt1ux5IlSyAIQquvO3/+PJ599tkOquWFsVqtKC8vD/qTwF+QP/nz6s+zO0D+5N/kf6Hv7EDj8VNgxcXFHr1Bjx49PCovCAImT56M1atX4y9/+QsAoL6+HtOmTcM//vEPXHfddW5fZ7fbsXDhQqjVahw6dAg//PADkpKSPHpvCXoMniAIgiC8w2KxIC8vD506dcK3334Li8WCmTNnIjo6GnV1dejSpQsSEhJ8+p5+fQps5syZHj22ptfrPTp+eno6DAYDpkyZIm/r3Lkzhg4diiNHjrSYAL355puwWq1YsWIFDh065NF7EgRBEAThP8rLy2GxWIKqVczjLrB169bJ/x555BGoVCpMnToV//jHP7Bt2za8+OKLuOqqq6DT6fD00097XKHS0lIAcFlGIyEhQd7XnLS0NOzcuRMvvfSST2fedJzG22Qyyc15drsdRqNRXtPEarXCaDTKZc1mMywWC8xmM86ePYuampoLlgWa5kowGo2w2WwAAJvNBqPRCKmRzmKxeFTWbDbL72M0GuUTTxRFj8va7XYATS10zePSUtmGhgacOXNGPrYnMWxPvN3Fxdt4N4+LJ2UbGxuh1+thMBhcYuhNvJvHxZOyrcXQF/GW4iKVO3PmDOrr69sdbyku7Tm/W4qLt/F2jEtLZY1GI86cOQODwdDmGF5M94ja2lro9XqYzeZW7xHenLPBfI9wvPe3N4ahfI+oq6uTl8Kw2+0wm83YuHEjnn32WZSVlTnVwdt4N79HeILHCdDcuXMxZ84czJkzB0eOHMHs2bOxfft2zJ07F9OmTcP111+PTZs2Yd68efjmm288PbwcmOYjxLVarRwkR4xGI1avXo3Vq1ejb9++Hr9fS4iiiKysLPn3vLw8OQETBAF6vV4OdlVVFTIzM+Wy+fn5KCkpgVKpRHh4OHJzc9HY2AgAqKmpQXp6uly2sLAQ58+fB9B0Uun1ejQ0NACAfBOROHfunNNgcL1ej9raWgBNyYZer5dP9PPnz6OwsFAum56ejpqaGgCQv5ilk6ykpAT5+fly2czMTFRVVQFoiq9er5dP/NLSUuTl5clls7KyUFFRAeCPuR+kE7SmpgaCIMgTgeXk5KC8vBxA04ms1+vlz7uysrLFeFutVjmRAJoW4c3IyHCJN9B0Eej1ejne7mIoDZCX4i19QdfV1UGv18sXW1FR0QXjLd0AiouLUVBQIJfNyMhAfX09IiIi5Lg4xrt5DCsrKwE0nf+O8S4rK0Nubq5cNjs7u8V4V1RUIDs7Wy6bm5srL0gsnbOtxbulGNbU1DjFu6CgQO4KF0WxxXNWqVRCFEW5Dowx6PV61NXVAWjq2nY8Z1uL94XO2YyMDFRXVwMADAYD9Hq9fGN0d842j7d0bykvL0dOTo5cNicnp9V4t3TOiqLodGNv6R7RUrxD/R5x/vx5REREQKlUtnqPqKiocIn3xXCPUCqVCAsLQ25ubqv3iNbiHcr3iJKSEjDGoFQqYbfbkZWVJbuZTCan4zrG2xf3CI9gXjBq1Ci2f/9+t/v279/PRo4c6fEx9+zZw5KTk5nJZHLavnLlSrZ06VKX8mvXrmV33323/PuhQ4dYcnIyO3funMfvLZGWlsbS0tKY0WiUtxmNRmaxWBhjjImiyAwGA7PZbIwxxgRBYAaDQS5rMpmY2WxmjDFmt9s9Lmu1WhljjFmtVmYwGJjdbmeMMWY2mz0q6xhDg8HABEFgjDFms9k8LiuKImOMMYvF4hIXT8q2NYbexluKi7fxbh4Xb+LtGBdv4t08Lr6It8lk8km8pbj4Kt5SXLyNt2NcvI23Y1zoHkH3CLpHtBxDk8nEzpw5wzIzM1lkZCQDwH755ReWnZ3Nzp49y8rKynx+j5C+v9uCV0thzJgxA7fccguWLVvmsm/jxo349ttv8d1333l0zLS0NNx8883Yu3cvevfuLW9fsGABBg8e7NKtNnjwYGg0GoSFNQ1nEkURFosF4eHhWLp0KZYuXeqxly+XwrDZbAgLC+N2OnTyJ38e/Xl2B8if/Jv8rVYrCgoKEB0djUGDBsFkMuHQoUPo1atXaA6CduTmm2/G//3f/8FsNmP69OmIjY1FZWUl9uzZgw8//BCPPvqox8ccMmQIIiMjcfjwYTkBqq+vx9mzZ7Fw4UKX8s0TrJMnT+Khhx7Ctm3bkJyc3D4xH0HToZM/+fPpz7M7QP7k3+TvOCxF6goMpoTQqwRo2bJlaGhowI4dO7Bt2zYAkGd9vP/++3Hbbbd5fEyNRoOFCxfi5ZdfRlxcHHr27ImXXnoJiYmJmDVrFkRRRHV1NaKioqDT6dCnTx+n10t9wj169EBMTIw3el6j1WoxcOBArqdDJ3/y59GfZ3eA/Mm/yV+pVMrjpe68805YrVZERUUFuHZ/4FUCpFAo8Mgjj2D58uU4ceIE6urqEBsbizFjxniV9a5cuRI2mw2PP/44zGYzJkyYgB07dkCtVqOoqAh/+tOfsH79esydO9eb6vsdlUqF6OjoQFcjYJA/+fPqz7M7QP7k3+QvPSikUCjw5JNPBrhWrng1BkgiJycHBw4cQHl5OW6//XacO3dO7soKRXw1BshqtaKmpgaxsbFQq9W+qFpIQf7kz6s/z+4A+ZN/k79Wq0VRUZG8+rsjIT8GyG6348knn8Qnn3wCxhgUCgWuvvpqbNmyBYWFhXj//feRmJjozVuENFarFefPn0dkZCS3FwH5kz+P/jy7A+RP/k3+0moMjDEUFxcjLCwM8fHxQTMOyKsWoM2bN2P79u148sknMX36dFx66aX45JNPoFQqce+992LChAl44YUXfFnfDoGWwiAIgiAI7zAYDMjPz4dWq8WgQYMANM1pFBERgdraWnTt2jWgLUBepWGffPIJVq5ciZtuuslpwHFKSgpWrlyJAwcOeHN4giAIgiBCFKl9RRRFaDQaKJVKp9afQLcEefXulZWVSElJcbuvW7du8uyZvGI2m5GRkeE0dTdPkD/58+rPsztA/uTv7B8VFYW8vDycO3cOOp0uwLX7A68SoD59+uCXX35xuy81NdXlEXXeUCgU0Gg0Hi0eezFB/uTPqz/P7gD5k39o+Hs1CHrRokV48sknYbVaMWPGDCgUChQUFODw4cPYuXMn1qxZ46t6hiRarRb9+vULdDUCBvmTP6/+PLsD5E/+Tf4NDQ1oaZix9OBUIPF6Jujq6mps3boVH374IRhjWLVqFdRqNZYsWYIFCxb4qp4hCWMMoihCpVIF/IMOBORP/rz68+wOkD/5N/lLSU5VVRUefPBB6HQ6vPnmm3K5QMfGqwQIAO655x7cdttt+P3331FbW4vOnTtj1KhRAZ+FORiQVu3ldTp08id/Xv15dgfIn/yb/JOSksAYg8FgwN69e4MuFl6NAbrjjjvw1VdfITIyEtOmTcP111+Pyy+/HDExMTh58mSLA6R5QaPRoH///tBoNIGuSkAgf/Ln1Z9nd4D8yb/JX61WQ6FQwGazAWiaITqY8KoFKDU1FUeOHMGZM2fw8MMPB7w5K9gICwtzOwMmL5A/+fPqz7M7QP7k3+QvPQlut9sBBF8C5PVD+AsXLsSuXbvwt7/9DXV1db6o00WDzWZDZWWlnP3yBvmTP6/+PLsD5E/+Tf5WqxWMsRZbgALdaOJ1AnT99dfj3XffRWZmJubNm4eMjAwAgRcLBgRBQEFBAQRBCHRVAgL5kz+v/jy7A+RP/n/4O3aBhYV5PezYp/hkGsZRo0bhv//9L6KiojB//nx8/fXXXK5/0pyIiAiMGzcu6AZ+dRTkT/68+vPsDpA/+Tv7u+sC88E67F7js3moExMTsWvXLlx22WV48MEHsWPHDl8dmiAIgiCIEENKctx1gSkUioD3FPl0IQ6dTofXXnsNy5cvx+7du3156JDEbDYjKyuL6+nQyZ/8efTn2R0gf/J39hdFEUDwDYL2qkPu3XffRf/+/V2233fffRg8eDB++uknbw4f8igUCiiVyoBnuYGC/MmfV3+e3QHyJ3+FvNCpNCkiEHwJkIIFQ0dckHHq1CkAwIgRIwJcE4IgCIIITWpqalBcXIwzZ87g1ltvxeDBg/Hjjz8CAKqrq5GUlOTzSZM9+f72uAVo7dq1WL58OXr16oW1a9e2WlahUGDdunWevsVFA2NMngqcx78EyJ/8efXn2R0gf/Jv8pcGP7trAQqG2HicAB0+fBiLFi2Sf26NQMsFGpoOnfzJn09/nt0B8if/Jv/4+HgoFIqg7QLzOAGSmq+a/0y4otFo0LdvX66nQyd/8ufRn2d3gPzJv8nfZDJBoVAgISEBc+bMQVJSUqCr5gSNAXIDjQEiCIIgCO8oLi5GfX09Onfu7LKvuroavXr1QnR0tE/f069jgDZv3tzmsgqFAvfee6+nb3HRYLPZ5A8/2GbA7AjIn/x59efZHSB/8m/yFwRBfhqsOSE5BogSoLYjCALy8vKQkpLC5UVA/uTPqz/P7gD5k3+Tf2RkJJRKJQRBgN1uh1arDXjS4wh1gbnBV11g0ih4XueDIH/y59WfZ3eA/Mm/yb+wsBCiKOLLL7/EqlWr8Kc//QnvvvsugKYusN69e7vtHvMGv3aBuaOqqgqCIMjTXtvtdphMJhw7dgzz58/3xVuEJAqFIuhGvXck5E/+vPrz7A6QP/k3+UtTARgMBgBAeHh4gGvmjFcJUHp6OlavXo2cnBy3+xUKBdcJkMViQVFREZKSkqDVagNdnQ6H/MmfV3+e3QHyJ38Lzp07B6vVCo1Gg0WLFuHmm292WgA1JMcAOfLiiy+irq4OjzzyCH766SdoNBrMmDED+/btw759++SmLl6RmgF57WUkf/Ln1Z9nd4D8yb9p+Qu73S63BkVFRQW6Wi54NQZo3LhxWLt2LebNm4d///vf+PLLL/H+++8DAFauXAmFQoHXXnvNZ5XtKOgxeIIgCIJoP6IoIi8vDyqVym0rWHV1Nfr06ePzxMiT72+vVoMXBAF9+/YFAPTt2xfp6enyvrlz5+LEiRPeHJ4gCIIgiBDEbrfLLUAffPABVq9ejV9++UXeHwxdYF4lQD169MC5c+cANCVAjY2NKCoqAtA0E2RdXZ33NQxhjEYjjh07BqPRGOiqBATyJ39e/Xl2B8if/P/wVygU+O233/Dhhx8iIyMj0FVzwqsEaNasWdi4cSO+/fZbdOvWDf3798err76KjIwM7Ny5E7169fJVPUMStVqN3r17Q61WB7oqAYH8yZ9Xf57dAfInfzWSkpIQFhYGpVIpPwXWqVOnANfMGa8SoBUrVmDs2LH473//C6Bppfi9e/di9uzZOHToEO677z6fVDJUUavViI+P5/oiIH/y59GfZ3eA/Mlfja5du0KlUkGhUMgtYc0Xhg10F5hXT4FptVq8/vrrsFqtAIBp06bhyy+/xJkzZzBs2DD07t3bJ5UMVWw2GxobGxEZGcnlbKDkT/68+vPsDpA/+dtQU1MDm83mlABJLUDSs1eBToC8agGScMxye/fujauvvpr75AdoGiSek5MDQRACXZWAQP7kz6s/z+4A+ZO/gNzcXFgsFqcESJoIkTEGpVLZ4jphHYVXqemQIUMumMHp9Xpv3iKkCQ8Px8iRI7n8CwAgf/Ln159nd4D8yT8cw4YNkx+KctcCFAxPgXn16dx7770uAgaDAcePH0dhYSFWr17tVeVCHYVCwW0fMED+5M+vP8/uAPmTvwJhYWFyfiANgpbGAEnrpIV0C1Brg5wffvhhnD59GjfddJM3bxHSWCwWlJSUoHv37txOh07+5M+jP8/uAPmTvwX5+flyF2CwtgD5Lf2aM2cOvv76a38dPiRgjMFsNnM9HTr5kz+P/jy7A+RP/gwmk0leEsNsNgO4yFqAWqOwsBA2m81fhw8JdDodhgwZEuhqBAzyJ39e/Xl2B8if/HUYNGgQioqKYDKZ5O1SAhQsT4F5lQBt3rzZZZvdbkdpaSm+/vprzJgxw5vDEwRBEAQRgkjdXNL4H4VCAZ1OJ+9zHCMUKHyeAAFAZGQkrrjiCqxdu9abw4c8RqMRGRkZGDx4sMsEUDxA/uTPqz/P7gD5k78RJ0+eRFRUlNz91alTJznhkR6DDzReJUCOi58SrqjVavTo0YPbpwHIn/x59efZHSB/8lcjISEBNpsNoijiyiuvhEajkffb7fagmCJAwbwYpVVcXOxR+R49erT3rTqUU6dOAQBGjBgR4JoQBEEQROhRXl6OqqoqREdHu+yrr69HTEwMEhMTff6+nnx/e5WCzZw506M+PN4mRRRFEQaDAZ06dYJKpQp0dToc8id/Xv15dgfIn/xF1NXVwW63u90fLC1AXtXg1VdfxVNPPYVhw4bhhhtuQLdu3VBTU4Mff/wR33zzDZYtW4aePXv6qq4hh8ViQVZWFlJSUrjsByZ/8ufVn2d3gPzJ34Ls7Gx0795dHgztiPQYfKDxqgts2bJliI6OxoYNG1z2rV+/HllZWdi5c6dXFQwEvuoCs9vtsFqtUKvVQfFhdzTkT/68+vPsDpA/+duRm5sLm82Gb7/9Fg8//DCuuOIKbN++HQBQU1ODnj17IiYmxufv7cn3t1efzMGDB3Hddde53XfZZZfh2LFj3hw+5FEqldBqtVxeAAD5kz+//jy7A+RP/k2THKrVahiNRpdFYd21CgUCrz6d2NhYnDx50u2+gwcPolu3bt4cPuQRBAGFhYVcrwhM/uTPoz/P7gD58+5vMplQVFQEm82GW265BampqXjuuefk/QqFIiiSQ6/GAM2bNw9bt26FyWTCzJkzERcXh8rKSuzZswcffvghnnjiCV/VMyQRRRGNjY0QRTHQVQkI5E/+vPrz7A6QP+/+VqsVjY2NSEhIQHh4uMtY4GBpAfJqDBBjDC+88ALef/99+YNmjCE8PBz33nsvlixZ4rOKdiT0GDxBEARBtA+z2Yy8vDxERka6fQqupqYG/fr188sA8Q57DF6hUGDNmjVYvnw5Tpw4gbq6OsTGxmL06NGIjIz05tAEQRAEQYQgdrtdftLrs88+Q1paGq688kpccsklQbMSPOCj1eArKiqQn5+PjIwMDBo0COnp6WhsbPTFoUMaaTpwo9EY6KoEBPInf179eXYHyJ93/4aGBqSnp8NsNuPHH3/Etm3bkJaWBiB4VoIHvGwBstvtePLJJ/HJJ5/IWd3VV1+NLVu2oLCwEO+//75fZnoMFaTpwHmfDp38yZ83eHYHyJ93f5VKhS5duiAsLAz19fUAgKioKAC4eFqAtmzZgi+//BLPP/88Dhw4IC9x/9BDD8Fut2PTpk0+qWSoolar0b17d24vAvInf179eXYHyJ93f6VSifj4eKjVapSVlQGA/FR4MLUAeVWDTz75BCtXrsRNN93kNKFRSkoKVq5ciQMHDnhbv5CG9ycByJ/8efXn2R0gf979LRYLzGYzRFGUEyCpN8hut18cLUCVlZVISUlxu69bt25y05en2O12vP7665g2bRpGjx6Nu+66C+fOnWuxfFZWFu6++25MmjQJU6ZMwcqVKz1eqNUfWCwWZGRkwGKxBLoqAYH8yZ9Xf57dAfLn3d9gMCA/Px8GgwEVFRUA/mgBkrrAQr4FqE+fPvjll1/c7ktNTUWfPn3addwtW7Zg165deO655/DRRx/BbrdjyZIlbieVqqmpwZ133gmdTof33nsP27dvR3V1NZYsWRLwk0+n02Ho0KHQ6XQBrUegIH/y59WfZ3eA/Hn3VyqVSE5ORkNDAxhj8pggILjGAHk1CHrRokV48sknYbVaMWPGDCgUChQUFODw4cPYuXMn1qxZ4/ExBUHAzp07sXr1akyfPh0AsGnTJkybNg3fffedy9Ib33//PYxGI1588UX5ZHvppZcwffp0HD9+HFOmTPFG0SuUSiXCw8MD9v6BhvzJn1d/nt0B8ufZ3263gzGGiIgIFBYWAgASEhLkFh/GWFCsBA94mQDdfPPNqK6uxtatW/Hhhx+CMYZVq1ZBrVZjyZIlWLBggcfHTE9Ph8FgcEpcOnfujKFDh+LIkSMuCdCUKVOwZcsWp0xbCnR7u+B8hSAIKC8vR0JCAjQaTUDrEgjIn/x59efZHSB/nv3tdjvMZjPq6+tx/vx5AHB6GjxYVoIHfDAP0D333IP9+/dj27ZteOmll/DWW2/h119/xf3339+u45WWlgIAunfv7rQ9ISFB3udIUlISJk+e7LRt27Zt0Ol0mDBhQrvqIGEymZx+lrrg7HY7jEajPMDNarU6zfdgNpthsVggiiJqamqcBsO1VBZoyoyNRiNsNhsAwGazwWg0yk/XWSwWj8qazWb5fYxGI6xWK4CmAXqelrXb7QCaLuzmcWmprNlsRnV1tezuSQzbE293cfE23s3j4klZi8WC2tpaCILgEkNv4t08Lp6UbS2Gvoi3FBfJpaamRq6TN+dse87vluLibbwd49JSWavViurqaqffLxTDi+keYTQaUVtbC1EUW71HeHPOBvM9wvHe394Yhuo9QqpfQ0MDSkpKAADx8fFO8ZZcfBHv5vcIT/BJGhYZGYlp06bh+uuvx+WXX+7VEvfSh9M8a9ZqtW0a0/Pee+/h/fffx+rVqxEXF9fueoiiiKysLPn3vLw8OQETBAF6vV4OdlVVFTIzM+Wy+fn5KCkpQXh4OIYMGYK8vDx5Ysiamhqkp6fLZQsLC+Us2W63Q6/Xo6GhAQBQW1sLvV4vlz137pzTYHC9Xo/a2loATRNP6fV6+UQ/f/683PwINLWs1dTUAAAaGxuh1+vlk6ykpAT5+fly2czMTFRVVQFoOsH0er184peWliIvL08um5WVJQ9yM5vN0Ov18gna0NDg1BSck5OD8vJyAE0nsl6vlz/vysrKFuNttVqh1+thMBgAANXV1cjIyHCJN9B0Eej1ejne7mJYVFTkFG+ppbCurg56vV6+2IqKii4Yb+kGUFxcjIKCArlsRkYGTCYThg8fDlEUXeLdPIaVlZUAms5/x3iXlZUhNzdXLpudnd1ivCsqKpCdnS2Xzc3NlZ/AkM7Z1uLdUgxramqc4l1QUCA/ZCC5uTtnw8PDodPpZDfGGPR6Perq6gA0tdA6nrOtxftC52xGRgaqq6sBNA3A1Ov18o3R3TnbPN7SvaW8vBw5OTly2ZycnFbj3dI5q1KpYLVa5XOppXtES/EO9XtEcXExhg8fjvDw8FbvERUVFS7xvhjuEeHh4UhKSkJeXl6r94jW4h2q9wi73Y7y8nJERUXJ16RWq5XL1tXVOX3mjvH2xT3CI1iQsWfPHpacnMxMJpPT9pUrV7KlS5e2+Dq73c42bdrEkpOT2aZNm7yqQ1paGktLS2NGo1HeZjQamcViYYwxJooiMxgMzGazMcYYEwSBGQwGuazJZGJms1mul6dlrVYrY4wxq9XKDAYDs9vtjDHGzGazR2UdY2gwGJggCIwxxmw2m8dlRVFkjDFmsVhc4uJJ2bbG0Nt4S3HxNt7N4+JNvB3j4k28m8fFF/E2mUw+ibcUF1/FW4qLt/F2jIu38XaMC90j6B5B9wjnsg0NDezYsWMsNzeX3XrrrQwAW7VqFSsoKGDnz59nJ0+eZOfPn/dZvJvfI6Tv77bg1WKo/iAtLQ0333wz9u7di969e8vbFyxYgMGDB+Ppp592eY3VasXatWvx1VdfYc2aNVi8eLFXdfDVYqgmkwk5OTkYMGAAlwPiyJ/8efXn2R0gf5796+vrkZWVhbq6Ojz99NP49ddf8corr+DWW28F0NQ617t3b3Tu3Nkv799hi6H6gyFDhiAyMhKHDx+WE6D6+nqcPXsWCxcudPuahx9+GHv37sXGjRtx7bXXdmR1W0WlUiE2Ntbtarg8QP7kz6s/z+4A+fPsL4oiVCoVoqOjMWzYMNhsNvTr10/er1AogiYuQZcAaTQaLFy4EC+//DLi4uLQs2dPvPTSS0hMTMSsWbMgiiKqq6sRFRUFnU6HTz/9FF9//TUefvhhTJw4Ue77BCCXCaRLz549A/b+gYb8yZ9Xf57dAfLn2V8URWg0GsTExOCJJ55w2hdMy2AAPhoE7WtWrlyJefPm4fHHH8eCBQugUqmwY8cOqNVqlJSUYOrUqfj6668BAF999RUA4MUXX8TUqVOd/kllAkXzEfi8Qf7kz6s/z+4A+fPsLz18YDKZXPylBChYWoCCbgxQMOCrMUDS0xEpKSmIiIjwRdVCCvInf179eXYHyJ9n/8LCQtTW1uLcuXMYOHCgvAo8AHl6mH79+vktCfLk+zsoW4AuFrRaLYYMGQKtVhvoqgQE8id/Xv15dgfIn1d/xhhsNht0Oh0MBgOGDh2K66+/Xt4vLYQaLF1gQTcG6GJCpVKhU6dOga5GwCB/8ufVn2d3gPx59bfb7bDb7VCr1aitrYXdbnda9sJut0Or1QbFOmAAtQD5FavViuLiYqdZL3mC/MmfV3+e3QHy59VfSoBEUcSYMWOQmpqK1157Td4viiLUanUAa+gMJUB+xGazobKyUp7dkzfIn/x59efZHSB/Xv1FUYQoimCMoa6uDnFxcU7z+QVbAkSDoN3gq0HQBEEQBMELRqMReXl5iI2Ndbu/pqYGPXv29Gq5rAsR0hMhEgRBEAQRekitPwDw6quvora2Fn/5y1+QnJwMoGmQdLAMgAaoC8yvmEwmnD171mn1XZ4gf/Ln1Z9nd4D8efWXnvIymUz497//je3btztNThxMs0ADlAD5FZVKhcjIyKD6wDsS8id/Xv15dgfIn1d/qQVIpVKhqqoKANCtWzcAwTcJIkBdYH5Fo9E4DQDjDfInf179eXYHyJ9Xf5vNBpVKBavVCoPBAABITEwEEHzLYADUAuRX7HY7zGYzl9OhA+RP/vz68+wOkD+v/oIgQKlUorS0FADQqVMnREZGAvhjkdRgagGiBMiPmM1mnDlzBmazOdBVCQjkT/68+vPsDpA/r/5SC1BhYSEAICEhQd5HLUCcodVqkZyczN106BLkT/68+vPsDpA/j/7SBIgKhQLV1dUA/uj+kvaHhYUFzSzQAI0B8isqlcppITjeIH/y59WfZ3eA/Hn0d1wGQ3ryyzEBEkURGo0mUNVzC7UA+RGr1YrS0lLupkOXIH/y59WfZ3eA/Hn0l2aBViqVKC4uBuDcBSaKotO6YMEAJUB+hMeLwBHyJ39e/Xl2B8ifR3+pBUilUsmDoLt27epUJtgSoOCqzUVGREQERo8eHehqBAzyJ39e/Xl2B8ifR39pDiCFQoHKykoAQFJSklOZYBoADVALEEEQBEEQXiKKovyz1AIkTYIoEUyPwAOUAPkVs9mM9PR07h6FlCB/8ufVn2d3gPx59Je6++x2O0pKSgD80QUWjLNAA9QF5lcUCgV0Ol1QPfbXkZA/+fPqz7M7QP48+lutVqhUKpjNZlxzzTUoKCiQW4CkwdHB1gWmYNLSrYTMqVOnAAAjRowIcE0IgiAIIvjJz8+H1WpFp06dXPZZLBaIooh+/fr5vRXIk+/v4ErHLjIYY7BareA1xyR/8ufVn2d3gPx585cmQZRaeJr7B+Ms0AAlQH7FZDIhLS0NJpMp0FUJCORP/rz68+wOkD9v/tIcQCqVCg0NDWhoaIBer5fHQAXjLNAAJUB+RavVYuDAgVxNh+4I+ZM/r/48uwPkz5u/YwK0fv16DBs2DHv37pVnfg7GWaABGgTtV1QqFaKjowNdjYBB/uTPqz/P7gD58+YvCIKcAJWWlsJutyMxMVEe7xOMs0AD1ALkV6xWK8rLy7maDdQR8id/Xv15dgfInzd/g8EgJzv//Oc/kZqaiksuucTJnxIgzrBarSgqKuLmImgO+ZM/r/48uwPkz5O/zWaDwWCQu/uUSiXi4uLQ2NgIm80mlwu2OYAAegzeLfQYPEEQBEFcmMbGRhQUFCAmJqbFQc41NTXo168fIiIi/F4fegyeIAiCIAi/YzQaATRN/nj27FncddddeOONN+T90tigYGwBogTIj5jNZmRmZnI1Hboj5E/+vPrz7A6QPy/+drsdDQ0N0Ol0AIAzZ87g66+/xk8//YScnByYzWY5AQq2OYAASoD8ikKhCMq5DzoK8id/Xv15dgfInxd/s9kMi8Uij//57bffAACjRo2S/aUJEoOxBSj4hmVfRGi1WvTv3z/Q1QgY5E/+vPrz7A6QPy/+JpNJnuWZMYZ9+/YBAGbMmIE+ffoAaOoiCwsLoxYg3mCMQRRFbqZDbw75kz+v/jy7A+TPg7/NZkNdXZ3c/ZWdnY3S0lJotVqMHz9e9g/WSRABSoD8islkwokTJ7iZDr055E/+vPrz7A6QPw/+tbW1MBqNCA8PBwC59WfixIlQKBQ4c+aMPAaIEiAO0Wg06N+/f9B++P6G/MmfV3+e3QHyv9j9zWYzqqurERERIY9zkhKgyy67DGq1Gr1794ZarQZjLCjH/wA0BsivhIWFITY2NtDVCBjkT/68+vPsDpD/xezPGEN1dTWsVisiIyMBNE38ePDgQQBNCVBYWBhiYmLk8sGaAFELkB+x2WyorKx0mg2TJ8if/Hn159kdIP+L2d9gMKCmpgZRUVHytuPHj8NgMKBLly4YOnQobDYbqqurYbPZoFAoKAHiEUEQUFBQAEEQAl2VgED+5M+rP8/uAPlfrP6iKKKyshJhYWFOa3vt3r0bADB16lQolUp5KRCj0Qi1Wg21Wh2oKrcKLYXhBl8theEY2ot9Pgh3kD/5S/Dmz7M7QP4Xq391dTWKi4sRGxsre2VlZeGKK66AzWbDe++9h5kzZ8r+BoMBGo0Gffr06bA4ePL9TWOA/MjFdOK3B/Inf17h2R0g/4vRXxAEVFdXIzw8XPZjjOHxxx+HzWbDFVdcgZkzZwL4w99qtSIuLi5o40FdYH7EYrEgOzsbFosl0FUJCORP/rz68+wOkP/F6F9TUwOz2Sw/9g40PQpfX18PrVaLZ599Vt5usViQm5sLQRDkeYKCEWoBIgiCIAiiRQwGA6qrq50GPgNAbGwsvvrqK5w5c0ae+VnCZrNBrVbLy2QEIzQGyA2+GgNEEARBEKGM3W5HUVERDAYDoqOj2/y6xsZG6HQ69O7d24+1c4XGAAUJF+tAuLZC/uQvwZs/z+4A+Qezv91uv+A/m83m9M9oNMrz+gBNy1589tlnWLFihVOXmARjDIIgoEuXLh1o5jmUAPkRk8kEvV6PlJQUREREBLo6HQ75kz+v/jy7A+TfUf7tSWYYYy5lgKakRUrWpLl7FAoFlEolOnfuLC9myhjDE088gX379qGsrAwvv/yyS72MRiPOnj2Lbt26+c3dF1AC5Eekx/8u1unQLwT5kz+v/jy7A+TfHn9fJjOOKJVKp38KhQJqtdrpd09bqRYuXIhz585hxYoVbvebzWYMHjzYoy6zQEBjgNxAY4AIgiCI5jDGfPLPXULT3mSm+e8d1eVmt9vlViFHzGYzrFYrevfu7bZ7zN/QGKAgwWazoaGhAVFRUU6zZvIC+ZM/r/48uwMd7+/rxKSlf1J7wYWOI4oiDAYDOnXq5HYZCClRaa1lxl1y0dEwxtDQ0IDy8nJUVFRAp9NhzJgxAOC2fna7HUajEfHx8TCbzVCr1UF9/gdvzS4CBEFAbm4uUlJSgvok8BfkT/68+vPsDjj7q1SqNiUegGtiISUd7pITURQ9TkwckX53bDGREpOW/kllHFtb3P0zmUwoLi5GQkJCQFpB2oIoikhLS0NFRYWc4JSVlTn9XlFRAbPZLL8mJiYGjz32GBYsWOC2pamxsRFRUVGIiIhAZmZm0J//1AXmBl8uhSE1EwbbkwAdAfmTP6/+oeDuz1YTURRdFgL1JDlxR1uTE8fWFXf7O4JAfP6iKKKmpkZOXkaMGIG4uDgAwN69e/HWW29hzJgxeOyxxwA0Jan9+vVr07GjoqIQHx+PhIQETJ06FX//+99dvARBgMlkQu/evRERERGw85+6wIKEYF4FtyMgf/Ln1d8b92DrzmmLqy9aTS4mfHnu2+125OXlObXMOLbQSD9XVlZCFEX5de+88w6uuOIKAEB9fT0OHjzoVCeNRoOhQ4dCq9UiPj5eTnDc/X+hVizGGBobG5GQkIBOnToBQEhc+5QA+RGLxYLz58+jZ8+eQT0bpr8gf/K/2Pxb66Jx/Gc2m3H+/Hl0794dGo2Gu8TEYrGgtLQUiYmJF81nfyEYYzAajbBarWhsbERxcTFiYmKgUChgtVphtVohCAKsVitsNpv885gxY5CYmAgA+PXXX/H2229j6NChePDBBwE0JUCXX355mz/zLl26ID4+3mmMzqRJk/B///d/LrM179271yfu0ngnqcUpVK59SoD8CGNMHt3PI+RP/h3lHwytJo7JkJQAWK1Wly+ACyUmLXXhhFKLiS8+e2kgsWOyIAgCbDabUzLRfNv06dMRGRkJADh69CiOHz+OoUOHYurUqQCaWkM2bdrU4vEc/zkmLJs2bZK7Vd577z2sX78eV111FV555RUATQt/Jicne+y5Y8cOXHXVVQCAyspK7NmzB/X19fL+sLAw9O7dG0ql0m0LjfQvPj4eXbp0cTvmJikpCUlJSR7XrS1Iserevbv83qFy76MEyI/odLp2XRAXC+RP/oMGDQJjTU/F8Nad0717d/8Ftx1YrVYYDIY2fdk77r/hhhvkY3z//ffIzs7G1KlTMXz4cABAbm4u3n77bZfjOSYYjseTtn322Wfy7MLPPPMMdu3ahRUrVuC+++4DAGRkZODKK6/02PPnn3/GoEGD5J83bdqExYsXywmQxWLBtm3bPD5uQ0OD/LMoiqirq0NjY6O8Ta1WO5XXarUICwuDWq2GRqOBWq12+idtc1xfa+zYsVi3bp3L2JzffvvN4/p2FI2NjYiLi5OTTiB07n2UABEEhwRDi0modOe0hNlshtFobDGZaP7Fb7VaodPp8Kc//Uk+xscff4yKigrccMMN8l/oqamp+N///udR60RERAT+97//yce944478Ntvv+G1117DtddeCwDYs2cPli5d6rHnddddJ3en/Pe//8WXX36J559/Xk6AysrKsGPHDo+PKwiC/LPNZkNjYyNMJpO8zXESwbCwMISFhTklEhqNxmWb9E8iJSUFc+bMwciRI+VtkZGRuPfee12SE+l4LSUsQ4cOlY9x4403Ytq0aejcubO8TaFQIDs7G2q1Wp5F2VP69OmDRYsWefw6f9P8qTvpn9VqRXh4OLp06RL0rZLuoATIjxiNRqSnp2PIkCFcTgdP/u3z9zYhaSk5ac9jw+6SE8cbXWvJhtlsRm5uLgYOHIjw8PALJiYGgwEmk6nVL/vm2xISEjB58mS5Ptu2bYMgCFi8eLH8F+nu3buxf/9+twmJu24Qm82GlJQU/N///Z983EsvvRQlJSXYvXs3UlJSAABvvvkmXnrpJQ/OCKBfv35OCdBbb70FvV6P4cOHywlQRkYG/vWvf3l0XMcvYqCptcdkMsFiscjbHBODtrZOhIWFQRRFOQGaPHkyNBoN+vfvLx8rKSkJ9913n9NrAaCmpgY9evRAp06d3CYsjrMEr1y5En/9618RGxsrb+vfvz9yc3PluXHaw7XXXisngBLh4eF49NFH23U8idjYWKe6Oh4baFoKIzs7Wz73gxGpZVa6Nzj+3nwSRmleIimxczx/IiIiXGa8DpV7f1AmQHa7HZs3b8bHH3+MhoYGTJgwAU8++SR69erltnxNTQ2ef/557Nu3DwqFAtdeey0efvjhgJ94arUaSUlJLk2jvHCx+XuajAiCgOjoaLmVoKNbTRoaGpxaCZr/c9wuJQMDBw7EiBEjoFAoUF9fj48++ggKhcKp5eDtt9+GXq9vsWtD+lkQBFgsFoiiiGuuuQZr1qwB0DQGY9y4cbBarcjIyJDHyKxZswaffvqpR5/JlVde6ZQArV+/HoIgYM6cOXICdOTIEbz77rseHbf5TVtysVqt8jbpvFapVC6JRFhYGFQqFbRardP2nj17utR/+PDhiI+Pl7eNHDkS999//wVbORxbLHQ6ndNxX3nlFVitVnTt2tXpvQoKCtrdOgEAixcvxuLFi5229erVS/5sJaxWK+rq6hAdHd2m6196CskRpVIZ1ANoWyMsLMxpTExH4Xh/aZ7USE+IMcbkPzxUKpWc3ISFhUGn08nnleM+6Wfp/wudP6Fy7w/KBGjLli3YtWsXNmzYgMTERLz00ktYsmQJvvzyS7drq6xcuRImkwlvv/026uvr8dhjj8FoNOKFF14IQO3/QK1WIyEhIaB1CCQd5d9R3TmVlZXyF7vjAEzHn5u3LowaNQq9e/cGABQWFuK7775DXFwc5s2bJ9+EXn31VVRVVcnJiJRIOCYmzf8tXboUCxcuBACcPHkSc+fORWJiIg4cOCDH5S9/+QvS0tI8iuWyZcswevRoAE0J1PPPP4/w8HCnBOiHH37Ajz/+6NFxS0tL5Z/VajWMRiOApq4P6UtO+rJo7Uu/eaIxePBgp/e56aabwBhzSgguv/xyREZGurRsOHZ9NN/WfA2jTz/9FAqFwul8Xrp0KZYtW+bVjL2PPPKIy7ZRo0Zh1KhR7T4m4H78UUc+lqxWq52SL97wtb+7VlzHJEdKagA4JSsKhcIpqQkLC3NKZJr/7CtC5bsv6BIgQRCwc+dOrF69GtOnTwcAbNq0CdOmTcN3332H6667zqn877//jtTUVHz99dcYMGAAAODZZ5/FkiVLsGrVqoCuRiuKIhobGxEZGRkScyL4GlEU0dDQgE6dOkGpVDrN9mqz2VBWVgZBEGA2m50SC4vF4vK7tG3GjBmIjY2F3W7H8ePH8euvv2LgwIGYNWsWGGt6+ua5555rtZvD8Z+07amnnsIll1wChUKBr776Co899himTJmCf/7zn3KiMmPGDPmLu60899xzGD58OFQqFU6cOIFXX30VI0aMwN/+9je5zDfffIOCggKPjltdXS3/rFKpYDabnWZsBSD/FddS14a7BMPxMdnIyEjcfPPNLq0Lc+bMwdixYy84FkOlUkEURXTu3Fl+zBdoGiD522+/Qa1WO7XSvvzyy3jllVe8GkvgbmXqGTNmYMaMGe0+JgC3rc+tXdMXWgohlHHX+th8m3Tvc+ffltf7Y5s7PHmtJ+8tiiKMRiMiIiLkmbC9ee/mXVDNWxvdtdJIPweCUPnuC7oEKD09HQaDAVOmTJG3de7cGUOHDsWRI0dcEqCjR48iPj5eTn4AYOLEiVAoFDh27BiuueaaDqt7cywWC7Kzs5GSkuLzflDpQpG+LCwWCyoqKlxaJlpqqZASigULFkCtVoMxhq+//hrHjx/HtGnTcOmll4IxhsLCQmzYsMHtMVpq/RAEAbt27UJcXByys7Px9ddf45///CfuuOMOrF27FowxlJSUtOtL6YMPPsC4ceOgUChw5MgRvPLKK7jhhhvw5z//GUqlEhqNBv/+97/bFVPpiZROnTrBarXCbrfLk3oBTS0TNputza0TUtInCALCw8PRo0cPzJ8/3+Vx1CVLlqChoaHNrRMajcbpGIMGDcLhw4ddWke/+OILr/6qi4mJwaZNmwA435hnz57tUtbdjdtoNDqNg3B8LLZHjx4A4DJjsGMzfVveo7Xt7X2tt19WjDXNA5STk4MBAwa02I3jyZd086TQ19s8xd3rHbeZTCbk5uZiwIABLkMRLvRaT7e1tv1C5aSB8+7KuSvb1m1msxlFRUXo2rWr0/i35rh7b2mbu6SmrV1Qgcaf332+JOgSIKmpvHkTbkJCglMzukRZWZlLWY1Gg5iYGJSUlHhVF5PJ5DSoTaVSQaPRwG63w2w2Q6vVQqVSyV/80gdtNpuhUCgQHh6OESNGwGq1QhRFqFQqHDx4EG+++aY8RsRkMsn7pdYQx0TCYrHAbrcjIyMDZrMZjDH87W9/w2effYYXX3wRf/vb36BSqfDDDz9g7ty5HjuOGDEC4eHhYIzhww8/xL///W8sXboUCQkJUKlUSE9PxzvvvOPxcevq6tC5c2f06tULYWFhcsxEUYRGo4FOp4NKpZLHMDT/km8+QFMaDyAlKVarFUOGDMEtt9yCoUOHyp8HACxfvhw6nQ5arVbu546IiJC7WKSWh7CwMDDGEB4ejoEDB6K2thaCIGDy5Mn4+eefoVQq5QUAGWP48ccf5bpJLUfSe0hjfKQkxGw2y3+tGQwG1NbWomvXrnj88cdhtVpRUlIit6xcddVVcouJ1Iql0+nk49rtdrms2WyWE73q6mqYzWbodDpERES4HFeqg5TgSjFSKBQQRVF+gqO1siqVSnaVygqCIP8VKpWVWoGal+3evbs8EFdyax5DnU4HpVIpl5M+R7PZLJ8HjsdVKBSwWCxOXV0mk0k+rpR0SjGUri/ptc3LSp+jUqmUyzpey9K5J9Vfo9HIcZGOK9VBpVJBp9NBFEV5TSRpIHHze4RSqZTPLZPJ5BLvlupgMpnk60LqMpXcpCerHMtKA1Ydy0rxdoyh0WiUjyuKIiwWS4tlpRi6Kyu1tg4aNAhqtdrpc5Tuc9JnLgiCy2cj3Webn4eOT7w5xrstZaV7smO8pXO2pft383g3j6G781CKoUqlQmJiIux2OyIiIlos2zyGjnFxvO6NRiNUKpXcqtq8rLvz0PG7ypOyrX2vSfeeC5VVKBQYMmSI/N3iLoa+ircUQ6msJwRdAiQ9Btn8r1mtVou6ujq35d2NC9JqtU5PQHiKKIrIysqSH5/My8tDZGQkevfuDUEQoNfrkZycjKioKFRVVaG0tFQeO5Gfnw+dToe+fftCoVAgPT0dAwcORHR0NNLS0jwekAkABQUFKCgokE8QxhjS09Oh1+sRExOD0tJSp+4OKbnQarVQq9Ww2+0IDw+XLwSbzYbo6GhYrVbU1NRAEASMHTsWjDHExsaitrYW8fHxiIqKwvz589GtWzeEh4fDYDCAMYaePXtCrVajvLwcMTExiI+PhyiKqKioQJ8+fZCUlIS6ujrU19fjr3/9K+bPn4+SkhJUVFSge/fu6NSpEz7++GP069cPkZGRKC8vR1VVlfyETXZ2NiIiItCzZ09YLBZkZWWhb9++iIyMRGVlJcrKynDJJZfg0ksvRU5ODiorK5GUlATGGP785z+jb9++6Ny5M6qqqlBcXIwRI0ZAqVQiLy8PCoUCffv2hSiK0Ov16N27N2JiYlBTUyOXTUxMRH5+PhoaGhAfHw+FQoGCggIkJSUhJiYGtbW1KC4uxvDhwxEWFoaCggJYrVb07NkTCoUCaWlp6N69O+Lj49HQ0IC8vDwMHToUGo0G586dgyAI8pM0p0+fRqdOnZCYmAiDwYDs7GwkJSVBp9OhqKgIjY2NGDhwIADgzJkziI2NRc+ePWE0GpGRkYGkpCRERESguLgYtbW18vwber0eERER6NWrF8xmM/R6PZKSkhAZGSkveti3b18ATS2vOp1OPr/PnDmDnj17IiYmBuXl5SguLpYfA87KyoJGo0Hfvn1hs9mQlpaGHj16IDY2FpWVlSgsLJTLZmdnQ6lUol+/frDb7Thx4gS6deuGLl26oLq6Gvn5+Rg8eDDCwsKQk5MDu90uz4Fy/Phx9O7dG/Hx8aitrUVOTg6Sk5OhVquRn58Ps9mMfv36QaFQ4Pfff0fXrl3RrVs31NfXyy1PWq0WhYWFaGxslI978uRJxMTEoHv37mhsbERGRgZ69+6N8PBwFBUVOcXw9OnTTvHW6/UYMmQIOnXqJMdbOu7Zs2cRGRmJhIQEmM1mFBcXo1u3boiKikJpaSmqq6vl8WBSvHv06AGr1Yr8/Hz5HlFeXo6ysjKMHTsWAJCZmYmwsDB069YNoigiNzcX/fv3R3R0NCorK1FcXIyxY8fKj2EDwMCBA8EYQ3Z2Nvr06YPY2FjU1NSgqKgIo0ePhkqlQnl5OWw2m+yamZkpn991dXUoLCzEyJEj5evcbDZjyJAhctnExEQkJiaioaEB+fn5GDZsGHQ6HcrLy9HY2CifA5mZmejatSt69OgBg8GAnJwcpKSkQKfToaKiAjU1NfIj9RkZGYiJiUFSUhJMJhOysrIwePBgaLVaedkHaXxUYWGhfE+2WCzIyMjAoEGD0LlzZ/n6lFYuLygokO/JNpsNer0eAwYMkK/lwsJCjBs3DgBw7tw5KJVKDBgwAHa7HXq9Hv369UNcXBzq6uqQn5+PMWPGQKFQoKioCHa7XZ53SK/Xo0+fPujatav8FOSoUaMQFhaG4uJiCIIgj1vLyMhAz549kZCQgMbGRmRnZ2PEiBHQaDQoKSmB0WiU74dZWVlISEhA9+7dYTKZkJGRIce7rKwM9fX1GDZsmHzNxcXFoWfPnvJ1L7XEVFRUoLq6Wp7QMTc3V/5DVfpeGzx4sHyfdYx3Xl4eIiIi0KdPHzmG0jlbU1OD8+fPy/EuLCyERqNBv3795LL9+/eXv1sKCgrcxpsxBr1ej759+6JLly6or69HXl6efM66i7d0j2hsbEROTo7bfKAlgm4x1G+//RYrV67EyZMnncYe3H///RAEAVu3bnUq/9xzzyEtLQ0ff/yx0/YpU6bgnnvucXlioS1Ii6k5PsLYnhYgACguLkZsbCyioqLkcSD//ve/ERERIWe8Go1GfpRQapGQ/ppSKBSIiorCmDFj5OxWmh01LCwM0dHRLn95O2bKUv2b/7XRPKsG4JJVazSaFv8ycYyL1HLTvKzBYEBpaSl69eoFrVbrVNYxhi39FeYu3u7KWiyWFv+C8Mdfd20tyxhDRUWFPBiwtb/uWvtLMNj+umtLDCMiImCxWFBUVISEhARERUX55K+7tpS9UAy9jXfzVgZ3ZU0mE86fP48ePXrIrXMXiqE38W5+LXv717Rjq0574m0ymVBTU4Pu3bvDbrc7tQB5E2/HuLTnntxR9whRFHH+/HnExcUhOjraJy1AoXSPqK+vR0VFBZKSkuTroaNagHJycgCE6GKoUndWeXm5/NeS9HvzJz4AIDExEd9//73TNkEQUFtb6/UodMe+a8eflUqlU7+m9AFIOHZBSCeqNBBs9OjRcktRe2n+uKg7HGflBOA0lqU5zftom/fZO762+YDY5uMbHF9rt9uhUCicurkccczUpa4Dd++pVCqdfDQajdNrHV+nUCja9Nm4Kys9JdGSm6dlpYHJUleHO+/mx5W661oq29p56EnZ1uLiSdnWYsgYg9VqlV/r73hLXCiGvop387g4llUoFLDZbPJ4Dk9i6Ktz1pt4N4+Lp/GWviAd/whrqawj7Y23N+esP+4R0pex1A3bWlmg487ZjrpHaDQaWK1WebxZazH01z25LfjuuTcfMWTIEERGRuLw4cPytvr6epw9exYTJkxwKT9hwgSUlpY6PUWTmpoKAHITW6DQ6XQYMmSIS9LAC+RP/rz68+wOkD/5h4Z/0LUAaTQaLFy4EC+//LLcj/nSSy8hMTERs2bNgiiKqK6uRlRUFHQ6HUaNGoWxY8figQcewNNPPw2j0Ygnn3wSs2fPDugj8ARBEARBBC9B1wIENE1sOG/ePDz++ONYsGABVCoVduzYAbVajZKSEkydOhVff/01gKYms82bNyMpKQmLFi3C3//+d1x22WV4+umnAyuBpv7JEydOeDx3zMUC+ZM/r/48uwPkT/6h4R90g6CDAWkQdFsGUbWG1WpFVVUVunTpEvRTgvsD8id/Xv15dgfIn/wD5+/J9zclQG7wVQJEEARBEETH4cn3d1B2gV0sSEtBSLPb8gb5kz+v/jy7A+RP/qHhTwmQH7FYLMjMzPRqQsZQhvzJn1d/nt0B8if/0PCnLjA3+KoLTJqSX6PR+HSl3VCB/MmfV3+e3QHyJ//A+Xvy/R10j8FfTDSfAI83yJ/8efXn2R0gf/IPDX/+UtMORBAEFBYWerxA28UC+ZM/r/48uwPkT/6h4U8JkB8RRRGNjY1BPxDMX5A/+fPqz7M7QP7kHxr+NAbIDfQYPEEQBEGEHvQYPEEQBEEQRCvQIGg3SKvYSplke3FcDVtaEZgnyJ/8efXn2R0gf/IPnL8gCG1+T0qA3OCrD0yhUECj0fjkWKEI+ZM/r/48uwPkT/6B81coFG3+DqcxQARBEARBcAeNASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoASIIgiAIgjsoAWoFu92O119/HdOmTcPo0aNx11134dy5cy2Wt1qt2Lhxo1x+4cKF0Ov1TmU++eQTXH/99Rg9ejRmzZqFbdu2QRRFef///vc/DB482OVfUVGR3zzd4Q/3O++808Xr9ttvl/dbLBY888wzmDJlCsaMGYMHH3wQ1dXVfnNsDV/7z5w50+3nOnjwYBw5cgQAUFZW5nb/p59+6nff5nji/8Ybb7TotnbtWrncwYMHMXfuXIwaNQpXXXUVdu/e7XScUP382+ofKtc+4B//ULn+fe1+MV/7AFBVVYUHH3wQkydPxqRJk/DAAw+grKzMqcw333yDa665BiNHjsTs2bNx8OBBp/01NTV48MEHMWHCBEycOBHPPPMMTCaTX/ycYESLvPHGG2zSpEnsp59+Ynq9nv31r39ls2bNYhaLxW35Rx99lF1yySVs3759LDs7m913333s0ksvZfX19Ywxxr744gs2bNgw9tFHH7GCggK2e/duNnbsWPbGG2/Ix3jxxRfZwoULWXl5udM/m83WIc4SvnZnjLEpU6awXbt2OXnV1NTI+9esWcOuuOIKduTIEXby5Ek2e/Zsdtttt/lb1S2+9q+qqnLyLioqYrNmzWJ33HEHs1qtjDHGfv75ZzZixAhWVlbmVNZkMnWYt4Qn/o2NjS7n6wsvvMBGjx7N0tPTGWOMZWdnsxEjRrBXXnmFZWdns3/+859s6NCh7LfffpOPE6qff1v8Q+naZ8z3/oyFzvXva/eL+dpnjLGFCxey+fPns7Nnz7IzZ86wW265hd10003y/oMHD7Jhw4axd955h2VnZ7MNGzaw4cOHs+zsbKdj3HTTTez06dPst99+YzNmzGAPP/yw310pAWoBi8XCxowZwz744AN5W11dHRs5ciT78ssvXcoXFhaywYMHs59++smp/IwZM+Sb/Pz589ljjz3m9LrNmzezyy+/XP59yZIl7LnnnvOtjIf4w72yspIlJyezM2fOuH3P0tJSNmTIEPbzzz/L23Jzc1lycjI7fvy4j8zahj/8m7NhwwY2efJkVlVVJW/btm0bu/76630n0k489W/OmTNn2LBhw9inn34qb3viiSfYvHnznMqtWrWK/fWvf2WMhfbn3xx3/qFy7TPmH/9Quf794d6ci+nar6urY8nJyeyHH36Qt33//fcsOTlZTm7/+te/svvvv9/pdbfeeit74oknGGOMHT9+nCUnJzslRL/++isbPHgwKy0t9aGdK9QF1gLp6ekwGAyYMmWKvK1z584YOnSo3GzpyIEDBxAVFYXLLrvMqfyPP/4oH2P16tX429/+5vQ6pVKJuro6+feMjAwMGDDA1zoe4Q/3jIwMKBQK9OvXz+17Hjt2DAAwefJkeVu/fv3QrVs3t+/pT/zh70h2djbeffddrFmzBnFxcfL2YPjsAc/9m/Pss89i/PjxmDNnjrzt6NGjLrGYPHkyjh07BsZYSH/+zXHnHyrXPuAf/1C5/v3h7sjFdu3rdDp06tQJn3/+ORobG9HY2IgvvvgC/fr1Q+fOnWG323H8+HGXa3/SpEny8Y4ePYr4+Hgn/4kTJ0KhUMjnhb8I8+vRQ5jS0lIAQPfu3Z22JyQkyPscycvLQ69evfDdd99h27ZtKCsrw9ChQ7FmzRr5gx03bpzTaxoaGvDhhx9i2rRpAIC6ujqUlZXh6NGj2LVrF2pqajBy5Eg89NBDLd44/IE/3DMzMxEVFYVnn30WBw4cQEREBK666iosX74cGo0GZWVliI2NhVarbdN7+hN/+Dvy+uuvIzk5GTfeeKPT9szMTMTGxuK2225DXl4e+vTpg2XLljklVh2Bp/6O/PTTT/j999/x+eefuxwzMTHR5Xgmkwk1NTUh/fk70pJ/qFz7gH/8Q+X694e7Ixfbta/RaLBhwwY8+eSTGD9+PBQKBRISEvD+++9DqVSitrYWRqPR7bUvHa+srMzl/TQaDWJiYlBSUuJLPReoBagFpAFYGo3GabtWq4XFYnEp39jYiIKCAmzZsgWrVq3C1q1bERYWhr/85S+oqqpyKW8wGLB8+XJYLBY8/PDDAICsrCwAAGMM69evx6uvvgqLxYK//OUvqKys9LVii/jDPTMzExaLBSNHjsQ///lPLFu2DB9//DEef/xx+T2bv19r7+lP/PnZnzt3Dnv37sWyZcuctttsNuTm5qKurg733Xcftm3bhtGjR+Puu+92GTDobzz1d+Rf//oXZsyYgZSUFKftZrPZ5XjS74IghPTn70hL/o4E87UP+Mc/VK5/f372F+O1zxiDXq/HmDFj8MEHH+Cdd95Bjx49sHz5cjQ2NsJsNl/weIH87KkFqAV0Oh2Appuz9DPQ9KRCeHi4S/mwsDA0NjZi06ZN8l/9mzZtwuWXX47PPvsMS5YskctWVFTgnnvuQVFREXbs2IGkpCQAwPjx43Hw4EHExsZCoVAAADZv3ozp06fj008/xd133+03X0f84f7ss8/ikUceQXR0NAAgOTkZarUaDzzwAB5++GHodDoIguBy7Jbe05/487P/3//+hy5duuCKK65wOcbhw4ehUqnk9xw+fDiysrKwY8cOt11p/sJTf4ni4mIcPnwY27Ztc9mn1WpdPl/p9/Dw8JD+/CVa85cI9msf8I9/qFz//vzsL8Zr/5tvvsH777+Pn376CZGRkQCAN998EzNmzMB///tfuaWr+WfreLzWPvuIiAjfiLUAtQC1gNQkV15e7rS9vLwc3bp1cymfmJiIsLAwpy4PnU6HXr16OT3GmpOTg1tuuQVVVVX44IMPMGLECKfjxMXFyTdAoOnLISkpyeWxQn/iD/ewsDD55icxaNAgAH90j9TW1rpcCC29pz/x12cPAN9//z2uvfZaKJWul16nTp2cbjpAU4w68rMHPPeX+P777xEXF4dLL73U7THdHS8iIgJRUVEh/flLtOYPhMa1D/jHP1Suf3999lKZi+3aP3r0KPr16ycnPwAQHR2Nfv36oaCgADExMYiIiGj1eImJiS77BUFAbW0tEhISfOLVEpQAtcCQIUMQGRmJw4cPy9vq6+tx9uxZTJgwwaX8hAkTYLPZcOrUKXmb2WzGuXPn0KdPHwBNTaCLFi1CeHg4PvroI/kGIPHvf/8bkyZNgtFolLc1NjYiPz8fAwcO9LVii/jD/fbbb3eaEwQATp06BbVajb59+2LcuHGw2+1Og97y8vJQVlbm9j39iT/8gabPUq/X45JLLnE5RlZWFsaOHev0ngBw+vTpDv3sAc/9JY4ePYqJEyciLMy1YXn8+PFITU112nbo0CGMHTsWSqUypD9/idb8Q+XaB/zjHyrXvz/cgYv32k9MTERBQYFTV5XRaERRURH69u0LhUKBsWPHulz7hw8fxvjx4wE03T9LS0tRUFAg75fKNx8753P8+oxZiPPKK6+wiRMnsu+//95pPgRBEJjNZnOZp2Hx4sXs6quvZkeOHGFZWVnsvvvuY1OmTJEfd1y4cCGbMGEC0+v1LnNHMMZYcXExGz9+PLv33ntZZmYmS0tLY4sXL2ZXXHEFM5vNIe3+3nvvsZSUFLZr1y5WWFjIdu/ezSZNmsReeeUV+RirVq1iM2fOZIcOHZLnAVm4cGGHekv42p8xxo4cOcKSk5PdPtopiiK76aab2DXXXMOOHDnCsrOz2bp169jw4cNZRkZGhzg74qk/Y4z96U9/Ylu2bHF7vMzMTDZs2DD20ksvsezsbLZjxw6XeYBC+fNnrHX/ULr2GfO9fyhd/752Z+zivfbLysrYxIkT2dKlS5ler2d6vZ7dc889bNq0afIcaL/++itLSUlhO3fuZNnZ2eyFF15gI0eOlB97t9vtbP78+WzOnDns5MmT7ODBg2zGjBlszZo1fnelBKgVbDYbe/HFF9nkyZPZ6NGj2V133cXOnTvHGGPs3LlzLDk5mX3yySdy+YaGBvbUU0+xSZMmsVGjRrE777yTZWVlMcaa5rlITk5u8Z/E6dOn2Z133snGjRvHxo4dy+677z5WXFzcseLMt+4S77//Prv66qvZ8OHD2YwZM9jWrVuZKIryfoPBwB577DE2fvx4Nn78eLZq1SpWXV3dMcLN8If/7t27WXJycotfaBUVFWzNmjXs0ksvZSNGjGC33norO3LkiP8kW8FTf8YYGzlyJNu1a1eLx/zll1/Yddddx4YPH86uuuoqtnv3bqf9ofz5M9ayf6hd+4z55/MPlevfH+4X87WfnZ3N7rnnHjZx4kQ2efJktmLFCrm8xGeffcauvPJKNmLECDZnzhyX+dEqKyvZfffdx0aPHs0mTZrEnnrqqQ5J/BWMMebfNiaCIAiCIIjggsYAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQRBEATBHZQAEQThE8xmMzZu3IhZs2Zh+PDhGDt2LO68807o9Xq5DGMMb7/9Nq6++mqMHDkSV155JXbs2AFpQvoL7R88eDDeeOMNp/d94403MHjwYKdtM2fOxLp167Bo0SKMHDkSjz32mE/q98ILL2DkyJFoaGhwer8tW7Zg3LhxMJlMXsfx1VdfxX/+8x+vj0MQROu4X7qWIAjCQx5++GEcPXoUq1atQu/evVFQUIDXXnsNDz74IHbv3g2FQoEXX3wR77zzDu68805ceumlOHXqFF5++WXYbDbcc889F9zvCR988AHuvPNO3HXXXejUqZNP6jdv3jzs3LkTe/bswc033yy/1xdffIFrrrkG4eHhXsexsbERTz75JMLCwjB37lyvj0cQhHsoASIIwmsEQYDBYMDjjz+Oa665BgAwceJENDY2YsOGDaisrIRWq8W7776LhQsX4qGHHgIAXHLJJaioqMCRI0ewYMGCVvd7mgD16NEDq1ev9ln97rnnHgwYMABjxozBF198ISdAx48fR35+PjZs2NCmelksllb3P/TQQzAYDHjsscegVqtx/fXXe+RNEETboASIIAiv0Wg02LFjBwCgrKwMeXl5yM/Px08//QSgKQHR6/Ww2WyYNWuW02sff/xxAMC+ffta3e8pKSkpPq2fxE033YQnnngC58+fR8+ePfHZZ5+hX79+GDNmzAXrZDAYMHbs2DY7PPLII5g8eTLi4+Pb/BqCINoGJUAEQfiEX3/9FevWrUNubi46deqEIUOGICIiAkDT2Jra2loAQFxcnNvXX2i/p0jv7av6SVxzzTVYt24dvvjiC/ztb3/DN998g7vvvrtNddJqtVi/fv0Fy+3fvx+7d+/GlVde6bN4EAThDCVABEF4TWFhIe69915cccUVeOutt9CrVy8oFAp88MEH+PXXXwEAnTt3BgBUV1ejf//+8muLi4tRWFgoJyMt7R83bhwAQBRFp/c2Go0dUr9x48ZBrVajU6dOuOqqq/DNN98gOTkZRqMRN954Y5vi1JZxPQcOHMDevXtxxRVXYOPGjVCpVG06NkEQnkFPgREE4TWnT5+GxWLB3Xffjd69e0OhUACAnFwwxjBy5Eio1Wq520li586dWLVqFcaMGdPqfpVKhcjISJSVlTntP378eIfUzzERmTdvHjIzM/HOO+/gkksuQbdu3doSpjaxdetWXHLJJdi0aRPCwuhvVILwF3R1EQThNcOGDUNYWBheeukl/PWvf4UgCPj000/x888/A2hqpenVqxfuuOMOvP3229BoNJg4cSJOnjyJDz/8EA8//DC6dOnS6n6lUonp06dj9+7dGDVqFPr06YNPP/0UBQUFHVI/pfKPvxfHjRuHfv36ITU1FZs2bfJpLLds2QKdTgeNRuPT4xIE4YyCSRNcEARBeMGePXuwefNmFBYWIjo6GqNHj8Ydd9yB22+/HU888QRuu+02MMawc+dOfPTRRygtLUVSUhIWLVqE+fPnA8AF91dWVuK5557Dvn37EBYWhmuuuQbDhw/H448/joyMDLkuM2fOxMSJE52ezPJF/RzZsGEDPv30U+zfv5+SFYIIQSgBIgiC8BDGGK699lpMnToVjz76aKCrQxBEO6AuMIIgiDbS2NiIt99+G6dOncK5c+dw++23B7pKBEG0E0qACIIg2ohOp8NHH30Eu92OdevWoVevXoGuEkEQ7YS6wAiCIAiC4A56DJ4gCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO6gBIggCIIgCO74fx4v94AaXOP5AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=\"equalized_odds_diff\",\n",
+ " show_data_type=\"test\",\n",
+ " constant_clf_perf=max((y_test == const_pred).mean() for const_pred in {0, 1}),\n",
+ " model_name=r\"$\\bigstar$\",\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(r\"equalized odds violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8e7b0885",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "# Fit and plot similar example but using \"Equal Opportunity\" fairness metric\n",
+ "> equal opportunity is achieved by setting `fairness_constraint=\"true_positive_rate_parity\"`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "727e485b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "89156406259543afb1e7efc03b5a2b8f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/19 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=rf_clf,\n",
+ " fit_data=(X_fit, y_fit, s_fit),\n",
+ " eval_data={\n",
+ " \"test\": (X_test, y_test, s_test),\n",
+ " },\n",
+ " fairness_constraint=\"true_positive_rate_parity\",\n",
+ " tolerance_ticks=np.hstack((\n",
+ " np.arange(0.0, 0.1, 1e-2),\n",
+ " np.arange(0.1, 1.0, 1e-1),\n",
+ " )),\n",
+ " y_fit_pred_scores=predictor(X_fit),\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "84c57e54",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYPklEQVR4nOy9eXxTVf7//8ratLSUFihlK3tbyr7KIiqojCKjbPoBxQUGQRFREUVccQNkEQW+MIDgMso447giKu6DMMgqLUtaui9039vsuTm/P/q71yRNS0OSJul5Px+PPqD3nt6c5zv33rxzzrnnyBhjDARBEARBEBwh93cFCIIgCIIgWhtKgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A5KgAiCIAiC4A6lvysQiPzxxx9gjEGlUvm7KgRBEARBtBCLxQKZTIYRI0ZcsSy1ALmAMQZvTZAtCIJXjhOskD+//jy7A+RP/uTvD9z5/KYWIBeILT9Dhgzx6DgWiwWVlZWIjo7msjWJ/Pn159kdIH/yJ39/+Z87d67FZWW0FlhjxAB6mgARBEEQBNF6uPP5TV1gPkQQBNTW1nLbFEr+/Prz7A6QP/mTfzD4UwLkQ0wmE9LT02EymfxdFb9A/vz68+wOkD/5k38w+FMXmAu81QVms9lgsVigUqkgl/OXa5I/v/48uwPkT/7k7y9/dz6/aRC0hwiCAIvF0mwZs9ncSrUJTMjfN/4qlQoKhcInx/YUuVyOkJAQf1fDb5A/+ZN/4PtTAnSVMMZQXFyM6urqZssIggCFQgGZTNZ6lQsQyN/3/h06dEBsbGzAxddsNqO4uBixsbFQq9X+rk6rQ/7kT/6B708J0FUiJj8xMTEICwtz+QFks9lgNpuhVqu5bQYlf9/4M8ag1+tRWloKAOjatatXj+8pgiCgvr4+4AdB+gryJ3/yD3x/GgPkgiv1IQqCgEuXLiEmJgYdO3ZszaoRhAMVFRUoLS1FfHx8wHaHEQRBtBb0GLyPEcf8hIWF+bkmBO+I5+CVxqERBEEQjgR8ArRr1y7ce++9zZapqqrCk08+iTFjxmDs2LF4+eWXYTAYfF63K427EAQBer0+4JsBfQX5+94/0Mb+iOj1eiQnJ0Ov1/u7Kn6B/Mmf/APfP6DHAH300Ud46623MHr06GbLLV++HAaDAe+99x5qa2vx3HPPQa/X44033milmrpGJpNBqVQG7IeUryF/fv1VKhViYmK4XAYAIH/yJ/9g8A/IBKikpAQvvfQSjh8/jt69ezdb9o8//sCJEyfwzTffoF+/fgCAV155BYsWLcKKFSvQpUuXVqixa+RyeUCPgPc15M+vv0qlCriB2a0J+ZM/+Qe+f0B2gV24cAEqlQpfffUVhg0b1mzZU6dOoXPnzlLyAwBjx46FTCbD6dOnfV3VZhEfg+Z1nLnof/r0aZw6dcrf1Wl1fv/9dyQkJCA/P9/fVWl1guUpEF9B/uRP/oHvH5AJ0JQpU7Bt2zb07NnzimVLSkoaZZpqtRodOnRAUVGRR/WwH0dkMBikCe1sNhtsNpuU2NhsNoc3Wtxvs9lgNBodkqCmygKNEybn36+2LNBwQjb1t56Uba5OgiDAaDTi7rvvRl5eXrNl3YmLr8q2JC7ulB02bBi+//57dOnSpVXibTabmz1n7ccjWSwWh/55o9HoVllxinvxcXyr1QoAsFqt0Ov1MJlMSEtLQ11d3RXLivU3mUwwGo3S6+j1emlwtztlxbFXYpyc4+JO2SvFsKmyBoMBaWlpUtxaEkNP4m0fF2/EW4zL1ca7trYWaWlpMJlMMBgMXou3fVzcPb+bioun8XaOi9Vqlc7/6urqq47h1Z7fruLijXi7c4+wf/+biqG34u18j3CHgEyA3MFgMLjsZggJCfFoHRJBEJCeni79np2djeLiYgANb7bVapVOKkEQHF7LZDLBYrFALpdDo9HAZDJJJ4qYFIiYzWaHJ3jEhAloeEOdy9rPKmw0GqUTxfm4FoulUVnnOognlcViaVR/sayYxDVV1r4OYlkxLjabzWH8i8lkksoyxhzKijcN5xi6KttUvO3LNhfvK8XFG/E2mUxQKpXo2bMn5HL5FePtHEOxrHNcnOMt3mAAoKysDBkZGVLZrKwslJSUSC5arVa6+ZWXlzc6v8UvDFarFVqtFvX19QAaHjJIS0uTyubm5qKwsFCKg1arRV1dHQCguroaWq0WGo0GSUlJKCsrQ0FBgfTeaLVa1NTUAGi4SWq1Wul9LSgocGgt02q10kSj9fX10Gq1kntRURFycnKksmlpaaisrAQA6HQ6aLVa6ZwoLi5Gdna2VDY9PR3l5eUAGu4fWq1WinFpaSkyMzOlspmZmSgrK5Nir9Vqpfe9rKysyXuEOCWB6FZRUYFLly5JZXNycpqNd2pqqlQ2Ly8Ply9flo7nKt4i+fn5Tcawrq7OId6XL19GXl6eVDY1NRVVVVUtivelS5dQUVEBoOFDSKvVSud/cXExCgsLkZSUBI1Gg/T09GZj6BxvcW4rk8l0xXPW/p6s1Wqh0+kAAJWVlQ7nbHPxdhVD8ZwV411bWwsAqKmpgVarla65ps5ZjUaDHj16ICcnR7q/FBYWIjc3VyqblpbWbLyvdM6K8S4pKUFWVpZUNiMjo9l4t8Y9orS0FJGRkdBoNNI94ocffsChQ4dQWFjYZLy9cY9wCxbgrFq1is2fP7/J/a+88gqbM2dOo+3jxo1j77777lW9ZkpKCktJSWF6vV7aptfrmclkYowxptPp2Pnz56X9giAwq9XKGGOsvr6e1dbWstraWlZfX8/q6upYTU0Nq6urk/bV1NSw+vp66XfxuDabjRmNRlZXV8f0ej2z2WzMarUym812xePalxXrJAiCVH+r1Sr9bl82Pj6effDBB2zOnDls8ODBbPr06ez77793KPvTTz+xO++8kw0fPpxNmDCBvf7668xgMEiv88svv7CZM2eyoUOHsnHjxrGnn36aVVdXM0EQWHx8vPTz9NNPu6wDY0yqx5133skGDx7MbrvtNvbDDz9IZd966y129913s8cff5yNGDGCrVmzhjHG2JkzZ9i9997LRo4cycaOHctWrVrFysvLpeMajUa2ZcsWdsMNN7ChQ4eymTNnssOHD0vHTUtLY4sWLWLDhw9nEydOZE888QQrKSmR3DIzM9nChQvZyJEj2fDhw9mCBQtYamqqVP9ff/3VwX3VqlWsurqaWa1WduzYMRYfH8/y8vKY1WplN9xwA3vnnXfYI488woYPH87Gjh3LXn31VWY0GqW4HD58mN1xxx1SDD755BMWHx/P8vPzG72v4nlx4cIFZjAYmMlkavKcFQSB6XQ66Tw1m81Mp9NJZcW/b2lZo9Eo1UGn0zGLxcIYY8xisbhd1v69Es8r8Tozm81ul7VarUyn00lxco6LO2WvFENP4u0cF0/ibR8Xb8RbjIs34q3X670Wb/u4eBpvMS6exts5Lp7E2z4unsTbOS7eiLen94g33niDrVmzhhUVFfn0HiF+freEoE+Adu/eza677jqHbSaTiSUmJrKDBw9e1WteKYAGg4FdvHjR4Y0QAeD2z7///W/p7//9738zAOz66693OG6nTp2aPcbVEh8fz4YPH84+/PBDlpmZyTZu3MgSExPZ6dOnGWOMff/99ywxMZH9v//3/1hWVhb78ccf2bXXXssefvhhxhhjFRUVbPDgwezDDz9kBQUF7NSpU2zKlCns2WefZYIgsMuXL7P4+Hj23nvvsdra2quux9atW1l8fDx77bXXWF5eHsvOzmbJycls0KBB7JVXXmEZGRns2LFj7NZbb2UzZ86ULsyXXnqJjRs3jn377bcsNzeXvfnmm2zw4MEsMzOTFRcXS0lIRkYGO3fuHFu8eDGbPHmydIHOnDmTrV69mmVnZ7P09HS2aNEidtNNN13RnTHmkAAxxtjkyZPZkCFD2Pvvv8/y8vLYf/7zH5aQkMA+//xzxhhjFy9eZElJSeyNN95gmZmZ7Ouvv2ZjxoxxSICcae5c9Ccmk4nl5+dLN0zeIH/yJ39H/19++YV9//33rL6+3qev7U4CFJBPgbnDmDFjsGnTJuTm5qJXr14AgBMnTgAARo0a5c+qBQ2zZs3CPffcAwBYuXIlTpw4gQ8//BAjR47E7t27cfPNN2Pp0qUAgD59+oAxhkceeQQZGRlS10+3bt3QvXt3dO/eHX//+9+lZt+oqCgAQEREBCIiIq66HiLLly+XjvP4448jISEBL7zwAgCgX79+ePPNN3HHHXfgyJEjGDVqFP7zn//ghRdewC233AIAeOKJJ8AYQ319Pb766ivExsbi+eefl47/1ltvYdy4cfjuu+8wa9Ys5OXlYcKECejevTtUKhXWrl2LrKws2Gw2lJSUNOvuimuvvRb33XcfAKBnz574xz/+gTNnzmDGjBl47733MHjwYDz99NMAgL59+6KiogKvv/56S97GgEIQBFRXV3M7Uzr5kz/5O/rfcMMN/qtQEwRdAiQIAiorKxEREQGNRoNhw4Zh5MiReOKJJ7BmzRro9Xq8+OKLmDFjhl8egRf7RN3BftXcmTNnor6+vtHaUfb9797mmmuucfh9xIgROHr0KICGvv7bbrvNYf/YsWOlfdOmTcP06dPx0EMPoXPnzpg4cSJuuOEG3HzzzZDL5QgNDXX42xdffBEHDhyQfl+yZAkeeuihK9YDADp27OiQRF26dAkTJ050+JvExEREREQgLS0N0dHRsFgsjZ4kXLFiBQBg+/btSE9Px4gRIxz2m0wmaVzCE088gbVr12L//v0YO3YsJk2ahOnTp0Mul2PgwIFNugN/TlJoPw7K/mlFoCExFMeqXLx4ERMmTHDYP2bMGAQjoaGhGDx4sL+r4TfIn/zJP/D9gy4BKioqwo033oh169Zh1qxZkMlk2L59O15++WXcf//9CAkJwS233ILVq1f7pX7t2rXz6O+VSiWUysZvi6fHvdJr2iMIgpSAMReP8IsD0sS/27x5Mx555BEcPnwY//vf//DUU09h1KhReP/99xv97WOPPYa//e1v0u+RkZEtqgcAaDQah/2u6iZuV6lUV5yEy2azYdy4cXjppZca7RMTrXvuuQe33HIL/vvf/+LYsWPYunUrdu7ciS+++AKdOnVyyx2AywH7oodCoXB44osgCKKtIA7wVigUATM5bMAnQOvXr3f4vUePHg6jzYGGloGtW7e2ZrVahPiUTkhISECvhn7u3DlMmTJF+v2PP/7AoEGDAAAJCQk4c+YMHnjgAWm/OKdPv379kJycjIMHD+LZZ59F37598cADD+Crr77CU089hbKyMoSHhzu8VseOHZtsFm6uHq5ISEhoNNdTamoq6uvr0a9fP/Tq1QsqlQrnzp1DYmKiVOauu+7CtGnTMGDAAHzzzTfo2rWrlJhUV1dj1apVWLBgAQYMGID/9//+HxYvXoxZs2Zh1qxZKCkpwXXXXYcTJ06ge/fuTbpXVFQ4PDLfEhITE5GSkuKw7Y8//mjR3wYaBoMBmZmZ6NevX6NWQB4gf/Inf0f/N998EwaDAUuXLkXnzp39XMMGAj4BCnaCYYXu999/H3379sXgwYPx73//G2lpadK4k0WLFuGxxx7Djh07cOuttyInJwevvvoqJk+ejH79+iEzMxP79++HSqXCXXfdBZPJhG+++Qa9e/dGVFQUbDYbwsLCkJmZiaqqKmlMkLv1cMWCBQtw991349VXX8Xdd9+N8vJyvPrqq0hKSsL48eOhUqkwf/58vP3224iOjsaAAQPwn//8B5cuXcL69euhUqnwr3/9CytXrpTGOL3xxhtIS0tDfHw82rdvj19//RV5eXl48sknER4ejs8++wwqlQqDBw+GxWJp1t1dFi5ciBkzZmDTpk2YPXs2MjIypMQ+UL4xtRSFQoGoqKigOP99AfmTP/kHvj8lQD4kWJZCmDt3Lt577z1cunQJiYmJ2Lt3r9Ri8pe//AVvvvkmdu7ciR07diA6OhrTp0/H8uXLATS0Am3btg3bt2/H/v37IZfLMW7cOOzZs0fq0lq4cCHeeecdZGZm4u9///tV1cMVw4YNwzvvvIO33noLM2bMQHh4OG666SY8+eSTUvfXihUroFAo8NJLL6Gurg6JiYnYvXs3+vbtCwD48MMPsXnzZsybNw8KhQIjR47EBx98gOjoaADAnj178MYbb+CBBx6AwWDAwIEDsXv3bsTFxQFAk+5yudzlGKDmiI+Px/bt2/Hmm2/ivffeQ58+fTB//nxs27Yt4NfUcUatVqN79+7+robfIH/yJ39H/8ceewwAAupeJmMtbZ/niHPnzgEAhgwZ4nK/0WhEdnY2+vTp02hcij2MMdhsNocPw0AjISFBGk/lbdzx92U9/IW7739KSgqUSiWSkpKkbQcOHMCzzz6LP/74w+XYsJaei62NOKGjRqMJ6O5fX0H+5E/+/vG/0ue3Pfy9M62I88zIvEH+7vlrtVrcd999+Omnn1BYWIhjx45h27ZtuO2221wmP4GM8wy0vEH+5E/+ge8fXHfVIENcCoPHbwAA+bvrf9ddd6GsrAxr165FSUkJOnbsiNtuu03qbgwmQkJCkJiY6DDFA0+QP/mTv6P/kSNHYLFYMHbsWJ8+1ewOlAD5EJlMFvCDwJyfqPMm7vj7sh7+wt33XyaTYdmyZVi2bJkPa9U6KBSKgLnJ+QPyJ3/yd/T/3//+B4PBgMGDBwdMbPj8at5K2Gw2mM1mrruAyJ9Pf4vFgsLCQoeFfnmC/Mmf/B39R44ciTFjxgTUtACUAHlAS8aPi5M/8Qr5+9Y/UJ9hsFqtKC8v5/b9J3/yJ39H/5tuugnTpk1rNDecP6EusKtAHJB6pZNbLpcjLCysNaoUkJC/7/3FczDQBkmHhoZi6NCh/q6G3yB/8if/wPenFqCrQKFQQKFQoLa21t9VITintrZWOh8JgiCIlhNYXxuDBJlMhpiYGBQVFSEkJATt2rVzOc+LOAZErVZz+SQU+fvOnzEGnU6H2tpadO3aNeDmmTIYDNL8RIHU599akD/5k7+j/8aNG2EwGPDwww/TUhjBTmRkJAwGA8rLy1FWVuayDGMMgiAE1OJvrQn5+9ZfJpOhQ4cODgvKBgoKhQLh4eHctkyRP/mTv6M/YyzgxizSTNAucGcmSUEQuB3pT/gXlUrF7Q2WIIjgor6+HowxhIWF+fS+5c7nN7UAeUhz4y+oC4j8efXn2R0gf/Inf2f/QHr6S4S/d6YVMRqNuHDhQsBPB+4ryJ9ff57dAfInf/IPBn/qAnOBO01ozSEIAvR6vc+b/AIV8ufXn2d3gPzJn/yd/Y8fPw6LxYKRI0f6dHoQ6gILEBQKBSIiIvxdDb9B/vz68+wOkD/5k7+z/3//+18YDAYkJCQEzPxw1AXmQywWC4qLi7kdJE3+/Prz7A6QP/mTv7P/kCFDMHz4cGg0Gj/WzBFKgHwIXQTkz6s/z+4A+ZM/+Tv733rrrbjjjjsCqmWMxgC5wFtjgAiCIAiCaD3c+fymFiCCIAiCILiDEiAfYjQakZqaGvCPAvoK8ufXn2d3gPzJn/yd/d966y2sW7cO5eXlfqyZI5QA+RCZTAaNRsPlMhAA+fPsz7M7QP7kT/7O/mazGWazOaCWw6AxQC6gMUAEQRAE4T2qqqrAGENkZGTALIVBLUA+hDEGi8USUBlva0L+/Prz7A6QP/mTv7N/VFQUoqOjA2piSEqAfIjBYEBKSgoMBoO/q+IXyJ9ff57dAfInf/IPBn+aCdqHhISEoH///ggJCfF3VfwC+fPrz7M7QP7kT/7O/qdPn4bVasXQoUMRGhrqx9r9CSVAPkShUCAyMtLf1fAb5M+vP8/uAPmTP/k7+//0008wGAzo27dvwCRA1AXmQywWC0pLS7meDZT8+fTn2R0gf/Inf2f/xMREDBo0KKBaxagFyIdYLBYUFBQgPDwcKpXK39VpdcifX3+e3QHyJ3/yd/a//fbb/VyrxtBj8C6gx+AJgiAIIvigx+AJgiAIgiCagRIgH2I0GnHp0iWup0Mnfz79eXYHyJ/8yd/Zf8eOHdi8eTMqKir8WDNHaAyQD5HJZFAqlVxPh07+fPrz7A6QP/mTv7N/fX09DAYDbDabH2vmCI0BcgGNASIIgiAI71FaWgrGGDp27Ail0ndtL+58flMLkA9hjMFms0Eul3P5TYD8+fXn2R0gf/Inf2f/mJgYP9eqMTQGyIcYDAacPXs24KcD9xXkz68/z+4A+ZM/+QeDP7UA+RC1Wo2+fftCrVb7uyp+gfz59efZHSB/8id/Z/+UlBQIgoCBAwdCo9H4sXZ/4pUWILPZjIEDB+KLL77wxuHaDEqlElFRUT7t7wxkyJ9ff57dAfInf/J39v/uu+/w1Vdfoa6uzo81c8RrXWA0lroxVqsV5eXlsFqt/q6KXyB/fv15dgfIn/zJ39m/X79+iI+PD6hWMT7T01bCbDYjNzcXYWFhXH4TIH9+/Xl2B8if/Mnf2X/27Nl+rlVjvPIYvNlsxtChQ7F+/XrMmDHDC9XyL956DN4+tLw+CSBC/nz58+wOkD/5k79Ia/vTY/ABAo8nvj3kz68/z+4A+ZM/+QcD9Bi8DzGZTMjIyIDJZPJ3VfwC+fPrz7M7QP7kT/7O/rt378bWrVtRWVnpx5o5Qi1ABEEQBEH4lOrqahgMBgiC4O+qSFAC5ENCQkLQv39/f1fDb5A/v/48uwPkT/7k7+x/zz33wGazoUOHDv6plAs86gLbtWsXNm/e7LDt1KlTWLx4MfR6vUcVawswxqQfHiF/fv15dgfIn/zJ39m/e/fu6NmzJ1QqlR9r5ohHCVBISAj27NmDtWvXQiaT4ffff8eDDz4Is9kMuZyGFxkMBpw5cybgpwP3FeTPrz/P7gD5kz/5B4O/R11gDzzwAFQqFV577TUAwJdffokJEyZgx44dCAkJ8UoFgxm1Wo1evXoF1MRPrQn58+vPsztA/uRP/s7+Wq0WgiBgwIABAZMfeNxMc8899+Dll18GAFx//fXYuXNnwMj5G6VSiU6dOnE5ERZA/jz78+wOkD/5k7+z/4EDB/Dpp5+itrbWjzVzxCvvzl133YXx48cjNjY2oPr3/I3VakVdXR0iIiK4vBDIn19/nt0B8id/8nf2j4uLg8lkCqgcwWsDdQJtcFMgYDabkZWVBbPZ7O+q+AXy59efZ3eA/Mmf/J39586di/vvvz+gngLzylIYbQ1vLoVhs9kgl8uDZmZMb0L+/Prz7A6QP/mTv7/8aSmMAEEmk0GhUPi7Gn6D/Pn159kdIH/yJ/9g8Kdn1X2IyWRCVlYW19Ohkz+f/jy7A+RP/uTv7P/uu+9i586dqKqq8mPNHKEWIB/CGIPVauV6Mizy59OfZ3eA/Mmf/J39y8rKYDAYYLVa/VgzRwJyDJDNZsP27dvxySefoK6uDmPGjMGLL76Inj17uixfUVGBtWvX4ujRo2CMYcKECXjmmWfQpUuXq3p9b40BIgiCIAgCyM3NhSAI6NGjh0/nR3Ln8zsgu8B27NiB/fv349VXX8XHH38Mm82GRYsWNTmi/vHHH0dhYSHeffddvPvuuygsLMQjjzzSyrUmCIIgCMIVvXr1Qt++fQNqcsiAS4DMZjP27duH5cuX44YbbkBiYiK2bNmC4uJifP/9943K19bW4sSJE3jwwQcxcOBAJCUlYfHixTh37hyqq6tbX8AOvV6PM2fOcLsuGvnz68+zO0D+5E/+weDvlTFANTU1MBgMsNlsjfZ169bNrWOlpqZCp9Nh/Pjx0rb27dsjKSkJJ0+exPTp0x3KazQatGvXDl988QXGjh0LoGFJjj59+qB9+/ZXYeM9VCoVevTowe38SOTPrz/P7gD5kz/5O/tnZGRAEAT07t07YFaL8KgFKDc3F3PnzsW4ceMwefJk3HjjjY1+3KW4uBgA0LVrV4ftMTEx0j571Go11q9fjxMnTmD06NEYM2YMkpOTsWfPHo8XZLVfyM1gMEhdcDabDXq9HoIgAAAsFotDpms0GqUZLzt37gyLxXLFskDDwDG9Xi8NErNardDr9dJAMpPJ5FZZo9EovY5er4fFYgEACILgdlkxuTWbzY3i0lRZxhgiIiKki8CdGF5NvF3FxdN4O8fFnbJAw3krl8sbxdCTeDvHxZ2yzcXQG/EW46JSqRATEwNBELxyzl7N+d1UXDyNt31cmiqrUCgQHh4u3YNaEsO2dI+wWq2IiYmBSqVq9h7hyTkbyPcIlUqF6OhoWCyWq45hMN8jBEFAZGQkVCqVFMPPPvsMH3/8Maqqqrwab+d7hDt4lCG8+uqryMnJwbJly/Daa69h7dq1jX7cRXxznPsJQ0JCXD5SyBiDVqvFiBEj8NFHH+H9999Ht27dsHTpUtTX11+dGBrewPT0dOn37OxsKQEzm83QarVSsCsqKnDp0iWpbE5ODoqKiiAIAiorK6HVaqW6VFVVITU1VSqbl5eHy5cvA2g4qbRaLerq6gAA1dXV0Gq1Utn8/Hzk5+dLv2u1Wqmbr66uDlqtVjrRL1++jLy8PKlsamqq9PhhfX09tFqtdJIVFRUhJydHKnvp0iVUVFQAaDjBtFqtdOIXFxcjOztbKpueno6ysjIADSeyVquVTtCSkhKkp6dLF0lmZiZKS0sBNJzIWq1Wer/Ly8ubjLfFYoFWq4VOpwMAVFZWIi0trVG8gYaLwD7ermJYUFDgEG9xbZqamhpotVrpYisoKLhivEW3wsJC5ObmSmXT0tJQUVGBmpoa1NbWNoq3cwzLy8sBNJz/9vEuKSlBVlaWVDYjI6PJeJeVlSEjI0Mqm5WVhZKSEgB/nrPNxbupGFZVVTnEOzc3F4WFhQAarhNX56wgCKipqXGIt3it1tTUAIAUF/GcbS7eVzpn09LSUFlZCQDQ6XTQarXSjdHVOescb/HeUlpaiszMTKlsZmZms/Fu6pwVy4pxaeoe0VS8g/0ekZWVhZqaGuk+2lwMnePdFu4RgiCgpKTkiveI5uIdzPeInJwc5OTkQBAE6R7RqVMndO/eXTpfXMXbG/cIt2AeMHToUHbgwAFPDtGI7777jsXHxzODweCwffny5eyhhx5qVP7gwYNs9OjRrK6uTtpWXV3NRowYwd59992rqkNKSgpLSUlher1e2qbX65nJZGKMMSYIAtPpdMxqtTLGGDObzUyn00llDQYDMxqNTKfTsVOnTrHy8vIrlmWMMZvNxnQ6HbNYLIwxxiwWC9PpdMxmszHGGDMajW6VtY+hTqdjZrOZMcaY1Wp1u6wgCIwxxkwmU6O4NFW2urqanTp1SvJ1J4ZXE29XcfE03s5xcadsTU0NO3XqFKutrW0UQ0/i7RwXd8o2F0NvxFuMi3juV1VVeeWcvZrzu6m4eBpv+7g0Vbaurk5671saw7Z0j6isrJSu/ebuEZ6cs4F8j7C/919tDIP5HmH//jcVQ2/F2/keIX5+twSPHoOfOHEi1q9fj0mTJl3tIRqRkpKCO++8Ez/88APi4uKk7fPmzUNCQgLWrFnjUP6VV17B+fPn8e9//9th++zZszF06FC89NJLbtfBm0thWK1WKJVKbqdDJ38+/Xl2B8if/MnfX/6t9hj8HXfcgY8++sirkz0lJiYiPDwcx48fl7bV1tbi4sWLGDNmTKPysbGxyM3Ndege0+v1KCgoQO/evb1Wr6tBJpNBpVJxeQEA5M+zP8/uAPmTP/kHg79HT4GFhobi9OnTuPnmmzFkyBBoNBqH/TKZzO1xQGq1GvPnz8emTZsQHR2N7t27Y+PGjYiNjcXUqVOlcTURERHQaDSYMWMG9u7di8cffxyPPfYYAOCtt95CSEgIZs2a5Ymex5hMJhQVFaFr164BM+q9NSF/fv15dgfIn/zJ39n/ww8/hMlkwuzZswNmRXiPEqDPP/8cERERsNlsSE5ObrT/arO/5cuXw2q14vnnn4fRaMSYMWOwd+9eqFQqFBQU4MYbb8S6deswa9YsxMTEYP/+/di4cSPuv/9+yOVyjB49Gvv370dERIQneh7DGIPRaOR6OnTy59OfZ3eA/Mmf/J39CwsLHZ4IDAQCcikMf0NLYRAEQRCE92iteYDc+fymxVAJgiAIgvAp/fv393cVGuGVpTAOHz6MTZs24cUXX8SWLVtw+PBhbxw26NHr9Th79mzATwfuK8ifX3+e3QHyJ3/yDwZ/j1qAzGYzli5diiNHjkChUCAqKgpVVVXYvXs3xo0bh127dgXUwmetjUqlQmxsLNfToZM/n/48uwPkT/7k7+yfm5sLm82G7t27B0xe4FEL0LZt23D69Gls2LABKSkpOHLkCJKTk7Fu3TqcPXsWO3fu9FY9gxK6CMifV3+e3QHyJ3/yd/b/17/+hQ8++ECa5TkQ8CgB+vrrr7Fs2TLcfvvtUCgUAAClUokZM2Zg2bJlOHDggFcqGawIgoC6ujppKnTeIH9+/Xl2B8if/Mnf2b9z586IiYmBUhk4Q489SoAqKyuRlJTkcl9SUpK0xgivmEwmXLp0yeUaZjxA/vz68+wOkD/5k7+z/4IFC/Dwww8jKirKjzVzxKMEKC4uDqdPn3a57+TJk41WdOcNjUaDQYMGNZogkhfIn19/nt0B8id/8g8Gf4/aoubOnYv169dDo9HgtttuQ6dOnVBeXo6vv/4ae/bswbJly7xVz6BELpcH/AngS8ifX3+e3QHyJ3/yDwZ/jxKgefPm4eLFi9i0aRM2b94sbWeMYebMmVi8eLHHFQxmzGYziouLERsbGzCj3lsT8ufXn2d3gPzJn/yd/f/1r3/BZDLh9ttvbxtLYcjlcrz++utYuHAhTpw4gZqaGkRGRmLs2LHo16+ft+oYtAiCgPr6eq4HwpE/n/48uwPkT/7k7+yfm5sb/EthrF69GkuXLkXPnj2xevXq5g9+FYuhBgK0FAZBEARBeI+LFy9CEAQMGDDAp91jPl0K4/jx47j//vul/zfH1S6GShAEQRBE26GpJ8b9idsJ0M8//+zy/0RjDAYD0tPTMWDAAISGhvq7Oq0O+fPrz7M7QP7kT/7B4O/RY/AnT56ETqdzua+2thYHDx705PBBj1KpRKdOnQJq4qfWhPz59efZHSB/8id/Z//CwkIUFBQE1BggjxKg++67D5mZmS73Xbx48YpjhNo6KpUK3bp143o6dPLn059nd4D8yZ/8nf0//PBD7N27F9XV1f6rmBNup6erVq1CUVERgIbH3desWYPw8PBG5XJyctCpUyfPaxjECIIAo9EIjUYjLRXCE+TPrz/P7gD5kz/5O/t36NABISEhARUPt1uA/vKXv4AxBvuHx8TfxR+5XI7hw4dj3bp1Xq1ssGEymZCamsr1dOjkz6c/z+4A+ZM/+Tv7L168GI899hiio6P9WDNH3H4M3p57770Xa9asaXNz/njrMXibzSZlwXK5R72NQQn58+vPsztA/uRP/v7yd+fz26MESKSiogJms1lqFbLZbDAYDDh16hTmzZvn6eFbHZoHiCAIgiCCD5/OA2RPamoqVq5c2eRAaJlMFpQJkLcwm80oKytD586duZ0Onfz59OfZHSB/8id/Z//PPvsMJpMJ06ZNQ2RkpJ9r2IBHbVMbNmxATU0NVq1ahbFjx+Laa6/FCy+8gOuvvx4ymQwffPCBt+oZlAiCgKqqKq6nQyd/Pv15dgfIn/zJ39k/IyMDly5dgtls9mPNHPGoC2zUqFFYvXo15syZg3/96184cOAAPvzwQwDA8uXLIZPJ8Pbbb3utsq0FdYERBEEQhPdISUmB1WpFUlJSwCyF4VELkNlsRu/evQEAvXv3RmpqqrRv1qxZOHv2rCeHJwiCIAiiDTB06FCMHDnSp8mPu3iUAHXr1g35+fkAGhKg+vp6FBQUAADUajVqamo8r2EQYzAYcP78eRgMBn9XxS+QP7/+PLsD5E/+5B8M/h4lQFOnTsXmzZtx6NAhdOnSBX379sVbb72FtLQ07Nu3Dz179vRWPYMShUKBDh06BNTET60J+fPrz7M7QP7kT/7O/mVlZSgpKYHVavVjzRzxaAyQyWTCU089BYPBgD179uC3337DsmXLYDaboVAo8Oabb2Lq1KnerG+rQGOACIIgCMJ7bNiwAQaDAUuXLkXnzp199jqt9hh8SEgItm7dKi1uNmnSJHz99dc4f/48Bg0ahLi4OE8OH/TYbDaYTCaEhIRwOxkW+fPpz7M7QP7kT/7O/u3atYNcLg+oeHilJvYLnvXs2RO33nor98kPABiNRly8eBFGo9HfVfEL5M+vP8/uAPmTP/k7+z/yyCNYuXIlOnbs6MeaOeJ2F9j27dtbfnCZDI888ojblfI33uoCEwQBBoMBoaGhXPYFkz+//jy7A+RP/uTvL3+fLoWRmJjY4rIymQxardadwwcENAaIIAiCIIIPn44Bsp/rh2gei8WC8vJydOrUyaGbkBfIn19/nt0B8id/8nf2P3DgAMxmM26++Wa0b9/ezzVswKNB0CKHDx/GiRMnUFtbi+joaIwaNQqTJk3yxqGDGovFgtLSUkRGRnJ7EZA/n/48uwPkT/7k7+yv1WphMBhw3XXX+bl2f+LRY/BmsxlLly7FkSNHoFAoEBUVhaqqKthsNowbNw67du0KyoXgqAuMIAiCILzH6dOnYbVaMXToUISGhvrsdVptKYxt27bh9OnT2LBhA1JSUnDkyBEkJydj3bp1OHv2LHbu3OnJ4QmCIAiCaAOMGjUK11xzjU+TH3fxKAH6+uuvsWzZMtx+++3SSG+lUokZM2Zg2bJlOHDggFcqGawYDAZcvHgx4KcD9xXkz68/z+4A+ZM/+QeDv0djgCorK5GUlORyX1JSEkpKSjw5fNCjUCgQHh7O5WOQAPnz7M+zO0D+5E/+zv7V1dVgjKF9+/YBExePWoDi4uJw+vRpl/tOnjyJrl27enL4oEetViMuLi4ox0F5A/Ln159nd4D8yZ/8nf13796NrVu3orKy0o81c8SjBGju3LnYtWsX3nnnHRQVFcFisaCoqAh79uzBnj17MHv2bG/VMygRpwO32Wz+ropfIH9+/Xl2B8if/Mnf2V+tVkOtVkMmk/mxZo549BSYzWbDCy+8gE8//dRBijGGmTNnYu3atQEl21K89RSYXq+HVqvFwIEDERYW5o2qBRXkz68/z+4A+ZM/+fvL36czQbsiIyNDmgcoMjISY8eORb9+/Tw9rN/w5lIYOp0O7dq1C5g+z9aE/Pn159kdIH/yJ39/+bd6AtTWoHmACIIgCCL48OlSGKtXr8bSpUvRs2dPrF69utmyMpkMa9eudfcl2gwWiwWVlZWIjo7mdjZQ8ufTn2d3gPzJn/yd/b/99luYzWZMmTIFERERfq5hA24nQMePH8f9998v/b85gnH8jzexWCwoLCxEREQEtxcB+fPpz7M7QP7kT/7O/ufOnYPBYMCECRMCJgHyqAtMEIQ22b9JXWAEQRAE4T1+//13WCwWjBo1yqcDo33aBWbPtddei9tuuw133HEHJQsEQRAEQbhk3Lhx/q5CIzyaB2j69Ok4dOgQ7rrrLtxyyy34+9//jsuXL3urbkGP0WhEamoqjEajv6viF8ifX3+e3QHyJ3/yDwZ/jxKg5557DocPH8a+ffswevRovPvuu7j55psxf/58fPLJJ6irq/NWPYMSmUwGjUbD7Vgo8ufXn2d3gPzJn/yd/XU6Herr6wNqckivPgZvsVhw9OhRHDx4EN9++y2USiXOnj3rrcO3GjQGiCAIgiC8x4YNG2AwGLB06VJ07tzZZ6/jzue3Ry1A9litVhw5cgTffPMNDh8+DAAYP368tw4flDDGYLFYwOtUS+TPrz/P7gD5kz/5O/sHYmuYR4OgGWP4/fffcfDgQfzwww+oqanB0KFDsXz5ckybNg1RUVHeqmdQYjAYuJ4Onfz59efZHSB/8id/Z/+nnnrKz7VqjEcJ0KRJk1BRUYFu3brh7rvvxh133IHevXt7qWrBj1qtRr9+/bheEZj8+fTn2R0gf/In/2Dw9ygBmjJlCm6//XaMHj3aW/VpUyiVSnTo0MHf1fAb5M+vP8/uAPmTP/kHg79HY4BeeeUVSn6awWKxoKysDBaLxd9V8Qvkz68/z+4A+ZM/+Tv7//jjj/j2229RX1/vx5o54rVB0ERjLBYL8vLyuL4IyJ9Pf57dAfInf/J39j9z5gxOnDgBg8Hgx5o5QqvBu4AegycIgiAI7/Hbb7/BYrHgmmuuQbt27Xz2On55DN6b2Gw2bN26FZMmTcLw4cPx4IMPIj8/v8nyFosFmzdvlsrPnz8fWq22FWtMEARBEERTTJo0CVOmTPFp8uMuHiVAJpPJW/VwYMeOHdi/fz9effVVfPzxx7DZbFi0aBHMZrPL8mvWrMFnn32GtWvX4tNPP0V0dDQefPBBv89EbTQakZ6eHvDTgfsK8ufXn2d3gPzJn/yDwd+jBGjixIl46aWXkJKS4q36wGw2Y9++fVi+fDluuOEGJCYmYsuWLSguLsb333/fqHx+fj4+/fRTvP7665g0aRL69euH1157DWq1GufPn/dava4GmUwGuVwekBNAtQbkz68/z+4A+ZM/+Tv7m81mmEymgFoKw6MEaOHChfj999/xf//3f5g2bRreeecdlJWVeVSh1NRU6HQ6h1mk27dvj6SkJJw8ebJR+aNHjyIiIgLXXXedQ/mff/7Z7zNRh4SEoF+/fggJCfFrPfwF+fPrz7M7QP7kT/7O/m+99RbWr1+PiooKP9bMEY8SoKVLl+LQoUP46KOPMGrUKOzatQuTJ0/G4sWLcejQoasaAV9cXAwA6Nq1q8P2mJgYaZ892dnZ6NmzJ77//nvMmjULEydOxIMPPojMzMyrk7LDfrS6wWCQuuBsNhv0ej0EQQDQMAZJr9dLZY1GI0wmExhjsFqt0Ol0VywLNMysrdfrYbVaATQsL6LX66XpxE0mk1tl7Zsf9Xq99H4IguB2WTFrN5vNjeLSVFmTyYT6+nrpddyJ4dXE21VcPI23c1zcKWs2myEIglTWPoaexNs5Lu6UbS6G3oi3fVwEQYDBYPDKOXs153dTcfE03vZxaaqsIAioq6tz6zxsS/cI0Ycx1uw9wpNzNpDvEYwxmEwm6HS6q45hMN8jDAaDFCcxhiJiDL0Vb+d7hDt4ZRD0yJEj8eqrr+Lo0aN4++23YTAY8Pjjj+Paa6/FG2+8gcuXL7f4WOKb4zyDZEhIiMsxR/X19cjNzcWOHTuwYsUK7Ny5E0qlEnfffbdHmaYgCEhPT5d+z87OlhIws9kMrVYrBbuiogKXLl2Syubk5KCoqAgGgwHJyclITU2V5j6oqqpCamqqVDYvL0+Kj81mg1arlcYuVVdXOwzmzs/PdxgMrtVqUV1dDQCoq6uDVquVTvTLly8jLy9PKpuamoqqqiopZlqtVjrJioqKkJOTI5W9dOmSFDu9Xg+tViud+MXFxcjOzpbKpqenS61+RqMRWq1WOkGLioqQlpYmvaeZmZkoLS0F0HAia7VaaV95eXmT8bZYLNBqtdDpdACAyspKpKWlNYo30HARaLVaKd6uYlhQUOAQ79raWgBATU0NtFqtdLEVFBRcMd7iDaCwsBC5ublS2bS0NJSWluLs2bOorKxsFG/nGJaXlwP4cwp5Md4lJSXIysqSymZkZDQZ77KyMmRkZEhls7KyUFJSAuDPc7a5eDcVw6qqKod45+bmorCwEEDDdeLqnDUYDDh79ixyc3OleDPGoNVqUVNTAwCora11OGebi/eVztm0tDRUVlYCaFh1WqvVSjdGV+esc7zFe0tpaanDl6fMzMxm493UOVtXV4dLly5J11xT94im4h3s94isrCycPXsWBoOh2XtEWVlZo3i3hXuEwWDA+fPnkZqa2uw9orl4B/M9IicnRzqWeI9YsGABnn32WSiVyibj7Y17hFswL1FYWMh27tzJbr/9dpaQkMBuueUWtn79ejZt2jQ2dOhQdvDgwRYd57vvvmPx8fHMYDA4bF++fDl76KGHGpV/8cUXWXx8PMvIyJC2GQwGNnbsWLZnz56rcklJSWEpKSlMr9dL2/R6PTOZTIwxxgRBYDqdjlmtVsYYY2azmel0OofXNxqNzGKxsPLyclZTU3PFsowxZrPZmE6nYxaLhTHGmMViYTqdjtlsNsYYY0aj0a2y9jHU6XTMbDYzxhizWq1ulxUEgTHGmMlkahSXpsrq9XpWVFQk1dGdGF5NvF3FxdN4O8fFnbJ6vZ5VVFQwo9HYKIaexNs5Lu6UbS6G3oi3GBeLxcIqKipYfX29V87Zqzm/m4qLp/G2j0tTZU0mEyssLJTcWxLDtnSPqKurYxUVFcxisTR7j/DknA3ke4TFYmGlpaWspqbmqmMYzPeI+vp6VlxczCwWS5Mx9Fa8ne8R4ud3S/BoHqD6+nocOnQIX3zxBU6fPg2NRoNbbrkFc+bMwciRI6VyS5YswYULF3DkyJErHjMlJQV33nknfvjhB8TFxUnb582bh4SEBKxZs8ah/M6dO7F9+3ZcuHDBYfucOXMwePDgRuVbAs0DRBAEQRDBR6vNAzRx4kQ8//zzsFgseOWVV3DkyBGsXbvWIfkRK9LS0fCJiYkIDw/H8ePHpW21tbW4ePEixowZ06j8mDFjYLVaJWmgodkvPz8fvXr1ukoz72C1WlFRUSE1a/IG+fPrz7M7QP7kT/7O/v/973/x448/tp2lMO655x4cPHgQH3/8MebMmSMte+/MggUL8Ouvv7bomGq1GvPnz8emTZvw008/ITU1FU888QRiY2MxdepUCIKAsrIyqU9z9OjRmDBhAlatWoVTp04hIyMDTz/9NBQKBe644w5P9DzGbDYjJyenyfmL2jrkz68/z+4A+ZM/+Tv7Hz9+HEePHm07S2GcPHkSSUlJLmd2rK2txW+//YbbbrvN7eMKgoA333wTn332GYxGI8aMGYMXX3wRPXr0QEFBAW688UasW7cOs2bNAtDQFbdp0yZ89913MBqNGDlyJJ599ln079//qry81QXG/v8R8DKZjMv5IMifX3+e3QHyJ3/yd/b/+eefYbFYMHHiRISHh/vstd35/PYoARo4cCD+9a9/YejQoY32/f7771i8eLFXJ0lsLWgMEEEQBEEEH+58fivdPfiqVaukR+EYY1izZo3LbC4nJwedOnVy9/BtCpPJhIKCAvTo0YPLCbHIn19/nt0B8id/8g8Gf7fHAE2dOlVq3hIRfxd/5HI5hg8fjnXr1nm1ssEGYww2mw0eNLIFNeTPrz/P7gD5kz/5O/vb5wiBgkddYPfeey/WrFmDfv36ebNOfoe6wAiCIAjCe2zYsAEGgwFLly5F586dffY6Pu0CW716NZYuXYqePXuiR48eeOedd5osK5PJsHbtWndfgiAIgiAIwqe4nQAdP34c999/v/T/5uBx9Ls94hTxAwcObHKKgLYM+fPrz7M7QP7kT/7O/o8++igYY9BoNH6u3Z+4nQD9/PPPLv9PNEatVqNXr16N1jXjBfLn159nd4D8yZ/8nf1DQ0P9WCPXeDQGqK1CY4AIgiAIIvjw6RggV9TU1MBgMEgrttrTrVs3b7xEUGK1WlFXV4eIiAgolV4JdVBB/vz68+wOkD/5k7+z///+9z9YLBaMHj3a5eTJ/sCjdyY3NxerVq1CcnJyk2XcXp6+DWE2m5GVlYWBAwdyeRGQP7/+PLsD5E/+5O/sf+TIERgMhiZXj/AHHnWBLVq0COfPn8e9996L2NhYyOWNpxWaOXOmRxX0B95cCkMQBCgUCi4HhJM/v/48uwPkT/7k7+x/6NAhmM1m3HDDDYiIiPDZa7daF9jJkyfx+uuvY/r06Z4cps0ik8m4zP5FyJ9ff57dAfInf/J39v/LX/7ip9o0jUerwYeHhyMyMtJbdWlzmEwmZGdnw2Qy+bsqfoH8+fXn2R0gf/In/2Dw9ygBuuOOO/DRRx8F1NTWgQRjDGazmdv4kD+//jy7A+RP/uQfDP4ejQHatm0bPvjgA0RGRmLIkCGNJjgK1pmg6TF4giAIgvAeb775JgwGAxYvXhy8S2HY8/nnnyMiIgI2m83lk2A8Dv4iCIIgCMIRq9UKq9Xq72o44FECRDNBN49er0daWhoSEhK4nQ6d/Pn059kdIH/yJ39n/4ceegiMMYSHh/u5dn/C7zD1VkClUqF79+5QqVT+ropfIH9+/Xl2B8if/Mnf2b99+/Z+rJFrPBoDlJiYeMVurmCcCJHGABEEQRBE8NFqY4AeeeSRRgmQTqfDmTNnkJeXh5UrV3py+KBHEATU19cjPDwcCoXC39VpdcifX3+e3QHyJ3/yd/Y/efIkrFYrhg0bFjDdgh4lQI8++miT+55++mmcP38es2fP9uQlghqTyYSMjAwMHDgwYN7w1oT8+fXn2R0gf/Inf2f/X375BQaDAf379w+YmPhsNfhjx47h8ccfx/Hjx31xeJ/irS4wm80Gq9UKpVLpcpmQtg758+vPsztA/uRP/s7+X3/9NSwWC2688Uafjgdq9dXgXZGXlxdwj7y1NnK5HGq12t/V8Bvkz68/z+4A+ZM/+Tv7B+KSWR4lQNu3b2+0zWazobi4GN988w0mT57syeGDHrPZjKKiInTt2pXLi4H8+fXn2R0gf/In/2Dw93oCBDSsEXbTTTdh9erVnhw+6LHZbNDr9bDZbP6uil8gf379eXYHyJ/8yT8Y/H02BiiYocfgCYIgCMJ7bNu2DQaDAQsXLkSnTp189jrufH57NDrr5MmT0Ol0LvfV1tbi4MGDnhyeIAiCIIg2gMFggMFgCKgFUj1KgO677z5kZma63Hfx4kXuu8D0ej2Sk5Oh1+v9XRW/QP78+vPsDpA/+ZO/s//f/vY3LF26FFFRUX6smSNujwFatWoVioqKADQseb9mzRqXa3vk5OT4tJkrGFCpVIiJieF6OnTy59OfZ3eA/Mmf/J39O3bs6McaucbtFqC//OUvYIw5NGOJv4s/crkcw4cPx7p167xa2WBDpVKha9euXF8E5M+nP8/uAPmTP/kHg7/bLUBTpkzBlClTAABTp07FCy+8gBEjRni9Ym0BQRBgMBgQGhrK7XTo5M+nP8/uAPmTP/k7+589exZWqxWDBg1CaGion2vYgEdjgEpKSmAwGLxVlzaHyWRCWloaTCaTv6viF8ifX3+e3QHyJ3/yd/b//vvvcfDgQdTX1/uxZo54lACNGDECv//+u7fq0ubQaDQYNGgQNBqNv6viF8ifX3+e3QHyJ3/yd/aPj49HYmJiQE2M6NFEiAkJCdi3bx8OHTqExMTERgucyWQyrF271qMKBjNyuZzbCwAgf579eXYHyJ/8yd/Zf8aMGf6pTDN4lAD98MMPiImJgcVikSYfskcmk3ly+KDHbDajpKQEXbp0Caist7Ugf379eXYHyJ/8yT8Y/D1KgH7++Wdv1aNNIggCamtruZ0OgPz59efZHSB/8if/YPD3ylIYhw8fxokTJ1BbW4vo6GiMGjUKkyZN8kb9/AIthUEQBEEQ3uPvf/87DAYD7rvvPp/OCeTO57dHLUBmsxlLly7FkSNHoFAoEBUVhaqqKuzatQvjxo3Drl27Arr5iyAIgiAI31NbWwuDwRBQC6R69BTYtm3bcPr0aWzYsAEpKSk4cuQIkpOTsW7dOpw9exY7d+70Vj2DEoPBgHPnznE7VQD58+vPsztA/uRP/s7+9913Hx588EF06NDBfxVzwqME6Ouvv8ayZctw++23S5MdKZVKzJgxA8uWLcOBAwe8UslgRaFQIDo6msuJsADy59mfZ3eA/Mmf/J39Y2Nj0a1bt4CaHdqjLrDKykokJSW53JeUlISSkhJPDh/0qNVqdO/e3d/V8Bvkz68/z+4A+ZM/+QeDv0ctQHFxcTh9+rTLfSdPnkTXrl09OXzQY7PZoNfrA6rPszUhf379eXYHyJ/8yd/Z/8KFC0hOTobRaPRjzRzxKAGaO3cudu3ahXfeeQdFRUWwWCwoKirCnj17sGfPHsyePdtb9QxKjEYjtFptQL3hrQn58+vPsztA/uRP/s7+Bw8exBdffIG6ujo/1swRjx6Dt9lseOGFF/Dpp586THrIGMPMmTOxdu3aoJwM0VuPwdtsNhiNRmg0GsjlHuWaQQn58+vPsztA/uRP/s7+n3zyCUwmE6ZPn+7TgdDufH57ZR6gzMxMHD9+HLW1tYiMjMTYsWPRr18/Tw/rN2geIIIgCIIIPlptHiCRfv36BXXC4yvMZjPKysrQuXNnLudDIn9+/Xl2B8if/Mk/GPy9kgAdOXIEJ0+eRHV1NTp27IgJEyZg9OjR3jh0UCMIAiorKxEdHe3vqvgF8ufXn2d3gPzJn/yDwd+jLrCamhosWbIEZ8+ehVKpRIcOHVBdXQ1BEHDddddh27ZtAZ39NQV1gREEQRCE99i7dy+MRiPmzZvn08TInc9vj0ZnrV27FtnZ2di+fTvOnTuHI0eOICUlBW+//TbOnj2LLVu2eHJ4giAIgiDaABUVFSgvL4cgCP6uioRHCdCvv/6KlStX4qabbpKe9pLL5Zg6dSqeeOIJ7meCNhgMuHDhAtfToZM/n/48uwPkT/7k7+w/b948PPDAA4iMjPRjzRzxaAwQY6zJ5e67du0KvV7vyeGDHoVCgfbt23M9HTr58+nPsztA/uRP/s7+PXv29GONXONRC9DMmTOxc+dO6HQ6h+1WqxUffvghZs6c6VHlgh21Wo2ePXsG5Tgob0D+/Prz7A6QP/mTfzD4e9QCFBoaipycHNx444248cYb0aVLF1RVVeG///0viouLERkZidWrVwMAZDIZ1q5d65VKBws2mw1msxlqtZrbybDIn09/nt0B8id/8hf9GWNgjCE9PR2CIKBPnz4ICQkB0NBS5M/Jkj1KgL766iuEh4cDAI4dO+awLzY2FmfOnJF+D8YZoT1FnA584MCBCAsL83d1Wh3y59efZ3eA/Mmf/LVaLQYMGIDKykpYLBZ8+eWXMJlMuO2226RxQFFRUU0Oo2kNPEqAfv75Z2/Vo00SEhKChIQEKdvlDfLn159nd4D8yZ/8ExISoFAoYDabIZfL0blzZ5jNZmg0GqhUKmnlCH/i9YkQO3XqhPHjx9NEiGho3hNbyHiE/Pn159kdIH/yJ//w8HCYzWYwxqBWq3Hrrbc6lFGpVH6q3Z941DlZU1ODuXPnYtGiRdi7dy9++ukn7Nq1C/feey+WLFkCs9l8Vce12WzYunUrJk2ahOHDh+PBBx9Efn5+i/72q6++QkJCAgoKCq7qtb2JxWJBUVERLBaLv6viF8ifX3+e3QHyJ3/yDwb/gJwIcceOHdi/fz9effVVfPzxx7DZbFi0aNEVE6rLly/jlVdeuarX9AUWiwWlpaUBfxL4CvLn159nd4D8yZ/8S0tLpRagQB0D7NFSGNdccw1WrlyJO++8s9G+jz/+GNu3b8eRI0fcOqbZbMa4ceOwcuVK3H333QCA2tpaTJo0Ca+//jqmT5/u8u9sNhvmz58PlUqF33//HT/99BN69OjhvhRoKQyCIAiC8BSTyYTs7Gy0a9cO3333HcxmM2688Ua0b98eNTU16NixI2JiYrz6mq22FIYvJkJMTU2FTqfD+PHjpW3t27dHUlISTp482eTf/f3vf4fFYsGSJUvcfk2CIAiCIHxHcXExiouLr3pojC8IuIkQi4uLATQkUPbExMRI+5xJSUnBvn37sHHjRq/OvGk/jbfBYJDeOJvNBr1eL61pYrFYHJI9o9EIk8kEo9GIixcvoqqq6oplgYaEUq/Xw2q1AmiIo16vh9hIZzKZ3CprNBql19Hr9VJzrCAIbpe12WwAGlronOPSVNm6ujpcuHBBOrY7MbyaeLuKi6fxdo6LO2Xr6+uh1Wqh0+kaxdCTeDvHxZ2yzcXQG/EW4yI+BltTU+OVc/Zqzu+m4uJpvO3j0lRZvV6PCxcuSPfGlsSwLd0jqqurodVqYTQam71HeHLOBvI9wv7ef7UxDOZ7RE1NjbQUhs1mg9FoxKZNm/Daa6+hoqLCoQ6extv5HuEOHiVA9hMhPvfcc9i6dStefvllTJ06FUePHkVNTQ1Wr16N1atX49lnn23RMcXAOM8gGRISIgXJHr1ej5UrV2LlypXo3bu3JzoOCIKA9PR06ffs7GwpATObzdBqtVKwKyoqcOnSJalsTk4OioqKIJfLERoaiqysLNTX1wMAqqqqkJqaKpXNy8vD5cuXATScVFqtFnV1dQAg3URE8vPzHQaDa7VaVFdXA2hINrRarXSiX758GXl5eVLZ1NRUVFVVAYD0wSyeZEVFRcjJyZHKXrp0CRUVFQAa4qvVaqUTv7i4GNnZ2VLZ9PR0lJWVAfhz7gfxBK2qqpIegQSAzMxMlJaWAmg4kbVarfR+l5eXNxlvi8UiJRIAUFlZibS0tEbxBhouAq1WK8XbVQzFAfJivGtrawE0XLRarVa62AoKCq4Yb/EGUFhYiNzcXKlsWloaamtrERYWJsXFPt7OMSwvLwfQcP7bx7ukpARZWVlS2YyMjCbjXVZWhoyMDKlsVlYWSkpKAPx5zjYX76ZiWFVV5RDv3NxcFBYWAmi4Tlyds3K5HGFhYSgpKZHizRiTkiKgoWvb/pxtLt5XOmfT0tJQWVkJANDpdNBqtdKN0dU56xxv8d5SWlqKzMxMqWxmZmaz8W7qnBUEweHG3tQ9oql4B/s94vLlywgLC4NcLm/2HlFWVtYo3m3hHiGXy6FUKpGVldXsPaK5eAfzPaKoqAiMMcjlcthsNqSnp0tuBoPB4bj28fbGPcIdPBoDNGXKlJa/kEyGn3766YrlDh06hOXLlyM5ORkajUba/thjj8FsNmPnzp0O5Z999llUVFRg165dAIDjx4/jvvvu88oYoP79+yM0NBRAw5umUCigVquljDYkJAQKhQIWiwUWi0Wa8MpoNEImkyEkJASMMRgMBrfKqtVqKJVKWK1WmM1mhIaGQiaTSTfTlpZljEkx1Ov1UKlUUKlUEAQBJpPJrbIajQZyuRxmsxmCIDjERalUtrhsS2PoabzFuHgab+e4eBJv+7jYbLarjrdzXLwRb6PRCLlc7nG8xbh4K95iXDyNt31cPI23fVysVivdI+geQfeIJmJos9mQlZWFkJAQDBkyBEajEUeOHEFsbCzMZjM6duyI9u3be/UeISbULRkD5FEC5AtSUlJw55134ocffkBcXJy0fd68eUhISMCaNWscyickJEjBAuBw4T700EN46KGH3K6DtwZB22w2WK1WKJVKbqdDJ38+/Xl2B8if/MnfarXCYrEgNzcXkZGR6NOnDywWC06ePIlu3boFxCBor0yEePjwYZw4cQK1tbWIjo7GqFGjMGnSpKs6VmJiIsLDw3H8+HEpAaqtrcXFixcxf/78RuW///57h9+Tk5Px1FNPYffu3YiPj7+qOngLmg6d/Hn159kdIH/yJ3+tVuswLEXsAhMbKwIBj2piNpuxdOlSHDlyBAqFAlFRUaiqqsKuXbswbtw47Nq1y+3VYNVqNebPn49NmzYhOjoa3bt3x8aNGxEbG4upU6dCEARUVlYiIiICGo0GvXr1cvh7sU+4W7du6NChgyd6HhMSEoL+/ftzPR06+fPpz7M7QP7kT/79+/eHXC6XFkMVO5u8+aCSp3jUNrdt2zacPn0aGzZsQEpKCo4cOYLk5GSsW7cOZ8+ebTRep6UsX74cc+bMwfPPP4958+ZBoVBg7969UKlUKCoqwrXXXotvvvnGk6q3CgqFApGRkQH1hrcm5M+vP8/uAPmTP/nb+4sDwcV9gYJHY4AmT56M+fPn429/+1ujfXv37sU///lP/Pjjjx5V0B94awyQxWJBVVUVoqKiAmLdk9aG/Pn159kdIH/yJ/+qqiqo1WoUFBQgNDQU/fv3B9Dw9Ft4eHhAjAHyqAWosrISSUlJLvclJSVJj9fxisViweXLl7meDp38+fTn2R0gf/Inf9FffBpMJJBagDwaAxQXF4fTp087zNoscvLkyUaTGfJGWFgYRowY4e9q+A3y59efZ3eA/Mmf/EeMGCHNyyQOgAb+TIACYY0wjxKguXPnYv369dBoNLjtttvQqVMnlJeX4+uvv8aePXuwbNkyb9WTIAiCIIggQhxhExYWhv3790tTA4gEdQI0b948XLx4EZs2bcLmzZul7YwxzJw5E4sXL/a4gsGM0WhEbm4uevXq5TCpIy+QP7/+PLsD5E/+5J+bm4uOHTsCAFQqFa6//no/16oxHiVAcrkcr7/+OhYuXIgTJ06gpqYGkZGRGDt2LPr16+etOgYtMpkMarXa71muvyB/fv15dgfIn/zJX5wCp6nnrAJhDuaAmwk6EPDWU2AEQRAEwSt1dXXIy8uDSqXCl19+CbVajTvvvBNAw/phXbt2RXR0tFdfs9VngiZcwxiDIAhQKBRcfhMgf379eXYHyJ/8yV8QBKmVp6KiAk8//TTatWsnJUCBAH+LlLQiBoMBycnJ0uq6vEH+/Prz7A6QP/mTf3JyMvR6PRhjCAkJwdSpUzF58mR/V80Bt1uATCYTt9N7u4tarUbfvn3dXg6krUD+/Prz7A6QP/mTf9++faVH3WNjY/Huu+86lAmE0TdutwBNmTIFf/zxBwBg+/bt3E922BxKpRJRUVEBtfhba0L+/Prz7A6QP/mTv+jfVKIjk8n83j3odgJUV1eH0tJSAMD/+3//jxKgZrBarSgvL3eYBIonyJ9ff57dAfInf/IvLy+XZoIOVNxOT4cMGYInn3wSb7zxBhhjeOSRR5ps5pPJZEG5Fpi3MJvNyM3NRVhYGJffBMifX3+e3QHyJ3/yz83NRbdu3QAAycnJuOOOO9CzZ0/89ttvfq7dn7j9zrz55pt47733UF1djS+++AJJSUlef4ytrRAWFoZRo0b5uxp+g/z59efZHSB/8if/UaNGobq6GowxWK1WWCwWh1XhAwG3E6AuXbpg1apVAIDjx4/jiSeeQGJiotcrRhAEQRBEcCOTyaTERy6XN9rnTzx6DP7nn3+m5KcZjEYj0tPTYTQa/V0Vv0D+/Prz7A6QP/mTv72/OBYq0LoDvVKbw4cP48SJE6itrUVUVBRGjRqF6667zhuHDmpkMhnkcrnfs1x/Qf78+vPsDpA/+ZO/fWuP2AJknwAFwmPwHiVAZrMZS5cuxZEjR6BQKBAVFYWqqirs3r0b48aNw65du7idBwEAQkJCuF4Tjfz59efZHSB/8if/fv36oaqqCsCfCZBCoZDKBOVj8PZs27YNp0+fxoYNG5CSkoIjR44gOTkZ69atw9mzZ7Fz505v1TMoYYzBZrMFRKbrD8ifX3+e3QHyJ3/yt9lsUteX+K99AhQIeJQAff3111i2bBluv/12SUypVGLGjBlYtmwZDhw44JVKBisGgwF//PEH19Ohkz+f/jy7A+RP/uT/xx9/QKfTQSaTwWazAWhjCVBlZSWSkpJc7ktKSuJ+kkS1Wo3evXtz2w1I/vz68+wOkD/5k3/v3r2hVCohl8tdDoIOhNYxjxKguLg4nD592uW+kydPomvXrp4cPuhRKpXo2LFjwI18by3In19/nt0B8id/8u/YsaM0ENxVF1jQjwGaO3cudu3ahXfeeQdFRUWwWCwoKirCnj17sGfPHsyePdtb9QxKrFYrKisruZ4Onfz59OfZHSB/8if/yspKmM1mh3mA2lQX2Lx583D77bdj06ZNmDJlCoYOHYopU6Zg8+bNmD59OhYvXuytegYlZrMZ2dnZMJvN/q6KXyB/fv15dgfIn/zJPzs7GwaDockEKBC6wGTMC7XIzMzEiRMnUFNTg8jISIwdOzaoHwE8d+4cgIZ1zzxBHAnP63wQ5M+vP8/uAPmTP/nbbDbk5OQAAD799FOsWrUKt9xyC/bu3QsAqKqqQlxcHCIiIrz62u58fnulg7Jfv35BnfD4CplMFnBNfq0J+fPrz7M7QP7kT/72EyFOnDgRW7duRZcuXfxYq8Z41AVGNI/JZEJmZiZMJpO/q+IXyJ9ff57dAfInf/LPyMiAyWSCTCZDnz59MHv2bFx77bX+rpoDlAD5EJoMi/x59efZHSB/8id/QRBgs9ma7AIMhNh4ZQxQW8NbY4AIgiAIgkcsFguys7OhVqtx8eJFlJSUICEhAb179wbQMAaoV69eCA8P9+rruvP57VELEK/NewRBEARBNA1jDIwxyOVyvPvuu1i4cCG+/fZbf1fLAY8SoIkTJ+Kll15CSkqKt+rTptDr9Th9+jT0er2/q+IXyJ9ff57dAfInf/IX/WUyGXr37o2RI0eiW7du/q6aAx4lQAsXLsTvv/+O//u//8O0adPwzjvvoKyszFt1C3pUKhXi4uKgUqn8XRW/QP78+vPsDpA/+ZN/jx49oFQqIZPJ8MQTT+DAgQO44447/F01B7wyBujMmTP4/PPP8d1338FgMGDChAmYPXs2pkyZEpQnAI0BIgiCIIirR6/XIzs7Gx06dHA5ELqqqgq9e/dGu3btvPq6rTYGSGTkyJF49dVXcfToUbz99tswGAx4/PHHce211+KNN97A5cuXvfEyQYfVakV1dTXX06GTP5/+PLsD5E/+5F9VVQVBEFwmP2K7i78nifTaY/BFRUXYt28ftm7dipMnT6J3796YNWsWDh8+jGnTpuGbb77x1ksFDWazGZmZmVxPh07+fPrz7A6QP/mTf1ZWluQ/bdo0jB49WhovLA6Otp8s0R941AVWX1+PQ4cO4YsvvsDp06eh0Whwyy23YM6cORg5cqRUbsmSJbhw4QKOHDnilUr7Gm8uhWG1WqV+UN4gf379eXYHyJ/8yb+qqgqFhYWIjo7GyJEjUVJSgkOHDmHw4MEQBAE6nQ59+vRBSEiIV1+71ZbCmDhxIsxmM4YNG4ZXXnkF06ZNQ1hYWKNyQ4YMwcWLFz15qaBEJpMF5Rgob0H+/Prz7A6QP/mTv33yp9PpAEAa7yNOkOjv5NCj9qcBAwbgiy++wMcff4w5c+Y4JD+1tbU4ePAgAGDBggX49ddfPapoMGIymZCTk8PtfEnkz68/z+4A+ZM/+Yv+jDEpARJzhEDpAvPo1S9cuNDkG3zx4kWsXr0aQEPWx+PCcIwxGI3GgJjy2x+QP7/+PLsD5E/+5G8wGADAIQ5iCxBjLCBagNweA7Rq1SoUFRUBAE6cOIGkpCSXU1nn5ORAqVTi559/9k5NWxF6DJ4gCIIgrp7KykoUFRXBZrNh6NChAIC8vDwoFAopKerTp4/XW4F8+hj8X/7yF2mKaxHxd/upr4cPH45169a5e3iCIAiCIIIccZyP2P2l0WiknqBAaQFyexD0lClTMGXKFADAvffeizVr1qBfv35er1hbQK/XIy0tDQkJCS4Hh7d1yJ9ff57dAfInf/I/e/YsOnbsKC0HYj/hIWMMCoUi+BIge/7xj394qx5tEpVKhW7dunH7NAD58+vPsztA/uRP/p07d4ZcLm80ABr4cxC0v3E7AVq9ejWWLl2Knj17SoOcm0Imk2Ht2rVXXblgR6VSoUuXLv6uht8gf379eXYHyJ/8yV9s/XF+BB5o6B4LhAej3E6Ajh8/jvvvv1/6f3P4u3nL34iTPfH6FBz58+vPsztA/uRP/jU1NVAoFNLTYM4tQIEQF7cTIPunuoLxCa/WxGQyIT09HQMHDuSyH5j8+fXn2R0gf/In/6ysLPTu3bttdYERLUej0WDw4MHc9gOTP7/+PLsD5E/+fPuHhISgf//+UCqVLgdB22y24EyAtm/f3uKyMpkMjzzyiLsv0WaQy+VeX+ckmCB/fv15dgfIn/z59gcaxgEpFAqMGTMGr7/+Orp37+6wPyi7wCgBajlmsxnFxcWIjY2FWq32d3VaHfLn159nd4D8yZ9vf6PRiIKCAnTv3h0JCQlISEhoVCYQxgi7nQClpqb6oh5tEkEQUF9fD0EQ/F0Vv0D+/Prz7A6QP/nz7W82m1FXV9fkUiDiRIj+xu2lMFxRUVEBs9ksydpsNhgMBpw+fRpz5871uJKtDS2FQRAEQRBXh16vR3Z2NqKiopCWlobKykr07t0bXbt2BdCwTEZcXBzat2/v9dd25/Pbo0HQqampWLlyJTIzM13ul8lkQZkAEQRBEARxdQiCIDWI7Ny5E5988gmee+45LF26FEBDbhAIg6A9qsGGDRtQU1ODVatWYezYsbj22mvxwgsv4Prrr4dMJsMHH3zgrXoGJXq9HsnJydIoeN4gf379eXYHyJ/8+favr69HWloaDAYDOnfujAEDBqBz584OZQKhC8yjBCg5ORmPPfYYHnjgAUybNg0GgwF33303/v73v+Omm27ifqkMlUqFmJgYbh+FJH9+/Xl2B8if/Pn2VygU6NixI5RKJZ577jn8+uuvuPPOOwFAahkK+gTIbDajd+/eAIDevXs7DJCeNWsWzp4968nhgx6VSoWuXbtyexGQP7/+PLsD5E/+fPsDaDIBFCdBDPousG7duiE/Px9AQwJUX1+PgoICAIBarUZNTY3nNQxieH8SgPz59efZHSB/8ufb32QywWQyufQXnwAL+hagqVOnYvPmzTh06BC6dOmCvn374q233kJaWhr27duHnj17XtVxbTYbtm7dikmTJmH48OF48MEHpUTLFenp6Vi8eDGuueYajB8/HsuXL0dhYeHVankNk8mEtLQ0mEwmf1fFL5A/v/48uwPkT/58++t0OuTk5KCmpgbDhw/HX/7yF2lNMJvN1jYSoGXLlmHkyJH4z3/+A6BhpfgffvgBM2bMwO+//45HH330qo67Y8cO7N+/H6+++io+/vhj2Gw2LFq0CGazuVHZqqoqLFiwABqNBv/4xz+wZ88eVFZWYtGiRX4/+TQaDZKSkqDRaPxaD39B/vz68+wOkD/58+vPGINSqUR8fDyqq6tRVlaGzMxMKRaB1AXm0WPwISEh2Lp1KywWCwBg0qRJOHDgAC5cuIBBgwYhLi7O7WOazWbs27cPK1euxA033AAA2LJlCyZNmoTvv/8e06dPdyj/448/Qq/XY8OGDVKAN27ciBtuuAFnzpzB+PHjPVH0CLlcjtDQUL+9vr8hf379eXYHyJ/8+fW32WwAGhY/vXTpEgCgS5cuUotPm+kCE7Ef6BQXF4dbb731qpIfoGFuIZ1O55C4tG/fHklJSTh58mSj8uPHj8eOHTscMm0xs6ytrb2qOngLs9mMgoICly1XPED+/Prz7A6QP/nz6y8IAoxGI0pKSnD58mUAQGxsrLS/zSRAiYmJGDhwYLM/7lJcXAwA0oyRIjExMdI+e3r06IFx48Y5bNu9ezc0Gg3GjBnj9uvbI/ZZiv8XT2abzQa9Xi8N8LJYLA7zPRiNRmkAWFVVlcNguKbKAg0nhl6vh9VqBQBYrVbo9XrpsUFxYFlLyxqNRul19Hq91FInCILbZcWs3mw2N4pLU2WNRiMqKysld3dieDXxdhUXT+PtHBd3yppMJlRXV8NsNjeKoSfxdo6LO2Wbi6E34i3GRRAEVFdXw2AweOWcvZrzu6m4eBpv+7g0VdZisaCystLh9yvFsC3dI/R6PaqrqyEIQrP3CE/O2UC+R9jf+682hsF6jxD31dXVoaioCADQsWNHh3gbjUYpAfI03s73CHfwKAF65JFHGv088MADGDp0KDp06IDXXnvN7WOKb47zAnIhISEtGtPzj3/8Ax9++CFWrlyJ6Ohot19fRBAEpKenS79nZ2dLCZjZbIZWq5WCXVFRITX1AUBOTg6KiooQGhqKxMREZGdno76+HkDDmCX76QLy8vKkLNlms0Gr1aKurg4AUF1dDa1WK5XNz893GAyu1WpRXV0NAKirq4NWq5VO9MuXLyMvL08qm5qaiqqqKgANk1RptVrpJCsqKkJOTo5U9tKlS6ioqADQcIJptVrpxC8uLkZ2drZUNj09HWVlZQAaTmStViudoHV1dQ5NwZmZmSgtLQXQcCJrtVrp/S4vL28y3haLBVqtFjqdDkDDNOppaWmN4g00XARarVaKt6sYik8qivEWWwpramqg1Wqli62goOCK8RZvAIWFhcjNzZXKipOADR48GIIgNIq3cwzLy8sBNJz/9vEuKSlBVlaWVDYjI6PJeJeVlSEjI0Mqm5WVhZKSEgB/nrPNxbupGFZVVTnEOzc3V3rIQHRzPmdDQ0MxePBglJaWSvFmjEGr1UpPh9bW1jqcs83F+0rnrDjdPtAwAFOr1Uo3RlfnrHO8xXtLaWmpw8z2mZmZzca7qXNWoVDAYrFI51JT94im4h3s94jCwkIMHjwYoaGhzd4jxPEh9vFuC/eI0NBQ9OjRA9nZ2c3eI5qLd7DeI2w2G0pLSxERESFdk2q1WipbU1OD7OxsKQGyj7c37hFuwXzEU089xdasWeP233333XcsPj6eGQwGh+3Lly9nDz30UJN/Z7PZ2JYtW1h8fDzbsmWL269rT0pKCktJSWF6vV7aptfrmclkYowxJggC0+l0zGq1MsYYM5vNTKfTSWUNBgMzGo1Svdwta7FYGGOMWSwWptPpmM1mY4wxZjQa3SprH0OdTsfMZjNjjDGr1ep2WUEQGGOMmUymRnFxp2xLY+hpvMW4eBpv57h4Em/7uHgSb+e4eCPeBoPBK/EW4+KteItx8TTe9nHxNN72caF7BN0j6B7hWLa2tpadOnWKZWVlsZkzZzIA7JlnnmG5ubns8uXL7Ny5cywjI8Nr8Xa+R4if3y3BK4uhuuLYsWN4/PHHcfz4cbf+LiUlBXfeeSd++OEHh3FE8+bNQ0JCAtasWdPobywWC1avXo2vv/4azzzzDB544AGP6u6txVANBgMyMzPRr18/LgfEkT+//jy7A+RP/vz619TUICMjAzU1NXj22Wdx/PhxbN++HTNnzgTQ0FrUpUsXdOrUySev787nt8+eQ8vLy5Oa89whMTER4eHhDolTbW0tLl682OSYnqeffhrfffcdNm/e7HHy400UCgWioqKgUCj8XRW/QP78+vPsDpA/+fPrLwgCFAoFIiMjpe7MLl26OJRRKj16AN1reFSL7du3N9pms9lQXFyMb775BpMnT3b7mGq1GvPnz8emTZsQHR2N7t27Y+PGjYiNjcXUqVMhCAIqKysREREBjUaDzz77DN988w2efvppjB07Vur7BCCV8RdqtRrdu3f32+v7G/Ln159nd4D8yZ9ff6vVCrVajQ4dOjSZAAVKYuj1BAgAwsPDcdNNN2H16tVXddzly5fDarXi+eefh9FoxJgxY7B3716oVCoUFBTgxhtvxLp16zBr1ix8/fXXABpWpt+wYYPDccQy/sJms8FoNEKj0QTEpE+tDfnz68+zO0D+5M+vv9VqhUwmQ1lZmTQo3TkBCpSY+GwMUDDjrTFA4tMRAwcORFhYmDeqFlSQP7/+PLsD5E/+/Prn5OSgtrYWJ06cwIMPPojw8HDpCTFxjbQ+ffr4rHfGnc9vj1qA3F1vq1u3bp68XNAREhKCxMREhISE+LsqfoH8+fXn2R0gf/Ln058xBkEQEBoaKg3+tm/9EccHtYkusClTprg1m6Pbz+gHOQqFAu3atfN3NfwG+fPrz7M7QP7kz6e/zWaT1gJLTEzEhg0bHAY822y2tpMAvfXWW3jppZcwaNAg3H777ejSpQuqqqrw888/49tvv8XDDz/M7UAwoOHx/LKyMnTu3NlhuRBeIH9+/Xl2B8if/Pn0FwQBgiBIS13cddddDv42mw1KpTJgxgB5lAB9+eWXmDx5MtavX++wfdq0aejYsSPOnDmDZcuWeVTBYMZqtaK8vBxRUVFcXQQi5M+vP8/uAPmTP5/+NptN+qmsrERkZKSDv9g9Fih4lIYdO3as0ersItdddx1Onz7tyeGDntDQUAwdOjSg3vDWhPz59efZHSB/8ufTX2wBateuHerr63HmzBlpOQxxfyAlhB4lQFFRUUhOTna579ixY40efSMIgiAIom1is9mkccHr16/HXXfdhSNHjjjsD6QEyKMusDlz5mDnzp0wGAyYMmUKoqOjUV5eju+++w7//Oc/8cILL3irnkGJwWBAdnY2+vTpw903AYD8efbn2R0gf/Ln019ctNRgMCAyMhL9+vVzGAcsk8kCZgA04GECtHTpUtTV1eG9997D3r17ATQ8BhcaGoonnngCc+fO9UolgxWFQoHw8PCAesNbE/Ln159nd4D8yZ9Pf0EQwBiDQqHAa6+9hs6dO0OtVjuUCaSYeGUixNraWpw9exY1NTWIiorC8OHDER4e7o36+QVvTYRIEARBELxQWlqKiooKREZGNtpns9lQV1fn00kQAT8shlpWVoacnBykpaVhwIABSE1NRX19vTcOHdSI06GLzYK8Qf78+vPsDpA/+fPpb7FYIJfLXfoLggC5XB4wj8ADHiZANpsNzz//PKZPn461a9di7969KC8vx44dOzBjxgwUFxd7q55BidFoxIULF2A0Gv1dFb9A/vz68+wOkD/58+lvsVigUCjwyy+/YOTIkVi0aJG0L9BmgQY8TIB27NiBAwcO4LXXXsPRo0ch9qY99dRTsNls2LJli1cqGayEhIQgPj6eu+nQRcifX3+e3QHyJ3/+/MVlMGQyGcrLy1FTUwO9Xi/tt9lskMvlbScB+vTTT7F8+XLMnj0bHTp0kLYPHDgQy5cvx9GjRz2tX1CjUCgQERERUG94a0L+/Prz7A6QP/nz5y8IgpTklJWVAQBiY2Ol/TabrdGAaH/jUQJUXl6OgQMHutzXpUsX1NbWenL4oMdisaC4uBgWi8XfVfEL5M+vP8/uAPmTP3/+4gzQCoUCRUVFAIDOnTtL+wVBaFsJUK9evfDf//7X5b4TJ06gV69enhw+6OHxIrCH/Pn159kdIH/y589fTIDkcrmUAHXq1Mlhv/3CqIGAR7W5//778eKLL8JisWDy5MmQyWTIzc3F8ePHsW/fPjzzzDPeqmdQEhYWhuHDh/u7Gn6D/Pn159kdIH/y58/fvgusvLwcANCzZ09pvzg/UCDhUQJ05513orKyEjt37sQ///lPMMawYsUKqFQqLFq0CPPmzfNWPQmCIAiCCFAEQZD+X1JSAgCIiYlxKNOmEiAAWLJkCe655x788ccfqK6uRvv27TFs2DCHQdG8YjQakZOTg969e/t04qdAhfz59efZHSB/8ufPX0yABEGQpsCJjo4G0ND6E2hPgAFeSIAAIDw8HJMmTfLGodoUMpkMGo1GWhyON8ifX3+e3QHyJ3/+/MVJEEtKSmC1WqFQKKSnwAJxDiDASwkQ4ZqQkBD07t3b39XwG+TPrz/P7gD5kz9//iaTCQqFApcvXwYAdOvWDWFhYQD+TIACaRZowEtLYRCuYYzBYrHAC8utBSXkz68/z+4A+ZM/X/6ir0KhQEFBAYCGBEj0t9lsAbcSPEAJkE8xGAxISUmBwWDwd1X8Avnz68+zO0D+5M+XvyAI0lpfYgIUHh4uLQUiCAJUKlXAdQlSAuRDQkJC0L9/f66mQ7eH/Pn159kdIH/y58tfTIDsW4AGDBggTXwYiLNAAzQGyKcoFApERkb6uxp+g/z59efZHSB/8ufL32q1SgnQ/PnzMWzYMAwaNEjq8hJbgAINagHyIRaLBaWlpVzNBmoP+fPrz7M7QP7kz5e/2NUnk8kwZMgQ3HnnnejevbuDf6DNAg1QAuRTLBYLCgoKuLkInCF/fv15dgfIn/z58bfZbKirq3Po7rNarSgqKoLVagXw5zxAgYaM8TJM3Q3OnTsHABgyZIifa0IQBEEQgYvBYEBOTg7Cw8Oh1+vxzTffoFevXhg3bhyAhuSnuroaffr0kR6L9yXufH4HXpsUQRAEQRBBgdFolMb/ZGRkYMWKFYiNjcXp06cBQFohPtAegQeoC8ynGI1GXLp0SXoUkDfIn19/nt0B8id/PvwZY6irq5Oe8JLL5bjuuuswduxYZGZmOiRHgZgAUQuQD5HJZFAqlQE390FrQf78+vPsDpA/+fPhbzabYTAYpPXOhg0bhn/+858wmUwoLi6GTCaT5gcKxASIxgC5gMYAEQRBEETz1NTUID8/X1r01BU6nQ4qlarVlgZx5/ObusB8CGMMgiBwMx26M+TPrz/P7gD5kz8f/vX19dLj7RUVFcjPzwfg6C8IQkBOgghQAuRTDAYDzp49y8106M6QP7/+PLsD5E/+bd/fYrFAr9dLj79/8sknGDduHJ566ikYjUZcuHABRqMxYGeBBigB8ilqtRp9+/YN2Dff15A/v/48uwPkT/5t399oNMJkMkmOP//8MwAgMTERKpUKcXFxUKlUYIwF5CSIAA2C9ilKpRJRUVH+robfIH9+/Xl2B8if/Nu+v16vh1wuh0wmg06nw4kTJwAAN9xwA5RKJTp06CCVDcQB0AC1APkUq9WK8vJyaTZM3iB/fv15dgfIn/zbtr8gCKivr5e6v44ePQqLxYJevXqhb9++sFqtqKyshNVqDdhZoAFKgHyK2WxGbm4uzGazv6viF8ifX3+e3QHyJ/+27W8ymWA0GqUESOz+mjx5MmQymbQUiF6vh0qlCtguMHoM3gXeegzePrRtfT4IV5A/v/48uwPkT/5t27+iogJFRUWIjo4GYwzjxo1DQUEB3n//fdx0002Sf319PTQaDeLi4lotDrQURoDQFk98dyB/fv15dgfIn/zbrr84+7PY+pOZmYmCggKo1WpMmDABwJ/+FosFnTp1Cth4UBeYDzGZTMjIyIDJZPJ3VfwC+fPrz7M7QP7k33b9m+r+GjdunLTYqclkQmZmJqxWK0JDQ/1W1ytBCRBBEARBEC3CaDTCarVK43p++eUXAA3jf+yxWCxQq9VSohSI0BggF9BSGARBEATRmPz8fOj1ekRERECv12PQoEEwm8349ddfMWDAAKlcTU0NoqKiEBsb26r1ozFAAUJbHwh3JcifX3+e3QHyJ/+26S8ufiq26vzvf/+D2WxGjx490L9/f6mcuARGIHd/AdQF5lMMBgPOnDnTpqdDbw7y59efZ3eA/Mm/bfobjUaYzWZp9mf77i/7RK+urg5paWkBvxYaJUA+RK1Wo1evXm16OvTmIH9+/Xl2B8if/Numv06nc5jVOTo6Gl27dsWUKVMcytlsNvTt2xft2rVr7Sq6BY0BcgGNASIIgiDaKowxlz/N7bNYLCgqKkK7du2gUqkaHct+tueqqip07doV0dHRre5GY4ACBKvVirq6OkRERATsTJi+hPz59efZHSB/8m+5f1MJx5USkqbK2Gw2hx9xm/0+V3/X3GuJaDQah+QHaBjjZN/9Jb6GwWBweFosEAncmrUBzGYzsrKyMHDgwIA+CXwF+fPrz7M7QP7B6H+1CYerH71ej7S0NPTv3x8ajcZlUmKfmLg6ZlPb7OsKNB5kbZ+QiP93/mlun6uyrsjIyECfPn0aLXRqMpkgk8lw+fJlREVFBfT7T11gLvDmUhg2m01aMZc3yJ9ff57dAfL31N+dZMOdcs6JiP2PeIwrHcu+nH19RWQymUO3kBiDphIP522uylwpGWltDAYDBg8eDI1Gg59++snhUffq6mpERUUhJibGL+c/dYEFCDKZrFF2zBPkz68/z+5A2/L3RreMcxJypYTEubXjSq/VXN2BlreEiL/bJy3NJS68kpmZCbVajbCwMHTp0sVhn81mQ7t27YLi/KcEyIeYTCZcvnwZ3bt3D+jZMH0F+fPrz7M74Dt/b44VcU5AmkpKnP/2Sq8lk8lgNptRUlKCLl26ODwJJe6/UpdLc8mIq6Qk0DCZTCguLkZsbGzQn/+MNczpY7FYpDE9gwcPxrlz53D58mWH+IuzP8tkMmRlZQX89U8JkA9hjMFqtV7xW0pbhfz59efBvbkkwGg0QqfTQa/XQxCEFiUk3h68Km4XaSpRaOkYkKYSEVeJi9FoRH19PSIjI6HRaLwc+cDHZrPBaDTCYDDAbDZLyYPzv1arFT169ECHDh0AAKWlpTh37hzat2+PMWPGSMf79NNPodPpXB7D1TEtFgtmzZqFSZMmAQAuXLiA119/Hd26dcOmTZuk4y5cuFBas6u549rz5JNPYsWKFVAqlejVq5fDPpPJJA2UDobrnxIgH6LRaBAfH+/vavgN8ufXvzXdvdEt41zmSmNFmhu8Km5XKpUoKipq1J0j0tTg1ebGgYjbxUeOr2bwamug0WjQr18/t/7GftwM0PAkVWVlZZMf8OKP84f19ddfj/bt2wMAzp49i9OnTyM+Pl5KBvR6Pd5+++0rJhLO/7788ssYOnQoAODzzz/Hpk2bcN1112HdunVS/ePj46V6tZQdO3bgjjvuAAAcP34cDz30EK655hp89tlnUpmXX34ZFRUVbsVzyJAhknNdXR3++9//NnpPcnNzkZGR4dZxrVZrk/ssFgs6d+4cNPc+SoAIgvAa7iQb7pTz1eBV520tHajqqovGVRlfJyNiS5vFYnFYdqCsrAw6nQ6dOnVCeHg4gIa5WdLT093+4F+6dKmUlHz66adITk7GLbfcggkTJgBoeBpo48aNLWqVsP/30KFD6Ny5MwDgpZdewjvvvIPHHnsMTz/9NAAgJycH119/vdsx+f777zFo0CAADTMVb9q0Cffcc4+UDJhMJmzfvt3t41ZVVUn/1+l0yMnJQUJCgrRN7PprKkGQyWRQqVRQKpUO/9p3EUZHR2Po0KGNEpUpU6agvr6+0d8qlUqX21QqFUaPHi39ff/+/fH2229LiaHIxo0bYTKZmjxGU/+6wmazQSaTBXSXlzOUAPkQvV6P1NRUJCYmIiwszN/VaXXI37/+V5NoNFfOuQWkucGrBoMBmZmZ6NOnDzQaTZOv1VzdgSu3cFzN4FUxaWjuA1ulUjk07588eRJ6vR4jR45EREQEACA1NRUpKSku/95gMKC0tFQqK+7r0KEDVq1aJR13zZo1yMrKwlNPPSU9tfLdd99hy5YtLe7uAICIiAikpqZKx3300Ufx22+/Ydu2bZg1axYA4MSJE1i4cKEbZ1ADDz74oPSh9uuvv+Kzzz5D9+7dpQSouroaX3/9tdvHNZvN0v/F98o+eVAqlU0mDc198Nt3uSUmJuKvf/2r1HIDAKGhoVi0aJHL4zX3wZ+UlCQdY+rUqUhISGg00d9vv/0GhUIBQRCQn5+PAQMGICIiAmq1ukWDgidOnIhvv/220fa33nrrygFthk6dOmHOnDmNto8cOdKj49pjMpkQEhKCkJAQv9/7WkpAJkA2mw3bt2/HJ598grq6OowZMwYvvvgievbs6bJ8VVUVXnvtNRw+fBgymQy33XYbnn76ab8vxKZSqdCjR48mM+a2Dvn/6e+NbpmmWkSaG0Ni/7dXei2g6XEijP05eFUc12C1WiEIAgRBkD6MxR+TyYTa2lpUVlYCALp06YIhQ4ZI35L/85//QBAE3HPPPdI8Id99912TCUVT/w4bNgzPPPOMVM9bb70VOp0O//73v6VHczds2IB9+/Y1ShqaY8SIEQ4f6kuXLkVhYSG++eYbDBs2DADw008/Ye3atS08Gxro2bOnQwJ0/PhxpKSk4P7775e21dTU4Pz5824d17nLJSwsrNEHT3h4OHr37u3WN33nOVxuvvlmdOvWDSNGjJC2xcXF4bXXXnP4G5lMBovFgvbt20Oj0bg8rtj6AwArVqzAI4884rB0Qq9evVBQUOBWHJy59dZbceuttzps02g0ePnllz06bkxMDGJiYhptj4uLA9DwfoSFhSEyMpKb+5/JZELHjh2hUCiC5t4fkAnQjh07sH//fqxfvx6xsbHYuHEjFi1ahAMHDrhcW2X58uUwGAx47733UFtbi+eeew56vR5vvPGGH2r/JyqVyuVFwguB6u+tcSLNdc+I2wVBQH19PRhjMJlMqKqqgkwmQ6dOnaTjpKWlQa/XNzmmwTnBsFgsGDFihJRQlJSUYP/+/WjXrh2WLl0qJSpbt25FdnZ2o+TEPhFw/n3u3LlYvnw5AKCgoADXX3891Go1tFqtFL9HH30UP//8s1sxnzNnDt5++23JWUwC5syZI33IHjp0CP/+97/dOq7zt+qMjAzo9XqYTCZpm8ViQV1dXbPHcW5pcF7DKD4+Hh06dHC4//Tq1QuTJ09uUauE+G9UVJTDcR977DFUV1cjMTFR2jZp0iT84x//aPIY4k9z3RL79u1r5Dhx4kQcPXq02Thcidtvvx233367w7aYmBgsWLDAo+M6d80Awb2Kukqlkq5xHhDvd2KjQ6De+50JuATIbDZj3759WLlyJW644QYAwJYtWzBp0iR8//33mD59ukP5P/74AydOnMA333wj9Zu+8sorWLRoEVasWNFojoLWRPzwCw8PD4o5EbzNlfybSibMZrPDj/gBbTabERsbK3WpFBYWIisrC9HR0UhISABjDevVfPXVVw5/K/7rauCk+P85c+ZIg/ZOnjyJDz/8EAMGDMDDDz8s1XHx4sWor69vcTIhCAJeeOEFzJ8/HwqFAsePH8fChQsxaNAgfP3111KismzZMuTn57sV22eeeUYa05CXl4c9e/YgNjYWTz31lFTmyJEjOHPmjFvHLS8vl/4vl8thNBobtZiICYtcLm+2W0IulyMkJAQqlcqh9ValUuHmm2+GSqVy+JC79tprERYW5lbrRNeuXR3q9v7770MulzvcfJcsWYK5c+c2e6wrXZ8fffRRo23Tp09vdD8SEQQBOp3uivOh3HLLLY22devWDd26dWu2PoFOS/1bi6a6XH21XfQPCwtr9t7n6XZvHMMb261WK8LCwqQEKFg++wIuAUpNTYVOp8P48eOlbe3bt0dSUhJOnjzZ6IZz6tQpdO7c2WHQ2NixYyGTyXD69GlMmzat1erujMlkQkZGBgYOHOjzflBx7RXnD/or/UyZMkXqojl27BhSU1MxbNgwDBs2DIwxFBcX47333oPFYoHJZGrxcbds2YL27dsjLS0Nx44dwyeffILbb78dS5Ysgc1mQ3FxMf7617+6TBqa44MPPpD6rT/44ANs2LABt956KzZu3Aig4dv+4sWL3Y7fxIkTMXz4cMhkMlRXV+P777+HXq93+MZ+8eJF1NTUuHXcqqoqKBQKhIaGIiwsDHK5HAqFwqEloXv37gDg1gd///79pb/v3LkzFi1aJD1KK/K3v/0Nf/3rX5s9lvM2+xldY2Ji8PvvvzfqBtm9ezcUCoXD4ofOGAwGpKenY8CAAY26opVKJd577z0Ajt1zs2bNksaruHPzFR8zBxqufRHxMdzIyEhERkY2eRyxG8/d121uu8FgQEZGBvr37y/5++ODydvbXbXKuNoujgHr16+fw/vfVFdrc9tb+prNbXd1bF9ut/dv6t7v7vFbWra5wfe+2i6Xy9GhQwepJbI1P/s8IeASoOLiYgBo9M0uJiZG2mdPSUlJo7JqtRodOnRAUVGRR3UxGAzSxWswGKQPLnGOh5CQECgUCulDX3yjjUYjZDIZQkNDMWTIEKkbQ6FQ4NixY9i1a5fUWiF+wxYnmjKZTA7jKMxmMxhjSElJgdFoBGMMDz/8MA4cOIBXXnkFCxYsgEKhwE8//YQZM2a47XjmzBmEhoZK467++c9/YunSpXjkkUegVCpx8eJFvPjii24fNyMjAz179kT79u1RWFiI8+fPIykpCVVVVVCr1TCbzQ6tDc0hl8ulD2mxRcFqtaJLly7o3bs3OnfuLL03ISEhGD16NNRqtfTNXqFQICQkxGFQpfg7AISEhCAuLk7qhkpMTMRLL72Ezp07o6KiQhpU+dprr0mtGuLFHxYWJiWQCoVCasEQBAFqtRoREREwGo2oq6vD4MGDceHCBZjNZpSVlSEkJASMMezYsUPqNxcEAWazGWq1GnK5XDp3xFYvo9Eola2oqJDKPv7449JqzWJ9x44dK8VN/Fux7uL5Jp7fRqMRcrkcarUalZWVUtl27drBarWisLBQKit2L4lJnNFolAZ5ii11oaGh6Nq1K6qrq1FbWyvdGO3Liq4ajQZyuVw618UBtwaDAWq1WornlcqKCZ1YNiQkRIqhzWaT4mIwGKBUKqFWqxuVFY8rlrWPi9iNKdZfTNztYyi+NyEhIejTp48Ub/snteRyubReknhco9EIjUYjxdD+vbFYLI3Kiue3WFaj0Ujjq8QnccSyznEJDQ2FTCaT3kfxdfR6vVRWbIm1LyvGRSaTOZQVBAEmk0lyE8eH9erVCyqVCkajUToPXZUVBKFRDJ3vs0qlstF91v59dL4ni3GxvyeL1y5jzOHcclVWJpNJ15yrss3FRTw/+vTpI82K7FzW1TkrzqGjUChgNpsdzlnxuM5l7e8RzX1W2V83Vyrb3OeaeC00VVa8J8hkMiQmJiI0NNRlDM1mc6N4N/XeNHUeOp+zYll3CLgEyGAwAIDDN2Sg4UPK1bdvMVjOhISEOIwDcBdBEJCeni49PZCdnY3w8HDExcXBbDZDq9UiPj4eERERqKioQHFxMYYPHw6g4fFNjUaD3r17QyaTITU1Ff3790dkZCSSk5Px/vvvu12fnJwc5OXlgTGGqqoq1NXV4fz589BqtS6TPfukQfygV6vV0sUpXpg6nQ5lZWUwmUzo06cPJk2aBKVSibKyMnTq1AlqtRqTJ09GdHS0FFPGGDp37gylUonq6mpERESgQ4cOYIyhuroasbGx6Nq1K+rr61FTU4MZM2Zg9OjRsFgs0v527dph8+bN6NWrFyIiIlBTU4O6ujoMHDgQKpUKubm5aN++PeLi4mCxWJCeno7evXsjIiICZWVlKC0tlcYjZGVloaSkBD169IDVasXzzz+Pnj17IjIyEpWVlSgsLMTgwYOlOCoUCsTFxcFms+HChQvo2bMnOnTogJqaGhQUFGDQoEEYMGAAcnNzUVFRgb59+wIA+vTpg+7duyM6Oho1NTXIz89HUlISlEol8vLyYDabMWDAAMhkMpw7dw7R0dHo1KkTamtrpbJqtRr5+fkwGAyIj4+HTCbDhQsX0LlzZ3Ts2BE6nQ5FRUXSzePy5cvQ6/XS4EqtVouoqCh07doVer0ely5dQnx8PMLCwlBUVASdTifVV6vVIiQkBN27d4fRaERqaipiY2MRHh6OkpIS1NXVYcCAAQCAtLQ0qNVq9OzZE2azGRcuXECXLl0QGRmJsrIyFBUVSY/8Xrp0CWq1Gr169YIgCDh37hy6dOmCqKgolJeXS65AQyIsl8ulD4OUlBR06dIFHTt2RGVlJXJzc5GQkAClUomsrCzYbDb06dMHQENyHhMTg86dO6O6uhpZWVkYMGCAdH6I5yzQMN9Lx44dERsbi9raWmRkZKBfv34ICQlBXl4edDqdVDY5ORlRUVHo1q0b6uvrkZaWhj59+iA0NBQFBQWoqamRyp4/fx7t27dH9+7dYTAYoNVq0atXL7Rr1w6FhYUoLy+X4n3x4kWEhoYiLi4ORqMRFy9eRGxsLCIiIlBcXIzi4mLp8ezU1FSEhISgd+/esFgsSElJQbdu3RAZGYnS0lIUFBQ4xFupVKJHjx4QBAFnz55F3759pXjn5uZi5MiRkMlk0pwuvXr1AmMMZ86cQa9evdCpUydUVVWhqKgIw4cPh0KhQFZWFqxWq9Q9eebMGfTo0QOdOnWSzu+hQ4dCpVIhJycHRqNR6prLzc1FbGwsoqKiUFdXh9zcXAwaNAgajQZ5eXmor6+XzoGUlBR06tQJnTp1gk6nQ3Z2ttQycPnyZVRVVUnXZ15eHjp06ICOHTtKrWgJCQkIDw9HUVERSktLpUHoeXl50j3ZZDLh0qVLGDBgANq1a4eSkhIUFhZKg7Xz8vKke7LFYoFWq0W/fv2k+0leXh5GjRoFAMjPz4dcLke/fv0gCAIuXLiAPn36oF27dqivr0dOTg5GjBgBuVyO/Px82Gw26TrKyMiQ4q3T6ZCVlYVhw4ZBqVQiPz8fZrNZel8zMjLQvXt3xMTEoL6+HhkZGRgyZAjkcjlKSkqg1+sxcOBAAA1LT8TExKBr164wGo1IS0uT4l1SUoLa2lrp3MrIyEB0dLR03Wu1WineZWVlqKyslJ44zMrKQvv27aXrXqvVSvEuLy93iHd2djbCwsLQq1cvWK1WaLVa6XOtqqoKly9fdoi3Wq1Gnz59pLLiOVtdXY3c3FyX8WaMQavVonfv3ujYsSNqa2uRnZ0tnbMFBQUO8dZqtYiLi0Pnzp1RX18vLdHRUgJuMdRDhw5h+fLlSE5Odnic8bHHHoPZbMbOnTsdyr/66qtISUnBJ5984rB9/PjxWLJkCR544AG36yAupmbffH01LUAAUFhYiKioKEREREChUOCPP/7Av/71L4SGhkpvlEqlQmhoKJRKJRhjCA0Nlb6RAkC7du0wceJE6UmPyspK6PV6tGvXTkpExFaG9u3bQ6VSSWVdZco2m036FmafVTf1TdD+24b4DcL5W5j9N0yxbH19PYqLi9GzZ09oNJomv5k4x1B80qglZYE/Vx92/gYhxsGdb4JX+rbhTlnGGMrKyqTxKPYxdP525+qbYEu/sbXWtzt3vrEpFAoUFRVJibO3vt21pOyVYuhpvO3jYt8CZF/WYDDg8uXL6NatG8LCwloUQ0/i7dyq42m87VtqribeBoMBVVVV6Nq1K2w2W6MWIG+cs1dzT3YVF0/j7eoeIQgCLl++jOjoaERGRl5VDIP5HlFbW4uysjL06NFDuh5aqwUoMzMTQJAuhip2Z5WWlkrfesXf7SedEomNjcWPP/7osM1sNqO6utrjUej2fdf2/5fL5Q79muIbIGLffG7frAk0PF5r/wjp1WD/+KhIRESEy+0i4mRornB+4sXV47MizuM5nKe5tz+W2C0ktjw5Z+b2f+v8FIs4f4qI/d8qFAqHv22uvs6va19/mUzm8LfiIF4R5wm93C1rNBqlm4Z9fZ3jYH9csRutqbLNnYfulG3qnHW3bFMxFN3Fbsnmyop4Gm+RK8XQW/F2jovzuWW1WqUvMe7E8GriLWIfF0/i7RwXd+MtfkDaf7Fqqqw9VxtvT85Zb8Ub+DMu4oex2DXWXFmg9c7Z1rpHqNVqWCwWaUxWczH0RrxdlW0JTY9i9BOJiYkIDw/H8ePHpW21tbW4ePGiw9ooImPGjEFxcTFyc3OlbSdOnAAAqYnNX2g0GiQmJnK5Fg5A/jz78+wOkD/5k38w+AdcC5Barcb8+fOxadMmqR9z48aNiI2NxdSpUyEIAiorKxEREQGNRoNhw4Zh5MiReOKJJ7BmzRro9Xq8+OKLmDFjhl8fgScIgiAIInAJuBYgoGFiwzlz5uD555/HvHnzoFAosHfvXqhUKhQVFeHaa6/FN998A6ChyWz79u3o0aMH7r//fjz++OO47rrrsGbNGv9KoKF/8uzZs9Dr9f6uil8gf379eXYHyJ/8yT8Y/ANuEHQgIA6CbskgquawWCyoqKhAx44dA35KcF9A/vz68+wOkD/5k7+//N35/KYEyAXeSoAIgiAIgmg93Pn8DsgusLaCIAioq6u74uzGbRXy59efZ3eA/Mmf/IPBnxIgHyJOzuXJhIzBDPnz68+zO0D+5E/+weBPXWAu8FYXmDidvLisAW+QP7/+PLsD5E/+5O8vf3c+vwPuMfi2hPMEeLxB/vz68+wOkD/5k38w+POXmrYiZrNZWiOKR8ifX3+e3QHyJ3/yDwZ/SoB8iCAIqK+vD/iBYL6C/Pn159kdIH/yJ/9g8KcxQC6gx+AJgiAIIvigx+AJgiAIgiCagQZBu0BcxVbMJK8WxhgsFgtUKpW0IjBPkD+//jy7A+RP/uTvL3+z2dzi16QEyAXeesNkMhnUarVXjhWMkD+//jy7A+RP/uTvL3+ZTNbiz3AaA0QQBEEQBHfQGCCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEiCCIAiCILiDEqBmsNls2Lp1KyZNmoThw4fjwQcfRH5+fpPlLRYLNm/eLJWfP38+tFqtQ5lPP/0Uf/3rXzF8+HBMnToVu3fvhiAI0v6vvvoKCQkJjX4KCgp85ukKX7gvWLCgkde9994r7TeZTHj55Zcxfvx4jBgxAk8++SQqKyt95tgc3vafMmWKy/c1ISEBJ0+eBACUlJS43P/ZZ5/53NcZd/y3bdvWpNvq1aulcseOHcOsWbMwbNgw3HLLLTh48KDDcYL1/W+pf7Bc+4Bv/IPl+ve2e1u+9gGgoqICTz75JMaNG4drrrkGTzzxBEpKShzKfPvtt5g2bRqGDh2KGTNm4NixYw77q6qq8OSTT2LMmDEYO3YsXn75ZRgMBp/4OcCIJtm2bRu75ppr2C+//MK0Wi1buHAhmzp1KjOZTC7LP/vss2zChAns8OHDLCMjgz366KNs4sSJrLa2ljHG2JdffskGDRrEPv74Y5abm8sOHjzIRo4cybZt2yYdY8OGDWz+/PmstLTU4cdqtbaKs4i33RljbPz48Wz//v0OXlVVVdL+Z555ht10003s5MmTLDk5mc2YMYPdc889vlZ1ibf9KyoqHLwLCgrY1KlT2X333ccsFgtjjLFff/2VDRkyhJWUlDiUNRgMreYt4o5/fX19o/P1jTfeYMOHD2epqamMMcYyMjLYkCFD2JtvvskyMjLYO++8w5KSktj//vc/6TjB+v63xD+Yrn3GvO/PWPBc/952b8vXPmOMzZ8/n82dO5ddvHiRXbhwgd11111s9uzZ0v5jx46xQYMGsffff59lZGSw9evXs8GDB7OMjAyHY8yePZudP3+e/e9//2OTJ09mTz/9tM9dKQFqApPJxEaMGME++ugjaVtNTQ0bOnQoO3DgQKPyeXl5LCEhgf3yyy8O5SdPnizd5OfOncuee+45h7/bvn07u/7666XfFy1axF599VXvyriJL9zLy8tZfHw8u3DhgsvXLC4uZomJiezXX3+VtmVlZbH4+Hh25swZL5m1DF/4O7N+/Xo2btw4VlFRIW3bvXs3++tf/+o9kavEXX9nLly4wAYNGsQ+++wzadsLL7zA5syZ41BuxYoVbOHChYyx4H7/nXHlHyzXPmO+8Q+W698X7s60pWu/pqaGxcfHs59++kna9uOPP7L4+HgpuV24cCF77LHHHP7u//7v/9gLL7zAGGPszJkzLD4+3iEh+u2331hCQgIrLi72ol1jqAusCVJTU6HT6TB+/HhpW/v27ZGUlCQ1W9pz9OhRRERE4LrrrnMo//PPP0vHWLlyJf72t785/J1cLkdNTY30e1paGvr16+dtHbfwhXtaWhpkMhn69Onj8jVPnz4NABg3bpy0rU+fPujSpYvL1/QlvvC3JyMjAx988AGeeeYZREdHS9sD4b0H3Pd35pVXXsHo0aMxc+ZMadupU6caxWLcuHE4ffo0GGNB/f4748o/WK59wDf+wXL9+8LdnrZ27Ws0GrRr1w5ffPEF6uvrUV9fjy+//BJ9+vRB+/btYbPZcObMmUbX/jXXXCMd79SpU+jcubOD/9ixYyGTyaTzwlcofXr0IKa4uBgA0LVrV4ftMTEx0j57srOz0bNnT3z//ffYvXs3SkpKkJSUhGeeeUZ6Y0eNGuXwN3V1dfjnP/+JSZMmAQBqampQUlKCU6dOYf/+/aiqqsLQoUPx1FNPNXnj8AW+cL906RIiIiLwyiuv4OjRowgLC8Mtt9yCpUuXQq1Wo6SkBFFRUQgJCWnRa/oSX/jbs3XrVsTHx+OOO+5w2H7p0iVERUXhnnvuQXZ2Nnr16oWHH37YIbFqDdz1t+eXX37BH3/8gS+++KLRMWNjYxsdz2AwoKqqKqjff3ua8g+Wax/wjX+wXP++cLenrV37arUa69evx4svvojRo0dDJpMhJiYGH374IeRyOaqrq6HX611e++LxSkpKGr2eWq1Ghw4dUFRU5E29RlALUBOIA7DUarXD9pCQEJhMpkbl6+vrkZubix07dmDFihXYuXMnlEol7r77blRUVDQqr9PpsHTpUphMJjz99NMAgPT0dAAAYwzr1q3DW2+9BZPJhLvvvhvl5eXeVmwSX7hfunQJJpMJQ4cOxTvvvIOHH34Yn3zyCZ5//nnpNZ1fr7nX9CW+fO/z8/Pxww8/4OGHH3bYbrVakZWVhZqaGjz66KPYvXs3hg8fjsWLFzcaMOhr3PW3591338XkyZMxcOBAh+1Go7HR8cTfzWZzUL//9jTlb08gX/uAb/yD5fr35XvfFq99xhi0Wi1GjBiBjz76CO+//z66deuGpUuXor6+Hkaj8YrH8+d7Ty1ATaDRaAA03JzF/wMNTyqEhoY2Kq9UKlFfX48tW7ZI3/q3bNmC66+/Hp9//jkWLVoklS0rK8OSJUtQUFCAvXv3okePHgCA0aNH49ixY4iKioJMJgMAbN++HTfccAM+++wzLF682Ge+9vjC/ZVXXsGqVasQGRkJAIiPj4dKpcITTzyBp59+GhqNBmazudGxm3pNX+LL9/6rr75Cx44dcdNNNzU6xvHjx6FQKKTXHDx4MNLT07F3716XXWm+wl1/kcLCQhw/fhy7d+9utC8kJKTR+yv+HhoaGtTvv0hz/iKBfu0DvvEPluvfl+99W7z2v/32W3z44Yf45ZdfEB4eDgD4+9//jsmTJ+M///mP1NLl/N7aH6+59z4sLMw7Yk1ALUBNIDbJlZaWOmwvLS1Fly5dGpWPjY2FUql06PLQaDTo2bOnw2OsmZmZuOuuu1BRUYGPPvoIQ4YMcThOdHS0dAMEGj4cevTo0eixQl/iC3elUind/EQGDBgA4M/ukerq6kYXQlOv6Ut89d4DwI8//ojbbrsNcnnjS69du3YONx2gIUat+d4D7vuL/Pjjj4iOjsbEiRNdHtPV8cLCwhARERHU779Ic/5AcFz7gG/8g+X699V7L5Zpa9f+qVOn0KdPHyn5AYDIyEj06dMHubm56NChA8LCwpo9XmxsbKP9ZrMZ1dXViImJ8YpXU1AC1ASJiYkIDw/H8ePHpW21tbW4ePEixowZ06j8mDFjYLVace7cOWmb0WhEfn4+evXqBaChCfT+++9HaGgoPv74Y+kGIPKvf/0L11xzDfR6vbStvr4eOTk56N+/v7cVm8QX7vfee6/DnCAAcO7cOahUKvTu3RujRo2CzWZzGPSWnZ2NkpISl6/pS3zhDzS8l1qtFhMmTGh0jPT0dIwcOdLhNQHg/PnzrfreA+77i5w6dQpjx46FUtm4YXn06NE4ceKEw7bff/8dI0eOhFwuD+r3X6Q5/2C59gHf+AfL9e8Ld6DtXvuxsbHIzc116KrS6/UoKChA7969IZPJMHLkyEbX/vHjxzF69GgADffP4uJi5ObmSvvF8s5j57yOT58xC3LefPNNNnbsWPbjjz86zIdgNpuZ1WptNE/DAw88wG699VZ28uRJlp6ezh599FE2fvx46XHH+fPnszFjxjCtVtto7gjGGCssLGSjR49mjzzyCLt06RJLSUlhDzzwALvpppuY0WgMavd//OMfbODAgWz//v0sLy+PHTx4kF1zzTXszTfflI6xYsUKNmXKFPb7779L84DMnz+/Vb1FvO3PGGMnT55k8fHxLh/tFASBzZ49m02bNo2dPHmSZWRksLVr17LBgweztLS0VnG2x11/xhi78cYb2Y4dO1we79KlS2zQoEFs48aNLCMjg+3du7fRPEDB/P4z1rx/MF37jHnfP5iuf2+7M9Z2r/2SkhI2duxY9tBDDzGtVsu0Wi1bsmQJmzRpkjQH2m+//cYGDhzI9u3bxzIyMtgbb7zBhg4dKj32brPZ2Ny5c9nMmTNZcnIyO3bsGJs8eTJ75plnfO5KCVAzWK1WtmHDBjZu3Dg2fPhw9uCDD7L8/HzGGGP5+fksPj6effrpp1L5uro69tJLL7FrrrmGDRs2jC1YsIClp6czxhrmuYiPj2/yR+T8+fNswYIFbNSoUWzkyJHs0UcfZYWFha0rzrzrLvLhhx+yW2+9lQ0ePJhNnjyZ7dy5kwmCIO3X6XTsueeeY6NHj2ajR49mK1asYJWVla0j7IQv/A8ePMji4+Ob/EArKytjzzzzDJs4cSIbMmQI+7//+z928uRJ30k2g7v+jDE2dOhQtn///iaP+d///pdNnz6dDR48mN1yyy3s4MGDDvuD+f1nrGn/YLv2GfPN+x8s178v3NvytZ+RkcGWLFnCxo4dy8aNG8eWLVsmlRf5/PPP2c0338yGDBnCZs6c2Wh+tPLycvboo4+y4cOHs2uuuYa99NJLrZL4yxhjzLdtTARBEARBEIEFjQEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCIIgCII7KAEiCMIrGI1GbN68GVOnTsXgwYMxcuRILFiwAFqtVirDGMN7772HW2+9FUOHDsXNN9+MvXv3QpyQ/kr7ExISsG3bNofX3bZtGxISEhy2TZkyBWvXrsX999+PoUOH4rnnnvNK/d544w0MHToUdXV1Dq+3Y8cOjBo1CgaDweM4vvXWW/j3v//t8XEIgmge10vXEgRBuMnTTz+NU6dOYcWKFYiLi0Nubi7efvttPPnkkzh48CBkMhk2bNiA999/HwsWLMDEiRNx7tw5bNq0CVarFUuWLLnifnf46KOPsGDBAjz44INo166dV+o3Z84c7Nu3D9999x3uvPNO6bW+/PJLTJs2DaGhoR7Hsb6+Hi+++CKUSiVmzZrl8fEIgnANJUAEQXiM2WyGTqfD888/j2nTpgEAxo4di/r6eqxfvx7l5eUICQnBBx98gPnz5+Opp54CAEyYMAFlZWU4efIk5s2b1+x+dxOgbt26YeXKlV6r35IlS9CvXz+MGDECX375pZQAnTlzBjk5OVi/fn2L6mUymZrd/9RTT0Gn0+G5556DSqXCX//6V7e8CYJoGZQAEQThMWq1Gnv37gUAlJSUIDs7Gzk5Ofjll18ANCQgWq0WVqsVU6dOdfjb559/HgBw+PDhZve7y8CBA71aP5HZs2fjhRdewOXLl9G9e3d8/vnn6NOnD0aMGHHFOul0OowcObLFDqtWrcK4cePQuXPnFv8NQRAtgxIggiC8wm+//Ya1a9ciKysL7dq1Q2JiIsLCwgA0jK2prq4GAERHR7v8+yvtdxfxtb1VP5Fp06Zh7dq1+PLLL/G3v/0N3377LRYvXtyiOoWEhGDdunVXLHfkyBEcPHgQN998s9fiQRCEI5QAEQThMXl5eXjkkUdw0003YdeuXejZsydkMhk++ugj/PbbbwCA9u3bAwAqKyvRt29f6W8LCwuRl5cnJSNN7R81ahQAQBAEh9fW6/WtUr9Ro0ZBpVKhXbt2uOWWW/Dtt98iPj4eer0ed9xxR4vi1JJxPUePHsUPP/yAm266CZs3b4ZCoWjRsQmCcA96CowgCI85f/48TCYTFi9ejLi4OMhkMgCQkgvGGIYOHQqVSiV1O4ns27cPK1aswIgRI5rdr1AoEB4ejpKSEof9Z86caZX62Scic+bMwaVLl/D+++9jwoQJ6NKlS0vC1CJ27tyJCRMmYMuWLVAq6TsqQfgKuroIgvCYQYMGQalUYuPGjVi4cCHMZjM+++wz/PrrrwAaWml69uyJ++67D++99x7UajXGjh2L5ORk/POf/8T/1879sigQxHEY/94iss1gVcQuKAgmgxj1DQiy+i4MoklYbFvEKMZN2wSzmKwmo1oMRrNz6f5Y7jxvOTnm+dSB4cemZxhme72e0un0l+uO46hWq2mxWKhYLCqXyymKIu33+z+Zz3E+zovlcln5fF6bzUZBEMT6LafTqVzXVTKZjHVfALdezNsPLgDgF5bLpSaTiQ6Hg1KplEqlkjqdjjzP03A4VLvdljFGs9lMYRjqdDopk8mo2+2q1WpJ0rfr5/NZo9FIq9VKiURCjUZDhUJBg8FAu93ufZZ6va5KpXLzMiuO+T4bj8eKokjr9ZpYAf4hAggAfsgYo2azqWq1qn6//+xxADyAKzAAuNPlctF8Ptd2u9XxeJTnec8eCcCDCCAAuJPrugrDUNfrVb7vK5vNPnskAA/iCgwAAFiHZ/AAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACs8wreRPaSbONdtgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=\"tpr_diff\",\n",
+ " show_data_type=\"test\",\n",
+ " constant_clf_perf=max((y_test == const_pred).mean() for const_pred in {0, 1}),\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(r\"equality of opportunity violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/examples/relaxed-equalized-odds.usage-example-synthetic-data.html b/examples/relaxed-equalized-odds.usage-example-synthetic-data.html
new file mode 100644
index 0000000..c22287a
--- /dev/null
+++ b/examples/relaxed-equalized-odds.usage-example-synthetic-data.html
@@ -0,0 +1,651 @@
+
+
+
+
+
+
+ Achieving equalized odds on synthetic data — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+Achieving equalized odds on synthetic data
+NOTE : this notebook has extra requirements, install them with:
+ pip install "error_parity[dev]"
+
+
+
+
+
+
+
+
+
+Notebook ran using `error-parity==0.3.9`
+
+
+
+Given some data (X, Y, S)
+
+
+
+
+
+
+
+
+Actual global prevalence: 26.6%
+
+
+
+
+
+
+Given a trained predictor (that outputs real-valued scores)
+
+
+
+Construct the fair optimal classifier (derived from the given predictor)
+
+Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);
+
+
+Optimality is measured as minimizing the expected loss,
+
+
+
+
+
+
+
+
+
+
+INFO:root:ROC convex hull contains 0.8% of the original points.
+INFO:root:ROC convex hull contains 1.1% of the original points.
+INFO:root:ROC convex hull contains 1.7% of the original points.
+INFO:root:cvxpy solver took 0.000423541s; status is optimal.
+INFO:root:Optimal solution value: 0.16804655919862382
+INFO:root:Variable Global ROC point: value [0.07881903 0.58530983]
+INFO:root:Variable ROC point for group 0: value [0.1126535 0.55350038]
+INFO:root:Variable ROC point for group 1: value [0.0626535 0.60350038]
+INFO:root:Variable ROC point for group 2: value [0.0626535 0.60350038]
+
+
+
+
+
+
+
+CPU times: user 185 ms, sys: 6.64 ms, total: 191 ms
+Wall time: 190 ms
+
+
+
+
+
+
+<error_parity.threshold_optimizer.RelaxedThresholdOptimizer at 0x132837f70>
+
+
+
+
+Plot solution
+
+
+
+
+
+
+
+
+
+
+
+
+Plot realized ROC points
+
+realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets
+
+
+
+
+
+
+
+
+
+
+
+Compute distances between theorized ROC points and empirical ROC points
+
+
+
+
+
+
+Group 0: l2 distance from target to realized point := 0.091%
+Group 1: l2 distance from target to realized point := 0.219%
+Group 2: l2 distance from target to realized point := 0.098%
+Global l2 distance from target to realized point := 0.021%
+
+
+
+
+
+
+
+Plot postprocessing Pareto frontier
+
+i.e., all attainable optimal trade-offs for this predictor
+
+
+
+
+
+
+
+INFO:root:Using `n_jobs=9` to compute adjustment curve.
+INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
+ 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ].
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb b/examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb
new file mode 100644
index 0000000..65fc284
--- /dev/null
+++ b/examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb
@@ -0,0 +1,627 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e2b69330",
+ "metadata": {},
+ "source": [
+ "# Achieving _equalized odds_ on synthetic data\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with:\n",
+ "```\n",
+ "pip install \"error_parity[dev]\"\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "da92fdab",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.9`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "70b33f87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_synthetic_data(n_samples: int, n_groups: int, prevalence: float, seed: int):\n",
+ " \"\"\"Helper to generate synthetic features/labels/predictions.\"\"\"\n",
+ "\n",
+ " # Construct numpy rng\n",
+ " rng = np.random.default_rng(seed)\n",
+ " \n",
+ " # Different levels of gaussian noise per group (to induce some inequality in error rates)\n",
+ " group_noise = [0.1 + 0.3 * rng.random() / (1+idx) for idx in range(n_groups)]\n",
+ "\n",
+ " # Generate predictions\n",
+ " assert 0 < prevalence < 1\n",
+ " y_score = rng.random(size=n_samples)\n",
+ "\n",
+ " # Generate labels\n",
+ " # - define which samples belong to each group\n",
+ " # - add different noise levels for each group\n",
+ " group = rng.integers(low=0, high=n_groups, size=n_samples)\n",
+ " \n",
+ " y_true = np.zeros(n_samples)\n",
+ " for i in range(n_groups):\n",
+ " group_filter = group == i\n",
+ " y_true_groupwise = ((\n",
+ " y_score[group_filter] +\n",
+ " rng.normal(size=np.sum(group_filter), scale=group_noise[i])\n",
+ " ) > (1-prevalence)).astype(int)\n",
+ "\n",
+ " y_true[group_filter] = y_true_groupwise\n",
+ "\n",
+ " ### Generate features: just use the sample index\n",
+ " # As we already have the y_scores, we can construct the features X\n",
+ " # as the index of each sample, so we can construct a classifier that\n",
+ " # simply maps this index to our pre-generated predictions for this clf.\n",
+ " X = np.arange(len(y_true)).reshape((-1, 1))\n",
+ " \n",
+ " return X, y_true, y_score, group"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "0d326b40",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# N_GROUPS = 4\n",
+ "N_GROUPS = 3\n",
+ "\n",
+ "# N_SAMPLES = 1_000_000\n",
+ "N_SAMPLES = 100_000\n",
+ "\n",
+ "SEED = 23\n",
+ "\n",
+ "X, y_true, y_score, group = generate_synthetic_data(\n",
+ " n_samples=N_SAMPLES,\n",
+ " n_groups=N_GROUPS,\n",
+ " prevalence=0.25,\n",
+ " seed=SEED)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "ba24bcc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual global prevalence: 26.6%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_true) / len(y_true)\n",
+ "print(f\"Actual global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "5615f135",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Example predictor that predicts the synthetically produced scores above\n",
+ "predictor = lambda idx: y_score[idx]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6af00a5e",
+ "metadata": {},
+ "source": [
+ "## Construct the fair optimal classifier (derived from the given predictor)\n",
+ "- Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);\n",
+ " - optionally, this constraint can be relaxed by some small tolerance;\n",
+ "- Optimality is measured as minimizing the expected loss,\n",
+ " - parameterized by the given cost of false positive and false negative errors;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "48f713ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=\"equalized_odds\",\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " false_pos_cost=FALSE_POS_COST,\n",
+ " false_neg_cost=FALSE_NEG_COST,\n",
+ " max_roc_ticks=None,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "3dbca6de",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:ROC convex hull contains 0.8% of the original points.\n",
+ "INFO:root:ROC convex hull contains 1.1% of the original points.\n",
+ "INFO:root:ROC convex hull contains 1.7% of the original points.\n",
+ "INFO:root:cvxpy solver took 0.000423541s; status is optimal.\n",
+ "INFO:root:Optimal solution value: 0.16804655919862382\n",
+ "INFO:root:Variable Global ROC point: value [0.07881903 0.58530983]\n",
+ "INFO:root:Variable ROC point for group 0: value [0.1126535 0.55350038]\n",
+ "INFO:root:Variable ROC point for group 1: value [0.0626535 0.60350038]\n",
+ "INFO:root:Variable ROC point for group 2: value [0.0626535 0.60350038]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 185 ms, sys: 6.64 ms, total: 191 ms\n",
+ "Wall time: 190 ms\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO, force=True)\n",
+ "clf.fit(X=X, y=y_true, group=group)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "599af3ba",
+ "metadata": {},
+ "source": [
+ "## Plot solution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "eb901f92",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"whitegrid\", rc={'grid.linestyle': ':'})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "5ccb923e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wT9f8H8NdlNUn3bumAMsoGkb1ki2xQUEFBhoAi46egIPpFWTJcDFFxIAqyZG8HIHsIhQKFsjvpTnfarLvfH2muuYy2KV3A+/n48rW3P7l8cnfv+yyG4zgOhBBCCCGEEEJIJRFVdwIIIYQQQgghhDzZKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhNR4Wq22upPwWKHzRQghdC0kpKaRVHcCCHlaFBYW4vz58zh58iQiIyORkZGBjIwMiEQieHp6wtPTE02aNEHnzp3RqVMnuLm5VWt6V69ejW+++YafvnXrVrWkY//+/di4cSO2bNlic/n58+cxZswYfvq3335D+/btqyp5NYpGo8GPP/6ItLQ0zJ8/v7qT45CoqChs374dFy9exMOHD6HVauHr64vQ0FD07dsX/fv3h7u7e6WmITk5GX/88QdOnz6NBw8eID8/Hx4eHggICED37t0xZMgQhISElHl/hw4dwv/93/+VKy1RUVGQSJ68W/ScOXOwa9cuAEBQUBCOHj1azSl6cowePRoXLlwAALRr1w4bNmyo5hRVnwcPHmDRokWYNGmS3ftBz549kZiYCAAYNmwYli5dWpVJJOSp9OTd1QipYXQ6HX755Rf8/PPPyMrKsrmOWq1GYmIirl+/jm3btsHJyQkvvfQSZsyYAQ8PjypNb01x9+5dzJ8/HxcuXEBQUFB1J6fGO3bsGBYtWoSEhAQMGzasupNTZoWFhZg/fz527txptSwxMRGJiYk4e/YsVq1ahYULF6J3796Vko7169fj66+/RmFhoWB+Wloa0tLScO3aNXz//feYMmUKJk+eDLFYXOo+b9y4USlpJYTYVlhYiG+//Rbr1q2DTqfDpEmTqjtJhBAzFHgSUomys7MxefJkXL582WqZs7MzXF1dwTAMsrOzoVar+WUajQabNm3C33//jR9++AFNmjSpymTXCD/99BP/9p6UbuHChfzb+8eFRqPBhAkTcPHiRcF8FxcXKJVKpKeng2VZAIBKpcI777yDJUuW4MUXX6zQdCxfvhw///yzYJ5MJoOXlxdUKhVfXU+n02HlypWIj4/HkiVLSt2veeDp6uoKT0/PMqeJYZgyr0sIMYqMjMTatWurOxmEEDso8CSkknAchxkzZgiCzqZNm2LMmDHo1KkT/Pz8BOsnJSXh+PHj+OWXXxATEwPAWNoyYcIE7NixA7Vq1arK5BNS6RYtWiQIOtu1a4f3338fLVq0AADk5uZi+/btWLlyJQoKCgAA8+bNQ7169dCyZcsKScO+ffsEQWdQUBA+/PBDdO/eHVKpFHq9HseOHcOSJUv4wH7nzp1o2LAhxo4dW+K+zQPPKVOmYPz48RWSZkIIIeRxRJ0LEVJJ9uzZg7Nnz/LTr7zyCrZv346hQ4daBZ0AEBgYiFdffRX79u3DgAED+PkqlQoLFiyokjQ/jtq3b49bt27x/57W9p2Pm8jISPzxxx/8dI8ePbB+/Xo+6ASMpYTjxo3Db7/9BqVSCcBY6liW0sayyMvLE7TrCg4OxrZt29CnTx9IpVIAgEQiQZ8+fbBjxw7Uq1ePX3f16tVQqVR2952UlCRY/jTWWiCkJjt69Ch/36D2nYRUDQo8Cakkmzdv5v8OCwvDvHnzIBKV/pOTyWRYunQp6tevz887duwYHjx4UCnpJKQ6/Pjjj+A4DoCxau2SJUvstpts0aIF5s6dy09fvnwZp0+ffuQ07Ny5E+np6fz0woUL4ePjY3NdT09PrF69mu/wJy8vD7/++qvdfUdFRQmmKfAkhBDytKPAk5BKUFhYiGvXrvHTPXr0cKiHSplMhgkTJgjmnTlzpsLSR0h1ys7OFvRmOnTo0FLbPw4bNgy+vr789L59+x45HabeVQEgPDwcnTp1KnH9evXqoVevXmVKg3k129DQ0GrvpZoQQgipbtTGk5BKkJOTA4PB8Ej76Ny5s2A6NTW1TNvFxMRg165d+O+//xAXF4esrCwoFAp4eXmhZcuW6NatG/r27VshQzWUZ2iEnTt34sMPP+Snjxw5guDgYADWQ6OYJCYmomHDhvy0eQcz5RlOpaCgAPv27cOpU6cQFRUFlUoFg8EALy8vhIWFoVOnThg8eDD8/f1L/Tzm6Tp48CDq1auHwsJCHDx4EIcPH8bdu3eRnp4OuVyOgIAAdO7cGUOHDhVsV16WQ96Y7Nq1SxBUmZ9jS1lZWdi9ezfOnTuH6OhoZGZmgmEYeHl5oUGDBujSpQsGDRpUob0rnz59WvD7KEtPtRKJBN26dcP27dsBAH///TcWLVpU7nycnp6Omzdv8tPmAWVJevXqhT///BOAMV9evXpVUD3YxDzwrM7SzoSEBMFnu3r1KpycnHDw4EH88MMPePDgATw9PREeHo5+/fph0KBBNs9pcnIy9u7di1OnTiE2NhYqlQpOTk7w9vZGy5Yt0b17d/Tt27dMvf066syZMzhz5gwuXbqE5ORkZGVlQafT8R02tWjRAp06dcILL7wAmUxmcx/Tp0/nvzfA+DLw+++/L/G4Z8+exbhx4/iS+ZCQEOzevRsuLi421+c4DseOHcPRo0cRERGB9PR0qNVqeHh4ICQkBJ07d8bgwYMRGhrq0OdXqVTYsWMHjh8/jjt37iA/Px9eXl4IDw/H0KFD0a9fv0o575ZSUlKwa9cunD9/Hnfv3kVWVhakUim8vb3RuHFjdO3aFQMHDoRCoShxP+bXbFdXV76d9927d7FlyxacPn0aycnJYFkW/v7+aNWqFYYOHYqOHTva3af50CjmzO8NlkPMlGU4FfPrtOk6mpeXh7179+LQoUOIjY1FZmYmvL29ERISgsGDB2PQoEGQy+WC/Zw5cwY7duzAtWvXkJycDKlUiuDgYHTt2hWjR48u8V5TnmFyyjIcmvk65p8/MjISO3bswMWLF5GcnAyRSAR/f3+0adMGI0eORKNGjQT7UalU2LlzJ/766y/Ex8cjNzcXnp6eaN68OV588UX06tWLOksjPAo8CakEXl5ekEql0Ol0AIw3rHfffdfuQ5Et/v7+OHDgANzd3eHh4cG3ObMnKysLixYtwoEDB/ieQE10Oh1ycnIQExODPXv2ICQkBHPnzkXPnj0d/3CPuS1btuDrr7+2ObRNUlISkpKScObMGaxevRqvvfaaw99bREQE5syZg9jYWMF8jUaD7Oxs3Lp1C+vXr8err76Kjz/+uEoeGG0xGAxYu3YtfvzxR0GPyiamoUz+/fdfrFy5EpMmTcLEiRMr5AHCvDYAwzA2AzdbnnnmGT7wzMvLw507d9C4ceNyp8EUUABAq1atypwGcxERETbTb17VtmnTpuVKY2VZv369oJ2sKd9fv34dQ4YMEayr1WqxYsUKbNy4ERqNxmpZbm4uf10JCwvDJ598UmKA4IizZ89i6dKliI6OtrlcpVJBpVLh3r172LVrF7788kssXbrU5vEXLFiAiIgIpKWlATA2Xzhw4ICgPb257OxszJ49m88jEokEX331ld2g8/Lly5g/f77gZYaJaUieiIgIfPfddxgxYgTmzJljFZzYsmnTJnzxxRfIz88XzE9JSUFKSgpOnjyJDRs24Msvvyx1X+VVUFCAL7/8Elu2bOHvaSZarRb5+fmIi4vDn3/+iZUrV+Ldd9/FSy+95NAxfvvtNyxfvtxq/7GxsYiNjcXu3bvRqVMnLF26tEwvBCvLmTNnMGfOHKSkpAjmm35DFy5cwMaNG7F27VoEBAQgOzsb//vf/wQvPQDj/SA6OhrR0dHYsmULVq5cafWyuarl5+dj8eLF2LFjh9Wy3Nxc3L17F9u2bcOcOXPwxhtvAAD++ecffPTRR1b309TUVBw5cgRHjhxB79698fXXXzt0HyVPLqpqS0glkEgkgreCsbGxmDZtGv/QU1b169eHr69vqUFnXFwcBg8ejH379gmCTqlUCn9/f6tqfvHx8ZgyZQq+++47h9JT2eRyOUJDQxEaGgpnZ2d+vkQi4eeHhobaffgrCcuymDVrFj755BPBTZJhGHh4eMDPz08QBGo0Gqxbtw5jxowpsRMZc1euXMG4ceP4oFMkEsHX1xdeXl5Wadm0adMjdxrl7u7OnxPzUipnZ2fB+bLMPxqNBuPGjcPKlSsFQadIJIKPjw98fHwE7ZFzc3Px5ZdfYsqUKVbjXJbHnTt3+L9r1aol+K5LEhYWJpi+d+9ehaQBgKDjoJIEBwcLzuf9+/et1snIyBDUUGjatCkSEhKwatUqjBw5Eu3bt0ezZs3QpUsXjBo1Ct9++22ZazQ8qjt37uCLL76wuaxHjx6C7z07Oxvjxo3Dzz//LAg6pVIpAgIC4OnpKXgR8eDBA7z55puC9u3ltWfPHrz55ptWQae7uzuCgoLg4+Nj9RIkOTkZEydOxPXr16325+Hhgc8++0wwb9GiRcjMzLR5/E8++UQQXMyYMcPuC5J9+/ZhzJgxVkGnh4cHAgMD4eTkxM/T6/XYvHkzRo0ahYyMDJv7M1m+fDnmz58vCDpN1xTzGghXrlzBG2+8UebrlCMyMzPx8ssvY8OGDYKgUCwWw8/Pz6omRFpaGubOnYt58+ZZvQC1Z8OGDVi8eDG/f4lEAn9/f6uS0zNnzmDEiBGIj4+32kdQUBBCQ0OtOu7z8/Pjr4O2OvVzxIkTJzBx4kQ+X4hEIvj5+cHV1VWwXnR0NKZPn468vDyMGzeODzpN353l/Tg3NxfTp0/Hw4cPHyl9j0Kn0+Htt98WBJ1KpRIBAQGC+yLLsvjss89w/Phx7Nu3D1OnTuXvp6b1LWtM/PPPP3avOeTpQyWehFSSsWPHYubMmfz0v//+ix49eqBXr17o06cPOnfu7NC4fvaoVCqMHz9e8JDUpEkTTJ8+HZ07d+bfMsbFxWHz5s38AwTHcVixYgV8fHwwYsSIR05HRWjZsiX+/vtvAMJqvP7+/vz88lq8eLGgTZ6LiwsmT54saDuYn5+Pf/75BytXruSrYF2+fBkzZszAL7/8Umq1zk8++QQ6nQ4eHh6YOnUqBg4cyH/HKSkp+OWXX/DLL7/w62/dutVm1aWyGjNmDF+VzLza2PPPP2+3l0bTMD/nz5/n5/n4+GDq1Kno378/3N3dARhL0A8cOIBvvvmGf6A9evQo/ve//+Hzzz8vV3pNkpOT+b8DAgLKvJ1lScejPKiZp4FhmDKXoojFYvj4+CApKQkAbFbvswx8tm3bhr///tuq+r2pJOzSpUtYu3YtJk6ciClTppSpE7LyWrZsmVWpkol5lVyO4zBz5kzBcDdt27bFW2+9hXbt2vHXlfT0dOzfvx/fffcdsrKyoNfrsWDBAgQFBeG5554rVxoTExPxySefQK/XAzA+0M6YMQMDBw4UdP6Ul5eHEydOYOXKlfwQVDqdDl999RXWrVtntd/nnnsOo0aNwqZNmwAYr52LFy+2eijevXs3Dh06xE936NABb775ps20Xrx4EXPmzBGkdeLEiRg2bBgCAwMBGGsXXL58GT/88AOOHz8OwFgiPmPGDKxfv97mdWX//v2CYX6USiWmTJmCESNG8MFeTEwMfvrpJ2zfvh0JCQn2T2g5FRYWYuLEibh9+zY/LzQ0FDNmzEDPnj35nqZNVXDXrl3Lv8jaunUrvLy88H//938lHkOtVvOl7x4eHnj33XcxePBgKJVKsCyL8+fPY9myZXxQn5KSgqlTp+KPP/4QlKCZqp9aNr344osvKqyn80WLFsFgMMDf3x8zZszAgAEDIJfLwXEcLly4gA8++IC/rkRGRmLYsGGIi4uDXC7HO++8gxEjRvD3g6ioKHzyySd87Y+8vDysX79e0IlaVTp06BB/fRo8eDAmTZqEBg0aADC+gFq1ahU2btzIr//JJ58gPT0dHMehdevWeO+99/Dss89CJBKhoKAAGzduxIoVK/jfxebNmzF58mR4e3tX/YcjNQqVeBJSSfr372/14KXT6XD48GHMnDkTHTt2xMCBAzFv3jzs3r3b5lvcslixYoVg24EDB2Lbtm3o0aOH4MYcGhqK2bNn4+eff+YfGABjFbTqfNNaFa5cuSK4aQYGBmLbtm2YNGmSoMMaZ2dnDBkyBLt370br1q35+RcuXLD5IGtJp9OhVq1a2L17N0aPHi14seDv7485c+YIHsQ4jsP+/fsf8dM55uDBgzh27Bg/HR4ejt27d2PkyJF80AkYHwJfe+017Nq1S1AauHfvXhw8ePCR0mBe0uPIyxfL0hVb1aXLkwZXV9dSaxXYS0d2drbVcvP2nQBw+PBh/qFOKpUiMDDQqpS3sLAQq1evxjvvvGM3MKwIprZio0ePxl9//YUrV65gz549GD9+vKBzpU2bNuHkyZP89Pjx47FhwwZ06dJFcF3x8fHB2LFjsWPHDtSuXRuAsVTkww8/tKqaW1Zr167lx21lGAZr1qzB2LFjrXocdnFxQf/+/bFt2zZBada5c+eQm5trc98ffPCBoOR83759fDAIGIPehQsX8tOenp5Yvny5zZcBWq0WM2fO5B+u/fz8sHPnTkyZMoUPOgHjy4o2bdrghx9+wIwZM/j5//33n+C6ZKLRaAQvjpRKJX799VdMnDhRkPfq1KmDRYsWVdpwW7/99pugWnyHDh2wa9cuDBw4UHAP8ff3x1tvvYWtW7cKrqfff/89rly5UuIxDAYDDAYDAgIC8Mcff+DVV1/l9y0SidCxY0ds3boVXbp04bcxVU+tagaDASEhIdi2bRteeuklvqo0wzBo3769VXXnuLg4SKVSrFu3DpMmTRJc65o2bYpffvlFEIj9+++/VfI5bDFdn9577z18/vnnfNAJGGsZ/O9//0OHDh34eUlJSdDpdOjVqxd+++03tGnThv+NKBQKTJw4UZDXtVpthfRETh5/FHgSUklEIhFWr16N/v3721zOcRzu3LmDrVu3Yvbs2ejduzd69OiBjz76CEePHi3Tw2dCQoKgakzjxo2xZMmSEh+i27dvj08++YSf1mq1+PHHHx34ZI+flStX8n+LxWKsWLGixKqVbm5u+OabbwQPur/88gv/MFyS+fPnCx46LU2YMEFQNSsyMrLUfVYUjuOwatUqflqpVOLbb78VPCxaCggIwDfffCNoj/btt98K2kc6yrx6r/kDbGks17Vs91YVabBc31YaLANPwNhz7x9//IFr167h33//RUREBA4dOoSxY8cKfq9Hjx4VBD6V4a233sLHH3+M2rVrQ6FQoFGjRpg9ezb/Hev1evz000/8+u3atcPs2bNLbN8bHBwsePBOT0/n2+M6gmVZQe2G7t27l9rbsLu7O4YOHcpPGwwGmyXRgPGh+PPPPxeUMs6fPx9qtRosy+KDDz5AXl4ev+yzzz6zWxq+a9cuQcn5F198YVUd3NKUKVPQo0cPfvrnn3+GVqsVrHPgwAFBs4xZs2aV2A765ZdfxrBhw0o8rqPy8/MFecDf3x+rVq0qsZlDeHg4vvrqKz6fcByHb7/9ttRjiUQifPXVV3Y7XXJycsIXX3whCNLWr1//SNeg8pozZ47dWhpt2rRBSEiIYN7o0aMFLzHNubq64oUXXuCnY2Njy/2ypiI0bdoUkyZNsrvcMo/J5fISO3gbPny4YNqyeQN5OlHgSUglksvl+Prrr/Htt9+WqYORhw8fYvv27Xj77bfRvXt3rF+/vsQA9OjRo/zbdgCYOnVqmRrwDx06VDBOqK0OiZ4U2dnZOHfuHD/dvXt3qw5ibPHy8sLYsWP5aZVKhVOnTpW4TUBAALp27VriOjKZTNAhjr02ZpXh1q1bfJVEwPhgYPmgZEvdunUFDx137tyx2YlKWZnnaUd6pRWLxYLgxzzvV1UaLNe3lQbzjoWkUim+/fZbLFu2DC1atBCkv27duvjwww+xfv16QTC7detWQRXXiqRUKkt8uASMbenMa0HY6mnalubNmws6aTp8+LDD6TMYDPjqq6+waNEivPXWW1bDStljGbTY6jDLPJ1vv/02P52YmIjVq1dj3bp1gvP++uuvl9gBm/lLv4YNG5a5Sufrr7/O/52ammpVKmh+3tzc3MrUFOKtt94q07HL6ty5c4LS/PHjxwtqRNjTrl07wTXwxIkTpV7junfvbjc4M/H09MTIkSP56cTEREFpbFXw8/MrtQfu8PBwwbT5CxFbTLUETGzVoKgqr7zySokvlyx7Yn/uuees+i8w5+XlJWjPWp2fjdQcFHgSUgV69eqFnTt3Yu/evZg2bRqeeeaZUh9209PTsWTJErz88st8ezJL5mN7KpVKdO/evcxpMu/NMTs7+5ECiZrs/PnzgqDaXi+WtgwaNMhqXyWxDCzsMS9hrIjOesrq7NmzgmlHzsXAgQMF06Wdi5KYl1RUVzf7lZmGzz//HMuWLcO0adPw9ddflzpUS5s2bQS1EACUqaSoPFq0aFFqZ06WQa8jvfI+++yz/N+RkZFWpXmlkUql6NixI0aMGIF3330Xbdu2LXUbjuOsqtaWNpzV22+/jZYtW/LTGzZsENSMCA8PxwcffGB3e7VaXe6ei5999llBnjNVfwaMn+XSpUv8dMeOHcv0MrFOnToVMkSTSUVdKziOw3///Vfi+pbXWXssgz7z81YVmjdvXuo65rVZZDKZoMqqLZa/RUd/LxWptN7FLUu7yzJMlPnnq87PRmoO6lyIkCrUsGFDNGzYEFOnTkV+fj4iIiJw8eJFXLx4EZGRkTZLN2/cuIHXXnsN27dvt3q7+ODBA/7vRo0aOVRyY3kTvX//fo0b9qEimJ8jAGjWrFmZtw0ICICvry9f7c1WD6aW65eF+YNkVZY0m58LsVjs0PiSzZo1g0gk4tNb2rkoiVQq5auUOVJqaTAYBAGjeW+h5UmDiaMlp+br20pD69atSy3BsTR48GB8++23fI/IFy5cQF5eHv+wZz6WX2lsjdlnUpaHZ8uqwqNHjy5zh0c5OTn83xqNBqmpqXbHkC2PzMxMJCQkID4+Hvfu3cPNmzcRGRmJ9PR0wXql/a7EYjGWL1+OYcOGQa1WC669ppoqJeWvO3fuCPLB33//Xe5SavOOgZKTkwVVfS1L0ErSuHHjEr97R5hfK/z9/Uusjm/J1r2lJOYvAEpSv359wTBlj9KrdXnUqlWr1HXMXyi4u7uX+rupzI7EHFVSExHA+gVdWdrn16TPR2oGCjwJqSbOzs7o2rUrXy2psLAQ58+fx59//ol9+/YJ3g4mJibis88+s+p90bxzFUceDGyt/ygdtdRkltW8HD1PPj4+fOBZ2jkq67Ag1cX8XLi5uTk0rppcLoeLiwsfWDxKfnFxceEDz7K0mzWxbE9Z2kD1paXBxJE0WKbjUdJgTiQS4bnnnuN759TpdIiOjkabNm0qZP8mlh302GI5LMej9JialZVV7sCTZVmcPXsWf//9N65fv44HDx4IgrJHVadOHcyePduqtPmDDz4QNEWwxfIc5ebm2u3QqDTmvyXLIbdKqspo6VGHCzFnfq2ozHsLwzClBjwmUqkUbm5ufMdgpQ1HU9Ecvb4/buNWOjpM2eP2+UjNQK8iCKkh5HI5unXrhs8++wxHjhwRdEABGHsjtRy02vwhzNGbouUDs6MP348L83PEMIzDHcmYn6fSzpH5eGc1kfm5cPQ8AI6di5KYdxLiSABr2UaoLEFUWdKQk5NTatVMe+moyOEBLNvbVsaDteWYg7ZUZHBXUlvLkkRERGDIkCEYP348Nm/ejGvXrtlMl1QqRdu2bfH888+X6zi2Og4qS6Bd3iDTFvMXGZbVER15sVGe8Y3teZRrhSP3FoVC4VCpmHknZ1VdddPRtuCPmyf985GagXIZIZWgoKAAKpUKGRkZ8Pf3L/MYgSZ+fn749ttv8cYbb/DV6wwGAy5cuCBoD6NUKvkSKEd7+KzI0iNHOPKAXxHMH5o4joNarXboQaoySreqi/nnLk9AUFHnIigoiB8bMDU1tczbWb54cfR3ZZkGE5ZlkZ6eXqb9GQwGQbVOR8YhLY35Q7XpWBWtLO1ZzdPh4+NT5cMgHD9+3OawMv7+/mjQoAHCwsJQt25dNG7cGI0bN4ZcLseePXvw119/OXQclUqFjz/+2Gr++vXr0bNnzxLbl1rm/08//VTQ+U15WZYiOfI7rchheB7lWuHIvcXRNJvvuzwvz54WVX2fJaSsKPAkpILdv38f/fr146fHjx+P2bNnO7wfkUiECRMmCNp1WT54e3h48IGnZRWt0lju61FLbsraVrG8JSDlZTn2Y1pamlVPgiUxD4wcqfZWE5mfi5ycHGg0mjK3k8zLyxM89D3KuahXrx4/lmhCQgK0Wm2Zqm1ZthVzpP2brTRY7rssgWd8fLzgYdle5yF5eXlQqVQICgoqc0m4ZbVw8zZUpiq4VcFynFKWZausrVZmZiY++OAD/hyLRCKMGzcOo0aNKrHKbnmGoZg3b57gJYJSqeSHVZk9ezb27t1rtxTR8rpSUb1TW+ZBR0q9K7K5hPnne9R7S0nXCp1OJ2jLXBKNRiMoaa7Ilz6Pi5p6nyWkrKiqLSEVzM/PT1CqYN5DoaMsH7QsgwTzh96bN2861EmKZVf09sZQK4n5w2hZH/zMx72rCpbBydWrV8u8bXx8vOCB0pGAtSYyzy8Gg0HQK2dprl+/LujY51HOhXlnInq9vszpMB92wsXFBXXq1Cl3Gix7IC5rvrAc+sKyI5VvvvkGLVq0QOvWrdGnTx+Hz7EJwzAV2kupI8yDcp1Ox5dOl0V2dvYj9dS8e/duQQA1ffp0fPDBB6W2E7W8rpQ2xuPOnTsF44UOHz4c8+bN46cTExOxaNEiu9vXrVtXMO3I98xxHNLS0mym0d/fXzBsiSP7jY6OLvO6pTG/VqSkpFgFkyWxvLeUdq0oa7qjo6MFJXnV9fuoao/DfZaQsqLAk5AK5uLiIhinMTIy0uphtazMx1wErEtXzKuCFRQU4OjRo2XaL8dxOHDgAD/t4uKCRo0aOZw+8ypUZW0nV9YH/Ioa4qJ169aCfZl/7tJYrutoT6U1jWXVwYMHD5Z5W8tz8Sid3nTs2FHQnujIkSOlbqPX63HixAl+ulOnTo/UJsnT01PQw3FZ0gBA8Buz3Adg7PnS/OHQPM0lycrKElRpbdSoUbWVsFvmE0fG45w0aRJatmyJjh074uWXX3Y4CI2MjBRMv/rqq2XaznLIjpICz8TERCxevJif9vf3x5w5czBs2DB06dKFn79r1y5BcGrO29tbEKCfOXOmzO0+T506hS5duqBFixZ4/vnnsXnzZsHyDh068H+fO3dO0FOwPZmZmVbn7lFU1LWCYZhSr5um2g+l+fPPPwXTnTp1slqnuoZnqkzm99mylqxX9RinhJQVBZ6EVIKXXnpJML1gwQKHO2PhOA7r1q3jp319fa0e9l944QXBsBBr1qwpU4cLu3fvFgS1vXv3LtdDvHnvhXq9vtQHn6ioKERERJRp3+YPEKWVXpTE09NT8DB5/PhxXL58udTtVCoVfvvtN37a2dkZzz33XLnTUdnM34rbO19NmjQRPCzv2LEDcXFxpe773r172Lt3Lz8dHBzs0LA0llxdXdGtWzd++o8//ii1muCuXbsEVf5KG5i9LMzHG4yMjCx1uJJ79+4JAtQhQ4ZYVUHt1q2b4Le0ZcuWMnXWs3LlSkH1uFGjRpW6TWXp1q2boNRt06ZNZSrxOnbsGP+STaVSwcXFxardamksg7eyVFM+cuSI1Xdnr+2gqRqt+XeycOFCvtOlBQsWCNoO/u9//7MaqsVk8ODB/N9qtRrff/99qWllWRarVq0CYOwcJzY21qrkbtiwYfzfhYWF+Pnnn0vd7/r16yu0s52uXbsKqtuuW7euTFV5z58/Lxhfuk2bNqV2ArZjxw6rXoItpaWlYfv27fz0s88+a9UZF2A9fMej3DtqCvP77MOHD0stzfznn3/w8OHDyk4WIeVCgSchleDll18WVMWKiorCa6+9hrt375Zpe41Ggzlz5giq6b799ttWwWFgYKCgs6Ho6GjMnTu3xCq3//33HxYuXMhPS6VSvPnmm2VKlyXzweIB4LvvvrPbBiU1NRVz5swpcxsV87e8j9rL5uTJk/m/WZbFu+++azW+p7m8vDxMmzZN0L7q9ddfr9BeIytaWc4XwzCYNGkSP61WqzF16lS7D9aAsZrdtGnTBCVXkyZNeuQ2fxMmTOD/zsrKwowZM+w+OF+9ehWfffYZPx0eHm7V63N5DB8+XPBwPXPmTCQmJtpcNysrC9OmTeN/W05OThgzZozVet7e3hgwYAA/nZaWVupv8tdff8WmTZv46fr161dIYF1ezs7OGD16ND+dnZ2NKVOmlBgcxMTE4KOPPhLMM89rZWXe6RNgDEpKcvbsWcydO9dqvr28tG7dOkHp6JAhQwQvQYKCgjBr1ix+OjMz02YHRIDx5YB5L8E///xzqeldtmyZoNZH27Ztra6j3bp1E4yx++OPP5bYcdKxY8fw008/lXhcRykUCkEeSE1NxYwZM0rsxO7u3buYOXOmINh76623Sj1WZmYmZs2aZbd0PD8/H++++66gN+m3337b5rqWLzoqsofm6mKeP1iWxbfffmt33Xv37mHBggVVkSxCyoUCT0IqgUwmw+rVq+Hm5sbPi4qKwuDBgzF9+nTs3bvXqtMIjuMQHR2Nn376CX369MHu3bv5Zd27d7dbAjJnzhxB+6d9+/bh5Zdfxr///it4+IqPj8fnn3+OcePGCR4epk2bZreDlNI8++yzgkG1T5w4galTpwoG9s7NzcXvv/+OF198Ebdv3y7zsC/m1QxzcnIcqiJrqW3btoIgISkpCSNGjMCPP/4oKEVTq9XYt28fhg4dKhgMvnHjxpgyZUq5j18VzM/X+fPn7Q6uPmTIEPTu3ZufvnXrFoYOHYotW7YIHuyys7OxadMmDBs2TLCvrl274uWXX37k9LZu3VpQYnTu3Dm8/PLLOHfuHP/gmpeXh/Xr12PMmDF8aaBYLMa8efNKDHx79uyJhg0b8v/sDY/h4uIiCDJSU1MxfPhw7N69m//tGAwG/PPPP3jxxRcF5+Htt9+2CpJMPvjgA0HHQH/++SdGjRqFs2fPCqqjX79+HdOnTxcE1QqFAsuXL6/2MfImT54saL96/fp1DBs2DH/88YegVDInJwe///47XnnlFcE1bdiwYYIqo2XVt29fwfQXX3yBr776SvByRK/X49KlS/jwww8xfvx4myVxtgKO6OhorFy5kp/29fW1GbSOGjVKULvk2LFj2Lp1q9V6bm5ugu+O4zjMnTsXM2fOxI0bNwTzr169irfeegvr16/n5ysUCqsxRAFjqd3ChQv52iwGgwH/93//h88++0xQkpWSkoIvvvgCU6dOdah9f1lNmjQJLVq04KfPnTuHYcOGYf/+/YLS+bS0NPzwww94+eWXBdfTV155RVDbpCSnT5/GK6+8glOnTvG/Eb1ej6NHj2LEiBGClwUDBw60W/vEspO87du3V2hvv9WhR48eglL4rVu34uOPPxbkhYyMDP47SElJqfFjSpOnF/VqS0glqV+/PjZu3Ih33nkH8fHxAIwPEH/++SffVkUqlcLb2xs6nQ7Z2dk2Hx769OmDL774wm7bFXd3d6xduxaTJk3iS2uioqIwefJkfv+FhYU2H84mTJggKA10lEQiwZw5czBjxgw+WDhy5AiOHDnCV7Mzf2CUSqVYs2YNxo4dW+q+mzZtKph+7733sHTpUgDAuHHjMH78eIfSOnv2bKhUKuzfvx+AMSD+4osv8OWXX8LT0xNSqRQZGRlW30GjRo3www8/OFxlsKo1adIE586dA2D8bIMGDUJAQAAKCgqwdu1a/gGSYRgsW7YM77zzDr9+WloaPvnkE8yfP59/cMvIyLAqne7YsSNWrFhRYe2oPv30UyQmJvIl+zdv3sQbb7wBpVIJV1dXpKenW7Ub/vDDD0sc5sJRI0aMwJ07d/Drr78CMFYRnT17Nj7++GN4e3sjMzPTqkOPF154ocSSHB8fH/z8888YO3Ys3z4vMjISY8eOhUKhgKenJ7Kysqx6nlQqlVi7dq1V3q8OMpkMa9aswaRJk/jOX5KTk/Hxxx/jk08+gZeXF0QiEdLS0qzySadOnfDpp5+W67idO3dG79698c8//wAwBh9r167F2rVr4erqCrlcbjNvNm3aFDdu3OCvQ5bVEbVaLT744APBy7hPPvnEqndawPgbWbRoEYYMGcJ/90uXLkXHjh2tOmF7/vnn8dFHH2Hp0qV8Xt2/fz/2798PpVLJf9eWJYVOTk746quv7L70a9asGT7//HPMmjULer0eBoMBv/76K3799Vd4e3uDYRhkZGTwn9fb2xtdunTBnj17Sjy/jpDJZPjmm28EeSA2NhYzZ86ERCLh712ZmZlWVVoHDhwo6KypJOHh4bh9+zaio6MxYcIEKBQKeHh4QKVSWf32OnToUGKnTwEBAfD29uZfghw7dgzt27eHh4cHPD09Sy2Rrok8PDwwffp0/v4HGJsn/PHHH3z+Nb+/u7m5YdmyZXZLhQmpTlTiSUglatiwIfbu3YspU6YISj9NdDodkpOTbQY8QUFBWLZsGb755ptSg5769etj+/bt6NevnyAoMO3fMugMCgrCmjVr8MEHH5T/wxXp27cvli5davX58vLyBEFnUFAQ1q1bh44dO5Zpv926dbN6W56amorU1FRB759lJZFI8OWXX+Kjjz4SPGxyHAeVSoWUlBTBdyCTyfjB6/38/Bw+XlV78803Bek0GAxITEyESqUSlL4AxpK+n3/+GW+//bagii7LskhLS7MKJpydnTFz5kz89NNPFVrd2NnZGT/99BOGDRsmyLdqtRopKSmCoNPNzQ2ff/65oPpfRZk7dy4++OADwbkw/XbMH3zFYjHGjx+Pr776qtTgu2nTpti1axfatWsnmF9QUICHDx9aBZ1t27bFtm3brNavTv7+/ti8eTNGjhwpaEtuMBiQlpaGlJQUQT6RSqWYPHky1q5d+0gvar744gurkk/A+ELFMm/KZDK89dZb2LJli6D3VMs2nytWrMCtW7f46f79+6NPnz520xAWFoZp06bx02q1Gh988IHNDtTGjBmDH3/80aqnW7VajcTERKugs2HDhti4cSN69uxp9/gA0K9fP/z6669WwW5GRgbS09P5YC8kJAQ//vgjAgMDS9xfedjLA3q9HikpKVCpVIKg08vLC4sWLcKXX35Z5n4D5s6di9GjR/O/qYKCAiQlJQl+e6a89dNPP5U4LijDMJg9e7bg95mfn4/ExETcuHHD4b4Waopx48bh/ffft+rZPisrS3B/b9SoETZu3PhIQ00RUpmoxJOQSqZUKjFjxgy89dZbOHnyJC5cuICbN28iMTGRL00RiURwc3NDSEgImjdvju7du6Njx45lHv8PMN7wV6xYgdu3b+PAgQM4f/48EhISkJWVBbFYjICAADRr1gx9+vQpd2dC9gwdOhTPPfccduzYgWPHjiEmJgY5OTnw9vZGWFgY+vXrh4EDBzpU/YdhGHz33XdYv349Dh48iISEBBQUFMDFxeWROowYM2YMXnzxRezbtw+nTp1CdHQ0VCoVdDod3N3d0aBBA3Tp0gVDhgwRdOpQ03l7e2Pnzp1Yu3YtTpw4gdTUVOj1enh6etp82JJIJPi///s/jB49Gnv37sXp06dx7949qFQqGAwGeHt7o1GjRnjuuecwaNAgmy9OKoJSqcTSpUvx+uuvY+/evTh79ixSU1ORl5cHV1dXNGjQAF27dsXw4cMrtZfXCRMmYODAgdi5cyeOHz+O+Ph4ZGVlQS6XIzQ0FO3bt8eIESOsxv8sSXBwMDZs2ICIiAgcOHAAly5dQlJSEvLy8uDm5sZ3GNanT58yv5CpakqlEp9++ikmTpyI/fv34+zZs4iJiUFmZiZYloW7uzvq16+PDh06YNiwYWUaC7U0CoUCq1atwvnz57Fr1y5cuXIFKSkp0Gg0UCqV8Pb2Rv369dGqVSsMHjyYf+HSu3dvvq3j2bNnERcXh9DQUFy8eBG//PILv39PT0/873//KzUd48ePx+HDh/kXXZcvX8YPP/xgsySpc+fOOHDgAI4ePYp///0XV65cQVpaGvLy8qBQKODv748WLVqgb9++6Nq1a5mv7W3atMHBgwdx4MABHDp0CFFRUcjKyoKrqytq166NF154AcOHD4eLi0uJ7UAfhSkPvPnmm9i3bx/OnDmD2NhYvodVX19fNG3aFD169ED//v0dfukgEonw8ccfY/Dgwdi8eTMuXLiA1NRUyGQyhIWFoWvXrhgxYoSgWUdJTNfuX3/9FVFRUcjMzIRMJoO/vz+Sk5MRFhbm8DmoCd58803069cPO3bswPHjx5GQkAC1Wg1fX180aNAAAwYMwAsvvACZTGa3eQEh1Y3hnoQuvwghhBBCSI13/vx5QZv73377De3bt6/GFBFCqgpVtSWEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqloHE9CCCGEEEIIIZWKSjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYSQSmAwGKo7CZXiSf1chBBCKhcFnoSQx0Z+fj569+6NXr16QavVCpbdv38fM2bMQOfOndGsWTN06dIFCxYseORjjh49Gg0bNsTo0aMfeV/k6cCyLDZu3IglS5ZUy/F79uyJhg0bYs6cORW+7wMHDuD999+v8P0+jXbu3ImGDRuiYcOGSEhIECwzzV+9enU1pc4x58+ft/tZqtucOXPKfQ1PSEjgP9f58+cfOS1arRZ9+vRBz549kZeX98j7I+RxQ4EnIeSx8dlnnyE+Ph7vv/8+ZDIZPz8jIwMjR47E4cOHkZ6eDp1Oh7S0NMjl8mpMLXlavf/++1i4cOET92D59ddf47333kNaWlp1J4WQx5JMJsMHH3yAxMRELF68uLqTQ0iVk1R3AgghpCwuXryI7du3o1WrVnjhhRcEy44ePYqsrCwAwEcffYT+/fuDYRhBcFpefn5+CA0NhZ+f3yPvizwdUlNTq/X4QUFBEIvF8Pb2rtD9pqSkVOj+iH2hoaEAAHd392pOCaloffr0wbPPPoudO3di2LBhaNeuXXUniZAqQ4EnIaTG4zgOCxcuBADMmDHDarmpBMbDwwNjxoyp0GN/+eWXFbo/Qirbhg0bqjsJ5BH9/fff1Z0EUommT5+OsWPHYuHChdizZw9EIqqASJ4OlNMJITXe4cOHER0djfDwcHTs2NFquamzE2dn56pOGiGEEOKQjh07okGDBrh9+zYOHTpU3ckhpMpQiSchpMb76aefAAAvvfSSYP6cOXOwa9cufjoxMRENGzYEALRr105Q8pOXl4ft27fjxIkTuH37NrKysiCVSuHj44Nnn30Wr732Glq0aGF17NGjR+PChQtW+zMde9CgQZgxYwY++eQTXLp0CTKZDPXr18eqVatw//59vgT21q1buHfvHn766SecPXsW6enpcHd3R5s2bTB+/Hi0bNnS7ufPzMzEr7/+imPHjiE+Ph4GgwGBgYHo2rUrxo8fj8DAQJvbFRQUYPPmzfjrr79w584daDQaeHh4oEmTJujfvz8GDRoEsVhstV1WVhY2bNiAY8eO4cGDB9Dr9fDy8kKLFi0wZMgQ9O7d225aS5OYmIht27bh2LFjSExMhMFgQEhICHr06IHx48fDw8PD5nYXL17E5s2bERERgbS0NCiVSoSFhaF379547bXXoFQqrbYxfUfDhg3D0qVLceDAAWzduhW3bt1CQUEBgoKC0KdPH0yYMMFmlUaO43Do0CHs3r0b169fR3Z2NlxcXBAWFoYePXpg1KhRcHV1tTqeya5du/jpW7duASjOT2+99Raef/55LFiwADdu3IBSqUSzZs3w3Xff8VXEVSoVtmzZgtOnT+PBgwfIycmBk5MT/Pz80K5dO4wZMwb16tWzSnfPnj2RmJjIf+5HPR+rV6/GN998w09fuHCB/50dOXIEwcHBguMGBQXh6NGjNr/H0ly+fBm///47Ll68iIyMDCgUCoSHh2PAgAEYPnw4pFKp3W1v3LiBX375BZcuXUJ6ejr8/f3Rr18/vPXWWzh8+DA+/PBDq7Tt3LkTH374odVnMZeQkIBevXoBAJYsWYIXX3zRZrp37tyJS5cuITU1FYWFhXBxcUG9evXQq1cvvPrqqzbzqD2m8zt16lRMmzYNgHX+Ko2tz/Pw4UOsX78eJ0+eRFJSEhiG4X9/Y8eOhaenp939qVQq/Pbbbzhy5AgSEhIgl8vRtm1bTJkypcxpssdgMODAgQPYu3cvoqKikJubC3d3dzRt2hSDBw/GgAEDwDCM3e0vX76M9evX49q1a0hPT0dgYCD69euHSZMmlXrsvLw8bN26Ffv370dsbCwkEglatGiBiRMnIigoqMRtIyMj+fyampoKJycnBAYGokOHDhgzZgxfZdqW4cOHY8mSJfjpp58wYMCAUtNJyJOAAk9CSI12/fp1XL9+HQDQt2/fcu3j2rVreOutt5Ceni6Yr9PpEBcXh7i4OOzZsweLFi3C8OHDHdp3dnY23njjDSQmJgIACgsLkZmZCV9fX9y/f59f7+jRo3j33XdRWFjIz0tPT8fhw4fx559/YtmyZRgyZIjV/s+dO4fp06cjOztbMP/Bgwd48OABtm3bhuXLl1udm6ysLIwePRq3b98WzE9LS8Px48dx/Phx7NixAz/88AMUCgW/PD4+HqNHj0ZSUpJgu+TkZCQnJ+Ovv/5C//798eWXXzpcPezQoUOYO3cu1Gq1YP7t27dx+/Zt7Ny5E+vWrUN4eDi/jGVZfPrpp9i6datgm+zsbFy5cgVXrlzBpk2b8N1336FRo0Y2j8txHD744APs2bNHMP/+/ftYu3Yt9u/fj82bN8Pf31+w/P3338e+ffsE87KysnD58mU+QPrtt99Qp04dh84DYDzPb7zxBnJzcwGA76XZFHQeP34c//d//2d1rnQ6HfLy8nD//n3s3LkTa9aswXPPPefQsct7PioTy7JYvnw5fvnlF8F8rVaL//77D//99x+2bduG77//3ma6Nm3ahEWLFgmGeomLi8PatWtx9OhRh3/XZWUwGPDpp59i27ZtVssyMzNx8eJFXLx4Ebt27cLmzZvh4uJSKemwJBKJrNq4HzhwAB9++CE0Go1g/q1bt3Dr1i1s2bIFa9asQZs2baz2d/36dUyaNAkZGRn8PLVajT///BNHjx7FqFGjyp3WjIwMTJ06FREREYL56enp/LVq27ZtWLVqlc0XU99++y1WrlwpmBcTE4PvvvsOf//9N0JCQuweOz4+Hm+++SZiYmIE80+ePIlTp05h3LhxdrfdunUrPvnkE3Acx8/T6XS4c+cO7ty5gy1btmDFihV2X9T17dsXS5YswY0bN3D16lWbLz4JedJQVVtCSI128OBBAED9+vWtSvYWLFiAiIgITJ48GQBQq1YtREREICIiAj/++CMA49vst99+G+np6fDx8cHixYvx119/4dy5c9izZw+mTZsGhUIBjuOwePFiqwf90pw4cQKpqalYsGABTp8+jW3btvElKObee+89eHh4YNmyZThx4gROnDiBefPm8ce21Qvq7du3MXnyZGRnZyM4OBjLly/HiRMncPbsWfzwww9o1qwZCgsL8d577+HSpUuCbb/66ivcvn0bSqUS8+bNw99//41z585h165dGDx4MABjydWvv/4q2O7TTz9FUlISfHx8sHz5cvzzzz84e/YstmzZgi5duvDfyYEDBxw6TxEREXj33XehVqsREhKCL7/8EidPnsTRo0fx8ccfw9nZGWlpaXjnnXcEQ+V89tlnfNDZsWNH/Prrrzh79iz+/vtvzJw5E0qlEg8fPsTYsWORnJxs89h//vkn9uzZg+7du2PTpk38d28qZUhMTMSKFSsE2+zfv58POt944w3s3bsX586dw59//ol3330XEokEKSkpgiF7TPmxdevWAIBBgwbx+dHSgQMHwHEcVq5ciTNnzmD9+vV8ydHDhw8xY8YMqNVq1KlTB19//TX/PezYsQOjR4+GRCKBVqst15BBjp6PyZMnIyIiAoMGDQIAtG7dmv9c5iVCISEhCAsLK/FB355Vq1bxQefzzz+PTZs24fz58/jnn38wZ84cuLi44MaNG5g8ebJV4HT69GnMnz8fBoMB4eHhfK2C3bt3Y+DAgbhz5w5WrVrlcJrKYv369XzQOWDAAGzduhWnT5/G0aNH8cMPP6BVq1YAjL/l9evXP9KxTPnL3j/z686MGTMEHaKdPn0as2bNgkajQaNGjbBmzRqcOXMGJ0+exNdff406deogKysLkyZNsgrCMjMzMWHCBGRkZMDDwwMLFy7EiRMncPz4ccybNw9yudzqOlJWWq0WkyZNQkREBBiGwahRo7B7926cP38eu3fvxiuvvALAOFzLlClToNfrBdvv3LmTDzrbtGmDjRs34ty5c9i9ezeGDRuGu3fv4tixY3aPbQo65XI53n//fRw9ehSnT5/G8uXL4evri3Xr1tncNjExEQsXLgTHcejatSt+//13nD59GseOHcPnn38OX19f6HQ6fPTRR3Z7tw4MDESDBg0AgKrbkqcHRwghNdjAgQO58PBwbu7cuXbXWbVqFRceHs716NHDatnGjRu58PBwLjw8nLt48aLN7devX8+vc/LkScGy119/nQsPD+def/11wfzZs2fz23z11Vc293vu3Dl+nTZt2nAPHz60Wuf333/n1zl8+LBg2ahRo7jw8HCuZ8+enEqlstq2sLCQGz58OBceHs4NGjRIsKx9+/ZceHg4t2bNGqvtWJblRo8ezYWHh3MDBw7k5+fm5nINGzbkwsPDud27d1ttp9FouL59+3Lh4eHc5MmTbX5mewYNGsSFh4dz3bt35zIyMqyW//XXX/x52LVrF8dxHBcdHc2nZ8aMGZzBYLDaLiIigmvatCkXHh7OTZ8+XbDM/DuaNm2azXSZzt+zzz7LsSzLz582bRoXHh7OvfHGGza3W716NRceHs41bNjQ6rsx5ZnZs2dbbWdaFh4ezm3bts3mvpctW8aFh4dzTZs25eLi4myus3jxYn4/9+/fFyzr0aOHzeM/yvkw397yt/CoHjx4wDVq1IgLDw/nFi5caHOdyMhIrnHjxlx4eDi3bt06wbJ+/fpx4eHh3PPPP8/l5ORYbTtv3jz+c1teI3bs2MEvi4+Pt3ns+Ph4fp0dO3bw8w0GA9epUycuPDycGzdunNX54jiOU6vVXNeuXbnw8HDulVdeKfOxTfNXrVplM02W/vvvP7u/A71ez+eJ4cOHc4WFhVbbZ2Zm8utY/rYXLlzI58cbN25YbRsZGckfu6TzaMuGDRv47TZu3GhznXXr1tlcp6CggD//I0eO5DQajdW25r8Ty3z7yy+/8Mv+/fdfq23j4+O5Nm3a8OucO3eOX2a6rzzzzDM2j3v+/Hl+uz///NPu5587dy4XHh7ODRgwwO46hDxJqMSTEFJj5eXl4e7duwAgqH7piMDAQLz22msYOXIkXxJlqX379vzfKpXK4WP069ev1HWGDBlisy1mjx49+L/NB16/c+cOLl68CACYMmWKzbZXTk5OePfddwEYq8tFRkbyy0ylhpbViwGAYRj873//w6+//orvv/+en6/X6/lqY7a2k8lkWL58OX7//XeHStru3LnDt3GcPn06vLy8rNbp06cP2rZtK/gu/vjjD3AcB5lMhnnz5tms2tuqVSu+mt9ff/0lqApo7q233rI5v3v37gCMeS0zM5Ofbzp/WVlZVqUsADBq1Cj88MMPOHDggKCdZ1kxDGO36nh4eDheeeUVTJw40W7pofkQDOXJs46ej8q0detWsCwLhULB52dLLVq0QP/+/QFAUK01Ojoa9+7dA2BsD2nru5gzZ06lDEuSn5+PESNGYODAgZg8ebLNNogKhQLNmzcHUL7vqSwSEhIwbdo06HQ6NGrUSNCuFzBWGzU1BZg5cyacnJys9uHh4YG3334bAPDvv//yPYVzHMfXOhk2bBgaN25stW2LFi1stnstC9N32bRpU7z22ms21xk3bhyaNGkCANiyZQs//9y5c/x1atasWTaHz3rvvffg5uZmc7+mGg2dO3dGt27drJYHBwdj4sSJNrc1XR/0er3N30m7du2wZs0a7Nq1i68pYoupxPPevXtP3Li/hNhCbTwJITVWTEwMWJYFANStW7dc++jZsyd69uxpd3l6ejouX77MT5u3ESsLqVTKPzyUxF7nQeZjLRYUFPB/X7hwgf87PDwc+fn5Nrdv1KgRxGIxDAYDLl26xB+nbdu2+Pfff/H7778jJSUFAwYMQOfOnfkH8AYNGlil28PDAw0aNMCdO3fw5Zdf4vbt2+jbty86dOjAd4xSnnZIZ8+e5f82BTa2bNy4UTD933//ATA+xNkKVk369++PX3/9FSzL4tKlS3j++ecFy52cnOy2/zQ//+btb9u2bYtjx47h5s2bePnllzF8+HA899xzfGctXl5eNh9Wyyo4ONjuA/HQoUMxdOhQu9smJSXhxo0b/LSjebY856MymfK66TduL6+3bNkS+/btw/3795GZmQlPT0+cO3eOX26vratCoUCPHj2we/fuCk23q6sr/u///s/ucr1ej5s3b/IvQ2y9wHhU+fn5ePvtt6FSqeDh4YE1a9YI2mwDxmqqJiVdS5o1awbAGGxGRESgb9++uH37Np/+ktoS9+7d26oddmmysrL4NuiWYzNb6tevH27cuIHbt29bffeurq549tlnbW4nl8vRpUsXPng2yc3NRVRUFICSP1evXr1sDqllager1Wrx0ksvYeTIkejRowcaN27Mv4AoSydspjzPsixiY2PRtGnTUrch5HFGgSchpMYyb7P3qCUWOp0O//33H6KiovgOhe7fv4/U1FTBepxZRxFl4e7ubrNnWEv2Aifzt/Tmx46Pj+f/LmvHKOYdAs2ZMweRkZHIzMzEP//8g3/++QdisRjNmzdH165d0adPH77nTHOffvop3nzzTRQUFGD37t3YvXs3pFIpnn32WXTr1g19+vQpsadGW1JSUgAYA9uSes20ZPr+bfXcas58+cOHD62Wu7u72+0Iyfz8m15yAMBrr72GP//8E5GRkYiKiuIfUsPCwtClSxf06tUL7du3L/f4eyUF0iaFhYU4e/YsoqOjERcXh/j4eNy9e9eqhKU8edbR81GZTCX9UVFRdgMIS8nJyfD09BTkrZKuEeWtMVFWiYmJOH/+PO7fv4+4uDjExsbiwYMHVu1RKxJX1EnU7du3IZFIsHLlSru98prYGo7KFtO1xPwaXNLvvrTfqC0pKSl83i3txaL5ctN3b0pjadcjW2kzP3ZJ24eFhfEv9sw1b94co0ePxoYNG5CWloZVq1Zh1apV8Pb2RufOndGjRw9079691J6MzTtLSk5OpsCTPPEo8CSE1FjmHf08Sm+Qhw4dwuLFi/nqYyYMw6Bu3bpo2bKlQ8MUmLNVbc0WicSxy215ql2ZbxMWFob9+/fj+++/x8GDB5GRkQGDwcD3BLt69Wq0adMGixcvFvTK2qZNG+zdu5fvETI3Nxc6nQ7nz5/H+fPnsXz5cvTs2RMLFy6Ej49PmdJl6pFXLpeX6/OU9vBmXsJjq3OokobgsEcul2Pjxo3YsGEDtm/fzvdQbOpNeMOGDQgKCsKnn37qcK+yQOn5ZuPGjVixYgXf662JSCRC48aNUadOnXJ3SFKe81GZHiWvm85PaXnLXunyo8rKysK8efPw119/Wb0AcHZ2RocOHZCWliYooa4oK1aswD///APA+KKpQ4cONtd7lPObk5PDz7MsSTVXnurm5ukqbQxm82uAqcS2rN+9rXtHWT+XSCSCUqm0+h0CwMcff4y2bdtiw4YNuHTpEliWRUZGBvbu3Yu9e/fC2dkZ77zzDiZMmFCmtDnasR0hjyMKPAkhNZZ5m6mylCra8tdff+Hdd98Fx3Hw8vJCnz590KxZM9StWxfh4eFwc3NDbGxsuQPPymL+MHX16tUyB7jmfHx88PHHH2Pu3Lm4du0aTp8+jTNnzuDy5cvQ6/W4ePEixo4di0OHDgkevkJDQ7FkyRK+F80zZ87g9OnTuH79OjiOw9GjR5Gamort27eXOLaeiWnfjlbdVCqVyMnJKfWBzLzqoCNjJZZGJpNhwoQJmDBhAmJiYvjzd/bsWeTn5yMxMRFTpkzB1q1bK7SkYv369ViyZAkAY0/NvXv3RuPGjVGvXj00aNAASqUSZ86ceWJ6wpTL5cjLy0P//v3x9ddfO7St6cHdvJq6LeY9JTvKXqmlTqfDhAkT+OGe2rVrh44dOyI8PBx169ZFnTp1IBKJMGvWrAoPPE0vlQDgxRdfxOjRo+2ua7qW+Pj44PTp0w4dx7wUuaTfYXnOr3mwaa/6r63lpt+4KW3l+e7L+rnsbW/St29f9O3bFyqVir8+nD59GikpKcjPz8fy5cshk8nsfj/mtQrKci0l5HFHgSchpMYyfzAp7eHCni+//BIcxyE4OBjbt2+3WdWzqjpRcUStWrX4vxMSEkqsysZxXIkPLSKRCC1btkTLli0xZcoUqFQqLFu2DLt370ZSUhL+/vtvfogVc1KpFO3bt0f79u3x7rvvIikpCR9//DFOnTqF69evC4YOKYmpU6WsrCzk5OTYLX06fPgwYmJiUL9+ffTu3Ru1atVCTk4O33mMPaYOqADheatIderUQZ06dfDaa69Bq9Vi8+bNWLJkCXQ6HTZv3oxFixZVyHEKCwvxzTffADC2p92wYYPNEp2amGfLq1atWrh9+zbfAY49tvJ57dq1ARhL1TMyMgRtVM3FxcXZnG9e5Vin09lcx965Pnz4MB90zpkzx+6YjxX9XV29ehUfffQRAGO71/nz55e4vuk3kZmZCbVa7dDLGfPhcu7fv2+3bbB504CyCggIAMMw4DhOMOaxLbZ+46b/mvoCsFd93LyqsfmxRSIRWJbF/fv30atXL5vbpqamlqm6tJeXFwYNGoRBgwaB4zicPn0a7733HrKzs7Fhwwa7gad53iit1JeQJwH1aksIqbHMe4E1teVyhEql4seke/755+22LzTv/Kaq2rWVxnwQ9yNHjthdLyIiAi1btkTfvn35ErCrV69i5MiRaNeuHe7cuWO1jZeXF+bOnctPm87tv//+i+HDh6Ndu3Y2q5YFBgZi5syZVtuVxrzd3smTJ+2u9+OPP+Lrr7/G5s2bARSfgwsXLpTYI+jhw4cBGEsMnnnmmTKlqSQFBQWYMGECnnvuOfz+++9Wy2UyGd544w2+3WB58qY9d+7c4c/90KFD7VYjrI48W1klMqbvOSoqyu5YrAAwb948tG/fHi+99BJfTdO8F2RTtVNbTpw4YXO+eRBmL4+Zdz5mb75pvElLBQUFuHLlCoCK+Z5SUlLwzjvvoLCwEL6+vli9erXN3lzNmc6vwWDAv//+a3e9ffv2oVWrVhgwYADfo3a9evX44LOk65C981sSU2dmQPFv2J4///wTgLEJgaldpKmKu1qtxpkzZ2xux7IsTp06ZTXf2dmZPy/l+VyLFi1C37598d5771ktYxgGXbp04V/mlXR9MA88bfV6TsiThgJPQkiNZaqqBtgvsSiJebtKe6Vm0dHR+OGHH/hpe6UeVa1Fixb80AU//vij1aDugLF0bOnSpdBoNEhMTOR7nA0MDMTVq1f5t+223Lx5k//b1LmGt7c3rl27huzsbGzatKnM25WmZcuWfIntqlWrbLY5O3LkCF96NGDAAADAiBEjABirui1YsMDmg/vVq1f5QLVbt27w8/MrU5pKolAokJKSgpSUFGzdutVmiUd2djbfkZHleTDlu/LkJfM8a17KY+706dPYuXMnP11VedZU3b2ij/fyyy8DMPb6On/+fJu99EZGRmLXrl3IysqCh4cHX8W2bt26fNvG1atXW7XjBoDff//dbomaqcQUgM2qyyqVyu5vyLz6v63vimVZLFiwgM/vj3reNBoN3nnnHaSmpsLJyQlr1qyBv79/qdv16tWLb4/9xRdf2AywVSoVVq1aBbVajfT0dMGwKaahUg4ePCh44WESHx+P3377rVyfyfTdR0VF2XzJAwC//vorf90xXRMAY8/Tpu9v2bJlNq8r69evt1uS/tJLLwEwvkAw/z2ZZGVl4dtvv7W5LcuyiImJwbFjxxAbG2u1nOM4fgipkq6TpmuIWCwWtLUn5ElFgSchpMZSKBT8A1B52ki5ubnxwdjx48exaNEi3Lt3D5mZmYiOjsaKFSvw6quvCtr4lNbWqCrNmzcPEokEOTk5eOWVV7Bx40YkJCQgIyMDp06dwtixY/mxOydMmMCXTPj6+vJv27du3YoPP/wQV69ehUqlQnx8PHbs2IFZs2YBMAapprFEmzdvzo8PuXLlSixbtgw3b96ESqXCgwcPsH79eixevBiAMZg0Db9QGtO4oSKRCDExMRg5ciSOHDnCl0j//PPPfHoaN27Mp71Ro0Z8FbVDhw5hwoQJOH/+PDIzMxEfH4+ff/4ZY8eOhU6ng7u7Oz799NNHPeU8U4cgt27dwrhx43Dy5Ek+GD1+/DjGjx+P3NxciMViq9IuU4nMxYsXERsb69D4jeHh4XzwvGXLFnz77bf8Pq5evYpFixZh0qRJguCsqvKs6XPdunULUVFRyMzMFARTb7zxBl544QW88cYbDu23cePG/FisR48exZgxY3Dq1CmoVCrExcVhw4YNmDhxInQ6HZycnPD+++8Ltp83bx4UCgXS0tLwyiuv4NChQ/y2X331VYnVoBs2bMg/8G/cuBHffPMNEhISkJKSgn379uHll1+GSqWyWT3VfHzGmTNn4siRI0hNTeWrr7/++uuCgOZRvydTW22GYbB06VK0bNkSWq0W+fn5Nv+Z2ibKZDK+am5iYiKGDx+O3bt38/n5r7/+wujRo/mXezNnzhRU+5w4cSLq1KkDlmXx9ttv46effsLDhw+Rnp6O3bt3Y+TIkeVuCvHKK6/w15GFCxdi/vz5iI6ORnZ2NqKjozF//ny+vXOrVq0EeUskEmH+/PlgGAa3b9/GyJEjcfz4cWRmZuLevXtYsmQJli9fbrd/gCFDhqBt27YAjB0FffXVV/xv7Z9//sGrr76KpKQkmyX9o0ePhkwmg1qtxrhx47Br1y7ExcVBpVIhMjISM2fO5IcJMuVtWyIiIgAATZo0cbjzNUIeR9TGkxBSo3Xu3BlRUVH8mI6OmjdvHsaMGQO1Wo0NGzbYLL0YPnw4zp49i8TERJtvr6vLs88+i1WrVmHWrFnIysrCwoULsXDhQqv1RowYgenTpwvmzZ07F/fv38eVK1ewc+dOm2/0fXx88P333wuq6n3++ed44403EBMTg3Xr1mHdunVW29WpUwcrV6506LN07NgRS5Yswccff4zbt29jypQpVuvUr18f33//vaDUb86cOdBqtdi6dSvOnDljs0pdSEgIVq5cWaFV1YYNG4bIyEhs3rwZly5dwptvvmm1jlQqxcKFC62G6mjfvj0OHjyI5ORkfkzRI0eO2BzqwpJYLMaCBQswdepU6PV6rFy50upci0QiTJ48Gb/88gu0Wm2V5dn27dvjxx9/hFqt5kvBfvvtN766a3x8PBITE8vV0czcuXOh1Wqxfft2XLx40WZPoM7Ozvjqq6+s2hnWq1cP3333HaZOnYrExESrsTUDAgJQu3ZtwXiW5ubPn49JkyZBo9Fg9erVWL16Nb9MKpVi6dKlWLlypVWti27dumHAgAE4cOAA4uLibOZpPz8/9OzZE1u2bEFBQQFSUlLKVEppKTExEfv37wdgfJHz8ccfY9asWSWO4Tps2DAsXboUgHGs25ycHCxatAiJiYmYPXu21foMw+Cdd97hSyFNnJyc8PPPP2PixIm4f/8+Pv/8c3z++ef8cpFIhNmzZ/MBoiNkMhnWrl2Ld955B1euXMGmTZts1rbo0qULPv/8c6vewTt27IilS5fy15VJkyYJlgcFBaFPnz5Yv369zc/7zTff4K233sLly5exdu1arF27VrDOrFmzsGrVKqs8HRYWhsWLF2Pu3LlITEzEnDlzbH6+V199FSNHjrT7+U2Bp/lLDEKeZFTiSQip0UzVLuPj421WNy1N8+bNsWvXLrz44osIDAyERCKBXC5HSEgIBgwYgN9++w2LFy/mx7c7duxYjaluCxiryf3111+YPHkyGjduDBcXF0ilUvj5+aFv375Yt24dFi1aZPVW39XVFb///js+/fRTtG/fHp6enpBIJHB3d0fz5s0xffp0HD582OohPiAgALt27cKsWbPQqlUruLm5QSKRwNPTE23atMGHH36IvXv3livIGzp0KA4ePIjXXnsNderUgZOTExQKBZo2bYr3338f27dvR0BAgGAbiUSCBQsWYOPGjRg4cCACAwMhlUrh7e2N1q1bY968edizZ0+ljH/36aef4ocffsDzzz+PgIAASKVSKJVKhIWF4fXXX8f+/fsxbNgwq+1efvllTJs2DbVq1YJUKoWvr2+JbRct9ejRA1u3bkW/fv3g6+sLiUQCpVKJunXrYvjw4dixYwfee+89vmOnv/76q8I+c0m6du2KefPmoU6dOpBKpfDy8kJ6enqF7FsqlWLx4sX89xwUFASZTAa5XI4GDRpg/PjxOHjwILp3725z+44dO+LgwYMYPXo0goKCIJVKERgYiNGjR2P37t0ldjrVoUMH7NmzBy+99BKfv/z8/DBw4EBs374dAwcOtLvtl19+iQULFqBVq1ZwdnaGRCKBh4cHWrVqhZkzZ2L//v2YPHky32Tg77//Ltf5MR+qhWVZ5Ofnlxh02vLqq6/i0KFDGD16NOrXrw+lUgmpVIqgoCAMGTIE27Ztw7Rp02xua+qcbc6cOWjatCmcnZ3h5uaGrl27YsOGDfx1ujx8fHywadMmLFu2DF26dIGXlxekUilq1aqFHj164JtvvsGPP/5od+zboUOH8t9fSEgIZDIZatWqhdGjR2Pnzp12O5wCjKX4v/32GxYtWoRWrVrB3d2db/+5Zs0aTJw40e62gwcPxq5du/DKK68gLCwMcrmcz3cDBgzA+vXrS+z46f79+3zV8EGDBpXxbBHyeGM4R0eeJoSQKjZq1ChcunQJ06dPxzvvvFPdySGEPGbmzJmDXbt2ISgoCEePHq3u5BCCr776CmvXrkW7du3stiMm5ElDJZ6EkBrPVIVt9+7dNabXWUIIIaQ8DAYDP3b022+/Xc2pIaTqUOBJCKnxunTpghYtWiAuLg7Hjx+v7uQQQggh5fbvv/8iNTUVzzzzDDp16lTdySGkylDgSQh5LMyaNQsMw+C7776r7qQQQggh5cJxHNasWQOGYWyOA0rIk4wCT0LIY6F9+/Z47bXXEBkZWeJA8YQQQkhNtW/fPkRFRWHUqFF8j9CEPC0o8CSEPDZmzZqF2rVrY9myZeUasoEQQgipLlqtFitWrEBwcDA/djEhTxPq1ZYQQgghhBBCSKWiEk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZVKUt0JINVPq9UiKyuLn3ZycoJYLK6+BBFCCCGEEEKqhcFggEaj4ac9PDwgk8keeb8UeBJkZWUhPj6+upNBCCGEEEIIqYH8/PweeR9U1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiqrYETk5OgumQkBAolcpqSg0QFxcHg8EAsViM0NDQaksHeXxQniGOojxDHEV5hjiK8gxxVE3JM2q1WtAMzzJWKC8KPIlVR0JKpRIuLi7VlBpAr9dDp9NBKpVWazrI44PyDHEU5RniKMozxFGUZ4ijamqeqahOR6mqLalxRCIR/4+QsqA8QxxFeYY4ivIMcRTlGeKoJz3PMBzHcdWdCFK98vLycOvWLX66YcOGNeotCyGEEEIIIaRqVFZs8GSG04QQQgghhBBCagwKPAkhhBBCCCGEVCoKPAkhhBBCCCGEVCrq1ZbUOKmpqXxX0n5+ftWdHPIYoDxDHEV5hjiK8gxxFOUZ4qgnPc9Q4ElqnOTkZL4r6SfxR0cqHuUZ4ijKM8RRlGeIoyjPEEc96XmGqtoSQgghhBBCCKlUVOJJapw6deqAZdkndgwjUvEozxBHUZ4hjqI8QxxFeYY46knPMxR4khrHzc2tupNAHjOUZ4ijKM8QR1GeIY6iPEMc9aTnmScznCaEEEIIIYQQUmNQ4EkIIYQQQgghpFJRVVtS4+h0OnAcB4ZhIJVKqzs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHAk9Q4N2/e5LuSbtGiRXUnhzwGKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiEk9S47i7u0Ov10MioexJyobyDHEU5RniKMozxFGUZ4ijnvQ882R+KvJYq127dnUngTxmKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiwLME8+fPR8OGDbF69eoK2V9iYiIWLVqEvn37onnz5mjXrh1GjBiB9evXo7CwsEKOQQghhBBCCCE1DbXxtOPs2bPYsmVLhe3v+PHjePfdd5Gfn8/P02q1uHr1Kq5evYodO3bgu+++Q3BwcIUd83F17949vmF1vXr1qjs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHA04br169j6tSpYFm2QvZ369YtTJs2DRqNBmKxGMOHD0ebNm2Qn5+PPXv24PLly7h9+zamTJmCrVu3QqFQVMhxH1f5+fn8GEaElAXlGeIoyjPEUZRniKMozxBHPel5hqraWjh+/DjGjRuHvLy8Ctvnp59+yged3333HRYsWIDBgwdj5MiR2Lx5M15//XUAxgD1t99+q7DjEkIIIYQQQkhNQCWeRbRaLb7//nt89913FVbSCQCXL19GREQEAGDo0KHo1q2bYDnDMPjoo49w9uxZ3Lt3D+vWrcP48eOf2DcdZdGsWbPqTgJ5zFCeIY6iPEMcRXmGOIryDHHUk55nqMQTwJkzZ9CvXz+sWbMGLMtCqVRi3LhxFbLvgwcP8n+PGjXK5joikYhflpWVhXPnzlXIsR9XIpGI/0dIWVCeIY6iPEMcRXmGOIryDHHUk55nnsxP5aC9e/ciISEBgPFNwx9//IEePXpUyL7/++8/AIC7uzuaNGlid70OHTrwf588ebJCjk0IIYQQQgghNQFVtS3i5eWFqVOn4tVXX4VYLEZGRsYj79NgMODevXsAgHr16pX49iIsLAxisRgGgwHR0dGPfGxCCCGEEEIIqSko8ATw2muv4dNPP4VcLq/Q/aanp0Or1QIAgoKCSlxXLBbD19cXycnJePjwYYWm43GjUqnAsixEIhG8vLyqOznkMUB5hjiK8gxxFOUZ4ijKM8RRT3qeocATQPPmzStlvyqViv/b09Oz1PXd3d2RnJyMrKysSknP4yIhIYHvSvpJ/NGRikd5hrB6PfR5+QDLgivqIM7Jx1uwnC0sBKs3QJeTg5hLETAwgFgkgjgsDJxpO5aFLjcXrFYLjmXBFhSC41iAg3EdAwtwpnU54zIAxhUAcBy4okmAg0eL5pAKrv+cMT06HdJPnobMwwMcxwEch8CBAyBRGofT0qoyoSmqeaNVZSLryhVIXFyKdmFc3/gnB21mFjidtmgWxx+76FAAuDIsM3Jr2hgudevaPMepR45CrFDy04ED+kEZYhx7WpORgYJE40tTVqtF6tFjkLq529yPPj8fhsJCm8scpQwNgUfLFjaXZZw7D05vAFNU28i7Uwd4tDDe7/V5+cgrqpEEAClHjkKidLa5H0NhIfT5ecjJyQHHcmBEDNzc3MqVXpmHJ3y6dLK5LDvqBrQZGRBJZQAA10YN4df9OQDG/JtzPcrss10Ax7L8ZzPH6nTQZWeXK32WRFIJAvo+b3NZzoMHyLl/DyK5E8ABEj8fhL/8avHnuR4FTq83pvfqVWSnJoGRSoz5HYC73BUAA45joc0ofl7Ss3rkavJhlknhIXcHwzBWaTCweqgKTJ+VA8Cg4YChcHJ2sVo3OyUJd08fBaswnl9GJkXnGbOhlBp/c7l37kJfNKJB1oO7uH3lHFiZ8TGZYRjU9giGTGzcVqvKMF4LABg4Ax7mpIIzS2+Aqy9kIilycs3yjKsbDByLxJxksBwLDhwYMKjXrTf8gsOs0puek4bog3ugURSlAQxaTZyCusHhAAB1fAI0aWnG7yI1GdeOH0KhjOHXDfMMgbvcmE912dlgiwpCDKwBibnJ0BmM3w0YwN/ZBy4y6/xvXDcFOoMWppUDW7RCvRbtrNbVGfS4tGcT8iTFHXSGDR6KNq17AgA0aWlQx8Ub/9YUIHLvH8hxKl43yC0A/s6+AAB9Xh4MBWoAxkvdw9wUFOqLrxmecg94Ka2vL6Z1C3TF67rXqYPmXfparQsA/x3ejhxNHlCUtzw7tEPv/q+DYw3Q56uRe+s2v27Eni3IZDTgDHpwrAGeUgVCZO4Ax8JQqIE+P994MgGksxrks0XnjAOUIin8pEqAYyE2pbsou6QVZiNHrwZYAzi9DiKZBLUbhQMdBzyRzzMUeFaigoIC/m8nJ6dS1zetU1hBN+Tyunv3LurVqwdXV1d+nkajwa1btwAAHh4eCA0NtdpGrTZeJFq0ED4EpKen86W4ISEhgiDcYDAgKsp4M3V1dUVYmPDiGxMTg5ycHABAkyZNIJEUZ9msrCzExcUBAAIDA+Hr6yvY9tq1a+A4DgqFAg0aNBAsS0hI4F8MhIeHC0q78/LycP/+fQCAr68vAgMDBdvevHmTD3IaN24sWJaUlIS0ohtB3bp14eJSfPMrLCzE7dvGi5iXlxeCg4MF2965cwcFBQVgGMbqZUhaWhqSkpIAAKGhofDw8OCX6fV63LhxAwDg5uaGOnXqCLZ98OABcnNzAQBNmzaFWCzml2VmZiI+3ngjqFWrFnx8fATbXr16FQCgVCpRv359wbK4uDj+JUnDhg0FeTw3NxcPHjwAAPj7+8Pf31+w7Y0bN6DX6yGTydCoUSPBsocPHyI9PR2AsYq6s3PxzbCgoAB37twBAHh7e1vVJNDr9bh69SpEIpFVz3CpqalITk4GANSpU0fw4KjT6XDz5k0AxhdAtWvXFmx779495OfnAzC2AzevNq9Sqfg24sHBwYIbBcuyuH79OgDA2dnZajDo2NhYZBc9IDZu3FjQm3VOTg5iYmIAAAEBAfDz8xNse/36dbAsC7lcjvDwcMGyxMREvrlAgwYNBGMD5+fn800AfHx8UKtWLcG20dHR0Gq1ELMs6gbWMgZgOi1EUhlyZVKkpKQAAEL9AyDTFILjgOxr15AbE4vs/HxAp4OUEUEhlYLVasFqtdDn5qIwLw+swQBwHGQSqTFgKwrcWL0BrF4PjuMg4jgwTFFcxXHFAWFRsBU68hWIFYqih1cOqgwVCnNywGZmQX8lkv8cElcXNPxmJX+NkF64yOel3Dt3UXApovhcovLosrIgDwjgp3Nzc6FWq8HpdNCdOiNY171LZ8TcNeZvZYYKsmTjudakpSH1yLFKTGUxVqsFW1B8DyooKOCvwfpzF8Ca3Z+82rfF3UzjdVSaoYJzUXpZrRYZp89WSXoLU1MhMrsv6HQ6/trOXrsOfXpxsxlFrUCkyp2M99jsHHgkJPLLMi9chMHsnl2azHKmV+sqh8yr+B7IcRxSU1MBAPm3b0CamMYvi0y8htZhtZGdnQ1Op4PbzVv89Tv5wjkgI6ucqSg7vQhQWtzv09PTYTAYkBV3B8p7xTW0knykcO/Wg79GuNyIhqQoyEy+9B8QkyjYT9nPNpBVwjLLB1lVnetwcSs+x1lZWdBoNMjNSIbi6n1+vkbKIGFkIgozjM8uyvsxkBXlgYzoKLhEPhDuF7dhj2WYm48k5FvMM+UZV4v5Wd7XocjX8dO5ublQ5WYiuyALXreSBesmpSUgT2X8DSqSkuGkMu41Oykenjcsz2+83XNsmQYd0u3mact1cyXRyJUXn1/TNULH6iG/lQg3XXEwmdTqLq5Kjc8V5tcITYEaLjfjBeeNQyKEn7aYsuhfsQy76bVcNy8zBw+TYoruIQawOl3R6BUcmHQdauUXp/eW4RDuXd4NTukOjXcTSJJy+Jd80psxqKUTjnqhQrzNNCiK/pnL41OcJJgvA2D+5KVWaAHdZYjys4BWrartOcL0LFvRKPCsRAaDgf9bJpOVur5pHX3RG8LqYjAYrIaU4TgOOp2OX25Jr9fzyy2xLMsvszVUjWmZ6XMHBwfz1QxUKhW/nDN/LW+RJnv75ThOEKzaSm959luWz1rSfm19x6b92nqr+yj7rcjvxpzBYLCbJvP92sovOp0Oer3eZrvnkvZrLx+a8szDhw+h0+lK3W9J+bsqz2FJ+bAs55BlWcGLBINGA01qKnIjr6EwLQ2cVovkm9EQGViwBQXQpKdDm5ePvJwcQK+HVqGA04jhKIiPB6vXQ+rqiry7d41pfZiEiLvFJULuLZrD6+1JfJo0GenIibwGAFD9dxH594of6HQA1DbPlpGmhGWlDWalz8/nSzQBwFBQAIPBYFbyaMSxLP+9clot5B7ugM74Hdj6jVUazmKS44zptZFXOM7ed16F6bVgSi9g9VEAFOdvkaF67lssZ50qU3p1Bp2gB8Wz8RGoFxYMg84A6IW/Zx2rq5LeFnWs7WspYCwxMh9ILacwl79GcBbXH5Zjq613SJZli35zts+9rWsaA9v5pyrw6bXxm2PNrv22Pk914DgOYDm4iZU2l5nSK7NxX6gqxloaLDiDHqxGDbYgFxyrg+W3rE1PhEh3AqzCDQZZAPR5WWA1+dAbKm7YwlLTyhpgyBH228JfUTmLayvHgQEHzmAAq9cBXNWl00RZwEEjBsS3ioPaqnyOMN+2MlDgWYnMS4DsPbSaM7UHre4xPMVisdWDO8MwfLpsZVCJRGI33SKRiF9mKyAwLTMFiOYlRjk5Ofxyy4dF8zTZ2y/HcTbTZZ7e8uzX/L/2PmtJ+7UVDEulUuj1epsPxY+y34r8bsyJxWK7aTLfr638IpVKwTCMw/u1lw9NecZU0mHrs5jvt6T8XZXnsKR8aNovx3Lg1Grkx8RAq8qELisL2sws6CIjwWZlQ6dW47xGA0NBodXDKQCU1GJcK5Mi/75ZwJiTA5FIBLFYDNYivaxGa3EOi88/Y+M7riwcK7yx8ukVi4VBK8vx3ysnkcApMBAoquaFKgw8LR9lGYaBWCwGx3JWQTYD2P7dVF/cyacXKKpJbLG8OL3V8ziRrlZBWpANT0VxtTuxWAyO41Bo0AhKPtLyM1BPXPRbl1j+nqvvJJvOr61sabpGWIVE1ZgnTL85EVPydZbhqy5ULQ62rxG2rs8MA5vX4Ko8vZaniGEYyKVyaGw8+DMMA6nE/r21KugyEpF18g/BPDkAHQNoLT6L5uEdKFOuQ+9TF6w4CboMY1VmfRmeiasTwxkgFlXP+QUAXR5g0BQHio/6HAHYfxZjWdbu82xloMCzEplXEdRoSnrHL1ynojs5clT9+vUFVUQBYxBtWYXWcht7fHx8rKpwmojF4hL3a1lt1JyHh4egyqmlktruBgcHW1V1NXFxcSkxTZbVa80FBgZaVc01kcvlJe7XsjqwOV9fX6uqxCYSiaTE/VpWXzbn6elZYvvjkvYbGhpqVeXaxNXVtcRtSxpaqFatWlbVP00UCkWJ+7WsKmLOz8/PqpqJiVQqLXG/llVbzHl5edlthyESiUrcr2WVXgDIvHwF8Vu2QZORAbagEIbCQuRVUi0ITm/9BtT0W81XF0BlNp/VagXVptUJiXw1rqoMPC3fQJuuARqJBKmC1VjBNSLnxk1kFQWejEgERiqFSCo1tpETiYzziv5mtVrjcRgGjOnhmmHASMTGaYYBREzRTZ4pekpliv5XdOMvmufk4yOoWunt5QlvhgGr0yE1KQmyorzDMAwUrq5oUVR9PO/+A+QXvaFmJBK4NWsKmel6x6AoSjGmQVtUFZPHFKeBMX+E5ucL/8vw/we4hIdDGRrCb6IEYGopm5CfC72zE/I0+dAatLiueQgm0BedQ9tAk5KCvKJaO6xOh/xGQUgUqaEz6MByLDzk7ghw8UGIexB0OTkwqE3ttzjcz4xFrra4YqJSqoSP0hNeCg+Y07MGxGc/RLYmh59n8FHA09cVSq/ia5F7vXrQ6LVQZSfgas5DcCLjh8vykiGsbhicxDKIC7TINsu3mgZBuK1JMUuDHJ1D20LEiGBQq6HLKT5mcl4akvOKc5tMJEU9r9pwklg0qWGA5FzhuqyzAq3rCH/3LmF1AACXDZmIUhRALzamNztQwV8jWJ0Omdri79hQLwTXPe7xn00qlqBnWGfjulottJnFFRFV6kzEZRe/ghIxIrQIsH0fy1RnITa7uMomK2bQzOI+7Fw0He3M4aYhHVqp8TeS4yLGcLNrRKZOD7YozeKMBESKMvjPxgDoVa8LxIwYHMvybRUBIFeTh/uZcfx6YBg09Q23GQiodQW4p4otXhcMaoWFwdmsqq3pSSw5KQaRuQ+hkRv3w0rFaO7hBd8gYw7Pkcr47zmf1eBWfiJ0RZ9NxIjwTGATKKXGVxmatDS+BFVr0CEmMx4sOD4NtT2CILfMDzCWasdmJxhLk4p+nw0a1odzSPF92pTevPxsXE59gDw5A6lYChGAVm4eCPXwgUjqBI2bOwqTk8EW5kErNiAm3A8FTgxYTQHA6hGqA5wNxlJJQ6Ger06iB5AmE0NvFqR46wxQshzELh6Q+YdBpzJWB2XBIUmvho5jwRl0AMvCQ8FCaqsSHwPk+IqR72T2UlhkPKizlIFz07bIvmFsDiHRaRFX2x25CgacXgtOr4efVg9vvXF9Vg9wRbcnDkCqTASt2YsON4MB7noOjFQGiWcAOL4GA4dkvRqFnAEw6MEZDFDIOUjttHYrFImR4cuAKzoX7kVtTkXg4BvoDzVXHCYVhnggS1ZUyqvXwt3AIUjHAQyDosPx50ElEUPNFEfhSojhWxRyiVw8BNfldF0+cg0auCfnQaqzflFTnucI/jy5uZW4rWWTJHO+vr6CvmoqCgWelci8jWR2GRr6m9Z5EhsTE/K0YnU66PPykH7qNHJv30VhUhJYnQ4+nToi5JURgnU5jkNu9C3osrOhTUuvgsSx4AwGm4EjI7Eo0bR4+ymSSiF1cwUYERRBQeAMLJTBQRA5ySCSmf1zkkGfmwdWozEGeIwIEBcHeuaBH0QiiMTGB1GIGEhdXACRGIxYZEwDI4I8wB9imUwQfAEAZ9AjsN8LcPLzLd6vGZcG9eEcVgciubxqq9qWoNaA/naXudQNg0vd4ofRkBEvVUoaLj28hsScJKTkpeNhbgqa+rqijqcLarn6oZZbgGDdn9griHh4jZ9uWnALjXOND2rygABBW9a7ilj8G3MWKKo82sA7FG6hbVAvvKdgn9mFOThzbT/+uV88fnUdjxD0D++BpmEdBevma9W4Gf0P9tw8xM8LdgtEo+aN4RP8jPVn89fiWOROftrfWY60fBX0rAGNfOvBp1Px/gu91fj3ynZ+2lvpiVH9xkEmsX7CTr5/GqeuH+BLBNyd3DC89/s281VewmU8uHsSDMOAAQMfpRe823awWg8AAut6Ier+KTBgIBIxCJIVP0OIpFJ4dyzernajIDx4cAYMw0AEERRSBeo1G2Bzv8m5qchMvAIGIiilcigkcjSt3cbmutkF2ZCrYorSIIZUJIG3f0Ob6z7bpiVC1SMgYhiIGBHEjPA64tn6Wf5vt3at0cyghajoZQnDiOBk49ya2D5DtrUt43reaI+mw16xu9ytcXF/A97t26Hxa2PKnIZWZV4TeKbov4UJ0dDnZoItzAerSQJbmA9DYT7YglwY8rMhystEqxA9OIMOnF4HTq8FtixGAgC3Nv3g0XEoNHExEIsArwAxugzqDgDIu3oM+uwcO0c38oPtarrK+vXgP2I2Mk8V/xbqFP03/9Z56FJj7e5TDqC5hwGwsW+OZeHSuAVYTfELho6NjHsuiLkKTXzJwwh6gwMjk0IkdQIjlYGRyMCIpZC4+8C1eQ8YCnL4+0G9ot+hOuY6DHkqiJyUYEQSMGIJIBaDEUvAsQYwIjGC/GpD4uYDRiwFI5EU/VcGRmI8licYfr9BI4ryrpPCuN4j3keysrLAMAxauBtra1xctRCaI1f45dqacZuqcBR4ViI/Pz84OzsjPz+/1CFSDAYD35DXXmnP08K8XnllFfWTJ0t15xm9Wg11bBx0ubnQ5+ZCk5oGkVQK1qwUKvvqNeTcuMlP51l0uAQAXFEJl1hh2S2BYxixmC/RE0mlRTdsKURFJVIiqRQyH29IlEq4hDeASCoFOA6sRgNFSDBMLbLqjHkdUk9PiG10jib390NgCYFTTSOSSgGz6kTVnWcq0/WUaDzMTcHDnBTcVcWigXcY6nvXhlQkRTuLAO3vuycQkVTcvRIDBiw4yCUyq8DTRSpsc6Y1FLUrAgedQQ8xI+JLpeQWRQx6g95me0x3uRvc5MLeNPWs3mZ7O2eZEgqp3Gpd1k47rFqu/qjrGQodq4dSKoefsy/UugI0sxFIdQ5tg2C3ADhJZJCLnSCXOEFiUX3YlGd61OmIXnU72zympfbBrdA+uGxhSVP/cDT1t19rw1yYZwjCPO0HUeYCXP0wuJHtnmktuSvc0SaoZZnWVUjlCHEv2/OKVCyBtJqqY1cUjmPBaQpg0OSDLVSDLcwzBo2F+WA1ahgK8ozzNGp+ubJxJ7i1fgH6nHRoYq+DM+gBjoU+Pxs5EX+Bzc8qV1rYwnxoU+PgHN4W+bf/EyxjSgjoS92vrhCwUYUagDFwKwkjAiOWQCR3gchJAUbqVBQoyiH1DoRlBWaxwgViVy+InBSQBzUExGLAYIDY2QNSr0BALIHE1RtipStETs58b89l5dqyZ+krVZPMzExcu3bNGHi2aAF3d3fks1pBUFa9vb1Unsf7KvAYqFevHq5evcr3ImnP/fv3+Ya/JVUXfBpcv36d7zW2pCoChJhUVZ7hDAYUJqcgPyYWOVFRyL1zDwWJiTAU9XgrdXdHQD9jt+2sRRsWsVL40K5JTQOr0xkDoiIiiQRipdJ24MkwkLq5QeblCamHBxixGPr8fIjlckg93OFSty7Ezs5wbVAfTv5+NoNFUuxxu86o1FlIzc9AhlqFe5lxkItlqONprBIb4OKLUI/iHp533TyMaym3+GkniQwKqRxyGw+klkMoaIqGTcjXWfeH6SIT5mFdUeCpNehwJSlKEGBZVjPUswZo9LabnPg5+yLUPQiFeg0kIjH8XXytq60W6RzaBp4Kd9xVxSDMMwQKiRy1XK1f4gBAm6AWaBNUtu/WU+EuaCdqy+OWZ4gQx3Hg9FqwBXkwFOaBVeeC1RWCLcyHzDcETgF1i9ZjkX/jDCASQySVIePIBuiz08DpNHC0i6QcsQvuwQfy3CTUDvCBLru4xE8kkZbamZo9bGE+FPVawZBjXTOGsWq/bIPYWLondnaHxMXTWCook0PmGwqGYSDzC+Wrg+qyUiHzC4XEzQdsoXHoEZFMAZHcBRIXTzByBUQSp6LAlIHY2Q2M2DoNHMfCs/NLpQewTzhT0Gl6kXX16tWn6nrydH/7VaBt27a4evUqMjIycOfOHbvt+M6dOyfYhhBSvfR5eciPjUX+g1jk3ryJvLv3oElPt9ku0kSXk2O36qrYWfjQXpicDMZGRwGKWoHwaNUSMi8vyDw94NWhPeQB/pAVBZvkyaI16KAqyEJGvgrOMiVkEhkKdRqoCrLQKrApX4K4+vwviEotHs6hhX9jvo2mXOKEUBQHnp5yD8ExCosCvkK9FpbsBZPGcRQt1nVyNpYEisSQiCSQS+Rwc3JBTGY8mvg2EFQ96xLaFrU9gpFdmAO52AneSk9BcGyuZ91O6FnX9tiWlnycvfCcc3s8V6d9mdYnTzZWrwWnLQQ4DtkXD8GQq4KhMB+GPJWxLV5RaaSxHaH9Xko9ugznA09DrgrajOJ2roaCXHC68g1zx+iMvz2Ddx2IZMJ7x6OVTGqMvzeR8B4ikikgC6wPiZsPIJEBHAeppx/ECjew2kLIgxpC7OYFsdIdIicFRHYaP7o06mhz/qMwNbN4mlkGnYCxxmNSUlK19fpc1SjwrGR9+/bFzz//DADYsGEDFixYYLWOwWDApk2bABjbhXbp0qVK01jTODs7Q6/X2+y9ixBbHiXPcAYDCpKSkP8gFuqYGOTHxiLnRjRfiunYzjjocnIgs9Fhk9TVFYrgIEjd3SFxc4N3O9svmLzatoFXW9vtr0jFqYrrTKGuEByMVRJzNHlIyUuDh9wNvs7GzkyWn/oeFxOLxx5t4d8Y4T51+elm/g35wNNbIcxTarMH4TytcPAay5K7ghIemkM9gtAyoAkYMDBwBvgoveAiU6KhWTpMXmrSH8Ob2m5HaGu/9gLNxxXdmyoHxxqgz8+GITcD+swU6DKToU2LMwaOBcaqqxyrB6vOhedzr8Dt2eJqw9rUOKjvXgIAZP93AJympIGc7GMLi7djLIKxRymZlHA6uLi5QyKRQCQTvvhhnJQQKVzAiI1tCk1tCwV/Fy1zbtQRMt9giJycIZY786WaYmc3eHQYDJHs0ZpnkMqnUqn4cTPN+fr6Ijw8HOlHhM0IntAmnhR4VraWLVuiVatWuHz5Mv744w907NgR/fr145dzHIdFixbhftGQBqNGjar2Xm2rW0k9iBJiS1nzDMdxKExNg+rsOeTevg1thgr59x8YezF9VEVVYdmisSLBMPDp1AESV1eIlUqIZLIa06kNqbjrjIE1QM8au96XiMTYdHU3Lj28hgx1JtS6Agxv0l8wTka4dxgfeColwmu92iJA1LN6aA0iSEUSeCk9BMsK9MVVYXM0uYJlQW4BaOAdBk+FOwp0hZBLnOAiU6Kel3Xvhz3rdkbPMrZXfNrzL92bHg2rLYQm+QFUxzbCoM4Bp1GD1RY6VJpoyMsSTAuGQJHIHiHwzOP/FitcwTAM387YdskkIwwSxcV/y4MbQlxUfVXqXQvKusY2xfq8TDipcyHx8AMjEsGlSWdwBj3EClfjNcKsF22R3LlMVVIZkRgMBZ01XklBZ+PGjSESieDfriVOFhb3A6G0aPv+pKDA8xElJCSgV69eAICgoCAcPXrUap3//e9/eOWVV6DT6fDuu+/i6NGj6NKlCwoLC7F7925EREQAMA4dMnny5CpNPyFPA9XFS0g6eBg5UTfAFpavypQ5kZMTpB4ekHm4Q+rhAZd6deES3gAyLy9IXV0Fw2eQx9+/D87iVvp9pKszkKHOQsuAJgjzDEFyXnF7rXZBz6COZzBUBVmINxu6Ii77oaDkr9CsnaNlMGnZfiw1Lx3Zmly0CmwGb4UnZGIpvBWecJO7QMwYb99uTi5o7t9IsF33sI7oHlbxVeUIMcdqC6HLSYdelQSd6iF0qmQYCnLBFubBve0AOIcX1+ooiI1CQayxEytt8gNwdtr7lsagthwhwDzwdHAMdLEUIielsZ2jm7dgkdQ7CJxOA31eFtxa9wWn04FxkkMkkYE16I1tIEUSMAwDVqeBxMUDjFQORiyFSK4EY2PoF4mLJyQN2zmWRvLYsxd0+vn5oXHjxvzLE0YmhU5ZXBXZ4PRkNq2hwLMKNG3aFCtWrMD7778PtVqNvXv3Yu/evYJ1ateujZ9++kkw9ichxHGcwQBDYSEk5uPopqUj61KE4zsTiSB1c4PUwx1SD3fIPDzgXK8uvFq3hkguh9TNVdA5EHk8mUotnSQypOZnIDk3FdHp9xDg4ovn6rTHmbiLuJJ8g1+/nldtZBYIH4DZokHnLKvEGjhhu6647Ieo6xkKPxcfwbqWvbUCxjEKw72NVV571+uC5+s/99SXOpKqo0mLhzb5PrSpscahPvKzoM9OgyE/C6ymwDi8hx2K2s34wJMzGIcEcQqoC03yfYicFDBUVOBp9nuQevhDJFOAkUghVrqBYw3GYM/NB5xBD4mHLySuPnxPqhIXT7tVVF2alK0WACElycjIQFRUVKlB59OEAs8q0rt3bxw4cAC//PILTpw4geTkZDAMg7CwMPTt2xejR4+moJOQcmB1OqQdPwHV+f/gXDTuoTzAH349uvPruNQvvYqc1NMTznVqwzmsjjHQ9PSEzNMTcn8/iGQySN3crMaGJI8fjuOgM+gQkXQdEUnXEZeViPicJLzY+AXU966DW+n3+XWT89LAcixqewQLAs9CvQbB7oH8wPUAEJ+dhLpeteFtUYqZVZADWBSAm9pgdgx5Fk39w+Gl8IBSqkChXgMnse0q2WIbJSiEOIrjOHAaNfS5GdDnZEDi4Q+Zdy2LdVjkR59D2r5vinpydZw+p7g2ACOWQFn3Gegyk6FJvg/GSQnYHEaEASN1AiOTQySTg5HKIXZSQuLpD6eAupB6BULi4SfYQuZfGzL/2sZtn8KHeFJzZWRk4Pr161ZDQ9kLOv2c3NAts7hvCYmHS5Wks6pR4GlH+/btcevWrVLXCw4OLtN6gHF8zo8++ggfffTRoybviRYbG8t34FC7tnWbJEIAIDvqJu6v/QEFiQ/B6Y3tKjVOTvAKqgWDWtjOx6VuGEQyGd+WUySTGXuN9fZCrSGD4NqwIWQeJQ+lQB4/HMeBYRg8zE3Bqdjise5kYikepMThbEpxKfiDrHh0C+uA+OyHgraWuZo8+DkLq+FlqDMhZoSBoKuT8cVhM/9GeKfdG/BWesBL6QkPJzfkavPAAfBWeEBqNsyAm9wVbnJXftpyCBJSs9T0exPHccaSyaKgUp+bAX1WGvS56dCpkqHPSQerzgFnKB7qyblxJ/i/OFOwH116grH00EkJQ7kDzwyreabqpzLfkKKSSC9IfUKM/9y8IVJ6QKxQGttMlvFFC2NnzMmaoqbnGVI57AWd/v7+aNSoke2Xi4wIMvPVS+hB/3FGgSepcbKzs/mx0ggxp8/Lw8P9BwGOM46pmZTMB50AUJiYCATVgi4nF9rMTGMppVgMRixG6OujIHFWQpOWDo9Wz8C1YTi9IX+CcByHmMx43M54gHuqWNzLjEUT3wYY0vh5QdAJABKRGF6Mq2BefPZD+Ci94KlwFwSef949gVYBTdCtTgfUcvWHt9ITAS6+8FJ4wEPuBheZEkqZAjKxsQOSWq7+VuNKKqnzjydCTb03pez8EoUJ0TCocwGDrvQNzOhtjAMp9Q4CGJEx8MzLLHUfjEQGRqYwDs/hpITUwx8uzZ6zWk/s6gXPLsPLHFQ+CWpqniGVJz09HVFRUQ4FnQAARgSpdxAKNRrjM46MSjwJIaTK6bKzkX39BtRxcYL5jFgMRUgw8u8VV41k04ofovLvP4Bn62f56aAhgyo/saTKRTy8jruqGADAnYwHiDSrEisVScCAwdDGffHPvZP8sCNqXSHcpMLAMzk3DRq9Fi6y4iYPLjIlWgU2Q6CrHxrYGF7Ex9mrEj4ReRqxOg00D+9Cl5UMQ64K+rxMGHIzYchTQZ+dDqeghnBp3BEuzbpabatTPYQhV1Wu4xrUOXzNABNTYChSuBiDSidlUVDpDKm7H0QKF4AB5LXCIfUNhsTFC2IXj1IDyqcp4CRPr4yMDMeDTgDxubm4VCiBVsOCAwcZgPBKTmt1oMCT1DiNGze2uhGSp4tBo0Hijl1IOXIMYrkTfLrY7uhBGRrKB54yH2/Ig4IgdnaGV9s2UAQGVGWSSSViORYJ2Um4kXYHBtaAAQ2NPYnHZz/kg04AcJcLg8nY7ES4OblAKpbCReYsGO/SN9APHblnUc+rNup6hSLUIxhOEhma+DZAc/9GENXwKnyk6j3qvYnjOBhyVdCmJ6Aw8Ra0yQ+gTY2FoSC31GFA9Dmp0KmSbC4Tu3gBKTEOp4eROIERS+x+Hp/+b0Hs5Ayxqxfdj8uJnmeePuHh4WBZFikpKQCAgIAANGzYsNQ8kHHlKuocK+43oNBJBPxfZaa0elDgSWocqpLy9MqPiUXi7j1IP3UGnK6oyphIBINGA7GTdfs3J18feLZpjYB+feHZ+lm6uT9hOI7D8QfnsO7yVn4YEg+5G/qH9wTDMJCKJPBz9kZqvrE9madc2E7XwBoQm5WI+t514Ofsg+S8NDTxbYDaHkFwkTmjS1hbq2Oat8EkxJwj9yaOY63aHyb8+B50aXF2tigZqykABw6sTgNOr4NYUVwNT+rhhwKL9RmpHCInBRgnBUQyJV8NViRTgHFSQhnWApxBB6lnoN1jOvmGliutpBg9zzx9GIZBo0aN+L/LEnQ+TSjwJIRUK726APFbtiH91GloM6w7pADLoiA+wapnWmXtUHi1aQ2RzNbg3uRxYmANgl5bWZbFqbj/kJyXhlxNvmDsy6zCHCTlpaKWqz8CXP0Qn5MEFAWeUrEUAS5+qO9dB/W9aqO+Vx3ULhpDs5FvPTTyLb13Y0LKiuM46HPSURBzDdqke9CmxYORyeEUaMxnnp1eFIwtKXZ2hy7N3t5KxmqMoaUm4RbEbt6CwNOleTcwMjkYiQycQQdFSBOweg0krt4Qu3hALHcFxGKIJHStJKQqWAafZWJRPfdJRYEnIaTaJO7ei/itf1j1QmupMCmJDzz9e/eEk69vVSSPVBI9a8CN1Nu4nnoLt9LvISYzAWsHL4G8aCzLmKwE5GmN3cq7yJSQS5wEwefN1Dt8Bz4uMiW8FB5QFWShhX8jDG/an6rJkgrHGfQojI9Gwf0rUMdcM45lqc4Gpxd25iPxrsUHnobCfEhcPPhlMr9QFMZcK/E4fCc9cheI5M4QOTlDrHAGRBIwYikk7j6QegmHP5EHhUMe9CS2BiOkZiupGrXDpZwSMVjzW5fkybyPUeBJapycnBywLAuRSAQ3N7fqTg6pBLqcHNxd8z1U586XuJ48IADO9eoiaNhguDZoYHc9yjOPj/uqWJxLuIw9N/8Ch+I3vLczHqBFQGMAQKhHELwU7vjr3kkwDAMfpRcScpLgLndDy4DGCHQtHsuvsW8DNPa1nzfsoTxD7OEMemjT4qFJvgfNw7tQ370EQ14WwLGlbsvm5/B/a1MeQJ/tDKfAemBEYsi8gwEYe4EVyZ0hUrhCrHCF1DMAEq8AODfsAKlXIFXLe4LQdebJlZqaitjYWLRo0QJONpoCOSqox3M47quGQW8AB07Q0d2ThAJPUuPExMTw3Y+3aNGiupNDKhDHcUg7fhIPfv4F+pwcm+uI5HK41A2Dc90w1Bo8EHJ/f5vrmaM8U/Mk5abCXe4KpbR4KJFCvQbp6kxIRBJ4KtyhKsjil91Iu8MHnhKRWDCmZVO/cLTwb4wRzQbAWaaskPRRniEmrEYNVqOGSOkGkUSGtH3fIC/qZPn2VZgHzqAHI5agMPE2lGEt+N5cnRt3grJ+azByZ3DaQkFpKHky0XXmyZSamoqbN2+C4zhERkbimWeegewRm/3os1Ohz0qBTqsFB6BQ9GSO60yBJyGkSmjS0nD327XIirhsc7nMxweujRoioG9vuIaHQyyXV3EKyaNKy8vAtqj9uJp8E5mF2ZjWfhy61mnHL5cwYjwT0AQxWQnwdfYWBJ430+4K9iWTyNDEtz5cZC6o5eoHGbVPIxWA1WmgvnUBBfE3IHb2ECxzbd4NIs8AyALCAEcCT7EEYqUbxEp3SD0DIPMJgVjhAqegcEFbTLHCBTBNy+j6RsjjyDzoBAC1Wo0rV66gVatWj9SZlD43E/qcDDBA0T/LLsOeDBR4khonICAABoMBYjGN+fUk4DgOcZu3InHn7uKeas2IlUq4NW2CelMmw8mrfOMiUp6pfleSovDdfxuRaRZMRqbcQJfabfmqgxKxBGxRdUVfZ2+k5qXDx9kLwxr3RSOf+oL9iRgRmvk3qrT0Up55OrB6LTSJt6G+G4G8G6eN411yLBiZHG7tBgmqtXIGPTiOg1OA9ZitPJkCjNIdcu9AyPzqQB7cCPKQhhDJna16sSWErjNPlpSUFNy8edNqvoeHBySSRwupfKXO6JxV3N+FyImq2hJSJfz8/EpfiTwW8mNicPOz5dAUjWdlybtTR9SdOAEyL89HOg7lmeql1hbgdsYDhLgFCgLPK0k3cCXpBlrVasrPEzEiPBPQBDpWjzEtX4RSpoSsGoYwoTzzZOIMOhQm3kFBzHUUxlxF4cM7gEFvvZ62EGxBLsTK4nZ3BfevQCR3Lgo8GUg8/OAUWBcihStEMgVkfrXh3LA9RFRaScqIrjNPDntBZ1BQEOrXr//IbbMljAhKtrjfgye1kzwKPAkhFY5jWTw8cBCx6zeA01s/9Mm8vFB38pvw7tC+GlJHykOtLcDxmHOIz36IdsHP4JnA4mBSKVNgeJP+uJV+D1dTim/MhXoNDKz19x/uU0KJEiEO4Ax6aJLuoiA2CoWx11EYHw1Ory3TtvrsVEHgyel1EDt7gGEY1Jn5K0TyJ7PEgRDimMoOOp8mFHgSQipUYXIy7qz+FjnXo2wud2vWFOEz/6/c1WpJ1XqYm4K1/23ErfT7YDkWEpEErk4uaBHQWPBGViQSobFfAzTza4g8rRoh7oF445nhcJO7VmPqyZPKUJCHgvgbSNu9Epyu0MGtGYhdPcGIZZC4+UAe0ghSzwC+EyAAFHQSQgAAycnJiI6OtpofHByMevXqVVjQGRsfi7tpZuP+yrSoUyF7rlko8CSEVAiOZfFw/wHEbdwMVqOxWi5WKODZrg3qTpwAqSsFI48LhhN2/KNn9UjOS4POoIeTRYc/HMfhvU4T4SxT0htgUiE41gBDfjb0uSroMhKhy0wWLONYQxn2wkDs4gGJu5+x+mytcLi37gOmGqp4E0IeH1UVdAJAZtxD+D8o7gejUGZdW+hJQIEnqXGuX7/Odz/erFmz6k4OKYP82DjcXPgZNGlpNpe7NmqEoJeGwrtd20o5PuWZR6M36AGGgZ7VI6cwF34uPvwyd7kbmvg2wI20O/y8+OyHuPTwKjqGtBbceBmGgctj0iEC5ZmaieNYFNy/CvWdC1A/uAZDThrkYS1tdvjDiMRwqlUfmnjrKnBiZw9I3H0h8fCD2N0XIokMUndfODftAlE5e0imPEMcRXnm8VWVQefThAJPUuOwLMv/IzVf2slTuL/2R+hz86yWOfn6oP7UKfB4pmWlpoHyjOMMrAE30u7geMw5nIuPwLOBzRHsHohAFz9B4KmUKdA5tC1upN0BwzAIcPFDsHsg6nnVfqxvvJRnagaO46BNT0DeteNQ3/4P+uxUqzaa+uw0uz3Nip3dAQBS31AoajeDonYzyEObQJeZBJHcGVIPfzDiinnUoTxDHEV55vGUlJSEW7duWc0PCQlB3bp1H+t7X3WjwJPUOHK5HGKx+JHGQyJVI+dmNAoSEuHZujXS/j0uWBbwwvOo/cYYSJSKSk8H5RnHrTy7DucSIvjp+JyHCHYPRLpaBQNrgIFj+d5m24e0go7VQcyI0T2so1UV28cR5Znqw2rUUN+7DPXt/1AQcw2G/KwS19dnpYLjOJsPezLvIPhM/xESV2GbcbGy4qvzU54hjqI88/hJS0urnqBTKryvPqmhLQWepMYJDw+v7iSQUhg0GmRHXkXevfsAAHmAP1wahiPv1m2InZ1R+7WRCBzQr8rSQ3mmZAbWgNisRChlCgS4+AIAWgY0FgSeyblpkIkk0LJ6HLrzL9S6ArzcbCAAwM3JBf3De1ZL2isL5ZmqpctVIS/yCNT3I6GxM8SJPZy2AGxhPsQKFzBM0TAnAfUg9Qmq0rEzKc8QR1Geefx4eHjAxcUFeXnFtbhCQ0MRFhZWqSWdnhJn5JpNP6kB2pP6uQghlYDjODzcsw+GggKrZR4tmkMkkyF4+IvwrOSqtaR0qoIs7Ln5F5xlSn5eHY9gPvBsH9wKP13aDANnrAJm4AyIzX6IQFc/qHUF6FOva7WkmzxZOIMemad3QH33ErRJ98q8nUjuDIm7H5yCGkDmVxuuzbtBJKv82hOEkKebVCpFy5YtERkZiby8vCoJOp8mFHgSQsok8/IVxG3aAo9Wz9i8ADNiMRp9MAtSN+qxtjplqDOx++af+OfeKTAMg4ENe0EiMl7q09UqAMbOhFycnNEyoAmyCnPQIeRZuMqcwTAitApsCk+Fe3V+BPKY4jgOAAf1rQvQpMYKlkm9g0oMPMUunhAp3SDx8IPMJxQeHYdATEOaEEKqgSn4TE1NRa1atSjorEAUeBJCSnX765VIO3EKYFlIXV3h0qC+1TpujRtR0FnNHuamYNbhRdCzRdUYOaBAV4hm/g0Rm5WIPK0a0Wl3oZQqEOoRhPc6T+LbcRJSHqxei8KYa8i5/A8KYq7B9dnnIZI6Wa0ncfcFxFLAUDRcgEgCRZ1mUDZoC2XdlhB7+EMkqrpqs4QQUhKpVIqgoKAqO56zRCasastV2aGrFAWepMZJTEyEwWCAWCyu0h89sS368y+RceoMP511JRJO/n6Qurnx8/x6dIM8IKA6kgeA8kxqfgZkYikCXfxQzzMUtzLu88seZMajjkcwP52vK0BDn3oA8FQHnU97nnkUhoI8qO9FIPfKERQmRAvaa+pVSZD517HahhGJIfMNAWfQwe2ZPnBt2QMiJ6XVejUZ5RniKMozNVtGRgY8PT1rxEsvsUV79Se1jJUCT1LjZGRk8ONe0YW6emnSM8AWFgrmcQYDcm9Gw6t9O4S8+nKNqILyNOeZbdf3AwBGNB0AhmEwotlALDq+CgAgFokR4h6IABdfdAxtDaWU2siZPM15pjz0OenIv/0f1LcvoCA2CmANNtfTZSTaDDwBQNmgDTy71oxrRnlQniGOojxTcyUmJuLOnTvw8fFBkyZNqj/45CwnH8/rZGko8CSE2JQVeRU5N27CpX596HLzkHfrNgDApWE4wmdMhYJuov/P3n3Hx1Gf+QP/zPamVe9dclGX3I0xmGKaMb0TH4RLv+QS0ntyCQmXhHDJLyEh4ZIchBIwGEyxqTZgY2NjsCVZxVa1eq/bd3Zmfn/IWmmkVVlpd2fL8369eKH5zuzss/Kj2X12vkUSHM+hY6wHObEZeKf5AwCAjGHw2tkDAAC7y4GChHxkx2TghsIrkaCLm+90hHgkCALYgXZYGk7AcvYjOHsXNzEQO9ILgefAyOQAAF1uGRSxqZDro0O24CSEhJfOzk40NTUBAAYHB1FXVyd58WlWiXsgsVIXwn5ChScJOitXrpxzzTbif4IgoOPZ3aK2mPIycFYrtGlpWPnVr0BhCK5JPyIhZwRBwMfd1Ximei+GbaN45NoHkKSPhyAIGLGPweaaujP900u/Dvn5D/7Es0jImaUaPfYKxj95A67RvkU/Rm5MgDI+Dcq4dBhWb4YqJfxmgaScId6inAk+04vOSYODgxgcHERSUpJEUQFjToto2wVeokj8iwpPEnS0WuoOKBWB59Hx3POz2hmZDPFbLoA+Jzvoik4g/HOG5Vg88N7/w5nBqbtOL9W9gXvW3Ir3Wj8UHXt9wRVUdC5CuOfMUvAOG5xDXbCcPbZg0cnIldBkF0Ouj4YyNhX6oi1QGBM8TiwULihniLcoZ4KLp6ITAHJzcyUtOiMJFZ6EEABA4/97BALPQ5OS7HF/3Lq1iFpNi2FLweS0wDVjTN0bTe/jmlWXiiYImhznSch8OKsJ9s4z0K/aAEHg4eg8C2trtXu/Mj4djs6zsx4nU+ugzV8LfeFm6PIqaF1NQkjI6OjoQHPz7CEDubm5yM7OliCiyESFJyERThAE1P74vzB2ugaMUonk7ZdBGS1exzHlmquhiqG1HQPt7GAzqnrrAQAXZK5D62gHuPMFaKYxFRanDRdkrqNikyyIHe2HteEjWBo+gr29HhB4GDfu9DizrDwqHoxSA4G1g1Hr3F1oVUlZMFZsh1xrkOAVEELI0sxVdObl5SErK0uCiGbjeB7T+yoxNLkQIYFhsVjcYyL0+uDr1hlOBEFA25NPY+x0zcQ2y2Lg0AdIvuJyyDUaAEDWXXdIGeKihEvOODnWfQfT4XLCytrc+7RKDUqTVqN1pAPXF16Ja1ddBhkTnpMPBEK45MxcBEGAs691Yibasx/B2X9u1jHsUBfUaStntTMMA93KdWDUOsj1Me4vNozll0V00RnuOUN8j3JGeu3t7WhpaZnVHkxFJwDEaaIwNm1bEaZfKFPhSYJOc3Oze/rxsrIyqcMJW4IgoP2pZ9C15yVRO2exwN7Ti6TLL0X8po0SReedUM8ZJ8fijcb38PKZt/DTS+5HVkw61AoVKlKK0WcexLjDjGHbKLJjMpEXm41N6RVUdC5TqOeMJzzngvn0IZhrD8HZ0wzeYZ33eHao22PhCQDanFLIDbHQrVgLhnINQHjmDPEvyhlphUrRCQC8XTy5kMDT5EKEkDAxWXR2vvDirH2xG9ah4HvfBhOmU3kHmw/aPsLjp57HuMMMAHimei++d/GXAUzceYpS6937lHIFsqLTkGRIkCxeEnycg10Yfu9p2FqrIThtCz8AAGRyMArlrBk3DYVboEzIoO7bhJCQNlfRmZ+fj8zMTAkimh9nM4u2GUGY48jQRoUnCToJCQngOA5yOc3M6S/n/u8JdL/8qriRYZD9b7uQfvMNIfehM1RzpmOsG+80H3EXlgBwsqcGdf0NKEqamMgpNzYLibp4rIjPobucPhSqOTMdzzrQ/cQP4Ow7t6jjZdoo6FauhyI6EQLnAiNXQJ2UDWVCBpTxaXRncwHhkDMksChnpNHW1obW1tZZ7cFadAKAXq7E9D4qclDhSUhApKWlSR1CWGv537+j57X94kaGwYqvfAnJ2y+XJqhlCsWcGbQM48OOk1gVn4vm4XNwcE73vppphWdaVDIQJVWU4SsUc2YSZzNh7MTE3zCzwPIlcn0MtCvWIqrsEmgyCsDQUjtLFso5Q6RBORN4TqcTnZ2ds9pXrFiBjIwMCSJaHMWML/5kNLkQISTUDbx/OOyKzlDFQ8COVZdif8O7KEpaiVM9tUjQxeE/NvwbSlIKpA6PBBHeboFMMzExyfCh50T7VMm5s5Y+kemjoYrPgK5gM/SrN0NpjAtYrIQQIiWVSoXy8nJUVVWBZVkAwV90RhIqPAmJEKNV1Wj4/R9mtceuXUNFpx/ZXQ48d/pVrEktQllKkbs9SR8PQRAgYxjkxmbBoNIjJyYDqxPzJYyWBAuBc8HadBKmqoOwtpxCym3fhb2rcdZxcp0RcmM8eKsJyqRsqFPyELftTsh1RgmiJoQQ6RkMBnfxmZ2dHRJFp2larycAYCWKw9+o8CQkApibmlH/4K+BGbOkGUuKUfC9b0sUVfh74tTzeLf1Q1hZG073ncGvr1wN+bSujgzDQKPQwMra8G/lNyNGS2ulRjrnQAdM1QdhPv0+OMvU5PqjH74MTVaRx8foVm+GKi4NxjXbwcjpbZ0QQgwGAzZu3AilUil1KIsyytlFRRkbnj1tqfAkwefMmTNwuVxQKBQoKKAuh8tl6+5G3c9/Ad5uF7UbVq5A6s4dkKlUEkXmO8GYMw998Bec6Kpyb7ePdeGZ6r3YseoyxOti3e3XrLxEVIySwAimnOEdVpjrjsBUdRCOrgaPx7jGB6GMTwc71CVqV6fkTay5SRMD+V0w5QwJDZQz0gqVojOSUOFJgo7T6QTLsuDDdA2jQHIMDaP2pw+AHRsXtWszM5Fw0VYkXLBZosh8K9hyxuywIMOYijMDTTA5p9bmerPpfcRqo7Fz9XZ3GxWd0pA6ZwSBh62tFmPHXoattRrguXmP58wjEJziL4/iLr7DnyGSGaTOGRJ6KGf8RxAEnDt3DjKZDNnZ2VKHQxaJCk8SdBQKBQRBgEJB6bkcLrMFdT97AI7+flF7dFkpVn3r61BFh0+3zmDLGbVChSvyL0J2TDr+34f/gAABifp4rEktxtUrLpE6PALpcsY1PojxygMYP7Fv1oLhnqgzViOq/DIYCi+Ea3wQtnOnEVV2CWRqXQCiJdMF23WGBD/KGf8QBAGtra1ob293t4V68SkoxHdnw7SnLRWeJPgUFXkex0QWj3M4UPeLB2Ftaxe16/PzUfD970Kh00oUmX9InTOjtjFYWBvSjSkAAKVciQR9HOJ0MajqrYOVteE/Nt4LrVIjaZxkSiBzRhAE2JpPYrzyAKxnjy94PKPUQLdyHXSrNiKqeKu7XZWYCVVicK5BFwmkvs6Q0EM543ueis7W1lYwDIOsrCwJI1uelNIiVPadcW+rNOH5eYEKT0LCjMBxOPvQ/8BUf0bUrk5KQuH3vxN2RaeUxu0m/OaDv6A4aRUyjKnuwnMSAwZf2LALMhp/F7HsnWdhbakEAMiN8XMfyDBQxqVBlZwLRWwKGJkMutyywARJCCEhwFPROSnUx3MqYqIwljZVlhnUVHgSQoKcIAhoeuRRjJz4WNQu02gQt3EDZKrQvjAHk+Odp/DI8SfgcDnAMAzitDEAAF7g3YUmwzBgwrbDDPFEEASAd4GRK+HoO+cuOgFArjFAEZ0E19hU93eZzghVci5USdlQJ2VBnZIPRUwSZKrw/NBBCCFLIQgCWlpa0NHRMWvf6tWrkZqaKkFUxFtUeBISRs793xPoP/iuqI1RKpF4ycVQGPRQhtG4Tim9ULsPu2tec2+fHWxGVnQauk19GLQMoyylUMLoiBR4hxWm0+9j/JM3EFV6CWK23ASFIRbGiu0Yr3zHfZwqJRcu88hEt9mUXGgyCxFVegkYhr6gIIQQTyKh6IxT6rFu3ObeVkUbJIzGf6jwJEGnr68PHMdBLpcjOTlZ6nBCRuMf/4T+dw6K2hi5HIkXb4UqJgZZd4XvDJiBzpmN6RXYU/s6OGFqJtKT3TWI1hhxY+FVfn9+sny+yhnnQDtGDu2GpfEEwLkAAOMn30T05ush10dDEHjIFCrwronFwZUJGUguvhiq1FwoohNpGZQQQu9NxFuUM8snCAKam5vR2dk5a19BQQFSUlI8PCr0qOVKxLmmZj9m2PCcCZkKTxJ0+vr6wLIslEolXagXqelPj84qOsEwiN9yAdSJiUi/+UZJ4gqUQOXMZDfarJh03FZyLZ49/QoAIDUqCWtTS3Fb8bV05ypELCdnBM4Fy9njGPngebADs7+Bd40NwNp8CvqV68EwMiiiE+Ac6oaxYjsU843zJEGN3puItyhnlidSik5gYn4ORqEEzwsAAJ6jwpMQEoRGqqrQN7PoBBC3YT206WnIvPN2KoaWQRAEvHb2AGwuO64vuAIahRoAcEPBlajrb0Rh4gqUJK3GqoQ8+j2HOZdpGOOfvImxE6/NWlNzJuvZj6BfuR4AYCi+KBDhEUJI2IikohMAhpVqVOeUwWo2g+cFqFVarJA6KD+gwpMEndzcXPA8D5mMuqAtxshHn0AVFwvn4JC7Lbq8DPEXXoCkS7ZJGFng+CNneIHHmYFm1PSfBQCsiMsBy7HuwlMuk+OH2/6Tis0QtdicEQQB9vY6jH+8H5azxwFBmOdoBsr4NMRf+Rloc0t9GzCRHL03EW9RziyNIAhoampCV1fXrH2FhYVhefe449BhJLzyiXvbrpYB90oYkJ9Q4UmCTlRUlNQhhIz2fz0HhUGPpMsuxXhdPcZr62BYkY+C738HCm3kLJvi65wZs4/jkeNPoKq3DttyNiNRH4+m4XNoGj4HAFifVoq8uGwqOkPYQjkjCALGP3kDY8dehmtsYN5jGaUaqpQ8qFPyEHvhLZDraRKvcETvTcRblDNL09zcHFFFZyShwpOQEDVWW+v+mZHJEF1SDE1qChK2bomootPXWobb8NAHf8WQbQQAUNVbh4tzNkMln1qKJjM6TarwSIC4RvswduyVeYtOuTEe6tQVUCZkwFixHcqYpABGSAgh4cloNIJhmInlqc6jojM8UOFJSAhix8YwVl0zq10dH4/YiorABxRG3j933F10AsCofRwnu09jc+ZaAMCtxTvc63SS8GVpOAFV2grRmpsAAJkcqqQsqFJXQJOci6i1V9Kdb0II8aGkpIkv8erq6gAARUVF7rZw5eJ5UVEWrmuAU+FJgo7D4YAgCGAYBmq1WupwglLP/jc8tmfeeXuAIwkOvsiZk92nkWJIxL+V34xzo52oH2gEAMRqopEbm4n8uGysS6Nxe+HC4XDAZRqGtfYQjAWboE7OEe2P3rADcq0RtuZTEJw2yLQGqFJXQJWcA1VMMqLWXEEFZ4Sh9ybiLcqZpUtKSnL/7sK96ASAzG1b8aHBBEHgIQDQqXVSh+QXVHiSoHP27Fn39ONlZWVShxN0+g99MDHttlwuak+/+caI/SC8nJxxciz21r8JYOLuZmpUMr655XP4/tu/QoI+Ht/Y8llEa4z+CJtIQBAE2Npr0bn/75APd4CBAGGkB0k33i86jpHJIVNpoM2rAKNQQhGTDGP5ZdSdNoLRexPxFuXM8kRS11reZYNDZnN/WcEJ88+cHqqo8CQkhNh6e9H8xz9BptUgftMmqOJiAQCGFfmQ07epXnPxnLvoBIBB6wi6TL2IVkfhJ5d+HfG6WChk8nnOQEIF57Bg7NirGD/5FnjrmOjNz97dCIHnAEwUnJPU6SuhiE2GKjFT1E4IIWT5BEGAxWKBwWCQOhTJuUZ6wQ53Y3IgjyxMS7TwfFUkpMXExIDjOMjl9EFvOkEQUPezX4B3OsE7neh7+x0Yi4tgLC5C3Ib1UocnqaXkTNtoJ/QqPUqTV6N+oAmu84XH0fZPoFdqce3qy/0VLgkga/MpjH64F/bOswDHejzGNdKLkQ/2QJWUCUPBBe52RVQcFFFxgQqVBDl6byLeopyZmyAIaGhoQF9fH0pKShAXF9nX2liFFhWmqbuccmV4ThJJhScJOllZWVKHEJRaHvs77N09Uw2CANf4OJIuvUSqkIKGtzlztP1j/On4E7g4ZxM+v/5T0Co0+Kiryr3/qhWRsf5pOHP0t6F/7+/BDrTPf6BMDlViFji7Gbr8tYEJjoQkem8i3qKc8UwQBJw9exa9vb0AgJqamogvPjUyBRJZzr0tU4bnJIZUeBISAgSOA+9wQGE0wjU+DgCQaTRIv+lGaFNTJI4udAiCgD11r2N3zasAgAMtR5AWlYKdqy/HR11VUMtVuKHwSomjJMvBjvSib89DcPa1ARDmPE6mMUCVmg9N+kpEb7oeco0+cEESQkiEmll0AgDP86itrcXmzZuhVCrneTQJdVR4EhIChj48BnViAlKuugKmM2cxXlePuA3rkHTZJVKHFlLeajqEl+peF7U9VfUiVsRn47biayN2cqZwwNstGDn6IsaOvwrw3JzHKeLSoE5bAVVyLqLXXw2ZQhXAKAkhJHJ5KjoBgGEYFBYWRnTR2T80iAbzVJdshcuFHOnC8RsqPAkJAaqEBAgC4DKbYSwugj4vF1l33yl1WCFDEAQ8X7sPAPCFDbvwyPHH3fuuyL8Iq+LzqOgMcbyLxfjHb3guOuUKqFPzEVWyDbrVm6AwxAQ8PkIIiWSCIODMmTPo6+sTtTMMg+LiYiQkJEgUWXDoPtOImLqp9y+7yiZhNP5DhScJOk1NTXC5XFAoFFixYoXU4QQFY8FqoGA1AGC0+jTA85BrNBJHFTzmy5npy6UAQK95ABUpxajqrcXdZTfh+gJajzGUCTwHRiaHwhCD6M3XY/Tw7qmdMgXU6SsRVXYJjBXbRY+j6wzxFuUM8RblzIT5is6SkhLEx8dLFBkJNCo8SdCxWq3uda+ImMBx0OfkQGmMkjqUoDJfztT1N85qy4/LRrwulsZzhjBB4DFy+Hmok3KgL9gEAIjZdD1MJ98CZzNBm10CfeEWRFVc7vGLBbrOEG9RzhBvUc5MFJ319fXo7+8XtVPRGZmo8CQkSLEmExR6PRjZ1MxmjFxOReci2Vk7NEoNVsbnICc2AwDg4l042HIUDMPgc+vukjhC4i2Bc2H81DuQKdVgxyY+xKhT8+AaGwAAyHRGJF7/n1BEJ0EVnyZlqIQQEvHmKjplMhmKi4up6JyGkysioiiLhNdIQkxZWZnUIUhOEASc/fVvwZpMyP3MpxFDv5N5zcyZ184ewL6GA3jgsm8hQT8xPTsv8Dh07jhSDUm4KGejFGGSZbC116L/5T+AGx+EOrMQ2pxSAMB41UH3MdHrd0CXV7Go89F1hniLcoZ4K5JzZr6iM9KXTvEkQRUF07TtcL1HHp6LxBAS4gbefR9jp2tgPdeG2p8+gHNPPAnO4ZA6rKAnCAL+Vb0X/6x8AUPWEfzi/T9g3D5xKed5Hluy1lPRGWJcphH0vfgwep78CbjxQQCAo/MsOJtp1rFyHfUGIIQQqQmCgLq6Oio6ySxUeBISZNjxcbT+4/GpBp5H75tvo/vVfZLFFCpeOfM2Xpo2kVC3qQ8PHnoETo6FQq6ASh6u3yGGH4FzYfT4K+h49Muw1B+dsZOHrfmUqCnu4jsCGB0hhJC59PX1YWBgQNRGRScBqKstIUHn3ONPwmUS382JXbsGAstKFFFocHEujDvMMKoNGHeY3e2bM9dSwRlibG01GHj1T3CN9XvcL9fHQJNVBACI2XwDZCqa4ZkQQoJFcnIyzGYzOjs7AUwUnaWlpYiNjZU4suClkStFXW3lgmSh+BUVniToDA4Ogud5yGSyiFvXaex0DfoPHBS1aTMzoE1PQ/pNN0gUVfAbHBzEJ701WB2VAz6bx7utR2FjbdiavRGX5V0odXhkkVymYQy98wQsdR94PkCuhDanBKrUfMRecCNkKu2SnyuSrzNkaShniLciNWcYhkF+fj4AoLu7m4rORVDJ5KLtcO2SSoUnCTrd3d3u6ccj6ULNsyyaH/2rqI1RKhG7dg0A0Lqd8+ju7kacUw+5i4FWqcFF2RthcpiRbEiEUW2QOjyyAIFzYezEfowcfg6C0+7xGFVyDjQ5ZdCkrYChaPlfJkTqdYYsHeUM8VYk58xk8ZmWlgadTid1OEFP4HnxtkRx+BsVnoQEic49L8HW1S1qiykvg1yrRdZdNH5tITJm6vvBKLUBUWoDbi/ZKWFEZDFs505j8M2/gR3s9Lhfro+BdsVaKIwJiN6wA3ItTSBECCGhgGEYKjoXyaER9+DhZtwBDRdUeJKgk5mZ6e6aEilsXd3ofH6PqM2wciUKf/BdMPLwvPgsR9d4L16qewM3Fl2FDGOqO2cECGCcSqRGJSPFkCh1mGQBptPvY+CVP3jcxyg10GQVQZWaB0PBBVAlZYNhGJ89dyReZ8jyUM4Qb4V7zvA8j8bGRmRlZUGrXfrQBwIMOcRzezjBz3FkaKPCkwSdSBsHIAgC6h/8NQSXa6pRJkP+f3yBik4P6gea8Mv3/wAnx8Kg0uHTa28X5UwCIqs7UyhyDnXBXDsxjlOZkDHrbmdU+WUwVFwO8By0WcV+iSHSrjNk+ShniLfCOWd4nkdtbS2GhoYwPDyMiooKKj7JgqjwJERiHc89D1un+IN32nXXwpCXK1FEwauqtw6/PvxnuHgOAPB643soSS5AiiERGdGpEkdHFiIIPEYOPy9q0+ZVwDU2AIF1QJWSh4SrPwdN+iqJIiSEELKQ6UUnADgcDlRWVlLxSRZEhSchEnKOjaFrz0uiNoXBgLgLNksUUXA71nHSXXQCgAAB/3fyOdxZegMVnkHMZRqBc6gT9va6Wftkah20eRUQXCxSbv8emDAd10IIIeGA53nU1NRgeHhY1O5yueB0OqnwXCKWd2H6wm++G1gSXKjwJEGH46YKC3mYdzWt++nPwTudoraYNRWIWpEvUUTB7bNr74JWqcVrZ98BACTpE3Bx9iZsyVznzptwz5lQwrucGHz9f2GuOQTdirVQJed4PE6VlI3YC28JaNEZSdcZ4huUM8Rb4ZYzcxWdcrkcZWVliI6Oliiy0JegicbYtG0FE/r54gkVniTo1NbWuqcfLysrkzocvxn88BgsredEbdrMDOR94bOQKZWeHxTh5HI5/q38ZjQPt8HkMGNL5jrcWnItqqurIyJnQom9uwm9ux8Eb5l4K7W1VkMZnwZGoRIdp8sthyazIODxRcp1hvgO5QzxVjjlDBWd/sWzDtG2INDkQoQQHxF4Hi2P/U3UxigUiF27BsooWi5ikpW1QS1XQT7tThjDMLit+FrIGBmKklZKGB3xROBc6NvzEKxNnwDC1EpkAmuHra0Wuvw17rbYrbdS11pCCAlyHMehpqYGIyMjona5XI7y8nIYjUaJIgsfnHlUtM3wVHgSEhBRUVFwuVxQKMI3PQfePwx2WHwBjy4rQe6/f1qagIKMIAg42VOD5uE23Fh4FeQQFyclyatF25GQM6HA2d+Gnmd+Ds4y6vkAgYcgCIjZdB3kGn1AY5uJcoZ4i3KGeCsccoaKzsDQypWwTtuWQ5jz2FAWun8JJGzl5ob3bK6cw4GWv/1d1KaIikLKlVdIFFFw4XgO//Xu/2DENo4Ls9bjYMsRZEWnIysmDQaV52Il3HMm2Ak8h7FjL2P4/WeBaZM/TZLpoqFbtR7xl+6CXBccH1IoZ4i3KGeIt0I9Z+YqOhUKBcrKyqjo9CEVI17rVRam0wtR4UlIgDU/+hg4s0XUFlNRjrjNmySKKLj87ujfcHawBQDwYcdJbMlch3GHGTX9Z3F7yU6JoyMzOYe6MfDqH+HoavCwl4E6sxBR5ZfCWH5ZwGMjhBCyNFR0En+gwpOQALJ2dGDw0GFRmzo5GXGbNoBhwvPbLW/sO3sAH3VVurd7zf043nUKmzPWYufqy6ULjMwiCDxGj+zB6Ad7IHDsrP0ynRG6VRuRePXnwMjprYYQQkIFx3E4ffo0RkdHRe0KhQLl5eWIorkofM7Ou0Tbs/sOhQf6NEBIADX+4U8QOPHlJGZNORIu3CJRRMElQR8HpVwJ9nwhw4BBhjEVV63cBr1KJ3F0ZBI71o/e5/4b7ED77J2MDNGbr0fs1tsgU2kCHxwhhBCfo6LTvwZcVlFR5gjTexFUeJKgc+7cOfdg/JycHKnD8Rnn6CgszS2iNn1eLrJ33Q1GJpvjUZFlU8Ya/PSSaPz6g0dhcphxS/E1uK1454J3g8M1Z4IRzzrR/fgPwJlHZu1TRCci6cb7ockI/PIo3qKcId6inCHeCtWckcvlKC0tdd/1pKKT+AoVniTojI+Pu9e9CieNv/+j+G6nTIaUa66O+OVTeJ7H643vYn16GZINiViVkIdfXv5tnO47iytWXLSoc4RrzgQbR3cTLE2fQJtbDvPp90T7VKkrkHzzN6GMSZIkNm9RzhBvUc4Qb4VyzkwWn/X19cjOzqaik/gEFZ6EBIDLbsd4Xb2oTZeVheQrInvcoiAIeKFuPwCgbbQLyYZEAEBKVBJSokKjgIkEgiBg5PBu97YiJgnqtJVwdDeCUeugW7kBsRfeHDJFJyGEkIXJ5XKUlJRIHUZEcMnkEVGURcJrJCGmqKgIgiCE1WQ77U8+A97hELXFbaYJhZ6v3ef+uWOsG+UpRXByTkSpDV6dJxxzJhjwThtGj73icZ8mpxSQy6HJKED0+h1QGOMDHN3yUM4Qb1HOEG+FQs64XC4wDAO5XL7wwcRvUletRGPz1A0KuUYtYTT+Q4UnCTqhvNDyXHinE7rsLFg7OgGehzo5GVl33C51WJLheR6PffIMMqJSYHXZAQCcwOPlM2/hgsy1Xhee4ZgzUhs9sR+mynegW7XR44cmRq6AoWgrjGuuCMlZaylniLcoZ4i3gj1nXC4XqqurIZPJUFpaSsWnhFSpCegtmCo2DV5+DgoVwf0XQUgY4Gw2qOJiEX/BZsSsdcB67hyU0TERPaHQszWv4GDLEUSpDbh6xSUQILj3ZUanSRgZ4R029L/yR1gbjgMAnFFxUKetnHVc9MadkGv0gQ6PEEKID0wWnePj4wCA06dPU/FJ/I4KT0L8rOf1N90/y9VqRK1ejejSyB0zUd1bj5fr3wIAmBxm7K1/A+vTy5FuTMHtJTslji6y2dprMfDKH+EaG5hqa62GIiYZct3UYuGxW24Gowi9yTIIIYTMLjoBYHR0FGfPnkVRUZGEkUUuo0KLAsvUkCy1jO54EhIQo6Oj7jERMTExUoezbDPHdgKAsTgyL+yCIODJqhdFdzh5QUBebCauL7hyyecNt5wJNN7lxMj7/8LYsVeBaf82Ezs5OPvOQZtbhpgLboRMGR7jTihniLcoZ4i3gjFnPBWdAKBUKpGdnS1RVESvUCPT4XJvyzTCPEeHLio8SdBpb293Tz8eLBfqpbJ2ds1q06alBfVEA/5kc9nxg4u+jEc+egKn+84AAD5VfiN2rt6+rPOGU84EmqO3Ff2v/D+wAx2z9jFKDTQ5JYi7dBfUiZkSROc/lDPEW5QzxFvBljMulwtVVVUwmUyidpVKhfLycuj1NHxCKoLAi7ZdLCtRJP5FhSchfjRWVT2rLXbdGgkikd6ZgWacGWzCjYVX4Yfb/hOvnHkbDYMt2LHqMqlDi0gCz2H44FMY++g1YMYbHgBoMgsRd+VnoE7OBsNE7nhkQggJB1R0Bjer1oDeiq0wjY6B53koVTqskDooP6DCkwSd1NRU8DwPWYhPvmPt7AKjVCC6tBTm5iZwVhsAQGEIz37787GzdlT3TUwTfrDlCKI1RqyKz8P1q6+AzAdFTbjkTKA4+9vR8+wvwJmGZu+UKxB3yacQvfFaMLLwnWSCcoZ4i3KGeCtYcoZlWVRXV3ssOisqKqDT6SSKjExqfO892F894i7MnBo5cIekIfkFFZ4k6CQmJkodgk/0vvEmel7dB7lOh4SLt0KdkIDEiy+SOixJvHL2HffPg9YRDFpHAABFSbNnS12KcMmZQBh88+8YP/kmwHOz9sn1MUi65dvQZhZIEFlgUc4Qb1HOEG8FQ85Q0RkiXBw07LRxnbLZPZHCAX1tR4gf8CyLgfcOAQA4qxV9b7wF58goNMlJEkcmjVRDEi7Pu1DUtmPlpRJFE5k4pw2df/smxj/e76HoZKDOLETstjuhyVgtSXyEEEJ8i2XZObvXUtFJpEB3PAnxg+GPPoZrxoU+7bodEkUjncPnPoLNZcf2vK1gGAYquRJOjoVCJodBTeNJAoVnHRg98iJcppFZ+2QaA3SrNyJm406okmhGQ0IICQeTRafZbBa1U9EZnJwcC5XUQQQAFZ6E+IHcoIexpBjjtXWAIMBYUgxtaqrUYQVUt6kPj33yDBwuB6r76vHF9bvg5CZmabup8GqJo4scptPvgR3pAyNXQF94AUyn3gH4iSnbVSl5iNl0PQwlkdkFnBBCwtWZM2dmFZ1qtRrl5eVUdAahzPUbUGXrc2+rNeH55TwVniTonD592j39eGlpqdTheE3gOLhGx1D4w++Ds5jRf/A96HIi604Sy7H4fx/+HQ7XxBqmH3VWonm4DQ9c/i3Ea2N9vpxMqOeMvwwfek60LdcZoVu5DtamT6BbuR5J1381bNbl9BblDPEW5QzxlpQ5s2LFCpjNZjjOryWuVqtRUVEBrVYb0DjI4siiNBjP1MNut0EQBOgUtI4nIQEhCIL7v1A0fuYMbN3dcL79DhR6PXRZmYjbsF7qsALqRFc1WkfE60KWpxQhQRfnl+cL9ZzxB2vTSY/tqqRsKGKSEX/5PRG7nixAOUO8RzlDvCVlzmi1WlRUVKCyshIAqOgMcs7+Njj7Wt2T78jCtEQLz1dFQppWq4VCoYBSqZQ6FI/G6+phLCqcc//Y6VoAE5MKcVYrHANA/AWbF3xcOJExDG4ouBIHW47A5LQg3ZiC+9bc7rfnC/acCSTOOo6xj1+HIAgeC0ttVhG0OXS3hnKGeItyhnhL6pyZLD4nfybBK0quxkqr072tkIfn/K9UeJKgs3Klb5bY8If2fz2Hjmd3I/ueXci45aZZ+wWOA2Z8s6k0GtG55yW0/fMpZN55O7LuCsOFmaYRBAHtY91QypXYlrMZH3dX48Ks9VAr/DdsPphzJpCcQ93ofe6XcI30wrjhWhhKLoZzuBvscA8AIOaCGyO2a+1MlDPEW5QzxFvBkDNUcIYGg1yFHDvr3pbpwvPfLTzLaUL8YLyuHh3P7gYAtP3zKXTueWnWMZzDiahVK6FOiAcjlwMA7H19aPvnUwCAjmd3Y7yuPnBBS+Cl+jfcP2uUGmzN3oi82Mga4yoFW1stuh//PlwjvQCA8RP74OhrhTolDwAQu+VmKjoJISTMOJ1OtLe3UxdwEhKo8CRkkYxFhci+Z5d7e2bx6bLaYKqvR0xFOZKv2I7UHdfA1NCI7pdfdR+Tfc+usO9uW5ZciK1Z4jGtFalFEkUTGUzV76HnmZ+Bt4tnMBw9+iLk0QmIu/gOMArqHkgIIeHE6XSisrISLS0taG5upuIzhJlsVnTxMvd/3SwvdUh+QV1tCfHCZPfayTuYk//PuOUmDH5wBM1/ehSq+DgkXnoJ2LExjJ485X7sXN1zw82K+BzYWLt7O0qlh4yh77j8QRAEjLz/LEaPvDBrnyolDym3fx9ypUaCyAghhPjTZNFptVoBAJ2dnQCA/Pz8iJ44LlQ1n6yC4uOpYtOmskgYjf9Q4UmCTmdnJ1wuFxQKBTIyMqQOZ5a5is/h4ycAAM6hYXS98KLoMeFcdFqdNjxy/HHcXX4jMowTa5VqpxU7V6+8xO8xBHvO+APvcqL/xYdhbfx41j5tbhmSb/0uZCoqOucSiTlDlodyhnjLXznjcDhQVVXlLjonDQ4OIjs7mybAIkGLCk8SdIaHh93rXgXrm/tcxacn4Vx0CoKAxz5+Gh93V6O6rx73rbkdl+VdCIZhcGvxjoDd6QyFnPEldqQX3U/9BNz40Kx96vRViN58IxWdC4i0nCHLRzlDvOWPnJmr6NRoNKioqKCikwQ1KjwJWaKZxacn4Vx0AsBbTYdwtOMTAICTY/HXj5/GqH0ctwSw6Iw09q6z6H32l+DtM7vhMNDmr4E6bQW0uWWSxEYIIcR/HA4HKisrYbPZRO1arRbl5eXQaOgLx1DFMkxEFGWR8BpJiFm1atWcaxAGm4xbboLA82h/6plZ+8K96OQFXjSDLQDolFpcnL0p4LGEUs4sx9jHr2P4wBMQXKx4h1wBfcEFUMalIvai28L+9+ALkZIzxHcoZ4i3fJkz8xWdFRUVUKtp1vJQlqSJgWnadrjet6bCkwSdUPvGTpeZOatNplKFddEJAC/U7se2nM2o7q1H80gbAKAspRAJ+riAxxJqObMUI0f2YOT9ZwFBPNMdo9bBULwVhuKt0GYVSxRd6ImEnCG+RTlDvOWrnKGik4QLKjwJWaaWv/1jVhvvdKJzz0thW3zy54sfuUyONWklSDIkYMg6gstyL6S7AX4wXnUQI4efn1V0yg2xMK67GrFbb5UoMkIIIf5kt9tRVVVFRScJC1R4ErIMHXtehHNgwOO+6UuthBsGDG4rvhZmpwV95kEAQLoxhdbr9APLmeNwjQ1AX3QhLDWH3MWnMj4d8dd8Ebps+p0TQkg4stvtqKyshN1uF7XrdDqUl5dT0RlGVDJxSRaus2SE6+siIcxsNsNkMsFsNksdyrw697yE9n8+PavdWFri/rntn0+hc89LgQwrIBiGAcMwiFIb0GueKLxvLrxasnhCJWe8JQg8HP3nAADKmCToCjYDYKBKXYHkO35ARecyhGvOEP+hnCHeWk7OUNEZWTRyceEpFyQKxM/ojicJOi0tLe7px8vKgnN2zs49L3mczVau02HVN76GgXffn7XUSjjc+fQ0ScLmzLVQyOQSRTQhFHJmaRgYK7aDHe2Fa6QPACBbsx0xm66DKjZF4thCW/jmDPEXyhnireXkjM1mg9PpFLXpdDpUVFRApVL5MkwSBIQZhWaY1p10x5MQb81VdAKAJjUFCq0WGbfchOx7drnbw+HO598/eRYPHnoENqd4nInURWc4YxgGCmM8tFnF0OaWAwASrrgPqvh0iSMjhBDiT7GxsSgpKXF/2UtFZ3jjVeI72EKYfraiO54k6CQmJoLnechkwfe9yHxFJzBReE6auc5nKN/5rOyuxVtNhyBAwI8O/hZf2/zvyIoJnuInmHPGWwLHgh3pgypharFxQRDA2UyI3XIzGEW4TrIeWOGUMyQwKGeIt5abM3FxcSgpKUFrayvKysqo6AxjvU6TaNsOfo4jQxsVniTopKamSh2CR+N19aKi01hagvHTNe5tmUoFfV6e6DGeik9jYQGMRYUBiNg3zA4Lfn/s7xDOd/zoGOvG99/+Fb64YRcuygn8mp2eBGvOeEsQBAzs/wvMtUeQdMNXYSjcAmDizqc6OUfa4MJMuOQMCRzKGeItX+RMfHw84uLiaMZ4EhboaztCFslYVIjMO28HAGTfswuOvn7RfnVSEuI3bpj1uOndbjPvvD2kik4A+KD9Y9hdDlHbyvhcbEgvlyii8DXy3jMwV78HcCz6X3wYIx88D2HmwA9CCCFhhefnv7tFRScJF3THkxAvZN11B2LKy6BOTJzV5VadnAS5TuvxcRm33BRydzonFSetxGfX3YkX697AoHUYCbo4XLPqUmiUtJi6L1mbPsHoUfE44JHDz0OVnAf9ynUSRUUIIcSfbDYbqqqqkJeXh6SkJKnDIRJxcE5EwjzFVHieJwgCXnvtNezZswf19fWwWq1ITEzEhg0b8KlPfconM9idPHkSTz/9ND755BMMDg5CrVYjOzsbl112GXbt2oWYmJjlvxDid8aiQrQ9KS46GYUCUYXzF5WhWHQCQGZ0GjKj03BR9ib87N3fY1VCLjZlrJE6rLDiHGhH7wu/wcx57HSrN0GTvkqaoAghhPiVzWZDZWUlHA4H6urqAICKzwiVqInB+LRtJUOTC4Utu92Or33ta3jvvfdE7V1dXejq6sKrr76K+++/H5///OeX/By/+c1v8Pe//13UxrIsamtrUVtbi2effRZ//OMfsWYNfaCvr693Tz9euEAxJ5XBo8dE2+rkZEQXh/eaigqZHF+94D4k6xOkDmWWUMiZuXDWcXT/80cA5xK1a7JLEFV0IeS6KIkiC2+hnDNEGpQzxFvz5YzVakVVVRUcDofoeLlcjvj4+ECHSqQ2o7u1INDkQmHrhz/8obvozM/Px+23346EhAR3QWi1WvHwww8jOTkZN9xwg9fn//vf/+4uOpVKJW6//XaUlpZifHwcb7/9Nk6cOIGBgQF8/vOfx4svvojMzExfvryQw7IsWJaVNIbxuvo571Cy4+Owd/eI2jQpyZCpVDA1NCJ2TUUAIgw8uUyOFEOi1GF4FAw5sxQCx6LnqZ+Ct1tE7crELKgzC6Ev2CxRZOEvVHOGSIdyhnhrrpyxWq2orKyctU6nXq+H0WgMVHgkiLjGB0XbzALjfkNVxE8udOTIEbz22msAgM2bN+Oll17Cpz/9aezcuRPf/e538cILL7i7wD744IMwm81enX9sbAyPPPIIACA6Ohp79uzBT37yE9x0002499578eSTT+JLX/oSAGB8fBy///3vffbaQpVSqXT/J4X2fz2H09//0Zzrbg4cOizaZuRyxKypQP/Bd3H2Vw+h4/k9gQjTr8xOC3pM/QsfGCSkzpmlEAQBvc89COdAu6hdHhUH3cr1iLv4DokiiwyhmDNEWpQzxFuecmauotNgMKC8vJzyK0Kp5eKutTKE58SCEX/H8x//+AcAQKFQ4Be/+AXUavHQ3vz8fPz4xz/GN7/5TYyOjuL555/Hfffdt+jzHzlyBFarFQDw2c9+FqtXrxbtZxgGX/3qV7Fv3z60t7fjwIEDcLlcUCgi959Gyi5M43X16Hh2N4C5193see110bY6KRG2jk70vfkWAKDrhRcRt25tyI7prOypw/HOU7g09wIoZHIYVHpoFOqgnlUvFLu9Db7xGGyt1aI2RqWFvuhCxF18R1D/vsNBKOYMkRblDPGWp+61norOqKgolJWVUdEZwTSM+HO/HOH5GSCi73iOjo7i6NGjAICLLrpozi6uO3bscPe3f+ONN7x6js7OTvfPBQUFHo+RyWQoKSkBMDHQfGRkxKvnIL5jLCp0L30CTBSf0+98uqxW2Pv6xA9iZO6iEwAy774zZItOi9OKh4/8FQdaPsDjp57HW02H8OrZd/BJ92mpQwsrlrMfwXTyLXGjTA598VbEXngLGHnkfvFECCHhiIpOQiK88Pz444/daydt3jz3WCqZTIYNGybWZ6yqqsLY2Niin8NgMLh/7ujomPO47u5uAIBcLkd0dPSiz098b/q6m4C4+Oze+8qsAeD28/92AJB+681Iv+G6wATqB09XvQQHN/Gm2DR8Dm82vQ87a8fqhDyJIwsfzv529L308Kx23epNiL3wZsi1NJkQIYSEE4vFMmfRSd1rCQC4ZkwmFJ4dbSO88GxsbHT/vGrV/EsWrFixAsDEuKyGhoZFP8f0ZVieeuop0exlkz766CNUV090udu4cSNUKtWiz0/8Y67ic+ZsttOlXLsDqTuuDkR4ftEy3IYDLUdEbbGaaKgVakSpDXM8iniDs4yhd/d/e5zBNvmGr0IZTdPoE0JIOLFYLKiqqpqz6IzkoVVkSg8rnkPGFp49bSO78Ozq6nL/nJ6ePu+xKSkpHh+3kJKSElx88cUAgJaWFuzatQvHjh2DyWRCb28vnnnmGXz5y18Gz/MwGAz49re/7eWrCD89PT3o6upCT0/Pwgf7kafi0zbHv33aTTcg6bJLAxWaX2RGp+G2kp1QyibeBOWMDBWpxbijNPjv4AZLzizEVHMIrjHxpE2TM9gycvrGO5BCJWdI8KCcId5qaWnBoUOHMDQ0JGo3Go1UdJKIFNEZPzw87P45NjZ23mMnZ7YFJsaGeuP3v/89vvGNb+C9995DdXU17r333lnHrF27Fj/60Y9QXFzs1bnD0cDAgHvdq9TUVEljmZxYaHKioZndbIGJ7rXJ2y+Hy2INZGg+p5QrcWvxDmzNWo+/ffIs1AoVbineIXVYixJMOTOf6I07wTAMht55AhB4KOJSoVu1AbEXeL9ME1meUMkZEjwoZ4g3WJbFyZMn4XQ6IZfLERU1MYzCaDSirKyMik4SkSL6jqfdbnf/PHM225mmd3+d/rjF0Ov1+NWvfuW+8zkTwzDIzc0VFbckeMy88zld+s03IXXHNRCE8OmNnxKVhB9u+098c8vnYaQutj7FMAyiN+5Eyh0/gDIxC9EbdsJQuAUylVbq0AghhPiQUqlEXFycqI2KTjIXdsZM9uHzqVIsojPf5ZoaZ7XQuMrp+6c/bjH279+P73//+7Db7UhOTsZtt92G/Px8WCwWHD58GG+99Rb27NmDN954A48//rhoXKgUmpqakJ+f7/52DgAcDgfOnj0LYOLub1ZW1qzHTC4bMzP+wcFB9+RJmZmZorvLHMehtrYWwMR4h9zcXOTl5UEQBDAMg3PnzmF8fBwAUFRUJLpYj46Oor19Yg3E1NRUJCYmip739OnTEAQBWq0WK1euFO3r7Ox03/FetWoVNBqNe5/ZbEZLSwsAIDExEampqci45SZ07H4B/PQvHRRypO4U3xHs7+/HsMUCRqVCXl6eaHIpu93uHh8cFxeHjIwM0WMbGxths9nAMAxKS0tF+wYGBtzdu7KyskRfUrhcLtTV1QGYeFPLyckRPba1tRUmkwkAUFxcDPm0taJGRkbQ3NYCXuCRm5Hj/h0yDAOGYdxjj3U6nXuc86T29nb33f/Vq1eLvrwxmUxobW0FACQnJyM5OVn02Lq6OrhcLqhUqlmzPXd3d2NwcGIh5fz8fOj1evc+m83mHpsdHx/v7iI/mTOdnZ2orq4WzRQ9qb+/H729vQCAnJwc0SLdLMuivr4ewMR6u9nZ2aLHNjc3w2KxAJjoPi+TTX1nNzw87J69OiMjQ/RBg+d51NTUADwPPWdG3totYBgZdPlroMktRXtLC8b7xoG+ahQWFoommBgfH8e5c+cATHT1T0oSj/+sqakBz/PQaDSzxqh3dXW5u3atXLkSWu1UYWuxWNDc3AwASEhIQFpamuixZ86cgdPphEKhQFFRkWhfX18f+s7P6pybmyvZNWK6pV4j8vLy0NLSAkEQ0NjYuOxrxHT19fXuO2Mzl1Po6enBwMCAO4ZQuEZMToyXlpaGhIQE0WND5RoxqaGhAXa7fUnXCEEQoFAooNPpMNOyrxGY+JI6Pz9fdN62tjb3hIZ0jQjsNQJY/ueI+Ph46PV6jI2NITo6GqWlpVAoFHSNOC/crhHL+Rwh1+oxHj/tfqB24m9dqmvEZA76WkQXntMvEizLzlt8Th8U7s3kPwcOHMC3vvUtcByHTZs24c9//rPoInLbbbfhgw8+wJe//GVYLBZ89rOfxb59+2Zd/AKJ4zj3bL+TBEEAy7Lu/TO5XC73/pl4nnfvm3leAO59kwX99N9Pb2+ve//Mu4rTY5rrvJMfFOaLdzHn7dzzkrjoBAAXh579ryN1xzXTXuvEYxmGmfe8nr68YFnW/diZpv8OvT3vfP82HMfhSP8nUMoUiEmIhZ41QCNXuy+I852X47g5Y5oer6d8YVkWLpdLdOFdzHnnysPJnJl83oXOO19+e/s7XDC/bWZoWo+DV6nAF5W7Z62VyRTgGPmyfoc8z4s+AHh6rYv9Hc58rZ7u4i/2d+jva8Rc5/XmGmEwGOByuUTH+OK8k/Eu5rWGwjViOf82wXSNmH7epV4jJl+jp9+/FPlN14gp/rhGTJ53uZ8jMjIykJ2djYSEBPd56BoxIdyuEcv5HQqp8WjfMPUFkGFajzMprhGe/i19IaILz+nfWjocjkUXngt1y50kCAL++7//GxzHITo6Gn/4wx9ERdWkrVu34tvf/jYeeOABjI2N4R//+Ae++93vevFKfEsul8/6g2MYxv0tiqcEVSgUc04HLpPJ3Ps8/SFP7vN0YZ9+3pkX0ukxzXVeQRA8xuXNeTv3vDQ1xhMAo9FAOF+Edr3wIgAg6fLLzh8/8VhGqZz3vJ5eq1KphMvl8viGMf136O155/u3OdLzCWRyOTgIONpzErqxM7g4ZxNSDInumOY6r1wunzOm6fF6yhfl+d+Pt+ddKA+VSiU4jvOYD9PPO19+e/s7nCu/OcsYXHYL9O0fA+f/pjirCTKNwf265svDxfwOeZ73GNdyfocKhQI8zy/4b0PXiIXj9XTe5fwtS3GNWM6/DV0j4D6XP/KbrhFTgv0aMX2Cyunx0jWCrhGT5/IUy/SYFnNeX14jPL1+X2CEcBqc5qWf/OQneO655wAA77zzDjIzM+c89vnnn8ePfvQjAMBvf/tbXHfdwjN91tXV4aabJianufvuu/HTn/50zmOdTic2btwIm82G/Px87N+/35uXsixms9nd/QWY6O7gqUCORDOLzozbbkHiJdvQ+/qb6Hltn7s97cYbkHDRVqhiY6Aw6CFf5JcTUrK7HPjRO79BXlw2EnRTXb9uKboGctncF0CyMMHFovvpn8LZ2wp94RYoYia6t2hzSgGem/g/IYSQsGAymcAwDH12IkvWXfMuKt9+zL2t0cfiss//WbJ4/FUbRPTkQtP7sC80Pfpkn24As8Y7zGWyXzWw8DqhKpXK3W97cixIpLLb7bDZbF5P4uRrM4vO7Ht2IfXaawAwSLr8MqTferN7X/fel9F/8F0Joly6gy1H0D7WjfdaP8S7rUfRY5oYlxOKRWew5Aww0dNhYP+jcHSeheBywlzzPhy9E+MBbedOg7OMSRwhAYIrZ0hooJwhnphMJlRVVaGqqgpms3gtRsoZsljRSh0KrE73f/mee+WGvIguPKcP0J0caDyXyf0Mw8waYL4YDodjwWMmb2vPd7s9EjQ0NKCurs49gF4KM4vO2HVrEbNuDTCtG0PqjmtExWfvvv3o2f96QONcKo7nsK/hoHt7yDqC5uE2XLXC88zLwS4YcmbS6JE9MJ9+f6pBEGBvr4PATbyLGIq3ShQZmS6YcoaEBsoZMtNk0Tk5zm5m8Uk5Q5ZqrvGgoS6iC881a9a4+zUfP358zuM4jsOJEycAAAUFBaJZrOYzfQauyRmp5uJyudyzJC72jirxj5lFpzImBiOfnETV/d9C3QMPYvzMGfe+mcVn1wsvomvvKwGNdyk+7DiJAYt4QesLMtchWrO43CaeWc4ex8j7/xI3yhQwFG8FI1ci9qLbpQmMEEKIT00vOiexLIu2tjYJoyKhStAawJRehLGMUgynFcOUnL/wg0JQRBeeRqMRmzdvBgAcPHjQPVX3TPv27XNPmX3NNdd4PMaT0tJSd3/oAwcOzNud9+WXX3Z/S3bhhRcu+jnCUVxcHOLj42etfxUI43X1oqIz/eYbwZ6f6huCAEtTM8br6jF9haXUHdcg7cYb3Nsdzzx7/pjgtS6tFPdU3Ip47cSU9CvicnBn6fUSR7V0UubMJEffOfS9+D+z2vUFmyDXxyD2ots9TvhApBEMOUNCC+UMmTQ+Pj6r6ASA2NhY0dIelDNksao+/ADVLxxF+4E6dL17Bi3vVksdkl9E9Ky2APDpT38ahw8fBsuy+MY3voG//e1vosGzTU1N+OUvfwlgYv2c2267bdHnVqlU2LVrF/7yl7/AarXi/vvvx6OPPjrrAnTy5Ek8+OCDACZmmLr33nt98MpC18x1qQLJWFSIzDtvR8ezu5F9zy4wM2b6kqlUUEVHz3pc8lVXgGdZ9O7bj/Rbb4axqHDWMcFEq9Rg5+rLcfWKbfig/QTitDEhXRRJmTMA4DKPoPfZXwC8+EOIJrcM2uwSGNdeKVFkZC5S5wwJPZQzBJgqOmcuTxEbG4uSkhLRcCnKGbJoZhsSxqZyym4Pz7lfI77w3Lp1K6666iq8+eabOHXqFG644QbcddddSE1NRV1dHf71r3+5F3z9zne+M6toPH78OO655x4AwMaNG/Hkk0+K9n/xi1/EoUOHUFdXh8rKSuzYsQM33XQTCgoKwHEcjh07hn379rm/NfvhD384azFbElhZd92BmPIyGIsK0fv2AeiyMmHr7oHgckGdkgxDfq7HxyVddimiS0sQu7YisAF7adxhxhuN7+G61duhVWpwSe4FUocU0niXE30v/AaceUTUrkzKgTp9NRWdhBASJrwpOgkhs0V84QkAv/71r2GxWPDBBx+gs7MTDz30kGg/wzD4yle+gjvvvNPrc2u1Wvz973/H17/+dRw7dgwjIyP4xz/+Mes4pVKJH/zgB7jrrruW/DqI70zesYzfvBG6jHTY+/sxXlcP3u6ALjsb/ByDvqNWeT/xVKC90fgeAKBxqBUGlQ4J+ngY1TQF/FIIgoDBfY/C0SWeOEJuTIBu5TrEb/P+mkEIIST4jI2Nobq6elbRGRcXh+LiYio6ybI4ORYqqYMIACo8MVEc/u1vf8Orr76KvXv3or6+HiaTCTExMVi3bh3uuecerFu3bsnnj4uLw+OPP44DBw7glVdeQVVVFYaGhqBSqZCeno4LL7wQ//Zv/0Z3OoOQMioKysICGAsLkHDBZpiamsHIZAjV5W87x6bGGZ8ZbAYApBqScFHORqlCCmmjR1+CueaQqE2m1kNfuAWGgs0SRUUIIcSX5is6S0pK3KsSELJUyYWFaGxrdm/L9ToJo/EfKjzPYxgG119/Pa6/3rsJVjZt2iRaYHW+82/fvh3bt29faogRo7GxESzLQqlULmnpGn9hlEpoUlPB22xSh7JkxzpPzWorTy2SIBLfkiJnLGeOYeS9p0VtjEINffFWyFQaqFPyAhIHWZpgvc6Q4EU5E5mWU3RSzpDF0makYXRzFmw2GwRBgF5JhSchAWGz2cCy7KzZ4qTGMAxkMgb8PPuD2d76NzFoGUZWdBrkMjnGHCYACItutoHOGUdvC/pf+cOMVgYJV38OrrEBxF5My6YEu2C9zpDgRTkTeZZ7p5NyhiyWo7sR9s4zYABMfJoMzxItPF8VCWkMw7j/I74xah/H8zWvgeVdiNfG4qqV2+DiXNiQUS51aD4R6JwxVR2EwDpEbXGX3wND2SWUtyGCrjPEW5Qzkae7u3tW0RkfH4/i4uJFda+lnCGLpZUpkeqYmj9EKQ/P7ttUeJKgU1paKnUIcAwNYeTkKSRsuQAKvX72ASE2xPONxnfBnl/qY8g2gudOv4JvXfhFrIjLkTYwHwl0zugKNoEd7YOt6SQAwFB2GaI3XUcfLkJIMFxnSGihnIk8q1evBsdxGBwcBOBd0QlQzpDFi1FoUGJxurdlOo2E0fgPFZ6EeFDz4/+Cc2AQfW+9A8OKfCRsvRDRxefHQoZYceF0OfF202FR28U5m7Eund4Ql8LWVgt7Wx2i114NXf46WBqOI/Gaz1PRSQghYUYmk6GoqAi1tbUA4FXRSQiZjQpPQmbgOQ7OgUHwTifMDY0wNzRCplBMFJ4hWFzIGBmuXnkJqnvrcXaoBQBw3Wqa5Gop2JFe2NpqAAD2niYAgDp9NVzmYShjkqUMjRBCiB/IZDIUFxe7fybEHzieBzutN50sRFdPWAgVnoTMYD7bCN7pFLVFnV/XMxS9WP8GAOALG3bBwTlR03cWGdGpEkcVegSeg+n0+7PaGYaBIjpJgogIIYT4iiAIc/ZcoYKT+Nvpj07AVTmVf061BeE4DzIVniToDAwMgOd5yGQyJCYmBvz5R06eFG3L9XrEb94067j53qSChYufmhShdaQDF+VsRKIuTsKI/MOfOePsb4NMa8T4qbc87jdWbA/6PCCzSX2dIaGHciZ8jYyM4Ny5cygpKYFSqfTZeSlnyKJxPDTTb3mG6ccKKjxJ0Onp6XGveyXFhXq0skq0rU5KDNnC4sW6190/95r7sbvmNRQmrkCppkDCqHzPXznjMo2g59lfgHfYoC/eCoUhVrTfULgFCmO8z56PBI7U1xkSeihnwtPIyAhOnz4NnudRXV2NsrIynxWflDOEiFHfAUKmEQQB1o5OUZsuM2PaVmgWoMDURLzFSaskjSNU8KwDfc//CpxpGILTBnPVQTgHu9z7FVFxUCVmShghIYSQ5RgeHnYXnQBgMplQXV1N626SgHOF8OdLb9AdTxJ0srKyJOvGauvsBG+3i9qU0TELPzAIB4ELgoBLcy8Ay7vgdDnxUdfEnVwZE37fN/k6ZwRBwMBrf4Lj/ARCAACeg7O7Acr4NDAMA+OaK3zyXEQaUl5nSGiinAkvw8PDqKmpcRedkzQaDeRyuU+eg3KGLFaMJgrTP32Ga4EWrq+LhLCYmBjJnnv4oxOibZlajeSr5pgBVhCCdpZbi9OKN5vex/a8rUjUx6OuvxEAcFvxtRJH5h++zpnRD16Ape6IqE2m0UNXuAUMwyDmght9+nwk8KS8zpDQRDkTPuYqOpOSklBYWOizQpFyhiyWkpGLCs/g/HS5fFR4EjLNaNVp0bY6MRH6THF3yiCtNUXebT2KZ0+/gj21+3FR9kZcuWIbbi/ZKXVYIcFcfxQjh54VN8qV0BdthUypRuxFt9O314QQEqKGhoZQW1vr96KTEDJb+PW5I2QZLC2tom19Xq74gPnej4LkvYrnebze+B4AgOVdONh6FC+f8TwjKxFz9DRj4JU/zmhloC/YDLk+GtHrr6EPJYQQEqKGhoYCcqeTEG8pZizZE66ZSHc8SdBxuVzuMREKReBS1Dk8ApfJJGpTJ3i/9IjUb1wfd1djwDIkart21WUSRRMYvsgZl2kYvbt/BcElXsNVk1cOZVwqtJmFkOuMvgiXBAGprjMkdFHOhLbJolOYMSdDcnIyCgoK/PLeTTlDFksnV2Fk2rYi+KYO8Qn6KyBBp66uzj39eFlZWcCed6y2TrTNKJWILi0N2PP7yqmeWmQaU9Ft6gcncMiNzcTK+NyFHxjClpsz7hlszcOidm3+WqhS88EwDLS5gctF4n9SXWdI6KKcCV1SFJ0A5QxZujCtO6nwJGTSWPWM8Z0J8dDn5c0+MIi74giCgFhtNDZlroXd5UD7aBd0Sq3kd2GDmSAIGHj1ETh6mkXtmqxiJN3wNTj726DJKpIoOkIIIcsxODiI2tragBedhHiDUarFDTLfzKwcbKjwJEHHaDTC5XIFvFvKaFWVaFudmAhltLhrZbC/QZ3uO+P+WaNQY1VCHnJjw3+tyeXkzMj7/4Kl/qioTRGbguRbvg251gBtdrGvwiRBRKrrDAldlDOhZ3h42GPRmZKSgtWrV/v9PZ1yhixWp1M81MsGfo4jQxv9JZCgk5OTE/DndJnNcPT1i9q06WlBX2jOZGVts9rWp4V/956l5oy57ghGj+wRtTFqHZJv+y7kuigfREaClRTXGRLaKGdCj16vh1arhdVqdbcFqugEKGcImYlmtSUEwHj9GXGDTAaFwSBNMMuwKWMNrl11GS7MWg8AMKh0IVc8B4ogCLOXTWEYGNdcCVVC+N8lJoSQcKdWq1FeXg6tVgsgsEUnIWQ2uuNJCICRk5WibXV8PBK2bpn/QULwDf1mGAZ6lQ5apQa3Fu2gN9d5jJ/YB13BFtiaT8LZ2wIA0OaWQ5Oxin5vhBASJtRqNSoqKtDd3Y2cnBy6vpOgxPIslFIHEQBUeBICYLRy5vjOBOgyPd31Cs43LBtrx7jDhGRDIgBAxsiCNdSgYO84A85uASOTQbtiHeS6aHC2cajSVkK/epPU4RFCCPEhtVqN3Nzwnt2dhLZopR7WadsKJjw7pVLhSYJOa2urezB+IN4oOIcD9p4eUZs6MRGM3IsZxSS++Xm47Tj+9smzKE1ejcvyLsSG9Aqo5JHw3dkEb3LG3tUAa+vUFw0Mw0CdvhIAEHvRbX6NkwSPQF9nSOijnAlu4+PjiIqKCqo7mpQzZLGUMz6zMcHXqc4nqPAkQcdkMrnXvQrI851tEHebZRioEuID8ty+8k7zBwCA031ncbrvLC7O3oSvbP60tEEF0GJzxmUagbX5lMd9sRfdBiZMv2EkswX6OkNCH+VM8Orv70d9fT2SkpKCaokUyhmyWOyoeIJL8Jw0gfgZFZ4k4o3X1Iq2lbExiC4tmfsB59/QBEEIit6szUPncG60U9S2JWudRNEEL2tLFaznqiFTqGbtM669iopOQggJQX19faivr3f/zDAMTSBEQo5iRr6Ga/ZS4UmCTnFxYNdNHP7kpGhbnZiIqNWrPB8835VAoqtEVW89lHIlWI4FAGiVGhQkrpAmGIkslDP2rgb0PvsLyDR66Iu3Qq6dWirFULwVCkOMnyMkwSbQ1xkS+ihngs/0onNSb28vYmNjkZycLFFUUyhnyGLpZUqMT9sO1wItXF8XCWFyb8ZWLhPvcsF6rk3Upk5MhEKnW/pJA/wtq0vgsHPV5ega70XraAcSdHHQKbUBjUFq8+WMa3wQPU//DBB48DYTzJUHoCvcAmVMEvQr10MVnx7ASEmwCOR1hoQHypng4qnoBID09HQkJSVJENFslDOEiFHhSSKapbkFgsslatOmp0kUjfdc3ETscpkcWTHpyIpJD8plXqTCO+3ofe6/IbB2d5vgcoId7IQyJgnq1HwJoyOEELIUvb29OHPmzKz2jIwM5OfnUzdbQoIUFZ4koo3Xib8tVRiNiFo5fzfVYHpDkzEyXJa7BWanFRbWitr+BlySe4HUYQUFQeDR/8of4Ow/J2pXxCRBm1eB2ItulyYwQgghS0ZFJwlHnU4Tpt8ft4ZpGlPhSYLOyMgIeJ6HTCZDbGysX5/L3i+eRUydmABjYcHcDwiyNzSZTIYEfRwS9HEYso6A5VxIMiRIHVbAecqZkfefhfXscdFxiugk6Aq2IG7bnfThJMIF8jpDwgPljPRCreiknCGLJUi9Ll+AUOFJgk5HR4d7+nF/X6jzv/A5ZN11J8brz2D01CnErKmAwmDw63P6gyAIUMtVKE8plDoUSczMGXPNYYwe2SM6RqbRI2HHF6HNKQm6Dyck8AJ5nSHhgXJGWj09PTh79uys9szMTOTl5QXldZ1yhhAxKjxJxFMaoxC/aQPiN23w7oESjqXkBR4MGPcbLcMwMKj1ksUTTGydZ9D/6h/FjYwMSTd/E7rccmmCIoQQsmShWHQS4g0XmIgoyiLhNZIQk5aW5u6aQjz7uKsa/zj5HHJiMvAfm+6FUR16d2l9aTJnBMsIep/5+ayFl+Ov/AwVnUSErjPEW5Qz0uju7kZDQ8Os9qysLOTm5gZ10Uk5QxYrJj4BI7qpXObU4TkjMhWeJOgkJARmjCLvdMLS1g5Dfh6YRb8pBMcb3N76NzFsG8WwbRRfeOV7uLnwatxWslPqsCSTkJAA3mlD5/P/JZrBFgDUmQWIXn+1RJGRYBWo6wwJH5QzgceyLFpaWma1h0LRCVDOkMWLLluNj80fu7cNYXpDgb6CIRGrc89LGPn4E/AsC2HZ3WYD1+120DqMpuFz7m2O5yBjIvtPWRB4dD3+fbhG+0TtiphkGNftkCgqQgghy6FUKlFaWipaDzM7Ozskik5CyGx0x5NEJM5mc//c9eJeMDIZostK55/RNki803xYtK2UKeBwOSWKJjj0Pf9rsAMdojaZNgq6ggsQVXyhRFERQghZrujoaJSVlaG6uhoZGRnIycmhopOEHaVMgVh2apiQTilhMH5EhSeJSH3vHMRoVTVU8XFQxcVBodNBFRuzuAdL/IaXqIvHxTmbcW6kA53jPciITsOO1ZdJGpOUzA0nYO8Qr8fKKFTQF29FzAa620kIIaEuOjoaGzZsgFqtpqKThKUElQHrTVNDhRSKGOmC8SMqPEnQqa6udk8/XlZW5pfnGK2sgql+ai0wXU42su66Y8HHzf9+F5g3w3XpZciNzcS4w4Ka/rPgeA4xGmNAnjvYCDwHZ28L7OkVkPeegdwyBDAMdIUXIGbDtVAY46UOkQSpQFxnSHihnJGWRqOROgSvUc6QpXI6w7MnGxWeJCI5R0ZF2+oQmgAgRmNEjMYIXuBhcphRkrxa6pAkYzl7fOIHuQLO5AIozf2IMhiQdO1/gJHT5Y0QQkJFV1cXACA9PV3iSAgJPEajh77gAoyOjULgBSBMl8ijT2Yk6Oh0OrhcLigU/klPgeNg6xCPB0zcdpFfnsufnByLdWml0Km0UociCUEQ4Dw/rlOpVEIul0OmzUbyNZ+mopMsyN/XGRJ+KGf8p7OzE01NTe7tcCk+KWfIYp2uPoWWA6cACBPTVaqVKPg3iYPyA/pLIEFnxYoVfj0/53AidecOmJuaYW5qBme1IqaiYvEnmOxvu+yZcJdHo1BL+vxSGzm82/1zbFyc+2eZOjILceIdf19nSPihnPGPmUVnY2MjGIZBWlqahFH5BuUMWSxX/xCyuqbGeNrVrITR+A8VniTiKHRa5Nw78TWSwPNw9PdDaYxa3IMlnNTAxtrRNd6LvLisiF8+xWUa9tgevf6aAEdCCCFkqTo6OtDc3DyrnWXD80M3IZEusj+9kojlMpsh8DwYmQyalBSpw1lQ83Abfvn+H/H+uWOBXDI0KLlMwxh45Q/g2dkD7+W6yJxkiRBCQs1cRWdeXh6ys7MliIgQ6bC8S+oQAoLueJKIY2psglytgs5gkDqURXuhdh8ahlrQMNSC+oFG3Fl6PSpSiqGIwLGMQ2//H2znTsPRdw7GdVeDUaohuJyIveh2qUMjhBCyCO3t7WhpaZnVnpeXh6ysLAkiIkRa0enp6E6f+lwq6MJzOFXkfWolQa+9vR0cx0Eul/vlDWjk40+gTkoEz7ogU6uhTkyAXO39H7gQoDGeNtaOqt6pdSrbx7qxv+FdFCSugCHCCk9r8ylY6o8CAHibCaMfPA/j+mtgydmMsXPn/JYzJPz4+zpDwg/ljG9EUtFJOUMWK7a4ENVCGxx2BwRBgF6lkzokv4isT60kJIyOjrrXvfL1hZodHwcAOPoH4OgfAAAkX7l98YUnwyBQ63VOOtr+MVzTumAwYJAdkwGDKjyn2p4Lzzow+Mb/itpkGgOMG3agu3MQrHnYLzlDwpM/rzMkPFHOLN9cRWd+fj4yMzMliMi/KGfIYjl6W+DoaoQgCBAggGeUUofkFzTGk0QUy7m2WW2qaTOiLpU/734WJa7EtpzN0ConFs9OjUrC1Su3+e35gtXoBy/ANdonaou7/B6o4kJ/5kNCCAl3bW1tEVV0EuINBccjymGH0elAtNMJfZhOsEV3PEnQWb16NQRBAOOHGWS7XnoZ5qYmKKOjoYyJgSY5yS/P40upxmR8edO9+AL3KXzcXQ21XIVEfbzUYQWUc7ATox/uFbVpMgsRVX4pAP/mDAlPlDPEW5QzS9fW1obW1tZZ7eFedFLOkMVKUOqwaXxqORWZNjzveFLhSYKOegnjLRfL3tcH17gJrnETbB2dENjVfnsuX1PIFdicuVbqMAJOEAT0PvsLQOCnGhkZorfcDOb8sjL+zBkSnihniLcoZ5ZmrqJzxYoVyMjIkCCiwKGcIUsWpl9WUFdbElHY0THRtiZ1aUup0LeXgWOqfAeusQFRmzp9FVQJ6RJFRAghZLGUytl3biKh6CSEzEZ3PEnEcNls4CwWUZs+N8dn5/dHLcoLPGRM5H4/5DKPYOjt/xO1MWodNFlFUMYkSxQVIYSQxUpLmxiH39DQAABYuXIl0tPpi0NCpquprMLomanPey6VFTnSheM3VHiSoGMymcDzPGQyGaKionx33jNnZrUlXHihz87v5qMKtHu8F0Z1FAzqyJq9drre5x6EwDpEbbr8tYi75G5Rm79yhoQvyhniLcqZpUtLS3NPwhdJRSflDFksl8WKmPGpIUV2VWCW7As0KjxJ0GltbXVPP15WVuaz85rONIi2FQYDVHGxSz+hH2ey7TH148X6N5Goi0OiPh5Z0WnIjE6DWqHy23MGG2tbLZy94hkQlfHpiN6wY1ZXZ3/lDAlflDPEW5QzyxNJBeckyhlCxKjwJBHD3Ngk2lZEG8HIvOvG6i54/DzE87GPn0ZtfwMMKh1yYjKRHZOB7flbkW5c2pjUUCPwHAZe+h9xo0wBbV4FNBmhMyEUIYRECkEQ4HA4oNFopA6FkJDDgYmIoiwSXiMJMcnJyeA4DnK53KfntfX0ira1aak+Pb+v8DyPluF2AIDZaUVN/1nYXQ7cU3GLxJEFzsiRF8FZRkVtmuwixF/xaY/H+ytnSPiinCHeopyZmyAIaG1tRVdXF8rKyhAdHS11SEGBcoYsll6th2vadrhmDBWeJOgkJ/tn0hh2TDyjrSp2Gd1s/ai6rx42l13UVpFSFDEz6QqCAFvzKVGbTBcN49qr3MunzOSvnCHhi3KGeItyxrPJorO9feIL0+rqaio+z6OcIYullSlhmrYdrtNKhuvrIkSEczhmzWirSVlmt1U/DfF08S6kRiW5t1MMibi56Br/PFkQGv/4dWjzymEovxxyfQwAQLdiHQwFm6UNjBBCiIggCGhpaXEXnQDAcRxOnz4NlmUljIwQEozojieJCNaOzlltsWvXeH+iAIzxXJ9ejnVpZWgcasV7544hPzYLCnlk/KkKAg/ONvGdn8IYD8Oa7XCN9iN647USR0YIIWS6yaKzo6Nj1r78/HyP63cSQjyb2astXPu4RcanWRLxxuvqRNtyvR7q5KQ5jpYewzBYlZCHVQl5UocSUJxpGFFll8By9jh4hw0MI4MyNgXq5BypQyOEEHKeIAhobm5GZ+fsL3ULCgqQstweRYREmCiFGuPTthXhuZoKFZ4k+NTV1bmnHy8qKvLJOW3t4m9kldFGKHQ6n5zbl3iBhyAIkMvCdVj5/OSGWDAyOVSJWbB3ngUAxG69dcHH+SNnSHijnCHeopyZQEXn4lHOkKUK07qTxniS4ONyudz/+Yq5pVW0rTQafXBW314WWI7F0faP4XA5fXreUMKcL7hVidkAAG1OqbttPv7IGRLeKGeItyhnqOj0FuUMWSxm5jrtc0ymGOrojicJOiqVCjKZDAqF79LT0d8v2takLncpFQ+975c56+xbTYdgYW3QKBoQp41FjNaIOG3Mss4ZCgRBQN+eh6DNLoZx3dVgZHLIDTEwFF4AZULmos7hj5wh4Y1yhngr0nNGEAQ0NTWhq6tr1r7CwkKawdWDSM8Zsnh9nHg1A0eYDvKkvwQSdAoKCnx6Pt7phMs8Y0bbpESfPsd0S1n2hBd4mJwWyBgZWkY60DIy0TX49pKdvg4v6JiqD8J69jisZ4/DVPUuEq75AjTpK6FKzFr0OXydMyT8Uc4Qb0VyzlDRuTSRnDPEOywvvivOh2ln2/C8j0vINNauLkAQ/wFrsxZ3Jy1QjrZ/jH1nD6Cypxajton1Ro1qg8RR+R9nM2PozX+4t519reh/6WEIHHVLIoSQYCAIAhobG6noJIQsGxWeJOxZmlpE23KdDsbC5X8LKQi++zbqSPvHcHBONA2fwzstH+BYx0lsywn/dSt7n30AAivuXhK3/V4wEbJ8DCGEBLv+/n50d3eL2hiGQVFRERWdhPgIx/NShxAQkny6M5vNeOedd3Dy5El0d3djbGwMu3btwg033AAAePTRR1FcXIyLL75YivBImBmrFS+loow2QhUbu7STne9Gu8zhnCJ2lwO1/Q2itlhtNLRKje+eJAhZzn4ER3ezqE0Zlwbdyg0SRUQIIWSmpKQkjIyMoLe3F8BE0VlYWIikpOBdkoyQUKNVqDB9akk5TS60fDzP489//jMef/xxWCwTY+4EQQDDMBgeHnYf9/TTT2NoaAjl5eV46KGHkJkZXN0iiX91d3eD4zjI5XKkpaUt+3z2nh7RtsJoBCMLnj/ouv4G2F0O9zYDBp9Ze6eEEfkfz7kw+MZjEM0MLJNDt3ojZEu42+nrnCHhj3KGeCtSc4ZhGKxevRqCIKC/vx9FRUVITPTfPAnhJFJzhnhPq1CLCs/g+ZTqWwErPJ1OJz7/+c/j+PHj83ZRdDgcGBwcBMMwqKysxG233Yann34a+fn5gQqVSGxwcNC97pUvLtS2GV2EfLOUiu+sTSvF73f8Fw6dO4ZD5z5ChjEFacbw7r40/M4T4MwjojZNZiHiLt21pPP5OmdI+KOcId6K5JxhGAYFBQVIT0+HMcjeQ4NZJOcM8Q5rGhZtCzwnUST+FbCC+qc//SmOHTsGQRCg0Whwxx134Fe/+tWs4wRBwN133w2lUgmGYTA6Oor777+f1kAiS8I5nXCZzKK2mPJSiaLxjOM5JGhjcWfpDXhk5wP4yub7pA7Jrzi7Faaqg6I2mTYKidf+x5JmBCaEEOJ/DMNQ0UmIn8hmTKrIhOektoG541ldXY2XXnoJDMNg5cqV+Otf/4rU8+sofu973xMdq9Fo8JOf/AT33HMPvvSlL6G1tRVNTU147bXXcOONNwYiXCKx/Px8dxfs5bL39M6a0dawcuWSz+eOyUcFktlhQcNQK8pTCgEAMkYW9rPZ9u5+cNaEQtr8NVDGLv0ury9zhkQGyhnirXDPGUEQcO7cOaSlpUGtVksdTlgI95whvhMlV2H6bRKlZJH4V0DueL7wwgsAAIVCgUceecRddM4nJycHjzzyCORyOQDgjTfe8GuMJHjo9XoYDAbo9fpln8vW2SnaVkRFwViwetnnnWWJM9weaDmCPvMABixDMDst4IXwntWMHemBo0s8kZIiNhWJ13xhWef1Zc6QyEA5Q7wVzjkjCALOnj2LtrY2VFZWwuFwLPwgsqBwzhlCliIghedHH30EhmFw8cUXIytr8YvC5+fn49JLL4UgCKivr/djhCRcWTvEhachP0+iSGYTBAEOzgmT04JDbR9hf8O7ONldI3VYftX7wkOAaNwCA21uGWSq8J7BlxBCgtVk0Tk5a63NZkNVVRUVn4QQnwtI4dnf3w9gYqFhb6083y1yZGRkgSMJmc3a3iHa1mZm+O7ky1zH81TP7CIzLSp8p6e3tlSC7W8TtalS85Bw1WckiogQQiKbIAg4c+aMu+icZLPZ3KsPEEL8r88p/nuzh2nv7ICM8ZycxXay26w3JvvFK5Xh2tuZzGSz2dxjIrRa7bLOlbjtIqgTE2Dr6IS1oxO6LF8tzePpirD4q4QgCNjXcBCx2mgk6uLdeZ4aFZ6z2QqCgIF9j4ob5UpElV0KRub9dWEmX+YMiQyUM8Rb4ZYzk0VnX1+fqJ1hGJSUlCAuLk6iyMJHuOUM8R8nOFFRFq4DrwJSeCYkJKCzsxNNTU1eP7a6utp9DhIZGhsb3dOPl5WVLetcSqMRaTuvhTpxIn/mW8onkNpGO3G67wwAIEZjRJI+HkVJq8J2AgKXaWhGF1tAk1UI47qrfXJ+X+YMiQyUM8Rb4ZQzk0OYJnukTZosOuPj4yWKLLyEU84Q4gsB6Wq7fv16CIKAgwcPYnh4eOEHnFdXV4ejR4+CYRisWbPGjxGScCRwHEYrq9D3zgEIXHCth/RB+wn3z6P2cXSb+nFL0TUSRuRfcrUemV95FPFX3AdGpYVMrZ+42xmmhTYhhASruYpOmUxGRSchEuG96DUXygJyx3Pnzp146aWXYLfb8Z3vfAd//vOfoVKp5n1Me3s7vvKVr4DneTAMg2uuCd8P5UQsPj4eHMctqWv2dLaubvfPI6cqoc/NgTIqCswCubdoS7x5KggCjndWitq252+FWhG+09fL1BNdjPQFm+GyjIG3W2AoutBn5/dVzpDIQTlDvBUOObNQ0Unda30rHHKGBIZWawA7rfZkZOFZiAak8Lzwwgtx4YUX4siRIzhy5AhuvvlmfPrTn0ZRUZH7GJ7nYTKZ0NjYiLfffhvPPfccbDab+27ntm3bAhEqCQLp6ek+OY+tq8v9s7mxCebGJmTeefvyTupexxNLLjw5nsMFmWvxSVc1OsZ7AACbM9YuL64QwciVUEYnIuqi230ytnOSr3KGRA7KGeKtUM8ZQRBQV1eHgYEBUTsVnf4T6jlDAidhczkO8FOTThrCdE33gBSeAPA///M/uOOOO3Du3Dk0Nzfjxz/+MYCJ8QSCIOC3v/0tfvvb37qPnxyLl5SUhN/97neBCpOEEdZkmtUWDF075TI5SpMLsHP1dlhZG6p765Ab66tJj4KbXB8N49orpQ6DEEIiCs/zqK+vp6KTECKpgIzxBIDo6Gjs3r0b27dvhyAI7v+AqWJgZvuaNWuwe/duJCeH50yfxL+0aWnQ5+ZAd34JFU1KcOTR8c5T6DUNwKDUIcWQiCtXbAuKgtgfHL2tcI0PSh0GIYRErPmKztLSUio6CQkCDCODihfc/ymDYy5MnwvYHU8AMBqNeOSRR1BdXY0XXngBH330Edra2kQzjSYmJmLDhg248cYbcfHFFwcyPBJGBEFA/YO/gtJohCYlBYooAxK2+m5M4flnWdKj2scmxp6+3vguVHIVkg0JKEvxfo3bYNfz7C8g18fAuPYq8E47ZBo9FIZYqcMihJCIwvM87Ha7qG2y6IyNpWsyIcEgRW3EtlGre1sRa5QwGv8JaOE5qayszD2tNMdxGBsbA8dxiI6OXnDSIRL+Ghoa3NOPr1q1aknncA4Pg7NYwVmssPdMLIydc+89yw/u/J3JyS7i3hq2jbp/trA2WFjb8mMKQtaWStiaTwEAHF0N0OSWQRWXhugNO/zyfL7IGRJZKGeIt0I1ZxQKBcrKylBVVQWz2UxFZwCFas4Q6bEsK3UIfiFJ4TmdXC6ft5sHy7Jobm7G4OAgtm7dGsDIiFTsdjtYlgW3jCVQps9oCwAytRqqeD92J1pkDVrX3zCr7aLsDT4ORloCz2HglT+6t9mhLrhMw4i75FN+e05f5AyJLJQzxFuhnDNKpRLl5eWoqalBTk4OFZ0BEso5QwKLUaigyS6F2WyauLGhocmFlqygoAAymQzf/va3cd9993n12D/96U/461//isTERBw6dMhPEZJgIpPJ3P8tlb27R7StTUuTfBwlz/PIicmEQWWA3WV3d7nVKDWSxuVrg2/+HZxlVNSmySqCcf3VfntOX+QMiSyUM8RboZ4zSqUSFRUVkr8XRpJQzxkSOA0dbThd3wmO5yFAgEJlxWqpg/KDgN3xXEq3RADQarUQBAHDw8M+jogEq5KSkmWfI+GiC6GMNoI1W+Do74fSGOWDyMS8zemTPafxvx//C+vSSrEmtQRx2hhsyqjweVxS4l1OmGsPi9pkOiOiyi7z64cdX+QMiSyUM8RboZAzPM8DwJyFDhWdgRUKOUOCg6X5HPJqRtzbdnV4flkheVfbuQiCgM7OTrz22msAAJ1OJ3FEJJSYG5vgGBxCylVXQObDccNTb9oe3rwXeD//uKsaI/YxvNPyAd5p+QBlyYXYnh9e3cdH3vsXBIdV1KbNLYehcLNEERFCSGTgeR61tbUAgOLiYrrLRggJOj4rPF0uF2666SY0NTV53C8IAn7zm9/gN7/5jdfnZhiGBmUTr4zXnwEAdL/yGmQaDbSpKYhdtzYwT+7hG2Ve4PFJ92lRW0VqcWDiCRDeacf4yTdFbYroRCTu/LJEERFCSGTgeR41NTXu3mF1dXUoKiqi4pOQEMHxPORSBxEAPrsiKRQK/PznPwcgXo9zenfEme2L/Q8APve5z/kqVBLmpuccz7JwmUywdXfP8wj/OzfSgTGHSdS2Pr1Momj8Y/i9pyGwDlGbJqcUMoVSoogIIST8zSw6AWBwcBBnz56VMCpCiDc0MUZYDUr3f2y0VuqQ/MKnXW3XrFmDe++9F2+99Zaovbu7GwzDwGg0Qq/XL3gehmEgl8thMBiQkZGB22+/nWa0jSD9/f3gOA5yuRxJSUleP553OGa1xW1Y74vQxLwY4plkSMD3L/oy2se68En3aVhZO1IMib6PSSKc3QLTqbdFbYrYVMRtuysgz7/cnCGRh3KGeCsYc8ZT0QlMrBiQlpYmUVRkUjDmDAlOSRvXo143CNbJQhAE6FXhOcTQ52M8v/e97+F73/ueqK2goAAA8MUvftHrWW1J5Ont7XWve7WUC7XLYp3VpkpI8EVoAM6P8/Ryfob9De8i1ZCEtWmluDR3CzQKtc/iCQYj7z0NwSVec0qTUwJFlB+XsJlmuTlDIg/lDPFWsOUMx3GoqanByMiIqF0ul6OsrAzR0dESRUYmBVvOkODlHOyEc6AdnIsDIICV+W5+kmAS9LPaEuIta0cH2LExyHU6yJQT3TwZuXQ9522sHQDQY+5Hj7kfAJCsT8C23PCYcMdlHsV45QFRmzIhAzGbrpcoIkIICW/zFZ3l5eUwGo0SRUYIWQrBbgVjNbkLMznDznt8qApI4XnmzJlAPA0JEzk5OeB5fsmTIgx9cBR9b78DAJCpVNBlZyHrrjt8GaJXOsd7ZrUVJa2UIBL/GHn/XwDnmtbCQJNdAlV84Lp5LTdnSOShnCHeCpacmavoVCgUKCsro6IziARLzpDgl6Iy4LKRqR57jMYgYTT+E7TLqZDItdw3Tee0N2Pe6YRwfl0z31vcXfwotQE3FlyJN5sOweaauPuZqI/3U0yB5Rofgun0e6I2ZVIWYrfcHNA46IMW8RblDPFWMOQMFZ2hhf49yFIxYfplhaSvShAE8Dwv+o/jOLAsC5vNhuHhYbS0tODVV1/FZz7zGSlDJSHE3tMr2takpPjhWRY/yDPFkAiVQoXS5NV+iENaox/uFd/tlMmRcOVnoDCGR2FNCCHBguM4nD592mPRSd1rCSGhIKB3PN966y0888wzqK2thcVioXGfxC9Ys3jZElW8jye48Vhzes7lpqFzsLBWFCeuQkZ0Gj7qqsL2/PCZoTn24tshU6kxdmI/BNaBqIrLoc0Or/VJCSFEapNF5+joqKh9suiMioqSJjBCiE80nD2DzrZpZZnKjhzJovGfgBWev/vd7/DYY48BWNpEQwzj5TSiJGSx7MRU0gzDQKn0bg1IQRDAmS2iNrlauhlkXznzNo51noRWoUF5ahGuyr8YcdoYyeLxNZnGgLhLd8G44VqMfrhXsgmFlpMzJDJRzhBvSZkzZ86coaIzBNF1hiyWdXAESX1TPcjsqvCsewJSeDY0NMxZdE4WlHO1KxQKXHfddbSOZwSpr693Tz9eVlbm1WOdo2MQOE7Upl+R78vwpizw/QnLsajsrQUA2Fx2HOs4iYqUIhQj9LvcCoIAy9lj0KSthMKYAIUhFglXSLdU0nJyhkQmyhniLSlzJjs7G6Ojo2DZiZkuqegMDXSdIUQsIGM8n3/+eXdhuW7dOjz//POorq7Gnj17IAgC5HI5jh49isrKShw8eBAPPvggUlNTIQgCXC4XSkpKsGPHjkCESkKc9dw5cQPDQJ+d5Ydnmv1N1My78rX9jbC7HNMewWBtWqkfYgk8W9NJOPvbwVnHIfDcwg8ghBCyZAaDAeXl5VAqlVAoFKioqKCik5Aw4q9pMINNQArPjz/+GMDEhfPPf/4zSktLoVKpUFxcDKPRCI7jcOTIEWg0GqSlpeHmm2/Gyy+/jFWrVkEQBDz00EMYHBwMRKgkCERHRyMmJmZJi1/burpE23KtFprkZF+FNmGhbt/n9/eZ+xGvjXU3r4jPQYwm9Cd/EAQB9p4mAICl4QRGP9yL4UPPSRrTcnKGRCbKGeItqXNmsvisqKiAwRCeSy2EG6lzhoQOtUor2g7POW0D1NW2t7cXDMPgkksumfXHV1xcjGPHjuGTTz7Bdddd526PiorCww8/jOuvvx52ux27d+/Gf/zHfwQiXCKx7OzsJT/W2tYu2pbrdJJNST3mMOPSvC2IVhvQZx5CRrQ/ZtcNPHZA/DsWRGt4SmM5OUMiE+UM8VYw5AwVnKElGHKGhAaDXIPpU2PKJYvEvwLyidxkmvhV5ubmztq3YsUKCIKAM2fOzNq3cuVKrF+/HoIg4MSJE36Pk4Q+x9CwaFth0Pvx2eYe5MlyrPvnMYcZGqUaKYZEP8YSGIIgoP/l/wd7ex14dqobsbHicgmjIoSQ8OByudDT0yN1GIQQ4hcBKTy12onbx55m9MrJyQEANDc3e3xsSUnJvPsJmY4dFheeco3GL8+zUG/bE13Vs9oyotP8Eksg2dtq4Oxvg72tBuMf7YO1+SQEFwuFMUHq0AghJKS5XC5UV1fj7NmzaGtrkzocQgjxuYAUnjExMQDgcZxmZmYmAMBsNqO/v3/W/smuuWNjY/4LkIQN1mQWbaviYuc4cjkWnuJaq1RDo1CJjjSqQ7+L1Oixl6c2eBdcw71Qp/pp1mBCCIkQk0Xn+Pg4AKC1tZWKT0IiSJRCfKNE6f3KkyEhIGM8i4qK0NHRgaNHj87al5U1NeNodXU1tm/fLtrf29sLYGlrf5LQ1NzcDJfLBYVCgfx874oazmYTbWtSpBlXuSa1BGtSS+DiOexvOIhEfZwkcfiSs78dtuZTojZ1+iqoEjMlimjKcnKGW0bSWAABAABJREFURCbKGeItf+WMy+VCVVWVe1jSpM7OTqSlpdH6jyGMrjNksWb2pAvXqicgdzy3bNkCAGhqasKf//xn0b7s7Gx3V9xXXnlFtM9ms+Gdd94BACQkUFe+SGGxWGA2m2GxWLx6nMDzswvPVP8Vnov5MkQhk+OqFdtwQeY6v8URKCNHXxRtMwoVVMk5UMZL34V4qTlDIhflDPGWP3JmrqJTpVKhoqKCis4QR9cZsliMTD6zQZpA/Cwgr+qGG25AXNzEHZ8//vGPuPXWW3HgwAEAE2sfXnbZZRAEAW+//TZ+8YtfoKGhAcePH8dnP/tZDA4OgmEYVFRUBCJUEsLYsTGAF6+EpE7004Q+8wzyfL3hXfzloydxtP0TmBxmqBUq/8QQQC7TCCx1R0RtqtQVYOQKMGF6cSSEEH9iWXbeolOv9+fkeISQYDLMiD+/Ohce1RWSAtLVVqPR4Oc//zm+9rWvgeM41NbW4sSJE7j88omZMD//+c/j9ddfhyAIePrpp/H000/POsddd90ViFBJEJicUMpbjsEhcQPD+OWOp6eaUxAEMOdHdH7QfgJNw+dwsPUoGDC4p+IWXLs6tGd9HTv+MiBMuygyMqjTViBm407pgppmqTlDIhflDPGWL3OGZVlUV1fPWXTqdDqfPReRDl1nyGJZXQ7RNhemnW0Ddqti+/bt+POf/4z09HQIgoCMjAz3vtWrV+OHP/whgIkP8NP/A4DPfe5z2LBhQ6BCJRKTyWTu/7xhPz8eeJJcq4UiwG/eFtaG5pGpCSEECMgM8dlseacN45+8IWpTJedAv2oDZJrg+EZ+qTlDIhflDPGWr3JmoTudVHSGD7rOECIWkDuek7Zt24a3334bJ06cQHJysmjfpz71KaxatQqPPfYYqqqq4HQ6UVBQgHvuuQc7duwIZJgkRNl7+0Tbcp0WCn92VfLwZVTtcJNo7KdSrkRB4gr/xRAAw4d2Q3CxojZ1+ipos4okiogQQkLTZNFpNs+YgZ2KTkIiGs/zgbsbKKGAFp7AxLc/mzZt8rhvw4YNdGeTLJljYEC0LdfqwMjlcxy9THOM8Ryyj6MsuRBD1hH0WQaQFpUMlTx0J4cQeA6WmkOiNkVcGvQr1koUESGEhKa5ik61Wo3y8nIqOgmJYAqZHNNHecoWWjA+RAW88Fyq4eFh9wRFJLwNDw9PfPMjk3n1b+4cHhFtKwx+uts558WAgYxhsCo+F0jIA8/z4ATOPzEEiOXMMXCWUVGbJmM1dCuCa5bepeYMiVyUM8Rby8mZ+YrOiooK9+z+JLzQdYYsVpRKh7Fp2/JFrBkfikKi8Ny9ezcefvhhHD9+XOpQSAB0dnaCZVkolUqvLtTcjOnK5RrNHEf6j4W1Qa6c+AAhk8mgkoXw3U5BwNgx8RJHyvh0JFzzeYkimttSc4ZELsoZ4q3l5Mz4+PisJTWo6Ax/dJ0hi8VZxkXbwoxVGsKFXwvP4eFhNDc3Y2BgAPHx8aioqIBarV704xsbG/HTn/4Up06dWvhgEvGcw8Oi7ehS/88mJwgCmPN3QDmBR6zGCLsccHITYyI3Z6zxewz+4ug8A0dPk6gtdtudkIXB8jCEEBJI8fHxKCwsRF1dHQAqOgkhYrxTvA49s4i14kORXwrPjo4O/O53v8Nbb70FjpvqaqjRaHDvvffiP//zPyGfZ+yd3W7HH//4RzzxxBPgOE704Z6Ev4yMDHfXlMUSBGHWcirRJcW+Dg1nBpqQr07yuE/OyHBp+gao4+PgcDnRY+pDoj7e/bhQm2Ro9Pirom1FdBL0qz2Pz5baUnKGRDbKGeKt5eZMUtLEe0dLSwvKy8up6IwAdJ0hi2WUq2Gdtq0I0+VUfF54VlZW4ktf+hJGR0dFs3syDAObzYa//vWvOH36NB577DGPxed7772Hn//85+jp6REVnJMXbBL+ltIdxTU+DsHlErWp4uN9FRIAYHfNa3ihdh/uXHUNrknZOO+xaoUKaVHJUMqV2Fv/Jp6p3otbi6/F7SXBse7lYqiTc+EaH4SzpxkAEL3xWjAyP03WtEzUhYl4i3KGeMsXOZOUlISEhAQqRCIEXWfIYs28v8aE6RhPn175nE4nvvnNb2JkZGqSF5VKhYSEBPe2IAg4evQo/vSnP4kea7Va8YMf/ABf+tKX0N3dPRWgTIZ77rkH+/fv92WoJMw4hsR3OyGTQRUb47Pznxlowgu1+wAAzza8jn0dH4j22zknXLx4IiGVQuUuOgHghdp9ODMg7roarJz97RAEHjFbbkLCji9Ct2ojDGWXSh0WIYQEPWGBLnJUdBJCIpVP73ju2bMHXV1dYBgGGo0GP/zhD3H99ddDpVLBbDbjySefxCOPPAKO4/B///d/+Pd//3cYDAb09vbiM5/5DFpaWtx3OQVBQFlZGX72s5+hsLDQl2GSMOQYEBeeqtgYny6lUpC4AneX3eguIne3HgDnZHFD9BUAw2D/ydfwFlpREJuLiswyrEktxomuKvfxAHB32Y0h093WfOZDABMFKABoMgsg1/hxTVRCCAkDTqcT1dXVyM3NRbyPe90QQsLXsMsu2naG5w1P3xaeR44ccf/829/+Fpdffrl722Aw4Etf+hKMRiMeeOAB2O12HDhwAJs2bcIdd9yB/v5+97FRUVH4+te/jjvvvDOgYzsFQcBrr72GPXv2oL6+HlarFYmJidiwYQM+9alPoaysbNnPYbfb8eyzz+LNN99Ea2srzGYz4uPjsW7dOuzatQtr19L6iPy0mbwW+82wLisTqdfthComGs7RUchUvp8A58bCqwDAXUzu6ToEuUaNC/Qrkb77CBTXxqGab0D1UAM+bP8EjcOt7sfeXXaj+/HBztO39bzT7uHI4LGUnCGRjXKGeGuhnHE4HKiqqoLVakVtbS1KSkqoq2WEo+sMWSwL7xQVZa45jwxtPi08m5omuhGuWrVKVHROd9ddd+Gxxx5Df38/PvnkE7z00kvo6+tz3+W88sor8ZOf/ETUPTcQ7HY7vva1r+G9994TtXd1daGrqwuvvvoq7r//fnz+80tfSuLMmTP4z//8T7S3t4vae3t7sW/fPuzfvx9f/OIXcf/99y/5OcJBTU2Ne/rxxRb7vNMJhV4HnmWhNBrBKPwzYfONhVeBdzjw7NnXAQC7m9+GveZt5DoFrKu34vDaKAAI2aITAEyVB2a1aXP8P0PwciwlZ0hko5wh3povZ6YXncBEwVFTU4PS0lLExsZKES4JAnSdIUTMp5/Oh4aGwDAMNmzYMOcxMpkM69evx759+7Bv3z73RdpgMOBnP/sZduzY4cuQFu2HP/yhu+jMz8/H7bffjoSEBNTW1uLZZ5+F1WrFww8/jOTkZNxwww1en7+jowP33Xcfhs8v+XHBBRfgiiuuQExMDE6ePInnn38eDocDjz76KFJSUnDnnXf68uWFPd4+dUdO4DgIHDfP0ctzXf6l4J1O7G49AJ2NQ2btRDff0kYbPinUwaqd6uIbakWnIPBwmYZmtWsyqbs7IYR44nA4UFlZCZtNvByCWq2GTqeTKCpCSCgJzzlsZ/Np4Tl50V3obmVGRgaAiQmFBEFAXl4e/vrXvyIzM9OX4SzakSNH8NprrwEANm/ejMcee8y93ujOnTtx66234u6778bo6CgefPBBXH755TAYDF49x89+9jN30fnNb35TdOf02muvxXXXXYddu3aBZVn87ne/w8033wyVH7qLhgK9Xg+XywWFF3ctzU3Nom1lTLSvwxLZmbUVnJNF/yv7oDhf4yo5iO56hl7RKaB3968hU2mgiEt1d3OX64xgmODuIrSUnCGRjXKGeMtTzsxVdGq1Wq/XLifhh64zZLEUSo1oO0yHePq28HS5XGAYZsELrV4/NUlJSkoKnnzySUkH4f/jH/8AACgUCvziF7+YFX9+fj5+/OMf45vf/CZGR0fx/PPP47777lv0+T/66CMcPnwYAHDzzTd77K5bUVGBO++8E08++SRGR0fx4YcfYtu2bct4VaErPz/f68eoExPAO53gHA5AEPwyxlOEYbBZlY1zTeIPG5N3PW/cdEtIFZ0AYO+oh63pYwCATGuAOm0VVCm5MK67WuLIFraUnCGRjXKGeGtmzlDRSRZC1xmyWMkby3HYXu/e1oXphI6SfAUz/Zufr371q5IWnaOjozh69CgA4KKLLprzruuOHTvw4IMPYmhoCG+88YZXhefk3VS1Wo2vf/3rcx536623gmVZxMbG0mx4XorbONG9WxAEjNfV+fW5Ju8EVu3fg/gZPXqVHLC+3oYbPx1aRScAjB55wf0zbzPD0XUWqtS8gE7wRQghoYCKTkKILzEqJVjdVO8yTh2c66Yvl+T95y655BJJn//jjz92zzq2efPmOY+TyWTusatVVVUYGxtb9HO88847AIAtW7YgKSlpzuMKCgrws5/9DPfffz9KSoJ7MpdgInAcXBYLBEEAOzoKdnQMxqIivz7n4EA3oqvPedxX0mjF7iPP+vX5fY0d7oGtpUrUpk5bCf3KucdrE0JIJLLb7R6LTp1OR0UnIYTMQ/JO51LP9tbY2Oj+edWqVfMeu2LFxBqMgiCgoaFh3kmUJvX392NoaGKyloqKCnc7y7JoamrCwMAA4uLiUFBQQGMAlsja0YHKr30TMo0G6oR4qBMSEH/BZsCPd+pOvfQM4uaYv0jJAX2vvIa9cbEh09127KPXxA1yJVTJuVCnUjchQgiZNFl02u3iJaZ0Oh3Ky8up6CSELEmS2ohtIxb3tiLGu7lkQoXklY7U3fi6urrcP6enp897bEpKiuhxiyk8J5eYASYmVWJZFn/5y1/wzDPPuCcbAoCYmBh87nOfw3333Qe5PDxvry9WW1ubezB+dnb2gsc7BicKe95uh62zCy6LBYwf18sa7OuE8VTLvMeUNtrw+PE9ABD0xSdnM2O88h1RmzolD/pV6yX/+1wsb3OGEMoZ4q2GhgY0NjaCZVnExMS42yfvdEbqhIBkbnSdIYslZ2RQTZ/a1uW/1RmkJHnhKbXpxd9Cd1+nv9GMjo4u6vy9vb3un1UqFXbt2oXKyspZx42OjuKhhx5CZWUlfve730GpVC7q/OFobGzMve7VYjgHxct/qP28Buw7T/wRuQtcDyZnuH1GuxdAcBefplNvA9z0pYoZqNNWQJ2+WrKYvOVtzhBCOUO8wbIsampqYLfbRV8OU9FJ5kPXGbJojAzK+HTYz0+SKajojmdYmt5dZqEuMtPfWGZ2s5mLxTJ12/w3v/kNOjo6sHLlSnzrW9/Chg0bwHEcDh8+jIceegg9PT14++238fvf/x7f/va3vXwlvtPU1IT8/HxERUW52xwOB86ePQtgogDPysqa9ZjJNVlnLpI8ODiI7u5uAEBmZqaowOc4DrW1tQCAqKgo5Obmih577tw5jI+PAwCKiopE3ZFHR0fR3t4O+4zJhFTnJ2Y6ffo0BEGAVqvFypUrRcd0dna6v3RYtWoVNJqpaazNZjNaWibuaCYmJiI1NdW9b/eRZ5FZ04vFmJzh9pnqvQCAq3O3oaGhAQAQFxfnXlZoUmNjI2w2GxiGQWlpqWjfwMAAenp6AABZWVmiL0FcLhfqzv8OjEYjcnJyRI9tbW2FyWQCABQXF4s+NA0PDmD46F7RYG9lYgYUhhgwDIPq6moAEx+uJruaT2pvb3d/AbN69WrR34/JZEJraysAIDk5GcnJyaLH1tXVweVyQaVSoaCgQLSvu7sbg4ODACZmBJw+C7bNZnN3j4+Pj5/VS8HlcqG6uhoymWzWOOn+/n73F0E5OTkwGo3ufSzLor5+Yja56OjoWd9MNzc3u/+WS0pKIJt2R314eBidnZ0AJno1xMXFufdNLiIPTMzmPXOGw7a2Nvd48cLCQtGHk/HxcZw7dw7ARG+LmePDa2pqwPM8NBrNrGECXV1d7i7+K1euhFarde+zWCxobp5YfighIQFpaWmix545cwZOpxMKhQJFM8ZK9/X1oa+vDwCQm5sbMtcIAEhNTUViYiJmYlkWjY2NPrtGAEB9fb37w2ZhoXgN3J6eHgwMDAAA8vLyREtz2e32oLtGjIyMoKOjAwCQlpY2a7m0ULtGNDQ0wG63e32NmHwvsdvt7nkh9Ho9ysvLoVKp6BpxXrhdI5b7OYJlWXhC14gJ4XSNWO7niJP1Z9AxxgNQQoAAFYBVkO4aMZmDvuaXwrOmpgZ79+6dd/+k+Y6b6cYbb1x6UHNwuabu9Cz0jeX0/dMfN5/JiygAdHR0oLCwEE899ZToQnLttddi7dq1uPnmmzE8PIzHH38cd99994Jdf/2F4zj3G+skQRDcF1COm327z+VyzXmB5XnevW/meQG4903+TgsLCyEIAhiGQVtbm3u/IIiX152MidfpEH35ZYhOSQZns0GTmuI+ryAIHsfOTo93rvPOjHdv/Zvoe/k1pC+y98P0dT2fqd4LF8sil00VvdaZvweWZT12b53+O5wvXk/nne/fxtF4AjKHWdSmTl8F48ad7pjmOi/HcXPGND1eT/nCsixcLpfowruY886Vh5M509DQAIfDseB558tvb3+H3ub3XOddyu+Q53mPXfOX8jucGdPMx808r5TXiLnOu9i/ZWAiZyY/VHqKa6nnnYx3Ma/V279lKa4Ry/m3CaZrxPTzsizr9TUCgLsosdlsoqIToGuEp/OG+jVi8rzL/Rzh6cspukZMCKdrxHJ/h/bGRqw62uNus6tlwP1TMS3mvL68Rnj6t/QFvxSe+/fvx/79++c9ZvKP4vvf//6izskwjF8Kz+nfULEsO2/x6XQ63T8vtlvNzCR44IEHREXnpNTUVHz1q1/Ff/3Xf8HlcmHv3r348pe/vKjn8DW5XD7rD45hGPe3KJ4SVKFQzNmVRCaTufd5+kOe3Dd5YZ9+nunnnXkhnYxJgAC5TguB4yBTqcDI5O7zCILgMa7FnHd6vGcGmrD3+B7cN2PdzoVM3vW0auXYXb8P92TfiCxdqsc3MaVS6V4Ld6bpv8P54vV03rn+bQRBgPP02+IYErMQvX4HZAqVO6a5ziuXy+eMaXq8nvJFqVSCYRivzztXHk62qVQq8DzvMc+mn3e+/PbmdzjztS4mv+c671J+hzzPe4xrKb/D6THxPL/gv42U14i5zruYv+Xp5/TlNcJTvJ7Ou5y/5UBfI2ae19t/m2C6Rkw/L8dxS7pGqFQqpKWlwel0iopOgK4Rns4b6teIyfMu9xoxea3xFC9dI8LrGrGc3yHDzD2/ixTXCE+v3xcYwdNXVktUUFAAhmE8fgu2XAzDuG9h+9L999+P119/HcDE0irTu4XM9Pbbb+MrX/kKAOAHP/gB7r333gXP/8QTT+DBBx8EMHFb/s0335zz2OHhYVxwwQUAgK1bt+Lvf//7ol/HcpjNZnf3F2Ciu4On4jhY9b7xFpwjI+5tdWIikrdf5vPneeonX0Zu1eK62U53bk0qXi7kcGvxtbi9ZKfP41oqW3sdep78sagt6ZZvw1Aw97JChBBCCCHEt4787XfAqx+4t+1qGS7f/bxk8firNvDpHc/FzPIabKb3zx4dHZ238Jw+odD0MRrzmf6PNHPcwUxxcXGIiYnB6Ogo+vv7F3V+AlHRCQD63ByfP8dAT/uix3bOlF7di2/d9nVsLL4QAMDzU1/MyGTSzRo7duxl0bYiJhn6VaH3N0wIIb40uT7n9HGPhBDiVwo5+Ok3GRX+W51BSj4tPJ988klfni4gpg+g7unpQWZm5pzHTp+hduZg+7nMHPi9kMmuO/7qWx0KxsfH3d0lp38xsFgyte9nF/zo8b8gZokzWys5AQOv7gOKL4ST5fB/r9XCZndBq1Hgvp3FUCkDv3wOOzYAa+Mnojbj+mvc3ZRDzXJzhkQeyhniic1mc888X1FRISo+KWeItyhnyGKlX3ox3k+0gnNxECDAoNIv/KAQFJ7ltBemzw41OcvVXCb3Mwwza3azuUyfJWr6mqGecBznvqs6c/auSHLu3Dk0Nze7Z+KaD+9hoDXD+C6tzww0YaCnHYYTZxc+eB76jxow0NOOxo5RsCyPjn4TWJZHY8eobwL10tCBJwBM6xIvV8JQuk2SWHzBm5whBKCcIbNZrVacOnUKDocDDocDlZWV7rufAOUM8R7lDFks11g/XKN9cA53wzncA3t/h9Qh+UXEF55r1qxxD6o9fvz4nMdxHIcTJ04AmBjLuthvrmJjY91FamNjo+iu6Uy1tbXuCYxmTmtMPLP398Pe1w92bBy80wlBEKCKX1w36IXsrnkNPzn4MN546g9wqBWw6Kb/J5/zP7NODpNWBrNO7j7eqZbj5N5/oaZlECabE1a7CyabE7UtQwsH4geCww5GNTWxlioxEwodfRtLCIlMVqsVlZWVokkEHQ6He1kRQgjxJ5dpBK7xITB2E2R2ExjrqNQh+UXEr+NpNBqxefNmHD58GAcPHkR3d7fHbrT79u1zr9d0zTXXePUc1157LX7/+99DEAT87//+L3784x97PO6pp55y/+ztc4STlJQUcBzncQaumcZOVWLg3ffc24ooA7LuumPZMZwZaMILtfsAAK9mWXD3zn/HjYVXAQBcVits42MYH+qD3KCHVq2H3OaETKnE6/0n8Fzj1ARSP7/smyhInFi3qn/Yit0HGjAy7gAAjIw70K+zon/YiqQ43bJjXiyBY6FOXwlVaj7YoS44upugTlux8AODmDc5QwhAOUOmeCo6gYk1IVevXu3eppwh3qKcIYuVqNTjwtGpJRhl6vDsahvxhScAfPrTn8bhw4fBsiy+8Y1v4G9/+5toUqCmpib88pe/BDCxeOttt93m1fnvvPNO/POf/8Tw8DD+9a9/oaysDDfccIPomL179+Lllycme1m7di3Ky8uX+apC18wFbufDmsRrUDIKpcdpxL1VkLgCd5fdiGeq9wKA+/+TxSfHn+/iKwDy81NO7+s8iufbDrrPsUl/HY4dd+AYJha2Zl08XC4eZqsTOo0CZqsTLhePlw81QzltEHluWjS2rfVubLA3bK0TizkzMhlUiZlQJWYiet3Vfnu+QPAmZwgBKGfIhPmKzrKyMtEyA5QzxFuUM2SxFIwMuumTT/pw2FgwocITE0uXXHXVVXjzzTdx6tQp3HDDDbjrrruQmpqKuro6/Otf/4LFYgEAfOc735k1o+3x48dxzz33AAA2btw4a5Kl2NhY/PznP8fXvvY1cByH73znO3j99ddx2WWXQaVS4d1338Ubb7wBAFCr1XjggQcC8KrDg8ssLjzlPpxYaLLInFl8JqticLavESsVicjV5UAhU+CV7mN4ofN992PvLLkBvfWpaB0eF53T5nCBkTHISIpCU+cougct0KrFf4ZWhwtby9Mgly/tomPvqIcms3Du/d1Ns9rk+ugFH0cIIeHEYrGgqqrKY9FZXl7ucc08QgghS0dX1fN+/etfw2Kx4IMPPkBnZyceeugh0X6GYfCVr3wFd95555LOf8UVV+Dhhx/Gj370I5jNZrz77rt49913RcfExMTg0UcfxYoVod3tMZAc/QOibcU8y+EshafiM0Ebi0HbxBIumnYVimLzcHLwjPsxd5fdiK2pF+O5+gboNAp09pvh4ngwDKBWypGdEgWlQobslCj0DFpgtjkhCIBCLkNGkgGCAIyYHEiI8X4q/+FDz2H08G7EXboLMVtumrWfHfO8TM/o0Zcw/O5TiLnodsRdvPyuyoQQEswsFgsqKyvBsqyonYpOQogU2jra0DQw1cNCrnIiR7pw/IaurOdptVr87W9/w6uvvoq9e/eivr4eJpMJMTExWLduHe655x6sW7duWc9xzTXXYN26dXj66adx8OBBdHV1gWEYZGZmYvv27bj77rsXvT4omeAymUTbjB/GUcwsPieLTgCwc05R0XnHyqvcx9+4LR9vHmuDWiVHZ78ZFhuLxFgddJqJC4tOo0RirA4dfSbotUpkJBkQrVfjys3ZSyo67R31GD28GwAw/O7EeOGZxaep6t1Zj+OdNvfjRg/vhi63jO58EkLC1lxFp9FoRFlZGRWdhJCAG2nvRnLr1DXJrpq9akM4oKvrNAzD4Prrr8f111/v1eM2bdqEs2cXt9xGUlISvv71r+PrX//6UkKMCDU1NWBZFkqlEiUlJfMey02b6h4A5BrNHEcuz8zi05Pbsi/DdblTS5KkJxpw5xWr8PZH7VDIZejoM2F43A6jfqo78PDYxHZmchQyk6NwxcYsd2HqLU1mIeIu3eUuOmcWn7b2WnB2C+SaqQHr9o562M+ddm/HXborJItOb3KGEIByJlItp+iknCHeopwhRIwKTxJ0eJ53/7cQdsYYT4UfF2i+sfAqdI714FDb7GV3bs3Yhmsztsxq12mUuHRdJv65vw7C+THjQ2M22J0cNCo5wMDdfum6zCUXnZMmi8yZxWf0BTegb89vwVvHoYhLhTptJTjzyKyi01P33FDgTc4QAlDORCKz2Yyqqqol3+mknCHeopwhRIwKTxJ0NBoN5HK5aDbBufAO8aQQyuhof4UFAPj3tXfgZPdpmNmpKa8NSi12pG6e8zEDIxPH2hwucDwPi42FUa9C75AVDDM1K+7AiFV0N3SpPBWfzsEO8NaJiY5cwz1wDfeIHhPKRSfgXc4QAlDORKK2trZZRWd0dDRKS0sX1b2WcoZ4i3KGLJpS/Plv+eszBCcqPEnQWbVq1aKP5R0O0bY6KdHX4Yi81XxIVHQCgJm1YX/PMezMvsjjY/pHbHC5eLg43j2BkF6rhMXGuicecrl49I/YkJ8R45M4Zxaf5tPvz3lsqBedgHc5QwhAOROJCgoKwLIsRkdHAXhXdAKUM8R7lDNksWIVekyftSRcC7TwXCSGRARBEMDPmAZfFRfrt+fbW/+maIynVq52//xC5/vY13nU4+MGRqywOV3Qa5XIz4hGUqwOF69JR2KsDvkZ0dBrlbA5XRgYtXp8/FLFbLkJcZfumveYcCg6CSFkMeRyOUpLSxETE+N10UkIIWT5JLnitre349VXX8XJkyfR3d2NsbExfPnLX8anPvUpAP+fvTuPj6o+9wf+OXNmn2Qy2XcIW0IgBFRAFCiKdQFlVbAutNpWra3XXu2vrm1dqr3eut161artrbVWrVoVFRUBRQVEQZGwJIEkBMi+T5LJ7Oec3x9hDnNmy0wye5736xXN2b8JT86c53w34P7778f06dOxdu1aKJXhm5eRJBduyHy6g+QpquzI1Hh6Jp1XTr0IF6XNxse9+/BG4ycAgDdPfAqZUoHL01dLji0p0ON42wBStUrJAEJTiwziwEM8L6AkP/z9Uw3nroHpyNewt9Z5baOkkxAy3riST9f3hBBCoieqiafZbMbvf/97vPfee2JHa0EQwDCMZALnzZs34/XXX8df/vIXPP7445gzZ040i0kShH2g32udMt0Q9ut4Jp1XzbgMywsWwN7Xj0uLF4Fh5Xi9/mMAwOt1H4PVaMRRcAGgcmo2Jubp0dQxiJmTM8Ewwy33tWoFViyajMONPZiQm4q0FBXCTeA5cAPdXutlmhRKOgkh4xIlnISQeKOTK6VNbQW/uya0qCWeAwMDuOaaa1BfXw9B8P/bHBoagtFoBMMwaGlpwXXXXYe//vWvmDt3brSKSmKspaUFHMeBZVkUFhb63c/e3SNdIZOB1YQ+/2Ugnknn1ZWrsWLSEjiHhsR1l5V8D5zVin83D/ejdO3vnnympah8JpYyGYNZU7LCWmZ35rpvwZn6vNbzFhOMX76TNMlnsDFDiAvFTPIaHBzEiRMnUF5eHtYkk2KGhIpihgSLZaS9H5N1cKGo9fH81a9+hbq6OgiCgKysLNx+++34xz/+4bWfQqHAr3/9a2RkZAAArFYr7rjjDlg85mskyaunpwddXV3o6ekJuJ+1vV2yzKpUkGu1YSuHZ9I5NaMEQ3YzvmrZjw5zj+QFyvL8BVg3cam4/OqBjdhY83HYyjJaPdtflq5wu7H1bv8njF++E+USRUawMUOIC8VMchocHERVVRW6u7tx8OBBcBwXtnNTzJBQUcyQoAmei8mZekYl8dy1axd27NgBhmEwf/58fPzxx7jxxhsxf/58r32VSiV+8pOfYNOmTWIT27a2NrzzTnI8IJPwcfQPSJZlKiWYML3dru2ql/bprFiBY30n8W7tFvzpm5fw/758Ert7DkuSz0uLFuLKaZeIy68e2IjarvqwlGc0ere/AmdPq2Rd1vKbJAMOJVPySQgZ3wYGBlBVVQWn0wkAMBqNYU8+CSEkEkxK6ZQ7Dllyjv8alaa27733HgBAo9HgiSeegE6nG/GY9PR0/OlPf8JFF10Eu92OTz75BFdffXWki0riwLRp08S+v4E4B02SZVYTvtrO6dlTccXMS/Hvwx/g6srVqMgpw+uH3pfsw3m+ngKwYvISsBo1Xj2wEVfMvBTTs6eGrUyhMH75Doxfvi1ZxyjVSJmxEDLlcHNk93k+ASR0s9tgY4YQF4qZ5DIwMIADBw6ISadLOP99KWZIqChmSLD67UOSZSf4GJUksqKSeH777bdgGAbnn38+srKC78+Wm5uL73//+/jggw9w5MiRCJaQxBNNkP00bR5NV1htePt3rq+4DJW50zE9eyq21u+QbEtRaMH6+SBZXX4xpmdNiWnS6Uom3WlKKsWk03Oez0RPPoONGUJcKGaSh6um07NmMz09HRUVFWHr50kxQ0JFMUOIVFTqcbu7h0fVnDJlSsjHTpo0CQDQ3+89gikZ3wSHQ7IsUyj87Dl6ruRxUnoxyrKmIDclG0pWAYMyFTrW/wdKvCWdACDTSqdr8Zznk5rdEkISjb+kMyMjI6xJJyGEkLGLSo2n68bvmkIlFI5TyYVarQ5rmUji46xW6YoINmWZnDEBt537U9icdpzsPomjHfWYklIQseuNhrWpxm/SyeoMUKTnea33VfOpLp4OdXF55ApKCCFh0N/fjwMHDvhNOmVJ2keKEJJ8OJ6H+2syhgYXGr2cnBwAQE1NTcjHfvPNN5JzkOQ3NDQEk8mEoaGhgPsxHg8VqdPLIlYmGSNDhsaA/NQcpCi1WJBXiVSFe5/S2E+4pC4uh/7sFT63KfMmQTvlDJ/b3Gs+DYvXJ2TSGWzMEOJCMZPYYpF0UsyQUFHMkGBlqFMly/Ik7RcclRrPs88+G42Njfjiiy/Q3NyMoqKioI778ssvxf6hNI/n+NHQ0ACHwwGFQoHKykq/+3nWeKqj9HJietYUOE1DcBjjr/k34zlHrmz4/ZkiZyJUuSV+jzOcuyahazqDjRlCXChmElesajopZkioKGZIsHir9OWEMIpWookgKjWea9euBQA4nU788pe/hNFoHPGYb7/9Frfffru4vHLlykgVjyQop0k6qq08JSX6hfBM9GLIaerDwL4tHmsFaGcshM5Pbae7RE06CSHjh9Fo9Jl0ZmZmUvNaQkjC4izSZ1qvioQkEZUaz8rKSqxcuRLvvfceqqurcemll2L9+vWYMWOGuI/RaERtbS3q6uqwdetWfPLJJ+A4ThwN96yzzopGUUkcyMrKAsdxIw4K4TRJ3w7JU0aepme0BEGAk3dCwfofwCjWrSL6d2+E4LRLV/I8uL52aCZWxKZQURJszBDiQjGTePr7+33Oy5mZmYmZM2dGPOmkmCGhopghwdKxCpjdltk46MIVCVFJPAHgoYceQnNzM/bt24fe3l4899xzAE7PsfXCCy/ghRdeEPcXTmX6U6dOxR//+MdoFZPEgYKC4AbtiVaNp8k2hA/rtmP5tPOhYBWn5+OKo+b3vms7h9k7GuE09UGekh7lUkVPsDFDiAvFTOJRKpWQy+WSxDNaSSdAMUNCRzFDgiVnpPcwWTw9ZIZR1NqkKJVKvPTSS/jRj34ElmUhCIKYXLq41rkm27300kvx2muvISUWTShJXONsNq/pVCJR48nzPP7zowewt6UK/zr0HrbV70DnUE+AI2Jzo/BZ23mK4HSg/6t3o1wiQggJL41Ggzlz5kClUgEYrk2KVtJJCCFk7KJW4wkACoUCd999N3784x9j48aN2LNnDxoaGtDf3w+n04m0tDQUFRVh3rx5WL169ajm/STjg3Nw0GsdG4GJmlsG2zFgG8SAbRAnjM0AgPXly7GicGHYrzVagWo7XQa+/RhpC1Ylda0nIST5uZLPpqYmTJ06lZJOQkhSGOSklQcOP/sluqgmni65ubm46aabcNNNN8Xi8iQJMHI50ufPg2C3g7fbwTscYCLQh2JvS5VkWS1X4cy8madXxEET/EC1nS6C047+r95F5vevi06hCCEkQjQaDUpLS2NdDEIICRsjZ5UkZY7kbGkbncSzvb0deXnek9cT4kttbS2cTifkcjmmT5/ucx9GJkPK5EmSdZGo8azpqpcsp2vSUJJeDMfAYFz08QymttMlmWs9g4kZQtxRzMQ3s9kMjUZzuk99HKCYIaGimCFEKiptVJYuXYrrrrsO77zzDk2iS0Zkt9ths9lgt/uvxePMZq91MoX/EWdH6/oz1uOGuVdjSckC5OqykKmJTdJmbarxuT6Y2k4XV61nMgomZghxRzETv3p7e/HNN9+goaHBayyIWKKYIaGimCFEKio1njzP4+uvv8bXX3+NBx54ABdccAFWrlyJxYsXU/8M4kUul0MQBMjl/sOTUSihTE+HwHFwDA5GbD7NAn0uCvS5WFKyAAfaqzE9e2pErhNI7xevw7jjDWScfy0M564R14dS2+mSrLWewcQMIe4oZuJTb28vDh06BJ7n0dw83K9+ypQpcVHzSTFDQkUxQ4IlyKWVJ7G/40VGVP4ScnNz0dHRAQCwWq348MMP8eGHHyIjIwOXXXYZVq5ciZkzZ45wFjJeuM/v6o8qMwN5l1wEQRAwWHsECr0+omWSMyzmFs4GAPCS0XQj+zbe2lQD4443AAC92/8JAGLyGUptp0uy9vUMJmYIcUcxE3/ck06X5uZmpKamIjc3N4YlG0YxQ0JFMUOClTdrBvZ31IrLSrU6hqWJnKhUN37++ed4+eWXceWVV8JgMIhTpvT09OAf//gHrrjiClx22WX4y1/+gvb29mgUiSQLQUBq6TRoCiM7V5bvmvnT76Mi1RxMXVyOjPOvFZd7t/8Txi/fGVVtp8vAtx/DaeoLVxEJIWTMenp6vJJOAMjJyUFOTk6MSkUIIdEhN6Siv0AuflnyKfEck3nz5uGBBx7Azp078fzzz+Oyyy6DRqMRk9CGhgY88cQTWLp0KX70ox9Rf1ASkCvRY2SyiIxmG08M567xSj4733os5NpOl2Tu60kISTz+ks7c3FyUl5fHRTNbQgghYxf1RudyuRxLlizBkiVLYLVa8emnn+L999/Hzp074XA4IAgC9uzZgz179lB/UOJX3f/8L3r37IU8RQe5LgW5F1+I/GUXh/UarYMdyNJmQMmGf9CiULma17qa21qbawPtPqJk7etJCEksrqTTs9VIbm4upk+fTkknIWRcyFDocNaARVxWpqXEsDSRE9Pezmq1GsuXL8fy5csxMDCAjz/+GB988AH27t0LjuMk/UEzMzOxc+fOWBaXRElHRwc4jgPLsn779ThNJnBmMzizGTZ0wTk4GNYyCIKALxq/hkwmw3mTzkGOLhOCIHg9BEVzxEXP5DMQRqmBTBV4ehnTge0wnLs2LGWLtWBihhB3FDOx193djcOHDydM0kkxQ0JFMUOCpWIVyHCebvXBOPgAeyeuuBlmS6/XY926dVi3bh16e3vx9ttv49lnn4XFYhH7g5LxoaOjAw6HAwqFImDi6U6eEt43Q32Wfmys/Rh6VQq+aalCaeZkrCq/GNm6DODUw5DXM1EUHpKCST49R78dD4KJGULcUczElr+kMy8vD2VlZXGXdAIUMyR0FDMkWALHgZErwPPD90Seo8Qz4pqamrBt2zZ8+umn+O6778BxXKyLROKUtU06CJXgdIb1/A19J8ALPIzWARitA2geaMfqGeFtyjtagZLP9POuHndJJyEksSRi0kkIIZHUq1DhQEklzCYTeF6ASqlB9Cfwi7yYJ56dnZ1ic9qDBw+K610fSLm5uVixYgVWr14doxKSaJs0aRJ4ng/Ypzdr8UJwFgt4ux283QFFuiGsZWjoPSFZTlOnQqfQjnhctJ6XtGVneyeeMjnSF14enQLEmWBihhB3FDOx0dXVherq6oRMOilmSKgoZkiwmr7Ygaz3vhWXrSoZ8KMYFihCYpJ49vX1if05v/32W/EDyPV/jUaDiy66CKtWrcI555wT1x9EJPxSU1NH3EeekiJpXqsO83D7Tf2tkuVMjQEqVhnWa4xF58YnvVfyThi/fGdc1ngGEzOEuKOYiT6Hw4Ha2lqvpDM/Px+lpaVx/1lPMUNCRTFDiFTUEk+TyYRt27bhgw8+wO7du8VmtK4PIJlMhgULFmDVqlW4+OKLodEEHhiFEHcyZXiTwp/P/yFOGJtx3NiM6s46lGVNFt9Yig9HMXpI6vvybdjbj/nc5qoFHY/JJyEkvikUCsycOVMydUqiJJ2EEELGLiqJ5y233IIdO3bAbh+ed9D9bee0adOwcuVKrFy5kjpek6AIPvr+yvXhfauoU2oxI6cU5dnTcNHUJZDL4mOuUOOX76Bv+yte61VFZbA1HwFAySchJH5lZGSgoqICBw8eRF5eHiWdhBACwMnzkqSMQXLeF6OSeG7btg0Mw4gJZ0ZGBi699FKsXr0aM2fOjEYRSAKx2Wzi1CUqlcprO2e1eq1jI1RDzjAM5Ez8JJ3u/TpVRdPByJVwDnQha/nNsNR9I24fb8nnSDFDiCeKmdjJyMjAWWedBZ1Ol1BJJ8UMCRXFDAlW8ZJF2J0yCEHgIQDQqkYeVyQRRa2prVKpxPnnn4/Vq1dj8eLFYNn4eJgn8efIkSPi8OOVlZVe233VeLJqdTSK5i1K83h6Jp3qkllQF5efWpoOZVYRVNnFADAuk8+RYoYQTxQzsZUS5imwooFihoSKYoYEi3daYJNZxJcVnOBdyZIMopJ4/v73v8cll1xCnaxJWNiNRjgGBiBTKiFTKsGwLJiYjBjn9qY+gvln4KTzVElO1Rp4TrUynpJPQkj86OjoAADqQkMIIUFw9rXD0dsK19OsLPYTj0REVH6qdevWReMyJEkYDAZwHOe3Vrzv2+/Q/uFmcVmVnYUJP1gftus7eQ4dpi7kp+TEfAh0a1ONJOlMO2c1GLl0ICVNSYVk2VfyqS6e7pWsJpORYoYQTxQzkdPR0YGamhoAwy/FcsI86nisUMyQUFHMkGClyzWYM3i6lpNVJOcgq8mZTpOENmHChIDbuaEhyTLDhi+MOZ7DP/e/BY1Cg3SNHipWhQJ9LqZlTgrbNUKhLi6HYfF6GHe8gYzzrwWbkg6HsUO6T2Gp13Huyadh8fqkTjqBkWOGEE8UM5HhnnQCQHV1NQAkRfJJMUNCRTFDgqWWyZHtON2VTKZIzrlfw5p4/vCHPwQw/IbzpZde8lo/Fp7nJOOXY9AkWZaFscN+y0A7PqzbDrlMDoNaD4Najx/MWuH/gCh08cz43pXQTqqEIqMAxm8+8hqMg2EVPo8znLsm6Ws6CSHxo729HbW1tV7rBwYGkiLxJIQQMjZhTTz37Nnjc4Q6f+uD5RoRjBAAcPYbJcusOnyJZ2Nf0/A1eCe6zb0wOyzI0WVJdxLn8YQ08YxgjKqLy9H6yv2wtx+DMm8ylDkTIVNpocwqGvE4QgiJNH9JZ1FREaZMmRKDEhFCSOLo7OnGUdPpJtlypxMlsStOxIS9qa2/JFGI0uifJPk5BgYjdu4j3Q2SZYNajxSVLvgTRCj5dA70wHr8EAAB1uMHYT1+EIaFl0M75YyIXI8QQoI1UtJJL44JISSw1to6GKpPN7W1Ki0xLE3khDXx/OSTT0JaT4gv9fX1cDqdkMvlmDp1qtd2z3k8wzmHp9E6IFlOU+uhU8R+LiXT4R1wr15llBqknnkxZEk6z1OoRooZQjxRzIRHW1sbjhw54rW+uLgYkydPTqqkk2KGhIpihhCpsCaehYWFIa0nxBez2SzOe+ULZ5EmnvLU8M0H9+tFP0OfpR/H+k5i18m9OKf4rBEenKJTk2869LlkOaX8HCj0mVG5diIYKWYI8UQxM3bjKekEKGZI6ChmCJGK+1FtHQ4HGhoa0N3djUWLFsW6OCQOcGazZFmdnx+2czMMgwytARlaA+YW+pns+dTDFMMwUWlCbus4DnvnScm6lFlLIn5dQgjxx1/SOWHCBEyaNCnpkk5CCIkkjpXHf1IWBlH5GadPnw6ZTIZf//rXuP7660M69plnnsHzzz+P7OxsfPHFFxEqIYknlZV+Er5TPJvaKjMyIlmcmDMd2C5ZZlMzoZ4wI0aliU8jxQwhnihmRq+1tRVHjx71Wp/sSSfFDAkVxQwJVpYyFe4jmCRrHXnUJokZbc2QRqOBIAjo7e0Nc4lIohIcDskyG8bpVARBgJNzhu18YyXwHAb2S/tIa0pmYXhIXUIIia7xmnQSQggZu7idnVQQBDQ1NWHTpk0AAK2WBlEhAG+3Q+A4yTplVnj6Og7ZzXir+iM4+OATz0g3tbUcPwTBLh3ZjFGo6OGOEBITTqf3/XHixImUdBJCCBlR2JraOp1OrFmzBvX19T63C4KAP/7xj/jjH/8Y8rkZhkFpaelYi0iSgK+pVOSpqWE59wdHPwUA1HTVQ8nKkanNQH6q96Tnpx+uIv+Q1fPJPyTLrM4AVpcW8esSQogvEyZMgCAIaGxsBDCcdJaUlFDSSQghY6BmFZKmtmySzkIZtsRTLpfjwQcfxNVXX+23Fmi0tUMMw+CGG24YS/FIAunu7gbP85DJZMjKypJss/f1ee2vzEgf8zWtDivaTV0wqPWo7z0OACjS5/lMPD1FqtaTs1vh6GmWrFPkTITh3DURuV4iCxQzhPhCMTN6EydOBDB87yspKYltYaKIYoaEimKGBEspYyXLcdskdYzCOrjQGWecgR/96EfYsmWLZH1raysYhoFer4dOpxvxPAzDgGVZpKSkoKioCOvXr6cRbceR1tZWcfhxr8Szp0eyzMjlUKSMfTqVQ51HsPPEHgCAWq5ChsaAn5z5gzGfdywGvvkIkPQ3ZaDMngCZXBmzMsWrQDFDiC8UM2PjSj7HE4oZEiqKGRIsgeelyzEqR6SFfVTbu+66C3fddZdk3fTp0wEAP/vZz0Ie1ZYQd07TkGRZplCAYVk/ewfvcOfpwTKsThvMDgvKc6aNfGAE7wyDVdJBheSGHGR+/0eRuyAhhLih+QcJISQ6bGqNZJmTjf3ZNh5FbcqYaMx3SJJDcXGx2DTFk627W7LMKMPzUNRvk/YdzdJmQB7gj55hmIh28eSG+uHsa5esU+ZMpH5UfgSKGUJ8oZgJrLm5GSdOnMDs2bOREoZWJcmAYoaEimKGBKvH4znUDt7PnoktKolnbW1tNC5DkkR6uv8+m4JDOqKiTBGeZqcyRgYVq4SNswMAzp0wd5RnCk9iOLD/E8D9ZY2MhXbqaMuU/ALFDCG+UMz419TUhIaGBgBAVVUVJZ+nUMyQUFHMECIVtRpPQsLBOWSSLMvCVON5y9nX4efzfoh2UycajU2YklESlvOOlr2nGfKMAjj72gBBgCKzEKlzzo9pmQghyc896QSGm9tWVVVh/vz51OyWEELImIQ18WxtbRW/Lygo8Ll+LNzPScYnzxbb6tzcsJ1bJpOhQJ+HAn1eKCUK2/VdOIsJCkMuFIZc8A4bHF1NYFMMYBhqqkMIiZyTJ0/i2LFjXuuLi4sp6SSEkAhy8E6432WTtWNVWBPPpUuXgmEYMAyD6upqr/Vj4XlOkrw4jhO/Zz0HDuI5yaKmID8aRfIjMreF/r0fiN/LFCqoCqZCN42a2QYSMGYI8YFiRspf0jl58mRMmDAhBiWKPxQzJFQUMyRYWeo09Lsty5nkjJewN7UN9xyeZPw5fPiwOJpiZWWlZJtzSDqqLRvE9DwREeVXUar8KdG9YIIJFDOE+EIxc5q/pHPKlCkoLi6OQYniE8UMCRXFDAkW77BJlgWBBhca0bx580JaT0iouCGzZFkehsSz09QNi9MKBauAnGGhUaiRqordQBoyhUpyA6KRbAkhkXLixAk0NjZ6raekkxBCooczGSXLDE+J54hefvnlkNYT4ktqaiqcTifkcu/w9KzxlOu0Y75eVXsN+qynGziUGIowv2hOcAdHoCLfcM5qCDwHe+cJDB3di7QFq8J/kSQTKGYI8YVixn/SOXXqVBQVFcWgRPGNYoaEimKGBEvDKuBetcJGcqL4GKK/BBJ3Jk2a5HdbuJvaWh1W7Gs7CL0qFXpVChSsAlqFOsijw18Tae88CUV2ERgZC1XeZChzS2hQoSAEihlCfBnvMUNJZ+jGe8yQ0FHMkGApPZ71ZEk6vBAlniShOAekE+yOtantcWMzvm09KC5rFRrML5w98oHuzV/D1H+ZMw+g+a+/AqvVQzttLnSl86GZPBtgKfEkhITP8ePHcfz4ca/1lHQSQgiJpJgknv6aHezZswfvvvsu2tvbkZubi4svvhhLliyJQQlJPBIEwavGk7dZx3TOk8YWyTIrY5GTkjWmc46Wuf5bQODBDRkxuH8bTId3YOJtL4Jh6f0QISQ8Ojs7fSad06ZNQ2FhYfQLRAghBFbeKVnm/OyX6KL6RLt79248//zzqKurw65duyTbnn76aTzzzDOSde+88w6WLFmCP/3pT1CpVNEsKolHPA/D7ErwDgd4ux28wwFWN7ZBgNpNXZLlqRkl0Co0IZzhdG3nWMcAGqr9WrKsmTwHMgXFPSEkfLKyspCVlYXu7m5xHSWdhBASW11OsyQpsyVnS9voJZ5vvvkmfve730EQBDAMA6PRCIPBAAD47rvv8PTTT/s87vPPP8ddd92FJ598MlpFJTF2/PhxsVa8pKREXC9wHFKnl0n21RaPrVlYikqHwtQ8tJk6wQs8JqcHP19dOAeb5R02mBv2SdZpae7OoPmLGUL8Ga8xI5PJMGPGDBw+fBg9PT0oLS1FQUFBrIuVEMZrzJDRo5ghRCoqiWdXVxcefvhhcVmtVqO3t1dMPF988UUAw9NGlJaW4mc/+xl6e3vxzDPPoLe3F5s3b8a1116Ls846KxrFJTE2MDAgznvljnc4vPZl1cEOBOTb2hnLsHbGMjg4B9oGO0Oo7fSTdY4yGTUfqwJ494YVDOSG3NGdbBzyFzOE+DOeY0Ymk2HmzJno6+tDZmZmrIuTMMZzzJDRoZghRCoqieebb74Jq9UKhmGwcuVKPPjgg1CfShiGhobw2WefAQBYlsVf/vIX5OTkAADOPfdcrF69Gna7HZs2baLEc5xjtVoUrbscAsfBfPwEFIY0MGG6mStYBSYYYtfUbKh6p2RZnpYFZXpejEpDCEl2MpmMkk5CCIkTThk7LkZ8jcrPuHv3bgBAQUEB/uu//gssy4rbvvzyS9jtdjAMgwULFohJJzA8DPV5552Hjz/+GHv27IlGUUkcmDFjhtgk2x3DMGDkckAuR2pZaViuZbQOoLarHmcXneF1vWAIYRjRVuA5mOu+kayTZxaCTTGM+dzjhb+YIcSfZI8ZQRDQ0tKC3Nxcqm0Jk2SPGRJ+FDMkWPml01DXUCMus+rkHOMjKvM0NDY2gmEYnH/++ZKkEwB27Nghfr948WKvY6dNmwZguLkuGR/kcjkUCkXEJ1wWBAFb6r9ASXrx6D4UwvRBYm2qheCwSdYpMgvAyFg/RxBP0YoZkjySOWYEQcCxY8dQX1+PqqoqOHx0UyChS+aYIZFBMUOCpczPQvt0lfjVXza2wTPjVVT+Evr7+wFAUpvpsnPn6SaG55xzjtd2V0JgNpsjVDoyXnWZewEA+1oPQiNXQwBwbvGZUCtG7jcazpeXpmrpCM8yXRrkOkP4LkAIGTdcSWdTUxMAwGQyoaqqCrNnz6aaT0IIITEVlcRTqVTC6XTCYrFI1h87dgytra1gGAYZGRkoLfVuPtna2goASElJzsyfBK/l3ffQtukjyHU6sDot0s+Yg6Ir1o76fMd6TwAATHYzTPbhFxsqeXSbNgiCAHPdXsk6RWYhDOesjmo5CCGJTxAENDQ0oLm5WbLeZDKhv78fWVmxmaOYEEJIYHq5BtOHTrd+U8mSM++JSuJZXFyMI0eOoLq6WrLeNagQACxatMjrOJvNhi+++AIMw9Aw1OOI0WgU+0S4Rj4GAHtvH2ydnXD9Waqys8d0nY/rP4dWoYFelQq9KgWsjA29ye0Yu3g6uprADfZK1ikyC6mZbYj8xQwh/iRbzPhLOgFg+vTplHSGQbLFDIk8ihkSLJ1chWKbU1yWqcc+hkg8ikriefbZZ6O2thY7d+7EF198ge9973vo7u7GSy+9JO5z4YUXSo7heR5/+MMf0NXVBYZhcPbZZ0ejqCQOnDx5Uhx+3P1GbevqluzHyEbfRXnIbsbhzqOSdctLlwZ/AoYJS3tb05GvpadVacFSM9uQ+YsZQvxJppgZKenMy6MRssMhmWKGRAfFDAmWIPCSZWeS9s2PSuK5bt06vPzyy+B5HjfffDNKS0vR0tKCwcFBMAyDvLw8nHfeeeL+L7zwAj788EMcOXIEAKBQKHDFFVdEo6gkjplPNkmWOY+m26FoHmiTLDNgcNHU7436fKNlOrhdsqzIKIA6d1LUy0EISUyCIKC+vh4tLS1e28rLy5GbS/MBE0JIvDNrUtA+ZxEGjf3geR4KpRZTY12oCIhK4jl16lTccssteOqpp8BxHGprawEMf2CyLIv7779fMuLXv/71L7S1tYlTVdx5550oLi6ORlFJHMjPzwfP85B51GhmnrsA1taJ4O128A4HNEWjn3ezqV+aeOalZKMgNboPaM6BHjj7OiTrFJmF0JbNi2o5koG/mCHEn2SIGUo6oysZYoZEF8UMCVbdZ5/B+v4uMTGzq1ngypgWKSKiNr7zz3/+cxQWFuLZZ5/FiRPDg7qUl5fj//2//4eFCxdK9p08eTJaW1uRlZWFe+65B8uXL49WMUkcyPbTd1Ou00JTWHB6OTV11NcwqPU4s2AWmvtb0TnUg4npRaM+lyjEprf27mYoMgvh6GsHeA6MXAF5WjYYhj6gQuUvZgjxJ9FjRhAE1NXViQPwuaOkMzISPWZI9FHMkKA5Oagdbv06Zbz/fRNYVCcWWrVqFVatWoX+/n6wLOt3pNqrr74aP/jBD7BkyRIa/p2IOLO0aW3K1CmjPtfcwkrMLawEAFidNlgd1tEXTBhdB3Bbax10MxZC4JxwGjvBO6xIO+uS0ZeDEDIu+Es6GYZBeXm5z6nLCCGEkFiLyYy2aWlpAbcvXRrCIC9k3BLG0PGaF3h0DvUgV5cFtVwFdcjTqPiu3QxlVFzN5Dlw9rbBYeyAInO4Jleemh5iOQgh4wklnYQQknzsnAPKWBciCmKSeLpzOBzo7+8HwzBITU2FUjkefu0kHOR6/aiPre48CrVcjVxd7KYYUBdMBQqmghvqR/+3m6EpqYhZWQghicHpdMJoNErWUdJJCCGJrXjuPFRZTo/7oVLrYliayIlJ4rl79278+9//xjfffIPOzk7JtuzsbMyZMweXXnopLr744lgUj8TYwYMHxeHHZ82a5Xc/uZ+m2iMRBAHVXfUAgF6LESq5ElMzSqBTakd9vjFhZEgpPxeKrDD0Mx2ngo0ZQlwSNWYUCgVmz56NqqoqmM1mMAyDGTNmUF+yKEjUmCGxQzFDgiVLVWOgWAer1QJBEKCV0zyeY9bb24tf/epX+Oqrr8R1ng/tXV1d2Lp1K7Zu3Yqzzz4bf/zjH+kt7jgjCIL45cLb7eCsVsgUCjAsCwBgZKObR7PH0id+f9w4PO/dlIyJIZ8nDNN4AgBYbSpY7egHSiK+Y4aQQBI5ZlQqFWbPno0DBw6gpKSEks4oSeSYIbFBMUOCZe88AXtHI1zDS8pi3yg1IqL2U/X09GD9+vVobW2V/AHK5XLo9XpwHAeTyQSO48RtX331FdavX4+3334bGRkZ0SoqiTGNRgO5XC4ZWMrUeAKtG98DADAsC5lSiYKVl43q/D3mPq91OkWItZ1jSDp56xDAysHIZGBYGjwrHHzFDCGBJHrMqFQqzJ07N6R+5WRsEj1mSPRRzJBgpbIqTDPbxWU5m5wzHEQt8bz99tvFucZSUlKwYcMGLFu2DNOmTRM/OJ1OJ+rq6rB582a88sorMJlMaG9vx5133om//OUv0SoqibFp06Z5rXMODorfCxwH3umETBXqgEDDtjbsQNdQL9JUqdCrUpCi0kX14a17298xVP0ltNPOgnbaXGgnn0E1nmPkK2YICSQRYsb1ktbf/YmSzuhKhJgh8YVihgQrhVWixHp60EyZVhPD0kROVBLPHTt24OuvvwbDMCguLsbf/vY3FBV592eTy+UoLy9HeXk51q9fjx//+Mc4ceIEdu7ciV27dnnN90nGD/fEE4CkyW2oqtqq0W87fb7l06I3irIgCDAf2QPBYcVQ9S4MVe+CYeHlyDjv6qiVgRAS/wRBwJEjRyAIAqZPn05JJiGEkIQXlXrcTZs2AQBYlsUzzzzjM+n0VFhYiKeffhpy+XBu/N5770W0jCS+OQcHJMsypXJUD2Im25Ak6QSA8yefO7pCjeL69u4m8FaTZJ1cT/2zCCGnCYKA2tpatLe3o6OjA7W1tdRHjBBCktigxYwWXiZ+tTr4WBcpIqKSeO7btw8Mw2Dx4sUhNTuYNm0aFi9eDEEQsG/fvgiWkMQ7R79Hjecom9k2DUjnvmNlLAr1eSGfR5L0hvBAaKraLj2PUgPdjFEmvoSQpONKOjs6Tg+r39HRgaNHj8awVIQQQiKpYV8VZN/w4pdl71CsixQRUWlq293dDQCYOXNmyMfOnDkT27dvl3wIk+TW3NwMp9MJuVwu1o7bensl+7Aa9ajOnapKwfJp56NpoA3N/W1IUekgl42uye5oDB35WrKsyMgHm6RzNUWTr5ghJJB4jBlfSScw/KIrKyt2cw6TYfEYMyS+UcwQIpUwY/Wyo+zPRxJPb2+vOO+V60bNDUnf/LDq0SWeRfp8XHfmenHZ7rQH2Du8nOZBOI3SeWsVGQVRu34y8xUzhAQSbzEjCAJqamq85raWyWSYOXMmMjMzY1Qy4hJvMUPiH8UMIVJRaWrrmmPs8OHDIR/rOobmKRvfBF7a1p13Okd9Lt7tXEq5ctTnCZVp/ycA3JrlyljoSudF7fqEkPgUKOmsqKigpJMQQpKcY5wMIBeVGs85c+bg5MmT2LFjB44dO4bJkycHdVxDQwN27NgBhmFwxhlnRLiUJF6UlpZCEARJP0reZpPsoxrlg9ihjiOwOK0ozZwEFauEklVCJhvN+xd/Nwj/Nw5z/TeSZXlaDnTl54zi2sSTr5ghJJB4iZmRkk6awzp+xEvMkMRBMUOClaM2wH00k2Sd+TUqNZ6rV68GAHAch1tuuSWo/podHR34xS9+Aeepmq3ly5dHsogkjqjVamg0GqjdmtM6jEbJPqMdXKi6qw6NfU34uP4LvHdkG+p7j4+hpMETeA62tgbJOkVmPpgo9i9NZr5ihpBA4iFmeJ5HdXU1JZ0JIh5ihiQWihlCpKKSeJ577rmYP38+BEFAY2MjVq5ciWeeeQZ1dXWSIeIFQUBdXR2efvpprFixAidOnADDMDjzzDOxZMmSaBSVxCneLu2LyYyiltLXdAQyJgx/AkGMamtpqoXg0Z9UV7Zg7NcmhCQknudRU1ODrq4uyXqZTIZZs2ZR0kkIISTpRG1woUcffRRXXXUVWltbMTAwgKefflqcpzM1NRUAMDg4KNZwupKEvLw8PPnkk9EqJolT4ZjCzuK0eq3LTRnDSJEhNJ3p371RsizTGaAuLB39tQkhCWukpDM9PT1GJSOEEBILSpk0JYtKzWAMRO3nys3NxRtvvIF58+ZBEATxy+FwoK+vD319fXA4HOJ6AJg3bx5ef/115OTkRKuYJA6YTCYMDg7CZDKdXslzkn0UafqQz/vBkU9wqKMWJ4zNaB3ogMVhhU6pHV0hQ+yuYW8/JllWZORDkUUj3IWLz5ghJIBYxszRo0cp6UxAdJ8hoaKYIcFSs9LEkw1DhUs8iup0KllZWXj55Zexa9cubNq0CV999RXa2tokTSALCgpw1llnYc2aNTj33HOjWTwSJ44dOyYOP15ZWQnAexRbRVpayOet7qpDbffpfpbrZl4anqa2I3D0tYMbMkrWKTIKaLCBMPIVM4QEEsuYKSgoQFdXFzhu+IWaTCZDZWUlDAZDVMtBQkP3GRIqihkSLM+WfUmad8ZmHs+FCxdi4cKFAIYHHOrv74cgCNDr9VAoknUcJzIWglNa48mMIk6a+lslyxMN4alx9NV31N3Atx9LlhmFCumLLg/LtQkhiUev16OyshIHDhyAIAiUdBJCyDjHK6WDZgpJOvhkTBJPdyzL0iAKRCI7Oxs8z0umORE8ajxZZWjzb/ZbBzBgkzZ1KU4rGH0hgaBrLB09LWDkCghOB4DhZrbyNJqXNpx8xQwhgcQ6ZtLS0lBZWQlBECjpTBCxjhmSeChmSLDa7YOSZSt4P3smtognnt3d3Whvb4dcLkdRURFSUlIifUmS4PLz873WeTa1ZUJMPOUyOX585pVo6m9F80AbOkzdyNVFZ2Ch3HV3grMMwtJ4AAPfbIY8PQ9MFJr4jie+YoaQQOIhZtJG0WWAxE48xAxJLBQzhEhFJPEUBAGvvvoq/vWvf6G+vl5cL5PJMGfOHNx44400PQoJicBJm9qyqtCa2uqUWlw8dUlM+lUyMhZynQEp5edCplBDPaE86mUghEQfz/Po7e1FVtYYXnIRQgghSSLsiefQ0BBuuOEGfPfddwCk/d84jsO+ffvws5/9DGvXrsVDDz1EA6yQEQkcB/DSJgfK7NBGOh6ym8EwDLQKTTiLFhKB56CddhaYJG23Twg5jed5HDp0CL29vZg2bRoKCwtjXSRCCCFxysbZoRp5t4QX9sTz//2//4d9+/aBYRifg6641r399tvIyMjAr371q3AXgSQZ3uHwWqcMcTqVD45+CgDI0BigVaiRrcvEtMxJYSmfOBQZwwScZkWmGA+3FEKIe9IJAHV1dQBAySchhBCfstUGDLgtK5jkrKQIa+L53XffYfv27WLSuXLlSlx77bWYPHkyWJZFbW0t/vGPf+Cjjz6CIAh48cUXce211yI3NzecxSAJrqamRhx+vLy8HLzd7rWPLMQ+ni69FiN6LYCdc4wx8Qyupp532CjhjALPmCFkJJGKGY7jcOjQIfT19UnWNzY2Ijs7G8pR3rtI7NF9hoSKYoYEzaNlnyDQ4EIj2rJli/j9XXfdheuuu06y/YwzzsAZZ5yBgoIC/N///R84jsO7776LG2+8MZzFIAnO4XDA4VbLydu9azxliuAf3uyc9/EZGsOoyhYKS1MtZKwciox8MCoNDSgUQZ4xQ8hIIhEz/pJOlmVRWVlJSWeCo/sMCRXFDAmWc6BbsszwlHiOyNWvc9q0aV5Jp7tf/vKX+Pe//42BgQHs378/nEUgScA1l6vr/7zd5rWPTBX8A5zVYfVaV549dZSl88HPNJ5d7/4JOJV4KjMLoSqYipQZC8N3XSLyjBlCRhLumPGXdMrlclRWVkKvD617AIk/dJ8hoaKYIcFSsSzMbssyfw+XCS6siWdzczMYhsG5554bcD+lUolzzjkHmzdvFvu+EOLi2RzFq6ktw4CRBx+6J4wtqOtpRIYmDTqlFvkpuVCwYfgQCDAwlqO/E87+TgCAs7cVlvpvkbZgFSWeEUJNmEiowt289uDBgzAajZL1lHQmF7rPkFBRzJBgqRnpcy0bZJeuRBPWxHNwcHjy0/T09BH3LSkpAQAMDAwE3pGMe7xNmngycjk4sxlynS6o45sGWlHVXi0ul2VNwYVTF4+pTCMNxmw+sle6v1wJ3fTAL2QIIYknUNI5e/ZspKamxqZghBBCSJwJa6cz+6maqWCaFKSkpAAYnn6FkEA4jxpPhmHgDCFuus3Spm+Z2pFfjITGuzmEqXqHZFmekQ9FBg2iRUgyoaSTEEJIODg9BhNKzoa2Ya7xFAQBDMMENTenTDac83IcF84ikCQk16ihmzwJAsdB4DgwcnnQtZ0A0OOReGZpM8JdRAneboGttUGyTpFRAFZDD6GEJAtKOgkhhIRLm8MkScosydnSNvzzeBIyVm1tbeB5HjKZDPn5+VDl5iJj/jzJPqxaHfT5zpu0AMX6fHSb+9Br6cOk9KLwFNTPCxZL40HA/c0Vw0CVF6Y5Q4lPnjFDyEjGEjMcx+HAgQPo7++XrKekM7nRfYaEimKGEClKPEnc6erqEue9ys/Ph0wuR2rpNAg8D4Hnh+c6CqJW3WVKRgkYyLBmxiVgZWGakNft+oIgbRAxVLtbsizXZ0M7eU54rkt88owZQkYylpjp6+vzmXTOmTNH7EZCkg/dZ0ioKGYIkaLEk8Q9VqNB+llnjvr4pv5W5Ogy0Gfph5JVQK1QQxmOUW19EAQe5rpvJevkmflQ5pZE5HqEkOjLyspCaWkpjh49CmB4XIPZs2dT0kkIIWRUHAwjScqojychUTJ58mSxv3A4HO48Kj1/+gTMLawMy7ndMQwDe+dx8DbpwEeKjAIw4appJT6FO2ZI8htrzBQUFAAAGhsbKekcJ+g+Q0JFMUOClVs0Ac2ZNadXaJJz7teIJJ79/f1obW0dcR+XtrY2r+aKvrg+6Elyi/QDXFbYRrX1/iCxHNsvWZZpUqFIjexgRiTyMUOSTzhipqCgADk5OZCHMK8wSVx0nyGhopghwdJMLcbJeRpxOUWVnLETkU/L559/Hs8//3xQ+wqCgKVLl464H8MwqK6uHnE/QjwpZHI4eKe4zAfxkmNE/gYWOrZPeu2MfGgmzRn79QghMTFSbQUlnYQQQkhwIvaJOVINpvu0K4H2ZRgmqNpQkrzat2xFz67dkCmVkCmV0FfMRP6yi4M+Pk2th5N3wGgdBABkaNIiUk5uyAhH10nJOnlGAZQ5xRG5HiEkspxOJw4fPoySkhKkpUXmvkEIIYRoWSWKrQ5xWZ2kPbTCnngGmySGe7+xEgQBmzZtwltvvYWamhqYzWZkZ2dj3rx5uOaaa1BZGf4+gQDwwAMP4NVXXwUAHDlyJCLXSDRWq1WsZVCr1bA0NcO4v0rcLlOpgCATz3eqN6O2ux6ZmnRk6TIwM6cUhnAnnqdi1HryoHQ9q4BcnwUmQgMZkdM8Y4aQkYwUM06nE1VVVRgcHMTAwAAqKysp+Rzn6D5DQkUxQ4KVptBiutkuLrPKGBYmgsKaeNbW1obzdFFjtVrxy1/+Ep999plkfUtLC1paWvD+++/jP//zP3HjjTeG9bpfffUVXnvttbCeMxkcPXpUHH68srIS9t4+yXaHxzQGAc/VcwzftR0Wl6+YuRxlWVPCVlb3JnieiaciPQ+sJjnb6Mcbz5ghZCSBYsY96QROz9tJyef4RvcZEiqKGTJaDodj5J0SEHVOAXDvvfeKSeeUKVOwfv16ZGVl4fDhw/jXv/4Fs9mMxx9/HLm5uVi1alVYrjk0NIR7772XmhEHgbNaJcsCxwV9bI9ZmrRmasI1sJCUIPBw9LVJ1ikyC6A/86KIXI8QEhkOhwMHDhwQk04XlmWhUFDrBUIIIeEnaFLAzFoMY58RHM+DVWtjXaSIGPeJ565du7Bp0yYAwIIFC/DCCy9ApVIBAC677DJcccUVuPrqq2E0GvGHP/wBF1xwQVhGKXvsscfQ3Nw85vMko4yMDDidTnHQDn3FTPBOJ8BxEDgO2gnB95n0TDyzdBEYYVYAGEaG3CsfAD/UDVvTYQwd+QqZF14HmUIV/usRL54xQ8hIfMWMv6RTqVRizpw50GqT80GABIfuMyRUFDMkWFW7d6L7gy/FZadajjOuimGBImTc/yX87W9/AzA8MuFDDz0kJp0uU6ZMwW9/+1v86le/gtFoxJtvvonrr79+TNd0b2Kbmprq9ZAz3hUVFUmWlenp0E8vE5eDTTwFQcAP51yBzqEe9Fr60GPuQ25KdljL6o5hZFDmToJ20kykf299xK5DvHnGDCEj8YwZh8OBqqoqmEwmyXpKOokL3WdIqChmSNBMFmT1n27RZ7UmZ4tIWawLEEtGoxFffjn8dmHx4sUoLvad0CxfvhyZmZkAgM2bN4/pmu5NbFetWoXy8vIxnW88EJxOyTIT5JtDhmEwI2caZuWW4ca51+CeJf+BvAglnoLTAc4yEJFzE0Iii5JOQgghJPLGdeL5zTffgOd5AMPNbP2RyWSYN28eAKCqqgr9IQxu48nVxDY7Oxv33HPPqM8znrBajWTZ3tMb9LHbG3fjQEctqtqrcbT7GAZtppEPCoI4qBADCE47bK2HIVNqAh9ECIk7/pJOlUpFSSchhJCosHPJOZiQp3Hd1Laurk78vrS0NOC+U6dOBTDcfPPo0aNiIhoK9ya29913HwwGQ8jnGI/MJ6RzY2qLQ2+6crSnUfw+VRXekWYd3cfBDXTCVLUVbEoaFOnZSJmxMKzXIISE30hJp0ZDL5MIIYREXm55OepONIjLrC45X3qO68SzpaVF/L6wsDDgvnl5eZLjQk083ZvYLlu2DBdeeGFohR1H6urqxOHHp02bBnlqKpxu/WCDHdXW6rR5rUsP9xyeGB7RFgAEngNnNUHo9r4uiSzPmCFkJDU1Naivr4fdbhe7UgCUdBL/6D5DQkUxQ4KlKSqAccEEWCwWCIIAnYISz6TT23u6yWZ6euBpNtxrJ41GY8jXcjWxTU9Px+9+97uQjx9PLBYLHA4HnKf6djpHOfiS2WHxWpeuMYylaD6ZvvsAjEoHGHLAKjIgT80c+SASVp4xQ0ggTqcTR44cgdlsBsuy4npKOkkgdJ8hoaKYIcGytdbB2lwLBsBwZ67kTNGS86cKktVtfkjP0Ww9KZVKn8cFw72J7W9/+1tkZERgSo8kwjCM+AUA7R9vBW+1gpGzYGQsFBkZMARxHr0yBd+bOB82zo6arnqY7GawTJi6NZ8qG2fuhbO3CQDgaKsFI1dCs+KW8FyDBM0zZggJhGVZaDQaWCynX05R0klGQvcZEiqKGRIsjUyBfNvpfp4KNjmH4RnXiaf7Gyj3xNIX9+2hvLlyb2J7wQUX4NJLLw29oFFWX1+PKVOmIDU1VVxns9lw5MgRAMO1vxMmTPA6xmw2AwAqKysl27q7u9Ha2goAKC4ultQucxyHw4cPAxieWmbSpEmYNWuWuP348eNwmEyA4/Qfo+zUJO5GoxEnTw73/8zPz0d2tnTE2vs3Pw5O4JCuNiDdYMCiCfPEm39zc7NY411aWgq1Wi0eZzKZcOzYMQBAdnY28vPzJeetqamB3WKB3OFAzkCjZJsgCDjR2gHOeQCTJ0+WzPlqtVpx9OhRAMNze3kOs15XVweLxQKGYSS/AwDo6upCW1sbAGDChAmSGnin04nq6moAgF6vR0lJieTYxsZGccqemTNnSmp4+vr60NQ0nDgXFBQgKytLcuyBAwcAAFqtVuzn7HLy5Emx9r+srEzy8mZwcBCNjcO/m9zcXOTm5kqOra6uhtPphFKpxPTp0yXbWltb0d3dDWB4OiOdTidus1gsYt/szMxMsYm86/d19OhRHDhwADKZDBUVFZLzdnZ2or29HQBQUlICvV4vbnM4HKipqQEApKWlYeLEiZJjGxoaMDQ0BACoqKiATHb6A6G3t1eck7eoqEjyYonneRw6dAgAoNPpMGXKFMl5T5w4IQ5WVl5eDsWp2AaAgYEBHD9+HMBwU/+cnBzJsYcOHQLP81Cr1V591FtaWtDT0wMAmDZtmiSZGhoaQkPDcD+SrKwsFBQUSI6tra2F3W6HXC7HjBkzJNs6OjrQ0dEBAJg0aVLM7hHujh8/joGB4RGlZ8yYIZkvz989gmEYXHTRRdiyZQuMRiMGBwdx9tlnS35PY71HuJrXeY5c3tbWhq6uLgCge0QU7xEuR48ehdVqHdU9QhAEyOVyyXoXukcMS5Z7hMvBgwchCAI0Go1XU9lg7xH5+fl0j8D4uEeM5TliqKMXFUN2cZ1MOxxPsbpHuGIw3MZ14ul+k3A4HAGTT7v9dDCMlKS6czWxTUtLw/333z+qckYbx3HiaL8ugiDAcSr543z0sXQ6neJ2TzzPi9s8zwtA3OYroXc6nYDH9eQatVeZfJW3cagZDsEJDDUBPcDCCXN9llcQBK9jRyqvw+GA4HDC2lQl3ag1wJqaB5x6SPF3Xl8/q+u8vt6Muv8OQz1vpP5tOI7zWyb38/qKF1fTI/cbbzDnHSkOXb/Dkc4bKL6j+TsMFIfB/A55npc8ALiM5XfoKpPncZ7njad7xGj+lhmGQVZWFgRBQF5enldNZzjuESP9rHSPoHuEq0zBnJfuEdG9R7jO63rhEO7z0j2C7hEuPM+D4/2PXxKLe4Svf8twGNeJp/sw+TabLejEc6RmuS7uTWzvuusurzcN8YplWa8/OIZhxLcovgJULpdL3rK4k8lk4jZff8iubb5u7CzLAh7BL1OqvMrked4hh3k46XSTpT39ltm9vJ436EDndZVXcDohB+DsbZEeqzNAoUkZ8by+flaFQgGn0+nzA8P9dxjqeSP5b+OvTO7n9RUvCoUCDMOEfN6R4lChUIDjOJ8/i/t5A8V3NH+HgeIwmN8hz/M+yzWW36FcLgfP8yP+28TLPWIsf8tKpRIFBQU+m9eO9R7h/n93Y/lbpnvEyOele4T0vHSPCMPnvSD4LBfdI7zPS/eI0f8OAQYOt7xR5pZExuIe4evnDwdG8PXKKsIEQcC3336Lb7/9Fq2trejv78fKlSuxdOlSAMDbb7+N2bNne1Unh9vvfvc7vP766wCAbdu2obi42O++b775Jn7zm98AGK7FXLFiRcBzDw0NYeXKlWhubsbixYvx17/+1ed+GzZswJ49ewBAbIISbSaTSXLtsrIySdOOWOIdDuy+4geSdTMfegCGWRV+jhh2vK8Zd2x5WFxmwOCVK56CnA3Puxbe4YC1oxXtL90uWa+rWILcVbeG5RqEkLGz2YZHmQ72hSEhhBASbZ//731wfn5YXLarGCx75c2YlSdSuUHUazzfeecdPPPMM5KpTABg9uzZ4vdPPfUUOjs7cckll+B3v/tdxOa7dG/D3tbWFjDxdLXpBuDV38GXQ4cOiX06duzYgbKyshGPce1TWFiITz/9dMT9k1VXVxd4nodMJkO6xns4aVY58gNkhtaAn8//ITpM3ei3DsDstIYt6XSxtR6VrpCx0Ew6I6zXIMFxjxnPPjpk/LLZbKiqqoIgCJgzZ44k+aSYIaGimCGhopghQeN4qN2rPJN0PKqoJZ6CIODuu+/Gu+++Ky67uFcNOxwOdHZ2QhAEfPTRRzh48CD++c9/enUqDgf3GtW6ujrMnz/f776ujsgMw9BcTBHW1tYmdrrXFxZ5bZepRu5jq1VoIGNkOG/SAmTrMiEL12i2bmwtNZJlVmeAuqjcz94kktxjhj7cCTCcdO7fv18cuXb//v2S5JNihoSKYoaEimKGEKmoJZ6PP/44Nm7cCGA4eVu0aBHmzJmDp59+WrKf3W7H4sWL8fnnn4NhGDQ1NeG2227Dq6++GvYynXHGGVAoFHA4HPj6669xzTXX+NyP4zjs3bsXADB9+nSfI9p5mjZtGp555pkR9/uf//kfMal17e8+6NF4x1m85+JkghjcqWuoB+2mLrSbhkfl0sjVWDH9+2Etm62lVrLMpmSAUdFUDITEmmfSCQyPZHj06FGvkR4JIYSQWHOCGRcD70TlZzx27BhefPFFMAyD3NxcPPXUU+JQ2Z6Jp06nw/PPP4+9e/fitttuQ3d3N7777jts27YN3/9+eBMHvV6PBQsWYMeOHfj000/R2trqsxntBx98IA6ZvWzZsqDOnZGREVR5X3rpJfH7cP98iWrChAkQBAEMw4A7Ndy7O0UQiT8vSAcksjhDm3t1xPPbreD6OyTr2JQMMBGoWSUjc48ZMr75SjoBQKPRSIaLp5ghoaKYIaGimCHBMqhT4f6kmqxJaFSekv/1r3+B4zgwDIP//d//9ZqfyZd58+bhf//3f8Xl999/PyJlu+666wAMN/G9/fbbYTKZJNvr6+vx8MPDg9TodDqsW7cuIuUgpxkMBqSnp8NgMIAzmaUbZTKwQTS1/bb1YIRKN8za4jEQFMOA1aX73plEnHvMkPHLarX6TTo9+3hSzJBQUcyQUFHMkGApGOmos8n6qiIqiefu3bvBMAzOOeeckJo5nXHGGVi4cCEEQcDBg5FJJBYtWoSLL74YAPDdd99h1apV+Otf/4oPPvgAjz76KNavXy9ObnvHHXdIJn4GgK+//hplZWUoKyvDhg0bIlLG8YyzSWsqGZYF42M4aU9F+nykKnVQsUowkE6lEg7WxgOSZZlaD0Wmd39UQkh0+Es6tVqtV9JJCCGEkOiLSk2ua0TYYGo6Pc2cORO7du1Cj48ml+Hy3//93xgaGsLOnTvR3NyMRx99VLKdYRjccsst+MEPfuDnDCRSeLf5U4FTiWcQTVbOLDg93UpNVx2sTltYy2XraJQsy7QGaCafGdZrEEKC40o6rVbpiyqtVovZs2dT0kkIISSuyT3nBY1ROSItKomn/VTyMJpBc5SnBpKJ1ESmwHAzrL/+9a94//33sXHjRtTU1GBwcBAGgwFnnXUWfvjDH+Kss86K2PWJlNPpFPtE8DbvxHMk/dYB/OHzp2HQpEGrUMPOOfAfZ18XtvIJTgfsbXWSdaoJc8DIWFA3jthwjxlfEyyT5BUo6ZwzZ474GeKJYoaEimKGhIpihgRLyyrR57YsF/zumtCi8leQmZmJtrY2HD9+PORjXZOXejZxDTeGYbBy5UqsXLkypOPOPvtsyQSroXr55ZdHfWyyqq6uPj38uGeNp3zkxLPX0o9GYxNgbBo+hmGgYBVhK5+tvQGC0yFZp55ItZ2x5B4zo2lZQRLTaJNOgGKGhI5ihoSKYoaMVpLmndHp41lZWQlBELB9+3aYzeaRDzilqakJn332GRiGoSHwxyneo4+njB35XUmfxShZNqj0YGUjJ6zBYlPSYVi0DqrCcoBVgk3Lg0ylDdv5CSEj85d06nS6EZNOQgghJJ4wCo8uIWF8bo0nUanxXLZsGTZv3oz+/n488MAD+O///u8RjzEajbj11lvhcDjAMAwuuuiiKJSUxAO9Xg+n0wm5XA7O7DGPp2zktqx9ln7JcromLZzFg8KQi/RF66CruAiOASOcg30jH0Qiyj1myPjQ0NDgM+mcPXt2UEknxQwJFcUMCRXFDAlWs31QsmwB72fPxBaVv4SLL74YFRUVOHToEN577z10dXXhhhtuwIwZM7z27ezsxNatW/HCCy+gs7MTDMNgypQpQc+fSRJfSUmJ+P2JnV9KtgXTx7NAn4eV0y+ERq5Gn6UfGVpDWMtna28EZHKA1YGRyYenUUnWNhEJwj1myPhQVlYGq9WKwcHhD+tQkk6AYoaEjmKGhIpihhCpqL2C+dOf/oQrr7wS3d3d2L17N3bv3i3Z/uc//xnPPvusZB5NQRCQkpKC//mf/6HJd8cpQZBmdPLU1BGPcXAOKFklpmVOQmVeOXg+fG+NOIsJQ0f3ADwPsBoIPAN5zlTIFJqwXYMQMjK5XI7KykpUVVVBEISQkk5CCCGERF9U+ngCQGFhIV577TVUVFRAEATxy5VQDg4OYnBwULJtwoQJePnllzF16tRoFZPEGZlHDac6J2fEY450NwAAarsb0NB7Ai2D7WErj+X46fk7uSEjnP0dYGThG7iIEBI8hUKB2bNnU59OQgghCc3BO0beKQlEtdF5cXEx3njjDWzevBlvvfUW9u3b5zXZt1wux8yZM7F69WqsXbuW5l8b5zzn8ZQF8XDpXkf6betBTM2YiOK0grCUx97V5LWOCWLAI0JIZCgU9OKHEEJIYktT6OA+/KqciVrdYFRF/YlZJpNh+fLlWL58OTiOQ2trK4xGIziOg16vR0FBwajm+yTJo7GxUeyML3gmnqqRE08Vq4SNO32cnQvPWyRBEMBbh8CotKebflML8LjgHjOTJk2KdXFIGJnNZjQ1NWHatGlhnc+ZYoaEimKGhIpihgTLc9o/JknHDolpVQ3LsiguLkZxcXEsi0HizODgoDjvldYuTRplQdRuTM6YAJvTDqO1H72WfhTq88JSLkd3Mwb2fgBGqYFcnwmZxgD1tHPDcm4yNu4xQ5KH2WzG/v37YbfbYbfbMXPmzLAlnxQzJFQUMyRUFDMkWA5jp3QFz8WmIBFGbQRJXBtNU9tZudMBAMf7mqFg5WFLPM0N3wEABLsFju5mMGwHUs+5KiznJoRIuSedANDT04PDhw+HNfkkhBBC4oHcYxDVZG1QF5XEs7W1NSznKSgITz89Et9mzpwpfn/0g82SbbIR+vw29bfi6a/+DoMmDQa1HplaA9ZXrAhLuWxtDdKy6NLBqrTg7c7hFTTycsy4xwxJfJ5Jp4vdbgfP82FJPClmSKgoZkioKGZIsHQyBQbclpO1ZjAqP9fSpUvHPB0KwzCorq4OU4lIPGPdRrJ1GI2SbZ7LnrrNvWg0NgHG4UGADGp92BJPe+dxybLckOcd15R8xgQbxPyuJDEMDQ2hqqrKK+lMTU3F7NmzwzYRO8UMCRbP8zCZTBgYGIDdbgfHJWcTOELIaSzLQqlUQq/XIyUlhVrahEnUEmrP+RgJCQZvswVc9tRnGZAsp6vTwlIOQeDh6OuQrJMpaMRlQsJpaGgI+/fvh8Mh7dsd7qSTkGANDg6ipaWFnmEIGWecTidsNhsGBwfBMAwKCwuRGsRc8iSwqHyKz5s3L6j9bDYburq60NbWBmC4lvP73/8+5s6dG8nikTimysmBY9AEgeMgcBzkI/zRGy39kmWDRh+Wcjj72gGP0XHlGYVhOTchxH/SqdfrUVlZSUkniTpfSSfDMFRbTsg4wHGc+LcvCAJaWloimnw22wfhfmcxJ2kDuqh8kr/88ssh7d/d3Y3nn38er7zyCj7//HOsWbMGS5cujVDpSLzp6+sT+3HlXXIRBo8cFbfpJgcejnyCoQBnFcyCRq6GTqlFkT4/LGWyNB+RLDMKNRSZRWE5Nxk795hJT0+PdXFIiGKRdFLMkEB4npcknSkpKUhLS4NGowHDMPQihATF6XSK31PMJBZBEGA2m9Hb2wuTySQmn6WlpRFpditgfLSqiMu/gqysLNx7773IycnB448/jrvvvhvvv/8+cnJyYl00EgVNTU3i8ONlxUWQ63QAAIHnoTAEbjprtA5iUvoETE6fgLMKZmHANhiWMlmPH5Iss6npUBWWQXDwYTk/GRv3mKEkIrGYTCZUVVVFvaaTYoYE4nrQBIaTzqKiIlgsFtjtdko8SdDsdjsEQaCYSUAMw0Cn00Gr1aK5uVm8J5hMJuj14WlNNx7FdU/Zn/70pygqKsLAwABeeeWVWBeHxIAqOxupZaVILSuFvnw6NPmBazB7LUYAACuT4WBHLRr7msNSDlv7Mckym5IOmUIdlnMTMl7FKukkZCQDA6fHC8jIyBjzAImEkMTEMAwyMjLEZfd7Qzg5k3YCFam4/lRnGAbnnXce/vnPf+LTTz/FbbfdFusikSgoKCgY9ZQJDAABQGNfE5w8hxxd5pjLIwg8nH1tknXylAw/e5NYGEvMkNjwl3SmpaVh1qxZEU86KWZIIK5RlRmGgVarBQAoFIpYFokkIIqZ5KDVasEwDARB8BpxPVwMmVno055OPjlVcvYlj+vEEwAyM4cTh3DNBUriX1ZW1qiPdbWQd/LDw92Ho4+no7cdglP6cKwtDW7ALBIdY4kZEhu+apCilXQCFDMkMNeUKSzLirFKSQQJFcVMcnANKuZ0OiM2nVJaZRm+MX0jLqeoUiJynViL+8Tz5MmTAHw/pBDiaemkc2Hn7Oi19KPfNgCDeuzt8O1tDZJlVmeArnQenINmjJOWEYSEnU6nw+zZs8Vaz7S0NFRWVtKIoYQQQkiSiuvEs7m5GR999BEYhsGECRNiXRwSZQLHoeHPL8BpsUCVlQlWo0H+pcugCDCUdZZuuAmsWq4GICBTO/ZBQ2zt0sRTlT/l1Bye5jGfm5DxLCUlBbNnz8aJEycwffp0SjoJIYSMSwqZHOmO07Wp2iStLI+7xNNut6Ovrw+7du3Cn/70J1itVjAMQ9OpjEO83Y6Ordsk63KWnuc38TzafQz/9+2/YNDokabSIy81GxW508dcDptHjacyf8qYz0kIGZaSkoKZM2fGuhiEEEJIzGQpUzB30Couy+WG2BUmgqKSeJaXl4/peL1ejw0bNoSpNCTeHThwAA6HA6yPDtxDx09C7WdanW5zLxqNTYBxeDk/NQdrZywbU1kEgYet47hknSpvsp+9qd1trLhiRqFQoLKyMtbFIR5sNhtUKlWsiyFBMUNCZTabxakxXAMOERIIxQwZrUgNYhRrUUk8XXNhjUZqaiqefvpppKUFnr+RJCGH02sVq1L63b3fKp2zMxz9OxlGhgm/+DMsJw7BaeyAra0BqoKppzaK/yGE+DEwMIADBw6gqKgIJSUlsS4OIYQQEncYtQ666efA2G+EwAuAShfrIkVEVBLPgoKCoPdlWRZqtRr5+flYsGAB1q5dC4PBELnCkbij1WrhdDohY+Vgpk2FwHGnvngoAkza22+TJp5pqrEnnoIgYPC7rVDmTYKudD5SZiwCqw1wXhoEKyZcMUPzPsaXgYEBVFVVgeM4HD9+HAzDYOLEibEuFgCKGRI6mUwm1l4REgyKGRKsgwe+w7FPvgMgDM/QoFJgehI29ozKJ+6nn34ajcuQJDF16lTx+5M1tdKNAebcO7twDlKUOgzZzbA4LJhoKBpzWXibGbzTDmvzEVibjwAA0uZfBladnG+iEpV7zJD44J50ujQ2NkKtViM3NzeGJRtGMUNCpVarY10EkmASLWYcDgfeeOMNvP/++6irq4PD4UBeXh4WLlyIDRs2YPJkf12NyFg5O3swoeV0H0+ryhFg78QVlcTzyJEjYFmWPujJmDGs/8SzzdQJs8MCBSuHRmFAahiaKTi6mrzWyZSJ9UFCSLT19/fjwIEDXvOdZWRk0PyZhESAreM4VLklsS4GSWB9fX244YYbcPDgQcn6EydO4MSJE3j77bfxwAMPYPXq1bEpIEkK/p/iw+iZZ57BihUrsGLFCmzbtm3kAwgBwDt99PFUa0Y8zslzsDrtsDptYy6DubHKax0jc5/ygZrPEOIuUNJZUVFBU6YQEmZOUx/aXrkPTlNfrItCEhTHcbjlllvEpHP27Nm477778Oijj+IHP/gBFAoFrFYr7r33Xnz99dcxLm1ycvDez7zJKCo1ngcOHIAgCKivr0d6+tjnVSTjA2/zThzlOv+jwilZ6cBDPWbjmK4vCLz3NbLd5pOlPhuESIyUdMoCNJUnhIxO/+6N4C0m9H/1LjK/f12si0MS0FtvvYVvvvkGALBy5Ur893//t3i/XrlyJS677DL85Cc/gc1mwwMPPIBNmzbR/TzM0goL0VqYIi4L2vgaCT5copJ49vWdfgtH87WRkZw8eXL4wdVqhWfdiEzpf1TbU92xRWPt42mu/xb2zhNgU9Ih06SCYRioC6eN6ZwkMlwxw7IsJkyYMPIBJOz8JZ2ZmZmYOXNm3D2kUMyQUNncXobGy/RATlMfBvZtAQAMfPsx0hasgjyFXvDHi3iMGV/+9re/AQDS0tJw3333ed2v582bh1/84hd44okn0NDQgG3btuGiiy6KRVGTVvrMchwQTsBmtUEQBOiUyTn9TlSeBNyH0G9ra4vGJUkCMxqN6O3tRX93t/fGAA+vs3KnY9m083DJ1CW4aMpilGZNGlM5BvdthfnI1xj8djP6d78Dy/GDkOupf1o8csWM0WiMdVHGJaPRmFBJJ0AxQ0LHcRycTqdXnMdS/+6NEJzD8/0JTjv6v3o3xiUi7uIxZjzV1NSgsbERALBixQqkpKT43O+qq64Su0ps3rw5auUbL2ztx2BrqYPQfQJCzwnw7fWxLlJEROVp4Oc//7k4lPQf//jHuP4DJPHDWVePjm2fonP75+jasRP9Bw4GHJJcLVchVZUCvToVBk0atIqR+4MGYncfWIhzgmG8/1yotS0Z74xGIw4ePJhQSSchycC9ttNl4NuPk76vZ1tbGx5++GFcfPHFmDVrFubPn48NGzZg06ZNAIAXXngBZWVlKCsr8zrWtf7ZZ59Fd3c3br31Vpx55pk488wzsWrVKrz//vuS/Xmex8cff4xf/OIXWLx4MSoqKnD22Wdj/fr1ePbZZzEwMOC3nBs2bMAZZ5yBM888M+DPc9ddd4nlam5u9rnte9/7HoDhlhp33303lixZgoqKCixatAi33XYbqqq8x6MI1p49e8TvzznnHL/76fV6zJgxAwCwc+fOUV+P+CbneKTarNDbbUiz26Fz0Ki2o3bxxRfjT3/6E373u9/hs88+w5o1a7B+/XrMmTMHRUVF0Ov19HBCRGVlZRAEAc37D6DDrdZTsPv/IzxpbMGze/6BNHUq9KpUpGvScHXl6lGXQeA5OAd7JevYVM/mS5R1xgtXzNBcadHlqunkeWl/6KysLMyYMSOu7+sUMyRU8TY1hnttp4ur1jNZ+3p+/fXXuPnmmzE0NCSus9vt2LNnD/bs2YOtW7f6TDg9mUwmXHPNNTh+/Li4rra2Fnq3ucLb29tx2223Yd++fZJjjUYjjEYjqqqq8NJLL+HRRx8VE0N/whE7+/btw0033SRJdru6uvDhhx/io48+wp133onrr78+5PPW1dWJ30+bFrg70dSpU3Hw4EH09/ejtbUVBQUFIV+P+Jal0OLsgdPTqcg0ihiWJnKiknjecMMNAIDi4mIYjUbU1dXh4YcfDukcDMOguro6EsUjccbVD4LhpA+zjNL/H2GPpQ/H+k6Ky+nqsSWe9p5WwGOEMfXEilGfj0RWPPedSVYOhwOHDh1KyKQToJghoYunmPZV2+mSrH09Dx06hBtvvBFW6/DD+QUXXIClS5dCoVBgz5492LhxIzZv3oxdu3aNeK5//vOfsNlsWLRoEVasWAGj0YjPP/8cixYtAjDcZ/3666/HsWPHAACFhYVYu3YtJk+ejP7+fmzbtg07d+6E0WjEzTffjOeeew6LFy/2e72xxo7ZbMatt96KgYEBzJw5E5dffjn0ej327t2Lt956C06nE4888gi0Wi2uvPLKkM7d0tIiljE/Pz/gvnl5eeL3lHhGWJK+FI1K4rljxw7xrbLr/4IgBDqEEAgO6ZtcmcJ/4tlvHZQsp6lTx3Rta6N0HitGqYGmuNzv/lRrQsYbhUKB0tJS1NTUiPfzREk6CUl0vmo7XZK11vOhhx6C1WoFwzD4wx/+gLVr14rbVq1ahTVr1uDGG2/E4OBggLMMs9lsOO+88/Dcc8+Jn9/XXXeduP3RRx8Vk87vf//7ePzxxyW1lldddRXeeecd3HPPPXA6nbjjjjuwdetWv/0jx2pwcBCDg4NYt24dHnjgAbGvpWuqwhtuuAEWiwVPPPEEli1bJqm5HUlv73DrLp1OB2WAARwBwGAwiN9T/3gyGlF5OigoKEB+fr7kq6CgIKSvkd7CkOTjNA1JlmUBaigGbGFOPFtqJctsajoUmYXeO1LCScaxnJwclJeXg2EYZGdnU9JJSBQEqu10Sba+nl999RW+++47AMC6deskSafL3LlzceeddwZ9zhtuuMHnS+OOjg5s3LgRAFBUVITHHnvMZ1PZNWvWiMlqb28vXn/99aCvPRplZWW4//77veZCnjdvHm655RYAw8ng22+/HdJ5XTXIwbQCcU9MLRZLSNchgR3aX4WaWpn4VXXIHOsiRURUajw//fTTaFyGJInBwUHwPA+71SpZLwsw8Xx51jQsKDoTWdp0WJ02FKTmjqkM9o5GybI8Jd3rA4pyzvjhihmZTIbU1LG9dCChycnJgVKpTLi++hQzJFQcx4n9gj0f/qMpUG2nS7LVem7fvl38/kc/+pHf/dasWYMnnnhixNo4hUKByspKn9t27doFx6mBXa699lpoNP4HKvzJT36Cf/zjH3A6ndi2bRt+8pOf+NzPNXXTWFx//fWQy30/tl955ZX405/+BLvdjs8++0xSezsSp3O4W9FItZ2e+9BAoeHlHDLDMHC664pVmZwtQ8P6lHD33Xfj7rvvptGuyJg0Njaivr4eZo/mMnyAwYWUcgWK0vKhVqhh0KTBzo9+NDCB5+Do65Csk6fSNCrxzBUzriHhSXQZDIaESjoBihkSOpvNJn7FSjC1nS7JVOu5d+9eAEB6ejqmTp3qdz+lUjniKLLA8Jgj/hKt/fv3i98vWLAg4HmysrLE8hw8eNBvN7JwxMy5557rd1tqaipKS0sBIOQRbl21uY4gRlG120+/8FAE6P5EiD9hfVJ45513sHHjRskIWYSMluDRjEOZ4X+gBM97vZMf/Zs4R08L4HG8qsD/Bx0hya63txc9PT2xLgYh414wtZ0uyTSvZ2dnJwAENZjNhAkTRtwnUB9IV59HYDhBHYlrH4fDEXB6lbHQarXIzQ3cksv1uzGbzTCbg2+mqdVqAQSXHLsnnjRAW3hx42SmhKg0tSUkFLm5ueA4Dm0aDdwb2/IB3sY5PGo4DergO9Z7srUdkywzSg10ZfO9d2QYam8bJ1wxE8vmb8mqt7cXhw4dgiAIqKioQGZmZqyLFBYUMyRUCoUiplPwhFLb6ZIsI9y6ms4GMy1JMPsEalbqPlVLoGa2vq5nsViQlpbmtc9Yawd1Ol1I5TCZTGJCORJXEm4ymeB0Ov025wWkAwplZGQEdX4SHJ1KB/e5FJL1kymx2kaRcSE3NxcFBQWQezTdk6f4v/GyjAypSh20Cg3UciVSlMHdcH2xtTdIltXF0yHXU1PbeOaKmZHeCJPQ9PT0iFOmCIKAQ4cOSWoDEhnFDAmVQqGAUqmMWRPDUGo7XZKl1tNVuxbMgDZWj/EhQuWebAZzPffaRX9Jb6CYCbWmcaRyMAwjGX12JCUlJQAAnufR0dERcN/29nbx+8JCHwMuklHTyKQxkqwJGtV4krgleNxoZSr/bzEnZ0zE5IyJp48dw3Q9tjaPxLNo+qjPRUiiciWd7n9LgiCgs7OT3nQTEmWjqe10SYZaz7y8PNTX16O1tXXEfYPZJ5CsrNMvmpuamlBe7n8qNQA4ceIEgOGk0z3hc68ZD1STGMz0LwMDAxgaGgpY89nc3AxguM99MAMFuUyZMkX8vr6+PmBC6epKl5aWRi/tyKgka0JNkgBn8RjVNoS3zKNtCiXwHOwdxyXrVHmTR3UuQhKVr6QTGK4lLCsri1GpCBm/RlPb6ZIMtZ6zZ88GMNzUs6Ghwe9+PM+L066M1qxZs8Tvv/rqq4D7dnR0iPN9ugb3cXFP/kwmk99z1NfXj1gmQRACDhrk/nuZP99H16AA3PcP9PMODAygpqYGwPAULiS8vGZOiFE5Io0STxK3GLm0hbu/Pp6dpm7cueUP+MPn/4unv/47Xt7/Fnie97nvSBzdLRAc0mYvqvwpfvYmJPl0d3f7TTqnT58es/5thIxXY6ntdEn0EW4vueQS8ftXXnnF736bN29GV1fXmK61ZMkSsWnsK6+8ErC57Ysvvig+b5x33nmSbe794V0Jm6f9+/ejra0tqHK99tprfre9+uqr4qi0F1xwQVDnc5k6dSomTx5+wf7OO+9I+ri6e+WVV8QpVJYtWxbSNcjIUuXSwZrkyTmbCiWeJP5UV1ejqqoKNrP0Zq9ITfG5f6+lH419TdjfXo0vjn+NLQ07Rj21g9PUB1afCUY+/KHD6rPA6rwHChhGD+DxwhUz1dXVsS5KQuvu7sbhw4fHRdJJMUNCZbFYYDabg+r3F06mA9sh06SATc0Y9ZdMkwLTge0jXyxOLVq0CNOnD3d7ee211/Dhhx967XPkyBH8/ve/H/O1cnJysGLFCgDDTW1//etf++w3unHjRrz00ksAhpPMq666SrLdveb0mWeeEefLdGlvb8c999wTdLm2bNniM+netWsX/vznPwMY7q85mqTw+uuvBwD09fXhrrvu8upTunfvXvEahYWFuOiii0K+BglNkuadkenj+dprr0km+w0HhmHEP3CS3JxOJ5xOJwSPKU0Ype+huwds0v4RBtXoJ4N3DnQjdfYFYBQqwOmgUWsThCtmkikxijZ/SWdeXh7KysqS7ndLMUNCJQjCmMYPGC3DuWthOHdt1K8bT2QyGR588EFcc801cDgcuO222/DRRx9hyZIlUKlU2L9/P958803YbDawLAuO48Y0t/Ddd9+NvXv3oqmpCVu3bsXy5ctx+eWXY9KkSRgYGMC2bduwY8cOsWwPP/ywV9/3ZcuW4bHHHoPFYsHevXuxfv16XH755UhNTUV1dTX+/e9/Y3BwELNmzcLBgwdHLBPDMHjwwQexY8cOXHjhhZDL5di9ezfeffdd8DwPhUKB+++/P6T+nS5XXHEF3nzzTRw4cABbtmzBFVdcgXXr1sFgMGDfvn1488034XA4wDDMqK9BAmPkHr9TJjnrBiOSeDY1NaGpqSls54vl8OUk+pRKJWQyGWy89ANepvTdx7PP0i9Z1qtHn3i65u8Um9sG+4xB4RlTrpgJNAw88a+rqwvV1dXjJukEKGZI6BiGScq/hUQxe/ZsPPnkk7jjjjtgNpuxZcsWbNkibYJ8xRVXoKWlBbt37x5TcqTX6/HKK6/glltuwYEDB9DS0oKnnnrKaz+DwYAnnngCCxcu9NqWmZmJ3//+97jnnntgt9tx+PBhHD58WLLPD3/4Q8yZMwe33377iGW644478OSTT2L79u1elTs6nQ5PPfUUzjnnnBB/0mEymQzPP/88fvrTn+Lw4cM4cuQIHnroIck+CoUC9913H773ve+N6hoksA5OWqtuS9JbTUQ+cWPxRpAkD1dzmj0MA/denZ59Pl0K9Xm4rPQC2DgHbE4bsnWjH3HTsw+MXB94zkLPZxB6KIkNV8yQ0PlLOvPz81FaWpq0MU0xQ0IVzJyOJLIuvPBCvP/++/j73/+OHTt2oL29HUqlEjNmzMC1116LCy+8ENdccw2A0/NTjlZubi7eeOMNfPjhh/jggw9w8OBB9PX1wWAwoLi4GMuWLcPq1asDXmfFihWYNWsW/va3v2HXrl3o7OyEXq/HrFmzcO2112LRokX44IMPgirPRRddhEWLFuG5557D119/jf7+fhQUFOD888/Hj3/84zGPMpuRkYE33ngDr7/+OjZt2oSGhgaYzWZkZ2fj7LPPxvXXX0+Dy0WQg5c2xeaTtLFtRBLPSy+9FIsWLYrEqck4wnhM7K7yM4WDVqGG+tQXMPraToHzHrxImVUUoICjvhQhcWG8Jp2EkMRVVFSE3/zmN3639/T0ABi+j3k6cuRISNdiGAaXXnopLr300tAK6aakpAQPPvig3+2hnL+0tBRPPPHEqMsyErlcjmuuuUZM3gkJt4gknhUVFVizZk0kTk3GEUGQjkyr8PNW8WS/dM6uDI1hVNdzDnqP+KfIoAmSSfIaHBykpJMQEvfeffddbNq0CcXFxbjpppv81u41NDTg+PHjAIAZM2ZEsYSEjA3H8/Ddri+5UOcWErcEh7TZAaPwHa5ahcZjWT2q69navOfSYrVj6C9KSJybNGkSeJ4XJx4vKCjAtGnTKOkkhMQVvV6PL774AsBwd6777rvPax+TyYR7771XfJl22WWXRbWMhIyFRq6E+1jCLA0uREh0tLa2guM4cA7pcN4yue/BhTI0BsgYBpzA44SxBWr56BLP/q/eA++0Q56SDjYlA4pM72Y6XugBPS64YoZlWRQUFMS6OAmDYRhMmTI8Ty3P8+Mq6aSYIaFyn2KCRvWMroULF6KoqAjNzc149dVXUV1djYsuugh5eXmwWCw4duwY3n33XXR3dwMA1q1bh7lz58a41BQzJHgauUqSeCZn2kmJJ4lD3d3dcDgcQdd4Ts0sAQBYnTbMzC6FTqkN+ZoCz8HWfgzgOTg6TwAAdBWBR24bLw/oicAVMwqFgpKIELknn+MppilmSKicTqc4yj4lEdGlVCrxzDPP4Gc/+xna2tqwf/9+7N+/3+e+V111VUjzY0YSxQwJlmOwV7LsOaVgsqDEk8QlQRAAXtrH01+Np4targLkvuf6HIm966Q4lYqLbupZozoXIfHIVbvny3hKOAkhiWn69On46KOP8O9//xuffPIJjh49iv7+fuh0OuTm5uKMM87AFVdcgcrKylgXlZCQyTiPypbkHNSWEk8Sf6ZMmQLOZoPndMq+ajwHrIN4+Iv/RZoqFXp1KvSqVFxZsQIqz4l4R2A9WSO9lkoLdXF5qEUnMTJlyhSa7zeAjo4OHDt2DHPmzKEpIU6hmCGhUqlG92KThI9Go8GGDRuwYcOGWBclKGONmUceeQSPPPJImEpD4lkqq4TJbTlwVUviCnviSXN4krHS6XRw+ljvMBqh8Rge3WgdQGNfk7jMgME1latDvqa5/hvJsjwlA2zq6OcDJdGl0+liXYS41dHRgZqa4Rcr+/fvp+TzFIoZEip/LQYI8YdihhCpsCae//jHPwAAEyZMCOdpyTjEO7xTT0buHa79tkHJcopKB1YW+o3e3tUkWVak5wVRE0I1JSS+tbe3o7a2Vly22WzYv38/zjrrLOpvRAghhJCoCmviOX/+/HCejoxnPA+ZWg3wPIRTX4yPPp79VmnimaYKffoTgXOCG+qXrJOn+54jjJBE4Zl0uuTk5EChSNZGPIQQQkji6bAPSZatSVq3QX08SdyxWCwQ1CrkXLpM8oAs13mPVluQmou5BZUAGDAMRjWira2ryWtgIW3Z2SGfh8SOxWIR++tRM1Kgra0NR44c8VpfXFyMyZMnU79GUMyQ0PE8L8aMTJaskx2QcKKYIcGyg5MkZbzfPRMbJZ4k7tTV1cHhcEBeOhUzysshCAJsHZ2Qa737ZMllLErSi8VlJRt6TY69vUGyLFPpoM4tCe5g1wM847FMosoVMwqFYtyPaEhJZ3AoZkiorFarmERotaG/5CTjD8UMIVL0+oXELUarhSItDYLDAc5igTzFO/H07ONp5xwhX8fe3ihZVhWVQaYOYuARen4nccZf0jlhwgRKOgkhhJA4xY+Th0qq8SRxJzMzUzLnoMJggCo72+e+o6nh9GRrk9Z4aibQNCqJxjNmxqPW1lYcPXrUa/2ECRMwadIkSjo9UMyQUMnlcpqCh4SEYoYES6NJgcMtTBhZcsYMJZ4k7hQWFkqWZQEGQsnVZeHM/Ao4eQ41XXXI1mWGdC2Bc8LecVyyTpk3JaRzkNjzjJnxxl/SOXHiRJSUlNBDjw/jPWZI6GgkaBIqihkSrKwFs/EJf0hcTlGlxLA0kUOJJ0loBk0aDJo0ODgHCvW5SA3xD9Xe3QzBo3muKm9y0MfTAz2JtZaWFtTV1Xmtp6STEEIIIfGEEk8Sl6zt7ejd+w0YuQIyhRzylBRkLvA/0qyCVUAxima3ns1s5Wk5YLVBTslCD/Qkxrq7uynpJIQQQhIcw8ig5AVxWSEE2DmBUeJJ4tJgwzE0/vVFcVmdl4uMs+dLHqTtTjt++8lj0KtToFelIk2VirUzlyFFGcTAQKfYWqQDsSizJ4y98IRESXp6OgwGA4xGo7iupKQEJSUlMSsTIYQQQkKTp9JjidEsLsvT9TEsTeRQ4kniztGjR2E6Iu2v5rRYAJ4H3AYC6bcNotHYJNnv8pnLQ7qWMncS1BNmwmnqA2fqg8A7R19wEjNHjx4Vp8YoLS2NdXGihmVZzJo1CwcPHoTRaKSkMwTjNWbI6LlPjaFWq2NdHJIAKGbIaDkcoc/SkAgo8SRxx2q1wmE2S9YxLAvGY/TJfqt0KhW5TA6tIrSJ4DnzANQTZ56+joIGAkhEVqsVDocDHMfFuihR50o+u7q6kJeXF+viJIzxHDNkdHiepxFKSUgoZkiwGLkS6omzYDINQhAEQE2DCxESFTKZDIxcDibdAAUrB3geinSD1369ZqNkOU2VOuabu+Cwh7A3fZDEC5lMJn6NRyzLUtIZovEeMyR0rs8XSiJIsChmSLCONp3AwZpmcDwPAQLkSjPKYl2oCKDEk8SdiooKDKWkoictLeB+Dt6JuQWVsHF2cDwHtVw15mvLU9LHfA4SfRUVFbEuQsR1dnYiMzOT5p0Mk/EQMyS8NJrQWtQQkgwxc9NNN+Gzzz7Df/3Xf2Ht2rWxLk7SGmo4jsmH+sRlqyo5X4pS4kkSllapRkl68aiPdw70eJ9z2tyxFImQiGhqakJDQwPS0tJQWVlJySchhJCIe/vtt/HZZ5/FuhgkiSRnOk0SHm+XNnlVZmZ47WNxWMd0DWtzrdc6NsUQ2knE5jPUjIZExsmTJ9HQMDztT39/Pw4ePEj9EgkhEsf7mmNdBJJkPv/8c/zud7+LdTHGDY7nY12EqKDEk8Qlx8CAZNlX/wi1XDpCHMsEH84Cz8HacnS4A7fkOsGfg7pskEg7efIkjh07JllnNBrR0+NdW08IGZ+Mln48+Nn/wGjpj3VRSJJ4++23ccsttyTtyKrxSG3Qw5yiEL8caYnfTNsXampL4k5nZyeGLBZYh4ag0w3PyWnr9n7QnpM/A5W502F2WFDfewLl2VODvoajuxkDezaBUajApqSDTUlHauX5YfsZSHR1dnaC4ziwLIucnJxYFycsfCWdADBlypSk+RljKRljhkSWw+EQRyhVKBSxLo7o3dqtMNmH8F7tVvzwjCtiXRziJl5jxp/BwUE8+uijeP3112NdlHEnZ/5c1Gi74bAPx4xOqY11kSKCajxJ3Glvb0fXiRMwmUziOlVWptd+MkYGOSuHXp2KMwsqoFEEP0eWtbUeACA4bHD2tcPeeQLKrKKxF57ERHt7O1pbW9He3h7rooTFiRMn/CadxcWj79dMTku2mCGR53A4xK94YbT0Y0vDFwCALQ1fUK1nnInHmPFn06ZNuPjii8WkMyMjAz/4wQ9iXKrxw97dDHvXSTh7msH1NsPReTzWRYoISjxJXOKPn4DzyFH0fbsPxv1VMDe1hPX8Q7VfSZblKelQZBaEfiJqb0vC7MSJE2hsbPRaP3XqVEo6CSES79ZuhYMbTmrsnAPv1W6NcYkir62tDQ8//DAuvvhizJo1C/Pnz8eGDRuwadMmAMALL7yAsrIylJV5T0bhWv/ss8+iu7sbt956K84880yceeaZWLVqFd5//33J/jzP4+OPP8YvfvELLF68GBUVFTj77LOxfv16PPvssxjw6BbkbsOGDTjjjDNw5plnBvx57rrrLrFczc3NPrd973vfAzDcEubuu+/GkiVLUFFRgUWLFuG2225DVVVVUL+7QF5//XWxG8eiRYvwzjvvYPbs2WM+LwmOYDWDMQ9CbjdDbreAtQ3FukgRQU1tSdwpKSnBMasNQ61tcNV5evbFFAQBd299BKkqHfSqVKSpUrGy/CIY1PqgruHobpIssynpYDWpoRWUks64UVJSAp7nE35OxuPHj+P48eNe66dOnYqiIqqRD6dkiRkSPSqVSmw2GQ/caztdtjR8gZXTL4RBE3g6skT19ddf4+abb8bQ0OmHcrvdjj179mDPnj3YunWrz4TTk8lkwjXXXCO539bW1kKvP/0M0d7ejttuuw379u2THGs0GmE0GlFVVYWXXnoJjz76qJgY+qNSjX26t3379uGmm26SJLtdXV348MMP8dFHH+HOO+/E9ddfP6ZrFBYW4le/+hUuvfTSsRaXhChPmYKlfWZxmVGnxLA0kUOJJ4k7er0eco8PdmW6QbI85DDjWN9JybrlZUuDOr/Ac3AO9krWsaneo+aSxOH+sJCoKOmMrmSIGRJd8TaNkXttp4ur1jMZ+3oeOnQIN954I6zW4RHtL7jgAixduhQKhQJ79uzBxo0bsXnzZuzatWvEc/3zn/+EzWbDokWLsGLFChiNRnz++edYtGgRgOERxK+//nqxy0NhYSHWrl2LyZMno7+/H9u2bcPOnTthNBpx880347nnnsPixYv9Xm+ssWM2m3HrrbdiYGAAM2fOxOWXXw69Xo+9e/firbfegtPpxCOPPAKtVosrr7xyVNe4/fbbMWvWLMjllBrEAyZJX4pSdJG4JDidkmWGlYZqv3XQ6xi9KrgaS1v7MYCXTkeRNn9FiCUkJHz8JZ3Tpk1DYWFh9AtECIlrvmo7XZK11vOhhx6C1WoFwzD4wx/+gLVr14rbVq1ahTVr1uDGG2/E4KD384Enm82G8847D88995xYg33dddeJ2x999FEx6fz+97+Pxx9/HGr16XEkrrrqKrzzzju455574HQ6cccdd2Dr1q1ISYlMLdXg4CAGBwexbt06PPDAA2Iiu2LFCqxYsQI33HADLBYLnnjiCSxbtmxUL9bOOOOMcBebEC/JmU6ThMc7pYmhzOMNXK/HAAoauRpKNrgR42zt0kFbGJUWqpzR9p2LjyZXJDEJgoDGxkZKOgkhIfFV2+mSjH09v/rqK3z33XcAgHXr1kmSTpe5c+fizjvvDPqcN9xwg89m0x0dHdi4cSMAoKioCI899pgk6XRZs2aNmKz29vZGfCTYsrIy3H///V61p/PmzcMtt9wCYLgZ8Ntvvx3RcpDIOHqkFlUn5OLXdw1jm6s+XlHiSeKOw+EAZzFL1jFy6Y02Xa3H3MLZmJU7HaWZk1GUlg+7nw9hr/N3Sft3qnJLwASZtEoLRUlnvHA4HLDb7QkxcqA7p9Ppc1RVSjojL1FjhsQOz/PiVywFqu10SbYRbrdv3y5+/6Mf/cjvfmvWrIHBYBjxfAqFApWVlT637dq1S7wvXHvttdBo/M+n+JOf/ERsmrpt2za/+4UjZq6//nq/zWCvvPJKKJVKAMBnn3025muR6DN39yGnwyl+6TuS87OJEk8Sd2pqamAdko7mxXjcbBmGQYmhCGVZU1CZV47ZeTOgkAXXctzWJq3x1EyiUdsSXU1NDQ4ePIiamppYFyUkCoUCc+bMkQw8UVpaSklnFCRqzJDYsVqtsFgsYh/DWAlU2+mSbLWee/fuBQCkp6dj6lT/c3YrlcoRR5EFgOLiYjFR87R//37x+wULFgQ8T1ZWlliegwcPeg2E6BKOmDn33HP9bktNTUVpaSkAhGWEW0IihRJPEpcEj6a2vM0uWe4wdXsdE8xIgwLPwe4xN5Iqf0roBSQkTDQajZh8lpaWoqBgFNP6EELGhWBqO12Sqdazs7MTAIK6P06YMGHEfQL1geztPT34YDBTWLn2cTgcAadXGQutVovc3NyA+7h+N2azGWazOeC+JP7Eth1F9FDiSeJOWloaWI+mtfIUnWQ5U2tAhsYAvSq0jvxOYycEh02yTpk7aXQFPYVhmNOtbqn5bUykpaXBYDAgLS0xB9PQaDSYP38+JZ1RlOgxQ6KPZVnxK1aCqe10SaZaT6PRCAA++1p6CmYff7WdACRTtQRqZuvrehaLxec+Y40ZnU434j7u5TCZTAH2JPFIpZTGWrImaDSqLYk7EydORCfLwr3Ok/W4+U80FGGioQhOzomNtR9j8cT5QZ3b1nlCsizT6sHq6MEz0U2cODHWRRiRqwmWv5r5eJuqIdklQsyQ+BKOuRjHIpTaTpdkGeFWpVLB4XD4TezcjbVZq3uyabFYRhyp1r120V/SGyh2bDab320udrt9xH1c5WAYJqh+riS+pLBquI/HnKxPBMmaUJNEx0v7SchUft5OMgzWli9Dbkp2UKe1NUn7cymziuNmMnCSvARBwLFjx1BfX++3DxAhhAQSSm2nS7LUeubl5QEAWltbR9w3mH0CycrKEr9vamoKsOewEyeGX2ir1WpJwuf+bOH0mCLOXTDTvwwMDEhqYn1pbm4GABgMhoA1uoTEEiWeJC4JHvNsMjLf737kMhayECbZNTcekJ5XPorRbAkJgSvpbGpqQktLCxoaGij5JISEZDS1nS7J0Ndz9uzhQQCNRiMaGhr87sfzvDjtymjNmjVL/P6rr74KuG9HR4c436drcB8X9+QvUNPX+vr6EcskCELAQYPcfy/z5wfXAoyQWKDEk8Qnj6HHPUe1ve/TJ/DQZ0/hqa9exEvf/RvdQ70IBmeWdvxnUzPGVk6ApvIkfgmCgIaGBslb8+bmZvFBhRBCgjGa2k6XZKj1vOSSS8TvX3nlFb/7bd68GV1dXWO61pIlS6BQKMRrBWre++KLL4pTpZx33nmSbZmZmeL3/kbP3r9/P9ra2oIq12uvveZ326uvvipOAXPBBRcEdT4SX1Ll0mbaiiR9P02JJ4k7DQ0NcHrMrce49X9z8hxquupwoKMGO0/swQdHP4HFGVyfjpRZS5BSeT40U8+CqmAaFOn5oy4nNdGNHw0NDThy5EjAN+HR5ko6Xc2f3AUzUASJrHiMGRLfrFar+BVNY6ntdEn0Ws9FixZh+vTpAIYTsA8//NBrnyNHjuD3v//9mK+Vk5ODFStWABhuavvrX//a57/5xo0b8dJLLwEYTjKvuuoqyXb3mtNnnnnGq7lte3s77rnnnqDLtWXLFp9J965du/DnP/8ZAFBSUoJly5YFfU4SPzwfKZM076TBhUj8GRoaguBZ48mefkcyYPPuD5GmSh3xvIIgQKZQQZaWDXnacJ/QlJkLx1haEg+GhobgcDjEt9SxJggC6uvr0dLS4rWtvLx8xGHxSeTFW8yQ+MfzPARBiPpLx8+Of4VU5dhfVn12/CusLr84DCWKPplMhgcffBDXXHMNHA4HbrvtNnz00UdYsmQJVCoV9u/fjzfffBM2mw0sy4LjuJC64Xi6++67sXfvXjQ1NWHr1q1Yvnw5Lr/8ckyaNAkDAwPYtm0bduzYIZbt4YcfRkaGtAXVsmXL8Nhjj8FisWDv3r1Yv349Lr/8cqSmpqK6uhr//ve/MTg4iFmzZuHgwYMjlolhGDz44IPYsWMHLrzwQsjlcuzevRvvvvsueJ6HQqHA/fffT/07E5RXlzImOesGKfEk8cljcCH3P8hej7e2DBio5UGMNsh5d+5nZPQnQMKLkk5CSDitLr84YRPGcJo9ezaefPJJ3HHHHTCbzdiyZQu2bNki2eeKK65AS0sLdu/ePaYETK/X45VXXsEtt9yCAwcOoKWlBU899ZTXfgaDAU888QQWLvR+iZ2ZmYkHH3wQ9957L+x2Ow4fPozDhw9L9vnhD3+IOXPm4Pbbbx+xTHfccQeefPJJbN++Hdu3b5ds0+l0eOqpp3DOOeeE+JOSeNHLSCtc7EnaqI6eukncqaiowNcMI5lM172Pp16pw7zC2bA6bbA57eB4DnwQjRJ4u3dTGZkmtHlASXyqqKiIdREAUNKZSOIlZkjiCGZORxJZF154Id5//338/e9/x44dO9De3g6lUokZM2bg2muvxYUXXohrrrkGwHDyOBa5ubl444038OGHH+KDDz7AwYMH0dfXB4PBgOLiYixbtgyrV68OeJ0VK1Zg1qxZePHFF7Fr1y50dnZCr9dj1qxZuPbaa7Fo0SJ88MEHQZXnoosuwqJFi/Dcc8/h66+/Rn9/PwoKCnD++efjxz/+MX2+JDizUzqtDpekjW0p8SRxx1fzGKVbJ32lXImJhiLJdnkQNZe8zXsockY+hiYpruZWSfpWKpGMpUlVuAiCgLq6Op9D+c+YMQM5OTkxKBXxJx5ihiQW6tcfH4qKivCb3/zG7/aenh4AQH6+9xgOR44cCelaDMPg0ksvxaWXXhpaId2OnzRpEh588EG/+4Ry/tLSUjzxxBOjKstorF27FmvXro3a9Ujyo8STxCeP6SbkOq34Pe/R/xMA2GDawgvex9GDBAkHf0knwzAoLy+npJMQQsbg3XffxaZNm1BcXIybbrrJb+1eQ0MDjh8/DmD4hR8hiYLn+XEx4islniQu8R6jv8ncmtoqWDlKDEVw8hyaB9ogl7EjJpCCIGDw4BfgzP2QaVLBBHFMSE6dixLZ8YeSTkIIiSy9Xo8vvhge2VcQBNx3331e+5hMJtx7773iPMmXXXZZVMtIyFjIZayki5ksSZ8nKfEkcaenp8d7Hk+3UW1TVSmYXzQnpHNypj4Yd77pOhtkGh3SF68fY0lJvOjt7R1+WyiTeY0sGGn19fU+k84ZM2YgOzs7qmUhwYtlzJDE5HQ6xVFt5XJ6fIqmhQsXoqioCM3NzXj11VdRXV2Niy66CHl5ebBYLDh27BjeffdddHd3AwDWrVuHuXPnxrjUFDMkeKlKLdyHzmSTtB8X/RWQuNN84qTXOoYdW6g6ut3nUhTA2yzgrOYxnfO05Lw5JJLm5mZxaoxoJxGZmZloa2sTm4BT0pkYYhkzJDHZ7XZKImJEqVTimWeewc9+9jO0tbVh//792L9/v899r7rqqpDmx4wkihkSLG5oQLLsOa1gsqC/AhJ/fPyxMXLWx47Bs0sST4DV6qFMzxvTOQkBgIyMDFRUVODQoUMQBIGSTkIIiYDp06fjo48+wr///W988sknOHr0KPr7+6HT6ZCbm4szzjgDV1xxBSorK2NdVEJCxtstkmVGoFFtCYmKgrxcHPVc6TZ40H998TScPIc0VSr06lRcPHUJ8lMD96NzeCSeMq0ecgMlB8miqKhIbDYZC67kk+d5ZGVlxaQMJDSxjhmSeJRKpVh7RWJDo9Fgw4YN2LBhQ6yLEpSxxswjjzyCRx55JMylIvFIz6rg3g5PTtOpEBIdBh9zYjmMfVDnDCeK1Z11sHF2cdu5xWeNmHjau5sky6wmFXI9JQjJIh6aSsZDGUjw6N+LhIqaSpJQUcyQYHm+m2CStBsXveolcUdwcl7rXH08rQ6rJOkEAL06dcRzOnpaJMsyrR4y7dgmlz49ku3YTkMSgyAI6O/vH3lHQgghhBDihRJPEncEzjvxlCmGE89+26DXNmaE1gicZRDckDRh0JXNh0yuHH0hybgiCAJqa2vx3XffoaOjI9bFIYQQQkgS6XVaJcv2JK3UoDYAJO7I0w0oWncFOLsNDIZH9pKp1ACAFKUOC4rPxJDdDJvTDjtnh513BDyfo1ta2wkZC13ZggiVnsQC7zYgVbj77AmCgJqaGnR2dgIAampqwDAMzc+Z4CIZMyQ5CW6DfVA/TxIMihkSrCHeLknKnH73TGyUeJK4c7i6Gvapk6CQy1ExcyYEQQCrUgEAdEotJqYVghNOPzTqFNqA5/Mc0VaRkQ+ZXBG+AtOHScwdOnRInBojnCMaeiadLrW1tTAYDFAqqdY8UUUqZkjyslgs4kAxWm3gzx1CAIoZQjxR4kniEqNQgFEowGo0kvWCIEiSTmDk2gpHjzTxVGYVhaeMlHAmNX9Jp0wmQ0VFBSWdhBBCCAmL5BzD1hslniTu6HQ6OJ1On6PBCYKAhRPmwuKwwuK0wuKwQiNXBzyfV41nZngSTxI/AsXMaAiCgOrqanR1dUnWu5JOGhE18YU7ZkjyoybZJFQUMyRYcoX0WTZZqzboE5fEnSlTpvjdJpPJUKjPE5eDmR/L3t4oWQ5XjadUst4iEkOgmAkVz/OoqamhpDPJhTNmyPigVgd+yUmIJ4oZEqzc+bOxw1ojLmvVuhiWJnIo8SQJbaSkk7dbwQ0ZJeucpr4IlogkskBJ56xZs5Cenh6jkhFCCCEkWTFKBRza0zXknIqNYWkihxJPEnccg4MYajgGhmXByOWQKRRImTq62gm7x/ydAACPPqJjR7WdyYDneVRXV6O7u1uynpJOQgghhJCxo8STxJ3Bo3WoefBhcVmemor5//gbGJkMT+z6C4YcQ9CrUpGmSsXSyQsxwVDo91z2zhOAjAX44blBZWoddNNpKhUiRUknIYQQQmIlR6XHkr4hcVluSIlhaSKHEk8Sd9pPnpQsC87TsxnVdtfDaB0Ql+fkVwRMPGVKDdLOXQvBZgZnHoDAc5AbcsNfaBJTJ06cEAeKmThxYkjHBko6KysrYTAYwlhSEi/GEjNkfLLZbOK4AqpTU3wREgjFDAkWy8igdB/a1snFrCyRRIkniTvmgUHpCpkMYBjwAo8Bm0myKU2dGvBc9q6TYBgGjFoH2amO2jQNSvLp7+8X52QMVU9PDyWd49BYYoaMTxzHBTWgHSEuFDMkaIwMisxCWG02QBAgKKnGk5AoEQClAhAEMGAgUyjAMAwGbUPgPfpnDtmH/JzDN5kyjCPMuT5IGIyfCZiSUHZ2NiZPnoxjx44BAFiWxaxZsyjpJIQQQkhUNA0O4lurHHYbDwEClABKY12oCKDEk8SdsvPPRzc7HJosy0J2qnmKklVgXuFs2Jx22Dg7bE4b5LLQaiuUOSXhLi6JA+Xl5WN6qzxhwgQIgoCTJ09S0jlOjDVmyPhDU2OQUCVazHR0dODVV1/Fjh070NTUBIvFAoPBgIqKCqxYsQLLli2juUkjpGf/AZRsPyEuW1Uy4D9jV55IocSTxB2WYcCyp4eRlimGw1QtV6EsazIM6jR0m3vh5DkEembkHTavdYp06t+ZjMLRXHLixInIzc1NuAcFMjrUxJaEih64SagSKWY++OAD/OY3v4HZbJas7+rqwvbt27F9+3a89tpreOqpp2g+azJqifMXQcYNR3+/ZJlxu3HnpmRj4YS5cJ4apVav8t/H0znQ7bVOrs8KUylJMqKkkxCSiIYaj8e6CCSB7dixA7/+9a9hNpvBMAwuvvhiPPTQQ3jyySdx6623orBweBDHvXv34uc//zkcDkeMS5yEhPHRZ4sSTxJ3WK1WsuxwG2xoXuFssLLTtaGBBhcyHd4Ja/MROHrbwFlNw83q2DBW8p+qbqWmeonBNXqtyWQaeWdCCEkQ9r4+HPrtfbD39cW6KCQBORwOPPjgg+A4DizL4s9//jOeeuoprFu3DsuXL8cvfvELvP/++1iwYHgquu+++w7/+te/YlzqJCRnwcsgfkGenCkaNbU9RRAEbNq0CW+99RZqampgNpuRnZ2NefPm4ZprrkFlZeWYz//JJ5/g3XffxYEDB9Db2wuFQoHCwkIsXLgQP/zhD1FQUBCmnyaxDZkGYbVaxeHHZW5N4mTM8B+iklUgNyULWoXG73nMdXthb28Ul5UF04AlP4hcwUnMDAwMgOd5yGQy6PV6r+0cx+HQoUPo6+tDb28v5syZg5SU5BwxjgRnpJghxJP7CKXu3UFireXtjXAOmtDyzruY9OPrYl0c4iZeY8bd7t27cfLUNHbXXnstzj//fK99dDodHn/8cVxwwQWwWq148803sWHDhmgXNakVnv89fJ5tBufkIEBAilIX6yJFBCWeAKxWK375y1/is88+k6xvaWlBS0sL3n//ffznf/4nbrzxxlGdv7+/H7fddht27dolWW+323H06FEcPXoUr7zyCn7/+99j9erVo/wpkkdrSytsvb1gWRa5ublQGNK89lk8cT7SNd7r3XGD0re/8tTMsJaTxI/jx4+LU2N4viRyTzoBwOl0oqqqCrNnz6bkcxwLFDOE+OI+J6PWo2VOrNj7+tC+eQsAoP2jj1G4ZhWU6ekxLhVxiceY8bR7927x+1WrVvndLysrC3PnzsXOnTtx5MgRWK1W6p4SRs7+TjiNHXDY7RAAWGXJOe8rJZ4A7r33XjHpnDJlCtavX4+srCwcPnwY//rXv2A2m/H4448jNzc34B+lLzzP4xe/+AX27t0LACgoKMDll1+OyZMnY2hoCDt37sSWLVtgt9tx1113Qa/XY+nSpeH+ERMK19EBvqUFkLEwDZrAWSxe+2RqA3+wCgIPziKdD1Suj2Di6WptS81u44pn0unC8zx4nvdzFCGEJIaWtzeCt9sBALzdPi5qPdva2vC3v/0NX3zxBVpbW6HRaFBWVoYrr7wSl112GV544QU8/vjjAIAjR45Iji0rKwMA/PKXv8T69evx4IMPYufOnQCA4uJi/PSnP8WKFSvE/Xmex9atW/Hee+/hwIED6Ovrg06nw8SJE3Heeefh2muv9dtiYsOGDdizZw+A4eap/tx111145513AACffPIJioqKvLbl5ubiiy++wMmTJ/HnP/8ZX375JXp6emAwGDBv3jxcd911mD17dqi/SgDDYxtMmjQJ7e3tKCkpCbhvWtrpF/4DAwOUeIaRc7APzoEeMMCpL+9n32Qw7hPPXbt2YdOmTQCABQsW4IUXXoDq1PQdl112Ga644gpcffXVMBqN+MMf/oALLrggpFqSd955R0w6FyxYgD//+c+St17r1q3Dp59+iv/4j/+A0+nE/fffj4ULF4plGI8UzS2wNTSCA9AHwNbdAwB4+uu/o9dshF6dijRVKr5XcjamZEz0eQ6HsQM4NQCRi65sfljLebpvJ03kGWt5eXli/xQXf0mnXC5HZWUlNa8c53zFDCGBKBSKuJqCx7220yXZaz2//vpr3HzzzRgaOj2Ht91ux549e7Bnzx5s3bpVTC4DMZlMuOaaa3D8+HFxXW1treRzob29Hbfddhv27dsnOdZoNMJoNKKqqgovvfQSHn30UXzve98LeL1wjKK9b98+3HTTTRgYGBDXdXV14cMPP8RHH32EO++8E9dff33I5/3lL3+JX/7yl0HtW19fD2D4+YemHQuvbIUOC42nRxSWqaipbVL629/+BmD4YfShhx7ySvimTJmC3/72t/jVr34Fo9GIN998M6Q/7Ndffx0AoFKp8Nhjj/lsarF06VJce+21+Pvf/46Ojg588cUXuPDCC8fwUyU2rT4N7sO/CE4nAKCuuxFtpk5x/fTsKX4TT2dPq2SZkSuhzJ8a9rKS+JCTkyNZ5jgOBw8ehNFolKyXy+WYPXs2UlP9D0pFxgfPmCFkJPE2BY97badLMtd6Hjp0CDfeeCOsVisA4IILLsDSpUuhUCiwZ88ebNy4EZs3b/bq1uTLP//5T9hsNixatAgrVqyA0WjE559/jkWLFgEY7iJ1/fXX49ixYwCAwsJCrF27FpMnT0Z/fz+2bduGnTt3wmg04uabb8Zzzz2HxYsX+73eWGPHbDbj1ltvxcDAAGbOnInLL78cer0ee/fuxVtvvQWn04lHHnkEWq0WV1555Ziu5c+hQ4fEGuTy8nIolcqIXGe8kjMyaPnTlRiuMU2STXL+VEEyGo348ssvAQCLFy9GcXGxz/2WL1+OzMzhZpqbN28O+vwmkwkHDhwAAJx77rnIzs72u+8ll1wifl9VVRX0NZKSx5DSDDscpr0Wo2R9WoCpVOzdLZJlRVYRWCU1CRkPKOkkhCQ7X7WdLu0ffZyUI9w+9NBD4sCD//Vf/4Vnn30WV1xxBVatWoWHH34YL730EnQ6HQYHB0c8l81mw3nnnYe//vWvWL16Na677jq8+OKLYguIRx99VEw6v//97+PDDz/ELbfcguXLl+Oqq67C//3f/+GRRx6BTCaD0+nEHXfcEdER0wcHB9HV1YV169bhzTffxDXXXIMVK1bgwQcfxN///ndoNMMDLT7xxBOSGtFw4XkeDz/8sLjs3hyZkFCM68Tzm2++Eft5uYaJ9kUmk2HevHkAhpPCfo95Jv3p6+vDrFmzkJ2djcmTJwfc17Pd/HgmeDSRZdVqODgHbJz0za6dc/o9h6O7SbKsyp0UvgKSuEVJJyFkPPBV2+niqvVMJl999ZXYT3LdunVYu3at1z5z587FnXfeGfQ5b7jhBp/Npjs6OrBx40YAQFFRER577DGffRnXrFmD6667DgDQ29srtnCLlLKyMtx///1e3QPmzZuHW265BcBwhcrbb78d9ms/+eSTYpPjvLw8XH311WG/xnh3oukE9ncpxK+qNt9/34luXCeedXV14velpaUB9506dbiZpiAIOHr0aFDnLy4uxptvvomdO3fijjvuCLhvQ0OD+P14bzcvcB6DvshksDsdmF84B5W55SjLmoISQxEytQa/5/BV4xkJDMOcHliIxBTHcThw4AAlnYSQpBaottMl2Wo9t2/fLn7/ox/9yO9+a9asCeoZKtBo1rt27YLD4QAwPL2IqzbRl5/85CeQy4d7rW3btm3E647F9ddfL17L05VXXik2ffWcoWGsXn75ZbzwwgsAAJZl8eijj9KgQhHQd7IVuY0O8Sul0RbrIkXEuE48W1pOJyeFhYUB983Ly/N5XLi89dZb4vejHZksWfQbpR+WDCuDQ3BigqEQpVmTMSt3OuYWzkZ+aq7P4wVBgKOnWbJOmRX435cktgMHDmDTpk2Sl0nAcNI5Z84cSjqJl0OHDuG7777DoUOHYl0UkiAsFgvMZjMsPkZaj6ZAtZ0uyVbr6RqkMT09XawI8EWpVOLMM88c8XzFxcV++yju379f/D5QazhgeIoRV3kOHjwIQfA90GA4Yubcc8/1uy01NVWsQAlnd61//OMfkia2d9xxB+bPD+9AjWR8GdeJZ29vr/h9+ggjwLm/QfOsURmrHTt2iG/zMjMzsXDhwrCeP9HwHjWezKkO1nIZC5lbsxi5zPdolNyQEbx1SLIuUjWeJPY4jsPx48cxNDQk+dBXKBSYM2cOzdVJfHJNqUPT6pBgCYIgfsVKMLWdLslU69nZOTywYEFBwYj7TpgwYcR9Ao1q7v5s6G/sD3eufRwOh9+uUmONGa1Wi9xc3y/bXVy/G7PZDLPZHHDfYDz99NN4+OGHxbL//Oc/F5sWEzJa43pUW9fIaABGnL7E/c2Y+3Fj1dbWJumTcPPNN4/7Jgwsw0DSy1Mmg0Gtx9oZyyAIAhr7mpCbkuX3eOvJaskywyrARnIOTxJTDMNAo9HAarWKfV8UCgVmz55NSSfxS61Wg2XZuBuplMQvmUwW8+lUgqntdEmmEW5dL/yDeT4KZp9AI7K6T9USqJmtr+tZLBbJmB0uMtnY6nl0upGn1nAvh8lk8jmLQjA4jsN9992HN998U1x3yy234D/+4z9GdT4SJIU0JpO1F9e4TjydztOD04w0LLT7dvfjxqK3txc//vGP0dMzPE/lwoULce2114bl3GNRX1+PKVOmSJon2mw2cRhtg8Hg9Uaxvr5efMPm2W+iu7sbra3D05sUFxdLapc5jsPhw4cBDDcVmTRpErQqNdw/Vk1DQzhw4ABmzJgBuVyOyRnD1zYajTh58iQAID8/Xxw12Fz/reT6vEINmUwa6s3NzeJbzdLSUq8btms0u+zsbOTn50uOrampgcPhgEKhwJS8PLjfHtra2tB96t9z8uTJksTHarWK/YMzMjIkk0QDw32OLRYLGIbBrFmzJNu6urrQ1tYGYPhtrnsNvNPpRHX1cLKt1+u9JoBubGwUR/mbOXOmZGCCvr4+NDUND8RUUFCArCxpQu8alVmr1Xo1bzp58qT4MFBWViZ5eTM4OIjGxkYAQG5urteb2urqajidTiiVSkyfPl2yrbW1Fd3d3QCGpzNy/8C1WCxic9rMzEwUFhZCJpPhggsuQHV1NY4cOYLu7m6UlJR4JZ2dnZ1ob28HAJSUlEjeeDscDtTU1AAYHuhr4kTpND0NDQ3iw0hFRYXkIaK3txfNzcNNu4uKipCRkSFu43lebMqp0+kwZcoUyXlPnDghDlZWXl4uSYIGBgbEOeby8vK8pv84dOgQeJ6HWq326qPe0tIi3lemTZsmeXgaGhoS+5RnZWV51SDU1tbCbrdDLpdjxowZkm0dHR3o6OgAAEyaNClm9wh3x48fF2sZXPcIF3/3CGD47/7gwYOwWq2oq6vDtGnTJOcN1z2ivLxcsq2trQ1dXV0A6B4RrXuEu6NHj8JqtUImk6GiokKyzf0e4flCwr123FcSYbVaxe0ajUaSnDqdTthPJYtKpVISo4IgiM0wZTKZV9Jks9nAccOvYmUWS9C1nS5tH32MrOWXINWtuxAwPPel61lGrVZLfiaO42CzDfcvk8vlXs9HFotFTMA9EzOHwyH2j1SpVJJY4nlefHHPsqzXC3/336Fn0qRSqeBwODA0NASn0+n3d8iyrFflgPvv0JP7v41CoYBCoZD8TD09PUhJSfH5b+P6HbqPouvah+M4yTU9j3X/Hbp+157ndf1srnWA9Hfo+W/jur8yDOOzMsX938ZfHNpsNtxxxx344osvxHPdeeeduPrqq8XzB4pv1+/Qneu4keI7UBz6Om+gOHT/HQaKQ1/x7YpDX+flOA4WiwUHDhwI+3MEM+SQ7O/614nVc4TrcyrcxnXi6f4H4HA4Aiafdrc3jOGYu6irq0syR9TEiRPx2GOPxcXE1BzHeTU/EwRBvGH5uoE7nU5xuyee58Vtvpq1uba5bhKcWdpMVji1j2dTFfcyuZ/XYZT+sQhK77d+7uUN9rzu5Q3mZw10Xl8vL1zn9RUDYzlvOP9t3HEc57dM7uf1FS8OhwNOp9PnA1yg8/qLQ5lMhhkzZqCtrQ06nc5r1D/P8waK72j+DgPFYTC/Q57nR/xZg/0depbJV9OwYH+Hkb5H+DvvaP6WBUHwOWAH3SO8z5vI9wj38zocjhHP66sm3HUtf80mA60PdGygZpjux7a+827QtZ3i8XY72t/bhNQbfxq2MgXaHq6f1VNubi5MJpP4csXfeQVBEF9iBXNeX2Vyf7nS3NyMsrIyvz+LIAjiyy21Wi154eOZnHkmeq5z+pr+xfN6AwMDGBoagub/t3ff4U2V7R/Av9lJdymlhVKgQEvZG0SKMkQFRGQKgjhef76iKOKeqDhexYGCWxQXIEPZQ7YUkKHs2bLbAm1pm7bpyDy/P0IPSZu0CTRNmn4/18VFTvLk5El65+Tc51kajdPPt+wCaGhoqNNJiCr7u5WUlGDKlCnieFq5XI63334bI0aMQGlpqVufoaPHPPG9qawHwo3u15myY0x1n0dYLBY4HkDmnfMITw1DqdOJp+0VNb1e73LiWVW33KpcuHABjzzyCM6fPw/AeiV+7ty5di0l3iSTySr8KEskEvGH2FGAyuVyp13WpFKp+JijH/uyx8oOlNJyV8QkJhMUCkWFg4ttneyukhVesX8BVcUuKrb1dXW/5evr6P3avtfK9uvoR0GhUMBkMjk8iN7Ifqvzb2PLtpti+TrZ7tdRvJT9Pd3db2VxKJVK0bRpU7E1o7L9VhbfNfkZVhaHrnyGFovFYb2u9zMsq5PFYqnyb+PNY4Sz/V7Pd1kQBIf14jGi4n5r+zGibL9ms7nKY4QjZa/l7ES3svsre25lF5zLnmvUanH5T/daO8tkb9iEpqNHQmnTk+BG6lT++c7uv9736kiHDh1w+vRp5Ofn4/Tp02jVqpXD/QqCIC674sp+HdWpffv24tIoe/fuRWJiotP3kp2dLbYolW8xsj2n1Ol0DpNSiUSCU6dOVVknQRBw8OBB3HTTTQ4/X61WK/Zk6dq1q9sxarFY8OKLL4pJp0qlwsyZMzFgwADxee58ho4eq8nvzY3ut7L3W3Zcqu7ziMq6Y3vjPOJGu4c7IxG8OUrey6ZNmyYeXDZu3FjpIPLFixfjtddeAwB89NFH17147qFDh/DYY4+J3eBiYmLw008/uTSA3VN0Op3YRQ6wdony5ti4I6+/gfxD12aaDO/eDRljk7A34wACFBpoFBq0bRCPpKaOZ1ZL//55mPKzYSnRARAQ0nMo6t/2oEfqasjLg6moGBAskAUEQlkv3Cdarf2VyWRymigQEVWX1NRUsZWqfDdsbzj7/VxcXLHqup/faNjQWj3Wc9u2bfi///s/AMD48eMxbdo0h+XWrFmDqVOnitu25zYAxIS1R48e+OWXXxzuIysrC/3794fRaERsbCxWrlzpdKzn+++/j7lz5wIAnnrqKTzxxBPiYy+++KK4HuiPP/6IXr16VXj+gQMHcO+994rbmzZtsuti/9JLL2Hp0qUAgNtvvx2zZ892WI8vv/wSn332GQBgxowZGDZsmMNyzsyePRuff/45AGvL7VdffVXpLLp1kaePCae//xyXV1xbNkiikODmJUuq/XVc5ancoE7Pams7zsVZ940yZeM+ANdmVXMkOTkZDzzwgJh0tmzZEgsWLPBq0umLSkvsx2dIFQqc16bjwOVj2Jn2Lzad2Y5j2RWvEJYJiO+GkG6DENp7BIK73IGA5p09XGMmmjXBZDLh4MGDOHjwYIXuKhkZGbhw4YJHljoi/8SYIXcZDAbo9Xq7HlA18rpuzGTrTG2f4TYpKUkc67tgwQKsWbOmQpmTJ0/i7bffvuHXatCggdi4kJaWhueff97hpJLLli3DTz/9BMA6nnjcuHF2j9uOw/7yyy8rdJO8fPkyXnnlFZfrtX79esybN6/C/Tt27MBXX30FwHpeO2jQIJf3CVg/t6+//hqAtcVsxowZTDq9QCYp14LqpXp4Wp3uams7QDc1NbXStYnKJiuQSCTXdaVj8+bNeOqpp8QT5o4dO+Kbb76pchmXushY7kddIpUirzTf7j6lzHGLl2C51oddIpVBFhgKZYOmDstWC7Zu1gij0YhDhw6JY2EOHjyIjh07ii2fOTk54mQuVa3JSwQwZsh9ZT0uJBJJtcz14KqsTVsgD77xloasTVvQeNSIaqhRzZNKpZg+fTrGjx8Po9GIqVOnYu3atbj11luhUqlw4MABLF68GHq9HjKZzGl3ale9/PLL2Lt3L9LS0rBhwwYMHjwYI0eORFxcHAoKCrBx40YkJyeLdXv33XcrDJcaNGgQPvroI5SUlGDPnj0YM2YMRo4cieDgYBw7dgxLlixBYWEh2rdvj8OHD1dZJ4lEgunTpyM5ORkDBw6EXC7H33//jeXLl4vdJd988023Y/Obb74Rk+I2bdpAJpNh48aNVT6vS5cuPjNEzC8I5Tf98/yyTieenTt3hkKhgNFoxO7duzF+/HiH5cxms9jvPTExsdL1nxzZs2cPpkyZIiadvXv3xueff37dU137PUu5b59UiosFmXZ36fT2ExCVKU07UeE+qarq6dDJd5VPOgFrF5ATJ05UmNmTiMjfNB41otYmjNWpY8eOmDlzJl544QUUFxdj/fr1WL/eviV41KhRyMjIwN9//31DFwdCQkIwb948TJ48GYcOHUJGRgZmzZpVoVxYWBg++eQTh+uvR0REYPr06Xj11VdhMBhw9OhRcYbuMhMnTkSnTp3wzDPPVFmnF154ATNnzsSWLVvEtd/LBAYGYtasWQ6781amqKjI7jM8evSoXXfhyvz888/o2bOnW69HzumU9g0qRg+NsfS2Op14hoSE4KabbkJycjI2b96MixcvOuxGu3r1anFafXe7MOTk5GDKlCli15x+/fph1qxZNXq1tLZRq5SwXfpYIpOiW0wH1MsLg9FshNFiQqg62OFzDVnnKtwnVdzYZFDkPUajEQcPHoROp7O7X6lU2vVYiI+P9/r6elS7MGbIXWq1mjHjZQMHDsTKlSvx448/Ijk5GZcvX4ZSqUSbNm0wYcIEDBw4UGxEcLeRoLyoqCgsWrQIa9aswerVq3H48GHk5eUhLCwMsbGxGDRoEO65555KX+euu+5C27Zt8dNPP2HHjh3IyspCSEgI2rdvjwkTJiApKQmrV692qT633347kpKS8PXXX2P37t3Iz89Ho0aN0K9fPzz88MMVliRyxZkzZ5zOtEo1K99g36BigmdmlfW2Op14AsCDDz6I5ORkGI1GPPPMM5gzZ47d4NlTp07h3XffBWC9ojR69Gi39v/222+LSWuHDh3w2WefMemsgjI42C7xVEVEoGlYDBQ23Wubhzep+EQA5hKdw/s9SSIB6u4UXZ5TWdLZqVMnux4DrizyTWSLMUPu8tQsj+Sexo0bi5M9OlI2j0b59XWBipMNVUUikWDIkCEYMmSIe5W8SiqVokWLFpg+fbrTMu7sPyEhAZ988sl11cWR9u3bu/2ZEN2IOp94JiUl4Y477sCff/6J/fv3Y9iwYRg3bhwaNmyIY8eOYcGCBeKCry+88EKF/uy7d+/GxIkTAVScJe306dNYt26duH3nnXeKYwIqExYWhm7dulXH26uVJOWmfJZpNFDLVQhWBqLEZF1LKkTleLyLPLgeTIW54rYiPNphuerDK9+e4CzpVKlU6NixI7upExHVIcuXL8eqVasQGxuL//73v05b906fPi0ub9KmTZsarCERuaLOJ54A8MEHH6CoqAjbt29Heno6PvzwQ7vHJRIJJk+ejLFjx7q132XLltkt5jpjxgyXnlfZNN91gVBu0VqJTIZuMR3t7nO0sK1gMUO7ewVk6iBINUGQqoOhatTSo3Wl6ldZ0tmpUye2VBER1TEhISHYtm0bAOualm+88UaFMjqdDq+++qp43nXXXXfVaB2JboTZYoFts4vETxs2mHjC2uVqzpw5WLlyJZYtW4bjx4+jsLAQYWFh6Nq1KyZOnIiuXbu6vd+UlBQP1Nb/mcuPN3DQvclRlydTQQ5MORdhO2F5cIe+1Vs58iij0YgDBw6IvQzKVJV0FhUViWOvAgMDa6KqVMsxZshdZvO1WdMdLcZOntO7d280btwY6enpmD9/Po4dO4bbb78d0dHRKCkpwZkzZ7B8+XJcuXIFADB69Gif6DnGmCFX1VMHw3b9BrmfjiVn4nmVRCLB3Xffjbvvvtut5/Xs2dNp//hvvvmmOqpW5xSXa+kq3/XWGWNuufX4ZArIgmpguRo/PTjUNIPBgIMHD7qddALW7lVlS2N06NDB01UlP8CYIXfp9XrxYgW7+9cspVKJL774Ao899hguXbqEAwcO4MCBAw7Ljhs3zq31MT2JMUOuspTan/uU7/3nL5h4ku8pN1OPxMUJHQxZaXbbMk0Q5IFh1VUrh5hzVg9nSadarUbHjh3ZvZaIqI5LTEzE2rVrsWTJEmzatAkpKSnIz89HYGAgoqKi0LlzZ4waNYoXkqhWKj85psRPZ61k4kk+Ry6RwGyzXajX4cdtn0MjVyNAoUGAUoPxHYZXmNLeVJBtv5/gCEg17EJXG6SmpjpMOjt16gS1Wl3l8+vXrw+z2cyuTOQyxgy5Sy7nKZO3aTQa3H///bj//vu9XRWX3GjMvP/++3j//ferqTbkywJlCrsVHWRg4klUIyQlJXbbuuxM7DdcW3RZJVdhQseKi2kbcy7ZbasaJ0Aiqanp761JMNd3uz7x8fEoKipCcbH1sOtO0gnA4fq7RJVhzJC7uBQauYsxQ66Slztflfrp5EJclIp8jmCxv8pTYtLbbatkjg/kxtyLdtvqmITqrZgjEgn721YDpVIpLpPibtJJRERERL6PLZ7kewT7AdUlFvvEUxAcLKViMsKUb9/VVlGPLRq1SdkanYIgMOkkIiKiOqPQbLDbNjopV9sx8SSf02BAf5RmZVknGRKA7OZRaKfRwGgxwWQxQSVTVXiOUZtZIWFV1GtYU1WmaqJSVfzbEhEREfkzrbnULikz+mlnOiae5HOK2reFyRAPuVyOhIQECNo0JF65tmRNgKJia5gxx76brSwwDFIVpy73NXq9HhkZGYiLi6vW8bAnTpyAyWSCXC5HYmJite2X/BdjhtxVYjP/AGfaJlcwZojsMfEkn2O0WGAUBAgAZGo1woLCEGOIgsUiILdEi2JjaYXnGLIv2G1LA0IgmIyQyBUerq2fXpLyAL1ejwMHDqCkpAR6vR6JiYnVlnwaDAYYjUZY/HTdK6p+jBlylyAI4pqMRK5gzBDZY+JJPkcul0MQBHEa8qigSEQFRcJkMSM9/yKahMVUeE7J2YN22xIpl0jwJbZJJwBkZmYCQLUln+VjhqgqjBlyV9mxikkEuYoxQ64SyjWU+GvE8BeXfE6bNm0c3i+XytAsPNbhY6bCXLttqSa4Blo7yRWlpaU4ePCgXZcjACgoKIDJZIJCceN/J2cxQ+QMY4bcxa6S5C7GDLkqun0bHMg8IW4r/XSSRSae5BfMRVq7bakm2DsVITulpaU4cOAASkvtu0cHBASgY8eO1ZJ0EhEREdVm8rBg5De6lpYFqZh4EtUIg1YLAJBIpZBIpZCq1ZBW0h3Ooi+BYLBPbNQNm3uyinYkEkCoulidU1XSyRlsiYiIiOoOJp7kcw5MeRbGq8knAGSNuxUXmgZCI1dDrVDj5tiuaBnRTHxcMBmgbNgClpJCmEt0EPQlUEbF1Uxl/bUT/g2qLOns1KkTlEqll2pGRERE5FvqKQLRteDakCRlaJAXa+M5TDzJ55jKJSuXLp7FDsm1+5qENrJLPC36YgS07CpuCxYzFBE1vIYnE1CRN5LOzMxMmM1myGQyREVFVfv+yf8wZshdRqNRnKGUwwTIFYwZcpVKpkA907VZ1iVG/5xxnYkn+Ryh3PIGJeWWTzFbzPbbJYV22xKpDPKQ+p6pHFXKWdIZGBiIjh07eqylMzMzE0ajEQqFgkkEuYQxQ+5iEkHuYsyQqwSzGRK5AhaLdfCWxczEk6hmCPYjJkstRgDXDtjlE09TfnaFXUgkUo9UzSFOlw7AulD2gQMHoNfr7e73dNJJREREVJvlKlQ41KwDinU6WCwCVEoNWnq7Uh7AxJN8TsMxo2DIzYUEgFKpRHBABlrVV8FkMcFkNiFEbT9jrURmH8aKsAY1Vte6nmyW8XbSGRcXB4vFAqm0Bi84UK3GmCF3qVQqsfWKaqdWrVoBAHr06IFffvmlWvednp6OAQMGAACGDx+O999/3ysx46ge5PvStiWj/op/xe1SlRR4wIsV8hAmnuRzAkJDIDdfa9WMj2qB6Mhrg6yjg+wTS7Muz367KN+zFaQKjEYjTCaT3X012dIZHMzlc8g9jBlyl0wm83YVqJZhzBDZ46Ve8nmNgqPQsl5ThKqCEaYORrgmxO5xS7mlVJSRTWqyegQgJCQEHTt2FH9kg4KCOHstEREREYnY4km+p9yimC0j4hDYqJnDovrLZ6HdvRIydRCkmiBINcFQhEd7vo5UQUhICDp06IAzZ86gXbt2nEiBiIiIyAUmi8UuKZP46XIJTDzJ55hMJrHbplxeeYgactJhKdLCUqQFAEjVgQjrOdTTVbThnweG6xUaGopOnTrV+BgovV4vjqNRqVQ1+tpUOzFmyF0WmxnXfWlscNksmAAglfI3yZf4asyQ74m9NQl/BxVCECwQAASoArxdJY9g4kk+53JGBkw63bX19Sr5HTVeSbfblqqDoIiI8XAN6zaTyVTpBQFvTLxx8uRJcWmMDh061PjrU+3DmCF3lZaWihcrAgJ846TQYDRj7qqjKCk1QaOW46G72kKp4LhCX+GLMUO+yWIqgV5aIl4UNQulVT+pFmLiST5FEASYMy5CsFhgkcmgl0phMRicljcVXLHbVkTEQB4U5uFa1l3FxcU4cOAAmjZtipgYJvhERN6UmqaF0WhBWlYh4hqGIjVNi7bNI7xdLY+6dOkSfvjhB2zbtg0XL16ERqNBq1atcO+99+Kuu+7Ct99+i48//hiA9QKTu/Ly8rBgwQL89ddfOHv2LIqLi1GvXj106NABQ4cOxR133OHyvlauXIklS5bg9OnTkEqliIuLw+DBgzFu3Dio1epKn5uamoo//vgDu3fvxqVLl1BYWAi1Wo3IyEh069YNY8eORdu2bd1+f+SbTHmXYcy9KE6+I/XTFM0/3xXVXhYLTAcPWW8CyAKwKyAPJQUtoJGrEBkYgTvj+4rFjbmX7Z6uiWtfc3UFrK2xdWRq/bKk02AwIDU1FQB8JvkMCwuD2WzmDILkMsYMucsXY+XImSsoLDGguNSEwhIDjp7J8evEc/fu3Zg0aRKKiorE+wwGA/bs2YM9e/Zgw4YN4pIp12PDhg145ZVXUFBQYHd/ZmYmNmzYgA0bNqB79+6YNWsW6tWr53Q/ZrMZTz/9NNauXWt3/6FDh3Do0CHMmzcPc+bMQbNmzSo812Kx4L333sO8efPsuuoC1hnkCwsLcebMGSxatAhTp07FY489dt3vl3xHuFyDToXXWjllCo0Xa+M5TDzJpwjlDrIAcCT/DM6evggAaBrW2C7xNOXZJ56K8IYerV9dVVRUhIMHD8Jg0/qcmpoKhUKBBg1qbt1UZ5o04UzG5B7GDLnL18YCZ+UWIzuvBHkF1vWT8wr0yAooRlZuMRrU879unUeOHMGjjz6K0lLryfmAAQPQv39/KBQK7NmzB8uWLcO6deuwY8eO69r/li1bMGXKFJivLueWlJSEAQMGICwsDGfOnMEff/yBjIwM7N27FxMmTMDixYsRGBjocF9r166F0WhEQEAAxo4di3bt2uHKlStYsmQJUlJSkJaWhoceeggrV65EUFCQ3XM/++wzcY3RevXqYfjw4YiLi4NKpUJGRgbWrFmDlJQUAMCnn36KpKQktGvX7rreM/kOtVSOSOO1pQSlCv8cE8zEk3yKo8TTJLvWoigI1yZRsOiLYb46qVAZRT1vJZ7+2+rpKOkErOsgVnbFl4iIqs9f+9Jx9uK1daqNJgtMJgt0xQYEqOXQFRtgMlmwfNtpKOTXTlrjGoXi1i6NvVHlavXOO++gtLQUEokE7733HkaMGCE+NmzYMAwfPhyPPvooCgsL3d63TqfDSy+9JPaC+N///odhw4bZlfnPf/6DqVOnYsuWLTh9+jQ++OADTJ8+3eH+jEYjIiMj8csvvyAuLk68/7777sOzzz6LP//8ExcvXsQXX3yBF198UXw8NzcXP/zwAwBrj6Lff/8d4eHhdvv+73//i1dffRV//PEHBEHA6tWrmXhSreGf6TTVXg4ST4tNTicI1x43lmvtBCSQh3m/9c2fFBUVid1rbZWt21nVrMNERHTjzGYLjp7JwdmLBeK/9CwdLl4pgkQqQeMGwZBIJbh4pQjpWTq7ckfP5sBsrvjbWpvs2rUL+/fvBwCMHj3aLuks061bN7skzh2//fYbtFotAODhhx+ukHQCgEajwSeffCIOMfnjjz+QmZnpdJ//+9//7JJOAFAoFHjvvfcQGRkJAPj999+h1+vFx7ds2SL+3j7++OMVkk7AOjvuo48+Km6fPXvWxXdJviwr5wqO62Tiv5MFJm9XySOYeJJPcdTiGRsWgxbhTdEkNAZhmlDxfkO5GW3lofUhlSs9XsfyxFlc/azRsyzpNBqNdveXrdfJpJOIqGbkFeqtSyyo5cgtKEVWXjGytcUwmsxoGh0MhVyKptHBMJrMyNYWIyuvGLkFpQhQyyEI1ufXZlu2bBFvP/DAA07LDR8+HGFhYW7v/6+//gJgXcLtoYceclouICAAEyZMAGBt1dy2bZvDcvHx8ejTp4/Dx4KCgjB8+HAAQH5+Pvbt2yc+dvfdd2P9+vWYM2cO7rzzTqf1aNz4Wgt2Wddjqt0unkhF2DGz+E9+pMTbVfIInjmSb7HpSlumeURTNG4UDQBoFHytRbM07YRdOYkXkk5/nVhIp9Ph4MGDtSbpPHXqlLjMS8uWLb1dHaoFGDPkLtulMaqakbS61Q/T4J5bW+DPXeehUsqQnqVDUYkRkeEBCFArAAABagUiwwOQllmIQI0CjRsEITRQhdtvaor6YbV7opK9e/cCAMLDwyv9viqVSnTp0gWbN292a/8HDx4EALRs2RIREZVPztSrVy/x9qFDhzB69OgKZXr06AHAecx06dLFbh9l+1QoFGjatCmaNm3q8LUvX76MI0eOYNeuXeJ9ZWNSiWoD3zp7pDrPUYtny/rNIY9qCotghtFyretB+YmFJArfmvihtnKWdIaGhqJ9+/Y+l3QC1hl3y9ZkJHIFY4bcZbFYxCTCG2IigzB2YAI27LkAuUyKtMxC5BaUIiTw2kXX3HzrdmxUMGKjgjGwRxMxMa3NsrKyAACNGjWqsqy7E4fpdDqxu2tsbGyV5W3LXLlyxWGZsu64zmLG9n1kZ2c73Me+ffuwc+dOnD59GufPn8f58+eh0+mqrB+RL/O9M0iq0xwlnk3rNUZg/TgcvHwMzcOv/aAYtVl25eTBnOjmRtXGpJOIqK4IUCvQr2ssfl5zTOwglJNfglKDGWqlDJBc6zjUr2usXySdAMTxl660NLvbGm27NItGU3XLsO3+S0ocd4esqg62r2M7xhOwjtl86aWXcODAAYfPbdSoEfr27Yv58+dXWVeqPcwyeZ1IyurCe6RaRHA0AYJUBpPZhLYNWkEpu/YjWn5GW2WDZp6tnJ/T6XQ4cOAATCb7Ae21Iens0KGDt6tAtQxjhtwVEOAbS5Rk5xUDAEr0JpgtFhSVGBESqMTlnGJIJIBMKhXL2baG1mYqlQpGo9FpomfL3TGPtkmgK/svLi4WbztLMMsmCHIWM7b7sF1OJSsrC/fddx9yc3MBABEREejVqxcSExMRHx+PxMREREdHw2w2M/H0M/WVwbCdj9k/LhlV5LtnklQ3OWjxlEilUJYbv2kxlEIw2P9AyELre7RqjvnHGE+TyYSDBw86TDo7dOjgkwunExHVRVl5JTCZLDCZLZDLpGjcIAiBGgWKSoxIz9LBZLYus5KVV4IWjcO8Xd1qER0djVOnTuHixYtVlnWljK3g4GCoVCro9XqkpaVVWf7cuXPi7aioKIdlyroGO2P7OtHR0eLt2bNni0nnvffei9dff93hcICCgoIq60nkizirLfkUR11tJdKKyZ0x71KF+9TRzT1Sp7pALpdXmPY9LCyMSScRkY/JzitGicGEQI0CLRqHokF4AG7pHIPI8AC0aByKQI0CJQYTsrXFVe+slujYsSMAa5fb06dPOy1nsVjEZVdcJZFIxHUwT506hZycnErL207s06pVK4dlDh06VOk+du/eLd4ue2/Atdl71Wo1XnnlFadj0E+cuDa5ouBgUkYiX8XEk3yLUDHxXHJ8LX458Ad+P7oGmTrrIHyL0Qh1s/ZQRsVBFlIfsqBwruF5gxo1aoSEhAQA1qSzffv2TDqJiHxMs0YhCFQr0KxhCOIaheLegQno0DISYwcmIK5RKJo1vPa4v7BdWmTevHlOy61bt87pZD2VGTBgAABr75+5c+c6LVdUVIQFCxYAsK6neeuttzost2/fPpw8edLhY7m5uVixYgUAoGHDhmjfvr34WNlYVrlcDpXK+YSJP/30k3i7fE8lqp3UMvuLDDI/vZ7ArrbkUxy1eO5I3wdtgTVUEyNbIiooEoK+COrY1nblpOqgCs+tEX60pEqjRo2gVCoRHh5eq5LOK1euwGKxQCqVon59b3S5ptqGMUPusp10zZuzIXdoGYmm0SFIyyxE2+YR4oypAWoFhiY1x9GzOWgSFYzQIP+Z6T0pKQmJiYk4ceIEFixYgG7dumHw4MF2ZU6ePIm33377uvY/evRofPPNN8jPz8cPP/yAhIQE3H333XZlSktL8dxzz4ldee+55x5x9tryLBYLnnnmGcyZM0c8vigUChQXF2Pq1KnIz88HADz44IN2v7UxMTE4d+4cdDod1qxZgyFDhtjt12Qy4cMPP7Rb17T85ERUOyml9udc/toyyMSTfIqjxNNik9cVGaxdh0wFFbvCeGOKez/KOUW18ST84sWL4tIYtbH+VPMYM+Quo9EoLo3h7WV4QoNUDhNLqVSC9i38L56lUimmT5+O8ePHw2g0YurUqVi7di1uvfVWqFQqHDhwAIsXL4Zer4dMJoPZbIZU6vqpe0hICN577z08+eSTMJvNeP7557FixQoMGDAAoaGhOHfuHJYsWYKMjAwAQNOmTfHqq6863V+9evVw6tQpjBo1CiNGjEBcXBxycnKwcOFCcXxnjx49MHHiRLvnDR8+HDNnzgQAvPDCC9i5cyc6d+4MuVyOs2fPYuXKlWIdyhQWFoJqv/Lnv37a4MnEk3yMg8TT9stXqLeuYVV+Rlt5ULgHK+VfCgoKYLFYEBYW5u2qEBERuaRjx46YOXMmXnjhBRQXF2P9+vVYv369XZlRo0YhIyMDf//9N5RK92b0ve222/DZZ5/h5Zdfhk6nQ3JyMpKTkyuU69WrFz755BO72WjLe/jhh7Fjxw78/fff+Pbbbys83rt3b8yaNatCcvzwww9j79692L59O0wmE5YsWYIlS5bYlZHJZHj88cdx/PhxbNy4ERcvXoROp6u0PuT79Gr7pXzM0trT68wdTDzJpzi64tMkLAaFQTIYLWY0Co66Ws5sV06qCa6pKjpRO5o+CwoKcPDgQQDW5SRCQ0O9XKPqERsbK3abJHIFY4bc5W4iQ9Vv4MCBWLlyJX788UckJyfj8uXLUCqVaNOmDSZMmICBAwdi/PjxAKytmO66/fbb0a1bN8yfPx9bt27FhQsXUFpaiujoaCQmJmLUqFHo06dPlT2sFAoFvv/+e/z0009YunQpLly4AJVKJe5j6NChDvehVCrx7bffYvHixVixYgVSUlJQXFyMwMBANG7cGN26dcPYsWPRokULzJs3Dxs3boTZbMaff/6JkSNHuv1+yXfk6O1brg1wsLygH5AInA6rztPpdHaD4Fu1auW1K2e6M2dwcOrz4rYgkeDyy2NhCbSulZXUpBsahUQjd9tCu+cFtOgCdUx8jdYVAMwlJTAVF8Ncooc8KABKH25FzM/Px6FDh2A2W5N2mUzmV8knEVF1SU1NhclkglwuR3x8zf+20PW78847cfbsWXTs2BGLFi3ydnXIT3j6mLDj+0+BFdda2EtVUgxYtLjaX8dVnsoN2OJJPkUw21/hkUiluKl1b5jMJuSW5EMtV1do7QQAqdpLC3vXkkGe5ZNOADCbzUhPT2fiSUREPm358uVYtWoVYmNj8d///tfp+pmnT58W19ls06ZNDdaQiFzBxJN8S7kGeKlcjsYhDaEtLUBuiRbhmlAUn9qH/L+XQ6oOgFQdCGlACMJuGualCvs+R0knYJ38oHXr1k6eRURE5BtCQkKwbds2ANZ1K994440KZXQ6HV599VVxXcu77rqrRutIdCOMFhNspyyrHc0a7mPiST6l/BhPydXxV2qZEp0btoNEIoG5MAeCSQ+zTg+zLg9STQgkCo69caSypLNdu3Z+M77N9v3VpmVgyHsYM+Qu25FJ3phFvS7r3bs3GjdujPT0dMyfPx/Hjh3D7bffjujoaJSUlODMmTNYvnw5rly5AsC6PEq3bt28XGvGDLmuvjoU+Tbbcol//i4x8STfUn5WW6n1QK1WqMW7ys9oq2rUAhKJNxMo3/wx0Wq1OHz4cIWkMyIiAm3btvWbpBMAjh49Ki6N0aFDB29Xh2oBxgy5q6SkRFxOJSDAS8M76iilUokvvvgCjz32GC5duoQDBw7gwIEDDsuOGzcOr7zySs1W0AnGDLnKYrRfj1UQ/HNyISae5FOctXjaMmqz7bYVYY7HetQIH72CWZeSTiIi8n+JiYlYu3YtlixZgk2bNiElJQX5+fkIDAxEVFQUOnfujFGjRvFCEtVKZp3WblviYHlBf8DEk3yKUC5RKjUbMe/gUmgUajQOaYgejTvBlJ9lV0YeGlmTVfR5Wq0Whw4dgqXcQcufk87g4GBxtjkiVzBmyF0ymUxsvSLv0Gg0uP/++3H//fd7uyouYcyQqzQyBYpttmXwz0VH+ItLPsWst+9qYDEYsObwOhgVUnRr1MGaeGrLJZ5hDWqyig75ym9KXl4eDh8+XCHprF+/Ptq0aeOXSScAxMXFebsKVMswZshdKpXK21WgWoYxQ65SlhsyJvXRYVw3yj/PQqn2KtfiKcC6licAFOh1ECxmmAqu2JWRh3o/8fQFdTXpJCIiIiLfxzNR8inlx3hCArvOBqbCHKDcgGuFD7R4+oIrV64w6SQiIiKqZUotJrvtiivW+wd2tSWfomkcg/BuXSEIAjLyL6HAVIzGYQ1hkFgQpAyAISvN/gkyOQRf6I7gA31tW7ZsCbPZjMuXLwMAIiMj0bp1ayadRERERD4s21Rsl5TpvX9a6RFMPMmnBDRuDNWIYTAbTZAWXwSkOnQPUIvLqugvptqVl6oCIFNpvFFVnyORSNCqVSsA1jUK61LSee7cOXGimGbNmnm7OlQLMGbIXXq9XpwohmP3yBWMGSJ7TDzJp0hkMhSZzTCaTQgPaIBuib1RatLjWFYK2kUlwpAy1668VB0IicxXwtj7l6dsk8+6NIteQUGBuCYjkSsYM+Qus9nMGUrJLYwZInu+csZOVIFCqkCYOgQAEB1kXTIlozDProxUFVjj9bIl/pjU8I9KZT9k/IEjIiIiqj1MUlmdSMrqwnukWqZNmzZOEytTQY7dtiI8qqaq5TNyc3Nx+vRpdOjQgV13rqosZogcYcyQuzQaDWOG3MKYIVc1TIhH6unj4rZM7Z/nd0w8yedUtqC7RV9kty0LDPd0dXxKTk4Ojhw5AkEQcODAAXTq1InJJyqPGSJHGDPkLolEwgSC3MKYIVcpG9bH5cRr53NBqiAv1sZz6sbMI+QXBIsZgr7E7j5ldN1ZBN426QSAkpISHDhwAEaj0cs1IyIiIiKqHC/5kk/J3LQZZ+fMBaQS6C1G6KPCoPu/u6FRqNG7YQdo4rvCoi+GoC+GpbQY6kbx3q1wDV3JvHLlCo4ePSomnWVCQkLYckNERERUi4XINUgs0ovbKql/tnjyjJV8iiEnB+biYgDW4CzOvILfjqwAAHQKawZVdHO78vLQ+jVdxRrnLOmMiopCYmIiu/EA0Gq14jiasLAwb1eHagHGDLnLZLq2wDsv+JErGDPkqkC5CrH6a/EiVQuVlK69+C0gnyKYzfbbNjmVTl+I8qMZpQrfGN/oqdzPWdIZHR2NVq1aMem86sKFC+LSGEwiyBWMGXKXwWAQL1YwiSBXMGbIVYJgsds2+ekwKn4LyKcIZvsEyzbxVAt1K8nKzs7GsWPHmHQSERER+bFiTRAud0pCoTYfFosFCmUAWnq7Uh7AxJN8Smj7dsjPyECJsQSn886hJEiJ6KAGMAtmqHT5dmWlqgAv1dLznCWdDRs2REJCApPOcho2bAiLxQKplPOlkWsYM+QuhULh7SpQLcOYIVelbt2K0pU7xMTMoJYB93q1Sh7BxJN8iiI0GGFNYhFgMiAvWAJTkBpJTRMBANLcS3ZlLfpib1TRsWpMBJl0ui8yMtLbVaBahjFD7mISQe5yJWZeeuklLF26FABw8uRJT1epVrL9jDZt2oTGjRtXKPPnn3/i559/xqlTp6DT6RAcHIx77rkHL730Uk1X9/qYzFAbbc77pBbnZWsxJp7kW65+55RyJdo0iIciPAxFDVshWBUIyb+bAZucSx7kf2t4ZmVl4fjx40w6iYiIiFywcOFCTJs2ze6+vLw8KJVKL9WInGHiST6lfMIlkUjQMqIZBEHAuV3LAKkMUpUGUlUAQroN8U4lnbjRnDA3N9dh0tmoUSPEx8cz6SQiIiIqZ/bs2QCs54wTJkxAp06doNfr0b59ey/XzHUGsxF1IU1m4kk+ptz00VeTLUtpEQSTAQBgNpTAXJgLTXMfOKBUYzIYEhKCoKAgFBYWivcx6SQiIiJyLC8vD9nZ2QCAAQMG4LXXXvNyja5PbLfuOFiSKW6r1IFerI3nMPEk3yIAmZmZ4qQfsRERAABTfna5ghIoQvxrDU+5XI6OHTvi4MGDKCwsZNLphsOHD4tLY9SmK5zkPYwZcldxcbG4NEZAgP9ObkfVhzHjeSUlJeLtli1r7zyw0mA1CmIDUVpaAkEQECDnOp5EHqfPzYWg18NisUAil0MwWdcxMhVcsSsnCw6HROZ/Ez3I5XJ06NABly9fRuPGjZl0ukgQBPEfkSsYM0REtZ/Fcm0Sntq8Vqoh6zwMmWdRNs+61E9TNP98V1Rr5WzfAePOXQAAC4CTZ07iQEs16l9OR4RNOXmIj81IWY0JokKhQGxsbLXtry7QaDSQy+WcdZJcxpghd0mlUrH1impeq1atAABTpkzBmDFjMH36dGzfvh0AEBsbi0ceeQRDhw4VyxcVFeH333/H9u3bcfLkSWi1WgBAaGgo2rRpg9tvvx133323w2Tl/vvvx549e9CrVy/8+OOPuHDhAn788UckJycjMzMTGo0Gbdq0wYgRI3DXXXc5jQmpVIqCggLMnz8fmzdvxrlz56BUKhEfH49x48bh7rvvdum9WywWbNiwAStWrMChQ4eQl5eHwMBANG3aFH379sWECRMQEhLi8Lll7yUpKQnff/89Tp8+jR9++AF///03srOzERERgR49euC///0vWrRoAQAoLS3Fzz//jJUrVyItLQ0ymQxt2rTBQw89hP79+7tU58rey7Zt27B48WKcPHlS/DwTEhIwaNAgjB492qVJgWbPno3PP//c7r7PP/9cvG/48OF4//33b6iuNSlYpkJ8sUHclsv8c6kvJp7kUyRSmd12gU6LX/cvws2qSNgenuWhvtHN9npPQPLy8hAaGso1BKtJfHy8t6tAtQxjhtylVqu9XQUCoNPpMH78eJw7d06878SJE3aJ1/bt2/Hss8+Kyaat0tJSZGZmYsuWLfjtt98wZ84cp0kbAGzcuBHPP/88iouvLeGm1+uxc+dO7Ny5E6tXr8bs2bMdXsTKyMjAww8/jMuXL9s9d9++fdi3bx+2bt1aZSvd5cuXMXXqVOzbt8/ufq1WC61Wi4MHD+Knn37Chx9+iFtuuaXSfa1atQqvvPIK9Hq9eN+lS5ewfPlybNq0CXPnzkV0dDQeeeSRCku77NmzB3v27MGrr76KiRMnVvo6zuTl5WHKlCnYvXu33f0GgwF79+7F3r17xb9JVFTUdb1GbRUkU6JZqVHclgZovFgbz2HiST5FsNivW2RQWBO7QoP9mp3yUB9r8XTD5cuXceLECURERKBt27ZMPomI/IDBYKi6kBMymQwymczhY0aj8bq7hHtqv1Kp1GvdGn/99Vfo9XokJSVh6NCh0Gq1+Ouvv5CUlAQAOHXqFB577DEYjUbIZDIMGDAAPXr0QEREBLKzs3Hw4EGsXbsWFosFBw8exKxZs5xOSHP+/Hk8++yzMBgMGDx4MJKSkiCXy7F7924sXboUFosFW7Zswbx58/Dggw/aPTcrKwv33XefmPx2794dQ4YMQXBwMI4ePYrffvsNq1evrrR1Lz8/Hw899BDOnDkDAIiJicGIESPQvHlz5OfnY+PGjdi+fTu0Wi0mTZqEr7/+Gn369HG4r9OnT4trWo4YMQI9e/ZEfn4+lixZgpSUFOh0Orz55puQyWQ4efIkevXqhUGDBkGj0SA5ORkrVqwAAMyYMQNDhgxBRESEw9dxxmAwYMKECTh16hQAayv1iBEj0LRpU2RmZmLx4sU4c+YMUlJSMGnSJCxatKjSGBs8eDBat26NnJwccSmVwYMHY8gQ64oHDRs2dKt+VDOYeJJPKZ94Wq62KEr1JfYFLb61sK6rLZ9lSScA5OTk4OjRo0w+iYj8wM6dO6/7ufHx8YiJiXH42J49e2A0Gh0+VpVmzZqhWbNmDh/bv3+/XSueOxo1aoSEhITreu6N0uv16Nu3L77++mvxt9c26fvss8/Ez2vmzJm44447Kuxj9OjReOihhyAIAlatWuU08bx48SIUCgW+++47MbEFgGHDhqF79+5iIrdkyZIKiefMmTPFpPOxxx7D1KlTxcfuuusujBkzBvfff784I6sjH374oZh03nbbbfj444/tWt7HjRuHpUuX4pVXXoHJZMILL7yADRs2ICgoqMK+Ll26BIVCgW+//RY333yzeP/IkSNx++23i+ckjup79913o379+vjhhx9gNBqxefNmjB492mm9Hfnmm2/EpPO2227DzJkz7ZLu+++/H48++ih27tyJo0ePYsWKFRgxYoTT/bVo0QItWrRAenq6eF/z5s1x2223uVUvX1FYUowMy7VzQZnRgmbeq47H8GyXfEu5hFIhVyAyoB4UhlK7+yXy2rfa0aVLl8Sks0xOTg6ysrK8VCMiIqLa5//+7/8cXvAtKSnBX3/9BQDo1q2bw6QTAHr16oVOnToBsHb/dNQlt8x9991nl3SWGT58uHixIDU1FaWl185TcnNzsWzZMgBAhw4d8PTTT1d4flxcHN59912nr5uZmSnuo3Hjxvjoo48cdvcePny4mPTm5uZi4cKFTvc5evRou6QTAIKCgsRWQsB6sWLKlCkVnjtq1CjxdlkC6Sqz2YxffvkFABAZGYkPPvigQkuvQqHA//73P/FC/KpVq9x6jdru9L6DkP5jEf+V7C3ydpU8gi2e5FPMNuMOACBEE4Jbm/ZAvZQFdvfLw2pXV9tLly5VGC8BWLua1LVxDJ6Qnp4Ok8kEuVyOxo0be7s6VAswZshdBoNBnFzIlclPyDMUCgU6dOjg8DGNRoPNmzfjwoULDlv9bMXExGD//v0AYJc0lnf77bc7fSwhIQEZGRkAgIKCAjEx3L59uzjb6siRI2E0Gh3GzK233opmzZrZjVcts2PHDrHldsKECdBonI/5+89//oOff/4ZJpMJGzduxH/+8x+H5WwTTFu2x8B+/fo57IVl23XVdr1xV+zfvx/5+fkArN18nf1toqOj8fLLL4uTDZH/YeJJPkUwmey2GwTVR+uIeFwyme3ul9eiNTydJZ1NmjRBXFwcZ0isBrm5ueKajEwiyBWMGXKXyWRi4ukDYmNjK/3869evj/r1HZ8jFBUV4eTJk/j333/FpBOwtsg5UzbTqyO2CZTJ5vzl4MGD4u22bdvCZDI5rXO3bt0cJp4HDhwQb990001O6wBY33PLli1x4sQJHD582Onsy3FxcQ6fHxwcLN52Nqu+beJrcXO40+HDh8XbXbp0qbTs9U5cRLUDE0/yKZJyA8mNRTpcTj+OMJPNQU6mgDqmVQ3XzAUODvIXL15ESkpKhfuZdBIR+ZfyXRjd4WwCIADo0aPHDU0u5Eznzp1vaHIhb6lsBlpbWVlZ2LhxI44fP45z587h/PnzyMrKcvieK/scbJOy8mwnv7FNxq5cubb2eHR0dKX1bNKkicP7c3NzxduuLLEWGxuLEydOwGg0oqCgAKGhoRXKOLqvPGctqzdyvmL7eTRq1Oi69+PPjBJJnUjK6sJ7pNqk3MFfFRqG6EId8m3uk6o0kChrflr7gmPHEdKmtcvly5JOfXY2VJHXugYz6ax+CQkJXF+P3MKYIXdVtZyKp1pBPbXWbG1dw7aqz9lkMuGjjz7CL7/8YtcKWUaj0aBnz57Izs4WJ9OpzPXM3mvbFTUsLKzSCwCBgYEO7y8qujbGr7JutmVs47OkpMRhkumtmYjLutkCXJbImQbqMNh2YK6d386qMfEk3yLYd9+QSKUw6XLt7pOqAmr8ZPHCgoVI+20Rmk6cgMYjh9tUUGL//1VlSWfBsePQHjqM0LZtENq+HZo2bYpmzZrxZLea8YeM3MWYIXdx9vHa4aWXXsLKlSsBWJPrbt26oX379oiPj0dCQgJatmwJuVyO559/3qXE83rYtsrq9fpKx5s6W4bHNtksKSmpcsyq7QzFvnZ8s61PZeNpyf8x8SSfIljKdXeRSmEpKrC/SxVQgzWytnSm/bYIAHD+518BwD75LCcjIwOpqali0gkA+UePoWX79kw6iYiIPGTfvn1i0hkbG4u5c+c67abq7gQ57oi06eWUnp6OxMREp2WdzWxvO041LS0NrVtX3uPq/PnzAKxJXlhYmBu19TzbNT8vXbpU6cRBp0+fRlFREZo0aeJz74NuHC/fkU8pP84iuzgHewPlkLbsAlWTNlBGxUERUbPjA0LatEbTiRPE7fM//4r035c6LOso6QSA1r16oW3fW5l0EhERecjWrVvF20888USlYyOPHz8u3r7esa7OdO3aVby9e/fuSsvu27fP4f3t27cXb+/atavSfWRmZorrffribLBt27YVb9tOmuTI7NmzMXr0aPTq1Qs6nc7DNfMdSql9W6C/Jmj++r6otip38D+Xn4Ff9ekwRMZA07QdAhK6I7hDvxqvVuORwytPPiUSmEwmnD9/3mHS2f2B+2uyunWOTqdDYWFhnfqRohvDmCF3mc1m8R/5Jtv1OAMCnPeOWrduHS5fvixuOxoLeiNuueUWqFQqAMD8+fNRUlLisNyRI0fsZsC1deutt4rjcOfNm+d0HwAwd+5ccXKjvn373kDNPaNbt25iV+Hly5dDX27pvDIFBQXYtm0bAOv6p1V1L/Ynapl94imr3mshPoOJJ/mWclN0C1cbCM02Yz8Fg+MDlqc5TD6XLhO35XI5ItMyULj/2o9I65uZdNaEM2fOICUlRbziS1QVxgy5S6/Xo7S01OlJM3lfTEyMeHvx4sUOWzJ37tyJadOm2d1X3X/TgIAAcVmQc+fO4dVXX62Q3GZnZ+P55593uo8GDRpg6NChAKxdbZ9//nmH4yOXLVuGn376CYC1S+u4ceOq621Um4CAAIwZMwaAtWfYtGnTKnweBoMB06ZNEydV8sX34UnlQ9VP806O8STfUv5HQoA189TYdEFQ1GsIbykb21k21vPCz/NgLi5Bw8F34uKq1chauAQN5XJcighHQlJvdJ/IpJOIiKgmDB48GLNnz4bRaERycjJGjx6NoUOHIjIyEllZWfjrr7/w999/VzjX8ETPhyeeeAIbN27E2bNnsXr1aqSmpmLUqFGIjIxESkoKFixYAK1Wi4iICOTk5Djcx8svv4y9e/ciLS0NGzZswODBgzFy5EjExcWhoKAAGzduRHJyMgDr5Ffvvvsu6tWrV+3vpTo8+eST2Lp1K86cOYNly5bh6NGjGD58OBo2bIi0tDT88ccf4nqmvXr1wrBhw6rttWfPno3PP/8cADB58mQ8+eST1bbv6mJRquy2BanzmZBrMyae5FvK/RgoFUqESZVQSK59AWVB4TVdKzvlk8+MJX/g8to/Yb56lU5lMuHmgQMRN3qk1+pY10RGRsJisXDWSXIZY4bc5a2lKMh1sbGxeOONN/DGG2/AbDbj8OHDOHz4cIVy3bp1w1133YU333wTAHDy5El069atWuui0Wgwd+5cPP744zh27BhSUlLw3nvv2ZVJSkpCjx498MknnzjcR0hICObNm4fJkyfj0KFDyMjIwKxZsyqUCwsLwyeffILevXtX63uoTgEBAfj5558xadIkHD58GKmpqZgxY0aFcjfffDNmz55d5+bEuGywn+yqFBYnJWs3HkXJp8jLrWcVUT8avQPCIJdcOzmUemENz/LKJ59mm/W2Kiy5Qh7XsKH3WsGpdmLMkLs8tU4nVa/Ro0ejVatW+PHHH/Hvv/8iJycHcrkcERERaNOmDYYNG4b+/fujsLAQ7777LoxGI9auXYvx48dXe10aNmyIhQsXYvHixVixYgVSUlIAAM2aNcPw4cMxfvx4/Pjjj5XuIyoqCosWLcKaNWuwevVqHD58GHl5eQgLC0NsbCwGDRqEe+65x24JF18VGRmJRYsWYcWKFVi1ahWOHz+O/Px8BAYGol27dhg+fDgGDx7MC4J+TCJU91ReVOvodDqcPHlS3G7VqpXXBnSf/PATXNm+Q9yOHHIbIttGARaT2DWm3i33eqVuttLS0mA2m5H52hswFV7roiMPDkLPX3/yYs2IiOhGpaamwmQyQS6XIz4+3tvVISIv8/QxYcf3nwIrksXtUpUUAxYtrvbXcZWncgO2eJJPEYRyXQvyMpG3dRNkgaGQqgOhbtrOOxWzceHCBZw5cwYFx45DKgiw7fhrKtQh/felbPEkIiIiIpfozQaoqi5W67Etm3yLxb4B3mIsASDAXKSFMScDgsm7swnaJp3aQ4eRGxyEvKBAyIOvXQWqbJ1PIiIiIiJbkeowu23buU38CVs8yceUSzz1JYDNkE55cEQN1+ea8+fP4+zZsxXW6Wx45+3oev8EpP++VBzzWfY/Wz5rxvHjx2E0GqFQKNC6dWtvV4dqAcYMuaukpASCIEAikUCj0Xi7OlQLMGbIZeWXEyzfA9BPMPEkn1JhHSND+cTTO9OEO0s62/a+GV3vt67tWX7CISafNcdoNMJoNHq7GlSLMGbIXYIgOFwXksgZxgy5ylRwxW5bYmHiSeR55a7wpFtKoFbJEau3LjQs80KL57lz53Du3LkKSWe73jejy9WkswyTT+9QKBR2/xNVhTFD7ipb3qGuLfNA148xQ65SyWQottmWwj8vWDDxJJ9iyMm12z5rFpATFoBxmQUAAHlIzSaezpPO3uhyv+Op15l81jx2lSR3MWbIXewqSe5izJCr1BL7lEwG/7xYwcmFyKeU75IiAVAguxamElnNtU6UJZ367Gy7pLN9JUlnmcYjh6PpxGutoed//hUFx457rK5ERERERL6MiSf5lnKJp0UCqMruk0ghSDwfsoIg4OzZszh37hwAQBUZidC2bQBYk87OVSSdZWyTz9ixYxDShi0sRERERGTPVG6omX92tGVXW/Ixgc3jcLnoCgxmIwSLBSUBUoQbzQAAqUoDuebGF6+tjCAIOHfuHM6fP293f2j7dmjduTMSknq7tb/GI4cjpHUik04iIiIicuiSUWeXlJX4Z09bJp7kW+IeegCZxxKRV5oPy4VDCM85hfBS68yTEqUG0oBgj76+o6QTABISEtCoUaPr2ieTTs+7dOkSLBYLpFIpGjZs6O3qUC3AmCF3GQwG8bZSqfRiTai2YMwQ2WPiST5FHhSEEHUkNLIwyPR7EWQyodnVxFOq0kDi4a62QUFBkEgkdmNNbyTppJqRnZ0trsnIJIJcwZghd5lMJnFNRiYR5ArGDJE9jvEknxVYlIfmpUYxSBWhDTz+mpGRkWjdurU49XmrVq2YdBIR1TEymQwAYDabuQ4jUR0nCALMZuuwr7JjQ3Uzlltyx1+POmzxJJ/TvHlzCIKA3F1SmG0fkNVMuDZoYE1wzWYzW0JqibKY4Vpp5CrGDFVGqVRCr9dDEAQUFxcjMDAQKpXK29WiWoYx4x+Ki4vFC1CearmOatwE6RE2qx9o/HONaSae5HOCgqwTCOWUFtndrwiPrrE6lCWfVDuUxQyRqxgzVJmQkBAUFhYCAHJzcxEQEOCxlg7yX4yZ2k8QBOTmXltjPiQkxCOvo2kZiwvdr637GqTyz98odrUlnyQIAiz6Yrv7lJFNqnX/RUVFVRckIqI6p2y8PwDodDqkp6ejqKiI3W6J6oiy88T09HTodDoAgEQi4UXLG8QWT/Ipp776BunHDkIqkcJSooYpPhwtGoZCYSiFPDyqWl5DEAScPn0aGRkZaNeuHSIiIqplv0RE5B+kUiliYmKQkZEBQRCg0+mg0+kgkUjYikVUB5Qf3y2RSBATEwOp1DNtdgEyJWKvTqYJAGo/Pcww8SSfoj18BIqMTACADMDhcAGNunZCqCIQirAbTzzLks709HQAwJEjR5h8+oHS0lJxvJ5arfZ2dagWYMxQVYKDg+2ST4vFAolEIv5PVJXyiQvVTmVJZ3Cw55b0C1UEILH42vI7Mj+dBJmJJ/kUi2Cxv0Ny7WAtVWkcPMN1giDg1KlTyMjIsLvv6NGjuOmmmzjVeS2WkpIiLo3RoUMHb1eHagHGDLkiODgYCQkJ0Ol0OH36tJh0evIElPxHYWGheIGLMVO7yGQyKJVKhISEICgoyGMtnc4YjcaqC9VCTDzJp1gsdvPYQoAEgVJrmEoU198q4SjpLNOqVSsmnURE5JBUKkVISAhkMhksFgvkcjni4+O9XS2qBQ4dOgSj0ciYoSoJmiBI2veBNk8Ls8UCmTrA21XyCCae5FNUHdogRb4XsFggCBYUhCuhvhqm19tNRRAEpKam4uLFixUea926NaKiqmfsKHlPvXr1YDKZIJfzkEauYcyQuxgz5C7GDLnq4N/bcWX1TnHbpJaj8zgvVshD+E0gnxLZqjX0csBUeAV5RXlo0yAcshsYF+Es6ZRIJGjdujWXTfETjRs39nYVqJZhzJC7GDPkLsYMuUxXgvr513r9lZb65wzaTDzJpyhlCjQKiYJZEYiY8CYIbZMAqSQfsgD3101i0klERERE5BuYeJJvuXqBR3c0GZbiQhjTt0EdGYyIAQ+4txtBQEpKCi5dumR3P5NOIiIiIvIlBrMRdWG2ESae5JMshhLr/6VFMOUVQerGIOvKks42bdogMjKyWutKRERERHS9olq3Rur50+K2LJCTCxHViJzsLEhNJrv75MGurbPJpLNuSk1NFZfG4MyB5ArGDLmLMUPuYsyQqzSNG0F7UxOUlJRAEAQEKph4EtUAAUVFeVBJAaXNkp6y4HouPfvKlStMOuugkpISGI1GmMpdsCByhjFD7mLMkLsYM+Qq/cVUlKafgASAdUpN/0zR/PNdUa11etFCWLJyoBcAPYACuQSxkYGQKlQuPb9+/fqIjY1FWloaAGvS2bZtW9SvX9+DtSZvk0gk4j8iVzBmyF2MGXIXY4ZcpZEq0FBvFLcVMqkXa+M5TDzJpxgKCyE3X2vqPKFRollgGATBAomk6i+hRCJB8+bNAQDp6elMOuuI9u3be7sKVMswZshdjBlyF2OGXBUmV6NdkUHclgaovVgbz2HiST7FDMEuKAVBAsFsAgShrO9BlcqSz+joaAQGBnqknkRERERE5DomnuRbyiWXMgiQqgIgkcrc241EwqSTiIiIiHye2WKBUbi2LRUE54VrMSae5FOk5TJPiwyQKjUVygmCgNOnT6NRo0YICPDPmb+IiIiIyP8d3rMXpgPXzoENqiL44zzITDyvEgQBq1atwu+//47jx4+juLgYkZGR6N69O8aPH48OHTrc8GukpKRg7ty52L17N7KyshAcHIwWLVrgnnvuwfDhwyGTudeq54/UchXMKBW3WxcZIA+xn9FWEAQcP34cWVlZyM7ORqdOnaDRVExOqe7Izs6GxWKBVCrl7MXkEsYMuYsxQ+5izJDLzBaobZs8/XQ+KiaeAEpLSzFlyhRs3brV7v6MjAxkZGRg5cqVePrpp/Hoo49e92ssXrwYb731FozGazNW5ebmIjc3F3v37sXSpUvxxRdfICws7Lpfwx9IIYXZZjvYIkCqChK3bZNOANDr9Thw4ACTzzru0qVL4lpp/HEnVzBmyF2MGXIXY4bIHhNPAK+++qqYdLZo0QJjxoxB/fr1cfToUfz2228oLi7Gxx9/jKioKAwbNszt/ScnJ+P111+HIAjQaDQYO3Ys2rVrh5ycHCxZsgQpKSn4559/8Mwzz2DOnDmQSv1zCmWXlO/TLgE0zdpffUjAsWPHkJ2dbVfEaDSitLSUiScRERER1TomSOpEUlYX3mOlduzYgVWrVgEAbrrpJnz77bdQqaxrRt51110YNWoU7rvvPmi1Wrz33nsYMGAAgoKCKtulHYPBgDfffBOCICAgIAC//vor2rZtKz4+btw4PPPMM9iwYQN27NiBNWvW4K677qreN1mLCBZzhftkweGwWCw4fvx4haRTKpWiXbt2CA8Pr6kqkg9q0qQJBEHgWmnkMsYMuYsxQ+5izJCrwtTBNgPN/DdBq8NNa1Y//PADAEAul+Odd94Rk84yLVq0wOuvvw4A0Gq1WLx4sVv7X79+PdLT0wEAjzzyiF3SCQBKpRIffPCB2MX2m2++uZ634T/KJ54SCeSRTZwmne3bt0e9evZjQKnuCQsLQ3h4eJ3vqk6uY8yQuxgz5C7GDLlKIbGf58VfL1XU6cRTq9Vi586dAIA+ffogNjbWYbnBgwcjIiICALBu3Tq3XmPNmjUArMt7jBs3zmGZwMBAjBgxAoB1AqKzZ8+69Rr+RLBY7O+QK3Ai5ZTTpJMtnUREREREvq9OJ57//PMPLFcTnZtuuslpOalUiu7duwMADh48iPz8fJdfY+/evQCAViKgHYMAAEClSURBVK1aVdoyZ/v627Ztc3n//sa2vVMAcD60Ia5cuWJXhkknEREREfkLebn5Xdji6YdSU1PF2wkJCZWWbdmyJQDrBDcpKSku7T8zMxMFBQUAgPj4ylfjadGihXj7xIkTLu3fH5VarLP+CgAyw0NxUaG2e1wqlaJDhw5MOsmOyWSC0WiEyWTydlWolmDMkLsYM+Quxgy5KkCmtNuWC04K1nL+OnbVJRkZGeLtmJiYSstGR0fbPa+sBbQyZWM7Xdl/VFQUpFIpLBYLLl68WOW+/ZUgCFeTzjAUqVUQbK4AlSWdHCtB5R07dkycsr461twl/8eYIXcxZshdjBm6Xn6ad9btxDM3N1e8XVULmm2yo9VqXdp/Xl6ey/tXKBQICAiATqdzef/+qizpBADVJS3Or1kBCQRElxZh928GmASzuOyKrFEwOiU0BgBYIOA4SiENrgdVVBwKlm6BpbBYnE1O2q0VujeNhaXY2gp9xJhv/WJbBBg3HIPBbILk6n5VkCDC5utRCAsgk0GmDkSJ2QiDxSTuVyWVIwJyCCYDAEAnmFA2UtUgWFBqubZfIVyFbh2bi/tNRSmMSjXUTdpAt2kPjBnZkF7dr6lFNPr06A6TNhMAcMqkQ4lg7Yxs2paCUl0JpGWfAySIsqlvMSwwSySQBQTDIJhRbNJDKrEm8VJIEC3XQDBY508rFswwXT3EmQUBOotR3K9ZLUOPm671BrgAAwolAjQtOqP03xMoPnoKsqv7La0fiL6D7oD5ivWCS5q5GNqrLdiWf86jOEsr7hcAoqEQu1yUwgIjBMgCQmABkG8qEfcLANHyAEiu1rcUFhiEq5+wAGgtBkgtZus7kEigSYpHsFxhjSUYcQUmqJq0hSQ9D7nJ/0AutQ7gN2kU6DhqCDTZ6ZBIpMgylyLTogcASE5movDMZUgt1+pbH3Ior3Z+MUCAHhZI1UGQyGTQGovFzxcA6isCINeXQnK1bKlwrRN5gcUAic1+ozo3RuPQYACAFmZkwABlwxaQGuXIX/HXtdkQJUDsfXcjKisNErkC+RYjLpiLrQ9laFF06AJgM0Y6DDIEXP2ETRBQAgskKg2kciUKTLZz5wFhCg00ev3VskCxcO3qvM5ispttOjC+PhJjrOvRlcCCM9BDUa8RZGFRKJz/JwSbv3HInTejlRyA2YRSwYxUk876QGEpSrenwiKYxV/XQEgRCuvfxgKgCGZIFCpIlWroTAZYYEZZ56NAmQohZgtw9e9eaFPfEovZpWOEFgGQbtkPSYkeGVfjhccI/z1GyMr2KwESere8rmNEYc4lZAsGSKRS5K7/hceIq/z1GFEd5xEhZgACYJYA22RSHiPg38eIGzmPKMrJQSBsSO0nG/IXdTrxLC29dmAtP5tteUrltSZw2+dVpqSkxOX9l5XR6XQu799fWWw6tssMFkhLixGdp4XGYKxQNlNqRLEsy/o8AKfqBUKm10IBA2JPXYaq9NqP4dmIUyix5EKffhIAkBIeAEEigcQioG1asf0XHkCxze1rX/98aACUXzFUZ3NbYlO+fNmcUgOKg/aJ2+dCNShRB0ClkiEyNQ1h2ddi5pxEj9KGgShOsY4TPhOiQaHcehBNOF+Menr762HFsGetQyGUAJTlHtM5LGv933YkcpFaguLT1+qbHqRCtlIBdVAAwk6dQf3z2mtlCwugz0hB8RHrGOULgSpcVlkPMc3OlaCe1n7iqFKU2G1b61AEKYDyl2mKkeugrFWEzW2LBMg7fwSyqz+AmRoFzmqUUKmVCD2ThwYXro3PLlJLkXMpBaGHtgMALqoVOB1g/aQanSlFvQz7GZZNV/+Vry8AhJWrrwG5MDipb/n3diXyLOpdse45RynDqSA1FDIBGp0ETc5fu3hlkQAZl1IQcMQ6IVq2QoaUYGtX9HrnDWiUUfH7UTGGrfUNKVfOIj5Ssb6h5cpmBV1CcWkaAKBAJsWpUA3klhLIS7VoeTbHrmz6hRQ0NuTCXHAFRVIJUsICAAAarRktMioe55zV19ECVs7qW76ss2OEOag+WqblQc1jBI8RLh4jStQKZF49Rkh5jBD56zGiOs4jbD9xHiOs/PkYcSPnEeVjpwQW+KM6nXja9rm3TSwdsX3c1b76ZvO1gKtq/7ZlvD0W4NSpU2jRogWCg4PF+/R6PU6etB5ow8LC0KRJkwrPKS62HrLKdye5cuWK2H04NjbWrvXXbDbj6NGjAIDg4GAEBoVAlaPF5XrhKFEpIbVY0DBXC7Wx4g9mVYRa1lFBEGrXQUYwV1xz1ZdZall9a9vnW2FGah+nVqtR2zoz8RjhWTxGeFZtO0YAPI/wtNoWwzV5jBCk1lYYi8WCI0eOALCugmE7JwwAnD9/Xpz0tHXr1lAoFOJjBQUFOHfuHADrkMEGDRrYPffIkSOwWCxQq9UV5ropv5pEdanTkwtZTzysjFUkNgbDtWuTriSRgH0rZ1X7t30N26DxBrPZLM72W0YQBBiNRhiNRruEukzZAHpH79NisYiPld8vAPExk8mERv0HQAogOjcPgaWl15101kq16/cNQm2rby37gGtXbWtffWulWvYh8xjhWbWrtrWvvrVSLfuQeYxwztQsSrxte55coZzN+bdQ7gO1Pf92dO5e9pizc3dPqNMtngEBAeJtvV5faUJpm3i60m3W0f6rUlbGNiH2BplMBmn5aZ0lEjEhlskq9juXy+VOE2apVCo+Vn6/wLVEWy6Xo8l9Y6FuGI3MtcsRrC+FURMojs2Qy2QoESw2YzMEKOprYGpQHyq1CmqFAi1txmZcaXIORcWlkEqkkMlkiIxrCU3TWKii4qDT6RBtyIMAIEgdgKLYk3ZjMxQWAWGC1PpcqdRu/FahvuTq2Awp5HKZ3dgMk9mMQosRwtX6GiDYjc2whMhhahANhUIBjVqNZmVjM6Ja4UrTLFxR50IqkUAulyOkeTTUsW0gD45ASUkJ6hXnIFAiQKPWwNT0LHQ2YzMkgoD6FimkEglkUpnd2IwSgx5FZsPV/coghVQcm2GxWFBoNsAMQCaVwiKR2I3NMCokMDWIgUwmQ2BAABrDgFCJAE1UK+Q1LcYVvVn8fGWRQVDFJECuCoDBYEBI4RVAYoZKqYK82WXk2ozNEAQLIi0ySAHIZXK7sRkGsxn5xmLIru5XIpGIYzMEAdCZ9DBCgFQigVQqsxubYYGAmPoNYZLKERIcjCgYIYMJqgbx0BcEITujwLpfqQzmQCUiGiZAIw+AIACavExES0xQyBUIaF6AXFwbmyFAQLhZCgUAhUxuNzbDAgnyDEVX6yOFVCoVx28BQLFRDz0ESCQSyGQyu/FbAgSE1KsPU5AGQUFBiJBY0BIGKBu0gCnQjJyYS5CU7VcmRWzDBATLNJDIFcjNyUK0RA+ZVIYgiRHagmvjtwQICDFLoIYEcpkMZkAcvwWZAlp90dXvo/UztB2/VWo0ohhma1cvudxu/JYAAQH1QmCKDIUmQINQmRQtr47fkgTVR27sGUAQIJFa47BxkwQElo3fys9DtNnaOSskVImCtGvjtwQICLBIECRIIJNKAYlUHL8lUaiRry+CxeYztB2/ZTSZeIzgMYLHCB4jeIzgMcI/jhEyGQLimmLA5BdRxvY8uTzb829xvPdVtuffjs7dFQoFLBaLw/N3R+fr1UEilE+P65Bp06Zh4cKFAICNGzciNjbWadnFixfjtddeAwB89NFHGDp0aJX7379/P8aOHQsAeOKJJ/DUU085LWs0GtGhQwdYLBb07t0bP/zwgztv5YbodDqxGy1gXXM0KMjRiAkiIiIiIvJnnsoN6nSLZ7NmzcTbly5dqjTxvHz5sni7UaNG17X/ymRmZorN2q7u31+dPXsWJpMJcrkccXFx3q4O1QKMGXIXY4bcxZghdzFmyF3+HjN1OvG0HaCbmpqKHj16OC2bmpoKwNqMHR8f79L+w8PDERERgZycHPH5zpw6dUq8XX6Ab11TWFgorntF5ArGDLmLMUPuYsyQuxgz5C5/j5k6PblQ586dxT/s7t27nZYzm83Yu9c6FXViYiJCQspPNO5c9+7dAQDHjx9HYWGh03K7du0Sb1eWABMREREREdU2dbrFMyQkBDfddBOSk5OxefNmXLx40WE319WrVyM317r+z6BBg9x6jTvuuAPr1q2DyWTCggUL8Oijj1Yoo9PpsHTpUgBAXFwcEhMTr+Pd+I+2bdt6uwpUyzBmyF2MGXIXY4bcxZghd/l7zNTpFk8AePDBBwFYJ/d55plnoNPZL4l76tQpvPvuuwCs6+eMHj3arf3fdtttaNy4MQDgiy++wD///GP3uMFgwAsvvACtVgsAeOihh67jXfgXmUwm/iNyBWOG3MWYIXcxZshdjBlyl7/HTJ1u8QSApKQk3HHHHfjzzz+xf/9+DBs2DOPGjUPDhg1x7NgxLFiwAEVF1mnFX3jhBdSrV8/u+bt378bEiRMBWLvI/vLLL3aPK5VKvPrqq3j88cdRWlqKBx98EKNHj0aXLl2g1WqxaNEipKSkAAC6dOmCUaNG1cC7JiIiIiIiqjl1PvEEgA8++ABFRUXYvn070tPT8eGHH9o9LpFIMHnyZHFpFHf1798fb7zxBt59910YjUbMnz8f8+fPtyvTvn17fPnll357hYOIiIiIiOouJp4ANBoN5syZg5UrV2LZsmXiREBhYWHo2rUrJk6ciK5du97Qa4wbNw7dunXDTz/9hJ07dyI7OxsKhQIJCQkYOnQoxowZ47czWLkrLy8PFosFUqkU4eHh3q4O1QKMGXIXY4bcxZghdzFmyF3+HjNMPK+SSCS4++67cffdd7v1vJ49e9otsFqZ+Ph4vPPOO9dTvTolLS1NnEraH790VP0YM+Quxgy5izFD7mLMkLv8PWbq/ORCRERERERE5Fls8SSf06hRI7GbAZErGDPkLsYMuYsxQ+5izJC7/D1mmHiSz6lfv763q0C1DGOG3MWYIXcxZshdjBlyl7/HjH+m00REREREROQzmHgSERERERGRRzHxJCIiIiIiIo/iGE/yOYcOHRKnku7QoYO3q0O1AGOG3MWYIXcxZshdjBlyl7/HDFs8iYiIiIiIyKPY4kk+JyAgACaTCXI5w5Ncw5ghdzFmyF2MGXIXY4bc5e8xIxEEQfB2Jci7dDodTp48KW63atUKQUFBXqwRERERERF5g6dyA3a1JSIiIiIiIo9i4klEREREREQexcSTiIiIiIiIPMo/R65SrXbhwgWYzWbIZDI0adLE29WhWoAxQ+5izJC7GDPkLsYMucvfY4YtnuRztFotcnNzodVqvV0VqiUYM+Quxgy5izFD7mLMkLv8PWaYeBIREREREZFHsast+ZxWrVpBEARIJBJvV4VqCcYMuYsxQ+5izJC7GDPkLn+PGSae5HNUKpW3q0C1DGOG3MWYIXcxZshdjBlyl7/HDLvaEhERERERkUcx8SQiIiIiIiKPYldb8jmFhYWwWCyQSqUIDg72dnWoFmDMkLsYM+Quxgy5izFD7vL3mGHiSTCbzXbbxcXFXqqJ1enTp8U1jFq2bOnVulDtwJghdzFmyF2MGXIXY4bc5SsxUz4XKJ8rXC+JIAhCteyJaq2srCykpaV5uxpERERERORjYmNj0aBBgxveD8d4EhERERERkUcx8SQiIiIiIiKP4hhPQlhYmN22SqWCTCbzTmWIiIiIiMhrzGYz9Hq9uF0+V7heHONJREREREREHsWutkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDxK7u0KkP8RBAGrVq3C77//juPHj6O4uBiRkZHo3r07xo8fjw4dOtzwa6SkpGDu3LnYvXs3srKyEBwcjBYtWuCee+7B8OHDIZPJquGdUE3xdMwIgoBNmzZh+fLlOHToEHJzc6FQKBATE4PevXtj4sSJaNSoUTW9G6oJNXGcceStt97C/PnzAQAnT570yGuQZ9REzJSWluK3337Dn3/+ibNnz0Kn0yEiIgJdu3bFhAkT0KVLl2p4J1RTaiJm9u3bh3nz5uHff//FlStXoFKp0LRpU/Tv3x8TJkxAWFjYjb8R8qqy343JkyfjySefvOH9ZWRkYO7cuUhOTsbFixeh0WjQtGlTDBkyBGPHjoVara6GWnuGRBAEwduVIP9RWlqKKVOmYOvWrQ4fl8lkePrpp/Hoo49e92ssXrwYb731FoxGo8PHu3Xrhi+++IIH61rC0zGTn5+PqVOnYseOHU7LKJVKvP3227jnnnuu6zWoZtXEccaRXbt24cEHH0TZzyYTz9qjJmLmxIkTePLJJ3HhwgWHj0skEjz22GN4+umnr/s1qObURMzMmDED33//vdPHIyMjMXv2bHTu3Pm6X4O86++//8bDDz8Mi8VSLYnnX3/9halTp6KoqMjh4wkJCfjqq6/QuHHjG3odT2HiSdXq2WefxapVqwAALVq0wJgxY1C/fn0cPXoUv/32G4qLiwFYD7bDhg1ze//Jycn4v//7PwiCAI1Gg7Fjx6Jdu3bIycnBkiVLkJKSAgDo3bs35syZA6mUvcl9nSdjxmKxYOLEidi7dy8AoFGjRhg5ciSaN2+OoqIibN++HevXr4fFYoFEIsGXX36J/v37V+8bpGrn6eOMI0VFRbj77ruRnp4u3sfEs/bwdMykpaVhzJgxyM3NBQD06tULAwcORFhYGPbt24fFixdDr9cDsLZ+jB07tpreGXmKp2Pm+++/x4wZMwAACoUCY8aMQfv27VFQUIANGzaIv1shISH4448/EBsbW03vjGrKkSNH8MADD0Cn0wHADSeeJ0+exOjRo6HX6yGTyTBq1Ch069YNRUVFWL58Ofbv3w8AaNWqFRYuXAiNRlMt76NaCUTVZPv27UJCQoKQkJAgTJw4USgtLbV7/NSpU0KPHj2EhIQEoUePHkJhYaFb+9fr9UL//v2FhIQEoVOnTsKRI0cqPP7EE0+IdVi5cuUNvyfyLE/HzJIlS+z2X1RUVKHMpk2bhDZt2ggJCQlCnz59KtSBfIunY8aZN998U3zdsn9UO9REzPznP/8RX+Obb76p8Pj+/fuFtm3biq+h1+uv+/2Q53k6ZrRardCpUychISFB6N69u3DixAm7xy0WizBz5kyxDs8888wNvyeqWVu3bhW6detm95sxa9asG9rn2LFjhYSEBKF169bC1q1b7R6zWCzC9OnTxdf6+uuvb+i1PIXNQVRtfvjhBwCAXC7HO++8A5VKZfd4ixYt8PrrrwMAtFotFi9e7Nb+169fL7Y2PPLII2jbtq3d40qlEh988IHYxfabb765nrdBNcjTMbNw4UIAgEqlwkcffYSAgIAKZcrG0QBAZmYmtm3b5vb7oJrj6ZhxZNeuXViwYAEAIDg4+Ib3RzXL0zGzZ88eJCcnAwBGjBjhsOtlp06dxFZOrVaLv//+2+33QTXH0zGzY8cOscX0kUceQatWrewel0gkeOqpp9CkSRMAwKZNm2Ayma7rvVDNMhgMmDVrFh577DEUFBRU237379+Pffv2AQDuuece3HrrrXaPSyQSvPrqq2jRogUAaww7G5LmTUw8qVpotVrs3LkTANCnTx+nXUIGDx6MiIgIAMC6devceo01a9YAsH65xo0b57BMYGAgRowYAcA6AdHZs2fdeg2qOZ6OGZ1Oh0OHDgEAbr75ZkRGRjote+edd4q3Dx486PJrUM2qieNMeUVFRXj11VchCAKGDRuG1q1b39D+qGbVRMyUdcdUqVSYOnWq03KjRo3C2LFjMWnSJPG1yPfURMzYdtlPTEx0WEYqlaJdu3YAgJKSEuTl5bn1GlTzdu7ciUGDBuGLL76AxWJBQEAAHnrooWrZd9k5MADcd999DstIpVLxMa1Wi127dlXLa1cnJp5ULf755x9YLBYAwE033eS0nFQqRffu3QFYT/Dz8/Ndfo2y8Q6tWrVCvXr1nJazfX22XvkuT8dMXl4e2rdvj8jISDRv3rzSsqGhoeLt6rxCSdWrJo4z5X300UdIT09HZGQkXnnlleveD3lHTcTMxo0bAVgvcDVo0MBpucTERLz11lt4+umnxYSCfE9NxExQUJB4Oy0tzWm5ixcvArBOZGT7O0W+acWKFeJFhXbt2mHx4sXo169ftey77Bw4NDQUbdq0cVrONmbLemL4EiaeVC1SU1PF2wkJCZWWbdmyJQDrNOVlkwFVJTMzU0wI4uPjKy1b1s0AsM4ySL7J0zETGxuLxYsXY/v27XjhhRcqLXv69GnxNmdD9l2ejpnybLvYvvHGG4yNWsjTMZOVlYWcnBwA1u60ZYxGI44fP45t27bhyJEj7CZZi9TEccZ2GZZff/1VnHjK1p49e8ReOz169IBSqXR5/+Q99erVw7Rp07Bo0SIxPm6U2WwWz1NatGhR6cSZcXFx4pKCvngOzMSTqkVGRoZ4OyYmptKy0dHRDp9XGdtuKVXtPyoqSvxSll0tJN/j6Zhxx++//y7e7tixY7Xvn6pHTcaMbRfbQYMGYeDAgW7vg7zP0zFz6tQp8Xbjxo1hNBoxe/Zs3HLLLbjnnnvwf//3fxg5cqQ407rZbHbzHVBNq4njTLt27XDLLbcAAM6cOYMJEyZg165dKCwsxOXLlzF//nw88cQTsFgsCAoKwvPPP+/muyBvGD9+PLZs2YLx48dX63ryV65cgcFgAFB1TMpkMnFokS+eA8u9XQHyD2VTyANAeHh4pWVtWw20Wq1L+7cd21DV/hUKBQICAqDT6VzeP9U8T8eMq5KTk7FlyxYAQEREBHr37l2t+6fqU5MxU9bFNjw8HNOmTXP7+eQbPB0zly9fFm8rlUpMmDABBw4cqFBOq9Xiww8/xIEDBzBz5kwoFAqX9k81r6aOM59++imeeeYZbN26FYcOHcIDDzxQoUyXLl3w2muvVZhMkXxT+/btPbJfd2ISsHbHvXz5sk+eA7PFk6pFaWmpeLv87G/l2XYXsX1eZUpKSlzev20ZV/dPNc/TMeOKS5cu4cUXXxS3J02aBLVaXW37p+pVUzFj28X29ddfr3RMOfk2T8eM7SLuM2bMwIEDBxAfH49vvvkG+/btw969e/HJJ5+gYcOGAIANGzbg008/deMdUE2rqeNMYGAg3n//fbHlszyJRIK4uDh28Se/Ogdm4knVwnb8SlXjEGwfd3Xci233JFfGOZSV4bga3+XpmKlKbm4uHn74YXF8Vu/evcVlVcg31UTM2HaxHTBgAIYMGeJ+RclneDpmypbEAKyTxLRu3Rq//fYb+vbti8DAQISEhGDIkCFYsGCBeAHjxx9/9MiQAaoeNfXbtGbNGvTt2xfbtm1DVFQUJk+ejJkzZ+Kdd97BHXfcAcA6DGTo0KHiWE+qm/zpHJiJJ1UL21aiqtYNKuunDrj2BQLsr/C4si5R2WuwO5Pv8nTMVCY7OxsTJ07EmTNnAABNmzbFRx99BIlEcsP7Js+piZgp62IbGhqKN9980+06km/xdMwIgmC3/fbbb9vNWFqmYcOGeOqppwBYTwaXLVvm0v6p5tXEcWbTpk147rnnUFpaip49e2LNmjV48sknMXjwYIwePRqzZs3CnDlzoFarUVRUhEceeQTZ2dnuvxnyC/50DszEk6pFQECAeNvR7Gy2bA/UrnQZcHf/tmXYbdJ3eTpmnLlw4QLGjx8vzlzYsGFDzJ07l90pawFPx4xtF9uXXnqp0qUxqHbwdMxoNBrxdrNmzSod41XWigVAXAiefI+nY0YQBPzvf/+D2WxGaGgoZs2a5fBiRVJSkjipUH5+Pn744QeX9k/+JzAwULxd28+BmXhStQgJCRFvVzWY2fZxV0/2bfdf1VpZRqNR7P7EZMJ3eTpmHDl06BDGjh2L8+fPA7DODvfLL79UOUsc+QZPxoxtF9s+ffpgxIgR11tN8iGePs7YJgxxcXGVlq1Xr544Xi8rK8ul/VPN83TMHD9+XFy7c8iQIZWO4RwzZox4ceOvv/5yaf/kf4KDg8XbrqwXW1bGF8+BOastVYtmzZqJty9duoTY2FinZW1nAWzUqNF17b8ymZmZ4uLPru6fap6nY6a85ORkPPXUU+JFiZYtW+KHH35AVFTUde2Pap4nY+bIkSPisk3Jyclo1apVlc8pKxMTE4PNmzdXWZ5qnqePM40bN3arPmXdMct+o8j3eDpmzp07J96uap1QpVKJFi1a2B2fqO5p0KABAgMDUVRUVOUSKWazWeyW7YvnwGzxpGrRokUL8bbt4suOlD0ukUgQHx/v0v7Dw8MRERHh0v5t11Wr6qBO3uPpmLG1efNmTJo0SUw6O3bsiF9//ZVJZy1TkzFD/sHTMWP7G1PVhEFms1lsIeOxx3fV5HHGlW6TZeuSV+e6kFT7lMXl6dOnKy135swZcTIiXzwHZosnVYvOnTtDoVDAaDRi9+7dGD9+vMNyZrMZe/fuBQAkJibadWmpSvfu3bFu3TocP34chYWFdl0PbO3atUu83aNHDzfeBdWkmogZANizZw+mTJkiDsjv3bs3Pv/8c7txPFQ7eDJm4uPj8cUXX1RZ7tNPPxVPNsvK++I4GrLy9HEmPDwc8fHxSE1NRWpqKi5fvozo6GiHZY8ePSqOCfTFE0Ky8nTM2F50OHLkSKVlTSaTOAmeL7ZeUc3p3r07Dh06hJycHKSmpjq90GF7Dty9e/eaqp7L2OJJ1SIkJAQ33XQTAGvrkrOuAKtXrxYXwh00aJBbr1E2MYPJZBInAClPp9Nh6dKlAKzjbRITE916Dao5NREzOTk5mDJliniy169fP3z99ddMOmspT8ZMvXr1cNttt1X5z3bx7rL7kpKSbvCdkafUxHGmbMkdQRDw3XffOS3366+/irfdfQ2qOZ6Omfbt24tjgzdt2lTp8KHly5dDp9MBsF40pbrLdnKyX375xWEZs9mM+fPnA7COC/XF3yYmnlRtHnzwQQDWyX2eeeYZ8WBZ5tSpU3j33XcBWGfoGj16tFv7v+2228TxNF988QX++ecfu8cNBgNeeOEFsSvTQw89dB3vgmqSp2Pm7bffFk8MOnTogM8++6xalmMh7/F0zJD/8XTMjB07VpzEY8GCBVi+fHmFMsuWLRPv79KlCzp27Oju26Aa5MmYUSqV4prRxcXFePrpp8XfKVv79u3De++9B8C6LMYDDzxwPW+F/ETHjh3RuXNnAMDixYuxdu1au8cFQcA777wjtpDfd999PtkbRyKUX4SK6AY89dRT+PPPPwFYJ10YN24cGjZsiGPHjmHBggUoKioCALz11lsYO3as3XN3796NiRMnArB2kXV0RWfz5s14/PHHIQgCFAoFRo8ejS5dukCr1WLRokVISUkBYP1h//XXXzkmohbwVMycPn0aQ4YMEdfZe+GFF9C0adMq6xMWFoZu3bpVy3sjz/D0caYy999/P/bs2QMAOHny5I2+Faohno6ZDRs2YMqUKeLYqn79+qF///5QKpXYsmUL1q1bB8C65MYff/yBli1beuy9UvXwZMyUlJTgvvvuw7FjxwBYu2wPHz4ciYmJMJvN2LVrF1avXg2TyQQAePPNNzFu3DiPvl/yDNtYmDx5Mp588kmH5dLT0zFgwAAAziesO3r0KO69914YjUZIJBIMHToUSUlJKC0txbJly8Rlmpo1a4Y//vjDbhkWX8ExnlStPvjgAxQVFWH79u1IT0/Hhx9+aPe4RCLB5MmTKxykXdW/f3+88cYbePfdd2E0GjF//nyxW0GZ9u3b48svv2TSWUt4KmaWLVtmt7j7jBkzXHre9SQjVLM8fZwh/+PpmBk4cCA+/vhjvPbaa9DpdNiyZQu2bNliVyYsLAxfffUVk85awpMxo9Fo8P3332Pq1KnYtWsX8vLyHK7TqVAo8MorrzDpJABA27Zt8emnn+L5559HcXExVqxYgRUrVtiVadq0KebMmeOTSSfAxJOqmUajwZw5c7By5UosW7ZMnAgoLCwMXbt2xcSJE9G1a9cbeo1x48ahW7du+Omnn7Bz505kZ2dDoVAgISEBQ4cOxZgxY6BQKKrpHZGneSpmylq/yf/UxHGG/EtNxMygQYPQtWtXzJs3D5s3b0ZGRgYkEgliY2Nx22234b777vPJdfXIMU/HTL169fDjjz9i06ZNWLFiBQ4ePIicnBwolUrExMSgd+/euP/++7nONNm57bbbsHr1asydOxfbtm3D5cuXIZFIEBcXhzvuuAP333+/zyadALvaEhERERERkYdxciEiIiIiIiLyKCaeRERERERE5FFMPImIiIiIiMijmHgSERERERGRRzHxJCIiIiIiIo9i4klEREREREQexcSTiIiIiIiIPIqJJxEREREREXkUE08iIiIiIiLyKCaeRERERERE5FFMPImIiIiIiMijmHgSERERERGRRzHxJCIiIiIiIo9i4klEREREREQexcSTiIiIiIiIPIqJJxEREVU7o9Ho7SpQJfj3IaKaJvd2BYiIyHN2796NiRMnXvfzY2JisHnz5mqs0TX9+/dHRkYGAODkyZMeeY2aNHv2bHz++edVlpPL5VCr1ahfvz5atWqFnj17YtiwYQgKCqqBWt4Y23gaPnw43n///QplSktL8fnnnyMwMBCTJk2q8PhLL72EpUuXAgB+/vln9OzZ07OV9jB3vmMSiQRKpRIhISGIiYlB+/btMXz4cLRt29bDtbymqr8PEZGnsMWTiIioBplMJuh0Opw7dw5//vknpk+fjgEDBmD9+vXertoNO3nyJIYMGYLvvvsOJpPJ29XxOYIgQK/XIzs7GwcOHMAvv/yCkSNHYtq0abBYLB5/ff59iMib2OJJRFRHhIaG4r///a9bzwkODvZQbfxbu3btMHjwYIePmc1mFBcXIy0tDevXr4fBYIBWq8WUKVPw1VdfoW/fvjVb2Wp09OhRpKene7saXlPVd8xisUCn0+H06dPYvn07SkpKIAgCFi5cCLVajVdeecWj9avrfx8i8i4mnkREdURQUBD+85//eLsadUJ8fLxLn/Xly5fx8MMP4/Tp07BYLHjjjTewfv16qFSqGqil+3r27HnD3aLff/99h110/YE73zGtVouXXnoJW7ZsAWDtdjxmzBi0bNnSk1UkIvIadrUlIiLykujoaHzxxReQSq0/x5cvX/bYmFryLWFhYZg1axaaNGkCwNoN97fffvNyrYiIPIeJJxERkRfFxcWhd+/e4vbff//txdpQTVIqlbj77rvFbX+YZIuIyBl2tSUiouty5swZrFixAnv37sWFCxeQn58PiUSCkJAQxMfHo0+fPhg9evQNzdaampqKxYsXY/fu3UhLS4PBYEBYWBiaNWuGXr16YfTo0WjQoEGV+7l06RJ+++03bN++Henp6SgqKkJ4eDjatGmDgQMHYtiwYVAoFNddzxvVokULJCcnA7C2ejqTm5uLhQsXIjk5GWfOnIFOp0NISAiaNm2KPn36YOzYsahXr16lr2UwGLBy5Ups2LABR44cgVarhUqlQv369dG5c2fcfvvt6N+/v8PnOpvV1tGMvp9//rl43+TJk/Hkk08CcDyrrcViQb9+/cT3vmzZMrRu3brS97Fo0SK8/vrrAICRI0fivffeq1CmpKQEixcvxubNm3Hq1ClotVoEBQWhWbNmuPXWWzFu3DiEhYVV+jqeVr9+ffF2VlZWpWUPHz6MNWvW4J9//sGlS5eg1WqhUCgQGhqKxMRE9OvXD8OHD4dSqbR7njt/H1t5eXlYuHAh/vrrL5w/fx4FBQUIDQ1Fy5Yt0b9/f4wZMwYajeZ63zoR1TFMPImIyC1GoxFvv/02Fi9e7HAmztLSUmRlZWHHjh349ttv8eWXX6Jz585uv86XX36J2bNnV3iN7OxsZGdnY+/evfj222/x6quvYsyYMU7388MPP+DTTz+FXq+3uz8rKwtZWVnYunUrvvvuO8yaNQutWrVyu57VoayrLQDIZDKHZRYuXIj3338fxcXFdvfn5OQgJycH+/btw5w5c/DKK69g1KhRDveRlpaGRx99FGfOnLG732g0ijPtLl26FJ06dcJXX31VZRJbXaRSKYYOHYrvvvsOALB69eoqE8+VK1eKt++5554Kj+/cuRMvvPACsrOz7e7Py8tDXl4e9u/fj++//x5vvfUWhgwZcuNv4jqdP39evG2bhNrS6XR46aWXsGHDhgqPGY1GFBcX49KlS9iyZQu+++47fPfdd4iLi7uheq1cuRLTp09HQUGB3f1XrlzBlStXsGvXLnz33Xf46KOPcNNNN93QaxFR3cDEk4iI3PLiiy9i9erVAKxrUiYlJSExMRGBgYEoKCjAwYMHsXfvXgiCgNzcXDz55JNYt26dWy2fy5cvx2effQbAmpQkJSWhTZs2CAgIQGZmJrZu3YqMjAyUlpbi9ddfR+PGjXHzzTdX2M+HH36IOXPmiNudO3dGt27dEBQUhIsXL2LLli3IysrCuXPnMG7cOMyfPx+JiYk3+Am5z7aLZdmYP1vffvstPv74Y3G7cePG6NevH+rXr4/s7Gxs2bIFGRkZKCoqwquvvorc3Fw8+uijdvswGAx47LHHxKSzYcOG6Nu3Lxo2bIji4mKkpKRg69atsFgsOHDgACZPnoz58+e7VP/evXsjICAAR44cwZo1a8T7yroQu3Lh4Z577hETzzVr1uC5555zWjYzMxP//PMPAOtas927d7d7fNOmTZgyZQqMRiMAoGnTprjlllsQGRkJrVaL7du3IyUlBYWFhXj22WdRXFyM0aNHu/Req1NBQQGWL18ubjtK4CwWCx555BHs378fAKBWq3HrrbeiZcuWUKvVyMvLw549e3DkyBEA1osLU6ZMwbJly8QLGu7+febNm4fp06eL261atcLNN9+M8PBwZGdn46+//sKFCxeQnZ2NRx55BF999RX69OlTjZ8MEfkjJp5EROSyXbt2iUlnSEgIfv75Z4ctU7t378Z///tflJSUIDs7Gxs3bnTYKuXMl19+CcCadDpaYuTll1/GK6+8ghUrVgAAvv766wqJ56ZNm8SkMywsDJ988ondWEoA0Ov1+PDDD/HLL7+gqKgITz31FFatWlWhq6InpaamYteuXeL2LbfcYvf4rl277JLOJ598Eo899hjk8ms/4S+99BJmz56Nb775BgAwc+ZMdOzYET179hTL/Pnnnzh16hQAoEePHpgzZ06F2XMPHTqEBx54AMXFxfj333+xd+/eCkmdI126dEGXLl3wxx9/iIlN586d3ZpFuWXLlmjbti2OHj2KjIwMHDhwAJ06dXJYds2aNWJL+NChQyGRSMTHLl68iJdeeglGoxFSqRQvvvgiJk6caNeq/OKLL+KPP/7AtGnTYDQaMX36dHTp0gUtWrRwub436sKFC3jhhReQm5sLwLp00fjx4yuUW7p0qZh0xsTE4Oeff0bjxo0rlFu9ejWee+45WCwWnDx5Ev/++6/4t3Pn73PkyBH873//AwCoVCq89957uOuuu+zKvPzyy/j+++/xySefwGg04rnnnsPatWtrrIWciGonJp5ERHWETqfD999/73L5e++9t0IrZdnYPMCaADnrDtmzZ08MHz5cbDE7cuSIy4mnVqvFuXPnAAAJCQkO17VUKBSYPn06NmzYgJKSEqSkpMBgMIgJoyAImDlzplh+1qxZdklYGZVKhddeew1paWnYunUrzp8/j+XLl9dY69eRI0fw9NNPw2w2AwDatm1bITn+9NNPxdsPPfQQJk+eXGE/CoUCzzzzDIqKivDrr7/CYrHg008/xYIFC8QyBw8eFG8/8MADDpds6dChAx5++GF8/vnnkEqlOHTokEuJZ3W55557cPToUQDAqlWrnCaeq1atEm/bTs4DWFuHy7qHPvHEE3jwwQcd7mPEiBHIy8vDjBkzYDAY8PXXX+PDDz+8ofpX9R0rKSmBVqvFsWPHcOjQIbFFVqlU4uOPP3aYuNl+51599VWHSScADBkyBMuXL8dff/0FwLpm5/X87T777DOxXm+99VaFpBOwdgd/9NFHcfnyZcybNw9arRY///wznn76abdfj4jqDiaeRER1RH5+PmbMmOFy+TvuuKNC4nnnnXciLi4O6enpFU74y7MdL1lUVOTy69q25GVkZCA7OxuRkZEVymk0Gvz+++8IDw+vcMK+f/9+pKamArC27DhKOm1NmjQJW7duBQCsWLHihhPP1NRUpwmIXq9HTk4ODh06hEOHDon3BwQEVPj7pKeni61dAQEBDpNOW1OnTsUff/yB4uJi7Nu3D2fOnEHz5s0B2I8d3b9/P2677TaH+5g4cSLuuusuxMTE1GjLLwDcdddd+OCDD2AymbBu3Tq88sordi2VAHDu3DmxW2m7du3sWikNBoPYdVWpVOKhhx6q9PUmTpyIzz//HMXFxVi3bh3efffdG3rP7n7HAGuy//rrr6NDhw4OHx87dixuuukmZGVlObwIY6tVq1Zi4qnT6dyqB2Dtwlw2yVV0dHSVF4smTZqEefPmAbB+b5h4ElFlmHgSEZHL+vXrh379+lVZrri4GOnp6eK2yWRy+TWCgoLQunVrHD9+HIWFhRg5ciQeeOAB9O3bt0JXSGddI/fu3Svebtu2bZWv2aZNGyiVShgMBhw6dAgmk8kuAXbXkSNHxOTIFc2aNcOnn36Kli1b2t1v2wU3KSmpynGyQUFBSEpKwvr16wEA//zzj5h4du/eHT/++CMAYM6cOcjIyMCwYcPQs2dPBAQEiPsIDQ1FaGioy3WvTvXq1UOfPn2wZcsWZGdnY8+ePRXGPdq2dg4bNszusaNHj4qTLzVr1gyBgYGVvp5CoUC7du2wZ88eGAwGHD58GF27dq2md+Nc586d0bt3b/Tt2xft27evtKyjFkdH8vPzkZmZKW67850rUzY2GwBat25t14XZkcjISMTExCAjIwMZGRnIzMxEVFSU269LRHUDE08iojoiJiYGmzdvrtZ9FhUV4ezZs7hw4QLS0tJw9uxZnDhxAqmpqXYnvmUns6567rnn8Oijj8JsNiMzMxMzZszAjBkz0KhRIyQlJaFPnz64+eabnSZiZWMZAeDXX3/Fr7/+6vJrl5aWIjc316VlWq6HWq1GUFAQoqOj0bZtW/Tt2xd9+/at0LIHwC55d3XSo8TERDHxTEtLE+/v378/evTogT179gAA1q5di7Vr10KhUKBLly5ISkpC3759kZCQcCNv74YNGzYMW7ZsAWAdt+gs8ZTL5RVmo7X9u6ekpLg9S/GlS5eup8oiR9+x0tJSnDp1Cj/++KM4E29qaiqGDh1aZdLpSH5+Ps6dO4cLFy7gwoULOHPmDE6cOIHTp0/bfc/c/c4B9p/fli1b3P78Ll68yMSTiJxi4klERG6xWCxYvnw55s+fjyNHjjhcUgWwdu0sG7vorqSkJHz55Zd444037Na1vHjxIhYtWoRFixZBqVSib9++eOihh9ClSxe75+fn51/X69o+/0YST9s1Lm+EVqsVb7u63qRtOdvPQSqV4ssvv8Q777yD5cuXi4mJ0WjE7t27sXv3bnz88cdo2rQpRowYgYkTJ9q1hNaUAQMGICQkBAUFBVi/fj2mTZsmrrF69OhRnD17FoA1RiIiIuyeWx1/9+qmVqvRrl07fPTRR2jXrh3+97//QafTYfr06cjOznape6rBYMBvv/2GxYsXIyUlxWm5G/nOAb75+RGR/2DiSURELisqKsLkyZOxc+dOu/slEgmio6PRsmVLtGvXDj169EB6ejpef/31636tvn37YsOGDfjrr7+wfv16bN++XZwBFLCejK9fvx7r16/HE088gaeeekp8zPbk+84773Q6fs6Z8gmNt1xPq5WzCwGAdebUDz74AE888QRWr16NLVu24PDhw3bPOX/+PGbOnIlFixY5nUHVk5RKJQYNGoSFCxdCq9Vi586duPXWWwFU3s0WsP+7t23b1u31OZ1NZlRdHnzwQaSlpYkt8F999RUaNWpU6Tq0ZUuWnDhxwu5+qVSKmJgYxMfHo3379ujZsye2b98uzgh9PWw/v169erm9RMqNrh1KRP6NiScREbns3XffFZPOwMBATJw4EX369BHX8bRVNunIjVAqlRg4cCAGDhwIQRBw8uRJ7Nq1C8nJydi1a5fYnfeLL75Ajx49xG6ZISEh4j46d+7sdGZTX2c71jIvL8+l59iWs/0cbDVp0gSTJk3CpEmTUFBQgD179mDnzp3YsmULLl68CMA6sdNLL73kVjfl6nL33Xdj4cKFAKzdbW+99VYIgoC1a9cCsCbQAwYMqPA82/cbFRXl1nIuNeXFF1/E3r17xbVb3333XXTt2tXpeOXnnntOTDojIiLw4IMP4uabb0Z8fHyFmYk3bdp0Q3Wz/fxatmzpk58fEdVeFQeUEBEROZCZmYlly5YBsLZwzp07F08//TS6du3qcBIX2wToelruypNIJEhMTMSDDz6I77//Hps3b7Ybg1Y2mykAxMbGirfLZretim1rqq9o2rSpeLssUanK8ePHxdu2n4MzISEhuO222zBt2jRs3rzZrpV67969YiJak7p16ybWfcuWLTCZTPj333/FMZh33HGHw+VgbN+v7XjFyuTn51faSlzdlEol3n//fXHyqtLSUrz44osO63Dw4EFxgqmAgAAsXLgQjz76KNq1a+fw/bt6ccKZ6/n88vLyquX7TUT+j4knERG55PDhw2JXvNatW6Njx46Vlt+9e7d4250T002bNuE///kP+vXrh2+++cZpuaioKDz22GPitu2Mnt26dRNv//XXX+K6hM4cPnwYvXr1QufOnTFy5MjrmhHUE2zfx/bt26tcIqOwsBB///23uF3WddRsNuPFF1/EiBEj0Lt3bxgMBofPl0gkmDBhgl3rm+0Y26pUNQuqO8q60hYUFGDv3r1Yt25dhcfK69y5s5jQXbhwocpkXa/X44477kCHDh1w++23V+jO6ilt2rSxW+rl8OHD4pq3tg4cOCDe7t27d6UXEgRBECeOAhx3ua7q72Mbb//++2+VF2OysrLQp08fdOzYEYMGDfLJizdE5DuYeBIRkUtskxXbSW8c2bhxo91JsDuJnCAI2L59Oy5evIjVq1dX+lzbFh7b2TR79eqF6OhoANYxcs7W1Cx7vY8//hiAdRmYxo0b39BSKtWpadOm6Ny5MwBr3T7//PNKy3/22WcoKSkBAMTHx4stwjKZDCdOnMDRo0dx5cqVSrtkWiwWu7+vO7OU2s7MeyOT3AD2yeWmTZuwceNGANaZY7t37+7wOYGBgRg4cKC4PWPGjEovesyZMwd5eXkwGo0oLi6usJyNJ02ePBkxMTHi9syZM5GVlWVXxvY7V1Vr5s8//1zlEkZV/X1atGghjoc2GAyYOXNmpa/56aefwmg0Qq/XIzAwsMJ6ukREtph4EhGRS2yX87h48SJ++umnCmUsFgsWL16MZ5991u7+smTIFbfccgsiIyMBWLuXTp8+HaWlpRXKnT171i4Ru/3228XbCoUCjz/+uLj92WefYe7cuRVagUpKSvDWW2+JrYRyuRyTJk1yua41YcqUKWJL1dy5c/H5559XSCpMJhNmzZqFX375BYC1ZeuVV16xKzNy5Ejx9ptvvolDhw5VeC1BEPDBBx8gJycHgHWCHtvkqCq2y9tkZGS4/DxHmjRpIibdv//+u9jNdujQoZW23E2aNAlKpRKAtZX4+eefr9BSLAgCFi9ebDcRz6RJk2r0goNarca0adPEbZ1Oh/fee8+ujO137t9//8WGDRsq7MdgMODrr7/GBx98YHe/o++cK3+fp556Svx8Fy1ahA8++KBCC7nJZMKXX36J33//XbzvySefdLg/IqIyvnFJl4iIfF7z5s2RlJSE7du3AwDee+89rF27Fp07d0ZQUBAyMzOxbds2MUFQKBRiF9eqWkhtKZVKvPzyy3jmmWcAAAsXLsTmzZtxyy23oFGjRgCsazRu3boVer0eAHDrrbeiX79+dvu599578c8//2DFihWwWCx4//338dtvv+GWW25BvXr1cPHiRWzZsgXZ2dnic5599lmX18usKb169cLkyZMxe/ZsAMDs2bOxdOlS9OvXD/Xr18eVK1ewZcsWu9auxx9/HDfffLPdfsaOHYslS5bg5MmT0Gq1GD16NHr37o2EhATUq1cPOTk52L59uzi2T6FQVEheq2I7A+7KlSsRHByMqKgoxMfHo3///m6/93vuuQf79+9HcXGxeN/dd99d6XNatWqFadOm4fXXX4cgCFi5ciWSk5MxYMAAxMbGIjc3F7t377brhtuvXz/cd999btfvRvXt2xcDBw4UE8q1a9di5MiR4myyZZMIpaamQhAETJ48GUlJSWjTpg1UKhUyMjKwZcsWsTW0qu+cK3+fPn364LHHHsNXX30FAPjhhx+wZs0a9OvXD1FRUcjKykJycrLdGrETJkwQZx4mInKGiScREblsxowZeOihh8ST9v3792P//v0VyiUkJOD999/HvffeC6PRiNTUVBgMBrElqipDhgxBXl4e3n//fRiNRmRnZ9u1rti64447KrT2lPnggw/QqFEjfP/99zAajTh37hzOnTtXoZxarcZzzz2H+++/36X61bTJkycjPDwcH330EYqLi5Geni62btoKCAjAm2++6XAMpFKpxJw5czBp0iQcOXIEALBjxw7s2LGjQtn69evjnXfesRvz54qEhAR07twZ+/fvhyAI4szG/fv3v67Ec/DgwXj33XfFFrd27do5nf3V1ujRoxEcHIw33ngDWq0WWq3WafyMHDkSb775ZrWOT3XHa6+9hh07dojJ9fTp07Fq1SqoVCrIZDLMnj0bDz/8sDjJ0/bt28WLP7a6deuGqVOnYvz48QCsa56W5+rf5+mnn0ZERAQ+/vhjlJSU4PLly1iwYEGF/clkMjzyyCOYOnXqjX8QROT3mHgSEZHLIiIisHjxYixcuBDr1q3DqVOnoNPpoFarERkZicTERNx2220YNGgQ5HI5brrpJiQnJ6OkpAR//vknhg4d6vJrTZgwAbfccguWLFmC3bt349y5c9DpdNBoNIiMjESPHj0wdOjQSpMjqVSKqVOnYtSoUVi0aBF27tyJ9PR06HQ6BAQEoFmzZrj55ptx7733iq2pvmr8+PG444478Ntvv2H79u04f/48CgoKEBAQgBYtWqBv374YM2ZMpePsGjRogEWLFmHdunX4888/cezYMVy5cgUmkwn16tVDXFwc+vXrh5EjRyI4ONjtOkokEnz33Xf49NNPsXnzZmRnZ9u1wrkrJCQE/fr1w59//gnA+aRCjtx5551ISkrC4sWLsW3bNqSmpkKr1UKhUKBhw4bo2rUrRo8e7fYar9UtOjoaTz75pHjx5MKFC/jyyy/FZC4uLg7Lly/Hr7/+is2bN+Ps2bMoKSmBRqNBw4YN0bp1awwePBh9+/aFRCJB8+bNcebMGVy4cAH79u1Dly5dxNdy5+9z//33i+up7tixA+fOnUN+fj5UKhViY2PRs2dP3HvvvS5dCCAiAgCJwDmwiYiIiIiIyIM4uRARERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8igmnkRERERERORRTDyJiIiIiIjIo5h4EhERERERkUcx8SQiIiIiIiKPYuJJREREREREHsXEk4iIiIiIiDyKiScRERERERF5FBNPIiIiIiIi8qj/B8SuBXxdadAxAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ ")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "493d213c",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Plot realized ROC points\n",
