-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
350 lines (265 loc) · 9.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os
import glob
import time
import argparse
import matplotlib.pyplot as plt
import csv
import torch
import torch.optim as optim
from torch import nn
from torch.autograd import Variable
import torchvision
import torchvision.models as models
import torch.utils.model_zoo as model_zoo
import torchvision.transforms as transforms
from torchvision import datasets
from itertools import accumulate
from functools import reduce
from parse_stats import *
from utils import get_palet, get_model_list
# Generic pretrained model loading
# We solve the dimensionality mismatch between
# final layers in the constructed vs pretrained
# modules at the data level.
def diff_states(dict_canonical, dict_subset):
# Sanity check that param names overlap
# Note that params are not necessarily in the same order
# for every pretrained model
names1, names2 = (list(dict_canonical.keys()), list(dict_subset.keys()))
not_in_1 = [n for n in names1 if n not in names2]
not_in_2 = [n for n in names2 if n not in names1]
assert len(not_in_1) == 0
assert len(not_in_2) == 0
for name, v1 in dict_canonical.items():
v2 = dict_subset[name]
assert hasattr(v2, 'size')
if v1.size() != v2.size():
yield (name, v1)
def load_defined_model(name, num_classes):
model = models.__dict__[name](num_classes=num_classes)
# Densenets don't (yet) pass on num_classes, hack it in for 169
if name == 'densenet169':
model = torchvision.models.DenseNet(num_init_features=64,
growth_rate=32,
block_config=(6, 12, 32, 32),
num_classes=num_classes)
pretrained_state = model_zoo.load_url(list_of_models[name]['url'])
# Diff
diff = [s for s in diff_states(model.state_dict(), pretrained_state)]
print("Replacing the following state from initialized ", name, ":", [d[0] for d in diff])
for name, value in diff:
pretrained_state[name] = value
assert len([s for s in diff_states(model.state_dict(), pretrained_state)]) == 0
# Merge
model.load_state_dict(pretrained_state)
return model, diff
def get_model(name, num_classes, mode='retrain_deep'):
assert mode in ['scratch', 'retrain_shallow', 'retrain_deep']
model = None
params = None
is_retrained = False
is_retrained_shallow = False
if mode == 'scratch':
model = models.__dict__[name](num_classes=num_classes)
else:
model, diff_ = load_defined_model(name, num_classes)
if mode == 'retrain_deep':
is_retrained = True
elif mode == 'retrain_shallow':
params = [d[0] for d in diff_]
is_retrained = True
is_retrained_shallow = True
if use_gpu:
print("Transferring model to GPU(s)...")
model = torch.nn.DataParallel(model).cuda()
return model, params, is_retrained, is_retrained_shallow
def filtered_params(net, param_list=None):
def in_param_list(s):
for p in param_list:
if s.endswith(p):
return True
return False
# Caution: DataParallel prefixes '.module' to every parameter name
params = net.named_parameters() if param_list is None \
else (p for p in net.named_parameters() if in_param_list(p[0]))
return params
def load_data(data_path, resize):
data_transforms = {
'train': transforms.Compose([
transforms.Resize(resize),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
# Higher scale-up for inception
transforms.Resize(resize),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
dsets = {x: datasets.ImageFolder(os.path.join(data_path, x), data_transforms[x])
for x in ['train', 'val']}
dsets_loaders = {x: torch.utils.data.DataLoader(dsets[x], batch_size=batch_size, shuffle=True)
for x in ['train', 'val']}
return dsets_loaders['train'], dsets_loaders['val']
def train(net, trainloader, valloader, network_name, epochs, param_list=None, plot_loss=False):
def in_param_list(s):
for p in param_list:
if s.endswith(p):
return True
return False
criterion = nn.CrossEntropyLoss()
if use_gpu:
criterion.cuda()
