-
Notifications
You must be signed in to change notification settings - Fork 5
/
index.html
528 lines (425 loc) · 19.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>tinygrad has WebGPU</title>
<style>
body {
font-family: 'Arial', sans-serif;
text-align: center;
padding: 30px;
}
a {
text-decoration: none;
color: #4A90E2;
}
h1 {
font-size: 36px;
font-weight: normal;
margin-bottom: 20px;
}
#mybox {
display: flex;
flex-direction: column;
align-items: center;
gap: 20px;
width: 50%;
margin: 0 auto;
}
#promptText, #stepRange, #btnRunNet, #guidanceRange {
font-size: 18px;
width: 100%;
}
#result {
font-size: 48px;
}
#time {
font-size: 16px;
color: grey;
}
canvas {
margin-top: 20px;
border: 1px solid #000;
}
label {
display: flex;
align-items: center;
gap: 10px;
width: 100%;
}
#sliderValue {
margin-right: 10px;/
}
</style>
<script type="module">
import ClipTokenizer from './clip_tokenizer.js';
window.clipTokenizer = new ClipTokenizer();
</script>
<script type="module">
import { f16tof32GPU } from 'https://unpkg.com/[email protected]/src/index.js';
window.f16tof32GPU = f16tof32GPU;
</script>
<script src="./net.js"></script>
</head>
<body>
<h1 id="wgpuError" style="display: none; color: red;">WebGPU is not supported in this browser</h1>
<h1 id="sdTitle">StableDiffusion by <a href="https://github.com/tinygrad/tinygrad" target="_blank">tinygrad</a> WebGPU</h1>
<div id="mybox">
<input id="promptText" type="text" placeholder="Enter your prompt here" value="a horse sized cat eating a bagel">
<label>
Steps: <span id="stepValue">8</span>
<input id="stepRange" type="range" min="5" max="20" value="8" step="1">
</label>
<label>
Guidance: <span id="guidanceValue">7.5</span>
<input id="guidanceRange" type="range" min="3" max="15" value="7.5" step="0.1">
</label>
<label>
<input id="showStepCheckBox" type="checkbox">
Show image at each step
</label>
<input id="btnRunNet" type="button" value="Run" disabled>
<div id="divModelDl" style="display: flex; align-items: center; width: 100%; gap: 10px;">
<span id="modelDlTitle">Downloading model</span>
<progress id="modelDlProgressBar" value="0" max="100" style="flex-grow: 1;"></progress>
<span id="modelDlProgressValue"></span>
</div>
<div id="divStepProgress" style="display: none; align-items: center; width: 100%; gap: 10px;">
<progress id="progressBar" value="0" max="100" style="flex-grow: 1;"></progress>
<span id="progressFraction"></span>
</div>
</div>
<canvas id="canvas" width="512" height="512"></canvas>
<script>
function initDb() {
return new Promise((resolve, reject) => {
let db;
const request = indexedDB.open('tinydb', 1);
request.onerror = (event) => {
console.error('Database error:', event.target.error);
resolve(null);
};
request.onsuccess = (event) => {
db = event.target.result;
console.log("Db initialized.");
resolve(db);
};
request.onupgradeneeded = (event) => {
db = event.target.result;
if (!db.objectStoreNames.contains('tensors')) {
db.createObjectStore('tensors', { keyPath: 'id' });
}
};
});
}
function saveTensorToDb(db, id, tensor) {
return new Promise((resolve, reject) => {
if (db == null) {
resolve(null);
}
const transaction = db.transaction(['tensors'], 'readwrite');
const store = transaction.objectStore('tensors');
const request = store.put({ id: id, content: tensor });
transaction.onabort = (event) => {
console.log("Transaction error while saving tensor: " + event.target.error);
resolve(null);
};
request.onsuccess = () => {
console.log('Tensor saved successfully.');
resolve();
};
request.onerror = (event) => {
console.error('Tensor save failed:', event.target.error);