+ "> realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "fcd2aaf9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set group-wise colors and global color\n",
+ "palette = sns.color_palette(n_colors=N_GROUPS + 1)\n",
+ "global_color = palette[0]\n",
+ "all_group_colors = palette[1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "4c70252e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wT9f8H8NdlNUn3bumAMsoGkb1ki2xQUEFBhoAi46egIPpFWTJcDFFxIAqyZG8HIHsIhQKFsjvpTnfarLvfH2muuYy2KV3A+/n48rW3P7l8cnfv+yyG4zgOhBBCCCGEEEJIJRFVdwIIIYQQQgghhDzZKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhBBCCCGEEFKpKPAkhNR4Wq22upPwWKHzRQghdC0kpKaRVHcCCHlaFBYW4vz58zh58iQiIyORkZGBjIwMiEQieHp6wtPTE02aNEHnzp3RqVMnuLm5VWt6V69ejW+++YafvnXrVrWkY//+/di4cSO2bNlic/n58+cxZswYfvq3335D+/btqyp5NYpGo8GPP/6ItLQ0zJ8/v7qT45CoqChs374dFy9exMOHD6HVauHr64vQ0FD07dsX/fv3h7u7e6WmITk5GX/88QdOnz6NBw8eID8/Hx4eHggICED37t0xZMgQhISElHl/hw4dwv/93/+VKy1RUVGQSJ68W/ScOXOwa9cuAEBQUBCOHj1azSl6cowePRoXLlwAALRr1w4bNmyo5hRVnwcPHmDRokWYNGmS3ftBz549kZiYCAAYNmwYli5dWpVJJOSp9OTd1QipYXQ6HX755Rf8/PPPyMrKsrmOWq1GYmIirl+/jm3btsHJyQkvvfQSZsyYAQ8PjypNb01x9+5dzJ8/HxcuXEBQUFB1J6fGO3bsGBYtWoSEhAQMGzasupNTZoWFhZg/fz527txptSwxMRGJiYk4e/YsVq1ahYULF6J3796Vko7169fj66+/RmFhoWB+Wloa0tLScO3aNXz//feYMmUKJk+eDLFYXOo+b9y4USlpJYTYVlhYiG+//Rbr1q2DTqfDpEmTqjtJhBAzFHgSUomys7MxefJkXL582WqZs7MzXF1dwTAMsrOzoVar+WUajQabNm3C33//jR9++AFNmjSpymTXCD/99BP/9p6UbuHChfzb+8eFRqPBhAkTcPHiRcF8FxcXKJVKpKeng2VZAIBKpcI777yDJUuW4MUXX6zQdCxfvhw///yzYJ5MJoOXlxdUKhVfXU+n02HlypWIj4/HkiVLSt2veeDp6uoKT0/PMqeJYZgyr0sIMYqMjMTatWurOxmEEDso8CSkknAchxkzZgiCzqZNm2LMmDHo1KkT/Pz8BOsnJSXh+PHj+OWXXxATEwPAWNoyYcIE7NixA7Vq1arK5BNS6RYtWiQIOtu1a4f3338fLVq0AADk5uZi+/btWLlyJQoKCgAA8+bNQ7169dCyZcsKScO+ffsEQWdQUBA+/PBDdO/eHVKpFHq9HseOHcOSJUv4wH7nzp1o2LAhxo4dW+K+zQPPKVOmYPz48RWSZkIIIeRxRJ0LEVJJ9uzZg7Nnz/LTr7zyCrZv346hQ4daBZ0AEBgYiFdffRX79u3DgAED+PkqlQoLFiyokjQ/jtq3b49bt27x/57W9p2Pm8jISPzxxx/8dI8ePbB+/Xo+6ASMpYTjxo3Db7/9BqVSCcBY6liW0sayyMvLE7TrCg4OxrZt29CnTx9IpVIAgEQiQZ8+fbBjxw7Uq1ePX3f16tVQqVR2952UlCRY/jTWWiCkJjt69Ch/36D2nYRUDQo8Cakkmzdv5v8OCwvDvHnzIBKV/pOTyWRYunQp6tevz887duwYHjx4UCnpJKQ6/Pjjj+A4DoCxau2SJUvstpts0aIF5s6dy09fvnwZp0+ffuQ07Ny5E+np6fz0woUL4ePjY3NdT09PrF69mu/wJy8vD7/++qvdfUdFRQmmKfAkhBDytKPAk5BKUFhYiGvXrvHTPXr0cKiHSplMhgkTJgjmnTlzpsLSR0h1ys7OFvRmOnTo0FLbPw4bNgy+vr789L59+x45HabeVQEgPDwcnTp1KnH9evXqoVevXmVKg3k129DQ0GrvpZoQQgipbtTGk5BKkJOTA4PB8Ej76Ny5s2A6NTW1TNvFxMRg165d+O+//xAXF4esrCwoFAp4eXmhZcuW6NatG/r27VshQzWUZ2iEnTt34sMPP+Snjxw5guDgYADWQ6OYJCYmomHDhvy0eQcz5RlOpaCgAPv27cOpU6cQFRUFlUoFg8EALy8vhIWFoVOnThg8eDD8/f1L/Tzm6Tp48CDq1auHwsJCHDx4EIcPH8bdu3eRnp4OuVyOgIAAdO7cGUOHDhVsV16WQ96Y7Nq1SxBUmZ9jS1lZWdi9ezfOnTuH6OhoZGZmgmEYeHl5oUGDBujSpQsGDRpUob0rnz59WvD7KEtPtRKJBN26dcP27dsBAH///TcWLVpU7nycnp6Omzdv8tPmAWVJevXqhT///BOAMV9evXpVUD3YxDzwrM7SzoSEBMFnu3r1KpycnHDw4EH88MMPePDgATw9PREeHo5+/fph0KBBNs9pcnIy9u7di1OnTiE2NhYqlQpOTk7w9vZGy5Yt0b17d/Tt27dMvf066syZMzhz5gwuXbqE5ORkZGVlQafT8R02tWjRAp06dcILL7wAmUxmcx/Tp0/nvzfA+DLw+++/L/G4Z8+exbhx4/iS+ZCQEOzevRsuLi421+c4DseOHcPRo0cRERGB9PR0qNVqeHh4ICQkBJ07d8bgwYMRGhrq0OdXqVTYsWMHjh8/jjt37iA/Px9eXl4IDw/H0KFD0a9fv0o575ZSUlKwa9cunD9/Hnfv3kVWVhakUim8vb3RuHFjdO3aFQMHDoRCoShxP+bXbFdXV76d9927d7FlyxacPn0aycnJYFkW/v7+aNWqFYYOHYqOHTva3af50CjmzO8NlkPMlGU4FfPrtOk6mpeXh7179+LQoUOIjY1FZmYmvL29ERISgsGDB2PQoEGQy+WC/Zw5cwY7duzAtWvXkJycDKlUiuDgYHTt2hWjR48u8V5TnmFyyjIcmvk65p8/MjISO3bswMWLF5GcnAyRSAR/f3+0adMGI0eORKNGjQT7UalU2LlzJ/766y/Ex8cjNzcXnp6eaN68OV588UX06tWLOksjPAo8CakEXl5ekEql0Ol0AIw3rHfffdfuQ5Et/v7+OHDgANzd3eHh4cG3ObMnKysLixYtwoEDB/ieQE10Oh1ycnIQExODPXv2ICQkBHPnzkXPnj0d/3CPuS1btuDrr7+2ObRNUlISkpKScObMGaxevRqvvfaaw99bREQE5syZg9jYWMF8jUaD7Oxs3Lp1C+vXr8err76Kjz/+uEoeGG0xGAxYu3YtfvzxR0GPyiamoUz+/fdfrFy5EpMmTcLEiRMr5AHCvDYAwzA2AzdbnnnmGT7wzMvLw507d9C4ceNyp8EUUABAq1atypwGcxERETbTb17VtmnTpuVKY2VZv369oJ2sKd9fv34dQ4YMEayr1WqxYsUKbNy4ERqNxmpZbm4uf10JCwvDJ598UmKA4IizZ89i6dKliI6OtrlcpVJBpVLh3r172LVrF7788kssXbrU5vEXLFiAiIgIpKWlATA2Xzhw4ICgPb257OxszJ49m88jEokEX331ld2g8/Lly5g/f77gZYaJaUieiIgIfPfddxgxYgTmzJljFZzYsmnTJnzxxRfIz88XzE9JSUFKSgpOnjyJDRs24Msvvyx1X+VVUFCAL7/8Elu2bOHvaSZarRb5+fmIi4vDn3/+iZUrV+Ldd9/FSy+95NAxfvvtNyxfvtxq/7GxsYiNjcXu3bvRqVMnLF26tEwvBCvLmTNnMGfOHKSkpAjmm35DFy5cwMaNG7F27VoEBAQgOzsb//vf/wQvPQDj/SA6OhrR0dHYsmULVq5cafWyuarl5+dj8eLF2LFjh9Wy3Nxc3L17F9u2bcOcOXPwxhtvAAD++ecffPTRR1b309TUVBw5cgRHjhxB79698fXXXzt0HyVPLqpqS0glkEgkgreCsbGxmDZtGv/QU1b169eHr69vqUFnXFwcBg8ejH379gmCTqlUCn9/f6tqfvHx8ZgyZQq+++47h9JT2eRyOUJDQxEaGgpnZ2d+vkQi4eeHhobaffgrCcuymDVrFj755BPBTZJhGHh4eMDPz08QBGo0Gqxbtw5jxowpsRMZc1euXMG4ceP4oFMkEsHX1xdeXl5Wadm0adMjdxrl7u7OnxPzUipnZ2fB+bLMPxqNBuPGjcPKlSsFQadIJIKPjw98fHwE7ZFzc3Px5ZdfYsqUKVbjXJbHnTt3+L9r1aol+K5LEhYWJpi+d+9ehaQBgKDjoJIEBwcLzuf9+/et1snIyBDUUGjatCkSEhKwatUqjBw5Eu3bt0ezZs3QpUsXjBo1Ct9++22ZazQ8qjt37uCLL76wuaxHjx6C7z07Oxvjxo3Dzz//LAg6pVIpAgIC4OnpKXgR8eDBA7z55puC9u3ltWfPHrz55ptWQae7uzuCgoLg4+Nj9RIkOTkZEydOxPXr16325+Hhgc8++0wwb9GiRcjMzLR5/E8++UQQXMyYMcPuC5J9+/ZhzJgxVkGnh4cHAgMD4eTkxM/T6/XYvHkzRo0ahYyMDJv7M1m+fDnmz58vCDpN1xTzGghXrlzBG2+8UebrlCMyMzPx8ssvY8OGDYKgUCwWw8/Pz6omRFpaGubOnYt58+ZZvQC1Z8OGDVi8eDG/f4lEAn9/f6uS0zNnzmDEiBGIj4+32kdQUBBCQ0OtOu7z8/Pjr4O2OvVzxIkTJzBx4kQ+X4hEIvj5+cHV1VWwXnR0NKZPn468vDyMGzeODzpN353l/Tg3NxfTp0/Hw4cPHyl9j0Kn0+Htt98WBJ1KpRIBAQGC+yLLsvjss89w/Phx7Nu3D1OnTuXvp6b1LWtM/PPPP3avOeTpQyWehFSSsWPHYubMmfz0v//+ix49eqBXr17o06cPOnfu7NC4fvaoVCqMHz9e8JDUpEkTTJ8+HZ07d+bfMsbFxWHz5s38AwTHcVixYgV8fHwwYsSIR05HRWjZsiX+/vtvAMJqvP7+/vz88lq8eLGgTZ6LiwsmT54saDuYn5+Pf/75BytXruSrYF2+fBkzZszAL7/8Umq1zk8++QQ6nQ4eHh6YOnUqBg4cyH/HKSkp+OWXX/DLL7/w62/dutVm1aWyGjNmDF+VzLza2PPPP2+3l0bTMD/nz5/n5/n4+GDq1Kno378/3N3dARhL0A8cOIBvvvmGf6A9evQo/ve//+Hzzz8vV3pNkpOT+b8DAgLKvJ1lScejPKiZp4FhmDKXoojFYvj4+CApKQkAbFbvswx8tm3bhr///tuq+r2pJOzSpUtYu3YtJk6ciClTppSpE7LyWrZsmVWpkol5lVyO4zBz5kzBcDdt27bFW2+9hXbt2vHXlfT0dOzfvx/fffcdsrKyoNfrsWDBAgQFBeG5554rVxoTExPxySefQK/XAzA+0M6YMQMDBw4UdP6Ul5eHEydOYOXKlfwQVDqdDl999RXWrVtntd/nnnsOo0aNwqZNmwAYr52LFy+2eijevXs3Dh06xE936NABb775ps20Xrx4EXPmzBGkdeLEiRg2bBgCAwMBGGsXXL58GT/88AOOHz8OwFgiPmPGDKxfv97mdWX//v2CYX6USiWmTJmCESNG8MFeTEwMfvrpJ2zfvh0JCQn2T2g5FRYWYuLEibh9+zY/LzQ0FDNmzEDPnj35nqZNVXDXrl3Lv8jaunUrvLy88H//938lHkOtVvOl7x4eHnj33XcxePBgKJVKsCyL8+fPY9myZXxQn5KSgqlTp+KPP/4QlKCZqp9aNr344osvKqyn80WLFsFgMMDf3x8zZszAgAEDIJfLwXEcLly4gA8++IC/rkRGRmLYsGGIi4uDXC7HO++8gxEjRvD3g6ioKHzyySd87Y+8vDysX79e0IlaVTp06BB/fRo8eDAmTZqEBg0aADC+gFq1ahU2btzIr//JJ58gPT0dHMehdevWeO+99/Dss89CJBKhoKAAGzduxIoVK/jfxebNmzF58mR4e3tX/YcjNQqVeBJSSfr372/14KXT6XD48GHMnDkTHTt2xMCBAzFv3jzs3r3b5lvcslixYoVg24EDB2Lbtm3o0aOH4MYcGhqK2bNn4+eff+YfGABjFbTqfNNaFa5cuSK4aQYGBmLbtm2YNGmSoMMaZ2dnDBkyBLt370br1q35+RcuXLD5IGtJp9OhVq1a2L17N0aPHi14seDv7485c+YIHsQ4jsP+/fsf8dM55uDBgzh27Bg/HR4ejt27d2PkyJF80AkYHwJfe+017Nq1S1AauHfvXhw8ePCR0mBe0uPIyxfL0hVb1aXLkwZXV9dSaxXYS0d2drbVcvP2nQBw+PBh/qFOKpUiMDDQqpS3sLAQq1evxjvvvGM3MKwIprZio0ePxl9//YUrV65gz549GD9+vKBzpU2bNuHkyZP89Pjx47FhwwZ06dJFcF3x8fHB2LFjsWPHDtSuXRuAsVTkww8/tKqaW1Zr167lx21lGAZr1qzB2LFjrXocdnFxQf/+/bFt2zZBada5c+eQm5trc98ffPCBoOR83759fDAIGIPehQsX8tOenp5Yvny5zZcBWq0WM2fO5B+u/fz8sHPnTkyZMoUPOgHjy4o2bdrghx9+wIwZM/j5//33n+C6ZKLRaAQvjpRKJX799VdMnDhRkPfq1KmDRYsWVdpwW7/99pugWnyHDh2wa9cuDBw4UHAP8ff3x1tvvYWtW7cKrqfff/89rly5UuIxDAYDDAYDAgIC8Mcff+DVV1/l9y0SidCxY0ds3boVXbp04bcxVU+tagaDASEhIdi2bRteeuklvqo0wzBo3769VXXnuLg4SKVSrFu3DpMmTRJc65o2bYpffvlFEIj9+++/VfI5bDFdn9577z18/vnnfNAJGGsZ/O9//0OHDh34eUlJSdDpdOjVqxd+++03tGnThv+NKBQKTJw4UZDXtVpthfRETh5/FHgSUklEIhFWr16N/v3721zOcRzu3LmDrVu3Yvbs2ejduzd69OiBjz76CEePHi3Tw2dCQoKgakzjxo2xZMmSEh+i27dvj08++YSf1mq1+PHHHx34ZI+flStX8n+LxWKsWLGixKqVbm5u+OabbwQPur/88gv/MFyS+fPnCx46LU2YMEFQNSsyMrLUfVYUjuOwatUqflqpVOLbb78VPCxaCggIwDfffCNoj/btt98K2kc6yrx6r/kDbGks17Vs91YVabBc31YaLANPwNhz7x9//IFr167h33//RUREBA4dOoSxY8cKfq9Hjx4VBD6V4a233sLHH3+M2rVrQ6FQoFGjRpg9ezb/Hev1evz000/8+u3atcPs2bNLbN8bHBwsePBOT0/n2+M6gmVZQe2G7t27l9rbsLu7O4YOHcpPGwwGmyXRgPGh+PPPPxeUMs6fPx9qtRosy+KDDz5AXl4ev+yzzz6zWxq+a9cuQcn5F198YVUd3NKUKVPQo0cPfvrnn3+GVqsVrHPgwAFBs4xZs2aV2A765ZdfxrBhw0o8rqPy8/MFecDf3x+rVq0qsZlDeHg4vvrqKz6fcByHb7/9ttRjiUQifPXVV3Y7XXJycsIXX3whCNLWr1//SNeg8pozZ47dWhpt2rRBSEiIYN7o0aMFLzHNubq64oUXXuCnY2Njy/2ypiI0bdoUkyZNsrvcMo/J5fISO3gbPny4YNqyeQN5OlHgSUglksvl+Prrr/Htt9+WqYORhw8fYvv27Xj77bfRvXt3rF+/vsQA9OjRo/zbdgCYOnVqmRrwDx06VDBOqK0OiZ4U2dnZOHfuHD/dvXt3qw5ibPHy8sLYsWP5aZVKhVOnTpW4TUBAALp27VriOjKZTNAhjr02ZpXh1q1bfJVEwPhgYPmgZEvdunUFDx137tyx2YlKWZnnaUd6pRWLxYLgxzzvV1UaLNe3lQbzjoWkUim+/fZbLFu2DC1atBCkv27duvjwww+xfv16QTC7detWQRXXiqRUKkt8uASMbenMa0HY6mnalubNmws6aTp8+LDD6TMYDPjqq6+waNEivPXWW1bDStljGbTY6jDLPJ1vv/02P52YmIjVq1dj3bp1gvP++uuvl9gBm/lLv4YNG5a5Sufrr7/O/52ammpVKmh+3tzc3MrUFOKtt94q07HL6ty5c4LS/PHjxwtqRNjTrl07wTXwxIkTpV7junfvbjc4M/H09MTIkSP56cTEREFpbFXw8/MrtQfu8PBwwbT5CxFbTLUETGzVoKgqr7zySokvlyx7Yn/uuees+i8w5+XlJWjPWp2fjdQcFHgSUgV69eqFnTt3Yu/evZg2bRqeeeaZUh9209PTsWTJErz88st8ezJL5mN7KpVKdO/evcxpMu/NMTs7+5ECiZrs/PnzgqDaXi+WtgwaNMhqXyWxDCzsMS9hrIjOesrq7NmzgmlHzsXAgQMF06Wdi5KYl1RUVzf7lZmGzz//HMuWLcO0adPw9ddflzpUS5s2bQS1EACUqaSoPFq0aFFqZ06WQa8jvfI+++yz/N+RkZFWpXmlkUql6NixI0aMGIF3330Xbdu2LXUbjuOsqtaWNpzV22+/jZYtW/LTGzZsENSMCA8PxwcffGB3e7VaXe6ei5999llBnjNVfwaMn+XSpUv8dMeOHcv0MrFOnToVMkSTSUVdKziOw3///Vfi+pbXWXssgz7z81YVmjdvXuo65rVZZDKZoMqqLZa/RUd/LxWptN7FLUu7yzJMlPnnq87PRmoO6lyIkCrUsGFDNGzYEFOnTkV+fj4iIiJw8eJFXLx4EZGRkTZLN2/cuIHXXnsN27dvt3q7+ODBA/7vRo0aOVRyY3kTvX//fo0b9qEimJ8jAGjWrFmZtw0ICICvry9f7c1WD6aW65eF+YNkVZY0m58LsVjs0PiSzZo1g0gk4tNb2rkoiVQq5auUOVJqaTAYBAGjeW+h5UmDiaMlp+br20pD69atSy3BsTR48GB8++23fI/IFy5cQF5eHv+wZz6WX2lsjdlnUpaHZ8uqwqNHjy5zh0c5OTn83xqNBqmpqXbHkC2PzMxMJCQkID4+Hvfu3cPNmzcRGRmJ9PR0wXql/a7EYjGWL1+OYcOGQa1WC669ppoqJeWvO3fuCPLB33//Xe5SavOOgZKTkwVVfS1L0ErSuHHjEr97R5hfK/z9/Uusjm/J1r2lJOYvAEpSv359wTBlj9KrdXnUqlWr1HXMXyi4u7uX+rupzI7EHFVSExHA+gVdWdrn16TPR2oGCjwJqSbOzs7o2rUrXy2psLAQ58+fx59//ol9+/YJ3g4mJibis88+s+p90bxzFUceDGyt/ygdtdRkltW8HD1PPj4+fOBZ2jkq67Ag1cX8XLi5uTk0rppcLoeLiwsfWDxKfnFxceEDz7K0mzWxbE9Z2kD1paXBxJE0WKbjUdJgTiQS4bnnnuN759TpdIiOjkabNm0qZP8mlh302GI5LMej9JialZVV7sCTZVmcPXsWf//9N65fv44HDx4IgrJHVadOHcyePduqtPmDDz4QNEWwxfIc5ebm2u3QqDTmvyXLIbdKqspo6VGHCzFnfq2ozHsLwzClBjwmUqkUbm5ufMdgpQ1HU9Ecvb4/buNWOjpM2eP2+UjNQK8iCKkh5HI5unXrhs8++wxHjhwRdEABGHsjtRy02vwhzNGbouUDs6MP348L83PEMIzDHcmYn6fSzpH5eGc1kfm5cPQ8AI6di5KYdxLiSABr2UaoLEFUWdKQk5NTatVMe+moyOEBLNvbVsaDteWYg7ZUZHBXUlvLkkRERGDIkCEYP348Nm/ejGvXrtlMl1QqRdu2bfH888+X6zi2Og4qS6Bd3iDTFvMXGZbVER15sVGe8Y3teZRrhSP3FoVC4VCpmHknZ1VdddPRtuCPmyf985GagXIZIZWgoKAAKpUKGRkZ8Pf3L/MYgSZ+fn749ttv8cYbb/DV6wwGAy5cuCBoD6NUKvkSKEd7+KzI0iNHOPKAXxHMH5o4joNarXboQaoySreqi/nnLk9AUFHnIigoiB8bMDU1tczbWb54cfR3ZZkGE5ZlkZ6eXqb9GQwGQbVOR8YhLY35Q7XpWBWtLO1ZzdPh4+NT5cMgHD9+3OawMv7+/mjQoAHCwsJQt25dNG7cGI0bN4ZcLseePXvw119/OXQclUqFjz/+2Gr++vXr0bNnzxLbl1rm/08//VTQ+U15WZYiOfI7rchheB7lWuHIvcXRNJvvuzwvz54WVX2fJaSsKPAkpILdv38f/fr146fHjx+P2bNnO7wfkUiECRMmCNp1WT54e3h48IGnZRWt0lju61FLbsraVrG8JSDlZTn2Y1pamlVPgiUxD4wcqfZWE5mfi5ycHGg0mjK3k8zLyxM89D3KuahXrx4/lmhCQgK0Wm2Zqm1ZthVzpP2brTRY7rssgWd8fLzgYdle5yF5eXlQqVQICgoqc0m4ZbVw8zZUpiq4VcFynFKWZausrVZmZiY++OAD/hyLRCKMGzcOo0aNKrHKbnmGoZg3b57gJYJSqeSHVZk9ezb27t1rtxTR8rpSUb1TW+ZBR0q9K7K5hPnne9R7S0nXCp1OJ2jLXBKNRiMoaa7Ilz6Pi5p6nyWkrKiqLSEVzM/PT1CqYN5DoaMsH7QsgwTzh96bN2861EmKZVf09sZQK4n5w2hZH/zMx72rCpbBydWrV8u8bXx8vOCB0pGAtSYyzy8Gg0HQK2dprl+/LujY51HOhXlnInq9vszpMB92wsXFBXXq1Cl3Gix7IC5rvrAc+sKyI5VvvvkGLVq0QOvWrdGnTx+Hz7EJwzAV2kupI8yDcp1Ox5dOl0V2dvYj9dS8e/duQQA1ffp0fPDBB6W2E7W8rpQ2xuPOnTsF44UOHz4c8+bN46cTExOxaNEiu9vXrVtXMO3I98xxHNLS0mym0d/fXzBsiSP7jY6OLvO6pTG/VqSkpFgFkyWxvLeUdq0oa7qjo6MFJXnV9fuoao/DfZaQsqLAk5AK5uLiIhinMTIy0uphtazMx1wErEtXzKuCFRQU4OjRo2XaL8dxOHDgAD/t4uKCRo0aOZw+8ypUZW0nV9YH/Ioa4qJ169aCfZl/7tJYrutoT6U1jWXVwYMHD5Z5W8tz8Sid3nTs2FHQnujIkSOlbqPX63HixAl+ulOnTo/UJsnT01PQw3FZ0gBA8Buz3Adg7PnS/OHQPM0lycrKElRpbdSoUbWVsFvmE0fG45w0aRJatmyJjh074uWXX3Y4CI2MjBRMv/rqq2XaznLIjpICz8TERCxevJif9vf3x5w5czBs2DB06dKFn79r1y5BcGrO29tbEKCfOXOmzO0+T506hS5duqBFixZ4/vnnsXnzZsHyDh068H+fO3dO0FOwPZmZmVbn7lFU1LWCYZhSr5um2g+l+fPPPwXTnTp1slqnuoZnqkzm99mylqxX9RinhJQVBZ6EVIKXXnpJML1gwQKHO2PhOA7r1q3jp319fa0e9l944QXBsBBr1qwpU4cLu3fvFgS1vXv3LtdDvHnvhXq9vtQHn6ioKERERJRp3+YPEKWVXpTE09NT8DB5/PhxXL58udTtVCoVfvvtN37a2dkZzz33XLnTUdnM34rbO19NmjQRPCzv2LEDcXFxpe773r172Lt3Lz8dHBzs0LA0llxdXdGtWzd++o8//ii1muCuXbsEVf5KG5i9LMzHG4yMjCx1uJJ79+4JAtQhQ4ZYVUHt1q2b4Le0ZcuWMnXWs3LlSkH1uFGjRpW6TWXp1q2boNRt06ZNZSrxOnbsGP+STaVSwcXFxardamksg7eyVFM+cuSI1Xdnr+2gqRqt+XeycOFCvtOlBQsWCNoO/u9//7MaqsVk8ODB/N9qtRrff/99qWllWRarVq0CYOwcJzY21qrkbtiwYfzfhYWF+Pnnn0vd7/r16yu0s52uXbsKqtuuW7euTFV5z58/Lxhfuk2bNqV2ArZjxw6rXoItpaWlYfv27fz0s88+a9UZF2A9fMej3DtqCvP77MOHD0stzfznn3/w8OHDyk4WIeVCgSchleDll18WVMWKiorCa6+9hrt375Zpe41Ggzlz5giq6b799ttWwWFgYKCgs6Ho6GjMnTu3xCq3//33HxYuXMhPS6VSvPnmm2VKlyXzweIB4LvvvrPbBiU1NRVz5swpcxsV87e8j9rL5uTJk/m/WZbFu+++azW+p7m8vDxMmzZN0L7q9ddfr9BeIytaWc4XwzCYNGkSP61WqzF16lS7D9aAsZrdtGnTBCVXkyZNeuQ2fxMmTOD/zsrKwowZM+w+OF+9ehWfffYZPx0eHm7V63N5DB8+XPBwPXPmTCQmJtpcNysrC9OmTeN/W05OThgzZozVet7e3hgwYAA/nZaWVupv8tdff8WmTZv46fr161dIYF1ezs7OGD16ND+dnZ2NKVOmlBgcxMTE4KOPPhLMM89rZWXe6RNgDEpKcvbsWcydO9dqvr28tG7dOkHp6JAhQwQvQYKCgjBr1ix+OjMz02YHRIDx5YB5L8E///xzqeldtmyZoNZH27Ztra6j3bp1E4yx++OPP5bYcdKxY8fw008/lXhcRykUCkEeSE1NxYwZM0rsxO7u3buYOXOmINh76623Sj1WZmYmZs2aZbd0PD8/H++++66gN+m3337b5rqWLzoqsofm6mKeP1iWxbfffmt33Xv37mHBggVVkSxCyoUCT0IqgUwmw+rVq+Hm5sbPi4qKwuDBgzF9+nTs3bvXqtMIjuMQHR2Nn376CX369MHu3bv5Zd27d7dbAjJnzhxB+6d9+/bh5Zdfxr///it4+IqPj8fnn3+OcePGCR4epk2bZreDlNI8++yzgkG1T5w4galTpwoG9s7NzcXvv/+OF198Ebdv3y7zsC/m1QxzcnIcqiJrqW3btoIgISkpCSNGjMCPP/4oKEVTq9XYt28fhg4dKhgMvnHjxpgyZUq5j18VzM/X+fPn7Q6uPmTIEPTu3ZufvnXrFoYOHYotW7YIHuyys7OxadMmDBs2TLCvrl274uWXX37k9LZu3VpQYnTu3Dm8/PLLOHfuHP/gmpeXh/Xr12PMmDF8aaBYLMa8efNKDHx79uyJhg0b8v/sDY/h4uIiCDJSU1MxfPhw7N69m//tGAwG/PPPP3jxxRcF5+Htt9+2CpJMPvjgA0HHQH/++SdGjRqFs2fPCqqjX79+HdOnTxcE1QqFAsuXL6/2MfImT54saL96/fp1DBs2DH/88YegVDInJwe///47XnnlFcE1bdiwYYIqo2XVt29fwfQXX3yBr776SvByRK/X49KlS/jwww8xfvx4myVxtgKO6OhorFy5kp/29fW1GbSOGjVKULvk2LFj2Lp1q9V6bm5ugu+O4zjMnTsXM2fOxI0bNwTzr169irfeegvr16/n5ysUCqsxRAFjqd3ChQv52iwGgwH/93//h88++0xQkpWSkoIvvvgCU6dOdah9f1lNmjQJLVq04KfPnTuHYcOGYf/+/YLS+bS0NPzwww94+eWXBdfTV155RVDbpCSnT5/GK6+8glOnTvG/Eb1ej6NHj2LEiBGClwUDBw60W/vEspO87du3V2hvv9WhR48eglL4rVu34uOPPxbkhYyMDP47SElJqfFjSpOnF/VqS0glqV+/PjZu3Ih33nkH8fHxAIwPEH/++SffVkUqlcLb2xs6nQ7Z2dk2Hx769OmDL774wm7bFXd3d6xduxaTJk3iS2uioqIwefJkfv+FhYU2H84mTJggKA10lEQiwZw5czBjxgw+WDhy5AiOHDnCV7Mzf2CUSqVYs2YNxo4dW+q+mzZtKph+7733sHTpUgDAuHHjMH78eIfSOnv2bKhUKuzfvx+AMSD+4osv8OWXX8LT0xNSqRQZGRlW30GjRo3www8/OFxlsKo1adIE586dA2D8bIMGDUJAQAAKCgqwdu1a/gGSYRgsW7YM77zzDr9+WloaPvnkE8yfP59/cMvIyLAqne7YsSNWrFhRYe2oPv30UyQmJvIl+zdv3sQbb7wBpVIJV1dXpKenW7Ub/vDDD0sc5sJRI0aMwJ07d/Drr78CMFYRnT17Nj7++GN4e3sjMzPTqkOPF154ocSSHB8fH/z8888YO3Ys3z4vMjISY8eOhUKhgKenJ7Kysqx6nlQqlVi7dq1V3q8OMpkMa9aswaRJk/jOX5KTk/Hxxx/jk08+gZeXF0QiEdLS0qzySadOnfDpp5+W67idO3dG79698c8//wAwBh9r167F2rVr4erqCrlcbjNvNm3aFDdu3OCvQ5bVEbVaLT744APBy7hPPvnEqndawPgbWbRoEYYMGcJ/90uXLkXHjh2tOmF7/vnn8dFHH2Hp0qV8Xt2/fz/2798PpVLJf9eWJYVOTk746quv7L70a9asGT7//HPMmjULer0eBoMBv/76K3799Vd4e3uDYRhkZGTwn9fb2xtdunTBnj17Sjy/jpDJZPjmm28EeSA2NhYzZ86ERCLh712ZmZlWVVoHDhwo6KypJOHh4bh9+zaio6MxYcIEKBQKeHh4QKVSWf32OnToUGKnTwEBAfD29uZfghw7dgzt27eHh4cHPD09Sy2Rrok8PDwwffp0/v4HGJsn/PHHH3z+Nb+/u7m5YdmyZXZLhQmpTlTiSUglatiwIfbu3YspU6YISj9NdDodkpOTbQY8QUFBWLZsGb755ptSg5769etj+/bt6NevnyAoMO3fMugMCgrCmjVr8MEHH5T/wxXp27cvli5davX58vLyBEFnUFAQ1q1bh44dO5Zpv926dbN6W56amorU1FRB759lJZFI8OWXX+Kjjz4SPGxyHAeVSoWUlBTBdyCTyfjB6/38/Bw+XlV78803Bek0GAxITEyESqUSlL4AxpK+n3/+GW+//bagii7LskhLS7MKJpydnTFz5kz89NNPFVrd2NnZGT/99BOGDRsmyLdqtRopKSmCoNPNzQ2ff/65oPpfRZk7dy4++OADwbkw/XbMH3zFYjHGjx+Pr776qtTgu2nTpti1axfatWsnmF9QUICHDx9aBZ1t27bFtm3brNavTv7+/ti8eTNGjhwpaEtuMBiQlpaGlJQUQT6RSqWYPHky1q5d+0gvar744gurkk/A+ELFMm/KZDK89dZb2LJli6D3VMs2nytWrMCtW7f46f79+6NPnz520xAWFoZp06bx02q1Gh988IHNDtTGjBmDH3/80aqnW7VajcTERKugs2HDhti4cSN69uxp9/gA0K9fP/z6669WwW5GRgbS09P5YC8kJAQ//vgjAgMDS9xfedjLA3q9HikpKVCpVIKg08vLC4sWLcKXX35Z5n4D5s6di9GjR/O/qYKCAiQlJQl+e6a89dNPP5U4LijDMJg9e7bg95mfn4/ExETcuHHD4b4Waopx48bh/ffft+rZPisrS3B/b9SoETZu3PhIQ00RUpmoxJOQSqZUKjFjxgy89dZbOHnyJC5cuICbN28iMTGRL00RiURwc3NDSEgImjdvju7du6Njx45lHv8PMN7wV6xYgdu3b+PAgQM4f/48EhISkJWVBbFYjICAADRr1gx9+vQpd2dC9gwdOhTPPfccduzYgWPHjiEmJgY5OTnw9vZGWFgY+vXrh4EDBzpU/YdhGHz33XdYv349Dh48iISEBBQUFMDFxeWROowYM2YMXnzxRezbtw+nTp1CdHQ0VCoVdDod3N3d0aBBA3Tp0gVDhgwRdOpQ03l7e2Pnzp1Yu3YtTpw4gdTUVOj1enh6etp82JJIJPi///s/jB49Gnv37sXp06dx7949qFQqGAwGeHt7o1GjRnjuuecwaNAgmy9OKoJSqcTSpUvx+uuvY+/evTh79ixSU1ORl5cHV1dXNGjQAF27dsXw4cMrtZfXCRMmYODAgdi5cyeOHz+O+Ph4ZGVlQS6XIzQ0FO3bt8eIESOsxv8sSXBwMDZs2ICIiAgcOHAAly5dQlJSEvLy8uDm5sZ3GNanT58yv5CpakqlEp9++ikmTpyI/fv34+zZs4iJiUFmZiZYloW7uzvq16+PDh06YNiwYWUaC7U0CoUCq1atwvnz57Fr1y5cuXIFKSkp0Gg0UCqV8Pb2Rv369dGqVSsMHjyYf+HSu3dvvq3j2bNnERcXh9DQUFy8eBG//PILv39PT0/873//KzUd48ePx+HDh/kXXZcvX8YPP/xgsySpc+fOOHDgAI4ePYp///0XV65cQVpaGvLy8qBQKODv748WLVqgb9++6Nq1a5mv7W3atMHBgwdx4MABHDp0CFFRUcjKyoKrqytq166NF154AcOHD4eLi0uJ7UAfhSkPvPnmm9i3bx/OnDmD2NhYvodVX19fNG3aFD169ED//v0dfukgEonw8ccfY/Dgwdi8eTMuXLiA1NRUyGQyhIWFoWvXrhgxYoSgWUdJTNfuX3/9FVFRUcjMzIRMJoO/vz+Sk5MRFhbm8DmoCd58803069cPO3bswPHjx5GQkAC1Wg1fX180aNAAAwYMwAsvvACZTGa3eQEh1Y3hnoQuvwghhBBCSI13/vx5QZv73377De3bt6/GFBFCqgpVtSWEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqko8CSEEEIIIYQQUqloHE9CCCGEEEIIIZWKSjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYQQQgghhFQqCjwJIYSQSmAwGKo7CZXiSf1chBBCKhcFnoSQx0Z+fj569+6NXr16QavVCpbdv38fM2bMQOfOndGsWTN06dIFCxYseORjjh49Gg0bNsTo0aMfeV/k6cCyLDZu3IglS5ZUy/F79uyJhg0bYs6cORW+7wMHDuD999+v8P0+jXbu3ImGDRuiYcOGSEhIECwzzV+9enU1pc4x58+ft/tZqtucOXPKfQ1PSEjgP9f58+cfOS1arRZ9+vRBz549kZeX98j7I+RxQ4EnIeSx8dlnnyE+Ph7vv/8+ZDIZPz8jIwMjR47E4cOHkZ6eDp1Oh7S0NMjl8mpMLXlavf/++1i4cOET92D59ddf47333kNaWlp1J4WQx5JMJsMHH3yAxMRELF68uLqTQ0iVk1R3AgghpCwuXryI7du3o1WrVnjhhRcEy44ePYqsrCwAwEcffYT+/fuDYRhBcFpefn5+CA0NhZ+f3yPvizwdUlNTq/X4QUFBEIvF8Pb2rtD9pqSkVOj+iH2hoaEAAHd392pOCaloffr0wbPPPoudO3di2LBhaNeuXXUniZAqQ4EnIaTG4zgOCxcuBADMmDHDarmpBMbDwwNjxoyp0GN/+eWXFbo/Qirbhg0bqjsJ5BH9/fff1Z0EUommT5+OsWPHYuHChdizZw9EIqqASJ4OlNMJITXe4cOHER0djfDwcHTs2NFquamzE2dn56pOGiGEEOKQjh07okGDBrh9+zYOHTpU3ckhpMpQiSchpMb76aefAAAvvfSSYP6cOXOwa9cufjoxMRENGzYEALRr105Q8pOXl4ft27fjxIkTuH37NrKysiCVSuHj44Nnn30Wr732Glq0aGF17NGjR+PChQtW+zMde9CgQZgxYwY++eQTXLp0CTKZDPXr18eqVatw//59vgT21q1buHfvHn766SecPXsW6enpcHd3R5s2bTB+/Hi0bNnS7ufPzMzEr7/+imPHjiE+Ph4GgwGBgYHo2rUrxo8fj8DAQJvbFRQUYPPmzfjrr79w584daDQaeHh4oEmTJujfvz8GDRoEsVhstV1WVhY2bNiAY8eO4cGDB9Dr9fDy8kKLFi0wZMgQ9O7d225aS5OYmIht27bh2LFjSExMhMFgQEhICHr06IHx48fDw8PD5nYXL17E5s2bERERgbS0NCiVSoSFhaF379547bXXoFQqrbYxfUfDhg3D0qVLceDAAWzduhW3bt1CQUEBgoKC0KdPH0yYMMFmlUaO43Do0CHs3r0b169fR3Z2NlxcXBAWFoYePXpg1KhRcHV1tTqeya5du/jpW7duASjOT2+99Raef/55LFiwADdu3IBSqUSzZs3w3Xff8VXEVSoVtmzZgtOnT+PBgwfIycmBk5MT/Pz80K5dO4wZMwb16tWzSnfPnj2RmJjIf+5HPR+rV6/GN998w09fuHCB/50dOXIEwcHBguMGBQXh6NGjNr/H0ly+fBm///47Ll68iIyMDCgUCoSHh2PAgAEYPnw4pFKp3W1v3LiBX375BZcuXUJ6ejr8/f3Rr18/vPXWWzh8+DA+/PBDq7Tt3LkTH374odVnMZeQkIBevXoBAJYsWYIXX3zRZrp37tyJS5cuITU1FYWFhXBxcUG9evXQq1cvvPrqqzbzqD2m8zt16lRMmzYNgHX+Ko2tz/Pw4UOsX78eJ0+eRFJSEhiG4X9/Y8eOhaenp939qVQq/Pbbbzhy5AgSEhIgl8vRtm1bTJkypcxpssdgMODAgQPYu3cvoqKikJubC3d3dzRt2hSDBw/GgAEDwDCM3e0vX76M9evX49q1a0hPT0dgYCD69euHSZMmlXrsvLw8bN26Ffv370dsbCwkEglatGiBiRMnIigoqMRtIyMj+fyampoKJycnBAYGokOHDhgzZgxfZdqW4cOHY8mSJfjpp58wYMCAUtNJyJOAAk9CSI12/fp1XL9+HQDQt2/fcu3j2rVreOutt5Ceni6Yr9PpEBcXh7i4OOzZsweLFi3C8OHDHdp3dnY23njjDSQmJgIACgsLkZmZCV9fX9y/f59f7+jRo3j33XdRWFjIz0tPT8fhw4fx559/YtmyZRgyZIjV/s+dO4fp06cjOztbMP/Bgwd48OABtm3bhuXLl1udm6ysLIwePRq3b98WzE9LS8Px48dx/Phx7NixAz/88AMUCgW/PD4+HqNHj0ZSUpJgu+TkZCQnJ+Ovv/5C//798eWXXzpcPezQoUOYO3cu1Gq1YP7t27dx+/Zt7Ny5E+vWrUN4eDi/jGVZfPrpp9i6datgm+zsbFy5cgVXrlzBpk2b8N1336FRo0Y2j8txHD744APs2bNHMP/+/ftYu3Yt9u/fj82bN8Pf31+w/P3338e+ffsE87KysnD58mU+QPrtt99Qp04dh84DYDzPb7zxBnJzcwGA76XZFHQeP34c//d//2d1rnQ6HfLy8nD//n3s3LkTa9aswXPPPefQsct7PioTy7JYvnw5fvnlF8F8rVaL//77D//99x+2bduG77//3ma6Nm3ahEWLFgmGeomLi8PatWtx9OhRh3/XZWUwGPDpp59i27ZtVssyMzNx8eJFXLx4Ebt27cLmzZvh4uJSKemwJBKJrNq4HzhwAB9++CE0Go1g/q1bt3Dr1i1s2bIFa9asQZs2baz2d/36dUyaNAkZGRn8PLVajT///BNHjx7FqFGjyp3WjIwMTJ06FREREYL56enp/LVq27ZtWLVqlc0XU99++y1WrlwpmBcTE4PvvvsOf//9N0JCQuweOz4+Hm+++SZiYmIE80+ePIlTp05h3LhxdrfdunUrPvnkE3Acx8/T6XS4c+cO7ty5gy1btmDFihV2X9T17dsXS5YswY0bN3D16lWbLz4JedJQVVtCSI128OBBAED9+vWtSvYWLFiAiIgITJ48GQBQq1YtREREICIiAj/++CMA49vst99+G+np6fDx8cHixYvx119/4dy5c9izZw+mTZsGhUIBjuOwePFiqwf90pw4cQKpqalYsGABTp8+jW3btvElKObee+89eHh4YNmyZThx4gROnDiBefPm8ce21Qvq7du3MXnyZGRnZyM4OBjLly/HiRMncPbsWfzwww9o1qwZCgsL8d577+HSpUuCbb/66ivcvn0bSqUS8+bNw99//41z585h165dGDx4MABjydWvv/4q2O7TTz9FUlISfHx8sHz5cvzzzz84e/YstmzZgi5duvDfyYEDBxw6TxEREXj33XehVqsREhKCL7/8EidPnsTRo0fx8ccfw9nZGWlpaXjnnXcEQ+V89tlnfNDZsWNH/Prrrzh79iz+/vtvzJw5E0qlEg8fPsTYsWORnJxs89h//vkn9uzZg+7du2PTpk38d28qZUhMTMSKFSsE2+zfv58POt944w3s3bsX586dw59//ol3330XEokEKSkpgiF7TPmxdevWAIBBgwbx+dHSgQMHwHEcVq5ciTNnzmD9+vV8ydHDhw8xY8YMqNVq1KlTB19//TX/PezYsQOjR4+GRCKBVqst15BBjp6PyZMnIyIiAoMGDQIAtG7dmv9c5iVCISEhCAsLK/FB355Vq1bxQefzzz+PTZs24fz58/jnn38wZ84cuLi44MaNG5g8ebJV4HT69GnMnz8fBoMB4eHhfK2C3bt3Y+DAgbhz5w5WrVrlcJrKYv369XzQOWDAAGzduhWnT5/G0aNH8cMPP6BVq1YAjL/l9evXP9KxTPnL3j/z686MGTMEHaKdPn0as2bNgkajQaNGjbBmzRqcOXMGJ0+exNdff406deogKysLkyZNsgrCMjMzMWHCBGRkZMDDwwMLFy7EiRMncPz4ccybNw9yudzqOlJWWq0WkyZNQkREBBiGwahRo7B7926cP38eu3fvxiuvvALAOFzLlClToNfrBdvv3LmTDzrbtGmDjRs34ty5c9i9ezeGDRuGu3fv4tixY3aPbQo65XI53n//fRw9ehSnT5/G8uXL4evri3Xr1tncNjExEQsXLgTHcejatSt+//13nD59GseOHcPnn38OX19f6HQ6fPTRR3Z7tw4MDESDBg0AgKrbkqcHRwghNdjAgQO58PBwbu7cuXbXWbVqFRceHs716NHDatnGjRu58PBwLjw8nLt48aLN7devX8+vc/LkScGy119/nQsPD+def/11wfzZs2fz23z11Vc293vu3Dl+nTZt2nAPHz60Wuf333/n1zl8+LBg2ahRo7jw8HCuZ8+enEqlstq2sLCQGz58OBceHs4NGjRIsKx9+/ZceHg4t2bNGqvtWJblRo8ezYWHh3MDBw7k5+fm5nINGzbkwsPDud27d1ttp9FouL59+3Lh4eHc5MmTbX5mewYNGsSFh4dz3bt35zIyMqyW//XXX/x52LVrF8dxHBcdHc2nZ8aMGZzBYLDaLiIigmvatCkXHh7OTZ8+XbDM/DuaNm2azXSZzt+zzz7LsSzLz582bRoXHh7OvfHGGza3W716NRceHs41bNjQ6rsx5ZnZs2dbbWdaFh4ezm3bts3mvpctW8aFh4dzTZs25eLi4myus3jxYn4/9+/fFyzr0aOHzeM/yvkw397yt/CoHjx4wDVq1IgLDw/nFi5caHOdyMhIrnHjxlx4eDi3bt06wbJ+/fpx4eHh3PPPP8/l5ORYbTtv3jz+c1teI3bs2MEvi4+Pt3ns+Ph4fp0dO3bw8w0GA9epUycuPDycGzdunNX54jiOU6vVXNeuXbnw8HDulVdeKfOxTfNXrVplM02W/vvvP7u/A71ez+eJ4cOHc4WFhVbbZ2Zm8utY/rYXLlzI58cbN25YbRsZGckfu6TzaMuGDRv47TZu3GhznXXr1tlcp6CggD//I0eO5DQajdW25r8Ty3z7yy+/8Mv+/fdfq23j4+O5Nm3a8OucO3eOX2a6rzzzzDM2j3v+/Hl+uz///NPu5587dy4XHh7ODRgwwO46hDxJqMSTEFJj5eXl4e7duwAgqH7piMDAQLz22msYOXIkXxJlqX379vzfKpXK4WP069ev1HWGDBlisy1mjx49+L/NB16/c+cOLl68CACYMmWKzbZXTk5OePfddwEYq8tFRkbyy0ylhpbViwGAYRj873//w6+//orvv/+en6/X6/lqY7a2k8lkWL58OX7//XeHStru3LnDt3GcPn06vLy8rNbp06cP2rZtK/gu/vjjD3AcB5lMhnnz5tms2tuqVSu+mt9ff/0lqApo7q233rI5v3v37gCMeS0zM5Ofbzp/WVlZVqUsADBq1Cj88MMPOHDggKCdZ1kxDGO36nh4eDheeeUVTJw40W7pofkQDOXJs46ej8q0detWsCwLhULB52dLLVq0QP/+/QFAUK01Ojoa9+7dA2BsD2nru5gzZ06lDEuSn5+PESNGYODAgZg8ebLNNogKhQLNmzcHUL7vqSwSEhIwbdo06HQ6NGrUSNCuFzBWGzU1BZg5cyacnJys9uHh4YG3334bAPDvv//yPYVzHMfXOhk2bBgaN25stW2LFi1stnstC9N32bRpU7z22ms21xk3bhyaNGkCANiyZQs//9y5c/x1atasWTaHz3rvvffg5uZmc7+mGg2dO3dGt27drJYHBwdj4sSJNrc1XR/0er3N30m7du2wZs0a7Nq1i68pYoupxPPevXtP3Li/hNhCbTwJITVWTEwMWJYFANStW7dc++jZsyd69uxpd3l6ejouX77MT5u3ESsLqVTKPzyUxF7nQeZjLRYUFPB/X7hwgf87PDwc+fn5Nrdv1KgRxGIxDAYDLl26xB+nbdu2+Pfff/H7778jJSUFAwYMQOfOnfkH8AYNGlil28PDAw0aNMCdO3fw5Zdf4vbt2+jbty86dOjAd4xSnnZIZ8+e5f82BTa2bNy4UTD933//ATA+xNkKVk369++PX3/9FSzL4tKlS3j++ecFy52cnOy2/zQ//+btb9u2bYtjx47h5s2bePnllzF8+HA899xzfGctXl5eNh9Wyyo4ONjuA/HQoUMxdOhQu9smJSXhxo0b/LSjebY856MymfK66TduL6+3bNkS+/btw/3795GZmQlPT0+cO3eOX26vratCoUCPHj2we/fuCk23q6sr/u///s/ucr1ej5s3b/IvQ2y9wHhU+fn5ePvtt6FSqeDh4YE1a9YI2mwDxmqqJiVdS5o1awbAGGxGRESgb9++uH37Np/+ktoS9+7d26oddmmysrL4NuiWYzNb6tevH27cuIHbt29bffeurq549tlnbW4nl8vRpUsXPng2yc3NRVRUFICSP1evXr1sDqllager1Wrx0ksvYeTIkejRowcaN27Mv4AoSydspjzPsixiY2PRtGnTUrch5HFGgSchpMYyb7P3qCUWOp0O//33H6KiovgOhe7fv4/U1FTBepxZRxFl4e7ubrNnWEv2Aifzt/Tmx46Pj+f/LmvHKOYdAs2ZMweRkZHIzMzEP//8g3/++QdisRjNmzdH165d0adPH77nTHOffvop3nzzTRQUFGD37t3YvXs3pFIpnn32WXTr1g19+vQpsadGW1JSUgAYA9uSes20ZPr+bfXcas58+cOHD62Wu7u72+0Iyfz8m15yAMBrr72GP//8E5GRkYiKiuIfUsPCwtClSxf06tUL7du3L/f4eyUF0iaFhYU4e/YsoqOjERcXh/j4eNy9e9eqhKU8edbR81GZTCX9UVFRdgMIS8nJyfD09BTkrZKuEeWtMVFWiYmJOH/+PO7fv4+4uDjExsbiwYMHVu1RKxJX1EnU7du3IZFIsHLlSru98prYGo7KFtO1xPwaXNLvvrTfqC0pKSl83i3txaL5ctN3b0pjadcjW2kzP3ZJ24eFhfEv9sw1b94co0ePxoYNG5CWloZVq1Zh1apV8Pb2RufOndGjRw9079691J6MzTtLSk5OpsCTPPEo8CSE1FjmHf08Sm+Qhw4dwuLFi/nqYyYMw6Bu3bpo2bKlQ8MUmLNVbc0WicSxy215ql2ZbxMWFob9+/fj+++/x8GDB5GRkQGDwcD3BLt69Wq0adMGixcvFvTK2qZNG+zdu5fvETI3Nxc6nQ7nz5/H+fPnsXz5cvTs2RMLFy6Ej49PmdJl6pFXLpeX6/OU9vBmXsJjq3OokobgsEcul2Pjxo3YsGEDtm/fzvdQbOpNeMOGDQgKCsKnn37qcK+yQOn5ZuPGjVixYgXf662JSCRC48aNUadOnXJ3SFKe81GZHiWvm85PaXnLXunyo8rKysK8efPw119/Wb0AcHZ2RocOHZCWliYooa4oK1aswD///APA+KKpQ4cONtd7lPObk5PDz7MsSTVXnurm5ukqbQxm82uAqcS2rN+9rXtHWT+XSCSCUqm0+h0CwMcff4y2bdtiw4YNuHTpEliWRUZGBvbu3Yu9e/fC2dkZ77zzDiZMmFCmtDnasR0hjyMKPAkhNZZ5m6mylCra8tdff+Hdd98Fx3Hw8vJCnz590KxZM9StWxfh4eFwc3NDbGxsuQPPymL+MHX16tUyB7jmfHx88PHHH2Pu3Lm4du0aTp8+jTNnzuDy5cvQ6/W4ePEixo4di0OHDgkevkJDQ7FkyRK+F80zZ87g9OnTuH79OjiOw9GjR5Gamort27eXOLaeiWnfjlbdVCqVyMnJKfWBzLzqoCNjJZZGJpNhwoQJmDBhAmJiYvjzd/bsWeTn5yMxMRFTpkzB1q1bK7SkYv369ViyZAkAY0/NvXv3RuPGjVGvXj00aNAASqUSZ86ceWJ6wpTL5cjLy0P//v3x9ddfO7St6cHdvJq6LeY9JTvKXqmlTqfDhAkT+OGe2rVrh44dOyI8PBx169ZFnTp1IBKJMGvWrAoPPE0vlQDgxRdfxOjRo+2ua7qW+Pj44PTp0w4dx7wUuaTfYXnOr3mwaa/6r63lpt+4KW3l+e7L+rnsbW/St29f9O3bFyqVir8+nD59GikpKcjPz8fy5cshk8nsfj/mtQrKci0l5HFHgSchpMYyfzAp7eHCni+//BIcxyE4OBjbt2+3WdWzqjpRcUStWrX4vxMSEkqsysZxXIkPLSKRCC1btkTLli0xZcoUqFQqLFu2DLt370ZSUhL+/vtvfogVc1KpFO3bt0f79u3x7rvvIikpCR9//DFOnTqF69evC4YOKYmpU6WsrCzk5OTYLX06fPgwYmJiUL9+ffTu3Ru1atVCTk4O33mMPaYOqADheatIderUQZ06dfDaa69Bq9Vi8+bNWLJkCXQ6HTZv3oxFixZVyHEKCwvxzTffADC2p92wYYPNEp2amGfLq1atWrh9+zbfAY49tvJ57dq1ARhL1TMyMgRtVM3FxcXZnG9e5Vin09lcx965Pnz4MB90zpkzx+6YjxX9XV29ehUfffQRAGO71/nz55e4vuk3kZmZCbVa7dDLGfPhcu7fv2+3bbB504CyCggIAMMw4DhOMOaxLbZ+46b/mvoCsFd93LyqsfmxRSIRWJbF/fv30atXL5vbpqamlqm6tJeXFwYNGoRBgwaB4zicPn0a7733HrKzs7Fhwwa7gad53iit1JeQJwH1aksIqbHMe4E1teVyhEql4seke/755+22LzTv/Kaq2rWVxnwQ9yNHjthdLyIiAi1btkTfvn35ErCrV69i5MiRaNeuHe7cuWO1jZeXF+bOnctPm87tv//+i+HDh6Ndu3Y2q5YFBgZi5syZVtuVxrzd3smTJ+2u9+OPP+Lrr7/G5s2bARSfgwsXLpTYI+jhw4cBGEsMnnnmmTKlqSQFBQWYMGECnnvuOfz+++9Wy2UyGd544w2+3WB58qY9d+7c4c/90KFD7VYjrI48W1klMqbvOSoqyu5YrAAwb948tG/fHi+99BJfTdO8F2RTtVNbTpw4YXO+eRBmL4+Zdz5mb75pvElLBQUFuHLlCoCK+Z5SUlLwzjvvoLCwEL6+vli9erXN3lzNmc6vwWDAv//+a3e9ffv2oVWrVhgwYADfo3a9evX44LOk65C981sSU2dmQPFv2J4///wTgLEJgaldpKmKu1qtxpkzZ2xux7IsTp06ZTXf2dmZPy/l+VyLFi1C37598d5771ktYxgGXbp04V/mlXR9MA88bfV6TsiThgJPQkiNZaqqBtgvsSiJebtKe6Vm0dHR+OGHH/hpe6UeVa1Fixb80AU//vij1aDugLF0bOnSpdBoNEhMTOR7nA0MDMTVq1f5t+223Lx5k//b1LmGt7c3rl27huzsbGzatKnM25WmZcuWfIntqlWrbLY5O3LkCF96NGDAAADAiBEjABirui1YsMDmg/vVq1f5QLVbt27w8/MrU5pKolAokJKSgpSUFGzdutVmiUd2djbfkZHleTDlu/LkJfM8a17KY+706dPYuXMnP11VedZU3b2ij/fyyy8DMPb6On/+fJu99EZGRmLXrl3IysqCh4cHX8W2bt26fNvG1atXW7XjBoDff//dbomaqcQUgM2qyyqVyu5vyLz6v63vimVZLFiwgM/vj3reNBoN3nnnHaSmpsLJyQlr1qyBv79/qdv16tWLb4/9xRdf2AywVSoVVq1aBbVajfT0dMGwKaahUg4ePCh44WESHx+P3377rVyfyfTdR0VF2XzJAwC//vorf90xXRMAY8/Tpu9v2bJlNq8r69evt1uS/tJLLwEwvkAw/z2ZZGVl4dtvv7W5LcuyiImJwbFjxxAbG2u1nOM4fgipkq6TpmuIWCwWtLUn5ElFgSchpMZSKBT8A1B52ki5ubnxwdjx48exaNEi3Lt3D5mZmYiOjsaKFSvw6quvCtr4lNbWqCrNmzcPEokEOTk5eOWVV7Bx40YkJCQgIyMDp06dwtixY/mxOydMmMCXTPj6+vJv27du3YoPP/wQV69ehUqlQnx8PHbs2IFZs2YBMAapprFEmzdvzo8PuXLlSixbtgw3b96ESqXCgwcPsH79eixevBiAMZg0Db9QGtO4oSKRCDExMRg5ciSOHDnCl0j//PPPfHoaN27Mp71Ro0Z8FbVDhw5hwoQJOH/+PDIzMxEfH4+ff/4ZY8eOhU6ng7u7Oz799NNHPeU8U4cgt27dwrhx43Dy5Ek+GD1+/DjGjx+P3NxciMViq9IuU4nMxYsXERsb69D4jeHh4XzwvGXLFnz77bf8Pq5evYpFixZh0qRJguCsqvKs6XPdunULUVFRyMzMFARTb7zxBl544QW88cYbDu23cePG/FisR48exZgxY3Dq1CmoVCrExcVhw4YNmDhxInQ6HZycnPD+++8Ltp83bx4UCgXS0tLwyiuv4NChQ/y2X331VYnVoBs2bMg/8G/cuBHffPMNEhISkJKSgn379uHll1+GSqWyWT3VfHzGmTNn4siRI0hNTeWrr7/++uuCgOZRvydTW22GYbB06VK0bNkSWq0W+fn5Nv+Z2ibKZDK+am5iYiKGDx+O3bt38/n5r7/+wujRo/mXezNnzhRU+5w4cSLq1KkDlmXx9ttv46effsLDhw+Rnp6O3bt3Y+TIkeVuCvHKK6/w15GFCxdi/vz5iI6ORnZ2NqKjozF//ny+vXOrVq0EeUskEmH+/PlgGAa3b9/GyJEjcfz4cWRmZuLevXtYsmQJli9fbrd/gCFDhqBt27YAjB0FffXVV/xv7Z9//sGrr76KpKQkmyX9o0ePhkwmg1qtxrhx47Br1y7ExcVBpVIhMjISM2fO5IcJMuVtWyIiIgAATZo0cbjzNUIeR9TGkxBSo3Xu3BlRUVH8mI6OmjdvHsaMGQO1Wo0NGzbYLL0YPnw4zp49i8TERJtvr6vLs88+i1WrVmHWrFnIysrCwoULsXDhQqv1RowYgenTpwvmzZ07F/fv38eVK1ewc+dOm2/0fXx88P333wuq6n3++ed44403EBMTg3Xr1mHdunVW29WpUwcrV6506LN07NgRS5Yswccff4zbt29jypQpVuvUr18f33//vaDUb86cOdBqtdi6dSvOnDljs0pdSEgIVq5cWaFV1YYNG4bIyEhs3rwZly5dwptvvmm1jlQqxcKFC62G6mjfvj0OHjyI5ORkfkzRI0eO2BzqwpJYLMaCBQswdepU6PV6rFy50upci0QiTJ48Gb/88gu0Wm2V5dn27dvjxx9/hFqt5kvBfvvtN766a3x8PBITE8vV0czcuXOh1Wqxfft2XLx40WZPoM7Ozvjqq6+s2hnWq1cP3333HaZOnYrExESrsTUDAgJQu3ZtwXiW5ubPn49JkyZBo9Fg9erVWL16Nb9MKpVi6dKlWLlypVWti27dumHAgAE4cOAA4uLibOZpPz8/9OzZE1u2bEFBQQFSUlLKVEppKTExEfv37wdgfJHz8ccfY9asWSWO4Tps2DAsXboUgHGs25ycHCxatAiJiYmYPXu21foMw+Cdd97hSyFNnJyc8PPPP2PixIm4f/8+Pv/8c3z++ef8cpFIhNmzZ/MBoiNkMhnWrl2Ld955B1euXMGmTZts1rbo0qULPv/8c6vewTt27IilS5fy15VJkyYJlgcFBaFPnz5Yv369zc/7zTff4K233sLly5exdu1arF27VrDOrFmzsGrVKqs8HRYWhsWLF2Pu3LlITEzEnDlzbH6+V199FSNHjrT7+U2Bp/lLDEKeZFTiSQip0UzVLuPj421WNy1N8+bNsWvXLrz44osIDAyERCKBXC5HSEgIBgwYgN9++w2LFy/mx7c7duxYjaluCxiryf3111+YPHkyGjduDBcXF0ilUvj5+aFv375Yt24dFi1aZPVW39XVFb///js+/fRTtG/fHp6enpBIJHB3d0fz5s0xffp0HD582OohPiAgALt27cKsWbPQqlUruLm5QSKRwNPTE23atMGHH36IvXv3livIGzp0KA4ePIjXXnsNderUgZOTExQKBZo2bYr3338f27dvR0BAgGAbiUSCBQsWYOPGjRg4cCACAwMhlUrh7e2N1q1bY968edizZ0+ljH/36aef4ocffsDzzz+PgIAASKVSKJVKhIWF4fXXX8f+/fsxbNgwq+1efvllTJs2DbVq1YJUKoWvr2+JbRct9ejRA1u3bkW/fv3g6+sLiUQCpVKJunXrYvjw4dixYwfee+89vmOnv/76q8I+c0m6du2KefPmoU6dOpBKpfDy8kJ6enqF7FsqlWLx4sX89xwUFASZTAa5XI4GDRpg/PjxOHjwILp3725z+44dO+LgwYMYPXo0goKCIJVKERgYiNGjR2P37t0ldjrVoUMH7NmzBy+99BKfv/z8/DBw4EBs374dAwcOtLvtl19+iQULFqBVq1ZwdnaGRCKBh4cHWrVqhZkzZ2L//v2YPHky32Tg77//Ltf5MR+qhWVZ5Ofnlxh02vLqq6/i0KFDGD16NOrXrw+lUgmpVIqgoCAMGTIE27Ztw7Rp02xua+qcbc6cOWjatCmcnZ3h5uaGrl27YsOGDfx1ujx8fHywadMmLFu2DF26dIGXlxekUilq1aqFHj164JtvvsGPP/5od+zboUOH8t9fSEgIZDIZatWqhdGjR2Pnzp12O5wCjKX4v/32GxYtWoRWrVrB3d2db/+5Zs0aTJw40e62gwcPxq5du/DKK68gLCwMcrmcz3cDBgzA+vXrS+z46f79+3zV8EGDBpXxbBHyeGM4R0eeJoSQKjZq1ChcunQJ06dPxzvvvFPdySGEPGbmzJmDXbt2ISgoCEePHq3u5BCCr776CmvXrkW7du3stiMm5ElDJZ6EkBrPVIVt9+7dNabXWUIIIaQ8DAYDP3b022+/Xc2pIaTqUOBJCKnxunTpghYtWiAuLg7Hjx+v7uQQQggh5fbvv/8iNTUVzzzzDDp16lTdySGkylDgSQh5LMyaNQsMw+C7776r7qQQQggh5cJxHNasWQOGYWyOA0rIk4wCT0LIY6F9+/Z47bXXEBkZWeJA8YQQQkhNtW/fPkRFRWHUqFF8j9CEPC0o8CSEPDZmzZqF2rVrY9myZeUasoEQQgipLlqtFitWrEBwcDA/djEhTxPq1ZYQQgghhBBCSKWiEk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZWKAk9CCCGEEEIIIZVKUt0JINVPq9UiKyuLn3ZycoJYLK6+BBFCCCGEEEKqhcFggEaj4ac9PDwgk8keeb8UeBJkZWUhPj6+upNBCCGEEEIIqYH8/PweeR9U1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiqrYETk5OgumQkBAolcpqSg0QFxcHg8EAsViM0NDQaksHeXxQniGOojxDHEV5hjiK8gxxVE3JM2q1WtAMzzJWKC8KPIlVR0JKpRIuLi7VlBpAr9dDp9NBKpVWazrI44PyDHEU5RniKMozxFGUZ4ijamqeqahOR6mqLalxRCIR/4+QsqA8QxxFeYY4ivIMcRTlGeKoJz3PMBzHcdWdCFK98vLycOvWLX66YcOGNeotCyGEEEIIIaRqVFZs8GSG04QQQgghhBBCagwKPAkhhBBCCCGEVCoKPAkhhBBCCCGEVCrq1ZbUOKmpqXxX0n5+ftWdHPIYoDxDHEV5hjiK8gxxFOUZ4qgnPc9Q4ElqnOTkZL4r6SfxR0cqHuUZ4ijKM8RRlGeIoyjPEEc96XmGqtoSQgghhBBCCKlUVOJJapw6deqAZdkndgwjUvEozxBHUZ4hjqI8QxxFeYY46knPMxR4khrHzc2tupNAHjOUZ4ijKM8QR1GeIY6iPEMc9aTnmScznCaEEEIIIYQQUmNQ4EkIIYQQQgghpFJRVVtS4+h0OnAcB4ZhIJVKqzs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHAk9Q4N2/e5LuSbtGiRXUnhzwGKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiEk9S47i7u0Ov10MioexJyobyDHEU5RniKMozxFGUZ4ijnvQ882R+KvJYq127dnUngTxmKM8QR1GeIY6iPEMcRXmGOOpJzzNU1ZYQQgghhBBCSKWiwJMQQgghhBBCSKWiwLME8+fPR8OGDbF69eoK2V9iYiIWLVqEvn37onnz5mjXrh1GjBiB9evXo7CwsEKOQQghhBBCCCE1DbXxtOPs2bPYsmVLhe3v+PHjePfdd5Gfn8/P02q1uHr1Kq5evYodO3bgu+++Q3BwcIUd83F17949vmF1vXr1qjs55DFAeYY4ivIMcRTlGeIoyjPEUU96nqHA04br169j6tSpYFm2QvZ369YtTJs2DRqNBmKxGMOHD0ebNm2Qn5+PPXv24PLly7h9+zamTJmCrVu3QqFQVMhxH1f5+fn8GEaElAXlGeIoyjPEUZRniKMozxBHPel5hqraWjh+/DjGjRuHvLy8Ctvnp59+yged3333HRYsWIDBgwdj5MiR2Lx5M15//XUAxgD1t99+q7DjEkIIIYQQQkhNQCWeRbRaLb7//nt89913FVbSCQCXL19GREQEAGDo0KHo1q2bYDnDMPjoo49w9uxZ3Lt3D+vWrcP48eOf2DcdZdGsWbPqTgJ5zFCeIY6iPEMcRXmGOIryDHHUk55nqMQTwJkzZ9CvXz+sWbMGLMtCqVRi3LhxFbLvgwcP8n+PGjXK5joikYhflpWVhXPnzlXIsR9XIpGI/0dIWVCeIY6iPEMcRXmGOIryDHHUk55nnsxP5aC9e/ciISEBgPFNwx9//IEePXpUyL7/++8/AIC7uzuaNGlid70OHTrwf588ebJCjk0IIYQQQgghNQFVtS3i5eWFqVOn4tVXX4VYLEZGRsYj79NgMODevXsAgHr16pX49iIsLAxisRgGgwHR0dGPfGxCCCGEEEIIqSko8ATw2muv4dNPP4VcLq/Q/aanp0Or1QIAgoKCSlxXLBbD19cXycnJePjwYYWm43GjUqnAsixEIhG8vLyqOznkMUB5hjiK8gxxFOUZ4ijKM8RRT3qeocATQPPmzStlvyqViv/b09Oz1PXd3d2RnJyMrKysSknP4yIhIYHvSvpJ/NGRikd5hrB6PfR5+QDLgivqIM7Jx1uwnC0sBKs3QJeTg5hLETAwgFgkgjgsDJxpO5aFLjcXrFYLjmXBFhSC41iAg3EdAwtwpnU54zIAxhUAcBy4okmAg0eL5pAKrv+cMT06HdJPnobMwwMcxwEch8CBAyBRGofT0qoyoSmqeaNVZSLryhVIXFyKdmFc3/gnB21mFjidtmgWxx+76FAAuDIsM3Jr2hgudevaPMepR45CrFDy04ED+kEZYhx7WpORgYJE40tTVqtF6tFjkLq529yPPj8fhsJCm8scpQwNgUfLFjaXZZw7D05vAFNU28i7Uwd4tDDe7/V5+cgrqpEEAClHjkKidLa5H0NhIfT5ecjJyQHHcmBEDNzc3MqVXpmHJ3y6dLK5LDvqBrQZGRBJZQAA10YN4df9OQDG/JtzPcrss10Ax7L8ZzPH6nTQZWeXK32WRFIJAvo+b3NZzoMHyLl/DyK5E8ABEj8fhL/8avHnuR4FTq83pvfqVWSnJoGRSoz5HYC73BUAA45joc0ofl7Ss3rkavJhlknhIXcHwzBWaTCweqgKTJ+VA8Cg4YChcHJ2sVo3OyUJd08fBaswnl9GJkXnGbOhlBp/c7l37kJfNKJB1oO7uH3lHFiZ8TGZYRjU9giGTGzcVqvKMF4LABg4Ax7mpIIzS2+Aqy9kIilycs3yjKsbDByLxJxksBwLDhwYMKjXrTf8gsOs0puek4bog3ugURSlAQxaTZyCusHhAAB1fAI0aWnG7yI1GdeOH0KhjOHXDfMMgbvcmE912dlgiwpCDKwBibnJ0BmM3w0YwN/ZBy4y6/xvXDcFOoMWppUDW7RCvRbtrNbVGfS4tGcT8iTFHXSGDR6KNq17AgA0aWlQx8Ub/9YUIHLvH8hxKl43yC0A/s6+AAB9Xh4MBWoAxkvdw9wUFOqLrxmecg94Ka2vL6Z1C3TF67rXqYPmXfparQsA/x3ejhxNHlCUtzw7tEPv/q+DYw3Q56uRe+s2v27Eni3IZDTgDHpwrAGeUgVCZO4Ax8JQqIE+P994MgGksxrks0XnjAOUIin8pEqAYyE2pbsou6QVZiNHrwZYAzi9DiKZBLUbhQMdBzyRzzMUeFaigoIC/m8nJ6dS1zetU1hBN+Tyunv3LurVqwdXV1d+nkajwa1btwAAHh4eCA0NtdpGrTZeJFq0ED4EpKen86W4ISEhgiDcYDAgKsp4M3V1dUVYmPDiGxMTg5ycHABAkyZNIJEUZ9msrCzExcUBAAIDA+Hr6yvY9tq1a+A4DgqFAg0aNBAsS0hI4F8MhIeHC0q78/LycP/+fQCAr68vAgMDBdvevHmTD3IaN24sWJaUlIS0ohtB3bp14eJSfPMrLCzE7dvGi5iXlxeCg4MF2965cwcFBQVgGMbqZUhaWhqSkpIAAKGhofDw8OCX6fV63LhxAwDg5uaGOnXqCLZ98OABcnNzAQBNmzaFWCzml2VmZiI+3ngjqFWrFnx8fATbXr16FQCgVCpRv359wbK4uDj+JUnDhg0FeTw3NxcPHjwAAPj7+8Pf31+w7Y0bN6DX6yGTydCoUSPBsocPHyI9PR2AsYq6s3PxzbCgoAB37twBAHh7e1vVJNDr9bh69SpEIpFVz3CpqalITk4GANSpU0fw4KjT6XDz5k0AxhdAtWvXFmx779495OfnAzC2AzevNq9Sqfg24sHBwYIbBcuyuH79OgDA2dnZajDo2NhYZBc9IDZu3FjQm3VOTg5iYmIAAAEBAfDz8xNse/36dbAsC7lcjvDwcMGyxMREvrlAgwYNBGMD5+fn800AfHx8UKtWLcG20dHR0Gq1ELMs6gbWMgZgOi1EUhlyZVKkpKQAAEL9AyDTFILjgOxr15AbE4vs/HxAp4OUEUEhlYLVasFqtdDn5qIwLw+swQBwHGQSqTFgKwrcWL0BrF4PjuMg4jgwTFFcxXHFAWFRsBU68hWIFYqih1cOqgwVCnNywGZmQX8lkv8cElcXNPxmJX+NkF64yOel3Dt3UXApovhcovLosrIgDwjgp3Nzc6FWq8HpdNCdOiNY171LZ8TcNeZvZYYKsmTjudakpSH1yLFKTGUxVqsFW1B8DyooKOCvwfpzF8Ca3Z+82rfF3UzjdVSaoYJzUXpZrRYZp89WSXoLU1MhMrsv6HQ6/trOXrsOfXpxsxlFrUCkyp2M99jsHHgkJPLLMi9chMHsnl2azHKmV+sqh8yr+B7IcRxSU1MBAPm3b0CamMYvi0y8htZhtZGdnQ1Op4PbzVv89Tv5wjkgI6ucqSg7vQhQWtzv09PTYTAYkBV3B8p7xTW0knykcO/Wg79GuNyIhqQoyEy+9B8QkyjYT9nPNpBVwjLLB1lVnetwcSs+x1lZWdBoNMjNSIbi6n1+vkbKIGFkIgozjM8uyvsxkBXlgYzoKLhEPhDuF7dhj2WYm48k5FvMM+UZV4v5Wd7XocjX8dO5ublQ5WYiuyALXreSBesmpSUgT2X8DSqSkuGkMu41Oykenjcsz2+83XNsmQYd0u3mact1cyXRyJUXn1/TNULH6iG/lQg3XXEwmdTqLq5Kjc8V5tcITYEaLjfjBeeNQyKEn7aYsuhfsQy76bVcNy8zBw+TYoruIQawOl3R6BUcmHQdauUXp/eW4RDuXd4NTukOjXcTSJJy+Jd80psxqKUTjnqhQrzNNCiK/pnL41OcJJgvA2D+5KVWaAHdZYjys4BWrartOcL0LFvRKPCsRAaDgf9bJpOVur5pHX3RG8LqYjAYrIaU4TgOOp2OX25Jr9fzyy2xLMsvszVUjWmZ6XMHBwfz1QxUKhW/nDN/LW+RJnv75ThOEKzaSm959luWz1rSfm19x6b92nqr+yj7rcjvxpzBYLCbJvP92sovOp0Oer3eZrvnkvZrLx+a8szDhw+h0+lK3W9J+bsqz2FJ+bAs55BlWcGLBINGA01qKnIjr6EwLQ2cVovkm9EQGViwBQXQpKdDm5ePvJwcQK+HVqGA04jhKIiPB6vXQ+rqiry7d41pfZiEiLvFJULuLZrD6+1JfJo0GenIibwGAFD9dxH594of6HQA1DbPlpGmhGWlDWalz8/nSzQBwFBQAIPBYFbyaMSxLP+9clot5B7ugM74Hdj6jVUazmKS44zptZFXOM7ed16F6bVgSi9g9VEAFOdvkaF67lssZ50qU3p1Bp2gB8Wz8RGoFxYMg84A6IW/Zx2rq5LeFnWs7WspYCwxMh9ILacwl79GcBbXH5Zjq613SJZli35zts+9rWsaA9v5pyrw6bXxm2PNrv22Pk914DgOYDm4iZU2l5nSK7NxX6gqxloaLDiDHqxGDbYgFxyrg+W3rE1PhEh3AqzCDQZZAPR5WWA1+dAbKm7YwlLTyhpgyBH228JfUTmLayvHgQEHzmAAq9cBXNWl00RZwEEjBsS3ioPaqnyOMN+2MlDgWYnMS4DsPbSaM7UHre4xPMVisdWDO8MwfLpsZVCJRGI33SKRiF9mKyAwLTMFiOYlRjk5Ofxyy4dF8zTZ2y/HcTbTZZ7e8uzX/L/2PmtJ+7UVDEulUuj1epsPxY+y34r8bsyJxWK7aTLfr638IpVKwTCMw/u1lw9NecZU0mHrs5jvt6T8XZXnsKR8aNovx3Lg1Grkx8RAq8qELisL2sws6CIjwWZlQ6dW47xGA0NBodXDKQCU1GJcK5Mi/75ZwJiTA5FIBLFYDNYivaxGa3EOi88/Y+M7riwcK7yx8ukVi4VBK8vx3ysnkcApMBAoquaFKgw8LR9lGYaBWCwGx3JWQTYD2P7dVF/cyacXKKpJbLG8OL3V8ziRrlZBWpANT0VxtTuxWAyO41Bo0AhKPtLyM1BPXPRbl1j+nqvvJJvOr61sabpGWIVE1ZgnTL85EVPydZbhqy5ULQ62rxG2rs8MA5vX4Ko8vZaniGEYyKVyaGw8+DMMA6nE/r21KugyEpF18g/BPDkAHQNoLT6L5uEdKFOuQ+9TF6w4CboMY1VmfRmeiasTwxkgFlXP+QUAXR5g0BQHio/6HAHYfxZjWdbu82xloMCzEplXEdRoSnrHL1ynojs5clT9+vUFVUQBYxBtWYXWcht7fHx8rKpwmojF4hL3a1lt1JyHh4egyqmlktruBgcHW1V1NXFxcSkxTZbVa80FBgZaVc01kcvlJe7XsjqwOV9fX6uqxCYSiaTE/VpWXzbn6elZYvvjkvYbGhpqVeXaxNXVtcRtSxpaqFatWlbVP00UCkWJ+7WsKmLOz8/PqpqJiVQqLXG/llVbzHl5edlthyESiUrcr2WVXgDIvHwF8Vu2QZORAbagEIbCQuRVUi0ITm/9BtT0W81XF0BlNp/VagXVptUJiXw1rqoMPC3fQJuuARqJBKmC1VjBNSLnxk1kFQWejEgERiqFSCo1tpETiYzziv5mtVrjcRgGjOnhmmHASMTGaYYBREzRTZ4pekpliv5XdOMvmufk4yOoWunt5QlvhgGr0yE1KQmyorzDMAwUrq5oUVR9PO/+A+QXvaFmJBK4NWsKmel6x6AoSjGmQVtUFZPHFKeBMX+E5ucL/8vw/we4hIdDGRrCb6IEYGopm5CfC72zE/I0+dAatLiueQgm0BedQ9tAk5KCvKJaO6xOh/xGQUgUqaEz6MByLDzk7ghw8UGIexB0OTkwqE3ttzjcz4xFrra4YqJSqoSP0hNeCg+Y07MGxGc/RLYmh59n8FHA09cVSq/ia5F7vXrQ6LVQZSfgas5DcCLjh8vykiGsbhicxDKIC7TINsu3mgZBuK1JMUuDHJ1D20LEiGBQq6HLKT5mcl4akvOKc5tMJEU9r9pwklg0qWGA5FzhuqyzAq3rCH/3LmF1AACXDZmIUhRALzamNztQwV8jWJ0Omdri79hQLwTXPe7xn00qlqBnWGfjulottJnFFRFV6kzEZRe/ghIxIrQIsH0fy1RnITa7uMomK2bQzOI+7Fw0He3M4aYhHVqp8TeS4yLGcLNrRKZOD7YozeKMBESKMvjPxgDoVa8LxIwYHMvybRUBIFeTh/uZcfx6YBg09Q23GQiodQW4p4otXhcMaoWFwdmsqq3pSSw5KQaRuQ+hkRv3w0rFaO7hBd8gYw7Pkcr47zmf1eBWfiJ0RZ9NxIjwTGATKKXGVxmatDS+BFVr0CEmMx4sOD4NtT2CILfMDzCWasdmJxhLk4p+nw0a1odzSPF92pTevPxsXE59gDw5A6lYChGAVm4eCPXwgUjqBI2bOwqTk8EW5kErNiAm3A8FTgxYTQHA6hGqA5wNxlJJQ6Ger06iB5AmE0NvFqR46wxQshzELh6Q+YdBpzJWB2XBIUmvho5jwRl0AMvCQ8FCaqsSHwPk+IqR72T2UlhkPKizlIFz07bIvmFsDiHRaRFX2x25CgacXgtOr4efVg9vvXF9Vg9wRbcnDkCqTASt2YsON4MB7noOjFQGiWcAOL4GA4dkvRqFnAEw6MEZDFDIOUjttHYrFImR4cuAKzoX7kVtTkXg4BvoDzVXHCYVhnggS1ZUyqvXwt3AIUjHAQyDosPx50ElEUPNFEfhSojhWxRyiVw8BNfldF0+cg0auCfnQaqzflFTnucI/jy5uZW4rWWTJHO+vr6CvmoqCgWelci8jWR2GRr6m9Z5EhsTE/K0YnU66PPykH7qNHJv30VhUhJYnQ4+nToi5JURgnU5jkNu9C3osrOhTUuvgsSx4AwGm4EjI7Eo0bR4+ymSSiF1cwUYERRBQeAMLJTBQRA5ySCSmf1zkkGfmwdWozEGeIwIEBcHeuaBH0QiiMTGB1GIGEhdXACRGIxYZEwDI4I8wB9imUwQfAEAZ9AjsN8LcPLzLd6vGZcG9eEcVgciubxqq9qWoNaA/naXudQNg0vd4ofRkBEvVUoaLj28hsScJKTkpeNhbgqa+rqijqcLarn6oZZbgGDdn9griHh4jZ9uWnALjXOND2rygABBW9a7ilj8G3MWKKo82sA7FG6hbVAvvKdgn9mFOThzbT/+uV88fnUdjxD0D++BpmEdBevma9W4Gf0P9tw8xM8LdgtEo+aN4RP8jPVn89fiWOROftrfWY60fBX0rAGNfOvBp1Px/gu91fj3ynZ+2lvpiVH9xkEmsX7CTr5/GqeuH+BLBNyd3DC89/s281VewmU8uHsSDMOAAQMfpRe823awWg8AAut6Ier+KTBgIBIxCJIVP0OIpFJ4dyzernajIDx4cAYMw0AEERRSBeo1G2Bzv8m5qchMvAIGIiilcigkcjSt3cbmutkF2ZCrYorSIIZUJIG3f0Ob6z7bpiVC1SMgYhiIGBHEjPA64tn6Wf5vt3at0cyghajoZQnDiOBk49ya2D5DtrUt43reaI+mw16xu9ytcXF/A97t26Hxa2PKnIZWZV4TeKbov4UJ0dDnZoItzAerSQJbmA9DYT7YglwY8rMhystEqxA9OIMOnF4HTq8FtixGAgC3Nv3g0XEoNHExEIsArwAxugzqDgDIu3oM+uwcO0c38oPtarrK+vXgP2I2Mk8V/xbqFP03/9Z56FJj7e5TDqC5hwGwsW+OZeHSuAVYTfELho6NjHsuiLkKTXzJwwh6gwMjk0IkdQIjlYGRyMCIpZC4+8C1eQ8YCnL4+0G9ot+hOuY6DHkqiJyUYEQSMGIJIBaDEUvAsQYwIjGC/GpD4uYDRiwFI5EU/VcGRmI8licYfr9BI4ryrpPCuN4j3keysrLAMAxauBtra1xctRCaI1f45dqacZuqcBR4ViI/Pz84OzsjPz+/1CFSDAYD35DXXmnP08K8XnllFfWTJ0t15xm9Wg11bBx0ubnQ5+ZCk5oGkVQK1qwUKvvqNeTcuMlP51l0uAQAXFEJl1hh2S2BYxixmC/RE0mlRTdsKURFJVIiqRQyH29IlEq4hDeASCoFOA6sRgNFSDBMLbLqjHkdUk9PiG10jib390NgCYFTTSOSSgGz6kTVnWcq0/WUaDzMTcHDnBTcVcWigXcY6nvXhlQkRTuLAO3vuycQkVTcvRIDBiw4yCUyq8DTRSpsc6Y1FLUrAgedQQ8xI+JLpeQWRQx6g95me0x3uRvc5MLeNPWs3mZ7O2eZEgqp3Gpd1k47rFqu/qjrGQodq4dSKoefsy/UugI0sxFIdQ5tg2C3ADhJZJCLnSCXOEFiUX3YlGd61OmIXnU72zympfbBrdA+uGxhSVP/cDT1t19rw1yYZwjCPO0HUeYCXP0wuJHtnmktuSvc0SaoZZnWVUjlCHEv2/OKVCyBtJqqY1cUjmPBaQpg0OSDLVSDLcwzBo2F+WA1ahgK8ozzNGp+ubJxJ7i1fgH6nHRoYq+DM+gBjoU+Pxs5EX+Bzc8qV1rYwnxoU+PgHN4W+bf/EyxjSgjoS92vrhCwUYUagDFwKwkjAiOWQCR3gchJAUbqVBQoyiH1DoRlBWaxwgViVy+InBSQBzUExGLAYIDY2QNSr0BALIHE1RtipStETs58b89l5dqyZ+krVZPMzExcu3bNGHi2aAF3d3fks1pBUFa9vb1Unsf7KvAYqFevHq5evcr3ImnP/fv3+Ya/JVUXfBpcv36d7zW2pCoChJhUVZ7hDAYUJqcgPyYWOVFRyL1zDwWJiTAU9XgrdXdHQD9jt+2sRRsWsVL40K5JTQOr0xkDoiIiiQRipdJ24MkwkLq5QeblCamHBxixGPr8fIjlckg93OFSty7Ezs5wbVAfTv5+NoNFUuxxu86o1FlIzc9AhlqFe5lxkItlqONprBIb4OKLUI/iHp533TyMaym3+GkniQwKqRxyGw+klkMoaIqGTcjXWfeH6SIT5mFdUeCpNehwJSlKEGBZVjPUswZo9LabnPg5+yLUPQiFeg0kIjH8XXytq60W6RzaBp4Kd9xVxSDMMwQKiRy1XK1f4gBAm6AWaBNUtu/WU+EuaCdqy+OWZ4gQx3Hg9FqwBXkwFOaBVeeC1RWCLcyHzDcETgF1i9ZjkX/jDCASQySVIePIBuiz08DpNHC0i6QcsQvuwQfy3CTUDvCBLru4xE8kkZbamZo9bGE+FPVawZBjXTOGsWq/bIPYWLondnaHxMXTWCook0PmGwqGYSDzC+Wrg+qyUiHzC4XEzQdsoXHoEZFMAZHcBRIXTzByBUQSp6LAlIHY2Q2M2DoNHMfCs/NLpQewTzhT0Gl6kXX16tWn6nrydH/7VaBt27a4evUqMjIycOfOHbvt+M6dOyfYhhBSvfR5eciPjUX+g1jk3ryJvLv3oElPt9ku0kSXk2O36qrYWfjQXpicDMZGRwGKWoHwaNUSMi8vyDw94NWhPeQB/pAVBZvkyaI16KAqyEJGvgrOMiVkEhkKdRqoCrLQKrApX4K4+vwviEotHs6hhX9jvo2mXOKEUBQHnp5yD8ExCosCvkK9FpbsBZPGcRQt1nVyNpYEisSQiCSQS+Rwc3JBTGY8mvg2EFQ96xLaFrU9gpFdmAO52AneSk9BcGyuZ91O6FnX9tiWlnycvfCcc3s8V6d9mdYnTzZWrwWnLQQ4DtkXD8GQq4KhMB+GPJWxLV5RaaSxHaH9Xko9ugznA09DrgrajOJ2roaCXHC68g1zx+iMvz2Ddx2IZMJ7x6OVTGqMvzeR8B4ikikgC6wPiZsPIJEBHAeppx/ECjew2kLIgxpC7OYFsdIdIicFRHYaP7o06mhz/qMwNbN4mlkGnYCxxmNSUlK19fpc1SjwrGR9+/bFzz//DADYsGEDFixYYLWOwWDApk2bABjbhXbp0qVK01jTODs7Q6/X2+y9ixBbHiXPcAYDCpKSkP8gFuqYGOTHxiLnRjRfiunYzjjocnIgs9Fhk9TVFYrgIEjd3SFxc4N3O9svmLzatoFXW9vtr0jFqYrrTKGuEByMVRJzNHlIyUuDh9wNvs7GzkyWn/oeFxOLxx5t4d8Y4T51+elm/g35wNNbIcxTarMH4TytcPAay5K7ghIemkM9gtAyoAkYMDBwBvgoveAiU6KhWTpMXmrSH8Ob2m5HaGu/9gLNxxXdmyoHxxqgz8+GITcD+swU6DKToU2LMwaOBcaqqxyrB6vOhedzr8Dt2eJqw9rUOKjvXgIAZP93AJympIGc7GMLi7djLIKxRymZlHA6uLi5QyKRQCQTvvhhnJQQKVzAiI1tCk1tCwV/Fy1zbtQRMt9giJycIZY786WaYmc3eHQYDJHs0ZpnkMqnUqn4cTPN+fr6Ijw8HOlHhM0IntAmnhR4VraWLVuiVatWuHz5Mv744w907NgR/fr145dzHIdFixbhftGQBqNGjar2Xm2rW0k9iBJiS1nzDMdxKExNg+rsOeTevg1thgr59x8YezF9VEVVYdmisSLBMPDp1AESV1eIlUqIZLIa06kNqbjrjIE1QM8au96XiMTYdHU3Lj28hgx1JtS6Agxv0l8wTka4dxgfeColwmu92iJA1LN6aA0iSEUSeCk9BMsK9MVVYXM0uYJlQW4BaOAdBk+FOwp0hZBLnOAiU6Kel3Xvhz3rdkbPMrZXfNrzL92bHg2rLYQm+QFUxzbCoM4Bp1GD1RY6VJpoyMsSTAuGQJHIHiHwzOP/FitcwTAM387YdskkIwwSxcV/y4MbQlxUfVXqXQvKusY2xfq8TDipcyHx8AMjEsGlSWdwBj3EClfjNcKsF22R3LlMVVIZkRgMBZ01XklBZ+PGjSESieDfriVOFhb3A6G0aPv+pKDA8xElJCSgV69eAICgoCAcPXrUap3//e9/eOWVV6DT6fDuu+/i6NGj6NKlCwoLC7F7925EREQAMA4dMnny5CpNPyFPA9XFS0g6eBg5UTfAFpavypQ5kZMTpB4ekHm4Q+rhAZd6deES3gAyLy9IXV0Fw2eQx9+/D87iVvp9pKszkKHOQsuAJgjzDEFyXnF7rXZBz6COZzBUBVmINxu6Ii77oaDkr9CsnaNlMGnZfiw1Lx3Zmly0CmwGb4UnZGIpvBWecJO7QMwYb99uTi5o7t9IsF33sI7oHlbxVeUIMcdqC6HLSYdelQSd6iF0qmQYCnLBFubBve0AOIcX1+ooiI1CQayxEytt8gNwdtr7lsagthwhwDzwdHAMdLEUIielsZ2jm7dgkdQ7CJxOA31eFtxa9wWn04FxkkMkkYE16I1tIEUSMAwDVqeBxMUDjFQORiyFSK4EY2PoF4mLJyQN2zmWRvLYsxd0+vn5oXHjxvzLE0YmhU5ZXBXZ4PRkNq2hwLMKNG3aFCtWrMD7778PtVqNvXv3Yu/evYJ1ateujZ9++kkw9ichxHGcwQBDYSEk5uPopqUj61KE4zsTiSB1c4PUwx1SD3fIPDzgXK8uvFq3hkguh9TNVdA5EHk8mUotnSQypOZnIDk3FdHp9xDg4ovn6rTHmbiLuJJ8g1+/nldtZBYIH4DZokHnLKvEGjhhu6647Ieo6xkKPxcfwbqWvbUCxjEKw72NVV571+uC5+s/99SXOpKqo0mLhzb5PrSpscahPvKzoM9OgyE/C6ymwDi8hx2K2s34wJMzGIcEcQqoC03yfYicFDBUVOBp9nuQevhDJFOAkUghVrqBYw3GYM/NB5xBD4mHLySuPnxPqhIXT7tVVF2alK0WACElycjIQFRUVKlB59OEAs8q0rt3bxw4cAC//PILTpw4geTkZDAMg7CwMPTt2xejR4+moJOQcmB1OqQdPwHV+f/gXDTuoTzAH349uvPruNQvvYqc1NMTznVqwzmsjjHQ9PSEzNMTcn8/iGQySN3crMaGJI8fjuOgM+gQkXQdEUnXEZeViPicJLzY+AXU966DW+n3+XWT89LAcixqewQLAs9CvQbB7oH8wPUAEJ+dhLpeteFtUYqZVZADWBSAm9pgdgx5Fk39w+Gl8IBSqkChXgMnse0q2WIbJSiEOIrjOHAaNfS5GdDnZEDi4Q+Zdy2LdVjkR59D2r5vinpydZw+p7g2ACOWQFn3Gegyk6FJvg/GSQnYHEaEASN1AiOTQySTg5HKIXZSQuLpD6eAupB6BULi4SfYQuZfGzL/2sZtn8KHeFJzZWRk4Pr161ZDQ9kLOv2c3NAts7hvCYmHS5Wks6pR4GlH+/btcevWrVLXCw4OLtN6gHF8zo8++ggfffTRoybviRYbG8t34FC7tnWbJEIAIDvqJu6v/QEFiQ/B6Y3tKjVOTvAKqgWDWtjOx6VuGEQyGd+WUySTGXuN9fZCrSGD4NqwIWQeJQ+lQB4/HMeBYRg8zE3Bqdjise5kYikepMThbEpxKfiDrHh0C+uA+OyHgraWuZo8+DkLq+FlqDMhZoSBoKuT8cVhM/9GeKfdG/BWesBL6QkPJzfkavPAAfBWeEBqNsyAm9wVbnJXftpyCBJSs9T0exPHccaSyaKgUp+bAX1WGvS56dCpkqHPSQerzgFnKB7qyblxJ/i/OFOwH116grH00EkJQ7kDzwyreabqpzLfkKKSSC9IfUKM/9y8IVJ6QKxQGttMlvFFC2NnzMmaoqbnGVI57AWd/v7+aNSoke2Xi4wIMvPVS+hB/3FGgSepcbKzs/mx0ggxp8/Lw8P9BwGOM46pmZTMB50AUJiYCATVgi4nF9rMTGMppVgMRixG6OujIHFWQpOWDo9Wz8C1YTi9IX+CcByHmMx43M54gHuqWNzLjEUT3wYY0vh5QdAJABKRGF6Mq2BefPZD+Ci94KlwFwSef949gVYBTdCtTgfUcvWHt9ITAS6+8FJ4wEPuBheZEkqZAjKxsQOSWq7+VuNKKqnzjydCTb03pez8EoUJ0TCocwGDrvQNzOhtjAMp9Q4CGJEx8MzLLHUfjEQGRqYwDs/hpITUwx8uzZ6zWk/s6gXPLsPLHFQ+CWpqniGVJz09HVFRUQ4FnQAARgSpdxAKNRrjM46MSjwJIaTK6bKzkX39BtRxcYL5jFgMRUgw8u8VV41k04ofovLvP4Bn62f56aAhgyo/saTKRTy8jruqGADAnYwHiDSrEisVScCAwdDGffHPvZP8sCNqXSHcpMLAMzk3DRq9Fi6y4iYPLjIlWgU2Q6CrHxrYGF7Ex9mrEj4ReRqxOg00D+9Cl5UMQ64K+rxMGHIzYchTQZ+dDqeghnBp3BEuzbpabatTPYQhV1Wu4xrUOXzNABNTYChSuBiDSidlUVDpDKm7H0QKF4AB5LXCIfUNhsTFC2IXj1IDyqcp4CRPr4yMDMeDTgDxubm4VCiBVsOCAwcZgPBKTmt1oMCT1DiNGze2uhGSp4tBo0Hijl1IOXIMYrkTfLrY7uhBGRrKB54yH2/Ig4IgdnaGV9s2UAQGVGWSSSViORYJ2Um4kXYHBtaAAQ2NPYnHZz/kg04AcJcLg8nY7ES4OblAKpbCReYsGO/SN9APHblnUc+rNup6hSLUIxhOEhma+DZAc/9GENXwKnyk6j3qvYnjOBhyVdCmJ6Aw8Ra0yQ+gTY2FoSC31GFA9Dmp0KmSbC4Tu3gBKTEOp4eROIERS+x+Hp/+b0Hs5Ayxqxfdj8uJnmeePuHh4WBZFikpKQCAgIAANGzYsNQ8kHHlKuocK+43oNBJBPxfZaa0elDgSWocqpLy9MqPiUXi7j1IP3UGnK6oyphIBINGA7GTdfs3J18feLZpjYB+feHZ+lm6uT9hOI7D8QfnsO7yVn4YEg+5G/qH9wTDMJCKJPBz9kZqvrE9madc2E7XwBoQm5WI+t514Ofsg+S8NDTxbYDaHkFwkTmjS1hbq2Oat8EkxJwj9yaOY63aHyb8+B50aXF2tigZqykABw6sTgNOr4NYUVwNT+rhhwKL9RmpHCInBRgnBUQyJV8NViRTgHFSQhnWApxBB6lnoN1jOvmGliutpBg9zzx9GIZBo0aN+L/LEnQ+TSjwJIRUK726APFbtiH91GloM6w7pADLoiA+wapnWmXtUHi1aQ2RzNbg3uRxYmANgl5bWZbFqbj/kJyXhlxNvmDsy6zCHCTlpaKWqz8CXP0Qn5MEFAWeUrEUAS5+qO9dB/W9aqO+Vx3ULhpDs5FvPTTyLb13Y0LKiuM46HPSURBzDdqke9CmxYORyeEUaMxnnp1eFIwtKXZ2hy7N3t5KxmqMoaUm4RbEbt6CwNOleTcwMjkYiQycQQdFSBOweg0krt4Qu3hALHcFxGKIJHStJKQqWAafZWJRPfdJRYEnIaTaJO7ei/itf1j1QmupMCmJDzz9e/eEk69vVSSPVBI9a8CN1Nu4nnoLt9LvISYzAWsHL4G8aCzLmKwE5GmN3cq7yJSQS5wEwefN1Dt8Bz4uMiW8FB5QFWShhX8jDG/an6rJkgrHGfQojI9Gwf0rUMdcM45lqc4Gpxd25iPxrsUHnobCfEhcPPhlMr9QFMZcK/E4fCc9cheI5M4QOTlDrHAGRBIwYikk7j6QegmHP5EHhUMe9CS2BiOkZiupGrXDpZwSMVjzW5fkybyPUeBJapycnBywLAuRSAQ3N7fqTg6pBLqcHNxd8z1U586XuJ48IADO9eoiaNhguDZoYHc9yjOPj/uqWJxLuIw9N/8Ch+I3vLczHqBFQGMAQKhHELwU7vjr3kkwDAMfpRcScpLgLndDy4DGCHQtHsuvsW8DNPa1nzfsoTxD7OEMemjT4qFJvgfNw7tQ370EQ14WwLGlbsvm5/B/a1MeQJ/tDKfAemBEYsi8gwEYe4EVyZ0hUrhCrHCF1DMAEq8AODfsAKlXIFXLe4LQdebJlZqaitjYWLRo0QJONpoCOSqox3M47quGQW8AB07Q0d2ThAJPUuPExMTw3Y+3aNGiupNDKhDHcUg7fhIPfv4F+pwcm+uI5HK41A2Dc90w1Bo8EHJ/f5vrmaM8U/Mk5abCXe4KpbR4KJFCvQbp6kxIRBJ4KtyhKsjil91Iu8MHnhKRWDCmZVO/cLTwb4wRzQbAWaaskPRRniEmrEYNVqOGSOkGkUSGtH3fIC/qZPn2VZgHzqAHI5agMPE2lGEt+N5cnRt3grJ+azByZ3DaQkFpKHky0XXmyZSamoqbN2+C4zhERkbimWeegewRm/3os1Ohz0qBTqsFB6BQ9GSO60yBJyGkSmjS0nD327XIirhsc7nMxweujRoioG9vuIaHQyyXV3EKyaNKy8vAtqj9uJp8E5mF2ZjWfhy61mnHL5cwYjwT0AQxWQnwdfYWBJ430+4K9iWTyNDEtz5cZC6o5eoHGbVPIxWA1WmgvnUBBfE3IHb2ECxzbd4NIs8AyALCAEcCT7EEYqUbxEp3SD0DIPMJgVjhAqegcEFbTLHCBTBNy+j6RsjjyDzoBAC1Wo0rV66gVatWj9SZlD43E/qcDDBA0T/LLsOeDBR4khonICAABoMBYjGN+fUk4DgOcZu3InHn7uKeas2IlUq4NW2CelMmw8mrfOMiUp6pfleSovDdfxuRaRZMRqbcQJfabfmqgxKxBGxRdUVfZ2+k5qXDx9kLwxr3RSOf+oL9iRgRmvk3qrT0Up55OrB6LTSJt6G+G4G8G6eN411yLBiZHG7tBgmqtXIGPTiOg1OA9ZitPJkCjNIdcu9AyPzqQB7cCPKQhhDJna16sSWErjNPlpSUFNy8edNqvoeHBySSRwupfKXO6JxV3N+FyImq2hJSJfz8/EpfiTwW8mNicPOz5dAUjWdlybtTR9SdOAEyL89HOg7lmeql1hbgdsYDhLgFCgLPK0k3cCXpBlrVasrPEzEiPBPQBDpWjzEtX4RSpoSsGoYwoTzzZOIMOhQm3kFBzHUUxlxF4cM7gEFvvZ62EGxBLsTK4nZ3BfevQCR3Lgo8GUg8/OAUWBcihStEMgVkfrXh3LA9RFRaScqIrjNPDntBZ1BQEOrXr//IbbMljAhKtrjfgye1kzwKPAkhFY5jWTw8cBCx6zeA01s/9Mm8vFB38pvw7tC+GlJHykOtLcDxmHOIz36IdsHP4JnA4mBSKVNgeJP+uJV+D1dTim/MhXoNDKz19x/uU0KJEiEO4Ax6aJLuoiA2CoWx11EYHw1Ory3TtvrsVEHgyel1EDt7gGEY1Jn5K0TyJ7PEgRDimMoOOp8mFHgSQipUYXIy7qz+FjnXo2wud2vWFOEz/6/c1WpJ1XqYm4K1/23ErfT7YDkWEpEErk4uaBHQWPBGViQSobFfAzTza4g8rRoh7oF445nhcJO7VmPqyZPKUJCHgvgbSNu9Epyu0MGtGYhdPcGIZZC4+UAe0ghSzwC+EyAAFHQSQgAAycnJiI6OtpofHByMevXqVVjQGRsfi7tpZuP+yrSoUyF7rlko8CSEVAiOZfFw/wHEbdwMVqOxWi5WKODZrg3qTpwAqSsFI48LhhN2/KNn9UjOS4POoIeTRYc/HMfhvU4T4SxT0htgUiE41gBDfjb0uSroMhKhy0wWLONYQxn2wkDs4gGJu5+x+mytcLi37gOmGqp4E0IeH1UVdAJAZtxD+D8o7gejUGZdW+hJQIEnqXGuX7/Odz/erFmz6k4OKYP82DjcXPgZNGlpNpe7NmqEoJeGwrtd20o5PuWZR6M36AGGgZ7VI6cwF34uPvwyd7kbmvg2wI20O/y8+OyHuPTwKjqGtBbceBmGgctj0iEC5ZmaieNYFNy/CvWdC1A/uAZDThrkYS1tdvjDiMRwqlUfmnjrKnBiZw9I3H0h8fCD2N0XIokMUndfODftAlE5e0imPEMcRXnm8VWVQefThAJPUuOwLMv/IzVf2slTuL/2R+hz86yWOfn6oP7UKfB4pmWlpoHyjOMMrAE30u7geMw5nIuPwLOBzRHsHohAFz9B4KmUKdA5tC1upN0BwzAIcPFDsHsg6nnVfqxvvJRnagaO46BNT0DeteNQ3/4P+uxUqzaa+uw0uz3Nip3dAQBS31AoajeDonYzyEObQJeZBJHcGVIPfzDiinnUoTxDHEV55vGUlJSEW7duWc0PCQlB3bp1H+t7X3WjwJPUOHK5HGKx+JHGQyJVI+dmNAoSEuHZujXS/j0uWBbwwvOo/cYYSJSKSk8H5RnHrTy7DucSIvjp+JyHCHYPRLpaBQNrgIFj+d5m24e0go7VQcyI0T2so1UV28cR5Znqw2rUUN+7DPXt/1AQcw2G/KwS19dnpYLjOJsPezLvIPhM/xESV2GbcbGy4qvzU54hjqI88/hJS0urnqBTKryvPqmhLQWepMYJDw+v7iSQUhg0GmRHXkXevfsAAHmAP1wahiPv1m2InZ1R+7WRCBzQr8rSQ3mmZAbWgNisRChlCgS4+AIAWgY0FgSeyblpkIkk0LJ6HLrzL9S6ArzcbCAAwM3JBf3De1ZL2isL5ZmqpctVIS/yCNT3I6GxM8SJPZy2AGxhPsQKFzBM0TAnAfUg9Qmq0rEzKc8QR1Geefx4eHjAxcUFeXnFtbhCQ0MRFhZWqSWdnhJn5JpNP6kB2pP6uQghlYDjODzcsw+GggKrZR4tmkMkkyF4+IvwrOSqtaR0qoIs7Ln5F5xlSn5eHY9gPvBsH9wKP13aDANnrAJm4AyIzX6IQFc/qHUF6FOva7WkmzxZOIMemad3QH33ErRJ98q8nUjuDIm7H5yCGkDmVxuuzbtBJKv82hOEkKebVCpFy5YtERkZiby8vCoJOp8mFHgSQsok8/IVxG3aAo9Wz9i8ADNiMRp9MAtSN+qxtjplqDOx++af+OfeKTAMg4ENe0EiMl7q09UqAMbOhFycnNEyoAmyCnPQIeRZuMqcwTAitApsCk+Fe3V+BPKY4jgOAAf1rQvQpMYKlkm9g0oMPMUunhAp3SDx8IPMJxQeHYdATEOaEEKqgSn4TE1NRa1atSjorEAUeBJCSnX765VIO3EKYFlIXV3h0qC+1TpujRtR0FnNHuamYNbhRdCzRdUYOaBAV4hm/g0Rm5WIPK0a0Wl3oZQqEOoRhPc6T+LbcRJSHqxei8KYa8i5/A8KYq7B9dnnIZI6Wa0ncfcFxFLAUDRcgEgCRZ1mUDZoC2XdlhB7+EMkqrpqs4QQUhKpVIqgoKAqO56zRCasastV2aGrFAWepMZJTEyEwWCAWCyu0h89sS368y+RceoMP511JRJO/n6Qurnx8/x6dIM8IKA6kgeA8kxqfgZkYikCXfxQzzMUtzLu88seZMajjkcwP52vK0BDn3oA8FQHnU97nnkUhoI8qO9FIPfKERQmRAvaa+pVSZD517HahhGJIfMNAWfQwe2ZPnBt2QMiJ6XVejUZ5RniKMozNVtGRgY8PT1rxEsvsUV79Se1jJUCT1LjZGRk8ONe0YW6emnSM8AWFgrmcQYDcm9Gw6t9O4S8+nKNqILyNOeZbdf3AwBGNB0AhmEwotlALDq+CgAgFokR4h6IABdfdAxtDaWU2siZPM15pjz0OenIv/0f1LcvoCA2CmANNtfTZSTaDDwBQNmgDTy71oxrRnlQniGOojxTcyUmJuLOnTvw8fFBkyZNqj/45CwnH8/rZGko8CSE2JQVeRU5N27CpX596HLzkHfrNgDApWE4wmdMhYJuov/P3n3Hx1Gf+QP/zPamXfXe5aIuuRvbYIppxtTQ44Pkl37JJaT35BIIl4RwySUkXDhIIxCa6Tam2IDBxsZNktWr1XvdXmbm94eslUZalZV2d7Y879eLF5rvzM4+Kz+a3WfnW0TBciw6x3uRHZOOd1o+BABIGAavNxwCANhcduTH5yErOh03FlyFeE3sQqcjxCOe5+Ec7IC58STMDR/D0be0iYGco33gORaMRAoA0OSUQhaTAqnWELIFJyEkvHR1daG5uRkAMDQ0hNraWtGLT5NC2APJKXYh7CdUeJKgs3r16nnXbCP+x/M8Op95TtAWXVYK1mKBOjUVq7/6Fch0wTXpRyTkDM/zONVThaerXsaIdQyPXHc/ErVx4Hkeo7ZxWF3Td6Z/etnXIb3wwZ94Fgk5s1xjx1/FxOmDcI31L/kxUn085HGpkMemQbd2KxTJ4TcLJOUM8RblTPCZWXROGRoawtDQEBITE0WKChh3mAXbLnAiReJfVHiSoKNWU3dAsfAch85nn5/TzkgkiNt2EbTZWUFXdALhnzNO1on73/sf1A9N33V6qfYg7ll3K95r+0hw7A35V1LRuQThnjPLwdmtcAx3w9xwfNGik5HKocoqglRrgDwmBdrCbZDp4z1OLBQuKGeItyhngounohMAcnJyRC06IwkVnoQQAEDT/zwCnuOgSk7yuD92w3pEraXFsMVgdJjhmjWm7mDz+7h2zWWCCYKmxnkSshDWYoStqx7aNZvA8xzsXQ2wtFW598vj0mDvapjzOIlSA3XeemgLtkKTW07rahJCQkZnZydaWuYOGcjJyUFWVpYIEUUmKjwJiXA8z6Pmx/+J8XPVYORyJO26HHKDcB3H5GuvgSKa1nYMtIahFlT21QEALsrYgLaxTrAXCtAMfQrMDisuythAxSZZlHNsAJbGj2Fu/Bi2jjqA56DfvMfjzLLSqDgwchV4pw2MUuPuQqtIzIS+fBekap0Ir4AQQpZnvqIzNzcXmZmZIkQ0F8txmNlXiaHJhQgJDLPZ7B4TodUGX7fOcMLzPNqffArj56ont51ODB75EElXXgGpSgUAyLzrDjFDXJJwyRkH63TfwbS7HLA4re59arkKJYlr0TbaiRsKrsJ1ay6HhAnPyQcCIVxyZj48z8PR3zY5E23Dx3AMnJ9zjHO4G8rU1XPaGYaBZvUGMEoNpNpo9xcb+rLLI7roDPecIb5HOSO+jo4OtLa2zmkPpqITAGJVURifsS0L0y+UqfAkQaelpcU9/XhpaanY4YQtnufR8c+n0b3vJUE7azbD1tuHxCsuQ9yWzSJF551QzxkH68TBpvfwSv1b+Oml9yEzOg1KmQLlyUXoNw1hwm7CiHUMWdEZyI3Jwpa0cio6VyjUc8YTjnXBdO4ITDVH4OhtAWe3LHi8c7jHY+EJAOrsEkh1MdCsWg+Gcg1AeOYM8S/KGXGFStEJAJxNOLkQz9HkQoSQMDFVdHa98OKcfTGbNiD/e98GE6ZTeQebD9s/xt/OPo8JuwkA8HTVy/jeJV8GMHnnKUqpde+TS2XINKQiURcvWrwk+DiGujHy3lOwtlWBd1gXfwAASKRgZPI5M27qCrZBHp9O3bcJISFtvqIzLy8PGRkZIkS0MNZqEmwzPD/PkaGNCk8SdOLj48GyLKRSmpnTX87/9e/oeeU1YSPDIOvf9iLtlhtD7kNnqOZM53gP3mk56i4sAeBMbzVqBxpRmDg5kVNOTCYSNHFYFZdNdzl9KFRzZibOaUfP338AR//5JR0vUUdBs3ojZIYE8KwLjFQGZWIW5PHpkMel0p3NRYRDzpDAopwRR3t7O9ra2ua0B2vRCQBaqRwz+6hIQYUnIQGRmpoqdghhrfX/nkDv6weEjQyDVV/5EpJ2XSFOUCsUijkzZB7BR51nsCYuBy0j52FnHe591TMKz9SoJCBKrCjDVyjmzBTWasT4ycm/YWaR5Uuk2mioV61HVOmlUKXng6GldpYtlHOGiINyJvAcDge6urrmtK9atQrp6ekiRLQ0sllf/ElociFCSKgbfP+DsCs6QxUHHrvXXIYDje+iMHE1zvbWIF4Ti3/f9G8oTs4XOzwSRDibGRLV5MQkI0eeFexTJOXMWfpEojVAEZcOTf5WaNduhVwfG7BYCSFETAqFAmVlZaisrITT6QQQ/EVnJKHCk5AIMVZZhcbf/X5Oe8z6dVR0+pHNZcez517DupRClCYXutsTtXHgeR4ShkFOTCZ0Ci2yo9OxNiFPxGhJsOBZFyzNZ2CsPAxL61kk3/Zd2Lqb5hwn1egh1ceBsxghT8yCMjkXsTvvhFSjFyFqQggRn06ncxefWVlZIVF0Gmf0egIAp0hx+BsVnoREAFNzC+oe/BUwa5Y0fXER8r/3bZGiCn9/P/s83m37CBanFef66/Grq9ZCOqOrI8MwUMlUsDit+LeyWxCtprVSI51jsBPGqsMwnXsfrHl6cv2xj16BKrPQ42M0a7dCEZsK/bpdYKT0tk4IITqdDps3b4ZcLhc7lCUZY22CoswZnj1tqfAkwae+vh4ulwsymQz5+dTlcKWsPT2o/fkD4Gw2Qbtu9Sqk7NkNiUIhUmS+E4w589CH/4uT3ZXu7Y7xbjxd9TJ2r7kccZoYd/u1qy8VFKMkMIIpZzi7BabaozBWHoa9u9HjMa6JIcjj0uAc7ha0K5NzJ9fcpImB/C6YcoaEBsoZcYVK0RlJqPAkQcfhcMDpdIIL0zWMAsk+PIKan94P5/iEoF2dkYH4i3cg/qKtIkXmW8GWMya7Gen6FNQPNsPomF6b683m9xGjNmDP2l3uNio6xSF2zvA8B2t7DcaPvwJrWxXAsQsez5pGwTuEXx7FXnKHP0Mks4idMyT0UM74D8/zOH/+PCQSCbKyssQOhywRFZ4k6MhkMvA8D5mM0nMlXCYzan92P+wDA4J2Q2kJ1nzr61AYwqdbZ7DljFKmwJV5FyMrOg3/89FfwINHgjYO61KKcM2qS8UOj0C8nHFNDGGi4hAmTu6fs2C4J8r0tYgquxy6gu1wTQzBev4cokovhUSpCUC0ZKZgu86Q4Ec54x88z6OtrQ0dHR3utlAvPnmZ8O5smPa0pcKTBJ/CQs/jmMjSsXY7ah94EJb2DkG7Ni8P+d//LmQatUiR+YfYOTNmHYfZaUWaPhkAIJfKEa+NRawmGpV9tbA4rfj3zfdCLVeJGieZFsic4Xke1pYzmKg4BEvDiUWPZ+QqaFZvgGbNZkQV7XC3KxIyoEgIzjXoIoHY1xkSeihnfM9T0dnW1gaGYZCZmSliZCuTXFKIiv5697ZCFZ6fF6jwJCTM8CyLhof+G8a6ekG7MjERBd//TtgVnWKasBnx6w//F0WJa5CuT3EXnlMYMPjCpr2Q0Pi7iGXraoCltQIAINXHzX8gw0AemwpFUg5kMclgJBJockoDEyQhhIQAT0XnlFAfzymLjsJ46nRZplNS4UkICXI8z6P5kUcxevKUoF2iUiF28yZIFKF9YQ4mJ7rO4pETf4fdZQfDMIhVRwMAOJ5zF5oMw4AJ2w4zxBOe5wHOBUYqh73/vLvoBACpSgeZIRGu8enu7xKNHoqkHCgSs6BMzIQyOQ+y6ERIFOH5oYMQQpaD53m0trais7Nzzr61a9ciJSVFhKiIt6jwJCSMnP/r3zFw+F1BGyOXI+HSSyDTaSEPo3GdYnqhZj+eq37dvd0w1IJMQyp6jP0YMo+gNLlAxOiIGDi7BcZz72Pi9EFElVyK6G03Q6aLgb58FyYq3nEfp0jOgcs0OtltNjkHqowCRJVcCoahLygIIcSTSCg6Y+VabJiwurcVBp2I0fgPFZ4k6PT394NlWUilUiQlJYkdTsho+sMfMfDOYUEbI5Ui4ZIdUERHI/Ou8J0BM9A5szmtHPtq3gDLT89EeqanGgaVHjcVXO335ycr56uccQx2YPTIczA3nQRYFwBg4sybMGy9AVKtATzPQSJTgHNNLg4uj09HUtElUKTkQGZIoGVQQgi9NxFvUc6sHM/zaGlpQVdX15x9+fn5SE5O9vCo0KOUyhHrmp79mHGG50zIVHiSoNPf3w+n0wm5XE4X6iVq/uOjc4pOMAzitl0EZUIC0m65SZS4AiVQOTPVjTYzOg23FV+HZ869CgBIiUrE+pQS3FZ0Hd25ChEryRmedcHccAKjHz4P5+Dcb+Bd44OwtJyFdvVGMIwEMkM8HMM90JfvgmyhcZ4kqNF7E/EW5czKRErRCUzOz8HI5OA4HgDAsVR4EkKC0GhlJfpnF50AYjdthDotFRl33k7F0ArwPI/XGw7B6rLhhvwroZIpAQA35l+F2oEmFCSsQnHiWqyJz6Xfc5hzGUcwcfpNjJ98fc6amrNZGj6GdvVGAICu6OJAhEcIIWEjkopOABiRK1GVXQqLyQSO46FUqLFK7KD8gApPEnRycnLAcRwkEuqCthSjH5+GIjYGjqFhd5uhrBRx2y9C4qU7RYwscPyRMxzPoX6wBdUDDQCAVbHZcLJOd+EplUjxw53/QcVmiFpqzvA8D1tHLSZOHYC54QTA8wsczUAel4q4qz4DdU6JbwMmoqP3JuItypnl4Xkezc3N6O7unrOvoKAgLO8edx75APGvnnZv25QS4F4RA/ITKjxJ0ImKihI7hJDR8a9nIdNpkXj5ZZiorcNETS10q/KQ//3vQKaOnGVTfJ0z47YJPHLi76jsq8XO7K1I0MaheeQ8mkfOAwA2ppYgNzaLis4QtljO8DyPidMHMX78FbjGBxc8lpEroUjOhTI5FzHbPwGplibxCkf03kS8RTmzPC0tLRFVdEYSKjwJCVHjNTXunxmJBIbiIqhSkhG/Y1tEFZ2+1jrSjoc+/DOGraMAgMq+WlySvRUK6fRSNBmGVLHCIwHiGuvH+PFXFyw6pfo4KFNWQR6fDn35LsijEwMYISGEhCe9Xg+GYSaXp7qAis7wQIUnISHIOT6O8arqOe3KuDjElJcHPqAw8v75E+6iEwDGbBM403MOWzPWAwBuLdrtXqeThC9z40koUlcJ1twEAEikUCRmQpGyCqqkHEStv4rufBNCiA8lJk5+iVdbWwsAKCwsdLeFKxfHCYqycF0DnApPEnTsdjt4ngfDMFAqlWKHE5R6Dxz02J5x5+0BjiQ4+CJnzvScQ7IuAf9WdgvOj3WhbrAJABCjMiAnJgN5sVnYkErj9sKF3W6HyzgCS80R6PO3QJmULdhv2LQbUrUe1paz4B1WSNQ6KFJWQZGUDUV0EqLWXUkFZ4Sh9ybiLcqZ5UtMTHT/7sK96ASAjJ078JHOCJ7nwAPQKDVih+QXVHiSoNPQ0OCefry0tFTscILOwJEPJ6fdlkoF7Wm33BSxH4RXkjMO1omX694EMHl3MyUqCd/c9jl8/+1fIl4bh29s+ywMKr0/wiYi4Hke1o4adB14AtKRTjDgwY/2IvGm+wTHMRIpJAoV1LnlYGRyyKKToC+7nLrTRjB6byLeopxZmUjqWsu5rLBLrO4vK1h+4ZnTQxUVnoSEEGtfH1r+8EdI1CrEbdkCRWwMAEC3Kg9S+jbVay6OdRedADBkGUW3sQ8GZRR+ctnXEaeJgUwiXeAMJFSwdjPGj7+GiTNvgbOMC978bD1N4DkWwGTBOUWZthqymCQoEjIE7YQQQlaO53mYzWbodDqxQxGda7QPzpEeTA3kkYRpiRaer4qEtOjoaLAsC6mUPujNxPM8an/2ADiHA5zDgf6334G+qBD6okLEbtoodniiWk7OtI91QavQoiRpLeoGm+G6UHgc6zgNrVyN69Ze4a9wSQBZWs5i7KOXYetqAFinx2Nco30Y/XAfFIkZ0OVf5G6XRcVCFhUbqFBJkKP3JuItypn58TyPxsZG9Pf3o7i4GLGxkX2tjZGpUW6cvssplYfnJJFUeJKgk5mZKXYIQan1sSdg6+mdbuB5uCYmkHjZpWKFFDS8zZljHafwxxN/xyXZW/D5jZ+EWqbCx92V7v1Xr4qM9U/DmX2gHQMv/w7OwY6FD5RIoUjIBGszQZO3PjDBkZBE703EW5QznvE8j4aGBvT19QEAqqurI774VElkSHCy7m2JPDwnMaTCk5AQwLMsOLsdMr0erokJAIBEpULazTdBnZIscnShg+d57Kt9A89VvwYAONR6FKlRydiz9gp83F0JpVSBGwuuEjlKshLO0T7073sIjv52APy8x0lUOihS8qBKWw3DlhsgVWkDFyQhhESo2UUnAHAch5qaGmzduhVyuXyBR5NQR4UnISFg+KPjUCbEI/nqK2Gsb8BEbR1iN21A4uWXih1aSHmr+Qheqn1D0PbPyhexKi4LtxVdF7GTM4UDzmbG6LEXMX7iNYBj5z1OFpsKZeoqKJJyYNh4DSQyRQCjJISQyOWp6AQAhmFQUFAQ0UXnwPAQGk3TXbJlLheyxQvHb6jwJCQEKOLjwfOAy2SCvqgQ2twcZN59p9hhhQye5/F8zX4AwBc27cUjJ/7m3ndl3sVYE5dLRWeI41xOTJw66LnolMqgTMlDVPFOaNZugUwXHfD4CCEkkvE8j/r6evT39wvaGYZBUVER4uPjRYosOPTUNyG6dvr9y6awihiN/1DhSYJOc3MzXC4XZDIZVq1aJXY4QUGfvxbIXwsAGKs6B3AcpCqVyFEFj4VyZuZyKQDQZxpEeXIRKvtqcHfpzbghn9ZjDGU8x4KRSCHTRcOw9QaMffDc9E6JDMq01YgqvRT68l2Cx9F1hniLcoZ4i3Jm0kJFZ3FxMeLi4kSKjAQaFZ4k6FgsFve6V0SIZ1los7Mh10eJHUpQWShnagea5rTlxWYhThND4zlDGM9zGP3geSgTs6HN3wIAiN5yA4xn3gJrNUKdVQxtwTZElV/h8YsFus4Qb1HOEG9RzkwWnXV1dRgYGBC0U9EZmajwJCRIOY1GyLRaMJLpmc0YqZSKziWyOW1QyVVYHZeN7Jh0AICLc+Fw6zEwDIPPbbhL5AiJt3jWhYmz70AiV8I5PvkhRpmSC9f4IABAotEj4Yb/gMyQCEVcqpihEkJIxJuv6JRIJCgqKqKicwZWKouIoiwSXiMJMaWlpWKHIDqe59Hwq9/AaTQi5zOfQjT9ThY0O2debziE/Y2HcP/l30K8dnJ6do7ncOT8CaToEnFx9mYxwiQrYO2owcArvwc7MQRlRgHU2SUAgInKw+5jDBt3Q5NbvqTz0XWGeItyhngrknNmoaIz0pdO8SReEQXjjO1wvUcenovEEBLiBt99H+PnqmE5346an96P839/EqzdLnZYQY/nefyr6mX8o+IFDFtG8cD7v8eEbfJSznEctmVupKIzxLiMo+h/8WH0PvkTsBNDAAB7VwNYq3HOsVIN9QYghBCx8TyP2tpaKjrJHFR4EhJknBMTaPvL36YbOA59b76Nntf2ixZTqHi1/m28NGMioR5jPx488ggcrBMyqQwKabh+hxh+eNaFsROvovPRL8Ncd2zWTg7WlrOCpthL7ghgdIQQQubT39+PwcFBQRsVnQSgrraEBJ3zf3sSLqPwbk7M+nXgnU6RIgoNLtaFCbsJeqUOE3aTu31rxnoqOEOMtb0ag6/9Ea7xAY/7pdpoqDILAQDRW2+EREEzPBNCSLBISkqCyWRCV1cXgMmis6SkBDExMSJHFrxUUrmgq62UFy0Uv6LCkwSdoaEhcBwHiUQSces6jZ+rxsChw4I2dUY61GmpSLv5RpGiCn5DQ0M43VeNtVHZ4LI4vNt2DFanFTuyNuPy3O1ih0eWyGUcwfA7f4e59kPPB0jlUGcXQ5GSh5iLboJEoV72c0XydYYsD+UM8Vak5gzDMMjLywMA9PT0UNG5BAqJVLAdrl1SqfAkQaenp8c9/XgkXag5pxMtj/5Z0MbI5YhZvw4AaN3OBfT09CDWoYXUxUAtV+HirM0w2k1I0iVAr9SJHR5ZBM+6MH7yAEY/eBa8w+bxGEVSNlTZpVClroKucOVfJkTqdYYsH+UM8VYk58xU8ZmamgqNRiN2OEGP5zjhtkhx+BsVnoQEia59L8Ha3SNoiy4rhVStRuZdNH5tMRJm+vvBKKUOUUodbi/eI2JEZCms589h6M3H4Rzq8rhfqo2GetV6yPTxMGzaDamaJhAihJBQwDAMFZ1LZFcJe/Cws+6AhgsqPEnQycjIcHdNiRTW7h50Pb9P0KZbvRoFP/guGGl4XnxWonuiDy/VHsRNhVcjXZ/izhkePBiHHClRSUjWJYgdJlmE8dz7GHz19x73MXIVVJmFUKTkQpd/ERSJWWAYxmfPHYnXGbIylDPEW+GeMxzHoampCZmZmVCrlz/0gQDDduHcHg5w8xwZ2qjwJEEn0sYB8DyPugd/Bd7lmm6USJD371+gotODusFm/OL938PBOqFTaPCp9bcLciYekdWdKRQ5hrthqpkcxymPT59ztzOq7HLoyq8AOBbqzCK/xBBp1xmycpQzxFvhnDMcx6GmpgbDw8MYGRlBeXk5FZ9kUVR4EiKyzmefh7VL+ME79frroMvNESmi4FXZV4tfffAnuDgWAPBG03soTspHsi4B6YYUkaMji+F5DqMfPC9oU+eWwzU+CN5phyI5F/HXfA6qtDUiRUgIIWQxM4tOALDb7aioqKDikyyKCk9CROQYH0f3vpcEbTKdDrEXbRUpouB2vPOMu+gEAB48/nrmWdxZciMVnkHMZRyFY7gLto7aOfskSg3UueXgXU4k3/49MGE6roUQQsIBx3Gorq7GyMiIoN3lcsHhcFDhuUxOzoWZC7/5bmBJcKHCkwQdlp0uLKRh3tW09qc/B+dwCNqi15UjalWeSBEFt8+uvwtquRqvN7wDAEjUxuOSrC3YlrHBnTfhnjOhhHM5MPTG/8FUfQSaVeuhSMr2eJwiMQsx2z8R0KIzkq4zxDcoZ4i3wi1n5is6pVIpSktLYTAYRIos9MWrDBifsS1jQj9fPKHCkwSdmpoa9/TjpaWlYofjN0MfHYe57bygTZ2RjtwvfBYSudzzgyKcVCrFv5XdgpaRdhjtJmzL2IBbi69DVVVVRORMKLH1NKPvuQfBmSffSq1tVZDHpYKRKQTHaXLKoMrID3h8kXKdIb5DOUO8FU45Q0Wnf3FOu2Cb52lyIUKIj/Ach9bHHhe0MTIZYtavgzyKlouYYnFaoZQqIJ1xJ4xhGNxWdB0kjASFiatFjI54wrMu9O97CJbm0wA/vRIZ77TB2l4DTd46d1vMjlupay0hhAQ5lmVRXV2N0dFRQbtUKkVZWRn0er1IkYUP1jQm2GY4KjwJCYioqCi4XC7IZOGbnoPvfwDniPACbigtRs7/+5Q4AQUZnudxprcaLSPtuKngakghLE6Kk9YKtiMhZ0KBY6AdvU//HKx5zPMBPAee5xG95XpIVdqAxjYb5QzxFuUM8VY45AwVnYGhlsphmbEtBT/vsaEsdP8SSNjKyQnv2VxZux2tjz8haJNFRSH5qitFiii4sByL/3z3vzFqncD2zI043HoUmYY0ZEanQqfwXKyEe84EO55jMX78FYy8/wwwY/KnKRKNAZo1GxF32V5INcHxIYVyhniLcoZ4K9RzZr6iUyaTobS0lIpOH1IwwrVeJWE6vRAVnoQEWMujj4E1mQVt0eVliN26RaSIgstvjz2OhqFWAMBHnWewLWMDJuwmVA804PbiPSJHR2ZzDPdg8LU/wN7d6GEvA2VGAaLKLoO+7PKAx0YIIWR5qOgk/kCFJyEBZOnsxNCRDwRtyqQkxG7ZBIYJz2+3vLG/4RA+7q5wb/eZBnCi+yy2pq/HnrVXiBcYmYPnOYwd3YexD/eBZ51z9ks0emjWbEbCNZ8DI6W3GkIICRUsy+LcuXMYGxsTtMtkMpSVlSGK5qLwORvnEmzP7TsUHujTACEB1PT7P4JnhZeT6HVliN++TaSIgku8NhZyqRzOC4UMAwbp+hRcvXontAqNyNGRKc7xAfQ9+19wDnbM3clIYNh6A2J23AaJQhX44AghhPgcFZ3+NeiyCIoye5jei6DCkwSd8+fPuwfjZ2dnix2OzzjGxmBuaRW0aXNzkLX3bjASyTyPiixb0tfhp5ca8KsPH4XRbsIniq7FbUV7Fr0bHK45E4w4pwM9f/sBWNPonH0yQwISb7oPqvTAL4/iLcoZ4i3KGeKtUM0ZqVSKkpIS911PKjqJr1DhSYLOxMSEe92rcNL0uz8I73ZKJEi+9pqIXz6F4zi80fQuNqaVIkmXgDXxufjFFd/Guf4GXLnq4iWdI1xzJtjYe5phbj4NdU4ZTOfeE+xTpKxC0i3fhDw6UZTYvEU5Q7xFOUO8Fco5M1V81tXVISsri4pO4hNUeBISAC6bDRO1dYI2TWYmkq6M7HGLPM/jhdoDAID2sW4k6RIAAMlRiUiOCo0CJhLwPI/RD55zb8uiE6FMXQ17TxMYpQaa1ZsQs/2WkCk6CSGELE4qlaK4uFjsMCKCSyKNiKIsEl4jCTGFhYXgeT6sJtvpePJpcHa7oC12K00o9HzNfvfPneM9KEsuhIN1IEqp8+o84ZgzwYBzWDF2/FWP+1TZJYBUClV6Pgwbd0OmjwtwdCtDOUO8RTlDvBUKOeNyucAwDKRS6eIHE79JWbMaTS3TNyikKqWI0fgPFZ4k6ITyQsvz4RwOaLIyYensAjgOyqQkZN5xu9hhiYbjODx2+mmkRyXD4rIBAFiewyv1b+GijPVeF57hmDNiGzt5AMaKd6BZs9njhyZGKoOucAf0664MyVlrKWeItyhniLeCPWdcLheqqqogkUhQUlJCxaeIFCnx6MufLjZ1Xn4OChXB/RdBSBhgrVYoYmMQd9FWRK+3w3L+POSG6IieUOiZ6ldxuPUoopQ6XLPqUvDg3fsyDKkiRkY4uxUDr/4BlsYTAABHVCyUqavnHGfYvAdSlTbQ4RFCCPGBqaJzYmICAHDu3DkqPonfUeFJiJ/1vvGm+2epUomotWthKIncMRNVfXV4pe4tAIDRbsLLdQexMa0Mafpk3F68R+ToIpu1owaDr/4BrvHB6ba2KsiikyDVTC8WHrPtFjCy0JssgxBCyNyiEwDGxsbQ0NCAwsJCESOLXHqZGvnm6SFZSgnd8SQkIMbGxtxjIqKjo8UOZ8Vmj+0EAH1RZF7YeZ7Hk5UvCu5wcjyP3JgM3JB/1bLPG245E2icy4HR9/+F8eOvATP+bSZ3snD0n4c6pxTRF90EiTw8xp1QzhBvUc4QbwVjzngqOgFALpcjKytLpKiIVqZEht3l3pao+AWODl1UeJKg09HR4Z5+PFgu1Mtl6eqe06ZOTQ3qiQb8yeqy4QcXfxmPfPx3nOuvBwB8suwm7Fm7a0XnDaecCTR7XxsGXv0fOAc75+xj5CqososRe9leKBMyRIjOfyhniLcoZ4i3gi1nXC4XKisrYTQaBe0KhQJlZWXQamn4hFh4nhNsu5xOkSLxLyo8CfGj8cqqOW0xG9aJEIn46gdbUD/UjJsKrsYPd/4HXq1/G41Drdi95nKxQ4tIPMdi5PA/Mf7x68CsNzwAUGUUIPaqz0CZlAWGidzxyIQQEg6o6AxuFrUOfeU7YBwbB8dxkCs0WCV2UH5AhScJOikpKeA4DpIQn3zH0tUNRi6DoaQEppZmsBYrAECmC89++wuxOW2o6p+cJvxw61EYVHqsicvFDWuvhMQHRU245EygOAY60PvMA2CNw3N3SmWIvfSTMGy+DowkfCeZoJwh3qKcId4KlpxxOp2oqqryWHSWl5dDo9GIFBmZ0vTee7C9dtRdmDlUUuAOUUPyCyo8SdBJSEgQOwSf6Dv4Jnpf2w+pRoP4S3ZAGR+PhEsuFjssUbza8I775yHLKIYsowCAwsS5s6UuR7jkTCAMvfkEJs68CXDsnH1SbTQSP/FtqDPyRYgssChniLcoZ4i3giFnqOgMES4WKueMcZ2SuT2RwgF9bUeIH3BOJwbfOwIAYC0W9B98C47RMaiSEkWOTBwpukRckbtd0LZ79WUiRROZWIcVXY9/ExOnDngoOhkoMwoQs/NOqNLXihIfIYQQ33I6nfN2r6Wik4iB7ngS4gcjH5+Ca9aFPvX63SJFI54Pzn8Mq8uGXbk7wDAMFFI5HKwTMokUOiWNJwkUzmnH2NEX4TKOztknUemgWbsZ0Zv3QJFIMxoSQkg4mCo6TSaToJ2KzuDkYJ1QiB1EAFDhSYgfSHVa6IuLMFFTC/A89MVFUKekiB1WQPUY+/HY6adhd9lR1V+HL27cCwc7OUvbzQXXiBxd5DCeew/O0X4wUhm0BRfBePYdgJucsl2RnIvoLTdAVxyZXcAJISRc1dfXzyk6lUolysrKqOgMQhkbN6HS2u/eVqrC88t5KjxJ0Dl37px7+vGSkhKxw/Eaz7JwjY2j4IffB2s2YeDwe9BkR9adJCfrxP989ATsrsk1TD/uqkDLSDvuv+JbiFPH+Hw5mVDPGX8ZOfKsYFuq0UOzegMszaehWb0RiTd8NWzW5fQW5QzxFuUM8ZaYObNq1SqYTCbYL6wlrlQqUV5eDrVaHdA4yNJIolSYyNDCZrOC53loZLSOJyEBwfO8+79QNFFfD2tPDxxvvwOZVgtNZgZiN20UO6yAOtldhbZR4bqQZcmFiNfE+uX5Qj1n/MHSfMZjuyIxC7LoJMRdcU/EricLUM4Q71HOEG+JmTNqtRrl5eWoqKgAACo6g5xjoB2O/jb35DuSMC3RwvNVkZCmVqshk8kgl8vFDsWjido66AsL5t0/fq4GwOSkQqzFAvsgEHfR1kUfF04kDIMb86/C4dajMDrMSNMn49Prbvfb8wV7zgQSa5nA+Kk3wPO8x8JSnVkIdTbdraGcId6inCHeEjtnporPqZ9J8IqSKrHa4nBvy6ThOf8rFZ4k6Kxe7ZslNvyh41/PovOZ55B1z16kf+LmOft5lgVmfbMp1+vRte8ltP/jn8i483Zk3hWGCzPNwPM8OsZ7IJfKsTN7K071VGF75kYoZf4bNh/MORNIjuEe9D37C7hG+6DfdB10xZfAMdID50gvACD6opsitmvtbJQzxFuUM8RbwZAzVHCGBp1UgWyb070t0YTnv1t4ltOE+MFEbR06n3kOAND+j3+ia99Lc45h7Q5ErVkNZXwcGKkUAGDr70f7P/4JAOh85jlM1NYFLmgRvFR30P2zSq7CjqzNyI2JrDGuYrC216Dnb9+Ha7QPADBxcj/s/W1QJucCAGK23UJFJyGEhBmHw4GOjg7qAk5CAhWehCyRvrAAWffsdW/PLj5dFiuMdXWILi9D0pW7kLL7Whgbm9DzymvuY7Lu2Rv23W1LkwqwI1M4prU8pVCkaCKDseo99D79M3A24QyGY8dehNQQj9hL7gAjo+6BhBASThwOByoqKtDa2oqWlhYqPkOY0WpBNydx/9fj5MQOyS+oqy0hXpjqXjt1B3Pq/+mfuBlDHx5Fyx8fhSIuFgmXXQrn+DjGzpx1P3a+7rnhZlVcNqxOm3s7SqGFhKHvuPyB53mMvv8Mxo6+MGefIjkXybd/H1K5SoTICCGE+NNU0WmxWAAAXV1dAIC8vLyInjguVLWcqYTs1HSxaVWYRYzGf6jwJEGnq6sLLpcLMpkM6enpYoczx3zF58iJkwAAx/AIul94UfCYcC46LQ4rHjnxN9xddhPS9ZNrlapnFDvXrL7U7zEEe874A+dyYODFh2FpOjVnnzqnFEm3fhcSBRWd84nEnCErQzlDvOWvnLHb7aisrHQXnVOGhoaQlZVFE2CRoEWFJwk6IyMj7nWvgvXNfb7i05NwLjp5nsdjp57CqZ4qVPXX4dPrbsfludvBMAxuLdodsDudoZAzvuQc7UPPP38CdmJ4zj5l2hoYtt5EReciIi1nyMpRzhBv+SNn5is6VSoVysvLqegkQY0KT0KWaXbx6Uk4F50A8FbzERzrPA0AcLBO/PnUUxizTeATASw6I42tuwF9z/wCnG12NxwG6rx1UKaugjqnVJTYCCGE+I/dbkdFRQWsVqugXa1Wo6ysDCoVfeEYqpwMExFFWSS8RhJi1qxZM+8ahMEm/RM3g+c4dPzz6Tn7wr3o5HhOMIMtAGjkalyStSXgsYRSzqzE+Kk3MHLo7+BdTuEOqQza/Isgj01BzMW3hf3vwRciJWeI71DOEG/5MmcWKjrLy8uhVNKs5aEsURUN44ztcL1vTYUnCTqh9o2dJiNjTptEoQjrohMAXqg5gJ3ZW1HVV4eW0XYAQGlyAeK1sQGPJdRyZjlGj+7D6PvPALxwpjtGqYGuaAd0RTugziwSKbrQEwk5Q3yLcoZ4y1c5Q0UnCRdUeBKyQq2P/2VOG+dwoGvfS2FbfHIXih+pRIp1qcVI1MVj2DKKy3O2090AP5ioPIzRD56fU3RKdTHQb7gGMTtuFSkyQggh/mSz2VBZWUlFJwkLVHgSsgKd+16EY3DQ476ZS62EGwYMbiu6DiaHGf2mIQBAmj6Z1uv0A3P9CbjGB6Et3A5z9RF38SmPS0PctV+EJot+54QQEo5sNhsqKipgs9kE7RqNBmVlZVR0hhGFRFiShessGeH6ukgIM5lMMBqNMJlMYoeyoK59L6HjH0/NadeXFLt/bv/HP9G176VAhhUQDMOAYRhEKXXoM00W3rcUXCNaPKGSM97ieQ72gfMAAHl0IjT5WwEwUKSsQtIdP6CicwXCNWeI/1DOEG+tJGeo6IwsKqmw8JTyIgXiZ3THkwSd1tZW9/TjpaXBOTtn176XPM5mK9VosOYbX8Pgu+/PWWolHO58epokYWvGesgkUpEimhQKObM8DPTlu+Ac64NrtB8AIFm3C9FbrociJlnk2EJb+OYM8RfKGeKtleSM1WqFw+EQtGk0GpSXl0OhUPgyTBIE+FmFZpjWnXTHkxBvzVd0AoAqJRkytRrpn7gZWffsdbeHw53PJ04/gwePPAKrQzjOROyiM5wxDAOZPg7qzCKoc8oAAPFXfhqKuDSRIyOEEOJPMTExKC4udn/ZS0VneOMUwjvYfJh+tqI7niToJCQkgOM4SCTB973IQkUnMFl4Tpm9zmco3/ms6KnBW81HwIPHjw7/Bl/b+v+QGR08xU8w54y3eNYJ52g/FPHTi43zPA/WakTMtlvAyMJ1kvXACqecIYFBOUO8tdKciY2NRXFxMdra2lBaWkpFZxjrcxgF2zZw8xwZ2qjwJEEnJSVF7BA8mqitExSd+pJiTJyrdm9LFApoc3MFj/FUfOoL8qEvLAhAxL5hspvxu+NPgL/Q8aNzvAfff/uX+OKmvbg4O/BrdnoSrDnjLZ7nMXjgf2GqOYrEG78KXcE2AJN3PpVJ2eIGF2bCJWdI4FDOEG/5Imfi4uIQGxtLM8aTsEBf2xGyRPrCAmTceTsAIOuevbD3Dwj2KxMTEbd505zHzex2m3Hn7SFVdALAhx2nYHPZBW2r43KwKa1MpIjC1+h7T8NU9R7AOjHw4sMY/fB58LMHfhBCCAkrHLfw3S0qOkm4oDuehHgh8647EF1WCmVCwpwut8qkREg1ao+PS//EzSF3p3NKUeJqfHbDnXix9iCGLCOI18Ti2jWXQSWnxdR9ydJ8GmPHhOOARz94HoqkXGhXbxApKkIIIf5ktVpRWVmJ3NxcJCYmih0OEYmddSAS5immwvMCnufx+uuvY9++fairq4PFYkFCQgI2bdqET37ykz6Zwe7MmTN46qmncPr0aQwNDUGpVCIrKwuXX3459u7di+jo6JW/EOJ3+sICtD8pLDoZmQxRBQsXlaFYdAJAhiEVGYZUXJy1BT9793dYE5+DLenrxA4rrDgGO9D3wq8xex47zdotUKWtEScoQgghfmW1WlFRUQG73Y7a2loAoOIzQiWoojExY1vO0ORCYctms+FrX/sa3nvvPUF7d3c3uru78dprr+G+++7D5z//+WU/x69//Ws88cQTgjan04mamhrU1NTgmWeewR/+8AesW0cf6Ovq6tzTjxcsUsyJZejYccG2MikJhqLwXlNRJpHiqxd9GknaeLFDmSMUcmY+rGUCPf/4EcC6BO2qrGJEFW6HVBMlUmThLZRzhoiDcoZ4a6GcsVgsqKyshN1uFxwvlUoRFxcX6FCJ2GZ1t+Z5mlwobP3whz90F515eXm4/fbbER8f7y4ILRYLHn74YSQlJeHGG2/0+vxPPPGEu+iUy+W4/fbbUVJSgomJCbz99ts4efIkBgcH8fnPfx4vvvgiMjIyfPnyQo7T6YTT6RQ1honaunnvUDonJmDr6RW0qZKTIFEoYGxsQsy68gBEGHhSiRTJugSxw/AoGHJmOXjWid5//hSczSxolydkQplRAG3+VpEiC3+hmjNEPJQzxFvz5YzFYkFFRcWcdTq1Wi30en2gwiNBxDUxJNhmFhn3G6oifnKho0eP4vXXXwcAbN26FS+99BI+9alPYc+ePfjud7+LF154wd0F9sEHH4TJZPLq/OPj43jkkUcAAAaDAfv27cNPfvIT3Hzzzbj33nvx5JNP4ktf+hIAYGJiAr/73e989tpClVwud/8nho5/PYtz3//RvOtuDh75QLDNSKWIXleOgcPvouGXD6Hz+X2BCNOvTA4zeo0Dix8YJMTOmeXgeR59zz4Ix2CHoF0aFQvN6o2IveQOkSKLDKGYM0RclDPEW55yZr6iU6fToaysjPIrQimlwq61EoTnxIIRf8fzL3/5CwBAJpPhgQcegFIpHNqbl5eHH//4x/jmN7+JsbExPP/88/j0pz+95PMfPXoUFosFAPDZz34Wa9euFexnGAZf/epXsX//fnR0dODQoUNwuVyQySL3n0bMLkwTtXXofOY5APOvu9n7+huCbWViAqydXeh/8y0AQPcLLyJ2w/qQHdNZ0VuLE11ncVnORZBJpNAptFDJlEE9q14odnsbOvgYrG1VgjZGoYa2cDtiL7kjqH/f4SAUc4aIi3KGeMtT91pPRWdUVBRKS0up6IxgKkb4uV+K8PwMENF3PMfGxnDs2DEAwMUXXzxvF9fdu3e7+9sfPHjQq+fo6upy/5yfn+/xGIlEguLiYgCTA81HR0e9eg7iO/rCAvfSJ8Bk8TnzzqfLYoGtv1/4IEbiLjoBIOPuO0O26DQ7LHj46J9xqPVD/O3s83ir+Qhea3gHp3vOiR1aWDE3fAzjmbeEjRIptEU7ELP9E2CkkfvFEyGEhCMqOgmJ8MLz1KlT7rWTtm6dfyyVRCLBpk2T6zNWVlZifHx8yc+h0+ncP3d2ds57XE9PDwBAKpXCYDAs+fzE92auuwkIi8+el1+dMwDcduHfDgDSbr0FaTdeH5hA/eCpypdgZyffFJtHzuPN5vdhc9qwNj5X5MjCh2OgA/0vPTynXbN2C2K23wKpmiYTIoSQcGI2m+ctOql7LQEA16zJhMKzo22EF55NTU3un9esWXjJglWrVgGYHJfV2Ni45OeYuQzLP//5T8HsZVM+/vhjVFVNdrnbvHkzFArFks9P/GO+4nP2bLYzJV+3Gym7rwlEeH7ROtKOQ61HBW0xKgOUMiWilLp5HkW8wZrH0ffcf3mcwTbpxq9CbqBp9AkhJJyYzWZUVlbOW3RG8tAqMq3XKZxDxhqePW0ju/Ds7u52/5yWlrbgscnJyR4ft5ji4mJccsklAIDW1lbs3bsXx48fh9FoRF9fH55++ml8+ctfBsdx0Ol0+Pa3v+3lqwg/vb296O7uRm9v7+IH+5Gn4tM6z7996s03IvHyywIVml9kGFJxW/EeyCWTb4JSRoLylCLcURL8d3CDJWcWY6w+Ate4cNKmqRlsGSl94x1IoZIzJHhQzhBvtba24siRIxgeHha06/V6KjpJRIrojB8ZGXH/HBMTs+CxUzPbApNjQ73xu9/9Dt/4xjfw3nvvoaqqCvfee++cY9avX48f/ehHKCoq8urc4WhwcNC97lVKSoqosUxNLDQ10dDsbrbAZPfapF1XwGW2BDI0n5NL5bi1aDd2ZG7E46efgVKmwCeKdosd1pIEU84sxLB5DxiGwfA7fwd4DrLYFGjWbELMRd4v00RWJlRyhgQPyhniDafTiTNnzsDhcEAqlSIqanIYhV6vR2lpKRWdJCJF9B1Pm83m/nn2bLazzez+OvNxS6HVavHLX/7SfedzNoZhkJOTIyhuSfCYfedzprRbbkbK7mvB8+HTGz85KhE/3Pkf+Oa2z0NPXWx9imEYGDbvQfIdP4A8IROGTXugK9gGiUItdmiEEEJ8SC6XIzY2VtBGRSeZj3PWTPbh86lSKKIz3+WaHme12LjKmftnPm4pDhw4gO9///uw2WxISkrCbbfdhry8PJjNZnzwwQd46623sG/fPhw8eBB/+9vfBONCxdDc3Iy8vDz3t3MAYLfb0dDQAGDy7m9mZuacx0wtGzM7/qGhIffkSRkZGYK7yyzLoqamBsDkeIecnBzk5uaC53kwDIPz589jYmICAFBYWCi4WI+NjaGjY3INxJSUFCQkJAie99y5c+B5Hmq1GqtXrxbs6+rqct/xXrNmDVQqlXufyWRCa2srACAhIQEpKSlI/8TN6HzuBXAzv3SQSZGyR3hHcGBgACNmMxiFArm5uYLJpWw2m3t8cGxsLNLT0wWPbWpqgtVqBcMwKCkpEewbHBx0d+/KzMwUfEnhcrlQW1sLYPJNLTs7W/DYtrY2GI1GAEBRURGkM9aKGh0dRUt7KzieQ056tvt3yDAMGIZxjz3WaDTucc5TOjo63Hf/165dK/jyxmg0oq2tDQCQlJSEpKQkwWNra2vhcrmgUCjmzPbc09ODoaHJhZTz8vKg1Wrd+6xWq3tsdlxcnLuL/FTOdHV1oaqqSjBT9JSBgQH09fUBALKzswWLdDudTtTV1QGYXG83KytL8NiWlhaYzWYAk93nJZLp7+xGRkbcs1enp6cLPmhwHIfq6mqA46BlTchdvw0MI4Embx1UOSXoaG3FRP8E0F+FgoICwQQTExMTOH/+PIDJrv6JicLxn9XV1eA4DiqVas4Y9e7ubnfXrtWrV0Otni5szWYzWlpaAADx8fFITU0VPLa+vh4OhwMymQyFhYWCff39/ei/MKtzTk6OaNeImZZ7jcjNzUVrayt4nkdTU9OKrxEz1dXVue+MzV5Oobe3F4ODg+4YQuEaMTUxXmpqKuLj4wWPDZVrxJTGxkbYbLZlXSN4nodMJoNGo8FsK75GYPJL6ry8PMF529vb3RMa0jUisNcIYOWfI+Li4qDVajE+Pg6DwYCSkhLIZDK6RlwQbteIlXyOkKq1mIibcT9QPfm3LtY1YioHfS2iC8+ZFwmn07lg8TlzULg3k/8cOnQI3/rWt8CyLLZs2YI//elPgovIbbfdhg8//BBf/vKXYTab8dnPfhb79++fc/ELJJZl3bP9TuF5Hk6n071/NpfL5d4/G8dx7n2zzwvAvW+qoJ/5++nr63Pvn31XcWZM85136oPCQvEu5bxd+14SFp0A4GLRe+ANpOy+dsZrnXwswzALntfTlxdOp9P92Nlm/g69Pe9C/zYsy+LowGnIJTJEx8dA69RBJVW6L4gLnZdl2Xljmhmvp3xxOp1wuVyCC+9SzjtfHk7lzNTzLnbehfLb29/hovltNUHVdgKcQgGusMw9a61EIgPLSFf0O+Q4TvABwNNrXervcPZr9XQXf6m/Q39fI+Y7rzfXCJ1OB5fLJTjGF+edincprzUUrhEr+bcJpmvEzPMu9xox9Ro9/f7FyG+6RkzzxzVi6rwr/RyRnp6OrKwsxMfHu89D14hJ4XaNWMnvkE+JQ8em6S+AdDN6nIlxjfD0b+kLEV14zvzW0m63L7nwXKxb7hSe5/Ff//VfYFkWBoMBv//97wVF1ZQdO3bg29/+Nu6//36Mj4/jL3/5C7773e968Up8SyqVzvmDYxjG/S2KpwSVyWTzTgcukUjc+zz9IU/t83Rhn3ne2RfSmTHNd16e5z3G5c15u/a9ND3GEwCjUoG/UIR2v/AiACDxissvHD/5WEYuX/C8nl6rXC6Hy+Xy+IYx83fo7XkX+rc52nsaEqkULHgc6z0DzXg9LsnegmRdgjum+c4rlUrnjWlmvJ7yRX7h9+PteRfLQ7lcDpZlPebDzPMulN/e/g7ny2/WPA6XzQxtxyngwt8UazFCotK5X9dCebiU3yHHcR7jWsnvUCaTgeO4Rf9t6BqxeLyezruSv2UxrhEr+behawTc5/JHftM1YlqwXyNmTlA5M166RtA1YupcnmKZGdNSzuvLa4Sn1+8LDB9Og9O89JOf/ATPPvssAOCdd95BRkbGvMc+//zz+NGPfgQA+M1vfoPrr198ps/a2lrcfPPk5DR33303fvrTn857rMPhwObNm2G1WpGXl4cDBw5481JWxGQyubu/AJPdHTwVyJFodtGZftsnkHDpTvS98SZ6X9/vbk+96UbEX7wDiphoyHRaSJf45YSYbC47fvTOr5Ebm4V4zXTXr08UXgupZP4LIFkc73Ki56mfwtHXBm3BNsiiJ7u3qLNLAI6d/D8hhJCwYDQawTAMfXYiy9ZT/S4q3n7Mva3SxuDyz/9JtHj8VRtE9ORCM/uwLzY9+lSfbgBzxjvMZ6pfNbD4OqEKhcLdb3tqLEikstlssFqtXk/i5Guzi86se/Yi5bprATBIvOJypN16i3tfz8uvYODwuyJEuXyHW4+iY7wH77V9hHfbjqHXODkuJxSLzmDJGWCyp8PggUdh72oA73LAVP0+7H2T4wGt58+BNY+LHCEBgitnSGignCGeGI1GVFZWorKyEiaTcC1GyhmyVAa5BvkWh/u/PM+9ckNeRBeeMwfoTg00ns/UfoZh5gwwXwq73b7oMVO3tRe63R4JGhsbUVtb6x5AL4bZRWfMhvWI3rAOmNGNIWX3tYLis2//AfQeeCOgcS4Xy7HY33jYvT1sGUXLSDuuXuV55uVgFww5M2Xs6D6Yzr0/3cDzsHXUgmcn30V0RTtEiozMFEw5Q0ID5QyZbaronBpnN7v4pJwhyzXfeNBQF9GF57p169z9mk+cODHvcSzL4uTJkwCA/Px8wSxWC5k5A9fUjFTzcblc7lkSl3pHlfjH7KJTHh2N0dNnUHnft1B7/4OYqK9375tdfHa/8CK6X341oPEux0edZzBoFi5ofVHGBhhUS8tt4pm54QRG3/+XsFEig65oBxipHDEX3y5OYIQQQnxqZtE5xel0or29XcSoSKji1TowJRdjPL0EI6lFMCblLf6gEBTRhader8fWrVsBAIcPH3ZP1T3b/v373VNmX3vttR6P8aSkpMTdH/rQoUMLdud95ZVX3N+Sbd++fcnPEY5iY2MRFxc3Z/2rQJiorRMUnWm33ATnham+wfMwN7dgorYOM1dYStl9LVJvutG93fn0MxeOCV4bUktwT/mtiFNPTkm/KjYbd5bcIHJUyydmzkyx959H/4v/Paddm78FUm00Yi6+3eOED0QcwZAzJLRQzpApExMTc4pOAIiJiREs7UE5Q5aq8qMPUfXCMXQcqkX3u/VofbdK7JD8IqJntQWAT33qU/jggw/gdDrxjW98A48//rhg8GxzczN+8YtfAJhcP+e2225b8rkVCgX27t2L//3f/4XFYsF9992HRx99dM4F6MyZM3jwwQcBTM4wde+99/rglYWu2etSBZK+sAAZd96OzmeeQ9Y9e8HMmulLolBAYTDMeVzS1VeCczrRt/8A0m69BfrCgjnHBBO1XIU9a6/ANat24sOOk4hVR4d0USRmzgCAyzSKvmceADjhhxBVTinUWcXQr79KpMjIfMTOGRJ6KGcIMF10zl6eIiYmBsXFxYLhUpQzZMlMVsSPT+eUzRaec79GfOG5Y8cOXH311XjzzTdx9uxZ3HjjjbjrrruQkpKC2tpa/Otf/3Iv+Pqd73xnTtF44sQJ3HPPPQCAzZs348knnxTs/+IXv4gjR46gtrYWFRUV2L17N26++Wbk5+eDZVkcP34c+/fvd39r9sMf/nDOYrYksDLvugPRZaXQFxag7+1D0GRmwNrTC97lgjI5Cbq8HI+PS7z8MhhKihGzvjywAXtpwm7Cwab3cP3aXVDLVbg05yKxQwppnMuB/hd+DdY0KmiXJ2ZDmbaWik5CCAkT3hSdhJC5Ir7wBIBf/epXMJvN+PDDD9HV1YWHHnpIsJ9hGHzlK1/BnXfe6fW51Wo1nnjiCXz961/H8ePHMTo6ir/85S9zjpPL5fjBD36Au+66a9mvg/jO1B3LuK2boUlPg21gABO1deBsdmiyssDNM+g7ao33E08F2sGm9wAATcNt0Ck0iNfGQa+kKeCXg+d5DO1/FPZu4cQRUn08NKs3IG6n99cMQgghwWd8fBxVVVVzis7Y2FgUFRVR0UlWxME6oRA7iACgwhOTxeHjjz+O1157DS+//DLq6upgNBoRHR2NDRs24J577sGGDRuWff7Y2Fj87W9/w6FDh/Dqq6+isrISw8PDUCgUSEtLw/bt2/Fv//ZvdKczCMmjoiAvyIe+IB/xF22FsbkFjESCUF3+tmt8epxx/VALACBFl4iLszeLFVJIGzv2EkzVRwRtEqUW2oJt0OVvFSkqQgghvrRQ0VlcXOxelYCQ5UoqKEBTe4t7W6rViBiN/1DheQHDMLjhhhtwww3eTbCyZcsWwQKrC51/165d2LVr13JDjBhNTU1wOp2Qy+XLWrrGXxi5HKqUFHBWq9ihLNvxrrNz2spSCkWIxLfEyBlz/XGMvveUoI2RKaEt2gGJQgVlcm5A4iDLE6zXGRK8KGci00qKTsoZslTq9FSMbc2E1WoFz/PQyqnwJCQgrFYrnE7nnNnixMYwDCQSBtwC+4PZy3VvYsg8gkxDKqQSKcbtRgAIi262gc4Ze18rBl79/axWBvHXfA6u8UHEXELLpgS7YL3OkOBFORN5Vnqnk3KGLJW9pwm2rnowACY/TYZniRaer4qENIZh3P8R3xizTeD56tfh5FyIU8fg6tU74WJd2JReJnZoPhHonDFWHgbvtAvaYq+4B7rSSylvQwRdZ4i3KGciT09Pz5yiMy4uDkVFRUvqXks5Q5ZKLZEjxT49f4hcGp7dt6nwJEGnpKRE7BBgHx7G6JmziN92EWRa7dwDQmyI58Gmd+G8sNTHsHUUz557Fd/a/kWsis0WNzAfCXTOaPK3wDnWD2vzGQCArvRyGLZcTx8uQkgwXGdIaKGciTxr164Fy7IYGhoC4F3RCVDOkKWLlqlQbHa4tyUalYjR+A8VnoR4UP3j/4RjcAj9b70D3ao8xO/YDkPRhbGQIVZcOFwOvN38gaDtkuyt2JBGb4jLYW2vga29Fob110CTtwHmxhNIuPbzVHQSQkiYkUgkKCwsRE1NDQB4VXQSQuaiwpOQWTiWhWNwCJzDAVNjE0yNTZDIZJOFZwgWFxJGgmtWX4qqvjo0DLcCAK5fS5NcLYdztA/W9moAgK23GQCgTFsLl2kE8ugkMUMjhBDiBxKJBEVFRe6fCfEHluPgnNGbThKiqycshgpPQmYxNTSBczgEbVEX1vUMRS/WHQQAfGHTXthZB6r7G5BuSBE5qtDDcyyM596f084wDGSGRBEiIoQQ4is8z8/bc4UKTuJv5z4+CVfFdP45lGaE4zzIVHiSoDM4OAiO4yCRSJCQkBDw5x89c0awLdVqEbd1y5zjFnqTChYubnpShLbRTlycvRkJmlgRI/IPf+aMY6AdErUeE2ff8rhfX74r6POAzCX2dYaEHsqZ8DU6Oorz58+juLgYcrncZ+elnCFLxnJQzbzlGaYfK6jwJEGnt7fXve6VGBfqsYpKwbYyMSFkC4sXa99w/9xnGsBz1a+jIGEVSlT5Ikble/7KGZdxFL3PPADOboW2aAdkuhjBfl3BNsj0cT57PhI4Yl9nSOihnAlPo6OjOHfuHDiOQ1VVFUpLS31WfFLOECJEfQcImYHneVg6uwRtmoz0GVuhWYAC0xPxFiWuETWOUME57eh//pdgjSPgHVaYKg/DMdTt3i+LioUiIUPECAkhhKzEyMiIu+gEAKPRiKqqKlp3kwScK4Q/X3qD7niSoJOZmSlaN1ZrVxc4m03QJjdEL/7AIBwEzvM8Lsu5CE7OBYfLgY+7J+/kSpjw+77J1znD8zwGX/8j7BcmEAIAcCwcPY2Qx6WCYRjo113pk+ci4hDzOkNCE+VMeBkZGUF1dbW76JyiUqkglUp98hyUM2SpolVRmPnpM1wLtHB9XSSERUdHi/bcIx+fFGxLlEokXT3PDLA8H7Sz3JodFrzZ/D525e5AgjYOtQNNAIDbiq4TOTL/8HXOjH34Asy1RwVtEpUWmoJtYBgG0Rfd5NPnI4En5nWGhCbKmfAxX9GZmJiIgoICnxWKlDNkqeSMVFB4Bueny5WjwpOQGcYqzwm2lQkJ0GYIu1MGaa0p8G7bMTxz7lXsqzmAi7M246pVO3F78R6xwwoJprpjGD3yjLBRKoe2cAckciViLr6dvr0mhJAQNTw8jJqaGr8XnYSQucKvzx0hK2BubRNsa3NzhAcs9H4UJO9VHMfhjab3AABOzoXDbcfwSr3nGVmJkL23BYOv/mFWKwNt/lZItQYYNl5LH0oIISREDQ8PB+ROJyHeks1asidcM5HueJKg43K53GMiZLLApahjZBQuo1HQpoz3fukRsd+4TvVUYdA8LGi7bs3lIkUTGL7IGZdxBH3P/RK8S7iGqyq3DPLYFKgzCiDV6H0RLgkCYl1nSOiinAltU0UnP2tOhqSkJOTn5/vlvZtyhiyVRqrA6IxtWfBNHeIT9FdAgk5tba17+vHS0tKAPe94Ta1gm5HLYSgpCdjz+8rZ3hpk6FPQYxwAy7PIicnA6ricxR8YwlaaM+4ZbE0jgnZ13nooUvLAMAzUOYHLReJ/Yl1nSOiinAldYhSdAOUMWb4wrTup8CRkynjVrPGd8XHQ5ubOPTCIu+LwPI8YtQFbMtbD5rKjY6wbGrla9LuwwYzneQy+9gjsvS2CdlVmERJv/BocA+1QZRaKFB0hhJCVGBoaQk1NTcCLTkK8wciVwgaJb2ZWDjZUeJKgo9fr4XK5At4tZayyUrCtTEiA3CDsWhnsb1Dn+uvdP6tkSqyJz0VOTPivNbmSnBl9/18w1x0TtMlikpH0iW9DqtZBnVXkqzBJEBHrOkNCF+VM6BkZGfFYdCYnJ2Pt2rV+f0+nnCFL1eUQDvWygpvnyNBGfwkk6GRnZwf8OV0mE+z9A4I2dVpq0Beas1mc1jltG1PDv3vPcnPGVHsUY0f3CdoYpQZJt30XUk2UDyIjwUqM6wwJbZQzoUer1UKtVsNisbjbAlV0ApQzhMxGs9oSAmCirl7YIJFAptOJE8wKbElfh+vWXI7tmRsBADqFJuSK50DheX7usikMA/26q6CID/+7xIQQEu6USiXKysqgVqsBBLboJITMRXc8CQEweqZCsK2Mi0P8jm0LP4gPvqHfDMNAq9BALVfh1sLd9Oa6gImT+6HJ3wZryxk4+loBAOqcMqjS19DvjRBCwoRSqUR5eTl6enqQnZ1N13cSlJycE3KxgwgAKjwJATBWMXt8Zzw0GZ7uegXnG5bVacOE3YgkXQIAQMJIgjXUoGDrrAdrM4ORSKBetQFSjQGsdQKK1NXQrt0idniEEEJ8SKlUIicnvGd3J6HNINfCMmNbxoRnp1QqPEnQaWtrcw/GD8QbBWu3w9bbK2hTJiSAkXoxo5jINz8/aD+Bx08/g5Kktbg8dzs2pZVDIY2E784meZMztu5GWNqmv2hgGAbKtNUAgJiLb/NrnCR4BPo6Q0If5Uxwm5iYQFRUVFDd0aScIUsln/WZjQm+TnU+QYUnCTpGo9G97lVAnq+hUdhtlmGgiI8LyHP7yjstHwIAzvU34Fx/Ay7J2oKvbP2UuEEF0FJzxmUchaXlrMd9MRffBiZMv2EkcwX6OkNCH+VM8BoYGEBdXR0SExODaokUyhmyVM4x4QSX4FhxAvEzKjxJxJuorhFsy2OiYSgpnv8BF97QeJ4Pit6sLcPncX6sS9C2LXODSNEEL0trJSznqyCRKebs06+/mopOQggJQf39/airq3P/zDAMTSBEQo5sVr6Ga/ZS4UmCTlFRYNdNHDl9RrCtTEhA1No1ng9e6Eog0lWisq8OcqkcTtYJAFDLVchPWCVOMCJZLGds3Y3oe+YBSFRaaIt2QKqeXipFV7QDMl20nyMkwSbQ1xkS+ihngs/MonNKX18fYmJikJSUJFJU0yhnyFJpJXJMzNgO1wItXF8XCWFSb8ZWrhDncsFyvl3QpkxIgEyjWf5JA/wtq4tnsWfNFeie6EPbWCfiNbHQyNUBjUFsC+WMa2IIvU/9DOA5cFYjTBWHoCnYBnl0IrSrN0IRlxbASEmwCOR1hoQHypng4qnoBIC0tDQkJiaKENFclDOECFHhSSKauaUVvMslaFOnpYoUjfdc7GTsUokUmdFpyIxOC8plXsTCOWzoe/a/wDtt7jbe5YBzqAvy6EQoU/JEjI4QQshy9PX1ob6+fk57eno68vLyqJstIUGKCk8S0SZqhd+WyvR6RK1euJtqML2hSRgJLs/ZBpPDArPTgpqBRlyac5HYYQUFnucw8Orv4Rg4L2iXRSdCnVuOmItvFycwQgghy0ZFJwlHXQ4jZt4ft4RpGlPhSYLO6OgoOI6DRCJBTEyMX5/LNiCcRUyZEA99Qf78DwiyNzSJRIJ4bSzitbEYtozCybqQqIsXO6yA85Qzo+8/A0vDCcFxMkMiNPnbELvzTvpwEuECeZ0h4YFyRnyhVnRSzpCl4sVely9AqPAkQaezs9M9/bi/L9R5X/gcMu+6ExN19Rg7exbR68oh0+n8+pz+wPM8lFIFypILxA5FFLNzxlT9AcaO7hMcI1FpEb/7i1BnFwfdhxMSeIG8zpDwQDkjrt7eXjQ0NMxpz8jIQG5ublBe1ylnCBGiwpNEPLk+CnFbNiFuyybvHijiWEqO58CAcb/RMgwDnVIrWjzBxNpVj4HX/iBsZCRIvOWb0OSUiRMUIYSQZQvFopMQb7jARERRFgmvkYSY1NRUd9cU4tmp7ir85cyzyI5Ox79vuRd6ZejdpfWlqZzhzaPoe/rncxZejrvqM1R0EgG6zhBvUc6Io6enB42NjXPaMzMzkZOTE9RFJ+UMWarouHiMaqZzmVWG54zIVHiSoBMfH5gxipzDAXN7B3R5uWCW/KYQHG9wL9e9iRHrGEasY/jCq9/DLQXX4LbiPWKHJZr4+HhwDiu6nv9PwQy2AKDMyIdh4zUiRUaCVaCuMyR8UM4EntPpRGtr65z2UCg6AcoZsnSG0rU4ZTrl3taF6Q0F+gqGRKyufS9h9NRpcE4n+BV3mw1ct9shywiaR867t1mOhYSJ7D9lnufQ/bfvwzXWL2iXRSdBv2G3SFERQghZCblcjpKSEsF6mFlZWSFRdBJC5qI7niQisVar++fuF18GI5HAUFqy8Iy2QeKdlg8E23KJDHaXQ6RogkP/87+Cc7BT0CZRR0GTfxGiiraLFBUhhJCVMhgMKC0tRVVVFdLT05GdnU1FJwk7cokMMc7pYUIauYjB+BEVniQi9b9zGGOVVVDExUIRGwuZRgNFTPTSHizyG16CJg6XZG/F+dFOdE30It2Qit1rLxc1JjGZGk/C1ilcj5WRKaAt2oHoTXS3kxBCQp3BYMCmTZugVCqp6CRhKV6hw0bj9FAhmSxavGD8iApPEnSqqqrc04+Xlpb65TnGKiphrJteC0yTnYXMu+5Y9HELv98F5s1wQ1opcmIyMGE3o3qgASzHIlqlD8hzBxueY+Hoa4UtrRzSvnpIzcMAw0BTcBGiN10HmT5O7BBJkArEdYaEF8oZcalUKrFD8BrlDFkuhyM8e7JR4UkikmN0TLCtDKEJAKJVekSr9OB4Dka7CcVJa8UOSTTmhhOTP0hlcCTlQ24aQJROh8Tr/h2MlC5vhBASKrq7uwEAaWlpIkdCSOAxKi20+RdhbHwMPMcDYbpEHn0yI0FHo9HA5XJBJvNPevIsC2uncDxgws6L/fJc/uRgndiQWgKNQi12KKLgeR6OC+M65XI5pFIpJOosJF37KSo6yaL8fZ0h4Ydyxn+6urrQ3Nzs3g6X4pNyhizVuaqzaD10FgA/OV2lUo78fxM5KD+gvwQSdFatWuXX87N2B1L27IapuQWm5hawFguiy8uXfoKp/rYrngl3ZVQypajPL7bRD55z/xwTG+v+WaKMzEKceMff1xkSfihn/GN20dnU1ASGYZCamipiVL5BOUOWyjUwjMzu6TGeNqVTxGj8hwpPEnFkGjWy7538GonnONgHBiDXRy3twSJOamB12tA90Yfc2MyIXz7FZRzx2G7YeG2AIyGEELJcnZ2daGlpmdPudIbnh25CIl1kf3olEctlMoHnODASCVTJyWKHs6iWkXb84v0/4P3zxwO5ZGhQchlHMPjq78E55w68l2oic5IlQggJNfMVnbm5ucjKyhIhIkLE4+RcYocQEHTHk0QcY1MzpEoFNDqd2KEs2Qs1+9E43IrG4VbUDTbhzpIbUJ5cBFkEjmUcfvuvsJ4/B3v/eeg3XANGrgTvciDm4tvFDo0QQsgSdHR0oLW1dU57bm4uMjMzRYiIEHEZ0tLQkzb9uZTXhOdwqsj71EqCXkdHB1iWhVQq9csb0Oip01AmJoBzuiBRKqFMiIdU6f0fOB+gMZ5Wpw2VfdPrVHaM9+BA47vIT1gFXYQVnpaWszDXHQMAcFYjxj58HvqN18KcvRXj58/7LWdI+PH3dYaEH8oZ34ikopNyhixVTFEBqvh22G128DwPrUIjdkh+EVmfWklIGBsbc6975esLtXNiAgBgHxiEfWAQAJB01a6lF54Mg0Ct1znlWMcpuGZ0wWDAICs6HTpFeE61PR/OacfQwf8TtElUOug37UZP1xCcphG/5AwJT/68zpDwRDmzcvMVnXl5ecjIyBAhIv+inCFLZe9rhb27CTzPgwcPjpGLHZJf0BhPElHM59vntClmzIi6XP68+1mYsBo7s7dCLZ9cPDslKhHXrN7pt+cLVmMfvgDXWL+gLfaKe6CIDf2ZDwkhJNy1t7dHVNFJiDdkLIcouw16hx0GhwPaMJ1gi+54kqCzdu1a8DwPxg8zyHa/9ApMzc2QGwyQR0dDlZTol+fxpRR9Er685V58gf0kTvVUQSlVIEEbJ3ZYAeUY6sLYRy8L2lQZBYgquwyAf3OGhCfKGeItypnla29vR1tb25z2cC86KWfIUsXLNdgyMb2cikQdnnc8qfAkQUe5jPGWS2Xr74drwgjXhBHWzi7wzrV+ey5fk0ll2JqxXuwwAo7nefQ98wDAc9ONjASGbbeAubCsjD9zhoQnyhniLcqZ5Zmv6Fy1ahXS09NFiChwKGfIsoXplxXU1ZZEFOfYuGBblbK8pVTo28vAMVa8A9f4oKBNmbYGivg0kSIihBCyVHL53Ds3kVB0EkLmojueJGK4rFawZrOgTZuT7bPz+6MW5XgOEiZyvx9ymUYx/PZfBW2MUgNVZiHk0UkiRUUIIWSpUlMnx+E3NjYCAFavXo20NPrikJCZqisqMVY//XnPpbAgW7xw/IYKTxJ0jEYjOI6DRCJBVFSU785bXz+nLX77dp+d381HFWjPRB/0yijolJE1e+1Mfc8+CN5pF7Rp8tYj9tK7BW3+yhkSvihniLcoZ5YvNTXVPQlfJBWdlDNkqVxmC6InpocU2RSBWbIv0KjwJEGnra3NPf14aWmpz85rrG8UbMt0OihiY5Z/Qj/OZNtrHMCLdW8iQROLBG0cMg2pyDCkQilT+O05g42lvQaOPuEMiPK4NBg27Z7T1dlfOUPCF+UM8RblzMpEUsE5hXKGECEqPEnEMDU1C7ZlBj0YiXfdWN0Fj5+HeD526inUDDRCp9AgOzoDWdHp2JW3A2n65Y1JDTU8x2Lwpf8WNkpkUOeWQ5UeOhNCEUJIpOB5Hna7HSqVSuxQCAk5LJiIKMoi4TWSEJOUlASWZSGVSn16Xmtvn2BbnZri0/P7CsdxaB3pAACYHBZUDzTA5rLjnvJPiBxZ4IwefRGseUzQpsoqRNyVn/J4vL9yhoQvyhniLcqZ+fE8j7a2NnR3d6O0tBQGg0HskIIC5QxZKq1SC9eM7XDNGCo8SdBJSvLPpDHOceGMtoqYFXSz9aOq/jpYXTZBW3lyYcTMpMvzPKwtZwVtEo0B+vVXu5dPmc1fOUPCF+UM8RbljGdTRWdHx+QXplVVVVR8XkA5Q5ZKLZHDOGM7XKeVDNfXRYgAa7fPmdFWlbzCbqt+GuLp4lxIiUp0byfrEnBL4bX+ebIgNHHqDahzy6AruwJSbTQAQLNqA3T5W8UNjBBCiADP82htbXUXnQDAsizOnTsHp9MpYmSEkGBEdzxJRLB0ds1pi1m/zvsTBWCM58a0MmxILUXTcBveO38ceTGZkEkj40+V5zmw1snv/GT6OOjW7YJrbACGzdeJHBkhhJCZporOzs7OOfvy8vI8rt9JCPFsdq+2cO3jFhmfZknEm6itFWxLtVookxLnOVp8DMNgTXwu1sTnih1KQLHGEUSVXgpzwwlwdisYRgJ5TDKUSdlih0YIIeQCnufR0tKCrq65X+rm5+cjeaU9igiJMFEyJSZmbMvCczUVKjxJ8KmtrXVPP15YWOiTc1o7hN/Iyg16yDQan5zblzieA8/zkErCdVj5wqS6GDASKRQJmbB1NQAAYnbcuujj/JEzJLxRzhBvUc5MoqJz6ShnyHKFad1JYzxJ8HG5XO7/fMXU2ibYluv1Pjirby8LTtaJYx2nYHc5fHreUMJcKLgVCVkAAHV2ibttIf7IGRLeKGeItyhnqOj0FuUMWSpm9jrt80ymGOrojicJOgqFAhKJBDKZ79LTPjAg2FalrHQpFQ+971c46+xbzUdgdlqhkjUiVh2DaLUeseroFZ0zFPA8j/59D0GdVQT9hmvASKSQ6qKhK7gI8viMJZ3DHzlDwhvlDPFWpOcMz/Nobm5Gd3f3nH0FBQU0g6sHkZ4zZOn6WeFqBvYwHeRJfwkk6OTn5/v0fJzDAZdp1oy2iQk+fY6ZlrPsCcdzMDrMkDAStI52onV0smvw7cV7fB1e0DFWHYal4QQsDSdgrHwX8dd+Aaq01VAkZC75HL7OGRL+KGeItyI5Z6joXJ5IzhniHScnvCvOhWln2/C8j0vIDJbuboAX/gGrM5d2Jy1QjnWcwv6GQ6jorcGYdXK9Ub1SJ3JU/sdaTRh+8y/ubUd/GwZeehg8S92SCCEkGPA8j6amJio6CSErRoUnCXvm5lbBtlSjgb5g5d9C8rzvvo062nEKdtaB5pHzeKf1QxzvPIOd2eG/bmXfM/eDdwq7l8TuuhdMhCwfQwghwW5gYAA9PT2CNoZhUFhYSEUnIT7CcpzYIQSEKJ/uTCYT3nnnHZw5cwY9PT0YHx/H3r17ceONNwIAHn30URQVFeGSSy4RIzwSZsZrhEupyA16KGJilneyC91oVzicU8DmsqNmoFHQFqM2QC1X+e5JgpC54WPYe1oEbfLYVGhWbxIpIkIIIbMlJiZidHQUfX19ACaLzoKCAiQmBu+SZISEGrVMgZlTS0ppcqGV4zgOf/rTn/C3v/0NZvPkmDue58EwDEZGRtzHPfXUUxgeHkZZWRkeeughZGQEV7dI4l89PT1gWRZSqRSpqakrPp+tt1ewLdPrwUiC5w+6dqARNpfdvc2AwWfW3yliRP7HsS4MHXwMgpmBJVJo1m6GZBl3O32dMyT8Uc4Qb0VqzjAMg7Vr14LneQwMDKCwsBAJCf6bJyGcRGrOEO+pZUpB4Rk8n1J9K2CFp8PhwOc//3mcOHFiwS6KdrsdQ0NDYBgGFRUVuO222/DUU08hLy8vUKESkQ0NDbnXvfLFhdo6q4uQb5ZS8Z31qSX43e7/xJHzx3Hk/MdI1ycjVR/e3ZdG3vk7WNOooE2VUYDYy/Yu63y+zhkS/ihniLciOWcYhkF+fj7S0tKgD7L30GAWyTlDvOM0jgi2eY4VKRL/ClhB/dOf/hTHjx8Hz/NQqVS444478Mtf/nLOcTzP4+6774ZcLgfDMBgbG8N9991HayCRZWEdDriMJkFbdFmJSNF4xnIs4tUxuLPkRjyy5358ZeunxQ7Jr1ibBcbKw4I2iToKCdf9+7JmBCaEEOJ/DMNQ0UmIn0hmTarIhOektoG541lVVYWXXnoJDMNg9erV+POf/4yUC+sofu973xMcq1Kp8JOf/AT33HMPvvSlL6GtrQ3Nzc14/fXXcdNNNwUiXCKyvLw8dxfslbL19s2Z0Va3evWyz+eOyUcFksluRuNwG8qSCwAAEkYS9rPZ9j334JwJhdR56yCPWf5dXl/mDIkMlDPEW+GeMzzP4/z580hNTYVSqRQ7nLAQ7jlDfCdKqsDM2yRy0SLxr4Dc8XzhhRcAADKZDI888oi76FxIdnY2HnnkEUilUgDAwYMH/RojCR5arRY6nQ5arXbF57J2dQm2ZVFR0OevXfF551jmDLeHWo+i3zSIQfMwTA4zOD68ZzVzjvbC3i2cSEkWk4KEa7+wovP6MmdIZKCcId4K55zheR4NDQ1ob29HRUUF7Hb74g8iiwrnnCFkOQJSeH788cdgGAaXXHIJMjOXvih8Xl4eLrvsMvA8j7q6Oj9GSMKVpVNYeOryckWKZC6e52FnHTA6zDjS/jEONL6LMz3VYoflV30vPAQIxi0wUOeUQqII7xl8CSEkWE0VnVOz1lqtVlRWVlLxSQjxuYAUngMDAwAmFxr21uoL3SJHR0cXOZKQuSwdnYJtdUa6706+wnU8z/bOLTJTo8J3enpLawWcA+2CNkVKLuKv/oxIERFCSGTjeR719fXuonOK1Wp1rz5ACPG/fofw780Wpr2zAzLGc2oW26lus96Y6hcvl4drb2cym9VqdY+JUKvVKzpXws6LoUyIh7WzC5bOLmgyfbU0j6crwtKvEjzPY3/jYcSoDUjQxLnzPCUqPGez5Xkeg/sfFTZK5YgqvQyMxPvrwmy+zBkSGShniLfCLWemis7+/n5BO8MwKC4uRmxsrEiRhY9wyxniPw6wgqIsXAdeBaTwjI+PR1dXF5qbm71+bFVVlfscJDI0NTW5px8vLS1d0bnkej1S91wHZcJk/iy0lE8gtY914Vx/PQAgWqVHojYOhYlrwnYCApdxeFYXW0CVWQD9hmt8cn5f5gyJDJQzxFvhlDNTQ5imeqRNmSo64+LiRIosvIRTzhDiCwHpartx40bwPI/Dhw9jZGRk8QdcUFtbi2PHjoFhGKxbt86PEZJwxLMsxioq0f/OIfBscK2H9GHHSffPY7YJ9BgH8InCa0WMyL+kSi0yvvIo4q78NBiFGhKldvJuZ5gW2oQQEqzmKzolEgkVnYSIhPOi11woC8gdzz179uCll16CzWbDd77zHfzpT3+CQqFY8DEdHR34yle+Ao7jwDAMrr02fD+UE6G4uDiwLLusrtkzWbt73D+Pnq2ANicb8qgoMIvk3pIt8+Ypz/M40VUhaNuVtwNKWfhOXy9RTnYx0uZvhcs8Ds5mhq5wu8/O76ucIZGDcoZ4KxxyZrGik7rX+lY45AwJDLVaB+eM2pORhGchGpDCc/v27di+fTuOHj2Ko0eP4pZbbsGnPvUpFBYWuo/hOA5GoxFNTU14++238eyzz8Jqtbrvdu7cuTMQoZIgkJaW5pPzWLu73T+bmpphampGxp23r+yk7nU8sezCk+VYXJSxHqe7q9A50QsA2Jq+fmVxhQhGKofckICoi2/3ydjOKb7KGRI5KGeIt0I9Z3ieR21tLQYHBwXtVHT6T6jnDAmc+K1lOMRNTzqpC9M13QNSeALAf//3f+OOO+7A+fPn0dLSgh//+McAJscT8DyP3/zmN/jNb37jPn5qLF5iYiJ++9vfBipMEkacRuOctmDo2imVSFGSlI89a3fB4rSiqq8WOTG+mvQouEm1BujXXyV2GIQQElE4jkNdXR0VnYQQUQVkjCcAGAwGPPfcc9i1axd4nnf/B0wXA7Pb161bh+eeew5JSeE50yfxL3VqKrQ52dBcWEJFlRwceXSi6yz6jIPQyTVI1iXgqlU7g6Ig9gd7XxtcE0Nih0EIIRFroaKzpKSEik5CggDDSKDgePd/8uCYC9PnAnbHEwD0ej0eeeQRVFVV4YUXXsDHH3+M9vZ2wUyjCQkJ2LRpE2666SZccsklgQyPhBGe51H34C8h1+uhSk6GLEqH+B2+G1N44VmW9aiO8cmxp280vQuFVIEkXTxKk71f4zbY9T7zAKTaaOjXXw3OYYNEpYVMFyN2WIQQElE4joPNZhO0TRWdMTF0TSYkGCQr9dg5ZnFvy2L0IkbjPwEtPKeUlpa6p5VmWRbj4+NgWRYGg2HRSYdI+GtsbHRPP75mzZplncMxMgLWbAFrtsDWO7kwdva996w8uAt3Jqe6iHtrxDrm/tnstMLstK48piBkaa2AteUsAMDe3QhVTikUsakwbNrtl+fzRc6QyEI5Q7wVqjkjk8lQWlqKyspKmEwmKjoDKFRzhojP6XSKHYJfiFJ4ziSVShfs5uF0OtHS0oKhoSHs2LEjgJERsdhsNjidTrArWAJl5oy2ACBRKqGI82N3oiXWoLUDjXPaLs7a5ONgxMVzLAZf/YN72zncDZdxBLGXftJvz+mLnCGRhXKGeCuUc0Yul6OsrAzV1dXIzs6mojNAQjlnSGAxMgVUWSUwmYyTNzZUNLnQsuXn50MikeDb3/42Pv3pT3v12D/+8Y/485//jISEBBw5csRPEZJgIpFI3P8tl62nV7CtTk0VfRwlx3HIjs6ATqGDzWVzd7lVyVWixuVrQ28+AdY8JmhTZRZCv/Eavz2nL3KGRBbKGeKtUM8ZuVyO8vJy0d8LI0mo5wwJnMbOdpyr6wLLceDBQ6awYK3YQflBwO54LqdbIgCo1WrwPI+RkREfR0SCVXFx8YrPEX/xdsgNejhNZtgHBiDXR/kgMiFvc/pM7zn836l/YUNqCdalFCNWHY0t6eU+j0tMnMsBU80HgjaJRo+o0sv9+mHHFzlDIgvlDPFWKOQMx3EAMG+hQ0VnYIVCzpDgYG45j9zqUfe2TRmeX1aI3tV2PjzPo6urC6+//joAQKPRiBwRCSWmpmbYh4aRfPWVkPhw3PD0m7aHN+9F3s9PdVdh1DaOd1o/xDutH6I0qQC78sKr+/joe/8Cb7cI2tQ5ZdAVbBUpIkIIiQwcx6GmpgYAUFRURHfZCCFBx2eFp8vlws0334zm5maP+3mex69//Wv8+te/9vrcDMPQoGzilYm6egBAz6uvQ6JSQZ2SjJgN6wPz5B6+UeZ4Dqd7zgnaylOKAhNPgHAOGybOvClokxkSkLDnyyJFRAghkYHjOFRXV7t7h9XW1qKwsJCKT0JCBMtxkIodRAD47Iokk8nw85//HIBwPc6Z3RFnty/1PwD43Oc+56tQSZibmXOc0wmX0QhrT88Cj/C/86OdGLcbBW0b00pFisY/Rt57CrzTLmhTZZdAIpOLFBEhhIS/2UUnAAwNDaGhoUHEqAgh3lBF62HRyd3/OQ1qsUPyC592tV23bh3uvfdevPXWW4L2np4eMAwDvV4PrVa76HkYhoFUKoVOp0N6ejpuv/12mtE2ggwMDIBlWUilUiQmJnr9eM5un9MWu2mjL0IT8mKIZ6IuHt+/+MvoGO/G6Z5zsDhtSNYl+D4mkbA2M4xn3xa0yWJSELvzroA8/0pzhkQeyhnirWDMGU9FJzC5YkBqaqpIUZEpwZgzJDglbt6IOs0QnA4neJ6HVhGeQwx9Psbze9/7Hr73ve8J2vLz8wEAX/ziF72e1ZZEnr6+Pve6V8u5ULvMljltivh4X4QG4MI4Ty/nZzjQ+C5SdIlYn1qCy3K2QSVT+iyeYDD63lPgXcI1p1TZxZBF+XEJmxlWmjMk8lDOEG8FW86wLIvq6mqMjo4K2qVSKUpLS2EwGESKjEwJtpwhwcsx1AXHYAdYFwuAh1Piu/lJgknQz2pLiLcsnZ1wjo9DqtFAIp/s5slIxes5b3XaAAC9pgH0mgYAAEnaeOzMCY8Jd1ymMUxUHBK0yePTEb3lBpEiIoSQ8LZQ0VlWVga9Xi9SZISQ5eBtFjAWo7swkzLOBY8PVQEpPOvr6wPxNCRMZGdng+O4ZU+KMPzhMfS//Q4AQKJQQJOVicy77vBliF7pmuid01aYuFqESPxj9P1/AaxrRgsDVVYxFHGB6+a10pwhkYdyhngrWHJmvqJTJpOhtLSUis4gEiw5Q4JfskKHy0ene+wxKp2I0fhP0C6nQiLXSt80HTPejDmHA/yFdc18b2l38aOUOtyUfxXebD4Cq2vy7meCNs5PMQWWa2IYxnPvCdrkiZmI2XZLQOOgD1rEW5QzxFvBkDNUdIYW+vcgy8WE6ZcVor4qnufBcZzgP5Zl4XQ6YbVaMTIygtbWVrz22mv4zGc+I2aoJITYevsE26rkZD88y9IHeSbrEqCQKVCStNYPcYhr7KOXhXc7JVLEX/UZyPThUVgTQkiwYFkW586d81h0UvdaQkgoCOgdz7feegtPP/00ampqYDabadwn8QunSbhsiSLOxxPceKw5Pedy8/B5mJ0WFCWsQbohFR93V2JXXvjM0Bxzye2QKJQYP3kAvNOOqPIroM4Kr/VJCSFEbFNF59jYmKB9quiMiooSJzBCiE80NtSjq31GWaawIVu0aPwnYIXnb3/7Wzz22GMAljfREMN4OY0oCVlO5+RU0gzDQC73bg1InufBmsyCNqlSvBlkX61/G8e7zkAtU6EspRBX512CWHW0aPH4mkSlQ+xle6HfdB3GPnpZtAmFVpIzJDJRzhBviZkz9fX1VHSGILrOkKWyDI0isX+6B5lNEZ51T0AKz8bGxnmLzqmCcr52mUyG66+/ntbxjCB1dXXu6cdLS0u9eqxjbBw8ywratKvyfBnetEW+P3GyTlT01QAArC4bjneeQXlyIYoQ+l1ueZ6HueE4VKmrIdPHQ6aLQfyV4i2VtJKcIZGJcoZ4S8ycycrKwtjYGJzOyZkuqegMDXSdIUQoIGM8n3/+eXdhuWHDBjz//POoqqrCvn37wPM8pFIpjh07hoqKChw+fBgPPvggUlJSwPM8XC4XiouLsXv37kCESkKc5fx5YQPDQJuV6YdnmvtN1Oy78jUDTbC57DMewWB9aokfYgk8a/MZOAY6wFomwHPs4g8ghBCybDqdDmVlZZDL5ZDJZCgvL6eik5Aw4q9pMINNQArPU6dOAZi8cP7pT39CSUkJFAoFioqKoNfrwbIsjh49CpVKhdTUVNxyyy145ZVXsGbNGvA8j4ceeghDQ0OBCJUEAYPBgOjo6GUtfm3t7hZsS9VqqJKSfBXapMW6fV/Y328aQJw6xt28Ki4b0arQn/yB53nYepsBAObGkxj76GWMHHlW1JhWkjMkMlHOEG+JnTNTxWd5eTl0uvBcaiHciJ0zJHQoFWrBdnjOaRugrrZ9fX1gGAaXXnrpnD++oqIiHD9+HKdPn8b111/vbo+KisLDDz+MG264ATabDc899xz+/d//PRDhEpFlZWUt+7GW9g7BtlSjEW1K6nG7CZflboNBqUO/aRjpBn/Mrht4zkHh75gXrOEpjpXkDIlMlDPEW8GQM1RwhpZgyBkSGnRSFWZOjSkVLRL/CsgncqNx8leZk5MzZ9+qVavA8zzq6+vn7Fu9ejU2btwInudx8uRJv8dJQp99eESwLdNp/fhs8w/ydLJO98/jdhNUciWSdQl+jCUweJ7HwCv/A1tHLTjndDdiffkVIkZFCCHhweVyobe3V+wwCCHELwJSeKrVk7ePPc3olZ2dDQBoaWnx+Nji4uIF9xMyk3NEWHhKVSq/PM9ivW1PdlfNaUs3pPollkCytVfDMdAOW3s1Jj7eD0vLGfAuJ2T6eLFDI4SQkOZyuVBVVYWGhga0t7eLHQ4hhPhcQArP6OhoAPA4TjMjIwMAYDKZMDAwMGf/VNfc8fFx/wVIwobTaBJsK2Jj5jlyJRaf4lotV0IlUwiO1CtDv4vU2PFXpjc4F1wjfVCm+GnWYEIIiRBTRefExAQAoK2tjYpPQiJIlEx4o0Tu/cqTISEgYzwLCwvR2dmJY8eOzdmXmTk942hVVRV27dol2N/X1wdgeWt/ktDU0tICl8sFmUyGvDzvihrWahVsq5LFGVe5LqUY61KK4eJYHGg8jARtrChx+JJjoAPWlrOCNmXaGigSMkSKaNpKcoZEJsoZ4i1/5YzL5UJlaSAcogABAABJREFUZaV7WNKUrq4upKam0vqPIYyuM2SpZvekC9eqJyB3PLdt2wYAaG5uxp/+9CfBvqysLHdX3FdffVWwz2q14p133gEAxMdTV75IYTabYTKZYDabvXocz3FzC88U/xWeS/kyRCaR4upVO3FRxga/xREoo8deFGwzMgUUSdmQx4nfhXi5OUMiF+UM8ZY/cma+olOhUKC8vJyKzhBH1xmyVIxEOrtBnED8LCCv6sYbb0Rs7OQdnz/84Q+49dZbcejQIQCTax9efvnl4Hkeb7/9Nh544AE0NjbixIkT+OxnP4uhoSEwDIPy8vJAhEpCmHN8HOCEKyEpE/w0oc8CgzzfaHwX//vxkzjWcRpGuwlKmcI/MQSQyzgKc+1RQZsiZRUYqQxMmF4cCSHEn5xO54JFp1brz8nxCCHBZIQRfn51LD6qKyQFpKutSqXCz3/+c3zta18Dy7KoqanByZMnccUVkzNhfv7zn8cbb7wBnufx1FNP4amnnppzjrvuuisQoZIgMDWhlLfsQ8PCBobxyx1PTzUnz/NgLozo/LDjJJpHzuNw2zEwYHBP+Sdw3drQnvV1/MQrAD/joshIoExdhejNe8QLaobl5gyJXJQzxFu+zBmn04mqqqp5i06NRuOz5yLioesMWSqLyy7YZsO0s23AblXs2rULf/rTn5CWlgae55Genu7et3btWvzwhz8EMPkBfuZ/APC5z30OmzZtClSoRGQSicT9nzdsF8YDT5Gq1ZAF+M3b7LSiZXR6QggePDJCfDZbzmHFxOmDgjZFUja0azZBogqOb+SXmzMkclHOEG/5KmcWu9NJRWf4oOsMIUIBueM5ZefOnXj77bdx8uRJJCUlCfZ98pOfxJo1a/DYY4+hsrISDocD+fn5uOeee7B79+5AhklClK2vX7At1agh82dXJQ9fRtWMNAvGfsqlcuQnrPJfDAEwcuQ58C6noE2ZtgbqzEKRIiKEkNA0VXSaTLNmYKeik5CIxnFc4O4GiiighScw+e3Pli1bPO7btGkT3dkky2YfHBRsS9UaMFLpPEev0DxjPIdtEyhNKsCwZRT95kGkRiVBIQ3dySF4joW5+oigTRabCu2q9SJFRAghoWm+olOpVKKsrIyKTkIimEwixcxRnpLFFowPUQEvPJdrZGTEPUERCW8jIyOT3/xIJF79mztGRgXbMp2f7nbOezFgIGEYrInLAeJzwXEcWJ71TwwBYq4/DtY8JmhTpa+FZlVwzdK73JwhkYtyhnhrJTmzUNFZXl7unt2fhBe6zpClilJoMD5jW7qENeNDUUgUns899xwefvhhnDhxQuxQSAB0dXXB6XRCLpd7daFmZ01XLlWp5jnSf8xOK6TyyQ8QEokECkkI3+3keYwfFy5xJI9LQ/y1nxcpovktN2dI5KKcId5aSc5MTEzMWVKDis7wR9cZslSseUKwzc9apSFc+LXwHBkZQUtLCwYHBxEXF4fy8nIolcolP76pqQk//elPcfbs2cUPJhHPMTIi2DaU+H82OZ7nwVy4A8ryHGJUetikgIOdHBO5NX2d32PwF3tXPey9zYK2mJ13QhIGy8MQQkggxcXFoaCgALW1tQCo6CSECHEO4Tr0zBLWig9Ffik8Ozs78dvf/hZvvfUWWHa6q6FKpcK9996L//iP/4B0gbF3NpsNf/jDH/D3v/8dLMsKPtyT8Jeenu7umrJUPM/PWU7FUFzk69BQP9iMPGWix31SRoLL0jZBGRcLu8uBXmM/ErRx7seF2iRDYydeE2zLDInQrvU8Pltsy8kZEtkoZ4i3VpoziYmT7x2tra0oKyujojMC0HWGLJVeqoRlxrYsTJdT8XnhWVFRgS996UsYGxsTzO7JMAysViv+/Oc/49y5c3jsscc8Fp/vvfcefv7zn6O3t1dQcE5dsEn4W053FNfEBHiXS9CmiIvzVUgAgOeqX8cLNftx55prcW3yZgCTXSHqfvFfYC0WSFUqFPzkRwAApUyB1KgkyKVyvFz3Jp6uehm3Fl2H24uDY93LpVAm5cA1MQRHbwsAwLD5OjASP03WtELUhYl4i3KGeMsXOZOYmIj4+HgqRCIEXWfIUs2+v8aE6RhPn175HA4HvvnNb2J0dHqSF4VCgfj4ePc2z/M4duwY/vjHPwoea7FY8IMf/ABf+tKX0NPTMx2gRIJ77rkHBw4c8GWoJMzYh4V3OyGRQBET7bPz1w8244Wa/QCAZxrfwP7ODwEA1u5uWM63wz4wCEtHJ6zd07mrkCncRScAvFCzH/WDzXPOHYwcAx3geQ7R225G/O4vQrNmM3Sll4kdFiGEBD1+kS5yVHQSQiKVT69++/btQ3d3NxiGgUqlwgMPPIBTp07hww8/xMmTJ/G1r30NUqkUPM/jr3/9q3t2t76+Ptx222146aWX3Hc5eZ5HaWkpXnjhBfzgBz+A1p/rMZKQZx8UFp6KmGifLqWSn7AKd5fe5N5+ru0QDvSdgLG+QXDcy4eexOsNh9A90ScoOgHg7tKbQqa7ran+IwCTBajLOAJVRj6kKvobJISQhTgcDpw+fRrDs78MJYSQBYy4bIJtR3je8PRtV9ujR4+6f/7Nb36DK664wr2t0+nwpS99CXq9Hvfffz9sNhsOHTqELVu24I477sDAwID72KioKHz961/HnXfeGdCxnTzP4/XXX8e+fftQV1cHi8WChIQEbNq0CZ/85CdRWlq64uew2Wx45pln8Oabb6KtrQ0mkwlxcXHYsGED9u7di/XraX1EbsZMXkv9ZliTmYGU6/dAEW2AY2wMEoXvJ8C5qeBqAHAXk/u6jyD+rAIz586VtHbjHxUv4KOO02gaaXO33116k/vxwc7Tt/Wcw+bhyOCxnJwhkY1yhnhrsZyx2+2orKyExWJBTU0NiouLqatlhKPrDFkqM+cQFGWueY8MbT4tPJubJ7sRrlmzRlB0znTXXXfhsccew8DAAE6fPo2XXnoJ/f397rucV111FX7yk58IuucGgs1mw9e+9jW89957gvbu7m50d3fjtddew3333YfPf375S0nU19fjP/7jP9DR0SFo7+vrw/79+3HgwAF88YtfxH333bfs5wgH1dXV7unHl1rscw4HZFoNOKcTcr0ejMw/EzbfVHA1OLsdzzS8AfA80NYt2J824AB4PmSLTgAwVhya06bO9v8MwSuxnJwhkY1yhnhroZyZWXQCkwVHdXU1SkpKEBMTI0a4JAjQdYYQIZ9+Oh8eHgbDMNi0adO8x0gkEmzcuBH79+/H/v373RdpnU6Hn/3sZ9i9e7cvQ1qyH/7wh+6iMy8vD7fffjvi4+NRU1ODZ555BhaLBQ8//DCSkpJw4403en3+zs5OfPrTn8bIhSU/LrroIlx55ZWIjo7GmTNn8Pzzz8Nut+PRRx9FcnIy7rzzTl++vLDH2abvyPEsC37GbMq+dn3eZeAcDhw+cxAqh/DuoNrBI36MxVDM5J9WqBWdPM/BZZzbRUyVUSBCNIQQEvzsdjsqKipgtQqXQ1AqldBoNCJFRQgJJeE5h+1cPi08py66i92tTE9PBzA5oRDP88jNzcWf//xnZGRk+DKcJTt69Chef/11AMDWrVvx2GOPudcb3bNnD2699VbcfffdGBsbw4MPPogrrrgCOp3Oq+f42c9+5i46v/nNbwrunF533XW4/vrrsXfvXjidTvz2t7/FLbfcAoUfuouGAq1WC5fLBZkXdy1NzS2CbXm0wddhCezJ3AH1R7UARufsSxtwYChGFoJFJ4++534FiUIFWWyKu5u7VKMHwwR3F6Hl5AyJbJQzxFuecma+olOtVnu9djkJP3SdIUslk6sE22E6xNO3hafL5QLDMIteaGdOFJScnIwnn3wScT5e+sIbf/nLXwAAMpkMDzzwwJz48/Ly8OMf/xjf/OY3MTY2hueffx6f/vSnl3z+jz/+GB988AEA4JZbbvHYXbe8vBx33nknnnzySYyNjeGjjz7Czp07V/CqQldeXp7Xj1EmxINzOMDa7QDP+2SMZ9sTf8XQ0WNz2nmOB3geMWaTx2+otlWacHETD/WbL+AkXpizP37HduT8v0+tOD5fs3XWwdp8CgAgUeugTF0DRXIO9BuuETmyxS0nZ0hko5wh3pqdM1R0ksXQdYYsVdLmMnxgq3Nva8J0QkdRvoKZ+c3PV7/6VVGLzrGxMRw7NllcXHzxxfPedd29ezcefPBBDA8P4+DBg14VnlN3U5VKJb7+9a/Pe9ytt94Kp9OJmJgYUX8noSh282T3bp7nMVFbu+Lz8TyPoWMfwTE84vVjFS4AE2Y4YPa4f/jY8aAsPMeOThfJnNUEe3cDFCm5AZ3gixBCQgEVnYQQX2IUcjg1073LWGVwrpu+UqLf+7/00ktFff5Tp065Zx3bunXrvMdJJBJs2rQJBw8eRGVlJcbHx2EwLK075zvvvAMA2LZtGxITE+c9Lj8/Hz/72c+8iJ4Ak2M6WZsNUo0GzrExOMfGEbftohWd02U0wjk27qMIhRyjo3BOTECu1/vl/MvhHOmFtbVS0KZMXQ3t6vnHaxNCSCSy2WyorKycU3RqNBqUlZVR0UkIIfMQvfAUe7a3pqYm989r1qxZ8NhVqybXYOR5Ho2NjQtOojRlYGDAvZ5XeXm5u93pdKK5uRmDg4OIjY1Ffn4+jQFYJktnJyq+9k1IVCoo4+OgjI9H3EVbgRXcqZPr9Vj/x//B+7/7JXR1nT6LtT1bhzObE9Dc8hbuWXerz867UuMfvy5skMqhSMqBMoW6CRFCyBSbzYaKigrYbMIlpqjoJISsRKJSj52j0z3lZNHezSUTKkSvdMTuxtfdPb0cRlpa2oLHJicnCx63lMJzaokZYHJSJafTif/93//F008/7Z5sCACio6Pxuc99Dp/+9KchlYbn7fWlam9vdw/Gz8rKWvR4+9BkYc/ZbLB2dcNlNoPxwXpZyqQkvLxNA1VqNC45Y0Li6PJXVRqIkeHIeh26kxQAzLB0nQ2awpO1mjBR8Y6gTZmcC+2ajaL/fS6VtzlDCOUM8VZjYyOamprgdDoRHR3tbtdoNCgvL4/YCQHJ/Og6Q5ZKykigmDlxiMt/qzOISfTCU2wzi7/F7r7OfKMZGxtb0vn7+vrcPysUCuzduxcVFRVzjhsbG8NDDz2EiooK/Pa3v4VcLl/S+cPR+Pi4e92rpXAMCZf/UPpoDVijw4xxuxHDSQo8c3UMCtts2FZpgsa29EmvzSoJPirTojZHBV4yXcSN2SYwYTdBrxT/Gy3j2bcBdmZRzUCZugrKtLWixeQtb3OGEMoZ4g2n04nq6mrYbDbBl8NUdJKF0HWGLBkjgTwuDbYLk2TyCvE/H/pDxBeeM7vLLNZFZuYby+xuNvMxm6dvm//6179GZ2cnVq9ejW9961vYtGkTWJbFBx98gIceegi9vb14++238bvf/Q7f/va3vXwlvtPc3Iy8vDxERUW52+x2OxoaGgBMFuCZmZlzHjO1JuvsRZKHhobQ09MDAMjIyBAU+CzLoqamBgAQFRWFnJwcwWPPnz+PiYkJAEBhYaGgO/LY2Bg6OjpgmzWZkOLCxEznzp0Dz/NQq9VYvXq14Jiuri73lw5r1qyBSjU9jbXJZEJraysA4PsbvoS3ej/Eia6zqMlTg2OAq44b5/nNzXW0XIu6XLWgrSAqF7esuXZO0dnU1ASr1QqGYVBSUiLYNzg4iN7eXgBAZmam4EsQl8uF2gu/A71ej+zsbMFj29raYDROxlxUVCT40DQyNIiRYy9j5v1heUI6ZLpoMAyDqqoqAJMfrqa6mk/p6OhwfwGzdu1awd+P0WhEW1sbACApKQlJSUmCx9bW1sLlckGhUCA/P1+wr6enB0NDQwAmZwScOQu21Wp1d4+Pi4ub00vB5XKhqqoKEokExcXFgn0DAwPuL4Kys7OhnzHG1ul0oq5ucjY5g8Ew55vplpYW999ycXExJDPuqI+MjKCrqwvAZK+G2NhY976pReSBydm8Z89w2N7ejvHxybHEBQUFgg8nExMTOH/+PIDJ3hazx4dXV1eD4zioVKo5wwS6u7vdXfxXr14NtXo6B81mM1paJpcfio+PR2pqquCx9fX1cDgckMlkKCwsFOzr7+9Hf38/ACAnJydkrhEAkJKSgoSEBMzmdDrR1NS07GtEQkICUlJSBI+tq6tzf9gsKBCugdvb24vBwUEAQG5urmBpLpvNhsbGRgBAbGyse+mxKWJcI0ZHR9HZOTncIDU1dc5yaaF2jWhsbITNZvP6GjH1XmKz2dzzQmi1WpSVlUGhUNA14oJwu0as9HOE0+mEJ3SNmBRO14iVfo44U1ePznEOgBw8eCgArIF414ipHPQ1vxSe1dXVePnllxfcP2Wh42a76aablh/UPFyu6Ts9i31jOXP/zMctZOoiCgCdnZ0oKCjAP//5T8GF5LrrrsP69etxyy23YGRkBH/7299w9913L9r1119YlnW/sU7hed59AWXZubf/XS7XvBdYjuPc+2afF4B739TvtKCgADzPg2EYtLe3u/fzvPBO41RMnEYDwxWXw5CcBNZqhSol2X1enuc9jp2dGe985wWAZGUcvrn986gdaMT/fPQX5LfNXbdzIfnnbe7CM1qpxzVxO/DmESl+f7oL+qhhPPzVSyC5cCfU6XTC6XR67N4683e4ULye8nKhfxt700lI7CZBmzJtDfSb97hjmu+8LMvOG9PMeD3li9PphMvlElx4l3Le+fJwKmcaGxtht9sXPe9C+e3t79Db/J7vvMv5HXIc57Fr/nJ+h7Njmv242ecV8xox33kXeq2zz1tQUOD+UOkpruWedyrepbxWb/+WxbhGrOTfJpiuETPP63Q6vb5GAHAXJVarVVB0AnSN8HTeUL9GTJ13pZ8jPH05RdeISeF0jVjp79DW1IQ1x3rdbTalBLhvOqalnNeX1whP/5a+4JfC88CBAzhw4MCCx0z9UXz/+99f0jkZhvFL4TnzGyqn07lg8elwONw/L7VbzewkuP/++wVF55SUlBR89atfxX/+53/C5XLh5Zdfxpe//OUlPYevSaXSOX9wDMO4v0XxlKAymWzeriQSicS9z9Mf8tS+qQv7zPPMPO/sC+lUTDx4SDVq8CwLiUIBRiJ1n4fneY9xLeW8M+OVMBLIugeR0e/5ojGfjD4nokwuGHUyjNknYDTL0DMymUcDY3a0900gJ9XgjndqLdzZZv4OF4rX05vjfP82PM/Dce5tQZs8IROGjbshkSncMc13XqlUOm9MM+P1lC9yuRwMw3h93vnycKpNoVCA4ziPeTbzvAvltze/w9mvdSn5Pd95l/M75DjOY1zL+R3OjInjuEX/bcS8Rsx33qX8Lc88py+vEZ7i9XTelfwtB/oaMfu83v7bBNM1YuZ5WZZd1jVCoVAgNTUVDodDUHQCdI3wdN5Qv0ZMnXel14ipa42neOkaEV7XiJX8Dhlm/vldxLhGeHr9vsDwnr6yWqb8/HwwDOPxW7CVYhjGfQvbl+677z688cYbACaXVpnZLWS2t99+G1/5ylcAAD/4wQ9w7733Lnr+v//973jwwQcBTN6Wf/PNN+c9dmRkBBddNLkMyI4dO/DEE08s+XWshMlkcnd/ASa7O3gqjoNV38G34BidvhOpTEhA0q7Lff48r3/hXsT0mRY/cJa2HC1evUiLW4uug2qkAP/3yvQd/8/dVIwbLhZn5lhrRy16n/yxoC3xE9+GLn/+ZYUIIYQQQohvHX38t8BrH7q3bUoJrnjuedHi8Vdt4NM7nkuZ5TXYzOyfPTY2tmDhOXNCoZljNBYy8x9p9riD2WJjYxEdHY2xsTEMDAws6fwEgqITALQ52T5/joGedkTPU3SOayU4WazFpmozDGYP3bP6rPhm0eexpXgHfvHXE4J91S3DohWe48dfEWzLopOgXRN6f8OEEOJLU+tzzhz3SAghfiWTgpt5k1HmnzuOYvNp4fnkk0/68nQBMXMAdW9vLzIyMuY9duYMtbMH289n9sDvxUx13fFX3+pQMDEx4e4uOfOLgaWSKH0/u+CZP/wWnr6SqMtW4b1NOjjkEjRlKnHpSSMKztsFx+isHHqefR5c4XZUtwhn4D3XMgSO493jPAPFOT4IS9NpQZt+47XubsqhZqU5QyIP5QzxxGq1umeeLy8vFxSflDPEW5QzZKnSLrsE7ydYwLpY8OChU2gXf1AIivhZbWfODtXU1ITNmzfPe+zULFgMw8yZ3Ww+M2eJmrlmqCcsy7rvqs6evSuSnD9/3j3b2+yZ7WbjPAy0ZhjffUtUP9iMOJcC2rpOQbtdzuDwpig0Zk+PEXbIJXhrmwHtqTZcdtIIpXO6yznf2Yez5xpgsgrHiJosTsE4z0AZPvR3ADO6xEvl0JXsDGgMvuRNzhACUM6QuSwWCyoqKtzzOVRUVAiKT8oZ4i3KGbJUrvEBuMb64XQ4wAOwSRZeaSNUhed9XC+sW7fOPaj2xIkT8x7HsixOnjwJYHIs61K/uYqJiXEXqU1NTYK7prPV1NS43/BmT2tMPLMNDMDWPwDn+AQ4hwM8z0MRt7Ru0It5rvp1/OTwwzj4z9/DrpC4y7SeBDmeujZWUHRGmVlcfNaEKDOLhmwVnro2Fj0Jk3llVTI4m6/BOwfe9/g851qGfBKvN3i7DYxiOn5FQgZkGvo2lhASmWYXncDk8h9Ty4oQQog/uYyjcE0Mg7EZIbEZwVjGxA7JLyL+jqder8fWrVvxwQcf4PDhw+jp6fHYjXb//v3u9ZquvfZar57juuuuw+9+9zvwPI//+7//w49//GOPx/3zn/90/+ztc4ST5ORksCzrcQau2cbPVmDw3ffc27IoHTLvumPFMdQPNuOFmv0AgNcyzbh7z2eRKkvAi//6H5xbrQY/o2vs1qQS/Fv6FdinHIWxrg9Wlx1WAE/GA7JoHqwU4MYYyHk1BHcZL/jH/jq8+G7zvLFcXJ6Gz9xQPO9+b/GsE8q01VCk5ME53A17TzOUqasWf2AQ8yZnCAEoZ8g0T0UnMLkm5Nq1a93blDPEW5QzZKkS5FpsH5teglGipK62YetTn/oUPvjgAzidTnzjG9/A448/LpgUqLm5Gb/4xS8ATC7eetttt3l1/jvvvBP/+Mc/MDIygn/9618oLS3FjTfeKDjm5ZdfxiuvTE72sn79epSVla3wVYWu2QvcLsRpFE74w8jkHqcR91Z+wircXXoTnq56GQDwdNXLyIvJQstajfsYlUSBO3J2YWfmJvAmK96t64PVygCYvJPIA3ACwIXewE4PRScA2J0s7ONz11eacrSqx6eFp7VtcjFnRiKBIiEDioQMGDZc47Pzi8GbnCEEoJwhkxYqOktLSwXLDFDOEG9RzpClkjESaLjpz4kSHw4bCyZUeGJy6ZKrr74ab775Js6ePYsbb7wRd911F1JSUlBbW4t//etfMJvNAIDvfOc7c2a0PXHiBO655x4AwObNm+dMshQTE4Of//zn+NrXvgaWZfGd73wHb7zxBi6//HIoFAq8++67OHjwIABAqVTi/vvvD8CrDg8uk7DwlPpwYqGbCq4GAHfx2TLaDqVUATvrQIwiCjclbkVZ3BrIJDI8d/4ELDYlAN9PEjQ6Yce4yQ6Dbmn9/W2ddVBlFMy/v2fu3VWp1rDo4wghJJyYzWZUVlZ6LDrLyso8rplHCCFk+eiqesGvfvUrmM1mfPjhh+jq6sJDDz0k2M8wDL7yla/gzjvvXNb5r7zySjz88MP40Y9+BJPJhHfffRfvvvuu4Jjo6Gg8+uijWLUqtLs9BpJ9YFCwLVtgOZzlmF182lkHtHI1Rh1G/LXrbah630dhTC7ODNVDWaKGs3MtuNFknz3/9tJUfGpP4ZKLzpEjz2Lsg+cQe9leRG+7ec5+57jnZXrGjr2EkXf/ieiLb0fsJSvvqkwIIcHMbDajoqICTqdwwjcqOgkhYmjvbEfz4HQPC6nCgWzxwvEburJeoFar8fjjj+O1117Dyy+/jLq6OhiNRkRHR2PDhg245557sGHDhhU9x7XXXosNGzbgqaeewuHDh9Hd3Q2GYZCRkYFdu3bh7rvvXvL6oGSSy2gUbDN+GEcxu/g0O63ufTbWgTND9QAAicqKe3YnYY1hOx5/uRqtPePLfs7cVAM+e1MxSvLil/wYW2cdxj54DgAw8u7keOHZxaex8t05j+McVvfjxj54DpqcUrrzSQgJW/MVnXq9HqWlpVR0EkICbrSjB0lt09ckm2Luqg3hgK6uMzAMgxtuuAE33HCDV4/bsmULGhoalnRsYmIivv71r+PrX//6ckKMCNXV1e7px4uLFx7byFqtgm2pSjXPkSszu/j05Lasy3F9zk4oYmLw31/fiUMnO/CP/bUYNzvmfcxsBp0C9+wuxBWbMiH1cm1PVUYBYi/b6y46Zxef1o4asDYzpKrpAeu2zjrYzp9zb8detjcki05vcoYQgHImUq2k6KScId6inCFEiApPEnQ4jnP/txjnrDGeMj8u0HxTwdXoGu/Fkfa5y+7cmr4T16Vvc29LJQyu2pIFCcPgf549u+Tn+NR1Rdi1OXPZMU4VmbOLT8NFN6J/32/AWSYgi02BMnU1WNPonKLTU/fcUOBNzhACUM5EIpPJhMrKymXf6aScId6inCFEiApPEnRUKhWkUqlgNsH5cHbh3US5weCvsAAA/2/9HTjTcw4m5/SU1zq5GrtTtno8/r0znV6d//0zXSsqPAHPxadjqBOcZQIA4BrphWukV/CYUC46Ae9yhhCAciYStbe3zyk6DQYDSkpKltS9lnKGeItyhiyZXDg5pu+nqgwOVHiSoLNmzZolH8vZ7YJtZWKCr8MReKvliKDoBACT04oDvcexJ+tiQfvAiAVVzUNenb+yeRADoxYkxmgWP3gBs4tP07n35z021ItOwLucIQSgnIlE+fn5cDqdGBsbA+Bd0QlQzhDvUc6QpYqRaTFz1pJwLdDCc5EYEhF4ngc3axp8RWyM357v5bo3BWM81dLpmWZf6Hof+7uOCY5/93QneM9Ld86L5ycf5wvR225G7GV7FzwmHIpOQghZCqlUipKSEkRHR3tddBJCCFk5UQrPjo4O/PGPf8T/Z+/O46Mq7/2Bf86c2SeZTPaQBcKWEAgBFRBZRHErKKuCdaHVetXaeu21/dWltnWptt5a9dbr3t5aa91qVVRUFBQVEAVFwpIEkpBA9n2yzX7O+f0R5jBntsxk9sn3/XqlzTlz5pwn+M3JfM/zPN/nhhtuwIoVK7Bo0SK8/PLL4uv33XcfXnvtNY+1tQhxxQ2b4J7ZqbIj0+PpnnReOe1iPDn3NmycfIG4740Tn+K9hpGeRUEQ8Mk+7wlkTroG/7lxLnLSNV5f/2RfE4RgM1YfDIvWQZk/3etrlHQSQsYbZ/JJ1WsJIST6onrXNZlM+N3vfod3331XnGgtCAIYhpEkmVu3bsXrr7+Ov/zlL3j00Ucxd+7caDaTJAjbgOdyJcp0Q9iv4550XjXzMqzMXwhbXz8uLVoChpXj9bqPAACv134EVqPBdNU8tPUMe5zr/LMK8eP1FdCqFVgyJx/PvHkQn+1vlhzT1j2M6sZezJycGXLbBZ4DN+A53FemSaGkkxAyLrERWHaLEEJCoZMrpUNtw9P/EHeilngODAzgmmuuQV1dnd/enOHhYRiNRjAMg5aWFlx33XX461//innz5kWrqSTGWlpawHEcWJZFQUGBz+Ns3T3SHTIZWI33XsSxck86r65Yi1WTl8ExfDqpvKz4XHAWC/7dPNLb+crBzSgySgtYaNVy/OTyOVh2ZqHLPgV+cc1ZOKssF8+8WQmT5fSaTZ/sawpL4mmq/RbcUJ/Hft48BOOXbydN8hlozBDiRDGTvAYHB3HixAmUlZWFNcmkmCHBopghgWIZ6SDUZC0uFLWhtr/4xS9QW1sLQRCQlZWFn//85/jHP/7hcZxCocAvf/lLZGRkAAAsFgvuuOMOmN3WayTJq6enB11dXejp6fF7nKW9XbLNqlSQa0MryuPKPemcllGMYZsJX7UcQIepR/IAZeWEhdgwabm43SjbA9WpKaBlxRl44hfnS5JOV+edWYgnfnE+yopHYl6vU+LcM8LzB6pnx0vSHS43tt4d/4Txy7fDcp1YCzRmCHGimElOg4ODqKysRHd3Nw4dOgSO48J2booZEiyKGRIwwX0zOVPPqPR47t69Gzt37gTDMJg/fz6eeeYZ6HQ6r8cqlUrccMMNWL9+PW655RYcOHAAbW1tePvtt3H11VdHo7kkQdj7ByTbMpUSTJiebtd01UnndJavwhtH3kddb6O474ZJK7BUN1/cvrRwMWRKJV6v3QpW3wuhbAfWZl+F6y6aD5b1/4wnN0OLP/xkMT7c04hzZk9AZtrYem4FgUfrC3eBt5rBW03gho2S17NW3gzeNOixzmey9HwSQsavgYEBHDx4EA7HyOgRo9GIQ4cOYfbs2TS8lhAS14aU0iV37LLkrP8alcTz3XffBQBoNBo89thjPpNOV+np6fjzn/+Miy++GDabDZ988gklnuPE9OnTxbm//jgGhyTbrCZ8vZ0zsqfhilmX4t9H3sfVFWtRnlOK1w+/JzmGc388BWDVlGVgNWq8cnAzNpxxITaWnx3wNVlWhsuWTAmp3bbOk7C21Xt9jVGqkTJzMWTKkaQ2mZLPQGOGECeKmeTinnQ6hfO/L8UMCRbFDAlUv01aF8QBPkYtiayoJJ7ffvstGIbB+eefj6ysrIDfl5ubiwsvvBDvv/8+jh49GsEWkniiCXCeptVt6AqrDe/8zo3ll6EidwZmZE/DtrqdktdSFFqwPv6QrC27BDOypmJG9rSwticQlhOHfb6mKa4Qk073dT4TPfkMNGYIcaKYSR4DAwOorKz0GFabnp6O8vLysPV2UsyQYFHMECIVlX7c7u6RqppTp04N+r2TJ08GAPT3e1YwJeObYJcW8JEpFD6OHDtn8jg5vQilWVORm5INJauAQZkKHev7D0oskk4AGPhuu8/XZFq9ZNt9nc9kmvNJCBkffCWdGRkZYU06CSGEhC4qPZ7OG79zCZVg2E8lF2q1OqxtIomPs1ikOyI4lGVKxkTcvug/YHXYcLL7JI511GFqSn7ErjcW5pNHYO/2vnYoqzNAkZ7nsd9bz6e6aAbURWWRayghhIRBf38/Dh486DPplCXpHClCSPLheB6uj8kYKi40djk5OWhsbER1dXXQ7/3mm2/Ec5DxYXh4WJwT4W8+MOP2oSJ1RmnE2iRjZMjQGAAAvQPdWJhXgVTOtccz9gsuyVS+/62UeZOhnXqG19dck0/D0o0JmXQGGjOEOFHMJLZYJJ0UMyRYFDMkUBnqVLiO7ZQn6bzgqCSeZ599NhoaGvDFF1+gubkZhYXel5Vw9+WXX4rzQ2kdz/Gjvr4edrsdCoUCFRUVPo9z7/FUR+nhxIysqXAMDcNujK/h3z7ndzIMFDmToMot9vlew6J1Cd3TGWjMEOJEMZO4YtXTSTFDgkUxQwLFW6TFhYQxjBJNBFFJPNevX4/XXnsNDocDP/vZz/B///d/MBgMft/z7bff4uc//7m4vXr16gi3kiQax5C0qq08JSX6jRCi19PZs+0FDFV/6fN13jzk/QWGwVDlpxg+/IXXl1NmLkbmhdclbNJJCBk/nEukuCedmZmZmDVrFg2vJYQkJM7tMxwTxc+X0RSVxLOiogKrV6/Gu+++i6qqKlx66aXYuHEjZs6cKR5jNBpRU1OD2tpabNu2DZ988gk4jhOr4Z511lnRaCqJA1lZWeA4btSiEI4h6dMheUrkhrEIggAH74CC9V3AKJKjIgRBwFDNHnCDvcG/mefBmwZ8vjxc8xUyL7xu7I2LA4HGDCFOFDOJp7+/P6ZJJ8UMCRbFDAmUjlXA5LLNxsEUrkiISuIJAA8++CCam5uxf/9+9Pb24tlnnwVweo2t559/Hs8//7x4vHAq0582bRr++Mc/RquZJA7k5wdWtCdaPZ5D1mF8ULsDK6efDwWrOL0eVxSH3/PmQXDDkRna6xjqA2caAOtW9TaRBBozhDhRzCQepVIJuVwuSTyj2dNJMUOCRTFDAiVnpPcwWZIWF4ramBSlUokXX3wRP/zhD8GyLARBEJNLJ+c+50TsSy+9FK+++ipSYjGEksQ1zmr1WE4lEj2ePM/jvz68H/taKvHa4XexvW4nOod7/LwjMjcKVqtH0c1/hm7GwrCeVzfjHBT9+ImETjoJIeODRqPB3LlzoVKpAIz0JtHwWkIISRxR6/EEAIVCgbvvvhs/+tGPsHnzZuzduxf19fXo7++Hw+FAWloaCgsLMX/+fKxdu3ZM636S8cExOOixj43AQs0tg+0YsA5iwDqIE8ZmAMDGspVYVbA47NcajSI9D7mX/xLmE0fQs+0F2DoaxnwuZe5kZF50PTSTZoWxhYQQElnO5LOpqQnTpk2jpJMQkhQGOZtk2+7juEQX1cTTKTc3FzfffDNuvvnmWFyeJAFGLkf6gvkQbDbwNht4ux1MBOZQ7GuplGyr5SqcmeeSrMVgCL5m0iwU/Oi/MXhwB/o+eyWoIbiszoD0865CasX5YGQ054QQkng0Gg1KSkpi3QxCCAkbI2eRJGX25BxpG53Es729HXl5novXE+JNTU0NHA4H5HI5ZsyY4fUYRiZDypTJkn2R6PGs7qqTbKdr0lCcXgT7wGBU53i6Y2Qs9HMvBG+zoHfbCwG/L23ROujnXhjBlsVGIDFDiCuKmfhmMpmg0WhOz6mPAxQzJFgUM4RIRWWMyvLly3Hdddfh7bffxvDw8OhvIOOazWaD1WqFzWbzeQxnMnnskyl8V5wdq+vP2Igb512NZcULkavLQqYmPezXCISlqdrr/v6v3wvqPANBHp8oAokZQlxRzMSv3t5efPPNN6ivr/eoBRFLFDMkWBQzhEhFpceT53l8/fXX+Prrr3H//ffjggsuwOrVq7F06VKan0E8yOVyCIIAudx3eDIKJZTp6RA4DvbBwYitp5mvz0W+PhfLihfiYHsVZmRPi8h1/On94nUYd/4LGedfC8OideJ+S2sduIHuoM7lGOiGpbUO6vzo/xyRFEjMEOKKYiY+9fb24vDhw+B5Hs3NI/Pqp06dGhc9nxQzJFgUMyRQglzaeRL7O15kROU3ITc3Fx0dHQAAi8WCDz74AB988AEyMjJw2WWXYfXq1Zg1i4qckBGu67v6osrMQN73LoYgCBisOQqFPrJVWeUMi3kFcwAAvKSabmSfxluaqmHc+S8AQO+OfwKAmHz2fPy3MZ2zZ9vfUPDD34engXEikJghxBXFTPxxTTqdmpubkZqaitzc3Bi2bATFDAkWxQwJVN7smTjQUSNuK9XqGLYmcqLS3fj555/jpZdewpVXXgmDwSAumdLT04N//OMfuOKKK3DZZZfhL3/5C9rb26PRJJIsBAGpJdOhKYjsWlnee+ZPP4+K1HAwdVEZMs6/Vtzu3fFPGL98G/bBXlhbjo7pnNbmo7AP9oariYQQErKenh6PpBMAcnJykJOTE6NWEUJIdMgNqejPl4tf5gmUeIZk/vz5uP/++7Fr1y4899xzuOyyy6DRaMQktL6+Ho899hiWL1+OH/7whzQflPjlTPQYmSwi1WzjiWHROo/ks+PV34V0zt7tfw+xVYQQEh6+ks7c3FyUlZXFxTBbQgghoYv6oHO5XI5ly5Zh2bJlsFgs+PTTT/Hee+9h165dsNvtEAQBe/fuxd69e2k+KPGp9n/+F71790GeooNcl4LcSy7ChBWXhPUarYMdyNJmQMmGv2hRsJzDa53DbW1dJ0M633D1Hjgu6oM8JTbFkgghBDiddLqPGsnNzcWMGTMo6SSEjAsZCh3OGjCL28q0lBi2JnJiOttZrVZj5cqVWLlyJQYGBvDRRx/h/fffx759+8BxnGQ+aGZmJnbt2hXL5pIo6ejoAMdxYFnW57wex9AQOJMJnMkEK7rgGBwMaxsEQcAXDV9DJpPhvMnnIEeXCUEQPD4ERbPionvy6Q+j1ECmOr28jMBz4C3DAOcAwECm1mHo4A4YFq2PVHOjKpCYIcQVxUzsdXd348iRIwmTdFLMkGBRzJBAqVgFMhynR30wdt7P0Ykrbsps6fV6bNiwARs2bEBvby/eeustPP300zCbzeJ8UDI+dHR0wG63Q6FQ+E08XclTwvtkqM/cj801H0GvSsE3LZUoyZyCNWWXIFuXAZz6MOTxmSgKH5ICST7dq986CTyHgW8/gm7GQshTMyLWxlgIJGYIcUUxE1u+ks68vDyUlpbGXdIJUMyQ4FHMkEAJHAdGrgDPj9wTeY4Sz4hramrC9u3b8emnn+K7774Dx3GxbhKJU5Y2aREqweEI6/nr+06AF3gYLQMwWgbQPNCOtTPDO5R3rPwln+nnXe016QQARsYibf7KiLaNEEJGk4hJJyGERFKvQoWDxRUwDQ2B5wWolBok18J3I2KeeHZ2dorDaQ8dOiTud/5Bys3NxapVq7B27doYtZBE2+TJk8HzvN85vVlLF4Mzm8HbbOBtdijSDWFtQ33vCcl2mjoVOoV21PdF6/OStvRsz8RTJkf64suj04A4E0jMEOKKYiY2urq6UFVVlZBJJ8UMCRbFDAlU0xc7kfXut+K2RSUDfhjDBkVITBLPvr4+cT7nt99+K/4Bcv6/RqPBxRdfjDVr1uCcc86J6z9EJPxSU1NHPUaekiIZXqsOc7n9pv5WyXamxgAVqwzrNULRuflxz528A8Yv3/bZ45nMAokZQlxRzESf3W5HTU2NR9I5YcIElJSUxP3feooZEiyKGUKkopZ4Dg0NYfv27Xj//fexZ88ecRit8w+QTCbDwoULsWbNGlxyySXQaDT+TkeIhEwZ3qTwJwt+gBPGZjQam1HVWYvSrCniE0vxw1GMPiT1ffkWbO3Hvb7m7AUdj8knISS+KRQKzJo1S7J0SqIknYQQQkIXlcTz1ltvxc6dO2Gz2QBIK4FOnz4dq1evxurVq2niNQmI4GXur1wf3qeKOqUWM3NKUJY9HRdPWwa5LD7WCjV++Tb6drzssV9VWApr81EAlHwSQuJXRkYGysvLcejQIeTl5VHSSQghABw8L0nKGCTnfTEqief27dvBMIyYcGZkZODSSy/F2rVrMWvWrGg0gSQQq9UqLl2iUqk8XucsFo99bIR6yBmGgZyJn6TTdV6nqnAGGLkSjoEuZK28Bebab8TXx1vyOVrMEOKOYiZ2MjIycNZZZ0Gn0yVU0kkxQ4JFMUMCVbRsCfakDEIQeAgAtKrR64okoqgNtVUqlTj//POxdu1aLF26FCwbHx/mSfw5evSoWH68oqLC43VvPZ6sWh2NpnmK0jqe7kmnung21EVlp7ZmQJlVCFV2EQCMy+RztJghxB3FTGylhHkJrGigmCHBopghgeIdZlhlZvFhBSd4drIkg6gknr/73e/wve99jyZZk7CwGY2wDwxAplRCplSCYVkwMakY5/KkPoL5p/+k81RLTvUauC+1Mp6ST0JI/Ojo6AAAmkJDCCEBcPS1w97bCuenWVnsFx6JiKj8VBs2bIjGZUiSMBgM4DjOZ69437ffof2DreK2KjsLE7+/MWzXd/AcOoa6MCElJ+Yl0C1N1ZKkM+2ctWDk0kJKmuJyyba35FNdNMMjWU0mo8UMIe4oZiKno6MD1dXVAEYeiuWEuep4rFDMkGBRzJBApcs1mDt4upeTVSRnkdXkTKdJQps4caLf17nhYck2w4YvjDmewz8PvAmNQoN0jR4qVoV8fS6mZ04O2zWCoS4qg2HpRhh3/gsZ518LNiUddmOH9JiCEo/3uSafhqUbkzrpBEaPGULcUcxEhmvSCQBVVVUAkBTJJ8UMCRbFDAmUWiZHtv30VDKZIjnXfg1r4vmDH/wAwMgTzhdffNFjfyjcz0nGL/vgkGRbFsYJ+y0D7figdgfkMjkMaj0Maj2+P3uV7zdEYYpnxrlXQju5AoqMfBi/+dCjGAfDKry+z7BoXdL3dBJC4kd7eztqamo89g8MDCRF4kkIISQ0YU089+7d67VCna/9gXJWBCMEABz9Rsk2qw5f4tnQ1zRyDd6BblMvTHYzcnRZ0oPEdTwhTTwjGKPqojK0vnwfbO3HocybAmXOJMhUWiizCkd9HyGERJqvpLOwsBBTp06NQYsIISRxdPZ049jQ6SHZcocDxbFrTsSEfaitryRRiFL1T5L87AODETv30e56ybZBrUeKShf4CSKUfDoGemBpPAxAgKXxECyNh2BYfDm0U8+IyPUIISRQoyWd9OCYEEL8a62phaHq9FBbi9Icw9ZETlgTz08++SSo/YR4U1dXB4fDAblcjmnTpnm87r6OZzjX8DRaBiTbaWo9dIrYr6U0dGQnXLtXGaUGqWdeAlmSrvMUrNFihhB3FDPh0dbWhqNHj3rsLyoqwpQpU5Iq6aSYIcGimCFEKqyJZ0FBQVD7CfHGZDKJ6155w5mliac8NXzrwf1yyY/RZ+7H8b6T2H1yH84pOmuUD07R6ckfOvy5ZDul7Bwo9JlRuXYiGC1mCHFHMRO68ZR0AhQzJHgUM4RIxX1VW7vdjvr6enR3d2PJkiWxbg6JA5zJJNlWT5gQtnMzDIMMrQEZWgPmFfhY7PnUhymGYaIyhNza0Qhb50nJvpTZyyJ+XUII8cVX0jlx4kRMnjw56ZJOQgiJJI6Vx39SFgZR+RlnzJgBmUyGX/7yl7j++uuDeu9TTz2F5557DtnZ2fjiiy8i1EISTyoqfCR8p7gPtVVmZESyOTE3dHCHZJtNzYR64swYtSY+jRYzhLijmBm71tZWHDt2zGN/siedFDMkWBQzJFBZylS4VjBJ1j7yqC0SM9aeIY1GA0EQ0NvbG+YWkUQl2O2SbTaMy6kIggAH5wjb+UIl8BwGDkjnSGuKZ2OkpC4hhETXeE06CSGEhC5uVycVBAFNTU3YsmULAECrpSIqBOBtNggcJ9mnzArPXMdhmwlvVn0IOx944hnpobbmxsMQbNLKZoxCRR/uCCEx4XB43h8nTZpESSchhJBRhW2orcPhwLp161BXV+f1dUEQ8Mc//hF//OMfgz43wzAoKSkJtYkkCXhbSkWemhqWc79/7FMAQHVXHZSsHJnaDExI9Vz0/PSHq8h/yOr55B+SbVZnAKtLi/h1CSHEm4kTJ0IQBDQ0NAAYSTqLi4sp6SSEkBCoWYVkqC2bpKtQhi3xlMvleOCBB3D11Vf77AUaa+8QwzC48cYbQ2keSSDd3d3geR4ymQxZWVmS12x9fR7HKzPSQ76mxW5B+1AXDGo96nobAQCF+jyviae7SPV6cjYL7D3Nkn2KnEkwLFoXkeslMn8xQ4g3FDNjN2nSJAAj977i4uLYNiaKKGZIsChmSKCUMlayHbdDUkMU1uJCZ5xxBn74wx/i448/luxvbW0FwzDQ6/XQ6XSjnodhGLAsi5SUFBQWFmLjxo1U0XYcaW1tFcuPeySePT2SbUYuhyIl9OVUDncexa4TewEAarkKGRoDbjjz+yGfNxQD33wISOabMlBmT4RMroxZm+KVv5ghxBuKmdA4k8/xhGKGBItihgRK4HnpdozaEWlhr2p711134a677pLsmzFjBgDgxz/+cdBVbQlx5RgalmzLFAowLOvj6MAd6TxdLMPisMJkN6MsZ/rob4zgnWGwUlpUSG7IQeaFP4zcBQkhxAWtP0gIIdFhVWsk25ws9M+28ShqS8ZEY71DkhyKiorEoSnurN3dkm1GGZ4PRf1W6dzRLG0G5H5+6RmGiegUT264H46+dsk+Zc4kmkflg7+YIcQbihn/mpubceLECcyZMwcpYRhVkgwoZkiwKGZIoHrcPofawPs4MrFFJfGsqamJxmVIkkhP9z1nU7BLKyrKFOEZdipjZFCxSlg5GwBg0cR5YzxTeBLDgQOfAK4Pa2QstNPG2qbk5y9mCPGGYsa3pqYm1NfXAwAqKysp+TyFYoYEi2KGEKmo9XgSEg6O4SHJtixMPZ63nn0dfjL/B2gf6kSDsQlTM4rDct6xsvU0Q56RD0dfGyAIUGQWIHXu+TFtEyEk+bkmncDIcNvKykosWLCAht0SQggJSVgTz9bWVvH7/Px8r/tD4XpOMj65j9hW5+aG7dwymQz5+jzk6/OCaVHYru/EmYegMORCYcgFb7fC3tUENsUAhqGhOoSQyDl58iSOHz/usb+oqIiSTkIIiSA774DrXTZZJ1aFNfFcvnw5GIYBwzCoqqry2B8K93OS5MVxnPg96144iOckm5r8CdFokg+RuS3073tf/F6mUEGVPw266TTM1h+/MUOIFxQzUr6SzilTpmDixIkxaFH8oZghwaKYIYHKUqeh32VbziRnvIR9qG241/Ak48+RI0fEaooVFRWS1xzD0qq2bADL80RElB9FqSZMje4FE4y/mCHEG4qZ03wlnVOnTkVRUVEMWhSfKGZIsChmSKB4u1WyLQhUXGhU8+fPD2o/IcHihk2SbXkYEs/OoW6YHRYoWAXkDAuNQo1UVewKacgUKskNiCrZEkIi5cSJE2hoaPDYT0knIYREDzdklGwzPCWeo3rppZeC2k+IN6mpqXA4HJDLPcPTvcdTrtOGfL3K9mr0WU4PcCg2FGJB4dzA3hyBjnzDOWsh8BxsnScwfGwf0hauCf9Fkoy/mCHEG4oZ30nntGnTUFhYGIMWxTeKGRIsihkSKA2rgGvXChvJheJjiH4TSNyZPHmyz9fCPdTWYrdgf9sh6FWp0KtSoGAV0CrUAb47/D2Rts6TUGQXgpGxUOVNgTK3mIoKBcBfzBDizXiPGUo6gzfeY4YEj2KGBErp9llPlqTlhSjxJAnFMSBdYDfUobaNxmZ823pI3NYqNFhQMGf0N7oOfw3T/GXONIDmv/4CrFYP7fR50JUsgGbKHIClxJMQEj6NjY1obGz02E9JJyGEkEiKSeLpa9jB3r178c4776C9vR25ubm45JJLsGzZshi0kMQjQRA8ejx5qyWkc540tki2WRmLnJSskM45Vqa6bwGBBzdsxOCB7Rg6shOTbn8BDEvPhwgh4dHZ2ek16Zw+fToKCgqi3yBCCCGw8A7JNufjuEQX1U+0e/bswXPPPYfa2lrs3r1b8tqTTz6Jp556SrLv7bffxrJly/DnP/8ZKpUqmk0l8YjnYZhTAd5uB2+zgbfbwepCKwLUPtQl2Z6WUQytQhPEGU73doZaA2i45mvJtmbKXMgUFPeEkPDJyspCVlYWuru7xX2UdBJCSGx1OUySpMyanCNto5d4vvHGG/jtb38LQRDAMAyMRiMMBgMA4LvvvsOTTz7p9X2ff/457rrrLjz++OPRaiqJscbGRrFXvLi4WNwvcBxSZ5RKjtUWhTYsLEWlQ0FqHtqGOsELPKakB75eXTiLzfJ2K0z1+yX7tLR2Z8B8xQwhvozXmJHJZJg5cyaOHDmCnp4elJSUID8/P9bNSgjjNWbI2FHMECIVlcSzq6sLDz30kLitVqvR29srJp4vvPACgJFlI0pKSvDjH/8Yvb29eOqpp9Db24utW7fi2muvxVlnnRWN5pIYGxgYENe9csXb7R7HsupACwF5t37mCqyfuQJ2zo62wc4gejt9ZJ1jTEZNxysB3nVgBQO5IXdsJxuHfMUMIb6M55iRyWSYNWsW+vr6kJmZGevmJIzxHDNkbChmCJGKSuL5xhtvwGKxgGEYrF69Gg888ADUpxKG4eFhfPbZZwAAlmXxl7/8BTk5OQCARYsWYe3atbDZbNiyZQslnuMcq9WicMPlEDgOpsYTUBjSwITpZq5gFZhoiN1Qs+GqXZJteVoWlOl5MWoNISTZyWQySjoJISROOGTsuKj4GpWfcc+ePQCA/Px8/OEPfwDLsuJrX375JWw2GxiGwcKFC8WkExgpQ33eeefho48+wt69e6PRVBIHZs6cKQ7JdsUwDBi5HJDLkVpaEpZrGS0DqOmqw9mFZ3hcLxBCGCraCjwHU+03kn3yzAKwKYaQzz1e+IoZQnxJ9pgRBAEtLS3Izc2l3pYwSfaYIeFHMUMCNaFkOmrrq8VtVp2cNT6isk5DQ0MDGIbB+eefL0k6AWDnzp3i90uXLvV47/Tp0wGMDNcl44NcLodCoYj4gsuCIODjui9QnF40tj8KYfpDYmmqgWC3SvYpMvPByFgf7yDuohUzJHkkc8wIgoDjx4+jrq4OlZWVsHuZpkCCl8wxQyKDYoYESjkhC+0zVOJXf2loxTPjVVR+E/r7+wFA0pvptGvX6SGG55xzjsfrzoTAZDJFqHVkvOoy9QIA9rcegkauhgBgUdGZUCtGnzcazoeXQ1XSCs8yXRrkOkP4LkAIGTecSWdTUxMAYGhoCJWVlZgzZw71fBJCCImpqCSeSqUSDocDZrNZsv/48eNobW0FwzDIyMhASYnn8MnW1lYAQEpKcmb+JHAt77yLti0fQq7TgdVpkX7GXBResX7M5zveewIAMGQzYcg28mBDJY/u0AZBEGCq3SfZp8gsgOGctVFtByEk8QmCgPr6ejQ3N0v2Dw0Nob+/H1lZsVmjmBBCiH96uQYzhk+PflPJkjPviUriWVRUhKNHj6Kqqkqy31lUCACWLFni8T6r1YovvvgCDMNQGepxxGg0inMinJWPAcDW2wdrZyecv5aq7OyQrvNR3efQKjTQq1KhV6WAlbHBD7kNcYqnvasJ3GCvZJ8is4CG2QbJV8wQ4kuyxYyvpBMAZsyYQUlnGCRbzJDIo5ghgdLJVSiyOsRtmTr0GiLxKCqJ59lnn42amhrs2rULX3zxBc4991x0d3fjxRdfFI+56KKLJO/heR6///3v0dXVBYZhcPbZZ0ejqSQOnDx5Uiw/7nqjtnZ1S45jZGOfojxsM+FI5zHJvpUlywM/AcOEZbzt0NGvpadVacHSMNug+YoZQnxJppgZLenMy6MK2eGQTDFDooNihgRKEHjJtiNJ5+ZHJfHcsGEDXnrpJfA8j1tuuQUlJSVoaWnB4OAgGIZBXl4ezjvvPPH4559/Hh988AGOHj0KAFAoFLjiiiui0VQSx0wnmyTbnNvQ7WA0D7RJthkwuHjauWM+31gNHdoh2VZk5EOdOznq7SCEJCZBEFBXV4eWlhaP18rKypCbS+sBE0JIvDNpUtA+dwkGjf3geR4KpRbTYt2oCIhK4jlt2jTceuuteOKJJ8BxHGpqagCM/MFkWRb33XefpOLXa6+9hra2NnGpijvvvBNFRUXRaCqJAxMmTADP85C59WhmLloIS+sk8DYbeLsdmsKxr7vZ1C9NPPNSspGfGt0PaI6BHjj6OiT7FJkF0JbOj2o7koGvmCHEl2SIGUo6oysZYoZEF8UMCVTtZ5/B8t5uMTGzqVngypg2KSKiVt/5Jz/5CQoKCvD000/jxImRoi5lZWX4f//v/2Hx4sWSY6dMmYLW1lZkZWXhV7/6FVauXBmtZpI4kO1j7qZcp4WmIP/0dmrqmK9hUOtxZv5sNPe3onO4B5PSC8d8LlGQQ29t3c1QZBbA3tcO8BwYuQLytGwwDP2BCpavmCHEl0SPGUEQUFtbKxbgc0VJZ2QkesyQ6KOYIQFzcFDbXeZ1ynjfxyawqC4stGbNGqxZswb9/f1gWdZnpdqrr74a3//+97Fs2TIq/05EnEk6tDZl2tQxn2teQQXmFVQAACwOKyx2y9gbJoxtAri1tRa6mYshcA44jJ3g7RaknfW9sbeDEDIu+Eo6GYZBWVmZ16XLCCGEkFiLyYq2aWlpfl9fvjyIIi9k3BJCmHjNCzw6h3uQq8uCWq6COuhlVLz3bgZTFVczZS4cvW2wGzugyBzpyZWnpgfZDkLIeEJJJyGEJB8bZ4cy1o2Igpgknq7sdjv6+/vBMAxSU1OhVI6Hf3YSDnK9fszvreo8BrVcjVxd7JYYUOdPA/KngRvuR/+3W6EpLo9ZWwghicHhcMBoNEr2UdJJCCGJrWjefFSaT9f9UKl1MWxN5MQk8dyzZw/+/e9/45tvvkFnZ6fktezsbMydOxeXXnopLrnkklg0j8TYoUOHxPLjs2fP9nmc3MdQ7dEIgoCqrjoAQK/ZCJVciWkZxdAptWM+X0gYGVLKFkGRFYZ5puNUoDFDiFOixoxCocCcOXNQWVkJk8kEhmEwc+ZMmksWBYkaMyR2KGZIoGSpagwU6WCxmCEIArRyWsczZL29vfjFL36Br776Stzn/qG9q6sL27Ztw7Zt23D22Wfjj3/8Iz3FHWcEQRC/nHibDZzFAplCAYZlAQCMbGzraPaY+8TvG40j695NzZgU9HnCsIwnAIDVpoLVjr1QEvEeM4T4k8gxo1KpMGfOHBw8eBDFxcWUdEZJIscMiQ2KGRIoW+cJ2Doa4CwvKYv9oNSIiNpP1dPTg40bN6K1tVXyCyiXy6HX68FxHIaGhsBxnPjaV199hY0bN+Ktt95CRkZGtJpKYkyj0UAul0sKSw01nEDr5ncBAAzLQqZUIn/1ZWM6f4+pz2OfThFkb2cISSdvGQZYORiZDAxLxbPCwVvMEOJPoseMSqXCvHnzgppXTkKT6DFDoo9ihgQqlVVhuskmbsvZ5FzhIGqJ589//nNxrbGUlBRs2rQJK1aswPTp08U/nA6HA7W1tdi6dStefvllDA0Nob29HXfeeSf+8pe/RKupJMamT5/usc8xOCh+L3AceIcDMlWwBYFGbKvfia7hXqSpUqFXpSBFpYvqh7fu7X/HcNWX0E4/C9rp86Cdcgb1eIbIW8wQ4k8ixIzzIa2v+xMlndGVCDFD4gvFDAlUCqtEseV00UyZVhPD1kROVBLPnTt34uuvvwbDMCgqKsLf/vY3FBZ6zmeTy+UoKytDWVkZNm7ciB/96Ec4ceIEdu3ahd27d3us90nGD9fEE4BkyG2wKtuq0G89fb6V06NXRVkQBJiO7oVgt2C4ajeGq3bDsPhyZJx3ddTaQAiJf4Ig4OjRoxAEATNmzKAkkxBCSMKLSj/uli1bAAAsy+Kpp57ymnS6KygowJNPPgm5fCQ3fvfddyPaRhLfHIMDkm2ZUjmmD2JD1mFJ0gkA509ZNLZGjeH6tu4m8JYhyT65nuZnEUJOEwQBNTU1aG9vR0dHB2pqamiOGCGEJLFBswktvEz8arXzsW5SREQl8dy/fz8YhsHSpUuDGnYwffp0LF26FIIgYP/+/RFsIYl39n63Hs8xDrNtGpCufcfKWBTo84I+jyTpDeID4VDlDul5lBroZo4x8SWEJB1n0tnRcbqsfkdHB44dOxbDVhFCCImk+v2VkH3Di1/mfcOxblJERGWobXd3NwBg1qxZQb931qxZ2LFjh+SPMEluzc3NcDgckMvlYu+4tbdXcgyrUY/p3KmqFKycfj6aBtrQ3N+GFJUOctnYhuyOxfDRryXbiowJYJN0raZo8hYzhPgTjzHjLekERh50ZWXFbs1hMiIeY4bEN4oZQqQSplYvO8b5fCTx9Pb2iuteOW/U3LD0yQ+rHlviWaifgOvO3Chu2xw2P0eHl8M0CIdRum6tIiM/atdPZt5ihhB/4i1mBEFAdXW1x9rWMpkMs2bNQmZmZoxaRpziLWZI/KOYIUQqKkNtnWuMHTlyJOj3Ot9D65SNbwIvHevOOxxjPhfvci6lXDnm8wRr6MAnAFyG5cpY6ErmR+36hJD45C/pLC8vp6STEEKSnH2cFJCLSo/n3LlzcfLkSezcuRPHjx/HlClTAnpffX09du7cCYZhcMYZZ0S4lSRelJSUQBAEyTxK3mqVHKMa4wexwx1HYXZYUJI5GSpWCSWrhEw2lucvvm4Qvm8cprpvJNvytBzoys4Zw7WJO28xQ4g/8RIzoyWdtIZ1/IiXmCGJg2KGBCpHbYBrNZNkXfk1Kj2ea9euBQBwHIdbb701oPmaHR0d+OlPfwrHqZ6tlStXRrKJJI6o1WpoNBqoXYbT2o1GyTFjLS5U1VWLhr4mfFT3Bd49uh11vY0htDRwAs/B2lYv2afInAAmivNLk5m3mCHEn3iIGZ7nUVVVRUlngoiHmCGJhWKGEKmoJJ6LFi3CggULIAgCGhoasHr1ajz11FOora2VlIgXBAG1tbV48sknsWrVKpw4cQIMw+DMM8/EsmXLotFUEqd4m3QuJjOGXkpvyxHImDD8CgRQ1dbcVAPBbT6prnRh6NcmhCQknudRXV2Nrq4uyX6ZTIbZs2dT0kkIISTpRK240COPPIKrrroKra2tGBgYwJNPPimu05mamgoAGBwcFHs4nUlCXl4eHn/88Wg1k8SpcCxhZ3ZYPPblpoRQKTKIoTP9ezZLtmU6A9QFJWO/NiEkYY2WdKanp8eoZYQQQmJBKZOmZFHpGYyBqP1cubm5+Ne//oX58+dDEATxy263o6+vD319fbDb7eJ+AJg/fz5ef/115OTkRKuZJA4MDQ1hcHAQQ0NDp3fynOQYRZo+6PO+f/QTHO6owQljM1oHOmC2W6BTasfWyCCna9jaj0u2FRkToMiiCnfh4jVmCPEjljFz7NgxSjoTEN1nSLAoZkig1Kw08WTD0OESj6K6nEpWVhZeeukl7N69G1u2bMFXX32FtrY2yRDI/Px8nHXWWVi3bh0WLVoUzeaROHH8+HGx/HhFRQUAzyq2irS0oM9b1VWLmu7T8yw3zLo0PENtR2Hvawc3bJTsU2TkU7GBMPIWM4T4E8uYyc/PR1dXFzhu5IGaTCZDRUUFDAZDVNtBgkP3GRIsihkSKPeRfUmad8ZmHc/Fixdj8eLFAEYKDvX390MQBOj1eigUyVrHiYRCcEh7PJkxxElTf6tke5IhPD2O3uaOuhr49iPJNqNQIX3J5WG5NiEk8ej1elRUVODgwYMQBIGSTkIIGed4pbRoppCkxSdjkni6YlmWiigQiezsbPA8L1nmRHDr8WSVwa2/2W8ZwIBVOtSlKC1/7I0EAu6xtPe0gJErIDjsAEaG2crTaF3acPIWM4T4E+uYSUtLQ0VFBQRBoKQzQcQ6ZkjioZghgWq3DUq2LeB9HJnYIp54dnd3o729HXK5HIWFhUhJSYn0JUmCmzBhgsc+96G2TJCJp1wmx4/OvBJN/a1oHmhDx1A3cnXRKSyUu+FOcOZBmBsOYuCbrZCn54GJwhDf8cRbzBDiTzzETNoYpgyQ2ImHmCGJhWKGEKmIJJ6CIOCVV17Ba6+9hrq6OnG/TCbD3LlzcdNNN9HyKCQoAicdasuqghtqq1Nqccm0ZTGZV8nIWMh1BqSULYJMoYZ6YlnU20AIiT6e59Hb24usrBAechFCCCFJIuyJ5/DwMG688UZ89913AKTz3ziOw/79+/HjH/8Y69evx4MPPkgFVsioBI4DeOmQA2V2cJWOh20mMAwDrUITzqYFReA5aKefBSZJx+0TQk7jeR6HDx9Gb28vpk+fjoKCglg3iRBCSJyycjaoRj8s4YU98fx//+//Yf/+/WAYxmvRFee+t956CxkZGfjFL34R7iaQJMPb7R77lEEup/L+sU8BABkaA7QKNbJ1mZieOTks7RNLkTGM32VWZIrxcEshhLgmnQBQW1sLAJR8EkII8SpbbcCAy7aCSc5OirAmnt999x127NghJp2rV6/GtddeiylTpoBlWdTU1OAf//gHPvzwQwiCgBdeeAHXXnstcnNzw9kMkuCqq6vF8uNlZWXgbTaPY2RBzvF06jUb0WsGbJw9xMQzsJ563m6lhDMK3GOGkNFEKmY4jsPhw4fR19cn2d/Q0IDs7Gwox3jvIrFH9xkSLIoZEjC3kX2CQMWFRvXxxx+L399111247rrrJK+fccYZOOOMM5Cfn4//+7//A8dxeOedd3DTTTeFsxkkwdntdthdejl5m2ePp0wR+Ic3G+f5/gyNYUxtC4a5qQYyVg5FxgQwKg0VFIog95ghZDSRiBlfSSfLsqioqKCkM8HRfYYEi2KGBMox0C3ZZnhKPEflnNc5ffp0j6TT1c9+9jP8+9//xsDAAA4cOBDOJpAk4FzL1fn/vM3qcYxMFfgHOIvd4rGvLHvaGFvnhY9lPLve+TNwKvFUZhZAlT8NKTMXh++6ROQeM4SMJtwx4yvplMvlqKiogF4f3PQAEn/oPkOCRTFDAqViWZhctmW+PlwmuLAmns3NzWAYBosWLfJ7nFKpxDnnnIOtW7eKc18IcXIfjuIx1JZhwMgDD90TxhbU9jQgQ5MGnVKLCSm5ULBh+CPgpzCWvb8Tjv5OAICjtxXmum+RtnANJZ4RQkOYSLDCPbz20KFDMBqNkv2UdCYXus+QYFHMkECpGennWjbAKV2JJqyJ5+DgyOKn6enpox5bXFwMABgYGPB/IBn3eKs08WTkcnAmE+Q6XUDvbxpoRWV7lbhdmjUVF01bGlKbRivGbDq6T3q8XAndDP8PZAghicdf0jlnzhykpqbGpmGEEEJInAnrpDPbqZ6pQIYUpKSkABhZfoUQfzi3Hk+GYeAIIm66TdKhb5na0R+MBMdzOMRQ1U7JtjxjAhQZVESLkGRCSSchhJBwcLgVE0rOgbZh7vEUBAEMwwS0NqdMNpLzchwXziaQJCTXqKGbMhkCx0HgODByecC9nQDQ45Z4Zmkzwt1ECd5mhrW1XrJPkZEPVkMfQglJFpR0EkIICZc2+5AkKTMn50jb8K/jSUio2trawPM8ZDIZJkyYAFVuLjIWzJccw6rVAZ/vvMkLUaSfgG5TH3rNfZicXhiehvp4wGJuOAS4PrliGKjywrRmKPHKPWYIGU0oMcNxHA4ePIj+/n7Jfko6kxvdZ0iwKGYIkaLEk8Sdrq4ucd2rCRMmQCaXI7VkOgSeh8DzI2sdBdCr7jQ1oxgMZFg383tgZWFakNfl+oIgHRAxXLNHsi3XZ0M7ZW54rku8co8ZQkYTSsz09fV5TTrnzp0rTiMhyYfuMyRYFDOESFHiSeIeq9Eg/awzx/z+pv5W5Ogy0Gfuh5JVQK1QQxmOqrZeCAIPU+23kn3yzAlQ5hZH5HqEkOjLyspCSUkJjh07BmCkrsGcOXMo6SSEEDImdoaRJGU0x5OQKJkyZYo4XzgcjnQek54/fSLmFVSE5dyuGIaBrbMRvFVa+EiRkQ8mXD2txKtwxwxJfqHGTH5+PgCgoaGBks5xgu4zJFgUMyRQuYUT0ZxZfXqHJjnXfo1I4tnf34/W1tZRj3Fqa2vzGK7ojfMPPUlukf4AlxW2qraef0jMxw9ItmWaVChSI1vMiEQ+ZkjyCUfM5OfnIycnB/Ig1hUmiYvuMyRYFDMkUJppRTg5XyNup6iSM3Yi8tfyueeew3PPPRfQsYIgYPny5aMexzAMqqqqRj2OEHcKmRx23iFu8wE85BiVr8JCx/dLr50xAZrJc0O/HiEkJkbrraCkkxBCCAlMxP5ijtaD6brsir9jGYYJqDeUJK/2j7ehZ/ceyJRKyJRK6MtnYcKKSwJ+f5paDwdvh9EyCADI0KRFpJ3csBH2rpOSffKMfChziiJyPUJIZDkcDhw5cgTFxcVIS4vMfYMQQgjRskoUWezitjpJZ2iFPfEMNEkM93GhEgQBW7ZswZtvvonq6mqYTCZkZ2dj/vz5uOaaa1BREf45gQBw//3345VXXgEAHD16NCLXSDQWi0XsZVCr1TA3NcN4oFJ8XaZSAQEmnm9XbUVNdx0yNenI0mVgVk4JDOFOPE/FqOXkIel+VgG5PgtMhAoZkdPcY4aQ0YwWMw6HA5WVlRgcHMTAwAAqKioo+Rzn6D5DgkUxQwKVptBihskmbrPKGDYmgsKaeNbU1ITzdFFjsVjws5/9DJ999plkf0tLC1paWvDee+/hv/7rv3DTTTeF9bpfffUVXn311bCeMxkcO3ZMLD9eUVEBW2+f5HW72zIGfs/VcxzftR0Rt6+YtRKlWVPD1lbXIXjuiaciPQ+sJjnH6Mcb95ghZDT+YsY16QROr9tJyef4RvcZEiyKGTJWdrt99IMSEE1OAXDPPfeISefUqVOxceNGZGVl4ciRI3jttddgMpnw6KOPIjc3F2vWrAnLNYeHh3HPPffQMOIAcBaLZFvguIDf22OSJq2ZmnAVFpISBB72vjbJPkVmPvRnXhyR6xFCIsNut+PgwYNi0unEsiwUChq9QAghJPwETQqY2Uth7DOC43mwam2smxQR4z7x3L17N7Zs2QIAWLhwIZ5//nmoVCoAwGWXXYYrrrgCV199NYxGI37/+9/jggsuCEuVsj/96U9obm4O+TzJKCMjAw6HQyzaoS+fBd7hADgOAsdBOzHwOZPuiWeWLgIVZgWAYWTIvfJ+8MPdsDYdwfDRr5B50XWQKVThvx7x4B4zhIzGW8z4SjqVSiXmzp0LrTY5PwiQwNB9hgSLYoYEqnLPLnS//6W47VDLccZVMWxQhIz734S//e1vAEYqEz744INi0uk0depU/OY3v8EvfvELGI1GvPHGG7j++utDuqbrENvU1FSPDznjXWFhoWRbmZ4O/YxScTvQxFMQBPxg7hXoHO5Br7kPPaY+5KZkh7WtrhhGBmXuZGgnz0L6uRsjdh3iyT1mCBmNe8zY7XZUVlZiaGhIsp+STuJE9xkSLIoZErAhM7L6T4/os1iSc0SkLNYNiCWj0Ygvvxx5urB06VIUFXlPaFauXInMzEwAwNatW0O6pusQ2zVr1qCsrCyk840HgsMh2WYCfHLIMAxm5kzH7NxS3DTvGvxq2X8iL0KJp+CwgzMPROTchJDIoqSTEEIIibxxnXh+88034HkewMgwW19kMhnmz58PAKisrER/EMVt3DmH2GZnZ+NXv/rVmM8znrBajWTb1tMb8Ht3NOzBwY4aVLZX4Vj3cQxah0Z/UwDEokIMIDhssLYegUyp8f8mQkjc8ZV0qlQqSjoJIYREhY1LzmJC7sb1UNva2lrx+5KSEr/HTps2DcDI8M1jx46JiWgwXIfY3nvvvTAYDEGfYzwynZCujaktCn7oyrGeBvH7VFV4K83auxvBDXRiqHIb2JQ0KNKzkTJzcVivQQgJv9GSTo2GHiYRQgiJvNyyMtSeqBe3WV1yPvQc14lnS0uL+H1BQYHfY/Py8iTvCzbxdB1iu2LFClx00UXBNXYcqa2tFcuPT58+HfLUVDhc5sEGWtXW4rB67EsP9xqeGKloCwACz4GzDEHo9rwuiSz3mCFkNNXV1airq4PNZhOnUgCUdBLf6D5DgkUxQwKlKcyHceFEmM1mCIIAnYISz6TT23t6yGZ6uv9lNlx7J41GY9DXcg6xTU9Px29/+9ug3z+emM1m2O12OE7N7XSMsfiSyW722JeuMYTSNK+GvnsfjEoHGHLAKjIgT80c/U0krNxjhhB/HA4Hjh49CpPJBJZlxf2UdBJ/6D5DgkUxQwJlba2FpbkGDICRyVzJmaIl508VIIvL+pDu1WzdKZVKr+8LhOsQ29/85jfIyIjAkh5JhGEY8QsA2j/aBt5iASNnwchYKDIyYAjgPHplCs6dtABWzobqrjoM2UxgmTBNaz7VNs7UC0dvEwDA3lYDRq6EZtWt4bkGCZh7zBDiD8uy0Gg0MJtPP5yipJOMhu4zJFgUMyRQGpkCE6yn53kq2OQswzOuE0/XJ1CuiaU3rq8H8+TKdYjtBRdcgEsvvTT4hkZZXV0dpk6ditTUVHGf1WrF0aNHAYz0/k6cONHjPSaTCQBQUVEhea27uxutra0AgKKiIknvMsdxOHLkCICRpWUmT56M2bNni683NjbCPjQE2E//MspOLeJuNBpx8uTI/M8JEyYgO1tasfa+rY+CEzikqw1INxiwZOJ88ebf3Nws9niXlJRArVaL7xsaGsLx48cBANnZ2ZgwYYLkvNXV1bCZzZDb7cgZaJC8JggCTrR2gHMcxJQpUyRrvlosFhw7dgzAyNpe7mXWa2trYTabwTCM5N8AALq6utDW1gYAmDhxoqQH3uFwoKqqCgCg1+tRXFwseW9DQ4O4ZM+sWbMkPTx9fX1oahpJnPPz85GVlSV578GDBwEAWq1WnOfsdPLkSbH3v7S0VPLwZnBwEA0NI/82ubm5yM3Nlby3qqoKDocDSqUSM2bMkLzW2tqK7u5uACPLGel0OvE1s9kszs3OzMwUh8g7/72OHTuGgwcPQiaToby8XHLezs5OtLe3AwCKi4uh1+vF1+x2O6qrqwEAaWlpmDRpkuS99fX1GB4eBgCUl5dDJjv9B6G3t1dck7ewsFDyYInneRw+fBgAoNPpMHXqVMl5T5w4IRYrKysrg+JUbAPAwMAAGhsbAYwM9c/JyZG89/Dhw+B5Hmq12mOOektLC3p6egAA06dPlyRTw8PDqK8fmUeSlZWF/Px8yXtrampgs9kgl8sxc+ZMyWsdHR3o6OgAAEyePDlm9whXjY2NGBgYqSg9c+ZMyXp5vu4RDMPg4osvxscffwyj0YjBwUGcffbZkn+nUO8RzuF17pXL29ra0NXVBQB0j4jiPcLp2LFjsFgsY7pHCIIAuVwu2e9E94gRyXKPcDp06BAEQYBGo/EYKhvoPWLChAl0j8D4uEeE8jliuKMX5cM2cZ9MOxJPsbpHOGMw3MZ14ul6k7Db7X6TT5vtdDCMlqS6cg6xTUtLw3333TemdkYbx3FitV8nQRBgP5X8cV7mWDocDvF1dzzPi6+5nxeA+Jq3hN7hcABu15Nr1B5t8tbehuFm2AUHMNwE9ACLJ87z2l5BEDzeO1p77XY7BLsDlqZK6YtaAyypecCpDym+zuvtZ3We19uTUdd/w2DPG6n/NhzH+WyT63m9xYtz6JHrjTeQ844Wh85/w9HO6y++o/lv6C8OA/k35Hle8gHAKZR/Q2eb3N/nft54ukeM5XeZYRhkZWVBEATk5eV59HSG4x4x2s9K9wi6RzjbFMh56R4R3XuE87zOBw7hPi/dI+ge4cTzPDjed/2SWNwjvP23DIdxnXi6lsm3Wq0BJ56jDct1ch1ie9ddd3k8aYhXLMt6/MIxDCM+RfEWoHK5XPKUxZVMJhNf8/aL7HzN242dZVnALfhlSpVHm9zPO2w3jSSdLrK0p58yu7bX/Qbt77zO9goOB+QAHL0t0vfqDFBoUkY9r7efVaFQwOFweP2D4fpvGOx5I/nfxlebXM/rLV4UCgUYhgn6vKPFoUKhAMdxXn8W1/P6i+9o/hv6i8NA/g15nvfarlD+DeVyOXieH/W/TbzcI0L5XVYqlcjPz/c6vDbUe4Tr/7sK5XeZ7hGjn5fuEdLz0j0iDH/vBcFru+ge4XleukeM/d8QYGB3yRtlLklkLO4R3n7+cGAEb4+sIkwQBHz77bf49ttv0draiv7+fqxevRrLly8HALz11luYM2eOR3dyuP32t7/F66+/DgDYvn07ioqKfB77xhtv4Ne//jWAkV7MVatW+T338PAwVq9ejebmZixduhR//etfvR63adMm7N27FwDEISjRNjQ0JLl2aWmpZGhHLPF2O/Zc8X3JvlkP3g/D7HIf7xjR2NeMOz5+SNxmwODlK56AnA3PsxbeboeloxXtL/5csl9Xvgy5a24LyzUIIaGzWkeqTAf6wJAQQgiJts//9144Pj8ibttUDFa8/EbM2hOp3CDqPZ5vv/02nnrqKclSJgAwZ84c8fsnnngCnZ2d+N73voff/va3EVvv0nUMe1tbm9/E0zmmG4DHfAdvDh8+LM7p2LlzJ0pLS0d9j/OYgoICfPrpp6Men6y6urrA8zxkMhnSNZ7lpFnl6B8gM7QG/GTBD9Ax1I1+ywBMDkvYkk4na+sx6Q4ZC83kM8J6DRIY15hxn6NDxi+r1YrKykoIgoC5c+dKkk+KGRIsihkSLIoZEjCOh9q1yzNJ61FFLfEUBAF333033nnnHXHbybVr2G63o7OzE4Ig4MMPP8ShQ4fwz3/+02NScTi49qjW1tZiwYIFPo91TkRmGIbWYoqwtrY2cdK9vqDQ43WZavQ5tlqFBjJGhvMmL0S2LhOycFWzdWFtqZZsszoD1IVlPo4mkeQaM/THnQAjSeeBAwfEyrUHDhyQJJ8UMyRYFDMkWBQzhEhFLfF89NFHsXnzZgAjyduSJUswd+5cPPnkk5LjbDYbli5dis8//xwMw6CpqQm33347XnnllbC36YwzzoBCoYDdbsfXX3+Na665xutxHMdh3759AIAZM2Z4rWjnbvr06XjqqadGPe5//ud/xKTWebxr0aPxjjN7rsXJBFDcqWu4B+1DXWgfGqnKpZGrsWrGhWFtm7WlRrLNpmSAUdFSDITEmnvSCYxUMjx27JhHpUdCCCEk1hxgxkXhnaj8jMePH8cLL7wAhmGQm5uLJ554QiyV7Z546nQ6PPfcc9i3bx9uv/12dHd347vvvsP27dtx4YXhTRz0ej0WLlyInTt34tNPP0Vra6vXYbTvv/++WDJ7xYoVAZ07IyMjoPa++OKL4vfh/vkS1cSJEyEIAhiGAXeq3LsrRQCJPy9ICxKZHcGtvTrq+W0WcP0dkn1sSgaYCPSsktG5xgwZ37wlnQCg0Wgk5eIpZkiwKGZIsChmSKAM6lS4flJN1iQ0Kp+SX3vtNXAcB4Zh8L//+78e6zN5M3/+fPzv//6vuP3ee+9FpG3XXXcdgJEhvj//+c8xNDQkeb2urg4PPTRSpEan02HDhg0RaQc5zWAwID09HQaDAdyQSfqiTAY2gKG237YeilDrRlha3ApBMQxYXbr3g0nEucYMGb8sFovPpNN9jifFDAkWxQwJFsUMCZSCkVadTdZHFVFJPPfs2QOGYXDOOecENczpjDPOwOLFiyEIAg4dikwisWTJElxyySUAgO+++w5r1qzBX//6V7z//vt45JFHsHHjRnFx2zvuuEOy8DMAfP311ygtLUVpaSk2bdoUkTaOZ5xV2lPJsCwYL+Wk3RXqJyBVqYOKVYKBdCmVcLA0HJRsy9R6KDI956MSQqLDV9Kp1Wo9kk5CCCGERF9UenKdFWED6el0N2vWLOzevRs9XoZchst///d/Y3h4GLt27UJzczMeeeQRyesMw+DWW2/F97//fR9nIJHCu6yfCpxKPAMYsnJm/unlVqq7amFxWMPaLmtHg2RbpjVAM+XMsF6DEBIYZ9JpsUgfVGm1WsyZM4eSTkIIIXFN7r4uaIzaEWlRSTxtp5KHsRTNUZ4qJBOphUyBkWFYf/3rX/Hee+9h8+bNqK6uxuDgIAwGA8466yz84Ac/wFlnnRWx6xMph8MhzongrZ6J52j6LQP4/edPwqBJg1ahho2z4z/Pvi5s7RMcdtjaaiX7VBPngpGxoGkcseEaM94WWCbJy1/SOXfuXPFviDuKGRIsihkSLIoZEigtq0Sfy7Zc8HloQovKb0FmZiba2trQ2NgY9Hudi5e6D3ENN4ZhsHr1aqxevTqo95199tmSBVaD9dJLL435vcmqqqrqdPlx9x5P+eiJZ6+5Hw3GJsDYNPIehoGCVYStfdb2eggOu2SfehL1dsaSa8yMZWQFSUxjTToBihkSPIoZEiyKGTJWSZp3RmeOZ0VFBQRBwI4dO2AymUZ/wylNTU347LPPwDAMlcAfp3i3OZ4ydvRnJX1mo2TboNKDlY2esAaKTUmHYckGqArKAFYJNi0PMpU2bOcnhIzOV9Kp0+lGTToJIYSQeMIo3KaEhPFzazyJSo/nihUrsHXrVvT39+P+++/Hf//3f4/6HqPRiNtuuw12ux0Mw+Diiy+OQktJPNDr9XA4HJDL5eBMbut4ykYfy9pn7pdsp2vSwtk8KAy5SF+yAbryi2EfMMIx2Df6m0hEucYMGR/q6+u9Jp1z5swJKOmkmCHBopghwaKYIYFqtg1Kts3gfRyZ2KLym3DJJZegvLwchw8fxrvvvouuri7ceOONmDlzpsexnZ2d2LZtG55//nl0dnaCYRhMnTo14PUzSeIrLi4Wvz+x60vJa4HM8czX52H1jIugkavRZ+5HhtYQ1vZZ2xsAmRxgdWBk8pFlVJJ1TESCcI0ZMj6UlpbCYrFgcHDkj3UwSSdAMUOCRzFDgkUxQ4hU1B7B/PnPf8aVV16J7u5u7NmzB3v27JG8/swzz+Dpp5+WrKMpCAJSUlLwP//zP7T47jglCNKMTp6aOup77JwdSlaJ6ZmTUZFXBp4P31MjzjyE4WN7AZ4HWA0EnoE8ZxpkCk3YrkEIGZ1cLkdFRQUqKyshCEJQSSchhBBCoi8qczwBoKCgAK+++irKy8shCIL45UwoBwcHMTg4KHlt4sSJeOmllzBt2rRoNZPEGZlbD6c6J2fU9xztrgcA1HTXo773BFoG28PWHnPj6fU7uWEjHP0dYGThK1xECAmcQqHAnDlzaE4nIYSQhGbn7aMflASiOui8qKgI//rXv7B161a8+eab2L9/v8di33K5HLNmzcLatWuxfv16Wn9tnHNfx1MWwIdL1z7Sb1sPYVrGJBSl5YelPbauJo99TAAFjwghkaFQ0IMfQgghiS1NoYNr+VU5E7W+waiK+idmmUyGlStXYuXKleA4Dq2trTAajeA4Dnq9Hvn5+WNa75Mkj4aGBnEyvuCeeKpGTzxVrBJW7vT7bFx4niIJggDeMgxGpT099JtGgMcF15iZPHlyrJtDwshkMqGpqQnTp08P63rOFDMkWBQzJFgUMyRQ7sv+MUlaOySmXTUsy6KoqAhFRUWxbAaJM4ODg+K6V1qbNGmUBdC7MSVjIqwOG4yWfvSa+1GgzwtLu+zdzRjY9z4YpQZyfSZkGgPU0xeF5dwkNK4xQ5KHyWTCgQMHYLPZYLPZMGvWrLAlnxQzJFgUMyRYFDMkUHZjp3QHz8WmIRFGYwRJXBvLUNvZuTMAAI19zVCw8rAlnqb67wAAgs0Me3czGLYDqedcFZZzE0KkXJNOAOjp6cGRI0fCmnwSQggh8UDuVkQ1WQfURSXxbG1tDct58vPDM0+PxLdZs2aJ3x97f6vkNdkoc36b+lvx5Fd/h0GTBoNaj0ytARvLV4WlXda2emlbdOlgVVrwNsfIDqq8HDOuMUMSn3vS6WSz2cDzfFgST4oZEiyKGRIsihkSKJ1MgQGX7WTtGYzKz7V8+fKQl0NhGAZVVVVhahGJZ6xLJVu70Sh5zX3bXbepFw3GJsA4UgTIoNaHLfG0dTZKtuWGPM+4puQzJtgA1ncliWF4eBiVlZUeSWdqairmzJkTtoXYKWZIoHiex9DQEAYGBmCz2cBxyTkEjhByGsuyUCqV0Ov1SElJoZE2YRK1hNp9PUZCAsFbrX633fWZByTb6eq0sLRDEHjY+zok+2QKqrhMSDgNDw/jwIEDsNulc7vDnXQSEqjBwUG0tLTQZxhCxhmHwwGr1YrBwUEwDIOCggKkBrCWPPEvKn/F58+fH9BxVqsVXV1daGtrAzDSy3nhhRdi3rx5kWweiWOqnBzYB4cgcBwEjoN8lF96o7lfsm3Q6MPSDkdfO+BWHVeeURCWcxNCfCeder0eFRUVlHSSqPOWdDIMQ73lhIwDHMeJv/uCIKClpSWiyWezbRCudxZTkg6gi8pf8pdeeimo47u7u/Hcc8/h5Zdfxueff45169Zh+fLlEWodiTd9fX3iPK68712MwaPHxNd0U/yXI59oyMdZ+bOhkauhU2pRqJ8QljaZm49KthmFGorMwrCcm4TONWbS09Nj3RwSpFgknRQzxB+e5yVJZ0pKCtLS0qDRaMAwDD0IIQFxOBzi9xQziUUQBJhMJvT29mJoaEhMPktKSiIy7FbA+BhVEZe/BVlZWbjnnnuQk5ODRx99FHfffTfee+895OTkxLppJAqamprE8uOlRYWQ63QAAIHnoTD4HzprtAxicvpETEmfiLPyZ2PAOhiWNlkaD0u22dR0qApKIdj5sJyfhMY1ZiiJSCxDQ0OorKyMek8nxQzxx/lBExhJOgsLC2E2m2Gz2SjxJAGz2WwQBIFiJgExDAOdTgetVovm5mbxnjA0NAS9Pjyj6cajuJ4p+x//8R8oLCzEwMAAXn755Vg3h8SAKjsbqaUlSC0tgb5sBjQT/Pdg9pqNAABWJsOhjho09DWHpR3W9uOSbTYlHTKFOiznJmS8ilXSSchoBgZO1wvIyMgIuUAiISQxMQyDjIwMcdv13hBOjqRdQEUqrv+qMwyD8847D//85z/x6aef4vbbb491k0gU5Ofnj3nJBAaAAKChrwkOnkOOLjPk9ggCD0dfm2SfPCXDx9EkFkKJGRIbvpLOtLQ0zJ49O+JJJ8UM8cdZVZlhGGi1WgCAQqGIZZNIAqKYSQ5arRYMw0AQBI+K6+FiyMxCn/Z08smpknMueVwnngCQmTmSOIRrLVAS/7Kyssb8XucIeQc/Uu4+HHM87b3tEBzSD8faksAKZpHoCCVmSGx460GKVtIJUMwQ/5xLprAsK8YqJREkWBQzycFZVMzhcERsOaW0ilJ8M/SNuJ2iSonIdWIt7hPPkydPAvD+IYUQd8snL4KNs6HX3I9+6wAM6tDH4dva6iXbrM4AXcl8OAZNGCcjIwgJO51Ohzlz5oi9nmlpaaioqKCKoYQQQkiSiuvEs7m5GR9++CEYhsHEiRNj3RwSZQLHof6Z5+Ewm6HKygSr0WDCpSug8FPKOks3MgRWLVcDEJCpDb1oiLVdmniqJkw9tYanKeRzEzKepaSkYM6cOThx4gRmzJhBSSchhJBxSSGTI91+ujdVm6Sd5XGXeNpsNvT19WH37t3485//DIvFAoZhaDmVcYi32dCxbbtkX87y83wmnse6j+P/vn0NBo0eaSo98lKzUZ47I+R2WN16PJUTpoZ8TkLIiJSUFMyaNSvWzSCEEEJiJkuZgnmDFnFbLjfErjERFJXEs6ysLKT36/V6bNq0KUytIfHu4MGDsNvtYL1M4B5uPAm1j2V1uk29aDA2AcaR7QmpOVg/c0VIbREEHtaORsk+Vd4UH0fTuNtYccaMQqFARUVFrJtD3FitVqhUqlg3Q4JihgTLZDKJS2M4Cw4R4g/FDBmrSBUxirWoJJ7OtbDGIjU1FU8++STS0vyv30iSkN3hsYtVKX0e3m+RrtkZjvmdDCPDxJ8+A/OJw3AYO2Btq4cqf9qpF8X/IYT4MDAwgIMHD6KwsBDFxcWxbg4hhBASdxi1DroZ58DYb4TAC4BKF+smRURUEs/8/PyAj2VZFmq1GhMmTMDChQuxfv16GAyGyDWOxB2tVguHwwEZKwczfRoEjjv1xUPhZ9Hefqs08UxThZ54CoKAwe+2QZk3GbqSBUiZuQSs1s95qQhWTDhjhtZ9jC8DAwOorKwEx3FobGwEwzCYNGlSrJsFgGKGBE8mk4m9V4QEgmKGBOrQwe9w/JPvAAgjKzSoFJiRhIM9o/IX99NPP43GZUiSmDZtmvj9yeoa6Yt+1tw7u2AuUpQ6DNtMMNvNmGQoDLktvNUE3mGDpfkoLM1HAQBpCy4Dq07OJ1GJyjVmSHxwTTqdGhoaoFarkZubG8OWjaCYIcFSq9WxbgJJMIkWM3a7Hf/617/w3nvvoba2Fna7HXl5eVi8eDE2bdqEKVN8TTUioXJ09mBiy+k5nhaV3c/RiSsqiefRo0fBsiz9oSchY1jfiWfbUCdMdjMUrBwahQGpYRimYO9q8tgnUybWHxJCoq2/vx8HDx70WO8sIyOD1s8kJAKsHY1Q5RbHuhkkgfX19eHGG2/EoUOHJPtPnDiBEydO4K233sL999+PtWvXxqaBJCn4/hQfRk899RRWrVqFVatWYfv27aO/gRAAvMPLHE+1ZtT3OXgOFocNFoc15DaYGio99jEy1yUfaPgMIa78JZ3l5eW0ZAohYeYY6kPby/fCMdQX66aQBMVxHG699VYx6ZwzZw7uvfdePPLII/j+978PhUIBi8WCe+65B19//XWMW5uc7LznZ95kFJUez4MHD0IQBNTV1SE9PfR1Fcn4wFs9E0e5zndVOCUrLTzUYzKGdH1B4D2vke2ynizN2SBEYrSkU+ZnqDwhZGz692wGbx5C/1fvIPPC62LdHJKA3nzzTXzzzTcAgNWrV+O///u/xfv16tWrcdlll+GGG26A1WrF/fffjy1bttD9PMzSCgrQWpAibgva+KoEHy5RSTz7+k4/haP12shoTp48OfLB1WKBe9+ITOm7qu2p6diiUOd4muq+ha3zBNiUdMg0qWAYBuqC6SGdk0SGM2ZYlsXEiRNHfwMJO19JZ2ZmJmbNmhV3H1IoZkiwrC4PQ+NleSDHUB8G9n8MABj49iOkLVwDeQo94I8X8Rgz3vztb38DAKSlpeHee+/1uF/Pnz8fP/3pT/HYY4+hvr4e27dvx8UXXxyLpiat9FllOCicgNVihSAI0CmTc/mdqHwScC2h39bWFo1LkgRmNBrR29uL/u5uzxf9fHidnTsDK6afh+9NW4aLpy5FSdbkkNoxuH8bTEe/xuC3W9G/522YGw9Brqf5afHIGTNGozHWTRmXjEZjQiWdAMUMCR7HcXA4HB5xHkv9ezZDcIys9yc4bOj/6p0Yt4i4iseYcVddXY2GhgYAwKpVq5CSkuL1uKuuukqcKrF169aotW+8sLYfh7WlFkL3CQg9J8C318W6SRERlU8DP/nJT8RS0n/84x/j+heQxA9HbR06tn+Kzh2fo2vnLvQfPOS3JLlarkKqKgV6dSoMmjRoFaPPB/XH5lpYiHOAYTx/XWi0LRnvjEYjDh06lFBJJyHJwLW302ng24+Sfq5nW1sbHnroIVxyySWYPXs2FixYgE2bNmHLli0AgOeffx6lpaUoLS31eK9z/9NPP43u7m7cdtttOPPMM3HmmWdizZo1eO+99yTH8zyPjz76CD/96U+xdOlSlJeX4+yzz8bGjRvx9NNPY2BgwGc7N23ahDPOOANnnnmm35/nrrvuEtvV3Nzs9bVzzz0XwMhIjbvvvhvLli1DeXk5lixZgttvvx2VlZ71KAK1d+9e8ftzzjnH53F6vR4zZ84EAOzatWvM1yPeyTkeqVYL9DYr0mw26OxU1XbMLrnkEvz5z3/Gb3/7W3z22WdYt24dNm7ciLlz56KwsBB6vZ4+nBBRaWkpBEFA84GD6HDp9RRsvn8JTxpb8PTefyBNnQq9KhXpmjRcXbF2zG0QeA6OwV7JPjbVffgSZZ3xwhkztFZadDl7OnleOh86KysLM2fOjOv7OsUMCVa8LY3h2tvp5Oz1TNa5nl9//TVuueUWDA8Pi/tsNhv27t2LvXv3Ytu2bV4TTndDQ0O45ppr0NjYKO6rqamB3mWt8Pb2dtx+++3Yv3+/5L1GoxFGoxGVlZV48cUX8cgjj4iJoS/hiJ39+/fj5ptvliS7XV1d+OCDD/Dhhx/izjvvxPXXXx/0eWtra8Xvp0/3P51o2rRpOHToEPr7+9Ha2or8/Pygr0e8y1JocfbA6eVUZBpFDFsTOVFJPG+88UYAQFFREYxGI2pra/HQQw8FdQ6GYVBVVRWJ5pE445wHwXDSD7OM0vcvYY+5D8f7Torb6erQEk9bTyvgVmFMPal8zOcjkRXPc2eSld1ux+HDhxMy6QQoZkjw4immvfV2OiXrXM/Dhw/jpptugsUy8uH8ggsuwPLly6FQKLB3715s3rwZW7duxe7du0c91z//+U9YrVYsWbIEq1atgtFoxOeff44lS5YAGJmzfv311+P48eMAgIKCAqxfvx5TpkxBf38/tm/fjl27dsFoNOKWW27Bs88+i6VLl/q8XqixYzKZcNttt2FgYACzZs3C5ZdfDr1ej3379uHNN9+Ew+HAww8/DK1WiyuvvDKoc7e0tIhtnDBhgt9j8/LyxO8p8YywJH0oGpXEc+fOneJTZef/C4Lg7y2EQLBLn+TKFL4Tz37LoGQ7TZ0a0rUtDdJ1rBilBpqiMp/HU68JGW8UCgVKSkpQXV0t3s8TJekkJNF56+10StZezwcffBAWiwUMw+D3v/891q9fL762Zs0arFu3DjfddBMGBwf9nGWE1WrFeeedh2effVb8+33dddeJrz/yyCNi0nnhhRfi0UcflfRaXnXVVXj77bfxq1/9Cg6HA3fccQe2bdvmc35kqAYHBzE4OIgNGzbg/vvvF+daOpcqvPHGG2E2m/HYY49hxYoVkp7b0fT2jozu0ul0UPop4AgABoNB/J7mx5OxiMqng/z8fEyYMEHylZ+fH9TXaE9hSPJxDA1LtmV+eigGrGFOPFtqJNtsajoUmQWeB1LCScaxnJwclJWVgWEYZGdnU9JJSBT46+10Sra5nl999RW+++47AMCGDRskSafTvHnzcOeddwZ8zhtvvNHrQ+OOjg5s3rwZAFBYWIg//elPXofKrlu3TkxWe3t78frrrwd87bEoLS3Ffffd57EW8vz583HrrbcCGEkG33rrraDO6+xBDmQUiGtiajabg7oO8e/wgUpU18jEr8rDplg3KSKi0uP56aefRuMyJEkMDg6C53nYLBbJfpmfhefLsqZjYeGZyNKmw+KwIj81N6Q22DoaJNvylHSPP1CUc8YPZ8zIZDKkpob20IEEJycnB0qlMuHm6lPMkGBxHCfOC3b/8B9N/no7nZKt13PHjh3i9z/84Q99Hrdu3To89thjo/bGKRQKVFRUeH1t9+7dsJ8q7HLttddCo/FdqPCGG27AP/7xDzgcDmzfvh033HCD1+OcSzeF4vrrr4dc7v1j+5VXXok///nPsNls+OyzzyS9t6NxOEamFY3W2+l+DBUKDS/HsAmGgdNTVyzK5BwZGtZPCXfffTfuvvtuqnZFQtLQ0IC6ujqY3IbL8H6KCynlChSmTYBaoYZBkwYbP/ZqYALPwd7XIdknT6VlVOKZM2acJeFJdBkMhoRKOgGKGRI8q9UqfsVKIL2dTsnU67lv3z4AQHp6OqZNm+bzOKVSOWoVWWCk5oivROvAgQPi9wsXLvR7nqysLLE9hw4d8jmNLBwxs2jRIp+vpaamoqSkBACCrnDr7M21B1BF1WY7/cBD4Wf6EyG+hPWTwttvv43NmzdLKmQRMlaC2zAOZYbvQgnu93oHP/YncfaeFsDt/ap833/oCEl2vb296OnpiXUzCBn3AuntdEqmdT07OzsBIKBiNhMnThz1GH9zIJ1zHoGRBHU0zmPsdrvf5VVCodVqkZvrfySX89/GZDLBZAp8mKZWqwUQWHLsmnhSgbbw4sbJSglRGWpLSDByc3PBcRzaNBq4Drbl/TyNs7v1cBrUgU+sd2dtOy7ZZpQa6EoXeB7IMDTeNk44YyaWw9+SVW9vLw4fPgxBEFBeXo7MzMxYNyksKGZIsBQKRUyX4Ammt9MpWSrcOofOBrIsSSDH+BtW6rpUi79htt6uZzabkZaW5nFMqL2DOp0uqHYMDQ2JCeVonEn40NAQHA6Hz+G8gLSgUEZGRkDnJ4HRqXRwXUshWf8yJdbYKDIu5ObmIj8/H3K3oXvyFN83XpaRIVWpg1ahgVquRIoysBuuN9b2esm2umgG5HoaahvPnDEz2hNhEpyenh5xyRRBEHD48GFJb0Aio5ghwVIoFFAqlTEbYhhMb6dTsvR6OnvXAiloY3GrDxEs12QzkOu59i76Snr9xUywPY2jtYNhGEn12dEUFxcDAHieR0dHh99j29vbxe8LCrwUXCRjppFJYyRZEzTq8SRxS3C70cpUvp9iTsmYhCkZk06/N4Tleqxtboln4Ywxn4uQROVMOl1/lwRBQGdnJz3pJiTKxtLb6ZQMvZ55eXmoq6tDa2vrqMcGcow/WVmnHzQ3NTWhrMz3UmoAcOLECQAjSadrwufaM+6vJzGQ5V8GBgYwPDzst+ezubkZwMic+0AKBTlNnTpV/L6urs5vQumcSpeWlkYP7ciYJGtCTZIAZ3arahvEU+axDoUSeA62jkbJPlXelDGdi5BE5S3pBEZ6CUtLS2PUKkLGr7H0djolQ6/nnDlzAIwM9ayvr/d5HM/z4rIrYzV79mzx+6+++srvsR0dHeJ6n87iPk6uyd/Q0JDPc9TV1Y3aJkEQ/BYNcv13WbDAy9QgP1yP9/fzDgwMoLq6GsDIEi4kvDxWTohROyKNEk8Stxi5dIS7rzmenUPduPPj3+P3n/8vnvz673jpwJvged7rsaOxd7dAsEuHvagmTPVxNCHJp7u722fSOWPGjJjNbyNkvAqlt9Mp0Svcfu973xO/f/nll30et3XrVnR1dYV0rWXLlolDY19++WW/w21feOEF8fPGeeedJ3nNdT68M2Fzd+DAAbS1tQXUrldffdXna6+88opYlfaCCy4I6HxO06ZNw5QpIw/Y3377bckcV1cvv/yyuITKihUrgroGGV2qXFqsSZ6cq6lQ4kniT1VVFSorK2E1SW/2itQUr8f3mvvR0NeEA+1V+KLxa3xcv3PMSzs4hvrA6jPByEf+6LD6LLA6z0IBI+gDeLxwxkxVVVWsm5LQuru7ceTIkXGRdFLMkGCZzWaYTKaA5v2F09DBHZBpUsCmZoz5S6ZJwdDBHaNfLE4tWbIEM2aMTHt59dVX8cEHH3gcc/ToUfzud78L+Vo5OTlYtWoVgJGhtr/85S+9zhvdvHkzXnzxRQAjSeZVV10led215/Spp54S18t0am9vx69+9auA2/Xxxx97Tbp3796NZ555BsDIfM2xJIXXX389AKCvrw933XWXx5zSffv2idcoKCjAxRdfHPQ1SHCSNO+MzBzPV199VbLYbzgwDCP+gpPk5nA44HA4ILgtacIovZfuHrBK50cYVGNfDN4x0I3UOReAUagAh52q1iYIZ8wkU2IUbb6Szry8PJSWlibdvy3FDAmWIAgh1Q8YK8Oi9TAsWh/168YTmUyGBx54ANdccw3sdjtuv/12fPjhh1i2bBlUKhUOHDiAN954A1arFSzLguO4kNYWvvvuu7Fv3z40NTVh27ZtWLlyJS6//HJMnjwZAwMD2L59O3bu3Cm27aGHHvKY+75ixQr86U9/gtlsxr59+7Bx40ZcfvnlSE1NRVVVFf79739jcHAQs2fPxqFDh0ZtE8MweOCBB7Bz505cdNFFkMvl2LNnD9555x3wPA+FQoH77rsvqPmdTldccQXeeOMNHDx4EB9//DGuuOIKbNiwAQaDAfv378cbb7wBu90OhmHGfA3iHyN3+zdlkrNvMCKJZ1NTE5qamsJ2vliWLyfRp1QqIZPJYOWlf+BlSu9zPPvM/ZJtvXrsiadz/U5xuG2gnzEoPGPKGTP+ysAT37q6ulBVVTVukk6AYoYEj2GYpPxdSBRz5szB448/jjvuuAMmkwkff/wxPv5YOgT5iiuuQEtLC/bs2RNScqTX6/Hyyy/j1ltvxcGDB9HS0oInnnjC4ziDwYDHHnsMixcv9ngtMzMTv/vd7/CrX/0KNpsNR44cwZEjRyTH/OAHP8DcuXPx85//fNQ23XHHHXj88cexY8cOj84dnU6HJ554Auecc06QP+kImUyG5557Dv/xH/+BI0eO4OjRo3jwwQclxygUCtx7770499xzx3QN4l8HJ+1VtybprSYif3Fj8USQJA/ncJq9DAPXWZ3ucz6dCvR5uKzkAlg5O6wOK7J1Y6+46T4HRq73v2ah+2cQ+lASG86YIcHzlXROmDABJSUlSRvTFDMkWIGs6Ugi66KLLsJ7772Hv//979i5cyfa29uhVCoxc+ZMXHvttbjoootwzTXXADi9PuVY5ebm4l//+hc++OADvP/++zh06BD6+vpgMBhQVFSEFStWYO3atX6vs2rVKsyePRt/+9vfsHv3bnR2dkKv12P27Nm49tprsWTJErz//vsBtefiiy/GkiVL8Oyzz+Lrr79Gf38/8vPzcf755+NHP/pRyFVmMzIy8K9//Quvv/46tmzZgvr6ephMJmRnZ+Pss8/G9ddfT8XlIsjOS4di80k62DYiieell16KJUuWROLUZBxh3BZ2V/lYwkGrUEN96gsYe2+nwHkWL1JmFfpp4JgvRUhcGK9JJyEkcRUWFuLXv/61z9d7enoAjNzH3B09ejSoazEMg0svvRSXXnppcI10UVxcjAceeMDn68Gcv6SkBI899tiY2zIauVyOa665RkzeCQm3iCSe5eXlWLduXSROTcYRQZBWplX4eKp4sl+6ZleGxjCm6zkGPSv+KTJogWSSvAYHBynpJITEvXfeeQdbtmxBUVERbr75Zp+9e/X19WhsbAQAzJw5M4otJCQ0HM/D+7i+5EKTW0jcEuzSYQeMwnu4ahUat231mK5nbfNcS4vVhjBflJA4N3nyZPA8Ly48np+fj+nTp1PSSQiJK3q9Hl988QWAkelc9957r8cxQ0NDuOeee8SHaZdddllU20hIKDRyJVxrCbNUXIiQ6GhtbQXHceDs0nLeMrn34kIZGgNkDANO4HHC2AK1fGyJZ/9X74J32CBPSQebkgFFpucwHQ/0AT0uOGOGZVnk5+fHujkJg2EYTJ06sk4tz/PjKumkmCHBcl1igqp6RtfixYtRWFiI5uZmvPLKK6iqqsLFF1+MvLw8mM1mHD9+HO+88w66u7sBABs2bMC8efNi3GqKGRI4jVwlSTyTM+2kxJPEoe7ubtjt9oB7PKdlFgMALA4rZmWXQKfUBn1NgedgbT8O8BzsnScAALpy/5XbxssH9ETgjBmFQkFJRJBck8/xFNMUMyRYDodDrLJPSUR0KZVKPPXUU/jxj3+MtrY2HDhwAAcOHPB67FVXXRXU+piRRDFDAmUf7JVsuy8pmCwo8SRxSRAEgJfO8fTV4+mklqsAufe1Pkdj6zopLqXipJt21pjORUg8cvbueTOeEk5CSGKaMWMGPvzwQ/z73//GJ598gmPHjqG/vx86nQ65ubk444wzcMUVV6CioiLWTSUkaDLOrbMlOYvaUuJJ4s/UqVPBWa1wX07ZW4/ngGUQD33xv0hTpUKvToVelYory1dB5b4Q7ygsJ6ul11JpoS4qC7bpJEamTp1K6/360dHRgePHj2Pu3Lm0JMQpFDMkWCrV2B5skvDRaDTYtGkTNm3aFOumBCTUmHn44Yfx8MMPh6k1JJ6lskoMuWz772pJXGFPPGkNTxIqnU4Hh5f9dqMRGrfy6EbLABr6msRtBgyuqVgb9DVNdd9ItuUpGWBTx74eKIkunU4X6ybErY6ODlRXjzxYOXDgACWfp1DMkGD5GjFAiC8UM4RIhTXx/Mc//gEAmDhxYjhPS8Yh3u6ZejJyz3Dttw5KtlNUOrCy4G/0tq4mybYiPS+AnhDqKSHxrb29HTU1NeK21WrFgQMHcNZZZ9F8I0IIIYREVVgTzwULFoTzdGQ843nI1GqA5yGc+mK8zPHst0gTzzRV8MufCJwD3HC/ZJ883fsaYYQkCvek0yknJwcKRbIO4iGEEEIST4dtWLJtSdK+DZrjSeKO2WyGoFYh59IVkg/Icp1ntdr81FzMy68AwIBhMKaKttauJo/CQtrSs4M+D4kds9ksztejYaRAW1sbjh496rG/qKgIU6ZMoXmNoJghweN5XowZmSxZFzsg4UQxQwJlAydJynifRyY2SjxJ3KmtrYXdboe8ZBpmlpVBEARYOzoh13rOyZLLWBSnF4nbSjb4nhxbe71kW6bSQZ1bHNibnR/gGbdtElXOmFEoFOO+oiElnYGhmCHBslgsYhKh1Qb/kJOMPxQzhEjR4xcStxitFoq0NAh2OzizGfIUz8TTfY6njbMHfR1be4NkW1VYCpk6gMIj9PmdxBlfSefEiRMp6SSEEELiFD9OPlRSjyeJO5mZmZI1BxUGA1TZ2V6PHUsPpztrm7THUzORllFJNO4xMx61trbi2LFjHvsnTpyIyZMnU9LphmKGBEsul9MSPCQoFDMkUBpNCuwuYcLIkjNmKPEkcaegoECyLfNTCCVXl4UzJ5TDwXOo7qpFti4zqGsJnAO2jkbJPmXe1KDOQWLPPWbGG19J56RJk1BcXEwferwY7zFDgkeVoEmwKGZIoLIWzsEn/GFxO0WVEsPWRA4lniShGTRpMGjSYOfsKNDnIjXIX1RbdzMEt+G5qrwpAb+fPtCTWGtpaUFtba3Hfko6CSGEEBJPKPEkccnS3o7efd+AkSsgU8ghT0lB5kLflWYVrAKKMQy7dR9mK0/LAasNcEkW+kBPYqy7u5uSTkIIISTBMYwMSl4QtxWCn4MTGCWeJC4N1h9Hw19fELfVebnIOHuB5IO0zWHDbz75E/TqFOhVqUhTpWL9rBVIUQZQGOgUa4u0EIsye2LojSckStLT02EwGGA0GsV9xcXFKC4ujlmbCCGEEBKcPJUey4wmcVuero9hayKHEk8Sd44dO4aho9L5ag6zGeB5wKUQSL91EA3GJslxl89aGdS1lLmToZ44C46hPnBDfRB4x9gbTmLm2LFj4tIYJSUlsW5O1LAsi9mzZ+PQoUMwGo2UdAZhvMYMGTvXpTHUanWsm0MSAMUMGSu7PfhVGhIBJZ4k7lgsFthNJsk+hmXBuFWf7LdIl1KRy+TQKoJbCJ4zDUA9adbp6yioEEAislgssNvt4Dgu1k2JOmfy2dXVhby8vFg3J2GM55ghY8PzPFUoJUGhmCGBYuRKqCfNxtDQIARBANRUXIiQqJDJZGDkcjDpBihYOcDzUKQbPI7rNRkl22mq1JBv7oLdFsTR9IckXshkMvFrPGJZlpLOII33mCHBc/59oSSCBIpihgTqWNMJHKpuBsfzECBArjShNNaNigBKPEncKS8vx3BKKnrS0vweZ+cdmJdfAStnA8dzUMtVIV9bnpIe8jlI9JWXl8e6CRHX2dmJzMxMWncyTMZDzJDw0miCG1FDSDLEzM0334zPPvsMf/jDH7B+/fpYNydpDdc3YsrhPnHbokrOh6KUeJKEpVWqUZxeNOb3OwZ6PM85fV4oTSIkIpqamlBfX4+0tDRUVFRQ8kkIISTi3nrrLXz22WexbgZJIsmZTpOEx9ukQ16VmRkex5jtlpCuYWmu8djHphiCO4k4fIaG0ZDIOHnyJOrrR5b96e/vx6FDh2heIiFEorGvOdZNIEnm888/x29/+9tYN2Pc4Hg+1k2ICko8SVyyDwxItr3Nj1DLpRXiWCbwcBZ4DpaWYyMTuCXXCfwcNGWDRNrJkydx/PhxyT6j0YieHs/eekLI+GQ09+OBz/4HRnN/rJtCksRbb72FW2+9NWkrq8YjtUEPU4pC/LKnJf4wbW9oqC2JO52dnRg2m2EZHoZON7Imp7Xb84P23AkzUZE7Aya7GXW9J1CWPS3ga9i7mzGwdwsYhQpsSjrYlHSkVpwftp+BRFdnZyc4jgPLssjJyYl1c8LCW9IJAFOnTk2anzGWkjFmSGTZ7XaxQqlCoYh1c0Tv1GzDkG0Y79Zsww/OuCLWzSEu4jVmfBkcHMQjjzyC119/PdZNGXdyFsxDtbYbdttIzOiU2lg3KSKox5PEnfb2dnSdOIGhoSFxnyor0+M4GSODnJVDr07Fmfnl0CgCXyPL0loHABDsVjj62mHrPAFlVmHojScx0d7ejtbWVrS3t8e6KWFx4sQJn0lnUdHY5zWT05ItZkjk2e128SteGM39+Lj+CwDAx/VfUK9nnInHmPFly5YtuOSSS8SkMyMjA9///vdj3Krxw9bdDFvXSTh6msH1NsPe2RjrJkUEJZ4kLvGNJ+A4egx93+6H8UAlTE0tYT3/cM1Xkm15SjoUmfnBn4jG25IwO3HiBBoaGjz2T5s2jZJOQojEOzXbYOdGkhobZ8e7Ndti3KLIa2trw0MPPYRLLrkEs2fPxoIFC7Bp0yZs2bIFAPD888+jtLQUpaWei1E49z/99NPo7u7GbbfdhjPPPBNnnnkm1qxZg/fee09yPM/z+Oijj/DTn/4US5cuRXl5Oc4++2xs3LgRTz/9NAbcpgW52rRpE8444wyceeaZfn+eu+66S2xXc3Oz19fOPfdcACMjYe6++24sW7YM5eXlWLJkCW6//XZUVlYG9G/nz+uvvy5O41iyZAnefvttzJkzJ+TzksAIFhMY0yDkNhPkNjNY63CsmxQRNNSWxJ3i4mIct1gx3NoGZ5+n+1xMQRBw97aHkarSQa9KRZoqFavLLoZBrQ/oGvbuJsk2m5IOVpMaXEMp6YwbxcXF4Hk+4ddkbGxsRGNjo8f+adOmobCQeuTDKVlihkSPSqUSh03GA9feTqeP67/A6hkXwaDxvxxZovr6669xyy23YHj49Idym82GvXv3Yu/evdi2bZvXhNPd0NAQrrnmGsn9tqamBnr96c8Q7e3tuP3227F//37Je41GI4xGIyorK/Hiiy/ikUceERNDX1Sq0Jd7279/P26++WZJstvV1YUPPvgAH374Ie68805cf/31IV2joKAAv/jFL3DppZeG2lwSpDxlCpb3mcRtRp0Sw9ZEDiWeJO7o9XrI3f6wK9MNku1huwnH+05K9q0sXR7Q+QWeg2OwV7KPTfWsmksSh+uHhURFSWd0JUPMkOiKt2WMXHs7nZy9nsk41/Pw4cO46aabYLGMVLS/4IILsHz5cigUCuzduxebN2/G1q1bsXv37lHP9c9//hNWqxVLlizBqlWrYDQa8fnnn2PJkiUARiqIX3/99eKUh4KCAqxfvx5TpkxBf38/tm/fjl27dsFoNOKWW27Bs88+i6VLl/q8XqixYzKZcNttt2FgYACzZs3C5ZdfDr1ej3379uHNN9+Ew+HAww8/DK1WiyuvvHJM1/j5z3+O2bNnQy6n1CAeMEn6UJSii8QlweGQbDOsNFT7LYMe79GrAuuxtLYfB3jpchRpC1YF2UJCwsdX0jl9+nQUFBREv0GEkLjmrbfTKVl7PR988EFYLBYwDIPf//73WL9+vfjamjVrsG7dOtx0000YHPT8fODOarXivPPOw7PPPiv2YF933XXi64888oiYdF544YV49NFHoVafriNx1VVX4e2338avfvUrOBwO3HHHHdi2bRtSUiLTSzU4OIjBwUFs2LAB999/v5jIrlq1CqtWrcKNN94Is9mMxx57DCtWrBjTg7Uzzjgj3M0mxENyptMk4fEOaWIoc3sC1+tWQEEjV0PJBlYxztouLdrCqLRQ5Yx17lx8DLkiiUkQBDQ0NFDSSQgJirfeTqdknOv51Vdf4bvvvgMAbNiwQZJ0Os2bNw933nlnwOe88cYbvQ6b7ujowObNmwEAhYWF+NOf/iRJOp3WrVsnJqu9vb0RrwRbWlqK++67z6P3dP78+bj11lsBjAwDfuuttyLaDhIZx47WoPKEXPz6rj60terjFSWeJO7Y7XZwZpNkHyOX3mjT1XrMK5iD2bkzUJI5BYVpE2Dz8UfY4/xd0vmdqtxiMAEmrdJGUdIZL+x2O2w2W0JUDnTlcDi8VlWlpDPyEjVmSOzwPC9+xZK/3k6nZKtwu2PHDvH7H/7whz6PW7duHQwGw6jnUygUqKio8Pra7t27xfvCtddeC43G93qKN9xwgzg0dfv27T6PC0fMXH/99T6HwV555ZVQKpUAgM8++yzka5HoM3X3IafDIX7pO5LzbxMlniTuVFdXwzIsrebFuN1sGYZBsaEQpVlTUZFXhjl5M6GQBTZy3Nom7fHUTKaqbYmuuroahw4dQnV1daybEhSFQoG5c+dKCk+UlJRQ0hkFiRozJHYsFgvMZrM4xzBW/PV2OiVbr+e+ffsAAOnp6Zg2zfea3UqlctQqsgBQVFQkJmruDhw4IH6/cOFCv+fJysoS23Po0CGPQohO4YiZRYsW+XwtNTUVJSUlABCWCreERAolniQuCW5DbXmrTbLdMdTt8Z5AKg0KPAeb29pIqglTg28gIWGi0WjE5LOkpAT5+WNY1ocQMi4E0tvplEy9np2dnQAQ0P1x4sSJox7jbw5kb+/p4oOBLGHlPMZut/tdXiUUWq0Wubm5fo9x/tuYTCaYTCa/x5L4E9txFNFDiSeJO2lpaWDdhtbKU3SS7UytARkaA/Sq4CbyO4ydEOxWyT5l7uSxNfQUhmFOj7ql4bcxkZaWBoPBgLS0xCymodFosGDBAko6oyjRY4ZEH8uy4lesBNLb6ZRMvZ5GoxEAvM61dBfIMb56OwFIlmrxN8zW2/XMZrPXY0KNGZ1ON+oxru0YGhrycySJRyqlNNaSNUGjqrYk7kyaNAmdLAvXPk/W7eY/yVCISYZCODgHNtd8hKWTFgR0bmvnCcm2TKsHq6MPnolu0qRJsW7CqJxDsHz1zMfbUg3JLhFihsSXcKzFGIpgejudkqXCrUqlgt1u95nYuQp1WKtrsmk2m0etVOvau+gr6fUXO1ar1edrTjabbdRjnO1gGCagea4kvqSwarjWY07WTwTJmlCTRMdL50nIVD6eTjIM1petQG5KdkCntTZJ53Mps4riZjFwkrwEQcDx48dRV1fncw4QIYT4E0xvp1Oy9Hrm5eUBAFpbW0c9NpBj/MnKyhK/b2pq8nPkiBMnRh5oq9VqScLn+tnC4bZEnKtAln8ZGBiQ9MR609zcDAAwGAx+e3QJiSVKPElcEtzW2WRk3p/9yGUsZEEssmtqOCg9r3wM1WwJCYIz6WxqakJLSwvq6+sp+SSEBGUsvZ1OyTDXc86ckSKARqMR9fX1Po/jeV5cdmWsZs+eLX7/1Vdf+T22o6NDXO/TWdzHyTX58zf0ta6ubtQ2CYLgt2iQ67/LggWBjQAjJBYo8STxya30uHtV23s/fQwPfvYEnvjqBbz43b/RPdyLQHAm6cR/NjUjtHYCtJQn8UkQBNTX10uemjc3N4sfVAghJBBj6e10SoZez+9973vi9y+//LLP47Zu3Yqurq6QrrVs2TIoFArxWv6G977wwgviUinnnXee5LXMzEzxe1/Vsw8cOIC2traA2vXqq6/6fO2VV14Rl4C54IILAjofiS+pcukwbUWSPp+mxJPEnfr6ejjc1tZjXOa/OXgO1V21ONhRjV0n9uL9Y5/A7AhsTkfK7GVIqTgfmmlnQZU/HYr0CWNuJw3RjR/19fU4evSo3yfh0eZMOp3Dn1wFUiiCRFY8xgyJbxaLRfyKplB6O50SvddzyZIlmDFjBoCRBOyDDz7wOObo0aP43e9+F/K1cnJysGrVKgAjQ21/+ctfev1vvnnzZrz44osARpLMq666SvK6a8/pU0895THctr29Hb/61a8CbtfHH3/sNenevXs3nnnmGQBAcXExVqxYEfA5Sfxw/0iZpHknFRci8Wd4eBiCe48ne/oZyYDVcz5Emip11PMKggCZQgVZWjbkaSNzQlNmLQ6xtSQeDA8Pw263i0+pY00QBNTV1aGlpcXjtbKyslHL4pPIi7eYIfGP53kIghD1h46fNX6FVGXoD6s+a/wKa8suCUOLok8mk+GBBx7ANddcA7vdjttvvx0ffvghli1bBpVKhQMHDuCNN96A1WoFy7LgOC6oaTju7r77buzbtw9NTU3Ytm0bVq5cicsvvxyTJ0/GwMAAtm/fjp07d4pte+ihh5CRIR1BtWLFCvzpT3+C2WzGvn37sHHjRlx++eVITU1FVVUV/v3vf2NwcBCzZ8/GoUOHRm0TwzB44IEHsHPnTlx00UWQy+XYs2cP3nnnHfA8D4VCgfvuu4/mdyYojyllTHL2DVLiSeKTW3Eh11/IXrentgwYqOUBVBvkPCf3MzL6FSDhRUknISSc1pZdkrAJYzjNmTMHjz/+OO644w6YTCZ8/PHH+PjjjyXHXHHFFWhpacGePXtCSsD0ej1efvll3HrrrTh48CBaWlrwxBNPeBxnMBjw2GOPYfFiz4fYmZmZeOCBB3DPPffAZrPhyJEjOHLkiOSYH/zgB5g7dy5+/vOfj9qmO+64A48//jh27NiBHTt2SF7T6XR44okncM455wT5k5J40ctIO1xsSTqojj51k7hTXl6OrxlGspiu6xxPvVKH+QVzYHFYYXXYwPEc+AAGJfA2z6EyMk1w64CS+FReXh7rJgCgpDORxEvMkMQRyJqOJLIuuugivPfee/j73/+OnTt3or29HUqlEjNnzsS1116Liy66CNdccw2AkeQxFLm5ufjXv/6FDz74AO+//z4OHTqEvr4+GAwGFBUVYcWKFVi7dq3f66xatQqzZ8/GCy+8gN27d6OzsxN6vR6zZ8/GtddeiyVLluD9998PqD0XX3wxlixZgmeffRZff/01+vv7kZ+fj/PPPx8/+tGP6O9LgjM5pMvqcEk62JYSTxJ3vA2PUbpM0lfKlZhkKJS8Lg+g55K3epYiZ+QhDElxDrdK0qdSiSSUIVXhIggCamtrvZbynzlzJnJycmLQKuJLPMQMSSw0rz8+FBYW4te//rXP13t6egAAEyZ41nA4evRoUNdiGAaXXnopLr300uAa6fL+yZMn44EHHvB5TDDnLykpwWOPPTamtozF+vXrsX79+qhdjyQ/SjxJfHJbbkKu04rf827zPwGADWQsvOD5PvogQcLBV9LJMAzKysoo6SSEkBC888472LJlC4qKinDzzTf77N2rr69HY2MjgJEHfoQkCp7nx0XFV0o8SVzi3aq/yVyG2ipYOYoNhXDwHJoH2iCXsaMmkIIgYPDQF+BM/ZBpUsEE8J6gnDoXJbLjDyWdhBASWXq9Hl98MVLZVxAE3HvvvR7HDA0N4Z577hHXSb7sssui2kZCQiGXsZIpZrIk/TxJiSeJOz09PZ7reLpUtU1VpWBB4dygzskN9cG46w3n2SDT6JC+dGOILSXxore3d+RpoUzmUVkw0urq6rwmnTNnzkR2dnZU20ICF8uYIYnJ4XCIVW3lcvr4FE2LFy9GYWEhmpub8corr6CqqgoXX3wx8vLyYDabcfz4cbzzzjvo7u4GAGzYsAHz5s2LcaspZkjgUpVauJbOZJN0Hhf9FpC403zipMc+hg0tVO3drmspCuCtZnAWU0jnPC05bw6JpLm5WVwaI9pJRGZmJtra2sQh4JR0JoZYxgxJTDabjZKIGFEqlXjqqafw4x//GG1tbThw4AAOHDjg9dirrroqqPUxI4lihgSKGx6QbLsvK5gs6LeAxB8vv2yMnPVyYOBsksQTYLV6KNPzQjonIQCQkZGB8vJyHD58GIIgUNJJCCERMGPGDHz44Yf497//jU8++QTHjh1Df38/dDodcnNzccYZZ+CKK65ARUVFrJtKSNB4m1myzQhU1ZaQqMjPy8Ux950uxYP+8MWTcPAc0lSp0KtTccm0ZZiQ6n8end0t8ZRp9ZAbKDlIFoWFheKwyVhwJp88zyMrKysmbSDBiXXMkMSjVCrF3isSGxqNBps2bcKmTZti3ZSAhBozDz/8MB5++OEwt4rEIz2rgus4PDktp0JIdBi8rIllN/ZBnTOSKFZ11sLK2cTXFhWdNWriaetukmyzmlTI9ZQgJIt4GCoZD20ggaP/XiRYNFSSBItihgTK/dkEk6TTuOhRL4k7goPz2Oec42mxWyRJJwDo1amjntPe0yLZlmn1kGlDW1z6dCXb0E5DEoMgCOjv7x/9QEIIIYQQ4oESTxJ3BM4z8ZQpRhLPfuugx2vMKKMROPMguGFpwqArXQCZXDn2RpJxRRAE1NTU4LvvvkNHR0esm0MIIYSQJNLrsEi2bUnaqUFjAEjckacbULjhCnA2KxiMVPaSqdQAgBSlDguLzsSwzQSrwwYbZ4ONt/s9n71b2tsJGQtd6cIItZ7EAu9SkCrcc/YEQUB1dTU6OzsBANXV1WAYhtbnTHCRjBmSnASXYh80z5MEgmKGBGqYt0mSMofPIxMbJZ4k7hypqoJt2mQo5HKUz5oFQRDAqlQAAJ1Si0lpBeCE0x8adQqt3/O5V7RVZEyATK4IX4Ppj0nMHT58WFwaI5wVDd2TTqeamhoYDAYoldRrnqgiFTMkeZnNZrFQjFbr/+8OIQDFDCHuKPEkcYlRKMAoFGA1Gsl+QRAkSScwem+FvUeaeCqzCsPTRko4k5qvpFMmk6G8vJySTkIIIYSERXLWsPVEiSeJOzqdDg6Hw2s1OEEQsHjiPJjtFpgdFpjtFmjkar/n8+jxzAxP4knih7+YGQtBEFBVVYWuri7JfmfSSRVRE1+4Y4YkPxqSTYJFMUMCJVdIP8sma9cG/cUlcWfq1Kk+X5PJZCjQ54nbgayPZWtvkGyHq8dTKllvEYnBX8wEi+d5VFdXU9KZ5MIZM2R8UKv9P+QkxB3FDAlU7oI52GmpFre1al0MWxM5lHiShDZa0snbLOCGjZJ9jqG+CLaIJDJ/Sefs2bORnp4eo5YRQgghJFkxSgXs2tM95JyKjWFrIocSTxJ37IODGK4/DoZlwcjlkCkUSJk2tt4Jm9v6nQAAtzmioaPezmTA8zyqqqrQ3d0t2U9JJyGEEEJI6CjxJHFn8Fgtqh94SNyWp6ZiwT/+BkYmw2O7/4Jh+zD0qlSkqVKxfMpiTDQU+DyXrfMEIGMBfmRtUJlaB90MWkqFSFHSSQghhJBYyVHpsaxvWNyWG1Ji2JrIocSTxJ32kycl24Lj9GpGNd11MFoGxO25E8r9Jp4ypQZpi9ZDsJrAmQYg8BzkhtzwN5rE1IkTJ8RCMZMmTQrqvf6SzoqKChgMhjC2lMSLUGKGjE9Wq1WsK6A6tcQXIf5QzJBAsYwMStfStg4uZm2JJEo8SdwxDQxKd8hkAMOAF3gMWIckL6WpU/2ey9Z1EgzDgFHrIDs1UZuWQUk+/f394pqMwerp6aGkcxwKJWbI+MRxXEAF7QhxopghAWNkUGQWwGK1AoIAQUk9noREiQAoFYAggAEDmUIBhmEwaB0G7zY/c9g27OMc3smUYaww5/xDwmD8LMCUhLKzszFlyhQcP34cAMCyLGbPnk1JJyGEEEKiomlwEN9a5LBZeQgQoARQEutGRQAlniTulJ5/PrrZkdBkWRayU8NTlKwC8wvmwOqwwcrZYHVYIZcF11uhzCkOd3NJHCgrKwvpqfLEiRMhCAJOnjxJSec4EWrMkPGHlsYgwUq0mOno6MArr7yCnTt3oqmpCWazGQaDAeXl5Vi1ahVWrFhBa5NGSM+BgyjecULctqhkwH/Frj2RQokniTssw4BlT5eRlilGwlQtV6E0awoM6jR0m3rh4Dn4+8zI260e+xTpNL8zGYVjuOSkSZOQm5ubcB8UyNjQEFsSLPrATYKVSDHz/vvv49e//jVMJpNkf1dXF3bs2IEdO3bg1VdfxRNPPEHrWZMxS5zfCDJu2Pv7JduMy407NyUbiyfOg+NUlVq9yvccT8dAt8c+uT4rTK0kyYiSTkJIIhpuaIx1E0gC27lzJ375y1/CZDKBYRhccsklePDBB/H444/jtttuQ0HBSBHHffv24Sc/+QnsdnuMW5yEhPExZ4sSTxJ3WK1Wsm13KTY0v2AOWNnp3lB/xYWGjuyCpfko7L1t4CxDI8Pq2DB28p/qbqWheonBWb12aGho9IMJISRB2Pr6cPg398LW1xfrppAEZLfb8cADD4DjOLAsi2eeeQZPPPEENmzYgJUrV+KnP/0p3nvvPSxcOLIU3XfffYfXXnstxq1OQnIWvAziF+TJmaLRUNtTBEHAli1b8Oabb6K6uhomkwnZ2dmYP38+rrnmGlRUVIR8/k8++QTvvPMODh48iN7eXigUChQUFGDx4sX4wQ9+gPz8/DD9NIlteGgQFotFLD8ucxkSJ2NGfhGVrAK5KVnQKjQ+z2Oq3Qdbe4O4rcyfDiz7fuQaTmJmYGAAPM9DJpNBr9d7vM5xHA4fPoy+vj709vZi7ty5SElJzopxJDCjxQwh7lwrlLpOB4m1lrc2wzE4hJa338HkH10X6+YQF/EaM6727NmDk6eWsbv22mtx/vnnexyj0+nw6KOP4oILLoDFYsEbb7yBTZs2RbupSa3g/HPxebYJnIODAAEpSl2smxQRlHgCsFgs+NnPfobPPvtMsr+lpQUtLS1477338F//9V+46aabxnT+/v5+3H777di9e7dkv81mw7Fjx3Ds2DG8/PLL+N3vfoe1a9eO8adIHq0trbD29oJlWeTm5kJhSPM4ZumkBUjXeO53xQ1Kn/7KUzPD2k4SPxobG8WlMdwfErkmnQDgcDhQWVmJOXPmUPI5jvmLGUK8cV2TUes2MidWbH19aN/6MQCg/cOPULBuDZTp6TFuFXGKx5hxt2fPHvH7NWvW+DwuKysL8+bNw65du3D06FFYLBaanhJGjv5OOIwdsNtsEABYZMm57islngDuueceMemcOnUqNm7ciKysLBw5cgSvvfYaTCYTHn30UeTm5vr9pfSG53n89Kc/xb59+wAA+fn5uPzyyzFlyhQMDw9j165d+Pjjj2Gz2XDXXXdBr9dj+fLl4f4REwrX0QG+pQWQsRgaHAJnNnsck6n1/4dVEHhwZul6oHJ9BBNP52hbGnYbV9yTTiee58HzvI93EUJIYmh5azN4mw0AwNts46LXs62tDX/729/wxRdfoLW1FRqNBqWlpbjyyitx2WWX4fnnn8ejjz4KADh69KjkvaWlpQCAn/3sZ9i4cSMeeOAB7Nq1CwBQVFSE//iP/8CqVavE43mex7Zt2/Duu+/i4MGD6Ovrg06nw6RJk3Deeefh2muv9TliYtOmTdi7dy+AkeGpvtx11114++23AQCffPIJCgsLPV7Lzc3FF198gZMnT+KZZ57Bl19+iZ6eHhgMBsyfPx/XXXcd5syZE+w/JYCR2gaTJ09Ge3s7iouL/R6blnb6gf/AwAAlnmHkGOyDY6AHDHDqy/OzbzIY94nn7t27sWXLFgDAwoUL8fzzz0N1avmOyy67DFdccQWuvvpqGI1G/P73v8cFF1wQVC/J22+/LSadCxcuxDPPPCN56rVhwwZ8+umn+M///E84HA7cd999WLx4sdiG8UjR3AJrfQM4AH0ArN09AIAnv/47ek1G6NWpSFOl4tziszE1Y5LXc9iNHcCpAkROutIFYW3n6bmdtJBnrOXl5YnzU5x8JZ1yuRwVFRU0vHKc8xYzhPijUCjiagke195Op2Tv9fz6669xyy23YHj49BreNpsNe/fuxd69e7Ft2zYxufRnaGgI11xzDRobG8V9NTU1kr8L7e3tuP3227F//37Je41GI4xGIyorK/Hiiy/ikUcewbnnnuv3euGoor1//37cfPPNGBgYEPd1dXXhgw8+wIcffog777wT119/fdDn/dnPfoaf/exnAR1bV1cHYOTzDy07Fl7ZCh0WG09XFJapaKhtUvrb3/4GYOTD6IMPPuiR8E2dOhW/+c1v8Itf/AJGoxFvvPFGUL/Yr7/+OgBApVLhT3/6k9ehFsuXL8e1116Lv//97+jo6MAXX3yBiy66KISfKrFp9WlwLf8iOBwAgNruBrQNdYr7Z2RP9Zl4OnpaJduMXAnlhGlhbyuJDzk5OZJtjuNw6NAhGI1GyX65XI45c+YgNdV3USoyPrjHDCGjibcleFx7O52Sudfz8OHDuOmmm2CxWAAAF1xwAZYvXw6FQoG9e/di8+bN2Lp1q8e0Jm/++c9/wmq1YsmSJVi1ahWMRiM+//xzLFmyBMDIFKnrr78ex48fBwAUFBRg/fr1mDJlCvr7+7F9+3bs2rULRqMRt9xyC5599lksXbrU5/VCjR2TyYTbbrsNAwMDmDVrFi6//HLo9Xrs27cPb775JhwOBx5++GFotVpceeWVIV3Ll8OHD4s9yGVlZVAqlRG5znglZ2TQ8qc7MZw1TZJNcv5UATIajfjyyy8BAEuXLkVRUZHX41auXInMzJFhmlu3bg34/ENDQzh48CAAYNGiRcjOzvZ57Pe+9z3x+8rKyoCvkZTcSkoz7EiY9pqNkv1pfpZSsXW3SLYVWYVglTQkZDygpJMQkuy89XY6tX/4UVJWuH3wwQfFwoN/+MMf8PTTT+OKK67AmjVr8NBDD+HFF1+ETqfD4ODgqOeyWq0477zz8Ne//hVr167FddddhxdeeEEcAfHII4+ISeeFF16IDz74ALfeeitWrlyJq666Cv/3f/+Hhx9+GDKZDA6HA3fccUdEK6YPDg6iq6sLGzZswBtvvIFrrrkGq1atwgMPPIC///3v0GhGCi0+9thjkh7RcOF5Hg899JC47TocmZBgjOvE85tvvhHneTnLRHsjk8kwf/58ACNJYb/bOpO+9PX1Yfbs2cjOzsaUKVP8Hus+bn48E9yGyLJqNeycHVZO+mTXxjl8nsPe3STZVuVODl8DSdyipJMQMh546+10cvZ6JpOvvvpKnCe5YcMGrF+/3uOYefPm4c477wz4nDfeeKPXYdMdHR3YvHkzAKCwsBB/+tOfvM5lXLduHa677joAQG9vrzjCLVJKS0tx3333eUwPmD9/Pm699VYAIx0qb731Vtiv/fjjj4tDjvPy8nD11VeH/Rrj3YmmEzjQpRC/Ktu8/34nunGdeNbW1orfl5SU+D122rSRYZqCIODYsWMBnb+oqAhvvPEGdu3ahTvuuMPvsfX19eL3433cvMC5FX2RyWBz2LGgYC4qcstQmjUVxYZCZGoNPs/hrcczEhiGOV1YiMQUx3E4ePAgJZ2EkKTmr7fTKdl6PXfs2CF+/8Mf/tDncevWrQvoM5S/ata7d++G3W4HMLK8iLM30ZsbbrgBcvnIrLXt27ePet1QXH/99eK13F155ZXi0Ff3FRpC9dJLL+H5558HALAsi0ceeYSKCkVA38lW5DbYxa+UBmusmxQR4zrxbGk5nZwUFBT4PTYvL8/r+8LlzTffFL8fa2WyZNFvlP6xZFgZ7IIDEw0FKMmagtm5MzCvYA4mpOZ6fb8gCLD3NEv2KbP8//clie3gwYPYsmWL5GESMJJ0zp07l5JO4uHw4cP47rvvcPjw4Vg3hSQIs9kMk8kEs5dK69Hkr7fTKdl6PZ1FGtPT08WOAG+USiXOPPPMUc9XVFTkc47igQMHxO/9jYYDRpYYcbbn0KFDEATvhQbDETOLFi3y+VpqaqrYgRLO6Vr/+Mc/JENs77jjDixYEN5CjWR8GdeJZ29vr/h9+igV4FyfoLn3qIRq586d4tO8zMxMLF68OKznTzS8W48nc2qCtVzGQuYyLEYu816Nkhs2grcMS/ZFqseTxB7HcWhsbMTw8LDkj75CocDcuXNprU7ilXNJHVpWhwRKEATxK1YC6e10SqZez87OkcKC+fn5ox47ceLEUY/xV9Xc9bOhr9ofrpzH2O12n1OlQo0ZrVaL3FzvD9udnP82JpMJJpPJ77GBePLJJ/HQQw+Jbf/JT34iDi0mZKzGdVVbZ2U0AKMuX+L6ZMz1faFqa2uTzEm45ZZbxv0QBpZhIJnlKZPBoNZj/cwVEAQBDX1NyE3J8vl+y8kqyTbDKsBGcg1PElMMw0Cj0cBisYhzXxQKBebMmUNJJ/FJrVaDZdm4q1RK4pdMJov5ciqB9HY6JVOFW+cD/0A+HwVyjL+KrK5LtfgbZuvtemazWVKzw0kmC62fR6cbfWkN13YMDQ15XUUhEBzH4d5778Ubb7wh7rv11lvxn//5n2M6HwmQQhqTyTqLa1wnng7H6eI0o5WFdn3d9X2h6O3txY9+9CP09IysU7l48WJce+21YTl3KOrq6jB16lTJ8ESr1SqW0TYYDB5PFOvq6sQnbO7zJrq7u9HaOrK8SVFRkaR3meM4HDlyBMDIUJHJkydDq1LD9c/q0PAwDh48iJkzZ0Iul2NKxsi1jUYjTp48CQCYMGGCWDXYVPet5Pq8Qg2ZTBrqzc3N4lPNkpISjxu2s5pddnY2JkyYIHlvdXU17HY7FAoFpublwfX20NbWhu5T/z2nTJkiSXwsFos4PzgjI0OySDQwMufYbDaDYRjMnj1b8lpXVxfa2toAjDzNde2BdzgcqKoaSbb1er3HAtANDQ1ilb9Zs2ZJChP09fWhqWmkEFN+fj6ysqQJvbMqs1ar9RjedPLkSfHDQGlpqeThzeDgIBoaGgAAubm5Hk9qq6qq4HA4oFQqMWPGDMlrra2t6O7uBjCynJHrH1yz2SwOp83MzERBQQFkMhkuuOACVFVV4ejRo+ju7kZxcbFH0tnZ2Yn29nYAQHFxseSJt91uR3V1NYCRQl+TJkmX6amvrxc/jJSXl0s+RPT29qK5eWRod2FhITIyMsTXeJ4Xh3LqdDpMnTpVct4TJ06IxcrKysokSdDAwIC4xlxeXp7H8h+HDx8Gz/NQq9Uec9RbWlrE+8r06dMlH56Gh4fFOeVZWVkePQg1NTWw2WyQy+WYOXOm5LWOjg50dHQAACZPnhyze4SrxsZGsZfBeY9w8nWPAEZ+7w8dOgSLxYLa2lpMnz5dct5w3SPKysokr7W1taGrqwsA3SOidY9wdezYMVgsFshkMpSXl0tec71HuD+QcO0d95ZEWCwW8XWNRiNJTh0OB2ynkkWlUimJUUEQxGGYMpnMI2myWq3guJFHsTKzOeDeTqe2Dz9C1srvIdVluhAwsval87OMWq2W/Ewcx8FqHZlfJpfLPT4fmc1mMQF3T8zsdrs4P1KlUkliied58cE9y7IeD/xd/w3dkyaVSgW73Y7h4WE4HA6f/4Ysy3p0Drj+G7pz/W+jUCj+f3v3Hd5U2f4B/JuddJdSWihlt5S9QaQoQ1RARKYgiOP15yuKIu6JiuNVHCi4RXEBMpQ9ZMuSoYyyWzYt0Ja2aZuOzPP7I+SQtEmbQNOk6fdzXVxkPHnyJL17eu7zLCgUCofPlJOTg5CQEKc/G9t3aL+Krq2M2Wx2eM+yr7X/Dm3fddl6bZ/N9hjg+B2W/dnYjq8SicRpZ4r9z8ZVHOr1erzwwgvYunWrWNeLL76I++67T6y/ovi2fYf2bK+rLL4rikNn9VYUh/bfYUVx6Cy+bXHorF6z2YySkhKkpKRU+XmEpMjoUN720/HVeYTt71RVq9WJp/0vgNForDD5NNhdYayKvYuys7Md9ohq3LgxPvroI7/YmNpsNpcbfiYIgnjAcnYAN5lM4vNlWSwW8Tlnw9psz9kOEuZix2GywtUyZYeq2LfJvl6j1vGXRVCWv+pn315367VvrzuftaJ6nV28sNXrLAZupN6q/NnYM5vNLttkX6+zeDEajTCZTE5P4Cqq11UcSqVStG7dGpcuXUJwcHC5Vf/K1ltRfFfnd1hRHLrzHVoslko/q7vfYdk2ORsa5u536O1jhKt6r+d3WRAEpwt28BhRvt6afIywr9doNFZar7OecNt7uRo2WdHjFb22omGY9q+9uGSZ272d4usNBlxevhKhjz5SZW2q6Pmq+qxlxcTEQKfTiRdXXNUrCIJ4Ecudep21yf7iSnp6Olq2bOnyswiCIF7cUqvVDhd8yiZnZRM9W53Otn8p+34FBQUoKiqCRqNx+f3aLoCGh4e7XISoop9bSUkJJk+eLM6nlcvlePvttzF8+HCUlpZ69B06e84bvzcVjUC40XpdsR1jqvo8wmKxwPkEMt+cR3hrGkqtTjztr6jp9Xq3E8/KhuVW5vz583jkkUdw7tw5ANYr8XPmzHHoKfElmUxW7o+yRCIR/xA7C1C5XO5yyJpUKhWfc/bH3vac7UApLXNFTGIyQaFQlDu42LfJ4SpZ4RXHN1CVH6Ji31536y3bXmef1/6zVlSvsz8KCoUCJpPJ6UH0Ruqtyp+NPfthimXbZF+vs3ix/Tw9rbeiOJRKpWjcuLHYm1FRvRXFd3V+hxXFoTvfocVicdqu6/0ObW2yWCyV/mx8eYxwVe/1/C4LguC0XTxGlK+3ph8jbPWazeZKjxHO2N7L1YluRY9X9NqKLjjbXmvUanH5T896O22y129E41EjoLQbSXAjbSr7elePX+9ndaZ9+/Y4deoU8vPzcerUKbRs2dJpvYIgiNuuuFOvsza1a9dO3Bpl7969SEpKcvlZsrOzxR6lsj1G9ueUOp3OaVIqkUhw8uTJStskCAIOHjyIm266yen3q9VqxZEsXbp08ThGLRYLXnzxRTHpVKlUmDFjBvr37y++zpPv0Nlz1fl7c6P1VvR5bcelqj6PqGg4ti/OI250eLgrEsGXs+R9bOrUqeLBZcOGDRVOIl+0aBFee+01AMBHH3103ZvnpqSk4LHHHhOHwcXFxeGnn35yawK7t+h0OnGIHGAdEuXLuXGHX38D+SnXVpqM7NYVGWOSsTfjAIIUGmgUGrSpl4Dkxs5XVkv//nmY8rNhKdEBEBDWYwjq3vagV9pqyMuDqagYECyQBQVDWSfSL3qtA5XJZHKZKBARVZW0tDSxl6rsMGxfOPP9HFxcvvK6X99g6JAaPddz69at+L//+z8AwLhx4zB16lSn5VavXo0pU6aI9+3PbQCICWv37t3xyy+/OK0jKysL/fr1g9FoRHx8PFasWOFyruf777+POXPmAACeeuopPPHEE+JzL774orgf6I8//oiePXuWe/2BAwdw7733ivc3btzoMMT+pZdewpIlSwAAt99+O2bNmuW0HV9++SU+++wzAMD06dMxdOhQp+VcmTVrFj7//HMA1p7br776qsJVdGsjbx8TTn3/OS4vv7ZtkEQhwc2LF1f5+7jLW7lBrV7V1n6ei6vhGza2eR+Ae6uqObNt2zY88MADYtLZokULzJ8/36dJpz8qLXGcnyFVKHBOm44Dl49i54V/sfH0dhzNLn+F0CYooSvCug5EeK/hCO18B4KadfJyi5loVgeTyYSDBw/i4MGD5YarZGRk4Pz5817Z6ogCE2OGPGUwGKDX6x1GQFXL+3qwkq0rNX2F2+TkZHGu7/z587F69epyZU6cOIG33377ht+rXr16YufChQsX8PzzzztdVHLp0qX46aefAFjnE48dO9bheft52F9++WW5YZKXL1/GK6+84na71q1bh7lz55Z7fMeOHfjqq68AWM9rBw4c6HadgPV7+/rrrwFYe8ymT5/OpNMHZJIyPag+aoe31eqhtvYTdNPS0ircm8i2WIFEIrmuKx2bNm3CU089JZ4wd+jQAd98802l27jURsYyf9QlUinySvMdHlPKnPd4CZZrY9glUhlkweFQ1mvstGyVYO9mtTAajUhJSRHnwhw8eBAdOnQQez5zcnLExVwq25OXCGDMkOdsIy4kEkmVrPXgrqyNmyEPvfGehqyNm9Fw5PAqaFH1k0qlmDZtGsaNGwej0YgpU6ZgzZo1uPXWW6FSqXDgwAEsWrQIer0eMpnM5XBqd7388svYu3cvLly4gPXr12PQoEEYMWIEmjZtioKCAmzYsAHbtm0T2/buu++Wmy41cOBAfPTRRygpKcGePXswevRojBgxAqGhoTh69CgWL16MwsJCtGvXDocOHaq0TRKJBNOmTcO2bdswYMAAyOVy/P3331i2bJk4XPLNN9/0ODa/+eYbMSlu3bo1ZDIZNmzYUOnrOnfu7DdTxAKCUPZuYJ5f1urEs1OnTlAoFDAajdi9ezfGjRvntJzZbBbHvSclJVW4/5Mze/bsweTJk8Wks1evXvj888+ve6nrgGcp89snleJiQabDQzq94wJENqUXjpd7TKqqfDl08l9lk07AOgTk+PHj5Vb2JCIKNA1HDq+xCWNV6tChA2bMmIEXXngBxcXFWLduHdatc+wJHjlyJDIyMvD333/f0MWBsLAwzJ07F5MmTUJKSgoyMjIwc+bMcuUiIiLwySefON1/PSoqCtOmTcOrr74Kg8GAI0eOiCt020yYMAEdO3bEM888U2mbXnjhBcyYMQObN28W9363CQ4OxsyZM50O561IUVGRw3d45MgRh+HCFfn555/Ro0cPj96PXNMpHTtUjF6aY+lrtTrxDAsLw0033YRt27Zh06ZNuHjxotNhtKtWrRKX1fd0CENOTg4mT54sDs3p27cvZs6cWa1XS2satUoJ+62PJTIpusa1R528CBjNRhgtJoSrQ52+1pB1ttxjUsWNLQZFvmM0GnHw4EHodDqHx5VKpcOIhYSEBJ/vr0c1C2OGPKVWqxkzPjZgwACsWLECP/74I7Zt24bLly9DqVSidevWGD9+PAYMGCB2InjaSVBWTEwMFi5ciNWrV2PVqlU4dOgQ8vLyEBERgfj4eAwcOBD33HNPhe9z1113oU2bNvjpp5+wY8cOZGVlISwsDO3atcP48eORnJyMVatWudWe22+/HcnJyfj666+xe/du5Ofno0GDBujbty8efvjhclsSueP06dMuV1ql6pVvcOxQMcE7q8r6Wq1OPAHgwQcfxLZt22A0GvHMM89g9uzZDpNnT548iXfffReA9YrSqFGjPKr/7bffFpPW9u3b47PPPmPSWQllaKhD4qmKikLjiDgo7IbXNotsVP6FAMwlOqePe5NEAtTeJbq8p6Kks2PHjg4jBtzZ5JvIHmOGPOWtVR7JMw0bNhQXe3TGto5G2f11gfKLDVVGIpFg8ODBGDx4sGeNvEoqlaJ58+aYNm2ayzKe1J+YmIhPPvnkutriTLt27Tz+TohuRK1PPJOTk3HHHXfgzz//xP79+zF06FCMHTsW9evXx9GjRzF//nxxw9cXXnih3Hj23bt3Y8KECQDKr5J26tQprF27Vrx/5513inMCKhIREYGuXbtWxcerkSRllnyWaTRQy1UIVQajxGTdSypM5Xy+izy0DkyFueJ9RWSs03JVh1e+vcFV0qlSqdChQwcOUyciqkWWLVuGlStXIj4+Hv/9739d9u6dOnVK3N6kdevW1dhCInJHrU88AeCDDz5AUVERtm/fjvT0dHz44YcOz0skEkyaNAljxozxqN6lS5c6bOY6ffp0t15X0TLftYFQZtNaiUyGrnEdHB5ztrGtYDFDu3s5ZOoQSDUhkKpDoWrQwqttpapXUdLZsWNH9lQREdUyYWFh2Lp1KwDrnpZvvPFGuTI6nQ6vvvqqeN511113VWsbiW6E2WKBfbeLJEA7Nph4wjrkavbs2VixYgWWLl2KY8eOobCwEBEREejSpQsmTJiALl26eFxvamqqF1ob+Mxl5xs4Gd7kbMiTqSAHppyLsF+wPLR9n6ptHHmV0WjEgQMHxFEGNpUlnUVFReLcq+Dg4OpoKtVwjBnylNl8bdV0Z5uxk/f06tULDRs2RHp6OubNm4ejR4/i9ttvR2xsLEpKSnD69GksW7YMV65cAQCMGjXKL0aOMWbIXXXUobDfv0EeoHPJmXheJZFIcPfdd+Puu+/26HU9evRwOT7+m2++qYqm1TrFZXq6yg69dcWYW2Y/PpkCspBq2K4mQA8O1c1gMODgwYMeJ52AdXiVbWuM9u3be7upFAAYM+QpvV4vXqzgcP/qpVQq8cUXX+Cxxx7DpUuXcODAARw4cMBp2bFjx3q0P6Y3MWbIXZZSx3OfsqP/AgUTT/I/ZVbqkbi5oIMh64LDfZkmBPLgiKpqlVPMOauGq6RTrVajQ4cOHF5LRFTLJSUlYc2aNVi8eDE2btyI1NRU5OfnIzg4GDExMejUqRNGjhzJC0lUI5VdHFMSoKtWMvEkvyOXSGC2u1+o1+HHrZ9DI1cjSKFBkFKDce2HlVvS3lSQ7VhPaBSkGg6hqwnS0tKcJp0dO3aEWq2u9PV169aF2WzmUCZyG2OGPCWX85TJ1zQaDe6//37cf//9vm6KW240Zt5//328//77VdQa8mfBMoXDjg4yMPEkqhaSkhKH+7rsTOw3XNt0WSVXYXyH8ptpG3MuOdxXNUyERFJdy99bk2Du73Z9EhISUFRUhOJi62HXk6QTgNP9d4kqwpghT3ErNPIUY4bcJS9zvioN0MWFuCkV+R3B4niVp8Skd7ivkjk/kBtzLzrcV8clVm3DnJFION62CiiVSnGbFE+TTiIiIiLyf+zxJP8jOE6oLrE4Jp6C4GQrFZMRpnzHobaKOuzRqElse3QKgsCkk4iIiGqNQrPB4b7RRbmajokn+Z16/fuhNCvLusiQAGQ3i0FbjQZGiwkmiwkqmarca4zazHIJq6JO/epqMlURlar8z5aIiIgokGnNpQ5JmTFAB9Mx8SS/U9SuDUyGBMjlciQmJkLQXkDSlWtb1gQpyveGGXMch9nKgiMgVXHpcn+j1+uRkZGBpk2bVul82OPHj8NkMkEulyMpKanK6qXAxZghT5XYrT/AlbbJHYwZIkdMPMnvGC0WGAUBAgCZWo2IkAjEGWJgsQjILdGi2Fha7jWG7PMO96VBYRBMRkjkCi+3NkAvSXmBXq/HgQMHUFJSAr1ej6SkpCpLPg0GA4xGIywBuu8VVT3GDHlKEARxT0YidzBmiBwx8SS/I5fLIQiCuAx5TEg0YkKiYbKYkZ5/EY0i4sq9puTMQYf7Eim3SPAn9kknAGRmZgJAlSWfZWOGqDKMGfKU7VjFJILcxZghdwllOkoCNWL4F5f8TuvWrZ0+LpfK0CQy3ulzpsJch/tSTWg19HaSO0pLS3Hw4EGHIUcAUFBQAJPJBIXixn9OrmKGyBXGDHmKQyXJU4wZcldsu9Y4kHlcvK8M0EUWmXhSQDAXaR3uSzWhvmkIOSgtLcWBAwdQWuo4PDooKAgdOnSokqSTiIiIqCaTR4Qiv8G1tCxExcSTqFoYtFoAgEQqhUQqhVSthrSC4XAWfQkEg2Nio67fzJtNdCCRAELlxWqdypJOrmBLREREVHsw8SS/c2DyszBeTT4BIGvsrTjfOBgauRpqhRo3x3dBi6gm4vOCyQBl/eawlBTCXKKDoC+BMqZp9TQ2UAfh36CKks6OHTtCqVT6qGVERERE/qWOIhhdCq5NSVKGh/iwNd7DxJP8jqlMsnLp4hnskFx7rFF4A4fE06IvRlCLLuJ9wWKGIqqa9/BkAiryRdKZmZkJs9kMmUyGmJiYKq+fAg9jhjxlNBrFFUo5TYDcwZghd6lkCtQxXVtlXWIMzBXXmXiS3xHKbG9QUmb7FLPF7Hi/pNDhvkQqgzysrncaRxVylXQGBwejQ4cOXuvpzMzMhNFohEKhYBJBbmHMkKeYRJCnGDPkLsFshkSugMVinbxlMTPxJKoeguOMyVKLEcC1A3bZxNOUn12uColE6pWmOcXl0gFYN8o+cOAA9Hq9w+PeTjqJiIiIarJchQopTdqjWKeDxSJApdSgha8b5QVMPMnv1B89EobcXEgAKJVKhAZloGVdFUwWE0xmE8LUjivWSmSOYayIqFdtba3tyaaNr5POpk2bwmKxQCqtxgsOVKMxZshTKpVK7L2imqlly5YAgO7du+OXX36p0rrT09PRv39/AMCwYcPw/vvv+yRmnLWD/N+FrdtQd/m/4v1SlRR4wIcN8hImnuR3gsLDIDdf69VMiGmO2Ohrk6xjQxwTS7Muz/F+Ub53G0jlGI1GmEwmh8eqs6czNJTb55BnGDPkKZlM5usmUA3DmCFyxEu95PcahMagRZ3GCFeFIkIdikhNmMPzljJbqSijG1Vn8whAWFgYOnToIP6RDQkJ4eq1RERERCRijyf5nzKbYraIaorgBk2cFtVfPgPt7hWQqUMg1YRAqgmFIjLW+22kcsLCwtC+fXucPn0abdu25UIKRERERG4wWSwOSZkkQLdLYOJJfsdkMonDNuXyikPUkJMOS5EWliItAECqDkZEjyHebqKdwDwwXK/w8HB07Nix2udA6fV6cR6NSqWq1vemmokxQ56y2K247k9zg22rYAKAVMq/Sf7EX2OG/E/8rcn4O6QQgmCBACBIFeTrJnkFE0/yO5czMmDS6a7tr1fB31HjlXSH+1J1CBRRcV5uYe1mMpkqvCDgi4U3Tpw4IW6N0b59+2p/f6p5GDPkqdLSUvFiRVCQf5wUGoxmzFl5BCWlJmjUcjx0VxsoFZxX6C/8MWbIP1lMJdBLS8SLomahtPIX1UBMPMmvCIIAc8ZFCBYLLDIZ9FIpLAaDy/KmgisO9xVRcZCHRHi5lbVXcXExDhw4gMaNGyMujgk+EZEvpV3Qwmi04EJWIZrWD0faBS3aNIvydbO86tKlS/jhhx+wdetWXLx4ERqNBi1btsS9996Lu+66C99++y0+/vhjANYLTJ7Ky8vD/Pnz8ddff+HMmTMoLi5GnTp10L59ewwZMgR33HGH23WtWLECixcvxqlTpyCVStG0aVMMGjQIY8eOhVqtrvC1aWlp+OOPP7B7925cunQJhYWFUKvViI6ORteuXTFmzBi0adPG489H/smUdxnG3Ivi4jvSAE3RAvNTUc1lscB0MMV6E0AWgF1BeSgpaA6NXIXo4CjcmdBHLG7Mvezwck3TdtXXVsDaG1tLlta3JZ0GgwFpaWkA4DfJZ0REBMxmM1cQJLcxZshT/hgrh09fQWGJAcWlJhSWGHDkdE5AJ567d+/GxIkTUVRUJD5mMBiwZ88e7NmzB+vXrxe3TLke69evxyuvvIKCggKHxzMzM7F+/XqsX78e3bp1w8yZM1GnTh2X9ZjNZjz99NNYs2aNw+MpKSlISUnB3LlzMXv2bDRp0qTcay0WC9577z3MnTvXYaguYF1BvrCwEKdPn8bChQsxZcoUPPbYY9f9ecl/RMo16Fh4rZdTptD4sDXew8ST/IpQ5iALAIfzT+PMqYsAgMYRDR0ST1OeY+KpiKzv1fbVVkVFRTh48CAMdr3PaWlpUCgUqFev+vZNdaVRI65kTJ5hzJCn/G0ucFZuMbLzSpBXYN0/Oa9Aj6ygYmTlFqNencAb1nn48GE8+uijKC21npz3798f/fr1g0KhwJ49e7B06VKsXbsWO3bsuK76N2/ejMmTJ8N8dTu35ORk9O/fHxERETh9+jT++OMPZGRkYO/evRg/fjwWLVqE4OBgp3WtWbMGRqMRQUFBGDNmDNq2bYsrV65g8eLFSE1NxYULF/DQQw9hxYoVCAkJcXjtZ599Ju4xWqdOHQwbNgxNmzaFSqVCRkYGVq9ejdTUVADAp59+iuTkZLRt2/a6PjP5D7VUjmjjta0EpYrAnBPMxJP8irPE0yS71qMoCNcWUbDoi2G+uqiQjaKOrxLPwO31dJZ0AtZ9ECu64ktERFXnr33pOHPx2j7VRpMFJpMFumIDgtRy6IoNMJksWLb1FBTyayetTRuE49bODX3R5Cr1zjvvoLS0FBKJBO+99x6GDx8uPjd06FAMGzYMjz76KAoLCz2uW6fT4aWXXhJHQfzvf//D0KFDHcr85z//wZQpU7B582acOnUKH3zwAaZNm+a0PqPRiOjoaPzyyy9o2rSp+Ph9992HZ599Fn/++ScuXryIL774Ai+++KL4fG5uLn744QcA1hFFv//+OyIjIx3q/u9//4tXX30Vf/zxBwRBwKpVq5h4Uo0RmOk01VxOEk+LXU4nCNeeN5bp7QQkkEf4vvctkBQVFYnDa+3Z9u2sbNVhIiK6cWazBUdO5+DMxQLxX3qWDhevFEEilaBhvVBIpBJcvFKE9CydQ7kjZ3JgNpf/21qT7Nq1C/v37wcAjBo1yiHptOnatatDEueJ3377DVqtFgDw8MMPl0s6AUCj0eCTTz4Rp5j88ccfyMzMdFnn//73P4ekEwAUCgXee+89REdHAwB+//136PV68fnNmzeLf28ff/zxckknYF0d99FHHxXvnzlzxs1PSf4sK+cKjulk4r8TBSZfN8krmHiSX3HW4xkfEYfmkY3RKDwOEZpw8XFDmRVt5eF1IZUrvd7GssRVXAOs09OWdBqNRofHbft1MukkIqoeeYV66xYLajlyC0qRlVeMbG0xjCYzGseGQiGXonFsKIwmM7K1xcjKK0ZuQSmC1HIIgvX1NdnmzZvF2w888IDLcsOGDUNERITH9f/1118ArFu4PfTQQy7LBQUFYfz48QCsvZpbt251Wi4hIQG9e/d2+lxISAiGDRsGAMjPz8e+ffvE5+6++26sW7cOs2fPxp133umyHQ0bXuvBtg09pprt4vE0RBw1i//kh0t83SSv4Jkj+Re7obQ2zaIao2GDWABAg9BrPZqlF447lJP4IOkM1IWFdDodDh48WGOSzpMnT4rbvLRo0cLXzaEagDFDnrLfGqOyFUmrWt0IDe65tTn+3HUOKqUM6Vk6FJUYER0ZhCC1AgAQpFYgOjIIFzILEaxRoGG9EIQHq3D7TY1RN6JmL1Syd+9eAEBkZGSFv69KpRKdO3fGpk2bPKr/4MGDAIAWLVogKqrixZl69uwp3k5JScGoUaPKlenevTsA1zHTuXNnhzpsdSoUCjRu3BiNGzd2+t6XL1/G4cOHsWvXLvEx25xUoprAv84eqdZz1uPZom4zyGMawyKYYbRcG3pQdmEhicK/Fn6oqVwlneHh4WjXrp3fJZ2AdcVd256MRO5gzJCnLBaLmET4Qlx0CMYMSMT6Pechl0lxIbMQuQWlCAu+dtE1N996Pz4mFPExoRjQvZGYmNZkWVlZAIAGDRpUWtbThcN0Op043DU+Pr7S8vZlrly54rSMbTiuq5ix/xzZ2dlO69i3bx927tyJU6dO4dy5czh37hx0Ol2l7SPyZ/53Bkm1mrPEs3Gdhgiu2xQHLx9Fs8hrf1CM2iyHcvJQLnRzo2pi0klEVFsEqRXo2yUeP68+Kg4QyskvQanBDLVSBkiuDRzq2yU+IJJOAOL8S3d6mj3tjbbfmkWjqbxn2L7+khLnwyEra4P9+9jP8QSsczZfeuklHDhwwOlrGzRogD59+mDevHmVtpVqDrNMXiuSstrwGakGEZwtgCCVwWQ2oU29llDKrv0RLbuirbJeE+82LsDpdDocOHAAJpPjhPaakHS2b9/e102gGoYxQ54KCvKPLUqy84oBACV6E8wWC4pKjAgLVuJyTjEkEkAmlYrl7HtDazKVSgWj0egy0bPn6ZxH+yTQnfqLi4vF264STNsCQa5ixr4O++1UsrKycN999yE3NxcAEBUVhZ49eyIpKQkJCQlISkpCbGwszGYzE88AU1cZCvv1mAPjklF5/nsmSbWTkx5PiVQKZZn5mxZDKQSD4x8IWXhdrzbNucCY42kymXDw4EGnSWf79u39cuN0IqLaKCuvBCaTBSazBXKZFA3rhSBYo0BRiRHpWTqYzNZtVrLyStC8YYSvm1slYmNjcfLkSVy8eLHSsu6UsRcaGgqVSgW9Xo8LFy5UWv7s2bPi7ZiYGKdlbEODXbF/n9jYWPH2rFmzxKTz3nvvxeuvv+50OkBBQUGl7STyR1zVlvyKs6G2Emn55M6Yd6ncY+rYZl5pU20gl8vLLfseERHBpJOIyM9k5xWjxGBCsEaB5g3DUS8yCLd0ikN0ZBCaNwxHsEaBEoMJ2driyiurITp06ADAOuT21KlTLstZLBZx2xV3SSQScR/MkydPIicnp8Ly9gv7tGzZ0mmZlJSUCuvYvXu3eNv22YBrq/eq1Wq88sorLuegHz9+bXFFwcmijET+iokn+RehfOK5+Nga/HLgD/x+ZDUyddZJ+BajEeom7aCMaQpZWF3IQiK5h+cNatCgARITEwFYk8527dox6SQi8jNNGoQhWK1Ak/phaNogHPcOSET7FtEYMyARTRuEo0n9a88HCvutRebOneuy3Nq1a10u1lOR/v37A7CO/pkzZ47LckVFRZg/fz4A636at956q9Ny+/btw4kTJ5w+l5ubi+XLlwMA6tevj3bt2onP2eayyuVyqFSuF0z86aefxNtlRypRzaSWOV5kkAXo9QQOtSW/4qzHc0f6PmgLrKGaFN0CMSHREPRFUMe3cignVYeUe221CKAtVRo0aAClUonIyMgalXReuXIFFosFUqkUdev6Ysg11TSMGfKU/aJrvlwNuX2LaDSODcOFzEK0aRYlrpgapFZgSHIzHDmTg0YxoQgPCZyV3pOTk5GUlITjx49j/vz56Nq1KwYNGuRQ5sSJE3j77bevq/5Ro0bhm2++QX5+Pn744QckJibi7rvvdihTWlqK5557ThzKe88994ir15ZlsVjwzDPPYPbs2eLxRaFQoLi4GFOmTEF+fj4A4MEHH3T4WxsXF4ezZ89Cp9Nh9erVGDx4sEO9JpMJH374ocO+pmUXJ6KaSSl1POcK1J5BJp7kV5wlnha7vK7IYB06ZCooPxTGF0vcB1DOKaqJJ+EXL14Ut8aoie2n6seYIU8ZjUZxawxfb8MTHqJymlhKpRK0ax548SyVSjFt2jSMGzcORqMRU6ZMwZo1a3DrrbdCpVLhwIEDWLRoEfR6PWQyGcxmM6RS90/dw8LC8N577+HJJ5+E2WzG888/j+XLl6N///4IDw/H2bNnsXjxYmRkZAAAGjdujFdffdVlfXXq1MHJkycxcuRIDB8+HE2bNkVOTg4WLFggzu/s3r07JkyY4PC6YcOGYcaMGQCAF154ATt37kSnTp0gl8tx5swZrFixQmyDTWFhIajmK3v+G6Adnkw8yc84STztf/kK9dY9rMquaCsPifRiowJLQUEBLBYLIiIifN0UIiIit3To0AEzZszACy+8gOLiYqxbtw7r1q1zKDNy5EhkZGTg77//hlLp2Yq+t912Gz777DO8/PLL0Ol02LZtG7Zt21auXM+ePfHJJ584rEZb1sMPP4wdO3bg77//xrffflvu+V69emHmzJnlkuOHH34Ye/fuxfbt22EymbB48WIsXrzYoYxMJsPjjz+OY8eOYcOGDbh48SJ0Ol2F7SH/p1c7buVjltacUWeeYOJJfsXZFZ9GEXEoDJHBaDGjQWjM1XJmh3JSTWh1NdGFmtH1WVBQgIMHDwKwbicRHh7u4xZVjfj4eHHYJJE7GDPkKU8TGap6AwYMwIoVK/Djjz9i27ZtuHz5MpRKJVq3bo3x48djwIABGDduHABrL6anbr/9dnTt2hXz5s3Dli1bcP78eZSWliI2NhZJSUkYOXIkevfuXekIK4VCge+//x4//fQTlixZgvPnz0OlUol1DBkyxGkdSqUS3377LRYtWoTly5cjNTUVxcXFCA4ORsOGDdG1a1eMGTMGzZs3x9y5c7FhwwaYzWb8+eefGDFihMefl/xHjt6x59oAJ9sLBgCJwOWwaj2dTucwCb5ly5Y+u3KmO30aB6c8L94XJBJcfnkMLMHWvbKSG3VFg7BY5G5d4PC6oOadoY5LqNa2AoC5pASm4mKYS/SQhwRB6ce9iPn5+UhJSYHZbE3aZTJZQCWfRERVJS0tDSaTCXK5HAkJ1f+3ha7fnXfeiTNnzqBDhw5YuHChr5tDAcLbx4Qd338KLL/Ww16qkqL/wkVV/j7u8lZuwB5P8iuC2fEKj0QqxU2tesFkNiG3JB9qubpcbycASNU+2ti7hkzyLJt0AoDZbEZ6ejoTTyIi8mvLli3DypUrER8fj//+978u9888deqUuM9m69atq7GFROQOJp7kX8p0wEvlcjQMqw9taQFyS7SI1ISj+OQ+5P+9DFJ1EKTqYEiDwhBx01AfNdj/OUs6AeviB61atXLxKiIiIv8QFhaGrVu3ArDuW/nGG2+UK6PT6fDqq6+K+1redddd1dpGohthtJhgv2RZzejW8BwTT/IrZed4Sq7Ov1LLlOhUvy0kEgnMhTkQTHqYdXqYdXmQasIgUXDujTMVJZ1t27YNmPlt9p+vJm0DQ77DmCFP2c9M8sUq6rVZr1690LBhQ6Snp2PevHk4evQobr/9dsTGxqKkpASnT5/GsmXLcOXKFQDW7VG6du3q41YzZsh9ddXhyLe7L5cE5t8lJp7kX8quaiu1HqjVCrX4UNkVbVUNmkMi8WUC5Z9/TLRaLQ4dOlQu6YyKikKbNm0CJukEgCNHjohbY7Rv397XzaEagDFDniopKRG3UwkK8tH0jlpKqVTiiy++wGOPPYZLly7hwIEDOHDggNOyY8eOxSuvvFK9DXSBMUPushgd92MVhMBcXIiJJ/kVVz2e9ozabIf7igjncz2qhZ9ewaxNSScREQW+pKQkrFmzBosXL8bGjRuRmpqK/Px8BAcHIyYmBp06dcLIkSN5IYlqJLNO63Bf4mR7wUDAxJP8ilAmUSo1GzH34BJoFGo0DKuP7g07wpSf5VBGHh5dnU30e1qtFikpKbCUOWgFctIZGhoqrjZH5A7GDHlKJpOJvVfkGxqNBvfffz/uv/9+XzfFLYwZcpdGpkCx3X0ZAnPTEf7FJb9i1jsONbAYDFh9aC2MCim6NmhvTTy1ZRLPiHrV2USn/OVvSl5eHg4dOlQu6axbty5at24dkEknADRt2tTXTaAahjFDnlKpVL5uAtUwjBlyl7LMlDGpn07julGBeRZKNVeZHk8B1r08AaBAr4NgMcNUcMWhjDzc94mnP6itSScRERER+T+eiZJfKTvHExI4DDYwFeYAZSZcK/ygx9MfXLlyhUknERERUQ1TajE53C+/Y31g4FBb8iuahnGI7NoFgiAgI/8SCkzFaBhRHwaJBSHKIBiyLji+QCaH4A/DEfxgrG2LFi1gNptx+fJlAEB0dDRatWrFpJOIiIjIj2Wbih2SMr3vTyu9gokn+ZWghg2hGj4UZqMJ0uKLgFSHbkFqcVsV/cU0h/JSVRBkKo0vmup3JBIJWrZsCcC6R2FtSjrPnj0rLhTTpEkTXzeHagDGDHlKr9eLC8Vw7h65gzFD5IiJJ/kViUyGIrMZRrMJkUH10DWpF0pNehzNSkXbmCQYUuc4lJeqgyGR+UsY+/7ylH3yWZtW0SsoKBD3ZCRyB2OGPGU2m7lCKXmEMUPkyF/O2InKUUgViFCHAQBiQ6xbpmQU5jmUkaqCq71d9sQ/JtX8R6WiP2T8A0dERERUc5ikslqRlNWGz0g1TOvWrV0mVqaCHIf7isiY6mqW38jNzcWpU6fQvn17Dt25qqKYIXKGMUOe0mg0jBnyCGOG3FU/MQFpp46J92XqwDy/Y+JJfqeiDd0t+iKH+7LgSG83x6/k5OTg8OHDEAQBBw4cQMeOHZl8ouKYIXKGMUOekkgkTCDII4wZcpeyfl1cTrp2PheiCvFha7yndqw8QgFBsJgh6EscHlPG1p5N4O2TTgAoKSnBgQMHYDQafdwyIiIiIqKK8ZIv+ZXMjZtwZvYcQCqB3mKEPiYCuv+7GxqFGr3qt4cmoQss+mII+mJYSouhbpDg2wZX05XMK1eu4MiRI2LSaRMWFsaeGyIiIqIaLEyuQVKRXryvkgZmjyfPWMmvGHJyYC4uBmANzuLMK/jt8HIAQMeIJlDFNnMoLw+vW91NrHauks6YmBgkJSVxGA8ArVYrzqOJiIjwdXOoBmDMkKdMpmsbvPOCH7mDMUPuCparEK+/Fi9StVBB6ZqLvwXkVwSz2fG+XU6l0xei7GxGqcI/5jd6K/dzlXTGxsaiZcuWTDqvOn/+vLg1BpMIcgdjhjxlMBjEixVMIsgdjBlylyBYHO6bAnQaFX8LyK8IZscEyz7xVAu1K8nKzs7G0aNHmXQSERERBbBiTQgud0xGoTYfFosFCmUQWvi6UV7AxJP8Sni7tsjPyECJsQSn8s6iJESJ2JB6MAtmqHT5DmWlqiAftdL7XCWd9evXR2JiIpPOMurXrw+LxQKplOulkXsYM+QphULh6yZQDcOYIXelbdmC0hU7xMTMoJYB9/q0SV7BxJP8iiI8FBGN4hFkMiAvVAJTiBrJjZMAANLcSw5lLfpiXzTRuSpMBJl0ei46OtrXTaAahjFDnmISQZ5yJ2ZeeuklLFmyBABw4sQJbzepRrL/jjZu3IiGDRuWK/Pnn3/i559/xsmTJ6HT6RAaGop77rkHL730UnU39/qYzFAb7c77pBbXZWswJp7kX67+zinlSrSulwBFZASK6rdEqCoYkn83AXY5lzwk8PbwzMrKwrFjx5h0EhEREblhwYIFmDp1qsNjeXl5UCqVPmoRucLEk/xK2YRLIpGgRVQTCIKAs7uWAlIZpCoNpKoghHUd7JtGunCjOWFubq7TpLNBgwZISEhg0klERERUxqxZswBYzxnHjx+Pjh07Qq/Xo127dj5umfsMZiNqQ5rMxJP8TJnlo68mW5bSIggmAwDAbCiBuTAXmmZ+cECpwmQwLCwMISEhKCwsFB9j0klERETkXF5eHrKzswEA/fv3x2uvvebjFl2f+K7dcLAkU7yvUgf7sDXew8ST/IsAZGZmiot+xEdFAQBM+dllCkqgCAusPTzlcjk6dOiAgwcPorCwkEmnBw4dOiRujVGTrnCS7zBmyFPFxcXi1hhBQYG7uB1VHcaM95WUlIi3W7SouevASkPVKIgPRmlpCQRBQJCc+3gSeZ0+NxeCXg+LxQKJXA7BZN3HyFRwxaGcLDQSElngLfQgl8vRvn17XL58GQ0bNmTS6SZBEMR/RO5gzBAR1XwWy7VFeGryXqmGrHMwZJ6BbZ11aYCmaIH5qajGytm+A8aduwAAFgAnTp/AgRZq1L2cjii7cvIwP1uRsgoTRIVCgfj4+CqrrzbQaDSQy+VcdZLcxpghT0mlUrH3iqpfy5YtAQCTJ0/G6NGjMW3aNGzfvh0AEB8fj0ceeQRDhgwRyxcVFeH333/H9u3bceLECWi1WgBAeHg4Wrdujdtvvx13332302Tl/vvvx549e9CzZ0/8+OOPOH/+PH788Uds27YNmZmZ0Gg0aN26NYYPH4677rrLZUxIpVIUFBRg3rx52LRpE86ePQulUomEhASMHTsWd999t1uf3WKxYP369Vi+fDlSUlKQl5eH4OBgNG7cGH369MH48eMRFhbm9LW2z5KcnIzvv/8ep06dwg8//IC///4b2dnZiIqKQvfu3fHf//4XzZs3BwCUlpbi559/xooVK3DhwgXIZDK0bt0aDz30EPr16+dWmyv6LFu3bsWiRYtw4sQJ8ftMTEzEwIEDMWrUKLcWBZo1axY+//xzh8c+//xz8bFhw4bh/fffv6G2VqdQmQoJxQbxvlwWmFt9MfEkvyKRyhzuF+i0+HX/Qtysiob94Vke7h/DbK/3BCQvLw/h4eHcQ7CKJCQk+LoJVMMwZshTarXa100gADqdDuPGjcPZs2fFx44fP+6QeG3fvh3PPvusmGzaKy0tRWZmJjZv3ozffvsNs2fPdpm0AcCGDRvw/PPPo7j42hZuer0eO3fuxM6dO7Fq1SrMmjXL6UWsjIwMPPzww7h8+bLDa/ft24d9+/Zhy5YtlfbSXb58GVOmTMG+ffscHtdqtdBqtTh48CB++uknfPjhh7jlllsqrGvlypV45ZVXoNfrxccuXbqEZcuWYePGjZgzZw5iY2PxyCOPlNvaZc+ePdizZw9effVVTJgwocL3cSUvLw+TJ0/G7t27HR43GAzYu3cv9u7dK/5MYmJirus9aqoQmRJNSo3ifWmQxoet8R4mnuRXBIvjvkUGhTWxKzQ47tkpD/ezHk8PXL58GcePH0dUVBTatGnD5JOIKAAYDIbKC7kgk8kgk8mcPmc0Gq97SLi36pVKpT4b1vjrr79Cr9cjOTkZQ4YMgVarxV9//YXk5GQAwMmTJ/HYY4/BaDRCJpOhf//+6N69O6KiopCdnY2DBw9izZo1sFgsOHjwIGbOnOlyQZpz587h2WefhcFgwKBBg5CcnAy5XI7du3djyZIlsFgs2Lx5M+bOnYsHH3zQ4bVZWVm47777xOS3W7duGDx4MEJDQ3HkyBH89ttvWLVqVYW9e/n5+XjooYdw+vRpAEBcXByGDx+OZs2aIT8/Hxs2bMD27duh1WoxceJEfP311+jdu7fTuk6dOiXuaTl8+HD06NED+fn5WLx4MVJTU6HT6fDmm29CJpPhxIkT6NmzJwYOHAiNRoNt27Zh+fLlAIDp06dj8ODBiIqKcvo+rhgMBowfPx4nT54EYO2lHj58OBo3bozMzEwsWrQIp0+fRmpqKiZOnIiFCxdWGGODBg1Cq1atkJOTI26lMmjQIAwebN3xoH79+h61j6oHE0/yK2UTT8vVHkWpvsSxoMW/NtZ1t+fTlnQCQE5ODo4cOcLkk4goAOzcufO6X5uQkIC4uDinz+3ZswdGo9Hpc5Vp0qQJmjRp4vS5/fv3O/TieaJBgwZITEy8rtfeKL1ejz59+uDrr78W//baJ32fffaZ+H3NmDEDd9xxR7k6Ro0ahYceegiCIGDlypUuE8+LFy9CoVDgu+++ExNbABg6dCi6desmJnKLFy8ul3jOmDFDTDofe+wxTJkyRXzurrvuwujRo3H//feLK7I68+GHH4pJ52233YaPP/7Yoed97NixWLJkCV555RWYTCa88MILWL9+PUJCQsrVdenSJSgUCnz77be4+eabxcdHjBiB22+/XTwncdbeu+++G3Xr1sUPP/wAo9GITZs2YdSoUS7b7cw333wjJp233XYbZsyY4ZB033///Xj00Uexc+dOHDlyBMuXL8fw4cNd1te8eXM0b94c6enp4mPNmjXDbbfd5lG7/EVhSTEyLNfOBWVGC5r4rjlew7Nd8i9lEkqFXIHooDpQGEodHpfIa95uR5cuXRKTTpucnBxkZWX5qEVEREQ1z//93/85veBbUlKCv/76CwDQtWtXp0knAPTs2RMdO3YEYB3+6WxIrs19993nkHTaDBs2TLxYkJaWhtLSa+cpubm5WLp0KQCgffv2ePrpp8u9vmnTpnj33Xddvm9mZqZYR8OGDfHRRx85He49bNgwMenNzc3FggULXNY5atQoh6QTAEJCQsReQsB6sWLy5MnlXjty5Ejxti2BdJfZbMYvv/wCAIiOjsYHH3xQrqdXoVDgf//7n3ghfuXKlR69R013at9BSP+xiP9K9hb5uklewR5P8itmu3kHABCmCcOtjbujTup8h8flETVrqO2lS5fKzZcArENNats8Bm9IT0+HyWSCXC5Hw4YNfd0cqgEYM+Qpg8EgLi7kzuIn5B0KhQLt27d3+pxGo8GmTZtw/vx5p71+9uLi4rB//34AcEgay7r99ttdPpeYmIiMjAwAQEFBgZgYbt++XVxtdcSIETAajU5j5tZbb0WTJk0c5qva7NixQ+y5HT9+PDQa13P+/vOf/+Dnn3+GyWTChg0b8J///MdpOfsE0579MbBv375OR2HZD12132/cHfv370d+fj4A6zBfVz+b2NhYvPzyy+JiQxR4mHiSXxFMJof79ULqolVUAi6ZzA6Py2vQHp6uks5GjRqhadOmXCGxCuTm5op7MjKJIHcwZshTJpOJiacfiI+Pr/D7r1u3LurWdX6OUFRUhBMnTuDff/8Vk07A2iPnim2lV2fsEyiT3fnLwYMHxdtt2rSByWRy2eauXbs6TTwPHDgg3r7ppptctgGwfuYWLVrg+PHjOHTokMvVl5s2ber09aGhoeJtV6vq2ye+Fg+nOx06dEi83blz5wrLXu/CRVQzMPEkvyIpM5HcWKTD5fRjiDDZHeRkCqjjWlZzy9zg5CB/8eJFpKamlnucSScRUWApO4TRE64WAAKA7t2739DiQq506tTphhYX8pWKVqC1l5WVhQ0bNuDYsWM4e/Yszp07h6ysLKefuaLvwT4pK8t+8Rv7ZOzKlWt7j8fGxlbYzkaNGjl9PDc3V7ztzhZr8fHxOH78OIxGIwoKChAeHl6ujLPHynLVs3oj5yv230eDBg2uu55AZpRIakVSVhs+I9UkZQ7+qvAIxBbqkG/3mFSlgURZ/cvaFxw9hrDWrdwub0s69dnZUEVfGxrMpLPqJSYmcn898ghjhjxV2XYq3uoF9dZeszV1D9vKvmeTyYSPPvoIv/zyi0MvpI1Go0GPHj2QnZ0tLqZTketZvdd+KGpERESFFwCCg4OdPl5UdG2OX0XDbG3s47OkpMRpkumrlYhtw2wBbkvkSj11BOwHMNfM387KMfEk/yI4Dt+QSKUw6XIdHpOqgqr9ZPH8/AW48NtCNJ4wHg1HDLNroMTx/6tsSWfB0WPQphxCeJvWCG/XFo0bN0aTJk14slvF+IeMPMWYIU9x9fGa4aWXXsKKFSsAWJPrrl27ol27dkhISEBiYiJatGgBuVyO559/3q3E83rY98rq9foK55u62obHPtksKSmpdM6q/QrF/nZ8s29PRfNpKfAx8SS/IljKDHeRSmEpKnB8SBVUjS2y9nRe+G0hAODcz78CgGPyWUZGRgbS0tLEpBMA8o8cRYt27Zh0EhERecm+ffvEpDM+Ph5z5sxxOUzV0wVyPBFtN8opPT0dSUlJLsu6Wtnefp7qhQsX0KpVxSOuzp07B8Ca5EVERHjQWu+z3/Pz0qVLFS4cdOrUKRQVFaFRo0Z+9znoxvHyHfmVsvMssotzsDdYDmmLzlA1ag1lTFMooqp3fkBY61ZoPGG8eP/cz78i/fclTss6SzoBoFXPnmjT51YmnURERF6yZcsW8fYTTzxR4dzIY8eOibevd66rK126dBFv7969u8Ky+/btc/p4u3btxNu7du2qsI7MzExxv09/XA22TZs24m37RZOcmTVrFkaNGoWePXtCp9N5uWX+Qyl17AsM1AQtUD8X1VRlDv5n8zPwqz4dhug4aBq3RVBiN4S271vtzWo4YljFyadEApPJhHPnzjlNOrs9cH91NrfW0el0KCwsrFV/pOjGMGbIU2azWfxH/sl+P86gINejo9auXYvLly+L953NBb0Rt9xyC1QqFQBg3rx5KCkpcVru8OHDDivg2rv11lvFebhz5851WQcAzJkzR1zcqE+fPjfQcu/o2rWrOFR42bJl0JfZOs+moKAAW7duBWDd/7Sy4cWBRC1zTDxlVXstxG8w8ST/UmaJbuFqB6HZbu6nYHB+wPI2p8nnkqXifblcjugLGSjcf+2PSKubmXRWh9OnTyM1NVW84ktUGcYMeUqv16O0tNTlSTP5XlxcnHh70aJFTnsyd+7cialTpzo8VtU/06CgIHFbkLNnz+LVV18tl9xmZ2fj+eefd1lHvXr1MGTIEADWobbPP/+80/mRS5cuxU8//QTAOqR17NixVfUxqkxQUBBGjx4NwDoybOrUqeW+D4PBgKlTp4qLKvnj5/CmsqEaoHkn53iSfyn7R0KANfPU2A1BUNSpD1+xze20zfU8//NcmItLUH/Qnbi4chWyFixGfbkcl6IikZjcC90mMOkkIiKqDoMGDcKsWbNgNBqxbds2jBo1CkOGDEF0dDSysrLw119/4e+//y53ruGNkQ9PPPEENmzYgDNnzmDVqlVIS0vDyJEjER0djdTUVMyfPx9arRZRUVHIyclxWsfLL7+MvXv34sKFC1i/fj0GDRqEESNGoGnTpigoKMCGDRuwbds2ANbFr959913UqVOnyj9LVXjyySexZcsWnD59GkuXLsWRI0cwbNgw1K9fHxcuXMAff/wh7mfas2dPDB06tMree9asWfj8888BAJMmTcKTTz5ZZXVXFYtS5XBfkLpeCbkmY+JJ/qXMHwOlQokIqRIKybVfQFlIZHW3ykHZ5DNj8R+4vOZPmK9epVOZTLh5wAA0HTXCZ22sbaKjo2GxWLjqJLmNMUOe8tVWFOS++Ph4vPHGG3jjjTdgNptx6NAhHDp0qFy5rl274q677sKbb74JADhx4gS6du1apW3RaDSYM2cOHn/8cRw9ehSpqal47733HMokJyeje/fu+OSTT5zWERYWhrlz52LSpElISUlBRkYGZs6cWa5cREQEPvnkE/Tq1atKP0NVCgoKws8//4yJEyfi0KFDSEtLw/Tp08uVu/nmmzFr1qxatybGZYPjYlelsLgoWbPxKEp+RV5mP6uourHoFRQBueTayaHUB3t4llU2+TTb7bdVbssV8rr69X3XC041E2OGPOWtfTqpao0aNQotW7bEjz/+iH///Rc5OTmQy+WIiopC69atMXToUPTr1w+FhYV49913YTQasWbNGowbN67K21K/fn0sWLAAixYtwvLly5GamgoAaNKkCYYNG4Zx48bhxx9/rLCOmJgYLFy4EKtXr8aqVatw6NAh5OXlISIiAvHx8Rg4cCDuuecehy1c/FV0dDQWLlyI5cuXY+XKlTh27Bjy8/MRHByMtm3bYtiwYRg0aBAvCAYwiVDVS3lRjaPT6XDixAnxfsuWLX02ofvEh5/gyvYd4v3owbchuk0MYDGJQ2Pq3HKvT9pm78KFCzCbzch87Q2YCq8N0ZGHhqDHrz/5sGVERHSj0tLSYDKZIJfLkZCQ4OvmEJGPefuYsOP7T4Hl28T7pSop+i9cVOXv4y5v5Qbs8SS/IghlhhbkZSJvy0bIgsMhVQdD3bitbxpm5/z58zh9+jQKjh6DVBBgP/DXVKhD+u9L2ONJRERERG7Rmw1QVV6sxmNfNvkXi2MHvMVYAkCAuUgLY04GBJNvVxO0Tzq1KYeQGxqCvJBgyEOvXQWqaJ9PIiIiIiJ70eoIh/v2a5sEEvZ4kp8pk3jqSwC7KZ3y0Khqbs81586dw5kzZ8rt01n/ztvR5f7xSP99iTjn0/Y/ez6rx7Fjx2A0GqFQKNCqVStfN4dqAMYMeaqkpASCIEAikUCj0fi6OVQDMGbIbWW3Eyw7AjBAMPEkv1JuHyND2cTTN8uEu0o62/S6GV3ut+7tWXbBISaf1cdoNMJoNPq6GVSDMGbIU4IgON0XksgVxgy5y1RwxeG+xMLEk8j7ylzhSbeUQK2SI15v3WhY5oMez7Nnz+Ls2bPlks62vW5G56tJpw2TT99QKBQO/xNVhjFDnrJt71Dbtnmg68eYIXepZDIU292XIjAvWDDxJL9iyMl1uH/GLCAnIghjMwsAAPKw6k08XSedvdD5fudLrzP5rH4cKkmeYsyQpzhUkjzFmCF3qSWOKZkMgXmxgosLkV8pOyRFAqBAdi1MJbLq652wJZ367GyHpLNdBUmnTcMRw9B4wrXe0HM//4qCo8e81lYiIiIiIn/GxJP8S5nE0yIBVLbHJFIIEu+HrCAIOHPmDM6ePQsAUEVHI7xNawDWpLNTJUmnjX3yGT9mNMJas4eFiIiIiByZykw1C8yBthxqS34muFlTXC66AoPZCMFiQUmQFJFGMwBAqtJArrnxzWsrIggCzp49i3Pnzjk8Ht6uLVp16oTE5F4e1ddwxDCEtUpi0klERERETl0y6hySspLAHGnLxJP8S9OHHkDm0STklebDcj4FkTknEVlqXXlSotRAGhTq1fd3lnQCQGJiIho0aHBddTLp9L5Lly7BYrFAKpWifv36vm4O1QCMGfKUwWAQbyuVSh+2hGoKxgyRIyae5FfkISEIU0dDI4uATL8XISYTmlxNPKUqDSReHmobEhICiUTiMNf0RpJOqh7Z2dninoxMIsgdjBnylMlkEvdkZBJB7mDMEDniHE/yW8FFeWhWahSDVBFez+vvGR0djVatWolLn7ds2ZJJJxFRLSOTyQAAZrOZ+zAS1XKCIMBstk77sh0bqpqxzJY7gXrUYY8n+Z1mzZpBEATk7pLCbP+ErHrCtV49a4JrNpvZE1JD2GKGe6WRuxgzVBGlUgm9Xg9BEFBcXIzg4GCoVCpfN4tqGMZMYCguLhYvQHmr5zqmYSOkR9ntfqAJzD2mmXiS3wkJsS4glFNa5PC4IjK22tpgSz6pZrDFDJG7GDNUkbCwMBQWFgIAcnNzERQU5LWeDgpcjJmaTxAE5OZe22M+LCzMK++jaRGP892u7fsaogrMv1Ecakt+SRAEWPTFDo8poxtVaf1FRUWVFyQiolrHNt8fAHQ6HdLT01FUVMRht0S1hO08MT09HTqdDgAgkUh40fIGsceT/MrJr75B+tGDkEqksJSoYUqIRPP64VAYSiGPjKmS9xAEAadOnUJGRgbatm2LqKioKqmXiIgCg1QqRVxcHDIyMiAIAnQ6HXQ6HSQSCXuxiGqBsvO7JRIJ4uLiIJV6p88uSKZE/NXFNAFAHaCHGSae5Fe0hw5DkZEJAJABOBQpoEGXjghXBEMRceOJpy3pTE9PBwAcPnyYyWcAKC0tFefrqdVqXzeHagDGDFUmNDTUIfm0WCyQSCTi/0SVKZu4UM1kSzpDQ723pV+4IghJxde235EF6CLITDzJr1gEi+MDkmsHa6lK4+QV7hMEASdPnkRGRobDY0eOHMFNN93Epc5rsNTUVHFrjPbt2/u6OVQDMGbIHaGhoUhMTIROp8OpU6fEpNObJ6AUOAoLC8ULXIyZmkUmk0GpVCIsLAwhISFe6+l0xWg0Vl6oBmLiSX7FYnFYxxYCJAiWWsNUorj+XglnSadNy5YtmXQSEZFTUqkUYWFhkMlksFgskMvlSEhI8HWzqAZISUmB0WhkzFClBE0IJO16Q5unhdligUwd5OsmeQUTT/IrqvatkSrfC1gsEAQLCiKVUF8N0+sdpiIIAtLS0nDx4sVyz7Vq1QoxMVUzd5R8p06dOjCZTJDLeUgj9zBmyFOMGfIUY4bcdfDv7biyaqd436SWo9NYHzbIS/ibQH4lumUr6OWAqfAK8ory0LpeJGQ3MC/CVdIpkUjQqlUrbpsSIBo2bOjrJlANw5ghTzFmyFOMGXKbrgR186+N+istDcwVtJl4kl9RyhRoEBYDsyIYcZGNEN46EVJJPmRBnu+bxKSTiIiIiMg/MPEk/3L1Ao/uyDZYigthTN8KdXQoovo/4Fk1goDU1FRcunTJ4XEmnURERETkTwxmI2rDaiNMPMkvWQwl1v9Li2DKK4LUg0nWFSWdrVu3RnR0dJW2lYiIiIjoesW0aoW0c6fE+7JgLi5EVC1ysrMgNZkcHpOHurfPJpPO2iktLU3cGoMrB5I7GDPkKcYMeYoxQ+7SNGwA7U2NUFJSAkEQEKxg4klUDQQUFeVBJQWUdlt6ykLruPXqK1euMOmshUpKSmA0GmEqc8GCyBXGDHmKMUOeYsyQu/QX01CafhwSANYlNQMzRQvMT0U11qmFC2DJyoFeAPQACuQSxEcHQ6pQufX6unXrIj4+HhcuXABgTTrbtGmDunXrerHV5GsSiUT8R+QOxgx5ijFDnmLMkLs0UgXq643ifYVM6sPWeA8TT/IrhsJCyM3XujqPa5RoEhwBQbBAIqn8l1AikaBZs2YAgPT0dCadtUS7du183QSqYRgz5CnGDHmKMUPuipCr0bbIIN6XBql92BrvYeJJfsUMwSEoBUECwWwCBME29qBStuQzNjYWwcHBXmknERERERG5j4kn+ZcyyaUMAqSqIEikMs+qkUiYdBIRERGR3zNbLDAK1+5LBcF14RqMiSf5FWmZzNMiA6RKTblygiDg1KlTaNCgAYKCAnPlLyIiIiIKfIf27IXpwLVzYIOqCIG4DjITz6sEQcDKlSvx+++/49ixYyguLkZ0dDS6deuGcePGoX379jf8HqmpqZgzZw52796NrKwshIaGonnz5rjnnnswbNgwyGSe9eoFIrVcBTNKxfutigyQhzmuaCsIAo4dO4asrCxkZ2ejY8eO0GjKJ6dUe2RnZ8NisUAqlXL1YnILY4Y8xZghTzFmyG1mC9T2XZ4Buh4VE08ApaWlmDx5MrZs2eLweEZGBjIyMrBixQo8/fTTePTRR6/7PRYtWoS33noLRuO1Fatyc3ORm5uLvXv3YsmSJfjiiy8QERFx3e8RCKSQwmx3P9QiQKoKEe/bJ50AoNfrceDAASaftdylS5fEvdL4x53cwZghTzFmyFOMGSJHTDwBvPrqq2LS2bx5c4wePRp169bFkSNH8Ntvv6G4uBgff/wxYmJiMHToUI/r37ZtG15//XUIggCNRoMxY8agbdu2yMnJweLFi5Gamop//vkHzzzzDGbPng2pNDCXUHZL2THtEkDTpN3VpwQcPXoU2dnZDkWMRiNKS0uZeBIRERFRjWOCpFYkZbXhM1Zox44dWLlyJQDgpptuwrfffguVyrpn5F133YWRI0fivvvug1arxXvvvYf+/fsjJCSkoiodGAwGvPnmmxAEAUFBQfj111/Rpk0b8fmxY8fimWeewfr167Fjxw6sXr/LH8AAAEHuSURBVL0ad911V9V+yBpEsJjLPSYLjYTFYsGxY8fKJZ1SqRRt27ZFZGRkdTWR/FCjRo0gCAL3SiO3MWbIU4wZ8hRjhtwVoQ61m2gWuAlaLe5as/rhhx8AAHK5HO+8846YdNo0b94cr7/+OgBAq9Vi0aJFHtW/bt06pKenAwAeeeQRh6QTAJRKJT744ANxiO0333xzPR8jcJRNPCUSyKMbuUw627Vrhzp1HOeAUu0TERGByMjIWj9UndzHmCFPMWbIU4wZcpdC4rjOS6BeqqjViadWq8XOnTsBAL1790Z8fLzTcoMGDUJUVBQAYO3atR69x+rVqwFYt/cYO3as0zLBwcEYPnw4AOsCRGfOnPHoPQKJYLE4PiBX4HjqSZdJJ3s6iYiIiIj8X61OPP/55x9YriY6N910k8tyUqkU3bp1AwAcPHgQ+fn5br/H3r17AQAtW7assGfO/v23bt3qdv2Bxr6/UwBwLrw+rly54lCGSScRERERBQp5mfVd2OMZgNLS0sTbiYmJFZZt0aIFAOsCN6mpqW7Vn5mZiYKCAgBAQkLFu/E0b95cvH38+HG36g9EpRbrqr8CgMzIcFxUqB2el0qlaN++PZNOcmAymWA0GmEymXzdFKohGDPkKcYMeYoxQ+4Kkikd7ssFFwVruECdu+qWjIwM8XZcXFyFZWNjYx1eZ+sBrYhtbqc79cfExEAqlcJiseDixYuV1h2oBEG4mnRGoEitgmB3BciWdHKuBJV19OhRccn6qthzlwIfY4Y8xZghTzFm6HoFaN5ZuxPP3Nxc8XZlPWj2yY5Wq3Wr/ry8PLfrVygUCAoKgk6nc7v+QGVLOgFAdUmLc6uXQwIBsaVF2P2bASbBLG67ImsQio6JDQEAFgg4hlJIQ+tAFdMUBUs2w1JYLK4mJ+3aEt0ax8NSbO2FPmzMt/5iWwQY1x+FwWyC5Gq9KkgQZffrUQgLIJNBpg5GidkIg8Uk1quSyhEFOQSTAQCgE0ywzVQ1CBaUWq7VK0Sq0LVDM7HeNJTCqFRD3ag1dBv3wJiRDenVek3NY9G7ezeYtJkAgJMmHUoE62Bk09ZUlOpKILV9D5Agxq69xbDALJFAFhQKg2BGsUkPqcSaxEshQaxcA8FgXT+tWDDDdPUQZxYE6CxGsV6zWobuN10bDXAeBhRKBGiad0Lpv8dRfOQkZFfrLa0bjD4D74D5ivWCywVzMbRXe7At/5xDcZZWrBcAYqEQh1yUwgIjBMiCwmABkG8qEesFgFh5ECRX21sKCwzC1W9YALQWA6QWs/UTSCTQJCcgVK6wxhKMuAITVI3aQJKeh9xt/0AutU7gN2kU6DByMDTZ6ZBIpMgylyLTogcASE5kovD0ZUgt19pbF3Iorw5+MUCAHhZI1SGQyGTQGovF7xcA6iqCINeXQnK1bKlwbRB5gcUAiV29MZ0aomF4KABACzMyYICyfnNIjXLkL//r2mqIEiD+vrsRk3UBErkC+RYjzpuLrU9laFGUch6wmyMdARmCrn7DJggogQUSlQZSuRIFJvu184AIhQYavf5qWaBYuHZ1XmcxOaw2HZxQF0lx1v3oSmDBaeihqNMAsogYFM77E4LdzzjszpvRUg7AbEKpYEaaSWd9orAUpdvTYBHM4l/XYEgRDuvPxgKgCGZIFCpIlWroTAZYYIZt8FGwTIUwswW4+nMvtGtvicXs1jFCiyBIN++HpESPjKvxwmNE4B4jZLZ6JUBirxbXdYwozLmEbMEAiVSK3HW/8BhxVaAeI6riPCLMDEAAzBJgq0zKYwQC+xhxI+cRRTk5CIYdqeNiQ4GiVieepaXXDqxlV7MtS6m81gVu/7qKlJSUuF2/rYxOp3O7/kBlsRvYLjNYIC0tRmyeFhqDsVzZTKkRxbIs6+sAnKwTDJleCwUMiD95GarSa38Mz0SdRIklF/r0EwCA1MggCBIJJBYBbS4UO/7CAyi2u33t1z8fGgBldwzV2d2W2JUvWzan1IDikH3i/bPhGpSog6BSyRCddgER2ddi5qxEj9L6wShOtc4TPh2mQaHcehBNPFeMOnrH62HFcGRtQyGUAJRlntM5LWv9334mcpFaguJT19qbHqJCtlIBdUgQIk6eRt1z2mtlCwugz0hF8WHrHOXzwSpcVlkPMU3OlqCO1nHhqFKUONy3tqEIUgBlL9MUI9dJWasou9sWCZB37jBkV/8AZmoUOKNRQqVWIvx0HuqdvzY/u0gtRc6lVISnbAcAXFQrcCrI+k01OF2KOhmOKyybrv4r214AiCjTXgNyYXDR3rKf7Ur0GdS5Yq05RynDyRA1FDIBGp0Ejc5du3hlkQAZl1IRdNi6IFq2QobUUOtQ9DrnDGiQUf73o3wMW9sbVqacRXymfHvDy5TNCrmE4tILAIACmRQnwzWQW0ogL9WixZkch7Lp51PR0JALc8EVFEklSI0IAgBotGY0zyh/nHPVXmcbWLlqb9myro4R5pC6aHEhD2oeI3iMcPMYUaJWIPPqMULKY4QoUI8RVXEeYf+N8xhhFcjHiBs5jygbOyWwIBDV6sTTfsy9fWLpjP3z7o7VN5uvBVxl9duX8fVcgJMnT6J58+YIDQ0VH9Pr9ThxwnqgjYiIQKNGjcq9prjYesgqO5zkypUr4vDh+Ph4h95fs9mMI0eOAABCQ0MRHBIGVY4Wl+tEokSlhNRiQf1cLdTG8n8wKyPUsIEKglCzDjKCufyeq/7MUsPaW9O+33IrUvs5tVqNmjaYiccI7+Ixwrtq2jEC4HmEt9W0GK7OY4QgtfbCWCwWHD58GIB1Fwz7NWEA4Ny5c+Kip61atYJCoRCfKygowNmzZwFYpwzWq1fP4bWHDx+GxWKBWq0ut9ZN2d0kqkqtXlzIeuJhZawksTEYrl2bdCeJBBx7OSur3/497IPGF8xms7jar40gCDAajTAajQ4JtY1tAr2zz2mxWMTnytYLQHzOZDKhQb/+kAKIzc1DcGnpdSedNVLN+vsGoaa1t4Z9wTWrtTWvvTVSDfuSeYzwrprV2prX3hqphn3JPEa4ZmoSI962P08uV87u/Fso84Xan387O3e3Pefq3N0banWPZ1BQkHhbr9dXmFDaJ57uDJt1Vn9lbGXsE2JfkMlkkJZd1lkiERNimaz8uHO5XO4yYZZKpeJzZesFriXacrkcje4bA3X9WGSuWYZQfSmMmmBxboZcJkOJYLGbmyFAUVcDU726UKlVUCsUaGE3N+NKo7MoKi6FVCKFTCZDdNMW0DSOhyqmKXQ6HWINeRAAhKiDUBR/wmFuhsIiIEKQWl8rlTrM3yrUl1ydmyGFXC5zmJthMptRaDFCuNpeAwSHuRmWMDlM9WKhUCigUavRxDY3I6YlrjTOwhV1LqQSCeRyOcKaxUId3xry0CiUlJSgTnEOgiUCNGoNTI3PQGc3N0MiCKhrkUIqkUAmlTnMzSgx6FFkNlytVwYppOLcDIvFgkKzAWYAMqkUFonEYW6GUSGBqV4cZDIZgoOC0BAGhEsEaGJaIq9xMa7ozeL3K4sOgSouEXJVEAwGA8IKrwASM1RKFeRNLiPXbm6GIFgQbZFBCkAukzvMzTCYzcg3FkN2tV6JRCLOzRAEQGfSwwgBUokEUqnMYW6GBQLi6taHSSpHWGgoYmCEDCao6iVAXxCC7IwCa71SGczBSkTVT4RGHgRBADR5mYiVmKCQKxDUrAC5uDY3Q4CASLMUCgAKmdxhboYFEuQZiq62RwqpVCrO3wKAYqMeegiQSCSQyWQO87cECAirUxemEA1CQkIQJbGgBQxQ1msOU7AZOXGXILHVK5Mivn4iQmUaSOQK5OZkIVaih0wqQ4jECG3BtflbAgSEmSVQQwK5TAYzIM7fgkwBrb7o6u+j9Tu0n79VajSiGGbrUC+53GH+lgABQXXCYIoOhyZIg3CZFC2uzt+ShNRFbvxpQBAgkVrjsGGjRATb5m/l5yHWbB2cFRauRMGFa/O3BAgIskgQIkggk0oBiVScvyVRqJGvL4LF7ju0n79lNJl4jOAxgscIHiN4jOAxIjCOETIZgpo2Rv9JL8LG/jy5LPvzb3G+91X259/Ozt0VCgUsFovT83dn5+tVQSKUTY9rkalTp2LBggUAgA0bNiA+Pt5l2UWLFuG1114DAHz00UcYMmRIpfXv378fY8aMAQA88cQTeOqpp1yWNRqNaN++PSwWC3r16oUffvjBk49yQ3Q6nTiMFrDuORoS4mzGBBERERERBTJv5Qa1usezSZMm4u1Lly5VmHhevnxZvN2gQYPrqr8imZmZYre2u/UHqjNnzsBkMkEul6Np06a+bg7VAIwZ8hRjhjzFmCFPMWbIU4EeM7U68bSfoJuWlobu3bu7LJuWlgbA2o2dkJDgVv2RkZGIiopCTk6O+HpXTp48Kd4uO8G3tiksLBT3vSJyB2OGPMWYIU8xZshTjBnyVKDHTK1eXKhTp07iD3b37t0uy5nNZuzda12KOikpCWFhZRcad61bt24AgGPHjqGwsNBluV27dom3K0qAiYiIiIiIappa3eMZFhaGm266Cdu2bcOmTZtw8eJFp8NcV61ahdxc6/4/AwcO9Og97rjjDqxduxYmkwnz58/Ho48+Wq6MTqfDkiVLAABNmzZFUlLSdXyawNGmTRtfN4FqGMYMeYoxQ55izJCnGDPkqUCPmVrd4wkADz74IADr4j7PPPMMdDrHLXFPnjyJd999F4B1/5xRo0Z5VP9tt92Ghg0bAgC++OIL/PPPPw7PGwwGvPDCC9BqtQCAhx566Do+RWCRyWTiPyJ3MGbIU4wZ8hRjhjzFmCFPBXrM1OoeTwBITk7GHXfcgT///BP79+/H0KFDMXbsWNSvXx9Hjx7F/PnzUVRkXVb8hRdeQJ06dRxev3v3bkyYMAGAdYjsL7/84vC8UqnEq6++iscffxylpaV48MEHMWrUKHTu3BlarRYLFy5EamoqAKBz584YOXJkNXxqIiIiIiKi6lPrE08A+OCDD1BUVITt27cjPT0dH374ocPzEokEkyZNErdG8VS/fv3wxhtv4N1334XRaMS8efMwb948hzLt2rXDl19+GbBXOIiIiIiIqPZi4glAo9Fg9uzZWLFiBZYuXSouBBQREYEuXbpgwoQJ6NKlyw29x9ixY9G1a1f89NNP2LlzJ7Kzs6FQKJCYmIghQ4Zg9OjRAbuClafy8vJgsVgglUoRGRnp6+ZQDcCYIU8xZshTjBnyFGOGPBXoMcPE8yqJRIK7774bd999t0ev69Gjh8MGqxVJSEjAO++8cz3Nq1UuXLggLiUdiL90VPUYM+Qpxgx5ijFDnmLMkKcCPWZq/eJCRERERERE5F3s8SS/06BBA3GYAZE7GDPkKcYMeYoxQ55izJCnAj1mmHiS36lbt66vm0A1DGOGPMWYIU8xZshTjBnyVKDHTGCm00REREREROQ3mHgSERERERGRVzHxJCIiIiIiIq/iHE/yOykpKeJS0u3bt/d1c6gGYMyQpxgz5CnGDHmKMUOeCvSYYY8nEREREREReRV7PMnvBAUFwWQyQS5neJJ7GDPkKcYMeYoxQ55izJCnAj1mJIIgCL5uBPmWTqfDiRMnxPstW7ZESEiID1tERERERES+4K3cgENtiYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIirwrMmatUo50/fx5msxkymQyNGjXydXOoBmDMkKcYM+Qpxgx5ijFDngr0mGGPJ/kdrVaL3NxcaLVaXzeFagjGDHmKMUOeYsyQpxgz5KlAjxkmnkRERERERORVHGpLfqdly5YQBAESicTXTaEagjFDnmLMkKcYM+Qpxgx5KtBjhokn+R2VSuXrJlANw5ghTzFmyFOMGfIUY4Y8Fegxw6G2RERERERE5FVMPImIiIiIiMirONSW/E5hYSEsFgukUilCQ0N93RyqARgz5CnGDHmKMUOeYsyQpwI9Zph4Esxms8P94uJiH7XE6tSpU+IeRi1atPBpW6hmYMyQpxgz5CnGDHmKMUOe8peYKZsLlM0VrpdEEAShSmqiGisrKwsXLlzwdTOIiIiIiMjPxMfHo169ejdcD+d4EhERERERkVcx8SQiIiIiIiKv4hxPQkREhMN9lUoFmUzmm8YQEREREZHPmM1m6PV68X7ZXOF6cY4nEREREREReRWH2hIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqua8bQIFHEASsXLkSv//+O44dO4bi4mJER0ejW7duGDduHNq3b3/D75Gamoo5c+Zg9+7dyMrKQmhoKJo3b4577rkHw4YNg0wmq4JPQtXF2zEjCAI2btyIZcuWISUlBbm5uVAoFIiLi0OvXr0wYcIENGjQoIo+DVWH6jjOOPPWW29h3rx5AIATJ0545T3IO6ojZkpLS/Hbb7/hzz//xJkzZ6DT6RAVFYUuXbpg/Pjx6Ny5cxV8Eqou1REz+/btw9y5c/Hvv//iypUrUKlUaNy4Mfr164fx48cjIiLixj8I+ZTt78akSZPw5JNP3nB9GRkZmDNnDrZt24aLFy9Co9GgcePGGDx4MMaMGQO1Wl0FrfYOiSAIgq8bQYGjtLQUkydPxpYtW5w+L5PJ8PTTT+PRRx+97vdYtGgR3nrrLRiNRqfPd+3aFV988QUP1jWEt2MmPz8fU6ZMwY4dO1yWUSqVePvtt3HPPfdc13tQ9aqO44wzu3btwoMPPgjbn00mnjVHdcTM8ePH8eSTT+L8+fNOn5dIJHjsscfw9NNPX/d7UPWpjpiZPn06vv/+e5fPR0dHY9asWejUqdN1vwf51t9//42HH34YFoulShLPv/76C1OmTEFRUZHT5xMTE/HVV1+hYcOGN/Q+3sLEk6rUs88+i5UrVwIAmjdvjtGjR6Nu3bo4cuQIfvvtNxQXFwOwHmyHDh3qcf3btm3D//3f/0EQBGg0GowZMwZt27ZFTk4OFi9ejNTUVABAr169MHv2bEilHE3u77wZMxaLBRMmTMDevXsBAA0aNMCIESPQrFkzFBUVYfv27Vi3bh0sFgskEgm+/PJL9OvXr2o/IFU5bx9nnCkqKsLdd9+N9PR08TEmnjWHt2PmwoULGD16NHJzcwEAPXv2xIABAxAREYF9+/Zh0aJF0Ov1AKy9H2PGjKmiT0be4u2Y+f777zF9+nQAgEKhwOjRo9GuXTsUFBRg/fr14t+tsLAw/PHHH4iPj6+iT0bV5fDhw3jggQeg0+kA4IYTzxMnTmDUqFHQ6/WQyWQYOXIkunbtiqKiIixbtgz79+8HALRs2RILFiyARqOpks9RpQSiKrJ9+3YhMTFRSExMFCZMmCCUlpY6PH/y5Emhe/fuQmJiotC9e3ehsLDQo/r1er3Qr18/ITExUejYsaNw+PDhcs8/8cQTYhtWrFhxw5+JvMvbMbN48WKH+ouKisqV2bhxo9C6dWshMTFR6N27d7k2kH/xdsy48uabb4rva/tHNUN1xMx//vMf8T2++eabcs/v379faNOmjfgeer3+uj8PeZ+3Y0ar1QodO3YUEhMThW7dugnHjx93eN5isQgzZswQ2/DMM8/c8Gei6rVlyxaha9euDn8zZs6ceUN1jhkzRkhMTBRatWolbNmyxeE5i8UiTJs2TXyvr7/++obey1vYHURV5ocffgAAyOVyvPPOO1CpVA7PN2/eHK+//joAQKvVYtGiRR7Vv27dOrG34ZFHHkGbNm0cnlcqlfjggw/EIbbffPPN9XwMqkbejpkFCxYAAFQqFT766CMEBQWVK2ObRwMAmZmZ2Lp1q8efg6qPt2PGmV27dmH+/PkAgNDQ0Buuj6qXt2Nmz5492LZtGwBg+PDhTodeduzYUezl1Gq1+Pvvvz3+HFR9vB0zO3bsEHtMH3nkEbRs2dLheYlEgqeeegqNGjUCAGzcuBEmk+m6PgtVL4PBgJkzZ+Kxxx5DQUFBldW7f/9+7Nu3DwBwzz334NZbb3V4XiKR4NVXX0Xz5s0BWGPY1ZQ0X2LiSVVCq9Vi586dAIDevXu7HBIyaNAgREVFAQDWrl3r0XusXr0agPWXa+zYsU7LBAcHY/jw4QCsCxCdOXPGo/eg6uPtmNHpdEhJSQEA3HzzzYiOjnZZ9s477xRvHzx40O33oOpVHceZsoqKivDqq69CEAQMHToUrVq1uqH6qHpVR8zYhmOqVCpMmTLFZbmRI0dizJgxmDhxovhe5H+qI2bsh+wnJSU5LSOVStG2bVsAQElJCfLy8jx6D6p+O3fuxMCBA/HFF1/AYrEgKCgIDz30UJXUbTsHBoD77rvPaRmpVCo+p9VqsWvXrip576rExJOqxD///AOLxQIAuOmmm1yWk0ql6NatGwDrCX5+fr7b72Gb79CyZUvUqVPHZTn792fvlf/ydszk5eWhXbt2iI6ORrNmzSosGx4eLt6uyiuUVLWq4zhT1kcffYT09HRER0fjlVdeue56yDeqI2Y2bNgAwHqBq169ei7LJSUl4a233sLTTz8tJhTkf6ojZkJCQsTbFy5ccFnu4sWLAKwLGdn/nSL/tHz5cvGiQtu2bbFo0SL07du3Suq2nQOHh4ejdevWLsvZx6xtJIY/YeJJVSItLU28nZiYWGHZFi1aALAuU25bDKgymZmZYkKQkJBQYVnbMAPAusog+Sdvx0x8fDwWLVqE7du344UXXqiw7KlTp8TbXA3Zf3k7ZsqyH2L7xhtvMDZqIG/HTFZWFnJycgBYh9PaGI1GHDt2DFu3bsXhw4c5TLIGqY7jjP02LL/++qu48JS9PXv2iKN2unfvDqVS6Xb95Dt16tTB1KlTsXDhQjE+bpTZbBbPU5o3b17hwplNmzYVtxT0x3NgJp5UJTIyMsTbcXFxFZaNjY11+rqK2A9Lqaz+mJgY8ZfSdrWQ/I+3Y8YTv//+u3i7Q4cOVV4/VY3qjBn7IbYDBw7EgAEDPK6DfM/bMXPy5EnxdsOGDWE0GjFr1izccsstuOeee/B///d/GDFihLjSutls9vATUHWrjuNM27ZtccsttwAATp8+jfHjx2PXrl0oLCzE5cuXMW/ePDzxxBOwWCwICQnB888/7+GnIF8YN24cNm/ejHHjxlXpfvJXrlyBwWAAUHlMymQycWqRP54Dy33dAAoMtiXkASAyMrLCsva9Blqt1q367ec2VFa/QqFAUFAQdDqd2/VT9fN2zLhr27Zt2Lx5MwAgKioKvXr1qtL6qepUZ8zYhthGRkZi6tSpHr+e/IO3Y+by5cvibaVSifHjx+PAgQPlymm1Wnz44Yc4cOAAZsyYAYVC4Vb9VP2q6zjz6aef4plnnsGWLVuQkpKCBx54oFyZzp0747XXXiu3mCL5p3bt2nmlXk9iErAOx718+bJfngOzx5OqRGlpqXi77OpvZdkPF7F/XUVKSkrcrt++jLv1U/Xzdsy449KlS3jxxRfF+xMnToRara6y+qlqVVfM2A+xff311yucU07+zdsxY7+J+/Tp03HgwAEkJCTgm2++wb59+7B371588sknqF+/PgBg/fr1+PTTTz34BFTdqus4ExwcjPfff1/s+SxLIpGgadOmHOJPAXUOzMSTqoT9/JXK5iHYP+/uvBf74UnuzHOwleG8Gv/l7ZipTG5uLh5++GFxflavXr3EbVXIP1VHzNgPse3fvz8GDx7seUPJb3g7ZmxbYgDWRWJatWqF3377DX369EFwcDDCwsIwePBgzJ8/X7yA8eOPP3plygBVjer627R69Wr06dMHW7duRUxMDCZNmoQZM2bgnXfewR133AHAOg1kyJAh4lxPqp0C6RyYiSdVCfteosr2DbKNUwfc+wUCHK/wuLMvke09OJzJf3k7ZiqSnZ2NCRMm4PTp0wCAxo0b46OPPoJEIrnhusl7qiNmbENsw8PD8eabb3rcRvIv3o4ZQRAc7r/99tsOK5ba1K9fH0899RQA68ng0qVL3aqfql91HGc2btyI5557DqWlpejRowdWr16NJ598EoMGDcKoUaMwc+ZMzJ49G2q1GkVFRXjkkUeQnZ3t+YehgBBI58BMPKlKBAUFibedrc5mz/5A7c6QAU/rty/DYZP+y9sx48r58+cxbtw4ceXC+vXrY86cORxOWQN4O2bsh9i+9NJLFW6NQTWDt2NGo9GIt5s0aVLhHC9bLxYAcSN48j/ejhlBEPC///0PZrMZ4eHhmDlzptOLFcnJyeKiQvn5+fjhhx/cqp8CT3BwsHi7pp8DM/GkKhEWFibermwys/3z7p7s29df2V5ZRqNRHP7EZMJ/eTtmnElJScGYMWNw7tw5ANbV4X755ZdKV4kj/+DNmLEfYtu7d28MHz78eptJfsTbxxn7hKFp06YVlq1Tp444Xy8rK8ut+qn6eTtmjh07Ju7dOXjw4ArncI4ePVq8uPHXX3+5VT8FntDQUPG2O/vF2sr44zkwV7WlKtGkSRPx9qVLlxAfH++yrP0qgA0aNLiu+iuSmZkpbv7sbv1U/bwdM2Vt27YNTz31lHhRokWLFvjhhx8QExNzXfVR9fNmzBw+fFjctmnbtm1o2bJlpa+xlYmLi8OmTZsqLU/Vz9vHmYYNG3rUHttwTNvfKPI/3o6Zs2fPircr2ydUqVSiefPmDscnqn3q1auH4OBgFBUVVbpFitlsFodl++M5MHs8qUo0b95cvG2/+bIztuclEgkSEhLcqj8yMhJRUVFu1W+/r1plB3XyHW/HjL1NmzZh4sSJYtLZoUMH/Prrr0w6a5jqjBkKDN6OGfu/MZUtGGQ2m8UeMh57/Fd1HmfcGTZp25e8KveFpJrHFpenTp2qsNzp06fFxYj88RyYPZ5UJTp16gSFQgGj0Yjdu3dj3LhxTsuZzWbs3bsXAJCUlOQwpKUy3bp1w9q1a3Hs2DEUFhY6DD2wt2vXLvF29+7dPfgUVJ2qI2YAYM+ePZg8ebI4Ib9Xr174/PPPHebxUM3gzZhJSEjAF198UWm5Tz/9VDzZtJX3x3k0ZOXt40xkZCQSEhKQlpaGtLQ0XL58GbGxsU7LHjlyRJwT6I8nhGTl7Zixv+hw+PDhCsuaTCZxETx/7L2i6tOtWzekpKQgJycHaWlpLi902J8Dd+vWrbqa5zb2eFKVCAsLw0033QTA2rvkaijAqlWrxI1wBw4c6NF72BZmMJlM4gIgZel0OixZsgSAdb5NUlKSR+9B1ac6YiYnJweTJ08WT/b69u2Lr7/+mklnDeXNmKlTpw5uu+22Sv/Zb95teyw5OfkGPxl5S3UcZ2xb7giCgO+++85luV9//VW87el7UPXxdsy0a9dOnBu8cePGCqcPLVu2DDqdDoD1oinVXvaLk/3yyy9Oy5jNZsybNw+AdV6oP/5tYuJJVebBBx8EYF3c55lnnhEPljYnT57Eu+++C8C6QteoUaM8qv+2224T59N88cUX+OeffxyeNxgMeOGFF8ShTA899NB1fAqqTt6Ombfffls8MWjfvj0+++yzKtmOhXzH2zFDgcfbMTNmzBhxEY/58+dj2bJl5cosXbpUfLxz587o0KGDpx+DqpE3Y0apVIp7RhcXF+Ppp58W/07Z27dvH9577z0A1m0xHnjggev5KBQgOnTogE6dOgEAFi1ahDVr1jg8LwgC3nnnHbGH/L777vPL0TgSoewmVEQ34KmnnsKff/4JwLrowtixY1G/fn0cPXoU8+fPR1FREQDgrbfewpgxYxxeu3v3bkyYMAGAdYissys6mzZtwuOPPw5BEKBQKDBq1Ch07twZWq0WCxcuRGpqKgDrH/Zff/2VcyJqAG/FzKlTpzB48GBxn70XXngBjRs3rrQ9ERER6Nq1a5V8NvIObx9nKnL//fdjz549AIATJ07c6EehauLtmFm/fj0mT54szq3q27cv+vXrB6VSic2bN2Pt2rUArFtu/PHHH2jRooXXPitVDW/GTElJCe677z4cPXoUgHXI9rBhw5CUlASz2Yxdu3Zh1apVMJlMAIA333wTY8eO9ernJe+wj4VJkybhySefdFouPT0d/fv3B+B6wbojR47g3nvvhdFohEQiwZAhQ5CcnIzS0lIsXbpU3KapSZMm+OOPPxy2YfEXnONJVeqDDz5AUVERtm/fjvT0dHz44YcOz0skEkyaNKncQdpd/fr1wxtvvIF3330XRqMR8+bNE4cV2LRr1w5ffvklk84awlsxs3TpUofN3adPn+7W664nGaHq5e3jDAUeb8fMgAED8PHHH+O1116DTqfD5s2bsXnzZocyERER+Oqrr5h01hDejBmNRoPvv/8eU6ZMwa5du5CXl+d0n06FQoFXXnmFSScBANq0aYNPP/0Uzz//PIqLi7F8+XIsX77coUzjxo0xe/Zsv0w6ASaeVMU0Gg1mz56NFStWYOnSpeJCQBEREejSpQsmTJiALl263NB7jB07Fl27dsVPP/2EnTt3Ijs7GwqFAomJiRgyZAhGjx4NhUJRRZ+IvM1bMWPr/abAUx3HGQos1REzAwcORJcuXTB37lxs2rQJGRkZkEgkiI+Px2233Yb77rvPL/fVI+e8HTN16tTBjz/+iI0bN2L58uU4ePAgcnJyoFQqERcXh169euH+++/nPtPk4LbbbsOqVaswZ84cbN26FZcvX4ZEIkHTpk1xxx134P777/fbpBPgUFsiIiIiIiLyMi4uRERERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiIiIiIir2LiSURERERERF7FxJOIiIiIiIi8ioknEREREREReRUTTyIiIiIiIvIqJp5ERERERETkVUw8iYiIiIiIyKuYeBIREREREZFXMfEkIiKiKmc0Gn3dBKoAfz5EVN3kvm4AERF5z+7duzFhwoTrfn1cXBw2bdpUhS26pl+/fsjIyAAAnDhxwivvUZ1mzZqFzz//vNJycrkcarUadevWRcuWLdGjRw8MHToUISEh1dDKG2MfT8OGDcP7779frkxpaSk+//xzBAcHY+LEieWef+mll7BkyRIAwM8//4wePXp4t9Fe5snvmEQigVKpRFhYGOLi4tCuXTsMGzYMbdq08XIrr6ns50NE5C3s8SQiIqpGJpMJOp0OZ8+exZ9//olp06ahf//+WLduna+bdsNOnDiBwYMH47vvvoPJZPJ1c/yOIAjQ6/XIzs7GgQMH8Msvv2DEiBGYOnUqLBaL19+fPx8i8iX2eBIR1RLh4eH473//69FrQkNDvdSawNa2bVsMGjTI6XNmsxnFxcW4cOEC1q1bB4PBAK1Wi8mTJ+Orr75Cnz59qrexVejIkSNIT0/3dTN8prLfMYvFAp1Oh1OnTmH79u0oKSmBIAhYsGAB1Go1XnnlFa+2r7b/fIjIt5h4EhHVEiEhIfjPf/7j62bUCgkJCW5915cvX8bDDz+MU6dOwWKx4I033sC6deugUqmqoZWe69Gjxw0Pi37//fedDtENBJ78jmm1Wrz00kvYvHkzAOuw49GjR6NFixbebCIRkc9wqC0REZGPxMbG4osvvoBUav1zfPnyZa/NqSX/EhERgZkzZ6JRo0YArMNwf/vtNx+3iojIe5h4EhER+VDTpk3Rq1cv8f7ff//tw9ZQdVIqlbj77rvF+4GwyBYRkSscaktERNfl9OnTWL58Ofbu3Yvz588jPz8fEokEYWFhSEhIQO/evTFq1KgbWq01LS0NixYtwu7du3HhwgUYDAZERESgSZMm6NmzJ0aNGoV69epVWs+lS5fw22+/Yfv27UhPT0dRUREiIyPRunVrDBgwAEOHDoVCobjudt6o5s2bY9u2bQCsvZ6u5ObmYsGCBdi2bRtOnz4NnU6HsLAwNG7cGL1798aYMWNQp06dCt/LYDBgxYoVWL9+PQ4fPgytVguVSoW6deuiU6dOuP3229GvXz+nr3W1qq2zFX0///xz8bFJkybhySefBOB8VVuLxYK+ffuKn33p0qVo1apVhZ9j4cKFeP311wEAI0aMwHvvvVeuTElJCRYtWoRNmzbh5MmT0Gq1CAkJQZMmTXDrrbdi7NixiIiIqPB9vK1u3bri7aysrArLHjp0CKtXr8Y///yDS5cuQavVQqFQIDw8HElJSejbty+GDRsGpVLp8DpPfj728vLysGDBAvz11184d+4cCgoKEB4ejhYtWqBfv34YPXo0NBrN9X50IqplmHgSEZFHjEYj3n77bSxatMjpSpylpaXIysrCjh078O233+LLL79Ep06dPH6fL7/8ErNmzSr3HtnZ2cjOzsbevXvx7bff4tVXX8Xo0aNd1vPDDz/g008/hV6vd3g8KysLWVlZ2LJlC7777jvMnDkTLVu29LidVcE21BYAZDKZ0zILFizA+++/j+LiYofHc3JykJOTg3379mH27Nl45ZVXMHLkSKd1XLhwAY8++ihOnz7t8LjRaBRX2l2yZAk6duyIr776qtIktqpIpVIMGTIE3333HQBg1apVlSaeK1asEG/fc8895Z7fuXMnXnjhBWRnZzs8npeXh7y8POzfvx/ff/893nrrLQwePPjGP8R1OnfunHjbPgm1p9Pp8NJLL2H9+vXlnjMajSguLsalS5ewefNmfPfdd/juu+/QtGnTG2rXihUrMG3aNBQUFDg8fuXKFVy5cgW7du3Cd999h48++gg33XTTDb0XEdUOTDyJiMgjL774IlatWgXAuidlcnIykpKSEBwcjIKCAhw8eBB79+6FIAjIzc3Fk08+ibVr13rU87ls2TJ89tlnAKxJSXJyMlq3bo2goCBkZmZiy5YtyMjIQGlpKV5//XU0bNgQN998c7l6PvzwQ8yePVu836lTJ3Tt2hUhISG4ePEiNm/ejKysLJw9exZjx47FvHnzkJSUdIPfkOfsh1ja5vzZ+/bbb/Hxxx+L9xs2bIi+ffuibt26yM7OxubNm5GRkYGioiK8+uqryM3NxaOPPupQh8FgwGOPPSYmnfXr10efPn1Qv359FBcXIzU1FVu2bIHFYsGBAwcwadIkzJs3z6329+rVC0FBQTh8+DBWr14tPmYbQuzOhYd77rlHTDxXr16N5557zmXZzMxM/PPPPwCse81269bN4fmNGzdi8uTJMBqNAIDGjRvjlltuQXR0NLRaLbZv347U1FQUFhbi2WefRXFxMUaNGuXWZ61KBQUFWLZsmXjfWQJnsVjwyCOPYP/+/QAAtVqNW2+9FS1atIBarUZeXh727NmDw4cPA7BeXJg8eTKWLl0qXtDw9Oczd+5cTJs2TbzfsmVL3HzzzYiMjER2djb++usvnD9/HtnZ2XjkkUfw1VdfoXfv3lX4zRBRIGLiSUREbtu1a5eYdIaFheHnn3922jO1e/du/Pe//0VJSQmys7OxYcMGp71Srnz55ZcArEmnsy1GXn75ZbzyyitYvnw5AODrr78ul3hu3LhRTDojIiLwySefOMylBAC9Xo8PP/wQv/zyC4qKivDUU09h5cqV5YYqelNaWhp27dol3r/lllscnt+1a5dD0vnkk0/iscceg1x+7U/4Sy+9hFmzZuGbb74BAMyYMQMdOnRAjx49xDJ//vknTp48CQDo3r07Zs+eXW713JSUFDzwwAMoLi7Gv//+i71795ZL6pzp3LkzOnfujD/++ENMbDp16uTRKsotWrRAmzZtcOTIEWRkZODAgQPo2LGj07KrV68We8KHDBkCiUQiPnfx4kW89NJLMBqNkEqlePHFFzFhwgSHXuUXX3wRf/zxB6ZOnQqj0Yhp06ahc+fOaN68udvtvVHnz5/HCy+8gNzcXADWrYvGjRtXrtySJUvEpDMuLg4///wzGjZsWK7cqlWr8Nxzz8FiseDEiRP4999/xZ+dJz+fw4cP43//+x8AQKVS4b333sNdd93lUObll1/G999/j08++QRGoxHPPfcc1qxZU2095ERUMzHxJCKqJXQ6Hb7//nu3y997773leiltc/MAawLkajhkjx49MGzYMLHH7PDhw24nnlqtFmfPngUAJCYmOt3XUqFQYNq0aVi/fj1KSkqQmpoKg8EgJoyCIGDGjBli+ZkzZzokYTYqlQqvvfYaLly4gC1btuDcuXNYtmxZtfV+HT58GE8//TTMZjMAoE2bNuWS408//VS8/dBDD2HSpEnl6lEoFHjmmWdQVFSEX3/9FRaLBZ9++inmz58vljl48KB4+4EHHnC6ZUv79u3x8MMP4/PPP4dUKkVKSopbiWdVueeee3DkyBEAwMqVK10mnitXrhRv2y/OA1h7h23DQ5944gk8+OCDTusYPnw48vLyMH36dBgMBnz99df48MMPb6j9lf2OlZSUQKvV4ujRo0hJSRF7ZJVKJT7++GOniZv979yrr77qNOkEgMGDB2PZsmX466+/AFj37Lyen91nn30mtuutt94ql3QC1uHgjz76KC5fvoy5c+dCq9Xi559/xtNPP+3x+xFR7cHEk4iolsjPz8f06dPdLn/HHXeUSzzvvPNONG3aFOnp6eVO+Muyny9ZVFTk9vva9+RlZGQgOzsb0dHR5cppNBr8/vvviIyMLHfCvn//fqSlpQGw9uw4SzrtTZw4EVu2bAEALF++/IYTz7S0NJcJiF6vR05ODlJSUpCSkiI+HhQUVO7nk56eLvZ2BQUFOU067U2ZMgV//PEHiouLsW/fPpw+fRrNmjUD4Dh3dP/+/bjtttuc1jFhwgTcddddiIuLq9aeXwC466678MEHH8BkMmHt2rV45ZVXHHoqAeDs2bPisNK2bds69FIaDAZx6KpSqcRDDz1U4ftNmDABn3/+OYqLi7F27Vq8++67N/SZPf0dA6zJ/uuvv4727ds7fX7MmDG46aabkJWV5fQijL2WLVuKiadOp/OoHYB1CLNtkavY2NhKLxZNnDgRc+fOBWD9vWHiSUQVYeJJRERu69u3L/r27VtpueLiYqSnp4v3TSaT2+8REhKCVq1a4dixYygsLMSIESPwwAMPoE+fPuWGQroaGrl3717xdps2bSp9z9atW0OpVMJgMCAlJQUmk8khAfbU4cOHxeTIHU2aNMGnn36KFi1aODxuPwQ3OTm50nmyISEhSE5Oxrp16wAA//zzj5h4duvWDT/++CMAYPbs2cjIyMDQoUPRo0cPBAUFiXWEh4cjPDzc7bZXpTp16qB3797YvHkzsrOzsWfPnnLzHu17O4cOHerw3JEjR8TFl5o0aYLg4OAK30+hUKBt27bYs2cPDAYDDh06hC5dulTRp3GtU6dO6NWrF/r06YN27dpVWNZZj6Mz+fn5yMzMFO978jtnY5ubDQCtWrVyGMLsTHR0NOLi4pCRkYGMjAxkZmYiJibG4/clotqBiScRUS0RFxeHTZs2VWmdRUVFOHPmDM6fP48LFy7gzJkzOH78ONLS0hxOfG0ns+567rnn8Oijj8JsNiMzMxPTp0/H9OnT0aBBAyQnJ6N37964+eabXSZitrmMAPDrr7/i119/dfu9S0tLkZub69Y2LddDrVYjJCQEsbGxaNOmDfr06YM+ffqU69kD4JC8u7voUVJSkph4XrhwQXy8X79+6N69O/bs2QMAWLNmDdasWQOFQoHOnTsjOTkZffr0QWJi4o18vBs2dOhQbN68GYB13qKrxFMul5dbjdb+556amurxKsWXLl26niaLnP2OlZaW4uTJk/jxxx/FlXjT0tIwZMiQSpNOZ/Lz83H27FmcP38e58+fx+nTp3H8+HGcOnXK4ffM0985wPH727x5s8ff38WLF5l4EpFLTDyJiMgjFosFy5Ytw7x583D48GGnW6oA1qGdtrmLnkpOTsaXX36JN954w2Ffy4sXL2LhwoVYuHAhlEol+vTpg4ceegidO3d2eH1+fv51va/9628k8bTf4/JGaLVa8ba7+03al7P/HqRSKb788ku88847WLZsmZiYGI1G7N69G7t378bHH3+Mxo0bY/jw4ZgwYYJDT2h16d+/P8LCwlBQUIB169Zh6tSp4h6rR44cwZkzZwBYYyQqKsrhtVXxc69qarUabdu2xUcffYS2bdvif//7H3Q6HaZNm4bs7Gy3hqcaDAb89ttvWLRoEVJTU12Wu5HfOcA/vz8iChxMPImIyG1FRUWYNGkSdu7c6fC4RCJBbGwsWrRogbZt26J79+5IT0/H66+/ft3v1adPH6xfvx5//fUX1q1bh+3bt4srgALWk/F169Zh3bp1eOKJJ/DUU0+Jz9mffN95550u58+5Ujah8ZXr6bVydSEAsK6c+sEHH+CJJ57AqlWrsHnzZhw6dMjhNefOncOMGTOwcOFClyuoepNSqcTAgQOxYMECaLVa7Ny5E7feeiuAiofZAo4/9zZt2ni8P6erxYyqyoMPPogLFy6IPfBfffUVGjRoUOE+tLYtS44fP+7wuFQqRVxcHBISEtCuXTv06NED27dvF1eEvh7231/Pnj093iLlRvcOJaLAxsSTiIjc9u6774pJZ3BwMCZMmIDevXuL+3jasy06ciOUSiUGDBiAAQMGQBAEnDhxArt27cK2bduwa9cucTjvF198ge7du4vDMsPCwsQ6OnXq5HJlU39nP9cyLy/PrdfYl7P/Huw1atQIEydOxMSJE1FQUIA9e/Zg586d2Lx5My5evAjAurDTSy+95NEw5apy9913Y8GCBQCsw21vvfVWCIKANWvWALAm0P379y/3OvvPGxMT49F2LtXlxRdfxN69e8W9W99991106dLF5Xzl5557Tkw6o6Ki8OCDD+Lmm29GQkJCuZWJN27ceENts//+WrRo4ZffHxHVXOUnlBARETmRmZmJpUuXArD2cM6ZMwdPP/00unTp4nQRF/sE6Hp67sqSSCRISkrCgw8+iO+//x6bNm1ymINmW80UAOLj48XbttVtK2Pfm+ovGjduLN62JSqVOXbsmHjb/ntwJSwsDLfddhumTp2KTZs2OfRS7927V0xEq1PXrl3Ftm/evBkmkwn//vuvOAfzjjvucLodjP3ntZ+vWJH8/PwKe4mrmlKpxPvvvy8uXlVaWooXX3zRaRsOHjwoLjAVFBSEBQsW4NFHH0Xbtm2dfn53L064cj3fX15eXpX8fhNR4GPiSUREbjl06JA4FK9Vq1bo0KFDheV3794t3vbkxHTjxo34z3/+g759++Kbb75xWS4mJgaPPfaYeN9+Rc+uXbuKt//66y9xX0JXDh06hJ49e6JTp04YMWLEda0I6g32n2P79u2VbpFRWFiIv//+W7xvGzpqNpvx4osvYvjw4ejVqxcMBoPT10skEowfP96h981+jm1lKlsF1RO2obQFBQXYu3cv1q5dW+65sjp16iQmdOfPn680Wdfr9bjjjjvQvn173H777eWGs3pL69atHbZ6OXTokLjnrb0DBw6It3v16lXhhQRBEMSFowDnQ64r+/nYx9u///5b6cWYrKws9O7dGx06dMDAgQP98uINEfkPJp5EROQW+2TFftEbZzZs2OBwEuxJIicIArZv346LFy9i1apVFb7WvofHfjXNnj17IjY2FoB1jpyrPTVt7/fxxx8DsG4D07BhwxvaSqUqNW7cGJ06dQJgbdvnn39eYfnPPvsMJSUlAICEhASxR1gmk+H48eM4cuQIrly5UuGQTIvF4vDz9WSVUvuVeW9kkRvAMbncuHEjNmzYAMC6cmy3bt2cviY4OBgDBgwQ70+fPr3Cix6zZ89GXl4ejEYjiouLy21n402TJk1CXFyceH/GjBnIyspyKGP/O1dZb+bPP/9c6RZGlf18mjdvLs6HNhgMmDFjRoXv+emnn8JoNEKv1yM4OLjcfrpERPaYeBIRkVvst/O4ePEifvrpp3JlLBYLFi1ahGeffdbhcVsy5I5bbrkF0dHRAKzDS6dNm4bS0tJy5c6cOeOQiN1+++3ibYVCgccff1y8/9lnn2HOnDnleoFKSkrw1ltvib2EcrkcEydOdLut1WHy5MliT9WcOXPw+eefl0sqTCYTZs6ciV9++QWAtWfrlVdecSgzYsQI8fabb76JlJSUcu8lCAI++OAD5OTkALAu0GOfHFXGfnubjIwMt1/nTKNGjcSk+/fffxeH2Q4ZMqTCnruJEydCqVQCsPYSP//88+V6igVBwKJFixwW4pk4cWK1XnBQq9WYOnWqeF+n0+G9995zKGP/O/fvv/9i/fr15eoxGAz4+uuv8cEHHzg87ux3zp2fz1NPPSV+vwsXLsQHH3xQrofcZDLhyy+/xO+//y4+9uSTTzqtj4jIxj8u6RIRkd9r1qwZkpOTsX37dgDAe++9hzVr1qBTp04ICQlBZmYmtm7dKiYICoVCHOJaWQ+pPaVSiZdffhnPPPMMAGDBggXYtGkTbrnlFjRo0ACAdY/GLVu2QK/XAwBuvfVW9O3b16Gee++9F//88w+WL18Oi8WC999/H7/99htuueUW1KlTBxcvXsTmzZuRnZ0tvubZZ591e7/M6tKzZ09MmjQJs2bNAgDMmjULS5YsQd++fVG3bl1cuXIFmzdvdujtevzxx3HzzTc71DNmzBgsXrwYJ06cgFarxahRo9CrVy8kJiaiTp06yMnJwfbt28W5fQqFolzyWhn7FXBXrFiB0NBQxMTEICEhAf369fP4s99zzz3Yv38/iouLxcfuvvvuCl/TsmVLTJ06Fa+//joEQcCKFSuwbds29O/fH/Hx8cjNzcXu3bsdhuH27dsX9913n8ftu1F9+vTBgAEDxIRyzZo1GDFihLiarG0RobS0NAiCgEmTJiE5ORmtW7eGSqVCRkYGNm/eLPaGVvY7587Pp3fv3njsscfw1VdfAQB++OEHrF69Gn379kVMTAyysrKwbds2hz1ix48fL648TETkChNPIiJy2/Tp0/HQQw+JJ+379+/H/v37y5VLTEzE+++/j3vvvRdGoxFpaWkwGAxiT1RlBg8ejLy8PLz//vswGo3Izs526F2xd8cdd5Tr7bH54IMP0KBBA3z//fcwGo04e/Yszp49W66cWq3Gc889h/vvv9+t9lW3SZMmITIyEh999BGKi4uRnp4u9m7aCwoKwptvvul0DqRSqcTs2bMxceJEHD58GACwY8cO7Nixo1zZunXr4p133nGY8+eOxMREdOrUCfv374cgCOLKxv369buuxHPQoEF49913xR63tm3bulz91d6oUaMQGhqKN954A1qtFlqt1mX8jBgxAm+++WaVzk/1xGuvvYYdO3aIyfW0adOwcuVKqFQqyGQyzJo1Cw8//LC4yNP27dvFiz/2unbtiilTpmDcuHEArHueluXuz+fpp59GVFQUPv74Y5SUlODy5cuYP39+ufpkMhkeeeQRTJky5ca/CCIKeEw8iYjIbVFRUVi0aBEWLFiAtWvX4uTJk9DpdFCr1YiOjkZSUhJuu+02DBw4EHK5HDfddBO2bduGkpIS/PnnnxgyZIjb7zV+/HjccsstWLx4MXbv3o2zZ89Cp9NBo9EgOjoa3bt3x5AhQypMjqRSKaZMmYKRI0di4cKF2LlzJ9LT06HT6RAUFIQmTZrg5ptvxr333iv2pvqrcePG4Y477sBvv/2G7du349y5cygoKEBQUBCaN2+OPn36YPTo0RXOs6tXrx4WLlyItWvX4s8//8TRo0dx5coVmEwm1KlTB02bNkXfvn0xYsQIhIaGetxGiUSC7777Dp9++ik2bdqE7Oxsh144T4WFhaFv3774888/AbheVMiZO++8E8nJyVi0aBG2bt2KtLQ0aLVaKBQK1K9fH126dMGoUaM83uO1qsXGxuLJJ58UL56cP38eX375pZjMNW3aFMuWLcOvv/6KTZs24cyZMygpKYFGo0H9+vXRqlUrDBo0CH369IFEIkGzZs1w+vRpnD9/Hvv27UPnzp3F9/Lk53P//feL+6nu2LEDZ8+eRX5+PlQqFeLj49GjRw/ce++9bl0IICICAInANbCJiIiIiIjIi7i4EBEREREREXkVE08iIiIiIiLyKiaeRERERERE5FVMPImIiIiIiMirmHgSERERERGRVzHxJCIiIiIiIq9i4klERERERERexcSTiIiIiIiIvIqJJxEREREREXkVE08iIiIiIiLyKiaeRERERERE5FVMPImIiIiIiMirmHgSERERERGRVzHxJCIiIiIiIq9i4klERERERERexcSTiIiIiIiIvIqJJxEREREREXkVE08iIiIiIiLyKiaeRERERERE5FVMPImIiIiIiMirmHgSERERERGRVzHxJCIiIiIiIq9i4klERERERERexcSTiIiIiIiIvIqJJxEREREREXkVE08iIiIiIiLyqv8HOS4AGpqTF6cAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.roc_utils import compute_roc_point_from_predictions\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ ")\n",
+ "\n",
+ "# Compute predictions\n",
+ "y_pred_binary = clf(X, group=group)\n",
+ "\n",
+ "# Plot the group-wise points found\n",
+ "realized_roc_points = list()\n",
+ "for idx in range(N_GROUPS):\n",
+ "\n",
+ " # Evaluate triangulation of target point as a randomized clf\n",
+ " group_filter = group == idx\n",
+ "\n",
+ " curr_realized_roc_point = compute_roc_point_from_predictions(y_true[group_filter], y_pred_binary[group_filter])\n",
+ " realized_roc_points.append(curr_realized_roc_point)\n",
+ "\n",
+ " plt.plot(\n",
+ " curr_realized_roc_point[0], curr_realized_roc_point[1],\n",
+ " color=all_group_colors[idx],\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ " )\n",
+ "\n",
+ "realized_roc_points = np.vstack(realized_roc_points)\n",
+ "\n",
+ "# Plot actual global classifier performance\n",
+ "global_clf_realized_roc_point = compute_roc_point_from_predictions(y_true, y_pred_binary)\n",
+ "plt.plot(\n",
+ " global_clf_realized_roc_point[0], global_clf_realized_roc_point[1],\n",
+ " color=global_color,\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ ")\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8db9a56",
+ "metadata": {},
+ "source": [
+ "### Compute distances between theorized ROC points and empirical ROC points"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "be73972d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Group 0: l2 distance from target to realized point := 0.091%\n",
+ "Group 1: l2 distance from target to realized point := 0.219%\n",
+ "Group 2: l2 distance from target to realized point := 0.098%\n",
+ "Global l2 distance from target to realized point := 0.021%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Distances to group-wise targets:\n",
+ "for i, (target_point, actual_point) in enumerate(zip(clf.groupwise_roc_points, realized_roc_points)):\n",
+ " dist = np.linalg.norm(target_point - actual_point, ord=2)\n",
+ " print(f\"Group {i}: l2 distance from target to realized point := {dist:.3%}\")\n",
+ "\n",
+ "# Distance to global target point:\n",
+ "dist = np.linalg.norm(clf.global_roc_point - global_clf_realized_roc_point, ord=2)\n",
+ "print(f\"Global l2 distance from target to realized point := {dist:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "### Compute performance differences\n",
+ "> assumes FP_cost == FN_cost == 1.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "6991bf75",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual accuracy: \t\t\t83.179%\n",
+ "Actual error rate (1 - Acc.):\t\t16.821%\n",
+ "Theoretical cost of solution found:\t16.805%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "from error_parity.roc_utils import calc_cost_of_point\n",
+ "\n",
+ "# Empirical\n",
+ "accuracy_val = accuracy_score(y_true, y_pred_binary)\n",
+ "\n",
+ "# Theoretical\n",
+ "theoretical_global_cost = calc_cost_of_point(\n",
+ " fpr=clf.global_roc_point[0],\n",
+ " fnr=1 - clf.global_roc_point[1],\n",
+ " prevalence=y_true.sum() / len(y_true),\n",
+ ")\n",
+ "\n",
+ "print(f\"Actual accuracy: \\t\\t\\t{accuracy_val:.3%}\")\n",
+ "print(f\"Actual error rate (1 - Acc.):\\t\\t{1 - accuracy_val:.3%}\")\n",
+ "print(f\"Theoretical cost of solution found:\\t{theoretical_global_cost:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "f2259911",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy for dummy constant classifier: 73.4%\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f\"Accuracy for dummy constant classifier: {max(np.mean(y_true==label) for label in {0, 1}):.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "b05ebc45",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Realized LP accuracy:\t 83.2%\n",
+ "Realized LP eq. odds violation: 5.0%\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import eval_accuracy_and_equalized_odds\n",
+ "lp_acc, lp_eq_odds = eval_accuracy_and_equalized_odds(y_true, y_pred_binary, group)\n",
+ "\n",
+ "print(f\"Realized LP accuracy:\\t {lp_acc:.1%}\")\n",
+ "print(f\"Realized LP eq. odds violation: {lp_eq_odds:.1%}\\n\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d590d262",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "---\n",
+ "# Plot postprocessing Pareto frontier\n",
+ "> i.e., all attainable optimal trade-offs for this predictor"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "dcf828fd",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Using `n_jobs=9` to compute adjustment curve.\n",
+ "INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13\n",
+ " 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ].\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "2aa8e5bce1c9479d935fffe7b86b2be6",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/28 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=predictor,\n",
+ " fit_data=(X, y_true, group),\n",
+ " eval_data={\n",
+ " \"fit\": (X, y_true, group),\n",
+ " },\n",
+ " fairness_constraint=\"equalized_odds\",\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ " y_fit_pred_scores=predictor(X),\n",
+ " predict_method=\"__call__\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "a789ef9f",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSgElEQVR4nO3dd3gU1f4/8Pdma3pCCQESqoQAkSoICgpcxYJYEPyKol4VUZSLDUUsyLUgYlcuFgQbYq8IIupVEVQ6BGETkpDee7K9nd8f+c3c3ZTNHHaTnQmf1/PkUXZPZs++M5n95MyZMyrGGAMhhBBCyGkkLNQdIIQQQgjpbFQAEUIIIeS0QwUQIYQQQk47VAARQggh5LRDBRAhhBBCTjtUABFCCCHktEMFECGEEEJOO1QAEUIIIeS0owl1B+To0KFDYIxBq9WGuiuEEEIIkcjpdEKlUmHMmDHttqURoFYwxqC0BbLdbneou6AolBcfyks6yooP5cWH8vKP5/ObRoBaIYz8nHnmmSHuiTROpxM1NTXo1q0bjVpJQHnxobyko6z4UF58KK/2HT16VHJbKoC6AK1Wi169eoW6G4pBefGhvKSjrPhQXnwor+CiU2BdgNvtRkNDAw2NSkR58aG8pKOs+FBefCiv4KICqAuw2+3IysqC3W4PdVcUgfLiQ3lJR1nxobz4UF7BpWJKm+3bCYRziEqZA+TxeOB0OqHVahEWRjVteygvPpSXdJQVH8qLD+XVPp7Pb5oDFCC32w2n0xnqbgAAHA5HqLugKErPS6vVQq1Wd/jrhIWFQa/Xd/jrdAWUFR/Kiw/lFVxUAJ0ixhjKyspQV1cX6q6AMQa32w21Wg2VShXq7sheV8orLi4OiYmJHfo+HA4HysrKkJiYCJ1O12Gv0xVQVnwoLz6UV3BRAXSKhOInISEBERERIf0g9Xg8cDgc0Ol0NCwqQVfIizEGi8WCiooKAEDv3r077LXcbjdMJhNNvJSAsuJDefGhvIKLCqBT4Ha7xeKne/fuoe4OACAiIiLUXVCUrpBXeHg4AKCiogIJCQkddjosPDwcw4cP75BtdzWUFR/Kiw/lFVzK/PM3xIQ5P13hQ5Qom7APymUeGiGEKIXsC6A333wTN9xwg982tbW1uP/++zF+/HhMmDAB//73v2G1Wju8b3KZP+J2u2GxWGhYVKKulFdn7IMWiwVHjhyBxWLp8NdSOsqKD+XFh/IKLlmfAvvwww/x8ssv46yzzvLbbsmSJbBarXj33XfR0NCARx55BBaLBc8++2wn9TS0VCoVNBqNbAoyuaO8+Gi1WiQkJNDS+xJQVnwoLz6UV3DJsgAqLy/H448/jj179mDAgAF+2x46dAh79+7Ftm3bMHjwYADAE088gQULFuC+++47LZYNDwsLoysCOFBefLRabYdOsu5KKCs+lBcfyiu4ZHkK7NixY9Bqtfj2228xatQov23379+Pnj17isUPAEyYMAEqlQoHDhzo6K7KgnBZt1zXtDxw4AD2798f6m6IOiuvPXv2YOjQoSgqKurQ1+lodOWJdJQVH8qLD+UVXLIsgKZPn47XXnsNycnJ7bYtLy9vURHrdDrExcWhtLQ0oH54zyOyWq3iwnkejwcej0f8APV4PD47pPA80PLDlqdta9/bWluPxwObzdZmW6DpF8dfn061bXvv1ePx4LrrrkNBQUHQcgm0rdvths1mE/9fSt5CLjxtR40ahV27diExMbFT8nY4HH73We95T06n02cegc1ma7Ot2WxGZmamuPy+zWYT/1+4HN/lcgEAXC5Xi+2211bov91uh81mE7/XYrGIk7t52gpzvIScmufC07a9DJu3NZlMyMzMhNVqbTfv5rnwtPWXYTDyFnIJRt5Wq7XNtkJeQp959lne/butXALNu3kugeTtnWFrbe12OzIzM1FXV8e1z57q/i31GHEqGQYr7+bHCB6yLIB4WK3WVk9n6PX6gO6X4na7kZWVJf47NzcXZWVlAJp+2C6XS9yp3G63z2vZ7Xbxh8IYE4sToa33D9DhcPhcwePd1uVytWjrvXqxzWaDy+UST+l498HpdLZo27wPwk4l/GJ5919oKxRXbbUV+uDdVsjF5XK12K7QVsjFX9vmGQYrb5fLhfDwcKhUqnbbtpZ3a22b522326FWq9GzZ0/xe/3l3TxDoW3zXJrnbbfbxbaVlZXIzs4W2548eRLl5eXiezEajeLBr6qqqsX+LfzB4HK5YDQaYTKZADQdZFQqFQwGAwAgPz8fJSUlYg5GoxGNjY0AgLq6OhiNRnG7hYWF4ggYYwxGoxH19fUAgIaGBhiNRvHnWlRUhMLCQvF7jUajuNCoyWSC0WgU33tpaSny8vLEtpmZmaipqQHQVLAZjUZxnygrK0Nubq7YNisrC1VVVQCajh9Go1HMuKKiAjk5OWLbnJwcVFZWitkbjUbx515ZWdkiw/r6egwfPhxqtRpGo1E8IFdXV+PEiRNi27y8vDbzrq2tRUZGhti2oKAAxcXFAJp+5u3l3VaGjY2NPnkXFxejoKBAbJuRkYHa2lpJeZ84cQLV1dUAmvYPo9Eo7v+t5d1Who2NjdBqteK+lZOTI65tZbfb291nvY/JRqMRZrMZAFBTU4PMzExJefvbZ4W8GxoaAAD19fUwGo3i75y/fVbIWzi+lJSUID8/X2ybmZnpN+/W9lmDwYABAwYgLy9PzLu8vBwnT54U22ZnZ/vdZzviGFFbW+uT9/Hjx/Htt99i586dnX6M4MJkbtmyZWz+/PltPv/EE0+wOXPmtHh84sSJ7J133jml10xPT2fp6enMYrGIj1ksFma32xljjJnNZvb333+Lz7vdbuZyuRhjjJlMJtbQ0MAaGhqYyWRijY2NrL6+njU2NorP1dfXM5PJJP5b2K7H42E2m401NjYyi8XCPB4Pc7lczOPxtLtd77ZCn9xut9h/l8sl/tu7bUpKCnv//ffZnDlzWFpaGrvsssvYjh07fNr+/PPPbO7cuWz06NHsnHPOYU8//TSzWq3i6/zyyy/sqquuYiNHjmQTJ05kDz74IKurq2Nut5ulpKSIXw8++GCrfWCMif2YO3cuS0tLYzNnzmQ//vij2Pbll19m1113HbvnnnvYmDFj2MqVKxljjB08eJDdcMMNbOzYsWzChAls2bJlrKqqStyuzWZjL730Eps6dSobOXIku+qqq9jOnTvF7WZmZrIFCxaw0aNHs3PPPZfde++9rLy8XHxvOTk57JZbbmFjx45lo0ePZjfffDPLyMgQ+//rr7/6vPdly5axuro65nK52J9//slSUlJYQUEBc7lcbOrUqeztt99md911Fxs9ejSbMGECe/LJJ5nNZhNz2blzJ7viiivEDD777DOWkpLCCgsLW/xchf3i2LFjzGq1Mrvd3uY+63a7mdlsFvdTh8PBzGaz2Fb4fqltbTab2Aez2cycTidjjDGn08nd1vtnJexXwu+Zw+HgbutyuZjZbBZzap4LT9v2Mgwk7+a5BJK3dy7ByFvIJRh5WyyWoOXtnUugeQu5BJp381wCyds7l0Dybp5LMPLmOUacPHmSrVy5kr300kudfowQPr+lUHwB9NZbb7HzzjvP5zG73c5SU1PZ1q1bT+k12wvQarWy48eP+/wgBAC4vz799FPx+z/99FMGgJ1//vk+2+3Ro4ffbdjtdp+CR6qUlBQ2evRotmnTJpaTk8Oee+45lpqayg4cOMAYY2zHjh0sNTWV/ec//2EnT55kP/30E5s8eTJbtGgRY4yx6upqlpaWxjZt2sSKiorY/v372fTp09nDDz/MGGOsoqKCpaSksHfffZc1NDSccj9effVVlpKSwp566ilWUFDAcnNz2ZEjR9iIESPYE088wbKzs9mff/7JLrnkEnbVVVeJv5iPP/44mzhxIvv+++9Zfn4+e/HFF1laWhrLyMhgpaWlYhGSnZ3Njh49yhYuXMimTZsm/oJeddVVbPny5Sw3N5dlZWWxBQsWsAsuuEDSe//rr798ipdp06axM888k7333nusoKCAff7552zo0KHsq6++Yowxdvz4cTZ8+HD27LPPspycHPbdd9+x8ePH+2yjOX/7YrDY7XZWWFgoHvxI2ygrPpQXH6XkVVdXx3bs2MF+//33Tn9tngJIlleB8Rg/fjyef/555Ofno3///gCAvXv3AgDGjRsXyq51KrfbDY3m1H6cs2fPxvXXXw8AWLp0Kfbu3YtNmzZh7NixeOutt3DhhRfizjvvBAAMHDgQjDHcddddyM7OFk/99OnTB3379kXfvn3xxhtviMO+wimg6OhoREdHn3I/BEuWLBG3c88992Do0KF47LHHAACDBw/Giy++iCuuuAK7du3CuHHj8Pnnn+Oxxx7DxRdfDAC499574fF40NDQgG3btiExMRGPPvqouP2XX34ZEydOxPbt2zF79mwUFBTgnHPOQd++faHVarFq1SqcPHkSHo8H5eXlft97ayZPnowbb7wRAJCcnIwPPvgABw8exJVXXol3330XaWlpePDBBwEAgwYNQnV1NZ5++mkpP8YOI6x8LpdVz+WMsuJDefFRSl6xsbG48MILQ92NdimuAHK73aipqUF0dDQMBgNGjRqFsWPH4t5778XKlSthsViwYsUKXHnllSG5BF44J8rD++6+V111FUwmU4t7VHmff2+NcFuEU3H22Wf7/HvMmDHYvXs3gKZz/TNnzvR5fsKECeJzl156KS677DLccccd6NmzJ84991xMnTq1zZ1/xYoV2LJli/jv22+/HXfccUe7/QCA7t27+xRRJ06cwLnnnuvzPampqYiOjkZmZia6desGp9PZ4krC+++/HwCwfv16ZGVlYcyYMT7P2+12cR7Ivffei1WrVmHz5s2YMGECpkyZgssuuwxhYWEYNmwY13sH4HO1ItBUGApzVY4fP45zzjnH5/nx48e3ua3OEh4ejrS0tFB3QxEoKz6UFx/KK7gUVwCVlpbiH//4B5555hnMnj0bKpUKa9euxb///W/cdNNN0Ov1uPjii7F8+fKQ9C8yMjKg79doNK2O5AS63fZe05vb7RYLMNbKpeLChDTh+1544QXcdddd2LlzJ/744w888MADGDduHN57770W33v33Xfj1ltvFf8dGxsrqR8AxImSgtb6Jjyu1WrbXSzM4/Fg4sSJePzxx1s8JxRa119/PS6++GL89ttv+PPPP/Hqq6/i9ddfx9dff40ePXpwvXcArU7YF96HWq32ueKLEEKUiP3/K1SBlsd1OZFvz/6/1atX+/w7KSnJZ7Y50DQy8Oqrr3Zmt2RFuBpIr9ef0t3Njx49iunTp4v/PnToEEaMGAEAGDp0KA4ePIh//vOf4vPCmj6DBw/GkSNHsHXrVjz88MMYNGgQ/vnPf+Lbb7/FAw88gOrq6hZDtd27d29z+NZfP1ozdOjQFms9ZWRkwGQyYfDgwejfvz+0Wi2OHj2K1NRUsc3cuXNx4YUXYsiQIdi2bRt69+4tFiZ1dXVYtmwZbr75ZgwZMgT/+c9/sHDhQsyePRuzZ89GeXk5zjvvPOzduxd9+/b1+955paamIj093eexQ4cOcW8n2KxWK3JycjB48OCARhpPB5QVH8qLj1LyKikpwdtvv43Y2Fjcc889oe5Om2RfABFpArkT+HvvvYdBgwYhLS0Nn376KTIzM8V5JwsWLMDdd9+NdevW4ZJLLkFeXh6efPJJTJs2DYMHD0ZOTg42b94MrVaLa665Bna7Hdu2bcOAAQMQHx8PoOmGnTk5OaitrRUf4+1Ha26++WZcd911ePLJJ3HdddehqqoKTz75JIYPH45JkyZBq9Vi/vz5eOWVV9CtWzcMGTIEn3/+ObKysvDUU08hPDwcn3zyCZYuXSrOcXr22WeRmZmJlJQUxMTE4Ndff0VBQQHuv/9+REVF4csvv4RWq0VaWhqcTme7753HLbfcgiuvvBLPP/88rr76amRnZ4uFfShv26FWqxEfH99hd5vvSigrPpQXH8oruKgA6gICvbXDtddei3fffRcnTpxAamoqNmzYII6YXHTRRXjxxRfx+uuvY926dejWrRsuu+wyLFmyBEDTKNBrr72GtWvXYvPmzQgLC8PEiROxfv16cTTqlltuwdtvv42cnBy88cYbp9SP1owaNQpvv/02Xn75ZVx55ZWIiorCBRdcgPvvv188/XXfffdBrVbj8ccfR2NjI1JTU/HWW29h6NChAIBNmzbhhRdewLx586BWqzF27Fi8//776NatG4CmeULPPvss/vnPf8JqtWLYsGF466230K9fPwBo973zSElJwdq1a/Hiiy/i3XffxcCBAzF//ny89tprIb33j06nQ9++fUP2+kpCWfGhvPgoJa/evXvjoYceCnU32qVibU2kOI0dPXoUAHDmmWe2+rzNZkNubi4GDhzYYl5KKLD/vxp0WFgY90jB0KFDxflUodSZ/Qgkr46Unp4OjUaD4cOHi49t2bIFDz/8MA4dOtTqufTO2BeFxRkNBsMpFXanE8qKD+XFh/JqX3uf394owS6g+QrMxD+55mU0GnHjjTfi559/RklJCf7880+89tprmDlzZkgnEjZfTZa0jbLiQ3nxobyCi06BdQFhYWH0FwEHueZ1zTXXoLKyEqtWrUJ5eTm6d++OmTNniqcbQ0Wv1yM1NdVnuQbSOsqKD+XFRyl5NTQ04MCBAzAYDJg0aVKou9MmKoC6AJVKdcqT4ppfURcqndmPQPLqSCqVCosXL8bixYtD3RUfarW6Q5dh6EooKz6UFx+l5NXY2IidO3ciNjZW1gWQvP4EJqfE4/HA4XDI7pSOXFFefJxOJ0pKSnxu2ktaR1nxobz4KCWvyMhIjB8/vsUitHJDBVAA5DR/XLiLMJGmq+TVGfugy+VCVVVVl8msI1FWfCgvPkrJKy4uDpdeeimmTZsW6q74RafAToEwIVUuO2FYWBgiIiJC3Q3F6Ep5CftgR06SDg8Px8iRIzts+10JZcWH8uJDeQUXjQCdArVaDbVajYaGhlB3hZzmGhoaxP2REEKIdDQCdApUKhUSEhJQWloKvV6PyMjIkK4nI8xp0el0sruySY66Ql6MMZjNZjQ0NKB3794duv9ZrVZxrSE5L78vB5QVH8qLj1LyKi4uxoYNGxAbG4u777471N1pExVApyg2NhZWqxVVVVWorKwMaV+EG8+p1WpZLewnV10lL5VKhbi4OJ8bynYEtVqNqKgoGmWSgLLiQ3nxUVJejDFZzZNtDa0E3QqelSTdbrfsZ+STrkmr1SriQEgIOb243W5YLBaEhYV1+mX7PJ/fNAIUIDnMv+gKp3Q6E+XFh/KSjrLiQ3nxUUpearUa0dHRoe5Gu+SbIJHMZrPh2LFjtDy6RJQXH8pLOsqKD+XFh/IKLhoB6gL0ej1SUlJkvzy6XFBefCgv6SgrPpQXH6Xk1djYiCNHjkCv12P8+PGh7k6bqADqApQy3CgXlBcfyks6yooP5cVHKXk1NDTg559/RmxsrKwLIDoF1gU4nU6UlZXRZGyJKC8+lJd0lBUfyouPUvKKiIjA6NGjMXz48FB3xS8qgLoApfxSyAXlxYfyko6y4kN58VFKXvHx8bjiiiswY8aMUHfFL7oMvhU8l9ERQgghRB54Pr9pBIgQQgghpx0qgLoAm82GjIwMujRSIsqLD+UlHWXFh/Lio5S8SkpK8Mwzz2DdunWh7opfVAB1ASqVCgaDQdG3dehMlBcfyks6yooP5cVHKXkxxuBwOOBwOELdFb9oDlAraA4QIYQQcmpcLhcaGhoQFhaGuLi4Tn1tmgN0mmGMwel0yv7Gc3JBefGhvKSjrPhQXnyUkpdGo0G3bt06vfjhRQVQF2C1WpGeng6r1RrqrigC5cWH8pKOsuJDefGhvIKLVoLuAvR6Pc444wzZL48uF5QXH8pLOsqKD+XFRyl5mUwmHDt2DHq9HqNHjw51d9pEBVAXoFarERsbG+puKAblxYfyko6y4kN58VFKXvX19di+fTtiY2NlXQDRKbAuwOl0oqKiQvarg8oF5cWH8pKOsuJDefFRSl7h4eEYMWIEUlJSQt0Vv2gEqAtwOp0oKipCVFQUtFptqLsje5QXH8pLOsqKD+XFRyl5devWDXPmzAl1N9pFl8G3gi6DJ4QQQpSHLoMnhBBCCPGDCqAuwGaz4cSJE7JfHl0uKC8+lJd0lBUfyouPUvIqKyvDCy+8gPXr14e6K37RHKAuQKVSQaPRyH55dLmgvPhQXtJRVnwoLz5KycvtdsNkMkGtVoe6K37RHKBW0BwgQggh5NQ4nU7U1NQgLCwMPXv27NTX5vn8phGgLoAxBo/Hg7CwMNn/ZSAHlBcfyks6yooP5cVHKXlptVr06tUr1N1oF80B6gKsVisOHz5My6NLRHnxobyko6z4UF58KK/gohGgLkCn02HQoEHQ6XSh7ooiUF58KC/pKCs+lBcfpeRlNptx4sQJ6HQ6jBgxItTdaRMVQF2ARqNBfHx8qLuhGJQXH8pLOsqKD+XFRyl51dXV4dtvv0VsbKysCyA6BdYFuFwuVFVVweVyhborikB58aG8pKOs+FBefJSSl8FgQEpKCgYOHBjqrvhFI0BdgMPhQH5+PiIiIqDR0I+0PZQXH8pLOsqKD+XFRyl5de/eHfPmzQt1N9pFl8G3QmmXwXv/COV8ZYBcUF58KC/pKCs+lBcfyqt9dBn8aYZ+EfhQXnwoL+koKz6UFx/KK7hoDlAXYLfbkZ2dDbvdHuquKALlxYfyko6y4kN58VFKXuXl5Xj11VfxzjvvhLorftEIECGEEEKCxuVyoba2Fh6PJ9Rd8YvmALVCaXOACCGEELlwOBwoLy+HRqNB7969O/W1aQ7QaYYmxvGhvPhQXtJRVnwoLz5KyUun0yE5OTnU3WgXzQHqAqxWKw4ePEjLo0tEefGhvKSjrPhQXnwor+CiEaAuQKfToX///rJfHl0uKC8+lJd0lBUfyouPUvKyWCw4efIktFothg4dGurutIkKoC5Ao9GgR48eoe6GYlBefCgv6SgrPpQXH6XkVVtbiy+++AKxsbGyLoDoFFgXIMy4l/vy6HJBefGhvKSjrPhQXnyUkpder8eAAQNkPw+ICqAuwOFw4OTJk3A4HKHuiiJQXnwoL+koKz6UFx+l5NWjRw/cdNNNuPrqq0PdFb/oMvhWKO0yeMYYPB4PwsLCZH1lgFxQXnwoL+koKz6UFx/Kq310GfxpRqVSQa1Wh7obikF58aG8pKOs+FBefCiv4KJTYF2A3W7HyZMnZb88ulxQXnwoL+koKz6UFx+l5FVRUYHXX38dmzZtCnVX/KIRoC6AMQaXywU6mykN5cWH8pKOsuJDefFRSl5OpxMVFRWyL9RkOQfI4/Fg7dq1+Oyzz9DY2Ijx48djxYoVbc4or66uxqpVq7B7924wxnDOOefgoYceQq9evU7p9ZU2B4gQQgiRC7vdjuLiYmg0GvTr169TX5vn81uWp8DWrVuHzZs348knn8THH38Mj8eDBQsWtDnz/Z577kFJSQneeecdvPPOOygpKcFdd93Vyb0mhBBCiF6vx6BBgzq9+OEluwLI4XBg48aNWLJkCaZOnYrU1FS89NJLKCsrw44dO1q0b2howN69e3Hbbbdh2LBhGD58OBYuXIijR4+irq6u899ACFgsFhw8eBAWiyXUXVEEyosP5SUdZcWH8uJDeQWX7AqgjIwMmM1mTJo0SXwsJiYGw4cPx759+1q0NxgMiIyMxNdffw2TyQSTyYRvvvkGAwcORExMTGd2PWS0Wi2SkpKg1WpD3RVFoLz4UF7SUVZ8KC8+SsnLZrMhMzMTJ0+eDHVX/JJdAVRWVgYA6N27t8/jCQkJ4nPedDodVq9ejb179+Kss87C+PHjceTIEaxfvx5hYYG9Pe8bzlmtVvEUnMfjgcVigdvtBtA04cu7IrfZbOLkL8YYd1thlU+XywWLxSJOeLPb7a221Wq16NatG5xOp09bm80mvo7FYoHT6QQAuN3uFtttr63H4wHQNELXPBeetlIzDDRvIcPW2no8HiQkJECj0bSbd/NceNr6yyWQvJvnEoy8bTZbm20BICoqSjzoStlnpfxseDIMNG/vXALN2zvD5m0ZY0hISIBarZbVMeJUM+zoYwRjDNHR0eK+JZdjRCAZduQxQqvVonv37nA6nbI6RjRvW1paio8//hjffvttpx8jeMiuABJ+OM1v9qbX61udUc4Yg9FoxJgxY/Dhhx/ivffeQ58+fXDnnXfCZDKdcj/cbjeysrLEf+fm5ooFmMPhgNFoFMOurq7GiRMnxLZ5eXkoLS0F0PRDMRqNYl9qa2uRkZEhti0oKEBxcTGApp3KaDSisbERAFBXVwej0Si2LSwsRGFhofhvo9GIuro6uN1ulJeXw2g0ijt6cXExCgoKxLYZGRmora0FAJhMJhiNRnEnKy0tRV5entj2xIkTqK6uBtC0gxmNRnHHLysrQ25urtg2KysLlZWVAJp2ZKPRKO6glZWVyMnJEdvm5OSgoqICQNOObDQaxZ93VVVVm3k7nU4YjUaYzWYAQE1NDTIzMyXl3VaG9fX14nYbGhoAAPX19TAajeIvW1FRUat5A0BjYyOMRqN4ACgpKUF+fr7YNjMz02/ezTOsqqoC0LT/e+ddXl7u81dUdna237yzs7PFtidPnkR5eTmA/+2z/vJuK8Pq6mpkZGSI7zU/Px8lJSUAmn5P2ttni4qKAPzvd7W+vh5A0+lr733WX97t7bOZmZmoqakBAJjNZhiNRvHA2No+2zxv4dhSUVHRYp/1l3drGdbX14tt5XKMAP63z8rpGFFeXo6srCxx35LLMULYZ4W85XKMcLvdqKyslN0xora21ifvyspK9OjRA4mJiZ1+jODCZGb79u0sJSWFWa1Wn8eXLFnC7rjjjhbtt27dys466yzW2NgoPlZXV8fGjBnD3nnnnVPqQ3p6OktPT2cWi0V8zGKxMLvdzhhjzO12M7PZzFwuF2OMMYfDwcxms9jWarUym83GGGPM4/Fwt3U6nYwxxpxOJzObzczj8TDGGLPZbK22NZvNbP/+/ayqqsqnrXeGZrOZORwOxhhjLperxXbba+t2uxljjNnt9ha58LSVmmGgeQsZtta2traW7d+/n5lMpnbzbp4LT1t/uQSSd/NcgpG31Wpts219fT3bv3+/2F7KPivlZ8OTYaB5e+cSaN7eGTZvW1dXx/bv388aGxtldYw41Qw7+hgh5CW8X7kcIwLJsCOPEd7HejkdI04lw2Dl3fwYIXx+SyG7y+DT09Mxd+5c/Pjjjz4zyOfNm4ehQ4di5cqVPu2feOIJ/P333/j00099Hr/66qsxcuRIPP7449x9UNpl8Oz/rw2h0WhoeXQJKC8+lJd0lBUfyosP5dW+Tr8M3uFwYNiwYfj6668D3lZqaiqioqKwZ88e8bGGhgYcP34c48ePb9E+MTER+fn5PqfHLBYLioqKMGDAgID7owQqlQparZZ+ISSivPhQXtJRVnwoLz6UV3AFbQ5QsAaSdDod5s+fj+effx4///wzMjIycO+99yIxMREzZswQz4EK5zSvvPJKAE1rAWVkZCAjIwP33Xcf9Ho9Zs+eHZQ+yZ3dbkdeXp7sV92UC8qLD+UlHWXFh/Lio5S8KisrsWHDBnzyySeh7opfspsEDQBLlizBnDlz8Oijj2LevHlQq9XYsGEDtFotSktLMXnyZGzbtg1A09VhmzdvBmMMN910E26++WZotVps3rwZ0dHRIX4nnYMxBpvNJvvl0eWC8uJDeUlHWfGhvPgoJS+Hw4GioiJx0rRcBWUOkMPhwMiRI7F69WpxREbJlDYHiBBCCJELq9WKgoICaDQaDB48uFNfm+fzm26GSgghhJCgCQ8Px9ChQ0PdjXbJ8hQY4WOxWHD48GFaHl0iyosP5SUdZcWH8uJDeQUXjQB1AVqtFomJibJfHl0uKC8+lJd0lBUfyouPUvKy2+0oKSmBRqNBcnJyqLvTJhoB6gKU8kshF5QXH8pLOsqKD+XFRyl5VVVV4f3338cXX3wR6q74FVAB9Oabb+KFF17weWz//v1YuHAhDdF1IrfbjcbGRp97N5G2UV58KC/pKCs+lBcfpeSl1WqRkJCAHj16hLorfgVUAOn1eqxfvx6rVq2CSqXCX3/9hdtuuw0OhyPgG5ES6ex2O06cOCH7tSHkgvLiQ3lJR1nxobz4KCWvhIQELFq0CPPnzw91V/wK+DL4Dz/8EE899ZT473POOQfr1q2DXq8PuHOhorTL4D0eDxwOB3Q6HRWeElBefCgv6SgrPpQXH8qrfZ16Gfz1118PrVaLxx9/HOeffz5effXVFndyJx0rLCwMBoMh1N1QDMqLD+UlHWXFh/LiQ3kFV1BKyGuuuQY7duzAa6+9RsVPCDgcDhQUFMDhcIS6K4pAefGhvKSjrPhQXnyUkpdSJkEH7TJ4OV/q1tW53W6YTCbZT4yTC8qLD+UlHWXFh/Lio5S87HY7cnNzERsbG+qu+BWUW2F0NUqbA0QIIYTIhcViQU5ODnQ6XaevCE23wiCEEEJISERERChiAIGmkXcBVqsV6enpsFqtoe6KIlBefCgv6SgrPpQXH8oruGgEqAvQaDTo0aMHNBr6cUpBefGhvKSjrPhQXnyUkpfD4UBFRQXUajV69+4d6u60iUaAugCtVos+ffrIfnl0uaC8+FBe0lFWfCgvPkrJq7KyEhs2bMAnn3wS6q74RQVQF+B2u2E2m2V/ZYBcUF58KC/pKCs+lBcfpeSl0WgQFxcn+6vAqADqAux2OzIyMmS/PLpcUF58KC/pKCs+lBcfpeTVq1cv3H333bj55ptD3RW/gnIZfH19PaxWKzweT4vn+vTpE+jmO53SLoP3eDyw2WwwGAy0PLoElBcfyks6yooP5cWH8mpfp10Gn5+fj2XLluHIkSNttjEajYG8BJEgLCwMERERoe6GYlBefCgv6SgrPpQXH8oruAIqgJ588knk5eVh8eLFSExMpIo0RBwOByorK9GzZ0+6FYkElBcfyks6yooP5cVHKXlVV1djx44diIyMxOWXXx7q7rQpoAJo3759ePrpp3HZZZcFqz/kFLjdbtTW1qJbt26h7ooiUF58KC/pKCs+lBcfpeRls9lw4sQJ2U+CDqgAioqKkv0bPB2Eh4cjLS0t1N1QDMqLD+UlHWXFh/Lio5S84uLiMGvWLFmPUgEBXgV2xRVX4MMPPwTdTowQQgghABAZGYmxY8fKvlgLaAQoPDwcBw4cwIUXXogzzzwTBoPB53mVSoVVq1YF1EHSPqvVipycHAwePBjh4eGh7o7sUV58KC/pKCs+lBcfyiu4AiqAvvrqK0RHR8Pj8bR6JZhKpQpk80QitVqNuLg4qNXqUHdFESgvPpSXdJQVH8qLj1LycjqdqKmpgVqtRo8ePULdnTYFZR2grkZp6wARQgghclFcXIy3334bsbGxuOeeezr1tXk+v+m69S7A4/G0uRAlaYny4kN5SUdZ8aG8+Cglr7CwMERGRsp+zaKg3FJ2586d2Lt3LxoaGhAfH49x48bhvPPOC8amiQQ2mw1GoxHDhg2T/Q4nB5QXH8pLOsqKD+XFRyl59e7dG0uXLg11N9oV0Ckwh8OBO++8E7t27YJarUZ8fDxqa2vh8XgwceJEvPnmm7K/DK41SjsF5na7YbVaER4eLvtzw3JAefGhvKSjrPhQXnwor/Z12imw1157DQcOHMCaNWuQnp6OXbt24ciRI3jmmWdw+PBhvP7664FsnkikVqsRFRVFvxASUV58KC/pKCs+lBcfyiu4AiqAvvvuOyxevBiXX365+APRaDS48sorsXjxYmzZsiUonST+OZ1OlJaWwul0hrorikB58aG8pKOs+FBefJSSV01NDb744gts27Yt1F3xK6ACqKamBsOHD2/1ueHDh6O8vDyQzROJnE4nKioqZP9LIReUFx/KSzrKig/lxUcpeVmtVvz99984ceJEqLviV0CToPv164cDBw5g0qRJLZ7bt28fevfuHcjmiUQREREYNWpUqLuhGJQXH8pLOsqKD+XFRyl5xcbG4uKLL5b9HOCACqBrr70Wq1evhsFgwMyZM9GjRw9UVVXhu+++w/r167F48eJg9ZMQQgghChAVFYWzzz471N1oV0AF0Lx583D8+HE8//zzeOGFF8THGWO46qqrsHDhwoA7SNpntVqRm5uLgQMH0vLoElBefCgv6SgrPpQXH8oruAIqgMLCwvD000/jlltuwd69e1FfX4/Y2FhMmDABgwcPDlYfSTvoygA+lBcfyks6yooP5cVHKXm5XC40NjYiLCwMsbGxoe5Om7jXAVq+fDnuvPNOJCcnY/ny5f43rtCboSptHSBCCCFELpRyKwzuEaA9e/bgpptuEv/fH7oZaufweDxwOp3QarUIC6O7m7SH8uJDeUlHWfGhvPgoJS+VSgWdTgetVhvqrvhFN0NthdJGgCwWiyKWR5cLyosP5SUdZcWH8uJDebWv01aC3rdvH8xmc6vPNTQ0YOvWrYFsnkik1+sxZMgQ6PX6UHdFESgvPpSXdJQVH8qLD+UVXAEVQDfeeCNycnJafe748ePtzhEiwaFWqxETEyP7iXFyQXnxobyko6z4UF58KK/g4p4DtGzZMpSWlgJoutx95cqViIqKatEuLy8PPXr0CLyHpF1OpxM1NTXo1q2b7M+5ygHlxYfyko6y4kN58VFKXrW1tdi5cyciIiJw4YUXhro7beIeAbrooovAGIP31CHh38JXWFgYRo8ejWeeeSaonSWtczqdKCkpkf3y6HJBefGhvKSjrPhQXnyUkpfFYsHhw4dx7NixUHfFr4AmQd9www1YuXJll1vzR2mToAkhhBC5aGxsxOHDh6HX6zFhwoROfe0OvQze2wcffAAAqK6uhsPhEEeFPB4PrFYr9u/fj3nz5gXyEoQQQghRkOjoaEyZMiXU3WhXQAVQRkYGli5d2uZEaJVKRQVQJ7DZbMjLy8OAAQNgMBhC3R3Zo7z4UF7SUVZ8KC8+lFdwBVQArVmzBvX19Vi2bBl++eUX6HQ6TJs2DTt37sTOnTvx/vvvB6ufxA+VSgWDwUALT0pEefGhvKSjrPhQXnyUkpfb7YbVaoVKpUJkZGSou9OmgOYAjRs3DsuXL8ecOXPwySefYMuWLdi0aRMAYMmSJVCpVHjllVeC1tnOQnOACCGEkFOjlFthBLQOkMPhwIABAwAAAwYMQEZGhvjc7Nmzcfjw4UA2TyRijMHpdIIW9ZaG8uJDeUlHWfGhvPhQXsEVUAHUp08fFBYWAmgqgEwmE4qKigAAOp0O9fX1gfeQtMtqtSI9PR1WqzXUXVEEyosP5SUdZcWH8uKjlLz69u2Lxx9/vNNHf3gFVADNmDEDL7zwAn744Qf06tULgwYNwssvv4zMzExs3LgRycnJweon8UOn02Hw4MHQ6XSh7ooiUF58KC/pKCs+lBcfyiu4ApoDZLfb8cADD8BqtWL9+vX4/fffsXjxYjgcDqjVarz44ouYMWNGMPvbKWgOECGEEKI8PJ/fQbkbvNPpFJflLiwsxN9//40RI0agX79+gW46JJRWADmdTtTV1SEuLk7Wy6PLBeXFh/KSjrLiQ3nxUUpedXV1+PPPP2EwGDBt2rROfe1OmwQt8P5BJCcn45JLLlFs8aNETqcTBQUFsl8eXS4oLz6Ul3SUFR/Ki49S8jKbzdi7dy+OHDkS6q74xT0CtHbtWukbV6lw1113cXcq1JQ2AkQIIYTIRUNDA/bv3w+DwYBzzjmnU1+7Q0+BpaamSm6rUqlgNBp5Ng+g6VYaa9euxWeffYbGxkaMHz8eK1asaHNStdPpxKuvvoqvv/4ajY2NSEtLwyOPPIJhw4ZxvzZABRAhhBCiRB16LzDvtX46yrp167B582asXr0aiYmJeO6557BgwQJs2bKl1dnvK1euxK+//orVq1ejT58+eOWVV3Dbbbfh+++/R3R0dIf3N9RsNhsKCwuRnJxMy6NLQHnxobyko6z4UF58KK/gCuhWGIKdO3di7969aGhoQLdu3TBu3LhTvhGaw+HAxo0bsXTpUkydOhUA8NJLL2HKlCnYsWMHLrvsMp/2hYWF+OKLL/DGG2+Ir/nUU0/hyiuvxN9//41JkyYF9N6UQKVSISwsTPbLo8sF5cWH8pKOsuJDefFRSl4ejwdOpxMqlUrWl+wHVAA5HA7ceeed2LVrF9RqNeLj41FbW4s333wTEydOxJtvvsn95jMyMmA2m30Kl5iYGAwfPhz79u1rUQDt3r0b0dHROO+883za//e//w3krSmKXq/H4MGDQ90NxaC8+FBe0lFWfCgvPkrJq7S0NGS3wuAR0FVgr732Gg4cOIA1a9YgPT0du3btwpEjR/DMM8/g8OHDeP3117m3WVZWBgDo3bu3z+MJCQnic95yc3ORnJyMHTt2YPbs2Tj33HNx2223tXmHeh7eq21arVY4HA4ATdWtxWKB2+0G0DQHyWKxiG1tNhvsdjuApqXLedu6XC4AgMvlgsViEZc9t9vtrbZljMFut8NsNvu0tdls4utYLBbxygG3291iu+219Xg8AJqK3ua58LSVmmGgeQsZttbWZrPB7XaL2/WXd/NceNr6yyWQvJvnEoy8bTZbm20dDgcaGxvF9ypln5Xys+HJMNC8vXMJNG/vDJu3tdvtcLvd4nblcow41Qw7+hhht9thMpnE15HLMSKQDDvyGMEYg8PhgNlsltUxonlboZ2/DIOVd/NjBI+ACqDvvvsOixcvxuWXXw61Wg0A0Gg0uPLKK7F48WJs2bKFe5vCD6f5yJFerxdD8mYymZCfn49169bhvvvuw+uvvw6NRoPrrrsO1dXVp/CumrjdbmRlZYn/zs3NFQswh8MBo9Eohl1dXY0TJ06IbfPy8lBaWgqg6YdiNBphMpkAALW1tT7zqAoKClBcXAygaacyGo1obGwE0LSWgvck8sLCQvHWIwBgNBpRV1cHq9WKv//+GxkZGeKOXlxcjIKCArFtRkYGamtrxcyMRqO4k5WWliIvL09se+LECTE7i8UCo9Eo7tBlZWXIzc0V22ZlZaGyshJA045sNBrFHbSystKnEM3JyUFFRQWAph3ZaDSKP++qqqo283Y6nTAajTCbzQCAmpoaZGZmSsq7tQwLCgpw+PBh8b01NDQAAOrr62E0GsVftqKiolbzBoDGxkYYjUbxAFBSUoL8/HyxbWZmpt+8m2dYVVUFoGn/9867vLwcJ0+eFNtmZ2f7zTs7O1tse/LkSZSXlwP43z7rL++2MqyoqMCJEyfE783Pz0dJSQmApt+T9vZZ4fY4jDEYjUbxFjkNDQ0wGo3iPusv7/b22czMTNTU1ABougTXaDSKB8bW9tnmeQvHloqKihb7rL+8m2dYXFyMw4cPi/uHXI4RwP/2WTkdI0pLS5GZmSnuW3I5Rgj7rJC3XI4RVqsVR48eRUZGhqyOEbW1tT552+12XHfddVi8eHGnHyO4sACMHDmS/fHHH60+98cff7C0tDTubW7fvp2lpKQwq9Xq8/iSJUvYHXfc0aL9ihUrWEpKCsvOzhYfs1qtbMKECWz9+vXcr88YY+np6Sw9PZ1ZLBbxMYvFwux2O2OMMbfbzcxmM3O5XIwxxhwOBzObzT6vb7PZGGOMeTwe7rZOp5MxxpjT6WRms5l5PB7GGGM2m63Vtk6nk1VUVLD6+nqftt4Zms1m5nA4GGOMuVyuFtttr63b7WaMMWa321vkwtNWaoaB5i1k2Fpbk8nEqqurxef85d08F562/nIJJO/muQQjb6vV2mZbi8XCSkpKxPcuZZ+V8rPhyTDQvL1zCTRv7wybtzWbzay6uprZ7XZZHSNONcOOPkZYLBZWWloq9lEux4hAMuzIY4TT6WSVlZWsvr5eVseIU8kwWHk3P0YIn99SBLQS9KxZs3DRRRdh8eLFLZ579dVX8d1332HHjh1c20xPT8fcuXPx448/+iymOG/ePAwdOhQrV670af/6669j7dq1OHbsmM/jc+bMQVpaWov2UtBl8IQQQojydNpK0Ndeey3efPNNvP322ygtLYXT6URpaSnWr1+P9evX4+qrr+beZmpqKqKiorBnzx7xsYaGBhw/fhzjx49v0X78+PFwuVzimwb+d6lg//79T+2NKYzL5UJ1dbU4fEr8o7z4UF7SUVZ8KC8+SsmroaEBP/30E3bt2hXqrvgVUAE0b948XH755Xj++ecxffp0jBw5EtOnT8cLL7yAyy67DAsXLuTepk6nw/z58/H888/j559/RkZGBu69914kJiZixowZcLvdqKysFM9pnnXWWTjnnHOwbNky7N+/H9nZ2XjwwQehVqtxxRVXBPL2FMPhcCAvL89n4hlpG+XFh/KSjrLiQ3nxUUpejY2N2L17N/bv3x/qrvgVlJuhZmdni+sAxcbGYsKECQFdqud2u/Hiiy/iyy+/hM1mE1eCTkpKQlFREf7xj3/gmWeewezZswE0TX56/vnnsX37dthsNowdOxYPP/wwzjjjjFN6faWdAmOMgTEGlUol+/Uh5IDy4kN5SUdZ8aG8+Cglr/r6evz1118wGAw4//zzO/W1O/1u8F2N0gogQgghhHTwrTCWL1+OO++8E8nJyVi+fLnftiqVCqtWreJ9CcLJbrejqKgISUlJ0Ov1oe6O7FFefCgv6SgrPpQXH8oruLgLoD179uCmm24S/98fOQ/RdSWMMXg8HtBgnjSUFx/KSzrKig/lxUcpeXn3T851QECnwNxut7gAYldCp8AIIYSQU1NcXByyW2F02mXwkydPxlNPPeVzCTohhBBCiNwFVABddtll+OGHH3DNNdfg4osvxhtvvCEu2U46j8ViwYEDB7jvg3K6orz4UF7SUVZ8KC8+Ssmrd+/eeOCBB3D77beHuit+BXwVGGMMf/31F7Zu3Yoff/wRjY2NGDt2LK644gpcfPHFiI6ODlZfO43SToG5XC7U1dUhLi4OGg33tK7TDuXFh/KSjrLiQ3nxobzaF7LL4J1OJ3bv3o2tW7fi+++/h0ajweHDh4O1+U6jtAKIEEIIIZ04B8iby+XCrl27sG3bNuzcuRMAMGnSpGBtnvjhcrlQW1sr++XR5YLy4kN5SUdZ8aG8+Cglr8bGRvz222/tXikeagEVQIwx/Pnnn3j00Udx7rnnYtGiRcjLy8OSJUvw+++/4/XXXw9WP4kfDocDJ0+elP3y6HJBefGhvKSjrPhQXnyUkldDQwN+/fVX/Pnnn6Huil8BnQKbPHkyqqur0adPH1x++eW44oorMGDAgCB2LzSUdgqMMSYuSSDnNRfkgvLiQ3lJR1nxobz4KCWvuro6/P777wgPD8cFF1zQqa/doStBe5s+fTouv/xynHXWWYFshgRIpVLRhDgOlBcfyks6yooP5cVHKXnFxcVh1qxZoe5GuwI6BfbEE09Q8SMDdrsdubm5sNvtoe6KIlBefCgv6SgrPpQXH8oruII2CZqEDmMMDodD9sujywXlxYfyko6y4kN58aG8govuBt8Kpc0BIoQQQuSipKQE77zzDmJiYvCvf/2rU187JJfBE0IIIYQwxuByueB2u0PdFb+oAOoCLBYLDh06JPvl0eWC8uJDeUlHWfGhvPgoJa9evXrhnnvuwS233BLqrvgV8HRyk8kEs9mMXr16wel04oMPPkBJSQkuuugijB8/Phh9JO3QarXo27cvtFptqLuiCJQXH8pLOsqKD+XFRyl5aTQaxMbGhrob7QpoBOjIkSOYNm0aNm3aBAB46qmnsGbNGnz77be46aab8PPPPwelk8Q/rVaLhIQE2f9SyAXlxYfyko6y4kN58aG8giugAujll1/G4MGDcc0118BqteKbb77Bddddh71792LOnDl44403gtVP4ofb7UZ9fb3sz7fKBeXFh/KSjrLiQ3nxUUpeJpMJf/75Jw4cOBDqrvgV8AjQokWLkJycjN27d8Nut+OKK64AAFx66aXIysoKSieJf3a7HdnZ2bQ2hESUFx/KSzrKig/lxUcpedXX12PHjh34/fffQ90VvwKaAxQWFga9Xg8A+P333xETE4ORI0cCaKoADQZD4D0k7TIYDDjzzDMVsUKoHFBefCgv6SgrPpQXH6XkFRERgZEjRyI8PDzUXfEroBTT0tLw2WefwWAwYPv27Zg6dSpUKhWqq6uxfv16pKWlBaufxI+wsDDodLpQd0MxKC8+lJd0lBUfyouPUvKKj4/HVVddFeputCugU2BLly7FH3/8gWuvvRZqtRqLFi0CAFx22WXIy8vDPffcE4w+knY4HA7k5+fL/g7BckF58aG8pKOs+FBefCiv4Ap4BOjHH39ETk4OhgwZgoiICADAypUrMXbsWPTs2TMonST+eTweWCwWeDyeUHdFESgvPpSXdJQVH8qLD+UVXNy3wigpKeF6gT59+nC1lwO6FQYhhBByakpLS/HBBx8gJiYGd9xxR6e+Ns/nN/cI0PTp06FSqSS3NxqNvC9BCCGEEIXyeDywWq2yn6/EXQCtWrVKLIDq6+vx/PPPY9KkSbjkkkvQs2dP1NXV4b///S9+/fVXPPTQQ0HvMGnJYrEgKyvL5zQkaRvlxYfyko6y4kN58VFKXgkJCbjzzjsRFibvu21xF0CzZ88W//+uu+7ClVdeiaeeesqnzaxZs/D000/j+++/x//93/8F3kviF60Oyofy4kN5SUdZ8aG8+CglL61Wq4g5wAGVZ7t378Yll1zS6nNTp07FoUOHAtk8kUir1aJ3796y/6WQC8qLD+UlHWXFh/LiQ3kFV0AFUHx8PNLT01t97q+//kKvXr0C2TyRyO12w2QyyX55dLmgvPhQXtJRVnwoLz5KyctsNmP//v1t1gdyEVABNHfuXPznP//BSy+9hEOHDiEvLw/79+/HU089hY0bN+Kmm24KVj+JH3a7HZmZmbJfHl0uKC8+lJd0lBUfyouPUvKqq6vD1q1b8d///jfUXfGL+zJ4b4wxrFmzBh988IFYkTLGYDAYcOedd2LhwoVB62hnUtpl8B6PBw6HAzqdTvaTzuSA8uJDeUlHWfGhvPgoJa/q6mr89NNPiIiIwKxZszr1tXk+vwMqgASNjY04fPgw6uvrER8fjzFjxsh6hnp7lFYAEUIIIaSD1wFqayHEwYMHi/9fV1eHuro6AMpcCFFpHA4HysvL0atXL9mvuyAHlBcfyks6yooP5cWH8gouWgixC3C73WhoaECPHj1C3RVFoLz4UF7SUVZ8KC8+lFdwcZ8C+/LLL7kWQlTiOkB0CowQQgg5NWVlZfjoo48QExODW2+9tVNfu0NPgdFCiIQQQghpizBSxXO2KBRoIcQuwGq14ujRo7BaraHuiiJQXnwoL+koKz6UFx+l5NWzZ0/cdtttmDdvXqi74hcthNgFqNVqdOvWDWq1OtRdUQTKiw/lJR1lxYfy4qOUvHQ6Hfr06SP7GoD7FJg3YSFEm82GqVOnIj4+HlVVVdi+fTs++ugjPPzww8HqJ/FDp9Ohb9++oe6GYlBefCgv6SgrPpQXH8oruAIqgBYtWoTGxkZs2LABb731FoD/LYR499134/rrrw9KJ4l/Ho8HNpsNBoNB1otjyQXlxYfyko6y4kN58VFKXsJd63U6HYYNGxbq7rQpoAJIpVJh2bJluPPOO7vUQohKY7PZYDQaMWzYMMpdAsqLD+UlHWXFh/Lio5S8amtr8fXXXyM2NrbrFkCC6OhoTJkyJRibIqfAYDBg2LBhMBgMoe6KIlBefCgv6SgrPpQXH6XkpdfrMXjwYERGRoa6K34F5VYYO3fuxN69e9HQ0ID4+HiMGzcO5513XjD6FxK0DhAhhBCiPB26DpA3h8OBO++8E7t27YJarUZ8fDxqa2vx1ltvYeLEiXjzzTdpue5O4HA4UFlZiZ49e1LeElBefCgv6SgrPpQXH8oruAKaRfXaa6/hwIEDWLNmDdLT07Fr1y4cOXIEzzzzDA4fPozXX389WP0kfrjdbtTU1MDtdoe6K4pAefGhvKSjrPhQXnwor+AK6BTYtGnTMH/+/FaXut6wYQM++ugj/PTTTwF1MBToFBghhBByasrLy/H5558jOjoaN954Y6e+dqedAqupqcHw4cNbfW748OEoLy8PZPOEEEIIURiXy4Wqqio4nc5Qd8WvgE6B9evXDwcOHGj1uX379qF3796BbJ5IZLVacezYMdkvjy4XlBcfyks6yooP5cVHKXn16NED//znPzFnzpxQd8WvgEaArr32WqxevRoGgwEzZ85Ejx49UFVVhe+++w7r16/H4sWLg9VP4odarUZMTIzsl0eXC8qLD+UlHWXFh/Lio5S89Ho9+vfvH+putCugOUAejwePPfYYvvjiC5+7vjLGcNVVV2HVqlWyvxtsa2gOECGEEKI8PJ/fQVkHKCcnB3v37kV9fT1iY2MxYcIEDB48ONDNhozSCiCPxwOHwwGdTifr5dHlgvLiQ3lJR1nxobz4KCUvq9WKvLw8aDQaDBkypFNfm+fzOygJDh48GPPmzcMdd9yBefPmKbr4USKbzYZjx47BZrOFuiuKQHnxobyko6z4UF58lJJXTU0NPv30U2zdujXUXfErKLfCIKGl1+sxdOhQ6PX6UHdFESgvPpSXdJQVH8qLj1Ly0ul06Nev3+lxK4yuRmmnwAghhBASglNgwebxePDqq69iypQpGD16NG677TYUFhZK+t5vv/0WQ4cORVFRUQf3Uj6cTidKS0tlv+aCXFBefCgv6SgrPpQXH8oruGRZAK1btw6bN2/Gk08+iY8//hgejwcLFiyAw+Hw+33FxcV44oknOqmX8uF0OlFRUUG/FBJRXnwoL+koKz6UFx/KK7i4T4GVlJRwvUCfPn242jscDkycOBFLly7FddddBwBoaGjAlClT8PTTT+Oyyy5r9fs8Hg/mz58PrVaLv/76Cz///DOSkpK4XltAp8AIIYSQU1NZWYmvvvoKUVFR4ud4Z+nQW2FMnz6da20fo9HItf2MjAyYzWZMmjRJfCwmJgbDhw/Hvn372iyA3njjDTidTixevBh//fUX12sSQgghJDiEU3WxsbGh7opf3KfAVq1aJX4tW7YMarUakydPxtNPP4233noLa9aswcUXXwyDwYCVK1dyd6isrAwAWtxGIyEhQXyuufT0dGzcuBHPPfdcUFfI9F5u3Gq1iqfgPB4PLBaLeEdep9MJi8UitrXZbLDb7QCaFoXkbetyuQA03U/FYrFAGKSz2+2ttrXZbDh+/Dhqa2t92npfKmmxWMRhU7fb3WK77bX1eDwAmkbomufC01ZqhoHmLWTYWtuGhgYYjUZYrdZ2826eC09bf7kEknfzXIKRt81ma7OtyWTyufRWyj4r5WfDk2GgeXvnEmje3hk2b9vY2Aij0QiLxSKrY8SpZtjRx4jGxkaffUsux4hAMuzIY4T3sV5Ox4jmbSMjIzF37lxcccUVnX6M4MFdAM2ePRtXXXUVrrrqKuzbtw9XXnkl1q9fj9mzZ2PKlCmYNWsWXnrpJcyZMwfff/897+bFH45Op/N5XK/XiyF5s1gsWLp0KZYuXYoBAwZwv15b3G43srKyxH/n5uaKBZjD4RAPcgBQXV2NEydOiG3z8vJQWloKoOmHYjQaYTKZAAC1tbXIyMgQ2xYUFKC4uBhA005lNBrR2NgIAKirq/MZQSssLPSZDG40GlFXV4ewsDBoNBqcPHlS3NGLi4tRUFAgts3IyEBtbS2Apg80o9Eo7mSlpaXIy8sT2544cQLV1dUAmvI1Go3ijl9WVobc3FyxbVZWFiorKwE07chGo1HcQSsrK5GTkyO2zcnJQUVFBYCmHVkoQgCgqqqqzbydTieMRiPMZjOApjUmMjMzJeXdWobl5eWIiIiASqWC0WhEQ0MDAKC+vh5Go1H8ZSsqKmo1bwDiB51wACgpKUF+fr7YNjMz02/ezTOsqqoC0LT/e+ddXl6OkydPim2zs7P95p2dnS22PXnypHhDYmGf9Zd3Wxk2NDTAZrOJC6/l5+eLp8Ldbne7+6xwQQJjDEajEfX19eJ2jUajuM/6y7u9fTYzMxM1NTUAALPZDKPRKB4YW9tnm+ctHFsqKipa7LP+8m6eYXV1NSIiIsRc5HKMAP63z8rpGFFbWwuHwyHuW3I5Rgj7rJC3XI4RYWFh0Ol0OHnypKyOEbW1tT55l5WVITw8HAMHDuz0YwQXFoBRo0axXbt2tfrcrl272MiRI7m3uX37dpaSksKsVqvP40uWLGF33HFHi/bLly9nCxcuFP/9119/sZSUFFZYWMj92oL09HSWnp7OLBaL+JjFYmF2u50xxpjb7WZms5m5XC7GGGMOh4OZzWaxrdVqZTabjTHGmMfj4W7rdDoZY4w5nU5mNpuZx+NhjDFms9m42npnaDabmcPhYIwx5nK5uNu63W7GGGN2u71FLjxtpWYYaN5CLoHm3TyXQPL2ziWQvJvnEoy8rVZrUPIWcglW3kIugebtnUugeXvnQscIOkbQMUJexwjh81uKgNYBmjZtGq655hosWrSoxXMvvPACfvjhB+zYsYNrm+np6Zg7dy5+/PFH9OvXT3x83rx5GDp0aIvTakOHDoVOp4NG0zSdye12w263Izw8HHfccQfuuOMO7veltEnQHo8HLpcLGo1G1sujywXlxYfyko6y4kN58VFKXjabDUVFRdBoNEE9MyNFh06C9jZ37lz85z//gc1mw9SpUxEfH4+qqips374dH330ER5++GHubaampiIqKgp79uwRC6CGhgYcP34c8+fPb9G+eYF15MgRPPDAA3jrrbeQkpJyam9MYYRhzmHDhiEiIiLU3ZE9yosP5SUdZcWH8uKjlLxqamrw4YcfIjY2Fvfcc0+ou9OmgAqgRYsWobGxERs2bMBbb70FoOkcnsFgwN13343rr7+ee5s6nQ7z58/H888/j27duqFv37547rnnkJiYiBkzZsDtdqOmpgbR0dEwGAzo37+/z/cL54T79OmDuLi4QN6eYuj1epxxxhmyXx5dLigvPpSXdJQVH8qLj1Ly0mq1SExMRFRUVKi74ldQboXR2NiIw4cPo76+HvHx8RgzZkxA1anb7caLL76IL7/8EjabDePHj8eKFSuQlJSEoqIi/OMf/8AzzzyD2bNnt/jePXv24MYbb6R1gAghhJDTDM/nd1AKoJycHOzevRsVFRW44YYbUFhYKJ7KUiKlFUBOpxO1tbWIj4+HVqsNdXdkj/LiQ3lJR1nxobz4UF7t67Q5QB6PBytWrMAXX3wBxhhUKhUuueQSrFu3DgUFBdi0aRMSExMDeQkigdPpRHFxMaKiouiXQgLKiw/lJR1lxYfy4kN5BVdAI0Br167F+vXrsWLFCkydOhXnnnsuvvjiC4SFheGuu+7C+PHj8eyzzwazv51CaSNAhBBCiFxUVVVhy5YtiIqKwty5czv1tTvtbvBffPEFlixZgquvvtpnwvGwYcOwZMkS7N69O5DNE0IIIURhHA6HzwKechVQAVRVVYVhw4a1+lyvXr3E1TNJx7LZbMjMzPRZIpy0jfLiQ3lJR1nxobz4KCWv+Ph4zJ07FzNnzgx1V/wKqADq378/fvvtt1af27t3b4tL1EnHUKlU0Ol0XDepPZ1RXnwoL+koKz6UFx+l5BUeHo7hw4djyJAhoe6KXwFNgr7pppuwYsUKOJ1OTJs2DSqVCvn5+dizZw82btyIhx56KFj9JH7o9XoMHDgw1N1QDMqLD+UlHWXFh/LiQ3kFV8ArQdfU1OD111/HRx99BMYY7rvvPmi1WixYsADz5s0LVj+JH4wxuN1uqNVq2f9lIAeUFx/KSzrKig/lxUcpedntdpSVlUGj0aBv376h7k6bAiqAAOD222/H9ddfj0OHDqGurg4xMTEYNWrUabMKsxwId7SW+/LockF58aG8pKOs+FBefJSSV3V1Nd59913Z3wojoDlAN954I7777jtERUVhypQpmDVrFs4//3zExcXhyJEjbU6QJsGl0+kwaNAg6HS6UHdFESgvPpSXdJQVH8qLj1LyUqvV6N69O+Lj40PdFb8CGgHau3cv9u3bh2PHjuHBBx+U9ZBcV6bRaGS/o8kJ5cWH8pKOsuJDefFRSl69evXC4sWLQ92NdgU0AgQA8+fPx+bNm3Hrrbeivr4+GH0inFwuF6qqquByuULdFUWgvPhQXtJRVnwoLz6UV3AFXADNmjUL77//Pk6cOIE5c+YgMzMTAGg0qBM5HA7k5+fD4XCEuiuKQHnxobyko6z4UF58KK/gCrgAAoBRo0bh888/R3R0NK699lps27aN7lPSiSIiIjBu3DhZT4qTE8qLD+UlHWXFh/Lio5S8qqur8eGHH+Lrr78OdVf8CkoBBACJiYnYvHkzzjvvPNx///3YsGFDsDZNCCGEEIWw2+3Izs5GXl5eqLviV9AKIAAwGAx45ZVXcOedd2Lr1q3B3DTxw2azISsrS/bLo8sF5cWH8pKOsuJDefFRSl5xcXG48sorMWPGjFB3xa+ArgJ7//33MWjQoBaP/+tf/8LQoUPxyy+/BLJ5IpFKpUJYWBjNu5KI8uJDeUlHWfGhvPgoJa+IiAiMGjUq1N1ol4oxxkLdCbk5evQoAODMM88McU8IIYQQIhXP5zf3CNDy5ctx5513Ijk5GcuXL/fbVqVSYdWqVbwvQTgxxsAYg0qlkv1fBnJAefGhvKSjrPhQXnyUkpfD4UB1dTXUajUSEhJC3Z02cRdAe/bswU033ST+vz9y/gF1JUpZHl0uKC8+lJd0lBUfyouPUvKqqqrC+vXrZX8rDO4C6L///W+r/09CR6fTYcCAAbJfHl0uKC8+lJd0lBUfyouPUvIKCwtDTEwMoqKiQt0Vv2gOUCtoDhAhhBCiPB06B2jt2rWS26pUKtx11128L0E4uVwuNDQ0ICYmBhpNQBf2nRYoLz6Ul3SUFR/Kiw/lFVxUAHUBDocDubm5GDZsGP1SSEB58aG8pKOs+FBefCiv4KJTYK1Q2ikwxhg8Ho8i1oeQA8qLD+UlHWXFh/Lio5S8ampq8NNPPyE8PByzZs3q1Nfu0FNgramurobD4YBQS3k8HlitVhw4cADXXnttMF6C+KFSqaBWq0PdDcWgvPhQXtJRVnwoLz5Kyctms8FoNCI2NjbUXfEroAIoIyMDS5cuRU5OTqvPq1QqKoA6gd1uR1FREZKSkqDX60PdHdmjvPhQXtJRVnwoLz5KySs2NhaXXnqp7K9WC6gAWrNmDerr67Fs2TL88ssv0Ol0mDZtGnbu3ImdO3fi/fffD1Y/iR/CsCidzZSG8uJDeUlHWfGhvPgoJa/IyEiMHz8+1N1oV0BzgMaNG4fly5djzpw5+OSTT7BlyxZs2rQJALBkyRKoVCq88sorQetsZ1HaHCBCCCGE8H1+B3Q3eIfDgQEDBgAABgwYgIyMDPG52bNn4/Dhw4FsnhBCCCEK43K5UFVVhZqamlB3xa+ACqA+ffqgsLAQQFMBZDKZUFRUBKBpxcr6+vrAe0jaZbFYcODAAVgsllB3RREoLz6Ul3SUFR/Ki49S8qqoqMB//vMf2U+DCagAmjFjBl544QX88MMP6NWrFwYNGoSXX34ZmZmZ2LhxI5KTk4PVT+KHVqtFv379oNVqQ90VRaC8+FBe0lFWfCgvPkrJS6VSwWAwyHqiNhDgHCC73Y4HHngAVqsV69evx++//47FixfD4XBArVbjxRdfxIwZM4LZ305Bc4AIIYQQ5eH5/A7KQohOp1OsSAsKCnDs2DGMGDEC/fr1C3TTIaG0AsjlcsFkMiEqKopWB5WA8uJDeUlHWfGhvPhQXu3rtEnQAu/huH79+uGSSy5RbPGjRA6HAzk5OXA4HKHuiiJQXnwoL+koKz6UFx/KK7gCGgFKTU1tdzluo9F4qpsPGaWNADHG4HK5oNFoZL08ulxQXnwoL+koKz6UFx+l5FVbW4tff/0V4eHhuPjiizv1tTvtVhh33XVXix+C2WzGwYMHUVBQgKVLlwayeSKRSqWS/aQ4OaG8+FBe0lFWfCgvPkrJy2q1Ij09HbGxsZ1eAPEIqAD617/+1eZzDz74IP7++29cffXVgbwEkcBut6O0tBS9e/eW/ax7OaC8+FBe0lFWfCgvPkrJKyYmBhdeeKGs+wgEaQ5Qa6666ips27atozZPvDDGYLPZZL88ulxQXnwoL+koKz6UFx+l5BUVFYVzzjkH48aNC3VX/OqwaeQFBQVwuVwdtXnixWAwIDU1NdTdUAzKiw/lJR1lxYfy4kN5BVdABdDatWtbPObxeFBWVoZt27Zh2rRpgWyeEEIIIQrjdrthMpkQFhaG6OjoUHenTUEvgICm4a8LLrgAy5cvD2TzRCKLxYLMzEwMHToUERERoe6O7FFefCgv6SgrPpQXH6XkVV5ejvXr1yM2Nhb33HNPqLvTpoAKIO+bn5LQ0Wq16NOnjyKuDpADyosP5SUdZcWH8uKjpLzUajXUanWou+FXQOsAlZSUcLXv06fPqb5Up1LaOkCEEEII6cR1gKZPn861GJMSF0VUArfbDbPZjMjISNlX3HJAefGhvKSjrPhQXnwor+AKqAB6+eWX8fjjj2PEiBG4/PLL0atXL9TW1uK///0vvv/+eyxatAh9+/YNVl9JG+x2O7KysjBs2DBZnxeWC8qLD+UlHWXFh/LiQ3kFV0CnwBYtWoTY2FisXr26xXPPPPMMsrKysHHjxoA6GApKOwXm8XjEG9KGhXXY0k5dBuXFh/KSjrLiQ3nxUUpedXV12LVrF8LDw/GPf/yjU1+7026G+ueff+Kyyy5r9bnzzjsPBw4cCGTzRKKwsDDo9XpZ/0LICeXFh/KSjrLiQ3nxUUpeFosFBw4cEIsRuQooxfj4eBw5cqTV5/7880/06tUrkM0TiRwOBwoKCugOwRJRXnwoL+koKz6UFx+l5BUfH4+5c+di5syZoe6KXwHNAZozZw5ef/11WK1WTJ8+Hd26dUNVVRW2b9+Ojz76CI899liw+kn8EBadcrvdoe6KIlBefCgv6SgrPpQXH6XkFR4ejuHDh4e6G+0KaA4QYwzPPvssNm3aJP5AGGMIDw/HXXfdhQULFgSto51JaXOACCGEEML3+R1QASRoaGjA4cOHUV9fj/j4eIwePRpRUVGBbjZkqAAihBBCTs3u3buxfPlyjBw5ss07RnSUTpsELaisrEReXh4yMzMxZMgQZGRkwGQyBWPTRAKLxYIjR47AYrGEuiuKQHnxobyko6z4UF58lJJXWVkZfv/9dxw+fDjUXfEroDlAHo8HK1aswBdffAHGGFQqFS655BKsW7cOBQUF2LRpExITE4PVV9IGrVaLhIQERSyPLgeUFx/KSzrKig/lxUcpeZ199tn49NNPER8fH+qu+BXQCNC6deuwZcsWPPXUU9i9ezeEs2kPPPAAPB4PXnrppaB0kvin1WrRu3dv2f9SyAXlxYfyko6y4kN58VFKXklJSZg7dy4uuOCCUHfFr4AKoC+++AJLlizB1Vdfjbi4OPHxYcOGYcmSJdi9e3eg/SMSKOXKALmgvPhQXtJRVnwoLz6UV3AFVABVVVVh2LBhrT7Xq1cvNDQ0nNJ2PR4PXn31VUyZMgWjR4/GbbfdhsLCwjbbZ2VlYeHChTj77LMxadIkLFmyhPtGrUpmt9uRmZkJu90e6q4oAuXFh/KSjrLiQ3nxUUpeGRkZ+PTTT7F///5Qd8WvgAqg/v3747fffmv1ub1796J///6ntN1169Zh8+bNePLJJ/Hxxx/D4/FgwYIFrS7+VFtbi5tvvhkGgwEffPAB1q9fj5qaGixYsED2O0mwGAwGDB8+HAaDIdRdUQTKiw/lJR1lxYfy4qOUvL799lv83//9X6dfAcYroEnQN910E1asWAGn04lp06ZBpVIhPz8fe/bswcaNG/HQQw9xb9PhcGDjxo1YunQppk6dCgB46aWXMGXKFOzYsaPFrTd++uknWCwWrFmzRtwpnnvuOUydOhUHDx7EpEmTAnmLihAWFobw8PBQd0MxKC8+lJd0lBUfyouPUvISBh/0en2Ie+JfQAXQ3LlzUVNTg9dffx0fffQRGGO47777oNVqsWDBAsybN497mxkZGTCbzT6FS0xMDIYPH459+/a1KIAmTZqEdevW+VTEwn1STvUUnNI4HA5UVFQgISEBOp0u1N2RPcqLD+UlHWXFh/Lio5S8lFIABbwO0O23345du3bhrbfewnPPPYc333wTv//+O+6+++5T2l5ZWRkAoHfv3j6PJyQkiM95S0pKwsSJE30ee+utt2AwGDB+/PhT6oPAarX6/L9wCs7j8cBisYgT0ZxOp8+6DDabTdwBGGPcbV0uFwDA5XLBYrGIV9fZ7fZW27rdbtTW1sJkMvm0tdls4utYLBY4nU4ATRPpmm+3vbYejwdA0y9g81x42krNMNC8hQxba2u1WlFXVyfm6y/v5rnwtPWXSyB5N88lGHnbbLY229rtdtTU1Ij/lrLPSvnZ8GQYaN7euQSat3eGzdvabDbU1dWJ+crlGHGqGXb0McJms/nsW3I5RgSSYUceI7yP9XI6RjRvazabATQVQJ19jOARlIUQo6KiMGXKFMyaNQvnn3++zxVhvIQfTvPqVq/XS5rT88EHH2DTpk1YunQpunXrdsr9cLvdyMrKEv+dm5srFmAOhwNGo1EMu7q6GidOnBDb5uXlobS0FEDTD8VoNIoLQ9bW1iIjI0NsW1BQgOLiYgBNO5XRaERjYyMAoK6uDkajUWxbWFjoMxncaDSirq4O4eHhSEpKQm5urrijFxcXo6CgQGybkZGB2tpaAIDJZILRaBR3stLSUuTl5YltT5w4gerqagBNO5jRaBR3/LKyMuTm5opts7KyUFlZCaBpRzYajeIOWllZiZycHLFtTk4OKioqADTtyEajUfx5V1VVtZm30+mE0WgUf6lqamqQmZkpKe/WMqyqqkJaWhr0ej2MRqM4UlhfXw+j0Sj+shUVFbWaNwA0NjbCaDSKB4CSkhLk5+eLbTMzM/3m3TzDqqoqAE37v3fe5eXlOHnypNg2Ozvbb97Z2dli25MnT6K8vBzA//ZZf3m3laHVaoXb7RaH3vPz88WLDNxud7v7bFFREYCmg5vRaER9fT2AphFao9Eo7rP+8m5vn83MzERNTQ2ApoOv0WgUD4yt7bPN8xaOLRUVFS32WX95N8+wrq4OaWlpUKvVsjpGAP/bZ+V0jGhsbPQ5rSOXY4Swzwp5y+UYER4ejoEDByI3N1dWx4ja2lqfvIXfL71e3+nHCC5MZrZv385SUlKY1Wr1eXzJkiXsjjvuaPP7PB4Pe+mll1hKSgp76aWXAupDeno6S09PZxaLRXzMYrEwu93OGGPM7XYzs9nMXC4XY4wxh8PBzGaz2NZqtTKbzSb2i7et0+lkjDHmdDqZ2WxmHo+HMcaYzWbjauudodlsZg6HgzHGmMvl4m7rdrsZY4zZ7fYWufC0lZphoHkLuQSad/NcAsnbO5dA8m6eSzDytlqtQclbyCVYeQu5BJq3dy6B5u2dCx0j6BhBx4iWbW+99VYGgD3xxBOdfowQPr+lCMq9wIIpPT0dc+fOxY8//oh+/fqJj8+bNw9Dhw7FypUrW3yP0+nE8uXL8d133+Ghhx7CP//5z4D6oLR7gVmtVuTk5GDw4MGKmCAXapQXH8pLOsqKD+XFR055NT8F7G3RokXYvHkz/v3vf+Oee+5pcxs6nS7oV7TxfH4HNAm6I6SmpiIqKgp79uwRC6CGhgYcP34c8+fPb/V7HnzwQfz444944YUXMHPmzM7sriyo1WrEx8dDrVaHuiuKQHnxobyko6z4UF585JSXyWRCcXExVCpVi+eEU3sWi6XNNfzcbjcSExNDekm/7AognU6H+fPn4/nnn0e3bt3Qt29fPPfcc0hMTMSMGTPgdrtRU1OD6OhoGAwGfPnll9i2bRsefPBBTJgwQTz3CUBs09XpdDr07ds31N1QDMqLD+UlHWXFh/LiI6e8HA4H1Go1YmNj22wTFxfX5v3AhHk+oRSUSdDBtmTJEsyZMwePPvoo5s2bB7VajQ0bNkCr1aK0tBSTJ0/Gtm3bAADfffcdAGDNmjWYPHmyz5fQpqtrPtOf+Ed58aG8pKOs+FBefOSUl81mg0bT+hiKUi6Dl90IENA0zPfAAw/ggQceaPFcUlKSz2zzjRs3dmbXZEmY6T9s2DBERESEujuyR3nxobyko6z4UF585JKX2+2Gy+Vq81ScUAD5W6vI4/GIa/aFiixHgAgfvV6P1NRU2VfbckF58aG8pKOs+FBefOSSl8vlgsvlanMESFiSwt/pMQAhL4BkOQJE+KjVakRGRoa6G4pBefGhvKSjrPhQXnzkkpdQALU1AiRcHeZ9JXdrQl0A0QhQF+B0OlFSUiIu/Eb8o7z4UF7SUVZ8KC8+cslLWLCxtSvAAGD37t3IysrCwIED/W6nre/vLFQAdQEulwtVVVXiTkn8o7z4UF7SUVZ8KC8+cslLSgEWERHR7uX6oS6AZLcQohwobSFEQgghpLMUFxfDZDIhOjr6lLdRW1uLfv36BbSN1vB8ftMIECGEEEIkYYzBbre3OQH6/fffx7XXXotPPvmk3W3RHCASMKvViuPHj7e5LDnxRXnxobyko6z4UF585JCXy+WC2+1u8/RWeno6fv/9d/GGya0RLoEP9YrWdBVYF6BWqxEVFRXynUkpKC8+lJd0lBUfyouPHPISrgBr615kN998MyZMmIARI0a0uQ23242wsLCQjwDRHKBW0BwgQgghpKXGxkYUFBS0eYsLKWw2GzweDwYOHBj0Yo7mAJ1mPB6PuEOR9lFefCgv6SgrPpQXHznkFYwr0BhjsjgFRgVQF2Cz2XDs2DHYbLZQd0URKC8+lJd0lBUfyouPHPJyOBxtnrqqqqrCpk2b8Mcff/jdhtvt9nubjM5Cc4C6AL1ej5SUlJAvj64UlBcfyks6yooP5cVHDnn5uwnqsWPHsGzZMqSkpOCXX35pcxtUAJGgUavVQV9LoSujvPhQXtJRVnwoLz6hzqu9m6Dm5+cDaP8WGB6Pp80iqjPRKbAuwOl0oqysLOTLoysF5cWH8pKOsuJDefEJdV7t3QS1oKAAANC/f3+/22GMhXz+D0AFUJcQ6l8KpaG8+FBe0lFWfCgvPqHOq72boAoFUHsjQCqVShYFUOjHoEjAIiIiMHr06FB3QzEoLz6Ul3SUFR/Ki0+o82rvJqhSCiDGmGwKIBoBIoQQQki7bDab3xuYSjkFJqwiTQUQCQqbzYaMjAy6lFQiyosP5SUdZcWH8uITyrxcLhcaGxthMBhafb6urg719fUA/I8ACQVQqFeBBqgA6hJUKhUMBoPfypz8D+XFh/KSjrLiQ3nxCWVeNpsNdru9zUvwhdGfhISENm+TATRdASaXU2A0B6gL0Ov1GDBgQKi7oRiUFx/KSzrKig/lxSdUeVksFtTW1kKlUrVZfJ04cQIAkJyc7HdbbrdbNkUvFUBdAGNMvDRRDjuV3FFefCgv6SgrPpQXn87Oy+l0ora2FjU1NfB4PIiJiWmz7aeffgoAmDx5st9tejweWSyCCNApsC7BarUiPT0dVqs11F1RBMqLD+UlHWXFh/Li01l5OZ1O1NXVoaCgABUVFdDr9YiLi2tz3s6JEyewe/duhIWF4frrr/e7bbmsAg3QCFCXoNfrccYZZ9By8hJRXnwoL+koKz6UF5+OyosxBofDAZvNBpPJBIvFArvdDoPBgG7durX7/Y888ggA4IILLkDfvn3bbS+H+T8AFUBdglqtRmxsbKi7oRiUFx/KSzrKig/lxSeYeQl3lrfZbGhoaIDdbofT6YRGo4Fer0dERITk02yPPfYYHnjgAaxcuVJSezlcAQZQAdQlCOdp4+PjodVqQ90d2aO8+FBe0lFWfCgvPoHm5XK5YLPZYLFY0NjYCLvdDsYYdDodwsPDJd9n7Ndff0VBQQFuvPFGAMDIkSOxffv2dgsmi8UCrVYrm581FUBdgNPpRFFREaKiomSzY8kZ5cWH8pKOsuJDefHhzcvj8cBut8PhcMBsNountlQqFfR6PWJiYiSNxgirNwNAZWUlrr/+emi1WkyYMAGpqakA2l4dGgDsdjvMZjP0ej0SExPbXEuos6kYYyzUnZCbo0ePAgDOPPPMEPeEEEIIkYYxJhY8FosFZrMZDocDbrcbGo0GOp0Oer2+3ZEaxhiysrLw66+/4rfffoPBYMCGDRvE52fMmIGzzz4bDz/8sN81fxwOB0wmE3Q6HWJjYxEXF9fh8714Pr9pBIgQQghRIGHyssPhgNVqhclkgsPhEG9YqtPpEBUVJWnScV1dHX7//Xf89ttv+PXXX1FaWio+ZzAYYLVaxWLnu+++83sll91uh8VigUajQc+ePREbGyubUR9vVAB1ATabDQUFBejXr58sdzK5obz4UF7SUVZ8KC8+VqsVOTk56NWrF1QqFUwmkzh5OSwsDDqdDhEREdBo2v9od7lcOHToEHbu3Ilff/0Vhw8fhsfjEZ/X6/WYOHEizj//fEydOtXn59Na8SNcReZyuaDT6dCjRw/ZFj4CKoC6AJVKRQuJcaC8+FBe0lFWfCgv/zwejzjCY7PZUFNTg9LSUjidTuh0Ouh0OhgMBsmTlwGgtLQUK1aswO7du8V7dwmGDBmCqVOnYurUqTj77LP9nt4CmkZ67Ha7WPRER0cjKioK4eHhslnrxx+aA9QKmgNECCGks7ndbrHgsVgssFgscDqdcLlc4giPTqeTNMIDAGazGX/88QcYY5gxYwaAplGk4cOHw+FwIC4uDlOmTMH555+P8847T9IaPs2LnsjISERHR8NgMMii6KE5QKcZxhg8Hg/CwsLoLykJKC8+lJd0lBWf0z0vl8vlM2nZarXC4XDA4/GIc3giIyPFOTxCXt5XZXkzm81wuVziWkE7duzA4sWLMXz4cLEACg8Px5o1azB48GCMGjWq3flBLpcLDocDdrsdAMSRHjkVPaeKCqAuwGq1wmg0YtiwYYiIiAh1d2SP8uJDeUlHWfE5nfJijMHpdIrFhNlsFosfxpi4Po6/S9NtNhuysrIwZMgQhIeHo6amBnv37sWePXuwd+9eHD16FPfffz/uvvtuAMB5552H/v37Y9y4cXC73WKxM3fu3Db7KYxC2e12eDweaLVa6HQ69OzZE+Hh4TAYDF1myQIqgLoAnU6HQYMGKboS70yUFx/KSzrKik9Xzqv5/B2LxSL+W6VSiQUPz4rLFRUVSE9Px6ZNm7Bv3z7xDuzesrOzxf/v3r07/vjjD7/b9D7tJlwur9Vq0b17d4SHh0Ov10On03XJEToqgLoAjUaD+Pj4UHdDMSgvPpSXdJQVn66Sl3CXdqfTCafTCavVCrPZ3GL+jl6vR1RUlOTtFhQUYOfOndizZw/27NmD4uLiFm2GDBmCs88+W/xqbx6Pd2Hmfbl8fHy8T8Ejl9tVdCQqgLoAl8uFuro6xMXFSZ4cdzqjvPhQXtJRVnyUmJdwKkv4stlssFqt4r8ZY2JRIfWSdKApi+PHj2Pw4MGIjIwEAHz00Ud49dVXxTZqtRqpqamYNGkSJk2ahAkTJrR7s1JhcUShf2FhYeIq0JGRkWJhdjoUPM0pY48jfjkcDuTn53P9sp3OKC8+lJd0lBUfuefVWrFjsVjE0R6h2BHmyURGRko+VeRyuXze86xZs5Ceno53330XF154IQDg3HPPxb59+8TRneHDh6OkpEScA9RWnx0Oh9hnAOLIk3fBI5c7soeS/PY4wi08PBxjx44NdTcUg/LiQ3lJR1nxkUtejDG43W643e5Wix2Xy+UzsqPX67mKHcYYCgsLcejQIRw4cACHDh3CyZMncfjwYXFCcVpaGvLz81FdXS1+3+TJkzF58mSf7XTv3r3FtoXJ1ULBI9zctGfPnuIpLTkWmKFG6wC1gtYBIoSQrkUoclwul/hfoXCw2WxiAeR2uwFAHNnRaDTcizU2NDTg8OHDOHToEA4dOoSDBw/6FDaCbdu2YdSoUQCAxsZGREZGSjoVJfTb4XAAALRaLQwGAyIjI2EwGKDX60/bgofWATrN2O12FBYWIjk5ucNvNNcVUF58KC/pKCs+wc7Lu8gRCh2n0yku3udd5Ahr6Wg0GqjVamg0GhgMhlM6NWSxWPDll1/i4MGDOHToELKystB8bEGr1WLEiBEYM2YMxowZg3HjxqF///7i8/5WcxbW4mlsbERZWRmSkpIQHR2N+Ph4seDpKpemdyYqgAghhCiGcMWVd6Hjcrlgs9nES7mF54VRG2EUJ5AiR1BXV4c///wTYWFhuOiiiwA03dLjkUcegcvlEtslJydjzJgxGDt2LMaMGYO0tDRJ98VqPu/Iey2eHj16QKVSYcCAAYiKiuqSl6Z3JjoF1go6BUYIIaEjFDnehY5wyqf5SA4AhIWFiaM4wn9P9aomh8OBgoIC5OfnIy8vD/n5+Zg1axbGjx8PAPjhhx9wyy23YNSoUdi2bZv4fQ899BDi4uLEgqdnz56SXs/78nmXyyWuESRcRSaM8HTVtXiCjU6BnWa8a1j6BWkf5cWH8pKOspLO4/H4jOAI69PYbDY4nU6x8BEy9T5dJUzqPdUix2KxIC8vTyxwcnNzxYKnpKTE567oANCrVy+xABo4cCCGDRuGMWPG+NySYvXq1e2+rvcka+G9CfOMYmNjER4eLhY/rc07ov0ruKgA6gJOp+Xkg4Hy4kN5SUdZ+RKKHO/TVcIVVk6nEyaTCSdOnMCAAQPEFZGFIkev1yMiIuKUixybzYaMjAzU19fj/PPPFx+//PLLceDAAb/fGx4ejgEDBohf3leqpaSk4Keffmr39YXL0YXRK++ryCIjIxEREQGdTicWPFIKGtq/gosKoC5Ap9Ohf//+XXI5+Y5AefGhvKQ7HbNqfmWV2+32uWO48BhjTCwChNGbqKgoDB069JQWQmSMoaKiQhzJycvLw7hx43DBBRcAaLolxMyZM9GtWzfxtAjwv8nGcXFxYoHTv39/n4KnZ8+ekgoSj8fj876bn5YTbncRFxcnnsbSarWnPAfpdNy/OhIVQF2ARqNBjx49Qt0NxaC8+FBe0nXFrJpPOhZO4winq7xHeYRTQmFhYWKRYzAY/F5G3taCfkBTcVVcXOxzusr7v1ar1af9jTfeKBZAAwYMQK9evTBgwADY7XbxKrM1a9YgIiJC8i04vN+fv9NyBoNBvFGo96TrYF6d1RX3r1CiAqgLcLlcaGxsRHR09Gm79gMPyosP5SWdUrNq61SVcLdy4XnvuTHCB79wWketVnPPS3G5XKivr0dFRQXKy8sxdepU8bm7774b33zzjbi4X2vCwsKQlJQkjuJ4LxoYFRWFgwcPtvie1u6V1VqR4/F4xGJOeJ/e98oSRrKEHDrjVhJK3b/kihLsAhwOB06ePIlhw4bRL4UElBcfyks6uWblvdJx8yurhEUAhceFD37v0Q2tVovw8PBT+pB3Op0oKSlBQUEBCgsLUVhYiAEDBuD//u//4HQ6kZmZiblz5wIAsrKyxLkter0eTqdTPO3T/DRV//79kZSUJPl0kPcpKn+n5SIiIsR1dbyvKuNdDLEjyHX/Uiq6DL4VSrsMnjEGj8eDsLCwkP+CKgHlxYfyki6UWTWfi+K90rGwPo73HBUA4siG8HUqH/JutxtlZWUoLCz0KXKEr9LS0hZXVU2fPh0ffPCBmNekSZMQFxeHd955RxyhEe583rt3b8mFV2sZCKflvN+nXq8Xi5zmIzly3sfpd7F9dBn8aUb45SbSUF58KC/pOjKr1kYwvBcA9D6N492fYKx0DDSdJvrmm29QUFCAhQsXinN3li9fjg8//NDv9xoMBiQlJSE5ORnJyckYPXq02D+1Wo29e/e2+J7WTlV5j2R55yBoPpIjTDr2zkDuRY4/9LsYXFQAdQF2ux3FxcXo27cvLb8vAeXFh/KS7lSy8ng8Lb68P+CFERzvkQ3v01TeH+ynMheHMYbq6mpxxKaoqAhFRUXiLSpWrVoFoOnDd/ny5WhsbMSll16KIUOGAGgqVDQaDfr27Yvk5GT069cPSUlJ6Nevn1jw9OzZs9VRHLvdjrKyMiQmJop5eV9Z5T33yHskRxixEU5XeU86FkZ5lFrk+EO/i8FFBVAXIFylQWczpaG8+FBe0glrvwgTd9sqbpovhte8jTfvSbanOtkYAPLy8nDkyBGxwBGKnMLCQthstla/Z+jQoeL/q1QqzJw5E26322f+ycKFC7F48WLJIxPeozhmsxn19fXiKSnhdbzXAoqOjoZer/c5TSc8f7qh38XgojlArVDaHCBCSPAJE2RbK1CEUZjmqxk3L2i8R2sEwpVFwpcwquH9GG8/GxsbERMTIz725JNPIjMzE0899RQGDBgAAHj55Zfx3HPPtboNlUqFXr16iSM2SUlJSEpKwqBBgzBp0iTu7JpfVSXk0HwUJywsTCx+vAubzryyinQtNAeIEKJ4QvHh/f/eX609LuUxYYSleVHTvNjx/t7m7YTHgf/dh8q7oNFqtadc0AiXhtfV1aG+vl78av7v8vJyFBQUoLi4GAMHDvRZnfi3336D0WhEbm6uWAClpqZiwoQJPnNxhP/v06cP1+J63ndd9z5lJTznPeHY+15Wze/XdTqO4hD5oAKoC7BYLMjIyEBqaiotjy4B5SWNUBCYzWZkZGRg6NChCA8PD7gwaa3Y8D7107zQaG973o+19h5aO10kzJ8Rvtp6DPjfir7eBU5brFYrsrKyMHDgQDgcjhaFi0ajwcyZM8X2Dz30ELKzs/Hkk09i2LBhAIANGzbgiSeeaOen46u4uNjnvS5atAgOh8PnFNbFF1+Miy++WNL2mk82Fr68FwD0PiXlPeHYu7hpbxSHfhf5UF7BJcsCyOPxYO3atfjss8/Q2NiI8ePHY8WKFUhOTm61fW1tLZ566ins3LlTPE/94IMP+l1htCvRarVISkoK6oqjXZlS8grWiEfzx9sa8WhehAjfI1xCXVRUBI1G0+brtPUeALQ4BST8118R0nwycGv/NhgM6NOnj/j9Bw4cgNPpxOjRo2EwGAAAGRkZyMnJaXGqyntVY+8FAF0uFxISEvDPf/5T7PMzzzyDqqoq3H333ejXrx8A4Pvvv8cnn3wCt9sNm83mU+yYTKZW8xgwYIBPAXTw4EEcO3YMZWVlYgEUFxcHoGkhv9jYWPErPj7e5989e/YUR3J69+7tk/HVV1/d6ut7/1zaKnAYYz6L/4WFhYkLADYfvRG+TpVSfhflgvIKLlkWQOvWrcPmzZuxevVqJCYm4rnnnsOCBQuwZcuWVodplyxZAqvVinfffRcNDQ145JFHYLFY8Oyzz4ag951Pq9UiISEh1N1QDCl5tfUBH8ipGOFxf6ddvB9rbTvCB7YwURRoujKkqqoKAJCYmCh+EObk5MBsNvt82Hsvdud0OltccTNkyBCcddZZUKlUaGxsxPvvvw8A+Ne//iUWJps3b4bRaPTZbluFhPD41KlTcd999wFoGiW54IIL4Ha78d///lf8S/bhhx/Gp59+6tOf9kydOtXnEuxrr70WFosFf/zxB/r37w8A+OKLL7Bu3bp2t+XtzDPP9CmAtmzZgvz8fMybN08sgPLz8/Hjjz/63U5kZKRYsMTFxbX4I+7++++HzWbD8OHDxcdmz56Nq6+++pQXums+B0mYOOtd4HhPNG6twGle5HQUOnbxobyCS3YFkMPhwMaNG7F06VJxWfSXXnoJU6ZMwY4dO3DZZZf5tD906BD27t2Lbdu2YfDgwQCAJ554AgsWLMB9992HXr16dfZb6HRutxsmkwlRUVFd5py61IJDOMir1Wrx3xUVFeIVNsLVNt5X3djtdjQ0NECtVosf0GlpaejRowc8Hg/y8vKwd+9e9OjRA+eff774Wu+++y6sVqvPrQKa3x+p+Rotc+fOxcSJE8EYw7Fjx/DCCy8gOTkZTz31lFioLFy4EEVFRa0WE80LCsGDDz6IxYsXQ6VSIT8/H5dccgkSExN97nL973//u9VbAfhz66234rzzzgMA1NXV4aWXXoJWq8XChQsRGRkJtVqNX3/9FTt27ODarlA0AE1rteTl5QFo+n0XCiCXy9Xi3k6t8T7N0vxS4MGDB8NqtfqcdunXrx/OPvtsnyuI2voSVj3u06ePz3YXLlyIxsZGn8fPP/98xMTEQKPRQKfTITY2FtHR0dBqtejduzfi4+Pb/Uv9oosuavX9Ndd8AnbzIkcgjN40/4qMjPRZ+K+zCpz2dMVjV0eivIJLdgVQRkYGzGazz5UHMTExGD58OPbt29eiANq/fz969uwpFj8AMGHCBKhUKhw4cACXXnppp/U9VOx2O7KzszFs2DCEh4eLf917f1B7f4h6/3v48OHiX5qZmZkoKirCwIEDMXDgQDDGUFtbi++//75FQdHa/3v/95577hFv2vfNN99g27ZtOO+883DNNdcAAKqqqrBo0SKxvffKtc1HLLwLjDfffBOjRo0CYwzvv/8+nnnmGVx66aVYs2YNgKZl98eMGcOd4dq1azFjxgyoVCocPHgQy5Ytw6RJkzB16lRx3sfatWvR0NDAtd2pU6f63HRx3759MJlMiI2NFR8rLi5Gbm4u13Y9Ho94ANRqteIkU2+JiYno169fqx/8wge99wehVqtFamqq+P2RkZG4/vrroVKpkJeXhyFDhiA8PByXX3450tLSWly101ZBIawRI9Bqtfj666+h0WgQFRUlPi4UdUJfWtt2e3Nwtm/f3uKxG264ATfccANXvs15jwYJhg0bJp62EghzgIRCqC2tnXpsXuQ0n4fk/dVa1sJzza8ok/Oqwd7HLprT0j7KK7hkVwCVlZUBaFr+3FtCQoL4nLfy8vIWbXU6HeLi4lBaWhpQX6xWqziPyGq1iguNeTwe2Gw2cW0KoRAQdkibzQaVSgW9Xg/GGKxWq9j2zz//xFtvvSUOS9vtdp8Fv7zvriwsYw8Ae/fuhc1mA2MM9957L7Zt24ZHH30UN9xwA8LCwlBUVISJEyf6jBJIcfToUURERMDtduOpp57Cpk2bcNddd+Ff//oXNBoNjh8/fkofHhdeeCGSk5Ph8Xjwxx9/iHMlJk2aBJ1Oh6qqKvz666/c23W5XOL8EGGOh8fjgU6ng16vF/8abv6XbvN/e39oaLVaxMXFQaVSwel0ok+fPpg6dSqGDBkCh8Mh/hwvu+wyOBwO6HQ68UNF+KsagHjFizAapdVqMWrUKJjNZjgcDvTr1w+vvPIKIiMjUVdXJ45ePPXUU+J7CAsLA2MM4eHh0Gq14umKyMhIaDQa8d5IUVFRMJlMsNvtSE5Oxt9//y2eChP22WeeecZnn7Xb7WIOQqEptLXZbGIW9fX1sNvt0Ol0eOyxx8SF+IT9fPLkyZg8ebKYi91uF/MU9lvhZ2O326FSqaDT6VBXVye2HTJkCNxuN6qqqqDX68WfqXchZ7PZoNFo4PF4YLVa4XQ6xbZ2ux2MMfF1rFarWDQJv58GgwEqlUosoJu3VavV8Hg8cDgcYlth5E342dhsNjFDxpj4ex8WFiZmKHyvkGHv3r1hsVhQU1MjthUKeGESucPhEFdmFt6PMEojjDhGR0cjLCwMDocDarUaERERYlvhDuvCQonh4eHicwB8jj06na7Ntt4ZWiwWaLVaaLVauN1u2O12rrYGg0Hsr9vt9jl2Cr+Dzduq1WqkpKSc0nE20GOykAtPWykZBpK3d4bexzihbXh4OEaMGCGexm4r7+a5+PvZ8GQorEUVSN5CLsHKW8hQaMtDdgWQMATe/K9ZvV6P+vr6Vtu3Ni9Ir9eLB4NT4Xa7kZWVhZEjRwIAcnNzERUVhX79+sHhcMBoNCIlJQXR0dGorq5GWVmZuLx7Xl4eDAYDBgwYAJfLBaPRiDPOOAOxsbE4cuQI3n33Xe7+5ObmoqCgAIwxlJSUoLS0FAcPHsS4ceMQFxeHsrIyv8WPcM7f+9JTvV6P6upqFBcXw263Iz4+HkOGDIHNZkNJSQl69uwJt9uNESNGICYmBlqtVpx/EhsbC7VaDYvFgvDwcPEveZPJhO7duyM2Nha1tbVobGzEueeei5iYGERFRaG2thaJiYnQ6XS466670KtXL0RFRcFsNsNisWDAgAFQq9UoLy9HZGQkevXqJb7npKQkDBkyBBUVFaioqMCsWbNwwQUXoLS0FAUFBUhKSoLT6cRnn32G/v37IyYmBjU1NSgpKUFaWpo4kqFSqdC/f3+43W4YjUYkJSUhLi4ONTU1KC4uxpgxY/DWW28hPz8fBQUFGDhwIABgzpw56Nu3L7p164a6ujoUFRUhNTUVGo0GhYWFcDqd4kjk33//jcTERPTo0QMNDQ0oKChASkoKZs6cieLiYhQVFYlto6Oj0b17dyQkJMBqtSInJweDBg2CXq9HSUkJzGazWORnZmYiLi4OERERsFqtyMvLwxlnnCEWlfX19UhNTRVPjUVFRaFPnz6w2+0oLCzEoEGDYDAY0NDQgOrqaowYMQJA0yhUeHg4kpKS4HA4kJubi0GDBiE6OhpVVVWoqqoS+5CdnQ29Xo+EhAS43W4UFBSgf//+iIuLQ3V1NSoqKjBq1CiEhYXh5MmTUKlU6N27NzweD44ePYrk5GQxw/Lycpx55plQq9XIzc2Fx+MR58kcPnwY/fr1Q48ePVBfX4/c3FyMGDECWq0WBQUFsNlsGDhwIFQqFdLT05GYmIiEhAQ0NDSgqqoKycnJ0Ov1KCoqgs1mE/M+evQooqKikJiYCJPJhJycHCQlJSE8PBzFxcWor6/HGWecAQA4fvw4IiMj0bdvX1gsFmRmZqJv376IjIxEaWkpqqurkZKSApVKhYyMDISHhyM5ORk2mw1GoxF9+/ZFdHS0eLdzYYQtKysLer0eAwcOhNvtxt9//43k5GTExsaioqICRUVFSEpKAgCcOHECGo0GcXFxcLvdyMzMxKBBgxAfH4+6ujrk5+dj7NixAIDCwkIAEPtvNBrRv39/9OjRA42NjTh58iRGjx4NtVqN4uJiuFwupKSkAGgafU9KSkJCQgJMJhOys7MxcuRIaLValJaWwmazif0/ceIEEhMTkZiYCIvFghMnTmDEiBEwGAwoKyuDyWQS5zVlZWWhR48e6NOnD2w2GzIyMsQRjKqqKtTW1iItLQ1A07y1uLg4JCUlwW63w2g0YujQoYiKikJVVZW4bwnHROGY7HQ6YTQaMWTIEJ/fe2E0uLVj8uDBgxEXF4e6ujoUFBRg3LhxYoZhYWEYPHgwPB4PjEYjBg4ciG7duqG+vh55eXkYM2YMVCoVioqKxLlzbeU9atQoaDQalJSU+FyZJ+xL3nmfeeaZ0Ol0KC0thcViEUcYs7KykJCQgN69e8PlciEzM1PMu7y8HA0NDeLvcnZ2Nrp164a+ffuK+6GQd2VlJWpqasQ1ck6ePImYmBgkJyeLn2v+8o6IiED//v1bfK7V1taKx06gaX6cTqcT92+j0dhin20tb8YYjEYjBgwYgO7du6OhoQG5ubniPtta3v369UPPnj3F32We5RxktxDiDz/8gCVLluDIkSNilQcAd999NxwOB15//XWf9k8++STS09Px2Wef+Tw+adIk3H777a0OXbdHWEjpjDPOCPoI0KFDh/DJJ58gPDxcPPWk0WgQHh4u/kUqrJshTDqNiIjAtGnTxNVlS0pK0NDQgG7duqFPnz5wu93Iy8sDY0ycdyD8dRAVFQWtVgubzdbmX3cOh0PSX4L+/rrT6XR+/xJUqVR+MxRGDvz9dSeMrrSVt8FgaPevO7vdDqfTierqaiQmJoojLxqNBm63u92/NoSJom39ZSLk4u+vO2HycVt5CyMScvnrzmw2o7S0VCwoQvnXXTBGJHhHL/xl6D2KJswPq66uFgv3UzlGBDoiAShnBMhkMqGsrEzct2gEyP8IkMfjQUlJCeLj4xETEyObY4ScRoBycnIASFsIUXYFUHp6OubOnYsff/zRZ+LkvHnzMHToUKxcudKn/fr167Fp0yb89ttv4mMOhwOjRo3CCy+8cEpzgJS2ErTNZkNeXh4GDBjgUzSS1lFefCgv6SgrPpQXH8qrfTyf37JbZzw1NRVRUVHYs2eP+FhDQwOOHz+O8ePHt2g/fvx4lJWVIT8/X3xMuLOwMMTW1RkMBqSmptIvhESUFx/KSzrKig/lxYfyCi7ZzQHS6XSYP38+nn/+efE85nPPPYfExETMmDEDbrcbNTU1iI6OhsFgwKhRozB27Fjce++9WLlyJSwWC1asWIErr7zytLgEnhBCCCH8ZDcCBDQtbDhnzhw8+uijmDdvHtRqNTZs2CBOxps8eTK2bdsGAOLlyUlJSbjppptwzz334Lzzzmtxqqwrs1gsOHz4MCwWS6i7ogiUFx/KSzrKig/lxYfyCi7ZzQGSA6XNARIm9Xbv3p2WSJeA8uJDeUlHWfGhvPhQXu2ju8GfZrRaLRITE0PdDcWgvPhQXtJRVnwoLz6UV3DJ8hQY4eN2u9HY2OizJD5pG+XFh/KSjrLiQ3nxobyCiwqgLsBut+PEiRMBLfx4OqG8+FBe0lFWfCgvPpRXcNEcoFYobQ6QsJy/cCsF4h/lxYfyko6y4kN58aG82kdzgE4zYWFhtC4EB8qLD+UlHWXFh/LiQ3kFF5WQXYDD4UBBQQH3jeBOV5QXH8pLOsqKD+XFh/IKLiqAugC32w2TyUQT4ySivPhQXtJRVnwoLz6UV3DRHKBWKG0OECGEEEIUfi8wQgghhJCORpOgW+F0OsEYEytJuWOMwel0QqvVQqVShbo7skd58aG8pKOs+FBefCiv9jkcDsnZUAHUCqXtWCqVCjqdLtTdUAzKiw/lJR1lxYfy4kN5tU+lUkn+DKc5QIQQQgg57dAcIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGmHCiBCCCGEnHaoACKEEELIaYcKIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGmHCiBCCCGEnHaoACKEEELIaYcKIBnyeDx49dVXMWXKFIwePRq33XYbCgsLW2372muvYejQoa1+LV++vEV7xhhuvfVW3HDDDR39NjpFR2SVm5uLhQsXYsyYMTj33HPxxBNPwGq1dtZb6lAdkdcff/yBq6++GqNHj8YFF1yADRs2dNbb6XA8eQFAdXU17r//fkycOBFnn3027r33XpSXl/u0+f7773HppZdi5MiRuPLKK/Hnn3929NvoNMHOy+Px4O2338ZFF12E0aNHY+bMmfjss8864610io7YvwQOhwOzZs3CQw891FHdVz5GZOe1115jZ599Nvvll1+Y0Whkt9xyC5sxYwaz2+0t2ppMJlZRUeHz9eyzz7LRo0ezjIyMFu3feecdlpKSwubPn98Zb6XDBTurmpoads4557BFixaxrKwstnv3bjZ58mT2+OOPd/I76xjBzisnJ4elpaWx1157jRUUFLCtW7eykSNHsk2bNnX2W+sQPHkxxtj8+fPZtddey44fP86OHTvGrrnmGnb11VeLz//5559sxIgR7L333mPZ2dls9erVLC0tjWVnZ3fWW+pQwc5r3bp17KyzzmJbt25l+fn57OOPP2bDhw9nX331VSe9o44V7Ly8PfnkkywlJYUtW7asI9+ColEBJDN2u52NGTOGffjhh+Jj9fX1bOTIkWzLli3tfv+xY8fYiBEj2JdfftniuYyMDHbWWWexa665pksUQB2R1auvvsrOO+88ZrPZxMc+/fRTdtVVVzGPxxPcN9DJOiKvd955h02YMMGn3V133cVuv/324HU8RHjzqq+vZykpKeznn38WH/vpp59YSkoKq62tZYwxdsstt7C7777b5/v+7//+jz322GMd8h46U0fkNWXKFLZu3Tqf71u+fDm77rrrOuZNdKKOyEuwc+dOds4557CZM2dSAeQHnQKTmYyMDJjNZkyaNEl8LCYmBsOHD8e+ffva/f4nnngCZ511Fq666iqfx+12O5YuXYolS5Zg4MCBQe93KHREVrt27cKFF14IvV4vPjZ37lx8+eWXUKlUwX0Dnawj8urevTvq6urw3XffgTGGzMxMHDhwAKNGjeqQ99CZePMyGAyIjIzE119/DZPJBJPJhG+++QYDBw5ETEwMPB4PDh486LM9ADj77LMl5S93HZHXs88+2+JYFhYWhoaGhg5/Px0t2HkJampqsHz5cjz55JOIj4/vlPeiVFQAyUxZWRkAoHfv3j6PJyQkiM+15ZdffsGhQ4ewbNmyFs8999xzSEhIwPz584PX2RDriKxyc3ORkJCAZ555BlOnTsWFF16INWvWwG63B7fzIdAReV1yySWYO3cuHnjgAYwYMQKXX345zj33XNxxxx3B7XwI8Oal0+mwevVq7N27F2eddRbGjx+PI0eOYP369eKHtsViQWJioqTtKU2w8woLC8OkSZN88iopKcHWrVsxefLkjn0znSDYeQkeeeQRTJs2DdOnT+/YN9AFUAEkM8JkW51O5/O4Xq9v90P4nXfewbRp0zBs2DCfx3fu3IktW7Zg1apVih/F8NYRWZlMJqxfvx52ux1r167FAw88gC1btuDRRx8NbudDoCPyqq6uRnFxMZYsWYLPP/8cTz/9NH777Te89tprwe18CPDmxRiD0WjEmDFj8OGHH+K9995Dnz59cOedd8JkMsFms3FtT2mCnVdzVVVVuO2229C9e3csWrSoY95EJ+qIvD7++GPk5OS0egEMaUkT6g4QXwaDAUDTDH7h/4GmU1jh4eFtfl9JSQn27NmDt956y+fxmpoaPPzww1i5ciV69erVMZ0OkWBnBQAajQYDBw7EypUrAQBpaWlwu92455578NBDD6F79+7BfROdqCPyeuSRR9C7d2/xA2n48OFgjGHlypWYP38+unXrFuR30Xl48/r++++xadMm/PLLL4iKigIAvPHGG5g2bRo+//xzXHHFFeL2vLWXv1IEO69//vOfYtuTJ09i4cKFcLvdeP/9931O+ShVsPM677zz8Nxzz2HDhg2IiIjonDehcDQCJDPCcGhFRYXP4xUVFX4LmJ9++gndunXDueee6/P4b7/9hsrKSjz88MMYM2YMxowZgy1btmD//v0YM2YMSkpKgv8mOkmwswKAxMREDBkyxOcx4d/FxcWBdjmkOiKvAwcO4Mwzz/R5bPTo0XC5XCgqKgpCr0OHN6/9+/dj4MCB4ocTAMTGxmLgwIHIz89HXFwcIiIiuPNXimDnJThw4ACuvfZahIeH4+OPP0ZycnIHvYPOFey8tm3bBrPZjJtvvlk81u/fvx9btmzBmDFjOvbNKBQVQDKTmpqKqKgo7NmzR3ysoaEBx48fx/jx49v8vv3792PChAnQaHwH9S688ELs2LEDX3/9tfg1ffp0pKWl4euvv0ZCQkKHvZeOFuysAGD8+PFIT08HY0x87MSJE1Cr1UhKSgruG+hkHZFXr169kJmZ6fNYZmYmVCoV+vfvH7zOhwBvXomJicjPz/c5fWGxWFBUVIQBAwZApVJh7Nix2Lt3r8/37dmzB2eddVbHvZFOEuy8ACA9PR0LFizAkCFD8OGHH3aJQlEQ7Lzmz5+PH374wedYn5aWhunTp+Prr7/ujLekOFQAyYxOp8P8+fPx/PPP4+eff0ZGRgbuvfdeJCYmYsaMGXC73aisrBTnEwiOHz+O1NTUFtuLiopC//79fb4iIyNhMBjQv3//Vj/UlCLYWQHArbfeisLCQjz++OPIzc3F77//jmeffRZXXHGFok/nAB2T180334zPPvsM77//PgoLC/HTTz9h9erVuO666xAbG9sZb6vD8OZ15ZVXAgDuueceZGRkICMjA/fddx/0ej1mz54NoCmvrVu34p133kFOTg7WrFkDo9GIm266KVRvM2iCnZfL5cLSpUvRvXt3rF69Gna7HZWVlaisrERNTU0I32lwBDuvuLi4Fsd64coxpf8x0mFCeQ0+aZ3L5WJr1qxhEydOZKNHj2a33XYbKywsZIwxVlhYyFJSUtgXX3zh8z0jR45kmzdvlrT9ZcuWdYl1gBjrmKyOHDnCrr/+enbmmWeyc845h61evbrNhcmUpiPy+uqrr9jll1/ORo0axWbMmMH+85//MIfD0aHvo7Pw5pWdnc1uv/12NmHCBDZx4kS2ePFisb3gq6++YhdeeCE788wz2VVXXcX++OOPTn1PHSmYeR04cIClpKS0+jVt2rSQvL9g64j9y9v8+fNpHSA/VIx5jfUTQgghhJwG6BQYIYQQQk47VAARQggh5LRDBRAhhBBCTjtUABFCCCHktEMFECGEEEJOO1QAEUIIIeS0QwUQIYQQQk47VAARQggh5LRDBRAhhBBCTjtUABFCgsJms+GFF17AjBkzkJaWhrFjx+Lmm2+G0WgU2zDG8O677+KSSy7ByJEjceGFF2LDhg3izWfbe37o0KF47bXXfF73tddew9ChQ30emz59OlatWoWbbroJI0eOxCOPPBKU/j377LMYOXIkGhsbfV5v3bp1GDduHKxWa8A5vvzyy/j0008D3g4hxD/l3gmTECIrDz74IPbv34/77rsP/fr1Q35+Pl555RXcf//92Lp1K1QqFdasWYP33nsPN998M84991wcPXoUzz//PFwuF26//fZ2n+fx4Ycf4uabb8Ztt92GyMjIoPRvzpw52LhxI7Zv3465c+eKr/XNN9/g0ksvRXh4eMA5mkwmrFixAhqNRryJKiEk+KgAIoQEzOFwwGw249FHH8Wll14KAJgwYQJMJhNWr16Nqqoq6PV6vP/++5g/fz4eeOABAMA555yDyspK7Nu3D/PmzfP7PG8B1KdPHyxdujRo/bv99tsxePBgjBkzBt98841YAB08eBB5eXlYvXq1pH7Z7Xa/zz/wwAMwm8145JFHoNVqMWvWLK73TQiRhgogQkjAdDodNmzYAAAoLy9Hbm4u8vLy8MsvvwBoKkCMRiNcLhdmzJjh872PPvooAGDnzp1+n+c1bNiwoPZPcPXVV+Oxxx5DcXEx+vbti6+++goDBw7EmDFj2u2T2WzG2LFjJb+HZcuWYeLEiejZs6fk7yGESEMFECEkKH7//XesWrUKJ0+eRGRkJFJTUxEREQGgaW5NXV0dAKBbt26tfn97z/MSXjtY/RNceumlWLVqFb755hvceuut+P7777Fw4UJJfdLr9XjmmWfabbdr1y5s3boVF154YdDyIIT4ogKIEBKwgoIC3HXXXbjgggvw5ptvIjk5GSqVCh9++CF+//13AEBMTAwAoKamBoMGDRK/t6SkBAUFBWIx0tbz48aNAwC43W6f17ZYLJ3Sv3HjxkGr1SIyMhIXX3wxvv/+e6SkpMBiseCKK66QlJOUeT27d+/Gjz/+iAsuuAAvvPAC1Gq1pG0TQvjQVWCEkID9/fffsNvtWLhwIfr16weVSgUAYnHBGMPIkSOh1WrF006CjRs34r777sOYMWP8Pq9WqxEVFYXy8nKf5w8ePNgp/fMuRObMmYMTJ07gvffewznnnINevXpJiUmS119/Heeccw5eeuklaDT0NyohHYV+uwghARsxYgQ0Gg2ee+453HLLLXA4HPjyyy/x66+/AmgapUlOTsaNN96Id999FzqdDhMmTMCRI0fw0Ucf4cEHH0T37t39Ph8WFoapU6di69atGDVqFPr3748vv/wS+fn5ndK/sLD//b04btw4DBw4EHv37sVLL70U1CzXrVsHg8EAnU4X1O0SQnypmLDABSGEBGD79u1Yu3YtCgoKEBsbi9GjR+PGG2/EDTfcgMceewzXX389GGPYuHEjPv74Y5SVlSEpKQk33XQTrr32WgBo9/mqqio8+eST2LlzJzQaDS699FKkpaXh0UcfRWZmptiX6dOnY8KECT5XZgWjf95Wr16NL7/8Ert27aJihRAFogKIEEI4McYwc+ZMTJ48GQ8//HCou0MIOQV0CowQQiQymUx49913cfToURQWFuKGG24IdZcIIaeICiBCCJHIYDDg448/hsfjwapVq5CcnBzqLhFCThGdAiOEEELIaYcugyeEEELIaYcKIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGmHCiBCCCGEnHaoACKEEELIaYcKIEIIIYScdqgAIoQQQshphwogQgghhJx2qAAihBBCyGnn/wHnf1lG6g2ewAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=\"equalized_odds_diff\",\n",
+ " show_data_type=\"fit\",\n",
+ " constant_clf_perf=max((y_true == const_pred).mean() for const_pred in {0, 1}),\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(r\"equalized odds violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/examples/usage-example-for-other-constraints.synthetic-data.html b/examples/usage-example-for-other-constraints.synthetic-data.html
new file mode 100644
index 0000000..ec7563c
--- /dev/null
+++ b/examples/usage-example-for-other-constraints.synthetic-data.html
@@ -0,0 +1,691 @@
+
+
+
+
+
+
+ Achieving different fairness constraints on synthetic data — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+Achieving different fairness constraints on synthetic data
+Any of: equalized_odds
, demographic_parity
, true_positive_rate_parity
, false_positive_rate_parity
.