resolve(null);
};
});
}
function readTensorFromDb(db, id) {
return new Promise((resolve, reject) => {
if (db == null) {
resolve(null);
}
const transaction = db.transaction(['tensors'], 'readonly');
const store = transaction.objectStore('tensors');
const request = store.get(id);
transaction.onabort = (event) => {
console.log("Transaction error while reading tensor: " + event.target.error);
resolve(null);
};
request.onsuccess = (event) => {
const result = event.target.result;
if (result) {
console.log("Cache hit: " + id);
resolve(result);
} else {
console.log("Cache miss: " + id);
resolve(null);
}
};
request.onerror = (event) => {
console.error('Tensor retrieve failed: ', event.target.error);
resolve(null);
};
});
}
window.addEventListener('load', async function() {
if (!navigator.gpu) {
document.getElementById("wgpuError").style.display = "";
document.getElementById("sdTitle").style.display = "none";
return;
}
let db = await initDb();
const ctx = document.getElementById("canvas").getContext("2d", { willReadFrequently: true });
let labels, nets, safetensorParts;
const getDevice = async () => {
const adapter = await navigator.gpu.requestAdapter();
const requiredLimits = {};
const maxBufferSizeInSDModel = 1073741824;
requiredLimits.maxStorageBufferBindingSize = maxBufferSizeInSDModel;
requiredLimits.maxBufferSize = maxBufferSizeInSDModel;
return await adapter.requestDevice({
requiredLimits
});
};
const timer = async (func, label = "") => {
const start = performance.now();
const out = await func();
const delta = (performance.now() - start).toFixed(1)
console.log(`${delta} ms ${label}`);
return out;
}
const getProgressDlForPart = async (part, progressCallback) => {
const response = await fetch(part);
const contentLength = response.headers.get('content-length');
const total = parseInt(contentLength, 10);
const res = new Response(new ReadableStream({
async start(controller) {
const reader = response.body.getReader();
for (;;) {
const { done, value } = await reader.read();
if (done) break;
progressCallback(part, value.byteLength, total);
controller.enqueue(value);
}
controller.close();
},
}));
return res.arrayBuffer();
};
const getAndDecompressF16Safetensors = async (device, progress) => {
let totalLoaded = 0;
let totalSize = 0;
let partSize = {};
const progressCallback = (part, loaded, total) => {
totalLoaded += loaded;
if (!partSize[part]) {
totalSize += total;
partSize[part] = true;
}
progress(totalLoaded, totalSize);
};
let combinedBuffer = await readTensorFromDb(db, "net.f16");
let textModelU8 = await readTensorFromDb(db, "net.text");
let textModelFetched = false;
if (combinedBuffer == null) {
let dlParts = [
getProgressDlForPart(window.MODEL_BASE_URL + '/net_part0.safetensors', progressCallback),
getProgressDlForPart(window.MODEL_BASE_URL + '/net_part1.safetensors', progressCallback),
getProgressDlForPart(window.MODEL_BASE_URL + '/net_part2.safetensors', progressCallback),
getProgressDlForPart(window.MODEL_BASE_URL + '/net_part3.safetensors', progressCallback)
];
if (textModelU8 == null) {
dlParts.push(getProgressDlForPart(window.MODEL_BASE_URL + '/net_textmodel.safetensors', progressCallback));
}
let buffers = await Promise.all(dlParts);
// Combine everything except for text model, since that's alreafy f32
const totalLength = buffers.reduce((acc, buffer, index, array) => {
if (index < 4) {
return acc + buffer.byteLength;
} else {
return acc;
}
}, 0
);
combinedBuffer = new Uint8Array(totalLength);
let offset = 0;
buffers.forEach((buffer, index) => {
if (index < 4) {
combinedBuffer.set(new Uint8Array(buffer), offset);