+
+NOTE : this notebook has extra requirements, install them with:
+ pip install "error_parity[dev]"
+
+
+
+
+
+
+
+
+
+Notebook ran using `error-parity==0.3.9`
+
+
+
+NOTE: change the FAIRNESS_CONSTRAINT
to your target fairness constraint.
+
+
+
+Given some data (X, Y, S)
+
+Generate synthetic data and synthetic predictions (there’s no need to train a predictor, the predictor is seen as a black-box that outputs scores).
+
+
+
+
+
+
+
+Actual global prevalence: 26.9%
+
+
+
+
+
+
+Given a trained predictor (that outputs real-valued scores)
+
+
+
+Construct the fair optimal classifier (derived from the given predictor)
+
+Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);
+
+
+Optimality is measured as minimizing the expected loss,
+
+
+
+
+
+
+
+
+
+
+INFO:root:ROC convex hull contains 36.6% of the original points.
+INFO:root:ROC convex hull contains 41.6% of the original points.
+INFO:root:ROC convex hull contains 36.6% of the original points.
+INFO:root:ROC convex hull contains 38.6% of the original points.
+INFO:root:cvxpy solver took 0.00032425s; status is optimal.
+INFO:root:Optimal solution value: 0.15335531408011688
+INFO:root:Variable Global ROC point: value [0.10552007 0.71687162]
+INFO:root:Variable ROC point for group 0: value [0.23852472 0.69338557]
+INFO:root:Variable ROC point for group 1: value [0.11605835 0.69338557]
+INFO:root:Variable ROC point for group 2: value [0.04159198 0.74338557]
+INFO:root:Variable ROC point for group 3: value [0.03632111 0.74338557]
+
+
+
+
+
+
+
+CPU times: user 144 ms, sys: 6.76 ms, total: 151 ms
+Wall time: 149 ms
+
+
+
+
+
+
+<error_parity.threshold_optimizer.RelaxedThresholdOptimizer at 0x16d649ba0>
+
+
+
+
+Plot solution
+
+
+
+
+
+
+
+
+
+
+
+
+Plot realized ROC points
+
+realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets
+
+
+
+
+
+
+
+
+
+
+
+Compute distances between theorized ROC points and empirical ROC points
+
+
+
+
+
+
+Group 0: l2 distance from target to realized point := 0.199%
+Group 1: l2 distance from target to realized point := 0.000%
+Group 2: l2 distance from target to realized point := 0.003%
+Group 3: l2 distance from target to realized point := 0.092%
+Global l2 distance from target to realized point := 0.036%
+
+
+
+
+
+Compute empirical fairness violation
+
+
+
+
+
+
+INFO:root:Maximum fairness violation is between group=0 (p=[0.69338557]) and group=2 (p=[0.74338557]);
+
+
+
+
+
+
+
+Empirical true_positive_rate_parity violation: 0.05
+Theoretical true_positive_rate_parity violation: 0.05
+Max theoretical constraint violation: 0.05
+
+
+
+
+
+
+Plot Fairness-Accuracy Pareto frontier achievable by postprocessing
+
+
+
+
+
+
+INFO:root:Using `n_jobs=9` to compute adjustment curve.
+INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
+ 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ].
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/examples/usage-example-for-other-constraints.synthetic-data.ipynb b/examples/usage-example-for-other-constraints.synthetic-data.ipynb
new file mode 100644
index 0000000..0de190f
--- /dev/null
+++ b/examples/usage-example-for-other-constraints.synthetic-data.ipynb
@@ -0,0 +1,690 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e2b69330",
+ "metadata": {},
+ "source": [
+ "# Achieving different fairness constraints on synthetic data\n",
+ "\n",
+ "Any of: `equalized_odds`, `demographic_parity`, `true_positive_rate_parity`, `false_positive_rate_parity`.\n",
+ "\n",
+ "---\n",
+ "\n",
+ "**NOTE**: this notebook has extra requirements, install them with:\n",
+ "```\n",
+ "pip install \"error_parity[dev]\"\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "01898056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import logging\n",
+ "from itertools import product\n",
+ "\n",
+ "import numpy as np\n",
+ "import cvxpy as cp\n",
+ "from scipy.spatial import ConvexHull\n",
+ "from sklearn.metrics import roc_curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "c3fc96e4",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Notebook ran using `error-parity==0.3.9`\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity import __version__\n",
+ "print(f\"Notebook ran using `error-parity=={__version__}`\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a881f9d7",
+ "metadata": {},
+ "source": [
+ "## **NOTE:** change the `FAIRNESS_CONSTRAINT` to your target fairness constraint."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "284b51f0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "FAIRNESS_CONSTRAINT = \"true_positive_rate_parity\"\n",
+ "# FAIRNESS_CONSTRAINT = \"false_positive_rate_parity\"\n",
+ "# FAIRNESS_CONSTRAINT = \"demographic_parity\"\n",
+ "# FAIRNESS_CONSTRAINT = \"equalized_odds\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8aa7fefa",
+ "metadata": {},
+ "source": [
+ "## Given some data (X, Y, S)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "70b33f87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_synthetic_data(n_samples: int, n_groups: int, prevalence: float, seed: int):\n",
+ " \"\"\"Helper to generate synthetic features/labels/predictions.\"\"\"\n",
+ "\n",
+ " # Construct numpy rng\n",
+ " rng = np.random.default_rng(seed)\n",
+ " \n",
+ " # Different levels of gaussian noise per group (to induce some inequality in error rates)\n",
+ " group_noise = [0.1 + 0.4 * rng.random() / (1+idx) for idx in range(n_groups)]\n",
+ "\n",
+ " # Generate predictions\n",
+ " assert 0 < prevalence < 1\n",
+ " y_score = rng.random(size=n_samples)\n",
+ "\n",
+ " # Generate labels\n",
+ " # - define which samples belong to each group\n",
+ " # - add different noise levels for each group\n",
+ " group = rng.integers(low=0, high=n_groups, size=n_samples)\n",
+ " \n",
+ " y_true = np.zeros(n_samples)\n",
+ " for i in range(n_groups):\n",
+ " group_filter = group == i\n",
+ " y_true_groupwise = ((\n",
+ " y_score[group_filter] +\n",
+ " rng.normal(size=np.sum(group_filter), scale=group_noise[i])\n",
+ " ) > (1-prevalence)).astype(int)\n",
+ "\n",
+ " y_true[group_filter] = y_true_groupwise\n",
+ "\n",
+ " ### Generate features: just use the sample index\n",
+ " # As we already have the y_scores, we can construct the features X\n",
+ " # as the index of each sample, so we can construct a classifier that\n",
+ " # simply maps this index to our pre-generated predictions for this clf.\n",
+ " X = np.arange(len(y_true)).reshape((-1, 1))\n",
+ " \n",
+ " return X, y_true, y_score, group"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eded764d",
+ "metadata": {},
+ "source": [
+ "Generate synthetic data and synthetic predictions (there's no need to train a predictor, the predictor is seen as a black-box that outputs scores)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "0d326b40",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "N_GROUPS = 4\n",
+ "# N_GROUPS = 3\n",
+ "\n",
+ "# N_SAMPLES = 1_000_000\n",
+ "N_SAMPLES = 100_000\n",
+ "\n",
+ "SEED = 23\n",
+ "\n",
+ "X, y_true, y_score, group = generate_synthetic_data(\n",
+ " n_samples=N_SAMPLES,\n",
+ " n_groups=N_GROUPS,\n",
+ " prevalence=0.25,\n",
+ " seed=SEED)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "ba24bcc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual global prevalence: 26.9%\n"
+ ]
+ }
+ ],
+ "source": [
+ "actual_prevalence = np.sum(y_true) / len(y_true)\n",
+ "print(f\"Actual global prevalence: {actual_prevalence:.1%}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "8fbc24a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "EPSILON_TOLERANCE = 0.05\n",
+ "# EPSILON_TOLERANCE = 1.0 # best unconstrained classifier\n",
+ "FALSE_POS_COST = 1\n",
+ "FALSE_NEG_COST = 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69bc6798",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Given a trained predictor (that outputs real-valued scores)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "5615f135",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Example predictor that predicts the synthetically produced scores above\n",
+ "predictor = lambda idx: y_score[idx].ravel()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6af00a5e",
+ "metadata": {},
+ "source": [
+ "## Construct the fair optimal classifier (derived from the given predictor)\n",
+ "- Fairness is measured by the equal odds constraint (equal FPR and TPR among groups);\n",
+ " - optionally, this constraint can be relaxed by some small tolerance;\n",
+ "- Optimality is measured as minimizing the expected loss,\n",
+ " - parameterized by the given cost of false positive and false negative errors;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "48f713ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from error_parity import RelaxedThresholdOptimizer\n",
+ "\n",
+ "clf = RelaxedThresholdOptimizer(\n",
+ " predictor=predictor,\n",
+ " constraint=FAIRNESS_CONSTRAINT,\n",
+ " tolerance=EPSILON_TOLERANCE,\n",
+ " false_pos_cost=FALSE_POS_COST,\n",
+ " false_neg_cost=FALSE_NEG_COST,\n",
+ " max_roc_ticks=100,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "3dbca6de",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:ROC convex hull contains 36.6% of the original points.\n",
+ "INFO:root:ROC convex hull contains 41.6% of the original points.\n",
+ "INFO:root:ROC convex hull contains 36.6% of the original points.\n",
+ "INFO:root:ROC convex hull contains 38.6% of the original points.\n",
+ "INFO:root:cvxpy solver took 0.00032425s; status is optimal.\n",
+ "INFO:root:Optimal solution value: 0.15335531408011688\n",
+ "INFO:root:Variable Global ROC point: value [0.10552007 0.71687162]\n",
+ "INFO:root:Variable ROC point for group 0: value [0.23852472 0.69338557]\n",
+ "INFO:root:Variable ROC point for group 1: value [0.11605835 0.69338557]\n",
+ "INFO:root:Variable ROC point for group 2: value [0.04159198 0.74338557]\n",
+ "INFO:root:Variable ROC point for group 3: value [0.03632111 0.74338557]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 144 ms, sys: 6.76 ms, total: 151 ms\n",
+ "Wall time: 149 ms\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO, force=True)\n",
+ "clf.fit(X=X, y=y_true, group=group)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "599af3ba",
+ "metadata": {},
+ "source": [
+ "## Plot solution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "41a84db6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"whitegrid\", rc={'grid.linestyle': ':'})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "5ccb923e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydd3gUVReHfzNbkmx6T0gCCSV0kN6liyBVAQVEKQqKlA9BQVREQAE7YAOkI71DaEqXKr1IbymkJ5u2fWe+P5YddrYkuynU8z4Pmpm5986d2TMz99xz7jkMz/M8CIIgCIIgCIIgCKKMYB93BwiCIAiCIAiCIIhnG1I8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIcWTIAiCIAiCIAiCKFNI8SQIgiAIgiAIgiDKFFI8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiCeeHQ63ePuwlMF3S+CIAh6FxLEk4b0cXeAIJ4XNBoNTpw4gcOHD+P8+fPIzMxEZmYmWJaFv78//P39UaNGDbRo0QLNmzeHj4/PY+3v3Llz8fPPPwvb165deyz92L59O1asWIHVq1fbPX7ixAm89dZbwvayZcvQpEmTR9W9JwqtVosFCxYgPT0dX3755ePujktcvnwZ69evx6lTp3D//n3odDoEBwejfPny6NSpE7p06QJfX98y7UNKSgrWrVuHI0eO4M6dOygoKICfnx/CwsLQpk0b9OjRA1FRUU63t3PnTvzvf/8rVl8uX74MqfTZ+0RPnDgRmzZtAgBERERg3759j7lHzw4DBw7EyZMnAQCNGzfG8uXLH3OPHh937tzB9OnTMWzYMIffg3bt2iEpKQkA0KtXL8ycOfNRdpEgnkueva8aQTxh6PV6LF68GAsXLoRSqbRbRqVSISkpCZcuXcLatWvh5uaG1157DWPGjIGfn98j7e+Tws2bN/Hll1/i5MmTiIiIeNzdeeLZv38/pk+fjsTERPTq1etxd8dpNBoNvvzyS2zcuNHmWFJSEpKSknDs2DHMmTMH06ZNQ4cOHcqkH0uWLMGPP/4IjUYj2p+eno709HRcvHgRv//+O0aMGIHhw4dDIpEU2eZ///1XJn0lCMI+Go0Gv/76KxYtWgS9Xo9hw4Y97i4RBGEBKZ4EUYbk5ORg+PDhOHv2rM0xT09PeHt7g2EY5OTkQKVSCce0Wi1WrlyJv/76C/Pnz0eNGjUeZbefCP744w9h9p4ommnTpgmz908LWq0WQ4cOxalTp0T7vby8oFAokJGRAY7jAABZWVn44IMPMGPGDLz66qul2o9vvvkGCxcuFO2Ty+UICAhAVlaW4K6n1+sxe/ZsJCQkYMaMGUW2a6l4ent7w9/f3+k+MQzjdFmCIEycP38e8+bNe9zdIAjCAaR4EkQZwfM8xowZI1I6a9asibfeegvNmzdHSEiIqHxycjIOHjyIxYsX4+7duwBM1pahQ4diw4YNKFeu3KPsPkGUOdOnTxcpnY0bN8ZHH32EOnXqAADy8vKwfv16zJ49G2q1GgAwefJkVKpUCXXr1i2VPmzbtk2kdEZEROCTTz5BmzZtIJPJYDAYsH//fsyYMUNQ7Ddu3IiqVati0KBBhbZtqXiOGDECQ4YMKZU+EwRBEMTTCAUXIogyYsuWLTh27Jiw/frrr2P9+vXo2bOnjdIJAOHh4XjjjTewbds2vPLKK8L+rKwsTJ069ZH0+WmkSZMmuHbtmvDveV3f+bRx/vx5rFu3Tthu27YtlixZIiidgMlKOHjwYCxbtgwKhQKAyerojLXRGfLz80XruiIjI7F27Vp07NgRMpkMACCVStGxY0ds2LABlSpVEsrOnTsXWVlZDttOTk4WHX8evRYI4klm3759wneD1ncSxKOBFE+CKCNWrVol/B0TE4PJkyeDZYt+5ORyOWbOnInKlSsL+/bv3487d+6UST8J4nGwYMEC8DwPwORaO2PGDIfrJuvUqYNJkyYJ22fPnsWRI0dK3IeNGzciIyND2J42bRqCgoLslvX398fcuXOFgD/5+flYunSpw7YvX74s2ibFkyAIgnjeIcWTIMoAjUaDixcvCttt27Z1KUKlXC7H0KFDRfuOHj1aav0jiMdJTk6OKJppz549i1z/2KtXLwQHBwvb27ZtK3E/zNFVASA2NhbNmzcvtHylSpXQvn17p/pg6WZbvnz5xx6lmiAIgiAeN7TGkyDKgNzcXBiNxhK10aJFC9F2WlqaU/Xu3r2LTZs24d9//0V8fDyUSiU8PDwQEBCAunXronXr1ujUqVOppGooTmqEjRs34pNPPhG29+7di8jISAC2qVHMJCUloWrVqsK2ZYCZ4qRTUavV2LZtG/755x9cvnwZWVlZMBqNCAgIQExMDJo3b47u3bsjNDS0yOux7NeOHTtQqVIlaDQa7NixA7t27cLNmzeRkZEBd3d3hIWFoUWLFujZs6eoXnGxTnljZtOmTSKlyvIeW6NUKrF582YcP34cV69eRXZ2NhiGQUBAAKpUqYKWLVuiW7dupRpd+ciRI6Lnw5lItVKpFK1bt8b69esBAH/99RemT59ebDnOyMjAlStXhG1LhbIw2rdvj927dwMwyeWFCxdE7sFmLBXPx2ntTExMFF3bhQsX4Obmhh07dmD+/Pm4c+cO/P39ERsbi86dO6Nbt25272lKSgq2bt2Kf/75B/fu3UNWVhbc3NwQGBiIunXrok2bNujUqZNT0X5d5ejRozh69ChOnz6NlJQUKJVK6PV6IWBTnTp10Lx5c7z88suQy+V22xg9erTwuwGmycDff/+90PMeO3YMgwcPFizzUVFR2Lx5M7y8vOyW53ke+/fvx759+3DmzBlkZGRApVLBz88PUVFRaNGiBbp3747y5cu7dP1ZWVnYsGEDDh48iBs3bqCgoAABAQGIjY1Fz5490blz5zK579akpqZi06ZNOHHiBG7evAmlUgmZTIbAwEBUr14drVq1QteuXeHh4VFoO5bvbG9vb2Gd982bN7F69WocOXIEKSkp4DgOoaGhqFevHnr27IlmzZo5bNMyNYollt8G6xQzzqRTsXxPm9+j+fn52Lp1K3bu3Il79+4hOzsbgYGBiIqKQvfu3dGtWze4u7uL2jl69Cg2bNiAixcvIiUlBTKZDJGRkWjVqhUGDhxY6LemOGlynEmHZlnG8vrPnz+PDRs24NSpU0hJSQHLsggNDUXDhg3Rr18/VKtWTdROVlYWNm7ciD179iAhIQF5eXnw9/dH7dq18eqrr6J9+/YULI0QIMWTIMqAgIAAyGQy6PV6AKYP1tixYx0OiuwRGhqKuLg4+Pr6ws/PT1hz5gilUonp06cjLi5OiARqRq/XIzc3F3fv3sWWLVsQFRWFSZMmoV27dq5f3FPO6tWr8eOPP9pNbZOcnIzk5GQcPXoUc+fOxYABA1z+3c6cOYOJEyfi3r17ov1arRY5OTm4du0alixZgjfeeAOfffbZIxkw2sNoNGLevHlYsGCBKKKyGXMqkwMHDmD27NkYNmwY3n333VIZQFh6AzAMY1dxs8cLL7wgKJ75+fm4ceMGqlevXuw+mBUKAKhXr57TfbDkzJkzdvtv6Wpbs2bNYvWxrFiyZIlonaxZ7i9duoQePXqIyup0Ovz0009YsWIFtFqtzbG8vDzhvRITE4MvvviiUAXBFY4dO4aZM2fi6tWrdo9nZWUhKysLt27dwqZNm/D9999j5syZds8/depUnDlzBunp6QBMyxfi4uJE6+ktycnJwYQJEwQZkUql+OGHHxwqnWfPnsWXX34pmswwY07Jc+bMGfz222/o06cPJk6caKOc2GPlypX47rvvUFBQINqfmpqK1NRUHD58GMuXL8f3339fZFvFRa1W4/vvv8fq1auFb5oZnU6HgoICxMfHY/fu3Zg9ezbGjh2L1157zaVzLFu2DN98841N+/fu3cO9e/ewefNmNG/eHDNnznRqQrCsOHr0KCZOnIjU1FTRfvMzdPLkSaxYsQLz5s1DWFgYcnJy8Pnnn4smPQDT9+Dq1au4evUqVq9ejdmzZ9tMNj9qCgoK8NVXX2HDhg02x/Ly8nDz5k2sXbsWEydOxNtvvw0A+Pvvv/Hpp5/afE/T0tKwd+9e7N27Fx06dMCPP/7o0neUeHYhV1uCKAOkUqloVvDevXsYNWqUMOhxlsqVKyM4OLhIpTM+Ph7du3fHtm3bREqnTCZDaGiojZtfQkICRowYgd9++82l/pQ17u7uKF++PMqXLw9PT09hv1QqFfaXL1/e4eCvMDiOw/jx4/HFF1+IPpIMw8DPzw8hISEiJVCr1WLRokV46623Cg0iY8m5c+cwePBgQelkWRbBwcEICAiw6cvKlStLHDTK19dXuCeWVipPT0/R/bKWH61Wi8GDB2P27NkipZNlWQQFBSEoKEi0HjkvLw/ff/89RowYYZPnsjjcuHFD+LtcuXKi37owYmJiRNu3bt0qlT4AEAUOKozIyEjR/bx9+7ZNmczMTJGHQs2aNZGYmIg5c+agX79+aNKkCWrVqoWWLVuif//++PXXX532aCgpN27cwHfffWf3WNu2bUW/e05ODgYPHoyFCxeKlE6ZTIawsDD4+/uLJiLu3LmDd955R7S+vbhs2bIF77zzjo3S6evri4iICAQFBdlMgqSkpODdd9/FpUuXbNrz8/PD119/Ldo3ffp0ZGdn2z3/F198IVIuxowZ43CCZNu2bXjrrbdslE4/Pz+Eh4fDzc1N2GcwGLBq1Sr0798fmZmZdtsz88033+DLL78UKZ3md4qlB8K5c+fw9ttvO/2ecoXs7Gz07dsXy5cvFymFEokEISEhNp4Q6enpmDRpEiZPnmwzAeqI5cuX46uvvhLal0qlCA0NtbGcHj16FH369EFCQoJNGxEREShfvrxN4L6QkBDhPWgvqJ8rHDp0CO+++64gFyzLIiQkBN7e3qJyV69exejRo5Gfn4/BgwcLSqf5t7P+Hufl5WH06NG4f/9+ifpXEvR6Pd5//32R0qlQKBAWFib6LnIch6+//hoHDx7Etm3bMHLkSOF7ai5v7THx999/O3znEM8fZPEkiDJi0KBBGDdunLB94MABtG3bFu3bt0fHjh3RokULl/L6OSIrKwtDhgwRDZJq1KiB0aNHo0WLFsIsY3x8PFatWiUMIHiex08//YSgoCD06dOnxP0oDerWrYu//voLgNiNNzQ0VNhfXL766ivRmjwvLy8MHz5ctHawoKAAf//9N2bPni24YJ09exZjxozB4sWLi3Tr/OKLL6DX6+Hn54eRI0eia9euwm+cmpqKxYsXY/HixUL5NWvW2HVdcpa33npLcCWzdBt76aWXHEZpNKf5OXHihLAvKCgII0eORJcuXeDr6wvAZEGPi4vDzz//LAxo9+3bh88//xzffvttsfprJiUlRfg7LCzM6XrWlo6SDNQs+8AwjNNWFIlEgqCgICQnJwOAXfc+a8Vn7dq1+Ouvv2zc782WsNOnT2PevHl49913MWLECKeCkBWXWbNm2ViVzFi65PI8j3HjxonS3TRq1AjvvfceGjduLLxXMjIysH37dvz2229QKpUwGAyYOnUqIiIi8OKLLxarj0lJSfjiiy9gMBgAmAa0Y8aMQdeuXUXBn/Lz83Ho0CHMnj1bSEGl1+vxww8/YNGiRTbtvvjii+jfvz9WrlwJwPTu/Oqrr2wGxZs3b8bOnTuF7aZNm+Kdd96x29dTp05h4sSJor6+++676NWrF8LDwwGYvAvOnj2L+fPn4+DBgwBMFvExY8ZgyZIldt8r27dvF6X5USgUGDFiBPr06SMoe3fv3sUff/yB9evXIzEx0fENLSYajQbvvvsurl+/LuwrX748xowZg3bt2gmRps0uuPPmzRMmstasWYOAgAD873//K/QcKpVKsL77+flh7Nix6N69OxQKBTiOw4kTJzBr1ixBqU9NTcXIkSOxbt06kQXN7H5qvfTiu+++K7VI59OnT4fRaERoaCjGjBmDV155Be7u7uB5HidPnsTHH38svFfOnz+PXr16IT4+Hu7u7vjggw/Qp08f4Xtw+fJlfPHFF4L3R35+PpYsWSIKovYo2blzp/B+6t69O4YNG4YqVaoAME1AzZkzBytWrBDKf/HFF8jIyADP82jQoAE+/PBD1K9fHyzLQq1WY8WKFfjpp5+E52LVqlUYPnw4AgMDH/3FEU8UZPEkiDKiS5cuNgMvvV6PXbt2Ydy4cWjWrBm6du2KyZMnY/PmzXZncZ3hp59+EtXt2rUr1q5di7Zt24o+zOXLl8eECROwcOFCYcAAmFzQHudM66Pg3Llzoo9meHg41q5di2HDhokC1nh6eqJHjx7YvHkzGjRoIOw/efKk3YGsNXq9HuXKlcPmzZsxcOBA0cRCaGgoJk6cKBqI8TyP7du3l/DqXGPHjh3Yv3+/sB0bG4vNmzejX79+gtIJmAaBAwYMwKZNm0TWwK1bt2LHjh0l6oOlpceVyRdr64o9d+ni9MHb27tIrwJH/cjJybE5brm+EwB27dolDOpkMhnCw8NtrLwajQZz587FBx984FAxLA3Ma8UGDhyIPXv24Ny5c9iyZQuGDBkiCq60cuVKHD58WNgeMmQIli9fjpYtW4reK0FBQRg0aBA2bNiAChUqADBZRT755BMb11xnmTdvnpC3lWEY/PLLLxg0aJBNxGEvLy906dIFa9euFVmzjh8/jry8PLttf/zxxyLL+bZt2wRlEDApvdOmTRO2/f398c0339idDNDpdBg3bpwwuA4JCcHGjRsxYsQIQekETJMVDRs2xPz58zFmzBhh/7///it6L5nRarWiiSOFQoGlS5fi3XffFcledHQ0pk+fXmbptpYtWyZyi2/atCk2bdqErl27ir4hoaGheO+997BmzRrR+/T333/HuXPnCj2H0WiE0WhEWFgY1q1bhzfeeENom2VZNGvWDGvWrEHLli2FOmb31EeN0WhEVFQU1q5di9dee01wlWYYBk2aNLFxd46Pj4dMJsOiRYswbNgw0buuZs2aWLx4sUgRO3DgwCO5DnuY308ffvghvv32W0HpBExeBp9//jmaNm0q7EtOToZer0f79u2xbNkyNGzYUHhGPDw88O6774pkXafTlUokcuLphxRPgigjWJbF3Llz0aVLF7vHeZ7HjRs3sGbNGkyYMAEdOnRA27Zt8emnn2Lfvn1ODT4TExNFrjHVq1fHjBkzCh1EN2nSBF988YWwrdPpsGDBAheu7Olj9uzZwt8SiQQ//fRToa6VPj4++Pnnn0UD3cWLFwuD4cL48ssvRYNOa4YOHSpyzTp//nyRbZYWPM9jzpw5wrZCocCvv/4qGixaExYWhp9//lm0Hu3XX38VrY90FUv3XssBbFFYl7Ve9/Yo+mBd3l4frBVPwBS5d926dbh48SIOHDiAM2fOYOfOnRg0aJDoed23b59I8SkL3nvvPXz22WeoUKECPDw8UK1aNUyYMEH4jQ0GA/744w+hfOPGjTFhwoRC1/dGRkaKBt4ZGRnCelxX4DhO5N3Qpk2bIqMN+/r6omfPnsK20Wi0a4kGTIPib7/9VmRl/PLLL6FSqcBxHD7++GPk5+cLx77++muH1vBNmzaJLOffffedjTu4NSNGjEDbtm2F7YULF0Kn04nKxMXFiZZljB8/vtB10H379kWvXr0KPa+rFBQUiGQgNDQUc+bMKXSZQ2xsLH744QdBTniex6+//lrkuViWxQ8//OAw6JKbmxu+++47kZK2ZMmSEr2DisvEiRMdemk0bNgQUVFRon0DBw4UTWJa4u3tjZdfflnYvnfvXrEna0qDmjVrYtiwYQ6PW8uYu7t7oQHeevfuLdq2Xt5APJ+Q4kkQZYi7uzt+/PFH/Prrr04FGLl//z7Wr1+P999/H23atMGSJUsKVUD37dsnzLYDwMiRI51awN+zZ09RnlB7AYmeFXJycnD8+HFhu02bNjYBYuwREBCAQYMGCdtZWVn4559/Cq0TFhaGVq1aFVpGLpeLAuI4WmNWFly7dk1wSQRMAwPrgZI9KlasKBp03Lhxw24QFWexlGlXotJKJBKR8mMp+4+qD9bl7fXBMrCQTCbDr7/+ilmzZqFOnTqi/lesWBGffPIJlixZIlJm16xZI3JxLU0UCkWhg0vAtJbO0gvCXqRpe9SuXVsUpGnXrl0u989oNOKHH37A9OnT8d5779mklXKEtdJiL2CWZT/ff/99YTspKQlz587FokWLRPf9zTffLDQAm+WkX9WqVZ126XzzzTeFv9PS0mysgpb3zcfHx6mlEO+9955T53aW48ePi6z5Q4YMEXlEOKJx48aid+ChQ4eKfMe1adPGoXJmxt/fH/369RO2k5KSRNbYR0FISEiREbhjY2NF25YTIvYwewmYsedB8ah4/fXXC51cso7E/uKLL9rEL7AkICBAtJ71cV4b8eRAiidBPALat2+PjRs3YuvWrRg1ahReeOGFIge7GRkZmDFjBvr27SusJ7PGMrenQqFAmzZtnO6TZTTHnJycEikSTzInTpwQKdWOoljao1u3bjZtFYa1YuEISwtjaQTrcZZjx46Jtl25F127dhVtF3UvCsPSUvG4wuyXZR++/fZbzJo1C6NGjcKPP/5YZKqWhg0birwQADhlKSoOderUKTKYk7XS60pU3vr16wt/nz9/3saaVxQymQzNmjVDnz59MHbsWDRq1KjIOjzP27jWFpXO6v3330fdunWF7eXLl4s8I2JjY/Hxxx87rK9SqYodubh+/foimTO7PwOmazl9+rSw3axZM6cmE6Ojo0slRZOZ0npX8DyPf//9t9Dy1u9ZR1grfZb37VFQu3btIstYerPI5XKRy6o9rJ9FV5+X0qSo6OLW1m5n0kRZXt/jvDbiyYGCCxHEI6Rq1aqoWrUqRo4ciYKCApw5cwanTp3CqVOncP78ebvWzf/++w8DBgzA+vXrbWYX79y5I/xdrVo1lyw31h/R27dvP3FpH0oDy3sEALVq1XK6blhYGIKDgwW3N3sRTK3LO4PlQPJRWpot74VEInEpv2StWrXAsqzQ36LuRWHIZDLBpcwVq6XRaBQpjJbRQovTBzOuWk4ty9vrQ4MGDYq04FjTvXt3/Prrr0JE5JMnTyI/P18Y7Fnm8isKezn7zDgzeLZ2FR44cKDTAY9yc3OFv7VaLdLS0hzmkC0O2dnZSExMREJCAm7duoUrV67g/PnzyMjIEJUr6rmSSCT45ptv0KtXL6hUKtG71+ypUph83bhxQyQHf/31V7Gt1JaBgVJSUkSuvtYWtMKoXr16ob+9K1i+K0JDQwt1x7fG3relMCwnAAqjcuXKojRlJYlqXRzKlStXZBnLCQVfX98in5uyDCTmKoUtEQFsJ+icWZ//JF0f8WRAiidBPCY8PT3RqlUrwS1Jo9HgxIkT2L17N7Zt2yaaHUxKSsLXX39tE33RMriKKwMDe+VLEqjlScbazcvV+xQUFCQonkXdI2fTgjwuLO+Fj4+PS3nV3N3d4eXlJSgWJZEXLy8vQfF0Zt2sGev1lEUlqi+qD2Zc6YN1P0rSB0tYlsWLL74oROfU6/W4evUqGjZsWCrtm7EO0GMP67QcJYmYqlQqi614chyHY8eO4a+//sKlS5dw584dkVJWUqKjozFhwgQba/PHH38sWopgD+t7lJeX5zCgUVFYPkvWKbcKc2W0pqTpQiyxfFeU5beFYZgiFR4zMpkMPj4+QmCwotLRlDauvt+ftryVrqYpe9quj3gyoKkIgnhCcHd3R+vWrfH1119j7969ogAUgCkaqXXSastBmKsfResBs6uD76cFy3vEMIzLgWQs71NR98gy39mTiOW9cPU+AK7di8KwDBLiigJrvUbIGSXKmT7k5uYW6ZrpqB+lmR7Aer1tWQysrXMO2qM0lbvC1loWxpkzZ9CjRw8MGTIEq1atwsWLF+32SyaToVGjRnjppZeKdR57gYOcUbSLq2Taw3Iiw9od0ZWJjeLkN3ZESd4VrnxbPDw8XLKKWQY5e9Sum66uBX/aeNavj3gyICkjiDJArVYjKysLmZmZCA0NdTpHoJmQkBD8+uuvePvttwX3OqPRiJMnT4rWwygUCsEC5WqEz9K0HrmCKwP80sBy0MTzPFQqlUsDqbKwbj0uLK+7OApBad2LiIgIITdgWlqa0/WsJ15cfa6s+2CG4zhkZGQ41Z7RaBS5dbqSh7QoLAfV5nOVNs6sZ7XsR1BQ0CNPg3Dw4EG7aWVCQ0NRpUoVxMTEoGLFiqhevTqqV68Od3d3bNmyBXv27HHpPFlZWfjss89s9i9ZsgTt2rUrdH2ptfxPmTJFFPymuFhbkVx5TkszDU9J3hWufFtc7bNl28WZPHteeNTfWYJwFlI8CaKUuX37Njp37ixsDxkyBBMmTHC5HZZlMXToUNG6LuuBt5+fn6B4WrtoFYV1WyW13Di7VrG4FpDiYp37MT093SaSYGFYKkauuL09iVjei9zcXGi1WqfXSebn54sGfSW5F5UqVRJyiSYmJkKn0znltmW9VsyV9W/2+mDdtjOKZ0JCgmiw7Ch4SH5+PrKyshAREeG0JdzaLdxyDZXZBfdRYJ2nlOO4R7ZWKzs7Gx9//LFwj1mWxeDBg9G/f/9CXXaLk4Zi8uTJokkEhUIhpFWZMGECtm7d6tCKaP1eKa3o1NYy6IrVuzSXS1heX0m/LYW9K/R6vWgtc2FotVqRpbk0J32eFp7U7yxBOAu52hJEKRMSEiKyKlhGKHQV64GWtZJgOei9cuWKS0FSrEPRO8qhVhiWg1FnB36Wee8eBdbKyYULF5yum5CQIBpQuqKwPolYyovRaBRF5SyKS5cuiQL7lOReWAYTMRgMTvfDMu2El5cXoqOji90H6wjEzsqFdeoL60AqP//8M+rUqYMGDRqgY8eOLt9jMwzDlGqUUlewVMr1er1gnXaGnJycEkVq3rx5s0iBGj16ND7++OMi14lav1eKyvG4ceNGUb7Q3r17Y/LkycJ2UlISpk+f7rB+xYoVRduu/M48zyM9Pd1uH0NDQ0VpS1xp9+rVq06XLQrLd0VqaqqNMlkY1t+Wot4Vzvb76tWrIkve43o+HjVPw3eWIJyFFE+CKGW8vLxEeRrPnz9vM1h1Fsuci4CtdcXSFUytVmPfvn1OtcvzPOLi4oRtLy8vVKtWzeX+WbpQObtOztkBfmmluGjQoIGoLcvrLgrrsq5GKn3SsHYd3LFjh9N1re9FSYLeNGvWTLSeaO/evUXWMRgMOHTokLDdvHnzEq1J8vf3F0U4dqYPAETPmHUbgCnypeXg0LLPhaFUKkUurdWqVXtsFnZrOXElH+ewYcNQt25dNGvWDH379nVZCT1//rxo+4033nCqnnXKjsIUz6SkJHz11VfCdmhoKCZOnIhevXqhZcuWwv5NmzaJlFNLAgMDRQr60aNHnV73+c8//6Bly5aoU6cOXnrpJaxatUp0vGnTpsLfx48fF0UKdkR2drbNvSsJpfWuYBimyPem2fuhKHbv3i3abt68uU2Zx5WeqSyx/M46a1l/1DlOCcJZSPEkiDLgtddeE21PnTrV5WAsPM9j0aJFwnZwcLDNYP/ll18WpYX45ZdfnAq4sHnzZpFS26FDh2IN4i2jFxoMhiIHPpcvX8aZM2ecattyAFGU9aIw/P39RYPJgwcP4uzZs0XWy8rKwrJly4RtT09PvPjii8XuR1ljOSvu6H7VqFFDNFjesGED4uPji2z71q1b2Lp1q7AdGRnpUloaa7y9vdG6dWthe926dUW6CW7atEnk8ldUYnZnsMw3eP78+SLTldy6dUukoPbo0cPGBbV169aiZ2n16tVOBeuZPXu2yD2uf//+RdYpK1q3bi2yuq1cudIpi9f+/fuFSbasrCx4eXnZrFstCmvlzRk35b1799r8do7WDprdaC1/k2nTpglBl6ZOnSpaO/j555/bpGox0717d+FvlUqF33//vci+chyHOXPmADAFx7l3756N5a5Xr17C3xqNBgsXLiyy3SVLlpRqsJ1WrVqJ3G0XLVrklCvviRMnRPmlGzZsWGQQsA0bNthECbYmPT0d69evF7br169vE4wLsE3fUZJvx5OC5Xf2/v37RVoz//77b9y/f7+su0UQxYIUT4IoA/r27Styxbp8+TIGDBiAmzdvOlVfq9Vi4sSJIjfd999/30Y5DA8PFwUbunr1KiZNmlSoy+2///6LadOmCdsymQzvvPOOU/2yxjJZPAD89ttvDtegpKWlYeLEiU6vUbGc5S1plM3hw4cLf3Mch7Fjx9rk97QkPz8fo0aNEq2vevPNN0s1amRp48z9YhgGw4YNE7ZVKhVGjhzpcGANmNzsRo0aJbJcDRs2rMRr/oYOHSr8rVQqMWbMGIcD5wsXLuDrr78WtmNjY22iPheH3r17iwbX48aNQ1JSkt2ySqUSo0aNEp4tNzc3vPXWWzblAgMD8corrwjb6enpRT6TS5cuxcqVK4XtypUrl4piXVw8PT0xcOBAYTsnJwcjRowoVDm4e/cuPv30U9E+S1lzFsugT4BJKSmMY8eOYdKkSTb7HcnSokWLRNbRHj16iCZBIiIiMH78eGE7OzvbbgAiwDQ5YBkleOHChUX2d9asWSKvj0aNGtm8R1u3bi3KsbtgwYJCAyft378ff/zxR6HndRUPDw+RDKSlpWHMmDGFBrG7efMmxo0bJ1L23nvvvSLPlZ2djfHjxzu0jhcUFGDs2LGiaNLvv/++3bLWEx2lGaH5cWEpHxzH4ddff3VY9tatW5g6deqj6BZBFAtSPAmiDJDL5Zg7dy58fHyEfZcvX0b37t0xevRobN261SZoBM/zuHr1Kv744w907NgRmzdvFo61adPGoQVk4sSJovVP27ZtQ9++fXHgwAHR4CshIQHffvstBg8eLBo8jBo1ymGAlKKoX7++KKn2oUOHMHLkSFFi77y8PPz555949dVXcf36dafTvli6Gebm5rrkImtNo0aNREpCcnIy+vTpgwULFoisaCqVCtu2bUPPnj1FyeCrV6+OESNGFPv8jwLL+3XixAmHydV79OiBDh06CNvXrl1Dz549sXr1atHALicnBytXrkSvXr1EbbVq1Qp9+/YtcX8bNGggshgdP34cffv2xfHjx4WBa35+PpYsWYK33npLsAZKJBJMnjy5UMW3Xbt2qFq1qvDPUXoMLy8vkZKRlpaG3r17Y/PmzcKzYzQa8ffff+PVV18V3Yf333/fRkky8/HHH4sCA+3evRv9+/fHsWPHRO7oly5dwujRo0VKtYeHB7755pvHniNv+PDhovWrly5dQq9evbBu3TqRVTI3Nxd//vknXn/9ddE7rVevXiKXUWfp1KmTaPu7777DDz/8IJocMRgMOH36ND755BMMGTLEriXOnsJx9epVzJ49W9gODg62q7T2799f5F2yf/9+rFmzxqacj4+P6LfjeR6TJk3CuHHj8N9//4n2X7hwAe+99x6WLFki7Pfw8LDJIQqYrHbTpk0TvFmMRiP+97//4euvvxZZslJTU/Hdd99h5MiRLq3vd5Zhw4ahTp06wvbx48fRq1cvbN++XWSdT09Px/z589G3b1/R+/T1118XeZsUxpEjR/D666/jn3/+EZ4Rg8GAffv2oU+fPqLJgq5duzr0PrEOkrd+/fpSjfb7OGjbtq3ICr9mzRp89tlnIlnIzMwUfoPU1NQnPqc08fxCUW0JooyoXLkyVqxYgQ8++AAJCQkATAOI3bt3C2tVZDIZAgMDodfrkZOTY3fw0LFjR3z33XcO1674+vpi3rx5GDZsmGCtuXz5MoYPHy60r9Fo7A7Ohg4dKrIGuopUKsXEiRMxZswYQVnYu3cv9u7dK7jZWQ4YZTIZfvnlFwwaNKjItmvWrCna/vDDDzFz5kwAwODBgzFkyBCX+jphwgRkZWVh+/btAEwK8XfffYfvv/8e/v7+kMlkyMzMtPkNqlWrhvnz57vsMvioqVGjBo4fPw7AdG3dunVDWFgY1Go15s2bJwwgGYbBrFmz8MEHHwjl09PT8cUXX+DLL78UBm6ZmZk21ulmzZrhp59+KrV1VFOmTEFSUpJg2b9y5QrefvttKBQKeHt7IyMjw2bd8CeffFJomgtX6dOnD27cuIGlS5cCMLmITpgwAZ999hkCAwORnZ1tE9Dj5ZdfLtSSExQUhIULF2LQoEHC+rzz589j0KBB8PDwgL+/P5RKpU3kSYVCgXnz5tnI/uNALpfjl19+wbBhw4TgLykpKfjss8/wxRdfICAgACzLIj093UZOmjdvjilTphTrvC1atECHDh3w999/AzApH/PmzcO8efPg7e0Nd3d3u7JZs2ZN/Pfff8J7yNodUafT4eOPPxZNxn3xxRc20WkB0zMyffp09OjRQ/jtZ86ciWbNmtkEYXvppZfw6aefYubMmYKsbt++Hdu3b4dCoRB+a2tLoZubG3744QeHk361atXCt99+i/Hjx8NgMMBoNGLp0qVYunQpAgMDwTAMMjMzhesNDAxEy5YtsWXLlkLvryvI5XL8/PPPIhm4d+8exo0bB6lUKny7srOzbVxau3btKgrWVBixsbG4fv06rl69iqFDh8LDwwN+fn7IysqyefaaNm1aaNCnsLAwBAYGCpMg+/fvR5MmTeDn5wd/f/8iLdJPIn5+fhg9erTw/QNMyxPWrVsnyK/l993HxwezZs1yaBUmiMcJWTwJogypWrUqtm7dihEjRoisn2b0ej1SUlLsKjwRERGYNWsWfv755yKVnsqVK2P9+vXo3LmzSCkwt2+tdEZEROCXX37Bxx9/XPyLe0CnTp0wc+ZMm+vLz88XKZ0RERFYtGgRmjVr5lS7rVu3tpktT0tLQ1pamij6p7NIpVJ8//33+PTTT0WDTZ7nkZWVhdTUVNFvIJfLheT1ISEhLp/vUfPOO++I+mk0GpGUlISsrCyR9QUwWfoWLlyI999/X+Siy3Ec0tPTbZQJT09PjBs3Dn/88Uepuht7enrijz/+QK9evURyq1KpkJqaKlI6fXx88O2334rc/0qLSZMm4eOPPxbdC/OzYznwlUgkGDJkCH744Ycile+aNWti06ZNaNy4sWi/Wq3G/fv3bZTORo0aYe3atTblHyehoaFYtWoV+vXrJ1pLbjQakZ6ejtTUVJGcyGQyDB8+HPPmzSvRRM13331nY/kETBMq1rIpl8vx3nvvYfXq1aLoqdZrPn/66Sdcu3ZN2O7SpQs6duzosA8xMTEYNWqUsK1SqfDxxx/bDaD21ltvYcGCBTaRblUqFZKSkmyUzqpVq2LFihVo166dw/MDQOfOnbF06VIbZTczMxMZGRmCshcVFYUFCxYgPDy80PaKgyMZMBgMSE1NRVZWlkjpDAgIwPTp0/H99987HTdg0qRJGDhwoPBMqdVqJCcni549s2z98ccfheYFZRgGEyZMED2fBQUFSEpKwn///edyrIUnhcGDB+Ojjz6yiWyvVCpF3/dq1aphxYoVJUo1RRBlCVk8CaKMUSgUGDNmDN577z0cPnwYJ0+exJUrV5CUlCRYU1iWhY+PD6KiolC7dm20adMGzZo1czr/H2D64P/000+4fv064uLicOLECSQmJkKpVEIikSAsLAy1atVCx44dix1MyBE9e/bEiy++iA0bNmD//v24e/cucnNzERgYiJiYGHTu3Bldu3Z1yf2HYRj89ttvWLJkCXbs2IHExESo1Wp4eXmVKGDEW2+9hVdffRXbtm3DP//8g6tXryIrKwt6vR6+vr6oUqUKWrZsiR49eoiCOjzpBAYGYuPGjZg3bx4OHTqEtLQ0GAwG+Pv72x1sSaVS/O9//8PAgQOxdetWHDlyBLdu3UJWVhaMRiMCAwNRrVo1vPjii+jWrZvdiZPSQKFQYObMmXjzzTexdetWHDt2DGlpacjPz4e3tzeqVKmCVq1aoXfv3mUa5XXo0KHo2rUrNm7ciIMHDyIhIQFKpRLu7u4oX748mjRpgj59+tjk/yyMyMhILF++HGfOnEFcXBxOnz6N5ORk5Ofnw8fHRwgY1rFjR6cnZB41CoUCU6ZMwbvvvovt27fj2LFjuHv3LrKzs8FxHHx9fVG5cmU0bdoUvXr1cioXalF4eHhgzpw5OHHiBDZt2oRz584hNTUVWq0WCoUCgYGBqFy5MurVq4fu3bsLEy4dOnQQ1joeO3YM8fHxKF++PE6dOoXFixcL7fv7++Pzzz8vsh9DhgzBrl27hImus2fPYv78+XYtSS1atEBcXBz27duHAwcO4Ny5c0hPT0d+fj48PDwQGhqKOnXqoFOnTmjVqpXT7/aGDRtix44diIuLw86dO3H58mUolUp4e3ujQoUKePnll9G7d294eXkVug60JJhl4J133sG2bdtw9OhR3Lt3T4iwGhwcjJo1a6Jt27bo0qWLy5MOLMvis88+Q/fu3bFq1SqcPHkSaWlpkMvliImJQatWrdCnTx/Rso7CML+7ly5disuXLyM7OxtyuRyhoaFISUlBTEyMy/fgSeCdd95B586dsWHDBhw8eBCJiYlQqVQIDg5GlSpV8Morr+Dll1+GXC53uLyAIB43DP8shPwiCIIgCIIgnnhOnDghWnO/bNkyNGnS5DH2iCCIRwW52hIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQRAEQRAEQZQppHgSBEEQBEEQBEEQZQopngRBEARBEARBEESZQoonQRAEQRAEQRAEUaZQHk+CIAiCIAiCIAiiTCGLJ0EQBEEQBEEQBFGmkOJJEARBEARBEARBlCmkeBIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQTyxGI3Gx92FMqEsr+tZvWfPIvRbOQ/dq+LBcdzj7gJBCJDiSRDPGQUFBejQoQPat28PnU4nOnb79m2MGTMGLVq0QK1atdCyZUtMnTq1xOccOHAgqlatioEDB5a4LeL5gOM4rFixAjNmzHgs52/Xrh2qVq2KiRMnlnrbcXFx+Oijj0q93bJum3CNwmQoPT0dY8eOxenTp22OVa1aFVWrVsXcuXMfRTefCo4ePYp33nnncXfjiaMwWbl37x4GDx6M+/fvl8q5bt26hZo1a2L06NGl0h7xfEKKJ0E8Z3z99ddISEjARx99BLlcLuzPzMxEv379sGvXLmRkZECv1yM9PR3u7u6PsbfE88pHH32EadOmIT8//3F3pVT58ccf8eGHHyI9Pf2papsoPbKystClSxfs2LEDlEq9aNasWYPBgwfj3r17j7srTw1Xr15Ft27dcPTo0VJrs1KlSujXrx92796NzZs3l1q7xPOF9HF3gCCIR8epU6ewfv161KtXDy+//LLo2L59+6BUKgEAn376Kbp06QKGYUTKaXEJCQlB+fLlERISUuK2iOeDtLS0x3r+iIgISCQSBAYGlmq7qamppdreo2qbcB1HMqRSqZCbm+uwXvny5QEAvr6+Zdq/p4XH/S54knEkKzk5OdBqtaV+vg8++ACbNm3CjBkz0Lp1a/j7+5f6OYhnG1I8CeI5ged5TJs2DQAwZswYm+NmK4mfnx/eeuutUj33999/X6rtEURZs3z58sfdBeIpp7gy9Ndff5VyT4hnlUctK/7+/hg4cCB+++03zJkzB1988cUjPT/x9EOutgTxnLBr1y5cvXoVsbGxaNasmc1xc+AGT0/PR901giAIgiCeAvr37w+pVIp169aV2vpR4vmB4WmBAUE8F7z22mu4dOkSPvnkEwwaNEjYP3HiRGzatMluncaNG4tm7fPz87F+/XocOnQI169fh1KphEwmQ1BQEOrXr48BAwagTp06Nu0MHDgQJ0+etGnPfO5u3bphzJgx+OKLL3D69GnI5XJUrlwZc+bMwe3btwUL7LVr13Dr1i388ccfOHbsGDIyMuDr64uGDRtiyJAhqFu3rsPrz87OxtKlS7F//34kJCTAaDQiPDwcrVq1wpAhQxAeHm63nlqtxqpVq7Bnzx7cuHEDWq0Wfn5+qFGjBrp06YJu3bpBIpHY1FMqlVi+fDn279+PO3fuwGAwICAgAHXq1EGPHj3QoUMHh30tiqSkJKxduxb79+9HUlISjEYjoqKi0LZtWwwZMgR+fn526506dQqrVq3CmTNnkJ6eDoVCgZiYGHTo0AEDBgyAQqGwqWP+jXr16oWZM2ciLi4Oa9aswbVr16BWqxEREYGOHTti6NChdl0DeZ7Hzp07sXnzZly6dAk5OTnw8vJCTEwM2rZti/79+8Pb29vmfPa4du0agIfy9N577+Gll17C1KlT8d9//0GhUKBWrVr47bffBBfxrKwsrF69GkeOHMGdO3eQm5sLNzc3hISEoHHjxnjrrbdQqVIlm3O1a9cOSUlJwnWX9H7MnTsXP//8s93r2rt3LyIjI0XnjYiIwL59++yWt8aZtp151g4fPoxPPvnEpk+WJCYmon379gCAGTNm4NVXX7UpU9xnrTDM/e/SpQt++OEHrFy5EmvXrsW9e/fg5eWF2NhYvPnmm2jXrl2h7Rw4cADr1q3D+fPnoVQq4enpidjYWHTp0gW9e/eGTCazW+/WrVtYtmwZjh8/jvv370MqlSIkJASNGjXCgAEDUL16dZs69mSoatWqdtu3V2bkyJEYNWoU0tPT0bp1axiNRowbNw7Dhg1zeH1vvvkm/v33XzRt2hRLly4VHbt//z6WLFmCw4cPIzk5GQzDCO+NQYMGFctt0nyN06dPR3h4OL755hvcvn0bvr6+aNq0qcjbJSkpCatXr8axY8eQmJiIvLw8KBQKlCtXDs2bN8fbb7+NsLAwofzGjRsFebRm2bJlaNKkibDN8zzi4uKwZcsWXL58Gbm5ufDz80PdunXRt29ftG7d2uVrO3HihPDtuXDhAq5du4Zff/0VZ8+ehU6nQ1RUFDp37owBAwbAx8fHYTtnz57Fxo0bcfr0aaSlpUGj0cDLywuVKlVC+/bt8cYbb9i8e83XHhoait27d2PGjBnYuXMn9Ho9oqKiMGnSJDRr1sxGViyfT2tGjhyJqKgoTJgwwe49tESj0aBZs2ZQqVQ2YwYAeP/997Fv3z4MGjTI4W9EEPYgV1uCeA64dOkSLl26BADo1KlTsdq4ePEi3nvvPWRkZIj26/V6xMfHIz4+Hlu2bMH06dPRu3dvl9rOycnB22+/jaSkJACmj152djaCg4Nx+/Ztody+ffswduxYaDQaYV9GRgZ27dqF3bt3Y9asWejRo4dN+8ePH8fo0aORk5Mj2n/nzh3cuXMHa9euxTfffGNzb5RKJQYOHIjr16+L9qenp+PgwYM4ePAgNmzYgPnz58PDw0M4npCQgIEDByI5OVlULyUlBSkpKdizZw+6dOmC77//HizrmuPJzp07MWnSJKhUKtH+69ev4/r169i4cSMWLVqE2NhY4RjHcZgyZQrWrFkjqpOTk4Nz587h3LlzWLlyJX777TdUq1bN7nl5nsfHH3+MLVu2iPbfvn0b8+bNw/bt27Fq1SqEhoaKjn/00UfYtm2baJ9SqcTZs2dx9uxZ/Pnnn1i2bBmio6Ndug+A6T6//fbbyMvLAwAhSrNZ6Tx48CD+97//2dwrvV6P/Px83L59Gxs3bsQvv/yCF1980aVzF/d+PG4Ke9ZKg+I+a64wfvx4bN++XdhWq9VIT0/HkSNH8Oqrr2L69Ok2k0FqtRrjxo3D3r17RfuVSiVOnjyJkydPYuXKlfj9998REREhKnPgwAGMGjVKFAVcp9Ph7t27uHv3LtavX4/PPvsMb775ZrGvqTCCg4PRrFkz/PPPP4iLi3OoeKakpODUqVMAYPMejIuLwyeffGKz7u/atWu4du0aVq9ejV9++QUNGzYsVh/PnTuHL7/8Enq9HoDpvWzpPbNu3TrRcTO5ubnIzc3F1atXsX79eixduhQ1atRw6dy5ubkYOXIkTpw4Idqfnp6Ov//+G3///Te6d++Or776qtgxC/bv34/x48eL+m++d+vXr8eiRYtQoUIFUR2j0YgpU6Zg7dq1Nu1lZ2fj1KlTOHXqFDZt2oRVq1bBy8vLphzP8xg7diz2798v7Lt58yZiYmKKdR0vvfQSvvzyS6hUKsTFxTlUPPft2weVSgWJRIJXXnnF5ninTp2wb98+bNq0CR9++CHc3NyK1R/i+YNcbQniOWDHjh0AgMqVK9tYG6ZOnYozZ85g+PDhAIBy5crhzJkzOHPmDBYsWADAZOl8//33kZGRgaCgIHz11VfYs2cPjh8/ji1btmDUqFHw8PAAz/P46quvbAb6RXHo0CGkpaVh6tSpOHLkCNauXWt3FvXDDz+En58fZs2ahUOHDuHQoUOYPHmycG57UVCvX7+O4cOHIycnB5GRkfjmm29w6NAhHDt2DPPnz0etWrWg0Wjw4Ycf2qQ2+OGHH3D9+nUoFApMnjwZf/31F44fP45Nmzahe/fuAICTJ0/aWBamTJmC5ORkBAUF4ZtvvsHff/+NY8eOYfXq1WjZsqXwm8TFxbl0n86cOYOxY8dCpVIhKioK33//PQ4fPox9+/bhs88+g6enJ9LT0/HBBx+IBslff/21oHQ2a9YMS5cuxbFjx/DXX39h3LhxUCgUuH//PgYNGoSUlBS75969eze2bNmCNm3aYOXKlcJvbx6UJCUl4aeffhLV2b59u6B0vv3229i6dSuOHz+O3bt3Y+zYsZBKpUhNTRWl7DHLY4MGDQAA3bp1E+TRmri4OPA8j9mzZ+Po0aNYsmQJRowYAcBk3RkzZgxUKhWio6Px448/Cr/Dhg0bMHDgQEilUuh0umKlDHL1fgwfPhxnzpxBt27dAAANGjQQrstS0YmKikJMTAyioqKc7ouzbQPOP2vFoSTPmrMcOHAA27dvR/Xq1bF48WIcP34c69atEyxaGzdutGv9/fDDDwWls3PnzlizZg1OnDiBHTt2YNiwYZBKpbh+/TqGDBkieoeoVCpMmDABOp0OderUwaJFi3Do0CEcPnwYv/76K6Kjo8HzPGbOnInExMQi+3/mzBnRcz9//nycOXOmSBk0K5JXr17FrVu37JbZvn07eJ6Hu7s7XnrpJWH/kSNHMH78eGi1WlSrVg2//PILjh49isOHD+PHH39EdHQ0lEolhg0bhrt37xZ5DfZYv349AgMDsWjRIhw9ehS//vqrkD7rwoUL+Pzzz6HX61GrVi3MmzcP+/fvx5EjR7B69Wr07NkTgEmBtPQu6N69u8Nvk1lBNhqN+OCDD3DixAlIpVK8++672L59O06cOIEtW7bgzTffBMMw2Lp1K6ZPn16sawOATz75BDKZDJ988gkOHTokTILKZDIkJibi3XfftUlPtmTJEkHpfOWVV7BmzRocOXIE+/btw/z581GvXj0ApudmyZIlds+blpaG/fv3Y8CAAdi/fz927dqFr7/+WmQZtiQiIgJnzpzB/PnzhX1xcXHCfVQoFIK3ze7du2EwGOy2Y35vN2vWzO6kVKtWrcAwDHJycko1ci7xHMATBPHM07VrVz42NpafNGmSwzJz5szhY2Nj+bZt29ocW7FiBR8bG8vHxsbyp06dslt/yZIlQpnDhw+Ljr355pt8bGws/+abb4r2T5gwQajzww8/2G33+PHjQpmGDRvy9+/ftynz559/CmV27dolOta/f38+NjaWb9euHZ+VlWVTV6PR8L179+ZjY2P5bt26iY41adKEj42N5X/55RebehzH8QMHDuRjY2P5rl27Cvvz8vL4qlWr8rGxsfzmzZtt6mm1Wr5Tp058bGwsP3z4cLvX7Ihu3brxsbGxfJs2bfjMzEyb43v27BHuw6ZNm3ie5/mrV68K/RkzZgxvNBpt6p05c4avWbMmHxsby48ePVp0zPI3GjVqlN1+me9f/fr1eY7jhP2jRo3iY2Nj+bfffttuvblz5/KxsbF81apVbX4bs8xMmDDBpp75WGxsLL927Vq7bc+aNYuPjY3la9asycfHx9st89VXXwnt3L59W3Ssbdu2ds9fkvthWd/6WSgNCmvbmWdtw4YNQpmEhAS7ZRISEoQyGzZsEB0rybPm7LWZn7f8/HzRcaPRyA8fPpyPjY3l69Spw6empgrH9u3bJ9SdOXOm3fZ37dollJk1a5awf//+/cL+5ORkm3rx8fF8tWrV+NjYWH7RokWiY45kyPIeHj9+3KZN87E5c+YI+1QqFf/CCy/Y7LekZ8+efGxsLP/hhx8K+wwGg9CP3r178xqNxqZedna2UMbVd5K5XmxsLH/kyBG7ZUaPHs3HxsbyTZs25ZVKpd0yI0aM4GNjY/lq1arxarVadKywb9O6deuE8+/evdtu24sWLRLKXLp0yelrs/z2VKtWjT927JhNmR07dghlFi9eLOw3Go188+bN+djYWH7w4ME27wGeN/2mrVq14mNjY/nXX39ddMzyWezXr5/DPtqTFeu+Wz/Lhw8fFo4dOHDApk2lUil8D8zfEXt06NCBj42N5b/88kuHZQjCGrJ4EsQzTn5+Pm7evAkAIvdLVwgPD8eAAQPQr18/wRJljaXLTlZWlsvn6Ny5c5FlevToYXd9WNu2bYW/La0ON27cEFzPRowYYXcNk5ubG8aOHQvA5Dp1/vx54Zh5BtvavRgAGIbB559/jqVLl+L3338X9hsMBiE3n716crkc33zzDf7880+XLG03btwQ1jiOHj0aAQEBNmU6duyIRo0aiX6LdevWged5yOVyTJ482a5rb7169dC/f38AwJ49e5CZmWm3D++9957d/W3atAFgkrXs7Gxhv/n+KZVKuzPr/fv3x/z58xEXFyda5+ksDMM4dNmMjY3F66+/jnfffdeh9bBx48bC38WRWVfvx5OCM8+aq5T0WXMFs3XfEpZl8emnn4JhGGg0GlG0T7PVKTg4GB9++KHdNjt16iRYgtauXSsEW7O0YtnLjxoVFYX58+dj3bp1Li8xcAUPDw9B1u15Sty6dQv//fcfAAjeGABw+PBhwa163Lhxdl0i/fz88P777wMwWZSLkwfWz8/PbtA6AKhfvz569+6NDz74wGGKGPOzyHGcjZt2YaxatQoA0KhRI5GV15K33npLsPzbc3t1hh49eqBp06Y2+zt37iz03dL9u6CgAH369EHXrl0xfPhwMAxjU9fDwwO1a9cGUPj7xzr1WUmxtGLak6U9e/ZAr9fDw8MDHTt2dNhOlSpVAKDYzzHxfEJrPAniGefu3bvgOA4AULFixWK10a5du0KDdmRkZODs2bPCtnnQ5iwymUz4iBWGo+BBlnny1Gq18PfJkyeFv2NjY1FQUGC3frVq1SCRSGA0GnH69GnhPI0aNcKBAwfw559/IjU1Fa+88gpatGghDJ6qVKli028/Pz9UqVIFN27cwPfff4/r16+jU6dOaNq0qRBAwl4ApqI4duyY8LdZsbHHihUrRNv//vsvANPAzp6yaqZLly5YunQpOI7D6dOnbQZxbm5uDtd/Wt5/y/W3jRo1wv79+3HlyhX07dsXvXv3xosvvigErQkICChW0A8zkZGRDoN69OzZU3Dhs0dycrIwUAdcl9ni3I8nAWefNVcp6bPmLMHBwQ7XpUVFRaFKlSq4fv06jh07hgEDBgB4+Ay0a9fOYfAgwPQM/P3338jLy8PVq1dRs2ZNvPDCC5DJZNDr9Rg8eDDeeOMNtG3bFi+88IKwjrRVq1YuXUNx6dGjBzZt2oQ7d+7gv//+E62FNCs9gYGBaNGihbDfct1jYb9LrVq1AJjWFJ45c8blNbjVqlWzq1wBJjf7wrh7967IfdiR+6c1+fn5wjNco0YNh9cGALVr10ZSUpJdl31n6NKli8Njbdu2xcmTJ3Hp0iXk5ubCx8cH3t7e+N///uewjsFgwJUrV4RJvsKu2dU1r0UhkUjQrVs3LFq0CHv37oVWqxVNSJjdbDt06FBolPuKFSti7969uHPnTqn2j3i2IcWTIJ5xLNfslTQhuV6vx7///ovLly8LAYVu375tk+CbdzFYtq+vr93IsNY4UpwsA0ZYnjshIUH421lrhGVAoIkTJ+L8+fPIzs4WglRIJBLUrl0brVq1QseOHe1GqZwyZQreeecdqNVqbN68GZs3b4ZMJkP9+vXRunVrdOzYUUj87SypqakATIqtK9Enzb+/vcitllgetxci39fX12EgJMv7b57kAIABAwZg9+7dOH/+PC5fvozLly8DAGJiYtCyZUu0b98eTZo0cTnAkpnCFGkzGo0Gx44dw9WrVxEfH4+EhATcvHnTxhJZHJl19X48CTj7rLlKSZ81ZylKaa5QoQKuX78uyH1+fr4QfMqVZyA5ORk1a9ZESEgIxo0bh5kzZyIvLw8LFizAggUL4OPjg2bNmqF169Zo3769w0jSpUmTJk0QFhaGlJQUxMXFiRQSs+XqlVdegVT6cGhn6QHiyCJpTXF+F2eexby8PBw9ehTXr18XnsVbt24hNzdXVM7ZZzEpKUl4vpYuXWqz1t4exbk2wHE0YgBCUCGe55GWlmYzGZaUlIQTJ07g9u3biI+Px71793Dnzh2bQE+OKE604aLo0aMHFi1ahPz8fBw4cECYaEhNTRUmaiwt5/YwjycKCgqQn59vNzgSQVhDiidBPONYBvopyYdh586d+Oqrr2zcsBiGQcWKFVG3bl2HaTCKwtmIeJYDKmewDjTkap2YmBhs374dv//+O3bs2IHMzEwYjUYhEuzcuXPRsGFDfPXVV6KorA0bNsTWrVvx22+/4a+//kJeXh70ej1OnDiBEydO4JtvvkG7du0wbdo0BAUFOdUvs/uZu7t7sa7HXqoUSyyj8toLDlWYpcgR7u7uWLFiBZYvX47169cLEYrNEU6XL1+OiIgITJkyxeWoskDRcrNixQr89NNPguJhhmVZVK9eHdHR0di5c6fL5wWKdz+eBMoq+mRJnzVnKcol2/x8mH9zSyuYK8+AZb3BgwejevXqWLhwIY4dOwa9Xo/c3Fzs3r0bu3fvhkwmw8CBAzF+/PgyUerNsCyLbt26YcGCBdi5cyfGjx8PhmFw4cIF3Lt3D4BtNNtH9bsUJlccx2Hu3LlYuHChjbIlk8lQr149+Pj44ODBg2Xez+LUAQqXO0u5sXzXKJVKTJ48GXv27LFRpj09PdG0aVOkp6eLPC/sURbPbLVq1RAbG4vr168jLi5OUDx37NgBjuMQFBQkspzbw/KeFBQUkOJJOAUpngTxjGPp/lTcQdGePXswduxY8DyPgIAAdOzYEbVq1ULFihURGxsLHx8f3Lt3r9iKZ1lhqaRduHChWB/woKAgfPbZZ5g0aRIuXryII0eO4OjRozh79iwMBgNOnTqFQYMGYefOnaIBSPny5TFjxgwhSuvRo0dx5MgRXLp0CTzPY9++fUhLS8P69esduqhZYm7bVddNhUKB3NzcIiMNuzJAdwW5XI6hQ4di6NChuHv3rnD/jh07hoKCAiQlJWHEiBFYs2YNatasWWrnXbJkCWbMmAHAFA2zQ4cOqF69OipVqoQqVapAoVDg6NGjxVY8n1ccWWlK41lzBuvIodaY5dxsJbKU5ZI8A02bNkXTpk2Rn58vyO8///yD+Ph46PV6LFq0CDzPY+LEiS5dj6v06NEDCxYsQFJSEs6ePYv69esLbraVKlUSXGbNmH+XoKAgHDlypEz75ogZM2Zg2bJlAEzume3atUPVqlWFZ1Eul2PdunUuK56W79spU6agX79+pdpvS7RarcP3oqVcmeVOr9dj6NChQhqzxo0bo1mzZoiNjUXFihURHR0NlmUxfvz4IhXPsqJHjx749ttvceDAARQUFMDT01OwnHfp0qXI8YLl8gRnvmEEAZDiSRDPPJZrNCzXP7rC999/D57nERkZifXr19t1/XkSg6iUK1dO+DsxMbFQVzue5wv9eLIsi7p166Ju3boYMWIEsrKyMGvWLGzevBnJycn466+/7LomyWQyNGnSBE2aNMHYsWORnJyMzz77DP/88w8uXbokSh1SGOagSkqlUlhHZI9du3bh7t27qFy5Mjp06IBy5cohNzfXYQoGM+YAVID4vpUm0dHRiI6OxoABA6DT6bBq1SrMmDEDer0eq1atKlG6A0s0Go2QUqNOnTpYvny5XUvxkyizjxNL12HrfItmHN2z0nzWCsPSpdce5vVm5mAyXl5e8PHxKbVnwMvLCy+99JKwBvrChQv43//+h6SkJKxcuRLjx4932TPDFapUqYKaNWvi8uXL2LNnD+rVqydMnth7/5ivIzs7GyqVqlQnlZwhOTlZWHfesWNHzJ49265CU5xn0TKliDmAkiNKInOASe4cubyaPTlkMpmQt3fXrl2C0jlx4kQMHjzYbt3H+Q7q1q0bvv/+e2i1Whw5cgR169bFxYsXARTtZguI+17YWlCCsISi2hLEM45lFFjzOkFXyMrKEnK7vfTSSw4/vpbBb56UdW2WydCtE8dbcubMGdStWxedOnUSBnEXLlxAv3790LhxY9y4ccOmTkBAACZNmiRsm+/tgQMH0Lt3bzRu3NjGxRMw/R7jxo2zqVcU9evXF/4+fPiww3ILFizAjz/+KER7NN+DkydPFho5cdeuXQBMM9cvvPCCU30qDLVajaFDh+LFF1/En3/+aXNcLpfj7bffFiItF0c2HXHjxg3h3vfs2dOhe/LjkNmytAyUtG1LpcSRrFgGEbOkJM+aK9y6dcthvsw7d+4ISoA5ABfDMMLEzr59+xwq1MDDZ8DT01OQy3nz5qFr164OrWl16tTBW2+9BcBkFXMmImtJfyezUrB//36cPn0aaWlpYBhGyONqiWW+ywMHDjhsc9u2bahXrx5eeeUVITpxaXD+/Hnh2erdu7dDK5rls2jtlurofgUEBKBy5coATL+to7WhHMfhlVdeQatWrfDRRx+5fA2AKf+tI/bt2wfAZNU0W2Etn5PXX3/dbj21Wo1z584JfSxNnJGx0NBQIVLv/v37sX//fgAmq7Q52m5hKJVKAKa1nqR4Es5CiidBPOOYXXoAID4+3uX6lrP3jiwGV69eFSWsLmxw9yipU6cOqlevDsCkkNlLjq7RaDBz5kxotVokJSUJEWfDw8Nx4cIF5OTkYPny5Xbbv3LlivC3OVhQYGAgLl68iJycHKxcudLpekVRt25dwYo0Z84cu2uV9u7dK8yyv/LKKwCAPn36ADC5KE6dOtXuAOfChQuCotq6dWuEhIQ41afC8PDwQGpqKlJTU7FmzRq7Lpo5OTlCICPr+2CWu+LIkqXMWlqxLDly5Ag2btwobD8qmTUPvMvifCVt2xwkBYBdpTArK8vhs1CSZ80VeJ7HN998Y6NkGAwGwWLu5+cnSrHUt29fAKZ0KD/88IPddv/++29BYe7Zs6ewhlcqleLGjRs4e/asw4io5ufZy8vLqSA7lvJZnN+qa9eukEqluHv3Lv744w8ApgjSZiuvJe3btxfWkX/33Xd2JxSysrIwZ84cqFQqZGRkCL9jaeDMs7hhwwYcPXpU2LZ2pzbLtT03a/P77datW1i4cKHd9pctW4Zbt24hLS1NUFRdZenSpXatqlu2bBGUzF69etn0GbB/3RzHYerUqcJ7vLTfB5bnL6xt85rggwcPCgq0M9ZO4KGVubjR8onnE1I8CeIZx8PDQxhIFGctiY+PjzBAPHjwIKZPn45bt24hOzsbV69exU8//YQ33nhDtM6lsLD2j5rJkydDKpUiNzcXr7/+OlasWIHExERkZmbin3/+waBBg4Q8ZEOHDhUGb8HBwcIHeM2aNfjkk09w4cIFZGVlISEhARs2bMD48eMBmJRU80C3du3aQl632bNnY9asWbhy5QqysrJw584dLFmyBF999RUAkzJpvSbLEea8oSzL4u7du+jXrx/27t0rWKQXLlwo9Kd69epC36tVq4aBAwcCMCkTQ4cOxYkTJ5CdnY2EhAQsXLgQgwYNgl6vh6+vL6ZMmVLSWy4wdOhQAKacjYMHD8bhw4cFZfTgwYMYMmQI8vLyIJFIbKwC5iihp06dwr1791zKsxkbGysoz6tXr8avv/4qtHHhwgVMnz4dw4YNE61RelQya76ua9eu4fLly8jOzhYNDN9++228/PLLRaagKE7bRVG1alUhSNaKFSvw888/IzExEampqdi2bRv69u2LrKwsh+6axX3WXGX37t14//33ceHCBSiVSpw5cwbvvPMO/vnnHwDAhAkTRIFOLNNBLVq0CGPHjsX58+ehVCpx+/Zt/PTTT0Lqi6ioKFGuz9deew1+fn7geR4jRozAihUrcPv2bWRlZeHq1auYNm0aNm/eDADo16+fU5Ymy+jiu3btglKpdCl3pWXgF7OVypGyIJfL8emnnwIwKQq9e/fG5s2bhedwz549GDhwoDApOW7cuFK1XjVo0EDwOPj555/x559/IjExERkZGfj3338xYcIEkecIYPssmuU6IyMDR44cQU5OjjCR1b9/fyG677fffotJkybh0qVLUCqVuHbtGmbMmIGZM2cCME3Cmt+FrpKbm4v+/fsjLi5O+AbMnTtX6Hvjxo1FFueWLVsKf48bNw579+5FWlqasCzjzTffFE18lfb7xzLKclxcHHJzc+1OVnbs2BEeHh7IzMzEoUOHHFrO7WG21lp64xBEUdAaT4J4DmjRogUuX74shEl3lcmTJ+Ott96CSqXC8uXL7Vo9evfujWPHjiEpKUmIsPgkUL9+fcyZMwfjx4+HUqnEtGnTMG3aNJtyffr0wejRo0X7Jk2ahNu3b+PcuXPYuHGjaKBgJigoCL///rsohca3336Lt99+G3fv3sWiRYuwaNEim3rR0dGYPXu2S9fSrFkzzJgxA5999hmuX7+OESNG2JSpXLkyfv/9d5GlYeLEidDpdFizZg2OHj0qsi6YiYqKwuzZs0Wu2SWlV69eOH/+PFatWoXTp0/jnXfesSkjk8kwbdo0wbXRTJMmTbBjxw6kpKQI6+n27t0r5AAtDIlEgqlTp2LkyJEwGAyYPXu2zb1mWRbDhw/H4sWLodPpHpnMNmnSBAsWLIBKpcKrr74KwGSRMeemTEhIQFJSUpFBdIrTtjN8+eWXGDZsGLRaLebOnYu5c+cKx2QyGWbOnInZs2fb9Z4oybPmLMHBwahUqZLINdAMwzD46KOPhGu35LvvvsP48eOxb98+7NixAzt27LApU7NmTcyePVuktPr5+eGnn37CiBEjkJ2dbfd6AFMuR2evyd3dHS+88ALOnTuHdevWYd26dWjcuLFDa7I9evToIQTjcXNzw8svv+ywbJcuXZCbm4vp06cjKSkJEyZMsCnDMAw++OADwTpcWvj7+2PixIn48ssvoVarMXXqVJsycrkcQ4YMwe+//w4AuHfvnsga3qhRIyH365AhQwCYAha9+uqrkMvlmD9/PkaMGIELFy5gw4YN2LBhg805oqOjsWDBgmKvce3atSvi4uJEkxJmGjduLKwpN9O6dWu88soriIuLQ3x8vN13dUhICNq1a4fVq1dDrVYjNTVVWCNaUipUqIDw8HAkJycLz3GvXr0EJdyMp6cnOnTogG3btoHneTRo0MCpd6x58gV4dHlsiWcDsngSxHOA2e0yISHBrgtcUdSuXRubNm3Cq6++ivDwcEilUri7uyMqKgqvvPIKli1bhq+++krIE7d///4nxt0WMLmb7dmzB8OHD0f16tXh5eUFmUyGkJAQdOrUCYsWLcL06dNt1h95e3vjzz//xJQpU9CkSRP4+/tDKpXC19cXtWvXxujRo7Fr1y5Uq1ZNVC8sLAybNm3C+PHjhVQBUqkU/v7+aNiwIT755BNs3bq1WEpez549sWPHDgwYMADR0dFwc3ODh4cHatasiY8++gjr168XBd0ATO5uU6dOxYoVK9C1a1eEh4dDJpMhMDAQDRo0wOTJk7Fly5ZSjSprZsqUKZg/fz5eeuklhIWFQSaTQaFQICYmBm+++Sa2b98uclEz07dvX4waNQrlypWDTCZDcHCwKCdtUbRt2xZr1qxB586dERwcDKlUCoVCgYoVK6J3797YsGEDPvzwQ2H93549e0rtmgujVatWmDx5MqKjoyGTyRAQEICMjIwnpu2mTZtiy5YteO211wQ5CQkJQdeuXbF+/Xp07dq10PrFfdacRS6XY+HChfjoo49QqVIluLm5ISIiAl27dsWGDRsEK7s1np6e+O233/DLL7+gffv2CA4OFvrVvHlzzJo1C6tXr0ZUVJRN3WbNmiEuLg6DBg1CbGwsFAqFULddu3aYM2eOzeRTUfz4449o164dvL294ebmVmTEXWvat28vKMht27YtMs3MG2+8gZ07d2LgwIGoXLmycA0RERHo0aMH1q5di1GjRrnUB2fp168fFi9ejDZt2sDf3x8SiURYRztw4EBs27YNY8eOFVy9//rrL1H9ypUr44cffkBsbCzc3Nzg6+srCmwTHByM1atXY9asWWjVqhUCAwMhlUrh5eWFevXqYeLEidiyZYvLuZMt6du3L5YtW4aWLVvCy8sLvr6+aNCgAWbOnIlFixbZzZH9/fffY+rUqahXrx48PT0hlUrh5+eHevXqYdy4cdi+fTuGDx8uLIWxvu6SIJVK8fvvv6NJkyZQKBRQKBQOraqWKXicdbM9efIkANO9d2ViiyAY3tWs2QRBPJX0798fp0+fxujRo/HBBx887u4QBEE4zcSJE7Fp0yZEREQIa9EIoiw5ceKEEDjKVc+Bp4kjR45gyJAhkMlkOHLkiF0l2po33ngDZ8+exahRozBy5MhH0EviWYEsngTxnGB29dm8efMTE3WWIAiCIIjHx7Zt2wCY1kI7o3TevHkTZ8+ehaenZ7HXzBLPL6R4EsRzQsuWLVGnTh3Ex8e7nKibIAiCIIhni7t37wpphMwRgoti3bp1AExeVM4oqgRhCQUXIojniPHjx+Ptt9/Gb7/9Jko3QBAEQRDEs8++fftw/fp1aLVarF27Fmq1GtWqVRNF4nVEWloa1qxZg4CAACHQE0G4AimeBPEc0aRJEwwYMAArVqzA33//jQ4dOjzuLhEEQRAE8YhITk7Gjz/+KGzL5XJMmzbNqVRAc+bMgVqtxsyZM53KWUsQ1pCrLUE8Z4wfPx4VKlTArFmzipWygSAIgiCIp5OqVasiJCQE7u7uqFevHhYvXixKX+OIW7duYePGjejcuXOh6XsIojAoqi1BEARBEARBEARRppDFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMkT7uDhCPH51OB6VSKWy7ublBIpE8vg4RBEEQBEEQBPFYMBqN0Gq1wrafnx/kcnmJ2yXFk4BSqURCQsLj7gZBEARBEARBEE8gISEhJW6DXG0JgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIVdbAm5ubqLtqKgoKBSKx9QbID4+HkajERKJBOXLl39s/SCeHkhmCFchmSFchWSGcBWSGcJVnhSZUalUomV41rpCcSHFk7AJJKRQKODl5fWYegMYDAbo9XrIZLLH2g/i6YFkhnAVkhnCVUhmCFchmSFc5UmVmdIKOkqutsQTB8uywj+CcAaSGcJVSGYIVyGZIVyFZIZwlWddZhie5/nH3Qni8ZKfn49r164J21WrVn2iZlkIgiAIgiAIgng0lJVu8Gyq0wRBEARBEARBEMQTAymeBEEQBEEQBEEQRJlCiidBEARBEARBEARRplBUW+KJIy0tTQglHRIS8ri7QzwFkMwQrkIyQ7gKyQzhKiQzhKs86zJDiifxxJGSkiKEkn4WHzqi9CGZIVyFZIZwFZIZwlVIZghXedZlhlxtCYIgCIIgCIIgiDKFLJ7EE0d0dDQ4jntmcxgRpQ/JDOEqJDOEq5DMEK5CMkO4yrMuM6R4Ek8cPj4+j7sLxFMGyQzhKiQzhKuQzBCuQjJDuMqzLjPPpjpNEARBEARBEARBPDGQ4kkQBEEQBEEQBEGUKeRqSzxx6PV68DwPhmEgk8ked3eIpwCSGcJVSGYIVyGZIVyFZIZwlWddZkjxJJ44rly5IoSSrlOnzuPuDvEUQDJDuArJDOEqJDOEq5DMEK7yrMsMudoSBEEQBEEQBEEQZQpZPIknDl9fXxgMBkilJJ6Ec5DMEK5CMkO4CskM4SokM4SrPOsy82xeFfFUU6FChcfdBeIpg2SGcBWSGcJVSGYIVyGZIVzlWZcZcrUlCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRTPQvjyyy9RtWpVzJ07t1TaS0pKwvTp09GpUyfUrl0bjRs3Rp8+fbBkyRJoNJpSOQdBEARBEARBEMSTBq3xdMCxY8ewevXqUmvv4MGDGDt2LAoKCoR9Op0OFy5cwIULF7Bhwwb89ttviIyMLLVzPq3cunVLWFhdqVKlx90d4imAZIZwFZIZwlVIZghXIZkhXOVZlxlSPO1w6dIljBw5EhzHlUp7165dw6hRo6DVaiGRSNC7d280bNgQBQUF2LJlC86ePYvr169jxIgRWLNmDTw8PErlvE8rBQUFQg4jgnAGkhnCVUhmCFchmSFchWSGcJVnXWbI1daKgwcPYvDgwcjPzy+1NqdMmSIonb/99humTp2K7t27o1+/fli1ahXefPNNACYFddmyZaV2XoIgCIIgCIIgiCcBsng+QKfT4ffff8dvv/1WapZOADh79izOnDkDAOjZsydat24tOs4wDD799FMcO3YMt27dwqJFizBkyJBndqbDGWrVqvW4u0A8ZZDMEK5CMkO4CskM4SokM4SrPOsyQxZPAEePHkXnzp3xyy+/gOM4KBQKDB48uFTa3rFjh/B3//797ZZhWVY4plQqcfz48VI599MKy7LCP4JwBpIZwlVIZghXIZkhXIVkhnCVZ11mns2rcpGtW7ciMTERgGmmYd26dWjbtm2ptP3vv/8CAHx9fVGjRg2H5Zo2bSr8ffjw4VI5N0EQBEEQBEEQxJMAudo+ICAgACNHjsQbb7wBiUSCzMzMErdpNBpx69YtAEClSpUKnb2IiYmBRCKB0WjE1atXS3xugiAIgiAIgiCIJwVSPAEMGDAAU6ZMgbu7e6m2m5GRAZ1OBwCIiIgotKxEIkFwcDBSUlJw//79Uu3H00ZWVhY4jgPLsggICHjc3SGeAkhmCFchmSFchWSGcBWSGcJVnnWZIcUTQO3atcuk3aysLOFvf3//Isv7+voiJSUFSqWyTPrztJCYmCiEkn4WHzqi9CGZIVyFZIZwFZIZwlWeJ5nhOA7gAZ7jwfEAz3HgABgNRoDnIZMwAMOAkUoB3lRHJpdAo9ZDq9ZBl5sHTqcDZ+Sg1xkBD0+wbm7gOYDnOfAcwPE8jHo91MmpMOr1kICHv4/EdE4j/6AcD293ICffgNx8A3iOB8/z4DkOOj0Pjc4InuOBB+1xHA/wPHge4B6chwWHcF8Ocv8A+NevB543ddg3xA2pyTmIv5WJ3Os3wOXmg+EZGIwA/ELgHhpmOhfPI0eTD51BC6PeAH1SCiR6DlJIEOGWCTdWCt5gAG/QgzfqweiSkG1wQwYbBQPPw11RgHqvvfxMygwpnmWIWq0W/nZzcyuyvLmMRqMpsz45w82bN1GpUiV4e3sL+7RaLa5duwYA8PPzQ/ny5W3qqFQqAECdOnVExzIyMgQrblRUlEgJNxqNuHz5MgDA29sbMTExorp3795Fbm4uAKBGjRqQSh+KrFKpRHx8PAAgPDwcwcHBoroXL14Ez/Pw8PBAlSpVRMcSExOFiYHY2FiRtTs/Px+3b98GAAQHByM8PFxU98qVK8KHpHr16qJjycnJSE9PBwBUrFgRXl5ewjGNRoPr168DMLl2R0ZGiureuHEDarUaDMPYTIakp6cjOTkZAFC+fHn4+fkJxwwGA/777z8AgI+PD6Kjo0V179y5g7y8PABAzZo1IZFIhGPZ2dlISEgAAJQrVw5BQUGiuhcuXAAAKBQKVK5cWXQsPj5emCSpWrWqSMbz8vJw584dAEBoaChCQ0NFdf/77z8YDAbI5XJUq1ZNdOz+/fvIyMgAYHJR9/T0FI6p1WrcuHEDABAYGGjjSWAwGHDhwgWwLGsTGS4tLQ0pKSkAgOjoaPj4+AjH9Ho9rly5AsA0AVShQgVR3Vu3bqGgoACAaR24pdt8VlaWsEY8MjJS9KHgOA6XLl0CAHh6etokg7537x5ycnIAANWrVxdFs87NzcXdu3cBAGFhYQgJCRHVvXTpEjiOg7u7O2JjY0XHkpKShOUCVapUEeUGLigoEJYABAUFoVy5cqK6V69ehU6ng1QqtVmXnpqaitTUVACm5QFP+zsCMP32N27coHfEc/KOuH79OjQaTbHeEXq9HoBJJq15Ft8RPM8jMDAI5cLDwfMAz/MwGDhcu3YdWq0OUokElavEmgbxDwbw6RkZSE/PgEQKVIypAG+Le8hxBty4eQMFuQZ4ursjyNsHHMeBN3JQq41Iyc+DTqMFzwMVKkSDf9CmPicXytRU5ObkwtOdR3iIPxQeHiZlg+Mhl3JIvZ+A1GwGMpkMPt4+grKRrzIiLy8fOp0e4AFPLy8wwANlhodOp4dGo4GPXItgfw+ENWoEmb8/wPPw9HZDUvJt3LiUA+gMkKamg+MB8DzUnBQGvwDoOQ48D3h5eYFlWfA8oM/NhSolDQaDAd5MPnyYAjAMg4wtR8HzgDtrgEyViiv6KOh5GSQykyLG84CWl0BvZMA9UHQYhgUYBg82wT+QGR8uF0FQIqhhQ3hXjQX/oL+MLBdH9yYiJ10N5OSCM5qyNBggBe/hCY5hAAAsKwHDMCYlyWiEQW0ad3oachCiuQ+GZWE+qdSoRbn8m7gQ0ByZ7uXAw9QGGAY8GNG2I9z1uQjPuwX38HIIbt0SACCTSeAdpcHxPUlIua13WLcw5AYVInKv2eyPyTqHWwH1cS+grostmp5bCWdAeeVlSDw9Uc7t4fv97wtbkXmTR3h8DZhUKL+HVbO0wO17Dtp98MzzHOQpd22ORuQowXiUQ1rYg++QHtD9uQ8NGjV6bO8I83eqtCHFswyx/DjJ5fIiy5vLGAyGMuuTMxiNRpuUMjzPF/rRNRgMwnFrOI4TjtlLVWM+Zr7uyMhIwc0gKytLOG6ecbLXJ0ft8jwvGoja629x2nXmWgtr195vbG6XsfPyLkm7pfnbWGI0Gh32ybJde/Ki1+thMBjsrnsurF1HcmiWmfv370Ov1xfZbmHy/SjvYWFy6Mw95DhOpCSYKc49tO6TdT3rdh/nO8JRu648y5GRkYLiY69fz9o7QqfTCe0LM/wW16pR68BxPNQqHVhWYlIy9Byy0guQlakCOEDG5sOglT2Y0Qc4jkfa/QKwEiAgiEV+nlZol4FJDnKy1dCojXDn7kPCsOA5DlqNHrlqA9KycsDzQGYycN9PC47jwRkM0GYrkXo/GQyMCPKXQJauBjgOPGeyZhh1WUhNykWeikHG2VRIpVLwHA+9nkOeSo/c3DyAB2QyGdzd3ASlieMAVUEBwBsQ5qmB8WYmfGvVNN0HHpC565F6vwCpiRrc2J8AXq0x3QcjA52bF9QsCx6AhGVx+d8TJmXLaIQ2PQNalRo8xyFKmoY0r5OmBh8oN/58FtIKgHtcOCTsRTCsSZHgwEDDSWE0cqZ7xjBgmDMPxvsM+Ae/Hc/ziDLcw13PQyjX9RXgQf2wKA+k3i/AheNKMNo74LTaB6dlYJTIwVtYllj21sP29AbT/wFEFdzEJWanSRnjTcVD1AkwcsDJ0JcBJAA4a1eWTcTb3Rueex03DAUIe/klyB5MgpSv6IeCPC32bkkrpD0TJ5BhZy+DkLw7uK8/L9rrp06FnzoVpyu//WBPgVU9+YN/ANKt32syADIEFmQj92oClAiAooJp0qxclB/0ej2uns+BQc8D8BBXzbTM966yatc0oWRQqcBrTMeUD/ql0OUgLP8O0spXh1ruA+jsXupDrLvMAhKdGu4qHdgUJYwhpvZ5nke27D4yMgtQoHzQB8tPoZa3aMzqvcU+GH/yEhgMnPi40QheowHHAUa2pKn+Hl4MzwNzLi6FV14MAlC+kDqF4VjZdXzE+XZ5gw6qW+fA67XgDTogKAFA4UvnnGnX3n6tVCHaU8A9nBR+HOOI0kwtaQkpnmWI5eyuo0GIJeb1oI87h6dEIrEZuDMMI/TLnoBKpVKH/WZZVjhmTyEwHzMriJazwbm5ucJx68GWZZ8ctcvzvN1+Wfa3OO1a/t/RtRbWrj1lWCaTwWAw2B1UlqTd0vxtLJFIJA77ZNmuPXmRyWRgGMbldh3JoVlmzBYqe9di2W5h8v0o72FhcljUPZRIJGDAgGUl0OuMJremB25OOg0Ho4GFVAIY9Ca3JfMHieN4SFgpNGojVPkGZGeqhMGtWqWHMlMPnc4IlgXu3MgwDdh5HjwHZGfnITtLD08fKQrydACnFtplJRxYVorMFA00ubnQZt0Fx5ncm/LydMjIzRWsDtrcWwBM7liGAhXys7KRn5cPP28e0nQtshQeJuWI4+AuB/iUeNxNZiGXShF/LOmB2xSPPJUBBQVqGPQG8ABuHEwTXKZM1hkjNFot/N11yA+4i6y6dSDz9QXPA75+7pDL5bhwMgu8LgcXtlwTFCq1UQKDwhMGzjQSP/fPKeH3MajU0ObkwGjg4CfJR4r7KVyWyQSFS8Hq4a5OwXlNBah5N/wjuSIMtXScBAbu4dBrL+6arAQW1gye5+HD5SKYycatOnXhVSkGPABvb3fIvWT4Z08ystM0+OvPTYJVhAMLXiIV2mCQ8kCZMl0PeB5gGHgachCqTcJJs6zxgIzTIjL/Gs77tUC6RyT2rE+1I+Vm7CkDgLs+D+F5N3EjPBzBrVs9kG0JyleR4/YVFe7dKMAxZNmtayIH9hQYuUGHgtyruGel+MRknUNyQH3cDagLQPvgnyWWAzjrwZMCEk4Pyd1byLqjRDmPMOFI5Ro+yFcacfuKWXGx9FSy/oarLf6WAPACeB5+GbeQhzxRSUnONag9wpEeVgswwvTPksKUDMb0T1ughyFfA+88jckaBYDnPMBAgoI8o6kPjOJhWzwAvWVjlidlhXKcwQgjJ9Z8OHUpel1ZXU/ZjW9sJ8qK1YrFwF2r1yJRlwq+BG0XVpMphT5b9tfAGTDv5mrE6JrBEwGF1CqMslXkYKUYSVgJSvLbOa7JlKhdoX2DHtqk68K2xEdTSpJmS65boPjcePjdL6txhEwmA8dxDsezZQEpnmWIpfuPVmv9YbTFXKa0gxy5SuXKlUXuX4BJibZ2j7Ou44igoCAb9ywzEomk0HatXcIs8fPzE7mTWVPY2t3IyEgbNzYzXl5ehfbJ2nXOkvDwcBu3OzPu7u6Ftmvt6mdJcHCwXTdBwPTSKaxda9dES/z9/Qtdf1xYu+XLl7dxpzTj7e1daN3CUguVK1fOxv3TjIeHR6HtWruKWBISEmLjZmJGJpMV2q61a4slAQEBDtdhsCxbaLvWLr1mjEYO3l7eKBdaETevpeHsnXTkKuORk62GMksNVYH1FPlNu+3UreWH1HMnYVCrYFRrwGk0CONSYchX4QBfD8B9AJcd9g9Itrs3PPcG7hh2IaxTR8j8/QAAlauFoHKlqti24u8HpRIctnoJSrv7Q/JuI10vVjJM1owU/Fd50IM9+Va1JA/+AbYjehaAB/Qp6dBcu4183hue0aZ7zhl9Ubt2bexcsxsatR4my4cFOZaDb+v3t+kdzeYrIUkVW2/M1gxl+SpQyX2AohxY7CgaOj0PjaoAeenZkJQzvafc3KSoWaUK/pGmQ6tVm/prOcaw0K9sBsrmwYiRA6/Vio5yRi34AhXgbTsb7jJWpy1fvjyCgpS4d8PaAlWs5iwonUGldRvBwUGIiNDg4r/KUmi78HOVRjNeXl6oVKkijv5VtAXRieZE+0qmZDxs11IWVQYN1H5l49FVciXOVjHKVCmxIn4rqnEdIUXRXmuFtmuXkihctv1lzOZNpnRVI140m1HCtqyacJe5gXdB2MzyxPD8gzkZHgzP2fz+BhZgoIfMoDLbLsGABw8GHCMRrogR2jTP/pnalfAGSKCGG8NDwZrdnk1rPw1yDfK9M+Gfp4eHlgMLHjxYcFI5pHKAkUgg8w9DpioLKk4PluehKDBAbuTBgoebJBtuvIVayQD6AEDKiL9t5j4WdxwBmJZWFFbXermBJcHBwaJYNaUFKZ5liOX6J7P/dWGYyzyLi4kJgjBhNHDIzlIhIzUPmekFyFVqULVWKDRqPTRqAzRqPXQ6Axq3iMH9BCX2bPmv2OfK+Oco5JxYacrNv2f6oJWvV+x2zR9qy0GlyahW0uGq/fplMagUjpSoy49uUGn+s8S32NG5SkMxEvXXPFgr5Q7DrBiVgpXExiUZJdO4CrnWspDhBGUSbiYnlU67NpRWfx/uuaNMwMpb61AdHR8c480OxQAYMBIJwDxUBgycaTKE5XlIOFNDEt4ACac3tc4wYACwDA8jC3jocmCWaLOyYWRl4MFYXCX/QDZ54TdhGAZuUMNDboSfvwe8Az1NVuYHuma+XzrcNSxCM3WQsaY+GlkPeESVh9TNzaQ4cHrcyLwDMIC71gjffCPkrARe8jz4ugPuMvcHrtQMJJAgPisRHvwtyHUmq7pC7gGWYcAz7pDKPIRr4AGkqzJgft8yADzdFPDw1SIgxA0VG1SAT2woGAaQylkgAUgPv4U8v3hEpeoQ7uYPqUQKVuKBiJoNIffzNbXNMlh2fh0MnBEyA4ewDD1CvQKgcGPh5xmISkHRYFgGLMOClTBYezUNat1VgL8NngGi/SPh6eYJGeuOSkEVTWVZFiwYbLi6A3l6FcDw4BigUlAFBHj5QqGoiBdrtYbUXQquIBvG/Eysu6lGStR/SI24Ag8th1qMJ0I4BqxBh8Y6I1hdPhQV68KrRjP8fm0HUo0qMDygMepR2yMYIekp4PMyUTdf/J37x9cD2bK7UPB3kC9lEa3WI0xnBAOgvEYPFoA8rCKCXhqKc1cPIo/TgQGg4gwIkXrAM/ke9Mk34WPgRN7K4RkMjEwOWLeLgByQ8TxkeODRzEog8fCG1DcYIa++BG3SDTBSOViZGxiZHIzUDUatCrymFiRe/sjjpJB6+cLf3zTmj/t2Ae6nPDwXx5SNxfFxQ4pnGRISEgJPT08UFBQUmSLFaDQKC3kdWXueFyz9ysvK1E88WzwpMsPzPDRqPXKy1cjKUCHlfg6UWSrkKjXIz9WiIF8LrcZ2xl/uJoFEKu63RqOHj7+HTVnXeHSDSvB8qStFplOUQaMwuRxzHFcyxchuVdNOxo6S6zKiNh7Ouhe7uULqlkp/wT8YXAMsazqZRMpCLpeY1h9yRgj2NKkcrFwKwFTedF0MwHEwqlUAx0Fm1EBm1MJaChiJBG6cBj5ak+uvWYHgwcLwYA2apaInKBgwKy9G+Ej1kHl6IjjUW7inZ1Mv4bYmDT6VAMm9ZLgVaMEyDDiwgF8wPKMiAYYBywBpBZnI0+WD54xQpOXCTc9DwrLw8tbD64ESAYYBwzLQeftBpStAkPYcePCQSaRwk7qBBwOpzBcSlhGUqFxtHgr0qgf3iYdMKoWHzAPe5fQIDyqHmNphYGVSMAD+Tt6PbfH74Fk5AMFZOkTlS+Cv8AMA+AXHIKx+AzBgwLDA6fsXcTTxFAAgNFOHIL0Mwd6B8CjPIiaoCrzdvcAwLBiWwU2lP44nngbH7QLPMFC4KVApoAIgASK9y8Nf4QNWwoJhWVzPvI2D946DY03TUJ7uCtQOqwpW6oNqEQ0RW+sFsG5yMACOJebCeE+HS43iINVxCIE7WsU0BcCgZrnqqFqxjvA8nrl/ETMP/2r63YwcFDIPdK7aDmBjUTu0KqoHP/QQupx2HV/u/xHAPwAAuUSO7tVMym314MqoHfowONXNzLuY9PcsYZtlWLxaozMAH1QOjMEL4TWFY4k5ycB/QGKlc6a6AF6r0QUMw6CifxQaRtQVymYUZGHE9tWip6FHtU6QsiEI8g1H08j6wrcpT5uPoZs/AvBQy+ga2x7uMneU8w5FywqNhP06ox5vrh8tavflym3g4eYJT89AVI9pLDomY6XQBSphYFj8F8kjsnI9+Hv4wt/DD82tJhv38Z4wckZwPIcCvRrlomsiSBEAT5kHqoWKA3pVr8JDb9SD4znk61SoHVoNAW4+kBr0KCf1gFGdB1auAOvmgW7lX4TRoAVv0EOj0yCYdQOuHIfhbiKyzm0Utfs+A7C8SXFz+OXW5EDi5o6h/raeUqr0HOjybT0KW+aobfZZw6lywUjliHXzszmmdcuCRuIG1t0DrJsHWDcFWA8veLl7gVX4QKLwgcTTF/KQ8pAofCFR+ICRe4i+JzJf+x5WgClo25WLF8EwiahTpw58fX0hgTgIKcc8myras3lVTxCVKlXChQsXhCiSjrh9+7aw8Lcwd8HngUuXLgkRIQtzESAIM49SZnieh15nhEajh1ZtgF+AAgl3s7Br82XkZKtNYeBdJGHn35AZ1Ijo0R14MGDXqPXwK6ni6Ugx4p0MGiAoI5YDfx4sbwTLGSGVMJDJTNERWQkDlmXg7eMGTquFIT9fGOgbGSlkvj6mj/KDATYYk6XBWJAPo1oDBjzcDAVwMxQ89BRjABmvA8OyCFAnA5YKBA/oJW7gGVbYZhj7yoYfnwcfqRYhwe7wifAFAKRmJEJ19j4iYtzhyXhCeeas4Galk7jDs1p1yDw98FAxMv1fl5mJgtu3wTAMfDzy4efBCtfCMICM8YGPpDqqG7OgZ3ItrhXQQQoOJjcv5sF/WObhcRYAGBYKPz185YEIaBwNv1qmQBZSqckxq2O3GijIykXW8RPgNBowDAMDI4VXrVrwCA6CKQgm++D/DIwFBcg5cxZgeMilXvB0rwOGZR6WYVm4yVsgQs/ACAYMa1IoWJYBzzAwRTIxrcViJSzAsGCkDCQMC0bCQiJhwEhYMJLacA8Kgkf4wzWTANCpR0281LUatJmZ4HQGMBLTBct8fSBViINpADCtVdbpTfeEZQE7MQfsYeCM0Bl1UMjEz8yemwdxT5mEbHUO7uelomZwLEK9w2DgQtG9+suigeLU/WtxKfMaEAggEKgRXAU1Qkzf425VO+DGlevCeyZLnY4Ld4+bKkYDsYEVUSesOvQoh6ZV2sDb7eFylT9Or8Kem4cAmKyTFf3Lo345U7svVWoFPw9foeyK8xvx99W/hO3yvhFoHFkdRkQjNqY5gjwfekTJs6QwynTIDUhBbgCg8Q5Ds/KmdutVaIww74cD3/ir15CrNrnO5wYCuV7BiKgQDSOAkPINEOnzcInIrZuHcPn0ZZhd1wMVElSMMS2rCI94AdH+D5epJN+V4C5zRNj2c2dRq1IYjADcwqMgUzxcOiSTPHQPN7ixyJXLYPQ3eYYxvl6i38K09s8EL2FhZAE8kAPOep0gI167xlm83zird52UFQ97LddIWpeVSaTwdfOG5EGwLSPPwVvuCZlEBg8rOXOXuqFxxAuQshJojTpoDTpUDCiP5IQkKPOycEl5Sfg2uUvd8NYLr0HCSKAz6qE16vBCaA24y9xs5FfGSvFVh48hZaXgOCOM4BHiGQC5RA4pY7tm788+c232OeKTFz94eB84I3i9Dtq0eBjS06C8ewNcQQ4M6lxwqjw01hSA0+SD06rBG3TgDXHgtCpwABIftOFZvTm8ar2ICiL3TBaAHgU6HfQ6WwVR7sR8l1GVB1ZqPzME42C/CFYCiacfJB7ekCi8wXp4mxRH7wBI/YLhWbXJA6uk6R8rlQMSaZl4awAmpfPixYvChPmFCxeeq7EuKZ5lTKNGjXDhwgVkZmbaDdlv5vjx46I6BEE8elQFOmSk5SMzvQDZGQVQZquRl6N+YK3UoXm7SuCMnCnwzQPqNIgEK2GRkWq99tB5tDojJHotjBoNJArTwEOj1iO0nA/KVwyALDcDhusX4W4ogLuhABLeiFrTJoOVSsAKCoRJ8Ulcsx5ZR4+C4QGZUQWJhIXEwx0SDwWkXp6QR0VB5uuDGJ9MyAP8IFV4ACwLlmVNypCENblXSSUmJYRhTQM+QVlhwbDRYOUyeFaqBIlVqqixX3SEoaAA2owMgJWYFCq5HG5BQUJQFEuMWi04g/GBUsM4VDZaFPvuOrjnF9Kg1+tRs4Gf6aM/qHTPUDbZoU2RNhHlB9R1NgpkMFAvuox64xyMRAJ3B+urbcqyLIxSFjqjFkYjB73OIFK2AGDVhS24nX0P2epcZKiyUCesOiJ9wsEyLF6r0Vk0YDyReBYXUx+mWwhSBMDXw5Tiw8AZTMrQAyyVRaBwBcZSMbI+bh1Z0lrZ4UTKjnVZcbuFKUY2CpfFQl/OyqtBYvU8ia6NK1w54wrpg3V/OZ574P5q+6wrZB4o5x0KKSuFzqiDu9QdwYoAMAwDD6k4tkWgwh/tYppDwkqg0qvBMiyqBVUCy7AIVojlIdw7GO83GggpK4XaoAHPc6gdVh0sw8LTSpGL8AnF7C5fCsokwzDwc/cxvfOsFI1Qr2As6PmNzXXYw8vNE+NbDrfZfyFbahNcUiaRoWvVDk61yzAMqgQ6jtPgCE6vhbEgB5xWBaMqB1xBLoyqHBgLciAPqQCJdwD0WffB67XgdFrwRlMf8y8ehEFZWICxQs6pzgMjs78WlpE5oSA6wGjRLsNKTMrhA/dV3miExM0DrMIbEg+TFdL0LwBSbz9IfALBunkWqkRKPLwdHittrJVOwOTxmJycDMgeb3yXRwUpnmVMp06dsHDhQgDA8uXLMXXqVJsyRqMRK1euBGBaF9qyZctH2scnDU9PTxgMBrvRuwjCHq7ITH6eFvG3M5GVoUKuUo3sTBXSknOhVukfhJF3TG62Ggov8YdVo9bD1891yyTDGyEzaiEzaqDQ5sJXm46oQCCwegTcPWRwd5dBImEx6IPmSD9yFNePnxHqsm5yRIS6Q2aRI8+Md8920DStCbfgYLiHhkDyIL/co0Tq6QmpRXC1wpC4uUFS/DFJsaH3zKOD4zhkqLPBPXDrM3BGlPcTpyT4+cQSXM+4jRxNHtQGDRpG1EW0X6RdZfJm1l1cTL0qbKt0Jrc6U9tWyqRcrExqjTrR32LFUyyznNWaVUuZkepdsbJZK5OFKLQPlEmWYU0KHMvCTSIX1gdaEqjwR5XAGEhZKVQ6FUI8gxDhEwoGLNytHqqK/hXQrWoHSFkpcrV58HHzRp3Q6mAZRmRxBYDaoVXxUcv3IGUlUOk1cJPIEe0f+UCRE1upG0bUxR89v4WUlYAFAwkrEd1TS2qFVsVPXabYPWZNpE843ms80Kmyvu4+aFuxuVNlZRIZwr2dmwQpDUrrPcPzHHi9zqQo6jVQ3zkPfWaySZlU5YJT58GoKQCnUYHXmaySDvtUowW8araCITfT5pgjxdEZjKo8sA4UTLvtSqRgZe5g3TzAyD0gcfeEPDQGEoXPA6ukt8lK6ekLWVAk5MHlwUie3vd1VlaWkDfTkuDgYMTGxiL+r+LHc3iaeHp/waeEunXrol69ejh79izWrVuHZs2aoXPnzsJxnucxffp0IRl5//79H3tU28dNYRFECcIehckMZ+SQo9TA188dp4/HY+fGS8U+j0ajh8JLDt7IQa9UQpuZiRsn98Ij/hLg3fnhAjyeh5tRBQlngJTTQW5Qwd1QAA99Hjz0ufDUKeFmUEFilerBj8tFYLCXzXl9a1RH5VEj4FGuHDyiIiHzdjxD61WxIrwqViz2NT4v0Hum9NAb9dAadPCyUtzmHl+MG5l3kKnKhp4zoGlU/QeWSQZRvuVEilS2Ogcp+Q8TlmsNJrc8jueg5wyQF2KZLFyZFJfVWQzIdQY9LIOVVvCNRO3QanCXukGpyUWlgPKC8itlJSKZyUvWItDDH1JWimy1EmFeIagcGA2WYW3cMDtUaoUG5WpDwkig1qvh5eaFYM9AsGDgYWXleK1GF7xWs4tdi6E1L0Y3wYvRTYosBwDVgiuhWrBzMh/sGYhgz8CiCwKQS2Si34YQ4+g9w3EcjPnZMOZmwKjKAzgDjAU5giJpLMiBe1Q1yPzDoUuPNymdFlbsklgmjapcxwqiM66rdmDdFGDk7pAofCALCAcrfRBQRyYHK3WDe7kqMNbvBImnH6TeAZB6B4CVPz9j3cKUzurVq4NlWSg1uQAeZoAoq7QtjxtSPEtIYmIi2rdvDwCIiIjAvn37bMp8/vnneP3116HX6zF27Fjs27cPLVu2hEajwebNm3HmjMmSER0djeHDbV01CIJwDY1aj4y0fGRnqqDMUsFo5FC3YSTCInyLrlwIWf/dhK4gBfrcPIAzQsrpwWgzIdWkolbBAciNarg/WKfIFvLZYOVyyEKDIff3h1tQINxCQ+BRLhx+L9S1W17u74/QDu1L1HeCKA323DyEu8pEpOSnIyknGXXCqiPYMxAyVopeNV4Wlc1QZYmUyYeWSb5IZVJnfOieqDPoRGV95M4rk9WDq8DIc/Bx84TOqEekTzhqBFeBXCqHj5t4Aqdj5VboWLmVU/fhhfAaeCHccVooS8K8ghHmZT8dljUUUO/phOd5wGgAp9c8cF/VgNfrkH/lCPSZ92FU54JTF4DTFpjWSeo1dqNsW7UKqW8IOL3t2sgSua4W5IBxoPSxMjcwUjkYuTtY+YOgOu6eYD28IHH3MrmxKnwhC42GVOEN1sMHEg8vkSVSFvB8B8i0xpHSGRISgurVqwsTcJxNzuFnE1I8HwE1a9bETz/9hI8++ggqlQpbt27F1q1bRWUqVKiAP/74Q5T7kyAI58nOVOHU0bu4djkV1WqFQioTu7dlZagQUzkQbu5Su5FlLZG7SeChkMPTSw42JwOIvwE3fT58tRnw0OdByukg4Q2i2D2hBXfttsVIJJAHBkIRFQnvqlXhW7cOvKpUAmsnmTNBPA7uZCcgJT8NyXlpuJV1DzH+UfBz94XeqEfn2LaiskfiT+FK+g1hO1udg2DPQOg5A3RGvUhBDLRai6c2PMyNWpQyqX2gTMolMhg48fPaMKIOgjz94S33goE3ItwrBBX8IuAmkdu4eTYv3wDNyzdw5XYQhEN4gx76rGToMhKgS0+APiMRiioNwcjk0KXb5i4uuHKsZJZJBwqi84onY1r/qPAxRV/19IHMPxxS3xAoKjcwKZpytwcWSjegZW+wLH2bSovMzExcvny5SKUTgCh2xLMMKZ6PiA4dOiAuLg6LFy/GoUOHkJKSAoZhEBMTg06dOmHgwIGkdBKEi+TnanH62F38dyEZ6SkPg/tkpOXbWDezM1WoVDUYFWODcOtaOiLK+8PX3wNu6mxok+8jsmUjhEQFIjDEC+4eMuGDkLLnL9w6c8K5DjEMZH5+cAsOgmdMDHxqVIdvrRqQBwaWWYQ8gigKlV6NPG0B9EY9NAYtKgdGi47//u9y3Ml+OGjWGnSIDTK5a9sqk/6iupbKpFqvFpUNsiqr0quhkLnDXepmE/ymTUxT1AipAh83U1qPYM8ABHj42XU5rRNWHXXCqjt59QThOkadGtqkG9Al34QuLR76rGQYCpQw5mXZRAVn3TygqGrf5bnElkk79VmpHDK/EHDqfEjcPYX1kKynL6Se/pB4+0PqHQipT5ApuI6DdZFSL79i940omszMTFy6dMkm2Jg9pRMADHzhE+LPCqR4OqBJkya4du1akeUiIyOdKgeY8nN++umn+PTTT0vavWeae/fuCYvxK1So8Li7QzxhqFU6nDkej//OJyMlKceut1Jaiq3iyTCm9Z5dXq0N5GcjccWfUP5zAYa8fHgBiOlUHf7RtlGnPaKiwLqZUoRYI/X2hjwwAB4R5eBdpTK8a9SAR7lwSL28SNF8wnnW3zObr+zGpdRrSMpNQaY6G/XDa6NiQHkwAKL9o0QBb8K9Q0WKp0rvmjIplDVoYfnUNYtqgAp+EQhSBMBLpkCIV5DDwDMVAyqgYsCT/Ts86zLzPMIb9TCq8pB/5Ri0SddMCmZuBjhVHpxdZafLSIRXrRftHtM74z0pkUHqHSC4sZpzREp9gyELjIC3wudBJFd307pJskg+8ThSOkNDQ1GtWjW74wPryM7P6giCFE/iiSMnJ0fIlUYQgGn9zN1bmTj81w3E38kCZyx8QKDMVIHjeJSL9IV/kCf8AxSQu5led57ebshNVCL79FkY1Q8HzXnXb8C/fj2btuR+fpAHBkCvzIE8wB/u4WHwrBANr6pVoIiMgDww0CalCPHk8zS+Z3ieR7YmB0k5ybicdh0+7t7wcfNGvq4AHSu1EqX4uJ0VjwupV4TtPJ3JI4AHkK8rgJ/7w4jI5ayifKoND58LlV4DX4uy1YIqoV3FFghSBEDCsIj0CUO14MrwkHnYRG+N8Y9CjH9UqVz7k8DTKDOECU6rBqctAM8Zoc9KNkWCVeXCqCkAABT8dwT6zKRita3LSAQsgvIwrASs3B2MzA067zAwPAO4eSKwXHlIvPxNAXZ8AiH1DoTELxgSeeFR0SXu5A33NJGRkYHLly+7pHQCgJtRDblBJWzLOI3dck87pHgSBPHEYjRwuHzuPo4fvI2U+7lFlmdYIKqCP2rVj0TdhhGQye2/4hQVysOjfBTyr10X9uVdte+5IA/wR5X/jYJbUBBkPj5gadBJPALMOQYtmX1sIY4mnBa2qwZVQu3QagCAAp0KPu4Pg+VYp4zI1xU8/FsrVjwjfMIQ4hloUiZZCaJ8wtGgXG14yNwR4OEnaqd+udqoX66sspQSRMkxqvOgTbkNXfJtaFNuQZt8GwZlKjxi6sK3WQ9oEm3f9azCB3BB8ZR4B0IeHAlZUBTkQZGQB0dCHlgOrNwNjIVV/64kVJisCKpTp1Suj3iyyczMdFnpBAB/aT4ich8GY5PAcUqcpxlSPIknjurVq9sddBHPF5fP3sfurZeRn2vr4moJwzIIDfdGtdqheKFxFHx8FdDn5iF12zYY8gsQ/fabNnWkCgX86tQWFE+pjzc8Y6Ltti9xc4NP1aolvh7iyeJJe8+odCqcSb4MvVEPmUSGLLUSL1dpI3JztU5xkad9uK45T1dQuOKpLYBC5g4vuafIMgoALco3QovyjUrzcp5JnjSZIUy5IzX3b0Bz7zK0929Al5EATmV/klKXkQCJwn5kc4nCNicyALDuXpD6BkHqHw55cBQ8omvDLTQarJvCbnlrSGaeP2JjY8FxHFJTTUGlwsLCULVq1SJlICAoAPGyh5MfcsmzKTOkeBJPHOTG9PzCcTzSU/Lg6+8BubvUsdLJACGh3qhWJwwNmlWAt49pbUTejZu4vngHMg4fAW8wgJFKEdGrO2Q+toOKwBbNoc3IRPCLreD7Qh1KY/Cc8aS8Z/be+ge7bh5EvDIJPHjE+EehQTmTZSRbrUSoRRqOcO9QUV2RFdPibwCIDaqI12t1Q7h3KPw9fBHlE26TZ5NwjSdFZp5ntKl3UXDtBLSJV6FNuweuIMfpusa8LFHaDzMMGMgCy0EeVhGygDDIgyvALbwS3MpVhsTDcc5kZyCZef5gGAbVqlUT/nZG6QQARWQoFMEPFU93N3khpZ9eSPEkCOKxYzAYkZyYi6R72dBo9Iis4I/KVYMRFOqFjNSHVh3/QAVeaBSF2vUj4BdomnHmdDqk7TuA+9vjUHDrtqhd3mBAyu6/ENXnNZtzesVEI/Z/o8r2wggCAMdzUGpykZafgWi/SLjLHgaRUBu0uKdMFLazVErh70yVWPE0r8WUS2Twd/eFv4cvqgdXhrfc0ybabDnvULxWs0sZXRFBPBp4ngenzoMhJwOG3AzkXTwA1TUno4xbw7DgtCrIAyMgUfiANacYUXibFNK2tt4xBFEcrJVP4iGkeBIE8VgwGIw4ezweWq1R2DaTnJiD6EqBaNIqBnHrL6JCpQA0fbEiqtQIBcuaXuKa1FTc374DaX/vg1GlsnsOAEiO24nIV3uCobyZxCOC53kk56fhUupVHLx7AhzPoV54LQCAh8wdFfwihbKxgTGiujnaPOiNBsgkUmSps0XHKgZUwK9dv0KAwn6aEYJ4GjHkZUObcgu6lNvQJt+GPisJ4W99Dc3tczDkZYLTP/R8cdbFFawUbqHRkIdXhFtYJbiFV4QsKBKsVA5ExJbRlRDPG4W5UZPCaR9SPIknjtzcXHAcB5Zl4WPHRZJ4usnP0+DIvls4dzIBWo0Bvv4eqNsoUlTGaORwPyEHdRpGIjzSF+Wi/AAAPMch88S/uL95K3L/u2KndQtYFoqoSAS1agWQGy1hRVm+Z47E/4s5xxcL2zKJDC+E1QTDMEjNzxApntH+UZCwEhg5I1iGRYCHH0I9g1AlKNrGiimXyBDkGVCqfSWch75NJceQlwVt8i1o79+EJuk69OnxMBYobcvlpkOXdd9mv8TTz7ZRVgKJpy9k/mGQh0TDPao6PKJrOVy3+SghmXl2SUtLw71791CnTh24lUJk+zRZJg5UvSds+3EMOpe41ScPUjyJJ467d+8KUeDqUBS4Z4a05Fwc2nMDVy+lgOMeRnzLyVYjL1cjrNMEAF8/D3j5uEEmk6BclB90OTm4v2Ub0vbuh16pLPQ8Eg8PeFWuhMAWzRHQsAHcgoPK6pKIp5iSvmcKdAXI0eYjLT8Dfu4+iLZIG1ItuLKorN6oh1KTC38PX6QVZIhmyeUSGd5r+CZCvYIQ418ebtJnc13PswB9m5yH53kYHyiZmqRr0CbdgC79Hjh1ftGVAejTE8C6KcBpxd4sjFQGWVAUWLk75CHl4VYuFu5R1SD1CzFZM58wSGaeTdLS0nDlyhXwPI/z5//P3n3Hx3GX+QP/zMz2XUmr3rtkq9iSXGM7jtOc3jsJSWgJPzg4Djg4ONrdAUfn4A4udC5AEiCFFNITp7jFcYslW8VW720l7a6275TfH4pGGjWr7mx53q+XX9Z8Z2b1yH40u8/Mt9SipqYGOt3K8s9mFyEOTs0Y7mYXnlgxUlHhSQhZM5IkobVpCAdeb0F3x9i8x/V22lG+MRMpaRbkFCQiIXFiXbOxU3Xoe+ZZOOpOQxKEec8HAFit0OTlovjaa5BQUQZtwtyzFxKyHJIkocvRi/f663G46wS6Hb24fv1eaDkt0s0pisIzxZSEzLg09I8PyW0TTzqzkWZOgSCJ0DBTXb8vLtwR0p+FkLUgSSJEzzgEtx2+vhbYXnho2a/lH2iDIasEgfcLT1ZnnJhdNj4F8ZuuAGdOAMPS8AkSetOLTgDweDw4deoUNm3atKLJpFxOBqkDxfI2r1vcTZpIQ4UnCTsZGRkQBAEcjcmLWHxQwOmTvTjwejPso94Fj7Umm1BRnYXtuwtgME5ctMdOnUL7b/8P3u6eBc9ltFqYiwph2FQNQ9l6GDIykJKZuWo/B4leS73OeHkfvvzqdyFIotw27B5BVnwGbJ5R8KIAzbQPwhvTy+AL+rEhfT2y4tKxM3cLsuLT53ppEiHovWniBgzvHJ5YI7O/FeaKCyG4xsA7bRDcDkii8P5xIsBqAJFf1OsyWgP0GYXQZRRBn1kEQ04ZIEnQpuRCk5AKVm+KyDFzlDPRZXBwEI2Ns4f5WK1WaDQrK6n4QTuAqSWzjD5x3mMjGRWeJOykpaWd/yASlvy+II683Y7jhzvgds2/+DHDAJk5Cdh+USEqq7PAaSbGYLq7utD2y9/AWd+w4PfRWhOQuG0r0q+8ApbCArA0ZT1ZormuM4IoYMQ7Bpt7DO6gB9uyq+V9Jq0R61OK0TDcLLcNvV94CpKIEc+oYgba+6pvw8c2fyAiPyyTucXae5MkSQjaB+HrakRgsB3BkR74+9sgesflY1hTPFidAfz4qOJchmHBWawQnLbZL8xpwJkToYlLhDY1D9YLboA2KTMqn2DGWs5Es/mKzuzsbJSUlKz4Wh8nKksy7jydvCIVFZ6EkFVx5mQvXn2uAa7x+cclaLQs8ouSsfPSIhQWp4B5f4Za/+goOn73MGyHDgOSNPfJLAtLUSHSr9iLlEv2QGMwzH0cIUvgDnhQO9CId3vew3v9Z1CZtg6FiXkAgA1p62GctvRJTWalovAc9owizZyMNHMKzDrlbJs0VpNEEkmSEBzpha+rAb6ecwgMtSM42g8puPA4s8BAG8zlu2YVngDAWRIhuB3QWKzg4pKhTc6GPrMYuoxCaOOSJrrLcnTTkIS/tS46AUDHKkuyaL1lSYUnIWRFBF4Ep2HRcnZ43qLTaNKitDwd2y4qQFZOgnyRDrrd6PrTYxh87XVI/NxdsjiTEck7LkDWzTfBnJ+3Zj8HiU2/OvYojvSclLcHxoflwnPQNawYu1mTUYnXWw+gJrMSZcnFqMmshEVvDnnMhKyUGPBCcNkhuB0YeetRBPpaIPHz91KZj7+/FfHbrlO0sTojOIsViZnFE+MyLUlgjRYwtAQQiUADAwNoamqa1Z6Tk4Pi4uJV69UiiMrfDzFKf1+o8CSELNtAnxOtTUOo2pqDvdeX4+yZAfh9UwVkYWkKqrZkY11FOoxm5RMgwe/H6S/+K7y9vXO+NqPVIu2Si5H/4fuhtdCHe7J8QYHHsGcEA+NDKEkuRLzeIu/blFmpKDwH3TaIkgiWYdHvGlIUnvnWbPzsum9R91kSMSRJAu8YghT0QxJFBIY6ILgdEAM++RjR7Vhy0ckaLNBnFkGfWQJNQipMRdXgzFZwZitYHfVGIdEhVEUnABiT0oCBqW2Ji84SLTp/KhLRzpw5I08/vmHDBrXDIXMQeBHNjUMY6HMAABpr+7F5Zx4uu6YMLz19BiVlqbjsunJkZM2/bhmr0yGhpmp24cmySNxUg8IHPwrjIicKopwhM414xnCstxZvtR+GJ+jD7vztAACT1oT4VIucM0Yox5XxIg8/70dVRjmy4zIU+6jgjG2RcJ3hx0cRGOyYWCezrxn+/haIHidMJVuQsONGBMcGZ53DWRIRHJn7BiAAMBoduLhkmEo2w5BbDn1mETQJaYrfB42ZZhGfSyTkDJlbKItOANAmxgNwy9sMF53vN1R4krAjiqL8h4Qfj9uP+vf64XZPdav1eAJobhjC5p15SEo1o2hdynkvygzDIPP66zB29Dj8w8MAwyBuXSny7rsHCRs2LOmiTjlDpjvV34Dv7P+ZvM2AQUAIQsdp0T8+iLLUYjlfTFojylKKYdDoUZVRjvKUUhQn56sYPQlX4XadEXxu+Drq4O1sgH+gDcGRXsXEP9P5+pqRaJq7OOQsifLXjEYPTUIKtMnZ0GUWwZBTDn16AViDmW68LEO45QxZnP7+fpw9e3ZWe25uLoqKitbkd4HVmTG98JSicLItgApPEoYMBgM4jlvRekhkbRw92I533mrDhs1Z4Djl+AOWY8EyDIrXpyrax5tbwGo1MBcUzHo9Y2YGUi/dg9EjR5F7zweQfMF2MOzSxzVQzsQmSZIw5nOAF3ikWVLk9nUphdCwGvDvL+UgQcKgaxi5CVkY8Y4hIAQVOfPvl30ebJSOpyGrR83rjCSJ8Pe3wdN8HP6+ZgSGuyGMjwKYZzK2GUSPExCU4+gZlgNntk5M+pNeAENeBXTpBWBpYqxVQ+9NkWd4eDjkRScAcAblkCKGjc4SLTp/KhLR1q1bp3YIZAZBEPH3v9ai7sREd6yWxiGsq0wHwzDQaDisq0hDWqayW623vx+df3oUI4feQVzZemz83n/OumAzDIPsW25B3gfuArOCdc4oZ2KHIAo40XcGb7UfRmFiHiRIsBricWXJHvkYk9aIjelleK//jNw24BrG5swNyIxLAySJcoYsWahzRvR7EbB1IzjSC358FL7uRnhb31vWa7GmeAh+D4x5FeDMCeDMiWCNZprwZ43RdSbyWK1WWCwWuFwuuS0vLw+FhYVr+tR/wKnsBu+Xgmv2vdREhSchZEHjTh/+/NujGOh1ym2DfeOItxpRWp6OyppMGE3KO+SjJ06i8dvfBd7vXjTedBajx08gedvWWa+vMRnX9gcgUePhk4/jQOdRjAcmuiOJkoiipHzYfU64Am5YdFN3jLdnV+OcrRWbszaiJLkQO7JrkGiyqhQ5Iec3uaQJqzfB23YKvMMGadoTTS4uaXEvxGlhyCqBPqsE+qxS6LNKZo3JJITMTavVorq6GrW1tXC5XCEpOgHALyon+BLnW1ouwlHhSQiZV0eLDU/84QS8ntl33nhexKbtueA0s++YW4qKwBkMEDweua39t79H0uZNK3qySWJHUAhCw2oUb/Z2n1MuOgGgd3wQRUkT4zH7nINYl1Ik77uo4AJcXLgTmigdJ0OigyQK8HU1wH3uKDxnj4J32pD94E8RdAzPOpYzWwGGBaTp4wUZcHGJ0KXkQp9VAkP+BhjyysHS+piELNtk8Tk0NISsrKyQ3LQRgzOWlIvOupMKT0LIbJIk4a2Xz+LgvhbMvOnGsAy27srH1TdXznsx1iVakXzhLgy99vrEOVotjBkZ4L1eaC2WOc8hZMhlQ8tIBwRJxKDbhr3Fu2E1THXh3p5Tg8PdJ6aOd9sQFIJINCbMKjB19MGbhCkx6J8oNJtPwNv2HkSvS7Hf39MIjdkK3m1XtDMsB11qLhitHvrMYhjyymEsqAJnjAth9ITEBq1Wi+zs7JB9v0DvIID0qe8fjM4JqajwJGGnt7cXgiCA47iQ/tKTCV53AH/5/TF0d4zN2qc3aHDp1euxbXcBGIYB73JBM08hmXHVFbCfPAl9aioSt21F2sV71qzopJyJXN6gDwc638WhruNoGm5BkjERlxbtAgD0OgcUhWdNZqU8aVBufCZKkgtwaeFOZMalL/mONOUMWaqV5IzgccLVcBjuhkPw9Z4DRH7eY91nj8J64a3g3XYwnBa65GxoU7KhiU9B0p67VvpjkBCi60x4GxkZQWJiIthlTGq42oyS8uYpS088CQmNkZERed0rulCHlscdwMP/exi2QdesfYnJJuy9vhxlGzMgeL1o/93DsB04iE0/+ykM6Wmzjjfn56HwgY/CXFgIQ3rasmarXSzKmci1r+0Q/njqSXl7xDsGX9AHg9aAXucAKtOmJucwaY347M6PoSAxF2nm5BV9X8oZslRLzZnA2CBcp9+C5+y7CAx1YbF953jnMHQpOeDMCdAmZoCh7uIRi64z4au3txfNzc1ISUlBRUWF6sWnXgyAE6bGeXIzxnxGCyo8CSEAgHGHD4/8+t05i86S8lRce+tGJCQa0f/CS+h69M/y+M3WX/wSlf/+jVnnsDodUnbtXPO4SeSQJAkBIQj9tOUaLi3cib+efg7+aW+4fe+P3XT6XXIROml7Tk0oQyZkSSSBR9A+BNsLv4Cvu2HR5+kyimBetx3m9duhTc0DwzDgTPHnP5EQsmQ9PT1oaWkBANhsNjQ0NKhefCZqHMhzTM1sy4EKT0JCorS0FJIk0Qx8ITTu8OHh/z2MsRGPol2jZXHp1etxwZ4iuJpb8N7Xfw5vT4/iGPt7tbC9cwQpO3eEMmQFypnw5gp40OccQPtYN3ScVu5KCwBmnQkXF+zAq637AQAaloNBa8COnE3IiEtbs7GalDNkqebLGTHgRXCkH8HRXgTHBiGJAqTzphUDjTUNlopdiN98FTQJqec7gUQgus6En+lF5ySbzQabzYa0tNm9t0IljtMB8Mnb0drPgQpPEnaMRlpeI5Q87gAe+dWRWUVnvNWAO+7fgszcBHQ98ij6nnkOkiDMfgGWhaPutKqFJ+VMeBpy2fBs06t4q+MIajIqkG/NAQCMeR1INCbIx1297hKMeu24rGgXNqaVQa/Vr3lslDNkqSZzZmJyoGPw956DpeoSuOoPzjpWm5wNf9eMJ54sB21SFowFG2Gp3A19ZjEYjj6GRTO6zoSXuYpOACgsLFS16IwldMUjJMbZRz1wOnyKtqQUM+77xA4Y4UfdP38J7ra2Oc815mQj74N3I/mC7aEIlUSQx888j6fqX5TXIWwZ6UBeQjYYhkHzSLuiy2xOfCb+5aJPqhQpIecneMfhaT4B97mj8LadghT0AwDMFReCAaNYbxOYWPqE0ZsAgYcuLR/G4k0wV1wIXXIWGEb9iUwIiTXd3d1obW2d1V5YWIj8/HwVIopNVHgSEqMkSUJn6wgyshNw/yd34tHfvAuPK4DkVDM+9A87wbntqP3qNxAYGZl1Lmc2I+e2W5B54/XgtLRsBZmtwJqj+DA+5nNg1GtHsikRdp8DoiSCpQ/gJIwFRnoxXvsGPC0nEbT1zFg/c4K3vRZcfDJ4p01uY8BAa01F6nWfhCG3AhqLNYRRE0Jmmq/oLCoqQl5engoRxS4qPEnYcbvd8pgIs9msdjhRSRIlnGsYRH+vA4N9TtRsz8WHP7ULf/9rLW69dzNg60fdv30TvNM561zrls1Y97nPQBsXPmvHUc6oR5IktI11IdlohXVa99ktWRuRakrCsGdUbgsIAezJ3450S6rqY54oZ8hMkiTB190I1+m34G2vA+8YPu857rNHkXzZfRDcDmiTMqBNyoI2KRNsCLqLk/BH1xn1dXV1oW2OXlvhVnT6YEf+WL28HdBF57hgKjxJ2GltbZWnH6+qqlI7nKgjSRKazgxgsH+iqPR6g6g93oOabbn48Kd3wdnQgDPf+i4Er1dxHmvQo/BjH0HGlVeoEfaCKGdCT5IkHOo6Dm/QizGfE0lGKy4r2iU/xeRYDleVXoynGl7CpYW7cGnhTnmMZzignCHARB57zh7BeP1B+DrrIXrHF3ciw8KQVw7z+h3QZRZBn11Ky56QWeg6o65IKToBwB7kMJZQLm9LDM1qSwiJcJIkoaVpSC46J3k9QYw7fWA6z+Ls938EMaC84Gni4lDx719HXElxKMMlYapttAu/PfFntIx2YHPmRhQl5WHUa0f7WDeKk6bGylxZvAdXFO+BcdpyKISoTZIkCK4xBIa7EBjuhuOdZyC47ec/j9UgmFIEMasc6y+9mZY7ISSMzVd0FhcXIzc3V4WIFuYOGtGSUiNvG4Kze5xFAyo8SdhJSUmBIAjgOLp7vNqe/cspuF0BZOdZ5TaWZVBRnQWx4T00/8/PIPHKmWt1yUmo/NZ/wJSdFeJoF49yJnSeqn8Rj595Xh6/WT90FrkJmdByWpwebEJuQpa8BIohjAtOypnYI3hdCAy2IzDcDWHak01tau68hSej0UGfWQzTuu1wpa6HTmcCx3FUdJJFoeuMOjo7O9He3j6rPVyLTgAISNL5D4oCVHiSsJOVFb4FTiTb90Ij6o73AgD4oIC8oiRwHIvKmiwEjh1E229+B4jKyTMMmRnY8J1vQZ+UpEbIi0Y5EzrrUooUkwb5hQCabK3YlbsFm7M2rNm6m6uNciY2BO1DcDcchH+gDdZdt8E7c4kTALrUPPg6TsvbrMEMQ245TGW7YCnfIY/XtIYqaBI16DoTeoFAAD0z1hsHgJKSEuTkhM9wj5nMuthYeocKT0JiwNGD7Tj0xtSMbp2toxB4CdffWQXPGy+h67G/zDrHlJ+HDd/5FrQWSyhDJWFGFEWw7NTssxvTy7AlayNO9E18UI/XW1CVXoYrS/aAozFuJAzwLjvcjYfgqj8If+85uT1h581gWA6SqOzVwRrM0GeVQpucBUvlRTAUVitynhASOXQ6Haqrq1FbW4tgMAgg/ItOANCzypIsOqcWosKTkKjX0zGGV5+bfZc/vzgJruefQP/fX5i1L279OlT8xzegocWvY5af96N5pB0d9h5cWbwHOo1O3ndf9a04a2vDjWVX4JqSS6CnGTyJysSgH+PvvY7x028hMNgx59InnqZ3oUsvQMA28TSEM5ihS82DNjUPiRfdqfpMy4SQ1WGxWOTiMz8/P+yLTgAQReX1R4rS6xEVnoREMZ83iMcfPg5RUI4dqNqcjbzWN9C/741Z5yTUVKP8q18Gp9PN2keiX69zAL8+/hgACZVp6wEATbZWVGVMzbaXFZ+BX9zwHeg1lCNEXZ7WWjhPvARvRx2koH/BY10NB5FRdQlYvQm61DxwcUlUbBISpSwWC7Zv3w5thKw1zkA5J4LAREbcS0WFJwk7TU1N4HkeGo0GZWVlaocTsSRJwlN/OgnXuPLDWH5xEtZ17cPQkXdmnZO8ayfW/fNnwWoi69JAObNyLr8bT9S/gFdb3oYgiWAZFvnWHFh0ZjSPtKM4KR9mnUk+PtKLTsqZyBW0D8Fx9Hm4m45AGB857/Gs0QJz2U5YKi6ENikLuuTsZX1fyhmyVJQz6oqUohOI3q61M0XWp0sSEwKBAILBIERxdlcpsnhH3m5D61nlAuhx8Xps6HkNY/V1s45P23s5Sj71CTAROLaJcmblXAE3Xm3dD+H9LoqiJOL0YBN25m6BBAnD7hFF4RnpKGciiyQKCI72Y/SNP8HTcgI4zwyQDKeFuXwnLBW7YSyqArMKk15RzpClopxZO5IkoaOjAyzLIj8///wnhDtN5BTJK0GFJwk7Go0GkiRBE2FP3cJJb+cYXn+hSdHGcQwqbe/A1zWj6GQYZFxzNYoe/GhEFp0A5cxqyIhLwzUll+D5c/vkNpt7FImGBFyQU4N4Q5yK0a0+ypnIILgd8A+0ITDUCTHohyTwCxad2qRMmCt3I2HLNeDMCasaC+UMWSrKmbUhSRLa29vR1dUlt0V68cmG8fJjq4l+E0jYqaioUDuEiOb1BPDEH09AEpUfzrZfmI/Ut9+Ce1obw3HIvO4aFHz4/ogtOgHKmaXyBn1oGG5GSVI+EgxT6xHeWnkN3uo4Aj/vx1WlF+OSgp3Isy6vW2K4o5wJX2LAB4kPwH32KPgZXWm1afnwttcpJg9i9WaYSrcgftt1MGSVrFlclDNkqShnVt9cRWd7ezsYhkFeXp6Kka3MuG8cQHgvXbcaqPAkJIpIooRnHjsFp92naC8oScYl15ZD3P1lnPnqN+DrHwCj1SLn9luRc9stYGhx65jQ7xzCC+f2IclkBS8K8AZ92J2/Td5v0ZnxmR0fRVZ8OtLMySpGSmKNJEnw95yF89TrcDceRuYH/wOC2z7rOFarhzYpE8GxARiy1yFu016YKy8CS0v5EBL15io6J0XSeM65BCVesb3wYILIRYUnIVHk0JutaG4cUrSlZ8XjhruqoNVyQHIySj7zj2h96BfIvfN2pFy0m2Z1jAG+oA/PNr2GZ5teBS/y2FNwAdLMKegbH4TNM4oU09Rd1ppMukNPQocfH4PrzNsYr92H4Eif3O468zaMBRvhH+xQHK+JT0bS5R+CPqsYGrM1tMESQlQjSRLa2trQ3d09a9/69euRmZmpQlSrZ44VoKISFZ6ERImOFhvefEk5rtNs0eGeB7YjLmFq7EB8+XpUff870JjNoQ6RqCAoBPGFV76NIfdUl8W6gUZcXjRx06FhqBl7Ci5QMUISa0QhiPHaN+E6tQ/+gbY5P3G5zhxAwtZr4R/sAKszQpeeD316EThTdI01JoScX7QXnQAQlIJqhxASVHiSsDM4OAhBEMBxHNLT09UOJ2IM9o8ru2YwwC0f3KwoOgGAYZioKzopZ+an5bTYW3wRHqt7Rm6z+5zocvTi0sJdqEgrVS84FVHOhB7vHMbYwafgbjgE0e9Z8FjR70FwfBRxGy+GxpoGhlF/DDrlDFkqypmVkyQJra2t6OnpmbWvrKwMGRkZKkS1+vRcZC9RtlhUeJKwMzg4iGAwCK1WSxfqRZAkCa1nh1G+MQOp6Rb87dH34HEFUJPuQ0Hh6s7qGK4oZ6ZIkgRBFKDhpi7vN6zfi3e6T6B9rBsMGNRkVOCeqpuRHR8db9jLQTkTGpIkwdt5BvZDT8HXWX/e/mTapEzEVV8OS9Ul0FgSQxTl4lDOkKWinFmZWCk6AUAvCmCmT5oWpX1vqfAkJMIN9DrR0zmGwT4nNl2Qhwc/dxFe+s8/Iungq6jtPoTyr38VhtQUtcMkIeAL+nCy/wyCwsQ4zsnxuxzL4ZPb7sdfTj+LD1bfgtyELJUjJbHA29WA4b//HLx9cOEDWQ0sG3YjrvpyGHLLadw5ISSmik4ASNKMoWCsX97mEABwp3oBrREqPEnYKSwshCiKYCN4eY9Q8XoCaGmamEwoGBRw+mQvklsPI/fcqwAAT2cXTv3jZ1H25S/CWlOtZqhrKtZzRpIk/K3hJQy7R5FksgIA2se6UJQ0ta5ZQWIOvrznUypFGH5iPWfWkuB2wNfTBF/PWfCO4XmP0ySkwlKxG/EXXB8REwVRzpClopxZHkmS0NLSgt7e3ln7ysvLo/LpcbzZAjBTKxJwUZoyVHiSsBMXR5NHLIYkSTjXMARBmOqO4bLZ4XzpTZimHycIYCJ8mvHzieWcGXaP4JdHH8HpoSYYtQZcWbwHWk6L2oFGZFjSYNIZ1Q4xLMVyzqwFSRLBjw3C39+CwPuz0zJaPbSpuQgOdU4dyHIw5KyHdcdNMJVuVSna5aGcIUtFObM8ra2tMVV0AkBCaR4s3TZ526DXqxjN2qHCk5AIxPMC2s7aMDbiVrRnFaYg/u4b0P34UxDcE/ty774LCZW0REY06nH04yuvfx8+3g8A8AZ9OD3YhM1ZG8EyLFxBDxWeZM0InnGM1+4DJAn6rBJ4uxpmHaPPLEFwqBOswQxT6TZYd90KXUq2CtESQiJFfHw8GIaBJE1NmRjNRWcsocKTkAj02nMNOH64C8XrU5CZmwCGYWAwaFG6IQuamlzEb9iAlv/+GQxZWci++Ua1wyVrJDs+AyVJBTgzdFZuaxvrwu68bdhbchEMmui8Y0rU5etrgfPES3DXH4IkBMHqTch+4MfAHIWnJiEViZd8EHGbroCGlkIhhCxCWloaAKChYeKaUlFRIbeRyEaFJwk7fr8fkiSBYRjoo7SrwUrUv9eHY4cmuq61NA3DYfeitCIdBSXJ0Gg4AEBcSTGqfvR9SDwPJgbGlsRKzkiSBAkS2PeXlmAYBv9v2wfxhZe/Db8QQKIxAbeWX4MrS/bQBC3nESs5s1qEoA/jx1+Gq+EQAgNtin2i3wNv2yloLIngXWMAAFajgz6rBPqsUrA6w1wvGXEoZ8hSUc4sX1pamvxvFwtF55jGgfrcqYmULCyHa1SMZ61Q4UnCztmzZ+Xpx6uqqtQOJ6zYhlz4+xO1iraRITfWVQDpmfGKdk6vB2LkjS4WcsYVcONk3xkkmxJRmbZObk+3pOKeqpvR6ejF/dW3UdfaRYqFnFkNgaFOjB16Cp7m45CC/nmPc554GcnXfAIAoMsogj49HwwXXWPLKWfIUlHOrEwsda0dcvvRxefK22YEVYxm7VDhSUiECAYEPPmHEwj4BUV7SXkqqrbmgGHpCVc0CghB/OnUUzBqDdCwGgy5R5Abn4l4w1S3xWvWXapihCTaiKIId9M7cL77HPx9rQCk+Q9mNbBU7EL8lquhyyqBMWfd/McSQsg0kiTB7XbDYrGoHYrqxh1a5LTXyNu83qVeMGuICk8SdqxWKwRBAMdxaocSNiRJwvNP1GFoYFzRHic4kDTmQnLyZpUiCw/RmjODrmF8d///om98EDnxmdiRuxmiJOJE32lcUriTutOuQLTmzEoIfi8c7z6L8VNvQBgfWfBYLi4Z8ZuvRFzNXmgs1tAEqDLKGbJUlDPzkyQJ586dw+DgIDZs2ICkpCS1Q1KVf2gMgFXeNvgWuOEXwajwJGEnLy9P7RDCzjtvteL0SeXU4nomiCRHO9juZtT1nkD51/4V+hi9cEdjztQONOC/Dv8G3uDEul49zn70OvuRHZ8JV8ADd9ADi86scpSRKxpzZrlEvwf+vhaMvPkIAv2tCx6rTc5G/PbrEF+zFwwbWx+mKWfIUlHOzE2SJJw9exYDAwMAgDNnzsR88WmZMZJBw1PhSQhRQUerDW+8eFbRxjJA6lgzEr2DMPIuuFtdaPjmf2LTT3+sUpRktaVbUmf1cHyvvx4X5m1DTWYldFE2fo6EliRJEJw2+PqaEbT1QJIk6FLz5y48OQ1MhdVI2HkzjHm0NBMhZPlmFp3ARPf++vp67NixA9ooX3d8PgZOp9iO1v5MVHgSEsZ83iCefvQURFFZgaS52pHtPAtLwA4AYDgORQ9+TIUIyVrJsKTi49vuwX+/83sAQKYlDR/ZfBdqMumDP1k+SRQgBvxwNx4CPz6q2MfFJ4OzJEKYnJnWGAfLxoth3XULNGarCtESQqLJXEUnMDFDe3l5ecwWnQAgispSU4rS0pMKT0LClCRJeO6vtRh3+BTtqYwD6wcPQSNOzXiWffutSKikgiTaXJi3DacHmhAUeTyw5W4YtdGxLAUJPTHoh+v027AfeRZJl9wDiMKsYxiGgT6rFMGxfsRvvRZxNZeDjbHutISQtSFJEpqamjA4OKhoZxgGlZWVSElJUSmy8KCxKLsZC1Haq4kKTxJ2WlpawPM8NBoNSkpK1A5HNUf2t6PptPKuYIIJqKh7Dhrwcpu5sAC5H7gz1OGFlUjOmYAQhI7TQpREnLW1oigxH3rNVJebB7feA44+/K+6SM6ZpRC843CeeAXO4y9CcDsAAPZ3nkXKdZ8Ef+6ofBzDctCnFyJ+81UxM1nQUsVKzpDVQzkzYaGic8OGDUhOTlYpsvBhTE8GWtzyNquhJ56EhITH45HXvYpV3e2j2Pd8o6LNYNRgY+tTiqKT0WlR+vl/AsuyoQ4xrERqzrSMdOCn7/wWd1ZeDxEShtwjGHaPYnf+NrDMxP8pFZ1rI1JzZrECQ50YO/gUPC0nIAWVvSYCA60QPU6wetP7TzlLoEsvBKuNjXV/lyvac4asPsqZiaKzsbERQ0NDinYqOpVYTgdgqvBElM5aT4UnIWEm4Ofx5J9OKsd1MsBmsRF6t3JMVvbNN8FMs+ZFHFES8fzZffhz3TMQJBG/Ov4Y9hbvhllnwoBrGE3DLahIo/UQydJ5O+sxtv8v8HU1YqH1Nz3Nx5B40V1gjWYwTGzfuCKErI35ik6WZVFZWUlF5zRcfDKAMXlbmjHZULSgwpOEnaqqKrVDUI0kSfB6grji+nL8/Yk6BAMT47A2FXIwvnpQcawpPx+5d92hRphhJ9Jypm6gEY/U/k3eDopBvNvzHi4p3AmWYdE43IKCxFyYtEYVo4xukZYzC5EkCe6mI7AfehKBwY4FjzUWVcO642YYCjbSOrBLFE05Q0IjlnNmoaIz1pdOmYvNqeyGzEv8PEdGNio8CQkjnW2j6GixoaQsDQ98djee/MMJmAwskvf/WvHsgtXpUPLpT4LV0K9wJKrOqMDu/O042DltjB3DICgEkWhMwI7czVR0kvOSRAHO916H451nwDuG5j+QYWGpuBAJO26CPqMwdAESQmKSJEloaGjA8PCwop2Kzvm5g17FNi+JKkWytuhTKyFhYmzEg86WEQBAS9MQ8gqT8NHPXIi6f/s2Aj7lBSnjmqsRt65UjTDJKmAYBg9uuRstI+0YdNlwS8VV2JhWgRHvKLbn1MCgobF2ZH6SJIF3DGHgr99F0NY9/4EsB1PxZiRecg/0adQlnxASGoODg1R0LpEkRGehORMVnoSEAb+PR2NdP6RpzzW7O8ag6WtFoOmM4lhzUSHy7/9gqEMkK2T3OhCvj5MngjJqDfjszgfgCrhRlVEOSZIgQZInFSJkJkkSEbT1wtdzFvz4CDQJqXMWnoxWD3P5LiTuuQvahFQVIiWExLL09HS4XC709PQAmCg6N27ciMTERJUjC1++/kEAU9drbSA6C1EqPEnYsdlsEEURLMvGxLpOkiihsa4fgYCyP39BcRKGvv8TRRur02H9Fz9PXWxnCNecOd5bhwxLKvpdQ+gY60Z5aik2pK+X9xclTT2FYhgGTJQuGB2OwjVn5iIJPPwDbfD3noPgm5r1UJdeAF9nPSTeDwBgjXGwVF0C64W3Q2O0qBVu1IqknCHhIVZzhmEYFBcXAwD6+vqo6FwEQ1A5GRwz/9xwEY0+vZKw09fXJ08/HgsX6mf/WotgkEdqepzclpxiBld3GP5B5bit9CsuhzErK9Qhhr1wy5mgEMQjtU/jpeY3kWpKwkUFF4BlWDTZWpAdn4FEY4LaIca8cMuZufj722A/8gysO2+Gr7MeIh9Q7Gc4DfRZJQiODSB+85VIuOAGWhJlDUVCzpDwEss5M1l8ZmVlwWQyqR1O2DPMeMAZrbehqfAkREV1x7tRd3yiK4ozz4fCdSkwmXQoLoxD3Q8fVxyrTYhH3r33qBEmWYJh9wh+dPBXaLdPdIEc9oyicbgFlWnrIEoSjvacwt7i3bQ+J5mTJEnwttfBceQZeNvrAACMRou4DRfD261c25czmJF06QehyywGy9HbOSEkvDAMQ0XnIlm5EeSP9svbHAIAblcvoDVC71Qk7OTm5spdU6KZzxfEK89NfZDs7bLDNe7Hhz+1Ez0P/xaCVzmhUPatt0BDF/A5hVPOmLRGuAJuRVvjcDOy4zOQYkpEnpWeWIeDcMoZABCFIMbfex3jp/YhMNiu2Oc6cwDWnbeAYVhIkgiNJRH67HXQpeaCoRsYIRNuOUPCX7TnjCiKaG5uRl5eHoxGmol9JSycBix88rYGgorRrB0qPEnYiZVxAC8+eRpet7LrXNnGDGicwxjef0DRbsrLRdYN14UyvIgSTjlj1pnwTzs/hm+88WOIkggtq8WWrI3YlFGBjellMGgNaodIED45Iwb9sB9+Gs4TL0H0uuY5SMB47Rswl+0EZ0mAJj6V1uBUQbjkDIkc0Zwzoiiivr4eIyMjGB0dRU1NDRWfK8DNmFgwWud8oMKTEBV0tY2g/lSfoi0xxYQrri/HmX/9KiBO6+zPMCh88GNgOHqyEY48AS/6xgdRklwgt61LKcIHNt6ItzuO4HM7H0BWXDo01BWSTCMXnMdfguibp+AEwJmtiN92HeI3XwmOJgwihISB6UUnAPj9fpw6dYqKT3Je9EmIkBATRRHPP3ka0rQZyxgGuPHOaowdO4bxs+cUxydu3Qxr1cYQR0nOR5IktI91o3agAUGRR5zejHTL1FToN5ZdgWtKL4Veo1MxShJuFltwapMykbDjJlg2XgyWcogQEiZEUcSZM2cwOjqqaOd5HoFAgApPsiAqPEnYEYSpfu1cFD7lO3qgA7ZB5QfOiuos5BVYcfw7v1e0s3o9ih78WCjDi0ihzhlBEPCjw7+CQaNHZlw6gImlU64s2QMtpwUAsAxLRWcYC3XOSKKAsYNPwnnsxQULTo01DYkX3QXLhoto/GaYifb3JrL6oi1n5is6OY5DVVUVEhJoxvblCmIcmc4WeVvURud6KlR4krBTX18vTz9eVVWldjirKhjgceD1ZkWbwajBtbdtQPeTTyFgsyn2pe+9DIb09FCGGJFCmTO8wONn7z6ME32nwTIs9uRfgBRzEtxBLxqHW1CVUb6m35+sjlDljCSJCAx2wtdVD/fZo/MWnRprOhIvugPmDRdH7UQkkS6a35vI2oimnKGic205BBEenVXeFjiaXIgQskIHXm+B1xNUtO3eWwou4EXvU88o2rWJibR8SpgJ8AH88NAvUTswMRuxKIk41HUMFxfuxKbMSpSllqgcIQkXkiQhONoPb3sdBI8DAGDIK0dwqBPA1J1sKjgJIeFOEAScOXMGY2NjinaO41BdXY34+HiVIoseTr8F9Vmb5W1D0KliNGuHCk8SduLi4sDzPDSa6EpPnzeIE+90KtoSk03YsacQnQ//EaLfr9iXe+fttHzKIoUqZzScBgkG5RusIInIic/AtuzqNf3eZHWtZc6IfADu+oMIOoYV7ZwxDtq0fASHOiYKzt13wLyRCs5IEa3vTWTtREPOUNEZGn6RVzuEkIjc3wQStQoLC9UOYU0c3Df7aefe68vBsizy7r0HnMmE/r+/AN7lgrmoEBlXX6lSpJEnVDnDMiw+se0+uAMenOg7Db1Gjy9c+P9QTd1rI85a5ExwtB+jbz0KY8nWeSfCt1ReCM3266ngjEDR+t5E1k6k58x8RadGo0FVVRUVnatIr4uNSZmo8CQkBBxjXrx7QLkofHlVBsqrMgEAnE6HvA/cibTLL0Pnw39A5g3Xg6EPpWFBkiTFmokalsPndj6A/znyf7i5/CrFMiokNgluB8YOPA7ne68BogB/bzMyP/gfCDrelo/RmK0wFlZBk5hBa3ASQsIeFZ2hZeaUkxFG67sEFZ6EhMChN1og8FNrc7Isg8uuLZt1nCE1Beu/+M+hDI0sQJIkvNd/BgaNHuWppXLBoNPo8IXd/0/l6IjaBL8XzuMvwn74aUgBr9zOO21wn3sXupQc8OOjMBZshC4tnwpOQkhEEAQBp0+fht1uV7RrNBpUV1cjLi5OncCimDRjEtvonNOWCk9C1lzAz6PuRK+ibcvOPCSn0mLw4ax9tAsO/zhaRifG5QYEHtUZ5VQ8EIiiAMfhZ+A48ixEv3vOY5wnX0X2R38IVqenZVEIIRGPis61JUkGxbbARudybFR4krDT0dEhD8YvKChQO5wV0+o43PeJC3DicBfOnOqFwIvYdSnNfrqaVjtnjvXW4ieHf4Ps+ExszaoCwzA4N9IGURKwOWvjygMmqltuzozXH8TYG38C77TNuZ/htIjffh2sO28BZ6DJwaJJtL03kbUXqTnDcRw2btwoP/WkonPtsVHbuVaJCk8SdpxOp7zuVTRobhwCHxSw67JiXH5dGXo6x2DWiRg9dhxJ27aqHV5UWM2cebPtMH55/BFIkoROew90nBZV6eVgGQZp5pRViJaEg6XmjK/nHGyv/AaBgbZ5jmBgqboYSRffDU085Uk0irb3JrL2IjlnJovPxsZG5OfnU9G51pjYmNeDCk9C1pDPG8RArwOiKGFoYBwaDYeK6ky0/+5hDO17A5bSEhT9vwcRV0pPQMPBmNeB35/8K6Rpgy2aR9qRbEzErRVXIychU8XoiBoEtwPDLzwET8uJ2YNw3qdNzUPajf8IfUZRiKMjhJC1w3EcNmzYoHYYMYE1xUZhT4UnCTsVFRWzZhKNVD2dYxDFqQ+roiiBdY9i+K2J2S5dzS2o+8KXkHPHbci/9x61wox4q5UzicYEfG7XA/jBwV9ClCYmg6rOqMAN6/eiIDF3NUIlYWIxOeNtP43Bp34A0e+Zcz9nToB1zwcQV7OXlkaJAdH03kRCIxJyhud5MAwDjqOx6GryeMcBWNUOY81R4UnCTiQvtDwdHxTQ3+NQtGXmxKPntw9BEoSpRoZB/IaKEEcXXVYzZzZnbcQ/bL8fP3/3YdxUdiXuqbo5rD80kOU5X874Bzvg7Twz58yCjFaP+K3XIPGiO8Fq9WsTIAk70fLeREIn3HOG53nU1dWBZVls3LiRik8V+cSAYptmtSWELIlt2A1BmFpChWEYZOcloj87B+PNLRC9PgCAtboKiTU1KkUZ2yRJwllbG/ISsmCatnjznoILkBOfgaKkfBWjI2qQBB6e1vfgH2gDWBam0q1wn9k/sZNhYS7fieQrPwqN2apqnIQQshKTRafT6QQAnD59mopPsuao8CRkjbzyTD10eg6pGRZoNBySU8wwmXUo/sSDyLr5BnT+4U+wn6pF0SceVDvUmCRJEs4MnUXjcAvaxjpxccEOmHVTs5BS0Rl7BO843A2Hwbvtcps2MQO69AJIPI/Um/8JBhrHSQiJcDOLTgCw2+04e/YsKiqoB5YaAgKvdgghQYUnCTt2u10eE2G1WtUOZ1n6usbQ2ToCAGhtGkZqhgVFt0wN0DdmZKDsS19EwOGALiFBrTCjxlJzxul34fv7H0JRUh7i9Ba4Ah682f4OLinYAYvevPYBE9VN5gwAaLproc9ZD8+5oxADvlnHWnffAVPpVrAcvWXGsmh4byKhFY45M1fRCQBarRb5+XTDVS1aJjaeNNO7KAk7XV1d8vTj4XKhXqp33p5ackEUJYyNeJCRFT/rOCo6V8dScsbmHsW33v5v9I8PoXd8AJcU7oRJa4Q36MWYz0GFZ4zo6uoC77TB0vAKNMMtMBZVI/HieyZmr30fw3IwlW6FPr1AvUBJ2IiG9yYSWuGWMzzPo7a2FuPj44p2nU6H6upqmM30/qcWI5QT1EXrzBJUeBKyyviAgHMNQ4q2wpIU6AyRt45XtBlwDeM/3vgJRrxjAABP0IsDnUdxScFO7M7fhtyELJUjJKEgSSI0HcdgbngdjDAxoYO3rRbm8guhTyuAf6gDnCkelvJd4Mx0c4gQEvmo6AxvCewIcuxTnx05BBY4OnJR4UnCTmZmJkRRjNjlCU4c6UIwICjaLthTqFI0sWGxOZOgj4PVGC8XnsBEEbIupQiFtFxKTAiM9GH4hYdg6G6ctW903x+Q84n/Bqs3wpBXDoajm0VkSqS/N5HQC5ecCQaDqKurm7PorKmpgclkmudMEirxBj20ol3e1lLhSUhopKamqh3CitQd71FsJyYZEHjhL/DdfScMaWkqRRXdFpszRq0B/7rn0/jGvh+hb3wQ2fEZ+MpFn0aqJXmNIyRqk0QBYwefgP3Q04A4exIHzpKIlGv+HzTmRGgKE1WIkIS7SH9vIqEXDjlDRWdksK4rgLnvlLxt0EfnUl1UeBKyipx2Lwb6lGt3ZktDGH7jTQy/9TYSt2xG3j0fgKWInoCGii/og0FrkLfj9RZ87ZLP4A/vPYmPb70HcXqLitGRUPAPtGHo6Z8gONo35/646suQtPfD4AzU1YwQEj2CwSBqa2vhcrkU7VR0hh9Ww4KZ9mCcidKOFVR4ErKKjh3qgDRt1V+WZZBU//rEhihi7NhxCD4fNn77P9QJMMYMuUdwsPMoqjMqUDxteZQUUxL++cKPqxgZCQVJ4DH61mNwvPt3QBJn7dfEpyDlun+AqahahegIIWTtUNFJwhEVnoSsoobafsV2spGH1jPjCeiNN4QypJjVZe/F8b468KKAE32nIYgC1qXQGoyxwtffgqGnfwJ+bGDO/YbccqTe8I/QJqaHODJCCFl7TU1Ns4pOvV6P6upqKjrDkJtzYyB16v3KGKXLd0XnT0Ui2unTp+Xpxzdu3Kh2OItmG3RhbMSjaEsdblBsG3NzkLhtSyjDigkzc6Z+8By+e+DnqM6oQL41BwBwaqABFp0JWfEZKkdL1trIG4/AceQZKLofvI81xiHxojvQpcvGQHsvtD1DEXWdIeqJ1Pcmoh41c6akpAQulwt+vx/ARNFZU1MDo9EY0jjI4vQHXHgnLk7eThB5fFi9cNYMFZ4k7EiSJP+JJHUnlJMK6XUMUlprFW2Z11wNhonW1ZnUMz1nOsZ68KPDv0JACOJYby0EUURRUh5y4jOREUeTO0UzSZIQ6G9FYKBtjqKTgbGoGinX/QO08cmQ6uogSULEXWeIeiL1vYmoR82cMRqNqKmpwalTpwCAis4w5xjRoaRht7zN610LHB25qPAkYcdoNEKj0UCrjZylDCRRwumTvYq2HL4PWikob2ssFqRfsTfUocWEyZzxSD58Z//P4A5MPXk+2X8aWXFp2JGzCWy0jtYnEHxueM4dQ9A+CF12KQLDXRBcE8vmsKYEJO65C/GbrwDzfg5E4nWGqItyhiyV2jkzWXxOfk3Cl2/MAcAqb+sC0XmDiwpPEnZKS0vVDmHJOttG4BjzKtqSO48pt3fvAqujDyxrYTJneIFHjfsM3mp/R963LrkId2y4XvV11MjakCQJ/v5WeNtrIQkTy6QwDAtT6TaM1+6DsbAKKVc9OGssZyReZ4i6KGfIUoVDzlDBGRkM48plvqjwJITMq+6E8mlngjYAi39E3mY4Djm33BziqGKPhtPgk9vuQ4YlFX85/RzKU0vxlT2fhl6jUzs0sspEvwfejtPQxKfA03Ji1n7OYkXaDf8Ic/kOMBzd8CGERKdAIICBgQHk5ubSUJ4IZtEYFNvR+j9JhSchKyRJEob6nYq2NFuD4qIRX1kBQwbNnhkKDMPg1oprkJeQhbLUEio6o5Cn5QSGX/wVBNcYsj70n+BM8RA8U7+DrN4Ic+k2aJMyVYySEELWViAQwKlTp+DxeBAIBFBcXEzFZ6SKzgecs1DhScgKuV0BfOBj2+AY86LueA9OH+1A2uhZxTHZt92iUnTRz88H0OXoRXFSvmIM59ZsWpsx2giecYy89nu4zuyX22wv/gLpt38ZrtNvQ4IEfUYRTEU1YDT0lJMQEr2mF50A0NMzMcEhFZ+RSdLGKbZ5NjpvmlPhScJOT08PeJ6HRqNBTk6O2uGcV0ezDbZhFxKsRtRsz0PagT/CJ0xNbmPIykRiDRVBa8HPB/B2xxF0DfXglPY0alIrUFpQonZYZA24zhzAyOv/B8GtXBc3MNQFV/0BGIuqwZkToE1c3HI5kXadIeqjnCFLtVY54/f7UVtbKxedk2w2G/Lz82kCrAhkyc0EutzyNquNzpsHVHiSsDM6OiqvexXub+58UMCIbeJC4bB7Mdo7gkCvA/HTjkm5aPfcJ5MVOTN4Fo+feR4VqaXwer1wu1ywjY8iLiUBGZZUtcMjqyToHMHwc/8NX2f9nPuNhdWwbNgDrXVpS+VE0nWGhAfKGbJUa5Ez8xWdBoMBNTU1VHSSsEaFJyErYB/1Ktbncre1ItE/Jm8zWi3SLrtEhcii25DLhp8c/i3GAy6MeMdQos8FCwYahoNFZ1I7PLIKJEmC48hzGNv/V0i8f9Z+Vm9C8hUfgaXqUupWRgiJCX6/H6dOnYLXq5xF32g0orq6GgaDYZ4zSbjTJeUAmBqmJWmi8/+SCk8SdtatWwdJkiLiw+TY6FS3CEiA0NIIFqLcZC4sgCGdJhVaTZ6AF9898L8YD0wsrjzsHoEv6MPegt24sngPLDqzyhGSlQrahzD45PcRGOyYc79p3TakXP1xaOKSlv09Iuk6Q8ID5QxZqtXMmYWKzpqaGuj1+hV/D6Ieu3NIsS1I/DxHRjYqPEnYiZQ7dpIkYWxkqquLf3gY2rF+xTHJF2ynDymrrHWsE0Mum6LNakzAdeWXI94QN89ZJFJ4uxow+MT3IPrcs/YxGj3it12LpEs/uOLfq0i5zpDwQTlDlmq1coaKzuhnD4wrtoOSoFIka4tWVCdkmd54sQmH32xFb5cdAT8PV3MrTMGpJR008XFI3LZVxQij08b0MvzHZf+MREMCACAvIRvfuvwLVHRGAeepfeh/9D/mLDp1mcXI+vB/Ivmye+lmDiEkZvh8Pio6SdSgJ56ELNPpk71w2n1w2n1oPTuMFJcH6cLUG0PculKYcrJVjDB6lSQX4LtXfBm/Pv4oPrblAzBpjWqHRFbI19sM24u/BCRR0c7ojEi86E4kXHADFZyEkJgyWXT6fD5Fu8lkQnV1NRWdUcTfPwwgUd7WBMX5D45gVHiSsONyueQxERaLRe1w5tTVNgKnfdobgQQkuXsgfyxmGKRedikYjlMjvJiQZLLiy3s+BSAycobMLzjaD297LYzFm+BtOSG3a6zpyLz769AmZa7696ScIUtFOUOWaiU5Q0VnbNF4AoptNjrrTio8Sfhpa2uTpx+vqqpSO5w5HTvcqdjWSDwyx5vlbUMmrd25miRJwllbK9IsKUgyWmftj4ScIXPzD3bAc+4oJEmCPrMYgtuOQH8r9LllyLjzK+AMazNZFOUMWSrKGbJUK8kZr9eLQEBZjJhMJtTU1ECn061mmCQMmFjlg4po7d9DhSchSyQKIlqbhhVtie5uaKYNBE/cVA2NmWZXXSkf78e4z4VuZz9aRjuAQSA3IROVaesRr6cnDpFMEgV42+vg6z2naDcWbYIhez2SLr8PrIY+XBFCYlNiYiI2bNiA06dPQ5IkKjqjXBxGkOUYkbc5BBY4OnJR4UnCTmpqKkRRBMuG59xXzY1D8HmDirYsx9SHZ1avR/KFu0IdVtQRJREPvftH1A02Ynt2DVLME0tndDv60T8+hOvX74WOm1goO9xzhigFhrsACbOKTgDQZxTAvG47GHZtu6lTzpClopwhS7XSnElKSsKGDRvQ3t6OqqoqKjqjWJyGhV5wydtaKjwJCY3MzNUfz7Wa3nu3S7GtE31I8vbJ26b8PJgL8kMdVtR5qv5FHOk5CQDY33kEmzI3oDAxDwyArVlVctEJhH/OkAmSwGPk9YfhPPEK0u/6CnSpeRNF6PsM2etgLKoJySRClDNkqShnyFKtRs4kJycjKSmJJleLclpGeXMiWv+36bYdIUvABwW0t4wo2pJc3YpfJOumGupmu0In+07jifoX5G1RklA30ISAEMCO3M3Is9JswZFG8I6j/y/fhvP4S4AkYviZn0CXkgXOlACG5WAu3QZT8Sb6cEUIiTmiuPBMMnRdJNGCCk9CluD0yV4EA8pFfbMdTfLX2sREJG/fFuqwok5ZSgk2ZW6QtxmGwUc334nLCnchNyFLxcjIcgSGu9H7f1+Gr+O03Cb63Bh86scwr9+OuKpLoc8sUjFCQghRh9frxdGjRzE0NKR2KISsOepq+z5JkvD888/jqaeeQmNjIzweD1JTU7Ft2zZ88IMfXJUZ7E6ePIlHH30UJ06cgM1mg16vR35+Pi677DLce++9sFqtK/9ByJpqb7YptuNMLHJyE+BqGwVEEXGlxTDl56kUXfQw6Yz40u5P4rHTz+C5ptfwoZrbcXnxbrXDIsswfuYAbC/+ElJQuSQAw2lhvfA2aOKSVIqMEELU5fV6cerUKfj9fjQ0NAAA0tLSVI6KqEGADynunqkGLjrXU6HCExNrJf3TP/0T3nrrLUV7b28vent78fe//x2f/exn8fGPf3zZ3+MHP/gBfve73ynagsEg6uvrUV9fj7/85S/42c9+hk2bNi37e0SLxsZGefrx8vJytcOR8byA5kblHclNu4tRfdW1cLV1oPeZZ5G0bQtYrXaeVyALkSQJfiEAg2ZibTKWZXFv9a3YmlWN9SkLPw0L15yJZZIkYWTfH+B89++z9nGWRKTf/iUYsktViGwC5QxZKsoZslQL5YzH40FtbS38fr/ieI7jkJycHOpQicqcogdawStvB6K0TyoVngC++tWvykVncXEx7rzzTqSkpMgFocfjwY9//GOkp6fjpptuWvLr/+53v5OLTq1WizvvvBMbN26E0+nEa6+9hmPHjmF4eBgf//jH8be//Q25ubmr+eNFnGAwiGAweP4DQ6z1rA1+Hz/VwABbdkxMImQpKsD6z/8TpPOM0yDzqx1oQI9zAJcU7IBFPzVGtiy1+LznhmvOxCrB78XgE9+Dr/PMrH36zBKk3/4v0MSr+8GKcoYsFeUMWar5csbj8eDUqVOz1uk0m82Ij48PVXgkjIz5ElBfcKe8bQg6ca2K8ayVmC88Dx06hOeffx4AsGPHDvz617+GXj/xxOX666/H7bffjnvuuQd2ux3f+c53cPnll8NiWfz6gQ6HAz//+c8BAAkJCfjTn/6E9evXy/vvv/9+/Pd//zd+8YtfwOl04qc//Sl+/OMfr+JPGHm07z8x1IbZk8OG2j7Fdl5hEuISDIo2hqbZX5aB8SGcG2kHALzZ/g4uLtyxpHU6wzVnYlHA1ouBv3wbvGP2eCVDQRUy7vwyWK1ehciUKGfIUlHOkKWaK2fmKzotFguqq6spv2JUIEYeXMR84fn73/8eAKDRaPDtb39bLjonFRcX4+tf/zr++Z//GXa7HU888QQ+8pGPLPr1Dx06BI/HAwB44IEHFEUnMDFpymc+8xm88MIL6Orqwr59+8DzPDSa2P2vCccuTHxQwLn6QUVbRTVNrb8axv1uvNq6HwbNRBHv5X3Y33EEV5deCs0i13IMx5yJRe6W9zD09I8hBbyz9lk27EHKdZ8EqwmPdegoZ8hSUc6QpZqre+1cRWdcXByqqqqo6IxhsfK5P6Yfz9jtdhw+fBgAcNFFF83bxfXaa6+V+9u//PLLS/oePT1TA4XLysrmPIZlWWzYMDGDp9frxdjY2JK+B1l7DrtX+XSTAcqrqPBcDQ+/9zieP7sPx3pOwc9PvBmvSy5adNFJwoPj2AsYfOK7s4tOToOkvR9G6o2fCZuikxBCQo2KTrKQOK1RsR2tC+jERnk9j+PHj8trJ+3YsWPe41iWxbZt2/Dyyy+jtrYWDocDCQkJi/oe07vldnd3z3tcX99EN06O4xb92iR0WJbFhz65Ey6XHydeOAan3QuTPlovC6HTONyMA51HAQCdjl70u4ZwccFOlCQVqBsYWRLX2Xcx8urvZ7Wzxjik3/oFGAs2zHEWIYTEBrfbjdra2jmLzurq6ph52kVITD/xbG5ulr9et27dgseWlJQAmJip8dy5c4v+HtOXYXnkkUcUs5dNOnr0KOrq6gAA27dvh05HTwXCTUvjEI4d7kBHywh0zSeRcehRHL3vI2j64Y/h7uhUO7yIFBSC+PWxxxRtDBhclL8NLI2VjQiSJMHbVY/AYAcM+ZWKfdrkLGQ/8CMqOgkhMY2KTrIYgqgc6sez0fkEPKY/3fX29spfZ2dnL3hsRkbGnOedz4YNG7Bnzx4AQFtbG+69914cOXIE4+PjGBgYwGOPPYZPfepTEEURFosFX/ziF5f4U0Sf/v5+9Pb2or+/X+1QAACucT/c7okbBl6XHwMjPARGA9Hvx8jBwxh+e7/KEUYmjuVwzbpLYdROdWG+u+omlKWWLPm1wi1nYoEkifA0H4e3Y2LmWn1uBbSpE8MVjIVVyP7oD6GNT1EzxAVRzpClopwhS9XW1ob9+/djZGRE0R4fH09FJ1HgZpVk0dmrLqYzfnR0VP46MTFxwWOtVqv8td1uX9L3+elPf4rPf/7zeOutt1BXV4cPfehDs47ZvHkzvva1r6GysnKOV4gtw8PD8rpXmZnqj6Ps73HIX/ttNnBBL/SCR25LumC7GmFFPJZhcWXJHmzNrsL/nXwcNvcori65ZFmvFW45E+0kgYe78R0ERqdmemYYBqbSbUDJFiRe8sGwf2pNOUOWinKGLEUwGMTJkycRCATAcRzi4uIATBSdVVVVVHSSmBTenwzWmM/nk7+eOZvtTNO7v04/bzHMZjO+973vyU8+Z2IYBoWFhYriloQHURAx1O+UtwWvF1atX74PpbUmwFJcpE5wUSLJaMU/X/hxfOPSz4Z9sUIA3mmDr6dJUXQCE92kzeu2Ifmy++j/kRAS87RaLZKSkhRtVHSS+bDm2JjfJaYzn+d5+evzjaucvn/6eYvx4osv4l//9V/h8/mQnp6OO+64A8XFxXC73Thw4ABeffVVPPXUU3j55Zfx8MMPK8aFqqGlpQXFxcXy3TkA8Pv9OHv2LICJp795eXmzzplcNmZm/DabTZ48KTc3V/F0WRAE1NfXA5gY71BYWIiioiJIkgSGYdDR0QGnc6Lwq6ioUFys7XY7urq6AACZmZlITU1VfN/Tp09DkiQYjUaUlpYq9vX09MhPvNetWweDYaq7p8vlQltbGwBAy1kQDAryPlN+Hqyb7oY42APxbAtSkpPATpuJrr+/H8PDwwCAoqIixeRSPp9PHh+clJSEnJwcRUzNzc3wer1gGAYbN25U7BseHpa7d+Xl5SluUvA8j4aGBgATb2oFBQWKc9vb2zE+Pg4AqKysBMdNzRY7NjYmT3qVlZWFlBRl18jJsccmk0ke5zypq6tLfvq/fv16xc2b8fFxtLdPrMuZnp6O9PR0eZ8kSdj/3iFYuTjo9Xp5tufJLrd9fX2w2WwAJpYzMpvN8rler1cem52cnCx3kZ/MmZ6eHtTV1Slmip40NDSEgYEBAEBBQYFike5gMIjGxkYAE+vt5ufnK85tbW2F2+0GMNF9fnphNTo6Ks9enZOTo/igIYoizpyZ6IpqNptRXFyseN3Ozk44HBNP1MvLyxWzGjqdTnR0dACY6OqflpamOPfMmTMQRREGg2HWGPXe3l65a1dpaSmMxqnZ8txuN1pbWwEAKSkpyMrKUpzb1NSEQCAAjUaDiooKuV2SRPS8+DsE6l6Hd+f9SDfFg/NN/G4yLAdt4SacG3EDI3Vrfo2YbrnXiKKiIrS1tUGSJDQ3Ny/7GpGamjrr6VdjY6P8ZGzmcgp0jZiw0DUCABoaGsDzPHQ63awZ4ZdzjZh07tw5+Hy+ZV0jJEmCRqOByWTCTHSNmDA4OIjBwYmlxwoLC1X7HDGdmp8jkpOTYTab5UkpN27cCI1GQ9eI90XbNWIlnyNGRoYAzO5JodY1YjIHV1tMF57TLxLBYHDB4nP6oPClTP6zb98+fOELX4AgCLjgggvw0EMPKS4id9xxBw4ePIhPfepTcLvdeOCBB/DCCy/MuviFkiAI8my/kyRJQjAYlPfPxPO8vH8mURTlfTNfF4C8b7Kgn/7vMzAwIO+XJGnemOZ73ckPCgvFu9DrnjzYA/tIAEkpZiSlmpGVkwBW74eQmQldXh4KZrw5Tv9ZF3rduW5eBINBBINBMMzsfv0red3V/L+ZThCEeWOa/roz86XT3oO60SaYORMqE5Vv5Od73fnycDJnJr/vXE/cpr/uQvkdyn/DhfJwoX/DydcVRVHxAWDScv4NZ8Y0/Twx4MPQc/+D4Nl3wQAwHH8c3B1fg8bWBtHvgaVyN3h9HIID9ed93bms1b/hQtcIi8UCnucVx6zG607Gu5ifla4RC+c3z/Pn/V1ean5P/hsu5xox+TPO9e8f69eIuV5Xzc8R872uGp8jcnJykJ+fj5SUFPl16BoxIdquESv5N/SKyslHp0etxjVirv/L1RDThef0u5Z+v3/Rhef5uuVOkiQJ3/3udyEIAhISEvA///M/iqJq0u7du/HFL34R3/rWt+BwOPD73/8eX/rSl5bwk6wujuNm/cIxDCPfRZkrQTUazbxrULEsK++b6xd5ct9cF/bprzvzQjo9pvleV5KkOeNazOtKkoTBXjf8PgFOuw8dLSPgLixAQblWEfd8P+tC8c71s2q1WvA8P+cbxkped63+bziOmzem6a87PV9snlG8118PluPgFr14z9GApJEUlCYXLup1z5eHWq0WgiDM+bNMf92F8juU/4YL5eF8/4bTX1cUxTnjWsm/oUajgSiKcry804aBx7+HwGD7VGx+F1yv/ALZ9/0HIIrgzAkQ/P6Yu0acL166Riz9GjH9dRmGWfLr0jVC+bqhuEbM97r0OWLqdadPUDk9XrpG0DVi8rWYBSYTUuMasVZDZhhprltWMeIb3/gG/vrXvwIAXn/9deTm5s577BNPPIGvfe1rAIAf/ehHuOGGG877+g0NDbjlllsAAPfccw/+7d/+bd5jA4EAtm/fDq/Xi+LiYrz44otL+VFWxOVyyd1fgInuDnMVyLGmu2MU//ezw4q2ez9xAYpK1XsaHclO9p3Bf7/zO2xML0NuQpZ8gdyVtwU58TRRRzjy9pzF4BPfg+hxKncwLJKv/BgStl6tTmCEEBJGxsfHwTAMfXYiy/an7/0a7cNT3do1gg9f+entqsWzVrVBTM8AMb0P+/mmR5/s0w1g1niH+Uz2qwbOv06oTqeT+21PjgWJVT6fD16vd8mTOK22+veUk6foDRoUFCerFE1k8wV9+N2JP8PL+3C09xQOdh6FK+BBYWLuqhSd4ZIz0cT53mvo/9PXZxWdrMGCzLu/HvFFJ+UMWSrKGTKX8fFx1NbWora2Fi6XS7GPcoYsFhuly6fMFNNdbacP0G1ubsb27fMvizE5EJlhmFkDzBfD7/ef95jJx9pzPQ6PJefOnZMH3as50VJbs02xnZ1npdk6l+nxM89j2DO1fNGg24Zx/zhqMioWOGvxwiVnooEkibC99BuMv/fqrH3a5Cxk3Pmv0CYt7uZbOKOcIUtFOUNmmiw6J8fe1dbWorq6Wn4yRDlDFsvMKYf7RWsZGtOfojdt2iT3a3733XfnPU4QBBw7dgwAUFZWppjFaiHTZ+CanJFqPjzPy7MkLvaJKlk7HncAI0PKO5e6U2/i3E/+B6PHTkBc4szGsUyURIx47Yq2yrR1+OS2+6Dl5h7vQNQh+Nzo+8PX5iw6dZklyPrw96Ki6CSEkJWaWXQCE5O1dHZ2qhgViVRmaQTp463yn1R3+/lPikAx/cQzPj4eO3bswIEDB/DGG2+gr69vzqLvhRdekKfMvuaaaxb9+hs3boTFYoHL5cK+ffvQ398/76LTzz77rNxF48ILL1zGTxM9kpKSwPO8qutcNdb1Y/roZ0YSkTxYj+E+L4bfehtpey9H6T/+g2rxRRKWYfG5XQ9gd+82/O7EXzDud+HBrfdAp1n87NDnEw45E+kCth70P/ZNCOMjs/bpc8qRev0nwRnMc5wZmShnyFJRzpBJTqcTdXV1s2YZTUxMVCztQTlDFivBwMEUnBraokVggaMjV8z/Jnz4wx/GgQMHEAwG8fnPfx6//e1vFYNnW1pa8J//+Z8AJtbPueOOOxb92jqdDvfeey9++ctfwuPx4LOf/Sx+8YtfzFpQ+OTJk/jOd74DYGKGqQ996EOr8JNFrpnrUqnhbP2gYtsYcMIgeOXtpG1bQh1SxNuWXY3KtHU4Z2tHVlz6+U9YgnDImUgWHBtE35++AdHjUO5gGMRVXYbkKz8KVmeY++QIRTlDlopyhgATRWdtbe2s5SkSExOxYcMGxXApyhmyWElFuTB21cvbhiUs3RhJYr7w3L17N6666iq88soreO+993DTTTfh7rvvRmZmJhoaGvDnP/9ZXvD1X/7lX2YVje+++y7uv/9+AMD27dvxpz/9SbH/E5/4BPbv34+GhgacOnUK1157LW655RaUlZVBEAQcOXIEL7zwgnzX7Ktf/eqsxWxJaImihO72UUVbgm9I/pozGmHdsjnUYUWcAB+A0+9Cinnqd8akNaImc3XGdZLVwbvG0Penr80qOhmNDkmX34/4LVfPOTU/IYTEmqUUnYQsBWfUg5u2WiOnj8733ZgvPAHg+9//PtxuNw4ePIienh788Ic/VOxnGAaf/vSn8YEPfGDJr200GvG73/0On/vc53DkyBGMjY3h97///azjtFotvvKVr+Duu+9e9s9BVkdvlx1+n7L7TLJnaqZhc1EhuHnWYiJTTvafQbejD+tTilGZtg4cS2/I4UYSeHjOHQOjVa5NzJrikX77l2DMLZvnTEIIiS0OhwN1dXWzis6kpCRUVlZS0UnIIlDhiYni8Le//S3+/ve/45lnnkFjYyPGx8dhtVqxZcsW3H///diyZfldK5OSkvDwww9j3759eO6551BbW4uRkRHodDpkZ2fjwgsvxH333UdPOsNEc6Oym60p4ECyZ2pplYRqmpnufLodfehyTPybNdlaMeAaxs7czYjT0xpn4UISBbgb3wHvGoO5/EJ4zh5B0NYD1hiHrPu+BV0KdREjhBBg4aJzw4YNNOM9WbEA54c3bmo1BVEXnQ84qPB8H8MwuPHGG3HjjTcu6bwLLrhAscDqQq+/d+9e7N27d7khxozm5mZ5+vHlLF2zUi0NQ4rtVHcXNFJwYoNlkbxj/mV3COD0u/DQ0T9iXXIRzDoTAMAT9ELDrt3lRu2ciTSSJMJz7hgCoxM3BxiWhalsB/xdDUje+5GYKDopZ8hSUc7EppUUnZQzZLH6xDE8mzfV2y6JD+A2FeNZK1R4krDj9XoRDAZnzRYXCk6HFwN9TkVbsrtb/lqfmgoTTRawoCfOPI/W0U50jHWjPLUU65KLsDlnA4zatZucRs2ciTSSJMFz7jj8Q8op/zmtHmm3fB4aS6JKkYUW5QxZKsqZ2LPSJ52UM2SxRgb1qDwxtXIGr3ctcHTkor4BJOwwDCP/CbWWRuXTTo0YUEwsFLe+FAyN45hX+1g3Xm3dDwAQJBFnhs7i3EgbchPWdu1HNXMmkkiiAME7Dn5cOXkWw3KwVF4UM0UnQDlDlo5yJvb09fXNKjqTk5MX3b2WcoYslv/9iUwncbw0z5GRjZ54krCzceNG1b73QK/yaWeSuwcspn75Uy66KNQhRZS/nvk7pGkLoGo5LT62+a41f9NVM2cihSSJGH7+IQRtPUi77YvwthwH73aAYVhYKi6EJiFV7RBDinKGLBXlTOxZv349BEGAzTYx9i45ORmVlZWLHtNJOUMWSzOsLDyNvugsPOmJJyHTXHRFKf7hSxfj6lsqkWn0Ic3dJe/TWCxI3FyjXnAR4NMXfAhXFu8Bg4lC89byq5GdkKlyVESSJNhe/g1cp9+Cv78Fg49/B8bizdDEJcNcsQvaJPo/IoSQmViWRUVFBZKTk5dcdBKyFAk6s2I7Wp+R0xNPQt4niRLOvNcHPiggNd2CcvsxwNUu748rWw9WQ78yC7HozHhg6924pHAn/n72ddxYdoXaIcU8SZIwuu+PGD/5qtwWGOrE4JM/QNZHvgeWo5wmhJD5sCyLyspK+WtCyPLRbxAh77OPeeD3BSEIIvo7R9HuiUOAm5oQx7p5k4rRhbfp3WsBoCS5AJ/b9QC0XHROBx5JHEeehePd55SNrAZJl9xNRSchhLxv5vvYdCzLUtFJ1pTIGBXbAhudn5/oUwcJO8PDwxBFESzLIjU1dOPOhgenZhDz9PZCF/RAL/gmGhgGyTsvCFkskcTudeBIz3vYnLkBaZYUVWJQK2fCnf3o8xh940/KRoZF2i2fhalk+WsTRwPKGbJUlDPRa2xsDB0dHdiwYQO02tX7wE85QxYrLjcb6PXK24w2Om90UOFJwk5/f7+87lWoLtSSJGFk2sBuX/8ALIExeVufkgJ9UlJIYokkoiTieF8dnH4X3uo4gsLEXFSnl0On0YU0DjVyJty5z76L0df/MKs99YZPwVK2U4WIwgvlDFkqypnoNDY2htOnT0MURdTV1aGqqmrVik/KGbJoXHQWmjPFxk9JyHm4xv3w+4LydmBkBKaAQ962lJaoEVbYO9B5FCMeu7zdPtaN1rHO+U8gIeHra8bQMz8BJFHRnnjJPYjbeIk6QRFCSJgZHR2Vi04AGB8fR11dHa27SUJOa1VO8idp9CpFsrboiScJO3l5eZAkKaTrXr3w5Gn4vEEkpZhgNnJgnKPQin55v7WmOmSxRIph9wh+dexRxOnM2JS1AUlGK+L1FqxLLgp5LGrkTLgK2ocw8OdvQeKDinZj8SYk7LxFpajCD+UMWSrKmegyOjqKM2fOyEXnJIPBAG6V1uumnCGL5fE4FNuSJMxzZGSjwpOEHavVGtLv5/MG0dwwCEkCutpGoeGAIlGcmsqaZZG4dXNIY4oEf3jvSfAijzGfA2+0HUJxUj4+t/MBcOzqvGEvRahzJlwJPjf6H/kGRJ9yPTBdeiHSb/siTY4xDeUMWSrKmegxX9GZlpaG8vLyVSsUKWfIYg37xhTbfio8CYlODbX9mD6ZnSBISPT2y9v61FToaHynwsm+0zjae0rRlmxMVG1yIQJIfBD9j/0HeMewol2TkIqMD3wNrDY6u+0QQshSjIyMoL6+fs2LTkLIbHT7m8S8+lN9im2T4II5OG18Z3ERvRHNYNaZkB2fIW/H6S34xLZ7VYwotkmSiMGn/wuB/lZFO2uMQ/od/wqNxapOYIQQEkZGRkZC8qSTkKXyjyifeHL8/Mv7RDIqPEnY4XkewWAwJIP7RUFET6fylz1xvBvT33riN1aueRyRZn1KMX545VdxT9XN0HFa3Fd9Kyx6s2rxhDJnwlFwdAC+rnpFG6M1IPXGf4Q+PV+lqMJbrOcMWTrKmcg2WXTOXK8zPT19zYpOyhmyWMzYuGKbE6Kz8KSutiTsNDQ0yNOPV1VVren36u4cQzCg7Eef4WyRv2Y0GiRuofGdc9FwGtxcfhUuyt+OJKNV1VhCmTPhRhIF+LoaYKm+DO4zByC47QCrQdKlH4Q5xtfqXEgs5wxZHsqZyLVQ0VlWVrZmTzopZ8hixWkMiu1offZOhSeJac0NQ4ptLSMgPjAibxvS02CgtbdkDp8TcTqLYpKaZFOiihHFNkmS4Gk+Dn58BKzOCEvVpXCfPQJz6TbEb71a7fAIIUR1NpsN9fX1IS86CVkKkzCCFNfUU0+N5F/g6MhFhScJO/Hx8eB5HhrN2qdnV9uIYtviH1XcZTKXlIChmUABALwo4O2Od8ExLMpTS1FgzQmbWVJDmTPhxNfVAP9gh7zNaLSI33wV4jdfCYYJj/+bcBWrOUOWj3Im8oyOjs5ZdGZkZGD9+vVrXnRSzpDFitdJiAuMytsaBFSMZu3QbwIJOwUFBav6el1to8grmj0rrSRKGOh1KtriXVMTDdkNaVi3jboqTmod7YCPn7gDd7yvDk22Fuwt2g2dRqdyZKufM5HAP9AOb+cZRRvDaRC3YQ/NYLsIsZgzZGUoZyKP2WyG0WiEx+OR20JVdAKUM2Tx9IxyKbpovXUcrT8XIQCAt145i4f/9zAOvTE1btPZ0AgAaG+2geeVM9slu3sAAB3WjTiRcx1OOxJnnReL7F4Hnm18DYI4NR7WojOHRdEZa3jXGMYOPgnWaFEUmAwYmNdfAM6coGJ0hBASPvR6Paqrq2E0GgGEtugkhMxGTzxJ1OpqG8X+V5sBAPteaAIA5A6eQPdfHkf+/ffiwGCG4nijRkCCfxiDG69GqzcTAHDwzXaUVGSCfe9tdP7xEeR+4E7k3X1XaH+QMPC3xldwvK8WDcPnUJ5ainxrNjakrVc7rJgj+r0Y+Ot3EBhoQ2CoA8lXfATupiMQvC4YizdBl5KjdoiEEBJW9Ho9ampq0NfXh4KCAio6CVERFZ4kauUVJeHy68rkonPfC00otjWiAMC5R59CV+FdmD5vWKK9A13WDXLRCQCXX1cmF50A0P2Xx2GtrkJ8RXkIfxJ1jXkdeKPtIADAE/TiRF8dRElAksmqbmAxRhJ4DP7tRwgMtAEA3I3vQHA7kHrTZyG4xmDIKlE5QkIICU96vR6FhYVqh0HIvCQmiHifTd5mWWGBoyMXFZ4k7LS3t8uD8Vf6RpFboCw+W1O2AgACGgOkGZNV8xIj7wcmis78sdNy0QkA+fffG1NFJwA83fAyAkJQ3mYZFvfV3K5iRLOtZs6EI0mSMPzir+BtO6Vo550jYFiOis5liPacIauPcia8OZ1OxMXFhdUTTcoZsljjkgMpnh5526cLnzxeTVR4krAzPj4ur3u1Em+9chb7X23G5deVzS4+RXHW8UNxRYpt24la4OBj8nb+/fci57ZbVhRTJNqZtxmdjh40Dk+Mk720cBdy4jPOc1ZorVbOhKux/X+Fq+4NRRtrjEPGB74GjcWqTlARLtpzhqw+ypnwNTQ0hMbGRqSlpYXVEimUM2SxbF4rmorulbf1/DguVzGetUKTC5GoNNf4zsuvK5s6YBHLgNQO6GE3pAGI3aITAMpTS/Hvl34eX9nzj1ifUozbKq9RO6SY4nzvNdgPPqFoYzQ6ZNz1FeiSs1SKihBCwsPg4CAaGhogSRIGBwdx9uzZWcunEBLueFGCwGrlPyITnc8Go/OnIhGtsrJyxa8x1/jOy68rw+7LS3BwX8t5zp5QbDsOq28opovOSQzDoCazAjWZFWqHMqfVyJlw5G4+AdtLv1I2MgzSbvk8DNnr1AkqSkRrzpC1QzkTfgYHB9HYqJxxfmBgAImJiUhPT1cpqimUM2SxpBhZe5sKTxJ2OI47/0GLcOFlE+PephefuYWJC50iK7YdR4H9NOIqymO26BzzOmDUGmDQhP+akKuVM+HE19eCob/9EJhx5z6u+nKY121TKaroEY05Q9YW5Ux4mavoBIDs7GykpaWpENFslDNksax6s2I7PDqLrz4qPElUm1l8drePnfecgtFTKLCfBgC4W1oRGBuDLnFxBWu0ECUR7/a8B0/Qi5KkAqxLKYqIAjRaBMcGMPDnb0Hig4p2Q245rBfeqlJUhBASHgYGBtDU1DSrPScnB8XFxWEzxpMQohQbz3VJTLvwshLl+M7zmN6vXgwE0Pv0s2sRVljrcfTD6XeBFwU02Vrx4rk34PA51Q4rJghuB/of/XeIPpeiXZuWj+SrHoTWqn73MUIIUQsVnSQaCaJyAiohSsd4UuFJws7Y2BhGRkYwNnb+p5OLVb01B4t9L+pJKIOfM8rb/S+8hMAqxhLuztpa8buTf4E36JPbLDoT4vVxKka1sLXIGTWIQT/6//wt8I5hRbvGmo6UKz8KfXq+SpFFn2jJGRI6lDPqi7Sik3KGLBY3oxNqtI75jM5ymkS07u5uefrxxFXq4vryL1+CJC1uOnOR1aDLugGlI8cAABLPo/G7P0D1D767KrGEu7/UPYfG4Racs7WhOKkA61OKUZG2Luze0Kdbi5xRw9AzP0VgsF3RxpoTkHT5/TDk0SQVqylacoaEDuWMuvr7+3H27NlZ7bm5uSgqKgrL9yjKGUKUorOcJmSa/uOn0di/tFTvTihXPPV0nT2HkXePrnZoYef0YBPqh88BAARJxLmRNtg8I8iOC691O6OR4HWBi08Go9HJbYzehKSL74F5/QVh+aGKEEJCIRKLTkKWgjWGb6+y1URPPEnYycrKgiiKYBex1uZivHzECYld2sxyEsvhTPol2NL3ktzmrG9A8gXbVyWmcPVU/YuK7SSjFZ/cdn/Yv6mvds6slK+7EYbc8kUfLwa8cJ15G1LAB0v15XDX74fEB5C46zbEVV8a9v/+kSjccoaEP8oZdfT19eHcuXOz2vPy8lBYWBjW10fKGbJYPO8HsLieeZGMCk8SdlJSUlbttd54sWlRM9nOxW7KQGvSJhSPvgcA6H/+RWTfclNUz3D76Qs+jCcbXsRb7e9AlETcXnktDNrwn812NXNmpUb3/xX2A48j6dJ7Yd11/qV4RD4A1+n9cJ87Bl/HaejzKmCpvhwMp0XCBdeDWeJNE7I44ZQzJDJQzoReMBhEW1vbrPZIKDoByhmyeM6gB4BF3pbmPzSi0S0YErW62kZxcF/Lil6jI6kGdsPEemCSIKDpBz9ejdDCVoo5CZ/Ydi9+cs2/4drSS3FJ4S61Q4oovu5G2A88DgAYffMR2A8/veDxkhCE68wBuJrega9jYgkff1cDGEhIvOh2MBzdGySExC6tVouNGzcq1sPMz8+PiKKTEDIbFZ4kaiWlmBY9k+28JBHG4Li8Od7QGBNjPTPj0vDhzXdCQ0/blsSQW46kS++VtxcqPkW/F4LbAXfDIbnoBABT6VYk7rkL7LSxnoQQEqsSEhJQVVUFjuOQn5+PgoICKjpJ1OEFQe0QQoIKTxK1Th3rgVY/44mRpOy8oBH80PNucEJA0c6JAWhFP/SSH0PpVeBMExMNsUYDvN09axq3GuoGGjHksqkdRlSw7rrlvMUn7xhG968+g+EXfwlve63cbizejNQb/hGszghCCCETEhISsG3bNio6SdQSIaodQkhQPy4Sdurq6uTpx6uqqpb9OgwDBHy8vL3r0iIcflM5VqS671VY/RMFV4d1I1pTtgIABFaHS64rw4WXlcjHOhsaEV+x+AljIsWQewRNtlY02VqRFZeOqoxyxOst5z8xjKxWzqyWybGdo28+ovjbuusWCF4X+v/ybQjjo/COj8rnmEq2IOW6fwBnjKx/+0gVbjlDwh/ljLoMBoPaISwZ5QxZrHitWbEdrbdXqPAkUamrbRT7XphaZPry68qQnKr8pWYhwhR0ytsF9tNg9To0x028Oex7oQm5BUnIK0oCgKgsOgVRQG1/g7zdNz6IMa8D1627jGbhW6G5ik9JFOBtr0XQpnxqbiyoQvodX6KJhAghMau3txcAkJ2drXIkhISegbch0eOWtzWSX8Vo1g4VniTsmEwm8DwPjWb56ZlXlIQ9V5Zi/6vNuPz9J5dvvaJcA0wn+qERg8rzBk8gobISx7s47LmyVC46w5UoTnUdZtml3x97/MzzONR1DJVp65Fsmpittzy1JOKKztXImbUws/gce/vPs45hTfFIu/XzVHSGWLjmDAlflDNrp6enBy0tU5MBRkvxSTlDFitBJ8LqG5K3NQgscHTkot8EEnZKSkrOf9AiXHLVehSVpsrF41D/uGK/LuACO8eE1Qlv/BHX3nwftl61flXiWCuBoID/e74eXh8Po0GDj1xfCZ128cWLj/fjjfZDcPjGMdR+GJlx6diZuxlFSXlrGPXaWK2cWQszi8/pGJ0R2R/9PrgYWTg6nIRzzpDwRDmzNmYWnc3NzWAYBllZWSpGtTooZ8hiJedno7tzar1avTY6S7TIeqxByBJNf2JpH/Uo9hkDDsV2yp7d8tf+Z/6EnqcWXgpDbc3ddgSDIrqHxhEMimjuti/p/NdaDsDhmyrG+8cHkROfCZahy8Jq02evm7M9675vQZuQFuJoCCEkPHR3dyuKzknBYHCOowmJXtoEC7RmyH90cdHZC4o+YZKYIEkSRm1uRVvmeKtiO/++DyL//qnZSDv/+EhYF59n2mwY9wbg8fEY9wZQ3zay6HMlScJb7YcVbTUZFdidv221w4x5YtCPgce/O+c+b9up0AZDCCFhoru7G62trbPai4qKkJ+fr0JEhJC1RoUniQlOuw8Bv3KNJHPALn/N6vXQp6Yi57ZbIqL4HBr1YHjMizHnxODzMacfQ2MeDM14qjsfhmHw7b3/gg9W3YIE/UQ3zzs2XL9m8cayvj9+DVLAO+e+hdb5JISQaNXV1TVv0ZmXF3nDPQhZKYkVwOqd8h9G7z7/SREoOjsQk4jW1dUFQRDAcdyqvQE1PPUKpqe7Bjz0wlSRpktOktcGy7ltYkxe5x8fUfw92a6Gt0/2oL1vqmtwkBfB8yJcngBMBg1cngB4XsSz+1uh1UzdTyrMSsDFm3PmfE2j1oCbyq/E1aWX4L3+MyhNLlzzn2OtrEXOrIahv/8cgQHlEj5cXBLiavbCfuBxAMqlVkjohGvOkPBFObM6urq60NbWNqs9GotOyhmyWF3MMB5d75K3k4MirlYxnrVChScJO3a7XV73ajUu1M6GRrQfOAmkbJfb4lmfYo0kQ5pynN1cxWd8eZkqS6oIgoj6thEMznia6fXzYFgGOWlxaOmxo8/mhlGv/JX2+Hnsrs4Cx83fuUGv0WFH7uY1iT1UVjtnVsPo23+Bq+5NZSPLIXnvR2Cp2AVWo5tznU8SGuGYMyS8Uc6s3HxFZ3FxMXJzc1WIaG1RzpDFGh3SYd2pS+VtSbe4HmyRhgpPEvXiK8rBlG0CbFNtJt+o4hjDHFO3Ty8+cz9wp2rreI6N+yEBMBk06BlygRdEMAyg13LIz4iDVsMiPyMO/TY3XN4AJAnQcCxy0iyQpInzU6xG+fVs7lEIkoA0c4r8lJesrrHDf4P94BOz2s1lO2Au3wFg7nU+p7cTQkg06ezsRHt7+6z2aC06CVkKnzcIXSBR3hZFUcVo1g4VniTsrF+/HpIkrWpRdPNnr0PPsQZ4TSkYGhiH669vKfab8+e+E5lz2y2qPemclGI14uaLi/HKkU7odRx6hlxwe4NITTTBZNACAEwGLVITTegeHIfZqEVOmgUJZj2u3JGvKDpFUcSJvtNw+Mdh1hpRmJiLgsRcmLTG+b59RFiLnFku++GnMfbmo7PaNdZ0JF12P5hpswZT8amecMoZEhkoZ5YvVotOyhmyWEy/HcBU7zujjwpPQkJCr9ev+ms2nOqHj7fAJIjISGQx5B5Q7DeXFM97rppF56TsVAs+cMU6vHa0CxqORffgOEadPsSbdfIxo46J7dz0OOSmx+GK7XlyYQoAoiTi7EgrHP6JJVTcQS/ODJ2DRWdGnjWyF+tei5xZDl9349zrdWp0sO6+HdqElFn75io+DbllMOSqn3fRLFxyhkQOypnlma/oLCkpQU7O3HMQRAvKGbJYVq1Zsc3OXmY+KtCstiTqSZIEjzuAYFCAw+5FV2MPRGZqfSRGo4EpN/zf/EwGLS7dMnFnWHr/gjTi8KJ32IURhxdgptov3ZKrKDoB4GDHUfz40G/Qae+BKE3cSbMa4pGTkBmynyHaGXLLkbDrNgCANr0QrHFixmDz+h2wlO+a9zzrrluQdOnEbMrWi+6kopMQEjW0Wu2stlgoOglZilh5Jk5PPEnU8/t4CMJUl4Wg3QGz4Je3tQnx4HS6uU4NO8NjE4PNvX4egijC7Q0i3qzDwIgHDANwLCsfN/1pqCiJeLbpVTj94zjWW4vG4WZUZVTg8qILwTJ0/2k16dLzYSrfBU1cMgAJvMOGhJ03gdUZFjzPuusWetJJCIk6WVlZAIBz584BAEpLS5E9x7wKhMQyEcqn4wITnSVadP5UJKKNj49DFEWwLIu4uLgVv57HHVBsi047OCkob+uSk1b8PUJlaMwLnhfBC6I8gZDZqIXbG5QnHuJ5EUNjXhTnWOXzjvacQrezX952BTzIjstAsilxju8SeVY7Z5YrMNoHf2/z+0UnwOoMMK/fBl3a4hZDp6IzdMIlZ0jkoJxZvqysLEjvd8mJpaKTcoYsljkrC+ib+rzKaLkFjo5cVHiSsNPe3i5PP15VVbXi13ON+xXbjHNkwaVUwtnwmAfeAK+YQGhLeRqONw7JEw95AzyG7cppuN/qOKLYzkvIxm2V14Qy9DW12jmzHKIQhLvxHXmb0WjBcFqYSrbSxBJhKBxyhkQWypmViaWCcxLlDFksVq8FMO1BSZR+bKDCk0S95oZBuN0BmM06cBoWnH1Ysd+QGTljHAuy4tHR70ScSaeYQKgkxypPPCSKEgoy4wEAHWM9KEjMwRcu/H842vMeXm5+C022VtxScRV1sV0B/2AH9OkF8jbvGAbvtkP0TkzcxLAsGE4DY8FGcEaLSlESQkjoSJIEv98Pg2HhYQWEkNm08akA3PK2xEXGELClosKThJ309HQIggCOW3k3A0mS8O7+dvD8xBhPvZ5DcVB5jCmCpnKvKklFfkY8ugfHUVmUDIZh0DTcgrLUEtywuwj17SPIS49DgkUPu9eBb771U/zX1V+H1ZiAXXlbsStvKzrGepCbkCmfFw1WM2fOh3eNof/Rf0POx38KjSUR3o7T6P/ztxC/5SpYNl4CX3cjRK8Lmrgk6LNL1zwesjyhzBkSHShn5idJEtrb29Hb24uqqiokJCSoHVJYoJwhixUMKnvngYnOaW2p8CRhJz09fdVey/H+mMhJfr8AU9A5dQDLwpgTWd1/Eix6JFgmBqE/fuZ5PFn/Au6puhk3l1+FjcVTy3U82/QaXAE3nmt6Dfdvul1uL0jMwTONr+Cxumdwe+V1uHPD9SH/GVbbaubM+TjeeQai1wXHkWdh3X0Hhv7+M0AU4Dz2Inyd9Ui54dNgOS1YY5xizU4SXkKZMyQ6UM7MbbLo7OrqAgDU1dVR8fk+yhmyWH1uZW88n8irFMnaok9FJKr1dtkV2ywDmAOj8rYmzgJNXGR2hWwabsGT9S8AAB6rewbPNL4i77N7HXi1dT8A4JWWtzEwPiTvmyw6AeDJ+hfQNNwSuqAjHO8ag/PkqwAA54lXMPz8QxCcI/L+wFAnfJ310KXmQmOxqhQlIYSEhiRJaGtrk4tOABAEAadPn0YwGFzgTEJILKLCk0S1gV6HYtvA8tBIgrytjY+HNkLvypalluCeqpvl7enF57NNryEoTLzpB0UeP3/3DzjYeQyP1v5NLjoB4J6qm6Omu20oON55BhI/Mfhf4gPwnFVO2mTI34CE7depERohhITUZNHZ3d09a19xcfGc63cSQubmH3cptlmRaTp4iQABAABJREFUutoSEnGGBsYV2wZBOdurLjkZnF65dlIkubn8KgCQi8nH6p6BL+iTn3ZOah3twKstb6PJ1iq3TXbPJYsz/WnnXFi9CWk3/iN1ryWERD1JktDa2oqenp5Z+8rKypCRkaFCVIREsMERAFNDvzRBKjwJCYmGhgZ5+vGKiooVvdaoza3YNnhHFdvG9xe2jmQzi8+/Nb486xhBEqO66FzNnJnP9Kedc0m5+uPQxKfMu5+El1DkDIkulDMTqOhcPMoZsljxWrNiO0pXU6HCk4QfnufB8/yK1z6UJAmOMa+izeQeUmybC/NX9D3CxczicyHRVnQCq5cz877+eZ52GvI3wly5e02+N1kba50zJPpQzlDRuVSUM2SxdMFRxHunZrbVSv4Fjo5cVHiSsKPT6cCyLDSalaWn0+EDHxQVbRbfiHK7pHhF3yOc3Fx+FU72nVY82ZypLKU46opOYPVyZj7ne9opBjzw9zTBkFu+Jt+frL61zhkSfWI9ZyRJQktLC3p7e2ftKy8vpxlc5xDrOUMWL1EXRLK3T97WYP7PHJGMfhNI2CkrK1uV1+nvtiu2WQawBMbkbc5shj41dVW+Vziwex1oHeta8Ji2sS7YvQ5YjZE5odJ8Vitn5nK+p50AEBjsAGuMW7MYyOpby5wh0SmWc4aKzuWJ5ZwhS2NglSVZtM4WEa0/FyGwjyq72cbFaZF35SVI2LgB+vQ06FNToLFE5lIqc5k+k+18AkIQzzW9FqKIosP5nnYCAEQB46deD01AhBASQpIkobm5mYpOQsiK0RNPErWGB5Uz2hasT0fJB6a6mUqiGDXjLqav23k+r7bux41lV0TdU8+1sJinnZOcJ15Bwo6boLEkrnFUhBASOkNDQ+jr61O0MQyD8vJypKWlqRQVISQSqfLE0+Vy4ZlnnsE3vvENPPDAA7jjjjvw7LPPyvt/8YtfYP/+xX2IJmQ+wwPKNZFS05VdIRk2eh74L+Zp5yR66rl4i3ra+T6JD8Bx5NnzH0gIIREkLS1NMWkQFZ2ErD6GEWAIuuQ/et59/pMiUEifeIqiiIceeggPP/ww3O6Jf1BJksAwDEZHp5a5ePTRRzEyMoLq6mr88Ic/RG5ubijDJCrr6+uDIAjgOA5Zy1zuRJKkWU88UzOip1vtdEt52jkp2p56rkbOzLSUp52T6Kln5FiLnCHRLVZzhmEYrF+/HpIkYWhoCBUVFUiNovkR1lKs5gxZOoc0hqzxFnnbp4uOHnkzhazwDAQC+PjHP453330XkjT/oqh+vx82mw0Mw+DUqVO444478Oijj6K4OHpmHyULs9ls8rpXy71Qe91B+H28om3mE89osZSnnZMmn3rev+n2NYoqtFYjZ2ZaytPOSZNPPZP3fnhVYiBrZy1yhkS3WM4ZhmFQVlaG7OxsxMfHqx1OxIjlnCFLY/fFoT3nenlbK7pxuYrxrJWQ9TX8t3/7Nxw5cgSSJMFgMOCuu+7C9773vVnHSZKEe+65B1qtFgzDwG6347Of/Sx4np/jVQmZm2vch+nDNxkGiE8wqBfQGrF7HXip+c1lnftS85uwex2rHFF0WM7TzknOE6+Ad42d/0BCCIkgDMNQ0UnIGvELLJyGVPmPW5ukdkhrIiRPPOvq6vD000+DYRiUlpbiV7/6FTIzMwEAX/7ylxXHGgwGfOMb38D999+PT37yk2hvb0dLSwuef/553HzzzaEIl6isuLhY7oK9XClpFnzxW1fB7+PhGvdhfNQFho2+bgv/dfg3ECXx/AfOQZBE/Nfh3+Cbl39hlaMKvdXImemW87RzEj31jAyrnTMk+kV7zkiShI6ODmRlZUGv16sdTlSI9pwhq0eIkRwJSeH55JNPTnwzjQY///nP5aJzIQUFBfj5z3+OG2+8EaIo4uWXX6bCM0aYzeYVv4bT4cOpY90AAI5jYX/7TYx+ax90SYnQp6Yi6YLtyL7phhV/HzUd66lFk611Ra/RZGvFsZ5abMupXqWo1LEaOTNp4mnnKyt6DRrrGf5WM2dIbIjmnJEkCWfPnsXAwACGhoZQU1NDxecqiOacIasrQWdSbEdrGRqSwvPo0aNgGAZ79uxBXl7eos8rLi7GpZdeitdffx2NjY1rGCGJNnxw6imgIIjw2x2QeB7+oWH4h4ahS478Lgy94wMwaPTw8X7oOC0CM8Z5xust0LBz/4p7gz54eR8MGj16xwewDZFdeK4m58lXwRoskIIBSKIw0cgwYBgWjFa/6HcDV92bsO66de0CJYSQVTC96AQAr9eL2tpaVFdXU/FJSIiwTPSstLCQkBSeQ0NDACYWGl6q0tJSvP766xgbozFTZPF4XpjakCSITuVYRsMinrqHu5vLr8LN5VehabgFL557E0d6Tsr71icX4Vt7v7jg+U3DLShLLVnrMCOKJPDwtJyAPqsE1ovvQXCwAwFbNzhTHOKrLwdroLvXhJDoIUkSmpqaMDg4qGj3er1wu91UeBISIoKoLMkEhlMpkrUVksJzchZbjlv6P+Jkv3itVruqMZHw5fV65TERRqNxWa/B81NPPHm3B+yMp4Gm3JwVxRhOylJLcLS3FnE6M8YDE8sUXVRwwaLOixarkTMAMHboKQT6WxHob4W/txlJVz4A87pt0FrTqeiMMquVMyR2RFvOzFd0MgyDDRs2ICkp8nsGqS3acoasHQ7KOkeiwnP5UlJS0NPTg5aWlvMfPENdXZ38GiQ2NDc3y9OPV1VVLes1+ODUE0+N2Yyij9yLbAzD3d4BX/8AzEWFqxVuWLi/5jbcs/EmvDdQjwMdR7Erd4vaIYXUauSMr/cc7AeflLcFtx32/X9Gzsd/AoaNzjeAWLYaOUNiSzTljCRJaGxslHukTZosOpOTk1WKLLpEU84QshpCUnhu3boV3d3deOONNzA6Orrou2gNDQ04fPgwGIbBpk2b1jhKEk2aTg/A7fJDZ9BAr9fAlJ2C9I0b1Q5rTWk4DbZlV2NbNo3XXCox4MPQs/8DTJ8hmOWQeuNnqOgkhESV+YpOlmVRWVlJRSchKmBipFdVSArP66+/Hk8//TR8Ph/+5V/+BQ899BB0Ot2C53R1deHTn/40RFEEwzC45pprQhEqCQPJyckQBGFZXbMBwO8L4ujBDkVbakbcKkQWfkRJBAMm5qdqX2nO2F7+DfixfkVb4u47YMiKnu7IRGmlOUNiTzTkzEJFJ3WvXX3RkDMkNCRIaocQEiEpPC+88EJceOGFOHToEA4dOoRbb70VH/7wh1FRUSEfI4oixsfH0dzcjNdeew1//etf4fV65aedF198cShCJWEgOzt7Rec77b5ZbXHxhhW9ZrjqGOvBuZE25MRnIi8hC/GG6Cywz2clOeNqfAeu028p2vTZpbBeSDPSRrOVXmdI7In0nJEkCQ0NDRgeHla0U9G5diI9Z0jo2H1OAFOfVaO1DA1J4QkA//Vf/4W77roLHR0daG1txde//nUAE+MJJEnCj370I/zoRz+Sj5+ckCgtLQ0/+clPQhUmiQJOh7Lw1GhZGIzROTlVt6MPTr8LDcPNaBhuxrrkItRkVpz/RAIA4F12DL/wkKKN4bRIvYG62BJCoocoimhsbKSikxCiqpAtGpOQkIDHH38ce/fuhSRJ8h9gaubame2bNm3C448/jvT09FCFSaLA+IzCU2/QQG8I2T2WkLF7nRh0KT9EpJgSVYom8kiShKFnfgLJ71G0WzbugTYp8pfbIYQQYOGic+PGjVR0EhIGBFE8/0FRIKSfxuPj4/Hzn/8cdXV1ePLJJ3H06FF0dnbKhSYApKamYtu2bbj55puxZ8+eUIZHooRjzKvY5oJ+BHu6ICavB6uJngL0NyceQ5OtFfkJ2cizZiNeb0FGXJraYUUM54lX4Os8o2jTJmcjae9HYn7MLCEkeoiiCJ9PeUN2suhMTKSblYSEA0ESzn9QFFDlU3hVVZU8rbQgCHA4HBAEAQkJCeeddIhEv3PnzsnTj69bt27J59tHlU+wJPsIWr71CNoZEfFl67Hxu99erVBVE+ADODN4Fl7ehzNDZ3Fm6CyuX3c5NDHaPXSpORMYHcDo6w8r2hitHinXfgKcntZaiwUrvc6Q2BOpOaPRaFBVVYXa2lq4XC4qOkMoUnOGhJ5Za1JsR+vtb9Uf/3Act2A3j2AwiNbWVthsNuzevTuEkRG1+Hw+BINBCMLy7v447MonnhrRD1biAQmQlvma4eZYXy28/NQdbAYM9hZfpGJE6lpKzkiigKG//RCSEFS0x2+9BsY8Gh8bK1Z6nSGxJ5JzRqvVorq6GmfOnEFBQQEVnSESyTlDQsvAO2DxT3W31Yh+FaNZOyEpPMvKysCyLL74xS/iIx/5yJLO/d///V/86le/QmpqKvbv379GEZJwwrKs/Gc5Zo7x1PE++c6RPiM6xgvX9jcqtjekr0dWfHT8bMuxlJwZO/gkAoMdijZ9ZgkSL7pzjaIj4Wil1xkSeyI9Z7RaLWpqamgoQQhFes6Q0EnU+pHqHpO3NQioGM3aCdkTz+njOJfCaDRCkiSMjo6uckQkXG3YsGFF57vGlXeJ9IJb/tqUnbOi1w4Xn9x+Hy4r2oW3Oo7gne4TuLhgh9ohqWqxOSMKPMZr31C0sQYzkq9+EKxWvxahkTC10usMiT2RkDPi+xOUzFfoUNEZWpGQMyQ8JGWlo6u1Xd7WaaJz6JTqXW3nI0kSenp68PzzzwMATCbTec4gBAgGBfh9vKLN6p1aKNuUnxvqkNYEwzAoSy1BWWoJPrrpTvowsUiBgTaY1m+Hv6sRgcGJC3zCBTfCkFWicmSEELIyoiiivr4eAFBZWUlP2QiJIPrUROitU4WnQR+2JdqKrNpPxfM8brnlFrS0tMy5X5Ik/OAHP8APfvCDJb82wzA0KJssysxutgCQ6B2QvzaXFIcynJDQaWhCrsUQPE54zh0Dw3Aw5G+ANikTEh9AwgU3qB0aIYSsiCiKOHPmjNw7rKGhARUVFVR8EkLCyqpdkTQaDb75zW8CUK7HOb2L7cz2xf4BgAcffHC1QiVRzDmj8OTEADTSxCQyrE4HQ0qKGmGtGlEScc7WBrvPuezu67FIEgW46g9C5N+fUIhhoE3ORvLeD1EXW0JIRJtZdAKAzWbD2bNnVYyKELIUHAsYWJ/8R8/RGM/z2rRpEz70oQ/h1VdfVbT39fWBYRjEx8fDbDaf93UYhgHHcbBYLMjJycGdd95JM9rGkKGhIQiCAI7jkJa2tHUpx2fMaKvnp5ZW0VqtqxGeqsa8DpwaaAAAGDUGZMSlYkvmxpi9q+3rboQht/y8OePtOIOgfarLtehxwFR+IbRJWaEMl4SRlVxnSGwKx5yZq+gEJlYMyMqi65vawjFnSHhqZwbxh8oReTuZl3CZivGslVXvQPzlL38ZX/7ylxVtZWVlAIBPfOITS57VlsSegYEBed2rpV6oZz7xNPBTEwvpEq2rEZ6qBl3D8tde3ocRz1jMFp2j+/8K+4HHkXTpvRiwFM+ZM5IkQRR48E6b3BYYaIWvqwGa+FSYSreoEToJAyu5zpDYFG45IwgCzpw5g7GxMUU7x3GoqqpCQkKCSpGRSeGWMyR8OUY1yDm3Td7WaGYPHYsGIfvESt0CSSgE/AIYdmqiHf20wlMb4euWjXjG8Pezr8PhG5fbMiyx+Ubm626E/cDjAIDRNx+BtuXgnMe56g+g/w9fhSYxE6aSzQgMtMPXNfHE2H7oSfi6G+c8jxBCwtlCRWd1dTUVnYREGLdLQLwjXf6jdyarHdKaCMmUSU1NTaH4NiRKFBQUQBTFZT3Ju/jKUmy/qADBgICT3/gu+LFeeZ8uKWk1wwy5d7pO4ETfaQBAvN6CwsQ87MnfrnJU6jDkliPp0nsx+uYjAAB94z5YrVaYt14vH8M7hjHy8m8g+j0Y/Mu3YMirgK/rjLw/6dJ7YcgtD3nsJDys5DpDYlO45Mx8RadGo0FVVRXi4+NViozMFC45Q8KfOGgHkCpvG32iarGspeicq5dEtJW8abrdAZx4pxMAMMhbwJiyYHI4wADQp0R44dlzUv7a6XeBY1ikmKPzjthiWHfdAgBy8el95ykYDUZg1y2QJBFDz/0Mon9ijK/EB+BtOyWfm3TpvfL5JDbRh3OyVOGQM1R0Rhb6/yCLZWUMim0uOutOdQvPmbPeTraJogie5+H1emG321FfX49nnnkGv/vd71SKlESK6Wt48kEeHMNhsuOtPoLHVwy7R9A80q5ou7r0EmjY6FxgeLFmFp+Tf4Pj4Ouqn/McKjoJIZFIEAScPn0adrtd0a7RaFBdXY24uDh1AiOErBjHxMZT8ZAWnq+++ioee+wx1NfXw+1207hPsup83onlMkR/ABBFaAW/vM+Qka5WWCvGMAyuXXcZjnSfxKjXDrPOhA3pZWqHFRbmLD7nuYBT0UkIiURUdBIS3URR+SBBZKLzwULICs+f/OQn+PWvfw1geRMNMQxz/oNIVAgGg5AkCQzDQKvVLulcr2di3SPeNTEBj0acXnhmrl6QIZZiSsKHN92B+2tuwzlbG2ye0Zh/2jmdedv14AUBzv1/nmiQZvdRoaKTTLeS6wyJTWrmTFNTExWdEYiuM2SxTOlZwMDUZxdJE52jIUPyU507d27eonOyoJyvXaPR4IYbbqB1PGNIY2OjPP14VVXVks71eSaeePKuibF9WnGiEGV1Omgs519DNtyxDIuy1BK1wwg7jY2NCJoKEWfNhsbeO2s/FZ1kppVcZ0hsUjNn8vPzYbfbEQxOvMdR0RkZ6DpDFouzGAFMrcQQrT1vQ/JjPfHEE3JhuWXLFjzxxBOoq6vDU089BUmSwHEcDh8+jFOnTuGNN97Ad77zHWRmZkKSJPA8jw0bNuDaa68NRagkgg32O3G2fhAjQy44x9wQGA6a97vaciYTPTWPcozLBs4xMKudNVio6CSERDSLxYLq6mpotVpoNBrU1NRQ0UlIFNGYrYptiYvOJ54hKTyPHz8OYOLC+dBDD2Hjxo3Q6XSorKxEfHw8BEHAoUOHYDAYkJWVhVtvvRXPPvss1q1bB0mS8MMf/hA2m+0834VEi4SEBFit1iWvQ9Z+zoaG2n7Un+rHuSEOQ5ZC+YmnJs6yFqGGhCfgxUvn3sSp/noMuoYhilE61dkKJCQkIKHxFTCSMGuf6HPBfvhpFaIi4Wy51xkSu9TOmcnis6amBhZL5L6nxRK1c4ZEDmbG8CkmSh95huSnGhgYAMMwuOSSS2b98lVWVgIATpw4oWiPi4vDj3/8YzAMA5/Ph8cffzwUoZIwkJ+fj+LiYuTn5y/pvLFRj2KbE4PyE09tBE9p3jbWhfGAG+dG2vF2x7t4qflNmphrhiRnB5iRTmXjtIv46JuPUPFJFJZ7nSGxKxxyxmKxUNEZQcIhZ0hk6HIqe2x5xaBKkaytkBSe4+MTE70UFhbO2ldSUgJJktDU1DRrX2lpKbZu3QpJknDs2LE1j5NENseMwlMjBsBJE8uraCP0buOo146WkQ5FW7olhboNTyMG/bC99GtlI8sh9x/+F0mX3is3UfFJCAl3PM+jv79f7TAIISEmzTEpYjQKSeFpNBoBYM4ZvQoKCgAAra2tc567YcOGBfcTMsnp8Cm2dbxXXsNTl5gY+oBWwbff+h88d/ZVnB5sgt3rgCRJKE2efQMnlvU/+u+Qgsr/e+sFN0KbkArrrluo+CSERASe51FXV4ezZ8+is7Pz/CcQQqIG7/crtpko7dgWksLTarUCwJzjNHNzcwEALpcLQ0NDs/ZPds11OBxrFyCJCi6n8pdWL3jlr3XJSaEOZ8X6xgfR4+yHK+DBWVsrXm87CEBCgiFyuw2vNtvrD8Pfe07RpolPgfXiu+RtKj4JIeFusuh0Op0AgPb2dio+CYkhQvegYlsbiM4noCGZMqmiogLd3d04fPjwrH15eXny13V1ddi7d69i/8DARJ9nGtMWO1pbW8HzPDQaDYqLixd1jiRK8LgDijYDPzUttT41ZVVjDIV3upTjnhP0cbhu/eUqRRN+7IefhvPdv89qT77qAbCcsnfF5Ky2o28+ovibZruNXcu5zpDYtlY5w/M8amtr5WFJk3p6epCVlUXrP0Ywus6QxTJrDIrtaB1QFZInnrt27QIAtLS04KGHHlLsy8/Pl7viPvfcc4p9Xq8Xr7/+OgAgJSXyCgeyPG63Gy6XC263+/wHy+cEIIrKmxOG4NSbuD4tbdXiC5Xm0Q7F9o7czbDoIn8t0tXg626Ui0cA4BNzIZiTwacUwbxu25znzPXk09fduOaxkvC0nOsMiW1rkTPzFZ06nQ41NTVUdEY4us6QxdLxLhgDjqk/QafaIa2JkBSeN910E5KSJro6/uxnP8Ptt9+Offv2AQAYhsFll10GSZLw2muv4dvf/jbOnTuHd999Fw888ABsNhsYhkFNTU0oQiURymn3KhskCQbeNfE1w8CQkR76oFboS7s/ie9d8WXcWHYFUk1J2Jm7Re2QwoY+Zz2MxZsBAIaCjRBTi+DP3gjfljsWPG968Wm96E4YcsvXPFZCCJlLMBhcsOg0m+lGIyGxIknrQYarTf6T5mlXO6Q1EZKutgaDAd/85jfxT//0TxAEAfX19Th27Bguv3yi2+DHP/5xvPTSS5AkCY8++igeffTRWa9x9913hyJUEgYmJ5RaivEZEwtxYhBaYaLrLWcwQBuBC20zDIOipHwUJeXjg1XUJXQ6f38b9Fkl4MwJ0CSkQi9JMBVtgj679LznWnfdAkNuGRWdMW451xkS21YzZ4LBIOrq6uYtOk0m06p9L6Ieus6QxTJxWgBTD1G4+Q+NaCFbnXTv3r146KGHkJ2dDUmSkJOTI+9bv349vvrVrwKYGMs5/Q8APPjgg9i2be7ucyT6sCwr/1ksp11ZeMZbDSi67XqkXXE5knftBMNF9q8wwzC0hMr7JD4IX8dpAIAmIXXib7MVhpzSRecMFZ1kOdcZEttWK2fO96STis7oQdcZQpRC8sRz0sUXX4zXXnsNx44dQ3q6suvjBz/4Qaxbtw6//vWvUVtbi0AggLKyMtx///249tprQxkmiUBOp7LwzChMR/E9kdk1lRd4nOw/g5z4DKRbUsGxkV00rzbR74G5bAc8re9B8E58cDOVbALD0Bs7ISS8TRadLpdL0U5FJyEkFoS08AQm7v5ccMEFc+7btm0bPdkkyzI+Y4xnvNUwz5Hhr298EB32HnTYe6BlNchJyMTWrCp64gnA39eCvj9+DfHbr4N15y0I2nogeJzQWiNvDC8hJLbMV3Tq9XpUV1dT0UlIDGMggRN5eZtl+AWOjlwhLzyXa3R0VJ6giES30dFRiKIIlmUX/X/unDHGMy4+cgvPLkev/HVQ5OEN+qjoBCBJ/5+9O4+Por7/B/6a2Xs3901IIFxJIJAAyqGCeCsgoKh4W22/2tpaW/VXz1ar1tZq1dZqrfa01qPeByACigqIgEII4QwhQC5yb3Y3e83OzO+PdSc7ySbZTXZ3djfv5+Phw8zs7Mw74Z3JvudzCWhf/w+IPIfube/DtvcLZF7wfSRNPX1YOUNGN8oZEqqR5MxgRefMmTOl2f1JYqH7DAlWDzox3rxP2nZpE/NzX1wUnm+++SaeeuopbN++XelQSBQ0NDSA4zhoNJrgC88AYzzjUW3ncXxc8zkKUsYgw5AGhmEwLjVf6bBigq3qc7gaD0vbvK0Lni7vOr/DyRkyulHOkFCNJGcsFku/JTWo6Ex8dJ8hwepyG9Ccs0DaZuEc5Oj4FdHCs7OzE7W1tWhra0NmZiZmzpwJnU4X9Ptramrw0EMPYffu3RGMkiQCVsWAZRlpLc+U1Pj8Q769fjdqOupQ01EHo8aAKZlFuHTqhUqHpTjB2SNbtxMANBljkDp3mUIREUJI8DIzMzF16lTs378fABWdhBA5B6dFc0rvzPz6BF3HMyKFZ319PZ555hmsX78ePM9L+/V6Pb73ve/hpz/9KVSDzDLqdDrx5z//GS+//DJ4nocoitTVcBQpKCiQuqYE66rvz4Faw4L38OisbUBWRvwtui2KIrY39D5ksXMOpBtSoVHF3/cSbp1f/g98T7dsX+b5N4FRe382w8kZMrpRzpBQjTRncnJyAABHjx5FRUUFFZ2jAN1nSLA4iEqHEBVhLzwrKytx6623wmw2S8uhAN7lIBwOB1588UXs3bsXL730UsDi8/PPP8cjjzyC5uZmWcHpu2GTxBdqdxRRFLGvsgk8L4B3ONDy3nvIs9ZCz3qgMhhQ/uTjMOTF/uQzx80NaLa1yvZdMGmRQtHEDlfrCVi+WSvbZ5xyKoyTe2ctpi5MJFSUMyRU4ciZnJwcZGVlUSEyStB9hgQrRTs6JhcL653P7XbjrrvuQldXl7RPq9UiKytL2hZFEV999RWef/552Xvtdjvuv/9+3HrrrWhqauoNkGVxww03YO1a+QdPQnzcLh48LwAAPDY7eFYNleCByHHwWCzQpCQrHGFwUnTJuLxsCfKTvUVytjEDkzLGKxyVskRRRPvaFwC/h1hgVUg/61rlgiKEkEH4P3QPhIpOQkhf6j5L5yVqP8+wtni+8847aGxsBMMw0Ov1eOCBB7B8+XJotVrYbDa88soreO6558DzPP71r3/h+9//PpKSknDy5En84Ac/wNGjR6VWTlEUUV5ejocffhhTp9Ji72RgDrtb+pq328GIAlQiBwBgtVqo4qQ7U4YxDaumL8MVZRejvrsJnY7uUd/FvGf/FtmEQgCgH1cGbdZYhSIihJCBud1uVFVVYcKECcjMzFQ6HEJInOAF+QMpIUHXJg9r4bl161bp6z/84Q8499xzpe2kpCTceuutSElJwaOPPgqn04lPP/0U8+bNw5VXXonW1t4uhsnJybjjjjtw1VVXRfWDtyiKWL16Nd555x0cOHAAdrsd2dnZmDNnDq699lqUl5eP+BpOpxNvvPEGPvnkE9TV1cFmsyEzMxOnnHIKrrvuOsyePTsM30l8EwRB+jqYJ8MOOyd9zTsc0PBu6UmRymiIu+KNYRiMSxuLcWmju7gS3E60r/+nbB+jMyL9zCvB9HkyGGrOEEI5Q0I1VM64XC7s2bMHdrsd+/btw/Tp06mr5ShH9xkSLBXkk68KTFwsPBKysH5XR44cAQAUFxfLik5/V199NV566SW0trbi22+/xXvvvYeWlhaplfOCCy7Agw8+KOueGw1OpxM/+9nP8Pnnn8v2NzY2orGxER999BF+/vOf45Zbbhn2NQ4ePIif/vSnOHHihGz/yZMnsWbNGqxduxY/+tGP8POf/3zY10gE1dXV0vTjwRT7Tkdv4ZlUPAUFs6ZgYjbgbmuHKPCDvDN2uDxuaFRqsAn6hGs4Oj9/HYJdPqtbctlC6AtK+h0bas4QQjlDQjVYzvgXnYC34KiursaMGTOQnp6uRLgkBtB9hhC5sBaeHR0dYBgGc+bMGfAYlmVx6qmnYs2aNVizZo10k05KSsLDDz+MJUuWhDOkoD3wwANS0Tlp0iSsWrUKWVlZ2LdvH9544w3Y7XY89dRTyM3NxYoVK0I+f319PW666SZ0dnYCAE477TScf/75SEtLw65du/DWW2/B5XLhhRdeQF5eHq666qpwfnsJ7UBVM8yddmj1auh0auSNzUHq1DFAHPXQ/rapCq09HcgxZSEvKRv5yTnQa+JzLdJwcHc29ZtQSJ2ag7Qzr4y7FmxCSGJzuVyorKyEw+GQ7dfpdDAaR8eEIYSQERoln/nCWnj6brpDtVYWFBQA8E4oJIoiJk6ciBdffBGFhYXhDCdoW7duxerVqwEA8+fPx0svvSStN3rxxRfj8ssvxzXXXAOz2Yzf/va3OPfcc5GUlBTSNR5++GGp6LzrrrtkLadLly7FsmXLcN1114HjODzzzDNYuXIltFptmL7D+GIymeDxeKBWB5eeh6pPwmpxSdtJKXpMLR8TqfDCThAFtPZ0wM1zaLA0o8HSjLljK1CUrszvQyxo++h5QBT89jBIW7gKalNqwONDzRlCKGdIqALlzEBFp8FgCHntcpJ46D5DgsWqRkeOhPW79Hg8YBhmyButyWSSvs7Ly8Mrr7yi6CD8f/7TO45MrVbjN7/5Tb/4J02ahF/96le46667YDab8dZbb+Gmm24K+vw7duzA5s2bAQArV64M2F135syZuOqqq/DKK6/AbDZj27ZtWLRodC6lMWnSpJCOd/h1tQWAtIz4mEzIp8nSApfHLWvJy03KVjAiZdn2bYWr4aBsn358GZJnnDnge0LNGUIoZ0io+uYMFZ1kKHSfIcEyOy0A/FYBUS6UiFJkQJn/k5/bb79d0aLTbDbjq6++AgAsXLhwwFbXJUuWSHGuW7cupGv4WlN1Oh3uuOOOAY+7/PLLcdVVV+HWW2+l2fCC5HRw8HCCbF9GlmmAo2PTfyrfxsc1m7C7qRrN1lYkaY0wjJIuF32JogiPvRua7HHSPkajQ9aF/9dvQiFCCFEKFZ2EkHASIAx9UAJQvF33rLPOUvT633zzjTTr2Pz58wc8jmVZzJkzB+vWrcOePXvQ3d2N1NTA3f762rhxIwDg9NNPR05OzoDHlZaW4uGHHw4hetLRauu3LysntG7QShIEAbWdx2HnHKjtOo7aruNI1cXHuqORwLU3QHBYYSqdD8+YSbDX7kLStIXQZo/ebseEkNjidDqxZ8+efkWn0WhERUUFFZ2EkJAJQqK2ccopPoWm0rO91dTUSF8XFxcPeuzkyZMBeFtlDh8+POixPq2trejo6ADg7U7rw3EcDhw4gC+//BLV1dXweDwhRk4AoKO9R7atYkXYd++E5dBhuM3mIRfyVlpNZx2sbvn3sKTkHIWiUZbo4WCv3S1tq1OzkTp3OdLPvlrBqAghpJfT6QzY0klFJyFkJDzi6KgDFG/xVHqGysbGRunrsWMHXzcxLy9P9r7BZu/18S0xA3gnVeI4Dn/961/x2muvSZMNAUBaWhpuvvlm3HTTTVCpRneXwuPHj0uD8cePHz/osd1d8j/+KrcDh//wb2m74o9/QNKECZEIMyz2tcofYBSm5iPHNDq7WTuO7YXglv97mqbMhiqIbseh5AwhAOUMCd3hw4dRU1MDjuOQlpYm7TcajZg5c+aonRCQDIzuMyRYBrX8s06izt+veOGpNP/ib6jWV/8/NGazOajznzx5Uvpaq9XiuuuuQ2VlZb/jzGYznnzySVRWVuKZZ56BRqMJ6vyJqLu7W1r3aijWbqdsW8O7ZNu67NiepOfSqRfh1Pxy7GquxrdNe1GWM0XpkBTB93TD1XREtk+TngdNVnBdbEPJGUIAyhkSGo7jUF1dDafTKXs4TEUnGQzdZ0iwdLwDWo9d2tYIzkGOjl+jvvB0Onv/YYfqIuP/h8X/fYPp6entRvnEE0+gvr4eU6ZMwf/7f/8Pc+bMAc/z2Lx5M5588kk0Nzdjw4YN+OMf/4hf/OIXIX4n4XPkyBFMmjQJycm9Yw1dLhcOHToEwFuAjxs3rt97fGuy9l0kub29HU1NTQCAwsJCWYHP8zz27dsHAEhOTsaEPq2Tx44dg8ViAQBMmzZNNjGV2WxGY32r7HgN7/fvotFgf20tjEYjpkyRF3QNDQ3SQ4fi4mLo9b1Pmmw2G44ePQoAyM7Oxpgx8qVZDhw4IP0hmTpVvlhoc3Mz2traAAATJ06ULbvjdDqlLtoZGRkoKCgAwzAYlzYW49LGokw9EXa7HXv37sWMGTNk521ra0NzczMAYNy4cbKHIB6PB/v37wcApKSkoKioSPbeuro6WK1WAEBZWZnsQ1NXVxfq6+sBAPn5+f2WQqqqqgLg/XDl62ruc+LECekBTElJiez3x2q1oq6uDgCQm5uL3Nxc2Xv3798Pj8cDrVaLkuIpEFkVjMWnwnF0D7q7OmB3OMEZizDJbpfNgu1wOKTu8ZmZmf16KXg8HlRVVYFlWUyfPl32Wmtrq/QgqKioCCkpKdJrvq7vAJCamtrvyXRtba30uzx9+nSwbO8ohc7OTjQ0NADw9mrIyMiQXvMtIg94Z/PuO8Ph8ePH0d3dDQCYOnWq7MOJxWLBsWPHAHh7W/QdH15dXQ1BEKDX6/sNE2hsbJS6+E+ZMgUGQ+9Mzz09PaitrQXgXfoqPz9f9t6DBw/C7XZDrVZj2rRpstdaWlrQ0tICAJgwYUJc3CNOnDgBABgzZgyyAzyI4jgONTU1MXuP8FdTUwOHwwGGYUbVPaK0tFT2WlNTE9rb2wF4Zw0N5R5x+PBhOJ3OkO8RoijCYDDA6XRK80KYTCZUVFRAq9XSPeI7iXaP2Lt3r/RvP5x7BMfJZ933oXuEVyLdI0b6OULrasFYS5u0TwU3AOXuEb4cDLeIFJ7V1dV4//33B33dZ7Dj+rrkkkuGH9QA/MdWDvXE0v/1YMdk+m6iAFBfX4+pU6fiv//9r+xGsnTpUsyePRsrV65EZ2cn/v3vf+Oaa64ZsutvpPA8L/1h9RFFUbqB8jzf7z0ej2fAG6wgCNJrfc8LQHrN9zOdOnUqRFEEwzA4fvy49Hrf8ZqiKMLpkP87aP0LT612wLj89wc671DxBvO9DnbeQPnDcZy0JFE4zxvOfxt/PM8PGJP/eQPli+97ZVkWll3r0bX5TWScfS2ST7kQ3d9sglvrhodRD/q9+p/XlzOHDx+Gy+WS3dADxTtYfkfzZzhYHgbzMxQEIWDX/MH+bYL9XQ40PjrYn2Gk7xEDnTeU3+WpU6dKHyrj6R7Bcdyou0eEct6h8tD3Mwz1HgFAKkocDoes6AToHhHovPF+j/CdVxTFgOtwBnveQA+n6B7hlUj3iJH+DI1JSWA1vTWDVtX7b6jEPSLQv2U4RKTwXLt2LdauXTvoMb5fivvuuy+oczIME5HC0/8JFcdxgxafbrdb+jrYbjV9k+DRRx+VFZ0+Y8aMwe23345f//rX8Hg8eP/99/GTn/wkqGuEm0ql6vcLxzCM9BQlUIKq1eoBu5KwLCu9FugX2fea78bufx7/8/a9kTIM0+98JndX73X1emg0moBxDXXeYOINdF7/73Ww86rVapwwe8cX5yXnQKvyxjlQ4RnKeQf7Xgc7bzD/Nv5UKtWAMfmfN1C+aDQaMAwDtcCh68s3IDhsaF/zAqy7NkA1ZyWYJD00DDPo9+p/Xt8+rVYLQRACfi/+8Q6W39H8GQ6Wh8H8DAVBCBjXYP82wfwuC4Iw5L+5kveIgc4byu+y794gimLM3iMCnXfU3SNCPO9QeajRaMDz/LDuEVqtFvn5+XC73bKiE6B7RKDzxvs9wnfekd4jAn0OoXuEV6LdI0byM9TmZcDY0Vt46nW99xcl7hGBvv9wYMQwTvtZWloKhmEiMpMowzBSE3Y4/fznP8fHH38MwLu0in+3kL42bNiA2267DQBw//3343vf+96Q53/55Zfx29/+FoC3Wf6TTz4Z8NjOzk6cdtppAIAFCxbgH//4R9Dfx0jYbDap+wvg7e4QqDiORc/9bhM6/Wa2nX5yE3JtxwAASVOmoOIPjysU2eBEUcTHNZtgc9vBMgyyjBmYkVuKTKOyszxHW/v6f8Kyc41s35jrHoFhfJlCERFCCCGERFfdp2tQ+dkuaVuvY7D4wV8qFk+kaoOwtngGM8trrPHvn202mwctPP0nFPIfozEY/3+kvuMO+srIyEBaWhrMZjNaW1sHPZZ42azysbZaT++sqOpkU9/DY4bV3QOb2/tkSxBFtPZ0gGUUX90oqtztDbB8u062z1R6GhWdhBBF+ZZK8R/3SAghZOTCWni+8sor4TxdVPgPoG5ubkZh4cCzaPrPUNt3sP1A+g78Hoqv606k+lbHA4vFInWX9H8w0Jfb5YHbJe+zruN7uymoB3mIoLSNRzajtacDWcZ0sAwLg1qPNP3A32si6vz0P4DQ++/HqDTIOPf6YZ0r2JwhxIdyhgTicDikmednzpwpKz4pZ0ioKGdIsFo1Hfi85Li0nSYwWKxgPJEy6me19Z8dqqamBnPnzh3wWN8sWAzD9JvdbCD+s0T5rxkaCM/zUqtq39m7RpNjx45Js731ndnOn9XSf2ZhnV+LpyY1NSLxjZQgClhb8xksLhs0rBq5Sdm4YPJCxde0jSZ77W7Yj3wr25c6bxk0acPL+2BzhhAfyhnSl91uR2VlpTSfQ2Vlpaz4pJwhoaKcIcFqNwsQWnpnIu5hXYMcHb9GV9++AGbNmiUNqt2+ffuAx/E8j507dwLwjmUN9slVenq6VKTW1NTIWk372rdvn/QHr++0xqQ/t4tHSqoeLOst2FQCB5XYO+OXJi02C8+6rnpYXDYAACd40GBpRlHauCHelThEgUfH+n/K9rE6E1LmLFEoIkLIaNe36AS8y3/4lhUhhJBIslkYZJ+cJP1nbE/Mz4WjvsUzJSUF8+fPx+bNm/HZZ5+hqakpYDfaNWvWSOs1LV4cWuP30qVL8cc//hGiKOJvf/sbfvWrXwU87r///a/0dajXSCR5eXngeT7gDFz+0jONuOHHp0GrUYHjOOy49eey17WpaZELcgS+bdor2x6TnIPS7EkDHJ14LN9+Aq6zSbbPMKEcKsPwB60HmzOE+FDOEJ9ARSfgXROypKRE2qacIaGinCHB8rSYAWRK2wZnYg65G/UtngBw4403AvAup3LnnXfCZrPJXj9y5Agee+wxAN7FW6+44oqQzn/VVVdJkxG9/vrr+OCDD/od8/7770v7Z8+ejYqKilC/jYSRk5ODMWPG9Fvotq/2Vhuqvm3AN18fx66tR2HVyRct1mYGNwFUtGUa0jAxvfdJ1iljZgxydGLhHTZ0ffG6bJ/KlIbkWeeDUQWeZjwYweYMIT6UMwQYvOgsLy+XLTNAOUNCRTlDgpUsyNsCVf2X3UwIo77FE/AuXXLhhRfik08+we7du7FixQpcffXVGDNmDPbv34/XX38dPT3eJTvuvvvufjPabt++HTfccAMAYO7cuf0mWUpPT8cjjzyCn/3sZ+B5HnfffTc+/vhjnHPOOdBqtdi0aRPWrfPO7qnT6fDoo49G4buOf25Xb7dawekEK8gX1tWmx+bSJOdOWoBzJy1Ap8OMXU3VmJxRpHRIUdP1xRsQXHbZPmPJPOjHTVUoIkLIaNXT04M9e/YELDorKioCrplHCCGRoGXl95tEnfWD7qrf+f3vf4+enh5s2bIFDQ0NePLJJ2WvMwyD2267DVddddWwzn/++efjqaeewi9/+UvYbDZs2rQJmzZtkh2TlpaGF154AZMnTx729zGa+BeevNMFtchJ26xOB1WMT4WfYUjDeZMWKB1G1LjbG2DZJV/HVpNVgNRTF4NVawd4FyGEhF9PTw8qKyvBcZxsPxWdhBAl8IK8E6qQoEvs0Z31OwaDAX//+9/x0Ucf4f3338eBAwdgtVqRlpaGU045BTfccANOOeWUEV1j8eLFOOWUU/Dqq6/is88+Q2NjIxiGQWFhIc477zxcc801Qa8PSgC3u7cfAm93QCX0foBQ6fVQ6XVKhEUG0L7ub4DoN2aBYZEy83xoskJbcogQQkZioKIzJSUF5eXlVHQSQqLOkJED+M0/KqoS8z6UmN/VMDEMg+XLl2P58uUhvW/evHk4dOhQUMfm5OTgjjvuwB133DGcEEeF6upqafrx6dOnD3gc5194OhzQ+nW1ZfU6sLrYKzz3thyEnXMg05CODGMa0nQpYNnEfKrlr+fIt3Aer5bt0xeWIrni7LAsIxNszhDiQzkzOo2k6KScIaGinCHB0qSnAOiRthlVYna2pcKTxBxBEKT/BnPkYCt4XoBGq4Kz2+U3F5i3xZPVxl73zUbLSVhcNhw3e9d0nT1mOiZnFikbVBR4utugSkoHb+sCADAaPdIWXAFWbwrL+YPNGUJ8KGdGH5vNhj179gy7pZNyhoSKcoYEi9Wa4F94imxizoRMhSeJOXq9HiqVSjabYCA1B1oh8OJ3WyYkaZIAt3fJG5XJBCbGWhLdHre0fqdPhjFNmWCiiLdbINitSJp5Htytx+Cs2wtTyTwYisL39DfYnCHEh3Jm9Dl+/Hi/ojM1NRUzZswIqnst5QwJFeUMCZaqz4N4hk3MEi0xvysS14qLi4c8xung/IpOLz3XO1uqJmn4a0JGgiiKuG/j78EyLMYk5SA3KQt6tQ5puhSlQ4soURRhr/kGoiiAYRjocidAl1WI5NkXgQnjwPlgcoYQf5Qzo09paSk4joPZbAYQWtEJUM6Q0FHOkGCdtLTItl0iN8CR8Y0KTxKXLGZHv31avrc1UZ0SWwVdfXcT6rubAADHzQ1gGRZXz1iR8OM73S3HwHW3yfbpx5dBk5o5wDsIISQyVCoVZsyYgb1790IUxZCKTkIIiSSXIF/WSRDFAY6Mb4rccU+cOIGPPvoIu3btQlNTE7q7u/GTn/wE1157LQDg17/+NUpLS7Fy5UpoY3CcHlGexeKU7xBFaPnefZrU1ChHNLhvmqpk25mGNFxcfK5C0USHwLngqNsj28fqjDCML1MoIkLIaOcrPn1fE0JILBA4+Vr0SMy6M7qFp91ux6OPPooPP/xQGmgtiiIYhpEt4Lxu3Tr873//w9/+9jc89dRTmDlzZjTDJHHA2i0vPFWiB/5th9q02Co8dzXJZ3Q9Jb888T/0sCx0Y4vhPLEfouCdgdg4+RQwKhrrQghRTsLfewkhccfd2AIgV9rWcIk5IVXU+vlZLBZceeWVeP/998HzPERRhBigGbmnp0caf9HY2Igbb7wR33zzTbTCJDGgsbERJ06cQGNj44DH9Fhdsm3/NTwBQJMZW+uh/nT+jbhp1ipU5E2FmlVjdv4MpUOKKPvRSjT9+wEwDIOUUy6EJj0X2qwCaDPzI3K9YHKGEH+UM4nLarWiuroaPM8PfXAIKGdIqChnSLAMovyBGJugLZ5RKzzvuusu1NTUQBRFZGVl4c4778R//vOffsdpNBr84he/QEaGt3BwOp24++674XD0H9NHElNHRwfa2trQ0dEx4DH2HnlfeHWfwlOflRWR2IYrNykbi4vPxgOLbsc/LnkS03NLlA4pYkRRROdn/4X7ZC2a/vNLtH/8EnQFU2EqmRexawaTM4T4o5xJTFarFXv27EF7ezv27t0b1uKTcoaEinKGBEsnuKHi/f7rM+YzUUSl8Ny6dSs2b94MhmEwd+5cfPLJJ7jlllswd+7cfsdqtVr84Ac/wOrVq6Uuts3NzXjvvfeiESqJE44eeaHp/wvK6nQxN7mQP4NGD3WCrs8EAPYj38LdUidt9xz4Cs5je8GoaBIPQkjkWCwW7NmzBx6Pd6yU2WwOe/FJCCGRkK7uxrjufdJ/BdYDSocUEVH5JPjhhx8CAAwGA55++mmYTEMvGp+eno4//elPuOCCC+B2u/Hpp5/immuuiXSoJAZMmTJFGvs7EKdDXnj6t3iq9Hqog8ixaHHzHERRhE6d+BNliaII8+Y3Zfs0GflIrjg7otcNJmcI8Uc5k1gsFguqqqqkotMnnP++lDMkVJQzJFjJKi2A3vlLErV5IiqF57fffguGYXD22WcjK4QukLm5uTjvvPOwZs0aHDp0KIIRklhiMBiGPEalljfW55dNwPjzroO7owOiCKhNxkiFF7IT5kbsbq5GuiEVuUnZGJOcgyxjbI1BDRdH7W64mmtl+9IWXAYmwi28weQMIf4oZxKHr6Wzb8tmeno6pk+fHrbJhChnSKgoZwiRi0rh2d7eDgCYNGlSyO+dMGECAKC7uzusMZH45nTIn2rnTZuAgnMmKxTN4BotJyEC6HR0o9PRDQfnTMjCUxRFdHz6smyfOj0PSWULFYqIEJLoBio6MzIyUFZWRjPYEkJIDIlK4em78fuWUAkFx3m7UOr1+rDGROKb0yEfdG00xV43VlEUse3Et2iytkDl1+KXl5StYFSRYz+8E1x7g2xf6vwVEW/tJISMTt3d3aiqqgpYdE6fPh0sG7X5EwkhhAQhKoVnTk4Ojh07hgMHQh8o61tKJScnJ9xhkRjV09MjjYkYaDywvc/kQgZj7K0N2WxtwR+//gdUrAo5xkyMSc5BafYkjE3JUzq0sBNFEZ1fvCbbx+pNSCo9LSrXDyZnCPFHORPflCg6KWdIqChnSLCcMGN81z5p261NzHHBUSk8582bh7q6Onz55ZdoaGhAQUFBUO/76quvpPGhp556aoSjJLGitrYWHMdBo9GgvLw84DEOu7zF02CMvRbPb5uqAQC8wKPZ1gqLy4ZlJefJWj8ThePoHnBt9bJ9SWULoTImR+X6weQMIf4oZ+KXUi2dlDMkVJQzJFhmToWu1KnStsjQcirDtnLlSgCAx+PBz372M5jN5iHf8+233+LOO++UtpcvXx6p8EicEQQRajULhu19GmSIwa62u5r3yrbnF87GtJxihaKJrM5Nr8i2GZ0RqaddqlA0hJBEZTabAxadmZmZ1L2WEBK3ejgDjmTNkf5rTJmhdEgREZUWz/Lycixfvhwffvgh9u/fj6VLl2LVqlWYNm2adIzZbMbBgwdRU1ODDRs24NNPPwXP89JsuKeccko0QiUxICsrCzzPDzgpBMsyuOWuM8EwAM950HXkOJK1sbVOm288M8MwEEURAHBK/vSEnFLdfrQS7pZjsn2mkvnQpAY/g/VIDZUzhPRFORN/uru7A67LmZmZibKysogXnZQzJFSUMyRY7u8+Kya6qK3o/pvf/AYNDQ3YtWsXOjs78de//hVA7xpbL730El566SXpeN+H9cmTJ+OJJ56IVpgkBuTn5w95TOWOevC8AL7HjqaPViPfUgOD6ITKaETFHx6HPk/ZcZQsy+Khs++AzdWDypP7sKt5H6bnlioaU6R0fta/tTN9weVRjSGYnCHEH+VM/NFqtVCr1bLCM1pFJ0A5Q0JHOUOCZdKOjqV3otYnRavV4uWXX8b3vvc9qFQqiKIoFZc+vn2+gdhLly7F66+/jqSkpGiFSeKAKIjgeW+LoqenBwDAijxEnofHZoM6NVXJ8GSSdCYsGD8Xt8+/CXq1Tulwwi5ga2fpfGjSc5UJiBCSsAwGA2bOnAmdznsvzcrKilrRSQghkaRj5W2Bidc/zitqLZ4AoNFocN999+H73/8+3n//fezYsQO1tbXo7u6Gx+NBamoqCgoKMGfOHFxyySXDWveTJD5f0QkAnh47AG/hCQCsTgsVLb0TNV1fvCHbZrQGZCy8UqFoCCGJzld81tfXY/LkyVR0EkISgiDIS00xAYdmAVEuPH1yc3Pxwx/+ED/84Q+VuDyJcx5Pb+HJOxwAAEb07lMZjIqPo+R4DltPfIMsYwayTRnINKRDrVLkVy2iBJcd+vHTAVYFV9MRQPAgaerpUEdxbCchZPQxGAwoLk7MidoIIaMTA3mjCc/E3jKB4RCVT8MnT55EnsJj7kj8OHjwIDweD9RqNUpL+4+L5Lje8T0p00qRNHkSZpZeDXdrG0Re+UmGOuxdaO3pQGtPB9AGqFkVLim9MOGezDvrD4JRa2CYUA5dQQnczbVIO/MqRWIZKmcI6YtyJrbZ7XYYDAbFHyT6o5whoaKcIcGKnTtdZEWl8DznnHMwd+5crFixAhdccAEtoksG5Xa7wXGcNDNsX8ePtKOpvhsaDQu1RoXkFB1SpkwGpkyOcqSBtdk7Zdtp+tSEKzoFlwOuk0elbVajQ+q8ZdCkZCgSz1A5Q0hflDOxq7OzE9XV1cjPz8ekSZNipviknCGhopwhQVMnZgtnX1EpPAVBwPbt27F9+3Y8/PDDOPfcc7F8+XIsXLgw4T6Qk5FTq9UQRRFqdeD0PFjdgiMHWqXtwgnp0QotKBuObAYAZBnTodfokWWMrfjCwdlwEKLQ27rMMAz0hVMHeUdkDZUzhPRFORObfEWnIAhoaGgAgJgpPilnSKgoZ0iwWM3omJ8kKr8Jubm5aGlpAQA4nU6sXbsWa9euRUZGBi6++GIsX74cZWVl0QiFxAH/9V0Dcdg52bZeHztPiZweF3Y0VkL4bsxpktaEKRlFygYVZgLngqu5VrZPmzsBKr1yPRmGyhlC+qKciT3+RadPQ0MDkpOTkZur/EzZlDMkVJQzJFhWpxWAMr3GoikqzY1ffPEFXnnlFVx55ZVIS0uTlkzp6OjAf/7zH1x++eW4+OKL8be//Q0nT56MRkgkjjnsbtm23hA7hWdNR51UdAKAnXOgOGuighGFnygISJp2BtQpmQCUb+0khMS/jo6OfkUnAOTk5CAnJ0ehqAghJDo40SPbFgc4Lt5FrZ/rnDlz8PDDD2PLli148cUXcfHFF8NgMEhFaG1tLZ5++mmcc845+N73vof33nsPPd+t0UiIP6dD/stpMMZO4XmgrUa2PTF9HExao0LRhJ/r5FGc+PMtsFZtgnHKXCSXnwXDhHKoDLTWLiFkeAYqOnNzczF16tSY6GZLCCGRJI6SYcBR73SuVquxaNEiLFq0CE6nE5999hk++ugjbNmyBRzHQRRF7NixAzt27KDxoCQgt0ve1VZob4Z5L6BNS4U+NxesVqtQZMDYlDzMGlOGg221cHicmJodGxMehUvXlrchuuwwb30H3TvXIP2My5B2+kqlwyKExClf0SmK8uf7ubm5KC0tpaKTEDIqcCI39EEJQNHRznq9HkuWLMGSJUtgsVjwySefYM2aNdi5cyd4npeNB83MzMSWLVuUDJdESUtLC3ieh0qlCjiux+WUL5li+XIT9q0+BACY/puHkTpjelTiDOSMcXNwxrg54AUex82NMGoNisUSbq6WY7Af2i5ti25nvw+LShkqZwjpi3JGee3t7di3b1/cFJ2UMyRUlDMkWDqVco0m0RQz02ylpKTgiiuuwBVXXIHOzk68++67+Mtf/gKHwyGNByWjQ0tLCziOg0aj6Xej9nA8eF7eH0HLO6WvNelp0QhxSCpWhYkZ45QOI6zMW9+WbbP6JKSeulihaOQGyxlCAqGcUdZARWdeXh5KSkpirugEKGdI6ChnSLB0Ag/Gr78tm6B9b2Om8ASA+vp6bNy4EZ999hl2794NnueHfhMZVfrOaAsAWt4hfa1JS4tiNHIegYeaVSl2/UhynaxDz4GvZftS514MVpc441cJIdERj0UnIYREUoa6C0VdzdK2Cm4Aq5QLKEIULzxbW1ul7rR79+6V9vv+IOXm5mLZsmW45JJLFIqQRNuECRMgCELAMb32PjPaAoDOYwcAMGo11EblCqFtJ76FxWVFtikTWcYMjEnOgSFB1mXq2PBP+M+xxuqMSJmzRLmA+hgsZwgJhHJGGW1tbdi/f39cFp2UMyRUlDMkWCmmJIDp7cGnStCUUaTw7OrqksZzfvvtt9IfIN//DQYDLrjgAqxYsQKnnXZaTP8hIuGXnJw84Gt9WzxVghu677rasjotGIVu7oIooN3eCU7woMfcgGPmBswvmIVxaWMViSecnE1H4DyxX7YveeZ5iq7b2ddgOUNIIJQz0cdxHA4ePNiv6BwzZgyKi4tj/m895QwJFeUMCVbqlHFIqm+XtvU6nYLRRE7UCk+bzYaNGzdizZo12LZtm9SN1vcHiGVZzJ8/HytWrMCFF14IgyFxJmUh4ePokbd4aj1OqL5b+0ilU651sdtpBSfIl3nJNmUqFE14dX76H/kOlRrJMTK2kxASPzQaDcrKymRLp8RL0UkIIWTkolJ43nbbbdi8eTPcbm/R4P+0c8qUKVi+fDmWL19OA6/JkBx9utpqBJf0tUrBhxXrajbh6/rdyDJlIMuYgcLUMQnRzTZQa6epeC60abSgOyEkdBkZGZg+fTr27t2LvLw8KjoJIWQUiUrhuXHjRjAMIxWcGRkZWLp0KS655BKUlZVFIwQSR1wuF0RRBMMw0PXpatC3q62G9y88lSv0Giwn0WxrRbOtFQAwa8x0XFxynmLxhEvnZ6/Af2wnVGpknHO9YvEMZLCcISQQyhnlZGRk4JRTToHJZIqropNyhoSKcoYEq0vdjX2FDdJ2EqtCIvYti1pXW61Wi7PPPhuXXHIJFi5cCJUqMWf/JCN36NAhafrx8vJy2Wv2nkFaPE3KjDkURAEH247I9p1eeIoisYQT13UyYGunJgZbOwfLGUICoZxRVlJSktIhhIxyhoSKcoYEq7XHhROeQmnbhP6rOCSCqBSejz76KC666CIaZE1GTOBFMCwDUfC2wqn9WjzVChWejZaTsLp7ZPum5kxRJJZw6tryFuC/jhTDIuPs65QLiBASN1paWgCAhtAQQkgQrN0aFNTNlLY9OptywURQVArPK664IhqXIQkiLS0NPM8HbBVfdGExTj9nEkRBxJ4HfwOu67j0mlqhJ+jp+lT8eO4NqOmow+GOOtg5B7KNGYrEEi6C29lv3U79+DJo0mPzQ+RgOUNIIJQzkdPS0oIDBw4AABiGQU5O7PWSGA7KGRIqyhkSLFdrF4A0aVvvFAc8Np4pvo4nIX2NGzduwNea6rtxoq7D+7WQCYPegZweb/GpTlGmRT1JZ8JZE07DWRNOAwB4BD6uxi0FYtn1CUTOKduXdvplCkUztMFyhpBAKGciw7/oBID9+73d9ROh+KScIaGinCHBSnLJt9UeKjyHdMMNNwDwPuF8+eWX++0fib7nJKMTx/HS1yLnASv2bmtSUpQIqR81G99PNkVRBKPRwzT9TLiaauDpbIYmcyyME2YoHRohJIadPHkSBw8e7LffYrEkROFJCCGRoldpZdvx3XwxsLAWnjt27AjY0jPQ/mD5ZgQjxO3qXStT8HigEnoHX2tSo194CqIAq8uGZF0SWIaN+vUjwWNpA99jhiY9D5r0PPB2KwxF05UOixASwwYqOgsKCjBp0iQFIiKEkPghCPI6R0zQ0jPsXW0HKhL91+4kZLhcTm/hKQoCIPBQywrPtKjHY3P14JMjX0LNqpCqS0a6IRUz88rAsvFbhLoaa2Tb2ow8mErmKhQNISTWDVV00oNjQggZnDpJPjcIr9IoFElkhbXw/PTTT0PaT0ggR44cgcfjgVqtxuTJk2WvuZzeQlNweZdV8W/x1GakRS1GH7PTAsA7rrPDYYadc2J2fvx2SRWcPeDaG2X7dGOLwcR4a+5gOUNIIJQz4dHc3IxDhw71219YWIiJEycmVNFJOUNCRTlDgmXIzQSO9K6QwKoT597pL6yF59ixY0PaT0ggdrtdWvdKtt/mwvGjHdBoVIDTDpfKAJXQu66nJj092qGi3d4p2043xMY40+FyNh+BiN7eCYxKDW1ukXIBBWmgnCFkIJQzIzeaik6AcoaEjnKGBItVaQH4Lc2XYPdPn5if1ZbjONTW1qK9vR0LFixQOhyioNaTVhw50Na7I6UEU9p3AAAYtRpqozGq8QiigD9t+yd0ai0yDGnIMKZjYnr8zmAniiL0Y4vBsGq4mmshuB3Q5RaBVWuHfjMhZFQZqOgcN24cJkyYkHBFJyGERJIqJRNAl7QtqhLzs1dUCs/S0lKwLItf/OIXuOmmm0J67/PPP48XX3wR2dnZ+PLLLyMUIYkl5eXlAfdbuuXLe7CiB6rvZrVldVowUV4n66S1FQ6PEw6PE2anBUe7TmDl1IuiGkM4WXeth7X6S6TOXYqUUy+Cp/MkVMnRb0UejoFyhpCBUM4MX1NTEw4fPtxvf6IXnZQzJFSUMyRY7ZYW2bZH9AxwZHyLWovncCcXMhgMEEURnZ2dQx9MEprd5pZtqwSPNOeXSqeP+oedwx11su10QyomZYyPagzhIooiur9ZC669Aa0NB6FKzkTmBTchKSd+W3AJIeE3WotOQgiJpB7OIdv2iIJCkURWzHa1FUURDQ0NWL16NQDAGOVulCT2OBycbFvl9zSI1euiHU6/wrM4M37HNDnqqsC1N0jbvLUDrNagYESEkFjk8fR/Cj9+/HgUFRXF7f2PEEKUJvKJWWj2FbbC0+Px4NJLL8WRI0cCvi6KIp544gk88cQTIZ+bYRgUFxePNEQS53wz2vqohN4PQCpD9Iuk7828HAvHz0FNRx0Ot9ehIm9a1GMIF8vONbJtTVYBDBMqFIqGEBKrxo0bB1EUUVfnffBGRSchhIycs7kFQLa0rXEnZiEatsJTrVbjkUcewTXXXDNgt9rhdrdlGAY333zzSMIjcaS9vR2CIIBlWWRlZUn7XQ75k3b/Fk+VMfqFp06txdTsKZiaPSXq1w4nrrMJ9iPfyvalnrokrj5IDpQzhAyEcmb4xo/3DikQRRFFRUXKBhNFlDMkVJQzJFh6Tl4jMcMrmWJeWLvazpo1C9/73vewfv162f6mpiYwDIOUlBSYTKYhz8MwDFQqFZKSklBQUIBVq1bRjLajSFNTkzT9uKzwdPUpPP3W8FQbh84rEljHZ/+VbbN6E5JmLFIomuEZKGcIGQjlzMj4is/RhHKGhIpyhgRL36eBM34e/Ycm7GM87733Xtx7772yfaWlpQCAH/3oRyHPakuIj3uwwjOIBxrhZHFaYXZakGlMh1FjiKvWQX+8vbtfa2dS2UKwWr1CERFCYgWtP0gIIdGRpurA+M5maVsFN4DLlQsoQmJ+Vlsy+hQWFkpdU/z1Lzx7t9VJ0S086y3N2NfqndlRr9ZhQnohZuSWRjWGcOja+i7A+/9cGSTPOk+xeIZroJwhZCCUM4NraGjA8ePHUVFRgaSkJKXDiQmUMyRUlDMkWEkqNVj0LhuoBq9gNJETlcLz4MGD0bgMSRDp6YHXjtRo5et0jplWhPzT0+GxWZFaEd2JcDrsvYv8Oj0u8EL8DQIXeA9se7+Q7dONmQRd7gSFIhq+gXKGkIFQzgysvr4etbW1AIA9e/ZQ8fkdyhkSKsoZEiwVI384wSRoZ9uYXU6FkL64PjN8jZ0/ExNOi/44I5urB3VdJ6BX964dmmlMi3ocI2Xb8ykEh1W2L2X+MoWiIYTEAv+iE/B2t92zZw/mzp1L3W4JIYSMSFgLz6amJunr/Pz8gPtHwv+cZPTpO7mQTqfMc5OdTXuw5vBn0LBqZBjSkJuUjYuLz1UklpHo3rlWtq1KzoCp9HSFoiGEKO3EiRM4evRov/2FhYVUdBJCCBmxsH5yP+ecc8AwDBiGwf79+/vtH4m+5ySJi+d7+7WrVL3da/uu46nVK1N4Hu08AQDgBA9aetqRZcqAQRNfk/E4TuwH194g25dccV7cjkMZKGcIGQjljNxARefEiRMxbtw4BSKKPZQzJFSUMyRYHKwYYzkibQuaxJwbJ+yf3MO9hicZffbt2yfNplheXi7tdzljo8WzpqNOtl2eOzXuZrU1f/WubJvR6JAax91sB8oZQgZCOdNroKJz0qRJKCwsVCCi2EQ5Q0JFOUOC1c0LsGvTpG1eRZMLDWnOnDkh7SckFJxb/kuoVaDw5AUePW67bN+UzPiajMdjt8BRVyXbZyqeC5XOqFBEhBClHD9+HHV1df32U9FJCCHRY3ElYV/+bGlbz1kUjCZywvrJ/ZVXXglpPyGBJCcnw+PxQK3uTU9RFPGzX50L3iOAczjBOdzIyDJEPTYVq8KfL34UnXYzDnccxeGOOkzOiK+F1HlrB/Tjp8PdfASCswcAg9TTVyod1ogEyhlCBkM5M3DROXnyZBQUFCgQUWyjnCGhopwhwXIJnqEPSgD0m0BizoQJ/VsQeV7At9uOAwBsNUfQ9e0uFFoOQK9hoR+Th/Infgc2ipNfZBjTMN84G/MLZw99cIzhuk5CX1AC3dgp8HSdhOjhoMuJ7zFcgXKGkMGM9pyhojN0oz1nSOgoZ0iwdNroN6YogQpPEhcEvneMMO90AQBYngfvccHTYwdDTxODIvIcuPZGAADDsNBk5MM4aZbCURFCounYsWM4duxYv/1UdBJCiDJMKq1sO75mDgmeIp/WB+p2sGPHDnzwwQc4efIkcnNzceGFF2LRokUKREhijSD0Fp6Cy1t4MqJ3XU+VXh+1yX2qTh4Ay7DIMWUiw5gONRtfs9S52xshCr1jZRmGgTY7vls7CSHBa21tDVh0TpkyBWPHjo1+QIQQQtB3DtZEnZI1qoXntm3b8OKLL6KmpgZbt26Vvfbcc8/h+eefl+177733sGjRIvzpT3+CTqeLZqgkxvi3eEqFJ74rPI3R6Z4giAKOdB6DR+Cxv60GLMNi4fg5yE3Kjsr1w8Hdely2rU7LBauNr6VgCCHDl5WVhaysLLS3t0v7qOgkhBBliaL8sxjPagc4Mr5FrfB866238OCDD0IURTAMA7PZjLS0NADA7t278dxzzwV83xdffIF7770XzzzzTLRCJQo7duyY1CpeVFQEAOAFQXo9fc4pSCmbimmTloAzm6FOTY1KXGaHBR6/1kJBFJCqS47KtcNBFAUAIhgwEL97lqbNia+JkQYSKGcIGcxozRmWZTFt2jTs27cPHR0dKC4uRn5+vtJhxYXRmjNk+ChnSLDYhO1cKxeVwrOtrQ2PPfaYtK3X69HZ2SkVnv/6178AeLv9FRcX40c/+hE6Ozvx/PPPo7OzE+vWrcN1112HU045JRrhEoVZLBZp3Ssfa7cTHa02sCoWKhUDnT4JGaeWRTWuLcd3osnagkxDGnRqHVJ0SdBr4qO1UOBc6Pr8NSTPOh+m4rlwt52Au70B2qzEaOUIlDOEDGY05wzLsigrK0NXVxcyMzOVDidujOacIcNDOUOCxrBKRxAVUSk833rrLTidTjAMg+XLl+ORRx6BXu/9wN7T04PPP/8cAKBSqfC3v/0NOTk5AIDTTz8dl1xyCdxuN1avXk2F5yjW3GDGvspmadtg1ODCFdEtPL+q/wZHu04AAJK0Rpw/6cyoXn8kbPu2oHvHanTvWA190QyknroYKTPPUzosQohCWJalopMQQmIEa4yfHnQjEZXCc9u2bQCA/Px8/O53v4NK1Tshy1dffQW32w2GYTB//nyp6AS801CfddZZ+OSTT7Bjx45ohEpiwLRp06Qu2T5uNy87RqWO7pMhjudwortJ2ra57XGzfqcoirB887G07Ty2FwyrgqlknoJRhVegnCFkMImeM6IoorGxEbm5udTaEiaJnjMk/ChnSLDsDiuANKXDiLiofHqvq6sDwzA4++yzZUUnAGzevFn6euHChf3eO2XKFADe7rpkdFCr1dBoNLKZj92uPoWnKrqF5zFzAzx9FvedllMc1RiGy9V4CO4W+Xp9KacuViiayAiUM4QMJpFzRhRFHD16FEeOHMGePXvAcZzSISWERM4ZEhmUMyRYTsEt207UWW2j8um9u7sbAGStmT5btmyRvj7ttNP6ve57SmS32yMUHYkHXJ8WT3WUWzx5QcC07CnQfbfOUkHKGJi0xqjGMFyWb9bJttVpObR2JyEJyld01tfXAwBsNhsVn4QQQmJCVB7BaLVaeDweOBwO2f6jR4+iqakJDMMgIyMDxcX9W5CamrzdG5OSkqIRKolRbpe8tZHxuNFzoh7ajHSoTaaId2MpzZ6EX59zJ3iBR313E2zu+HgQwlk7YDvwlWxfyikXgYmz9UcJIUMTRRG1tbVoaGiQ7bfZbOju7kZWVpZCkRFCCBmMm/cMfVACiErhWVhYiEOHDmH//v2y/b5JhQBgwYIF/d7ncrnw5ZdfgmEYmoZ6FDGbzdKYCN/Mxxwnb/F0Nzei8qcvAQBmPfdHGAsLoxKbilWhKD061woH89Z3Ab8lYBi1BskV5ygYUWQEyhlCBpNoOTNQ0QkApaWlVHSGQaLlDIk8yhkSLA0zOhoEolJ4zps3DwcPHsSWLVvw5Zdf4swzz0R7eztefvll6Zjzzz9f9h5BEPDb3/4WbW1tYBgG8+YlzkQoZHAnTpyQph+XCs8+XW3Z74opRqOBSm+IaDzxOjGA4OFgq/5Stk83ZjJUhsSbOS1QzhAymETKmaGKzry8PAWiSjyJlDMkOihnSLAMfUY/xt+nzuBEpfC84oor8Morr0AQBNx6660oLi5GY2MjrFYrGIZBXl4ezjrrLOn4l156CWvXrsWhQ4cAABqNBpdffnk0QiUxqm+LJyt6t1mtFqxOG9FrN1lbUHXyADKN6cgyZiDLlIEUXex3/bZWboDokncJTpl7sULREEIiQRRFHDlyBI2Njf1emzp1KnJzcxWIihBCSChS2Q4UmFulbRXcgxwdv6JSeE6ePBm33XYbnn32WfA8j4MHDwLw/sFUqVT49a9/LZvx64033kBzczNE0Tun0z333IPCKHWlJMobM2YMBEEAy/Y+/enX4il6+8KzWi1YbWQLz06HGVZ3D6zuHhwzNyDHlImzJvSfCCvWBJpUKJGWUPEXKGcIGUwi5AwVndGVCDlDootyhgQrRa+DRjBL2xoqPEfmxz/+McaOHYu//OUvOH78OADvH8b/9//+H8444wzZsRMnTkRTUxOysrJw//33Y8mSJdEKk8SA7Ozsfvs0GnnfdwNnA/Bd4RnhNeosLqtsO8OQFtHrhYPjxH5wHfIPo8nl58Rll+FgBMoZQgYT7zkjiiJqamqkCfj8UdEZGfGeMyT6KGdIsNKKi2BqqpS29TqdcsFEUFQXFlqxYgVWrFiB7u5uqFSqAWeqveaaa3DVVVdh0aJFtPA1AQAIgnxFIx3vnSFZpdeBUUV2QPbnR7dBxaqQok9Gqi45LrrZmr96T7bNaPVInUfdbAlJBAMVnQzDYOrUqQGXLiOEEBK7WDULxq9hnEnQRnJFVrRNTU0d9PVzzkm8WTfJyPQd46kSvF1tVYbIrqVp5xzY03JAtq88b2pErzlSHpsZjro9sn3GKXPAaiM7CRMhJPKo6CSEEBKvFCk8/XEch+7ubjAMg+TkZGgjPF6PxKe+YzxV343xVBkjW0w1dDfLtlmGRWnWpIhec6TM296TLaECMEg74zLF4iGEhI/H44HZbJbto6KTEELiW4+qByezT0rbBpXiJVpEKPJdbdu2DW+//Ta++eYbtLa2yl7Lzs7GzJkzsXTpUlx44YVKhEcUtnfvXmn68RkzZgAItJyKt/BUm0wRjeVEt7xVYUxyDjSq2O3+LYoiuPYGbx8NUQAA6PInQ5ed2JNzBcoZQgYTrzmj0WhQUVGBPXv2wG63g2EYTJs2jcaSRUG85gxRDuUMCVaz24Ztyb3L3aUKHtyoXDgRE9XCs7OzE3fddRe+/vpraZ9v5lqftrY2bNiwARs2bMC8efPwxBNP0FPcUUYURek/H7fbIzvG1+KpTo7smpTZpgycXngK6rub0GRtwbjUsRG93kh5LG3QjS2GJnsc3C11cDXXImXuUqXDirhAOUPIYOI5Z3Q6HSoqKlBVVYWioiIqOqMknnOGKINyhgSru0OLyfsXSNsenU3BaCInaoVnR0cHVq1ahaamJtkvoFqtRkpKCnieh81mA8/3tmx9/fXXWLVqFd59911kZGREK1SiMIPBALVaLZtY6qbbTofHI2D3L+6H2+6CkbMAADQpkS08K/KmoSJvGgDAw3tg9zgjer2R4lrrAQCsVg994VQYp8yBaeoZQ7wr/gXKGUIGE+85o9PpcOqppybsTNWxKN5zhkQf5QwJlrOrG0CatK11J+bDiqgVnnfeeae01lhSUhKuv/56LF68GFOmTJH+cHo8HtTU1GDdunV49dVXYbPZcPLkSdxzzz3429/+Fq1QicKmTJnSb9+h6hbY7W40q/LAGDmobW5oBDc0qSlRi0utUiNFFbsz2oqiAHd7vWyfLm/CqFg/LFDOEDKYeMgZ30PagYpLKjqjKx5yhsQWyhkSLL1V3rOPCs8R2Lx5M7Zv3w6GYVBYWIh//vOfKCgo6B+MWo2pU6di6tSpWLVqFb7//e/j+PHj2LJlC7Zu3dpvvU8yevCCCJEXAIGHyLBg4P2F1KSlKRtYDPGYWyFwLtk+bYKP7SQkUYmiiEOHDkEURZSWllKRSQghCSxJrZdtJ+odPypNIatXrwYAqFQqPP/88wGLzr7Gjh2L5557Dmq1tzb+8MMPIxojiW0CL0Bwu6Vt5ruJczTp6RG7ps3dg48ObsTndduwq6kaRzqOQfjuurGI62iUbauT0qEyRLYrMiEk/ERRxMGDB3Hy5Em0tLTg4MGDNEaMEEIS2Si5xUel8Ny1axcYhsHChQtD6nYwZcoULFy4EKIoYteuXRGMkMQ6nhchuHpb81jfjK0RHPtrcVrh8DjR2tOBI53HUN16CEyMPoMSeQ76CeVInrEIutwJYNUaaHPGKR0WISREvqKzpaVF2tfS0oLDhw8rGBUhhJBIEjXyhgIPm5jLS0alq217ezsAoKysLOT3lpWVYdOmTbI/wiSxNTQ0wOPxQK1Wo6CgAKIoQhAE8M7eiX0YUQCj0UBtMkYsDotLPqNYii45Zru72ao3o3PTq0gqW4Ck6WfCMHm21B15NOibM4QMJRZzJlDRCXjHcmZlZSkUFfGJxZwhsY1yhgQrqXAMcKJH2mY1sfl5c6TiZnVSlUqldAgkSjo7O6V1rwoKCuC0czB3OuDussPN6sBAAAMRrFYLVqeLWBzvH/gENrcdqfpkpOiSMT4tdpdSsVV/Cb7HjO4dq9G9YzVSZl+IrMW3KB1W1PTNGUKGEms5I4oiDhw40G9ta5ZlUVZWhszMTIUiIz6xljMk9lHOECIXlcIzOzsb9fX12LdvX8jv9b2H1ikbvVpPWlH1TYN3I20aGFHA5I7dUOl0YCM0RbkgCtjXehguvndc6cT02Jyox2PthONYtWyffnzovQsIIcoYrOicPn06LSdGCCEJTptRAOCQtC32mWwoUUSl8Jw5cyZOnDiBzZs34+jRo5g4cWJQ76utrcXmzZvBMAxmzZoV4ShJrCguLoYoilK3VpdLPsU0IwpgRAGsIXK/lG09HbKiEwBOHVsRseuNhG3/FviPSme0BhinnKpcQAromzOEDCVWcoaKzvgRKzlD4gflDAmW2SL/G8CLngGOjG9RmVzokksuAQDwPI/bbrstqPGaLS0t+MlPfgKPx/uDX7JkSSRDJDFEr9fDYDBAr/cWli4nJ3udEQUwEKDSGyIWQ313k2w7SWtCmj56a4aGwla9WbZtKp0HVhO5LsixqG/OEDKUWMgZQRCwf/9+KjrjRCzkDIkvlDMkWGa3VbbNibxCkURWVArP008/HXPnzoUoiqirq8Py5cvx/PPPo6amRjZFvCiKqKmpwXPPPYdly5bh+PHjYBgGs2fPxqJFi6IRKolBbpf8l4+FAAaA2hi5wjM3KRsrp12EU8dWINeUhfFpY2PyiaWrrQHuk0dl+5LKzlQoGkJIsARBwIEDB9DW1ibbz7IsZsyYQUUnIYSQhBO1yYWefPJJXH311WhqaoLFYsFzzz0nrdOZnOydQthqtUotnL6CNC8vD88880y0wiQxyN2vq623EFWZTBG7ZmFqPq6asULaFoTYXL/Tunu9bJvVGaEvKFUoGkJIMIYqOtMjuD4xIYSQ2ONqbgPQe+9Xc7H5uXOkotLiCQC5ubl48803MWfOHIiiKP3HcRy6urrQ1dUFjuOk/QAwZ84c/O9//0NOTk60wiQxwGazwWq1wmbzLmfidvdp8fxuDU91BAvPvlg2ar8qQRNFET0HvpLt0+ZOAKsdXd1sgf45Q8hQlMyZw4cPU9EZh+g+Q0JFOUOCpbbL5xVhE7PujO5yKllZWXjllVewdetWrF69Gl9//TWam5tl3W3z8/Nxyimn4NJLL8Xpp58ezfBIjDh69Kg0/Xh5eXm/Fk/2uxZPdXJSxGLwCDzUbGwv4eNqPAze1iXbZyqdp1A0yuqbM4QMRcmcyc/PR1tbG3jeey9jWRbl5eVIS0uLahwkNHSfIaGinCHBMvb5zBl7g7vCQ5F1PM844wycccYZALwTDnV3d0MURaSkpEAToeUxSPzq1+IpeLc133XRDjdBFPDBgU+gU+uQoktCqj4ZJZkTodfE1uQA1j2bZNusIRmGyacoFA0hJFgpKSkoLy9HVVUVRFGkopMQQka5ZHQgv7tD2lbBPcjR8UuRwtOfSqWiSRSITHZ2NgRBkLq3cn0nF/puiml1SmRmmbW57eBFAXbOATvnwElbG0qyJkXkWsMl8h70HOzfzVaTOjrXu+2bM4QMRemcSU1NRXl5OURRpKIzTiidMyT+UM6QYCWrWej43i7ZGio8h6e9vR0nT56EWq1GQUEBkpIi1z2SJIYxY8bItlVqeYeD1MwkZBTOg2nChIhcv9tpkW3r1Tro1bE1btJRtweCs0e2z1h8KpgY7x4cKX1zhpChxELOpKamKh0CCUEs5AyJL5QzJFgaRv5wgrrahkAURbz22mt44403cOTIEWk/y7KYOXMmbrnlFloehQTNbwgwACD/1OmYuuLKiF3v9ar30WRtRao+GSm6ZEzLnhKxaw2Xde+Xsm1VcgYM48oUioYQEoggCOjs7ERWVpbSoRBCCCGKC3vh2dPTg5tvvhm7d+8GANnEQTzPY9euXfjRj36ElStX4je/+U1Mro1IYgvXZ4ynRhvZVr3j3U1o6+lAk7UFAFCUVhjR64VKcDtgP7xDtk+bPR6a9DyFIiKE9CUIAqqrq9HZ2YkpU6Zg7NixSodECCGEKCrshef/+3//D7t27QLDMLKi08e3791330VGRgbuuuuucIdAEkzfwlOrjVwPcQfnRFtPh2zfKfnTI3a94RCcPdDmjIeruRYQBQAMjJNmgtXG1uRHhIxW/kUnANTU1AAAFZ+EEEIC4uFEVk9D7w5VYq6nEtZP8Lt378amTZukonP58uW47rrrMHHiRKhUKhw8eBD/+c9/8PHHH0MURfzrX//Cddddh9zc3HCGQeLcgQMHpOnHp06dCrdbvpyKRhO5QfoNlmbZNsuwyE+JrZZElSkNxuI50I0vA9feAMFpg66gVOmwFNU3ZwgZSqRyhud5VFdXo6tLvtRRXV0dsrOzodVqw3YtEl10nyGhopwhwbIIdmh4h7TtTtD5qMJaeK5fv176+t5778WNN94oe33WrFmYNWsW8vPz8Y9//AM8z+ODDz7ALbfcEs4wSJzjOA4cx/lt9+1qG7kWzxxTJn489wac6G5CfXcjPAIPrSq2lvjhOpsh8h6wai10eRPBgIE2q0DpsBTVN2cIGUokcmagolOlUqG8vJyKzjhH9xkSKsoZEqwuZyr2Fa2StvWcBUsUjCdSwt7iCQBTpkzpV3T6+9nPfoa3334bFosFlZWV4QyBJADfWq6+/1969UzYrXbwAgMPD2TlRG5m5FR9Cs6acFrEzh8O7rYTsm11Ws6o72bbN2cIGUq4c2agolOtVqO8vBwpEVr+iUQP3WdIqChnSLDcQmJ2re0rrIVnQ0MDGIbB6aefPuhxWq0Wp512GtatWyeNfSHEp293lNrD7ajf+CUcdXVQqRjkih3Inz4RJXf+TKEIlSPyHLhOeXdgbXZsTX6kBOrCREIV7u61e/fuhdlslu2nojOx0H2GhIpyhgRLrY74CpcxIazfpdVqBQCkp6cPeWxRUREAwGKxDH4gGfV4jwDe5YbAsBAEwGO1wBOhvDE7upGkNUGtis0bANfVAlHo7XrMMAw0o7ybLSFKGqzorKioQHJysjKBkbARBAE2mw0WiwVutxs8zw/9JkJIXFOpVNBqtUhJSUFSUhJYNrKDLpM1Btl2oq75EdZP1263G0BwXQqSkrzdJXt6esIZAklAPC9A+C63AIARBagj8GGOF3hsPLoFoigiSWtCmiEFFXnTYOxzM1CKu6MJ6tQcpMw8D+72erjb6qEyJoPV6JQOjZBRiYrOxGe1WtHY2Bhwln5CSOLyeDxwuVywWq1gGAZjx46le3oYhLXwFEURDMMEtTan78kBPTkkQ/F4BAh+g/NZkYcmJfy//BaXDcJ3Hy6s7h5Y3T04Nb887NcZDlEU0fLW4+B7zDCVnoak6QuRMmcJwHuGfjMhJOyo6Ex8gYpOhmGgUkV2LWlCiPJ4npd+90VRRGNjY0SLT16QNyJ42MQcFxyb/QnJqNbc3AxBEMCyLHJz8yCKIjLnzwNvd0Dg3CjKmYXs8vCPmzA75d13k7RGaGJkRlv3yTpwHY0AAGvlRlgrNyL/e7+FvqBE4chig3/OjBkzRulwSBwYSc7wPI+qqip0d3fL9lPRmTgEQZAVnUlJSUhOTobBYADDMDRDMQmK26+3FuVMfBFFEXa7HZ2dnbDZbFLxWVxcHJFutyr0PWdidralwpPEnLa2Nmndq4z0LNisLqj0JrCmZGhYBmPOmQyDMfw38Lf3rcGh9qNI1ScjRZeMirzYWRvTtu9L2bY6NQe6scUKRRN7/HOGCk8SjJHkTFdXV8Cic+bMmdIwEhLffB80AW/RWVBQAIfDAY/HQ4UnCZrH45F6A1LOxBeGYWAymWA0GtHQ0CDdE2w2G00YNwJUeJKYZu12Ytc2+fIhcxdORCRGXZod3bC4rLC4vJNkTc4YH4GrhE4UeNj2bZHtSypbEFSXdkJI+GVlZaG4uBiHDx8G4J3XoKKigorOBOI/8WFGRgbdbwkZpRiGQUZGBmw2GwDvvSEShSdrSg37OWMRFZ4k5kycOFF6Qmju6L/wsl4f/vE1giig3iJfpqQsJza6sTqP7wNvk68NmDT9TIWiiU3+OUNIMEaaM/n5+QCAuro6KjoTkK+LJMMwMBqNAACdjiZyI6GhnEkMRqMRDMNAFEVZ9+lwcrl6ACR+S2pECs/u7m40NTUNeYxPc3NzUDPG+f7Qk8Tm/wGutalN/iIDqDXhLzzbezrh9Lhk+8alxUa+Wau/kG1rcyfQ2p190Id+Eqpw5Ex+fj5ycnJGzfpro4lv4kOVSiU9nKBJhUioKGcSg29SMY/HE7FJUXs8TvgXnok6j3ZE/lq++OKLePHFF4M6VhRFnHPOOUMexzAM9u/fP9LQSJxxOeWztqpUbEQGdafqU/Crs36GJksLmqwtaLd3Il2vfLcHweNGz4GvZfu0WQUQBR4MS3/QCIm0oVpFqegkhBBCghOxv5hDtWD6L7sy2LG+pm0yOrlcfQpPloHg5sBqwzvbrE6txYzcUszIjZ0JhQDAXvMtRM4p26cdM4mKTkKiwOPxYN++fSgqKkJqqvIPogghhCQmbpQsjxf2piNRFIMqFH3HDXVstIpOURTx0Ucf4cYbb8S8efMwY8YMnHPOObjnnntQVVUVses+/PDDKCkpQUlJbIwnjAVOpxMOhwNOpxPuPoWn6OjBtiuuAvfdIO9EZ93zmWxbnZoD44TYWFs0lvjnDCHBGCpnPB4P9uzZg66uroBLp5DRRxAE6T9CgkE5Q4LFJujyKX2FtcXz4MGD4Txd1DidTvzsZz/D559/Ltvf2NiIxsZGfPTRR/j5z3+OW265JazX/frrr/H666+H9ZyJ4PDhw9IyB263UfYaIwoAw0BlNA7w7uFpt3dCp9LCpDFGpCvvcPAOGxx1e2T7dHkTockcq1BEscs/Z8rLqTAnQxssZ3xFp9XqneHat25neXk5tXyOYk6nU+p6bQzz3yCSmChnSLBMKvlyO4lahtLgFAAPPPCAVHROmjQJq1atQlZWFvbt24c33ngDdrsdTz31FHJzc7FixYqwXLOnpwcPPPAAdSMeAtenxZMVPWDU6rAXh9tO7ILD4wTLMDBpjJhTUIEsY0ZYrxEq277NgOA3iJ1hYZpxJhgV/doSEikcx6GqqkoqOn1UKhU0mvB28SeEEEIAwCR2INdqlrZVYmRmz1XaqP8Eu3XrVqxevRoAMH/+fLz00kvS9NcXX3wxLr/8clxzzTUwm8347W9/i3PPPTcssyH+4Q9/QENDw4jPk4gyMjLg8XigVqvRXCfv3saKAlhNeNOW4zk4PN7udoIowurugYZV/lfDWvmpbFuTmQ9j0QyFoolt/jlDSDAC5cxARadWq8XMmTOpxWKUU6vVtGwTCUm85QzHcXjzzTfx0UcfoaamBhzHIS8vD2eccQauv/56TJw4UekQE1aqXgUj17t+sAZUeCakf/7znwC8N4ff/OY3/dZcmjRpEn71q1/hrrvugtlsxltvvYWbbrppRNf072KbnJzc70POaFdQUCB9fbhKPpZTyzvBarR93zIiFpdN9oeBAZCkNYX1GqHizC1wt9TJ9hkmzQarow++gfjnDCHB6JszHMdhz5490iLhPlR0Eh+tNrx/e0jii6ec6erqws0334y9e/fK9h8/fhzHjx/Hu+++i4cffhiXXHKJMgEmuIyJhTCc2Cdt6+Mod0IRG4PZFGI2m/HVV18BABYuXIjCwsBrIy5ZsgSZmZkAgHXr1o3omv5dbFesWIGpU6eO6HwJr89DQq3HEfYZbbec2IkPD27Ap0e3YkdDJRq6m6FSeNZYy8618h0qDVJnX6hMMIQkOCo6SbxztRxTOgQSx3iex2233SYVnRUVFXjooYfw5JNP4qqrroJGo4HT6cQDDzyA7du3KxxtYlIZdFDp0PufPj5ayUM1qgvPb775RpppbP78+QMex7Is5syZAwDYs2fPiGY39HWxzc7Oxv333z/s84wWnFu+UK9K5MBqdQMcPTw9bjs4gUOXw4wT3Y2wuGNgxlyVBpqcIuC78Zy6/EnQZOQpGxMhCWigolOn01HRSeKCx9aF5lcfgsfWpXQoJE698847+OabbwAAy5cvxxtvvIFrrrkGy5cvx8MPP4x//etf0Ol08Hg8ePjhh2mWXjJso7rwrKmpkb4uLi4e9NjJkycD8C67cvjw4WFdz7+L7UMPPYS0tLRhnWc08XDymxsr8mDD3P2gydoi256YPi6s5w8Vb7eAUWtgKpmL1HnLYSw9DalzLlY0JkISERWdJBF0b3sfgsOG7q8/UDoUEqd8w85SU1Px0EMP9ZvAcc6cOfjJT34CAKitrcXGjRujHmOic6tccCS3S//Zk8xKhxQRo7rwbGxslL4eO3bwJSry8npbm/zfFyz/LraLFy/G+eefH/I5Rouamhrs378fNTU14D19C08BrC68hWezRV545ifnhvX8oXK310tfMyo19GOnwFQ6T8GIYp9/zhASjAMHDmDdunU4fvy4bL+v6DQYDApFRmJVLK4X7LF1wbJrPQDA8u0n1OoZY2IxZ/o6cOAA6uq8c0osW7ZswAk0r776aqhU3mFIIx12RvprErrwwTiP9N/GrB6lQ4qIUT25UGdnp/R1enr6oMf6t06azeaQr+XrYpueno4HH3ww5PePJg6HAxzHwePxgOcDtHjq9WG93r1n/gSNlhY0WU+iydKCyZlFYT1/qLh2+YMNbWYBGGZUPyMakn/OEDIUj8eDQ4cOwW63Sx+kACo6yeAEQYi5GUq7t70P0eOd/VL0uNH99QfIPO9GZYOKsObmZvzzn//El19+iaamJhgMBpSUlODKK6/ExRdfjJdeeglPPfUUAODQoUOy95aUlAAAfvazn2HVqlV45JFHsGXLFgBAYWEh/u///g/Lli2TjhcEARs2bMCHH36IqqoqdHV1wWQyYfz48TjrrLNw3XXXISUlJWCc119/PXbs2AEA2L1794Dfz7333ov33nsPAPDpp5/KJj7zvZabm4svv/wSJ06cwAsvvICvvvoKHR0dSEtLw5w5c3DjjTeioqIi1B8lAEgxAsBpp5024HEpKSmYNm0a9u7dK/3MSPh0tOhQ9u1iaduji4FhXxEwqgtP/ydQfWez7ct/ZrJQn1z5d7H91a9+hYwMZdeHjHUMw0j/LTh3MlL3fQZr3QmIDAsDZ4FKN3i36FBlmzKRbcrEzDHTwnre4eAdtn5PrDXZNGPrUPxzhpChqFQqGAwGOBwOaR8VnSTe+Ld2+li+/QSp81dAnTT4w/R4tX37dtx6663o6eltDXK73dixYwd27NiBDRs2SMXlYGw2G6699locO3ZM2nfw4EFZEXny5Enccccd2LVrl+y9ZrMZZrMZe/bswcsvv4wnn3wSZ5555si/uSHs2rULP/zhD2Gx9C650dbWhrVr1+Ljjz/GPffcM6xVF/x7Ck2ZMmXQYydPnoy9e/eiu7sbTU1NyM/PD/l6JDBXTw+ANGlb5REViyWSRnXh6d86MtSU1/6vh9Kq4t/F9txzz8XSpUtDDzTKjhw5gkmTJiE5OVna53K5pCeHaWlpGDduXL/32O12AEB5ebnstfb2djQ1NQHwPlH0b13meR779nmnj05OTsaECRMwY0bvWpWbN1WhxcYAGu8fA63HAZXB2+JpNptx4sQJAMCYMWOQnZ0tu+7evXshiiIMBkO/m2lDQ4PU4l1cXAy9XyuqzWbD0aNHAQDZ2dkYM2aM7L0HDhwAx3HQaDT9ZiVubm5GW1sbAGDixImyLitOp1MaH5yRkdFvOYeamho4O1ug7rYjN9U7tozV6KBOzUZbWxuam5sBAOPGjZO1wHs8Huzfvx+A94lkUVGR7Lx1dXXSkj1lZWWyFp6uri7U13u79ubn5yMrK0v23qqqKgCA0WiUxjn7nDhxQmr9LykpkT28sVqtUted3Nxc5ObKuy/v378fHo8HWq0WpaWlsteamprQ3t4OwLuckcnUu7SNw+GQ/khmZmZKXeR9OXP48GFUVVWBZVlMnz5ddt7W1lacPHkSAFBUVCT7gMFxHA4cOADAO8Zl/PjxsvfW1tZKH3SmT58uG//S2dkprclbUFAge7AkCAKqq6sBACaTCZMmTZKd9/jx49JkZVOnToVG0ztjs8VikT4U5eXlIScnR/be6upqCIIAvV7fb4x6Y2MjOjo6AHg/SPgXUz09PaitrQUAZGVl9fvgcPDgQbjdbqjVakybJn8Y09LSgpYWb9f0CRMmKHaP8Hfs2DHpg9i0adNk63IOdI9gGAYXXHAB1q9fD7PZDKvVinnz5sl+TrF6j3A4HGAYRnafBED3iO8MdI/wOXz4MJxO55D3CP/fRQDSZCoMw8h+Pj5Op1M6xmAwyB6CeTweuN3eVkmtVivLUVEUpQcgLMvK8gzw/l7xvHeSPb1eL7v3dH31ntTaKZ3Pr9XT4XBAFMWA53W73dJnmb7n5XkeLpcLgHepub6fj3znZRim34MajuPAcRwA78Mc/5+VIAjSg3uVStXvgb//z7Dv+GrfeOxbbrlFOse5556Lc845BxqNBl999RVWr16NdevWYevWrQP+DH3++9//wuVy4fTTT8dFF10Ei8WCLVu2YMGCBQCA7u5u3HTTTdLveX5+Pi677DJMnDgR3d3d2LhxI7Zs2QKz2Yxbb70VL7zwgqz45Hleds2+34//z7Av/38bUfQWH3a7HbfffjssFgumTp2KFStWIC0tDbt378Y777wDj8eDxx9/HBqNBitXrhzwZ+j7t/HPQ9/wMZZlkZaWBpfL1e/fxvcz9K3wAEAqPP3zW6PR9Pvd8d33Q81v/zwMdN7B8tD/ZzhYHgbKb18eBjovz/NwOByoqqoK++cIvqELQO/9yuAUpXiV+Bzh+zsVbqO68PT/BeA4btDi0/dLBYS2LpOvi21qaip+/etfDyvOaON5vt+MZaIoSjesvjdwwPuH1fd6X4IgSK8FmgnN91qggt7t8sAjAFB5f+YCq4LquxuBf0wDnVcURdkf+b7x2nkHTlpbkcVmwqgxgGXYoM4bzPfq+4Ph43/eQN8rx3EQulvgyJuG1BnTwbU3AKIIhmFHdN5I/dvwPD9gTP7nDZQvvm6xfScwGOq8Q+Wh799mqPMOlt/R/Bn6n3c4P0NBEAJ+CB7Jz9AXU9/39T1vrNwjBvsZDva7zDAMsrKyIIoi8vLy+n3AGO55ffFG6h7BcVzAD6t0j4C0HY57RN8Puf7XCvS7MdT+wd470Pv6vtefx9YF2+71Ad7R2+opsroB3z+SmAZ7PRLfq88TTzwBp9MJhmHw29/+ViqwRFHEeeedh2XLluH222/vtzZ6oPO6XC6cddZZeO6556TPdzfeeKN0P33yySelovPss8/G7373O9kDsauvvhpvvvkmHnroIXg8Htxzzz3YsGHDgOMjQ/1e+75mtVphtVpx+eWX45577oFKpYJarcall16KZcuW4eabb4bD4cCf//xnnHfeebKHgoOdF+gddmY0GqFWqwfNF/9Cy3/YWTDfSyR+bwbr+j7S8w7Ed48J9+cIIyO/5/h/V0p8jojUzMWjeuCY/9Mg31OVgfgXnkN1y/Xx72J777339nvSEKtUKlW/P8oMw0hPnAIlqFqtDvhECvA+5fK9FuiPve+1QAUiy7KAf/KLIlR6Q7+YBjtvoJh88XbyFnzVuAtrD2/Cu/vXYVfT3hGd1/977Xsz9D9voO9Vw9mRvPM1pH76DNrX/AWe7lbo8ieN+LyR+rdRqVQDxuR/3kD5MtzzDpWHg/3b+J93sPyO5s/Q/7zD/RkO9b2G+jMc7HsN9mcYzXvEYD/DoX6XtVot8vPzZS1m4ThvxO4RETov3SP6nzeQobr0D/Sa//sGez2Ua3rHdgb+EOtr9QzmmsOJabDXI/G9At5xiHv27AEAXHbZZVLR6f/e2bNn46677gr6vDfffHPA11paWvD+++8D8E48+dhjjwXsgn/JJZfguuuuA+At3v73v/8F/L5C/V79X/dXUlKChx56CGq1Wvb6nDlzcNtttwHwFoMffvhhSOf1tf7pdLoh/938P//6D1UY7r/rYO9VOkcHizcSnyMG+16U+BwR6H4fDow41GOtCBBFEd9++y2+/fZbNDU1obu7G8uXL8c555wDAHj33XdRUVHRrzk53B588EHpRrFx40YUFhYOeOxbb72FX/7ylwC8rZj+g88D6enpwfLly9HQ0ICFCxfi73//e8Dj/Aef9x0EHy02m0127ZKSkqCf2kXa3m8bsPcf/wPv8HbVyLA3ofyyc1G46vKwnP+rE9+iwdIsbZdkTURFnjJjPbt3rkXH+n9I26zOiPF3/BOMKvCHIELI0HwPFYN9YEgI4O3W7PF4oFarhxz3Fm0eWxfqn/9xv262/hi1FoU/+UvCjPX83e9+h3//+98AgDVr1vTr1u3jdruxcOFCqTVuoMmFNBoNdu3aFbAH27vvvov77rsPgLfRYLBxk+3t7Vi0aBE8Hg9mz54tNTYAwX++C2ZyIQB4/PHHcemllwY8h9Vqxemnnw63243TTjtN+lkF49xzz0VDQwPy8/OxadOmQY99++238cADDwAAfv/73+OSSy4J+jrxLtL3hLVP/wffNPYO1dHyDtz7xyvCfp1gRao2iHpX2/feew/PP/98vyVJ/GfjevbZZ9Ha2oqLLroIDz74YMTWu/Qf59Lc3Dxo4ekb9wEgqMHU1dXV0rivzZs3BzXY3XfM2LFj8dlnnw15fKJqa2uDIAhgWRaiCIh+3QMYiFCFcW29DnunbDtZ27/lI1p6Dn4t2zYWz6GiM0j+OdN3rC8ZvVwuF/bs2QNRFDFz5kxZ8Uk5Q0Ll301uoFbRaPCfyXYgiTbD7c6dOwF4VyAYqOgEvL0YZs+ePeRnqMLCwgGHTVVWVkpfz58/f9DzZGVlYfLkyTh48KA0r0SglivfmO+ROP300wd8LTk5GcXFxaiurpZahoPlG3Y2UDdQf/69/5T8HUhEyYVjgUa/VmRNYnZKjdp3JYoi7r33Xtx///1obGyU+lD3bXDlOA6tra0QRREff/wxrrjiCmkyi3Dzb1Edav0/3+sMw8Tc089E09zcjIaGBjQ3N8Pl5OARRAhgIcKbRypTeApPu9uBV/a8i48ObsCmo1/hm8Y9YBVatoR3WOGsPyDbZyoZ/A8e6eWfM4QA3qKzsrISdrsdDocDlZWVsiEVlDMkVBzHwe12B/UBPVICzWQ7kERa17O1tRVAcA/++05sFshAS6AA8qX2BmuQ6HsMx3GyGWf9jTRnjEZjvwm4+vL9bOx2uzShT7DnBoYecgYMb9gZCZIqMQvNvqLW4vnUU09JfeYZhsGCBQswc+ZMPPfcc7LjfN0kvvjiCzAMg/r6etxxxx147bXXwh7TrFmzoNFowHEctm/fjmuvvTbgcTzPS0/bSktLB71h+UyZMgXPP//8kMf98Y9/lIpa3/F9Z/0azTZ/egS2lDJpWyXwUBvD0yrZZPU+0HDxbrgcbnQ5u5GblDXEuyLDUbcXEHvHsjJqLQwTh7cmFyGjna/o9B+D5HA4cPjw4X6zwRIST4Jp7fRJpFZPX9fZYD4fBXPMYJNE+i/VEszySv7XczgcSE1NHfI9oQo0Dn2wOGw2W79ZbQfi+0xrs9mkrqQD8Z9QiJYGDC9N2hgAR6RtUZ2YhX1UCs+jR4/iX//6FxiGQW5uLp599llpOv2+hafJZMKLL76InTt34o477kB7ezt2796NjRs34rzzzgtrXCkpKZg/fz42b96Mzz77bMA1idasWSM9AVu8eHG/1wPJyMgIKt6XX35Z+jrc31+8GjdunNRdReDlrRGMyEMdxA04GL7C0yfHlAmDRpk1/KxV8m5B+sKpYDWJedOJBP+cIaNboKIT8H6A9J8unnKGhCqUGe0jIZTWTp9EWddTp9OB47h+v9eBhLrWel/+xabD4RhyXJt/6+JARe9guRNqS+NQcTAME9IQtaKiImzZsgWCIKClpaXfEkT+/IedDXYcCZ3d3i3bFsX+s9Amgqi0677xxhvgeR4Mw+DPf/5zvzXcApkzZw7+/Oc/S9sfffRRRGK78cYbAXi7Qdx5552w2Wyy148cOYLHHnsMgLcovuIK5Qb6jhZpaWlIT09HWloaBF7eFZsVBaiTIlN45qfkheW8oRJFEa5GeVdvdcaYAY4mgfjnDBm9nE7ngEVn3zGelDMkVGq1WvpPCaG0dvr4Wj3jXV6e9++zb73fwQRzzGD816r1rWE7mOPHjwPwFp3+95NgH2r1Xf4lEIvFImuJDcQ3r0haWlpID0n8h50dOXJkkCN7h52lpqYO2fWXhKbNKe8W76LCc/i2bdsGhmFw2mmnhdTNadasWTjjjDMgiiL27t0bkdgWLFiACy+8EACwe/durFixAn//+9+xZs0aPPnkk1i1apXUteDuu+/u17Vg+/btKCkpQUlJCa6//vqIxDia8bx8HSFW5KFODs+Mu1eULcWfljyMexb+GNdXXIZFRfPCct5QuVvqIDjlDzxMxXMViYWQeDVQ0Wk0GvsVnYTEm+G0dvokwlhP3wSUZrMZtbW1Ax4nCAJ27949omv5f079+uuvBznSu/SKb71P/x4VgLyVs2+jhr+hij3A+4B6sEmD/H8uc+eG9vnB//jBvl+LxYIDB7xzUcyZMyekaxDiE5XC09c0H0xLZ19lZd7xfR0dHWGNyd/vf/97LFiwAID3idGTTz6JO++8E3//+9/R09MDhmHw05/+FFdddVXEYiCBiULfFk8ealN4Ck8Vq8KY5Byckj8Dy0rPw2mFp4TlvKHqObBNts1oDdCPLxvgaEJIX76is28XO6PRiIqKCio6SdwbTmunTyK0el500UXS16+++uqAx61btw5tbW0jutaiRYukGVtfffXVQbv3/utf/4Lw3VrjZ511luy1zMxM6WtfwdZXZWVl0BOc+S/V0tdrr70mTWB07rnnBnU+n8mTJ2PixIkAvCtPDNSy+uqrr4L/bpWBYIedkeC5OuQPh1SeqK92GRVRKTx9fdOHM2mO74lRpBYyBbzdsP7+97/jySefxBlnnIGMjAxoNBpkZ2fjoosuwquvviotzksiz+PxgOM4eDweCH0KT4YRodIn1odIR12VbFubWwRWpUxXrnjlnzNkdBms6ByspZNyhoRKFEUIgtBvNv5IG0lrp0+8t3ouWLAApaWlALwF2Nq1a/sdc+jQITz66KMjvlZOTo60Vnt9fT1+8YtfBBw3+v7770vzdGRmZuLqq6+Wve7fcvrCCy/0u9ecPHkS999/f9BxrV+/PmDRvXXrVrzwwgsAvOM1h1MU+tYq7erqwr333ttvTOnOnTula4wdOxYXXHBByNcgg2O65F2uVXxiFp5R+XSbmZmJ5uZmHDt2LOT3+hYvjfTsWQzDYPny5Vi+fHlI75s3b96gCwMP5ZVXXhn2exPV/v37pTWv+tSdUIdpHhBBEHC06wSSdCakaJNg0OgVmWRE9HBwtRyT7TMWhd4zYLTzz5nh9Kwg8WmoonOwcU6UMyRUDodDmpAq2BlDw8FWtQmsYeQ9fWxVm5B2+sowRBR9LMvikUcewbXXXguO43DHHXfg448/xqJFi6DT6VBZWYm33noLLpcLKpUKPM+PqMHivvvuw86dO1FfX48NGzZgyZIluOyyyzBhwgRYLBZs3LgRmzdvlmJ77LHH+n1OXbx4Mf7whz/A4XBg+/btWLVqFS677DIkJydj//79ePvtt2G1WjFjxoyghpMxDINHHnkEmzdvxvnnnw+1Wo1t27bhgw8+gCAI0Gg0+PWvfz2sSbAuv/xyvPXWW6iqqsL69etx+eWX44orrkBaWhp27dqFt956CxzHgWGYYV+DDC5ZLW+cS9Rp76JSeJaXl6OpqQmbNm2C3W4P+oZdX1+Pzz//HAzD0BT4o1DfbrYAwIap8uzh7NjVXC1tq1kVlpWcB40qugsi2+uqAEH+FNRYQuM7CRnKQEWnyWRCRUUFfTAiCSPt9JVxWzCGU0VFBZ555hncfffdsNvtWL9+Pdavl7cEX3755WhsbMS2bdtGdA9ISUmRertVVVWhsbERzz77bL/j0tLS8PTTT+OMM87o91pmZiYeeeQRPPDAA3C73di3bx/27dsnO+aGG27AzJkzceeddw4Z0913341nnnkGmzZtwqZNm2SvmUwmPPvsszjttNNC/E69WJbFiy++iP/7v//Dvn37cOjQIfzmN7+RHaPRaPDQQw/hzDPPHNY1yOCMfAeybL2tnmpx6NmO41FUCs/Fixdj3bp16O7uxsMPP4zf//73Q77HbDbj9ttvl56wULP+6JGSkvJdl5T+TyvVYVpg1+qSD/RXs6qoF50AYD+8XbatSs6ANmfoxa+JnC9nlJptkkRfbW3tiIpOyhkSKpVKRUvwKOz888/HRx99hH//+9/YvHkzTp48Ca1Wi2nTpuG6667D+eefL63JHsya64PJzc3Fm2++ibVr12LNmjXYu3cvurq6kJaWhsLCQixevBiXXHLJoNe58MILUVJSgldeeQXbtm1Da2srUlJSMGPGDFx33XVYsGAB1qxZE1Q8F1xwARYsWIC//vWv2L59O7q7u5Gfn4+zzz4b3//+90c8y2xGRgbefPNN/O9//8Pq1atRW1sLu92O7OxszJs3DzfddBNKSkpGdA0ysBStiGR3p7StxvDGdMe6qPzFvfDCCzF9+nRUV1fjww8/RFtbG26++WZMmzat37Gtra3YsGEDXnrpJbS2toJhGEyaNIkGMo8iRUVFAACngwOwX/ZaVumk/m8YhvruJrh5Dtrvis0kbXgmLAqV47j86acubxIYJipDrxOKL2fI6FFSUgKn0yktRRBqSyflDAkVTVIVGwoKCvDLX/5ywNd9k1GOGdN/WbJQh0YxDIOlS5di6dKloQX5HZ1Oh5KSkn6th/5COX9xcTGefvrpYcUSDLVajWuvvVYq3kn06BiVbDtRPwlG7VHvn/70J1x55ZVob2/Htm3bsG2bfCbPF154AX/5y19kU06LooikpCT88Y9/pCeMoxDvEfrtm/aj74Xl3O8e+AR1XSegV+uQpDXhrKL5YTlvKESBB6s3gVFrpdkKDRNorBkhwVCr1SgvL8eePXsgiiJ1ryUkgX3wwQdYvXo1CgsL8cMf/nDA1r3a2lppPpFAjRuEEGVFrfAcO3YsXn/9ddxxxx2oru4dW+crKK1Wa7+Z4saNG4c//elPmDx5crTCJDGk7xqeAKAKU1fbLocZAOD0uOD0uJCXnBOW84ZC5D0wTj4F4qTZ4G1d8JhbYJyszJIuhMQjjUYjre/nW/6AEJJ4UlJS8OWXXwLwNko89NBD/Y6x2Wx44IEHpM+SF198cVRjJIQMLaqDWwoLC/Hmm29i3bp1eOedd7Br165+6yOp1WqUlZXhkksuwcqVK6lryyjmCdDiqVaPvPC0cw6YnRbZvonp0R9X6bG0A/A+fFEnZ0CTmg11albU4yAknlHBSUjiO+OMM1BQUICGhga89tpr2L9/Py644ALk5eXB4XDg6NGj+OCDD9De7v27esUVV+DUU09VOGpCgicyHFKc7dI2y/IKRhM5UZ9VgWVZLFmyBEuWLAHP82hqaoLZbAbP80hJSUF+fv6w1vskiaOurg4ejwc9lv6/dGwYWjzbejrAMiwE0VvYMgyD3KToF3yebvki1+qUTDCsaoCjyWB8OaNWqzFhwgSlwyFhZLfbUV9fjylTpoR1PWfKGRIql8slTS5ED8WjS6vV4vnnn8ePfvQjNDc3o7KyEpWVlQGPvfrqq0NaHzOSKGdIsKxiN7LsDdK2U5uYQwwVnc5PpVKhsLAQhYWFSoZBYozVagXHceixyrteMywDlh35L+L4tAL897I/4WRPG5osLehydCsyo62nu122rU6h1s7h8uUMtX4lFrvdjsrKSrjdbrjdbpSVlYWt+KScIaHieZ5mtVVQaWkpPv74Y7z99tv49NNPcfjwYXR3d8NkMiE3NxezZs3C5ZdfHlPr8lLOkGC1O9JwcOJ10rbOY8W5CsYTKTSPPIlZRpMal98wG7xHAM+LEAKs6zlcapUaBSljUJDSf9a7aBB5D3hbp2yfOjVbkVgIiUX+RSfgnaly3759YS0+CSHxxWAw4Prrr8f111+vdChR8fjjj+Pxxx9XOgwSBR5BBM/2PggVmMQs0aLyXTU1NYXlPPn5+WE5D4ltZWVlAACBF7DhydfgqG8AwzJgWBbGqjyU3nKjsgGGgQgg5dTF8HS3w9PdBo+lHeqUTKXDilu+nCGJoW/R6eN2uyEIQlgKT8oZEiqDwaB0CCTOUM6QYImjZCm9qBSe55xzzoi7GTAMg/379w99IIl7KpV3nKMoAjarCy6Xb5IhHq7WtoHfGKTj5gbwAo8krQlJOhMMan1Uu8EIHjdOPHsLdPmTYZw4E4YJFTAWz6GuOCPgyxkS/3p6erBnz55+RWdycjIqKiqgVofnzxblDAkV3aNJqChnSLDSdCbZdqJmTtTacfsulULIUEQRQJ8lVVSakadsTUcdOh3d0vbsMdMxObNoxOcNlrP+AASHFY7a3XDU7gYYFuPv+CdUhuSoxUBILOrp6UFlZSU4jpPtD3fRSQghhJDoi8pf8Tlz5gR1nMvlQltbG5qbmwF4nxSdd955NCX2KCUKIkRBXniyIyw8RVGEzW2X7UvSGkd0zlA5ju6RbevGTKKik4x6AxWdKSkpKC8vp6KTEEJIwuIF+UR3PI3xHL5XXnklpOPb29vx4osv4tVXX8UXX3yBSy+9FOecc06EoiOxpqurC4IgwMMJSJ5aCo/VCpHnIfI8suYXjejcJ21taLG1I1lrglrlTf+kPt0bIs1xtFK2bZhYEdXrJyJfzrAsi/T0dKXDISFSouiknCGh8ng80tf0IIQEg3KGBEvVpyRL1DGfMflbkJWVhQceeAA5OTl46qmncN999+Gjjz5CTk6O0qGRKKivrwfHcRAFFoaCfNkYiYy5k0d07q/rd+HTo1sAAAaNHmOTx+DysiUjOmcoPNYuuFuPy/YZJ86M2vUTlS9nNBoNFRFxxmazYc+ePVFv6aScIaFyu93S0hhURJBgUM4QIhfT5fT//d//oaCgABaLBa+++qrS4ZAoqz9qx+YNR7B5Qw22fHoEVd80jHigfru9dwkTB+dEblIm2Cg+VXIck3ezZbQG6PKnRO36hMQSpYpOQgghJJawo2TIVUwXngzD4KyzzoIoivjss8+UDodESX5+PgoLC5Fk8v4SiiIgfLeOJzvCwrPJ2iLbLkyN7hI99ppvZNuajHyIAh/VGBKRL2doyaX4MVDRmZqaGpWik3KGhEqj0UCr1UKj0Qx9MCGgnCHB83hcSocQFTH/ODkz07u2YbjWAiWxLysrCwCg05pl+1mWBcOOrPB08xwYMBDhnWU5Pzl3ROcLhSgKcNTtle1Tp2aBUWujFkOi8uUMiR+Bei+kpqZixowZUWnppJwhoaLigYSKcoYEy8LZASRJ24m6FkjMF54nTpwAQGshjUYeT58ZbVUjz4HHzrsbbo8bzbZWNFlbUJo1acTnDJa75TgEp022zzChnHKbjEomkwkVFRVSq6evpZPW1ySEEEISU0wXng0NDfj444/BMAzGjRundDgkyvi+hecIWzt9tGotxqcVYHxaQVjOFyx77S7ZNqs3wTBuWlRjICSWJCUloaKiAsePH0dpaSkVnYQQQkYlDz86hl3F3BhPt9uNlpYWvPvuu7j22mvhdDoBgJZTGYU8HvkvobO+Hm1fbFYompHrN74zPQ/q9DyFoiEkNiQlJaGsrIyKTkIIIaOWAGHogxJAVFo8p06dOqL3p6Sk4Prrrw9TNCTWVVVVgeM4tLZaZPsZgQdG0OjZaDmJ1p52pOqSkapPQaouWVrLM9IEzgVXc61sn25sMVga3xkWvpzRaDQoLy9XOhzSh8vlgk6nUzoMGcoZEiq73S4tjWE0GpUOh8QByhkSrBSNfE35RB2EFZVP3aI4/CGyycnJeO6555CamhrGiEg8EHh53jCiAHYEH16bra042nVC2h6fNhbzCmYN+3yhcByvBmSz1zIwTjk1KtcmREkWiwVVVVUoKChAUVGR0uEQQgghMUfvaUe6vUfaVouJOcttVArPUKarV6lU0Ov1GDNmDObPn4+VK1ciLS0tcsGRmGM0GuHxeMDAKtvPigJY7fALz26nvAU1VZcy7HOFyn5ou2xblZIJXV70JjZKdL6coXUfY4vFYsGePXvA8zyOHTsGhmEwfvx4pcMCQDlDQseyrNR6RUgwKGdIsFK1AtKcrdK2Gm4Fo4mcqPzFpTU4SSgmT54MAKjebgXQOwusRnCC1Q6vayov8NjbeggmjQFJWhNUrApp+ugt1utsOiLb1maPg8o4OhYLjgZfzpDY4V90+tTV1UGv1yM3N3rLGA2EcoaESq/XKx0CiTOJkDM//OEP8fnnn+N3v/sdVq5cqXQ4CStz/FjUHz8sbes0iflQNCrf1aFDh6BSqegPPQlJ35mvjJwVKt3wCs9WWwe+OtE7uY9JY8TZE04fQXShSa44F1xHA7iuk/B0tcA4OTpdfAlRQnd3N6qqqmRFJwBkZGTQ+pmERMCxrgYUpUd3pnaS+N599118/vnnSocxKmhSk+A/zFOrS8wJ96Iyq+3zzz+PZcuWYdmyZdi4cWM0LkkSgIfzyLYZkQczzDGe7Y5O2bYgCsgypg87tlDwdgsEpw0qUxr0BaVImrEIpuJ5Ubk2IdE2WNE5ffp0mr2WkDAzO7rxyOd/hNnRrXQoJIF88cUXePDBB5UOgySYqBSeVVVVEEURR44cQXp6dD7sk/jHc/IPrqwoQDXMwvOktU22nZuUFbUxF1xHk2yb1RqgSs6IyrUJiaahik6WjbkVvAiJex8c3ACbuwcfHtygdCgkQbz77ru47bbbwHGc0qGMGiLLg9VZpP8YXc/Qb4pDUelq29XVJX1dVlYWjUuSOHbixAnwPI8em/yXjhV5sPrhFZ68yCNNnwLzdxMM5SXljDjOYLk7GmTbmsx8mmggzHw5o1KpMG7cOKXDGZUGKjozMzNRVlYWc0Un5QwJlcvVO8tkrCwPZHZ0Y33tlwCA9bVfYnnp+Ugz0CoAsSIWc2YwVqsVTz75JP73v/8pHcqoc4Jpw6slvfOaZHICLlIwnkiJSuFZVFSEQ4cOAQCam5sxYcKEaFyWxCmz2QyO4+B2yZ+0MRDBqjXDOudFU87CRVPOgpNzoqWnHSwTnQ/BgtsB3iLv5qvNDH6WZxIcX85oNBoqIhRgNpuxd+/euCk6AcoZEjqe52NuhtIPDm4Ax3v/Vrp5Dh8e3IAbZl2ucFTEJxZzZiCrV6/Gb3/7W3R0dADw9lS54IIL8MYbbygc2ejQ2apFceXZ0raotSsYTeRE5dPAj3/8Y+mX7oknnuj34YSQQCbkeVDc9jWmtO/ApI5vkMZ1gFGNLGX1Gj3GpxWgMDU6xR+j1iJp+gLo8iaC1erBqNRQpyk/oych4RKPRSchicC/tdNnfe2XCT/Ws7m5GY899hguvPBCzJgxA3PnzsX111+P1atXAwBeeukllJSUoKSkpN97ffv/8pe/oL29Hbfffjtmz56N2bNnY8WKFfjoo49kxwuCgE8++QQ/+clPsHDhQkyfPh3z5s3DqlWr8Je//AUWi6XfNXyuv/56zJo1C7Nnzx70+7n33nuluBoaGgK+duaZZwLw9tS47777sGjRIkyfPh0LFizAHXfcgT179gT1sxvM//73P6noXLBgAd577z1UVFSM+LwkOE4HB63bKP2nccb/jMiBRKXF88ILL8Sf/vQnPPjgg/j8889x6aWXYtWqVZg5cyYKCgqQkpJCH06IpKSkBKIoQlVvg03gwEAEIwpgGYCNszX3Oj/7L1SmVBgmzoRh8ikQnT1gWJpcJdx8ORMPT5UTidlsRlVVFQRBkO3PysrCtGnTYvq+TjlDQhVrS2P4t3b6JHqr5/bt23Hrrbeip6d3KI7b7caOHTuwY8cObNiwIWDB2ZfNZsO1116LY8eOSfsOHjyIlJTe9b1PnjyJO+64A7t27ZK912w2w2w2Y8+ePXj55Zfx5JNPSoXhQMKRO7t27cIPf/hDWbHb1taGtWvX4uOPP8Y999yDm266aUTXGDt2LO666y4sXbp0pOGSEDHNZgC9w8AMTmHAY+NZVD7F33zzzQCAwsJCmM1m1NTU4LHHHgvpHAzDYP/+/ZEIj8QY3zgIl9MDpyapd78IYJgfZL9prIJerYNRY4BRa0CWIR1qVWTTX3A50L1zLSB4gM9egcqUhryrfknrd0ZAPIydSTQcx6G6ujoui06AcoaELpZyOlBrp0+ijvWsrq7GLbfcAqfTCQA499xzcc4550Cj0WDHjh14//33sW7dOmzdunXIc/33v/+Fy+XCggULsGzZMpjNZnzxxRdYsGABAO+Y9ZtuuglHjx4F4C3IVq5ciYkTJ6K7uxsbN27Eli1bYDabceutt+Kvf/0rFi5cOOD1Rpo7drsdt99+OywWC8rKynDZZZchJSUFO3fuxDvvvAOPx4PHH38cRqMRV1555bCuceedd2LGjBlQx9kD/kSR5r+WCgBWVCiQCItKdm3evFl6quz7vygm6E+UhA3fZ4wnyzDDap1w8xyOdp2Q7Vsy5WwkRbjwdByv9had3+EdNmgy8iJ6TUKiRaPRoLi4GAcOHJDu5/FSdBIS7wK1dvokaqvnb37zGzidTjAMg9/+9rdYuXKl9NqKFStw6aWX4pZbboHVah3yXC6XC2eddRb++te/Sp8rbrzxRun1J598Uio6zzvvPDz11FOyVsurr74a7733Hu6//354PB7cfffd2LBhA5KSkhAJVqsVVqsVV1xxBR5++GFpWSrfUoU333wzHA4Hnn76aSxevFjWchusWbNofXEljZa+N1H5dJCfn48xY8bI/svPzw/pvzFjxkQjVBJD+D7reLKq4f1a2jlHv30GTeS7TDnq5GMu9IUlYLWGiF+XkGjJycnB1KlTwTAMsrOzqegkJAoGa+30SbSxnl9//TV2794NALjiiitkRafPqaeeinvuuSfoc958880BH2a3tLTg/fffBwAUFBTgD3/4Q8CuspdeeqlUrHZ2dkZ8JtiSkhL8+te/7rcW8pw5c3DbbbcB8HYDfvfddyMaB4kMAfJeODyTmC3PUfmuPvvss2hchiQIq9UKQRDgsssLxuF+oN3XeghN1hYkaY0waYwwaY1QRWGcpeOovPA0TJgZ8WuOVr6cYVkWycnUlTmacnJyoNVq426sPuUMCZX/DKV9P/xH02CtnT6J1uq5adMm6evvfe97Ax536aWX4umnn4bZbB70fBqNBuXl5QFf27p1q7R+5XXXXQeDYeAHxj/4wQ/wn//8Bx6PBxs3bsQPfvCDgMf5lm4aiZtuumnAbrBXXnkl/vSnP8HtduPzzz+Xtd6S+GDKzwea3NI2o0nM+UDC+inhvvvuw3333YctW7aE87RklKmrq8ORI0dgsci7ywy3xfOrE9/iqxPfYP2RL/HegXU41F4bjjAH5WqrB9fZJNtnnDgz4tcdrXw5U1dXp3Qoo1JaWlpcFZ0A5QwJncvlkv5TSjCtnT6J1Oq5c+dOAEB6ejomT5484HFarXbIWWQB75wjWq024GuVlZXS1/Pnzx/0PFlZWVI8e/fuHXAYWThy5vTTTx/wteTkZBQXFwNAWGa4JdHH6vosF5igfW/D+knhvffew/vvv4+amppwnpaMUofMGTieNh0nUstQnzoNdtXwWiU67WbZdnnu1DBEN7ieffKHL6zOBG1eUcSvS0gkdHZ2StPsE0KUE0xrp4+v1TMRtLa2AvAO3RpKMOvyDjYGsrOzd+3twsLCIc/lO4bjuEGXVxkJo9GI3NzBl2Lz/Wzsdjvs9sRcAzKRaVKyZduiKvCDkXiXmB2ISVzLzc0Fz/PgxSYIrN8jHzH0bgeiKKLZ1io/f1L2AEeHT9/xnZrsAjBMfLUIxRNfzijZ/S1RdXZ2orq6GqIoYvr06cjMzFQ6pLCgnCGh0mg0ii7BE0prp0+izHDr6zobzLIkwRwzUGsnANlSLYN1sw10PYfDgdTU/j9rjUbTb18oTCbTkMf4x2Gz2WA0Gkd0TRJdHNenVZxJzElY6ZMwiTm5ubnIz89H3xWMhjPDt5vnUJgyBqm63tbSvOTIFp4Cz8Hdely2zzCBFmGOJF/ODPVEmISmo6NDWjJFFEVUV1fLWgPiGeUMCZVGo4FWqx1xETFcobR2+iRKq6dv+SOHo/9kgX35llsZLv9iM5jr+bcuDlT0DpYzwXTDdbvdQx7ji4NhGKSlpQ15PIktTT1tsm2n4BngyPhGLZ4kJomCiL4d3NXDGOOpU2vx6Hm/AOCd3bbF1o5sY0Y4QhyQo7YSokf+RyJp2hkRvSYh4eYrOv3HLImiiNbWVmRkRPZ3iBAiN5zWTp9EaPXMy8vDkSNH0NTUNOSxwRwzmKysLOnr+vp6TJ06+PCc48e9D5r1er2s4PNvGfd4PANODBTM8i8WiwU9PT2Dtnw2NDQA8I65H6xFlxAlUYsniUk837e9E1CPsEucUWPAhPTCiM9o23Nou2xblZQObVZBRK9JSDgFKjoBbythSUmJQlERMnoNp7XTJxFaPSsqvL2GzGYzamsHniBQEARp2ZXhmjFjhvT1119/PeixLS0t0nqfvsl9fPyLP5vNNuA5jhw5MmRMoigOOmmQ/89l7ty5Q56PxB6XVZ4jrEBdbQmJmkCFpypO2ued9Qdk27qxxQMcSUjsaW9vH7DoLC0tVWx8GyGj1UhaO33ifYbbiy66SPr61VdfHfC4devWoa2tbcDXg7Fo0SKpa+yrr746aHfbf/3rXxAE7+eVs846S/aa/3j4Awfknwt8Kisr0dzcHFRcr7/++oCvvfbaa9ISMOeee25Q5yMxpkU+gZ+ao8KTkKjYv38/9uzZ22+/dhhrGh1sO4KtJ3aiuuUgTpgbYXP3DP2mEfD0mOHpapHtM04+JaLXJL6c2YP9+/crHUpca29vx759+0ZF0Uk5Q0LlcDhgt9uDGvcXTp8f+xrJWhMyDGnD/i9Ja8LnxwZvvYtlCxYsQGlpKQBvAbZ27dp+xxw6dAiPPvroiK+Vk5ODZcuWAfB2tf3FL34RcNzo+++/j5dffhmAt8i8+uqrZa/7t5w+//zz8HjkY/ZOnjyJ+++/P+i41q9fH7Do3rp1K1544QUAQFFRERYvXhz0OUnsSNHIu1Enzl9buYi0Ib3++uuyxX7DgWEY6RecJDaPxwO3q3+XIs0wCs8WWztaetrRCG8xWJZTjLKcyLVAervZ+n1oZ1iYSudF7HrEy+PxwOPxJFRhFG0DFZ15eXkoKSlJuJ8t5QwJlSiKA67TGEmXTL0Ql0y9MOrXjSUsy+KRRx7BtddeC47jcMcdd+Djjz/GokWLoNPpUFlZibfeegsulwsqlQo8z49obeH77rsPO3fuRH19PTZs2IAlS5bgsssuw4QJE2CxWLBx40Zs3rxZiu2xxx7rN/Z98eLF+MMf/gCHw4GdO3di1apVuOyyy5CcnIz9+/fj7bffhtVqxYwZM7B3b/+H7X0xDINHHnkEmzdvxvnnnw+1Wo1t27bhgw8+gCAI0Gg0+PWvf03jO+OUlutEiqN3oimNqNx6wZEUkcKzvr4e9fX1YTufktOXk+jTarVQq/rP5qXWhJ6uFpe8z7z/7LaR4KiVjy3RZORDpU+K6DWJN2dYlh1w8gYyuLa2Nuzfv3/UFJ0A5QwJHcMwCfm7EC8qKirwzDPP4O6774bdbsf69euxfv162TGXX345GhsbsW3bthEVYCkpKXj11Vdx2223oaqqCo2NjXj22Wf7HZeWloann34aZ5zRfwLBzMxMPProo7j//vvhdruxb98+7Nu3T3bMDTfcgJkzZ+LOO+8cMqa7774bzzzzDDZt2tSvccdkMuHZZ5/FaaedFuJ3SmJFupZDpqN3Yiw1hp7JOB5F5C+uEk8ESeIoLS1Fa7MFgHxmuqSC0JY96HE7UN16CEaNASatESaNAcm6odfCGgld4VSIHg5cVws83a3QF9BELNHg64JFQjdQ0TlmzBgUFxcn7AdtyhkSqmDWdCSRdf755+Ojjz7Cv//9b2zevBknT56EVqvFtGnTcN111+H888/HtddeC8BbPI5Ebm4u3nzzTaxduxZr1qzB3r170dXVhbS0NBQWFmLx4sW45JJLBr3OsmXLMGPGDPzzn//E1q1b0draipSUFMyYMQPXXXcdFixYgDVr1gQVzwUXXIAFCxbgr3/9K7Zv347u7m7k5+fj7LPPxve//31aGirO6Vl5SZaoYyEjUnguXboUCxYsiMSpySjR99kFwwCTr1oZ0jnabO3Y3Vwt27e89LyRhjYgURTBCAJ0Y4uhG1sMUeBhmjInYtcjZKRGa9FJCIlfBQUF+OUvfzng6x0d3klaxowZ0++1Q4cOhXQthmGwdOlSLF26NLQg/RQVFeGRRx4Z8PVQzl9cXIynn3562LGEauXKlVi5MrTPXoQMJiKF5/Tp03HppZdG4tRklOg7q61KFfqznw6nWbadqk+BSRu5Fk/BYYXgt34nw6qgzcyP2PUIGSmr1UpFJyEk5n3wwQdYvXo1CgsL8cMf/nDA1r3a2locO3YMADBt2rQoRkgICQYNbiExyePpU3iqQy8823rkU1PnGCO76L3H0i7bZrUGMDpjRK9JyEhMmDABgiBIC4/n5+djypQpVHQSQmJKSkoKvvzSu6SMKIp46KGH+h1js9nwwAMPSA/TLr744qjGSMhIMAwPPdc7L4mGGd66vbGOCk8Sc5qamnCyWb7e2HAKT4Naj0np49Fq74DVZUN2Ula4QgzIY+mzBlNKJn2Aj5KmpibwPA+VSoX8fGplDhbDMJg0aRIA78Lro6nopJwhoXK7e3u00Myh0XXGGWegoKAADQ0NeO2117B//35ccMEFyMvLg8PhwNGjR/HBBx+gvd37APiKK67AqaeeqnDUlDMkeN1iF/KtR6RtpzYx/xZT4UliTnt7Ozo6rLJ96mF0tV00YT4WTZgPAHBwTrj5yM4Qxmi0YHVGCC47AECdEtlCl/Rqb28Hx3HQaDRURITIv/gcLUUnQDlDQufxeKRZ9qmIiC6tVovnn38eP/rRj9Dc3IzKykpUVlYGPPbqq68OaX3MSKKcIcEyO5NRV9DbSq8RenCugvFEChWeJCaZktUonZmK7Kwc8LwArS70NTz9GTR6GDT6MEXXn+P4Pqh0JqTOXQrR7YTH0gFVUnrErkdIqHyte4GMpoKTEBKfSktL8fHHH+Ptt9/Gp59+isOHD6O7uxsmkwm5ubmYNWsWLr/8cpSXlysdKiEhc/EsLPpsaVvP6RSMJnKo8CQxZ9KkSbBmOWFZ8zKcEMCqVPCoGViLWCRPmax0eAF1fvYKXE01YA3JMEwoR+q85dAaaP3OaJk0aRKt9zuIlpYWHD16FDNnzqQlIb5DOUNCpdMl5gfBeGIwGHD99dfj+uuvVzqUoIw0Zx5//HE8/vjjYYqGxDJ+lPwtCnvhSWt4kpEymUyw2wR0dTgA0TvJkIZ3wd3ZGdJ5thzfCa1K423tVOtRmJoPnTr8XV14uxWuJm+/fMFhRc/+rUiZGbllW0h/JlNk12eNZy0tLThw4AAAoLKykorP71DOkFAN1GOAkIFQzpBgpWrlk1Emahka1sLzP//5DwBg3Lhx4TwtGYUEQZQt5smIIlht8E8OPbwHTdYW2b6cpKyIFJ6OY1UA/GJVa6ErpMXpifJOnjyJgwcPStsulwuVlZU45ZRTaLwRIYQQEiNYJvS5TOJRWAvPuXPnhvN0ZBTj3R7IijkIYPXBF552j7PfPqM6MmM8HUf3yLb148vARqDAJSQUfYtOn5ycHGg0GgUiIoQQQkggvCAvyXgmMVvLaYwniTkOhwP2nh4YiorAiCJEQYARTugyM4M+R3XLQdR2HodJY4BJa0SaPgVqVfjTXRRF2Ovkhadx4sywX4cMzuFwSOP1qBsp0NzcjEOHDvXbX1hYiIkTJ9K4RlDOkNAJgiDlDMuOjtYJMjKUMyRYKsgfCItUeBISHTU1NWht6gE/YTxyc3MBABmZJuhzsod4Z6/q1sPY3VwtbU/NnozLypaEPVauoxG8pV22T180I+zXIYOrqamRlsYY7TMaUtEZHMoZEiqn0ykVEUajceg3kFGPcoYQOSo8SUxqPuFEwzEHGmqdYFgG+QWpKD+1IOj3m50W2fbU7CnhDhEA4DhaKdtmtAYIzp6IXIuQoQxUdI4bNw4TJkygopMQQgiJQYx+dEx4R4UniTmZmZlgWQs4Vw84lxsA0GNzh3SONpu8FTLHFHw33VDYj+ySbWvSc6FJz4vItcjAMjMzB12ncjRoamrC4cOH++2nojMwyhkSKrVaTUvwkJBQzpBgiRgdq4JQ4UliztixY2EwtAIwS/tYNrSb9oT0cVCxKrT1dMDq7olI4Sl6ODjr98v2abIKoUpKD/u1yODGjh2rdAiKGqjoHD9+PIqKiuhDTwCjPWdI6GgmaBIqyhkSLG9Pvd5JMBO1DKXCk8QkURBk20yIheeP590gfW3nHNCw4U91Z8NBiB5Ots9QNIM+5JOoamxsRE1NTb/9VHQSQgghJJZQ4UlikiDIn/WwI/jwbNREZsZK+9Hdsm1VUjp0uRMici1CAmlvb6eikxBCCIlzfJ8Gl0RFczuTmORs75Rt9xzp/+FaafYj8sJTnZ4HTXquQtGQ0Sg9PR1paWmyfUVFRTSmkxBCCIkjvMgrHUJUUIsniTmHDx9Gj9UGoHdshOByBf3+TocZlc37YdIaYNIYkKRNQlF68DPiBoPv6QbXdkK2T5c7AewomZUs1hw+fFhaGqO4uFjpcKJGpVJhxowZ2Lt3L8xmM4qKilBUVKR0WHFhtOYMGT7/pTH0ev3QbyCjHuUMCZZJI19uJ1EfHVPhSWKO0+mE4JE/+QlliKfVZUO7vRPtdu92ii78haejrkq+Q6WGgdbvVIzT6QTHceD50fHE0J+v+Gxra0NeHs2oHKzRnDNkeARBoBlKSUgoZ0iw9J5uJLl6u9uqheAbXOIJFZ4k5rAsC7HPdF6h3LN73A7ZdiTGeDI6AzSZY8GZWwDeA3VqDjRZ4S1uSfBYlpX+G41UKhUVnSEa7TlDQucrHqiIIMGinCHBSte4kN3TJW2rEdoygvGCCk8Sc6ZPn47t2iOAs3efCsG3SnxxbBu6nVYYtUaYNAaMTw3/sgnqpAyYpp0BURDAWzvAqDQ0vlNB06dPVzqEiGttbUVmZiatOxkmoyFnSHgZDJGZqI4krnjLmZaWFrz22mvYvHkz6uvr4XA4kJaWhunTp2PZsmVYvHgxPayLkIz8XJyorZO2terE/FtPhSeJSTqVfHYvI4LrciCKIrae+AZuvneZk6K08LdEujsaAAAMy0Kdmg1tdiEYNjFvEkR59fX1qK2tRWpqKsrLy6n4JIQQElZr1qzBL3/5S9jtdtn+trY2bNq0CZs2bcLrr7+OZ599FhkZGQpFmbh02enQpfUWnnpdYpZoifldkbgn8PK+tsGu42lxWWVFJwCU500NW1wAIHo4eLpaZPu0mbQYPYmMEydO4OjRowCA7u5u7N27FzNmzKDikxAi6ak7BtOEIqXDIHFq8+bN+MUvfgGe58EwDC644AIsXLgQJpMJdXV1eOedd9DY2IidO3fixz/+MV555RVoNBqlwyZxiNrLSUwS+qxnxAZZeLb1yJdhUTEsMgxp4QoLAMB1NUMUe+NjGBbqjDFhvQYhgLzo9DGbzejo6FAoIkJIrHF3daH6Vw/B3dU19MGE9MFxHB555BHwPA+VSoUXXngBzz77LK644gosWbIEP/nJT/DRRx9h/vz5AIDdu3fjjTfeUDjq/8/encc3Uef/A3/N5E56H7RASwuFlhtUwANUFHUFReQUBF11FXU9EHdlXdn1wGO9/S6uu+rP9VxPUEARD8CDU0Ch5T5arrb0btM2dzIzvz9Cppk0SZM2aY6+n48HDzIzn3zmk/bTybznc8UfGQuoWYv4TyWLzzGeFHiSqFNbWwu73SHZF+istnJWjvNzzsGA1H5IUOqQrk2FLMRdYDlTKxi3ia7lKZlg5Uo/7yDhVltbi6qqKtTW1ka6KCHjLegEgIKCAvTq1SsCJYov8VhnSHjZ7XbYbDbY7faOE3ejyi9Ww9FqQOWqNZEuCvEQrXXG3fbt23H6tHN5uAULFuCyyy5rl0an0+Gll14Sl4RZsWJFt5axJzjB1OC9YQ3iv8/zajp+UwyirrYk6lRXV8PukAaegXa1zU/NwZ/GLxS3bY7QPjHirSaocwdD1Wcg7A1nYG+ogIK62UZcdXW1uCZjPARlp06dwokTJ9rtLygoQG5ubgRKFH/irc6Q8LPb7eLSGNHSzdDW1ITqb78HAFR/8x36Tp8GZWpqhEtFXKKxznjavn27+HratGk+02VkZGDMmDHYsmULjhw5AovFQmuThlBzoxw5R8eK23K5xU/q2EWBJ4lKGUwTVPpqCAwLgWGQksZ3/CYvlCFuiWzavAKtxRugzh8B7YDR0BacA3lyZkjPQXo2X0HnwIEDkZNDS/YQQtpUfrEavM35gJW32VC5ag3633ZLZAsVZlVVVXj77bexadMmnDlzBhqNBkVFRbjhhhtw7bXX4s0338RLL70EADhy5IjkvUVFRQCARYsWYc6cOVi2bBm2bNkCAMjNzcXtt9+OqVOniul5nsf69evx5ZdfYu/evWhqaoJOp0NeXh4mTpyIBQsWICkpyWs5b7rpJuzcuROAs3uqLw8//DBWrVoFANi4caPkOu86lpWVhU2bNuH06dP4z3/+g23btqGhoQEpKSkYO3YsbrnlFowaNSrYHyUAQK1Wo3///qiurkZ+fr7ftMnJyeLrlpYWCjxDyGjgkNTctjoCpzBEsDThQ4EniTr5+floVHFQmSoACGAgILlXdIyhNJ8oBm81wXRkB0xHdiBlwmykXTo30sXq8fLz88HzfMxP837y5EmcPHmy3X4KOkMvXuoM6T4qlUpsvYoG7q2dLvHe6rljxw7cfffdMBqN4j6bzYadO3di586dWL9+vRhc+mMwGDB//nzJ9fbw4cOSILK6uhqLFy/G7t27Je/V6/XQ6/UoKSnBe++9hxdeeAGXXHKJ3/OpVKoAP6Fvu3fvxp133omWlhZxX11dHdatW4dvvvkGf/nLX3DrrbcGne+iRYuwaNGigNKWlpYCcK5LmpKSEvS5iG98jR5AW0OGxtK5BpdoR4EniTpJSUkwCWq0qDPEfalsYE/VtpzaCavDhkRVAhKUWuQk90GSKiEk5XK0NsFWe1qyTztgdEjyJl3j64lzLKGgs3vFQ50h3SvaZpJ2b+10iedWz/3792PhwoWwWJxdECdNmoTLL78cCoUCO3fuxOrVq/Htt99i69atHeb1v//9D1arFRMmTMDUqVOh1+vx888/Y8KECQCcM4jfeuut4jj7vn37YsaMGRgwYACam5uxYcMGbNmyBXq9HnfffTdef/11XHzxxT7P19W6YzKZcP/996OlpQXDhg3DzJkzkZSUhF27duHzzz+Hw+HAs88+C61WixtuuKFL5/Jl//79YgvykCFDoFTS3BahlMJI73Nl8Rl3UuBJopPAcZJtNsCFdBvNelgcNjSY9QCAFE1yyAJP84kSyTaj0kLVd1BI8iY9m6+gc9CgQejbl8YQE0KkvLV2usRrq+dTTz0Fi8UChmHwzDPPYMaMGeKxadOmYfr06Vi4cCFaW1s7zMtqtWLixIl4/fXXxRbsW265RTz+wgsviEHnFVdcIZlYBwDmzZuHVatW4ZFHHoHD4cCSJUuwfv16JCSE5n7DU2trK1pbWzF79mw88cQTYiA7depUTJ06FXfccQfMZjNefvllTJ48OeQP1niex9NPPy1uu3dHJqEhY3pG75ue8SlJzOE56aMeRt5xVbU5bLB4TCaUqNSFrEzm48WSbU3+CDAhnjGX9CyCIODEiRMUdBJCguKttdPF1eoZT3755RdxnOTs2bMlQafLmDFj8Je//CXgPO+44w6v3aZramqwevVqAEBOTg5efPFFr2MZp0+fLgarjY2N+PTTTwM+d2cUFRXh8ccfb9d6OnbsWNx7770AnN2Av/jii5Cf+5VXXhG7HGdnZ+PGG28M+Tl6Op6X/l55Jj7vLynwJFHHbre3CzzZALqplDaewr6awzjeeBrVhjoYbSboFNqQlEkQeJg8Ak9t/84N5CehFwtT1nvjcDhQXV3dbj8FneEXq3WGRA7P8+K/SPLX2ulS/c13cbWu548//ii+/v3vf+8z3fTp0wMae6hQKDBy5Eivx7Zu3SpeFxYsWACNRuMznz/84Q+Qy52dBzds2OAzXSjqzK233iqey9MNN9wgdn396aefunwudx988AHefPNNAM4uwy+88AJNKhQG2qw+km3Bx+861lHgSaLOoUOHYLVaJfsC6Wpba6zHkfoy7K7ahy2nduKX8t0hmzjEVnMSvFnafUcQ4rQDfgw6dOgQ9u3bh0OHDkW6KEFRKBQYPXq0ZOKJwsJCCjq7QazWGRI5FosFZrNZHGMYKf5aO13irdVz165dAIDU1FQMHDjQZzqlUolzzz23w/xyc3N9jlEsLi4WX19wwQV+88nIyBDLs2/fPgiC4DVdKOrMRRdd5PNYYmIiCgsLAQAlJSU+0wXr/fffl3SxXbJkCcaNGxey/EkbWYL0AUe89ryN049FYt0ZWR9UJQ5EVeJAVCcUoMnh+4mjS5O5WbKdkxy6mXDNx6UXcladAEVqdsjyJz2XRqMRg8/CwkL06dOn4zcRQnqkQFo7XeKp1bO2thYAAro+9uvXr8M0/sZANjY2iq8DWTfZlcZut0tmnA0lrVaLrKwsv2lcPxuTyQSTydTlc/7rX//C008/LQbTf/zjHyXjYEloyXUpkm1BFp8tnvH5qUhMS05OhoXRwKZo68phZzq+mNeZGiXbmdq0kJXJs5utPDUL8sTQ5U+6Jjk5GQ6Hw2c3pGin0Wgwbty4qJs1M57Fep0h3U8mk0V8OZVAWjtd4mmGW71eDwABdfEMJI2/GVndl2rx183W2/nMZrNkrUuXrl7bdbqO56twL4fBYIBW27mhRhzH4bHHHsOKFSvEfffeey/uu+++TuVHAuM5ZwgTp02e9I1Lok5eXh7A/CrZF8hFe0BqP4zrOxp1pgbUGxuRoUsPSXl4mwWWisOSfYrUbMgSKPCMFnl5eZEuQodcT4193bRS0Nm9YqHOkOgSirUYuyKY1k6XeJnhVqVSwW63w2w2d5i2q91a3YNNs9nc4Uy17q2LvoJef3XHc2iRN7YAHja4ytGVNTatVisWLVokjqllGKbT64OS4Jxukc73YObjc/4BCjxJVBIEBnC7P2cDmNX2ioIJuKJggrjNh2gMpuX0AYBzuO1hoEzvC1YTnmnTSfwRBAHHjx8Hz/MYOHBg1CxATwiJHcG0drrES6tndnY2SktLcebMmQ7TBpLGn4yMtjXEy8vLMWTIEL/pT506BcAZdLoHfO7XeX+9KwJZ/qWlpQVGo9Fvy2dFRQUAICUlpVNrbFosFtx555345ZdfAAByuRxPPvmk1xmESej1lHlD4rMdl8Q8z+H5sk50h2ND1E3B5DG+U5aUDnlKFgUPJCCuoLO8vByVlZUoKyvzOQEFIYR405nWTpd4GOs5apRzFnm9Xo+ysjKf6XieF5dd6awRI0aIr11BmC81NTXiep+uyX1c3IM/g8HgM4/S0tIOyyQIgt9Jg9x/Lp2Z/IfjOCxatEj8vCqVCsuXL6egsxs5PFq+mTi9TaDAk0QpaVAnC6DFM1w8JxZSpGbT+E4SEEEQUFZWhvLycnFfRUWFeKNCCCGB6Exrp0s8zHB79dVXi68//PBDn+m+/fZb1NXVdelcl156KRQKhXguf91733nnHXGplIkTJ0qOpae3DffxNXt2cXExqqqqAirXxx9/7PPYRx99JC4BM2nSpIDyc/fvf/9bXIZFrVbj9ddf71Q+pPO48hrJtsIWny2gFHiSqFNWVualxdP/+LcmczPWHtmIH45vw46KPThQezQkZXG01MPeUCHZJ0/NgiItdDPmkq4rKyvDkSNH/D4J726uoNPV/cldIBNFkPCKxjpDopvFYhH/daeutHa6xHqr54QJEzB48GAAzgBs3bp17dIcOXIETz75ZJfP1atXL0ydOhWAs6vtQw895PV3vnr1arz33nsAnEHmvHnzJMfdW05fe+01OBwOyfHq6mo88sgjAZfr+++/9xp0b926Ff/5z38AAPn5+Zg8eXLAeQLOn9vrr78OwNk9+Pnnn/e7dAsJD51cOj44XvvU0RhPEnWMRiMEzxZPhf+qarSbYLKbYbKbUW8CdAoNhvUq9PueQNgbq8Ao1RBszi8dRq6EMiMHsqSMDt5JupPRaITdbhefUkeaIAgoLS1FZWVlu2NDhgzpcFp8En7RVmdI9ON5PiKz2tZu/BHyxK7PKVC78UfkzIrNrpMsy2LZsmWYP38+7HY7Fi9ejG+++QaXXnopVCoViouLsWLFClitVshkMnAc16V1vP/6179i165dKC8vx/r16zFlyhTMnDkT/fv3R0tLCzZs2IDNmzeLZXv66aeRlibtCTV58mS8+OKLMJvN2LVrF+bMmYOZM2ciMTERBw8exMqVK9Ha2ooRI0Zg3759HZaJYRgsW7YMmzdvxpVXXgm5XI7t27djzZo14HkeCoUCjz/+eNDjO9944w0xKB46dChkMhk2bNjQ4fvOPffcdp+ZdJ7SYYDG1tbIouA7nnQqFlHgSaKTxxe7XOG/xdNkk3aF0So6ngI9EOp+Q5EyfibsTdVwNNVAEHiosvrT+E7iEwWdhJBQypk1I2YDxlAaNWoUXnnlFSxZsgQmkwnff/89vv9e2hI8a9YsVFZWYvv27Z2aYMclKSkJH374Ie69917s3bsXlZWVWL58ebt0KSkpePnllzF+/Ph2x9LT07Fs2TIsXboUNpsNBw4cwIEDByRpbr75ZowePRoPPvhgh2VasmQJXnnlFfz444/irLMuOp0Oy5cvx4UXXhjU5zQajZKf4YEDB3DPPfcE9N73338f559/flDnI76lKUzINjSI2zJ0rmt9tKPAk0Sd4cOHYw1OSvbJNf7X5fqlYg9KG05Aq9BCq9QgXROaqePtTTUQHHbIE9MhT3SO11D2yg9J3iR0hg8fHukiAKCgM5ZES50hsSOQNR1JeF155ZX46quv8O6772Lz5s2orq6GUqnE0KFDsWDBAlx55ZWYP38+AGfw2BVZWVn47LPPsG7dOnz99dfYt28fmpqakJKSgtzcXEyePBnXX3+93/NMnToVI0aMwDvvvIOtW7eitrYWSUlJGDFiBBYsWIAJEybg66+/Dqg8V111FSZMmIDXX38dO3bsQHNzM/r06YPLLrsMt912W6e+X44fPy6ODSWRpZUpALQ1osTrAmsUeJKow7IsWLkcHNc2sLrP2JF+31PZXIXD9W1jtdQyJSYVtH8CGSxb7UnJtjwxHTJtYpfzJaHVlS5VoSIIAo4dO+Z1Kv+hQ4eiV69eESgV8SUa6gyJLdTTJTrk5OTgb3/7m8/jDQ3OVqPevdvPxXDkyJGgzsUwDK655hpcc801wRXS7f39+/fHsmXLfKYJJv/CwkK8/PLLnSqLNyNGjAj6Z0JIV1DgSaKSa5Y4F5b1/4Wvt7ZItgvSur44PO+wwd4gDSKUWfldzpfEH19BJ8MwGDJkCAWdhBDSBWvWrMHatWuRm5uLO++802frXllZGU6ePAnA+cCPEBJdKPAkUUfgBXguc9hR4NlkbpZsp2lTulwOe30FBJ4TtxmGgTIzt8v5kvhCQSchhIRXUlISNm3aBMB5zX3sscfapTEYDFi6dKm4TvK1117brWUkpCsYCJDxbTMfs4zDT+rYRYEniTr1DQ3t9rEy/4HnuL6j0WBugt7cgiZLM9I0KV0uhzIzF4xCDUdTNexN1ZBpE8EqVF3Ol4ReY2MjeJ4Hy7LdPsteaWmp16Bz6NChyMzM7NaykMBFss6Q2ORwOMRZbeVyun3qTuPHj0dOTg4qKirw0Ucf4eDBg7jqqquQnZ0Ns9mM48ePY82aNaivrwcAzJ49G2PGjIlwqanOkMAZ0Yg8fdvkU1ZlfHbtp78CEnUqytuve9hRi+ftY+b5PR4sU9ketPz6DTQDRjv/FZwDCPG5mG88qKioEJfG6O4gIj09HVVVVWL3cAo6Y0Mk6wyJTTabjYKICFEqlXjttddw1113oaqqCsXFxSguLvaadt68eUGtjxlOVGdIoJpsGlT1miBus+je9YK7C/0VkOjDMOjdTw2GYZCYmASeF6BUdm9VNR37FabS32Aq/Q0AoBs6HlnTO57unPQ8aWlpGD58OPbv3w9BECjoJISQMBg8eDC++eYbrFy5Ehs3bsTRo0fR3NwMnU6HrKwsnHPOOZg1axZGjvQ/GSEh0chsV6IqaZC4rba3+EkduyjwJFGnd2oaBug3g5WxUFpVYGUyyBxFALqvm6v5RIlkW5XVv9vOTYKXk5MjdpuMBFfwyfM8MjIyIlIGEpxI1xkSe5RKpdh6RSJDo9Hgpptuwk033RTpogSkq3Xm2WefxbPPPhviUpFoZIfQcaI4QIEniTpamQxnTjZJ9g0zmqBOTfaavtpQh+KqA1DLVVDKlEhS6TA8a3Cnz2/X18DeWCXZpxkwqtP5kfCLhq6S0VAGEjj6fZFgUVdJEiyqMyRQSUptpIvQLehRL4k6vJ1rt4+V+15K12Qzo8VqQK2xARUtVag21HXp/Obj0tZOVptEy6gQCIKA5ubmjhMSQgghhARBzkrvc+O1XwUFniTq8HZ7u30ypdJnehtnk2wrZb7TBsJ4dJdkW9t/FBiG/lR6MkEQcPjwYezZswc1NTWRLg4hhBBC4gjHS+8z+Ti976Q+ACT6KBVQpmcAAu9cz1MQ/Aae207/hlPNldDIVVDL1UjvwlIqAs/BcvqAZJ8ivU+n8yPdwzWjLICQj9kTBAGHDh1CbW0tAODQoUNgGIbW54xx4awzJD4JbgtM0zhPEgiqMyRQMo95THgmPkO0+PxUJKYdr68HP2wIWBmL7KwsAIBMo/aZ/mjDcRxvOi1u907sfEBgqTwGwW6V7FP2yu90fqR77N+/X1waI5QzGnoGnS6HDx9GSkoKlH4eiJDoFq46Q+KX2WwWJ4rRanvGeCzSNVRnCJGiwJNEHYuJw5nTZrAMg8aaKjAMgwmTBvlM32o1SLb7p+Z2+tzGIzsk26w2Gaq+vs9N4pevoJNlWQwfPpyCTkIIIYSEhsJ3A0s8ocCTRB2ZTAVji3OCodZmZ1DJ+uihIggCmizStY5S1EmdPre5bI9kW5mZA5kupdP5ke6h0+ngcDhCNoOgIAg4ePAg6uqkE1W5gk6aETX2hbrOkPhHXbJJsKjOkECxsp7xXdQzPiWJKb2z+wA4JdnHyrxfvB28AxP7Xwi9uRlNlmbozS1I6+QYT85ihL2+QrJPkz+SxmXEgIKCgpDlxfM8Dh06REFnnAtlnSE9g1rdM1okSOhQnSGB0ltaALStAx6vq3pS4EmijuA26QcA+Iv7FDIFFo65MSTnNR3bBcmfOiuDdvAFIcmbxAZ/QeeIESOQmpoaoZIRQgghJF7x4DtOFAco8CRRh+M8nvN0U4uj8bB0fKc8pReUNKNtj8HzPA4ePIj6+nrJfgo6CSGEEBJOPB+vbZxS1PmcRJ3WEyelO3gu7OcUBAGW8kOSfeqcIlq/s4egoJMQQgghkeIQHJEuQregFk8SdepPlwPu6xkJvp8CNZr12FlRDJVMCZVcBa1CjdG9hwV9TlvtKfDmVsk+XeH5QedDIuPUqVPiRDF5eXlBvddf0Dly5EikpKSEsKQkWnSlzpCeyWq1iktjqFSqjt9AejyqMyRQGrl0PHC8zi5CgSeJOhazFe6BJ+NniLXFbkGL23IqWoWmU4GnwHNIOOdKOJqq4WiqAW81QlNwTtD5kMhobm4W12QMVkNDAwWdPVBX6gzpmTiOE4MIQgJBdYYESsWZoXSYxG0Fb4lgacKHAk8SdXjOY3IhP93ezQ6rZFst79zaio7GKsgTUiFPSAVyh0CR1gesnG5Ie4LMzEwMGDAAx48fBwDIZDKMGDGCgk5CCCGEdItUuQF9W9omNpTBFsHShA8FniTqJCclA1Xue3xHnj8c34qKlmpo5Cqo5SqkqBODPp8gCHC0SFu8lBk5QedDImfIkCFdeqrcr18/CIKA06dPU9DZQ3S1zpCeh5bGIMGKtTpTXl6O999/H1u3bkVlZSXkcjn69OmDyy+/HDfccAP69KEJF8MlLSMNpxWV4rZSFp/fTRR4kqijUfAAZOK23M+A6701h1FjaHtClJ8SfMDIW03g7dKWU3lyZtD5kMgJRXfJvLw8ZGVlxdyNAukc6mJLgsWyNNkcCU4s1ZnVq1fjscceg8Ui7eJ59OhRHD16FO+//z7+9re/YebMmREqYXzT5mRBm9kWeKpVnevBF+0o8CRRh3dIA09/YzxbrNIJgQozBgR9Pq61UbLNypVg1bqg8yGxj4JOQkgsqj7Tguw+SZEuBolRmzZtwl//+lfwPA+GYXDNNddg7NixkMlkKCkpwapVq2AymbB06VKkpKRg0qRJkS4yiVGx8yiG9Bi8xzqevgJPq8MGs136ZC5FHfwXL6vSQpU9APKEVDAMA1liKnW/i0Ou2WsNBkPHiQkhJEYYWiz44D/bYWiJz8lISHhxHIfHH38cPM+DZVm88cYbeOmllzB37lzMnj0bTz31FN5//30oFAoIgoB//OMf4Hm+44wJ8YJaPM8SBAFr167F559/jkOHDsFkMiEzMxNjx47F/PnzMXLkyC7nv3HjRqxZswZ79+5FY2MjFAoF+vbti/Hjx+Pmm2+mvvNn2awWAG1dDHwFng7egSsKLobe3Ay9pQVNlmakaJKDPp+1+jiUGTmQDxoD8BwER3wO6I5nLS0t4pdmUlL7hw8cx2H//v1oampCY2MjRo8ejYSEhAiUlESLjuoMIZ7cZyiVyWQdv6GbbP2xDGaTHdt+Oo6rrhsa6eIQN9FaZ9xt2bIFlZXOLp6zZ8/GpZde2i7NeeedhxkzZuDTTz9FeXk59u3bh1GjRnV3UeNaraIBPxWdErdTeAaTI1iecKHAE4DFYsGiRYvw008/SfZXVlaisrISX331FR544AEsXLiwU/k3Nzdj8eLF2Lp1q2S/zWYT+85/+OGHePLJJ3H99dd38lPEj9ZWI4C2G0FfjY86pRYLx9zYpXPxVjNqVj4PCDxYbRLUfQuRMflOsCptl/Il3evkyZPi0hieD4ncg04AcDgcKCkpwahRoyj47MH81RlCvHFfk1GrjY7vCEOLBb9tc96s/rrtJC6aOAAJSTRkIFpEY53xZLPZcN5556G0tBRXX321z3RFRUXi68rKSgo8Q6xez4OvGSFuG1mrn9SxiwJPAEuXLhWDzoKCAsyZMwcZGRk4cOAAPvnkE5hMJrz00kvIysrCtGnTgsqb53ncc8892LVrFwCgT58+mDlzJgYMGACj0YgtW7bg+++/h81mw8MPP4ykpCRcfvnlof6IMUUBO1JMVQDDQAADnSJ8XTqsVaWA4MyfN7XAVFZM4zvjiGfQ6cLzPHUVIoTEvK0/lsHhcF7LHHa+R7R6VlVV4e2338amTZtw5swZaDQaFBUV4YYbbsC1116LN998Ey+99BIA4MiRI5L3uoKnRYsWYc6cOVi2bBm2bNkCAMjNzcXtt9+OqVOniul5nsf69evx5ZdfYu/evWhqaoJOp0NeXh4mTpyIBQsW+OwxcdNNN2Hnzp0AgD179vj8PA8//DBWrVoFANi4cSNycnLaHcvKysKmTZtw+vRp/Oc//8G2bdvQ0NCAlJQUjB07FrfcckunA8Err7wSV155ZYfpampqxNeZmTQBY6gZWhhkVheI2w5lfA4L6vGB59atW7F27VoAwAUXXIA333wTKpUKAHDttddi1qxZuPHGG6HX6/HMM89g0qRJQbWSrFq1Sgw6L7jgAvznP/+RPPWaPXs2fvjhB9x3331wOBx4/PHHMX78eLEMPVEvHQOh4VcAzm622qyMsJ3LUiH9UlJl5YNV9NyffazKzs4Gx3GSrky+gk65XI6RI0dS98oezludIcQf1xi3aJkDwL210yXeWz137NiBu+++G0ajUdxns9mwc+dO7Ny5E+vXr5e0zPliMBgwf/58nDx5Utx3+PBhyfdCdXU1Fi9ejN27d0veq9frodfrUVJSgvfeew8vvPACLrnkEr/nC8Us2rt378add96JlpYWcV9dXR3WrVuHb775Bn/5y19w6623dvk83lRUVOCzzz4D4Lx2Umtn6Dlq9ADSxW2NJT4fjvf4wPPtt98G4LwZfeqpp9oFfAUFBfj73/+OP/3pT9Dr9VixYkVQf9iffvopAEClUuHFF1/02tXi8ssvx4IFC/Duu++ipqYGmzZtCujpU7wSZBo06Nqe+CXINF7TndZXYl/NYWgUamgUaqSqUzA4s8BrWl+slUcl26qcwuALTCKuV69ekm2O47Bv3z7o9XrJfrlcjlGjRiExMfj1Xkl88awzhHQk2pbgcW/tdInnVs/9+/dj4cKF4nIfkyZNwuWXXw6FQoGdO3di9erV+Pbbb9sNa/Lmf//7H6xWKyZMmICpU6dCr9fj559/xoQJEwA4h0jdeuutOH78OACgb9++mDFjBgYMGIDm5mZs2LABW7ZsgV6vx913343XX38dF198sc/zdbXumEwm3H///WhpacGwYcMwc+ZMJCUlYdeuXfj888/hcDjw7LPPQqvV4oYbbujSuQDnvCRmsxnl5eVYt24dPv74YzQ3N0Mul+OJJ56AUhmfS31EUiIvDclkXIQKEmY9OvDU6/XYtm0bAODiiy9Gbm6u13RTpkzBM888g4aGBnz77bcBB54GgwF79+4FAFx00UV+uyZcffXVePfddwEAJSUlPTrw5DnpX5uvp8smuxnGs/8AwOawBxV4CoIAi0fgqe7b8ZNSEt0o6CSExDtvrZ0u8drq+dRTT8FisYBhGDzzzDOYMWOGeGzatGmYPn06Fi5ciNbWVj+5OFmtVkycOBGvv/66eI9xyy23iMdfeOEFMei84oor8NJLL0mW25o3bx5WrVqFRx55BA6HA0uWLMH69evDNm9Aa2srWltbMXv2bDzxxBNiT42pU6di6tSpuOOOO2A2m/Hyyy9j8uTJXe7R8/333+P++++X7MvLy8MTTzyBCy+8sEt5E++UrDQki45+FaHXo5dT+fXXX8VxXhdccIHPdCzLYuzYsQCcQWFzc3NA+Tc1NWHEiBHIzMzEgAH+15dMTm6bjdW9G0VPJHDSJ7gM6/3Pz+yQTh2vUQT3JWtvrAJvln5BKbL7B5UHiS4UdBJCegJvrZ0urlbPePLLL7+I4yRnz54tCTpdxowZg7/85S8B53nHHXd4fbBdU1OD1atXAwBycnLw4osvel3jefr06WKw2tjYKPZwC5eioiI8/vjj7YYHjB07Fvfeey8AZ4PKF1980eVzVVVVtdtXW1uLL7/8EnV1dV3On7TH8dKQjGfiM0SLz08VoGPHjomvCwv9d7EcOHAgAGcr2dGjR/2mdcnNzcWKFSuwZcsWLFmyxG/asrIy8XVKSkpA+ccrwWPSF18tnj8e34YDtUdQ1ngKlS3VEITg+sObT5RIz6NQQ65LDa6wJGpwHIe9e/dS0EkIiWv+Wjtdft12Mq7W9fzxxx/F17///e99pps+fXpA91D+ZrPeunUr7HY7AGDBggXQaLwP9wGAP/zhD5DLnS1VGzZs6PC8XXHrrbeK5/J0ww03iN1fPVdo6Iz8/Hw88cQTeOWVV/DAAw8gNzcXZrMZX3zxBWbOnIkzZ850+RxESpMmHf4hyOKzU2qPDjxd6xYBzv77/mRnZ3t9X6h8/vnn4uuePmi7pVna4usr8DxQexSH6kqxp2o/tpf/1q4FtCOWUwck2/KUXpCpo3O6c+Lf3r17sXbtWsnDJMAZdI4ePZqCTtLO/v37sWfPHuzfvz/SRSExwmw2w2QywWw2R7Qc/lo7XeKt1dM1SWNqaqrYEOCNUqnEueee22F+ubm5PscpFhcXi6/99YYDgIyMDLE8+/btgyB4X3c8FHXmoosu8nksMTFRbEApKSnxmS5QEydOxNy5czFlyhTcfffd+Prrr3HZZZcBcLYIL126tMvnIFKKVGn3aEYWn51te3Tg2djYKL5OTfXf0uX+BM2zRaWrNm/eLD7NS09Px/jx40Oaf6zROzSo1+aiXpuDBm1f1CO5XRoHz6HVZpTs65/aL6jzWKvLJNvKXnnBF5ZEHMdxOHnyJIxGo+RLX6FQYPTo0bRWJ/HKtaQOLatDAiUIgvgvUgJp7XSJp1bP2tpaAM4l6TrSr1/H9wL+xkC63xv6mvvDnSuN3W73OVSqq3VGq9UiKyvLbxrXz8ZkMsFkMnXpfJ5UKhVeeuklZGQ4VxnYtm2bpKce6TpWKV3KT2Djc8b1Hh14umZGA9Dh8iXuT8bc39dVVVVVkjEJd999t9exBD2JWVCjVZ2BVnUmWtS90Cy0X1ez2dL+4p6qbh+g+sLbzHDopeMU1P2GBF9YEnEMw0Cj0UAul4vdkBQKBUaNGkVBJ/FJrVaL/wgJBMuy4r9ICaS10yWeWj1dD/wD+XsNJI2/WVndl2rx183W2/l8tWx2tc7odB2vL+5eDoMh9GtA6nQ6XHvtteK25zIzpGtkHmvIM2x8drWNz08VIIfDIb7uaGpo9+Pu7+uKxsZG3HbbbWhoaAAAjB8/HgsWLAhJ3l1RWlqKgoICSfdEq9UqLsSckpLS7oliaWmp+ITNc9xEfX29OB4gNzdX0rrMcRwOHHB2eU1MTET//v0hlysAt4lteYHH3r17MXToUDGwYBkWl+aej+qmWhgcRlhhR4JK+kfr6vai0WgwaNAgybHy3ZsAuD2BZBho8p1dnA0GgzibXWZmJnr37i1576FDh2C326FQKDBkiDRYraqqEgfeDxgwQBL4WCwWcXxwWlqaZJFowDnm2Gw2g2EYjBgxQnKsrq5OHOzfr18/SQu8w+HAwYMHATif4ubn50vee+LECXGWv2HDhkkmJmhqakJ5eTkA59NS19NMF9eszFqttl33ptOnT4s3A0VFRZKHN62trThx4gQAICsrq92T2oMHD8LhcECpVGLw4MGSY2fOnEF9fT0A53JG7l+4ZrNZ7E6bnp6Ovn37gmVZTJo0CQcPHsSRI0dQX1+P/Pz8dkFnbW0tqqurATjHr7g/8bbb7Th06BAA50RfeXnS1u+ysjLxZmT48OGSm4jGxkZUVFQAcE5EkZaWJh7jeV7syqnT6VBQIJ11+dSpU+JkZUOGDJFMud/S0iKuMZednd1u+Y/9+/eD53mo1ep2Y9QrKyvF68qgQYMkN09Go1F8Up2RkdGuBeHw4cOw2WyQy+UYOlS6JENNTY24iHj//v0jdo1wd/LkSbGVwf0aAThvVk+fPg0A6N27t2Rm8cLCQuzbtw8WiwXHjh1rd42oqKgQWz4KCwvb3dTRNcIpFq4R7o4ePQqLxQKWZTF8+HDJMfdrhOfyF+6t496CCIvFIh7XaDSSISIOhwM2mw2A817CvY66lq1w5esZNFmtVnBnZ3p32JiAWztdft12Eude2BcZmdIHszabTbyXUavVks/EcRysVisA53AFz/sjs9ksrmfqGZjZ7XZxfKRKpZLUJZ7nxQf3Mpms3QN/95+h59JzKpUKdrsdRqMRDofD589QJpO1axxw/xl6cv/dKBQKKBQKyWdqaGhAQkKC19+N62foPouuKw3HcZJzer7X/Wfo+ll75uv6bK59gPRn6Pm7cV1fGYbx2pji/rvxVw+9/W5cP0P3vyfXd4y3n6E7V7k6qt/+6qG3fP3VQ/efob966K1+u+qht3w5joPZbMbevXtDfh9x8PRhAG0/d6tgF8sbifuIcE0i1aMDT/c/ALvd7jf4dP1RAR0HqYGoq6uTrBGVl5eHF198MSoWpuY4rl33M0EQxAuWtwu4w+EQj3vieV485q1bm+uY6yLBe3RJYeA8t3tXlVRNMm4cMk38+eXk5ID1mAHM9R5vg/G5ikOSbZkuFYrUXu0+q6/yBvJZPbvWuOfr7eGFK19vdaAr+Ybyd+OO4zifZXLP11t9sdvtcDgcXm/g/OXrqx6yLIuhQ4eiqqoKOp2u3ax/nvn6q9/d+TN0z7czP0Oe5zv8rIH+DD3L5K1rWKA/w3BfI3zl6++z+srX1zWiq/nSNSK6rhHu+drt9g7z9bbuoutcvrpN+tvv773+umG6v3f7T8cDbu10cdh57Nx8ClNmSB/2dKVM/o6H6rN6ysrKgsFg8Drbqnu+giC0m/imo+7RnsfcH65UVFSgqKjI52cRBEF8uKVWqyUPfDwfPngGeq48vS3/4nm+lpYWGI1GaDQanz9f1wPQ5ORkn5MQefscb7/9Nn799VfU19fj7bff9vq34Sqve5Ds/sAnkJ9vOP5uXIFnOPL1xXWNCfV9hJWzwT3wdL8XjsR9RLiGofTowNP9iZrVag048OyoW25HTp8+jdtvvx2nTjmfXPbu3RvvvPOOpKUkkmQyWbsLD8Mw4hextwoql8t9LpDMsqx4zNsFzXXMdaH0nJyWOZvG8+LiXiZf+QqC4LVcTMMp9/ZOKDJzwZwNXAPJ1/1/d+6f1V95vX0pKBQKOBwOrxfRruQbyt+NO5lM5rNM7vl6qy+u32ew+fqrhyzLIi8vT2zN8Jevv/rdnT9D93w78zPked5ruTr7M3SVief5Dn83kbxG+Mo3lNeIrubr/r87uka0z7e7rhGufDmO6/Aa4Y3rXL5udP3t9/defw+cXe81tlrx2/bTPtP5U7yzApdcUShZ17MrZfJ8v6/9nf2s3owcORJlZWVobm5GWVkZioqK2r0XcN54u5ZdCSRfb2UaMWKEuDTKrl27MHjwYJ+fpa6uTmxR8mwxcr+nNBgMXoNShmFQWlraYZkEQUBJSQkuuOACrz9fvV4v9mQ577zzgqqjxcXF2LhxIwBnjxfP3hSu9zEMI5mMzX2ZwEB+vt35d9PVfP3VGdd1KdT3EQznEey6bUbiPiJcQwoYIZKj5CPs0UcfFS8uGzZs8DuIfMWKFfjb3/4GAHjxxRcxderUTp1z7969uOuuu8QuCn379sV7770X0AD2cDEYDGIXOcDZJSqSY+PeXfIuTnNtTxzT5Cbc+9yckOUvCAJOvrgAgq2tO07KhNlIu3RuyM5BwsPhcPgMFAghJFSOHTsmtlJ5dsOOhO/WHMCOTSc6/f4LLh2Aq64b2nHCKLVp0ybccccdAID58+fj0Ucf9Zpu3bp1WLx4sbjtfm8DQAxYx40bhw8++MBrHrW1tbj88stht9uRm5uLr776yudYz2effRbvvPMOAOD+++/HPffcIx77y1/+Iq4H+u677+LCCy9s9/7i4mLccMMN4vbGjRslXewffvhhrFq1CgBw1VVX4dVXX/Vajn//+9/45z//CQB4/vnnMW3aNK/pvHG/v505cyaeeeYZr+lOnTqFa665Bna7HSkpKdi8eXNIegDGinBfE9578b84VdU25EDGW7D0lVkhP0+gwhUb9OjJhdzHufjqvuHiGvcBBDarmjebN2/G73//ezHoHDhwID7++OOIBp3RyLM7gLeHTgdqj+LrIxvxw/Gt2F7+G040lQecv8PQBFadALh1zdUO6NlL2MQCh8OBkpISlJSUtOuuUllZidOnT4dlqSMSn6jOkGDZbDZYrVZJD6juEMxMtr7E+gy3EyZMEMf6fvzxx1i3bl27NEeOHMGTTz7Z5XP16tVLbFwoLy/HQw895HVSydWrV+O9994D4BxPPG/ePMlx95bDf//73+26SVZXV+ORRx4JuFzff/89Pvzww3b7t27div/85z8AnPe1kydPDjhPAJgyZYo4/n3VqlVef7Y1NTW45557xO/ehQsX9qigsztoBI9eXHHaLNiju9q6D9A9duwYxo0b5zOta7IChmE69aTjhx9+wP333y/+0Y4aNQpvvPFGh8u49EQOjgfc/v4YtI88jTYTjHYzjHbnYHi1XAUgsABesJmROOpyCDwHztgM3qiHsk/kn2gT3+x2O/bu3SuOhSkpKcGoUaPEls+GhgZxMpeO1uQlBKA6Q4Ln6nHBMEy33nQX76qARtf18xXvqsCESb7XwIxmLMti2bJlmD9/Pux2OxYvXoxvvvkGl156KVQqFYqLi7FixQpYrVbIZDKf3akD9de//hW7du1CeXk51q9fjylTpmDmzJno378/WlpasGHDBmzevFks29NPP91uuNTkyZPx4osvwmw2Y+fOnZgzZw5mzpyJxMREHDx4ECtXrkRraytGjBiBffv2dVgmhmGwbNkybN68GVdeeSXkcjm2b9+ONWvWiN0lH3/88aDrpk6nw1NPPYU//vGP4DgODz74IL777jtceumlUCqVOHDgAFasWCF+/15yySW49dZbgzoH6ZiKt0HGtT3UkvHd+4Cru/TowPOcc86BQqGA3W7Hjh07MH/+fK/pOI4TFy8ePHiw3/WfvNm5cycWLVokBp3jx4/Hv/71r3azthEXzzE77VNYHNJZ4DTywJdEcDQ7Z+piWBnkiWlQ5A4GK+vRfwpRzTPoBJxdQHyNRSGEkHgyYdLAmA0YQ2nUqFF45ZVXsGTJEphMJnz//ff4/vvvJWlmzZqFyspKbN++vUsPB5KSkvDhhx/i3nvvxd69e1FZWYnly5e3S5eSkoKXX37Z6/rr6enpWLZsGZYuXQqbzYYDBw6IM3S73HzzzRg9ejQefPDBDsu0ZMkSvPLKK/jxxx/Ftd9ddDodli9f7rU7byAmTpyIl19+GX/9619hMpnw7bff4ttvv22X7vrrr8eyZcsiuqRQvEqVN6Nfc424LQMFnnEnKSkJF1xwATZv3owffvgBZ86c8dqN9uuvvxan1Q+2C0NDQwMWLVokds257LLLsHz5cuqi4AfrMQCaYdr3N/j5xC9wCA6o5Wqo5SqM6FXULo0vrsDTRZ6c6SMliTS73Y6SkpJ2a5IplUpJj4VBgwb5nd2OEE9UZ0iw1Go11ZkIu/LKK/HVV1/h3XffxebNm1FdXQ2lUomhQ4diwYIFuPLKK8VGhGAbCTxlZWXhs88+w7p16/D1119j3759aGpqQkpKCnJzczF58mRcf/31fs9z7bXXYtiwYXjvvfewdetW1NbWIikpCSNGjMCCBQswYcIEfP311wGV56qrrsKECRPw+uuvY8eOHWhubkafPn1w2WWX4bbbbmu3JFGwrr76apxzzjn44IMP8PPPP6OiogIcxyEzMxNjx47FnDlzcO6553bpHMS3RJkSQFuX7vZTAcWHHh14AsAtt9yCzZs3w26348EHH8Rbb70lGTxbWlqKp59+GoDzidLs2bODyv/JJ58Ug9aRI0fin//8JwWdHeh3yThUuU2i0HuEtBusIAg4WHcMnNA2FvSy/oE95RN4DpyhSbJPnpThIzWJJH9B5+jRoyU9BgJZ5JsQd1RnSLColSc65OTkiJPheOOaR8NzfV2g/WRDHWEYBtdccw2uueaa4Ap5FsuyKCgowLJly3ymCSb/wsJCvPzyy50qSyCysrLw5z//GX/+85/Ddg7Ss/X4wHPChAn43e9+h++++w579uzBtGnTMG/ePPTu3RsHDx7Exx9/LC74umTJknZ9+Hfs2IGbb74ZQPtZ0srKyiRdFa6++mpxTIA/KSkpGDNmTCg+XkziPaaUliukz31abUZJ0AkAucmBTfjEGZsl6xwxYCBPTO9kSUm4+Ao6VSoVRo0aRd3UCSGkB1mzZg3Wrl2L3Nxc3HnnnT5b98rKysTlTYYOjd1ZfAmJVz0+8ASA5557DkajEVu2bEFFRQVeeOEFyXGGYXDvvfdi7tzglttYvXq1JMh5/vnnA3qfv2m+ewLPFX48uzXpzc3S42CQrA6sS40sIRXJY68BZ9SDMzSBt1nAyGlpjmjiL+gcPXo0tVQRQkgPk5SUhE2bNgFw3iM89thj7dIYDAYsXbpUvIe49tpru7WMhJCOUeAJZ5ert956C1999RVWr16NQ4cOobW1FSkpKTjvvPNw880347zzzgs636NHj4ahtPHPZpMulcGy0sBTLVfhqoGXQG9uQZOlGQ7eATkbWG/4hvVvg7eYoO5bCFVOEdT96IloNLHb7SguLhZ7Gbh0FHQajUZx7JVOp+uOopIYR3WGBMt9qS9vi7GT8Bk/fjxycnJQUVGBjz76CAcPHsRVV12F7OxsmM1mHD9+HGvWrEF9fT0AYPbs2VHRc4zqDAmUBXrkNbVNPmVTxudYcgo8z2IYBtdddx2uu+66oN53/vnn+xwz8MYbb4SiaD1Oc7NHi6ZH4NkrIQO3nyddLysQgiDAeHAbOKMehn0/AQAyr7sPiSMmdrKkJJRsNhtKSkqCDjoBZ/cq19IYI0eODHdRSRygOkOCZbVaxYcV1N2/eymVSrz22mu46667UFVVheLiYhQXF3tNO2/evKDWxwwnqjMkUHq7DE3JQ8RtgaFZbQnpFiqNDAnJckBwftnoElQhydfRXAfOqJfsU/ctDEnepGt8BZ1qtRqjRo2i7rWEENLDDR48GN988w1WrlyJjRs34ujRo2huboZOp0NWVhbOOecczJo1ix4kkZhktGtQmjFa3FbbWyJXmDCiwJNEnSK1HrmZLZDJZUhMSkRGL67jNwXAWint+sxqEiFPbT/rHel+x44d8xp0jh49Gmp1x2u0ZmRkgOM46spEAkZ1hgRLLqdbpkjTaDS46aabcNNNN0W6KAHpap159tln8eyzz4aoNCSa2YT2SwfGI7qKkqhTuWUfmgy8uF1QrUfWiLZ1OndVlqDWUA+NwrmGZ7+UvshJ6jiAtFRKu0Sr+xbSemxRYtCgQTAajTCZTACCCzoBeF1/lxB/qM6QYNFSaCRYVGdIoHTKntGzixalItHH46GP5xhPo80Eo92MelMTKlqqYbSZAsrWcuqgZFtF3WyjhlKpFJdJCTboJIQQQgiJZSpW2hYYr80i1OJJoo4Az+VUpM9HLA6rZFsj7zhA4R022OpOS/ax2sCWYCHdw7VGpyAIFHQSQgghpMfgeWmoKcRpjzwKPEnUkesSwHL2sy2fAuRaaRCy6eQOyFk5NAoV1HIVBJzTYZ7WqjJA4CX7VFn5oSs0CQmVKjQTSRFCCCGExAoG0ntdjonPNeYp8CRRh714PBRNFrAsi4yMDGQOyhCPmWxmlDaelKSfPmRyh3l6drNltclQ0MRC3c5qtaKyshL9+/cP6fjaw4cPw+FwQC6XY/DgwSHLl8QvqjMkWGazWXxNM22TQFCdIYGKz/bN9ijwJFGnptKIliYrGJaFsaURCUlq5A1IBwDore2nl85OzOwwT0u5NPCUJ2eA1SSEpsAkIFarFcXFxTCbzbBarRg8eHDIgk+bzQa73Q6e5ztOTAiozpDgCYIgrslISCCozpCAyeOzhdMTBZ4k6jTWWdHSZAcANNRY0SurLUDUm5slaTVy58y2HbFWH5dsKzP70RdBN3IPOgGgpqYGAEIWfMrlcgiCQMsdkIBRnSHBcl2r6LuDBIrqDAkUq+gZc1vQNy6JOiqlCoBd3Ha/YCepEnHVwEugN7dAb2mBUtbxEyJHSwN4k7SlVN13UMjKS/yzWCwoKSmRdDkCgJaWFjgcDigUXX/KN3To0C7nQXoWqjMkWNRVkgSL6gwJVKulFUBapIsRdhR4kqjjuYSu+3IqOcm9cft584LKz1JxWJqfXAFlHwo8u4PFYkFxcTEsFotkv1arxahRo0ISdBJCCCGExDK74JBse94Lxwtax5NEHYH3XE6la11UzKel4ztlielQJHc8LpR0TUdBJ81gSwghhBDSbuGFuEWBJ4k69mbpOE57Y0OX8rOWS1s8FSm9wKppYqFw8hd0jh49moJOQgghhJCz7IK940RxgLrakqhjN5kBeWLbtl4vvt5yaieaLa1Qy1XQKNQYkJaH7AT/rZe6IReBUWvBtTTA0doIZfYAGugfRh0FnUqlMuTnrKmpAcdxkMlkyMrKCnn+JP5QnSHBstvt4gylNEyABILqDAmUShb6e6NoRIEniULSoNA9SDTazDDanf9gBvokZneYm0yXBE3ecADOqc01ecNCW1wi8hV06nQ6jBo1KixBJ+AMIux2OxQKBQURJCBUZ0iwKIggwaI6QwKl4jkwbv1t2Tjte0uBJ4k6ngOqWbcO4WaHNKDRKPx32RQ4BzhDk7jNMAwUKb26WkTihdlsRnFxMaxWq2R/uINOQgghhJBYliZvQn5Tlbgtgw3AnMgVKEwo8CRRyHuLp9VhxbbTv0EtV53taqsCy/gfpswZ9RCEtlCWAQN5QvxPV93dIh109u/fHzzPg2Vp2DoJDNUZEiyVSiW2XpHYVFRUBAAYN24cPvjgg5DmXVFRgUmTJgEApk+fjmeffTYidcZbOUj0S9IlAExb44osTr+aKPAkUUch2GCBTtxO0Dj/+potrTipL5ekveWc2X7zcrRIJyaS6ZLAyKm7S6jZ7XY4HNKpwLuzpTMxMbHjRIS4oTpDgiWTySJdBBJjqM6QQCUP6oeE8npxWx2nkzDGaTxNYpng0eIpkzm3m62tkv0KVo4UdbLfvBiZHHJdMpizecoS00NYUuKSlJSEUaNGiV+yCQkJYZtIiBBCCCGExB5q8SRRjz0bzOgtLZL9Keokv91XHC0NkGmTkHju7wDOAYehEYycAqFwSUpKwsiRI3H8+HEMHz6cJlIghBBCCCEiCjxJ1PFs8XQN40zXpOLqgRPRZGmG3tyMFI3/1s7mXV+j+Zc1kCWkQtW3EAnDLkbCkAvDVWwCIDk5GaNHj+72MVBWq1UcR0NrhJJAUJ0hweJ5txkno2hsMM+3zWPAsjT+NJpEa50h0adJ3owDuRXidgIrw+QIlidcKPAkUaf9rLbOi/WAtH4YkNYv4HyslUcBAJyhCaYjO6DMyAUo8Owyh8MBudz3pSMSE28cOXJEXBpj5MiR3X5+EnuozpBgWSwW8WGFVquNdHEAADY7h3fWHoDZ4oBGLcet1w6DUkHjCqNFNNYZEp1qjVacduSK2zrYI1ia8KHAk0QdBWeDgjFDYBgADGQyXYfv8SRwDliryiT71DmFISphz2UymVBcXIy8vDz07ds30sUhhJAe7Vi5HnY7j/LaVvTvnYxj5XoMGxDfcxlUVVXh7bffxqZNm3DmzBloNBoUFRXhhhtuwLXXXos333wTL730EgDnA6ZgNTU14eOPP8bPP/+MEydOwGQyIS0tDSNHjsTUqVPxu9/9LuC8vvrqK6xcuRJlZWVgWRb9+/fHlClTMG/ePKjVar/vPXbsGL744gvs2LEDVVVVaG1thVqtRmZmJsaMGYO5c+di2DBalzxetDYrkHNitLjtUBkiV5gwosCTRJ0R9ZvBOzgAAAMBfXstDDoPW81JCA6bZJ+qDwWeXeEKOm02G44dOwYAURN8pqSkgOM4mkGQBIzqDAlWNNaV/cfr0Wq2wWRxoNVsw4HjDXEdeO7YsQN33303jEajuM9ms2Hnzp3YuXMn1q9fLy6Z0hnr16/HI488gpYW6ZwSNTU1WL9+PdavX4+xY8di+fLlSEvzvTQbx3F44IEH8M0330j27927F3v37sWHH36It956C/n5+e3ey/M8nnnmGXz44YeSrrqAcwb51tZWHD9+HJ999hkWL16Mu+66q9Ofl0QPa20TgBRxW23x7P8XHyjwJFGnVpsLu1vVzD37x/fD8W0w283OdTwVKhSlFyBD5/3CbznbzdZFkdYHMi0tn9BZRqMRJSUlsNnagvljx45BoVCgV69eESyZU79+gXfBJgSgOkOCF21jgWsbTahrMqOpxbl+clOLFbVaE2obTeiVFn/dOvfv34+FCxfCYnGudThp0iRcfvnlUCgU2LlzJ1avXo1vv/0WW7du7VT+P/74IxYtWgSOcz74njBhAiZNmoSUlBQcP34cX3zxBSorK7Fr1y4sWLAAK1asgE7nvUfWN998A7vdDq1Wi7lz52L48OGor6/HypUrcfToUZSXl+PWW2/FV199hYSEBMl7//nPf4prjKalpWH69Ono378/VCoVKisrsW7dOhw96rzH+b//+z9MmDABw4cP79RnJtEjQboMOuQOCjwJiQhW5qymRpsJZocFRrsZMAP9U33fOJqPF0u2ldkDwlnEuOYt6ASc6yD6e+JLCCEkdH7eXYETZ5rFbbuDh8PBw2CyQauWw2CyweHgsWZTGRTytols+vdJxqXn5kSiyCH11FNPwWKxgGEYPPPMM5gxY4Z4bNq0aZg+fToWLlyI1tZWP7l4ZzAY8PDDD4u9IP7xj39g2rRpkjR/+MMfsHjxYvz4448oKyvDc889h2XLlnnNz263IzMzEx988AH69+8v7r/xxhvxpz/9Cd999x3OnDmD1157DX/5y1/E442NjXj77bcBOHsUff7550hNTZXkfeedd2Lp0qX44osvIAgCvv76awo844BaJl11IV6nCaMptkj0ETye8rAMeIGHlZM+DlLLfT999hzfySpoGZXOMBqNYvdad651O/1NMkQIISQ0OI7HgeMNOHGmRfxXUWvAmXojGJZBTq9EMCyDM/VGVNQaJOkOnGgAx/EdnySK/fLLL9izZw8AYPbs2ZKg02XMmDGSIC4Yn3zyCfR6PQDgtttuaxd0AoBGo8HLL78sDjH54osvUFNT4zPPf/zjH5KgEwAUCgWeeeYZZGZmAgA+//xzWK1t9zY//vij+H37xz/+sV3QCTgnXFy4sG0I0okTJwL8lCSa8bw01PRc4SFeUOBJopDHcioMiyZzM3ZV7sX+miM41nAC5c1nIGe9j7fhjM3gjHrJPnW/IeEqbNxyBZ12u3RmNdd6nRR0EkJI92hqtUIAoFXL0dhiQW2TCXV6E+wODnnZiVDIWeRlJ8Lu4FCnN6G2yYTGFgu0ajkEwfn+WPbjjz+Kr3//+9/7TDd9+nSkpKQEnf/PP/8MAJDL5bj11lt9ptNqtViwYAEAZ6vmpk2bvKYbNGgQLr74Yq/HEhISMH36dABAc3Mzdu/eLR677rrr8P333+Ott97C1Vdf7bMcOTltLdiurscktskTpD3IOFl8roVOgSeJOoJHiyfLMjDYjDjRdBqH60tRUn0QOyr2QC3z3uJpPrVfuoOVQ92PuqEEw2AwxFTQWVpaisOHD6O0tDTSRSExguoMCZbFYoHZbI7IjX5GigbXX1qAzFQtCnKSodMoIAhAZqoWWrXzBlWrViAzVQtBAHQaBQpyktErVYvrLy1ARoqm28scSrt27QIApKamYuDAgT7TKZVKnHvuuUHnX1JSAgAYOHAg0tP9T8504YVty7Lt3bvXa5px48YB8F1n3MvonodCoUBeXh4uvvjidmM/AaC6uhobNmzAc889J+5zjUklsU2TJa13rDw+Wzyj6+6READNqkxwrKtqCjDbBQg2kySNTqGBUu69+6z5hPSLQJ6UBnlS/M7yF2oGgwElJSXtgs7k5GSMGDEi6oJOwDnjrmtNRkICQXWGBIvneXFNxkjom5mAuVcWYv3O05DLWJTXtKKxxYIkXdt3YWOzczs3KxG5WYm4clw/MTCNZbW1tQCAPn36dJg22InDDAaD2N01Nze3g9TSNPX19V7TuLrj+qoz7p+jrq7Oax67d+/Gtm3bUFZWhlOnTuHUqVMwGOJziQ0CsDIlgLbZmhGh60y4Rd8dJOnx6nW54Nm2qtlq4sFbpZMFJKl8z1BrPXNMsq3IzAXjo1sukYrFoJMQQnoKrVqBy87LxfvrDorTITQ0m2GxcVArZQDTNk3CZeflxkXQCUAcf9nR2peBpnHnvjSLRtNxy7B7/mazuVNlcD+P+xhPwDlm8+GHH0ZxcbHX9/bp0wcTJ07ERx991GFZSeyQJaUDaBK3BVl8zk1Cd5EkqniuWQU4B9Kna9NxVcElaLa2osVqQLomxev7BZ6DraFSsk/dt/NrevUkru61DodDsj8Wgs6RI0dGuggkxlCdIcHSaqNjiZK6JmcPILPVAY7nYTTbkaRTorrBBIYBZCwrpnNvDY1lKpUKdrvdZ6DnLtiu0O5BYCD5m0xtPbB8BZiuCYJ81Rn3PNy71NbW1uLGG29EY2MjACA9PR0XXnghBg8ejEGDBmHw4MHIzs4Gx3EUeMaZ+hbpRFUOweEjZWyL3jtJ0jMJQruZvFgZi4Hp+RiYnt/h2y1nSgFO+seqHTA6hAWMTw6HAyUlJV6DzpEjR0blwumEENIT1TaZ4XDwcHA85DIWOb0SoNMoYDTbUVFrgINzLrNS22RGQU5KpIsbEtnZ2SgtLcWZM2c6TBtIGneJiYlQqVSwWq0oLy/vMP3JkyfF11lZWV7TuLoG++J+nuzsbPH1q6++KgadN9xwA/7+9797HQ7Q0tLSYTlJbDHapQ89HEJsz0TtC00uRKKK4HC0W7yIkQVeTT3X72TVCVBm5Xe9YHFOLpe3m/Y9JSWFgk5CCIkydU0mmG0OyQRCl5zTVzLxkNnmQJ3e1HFmMWLUqFEAnF1uy8rKfKbjeV5cdiVQDMOI62CWlpaioaHBb/pffvlFfF1U5L1Hla9Jh1x27NghvnZ9NqBt9l61Wo1HHnnE5xj0w4cPi689J2QksUmI8SWPAkWBJ4kuggDPyJNlAx9gbW+skgzIVqT3ofGdAerTpw8KCwsBOIPOESNGUNBJCCFRJr9PEnRqBfJ7J6F/n2TccGUhRg7MxNwrC9G/TzLye7cdjxfuS4t8+OGHPtN9++23Pifr8WfSpEkAnL1/3nnnHZ/pjEYjPv74YwDOYUCXXnqp13S7d+/GkSNHvB5rbGzEl19+CQDo3bs3RowYIR5zjWWVy+VQqXyvVf7ee++Jrz17KpHYZKmSdrVV2OIzEKWutiSq8BwPz2d3MpkMW07tRIvVAKVMCbVciYHp/ZGdkNnu/Zp+QyFPzgRn0MPR2gBN/oh2aYhvffr0gVKpRGpqakwFnfX19eB5HizLIiMjI9LFITGA6gwJlvuka5GcDXnkwEzkZSehvKYVwwakizOmatUKTJ0wAAdONKBfViKSE3wHLrFmwoQJGDx4MA4fPoyPP/4YY8aMwZQpUyRpjhw5gieffLJT+c+ePRtvvPEGmpub8fbbb6OwsBDXXXedJI3FYsGf//xnsSvv9ddfL85e64nneTz44IN46623xOuLQqGAyWTC4sWL0dzcDAC45ZZbJN+1ffv2xcmTJ2EwGLBu3Tpcc801knwdDgdeeOEFybqmnpMTkdiktkvvfpk4bcimwJNEF45DuxZPGQuDzQSDzQTA2XWoX3L7i73gsIMz6MHI5JAnZ0CenIGEoRd1Q6HjSyzehJ85c0ZcGiMWy0+6H9UZEiy73S4ujRHpZXiSE1ReA0uWZTCiIP7qM8uyWLZsGebPnw+73Y7Fixfjm2++waWXXgqVSoXi4mKsWLECVqsVMpkMHMeBZQPv1JeUlIRnnnkG9913HziOw0MPPYQvv/wSkyZNQnJyMk6ePImVK1eistI5eWFeXh6WLl3qM7+0tDSUlpZi1qxZmDFjBvr374+GhgZ8+umn4vjOcePG4eabb5a8b/r06XjllVcAAEuWLMG2bdtwzjnnQC6X48SJE/jqq6/EMri0tkpn/SexSe3RwBmfi6lQ4EmijCDw7dYuYmQMbJxNss/bGp6OlnoIbu2lDMNCnkjrd3pqaWkBz/NISUmJdFEIIYSQgIwaNQqvvPIKlixZApPJhO+//x7ff/+9JM2sWbNQWVmJ7du3Q6kMbkbfK664Av/85z/x17/+FQaDAZs3b8bmzZvbpbvwwgvx8ssvS2aj9XTbbbdh69at2L59O9588812x8ePH4/ly5e3C45vu+027Nq1C1u2bIHD4cDKlSuxcuVKSRqZTIY//vGPOHToEDZs2IAzZ87AYDD4LQ+JfimyBuQ1VonbMtgAzIpcgcKEAk8SVQSOa7+TZbDt9G9QypRQyZ3/4GUwPWdslmzLElPByKiKu2tpaUFJSQkA53ISycnJES5RaOTm5ordJgkJBNUZEqxgAxkSeldeeSW++uorvPvuu9i8eTOqq6uhVCoxdOhQLFiwAFdeeSXmz58PwNmKGayrrroKY8aMwUcffYSffvoJp0+fhsViQXZ2NgYPHoxZs2bh4osvFrs3+6JQKPDf//4X7733HlatWoXTp09DpVKJeUydOtVrHkqlEm+++SZWrFiBL7/8EkePHoXJZIJOp0NOTg7GjBmDuXPnoqCgAB9++CE2bNgAjuPw3XffYebMmUF/XhI9EmRysGhbCkgOL/fDcYARaDqsHs9gMEgGwRcVFUXsyZnDYsUzS9dL9s29azj+tvs5yb5XpyxDVqJ0jKfxyE5Ya06I26rsAdAVjg1fYWNMc3Mz9u7dC+5scC+TyeIq+CSEkFA5duwYHA4H5HI5Bg0aFOnikCBcffXVOHHiBEaNGoXPPvss0sUhcSLc14Q9//dP7C9pWyZHCRtueKdzY5ZDIVyxATUHkegib18l7bL2z0bStant9qlzipwTC5lbwJtaIU+Kv3EuneUZdAIAx3GoqKigwJMQQkhUW7NmDdauXYvc3FzceeedPtfPLCsrE9fZHDp0aDeWkBASCAo8SVTx1v5udBgl21qFBnKPLrS83Qr99lVQ9sqHMisfmn5DwcgiO/lDtPAWdALOyQ+GDBkSoVIRQgghgUlKSsKmTZsAONetfOyxx9qlMRgMWLp0qbiu5bXXXtutZSSEdIwCTxJVBL595JmoSsBVBZegxWpAi7UVSi8Bpa2uHM07vhK3GZkCeX9+H6yXSYh6En9B5/Dhw+NmfJv754ulZWBI5FCdIcFyH5nU0Rg/Elrjx49HTk4OKioq8NFHH+HgwYO46qqrkJ2dDbPZjOPHj2PNmjWor68H4FweZcyYMREuNdUZEjg7WtG7pVTc5hXxORKSAk8SVbwNOe6TlIXb82Fku7kAAGUXSURBVOb5fZ+t9qRkW56c2eODTr1ej3379rULOtPT0zFs2LC4CToB4MCBA+LSGCNHjox0cUgMoDpDgmU2m8XlVLRabaSL06MolUq89tpruOuuu1BVVYXi4mIUFxd7TTtv3jw88sgj3VtAH6jOkEA1czxMyhRxm5PF5+RCFHiSqOKtqy0TQHxkqzkl2Vb2ygtRiWJTTwo6CSGExL/Bgwfjm2++wcqVK7Fx40YcPXoUzc3N0Ol0yMrKwjnnnINZs2bRgyQSk1qsCTjQ51xxW21v8ZM6dlHgSaKKHA5MnagEx/OQKeTI6t0HGk3H1dRW6xF4ZuWHqYTRT6/XY+/eveB56WrE8Rx0JiYmirPNERIIqjMkWDKZTGy9IpGh0Whw00034aabbop0UQJCdYYEyso7Il2EbkHfuCSqGMsrsf+LHeL2fgAFD/0OerkBSpkSSpkCeSl9kZeSI6YRBAE2t2VUgJ7b4tnU1IR9+/a1CzozMjIwdOjQuAw6AaB///6RLgKJMVRnSLBUKlWki0BiDNUZEiiVUhPpInQLCjxJVBE4vt0+C2eFgTcBMAEAMnVpkuNcawN4q0myT6bteUuE9NSgkxBCCCEklulk0nlJ4rWNnO5ESVQRhPaBp12QjlNUevxxWquOS98gU0CWKA1Oe4L6+noKOgkhhBBCYoznHCfxOacttXiSKOOtxfPX6n2wyW1iV9vhmYWS49YzxyTbMl0y5Lqe1+I5cOBAcByH6upqAEBmZiaGDBlCQSchhBBCSBQTBLVkm2Pjc2UGCjxJVEkcXITEq68Cx3FgGRYpSUn4Uf8uDEKrmGZi/gWS91irpS2e8qR0MPL2a33GO4ZhUFRUBMC5RmFPCjpPnjwpThSTn58f6eKQGEB1hgTLarWKE8XQ2D0SCKozJFBs3HaulaLAk0QVm8WBumoDBIEHy7Jw2OUwy82A2/rumbp06XvqKyTbirQ+3VHUqOQefPakWfRaWlrENRkJCQTVGRIsjuNohlISFKozJGCBrB0YByjwJFHF0GpB1WmzuH3mlBnCOZAEngkqnfiat1vBtTRI8ugJM9r6+yKjLzhCCCGEkNjBahMjXYRuQYEniSqeg6sBYGL/C2CEEQabEQabCQnKtsDTVlcOzyHYqt4Dw1zKyGpsbERZWRlGjhxJXXfOGjp0KD1VJkGhOkOCpdFoqM6QoFCdIYEymVsBpES6GGFHgSeJKhzXPvK8bcwNUKq8V1XP9TtZTQIUyRlhKVs0aGhowP79+yEIAoqLizF69GgKPgHI5XQpI8GhOkOCxTAMBRAkKFRnSKAsvE2yHa+z2vaMDsUkZghemjz9XbPbz2ibAjZOZ7R1DzoBwGw2o7i4GHa7PcIlI4QQQgghxD8KPElUsTQ0tNvHsL4jT1abBFlSBiBzThAiT8oAK4+/Kajr6+slQadLUlIStdwQQgghhMQwG+eIdBG6Bd2xkqhiPCWdoRaCgG+P/QS1UgWlTIEMbSqG9mpbx1PbfxQYmQKCIECwmqBIzermEodffX09Dhw40C7ozMrKwuDBg6kbDwC9Xi+Oo0lJSYl0cUgMoDpDguVwtN0Y0gM/EgiqMyRQCkbWcaI4QH8FJKoIvDS4YiDAaDfDxDlnupV5rEvJmVqc6RgGjFoXd0up+Ao6s7OzUVRUREHnWadPnxaXxqAgggSC6gwJls1mEx9WUBBBAkF1hgRK49EJNV7v7uivgEQV3tu0tm6UMmk3Ws7YLNmWaeNnfGddXR0OHjxIQSchhBBCSBxLZhuQo68Vt2Ww+UkduyjwJFGF53iPPQIO1B6BUq6ASq5Emial7QjPgbcYJKlluqTwF7Ib+Ao6e/fujcLCQgo6PfTu3Rs8z4Nladg6CQzVGRIshUIR6SKQGEN1hgQqSa2CgteL2woKPAkJPxkjDbRYgcfh+lKxz0HvhF7iMd5saBeYxUOLJwWdwcvMzIx0EUiMoTpDgkVBBAlWIHXm4YcfxqpVqwAAR44cCXeRYpL7z2jjxo3Iyclpl+a7777D+++/j9LSUhgMBiQmJuL666/Hww8/3N3F7ZSUwnzozhSL2+o4XSqPAk8SVRh4jvHkJR3dsxPbbhZlumSkXDANnKkFnLEZvM0ERh7bNwa1tbU4dOgQBZ2EEEIIIQH49NNP8eijj0r2NTU1QamMnVUOWDkLxq0DDhOnnXEo8CRRhfeYXAgeAViCUudMZ7fizLsPQ5HZD6pe+VD2yoMmf0R3FTMsGhsbvQadffr0waBBgyjoJIQQQgjx8OqrrwJwTjS5YMECjB49GlarFSNGxPZ9YTyiwJNEFYHjJNsMgPNzzoHRZoLRbkKqxtmV1l5XDlvtadhqT8N4YAsABvkP/Q8MYrfFMykpCQkJCWhtbRX3UdBJCCGEEOJdU1MT6urqAACTJk3C3/72twiXqHOMMiOqM6vFbY0sPkO0+PxUJGbxHnMLMQD+NH5hu3TW2pOSbUVaNlilOnwF6wZyuRyjRo1CSUkJWltbKegMwr59+8SlMegJJwkE1RkSLJPJJC6NodVqI10cEgOozoSf2WwWXw8cODCCJemaKpsB2xMTxe1k3oFbIlecsKHAk0QVQZBGnp5jPl1stack28peeWErU3eSy+UYOXIkqqurkZOTQ0FngARBEP8REgiqM4QQEvt4txaLWF4rtblBiYEHJ4jbDpXBT+rYFbu/IRKXshOBi058BjAMBAhQJCQCmN0una3GM/DM754CdgOFQoHc3NxIFyOmaDQayOVymnWSBIzqDAkWy7Ji6xXpfkVFRQCARYsWYc6cOVi2bBm2bNkCAMjNzcXtt9+OqVOniumNRiM+//xzbNmyBUeOHIFerwcAJCcnY+jQobjqqqtw3XXXeQ1WbrrpJuzcuRMXXngh3n33XZw+fRrvvvsuNm/ejJqaGmg0GgwdOhQzZszAtdde67NOsCyLlpYWfPTRR/jhhx9w8uRJKJVKDBo0CPPmzcN1110X0GfneR7r16/Hl19+ib1796KpqQk6nQ55eXmYOHEiFixYgKQk78vJuT7LhAkT8N///hdlZWV4++23sX37dtTV1SE9PR3jxo3DnXfeiYKCAgCAxWLB+++/j6+++grl5eWQyWQYOnQobr31Vlx++eUBldnfZ9m0aRNWrFiBI0eOiD/PwsJCTJ48GbNnzw5oUqBXX30V//rXvyT7/vWvf4n7pk+fjmeffbZLZe1OlqZmACnittIWnw9FKfAkUcVi41CVPKhth0KGDWVboJQpoJQpcH7OOQAAW80JyftircWzqakJycnJtIZgiAwaNKjjRIS4oTpDgqVWx/ZwjnhhMBgwf/58nDx5Utx3+PBhSeC1ZcsW/OlPfxKDTXcWiwU1NTX48ccf8cknn+Ctt97yGbQBwIYNG/DQQw/BZDKJ+6xWK7Zt24Zt27bh66+/xquvvur1IVZlZSVuu+02VFdXS967e/du7N69Gz/99FOHrXTV1dVYvHgxdu/eLdmv1+uh1+tRUlKC9957Dy+88AIuueQSv3mtXbsWjzzyCKxWq7ivqqoKa9aswcaNG/HOO+8gOzsbt99+e7ulXXbu3ImdO3di6dKluPnmm/2ex5empiYsWrQIO3bskOy32WzYtWsXdu3aJf5OsrKyOnWOWKVudUi2KfAkpBu0m9UWAhrNegCAUqYAwzBwtNSDt5qk73NYESuqq6tx+PBhpKenY9iwYRR8EkJIHLDZOr/gu0wmg0wm83rMbrd3ukt4uPJlWTZi3Rr/97//wWq1YsKECZg6dSr0ej1+/vlnTJjg7KZYWlqKu+66C3a7HTKZDJMmTcK4ceOQnp6Ouro6lJSU4JtvvgHP8ygpKcHy5ct9Tkhz6tQp/OlPf4LNZsOUKVMwYcIEyOVy7NixA6tWrQLP8/jxxx/x4Ycf4pZbbpG8t7a2FjfeeKMY/I4dOxbXXHMNEhMTceDAAXzyySf4+uuv/bbuNTc349Zbb8Xx48cBAH379sWMGTMwYMAANDc3Y8OGDdiyZQv0ej3uvvtuvP7667j44ou95lVWViauaTljxgycf/75aG5uxsqVK3H06FEYDAY8/vjjkMlkOHLkCC688EJMnjwZGo0GmzdvxpdffgkAeP7553HNNdcgPT094N8Z4Pz7WLBgAUpLSwE4W6lnzJiBvLw81NTUYMWKFTh+/DiOHj2Ku+++G5999pnfOjZlyhQMGTIEDQ0N4lIqU6ZMwTXXXAPAuQxdLEmQSx9sxWu/Cgo8SXTxNrvQWUqZ82miZzdbyBSQJ8XGYvCuoBMAGhoacODAAQo+CSEkDmzbtq3T7x00aBD69u3r9djOnTtht9s7lW9+fj7y8/O9HtuzZ4+kFS8Yffr0QWFhYafe21VWqxUTJ07E66+/LnZxdQ/6/vnPf4o/r1deeQW/+93v2uUxe/Zs3HrrrRAEAWvXrvUZeJ45cwYKhQL/7//9PzGwBYBp06Zh7NixYiC3cuXKdoHnK6+8Igadd911FxYvXiweu/baazFnzhzcdNNN4oys3rzwwgti0HnFFVfgpZdekrS8z5s3D6tWrcIjjzwCh8OBJUuWYP369UhISGiXV1VVFRQKBd58801cdNFF4v6ZM2fiqquuEu9JvJX3uuuuQ0ZGBt5++23Y7Xb88MMPmD27/TAof9544w0x6LziiivwyiuvSILum266CQsXLsS2bdtw4MABfPnll5gxY4bP/AoKClBQUICKigpx34ABA3DFFVcEVa6oEZ8NnO3Q3S6JKoJH4MkJPI7WH8fJpnLUGxsBAFaPbrYyXTLkiandVsbOqqqqEoNOl4aGBtTW1kaoRIQQQkjsueOOO7yOqzSbzfj5558BAGPGjPEadALAhRdeiNGjRwNwdv/01iXX5cYbb5QEnS7Tp08XHxYcO3YMFotFPNbY2IjVq1cDAEaOHIkHHnig3fv79++Pp59+2ud5a2pqxDxycnLw4osveu3uPX36dDHobWxsxKeffuozz9mzZ0uCTgBISEgQWwkB58OKRYsWtXvvrFmzxNeuADJQHMfhgw8+AABkZmbiueeea9fSq1Ao8I9//EN8EL927dqgzhHrBEWiZNvBdjzONRZRiyeJKp5dbXmBw96aQwCAgWn5AADrGekFT6ZLhkyX0h3F67Sqqqp24yUAZ1eTnjaOIRwqKirgcDggl8uRk5MT6eKQGEB1hgTLZrOJkwsFMvkJCQ+FQoGRI0d6PabRaPDDDz/g9OnTXlv93PXt2xd79uwBAEnQ6Omqq67yeaywsBCVlZUAgJaWFjEw3LJlizjb6syZM2G3273WmUsvvRT5+fmS8aouW7duFVtuFyxYAI1G47Mcf/jDH/D+++/D4XBgw4YN+MMf/uA1nXuA6c79GnjZZZd57YXl3nXVfb3xQOzZswfNzc0AnN18ff1usrOz8de//lWcbKgnScjtDZw2itusIj4721LgSaKKxSbALHddkATwbFv3ogxtGgDAViftaitP7gVWoequIgbNV9DZr18/9O/fn2ZIDIHGxkZxTUYKIkggqM6QYDkcDgo8o0Bubq7fn39GRgYyMjK8HjMajThy5Ah+++03MegEnC1yvrhmevXGPYByONomhykpKRFfDxs2DA6Hw2eZx4wZ4zXwLC4uFl9fcMEFPssAOD/zwIEDcfjwYezbt8/n7Mv9+/f3+v5Et/Ujfc2q7x748p7Dojqwb98+8fW5557rN21nJy4isYECTxJValtZVCe1zTap4EwATgIAdEoteLsVjmbpeAhlZr9uLGFwzpw5g6NHj7bbT0EnIYTEF88ujMHwNQEQAIwbN65Lkwv5cs4553RpcqFI8TcDrbva2lps2LABhw4dwsmTJ3Hq1CnU1tZ6/cz+fg7uQZkn98lv3IOx+vp68XV2drbfcvbr5/0eprGxUXwdyBJrubm5OHz4MOx2O1paWpCcnNwujbd9nny1rHblfsX959GnT59O5xPPlGk5ANoaKQR5fM6iTYEniSq8x8WfATC8VxGMNhOyEzJhrysHPNKoeg/oxhIGjoLO7lNYWEjr65GgUJ0hwepoOZVwtYKGa63ZWF3DtqOfs8PhwIsvvogPPvhA0grpotFocP7556Ourk6cTMefzsze694VNSUlxe8DAJ1O53W/0djW7dJfN1sX9/ppNpu9BpmRmonY1c0WoGWJfNG3SOf74IT2dTceUOBJoorg0XuDZRg8etkD4nZL8QbpcU0CFMm9uqFkwfEVdObl5SE/P59udkOMvshIsKjOkGDR7OOx4eGHH8ZXX30FwBlcjxkzBiNGjMCgQYNQWFiIgQMHQi6X46GHHgoo8OwM91ZZq9Xqd7ypr2V43INNs9nc4ZhV9xmKo+365l4ef+NpezK9TTpu1i747v4dyyjwJFHFs8XTk7XquGRbpk2BTNdx15HuVFlZiWPHjrXbT0EnIYQQEj67d+8Wg87c3Fy88847PrupBjtBTjAyM9uWeKuoqMDgwYN9pvU1s737ONXy8nIMGTLE7zlPnXLOf6FWq5GSkhJEacPPfc3PqqoqvxMHlZWVwWg0ol+/flH3OUjX0eM7El08mjw9QzRN/nCo84ZDkZELVpMIWWIaWK3v8RfdzVfQmZ+fT91rCSGEkDD66aefxNf33HOP37GRhw4dEl93dqyrL+edd574eseOHX7T7t692+v+ESNGiK9/+eUXv3nU1NSI631G42yww4YNE1+7T5rkzauvvorZs2fjwgsvhMFgCHPJooe1Sjp/idwe3AROsYICTxJVeEEamAngsenkDmwv/w0tllbIE9Og7jcUuiEXImnMZOiGXAiGiY5q7HA4xCeO7vwt4E1Cw2AwoLW1tUd9SZGuoTpDgsVxnPiPRCf39Ti1Wq3PdN9++y2qq6vFbW9jQbvikksugUrlnG3/o48+gtls9ppu//79khlw3V166aXiONwPP/zQZx4A8M4774iTG02cOLELJQ+PMWPGiF2F16xZA6vV6jVdS0sLNm3aBMC5/mlH3Yvjidwk7XLNxmfcSYEniS6CxzqeEARUG+pQ3lwFB8+BM+glh+UJqd1XuA7I5XKMGjVKMmEDBZ3d4/jx4zh69Kj4xJeQjlCdIcGyWq2wWCw+b5pJ5PXt21d8vWLFCq8tmdu2bcOjjz4q2Rfq36lWqxWXBTl58iSWLl3aLritq6vDQw895DOPXr16YerUqQCcXW0feughr+MjV69ejffeew+As0vrvHnzQvUxQkar1WLOnDkAnD3DHn300XY/D5vNhkcffVScVCkaP0c4aVnpBFTx2j+OxniSqOIZd7r/5SllCnBGveSwTJcS7iIFRafTYdSoUSgpKUFOTg7y8vIiXSRCCCGkR5gyZQpeffVV2O12bN68GbNnz8bUqVORmZmJ2tpa/Pzzz9i+fXu7gDQcPR/uuecebNiwASdOnMDXX3+NY8eOYdasWcjMzMTRo0fx8ccfQ6/XIz09HQ0NDV7z+Otf/4pdu3ahvLwc69evx5QpUzBz5kz0798fLS0t2LBhAzZv3gzAOfnV008/jbS0tJB/llC477778NNPP+H48eNYvXo1Dhw4gOnTp6N3794oLy/HF198Ia5neuGFF2LatGkhO/err76Kf/3rXwCAe++9F/fdd1/I8g6VRDSgT3NbPZDB+6RTsY4CTxJV2j2dFHicbCqHUqYAIwjgTC2Sw/KElO4rXIASEhIwduxYWmC8G2VmZoLneZp1kgSM6gwJVqSWoiCBy83NxWOPPYbHHnsMHMdh37592LdvX7t0Y8aMwbXXXovHH38cAHDkyBGMGTMmpGXRaDR455138Mc//hEHDx7E0aNH8cwzz0jSTJgwAePGjcPLL7/sNY+kpCR8+OGHuPfee7F3715UVlZi+fLl7dKlpKTg5Zdfxvjx40P6GUJJq9Xi/fffx9133419+/bh2LFjeP7559ulu+iii/Dqq6/2uDkxEuUsVFzbAxAFBZ6EhJ9KowCa3HYIFvx6Zi8A4O7Rs8ElpIEz6iHwzjE20dbi6UJBZ/fq3bt3pItAYgzVGRIsuq7HhtmzZ6OoqAjvvvsufvvtNzQ0NEAulyM9PR1Dhw7FtGnTcPnll6O1tRVPP/007HY7vvnmG8yfPz/kZenduzc+/fRTrFixAl9++aW4zFp+fj6mT5+O+fPn49133/WbR1ZWFj777DOsW7cOX3/9Nfbt24empiakpKQgNzcXkydPxvXXXy9ZwiVaZWZm4rPPPsOXX36JtWvX4tChQ2huboZOp8Pw4cMxffp0TJkypUc+EFR4zFcSr2E3I4R6Ki8ScwwGA44cOSJuFxUVRWxA9zfLV2PXqbbnIWruDH69cA80CjX+e9WjZwNNAbzZCM7cAmV6X595hVN5eTk4jqPxm4QQEoeOHTsGh8MBuVyOQYMGRbo4hJAIC/c1Yc///RP7S9p69Slhww3vPBny8wQqXLEBtXiSKOP9GY9OocHp5QvBqrVQ9sqDslceUifM7uayOZ0+fVoyIQkFn4QQQgghhPhHgSeJKknDhwGnDovblj7J6J+ai2RGAQg8eLMBllMHYDl1EGkTb+z28nkGnSdPngTDMDSJECGEEEII6RQOFmQYK9p2yOJzPRUKPElU4T2mtS3MGIC5V92AluKNqEfbAsry1CywSk23lu3UqVM4ceJEu/09cSxCtDl06BDsdjsUCgWGDBkS6eKQGEB1hgTLbDZDEAQwDAONpnu/f0hsojpDAtXCm6Dg2tZqtcXprSUFniSqeI44Zlln11tb7UnJflVWfvcU6CxfQWdBQQFyc3O7tSykPbvdDrvdHulikBhCdYYESxAEr+tCEuIL1RkSqCZLMg7kzxG31fYWTIlgecKFAk8SVc69IBcKrQF2uwMKuQKDhxQCAGy1pyTplL26r2vryZMnxbWl3A0cOBA5OTndVg7im0KhkPxPSEeozpBguZZ36GnLPJDOozpDAmXj47NrrScKPElUKf9lL2pLKmC0mWDn7Sg/eAQ5Vw8EW38SvdzSKdL6dEt5KOiMDdRVkgSL6gwJFnWVJMGiOkMC1VPWCY7THsQk1jl4DnbOAZPdjNN1ZTBw0oV0eZvZxztDx1fQOWjQIAo6CSGEEEJISCQqpA8p4rWNvGeE1yRmmGtqYWvSQ7CbwQocZGo7OIMNCvcxEjI5FJn9wlYGQRBw8uRJnDp1qt2xQYMGoW/fyKwdSgghhBBCSKyiwJNEFePxE7Cc0YPF2eZ4G4dKvYAst0c/Ml0K5AkpYTk/BZ2EEEIIIaQ7cbxKsu1g43P+AQo8SVSRJSYC0IvbTawVv1r0GCRv6xUu0yVDpk0Oy/l9BZ2FhYXo06d7xpWS4FVVVYHnebAsi969e0e6OCQGUJ0hwbLZ2oZ8KJXKCJaExAqqMyRQsnajH+Ozsy0FniSqWHkWNpnauSEIcLDO5Q5S7W2zfcmTMsAq1WE5f0JCAhiGkUx/TkFn9KurqxPXZKQgggSC6gwJlsPhENdkpCCCBILqDCFSFHiSqFJuSUFlcpq4zbA1AOqg4dsCQWVm+NbNzMzMxJAhQ3Do0CEIgoCioiK6KSWEkB5GJpPB4XCA4zgxcCCE9EyCIIDjOADOa0M4sLrw9OSLNhR4kqii6tMHaKwWt+3JaqTaOWi4thZPZa/+YS1Dr17OhVs4jqOgM0YMGDCAbg5JUKjOEH+USiWsVisEQYDJZIJOp4NKper4jYS4oToTH0wmk9gTLlwt11arEUBSWPKOJhR4kqji3sUVAAaoU3HLqQZxm1UnQJGSGfZyuIJPEhsSEhIiXQQSY6jOEH+SkpLQ2toKAGhsbIRWqw1bSweJX1RnYp8gCGhsbBS3k5LCExwaHRa4B56C76QxjdbxJFFF4D3+1DzW65TpUiALQXcEQRBgNBq7nA8hhJD44xrvDwAGgwEVFRUwGo3tHo4SQuKT6z6xoqICBoMBAMAwDD207CJq8SRRhXc4JNuKlEwk5F8JzqAHZ9RDnpAKVtu1p02CIKCsrAyVlZUYPnw40tPTu5QfIYSQ+MKyLPr27YvKykoIggCDwQCDwQCGYagVi5AewDW+24VhGPTt2xcsG542Ozvn6DhRHKDAk0QVW0urZFvfVIsTgxgMynaO62RVGrDyzvevdwWdFRUVAID9+/dT8BkHLBaLOF5PrQ7PjMckvlCdIR1JTEyUBJ88z4NhGPF/QjriGbiQ2OQKOhMTE8N2DjZOl0/xRIEniSqevZhsDivqODMGIQWAs6tt5/MWUFpaisrKSsm+AwcO4IILLqCpzmPY0aNHxaUxRo4cGenikBhAdYYEIjExEYWFhTAYDCgrKxODznDegJL40draKj7gojoTW2QyGZRKJZKSkpCQkBC2lk4XnUx6DxqvYSgFniSq2A0GAG2zwLEWKxRM2x+7PCmjU/l6CzpdioqKKOgkhBDiFcuySEpKgkwmA8/zkMvlGDRoUKSLRWLA3r17Ybfbqc6QDumEBmS16sVtmWCLXGHCiAJPElU4kwXugadgtcHA28VteXLwgacgCDh27BjOnDnT7tiQIUOQlZXVqbKS6JGWlgaHwwG5nC5pJDBUZ0iwqM6QYFGdIYFKVsugtbeI2wpQ4ElI2MkhHVztEEw4zXJglRoIdivkicGNxfQVdDIMgyFDhtCyKXEiJycn0kUgMYbqDAkW1RkSLKozJFBpA3KhOX1A3FbHaU88CjxJVJGBl2wzsCGn9xAkj5gKwWYBwwY+myAFnYQQQgghJNrJNCrIVG7bqvgc5UnreJKo0m6FNEaAedNKVLx+PzhjU+D5CAKOHj1KQSchhBBCCCFRgFo8SVQRBHhM5SVAw/OwN1dBlpAaYB7OoLOqqkqyn2EYDB06FJmZmSErLyGEEEIIIV1hk1lhTqwXt3mlIoKlCR8KPElUETwmkBYYASqehzw1C6xS0/H7KejskY4dOyYujUEzB5JAUJ0hwaI6Q4JFdYYE6gzfhDX92uY5SXPYMDOC5QkXCjxJVGnX1RaAmhegysoP6P319fUUdPZAZrMZdrsdDoej48SEgOoMCR7VGRIsqjMkUA01Kgz7bbK47VAZIlia8KHAk0SVIVwZ+lbvhMAwABhoUg3oa3FA2SsvoPdnZGQgNzcX5eXlAJxB57Bhw5CR0bn1P0lsYBhG/EdIIKjOkGBRnSHBojpDAmU1GgGkiNsyh7emmNhHgSeJKq2CBs3qXmDOtn1yLAcGrZCn9Q7o/QzDYMCAAQCAiooKCjp7iBEjRkS6CCTGUJ0hwaI6Q4JFdYYESl5nlGxrLBR4EhJ2nADwbkumGOVyCGAgT0wLOA9X8JmdnQ2dTheOYhJCCCGEEBISyUrp/Wq8tpHTciokqgjtRnkKkAsClNkDgsqHYRgKOgkhhBBCCIkSFHiSqCJ46VkgU2kh85jRVhAElJaWwmQydVPJCCGEEEIICT2ekd7nciwtpxLXBEHA2rVr8fnnn+PQoUMwmUzIzMzE2LFjMX/+fIwcObLL5zh69Cjeeecd7NixA7W1tUhMTERBQQGuv/56TJ8+HTKZrONMepgEnoNcmyzZJwgCDh06hNraWtTV1WH06NHQaDpeaoXEr7q6OvA8D5ZlafZiEhCqMyRYVGdIsKjOkEAl5vYFKs3iNqOIz7ZBCjwBWCwWLFq0CD/99JNkf2VlJSorK/HVV1/hgQcewMKFCzt9jhUrVuCJJ56A3W4X9zU2NqKxsRG7du3CqlWr8NprryElJaXT54gHdkEGjnH9sQlI4CAZ3+kedAKA1WpFcXExBZ89XFVVlbhWGn25k0BQnSHBojpDgkV1hgRMFp+BpicKPAEsXbpUDDoLCgowZ84cZGRk4MCBA/jkk09gMpnw0ksvISsrC9OmTQs6/82bN+Pvf/87BEGARqPB3LlzMXz4cDQ0NGDlypU4evQofv31Vzz44IN46623wLI9o/J5c1KRD7M6QdxuZFiMSHaO1RQEAQcPHkRdXZ3kPXa7HRaLhQJPQgghhBAScxQpvQGUituCXBW5woRRjw88t27dirVr1wIALrjgArz55ptQqZy/7GuvvRazZs3CjTfeCL1ej2eeeQaTJk1CQkKCvywlbDYbHn/8cQiCAK1Wi//9738YNmyYeHzevHl48MEHsX79emzduhXr1q3DtddeG9oPGUPaD/EUIE/NAs/zOHToULugk2VZDB8+HKmpqd1VRBKF+vXrB0EQaK00EjCqMyRYVGdIsKjOkECZTM2SbUHgIlSS8Oq5TWtnvf322wAAuVyOp556Sgw6XQoKCvD3v/8dAKDX67FixYqg8v/+++9RUVEBALj99tslQScAKJVKPPfcc2IX2zfeeKMzHyNuCB4TSLMQIE/r4zPoHDFiBNLSAl9qhcSnlJQUpKam9viu6iRwVGdIsKjOkGBRnSGBqrM0SbatFHjGH71ej23btgEALr74YuTm5npNN2XKFKSnpwMAvv3226DOsW7dOgDO5T3mzZvnNY1Op8OMGTMAOCcgOnHiRFDniGcMeBxv4X0GndTSSQghhBBCSPTr0YHnr7/+Cp7nATi72frCsizGjh0LACgpKUFzc7PPtJ527doFACgqKvLbMud+/k2bNgWcf/xpa/EUIEDNcGiyOCQpKOgkhBBCCCHxwtogbfGUObysLxgHenTgeezYMfF1YWGh37QDBw4E4Jzg5ujRowHlX1NTg5aWFgDAoEGD/KYtKCgQXx8+fDig/OORIP4vAPIm2BQMGKatmrIsi5EjR1LQSSQcDgfsdjscDkfHiQkB1RkSPKozJFhUZ0igmKZWybaMi8/As0dPLlRZWSm+7tu3r9+02dnZkve5WkD9cY3tDCT/rKwssCwLnudx5syZDvOOZ66gEzILBLcB+a6gk8ZKEE8HDx4Up6wPxZq7JP5RnSHBojpDgkV1hgQqUa6WbMfrdFQ9OvBsbGwUX3fUguYe7Oj1+oDyb2pqazbvKH+FQgGtVguDwRBw/vGIB8SgEwD0fAY2b9oHhmWhkKfg9F4OgsMGztwKzmwD16IHCwcEQYBJLsCUroI80YikzBqMackBxzv/dI1VzWipN6BO1htmeRIcPAfWLahVy5QABAhnn0oysEEGOwRBgE3gwQDQ8C3o5TgGFZsNB6MQ32sFjwY2EyZFGuw8B0uaBozSebyPNg0sI4PD0Aje5oBd3wyZYAUEAWZGgCFDCZnWAXWf07jI0Bu8w/k+S6MJ+somNLFpMCgyYeM5MAzAnL0UqVg5GFYGwW47WwoH5LA6y8NzYCBALjjQ174XKjYdDkYrltcGHs1sMloU2bDxHGyJKgg656RamaokqFU62JtrAY6HpbEZct65oLFN4NCcrgSjkkGbV4pzzRlQWp352g1WNJ1qRLOghV7ZB3aBBwSIM/kpWBlkrAKC3Sr+puVoy1cQBLBgkGMrhobRwcEmi+V1QEAro0ajIhcOCLCqZeCTnedNVeiQoEuFqeYUBEGAo9mEncJPzjIJPFqTZOATlFD3OYlhvA7J5iQAAGfj0FRaBwMnQ60yHxwE8IIg1gkFK4NcpgBvtwKCsyVeAaOYLy/wYMEgy34YSQIPhyzDrQ4LMIFFtbIAHATYlSwcKTqAARLkaqQmpMPRXAeB52BtMoC1tYKBAIfAw6Bl4UhRQZV5BgOUAnob2vJtPFwDk92BM4pB4BkGnMCL5ZUxLBQyBQTODvDOp6QymMR8ubPlTXOcQiqvBy/rLeYrALCAR5WiAA5GBrsMsKdpAZaFWqZApi4dnKkVvN0Ce6sZgqkZLJx5mpQMLOkqKFMb0TuxFQNb2vJtOdGAVoMFNYp82FklHHxbeVkwUMqVAM9B4Liz+yxgwYEXBNjP/s0lcTXI5CohyPrC/WvYDB518lxYZRrYGQHWVC0YuQwyhkVvXUZA1whVcjlGNWRBgAw7t/1E14g4v0bYm6qcP7f6Zsi5tr/lYK4Rzr8j529/i+w3ukbE+TUiFPcRLG8FD8AOHluwka4RcX6N6Mp9hMmRjQxZWyOXXLAiHvXowNNisYivPWez9aRUKr2+zx+z2Rxw/q40BoMh4PzjFtPWvUBgZBDMcsCeBl5Q4Xid8ewRtfOfLEn63gagDpU4kH4MfU83wC64LsCAw5IAfUIGTEwKIJO+rdl1So/97tJMlUip2ouKJCVscumaoXptBgxMhvP9bkOAT8J14Tj7JIv1WIqnCWixNqOs7yEMqKiB3Z4IALAZAJspAXpNOpqVvbyXi/dR3rP7VA4jhlXtQK1OBoNKK0nSrEpDoytf09l/ACrBAWhpKy+jlZ6jGeAZHrvzS5BdxUFhdI5bdlgAi0ELgzIVDaos74/qfJXXzZDynTAodWjSSstrkic68wUAG4Czc03VAKhBE4Cz9cDti8b5Rue//dlHkVhvQFqj8xfNOwBTqwZWmQaN6izvheHQ4WCEfjVHwXN21CVKy+tgFG35OgDUO182AmiEHoDi7D814HZDChuAWuBYchU4cw34M203JoZmNQQwaExr+2KS4OH8ufv5Gac31UJpqEF5irbdscaUXuBZufPbsaGtOC1wdf9x/c25PUTjAdQBFSoDahX10JS35WtqlIN3JKAxORMORt2+XPzZ//2UV2O0IaH+GE6kaiW9HwCgKTEDVubs35Pb0JjjCOwa0ZhuwYAGC+yCAk2w0TUi7q8RrtYEj7pI1wgJukYgtPcRHmnoGgG6RnhwXSO4RCUSubYGMTlsft4Vu3p04One5949sPTG/XigffU5rm0q5I7yd08T6bEApaWlKCgoQGJiorjParXiyJEjAJytv/369Wv3HpPJedXx7E5SX18vdh/Ozc2VtP5yHIcDBw4AABITE9HXdBxWgwJVGRkAawUEBrCngxE6/vkRQgghhBAS62Rnn7zwPI/9+/cDcK6C4T4nDACcOnVKnPR0yJAhUCjaHka1tLTg5MmTAJxDBnv16iV57/79+8HzPNRqdbu5bjxXkwiVHh14qtVt/antdrvf4NBma3vyEEgQCUhbOe12e4fpXedwrzSRwHGcONuviyAI4mdwD6hdXAPoveF5XjzmmS/Q9rNxOBw4P78VDTsOQ6+ZAbOWAbgECjoJIYQQQkiPke7WccD9PtmT+/23IEgnJHK///Z2726328HzPGSy9s3I3u7XQ6FHB55at2Z4q9UacOAZSLdZb/l3xJXGPSCOBJlMBpaV9g1gGEYMiL1VULlc7jNgZllWPOaZL9AWaMvlchQseRzl/3sLGcUNMNp1sAkNMKeoARkLlUIpGZthN1nANeshgwMCA5jlgCldhd6JRhSxSUjK0IAXWDAsC15uQUu9AVamHirBBjvvAAPnWAeGYTzGZggAb3WO3wJgh+AcvyVrgb63Bskww8E43y9jZbCCh52th1LgYecdMCarAYUMMpkMfXXp4tgMzmqHrUkv9tu3sIAhQwm11oEJgg7JGSng7M6fLasToHc0gWcbIBdY2HjXmBHn6AyVTCEZmyEIdsgFZxdtGwRxbIa+twY62KFgnF2hZKwMdvAAKwMjKGHjOVh0cnAaJVgZiyx1imRshrm+SRybYWcEcWzGBEGH9PQkyDTOvxmZg0WzrRGsAPCCBnaehwBBLK9CJpeMzeAFDgrBJObrGpvRmqWECgJSz5aXZVnwAOQMBwdfA4fAw6KWwZ6gAsOyyFAlSsZmmGr1UHAGAICDgTg2YwyrRO+UBGhZZ3nljBwt5gYYOBssfI3b+C1n3x6lTC4Zm8ELPOSCEczZfF1jM6xpPBQC21ZehgEYBiawSDubr1XOwJasBsMwSFbpJOO3zA0tYG2tYCGAYyCO3xquFJAnS0dqhlL8G9EYG2CyO5DGVYNnGDgETiyvnJVJxm8J4MHyZuc4KwbiZxMSzbDpVG3lBQOGZWEBjzShFg5eBhsrwJKsBlgWCSq1ZPyWrdkI3tQCGTjwDMTxWwO0NmSp2srLymRIdLSi1WBBGupgF5Sw85z4NydjWMn4LQECGN4s5usQnH9zCnUTDL21SGVaIYABCwYsy8IMHqlMPayCETaBp2sEXSPoGkHXCLpG0DUiLq4RMpZFau8UnLdkCVzc75M9ud9/Mx7dzd3vv73duysUCvA87/X+3dv9eij06MAzKamtX79er5d0LfXkPuGPv/U4feXf0dqfdrtd7KoaaP7hMnDgQCQkSMcQqFQqvzOyuZab8SYjIwMZGRlej8lksnb55t1yN24LoryEEEIIIYTEG9eKDr7k5eX5PJaUlOT3vcOHD/d5LDMzUzIJa6j06MAzPz9ffF1VVYXc3Fyfaaurq8XXffr06VT+/tTU1IjN2oHmH69OnDgBh8MBuVyO/v37R7o4JAZQnSHBojpDgkV1hgSL6gwJVrzXmR4deLoP0D127BjGjRvnM+2xY8cAOJuxBw0aFFD+qampSE9PR0NDg/h+X0pLS8XXngN8e5rW1lZx3StCAkF1hgSL6gwJFtUZEiyqMyRY8V5nwtOBN0acc8454i92x44dPtNxHIddu3YBAAYPHizpQtuRsWPHAgAOHTqE1tZWn+l++eUX8bW/AJgQQgghhBBCYk2PbvFMSkrCBRdcgM2bN+OHH37AmTNnvHZz/frrr8V+zpMnTw7qHL/73e/w7bffwuFw4OOPP8bChQvbpTEYDFi1ahUAoH///hg8eHAnPk38GDZsWKSLQGIM1RkSLKozJFhUZ0iwqM6QYMV7nenRLZ4AcMsttwBwTu7z4IMPwmAwSI6Xlpbi6aefBuBcP2f27NlB5X/FFVcgJycHAPDaa6/h119/lRy32WxYsmSJOHnRrbfe2olPEV9kMpn4j5BAUJ0hwaI6Q4JFdYYEi+oMCVa815ke3eIJABMmTMDvfvc7fPfdd9izZw+mTZuGefPmoXfv3jh48CA+/vhjGI1GAMCSJUvazTi7Y8cO3HzzzQCcXWQ/+OADyXGlUomlS5fij3/8IywWC2655RbMnj0b5557LvR6PT777DMcPXoUAHDuuedi1qxZ3fCpCSGEEEIIIaT79PjAEwCee+45GI1GbNmyBRUVFXjhhRckxxmGwb333ou5c+d2Kv/LL78cjz32GJ5++mnY7XZ89NFH+OijjyRpRowYgX//+99x+4SDEEIIIYQQ0nNR4AlAo9HgrbfewldffYXVq1eLEwGlpKTgvPPOw80334zzzjuvS+eYN28exowZg/feew/btm1DXV0dFAoFCgsLMXXqVMyZMyduZ7AKVlNTE3ieB8uySE1NjXRxSAygOkOCRXWGBIvqDAkW1RkSrHivMxR4nsUwDK677jpcd911Qb3v/PPPx5EjRwJKO2jQIDz11FOdKV6PUl5eLk4lHY9/dCT0qM6QYFGdIcGiOkOCRXWGBCve60yPn1yIEEIIIYQQQkh4UYsniTp9+vQRuxkQEgiqMyRYVGdIsKjOkGBRnSHBivc6Q4EniToZGRmRLgKJMVRnSLCozpBgUZ0hwaI6Q4IV73UmPsNpQgghhBBCCCFRgwJPQgghhBBCCCFhRYEnIYQQQgghhJCwojGeJOrs3btXnEp65MiRkS4OiQFUZ0iwqM6QYFGdIcGiOkOCFe91hlo8CSGEEEIIIYSEFbV4kqij1WrhcDggl1P1JIGhOkOCRXWGBIvqDAkW1RkSrHivM4wgCEKkC0Eiy2Aw4MiRI+J2UVEREhISIlgiQgghhBBCSCSEKzagrraEEEIIIYQQQsKKAk9CCCGEEEIIIWFFgSchhBBCCCGEkLCKz5GrJKadPn0aHMdBJpOhX79+kS4OiQFUZ0iwqM6QYFGdIcGiOkOCFe91hlo8SdTR6/VobGyEXq+PdFFIjKA6Q4JFdYYEi+oMCRbVGRKseK8zFHgSQgghhBBCCAkr6mpLok5RUREEQQDDMJEuCokRVGdIsKjOkGBRnSHBojpDghXvdYYCTxJ1VCpVpItAYgzVGRIsqjMkWFRnSLCozpBgxXudoa62hBBCCCGEEELCigJPQgghhBBCCCFhRV1tSdRpbW0Fz/NgWRaJiYmRLg6JAVRnSLCozpBgUZ0hwaI6Q4IV73WGAk8CjuMk2yaTKUIlcSorKxPXMBo4cGBEy0JiA9UZEiyqMyRYVGdIsKjOkGBFS53xjAU8Y4XOYgRBEEKSE4lZtbW1KC8vj3QxCCGEEEIIIVEmNzcXvXr16nI+NMaTEEIIIYQQQkhYUeBJCCGEEEIIISSsaIwnQUpKimRbpVJBJpNFpjCEEEIIIYSQiOE4DlarVdz2jBU6i8Z4EkIIIYQQQggJK+pqSwghhBBCCCEkrCjwJIQQQgghhBASVhR4EkIIIYQQQggJKwo8CSGEEEIIIYSEFQWehBBCCCGEEELCigJPQgghhBBCCCFhRYEnIYQQQgghhJCwosCTEEIIIYQQQkhYUeBJCCGEEEIIISSsKPAkhBBCCCGEEBJWFHgSQgghhBBCCAkrCjwJIYQQQgghhIQVBZ6EEEIIIYQQQsKKAk9CCCGEEEIIIWFFgSchhBBCCCGEkLCiwJMQQgghhBBCSFhR4EkIIYQQQgghJKwo8CSEEEIIIYQQElYUeBJCCCGEEEIICSsKPAkhhBBCCCGEhBUFnoQQQgghhBBCwooCT0IIIYQQQgghYSWPdAFI/BEEAWvXrsXnn3+OQ4cOwWQyITMzE2PHjsX8+fMxcuTILp/j6NGjeOedd7Bjxw7U1tYiMTERBQUFuP766zF9+nTIZLIQfBLSXcJdZwRBwMaNG7FmzRrs3bsXjY2NUCgU6Nu3L8aPH4+bb74Zffr0CdGnId2hO64z3jzxxBP46KOPAABHjhwJyzlIeHRHnbFYLPjkk0/w3Xff4cSJEzAYDEhPT8d5552HBQsW4Nxzzw3BJyHdpTvqzO7du/Hhhx/it99+Q319PVQqFfLy8nD55ZdjwYIFSElJ6foHIRHl+t649957cd9993U5v8rKSrzzzjvYvHkzzpw5A41Gg7y8PFxzzTWYO3cu1Gp1CEodHowgCEKkC0Hih8ViwaJFi/DTTz95PS6TyfDAAw9g4cKFnT7HihUr8MQTT8But3s9PmbMGLz22mt0sY4R4a4zzc3NWLx4MbZu3eozjVKpxJNPPonrr7++U+cg3as7rjPe/PLLL7jlllvg+tqkwDN2dEedOXz4MO677z6cPn3a63GGYXDXXXfhgQce6PQ5SPfpjjrz/PPP47///a/P45mZmXj11VdxzjnndPocJLK2b9+O2267DTzPhyTw/Pnnn7F48WIYjUavxwsLC/Gf//wHOTk5XTpPuFDgSULqT3/6E9auXQsAKCgowJw5c5CRkYEDBw7gk08+gclkAuC82E6bNi3o/Ddv3ow77rgDgiBAo9Fg7ty5GD58OBoaGrBy5UocPXoUADB+/Hi89dZbYFnqTR7twllneJ7HzTffjF27dgEA+vTpg5kzZ2LAgAEwGo3YsmULvv/+e/A8D4Zh8O9//xuXX355aD8gCblwX2e8MRqNuO6661BRUSHuo8AzdoS7zpSXl2POnDlobGwEAFx44YW48sorkZKSgt27d2PFihWwWq0AnK0fc+fODdEnI+ES7jrz3//+F88//zwAQKFQYM6cORgxYgRaWlqwfv168XsrKSkJX3zxBXJzc0P0yUh32b9/P37/+9/DYDAAQJcDzyNHjmD27NmwWq2QyWSYNWsWxowZA6PRiDVr1mDPnj0AgKKiInz66afQaDQh+RwhJRASIlu2bBEKCwuFwsJC4eabbxYsFovkeGlpqTBu3DihsLBQGDdunNDa2hpU/larVbj88suFwsJCYfTo0cL+/fvbHb/nnnvEMnz11Vdd/kwkvMJdZ1auXCnJ32g0tkuzceNGYejQoUJhYaFw8cUXtysDiS7hrjO+PP744+J5Xf9IbOiOOvOHP/xBPMcbb7zR7viePXuEYcOGieewWq2d/jwk/MJdZ/R6vTB69GihsLBQGDt2rHD48GHJcZ7nhVdeeUUsw4MPPtjlz0S6108//SSMGTNG8p2xfPnyLuU5d+5cobCwUBgyZIjw008/SY7xPC8sW7ZMPNfrr7/epXOFCzUHkZB5++23AQByuRxPPfUUVCqV5HhBQQH+/ve/AwD0ej1WrFgRVP7ff/+92Npw++23Y9iwYZLjSqUSzz33nNjF9o033ujMxyDdKNx15tNPPwUAqFQqvPjii9Bqte3SuMbRAEBNTQ02bdoU9Ocg3SfcdcabX375BR9//DEAIDExscv5ke4V7jqzc+dObN68GQAwY8YMr10vR48eLbZy6vV6bN++PejPQbpPuOvM1q1bxRbT22+/HUVFRZLjDMPg/vvvR79+/QAAGzduhMPh6NRnId3LZrNh+fLluOuuu9DS0hKyfPfs2YPdu3cDAK6//npceumlkuMMw2Dp0qUoKCgA4KzDvoakRRIFniQk9Ho9tm3bBgC4+OKLfXYJmTJlCtLT0wEA3377bVDnWLduHQDnH9e8efO8ptHpdJgxYwYA5wREJ06cCOocpPuEu84YDAbs3bsXAHDRRRchMzPTZ9qrr75afF1SUhLwOUj36o7rjCej0YilS5dCEARMmzYNQ4YM6VJ+pHt1R51xdcdUqVRYvHixz3SzZs3C3Llzcffdd4vnItGnO+qMe5f9wYMHe03DsiyGDx8OADCbzWhqagrqHKT7bdu2DZMnT8Zrr70Gnueh1Wpx6623hiRv1z0wANx4441e07AsKx7T6/X45ZdfQnLuUKLAk4TEr7/+Cp7nAQAXXHCBz3Qsy2Ls2LEAnDf4zc3NAZ/DNd6hqKgIaWlpPtO5n59ar6JXuOtMU1MTRowYgczMTAwYMMBv2uTkZPF1KJ9QktDqjuuMpxdffBEVFRXIzMzEI4880ul8SGR0R53ZsGEDAOcDrl69evlMN3jwYDzxxBN44IEHxICCRJ/uqDMJCQni6/Lycp/pzpw5A8A5kZH79xSJTl9++aX4UGH48OFYsWIFLrvsspDk7boHTk5OxtChQ32mc6+zrp4Y0YQCTxISx44dE18XFhb6TTtw4EAAzmnKXZMBdaSmpkYMCAYNGuQ3raubAeCcZZBEp3DXmdzcXKxYsQJbtmzBkiVL/KYtKysTX9NsyNEr3HXGk3sX28cee4zqRgwKd52pra1FQ0MDAGd3Whe73Y5Dhw5h06ZN2L9/P3WTjCHdcZ1xX4blf//7nzjxlLudO3eKvXbGjRsHpVIZcP4kctLS0vDoo4/is88+E+tHV3EcJ96nFBQU+J04s3///uKSgtF4D0yBJwmJyspK8XXfvn39ps3Ozvb6Pn/cu6V0lH9WVpb4R+l6WkiiT7jrTDA+//xz8fWoUaNCnj8Jje6sM+5dbCdPnowrr7wy6DxI5IW7zpSWloqvc3JyYLfb8eqrr+KSSy7B9ddfjzvuuAMzZ84UZ1rnOC7IT0C6W3dcZ4YPH45LLrkEAHD8+HEsWLAAv/zyC1pbW1FdXY2PPvoI99xzD3ieR0JCAh566KEgPwWJhPnz5+PHH3/E/PnzQ7qefH19PWw2G4CO66RMJhOHFkXjPbA80gUg8cE1hTwApKam+k3r3mqg1+sDyt99bENH+SsUCmi1WhgMhoDzJ90v3HUmUJs3b8aPP/4IAEhPT8f48eNDmj8Jne6sM64utqmpqXj00UeDfj+JDuGuM9XV1eJrpVKJBQsWoLi4uF06vV6PF154AcXFxXjllVegUCgCyp90v+66zvzf//0fHnzwQfz000/Yu3cvfv/737dLc+655+Jvf/tbu8kUSXQaMWJEWPINpk4Czu641dXVUXkPTC2eJCQsFov42nP2N0/u3UXc3+eP2WwOOH/3NIHmT7pfuOtMIKqqqvCXv/xF3L777ruhVqtDlj8Jre6qM+5dbP/+97/7HVNOolu464z7Iu7PP/88iouLMWjQILzxxhvYvXs3du3ahZdffhm9e/cGAKxfvx7/93//F8QnIN2tu64zOp0Ozz77rNjy6YlhGPTv35+6+JO4ugemwJOEhPv4lY7GIbgfD3Tci3v3pEDGObjS0Lia6BXuOtORxsZG3HbbbeL4rPHjx4vLqpDo1B11xr2L7aRJk3DNNdcEX1ASNcJdZ1xLYgDOSWKGDBmCTz75BBMnToROp0NSUhKuueYafPzxx+IDjHfffTcsQwZIaHTXd9O6deswceJEbNq0CVlZWbj33nvxyiuv4KmnnsLvfvc7AM5hIFOnThXHepKeKZ7ugSnwJCHh3krU0bpBrn7qQGB/QID0CU8g6xK5zkHdmaJXuOuMP3V1dbj55ptx/PhxAEBeXh5efPFFMAzT5bxJ+HRHnXF1sU1OTsbjjz8edBlJdAl3nREEQbL95JNPSmYsdenduzfuv/9+AM6bwdWrVweUP+l+3XGd2bhxI/785z/DYrHg/PPPx7p163DfffdhypQpmD17NpYvX4633noLarUaRqMRt99+O+rq6oL/MCQuxNM9MAWeJCS0Wq342tvsbO7cL9SBdBkINn/3NNRtMnqFu874cvr0acyfP1+cubB379545513qDtlDAh3nXHvYvvwww/7XRqDxIZw1xmNRiO+zs/P9zvGy9WKBUBcCJ5En3DXGUEQ8I9//AMcxyE5ORnLly/3+rBiwoQJ4qRCzc3NePvttwPKn8QfnU4nvo71e2AKPElIJCUlia87GszsfjzQm333/DtaK8tut4vdnyiYiF7hrjPe7N27F3PnzsWpU6cAOGeH++CDDzqcJY5Eh3DWGfcuthdffDFmzJjR2WKSKBLu64x7wNC/f3+/adPS0sTxerW1tQHlT7pfuOvMoUOHxLU7r7nmGr9jOOfMmSM+3Pj5558Dyp/En8TERPF1IOvFutJE4z0wzWpLQiI/P198XVVVhdzcXJ9p3WcB/P/t3X1cjff/B/BX6EiS+7mJYYoQVm5CRYWZWcNabidse5i23G2+mM1dG3MzExJbmc19tSFEMh1WrIRIGXKTVFTSke50qvP74zy6fufsnOocdaXxej4ePR7XdZ3PdV2f61zXdbre1+eubdu2z7X9iqSnpwuDP+u6fap5Yl8z/xYREYHZs2cLLyXMzc3xyy+/oFWrVs+1Pap5Yl4z8fHxwrBNERER6Nq1a6XrlKUxMzNDeHh4pemp5on9O9OuXTu98lNWHbPsfxTVPmJfM0lJScJ0ZeOESiQSdO7cWe33iV49r732Gho2bIi8vLxKh0gpKSkRqmXXxmdglnhStejcubMwrTr4sjZlnxsYGMDCwkKn7Tdt2hTNmzfXafuq46pV9qNOL47Y14yq8PBweHh4CEFn7969sXv3bgad/zE1ec3Qy0Hsa0b1f0xlHQaVlJQIJWT87am9avJ3Rpdqk2XjklfnuJD031N2Xd6+fbvCdHfu3BE6I6qNz8As8aRqYW1tDUNDQ8jlckRHR2Py5Mla05WUlCAmJgYAYGlpqValpTL9+vVDaGgo/vnnHzx9+lSt6oGqqKgoYbp///56HAXVpJq4ZgDg/PnzmDNnjtAg387ODj4+PmrteOi/QcxrxsLCAlu2bKk0nbe3t/CwWZa+NrajISWxf2eaNm0KCwsLJCYmIjExEQ8fPkTr1q21pk1ISBDaBNbGB0JSEvuaUX3pEB8fX2Ha4uJioRO82lh6RTWnX79+iIuLQ1ZWFhITE8t90aH6DNyvX7+ayp7OWOJJ1cLU1BQDBgwAoCxdKq8qQEhIiDAQ7siRI/XaR1nHDMXFxUIHIP+Wm5uLgwcPAlC2t7G0tNRrH1RzauKaycrKwpw5c4SHPScnJ2zbto1B53+UmNdMs2bNMGzYsEr/VAfvLltmb29fxSMjsdTE70zZkDsKhQJ+fn7lptu9e7cwre8+qOaIfc307NlTaBt86tSpCpsPBQcHIzc3F4DypSm9ulQ7J9u1a5fWNCUlJdi7dy8AZbvQ2vi/iYEnVZtp06YBUHbu88UXXwg/lmVu3bqFlStXAlD20OXm5qbX9ocNGya0p9myZQsuXLig9nlRUREWLFggVGWaPn36cxwF1SSxr5lvv/1WeDDo1asXNm7cWC3DsdCLI/Y1Qy8fsa+ZCRMmCJ147Nu3D8HBwRppDh06JCy3sbFB79699T0MqkFiXjMSiUQYMzo/Px9z584V/k+punTpElatWgVAOSzG1KlTn+dQ6CXRu3dvWFtbAwCCgoJw/Phxtc8VCgW+++47oYR80qRJtbI2joHi34NQEVXB7NmzceLECQDKThcmTpyINm3a4Nq1a9i3bx/y8vIAACtWrMCECRPU1o2Ojoa7uzsAZRVZbW90wsPD8dlnn0GhUMDQ0BBubm6wsbGBTCZDYGAgbt68CUD5j3337t1sE/EfINY1c/v2bYwaNUoYZ2/BggXo0KFDpflp0qQJ+vbtWy3HRuIQ+3emIlOmTMH58+cBADdu3KjqoVANEfuaOXnyJObMmSO0rXJycoKzszMkEgmkUilCQ0MBKIfcOHDgAMzNzUU7VqoeYl4zBQUFmDRpEq5duwZAWWV77NixsLS0RElJCaKiohASEoLi4mIAwPLlyzFx4kRRj5fEoXoteHp6YtasWVrTpaSkYOjQoQDK77AuISEB48ePh1wuh4GBAVxcXGBvb4/CwkIcOnRIGKapY8eOOHDggNowLLUF23hStVqzZg3y8vIQGRmJlJQUrFu3Tu1zAwMDeHp6avxI68rZ2RnLli3DypUrIZfLsXfvXqFaQZmePXvC19eXQed/hFjXzKFDh9QGd1+7dq1O6z1PMEI1S+zfGXr5iH3NDB8+HOvXr8c333yD3NxcSKVSSKVStTRNmjTB1q1bGXT+R4h5zTRo0ADbt2/HvHnzEBUVhezsbK3jdBoaGmLx4sUMOgkA0KNHD3h7e+N///sf8vPzcfjwYRw+fFgtTYcOHeDv718rg06AgSdVswYNGsDf3x9HjhzBoUOHhI6AmjRpgj59+sDd3R19+vSp0j4mTpyIvn374rfffsO5c+eQmZkJQ0NDdOnSBS4uLhg3bhwMDQ2r6YhIbGJdM2Wl3/TyqYnfGXq51MQ1M3LkSPTp0wd79uxBeHg4UlNTYWBggPbt22PYsGGYNGlSrRxXj7QT+5pp1qwZfv31V5w6dQqHDx/GlStXkJWVBYlEAjMzM9jZ2WHKlCkcZ5rUDBs2DCEhIdixYwf++usvPHz4EAYGBujUqRNGjBiBKVOm1NqgE2BVWyIiIiIiIhIZOxciIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiIiIiIiUTHwJCIiIiIiIlEx8CQiIiIiIiJRMfAkIiKiaieXy190FqgCPD9EVNPqvegMEBGReKKjo+Hu7v7c65uZmSE8PLwac/T/nJ2dkZqaCgC4ceOGKPuoSZs3b4aPj0+l6erVqwcjIyO0aNECXbt2ha2tLUaPHg0TE5MayGXVqF5PY8eOxerVqzXSFBYWwsfHBw0bNoSHh4fG54sWLcLBgwcBADt37oStra24mRaZPveYgYEBJBIJTE1NYWZmhp49e2Ls2LHo0aOHyLn8f5WdHyIisbDEk4iIqAYVFxcjNzcXSUlJOHHiBLy8vDB06FCEhYW96KxV2Y0bNzBq1Cj4+fmhuLj4RWen1lEoFHj27BkyMzNx+fJl7Nq1C66urli6dClKS0tF3z/PDxG9SCzxJCJ6RTRu3BiffvqpXus0atRIpNy83KysrPDOO+9o/aykpAT5+fm4f/8+wsLCUFRUBJlMhjlz5mDr1q1wdHSs2cxWo4SEBKSkpLzobLwwld1jpaWlyM3Nxe3btxEZGYmCggIoFAoEBATAyMgIixcvFjV/r/r5IaIXi4EnEdErwsTEBB9//PGLzsYrwcLCQqfv+uHDh/joo49w+/ZtlJaWYtmyZQgLC0P9+vVrIJf6s7W1rXK16NWrV2utovsy0Ocek8lkWLRoEaRSKQBlteNx48bB3NxczCwSEb0wrGpLRET0grRu3RpbtmxBnTrKf8cPHz4UrU0t1S5NmjTBpk2b8PrrrwNQVsPdv3//C84VEZF4GHgSERG9QJ06dYKdnZ0w//fff7/A3FBNkkgkeO+994T5l6GTLSKi8rCqLRERPZc7d+7g8OHDiImJQXJyMp48eQIDAwOYmprCwsICDg4OcHNzq1JvrYmJiQgKCkJ0dDTu37+PoqIiNGnSBB07dsTAgQPh5uaG1157rdLtPHjwAPv370dkZCRSUlKQl5eHpk2bonv37hg+fDhGjx4NQ0PD585nVXXu3BkREREAlKWe5Xn8+DECAgIQERGBO3fuIDc3F6ampujQoQMcHBwwYcIENGvWrMJ9FRUV4ciRIzh58iTi4+Mhk8lQv359tGjRAtbW1njrrbfg7Oysdd3yerXV1qOvj4+PsMzT0xOzZs0CoL1X29LSUjg5OQnHfujQIXTr1q3C4wgMDMSSJUsAAK6urli1apVGmoKCAgQFBSE8PBy3bt2CTCaDiYkJOnbsiCFDhmDixIlo0qRJhfsRW4sWLYTpjIyMCtNevXoVx44dw4ULF/DgwQPIZDIYGhqicePGsLS0hJOTE8aOHQuJRKK2nj7nR1V2djYCAgJw5swZ3Lt3Dzk5OWjcuDHMzc3h7OyMcePGoUGDBs976ET0imHgSUREepHL5fj2228RFBSktSfOwsJCZGRk4OzZs/j555/h6+sLa2trvffj6+uLzZs3a+wjMzMTmZmZiImJwc8//4yvv/4a48aNK3c7v/zyC7y9vfHs2TO15RkZGcjIyMDp06fh5+eHTZs2oWvXrnrnszqUVbUFgLp162pNExAQgNWrVyM/P19teVZWFrKysnDp0iX4+/tj8eLF+OCDD7Ru4/79+5gxYwbu3Lmjtlwulws97R48eBBvvvkmtm7dWmkQW13q1KkDFxcX+Pn5AQBCQkIqDTyPHDkiTI8ZM0bj83PnzmHBggXIzMxUW56dnY3s7GzExsZi+/btWLFiBUaNGlX1g3hO9+7dE6ZVg1BVubm5WLRoEU6ePKnxmVwuR35+Ph48eACpVAo/Pz/4+fmhU6dOVcrXkSNH4OXlhZycHLXljx49wqNHjxAVFQU/Pz/88MMPGDBgQJX2RUSvBgaeRESkl4ULFyIkJASAckxKe3t7WFpaomHDhsjJycGVK1cQExMDhUKBx48fY9asWQgNDdWr5DM4OBgbN24EoAxK7O3t0b17dxgbGyM9PR2nT59GamoqCgsLsWTJErRr1w6DBg3S2M66devg7+8vzFtbW6Nv374wMTFBWloapFIpMjIykJSUhIkTJ2Lv3r2wtLSs4jekP9UqlmVt/lT9/PPPWL9+vTDfrl07ODk5oUWLFsjMzIRUKkVqairy8vLw9ddf4/Hjx5gxY4baNoqKijBz5kwh6GzTpg0cHR3Rpk0b5Ofn4+bNmzh9+jRKS0tx+fJleHp6Yu/evTrl387ODsbGxoiPj8exY8eEZWVViHV58TBmzBgh8Dx27Bjmz59fbtr09HRcuHABgHKs2X79+ql9furUKcyZMwdyuRwA0KFDBwwePBgtW7aETCZDZGQkbt68iadPn+LLL79Efn4+3NzcdDrW6pSTk4Pg4GBhXlsAV1paik8++QSxsbEAACMjIwwZMgTm5uYwMjJCdnY2zp8/j/j4eADKlwtz5szBoUOHhBca+p6fPXv2wMvLS5jv2rUrBg0ahKZNmyIzMxNnzpxBcnIyMjMz8cknn2Dr1q1wcHCoxm+GiF5GDDyJiEhnUVFRQtBpamqKnTt3ai2Zio6OxqeffoqCggJkZmbizz//1FoqVR5fX18AyqBT2xAjX331FRYvXozDhw8DALZt26YReJ46dUoIOps0aYIff/xRrS0lADx79gzr1q3Drl27kJeXh9mzZ+Po0aMaVRXFlJiYiKioKGF+8ODBap9HRUWpBZ2zZs3CzJkzUa/e//8LX7RoETZv3oyffvoJALBhwwb07t0btra2QpoTJ07g1q1bAID+/fvD399fo/fcuLg4TJ06Ffn5+bh48SJiYmI0gjptbGxsYGNjgwMHDgiBjbW1tV69KJubm6NHjx5ISEhAamoqLl++jDfffFNr2mPHjgkl4S4uLjAwMBA+S0tLw6JFiyCXy1GnTh0sXLgQ7u7uaqXKCxcuxIEDB7B06VLI5XJ4eXnBxsYGnTt31jm/VZWcnIwFCxbg8ePHAJRDF02ePFkj3cGDB4Wg08zMDDt37kS7du000oWEhGD+/PkoLS3FjRs3cPHiReHc6XN+4uPj8f333wMA6tevj1WrVuHdd99VS/PVV19h+/bt+PHHHyGXyzF//nwcP368xkrIiei/iYEnEdErIjc3F9u3b9c5/fjx4zVKKcva5gHKAKi86pC2trYYO3asUGIWHx+vc+Apk8mQlJQEAOjSpYvWcS0NDQ3h5eWFkydPoqCgADdv3kRRUZEQMCoUCmzYsEFIv2nTJrUgrEz9+vXxzTff4P79+zh9+jTu3buH4ODgGiv9io+Px9y5c1FSUgIA6NGjh0Zw7O3tLUxPnz4dnp6eGtsxNDTEF198gby8POzevRulpaXw9vbGvn37hDRXrlwRpqdOnap1yJZevXrho48+go+PD+rUqYO4uDidAs/qMmbMGCQkJAAAjh49Wm7gefToUWFatXMeQFk6XFY99PPPP8e0adO0buP9999HdnY21q5di6KiImzbtg3r1q2rUv4ru8cKCgogk8lw7do1xMXFCSWyEokE69ev1xq4qd5zX3/9tdagEwBGjRqF4OBgnDlzBoByzM7nOXcbN24U8rVixQqNoBNQVgefMWMGHj58iD179kAmk2Hnzp2YO3eu3vsjolcHA08iolfEkydPsHbtWp3TjxgxQiPwfPvtt9GpUyekpKRoPPD/m2p7yby8PJ33q1qSl5qaiszMTLRs2VIjXYMGDfDHH3+gadOmGg/ssbGxSExMBKAs2dEWdKry8PDA6dOnAQCHDx+ucuCZmJhYbgDy7NkzZGVlIS4uDnFxccJyY2NjjfOTkpIilHYZGxtrDTpVzZs3DwcOHEB+fj4uXbqEO3fu4I033gCg3nY0NjYWw4YN07oNd3d3vPvuuzAzM6vRkl8AePfdd7FmzRoUFxcjNDQUixcvViupBICkpCShWqmVlZVaKWVRUZFQdVUikWD69OkV7s/d3R0+Pj7Iz89HaGgoVq5cWaVj1vceA5TB/pIlS9CrVy+tn0+YMAEDBgxARkaG1pcwqrp27SoEnrm5uXrlA1BWYS7r5Kp169aVvizy8PDAnj17ACjvGwaeRFQRBp5ERKQzJycnODk5VZouPz8fKSkpwnxxcbHO+zAxMUG3bt3wzz//4OnTp3B1dcXUqVPh6OioURWyvKqRMTExwnSPHj0q3Wf37t0hkUhQVFSEuLg4FBcXqwXA+oqPjxeCI1107NgR3t7eMDc3V1uuWgXX3t6+0nayJiYmsLe3R1hYGADgwoULQuDZr18//PrrrwAAf39/pKamYvTo0bC1tYWxsbGwjcaNG6Nx48Y65706NWvWDA4ODpBKpcjMzMT58+c12j2qlnaOHj1a7bOEhASh86WOHTuiYcOGFe7P0NAQVlZWOH/+PIqKinD16lX06dOnmo6mfNbW1rCzs4OjoyN69uxZYVptJY7aPHnyBOnp6cK8PvdcmbK22QDQrVs3tSrM2rRs2RJmZmZITU1Famoq0tPT0apVK733S0SvBgaeRESvCDMzM4SHh1frNvPy8nD37l0kJyfj/v37uHv3Lq5fv47ExES1B9+yh1ldzZ8/HzNmzEBJSQnS09Oxdu1arF27Fm3btoW9vT0cHBwwaNCgcgOxsraMALB7927s3r1b530XFhbi8ePHOg3T8jyMjIxgYmKC1q1bo0ePHnB0dISjo6NGyR4AteBd106PLC0thcDz/v37wnJnZ2f0798f58+fBwAcP34cx48fh6GhIWxsbGBvbw9HR0d06dKlKodXZaNHj4ZUKgWgbLdYXuBZr149jd5oVc/7zZs39e6l+MGDB8+TZYG2e6ywsBC3bt3Cr7/+KvTEm5iYCBcXl0qDTm2ePHmCpKQkJCcnIzk5GXfu3MH169dx+/ZttftM33sOUP/+pFKp3t9fWloaA08iKhcDTyIi0ktpaSmCg4Oxd+9exMfHax1SBVBW7Sxru6gve3t7+Pr6YtmyZWrjWqalpSEwMBCBgYGQSCRwdHTE9OnTYWNjo7b+kydPnmu/qutXJfBUHeOyKmQymTCt63iTqulUv4c6derA19cX3333HYKDg4XARC6XIzo6GtHR0Vi/fj06dOiA999/H+7u7moloTVl6NChMDU1RU5ODsLCwrB06VJhjNWEhATcvXsXgPIaad68udq61XHeq5uRkRGsrKzwww8/wMrKCt9//z1yc3Ph5eWFzMxMnaqnFhUVYf/+/QgKCsLNmzfLTVeVew6ond8fEb08GHgSEZHO8vLy4OnpiXPnzqktNzAwQOvWrWFubg4rKyv0798fKSkpWLJkyXPvy9HRESdPnsSZM2cQFhaGyMhIoQdQQPkwHhYWhrCwMHz++eeYPXu28Jnqw/fbb79dbvu58vw7oHlRnqfUqrwXAYCy59Q1a9bg888/R0hICKRSKa5evaq2zr1797BhwwYEBgaW24OqmCQSCUaOHImAgADIZDKcO3cOQ4YMAVBxNVtA/bz36NFD7/E5y+vMqLpMmzYN9+/fF0rgt27dirZt21Y4Dm3ZkCXXr19XW16nTh2YmZnBwsICPXv2hK2tLSIjI4UeoZ+H6vc3cOBAvYdIqerYoUT0cmPgSUREOlu5cqUQdDZs2BDu7u5wcHAQxvFUVdbpSFVIJBIMHz4cw4cPh0KhwI0bNxAVFYWIiAhERUUJ1Xm3bNmC/v37C9UyTU1NhW1YW1uX27Npbafa1jI7O1undVTTqX4Pql5//XV4eHjAw8MDOTk5OH/+PM6dOwepVIq0tDQAyo6dFi1apFc15ery3nvvISAgAICyuu2QIUOgUChw/PhxAMoAeujQoRrrqR5vq1at9BrOpaYsXLgQMTExwtitK1euRJ8+fcptrzx//nwh6GzevDmmTZuGQYMGwcLCQqNn4lOnTlUpb6rfn7m5ea38/ojov0uzQQkREZEW6enpOHToEABlCeeOHTswd+5c9OnTR2snLqoB0POU3P2bgYEBLC0tMW3aNGzfvh3h4eFqbdDKejMFgPbt2wvTZb3bVka1NLW26NChgzBdFqhU5p9//hGmVb+H8piammLYsGFYunQpwsPD1UqpY2JihEC0JvXt21fIu1QqRXFxMS5evCi0wRwxYoTW4WBUj1e1vWJFnjx5UmEpcXWTSCRYvXq10HlVYWEhFi5cqDUPV65cETqYMjY2RkBAAGbMmAErKyutx6/ry4nyPM/3l52dXS33NxG9/Bh4EhGRTq5evSpUxevWrRt69+5dYfro6GhhWp8H01OnTuHjjz+Gk5MTfvrpp3LTtWrVCjNnzhTmVXv07Nu3rzB95swZYVzC8ly9ehUDBw6EtbU1XF1dn6tHUDGoHkdkZGSlQ2Q8ffoUf//9tzBfVnW0pKQECxcuxPvvvw87OzsUFRVpXd/AwAAffvihWumbahvbylTWC6o+yqrS5uTkICYmBqGhoRqf/Zu1tbUQ0CUnJ1carD979gwjRoxAr1698NZbb2lUZxVL9+7d1YZ6uXr1qjDmrarLly8L03Z2dhW+SFAoFELHUYD2KteVnR/V6+3ixYuVvozJyMiAg4MDevfujZEjR9bKlzdEVHsw8CQiIp2oBiuqnd5o8+eff6o9BOsTyCkUCkRGRiItLQ0hISEVrqtawqPam+bAgQPRunVrAMo2cuWNqVm2v/Xr1wNQDgPTrl27Kg2lUp06dOgAa2trAMq8+fj4VJh+48aNKCgoAABYWFgIJcJ169bF9evXkZCQgEePHlVYJbO0tFTt/OrTS6lqz7xV6eQGUA8uT506hT///BOAsufYfv36aV2nYcOGGD58uDC/du3aCl96+Pv7Izs7G3K5HPn5+RrD2YjJ09MTZmZmwvyGDRuQkZGhlkb1nqusNHPnzp2VDmFU2fnp3Lmz0B66qKgIGzZsqHCf3t7ekMvlePbsGRo2bKgxni4RkSoGnkREpBPV4TzS0tLw22+/aaQpLS1FUFAQvvzyS7XlZcGQLgYPHoyWLVsCUFYv9fLyQmFhoUa6u3fvqgVib731ljBtaGiIzz77TJjfuHEjduzYoVEKVFBQgBUrVgilhPXq1YOHh4fOea0Jc+bMEUqqduzYAR8fH42gori4GJs2bcKuXbsAKEu2Fi9erJbG1dVVmF6+fDni4uI09qVQKLBmzRpkZWUBUHbQoxocVUZ1eJvU1FSd19Pm9ddfF4LuP/74Q6hm6+LiUmHJnYeHByQSCQBlKfH//vc/jZJihUKBoKAgtY54PDw8avSFg5GREZYuXSrM5+bmYtWqVWppVO+5ixcv4uTJkxrbKSoqwrZt27BmzRq15druOV3Oz+zZs4XvNzAwEGvWrNEoIS8uLoavry/++OMPYdmsWbO0bo+IqEzteKVLRES13htvvAF7e3tERkYCAFatWoXjx4/D2toaJiYmSE9Px19//SUECIaGhkIV18pKSFVJJBJ89dVX+OKLLwAAAQEBCA8Px+DBg9G2bVsAyjEaT58+jWfPngEAhgwZAicnJ7XtjB8/HhcuXMDhw4dRWlqK1atXY//+/Rg8eDCaNWuGtLQ0SKVSZGZmCut8+eWXOo+XWVMGDhwIT09PbN68GQCwefNmHDx4EE5OTmjRogUePXoEqVSqVtr12WefYdCgQWrbmTBhAn7//XfcuHEDMpkMbm5usLOzQ5cuXdCsWTNkZWUhMjJSaNtnaGioEbxWRrUH3CNHjqBRo0Zo1aoVLCws4OzsrPexjxkzBrGxscjPzxeWvffeexWu07VrVyxduhRLliyBQqHAkSNHEBERgaFDh6J9+/Z4/PgxoqOj1arhOjk5YdKkSXrnr6ocHR0xfPhwIaA8fvw4XF1dhd5kyzoRSkxMhEKhgKenJ+zt7dG9e3fUr18fqampkEqlQmloZfecLufHwcEBM2fOxNatWwEAv/zyC44dOwYnJye0atUKGRkZiIiIUBsj9sMPPxR6HiYiKg8DTyIi0tnatWsxffp04aE9NjYWsbGxGum6dOmC1atXY/z48ZDL5UhMTERRUZFQElWZUaNGITs7G6tXr4ZcLkdmZqZa6YqqESNGaJT2lFmzZg3atm2L7du3Qy6XIykpCUlJSRrpjIyMMH/+fEyZMkWn/NU0T09PNG3aFD/88APy8/ORkpIilG6qMjY2xvLly7W2gZRIJPD394eHhwfi4+MBAGfPnsXZs2c10rZo0QLfffedWps/XXTp0gXW1taIjY2FQqEQejZ2dnZ+rsDznXfewcqVK4USNysrq3J7f1Xl5uaGRo0aYdmyZZDJZJDJZOVeP66urli+fHm1tk/VxzfffIOzZ88KwbWXlxeOHj2K+vXro27duti8eTM++ugjoZOnyMhI4eWPqr59+2LevHmYPHkyAOWYp/+m6/mZO3cumjdvjvXr16OgoAAPHz7Evn37NLZXt25dfPLJJ5g3b17Vvwgieukx8CQiIp01b94cQUFBCAgIQGhoKG7duoXc3FwYGRmhZcuWsLS0xLBhwzBy5EjUq1cPAwYMQEREBAoKCnDixAm4uLjovK8PP/wQgwcPxu+//47o6GgkJSUhNzcXDRo0QMuWLdG/f3+4uLhUGBzVqVMH8+bNwwcffIDAwECcO3cOKSkpyM3NhbGxMTp27IhBgwZh/PjxQmlqbTV58mSMGDEC+/fvR2RkJO7du4ecnBwYGxujc+fOcHR0xLhx4ypsZ/faa68hMDAQoaGhOHHiBK5du4ZHjx6huLgYzZo1Q6dOneDk5ARXV1c0atRI7zwaGBjAz88P3t7eCA8PR2ZmplopnL5MTU3h5OSEEydOACi/UyFt3n77bdjb2yMoKAh//fUXEhMTIZPJYGhoiDZt2qBPnz5wc3PTe4zX6ta6dWvMmjVLeHmSnJwMX19fIZjr1KkTgoODsXv3boSHh+Pu3bsoKChAgwYN0KZNG3Tr1g3vvPMOHB0dYWBggDfeeAN37txBcnIyLl26BBsbG2Ff+pyfKVOmCOOpnj17FklJSXjy5Anq16+P9u3bw9bWFuPHj9fpRQAREQAYKNgHNhEREREREYmInQsRERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkagYeBIREREREZGoGHgSERERERGRqBh4EhERERERkaj+DyKO3UJD3PRyAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ ")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "493d213c",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "## Plot realized ROC points\n",
+ "> realized ROC points will converge to the theoretical solution for larger datasets, but some variance is expected for smaller datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "fcd2aaf9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set group-wise colors and global color\n",
+ "palette = sns.color_palette(n_colors=N_GROUPS + 1)\n",
+ "global_color = palette[0]\n",
+ "all_group_colors = palette[1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "4c70252e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAPbCAYAAAA0GlQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydd3gUVReHfzNbkmx6T0gCCSV0kN6liyBVAQVEKQqKlA9BQVREQAE7YAOkI71DaEqXKr1IbymkJ5u2fWe+P5YddrYkuynU8z4Pmpm5986d2TMz99xz7jkMz/M8CIIgCIIgCIIgCKKMYB93BwiCIAiCIAiCIIhnG1I8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIcWTIAiCIAiCIAiCKFNI8SQIgiAIgiAIgiDKFFI8CYIgCIIgCIIgiDKFFE+CIAiCIAiCIAiiTCHFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiCeeHQ63ePuwlMF3S+CIAh6FxLEk4b0cXeAIJ4XNBoNTpw4gcOHD+P8+fPIzMxEZmYmWJaFv78//P39UaNGDbRo0QLNmzeHj4/PY+3v3Llz8fPPPwvb165deyz92L59O1asWIHVq1fbPX7ixAm89dZbwvayZcvQpEmTR9W9JwqtVosFCxYgPT0dX3755ePujktcvnwZ69evx6lTp3D//n3odDoEBwejfPny6NSpE7p06QJfX98y7UNKSgrWrVuHI0eO4M6dOygoKICfnx/CwsLQpk0b9OjRA1FRUU63t3PnTvzvf/8rVl8uX74MqfTZ+0RPnDgRmzZtAgBERERg3759j7lHzw4DBw7EyZMnAQCNGzfG8uXLH3OPHh937tzB9OnTMWzYMIffg3bt2iEpKQkA0KtXL8ycOfNRdpEgnkueva8aQTxh6PV6LF68GAsXLoRSqbRbRqVSISkpCZcuXcLatWvh5uaG1157DWPGjIGfn98j7e+Tws2bN/Hll1/i5MmTiIiIeNzdeeLZv38/pk+fjsTERPTq1etxd8dpNBoNvvzyS2zcuNHmWFJSEpKSknDs2DHMmTMH06ZNQ4cOHcqkH0uWLMGPP/4IjUYj2p+eno709HRcvHgRv//+O0aMGIHhw4dDIpEU2eZ///1XJn0lCMI+Go0Gv/76KxYtWgS9Xo9hw4Y97i4RBGEBKZ4EUYbk5ORg+PDhOHv2rM0xT09PeHt7g2EY5OTkQKVSCce0Wi1WrlyJv/76C/Pnz0eNGjUeZbefCP744w9h9p4ommnTpgmz908LWq0WQ4cOxalTp0T7vby8oFAokJGRAY7jAABZWVn44IMPMGPGDLz66qul2o9vvvkGCxcuFO2Ty+UICAhAVlaW4K6n1+sxe/ZsJCQkYMaMGUW2a6l4ent7w9/f3+k+MQzjdFmCIEycP38e8+bNe9zdIAjCAaR4EkQZwfM8xowZI1I6a9asibfeegvNmzdHSEiIqHxycjIOHjyIxYsX4+7duwBM1pahQ4diw4YNKFeu3KPsPkGUOdOnTxcpnY0bN8ZHH32EOnXqAADy8vKwfv16zJ49G2q1GgAwefJkVKpUCXXr1i2VPmzbtk2kdEZEROCTTz5BmzZtIJPJYDAYsH//fsyYMUNQ7Ddu3IiqVati0KBBhbZtqXiOGDECQ4YMKZU+EwRBEMTTCAUXIogyYsuWLTh27Jiw/frrr2P9+vXo2bOnjdIJAOHh4XjjjTewbds2vPLKK8L+rKwsTJ069ZH0+WmkSZMmuHbtmvDveV3f+bRx/vx5rFu3Tthu27YtlixZIiidgMlKOHjwYCxbtgwKhQKAyerojLXRGfLz80XruiIjI7F27Vp07NgRMpkMACCVStGxY0ds2LABlSpVEsrOnTsXWVlZDttOTk4WHX8evRYI4klm3759wneD1ncSxKOBFE+CKCNWrVol/B0TE4PJkyeDZYt+5ORyOWbOnInKlSsL+/bv3487d+6UST8J4nGwYMEC8DwPwORaO2PGDIfrJuvUqYNJkyYJ22fPnsWRI0dK3IeNGzciIyND2J42bRqCgoLslvX398fcuXOFgD/5+flYunSpw7YvX74s2ibFkyAIgnjeIcWTIMoAjUaDixcvCttt27Z1KUKlXC7H0KFDRfuOHj1aav0jiMdJTk6OKJppz549i1z/2KtXLwQHBwvb27ZtK3E/zNFVASA2NhbNmzcvtHylSpXQvn17p/pg6WZbvnz5xx6lmiAIgiAeN7TGkyDKgNzcXBiNxhK10aJFC9F2WlqaU/Xu3r2LTZs24d9//0V8fDyUSiU8PDwQEBCAunXronXr1ujUqVOppGooTmqEjRs34pNPPhG29+7di8jISAC2qVHMJCUloWrVqsK2ZYCZ4qRTUavV2LZtG/755x9cvnwZWVlZMBqNCAgIQExMDJo3b47u3bsjNDS0yOux7NeOHTtQqVIlaDQa7NixA7t27cLNmzeRkZEBd3d3hIWFoUWLFujZs6eoXnGxTnljZtOmTSKlyvIeW6NUKrF582YcP34cV69eRXZ2NhiGQUBAAKpUqYKWLVuiW7dupRpd+ciRI6Lnw5lItVKpFK1bt8b69esBAH/99RemT59ebDnOyMjAlStXhG1LhbIw2rdvj927dwMwyeWFCxdE7sFmLBXPx2ntTExMFF3bhQsX4Obmhh07dmD+/Pm4c+cO/P39ERsbi86dO6Nbt25272lKSgq2bt2Kf/75B/fu3UNWVhbc3NwQGBiIunXrok2bNujUqZNT0X5d5ejRozh69ChOnz6NlJQUKJVK6PV6IWBTnTp10Lx5c7z88suQy+V22xg9erTwuwGmycDff/+90PMeO3YMgwcPFizzUVFR2Lx5M7y8vOyW53ke+/fvx759+3DmzBlkZGRApVLBz88PUVFRaNGiBbp3747y5cu7dP1ZWVnYsGEDDh48iBs3bqCgoAABAQGIjY1Fz5490blz5zK579akpqZi06ZNOHHiBG7evAmlUgmZTIbAwEBUr14drVq1QteuXeHh4VFoO5bvbG9vb2Gd982bN7F69WocOXIEKSkp4DgOoaGhqFevHnr27IlmzZo5bNMyNYollt8G6xQzzqRTsXxPm9+j+fn52Lp1K3bu3Il79+4hOzsbgYGBiIqKQvfu3dGtWze4u7uL2jl69Cg2bNiAixcvIiUlBTKZDJGRkWjVqhUGDhxY6LemOGlynEmHZlnG8vrPnz+PDRs24NSpU0hJSQHLsggNDUXDhg3Rr18/VKtWTdROVlYWNm7ciD179iAhIQF5eXnw9/dH7dq18eqrr6J9+/YULI0QIMWTIMqAgIAAyGQy6PV6AKYP1tixYx0OiuwRGhqKuLg4+Pr6ws/PT1hz5gilUonp06cjLi5OiARqRq/XIzc3F3fv3sWWLVsQFRWFSZMmoV27dq5f3FPO6tWr8eOPP9pNbZOcnIzk5GQcPXoUc+fOxYABA1z+3c6cOYOJEyfi3r17ov1arRY5OTm4du0alixZgjfeeAOfffbZIxkw2sNoNGLevHlYsGCBKKKyGXMqkwMHDmD27NkYNmwY3n333VIZQFh6AzAMY1dxs8cLL7wgKJ75+fm4ceMGqlevXuw+mBUKAKhXr57TfbDkzJkzdvtv6Wpbs2bNYvWxrFiyZIlonaxZ7i9duoQePXqIyup0Ovz0009YsWIFtFqtzbG8vDzhvRITE4MvvviiUAXBFY4dO4aZM2fi6tWrdo9nZWUhKysLt27dwqZNm/D9999j5syZds8/depUnDlzBunp6QBMyxfi4uJE6+ktycnJwYQJEwQZkUql+OGHHxwqnWfPnsWXX34pmswwY07Jc+bMGfz222/o06cPJk6caKOc2GPlypX47rvvUFBQINqfmpqK1NRUHD58GMuXL8f3339fZFvFRa1W4/vvv8fq1auFb5oZnU6HgoICxMfHY/fu3Zg9ezbGjh2L1157zaVzLFu2DN98841N+/fu3cO9e/ewefNmNG/eHDNnznRqQrCsOHr0KCZOnIjU1FTRfvMzdPLkSaxYsQLz5s1DWFgYcnJy8Pnnn4smPQDT9+Dq1au4evUqVq9ejdmzZ9tMNj9qCgoK8NVXX2HDhg02x/Ly8nDz5k2sXbsWEydOxNtvvw0A+Pvvv/Hpp5/afE/T0tKwd+9e7N27Fx06dMCPP/7o0neUeHYhV1uCKAOkUqloVvDevXsYNWqUMOhxlsqVKyM4OLhIpTM+Ph7du3fHtm3bREqnTCZDaGiojZtfQkICRowYgd9++82l/pQ17u7uKF++PMqXLw9PT09hv1QqFfaXL1/e4eCvMDiOw/jx4/HFF1+IPpIMw8DPzw8hISEiJVCr1WLRokV46623Cg0iY8m5c+cwePBgQelkWRbBwcEICAiw6cvKlStLHDTK19dXuCeWVipPT0/R/bKWH61Wi8GDB2P27NkipZNlWQQFBSEoKEi0HjkvLw/ff/89RowYYZPnsjjcuHFD+LtcuXKi37owYmJiRNu3bt0qlT4AEAUOKozIyEjR/bx9+7ZNmczMTJGHQs2aNZGYmIg5c+agX79+aNKkCWrVqoWWLVuif//++PXXX532aCgpN27cwHfffWf3WNu2bUW/e05ODgYPHoyFCxeKlE6ZTIawsDD4+/uLJiLu3LmDd955R7S+vbhs2bIF77zzjo3S6evri4iICAQFBdlMgqSkpODdd9/FpUuXbNrz8/PD119/Ldo3ffp0ZGdn2z3/F198IVIuxowZ43CCZNu2bXjrrbdslE4/Pz+Eh4fDzc1N2GcwGLBq1Sr0798fmZmZdtsz88033+DLL78UKZ3md4qlB8K5c+fw9ttvO/2ecoXs7Gz07dsXy5cvFymFEokEISEhNp4Q6enpmDRpEiZPnmwzAeqI5cuX46uvvhLal0qlCA0NtbGcHj16FH369EFCQoJNGxEREShfvrxN4L6QkBDhPWgvqJ8rHDp0CO+++64gFyzLIiQkBN7e3qJyV69exejRo5Gfn4/BgwcLSqf5t7P+Hufl5WH06NG4f/9+ifpXEvR6Pd5//32R0qlQKBAWFib6LnIch6+//hoHDx7Etm3bMHLkSOF7ai5v7THx999/O3znEM8fZPEkiDJi0KBBGDdunLB94MABtG3bFu3bt0fHjh3RokULl/L6OSIrKwtDhgwRDZJq1KiB0aNHo0WLFsIsY3x8PFatWiUMIHiex08//YSgoCD06dOnxP0oDerWrYu//voLgNiNNzQ0VNhfXL766ivRmjwvLy8MHz5ctHawoKAAf//9N2bPni24YJ09exZjxozB4sWLi3Tr/OKLL6DX6+Hn54eRI0eia9euwm+cmpqKxYsXY/HixUL5NWvW2HVdcpa33npLcCWzdBt76aWXHEZpNKf5OXHihLAvKCgII0eORJcuXeDr6wvAZEGPi4vDzz//LAxo9+3bh88//xzffvttsfprJiUlRfg7LCzM6XrWlo6SDNQs+8AwjNNWFIlEgqCgICQnJwOAXfc+a8Vn7dq1+Ouvv2zc782WsNOnT2PevHl49913MWLECKeCkBWXWbNm2ViVzFi65PI8j3HjxonS3TRq1AjvvfceGjduLLxXMjIysH37dvz2229QKpUwGAyYOnUqIiIi8OKLLxarj0lJSfjiiy9gMBgAmAa0Y8aMQdeuXUXBn/Lz83Ho0CHMnj1bSEGl1+vxww8/YNGiRTbtvvjii+jfvz9WrlwJwPTu/Oqrr2wGxZs3b8bOnTuF7aZNm+Kdd96x29dTp05h4sSJor6+++676NWrF8LDwwGYvAvOnj2L+fPn4+DBgwBMFvExY8ZgyZIldt8r27dvF6X5USgUGDFiBPr06SMoe3fv3sUff/yB9evXIzEx0fENLSYajQbvvvsurl+/LuwrX748xowZg3bt2gmRps0uuPPmzRMmstasWYOAgAD873//K/QcKpVKsL77+flh7Nix6N69OxQKBTiOw4kTJzBr1ixBqU9NTcXIkSOxbt06kQXN7H5qvfTiu+++K7VI59OnT4fRaERoaCjGjBmDV155Be7u7uB5HidPnsTHH38svFfOnz+PXr16IT4+Hu7u7vjggw/Qp08f4Xtw+fJlfPHFF4L3R35+PpYsWSIKovYo2blzp/B+6t69O4YNG4YqVaoAME1AzZkzBytWrBDKf/HFF8jIyADP82jQoAE+/PBD1K9fHyzLQq1WY8WKFfjpp5+E52LVqlUYPnw4AgMDH/3FEU8UZPEkiDKiS5cuNgMvvV6PXbt2Ydy4cWjWrBm6du2KyZMnY/PmzXZncZ3hp59+EtXt2rUr1q5di7Zt24o+zOXLl8eECROwcOFCYcAAmFzQHudM66Pg3Llzoo9meHg41q5di2HDhokC1nh6eqJHjx7YvHkzGjRoIOw/efKk3YGsNXq9HuXKlcPmzZsxcOBA0cRCaGgoJk6cKBqI8TyP7du3l/DqXGPHjh3Yv3+/sB0bG4vNmzejX79+gtIJmAaBAwYMwKZNm0TWwK1bt2LHjh0l6oOlpceVyRdr64o9d+ni9MHb27tIrwJH/cjJybE5brm+EwB27dolDOpkMhnCw8NtrLwajQZz587FBx984FAxLA3Ma8UGDhyIPXv24Ny5c9iyZQuGDBkiCq60cuVKHD58WNgeMmQIli9fjpYtW4reK0FBQRg0aBA2bNiAChUqADBZRT755BMb11xnmTdvnpC3lWEY/PLLLxg0aJBNxGEvLy906dIFa9euFVmzjh8/jry8PLttf/zxxyLL+bZt2wRlEDApvdOmTRO2/f398c0339idDNDpdBg3bpwwuA4JCcHGjRsxYsQIQekETJMVDRs2xPz58zFmzBhh/7///it6L5nRarWiiSOFQoGlS5fi3XffFcledHQ0pk+fXmbptpYtWyZyi2/atCk2bdqErl27ir4hoaGheO+997BmzRrR+/T333/HuXPnCj2H0WiE0WhEWFgY1q1bhzfeeENom2VZNGvWDGvWrEHLli2FOmb31EeN0WhEVFQU1q5di9dee01wlWYYBk2aNLFxd46Pj4dMJsOiRYswbNgw0buuZs2aWLx4sUgRO3DgwCO5DnuY308ffvghvv32W0HpBExeBp9//jmaNm0q7EtOToZer0f79u2xbNkyNGzYUHhGPDw88O6774pkXafTlUokcuLphxRPgigjWJbF3Llz0aVLF7vHeZ7HjRs3sGbNGkyYMAEdOnRA27Zt8emnn2Lfvn1ODT4TExNFrjHVq1fHjBkzCh1EN2nSBF988YWwrdPpsGDBAheu7Olj9uzZwt8SiQQ//fRToa6VPj4++Pnnn0UD3cWLFwuD4cL48ssvRYNOa4YOHSpyzTp//nyRbZYWPM9jzpw5wrZCocCvv/4qGixaExYWhp9//lm0Hu3XX38VrY90FUv3XssBbFFYl7Ve9/Yo+mBd3l4frBVPwBS5d926dbh48SIOHDiAM2fOYOfOnRg0aJDoed23b59I8SkL3nvvPXz22WeoUKECPDw8UK1aNUyYMEH4jQ0GA/744w+hfOPGjTFhwoRC1/dGRkaKBt4ZGRnCelxX4DhO5N3Qpk2bIqMN+/r6omfPnsK20Wi0a4kGTIPib7/9VmRl/PLLL6FSqcBxHD7++GPk5+cLx77++muH1vBNmzaJLOffffedjTu4NSNGjEDbtm2F7YULF0Kn04nKxMXFiZZljB8/vtB10H379kWvXr0KPa+rFBQUiGQgNDQUc+bMKXSZQ2xsLH744QdBTniex6+//lrkuViWxQ8//OAw6JKbmxu+++47kZK2ZMmSEr2DisvEiRMdemk0bNgQUVFRon0DBw4UTWJa4u3tjZdfflnYvnfvXrEna0qDmjVrYtiwYQ6PW8uYu7t7oQHeevfuLdq2Xt5APJ+Q4kkQZYi7uzt+/PFH/Prrr04FGLl//z7Wr1+P999/H23atMGSJUsKVUD37dsnzLYDwMiRI51awN+zZ09RnlB7AYmeFXJycnD8+HFhu02bNjYBYuwREBCAQYMGCdtZWVn4559/Cq0TFhaGVq1aFVpGLpeLAuI4WmNWFly7dk1wSQRMAwPrgZI9KlasKBp03Lhxw24QFWexlGlXotJKJBKR8mMp+4+qD9bl7fXBMrCQTCbDr7/+ilmzZqFOnTqi/lesWBGffPIJlixZIlJm16xZI3JxLU0UCkWhg0vAtJbO0gvCXqRpe9SuXVsUpGnXrl0u989oNOKHH37A9OnT8d5779mklXKEtdJiL2CWZT/ff/99YTspKQlz587FokWLRPf9zTffLDQAm+WkX9WqVZ126XzzzTeFv9PS0mysgpb3zcfHx6mlEO+9955T53aW48ePi6z5Q4YMEXlEOKJx48aid+ChQ4eKfMe1adPGoXJmxt/fH/369RO2k5KSRNbYR0FISEiREbhjY2NF25YTIvYwewmYsedB8ah4/fXXC51cso7E/uKLL9rEL7AkICBAtJ71cV4b8eRAiidBPALat2+PjRs3YuvWrRg1ahReeOGFIge7GRkZmDFjBvr27SusJ7PGMrenQqFAmzZtnO6TZTTHnJycEikSTzInTpwQKdWOoljao1u3bjZtFYa1YuEISwtjaQTrcZZjx46Jtl25F127dhVtF3UvCsPSUvG4wuyXZR++/fZbzJo1C6NGjcKPP/5YZKqWhg0birwQADhlKSoOderUKTKYk7XS60pU3vr16wt/nz9/3saaVxQymQzNmjVDnz59MHbsWDRq1KjIOjzP27jWFpXO6v3330fdunWF7eXLl4s8I2JjY/Hxxx87rK9SqYodubh+/foimTO7PwOmazl9+rSw3axZM6cmE6Ojo0slRZOZ0npX8DyPf//9t9Dy1u9ZR1grfZb37VFQu3btIstYerPI5XKRy6o9rJ9FV5+X0qSo6OLW1m5n0kRZXt/jvDbiyYGCCxHEI6Rq1aqoWrUqRo4ciYKCApw5cwanTp3CqVOncP78ebvWzf/++w8DBgzA+vXrbWYX79y5I/xdrVo1lyw31h/R27dvP3FpH0oDy3sEALVq1XK6blhYGIKDgwW3N3sRTK3LO4PlQPJRWpot74VEInEpv2StWrXAsqzQ36LuRWHIZDLBpcwVq6XRaBQpjJbRQovTBzOuWk4ty9vrQ4MGDYq04FjTvXt3/Prrr0JE5JMnTyI/P18Y7Fnm8isKezn7zDgzeLZ2FR44cKDTAY9yc3OFv7VaLdLS0hzmkC0O2dnZSExMREJCAm7duoUrV67g/PnzyMjIEJUr6rmSSCT45ptv0KtXL6hUKtG71+ypUph83bhxQyQHf/31V7Gt1JaBgVJSUkSuvtYWtMKoXr16ob+9K1i+K0JDQwt1x7fG3relMCwnAAqjcuXKojRlJYlqXRzKlStXZBnLCQVfX98in5uyDCTmKoUtEQFsJ+icWZ//JF0f8WRAiidBPCY8PT3RqlUrwS1Jo9HgxIkT2L17N7Zt2yaaHUxKSsLXX39tE33RMriKKwMDe+VLEqjlScbazcvV+xQUFCQonkXdI2fTgjwuLO+Fj4+PS3nV3N3d4eXlJSgWJZEXLy8vQfF0Zt2sGev1lEUlqi+qD2Zc6YN1P0rSB0tYlsWLL74oROfU6/W4evUqGjZsWCrtm7EO0GMP67QcJYmYqlQqi614chyHY8eO4a+//sKlS5dw584dkVJWUqKjozFhwgQba/PHH38sWopgD+t7lJeX5zCgUVFYPkvWKbcKc2W0pqTpQiyxfFeU5beFYZgiFR4zMpkMPj4+QmCwotLRlDauvt+ftryVrqYpe9quj3gyoKkIgnhCcHd3R+vWrfH1119j7969ogAUgCkaqXXSastBmKsfResBs6uD76cFy3vEMIzLgWQs71NR98gy39mTiOW9cPU+AK7di8KwDBLiigJrvUbIGSXKmT7k5uYW6ZrpqB+lmR7Aer1tWQysrXMO2qM0lbvC1loWxpkzZ9CjRw8MGTIEq1atwsWLF+32SyaToVGjRnjppZeKdR57gYOcUbSLq2Taw3Iiw9od0ZWJjeLkN3ZESd4VrnxbPDw8XLKKWQY5e9Sum66uBX/aeNavj3gyICkjiDJArVYjKysLmZmZCA0NdTpHoJmQkBD8+uuvePvttwX3OqPRiJMnT4rWwygUCsEC5WqEz9K0HrmCKwP80sBy0MTzPFQqlUsDqbKwbj0uLK+7OApBad2LiIgIITdgWlqa0/WsJ15cfa6s+2CG4zhkZGQ41Z7RaBS5dbqSh7QoLAfV5nOVNs6sZ7XsR1BQ0CNPg3Dw4EG7aWVCQ0NRpUoVxMTEoGLFiqhevTqqV68Od3d3bNmyBXv27HHpPFlZWfjss89s9i9ZsgTt2rUrdH2ptfxPmTJFFPymuFhbkVx5TkszDU9J3hWufFtc7bNl28WZPHteeNTfWYJwFlI8CaKUuX37Njp37ixsDxkyBBMmTHC5HZZlMXToUNG6LuuBt5+fn6B4WrtoFYV1WyW13Di7VrG4FpDiYp37MT093SaSYGFYKkauuL09iVjei9zcXGi1WqfXSebn54sGfSW5F5UqVRJyiSYmJkKn0znltmW9VsyV9W/2+mDdtjOKZ0JCgmiw7Ch4SH5+PrKyshAREeG0JdzaLdxyDZXZBfdRYJ2nlOO4R7ZWKzs7Gx9//LFwj1mWxeDBg9G/f/9CXXaLk4Zi8uTJokkEhUIhpFWZMGECtm7d6tCKaP1eKa3o1NYy6IrVuzSXS1heX0m/LYW9K/R6vWgtc2FotVqRpbk0J32eFp7U7yxBOAu52hJEKRMSEiKyKlhGKHQV64GWtZJgOei9cuWKS0FSrEPRO8qhVhiWg1FnB36Wee8eBdbKyYULF5yum5CQIBpQuqKwPolYyovRaBRF5SyKS5cuiQL7lOReWAYTMRgMTvfDMu2El5cXoqOji90H6wjEzsqFdeoL60AqP//8M+rUqYMGDRqgY8eOLt9jMwzDlGqUUlewVMr1er1gnXaGnJycEkVq3rx5s0iBGj16ND7++OMi14lav1eKyvG4ceNGUb7Q3r17Y/LkycJ2UlISpk+f7rB+xYoVRduu/M48zyM9Pd1uH0NDQ0VpS1xp9+rVq06XLQrLd0VqaqqNMlkY1t+Wot4Vzvb76tWrIkve43o+HjVPw3eWIJyFFE+CKGW8vLxEeRrPnz9vM1h1Fsuci4CtdcXSFUytVmPfvn1OtcvzPOLi4oRtLy8vVKtWzeX+WbpQObtOztkBfmmluGjQoIGoLcvrLgrrsq5GKn3SsHYd3LFjh9N1re9FSYLeNGvWTLSeaO/evUXWMRgMOHTokLDdvHnzEq1J8vf3F0U4dqYPAETPmHUbgCnypeXg0LLPhaFUKkUurdWqVXtsFnZrOXElH+ewYcNQt25dNGvWDH379nVZCT1//rxo+4033nCqnnXKjsIUz6SkJHz11VfCdmhoKCZOnIhevXqhZcuWwv5NmzaJlFNLAgMDRQr60aNHnV73+c8//6Bly5aoU6cOXnrpJaxatUp0vGnTpsLfx48fF0UKdkR2drbNvSsJpfWuYBimyPem2fuhKHbv3i3abt68uU2Zx5WeqSyx/M46a1l/1DlOCcJZSPEkiDLgtddeE21PnTrV5WAsPM9j0aJFwnZwcLDNYP/ll18WpYX45ZdfnAq4sHnzZpFS26FDh2IN4i2jFxoMhiIHPpcvX8aZM2ecattyAFGU9aIw/P39RYPJgwcP4uzZs0XWy8rKwrJly4RtT09PvPjii8XuR1ljOSvu6H7VqFFDNFjesGED4uPji2z71q1b2Lp1q7AdGRnpUloaa7y9vdG6dWthe926dUW6CW7atEnk8ldUYnZnsMw3eP78+SLTldy6dUukoPbo0cPGBbV169aiZ2n16tVOBeuZPXu2yD2uf//+RdYpK1q3bi2yuq1cudIpi9f+/fuFSbasrCx4eXnZrFstCmvlzRk35b1799r8do7WDprdaC1/k2nTpglBl6ZOnSpaO/j555/bpGox0717d+FvlUqF33//vci+chyHOXPmADAFx7l3756N5a5Xr17C3xqNBgsXLiyy3SVLlpRqsJ1WrVqJ3G0XLVrklCvviRMnRPmlGzZsWGQQsA0bNthECbYmPT0d69evF7br169vE4wLsE3fUZJvx5OC5Xf2/v37RVoz//77b9y/f7+su0UQxYIUT4IoA/r27Styxbp8+TIGDBiAmzdvOlVfq9Vi4sSJIjfd999/30Y5DA8PFwUbunr1KiZNmlSoy+2///6LadOmCdsymQzvvPOOU/2yxjJZPAD89ttvDtegpKWlYeLEiU6vUbGc5S1plM3hw4cLf3Mch7Fjx9rk97QkPz8fo0aNEq2vevPNN0s1amRp48z9YhgGw4YNE7ZVKhVGjhzpcGANmNzsRo0aJbJcDRs2rMRr/oYOHSr8rVQqMWbMGIcD5wsXLuDrr78WtmNjY22iPheH3r17iwbX48aNQ1JSkt2ySqUSo0aNEp4tNzc3vPXWWzblAgMD8corrwjb6enpRT6TS5cuxcqVK4XtypUrl4piXVw8PT0xcOBAYTsnJwcjRowoVDm4e/cuPv30U9E+S1lzFsugT4BJKSmMY8eOYdKkSTb7HcnSokWLRNbRHj16iCZBIiIiMH78eGE7OzvbbgAiwDQ5YBkleOHChUX2d9asWSKvj0aNGtm8R1u3bi3KsbtgwYJCAyft378ff/zxR6HndRUPDw+RDKSlpWHMmDGFBrG7efMmxo0bJ1L23nvvvSLPlZ2djfHjxzu0jhcUFGDs2LGiaNLvv/++3bLWEx2lGaH5cWEpHxzH4ddff3VY9tatW5g6deqj6BZBFAtSPAmiDJDL5Zg7dy58fHyEfZcvX0b37t0xevRobN261SZoBM/zuHr1Kv744w907NgRmzdvFo61adPGoQVk4sSJovVP27ZtQ9++fXHgwAHR4CshIQHffvstBg8eLBo8jBo1ymGAlKKoX7++KKn2oUOHMHLkSFFi77y8PPz555949dVXcf36dafTvli6Gebm5rrkImtNo0aNREpCcnIy+vTpgwULFoisaCqVCtu2bUPPnj1FyeCrV6+OESNGFPv8jwLL+3XixAmHydV79OiBDh06CNvXrl1Dz549sXr1atHALicnBytXrkSvXr1EbbVq1Qp9+/YtcX8bNGggshgdP34cffv2xfHjx4WBa35+PpYsWYK33npLsAZKJBJMnjy5UMW3Xbt2qFq1qvDPUXoMLy8vkZKRlpaG3r17Y/PmzcKzYzQa8ffff+PVV18V3Yf333/fRkky8/HHH4sCA+3evRv9+/fHsWPHRO7oly5dwujRo0VKtYeHB7755pvHniNv+PDhovWrly5dQq9evbBu3TqRVTI3Nxd//vknXn/9ddE7rVevXiKXUWfp1KmTaPu7777DDz/8IJocMRgMOH36ND755BMMGTLEriXOnsJx9epVzJ49W9gODg62q7T2799f5F2yf/9+rFmzxqacj4+P6LfjeR6TJk3CuHHj8N9//4n2X7hwAe+99x6WLFki7Pfw8LDJIQqYrHbTpk0TvFmMRiP+97//4euvvxZZslJTU/Hdd99h5MiRLq3vd5Zhw4ahTp06wvbx48fRq1cvbN++XWSdT09Px/z589G3b1/R+/T1118XeZsUxpEjR/D666/jn3/+EZ4Rg8GAffv2oU+fPqLJgq5duzr0PrEOkrd+/fpSjfb7OGjbtq3ICr9mzRp89tlnIlnIzMwUfoPU1NQnPqc08fxCUW0JooyoXLkyVqxYgQ8++AAJCQkATAOI3bt3C2tVZDIZAgMDodfrkZOTY3fw0LFjR3z33XcO1674+vpi3rx5GDZsmGCtuXz5MoYPHy60r9Fo7A7Ohg4dKrIGuopUKsXEiRMxZswYQVnYu3cv9u7dK7jZWQ4YZTIZfvnlFwwaNKjItmvWrCna/vDDDzFz5kwAwODBgzFkyBCX+jphwgRkZWVh+/btAEwK8XfffYfvv/8e/v7+kMlkyMzMtPkNqlWrhvnz57vsMvioqVGjBo4fPw7AdG3dunVDWFgY1Go15s2bJwwgGYbBrFmz8MEHHwjl09PT8cUXX+DLL78UBm6ZmZk21ulmzZrhp59+KrV1VFOmTEFSUpJg2b9y5QrefvttKBQKeHt7IyMjw2bd8CeffFJomgtX6dOnD27cuIGlS5cCMLmITpgwAZ999hkCAwORnZ1tE9Dj5ZdfLtSSExQUhIULF2LQoEHC+rzz589j0KBB8PDwgL+/P5RKpU3kSYVCgXnz5tnI/uNALpfjl19+wbBhw4TgLykpKfjss8/wxRdfICAgACzLIj093UZOmjdvjilTphTrvC1atECHDh3w999/AzApH/PmzcO8efPg7e0Nd3d3u7JZs2ZN/Pfff8J7yNodUafT4eOPPxZNxn3xxRc20WkB0zMyffp09OjRQ/jtZ86ciWbNmtkEYXvppZfw6aefYubMmYKsbt++Hdu3b4dCoRB+a2tLoZubG3744QeHk361atXCt99+i/Hjx8NgMMBoNGLp0qVYunQpAgMDwTAMMjMzhesNDAxEy5YtsWXLlkLvryvI5XL8/PPPIhm4d+8exo0bB6lUKny7srOzbVxau3btKgrWVBixsbG4fv06rl69iqFDh8LDwwN+fn7IysqyefaaNm1aaNCnsLAwBAYGCpMg+/fvR5MmTeDn5wd/f/8iLdJPIn5+fhg9erTw/QNMyxPWrVsnyK/l993HxwezZs1yaBUmiMcJWTwJogypWrUqtm7dihEjRoisn2b0ej1SUlLsKjwRERGYNWsWfv755yKVnsqVK2P9+vXo3LmzSCkwt2+tdEZEROCXX37Bxx9/XPyLe0CnTp0wc+ZMm+vLz88XKZ0RERFYtGgRmjVr5lS7rVu3tpktT0tLQ1pamij6p7NIpVJ8//33+PTTT0WDTZ7nkZWVhdTUVNFvIJfLheT1ISEhLp/vUfPOO++I+mk0GpGUlISsrCyR9QUwWfoWLlyI999/X+Siy3Ec0tPTbZQJT09PjBs3Dn/88Uepuht7enrijz/+QK9evURyq1KpkJqaKlI6fXx88O2334rc/0qLSZMm4eOPPxbdC/OzYznwlUgkGDJkCH744Ycile+aNWti06ZNaNy4sWi/Wq3G/fv3bZTORo0aYe3atTblHyehoaFYtWoV+vXrJ1pLbjQakZ6ejtTUVJGcyGQyDB8+HPPmzSvRRM13331nY/kETBMq1rIpl8vx3nvvYfXq1aLoqdZrPn/66Sdcu3ZN2O7SpQs6duzosA8xMTEYNWqUsK1SqfDxxx/bDaD21ltvYcGCBTaRblUqFZKSkmyUzqpVq2LFihVo166dw/MDQOfOnbF06VIbZTczMxMZGRmCshcVFYUFCxYgPDy80PaKgyMZMBgMSE1NRVZWlkjpDAgIwPTp0/H99987HTdg0qRJGDhwoPBMqdVqJCcni549s2z98ccfheYFZRgGEyZMED2fBQUFSEpKwn///edyrIUnhcGDB+Ojjz6yiWyvVCpF3/dq1aphxYoVJUo1RRBlCVk8CaKMUSgUGDNmDN577z0cPnwYJ0+exJUrV5CUlCRYU1iWhY+PD6KiolC7dm20adMGzZo1czr/H2D64P/000+4fv064uLicOLECSQmJkKpVEIikSAsLAy1atVCx44dix1MyBE9e/bEiy++iA0bNmD//v24e/cucnNzERgYiJiYGHTu3Bldu3Z1yf2HYRj89ttvWLJkCXbs2IHExESo1Wp4eXmVKGDEW2+9hVdffRXbtm3DP//8g6tXryIrKwt6vR6+vr6oUqUKWrZsiR49eoiCOjzpBAYGYuPGjZg3bx4OHTqEtLQ0GAwG+Pv72x1sSaVS/O9//8PAgQOxdetWHDlyBLdu3UJWVhaMRiMCAwNRrVo1vPjii+jWrZvdiZPSQKFQYObMmXjzzTexdetWHDt2DGlpacjPz4e3tzeqVKmCVq1aoXfv3mUa5XXo0KHo2rUrNm7ciIMHDyIhIQFKpRLu7u4oX748mjRpgj59+tjk/yyMyMhILF++HGfOnEFcXBxOnz6N5ORk5Ofnw8fHRwgY1rFjR6cnZB41CoUCU6ZMwbvvvovt27fj2LFjuHv3LrKzs8FxHHx9fVG5cmU0bdoUvXr1cioXalF4eHhgzpw5OHHiBDZt2oRz584hNTUVWq0WCoUCgYGBqFy5MurVq4fu3bsLEy4dOnQQ1joeO3YM8fHxKF++PE6dOoXFixcL7fv7++Pzzz8vsh9DhgzBrl27hImus2fPYv78+XYtSS1atEBcXBz27duHAwcO4Ny5c0hPT0d+fj48PDwQGhqKOnXqoFOnTmjVqpXT7/aGDRtix44diIuLw86dO3H58mUolUp4e3ujQoUKePnll9G7d294eXkVug60JJhl4J133sG2bdtw9OhR3Lt3T4iwGhwcjJo1a6Jt27bo0qWLy5MOLMvis88+Q/fu3bFq1SqcPHkSaWlpkMvliImJQatWrdCnTx/Rso7CML+7ly5disuXLyM7OxtyuRyhoaFISUlBTEyMy/fgSeCdd95B586dsWHDBhw8eBCJiYlQqVQIDg5GlSpV8Morr+Dll1+GXC53uLyAIB43DP8shPwiCIIgCIIgnnhOnDghWnO/bNkyNGnS5DH2iCCIRwW52hIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQRAEQRAEQZQppHgSBEEQBEEQBEEQZQopngRBEARBEARBEESZQoonQRAEQRAEQRAEUaZQHk+CIAiCIAiCIAiiTCGLJ0EQBEEQBEEQBFGmkOJJEARBEARBEARBlCmkeBIEQRAEQRAEQRBlCimeBEEQBEEQBEEQRJlCiidBEARBEARBEARRppDiSRAEQTyxGI3Gx92FMqEsr+tZvWfPIvRbOQ/dq+LBcdzj7gJBCJDiSRDPGQUFBejQoQPat28PnU4nOnb79m2MGTMGLVq0QK1atdCyZUtMnTq1xOccOHAgqlatioEDB5a4LeL5gOM4rFixAjNmzHgs52/Xrh2qVq2KiRMnlnrbcXFx+Oijj0q93bJum3CNwmQoPT0dY8eOxenTp22OVa1aFVWrVsXcuXMfRTefCo4ePYp33nnncXfjiaMwWbl37x4GDx6M+/fvl8q5bt26hZo1a2L06NGl0h7xfEKKJ0E8Z3z99ddISEjARx99BLlcLuzPzMxEv379sGvXLmRkZECv1yM9PR3u7u6PsbfE88pHH32EadOmIT8//3F3pVT58ccf8eGHHyI9Pf2papsoPbKystClSxfs2LEDlEq9aNasWYPBgwfj3r17j7srTw1Xr15Ft27dcPTo0VJrs1KlSujXrx92796NzZs3l1q7xPOF9HF3gCCIR8epU6ewfv161KtXDy+//LLo2L59+6BUKgEAn376Kbp06QKGYUTKaXEJCQlB+fLlERISUuK2iOeDtLS0x3r+iIgISCQSBAYGlmq7qamppdreo2qbcB1HMqRSqZCbm+uwXvny5QEAvr6+Zdq/p4XH/S54knEkKzk5OdBqtaV+vg8++ACbNm3CjBkz0Lp1a/j7+5f6OYhnG1I8CeI5ged5TJs2DQAwZswYm+NmK4mfnx/eeuutUj33999/X6rtEURZs3z58sfdBeIpp7gy9Ndff5VyT4hnlUctK/7+/hg4cCB+++03zJkzB1988cUjPT/x9EOutgTxnLBr1y5cvXoVsbGxaNasmc1xc+AGT0/PR901giAIgiCeAvr37w+pVIp169aV2vpR4vmB4WmBAUE8F7z22mu4dOkSPvnkEwwaNEjYP3HiRGzatMluncaNG4tm7fPz87F+/XocOnQI169fh1KphEwmQ1BQEOrXr48BAwagTp06Nu0MHDgQJ0+etGnPfO5u3bphzJgx+OKLL3D69GnI5XJUrlwZc+bMwe3btwUL7LVr13Dr1i388ccfOHbsGDIyMuDr64uGDRtiyJAhqFu3rsPrz87OxtKlS7F//34kJCTAaDQiPDwcrVq1wpAhQxAeHm63nlqtxqpVq7Bnzx7cuHEDWq0Wfn5+qFGjBrp06YJu3bpBIpHY1FMqlVi+fDn279+PO3fuwGAwICAgAHXq1EGPHj3QoUMHh30tiqSkJKxduxb79+9HUlISjEYjoqKi0LZtWwwZMgR+fn526506dQqrVq3CmTNnkJ6eDoVCgZiYGHTo0AEDBgyAQqGwqWP+jXr16oWZM2ciLi4Oa9aswbVr16BWqxEREYGOHTti6NChdl0DeZ7Hzp07sXnzZly6dAk5OTnw8vJCTEwM2rZti/79+8Pb29vmfPa4du0agIfy9N577+Gll17C1KlT8d9//0GhUKBWrVr47bffBBfxrKwsrF69GkeOHMGdO3eQm5sLNzc3hISEoHHjxnjrrbdQqVIlm3O1a9cOSUlJwnWX9H7MnTsXP//8s93r2rt3LyIjI0XnjYiIwL59++yWt8aZtp151g4fPoxPPvnEpk+WJCYmon379gCAGTNm4NVXX7UpU9xnrTDM/e/SpQt++OEHrFy5EmvXrsW9e/fg5eWF2NhYvPnmm2jXrl2h7Rw4cADr1q3D+fPnoVQq4enpidjYWHTp0gW9e/eGTCazW+/WrVtYtmwZjh8/jvv370MqlSIkJASNGjXCgAEDUL16dZs69mSoatWqdtu3V2bkyJEYNWoU0tPT0bp1axiNRowbNw7Dhg1zeH1vvvkm/v33XzRt2hRLly4VHbt//z6WLFmCw4cPIzk5GQzDCO+NQYMGFctt0nyN06dPR3h4OL755hvcvn0bvr6+aNq0qcjbJSkpCatXr8axY8eQmJiIvLw8KBQKlCtXDs2bN8fbb7+NsLAwofzGjRsFebRm2bJlaNKkibDN8zzi4uKwZcsWXL58Gbm5ufDz80PdunXRt29ftG7d2uVrO3HihPDtuXDhAq5du4Zff/0VZ8+ehU6nQ1RUFDp37owBAwbAx8fHYTtnz57Fxo0bcfr0aaSlpUGj0cDLywuVKlVC+/bt8cYbb9i8e83XHhoait27d2PGjBnYuXMn9Ho9oqKiMGnSJDRr1sxGViyfT2tGjhyJqKgoTJgwwe49tESj0aBZs2ZQqVQ2YwYAeP/997Fv3z4MGjTI4W9EEPYgV1uCeA64dOkSLl26BADo1KlTsdq4ePEi3nvvPWRkZIj26/V6xMfHIz4+Hlu2bMH06dPRu3dvl9rOycnB22+/jaSkJACmj152djaCg4Nx+/Ztody+ffswduxYaDQaYV9GRgZ27dqF3bt3Y9asWejRo4dN+8ePH8fo0aORk5Mj2n/nzh3cuXMHa9euxTfffGNzb5RKJQYOHIjr16+L9qenp+PgwYM4ePAgNmzYgPnz58PDw0M4npCQgIEDByI5OVlULyUlBSkpKdizZw+6dOmC77//HizrmuPJzp07MWnSJKhUKtH+69ev4/r169i4cSMWLVqE2NhY4RjHcZgyZQrWrFkjqpOTk4Nz587h3LlzWLlyJX777TdUq1bN7nl5nsfHH3+MLVu2iPbfvn0b8+bNw/bt27Fq1SqEhoaKjn/00UfYtm2baJ9SqcTZs2dx9uxZ/Pnnn1i2bBmio6Ndug+A6T6//fbbyMvLAwAhSrNZ6Tx48CD+97//2dwrvV6P/Px83L59Gxs3bsQvv/yCF1980aVzF/d+PG4Ke9ZKg+I+a64wfvx4bN++XdhWq9VIT0/HkSNH8Oqrr2L69Ok2k0FqtRrjxo3D3r17RfuVSiVOnjyJkydPYuXKlfj9998REREhKnPgwAGMGjVKFAVcp9Ph7t27uHv3LtavX4/PPvsMb775ZrGvqTCCg4PRrFkz/PPPP4iLi3OoeKakpODUqVMAYPMejIuLwyeffGKz7u/atWu4du0aVq9ejV9++QUNGzYsVh/PnTuHL7/8Enq9HoDpvWzpPbNu3TrRcTO5ubnIzc3F1atXsX79eixduhQ1atRw6dy5ubkYOXIkTpw4Idqfnp6Ov//+G3///Te6d++Or776qtgxC/bv34/x48eL+m++d+vXr8eiRYtQoUIFUR2j0YgpU6Zg7dq1Nu1lZ2fj1KlTOHXqFDZt2oRVq1bBy8vLphzP8xg7diz2798v7Lt58yZiYmKKdR0vvfQSvvzyS6hUKsTFxTlUPPft2weVSgWJRIJXXnnF5ninTp2wb98+bNq0CR9++CHc3NyK1R/i+YNcbQniOWDHjh0AgMqVK9tYG6ZOnYozZ85g+PDhAIBy5crhzJkzOHPmDBYsWADAZOl8//33kZGRgaCgIHz11VfYs2cPjh8/ji1btmDUqFHw8PAAz/P46quvbAb6RXHo0CGkpaVh6tSpOHLkCNauXWt3FvXDDz+En58fZs2ahUOHDuHQoUOYPHmycG57UVCvX7+O4cOHIycnB5GRkfjmm29w6NAhHDt2DPPnz0etWrWg0Wjw4Ycf2qQ2+OGHH3D9+nUoFApMnjwZf/31F44fP45Nmzahe/fuAICTJ0/aWBamTJmC5ORkBAUF4ZtvvsHff/+NY8eOYfXq1WjZsqXwm8TFxbl0n86cOYOxY8dCpVIhKioK33//PQ4fPox9+/bhs88+g6enJ9LT0/HBBx+IBslff/21oHQ2a9YMS5cuxbFjx/DXX39h3LhxUCgUuH//PgYNGoSUlBS75969eze2bNmCNm3aYOXKlcJvbx6UJCUl4aeffhLV2b59u6B0vv3229i6dSuOHz+O3bt3Y+zYsZBKpUhNTRWl7DHLY4MGDQAA3bp1E+TRmri4OPA8j9mzZ+Po0aNYsmQJRowYAcBk3RkzZgxUKhWio6Px448/Cr/Dhg0bMHDgQEilUuh0umKlDHL1fgwfPhxnzpxBt27dAAANGjQQrstS0YmKikJMTAyioqKc7ouzbQPOP2vFoSTPmrMcOHAA27dvR/Xq1bF48WIcP34c69atEyxaGzdutGv9/fDDDwWls3PnzlizZg1OnDiBHTt2YNiwYZBKpbh+/TqGDBkieoeoVCpMmDABOp0OderUwaJFi3Do0CEcPnwYv/76K6Kjo8HzPGbOnInExMQi+3/mzBnRcz9//nycOXOmSBk0K5JXr17FrVu37JbZvn07eJ6Hu7s7XnrpJWH/kSNHMH78eGi1WlSrVg2//PILjh49isOHD+PHH39EdHQ0lEolhg0bhrt37xZ5DfZYv349AgMDsWjRIhw9ehS//vqrkD7rwoUL+Pzzz6HX61GrVi3MmzcP+/fvx5EjR7B69Wr07NkTgEmBtPQu6N69u8Nvk1lBNhqN+OCDD3DixAlIpVK8++672L59O06cOIEtW7bgzTffBMMw2Lp1K6ZPn16sawOATz75BDKZDJ988gkOHTokTILKZDIkJibi3XfftUlPtmTJEkHpfOWVV7BmzRocOXIE+/btw/z581GvXj0ApudmyZIlds+blpaG/fv3Y8CAAdi/fz927dqFr7/+WmQZtiQiIgJnzpzB/PnzhX1xcXHCfVQoFIK3ze7du2EwGOy2Y35vN2vWzO6kVKtWrcAwDHJycko1ci7xHMATBPHM07VrVz42NpafNGmSwzJz5szhY2Nj+bZt29ocW7FiBR8bG8vHxsbyp06dslt/yZIlQpnDhw+Ljr355pt8bGws/+abb4r2T5gwQajzww8/2G33+PHjQpmGDRvy9+/ftynz559/CmV27dolOta/f38+NjaWb9euHZ+VlWVTV6PR8L179+ZjY2P5bt26iY41adKEj42N5X/55RebehzH8QMHDuRjY2P5rl27Cvvz8vL4qlWr8rGxsfzmzZtt6mm1Wr5Tp058bGwsP3z4cLvX7Ihu3brxsbGxfJs2bfjMzEyb43v27BHuw6ZNm3ie5/mrV68K/RkzZgxvNBpt6p05c4avWbMmHxsby48ePVp0zPI3GjVqlN1+me9f/fr1eY7jhP2jRo3iY2Nj+bfffttuvblz5/KxsbF81apVbX4bs8xMmDDBpp75WGxsLL927Vq7bc+aNYuPjY3la9asycfHx9st89VXXwnt3L59W3Ssbdu2ds9fkvthWd/6WSgNCmvbmWdtw4YNQpmEhAS7ZRISEoQyGzZsEB0rybPm7LWZn7f8/HzRcaPRyA8fPpyPjY3l69Spw6empgrH9u3bJ9SdOXOm3fZ37dollJk1a5awf//+/cL+5ORkm3rx8fF8tWrV+NjYWH7RokWiY45kyPIeHj9+3KZN87E5c+YI+1QqFf/CCy/Y7LekZ8+efGxsLP/hhx8K+wwGg9CP3r178xqNxqZedna2UMbVd5K5XmxsLH/kyBG7ZUaPHs3HxsbyTZs25ZVKpd0yI0aM4GNjY/lq1arxarVadKywb9O6deuE8+/evdtu24sWLRLKXLp0yelrs/z2VKtWjT927JhNmR07dghlFi9eLOw3Go188+bN+djYWH7w4ME27wGeN/2mrVq14mNjY/nXX39ddMzyWezXr5/DPtqTFeu+Wz/Lhw8fFo4dOHDApk2lUil8D8zfEXt06NCBj42N5b/88kuHZQjCGrJ4EsQzTn5+Pm7evAkAIvdLVwgPD8eAAQPQr18/wRJljaXLTlZWlsvn6Ny5c5FlevToYXd9WNu2bYW/La0ON27cEFzPRowYYXcNk5ubG8aOHQvA5Dp1/vx54Zh5BtvavRgAGIbB559/jqVLl+L3338X9hsMBiE3n716crkc33zzDf7880+XLG03btwQ1jiOHj0aAQEBNmU6duyIRo0aiX6LdevWged5yOVyTJ482a5rb7169dC/f38AwJ49e5CZmWm3D++9957d/W3atAFgkrXs7Gxhv/n+KZVKuzPr/fv3x/z58xEXFyda5+ksDMM4dNmMjY3F66+/jnfffdeh9bBx48bC38WRWVfvx5OCM8+aq5T0WXMFs3XfEpZl8emnn4JhGGg0GlG0T7PVKTg4GB9++KHdNjt16iRYgtauXSsEW7O0YtnLjxoVFYX58+dj3bp1Li8xcAUPDw9B1u15Sty6dQv//fcfAAjeGABw+PBhwa163Lhxdl0i/fz88P777wMwWZSLkwfWz8/PbtA6AKhfvz569+6NDz74wGGKGPOzyHGcjZt2YaxatQoA0KhRI5GV15K33npLsPzbc3t1hh49eqBp06Y2+zt37iz03dL9u6CgAH369EHXrl0xfPhwMAxjU9fDwwO1a9cGUPj7xzr1WUmxtGLak6U9e/ZAr9fDw8MDHTt2dNhOlSpVAKDYzzHxfEJrPAniGefu3bvgOA4AULFixWK10a5du0KDdmRkZODs2bPCtnnQ5iwymUz4iBWGo+BBlnny1Gq18PfJkyeFv2NjY1FQUGC3frVq1SCRSGA0GnH69GnhPI0aNcKBAwfw559/IjU1Fa+88gpatGghDJ6qVKli028/Pz9UqVIFN27cwPfff4/r16+jU6dOaNq0qRBAwl4ApqI4duyY8LdZsbHHihUrRNv//vsvANPAzp6yaqZLly5YunQpOI7D6dOnbQZxbm5uDtd/Wt5/y/W3jRo1wv79+3HlyhX07dsXvXv3xosvvigErQkICChW0A8zkZGRDoN69OzZU3Dhs0dycrIwUAdcl9ni3I8nAWefNVcp6bPmLMHBwQ7XpUVFRaFKlSq4fv06jh07hgEDBgB4+Ay0a9fOYfAgwPQM/P3338jLy8PVq1dRs2ZNvPDCC5DJZNDr9Rg8eDDeeOMNtG3bFi+88IKwjrRVq1YuXUNx6dGjBzZt2oQ7d+7gv//+E62FNCs9gYGBaNGihbDfct1jYb9LrVq1AJjWFJ45c8blNbjVqlWzq1wBJjf7wrh7967IfdiR+6c1+fn5wjNco0YNh9cGALVr10ZSUpJdl31n6NKli8Njbdu2xcmTJ3Hp0iXk5ubCx8cH3t7e+N///uewjsFgwJUrV4RJvsKu2dU1r0UhkUjQrVs3LFq0CHv37oVWqxVNSJjdbDt06FBolPuKFSti7969uHPnTqn2j3i2IcWTIJ5xLNfslTQhuV6vx7///ovLly8LAYVu375tk+CbdzFYtq+vr93IsNY4UpwsA0ZYnjshIUH421lrhGVAoIkTJ+L8+fPIzs4WglRIJBLUrl0brVq1QseOHe1GqZwyZQreeecdqNVqbN68GZs3b4ZMJkP9+vXRunVrdOzYUUj87SypqakATIqtK9Enzb+/vcitllgetxci39fX12EgJMv7b57kAIABAwZg9+7dOH/+PC5fvozLly8DAGJiYtCyZUu0b98eTZo0cTnAkpnCFGkzGo0Gx44dw9WrVxEfH4+EhATcvHnTxhJZHJl19X48CTj7rLlKSZ81ZylKaa5QoQKuX78uyH1+fr4QfMqVZyA5ORk1a9ZESEgIxo0bh5kzZyIvLw8LFizAggUL4OPjg2bNmqF169Zo3769w0jSpUmTJk0QFhaGlJQUxMXFiRQSs+XqlVdegVT6cGhn6QHiyCJpTXF+F2eexby8PBw9ehTXr18XnsVbt24hNzdXVM7ZZzEpKUl4vpYuXWqz1t4exbk2wHE0YgBCUCGe55GWlmYzGZaUlIQTJ07g9u3biI+Px71793Dnzh2bQE+OKE604aLo0aMHFi1ahPz8fBw4cECYaEhNTRUmaiwt5/YwjycKCgqQn59vNzgSQVhDiidBPONYBvopyYdh586d+Oqrr2zcsBiGQcWKFVG3bl2HaTCKwtmIeJYDKmewDjTkap2YmBhs374dv//+O3bs2IHMzEwYjUYhEuzcuXPRsGFDfPXVV6KorA0bNsTWrVvx22+/4a+//kJeXh70ej1OnDiBEydO4JtvvkG7du0wbdo0BAUFOdUvs/uZu7t7sa7HXqoUSyyj8toLDlWYpcgR7u7uWLFiBZYvX47169cLEYrNEU6XL1+OiIgITJkyxeWoskDRcrNixQr89NNPguJhhmVZVK9eHdHR0di5c6fL5wWKdz+eBMoq+mRJnzVnKcol2/x8mH9zSyuYK8+AZb3BgwejevXqWLhwIY4dOwa9Xo/c3Fzs3r0bu3fvhkwmw8CBAzF+/PgyUerNsCyLbt26YcGCBdi5cyfGjx8PhmFw4cIF3Lt3D4BtNNtH9bsUJlccx2Hu3LlYuHChjbIlk8lQr149+Pj44ODBg2Xez+LUAQqXO0u5sXzXKJVKTJ48GXv27LFRpj09PdG0aVOkp6eLPC/sURbPbLVq1RAbG4vr168jLi5OUDx37NgBjuMQFBQkspzbw/KeFBQUkOJJOAUpngTxjGPp/lTcQdGePXswduxY8DyPgIAAdOzYEbVq1ULFihURGxsLHx8f3Lt3r9iKZ1lhqaRduHChWB/woKAgfPbZZ5g0aRIuXryII0eO4OjRozh79iwMBgNOnTqFQYMGYefOnaIBSPny5TFjxgwhSuvRo0dx5MgRXLp0CTzPY9++fUhLS8P69esduqhZYm7bVddNhUKB3NzcIiMNuzJAdwW5XI6hQ4di6NChuHv3rnD/jh07hoKCAiQlJWHEiBFYs2YNatasWWrnXbJkCWbMmAHAFA2zQ4cOqF69OipVqoQqVapAoVDg6NGjxVY8n1ccWWlK41lzBuvIodaY5dxsJbKU5ZI8A02bNkXTpk2Rn58vyO8///yD+Ph46PV6LFq0CDzPY+LEiS5dj6v06NEDCxYsQFJSEs6ePYv69esLbraVKlUSXGbNmH+XoKAgHDlypEz75ogZM2Zg2bJlAEzume3atUPVqlWFZ1Eul2PdunUuK56W79spU6agX79+pdpvS7RarcP3oqVcmeVOr9dj6NChQhqzxo0bo1mzZoiNjUXFihURHR0NlmUxfvz4IhXPsqJHjx749ttvceDAARQUFMDT01OwnHfp0qXI8YLl8gRnvmEEAZDiSRDPPJZrNCzXP7rC999/D57nERkZifXr19t1/XkSg6iUK1dO+DsxMbFQVzue5wv9eLIsi7p166Ju3boYMWIEsrKyMGvWLGzevBnJycn466+/7LomyWQyNGnSBE2aNMHYsWORnJyMzz77DP/88w8uXbokSh1SGOagSkqlUlhHZI9du3bh7t27qFy5Mjp06IBy5cohNzfXYQoGM+YAVID4vpUm0dHRiI6OxoABA6DT6bBq1SrMmDEDer0eq1atKlG6A0s0Go2QUqNOnTpYvny5XUvxkyizjxNL12HrfItmHN2z0nzWCsPSpdce5vVm5mAyXl5e8PHxKbVnwMvLCy+99JKwBvrChQv43//+h6SkJKxcuRLjx4932TPDFapUqYKaNWvi8uXL2LNnD+rVqydMnth7/5ivIzs7GyqVqlQnlZwhOTlZWHfesWNHzJ49265CU5xn0TKliDmAkiNKInOASe4cubyaPTlkMpmQt3fXrl2C0jlx4kQMHjzYbt3H+Q7q1q0bvv/+e2i1Whw5cgR169bFxYsXARTtZguI+17YWlCCsISi2hLEM45lFFjzOkFXyMrKEnK7vfTSSw4/vpbBb56UdW2WydCtE8dbcubMGdStWxedOnUSBnEXLlxAv3790LhxY9y4ccOmTkBAACZNmiRsm+/tgQMH0Lt3bzRu3NjGxRMw/R7jxo2zqVcU9evXF/4+fPiww3ILFizAjz/+KER7NN+DkydPFho5cdeuXQBMM9cvvPCCU30qDLVajaFDh+LFF1/En3/+aXNcLpfj7bffFiItF0c2HXHjxg3h3vfs2dOhe/LjkNmytAyUtG1LpcSRrFgGEbOkJM+aK9y6dcthvsw7d+4ISoA5ABfDMMLEzr59+xwq1MDDZ8DT01OQy3nz5qFr164OrWl16tTBW2+9BcBkFXMmImtJfyezUrB//36cPn0aaWlpYBhGyONqiWW+ywMHDjhsc9u2bahXrx5eeeUVITpxaXD+/Hnh2erdu7dDK5rls2jtlurofgUEBKBy5coATL+to7WhHMfhlVdeQatWrfDRRx+5fA2AKf+tI/bt2wfAZNU0W2Etn5PXX3/dbj21Wo1z584JfSxNnJGx0NBQIVLv/v37sX//fgAmq7Q52m5hKJVKAKa1nqR4Es5CiidBPOOYXXoAID4+3uX6lrP3jiwGV69eFSWsLmxw9yipU6cOqlevDsCkkNlLjq7RaDBz5kxotVokJSUJEWfDw8Nx4cIF5OTkYPny5Xbbv3LlivC3OVhQYGAgLl68iJycHKxcudLpekVRt25dwYo0Z84cu2uV9u7dK8yyv/LKKwCAPn36ADC5KE6dOtXuAOfChQuCotq6dWuEhIQ41afC8PDwQGpqKlJTU7FmzRq7Lpo5OTlCICPr+2CWu+LIkqXMWlqxLDly5Ag2btwobD8qmTUPvMvifCVt2xwkBYBdpTArK8vhs1CSZ80VeJ7HN998Y6NkGAwGwWLu5+cnSrHUt29fAKZ0KD/88IPddv/++29BYe7Zs6ewhlcqleLGjRs4e/asw4io5ufZy8vLqSA7lvJZnN+qa9eukEqluHv3Lv744w8ApgjSZiuvJe3btxfWkX/33Xd2JxSysrIwZ84cqFQqZGRkCL9jaeDMs7hhwwYcPXpU2LZ2pzbLtT03a/P77datW1i4cKHd9pctW4Zbt24hLS1NUFRdZenSpXatqlu2bBGUzF69etn0GbB/3RzHYerUqcJ7vLTfB5bnL6xt85rggwcPCgq0M9ZO4KGVubjR8onnE1I8CeIZx8PDQxhIFGctiY+PjzBAPHjwIKZPn45bt24hOzsbV69exU8//YQ33nhDtM6lsLD2j5rJkydDKpUiNzcXr7/+OlasWIHExERkZmbin3/+waBBg4Q8ZEOHDhUGb8HBwcIHeM2aNfjkk09w4cIFZGVlISEhARs2bMD48eMBmJRU80C3du3aQl632bNnY9asWbhy5QqysrJw584dLFmyBF999RUAkzJpvSbLEea8oSzL4u7du+jXrx/27t0rWKQXLlwo9Kd69epC36tVq4aBAwcCMCkTQ4cOxYkTJ5CdnY2EhAQsXLgQgwYNgl6vh6+vL6ZMmVLSWy4wdOhQAKacjYMHD8bhw4cFZfTgwYMYMmQI8vLyIJFIbKwC5iihp06dwr1791zKsxkbGysoz6tXr8avv/4qtHHhwgVMnz4dw4YNE61RelQya76ua9eu4fLly8jOzhYNDN9++228/PLLRaagKE7bRVG1alUhSNaKFSvw888/IzExEampqdi2bRv69u2LrKwsh+6axX3WXGX37t14//33ceHCBSiVSpw5cwbvvPMO/vnnHwDAhAkTRIFOLNNBLVq0CGPHjsX58+ehVCpx+/Zt/PTTT0Lqi6ioKFGuz9deew1+fn7geR4jRozAihUrcPv2bWRlZeHq1auYNm0aNm/eDADo16+fU5Ymy+jiu3btglKpdCl3pWXgF7OVypGyIJfL8emnnwIwKQq9e/fG5s2bhedwz549GDhwoDApOW7cuFK1XjVo0EDwOPj555/x559/IjExERkZGfj3338xYcIEkecIYPssmuU6IyMDR44cQU5OjjCR1b9/fyG677fffotJkybh0qVLUCqVuHbtGmbMmIGZM2cCME3Cmt+FrpKbm4v+/fsjLi5O+AbMnTtX6Hvjxo1FFueWLVsKf48bNw579+5FWlqasCzjzTffFE18lfb7xzLKclxcHHJzc+1OVnbs2BEeHh7IzMzEoUOHHFrO7WG21lp64xBEUdAaT4J4DmjRogUuX74shEl3lcmTJ+Ott96CSqXC8uXL7Vo9evfujWPHjiEpKUmIsPgkUL9+fcyZMwfjx4+HUqnEtGnTMG3aNJtyffr0wejRo0X7Jk2ahNu3b+PcuXPYuHGjaKBgJigoCL///rsohca3336Lt99+G3fv3sWiRYuwaNEim3rR0dGYPXu2S9fSrFkzzJgxA5999hmuX7+OESNG2JSpXLkyfv/9d5GlYeLEidDpdFizZg2OHj0qsi6YiYqKwuzZs0Wu2SWlV69eOH/+PFatWoXTp0/jnXfesSkjk8kwbdo0wbXRTJMmTbBjxw6kpKQI6+n27t0r5AAtDIlEgqlTp2LkyJEwGAyYPXu2zb1mWRbDhw/H4sWLodPpHpnMNmnSBAsWLIBKpcKrr74KwGSRMeemTEhIQFJSUpFBdIrTtjN8+eWXGDZsGLRaLebOnYu5c+cKx2QyGWbOnInZs2fb9Z4oybPmLMHBwahUqZLINdAMwzD46KOPhGu35LvvvsP48eOxb98+7NixAzt27LApU7NmTcyePVuktPr5+eGnn37CiBEjkJ2dbfd6AFMuR2evyd3dHS+88ALOnTuHdevWYd26dWjcuLFDa7I9evToIQTjcXNzw8svv+ywbJcuXZCbm4vp06cjKSkJEyZMsCnDMAw++OADwTpcWvj7+2PixIn48ssvoVarMXXqVJsycrkcQ4YMwe+//w4AuHfvnsga3qhRIyH365AhQwCYAha9+uqrkMvlmD9/PkaMGIELFy5gw4YN2LBhg805oqOjsWDBgmKvce3atSvi4uJEkxJmGjduLKwpN9O6dWu88soriIuLQ3x8vN13dUhICNq1a4fVq1dDrVYjNTVVWCNaUipUqIDw8HAkJycLz3GvXr0EJdyMp6cnOnTogG3btoHneTRo0MCpd6x58gV4dHlsiWcDsngSxHOA2e0yISHBrgtcUdSuXRubNm3Cq6++ivDwcEilUri7uyMqKgqvvPIKli1bhq+++krIE7d///4nxt0WMLmb7dmzB8OHD0f16tXh5eUFmUyGkJAQdOrUCYsWLcL06dNt1h95e3vjzz//xJQpU9CkSRP4+/tDKpXC19cXtWvXxujRo7Fr1y5Uq1ZNVC8sLAybNm3C+PHjhVQBUqkU/v7+aNiwIT755BNs3bq1WEpez549sWPHDgwYMADR0dFwc3ODh4cHatasiY8++gjr168XBd0ATO5uU6dOxYoVK9C1a1eEh4dDJpMhMDAQDRo0wOTJk7Fly5ZSjSprZsqUKZg/fz5eeuklhIWFQSaTQaFQICYmBm+++Sa2b98uclEz07dvX4waNQrlypWDTCZDcHCwKCdtUbRt2xZr1qxB586dERwcDKlUCoVCgYoVK6J3797YsGEDPvzwQ2H93549e0rtmgujVatWmDx5MqKjoyGTyRAQEICMjIwnpu2mTZtiy5YteO211wQ5CQkJQdeuXbF+/Xp07dq10PrFfdacRS6XY+HChfjoo49QqVIluLm5ISIiAl27dsWGDRsEK7s1np6e+O233/DLL7+gffv2CA4OFvrVvHlzzJo1C6tXr0ZUVJRN3WbNmiEuLg6DBg1CbGwsFAqFULddu3aYM2eOzeRTUfz4449o164dvL294ebmVmTEXWvat28vKMht27YtMs3MG2+8gZ07d2LgwIGoXLmycA0RERHo0aMH1q5di1GjRrnUB2fp168fFi9ejDZt2sDf3x8SiURYRztw4EBs27YNY8eOFVy9//rrL1H9ypUr44cffkBsbCzc3Nzg6+srCmwTHByM1atXY9asWWjVqhUCAwMhlUrh5eWFevXqYeLEidiyZYvLuZMt6du3L5YtW4aWLVvCy8sLvr6+aNCgAWbOnIlFixbZzZH9/fffY+rUqahXrx48PT0hlUrh5+eHevXqYdy4cdi+fTuGDx8uLIWxvu6SIJVK8fvvv6NJkyZQKBRQKBQOraqWKXicdbM9efIkANO9d2ViiyAY3tWs2QRBPJX0798fp0+fxujRo/HBBx887u4QBEE4zcSJE7Fp0yZEREQIa9EIoiw5ceKEEDjKVc+Bp4kjR45gyJAhkMlkOHLkiF0l2po33ngDZ8+exahRozBy5MhH0EviWYEsngTxnGB29dm8efMTE3WWIAiCIIjHx7Zt2wCY1kI7o3TevHkTZ8+ehaenZ7HXzBLPL6R4EsRzQsuWLVGnTh3Ex8e7nKibIAiCIIhni7t37wpphMwRgoti3bp1AExeVM4oqgRhCQUXIojniPHjx+Ptt9/Gb7/9Jko3QBAEQRDEs8++fftw/fp1aLVarF27Fmq1GtWqVRNF4nVEWloa1qxZg4CAACHQE0G4AimeBPEc0aRJEwwYMAArVqzA33//jQ4dOjzuLhEEQRAE8YhITk7Gjz/+KGzL5XJMmzbNqVRAc+bMgVqtxsyZM53KWUsQ1pCrLUE8Z4wfPx4VKlTArFmzipWygSAIgiCIp5OqVasiJCQE7u7uqFevHhYvXixKX+OIW7duYePGjejcuXOh6XsIojAoqi1BEARBEARBEARRppDFkyAIgiAIgiAIgihTSPEkCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRRPgiAIgiAIgiAIokwhxZMgCIIgCIIgCIIoU0jxJAiCIAiCIAiCIMoUUjwJgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMkT7uDhCPH51OB6VSKWy7ublBIpE8vg4RBEEQBEEQBPFYMBqN0Gq1wrafnx/kcnmJ2yXFk4BSqURCQsLj7gZBEARBEARBEE8gISEhJW6DXG0JgiAIgiAIgiCIMoUUT4IgCIIgCIIgCKJMIVdbAm5ubqLtqKgoKBSKx9QbID4+HkajERKJBOXLl39s/SCeHkhmCFchmSFchWSGcBWSGcJVnhSZUalUomV41rpCcSHFk7AJJKRQKODl5fWYegMYDAbo9XrIZLLH2g/i6YFkhnAVkhnCVUhmCFchmSFc5UmVmdIKOkqutsQTB8uywj+CcAaSGcJVSGYIVyGZIVyFZIZwlWddZhie5/nH3Qni8ZKfn49r164J21WrVn2iZlkIgiAIgiAIgng0lJVu8Gyq0wRBEARBEARBEMQTAymeBEEQBEEQBEEQRJlCiidBEARBEARBEARRplBUW+KJIy0tTQglHRIS8ri7QzwFkMwQrkIyQ7gKyQzhKiQzhKs86zJDiifxxJGSkiKEkn4WHzqi9CGZIVyFZIZwFZIZwlVIZghXedZlhlxtCYIgCIIgCIIgiDKFLJ7EE0d0dDQ4jntmcxgRpQ/JDOEqJDOEq5DMEK5CMkO4yrMuM6R4Ek8cPj4+j7sLxFMGyQzhKiQzhKuQzBCuQjJDuMqzLjPPpjpNEARBEARBEARBPDGQ4kkQBEEQBEEQBEGUKeRqSzxx6PV68DwPhmEgk8ked3eIpwCSGcJVSGYIVyGZIVyFZIZwlWddZkjxJJ44rly5IoSSrlOnzuPuDvEUQDJDuArJDOEqJDOEq5DMEK7yrMsMudoSBEEQBEEQBEEQZQpZPIknDl9fXxgMBkilJJ6Ec5DMEK5CMkO4CskM4SokM4SrPOsy82xeFfFUU6FChcfdBeIpg2SGcBWSGcJVSGYIVyGZIVzlWZcZcrUlCIIgCIIgCIIgyhRSPAmCIAiCIAiCIIgyhRTPQvjyyy9RtWpVzJ07t1TaS0pKwvTp09GpUyfUrl0bjRs3Rp8+fbBkyRJoNJpSOQdBEARBEARBEMSTBq3xdMCxY8ewevXqUmvv4MGDGDt2LAoKCoR9Op0OFy5cwIULF7Bhwwb89ttviIyMLLVzPq3cunVLWFhdqVKlx90d4imAZIZwFZIZwlVIZghXIZkhXOVZlxlSPO1w6dIljBw5EhzHlUp7165dw6hRo6DVaiGRSNC7d280bNgQBQUF2LJlC86ePYvr169jxIgRWLNmDTw8PErlvE8rBQUFQg4jgnAGkhnCVUhmCFchmSFchWSGcJVnXWbI1daKgwcPYvDgwcjPzy+1NqdMmSIonb/99humTp2K7t27o1+/fli1ahXefPNNACYFddmyZaV2XoIgCIIgCIIgiCcBsng+QKfT4ffff8dvv/1WapZOADh79izOnDkDAOjZsydat24tOs4wDD799FMcO3YMt27dwqJFizBkyJBndqbDGWrVqvW4u0A8ZZDMEK5CMkO4CskM4SokM4SrPOsyQxZPAEePHkXnzp3xyy+/gOM4KBQKDB48uFTa3rFjh/B3//797ZZhWVY4plQqcfz48VI599MKy7LCP4JwBpIZwlVIZghXIZkhXIVkhnCVZ11mns2rcpGtW7ciMTERgGmmYd26dWjbtm2ptP3vv/8CAHx9fVGjRg2H5Zo2bSr8ffjw4VI5N0EQBEEQBEEQxJMAudo+ICAgACNHjsQbb7wBiUSCzMzMErdpNBpx69YtAEClSpUKnb2IiYmBRCKB0WjE1atXS3xugiAIgiAIgiCIJwVSPAEMGDAAU6ZMgbu7e6m2m5GRAZ1OBwCIiIgotKxEIkFwcDBSUlJw//79Uu3H00ZWVhY4jgPLsggICHjc3SGeAkhmCFchmSFchWSGcBWSGcJVnnWZIcUTQO3atcuk3aysLOFvf3//Isv7+voiJSUFSqWyTPrztJCYmCiEkn4WHzqi9CGZIVyFZIZwFZIZwlWeJ5nhOA7gAZ7jwfEAz3HgABgNRoDnIZMwAMOAkUoB3lRHJpdAo9ZDq9ZBl5sHTqcDZ+Sg1xkBD0+wbm7gOYDnOfAcwPE8jHo91MmpMOr1kICHv4/EdE4j/6AcD293ICffgNx8A3iOB8/z4DkOOj0Pjc4InuOBB+1xHA/wPHge4B6chwWHcF8Ocv8A+NevB543ddg3xA2pyTmIv5WJ3Os3wOXmg+EZGIwA/ELgHhpmOhfPI0eTD51BC6PeAH1SCiR6DlJIEOGWCTdWCt5gAG/QgzfqweiSkG1wQwYbBQPPw11RgHqvvfxMygwpnmWIWq0W/nZzcyuyvLmMRqMpsz45w82bN1GpUiV4e3sL+7RaLa5duwYA8PPzQ/ny5W3qqFQqAECdOnVExzIyMgQrblRUlEgJNxqNuHz5MgDA29sbMTExorp3795Fbm4uAKBGjRqQSh+KrFKpRHx8PAAgPDwcwcHBoroXL14Ez/Pw8PBAlSpVRMcSExOFiYHY2FiRtTs/Px+3b98GAAQHByM8PFxU98qVK8KHpHr16qJjycnJSE9PBwBUrFgRXl5ewjGNRoPr168DMLl2R0ZGiureuHEDarUaDMPYTIakp6cjOTkZAFC+fHn4+fkJxwwGA/777z8AgI+PD6Kjo0V179y5g7y8PABAzZo1IZFIhGPZ2dlISEgAAJQrVw5BQUGiuhcuXAAAKBQKVK5cWXQsPj5emCSpWrWqSMbz8vJw584dAEBoaChCQ0NFdf/77z8YDAbI5XJUq1ZNdOz+/fvIyMgAYHJR9/T0FI6p1WrcuHEDABAYGGjjSWAwGHDhwgWwLGsTGS4tLQ0pKSkAgOjoaPj4+AjH9Ho9rly5AsA0AVShQgVR3Vu3bqGgoACAaR24pdt8VlaWsEY8MjJS9KHgOA6XLl0CAHh6etokg7537x5ycnIAANWrVxdFs87NzcXdu3cBAGFhYQgJCRHVvXTpEjiOg7u7O2JjY0XHkpKShOUCVapUEeUGLigoEJYABAUFoVy5cqK6V69ehU6ng1QqtVmXnpqaitTUVACm5QFP+zsCMP32N27coHfEc/KOuH79OjQaTbHeEXq9HoBJJq15Ft8RPM8jMDAI5cLDwfMAz/MwGDhcu3YdWq0OUokElavEmgbxDwbw6RkZSE/PgEQKVIypAG+Le8hxBty4eQMFuQZ4ursjyNsHHMeBN3JQq41Iyc+DTqMFzwMVKkSDf9CmPicXytRU5ObkwtOdR3iIPxQeHiZlg+Mhl3JIvZ+A1GwGMpkMPt4+grKRrzIiLy8fOp0e4AFPLy8wwANlhodOp4dGo4GPXItgfw+ENWoEmb8/wPPw9HZDUvJt3LiUA+gMkKamg+MB8DzUnBQGvwDoOQ48D3h5eYFlWfA8oM/NhSolDQaDAd5MPnyYAjAMg4wtR8HzgDtrgEyViiv6KOh5GSQykyLG84CWl0BvZMA9UHQYhgUYBg82wT+QGR8uF0FQIqhhQ3hXjQX/oL+MLBdH9yYiJ10N5OSCM5qyNBggBe/hCY5hAAAsKwHDMCYlyWiEQW0ad3oachCiuQ+GZWE+qdSoRbn8m7gQ0ByZ7uXAw9QGGAY8GNG2I9z1uQjPuwX38HIIbt0SACCTSeAdpcHxPUlIua13WLcw5AYVInKv2eyPyTqHWwH1cS+grostmp5bCWdAeeVlSDw9Uc7t4fv97wtbkXmTR3h8DZhUKL+HVbO0wO17Dtp98MzzHOQpd22ORuQowXiUQ1rYg++QHtD9uQ8NGjV6bO8I83eqtCHFswyx/DjJ5fIiy5vLGAyGMuuTMxiNRpuUMjzPF/rRNRgMwnFrOI4TjtlLVWM+Zr7uyMhIwc0gKytLOG6ecbLXJ0ft8jwvGoja629x2nXmWgtr195vbG6XsfPyLkm7pfnbWGI0Gh32ybJde/Ki1+thMBjsrnsurF1HcmiWmfv370Ov1xfZbmHy/SjvYWFy6Mw95DhOpCSYKc49tO6TdT3rdh/nO8JRu648y5GRkYLiY69fz9o7QqfTCe0LM/wW16pR68BxPNQqHVhWYlIy9Byy0guQlakCOEDG5sOglT2Y0Qc4jkfa/QKwEiAgiEV+nlZol4FJDnKy1dCojXDn7kPCsOA5DlqNHrlqA9KycsDzQGYycN9PC47jwRkM0GYrkXo/GQyMCPKXQJauBjgOPGeyZhh1WUhNykWeikHG2VRIpVLwHA+9nkOeSo/c3DyAB2QyGdzd3ASlieMAVUEBwBsQ5qmB8WYmfGvVNN0HHpC565F6vwCpiRrc2J8AXq0x3QcjA52bF9QsCx6AhGVx+d8TJmXLaIQ2PQNalRo8xyFKmoY0r5OmBh8oN/58FtIKgHtcOCTsRTCsSZHgwEDDSWE0cqZ7xjBgmDMPxvsM+Ae/Hc/ziDLcw13PQyjX9RXgQf2wKA+k3i/AheNKMNo74LTaB6dlYJTIwVtYllj21sP29AbT/wFEFdzEJWanSRnjTcVD1AkwcsDJ0JcBJAA4a1eWTcTb3Rueex03DAUIe/klyB5MgpSv6IeCPC32bkkrpD0TJ5BhZy+DkLw7uK8/L9rrp06FnzoVpyu//WBPgVU9+YN/ANKt32syADIEFmQj92oClAiAooJp0qxclB/0ej2uns+BQc8D8BBXzbTM966yatc0oWRQqcBrTMeUD/ql0OUgLP8O0spXh1ruA+jsXupDrLvMAhKdGu4qHdgUJYwhpvZ5nke27D4yMgtQoHzQB8tPoZa3aMzqvcU+GH/yEhgMnPi40QheowHHAUa2pKn+Hl4MzwNzLi6FV14MAlC+kDqF4VjZdXzE+XZ5gw6qW+fA67XgDTogKAFA4UvnnGnX3n6tVCHaU8A9nBR+HOOI0kwtaQkpnmWI5eyuo0GIJeb1oI87h6dEIrEZuDMMI/TLnoBKpVKH/WZZVjhmTyEwHzMriJazwbm5ucJx68GWZZ8ctcvzvN1+Wfa3OO1a/t/RtRbWrj1lWCaTwWAw2B1UlqTd0vxtLJFIJA77ZNmuPXmRyWRgGMbldh3JoVlmzBYqe9di2W5h8v0o72FhcljUPZRIJGDAgGUl0OuMJremB25OOg0Ho4GFVAIY9Ca3JfMHieN4SFgpNGojVPkGZGeqhMGtWqWHMlMPnc4IlgXu3MgwDdh5HjwHZGfnITtLD08fKQrydACnFtplJRxYVorMFA00ubnQZt0Fx5ncm/LydMjIzRWsDtrcWwBM7liGAhXys7KRn5cPP28e0nQtshQeJuWI4+AuB/iUeNxNZiGXShF/LOmB2xSPPJUBBQVqGPQG8ABuHEwTXKZM1hkjNFot/N11yA+4i6y6dSDz9QXPA75+7pDL5bhwMgu8LgcXtlwTFCq1UQKDwhMGzjQSP/fPKeH3MajU0ObkwGjg4CfJR4r7KVyWyQSFS8Hq4a5OwXlNBah5N/wjuSIMtXScBAbu4dBrL+6arAQW1gye5+HD5SKYycatOnXhVSkGPABvb3fIvWT4Z08ystM0+OvPTYJVhAMLXiIV2mCQ8kCZMl0PeB5gGHgachCqTcJJs6zxgIzTIjL/Gs77tUC6RyT2rE+1I+Vm7CkDgLs+D+F5N3EjPBzBrVs9kG0JyleR4/YVFe7dKMAxZNmtayIH9hQYuUGHgtyruGel+MRknUNyQH3cDagLQPvgnyWWAzjrwZMCEk4Pyd1byLqjRDmPMOFI5Ro+yFcacfuKWXGx9FSy/oarLf6WAPACeB5+GbeQhzxRSUnONag9wpEeVgswwvTPksKUDMb0T1ughyFfA+88jckaBYDnPMBAgoI8o6kPjOJhWzwAvWVjlidlhXKcwQgjJ9Z8OHUpel1ZXU/ZjW9sJ8qK1YrFwF2r1yJRlwq+BG0XVpMphT5b9tfAGTDv5mrE6JrBEwGF1CqMslXkYKUYSVgJSvLbOa7JlKhdoX2DHtqk68K2xEdTSpJmS65boPjcePjdL6txhEwmA8dxDsezZQEpnmWIpfuPVmv9YbTFXKa0gxy5SuXKlUXuX4BJibZ2j7Ou44igoCAb9ywzEomk0HatXcIs8fPzE7mTWVPY2t3IyEgbNzYzXl5ehfbJ2nXOkvDwcBu3OzPu7u6Ftmvt6mdJcHCwXTdBwPTSKaxda9dES/z9/Qtdf1xYu+XLl7dxpzTj7e1daN3CUguVK1fOxv3TjIeHR6HtWruKWBISEmLjZmJGJpMV2q61a4slAQEBDtdhsCxbaLvWLr1mjEYO3l7eKBdaETevpeHsnXTkKuORk62GMksNVYH1FPlNu+3UreWH1HMnYVCrYFRrwGk0CONSYchX4QBfD8B9AJcd9g9Itrs3PPcG7hh2IaxTR8j8/QAAlauFoHKlqti24u8HpRIctnoJSrv7Q/JuI10vVjJM1owU/Fd50IM9+Va1JA/+AbYjehaAB/Qp6dBcu4183hue0aZ7zhl9Ubt2bexcsxsatR4my4cFOZaDb+v3t+kdzeYrIUkVW2/M1gxl+SpQyX2AohxY7CgaOj0PjaoAeenZkJQzvafc3KSoWaUK/pGmQ6tVm/prOcaw0K9sBsrmwYiRA6/Vio5yRi34AhXgbTsb7jJWpy1fvjyCgpS4d8PaAlWs5iwonUGldRvBwUGIiNDg4r/KUmi78HOVRjNeXl6oVKkijv5VtAXRieZE+0qmZDxs11IWVQYN1H5l49FVciXOVjHKVCmxIn4rqnEdIUXRXmuFtmuXkihctv1lzOZNpnRVI140m1HCtqyacJe5gXdB2MzyxPD8gzkZHgzP2fz+BhZgoIfMoDLbLsGABw8GHCMRrogR2jTP/pnalfAGSKCGG8NDwZrdnk1rPw1yDfK9M+Gfp4eHlgMLHjxYcFI5pHKAkUgg8w9DpioLKk4PluehKDBAbuTBgoebJBtuvIVayQD6AEDKiL9t5j4WdxwBmJZWFFbXermBJcHBwaJYNaUFKZ5liOX6J7P/dWGYyzyLi4kJgjBhNHDIzlIhIzUPmekFyFVqULVWKDRqPTRqAzRqPXQ6Axq3iMH9BCX2bPmv2OfK+Oco5JxYacrNv2f6oJWvV+x2zR9qy0GlyahW0uGq/fplMagUjpSoy49uUGn+s8S32NG5SkMxEvXXPFgr5Q7DrBiVgpXExiUZJdO4CrnWspDhBGUSbiYnlU67NpRWfx/uuaNMwMpb61AdHR8c480OxQAYMBIJwDxUBgycaTKE5XlIOFNDEt4ACac3tc4wYACwDA8jC3jocmCWaLOyYWRl4MFYXCX/QDZ54TdhGAZuUMNDboSfvwe8Az1NVuYHuma+XzrcNSxCM3WQsaY+GlkPeESVh9TNzaQ4cHrcyLwDMIC71gjffCPkrARe8jz4ugPuMvcHrtQMJJAgPisRHvwtyHUmq7pC7gGWYcAz7pDKPIRr4AGkqzJgft8yADzdFPDw1SIgxA0VG1SAT2woGAaQylkgAUgPv4U8v3hEpeoQ7uYPqUQKVuKBiJoNIffzNbXNMlh2fh0MnBEyA4ewDD1CvQKgcGPh5xmISkHRYFgGLMOClTBYezUNat1VgL8NngGi/SPh6eYJGeuOSkEVTWVZFiwYbLi6A3l6FcDw4BigUlAFBHj5QqGoiBdrtYbUXQquIBvG/Eysu6lGStR/SI24Ag8th1qMJ0I4BqxBh8Y6I1hdPhQV68KrRjP8fm0HUo0qMDygMepR2yMYIekp4PMyUTdf/J37x9cD2bK7UPB3kC9lEa3WI0xnBAOgvEYPFoA8rCKCXhqKc1cPIo/TgQGg4gwIkXrAM/ke9Mk34WPgRN7K4RkMjEwOWLeLgByQ8TxkeODRzEog8fCG1DcYIa++BG3SDTBSOViZGxiZHIzUDUatCrymFiRe/sjjpJB6+cLf3zTmj/t2Ae6nPDwXx5SNxfFxQ4pnGRISEgJPT08UFBQUmSLFaDQKC3kdWXueFyz9ysvK1E88WzwpMsPzPDRqPXKy1cjKUCHlfg6UWSrkKjXIz9WiIF8LrcZ2xl/uJoFEKu63RqOHj7+HTVnXeHSDSvB8qStFplOUQaMwuRxzHFcyxchuVdNOxo6S6zKiNh7Ouhe7uULqlkp/wT8YXAMsazqZRMpCLpeY1h9yRgj2NKkcrFwKwFTedF0MwHEwqlUAx0Fm1EBm1MJaChiJBG6cBj5ak+uvWYHgwcLwYA2apaInKBgwKy9G+Ej1kHl6IjjUW7inZ1Mv4bYmDT6VAMm9ZLgVaMEyDDiwgF8wPKMiAYYBywBpBZnI0+WD54xQpOXCTc9DwrLw8tbD64ESAYYBwzLQeftBpStAkPYcePCQSaRwk7qBBwOpzBcSlhGUqFxtHgr0qgf3iYdMKoWHzAPe5fQIDyqHmNphYGVSMAD+Tt6PbfH74Fk5AMFZOkTlS+Cv8AMA+AXHIKx+AzBgwLDA6fsXcTTxFAAgNFOHIL0Mwd6B8CjPIiaoCrzdvcAwLBiWwU2lP44nngbH7QLPMFC4KVApoAIgASK9y8Nf4QNWwoJhWVzPvI2D946DY03TUJ7uCtQOqwpW6oNqEQ0RW+sFsG5yMACOJebCeE+HS43iINVxCIE7WsU0BcCgZrnqqFqxjvA8nrl/ETMP/2r63YwcFDIPdK7aDmBjUTu0KqoHP/QQupx2HV/u/xHAPwAAuUSO7tVMym314MqoHfowONXNzLuY9PcsYZtlWLxaozMAH1QOjMEL4TWFY4k5ycB/QGKlc6a6AF6r0QUMw6CifxQaRtQVymYUZGHE9tWip6FHtU6QsiEI8g1H08j6wrcpT5uPoZs/AvBQy+ga2x7uMneU8w5FywqNhP06ox5vrh8tavflym3g4eYJT89AVI9pLDomY6XQBSphYFj8F8kjsnI9+Hv4wt/DD82tJhv38Z4wckZwPIcCvRrlomsiSBEAT5kHqoWKA3pVr8JDb9SD4znk61SoHVoNAW4+kBr0KCf1gFGdB1auAOvmgW7lX4TRoAVv0EOj0yCYdQOuHIfhbiKyzm0Utfs+A7C8SXFz+OXW5EDi5o6h/raeUqr0HOjybT0KW+aobfZZw6lywUjliHXzszmmdcuCRuIG1t0DrJsHWDcFWA8veLl7gVX4QKLwgcTTF/KQ8pAofCFR+ICRe4i+JzJf+x5WgClo25WLF8EwiahTpw58fX0hgTgIKcc8myras3lVTxCVKlXChQsXhCiSjrh9+7aw8Lcwd8HngUuXLgkRIQtzESAIM49SZnieh15nhEajh1ZtgF+AAgl3s7Br82XkZKtNYeBdJGHn35AZ1Ijo0R14MGDXqPXwK6ni6Ugx4p0MGiAoI5YDfx4sbwTLGSGVMJDJTNERWQkDlmXg7eMGTquFIT9fGOgbGSlkvj6mj/KDATYYk6XBWJAPo1oDBjzcDAVwMxQ89BRjABmvA8OyCFAnA5YKBA/oJW7gGVbYZhj7yoYfnwcfqRYhwe7wifAFAKRmJEJ19j4iYtzhyXhCeeas4Galk7jDs1p1yDw98FAxMv1fl5mJgtu3wTAMfDzy4efBCtfCMICM8YGPpDqqG7OgZ3ItrhXQQQoOJjcv5sF/WObhcRYAGBYKPz185YEIaBwNv1qmQBZSqckxq2O3GijIykXW8RPgNBowDAMDI4VXrVrwCA6CKQgm++D/DIwFBcg5cxZgeMilXvB0rwOGZR6WYVm4yVsgQs/ACAYMa1IoWJYBzzAwRTIxrcViJSzAsGCkDCQMC0bCQiJhwEhYMJLacA8Kgkf4wzWTANCpR0281LUatJmZ4HQGMBLTBct8fSBViINpADCtVdbpTfeEZQE7MQfsYeCM0Bl1UMjEz8yemwdxT5mEbHUO7uelomZwLEK9w2DgQtG9+suigeLU/WtxKfMaEAggEKgRXAU1Qkzf425VO+DGlevCeyZLnY4Ld4+bKkYDsYEVUSesOvQoh6ZV2sDb7eFylT9Or8Kem4cAmKyTFf3Lo345U7svVWoFPw9foeyK8xvx99W/hO3yvhFoHFkdRkQjNqY5gjwfekTJs6QwynTIDUhBbgCg8Q5Ds/KmdutVaIww74cD3/ir15CrNrnO5wYCuV7BiKgQDSOAkPINEOnzcInIrZuHcPn0ZZhd1wMVElSMMS2rCI94AdH+D5epJN+V4C5zRNj2c2dRq1IYjADcwqMgUzxcOiSTPHQPN7ixyJXLYPQ3eYYxvl6i38K09s8EL2FhZAE8kAPOep0gI167xlm83zird52UFQ97LddIWpeVSaTwdfOG5EGwLSPPwVvuCZlEBg8rOXOXuqFxxAuQshJojTpoDTpUDCiP5IQkKPOycEl5Sfg2uUvd8NYLr0HCSKAz6qE16vBCaA24y9xs5FfGSvFVh48hZaXgOCOM4BHiGQC5RA4pY7tm788+c232OeKTFz94eB84I3i9Dtq0eBjS06C8ewNcQQ4M6lxwqjw01hSA0+SD06rBG3TgDXHgtCpwABIftOFZvTm8ar2ICiL3TBaAHgU6HfQ6WwVR7sR8l1GVB1ZqPzME42C/CFYCiacfJB7ekCi8wXp4mxRH7wBI/YLhWbXJA6uk6R8rlQMSaZl4awAmpfPixYvChPmFCxeeq7EuKZ5lTKNGjXDhwgVkZmbaDdlv5vjx46I6BEE8elQFOmSk5SMzvQDZGQVQZquRl6N+YK3UoXm7SuCMnCnwzQPqNIgEK2GRkWq99tB5tDojJHotjBoNJArTwEOj1iO0nA/KVwyALDcDhusX4W4ogLuhABLeiFrTJoOVSsAKCoRJ8Ulcsx5ZR4+C4QGZUQWJhIXEwx0SDwWkXp6QR0VB5uuDGJ9MyAP8IFV4ACwLlmVNypCENblXSSUmJYRhTQM+QVlhwbDRYOUyeFaqBIlVqqixX3SEoaAA2owMgJWYFCq5HG5BQUJQFEuMWi04g/GBUsM4VDZaFPvuOrjnF9Kg1+tRs4Gf6aM/qHTPUDbZoU2RNhHlB9R1NgpkMFAvuox64xyMRAJ3B+urbcqyLIxSFjqjFkYjB73OIFK2AGDVhS24nX0P2epcZKiyUCesOiJ9wsEyLF6r0Vk0YDyReBYXUx+mWwhSBMDXw5Tiw8AZTMrQAyyVRaBwBcZSMbI+bh1Z0lrZ4UTKjnVZcbuFKUY2CpfFQl/OyqtBYvU8ia6NK1w54wrpg3V/OZ574P5q+6wrZB4o5x0KKSuFzqiDu9QdwYoAMAwDD6k4tkWgwh/tYppDwkqg0qvBMiyqBVUCy7AIVojlIdw7GO83GggpK4XaoAHPc6gdVh0sw8LTSpGL8AnF7C5fCsokwzDwc/cxvfOsFI1Qr2As6PmNzXXYw8vNE+NbDrfZfyFbahNcUiaRoWvVDk61yzAMqgQ6jtPgCE6vhbEgB5xWBaMqB1xBLoyqHBgLciAPqQCJdwD0WffB67XgdFrwRlMf8y8ehEFZWICxQs6pzgMjs78WlpE5oSA6wGjRLsNKTMrhA/dV3miExM0DrMIbEg+TFdL0LwBSbz9IfALBunkWqkRKPLwdHittrJVOwOTxmJycDMgeb3yXRwUpnmVMp06dsHDhQgDA8uXLMXXqVJsyRqMRK1euBGBaF9qyZctH2scnDU9PTxgMBrvRuwjCHq7ITH6eFvG3M5GVoUKuUo3sTBXSknOhVukfhJF3TG62Ggov8YdVo9bD1891yyTDGyEzaiEzaqDQ5sJXm46oQCCwegTcPWRwd5dBImEx6IPmSD9yFNePnxHqsm5yRIS6Q2aRI8+Md8920DStCbfgYLiHhkDyIL/co0Tq6QmpRXC1wpC4uUFS/DFJsaH3zKOD4zhkqLPBPXDrM3BGlPcTpyT4+cQSXM+4jRxNHtQGDRpG1EW0X6RdZfJm1l1cTL0qbKt0Jrc6U9tWyqRcrExqjTrR32LFUyyznNWaVUuZkepdsbJZK5OFKLQPlEmWYU0KHMvCTSIX1gdaEqjwR5XAGEhZKVQ6FUI8gxDhEwoGLNytHqqK/hXQrWoHSFkpcrV58HHzRp3Q6mAZRmRxBYDaoVXxUcv3IGUlUOk1cJPIEe0f+UCRE1upG0bUxR89v4WUlYAFAwkrEd1TS2qFVsVPXabYPWZNpE843ms80Kmyvu4+aFuxuVNlZRIZwr2dmwQpDUrrPcPzHHi9zqQo6jVQ3zkPfWaySZlU5YJT58GoKQCnUYHXmaySDvtUowW8araCITfT5pgjxdEZjKo8sA4UTLvtSqRgZe5g3TzAyD0gcfeEPDQGEoXPA6ukt8lK6ekLWVAk5MHlwUie3vd1VlaWkDfTkuDgYMTGxiL+r+LHc3iaeHp/waeEunXrol69ejh79izWrVuHZs2aoXPnzsJxnucxffp0IRl5//79H3tU28dNYRFECcIehckMZ+SQo9TA188dp4/HY+fGS8U+j0ajh8JLDt7IQa9UQpuZiRsn98Ij/hLg3fnhAjyeh5tRBQlngJTTQW5Qwd1QAA99Hjz0ufDUKeFmUEFilerBj8tFYLCXzXl9a1RH5VEj4FGuHDyiIiHzdjxD61WxIrwqViz2NT4v0Hum9NAb9dAadPCyUtzmHl+MG5l3kKnKhp4zoGlU/QeWSQZRvuVEilS2Ogcp+Q8TlmsNJrc8jueg5wyQF2KZLFyZFJfVWQzIdQY9LIOVVvCNRO3QanCXukGpyUWlgPKC8itlJSKZyUvWItDDH1JWimy1EmFeIagcGA2WYW3cMDtUaoUG5WpDwkig1qvh5eaFYM9AsGDgYWXleK1GF7xWs4tdi6E1L0Y3wYvRTYosBwDVgiuhWrBzMh/sGYhgz8CiCwKQS2Si34YQ4+g9w3EcjPnZMOZmwKjKAzgDjAU5giJpLMiBe1Q1yPzDoUuPNymdFlbsklgmjapcxwqiM66rdmDdFGDk7pAofCALCAcrfRBQRyYHK3WDe7kqMNbvBImnH6TeAZB6B4CVPz9j3cKUzurVq4NlWSg1uQAeZoAoq7QtjxtSPEtIYmIi2rdvDwCIiIjAvn37bMp8/vnneP3116HX6zF27Fjs27cPLVu2hEajwebNm3HmjMmSER0djeHDbV01CIJwDY1aj4y0fGRnqqDMUsFo5FC3YSTCInyLrlwIWf/dhK4gBfrcPIAzQsrpwWgzIdWkolbBAciNarg/WKfIFvLZYOVyyEKDIff3h1tQINxCQ+BRLhx+L9S1W17u74/QDu1L1HeCKA323DyEu8pEpOSnIyknGXXCqiPYMxAyVopeNV4Wlc1QZYmUyYeWSb5IZVJnfOieqDPoRGV95M4rk9WDq8DIc/Bx84TOqEekTzhqBFeBXCqHj5t4Aqdj5VboWLmVU/fhhfAaeCHccVooS8K8ghHmZT8dljUUUO/phOd5wGgAp9c8cF/VgNfrkH/lCPSZ92FU54JTF4DTFpjWSeo1dqNsW7UKqW8IOL3t2sgSua4W5IBxoPSxMjcwUjkYuTtY+YOgOu6eYD28IHH3MrmxKnwhC42GVOEN1sMHEg8vkSVSFvB8B8i0xpHSGRISgurVqwsTcJxNzuFnE1I8HwE1a9bETz/9hI8++ggqlQpbt27F1q1bRWUqVKiAP/74Q5T7kyAI58nOVOHU0bu4djkV1WqFQioTu7dlZagQUzkQbu5Su5FlLZG7SeChkMPTSw42JwOIvwE3fT58tRnw0OdByukg4Q2i2D2hBXfttsVIJJAHBkIRFQnvqlXhW7cOvKpUAmsnmTNBPA7uZCcgJT8NyXlpuJV1DzH+UfBz94XeqEfn2LaiskfiT+FK+g1hO1udg2DPQOg5A3RGvUhBDLRai6c2PMyNWpQyqX2gTMolMhg48fPaMKIOgjz94S33goE3ItwrBBX8IuAmkdu4eTYv3wDNyzdw5XYQhEN4gx76rGToMhKgS0+APiMRiioNwcjk0KXb5i4uuHKsZJZJBwqi84onY1r/qPAxRV/19IHMPxxS3xAoKjcwKZpytwcWSjegZW+wLH2bSovMzExcvny5SKUTgCh2xLMMKZ6PiA4dOiAuLg6LFy/GoUOHkJKSAoZhEBMTg06dOmHgwIGkdBKEi+TnanH62F38dyEZ6SkPg/tkpOXbWDezM1WoVDUYFWODcOtaOiLK+8PX3wNu6mxok+8jsmUjhEQFIjDEC+4eMuGDkLLnL9w6c8K5DjEMZH5+cAsOgmdMDHxqVIdvrRqQBwaWWYQ8gigKlV6NPG0B9EY9NAYtKgdGi47//u9y3Ml+OGjWGnSIDTK5a9sqk/6iupbKpFqvFpUNsiqr0quhkLnDXepmE/ymTUxT1AipAh83U1qPYM8ABHj42XU5rRNWHXXCqjt59QThOkadGtqkG9Al34QuLR76rGQYCpQw5mXZRAVn3TygqGrf5bnElkk79VmpHDK/EHDqfEjcPYX1kKynL6Se/pB4+0PqHQipT5ApuI6DdZFSL79i940omszMTFy6dMkm2Jg9pRMADHzhE+LPCqR4OqBJkya4du1akeUiIyOdKgeY8nN++umn+PTTT0vavWeae/fuCYvxK1So8Li7QzxhqFU6nDkej//OJyMlKceut1Jaiq3iyTCm9Z5dXq0N5GcjccWfUP5zAYa8fHgBiOlUHf7RtlGnPaKiwLqZUoRYI/X2hjwwAB4R5eBdpTK8a9SAR7lwSL28SNF8wnnW3zObr+zGpdRrSMpNQaY6G/XDa6NiQHkwAKL9o0QBb8K9Q0WKp0rvmjIplDVoYfnUNYtqgAp+EQhSBMBLpkCIV5DDwDMVAyqgYsCT/Ts86zLzPMIb9TCq8pB/5Ri0SddMCmZuBjhVHpxdZafLSIRXrRftHtM74z0pkUHqHSC4sZpzREp9gyELjIC3wudBJFd307pJskg+8ThSOkNDQ1GtWjW74wPryM7P6giCFE/iiSMnJ0fIlUYQgGn9zN1bmTj81w3E38kCZyx8QKDMVIHjeJSL9IV/kCf8AxSQu5led57ebshNVCL79FkY1Q8HzXnXb8C/fj2btuR+fpAHBkCvzIE8wB/u4WHwrBANr6pVoIiMgDww0CalCPHk8zS+Z3ieR7YmB0k5ybicdh0+7t7wcfNGvq4AHSu1EqX4uJ0VjwupV4TtPJ3JI4AHkK8rgJ/7w4jI5ayifKoND58LlV4DX4uy1YIqoV3FFghSBEDCsIj0CUO14MrwkHnYRG+N8Y9CjH9UqVz7k8DTKDOECU6rBqctAM8Zoc9KNkWCVeXCqCkAABT8dwT6zKRita3LSAQsgvIwrASs3B2MzA067zAwPAO4eSKwXHlIvPxNAXZ8AiH1DoTELxgSeeFR0SXu5A33NJGRkYHLly+7pHQCgJtRDblBJWzLOI3dck87pHgSBPHEYjRwuHzuPo4fvI2U+7lFlmdYIKqCP2rVj0TdhhGQye2/4hQVysOjfBTyr10X9uVdte+5IA/wR5X/jYJbUBBkPj5gadBJPALMOQYtmX1sIY4mnBa2qwZVQu3QagCAAp0KPu4Pg+VYp4zI1xU8/FsrVjwjfMIQ4hloUiZZCaJ8wtGgXG14yNwR4OEnaqd+udqoX66sspQSRMkxqvOgTbkNXfJtaFNuQZt8GwZlKjxi6sK3WQ9oEm3f9azCB3BB8ZR4B0IeHAlZUBTkQZGQB0dCHlgOrNwNjIVV/64kVJisCKpTp1Suj3iyyczMdFnpBAB/aT4ich8GY5PAcUqcpxlSPIknjurVq9sddBHPF5fP3sfurZeRn2vr4moJwzIIDfdGtdqheKFxFHx8FdDn5iF12zYY8gsQ/fabNnWkCgX86tQWFE+pjzc8Y6Ltti9xc4NP1aolvh7iyeJJe8+odCqcSb4MvVEPmUSGLLUSL1dpI3JztU5xkad9uK45T1dQuOKpLYBC5g4vuafIMgoALco3QovyjUrzcp5JnjSZIUy5IzX3b0Bz7zK0929Al5EATmV/klKXkQCJwn5kc4nCNicyALDuXpD6BkHqHw55cBQ8omvDLTQarJvCbnlrSGaeP2JjY8FxHFJTTUGlwsLCULVq1SJlICAoAPGyh5MfcsmzKTOkeBJPHOTG9PzCcTzSU/Lg6+8BubvUsdLJACGh3qhWJwwNmlWAt49pbUTejZu4vngHMg4fAW8wgJFKEdGrO2Q+toOKwBbNoc3IRPCLreD7Qh1KY/Cc8aS8Z/be+ge7bh5EvDIJPHjE+EehQTmTZSRbrUSoRRqOcO9QUV2RFdPibwCIDaqI12t1Q7h3KPw9fBHlE26TZ5NwjSdFZp5ntKl3UXDtBLSJV6FNuweuIMfpusa8LFHaDzMMGMgCy0EeVhGygDDIgyvALbwS3MpVhsTDcc5kZyCZef5gGAbVqlUT/nZG6QQARWQoFMEPFU93N3khpZ9eSPEkCOKxYzAYkZyYi6R72dBo9Iis4I/KVYMRFOqFjNSHVh3/QAVeaBSF2vUj4BdomnHmdDqk7TuA+9vjUHDrtqhd3mBAyu6/ENXnNZtzesVEI/Z/o8r2wggCAMdzUGpykZafgWi/SLjLHgaRUBu0uKdMFLazVErh70yVWPE0r8WUS2Twd/eFv4cvqgdXhrfc0ybabDnvULxWs0sZXRFBPBp4ngenzoMhJwOG3AzkXTwA1TUno4xbw7DgtCrIAyMgUfiANacYUXibFNK2tt4xBFEcrJVP4iGkeBIE8VgwGIw4ezweWq1R2DaTnJiD6EqBaNIqBnHrL6JCpQA0fbEiqtQIBcuaXuKa1FTc374DaX/vg1GlsnsOAEiO24nIV3uCobyZxCOC53kk56fhUupVHLx7AhzPoV54LQCAh8wdFfwihbKxgTGiujnaPOiNBsgkUmSps0XHKgZUwK9dv0KAwn6aEYJ4GjHkZUObcgu6lNvQJt+GPisJ4W99Dc3tczDkZYLTP/R8cdbFFawUbqHRkIdXhFtYJbiFV4QsKBKsVA5ExJbRlRDPG4W5UZPCaR9SPIknjtzcXHAcB5Zl4WPHRZJ4usnP0+DIvls4dzIBWo0Bvv4eqNsoUlTGaORwPyEHdRpGIjzSF+Wi/AAAPMch88S/uL95K3L/u2KndQtYFoqoSAS1agWQGy1hRVm+Z47E/4s5xxcL2zKJDC+E1QTDMEjNzxApntH+UZCwEhg5I1iGRYCHH0I9g1AlKNrGiimXyBDkGVCqfSWch75NJceQlwVt8i1o79+EJuk69OnxMBYobcvlpkOXdd9mv8TTz7ZRVgKJpy9k/mGQh0TDPao6PKJrOVy3+SghmXl2SUtLw71791CnTh24lUJk+zRZJg5UvSds+3EMOpe41ScPUjyJJ467d+8KUeDqUBS4Z4a05Fwc2nMDVy+lgOMeRnzLyVYjL1cjrNMEAF8/D3j5uEEmk6BclB90OTm4v2Ub0vbuh16pLPQ8Eg8PeFWuhMAWzRHQsAHcgoPK6pKIp5iSvmcKdAXI0eYjLT8Dfu4+iLZIG1ItuLKorN6oh1KTC38PX6QVZIhmyeUSGd5r+CZCvYIQ418ebtJnc13PswB9m5yH53kYHyiZmqRr0CbdgC79Hjh1ftGVAejTE8C6KcBpxd4sjFQGWVAUWLk75CHl4VYuFu5R1SD1CzFZM58wSGaeTdLS0nDlyhXwPI/z5//P3n3Hx3GX+QP/zMz2Xa1Wq967LcmyJPcaJ06cXkhCCoQktMAPDo4DDg7uKFfg6BxwQOhcKAHSSE8gidNc4h5LtiTL6r1L2+uU3x+KVhpLstV2Z8vzfr38suY7RY/sR7P77HxLPerq6qDRrCz/xmwixOGZGcPd7MUnVoxVVHgSQsJGkiS0nxvBgVfa0Ns1ueBx/d02VK7PRlqGCXlFKUhOmVrXbPJ0Awaeehr2hjOQBGHB8wEAFgtUBfkoveF6JFdVQJ08/+yFhCyHJEnosffj7cFGHO45iV57P25auw9qTo1MY5qs8EwzWJGdlIFB50iobepJZy4yjGkQJBEqZqbr9+XF2yP6sxASDpIkQvQ4Ibht8A20Yez5B5d9Lf9QB3Q5ZQi8U3iyGv3U7LLmNJg3XA3OmAyGpeETJPJmF50A4PF4cPr0aWzYsGFFk0m5HAzSh0pD27xmcR/SxBoqPEnUycrKgiAI4GhMXszigwLOnOrHgVdaYZvwXvRYS6oBVbU52Lq7CDr91E178vRpdP76/+Dt7bvouYxaDWNJMXQbaqGrWAtdVhbSsrNX7ecg8Wup9xkv78MXX/omBEkMtY26x5FjzsKYZwK8KEA1643w+swK+IJ+VGeuRU5SJnbkb0KOOXO+S5MYQa9NUx/A8I7RqTUyB9thrNoFwTUJ3jEGwW2HJArvHCcCrAoQ+UVdl1HroM0qhiarBNrsEujyKgBJgjotH6rkdLBaQ0yOmaOciS/Dw8Nobp47zMdisUClWllJxQ/bAMwsmaX3iQseG8uo8CRRJyMj49IHkajk9wVx5I1OnDjcBbdr4cWPGQbIzkvG1suKsa42B5xqagymu6cHHT//FRyNTRf9PmpLMlK2bEbmNVfDVFwElqasJ0s0331GEAWMeycx5p6EO+jBltza0D6DWo+1aaVoGm0NtY28U3gKkohxz4RsBtr7at+ND298T0y+WSbzS7TXJkmSELQNw9fTjMBwJ4LjffAPdkD0OkPHsAYzWI0OvHNCdi7DsOBMFgiOsbkX5lTgjClQJaVAnV4Ay7abobZmx+UTzETLmXi2UNGZm5uLsrKyFd/rk0R5ScZdopNXrKLCkxCyKs6e6sdLzzTB5Vx4XIJKzaKwJBU79paguDQNzDsz1PonJtD1m4cwdugwIEnzn8yyMJUUI/PqfUi7Yg9UOt38xxGyBO6AB/VDzTja9zbeHjyLdRlrUJxSAACozlgL/aylT+qy18kKz1HPBDKMqcgwpsGokc+2SWM1SSyRJAnB8X74eprg6zuPwEgnghODkIIXH2cWGOqAsXLnnMITADhTCgS3HSqTBVxSKtSpudBml0KTVQx1knWquyxHHxqS6BfuohMANKy8JIvXjyyp8CSErIjAi+BULNpaRhcsOvUGNcorM7HlsiLk5CWHbtJBtxs9f/gThl9+BRI/f5cszqBH6vZtyLn1XTAWFoTt5yCJ6RfHH8aRvlOh7SHnaKjwHHaNysZu1mWtwyvtB1CXvQ4VqaWoy14Hk9YY8ZgJWSkx4IXgskFw2zH++sMIDLRB4hfupbIQ/2A7zFtulLWxGj04kwUp2aVT4zJNVrB6ExhaAojEoKGhIZw7d25Oe15eHkpLS1etV4sgyn8/xDj9faHCkxCybEMDDrSfG0HN5jzsu6kSLWeH4PfNFJDF5Wmo2ZSLNVWZ0BvlT4AEvx9nPv+v8Pb3z3ttRq1GxhWXo/AD90Ntojf3ZPmCAo9RzziGnCMoSy2GWWsK7duQvU5WeA67xyBKIliGxaBrRFZ4Flpy8eMbv0bdZ0nMkCQJvH0EUtAPSRQRGOmC4LZDDPhCx4hu+5KLTlZngja7BNrsMqiS02EoqQVntIAzWsBqqDcKiQ+RKjoBQG/NAIZmtiUuPku0+PypSEw7e/ZsaPrx6upqpcMh8xB4Ea3NIxgasAMAmusHsXFHAa68vgIvPnkWZRXpuPLGSmTlLLxuGavRILmuZm7hybJI2VCH4o98CPpFThREOUMuNO6ZxPH+erzeeRieoA+7C7cCAAxqA8zpplDO6CEfV8aLPPy8HzVZlchNypLto4IzscXCfYZ3TiAw3DW1TuZAK/yDbRA9DhjKNiF5+y0ITg7POYczpSA4Pv8HgADAqDTgklJhKNsIXX4ltNklUCVnyH4fVEaaRXw+sZAzZH6RLDoBQJ1iBuAObTNcfL7eUOFJoo4oiqE/JPp43H40vj0It3umW63HE0Br0wg27iiANd2IkjVpl7wpMwyD7JtuxOSxE/CPjgIMg6Q15Si47x4kV1cv6aZOOUNmOz3YhG+8+ePQNgMGASEIDafGoHMYFemloXwxqPWoSCuFTqVFTVYlKtPKUZpaqGD0JFpF231G8Lnh62qAt7sJ/qEOBMf7ZRP/zOYbaEWKYf7ikDOlhL5mVFqoktOgTs2FJrsEurxKaDOLwOqM9MHLMkRbzpDFGRwcREtLy5z2/Px8lJSUhOV3gdUYMbvwlOJwsi2ACk8ShXQ6HTiOW9F6SCQ8jh3sxFuvd6B6Yw44Tj7+gOVYsAyD0rXpsnZnaxtYtQrGoqI519NnZyF97x5MHDmG/Hveg9RtW8GwSx/XQDmTmCRJwqTPDl7gkWFKC7WvSSuGilWBf2cpBwkShl2jyE/Owbh3EgEhKMuZ/7jys2DjdDwNWT1K3mckSYR/sAOe1hPwD7QiMNoLwTkBYIHJ2C4gehyAIB9Hz7AcOKNlatKfzCLoCqqgySwCSxNjrRp6bYo9o6OjES86AYDTyYcUMWx8lmjx+VORmLZmzRqlQyAXEAQRzz5Sj4aTU92x2ppHsGZdJhiGgUrFYU1VBjKy5d1qvYOD6P7Dwxg/9BaSKtZi/bf+e84Nm2EY5N52GwreczeYFaxzRjmTOARRwMmBs3i98zCKUwogQYJFZ8Y1ZXtCxxjUeqzPrMDbg2dDbUOuUWzMrkZ2UgYgSZQzZMkinTOi34vAWC+C4/3gnRPw9TbD2/72sq7FGswQ/B7oC6rAGZPBGVPA6o004U+Y0X0m9lgsFphMJrhcrlBbQUEBiouLw/rUf8gh7wbvl4Jh+15KosKTEHJRTocPf/71MQz1O0JtwwNOmC16lFdmYl1dNvQG+SfkEydPofnr3wTe6V7kPNeCiRMnkbpl85zrqwz68P4AJG48dOpRHOg+BmdgqjuSKIkosRbC5nPAFXDDpJn5xHhrbi3Oj7VjY856lKUWY3tuHVIMFoUiJ+TSppc0YbUGeDtOg7ePQZr1RJNLsi7uQpwaupwyaHPKoM0phzanbM6YTELI/NRqNWpra1FfXw+XyxWRohMA/KJ8gi9xoaXlYhwVnoSQBXW1jeGx352E1zP3kzeeF7Fhaz441dxPzE0lJeB0OggeT6it89e/hXXjhhU92SSJIygEoWJVshd7m88RKjoBoN85jBLr1HjMAccw1qSVhPZdVrQNlxfvgCpOx8mQ+CCJAnw9TXCfPwZPyzHwjjHkfuSHCNpH5xzLGS0AwwLS7PGCDLikFGjS8qHNKYOusBq6gkqwtD4mIcs2XXyOjIwgJycnIh/aiMELlpSLz7qTCk9CyFySJOH1v7Xg4P42XPihG8My2LyzENfdum7Bm7EmxYLUXTsx8vIrU+eo1dBnZYH3eqE2meY9h5AR1xjaxrsgSCKG3WPYV7obFt1MF+6teXU43Hty5nj3GIJCECn65DkFpobeeJMoJQb9U4Vm60l4O96G6HXJ9vv7mqEyWsC7bbJ2huWgSc8Ho9ZCm10KXUEl9EU14PRJEYyekMSgVquRm5sbse8X6B8GkDnz/YPxOSEVFZ4k6vT390MQBHAcF9FfejLF6w7gL789jt6uyTn7tDoV9l63Flt2F4FhGPAuF1QLFJJZ114N26lT0KanI2XLZmRcvidsRSflTOzyBn040H0Uh3pO4