offset += buffer.byteLength;
buffer = null;
}
});
// Disabling caches as this cause OOM in Chrome currently
//await saveTensorToDb(db, "net.f16", combinedBuffer);
if (textModelU8 == null) {
textModelFetched = true;
textModelU8 = new Uint8Array(buffers[4]);
//await saveTensorToDb(db, "net.text", textModelU8);
}
} else {
combinedBuffer = combinedBuffer.content;
}
if (textModelU8 == null) {
textModelU8 = new Uint8Array(await getProgressDlForPart(window.MODEL_BASE_URL + '/net_textmodel.safetensors', progressCallback));
//await saveTensorToDb(db, "net.text", textModelU8);
} else if (!textModelFetched) {
textModelU8 = textModelU8.content;
}
document.getElementById("modelDlTitle").innerHTML = "Decompressing model";
const textModelOffset = 3772703308;
const metadataLength = Number(new DataView(combinedBuffer.buffer).getBigUint64(0, true));
const metadata = JSON.parse(new TextDecoder("utf8").decode(combinedBuffer.subarray(8, 8 + metadataLength)));
const allToDecomp = combinedBuffer.byteLength - (8 + metadataLength);
const decodeChunkSize = 67107840;
const numChunks = Math.ceil(allToDecomp/decodeChunkSize);
console.log(allToDecomp + " bytes to decompress");
console.log("Will be decompressed in " + numChunks+ " chunks");
let partOffsets = [{start: 0, end: 1131408336}, {start: 1131408336, end: 2227518416}, {start: 2227518416, end: 3308987856}, {start: 3308987856, end: 4265298864}];
let parts = [];
for (let offsets of partOffsets) {
parts.push(new Uint8Array(offsets.end-offsets.start));
}
parts[0].set(new Uint8Array(new BigUint64Array([BigInt(metadataLength)]).buffer), 0);
parts[0].set(combinedBuffer.subarray(8, 8 + metadataLength), 8);
parts[3].set(textModelU8, textModelOffset+8+metadataLength - partOffsets[3].start);
let start = Date.now();
let cursor = 0;
for (let i = 0; i < numChunks; i++) {
progress(i, numChunks);
let chunkStartF16 = 8 + metadataLength + (decodeChunkSize * i);
let chunkEndF16 = chunkStartF16 + decodeChunkSize;
let chunk = combinedBuffer.subarray(chunkStartF16, chunkEndF16);
let result = await f16tof32GPU(chunk);
let resultUint8 = new Uint8Array(result.buffer);
let chunkStartF32 = 8 + metadataLength + (decodeChunkSize * i * 2);
let chunkEndF32 = chunkStartF32 + resultUint8.byteLength;
let offsetInPart = chunkStartF32 - partOffsets[cursor].start;
if (chunkEndF32 < partOffsets[cursor].end || cursor === parts.length - 1) {
parts[cursor].set(resultUint8, offsetInPart);
} else {
let spaceLeftInCurrentPart = partOffsets[cursor].end - chunkStartF32;
parts[cursor].set(resultUint8.subarray(0, spaceLeftInCurrentPart), offsetInPart);
cursor++;
if (cursor < parts.length) {
let nextPartOffset = spaceLeftInCurrentPart;
let nextPartLength = resultUint8.length - nextPartOffset;
parts[cursor].set(resultUint8.subarray(nextPartOffset, nextPartOffset + nextPartLength), 0);
}
}
resultUint8 = null;
result = null;
}
combinedBuffer = null;
let end = Date.now();
console.log("Decoding took: " + ((end - start) / 1000) + " s");
console.log("Avarage " + ((end - start) / numChunks) + " ms per chunk");
return parts;
};
const loadNet = async () => {
const modelDlTitle = document.getElementById("modelDlTitle");
const progress = (loaded, total) => {
document.getElementById("modelDlProgressBar").value = (loaded/total) * 100
document.getElementById("modelDlProgressValue").innerHTML = Math.trunc((loaded/total) * 100) + "%"
}
const device = await getDevice();
safetensorParts = await getAndDecompressF16Safetensors(device, progress);
modelDlTitle.innerHTML = "Compiling model"
let models = ["textModel", "diffusor", "decoder"];