NxoG6z6FOwt2QkA6HcMyQrPuux1oUmD8s3ZKEstwt7iHchOylzyJ9KUM2SpVpIzgscBV9NhuJsOwdd/HhD5BY91txyDZdft4N02MJwamtRcqNNyoTKnwbrn7pX+GCSC6D4T3cbHx5GSkgJ2GZMarja9JP/wlKUnnoRExvj4eGjdK7pRR5bHHcBDPz2MsWHXnH0pqQbsu6kSFeuzIHi96PzNQxg7cBAbfvxD6DIz5hxvLCxA8QMfgrG4GLrMjGXNVrtYlDOxa3/HIfz+9OOh7XHvJHxBH3RqHfodQ1iXMTM5h0Gtx6d3fBhFKfnIMKau6PtSzpClWmrOBCaH4TrzOjwtRxEY6cFi+87xjlFo0vLAGZOhTskCQ93FYxbdZ6JXf38/WltbkZaWhqqqKsWLT60YACfMjPPkLhjzGS+o8CSEAACcdh/++Muj8xadZZXpuOH29UhO0WPw+RfR8/CfQ+M323/2c6z7j6/OOYfVaJC2c0fY4yaxQ5IkBIQgtLOWa9hbvAOPnHkG/lkvuAPvjN10+F2hInTa1ry6SIZMyJJIAo+gbQRjz/8Mvt6mRZ+nySqBcc1WGNduhTq9AAzDgDOYL30iIWTJ+vr60NbWBgAYGxtDU1OT4sVnisqOAvvMzLYcqPAkJCLKy8shSRLNwBdBTrsPD/30MCbHPbJ2lZrF3uvWYtueErha2/D2V34Cb1+f7Bjb2/UYe+sI0nZsj2TIMpQz0c0V8GDAMYTOyV5oOHWoKy0AGDUGXF60HS+1vwkAULEcdGodtudtQFZSRtjGalLOkKVaKGfEgBfB8UEEJ/oRnByGJAqQLplWDFSWDJiqdsK88VqoktMvdQKJQXSfiT6zi85pY2NjGBsbQ0bG3N5bkZLEaQD4Qtvx2s+BCk8SdfR6Wl4jkjzuAP74iyNzik6zRYc779+E7Pxk9PzxYQw89QwkQZh7AZaFveGMooUn5Ux0GnGN4elzL+H1riOoy6pCoSUPADDptSNFnxw67ro1V2DCa8OVJTuxPqMCWrU27LFRzpClms6ZqcmBjsPffx6mmivgajw451h1ai78PRc88WQ5qK050Beth2ndbmizS8Fw9DYsntF9JrrMV3QCQHFxsaJFZyKhOx4hCc424YHD7pO1WdOMuO9j26GHHw3//AW4OzrmPVefl4uC970Xqdu2RiJUEkMePfscnmh8IbQOYdt4FwqSc8EwDFrHO2VdZvPM2fiXyz6uUKSEXJrgdcLTehLu88fg7TgNKegHABirdoEBI1tvE5ha+oTRGgCBhyajEPrSDTBW7YImNQcMo/xEJoQkmt7eXrS3t89pLy4uRmFhoQIRJSYqPAlJUJIkobt9HFm5ybj/4zvw8K+OwuMKIDXdiPf/ww5wbhvqv/RVBMbH55zLGY3Ie/dtyL7lJnBqWraCzFVkyZO9GZ/02THhtSHVkAKbzw5REsHSG3ASxQLj/XDWvwpP2ykEx/ouWD9zirezHpw5FbxjLNTGgIHako70Gz8OXX4VVCZLBKMmhFxooaKzpKQEBQUFCkSUuKjwJFHH7XaHxkQYjUalw4lLkijhfNMwBvvtGB5woG5rPj7wiZ149pF63H7vRmBsEA3//l/gHY4551o2bcSaz3wK6qToWTuOckY5kiShY7IHqXoLLLO6z27KWY90gxWjnolQW0AIYE/hVmSa0hUf80Q5Qy4kSRJ8vc1wnXkd3s4G8PbRS57jbjmG1Cvvg+C2Q23NgtqaA7U1G2wEuouT6Ef3GeX19PSgY55eW9FWdPpgQ+FkY2g7oInPccFUeJKo097eHpp+vKamRulw4o4kSTh3dgjDg1NFpdcbRP2JPtRtyccHPrkTjqYmnP3aNyF4vbLzWJ0WxR/+ILKuuVqJsC+KcibyJEnCoZ4T8Aa9mPQ5YNVbcGXJztBTTI7lcG355Xii6UXsLd6JvcU7QmM8owHlDAGm8tjTcgTOxoPwdTdC9DoXdyLDQldQCePa7dBkl0CbW07LnpA56D6jrFgpOgHAFuQwmVwZ2pYYmtWWEBLjJElC27mRUNE5zesJwunwgeluQcu3vwcxIL/hqZKSUPUfX0FSWWkkwyVRqmOiB78++We0TXRhY/Z6lFgLMOG1oXOyF6XWmbEy15TuwdWle6CftRwKIUqTJAmCaxKB0R4ERnthf+spCG7bpc9jVQimlUDMqcTavbfScieERLGFis7S0lLk5+crENHFuYN6tKXVhbZ1wbk9zuIBFZ4k6qSlpUEQBHAcfXq82p7+y2m4XQHkFlhCbSzLoKo2B2LT22j93x9D4uUz12pSrVj3tf+EITcnwtEuHuVM5DzR+AIePftcaPxm40gL8pOzoebUODN8DvnJOaElUHRRXHBSziQewetCYLgTgdFeCLOebKrT8xcsPBmVBtrsUhjWbIUrfS00GgM4jqOikywK3WeU0d3djc7Ozjnt0Vp0AkBAki59UBygwpNEnZyc6C1wYtn+55vRcKIfAMAHBRSUWMFxLNbV5SBw/CA6fvUbQJRPnqHLzkL1N74GrdWqRMiLRjkTOWvSSmSTBvmFAM6NtWNn/iZszKkO27qbq41yJjEEbSNwNx2Ef6gDlp3vhvfCJU4AaNIL4Os6E9pmdUbo8ithqNgJU+X20HhNS6SCJnGD7jORFwgE0HfBeuMAUFZWhry86BnucSGjJjGW3qHCk5AEcOxgJw69OjOjW3f7BARewk131cDz6ovo+dNf5pxjKCxA9Te+BrXJFMlQSZQRRREsOzP77PrMCmzKWY+TA1Nv1M1aE2oyK3BN2R5wNMaNRAHeZYO7+RBcjQfh7z8fak/ecSsYloMkynt1sDojtDnlUKfmwLTuMuiKa2U5TwiJHRqNBrW1taivr0cwGAQQ/UUnAGhZeUkWn1MLUeFJSNzr65rES8/M/ZS/sNQK13OPYfDZ5+fsS1q7BlX/+VWoaPHrhOXn/Wgd70SXrQ/XlO6BRqUJ7buv9na0jHXgloqrcX3ZFdDSDJ5EYWLQD+fbr8B55nUEhrvmXfrEc+4oNJlFCIxNPQ3hdEZo0gugTi9AymV3KT7TMiFkdZhMplDxWVhYGPVFJwCIovz+I8Xp/YgKT0LimM8bxKMPnYAoyMcO1GzMRUH7qxjc/+qcc5LralH5pS+C02jm7CPxr98xhF+e+BMACesy1gIAzo21oyZrZra9HHMWfnbzN6BVUY4QZXna6+E4+SK8XQ2Qgv6LHutqOoismivAag3QpBeAS7JSsUlInDKZTNi6dSvUMbLWOAP5nAgCExtxLxUVniTqnDt3DjzPQ6VSoaKiQulwYpYkSXjiD6fgcsrfjBWWWrGmZz9Gjrw155zUnTuw5p8/DVYVW7cGypmVc/ndeKzxebzU9gYESQTLsCi05MGkMaJ1vBOl1kIYNYbQ8bFedFLOxK6gbQT2Y8/Bfe4IBOf4JY9n9SYYK3bAVLULamsONKm5y/q+lDNkqShnlBUrRScQv11rLxRb7y5JQggEAggGgxDFuV2lyOIdeaMD7S3yBdCTzFpU972MycaGOcdn7LsKZZ/4GJgYHNtEObNyroAbL7W/CeGdLoqiJOLM8DnsyN8ECRJG3eOywjPWUc7EFkkUEJwYxMSrf4Cn7SRwiRkgGU4NY+UOmKp2Q19SA2YVJr2inCFLRTkTPpIkoaurCyzLorCw8NInRDtV7BTJK0GFJ4k6KpUKkiRBFWNP3aJJf/ckXnn+nKyN4xisG3sLvp4Lik6GQdb116HkIx+KyaIToJxZDVlJGbi+7Ao8d35/qG3MPYEUXTK25dXBrEtSMLrVRzkTGwS3Hf6hDgRGuiEG/ZAE/qJFp9qaDeO63UjedD04Y/KqxkI5Q5aKciY8JElCZ2cnenp6Qm2xXnyyUbz82Gqi3wQSdaqqqpQOIaZ5PQE89vuTkET5m7OtuwqR/sbrcM9qYzgO2Tdej6IP3B+zRSdAObNU3qAPTaOtKLMWIlk3sx7h7euux+tdR+Dn/bi2/HJcUbQDBZbldUuMdpQz0UsM+CDxAbhbjoG/oCutOqMQ3s4G2eRBrNYIQ/kmmLfcCF1OWdjiopwhS0U5s/rmKzo7OzvBMAwKCgoUjGxlnD4ngOheum41UOFJSByRRAlP/ek0HDafrL2oLBVX3FAJcfcXcfZLX4VvcAiMWo28O25H3rtvA0OLWyeEQccInj+/H1aDBbwowBv0YXfhltB+k8aIT23/EHLMmcgwpioYKUk0kiTB39cCx+lX4G4+jOz3/ScEt23OcaxaC7U1G8HJIehy1yBpwz4Y110GlpbyISTuzVd0Toul8ZzzCUq8bPvigwliFxWehMSRQ6+1o7V5RNaWmWPGzXfXQK3mgNRUlH3qH9H+4M+Qf9cdSLtsN83qmAB8QR+ePvcynj73EniRx56ibcgwpmHAOYwxzwTSDDOfstZl0yf0JHJ45yRcZ9+As34/guMDoXbX2TegL1oP/3CX7HiVORXWq94PbU4pVEZLZIMlhChGkiR0dHSgt7d3zr61a9ciOztbgahWzzwrQMUlKjwJiRNdbWN47UX5uE6jSYN7HtiKpOSZsQPmyrWo+fY3oDIaIx0iUUBQCOJzf/86RtwzXRYbhppxVcnUhw5NI63YU7RNwQhJohGFIJz1r8F1ej/8Qx3zvuNynT2A5M03wD/cBVajhyazENrMEnCG+BprTAi5tHgvOgEgKAWVDiEiqPAkUWd4eBiCIIDjOGRmZiodTswYHnTKu2YwwG3v2ygrOgGAYZi4KzopZxam5tTYV3oZ/tTwVKjN5nOgx96PvcU7UZVRrlxwCqKciTzeMYrJg0/A3XQIot9z0WNFvwdB5wSS1l8OlSUDDKP8GHTKGbJUlDMrJ0kS2tvb0dfXN2dfRUUFsrKyFIhq9Wm52F6ibLGo8CRRZ3h4GMFgEGq1mm7UiyBJEtpbRlG5PgvpmSb89eG34XEFUJfpQ1Hx6s7qGK0oZ2ZIkgRBFKDiZm7vN6/dh7d6T6JzshcMGNRlVeGemluRa46PF+zloJyJDEmS4O0+C9uhJ+DrbrxkfzK1NRtJtVfBVHMFVKaUCEW5OJQzZKkoZ1YmUYpOANCKApjZk6bFad9bKjwJiXFD/Q70dU9ieMCBDdsK8JHPXIYX//v3sB58CfW9h1D5lS9Bl56mdJgkAnxBH04NnkVQmBrHOT1+l2M5fHzL/fjLmafxvtrbkJ+co3CkJBF4e5ow+uxPwNuGL34gq4KpejeSaq+CLr+Sxp0TQhKq6AQAq2oSRZODoW0OAQB3KRdQmFDhSaJOcXExRFEEG8PLe0SK1xNA27mpyYSCQQFnTvUjtf0w8s+/BADwdPfg9D9+GhVf/DwsdbVKhhpWiZ4zkiThr00vYtQ9AavBAgDonOxBiXVmXbOilDx8cc8nFIow+iR6zoST4LbD13cOvr4W8PbRBY9TJafDVLUb5m03xcREQZQzZKkoZ5ZHkiS0tbWhv79/zr7Kysq4fHpsNpoAZmZFAi5OU4YKTxJ1kpJo8ojFkCQJ55tGIAgz3TFcYzY4XnwNhtnHCQKYGJ9m/FISOWdG3eP4+bE/4szIOejVOlxTugdqTo36oWZkmTJg0OiVDjEqJXLOhIMkieAnh+EfbEPgndlpGbUW6vR8BEe6Zw5kOejy1sKy/V0wlG9WKNrloZwhS0U5szzt7e0JVXQCQHJ5AUy9Y6FtnVarYDThQ4UnITGI5wV0tIxhctwta88pToP5vTej99EnILin9uW/924kr6MlMuJRn30Q//bKt+Hj/QAAb9CHM8PnsDFnPViGhSvoocKThI3gccJZvx+QJGhzyuDtaZpzjDa7DMGRbrA6IwzlW2DZeTs0abkKREsIiRVmsxkMw0CSZqZMjOeiM5FQ4UlIDHr5mSacONyD0rVpyM5PBsMw0OnUKK/OgaouH+bqarT96MfQ5eQg99ZblA6XhEmuOQtl1iKcHWkJtXVM9mB3wRbsK7sMOlV8fmJKlOUbaIPj5ItwNx6CJATBag3IfeD7wDyFpyo5HSlXvA9JG66GipZCIYQsQkZGBgCgqWnqnlJVVRVqI7GNCk8Sdfx+PyRJAsMw0MZpV4OVaHx7AMcPTXVdazs3CrvNi/KqTBSVpUKl4gAASWWlqPnetyHxPJgEGFuSKDkjSRIkSGDfWVqCYRj8vy3vw+f+9nX4hQBS9Mm4vfJ6XFO2hyZouYREyZnVIgR9cJ74G1xNhxAY6pDtE/0eeDtOQ2VKAe+aBACwKg20OWXQ5pSD1ejmu2TMoZwhS0U5s3wZGRmhf7tEKDonVXY05s9MpGRiOVyvYDzhQoUniTotLS2h6cdramqUDieqjI248Oxj9bK28RE31lQBmdlmWTun1QIJ8kKXCDnjCrhxauAsUg0pWJexJtSeaUrHPTW3otvej/tr301daxcpEXJmNQRGujF56Al4Wk9ACvoXPM5x8m9Ivf5jAABNVgm0mYVguPgaW045Q5aKcmZlEqlr7Yjbjx4+P7RtRFDBaMKHCk9CYkQwIODx351EwC/I2ssq01GzOQ8MS0+44lFACOIPp5+AXq2DilVhxD2OfHM2zLqZbovXr9mrYIQk3oiiCPe5t+A4+gz8A+0ApIUPZlUwVe2EedN10OSUQZ+3ZuFjCSFkFkmS4Ha7YTKZlA5FcU67GnmddaFtXutSLpgwosKTRB2LxQJBEMBxnNKhRA1JkvDcYw0YGXLK2pMEO6yTLqSmblQosugQrzkz7BrFN9/8KQacw8gzZ2N7/kaIkoiTA2dwRfEO6k67AvGaMysh+L2wH30aztOvQnCOX/RYLikV5o3XIKluH1QmS2QCVBjlDFkqypmFSZKE8+fPY3h4GNXV1bBarUqHpCj/yCQAS2hb57vIB34xjApPEnUKCgqUDiHqvPV6O86ckk8trmWCsNo7wfa2oqH/JCq//K/QJuiNOx5zpn6oCf9z+FfwBqfW9epzDKLfMYhcczZcAQ/cQQ9MGqPCUcaueMyZ5RL9HvgH2jD+2h8RGGy/6LHq1FyYt94Ic90+MGxivZmmnCFLRTkzP0mS0NLSgqGhIQDA2bNnE774NF0wkkHFU+FJCFFAV/sYXn2hRdbGMkD6ZCtSvMPQ8y64211o+q//xoYffl+hKMlqyzSlz+nh+PZgI3YVbEFd9jpo4mz8HIksSZIgOMbgG2hFcKwPkiRBk144f+HJqWAorkXyjluhL6ClmQghy3dh0QlMde9vbGzE9u3boY7zdccXouM0su147c9EhSchUcznDeLJh09DFOUVSIarE7mOFpgCNgAAw3Eo+ciHFYiQhEuWKR0f3XIPfvTWbwEA2aYMfHDj3ajLpjf+ZPkkUYAY8MPdfAi8c0K2jzOngjOlQJiemVafBNP6y2HZeRtURosC0RJC4sl8RScwNUN7ZWVlwhadACCK8lJTitPSkwpPQqKUJEl45pF6OO0+WXs6Y8fa4UNQiTMznuXecTuS11FBEm92FWzBmaFzCIo8Htj0XujV8bEsBYk8MeiH68wbsB15GtYr7gFEYc4xDMNAm1OO4OQgzJtvQFLdVWATrDstISQ8JEnCuXPnMDw8LGtnGAbr1q1DWlqaQpFFB5VJ3s1YiNNeTVR4kqjT1tYGnuehUqlQVlamdDiKOfJmJ86dkX8qmGwAqhqegQp8qM1YXIT899wV6fCiSiznTEAIQsOpIUoiWsbaUZJSCK1qpsvNRzbfA47e/K+6WM6ZpRC8TjhO/h2OEy9AcNsBALa3nkbajR8Hf/5Y6DiG5aDNLIZ547UJM1nQUiVKzpDVQzkz5WJFZ3V1NVJTUxWKLHroM1OBNndom1XRE09CIsLj8YTWvUpUvZ0T2P9cs6xNp1dhffsTsqKT0ahR/tl/AsuykQ4xqsRqzrSNd+GHb/0ad627CSIkjLjHMeqewO7CLWCZqf9TKjrDI1ZzZrECI92YPPgEPG0nIQXlvSYCQ+0QPQ6wWsM7TznLoMksBqtOjHV/lyvec4asPsqZqaKzubkZIyMjsnYqOuVYTgNgpvBEnM5aT4UnIVEm4Ofx+B9Oycd1MsBGsRlat3xMVu6t74KRZs2LOaIk4rmW/fhzw1MQJBG/OPEn7CvdDaPGgCHXKM6NtqEqg9ZDJEvn7W7E5Jt/ga+nGRdbf9PTehwpl90NVm8EwyT2B1eEkPBYqOhkWRbr1q2jonMWzpwKYDK0LV0w2VC8oMKTRJ2amhqlQ1CMJEnweoK4+qZKPPtYA4KBqXFYG4o56F86KDvWUFiI/LvvVCLMqBNrOdMw1Iw/1v81tB0Ugzja9zauKN4BlmHRPNqGopR8GNR6BaOMb7GWMxcjSRLc547AduhxBIa7LnqsvqQWlu23Qle0ntaBXaJ4yhkSGYmcMxcrOhN96ZT5jDnk3ZB5iV/gyNhGhSchUaS7YwJdbWMoq8jAA5/ejcd/dxIGHYvUN38pe3bBajQo++THwaroVzgW1WZVYXfhVhzsnjXGjmEQFIJI0Sdje/5GKjrJJUmiAMfbr8D+1lPg7SMLH8iwMFXtQvL2d0GbVRy5AAkhCUmSJDQ1NWF0dFTWTkXnwtxBr2ybl0SFIgkvetdKSJSYHPegu20cANB2bgQFxVZ86FO70PDvX0fAJ78hZV1/HZLWlCsRJlkFDMPgI5vei7bxTgy7xnBb1bVYn1GFce8EtubVQaeisXZkYZIkgbePYOiRbyI41rvwgSwHQ+lGpFxxD7QZ1CWfEBIZw8PDVHQukSTEZ6F5ISo8CYkCfh+P5oZBSLOea/Z2TUI10I7AubOyY40lxSi8/32RDpGskM1rh1mbFJoISq/W4dM7HoAr4EZNViUkSYIEKTSpECEXkiQRwbF++PpawDvHoUpOn7fwZNRaGCt3ImXP3VAnpysQKSEkkWVmZsLlcqGvrw/AVNG5fv16pKSkKBxZ9PINDgOYuV+rA/FZiFLhSaLO2NgYRFEEy7IJsa6TJEpobhhEICDvz19UasXIt38ga2M1Gqz9/Gepi+0FojVnTvQ3IMuUjkHXCLome1GZXo7qzLWh/SXWmadQDMOAidMFo6NRtObMfCSBh3+oA/7+8xB8M7MeajKL4OtuhMT7AQCsPgmmmitg2XUHVHqTUuHGrVjKGRIdEjVnGIZBaWkpAGBgYICKzkXQBeWTwTELzw0X0+jdK4k6AwMDoenHE+FG/fQj9QgGeaRnJoXaUtOM4BoOwz8sH7eVefVV0OfkRDrEqBdtORMUgvhj/ZN4sfU1pBusuKxoG1iGxbmxNuSas5CiT1Y6xIQXbTkzH/9gB2xHnoJlx63wdTdC5AOy/QyngjanDMHJIZg3XoPkbTfTkihhFAs5Q6JLIufMdPGZk5MDg8GgdDhRT3fBA854/RiaCk9CFNRwohcNJ6a6ojgKfChekwaDQYPS4iQ0fPdR2bHqZDMK7r1HiTDJEoy6x/G9g79Ap22qC+SoZwLNo21Yl7EGoiThWN9p7CvdTetzknlJkgRvZwPsR56Ct7MBAMCo1EiqvhzeXvnavpzOCOve90GTXQqWo5dzQkh0YRiGis5FsnDjKJwYDG1zCAC4Q7mAwoReqUjUyc/PD3VNiWc+XxB/f2bmjWR/jw0upx8f+MQO9D30awhe+YRCubffBhXdwOcVTTljUOvhCrhlbc2jrcg1ZyHNkIICCz2xjgbRlDMAIApBON9+Bc7T+xEY7pTtc509AMuO28AwLCRJhMqUAm3uGmjS88HQBxgRE205Q6JfvOeMKIpobW1FQUEB9HqaiX0lTJwKLHyhbRUEBaMJHyo8SdRJlHEALzx+Bl63vOtcxfosqByjGH3zgKzdUJCPnJtvjGR4MSWacsaoMeCfdnwYX331+xAlEWpWjU0567EhqwrrMyugU+uUDpEgenJGDPphO/wkHCdfhOh1LXCQAGf9qzBW7ABnSobKnE5rcCogWnKGxI54zhlRFNHY2Ijx8XFMTEygrq6Ois8V4C6YWDBe53ygwpMQBfR0jKPx9ICsLSXNgKtvqsTZf/0SIM7q7M8wKP7Ih8Fw9GQjGnkCXgw4h1GWWhRqW5NWgvesvwVvdB3BZ3Y8gJykTKioKySZJVRwnngRom+BghMAZ7TAvOVGmDdeA44mDCKERIHZRScA+P1+nD59mopPckn0ToiQCBNFEc89fgbSrBnLGAa45a5aTB4/DmfLednxKZs3wlKzPsJRkkuRJAmdk72oH2pCUOSRpDUi0zQzFfotFVfj+vK90Ko0CkZJos1iC061NRvJ298F0/rLwVIOEUKihCiKOHv2LCYmJmTtPM8jEAhQ4UkuigpPEnUEYaZfOxeHT/mOHejC2LD8DWdVbQ4Kiiw48Y3fytpZrRYlH/lwJMOLSZHOGUEQ8L3Dv4BOpUV2UiaAqaVTrinbAzWnBgCwDEtFZxSLdM5IooDJg4/DcfyFixacKksGUi67G6bqy2j8ZpSJ99cmsvriLWcWKjo5jkNNTQ2Sk2nG9uUKwolsR1toW1TH53oqVHiSqNPY2BiafrympkbpcFZVMMDjwCutsjadXoUb3l2N3sefQGBsTLYvc9+V0GVmRjLEmBTJnOEFHj8++hBODpwBy7DYU7gNaUYr3EEvmkfbUJNVGdbvT1ZHpHJGkkQEhrvh62mEu+XYgkWnypKJlMvuhLH68ridiCTWxfNrEwmPeMoZKjrDyy6I8GgsoW2Bo8mFCCErdOCVNng9QVnb7n3l4AJe9D/xlKxdnZJCy6dEmQAfwHcP/Rz1Q1OzEYuSiEM9x3F58Q5syF6HivQyhSMk0UKSJAQnBuHtbIDgsQMAdAWVCI50A5j5JJsKTkJItBMEAWfPnsXk5KSsneM41NbWwmw2KxRZ/HD4TWjM2Rja1gUdCkYTPlR4kqiTlJQEnuehUsVXevq8QZx8q1vWlpJqwPY9xeh+6PcQ/X7Zvvy77qDlUxYpUjmj4lRI1slfYAVJRJ45C1tya8P6vcnqCmfOiHwA7saDCNpHZe2cPgnqjEIER7qmCs7dd8K4ngrOWBGvr00kfOIhZ6jojAy/yCsdQkTE7m8CiVvFxcVKhxAWB/fPfdq576ZKsCyLgnvvAWcwYPDZ58G7XDCWFCPrumsUijT2RCpnWIbFx7bcB3fAg5MDZ6BVafG5Xf8PtdS9NuaEI2eCE4OYeP1h6Ms2LzgRvmndLqi23kQFZwyK19cmEj6xnjMLFZ0qlQo1NTVUdK4irSYxJmWiwpOQCLBPenH0gHxR+MqaLFTWZAMAOI0GBe+5CxlXXYnuh36H7JtvAkNvSqOCJEmyNRNVLIfP7HgA/3vk/3Br5bWyZVRIYhLcdkweeBSOt18GRAH+/lZkv+8/EbS/ETpGZbRAX1wDVUoWrcFJCIl6VHRGlpGTT0YYr68SVHgSEgGHXm2DwM+szcmyDK68oWLOcbr0NKz9/D9HMjRyEZIk4e3Bs9CptKhMLw8VDBqVBp/b/f8Ujo4oTfB74TjxAmyHn4QU8IbaeccY3OePQpOWB945AX3RemgyCqngJITEBEEQcObMGdhsNlm7SqVCbW0tkpKSlAksjkkXTGIbn3PaUuFJSNgF/DwaTvbL2jbtKEBqOi0GH806J3pg9zvRNjE1Ljcg8KjNqqTigUAUBdgPPwX7kach+t3zHuM49RJyP/RdsBotLYtCCIl5VHSGlyTpZNsCG5/LsVHhSaJOV1dXaDB+UVGR0uGsmFrD4b6PbcPJwz04e7ofAi9i516a/XQ1rXbOHO+vxw8O/wq55mxszqkBwzA4P94BURKwMWf9ygMmiltuzjgbD2Ly1T+Ad4zNu5/h1DBvvRGWHbeB09HkYPEk3l6bSPjFas5wHIf169eHnnpS0Rl+bNx2rpWjwpNEHYfDEVr3Kh60No+ADwrYeWUprrqxAn3dkzBqREwcPwHrls1KhxcXVjNnXus4jJ+f+CMkSUK3rQ8aTo2azEqwDIMMY9oqREuiwVJzxtd3HmN//xUCQx0LHMHAVHM5rJe/Fyoz5Uk8irfXJhJ+sZwz08Vnc3MzCgsLqegMNyYx5vWgwpOQMPJ5gxjqt0MUJYwMOaFScaiqzUbnbx7CyP5XYSovQ8n/+wiSyukJaDSY9Nrx21OPQJo12KJ1vBOp+hTcXnUd8pKzFYyOKEFw2zH6/IPwtJ2cOwjnHer0AmTc8o/QZpVEODpCCAkfjuNQXV2tdBgJgTUkRmFPhSeJOlVVVXNmEo1Vfd2TEMWZN6uiKIF1T2D09anZLl2tbWj43BeQd+e7UXjvPUqFGfNWK2dS9Mn4zM4H8J2DP4coTU0GVZtVhZvX7kNRSv5qhEqixGJyxtt5BsNPfAei3zPvfs6YDMue9yCpbh8tjZIA4um1iURGLOQMz/NgGAYcR2PRleTxOgFYlA4j7KjwJFEnlhdano0PChjss8vasvPM6Pv1g5AEYaaRYWCuropwdPFlNXNmY856/MPW+/GTow/hXRXX4J6aW6P6TQNZnkvljH+4C97us/POLMiotTBvvh4pl90FVq0NT4Ak6sTLaxOJnGjPGZ7n0dDQAJZlsX79eio+FeQTA7JtmtWWELIkY6NuCMLMEioMwyC3IAWDuXlwtrZB9PoAAJbaGqTU1SkUZWKTJAktYx0oSM6BYdbizXuKtiHPnIUSa6GC0RElSAIPT/vb8A91ACwLQ/lmuM++ObWTYWGs3IHUaz4EldGiaJyEELIS00Wnw+EAAJw5c4aKTxJ2VHgSEiZ/f6oRGi2H9CwTVCoOqWlGGIwalH7sI8i59WZ0/+4PsJ2uR8nHPqJ0qAlJkiScHWlB82gbOia7cXnRdhg1M7OQUtGZeASvE+6mw+DdtlCbOiULmswiSDyP9Fv/CToax0kIiXEXFp0AYLPZ0NLSgqoq6oGlhIDAKx1CRFDhSaKOzWYLjYmwWCxKh7MsAz2T6G4fBwC0nxtFepYJJbfNDNDXZ2Wh4gufR8BuhyY5Wakw48ZSc8bhd+Hbbz6IEmsBkrQmuAIevNb5Fq4o2g6T1hj+gInipnMGAFS99dDmrYXn/DGIAd+cYy2774ShfDNYjl4yE1k8vDaRyIrGnJmv6AQAtVqNwkL6wFUpaiYxnjTTqyiJOj09PaHpx6PlRr1Ub70xs+SCKEqYHPcgK8c85zgqOlfHUnJmzD2Br73xIww6R9DvHMIVxTtgUOvhDXox6bNT4Zkgenp6wDvGYGr6O1SjbdCX1CLl8numZq99B8NyMJRvhjazSLlASdSIh9cmElnRljM8z6O+vh5Op1PWrtFoUFtbC6ORXv+Uood8grp4nVmCCk9CVhkfEHC+aUTWVlyWBo0u9tbxijdDrlH856s/wLh3EgDgCXpxoPsYrijagd2FW5CfnKNwhCQSJEmEqus4jE2vgBGmJnTwdtTDWLkL2owi+Ee6wBnMMFXuBGekD4cIIbGPis7olsyOI882896RQ+AiR8cuKjxJ1MnOzoYoijG7PMHJIz0IBgRZ27Y9xQpFkxgWmzPJ2iRY9OZQ4QlMFSFr0kpQTMulJITA+ABGn38Qut7mOfsm9v8OeR/7EVitHrqCSjAcfVhEZsT6axOJvGjJmWAwiIaGhnmLzrq6OhgMhgXOJJFi1mmhFm2hbTUVnoRERnp6utIhrEjDiT7ZdopVh8Dzf4HvvXdBl5GhUFTxbbE5o1fr8K97Pomv7v8eBpzDyDVn4d8u+yTSTalhjpAoTRIFTB58DLZDTwLi3EkcOFMK0q7/f1AZU6AqTlEgQhLtYv21iUReNOQMFZ2xwbKmCMaB06FtnTY+l+qiwpOQVeSweTE0IF+7M1caweirr2H09TeQsmkjCu55D0wl9AQ0UnxBH3RqXWjbrDXhy1d8Cr97+3F8dPM9SNKaFIyORIJ/qAMjT/4AwYmBefcn1V4J674PgNNRVzNCSPwIBoOor6+Hy+WStVPRGX1YFQtm1oNxJk47VlDhScgqOn6oC9KsVX9ZloG18ZWpDVHE5PETEHw+rP/6fyoTYIIZcY/jYPcx1GZVoXTW8ihpBiv+eddHFYyMRIIk8Jh4/U+wH30WkMQ5+1XmNKTd+A8wlNQqEB0hhIQPFZ0kGlHhScgqaqoflG2n6nmoPRc8Ab3l5kiGlLB6bP04MdAAXhRwcuAMBFHAmjRagzFR+AbbMPLkD8BPDs27X5dfifSb/xHqlMwIR0YIIeF37ty5OUWnVqtFbW0tFZ1RyM25MZQ+83qlj9Plu+LzpyIx7cyZM6Hpx9evX690OIs2NuzC5LhH1pY+2iTb1ufnIWXLpkiGlRAuzJnG4fP45oGfoDarCoWWPADA6aEmmDQG5JizFI6WhNv4q3+E/chTkHU/eAerT0LKZXeiR5OLoc5+qPtGYuo+Q5QTq69NRDlK5kxZWRlcLhf8fj+AqaKzrq4Oer0+onGQxRkMuPBWUlJoO1nk8QHlwgkbKjxJ1JEkKfQnljSclE8qpNUwSGuvl7VlX38dGCZeV2dSzuyc6Zrsw/cO/wIBIYjj/fUQRBEl1gLkmbORlUSTO8UzSZIQGGxHYKhjnqKTgb6kFmk3/gPU5lRIDQ2QJCHm7jNEObH62kSUo2TO6PV61NXV4fTp0wBARWeUs49rUNa0O7TNa10XOTp2UeFJoo5er4dKpYJaHTtLGUiihDOn+mVtefwA1FIwtK0ymZB59b5Ih5YQpnPGI/nwjTd/DHdg5snzqcEzyEnKwPa8DWDjdbQ+geBzw3P+OIK2YWhyyxEY7YHgmlo2hzUkI2XP3TBvvBrMOzkQi/cZoizKGbJUSufMdPE5/TWJXr5JOwBLaFsTiM8PuKjwJFGnvLxc6RCWrLtjHPZJr6wttfu4fHv3TrAaesMSDtM5wws86txn8XrnW6F9a1JLcGf1TYqvo0bCQ5Ik+Afb4e2shyRMLZPCMCwM5VvgrN8PfXEN0q79yJyxnLF4nyHKopwhSxUNOUMFZ2zQOeXLfFHhSQhZUMNJ+dPOZHUAJv94aJvhOOTddmuEo0o8Kk6Fj2+5D1mmdPzlzDOoTC/Hv+35JLQqjdKhkVUm+j3wdp2BypwGT9vJOfs5kwUZN/8jjJXbwXD0gQ8hJD4FAgEMDQ0hPz+fhvLEMJNKJ9uO1/9JKjwJWSFJkjAy6JC1ZYw1yW4a5nVV0GXR7JmRwDAMbq+6HgXJOahIL6OiMw552k5i9IVfQHBNIuf9/w3OYIbgmfkdZLV6GMu3QG3NVjBKQggJr0AggNOnT8Pj8SAQCKC0tJSKz1gVnw8456DCk5AVcrsCeM+Ht8A+6UXDiT6cOdaFjIkW2TG5775Noejin58PoMfej1JroWwM5+ZcWpsx3ggeJ8Zf/i1cZ98MtY298DNk3vFFuM68AQkStFklMJTUgVHRU05CSPyaXXQCQF/f1ASHVHzGJkmdJNvm2fj80JwKTxJ1+vr6wPM8VCoV8vLylA7nkrpaxzA26kKyRY+6rQXIOPB7+ISZyW10OdlIqaMiKBz8fABvdB1Bz0gfTqvPoC69CuVFZUqHRcLAdfYAxl/5Pwhu+bq4gZEeuBoPQF9SC86YDHXK4pbLibX7DFEe5QxZqnDljN/vR319fajonDY2NobCwkKaACsGmfKzgR53aJtVx+eHB1R4kqgzMTERWvcq2l/c+aCA8bGpG4Xd5sVE/zgC/XaYZx2Tdtnu+U8mK3J2uAWPnn0OVenl8Hq9cLtcGHNOICktGVmmdKXDI6sk6BjH6DM/gq+7cd79+uJamKr3QG1Z2lI5sXSfIdGBcoYsVThyZqGiU6fToa6ujopOEtWo8CRkBWwTXtn6XO6OdqT4J0PbjFqNjCuvUCCy+DbiGsMPDv8azoAL495JlGnzwYKBiuFg0hiUDo+sAkmSYD/yDCbffAQS75+zn9UakHr1B2Gq2UvdygghCcHv9+P06dPweuWz6Ov1etTW1kKn0y1wJol2GmsegJlhWpIqPv8vqfAkUWfNmjWQJCkm3kxOTsx0i4AECG3NYCGGmozFRdBl0qRCq8kT8OKbB34KZ2BqceVR9zh8QR/2Fe3GNaV7YNIYFY6QrFTQNoLhx7+NwHDXvPsNa7Yg7bqPQpVkXfb3iKX7DIkOlDNkqVYzZy5WdNbV1UGr1a74exDl2Bwjsm1B4hc4MrZR4UmiTqx8YidJEibHZ7q6+EdHoZ4clB2Tum0rvUlZZe2T3RhxjcnaLPpk3Fh5Fcy6pAXOIrHC29OE4ce+BdHnnrOPUWlh3nIDrHvft+Lfq1i5z5DoQTlDlmq1coaKzvhnCzhl20FJUCiS8KIV1QlZpldfOIfDr7Wjv8eGgJ+Hq7UdhuDMkg4qcxJStmxWMML4tD6zAv955T8jRZcMAChIzsXXrvocFZ1xwHF6PwYf/s95i05NdilyPvDfSL3yXvowhxCSMHw+HxWdJG7QE09ClunMqX44bD44bD60t4wizeVBpjDzwpC0phyGvFwFI4xfZalF+ObVX8QvTzyMD296DwxqvdIhkRXy9bdi7IWfA5Ioa2c0eqRcdheSt91MBSchJKFMF50+n0/WbjAYUFtbS0VnHPEPjgJICW2rguLCB8cwKjxJ1HG5XKExESaTSelw5tXTMQ6HbdYLgQRY3X0IvS1mGKRfuRcMxykRXkKwGiz44p5PAIiNnCELC04MwttZD33pBnjbTobaVZZMZL/3K1Bbs1f9e1LOkKWinCFLtZKcoaIzsag8Adk2G591JxWeJPp0dHSEph+vqalROpx5HT/cLdtWSTyyna2hbV02rd25miRJQstYOzJMabDqLXP2x0LOkPn5h7vgOX8MkiRBm10KwW1DYLAd2vwKZN31b+B04ZksinKGLBXlDFmqleSM1+tFICAvRgwGA+rq6qDRaFYzTBIFDKz8QUW89u+hwpOQJRIFEe3nRmVtKe5eqGYNBE/ZUAuVkWZXXSkf74fT50KvYxBtE13AMJCfnI11GWth1tITh1gmiQK8nQ3w9Z+XtetLNkCXuxbWq+4Dq6I3V4SQxJSSkoLq6mqcOXMGkiRR0RnnkjCOHPt4aJtD4CJHxy4qPEnUSU9PhyiKYNnonPuqtXkEPm9Q1pZjn3nzzGq1SN21M9JhxR1REvHg0d+jYbgZW3PrkGacWjqj1z6IQecIblq7DxpuaqHsaM8ZIhcY7QEkzCk6AUCbVQTjmq1g2PB2U6ecIUtFOUOWaqU5Y7VaUV1djc7OTtTU1FDRGceSVCy0giu0rabCk5DIyM5e/fFcq+ntoz2ybY3og9U7ENo2FBbAWFQY6bDizhONL+BI3ykAwJvdR7AhuxrFKQVgAGzOqQkVnUD05wyZIgk8xl95CI6Tf0fm3f8GTXrBVBH6Dl3uGuhL6iIyiRDlDFkqyhmyVKuRM6mpqbBarTS5WpxTM/IPJ+L1f5s+tiNkCfiggM62cVmb1dUr+0WybKijbrYrdGrgDB5rfD60LUoSGobOISAEsD1/IwosNFtwrBG8Tgz+5etwnHgRkESMPvUDaNJywBmSwbAcjOVbYCjdQG+uCCEJRxQvPpMM3RdJvKDCk5AlOHOqH8GAfFHfXPu50NfqlBSkbt0S6bDiTkVaGTZkV4e2GYbBhzbehSuLdyI/OUfByMhyBEZ70f9/X4Sv60yoTfS5MfzE92FcuxVJNXuhzS5RMEJCCFGG1+vFsWPHMDIyonQohIQddbV9hyRJeO655/DEE0+gubkZHo8H6enp2LJlC973vvetygx2p06dwsMPP4yTJ09ibGwMWq0WhYWFuPLKK3HvvffCYrGs/AchYdXZOibbTjKwyMtPhqtjAhBFJJWXwlBYoFB08cOg0eMLuz+OP515Cs+cexnvr7sDV5XuVjossgzOswcw9sLPIQXlSwIwnBqWXe+GKsmqUGSEEKIsr9eL06dPw+/3o6mpCQCQkZGhcFRECQJ8SHP3zTRw8bmeChWemFor6Z/+6Z/w+uuvy9r7+/vR39+PZ599Fp/+9Kfx0Y9+dNnf4zvf+Q5+85vfyNqCwSAaGxvR2NiIv/zlL/jxj3+MDRs2LPt7xIvm5ubQ9OOVlZVKhxPC8wJam+WfSG7YXYraa2+Aq6ML/U89DeuWTWDV6gWuQC5GkiT4hQB0qqm1yViWxb21t2NzTi3Wpl38aVi05kwikyQJ4/t/B8fRZ+fs40wpyLzjC9DllisQ2RTKGbJUlDNkqS6WMx6PB/X19fD7/bLjOY5DampqpEMlCnOIHqgFb2g7EKd9UqnwBPClL30pVHSWlpbirrvuQlpaWqgg9Hg8+P73v4/MzEy8613vWvL1f/Ob34SKTrVajbvuugvr16+Hw+HAyy+/jOPHj2N0dBQf/ehH8de//hX5+fmr+ePFnGAwiGAweOkDI6y9ZQx+Hz/TwACbtk9NImQqKcLaz/4TpEuM0yALqx9qQp9jCFcUbYdJOzNGtiK99JLnRmvOJCrB78XwY9+Cr/vsnH3a7DJk3vEvUJmVfWNFOUOWinKGLNVCOePxeHD69Ok563QajUaYzeZIhUeiyKQvGY1Fd4W2dUEHblAwnnBJ+MLz0KFDeO655wAA27dvxy9/+UtotVNPXG666SbccccduOeee2Cz2fCNb3wDV111FUymxa8faLfb8ZOf/AQAkJycjD/84Q9Yu3ZtaP/999+PH/3oR/jZz34Gh8OBH/7wh/j+97+/ij9h7FG/88RQHWVPDpvqB2TbBcVWJCXrZG0MTbO/LEPOEZwf7wQAvNb5Fi4v3r6kdTqjNWcSUWCsH0N/+Tp4+9zxSrqiGmTd9UWwaq0CkclRzpClopwhSzVfzixUdJpMJtTW1lJ+JahAgjy4SPjC87e//S0AQKVS4etf/3qo6JxWWlqKr3zlK/jnf/5n2Gw2PPbYY/jgBz+46OsfOnQIHo8HAPDAAw/Iik5gatKUT33qU3j++efR09OD/fv3g+d5qFSJ+18TjV2Y+KCA843DsraqWppafzU4/W681P4mdKqpIt7L+/Bm1xFcV74XqkWu5RiNOZOI3G1vY+TJ70MKeOfsM1XvQdqNHwerio516ChnyFJRzpClmq977XxFZ1JSEmpqaqjoTGCJ8r4/oR/P2Gw2HD58GABw2WWXLdjF9YYbbgj1t//b3/62pO/R1zczULiiomLeY1iWRXX11AyeXq8Xk5OTS/oeJPzsNq/86SYDVNZQ4bkaHnr7UTzXsh/H+07Dz0+9GK9JLVl00Umig/348xh+7Jtzi05OBeu+DyD9lk9FTdFJCCGRRkUnuZgktV62Ha8L6CRGeb2AEydOhNZO2r59+4LHsSyLLVu24G9/+xvq6+tht9uRnJy8qO8xu1tub2/vgscNDEx14+Q4btHXJpHDsize//EdcLn8OPn8cThsXhi08XpbiJzm0VYc6D4GAOi292PQNYLLi3agzFqkbGBkSVwtRzH+0m/ntLP6JGTe/jnoi6rnOYsQQhKD2+1GfX39vEVnbW1twjztIiShn3i2traGvl6zZs1Fjy0rKwMwNVPj+fPnF/09Zi/D8sc//lE2e9m0Y8eOoaGhAQCwdetWaDT0VCDatDWP4PjhLnS1jUPTegpZhx7Gsfs+iHPf/T7cXd1KhxeTgkIQvzz+J1kbAwaXFW4BS2NlY4IkSfD2NCIw3AVd4TrZPnVqDnIf+B4VnYSQhEZFJ1kMQZQP9ePZ+HwCntDv7vr7+0Nf5+bmXvTYrKysec+7lOrqauzZswcA0NHRgXvvvRdHjhyB0+nE0NAQ/vSnP+ETn/gERFGEyWTC5z//+SX+FPFncHAQ/f39GBwcVDoUAIDL6YfbPfWBgdflx9A4D4FRQfT7MX7wMEbfeFPhCGMTx3K4fs1e6NUzXZjfW/MuVKSXLfla0ZYziUCSRHhaT8DbNTVzrTa/Cur0qeEK+uIa5H7ou1Cb05QM8aIoZ8hSUc6Qpero6MCbb76J8fFxWbvZbKaik8hwc0qy+OxVl9AZPzExEfo6JSXlosdaLJbQ1zabbUnf54c//CE++9nP4vXXX0dDQwPe//73zzlm48aN+PKXv4x169bNc4XEMjo6Glr3Kjtb+XGUg3320Nf+sTFwQS+0gifUZt22VYmwYh7LsLimbA8259bg/049ijH3BK4ru2JZ14q2nIl3ksDD3fwWAhMzMz0zDAND+RagbBNSrnhf1D+1ppwhS0U5Q5YiGAzi1KlTCAQC4DgOSUlJAKaKzpqaGio6SUKK7ncGYebz+UJfXzib7YVmd3+dfd5iGI1GfOtb3wo9+bwQwzAoLi6WFbckOoiCiJFBR2hb8HphUftDn0OpLckwlZYoE1ycsOot+OddH8VX93466osVAvCOMfj6zsmKTmCqm7RxzRakXnkf/T8SQhKeWq2G1WqVtVHRSRbCGhNjfpeEznye50NfX2pc5ez9s89bjBdeeAH/+q//Cp/Ph8zMTNx5550oLS2F2+3GgQMH8NJLL+GJJ57A3/72Nzz00EOycaFKaGtrQ2lpaejTOQDw+/1oaWkBMPX0t6CgYM4508vGXBj/2NhYaPKk/Px82dNlQRDQ2NgIYGq8Q3FxMUpKSiBJEhiGQVdXFxyOqcKvqqpKdrO22Wzo6ekBAGRnZyM9PV32fc+cOQNJkqDX61FeXi7b19fXF3rivWbNGuh0M909XS4XOjo6AABqzoRgUAjtMxQWwLLhvRCH+yC2tCEt1Qp21kx0g4ODGB0dBQCUlJTIJpfy+Xyh8cFWqxV5eXmymFpbW+H1esEwDNavXy/bNzo6GureVVBQIPuQgud5NDU1AZh6USsqKpKd29nZCafTCQBYt24dOG5mttjJycnQpFc5OTlIS5N3jZwee2wwGELjnKf19PSEnv6vXbtW9uGN0+lEZ+fUupyZmZnIzMwM7ZMkCW++fQgWLglarTY02/N0l9uBgQGMjY0BmFrOyGg0hs71er2hsdmpqamhLvLTOdPX14eGhgbZTNHTRkZGMDQ0BAAoKiqSLdIdDAbR3NwMYGq93cLCQtm57e3tcLvdAKa6z88urCYmJkKzV+fl5cneaIiiiLNnp7qiGo1GlJaWyq7b3d0Nu33qiXplZaVsVkOHw4Guri4AU139MzIyZOeePXsWoihCp9PNGaPe398f6tpVXl4OvX5mtjy324329nYAQFpaGnJycmTnnjt3DoFAACqVClVVVaF2SRLR98JvEGh4Bd4d9yPTYAbnm/rdZFgO6uINOD/uBsYbwn6PmG2594iSkhJ0dHRAkiS0trYu+x6Rnp4+5+lXc3Nz6MnYhcsp0D1iysXuEQDQ1NQEnueh0WjmzAi/nHvEtPPnz8Pn8y3rHiFJElQqFQwGAy5E94gpw8PDGB6eWnqsuLhYsfcRsyn5PiI1NRVGozE0KeX69euhUqnoHvGOeLtHrOR9xPj4CIC5PSmUukdM5+BqS+jCc/ZNIhgMXrT4nD0ofCmT/+zfvx+f+9znIAgCtm3bhgcffFB2E7nzzjtx8OBBfOITn4Db7cYDDzyA559/fs7NL5IEQQjN9jtNkiQEg8HQ/gvxPB/afyFRFEP7LrwugNC+6YJ+9r/P0NBQaL8kSQvGtNB1p98oXCzei1331ME+2MYDsKYZYU03IicvGazWDyE7G5qCAhRd8OI4+2e92HXn+/AiGAwiGAyCYeb261/JdVfz/2Y2QRAWjGn2dS/Ml25bHxomzsHIGbAuRf5CfqnrLpSH0zkz/X3ne+I2+7oXy+9I/hteLA8v9m84fV1RFGVvAKYt59/wwphmnycGfBh55n8RbDkKBoDuxKPg7vwyVGMdEP0emNbtBq9NQnCo8ZLXnU+4/g0vdo8wmUzgeV52zGpcdzrexfysdI+4eH7zPH/J3+Wl5vf0v+Fy7hHTP+N8//6Jfo+Y77pKvo9Y6LpKvI/Iy8tDYWEh0tLSQtehe8SUeLtHrOTf0CvKJx+dHbUS94j5/i9XQ0IXnrM/tfT7/YsuPC/VLXeaJEn45je/CUEQkJycjP/93/+VFVXTdu/ejc9//vP42te+Brvdjt/+9rf4whe+sISfZHVxHDfnF45hmNCnKPMlqEqlWnANKpZlQ/vm+0We3jffjX32dS+8kc6OaaHrSpI0b1yLua4kSRjud8PvE+Cw+dDVNg5uVxGKKtWyuBf6WS8W73w/q1qtBs/z875grOS64fq/4ThuwZhmX3d2vox5JvD2YCNYjoNb9OJtexOs42koTy1e1HUvlYdqtRqCIMz7s8y+7sXyO5L/hhfLw4X+DWdfVxTFeeNayb+hSqWCKIqheHnHGIYe/RYCw50zsfldcP39Z8i97z8BUQRnTIbg9yfcPeJS8dI9Yun3iNnXZRhmydele4T8upG4Ryx0XXofMXPd2RNUzo6X7hF0j5i+FnORyYSUuEeEa8gMI833kVWC+OpXv4pHHnkEAPDKK68gPz9/wWMfe+wxfPnLXwYAfO9738PNN998yes3NTXhtttuAwDcc889+Pd///cFjw0EAti6dSu8Xi9KS0vxwgsvLOVHWRGXyxXq/gJMdXeYr0BONL1dE/i/Hx+Wtd37sW0oKVfuaXQsOzVwFj966zdYn1mB/OSc0A1yZ8Em5Jlpoo5o5O1rwfBj34Locch3MCxSr/kwkjdfp0xghBASRZxOJxiGofdOZNn+8K1fonN0plu7SvDh3354h2LxhKs2SOgZIGb3Yb/U9OjTfboBzBnvsJDpftXApdcJ1Wg0oX7b02NBEpXP54PX613yJE6rrfFt+eQpWp0KRaWpCkUT23xBH35z8s/w8j4c6z+Ng93H4Ap4UJySvypFZ7TkTDxxvP0yBv/wlTlFJ6szIfu9X4n5opNyhiwV5QyZj9PpRH19Perr6+FyuWT7KGfIYrFxunzKhRK6q+3sAbqtra3YunXhZTGmByIzDDNngPli+P3+Sx4z/Vh7vsfhieT8+fOhQfdKTrTU0Tom284tsNBsncv06NnnMOqZWb5o2D0Gp9+Juqyqi5y1eNGSM/FAkkSMvfgrON9+ac4+dWoOsu76V6iti/vwLZpRzpClopwhF5ouOqfH3tXX16O2tjb0ZIhyhiyWkZMP94vXMjSh30Vv2LAh1K/56NGjCx4nCAKOHz8OAKioqJDNYnUxs2fgmp6RaiE8z4dmSVzsE1USPh53AOMj8k8uNadfw/kf/C8mjp+EuMSZjROZKIkY99pkbesy1uDjW+6Dmpt/vANRhuBzY+B3X5636NRklyHnA9+Ki6KTEEJW6sKiE5iarKW7u1vBqEisMkrjyHS2h/6kuzsvfVIMSugnnmazGdu3b8eBAwfw6quvYmBgYN6i7/nnnw9NmX399dcv+vrr16+HyWSCy+XC/v37MTg4uOCi008//XSoi8auXbuW8dPED6vVCp7nFV3nqrlhELNHPzOSiNThRowOeDH6+hvI2HcVyv/xHxSLL5awDIvP7HwAu/u34Dcn/wKn34WPbL4HGtXiZ4e+lGjImVgXGOvD4J/+C4JzfM4+bV4l0m/6ODidcZ4zYxPlDFkqyhkyzeFwoKGhYc4soykpKbKlPShnyGIl6zgYgjNDW9QIXOTo2JXwvwkf+MAHcODAAQSDQXz2s5/Fr3/9a9ng2ba2Nvz3f/83gKn1c+68885FX1uj0eDee+/Fz3/+c3g8Hnz605/Gz372szkLCp86dQrf+MY3AEzNMPX+979/FX6y2HXhulRKaGkclm3rAw7oBG9o27plU6RDinlbcmuxLmMNzo91Iicp89InLEE05EwsC04OY+APX4Xosct3MAySaq5E6jUfAqvRzX9yjKKcIUtFOUOAqaKzvr5+zvIUKSkpqK6ulg2Xopwhi2UtyYe+pzG0rVvC0o2xJOELz927d+Paa6/F3//+d7z99tt417vehfe+973Izs5GU1MT/vznP4cWfP2Xf/mXOUXj0aNHcf/99wMAtm7dij/84Q+y/R/72Mfw5ptvoqmpCadPn8YNN9yA2267DRUVFRAEAUeOHMHzzz8f+tTsS1/60pzFbElkiaKE3s4JWVuybyT0NafXw7JpY6TDijkBPgCH34U048zvjEGtR1326ozrJKuDd01i4A9fnlN0MioNrFfdD/Om6+admp8QQhLNUopOQpaC02vBzVqtkdPG5+tuwheeAPDtb38bbrcbBw8eRF9fH7773e/K9jMMg09+8pN4z3ves+Rr6/V6/OY3v8FnPvMZHDlyBJOTk/jtb3875zi1Wo1/+7d/w3vf+95l/xxkdfT32OD3ybvPpHpmZho2lhSDW2AtJjLj1OBZ9NoHsDatFOsy1oBj6QU52kgCD8/542DU8rWJWYMZmXd8Afr8igXOJISQxGK329HQ0DCn6LRarVi3bh0VnYQsAhWemCoOf/3rX+PZZ5/FU089hebmZjidTlgsFmzatAn3338/Nm1aftdKq9WKhx56CPv378czzzyD+vp6jI+PQ6PRIDc3F7t27cJ9991HTzqjRGuzvJutIWBHqmdmaZXkWpqZ7lJ67QPosU/9m50ba8eQaxQ78jciSUtrnEULSRTgbn4LvGsSxspd8LQcQXCsD6w+CTn3fQ2aNOoiRgghwMWLzurqaprxnqxYgPPDmzSzmoKoic8HHFR4voNhGNxyyy245ZZblnTetm3bZAusXuz6+/btw759+5YbYsJobW0NTT++nKVrVqqtaUS2ne7ugUoKTm2wLFK3L7zsDgEcfhcePPZ7rEktgVFjAAB4gl6o2PDdbpTOmVgjSSI8548jMDH14QDDsjBUbIe/pwmp+z6YEEUn5QxZKsqZxLSSopNyhizWgDiJpwtmettZ+QDerWA84UKFJ4k6Xq8XwWBwzmxxkeCwezE04JC1pbp7Q19r09NhoMkCLuqxs8+hfaIbXZO9qEwvx5rUEmzMq4ZeHb7JaZTMmVgjSRI850/APyKf8p9Ta5Fx22ehMqUoFFlkUc6QpaKcSTwrfdJJOUMWa3xYi3UnZ1bO4LWuixwdu6hvAIk6DMOE/kRaW7P8aadKDMgmFkpaWw6GxnEsqHOyFy+1vwkAECQRZ0dacH68A/nJ4V37UcmciSWSKEDwOsE75ZNnMSwH07rLEqboBChnyNJRziSegYGBOUVnamrqorvXUs6QxfK/M5HpNI6XFjgyttETTxJ11q9fr9j3HuqXP+20uvvAYuaXP+2yyyIdUkx55OyzkGYtgKrm1PjwxrvD/qKrZM7ECkkSMfrcgwiO9SHj3Z+Ht+0EeLcdDMPCVLULquR0pUOMKMoZslSUM4ln7dq1EAQBY2NTY+9SU1Oxbt26RY/ppJwhi6UalReeel98Fp70xJOQWS67uhz/8IXLcd1t65Ct9yHD3RPapzKZkLKxTrngYsAnt70f15TuAYOpQvP2yuuQm5ytcFREkiSM/e1XcJ15Hf7BNgw/+g3oSzdClZQKY9VOqK30f0QIIRdiWRZVVVVITU1dctFJyFIka4yy7Xh9Rk5PPAl5hyRKOPv2APiggPRMEyptxwFXZ2h/UsVasCr6lbkYk8aIBza/F1cU78CzLa/gloqrlQ4p4UmShIn9v4fz1EuhtsBIN4Yf/w5yPvgtsBzlNCGELIRlWaxbty70NSFk+eg3iJB32CY98PuCEAQRg90T6PQkIcDNTIhj2bhBweii2+zutQBQllqEz+x8AGouPqcDjyX2I0/DfvQZeSOrgvWK91LRSQgh77jwdWw2lmWp6CRhJTJ62bbAxuf7J3rXQaLO6OgoRFEEy7JIT4/cuLPR4ZkZxDz9/dAEPdAKvqkGhkHqjm0RiyWW2Lx2HOl7Gxuzq5FhSlMkBqVyJtrZjj2HiVf/IG9kWGTc9mkYypa/NnE8oJwhS0U5E78mJyfR1dWF6upqqNWr94afcoYsVlJ+LtDvDW0z6vj8oIMKTxJ1BgcHQ+teRepGLUkSxmcN7PYNDsEUmAxta9PSoLVaIxJLLBElEScGGuDwu/B61xEUp+SjNrMSGpUmonEokTPRzt1yFBOv/G5Oe/rNn4CpYocCEUUXyhmyVJQz8WlychJnzpyBKIpoaGhATU3NqhWflDNk0bj4LDQvlBg/JSGX4HL64fcFQ9uB8XEYAvbQtqm8TImwot6B7mMY99hC252TvWif7F74BBIRvoFWjDz1A0ASZe0pV9yDpPVXKBMUIYREmYmJiVDRCQBOpxMNDQ207iaJOLVFPsmfpNIqFEl40RNPEnUKCgogSVJE1716/vEz8HmDsKYZYNRzYBwTUIv+0H5LXW3EYokVo+5x/OL4w0jSGLEhpxpWvQVmrQlrUksiHosSOROtgrYRDP35a5D4oKxdX7oByTtuUyiq6EM5Q5aKcia+TExM4OzZs6Gic5pOpwO3Sut1U86QxfJ47LJtSRIWODK2UeFJoo7FYono9/N5g2htGoYkAT0dE1BxQIkozkxlzbJI2bwxojHFgt+9/Th4kcekz45XOw6h1FqIz+x4ABy7Oi/YSxHpnIlWgs+NwT9+FaJPvh6YJrMYme/+PE2OMQvlDFkqypn4sVDRmZGRgcrKylUrFClnyGKN+iZl234qPAmJT031g5g9mZ0gSEjxDoa2tenp0ND4TplTA2dwrP+0rC1Vn6LY5EIEkPggBv/0n+Dto7J2VXI6st7zZbDq+Oy2QwghSzE+Po7GxsawF52EkLno42+S8BpPD8i2DYILxuCs8Z2lJfRCdAGjxoBcc1ZoO0lrwse23KtgRIlNkkQMP/k/CAy2y9pZfRIy7/xXqEwWZQIjhJAoMj4+HpEnnYQslX9c/sST4xde3ieWUeFJog7P8wgGgxEZ3C8KIvq65b/sKc5ezH7pMa9fF/Y4Ys3atFJ895ov4Z6aW6Hh1Liv9naYtEbF4olkzkSj4MQQfD2NsjZGrUP6Lf8IbWahQlFFt0TPGbJ0lDOxbbrovHC9zszMzLAVnZQzZLGYSadsmxPis/CkrrYk6jQ1NYWmH6+pqQnr9+rtnkQwIO9Hn+VoC33NqFRI2UTjO+ej4lS4tfJaXFa4FVa9RdFYIpkz0UYSBfh6mmCqvRLuswcguG0Aq4J17/tgTPC1Oi8mkXOGLA/lTOy6WNFZUVERtiedlDNksZJUOtl2vD57p8KTJLTWphHZtpoRYA6Mh7Z1mRnQ0dpbIXafA0kak2ySmlRDioIRJTZJkuBpPQHeOQ5Wo4epZi/cLUdgLN8C8+brlA6PEEIUNzY2hsbGxogXnYQshUEYR5pr5qmnSvJf5OjYRYUniTpmsxk8z0OlCn969nS8U2RKErb0PQeN4JV9ymQsKwNDM4ECAHhRwBtdR8ExLCrTy1FkyYuaWVIjmTPRxNfTBP9wV2ibUalh3ngtzBuvAcNEx/9NtErUnCHLRzkTeyYmJuYtOrOysrB27dqwF52UM2SxzBoJSYGJ0LYKAQWjCR/6TSBRp6ioaFWv19MxgYIS+ay0kijh1z86iMG+qUmEjIFJmP1jsmNsugys2UJdFae1T3TBx099AndioAHnxtqwr2Q3NCqNwpGtfs7EAv9QJ7zdZ2VtDKdCUvUemsF2ERIxZ8jKUM7EHqPRCL1eD4/HE2qLVNEJUM6QxdMy8qXo4vWj43j9uQgBALz+9xY89NPDOPTqzLhNR1MzhoecoaITAEz+Cdl54/psnMy7EWfsKbLzEpXNa8fTzS9DEGfGw5o0xqgoOhMN75rE5MHHwepNsgKTAQPj2m3gjMkKRkcIIdFDq9WitrYWer0eQGSLTkLIXPTEk8Stno4JvPlSKwBg//PnAAD5wyfR+5dH4dp3P4CZT5fYCxbqFVg1AODga50oq8oG+/Yb6P79H5H/nrtQ8N67I/MDRJG/Nv8dJwbq0TR6HpXp5Si05KI6Y63SYSUc0e/F0CPfQGCoA4GRLqRe/UG4zx2B4HVBX7oBmrQ8pUMkhJCootVqUVdXh4GBARQVFVHRSYiCqPAkcaugxIqrbqwIFZ37nz+H0rFmFAFobRwEjDNv0gMqvezcFO8wIEm46qbKUNEJAL1/eRSW2hqYqyoj9WMobtJrx6sdBwEAnqAXJwcaIEoCrAaLsoElGEngMfzX7yEw1AEAcDe/BcFtR/q7Pg3BNQldTpnCERJCSHTSarUoLi5WOgxCFiQxQZh9M0O+WFa4yNGxiwpPEnU6OztDg/FX+kKRXyQvPtvTNkMCYNNnyY6z6zIgYWb6arXox1XbLCicPBMqOgGg8P57E6roBIAnm/6GgBAMbbMMi/vq7lAworlWM2eikSRJGH3hF/B2nJa1845xMCxHRecyxHvOkNVHORPdHA4HkpKSouqJJuUMWSynZEeapy+07dNETx6vJio8SdRxOp2hda9W4vW/t+DNl1px1Y0VsuKzI23znGN5TgeXJgVJgclQm+vIAXR3nAxtF95/L/LefduKYopFOwo2otveh+bRqXGye4t3Is+cdYmzImu1ciZaTb75CFwNr8raWH0Sst7zZahMFmWCinHxnjNk9VHORK+RkRE0NzcjIyMjqpZIoZwhizXmteBcyb2hbS3vxFUKxhMuVHiSuDR7fGfPQ79HgdCLqwD4vDwGzOXoTN045xybPktWeOo66yGCBQsRnMGAwedfwODzL4T2p+3eheIPfSDcP4riKtPL8R97P4v6oWY80fQC3r3ueqVDSiiOt1+G7eBjsjZGpUHW3f8GTWqOQlERQkh0GB4eRnNzc+hrhmFoAiESc3hRCs0vAgAiE58lWnz+VCSmrVu3bkXn//3pRjTVD0KrU8HvDaI7pRo9mLlmkJ1/Jtb21E3oTlm/4HUznZ0oHz8e2h4/fCQhCk8AYBgGddlVqMuuUjqUea00Z6KVu/Ukxl78hbyRYZBx22ehy12jTFBxIl5zhoQP5Uz0mV10ThsaGkJKSgoyMzMVimoG5QxZLClB1t6mwpNEHY7jLn3QAiRJQnPDIJx231QDwyCgMizqXIFVyz5tutCIqVBWeAYmJxF0OKA2m5cdbzSb9NqhV+ugU0X/mpAryZlo5Rtow8hfvwtcsPB5Uu1VMK7ZolBU8SMec4aEF+VMdJmv6ASA3NxcZGRkKBDRXJQzZLEsWqNsO16f11PhSeKK1x2E2xkIy7X9KgMCrBYa0Y/UnTtQ9IH74rboFCURR/vehifoRZm1CGvSSmKiAI0XwckhDP35a5D4oKxdl18Jy67bFYqKEEKiw9DQEM6dOzenPS8vD6WlpdTNlpAoRYUniSsGkwb/8IXL8cpzzWhuGFq162a4OlE2dgLm/Exkv++9MFVWIAAg4HCs2veIJv3OIYw6xgEA9f1NODvQgj35W2HWmhSOLDpotVpoteEpxAW3HYMP/wdEn0vWrs4oROq1H4Haonz3MUIIUQoVnSQeCaK8x51AYzwJiYzJyUmIogiWZZGSkrLk81NSjbjz/ZvR1T6Ol55qxNDA8otDk38ca0aPIlXlhuWum2DcvhUCy8Juty/7mtGu09GHF7pfQ74pG1puajxsksYI0cvD7ovOn9vr9Ya+1uv1Fzly5RiGgdlsDkvhKQb9GPzz18DbR2XtKksm0q75ELSZhav+PRPVSu8zJPFQzigv1opOyhmyWNwFJVm8jvmkwpNEnd7e3tD04yu5UReVpuKBz1yG+uO9eOHxegji4l+QNLwHpeOnkO1sAwMJktUKtq4GXp9v2fHEiue7XkWnqw9dzn7kGTJRYMzGWlOJrLiLNl1dXRAEARzHoaioKKzfy2BY3Jjh5Rh56ocIDHfK2lhjMqxX3Q9dAU1SsZpW6z5DEgfljLIGBwfR0tIypz0/Px8lJSVRV3QClDOEXCg+y2lC3sGyDLI4OwReuvTBs5SOn0SOsxUMps6TJibgb2wKR4hRpd3Zg07X1ALGIkT0eAYxGXAiXUsvmOEmeF3gzKlgVDOzLjNaA6yX3wPj2m1R+aaKEEIiIRaLTkKWgtUnKR1CRNATTxJ1cnJyQl1TVsPfjjiAJV5rOKkEOc42WVug6Ry066JzOZHV8vrQUdm2WW3CbQVXR/2LutVqhSRJUROnr7cZuvzKRR8vBrxwnX0DUsAHU+1VcDe+CYkPIGXnu5FUuzdqfq54str3GRL/KGeUMTAwgPPnz89pLygoQHFxcVTfHylnyGLxvB/AwisrxAsqPEnUSUtLW7VrvfrCOfR2Ti75vAl9DnwqI3S8O9TmP3ESxuuuBpsUv59KvbvwWrw+dAxvTzRChIQrMreFxnlGM3MUzS488eYjsB14FNa998Ky87ZLHi/yAbjOvAn3+ePwdZ2BtqAKptqrwHBqJG+7CQxL0/GHw2reZ0hioJyJvGAwiI6OjjntsVB0ApQzZPEcQQ+AmQkcl9ZPL3bQRzAkbvV0TODg/rZLHzgfhsFgUqm8TZJg//2fVh5YFLNozLi1YB8+VXk/dqTVYWNqfD/hXW2+3mbYDjwKAJh47Y+wHX7yosdLQhCuswfgOvcWfF1nAAD+niYwkJBy2R1gOPpskBCSuNRqNdavXy9bD7OwsDAmik5CyFxUeJK4ZU27+CQwuqATlcMHoQs6590/mFQ+5xMnobs7asZ6ipKEHz7ZhW8/0oEfPtkFUVq9z8dStSm4Ie8KcAw9bVsKXX4lrHvvDW1frPgU/V4IbjvcTYdCRScAGMo3I2XP3WBV0f+kmRBCwi05ORk1NTXgOA6FhYUoKiqiopPEHV4QlA4hIujjdBK3Th/vg0rDgQ/M/WXOcrRh7egRAIBNm44hcxmkC7o0ejVmTOhzkOodmGlkWQgjo0AUTDA6NOFH36hPtp2TqlvWtdqc3UjVWJCiTV6t8BLWdPfaidf+KPt7drdb3j6K/t/9GzQZhfB21ofa9aUbkX7zP4LVhHdJGEIIiSXJycnYsmULtFotFZ0kLokQlQ4hIqjwJFGnoaEhNP14TU3Nsq/DMJhbdEoi1o68hTznedh0GWDFIKrGDqNq7DDOZF6OkaQS2eH23bcgs/VF8F3dYHQ6JN3/PmjKLuiCq5D2AY98e9CzrMJz0m9Hj2sAPRhAmi4FpUmFMKpiq/CJ5HIqi3Gx4lPwujD4l69DcE7A65wInWMo24S0G/8BnN4094Jk1a3WfYYkDsoZZel0y/tgVUmUM2SxzGqjbDteP16hwpPEpZ6OCex/Xr7IdFqGEWMjbnSmboBbm4LB5DXY2flIaP/64TfQBh+6k2bGNSZnJSH5ygfgO3IMmup14JKjZxKb9sELCs8BDy6rti7pGoIoos3ZHdoe803CGXRjR/oGsHG6eHGkzFd8SqIAb2c9gmN9smP1RTXIvPMLNJEQISRh9ff3AwByc3MVjoSQyNPxY0jxzExoqZL8CkYTPlR4kqhjMBjA8zxUquWnZ0GJFXuuKcebL7Vi91WlMJl1cDv9OPBKGwIqA/osVdCJXqjEoOy8suGj0Bfm4dyEGWuqLVi7fmr9Sv2uHSv6mVabKElzCs+OQQ9ESQK7hG5Irw6/hTOTLSg25SNZPfWkrdCUG3NFp1arDT3xjCYXFp+Tb/x5zjGswYyM2z9LRWeErcZ9hiQWypnw6evrQ1vbzGSA8VJ8Us6QxUrWiLD4RkLbKgQUjCZ86DeBRJ2ysrJVuc4V165FSXk6CkqmngI++tAJ2X5NwAV2ngmrc489AesVNyN/Z/mqxBEOQxN+eP3y8QAev7ikcZ4BIYhT441w8R5MTjQiTWtBdfIa5OgzwxFyWGVnZysdwoIuLD5nYzR65H7o2+ASZOHoaLJa9xmSOChnwuPCorO1tRUMwyAnJ0fBqFYH5QxZrNTCXPR2z6xXq1XHZ4kWW481CFmi6aITAGwT8ieE+oBdtq2pq53Z9/qz8Lz2RniDW4ELx3eG2gfnb5/P8fEGuPiZ48f8NqTrrUt6YkoWR5u7Zt72nPu+BnVyRoSjIYSQ6NDb2ysrOqcFg8F5jiYkfqmTTVAbEfqjSYrPXlDxWU4TcgFJkjAx5pa1ZTvbZdvG66+BKjsLnhf/DgChvw17L49MkLM889Yw6jvmX+YFADz++afdfvHYKF6vn5h3HwDUliThlh2ZkCQJpybky8KUJxWiJqVieQGTBYlBP4Ye/ea8+7wdp6HNKo5wRIQQorze3l60t7fPaS8pKUFBQYECERFCwo0KT5IQHDYfAhcUa8aAbWZDowZrsYSKTCWLT0mS0NDhhN3NL/ncAC8hwC983plOJ27ZkQmGYfDR8rtxbKwBh0ZPwc17sDdr+0rCJgsY+P2XIQW88+6bb6kVQgiJdz09Pejo6JjTTkUnSVQSK4DVOkLbjDY+S7T4/KlITOvp6QlNFLNaL0BNT/wds9NdBR5aYaabKWs2h9YGU7r49PgFOL3hWUjY4RHg9vEw6lTQchpclrkZ29Jrcd7RhXxj9I6TvJTR0VGIogiWZZGenq50OCEjz/4EgSH5mysuyYqkun2wHXgUABWfSgnHfYbEN8qZ1ZFIRSflDFmsHmYUD691hbZTgyKuUzCecKHCk0Qdm80WWvdqNW7UjqZmdB44BaRtDbWZWZ9sjSTOmiI7Z77iU11UCHVx0YrjuRSjToV/uasYzx0dxZnOhbvbLlVNcRJu3JYOo07+a69h1ai2RO9ESovhdrtDL+7RUnhOvPEXuBpekzeyHFL3fRCmqp1gVZp51/kkkbHa9xkS/yhnVm6horO0tBT5+fkKRBRelDNksSZGNFhzem9oW9Isfs6OWEKFJ4l75qpKMBUbgLGZNoNPPg6Sm6dYmV186vddGZGic1qqWYP3X52L9gEP/npoCMOTy59WOzNFg9t3ZaE0xwAAsAUcECUJKZqZp7xkdU0e/itsBx+b026s2A5j5VSX5vnW+ZzdTggh8aS7uxudnZ1z2uO16CRkKXzeIDSBmYcgoihe5OjYRYUniTpr166FJEmrWhTd+ukb0Xe8CV5DGkaGnHA98rpsP5c1/xIihr2XR+xJ53xKcwz453cX49XT49h/ehxBfu7yLwtRqxhcVZeKK+tSwbJT/5aiJKLF0Ql30AMdp0W2IQPZ+nToOG24foSIiKY132yHn8Tkaw/PaVdZMmG98n4ws9ZIpeJTOeG4z5D4RjmzfIladFLOkMViBm0AZma51/uo8CQkIrTa1S+Cmk4PwsebYBBEZKWwGHEPyfarLlK4KFV0TmNZBvs2psGg5fDXQ8OLPu/mbRnYuW7Wp2eShB73ANzBqe4bPsGPTmcv9JwOWfrYLjzVarXSIQAAfL3N86/XqdLAsvsOqJPT5uybr/jU5VdAl18Z3mATXDjuMyS+Uc4sz0JFZ1lZGfLy8hSIKHIoZ8hiWdRG2Ta7+OcMMYXW8SRxT5IkeNwBBIMC7DYvepr7IDKz1kfiOHCZ0b+W4pmupY33vPD4+olz+EvX8xjyjkGUpu5oJrURGbrUVYsx0enyK5G8890AAHVmMVh9EgDAuHY7TJU7FzzPsvM2WPfeO/X1ZXdR0UkIiRvzfTCYCEUnIUuRKM/E6YkniXt+Hw9BmOmyELTZYRT8oW0uyQQ2Sp6YLWTCGURb/9IGmrf1ezDpCiLFpIYoSTg4egJu3otmRzu63H0oSyrEptRqsNQFaFVpMgthqNwJVVIqAAm8fQzJO94FVqO76HmWnbfRk05CSNzJyckBAJw/fx4AUF5eHlXDIwiJBiLkT8cFJj5LtPj8qUhMczqdoaUxkpKSVnw9j1s+MY/osIGTgqFtLjl5xd8j3E612rHUXhcSgJPn7di3MQ3N9jaM+MZD+7yCH2k6K5I1K//3jQZerzc0jkav14fvG0ki+Oe/jwkhCKfeiJwPfks2ZjMwMQB/f+s7RSfAanQwrt0CTUbhoi5PRWfkrPZ9hsQ/ypnly8nJgfROT5tEKjopZ8hiGXNygIGZ96uMmrvI0bGLCk8SdTo7O0PTj9fU1Kz4ei6nX7bNOMZlXRpUqdYVf49wkiQJx8/b592n07DYVpGMo+fs8AXmDkR/5WwfWg0vw6SWF2OZujRckbktLPEqYXh4OLScSlFRUfi+kX0Y0ngvJAB+GxAY6YE2c+r7iUIQ7ua3QocyKjUYTg1D2WaaWCIKrfZ9hsQ/ypmVSaSCcxrlDFksVqsGMOtBSZy+baAxniTutTYNw2H3QeCnCjPONirbr4qSdR8X0jXsxbgjOKc9L02Hz91RhJu3Z+JzdxQhL23uJAa8T4feUT+uzN6BuwqvR6FxqsvTnswt1MV2GdhR+fpzvp5GAABvH0VguAuid2pcLcOyYDgV9EXrwelNEY+TEEIiTZIk+Hw+pcMgJCapzfL3ohKnUSiS8KInniTqZGZmhp5erZQkSTj6Zif4d4pOrZZD6QU1nCo7a8XfJ5yOt8ifdmrVLC5bn4JrN6WBYRh0u/pRaMrFp24rwt9PjOHg2Un4gzNPP4WxXPS4B7AjfQPWp6zFoHcUGbrU0HnxwGKxhLozhRMzKp+Z0dvdCE16AQb//DWYN10L0/or4Otthuh1QZVkhTa3PKzxkOVbzfsMSQyUMwuTJAmdnZ3o7+9HTU0NkmNgCEskUM6QxQoG5b3zwMTntLZUeJKok5k5/5qay2Gf9IaKTgDw+wUYgo6ZA1gW6sxMCKv2HVffhjIzGrtdcPsEFGXqcc+V2bAmTX0S9urgW3ht+Ciuzt6FPZlbcP2WdGyrSMaPXmyE26YHVAFwqYPodPmwI30DACBbn443h4/j5cFD2Ju5DVdm71Dyx1sVFosl/N9EEucUnr7us/ANtAKiAMfxF+DrbkTazZ8Ey6nB6pNk4z9JdFnN+wxJDJQz85suOnt6egAADQ0NVHy+g3KGLNaAW94bzyfyCkUSXlR4krjW32OTbbMMYAxMhLY5oxGc0RDVhWd5rhGffXcRznS6sKPKAo6d6iLb7erHa8NHAQAvDx4CMNWF1mJSQ11xFOrBDHApw2A0fnQ63RAlCSzDhIpOgCXUcgABAABJREFUAHht+ChKkwri5slnWNmHwQS9sibR5wZ87tB2YKQbvu5GWLbdHOnoCCEk4iRJQkdHB3p7e0NtgiDgzJkz2LZtW9SssUwIiQ5UeJK4NtQv76aqY3mopJkyU5WUBNZkAvjo/mQp2ajG7uoUWVuhKRdXZ+8KFZHTf5ebi+AXfVBl9oSO9Yl+HBw5AS/vw8HRk6H2q7N3UdG5SBeO75yPrrAayVtvjEA0hBCirPmKzmmlpaVUdBKyBH6nC8DMsmusSF1tCYk5I0NO2bZOkK+FqbamgNVoor7wXMiezC0AICs+O5w98x57YuwMJmd1M57unkumsPXPg+07s/ABAe/C+wAADIJjfej58f+TtZqqdiF13wdWHB8hhEQLSZLQ3t6Ovr6+OfsqKiqQlRXdcycQEnWGxwHMPAhQBanwJCQimpqaQtOPV1VVrehaE2Nu2bbOOyHb1kT5xELzebH/DZy1tcratKwGfnFqGu5219xPnwHIik4tq8HRsXocHasPtVVb1uD63D1hiDj8ent7wfM8VCoV8vPzl34BSQLbdxaM13HpYxe+CAS3bU6r+9wRKjyj0GreZ0hioJyZQkXn4lHOkMUyq42y7Xhdd4AKTxJ1eJ4Hz/MrXvtQkiTYJ+VPqQzuEdm2rmAZRYqCJElCo60VjqBrRdfxi4FQoTqtydYas4WnIAgQRRGCsMzRugEP4F/Zv+lCeNckBI8DnMEcluuT5Vmt+wxJHJQzVHQuFeUMWSxNcAJm78zMtmrJf5GjYxcVniTqaDQasCwLlWpl6emw+8DPWlYEAEy+cdm2vrgYc1fIjF4ewQcXf6kun8vj5D1w814YVfqwXD+cVCoVGIZZ/pT1WiP4az4D7syLYPsbVy0uY8UOWK+6j4rOKLRa9xmSOBI9ZyRJQltbG/r7++fsq6yspBlc55HoOUMWL0UTRKp3ILStQuAiR8cu+k0gUaeiomJVrjPYa5NtswxgCkyGtjmjEZpUK3hRhMFgWJXvGW4GGPCFDR/Fc12vomGiZdWuW5NagZsKr0SqzrJq14ykNWvWrPwiBgNw1UcgDrVBOP4kMDn3zdViaTKLkXr1B6EvXLfyuEhYrNZ9hiSORM4ZKjqXJ5FzhiyNjpWXZPG6GBsVniRu2SbkTwaTktQouOYK+Pr74RsZAafXw2C1QhWIrU+VkpOT8anMD6FlvAN/aX4Wvc6BS5+0gPykHLyn8masTS1ZxQhjXPImSOUb4G8+CPdbT0BawrhPzmhByhXvRVLNXjAsLRhOCIl9kiShtbUVAwNzX2uo6CSELAUVniRujQ7LZ7QtWpuJsvdcG9qWRBEMy0Kn0114akzYYq7DpsIavN71Fh6ufwrOwOLHKJq1JtxTcyuuKNoBlo3Xz9VWaMdNsHHAxMv/t+hTknfeBnPdvjAGRQghkTUyMjKn6GQYBpWVlcjIyFAoKkJILFLkHafL5cJTTz2Fr371q3jggQdw55134umnnw7t/9nPfoY333xTidBIHBkdkhdi6ZlJsm0mDgoulmVxZckuFKcsbZKkYks+rizZRUXnJdiPPruk4x1LPJ4QQqJdRkaGbNIgKjoJWX0MI0AXdIX+aHn3pU+KQRF94imKIh588EE89NBDcLun/kElSQLDMJiYmFnm4uGHH8b4+Dhqa2vx3e9+d3nLI5CYNTAwAEEQwHEccnJylnUNSZLmPPFMzzKtRnhRx+a148zwuSWd0zB8DjavHRZ9cpiiiqzVyJkL+QbaIDjGlnQO7xiDb6ANupyyVYmBhE84cobEt0TNGYZhsHbtWkiShJGREVRVVSE9PV3psGJCouYMWTq7NIkcZ1to26eJz5mQI/a4IxAI4EMf+hB++tOfwuVyQZIkSNLcxVH9fj/Gxqbe7J0+fRp33nkn2tvbIxUmiQJjY2MYGRkJ5cFyeN1B+H28rO3CJ57x4s9nnoGEpS00LEHCI2fi5+ncauTMhcZf+u3yznt5eeeRyApHzpD4lsg5wzAMKioqsGHDBio6lyCRc4Ysjc2XhON5N4X+nEu7QumQwiJihee///u/48iRI5AkCTqdDnfffTe+9a1vzTlOkiTcc889UKvVYBgGNpsNn/70p8Hz/DxXJWR+LqcPs5fNYhjAnBybYzkvxua14/XOt5Z17qudh2Hz2lc5ovgQdE7A37+8WYP9fS0IOicufSAhhMQQhmFgNtPSUISEg19g4dClh/641ValQwqLiHS1bWhowJNPPgmGYVBeXo5f/OIXyM7OBgB88YtflB2r0+nw1a9+Fffffz8+/vGPo7OzE21tbXjuuedw6623RiJcorDS0tJQF+zlSssw4fNfuxZ+Hw+X0wfnhAsMG3/dFr5/6JdLfto5TYKE7x/6Jb627/OrHFXkrUbOzLaUCYXmPf+Vh5B522dXJRYSHqudMyT+xXvOSJKErq4u5OTkQKvVKh1OXIj3nCGrR0iQHIlI4fn4449PfTOVCj/5yU9CRefFFBUV4Sc/+QluueUWiKKIv/3tb1R4Jgij0bjiazjsPpw+3gsA4DgWtjdew8TX9kNjTYE2PR3WbVuR+66bV/x9lHS8rx4t4x0rukbLeAeO99VjS17tKkWljNXImWm8axLuc8t7ijzN3fwW+KsnoTKlrFJUZLWtZs6QxBDPOSNJElpaWjA0NISRkRHU1dVR8bkK4jlnyOpK1sjXk4/XMjQiXW2PHTsGhmGwZ88eFBQULPq80tJS7N27F5Ikobm5OYwRknjDB8XQ14Igwm+zQ+J5+EdG4Whsgqut7SJnx4Z+5xA4ZuFfYbPWBKveEvpjVBvm3Mg4hkW/cyi8gcYYx6mXwGpnvVlgGECtBas1gjNZwSXN/cMakwFu+nM8BqzOCFfDa4rETwghSzG76AQAr9eL+vp6+P1+hSMjJHGwF3k/F08i8sRzZGQEwNRCw0tVXl6OV155BZOTk6sdFoljPC/MbEgSRId8LKNuEU/do92tldeizFqI7x36JTxBr2zf2tSSebvQjrjH8eMj/4eWsXYY1Hp8btdHUZ1ZEamQo54k8PC0nYSuoBJJm2+E+8zrYE0WqIzJMNdeBVa38KfXkijAcfLvMFZshyopPsdmEELiiyRJOHfuHIaHh2XtXq8XbrebnnoSEiGCKC/JBIZTKJLwikjhOT17Lcct/R9xul+8Wq1e1ZhI9PJ6vaExEXq9flnX4PmZJ5682wNWCMr2G/LzVhRjtKjOrMD/XP9V/PjIQ+ie7IUr6AEAXFa0bd7jM4yp+I+9n8HL7QewNa8OVr0lgtGGz2rkDABMHnoCgcF2BAbb4e9vhfWaB6BOToXaknnRohMAGJZD8pYblv29SWStVs6QxBFvObNQ0ckwDKqrq2G10gdoKxVvOUPCh4O8zpGo8Fy+tLQ09PX1oW0Z3RsbGhpC1yCJobW1FcFgEGq1GjU1Ncu6Bh+ceeKpMhpR8sF7kYtRuDu74BscgrGkeLXCVZxVb8G/7/00eIHH20ONONB1DDvzNy14PMdyuK78isgFGAGrkTO+/vOwHXw8tC24bbC9+WfkffQHYNj4fAFIZKuRMySxxFPOTA9hmu6RNm266ExNTVUosvgSTzlDyGqISOG5efNm9Pb24tVXX8XExMSiP0VramrC4cOHwTAMNmzYEOYoSTw5d2YIbpcfGp0KWq0Khtw0ZK5fr3RYYaXiVNiSW4stubE9UZASxIAPI0//LyDNPCkHyyH9lk9R0UkIiSsLFZ0sy2LdunVUdBKiAOYSvariRUQKz5tuuglPPvkkfD4f/uVf/gUPPvggNBrNRc/p6enBJz/5SYiiCIZhcP3110ciVBIFUlNTIQjCsrpmA4DfF8Sxg12ytvSspFWILPqIkggGTMJP1b7SnBn726/ATw7K2lJ23wldTtlqhEei0EpzhiSeeMiZixWd1L129cVDzpDIWO7SeLEmIoXnrl27sGvXLhw6dAiHDh3C7bffjg984AOoqqoKHSOKIpxOJ1pbW/Hyyy/jkUcegdfrDT3tvPzyyyMRKokCubm5KzrfYfPNaUsy61Z0zWjVNdmH8+MdyDNnoyA5B2ZdfBbYl7KSnHE1vwXXmddlbdrcclh23b6yoEhUW+l9hiSeWM8ZSZLQ1NSE0dFRWTsVneET6zlDIsfmcwCYea8ar2VoRApPAPif//kf3H333ejq6kJ7ezu+8pWvAJgaTyBJEr73ve/he9/7Xuj46QmJMjIy8IMf/CBSYZI44LDLC0+VmoVOH5+TU/XaB+Dwu9A02oqm0VasSS1BXXbVpU8kAADeZcPo8w/K2hhOjfSbqYstISR+iKKI5uZmKjoJIYqK2KIxycnJePTRR7Fv3z5IkhT6A8zMXHth+4YNG/Doo48iMzMzUmGSOOC8oPDU6lTQ6iL2GUvE2LwODLvkbyLSDCkKRRN7JEnCyFM/gOT3yNpN6/dAbY395XYIIQS4eNG5fv16KjoJiQKCKF76oDgQ0XfjZrMZP/nJT9DQ0IDHH38cx44dQ3d3d6jQBID09HRs2bIFt956K/bs2RPJ8EicsE/K17Tkgn4E+3ogpq4Fq4qfAvRXJ/+Ec2PtKEzORYElF2atCVlJGUqHFTMcJ/8OX/dZWZs6NRfWfR9M+DGzhJD4IYoifD75B7LTRWdKCn1YSUg0ECTh0gfFAUXehdfU1ISmlRYEAXa7HYIgIDk5+ZKTDpH4d/78+dD042vWrFny+bYJ+RMsyTaOtq/9EZ2MCHPFWqz/5tdXK1TFBPgAzg63wMv7cHakBWdHWnDTmqugStDuoUvNmcDEECZeeUjWxqi1SLvhY+C0tNZaIljpfYYknljNGZVKhZqaGtTX18PlclHRGUGxmjMk8oxqg2w7Xj/+VvzxD8dxF+3mEQwG0d7ejrGxMezevTuCkRGl+Hw+BINBCMLyPv2x2+RPPFWiH6zEAxIgLfOa0eb4QD28/Mwn2AwY7Cu9TMGIlLWUnJFEASN//S4kIShrN2++HvoCGh+bKFZ6nyGJJ5ZzRq1Wo7a2FmfPnkVRUREVnRESyzlDIkvH22Hyz3S3VYl+BaMJn4gUnhUVFWBZFp///OfxwQ9+cEnn/vSnP8UvfvELpKen48033wxThCSasCwb+rMcF47x1PC+0CdH2qz4GC9cP9gs267OXIscc3z8bMuxlJyZPPg4AsNdsjZtdhlSLrsrTNGRaLTS+wxJPLGeM2q1GnV1dTSUIIJiPWdI5KSo/Uh3T4a2VQgoGE34ROyJ5+xxnEuh1+shSRImJiZWOSISraqrq1d0vssp/5RIK7hDXxty81Z07Wjx8a334cqSnXi96wje6j2Jy4u2Kx2SohabM6LAw1n/qqyN1RmRet1HwKq14QiNRKmV3mdI4omFnBHfmaBkoUKHis7IioWcIdHBmpOJnvbO0LZGFZ9DpxTvarsQSZLQ19eH5557DgBgMBgucQYhQDAowO/jZW0W78xC2YbC/EiHFBYMw6AivQwV6WX40Ia76M3EIgWGOmBYuxX+nmYEhqdu8MnbboEup0zhyAghZGVEUURjYyMAYN26dfSUjZAYok1PgdYyU3jqtFFboq3Iqv1UPM/jtttuQ1tb27z7JUnCd77zHXznO99Z8rUZhqFB2WRRLuxmCwAp3qHQ18ay0kiGExEaFU3ItRiCxwHP+eNgGA66wmqordmQ+ACSt92sdGiEELIioiji7Nmzod5hTU1NqKqqouKTEBJVVu2OpFKp8F//9V8A5Otxzu5ie2H7Yv8AwEc+8pHVCpXEMccFhScnBqCSpiaRYTUa6NLSlAhr1YiSiPNjHbD5HMvuvp6IJFGAq/EgRP6dCYUYBurUXKTuez91sSWExLQLi04AGBsbQ0tLi4JREUKWgmMBHesL/dFyNMbzkjZs2ID3v//9eOmll2TtAwMDYBgGZrMZRqPxktdhGAYcx8FkMiEvLw933XUXzWibQEZGRiAIAjiOQ0bG0taldF4wo62Wn1laRW2xrEZ4ipr02nF6qAkAoFfpkJWUjk3Z6xP2U21fbzN0+ZWXzBlv11kEbTNdrkWPHYbKXVBbcyIZLokiK7nPkMQUjTkzX9EJTK0YkJND9zelRWPOkOjUyQzjd+vGQ9upvIQrFYwnXFa9A/EXv/hFfPGLX5S1VVRUAAA+9rGPLXlWW5J4hoaGQuteLfVGfeETTx0/M7GQJsWyGuEpatg1Gvray/sw7plM2KJz4s1HYDvwKKx778WQqXTenJEkCaLAg3eMhdoCQ+3w9TRBZU6HoXyTEqGTKLCS+wxJTNGWM4Ig4OzZs5icnJS1cxyHmpoaJCcnKxQZmRZtOUOil31ChbzzW0LbKtXcoWPxIGLvWKlbIImEgF8Aw85MtKOdVXiqY3zdsnHPJJ5teQV2nzPUlmVKzBcyX28zbAceBQBMvPZHqNsOznucq/EABn/3JahSsmEo24jAUCd8PVNPjG2HHoevt3ne8wghJJpdrOisra2lopOQGON2CTDbM0N/tI5UpUMKi4hMmXTu3LlIfBsSJ4qKiiCK4rKe5F1+TTm2XlaEYEDAqa9+E/xkf2ifxmpdzTAj7q2ekzg5cAYAYNaaUJxSgD2FWxWOShm6/EpY996Lidf+CADQNu+HxWKBcfNNoWN4+yjG//YriH4Phv/yNegKquDrORvab917L3T5lRGPnUSHldxnSGKKlpxZqOhUqVSoqamB2WxWKDJyoWjJGRL9xGEbgPTQtt4nKhZLOMXnXL0kpq3kRdPtDuDkW90AgGHeBMaQA4PdDgaANi3GC8++U6GvHX4XOIZFmjE+PxFbDMvO2wAgVHx633oCep0e2HkbJEnEyDM/huifGuMr8QF4O06HzrXuvTd0PklM9OacLFU05AwVnbGF/j/IYlkYnWybi8+6U9nC88JZb6fbRFEEz/Pwer2w2WxobGzEU089hd/85jcKRUpixew1PPkgD47hMN3xVhvD4ytG3eNoHe+UtV1XfgVUbHwuMLxYFxaf03+D4+DraZz3HCo6CSGxSBAEnDlzBjabTdauUqlQW1uLpKQkZQIjhKwYxyTGU/GIFp4vvfQS/vSnP6GxsRFut5vGfZJV5/NOLZch+gOAKEIt+EP7dFmZSoW1YgzD4IY1V+JI7ylMeG0wagyozqxQOqyoMG/xucANnIpOQkgsoqKTkPgmivIHCSITnw8WIlZ4/uAHP8Avf/lLAMubaIhhmEsfROJCMBiEJElgGAZqtXpJ53o9U+se8a6pCXhU4uzCM3v1goywNIMVH9hwJ+6vezfOj3VgzDOR8E87ZzNuuQm8IMDx5p+nGqS5fVSo6CSzreQ+QxKTkjlz7tw5KjpjEN1nyGIZMnOAoZn3LpIqPkdDRuSnOn/+/IJF53RBuVC7SqXCzTffTOt4JpDm5ubQ9OM1NTVLOtfnmXriybumxvapxalClNVooDJdeg3ZaMcyLCrSy5QOI+o0NzcjaChGkiUXKlv/nP1UdJILreQ+QxKTkjlTWFgIm82GYHDqNY6KzthA9xmyWJxJD2BmJYZ47XkbkR/rscceCxWWmzZtwmOPPYaGhgY88cQTkCQJHMfh8OHDOH36NF599VV84xvfQHZ2NiRJAs/zqK6uxg033BCJUEkMGx50oKVxGOMjLjgm3RAYDqp3utpyBgM9NY9zjGsMnH1oTjurM1HRSQiJaSaTCbW1tVCr1VCpVKirq6Oik5A4ojJaZNsSF59PPCNSeJ44cQLA1I3zwQcfxPr166HRaLBu3TqYzWYIgoBDhw5Bp9MhJycHt99+O55++mmsWbMGkiThu9/9LsbGxi7xXUi8SE5OhsViWfI6ZJ3nx9BUP4jG04M4P8JhxFQceuKpSjKFI9SI8AS8ePH8azg92Ihh1yhEMU6nOluB5ORkJDf/HYwkzNkn+lywHX5SgahINFvufYYkLqVzZrr4rKurg8kUu69piUTpnCGxg7lg+BQTp488I/JTDQ0NgWEYXHHFFXN++datWwcAOHnypKw9KSkJ3//+98EwDHw+Hx599NFIhEqiQGFhIUpLS1FYWLik8yYnPLJtTgyGnniqY3hK847JHjgDbpwf78QbXUfxYutrNDHXBayOLjDj3fLGWTfxidf+SMUnkVnufYYkrmjIGZPJREVnDImGnCGxocch77HlFYMKRRJeESk8nc6piV6Ki4vn7CsrK4MkSTh37tycfeXl5di8eTMkScLx48fDHieJbfYLCk+VGAAnTS2voo7RTxsnvDa0jXfJ2jJNadRteBYx6MfYi7+UN7Ic8v/hp7DuvTfURMUnISTa8TyPwcFBpcMghESYNM+kiPEoIoWnXq8HgHln9CoqKgIAtLe3z3tudXX1RfcTMs1h98m2Nbw3tIanJiUl8gGtgq+//r94puUlnBk+B5vXDkmSUJ469wOcRDb48H9ACsr/7y3bboE6OR2WnbdR8UkIiQk8z6OhoQEtLS3o7u6+9AmEkLjB+/2ybSZOO7ZFpPC0WCwAMO84zfz8fACAy+XCyMjInP3TXXPtdnv4AiRxweWQ/9JqBW/oa02qNdLhrNiAcxh9jkG4Ah60jLXjlY6DACQk62K32/BqG3vlIfj7z8vaVOY0WC6/O7RNxSchJNpNF50OhwMA0NnZScUnIQlE6B2WbasD8fkENCJTJlVVVaG3txeHDx+es6+goCD0dUNDA/bt2yfbPzQ01eeZxrQljvb2dvA8D5VKhdLS0kWdI4kSPO6ArE3Hz0xLrU1PW9UYI+GtHvm452RtEm5ce5VC0UQf2+En4Tj67Jz21GsfAMvJe1dMz2o78dofZX/TbLeJazn3GZLYwpUzPM+jvr4+NCxpWl9fH3Jycmj9xxhG9xmyWEaVTrYdrwOqIvLEc+fOnQCAtrY2PPjgg7J9hYWFoa64zzzzjGyf1+vFK6+8AgBIS4u9woEsj9vthsvlgtvtvvTBoXMCEEX5hxO64MyLuDYjY9Xii5TWiS7Z9vb8jTBpYn8t0tXg620OFY8AwKfkQzCmgk8rgXHNlnnPme/Jp6+3Oeyxkui0nPsMSWzhyJmFik6NRoO6ujoqOmMc3WfIYml4F/QB+8yfoEPpkMIiIoXnu971LlitU10df/zjH+OOO+7A/v37AQAMw+DKK6+EJEl4+eWX8fWvfx3nz5/H0aNH8cADD2BsbAwMw6Curi4SoZIY5bB55Q2SBB3vmvqaYaDLyox8UCv0/9m78/go6vt/4K+ZvTf3HULCTRKuBFEOEQTBCxRQFNSKB23V2lqt+vNuq+JRv+JRrdajra21eB+oXAKKcoiAQhLCGUKA3Pdms9l7Zn5/rDvZSXY3u8neeT8fjzzYmZ2d+ezy3tl5z+d6YNbteOaiB7G48CJkaFNxbt7Z4S5SxFDlFkAzegoAQD1iEviMUbAMnQTz2cu8vs41+UyevRzqvHFBLyshhLhjs9m8Jp1xcXSjkZDBIlVhRLbhpPiXaawKd5GCIiRNbdVqNVatWoW77roLHMfh0KFD2LdvH+bPdzQbvPXWW7Fx40YIgoA1a9ZgzZo1vfZx3XXXhaKoJAI4B5TyR2ePgYVkvA0KztH0VqZWQxGFE20zDINRqcMxKnU4ri+iJqGuLPUnocoZA1lcEuRJGVAJArSjzoJq6Ng+X5s880qo8wop6Rzk+nOeIYNbIGPGZrOhrKzMY9Kp1WoDdiwSPnSeIb7SyhQAuitRZJ43jWohm530wgsvxN///ncMHToUgiAgNzdXfK6goACPPPIIAEdfTtc/ALjlllswdar75nMk9rAsK/75Sq+TJp6JyWqMuupyZF40H2kzzwUji+6vMMMwNIXKzwS7DeZTBwEA8qQMx79xyVDnjvU5ZijpJP05z5DBLVAx01dNJyWdsYPOM4RIhaTG02nOnDnYsmUL9u3bh6wsadPH66+/Hvn5+XjzzTdRWloKq9WKwsJC3HjjjVi4cGEoi0mikF4vTTyzR2Zh9C+is2mqnbNjf305chOzkRWfARkb3UlzoPEWI+IKZ8BYeQCcyXHhph1zFhiGftgJIZHNmXQaDAbJeko6CSGDQUgTT8Bx92f69Olun5s6dSrVbJJ+6ezRxzMxWe1hy8hX19mIU7oanNLVQMHKkZs0BOfkFFGNJwBL3QnU/fePSJx2GZLPvRK2lhpwRj0UydHXh5cQMrh4SjpVKhWKi4sp6SRkEGMgQMbbxWWWsXvZOnqFPPHsr7a2NnGAIhLb2trawPM8WJb1+f9c36OPZ0Ji9CaeZzpqxcc23g6TzUxJJwBB4NGy+V8QOBs6dq+F4eB3SLv4l4gfN7NfMUMGN4oZ4q+BxIy3pHPy5Mni6P4kttB5hviqC20YrjskLluUsXndFxWJ54cffojnn38ee/bsCXdRSAjU1NTAZrNBoVD4nni66eMZjSrbTmNjxbfITRyCVE0yGIbBsKSccBcrIhjKvoWl9ri4zBnaYW93zPPbn5ghgxvFDPHXQGJGr9f3mlKDks7YR+cZ4qt2qwb1mbPEZRZmL1tHr6Amnm1tbaisrERzczPS0tIwefJkqFQqn19fUVGBRx99FAcOHAhiKUksYGUMWJYR5/JMTIrOH/I91QdQ0VqFitYqaBUajE0bgSvHXRLuYoUdb+6SzNsJAIrUIUiatihMJSKEEN+lpaVh3LhxOHz4MABKOgkhUiabEvWJ3SPzq2N0Hs+gJJ7V1dV48cUXsXnzZnAcJ65Xq9W46aab8Pvf/x4yL6OMms1m/O1vf8Pbb78NjuMgCAI1NRxEcnNzxaYpvrr2l1MhV7Dg7BzaKmuQnhp9k24LgoA9Nd03WYw2E1I0SVDIou+9BFrb9g/AdXVI1qVdtBKM3PHZ9CdmyOBGMUP8NdCYyczMBACcPHkSxcXFlHQOAnSeIb6yQQh3EUIi4IlnSUkJbr/9duh0OnE6FMAxHYTJZMIbb7yBgwcP4s0333SbfH777bdYtWoV6uvrJQmn84RNYp+/zVEEQcChkjpwHA/OZELjZ58hu7MSatYOmUaDotXPQJMd+YPPnNbVoN7QJFl38eg5YSpN5LA0nYH+xw2Sddqx50A7pnvUYmrCRPxFMUP8FYiYyczMRHp6OiUigwSdZ4ivEpWDY3CxgJ75rFYr7r33XrS3t4vrlEol0tPTxWVBEPD999/j1VdflbzWaDTi4Ycfxu233466urruArIsbrzxRmzYIL3wJMTJauHAcTwAwG4wgmPlkPF2CDYb7Ho9FIkJYS6hbxJVCbh6wkLkJDiS5AxtKkanDg9zqcJLEAS0bHgNcLmJBVaGlLnXh69QhBDihetNd3co6SSE9CTvMXVerLbzDGiN5yeffILa2lowDAO1Wo1HHnkEixcvhlKphMFgwDvvvINXXnkFHMfh3//+N375y18iPj4eDQ0N+NWvfoWTJ0+KtZyCIKCoqAiPP/44xo2jyd6JZyajVXzMGY1gBB4ywQYAYJVKyKKkOVOqNhnLJy7CsgmXo7qjDm2mjkHfxLzr8E7JgEIAoB42Acr0oWEqESGEeGa1WlFWVoaRI0ciLS0t3MUhhEQJjpfekOJjdG7ygCaeu3btEh8/99xzmD9/vrgcHx+P22+/HYmJiXjiiSdgNpvx9ddfY/r06bjmmmvQ1NTdxDAhIQF33303rr322pBeeAuCgHXr1uGTTz7BkSNHYDQakZGRgalTp+L6669HUVHRgI9hNpvx/vvv46uvvkJVVRUMBgPS0tJw9tlnY8WKFZgyZUoA3kl043lefOzLnWGT0SY+5kwmKDireKdIptVEXfLGMAyGJQ/FsOTBnVzxVjNaNr8lWceotEg5/xowPe4M+hszhFDMEH/1FTMWiwWlpaUwGo04dOgQJk6cSE0tBzk6zxBfySAdfJVnomLiEb8F9F2dOHECAJCfny9JOl1dd911ePPNN9HU1ISffvoJn332GRobG8Vazosvvhh//vOfJc1zQ8FsNuOuu+7Ct99+K1lfW1uL2tpafPnll/jDH/6AW2+9td/HOHr0KH7/+9/jzJkzkvUNDQ1Yv349NmzYgN/85jf4wx/+0O9jxILy8nJx+HFfkn2zqTvxjM8fi9yzxmJUBmBtboHAc15eGTksdisUMjnYGL3D1R9t374H3igd1S1hwmyocwt6betvzBBCMUP85S1mXJNOwJFwlJeXY9KkSUhJSQlHcUkEoPMMIVIBTTxbW1vBMAymTp3qcRuWZXHOOedg/fr1WL9+vXiSjo+Px+OPP46FCxcGskg+e+SRR8Skc/To0Vi+fDnS09Nx6NAhvP/++zAajXj++eeRlZWFJUuW+L3/6upqrFy5Em1tbQCAc889FxdddBGSk5Oxf/9+fPTRR7BYLHjttdeQnZ2Na6+9NpBvL6YdKauHrs0IpVoOlUqO7KGZSBo3BIiiFto/1ZWhqasVmXHpyI7PQE5CJtSK6JyLNBCsbXW9BhSSJ2Ui+fxroq4GmxAS2ywWC0pKSmAymSTrVSoVtNrBMWAIIWSABsk1X0ATT+dJt6/aytzcXACOAYUEQcCoUaPwxhtvIC8vL5DF8dmuXbuwbt06AMCMGTPw5ptvivONXn755bj66qvxi1/8AjqdDk8//TTmz5+P+Ph4v47x+OOPi0nnvffeK6k5veyyy7Bo0SKsWLECNpsNL774IpYuXQqlUhmgdxhd4uLiYLfbIZf7Fp7HyhvQqbeIy/GJaowrGhKs4gUcL/Bo6mqFlbOhRl+PGn09pg0txoiU8HwfIkHzl68CAu+yhkHy7OWQxyW53d7fmCGEYob4y13MeEo6NRqN33OXk9hD5xniK1Y2OGIkoO/SbreDYZg+T7RxcXHi4+zsbLzzzjth7YT/1luOfmRyuRxPPvlkr/KPHj0af/rTn3DvvfdCp9Pho48+wsqVK33e/969e7Fjxw4AwNKlS9021508eTKuvfZavPPOO9DpdNi9ezfmzBmcU2mMHj3ar+1NLk1tASA5NToGE3Kq0zfCYrdKavKy4jPCWKLwMhzaBUvNUck69fAJSJh0vsfX+BszhFDMEH/1jBlKOklf6DxDfKUz6wG4zAISvqIEVVg6lLne+bnzzjvDmnTqdDp8//33AIDZs2d7rHVduHChWM5Nmzb5dQxnbapKpcLdd9/tcburr74a1157LW6//XYaDc9HZpMNdhsvWZeaHudh68j035KPsbFiGw7UlaO+swnxSi00g6TJRU+CIMBu7IAiY5i4jlGokH7Jr3sNKEQIIeFCSSchJJB48H1vFAPCXq87d+7csB7/xx9/FEcdmzFjhsftWJbF1KlTsWnTJpSWlqKjowNJSe6b/fW0detWAMDMmTORmZnpcbvCwkI8/vjjfpSetDYZeq1Lz/SvGXQ48TyPyrbTMNpMqGw/jcr200hSRce8o8Fga6kBb+pEXOEM2IeMhrFyP+LHz4YyY/A2OyaERBaz2YzS0tJeSadWq0VxcTElnYQQv/F8rNZxSoV9CM1wj/ZWUVEhPs7Pz/e67ZgxYwA4amWOHz/udVunpqYmtLa2AnA0p3Wy2Ww4cuQItm/fjvLyctjtdj9LTgCgtaVLsixjBRgP7IP+2HFYdbo+J/IOt4q2KnRape9hYcG8MJUmvAS7DcbKA+KyPCkDSdMWI+WC68JYKkII6WY2m93WdFLSSQgZCLswOPKAsNd4hnuEytraWvHx0KHe503Mzs6WvM7b6L1OzilmAMegSjabDa+//jreffddcbAhAEhOTsYtt9yClStXQiYb3E0KT58+LXbGHz58uNdtO9qlP/4yqwnHn/uPuFz81+cQP3JkMIoZEIeapDcw8pJykBk3OJtZm04dBG+V/n/GjZ0CmQ/Njv2JGUIAihniv+PHj6OiogI2mw3Jycnieq1Wi8mTJw/aAQGJZ3SeIb7SyKXXOrE6fn/YE89wc03++qp9df2h0el0Pu2/oaFBfKxUKrFixQqUlJT02k6n02H16tUoKSnBiy++CIVC4dP+Y1FHR4c471VfOjvMkmUFZ5EsqzIie5CeK8ddinNyirC/vhw/1R3EhMyx4S5SWHBdHbDUnZCsU6RkQ5HuWxNbf2KGEIBihvjHZrOhvLwcZrNZcnOYkk7iDZ1niK9UnAlKu1FcVvBmL1tHr0GfeJrN3f+xfTWRcf1hcX2dN11d3c0on332WVRXV2Ps2LH4f//v/2Hq1KngOA47duzA6tWrUV9fjy1btuCvf/0r7rvvPj/fSeCcOHECo0ePRkJCd19Di8WCY8eOAXAk4MOGDev1GuecrD0nSW5paUFdXR0AIC8vT5LgcxyHQ4cOAQASEhIwskft5KlTp6DX6wEA48ePlwxMpdPpUFvdJNlewbn8vygUOFxZCa1Wi7FjpQldTU2NeNMhPz8fanX3nSaDwYCTJ08CADIyMjBkiHRqliNHjog/JOPGSScLra+vR3NzMwBg1KhRkml3zGaz2EQ7NTUVubm5YBgGw5KHYljyUEyQj4LRaMTBgwcxadIkyX6bm5tRX18PABg2bJjkJojdbsfhw4cBAImJiRgxYoTktVVVVejs7AQATJgwQXLR1N7ejurqagBATk5Or6mQysrKADgurpxNzZ3OnDkj3oApKCiQfH86OztRVVUFAMjKykJWVpbktYcPH4bdbodSqURB/lgIrAza/HNgOlmKjvZWGE1m2LQjMNpolIyCbTKZxObxaWlpvVop2O12lJWVgWVZTJw4UfJcU1OTeCNoxIgRSExMFJ9zNn0HgKSkpF53pisrK8Xv8sSJE8Gy3b0U2traUFNTA8DRqiE1NVV8zjmJPOAYzbvnCIenT59GR0cHAGDcuHGSixO9Xo9Tp04BcLS26Nk/vLy8HDzPQ61W9+omUFtbKzbxHzt2LDSa7pGeu7q6UFlZCcAx9VVOTo7ktUePHoXVaoVcLsf48eMlzzU2NqKxsREAMHLkyKg4R5w5cwYAMGTIEGS4uRFls9lQUVERsecIVxUVFTCZTGAYZlCdIwoLCyXP1dXVoaWlBYBj1FB/zhHHjx+H2Wz2+xwhCAI0Gg3MZrM4LkRcXByKi4uhVCrpHPGzWDtHHDx4UPy/7885wmaTjrrvROcIh1g6Rwz0OkJpacRQfbO4TgYrgPCdI5wxGGhBSTzLy8uxdu1ar887eduupyuuuKL/hfLAtW9lX3csXZ/3tU+m8yQKANXV1Rg3bhz+97//SU4kl112GaZMmYKlS5eira0N//nPf/CLX/yiz6a/wcJxnPjD6iQIgngC5Tiu12vsdrvHEyzP8+JzPfcLQHzO+ZmOGzcOgiCAYRicPn1afL5nf01BEGA2Sf8flK6Jp1LpsVyu693tt6/y+vJeve3XXfzYbDZxSqJA7jeQ/zeuOI7zWCbX/bqLF+d7ZVkW+v2b0b7jQ6RecD0Szr4EHT9ug1VphZ2Re32vrvt1xszx48dhsVgkJ3R35fUW36H8DL3FoS+fIc/zbpvme/u/8fW77K5/tK+fYbDPEZ726893edy4ceJFZTSdI2w226A7R/iz377i0PkZ+nuOACAmJSaTSZJ0AnSOcLffaD9HOPcrCILbeTh93a+7m1N0jnCIpXPEQD9DbXw8WEV3zqCUdf8fhuMc4e7/MhCCknhu2LABGzZs8LqN80vx0EMP+bRPhmGCkni63qGy2Wxek0+r1So+9rVZTc8geOKJJyRJp9OQIUNw55134rHHHoPdbsfatWvxu9/9zqdjBJpMJuv1hWMYRryL4i5A5XK5x6YkLMuKz7n7Ijufc57YXffjut+eJ1KGYXrtL87a3n1ctRoKhcJtufrary/ldbdf1/fqbb9yuRxndI7+xdkJmVDKHOX0lHj6s19v79Xbfn35v3Elk8k8lsl1v+7iRaFQgGEYyHkb2re/D95kQMv619C5fwtkU5eCiVdDwTBe36vrfp3rlEoleJ53+15cy+stvkP5GXqLQ18+Q57n3ZbL2/+NL99lnuf7/D8P5znC0379+S47zw2CIETsOcLdfgfdOcLP/fYVhwqFAhzH9escoVQqkZOTA6vVKkk6ATpHuNtvtJ8jnPsd6DnC3XUInSMcYu0cMZDPUJmdCm1rd+KpVnWfX8JxjnD3/gOBEQI47GdhYSEYhgnKSKIMw4hV2IH0hz/8ARs3bgTgmFrFtVlIT1u2bMEdd9wBAHj44Ydx00039bn/t99+G08//TQAR7X8V1995XHbtrY2nHvuuQCAWbNm4V//+pfP72MgDAaD2PwFcDR3cJccR6JX/rINbS4j205s2IYswykAQPzYsSh+7pkwlcw7QRCwsWIbDFYjWIZBujYVk7IKkaYN7yjPoday+S3o962XrBuyYhU0wyeEqUSEEEIIIaFV9fV6lHyzX1xWqxgs+PMfw1aeYOUGAa3x9GWU10jj2j5bp9N5TTxdBxRy7aPhjet/Us9+Bz2lpqYiOTkZOp0OTU1NXrclDoZOaV9bpb17VFR5QlzPzSNGp7ULBqvjzhYvCGjqagXLhH12o5CyttRA/9Mmybq4wnMp6SSEhJVzqhTXfo+EEEIGLqCJ5zvvvBPI3YWEawfq+vp65OV5HkXTdYTanp3tPenZ8bsvzqY7wWpbHQ30er3YXNL1xkBPVosdVou0zbqK626mIPdyEyHctp7YgaauVqRrU8AyLDRyNZLVnt9rLGr7+r8A3/3/x8gUSJ1/Q7/25WvMEOJEMUPcMZlM4sjzkydPliSfFDPEXxQzxFdNilZ8W3BaXE7mGSwIY3mCZdCPaus6OlRFRQWmTZvmcVvnKFgMw/Qa3cwT11GiXOcMdYfjOLFWtefoXYPJqVOnxNHeeo5s56pT33tkYZVLjaciKSko5RsoXuCxoeIb6C0GKFg5suIzcPGY2WGf0zaUjJUHYDzxk2Rd0vRFUCT3L+59jRlCnChmSE9GoxElJSXieA4lJSWS5JNihviLYob4qkXHg2/sHom4i7V42Tp6Da62fW6cddZZYqfaPXv2eNyO4zjs27cPgKMvq693rlJSUsQktaKiQlJr2tOhQ4fEH7yewxqT3qwWDolJarCsI2GT8TbIhO4RvxTJkZl4VrVXQ28xAABsvB01+nqMSB7Wx6tih8BzaN38lmQdq4pD4tSFYSoRIWSw65l0Ao7pP5zTihBCSDAZ9AwyGkaLf9qW2LwuHPQ1nomJiZgxYwZ27NiBb775BnV1dW6b0a5fv16cr2nBAv8qvy+77DL89a9/hSAI+Mc//oE//elPbrf73//+Jz729xixJDs7GxzHuR2By1VKmhY3/vZcKBUy2Gw27L39D5LnlUnJwSvkAPxUd1CyPCQhE4UZoz1sHXv0P30FW1udZJ1mZBFkmv53Wvc1ZghxopghTu6STsAxJ2RBQYG4TDFD/EUxQ3xlb9QBSBOXNebY7HI36Gs8AeDmm28G4JhO5Z577oHBYJA8f+LECTz11FMAHJO3Llu2zK/9X3vtteJgRO+99x4+//zzXtusXbtWXD9lyhQUFxf7+zZiRmZmJoYMGdJrotueWpoMKPupBj/+cBr7d51Ep0o6abEyzbcBoEItTZOMUSndd7LOHjLJy9axhTMZ0P7de5J1srhkJJx1ERiZ+2HGfeFrzBDiRDFDAO9JZ1FRkWSaAYoZ4i+KGeKrBF5aFyjrPe1mTBj0NZ6AY+qSSy65BF999RUOHDiAJUuW4LrrrsOQIUNw+PBhvPfee+jqckzZcf/99/ca0XbPnj248cYbAQDTpk3rNchSSkoKVq1ahbvuugscx+H+++/Hxo0bMW/ePCiVSmzbtg2bNjlG91SpVHjiiSdC8K6jn9XS3ayWN5vB8tKJdZUpkTk1yfzRszB/9Cy0mXTYX1eOMakjwl2kkGn/7n3wFqNknbZgOtTDxoWpRISQwaqrqwulpaVuk87i4mK3c+YRQkgwKFnp+SZWR/2gs+rP/u///g9dXV3YuXMnampqsHr1asnzDMPgjjvuwLXXXtuv/V900UV4/vnn8cc//hEGgwHbtm3Dtm3bJNskJyfjtddew5gxY/r9PgYT18STM1sgF2ziMqtSQRbhQ+GnapJx4ehZ4S5GyFhbaqDfL53HVpGei6RzFoCVKz28ihBCAq+rqwslJSWw2WyS9ZR0EkLCgeOljVD5GJ1ij86sP9NoNPjnP/+JL7/8EmvXrsWRI0fQ2dmJ5ORknH322bjxxhtx9tlnD+gYCxYswNlnn401a9bgm2++QW1tLRiGQV5eHi688EL84he/8Hl+UAJYrd3tEDijCTK++wJCplZDplaFo1jEg5ZN/wAElz4LDIvEyRdBke7flEOEEDIQnpLOxMREFBUVUdJJCAk5TWom4DL+qCCLzfNQbL6rfmIYBosXL8bixYv9et306dNx7Ngxn7bNzMzE3Xffjbvvvrs/RRwUysvLxeHHJ06c6HE7m2viaTJB6dLUllWrwKoiL/E82HgURpsJaZoUpGqTkaxKBMvG5l0tV10nfoL5dLlknTqvEAnFFwRkGhlfY4YQJ4qZwWkgSSfFDPEXxQzxlSIlEUCXuMzIYrOxLSWeJOLwPC/+eXPiaBM4jodCKYO5w+IyFpijxpNVRl7zzVp9A/QWA07rHHO6ThkyEWPSRoS3UCFg72iGLD4FnKEdAMAo1EietQysOi4g+/c1ZghxopgZfAwGA0pLS/td00kxQ/xFMUN8xSrj4Jp4CmxsjoRMiSeJOGq1GjKZTDKaoDsVR5rAc8LPS3GIV8QDVseUN7K4ODARVpNotVvF+TudUrXJ4SlMCHFGPXhjJ+InXwhr0ymYqw4irmA6NCMCd/fX15ghxIliZvA5ffp0r6QzKSkJkyZN8ql5LcUM8RfFDPGVrMeNeIaNzRQtNt8ViWr5+fl9bmM22VySTge1rXu0VEV8/+eEDAZBEPDQ1v8Dy7AYEp+JrPh0qOUqJKsSw120oBIEAcaKHyEIPBiGgSprJFTpeUiYcimYAHac9yVmCHFFMTP4FBYWwmazQafTAfAv6QQoZoj/KGaIrxr0jZJli2DzsGV0o8STRCW9ztRrnZLrrk2UJ0ZWQlfdUYfqjjoAwGldDViGxXWTlsR8/05r4ynYOpol69TDJ0CRlObhFYQQEhwymQyTJk3CwYMHIQiCX0knIYQEk4WXTuvEC4KHLaNbWM64Z86cwZdffon9+/ejrq4OHR0d+N3vfofrr78eAPDYY4+hsLAQS5cuhTIC++mR8NPrzdIVggAl171OkZQU4hJ592NdmWQ5TZOMy/Pnh6k0ocHbLDBVlUrWsSotNMMnhKlEhJDBzpl8Oh8TQkgk4G3SuegRm3lnaBNPo9GIJ554Al988YXY0VoQBDAMI5nAedOmTfjggw/wj3/8A88//zwmT54cymKSKNDZIU08ZYIdrnWHyuTISjz310lHdD07pyj2L3pYFqqh+TCfOQyBd4xArB1zNhgZ9XUhhIRPzJ97CSFRx1rbCCBLXFbYYnNAqpC189Pr9bjmmmuwdu1acBwHQRAguKlG7urqEvtf1NbW4uabb8aPP/4YqmKSCFBbW4szZ86gtrbW4zZdnRbJsuscngCgSIus+VB/P+NmrDxrOYqzx0HOyjElZ1K4ixRUxpMlqPvPI2AYBolnXwJFShaU6blQpuUE5Xi+xAwhrihmYldnZyfKy8vBcVzfG/uBYob4i2KG+EojSG+IsTFa4xmyxPPee+9FRUUFBEFAeno67rnnHvz3v//ttZ1CocB9992H1FRH4mA2m3H//ffDZOrdp4/EptbWVjQ3N6O1tdXjNsYuaVt4eY/EU52eHpSy9VdWfAYW5F+AR+bciX9dsRoTswrCXaSgEQQBbd/8D9aGStT9949o2fgmVLnjEFcwPWjH9CVmCHFFMRObOjs7UVpaipaWFhw8eDCgySfFDPEXxQzxlYq3Qsa5/PXo8xkrQpJ47tq1Czt27ADDMJg2bRq++uor3HrrrZg2bVqvbZVKJX71q19h3bp1YhPb+vp6fPbZZ6EoKokSpi5poun6BWVVqogbXMiVRqGGPEbnZwIA44mfYG2sEpe7jnwP86mDYGQ0iAchJHj0ej1KS0thtzv6Sul0uoAnn4QQEgwp8g4M6zgk/uV2Hgl3kYIiJFeCX3zxBQBAo9HghRdeQFxc35PGp6Sk4KWXXsLFF18Mq9WKr7/+Gr/4xS+CXVQSAcaOHSv2/fXEbJImnq41njK1GnIfYixUrJwNgiBAJY/9gbIEQYBux4eSdYrUHCQUXxDU4/oSM4S4opiJLXq9HmVlZWLS6RTI/1+KGeIvihniqwSZEkD3+CWxWj0RksTzp59+AsMwuOCCC5DuRxPIrKwsXHjhhVi/fj2OHTsWxBKSSKLRaPrcRiaXVtbnTBiJ4ReugLW1FYIAyOO0wSqe387oanGgvhwpmiRkxWdgSEIm0rWR1Qc1UEyVB2Cpr5SsS551FZgg1/D6EjOEuKKYiR3Oms6eNZspKSmYOHFiwAYTopgh/qKYIUQqJIlnS0sLAGD06NF+v3bkyJEAgI6OjoCWiUQ3s0l6Vzt7/EjkzhsTptJ4V6tvgACgzdSBNlMHTDZzTCaegiCg9eu3JevkKdmInzA7TCUihMQ6T0lnamoqJkyYQCPYEkJIBAlJ4uk88TunUPGHzeZoQqlWqwNaJhLdzCZpp2ttXOQ1YxUEAbvP/IS6zkbIXGr8suMzwliq4DEe3wdbS41kXdKMJUGv7SSEDE4dHR0oKytzm3ROnDgRLBuy8RMJIYT4ICSJZ2ZmJk6dOoUjR/zvKOucSiUzMzPQxSIRqqurS+wT4ak/sLHH4EIabeTNDVnf2Yi//vAvyFgZMrVpGJKQicKM0RiamB3uogWcIAho++5dyTpWHYf4wnNDcnxfYoYQVxQz0S0cSSfFDPEXxQzxlRk6DG8/JC5blbHZLzgkief06dNRVVWF7du3o6amBrm5uT697vvvvxf7h55zzjlBLiWJFJWVlbDZbFAoFCgqKnK7jckorfHUaCOvxvOnunIAAMdzqDc0QW8xYFHBhZLaz1hhOlkKW3O1ZF38hNmQaRNCcnxfYoYQVxQz0StcNZ0UM8RfFDPEVzqbDO1J48RlgaHpVPpt6dKlAAC73Y677roLOp2uz9f89NNPuOeee8TlxYsXB6t4JMrwvAC5nAXDdt8N0kRgU9v99QclyzPypmB8Zn6YShNcbdvekSwzKi2Szr0yTKUhhMQqnU7nNulMS0uj5rWEkKjVZdPgRPpU8a82cVK4ixQUIanxLCoqwuLFi/HFF1/g8OHDuOyyy7B8+XKMHz9e3Ean0+Ho0aOoqKjAli1b8PXXX4PjOHE03LPPPjsURSURID09HRzHeRwUgmUZ3Hrv+WAYgLPZ0X7iNBKUkTVPm7M/M8MwEAQBAHB2zsSYHFLdeLIE1sZTknVxBTOgSPJ9BOuB6itmCOmJYib6dHR0uJ2XMy0tDRMmTAh60kkxQ/xFMUN8Zf35WjHWhWxG9yeffBI1NTXYv38/2tra8PrrrwPonmPrzTffxJtvvilu77xYHzNmDJ599tlQFZNEgJycnD63KdlbDY7jwXUZUfflOuToK6ARzJBptSh+7hmos8Pbj5JlWTx6wd0wWLpQ0nAI++sPYWJWYVjLFCxt3/Su7UyZdXVIy+BLzBDiimIm+iiVSsjlckniGaqkE6CYIf6jmCG+ilMOjql3QtYmRalU4u2338ZNN90EmUwGQRDE5NLJuc7ZEfuyyy7De++9h/j4+FAVk0QBgRfAcY4aRXtXFwCAFTgIHAe7wQB5UlI4iycRr4rDrOHTcOeMlVDLVeEuTsC5re0snAFFSlZ4CkQIiVkajQaTJ0+GSuU4l6anp4cs6SSEkGBSsdK6wNhrH+cQshpPAFAoFHjooYfwy1/+EmvXrsXevXtRWVmJjo4O2O12JCUlITc3F1OnTsUVV1zRr3k/SexzJp0AYO8yAnAkngDAqpSQ0dQ7IdP+3fuSZUapQersa8JUGkJIrHMmn9XV1RgzZgwlnYSQmMDz0lRTiMGuWUCIE0+nrKws3HbbbbjtttvCcXgS5ez27sSTM5kAAIzgWCfTaMPej9LG2bDrzI9I16YiIy4VaZoUyGVh+aoFFW8xQj18IsDKYKk7AfB2xI+bCXkI+3YSQgYfjUaD/PzYHKiNEDI4MZBWmnBM5E0TGAghuRpuaGhAdpj73JHocfToUdjtdsjlchQW9u4XabN19+9JHF+I+DGjMbnwOlibmiFw4R9kqNXYjqauVjR1tQLNgJyV4YrCS2Luzry5+igYuQKakUVQ5RbAWl+J5POvDUtZ+ooZQnqimIlsRqMRGo0m7DcSXVHMEH9RzBBfRc6ZLrhCknjOmzcP06ZNw5IlS3DxxRfTJLrEK6vVCpvNJo4M29PpEy2oq+6AQsFCrpAhIVGFxLFjgLFjQlxS95qNbZLlZHVSzCWdvMUES8NJcZlVqJA0fREUialhKU9fMUNITxQzkautrQ3l5eXIycnB6NGjIyb5pJgh/qKYIT6Tx2YNZ08hSTx5nseePXuwZ88ePP7445g/fz4WL16M2bNnx9wFORk4uVwOQRAgl7sPz6PljThxpElczhuZEqqi+WTLiR0AgHRtCtQKNdK1kVW+QDDXHIXAd9cuMwwDdd44L68Irr5ihpCeKGYikzPp5HkeNTU1ABAxySfFDPEXxQzxFasYHOOThOSbkJWVhcbGRgCA2WzGhg0bsGHDBqSmpuLyyy/H4sWLMWHChFAUhUQB1/ld3TEZbZJltTpy7hKZ7RbsrS0B/3Of03hlHMamjghvoQKMt1lgqa+UrFNmjYRMHb6WDH3FDCE9UcxEHtek06mmpgYJCQnIygr/SNkUM8RfFDPEV53mTgDhaTUWSiGpbvzuu+/wzjvv4JprrkFycrI4ZUprayv++9//4uqrr8bll1+Of/zjH2hoaAhFkUgUMxmtkmW1JnISz4rWKjHpBACjzYT89FFhLFHgCTyP+PHnQZ6YBiD8tZ2EkOjX2traK+kEgMzMTGRmZoapVIQQEho2wS5ZFjxsF+1C1s516tSpePzxx7Fz50688cYbuPzyy6HRaMQktLKyEi+88ALmzZuHm266CZ999hm6fp6jkRBXZpP0y6nRRk7ieaS5QrI8KmUY4pTaMJUm8CwNJ3Hmb7eis2wbtGOnIaFoLjQjiyDT0Fy7hJD+8ZR0ZmVlYdy4cRHRzJYQQoJJGCTdgEPe6Fwul2POnDmYM2cOzGYzvvnmG3z55ZfYuXMnbDYbBEHA3r17sXfvXuoPStyyWqRNbfmWeugOAsrkJKizssAqlWEqGTA0MRtnDZmAo82VMNnNGJcRGQMeBUr7zo8hWIzQ7foEHfvWI+W8q5A8c2m4i0UIiVLOpFMQpPf3s7KyUFhYSEknIWRQsAm2vjeKAWHt7axWq7Fw4UIsXLgQer0eX331FdavX499+/aB4zhJf9C0tDTs3LkznMUlIdLY2AiO4yCTydz267GYpVOm6Ldvw6F1xwAAE598HEmTJoaknO6cN2wqzhs2FRzP4bSuFlqlJmxlCTRL4ykYj+0RlwWrudfFYrj0FTOE9EQxE34tLS04dOhQ1CSdFDPEXxQzxFcqWfgqTUIpYobZSkxMxLJly7Bs2TK0tbXh008/xd///neYTCaxPygZHBobG2Gz2aBQKHqdqO02DhwnbY+g5MziY0VKciiK2CcZK8Oo1GHhLkZA6XZ9LFlm1fFIOmdBmEoj5S1mCHGHYia8PCWd2dnZKCgoiLikE6CYIf6jmCG+UvEcGJf2tmyMtr2NmMQTAKqrq7F161Z88803OHDgADiO6/tFZFDpOaItACg5k/hYkZwcwtJI2XkOclYWtuMHk6WhCl1HfpCsS5p2OVhV7PRfJYSERjQmnYQQEkyp8naMaK8Xl2WwAlgevgIFSdgTz6amJrE57cGDB8X1zh+krKwsLFq0CFdccUWYSkhCbeTIkeB53m2fXmOPEW0BQGU3AgAYuRxybfgSod1nfoLe0omMuDSka1MxJCETmhiZl6l1y1twHWONVWmROHVh+ArUg7eYIcQdipnwaG5uxuHDh6My6aSYIf6imCG+SoyLB5juFnyyGA2ZsCSe7e3tYn/On376SfwBcv6r0Whw8cUXY8mSJTj33HMj+oeIBF5CQoLH53rWeMp4K1Q/N7VlVUowYTq58wKPFmMbbLwdXboanNLVYEbuWRiWPDQs5Qkkc90JmM8clqxLmHxhWOft7MlbzBDiDsVM6NlsNhw9erRX0jlkyBDk5+dH/G89xQzxF8UM8VXS2GGIr24Rl9UqVRhLEzwhSzwNBgO2bt2K9evXY/fu3WIzWucPEMuymDFjBpYsWYJLLrkEGk3sDMpCAsfUJa3xVNrNkP0895FMFb7axQ5zJ2y8dJqXjLi0MJUmsNq+/q90hUyOhAjp20kIiR4KhQITJkyQTJ0SLUknIYSQgQtJ4nnHHXdgx44dsFodSYPr3c6xY8di8eLFWLx4MXW8Jn0y9Whqq+At4mNZGG9WbKrYhh+qDyA9LhXp2lTkJQ2JiWa27mo74/KnQZlME7oTQvyXmpqKiRMn4uDBg8jOzqakkxBCBpGQJJ5bt24FwzBiwpmamorLLrsMV1xxBSZMmBCKIpAoYrFYIAgCGIaBqkdTg55NbRWca+IZvkSvRt+AekMT6g1NAICzhkzE5QUXhq08gdL2zTtw7dsJmRyp824IW3k88RYzhLhDMRM+qampOPvssxEXFxdVSSfFDPEXxQzxVbu8A4fyasTleFaGWGxbFrKmtkqlEhdccAGuuOIKzJ49GzJZbI7+SQbu2LFj4vDjRUVFkueMXV5qPOPC0+eQF3gcbT4hWTcz7+ywlCWQbO0Nbms7FRFY2+ktZghxh2ImvOLj48NdBL9RzBB/UcwQXzV1WXDGnicux6H3LA6xICSJ5xNPPIFLL72UOlmTAeM5AQzLQOAdtXBylxpPeZgSz1p9AzqtXZJ14zLHhqUsgdS+8yPAdR4phkXqBSvCVyBCSNRobGwEAOpCQwghPujsUCC3arK4bFcZwleYIApJ4rls2bJQHIbEiOTkZHAc57ZWfM4l+Zg5bzQEXkDpn5+Erf20+Jw8THfQU9RJ+O20G1HRWoXjrVUw2kzI0KaGpSyBwlvNvebtVA+fAEVKZF5EeosZQtyhmAmexsZGHDlyBADAMAwyMyOvlUR/UMwQf1HMEF9ZmtoBJIvLarPgcdtoFvZ5PAnpadiwYR6fq6vuwJmqVsdjPg0atQmZXY7kU54Ynhr1eFUc5o48F3NHngsAsPNcVPVbcke//ysINrNkXfLMq8JUmr55ixlC3KGYCQ7XpBMADh92NNePheSTYob4i2KG+CreIl2W2ynx7NONN94IwHGH8+233+61fiB67pMMTjYbJz4WbHawQveyIjExHEXqRc5G951NQRDAKNSIm3g+LHUVsLfVQ5E2FNqRk8JdNEJIBGtoaMDRo0d7rdfr9TGReBJCSLCoZUrJcnRXX3gW0MRz7969bmt6PK33lXNEMEKslu65Mnm7HTK+u/O1Iin0iScv8Oi0GJCgigfLsCE/fjDY9c3gunRQpGRDkZINztgJzYiJ4S4WISSCeUo6c3NzMXr06DCUiBBCogfPS/McIUZTz4A3tfWUJLrO3UlIf1nMjsRT4HmA5yCXJJ7JIS+PwdKFr05sh5yVIUmVgBRNEiZnTwDLRm8SaqmtkCwrU7MRVzAtTKUhhES6vpJOunFMCCHeyeOlY4NwMkWYShJcAU08v/76a7/WE+LOiRMnYLfbIZfLMWbMGMlzFrMj0eQtjmlVXGs8lanJISujk86sB+Do19lq0sFoM2NKTvQ2SeXNXbC11ErWqYbmg4nw2lxvMUOIOxQzgVFfX49jx471Wp+Xl4dRo0bFVNJJMUP8RTFDfKXJSgNOdM+QwMpj59zpKqCJ59ChQ/1aT4g7RqNRnPdKst5gwemTrVAoZIDZCItMAxnfPa+nIiUl1EVFi7FNspyiiYx+pv1lrj8BAd2tExiZHMqsEeErkI88xQwhnlDMDNxgSjoBihniP4oZ4itWpgTgMjVfjJ0/nSJ+VFubzYbKykq0tLRg1qxZ4S4OCaOmhk6cONLcvSKxAGNb9gIAGLkccq02pOXhBR4v7X4LKrkSqZpkpGpTMColekewEwQB6qH5YFg5LPWV4K0mqLJGgJUr+34xIWRQ8ZR0Dhs2DCNHjoy5pJMQQoJJlpgGoF1cFmSxee0VksSzsLAQLMvivvvuw8qVK/167auvvoo33ngDGRkZ2L59e5BKSCJJUVGR2/X6Dun0Hqxgh+znUW1ZlRJMiOfJauhsgsluhsluhs6sx8n2M1g67tKQliGQOvdvRmf5diRNuwyJ51wKe1sDZAmhr0XuD08xQ4gnFDP9V1dXh+PHj/daH+tJJ8UM8RfFDPFVi75RsmwX7B62jG4hq/Hs7+BCGo0GgiCgra2t741JTDMarJJlGW8Xx/ySqdQhv9g53lolWU7RJGF06vCQliFQBEFAx48bYGupQVPNUcgS0pB28UrEZ0ZvDS4hJPAGa9JJCCHB1GUzSZbtAh+mkgRXxDa1FQQBNTU1WLduHQBAG+JmlCTymEw2ybLM5W4Qq1aFuji9Es/8tOjt02SqKoOtpUZc5jpbwSo1YSwRISQS2e2978IPHz4cI0aMiNrzHyGEhJvAxWai2VPAEk+73Y4rr7wSJ06ccPu8IAh49tln8eyzz/q9b4ZhkJ+fP9AikijnHNHWScZ3XwDJNKFPkm6afDVmD5+KitYqHG+pQnH2+JCXIVD0+9ZLlhXpudCMLA5TaQghkWrYsGEQBAFVVY4bb5R0EkLIwJnrGwFkiMsKa2wmogFLPOVyOVatWoVf/OIXHpvV9re5LcMwuOWWWwZSPBJFWlpawPM8WJZFenq6uN5ikt5pd63xlGlDn3iq5EqMyxiLcRljQ37sQLK11cF44ifJuqRzFkbVhaSnmCHEE4qZ/hs+3NGlQBAEjBgxIryFCSGKGeIvihniK7VNmiMx/UuZIl5Am9qeddZZuOmmm7B582bJ+rq6OjAMg8TERMTFxfW5H4ZhIJPJEB8fj9zcXCxfvpxGtB1E6urqxOHHJYmnpUfi6TKHp1zbd1wR91q/+Z9kmVXHIX7SnDCVpn88xQwhnlDMDIwz+RxMKGaIvyhmiK/UPSo4o+fWv38C3sfzwQcfxIMPPihZV1hYCAD4zW9+4/eotoQ4Wb0lnj7c0AgkvbkTOrMeadoUaBWaqKoddMUZO3rVdsZPmA1WqQ5TiQghkYLmHySEkNBIlrVieFu9uCyDFcDV4StQkET8qLZk8MnLyxObprjqnXh2L8vjQ5t4VuvrcajJMbKjWq7CyJQ8TMoqDGkZAqF916cA5/q5Mkg468Kwlae/PMUMIZ5QzHhXU1OD06dPo7i4GPHx8eEuTkSgmCH+opghvoqXycGie9pAObgwliZ4QpJ4Hj16NBSHITEiJcX93JEKpXSeziHjRyBnZgrshk4kFYd2IJxWY/ckv2a7BRwffZ3Aec4Ow8HvJOtUQ0ZDlTUyTCXqP08xQ4gnFDOeVVdXo7KyEgBQWlpKyefPKGaIvyhmiK9kjPTmBBOjjW0jdjoVQnqy9Rjha+iMyRh5buj7GRksXahqPwO1vHvu0DRtcsjLMVCG0q/Bmzol6xJnLApTaQghkcA16QQczW1LS0sxbdo0anZLCCFkQAKaeNbV1YmPc3Jy3K4fCNd9ksGn5+BCKlV47pvsqyvF+uPfQMHKkapJRlZ8Bi7Pnx+WsgxEx74NkmVZQiriCmeGqTSEkHA7c+YMTp482Wt9Xl4eJZ2EEEIGLKBX7vPmzQPDMGAYBocPH+61fiB67pPELo7rbtcuk3U3r+05j6dSHZ7E82TbGQCAjbejsasF6XGp0CiiazAe05nDsLXUSNYlFF8Ytf1QPMUMIZ5QzEh5SjpHjRqFYcOGhaFEkYdihviLYob4yoZODNGfEJd5RWyOjRPwK/dAz+FJBp9Dhw6JoykWFRWJ6y3myKjxrGitkiwXZY2LulFtdd9/KllmFCokRXEzW08xQ4gnFDPdPCWdo0ePRl5eXhhKFJkoZoi/KGaIrzo4HkZlsrjMyWhwoT5NnTrVr/WE+MNmlX4JlWFIPDmeQ5fVKFk3Ni26BuOxG/UwVZVJ1sXlT4NMpQ1TiQgh4XL69GlUVVX1Wk9JJyGEhI7eEo9DOVPEZbVNH8bSBE9Ar9zfeecdv9YT4k5CQgLsdjvk8u7wFAQBd/1pPjg7D5vJDJvJitR0TcjLJmNl+NvlT6DNqMPx1pM43lqFManRNZE619kK9fCJsNafAG/uAsAgaebScBdrQNzFDCHeUMx4TjrHjBmD3NzcMJQoslHMEH9RzBBfWXh73xvFAPomkIgzcmTvGkSO4/HT7tMAAEPFCbT/tB95+iNQK1ioh2Sj6Nm/gA3h4Bep2mTM0E7BjLwpfW8cYWztDVDnFkA1dCzs7Q0Q7DaoMqO7D5e7mCHEm8EeM5R0+o7neRgMBigUCgiCALvdjoqKinAXi0QRipnoI5PJoFQqkZiYiPj4+KCPgaFShr4yJRwo8SRRgee6+whzZgsAgOU4cHYL7F1GMHQ30ScCZ4OtpRYAwDAsFKk50I4+K8ylIoSE0qlTp3Dq1Kle6ynp7K2zsxO1tbU0TgUhg4zdbofFYkFnZycYhsHQoUORkJAQtOPFyZSS5egaOcR3Ybla99TsYO/evfj888/R0NCArKwsXHLJJZgzZ04YSkgiDc93/+jzFkfiyQiOeT1lanXIBvcpazgClmGRGZeGVG0K5Gx0jVJnbamFwHf3lWUYBsqM6K7tJIT4rqmpyW3SOXbsWAwdOjT0BYpg7pJOhmFodFJCBgGO48TvviAIqK2tDWry2fPeVqze6gpp4rl792688cYbqKiowK5duyTPvfLKK3j11Vcl6z777DPMmTMHL730ElQqVSiLSiKMa42nmHji58RTG5rmCbzA40TbKdh5DoebK8AyLGYPn4qs+IyQHD8QrE2nJcvy5CywyuiaCoYQ0n/p6elIT09HS0uLuI6Szt54npcknfHx8UhNTYVWq426UcwJIf4TBAFGoxFtbW0wGAxi8pmfnx+UZreCIL0W41ilhy2jW8gSz48++gh//vOfIQgCGIaBTqdDcnIyAODAgQN45ZVX3L7uu+++w4MPPogXX3wxVEUlYXbq1CmxVnzEiBEAAI7nxedTpp6NxAnjMH70Qth0OsiTkkJSLp1JD7tLbSEv8EhSBa/ZRaAJAg9AAAMGws/30pSZ0TUwkifuYoYQbwZrzLAsi/Hjx+PQoUNobW1Ffn4+cnJywl2siOO80AQcSWdubi6sVissFgsYhqGb4cQnFotFvO6lmIkuDMMgLi4OWq0WNTU14jnBYDAgMTEx4MdjY7ZxrVRIEs/m5mY89dRT4rJarUZbW5uYeP773/8G4PhPzs/Px29+8xu0tbXh1VdfRVtbGzZt2oQVK1bg7LPPDkVxSZjp9Xpx3iunzg4zWpsMYGUsZDIGKnU8Us+ZENJy7Ty9D3WdjUjTJEMlVyFRFQ+1IjpqC3mbBe3fvouEsy5CXP40WJvPwNpSA2V6bNRyuIsZQrwZzDHDsiwmTJiA9vZ2pKWlhbs4EUmv757KIDU1FQzDiE3vqMaT+IpiJvoxDIPU1FQYDAYAjnNDMBJPMMEdvChShCTx/Oijj2A2m8EwDBYvXoxVq1ZBrXZcsHd1deHbb78F4BhB6h//+AcyMzMBADNnzsQVV1wBq9WKdevWUeI5iNXX6HCopF5c1mgVuGRJaBPP76t/xMn2MwCAeKUWF40+P6THHwjDoZ3o2LsOHXvXQT1iEpLOWYDEyReGu1iEkDBhWZaSTi+sVisAx0WnVktzHBMymDmb2AuCIJ4bAo3VRk8LuoEISeK5e/duAEBOTg7+8pe/SDrmf//997BarWAYBjNmzBCTTsAx3P3cuXPx1VdfYe/evaEoKokA48eP73WH0GrlJNvI5KG9M2TjbDjTUScuG6zGqJm/UxAE6H/cKC6bTx0Ew8oQVzA9jKUKLHcxQ4g3sR4zzv5IWVlZg7JWd6A4zvGbI5PJxBjRaDQxHTMk8ChmYoNzUDG73S6eGwLNaOoEkByUfUeSkFy9V1VVgWEYXHDBBb1Gg9uxY4f4ePbs2b1eO3bsWACO5rpkcJDL5VAoFJKRj62WHomnLLSJ5yldDew9Jvcdn5kf0jL0l6X2GKyN0vn6Es9ZEKbSBIe7mCHEm1iOGUEQcPLkSZw4cQKlpaWw2WzhLlJMYBgGLMtSEkF8RjFDfGXmpTWpsTqqbUiu3js6OgBAUpvptHPnTvHxueee2+t555fVaDQGqXQkGth61HjKQ1zjyfE8xmeMherneZZyE4cgThkdza/0P26SLMuTM2nuTkJilDPprK6uBuAYJIeST0IIIZEgJLd6lUol7HY7TCaTZP3JkydRV1cndtzNz+9dg1RX52jeGB8fH4qikghltUhrGxm7FV1nqqFMTYE8Li7odxMLM0bjsXn3gOM5VHfUwWCNjhshts5WGI58L1mXePalYKJs/lFCSN8EQUBlZSVqamok6w0GAzo6OpCenh6mkhFCCPHGytn73igGhCTxzMvLw7Fjx3D48GHJeuegQgAwa9asXq+zWCzYvn07GIYZVMPdD3Y6nU7sE+Ec+dhmk9Z4WutrUfL7NwEAZ73yV2jz8kJSNhkrw4iU0BwrEHS7PgVcpoBh5AokFM8LY4mCw13MEOJNrMWMp6QTAAoLCynpDAC7vfvCMBabaJPAo5ghvlIwg6NCICTfgunTp+Po0aPYuXMntm/fjvPPPx8tLS14++23xW0uuugiyWt4nsfTTz+N5uZmMAyD6dNjZyAU4t2ZM2fEaQ7ExLNHU1v252SKUSggU2uCWp5oHRiAt9tgKN8uWacaMgYyTeyNnOYuZgjxJpZipq+kMzs7Owylij1Wq1X8PaAkgviCYob4StOj92P0XXX6JiTfgmXLluGdd94Bz/O4/fbbkZ+fj9raWnR2doJhGGRnZ2Pu3Lni9m+++SY2bNiAY8eOAQAUCgWuvvrqUBSVRKieNZ6s4FhmlUqwKmVQj13X2YiyhiNI06YgXZuK9LhUJKoiv+l3Z8kWCBZpk+DEaZeHqTSEkGAQBAEnTpxAbW1tr+fGjRuHrKysMJSKEEKIP5LYVuTqmsRlGYIzbUu4hSTxHDNmDO644w68/PLL4DgOR48eBeD4wZTJZHjsscckd4Lef/991NfXQxAcYzo98MADyAtRU0oSfkOGDAHP82DZ7rs/vWo8BUfzFVapBKsMbuLZZtKh09qFTmsXTulqkBmXhrkjew+EFWncDSoUS1OouHIXM4R4EwsxQ0lnaNG0NMRf0RYzNpsNH374Ib788ktUVFTAZrMhOzsb5513Hm644QaMGjUq3EWMWYlqFRS8TlxWUOI5ML/97W8xdOhQ/P3vf8fp06cBOH4Y/9//+38477zzJNuOGjUKdXV1SE9Px8MPP4yFCxeGqpgkAmRkZPRap1BI275rbAYAPyeeQT6x6y2dkuVUTXJQjxcIpjOHYWuVXowmFM2LyibDvnAXM4R4E+0xIwgCKioqxAH4XFHSGRzRlkSQ8IummGlvb8ctt9yCgwcPStafPn0ap0+fxqefforHH38cV1xxRXgKGOOS80cgrq5EXFarVOErTBCFtMH5kiVLsGTJEnR0dEAmk3kcqfYXv/gFrr32WsyZMyeqvrQkeHheOqORinOMkCxTq8DIgtsh+9uTuyFjZUhUJyBJlRAVzWx1338mWWaUaiRNp2a2hMQCT0knwzAYN26c26nLSGyzNJ6CKmtEuItBohTHcbjjjjvEpLO4uBhXXHEF4uPj8dNPP+GTTz6B2WzGI488giFDhtC4K0HAylkwLg1wmOhtjONVWHo6JyUleX1+3rzYG3WTDEzPPp4y3tHUVqYJ7lyaRpsJpY1HJOuKsscF9ZgDZTfoYKoqlazTjp0KVhncQZgIIcFHSSfpyW5oR/2aR5F7618hj08Jd3FIFPrkk0/w448/AgAWL16M//u//xO7ISxevBiXX345fvWrX8FiseDxxx/HunXrorqbAgmfsEeNzWZDS0sLWltbYbXGZntmMnA9+3jKfu7jKdMGN5mq6aiXLLMMi8L00UE95kDpdn8mmUIFYJB83lVhKw8hJHDsdjt0Op1kHSWdg1vH7rXgTQZ0/PB5uItCotRbb70FwFEx9Oijj/ZKKqdOnYrf/e53AIDKykps3bo15GWMdV2yLjRkNIh/jSnN4S5SUISlxnP37t34+OOP8eOPP6KpqUnyXEZGBiZPnozLLrsMl1xySTiKR8Ls4MGD4jQHkyZNAuBuOhVH4imPiwtqWc50SGsVhiRkQiGL3ObfgiDA1lLjaKMh8AAAVc4YqDJie3AudzFDiDfRGjMKhQLFxcUoLS2F0WgEwzAYP3581PdZjQZGo1GcGkOrDW5rG1/ZDe3Q798MAND/9BWSZiyhWs8IEokx09ORI0dQVVUFAFi0aJHHbnDXXXcdXnrpJXAch02bNuHiiy8OZTFjXr3VgN0J3dPdJfF23By+4gRNSBPPtrY23Hvvvfjhhx/Edc6Ra52am5uxZcsWbNmyBdOnT8ezzz5Ld3EHGUEQxD8nq9Uu2cZZ4ylPCO6clBlxqZiZdzaqO+pQ19mIYUlDg3q8gbLrm6Eamg9FxjBYG6tgqa9E4rTLwl2soHMXM4R4E80xo1KpUFxcjLKyMowYMYKSzkGsY/daCHZHazHBbkXHD58j7cKbw1uoIKuvr8dbb72F7du3o66uDhqNBgUFBbjmmmtw+eWX480338Tzzz8PAOK0fE4FBQUAgLvuugvLly/HqlWrsHPnTgBAXl4efv3rX2PRokXi9jzPY8uWLfjiiy9QVlaG9vZ2xMXFYfjw4Zg7dy5WrFiBxMREt+W84YYbsHfvXgDAgQMHPL6fBx98EJ995hiX4euvv0Zubm6v57KysrB9+3acOXMGr732Gr7//nu0trYiOTkZU6dOxc0334zi4mJ/P0oAEMsIAOee63nE/sTERIwfPx4HDx4UPzMSOB2tSow5PEtctqsMYSxN8IQs8WxtbcXy5ctRV1cn+aGXy+VITEwEx3EwGAzguO6arR9++AHLly/Hp59+itTU1FAVlYSZRqOBXC6XDCy18o6ZsNt5HLjvYViNFmhtegCAIjG4iWdx9ngUZ48HANg5O4x2c1CPN1C2pmoAAKtUQ503DtqxUxE37rw+XhX93MUMId5Ee8yoVCqcc845MTtSdSRiWVasvYoErrWdTrFe67lnzx7cfvvt6OrqEtdZrVbs3bsXe/fuxZYtW8Tk0huDwYDrr78ep06dEtcdPXpUkkQ2NDTg7rvvxv79+yWv1el00Ol0KC0txdtvv43Vq1fj/PPP93q8QPSH3L9/P2677Tbo9XpxXXNzMzZs2ICNGzfigQcewMqVK/3eb0VFhfh47NixXrcdM2YMDh48iI6ODtTV1SEnJ8fv4xH3zO0dAJLFZaU1+m6K+iJkiec999wjzjUWHx+PG264AQsWLMDYsWPFk7jdbkdFRQU2bdqENWvWwGAwoKGhAQ888AD+8Y9/hKqoJMzcnfiOlTfCaLSiXpYNRmuD3GCFgrdCkeT+TmMwyGVyJMoid0RbQeBhbamWrFNljxwUAwD09WNJSE/REDPOm7SeEp1ISYAGC7VaHe4iSLjWdjrFcq1neXk5br31VpjNjhvA8+fPx7x586BQKLB3716sXbsWmzZtwq5du/rc1//+9z9YLBbMmjULixYtgk6nw3fffYdZsxw1Th0dHVi5ciVOnjwJABg6dCiWLl2KUaNGoaOjA1u3bsXOnTuh0+lw++234/XXX8fs2bM9Hm+gsWM0GnHnnXdCr9djwoQJuOqqq5CYmIh9+/bhk08+gd1uxzPPPAOtVotrrrnGr307r81ZlsWQIUO8bpudnS0+psQzsNSd0pZ9lHgOwI4dO7Bnzx4wDIO8vDy89dZbkqYEYmHkcowbNw7jxo3D8uXL8ctf/hKnT5/Gzp07sWvXrl7zfZLBg+MFCBwP8BwEhgUDxxdSkZwc3oJFELuuCbzNIlmnjPG+nYTEKkEQcOzYMQiCgMLCQkoyiYS72k6nWK31fPLJJ2E2m8EwDJ5++mksXbpUfG7JkiW48sorceutt6Kzs9PLXhwsFgvmzp2L119/Xfxu3XzzzeLzq1evFpPOCy+8EM8//7wkebzuuuvw2Wef4eGHH4bdbsf999+PLVu2eOwfOVCdnZ3o7OzEsmXL8Pjjj0P28zRyixYtwqJFi3DLLbfAZDLhhRdewIIFCzw2/3Wnra0NABAXFwelUul122SXa66eg5yRgYmXS29OxOoZPyRVIevWrQMAyGQyvPrqq26Tzp6GDh2KV155BXK5Izf+4osvglpGEtl4jgfvMuox8/PAOYqU4P2wGqxd+PLoVnxbtRv768pxovUU+J+PG4lsrbWSZXl8CmSa4DZFJoQEniAIOHr0KBoaGtDY2IijR49GZV9UEjzuajudnLWeseSHH34Q+0kuW7ZMknQ6nXPOOXjggQd83uctt9zi9oZOY2Mj1q5dCwDIzc3Fc88957bG8sorrxST1ba2NnzwwQc+H7s/CgoK8Nhjj4lJp9PUqVNxxx13AHAkg59++qlf+3XWIKtUqj63dU1MTSaTX8chfRgkp/iQJJ779+8HwzCYPXu2X82bxo4di9mzZ0MQhF5t7MngwnECeEt3bR7rHLE1iH1/9eZOmOxmNHW14kTbKZQ3HQMTofegBM4G9cgiJEyaA1XWSLByBZSZw8JdLEKIn5xJZ2Njo7iusbERx48fD2OpSCTxVtvppP/pK9gN7SEqUfBt27ZNfHzTTTd53O7KK6+U1Mp5olAoUFRU5Pa5Xbt2wWazAQBWrFgBjcbztG2/+tWvxAqSYE8xsnLlSvFYPV1zzTViUvjtt9/6tV+73dHEs6/azp7buI7JQgZOUEgrCuxs3/8f0SgkiWdLSwsAYMKECX6/1vka1x9hEttqampw6tQp1NTUAHBciPE8D87cPbAPI/BgFArI44I3PLneIh1RLFGVELHN3QzlO1D9t99A/+NGyBPTkDh9MVRDInu+0UDqGTOE9CUSY8Zd0gk4+nKmp6eHqVTEyWq1wmKxhH3OcW+1nU6xVuu5b98+AEBKSgrGjBnjcTulUokpU6b0ub+8vDyPiVZJSYn4eMaMGV73k56eLpbn4MGDHlsmBCJmZs6c6fG5hIQE5OfnAwBKS0v92q+zNteZbHvj+j6idWC2SBWfJ+1fyyoi83pzoKJm1JGeTQtI7Gpra0Nra6vY78BstEHXZoK+3Qgrq4KNVYCBAFapBOtD05D+WnvkK5Q1HMFpXQ3aTR2IU3q+6xluhvLt4Lp06Ni7DrVv3Y+2zW+BieD5RgOtZ8wQ0pdIixlBEHDkyJFeSSfLspg4cSLS0tLCVDLiZLfbxb+wlcGH2k6nWKr1dM757stgNsOG9d3ax1sfSNdzQl5e3+MkOLex2WySEWddDTRmtFotsrKyvG7j/GyMRiOMRqNf+wYc/V774pp4+tI0l5CeQjK4UEZGBqqrq3Ho0CG/X+t8Dc1TNng1NXSi7MefayWSx4MReIxpPQCZSgU2SHfceIHHoabjsHDdJ9lRKZE5UI+9sw2mU+WSderh/rcuIISEhzPpdF5cOzmTTppOjDj5UtvpFEsj3DoHsvFldFhftvHWrNR1qhZvzWzdHc9kMiEpKanP1/grLi7Or3IYDAYxoeyLMwk3GAyw2+0em/MC0gGF6LwUWMrUXADd884K8sgaRTtQQpJ4Tp48GWfOnMGOHTtw8uRJjBo1yqfXVVZWYseOHWAYBmeddVaQS0kiRX5+vmSuNItFeqeQEXgwAg9WE7wvZXNXqyTpBIBzhvZvcuZgMxzeCdde6YxSA+3Yc8JXoDDoGTOE9CVSYoaSzugR7ulU/KntdIqVEW5VKhVsNptPA9qYzQObb9s12TSZTH2OVOtau+gpRrzFjr81jX2Vg2EYn/q5Oo0YMQI7d+4Ez/NobGzE0KFDPW7b0NAgPva2HfGfTi/9DeCE8LWsCKaQNLW94oorADg6It9xxx0+9ddsbGzE7373O7F5wsKFC4NZRBJB1Go1NBqNeKK2mKX9DhiBBwMeMnXwmr5Wd9RJluOVcUhWh27OUH8YyndIluMKp4NVDK4mMD1jhpC+RELM8DyPw4cPU9IZJViWFf/CwZ/aTqdY6evpnD+yrq6ujy1928Yb1/7U1dXVXrZ0OH36NADHOcU14XO9qcXznkfE92X6F71eL6mJdcfZXz05OdmngYKcRo/uHg/ixIkTXretqKgAACQlJfXZ9Jf4R2eVxoFNiM3Bm0Jy9pw5cyamTZsGQRBQVVWFxYsX49VXX0VFRYWkI7YgCKioqMArr7yCRYsW4fTp02AYBlOmTMGcOXNCUVQSgawW6ZePBQ8GgFwbvMQzKz4DS8dfinOGFiMrLh3Dk4eGvWbEHUtzDawNJyXr4iecH6bSEEJ8xfM8jhw5gubmZsl6lmUxadIkSjqJRH9qO51ioa9ncbGjxZFOp0NlZaXH7XieF6dd6a9JkyaJj3/44Qev2zY2NorzfToH93FyTf4MBulgha76SvYAx/Wxt0GDXD+XadOm9bk/V67be3u/er0eR44cAeCYwoWQ/gjZbbvVq1cjJycHgiBAr9fjlVdeweLFi1FUVISZM2di5syZKCoqEpNSvV4PQRCQlZWFF198MVTFJBHI2quprSMRlfnQ56G/8pJycO2kJbh/1m/wt8ufwJ/m3BW0Yw1E5wHphQir0kKdWxim0hBCfNFX0pkSxPmJSXTqT22nUyzUel566aXi4zVr1njcbtOmTb2+V/6aM2eOOGLrmjVrvDbv/fe//y3WZs6dO1fynOuAYM6EraeSkhLU19f7VK733nvP43PvvvuuOCrt/Pnzfdqf05gxY8QucJ999pnHmtU1a9aIU6gsWLDAr2OQvlnqpXErt0XuvPEDEbLEMysrCx9++CGmTp0KQRDEP5vNhvb2drS3t8Nms4nrAccdlQ8++ACZmZmhKiaJAAaDAZ2dneIdQqu1R43nz3N4yoOYePYUrqZV3giCgK4j30vWKbNGglUOrma2QO+YIaQv4YyZ48ePU9IZhTiOE/9CaSC1nU7RXus5a9YsFBY6bqq+99572LBhQ69tjh07hieeeGLAx8rMzMSiRYsAOJra3nfffW77ja5duxZvv/02AEeSed1110med605fe2113qNbNvQ0ICHH37Y53Jt3rzZbdK9a9cuvPbaawAc/TX7kxSuXLkSANDe3o4HH3ywV5/Sffv2iccYOnQoLr74Yr+PQbyTG6WfORubeWdoBhdySk9PxzvvvINdu3Zh3bp1+OGHH1BfXy9pbpuTk4Ozzz4bV155pdc5i0jsOnnyJGw2mzjBc88aT/bnGk95gvcO/wNh5znI2ciewsdSexxcjwuJuMLpYSpNePWMGUL6Es6YycnJQXNzs5jAsCyLoqIivwYEIaFnsVjEAal8HTE0EAxl28BqBv57ZyjbhuSZSwNQotBjWRarVq3C9ddfD5vNhrvvvhsbN27EnDlzoFKpUFJSgo8++ggWiwUymQwcxw3ohvFDDz2Effv2obq6Glu2bMHChQtx1VVXYeTIkdDr9di6dSt27Nghlu2pp57q1Tx+wYIFeO6552AymbBnzx4sX74cV111FRISEnD48GF8/PHH6OzsxKRJk3Dw4ME+y8QwDFatWoUdO3bgoosuglwux+7du/H555+D53koFAo89thjfvXvdLr66qvx0UcfoaysDJs3b8bVV1+NZcuWITk5Gfv378dHH30Em80GhmH6fQzinbbHNWfkde4KjJAmnk7nnXcezjvvPACOO4gdHR0QBAGJiYk0IS3ppVeNJ+9YViQkBOV4vMDj8yNfQSVXIVEVjyR1AgrSRkGtiKyBazpLt0mWWU0CNGPODlNpCCG+SkxMRFFREcrKyiAIAiWdxKvkmUujNmEMpOLiYrz44ou4//77YTQasXnzZmzeLK0Jvvrqq1FbW4vdu3cPKDlKTEzEmjVrcMcdd6CsrAy1tbV4+eWXe22XnJyMF154QbymdZWWloZVq1bhkUcegdVqxaFDh3pNK3jjjTdi8uTJuOeee/os0/33348XX3wR27Ztw7Zt0t//uLg4vPzyyzj33HP9fKcOLMvijTfewK9//WscOnQIx44dw5NPPinZRqFQ4NFHH8X559M4EsGQgFbkdLSKyzL0r2l9pAtL4ulKJpPRIApEIiMjAzzPi3crbT0HF/p5iGm5lwmgB8JgNYITeBhtJhhtJjQYmlGQPrrvF4aQwNnRdbR3M1tF0uCc77ZnzBDSl3DHTFJSEoqKiiAIAiWdUcLb/IYkNC666CJ8+eWX+M9//oMdO3agoaEBSqUS48ePx4oVK3DRRRfh+uuvB9A9P2V/ObuIbdiwAevXr8fBgwfR3t6O5ORk5OXlYcGCBbjiiiu8HufSSy/FuHHj8Pbbb2P37t1oampCYmIiJk2ahBUrVmDWrFlYv369T+W5+OKLMWvWLLz++uvYs2cPOjo6kJOTgwsuuAC//OUvBzzKbGpqKj788EN88MEHWLduHSorK2E0GpGRkYHp06dj5cqVKCgoGNAxiGcJchYqrrvrh4ISz/5paWlBQ0MD5HI5cnNz+5wPiZAhQ4ZIlmVyaYODpLR4pOZNR9zIkUE5fodZL1lWy1VQyyOr36SpqhS8WToAgDb/HDAR3jw4WHrGDCF9iYSYCcZE8yR4qHlhZMjNzcUf//hHj8+3tjpqjdx9x48dO+bXsRiGwWWXXYbLLrvMv0L+TKlUYuzYsb1qD135s//8/Hy88MIL/SqLL+RyOa6//noxeSeho2CkN0Gpqa0fBEHAu+++i/fff18yTDTLspg8eTJuvfVWmh6F+MylCzAAIOeciRi35JqgHe+9srWo62xCkjoBiaoEjM8YG7Rj9Vfnwe2SZVlCKjTDJoSpNIQQd3ieR1tbm2ReQEKI/z7//HOsW7cOeXl5uO222zzW7lVWVuLUqVMAgPHjx4ewhIQQXwQ88ezq6sItt9wizqPkOnAQx3HYv38/fvOb32Dp0qV48sknI3JuRBJZbD36eCqUwa3VO91Rh+auVtR1NgIARiTnBfV4/uKtJhiP75WsU2YMhyIlO0wlIoT0xPM8ysvL0dbWhrFjx2Lo0KHhLhIhUSsxMRHbtztuuAqCgEcffbTXNgaDAY888oh43Xn55ZeHtIyEkL4FPPH8f//v/2H//v1gGEaSdDo513366adITU3FvffeG+gikBjTM/FUKoPXQtxkM6O5q1Wy7uyciUE7Xn/w5i4oM4fDUl8JCDwABtrRk8EqI2vwI0IGK9ekEwAqKioAgJJPQvrpvPPOQ25uLmpqavDuu+/i8OHDuPjii5GdnQ2TyYSTJ0/i888/R0tLCwBg2bJlOOecc8JcakJ8x8GM9K6a7hWy2JxPJaBX8AcOHMC2bdvEpHPx4sVYsWIFRo0aBZlMhqNHj+K///0vNm7cCEEQ8O9//xsrVqwYcIdoEluOHDkiTnMwbtw4WK3S6VQUiuANBlKjl07kzDIschIjqyZRFpcMbf5UqIZPgK2lBrzZAFVuYbiLFVY9Y4aQvgQrZjiOQ3l5OdrbpVMdVVVVISMjg/oJRjGTySROp6LRaMJdnEFFqVTi1VdfxW9+8xvU19ejpKQEJSUlbre97rrr/JofM5goZoiv9LwRCs4kLltjdKzEgCaersNaP/jgg7j55pslz5911lk466yzkJOTg3/961/gOA6ff/45br311kAWg0Q5m80Gm83mstyzqW3wajwz49Lw22k34kxHHao7amHnOShlkTXFj62tHgJnBytXQpU9CgwYKNNzw12ssOoZM4T0JRgx4ynplMlkKCoqoqQzygmC4LYlFwmNwsJCbNy4ER9//DG+/vprHD9+HB0dHYiLi0NWVhbOOussXH311RE1lzPFDPFVuzkJh0YsF5fVNj0WhrE8wRLwGk8AGDt2bK+k09Vdd92Fjz/+GHq93uMdKzJ4Oedydf575XWTYew0guMZ2DkgPTN4IyMnqRMxd2T/5sEKFWvzGcmyPDlz0Dez7RkzhPQl0DHjKemUy+UoKioa8NQOJPycY1LQ2BTho9FocMMNN+CGG24Id1F8MtCYeeaZZ/DMM88EskgkQln52Gxa21NAE8+amhowDIOZM2d63U6pVOLcc8/Fpk2bxL4vhDj1bPZWebwF1Vu3w1RVBZmMQZbQipyJo1Bwz11hKmH4CJwNtjZpc2BlRmQNfhQO1LyW+CvQzWsPHjwInU4nWU9JZ2yhppLEXxQzxFeDZZ7ggLYg7uzsBACkpKT0ue2IESMAAHq93vuGZNDj7Dw4ixU8w8LGM7Dr9bAHKW50pg7YOXvfG4aJrb0RAt/d9JhhGCgGeTNbQsLJW9JZXFxMSSchhJA+JSikNylitV1FQNNrq9UKwLemS/HxjuaSXV1dgSwCiUEcx4P/ObYAgBF4yBMSAn8cnsPWkzshCALilXFI1iSiOHs8tIrIuGNpba2DPCkTiZMvhLWlGtbmasi0CWAVqnAXjZBBqa+kMyEI5ylCCCEkWgU08XSO3OVLW3aWdVS2chzXx5ZksLPbefAug4CwAgdFYuAv6PQWA/ifBwHotHah09qFc3IiY5ACQRDQ+NEz4Lp0iCs8F/ETZyNx6kIggmtnCYlllHQSQggJFI6XViLY2dgcs2JwNCgmUaW+vh48z4NlWWRlZUMQBKTNmA7OaAJvs2JE5lnIKAp8nz6dWdp8N16phSJCRrS1NlTB1loLAOgs2YrOkq3IuelpqHMLwlyyyOAaM0OGDAl3cUgUGEjMcByHsrIydHR0SNZT0hnbrC4tb2iEYuILihniK1mv3o+x2diWEk8ScZqbm8X59VJT0mHotECmjgMblwAFy2DIvDHQaAN/Av/40HocazmJJHUCElUJKM6OnLkxDYe2S5blSZlQDc0PU2kij2vMUOJJfDGQmGlvb3ebdE6ePFnsRkJij91uF1t2URJBfEExQ4gUJZ4konV2mLF/t3T6kGmzRyEYvS51pg7oLZ3QWxyDZI1JHR6Eo/hP4DkYDu2UrIufMIuG9CckTNLT05Gfn4/jx48DcIxrUFxcTEknIYSQfmHjksJdhJCgxJNEnFGjRol3CHWtvSd4V6tlAT8mL/Co1kunKZmQGRnNWM2nD4EzSOcGjJ94fphKE5lcY4YQXww0ZnJycgAAVVVVlHQOEioVDeRG/EMxQ3xlsXQBiP1R0IOSeHZ0dKCurq7PbZzq6+sh/DyoizfOH3oS21wv4JrqmqVPMoBcEfjEs6WrDWa7RbJuWHJkxFtn+XeSZWXWSJq7swe66Cf+CkTM5OTkIDMzc9DMvzbYyWSB/+0hsY1ihviqy26Ga+LZd1YUnYLya/nGG2/gjTfe8GlbQRAwb968PrdjGAaHDx8eaNFIlLGYpaO2ymSsOCJyICWpE/GnuXehTt+Ius5GtBjbkKIOf7MH3m5F15EfJOuU6bkQeA4MSz9ohARbX7WilHQSQgghvgnaL2ZfNZiu065425ZhGJ9qQ0lsslh6JJ4sA95qA6sM7GizKrkSk7IKMSkrcgYUAgBjxU8QbGbJOuWQ0ZR0EhICdrsdhw4dwogRI5CUFP4bUYQQQmKTbZBMjxfwqiNBEHxKFJ3b9bVtqJJOQRDw5Zdf4uabb8b06dMxadIkzJs3Dw888ADKysqCdtzHH38cBQUFKCiIjP6EkcBsNsNkMsFsNsPaI/EUTF3Yvexa2AyGMJUutDpLv5Esy5MyoR0ZGXOLRhLXmCHEF33FjN1uR2lpKdrb291OnUIGH57nxT9CfEExQ3zFxuj0KT0FtMbz6NGjgdxdyJjNZtx111349ttvJetra2tRW1uLL7/8En/4wx9w6623BvS4P/zwA957772A7jMWHD9+XJzmwGrVSp5jBB5gGMi0Wg+v7p8WYxtUMiXiFNqgNOXtD85kgKmqVLJOlT0KirShYSpR5HKNmaIiSsxJ37zFjDPp7Ox0jHDtnLezqKiIaj4HMbPZLDa91gb4N4jEJooZ4qs4mXS6nVhNQ6lzCoBHHnlETDpHjx6N5cuXIz09HYcOHcL7778Po9GI559/HllZWViyZElAjtnV1YVHHnmEmhH3wdajxpMV7GDk8oAnh7vP7IfJbgbLMIhTaDE1txjp2tSAHsNfhkM7AJ7rXsGwiJt0PhgZfW0JCRabzYaysjIx6XSSyWRQKALbxJ8QQggBgDihFVmdOnFZJljDV5ggioyqnTDatWsX1q1bBwCYMWMGPvvsM9x88824/PLL8cADD+Djjz9GcnIyAODpp5+GIUBNPJ977jnU1NQEZF+xJjU1FWlpaUhNTYXVykmeYwUerCKwiZeNs8FkdzS34wUBndYuKNjwJ3edJV9LlhVpOdCOmBSm0kQ215ghxBfuYsZT0qlUKjF58mSqsRjk5HK5+EeIL2IhZm677TYUFBTg008/DXdRYlqSWgatTS/+xdv14S5SUAz6xPOtt94C4Dg5PPnkk73mXBo9ejT+9Kc/AQB0Oh0++uijAR/TtYltQkLCgPcXa3JzczFixAjk5uZC0WPqFCVnBqtQenhl/+gtBknNMwMgXhkX0GP4y6ZrhLWxSrJOM3oKWBVd+LrjGjOE+KJnzNhsNknzWidKOomTUqmESqWCUhnY3yASu6I9Zj799NNe3dBIcKSOyoMmDeJf/JDojJm+DOrEU6fT4fvvvwcAzJ49G3l57udGXLhwIdLS0gAAmzZtGtAxXZvYLlmyBOPGjRvQ/mJej0buSrsp4CPa7jyzD18c3YKvT+7C3poS1HTUQxbmUWP1+zZIV8gUSJpySXgKQ0iMcyadPVu0UNJJosWpdmpBRQLru+++w5///OdwF2PQkGlUkKnQ/aeOzV6egzrx/PHHH8WRxmbMmOFxO5ZlMXXqVABAaWnpgEY3dDaxzcjIwMMPP9zv/QwWth5NbWWCDaxS5WHr/umyGmHjbWg36XCmoxZ6awSMmCtTQJE5Avi5P6cqZzQUqdnhLRMhMchT0qlSqSjpJFFBZ+rAqm//Cp2JRl4mgfHpp5/ijjvugM1mC3dRSIyJ3kbnAVBRUSE+zs/P97rtmDFjADimXTl+/LiYiPrDtYnto48+KvYdJZ7ZbdIhyFmBAxvgJit1nY2S5VEpwwK6f39xRj0YuQJxBdMgcFNga6tH/PjzwlomQmJRX0mnRqMJU8kI8d3nR7fAYO3CF0e34Mazrg53cUgU6+zsxOrVq/HBBx+EuyiDjlVmgSmhRVzmA9y6L1IM6sSztrZWfDx0qPcpKrKzu2ubamtr/U48XZvYLliwABdddJF/hR1EKioqxGkOOHvPxJMHqwps4lmvlyaeOQlZAd2/v6wt1eJjRiaHeuhYxBVOD2OJIp9rzIwdOzbcxSFR4MiRIzhx4gSsVqvYlQKgpJN45jo1hlqtDndxADhqOzdXbgcAbK7cjsWFFyFZQ1P+RIpIjBlP1q1bh6effhqtra0AHAOwXXzxxXj//ffDXLLBoY5vx+fDumdySLVbcVUYyxMsgzrxbGtrEx+npKR43da1dlKn0/l9LGcT25SUFGoz3weTyQSbzQa73Q6Oc1PjGeCT94Pn/w61+kbUdTagTt+IMWkjArp/f9laaiXLyrRcMMygbhXfJ9eYIaQvdrsdx44dg9FohEzW3Z+bkk7iDc/zYhIRKT4/ugU2ztEc0srZBkWtZ319Pd566y1s374ddXV10Gg0KCgowDXXXIPLL78cb775Jp5//nkAwLFjxySvLSgoAADcddddWL58OVatWoWdO3cCAPLy8vDrX/8aixYtErfneR5btmzBF198gbKyMrS3tyMuLg7Dhw/H3LlzsWLFCiQmJrot5w033IC9e/cCAA4cOODx/Tz44IP47LPPAABff/21ZJA853NZWVnYvn07zpw5g9deew3ff/89WltbkZycjKlTp+Lmm29GcXGxvx+lxAcffCAmnbNmzcJTTz2F77//nhLPEGltVGHCTwvEZbsqArp9BcGgTjzNZrP4uOdotj25jkjm+jpfuDax/dOf/kRTPvSBYRjxb9b8MUg69A06q85AYFhobHrIVN6bRfsrIy4NGXFpmDxkfED32x+cyQC7oV2yTpFBI7X2xTVmCOmLTCaDRqOByWQS11HSSaKNa22nU6zXeu7Zswe33347urq6xHVWqxV79+7F3r17sWXLFjG59MZgMOD666/HqVOnxHVHjx6VJJENDQ24++67sX//fslrdToddDodSktL8fbbb2P16tU4//zzB/7m+rB//37cdttt0Ou7p9lobm7Ghg0bsHHjRjzwwANYuXLlgI4xdOhQ3HvvvbjssssGWlziJ0tXF4BkcVlmFzxuG80GdeLpWjvS11DXrs/7U6vi2sR2/vz5UfFlPnHiBEaPHi2Z6sVisYh3DpOTkzFs2LBerzEajQCAoqIiyXMtLS2oq6sD4Lij6Fq7zHEcDh06BMAxtczIkSMxaVL3XJU7tpWh0cAACsePgdJugkzjqPHU6XQ4c+YMAGDIkCHIyMiQHPfgwYMQBAEajaZX88uamhqxxjs/P1/SBMZgMODkyZMAgIyMDAwZMkTy2iNHjojNOnuOSlxfX4/m5mYAwKhRoxAfHy8+Zzabcfz4cQCOJiw9p/6oqKiAua0R8g4jspIcA5qwChXkSRlobm5GfX09AGDYsGGSGni73Y7Dhw8DABITEzFixAjJfquqqsQpIiZMmCCp4Wlvb0d1taNpb05ODtLT0yWvLSsrAwBotVqxn7PTmTNnxNr/goICyc2bzs5OVFU5poPJyspCVpa0+fLhw4dht9uhVCpRWFgoea6urg4tLY5+DqNHj0ZcXPfUNiaTSeybnZaWJjaRd8bM8ePHUVZWBpZlMXHiRMl+m5qa0NDQAAAYMWKE5ALDZrPhyJEjAICkpCQMHz5c8trKykrxQmfixIlg2e4a6La2NnFO3tzcXMmNJZ7nUV5eDgCIi4vD6NGjJfs9ffq0OFjZuHHjoFB09+nQ6/XiRVF2djYyMzMlry0vLwfP81Cr1b36qNfW1op3rseOHStJprq6ulBZWQkASE9PR05OjuS1R48ehdVqhVwux/jx0psxjY2NaGx0NE0fOXJk2M4Rrk6dOiVeiI0fP14yX56ncwTDMLj44ouxefNm6HQ6dHZ2Yvr06ZLPKVLPESaTCQzDSM6TAOgc8TNP5win48ePw2w293mOcP0uAhAHImQYRvL5OJnNZnEbjUYjuQlmt9thtTomg1cqlZIYFQRBvAHCsmyv5pgWiwUc5xhkT61WS849a498JdZ2OrnWeppMJgiC4Ha/VqtVvJbpuV+O42CxWAA4pprreX3k3C/DML1u1NhsNnFAGpVKJfmseJ4Xb9zLZLJeN/xdP8Oeg3o5+2Pfeuut4j7mz5+PefPmQaFQ4Pvvv8e6deuwadMm7Nq1y+Nn6PS///0PFosFM2fOxKWXXgq9Xo+dO3di1qxZAICOjg6sXLlS/J7n5OTgqquuwqhRo9DR0YGtW7di586d0Ol0uP322/Haa69Jkk+O4yTH7Pl+XD/Dnlz/b5xTvRmNRtx5553Q6/UYN24clixZguTkZBw4cACffPIJ7HY7nnnmGSgUCixdutTjZ+j8v3EXh7/97W8xYcIEjxUxVqsVRqPRa3wrFIpe3x3ned/f+HaNQ3f79RaHrp+htzh0F9/OOHS3X47jYDKZUFZWFvDrCK6mHUD3+UpjFsTyhuM6wvk7FWiDOvF0/QLYbDavyafzSwX0naS6cjaxTUpKwmOPPdavcoYax3Hiyd9JEATxhNXzBA44TjyeRj/jeV58rud+AYjPuUvorRY77DwAmeMz51kZZD+fCFzL5Gm/giC4nbjZWV4jZ0JDZxPS2TRoFRqwDOvTfn15r65zg/Ysr7v3arPZwHc0wpQ9HkmTJsLWUgMIAhiGHdB+g/V/w3GcxzK57tddvDibxbqeeH3Zb19x6Py/6Wu/3uI7lJ+h63778xnyPO/2Inggn6GzTD1f13O/kXKO8PYZevsuMwyD9PR0CIKA7OzsXhcY/d2vs7zBOkfYbDa3F6t0joC4HIhzRM+LXNdjuftu9LXe22s9va7na13pTB3YUrnT7WuctZ5KQeHx9QMpk7fng/FenZ599lmYzWYwDIOnn35aTLAEQcCFF16IRYsW4c477+w1F6+7/VosFsydOxevvPKKeH138803i+fT1atXi0nnBRdcgL/85S+SG2LXXXcdPvzwQzz66KOw2+144IEHsGXLFsmNJG/6eq89n+vs7ERnZyeuvvpqPPDAA5DJZJDL5bjyyiuxaNEi3HLLLTCZTPjb3/6GCy+80OMc8d7+35w3BH35v/V1v67PBeN7463p+0D364nzHBPo6wgtIz3nuL6rcFxHuDvfB8Kg7jjmejfIeVfFE9fEs69muU6uTWwffPDBXncaIpVMJuv1o8wwjHjHyV2AyuVyt3ekAMddLudz7n7snc+5SxBZlgVcg18QIFNrepXJ237dlclZ3jZOj+9r92PD8W349PAm7K87OKD9ur7XnidD1/26e68KmxEJ+95F0tcvomX932HvaIIqZ/SA9xus/xuZTOaxTK77dRcv/d1vX3Ho7f/Gdb/e4juUn6Hrfvv7Gfb1Xv39DL29V18/w1CeI7x9hn19l5VKJXJyciQ1ZoHYb9DOEUHaL50jeu/Xnb6a9Ht6zvV13p7355ifH90CG+/+ItZZ6+nLMftTJm/PB+O9AsDevXtRWloKALjqqqvEpNP1tVOmTMG9997r835vueUWt881NjZi7dq1ABxNT5966im3TfCvuOIKrFixAoCjxsqfkWD7E0sFBQV49NFHIZfLJc9PnToVd9xxBwBHK48vvvgi4DHq7bW+PhfK700g9uutvMG4jvD2XsJxHeHufB8IjNDXba0gEAQBP/30E3766SfU1dWho6MDixcvxrx58wA45g8qLi7uVZ0caH/+85/FE8XWrVuRl5fncduPPvoIf/zjHwE4ajFdO5+709XVhcWLF6OmpgazZ8/GP//5T7fbuXY+79kJPlQMBoPk2AUFBT7ftQu2gz/V4OC/PgBncjTVSDXWoeiq+chbHpjBE74/8xNq9PXickH6KBRnh6evZ8e+DWjd/C9xmVVpMfzut8DIYnNIbUJCwXlT0dcbhoQAjmbNdrsdcrk84kbK1pk68Lv1f+rVzNaVUqbAK5c9ETN9Pf/yl7/gP//5DwBg/fr1vZp1O1mtVsyePVts4u1pcCGFQoH9+/e7bcH26aef4qGHHgLgqDTw1m+ypaUFc+bMgd1ux5QpU8TKBsD36ztfBhcCgGeeeQZXXnml2310dnZi5syZsFqtOPfcc8XPaqBcP4u//OUvvRL+wSTY54QNL/wXP9Z2d9VRciY8+NdlAT+Or4KVG4S8qe1nn32GV199VTKVCQDJaFwvv/wympqacOmll+LPf/5z0Oa7dO3nUl9f7zXxdPb7ANCrT5Q75eXlYr+vHTt2+NTZ3bnN0KFD8c033/S5faxqbm4Gz/NgWRaCAAguzQMYCJAFcEL3VmObZDlB2bvmI1S6jv4gWdbmT6Wk00euMdOzry8ZvCwWC0pLSyEIAiZPnixJPilmiL9cm8l5qhUNBdeRbD2JtRFu9+3bB8AxA4GnpBNwtGKYMmVKn9dQeXl5HrtNlZSUiI9nzJjhdT/p6ekYM2YMjh49Ko4r4a7mytnneyBmzpzp8bmEhATk5+ejvLxcrBkm0SUhbyhQ2z3gHaOIzUapIXtXgiDgwQcfxMMPP4za2lqxDXXPClebzYampiYIgoCNGzdi2bJl4mAWgeZao+ocjMAT5/MMw0Tc3c9YU19fj5qaGtTX18NitsHOC+DBQoAjjmRxgUk8jVYT3in9FF8e3YJtJ7/Hj7WlYMM0bQln6oS5+ohkXVyB9x880s01ZggBHElnSUkJjEYjTCYTSkpKJF0qKGaIv2w2G6xWq8d+WqHgbiRbTzZXbofO1BHkEoVGU1MTAN9u/Pcc2MwdT1OgANKp9rxVSPTcxmazSUacdTXQmNFqtb0G4OrJ+dkYjUZxQB8SRWSxmWj2FLIaz+eff15sM88wDGbNmoXJkyfjlVdekWznbCbx3XffgWEYVFdX4+6778a7774b8DKdddZZUCgUsNls2LNnD66//nq323EcJ95tKyws9HrCcho7dixeffXVPrf761//Kia1zu0jfZLhUNrx9QkYEieIyzKeg1wbmFrJuk7HDQ0LZ4XFZEW7uQNZ8el9vCo4TFUHAaG7LysjV0IzamBzchEyWDmTTtfpUkwmE44fP95rNFhCookvtZ1OsVTr6Ww668v1kS/beBsk0nWqFl+mV3I9nslkQlJS4Js3u+uH7q0cBoOh16i2JLIpkocAOCEuC/LY7B4SksTz5MmT+Pe//w2GYZCVlYWXX35ZHD2rZ+IZFxeHN954A/v27cPdd9+NlpYWHDhwAFu3bsWFF14Y0HIlJiZixowZ2LFjB7755hvU1dW5vZu2fv168Q7YggULej3vTmpqqk/lffvtt8XHgX5/0WrYsGFicxWek9ZGMAIHuQ8nYF84E0+nzLg0aBThmcOvs0zaLEidNw6sIjZPOsHgGjNkcHOXdAKOC0jX4eIpZoi//BnRPhj8qe10ipV5PVUqFWw2W6/vtTv+zrXek2uyaTKZ+uzX5lq76Cnp9RY7fQ1uCUgHuOyrHAzDBK2LGgkeo1HaOkEQeo9CGwtCUq/7/vvvg+M4MAyDv/3tb73mcHNn6tSp+Nvf/iYuf/nll0Ep28033wzA0QzinnvugcFgkDx/4sQJPPXUUwAcSfGyZeHr6DtYJCcnIyUlBcnJyeA5aVNsVuAhjw9O4pmTmB2Q/fpLEARYaqVNveWpQzxsTdxxjRkyeJnNZo9JZ88+nhQzxF9yuVz8Cwd/ajudnLWe0S472/H77Jzv1xtftvHGda5a5xy23pw+fRqAI+l0PZ/4elOr5/Qv7uj1eklNrDvOcUWSk5PDfpOE+K/Z3C5ZtlDi2X+7d+8GwzA499xz/WrmdNZZZ+G8886DIAg4ePBgUMo2a9YsXHLJJQCAAwcOYMmSJfjnP/+J9evXY/Xq1Vi+fLnYxOP++++XTA4PAHv27EFBQQEKCgpwww03BKWMgxnHSecRYgUO8oTAjLi7bMJleGnh43hg9m9xQ/FVmDNiekD26y9rYxV4s/SGR1z+tLCUhZBo5Snp1Gq1vZJOQqJNf2o7nWKhr6dzAEqdTofKykqP2/E8jwMHDgzoWK7XqT/88IOXLR1Trzjn+3RtUQFIazl7Vmq4OnHihMfnnARB8DpokOvnMm0aXT+QyBWSxNM5IqwvNZ09TZjg6N/X2toa0DK5+r//+z/MmjULgOOO0erVq3HPPffgn//8J7q6usAwDH7/+9/j2muvDVoZiHsC37PGk4M8LjCJp4yVYUhCJs7OmYRFhRfi3LyzA7Jff3Ud2S1ZZpQaqIdP8LA1IaQnZ9LZs4mdVqtFcXExJZ0k6vWnttMpFmo9L730UvHxmjVrPG63adMmNDc3D+hYc+bMEUegXbNmjdfmvf/+97/B/zzX+Ny5cyXPpaWliY+PHJEOHuhUUlLi8wBnrlO19PTuu++KAxjNnz/fp/2RyGJpldZ4yuwhn+0yJEKSeDrbpvdn0BznHaNgTWQKOJph/fOf/8Tq1atx3nnnITU1FQqFAhkZGbj00kuxZs0acXJeEnx2ux02mw12ux18j8STYQTI1LF1EWmqKpMsK7NGgJWFpylXtHKNGTK4eEs6vdV0UswQfwmCAJ7ne43GH2wDqe10ivZaz1mzZqGwsBCAIwHbsGFDr22OHTuGJ554YsDHyszMFOdqr66uxn333ee23+jatWvFcTrS0tJw3XXXSZ53rTl97bXXep1rGhoa8PDDD/tcrs2bN7tNunft2oXXXnsNgGOaQF/HIiGRhWmXNrmWcbGZeIbk6jYtLQ319fU4deqU3691Tl7as4lroDEMg8WLF2Px4sV+vW769OleJwbuyzvvvNPv18aqw4cPi3Ne9cg7IQ/QOCA8z+Nk+xnEq+KQqIyHRqEOyyAjgt0GS+MpyTrtCP9bBgx2rjHTn5YVJDr1lXR66+dEMUP8ZTKZxAGpQjli6LenfgjIHNPfnvoBV4y7JAAlCj2WZbFq1Spcf/31sNlsuPvuu7Fx40bMmTMHKpUKJSUl+Oijj2CxWCCTycBx3IAqLB566CHs27cP1dXV2LJlCxYuXIirrroKI0eOhF6vx9atW7Fjxw6xbE899VSv69QFCxbgueeeg8lkwp49e7B8+XJcddVVSEhIwOHDh/Hxxx+js7MTkyZN8qk7GcMwWLVqFXbs2IGLLroIcrkcu3fvxueffw6e56FQKPDYY49R/84olSCXVs7F6rB3IUk8i4qKUFdXh23btsFoNPp8wq6ursa3334LhmFoCPxBqGczWwBgA5R5dtmM2F9fLi7LWRkWFVwIhSy0k4Ibq8oAXnoXVFtA/TMI6YunpDMuLg7FxcV08UVixhXjLonahDGQiouL8eKLL+L++++H0WjE5s2bsXnzZsk2V199NWpra7F79+4BnQMSExPF1m5lZWWora3Fyy+/3Gu75ORkvPDCCzjvvPN6PZeWloZVq1bhkUcegdVqxaFDh3Do0CHJNjfeeCMmT56Me+65p88y3X///XjxxRexbds2bNu2TfJcXFwcXn75ZZx77rl+vlMSKbRcK9IN3bWecqHv0Y6jUUia2jqr/Ts6OvD444/79BqdToc777xTbLN+8cUXB618JLIkJiYiKSkJcfEJvZ6TB2iC3U6LtKO/nJWFPOkEAOPxPZJlWUIqlJl9T35NpJwx48scuyQ2VFZWDijppJgh/pLJZOIfCY+LLroIX375JW644QaMGDECarVanBrvlVdewVNPPSVeNw70u52VlYUPP/wQL7zwAubPn4/MzEyxG9aUKVPwyCOPYMuWLW6TTqdLLrkEH3/8MZYtW4bc3FwolUqkp6fjggsuwL/+9S888sgjPpfn4osvxieffILLLrsM6enpUCgUGD58OG6++WZs3LhRHKuERKdEpYAEa1v3n6297xdFoZDUeF5yySWYOHEiysvL8cUXX6C5uRm33HILxo8f32vbpqYmbNmyBW+++SaamprAMAxGjx5NbdYHkREjRgAAzCYbgMOS59ILRwfkGNUddbByNih/TjbjlYEZsMhfptPSu5+q7NFgmJDcD4opzpghg0dBQQHMZrM4FYG/NZ0UM8RfNEhVZMjNzcUf//hHj887B6McMqT3tGT+do1iGAaXXXYZLrvsMv8K+TOVSoWCggI8+eSTHrfxZ//5+fl44YUX+lWW/li6dCmWLl0asuMNZipGekMrVq8EQzaCyUsvvYRrrrkGLS0t2L17N3bvlo7k+dprr+Hvf/+7ZMhpQRAQHx+Pv/71rzTJ9yDE2fle68b/5qaA7PvTI1+hqv0M1HIV4pVxmDtiRkD26w+B58Cq48DIlRDsjgG4NCOprxkhvpDL5SgqKkJpaSkEQaDmtYTEsM8//xzr1q1DXl4ebrvtNmRlZbndrrKyUhxPxF3lBiEkvEKWeA4dOhTvvfce7r77bpSXd/etcyaUnZ2dvUaKGzZsGF566SWMGTMmVMUkEaTnHJ4AIAtQU9t2kw4AYLZbYLZbkJ2QGZD9+kPg7NCOORvC6CngDO2w6xqhHROeKV0IiUYKhUKc3885/QEhJPYkJiZi+3bHyL6CIODRRx/ttY3BYMAjjzwiXktefvnlIS0jIaRvIZ2zIS8vDx9++CE2bdqETz75BPv37+81P5JcLseECRNwxRVXYOnSpdS0ZRCzu6nxlMsHnngabSbozHrJulEpoe9Xade3AHDcfJEnpEKRlAF5UnrIy0FINKOEk5DYd9555yE3Nxc1NTV49913cfjwYVx88cXIzs6GyWTCyZMn8fnnn6OlxfG7umzZMpxzzjlhLjUhvhMYGxLNLeIyy3JhLE3whHyyQJZlsXDhQixcuBAcx6Gurg46nQ4cxyExMRE5OTn9mu+TxI6qqirY7XZ06Xt/6dgA1Hg2d7WCZVjwgiOxZRgGWfGhT/jsHdJJruWJaWBYGrSiP5wxI5fLMXLkyHAXhwSQ0WhEdXU1xo4dG9D5nClmiL8sFos4nQrdFA8tpVKJV199Fb/5zW9QX1+PkpISlJSUuN32uuuu82t+zGCimCG+6hQ6kG6sEZfNytjsYhjWWeplMhny8vKQl5cXzmKQCNPZ2QmbzYauTmnTa4ZlwLID/yIOT87F/656CQ1dzajTN6Ld1BGWEW3tHS2SZXki1Xb2lzNmqPYrthiNRpSUlMBqtcJqtWLChAkBSz4pZoi/OI4TkwgSeoWFhdi4cSM+/vhjfP311zh+/Dg6OjoQFxeHrKwsnHXWWbj66qsjal5eihniqxZTMo6OWiEuq+ydmB/G8gRLWBNPQrzRxslx9Y1TwNl5cJwA3s28nv0ll8mRmzgEuYm9R70LBYGzgzO0ScuUlBGWshASiVyTTsAxUuWhQ4cCmnwSQqKLRqPBDTfcgBtuuCHcRQmJZ555Bs8880y4i0FCwM4L4NjuG6E8E5spWkjeVV1dXUD2k5OTE5D9kMg2YcIEAADP8diy+l2YqmvAsAwYloW2LBuFt94c3gIGgAAg8ZwFsHe0wN7RDLu+BfLEtHAXK2o5Y4bEhp5Jp5PVagXP8wFJPClmiL80Gk24i0CiDMUM8ZUwSKbSC0niOW/evAE3M2AYBocPH+57QxL1nJNzCwJg6LTAYnEOMsTB0tTs+YU+Oq2rAcdziFfGIV4VB41cHdJmMLzdijMv3wpVzhhoR02GZmQxtPlTqSnOANCE7rGjq6sLpaWlvZLOhIQEFBcXQy4PzM8WxQzxF52jib8oZoivklVxkuVYjZyQ1eP2nCqFkL4IAoAeU6rIFAMP2YrWKrSZOsTlKUMmYkzaiAHv11fm6iPgTZ0wVR6AqfIAwLAYfvdbkGkSQlYGQiJRV1cXSkpKYLPZJOsDnXQSQgghJPRC8is+depUn7azWCxobm5GfX09AMedogsvvJCGxB6kBF6AwEsTT3aAiacgCDBYjZJ18UrtgPbpL9PJUsmyashoSjrJoOcp6UxMTERRURElnYQQQmIWx0sHuuOoj2f/vfPOO35t39LSgjfeeANr1qzBd999hyuvvBLz5s0LUulIpGlvbwfP87DbeCSMK4S9sxMCx0HgOKTPGDGgfTcYmtFoaEGCMg5ymSP843s0bwg208kSybJmVHFIjx+LnDHDsixSUlLCXRzip3AknRQzxF92u118TDdCiC8oZoivZD1Ssljt8xmR34L09HQ88sgjyMzMxPPPP4+HHnoIX375JTIzM8NdNBIC1dXVsNlsEHgWmtwcSR+J1GljBrTvH6r34+uTOwEAGoUaQxOG4OoJCwe0T3/YO9thbTotWacdNTlkx49VzphRKBSUREQZg8GA0tLSkNd0UswQf1mtVnFqDEoiiC8oZgiRiuh0+te//jVyc3Oh1+uxZs2acBeHhFj1SSN2bDmBHVsqsPPrEyj7sWbAHfVbjN1TmJhsZmTFp4EN4V0l0ylpM1tGqYEqZ2zIjk9IJAlX0kkIIYREEnaQdLmK6MSTYRjMnTsXgiDgm2++CXdxSIjk5OQgLy8P8XGOL6EgAPzP83iyA0w86zobJct5SaGdosdY8aNkWZGaA4HnQlqGWOSMGZpyKXp4SjqTkpJCknRSzBB/KRQKKJVKKBSKvjcmBBQzxHd2uyXcRQiJiL+dnJbmmNswUHOBksiXnp4OAFApdZL1LMuCYQeWeFo5GxgwEOAYZTknIWtA+/OHIPAwVR2UrJMnpYORK0NWhljljBkSPdy1XkhKSsKkSZNCUtNJMUP8RckD8RfFDPGV3mYEEC8ux+pcIBGfeJ45cwYAzYU0GNntPUa0lQ08Bp668H5Y7VbUG5pQ19mIwvTRA96nr6yNp8GbDZJ1mpFFFNtkUIqLi0NxcbFY6+ms6aT5NQkhhJDYFNGJZ01NDTZu3AiGYTBs2LBwF4eEGNcz8RxgbaeTUq7E8ORcDE/ODcj+fGWs3C9ZZtVx0AwbH9IyEBJJ4uPjUVxcjNOnT6OwsJCSTkIIIYOSnRsc3a4iro+n1WpFY2MjPv30U1x//fUwm80AQNOpDEJ2u/RLaK6uRvN3O8JUmoHr1b8zJRvylOwwlYaQyBAfH48JEyZQ0kkIIWTQ4sH3vVEMCEmN57hx4wb0+sTERNxwww0BKg2JdGVlZbDZbGhq0kvWMzwHDKDSs1bfgKauFiSpEpCkTkSSKkGcyzPYeJsFlvpKyTrV0Hyw1L8zIJwxo1AoUFRUFO7ikB4sFgtUKlW4iyFBMUP8ZTQaxakxtFptuItDogDFDPFVokI6p3ysdsIKyVW3IPS/i2xCQgJeeeUVJCUlBbBEJBrwnDRuGIEHO4CL1/rOJpxsPyMuD08eium5Z/V7f/4wnS4HJKPXMtCOPSckxyYknPR6PcrKypCbm4sRI0aEuziEEEJIxFHbW5Bi7BKX5UJsjnIbksTTn+HqZTIZ1Go1hgwZghkzZmDp0qVITk4OXuFIxNFqtbDb7WDQKVnPCjxYZf8Tzw6ztAY1SZXY7335y3hsj2RZlpgGVXboBjaKdc6YoXkfI4ter0dpaSk4jsOpU6fAMAyGDx8e7mIBoJgh/mNZVqy9IsQXFDPEV0lKHsnmJnFZDmsYSxM8IfnFpTk4iT/GjBkDACjf0wmgexRYBW8Gq+xf01SO53Cw6RjiFBrEK+MgY2VIVodusl5z3QnJsjJjGGTawTFZcCg4Y4ZEDtek06mqqgpqtRpZWaGbxsgTihniL7VaHe4ikCgTbTHT2NiId999Fzt27EB1dTVMJhOSk5MxceJELFq0CAsWLADLRtzwMDEhbfhQVJ8+Li6rFLF5UzQk7+rYsWOQyWT0Q0/80vPUprV1QqbqX+LZZGjF92e6B/eJU2hxwciZAyidfxKK58PWWgNbewPs7Y3QjglNE19CwqGjowNlZWWSpBMAUlNTaf5MQoKgq+oU4kaOCHcxSBRbv349/vjHP8JoNErWNzc3Y9u2bdi2bRvee+89vPzyy0hNTQ1TKWOXIikert08larYHHAvJLctXn31VSxatAiLFi3C1q1bQ3FIEgPsNrtkmRE4MP3s49liapMs8wKPdG1Kv8vmD86oB282QBaXDHVuIeInzUFc/vSQHJuQUPOWdE6cOJFGryUkwKzt7Sj/06OwtreHuygkSu3YsQP33XcfjEYjGIbBJZdcgieffBIvvvgi7rzzTgwdOhQAsG/fPvz2t7+FzWYLc4lJtApJjWdZWRkEQcCJEyeQkhKai30S/Tib9MKVFXjI+pl4NnQ2S5az4tND1ufC1lonWWaVGsgS6G4hiT19JZ3URIuQwKv9dC3snQbUfvY5Rv7y5nAXh0QZm82GVatWgeM4yGQyvPrqq7jgggsk29x888347W9/ix9++AEHDhzA+++/T7NNBJjAcmBV3WORMKrYbGobkquAdpe7cBMmTAjFIUkUO3PmDKqqqtBl6JKsZwUOrLp/iScncEhWdw8mlB2fOaAy+sPaWiNZVqTl0EADAeaMmTNnzvS9MQkKT0lnWlpaRCadFDPEXxaLRfyLFNb2djRs2gwAaNj4FdV6RphIjJmedu/eLZ4HV6xY0SvpBIC4uDg8//zzYp/Vjz76KKRlHAzOMM1YU2AQ/z4f2tb3i6JQSNLpESNG4NixYwCA+vp6jBw5MhSHJVFKp9PBZrPBapE25WAggJUr+rXPS8fOxaVj58JsM6OxqwUsE5qLYN5qAqeXnjyUab6P8kx844wZhUKBYcOGhbs4g45Op8PBgwfdJp0TJkyIuKQToJgh/uM4LuJGKK39dC14q2P0S95qpVrPCBOJMdPT7t27xcdLlizxuF16ejrOOecc7Ny5E8eOHYPZbI66wZMiWVuTEvkl3Um/oDR62Tp6heRq4Le//a34pXv22Wd7XZwQ4s7IbDvym3/A2Ja9GN36I5JtrWBkAwtZtUKN4cm5yEsKTfLHyJWInzgLquxRYJVqMDI55MnhH9GTkECJxqSTkFjgWtvpNBhqPevr6/HUU0/hkksuwaRJkzBt2jTccMMNWLduHQDgzTffREFBAQoKCnq91rn+73//O1paWnDnnXdiypQpmDJlCpYsWYIvv/xSsj3P8/jqq6/wu9/9DrNnz8bEiRMxffp0LF++HH//+9+h1+t7HcPphhtuwFlnnYUpU6Z4fT8PPvigWK6amhq3z51//vkAHC01HnroIcyZMwcTJ07ErFmzcPfdd6O0tNSnz84dtVqNkSNHQqPR9DnXclJSkvjY23sn/jObbFBateKfwhybSX1IajwvueQSvPTSS/jzn/+Mb7/9FldeeSWWL1+OyZMnIzc3F4mJiXRxQkQFBQUQBAGyagMMvA0MBDACD5YB2Cibc6/tm/9BFpcEzajJ0Iw5G4K5CwxLg6sEmjNmIvmucizS6XQoKysDz/OS9enp6Rg/fnxEn9cpZoi/Iq12x7W20ynWaz337NmD22+/HV1d3V1xrFYr9u7di71792LLli1uE86eDAYDrr/+epw6dUpcd/ToUSQmdnfJaWhowN133439+/dLXqvT6aDT6VBaWoq3334bq1evFhNDTwIRO/v378dtt90mSfiam5uxYcMGbNy4EQ888ABWrlzp937vuusu3HXXXT5te+KEY2o4hmGQnJzs97GIZ0y9DkB3NzCNmfe4bTQLyVX8LbfcAgDIy8uDTqdDRUUFnnrqKb/2wTAMDh8+HIzikQij+nkAIYvZDrMivnu9AKCfF7I/1pZBLVdBq9BAq9QgXZMCuSy44c9bTOjYtwHg7cA370AWl4zsa/9I83cGgaqfg06R/rPZbCgvL4/KpBOgmCH+i6SYdlfb6dSw8SsMvXIJlDE2mGN5eTluvfVWmM1mAMD8+fMxb948KBQK7N27F2vXrsWmTZuwa9euPvf1v//9DxaLBbNmzcKiRYug0+nw3XffYdasWQAcfdZXrlyJkydPAgCGDh2KpUuXYtSoUejo6MDWrVuxc+dO6HQ63H777Xj99dcxe/Zsj8cbaOwYjUbceeed0Ov1mDBhAq666iokJiZi3759+OSTT2C32/HMM89Aq9XimmuuGdCxPCkvLxe7zY0bNw7Kfs6rTtxLdp1LBQArhKkgQRaSxHPHjh3iXWXnv4IQo58oCRiuRx9PlmH6VTth5Ww42S4dQGTh2AsQH+TE03S63JF0/owzGaBIzQ7qMQkJFYVCgfz8fBw5ckQ8n0dL0klItHNX2+kUq7WeTz75JMxmMxiGwdNPP42lS5eKzy1ZsgRXXnklbr31VnR2dva5L4vFgrlz5+L1118Xrytuvvlm8fnVq1eLSeeFF14oGVgHAK677jp89tlnePjhh2G323H//fdjy5YtiI+PRzB0dnais7MTy5Ytw+OPPy5OS+WcqvCWW26ByWTCCy+8gAULFkhqbgOB53lJhdGiRYsCun8CDJa2NyG5OsjJycGQIUMkfzk5OX79DRkyJBRFJRGE6zGPJyvr39fSaDP1WqdRBL/JlKlK2udCnVcAVqkJ+nEJCZXMzEyMGzcODMMgIyODkk5CQsBbbadTrPX1dE7jAQDLli2TJJ1O55xzDh544AGf93nLLbe4vZnd2NiItWvXAgByc3Px3HPPuW0qe+WVV4rJaltbGz744AOfj90fBQUFeOyxx3rNhTx16lTccccdABzNgD/99NOAH/vFF18UmxxnZ2fjF7/4RcCPMdjxkLbC4Zjo6lrmq5C8q2+++SYUhyExorOzEzzPw2KUJoz9vaA91HQMdZ2NiFdqEafQIk6phSwE/SxNJ6WJp2bk5KAfc7ByxgzLskhIoKbMoZSZmQmlUhl1ffUpZoi/XEco7XnxH0reajudYq3Wc9u2beLjm266yeN2V155JV544QXodDqv+1MoFCgqKnL73K5du2CzOVpcrVixAhqN5xvGv/rVr/Df//4XdrsdW7duxa9+9Su32znnyByIlStXQu5hnItrrrkGL730EqxWK7799ltJ7e1AvfPOO3jzzTcBADKZDKtXr464/s6xIC4nB6jr/l4zitgcDySgVwkPPfQQHnroIezcuTOQuyWDTFVVFU6cOAG9Xtpcpr81nt+f+Qnfn/kRm09sx2dHNuFYS2UgiumVpbkatrY6yTrtqMlBP+5g5YyZqqqqcBdlUEpOTo6qpBOgmCH+i4Q5GX2p7XSKpVrPffv2AQBSUlIwZswYj9splco+R5EFHGOOeOqjWFJSIj6eMWOG1/2kp6eL5Tl48KDHbmSBiJmZM2d6fC4hIQH5+fkAMKARbnv673//K2lie//992PatGkB2z/pxqp6TBcYo21vA3ql8Nlnn2Ht2rWoqKgI5G7JIHVMl4rTyRNxJmkCqpPGwyjrX61Em1EnWS7KGheA0nnXdUh684VVxUGZPSLoxyUkGNra2tDa2hruYhAy6PlS2+nkrPWMBU1NTQAcXbf64su8vN76QLa1dc+9nZeX1+e+nNvYbLagTTGi1WqRleV9KjbnZ2M0GmE0DnwOyFdeeQVPPfWUmEz/9re/DWhNKpFSJGZIlgVZbA7eFJsNiElUy8rKAsdx4IQ68KzLLR/B/2YHgiCg3tAk3X98hoetA6dn/05FRi4YJrpqhKKJM2bC2fwtVrW1taG8vByCIGDixIlIS0sLd5ECgmKG+EuhUIR1Ch5/ajudYmWEW2fTWV+aePqyjbcRWV2navHWzNbd8Uwmk2SuSyeFQtFrnT/i4uL63Ma1HAaDAVqttl/H4jgOjz76KD766CNx3R133IHf//73/dof8Y3N1qNWnInNQVjpSphEnKysLOTk5KDnDEb9mcLTytmQlzgESaru2tLshOAmnjxng7XptGSdZmRxUI852Dljpq87wsQ/ra2t4pQpgiCgvLxcUhsQzShmiL8UCgWUSuWAk4j+8qe20ylWaj2d0x+ZTL0HC+zJOd1Kf7kmm74cz7V20VPS6y1mfGmGa/Xh/91ZjoHMsWmxWPC73/1OTDoZhsGDDz5ISWcI1HU1S5bNvN3DltGNajxJRBJ4AT0buMv70cdTJVfiiQvvA+AY3bbR0IIMbWogiuiRqbIEgl36IxE//rygHpOQQHMmna59lgRBQFNTE1JTg/sdIoRI9ae20ykWaj2zs7Nx4sQJ1NXV9bmtL9t4k56eLj6urq7GuHHeu+ecPu240axWqyUJn2vNuN1u9zgwkC/Tv+j1enR1dXmt+aypqQHg6HPfnzk2zWYzbrvtNvzwww8AALlcjieeeMLtCMKE9BfVeJKIxHE96zsB+QCbxGkVGoxMyQv6iLZdx/ZIlmXxKVCm5wb1mIQEkrukE3DUEhYUFISpVIQMXv2p7XSKhVrP4mJHqyGdTofKSs8DBPI8L0670l+TJk0SHzuTME8aGxvF+T6dg/s4uSZ/BoPB4z5OnDjRZ5kEQfA6aJDr59KfwX84jsNdd90lvl+VSoWXX36Zks4QsnRKY4TlqaktISHjLvGURUn9vLn6iGRZNTTfw5aERJ6WlhaPSWdhYWHY+rcRMlgNpLbTKdpHuL300kvFx2vWrPG43aZNm9Dc3OzxeV/MmTNHbBq7Zs0ar81t//3vf4PnHdcrc+fOlTzn2h/+yBHpdYFTSUkJ6uvrfSrXe++95/G5d999V5wCZv78+T7tz9Xf//53fPvttwAcNbevv/56v/ZDBqBROoCf3EaJJyEhcfjwYZSWHuy1XtmPOY2ONp/ArjP7UN54FGd0tTBYu/p+0QDYu3SwtzdK1mnHnB3UYxJnzJTi8OHD4S5KVGtpacGhQ4cGRdJJMUP8ZTKZYDQafer3F0hNX2+DPCEeyrTUfv/JE+LR9PW2vg8WoWbNmoXCwkIAjgRsw4YNvbY5duwYnnjiiQEfKzMzE4sWLQLgaGp73333ue03unbtWrz99tsAHEnmddddJ3neteb01Vdfhd0u7bPX0NCAhx9+2Odybd682W3SvWvXLrz22msAgBEjRmDBggU+7xNwfG6vv/46AEfz4Geffdbr1C0kOBIV0mbUsfNrKxWUOqT33ntPMtlvIDAMI37BSWyz2+2wWmy91iv6kXg2GlrQ2NWCWjiSwQmZ+ZiQGbwaSEczW5eLdoZFXOH0oB2PONjtdtjt9phKjELNU9KZnZ2NgoKCmPtsKWaIvwRB8DhPYzDlXr0UuVcP7iaPLMti1apVuP7662Gz2XD33Xdj48aNmDNnDlQqFUpKSvDRRx/BYrFAJpOB47gBzS380EMPYd++faiursaWLVuwcOFCXHXVVRg5ciT0+v/P3n3HR1Hn/wN/zczWbMqmkZACCZDQiwIqihUbKCpSTkTsZ/c875RTua9dT892Z/md53n2cgoKgh1sNAVUEjoJgYT0vkm2787M7491Jztbkt1kky15Px8PHuzMzn7ms8knu/Oez+fz/nRi48aN2Lx5s1S3xx57zGfu+9y5c/H000/DYrFg586dWLJkCRYuXIikpCTs378fq1evRldXFyZPnow9e3xvtntjGAYPP/wwNm/ejHPOOQcKhQI//vgjPvnkEwiCAKVSiQcffDDk+Z3//ve/paB4woQJ4DgOGzdu7PV1xx9/PM33DyOVow3Jlu5EU0oxcusFD6QBCTyrq6tRXV0dtvIimb6cDD6VSgUF55vNS6EMvbl22uRj5j2z2w4ES4V8bokyLQecJnFAz0lcbYZl2YDJG0jPmpubsX///iETdALUZkjoGIaJy7+FWDF16lQ899xzWLFiBcxmM77++mt8/bV8CPKiRYtQW1uLH3/8sU8JdtySk5Px7rvv4rbbbsPu3btRW1uL559/3uc4vV6PZ599Fqec4ptAMD09HY888gjuu+8+2O127Nu3D/v27ZMdc+WVV2LatGn405/+1GudVqxYgeeeew7fffedT+eOTqfD888/j1mzZoX0Pk0mk+xnuG/fPtx6661Bvfatt97CiSfSjfVwSVU5kG7pToylQN/mdEe7AfnGjcQdQRI/xo0bh6b6TgDyzHSJeaEte2CyW7C36RASlFroVAnQKbVIUve+FlZ/qPPHQ3Q64GhvhLOjCZo8SsQyGNxDsEjoAgWdw4cPR3FxcdxeaFObIaEKZk1HMrDOOeccrF+/Hm+88QY2b96MhoYGqFQqTJgwAVdccQXOOeccLFu2DIAreOyPrKwsfPjhh/j888/x2WefYc+ePWhvb4der0d+fj7mzp2LSy65pMfzzJ8/H5MnT8Zrr72GrVu3oqmpCcnJyZg8eTKuuOIKzJ49G5999llQ9Tn33HMxe/ZsvPzyy9i+fTs6OjqQk5ODM888E9dee22floY6cuSINDeURJaGlYdk8ToXckACzwsuuACzZ88eiKLJEOF974JhgDGXhTbUqNnYgl31e2X7Lhp3dn+rFpAoimAEAercYqhziyEKPHRFMwfsfIT011ANOgkhsSsvLw9//etfAz7f2upK0jJ8+HCf5w4dOhTSuRiGwQUXXIALLrggtEp6KCgowMMPPxzw+VDKLy4uxrPPPtvnunibPHlyyD8TQvpjQALPSZMmYcGCBQNRNBkivLPaclzo935arQbZdoomGTrVwPV4CpYuCB7rdzIsB1V6zoCdj5D+6urqoqCTEBL1PvnkE3z66afIz8/HjTfeGLB3r6KiApWVlQBc8xUJIdGFJreQqOR0egWeitADz2aTPDX1sISBnQTv7GyRbbMqLRh1woCek5D+KCwshCAI0sLjOTk5KCoqoqCTEBJVkpOTsWnTJgCu0UUPPPCAzzFGoxErV66UbqZdeOGFg1pHQvqDYXhoHN15SZRMfA6BpsCTRJ26ujo01HfI9vUl8NQqNBidOhJN5lZ02YzITMwIVxX9cnZ6rcGUnE4X8IOkrq4OPM+D4zjk5FAvc7AYhsHo0aMBuBZeH0pBJ7UZEiq7vXtES38S15DQnXLKKcjLy0NNTQ3ee+897N+/H+eeey6ys7NhsVhw5MgRfPLJJ2hpcd0AXrx4MWbMmBHhWlObIcHrENuR03VY2raq4vO7mAJPEnVaWlrQ2tol26fow1Db0wtPwumFJwEALA4r7PzAZghjlCqw6gQINjMAQJE8sIEu6dbS0gKHwwGlUklBRIg8g8+hEnQC1GZI6JxOp5Rln4KIwaVSqfDSSy/hpptuQn19PUpKSlBSUuL32KVLl4a0PuZAojZDgmWwJuFoXncvvVIwYU4E6zNQKPAkUUmXpMC4aSnIzBgGnhegUoe+hqcnrVIDrVITptr5slTtA6fWIeWECyDarXB2toJLTB2w8xESKnfvnj9DKeAkhMSmcePG4YsvvsDq1avxzTffoKysDB0dHdDpdMjKysJxxx2HRYsWYcqUKZGuKiEhs/EsOjWZ0rbGoY5gbQYOBZ4k6owePRpdGVZ0fvYmrBDAchycCgZdBSySisZEunp+tX37Nmx15WC1SdAWTkHKiRdBpaX1OwfL6NGjab3fHjQ2NuLIkSOYNm0aLQnxG2ozJFRqdXxeCMYSrVaL5cuXY/ny5ZGuSlD622aeeOIJPPHEE2GqDYlm/BD5Lgp74ElreJL+0ul0MBsFtLdaANGVZEjJ22BvawupnC1VO6HilK7eToUG+Sk5UCvCP9SFN3fBVucaly9YumDavxXJ0wZu2RbiS6cb2PVZY1ljYyMOHDgAACgpKaHg8zfUZkioAo0YICQQajMkWCkqeTLKeA1Dwxp4vvXWWwCAESNGhLNYMgQJgihbzJMRRbCq4O8cOnkn6roaZfuGJWYMSOBpqdwNwKOuChXU+bQ4PYm8hoYGHDx4UNq22WwoKSnB9OnTab4RIYQQEiVYJvRcJrEorIHnCSecEM7iyBDG252QBXMQwGqCDzzNTqvPvgTFwMzxtBwplW1rRk4EOwABLiGh8A463YYNGwalUhmBGhFCCCHEH16Qh2Q8E5+95TTHk0Qdi8UCs8kEbUEBGFGEKAhIgBXq9PSgy9jbeBAVbVXQKbXQqRKg1yRDwYW/uYuiCPNReeCZMGpa2M9DemaxWKT5ejSMFKivr8ehQ4d89ufn52PUqFE0rxHUZkjoBEGQ2gzLDo3eCdI/1GZIsDjIbwiLFHgSMjjKy8vRVGcCXzgSWVlZAIC0dB00wzJ7eWW3vU1l2FW/V9oenzkGCyfOC3tdHa214DtbZPs0BZPDfh7Ss/LycmlpjKGe0ZCCzuBQmyGhslqtUhCRkJDQ+wvIkEdthhA5CjxJVKo/ZkVNpQU1FVYwLIOcvBRMmZEX9OsN1k7Z9vjMonBXEQBgOVIi22ZUWghW04Cci5DeBAo6R4wYgcLCQgo6CSGEkCjEaIZGwjsKPEnUSU9PB8t2wmEzwWGzAwBMRntIZTQb5b2Qw3TBD9MNhfnwr7JtZWoWlKnZA3IuElh6enqP61QOBXV1dSgrK/PZT0Gnf9RmSKgUCgUtwUNCQm2GBEvE0FgVhAJPEnVyc3Oh1TYBMEj7WDa0D+3C1BHgWA7NplZ02U0DEniKTges1ftl+5QZ+eASU8N+LtKz3NzcSFchogIFnSNHjkRBQQFd9Pgx1NsMCR1lgiahojZDguUaqdedBDNew1AKPElUEgVBts2EGHjecuKV0mOzwwIlG/6mbq05CNHpkO3TFkymi3wyqGpra1FeXu6zn4JOQgghhEQTCjxJVBIE+b0eth8XzwnKgclYaT6yS7bNJaZCnVU4IOcixJ+WlhYKOgkhhJAYx3t1uMQryu1MopK1pU22bTrse3EdaebD8sBTkZoNZWpWhGpDhqLU1FTo9XrZvoKCAprTSQghhMQQXuQjXYVBQT2eJOqUlZXB1GUE0D03QrDZgn59m8WAkvr90Km00Cm1SFQloiA1+Iy4weBNHXA0H5PtU2cVgh0iWcmiTVlZmbQ0RnFxcaSrM2g4jsPkyZOxZ88eGAwGFBQUoKCgINLViglDtc2QvvNcGkOj0fT+AjLkUZshwdIp5cvtxOutYwo8SdSxWq0QnPI7P6FM8eyyGdFibkOL2bWdrA5/4Gk5ulu+g1NAS+t3RozVaoXD4QDPD407hp7cwWdzczOysymjcrCGcpshfSMIAmUoJSGhNkOCpXF2INHWPdxWIQTf4RJLKPAkUYdlWYhe6bxC+cw22S2y7YGY48motVCm58JhaAR4JxQpw6DMCG9wS4LHsqz0byjiOI6CzhAN9TZDQucOHiiIIMGiNkOClaq0IdPULm0rENoygrGCAk8SdSZNmoTtqsOAtXsfh+B7JX6o/BEd1i4kqBKgU2oxMiX8yyYoEtOgm3AKREEA39UKhlPS/M4ImjRpUqSrMOCampqQnp5O606GyVBoMyS8tNqBSVRH4lestZnq6mq89dZb2Lp1K2pra6FQKJCTk4OzzjoLv/vd75CTkxPpKsattJwsHKs4Km2rFPH5XU+BJ4lKak6e3SsBwQ05EEURW4/9DDvfvcxJgT78PZH21hoAAMOyUKRkQpWZD4aNzw8JEnnV1dWoqKhASkoKpkyZQsEnIYSQsFq7di0eeOABWK1W2f6ysjKUlZXhrbfewl//+lcsXLgwQjWMb+rMVKj13YGnRh2fIVp8visS8wRePtY22HU8O21dsqATAKZkjw9bvQBAdDrgbG+U7VOl02L0ZGAcO3YMR44cAQB0dHRgz549mDx5MgWfhBBJQ10nsnOSI10NEqM2bdqEe++9F4IggGEYXHDBBZg5cyY4jkNpaSnWrFkDs9mMlStXQq/XY86cOZGuMolRFHiSqCR4rWfEBhl4Npvky7BwDIs0rT5c1QIAONrrIYrd9WMYFoq04WE9ByGAPOh0MxgMaG1txbBhwyJUK0JINDF2WvH2v37EzXefjsRkypxKQsPzPB588EEIggCWZfHyyy/j9NNPl55fvHgxFixYgKuuugoOhwN/+9vfcOaZZ9L8+DDjWEDDdvc2q+P05jK1GhJ1mpqa4HA4ZfuCzWqrYBU4Me84jEodgUSVDukJqeDCPASWN3eB8Uh0rdBnglWoengFGWhNTU2or69HU1NTpKsSNv6CTgAYPXo0BZ1hEI9thgwsh8MBu90Oh8PR+8GDaOt3FbCYHdj2ve/nBYmsaG0znrZs2YLa2loAriDTM+h0mz59Oi699FIArqkfe/bsGdQ6DgVHmUa8ObFV+vfRyMbeXxSDqMeTRJ2GhgY4nPLAM9ihtgWpefjzKTdI23ZneLOCCTYzNPnjoM4ZA0drHRytNVDSMNuIa2hokNZkjIegrKqqCkePHvXZP3r0aOTn50egRvEn3toMGXgOh0NaGkOpVEa6OgBcvZ2/bKsCAPy8rRInnzGKej2jSDS2GW92ux3Tp0/H4cOHcf755wc8buzYsdLj2tpaTJ06dTCqN2R0tCmQVzZT2lYorD0cHbso8CRRKYNph9rQAJFhITIM9GlC7y/yQxXmnsj2zavQVbIRmoLJSBg1DQmjj4MiJTOs5yBDW6Cgc8yYMcjLoyV7CCHdtn5XAafT9f3odAjY9v0RnHvRhAjXamDV19fjtddew6ZNm1BXVwetVouxY8fid7/7HS688EK88soreOaZZwAAhw4dkr3WHTzdcccdWLJkCR5++GFs2bIFAJCfn4/rr78e8+fPl44XBAEbNmzAunXrsHv3brS3t0On02HkyJE444wzcMUVVyA52f/c2uXLl2PHjh0AgF27dgV8P/fccw/WrFkDAPjmm29kn/Pu57KysrBp0yYcO3YM//rXv7Bt2za0trZCr9dj5syZuPrqq/scCJ5zzjk455xzej2usbG7By4zk657ws1k5JHc0b06Aq80RrA2A4cCTxJ1CgoK0KbmoTbXABDBQETKsOiYQ2k5WgLBZob50HaYD22HfvZipJ1+WaSrNeQVFBRI81NiWWVlJSorK332U9AZfvHSZsjgUavVUu9VNPDs7XSL917P7du34+abb4bJZJL22e127NixAzt27MCGDRtkPXOBGI1GLFu2TPZ5e/DgQVkQ2dDQgDvvvBO//vqr7LUGgwEGgwGlpaV488038dRTT+G0007r8XxqtTrIdxjYr7/+ihtvvBGdnZ3SvubmZnz++ef44osv8Je//AXXXHNNv8/jT01NDT788EMAQHZ2NvV2DgCh0QCgO6DXWvvW4RLtKPAkUSc5ORlmUYNOTYa0L5UN7kt0S9UO2Jx2JKkTkahKQF5KDpLViWGpl7OrHfamY7J9CaOmhaVs0j+B7jjHEgo6B1c8tBkyuKItk7Rnb6dbPPd67t27FzfccIO03MecOXNw1llnQalUYseOHVi7di2+/PJLbN26tdey3nnnHdhsNsyePRvz58+HwWDADz/8gNmzZwNwZRC/5pprpHn2ubm5uPTSSzFq1Ch0dHRg48aN2LJlCwwGA26++Wa8/PLLOPXUUwOer79tx2w24w9/+AM6OzsxceJELFy4EMnJydi5cyc++ugjOJ1OPPHEE0hISMDvfve7fp0LcC1NZ7FYUF1djc8//xzvv/8+Ojo6oFAo8NBDD0GlorwW4aZn5Ne5XHzGnRR4kugk8rxsmw1yId02iwFWpx2tFgMAQK9NCVvgaTlaKttm1AlQ5xaFpWwytAUKOouKipCbS3OICSFy/no73eK11/PRRx+F1WoFwzB4/PHHpWQ3AHDxxRdjwYIFuOGGG9DV1dVrWTabDWeccQZefvllqQf76quvlp5/6qmnpKDz7LPPxjPPPAONpvvnuXTpUqxZswb33XcfnE4nVqxYgQ0bNiAxMTzXG966urrQ1dWFxYsX46GHHpIC2fnz52P+/Pn4/e9/D4vFgmeffRZz587t9421r7/+Gn/4wx9k+0aOHImHHnoIs2bN6lfZxD+OGRqjb4bGuyQxR+Dlt3oYRe9N1e60w+qVTChJpQtbnSxHSmTb2oLJYMKcMZcMLaIo4ujRoxR0EkJC4q+3083d6xlPfvrpJ2me5OLFi2VBp9uMGTPwl7/8Jegyf//73/sdNt3Y2Ii1a9cCAPLy8vD000/Lgk63BQsWSMFqW1sbPvjgg6DP3Rdjx47Fgw8+6NN7OnPmTNx2220AXMOAP/74436fq76+3mdfU1MT1q1bh+bm5n6XT3wJgvz3KjDxeX1JgSeJOg6HwyfwZIMYpnK4rQp7Gg/iSNsxNBibYbKboVMmhKVOoijA7BV4JhTSHIdoEQsp6/1xOp1oaGjw2U9B58CL1TZDIkcQBOlfJPXU2+n287ZKGDvjJyvmd999Jz2+6qqrAh63YMEC6PX6XstTKpWYMmWK3+e2bt0qfS5cccUV0Gq1Acu57rrroFC4Bg9u3Lgx4HHhaDPXXHONdC5vv/vd76Thr99//32/z1VQUICHHnoIzz33HP74xz8iPz8fFosFH3/8MRYuXIi6urp+n4PIJWTlyLbFAL/rWEeBJ4k6Bw4cgM1mk+0LZqhtk6kFh1oq8Gv9Hmyp2oGfqn8NW+IQe2MlBIt8+I4oxukA/Bh04MAB7NmzBwcOHIh0VUKiVCoxbdo0WeKJ4uJiCjoHQay2GRI5VqsVFotFmmMYKT31drrFW6/nzp07AQCpqakYM2ZMwONUKhWOP/74XsvLz88POE+xpKREenzSSSf1WE5GRoZUnz179kAURb/HhaPNnHzyyQGfS0pKQnFxMQCgtLQ04HHBOuOMM3DZZZdh3rx5uPnmm/HZZ5/hzDPPBODqEV65cmW/z0HkuET5DY54HXkbp2+LxLo6Lgf1SWNQnzQGDYmj0e4MfMfRrd3SIdvOSwlfJlzLEfkHOatJhDI1O2zlk6FLq9VKwWdxcTFycnJ6fxEhZEgKprfTLZ56PZuamgAgqM/HESNG9HpMT3Mg29rapMfBrJvsPsbhcMgyzoZTQkICsrKyejzG/bMxm80wm81hPb9arcYzzzyDjAxX0sdt27ahoqIirOcY6hQ6vWxb5KjHk5BBkZKSAiujhVWZBKsyCRZVMhxM73+AzeY22XZmQlrY6uQ9zFaRmgVFUvjKJ/2TkpICvV6PlJSUSFelT7RaLU444QQKOgdRrLcZMvg4jpP+RUowvZ1u8dTraTAYAMDvXEtvwRzTU1ZWz6Vaehpm6+98FovF7zH9bTM6Xe/5KjzrYTSGfw1InU6HCy+8UNr2XmaG9I93zhAmTrs84zOcJjFt5MiRAPOzbF8wH9qjUkfghNxpaDa3osXUhgxdeljqI9itsNYclO1TpmaDS6TAM1qMHDky0lXolXsIVqA1AKNtqYZ4FwtthkSXcKzF2B+h9Ha6xUuGW7VaDYfDETCw89TfYa2ewabFYuk1U61n72KgoLentuM9tcgfu93e6zHuejAME9Q8174oLCyUHre2tg7IOYaqY53yfA8WIT7zD1DgSaKSKDKAx/U5G0RW27NHz8bZo2dL20KY5mBaj+0DeKfHHgaq9Fyw2oFJm07ijyiKOHLkCARBwJgxY6JmAXpCSOwIpbfTLV7W9czOzsbhw4eDSmrT38Q37uGkAFBdXY3x48f3eHxVletmgEajkQV8np/zTqczYGKgYJZ/6ezshMlk6rHns6amBgCg1+tDWmfztddewy+//ILW1la8//77PX4/eQbJwfTCkuANlbwh8dmPS2Ke9/R8rg/ZvdgwDVMwe83v5JLTodBnUfBAguIOOqurq1FbW4uKioqACSgIIcSfvvR2usXDXM+pU11Z5A0GQ49zCwVBkJZd6avJkydLj3/66acej21sbJTW+3Qn93HzDP56Gvp6+PDhXuskimKPSYM8fy4nnHBCr+V5KikpwcaNG7Fr1y7s27evx2N3794tPR41alRI5yE9c3r1fDNxeplAgSeJUvKgjguix3OgeCcWUqZm0/xOEhRRFFFRUYHq6mppX01NjXShQgghwehLb6dbPMz1PP/886XH7777bsDjvvzyy36vM3n66adDqVRK5+ppeO/rr78uLZVyxhlnyJ5LT++e7hMoe3ZJSYnfNTP9ef/99wM+995770lLwMyZMyeo8txOPfVUWTmBVFVV4auvvgLg6lWdOXNmSOchPeOrG2XbSnt89oBS4EmiTkVFhZ8ez57nv7VbOvDpoW/w7ZFt2F6zC/uaysJSF2dnCxytNbJ9itQsKNPClzGX9F9FRQUOHToUVVn23EGne/iTJxqiFHnR2GZIdLNardK/wdSf3k63WO/1nD17NsaNGwfAFYB9/vnnPsccOnQIjzzySL/PNWzYMMyfPx+Aa6jt3Xff7fd3vnbtWrz55psAXEHm0qVLZc979py+9NJLcDqdsucbGhpw3333BV2vr7/+2m/QvXXrVvzrX/8C4Fp/c+7cuUGXCQDz5s1DZmYmAGDNmjV+f7aNjY249dZbpeD2hhtuCGk4L+mdTiGfHxyvY+pojieJOiaTCaJ3j6ey56ZqcphhdlhgdljQYgZ0Si0mDivu8TXBcLTVg1FpINpdXzqMQgVVRh645IxeXkkGk8lkgsPhkO5SR5ooijh8+DBqa2t9nhs/fnyvafHJwIu2NkOinyAIEEVx0KdZlOysgVbX/4v8kp01mD0n8BqY0YxlWTz88MNYtmwZHA4H7rzzTnzxxRc4/fTToVarUVJSglWrVsFms4HjOPA83691vO+9917s3LkT1dXV2LBhA+bNm4eFCxeisLAQnZ2d2LhxIzZv3izV7bHHHkNamnwk1Ny5c/H000/DYrFg586dWLJkCRYuXIikpCTs378fq1evRldXFyZPnow9e/b0WieGYfDwww9j8+bNOOecc6BQKPDjjz/ik08+gSAIUCqVePDBB0MOCHU6HR599FHccsst4Hkef/rTn/DVV1/h9NNPh0qlwr59+7Bq1SppLuppp52Ga665JqRzkN6pnEZo7d2dLEqh96RTsYgCTxKdvL7YFcqeezzNdvlQmARl7ynQg6EZMQH6UxbC0d4AZ3sjRFGAOquQ5neSgCjoJISE0+w5Y2I2YAynqVOn4rnnnsOKFStgNpvx9ddf4+uvv5Yds2jRItTW1uLHH3/sV49ccnIy3n33Xdx2223YvXs3amtr8fzzz/scp9fr8eyzz+KUU07xeS49PR0PP/wwVq5cCbvdjn379vnMobzyyisxbdo0/OlPf+q1TitWrMBzzz2H7777Dt99953sOZ1Oh+effx6zZs0K8Z26nHHGGXj22Wdx7733wmw248svv8SXX37pc9wll1yChx9+uF9BPfEvTWlGtrE7UzCH3jMZxyIKPEnUmTRpEj5BpWyfQttzKvifanbhcOtRJCgTkKDSIl2bGpa6ONobITodUCSlQ5Hkmq+hGlYQlrJJ+EyaNCnSVQBAQWcsiZY2Q2JHMGs6koF1zjnnYP369XjjjTewefNmNDQ0QKVSYcKECbjiiitwzjnnYNmyZQBcwWN/ZGVl4cMPP8Tnn3+Ozz77DHv27EF7ezv0ej3y8/Mxd+5cXHLJJT2eZ/78+Zg8eTJef/11bN26FU1NTUhOTsbkyZNxxRVXYPbs2fjss8+Cqs+5556L2bNn4+WXX8b27dvR0dGBnJwcnHnmmbj22mv7/f1y/vnn47jjjsPbb7+NH374ATU1NeB5HpmZmZg5cyaWLFmC448/vl/nIIElcEoA3Z0o8brAGgWeJOqwLAtWoQDPd0+szpk5pcfX1HbU42BL91wtDafCnNG+dyBDZW+qlG0rktLBJST1u1wSXtFw91UURZSXl/tN5T9hwgQMGzYsArUigURDmyGxhUa6RIe8vDz89a9/Dfi8e33J4cN9czEcOnQopHMxDIMLLrgAF1xwQWiV9Hh9YWEhHn744YDHhFJ+cXExnn322T7VJRhZWVm46667cNdddw3YOcjQRoEniUruLHFuLNvzF77B1inbHp3W/8XhBacdjlZ5EKHKKuh3uST+BAo6GYbB+PHjKegkhJB++OSTT/Dpp58iPz8fN954Y8DevYqKClRWVgJw3fAjhEQXCjxJ1BEFEd7LHPYWeLZbOmTbaQn6ftfD0VIDUeClbYZhoMrM73e5JL5Q0EkIIQMrOTkZmzZtAuD6zH3ggQd8jjEajVi5cqW0TvKFF144qHUkpD8YiOCE7szHLOPs4ejYRYEniTotra0++1iu58DzhNxpaLW0w2DpRLu1A2lafb/rocrMB6PUwNneAEd7A7iEJLBKdb/LJeHX1tYGQRDAsqxPZsGBdvjwYb9B54QJE6QU9ST6RLLNkNjkdDqlrLYKBV0+DaZTTjkFeXl5qKmpwXvvvYf9+/fj3HPPRXZ2NiwWC44cOYJPPvkELS0tAIDFixdjxowZEa41tRkSPBPaMNLQnXzKporPof30V0CiTk2177qHvfV4Xj9jaY/Ph8pcsQudP38B7ahprn+jjwPE+FzMNx7U1NRIS2MMdhCRnp6O+vp6aXg4BZ2xIZJthsQmu91OQUSEqFQqvPTSS7jppptQX1+PkpISlJSU+D126dKlIa2POZCozZBgtdu1qB82W9pmEbvr7vaE/gpI9GEYDB+hAcMwSEpKhiCIUKkGt6may3+G+fAvMB/+BQCgm3AKshb0nu6cDD1paWmYNGkS9u7dC1EUKegkhJABMG7cOHzxxRdYvXo1vvnmG5SVlaGjowM6nQ5ZWVk47rjjsGjRIkyZ0nMyQkKikcWhQn1ykbStcXT2cHTsosCTRJ3hqWkYZdgMlmOhsqnBchw451gAgzfM1XK0VLatzioctHOT0OXl5UnDJiPBHXwKgoCMjIyI1IGEJtJthsQelUol9V6RyNBqtVi+fDmWL18e6aoEpb9t5oknnsATTzwR5lqRaOSA2PtBcYACTxJ1EjgOdZXtsn0TTWZoUlP8Ht9gbEZJ/T5oFGqoOBWS1TpMyhrX5/M7DI1wtNXL9mlHTe1zeWTgRcNQyWioAwke/b5IqGioJAkVtRkSrGRVQqSrMCjoVi+JOoKD99nHKgIvpWu2W9BpM6LJ1Iqazno0GJv7dX7LEXlvJ5uQTMuoEIiiiI6Ojt4PJIQQQggJgYKVX+fG67gKCjxJ1BEcDp99nEoV8Hg7b5dtq7jAxwbDVLZTtp1QOBUMQ38qQ5koijh48CB27dqFxsbGSFeHEEIIIXGEF+TXmUKcXnfSGAASfVRKqNIzAFFwrecpij0GntuO/YKqjlpoFWpoFBqk92MpFVHgYT22T7ZPmZ7T5/LI4HBnlAUQ9jl7oijiwIEDaGpqAgAcOHAADMPQ+pwxbiDbDIlPoscC0zTPkwSD2gwJFueVx0Rg4jNEi893RWLakZYWCBPHg+VYZGdlAQA4rSbg8WWtR3Ck/Zi0PTyp7wGBtbYcosMm26caVtDn8sjg2Lt3r7Q0RjgzGnoHnW4HDx6EXq+HqocbIiS6DVSbIfHLYrFIiWISEobGfCzSP9RmCJGjwJNEHauZR90xC1iGQVtjPRiGwew5RQGP77IZZduFqfl9Prfp0HbZNpuQAnVu4HOT+BUo6GRZFpMmTaKgkxBCCCHhoQzcwRJPKPAkUYfj1DB1uhIMdXW4gko2wAgVURTRbpWvdaTXJPf53JaKXbJtVWYeOJ2+z+WRwaHT6eB0OsOWQVAURezfvx/NzfJEVe6gkzKixr5wtxkS/2hINgkVtRkSLJYbGt9FQ+NdkpgyPDsHQJVsH8v5//B2Ck6cUTgLBksH2q0dMFg6kdbHOZ681QRHS41sn7ZgCs3LiAGjR48OW1mCIODAgQMUdMa5cLYZMjRoNEOjR4KED7UZEiyDtRNA9zrg8bqqJwWeJOqIHkk/AKCnuE/JKXHDjMvDcl5z+U7I/tRZDgnjTgpL2SQ29BR0Tp48GampqRGqGSGEEELilQCh94PiAAWeJOrwvNd9nkHqcTQdlM/vVOiHQUUZbYcMQRCwf/9+tLS0yPZT0EkIIYSQgSQI8drHKUeDz0nU6TpaKd8h8AN+TlEUYa0+INunyRtL63cOERR0EkIIISRSnKIz0lUYFNTjSaJOy7FqwHM9IzHwXaA2iwE7akqg5lRQK9RIUGowbfjEkM9pb6qCYOmS7dMVnxhyOSQyqqqqpEQxI0eODOm1PQWdU6ZMgV6vD2NNSbToT5shQ5PNZpOWxlCr1b2/gAx51GZIsLQK+XzgeM0uQoEniTpWiw2egSfTwxRrq8OKTo/lVBKU2j4FnqLAI/G4c+Bsb4CzvRGCzQTt6ONCLodERkdHh7QmY6haW1sp6ByC+tNmyNDE87wURBASDGozJFhq3gKV0yxtKwVrBGszcCjwJFFH4L2SC/Uw7N3itMm2NYq+ra3obKuHIjEVisRUIH88lGk5YBV0QToUZGZmYtSoUThy5AgAgOM4TJ48mYJOQgghhAyKVIURuZ3diQ052CNYm4FDgSeJOinJKUC9557Akee3R7aiprMBWoUaGoUaek1SyOcTRRHOTnmPlyojL+RySOSMHz++X3eVR4wYAVEUcezYMQo6h4j+thky9NDSGLFv7NixAIATTjgBb7/9dljLrqmpwZw5cwAACxYswBNPPBGRNuOvHiT6pWWk4ZiyVtpWcfH53USBJ4k6WqUAgJO2FT1MuN7deBCNxu47RAX60ANGwWaG4JD3nCpSMkMuh0ROOIZLjhw5EllZWXRxOUTQEFsSKpalZHMkNNRmSLAS8rKQkNkdeGrUfRvBF+3oL4JEHcHpNdS2hx7PTps8IVBxxqiQz8d3tcm2WYUKrEYXcjkk9lHQSQghhBAyMCjwJFFH8FrHM1DgaXPaYXHIJ1/rNckhn49VJ0CdPQqKxFQwDAMuKZWG38Uhd/Zao9HY+8GEEEIIISSsaKjtb0RRxKeffoqPPvoIBw4cgNlsRmZmJmbOnIlly5ZhypQp/S7/m2++wSeffILdu3ejra0NSqUSubm5OOWUU3DllVciJycnTO8mttltVgDdQwwCBZ5OwYmzR58Kg6UDBmsn2q0d0GtTQj6freEIVBl5UBTNAAQeojM+J3THs87OTgiCAJZlkZzse/OB53ns3bsX7e3taGtrw7Rp05CYmBiBmpJo0VubIcSbZ4ZSjuN6f8Eg8Vx4nmXppmk0idY2Q6JPk7IV34+tkrb1AoO5EazPQKHAE4DVasUdd9yB77//Xra/trYWtbW1WL9+Pf74xz/ihhtu6FP5HR0duPPOO7F161bZfrvdjrKyMpSVleHdd9/FI488gksuuaSP7yJ+dHWZAHRfCAbqfNSpEnDDjMv7dS7BZkHj6r8DogA2IRma3GJkzL0RrDqhX+WSwVVZWSktjeF9k8gz6AQAp9OJ0tJSTJ06lYLPIaynNkOIP55rMiYkRMd3hN3B4/VP98FidUKrUeCaCydCpaQAJ1pEY5sh0anFIEBonCxtm1hbD0fHLgo8AaxcuVIKOkePHo0lS5YgIyMD+/btw//+9z+YzWY888wzyMrKwsUXXxxS2YIg4NZbb8XOnTsBADk5OVi4cCFGjRoFk8mELVu24Ouvv4bdbsc999yD5ORknHXWWeF+izFFCQf05nqAYSCCgU4p9P6iPrLVHwZEV/mCuRPmihKa3xlHvINON0EQIAgD164IIWQwlFcb4HAIqG7qQuHwFJRXGzBxVHqkqzWg6uvr8dprr2HTpk2oq6uDVqvF2LFj8bvf/Q4XXnghXnnlFTzzzDMAgEOHDoVcfnt7O95//3388MMPOHr0KMxmM9LS0jBlyhTMnz8f5513XtBlrV+/HqtXr0ZFRQVYlkVhYSHmzZuHpUuX9ppToLy8HB9//DG2b9+O+vp6dHV1QaPRIDMzEzNmzMBll12GiRNDX7ecRCdjJ4PMhtHStlMVn9OChnzguXXrVnz66acAgJNOOgmvvPIK1Go1AODCCy/EokWLcPnll8NgMODxxx/HnDlzQuolWbNmjRR0nnTSSfjXv/4lu+u1ePFifPvtt7j99tvhdDrx4IMP4pRTTpHqMBQN0zEQW38G4Bpmm5CVMWDnstbIv5TUWQVglUP3Zx+rsrOzwfO8bChToKBToVBgypQpNLxyiPPXZgjpiVKpjLolePYeaUGXxQ6z1Ykuix37jrTGdeC5fft23HzzzTCZTNI+u92OHTt2YMeOHdiwYYO0ZEpfbNiwAffddx86Oztl+xsbG7FhwwZs2LABM2fOxPPPP4+0tLSA5fA8jz/+8Y/44osvZPt3796N3bt3491338Wrr76KgoICn9cKgoDHH38c7777rs8NUofDga6uLhw5cgQffvgh7rzzTtx00019fr8kejgbDQC6/3a11vi8OT7kA8/XXnsNgOti9NFHH/UJ+EaPHo3/+7//w5///GcYDAasWrUK11xzTdDlf/DBBwAAtVqNp59+2u9Qi7POOgtXXHEF3njjDTQ2NmLTpk0455xz+vGuYpvIadGq614WJZHT+j3umKEWexoPQqvUQKvUIFWjx7jM0X6PDcRWWybbVucVh15hEnHDhg2TbfM8jz179sBgMMj2KxQKTJ06FUlJoa/3SuKLd5shpDfRtgRPU5sZze0WtHe6huS1d9rQlGBGU5sZw9Lib1jn3r17ccMNN8BqdSUVnDNnDs466ywolUrs2LEDa9euxZdffukzrSlY3333He644w7wPA8AmD17NubMmQO9Xo8jR47g448/Rm1tLXbu3IkrrrgCq1atgk7nf4TUF198AYfDgYSEBFx22WWYNGkSWlpasHr1apSVlaG6uhrXXHMN1q9f79OZ8c9//lNaYzQtLQ0LFixAYWEh1Go1amtr8fnnn6OszHXt8o9//AOzZ8/GpEmT+vSeSfRIEuQhGcdHqCIDbEgHngaDAdu2bQMAnHrqqcjPz/d73Lx58/D444+jtbUVX375ZdCBp9FoxO7duwEAJ598MjIzA68Nef755+ONN94AAJSWlg7pwFPg5X9tge4umx0WmH77BwB2pyOkwFMURVi9Ak9Nbt/vlJLoQEEnISQe/fBrDY7WdUjbDqcAp1OA0WxHgkYBo9kOp1PAJ5sqoFR0L1pQmJOC048PfY3raPPoo4/CarWCYRg8/vjjuPTSS6XnLr74YixYsAA33HADurq6eijFP6PRiHvuuUcaBfG3v/3NZ2rVddddhzvvvBPfffcdKioq8OSTT+Lhhx/2W57D4UBmZibefvttFBYWSvsvv/xy/PnPf8ZXX32Furo6vPTSS/jLX/4iPd/W1iZ1iOTm5uKjjz5CamqqrOwbb7wRK1euxMcffwxRFPHZZ59R4BkHVKw8JIuecRXhNaSXU/n555+lYQwnnXRSwONYlsXMmTMBuILCjo6OgMd6am9vx+TJk5GZmYlRo3peXzIlpTsbq/cQj6FG5L3W8QyQpc/ilC+lolWGtgajo60egkX+BaXMLgxwNIkFFHQSQuIRzwvYd6QVR+s6pX81TUbUtZjAsAzyhiWBYRnUtZhQ02SUHbfvaCt4PraH7f3000/YtWsXANcUJc+g023GjBmyIC4U//vf/6TvjWuvvdZvPg+tVotnn30Wubm5AICPP/4YjY2NAcv829/+Jgs6AVev+eOPPy51RHz00Uew2bqTyHz33Xew212Z9W+55RafoBNwXZN6Jrs8evRokO+SRDNekIdkAhOfIVp8vqsglZeXS4+Li3seYjlmzBgArl4y9xCH3uTn52PVqlXYsmULVqxY0eOxFRUV0mO9Xh9U+fFK9JrTEKjH87sj27Cv6RAq2qpQ29kAUQzti9VytFR+HqUGCp3vhzyJDTzPY/fu3RR0EkLiTnuXDSKABI0CbZ1WNLWb0Wwww+HkMTI7CUoFi5HZSXA4eTQbzGhqN6Ot04oEjQKi6Hp9LPvuu++kx1dddVXA4xYsWNCna6gffvgBgOv7oqdRbQkJCbjiiisAuHo1N23a5Pe4oqIinHrqqX6fS0xMxIIFCwC4Vj349ddfpecuuugifP3113j11Vdx/vnnB6xHXl53D7Z76DGJbdo0+fQPkYvPQanx+a6CVFtbKz1238EKJDs7W/Y6dw9ouHz00UfS46lTp4a17FjT2SHv8Q0UeO5rKkOXvTvBwHHDJ4R0HmvVPtm2Qj8MnCb+5sUMBbt378bRo0dhs9lkc/cUCgWt2Un82rt3r7ScCg1TI8GwWCxSciGt1n/ugYGSodfiktNH46ufqqBWcahpMsJkcSAzNQEJGtfc0wSNEpmpCahu7IJOq0TesESk6NQ496SRyNAPbn3DzZ2kMTU1VeoI8EelUuH444/Ht99+G1L5paWuG9FjxoxBenrPyZlmzZolPd69ezcWL17sc8wJJ5wAIHCbOf7442VluMtUKpUYOXIkRo4c6ffcDQ0N2Lt3L3766SdpH8/H6WTAIUaZmgyg+5qW4eJzsO2QDjzb2tqkx/6GM3jyvIPm3aPSX5s3b5bu5qWnp+OUU04Ja/mxxuDUoiUhE4AIBiKcfka6OwVeFnQCQGHqiJDOY2uokG2rhvn/oCfRjed5VFZWwmQyyTKUKpVKWquTBOReUoeW1SHBEkURoihG7Py5mYm47JxibNhxDAqORXVjF9o6rUjWqaRj2jpc2/lZScjPSsI5J4yQAtNY1tTUBMC1JF1vRowI7VrAaDRKw10D5frw5HlMS0uL32PcnRmB2ozn+2hubvZbxq+//opt27ahoqICVVVVqKqqgtEYn0tsEIBV6eAZeIpsfGZcH9KBp+fwhN6WL1Gpuj/Ywzmsob6+XjYn4eabb+51bad4ZxE16NJ4LKEimn2O6bD6zoNN1aT47AtEsFvgNMg/7DUjxgdfSRI13HeSrVarFHhS0El6o9FowHFc1GUqJdGLZdmIL6eSoFHizOn5eOvz/XDHM60dFljtPDQqDmAg7T9zen5cBJ1A9w3/YK6PQr2G8lyaJZiebM/yLRZLj8cEajOe5/Gc4wm45mzec889KCkp8Vt2Tk4OzjjjDLz33nu91pXEDs5rDXmGjc8QLT7fVZCcTqf02DOw9Mfzec/X9UdbWxuuvfZatLa2AgBOOeUUae5AJB0+fBijR4+WzYmz2WzSQsx6vd7njuLhw4dhNrsCxClTpsiea2lpQV1dHQDXnULP3mWe57Fvn2vIa1JSEgoLC6FQKAGPkSOCKGD37t2YMGECFApXk2UZFqfnn4iG9iYYnSbY4ECiWv5Hu2fPHoiiCK1Wi6KiItlz1b9uAuBxF5JhoC1wDXE2Go04cuQIACAzMxPDhw+XvfbAgQPSEL3x4+XBan19vXT3ctSoUbLAx2q1SvOD09LSZHM0ANecY4vFAoZhMHnyZNlzzc3NqK+vB+C6m+vZA+90OrF//34AQHJyss+6YEePHpWy/E2cOFHWK9je3o7q6moAri+zjAz5mqnurMwJCQk+w5uOHTsmXQyMHTtWdvOmq6tLSniQlZWFrKws2Wv3798Pp9MJlUqFcePGyZ6rq6uT7iKPHj1alq7eYrFIc7PT09ORm5sLlmUxZ84c7N+/H4cOHUJLSwsKCgp8gs6mpiY0NDQAAAoKCmTreDocDhw4cACAK9GX9zCniooK6eJk0qRJYNnu6fFtbW2oqakB4Jp347m2myAI2Lt3LwBAp9Nh9Gh51uWqqiopWdn48eNlQVBnZycqKysBuIb6ey//sXfvXgiCAI1G4zNHvba2VvpcKSoqkl3kmEwmaU55RkaGTw/CwYMHYbfboVAoMGGCfPh6Y2OjlEyjsLAwYp8RniorK6WEbJ6fEYDrYvXYsWMAgOHDh8syixcXF2PPnj2wWq0oLy/3+YyoqamRRsUUFxfLLjbpM6JbLHxGeCorK4PVagXLsj5DrD0/I7xvSHj2jnv+/btZrVbpea1WKws0nE6nlDBGpVLJ2qgoilLwwrKsT9Bks9mkoZQajQYsy6K53fV3ZLE54HAKMJptSNKp0dBqA8MA3G/1q2loR8HwJL/l2u126VrGXa4bz/NSMKRQKHyuj3oacuxwOOBwOAC4buh7tiVBEKQb9xzH+dzw9/wZei89p1ar4XA4YDKZ4HQ6A/4MOY7z6Rzw/Bl6876e8w4k3Z9Znj9D9z7A1U7MZrPPz9dqtUrH+fsZeo648/wMaGpqwuWXXy49n56ejlmzZmHcuHEoKipCcXEx9Ho9eJ73G3hardaAnSOev5ue2qG/343nz7Cn9q1UKn3+dvz9DP2V21M79FduT+3Qs3331A79/W7c7dBfuTzPw2KxYPfu3WG/jth/7CCA7p+7TXRI9Y3EdUSgnvj+GtKBp+cfgMPh6DH4dP9RAb0HqcFobm7GNddcI128jBw5Ek8//XRULEzN87zP8DNRFKUPLH8f4E6nU3remyAI0nP+hrW5n3N/SAhew1IYuM7tOVwlVZuCy8dfLP388vLywHplAHO/xvPDVXqPNQdk25wuFcrUYT7vNVB9g3mv3sNrPMv1d/PCXa6/NtCfcsP5u/HE83zAOnmW66+9OBwOOJ1OvxdwPZUbqB2yLIsJEyagvr4eOp1O9iXjr9ye2vdg/gw9y+3Lz1AQhF7fa7A/Q+86+RseFuzPcKA/IwKV29N7DVRuoM+I/pZLnxHR9RnhWa7D4ei1XH894e5zBRpu29P+nl7b0/Bdf0M1m9otcDoFOJ0iOJZBToYOSTo1LDYeNU1GOHnXMivN7RaMzE4MeM6+1qmn58P9Xt2ysrJgNBqlmyuByhVFUbqJFUy5gOtiXq1Ww2azSTdZ/JXr5r6QB1zrAfsru6mpqcdzum9WAvIcIi+88IIUdC5cuBD333+/7FpVEARYLJaAqx/09l7783vrS7mezw3E301PIxAG8r26v3/97Qf69jlr4+3wDDw9r4UjcR0xUNNQhnTg6XlHzWazBR149jYstzfHjh3D9ddfj6qqKgCuO/Gvv/66rKckkjiO8/lSZhhG+iL210AVCkXAIWssy0rP+fuydz/nvvjzTk7L/HaM94eLZ50ClSuKot96Ma1Vnv2dUGbmg/ktcA2mXM//PXm+157q6+9CV6lUwul0+v0Q7U+54fzdePIcpuhdJ89y/bUX9+8z1HJ7aocsy2LkyJFSb0ZP5fbUvgfzZ+hZbl9+hoIg+K1XX3+G7joJgtDr7yaSnxGByg3nZ0R/y/X83xN9RviWO1ifEe5yeZ7v9TPCH/e5Al3o9rS/p9f2dMPZ87Vuze1mWOxO6LQKZKcnIFmnxIzx2Sgpb5USD1nsTrR0Wv2+vr91ClSvgXivblOmTEFFRQU6OjpQUVGBsWPH+rwWcF14u5ddCaZcoPvG5a5du3D48GG0trZKCYb8vRfPxD5FRUV+y96zZ0+P5/z555+lx54JJd35PjQaDe666y7/1y8MI1tdwTPY6O299qeN9qVcz+cG8++mv+X29H7dn0vhvo5geK9g12MzEtcR/j4jw4ERIzlTPsLuv/9+fPDBBwCAjRs39jipfNWqVfjrX/8KAHj66acxf/78Pp1z9+7duOmmm6RhcLm5uXjzzTeDmtA+UIxGozREDnANiYrk3Lg3VryBY3z3cK40hRm3PbkkbOWLoojKp6+AaO8ejqKfvRhpp18WtnOQgeF0OgMGCoQQEi7l5eXSkE7vYdiRtvtwM77/pQYsy8gSCJmtDmzYcQzVjV0QBBFnTM/DlDGZvRcYAzZt2oTf//73AIBly5bh/vvv93vc559/jjvvvFPa9ry2ASAFrCeccALefvttaf9///tf/P3vfwcA/P73v8ddd93lt3yTyYQLL7wQdXV1YFkWGzdulIZz19TUYM6cOQBcF+1r1671CZAB17DK888/Hx0dHRg+fDi++eYbKSiYNGkSHA4HEhMT8fPPPwcMfm666SYpSD3uuOPwv//9T3rOsx4LFizAE0884bcMEpqB/kx48+n/oqq+e8oBJ1ix8rlFYT9PsAYqNhjS63h6znMJNHzDzT3vAwguq5o/mzdvxlVXXSUFnWPGjMH7778f0aAzGnkPB/D3ubuvqQyfHfoG3x7Zih+rf8HR9mrfgwJwGtvBahIBj6G5CaOG9hI2scDpdKK0tBSlpaU+w1Vqa2tx7Ngx2RJJhPSE2gwJld1uh81mk42AioQpYzJx1QUTcMbxebjo1FGy5VTmzx6F04/Pw1UXTIiboBMAZs+eLc31ff/99/H555/7HHPo0CE88sgjfSp/8eLFSElxJSh87bXXsG7dOp9jrFYr7rrrLmko7yWXXBJwKT5BEPCnP/0JdXV1sjZjNptx5513SnPyrr76allPlLs8o9Ho9z06nU787W9/k61r6p2ciMQmreg1iitOuwWH9FBbzwm65eXl0rpL/riTFTAM06c7Hd9++y3+8Ic/SBfMU6dOxb///e9el3EZipy8AHj8/TF+llMx2c0wOSwwOVyT4TUKNYDgAnjRbkHS1LMgCjx4UwcEkwGqnOi6o03kHA4Hdu/eLSVAKS0txdSpU6Wez9bWVimZS29r8hICUJshoXOPuGAYJiy5HvojJVGNlETfaT8sy2Dy6Aw/r4htLMvi4YcfxrJly+BwOHDnnXfiiy++wOmnnw61Wo2SkhKsWrUKNpsNHMcFHE4dSHJyMh5//HHcfvvt4Hked999N9atW4c5c+YgJSUFlZWVWL16tXSjauTIkVi5cmXA8tLS0nD48GEsXrwYl156KQoLC9Ha2ooPPvhAmkd6wgkn4Morr5S9bsGCBXjuuecAACtWrMC2bdtw3HHHQaFQ4OjRo1i/fr3PzTL39yKJbWrBDo7vvqnFCZG9wTVQhnTgedxxx0GpVMLhcGD79u1YtmyZ3+N4npcWLx43bpwsi1UwduzYgTvuuEMKOk855RS8+OKLPlnbiJv3nB3fI6xO+R0+rSL49OnODlemLobloEhKgzJ/HFhuSP8pRDXvoBNw3Q0+ePCgT2ZPQggh8Wnq1Kl47rnnsGLFCpjNZnz99df4+uuvZccsWrQItbW1+PHHH0O+OXD22Wfjn//8J+69914YjUZs3rwZmzdv9jlu1qxZePbZZ3scdnjttddi69at+PHHH/HKK6/4PH/KKafg+eef9wmOr732WuzcuRNbtmyB0+nE6tWrsXr1atkxHMfhlltuwYEDB7Bx40bU1dXBaDTS8mExLlXRgREdjdI2Bwo8405ycjJOOukkbN68Gd9++y3q6ur8DqP97LPPpCxjc+fODekcra2tuOOOO6RhFmeeeSaef/75iN8tjWas1wRohvEdb/DD0Z/gFJ3QKDTQKNSYPMx3HkUg7sDTTZESP8OR4o3D4UBpaanPotkqlUo2YqGoqCji6+uR2EJthoRKo9FQm4mwc845B+vXr8cbb7yBzZs3o6GhASqVChMmTMAVV1yBc845R+pECLWTAADOPfdczJgxA++99x6+//57HDt2DFarFdnZ2Rg3bhwWLVqEU089tdc2oFQq8d///hdvvfUW1qxZg6qqKqjVaqmM+fPn+y1DpVLhlVdewapVq7Bu3TqUlZXBbDZDp9MhLy8PM2bMwGWXXYbRo0fj3XffxcaNG8HzPL766issXLgw5PdLokcSpwLQnXvENxVQfBjSyYUAYMuWLbjuuusAuHpAX331Vdldo8OHD2PZsmUwGAzQ6XTYuHFjSNln//jHP+KLL74A4MrK9s477/Q7K264RVtyoa8+2Yftm45K21Nn5OLipcdJ26Io4vJVt4MXu+eC3nfabZg2fGKvZYsCD8PWj2RZ4JImnw5lanYPryKR0FPQOW3aNBoxQAgZMNGcXIj07Pzzz8fRo0cxdepUfPjhh5GuDokTA/2ZsOsf/8Te0u5lclSw43ev923OcjgMVGwwpHs8AdeE9fPOOw9fffUVdu3ahYsvvhhLly7F8OHDsX//frz//vvSgq8rVqzwCTq3b98ujdH3zpJWUVGBL7/8Uto+//zz/Q7b8KbX6zFjxoxwvL2YJHillFYo5fd9uuwmWdAJAPkpwSV84k0d8tTjYKBISu9jTclACRR0qtVqTJ06lYJOQggZQj755BN8+umnyM/Px4033oisrCy/x1VUVEjrbE6YMGEQa0gICcaQDzwB4Mknn4TJZMKWLVtQU1ODp556SvY8wzC47bbbcNlloS23sXbtWlmQ407V3RvvAHao8e6E9x6OYrB0yJ8HgxRNcENquMRUpMy8ALzJAN7YDsFuBaOgpTmiSU9B57Rp06DVaiNUM0IIIZGQnJyMTZs2AXBdIzzwwAM+xxiNRqxcuVK6hrjwwgsHtY6EkN5R4AlAq9Xi1Vdfxfr167F27VocOHAAXV1d0Ov1mD59Oq688kpMnz495HI9F/glwbPb5UtlsKw88NQo1Dh3zGkwWDrRbu2AU3BCwQY3Gr51w2sQrGZocouhzhsLzQi6IxpNHA4HSkpKpFEGbr0FnSaTSZp7pdPpBqOqJMZRmyGh8lzqy99i7GTgnHLKKcjLy0NNTQ3ee+897N+/H+eeey6ys7NhsVhw5MgRfPLJJ2hpaQHgWh4lGkaOUZshwbLCgJHt+6Rtuyo+55JT4PkbhmFw0UUX4aKLLgrpdSeeeKLPAsVu//73v8NRtSHHvb6VG+MVeA5LzMD105eGXK4oijDt3wbeZIBxz/cAgMyLbkfS5DP6WFMSTna7HaWlpSEHnYBreJV7aYwpU6YMdFVJHKA2Q0Jls9mkmxU03H9wqVQqvPTSS7jppptQX1+PkpISlJSU+D126dKluO+++wa3ggFQmyHBMjg4tKeMl7ZFhrLaEjIo1FoOiSkKQHR92ej8rFXWF86OZvAmg2yfJrc4LGWT/gkUdGo0GkydOpWG1xJCyBA3btw4fPHFF1i9ejW++eYblJWVoaOjAzqdDllZWTjuuOOwaNEiupFEYpLJocXhjGnStsbRGfjgGEaBJ4k6YzUG5Gd2glNwSEpOQsYwvvcXBcFWKx/6zGqToEgdHpaySf+Ul5f7DTqnTZsGjab3NVozMjLA8zwNZSJBozZDQqVQ0CVTpGm1WixfvhzLly+PdFWCQm2GBMs+RBYZob8IEnVqt+xBu1GQtkc3GJA1uXudzp21pWgytkCrdK3hOUKfi7zk3gNIa618SLQmt5jWY4sSRUVFMJlMMJvNAEILOgH4XX+XkJ5QmyGhovW3SaiozZBg6VRDY2QXG+kKEOLD66aP9xxPk90Mk8OCFnM7ajobYLKbgyrWWrVftq2mYbZRQ6VSScukhBp0EkIIIYTEMjUr7wuM124R6vEkUUeE93Iq8vsjVqdNtq1V9B6gCE477M3HZPvYhOCWYCGDw71GpyiKFHQSQgghZMgQBHmoKcbpiDwKPEnUUegSwfKO33o+RSgS5EHIpsrtULAKaJVqaBRqiDiu1zJt9RWAKMj2qbMKwldpEhZqdXgSSRFCCCGExAoG8mtdnonPNeYp8CRRhz31FCjbrWBZFhkZGcgsypCeM9stONxWKTt+wfi5vZbpPcyWTUiBkhILDTqbzYba2loUFhaGdX7twYMH4XQ6oVAoMG7cuLCVS+IXtRkSKovFIj2mTNskGNRmSLDis3/TFwWeJOo01prQ2W4Dw7IwdbYhMVmDkaPSAQAGm2966eykzF7LtFbLA09FSgZYbWJ4KkyCYrPZUFJSAovFApvNhnHjxoUt+LTb7XA4HBAEofeDCQG1GRI6URSlNRkJCQa1GRI0RXz2cHqjwJNEnbZmGzrbHQCA1kYbhmV1B4gGS4fsWK3Cldm2N7aGI7JtVeYI+iIYRJ5BJwA0NjYCQNiCT4VCAVEUKXU9CRq1GRIq92cVfXeQYFGbIcFilUMjtwV945Koo1apATikbc8P7GR1Es4dcxoMlk4YrJ1Qcb3fIXJ2tkIwy3tKNblFYasv6ZnVakVpaalsyBEAdHZ2wul0Qqns/12+CRMm9LsMMrRQmyGhoqGSJFTUZkiwuqxdANIiXY0BR4EniTreS+h6LqeSlzIc109fGlJ51pqD8vIUSqhyKPAcDFarFSUlJbBarbL9CQkJmDp1aliCTkIIIYSQWOYQnbJt72vheEHreJKoIwrey6n0b4iK5Zh8fieXlA5lSu/zQkn/9BZ0UgZbQgghhBCfhRfiFgWeJOo4OuTzOB1trf0qz1Yt7/FU6oeB1VBioYHUU9A5bdo0CjoJIYQQQn7jEB29HxQHaKgtiToOswVQJHVvGwzS4y1VO9Bh7YJGoYZWqcGotJHITuy591I3/mQwmgTwna1wdrVBlT2KJvoPoN6CTpVKFfZzNjY2gud5cByHrKyssJdP4g+1GRIqh8MhZSilaQIkGNRmSLDUXPivjaIRBZ4kCsmDQs8g0WS3wORw/YMFyEnK7rU0TpcM7chJAFypzbUjJ4a3ukQSKOjU6XSYOnXqgASdgCuIcDgcUCqVFESQoFCbIaGiIIKEitoMCZZa4MF4jLdl43TsLQWeJOp4T6hmPQaEW5zygEar7HnIpsg7wRvbpW2GYaDUD+tvFYkfFosFJSUlsNlssv0DHXQSQgghhMSyNEU7CtrrpW0OdgBLIlehAUKBJ4lC/ns8bU4bth37BRqF+rehtmqwTM/TlHmTAaLYHcoyYKBIjP901YMt0kFnYWEhBEEAy9K0dRIcajMkVGq1Wuq9IvFt+fLl2LFjBwDg0KFDfS4n2tvMwYMHUVVVhfPOO0+2v6amBnPmzAEALFiwAE888UQkqjekJOsSAaa7c4WL06+mOH1bJJYpRbtsO1HraqYd1i5UGqpxsOUwShr24cfqX6FguR7LcnbKExNxumQwChruEm4OhwNOpzwV+GD2dCYlJSElJQVJSUm9H0wIqM2Q0HEcB4VCAY7r+XuHELdobTMOhwPPPvssFi5ciLKyskhXhwBIKRqBxOGQ/iWPiM8kjNTjSaKO6NXjyXGu7Q5bl2y/klVAr0npsSyGU0ChSwFv6oQIEVxSengrSwAAycnJmDp1KkpLS8HzPBITE2mdTkLIkGKz2XxGfcQ7tVpNWcpjUGNjI/79739HuhpkCKLAk0Q99rc7hQZrp2y/XpPc4/AVZ2cruIRkJB1/HsA74TS2gVHQPMOBkpycjClTpuDIkSOYNGkSBZ2EkCHFZrOhs7NTNr0jnjEMg+TkZAo841BeXl6/hhgTEggFniTqePd4uqdxpmtTcf6YM9Bu7YDB0gG9tufezo6dn6Hjp0/AJaZCnVuMxImnInH8rIGqNgGQkpKCadOmDfp8FpvNJs2joYsgEgxqMyRUguCRcTLA3GBRFGE2mwerShGVkJAQ6SpEvWDaDCEA0K7owL78Gmk7keUwN4L1GSgUeJKo45vV1vVhPSptBEaljQi6HFuta94Cb2yH+dB2qDLyAQo8+83pdEKhCPzREYkkCocOHZKWxpgyZcqgn5/EHmozJFRWq1W6WUFBFwkGtRkSrCaTDcec+dK2Do4I1mbgUOBJoo6St0PJWCAyDAAGHKcLuQyRd8JWXyHbp8krDlMNhy6z2YySkhKMHDkSubm5ka4OIYSQIWLs2LEAgDvuuANLlizBww8/jC1btgAA8vPzcf3112P+/Pmy12zbtg0fffQRfv31V7S0tECr1aKgoABz5szBsmXLkJiY2Of6tLW1YfXq1di6dSuOHDkCg8EAhUIBvV6PyZMnY/78+Tj55JNlr7FarbjoootQVVUFAFi5ciWuvPJKn7J5nsdll12G3bt3AwAeffRRLF68WHaM3W7HunXr8MMPP2Dfvn1ob2+H0+lESkoKioqKcOaZZ2LJkiXQaDTSazyz1bq9+OKLePHFFwEAb731Fk488cSgs9o2NDTgnXfewZYtW1BdXQ2Hw4GMjAwcf/zxWLhwIWbN8n+zf/v27dL7fvfddzF9+nSsWbMGa9asQXl5OcxmM7Kzs3Haaafhuuuuw/Dhw/3/EuJIV4cSeUenSdtOtTFylRlAFHiSqDO5ZTMEJw8AYCAid9gNIZdhb6yE6JRnx1XnUODZH+6g0263o7y8HACiJvjU6/XgeT7qMgeS6EVthoSK2kp0MBqNWLZsGSorK6V9Bw8eRHJysrRttVpxzz334IsvvpC91m63o7S0FKWlpXjzzTfxwgsvYPr06SHXYe3atXjooYd8hlXb7XaYzWbU1dXhq6++wmmnnYbnnntOGiWk0Wjw2GOPYfny5RBFEf/85z9x/vnnY9gw+fri//3vf6Wg8/TTT/cJOg8cOIBbbrkFdXV1PnVrbm5Gc3Mztm3bhnfeeQdvvPEGcnJyQn6PvXnvvffwxBNP+CTUqq2tRW1tLdavX4/zzjsPTz75JLRabcBybDYbrrvuOmzdulW2v6qqCm+//TZWr16Nf/3rXwGD2Hhha2oHoJe2Ndb4nCtOgSeJOk0J+XB4NM383/74vj2yDRaHxbWOp1KNsemjkaHzvyantVaeHlyZlgMugZZN6CuTyYTS0lLY7d3BfHl5OZRKpc8XZiSMGBH8EGxCAGozJHQ0Fzg6vPPOO7DZbJg9ezbmz58Pg8GAH374AbNnzwbgmld56623Sr2hOTk5WLhwIUaNGgWTyYRt27bhyy+/RGtrK6655hp88MEHGD9+fNDn37p1K+655x6IogiVSoULLrgAU6ZMgV6vR0NDA3766Sf88MMPAIBNmzZh9erVuPrqq6XXz5w5E0uXLsV7770Ho9GIv/3tb3juueek5ysqKqQeSL1ej0cffVR2/k76rcQAAHQNSURBVLa2Nlx11VXo6OgAAJx88sk4/fTTkZmZCYPBgAMHDmDt2rVwOByoqqrCI488gn/9618AgPT0dLz00ktobW3F/fffDwCYN28eLrjgAgBAUVFRUD+D9957Dw899BAA1/Sa8847D7Nnz0ZCQgIOHjyIVatWob29HV999RXa29vxxhtvBLxx88gjj+Do0aPIzc3F4sWLMXLkSDQ0NOCDDz5AZWUlLBYL7r77bmzYsKHHADbWJXolxFY4KfAkJCJYztVMTXYzLE4rTA4LYAEKUwNfOFqOlMi2VdmjBrKKcc1f0Am41kFMS/Mf+BNCCCEDwWaz4YwzzsDLL78s5RTwDOzcQz8B4Oyzz8YzzzwjG266ePFiLFmyBDfffDMsFgvuuusufPrpp0HnJ3jmmWcgiiKUSiXefvttTJs2Tfb8tddei9WrV2PlypUAgHXr1snqBwB33XUXfvjhB9TW1uLzzz/HwoULMXv2bPA8j/vuu0/qRXzggQd8bu6+8sorUtB5zz334JprrvGp41VXXYVFixbBarVi06ZN6OrqQlJSErRaLc4++2zU1HQnsRk1ahTOPvvsoN474Bqu+/jjjwNwJZh66aWXZEOKL7jgAlx77bW44YYbsHv3buzYsQOvvvoqbrzxRr/lHT16FKeddhqef/55WWC5ZMkSLF26FGVlZWhubsYPP/yA888/P+h6xhoNJ191YfCzZQwOSrFFoo93KnqWgSAKsPHy20EaReC7z97zO1klLaPSFyaTSRpe68m9bmdPSYYIIYSQgfD73//eb6DodDrx2muvAQCys7N9gk63WbNm4frrrwcAHD58GN99911Q562ursa+ffsAuHoKvYNOt0WLFiEzMxMAZEOC3XQ6HR5++GFp+9FHH4XD4cCbb76JkpISqfx58+b5vParr74C4JrqctVVV/k9f1FRkRRMOp1OHDt2LKj3F4z//ve/cDhciW9WrFjhM48VAFJTU/Hiiy9Kc2hff/11WK1Wv+UplUo88cQTPr2ZiYmJsoB9z549YXoH0UkQ5O3Ze4WHeEGBJ4lCXsupMCzaLR3YWbsbexsPobz1KKo76qBg/Q/b4E0d4E0G2T7NiOCH0RAXd9Dp/oJxc6/XSUEnIYSQwdZTJurS0lLU19cDcAVu/oJOt4ULF0qPv//++6DOnZeXh02bNuGdd97B7bff3uuxAAIGXLNnz8all14KwNXr9+STT+L5558HAGRmZuKBBx7w+7qPP/4Yq1atwj/+8Y8el2hxnx8ALBZLj3UNhXsYsV6vl/0MvWVlZeGSSy4BALS3t+PXX3/1e9yMGTOQnp7u9zl3QikA6Orq6mONY4MiUT6CjOficy10unIkUUcURVnsybIMjHYTjrbL79jdfuLVfl9vqdor38EqoBkxKcy1jG9GoxGlpaUxE3QePnxYWuZlzJgxka4OiQHUZkioPJfG6CmgIQMrPz8fKpX/UUzuhDyA6+bpxo0beyxLo9HAarVi7969PR7nxjAMsrKykJWV5ff5jo4OHDhwAD///LPU08nzPKxWq982c++992LLli1oamrC22+/Le1/7LHHoNfr/Z4jNTUVqampfp+z2WwoKytDSUkJvv32W2m/53qi/dHc3Iza2loAwPTp0wP+HtxmzZqFd955B4Drd+Ovd3T06NEBX5+U1J2bw/t6JN5os9KBwyZpm1XEZ49ndF09EgKgQ50JnnU3TREWhwjRLs8cp1NqoVL4/8CzHN0t21Ykp0GR7P9uGvEVKOhMSUnB5MmToy7oBFwZd91rMhISDGozJFSCIEiBJ4kcz+y13hobG6XHH3zwAT744IOgymxrawu5HseOHcO3336LQ4cOobKyEseOHUNLS4vfYwMFfsnJyXjwwQdxyy23SPsWL16M008/vdfzd3R0YOPGjdi7dy8qKytRVVWF+vp6v+cSvacw9VFra6v0OD8/v4cjXTx7XQP9bHpa0sYzIVG43kO0YjkVgO7AE3H6ORN9V5BkyGvR5UNgu5tml1mAYJMPsUhWB85Qa6srl20rM/PBBBiWS+RiMegkhBAydPTUy2Y09m3tQ5PJ1PtBHsc+9NBDWLdund9gKDk5GSeffDL2798f1NzKoqIiKJVK6Xs3mGV7XnnlFfy///f//A6hVSqVOP744yGKInbs2BHEOwqe588pmAyznscEGu5L1xUuXHI6gHZpW+TiMzcJ/bZJVPF3p45lWaQnpOPc0aehw9aFTpsR6Vq939eLAg97a61snyZ3rN9jiZzRaERJSQmcTqdsfywEnYHm+xASCLUZEqqEhIRIV4H0wnM463/+8x+cdtppYS1fEATceOON2LlzJwBXYHXSSSdhwoQJGDNmDMaOHYvCwkKwLIvLL79cCjwDtR1RFLFy5UrZzd4PPvgA8+bNw4knnuj3Nc899xxefvllAK7ro2nTpmHq1KkoLi7GmDFjMG7cOKhUKvzjH/8Ie+Dp+T6CmTfquc5pPC+FEg4tnY2ybafoDHBkbIveK0kyNImiTyYvlmMxJr0AY9ILen25te4wwMv/WBNGTQtjBeOT0+lEaWmp36BzypQptHA6IYSQqOeZpKa5uTns5X/22WdS0Dl16lS8/PLLAZcVCyYZzv/+9z8pOJw9eza2b98Oh8OBv/71r1i/fr3PvND6+nr85z//AeBK7vP6669jwoQJfT5/qDIyMqTH1dXVvR7vmdE3Gtb8jmYmhzyQd4rhmZcbbSirLYkqotPps3gRwwXfTL3X72Q1iVBlFfS/YnFOoVCgsLBQtk+v11PQSQghJGZ4jmTorbevvb0dt956Kx577DGsW7cuqPI9s9/eddddAYNOi8UiC7r8Dcmtr6/HU089BcD1ffvUU0/h2muvBeCaP/rcc8/5vGbTpk3geR4AsHz58oBBJwAcOHCgx/P3RWZmJrKzswEAv/zyi89Sa95++ukn6bFnhlriS+TjM9D0RoEniS6iCO/Ik2WDn2DtaKuXTchWpufQ/M4g5eTkoLi4GIDrS3Dy5MkUdBJCCIkZ06dPl7LBfvnll1IGVn/eeustbNy4EW+99VbQa0QaDAbpcU9Dr9977z1ZUOYvI+v9998vzZlcsWIF0tLScPPNNyM3N1eqn3tNz1DPv3v3buzatUva9h7N5LkMS6gZb+fMmSPV5aOPPgp4XGNjI9avXw/AtW7pzJkzQzrPUGOtlw+1VdrjMxClwJNEFYEX4H1fjuM4bKnagc/LvsXGii3YUrUDDUb/Q2i0IyYgZdYCJE45C5rCqUgoPmHgKx1HcnJyMGnSpJgLOltaWtDU1BQwax4h3qjNkFA5HA7pH4lOGo0Gy5cvB+Ba/ubWW2/1+ze+efNmaciqQqHAlVdeGVT57qAQAD788EO/x6xfvx7/+Mc/ZPu8kxetXbsWmzZtAuBax9K9nqdWq8X//d//AXAFhCtXrpQFsJ7n/+STT/z2OO7fvx933HGHLKC02WyyYzyH8HZ2dvp9H4FceeWVUjbwv//97/jxxx99jjEYDLj99tul933ttdfSHOleaBzyq18mTpP40hxPEl14Hj49nhwLo90Mo90MwDVRfURKrs9LRacDvNEAhlNAkZIBRUoGEif4rhlFeuY5hyNW1NXVSUtjxGL9yeCjNkNC5XA4pOVUaBme6HXjjTdi06ZNKC0txYEDBzBv3jwsXLgQEydOhMlkwo4dO/D5559Lgdkdd9wR1NIgAHDxxRdLS7R88MEHqK2txVlnnQW9Xo+6ujps3LjRp5cScA3rda+92dzcjL/97W8AXBloH3roIdkSPWeeeSbOOeccbNiwAYcPH8ZLL72EO++8EwBwxhlnQK/Xw2Aw4ODBg7jooouwePFiDB8+HG1tbfjpp5/w3Xff+fRwes/3TE1NldYwXbNmDYqKipCcnIxp06YhJyenx59BQUEB/vKXv+DRRx+F2WzGtddei/POOw+zZ8+GVqtFWVkZPvzwQ2mJmuOOOw433XRTUD/foUzj1cEZn4upUOBJoowoCj5rFzEcAzsvv6vnbw1PZ2cLRI/+UoZhoUii9Tu9dXZ2QhCEgItTE0IIIbFKqVTitddew5133olNmzaho6MDr732ms9xLMvi5ptvxg033BB02dOnT8dtt92GF198EQCwZcsWbNmyxee4c889F+PGjcPzzz8PACgvL8eoUaMAAA8//LA0ZPa6667DmDFjfF6/cuVKbN26FWazGa+++irOP/98jB8/HomJifj73/+OP/zhD7BarTh69Cj+/ve/+7y+uLgYN998sxSwHjp0SPY8wzCYO3cu1qxZA5PJhAceeAAA8MADD+Dyyy/v9eewfPlysCyLJ554Ana7HV988QW++OILn+MuvPBCPPLII1GdFT9a6LlWjGyrl7Y52AEsilyFBgi1BBJVxN8mzcuwDLYd+wUqTgW1wvUPfibK86YO2TaXlAqGoybuqbOzE6WlpQBcSRhSUlIiXKPwyM/PhyAIsnkrhPSE2gwJVU/rR7oxDDNkhhQyUbzAfWJiIv7zn//ghx9+wLp167Br1y60tLSAYRhkZ2fjxBNPxNKlSzF+/PiQy7799ttx3HHH4d1338Xu3bthMBigUqkwbNgwTJ48GQsXLsSsWbNw+PBhKfDcuHEjzjvvPHz55Zf4+uuvAbg+g26++Wa/5xg+fDhuv/12PPnkk3A6nbj33nuxevVqKBQKnH766fj444/x2muv4aeffkJjYyNYlkVaWhrGjh2LuXPnYt68eeA4DpmZmWhubsbXX3+Nu+++W/Z59+CDDyIlJQVfffUVWlpaoNFoQhp2u2zZMpx55pl45513sGXLFtTW1oLneQwfPhxTp07F4sWLMX369JB/vkNVIqcAC6u0rYCf6+E4wIjhSnVFYpbRaJTdDRs7diwSExMjUhen1YbHV26Q7bvspkn4669Pyva9MO9hZCVlyvaZDu2ArfGotK3OHgVdMU1md+vo6MDu3buljHgcx8VV8EkIIeFSXl4Op9MJhUKBoqKioF5js9l85tLFO7VaDbVaHelqEDLg+vKZEIpd//gn9pZ2B/4q2PG71x8J+3mCNVCxAXUHkejiZziGg/O9N5KekOqzT5M3FoqUTPCWTgjmLiiSad6Wm3fQCQA8z6OmpoYCT0IICQMKwgghpGcUeJKo4q//3eSUZ4NLUGqh8BpCKzhsMPy4BqphBVBlFUA7YgIYjpI/AP6DTgBIS0vr0zAjQgghhBBCQkWBJ4kqouAbeSapE3Hu6NPQaTOi09YFlZ+A0t5cjY7t66VthlNi5F1vgfWThGgo6SnonDRpUtzMb/N8f7G0DAyJHGozJFSeM5OieX4jiR7UZkiwHOjC8M7D0ragjM+ZkBR4kqjib8pxTnIWrh+5tMfX2ZsqZduKlMwhH3QaDAbs2bPHJ+hMT0/HxIkT4yboBIB9+/ZJS2NMmTIl0tUhMYDaDAmVxWKRllMZKgmESP9QmyHB6uAFmFV6aZvn4jO5EAWeJKr4G2rLBBEf2RurZNuqYSPDVKPYNJSCTkIIIYSQWNZpS8S+nOOlbY0j+AzDsYQCTxJVFHBi/hkq8IIATqlA1vAcaLW9N1N7k1fgmVUwQDWMfgaDAbt375YWx3aL56AzKSlJyjZHSDCozZBQcRwn9V4REgxqMyRYNsEZ6SoMCvrGJVHFVF2LvR9vl7b3Ahh993kwKIxQcSqoOCVG6nMxUp8nHSOKIuwey6gAQ7fHs729HXv27PEJOjMyMjBhwoS4DDoBoLCwMNJVIDGG2gwJFWWsJaGiNkOCpVZpI12FQUGBJ4kqIi/47LPyNhgFMwAzACBTlyZ7nu9qhWAzy/ZxCUNviZChGnQSQgghhMQyHSfPSxKvfeR0JUqiiij6Bp4OUT5PUeX1x2mrPyJ/AacElyQPToeClpYWCjoJIYQQQmKMd46T+MxpSz2eJMr46/H8uWEP7Aq7NNR2Umax7HlbXblsm9OlQKEbej2eY8aMAc/zaGhoAABkZmZi/PjxFHQSQgghhEQxUdTItnk2PldmoMCTRJWkcWORdP654HkeLMNCn5yM7wxvwCh2ScecUXCS7DW2BnmPpyI5HYzCd63PeMcwDMaOHQvAtUbhUAo6KysrpUQxBQUFka4OiQHUZkiobDablCiG5u6RYFCbIcFi43ZwrRwFniSq2K1ONDcYIYoCWJaF06GARWEBPNZ3z9Sly1/TUiPbVqblDEZVo5Jn8DmUsuh1dnZKazISEgxqMyRUPM9ThlISEmozJGjBrB0YByjwJFHF2GVF/TGLtF1XZYF4HGSBZ6JaJz0WHDbwna2yMoZCRtuevsjoC44QQgghJHawCUmRrsKgoMCTRBXvydUAcEbhSTDBBKPdBKPdjERVd+Bpb66G9xRs9fAxA1zLyGpra0NFRQWmTJlCQ3d+M2HCBLqrTEJCbYaESqvVUpshIaE2Q4JltnQB0Ee6GgOOAk8SVXjeN/K8dsbvoFL7b6re63ey2kQoUzIGpG7RoLW1FXv37oUoiigpKcG0adMo+ASgUNBHGQkNtRkSKoZhKIAgIaE2Q4JlFeyy7XjNajs0BhSTmCH66fLs6TPbN6OtHmycZrT1DDoBwGKxoKSkBA6HI8I1I4QQQgghpGcUeJKoYm1t9dnHsIEjTzYhGVxyBsC5EoQokjPAKuIvBXVLS4ss6HRLTk6mnhtCCCGEkBhm552RrsKgoCtWElVMVfIMtRBFfFn+PTQqNVScEhkJqZgwrHsdz4TCqWA4JURRhGgzQ5maNcg1HngtLS3Yt2+fT9CZlZWFcePG0TAeAAaDQZpHo9frI10dEgOozZBQOZ3dF4Z0w48Eg9oMCZaS4Xo/KA7QXwGJKqIgD64YiDA5LDDzrky3nNe6lLy503Ucw4DR6OJuKZVAQWd2djbGjh1LQedvjh07Ji2NQUEECQa1GRIqu90u3aygIIIEg9oMCZbWaxBqvF7d0V8BiSqCv7S2HlScfBgtb+qQbXMJ8TO/s7m5Gfv376egkxBCCCEkjqWwrcgzNEnbHOw9HB27KPAkUUXgBa89IvY1HYJKoYRaoUKaVt/9jMBDsBplR3O65IGv5CAIFHQOHz4cxcXFFHR6GT58OARBAMvStHUSHGozJFRKpTLSVSAxhtoMCVayRg2lYJC2lRR4EjLwOEYeaLGigIMth6UxB8MTh0nPCRajT2AWDz2eFHSGLjMzM9JVIDGG2gwJFQURJFTBtJl77rkHa9asAQAcOnRooKsUkzx/Rt988w3y8vJ8jvnqq6/w1ltv4fDhwzAajUhKSsIll1yCe+65Z7Cr2yf64gLo6kqkbU2cLpVHgSeJKgy853gKsoHu2UndF4ucLgX6ky4Gb+4Eb+qAYDeDUcT2hUFTUxMOHDhAQSchhBBCSBA++OAD3H///bJ97e3tUKliZ5UDVsGC8RiAw8TpYBwKPElUEbySC8ErAEtU6VzHOWyoe+MeKDNHQD2sAKphI6EtmDxY1RwQbW1tfoPOnJwcFBUVUdBJCCGEEOLlhRdeAOBKNHnFFVdg2rRpsNlsmDw5tq8L4xEFniSqiDwv22YAnJh3HEx2M0wOM1K1rqG0juZq2JuOwd50DKZ9WwAwKLj7HTCI3R7P5ORkJCYmoqurS9pHQSchhBBCiH/t7e1obm4GAMyZMwd//etfI1yjvjFxJjRkNkjbWi4+Q7T4fFckZgleuYUYAH8+5Qaf42xNlbJtZVo2WJVm4Co2CBQKBaZOnYrS0lJ0dXVR0BmCPXv2SEtj0B1OEgxqMyRUZrNZWhojISEh0tUhMYDazMCzWCzS4zFjxkSwJv1Tbzfix6QkaTtFcOLqyFVnwFDgSaKKKMojT+85n272pirZtmrYyAGr02BSKBSYMmUKGhoakJeXR0FnkERRlP4REgxqM4QQEvsEjx6LWF4rtaNVhTH7Z0vbTrWxh6NjV+z+hkhcyk4CTj76IcAwECFCmZgEYLHPcfZG78CzYHAqOAiUSiXy8/MjXY2YotVqoVAoKOskCRq1GRIqlmWl3isy+MaOHQsAuOOOO7BkyRI8/PDD2LJlCwAgPz8f119/PebPny8dbzKZ8NFHH2HLli04dOgQDAYDACAlJQUTJkzAueeei4suushvsLJ8+XLs2LEDs2bNwhtvvIFjx47hjTfewObNm9HY2AitVosJEybg0ksvxYUXXhiwTbAsi87OTrz33nv49ttvUVlZCZVKhaKiIixduhQXXXRRUO9dEARs2LAB69atw+7du9He3g6dToeRI0fijDPOwBVXXIHkZP/Lybnfy+zZs/Hf//4XFRUVeO211/Djjz+iubkZ6enpOOGEE3DjjTdi9OjRAACr1Yq33noL69evR3V1NTiOw4QJE3DNNdfgrLPOCqrOPb2XTZs2YdWqVTh06JD08ywuLsbcuXOxePHioJICvfDCC3jxxRdl+1588UVp34IFC/DEE0/0q66DydreAUAvbavs8XlTlAJPElWsdh71KUXdO5QcNlZsgYpTQsUpcWLecQAAe+NR2etircezvb0dKSkptIZgmBQVFfV+ECEeqM2QUGk0sT2dI14YjUYsW7YMlZWV0r6DBw/KAq8tW7bgz3/+sxRserJarWhsbMR3332H//3vf3j11VcDBm0AsHHjRtx9990wm83SPpvNhm3btmHbtm347LPP8MILL/i9iVVbW4trr70WDQ0Nstf++uuv+PXXX/H999/32kvX0NCAO++8E7/++qtsv8FggMFgQGlpKd5880089dRTOO2003os69NPP8V9990Hm80m7auvr8cnn3yCb775Bq+//jqys7Nx/fXX+yztsmPHDuzYsQMrV67ElVde2eN5Amlvb8cdd9yB7du3y/bb7Xbs3LkTO3fulH4nWVlZfTpHrNJ0OWXbFHgSMgh8stpCRJvFAABQcUowDANnZwsEm1n+OqcNsaKhoQEHDx5Eeno6Jk6cSMEnIYTEAbu97wu+cxwHjuP8PudwOPo8JHygymVZNmLDGt955x3YbDbMnj0b8+fPh8FgwA8//IDZs13DFA8fPoybbroJDocDHMdhzpw5OOGEE5Ceno7m5maUlpbiiy++gCAIKC0txfPPPx8wIU1VVRX+/Oc/w263Y968eZg9ezYUCgW2b9+ONWvWQBAEfPfdd3j33Xdx9dVXy17b1NSEyy+/XAp+Z86ciQsuuABJSUnYt28f/ve//+Gzzz7rsXevo6MD11xzDY4cOQIAyM3NxaWXXopRo0aho6MDGzduxJYtW2AwGHDzzTfj5Zdfxqmnnuq3rIqKCmlNy0svvRQnnngiOjo6sHr1apSVlcFoNOLBBx8Ex3E4dOgQZs2ahblz50Kr1WLz5s1Yt24dAODvf/87LrjgAqSnpwf9OwNcfx9XXHEFDh8+DMDVS33ppZdi5MiRaGxsxKpVq3DkyBGUlZXh5ptvxocffthjG5s3bx7Gjx+P1tZWaSmVefPm4YILLgDgWoYuliQq5De24nVcBQWeJLr4yy70GxXnupvoPcwWnBKK5NhYDN4ddAJAa2sr9u3bR8EnIYTEgW3btvX5tUVFRcjNzfX73I4dO+BwOPpUbkFBAQoKCvw+t2vXLlkvXihycnJQXFzcp9f2l81mwxlnnIGXX35ZGuLqGfT985//lH5ezz33HM477zyfMhYvXoxrrrkGoiji008/DRh41tXVQalU4j//+Y8U2ALAxRdfjJkzZ0qB3OrVq30Cz+eee04KOm+66Sbceeed0nMXXnghlixZguXLl0sZWf156qmnpKDz7LPPxjPPPCPreV+6dCnWrFmD++67D06nEytWrMCGDRuQmJjoU1Z9fT2USiVeeeUVnHzyydL+hQsX4txzz5WuSfzV96KLLkJGRgZee+01OBwOfPvtt1i82HcaVE/+/e9/S0Hn2Wefjeeee04WdC9fvhw33HADtm3bhn379mHdunW49NJLA5Y3evRojB49GjU1NdK+UaNG4eyzzw6pXlEjPjs4fdDVLokqolfgyYsCylqOoLK9Gi2mNgCAzWuYLadLgSIpddDq2Ff19fVS0OnW2tqKpqamCNWIEEIIiT2///3v/c6rtFgs+OGHHwAAM2bM8Bt0AsCsWbMwbdo0AK7hn/6G5LpdfvnlsqDTbcGCBdLNgvLyclitVum5trY2rF27FgAwZcoU/PGPf/R5fWFhIR577LGA521sbJTKyMvLw9NPP+13uPeCBQukoLetrQ0ffPBBwDIXL14sCzoBIDExUeolBFw3K+644w6f1y5atEh67A4gg8XzPN5++20AQGZmJp588kmfnl6lUom//e1v0o34Tz/9NKRzxDpRmSTbdrK9z3ONRdTjSaKK91BbQeSxu/EAAGBMWgEAwFYn/8DjdCngdPrBqF6f1dfX+8yXAFxDTYbaPIaBUFNTA6fTCYVCgby8vEhXh8QAajMkVHa7XUouFEzyEzIwlEolpkyZ4vc5rVaLb7/9FseOHfPb6+cpNzcXu3btAgBZ0Ojt3HPPDfhccXExamtrAQCdnZ1SYLhlyxYp2+rChQvhcDj8tpnTTz8dBQUFsvmqblu3bpV6bq+44gpotdqA9bjuuuvw1ltvwel0YuPGjbjuuuv8HucZYHry/Aw888wz/Y7C8hy66rneeDB27dqFjo4OAK5hvoF+N9nZ2bj33nulZENDSWL+cOCYSdpmlfE52JYCTxJVrHYRFoX7A0mEwHYPL8pISAMA2JvlQ20VKcPAKtWDVcWQBQo6R4wYgcLCQsqQGAZtbW3SmowURJBgUJshoXI6nRR4RoH8/Pwef/4ZGRnIyMjw+5zJZMKhQ4fwyy+/SEEn4OqRC8Sd6dUfzwDK6exODlNaWio9njhxIpxOZ8A6z5gxw2/gWVJSIj0+6aSTAtYBcL3nMWPG4ODBg9izZ0/A7MuFhYV+X5/ksX5koKz6noGv4D0tqhd79uyRHh9//PE9HtvXxEUkNlDgSaJKUxeLhuTubJNK3gygEgCgUyVAcNjg7JDPh1BljhjEGoamrq4OZWVlPvsp6CSEkPjiPYQxFIESAAHACSec0K/kQoEcd9xx/UouFCk9ZaD11NTUhI0bN+LAgQOorKxEVVUVmpqa/L7nnn4OnkGZN8/kN57BWEtLi/Q4Ozu7x3qOGOH/GqatrU16HMwSa/n5+Th48CAcDgc6OzuRkpLic4y/fd4C9az253rF8+eRk5PT53LimSotD0B3J4WoiM8s2hR4kqgieH34MwAmDRsLk92M7MRMOJqrAa9j1MNHDWINg0dB5+ApLi6m9fVISKjNkFD1tpzKQPWCDtRas7G6hm1vP2en04mnn34ab7/9tqwX0k2r1eLEE09Ec3OzlEynJ33J3us5FFWv1/d4A0Cn0/ndbzJ1D7vsaZitm2f7tFgsfoPMSGUidg+zBWhZokAMnfJ8H7zo23bjAQWeJKqIXqM3WIbB/Wf+UdruLNkof16bCGXKsEGoWWgCBZ0jR45EQUEBXeyGGX2RkVBRmyGhouzjseGee+7B+vXrAbiC6xkzZmDy5MkoKipCcXExxowZA4VCgbvvvjuowLMvPHtlbTZbj/NNAy3D4xlsWiyWXuesemYojrbPN8/69DSfdigz2OXzZh1i4OHfsYwCTxJVvHs8vdnqj8i2uQQ9OF3vQ0cGU21tLcrLy332U9BJCCGEDJxff/1VCjrz8/Px+uuvBxymGmqCnFBkZnYv8VZTU4Nx48YFPDZQZnvPearV1dUYP358j+esqnLlv9BoNNDr9SHUduB5rvlZX1/fY+KgiooKmEwmjBgxIureB+k/un1HootXl6d3iKYtmATNyElQZuSD1SaBS0oDmxB4/sVgCxR0FhQU0PBaQgghZAB9//330uNbb721x7mRBw4ckB73da5rINOnT5ceb9++vcdjf/31V7/7J0+eLD3+6aefeiyjsbFRWu8zGrPBTpw4UXrsmTTJnxdeeAGLFy/GrFmzYDQaB7hm0cNWL89fonCElsApVlDgSaKKIMoDMxECNlVux4/Vv6DT2gVFUho0IyZAN34WkmfMhW78LDBMdDRjp9Mp3XH01NMC3iQ8jEYjurq6htSXFOkfajMkVDzPS/9IdPJcjzMhISHgcV9++SUaGhqkbX9zQfvjtNNOg1rtyrb/3nvvwWKx+D1u7969sgy4nk4//XRpHu67774bsAwAeP3116XkRmeccUY/aj4wZsyYIQ0V/uSTT2Cz2fwe19nZiU2bNgFwrX/a2/DieKIwy4dcs/EZd1LgSaKL6LWOJ0QRDcZmVHfUwynw4I0G2dOKxNTBq1wvFAoFpk6dKkvYQEHn4Dhy5AjKysqkO76E9IbaDAmVzWaD1WoNeNFMIi83N1d6vGrVKr89mdu2bcP9998v2xfu32lCQoK0LEhlZSVWrlzpE9w2Nzfj7rvvDljGsGHDMH/+fACuobZ333233/mRa9euxZtvvgnANaR16dKl4XobYZOQkIAlS5YAcI0Mu//++31+Hna7Hffff7+UVCka38dASmDlCajidXwczfEkUcU77vT8y1NxSvAmg+xpTqcf6CqFRKfTYerUqSgtLUVeXh5GjhwZ6SoRQgghQ8K8efPwwgsvwOFwYPPmzVi8eDHmz5+PzMxMNDU14YcffsCPP/7oE5AOxMiHW2+9FRs3bsTRo0fx2Wefoby8HIsWLUJmZibKysrw/vvvw2AwID09Ha2trX7LuPfee7Fz505UV1djw4YNmDdvHhYuXIjCwkJ0dnZi48aN2Lx5MwBX8qvHHnsMaWlpYX8v4XD77bfj+++/x5EjR7B27Vrs27cPCxYswPDhw1FdXY2PP/5YWs901qxZuPjii8N27hdeeAEvvvgiAOC2227D7bffHraywyUJrcjp6G4HHPwnnYp1FHiSqOJzd1IUUNleDRWnBCOK4M2dsqcVifrBq1yQEhMTMXPmTFpgfBBlZmZCEATKOkmCRm2GhCpSS1GQ4OXn5+OBBx7AAw88AJ7nsWfPHuzZs8fnuBkzZuDCCy/Egw8+CAA4dOgQZsyYEda6aLVavP7667jllluwf/9+lJWV4fHHH5cdM3v2bJxwwgl49tln/ZaRnJyMd999F7fddht2796N2tpaPP/88z7H6fV6PPvsszjllFPC+h7CKSEhAW+99RZuvvlm7NmzB+Xl5fj73//uc9zJJ5+MF154YcjlxEhSsFDz3TdAlBR4EjLw1Fol0O6xQ7Ti57rdAICbpy0Gn5gG3mSAKLjm2ERbj6cbBZ2Da/jw4ZGuAokx1GZIqOhzPTYsXrwYY8eOxRtvvIFffvkFra2tUCgUSE9Px4QJE3DxxRfjrLPOQldXFx577DE4HA588cUXWLZsWdjrMnz4cHzwwQdYtWoV1q1bJy2zVlBQgAULFmDZsmV44403eiwjKysLH374IT7//HN89tln2LNnD9rb26HX65Gfn4+5c+fikksukS3hEq0yMzPx4YcfYt26dfj0009x4MABdHR0QKfTYdKkSViwYAHmzZs3JG8IKr3ylcRr2M2I4U7lRWKO0WjEoUOHpO2xY8dGbEL3F8+vxc6q7vshGr4OP8/aBa1Sg/+ee/9vgaYIwWICb+mEKj03YFkDqbq6GjzP0/xNQgiJQ+Xl5XA6nVAoFCgqKop0dQghETbQnwm7/vFP7C3tHtWngh2/e/2RsJ8nWAMVG1CPJ4ky/u/x6JRaHHv+BrCaBKiGjYRq2Eikzl48yHVzOXbsmCwhCQWfhBBCCCGE9IwCTxJVkidNBKoOStvWnBQUpuYjhVECogDBYoS1ah+sVfuRdsblg14/76CzsrISDMNQEiFCCCGEENInPKzIMNV07+Dicz0VCjxJVBG80toWZ4zCZef+Dp0l36AF3QsoK1KzwKq0g1q3qqoqHD161Gf/UJyLEG0OHDgAh8MBpVKJ8ePHR7o6JAZQmyGhslgsEEURDMNAqx3c7x8Sm6jNkGB1CmYo+e61Wu1xemlJgSeJKt4zjlnWNfTW3lQp26/OKhicCv0mUNA5evRo5OfnD2pdiC+HwwGHwxHpapAYQm2GhEoURb/rQhISCLUZEqx2awr2FSyRtjWOTsyLYH0GCgWeJKocf1I+lAlGOBxOKBVKjBtfDACwN1XJjlMNG7yhrZWVldLaUp7GjBmDvLy8QasHCUypVMr+J6Q31GZIqNzLOwy1ZR5I31GbIcGyC/E5tNYbBZ4kqlT/tBtNpTUw2c1wCA5U7z+EvPPHgG2pxDCP45RpOYNSHwo6YwMNlSShojZDQkVDJUmoqM2QYA2VdYLjdAQxiXVOgYeDd8LssOBYcwWMvHwhXcFuCfDK8AkUdBYVFVHQSQghhBBCwiJJKb9JEa995EMjvCYxw9LYBHu7AaLDAlbkwWkc4I12KD3nSHAKKDNHDFgdRFFEZWUlqqqqfJ4rKipCbm5k1g4lhBBCCCEkVlHgSaKK6chRWOsMYPFbd7ydR61BRJbHrR9Op4ciUT8g56egkxBCCCGEDCZeUMu2nWx85h+gwJNEFS4pCYBB2m5nbfjZakCRontUOKdLAZeQMiDnDxR0FhcXIydncOaVktDV19dDEASwLIvhw4dHujokBlCbIaGy27unfKhUqgjWhMQKajMkWJzP7Mf4HGxLgSeJKjaBhZ3TuDZEEU7WtdxBqqM725ciOQOsSjMg509MTATDMLL05xR0Rr/m5mZpTUYKIkgwqM2QUDmdTmlNRgoiSDCozRAiR4EniSrVVj1qU9KkbYZtBNAMrdAdCKoyB27dzMzMTIwfPx4HDhyAKIoYO3YsXZQSQsgQw3EcnE4neJ6XAgdCyNAkiiJ4ngfg+mwYCKxuYEbyRRsKPElUUefkAG0N0rYjRYNUBw8t393jqRpWOKB1GDbMtXALz/MUdMaIUaNG0cUhCQm1GdITlUoFm80GURRhNpuh0+mgVqt7fyEhHqjNxAez2SyNhBuonmubzQQgeUDKjiYUeJKo4jnEFQBGaVJxdVWrtM1qEqHUZw54PdzBJ4kNiYmJka4CiTHUZkhPkpOT0dXVBQBoa2tDQkLCgPV0kPhFbSb2iaKItrY2aTs5eWCCQ5PTCs/AUwx8aEyjdTxJVBEFrz81r/U6OZ0eXBiGI4iiCJPJ1O9yCCGExB/3fH8AMBqNqKmpgclk8rk5SgiJT+7rxJqaGhiNRgAAwzB007KfqMeTRBXB6ZRtK/WZSCw4B7zRAN5kgCIxFWxC/+42iaKIiooK1NbWYtKkSUhPT+9XeYQQQuILy7LIzc1FbW0tRFGE0WiE0WgEwzDUi0XIEOCe3+3GMAxyc3PBsgPTZ+fgnb0fFAco8CRRxd7ZJds2tDfhaBGDomzXvE5WrQWr6Pv4enfQWVNTAwDYu3cvBZ9xwGq1SvP1NJqByXhM4gu1GdKbpKQkWfApCAIYhpH+J6Q33oELiU3uoDMpKWnAzsHG6fIp3ijwJFHFexST3WlDM29BEfQAXENt+162iMOHD6O2tla2b9++fTjppJMo1XkMKysrk5bGmDJlSqSrQ2IAtRkSjKSkJBQXF8NoNKKiokIKOgfyApTEj66uLukGF7WZ2MJxHFQqFZKTk5GYmDhgPZ1uOk5+DRqvYSgFniSqOIxGAN1Z4FirDUqm+49dkZzRp3L9BZ1uY8eOpaCTEEKIXyzLIjk5GRzHQRAEKBQKFBUVRbpaJAbs3r0bDoeD2gzplU5sRVaXQdrmRHvkKjOAKPAkUYU3W+EZeIo2O4yCQ9pWpIQeeIqiiPLyctTV1fk8N378eGRlZfWpriR6pKWlwel0QqGgjzQSHGozJFTUZkioqM2QYKVoOCQ4OqVtJSjwJGTAKSCfXO0UzTjG8mBVWogOGxRJoc3FDBR0MgyD8ePH07IpcSIvLy/SVSAxhtoMCRW1GRIqajMkWGmj8qE9tk/a1sTpSDwKPElU4SDIthnYkTd8PFImz4dot4Jhg88mSEEnIYQQQgiJdpxWDU7tsa2Oz1metI4niSo+K6QxIiybVqPm5T+AN7UHX44ooqysjIJOQgghhBBCogD1eJKoIorwSuUlQisIcHTUg0tMDbIMV9BZX18v288wDCZMmIDMzMyw1ZcQQgghhJD+sHM2WJJapG1BpYxgbQYOBZ4kqoheCaRFRoRaEKBIzQKr0vb+ego6h6Ty8nJpaQzKHEiCQW2GhIraDAkVtRkSrDqhHZ+M6M5zkua0Y2EE6zNQKPAkUcVnqC0AjSBCnVUQ1OtbWloo6ByCLBYLHA4HnE5n7wcTAmozJHTUZkioqM2QYLU2qjHxl7nStlNtjGBtBg4FniSqjOcrkNuwAyLDAGCgTTUi1+qEatjIoF6fkZGB/Px8VFdXA3AFnRMnTkRGRt/W/ySxgWEY6R8hwaA2Q0JFbYaEitoMCZbNZAKgl7Y5p7+umNhHgSeJKl2iFh2aYWB+6/vkWR4MuqBIGx7U6xmGwahRowAANTU1FHQOEZMnT450FUiMoTZDQkVthoSK2gwJlqLZJNvWWinwJGTA8SIgeCyZYlIoIIKBIikt6DLcwWd2djZ0Ot1AVJMQQgghhJCwSFHJr1fjtY+cllMhUUX0meUpQiGKUGWPCqkchmEo6CSEEEIIISRKUOBJooroZ2QBp04A55XRVhRFHD58GGazeZBqRgghhBBCSPgJjPw6l2dpOZW4JooiPv30U3z00Uc4cOAAzGYzMjMzMXPmTCxbtgxTpkzp9znKysrw+uuvY/v27WhqakJSUhJGjx6NSy65BAsWLADHcb0XMsQkCjwUCSmyfaIo4sCBA2hqakJzczOmTZsGrbb3pVZI/GpuboYgCGBZlrIXk6BQmyGhojZDQkVthgQrKT8XqLVI24wyPvsGKfAEYLVacccdd+D777+X7a+trUVtbS3Wr1+PP/7xj7jhhhv6fI5Vq1bhoYcegsPhkPa1tbWhra0NO3fuxJo1a/DSSy9Br9f3+RzxwCFy4Bn3H5uIRB6y+Z2eQScA2Gw2lJSUUPA5xNXX10trpdGXOwkGtRkSKmozJFTUZkjQuPgMNL1R4Alg5cqVUtA5evRoLFmyBBkZGdi3bx/+97//wWw245lnnkFWVhYuvvjikMvfvHkz/u///g+iKEKr1eKyyy7DpEmT0NraitWrV6OsrAw///wz/vSnP+HVV18Fyw6NxudPpbIAFk2itN3GsJic4pqrKYoi9u/fj+bmZtlrHA4HrFYrBZ6EEEIIISTmKPXDARyWtkWFOnKVGUBDPvDcunUrPv30UwDASSedhFdeeQVqteuXfeGFF2LRokW4/PLLYTAY8Pjjj2POnDlITEzsqUgZu92OBx98EKIoIiEhAe+88w4mTpwoPb906VL86U9/woYNG7B161Z8/vnnuPDCC8P7JmOI7xRPEYrULAiCgAMHDvgEnSzLYtKkSUhNTR2sKpIoNGLECIiiSGulkaBRmyGhojZDQkVthgTLbO6QbYsiH6GaDKyh27X2m9deew0AoFAo8Oijj0pBp9vo0aPxf//3fwAAg8GAVatWhVT+119/jZqaGgDA9ddfLws6AUClUuHJJ5+Uhtj++9//7svbiBuiVwJpFiIUaTkBg87JkycjLS34pVZIfNLr9UhNTR3yQ9VJ8KjNkFBRmyGhojZDgtVsbZdt2yjwjD8GgwHbtm0DAJx66qnIz8/3e9y8efOQnp4OAPjyyy9DOsfnn38OwLW8x9KlS/0eo9PpcOmllwJwJSA6evRoSOeIZwwEHOkUAgad1NNJCCGEEEJI9BvSgefPP/8MQRAAuIbZBsKyLGbOnAkAKC0tRUdHR8Bjve3cuRMAMHbs2B575jzPv2nTpqDLjz/dPZ4iRGgYHu1Wp+wICjoJIYQQQki8sLXKezw5p5/1BePAkA48y8vLpcfFxcU9HjtmzBgArgQ3ZWVlQZXf2NiIzs5OAEBRUVGPx44ePVp6fPDgwaDKj0ei9L8IKNphVzJgmO5myrIspkyZQkEnkXE6nXA4HHA6nb0fTAiozZDQUZshoaI2Q4LFtHfJtjk+PgPPIZ1cqLa2Vnqcm5vb47HZ2dmy17l7QHvintsZTPlZWVlgWRaCIKCurq7XsuOZO+gEZ4XoMSHfHXTSXAnibf/+/VLK+nCsuUviH7UZEipqMyRU1GZIsJIUGtl2vKajGtKBZ1tbm/S4tx40z2DHYDAEVX57e3e3eW/lK5VKJCQkwGg0Bl1+PBIAKegEAIOQgc2b9oBhWSgVehzbzUN02sFbusBb7OA7DWDhhCiKMCtEmNPVUCSZkJzZiBmdeeAF15+uqb4DnS1GNHPDYVEkwynwYD2CWg2nAiBC/O2uJAM7ODggiiLsogAGgFboxDBnOdRsNpyMUnqtDQJa2UyYlWlwCDysaVowKtfzOQlpYBkOTmMbBLsTDkMHONEGiCIsjAhjhgpcghOanGM42TgcgtP1OmubGYbadrSzaTAqM2EXeDAMwPz2UaRmFWBYDqLD/lstnFDA5qqPwIOBCIXoRK5jN9RsOpxMglRfOwR0sCnoVGbDLvCwJ6kh6lxJtTLVydCodXB0NAG8AGtbBxSCa0Fju8ijI10FRs0hYeRhHG/JgMrmKtdhtKG9qg0dYgIMqhw4RAEQIWXyU7IcOFYJ0WGTftMKdJcriiJYMMizl0DL6OBkU6T6OiGii9GgTZkPJ0TYNByEFNd5U5U6JOpSYW6sgiiKcHaYsUP83lUnUUBXMgchUQVNTiUmCjqkWJIBALydR/vhZhh5Dk2qAvAQIYii1CaULAcFp4TgsAGiqydeCZNUriAKYMEgy3EQyaIAJ5fh0YZFmMGiQTUaPEQ4VCyceh3AAIkKDVIT0+HsaIYo8LC1G8Hau8BAhFMUYExg4dSroc6swyiViOHG7nLbDjbC7HCiTlkEgWHAi4JUX45hoeSUEHkHILjuknIwS+Xyv9U3zVmFVMEAgRsulSsCsEJAvXI0nAwHBwc40hIAloWGUyJTlw7e3AXBYYWjywLR3AEWrjLNKgbWdDVUqW0YntSFMZ3d5XYebUWX0YpGZQEcrApOobu+LBioFCpA4CHy/G/7rGDBQxBFOH77m0vmG5HJ10LkcuH5NWyBgGZFPmycFg5GhC01AYyCA8ewGK7LCOozQp1SjamtWRDBYce27+kzIs4/Ixzt9a6fW0sHFHz333IonxGuvyPXb38L9wt9RsT5Z0Q4riNYwQYBgAMCtuAb+oyI88+I/lxHmJ3ZyOC6O7kUog3xaEgHnlarVXrsnc3Wm0ql8vu6nlgslqDLdx9jNBqDLj9uMd3DC0SGg2hRAI40CKIaR5pNvz2jcf3jkuWvbQWaUYt96eXIPdYKh+j+AAac1kQYEjNgZvQAJ39Zh/uUXvs9pZlroa/fjZpkFewK+ZqhhoQMGJkM1+s9pgBXwv3B8dudLNZrKZ52oNPWgYrcAxhV0wiHIwkAYDcCdnMiDNp0dKiG+a+XEKC+v+1TO02YWL8dTToORnWC7JAOdRra3OWaf/sHoBY8gM7u+jIJ8nN0AAIj4NeCUmTX81CaXPOWnVbAakyAUZWKVnWW/1t1gerrYXz1DhhVOrQnyOtrViS5ygUAO4Dfck01AmhEO4Df2oHHF43rha5/e7PLkNRiRFqb6xctOAFzlxY2Tos2TZb/yvDodTLCiMYyCLwDzUny+joZZXe5TgAtrodtANpgAKD87Z8G8LgghR1AE1CeUg/e0gihrvvCxNihgQgGbWndX0wyAlw/9x5+xuntTVAZG1GtT/B5rk0/DAKrcH07tnZXpxPu4T/uvzmPm2gCgGagRm1Ek7IF2urucs1tCgjORLSlZMLJaHzrJfz2fw/11ZrsSGwpx9HUBNnoBwBoT8qAjfnt78ljaswRBPcZ0ZZuxahWKxyiEu2w02dE3H9GuHsTvNoifUbI0GcEwnsd4XUMfUaAPiO8uD8j+CQVkvjuDjEF7D28KnYN6cDTc8y9Z2Dpj+fzwY7V5/nuVMi9le95TKTnAhw+fBijR49GUlKStM9ms+HQoUMAXL2/I0aM8HmN2ez61PEeTtLS0iINH87Pz5f1/vI8j3379gEAkpKSkGs+AptRifqMDIC1ASIDONLBiL3//AghhBBCCIl13G93XgRBwN69ewG4VsHwzAkDAFVVVVLS0/Hjx0Op7L4Z1dnZicrKSgCuKYPDhg2TvXbv3r0QBAEajcYn1433ahLhMqQDT42mezy1w+HoMTi027vvPAQTRALyXk6Hw9Hr8e5zeDaaSOB5Xsr26yaKovQePANqN/cEen8EQZCe8y4X6P7ZOJ1OnFjQhdbtB2HQXgpLAgPwiRR0EkIIIYSQISPdY+CA53WyN8/rb1GUJyTyvP72d+3ucDggCAI4zrcb2d/1ejgM6cAzwaMb3mazBR14BjNs1l/5vXEf4xkQRwLHcWBZ+dgAhmGkgNhfA1UoFAEDZpZlpee8ywW6A22FQoHRKx5E9TuvIqOkFSaHDnaxFRa9BuBYqJUq2dwMh9kKvsMADk6IDGBRAOZ0NYYnmTCWTUZyhhaCyIJhWQgKKzpbjLAxLVCLdjgEJxi45jowDOM1N0MEBJtr/hYAB0TX/C2uE4bhWqTAAifjej3HcrBBgINtgUoU4BCcMKVoACUHjuOQq0uX5mbwNgfs7QZp3L6VBYwZKmgSnJgt6pCSoQfvcP1sWZ0Ig7MdAtsKhcjCLrjnjLhmZ6g5pWxuhig6oBBdQ7TtEKW5GYbhWujggJJxDYXiWA4OCADLgRFVsAs8rDoFeK0KLMciS6OXzc2wtLRLczMcjCjNzZgt6pCengxO6/qb4ZwsOuxtYEVAELVwCAJEiFJ9lZxCNjdDEHkoRbNUrntuRleWCmqISP2tvizLQgCgYHg4hUY4RQFWDQdHohoMyyJDnSSbm2FuMkDJGwEATgbS3IwZrArD9YlIYF31VTAKdFpaYeTtsAqNHvO3XGN7VJxCNjdDEAUoRBOY38p1z82wpQlQimx3fRkGYBiYwSLtt3JtCgb2FA0YhkGKWiebv2Vp7QRr7wILETwDaf7WJJWIkVw6UjNU0t+I1tQKs8OJNL4BAsPAKfJSfRUsJ5u/JUIAK1hc86wYSO9NTLLArlN31xcMGJaFFQLSxCY4BQ52VoQ1RQOwLBLVGtn8LXuHCYK5Exx4CAyk+VujEuzIUnfXl+U4JDm70GW0Ig3NcIgqOARe+pvjGFY2f0uECEawSOU6RdffnFLTDuPwBKQyXRDBgAUDlmVhgYBUpgU20QS7KNBnBH1G0GcEfUbQZwR9RsTFZwTHskgdrsf0FSvg5nmd7M3z+pvxGm7uef3t79pdqVRCEAS/1+/+rtfDYUgHnsnJ3eP6DQaDbGipN8+EPz2txxmo/N7W/nQ4HNJQ1WDLHyhjxoxBYqJ8DoFare4xI5t7uRl/MjIykJGR4fc5juN8yh159c24NoT6EkIIIYQQEm/cKzoEMnLkyIDPJScn9/jaSZMmBXwuMzNTloQ1XIZ04FlQUCA9rq+vR35+fsBjGxoapMc5OTl9Kr8njY2NUrd2sOXHq6NHj8LpdEKhUKCwsDDS1SExgNoMCRW1GRIqajMkVNRmSKjivc0M6cDTc4JueXk5TjjhhIDHlpeXA3B1YxcVFQVVfmpqKtLT09Ha2iq9PpDDhw9Lj70n+A41XV1d0rpXhASD2gwJFbUZEipqMyRU1GZIqOK9zQzMAN4Ycdxxx0m/2O3btwc8jud57Ny5EwAwbtw42RDa3sycORMAcODAAXR1dQU87qeffpIe9xQAE0IIIYQQQkisGdI9nsnJyTjppJOwefNmfPvtt6irq/M7zPWzzz6TxjnPnTs3pHOcd955+PLLL+F0OvH+++/jhhtu8DnGaDRizZo1AIDCwkKMGzeuD+8mfkycODHSVSAxhtoMCRW1GRIqajMkVNRmSKjivc0M6R5PALj66qsBuJL7/OlPf4LRaJQ9f/jwYTz22GMAXOvnLF68OKTyzz77bOTl5QEAXnrpJfz888+y5+12O1asWCElL7rmmmv68C7iC8dx0j9CgkFthoSK2gwJFbUZEipqMyRU8d5mhnSPJwDMnj0b5513Hr766ivs2rULF198MZYuXYrhw4dj//79eP/992EymQAAK1as8Mk4u337dlx55ZUAXENk3377bdnzKpUKK1euxC233AKr1Yqrr74aixcvxvHHHw+DwYAPP/wQZWVlAIDjjz8eixYtGoR3TQghhBBCCCGDZ8gHngDw5JNPwmQyYcuWLaipqcFTTz0le55hGNx222247LLL+lT+WWedhQceeACPPfYYHA4H3nvvPbz33nuyYyZPnoz/9//+X9ze4SCEEEIIIYQMXRR4AtBqtXj11Vexfv16rF27VkoEpNfrMX36dFx55ZWYPn16v86xdOlSzJgxA2+++Sa2bduG5uZmKJVKFBcXY/78+ViyZEncZrAKVXt7OwRBAMuySE1NjXR1SAygNkNCRW2GhIraDAkVtRkSqnhvMxR4/oZhGFx00UW46KKLQnrdiSeeiEOHDgV1bFFRER599NG+VG9Iqa6ullJJx+MfHQk/ajMkVNRmSKiozZBQUZshoYr3NjPkkwsRQgghhBBCCBlY1ONJok5OTo40zICQYFCbIaGiNkNCRW2GhIraDAlVvLcZCjxJ1MnIyIh0FUiMoTbz/9u776im7v4P4O+ghClO6kCLlqniwFkFFFBrrbWuqjiKoz4+0uJqrVqtVm1t1Wq1zlpR+7QupA7co4AKWhAVi1gHTgQHqERlB5LfHzncXyIBEsgNSN+vczjnJvebe783+STkk+8ifTFmSF+MGdIXY4b0VdVjpmqm00RERERERFRpMPEkIiIiIiIiUTHxJCIiIiIiIlFxjCdVOvHx8cJU0q1bt67o6tBrgDFD+mLMkL4YM6Qvxgzpq6rHDFs8iYiIiIiISFRs8aRKx9LSEvn5+aheneFJumHMkL4YM6QvxgzpizFD+qrqMSNRKpXKiq4EVayMjAxcv35duO3i4gJra+sKrBEREREREVUEsXIDdrUlIiIiIiIiUTHxJCIiIiIiIlEx8SQiIiIiIiJRVc2Rq/RaS0pKQkFBAapVq4Y333yzoqtDrwHGDOmLMUP6YsyQvhgzpK+qHjNs8aRKRyaT4dmzZ5DJZBVdFXpNMGZIX4wZ0hdjhvTFmCF9VfWYYeJJREREREREomJXW6p0XFxcoFQqIZFIKroq9JpgzJC+GDOkL8YM6YsxQ/qq6jHDxJMqHTMzs4quAr1mGDOkL8YM6YsxQ/pizJC+qnrMsKstERERERERiYqJJxEREREREYmKXW2p0nn58iUUCgVMTExQo0aNiq4OvQYYM6QvxgzpizFD+mLMkL6qesww8SQUFBRo3M7KyqqgmqjcunVLWMPI0dGxQutCrwfGDOmLMUP6YsyQvhgzpK/KEjOv5gKv5gplJVEqlUqDHIleW6mpqbh//35FV4OIiIiIiCqZJk2a4I033ij3cTjGk4iIiIiIiETFxJOIiIiIiIhExTGehFq1amncNjMzQ7Vq1SqmMkREREREVGEKCgqQm5sr3H41VygrjvEkIiIiIiIiUbGrLREREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmKiScRERERERGJioknERERERERiYqJJxEREREREYmqekVXgKoepVKJgwcPYvfu3bh69SqysrJga2uLjh07YuTIkWjdunW5z3Hjxg1s2bIFMTExSE1NRY0aNeDg4IABAwZg4MCBqFatmgGuhIxF7JhRKpUICwtDaGgo4uPj8ezZM5iamsLOzg4eHh7w9/dHo0aNDHQ1ZAzG+JzRZsGCBdi+fTsA4Pr166Kcg8RhjJjJycnBzp07cezYMdy5cwcZGRmoW7cu2rdvj1GjRqFdu3YGuBIyFmPEzMWLF7Ft2zZcuHABT548gZmZGezt7eHr64tRo0ahVq1a5b8QqlCF/zcCAwMxadKkch8vJSUFW7ZsQWRkJB48eAALCwvY29ujb9++8PPzg7m5uQFqLQ6JUqlUVnQlqOrIycnBlClTcPLkSa37q1WrhqlTp2LChAllPkdISAgWLFgAuVyudX+HDh2wdu1afli/JsSOmefPn2PatGk4c+ZMsWWkUim++eYbDBgwoEznIOMyxueMNtHR0RgzZgwK/20y8Xx9GCNmrl27hkmTJiEpKUnrfolEgokTJ2Lq1KllPgcZjzFiZunSpdi0aVOx+21tbbF69Wq4u7uX+RxUsf766y+MGzcOCoXCIInnqVOnMG3aNGRmZmrd7+zsjPXr16Nx48blOo9YmHiSQX3++ec4ePAgAMDBwQFDhw5FvXr1cOXKFezcuRNZWVkAVB+2/fv31/v4kZGR+M9//gOlUgkLCwv4+fnBzc0NT58+xR9//IEbN24AADw8PBAUFAQTE/Ymr+zEjBmFQgF/f3/ExsYCABo1aoTBgwfjrbfeQmZmJqKionD8+HEoFApIJBKsW7cOvr6+hr1AMjixP2e0yczMxAcffIDk5GThPiaerw+xY+b+/fsYOnQonj17BgDo0qULevXqhVq1auHixYsICQlBbm4uAFXrh5+fn4GujMQidsxs2rQJS5cuBQCYmppi6NChaNWqFV68eIETJ04I/7dsbGywZ88eNGnSxEBXRsaSkJCA0aNHIyMjAwDKnXhev34dQ4YMQW5uLqpVq4YPP/wQHTp0QGZmJkJDQxEXFwcAcHFxQXBwMCwsLAxyHQalJDKQqKgopbOzs9LZ2Vnp7++vzMnJ0dh/8+ZNZadOnZTOzs7KTp06KV++fKnX8XNzc5W+vr5KZ2dnZdu2bZUJCQlF9n/66adCHQ4cOFDuayJxiR0zf/zxh8bxMzMzi5QJCwtTtmjRQuns7Kz08vIqUgeqXMSOmeLMnz9fOG/hH70ejBEzH3/8sXCODRs2FNkfFxenbNmypXCO3NzcMl8PiU/smJHJZMq2bdsqnZ2dlR07dlReu3ZNY79CoVCuWLFCqMNnn31W7msi4zp58qSyQ4cOGv8zVq1aVa5j+vn5KZ2dnZXNmzdXnjx5UmOfQqFQLly4UDjXzz//XK5ziYXNQWQwmzdvBgBUr14d3377LczMzDT2Ozg4YO7cuQAAmUyGkJAQvY5//PhxobVh/PjxaNmypcZ+qVSKJUuWCF1sN2zYUJbLICMSO2aCg4MBAGZmZli2bBksLS2LlCkcRwMAjx8/xunTp/W+DjIesWNGm+joaOzYsQMAUKNGjXIfj4xL7Jg5d+4cIiMjAQCDBg3S2vWybdu2QiunTCbDX3/9pfd1kPGIHTNnzpwRWkzHjx8PFxcXjf0SiQSTJ0/Gm2++CQAICwtDfn5+ma6FjCsvLw+rVq3CxIkT8eLFC4MdNy4uDhcvXgQADBgwAN27d9fYL5FIMGfOHDg4OABQxXBxQ9IqEhNPMgiZTIazZ88CALy8vIrtEvLee++hbt26AICjR4/qdY7Dhw8DUL25hg8frrWMlZUVBg0aBEA1AdGdO3f0OgcZj9gxk5GRgfj4eABA165dYWtrW2zZd999V9j++++/dT4HGZcxPmdelZmZiTlz5kCpVKJ///5o3rx5uY5HxmWMmCnsjmlmZoZp06YVW+7DDz+En58fAgIChHNR5WOMmFHvsu/q6qq1jImJCdzc3AAA2dnZSE9P1+scZHxnz55Fnz59sHbtWigUClhaWmLs2LEGOXbhd2AAGDFihNYyJiYmwj6ZTIbo6GiDnNuQmHiSQZw/fx4KhQIA8PbbbxdbzsTEBB07dgSg+oL//Plznc9RON7BxcUFderUKbac+vnZelV5iR0z6enpaNWqFWxtbfHWW2+VWLZmzZrCtiF/oSTDMsbnzKuWLVuG5ORk2NraYvbs2WU+DlUMY8TMn3/+CUD1A9cbb7xRbDlXV1csWLAAU6dOFRIKqnyMETPW1tbC9v3794st9+DBAwCqiYzU/09R5bR//37hRwU3NzeEhITAx8fHIMcu/A5cs2ZNtGjRothy6jFb2BOjMmHiSQaRmJgobDs7O5dY1tHREYBqmvLCyYBK8/jxYyEhcHJyKrFsYTcDQDXLIFVOYsdMkyZNEBISgqioKMyYMaPEsrdu3RK2ORty5SV2zLxKvYvt119/zdh4DYkdM6mpqXj69CkAVXfaQnK5HFevXsXp06eRkJDAbpKvEWN8zqgvw7J161Zh4il1586dE3rtdOrUCVKpVOfjU8WpU6cO5s2bh127dgnxUV4FBQXC9xQHB4cSJ85s1qyZsKRgZfwOzMSTDCIlJUXYtrOzK7FsgwYNtD6uJOrdUko7fv369YU3ZeGvhVT5iB0z+ti9e7ew3aZNG4MfnwzDmDGj3sW2T58+6NWrl97HoIondszcvHlT2G7cuDHkcjlWr16Nbt26YcCAAfjPf/6DwYMHCzOtFxQU6HkFZGzG+Jxxc3NDt27dAAC3b9/GqFGjEB0djZcvX+LRo0fYvn07Pv30UygUClhbW+OLL77Q8yqoIowcORIREREYOXKkQdeTf/LkCfLy8gCUHpPVqlUThhZVxu/A1Su6AlQ1FE4hDwC1a9cusax6q4FMJtPp+OpjG0o7vqmpKSwtLZGRkaHz8cn4xI4ZXUVGRiIiIgIAULduXXh4eBj0+GQ4xoyZwi62tWvXxrx58/R+PFUOYsfMo0ePhG2pVIpRo0bh0qVLRcrJZDL88MMPuHTpElasWAFTU1Odjk/GZ6zPmZUrV+Kzzz7DyZMnER8fj9GjRxcp065dO3z11VdFJlOkyqlVq1aiHFefmARU3XEfPXpUKb8Ds8WTDCInJ0fYfnX2t1epdxdRf1xJsrOzdT6+ehldj0/GJ3bM6OLhw4eYOXOmcDsgIADm5uYGOz4ZlrFiRr2L7dy5c0scU06Vm9gxo76I+9KlS3Hp0iU4OTlhw4YNuHjxImJjY/Hjjz+iYcOGAIATJ05g5cqVelwBGZuxPmesrKywePFioeXzVRKJBM2aNWMXf6pS34GZeJJBqI9fKW0cgvp+Xce9qHdP0mWcQ2EZjqupvMSOmdI8e/YM48aNE8ZneXh4CMuqUOVkjJhR72Lbo0cP9O3bV/+KUqUhdswULokBqCaJad68OXbu3Alvb29YWVnBxsYGffv2xY4dO4QfMH799VdRhgyQYRjrf9Phw4fh7e2N06dPo379+ggMDMSKFSvw7bffonfv3gBUw0D69esnjPWkf6eq9B2YiScZhHorUWnrBhX2Uwd0ewMBmr/w6LIuUeE52J2p8hI7ZkqSlpYGf39/3L59GwBgb2+PZcuWQSKRlPvYJB5jxExhF9uaNWti/vz5eteRKhexY0apVGrc/uabbzRmLC3UsGFDTJ48GYDqy+C+fft0Oj4ZnzE+Z8LCwjB9+nTk5OSgc+fOOHz4MCZNmoT33nsPQ4YMwapVqxAUFARzc3NkZmZi/PjxSEtL0/9iqEqoSt+BmXiSQVhaWgrb2mZnU6f+Qa1LlwF9j69eht0mKy+xY6Y4SUlJGDlypDBzYcOGDbFlyxZ2p3wNiB0z6l1sZ82aVeLSGPR6EDtmLCwshO2mTZuWOMarsBULgLAQPFU+YseMUqnE999/j4KCAtSsWROrVq3S+mOFp6enMKnQ8+fPsXnzZp2OT1WPlZWVsP26fwdm4kkGYWNjI2yXNphZfb+uX/bVj1/aWllyuVzo/sRkovISO2a0iY+Ph5+fH+7duwdANTvc77//XuoscVQ5iBkz6l1svby8MGjQoLJWkyoRsT9n1BOGZs2alVi2Tp06wni91NRUnY5Pxid2zFy9elVYu7Nv374ljuEcOnSo8OPGqVOndDo+VT01atQQtnVZL7awTGX8DsxZbckgmjZtKmw/fPgQTZo0Kbas+iyAjRo1KtPxS/L48WNh8Wddj0/GJ3bMvCoyMhKTJ08WfpRwdHTE5s2bUb9+/TIdj4xPzJhJSEgQlm2KjIyEi4tLqY8pLGNnZ4fw8PBSy5Pxif0507hxY73qU9gds/B/FFU+YsfM3bt3he3S1gmVSqVwcHDQ+Hyif5833ngDVlZWyMzMLHWJlIKCAqFbdmX8DswWTzIIBwcHYVt98WVtCvdLJBI4OTnpdPzatWujbt26Oh1ffV210j7UqeKIHTPqwsPDERAQICSdbdq0wdatW5l0vmaMGTNUNYgdM+r/Y0qbMKigoEBoIeNnT+VlzM8ZXbpNFq5Lbsh1Ien1UxiXt27dKrHc7du3hcmIKuN3YLZ4kkG4u7vD1NQUcrkcMTExGDlypNZyBQUFiI2NBQC4urpqdGkpTceOHXH06FFcvXoVL1++1Oh6oC46OlrY7tSpkx5XQcZkjJgBgHPnzmHKlCnCgHwPDw+sWbNGYxwPvR7EjBknJyesXbu21HIrV64UvmwWlq+M42hIRezPmdq1a8PJyQmJiYlITEzEo0eP0KBBA61lr1y5IowJrIxfCElF7JhR/9EhISGhxLL5+fnCJHiVsfWKjKdjx46Ij4/H06dPkZiYWOwPHerfgTt27Gis6umMLZ5kEDY2Nnj77bcBqFqXiusKcOjQIWEh3D59+uh1jsKJGfLz84UJQF6VkZGBvXv3AlCNt3F1ddXrHGQ8xoiZp0+fYsqUKcKXPR8fH/z8889MOl9TYsZMnTp10LNnz1L/1BfvLrzP09OznFdGYjHG50zhkjtKpRIbN24sttzWrVuFbX3PQcYjdsy0atVKGBscFhZW4vCh0NBQZGRkAFD9aEr/XuqTk/3+++9ayxQUFGD79u0AVONCK+P/JiaeZDBjxowBoJrc57PPPhM+LAvdvHkTixYtAqCaoWvIkCF6Hb9nz57CeJq1a9fi/PnzGvvz8vIwY8YMoSvT2LFjy3AVZExix8w333wjfDFo3bo1fvrpJ4Msx0IVR+yYoapH7Jjx8/MTJvHYsWMHQkNDi5TZt2+fcH+7du3Qpk0bfS+DjEjMmJFKpcKa0VlZWZg6darwf0rdxYsX8d133wFQLYsxevToslwKVRFt2rSBu7s7ACAkJARHjhzR2K9UKvHtt98KLeQjRoyolL1xJMpXF6EiKofJkyfj2LFjAFSTLgwfPhwNGzbEP//8gx07diAzMxMAsGDBAvj5+Wk8NiYmBv7+/gBUXWS1/aITHh6OTz75BEqlEqamphgyZAjatWsHmUyGXbt24caNGwBU/9i3bt3KMRGvAbFi5tatW+jbt6+wzt6MGTNgb29fan1q1aqFDh06GOTaSBxif86U5KOPPsK5c+cAANevXy/vpZCRiB0zJ06cwJQpU4SxVT4+PvD19YVUKkVERASOHj0KQLXkxp49e+Do6CjatZJhiBkz2dnZGDFiBP755x8Aqi7bAwcOhKurKwoKChAdHY1Dhw4hPz8fADB//nwMHz5c1OslcajHQmBgICZNmqS1XHJyMnr06AGg+Anrrly5gmHDhkEul0MikaBfv37w9PRETk4O9u3bJyzT1LRpU+zZs0djGZbKgmM8yaCWLFmCzMxMREVFITk5GT/88IPGfolEgsDAwCIf0rry9fXF119/jUWLFkEul2P79u1Ct4JCrVq1wrp165h0vibEipl9+/ZpLO6+dOlSnR5XlmSEjEvszxmqesSOmV69emH58uX46quvkJGRgYiICERERGiUqVWrFtavX8+k8zUhZsxYWFhg06ZNmDZtGqKjo5Genq51nU5TU1PMnj2bSScBAFq2bImVK1fiiy++QFZWFvbv34/9+/drlLG3t0dQUFClTDoBJp5kYBYWFggKCsKBAwewb98+YSKgWrVqoX379vD390f79u3LdY7hw4ejQ4cO+N///oezZ88iLS0NpqamcHZ2Rr9+/TB06FCYmpoa6IpIbGLFTGHrN1U9xvicoarFGDHTp08ftG/fHtu2bUN4eDhSUlIgkUjQpEkT9OzZEyNGjKiU6+qRdmLHTJ06dfDrr78iLCwM+/fvx99//42nT59CKpXCzs4OHh4e+Oijj7jONGno2bMnDh06hC1btuD06dN49OgRJBIJmjVrht69e+Ojjz6qtEknwK62REREREREJDJOLkRERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klERERERESiYuJJREREREREomLiSURERERERKJi4klEREQGJ5fLK7oKVAK+PkRkbNUrugJERCSemJgY+Pv7l/nxdnZ2CA8PN2CN/p+vry9SUlIAANevXxflHMa0evVqrFmzptRy1atXh7m5OerVqwcXFxd07twZ/fv3h7W1tRFqWT7q8TRw4EAsXry4SJmcnBysWbMGVlZWCAgIKLJ/1qxZ2Lt3LwDgt99+Q+fOncWttMj0eY9JJBJIpVLY2NjAzs4OrVq1wsCBA9GyZUuRa/n/Snt9iIjEwhZPIiIiI8rPz0dGRgbu3r2LY8eOYeHChejRoweOHz9e0VUrt+vXr6Nv377YuHEj8vPzK7o6lY5SqURubi7S0tJw6dIl/P777xg8eDDmzZsHhUIh+vn5+hBRRWKLJxHRv0TNmjXx3//+V6/H1KhRQ6TaVG1ubm547733tO4rKChAVlYW7t+/j+PHjyMvLw8ymQxTpkzB+vXr4e3tbdzKGtCVK1eQnJxc0dWoMKW9xxQKBTIyMnDr1i1ERUUhOzsbSqUSwcHBMDc3x+zZs0Wt37/99SGiisXEk4joX8La2hoff/xxRVfjX8HJyUmn5/rRo0cYN24cbt26BYVCga+//hrHjx+HmZmZEWqpv86dO5e7W/TixYu1dtGtCvR5j8lkMsyaNQsREREAVN2Ohw4dCkdHRzGrSERUYdjVloiIqII0aNAAa9euhYmJ6t/xo0ePRBtTS5VLrVq1sGrVKrz55psAVN1wd+7cWcG1IiISDxNPIiKiCtSsWTN4eHgIt//6668KrA0Zk1QqxQcffCDcrgqTbBERFYddbYmIqExu376N/fv3IzY2FklJSXj+/DkkEglsbGzg5OQELy8vDBkypFyztSYmJiIkJAQxMTG4f/8+8vLyUKtWLTRt2hRdunTBkCFD8MYbb5R6nIcPH2Lnzp2IiopCcnIyMjMzUbt2bbRo0QK9evVC//79YWpqWuZ6lpeDgwMiIyMBqFo9i/Ps2TMEBwcjMjISt2/fRkZGBmxsbGBvbw8vLy/4+fmhTp06JZ4rLy8PBw4cwIkTJ5CQkACZTAYzMzPUq1cP7u7ueOedd+Dr66v1scXNaqttRt81a9YI9wUGBmLSpEkAtM9qq1Ao4OPjI1z7vn370Lx58xKvY9euXZg7dy4AYPDgwfjuu++KlMnOzkZISAjCw8Nx8+ZNyGQyWFtbo2nTpujevTuGDx+OWrVqlXgesdWrV0/YTk1NLbHs5cuXcfjwYZw/fx4PHz6ETCaDqakpatasCVdXV/j4+GDgwIGQSqUaj9Pn9VGXnp6O4OBgnDp1Cvfu3cOLFy9Qs2ZNODo6wtfXF0OHDoWFhUVZL52I/mWYeBIRkV7kcjm++eYbhISEaJ2JMycnB6mpqThz5gx++eUXrFu3Du7u7nqfZ926dVi9enWRc6SlpSEtLQ2xsbH45ZdfMGfOHAwdOrTY42zevBkrV65Ebm6uxv2pqalITU3FyZMnsXHjRqxatQouLi5619MQCrvaAkC1atW0lgkODsbixYuRlZWlcf/Tp0/x9OlTXLx4EUFBQZg9ezY+/PBDrce4f/8+JkyYgNu3b2vcL5fLhZl29+7di7Zt22L9+vWlJrGGYmJign79+mHjxo0AgEOHDpWaeB44cEDYHjBgQJH9Z8+exYwZM5CWlqZxf3p6OtLT0xEXF4dNmzZhwYIF6Nu3b/kvoozu3bsnbKsnoeoyMjIwa9YsnDhxosg+uVyOrKwsPHz4EBEREdi4cSM2btyIZs2alateBw4cwMKFC/HixQuN+588eYInT54gOjoaGzduxLJly/D222+X61xE9O/AxJOIiPQyc+ZMHDp0CIBqTUpPT0+4urrCysoKL168wN9//43Y2FgolUo8e/YMkyZNwtGjR/Vq+QwNDcVPP/0EQJWUeHp6okWLFrC0tMTjx49x8uRJpKSkICcnB3PnzkXjxo3RtWvXIsf54YcfEBQUJNx2d3dHhw4dYG1tjQcPHiAiIgKpqam4e/cuhg8fju3bt8PV1bWcz5D+1LtYFo75U/fLL79g+fLlwu3GjRvDx8cH9erVQ1paGiIiIpCSkoLMzEzMmTMHz549w4QJEzSOkZeXh4kTJwpJZ8OGDeHt7Y2GDRsiKysLN27cwMmTJ6FQKHDp0iUEBgZi+/btOtXfw8MDlpaWSEhIwOHDh4X7CrsQ6/LDw4ABA4TE8/Dhw5g+fXqxZR8/fozz588DUK0127FjR439YWFhmDJlCuRyOQDA3t4e3bp1g62tLWQyGaKionDjxg28fPkSn3/+ObKysjBkyBCdrtWQXrx4gdDQUOG2tgROoVBg/PjxiIuLAwCYm5uje/fucHR0hLm5OdLT03Hu3DkkJCQAUP24MGXKFOzbt0/4QUPf12fbtm1YuHChcNvFxQVdu3ZF7dq1kZaWhlOnTiEpKQlpaWkYP3481q9fDy8vLwM+M0RUFTHxJCIinUVHRwtJp42NDX777TetLVMxMTH473//i+zsbKSlpeHPP//U2ipVnHXr1gFQJZ3alhj58ssvMXv2bOzfvx8A8PPPPxdJPMPCwoSks1atWvjxxx81xlICQG5uLn744Qf8/vvvyMzMxOTJk3Hw4MEiXRXFlJiYiOjoaOF2t27dNPZHR0drJJ2TJk3CxIkTUb36//8LnzVrFlavXo0NGzYAAFasWIE2bdqgc+fOQpljx47h5s2bAIBOnTohKCioyOy58fHxGD16NLKysnDhwgXExsYWSeq0adeuHdq1a4c9e/YIiY27u7tesyg7OjqiZcuWuHLlClJSUnDp0iW0bdtWa9nDhw8LLeH9+vWDRCIR9j148ACzZs2CXC6HiYkJZs6cCX9/f41W5ZkzZ2LPnj2YN28e5HI5Fi5ciHbt2sHBwUHn+pZXUlISZsyYgWfPngFQLV00cuTIIuX27t0rJJ12dnb47bff0Lhx4yLlDh06hOnTp0OhUOD69eu4cOGC8Nrp8/okJCTg+++/BwCYmZnhu+++w/vvv69R5ssvv8SmTZvw448/Qi6XY/r06Thy5IjRWsiJ6PXExJOI6F8iIyMDmzZt0rn8sGHDirRSFo7NA1QJUHHdITt37oyBAwcKLWYJCQk6J54ymQx3794FADg7O2td19LU1BQLFy7EiRMnkJ2djRs3biAvL09IGJVKJVasWCGUX7VqlUYSVsjMzAxfffUV7t+/j5MnT+LevXsIDQ01WutXQkICpk6dioKCAgBAy5YtiyTHK1euFLbHjh2LwMDAIscxNTXFZ599hszMTGzduhUKhQIrV67Ejh07hDJ///23sD169GitS7a0bt0a48aNw5o1a2BiYoL4+HidEk9DGTBgAK5cuQIAOHjwYLGJ58GDB4Vt9cl5AFXrcGH30E8//RRjxozReoxBgwYhPT0dS5cuRV5eHn7++Wf88MMP5ap/ae+x7OxsyGQy/PPPP4iPjxdaZKVSKZYvX641cVN/z82ZM0dr0gkAffv2RWhoKE6dOgVAtWZnWV67n376SajXggULiiSdgKo7+IQJE/Do0SNs27YNMpkMv/32G6ZOnar3+Yjo34OJJxHRv8Tz58+xdOlSncv37t27SOL57rvvolmzZkhOTi7yhf9V6uMlMzMzdT6vekteSkoK0tLSYGtrW6SchYUFdu/ejdq1axf5wh4XF4fExEQAqpYdbUmnuoCAAJw8eRIAsH///nInnomJicUmILm5uXj69Cni4+MRHx8v3G9paVnk9UlOThZauywtLbUmneqmTZuGPXv2ICsrCxcvXsTt27fx1ltvAdAcOxoXF4eePXtqPYa/vz/ef/992NnZGbXlFwDef/99LFmyBPn5+Th69Chmz56t0VIJAHfv3hW6lbq5uWm0Uubl5QldV6VSKcaOHVvi+fz9/bFmzRpkZWXh6NGjWLRoUbmuWd/3GKBK9ufOnYvWrVtr3e/n54e3334bqampWn+EUefi4iIknhkZGXrVA1B1YS6c5KpBgwal/lgUEBCAbdu2AVC9b5h4ElFJmHgSEZHOfHx84OPjU2q5rKwsJCcnC7fz8/N1Poe1tTWaN2+Oq1ev4uXLlxg8eDBGjx4Nb2/vIl0hi+saGRsbK2y3bNmy1HO2aNECUqkUeXl5iI+PR35+vkYCrK+EhAQhOdJF06ZNsXLlSjg6Omrcr94F19PTs9RxstbW1vD09MTx48cBAOfPnxcSz44dO+LXX38FAAQFBSElJQX9+/dH586dYWlpKRyjZs2aqFmzps51N6Q6derAy8sLERERSEtLw7lz54qMe1Rv7ezfv7/GvitXrgiTLzVt2hRWVlYlns/U1BRubm44d+4c8vLycPnyZbRv395AV1M8d3d3eHh4wNvbG61atSqxrLYWR22eP3+Ox48fC7f1ec8VKhybDQDNmzfX6MKsja2tLezs7JCSkoKUlBQ8fvwY9evX1/u8RPTvwMSTiOhfws7ODuHh4QY9ZmZmJu7cuYOkpCTcv38fd+7cwbVr15CYmKjxxbfwy6yupk+fjgkTJqCgoACPHz/G0qVLsXTpUjRq1Aienp7w8vJC165di03ECscyAsDWrVuxdetWnc+dk5ODZ8+e6bRMS1mYm5vD2toaDRo0QMuWLeHt7Q1vb+8iLXsANJJ3XSc9cnV1FRLP+/fvC/f7+vqiU6dOOHfuHADgyJEjOHLkCExNTdGuXTt4enrC29sbzs7O5bm8cuvfvz8iIiIAqMYtFpd4Vq9evchstOqv+40bN/Sepfjhw4dlqbJA23ssJycHN2/exK+//irMxJuYmIh+/fqVmnRq8/z5c9y9exdJSUlISkrC7du3ce3aNdy6dUvjfabvew7QfP4iIiL0fv4ePHjAxJOIisXEk4iI9KJQKBAaGort27cjISFB65IqgKprZ+HYRX15enpi3bp1+PrrrzXWtXzw4AF27dqFXbt2QSqVwtvbG2PHjkW7du00Hv/8+fMynVf98eVJPNXXuCwPmUwmbOu63qR6OfXnwcTEBOvWrcO3336L0NBQITGRy+WIiYlBTEwMli9fDnt7ewwaNAj+/v4aLaHG0qNHD9jY2ODFixc4fvw45s2bJ6yxeuXKFdy5cweAKkbq1q2r8VhDvO6GZm5uDjc3Nyxbtgxubm74/vvvkZGRgYULFyItLU2n7ql5eXnYuXMnQkJCcOPGjWLLlec9B1TO54+Iqg4mnkREpLPMzEwEBgbi7NmzGvdLJBI0aNAAjo6OcHNzQ6dOnZCcnIy5c+eW+Vze3t44ceIETp06hePHjyMqKkqYARRQfRk/fvw4jh8/jk8//RSTJ08W9ql/+X733XeLHT9XnFcTmopSllar4n4IAFQzpy5ZsgSffvopDh06hIiICFy+fFnjMffu3cOKFSuwa9euYmdQFZNUKkWfPn0QHBwMmUyGs2fPonv37gBK7mYLaL7uLVu21Ht9zuImMzKUMWPG4P79+0IL/Pr169GoUaMS16EtXLLk2rVrGvebmJjAzs4OTk5OaNWqFTp37oyoqChhRuiyUH/+unTpovcSKeVdO5SIqjYmnkREpLNFixYJSaeVlRX8/f3h5eUlrOOprnDSkfKQSqXo1asXevXqBaVSievXryM6OhqRkZGIjo4WuvOuXbsWnTp1Erpl2tjYCMdwd3cvdmbTyk59rGV6erpOj1Evp/48qHvzzTcREBCAgIAAvHjxAufOncPZs2cRERGBBw8eAFBN7DRr1iy9uikbygcffIDg4GAAqu623bt3h1KpxJEjRwCoEugePXoUeZz69davX1+v5VyMZebMmYiNjRXWbl20aBHat29f7Hjl6dOnC0ln3bp1MWbMGHTt2hVOTk5FZiYOCwsrV93Unz9HR8dK+fwR0eur6IASIiIiLR4/fox9+/YBULVwbtmyBVOnTkX79u21TuKingCVpeXuVRKJBK6urhgzZgw2bdqE8PBwjTFohbOZAkCTJk2E7cLZbUuj3ppaWdjb2wvbhYlKaa5evSpsqz8PxbGxsUHPnj0xb948hIeHa7RSx8bGComoMXXo0EGoe0REBPLz83HhwgVhDGbv3r21Lgejfr3q4xVL8vz58xJbiQ1NKpVi8eLFwuRVOTk5mDlzptY6/P3338IEU5aWlggODsaECRPg5uam9fp1/XGiOGV5/tLT0w3y/iaiqo+JJxER6eTy5ctCV7zmzZujTZs2JZaPiYkRtvX5YhoWFoaPP/4YPj4+2LBhQ7Hl6tevj4kTJwq31Wf07NChg7B96tQpYV3C4ly+fBldunSBu7s7Bg8eXKYZQcWgfh1RUVGlLpHx8uVL/PXXX8Ltwq6jBQUFmDlzJgYNGgQPDw/k5eVpfbxEIsGoUaM0Wt/Ux9iWprRZUPVR2JX2xYsXiI2NxdGjR4vse5W7u7uQ0CUlJZWarOfm5qJ3795o3bo13nnnnSLdWcXSokULjaVeLl++LKx5q+7SpUvCtoeHR4k/JCiVSmHiKEB7l+vSXh/1eLtw4UKpP8akpqbCy8sLbdq0QZ8+fSrljzdEVHkw8SQiIp2oJyvqk95o8+eff2p8CdYnkVMqlYiKisKDBw9w6NChEh+r3sKjPptmly5d0KBBAwCqMXLFralZeL7ly5cDUC0D07hx43ItpWJI9vb2cHd3B6Cq25o1a0os/9NPPyE7OxsA4OTkJLQIV6tWDdeuXcOVK1fw5MmTErtkKhQKjddXn1lK1WfmLc8kN4BmchkWFoY///wTgGrm2I4dO2p9jJWVFXr16iXcXrp0aYk/egQFBSE9PR1yuRxZWVlFlrMRU2BgIOzs7ITbK1asQGpqqkYZ9fdcaa2Zv/32W6lLGJX2+jg4OAjjofPy8rBixYoSz7ly5UrI5XLk5ubCysqqyHq6RETqmHgSEZFO1JfzePDgAf73v/8VKaNQKBASEoLPP/9c4/7CZEgX3bp1g62tLQBV99KFCxciJyenSLk7d+5oJGLvvPOOsG1qaopPPvlEuP3TTz9hy5YtRVqBsrOzsWDBAqGVsHr16ggICNC5rsYwZcoUoaVqy5YtWLNmTZGkIj8/H6tWrcLvv/8OQNWyNXv2bI0ygwcPFrbnz5+P+Pj4IudSKpVYsmQJnj59CkA1QY96clQa9eVtUlJSdH6cNm+++aaQdO/evVvoZtuvX78SW+4CAgIglUoBqFqJv/jiiyItxUqlEiEhIRoT8QQEBBj1Bwdzc3PMmzdPuJ2RkYHvvvtOo4z6e+7ChQs4ceJEkePk5eXh559/xpIlSzTu1/ae0+X1mTx5svD87tq1C0uWLCnSQp6fn49169Zh9+7dwn2TJk3SejwiokKV4yddIiKq9N566y14enoiKioKAPDdd9/hyJEjcHd3h7W1NR4/fozTp08LCYKpqanQxbW0FlJ1UqkUX375JT777DMAQHBwMMLDw9GtWzc0atQIgGqNxpMnTyI3NxcA0L17d/j4+GgcZ9iwYTh//jz2798PhUKBxYsXY+fOnejWrRvq1KmDBw8eICIiAmlpacJjPv/8c53XyzSWLl26IDAwEKtXrwYArF69Gnv37oWPjw/q1auHJ0+eICIiQqO165NPPkHXrl01juPn54c//vgD169fh0wmw5AhQ+Dh4QFnZ2fUqVMHT58+RVRUlDC2z9TUtEjyWhr1GXAPHDiAGjVqoH79+nBycoKvr6/e1z5gwADExcUhKytLuO+DDz4o8TEuLi6YN28e5s6dC6VSiQMHDiAyMhI9evRAkyZN8OzZM8TExGh0w/Xx8cGIESP0rl95eXt7o1evXkJCeeTIEQwePFiYTbZwEqHExEQolUoEBgbC09MTLVq0gJmZGVJSUhARESG0hpb2ntPl9fHy8sLEiROxfv16AMDmzZtx+PBh+Pj4oH79+khNTUVkZKTGGrGjRo0SZh4mIioOE08iItLZ0qVLMXbsWOFLe1xcHOLi4oqUc3Z2xuLFizFs2DDI5XIkJiYiLy9PaIkqTd++fZGeno7FixdDLpcjLS1No3VFXe/evYu09hRasmQJGjVqhE2bNkEul+Pu3bu4e/dukXLm5uaYPn06PvroI53qZ2yBgYGoXbs2li1bhqysLCQnJwutm+osLS0xf/58rWMgpVIpgoKCEBAQgISEBADAmTNncObMmSJl69Wrh2+//VZjzJ8unJ2d4e7ujri4OCiVSmFmY19f3zIlnu+99x4WLVoktLi5ubkVO/uruiFDhqBGjRr4+uuvIZPJIJPJio2fwYMHY/78+QYdn6qPr776CmfOnBGS64ULF+LgwYMwMzNDtWrVsHr1aowbN06Y5CkqKkr48Uddhw4dMG3aNIwcORKAas3TV+n6+kydOhV169bF8uXLkZ2djUePHmHHjh1FjletWjWMHz8e06ZNK/8TQURVHhNPIiLSWd26dRESEoLg4GAcPXoUN2/eREZGBszNzWFrawtXV1f07NkTffr0QfXq1fH2228jMjIS2dnZOHbsGPr166fzuUaNGoVu3brhjz/+QExMDO7evYuMjAxYWFjA1tYWnTp1Qr9+/UpMjkxMTDBt2jR8+OGH2LVrF86ePYvk5GRkZGTA0tISTZs2RdeuXTFs2DChNbWyGjlyJHr37o2dO3ciKioK9+7dw4sXL2BpaQkHBwd4e3tj6NChJY6ze+ONN7Br1y4cPXoUx44dwz///IMnT54gPz8fderUQbNmzeDj44PBgwejRo0aetdRIpFg48aNWLlyJcLDw5GWlqbRCqcvGxsb+Pj44NixYwCKn1RIm3fffReenp4ICQnB6dOnkZiYCJlMBlNTUzRs2BDt27fHkCFD9F7j1dAaNGiASZMmCT+eJCUlYd26dUIy16xZM4SGhmLr1q0IDw/HnTt3kJ2dDQsLCzRs2BDNmzfHe++9B29vb0gkErz11lu4ffs2kpKScPHiRbRr1044lz6vz0cffSSsp3rmzBncvXsXz58/h5mZGZo0aYLOnTtj2LBhOv0QQEQEABIl58AmIiIiIiIiEXFyISIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiISFRNPIiIiIiIiEhUTTyIiIiIiIhIVE08iIiIiIiIS1f8B8dliV35QgI0AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_solution\n",
+ "from error_parity.roc_utils import compute_roc_point_from_predictions\n",
+ "\n",
+ "plot_postprocessing_solution(\n",
+ " postprocessed_clf=clf,\n",
+ " plot_roc_curves=True,\n",
+ " plot_roc_hulls=True,\n",
+ " dpi=200, figsize=(5, 5),\n",
+ " plot_relaxation=True,\n",
+ ")\n",
+ "\n",
+ "# Compute predictions\n",
+ "y_pred_binary = clf(X, group=group)\n",
+ "\n",
+ "# Plot the group-wise points found\n",
+ "realized_roc_points = list()\n",
+ "for idx in range(N_GROUPS):\n",
+ "\n",
+ " # Evaluate triangulation of target point as a randomized clf\n",
+ " group_filter = group == idx\n",
+ "\n",
+ " curr_realized_roc_point = compute_roc_point_from_predictions(y_true[group_filter], y_pred_binary[group_filter])\n",
+ " realized_roc_points.append(curr_realized_roc_point)\n",
+ "\n",
+ " plt.plot(\n",
+ " curr_realized_roc_point[0], curr_realized_roc_point[1],\n",
+ " color=all_group_colors[idx],\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ " )\n",
+ "\n",
+ "realized_roc_points = np.vstack(realized_roc_points)\n",
+ "\n",
+ "# Plot actual global classifier performance\n",
+ "global_clf_realized_roc_point = compute_roc_point_from_predictions(y_true, y_pred_binary)\n",
+ "plt.plot(\n",
+ " global_clf_realized_roc_point[0], global_clf_realized_roc_point[1],\n",
+ " color=global_color,\n",
+ " marker=\"*\", markersize=8,\n",
+ " lw=0,\n",
+ ")\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8db9a56",
+ "metadata": {},
+ "source": [
+ "### Compute distances between theorized ROC points and empirical ROC points"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "be73972d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Group 0: l2 distance from target to realized point := 0.199%\n",
+ "Group 1: l2 distance from target to realized point := 0.000%\n",
+ "Group 2: l2 distance from target to realized point := 0.003%\n",
+ "Group 3: l2 distance from target to realized point := 0.092%\n",
+ "Global l2 distance from target to realized point := 0.036%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Distances to group-wise targets:\n",
+ "for i, (target_point, actual_point) in enumerate(zip(clf.groupwise_roc_points, realized_roc_points)):\n",
+ " dist = np.linalg.norm(target_point - actual_point, ord=2)\n",
+ " print(f\"Group {i}: l2 distance from target to realized point := {dist:.3%}\")\n",
+ "\n",
+ "# Distance to global target point:\n",
+ "dist = np.linalg.norm(clf.global_roc_point - global_clf_realized_roc_point, ord=2)\n",
+ "print(f\"Global l2 distance from target to realized point := {dist:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0494477",
+ "metadata": {},
+ "source": [
+ "### Compute performance differences\n",
+ "> assumes FP_cost == FN_cost == 1.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "6991bf75",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual accuracy: \t\t\t84.678%\n",
+ "Actual error rate (1 - Acc.):\t\t15.322%\n",
+ "Theoretical cost of solution found:\t15.336%\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "from error_parity.roc_utils import calc_cost_of_point\n",
+ "\n",
+ "# Empirical\n",
+ "accuracy_val = accuracy_score(y_true, y_pred_binary)\n",
+ "\n",
+ "# Theoretical\n",
+ "theoretical_global_cost = calc_cost_of_point(\n",
+ " fpr=clf.global_roc_point[0],\n",
+ " fnr=1 - clf.global_roc_point[1],\n",
+ " prevalence=y_true.sum() / len(y_true),\n",
+ ")\n",
+ "\n",
+ "print(f\"Actual accuracy: \\t\\t\\t{accuracy_val:.3%}\")\n",
+ "print(f\"Actual error rate (1 - Acc.):\\t\\t{1 - accuracy_val:.3%}\")\n",
+ "print(f\"Theoretical cost of solution found:\\t{theoretical_global_cost:.3%}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f2e16086",
+ "metadata": {},
+ "source": [
+ "### Compute empirical fairness violation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "fce51ec0",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Maximum fairness violation is between group=0 (p=[0.69338557]) and group=2 (p=[0.74338557]);\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Empirical true_positive_rate_parity violation: 0.05\n",
+ "Theoretical true_positive_rate_parity violation: 0.05\n",
+ "Max theoretical constraint violation:\t 0.05\n"
+ ]
+ }
+ ],
+ "source": [
+ "from error_parity.evaluation import evaluate_fairness\n",
+ "\n",
+ "empirical_metrics = evaluate_fairness(\n",
+ " y_true=y_true,\n",
+ " y_pred=y_pred_binary,\n",
+ " sensitive_attribute=group,\n",
+ ")\n",
+ "\n",
+ "disparity_metric_map = {\n",
+ " \"equalized_odds\": \"equalized_odds_diff\",\n",
+ "\n",
+ " \"true_positive_rate_parity\": \"tpr_diff\",\n",
+ " \"false_negative_rate_parity\": \"tpr_diff\",\n",
+ "\n",
+ " \"false_positive_rate_parity\": \"fpr_diff\",\n",
+ " \"true_negative_rate_parity\": \"fpr_diff\",\n",
+ " \n",
+ " \"demographic_parity\": \"ppr_diff\",\n",
+ "}\n",
+ "\n",
+ "disparity_metric = disparity_metric_map[FAIRNESS_CONSTRAINT]\n",
+ "\n",
+ "# Calculate empirical fairness violation\n",
+ "empirical_constraint_violation = empirical_metrics[disparity_metric]\n",
+ "\n",
+ "# Check if empirical and theoretical results are reasonably close\n",
+ "print(f\"Empirical {FAIRNESS_CONSTRAINT} violation: {empirical_constraint_violation:.3}\")\n",
+ "print(f\"Theoretical {FAIRNESS_CONSTRAINT} violation: {clf.constraint_violation():.3}\")\n",
+ "print(f\"Max theoretical constraint violation:\\t {clf.tolerance:.3}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "485d5b1f",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "---\n",
+ "# Plot Fairness-Accuracy Pareto frontier achievable by postprocessing"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "790f18c6",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:root:Using `n_jobs=9` to compute adjustment curve.\n",
+ "INFO:root:Computing postprocessing for the following constraint tolerances: [0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13\n",
+ " 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ].\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c6ae1586f8254b69b2162256afe47031",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/28 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.pareto_curve import compute_postprocessing_curve\n",
+ "\n",
+ "postproc_results_df = compute_postprocessing_curve(\n",
+ " model=predictor,\n",
+ " fit_data=(X, y_true, group),\n",
+ " eval_data={\n",
+ " \"fit\": (X, y_true, group),\n",
+ " },\n",
+ " fairness_constraint=FAIRNESS_CONSTRAINT,\n",
+ " y_fit_pred_scores=predictor(X),\n",
+ " predict_method=\"__call__\", # for callable predictors\n",
+ " bootstrap=True,\n",
+ " seed=SEED,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "a17d1107",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG2CAYAAABiR7IfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACa0ElEQVR4nOydd3xUVfr/PzOTKQkhkAAhARN6GpEO0hUUVtFdQMEVxUV3UVlksSyKWJC1gCBYgAWVFRuWVXFVRCmWFWGlCoTAJKT33qffuXN+f/Cb+01IMifJzJ1CnvfrlRdk5uSeZ95z595nzj33OQrGGANBEARBEAThEqWvAyAIgiAIgggEKGkiCIIgCIJoA5Q0EQRBEARBtAFKmgiCIAiCINoAJU0EQRAEQRBtgJImgiAIgiCINkBJE0EQBEEQRBugpIkgCIIgCKINBPk6AH/k9OnTYIxBrVb7OhSCIAiCINqIIAhQKBQYOXKkLNunkaYWYIyhMxRKF0XR1yH4PeSIDzniQ474kCM+5IiP3OdvGmlqAecI09VXX+3jSORDEARUV1cjIiKCRtRagRzxIUd8yBEfcsSHHPERBAHnz5+HSqWSrQ9KmjoparUavXv39nUYfg054kOO+JAjPuSIDznio1arZU2YALo812kRRRH19fU03OsCcsSHHPEhR3zIER9yxEcURTgcDln7oKSpk2K1WpGRkQGr1errUPwWcsSHHPEhR3zIER9yxMdqtcJut8vah4J1hhnP7eTcuXMAruw5TQ6HA4IgQK1WQ6mk3LklyBEfcsSHHPEhR3zIER+Hw4HU1FQoFArZzt80p8lNRFGEIAi+DqPD2Gw2X4fg9/irI29cv+ehVCqh1Wp9GoO/Q474kCM+5IiPUqmEQqGQtQ9KmjoIYwylpaWora31dSgdgjEGURShUqlk38kClUBw1L17d0RFRfksPpvNhtLSUkRFRUGj0fgkBn+HHPEhR3zIER+bzQa73Y6gIPlSG0qaOogzYYqMjERISIjfnlRbw+FwwGazQaPR0FBvK/izI8YYTCYTysvLAQDR0dE+iUMURRgMBpqc6gJyxIcc8SFHfERRlL3GIs1pagHenCZRFHHx4kVERkaiR48e3gyNIJpQVVWF8vJyxMXF+fxSHUEQhK+Re06yf319DhCcc5hCQkJ8HAnR2XHug4E8r44gCCJQ8Puk6c0338Tdd9/tsk1NTQ3+/ve/Y+zYsRg3bhz+8Y9/wGw2yx5boF2Sa4woijCZTDTU64JAcOTrfdBkMuHs2bMwmUw+jcOfIUd8yBEfcsTHZDLJfuOOX89p+vDDD/Haa69hzJgxLtstX74cZrMZ7777Lurr6/HUU0/BZDJh/fr1Xoo08FAoFAgKCvL5SdefIUd81Go1IiMjaVkHF5AjPuSIDzni4407iv0yaSorK8Ozzz6LY8eOoX///i7bnj59GsePH8e3336LQYMGAQCee+45LF68GI8++iiVnW8FpVJJd2BwIEd81Gq1zyahBwrkiA854kOO+HTaZVTOnz8PtVqNr7/+GsOHD3fZ9uTJk+jVq5eUMAHAuHHjoFAocOrUKblDDVict9N74z6AU6dO4eTJk7L342ncdXTs2DHEx8ejsLDQw5H5D3RHDx9yxIcc8SFHfLxxTvPLpGn69OnYsmULYmJiuG3LysqaZd8ajQbdu3dHSUmJW3E0nhdlNpula6UOhwMOh0N6cxwOR5Md2fk80PzE2562Lf1tR9oCTdfkcba1WCxSO17b1rbLe60OhwN33nkn8vPzPebFW74bO3L+3h7fw4cPx+HDhxEVFdXu96Yjvm02m8t9tvH8LEEQmsyNsFgs7WrrXMrBYrEgPT1det5ut7fa1lkmwbnMgbOtM36r1QqLxSL9rclkkia4t6etcy6a09PlXtrTluewLW2tVivS09NRV1fn0ktbfLfFoSd8O714wrfZbOa2dTqqr69v837Y3v27NS/u+r7cizu+G3u5vK3RaER6ejrMZnO799mO7t+eOEa05tBTvhsfI2pra2W/KcYvk6b2YDabW7yEotVq3VqjRxRFZGRkSL/n5OSgtLQUwKUdxG63NzmZNu7LarVKbxxjDBaLRdq5nCdiJzabrcmb3Lit3W5v1rbxJDeLxSLtXJdvVxCEZm0bx2C1WqHT6aBUKiEIQrP4nW0dDgcsFou0017etnEMzrZOL3a7vdl2nW2dXly1vdyhp3y78tK4rd1uh0qlkmo0tce31WqFSqVCr169pL9tzWFjL5f7vtzL5b6tVqvUtqKiApmZmVLb7OxslJWVSa9br9dLB8zKyspm+7fzS4bdboder4fBYABw6UaL9PR0qW1eXh6Ki4sBQJpf4fRfW1sLvV4vtS0oKJBG2hhj0Ov1UvJQX18PvV4vva+FhYUoKCiQ/lav10vFYw0GA/R6vfTaS0pKkJubK7VNT09HdXU1AMBoNEKv10sxlZaWIicnR2qbkZGByspKAJeOH3q9XnJcXl6OrKwsqW1WVhYqKiok93q9XnrfKyoqWj1GOH2bTCbodDpERkYiPz9fapubm+vSd1pamtQ2Pz8fRUVFAC6953q9Hg0NDa36bs1hQ0NDE99FRUVNYkpLS0NNTU2bfF+8eBFVVVUALp249Hq9tP+35NuVw6ysLOh0OiQlJaGoqEiqPWa1Wrn7bONjsl6vh9FoBABUV1c32Wdd+Xa1zzp919fXAwDq6uqg1+ulz5yrfdbp23l8KS4uRl5entQ2PT3dpe/LHRoMBiQlJUkxOX2XlZUhOztbapuZmenSt7eOEUePHsX+/fuRnp7O3Wc9dYzIzc2Vf84X83NWrlzJFi5c2Orzzz33HJs3b16zx8ePH8/eeeedDvWZkpLCUlJSmMlkkh4zmUzMarUyxhgzGo0sNTVVel4URWa32xljjBkMBlZfX8/q6+uZwWBgDQ0NrK6ujjU0NEjP1dXVMYPBIP3u3K7D4WAWi4U1NDQwk8nEHA4Hs9vtzOFwcLfbuK0zJlEUpfjtdrv0e+O2cXFx7P3332fz5s1jycnJ7JZbbmEHDhxo0vaHH35g8+fPZyNGjGATJ05kL774IjObzVI/P/30E5s7dy4bNmwYGz9+PHv88cdZbW0tE0WRxcXFST+PP/54izEwxqQ45s+fz5KTk9nNN9/MDh48KLV97bXX2J133skefvhhNnLkSLZmzRrGGGO//fYbu/vuu9moUaPYuHHj2MqVK1llZaW0XYvFwl599VV23XXXsWHDhrG5c+eyQ4cOSdtNT09nixcvZiNGjGCTJk1ijzzyCCsrK5NeW1ZWFvvzn//MRo0axUaMGMHuvfdelpaWJsX/3//+t8lrX7lyJautrWV2u539+uuvLC4ujuXn5zO73c6uu+469q9//Ys9+OCDbMSIEWzcuHHs+eefZxaLRfJy6NAhNnv2bMnBZ599xuLi4lhBQUGz99W5X5w/f56ZzWZmtVpb3WdFUWRGo1HaT202GzMajVJb59+3ta3FYpFiMBqNTBAExhhjgiC0u23j98q5Xzk/Zzabrd1t7XY7MxqNkqfLvbSnLc+hO74v9+KO78ZePOHb6cUTvk0mk8d8N/birm+nF3d9X+7FHd+Nvbjj+3IvnvDd3mPEnj172Jo1a9j333/v1WOE8/wtFwGfNL311lts6tSpTR6zWq0sISGB7d27t0N98qSbzWZ24cKFJm+eEwDt/vn000+lv//0008ZAHbttdc22W7Pnj1dbqO9iKLIrFYri4uLYyNGjGC7du1iWVlZ7OWXX2YJCQns1KlTjDHGDhw4wBISEtg///lPlp2dzb7//ns2efJk9te//pUxxlhVVRVLTk5mu3btYoWFhezkyZNs+vTp7Mknn2SMMVZeXs7i4uLYu+++y+rr61uNhxfH5s2bWVxcHHvhhRdYfn4+y8nJYWfPnmVDhw5lzz33HMvMzGS//voru+mmm9jcuXOlD/Ozzz7Lxo8fz7777juWl5fHXnnlFZacnMyysrJYaWmplLhkZmayc+fOsfvvv59NmzZNOtDMnj2bPfHEEywnJ4dlZGSwxYsXsxtuuKFNr/3o0aNNEp5p06axq6++mr333nssPz+fff755yw+Pp795z//YYwxduHCBZaUlMTWr1/PsrKy2DfffMPGjh3bZBuX42pf9AZWq5UVFBRIB1OiOeSIDzniE2iO0tLS2IEDB1hGRobX+rRarez06dOyJk1+efdcexg7diw2btyIvLw89OvXDwBw/PhxAMDo0aN9GZrf4xw2vvXWW3HXXXcBAFasWIHjx49j165dGDVqFN566y3MmDEDS5cuBQAMGDAAjDE8+OCDyMzMlC5L9enTB3379kXfvn3xxhtvSNt2Xp7q2rUrunbt6jIeV3E4Wb58ubSdhx9+GPHx8XjmmWcAAIMGDcIrr7yC2bNn4/Dhwxg9ejQ+//xzPPPMM7jxxhsBAI888ggYYzAYDPj6668RFRWFp59+Wtr+a6+9hvHjx2Pfvn2YM2cOCgoKMGnSJPTt2xdqtRpr165FdnY2HA4HysrKXL72lpg8eTL+9Kc/AQBiYmLwwQcf4LfffsOcOXPw7rvvIjk5GY8//jgAYODAgaiqqsKLL77IfS99hSiKqK2tpcr4LiBHfMgRn0BzFB8fj/j4eK/2KYqitF6oXARc0iSKIqqrq9G1a1fodDoMHz4co0aNwiOPPII1a9bAZDJh9erVmDNnjk/KDTiv8baHxitXz507FwaDodlaZ43nE3gCpVKJ4OBgAMA111zT5LmRI0fiyJEjAC7NXbj55pubPD9u3DjpuVmzZuGWW27BkiVL0KtXL0yaNAnXXXcdZsyY0WK/q1evxp49e6TfH3jgASxZsoQbBwD06NGjSeJ18eJFTJo0qcnfJCQkoGvXrkhPT0dERAQEQWh2B+ajjz4KANi6dSsyMjIwcuTIJs9brVZkZWVBqVTi0Ucfxdq1a/Hxxx9j3LhxmDJlCm655RYolUokJia267UDaHKXJ3ApmXTOvblw4QImTpzY5PmxY8e2ui1/IDg4GMnJyb4Ow68hR3zIER9yxCc4OFj2MjEBlzSVlJTg+uuvx7p163DrrbdCoVBg69at+Mc//oFFixZBq9XixhtvxKpVq3wSX5cuXdz6+6CgoBZXaHZ3u7w+GyOKopS0sRZu33ROynP+3aZNm/Dggw/i0KFD+N///ofHHnsMo0ePxnvvvdfsbx966CH85S9/kX7v1q1bm+IAAJ1O1+T5lmJzPq5Wq7kTAh0OB8aPH49nn3222XPO5Oyuu+7CjTfeiJ9//hm//vorNm/ejO3bt+PLL79Ez5492/XaAbT4gXa+DpVK1eROOYIgiEDFeaevUqn0uwXP3cHvk6aXXnqpye9XXXVVk1n6wKURiM2bN3szrIDHeecVcGmBw+nTp0vPnT59GkOHDgVwaYj1t99+wz333CM976y5NGjQIJw9exZ79+7Fk08+iYEDB+Kee+7B119/jcceewxVVVXNhpJ79OjR6vCyqzhaIj4+vlktrrS0NBgMBgwaNAj9+vWDWq3GuXPnkJCQILW5/fbbMWvWLAwZMgTffvstoqOjpWSmtrYWK1euxL333otBgwZhy5YtWLJkCW699VbceuutKCsrw9SpU3H8+HH07dvX5WtvLwkJCUhJSWny2OnTp9u9HW9iNpuRlZWFQYMGSSOXRFPIER9yxCfQHO3fvx/Hjx/H5MmTcf3113ulT2cJBTlHm/w+aSLkw3nd97333sPAgQORnJyMTz/9FOnp6dI8msWLF+Ohhx7Ctm3bcNNNNyE3NxfPP/88pk2bhkGDBiErKwsfffQR1Go1br/9dlitVnz77bfo378/wsPDAVxaVDYrKws1NTXSYy3hKo6WuPfee3HnnXfi+eefx5133onKyko8//zzSEpKwoQJE6BWq7Fw4UK8/vrriIiIwJAhQ/D555/j4sWLeOmll6BWq/Hvf/8bK1askOZsrV+/Hunp6YiLi0NoaCgOHz6M4uJi/P3vf0doaCi++OILqNVqJCcnQxAE7mtvD3/+858xZ84cbNy4EbfddhsyMzOlLwP+upSLSqVCeHi47FV4AxlyxIcc8SFHfFQqVedcRoWQn8ZLhNxxxx149913cfHiRSQkJODtt9+WRmZ+97vf4ZVXXsH27duxbds2RERE4JZbbsHy5csBQBqN2bp1Kz766CMolUqMHz8eO3bskIZk//znP+Nf//oXsrKy8MYbb7Qak6s4WmL48OH417/+hddeew1z5sxBaGgobrjhBvz973+XLs09+uijUKlUePbZZ9HQ0ICEhAS89dZbGDhwIABg165d2LRpExYsWACVSoVRo0bh/fffR0REBABgx44dWL9+Pe655x6YzWYkJibirbfeQmxsLABwX3t7iIuLw9atW/HKK6/g3XffxYABA7Bw4UJs2bLFb9eb0mg06Nu3r6/D8GvIER9yxCfQHM2YMQPTp0/3apKn0Whk70/BWpsY0ok5d+4cAODqq69u8XmLxYKcnBwMGDCg2TybQIExBofDgaSkJGl+mC+Jj4/3izga43SkVCq9MtKTkpKCoKAgJCUlSY/t2bMHTz75JE6fPt3iXDdf74vOYpzOQqlEc8gRH3LEhxzxcTgcSE1NhUKhaPX87S5kvpPi/AASrXN5hXO50ev1+NOf/oQffvgBxcXF+PXXX7FlyxbcfPPNLSZM/sDlFYeJ5pAjPuSIDzniY7FYZF9GxT+PxITsKJXKgB0l8xZOR976Vnf77bejoqICa9euRVlZGXr06IGbb75ZuhTqj2i1WiQkJDQpm0E0hRzxIUd8As1RRkYGCgsL0a9fP2k6hNxotVrZpzJQ0tRJUSgUUKlUze5E9BX+EkdjnI682d+yZcuwbNkyr/XpLiqVStZyGFcC5IgPOeITaI4yMzOlu+e8lTSpVCrZp1LQ5blOisPhgM1mo7pALiBHfARBQHFxsexD4oEMOeJDjvgEmqN+/fph7NixuOqqq7zWpyAILldk8ASUNLlBoM+hd66oTbSOvzvy9T5ot9tRWVnp9558CTniQ474BJqjpKQkzJo1y6tLqdjtdtmTJro81wGck3IDZedtCaVSiZCQEF+H4dcEgiPnPuirieLBwcEYNmyYT/oOFMgRH3LEhxzx8cYyKjTS1AGcBbTq6+t9HQrRyamvr/dKQTeCIAiCRpo6hEKhQGRkJEpKSqDVatGlSxe/rdjcGs75OhqNhmp+tII/O2KMwWg0or6+HtHR0T7b/8xms1QnKhCWdvAF5IgPOeITaI727dsnTQRvvDyWnJjNZgiCIOsddJQ0dZBu3brBbDajsrISFRUVvg6n3TDGIIqiV+42CFT83ZFCoUD37t2bLHrsbVQqFUJDQ2mkywXkiA854hNojhhj0o+38MaxmiqCtwCvInhjRFEMmLsZiCsLtVodMAdQgiA6F85CkxqNxqu1pdpz/u4INNLkJoE6n8SfLz35C+SIDzniQ474kCM+geZIp9N5vYCyw+EAY0zW0Sb/N0/IgsViwfnz56kkvwvIER9yxIcc8SFHfMgRH1pGhZANrVaLuLi4gCnJ7wvIER9yxIcc8SFHfALNUXZ2NoqLixETE4N+/fp5pU9vLKNCI02dFJVKha5duwbkpUVvQY74kCM+5IgPOeITaI4uXryIH374AZmZmV7rk5ZRIWRDEASUlpbSJHYXkCM+5IgPOeJDjvgEmqO+fftixIgRiI6O9lqftIwKIRuB9gH0BeSIDzniQ474kCM+gebo6quvxuzZs5GUlOS1Pr2RNFHJgRaQ+5ZFgiAIgiA8j9znbxppIgiCIAiCaAOUNHVSLBYL0tLS6PZVF5AjPuSIDzniQ474BJqjgwcPYt26dfj555+91qc3Sg5Q0tRJUSgU0Ol0frk8iL9AjviQIz7kiA854hNojkRRhM1mg91u91qfCoWCllHxBTSniSAIgiA6jslkgsVigU6nQ0hIiNf6pTlNhCwwxiAIglcXUww0yBEfcsSHHPEhR3wCzVFISAgiIiK8mjB5ww0lTZ0Us9mMlJQUmM1mX4fit5AjPuSIDzniQ474kCM+ZrMZNptN1j5oGZVOilarxeDBgwOmJL8vIEd8yBEfcsSHHPEJNEd5eXkoLS1Fnz59EBMT45U+tVotgoLkTWtopKmTolKp0K1bt4Apye8LyBEfcsSHHPEhR3wCzZFer8e+fftw8eJFr/WpUqmgVMqb1lDS1EkRBAHl5eUBU13WF5AjPuSIDzniQ474BJqjqKgoDB06FL179/Zan96oCE6X5zopgiCgsLAQoaGhsq8KHaiQIz7kiA854kOO+ASaoxEjRmDEiBFe7dOZNMk5GkclB1qASg4QBEEQROBBJQcIgiAIgiD8AEqaOikWiwUXL14MmJL8voAc8SFHfMgRH3LEJ9Ac/fTTT9i0aRN++eUXr/VJy6gQsqFQKBAUFBQwJfl9ATniQ474kCM+5IhPoDmyWq0wGAyy101qTMAso2Kz2TB8+HCsW7cOc+bM8UBYvoXmNBEEQRBEx2loaIDJZEKXLl0QGhrqtX7lPn977O45mk8eWDDG4HA4oFQqA+abi7chR3zIER9yxIcc8Qk0R127dkXXrl292icto0LIhtlsxpkzZ6gkvwvIER9yxIcc8SFHfMgRH1pGhZANjUaDgQMHQqPR+DoUv4Uc8SFHfMgRH3LEJ9AcFRYWoqKiAr1790afPn280qdGo5F9GRVKmjopQUFBCA8P93UYfg054kOO+JAjPuSIT6A5Sk1NxbFjxzB58mSvJU1BQUG0jAohD3a7HZWVlbDb7b4OxW8hR3zIER9yxIcc8Qk0R7169UJcXBx69uzptT7tdjscDoesfdBIUyfFZrMhLy8PISEhsg9nBirkiA854kOO+JAjPoHmaPTo0Rg9erRX+7TZbLDb7bJewvR/84QsBAcHY9SoUb4Ow68hR3zIER9yxIcc8SFHfIKDg2Wf8+XW5bk333wTmzZtavLYyZMncf/998NkMrkVGCEvziJggXDrqq8gR3zIER9yxIcc8SFHfLzhxq2kSavVYseOHVi7di0UCgWOHj2K++67DzabTfbJWIR7WK1WZGZmwmq1+joUv4Uc8SFHfMgRH3LEJ9Ac/fzzz9i8eTP+97//ea1Pq9Uq+zIqbl2eu+eee6BWq/HCCy8AAL766itMnDgR27Ztg1ar9UiABEEQBEEEFmazGTU1NVdcXSmPLKPy6aef4tlnn8W1116LzZs3B0wdidagZVQIgiAIouPU1NTAYDAgLCwM3bp181q/AbGMyu23344JEyYgKioKarXaE5skZKZxrkzXyFuGHPEhR3zIER9yxCfQHIWHh3u9rlRALaMSExNDCVMAYTab8dtvv11xQ6eehBzxIUd8yBEfcsSHHPGhZVQI2dBoNOjXr1/AX0qVE3LEhxzxIUd8yBGfQHNUUlKCqqoq9OrVC7179/ZKn7SMCiEbQUFBXq3UGoiQIz7kiA854kOO+ASao7Nnz0rLqHgraaJlVAjZsNvtqKmpCZiS/L6AHPEhR3zIER9yxCfQHEVERKB///5endfkjWVUKGnqpNhsNmRnZ8t+/TeQIUd8yBEfcsSHHPEJNEfjxo3DokWLvFrF3LmMipx4pOTAlUZnKDnAGIPD4YBSqQyIOzF8ATniQ474kCM+5IgPOeLDGENqaioAPy85QAQeCoUCKpXK12H4NeSIDzniQ474kCM+5IiP3y+jQgQuVqsV2dnZAVOS3xeQIz7kiA854kOO+ASao8OHD2P79u04duyY1/q0Wq2yX57zyEhTXV0dzGZzixOw+vTp44kuCA/DGIPdbvdKMbBAhRzxIUd8yBEfcsQn0BwZDAaUl5fDYDB4rU/GmOx+3JrTlJeXh5UrV+Ls2bOtttHr9e3ersPhwNatW/HZZ5+hoaEBY8eOxerVqxETE9Ni+6qqKqxduxZHjhwBYwwTJ07EE0880eHbHDvDnCaCIAiCkIuqqirU1dWhe/fuiIiI8Fq/fr2MyvPPP4/c3FwsW7YMUVFRHquPsG3bNnz00Ud46aWXEBUVhZdffhmLFy/Gnj17Wizs9fDDD8Nut+Odd94BYwz/+Mc/8OCDD+Lzzz/3SDwEQRAEQbSdHj16oEePHr4Ow+O4lTSdOHECL774Im655RZPxQObzYadO3dixYoVuO666wAAr776KqZMmYIDBw4066u+vh7Hjx/H9u3bkZiYCAC4//77sXTpUtTW1qJ79+4ei+1KwmQyIS0tDQkJCQgJCfF1OH4JOeJDjviQIz7kiA854mMymWCz2WStmu7W0FBoaKjHVy9OS0uD0WjEhAkTpMfCwsKQlJSEEydONGuv0+nQpUsXfPnllzAYDDAYDPjqq68wYMAAhIWFeTS2Kwm1Wo2rrrqK1gt0ATniQ474kCM+5IhPoDkqLy9Heno6KioqvNanWq2W/Q5Dt5Km2bNn48MPP/ToxKvS0lIAQHR0dJPHIyMjpecao9Fo8NJLL+H48eMYM2YMxo4di7Nnz2LHjh1uXy5svDBi44UAHQ4HTCYTRFEEAAiCAJPJJLW1WCzSHQ6MsXa3dc7+t9vtMJlMkl+r1dquthaLRerHZDJBEAQAgCiKEAQBvXr1glqt5rY1mUzSJH+bzdbMS3vattWhu76dXtzx7XA4EBYWJh2k3PF9uRd3fF/uxRO+LRZLh3wHBQUhNDRUutXX6aUjvl05dNd3Yy/u+m7spS1t1Wo1wsPDpT5b8+JvxwhP+W7LMUKtViMyMhJ2uz2gjhEteZHrGAFcOg8qlcqAOEacOHECn3zyCVJSUlr04infjY8RgiD4d9IUHByMU6dOYcaMGXjkkUewatWqJj9PPvlku7fpfEMvH17TarUt3mrJGINer8fIkSPx4Ycf4r333kOfPn2wdOlSt2bti6KIjIwM6fecnBwpabPZbNDr9dIbX1VVhYsXL0ptc3NzUVJSAuDSG6nX66VYampqkJaWJrXNz89HUVERgEs7ol6vR0NDAwCgtra2yUT6goICFBQUSL/r9XrU1tYCABoaGqDX66UPR1FREfLz86W2aWlpqKmpAXDprga9Xo/q6mqIooiSkhLk5uZKbS9evIiqqioAl3ZKvV4vfVhKS0uRk5Mjtc3IyJC+SVgsFuj1emmnrqioQFZWltQ2KysL5eXlAC7t/Hq9Xnq/KysrW/UtCAL0ej2MRiMAoLq6Gunp6W3y3ZLDwsLCJr7r6+sBXLoLVK/XSx/QgoIC5OTkSAeGlnw7nysuLkZeXp7UT3p6ejPfzgNBSUlJM4eVlZUALu3/jX2XlZUhOztbapuZmenSd2ZmptQ2OzsbZWVlAP5vn3Xl29U+29h3Xl4eiouLm2y3rq6O69v5WXW2ra+vb7LPFhYWtrp/t+Sw8T6bnp6O6upqAIDRaIRer5cOpi3ts5f7dh5bysvLm+2zrny35RghiiKKiooC8hjRmm9PHyNEUURdXV3AHSNc7bOePkZUVFSgrq5OauvvxwgA6Nu3L0JDQ7n7rCePEXIvo+LW3XPTp093vXGFAj/88EO7trl//34sX74cZ8+ehU6nkx5/6KGHYLPZsH379ibtv/32Wzz77LP46aefEBoaCuDSjj1t2jQsX74c99xzT7v6B/5v9v3gwYMRHBwM4NLBVaVSQaPRwOFwwGKxQKvVQqVSQRAECIIgXWe2WCxQKBTQarVgjMFsNrerrXOlZue3ruDgYCgUCunA3ta2jDHJoclkglqthlqthiiKqK2tRW5uLhITE6FSqVy2tVqt0Ol0UCqVsNlsEEWxiZegoKA2t22rQ3d9O72447u2thZZWVlITExESEgITCZTh31f7sXhcHTY9+VePOHbYrFAqVS227fRaERaWhri4uLQtWtXyUtH9+/WHLrru7EXd3039mK327ltnSf/AQMGSHcRBcIxwmq1esR3W44RzpPlwIED0aVLl4A5RrTkRa5jhN1uR0ZGBuLj46FUKgPmGNGaQzmOEXV1dcjNzYVGo5Ht7jm/W0YlJSUF8+fPx8GDBxEbGys9vmDBAsTHx2PNmjVN2j/33HNITU3Fp59+2uTx2267DcOGDcOzzz7b7hg6Q8kBZ82PoKAgKsnfCuSIDzniQ474kCM+5IhPwCyjcujQIRw/fhz19fWIiIjA6NGjMWXKlA5tKyEhAaGhoTh27JiUNNXX1+PChQtYuHBhs/ZRUVHYu3cvrFYrtFotgEvZZ2FhIf7whz90/EVd4SgUioCZUOgryBEfcsSHHPEhR3zIER9vJJNuJU02mw1Lly7F4cOHoVKpEB4ejpqaGrz55psYP3483nzzzXbf+qfRaLBw4UJs3LgRERER6Nu3L15++WVERUVh5syZEEUR1dXV6Nq1K3Q6HebMmYO3334bDz/8MB566CEAwGuvvQatVotbb73VnZd3RWO1WlFSUoLo6Ggp2SSaQo74kCM+5IgPOeITaI6OHj2K8+fPY/jw4RgzZoxX+nQuoxIUJN+yum5NBN+yZQtOnTqFDRs2ICUlBYcPH8bZs2exbt06nDlzptn8o7ayfPlyzJs3D08//TQWLFgAlUqFt99+G2q1GiUlJZg8eTK+/fZbAJfuJvjoo4/AGMOiRYtw7733Qq1W46OPPkLXrl3deXlXNIwxWCyWgCnJ7wvIER9yxIcc8SFHfALNUW1tLQoLC6VJ3d7A75dRmTZtGhYuXIi//OUvzZ57++238fHHH+P77793K0Bf0BnmNBEEQRCEXJSXl6OmpgYRERHo1auX1/r162VUqqurkZSU1OJzSUlJ0q2MBEEQBEF0HiIjIxEZGenrMDyOW5fnYmNjcerUqRafO3HiRLMClYT/YDKZcObMmSZFxoimkCM+5IgPOeJDjviQIz7OZVTkxK2RpjvuuAMvvfQSdDodbr75ZvTs2ROVlZX45ptvsGPHDixbtsxTcRIeRq1WIyoqiu7GcAE54kOO+JAjPuSIT6A5qqqqQn19Pbp16ybVJ5Mbbyyj4tacJofDgWeeeQa7d+9ucqsfYwxz587F2rVrA7KeBM1pIgiCIIiOs2/fPhw7dgyTJ0/G9ddf77V+/XpOk1KpxIsvvoh7771XqtPUrVs3jBs3DoMGDfJUjIQMONc6CgkJkT0zD1TIER9yxIcc8SFHfALNUWhoKCIjI6WVOryBs7q8nIM1HilmMHjwYAwePNgTmyK8hNVqxcWLF6UlQojmkCM+5IgPOeJDjvgEmqPJkydj8uTJXu3TarVCEIR214dsD+2+PLdq1SosXboUMTExWLVqleuNKxRYu3atWwH6gs5wec7hcMBms0Gj0UCpdOt+gCsWcsSHHPEhR3zIER9yxMfhcCA1NRUKhcJ/Ls8dO3YMixYtkv7vikCcz9RZcC74SLQOOeJDjviQIz7kiA854qNUKmXPO9qdNP34448t/p8ILGw2G0pLSxEVFSXrUGYgQ474kCM+5IgPOeITaI6OHz+OtLQ0JCcnY9SoUV7p02az+fcyKidOnIDRaGzxufr6euzdu9edzRMyIooiDAYDRFH0dSh+CzniQ474kCM+5IhPoDmqrq5GTk4OampqvNancyK4nLhVciAxMRH//ve/MWzYsGbPHT16FPfffz9SUlLcCtAXdIY5TQRBEAQhF8XFxaiqqkKvXr0QFRXltX79ruTAypUrUVJSAuBSPaY1a9a0eEthbm4uevbs6X6EBEEQBEEEFH369EGfPn18HYbHafflud/97nfNVhJ2/u78USqVGDFiBNatW+fRYAnPYTabkZKSArPZ7OtQ/BZyxIcc8SFHfMgRH3LEx2w2+98yKtOnT8f06dMBAHfffTfWrFlDhSwDkKCgIPTs2VPWCXOBDjniQ474kCM+5IhPoDmqra2FwWBA165d0a1bN6/0GRQU5N/LqDipqqqCzWaTRp8cDgfMZjNOnjyJBQsWuB2kt6E5TQRBEATRcWgZlRZIS0vDihUrkJWV1eLzCoUiIJOmzoAoirBYLNDpdAFRkt8XkCM+5IgPOeJDjvgEmqPg4GB0794dwcHBXuvTG8uouFVyYMOGDairq8PKlSsxbtw4TJ48Gc888wyuvfZaKBQKvP/++56Kk/AwVqsVaWlpsFqtvg7FbyFHfMgRH3LEhxzxCTRH1157LR566CFMnDjRa306l1GRE7cuz40ePRqrVq3CvHnz8O9//xt79uzBrl27AADLly+HQqHA66+/7rFgvUVnuDzncDikby1Ukr9lyBEfcsSHHPEhR3zIER9vLKPilnmbzYb+/fsDAPr374+0tDTpuVtvvRVnzpxxZ/OEjCiVSoSEhNCHzwXkiA854kOO+JAjPuSIjzeWUXHLfp8+fVBQUADgUtJkMBhQWFgIANBoNKirq3M/QkIWbDYbioqKZL89M5AhR3zIER9yxIcc8Qk0R6dOncLHH3+Ms2fPeq1Pm80me8V0t5KmmTNnYtOmTdi/fz969+6NgQMH4rXXXkN6ejp27tyJmJgYT8VJeBhRFFFTUxMwJfl9ATniQ474kCM+5IhPoDmqqKjAxYsXUVlZ6bU+RVGU3Y9bc5qsVisee+wxmM1m7NixA7/88guWLVsGm80GlUqFV155BTNnzvRkvF6hM8xpIgiCIAi5KCwsRHl5OaKiorxaGVzu87dH6jQJggC1Wg0AKCgoQGpqKoYOHYrY2Fi3A/QFlDQRBEEQROAh9/nbIzPKnAkTAMTExOCmm24K2ISps2A2m5Gamkol+V1AjviQIz7kiA854kOO+PjlMipbt25tc1uFQoEHH3ywvV0QXkClUqF79+4BUSTNV5AjPuSIDzniQ474BJqjhoYGmEwmdOnSBaGhoV7pU6VS+d8yKgkJCW3fuEIBvV7f7qB8DV2eIwiCIIiOQ8uo/H8a12IiAheHwwGr1QqtVkt1P1qBHPEhR3zIER9yxCfQHGk0GnTp0gUajcZrfTocDtmXUfHIcsmHDh3C8ePHUV9fj4iICIwePRpTpkzxxKYJmbBYLNDr9UhMTERISIivw/FLyBEfcsSHHPEhR3wCzdH06dMxffp0r/ZpsVggCIKsiZpbd8/ZbDYsXboUhw8fhkqlQnh4OGpqauBwODB+/Hi8+eabXs0yPUVnuDwniiLMZjOCg4MD5hq5tyFHfMgRH3LEhxzxIUd8RFHE+fPn/XcZlS1btuDUqVPYsGEDUlJScPjwYZw9exbr1q3DmTNnsH37dk/FSXgYlUqF0NBQ+vC5gBzxIUd8yBEfcsSHHPFRqVT+vYzKN998g2XLluEPf/iD9EYGBQVhzpw5WLZsGfbs2eORIAnPIwgCSkpKZF8ROpAhR3zIER9yxIcc8Qk0R2fPnsXu3buRmprqtT4FQfDvZVSqq6uRlJTU4nNJSUkoKytzZ/OEjAiCgPLy8oD5APoCcsSHHPEhR3zIEZ9Ac1RSUoLU1FSv5gHeSJrcmggeGxuLU6dOYcKECc2eO3HiBKKjo93ZPCEjISEhGD58uK/D8GvIER9yxIcc8SFHfALNUWJiIsLDw726hEpISIjs86jdSpruuOMOvPTSS9DpdLj55pvRs2dPVFZW4ptvvsGOHTuwbNkyT8VJEARBEESA0K9fP/Tr18/XYXgct5KmBQsW4MKFC9i4cSM2bdokPc4Yw9y5c3H//fe7HSAhD2azGTk5ORgwYACCg4N9HY5fQo74kCM+5IgPOeJDjviYzeYma+HKgVtJk1KpxIsvvoh7771XqtPUrVs3jBs3DoMGDfJUjIQM0J0YfMgRH3LEhxzxIUd8As2RyWSC1WqFTqfzWpLnjbvn3KrTdKXSGeo0EQRBEIRc0DIq/59Vq1Zh6dKliImJwapVq1y2VSgUWLt2bYeDI+TD4XBIw5iBUJLfF5AjPuSIDzniQ474BJojlUoFjUbj1ZExv1xG5dixY1i0aJH0f1fIPUxGdJxAK8nvC8gRH3LEhxzxIUd8As3RjBkzMGPGDK/26ffLqIiiGDDXV9tDZ7g8J4oijEYjunTpckW+h56AHPEhR3zIER9yxIcc8RFFEampqVAqlf65jMrkyZPxwgsvSEkGETioVCqEhYXRh88F5IgPOeJDjviQIz7kiI9KpZL90qVbW7/llluwf/9+3H777bjxxhvxxhtvoKioyFOxETIiCALKysoCprqsLyBHfMgRH3LEhxzxCTRH586dw1dffQW9Xu+1Pv1+GZWnnnoKhw4dws6dOzFmzBi88847mDFjBhYuXIjPPvsMDQ0NnoqT8DCCIKC4uDhgPoC+gBzxIUd8yBEfcsQn0BwVFRXhzJkzKC4u9lqf3kiaPFpyQBAEHDlyBHv37sV3332HoKAgnDlzxlOb9xqdYU4TQRAEQchFVlYWiouLERMTg/79+3utX78rOdAadrsdhw8fxnfffYdDhw4BQItr0hEEQRAEcWUzaNCgK7LItVtJE2MMR48exd69e3Hw4EHU1dVh2LBhWL58OWbNmoXw8HBPxUl4GIvFgtzcXPTv3x86nc7X4fgl5IgPOeJDjviQIz7kiI+z5IDfLqMyZcoUVFVVoU+fPrjzzjsxe/Zsrw7DER1HoVBAp9NRLS0XkCM+5IgPOeJDjvgEmiOr1SrVTJKzblJjFAqF7H7cSpqmT5+OP/zhDxgzZoyn4iG8hFarpQSXAzniQ474kCM+5IhPoDn66aefvL6MilarRVCQx2YdtYhbW3/uuec8FQfhZRhjsNvtCAoKCphvLt6GHPEhR3zIER9yxCdQHXkzVm8spev/C9gQsmA2m5GSkgKz2ezrUPwWcsSHHPEhR3zIEZ9Ac3TjjTfi2WefxfTp073Wp9lshs1mk7UPSpo6KRqNBoMGDfLateZAhBzxIUd8yBEfcsSHHPHRaDT+fXmOCFyCgoLQvXt3X4fh15AjPuSIDzniQ474kCM+QUFB/r2MitVq9VQchJcRBAEVFRUBU13WF5AjPuSIDzniQ474BJqjCxcu4LvvvsPFixe91qffL6MyadIkPPvss0hJSfFUPISXEAQB+fn5AfMB9AXkiA854kOO+JAjPoHmKD8/H8ePH0dBQYHX+vT7ZVS2bduGr776Cvn5+RgwYABuvfVWzJ49G7169fJkjF6HllEhCIIgiI6TkZGBgoIC9OvXz6uVweU+f3tk7bnffvsN//nPf7Bv3z6YzWZMnDgRt912G6ZPn96hypwOhwNbt26VFv0dO3YsVq9ejZiYmBbbC4KAzZs348svv0RDQwOSk5Px1FNPITExsUOvh5ImgiAIggg85D5/e2TG1KhRo/D888/jyJEjeP3112E2m/Hwww9j8uTJWL9+PYqKitq1vW3btuGjjz7C888/j08++QQOhwOLFy9u9VbCNWvW4IsvvsDatWuxe/duRERE4L777kNDQ4MnXt4VicViQUZGBiwWi69D8VvIER9yxIcc8SFHfMgRH+cyKnLisWnmJSUl2LlzJzZv3owTJ06gf//+uPXWW3Ho0CHMmjUL3377bZu2Y7PZsHPnTixfvhzXXXcdEhIS8Oqrr6K0tBQHDhxo1r6goAC7d+/Giy++iClTpmDQoEF44YUXoNFokJqa6qmXd8WhUCigVCoDqkiatyFHfMgRH3LEhxzxCTRHdrsdVqsVdrvda316YxkVty7PGQwG7N+/H19++SVOnToFnU6HG2+8EfPmzcOoUaOkdg888ADOnz+Pw4cPc7eZkpKC+fPnY9++fRgwYID0+IIFCxAXF4d//OMfTdp/8skn2LRpE44dO+axWw3p8hxBEARBdJx9+/Z5fRkVwM8vz02aNAlPP/00BEHAc889h8OHD2Pt2rVNEibgUvBtzf5KS0sBANHR0U0ej4yMlJ5rTE5ODmJiYnDgwAHceuutmDRpEu677z5kZWV18FX9H40rrzauNOpwOGAymaRZ+oIgwGQySW0tFotUjoEx1u62zszcbrfDZDJJpeGtVmu72jYexjWZTNKwpSiKMBqNsNvtYIxx25pMJjgcDgCXRgIv99Ketm116K5vpxd3fFsslia/u+P7ci/u+L7ciyd8WyyWDvl2OBxoaGiQ4nd66YhvVw7d9d3Yi7u+G3tpS1vGGCwWC4xGo0sv/naM8JTvthwjGGPSc4F0jGjJi1zHCJvNBlEUpe36+zGi8V1sLXnxlO/Gx4jGnzG5cCtpuuuuu7B371588sknmDdvHkJCQlpsd++99+K///1vm7bpfEMvr3qq1WpbrAtlMBiQl5eHbdu24dFHH8X27dsRFBSEO++8E1VVVe17QY0QRREZGRnS7zk5OVLSZrPZoNfrpTe+qqqqSS2K3NxclJSUALj0Rur1ehgMBgBATU0N0tLSpLb5+fnSnC+HwwG9Xi/NxaqtrYVer5faFhQUNLl9U6/Xo7a2FgDQ0NAAvV4vfTiKioqQn58vtU1LS0NNTY3kLC0tDWfPnoXZbEZJSQlyc3OlthcvXpTcmUwm6PV66cNSWlqKnJwcqW1GRgYqKioAXNr59Xq9tFNXVFQ0SV6zsrJQXl4O4NLOr9frpfe7srKyVd+CIECv10sfiOrqaqSnp7fJd0sOCwsLm/iur68HANTV1UGv10sf0Pz8/CYxtuTbeWAoLi5GXl6e1E96enoT33q9XjoQlJSUNHNYWVkJ4NL+39h3WVkZsrOzpbaZmZkufWdmZkpts7OzUVZWBuD/9llXvl3ts4195+Xlobi4GABgNBqb7C+ufDPGoNfrUVdXBwCor69vss8WFha2un+35LDxPpueno7q6mopJr1eLx1MW9pnL/ftPLaUl5c322dd+W7LMcJsNuP8+fMBd4xw5dvTxwiz2YwzZ84E3DHC1T7r6WNEaWkpzpw5I8Xr78eI+Ph4PPnkk5g8eTJ3n/XUMSItLU32ZVTA3OD48ePMYDC0+FxdXR375ptv2r3Nffv2sbi4OGY2m5s8vnz5crZkyZJm7VevXs3i4uJYZmam9JjZbGbjxo1jO3bsaHf/jDGWkpLCUlJSmMlkkh4zmUzMarUyxhgTRZEZjUZmt9sZY4zZbDZmNBqb9G+xWBhjjDkcjna3FQSBMcaYIAjMaDQyh8PBGGPMYrG0q21jh0ajkdlsNsYYY3a7ndXV1bHKykomCAK3rdFoZKIoMsYYs1qtzby0p21bHbrr2+nFHd8Gg4GVlpZKz7vj+3Iv7vi+3IsnfJvN5g75ttlsrLi4WHo9Ti8d8e3Kobu+G3tx13djL21pKwgCKy8vZ/X19S69+NsxwlO+23KMEASBVVVVsYaGhoA6RrTkRa5jhMlkYlVVVcxisQTUMaI1h57y3fgYUVdXx86cOcNSUlKYXLg1pykxMRH//ve/MWzYsGbPHT16FPfff3+7C1865zQdPHgQsbGx0uMLFixAfHw81qxZ06T99u3bsXXrVpw/f77J4/PmzUNycnKz9m2B5jQRBEEQROAh9/m73WvPrVy5UhqiY4xhzZo1CA0NbdYuNzcXPXv2bHdACQkJCA0NxbFjx6Skqb6+HhcuXMDChQubtR87dizsdjvOnTsnSbJYLCgoKMDNN9/c7v47C3a7HXV1dejWrZvsCxwGKuSIDzniQ474kCM+gebo4sWLyM/PR//+/TF48GCv9Gm32+FwOGRdf67dW545cyYYY2g8QOX83fmjVCoxYsQIrFu3rt0BaTQaLFy4EBs3bsQPP/yAtLQ0PPLII4iKisLMmTMhiiIqKiqka7RjxozBxIkTsXLlSpw8eRKZmZl4/PHHoVKpMHv27Hb331mw2WzIzc2V//pvAEOO+JAjPuSIDzniE2iOsrOzceTIkSbzuOTGZrPJXuLArctzd999N9asWePxEumiKOKVV17BF198AYvFIlUEv+qqq1BYWIjrr78e69atw6233grg0gSwjRs3Yt++fbBYLBg1ahSefPLJDme3neHynDPB9UZdi0CFHPEhR3zIER9yxCfQHKWlpSEvLw8DBw7EkCFDvNInY0yqz+g3y6isWrUKS5cuRUxMDFatWuV64woF1q5d61aAvqAzJE0EQRAEcaXhd3Oajh07hkWLFkn/d0UgZMOdFavVisLCQlx11VXQarW+DscvIUd8yBEfcsSHHPEhR3ycFcjlnPPV7i3/+OOPLf6fCCwYY3A4HHDj6uwVDzniQ474kCM+5IhPoDlqHKe3BlAun28tB27NaXrmmWcwb948DB8+3JMx+Ry6PEcQBEEQHYeWUWmBr7/+2itlywmCIAiCIHyNW0nTyJEjufOaCP/EZDLh1KlTTdYAIppCjviQIz7kiA854hNojqZPn47HHnsMU6dO9VqfjdculAu3ZkvFx8fj7bffxr59+5CQkNBs7blAvXuuM6DRaNCvX79ma/wR/wc54kOO+JAjPuSIT6A50mg0Xo9Vo9HIXvjTra0fPHgQkZGREARBuo7YGLp7zn8JCgrqUMX2zgQ54kOO+JAjPuSIDzniExQUJGs1cMDNpInungtc7HY7Ghoa0LVr14Aoye8LyBEfcsSHHPEhR3wCzVFmZiaKiooQGxuLAQMGeKVPv1xGpSWqqqpQUlKC4uJiFBcXo7CwEBkZGfj44489sXlCBmw2G7KzswOmJL8vIEd8yBEfcsSHHPEJNEeZmZn473//i+zsbK/16ffLqKSlpWHFihXIyspqeeMKBS5cuNDh4HxFZyg5wBiDKIpQqVR0GbUVyBEfcsSHHPEhR3wCzVFqaipycnIwZMgQJCQkeKVPbyyj4tYY34YNG1BXV4eVK1fip59+gkajwbRp03Do0CEcOnQI77//vqfiJDyMQqEIiCFeX0KO+JAjPuSIDzniE2iOkpOTkZyc7NU+vZFMunV57uzZs3jooYdwzz33YNasWTCbzbjzzjvxxhtv4IYbbsAHH3zgqTgJD2O1WpGTkwOr1errUPwWcsSHHPEhR3zIER9yxMe5jIqcuJU02Ww29O/fHwDQv39/pKWlSc/deuutOHPmjDubJ2SEMQabzRYwJfl9ATniQ474kCM+5IgPOeLjjWVU3Eqa+vTpg4KCAgCXkiaDwYDCwkIAl+ol1NXVuR8hIQs6nQ7x8fHQ6XS+DsVvIUd8yBEfcsSHHPEJNEcHDhzAiy++iJ9++slrfep0OqjValn7cCtpmjlzJjZt2oT9+/ejd+/eGDhwIF577TWkp6dj586diImJ8VScBEEQBEEECA6HQyoBcCXhVtK0bNkyjBo1Cp9//jkAYNWqVTh48CDmzJmDo0eP4m9/+5tHgiQ8j8lkwunTpwOmJL8vIEd8yBEfcsSHHPEJNEfXXnstHn74YUyaNMlrfXpjGRW3Sg44EQRBGhIrKChAamoqhg4ditjYWLcD9AWdoeSAIAioqalBeHi47MOZgQo54kOO+JAjPuSIDzniIwgCzp8/D5VK5Z8lB5wcO3YMJ06cQG1tLXr06IEJEyYEbMLUWVCr1YiMjPR1GH4NOeJDjviQIz7kiA854qNWq6FSqWTtw62kqa6uDg888ADOnDmDoKAgdO/eHbW1tdi+fTumTp2KLVu2BMzigp0NURRhMBgQGhoq+04WqJAjPuSIDzniQ474BJqjnJwclJaWom/fvl4bRBFF0b+XUVm7di1ycnKwdetWnDt3DocPH0ZKSgpef/11nDlzBq+++qqn4iQ8jNVqRWZmJtX8cAE54kOO+JAjPuSIT6A5Sk9Px4EDB5CRkeG1Pr1Rp8mtOU3XXHMNVqxYgfnz5zd77pNPPsHWrVtx+PBhtwL0BZ1hTpPzzgZvrAodqJAjPuSIDzniQ474BJqjlJQUZGVlIS4uDkOHDvVKnw6HA6mpqVAoFP45p4kxhp49e7b4XHR0dMDM8u+MKJVKunTKgRzxIUd8yBEfcsQn0BwNGzYMw4YN82qfSqVS9qVU3EpX586di+3bt8NoNDZ53G63Y9euXZg7d65bwRHyYbPZkJeXFzArZvsCcsSHHPEhR3zIER9yxMdms8l+ec6tkabg4GDk5ubi+uuvx/XXX4/evXujpqYGP//8M0pLS9GtWzesWrUKwKWF9NauXeuRoAn3cTgcMJlMV1zhMU9CjviQIz7kiA854kOO+DgcDtmXUXFrTtP06dPb3pFCgR9++KGjXXmVzjCniSAIgiDk4ocffsCpU6cwfvx4TJ061Wv9yn3+dmuk6ccff/RUHARBEARBXCEIggCz2QxBEHwdikfx/yn4hCyYTCacPXuWJuu7gBzxIUd8yBEfcsQn0BxNnjwZS5cuxfjx473WpzeWUfFY0iSKIhITE3H+/HlPbZKQEWd1WSrH3zrkiA854kOO+JAjPoHmKDQ0FL169UKXLl281qffVwS/HLknYBGeQ61WIzo62tdh+DXkiA854kOO+JAjPuSIjzeSJro810lxluQXRdHXofgt5IgPOeJDjviQIz6B5qigoAAnT55EUVGR1/oURVH2wRtKmjopVqsV6enpAVOS3xeQIz7kiA854kOO+ASao/Pnz2Pv3r1IS0vzWp9Wq1X2ieceuzynVCqxbNkyWoU5QNDpdBg6dGhAVZj1NuSIDzniQ474kCM+geaod+/eSEhIQK9evbzWp06nk33Ol0eSpqysLBw5cgQWiwUOhwMnT55EQkICQkNDPbF5QgaUSiV0Op2vw/BryBEfcsSHHPEhR3wCzdHIkSMxcuRIr/bpjWVU3EqaHA4HVq9ejd27d4MxBoVCgZtuugnbtm1Dfn4+du3ahaioKE/FSngQm82GsrIy9O7dO2C+uXgbcsSHHPEhR3zIER9yxMe5jEpQkEfvcWuCW3Oatm3bhj179uCFF17AkSNHpAlYjz32GBwOB1599VWPBEl4HlEUUV9fHzCTCn0BOeJDjviQIz7kiA854uONieBuLaMybdo0LFy4EH/5y18giiKGDh2K3bt3Y+jQofjyyy+xceNGHD582JPxegVaRoUgCIIgOs5///tfnD59GuPGjcOkSZO81q/c52+3RpoqKyuRmJjY4nO9e/dGfX29O5snCIIgCCIAsVgsqK+vh8Vi8XUoHsWtpKlfv374+eefW3zu+PHj6NevnzubJ2TEbDbj3LlzMJvNvg7FbyFHfMgRH3LEhxzxCTRHEyZMwH333YexY8d6rU+z2Sz7MipuzZZatGgRVq9eDUEQMG3aNCgUCuTl5eHYsWPYuXMnnnjiCU/FSXgYlUqFiIgI2aunBjLkiA854kOO+JAjPoHmqFu3bujWrZtX+1SpVLL7cWtOEwC8+eab2L59O6xWqzQBS61WY/HixXjooYc8EqS3oTlNBEEQBBF4yH3+djtpAgCDwYDTp0+jtrYWYWFhGD58OLp37+6B8HxDZ0iaHA4HLBYLdDodlEoqDN8S5IgPOeJDjviQIz6B5qioqAiVlZWIjIz02pp5DocDqampUCgU/jkR/MSJEzAajQgNDcWUKVPw+9//Htdeey26d++O+vp67N2711NxEh7GYrFAr9dfcZP0PAk54kOO+JAjPuSIT6A5OnfuHL788ktcuHDBa31aLBbZl1FxK2n605/+hKysrBafu3DhAlatWuXO5gkZ0el0SExMDKgKs96GHPEhR3zIER9yxCfQHPXo0QODBg1CRESE1/r0y2VUVq5ciZKSEgAAYwxr1qxpcbmU3Nxc9OzZ0/0ICVlQKpUICQnxdRh+DTniQ474kCM+5IhPoDkaO3asV++cA7yzjEq7R5p+97vfgTHWpOqm83fnj1KpxIgRI7Bu3TqPBkt4DpvNhqKiItlvzwxkyBEfcsSHHPEhR3zIER+bzSZ7xfR2jzRNnz4d06dPBwDcfffdWLNmDQYNGuTxwAh5EUUR1dXVXh06DTTIER9yxIcc8SFHfMgRH1EUIYqirGUHPHL3XFVVFWw2mzT65HA4YDabcfLkSSxYsMDtIL1NZ7h7jiAIgiDk4pdffkFKSgpGjx6N8ePHe61fuc/fbhW3TEtLw4oVK1qdDK5QKAIyaSIIgiAIouMYjUZUVlbCaDT6OhSP4tbdcxs2bEBdXR1WrlyJcePGYfLkyXjmmWdw7bXXQqFQ4P333/dUnISHMZvNOH/+fMCU5PcF5IgPOeJDjviQIz6B5mjcuHG45557MGrUKK/1aTab/bvkwNmzZ/HQQw/hnnvuwaxZs2A2m3HnnXfijTfewA033IAPPvjAU3ESHkalUiEsLCxgSvL7AnLEhxzxIUd8yBGfQHMUERGBfv36ITw83Gt9qlQq/7t7rjE2mw39+/cHAPTv3x9paWnSc7feeivOnDnjzuYJGdFoNIiJiYFGo/F1KH4LOeJDjviQIz7kiA854qPRaBAU5NasIy5uJU19+vRBQUEBgEtJk8FgQGFhIYBLwdfV1bkfISELzpL8DofD16H4LeSIDzniQ474kCM+geaotLQUer0e5eXlXuvT4XDAA/e2ucStpGnmzJnYtGkT9u/fj969e2PgwIF47bXXkJ6ejp07dyImJsZTcRIexmKx4Pz58wFTkt8XkCM+5IgPOeJDjvgEmqMzZ87g008/le5m8wZ+v4zKsmXLMGrUKHz++ecAgFWrVuHgwYOYM2cOjh49ir/97W8eCZLwPFqtFvHx8dBqtb4OxW8hR3zIER9yxIcc8Qk0R+Hh4YiNjUX37t291qdWq5V9GRW36jQ988wzmDdvHpKSkqRACwoKkJqaiqFDhyI2NtZjgXoTqtNEEARBEIGH3Odvt0aavv76axiNxiaZXUxMDG666Sa3EiaHw4HNmzdjypQpGDFiBO677z5p7lRbYoqPj5fmVhEtIwgCSkpKZB/KDGTIER9yxIcc8SFHfMgRH0EQZF9Gxa2kaeTIkTh69KinYpHYtm0bPvroIzz//PP45JNP4HA4sHjxYu6aO0VFRXjuuec8Hs+ViCAIKC8vpw+gC8gRH3LEhxzxIUd8yBEfbyRNbl2eW7duHT788EP07dsXCQkJzVZgVigUWLt2bbu2abPZMH78eKxYsQJ33nknAKC+vh5TpkzBiy++iFtuuaXFv3M4HFi4cCHUajWOHj2KH374AVdddVWHXhddniMIgiCIjvO///0PqampGDFiBMaNG+e1fv16GZWDBw8iMjISgiC0OEO+I0Wm0tLSYDQaMWHCBOmxsLAwJCUl4cSJE60mTW+88QYEQcCyZctkGf0iCIIgCKJt1NfXo6SkBIMGDfJ1KB7FraTpxx9/9FQcEqWlpQCA6OjoJo9HRkZKz11OSkoKdu7cic8//xxlZWUei8VsNiM4OFj6v0qlgkajkeplaLVaqFQqCIIAQRCkkTaLxQKFQgGtVgvGGMxmc7vaOgt02e122Gw2BAcHQ6FQwGq1AkCb2zLGoNPpAAAmkwlqtRpqtRqiKEo79MCBA6FQKFy2tVqt0Ol0UCqVsNlsEEWxiZegoKA2t22rQ3d9O72447u+vh4FBQUYNGgQdDodTCZTh31f7sXhcHTY9+VePOHbYrFAqVS227fZbEZ2djb69++PLl26SF46un+35tBd3429uOu7sRe73c5tKwgCsrOz0adPH+lOokA4RlitVo/4bssxQqFQICcnB9HR0QgJCQmYY0RLXuQ6RoiiiMLCQsTGxkKhUPj9MeLqq6/GoEGD0L179xa9yHGMaGhogCAIst5B59acJjlwrqtzedVTrVYrHRAaYzKZsGLFCqxYsUKqTu4JRFFERkaG9HtOTo6UtNlsNuj1ephMJgBAVVUVLl68KLXNzc1FSUkJAMBut0Ov18NgMAAAampqmlROz8/PR1FREYBLlxj1ej0aGhoAALW1tdDr9VLbgoKCJhPi9Xo9amtrAQANDQ3Q6/VS4bOioiLk5+dLbdPS0lBTUwMAMBgMyM7ORnBwMJRKJUpKSpCbmyu1vXjxIqqqqgBc8qvX66X5ZKWlpcjJyZHaZmRkoKKiAsClnV+v10t1RCoqKpos5pyVlSUVOrNardDr9dL7XVlZ2apvQRCg1+ulhR+rq6uRnp7eJt8tOXTeJOD0XV9fDwCoq6uDXq+XiqOVlZVBFEUolcpWfTuvnxcXFyMvL0/qJz09vYlvvV4Pu90OACgpKWnmsLKyEsCl/b+x77KyMmRnZ0ttMzMzXfrOzMyU2mZnZ0tfIpz7rCvfrvbZxr7z8vJQXFwMAGCMwWKxSJ8FV74ZY9Dr9VLR2/r6+ib7bGFhYav7d0sOG++z6enpqK6uBnBpoVC9Xi/N/Whpn73ct/PYUl5e3myfdeW7LccIpVIJhULRJN5AOEa48u3pY4RSqURISAgKCgoC6hjhap/19DGirq4OISEh0r7l78cIm82GIUOGIDw8nLvPeuoYkZ2dLfsyKmAewm63s4SEBJaamurWdvbt28fi4uKY2Wxu8vjy5cvZkiVLmrVftWoVu//++6Xfjx49yuLi4lhBQUGHY0hJSWEpKSnMZDJJj5lMJma1WhljjImiyIxGI7Pb7Ywxxmw2GzMajVJbs9nMLBYLY4wxh8PR7raCIDDGGBMEgRmNRuZwOBhjjFkslna1bezQaDQym83GGLv0XrW3rSiKjDHGrFZrMy/tadtWh+76dnpx1/flXtzx3diLO74v9+IJ32az2SO+nV485dvpxV3fjb2467uxFzpG0DGCjhH+dYxwnr/lwq2J4I0RRRFDhw7F7t27MXTo0A5vJyUlBfPnz8fBgweblC1YsGAB4uPjsWbNmibt4+Pjm6w303hYecmSJViyZEm7Y+gME8EdDgfsdjuCgoKkkRSiKeSIDzniQ474kCM+geaosrIStbW1CA8PR48ePbzSp8PhQGpqKhQKhX/WaZKDhIQEhIaG4tixY9Jj9fX1uHDhAsaOHdus/YEDB/DNN9/gyy+/xJdffokXXngBAPDWW2/hjjvu8FrcgYbFYsG5c+cCpiS/LyBHfMgRH3LEhxzxCTRHJ0+exIcffogzZ854rU9vLKMi73LAHUCj0WDhwoXYuHEjIiIi0LdvX7z88suIiorCzJkzIYoiqqur0bVrV+h0OvTr16/J3zuvcTeedEk0R6vVYvDgwQFTkt8XkCM+5IgPOeJDjvgEmqOwsDBERUWha9euXutTq9VKV53kwmNbVyqVWLZsGSIjI93e1vLly2G32/H000/DYrFg7NixePvtt6FWq1FYWIjrr78e69atw6233uqByDsnKpUK3bp183UYfg054kOO+JAjPuSIT6A5mjhxIiZOnOjVPlUqleyXLj0ypykrKwtHjhxBeXk57r77bhQUFEiX2QKRzjCnSRAE1NTUIDw8XPYFDgMVcsSHHPEhR3zIER9yxEcQBJw/fx4qlco/i1s6HA6sXr0au3fvBmMMCoUCN910E7Zt24b8/Hzs2rULUVFRnoqV8CCCIKCoqAihoaH0AWwFcsSHHPEhR3zIER9yxMe5jIpKpZKtD7dGmrZu3YodO3Zg9erVuO666zBp0iTs3r0bSqUSDz74IMaOHYv169d7Ml6v0BlGmgiCIAhCLo4dO4YLFy5g2LBhGD16tNf6lfv87dbFv927d2P58uW47bbbmky6TkxMxPLly3HkyBF34yMIgiAIIsCoqalBfn6+VHzySsGtpKmyshKJiYktPte7d2+piirhf1gsFqSnpwfM7au+gBzxIUd8yBEfcsQn0ByNGDEC8+fP9+oVG2+UHHAraerXrx9+/vnnFp87fvx4s3IAhP+gUCig0WjkLzkfwJAjPuSIDzniQ474BJqjqKgoJCUleeSO+raiUChk9+PWRPBFixZh9erVEAQB06ZNg0KhQF5eHo4dO4adO3fiiSee8FSchIfRarUYMGCAr8Pwa8gRH3LEhxzxIUd8yBEfv6/TNH/+fFRXV2P79u34+OOPwRjDo48+CrVajcWLF2PBggWeipPwMIwx6S6DQPnm4m3IER9yxIcc8SFHfALNUXV1NRoaGtCtWzevFZr20KpwLnE7JXvggQdw11134fTp06itrUVYWBiGDx9O1bj9HOfq7omJiQgJCfF1OH4JOeJDjviQIz7kiE+gOTp+/DiOHTuGyZMn4/rrr/dKn2azGTabDRqNRrY+3EqanFlvaGgopkyZ4qmYCC+g0WgwcOBAWXeuQIcc8SFHfMgRH3LEJ9AchYSEoEePHl5N8DQajeyX59yq0zRhwgTcfPPNmD179hVV04jqNBEEQRBE4OHXdZpuueUW7N+/H7fffjtuvPFGvPHGGygqKvJUbISM2O12VFZWwm63+zoUv4Uc8SFHfMgRH3LEhxzxsdvtcDgcsvbhVtL01FNP4dChQ9i5cyfGjBmDd955BzNmzMDChQvx2WefoaGhwVNxEh7GZrMhLy8PNpvN16H4LeSIDzniQ474kCM+5IiPzWaTPan0yIK9TgRBwJEjR7B371589913CAoKwpkzZzy1ea9Bl+cIgiAIouOcPHkS6enpGDp0KEaMGOG1fv368lxj7HY7Dh8+jG+//RaHDh0CcGnOE0EQBEEQnYvKykpkZmaiqqrK16F4FLemmTPGcPToUezduxcHDx5EXV0dhg0bhuXLl2PWrFkIDw/3VJyEh7FYLCgoKEBMTAx0Op2vw/FLyBEfcsSHHPEhR3wCzdHVV1+N6Ohor1YEdy6jolarZevDraRpypQpqKqqQp8+fXDnnXdi9uzZ6N+/v4dCI+REoVBAqVQGRJE0X0GO+JAjPuSIDzniE2iO+vbti759+3q1T28so+LWnKbVq1dj9uzZGD16tCdj8jk0p4kgCIIgAg+5z9/tHmlatWoVli5dipiYGAiCgM8//xyff/55i20VCgXWrl3rdpCE52GMgTHmlcw8UCFHfMgRH3LEhxzxCTRHdXV1MJlM6NKlC8LCwrzSp18uo3Ls2DEsWrRI+r8rAuGN7awEWkl+X0CO+JAjPuSIDzniE2iOfv31V1pGBQB+/PHHFv9PBBYajQb9+/cPmJL8voAc8SFHfMgRH3LEJ9Ac6XQ6hIWFQavVeq1Pv19G5cSJE0hKSkKXLl2aPVdfX49ffvkFN998s1sB+gKa00QQBEEQgYdf12n605/+hKysrBafu3DhAlatWuXO5gkZsdvtqK6uppL8LiBHfMgRH3LEhxzxIUd8vLGMSrvHsVauXImSkhIAlyZdrVmzBqGhoc3a5ebmomfPnu5HSMiCzWZDTk4OEhMTZR/ODFTIER9yxIcc8SFHfMgRH+cyKnJewmz35bkff/wR77zzDoDWL8+pVCqEhYXhrrvuwjXXXOO5aL1EZ7g8xxiDw+EIqLof3oYc8SFHfMgRH3LEJ9AcnT59GhkZGUhISMCwYcO80idjDKmpqQD8qOTA9OnTMX36dADA3XffjTVr1mDQoEEeD4yQF4VCAZVK5esw/BpyxIcc8SFHfMgRn0BzVFZWBr1ejx49enitT28kk27Nafrggw8oYQpQrFYrsrKyYLVafR2K30KO+JAjPuSIDzniE2iOkpKSMGvWLMTHx3utT6vVKvucL7eKW/ImelNxS//FOdTrjWJggQo54kOO+JAjPuSIT6A5io2NRWxsrFf7dBYAlRMqbtlJ0el0GDJkiK/D8GvIER9yxIcc8SFHfMgRH51OJ+tivQAVtyQIgiAIop3U1dW5vL3fZDLBarVCq9W2WsFcp9MhODhYrhBlwe37Fg0GA4xGI3r37g1BEPDBBx+guLgYv/vd7zB27FhPxEjIgMlkCqiS/L6AHPEhR3zIER9yxMefHNntdpSXl7ucX3X27FlkZmYiPj4eycnJzZ4XRRHR0dEeTZpMJpP/LaPSmLNnz2Lx4sW444478Pe//x0vvPAC/v3vfyMsLAwfffQRtmzZ4rU1Z4j2oVarERsbK/tQZiBDjviQIz7kiA854uNPjkRRhCiKCAsLa7VmVGhoKLRaLUJDQxEREdHs+bq6Oo/HpVarZb/D0K2751577TUMGjQIt99+O8xmM7766ivceeedOH78OObNm4c33njDU3ESHkatVqNXr15+8QH0V8gRH3LEhxzxIUd8/MmRw+GAw+FwmaCMHTsWf/rTnzBq1CivxeX3SdPZs2fx17/+FTExMThy5AisVitmz54NAJg1axYyMjI8EiTheex2O2pra6kkvwvIER9yxIcc8SFHfPzJkSiKYIz53c1e3lhGxa2kSalUSisY//LLLwgLC5MqfxoMBuh0OvcjJGTBZrMhKysLNpvN16H4LeSIDzniQ474kCM+/uSoLYnJtm3bsGTJEvz8889eiOgSzmVU5MStOU3Jycn47LPPoNPpsG/fPlx33XVQKBSoqqrCjh07Wpz8RfgHwcHBGDZsGK1h5AJyxIcc8SFHfMgRH39y1Jak6ciRI/jvf/+L6667Tv6A/j/BwcGyTgIH3EyaHnvsMSxevBh79+5FREQE/vrXvwIAbrnlFjgcDrz99tseCZLwPAqFwi+ujfsz5IgPOeJDjviQIz7+5KgtozmTJk1CcHAwEhISvBDRJbxxudCtpGno0KE4ePAgsrKyMGTIEOk2yDVr1mDUqFHo1auXR4IkPI/VakVJSQmio6OlS6xEU8gRH3LEhxzxIUd8/MmR3W7nTrheunSpl6L5P5zLqMg5Guf2lkNDQ1FXV4dt27ahvr4e4eHhGD16NCVMfg5jDBaLJWBK8vsCcsSHHPEhR3zIER9/ciQIApRKt6ZEy4I3llFRMDd6sNlsWLp0KQ4fPgyVSoXw8HDU1NTA4XBg/PjxePPNN2W/vigH586dAwBcffXVPo6EIAiCIPyL7OxsMMZaLUxpNBphMpnQs2fPVi+Z1dbWomfPnoiMjPRobHKfv91KFbds2YJTp05hw4YNSElJweHDh3H27FmsW7cOZ86cwfbt2z0VJ0EQBEEQPsa5aLCr+UP79+/HiBEjcNddd7XahjEWkIMqbiVN33zzDZYtW4Y//OEP0vXNoKAgzJkzB8uWLcOePXs8EiTheUwmE06fPg2TyeTrUPwWcsSHHPEhR3zIER9/ceSsBu7q8lxVVRUUCgV69+7dahvGmMfnHjmXUZETtyKurq5GUlJSi88lJSWhrKzMnc0TMqJWq9GnTx+/uRvDHyFHfMgRH3LEhxzx8RdHbakGft9992HRokUwm80tPi+KIlQqlceTJr+vCB4bG4tTp061+NyJEycQHR3tzuYJGVGr1ejdu7fPP4D+DDniQ474kCM+5IiPvzhqy0gTAGg0GnTr1q3F55x3uHW6pOmOO+7Am2++iX/9618oKSmBIAgoKSnBjh07sGPHDtx2222eipPwMKIoor6+HqIo+joUv4Uc8SFHfMgRH3LEx18cOQtbulMTSRRFBAUFeTzBEUXRv5dRWbBgAf7whz9g48aNmD59OoYNG4bp06dj06ZNuOWWW3D//fd7Kk7Cw1itVmRkZMBqtfo6FL+FHPEhR3zIER9yxMdfHPGSElEUMW/ePDz00EMwGo0ttrHb7dDpdB4vRums0yQnbpUccJKVlYXjx4+jrq4O3bp1w7hx4zBo0CBPxOcTOkPJAYfDAUEQoFar/bLehj9AjviQIz7kiA854uMvjmpqalBcXIzw8PAWny8sLMQ111wDtVqNrKysFkeTampqEB0djYiICI/G5nA4kJqaCoVCIdv52yMXFEtKSlBaWora2lrYbDbU1NR4YrOEjDRebJloGXLEhxzxIUd8yBEff3EkiqLLEaKCggIAQN++fV1efpOjardSqZR9KRW3oq6rq8MDDzyAM2fOICgoCN27d0dtbS22b9+OqVOnYsuWLQFZh6EzYLPZUFpaiqioKHqPWoEc8SFHfMgRH3LEx18c2Ww2lyNd+fn5AICYmJgWn3fWeJJjQrvNZpN9GRW3xvjWrl2LnJwcbN26FefOncPhw4eRkpKC119/HWfOnMGrr77qqTgJDyOKIgwGg88nFfoz5IgPOeJDjviQIz7+4oi37lxhYSGAS3fXt/b3ctw5B1xyJPcyKm4lTf/973+xYsUK3HDDDdKQmFKpxMyZM/HII49QcUs/Jjg4GElJSa2WwSfIUVsgR3zIER9yxMcfHDHGYLfb3RppciZdciRNwcHBspdkcCtpYoyhZ8+eLT4XHR3t88qlBEEQBEF4BmdhS1dJk3OkqbWkSRRFaLVa2eceyYVbSdPcuXOxffv2ZrcV2u127Nq1C3PnznUrOEI+TCYTzp49S4mtC8gRH3LEhxzxIUd8/MFRW5Im3kiTIAjQ6XSyxOf3y6gEBwcjNzcX119/Pa6//nr07t0bNTU1+Pnnn1FaWopu3bph1apVAC4Vwlq7dq1HgibcR61WIzIy0ufVZf0ZcsSHHPEhR3zIER9/cMSrBm6z2VBSUgLA9URwuV6DNyqCu5U0ff311wgNDQUA/Prrr02ei4qKwm+//Sb9HqhDcVcqarWalrnhQI74kCM+5IgPOeLjD454684VFxeDMQadTodevXq12EahUMh2d5vfJ00//vijp+IgvIwoijCbzQgODpZ9JwtUyBEfcsSHHPEhR3z8wRHv7rTGl+ZaGiiR8865xvHJOUjjl6VXHQ4HNm/ejClTpmDEiBG47777pIJZLZGRkYH7778f11xzDSZMmIDly5ejuLjYixEHHlarFenp6T4vye/PkCM+5IgPOeJDjvj4gyO73e4yIeFNApc7abJarRAEQZZtO/FY0iSKIhITE3H+/Hm3t7Vt2zZ89NFHeP755/HJJ5/A4XBg8eLFLU7wqqmpwb333gudTocPPvgAO3bsQHV1NRYvXkwfQBfodDokJSXJNiHvSoAc8SFHfMgRH3LExx8cmc1ml6NcvEngci3U60Sn08k+58uj6Z4nikrZbDbs3LkTK1aswHXXXQcAePXVVzFlyhQcOHAAt9xyS5P233//PUwmEzZs2CDtTC+//DKuu+46/Pbbb5gwYYLbMV2JKJVKqonCgRzxIUd8yBEfcsTH144cDgfMZrPLpOSaa66B2Wxu9bxrt9vRrVs3uUL0yjIqfnd5Li0tDUajsYn0sLAwJCUl4cSJE83aT5gwAdu2bWuSfTtn9tfX18sfcIBis9lQWFgo++2ZgQw54kOO+JAjPuSIj68dCYIgLRjcGtOmTcM//vEP3HjjjS0+73A4ZF0CxmazyV4x3e+SptLSUgBodpdAZGSk9FxjrrrqKowfP77JY2+99RZ0Oh3Gjh3rVixms7nJ/507q8PhgMlkkt4cQRCa1M6wWCzSpUHGWLvb2u12AJeycpPJJI3gWa3WdrW1WCxSPyaTSbrW6yzHX1NTA1EUuW1NJhMcDgeASzvl5V7a07atDt317fTijm+z2Sw5cnrpqO/Lvbjj+3IvnvBtsVg65Ntut6O6ulr6W6eXjvh25dBd3429uOu7sZe2tBVFETU1NU3q2QXCMcJTvttyjBBFEbW1tTAajQF1jGjJi1zHCKvVitraWilebx8j6urqYDabERQUJI06tfZZuNyh2WyWvDhfj6d8Nz5GeGOZGY8lTUqlEsuWLUNkZKRb23GKvzwb1Wq1bZqj9MEHH2DXrl1YsWIFIiIiOhyHKIrIyMiQfs/JyZGSNpvNBr1eL73xVVVVuHjxotQ2NzdXqlVht9uh1+thMBgAXJqDlZaWJrXNz89HUVERgEs7rV6vR0NDAwCgtrYWer1ealtQUNBkQrxer0dtbS0AoKGhAXq9XvpwFBUVSdeXgUsjeDU1NQAAg8GAnJwcJCQkIDg4GCUlJcjNzZXaXrx4EVVVVQAu7ZR6vV76YJWWliInJ0dqm5GRgYqKCgCXdn69Xi/t1BUVFcjKypLaZmVloby8HMClnV+v10vvd2VlZau+BUGAXq+XTjrV1dVIT09vk++WHDonKzp9O0ck6+rqoNfrpQ9oZWUldDqdNCTekm/nB7S4uBh5eXlSP+np6U186/V66UBQUlLSzGFlZSWAS/t/Y99lZWXIzs6W2mZmZrr0nZmZKbXNzs5GWVkZgP/bZ135drXPNvadl5cn3Wih0Wikb6A834wx6PV61NXVAbg0Etx4ny0sLGx1/27JYeN9Nj09HdXV1QAAo9EIvV4vxdTSPnu5b+expby8vNk+68p3W44RwcHB6NWrV5P9IxCOEa58e/oYERwcjOTkZBQVFQXUMcLVPuvpY4TBYEBycrL0OfL2MaLxe26325GRkSH5rqurw2+//YZff/0VRqMRhYWF0nad59L6+noolUrptbbk291jRE5OjuyLGSuYByYiZWVl4ciRIygvL8fdd9+NgoICJCQkSDWc2sP+/fuxfPlynD17tsklt4ceegg2mw3bt29v8e8YY3j99dexfft2/PWvf8XDDz/c0ZeDc+fOAQAGDx4snTCdE+A0Gg0cDgcsFgu0Wi1UKpV00ggJCQFwaUdVKBTQarVSlt2ethqNBkFBQbDb7bDZbAgODoZCoZAO7G1t66yXAVw6sKnVaqjVaml0qT1tdTodlEqlNPzZ2EtQUFCb27bVobu+nV7c9X25F3d8N/bicDg67PtyL57wbbFYoFQq3fbt9OIp304v7vpu7MVd34292O12OkbQMeKKP0YwxpCWlgbGGLp37w6HwwGr1QqNRiO1/eKLL/Doo49i9OjR+PTTT5s4tFgsUuITExMDh8Mh2zHC+aXn6quvhhy4lTQ5HA6sXr0au3fvlmojfP7559i0aRPy8/Oxa9cuREVFtWubKSkpmD9/Pg4ePNhkleQFCxYgPj4ea9asafY3giBg1apV+Oabb/DEE0/gnnvu6ehLAvB/SZNc0v0Bs9mMrKwsDBo0iCZgtgI54kOO+JAjPuSIjy8dWa1W5ObmIjg4uNVyAf/+97+xYcMGzJo1C88//3yz500mE5RKJQYMGCDbZG2z2YwLFy5Ao9HIdv526/Lctm3bsGfPHrzwwgs4cuSINGT52GOPweFw4NVXX233Np0jVMeOHZMeq6+vx4ULF1qdo/T4449j37592LRpk9sJU2dBpVIhPDycCsm5gBzxIUd8yBEfcsTHl46c9Y9c1Vf64x//iJMnT+Lpp59u8Xm73Q6dTifr3W0qlcq/K4Lv3r0by5cvx2233dZk8lViYiKWL1+OjRs3tnubGo0GCxcuxMaNGxEREYG+ffvi5ZdfRlRUFGbOnAlRFFFdXY2uXbtCp9Phiy++wLfffovHH38c48aNk67lApDaEM3RaDTo27evr8Pwa8gRH3LEhxzxIUd8fOnIefmeh/MyW0uIoij7+dh5uVBO3BppqqysRGJiYovP9e7du8O3/C9fvhzz5s3D008/jQULFkClUuHtt9+GWq1GSUkJJk+ejG+//RYA8M033wAANmzYgMmTJzf5cbYhmnP5XRVEc8gRH3LEhxzxIUd8fOWIMQaj0ehygrXFYmlTnUa5KoE7cTgcHqkX6Qq3XkG/fv3w888/Y+LEic2eO378OPr169eh7apUKjz22GN47LHHmj131VVXNbkrYufOnR3qo7PjvKsiMTFRmpBHNIUc8SFHfMgRH3LEx1eObDabNBm7NbZv3463334by5Ytw5IlS5o975zzLHfSZLFYIAiCrHfQufUKFi1ahNWrV0MQBEybNg0KhQJ5eXk4duwYdu7ciSeeeMJTcRIeRqvVIiEhodWhVIIctQVyxIcc8SFHfHzlyGazQRAEdO3atdU2J06cQE1NTauX35zzoeRe4kSr1fr3Mirz589HdXU1tm/fjo8//hiMMTz66KNQq9VYvHgxFixY4Kk4CQ+jUqnQpUsXX4fh15AjPuSIDzniQ474+MqRsyRAa4iiiFOnTgEAxowZ02Ibm83mlYRGpVLJvoyK22NlDzzwAO666y789ttvqKurQ1hYGIYPH47u3bt7IDxCLgRBQEVFBXr16iX7jhyokCM+5IgPOeJDjvj4whFjDAaDweXoVkpKCgwGA8LCwlqd4ywIAnr06CFXmE36EUVR1sngHrnAGBoaiqlTp3piU4SXsNvtqKysRHh4OB2kWoEc8SFHfMgRH3LExxeOnPOZXN31dujQIQDAxIkTW0xWnBOzvXEnu91u9++kKSEhgTsU1rhcOuE/BAcHY9iwYb4Ow68hR3zIER9yxIcc8fGFI2d9JlfzmX755RcAwJQpU1p83mazQaPRyL68CXDJkdz9uJU0Pfjgg82SJqPRiN9++w35+flYsWKFW8ERBEEQBOEbjEajy1Ebk8mEkydPAkCrV5ucyypdKSOIbiVNf/vb31p97vHHH0dqaipuu+02d7ogZMJsNiMnJwcDBgygZQtagRzxIUd8yBEfcsTH247sdjuMRqPL+UzHjh2DIAjo27cvBgwY0Op2OrIObUcwm80QBEHWBM2t4paumDt3LhWX9GNUKhVCQ0Np2QIXkCM+5IgPOeJDjvh425HVapXuemsN56W5qVOntjhVxzmfyRuX5oAAuXuuNfLz82G32+XaPOEmGo2myYLIRHPIER9yxIcc8SFHfLztyGw2S0UpW8M5Cby1+UxWqxVardZrtaU0Go3sBTTd2vrWrVubPeZwOFBaWopvv/0W06ZNc2fzhIw4HA5pgl5b1hTqjJAjPuSIDzniQ474eNMRYwwNDQ0uk52KigrpRq/Jkye32EYQBISGhsqeyDhxLqMi52iTx5Mm4FIJghtuuAGrVq1yZ/OEjNCyBXzIER9yxIcc8SFHfLzpyGq1wmKxuJyLdPjwYQDA0KFDW63BJAiCVwty+v0yKmlpaZ6Kg/AyWq0WcXFxtGyBC8gRH3LEhxzxIUd8vOnIYrFw6x1lZWUBaP2uOYfDAaVS6dX31BtVxxXMjSWBn3nmGcybNw/Dhw/3ZEw+59y5cwCAq6++2seREARBEIR3KSgogMlkclmfCQCqq6tht9sRGRnZ7Dmz2QwA6N+/v1cn+Mt9/nbrwujXX38No9HoqVgILyIIAkpLSyEIgq9D8VvIER9yxIcc8SFHfLzlyGazwWw2t2mEKCIiosWECbgUb0hIiFcTJucyKnLiVtI0cuRIHDt2zFOxEF6EDlJ8yBEfcsSHHPEhR3y85chZasDVvKC2XKCy2+1en5/mjaTJrctz69atw4cffoi+ffsiISGhmSCFQoG1a9e6HaS3octzBEEQRGektLQU1dXV6N69e6ttHnjgAVRVVWHlypUYO3Zss+dFUYTBYED//v29XqxU7vO3WxPBDx48iMjISAiCIAXaGLmLTBEEQRAE4RlEUeRWAbfb7fjvf/8Lg8HQajvnSNWVOLHfraTppZdeQlJSUou3JdbX10vVQgn/w2KxIDc3F/379/fK6tOBCDniQ474kCM+5IiPNxxZLBZYLBZ069at1TYqlQr79u3DkSNHkJyc3GIbm82GiIgIr9fccpYc8NtlVBYtWoTs7OwWn7tw4QLVafJjFAoFdDodjQa6gBzxIUd8yBEfcsTHG45MJhMAuEx2FAoFBgwYgIULF7baThRFn6whqFAo/G8ZlZUrV6KkpATApclga9asaXGkKTc3Fz179nQ/QkIWtFot+vfv7+sw/BpyxIcc8SFHfMgRH7kdiaKI+vp6t0ex7HY7goKCvLbeXGO0Wq3s1cfbPdL0u9/9DoyxJrPnnb87f5RKJUaMGIF169Z5NFjCczDGIAhCm+6C6KyQIz7kiA854kOO+MjtyGw2w2KxuEyaDAYD7r//frz//vtwOBwttvHlfCZv7D/tTsmmT5+O6dOnAwDuvvturFmzBoMGDfJ4YIS8mM1mWraAAzniQ474kCM+5IiP3I4aGhq4l7d+/fVX7N27F+fPn8ef/vSnFtvYbDb07NnTJ5dazWYzt1yCu7g1jvXBBx94Kg7Cy2i1WgwePPiKvLvBU5AjPuSIDzniQ474yOlIEAQYDAbuPKQDBw4AaH2BXuDS8im+mM8EeOfynHeWHib8DpVK5fIOCYIctQVyxIcc8SFHfOR0ZDKZYLVaXS6uazQa8dVXXwEA5syZ02Ib551rvpjPBFxyJPcde969H5DwGwRBQHl5OVXgdQE54kOO+JAjPuSIj5yO6uvrubfpO5dNGzBgAMaPH99iG5vNBq1W67Okye+XUSECF0EQUFhYSAcpF5AjPuSIDzniQ474yOXIYrHAaDRy75r78MMPAQB33nlnq/OVBEFAaGioz0pH+P0yKlcqtIwKQRAE0RkoKytDZWUlwsPDW22j1+txww03ICgoCCdPnkSvXr2atWGMoaamBv3792+xDJG3kPv8TSNNBEEQBNEJMZvNqK2tdTmXCQA+/vhjAMDMmTNbTJiAS6M8Go3GZ5fmvAUlTZ0Ui8WCixcvwmKx+DoUv4Uc8SFHfMgRH3LERw5HtbW1sNvtLhMdi8WC3bt3A7h0aa41bDYbdDqdT5Mm5zIqckJJUydFoVAgKCiIli1wATniQ474kCM+5IiPpx2ZzWbU1dVxR5k+++wz1NbWom/fvpg6dWqr7QRBQNeuXT0SW0fxy2VUiCsDrVaLgQMH+joMv4Yc8SFHfMgRH3LEx9OOamtr4XA4XI4MCYKAf/7znwCABx54ACqVqsV2oihCoVD4vM6WXy6jQlwZMMYgiiItW+ACcsSHHPEhR3zIER9POjKZTG0aZfrPf/6DgoIC9OzZ0+WlOZPJhNDQUJ8VtXTijf2HkqZOitlsxpkzZ2A2m30dit9CjviQIz7kiA854uMpR4wx1NXVweFwcGszNTQ0oEuXLnjggQdaTYica+J169bN55dXncuoyAmVHGiBzlBywG63o6GhAV27dpV9ODNQIUd8yBEfcsSHHPHxlCOTyYS8vDyEhIRwkyYAqKmpgVarbXW9O2cS169fP5+/d3a7HefPn4dSqZTt/E17ZyclKCjIZV0Oghy1BXLEhxzxIUd8POHIWUuJMdamhAkAt0+z2Yzo6GifJ0zAJUe0jAohC3a7HZWVlbDb7b4OxW8hR3zIER9yxIcc8fGEI7PZjPr6em7xyePHj+N///sfd46Q1WqFRqPxaTHLxtjtdjgcDln7oKSpk2Kz2ZCXlyf79d9AhhzxIUd8yBEfcsTHXUeNR5lcjQoxxvDss89i/vz5eO+991xu02QyoVu3bj6/a86JzWaTPfH2/Xga4ROCg4MxatQoX4fh15AjPuSIDzniQ474uOvIecccb1TIYrFg1KhRKCgowO9///tW2wmCAJVKhbCwsA7H5GmCg4NlL65JI02dFGcRMF/f7eDPkCM+5IgPOeJDjvi444gxhtraWgDgzj0KDg7Giy++iBMnTqBHjx6ttjOZTOjatSt3oV9v4o39h5KmTorVakVmZiasVquvQ/FbyBEfcsSHHPEhR3zccdTWUabGuKq5JIoiHA6HX5QZaIzVaqVlVAiCIAiC6BiMMVRXV0vLsLhi48aNOHv2LHebzmKWvOKYVyJUp6kFOkOdJoIgCOLKx2AwIC8vD2FhYa0ugwIAJ06cwJw5c6BWq3Hy5En07NmzxXbOS30xMTF+NZ/Jidznb5oI3klpnCv70/CqP0GO+JAjPuSIDzni0xFHzjvmlEqly4QJADZv3gwAmDdvXqsJE3CpbIFOp/PLUSZaRoWQDbPZjN9++42WLXABOeJDjviQIz7kiE9HHBmNRjQ0NHDnMp07dw4//vgjlEolHnzwQZdtLRYLIiIiuEmYL/DGMiqUNHVSNBoN+vXrJ/vtmYEMOeJDjviQIz7kiE97HYmiiKqqqjaNMr3yyisAgDlz5mDAgAGttnOOMvlLMcvL0Wg0slcmp8tznZSgoCCXQ7AEOWoL5IgPOeJDjvi011FdXR0aGhrQvXt3l+3+85//4MCBA1CpVFi+fLnLtmazGVFRUW1egsXb0DIqhGzY7XbU1NTQsgUuIEd8yBEfcsSHHPFpjyOr1Yrq6moEBwe7TCIKCwuxatUqAMDDDz+MIUOGtNrWYrFAo9Gga9eu7Q/eS9AyKoRs2Gw2ZGdn07IFLiBHfMgRH3LEhxzxaasjZ4kBi8XistaS3W7H8uXL0dDQgNGjR7scZWKMwWQyISIiwm+WTGkJbyyjQiUHWqAzlBxgjMHhcECpVNLdKq1AjviQIz7kiA854tNWR1VVVSgpKUFYWJjL+T0bN27Eq6++ii5duuDAgQPo379/q21NJhMUCgViY2P99tIccMlRamoqAPnO3zTS1ElRKBRQqVR0gHIBOeJDjviQIz7kiE9bHBkMBlRUVCAkJMRlwnT48GG89tprAID169e7TJhEUYTFYkGPHj38OmECaBkVQkasViuys7Np2QIXkCM+5IgPOeJDjvjwHFksFpSVlUGhULhcD66yshJ/+9vfwBjDHXfcgblz57baljGGuro6RERE+GUhy8uxWq2yX56jpKmTwhiD3W73SjGwQIUc8SFHfMgRH3LEx5Ujs9mMoqIiWK1W7kTtM2fOoK6uDkOGDMHzzz/vsq1zvbpevXrJfleaJ2CMyb4P0ZymFugMc5oIgiAIeXCeVj3xb2vPOf/vcDhQWVkJQRDQrVu3NsV34cIFqFQqxMfHt9rGaDRCoVCgb9++LieU+xu0jApBEARxRePJJMMT/zpvW2/8b+MEpqXnG/97+ViEO0lSazDGoFAowBiDRqPhJkzOSeQAkJSU5LKt8zLXVVddFVAJkzegpKmTYjKZkJaWhoSEBISEhPg6HL+EHPEhR3zkcOTrpKItSUZ7/jWZTMjKysKgQYMQHBzsdjzu4pxQ3NF/L9+OM1lxZ3tmsxmZmZkYPHhwuxOZ3bt344033sCGDRswcuRIl23tdjtMJhOioqL8uiZTS5hMJthsNlkry/tl0uRwOLB161Z89tlnaGhowNixY7F69WrExMS02L6mpgYvvPACDh06BIVCgZtvvhmPP/44ZcguUKvVuOqqq/z+bghfQo74BIojXyYVgiAgNDQUBoMBFosFgPtJhjsjGa396xy1cPVv4/4uf7zxv+1JBhQKBdRqNaKjo6FWq6FQKDySZHgSpyfn9u12OywWCxQKRZNEuKKiQiqw6PwRRbHJ75c/FxMTI1X6rqmpwfnz5xESEoJRo0ZJ2/3ll19QV1cHg8GArKwsKBSKVrfn/P/IkSMxfPhwMMbw3Xff4cKFC3jppZfw0UcftbqsCmMM9fX16NGjB8LDw2VxKSdqtVr2NfH8Mmnatm0bPvroI7z00kuIiorCyy+/jMWLF2PPnj0tZpDLly+H2WzGu+++i/r6ejz11FMwmUxYv369D6IPDNRqNSIjI30dhl/TmR215Zu881JC9+7d4XA4YLVa/XYkw1dJRuN/KyoqmiUZzom9KpVKukVcEAQYjUYp/saXhkRRbPL/xs8lJiZK283KykJtbS369euHyMhIKBQK1NTUICUlBYyxVk/ijU++zna33nqrVNDw8OHDSEtLw6hRo6STekVFBT766KNmJ+7GMTbenvOxv//979Ln65tvvsH+/fsxdepUzJ8/HwBQXV2NFStWtPr3jbff+Ofll19GcnIyAOCzzz7Dli1bMH36dKxZswbApYTnmmuuafXvnX01fo4xhn/961+46aabAAB79uzBsmXLMGXKFHzyySfSfnXttdeirq4O7WH9+vVYuHAhgEvzcRYsWIDExER8//33UptVq1YhJyenXdt97LHHMHz4cCgUCmzYsAFjxozBfffd5zKpqKurQ9euXQNm4vfldMqkyWazYefOnVixYgWuu+46AMCrr76KKVOm4MCBA7jllluatD99+jSOHz+Ob7/9FoMGDQIAPPfcc1i8eDEeffRR9O7d29svISAQRREGgwGhoaF+uVq1P9BeR55MFHjJSlvaWywW2Gw2OBwO2O126STg/H9LP6GhodK3XpvNhvT0dDDGpJMQYwwZGRmorKyURlFMJhM0Gk2Tk7EzGXD2GRUVhTFjxkixfvbZZ2CMYc6cOdDpdGCM4ddff0VaWlqTE9XliUHjk6fD4UBsbKx0wlEoFHjxxRdhMpnw8MMPS5/9b7/9Fvv372/2t41/Lj9JxsbGSnVsFAoF/vKXvyA/Px+vvvoqhg0bBgD49NNP8eqrr7Z6om0piejRowdOnDghvZdz587F8ePHsWPHDsyaNQsA8OWXX3JXmr8clUqF/Px86fdNmzbhu+++w0svvYS7774bwKXJv87/t4cbb7xRSpr27NmDXbt2YcWKFU2Spg0bNrR7u/fdd5+UNJ0/fx5ffPEFwsLCpKRJEATs37+/3ds1GAzS/+vr65GVlYWhQ4dKjymVSpSWlrZ7u42X53AmFJcv2REUFAS1Wg2lUtnkx1lfSaVSNXuu8UhVly5dEBcX16xuUnJyMiIiIsAYQ1BQkLSdlrbn7Gvw4MHS30dERGDJkiUuX5/BYIBWq0Xv3r1lX/RWLpyfNTkTPr8zk5aWBqPRiAkTJkiPhYWFISkpCSdOnGiWNJ08eRK9evWSEiYAGDduHBQKBU6dOiUdiIimWK1WZGZmIjEx0eU8i8u/3TU+Kbh6rE+fPtKoYHl5OcrLyxEeHo6+ffsCuHRC/u2336STtfNEe/l2Gz8viiKmTJkindT1ej1OnDiB2NhYTJ06VTqxvvnmm01O3I2Hy1uK2W63Y/78+dI39dOnT+Pjjz9G3759MWnSJAwZMgTBwcFYtWoVDAZDs4Tg8hNl4xPoPffcg+nTpwMAUlJS8I9//AMxMTF45ZVXpARnyZIlyM/Pd/nN//IEYvHixVi8eDEA4OLFi5g3bx7Cw8Px888/S+/dokWLcOrUqXbtF3fffTeeffZZAEBtbS3mzJkDhUKBzMxMaYRky5Yt2LdvX7u2+/vf/x4zZswAcOnA5rzV+Y9//KN0GeCXX37BBx980K7tTpw4EX/961+l37/++mvU1tZi2bJl0n6dk5ODb7/9tl3bbWhoaJIoZ2dnIzMzUxoBAi7dXdQ4UWkLly+B0dLJ9/JLTK2dGJ2VoVUqVbOkPjIyEv3792+yGn1YWBiGDh3a7G8bn2hbOhE3PoGOGDECBoOhyV1X4eHhuOuuu1pNClr6UalUTS7/TJo0CWazGVOnTm0S7/r167nxXZ6UNI5t1qxZSE5ORo8ePZr43bdvXzOXvCSnscubb74ZmZmZzZKLlJSUlt72NjN69Gj89NNPzR5/4403YDabkZGRIR2PPIUoijCZTGCMoU+fPi5rPPk7zgnsnWpOk/MbQHR0dJPHIyMjW/x2UFZW1qytRqNB9+7dUVJS4lYsZrNZ2jnNZjNUKhU0Gg0cDgcsFgu0Wi1UKhUEQYAgCNJB2nmtW6vVgjEGs9kstT169CjeeustKJVKiKIIQRCaXEpwHlSdJ3u73Q6lUom9e/dK8yHWrl2LH3/8EUuXLsVtt90mbXfp0qXSdlxdV3cmIowxnDp1CqGhoWCMYfXq1XjnnXewfPlyPP744wgKCkJqaiomT57cbnc//fQTYmNj4XBcmp/2+uuv484778SaNWugUqlQUVHRJDFuK++99x5GjhwJQRCwe/durF27FjfccAN69+4tvTcrVqxo93b79++P7t27QxAEnDt3Du+88w7GjBmDuXPnQhAE2O127NmzBzU1Ne3a7o033giFQgFBEGCxWHDu3DmYzWYoFApp3yosLGz30LtCoUDXrl2luizOZEqj0UjbbW10rHFl4ctPEM5KwlarFRqNBtHR0VL8zv27d+/eGDx4sHRCcfYVFBQknfCd37adl57i4uIkB0FBQZg5cyYUCgUsFgsEQYBCocDQoUMxe/ZsaYjd4XBApVI1mS+l0Wik7SoUCgwaNAiCIEifz2XLlsFisUCtVsNisUCpVGLChAno0qULtFqt9LkLCgqSDqyiKEKr1SIoKEj6LEZERMBqtUrbXbt2LcxmM/r06QOTyQSVSoXrrrsOH330kbQoqiAIUKvVTbar0WigUqkgiiIUCgW6dOkCi8UCq9UKhUKBN954Q/pmbDQape2ePXsWXbp0gUKhkIoZOkfzrFar5Mh5DNFqtTCbzdLx45lnnsHTTz8Nq9UKg8EAlUqFwYMH45NPPoFOp5O2yxiTTpJms1kaKRFFETabTWpbW1sLxhhmz56N2bNnw2w2o66uDmq1GqGhoVi5cqXk12azQRTFJsfOy7frfB9ramogiiJGjBiB5ORkaVFa52f5xhtvlBw6P4eNt6tUKqW2zn1WpVJJC9t27doVQ4cOhcViQVVVlXRMjoqKglqtRlBQkHT8dm738uO3cz+y2WwwmUwQBEHyYjQaW3QYFBQkHb+1Wm2T99E5amexWKT92/k+Or04R4gvb+vc/+rr66W2giBAFEUpBmdb5/7c2PflbZ3xdu/eHd27d5c+H62d1xr7bu85UKPRSF5sNlu72gYHB7e4z5pMJqjVaqjVaunLrNzzK/0uaTKbzQDQLFPUarUtXit2Cr4crVbrVnVZURSRkZEhDcXn5OQgNDQUsbGxsNls0Ov1iIuLQ9euXVFVVYXS0lKMGDECAJCbmwudTof+/fvDbrdDr9dj8ODB6NatG86cOYN33nmn3fHk5OQgLy9PSnSOHDmCpKQkDBkyBBEREbhw4YJUn6I9FBQUwGKxwGKxoLa2FhaLBTk5OUhNTUWPHj1QUFDQpu04v7k6T77V1dUQBAENDQ1QKpUIDw+HyWRCbm4uoqKi0NDQgMjISOnA5RzRanwCCgoKanLACQ4Ohk6nQ1VVFcrLy9GnTx9MnjwZ0dHRqKioQN++feFwODBhwgSEhoZKHySr1Yrw8HCoVCrpxBQWFiadDMLCwtCvXz/U19ejqKgIAwcOxJIlSxASEoLS0lLExsYCAObMmYOQkBCEhobCarWivr4e0dHRUKlUqK+vh8PhQGRkpDT8361bN4wdOxZVVVXIy8tDnz59sHXrVlgsFqSlpUnD5/fffz+0Wi0iIiJgs9lQVlaG2NhYaLVaaeHNAQMGQKFQoKCgAGFhYRg4cCAqKiqQnZ2N2NhY/Pzzz6iursaFCxcQFxcHAFixYgW6dOmCvn37Sot9Dhw4EKGhoaioqEBVVRUSEhKkOTA6nQ59+/ZFfX09Ll68iNjYWPz444+oqqrC+fPnpduU//jHP+Kuu+5CTEwM7HY70tPTERMTg27duqGmpgZFRUXS5by8vDwAQL9+/WAymXDhwgVcddVV2Lx5M2pra5GXl4eQkBCoVCqMHDkSI0eOlC5NpKamok+fPoiIiEBdXR0KCgoQHx8PtVqNwsJC2Gw2DBw4EFarFWlpaYiMjMTdd9+NhoYG5OXlISwsTLrcMHHiRGkFd71ejx49eiAyMhJGoxE5OTkYPHgwdDodSkpK0NDQgLi4ONjtduTk5CAsLAwjR46E2WxGVlYWunTpIh3wQ0NDpRHKjIwMdOnSBX369IHFYkFmZib69u0r+a6oqMCAAQPAGENBQQG0Wi2uuuoqCIKA9PR0xMbGIiwsDPX19SgtLUVycjIYYygsLERQUBBiY2PBGENmZqbku66uDsXFxZJv5xfFfv36SSOETocGgwEFBQVISkqCUqmUJi0PGDAAwKXRtOjoaPTo0QNmsxm5ublITExEUFAQKisrYbVapRH9vLw89OrVC5GRkbBYLMjNzUVcXByCgoJQVlYGk8kk+S4qKkJ4eDh69+4Nm82G3NxcDB48GFqtFlVVVairq0N8fDy0Wi0uXryIsLAwREdHw2KxoKCgAAMHDoRWq0VtbS2qqqqk/TAvL6/J/p2VlSWNrhkMBpSVlUm1eoqLi6HVahEeHg5BEJCVlYV+/fohJCQEVVVVKC4ulo715eXlUCqV6NGjB0RRRE5ODmJjY9G1a1dUV1ejpKQEV199NZRKJaqqquBwONCrVy/JYUxMDMLCwlBXV4fCwkIMHToUQUFByM/PhyAI0mXjc+fOITo6Gt27d0d9fT0KCwuRmJgIjUaDgoICmM1mxMXFQaFQ4Pz58+jVqxd69+4No9GIzMxMxMfHQ6fToaioCA0NDdIo/oULFxAeHo6ePXvCZDJJo1NdunRBSUkJDAaDdExLS0tDz549ERMTA5vNhvPnzyM+Ph6hoaGorKxEeXk5hg8fDuDSOSgkJAT9+vVrdl5zfu6dd+bl5eVBo9FgwIABEEURer0eAwcORHh4uPS5Hz16tHQOUiqVGDRoEBhj0Ov16N+/P3r06IH6+nrk5ORgxIgRUKlUKCwshMPhaPJZjo2NRa9evaRJ8nKOMgF+WNxy//79WL58Oc6ePdtkmPChhx6CzWbD9u3bm7R//vnnkZKSgs8++6zJ4xMmTMADDzyAe+65p90xOJOPxrd2emqk6bfffpO+7TXO6ht/I3Vmzs63RqvVYsGCBdK3yJSUFBQXF2PIkCHSgaqiogInT56ETqeTtqNUKqV+nN9inDuU2WyG0WjE+PHjpaTFZDLBaDRCrVajZ8+eUKvVsFqtqKyslEYgnNl8ly5doFKppG+9Go0GoijCarVKfTq/LXXE4eVtrVZrh77VXN7W+Q2/Ld9qGhoapGRMq9VKc3eCgoKkb8xt+QbE88Jre/m39ssdOhPNtrR15bAj+7fFYkFhYSH69OmDkJAQ2O32dn/jbM2h2Wxu8i2yvb5b89IR31qttkUvl498tOTQbrejqKgIERER0iUpV8eIth5PWnPoPGa0xTcArsOO7N+uRppaaqtUKlFSUoLw8HAEBwd36BjR0ZGPjoySuPLSkVGS1o4Rjds6HJeKWDrngbXnGNGetq4c+vtIk8FgQE5ODoKCgmQrbul3SVNKSgrmz5+PgwcPStkwACxYsADx8fHSHRBOduzYgV27djWZy2Gz2TB8+HBs2rSpQ3OaOkNFcOe3w/79+wf0NWw5IUd8yBEfcsSHHPEhR3wsFgsuXLgAtVot2/nb7+4pTEhIQGhoKI4dOyY9Vl9fjwsXLmDs2LHN2o8dOxalpaXSZQAAOH78OABIw39Ec3Q6HRISEujD5wJyxIcc8SFHfMgRH3LER6fTdb45TRqNBgsXLsTGjRsRERGBvn374uWXX0ZUVBRmzpwJURRRXV2Nrl27QqfTYfjw4Rg1ahQeeeQRrFmzBiaTCatXr8acOXOo3ABBEARBEB7D70aagEvFKufNm4enn34aCxYsgEqlwttvvw21Wo2SkhJMnjxZuoVYoVBg69atuOqqq7Bo0SI8/PDDmDp1arPLeERTTCYTzpw5A5PJ5OtQ/BZyxIcc8SFHfMgRH3LEx7mMipz43Zwmf6AzzGkSBAFVVVXo0aOH3y+B4SvIER9yxIcc8SFHfMgRH0EQcP78eahUqs4zEdwf6AxJE0EQBEFcach9/vbLy3OE/IiiiIaGBoii6OtQ/BZyxIcc8SFHfMgRH3LEx1m0WU4oaeqkWK1WXLx40a0CoFc65IgPOeJDjviQIz7kiI/VaoUgCLL2QZfnWqAzXJ67vLw+0RxyxIcc8SFHfMgRH3LEx+FwIDU1FQqFQrbzt9+VHCC8g7NaONE65IgPOeJDjviQIz7kiI9zOS9Z+5B164TfYrPZkJ+fL/vtmYEMOeJDjviQIz7kiA854mOz2WC322Xtg5KmToooijAYDDSp0AXkiA854kOO+JAjPuSIjzcmgtOcphboDHOaCIIgCOJKg0oOEARBEARB+AE0EbwFBEEAY0zKWK9EGGMQBAFqtVr2iXOBCjniQ474kCM+5IgPOeLjdCSnH0qaWqAz7JAKhQIajcbXYfg15IgPOeJDjviQIz7kiI9CoZB+ZOuD5jQRBEEQBEHwoTlNBEEQBEEQbYCSJoIgCIIgiDZASRNBEARBEEQboKSJIAiCIAiiDVDSRBAEQRAE0QYoaSIIgiAIgmgDlDQRBEEQBEG0AUqaCIIgCIIg2gAlTQRBEARBEG2AkiaCIAiCIIg2QEkTQRAEQRBEG6CkiSAIgiAIog1Q0nQF4HA4sHnzZkyZMgUjRozAfffdh4KCghbbbtmyBfHx8S3+rFq1qll7xhj+8pe/4O6775b7ZciKHI5ycnJw//33Y+TIkZg0aRKee+45mM1mb70kjyOHo//973+47bbbMGLECNxwww14++23vfVyZKE9jgCgqqoKf//73zF+/Hhcc801eOSRR1BWVtakzXfffYdZs2Zh2LBhmDNnDn799Ve5X4aseNqRw+HAv/71L/zud7/DiBEjcPPNN+Ozzz7zxkuRDTn2Iyc2mw2///3v8cQTT8gVvleQw1FKSgruuusuDBs2DNdeey02b94Mh8PRvsAYEfBs2bKFXXPNNeynn35ier2e/fnPf2YzZ85kVqu1WVuDwcDKy8ub/Kxfv56NGDGCpaWlNWv/zjvvsLi4OLZw4UJvvBTZ8LSj6upqNnHiRPbXv/6VZWRksCNHjrDJkyezZ5991suvzHN42lFWVhZLTk5mW7ZsYfn5+Wzv3r1s2LBhbNeuXd5+aR6jPY4YY2zhwoXsjjvuYBcuXGDnz59nt99+O7vtttuk53/99Vc2dOhQ9t5777HMzEz20ksvseTkZJaZmemtl+RxPO1o27ZtbMyYMWzv3r0sLy+PffLJJywpKYn95z//8dIr8jyedtSY559/nsXFxbGVK1fK+RJkx9OOsrOz2fDhw9kzzzzDcnJy2L59+9jIkSPZW2+91a64KGkKcKxWKxs5ciT78MMPpcfq6urYsGHD2J49e7h/f/78eTZ06FD2xRdfNHsuLS2NjRkzht1+++0BnTTJ4Wjz5s1s6tSpzGKxSI99+umnbO7cuczhcHj2BXgBORy98847bNy4cU3aPfjgg+yBBx7wXOBepL2O6urqWFxcHPvhhx+kx77//nsWFxfHampqGGOM/fnPf2YPPfRQk7/74x//yJ555hlZXoPcyOFoypQpbNu2bU3+btWqVezOO++U50XIjByOnBw6dIhNnDiR3XzzzQGdNMnhaOXKley2225rcnx+/fXX2ZIlS9oVG12eC3DS0tJgNBoxYcIE6bGwsDAkJSXhxIkT3L9/7rnnMGbMGMydO7fJ41arFStWrMDy5csxYMAAj8ftTeRwdPjwYcyYMQNarVZ6bP78+fjiiy+gUCg8+wK8gByOevTogdraWnzzzTdgjCE9PR2nTp3C8OHDZXkNctNeRzqdDl26dMGXX34Jg8EAg8GAr776CgMGDEBYWBgcDgd+++23JtsDgGuuuaZNzv0RORytX7++2fFJqVSivr5e9tcjB5525KS6uhqrVq3C888/j/DwcK+8FrmQw9Hhw4dxyy23NDk+L1++HNu3b29XbJQ0BTilpaUAgOjo6CaPR0ZGSs+1xk8//YTTp09j5cqVzZ57+eWXERkZiYULF3ouWB8hh6OcnBxERkZi3bp1uO666zBjxgxs2LABVqvVs8F7CTkc3XTTTZg/fz4ee+wxDB06FH/4wx8wadIkLFmyxLPBe4n2OtJoNHjppZdw/PhxjBkzBmPHjsXZs2exY8cO6aRvMpkQFRXVpu0FAp52pFQqMWHChCaOiouLsXfvXkyePFneFyMTnnbk5KmnnsK0adMwffp0eV+AF/C0I4PBgIqKCnTt2hVPPvkkJk+ejFmzZuGtt96CKIrtio2SpgDHOfFYo9E0eVyr1XJP4O+88w6mTZuGxMTEJo8fOnQIe/bswdq1awNy1ORy5HBkMBiwY8cOWK1WbN26FY899hj27NmDp59+2rPBewk5HFVVVaGoqAjLly/H559/jhdffBE///wztmzZ4tngvUR7HTHGoNfrMXLkSHz44Yd477330KdPHyxduhQGgwEWi6Vd2wsEPO3ociorK3HfffehR48e+Otf/yrPi5AZORx98sknyMrKavFmnkDE046cntavX48+ffpgx44dWLx4Md588812H4+COviaCD9Bp9MBuHTHhPP/wKXLa8HBwa3+XXFxMY4dO4a33nqryePV1dV48sknsWbNGvTu3VueoL2Mpx0BQFBQEAYMGIA1a9YAAJKTkyGKIh5++GE88cQT6NGjh2dfhMzI4eipp55CdHS0dHJLSkoCYwxr1qzBwoULERER4eFXIS/tdfTdd99h165d+OmnnxAaGgoAeOONNzBt2jR8/vnnmD17trS9xvCc+zOednTPPfdIbbOzs3H//fdDFEW8//77TS5NBRKedjR16lS8/PLLePvttxESEuKdFyEznnZ0yy23AAAmTpyIZcuWAQASExNRXV2Nf/7zn3jooYfaPEBAI00BjnP4sry8vMnj5eXlLpOe77//HhEREZg0aVKTx3/++WdUVFTgySefxMiRIzFy5Ejs2bMHJ0+exMiRI1FcXOz5FyEznnYEAFFRURgyZEiTx5y/FxUVuRuy15HD0alTp3D11Vc3eWzEiBGw2+0oLCz0QNTepb2OTp48iQEDBkgHcQDo1q0bBgwYgLy8PHTv3h0hISHtdu7PeNqRk1OnTuGOO+5AcHAwPvnkE8TExMj0CuTH046+/fZbGI1G3HvvvdIx++TJk9izZw9Gjhwp74uRCU87Cg8Ph1arRVxcXJO/GzJkCEwmE6qrq9scGyVNAU5CQgJCQ0Nx7Ngx6bH6+npcuHABY8eObfXvTp48iXHjxiEoqOlg44wZM3DgwAF8+eWX0s/06dORnJyML7/8EpGRkbK9FrnwtCMAGDt2LFJSUsAYkx67ePEiVCoVrrrqKs++AC8gh6PevXsjPT29yWPp6elQKBTo16+f54L3Eu11FBUVhby8vCaXE0wmEwoLC9G/f38oFAqMGjUKx48fb/J3x44dw5gxY+R7ITLiaUfApdo6ixcvxpAhQ/Dhhx8GbELpxNOOFi5ciP379zc5ZicnJ2P69On48ssvvfGSPI6nHalUKowaNQpnz55t8nfp6ekICwtD9+7d2x5cu+61I/ySV155hY0bN459//33TepZ2Gw2ZrfbWXl5OTObzU3+5vrrr292G29rrFy5MqBLDjDmeUdZWVlSzY/s7Gx26NAhNnXqVPbEE0944+XIgqcdOevpvPfeeyw/P58dPHiQTZo0if3jH//wxsuRhfY4KisrY+PGjWNLlixher2e6fV69sADD7ApU6aw+vp6xhhjv/zyC0tMTGQ7d+5kmZmZbP369WzYsGEBXafJk44EQWAzZsxg119/PcvPz29SF6yqqsrHr7TjeHo/upyFCxcGdMkBxjzv6OjRoywxMZFt3ryZ5eXlsb1797LRo0ezLVu2tCsuSpquAOx2O9uwYQMbP348GzFiBLvvvvtYQUEBY4yxgoICFhcXx3bv3t3kb4YNG8Y++uijNm3/Skia5HB09uxZdtddd7Grr76aTZw4kb300kutFl4LBORw9J///If94Q9/YMOHD2czZ85k//znP5nNZpP1dchJex1lZmayBx54gI0bN46NHz+eLVu2TGrv5D//+Q+bMWMGu/rqq9ncuXPZ//73P6++Jk/jSUenTp1icXFxLf5MmzbNJ6/PE8ixHzXmSkia5HB06NAhNnfuXDZ06FB23XXXsTfffJOJotiuuBSMNbq+QBAEQRAEQbQIzWkiCIIgCIJoA5Q0EQRBEARBtAFKmgiCIAiCINoAJU0EQRAEQRBtgJImgiAIgiCINkBJE0EQBEEQRBugpIkgCIIgCKINUNJEEARBEATRBihpIgiCIAiCaAOUNBEE4REsFgs2bdqEmTNnIjk5GaNGjcK9994LvV4vtWGM4d1338VNN92EYcOGYcaMGXj77belhY95z8fHx2PLli1N+t2yZQvi4+ObPDZ9+nSsXbsWixYtwrBhw/DUU095JL7169dj2LBhaGhoaNLftm3bMHr0aJjNZrc9vvbaa/j000/d3g5BEJ6n+dLkBEEQHeDxxx/HyZMn8eijjyI2NhZ5eXl4/fXX8fe//x179+6FQqHAhg0b8N577+Hee+/FpEmTcO7cOWzcuBF2ux0PPPAA9/n28OGHH+Lee+/Ffffdhy5dungkvnnz5mHnzp3Yt28f5s+fL/X11VdfYdasWQgODnbbo8Hw/9q5n5Cm/ziO48/pNiVDwRChmrKEMBRzDUYMDxEqsoigPBj5Bwz04C2agk0vwhxEeAmjQ6KC6GniQQw6FM4uCoIoRB7UJoqihIdNcFT7HUJ/Cb+ffmVTf/B7Pa7vfb/f1/cDg9d3332/ETo7OzGbzTx8+DDh/YlI8qg0iUjCYrEY0WgUn8+Hx+MBwOVyEYlECAQCbG9vk5aWxuDgILW1tXi9XgDcbjdbW1vMzMzw+PHjI+cnLU2XL1/m+fPnScvX3NxMQUEBDoeDsbGxg9I0OzvLysoKgUDAUK69vb0j516vl2g0yosXL7BYLNy/f/9E5y0ip0elSUQSZrVaeffuHQCbm5ssLy+zsrLCx48fgd+l5cuXL/z48YPKyspD2/p8PgAmJyePnJ/UjRs3kppv36NHj+jo6GBtbY0rV64wOjqK3W7H4XAcmykajXLr1i3D59DW1sbt27fJyckxvI2InB6VJhFJilAohN/vZ2lpiYyMDAoLC7lw4QLw+79COzs7AGRnZ//j9sfNT2r/2MnKt8/j8eD3+xkbG+Pp06dMTEzQ1NRkKFNaWhrd3d3Hfm5qaorx8XEqKiqSth4ikjiVJhFJWDgcpqWlhfLyct6+fYvNZsNkMjE0NEQoFAIgMzMTgO/fv3Pt2rWDbdfX1wmHwwcF5t/mTqcTgJ8/fx469u7u7pnkczqdWCwWMjIyqKqqYmJiguvXr7O7u8uDBw8MrZOR/yl9/vyZDx8+UF5ezqtXr0hNTTW0bxE5fXp6TkQStrCwwN7eHk1NTeTl5WEymQAOCkk8HqekpASLxXJwS2xfX18fz549w+FwHDlPTU3l4sWLbG5uHprPzs6eSb4/y0t1dTWLi4sMDAzgdrvJzc01skyGvHnzBrfbTU9PD2azrmtF/kv0jRSRhBUVFWE2m3n58iWNjY3EYjGCwSCfPn0Cfv8aZLPZqK+vp7+/H6vVisvlYm5ujuHhYVpbW7l06dKR85SUFO7cucP4+Dg3b94kPz+fYDDIt2/fziRfSsrf15hOpxO73c709DQ9PT1JXcve3l7S09OxWq1J3a+IJM4U338BiYhIAt6/f8/r168Jh8NkZWVRWlpKfX09dXV1dHR08OTJE+LxOH19fYyMjLCxscHVq1dpaGigpqYG4Nj59vY2XV1dTE5OYjab8Xg8FBcX4/P5+Pr160GWu3fv4nK5Dj3Rlox8fwoEAgSDQaamplRwRP4nVJpERE4oHo9z7949ysrKaG9vP+84InJGdHtORMSgSCRCf38/8/PzrK6uUldXd96RROQMqTSJiBiUnp7OyMgIv379wu/3Y7PZzjuSiJwh3Z4TERERMUCvHBARERExQKVJRERExACVJhEREREDVJpEREREDFBpEhERETFApUlERETEAJUmEREREQNUmkREREQMUGkSERERMUClSURERMQAlSYRERERA/4CS+zU/qJLi30AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from error_parity.plotting import plot_postprocessing_frontier\n",
+ "\n",
+ "plot_postprocessing_frontier(\n",
+ " postproc_results_df,\n",
+ " perf_metric=\"accuracy\",\n",
+ " disp_metric=disparity_metric,\n",
+ " show_data_type=\"fit\", # synthetic data example on the same data as used to fit the model\n",
+ " constant_clf_perf=max((y_true == const_pred).mean() for const_pred in {0, 1}),\n",
+ ")\n",
+ "\n",
+ "plt.xlabel(r\"accuracy $\\rightarrow$\")\n",
+ "plt.ylabel(FAIRNESS_CONSTRAINT.replace(\"_\", \"-\") + r\" violation $\\leftarrow$\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "46ca150d",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/genindex.html b/genindex.html
new file mode 100644
index 0000000..b5fdc05
--- /dev/null
+++ b/genindex.html
@@ -0,0 +1,359 @@
+
+
+
+
+
+ Index — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+
Index
+
+
+
B
+ |
C
+ |
D
+ |
E
+ |
F
+ |
G
+ |
M
+ |
P
+ |
R
+
+
+
B
+
+
+
C
+
+
+
D
+
+
+
E
+
+
+
F
+
+
+
G
+
+
+
M
+
+
+
P
+
+
+
R
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/index.html b/index.html
new file mode 100644
index 0000000..f01e728
--- /dev/null
+++ b/index.html
@@ -0,0 +1,157 @@
+
+
+
+
+
+
+ Welcome to error-parity’s documentation! — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+Welcome to error-parity’s documentation!
+The error-parity
package allows you to easily achieve error-rate
+fairness between societal groups.
+It’s compatible with any score-based predictor, and can map out all of its
+attainable fairness-accuracy trade-offs.
+Full code available on the GitHub repository ,
+including various jupyter notebook examples .
+Check out the following sub-pages:
+
+
+Citing
+The error-parity
package is the basis for the following publication :
+@inproceedings {
+cruz2024unprocessing ,
+title = {Unprocessing Seven Years of Algorithmic Fairness} ,
+author = {Andr{\'e} Cruz and Moritz Hardt} ,
+booktitle = {The Twelfth International Conference on Learning Representations} ,
+year = {2024} ,
+url = {https://openreview.net/forum?id=jr03SfWsBS}
+}
+
+
+All additional supplementary materials are available on the supp-materials branch of the GitHub repository .
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/modules.html b/modules.html
new file mode 100644
index 0000000..5ee4766
--- /dev/null
+++ b/modules.html
@@ -0,0 +1,139 @@
+
+
+
+
+
+
+ API reference — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/notebooks.html b/notebooks.html
new file mode 100644
index 0000000..d434b12
--- /dev/null
+++ b/notebooks.html
@@ -0,0 +1,154 @@
+
+
+
+
+
+
+ Notebooks Gallery — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/objects.inv b/objects.inv
new file mode 100644
index 0000000..4936f0a
Binary files /dev/null and b/objects.inv differ
diff --git a/py-modindex.html b/py-modindex.html
new file mode 100644
index 0000000..a3e8440
--- /dev/null
+++ b/py-modindex.html
@@ -0,0 +1,172 @@
+
+
+
+
+
+ Python Module Index — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+ Python Module Index
+
+
+
+
+
+
+
+
+
+
Python Module Index
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/readme.html b/readme.html
new file mode 100644
index 0000000..3101aa5
--- /dev/null
+++ b/readme.html
@@ -0,0 +1,245 @@
+
+
+
+
+
+
+ README.md — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+README.md
+
+error-parity
+
+
+
+
+
+
+
+
+
+
+
+Fast postprocessing of any score-based predictor to meet fairness criteria.
+The error-parity
package can achieve strict or relaxed fairness constraint fulfillment,
+which can be useful to compare ML models at equal fairness levels.
+Package documentation available here .
+
+Installing
+Install package from PyPI :
+pip install error - parity
+
+
+Or, for development, you can clone the repo and install from local sources:
+git clone https : // github . com / socialfoundations / error - parity . git
+pip install ./ error - parity
+
+
+
+
+Getting started
+
+
+from error_parity import RelaxedThresholdOptimizer
+
+# Given any trained model that outputs real-valued scores
+fair_clf = RelaxedThresholdOptimizer (
+ predictor = lambda X : model . predict_proba ( X )[:, - 1 ], # for sklearn API
+ # predictor=model, # use this for a callable model
+ constraint = "equalized_odds" , # other constraints are available
+ tolerance = 0.05 , # fairness constraint tolerance
+)
+
+# Fit the fairness adjustment on some data
+# This will find the optimal _fair classifier_
+fair_clf . fit ( X = X , y = y , group = group )
+
+# Now you can use `fair_clf` as any other classifier
+# You have to provide group information to compute fair predictions
+y_pred_test = fair_clf ( X = X_test , group = group_test )
+
+
+
+
+How it works
+Given a callable score-based predictor (i.e., y_pred = predictor(X)
), and some (X, Y, S)
data to fit, RelaxedThresholdOptimizer
will:
+
+Compute group-specific ROC curves and their convex hulls;
+Compute the r
-relaxed optimal solution for the chosen fairness criterion (using cvxpy );
+Find the set of group-specific binary classifiers that match the optimal solution found.
+
+each group-specific classifier is made up of (possibly randomized) group-specific thresholds over the given predictor;
+if a group’s ROC point is in the interior of its ROC curve, partial randomization of its predictions may be necessary.
+
+
+
+
+
+Features and implementation road-map
+We welcome community contributions for cvxpy implementations of other fairness constraints.
+Currently implemented fairness constraints:
+
+
+
+Citing
+ @inproceedings{
+ cruz2024unprocessing,
+ title={Unprocessing Seven Years of Algorithmic Fairness},
+ author={Andr{\'e} Cruz and Moritz Hardt},
+ booktitle={The Twelfth International Conference on Learning Representations},
+ year={2024},
+ url={https://openreview.net/forum?id=jr03SfWsBS}
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/search.html b/search.html
new file mode 100644
index 0000000..e1034cf
--- /dev/null
+++ b/search.html
@@ -0,0 +1,132 @@
+
+
+
+
+
+ Search — error-parity 0.3.10 documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ error-parity
+
+
+
+
+
+
+
+
+
+
+
+ Please activate JavaScript to enable the search functionality.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/searchindex.js b/searchindex.js
new file mode 100644
index 0000000..a43cf04
--- /dev/null
+++ b/searchindex.js
@@ -0,0 +1 @@
+Search.setIndex({"alltitles": {"1. Brute-force solver": [[2, "1.-Brute-force-solver"]], "2. LP solver": [[2, "2.-LP-solver"]], "API reference": [[9, "api-reference"]], "Achieving different fairness constraints on synthetic data": [[7, "Achieving-different-fairness-constraints-on-synthetic-data"]], "Achieving equalized odds on real-world ACS data (ACSIncome)": [[5, "Achieving-equalized-odds-on-real-world-ACS-data-(ACSIncome)"]], "Achieving equalized odds on synthetic data": [[6, "Achieving-equalized-odds-on-synthetic-data"]], "Citing": [[8, "citing"], [11, "citing"]], "Compare accuracy and constraint violation": [[2, "Compare-accuracy-and-constraint-violation"]], "Comparing LP vs brute-force solution": [[2, "Comparing-LP-vs-brute-force-solution"]], "Comparison between error-parity\u2019s LP solver and a brute-force solver": [[2, "Comparison-between-error-parity's-LP-solver-and-a-brute-force-solver"]], "Compute distances between theorized ROC points and empirical ROC points": [[6, "Compute-distances-between-theorized-ROC-points-and-empirical-ROC-points"], [7, "Compute-distances-between-theorized-ROC-points-and-empirical-ROC-points"]], "Compute empirical fairness violation": [[7, "Compute-empirical-fairness-violation"]], "Compute performance differences": [[6, "Compute-performance-differences"], [7, "Compute-performance-differences"]], "Construct the fair optimal classifier (derived from the given predictor)": [[5, "Construct-the-fair-optimal-classifier-(derived-from-the-given-predictor)"], [6, "Construct-the-fair-optimal-classifier-(derived-from-the-given-predictor)"], [7, "Construct-the-fair-optimal-classifier-(derived-from-the-given-predictor)"]], "Example jupyter notebooks": [[1, "example-jupyter-notebooks"]], "Example usage of error-parity with other fairness-constrained classifiers": [[3, "Example-usage-of-error-parity-with-other-fairness-constrained-classifiers"]], "Fairness vs Performance trade-off": [[5, "Fairness-vs-Performance-trade-off"]], "Features and implementation road-map": [[11, "features-and-implementation-road-map"]], "Fetch UCI Adult data": [[3, "Fetch-UCI-Adult-data"]], "Fit and plot similar example but using \u201cEqual Opportunity\u201d fairness metric": [[5, "Fit-and-plot-similar-example-but-using-%22Equal-Opportunity%22-fairness-metric"]], "Getting started": [[11, "getting-started"]], "Given a trained predictor (that outputs real-valued scores)": [[2, "Given-a-trained-predictor-(that-outputs-real-valued-scores)"], [5, "Given-a-trained-predictor-(that-outputs-real-valued-scores)"], [6, "Given-a-trained-predictor-(that-outputs-real-valued-scores)"], [7, "Given-a-trained-predictor-(that-outputs-real-valued-scores)"]], "Given some data (X, Y, S)": [[2, "Given-some-data-(X,-Y,-S)"], [5, "Given-some-data-(X,-Y,-S)"], [6, "Given-some-data-(X,-Y,-S)"], [7, "Given-some-data-(X,-Y,-S)"]], "How it works": [[11, "how-it-works"]], "Indices": [[8, "indices"]], "Installing": [[11, "installing"]], "Let\u2019s train another type of fairness-aware model": [[3, "Let's-train-another-type-of-fairness-aware-model"]], "Log the constant classifier accuracy for each dataset and data type": [[4, "Log-the-constant-classifier-accuracy-for-each-dataset-and-data-type"]], "Map attainable fairness-accuracy trade-offs via (relaxed) post-processing": [[3, "Map-attainable-fairness-accuracy-trade-offs-via-(relaxed)-post-processing"]], "NOTE: change the FAIRNESS_CONSTRAINT to your target fairness constraint.": [[7, "NOTE:-change-the-FAIRNESS_CONSTRAINT-to-your-target-fairness-constraint."]], "Notebooks Gallery": [[10, "notebooks-gallery"]], "Obtaining parsed folktables datasets": [[4, "Obtaining-parsed-folktables-datasets"]], "Plot Fairness-Accuracy Pareto frontier achievable by postprocessing": [[7, "Plot-Fairness-Accuracy-Pareto-frontier-achievable-by-postprocessing"]], "Plot post-processing adjustment frontier": [[3, "Plot-post-processing-adjustment-frontier"]], "Plot postprocessing Pareto frontier": [[6, "Plot-postprocessing-Pareto-frontier"]], "Plot realized ROC points": [[5, "Plot-realized-ROC-points"], [6, "Plot-realized-ROC-points"], [7, "Plot-realized-ROC-points"]], "Plot solution": [[5, "Plot-solution"], [6, "Plot-solution"], [7, "Plot-solution"]], "README.md": [[11, "readme-md"]], "Theoretical results:": [[5, "Theoretical-results:"]], "Train a standard (unconstrained) classifier": [[3, "Train-a-standard-(unconstrained)-classifier"]], "Welcome to error-parity\u2019s documentation!": [[8, "welcome-to-error-parity-s-documentation"]], "error-parity": [[11, "error-parity"]], "error_parity package": [[0, "error-parity-package"]], "error_parity.binarize module": [[0, "module-error_parity.binarize"]], "error_parity.classifiers module": [[0, "module-error_parity.classifiers"]], "error_parity.cvxpy_utils module": [[0, "module-error_parity.cvxpy_utils"]], "error_parity.evaluation module": [[0, "module-error_parity.evaluation"]], "error_parity.pareto_curve module": [[0, "module-error_parity.pareto_curve"]], "error_parity.plotting module": [[0, "module-error_parity.plotting"]], "error_parity.roc_utils module": [[0, "module-error_parity.roc_utils"]], "error_parity.threshold_optimizer module": [[0, "module-error_parity.threshold_optimizer"]]}, "docnames": ["error_parity", "examples/README", "examples/brute-force-example_equalized-odds-thresholding", "examples/example-with-postprocessing-and-inprocessing", "examples/parse-folktables-datasets", "examples/relaxed-equalized-odds.usage-example-folktables", "examples/relaxed-equalized-odds.usage-example-synthetic-data", "examples/usage-example-for-other-constraints.synthetic-data", "index", "modules", "notebooks", "readme"], "envversion": {"nbsphinx": 4, "sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["error_parity.rst", "examples/README.md", "examples/brute-force-example_equalized-odds-thresholding.ipynb", "examples/example-with-postprocessing-and-inprocessing.ipynb", "examples/parse-folktables-datasets.ipynb", "examples/relaxed-equalized-odds.usage-example-folktables.ipynb", "examples/relaxed-equalized-odds.usage-example-synthetic-data.ipynb", "examples/usage-example-for-other-constraints.synthetic-data.ipynb", "index.rst", "modules.rst", "notebooks.rst", "readme.rst"], "indexentries": {"binaryclassifier (class in error_parity.classifiers)": [[0, "error_parity.classifiers.BinaryClassifier", false]], "binaryclassifieratrocdiagonal (class in error_parity.classifiers)": [[0, "error_parity.classifiers.BinaryClassifierAtROCDiagonal", false]], "calc_cost_of_point() (in module error_parity.roc_utils)": [[0, "error_parity.roc_utils.calc_cost_of_point", false]], "classifier (class in error_parity.classifiers)": [[0, "error_parity.classifiers.Classifier", false]], "compute_binary_predictions() (in module error_parity.binarize)": [[0, "error_parity.binarize.compute_binary_predictions", false]], "compute_fair_optimum() (in module error_parity.cvxpy_utils)": [[0, "error_parity.cvxpy_utils.compute_fair_optimum", false]], "compute_global_roc_from_groupwise() (in module error_parity.roc_utils)": [[0, "error_parity.roc_utils.compute_global_roc_from_groupwise", false]], "compute_halfspace_inequality() (in module error_parity.cvxpy_utils)": [[0, "error_parity.cvxpy_utils.compute_halfspace_inequality", false]], "compute_inner_and_outer_adjustment_ci() (in module error_parity.pareto_curve)": [[0, "error_parity.pareto_curve.compute_inner_and_outer_adjustment_ci", false]], "compute_line() (in module error_parity.cvxpy_utils)": [[0, "error_parity.cvxpy_utils.compute_line", false]], "compute_postprocessing_curve() (in module error_parity.pareto_curve)": [[0, "error_parity.pareto_curve.compute_postprocessing_curve", false]], "compute_roc_point_from_predictions() (in module error_parity.roc_utils)": [[0, "error_parity.roc_utils.compute_roc_point_from_predictions", false]], "constraint_violation() (error_parity.threshold_optimizer.relaxedthresholdoptimizer method)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.constraint_violation", false]], "construct_at_target_roc() (error_parity.classifiers.randomizedclassifier static method)": [[0, "error_parity.classifiers.RandomizedClassifier.construct_at_target_ROC", false]], "cost() (error_parity.threshold_optimizer.relaxedthresholdoptimizer method)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.cost", false]], "demographic_parity_violation() (error_parity.threshold_optimizer.relaxedthresholdoptimizer method)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.demographic_parity_violation", false]], "ensemblegroupwiseclassifiers (class in error_parity.classifiers)": [[0, "error_parity.classifiers.EnsembleGroupwiseClassifiers", false]], "equalized_odds_violation() (error_parity.threshold_optimizer.relaxedthresholdoptimizer method)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.equalized_odds_violation", false]], "error_parity.binarize": [[0, "module-error_parity.binarize", false]], "error_parity.classifiers": [[0, "module-error_parity.classifiers", false]], "error_parity.cvxpy_utils": [[0, "module-error_parity.cvxpy_utils", false]], "error_parity.evaluation": [[0, "module-error_parity.evaluation", false]], "error_parity.pareto_curve": [[0, "module-error_parity.pareto_curve", false]], "error_parity.plotting": [[0, "module-error_parity.plotting", false]], "error_parity.roc_utils": [[0, "module-error_parity.roc_utils", false]], "error_parity.threshold_optimizer": [[0, "module-error_parity.threshold_optimizer", false]], "error_rate_parity_constraint_violation() (error_parity.threshold_optimizer.relaxedthresholdoptimizer method)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.error_rate_parity_constraint_violation", false]], "eval_accuracy_and_equalized_odds() (in module error_parity.evaluation)": [[0, "error_parity.evaluation.eval_accuracy_and_equalized_odds", false]], "evaluate_fairness() (in module error_parity.evaluation)": [[0, "error_parity.evaluation.evaluate_fairness", false]], "evaluate_performance() (in module error_parity.evaluation)": [[0, "error_parity.evaluation.evaluate_performance", false]], "evaluate_predictions() (in module error_parity.evaluation)": [[0, "error_parity.evaluation.evaluate_predictions", false]], "evaluate_predictions_bootstrap() (in module error_parity.evaluation)": [[0, "error_parity.evaluation.evaluate_predictions_bootstrap", false]], "find_points_for_target_roc() (error_parity.classifiers.randomizedclassifier static method)": [[0, "error_parity.classifiers.RandomizedClassifier.find_points_for_target_ROC", false]], "find_weights_given_two_points() (error_parity.classifiers.randomizedclassifier static method)": [[0, "error_parity.classifiers.RandomizedClassifier.find_weights_given_two_points", false]], "fit() (error_parity.threshold_optimizer.relaxedthresholdoptimizer method)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.fit", false]], "fit_and_evaluate_postprocessing() (in module error_parity.pareto_curve)": [[0, "error_parity.pareto_curve.fit_and_evaluate_postprocessing", false]], "get_envelope_of_postprocessing_frontier() (in module error_parity.pareto_curve)": [[0, "error_parity.pareto_curve.get_envelope_of_postprocessing_frontier", false]], "global_prevalence (error_parity.threshold_optimizer.relaxedthresholdoptimizer property)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.global_prevalence", false]], "global_roc_point (error_parity.threshold_optimizer.relaxedthresholdoptimizer property)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.global_roc_point", false]], "groupwise_prevalence (error_parity.threshold_optimizer.relaxedthresholdoptimizer property)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.groupwise_prevalence", false]], "groupwise_roc_data (error_parity.threshold_optimizer.relaxedthresholdoptimizer property)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.groupwise_roc_data", false]], "groupwise_roc_hulls (error_parity.threshold_optimizer.relaxedthresholdoptimizer property)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.groupwise_roc_hulls", false]], "groupwise_roc_points (error_parity.threshold_optimizer.relaxedthresholdoptimizer property)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.groupwise_roc_points", false]], "make_cvxpy_halfspace_inequality() (in module error_parity.cvxpy_utils)": [[0, "error_parity.cvxpy_utils.make_cvxpy_halfspace_inequality", false]], "make_cvxpy_point_in_polygon_constraints() (in module error_parity.cvxpy_utils)": [[0, "error_parity.cvxpy_utils.make_cvxpy_point_in_polygon_constraints", false]], "module": [[0, "module-error_parity.binarize", false], [0, "module-error_parity.classifiers", false], [0, "module-error_parity.cvxpy_utils", false], [0, "module-error_parity.evaluation", false], [0, "module-error_parity.pareto_curve", false], [0, "module-error_parity.plotting", false], [0, "module-error_parity.roc_utils", false], [0, "module-error_parity.threshold_optimizer", false]], "plot_polygon_edges() (in module error_parity.plotting)": [[0, "error_parity.plotting.plot_polygon_edges", false]], "plot_postprocessing_frontier() (in module error_parity.plotting)": [[0, "error_parity.plotting.plot_postprocessing_frontier", false]], "plot_postprocessing_solution() (in module error_parity.plotting)": [[0, "error_parity.plotting.plot_postprocessing_solution", false]], "predict() (error_parity.threshold_optimizer.relaxedthresholdoptimizer method)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer.predict", false]], "randomizedclassifier (class in error_parity.classifiers)": [[0, "error_parity.classifiers.RandomizedClassifier", false]], "relaxedthresholdoptimizer (class in error_parity.threshold_optimizer)": [[0, "error_parity.threshold_optimizer.RelaxedThresholdOptimizer", false]], "roc_convex_hull() (in module error_parity.roc_utils)": [[0, "error_parity.roc_utils.roc_convex_hull", false]]}, "objects": {"error_parity": [[0, 0, 0, "-", "binarize"], [0, 0, 0, "-", "classifiers"], [0, 0, 0, "-", "cvxpy_utils"], [0, 0, 0, "-", "evaluation"], [0, 0, 0, "-", "pareto_curve"], [0, 0, 0, "-", "plotting"], [0, 0, 0, "-", "roc_utils"], [0, 0, 0, "-", "threshold_optimizer"]], "error_parity.binarize": [[0, 1, 1, "", "compute_binary_predictions"]], "error_parity.classifiers": [[0, 2, 1, "", "BinaryClassifier"], [0, 2, 1, "", "BinaryClassifierAtROCDiagonal"], [0, 2, 1, "", "Classifier"], [0, 2, 1, "", "EnsembleGroupwiseClassifiers"], [0, 2, 1, "", "RandomizedClassifier"]], "error_parity.classifiers.RandomizedClassifier": [[0, 3, 1, "", "construct_at_target_ROC"], [0, 3, 1, "", "find_points_for_target_ROC"], [0, 3, 1, "", "find_weights_given_two_points"]], "error_parity.cvxpy_utils": [[0, 1, 1, "", "compute_fair_optimum"], [0, 1, 1, "", "compute_halfspace_inequality"], [0, 1, 1, "", "compute_line"], [0, 1, 1, "", "make_cvxpy_halfspace_inequality"], [0, 1, 1, "", "make_cvxpy_point_in_polygon_constraints"]], "error_parity.evaluation": [[0, 1, 1, "", "eval_accuracy_and_equalized_odds"], [0, 1, 1, "", "evaluate_fairness"], [0, 1, 1, "", "evaluate_performance"], [0, 1, 1, "", "evaluate_predictions"], [0, 1, 1, "", "evaluate_predictions_bootstrap"]], "error_parity.pareto_curve": [[0, 1, 1, "", "compute_inner_and_outer_adjustment_ci"], [0, 1, 1, "", "compute_postprocessing_curve"], [0, 1, 1, "", "fit_and_evaluate_postprocessing"], [0, 1, 1, "", "get_envelope_of_postprocessing_frontier"]], "error_parity.plotting": [[0, 1, 1, "", "plot_polygon_edges"], [0, 1, 1, "", "plot_postprocessing_frontier"], [0, 1, 1, "", "plot_postprocessing_solution"]], "error_parity.roc_utils": [[0, 1, 1, "", "calc_cost_of_point"], [0, 1, 1, "", "compute_global_roc_from_groupwise"], [0, 1, 1, "", "compute_roc_point_from_predictions"], [0, 1, 1, "", "roc_convex_hull"]], "error_parity.threshold_optimizer": [[0, 2, 1, "", "RelaxedThresholdOptimizer"]], "error_parity.threshold_optimizer.RelaxedThresholdOptimizer": [[0, 3, 1, "", "constraint_violation"], [0, 3, 1, "", "cost"], [0, 3, 1, "", "demographic_parity_violation"], [0, 3, 1, "", "equalized_odds_violation"], [0, 3, 1, "", "error_rate_parity_constraint_violation"], [0, 3, 1, "", "fit"], [0, 4, 1, "", "global_prevalence"], [0, 4, 1, "", "global_roc_point"], [0, 4, 1, "", "groupwise_prevalence"], [0, 4, 1, "", "groupwise_roc_data"], [0, 4, 1, "", "groupwise_roc_hulls"], [0, 4, 1, "", "groupwise_roc_points"], [0, 3, 1, "", "predict"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property"}, "terms": {"": [0, 4, 11], "0": [0, 2, 3, 4, 5, 6, 7, 11], "000": [5, 7], "00032425": 7, "000423541": 6, "000577791": 5, "000851617415307666": 3, "003": 7, "01": [0, 5, 6, 7], "02": [0, 5, 6, 7], "021": 6, "03": [0, 3, 5, 6, 7], "034": 5, "036": 7, "03632111": 7, "04": [0, 5, 6, 7], "04159198": 7, "045": 5, "04660537497114363": 2, "0498": 3, "05": [0, 2, 5, 6, 7, 11], "06": [0, 5, 6, 7], "060": 5, "0626535": 6, "063": 5, "0673": 3, "07": [0, 5, 6, 7], "07881903": 6, "08": [0, 5, 6, 7], "09": [0, 5, 6, 7], "091": 6, "092": 7, "098": 6, "0x11bd3abc0": 3, "0x132837f70": 6, "0x15fc63040": 5, "0x16d649ba0": 7, "1": [0, 3, 4, 5, 6, 7, 11], "10": [3, 4, 5, 6, 7], "100": [3, 7], "1000": 0, "10094174": 5, "100_000": [2, 6, 7], "10552007": 7, "11": [0, 3, 5, 6, 7], "111": 2, "1126535": 6, "114": 2, "114m": 2, "115": 2, "11605835": 7, "12": [0, 3, 5, 6, 7], "12562792": 5, "12570": 5, "13": [0, 3, 5, 6, 7], "14": [0, 3, 5, 6, 7], "14018904": 5, "144": 7, "14441478": 5, "14712885": 5, "149": 7, "15": [0, 2, 3, 5, 6, 7], "151": 7, "15335531408011688": 7, "16": [0, 3, 5, 6, 7], "16804655919862382": 6, "17": [0, 3, 5, 6, 7], "179": 6, "18": [0, 2, 3, 5, 6, 7], "185": 6, "19": [0, 2, 3, 5, 6, 7], "190": 6, "191": 6, "19386": 5, "198": 5, "199": 7, "1_000_000": [2, 6, 7], "1e": [2, 3, 5], "1min": 3, "1st": [0, 4], "2": [0, 3, 4, 5, 6, 7], "20": [2, 3, 5], "200": [0, 3, 5, 6, 7], "20063396358747293": 5, "2016": 11, "2018": [3, 4], "2020": 3, "2023": 3, "2024": [8, 11], "21": [2, 3, 5], "213": 5, "219": 6, "22": [2, 5], "227": 5, "23": [2, 5, 6, 7], "23852472": 7, "24": [2, 5], "25": [2, 5, 6, 7], "259521": 5, "26": [2, 5, 6, 7], "27": [2, 5], "28": [2, 5], "286": 4, "29": [2, 5], "29518": 5, "2_max": 5, "2_valid": 5, "2e": 5, "2min": [3, 5], "2nd": [0, 4], "3": [0, 2, 3, 4, 5, 6, 7], "30": [2, 5], "31": 2, "322": 7, "3236107": 4, "336": 7, "34": 4, "36": [5, 7], "37": 5, "38": 7, "39": [2, 3, 4], "3min": 2, "3rd": 4, "4": [0, 2, 3, 4, 5, 6, 7], "40": 3, "41": 7, "42": [0, 2, 4, 5], "4356": 2, "45": 5, "4min": 2, "5": [0, 2, 3, 4, 5, 6, 7], "50": 3, "50k": 3, "5446858522526532": 4, "5450051516946736": 4, "55350038": 6, "56": 2, "5621626781395467": 4, "5626382117978613": 4, "58530983": 6, "5e": 3, "6": [0, 3, 4, 5, 6, 7], "60350038": 6, "6308792859288503": 4, "6315490137178332": 4, "64": 6, "65": 0, "65148158": 5, "67": 5, "678": 7, "69338557": 7, "69752148": 5, "6_test": 5, "7": [0, 2, 3, 4, 5, 6, 7], "7000000000000001": 2, "70148158": 5, "7021789994933921": 4, "7028697217125459": 4, "71687162": 7, "72": 2, "73": 6, "7358789362364587": 4, "736245988197536": 4, "74338557": 7, "75": 5, "76": 7, "7607125098715961": 3, "7607315908005187": 3, "79": 5, "7_test": 4, "8": [0, 2, 3, 4, 5, 6, 7], "80": [2, 5], "805": 6, "80763": 2, "82": 2, "821": 6, "83": 6, "84": 7, "85": 5, "867": 3, "87": 3, "885": 3, "9": [0, 2, 3, 4, 5, 6, 7], "90": 3, "95": [0, 3], "955": 5, "97": 0, "A": [0, 5], "And": 4, "As": [0, 2, 6, 7], "By": [0, 3], "For": 0, "If": [0, 4], "In": [0, 3, 5], "It": 8, "No": 5, "On": [3, 5], "One": 0, "Or": 11, "That": [0, 3], "The": [0, 4, 5, 8, 11], "Will": 0, "_": [2, 3, 7], "__": 3, "__call__": [0, 6, 7], "__version__": [2, 3, 5, 6, 7], "_description_": 0, "_fair": 11, "_high": 3, "_low": 3, "_max": 4, "_mean": 3, "_moment": 3, "_pmf_predict": 3, "_test": 4, "_valid": 4, "abc": [0, 2], "abov": [2, 6, 7], "absolut": 0, "ac": 4, "acc": [3, 5, 6, 7], "acc_unfair_best": 5, "acc_unfair_threshold": 5, "acc_val": 5, "accord": [0, 4], "accuraci": [0, 1, 5, 6, 8], "accuracy_fit": 5, "accuracy_mean": 3, "accuracy_mean_test": 0, "accuracy_scor": [5, 6, 7], "accuracy_v": [6, 7], "achiev": [0, 2, 8, 11], "across": 0, "acruz": 4, "acs_categorical_col": [4, 5], "acs_data": 4, "acs_task": [4, 5], "acsdatasourc": 4, "acsemploy": 4, "acsincom": [1, 4], "acsmobl": 4, "acspubliccoverag": 4, "acstraveltim": 4, "actual": [2, 5, 6, 7], "actual_point": [5, 6, 7], "actual_preval": [2, 5, 6, 7], "ad": 4, "add": [2, 4, 6, 7], "addit": 8, "adjust": [0, 5, 6, 7, 11], "after": 0, "against": 2, "agarw": 3, "al": [3, 11], "alaska": 5, "algorithm": [1, 8, 11], "all": [0, 2, 4, 6, 8], "all_acs_task": 4, "all_data": 5, "all_group_color": [5, 6, 7], "all_groups_name_map": 5, "allow": [0, 8], "alon": 1, "alreadi": [0, 2, 3, 6, 7], "also": 3, "alwai": 4, "ambigu": 4, "amer": 3, "american": 5, "among": [0, 5, 6, 7], "an": [0, 1, 3, 11], "anc": [4, 5], "ancestri": [4, 5], "andr": [8, 11], "andrefcruz": 0, "ani": [0, 7, 8, 11], "annot": 3, "anoth": 0, "api": [8, 11], "append": [4, 5, 6, 7], "appli": 0, "appropri": 0, "ar": [0, 7, 8, 11], "arang": [2, 3, 5, 6, 7], "argument": 0, "arrai": [0, 2, 3], "art": 3, "as_fram": 3, "ascend": 4, "asian": [3, 5], "assert": [2, 4, 6, 7], "associ": 0, "assum": [0, 2, 5, 6, 7], "astyp": [2, 3, 4, 5, 6, 7], "attain": [1, 6, 8], "attribut": [0, 3, 4], "author": [8, 11], "auto": [2, 4, 5], "avail": [0, 1, 8, 11], "avoid": 0, "awai": 4, "ax": 0, "ax_kwarg": 3, "axi": 0, "axvlin": 3, "b": 0, "base": [0, 1, 3, 8, 11], "baselin": 2, "basi": 8, "basicconfig": [5, 6, 7], "basicproblem": 4, "bbox_to_anchor": 3, "becaus": 2, "belong": [0, 2, 4, 6, 7], "below": [2, 3], "best": [2, 5, 6, 7], "best_accuraci": 2, "best_combi": 2, "best_eq_odds_viol": 2, "between": [0, 1, 5, 8], "bf": 2, "bf_acc": 2, "bf_eq_odd": 2, "big": 4, "big_group": 4, "big_groups_filt": 4, "bigstar": [3, 5], "binar": [2, 3, 9], "binari": [0, 4, 11], "binarize_predict": 2, "binarized_pr": 2, "binaryclassifi": 0, "binaryclassifieratrocdiagon": 0, "birth": [4, 5], "bit": 0, "black": [0, 3, 4, 5, 7], "blob": 0, "booktitl": [8, 11], "bool": [0, 4], "boolean": 2, "bootstrap": [0, 3, 5, 6, 7], "bootstrap_kwarg": 0, "borderaxespad": 3, "both": 0, "bound": 0, "box": [0, 7], "branch": 8, "brute": 1, "brute_force_solut": 2, "c": [0, 5], "calc_cost_of_point": [0, 5, 6, 7], "calcul": [0, 7], "call": [0, 3], "callabl": [0, 7, 11], "can": [0, 2, 3, 4, 5, 6, 7, 8, 11], "case": 0, "cat_col": 5, "categor": [4, 5], "categori": [4, 5], "ceil": 2, "cell": [3, 5], "center": 3, "chang": 4, "character": 2, "check": [3, 4, 7, 8], "chosen": 11, "ci": 3, "cit": [4, 5], "citizenship": [4, 5], "class": [0, 4, 5], "classifi": [2, 9, 11], "classifier_": 11, "clf": [2, 5, 6, 7], "clock": 0, "clone": 11, "close": 7, "code": [4, 5, 8], "col": [4, 5], "collect": 2, "color": [0, 3, 5, 6, 7], "color_palett": [5, 6, 7], "colorblind": 3, "cols_ord": 4, "column": [0, 3, 4, 5], "com": [0, 3, 11], "combi": 2, "combin": [0, 2], "comment": 3, "common": [0, 3], "commun": 11, "companion": 5, "compar": [0, 11], "comparison": 1, "compat": 8, "compos": 5, "comput": [0, 5, 11], "compute_binary_predict": 0, "compute_constant_clf_accuraci": 3, "compute_fair_optimum": 0, "compute_global_roc_from_groupwis": 0, "compute_halfspace_inequ": 0, "compute_inner_and_outer_adjustment_ci": 0, "compute_lin": 0, "compute_postproc_kwarg": 3, "compute_postprocessing_curv": [0, 3, 5, 6, 7], "compute_roc_point_from_predict": [0, 5, 6, 7], "conclus": 2, "confer": [8, 11], "confid": 0, "confidence_pct": 0, "consider": 3, "const_pr": [3, 5, 6, 7], "const_predictor_acc": 4, "constant": [0, 2, 3, 6], "constant_clf_accuraci": 3, "constant_clf_disp": 0, "constant_clf_perf": [0, 3, 5, 6, 7], "constrain": [2, 5], "constraint": [0, 1, 3, 5, 6, 11], "constraint_nam": 0, "constraint_viol": [0, 5, 7], "construct": [0, 2], "construct_at_target_roc": 0, "constructor": 0, "contain": [0, 5, 6, 7], "content": 3, "continu": [0, 5], "contribut": 11, "converg": [5, 6, 7], "convex": [0, 5, 6, 7, 11], "convexhul": [2, 5, 6, 7], "copi": 4, "correct": 4, "correl": 0, "correspond": [0, 3], "cost": [0, 5, 6, 7], "couldn": 5, "counter": 0, "cow": [4, 5], "cp": [2, 5, 6, 7], "cpu": [2, 3, 5, 6, 7], "cpu_count": [0, 3], "creat": [0, 4], "criteria": [3, 11], "criterion": 11, "cruz": [3, 8, 11], "cruz2024unprocess": [8, 11], "csv": [4, 5], "curios": [1, 2], "curr_accuraci": 2, "curr_const_clf_acc": 3, "curr_data": 4, "curr_eq_odds_viol": 2, "curr_realized_roc_point": [5, 6, 7], "curr_result": 2, "curr_typ": 4, "current": [2, 11], "curv": [0, 5, 6, 7, 11], "cvxpy": [0, 2, 5, 6, 7, 11], "cvxpy_point": 0, "cvxpy_util": 9, "d": 0, "data": [0, 1, 11], "data_1": 0, "data_dir": [4, 5], "data_nam": 0, "data_sourc": 4, "data_triplet": 0, "data_tupl": 2, "data_typ": [0, 5], "datafram": [0, 4, 5], "dataset": [0, 1, 3, 5, 6, 7], "datasheet": 4, "dear": [4, 5], "deepcopi": 4, "def": [2, 3, 4, 5, 6, 7], "default": 0, "default_rng": [2, 6, 7], "defin": [0, 2, 6, 7], "definit": 4, "delet": 4, "demograph": [0, 1, 11], "demographic_par": [7, 11], "demographic_parity_viol": 0, "depend": 4, "descript": 1, "detail": 11, "determinist": [0, 2], "dev": [2, 5, 6, 7], "develop": 11, "dey": [4, 5], "df": [0, 4, 5], "df_to_numpi": 4, "di": [4, 5], "diag": 0, "diagon": 0, "dict": [0, 2, 3, 5], "dictionari": 0, "diff": 3, "differ": [0, 2, 3], "dir_path": 5, "disabl": [4, 5], "disadvantag": 3, "discard": 4, "discret": 0, "disk": [4, 5], "disp_col": 0, "disp_metr": [0, 3, 5, 6, 7], "dispar": 0, "disparity_metr": 7, "disparity_metric_map": 7, "displai": [0, 5], "disproportion": 3, "dist": [5, 6, 7], "distanc": [0, 5], "distribut": 0, "divid": 0, "do": 4, "document": 11, "don": 4, "download": [1, 3, 4, 5], "dpi": [3, 5, 6, 7], "draw": 0, "drem": [4, 5], "drop": 4, "dtype": [2, 3, 4], "dummi": [0, 2, 3, 6], "dump": 4, "dure": 3, "dynam": 4, "e": [0, 3, 4, 6, 8, 11], "each": [0, 2, 3, 5, 6, 7, 11], "easili": [5, 8], "effici": 2, "either": 4, "elem": 3, "els": [2, 3, 4, 5], "empir": 5, "empirical_constraint_viol": 7, "empirical_metr": 7, "employ": [4, 5], "encapsul": 0, "encod": 4, "enforc": [0, 4], "ensembl": 5, "ensemblegroupwiseclassifi": 0, "entir": 5, "enumer": [5, 6, 7], "envelop": 0, "environ": [3, 5], "epsilon_toler": [2, 5, 6, 7], "eq": [2, 6], "eq_odd": 2, "eq_odds_viol": 2, "equal": [0, 1, 2, 3, 7, 11], "equalized_odd": [0, 2, 3, 5, 6, 7, 11], "equalized_odds_diff": [3, 5, 6, 7], "equalized_odds_diff_mean": 3, "equalized_odds_diff_mean_test": 0, "equalized_odds_viol": 0, "equalizedodd": 3, "error": [0, 5, 6, 7], "error_par": [2, 3, 5, 6, 7, 9, 11], "error_rate_parity_constraint_viol": 0, "error_typ": 0, "eskimo": 3, "esp": [4, 5], "esr": [4, 5], "estim": [0, 3], "et": [3, 11], "eval": 0, "eval_accuracy_and_equalized_odd": [0, 2, 5, 6], "eval_data": [0, 3, 5, 6, 7], "evalu": [2, 3, 5, 6, 7, 9], "evaluate_fair": [0, 7], "evaluate_perform": 0, "evaluate_predict": 0, "evaluate_predictions_bootstrap": [0, 3], "exactli": [0, 2], "exampl": [0, 2, 6, 7, 8, 11], "example_equ": 1, "exce": 4, "exhaust": 2, "exist": [0, 5], "exist_ok": 4, "expandus": [4, 5], "expect": [0, 5, 6, 7], "experi": 4, "exponentiatedgradi": 3, "exponentiatedgradientexponentiatedgradi": 3, "express": 0, "exterior": 0, "extra": [0, 2, 3, 5, 6, 7], "extract": 0, "f": [2, 3, 4, 5, 6, 7], "fair": [0, 1, 8, 11], "fair_clf": 11, "fairlearn": 3, "fairness_constraint": [0, 3, 5, 6], "fals": [0, 3, 4, 5, 6, 7], "false_neg_cost": [0, 2, 5, 6, 7], "false_negative_cost": 0, "false_negative_rate_par": 7, "false_pos_cost": [0, 2, 5, 6, 7], "false_positive_cost": 0, "false_positive_rate_par": [7, 11], "fast": 11, "faster": 0, "featur": [0, 2, 4, 5, 6, 7], "feature_col": 5, "femal": 3, "fer": [4, 5], "fetch_adult": 3, "few": [3, 5], "fig_kwarg": 0, "figsiz": [3, 5, 6, 7], "figur": [0, 3], "file": [1, 5, 8], "file_prefix": 4, "filter": 2, "find": [0, 5, 11], "find_points_for_target_roc": 0, "find_weights_given_two_point": 0, "finer": 2, "first": 0, "fit": [0, 2, 3, 6, 7, 11], "fit_and_evaluate_postprocess": 0, "fit_data": [0, 3, 5, 6, 7], "float": [0, 2, 3, 4, 6, 7], "fn": [0, 3], "fn_cost": [2, 5, 6, 7], "fnr": [0, 6, 7], "folder": [4, 11], "folktabl": [1, 5], "follow": [0, 3, 4, 5, 6, 7, 8], "fontsiz": 3, "forc": [0, 1, 5, 6, 7], "form": 0, "format": 0, "formul": 2, "forum": [8, 11], "found": [0, 2, 5, 6, 7, 11], "fp": [0, 3], "fp_cost": [2, 5, 6, 7], "fpr": [0, 1, 5, 6, 7, 11], "fpr_diff": 7, "from": [0, 2, 3, 4, 11], "frontier": [0, 1, 5], "fulfil": [0, 2, 11], "full": [2, 8], "function": 0, "functool": 4, "further": 3, "g": [0, 3, 4], "gaussian": [2, 6, 7], "gca": 3, "gcl": [4, 5], "gener": [0, 2, 4, 5, 6, 7], "generate_synthetic_data": [2, 6, 7], "get_data": 4, "get_envelope_of_postprocessing_fronti": 0, "getattr": [4, 5], "git": 11, "github": [0, 3, 5, 8, 11], "given": [0, 1, 4, 11], "global": [0, 2, 3, 4, 5, 6, 7], "global_clf_realized_roc_point": [5, 6, 7], "global_color": [5, 6, 7], "global_preval": 0, "global_roc_point": [0, 5, 6, 7], "go": 3, "goe": 0, "gonna": 4, "got": 2, "granular": 0, "grei": 3, "grid": [2, 3, 5, 6, 7], "group": [0, 2, 3, 4, 5, 6, 7, 8, 11], "group_filt": [2, 5, 6, 7], "group_kei": 2, "group_membership": 2, "group_name_map": [0, 5], "group_nois": [2, 6, 7], "group_score_pr": 2, "group_siz": 4, "group_sizes_label_neg": 0, "group_sizes_label_po": 0, "group_test": 11, "group_thr": 2, "group_threshold": 2, "group_threshold_combin": 2, "group_to_clf": 0, "groupwis": 0, "groupwise_label_neg_weight": 0, "groupwise_label_pos_weight": 0, "groupwise_preval": 0, "groupwise_roc_data": 0, "groupwise_roc_hul": 0, "groupwise_roc_point": [0, 5, 6, 7], "gt": [3, 5, 6, 7], "ha": [0, 2, 3, 4, 5, 6, 7], "halfspac": 0, "hand": 0, "handl": 0, "hardt": [3, 8, 11], "have": [0, 2, 4, 6, 7, 11], "hawaiian": 5, "header": 4, "helper": [0, 2, 6, 7], "here": 11, "hi_thr": 2, "high": [2, 6, 7], "high_thr": 2, "higher": 0, "highest": 4, "horizon": 4, "horizont": 0, "horizontalalign": 3, "how": 0, "hpt": 0, "hstack": [3, 5], "html": [3, 5], "http": [0, 3, 8, 11], "hull": [0, 5, 6, 7, 11], "hull_point": 0, "hyperparamet": 3, "i": [0, 2, 3, 4, 5, 6, 7, 8, 11], "iclr": 11, "id": [8, 11], "idx": [0, 2, 4, 5, 6, 7], "ignor": 0, "ignore_col": 5, "impact": 3, "import": [2, 3, 4, 5, 6, 7, 11], "inaccur": 0, "includ": [0, 8], "inconsist": 0, "increas": 3, "indent": 4, "index": [2, 4, 6, 7, 8], "index_col": 5, "index_label": 4, "indian": [3, 5], "individu": 3, "induc": [2, 6, 7], "inequ": [0, 2, 6, 7], "inf": 0, "info": [5, 6, 7], "inform": 11, "initi": 0, "inner": 0, "inner_ytick": 0, "inproc_clf": 3, "inproc_postproc_results_df": 3, "inproc_test_result": 3, "inproceed": [8, 11], "inprocess": [1, 3], "input": 0, "instal": [2, 3, 5, 6, 7], "instead": 0, "int": [0, 2, 3, 4, 5, 6, 7], "integ": [2, 4, 6, 7], "intercept": 0, "interfac": 0, "interior": [0, 11], "intern": [0, 8, 11], "interpol": 0, "interv": 0, "interven": 3, "intervent": [0, 3], "introduc": 3, "invalid": 0, "ipynb": [1, 5], "isclos": [2, 4], "isinst": 2, "island": 3, "item": [2, 3], "iter": 2, "itertool": [2, 5, 6, 7], "its": [0, 8, 11], "job": 0, "jr03sfwsb": [8, 11], "json": 4, "jupyt": [3, 5, 8], "just": [0, 2, 6, 7], "jwtr": [4, 5], "k": 0, "keep": 4, "kei": [0, 3], "kept": 4, "key_1": 0, "kwarg": [0, 3], "l": [0, 3], "l2": [5, 6, 7], "label": [0, 2, 3, 4, 5, 6, 7], "label_col": 5, "lambda": [2, 5, 6, 7, 11], "larg": 0, "larger": [0, 5, 6, 7], "largest_groups_name_map": 5, "later": 4, "learn": [0, 8, 11], "least": 4, "left": [0, 3], "leftarrow": [3, 5, 6, 7], "legend": [0, 3, 5], "len": [0, 2, 4, 5, 6, 7], "level": [0, 2, 5, 6, 7, 11], "lgbmclassifi": 3, "lgbmclassifierlgbmclassifi": 3, "lie": 0, "lightgbm": 3, "linalg": [5, 6, 7], "line": [0, 3], "linear": 0, "linestyl": [3, 5, 6, 7], "list": [0, 4, 5, 6, 7], "ll": 3, "ln": 0, "lo_thr": 2, "load": [3, 4, 5], "load_ac": 4, "load_acs_data": 5, "loc": [3, 4], "local": 11, "log": [2, 3, 5, 6, 7], "log_loss": 0, "logic": 0, "loss": [0, 5, 6, 7], "low": [2, 4, 6, 7], "low_thr": 2, "lower": 0, "lowest": [0, 4], "lp": [0, 6], "lp_acc": [2, 6], "lp_eq_odd": [2, 6], "lt": [3, 5, 6, 7], "lw": [3, 5, 6, 7], "m": [2, 3, 5, 6, 7], "made": 11, "mai": [0, 3, 5, 11], "main": [0, 3], "make": [0, 4], "make_cvxpy_halfspace_inequ": 0, "make_cvxpy_point_in_polygon_constraint": 0, "male": 3, "mani": 0, "map": [0, 1, 2, 4, 6, 7, 8], "map_to_sequenti": 4, "mar": [4, 5], "marit": [4, 5], "marker": [3, 5, 6, 7], "markers": [5, 6, 7], "match": [0, 11], "materi": 8, "matplotlib": [0, 3, 5, 6, 7], "max": [2, 3, 4, 5, 6, 7], "max_it": 3, "max_roc_tick": [0, 2, 6, 7], "max_sensitive_group": 4, "maxim": 2, "maximum": [0, 5, 7], "mean": [2, 3, 4, 5, 6, 7], "measur": [5, 6, 7], "meet": 11, "membership": 0, "method": [0, 3], "metric": [0, 1, 2, 6, 7], "metric_nam": 0, "metric_valu": 0, "middle_scores_filt": 2, "mig": [4, 5], "mil": [4, 5], "militari": [4, 5], "min": 4, "minim": [5, 6, 7], "minimum": 3, "minut": [2, 3, 5], "mkdir": 4, "ml": 11, "mobil": [4, 5], "model": [0, 5, 6, 7, 11], "model_nam": [0, 3, 5], "model_select": [3, 4], "modul": [8, 9], "moritz": [8, 11], "multi": 5, "multipl": [0, 5], "must": [0, 4], "n": [2, 3, 6], "n_color": [5, 6, 7], "n_dim": 0, "n_group": [0, 2, 5, 6, 7], "n_hull_point": 0, "n_job": [0, 3, 5, 6, 7], "n_point": 0, "n_roc_dim": 0, "n_sampl": [2, 6, 7], "name": [0, 5], "nan": 0, "nativ": [4, 5], "nbviewer": [3, 5], "ndarrai": [0, 3], "necessari": [0, 1, 4, 11], "need": [0, 4, 7], "neg": [0, 2, 3, 5, 6, 7], "net": [8, 11], "new": [0, 2], "new_test_s": 4, "nois": [2, 6, 7], "none": [0, 2, 3, 4, 5, 6], "norm": [5, 6, 7], "normal": [2, 6, 7], "note": [0, 2, 3, 4, 5, 6], "notebook": [2, 3, 4, 5, 6, 7, 8, 11], "now": [4, 11], "np": [0, 2, 3, 4, 5, 6, 7], "nu": 3, "num_determ_thr": 2, "num_featur": 0, "num_group": 0, "num_sampl": 0, "number": [0, 2, 4], "numer": 3, "numpi": [0, 2, 3, 4, 5, 6, 7], "nuniqu": 4, "o": [0, 3], "object": [0, 3, 4, 5], "obtain": 0, "occp": [4, 5], "occup": [4, 5], "odd": [0, 1, 2, 3, 7, 11], "off": [1, 6, 8], "omit": 0, "onc": 0, "one": [0, 3], "ones": 4, "onli": [0, 4], "onward": 4, "openreview": [8, 11], "oper": 4, "opportun": 11, "optim": [0, 2, 11], "optima": 0, "optimum": 0, "option": [0, 4, 5, 6, 7], "or_": 4, "oral": 11, "ord": [5, 6, 7], "order": [0, 4], "org": [3, 5], "origin": [4, 5, 6, 7], "other": [0, 1, 5, 11], "other_df": 4, "other_idx": 4, "our": [2, 6, 7], "out": [0, 1, 2, 8], "outcom": 0, "outer": 0, "outer_ytick": 0, "output": [0, 11], "over": [0, 2, 11], "overrid": 0, "p": [0, 3, 5, 7], "p1": 0, "p2": 0, "pac": 3, "packag": [3, 8, 9, 11], "page": [3, 5, 8], "pair": 0, "palett": [3, 5, 6, 7], "panda": [4, 5], "paper": 4, "parallel": 0, "paramet": [0, 4], "parameter": [5, 6, 7], "parent": [4, 5], "pareto": [0, 1, 5], "pareto_curv": [3, 5, 6, 7, 9], "pariti": [0, 1, 5, 6, 7], "pars": [1, 5], "partial": [2, 11], "pass": 0, "path": [4, 5], "pathlib": [4, 5], "pd": [0, 4, 5], "per": [0, 2, 6, 7], "percentil": [0, 3], "perf_col": 0, "perf_metr": [0, 3, 5, 6, 7], "perform": [0, 2], "person": 4, "pip": [2, 3, 5, 6, 7, 11], "place": [4, 5], "pleas": [3, 5], "plot": 9, "plot_diagon": 0, "plot_global_optimum": 0, "plot_group_optima": 0, "plot_group_triangul": 0, "plot_polygon_edg": 0, "plot_postprocessing_fronti": [0, 3, 5, 6, 7], "plot_postprocessing_solut": [0, 5, 6, 7], "plot_relax": [0, 7], "plot_roc_curv": [0, 5, 6, 7], "plot_roc_hul": [0, 5, 6, 7], "plt": [3, 5, 6, 7], "plu": 4, "pobp": [4, 5], "point": [0, 4, 11], "point_a": 0, "point_b": 0, "polygon": 0, "polygon_point": 0, "polygon_vertic": 0, "pos_label": 3, "posit": [0, 2, 3, 5, 6, 7], "possibl": 0, "possibli": [0, 3, 11], "post": 0, "postproc_clf": [2, 5], "postproc_results_df": [0, 3, 5, 6, 7], "postprocess": [0, 1, 3, 5, 11], "postprocessed_clf": [0, 5, 6, 7], "powpuma": [4, 5], "ppr": [0, 1], "ppr_diff": 7, "pre": [0, 2, 4, 5, 6, 7], "precis": [0, 2], "pred": 2, "predict": [0, 2, 3, 4, 5, 6, 7, 11], "predict_method": [0, 3, 6, 7], "predict_proba": [0, 3, 5, 11], "predictor": [0, 1, 3, 8, 11], "prefix": 4, "present": 11, "preval": [0, 2, 4, 5, 6, 7, 11], "print": [0, 2, 3, 4, 5, 6, 7], "probabl": [0, 5], "problem": [0, 2], "process": [0, 1, 4, 5], "produc": [0, 2, 6, 7], "product": [2, 5, 6, 7], "properti": 0, "protect": [0, 4], "provid": [0, 2, 11], "public": 8, "puma": [4, 5], "py": 0, "pypi": 11, "pyplot": [3, 5, 6, 7], "r": [0, 3, 5, 6, 7, 11], "rac1p": [4, 5], "race": [3, 4, 5], "rais": 0, "ran": [2, 5, 6, 7], "rand_clf": 0, "random": [0, 2, 3, 5, 6, 7, 11], "random_se": 0, "random_st": [3, 4], "randomforestclassifi": 5, "randomforestclassifierrandomforestclassifi": 5, "randomizedclassifi": 0, "randomli": 0, "rang": [0, 2, 4, 5, 6, 7], "rate": [0, 2, 5, 6, 7, 8], "ratio": 0, "ravel": [2, 7], "rc": [3, 5, 6, 7], "re": [0, 4], "read": 5, "read_csv": 5, "readm": 8, "real": [0, 11], "realiz": [0, 2], "realized_roc_point": [5, 6, 7], "reason": 7, "recal": 0, "red": 3, "reduc": 4, "reduct": 3, "redund": 0, "refer": 8, "rel": [0, 4], "relat": 0, "relationship": [4, 5], "relax": [0, 1, 5, 6, 7, 11], "relaxedthresholdoptim": [0, 1, 2, 5, 6, 7, 11], "relp": [4, 5], "remain": 4, "remov": 4, "remove_state_col_lat": 4, "render": [3, 5], "replac": 7, "repo": 11, "report": 0, "repositori": 8, "repres": 0, "represent": [3, 5, 8, 11], "reproduc": 0, "requir": [0, 1, 2, 3, 5, 6, 7], "rerun": [3, 5], "reshap": [2, 6, 7], "respect": 0, "result": [0, 2, 3, 7], "retriev": 0, "return": [0, 2, 3, 4, 5, 6, 7], "return_groupwise_metr": 0, "return_x_i": 3, "rf_clf": 5, "right": [0, 3, 4], "rightarrow": [3, 5, 6, 7], "rng": [2, 6, 7], "roc": [0, 11], "roc_convex_hul": 0, "roc_curv": [2, 5, 6, 7], "roc_curve_data": 0, "roc_point": 0, "roc_util": [5, 6, 7, 9], "root": [5, 6, 7], "root_dir": 4, "rotat": 3, "row": [0, 4], "rule": 0, "run": [1, 2, 3], "runtimeerror": 0, "s_fit": 5, "s_group": 2, "s_other": 3, "s_test": [3, 5], "s_train": [3, 5], "s_val": [3, 5], "same": [0, 3, 7], "sampl": [0, 2, 4, 6, 7], "saniti": 4, "save": 4, "save_to_disk": 4, "scale": [2, 6, 7], "scatterplot": 3, "scikit": 0, "scipi": [2, 5, 6, 7], "score": [0, 8, 11], "score_predictor": 0, "seaborn": [3, 5, 6, 7], "search": [2, 3], "second": 0, "see": 11, "seed": [0, 2, 3, 4, 5, 6, 7], "seem": 4, "seen": 7, "select": 4, "self": 0, "sensit": [0, 3, 4], "sensitive_attr": [0, 2, 5], "sensitive_attribut": [0, 3, 5, 7], "sensitive_col": [3, 5], "sensitive_col_invers": 3, "sensitive_col_map": 3, "sensitive_featur": 3, "separ": 0, "sequenc": 0, "servic": [4, 5], "set": [0, 3, 4, 5, 6, 7, 11], "seven": [8, 11], "sever": 0, "sex": [3, 4, 5], "shape": [0, 4], "should": [0, 3, 4], "show": [0, 3, 5, 6, 7], "show_data_typ": [0, 3, 5, 6, 7], "show_results_on": 3, "shown": 0, "shuffl": 4, "simpli": [2, 6, 7], "singl": [0, 2, 5], "size": [0, 2, 4, 5, 6, 7], "sklearn": [0, 2, 3, 4, 5, 6, 7, 11], "slack": [0, 3], "slope": 0, "slower": 3, "small": [3, 5, 6, 7], "smaller": [5, 6, 7], "sn": [3, 5, 6, 7], "so": [2, 4, 6, 7], "socialfound": [3, 11], "societ": 8, "solut": [0, 11], "solv": 0, "solve_brute_forc": 2, "solve_lp": 2, "solver": [0, 1, 5, 6, 7], "some": [0, 3, 11], "sort": [0, 4, 5], "sourc": [0, 11], "spatial": [2, 5, 6, 7], "specif": [0, 4, 11], "specifi": 0, "split": [3, 4], "split_folktables_task": 4, "split_x_y_": 5, "src": 0, "st": [4, 5], "stand": 1, "standard": 0, "start": 4, "state": [0, 3, 4], "state_col": 4, "state_col_data": 4, "state_list": 4, "static": 0, "statu": [4, 5, 6, 7], "step": 3, "str": [0, 4, 5], "stratifi": [3, 4], "stratify_by_st": 4, "strict": 11, "style": [3, 5, 6, 7], "sub": 8, "subfolder_nam": 4, "sum": [0, 2, 5, 6, 7], "superior": 2, "supp": 8, "supplementari": 8, "survei": 4, "survey_year": 4, "sy": [2, 3, 4, 5, 6, 7], "synthet": [1, 2], "t": [4, 5, 6, 7], "take": [0, 3, 5], "target": [0, 2, 4, 5, 6], "target_fpr": 0, "target_point": [0, 5, 6, 7], "target_roc_point": 0, "target_tpr": 0, "task": [4, 5], "task_nam": [4, 5], "task_obj": [4, 5], "term": 0, "test": [0, 3, 4, 5], "test_data": 4, "test_df": 4, "test_idx": 4, "test_siz": [3, 4], "them": [2, 3, 5, 6, 7], "theoret": [0, 6, 7], "theoretical_global_cost": [6, 7], "thi": [0, 2, 3, 4, 5, 6, 7, 11], "third": 0, "threshold": [0, 1, 2, 3, 5, 11], "threshold_optim": [5, 6, 7, 9], "threshold_target": 0, "threshold_ticks_step": 2, "through": 0, "thrown": 0, "thrsh_dict": 2, "tick": 0, "time": [2, 3, 5, 6, 7], "titl": [3, 8, 11], "tnr": 0, "to_csv": 4, "to_list": 4, "to_numpi": [4, 5], "toler": [0, 2, 3, 5, 6, 7, 11], "tolerance_tick": [0, 3, 5], "tolerance_tick_step": 0, "took": [2, 5, 6, 7], "total": [2, 3, 5, 6, 7], "total_combin": 2, "tpr": [0, 1, 5, 6, 7, 11], "tpr_diff": [5, 7], "tqdm": [2, 4, 5], "trade": [1, 6, 8], "train": [0, 4, 11], "train_data": 4, "train_df": 4, "train_idx": 4, "train_siz": 4, "train_test_split": [3, 4], "triangul": [0, 5, 6, 7], "triplet": 0, "true": [0, 3, 4, 5, 6, 7], "true_negative_rate_par": 7, "true_positive_rate_par": [5, 7, 11], "trust": [3, 5], "try": [3, 4, 5], "tupl": [0, 2, 4, 5], "twelfth": [8, 11], "two": [0, 2], "type": 0, "types_dict": 4, "unabl": [3, 5], "unawar": 5, "uncertainti": 0, "unconstr_clf": 3, "unconstr_dispar": 3, "unconstr_perform": 3, "unconstr_test_result": 3, "unconstrain": [2, 5, 6, 7], "under": [0, 11], "underli": 0, "unf_val": 5, "unfair": 5, "uniform": [0, 2], "uniqu": [0, 2, 3, 5], "unique_group": 2, "unpack": [2, 5], "unprocess": [8, 11], "unti": 0, "up": [0, 11], "updat": 4, "upper": [0, 3], "url": [8, 11], "us": [0, 1, 2, 3, 4, 6, 7, 11], "usag": 1, "user": [2, 3, 4, 5, 6, 7], "usual": 0, "util": 0, "utility_par": 3, "val": [3, 4, 5], "val_df": 4, "val_idx": 4, "valid": [0, 3, 4, 5], "validation_data": 4, "validation_s": [3, 4], "valu": [0, 4, 11], "value_count": 4, "valueerror": 0, "vari": [0, 3], "variabl": [0, 4, 5, 6, 7], "varianc": [5, 6, 7], "variou": 8, "vector": 0, "verbos": 3, "vertic": [0, 3], "verticalalign": 3, "via": 0, "violat": [0, 5, 6], "vstack": [5, 6, 7], "w": 0, "wall": [2, 3, 5, 6, 7], "want": [0, 4], "warn": 4, "we": [2, 3, 4, 6, 7, 11], "weert": 3, "weight": 0, "welcom": 11, "were": 4, "when": 0, "where": [0, 4], "whether": [0, 4], "which": [0, 2, 6, 7, 11], "whichev": [0, 4], "while": 2, "white": [3, 4, 5], "whitegrid": [3, 5, 6, 7], "whole": 0, "whose": 0, "wise": [0, 5, 6, 7], "within": 0, "word": 0, "worker": [4, 5], "wrapper": 0, "x": [0, 3, 4, 11], "x_feat": 2, "x_fit": 5, "x_other": 3, "x_test": [3, 5, 11], "x_train": [3, 5], "x_val": [3, 5], "xlabel": [3, 5, 6, 7], "xlim": [3, 5], "xtick": 0, "xy": 3, "y": [0, 3, 11], "y_fit": 5, "y_fit_pr": 5, "y_fit_pred_scor": [0, 3, 5, 6, 7], "y_label": 2, "y_other": 3, "y_pred": [0, 7, 11], "y_pred_binari": [0, 2, 5, 6, 7], "y_pred_binary_brute_forc": 2, "y_pred_binary_lp": 2, "y_pred_scor": [0, 3], "y_pred_test": 11, "y_score": [0, 2, 6, 7], "y_test": [3, 5], "y_test_scor": 5, "y_train": [3, 5], "y_true": [0, 2, 3, 5, 6, 7], "y_true_groupwis": [2, 6, 7], "y_val": [3, 5], "year": [4, 8, 11], "yet": 4, "ylabel": [3, 5, 6, 7], "ylim": [3, 5], "you": [0, 3, 4, 8, 11], "zero": [2, 6, 7], "zeros_lik": 2, "zip": [2, 4, 5, 6, 7], "zorder": 3}, "titles": ["error_parity
package", "Example jupyter notebooks", "Comparison between error-parity
\u2019s LP solver and a brute-force solver", "Example usage of error-parity
with other fairness-constrained classifiers", "Obtaining parsed folktables datasets", "Achieving equalized odds on real-world ACS data (ACSIncome)", "Achieving equalized odds on synthetic data", "Achieving different fairness constraints on synthetic data", "Welcome to error-parity\u2019s documentation!", "API reference", "Notebooks Gallery", "README.md"], "titleterms": {"": [2, 3, 5, 6, 7, 8], "1": 2, "2": 2, "ac": 5, "accuraci": [2, 3, 4, 7], "achiev": [5, 6, 7], "acsincom": 5, "adjust": 3, "adult": 3, "anoth": 3, "api": 9, "attain": 3, "awar": 3, "between": [2, 6, 7], "binar": 0, "brute": 2, "chang": 7, "cite": [8, 11], "classifi": [0, 3, 4, 5, 6, 7], "compar": 2, "comparison": 2, "comput": [6, 7], "constant": 4, "constrain": 3, "constraint": [2, 7], "construct": [5, 6, 7], "cvxpy_util": 0, "data": [2, 3, 4, 5, 6, 7], "dataset": 4, "deriv": [5, 6, 7], "differ": [6, 7], "distanc": [6, 7], "document": 8, "each": 4, "empir": [6, 7], "equal": [5, 6], "error": [2, 3, 8, 11], "error_par": 0, "evalu": 0, "exampl": [1, 3, 5], "fair": [3, 5, 6, 7], "fairness_constraint": 7, "featur": 11, "fetch": 3, "fit": 5, "folktabl": 4, "forc": 2, "from": [5, 6, 7], "frontier": [3, 6, 7], "galleri": 10, "get": 11, "given": [2, 5, 6, 7], "how": 11, "implement": 11, "indic": 8, "instal": 11, "jupyt": 1, "let": 3, "log": 4, "lp": 2, "map": [3, 11], "md": 11, "metric": 5, "model": 3, "modul": 0, "note": 7, "notebook": [1, 10], "obtain": 4, "odd": [5, 6], "off": [3, 5], "opportun": 5, "optim": [5, 6, 7], "other": 3, "output": [2, 5, 6, 7], "packag": 0, "pareto": [6, 7], "pareto_curv": 0, "pariti": [2, 3, 8, 11], "pars": 4, "perform": [5, 6, 7], "plot": [0, 3, 5, 6, 7], "point": [5, 6, 7], "post": 3, "postprocess": [6, 7], "predictor": [2, 5, 6, 7], "process": 3, "readm": 11, "real": [2, 5, 6, 7], "realiz": [5, 6, 7], "refer": 9, "relax": 3, "result": 5, "road": 11, "roc": [5, 6, 7], "roc_util": 0, "score": [2, 5, 6, 7], "similar": 5, "solut": [2, 5, 6, 7], "solver": 2, "some": [2, 5, 6, 7], "standard": 3, "start": 11, "synthet": [6, 7], "target": 7, "theoret": 5, "theoriz": [6, 7], "threshold_optim": 0, "trade": [3, 5], "train": [2, 3, 5, 6, 7], "type": [3, 4], "uci": 3, "unconstrain": 3, "us": 5, "usag": 3, "v": [2, 5], "valu": [2, 5, 6, 7], "via": 3, "violat": [2, 7], "welcom": 8, "work": 11, "world": 5, "x": [2, 5, 6, 7], "y": [2, 5, 6, 7], "your": 7}})
\ No newline at end of file