nets = await timer(() => Promise.all([
textModel().setup(device, safetensorParts),
diffusor().setup(device, safetensorParts),
decoder().setup(device, safetensorParts)
]).then((loadedModels) => loadedModels.reduce((acc, model, index) => { acc[models[index]] = model; return acc; }, {})), "(compilation)")
progress(1, 1);
modelDlTitle.innerHTML = "Model ready"
setTimeout(() => {
document.getElementById("modelDlProgressBar").style.display = "none";
document.getElementById("modelDlProgressValue").style.display = "none";
document.getElementById("divStepProgress").style.display = "flex";
}, 1000);
document.getElementById("btnRunNet").disabled = false;
}
function runStableDiffusion(prompt, steps, guidance, showStep) {
return new Promise(async (resolve, reject) => {
let context = await timer(() => nets["textModel"](clipTokenizer.encodeForCLIP(prompt)));
let unconditional_context = await timer(() => nets["textModel"](clipTokenizer.encodeForCLIP("")));
let timesteps = [];
for (let i = 1; i < 1000; i += (1000/steps)) {
timesteps.push(i);
}
console.log("Timesteps: " + timesteps);
let alphasCumprod = getWeight(safetensorParts,"alphas_cumprod");
let alphas = [];
for (t of timesteps) {
alphas.push(alphasCumprod[Math.floor(t)]);
}
alphas_prev = [1.0];
for (let i = 0; i < alphas.length-1; i++) {
alphas_prev.push(alphas[i]);
}
let inpSize = 4*64*64;
latent = new Float32Array(inpSize);
for (let i = 0; i < inpSize; i++) {
latent[i] = Math.sqrt(-2.0 * Math.log(Math.random())) * Math.cos(2.0 * Math.PI * Math.random());
}
for (let i = timesteps.length - 1; i >= 0; i--) {
let timestep = new Float32Array([timesteps[i]]);
let x_prev = await timer(() => nets["diffusor"](unconditional_context, context, latent, timestep, new Float32Array([alphas[i]]), new Float32Array([alphas_prev[i]]), new Float32Array([guidance])));
latent = x_prev;
if (showStep != null) {
showStep(await nets["decoder"](latent));
}
document.getElementById("progressBar").value = ((steps - i) / steps) * 100
document.getElementById("progressFraction").innerHTML = (steps - i) + "/" + steps
}
resolve(await timer(() => nets["decoder"](latent)));
});
}
function renderImage(e, image) {
let pixels = []
let pixelCounter = 0
for (let j = 0; j < 512; j++) {
for (let k = 0; k < 512; k++) {
pixels.push(image[pixelCounter])
pixels.push(image[pixelCounter+1])
pixels.push(image[pixelCounter+2])
pixels.push(255)
pixelCounter += 3
}
}
ctx.putImageData(new ImageData(new Uint8ClampedArray(pixels), 512, 512), 0, 0);
console.log(image);
console.log("Success");
e.target.disabled = false;
}
document.getElementById("btnRunNet").addEventListener("click", function(e) {
e.target.disabled = true;
const canvas = document.getElementById("canvas");
ctx.clearRect(0, 0, canvas.width, canvas.height);
runStableDiffusion(
document.getElementById("promptText").value,
document.getElementById("stepRange").value,
document.getElementById("guidanceRange").value,
// Decode at each step
(document.getElementById("showStepCheckBox").checked) ? (image) => renderImage(e, image) : null
).then((image) => {
renderImage(e, image);
});
}, false);
const stepSlider = document.getElementById('stepRange');
const stepValue = document.getElementById('stepValue');
stepSlider.addEventListener('input', function() {
stepValue.textContent = stepSlider.value;
});
const guidanceSlider = document.getElementById('guidanceRange');
const guidanceValue = document.getElementById('guidanceValue');
guidanceSlider.addEventListener('input', function() {
guidanceValue.textContent = guidanceSlider.value;
});
loadNet();
});
</script>
</body>
</html>