params = (p for p in filtered_params(net, param_list))
# if finetuning model, turn off grad for other params
if param_list:
for p_fixed in (p for p in net.named_parameters() if not in_param_list(p[0])):
p_fixed[1].requires_grad = False
# Optimizer (from paper)
optimizer = optim.SGD((p[1] for p in params), lr=0.001, momentum=0.9)
losses = []
accs = []
if plot_loss:
plt.ion()
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
x, y = data
if use_gpu:
x, y = Variable(x.cuda()), Variable(y.cuda(non_blocking=True))
else:
x, y = Variable(x), Variable(y)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward + Backward + Optimize
outputs = net(x)
# For nets that have multiple outputs (like inception)
if isinstance(outputs, tuple):
loss = sum((criterion(o, y) for o in outputs))
else:
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
# Print statistics
# running_loss += loss.data[0]
running_loss += loss.item()
if i % 29 == 0:
losses.append(loss.item())
print('[%s, %d, %5d] loss: %.3f' % (network_name, epoch + 1, i + 1, loss.item()))
running_loss = 0.0
if plot_loss:
plt.plot(epoch * len(trainloader) + i + 1, loss.item(), plot_colors[name])
plt.pause(0.05)
acc_epo = evaluate_test(net, valloader)
accs.append(acc_epo)
print("Epc = %d - Acc = %f" % (epoch+1, acc_epo))
if not os.path.exists(my_path + '/../models'):
os.mkdir(my_path + '/../models')
# save_checkpoint(net, my_path + "/../models/" + start_time + "_" + network_name)
save_checkpoint(net, args.stats + "/" + start_time + "_" + network_name)
print("Finished training!")
return losses, accs
# Get stats for training and evaluation in a structured way
# if param_list is None, all relevant parameters are tuned,
# otherwise, only parameters that have been constructed for custom
# num_classes
def train_stats(net, trainloader, valloader, network_name, epochs, param_list=None):
stats = {}
params = filtered_params(net, param_list)
counts = 0, 0
for counts in enumerate(accumulate((reduce(lambda d1, d2: d1 * d2, p[1].size()) for p in params))):
pass
stats['variables_optimized'] = counts[0] + 1
stats['params_optimized'] = counts[1]
tic = time.time()
losses, accs = train(net, trainloader, valloader, network_name, epochs=epochs, param_list=param_list)
stats['training_time'] = time.time() - tic
stats['training_loss'] = losses[-1] if len(losses) else float('nan')
stats['training_losses'] = losses
stats['training_accs'] = accs
return stats
def train_eval(net, trainloader, valloader, network_name, epochs=30, param_list=None):
print("Training..." if not param_list else "Retraining...")
stats_train = train_stats(net, trainloader, valloader, network_name, epochs=epochs, param_list=param_list)
print("Evaluating %s" % network_name)
net = net.eval()
eval_stats = evaluate_stats(net, valloader)
return {**stats_train, **eval_stats}
def save_checkpoint(state, filename='model.pth.tar'):
torch.save(state, filename)
def evaluate_test(net, valloader):
correct = 0
total = 0
for i, data in enumerate(valloader, 0):
x, y = data
if use_gpu:
x, y = (x.cuda()), (y.cuda(non_blocking=True))
outputs = net(Variable(x))
_, predicted = torch.max(outputs.data, 1)
total += y.size(0)
correct += (predicted == y).sum()
accuracy = correct / total
return accuracy
def evaluate_stats(net, testloader):
global accfinal
stats = {}
correct = 0
total = 0
tic = time.time()
for i, data in enumerate(testloader, 0):
x, y = data
if use_gpu:
x, y = (x.cuda()), (y.cuda(non_blocking=True))
outputs = net(Variable(x))
_, predicted = torch.max(outputs.data, 1)
total += y.size(0)
correct += (predicted == y).sum()
print(correct)
accuracy = correct / total
stats['accuracy'] = accuracy
stats['eval_time'] = time.time() - tic
accfinal = accuracy
print('Accuracy on test images: %f' % accuracy)
return stats
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--data', help='path to data folder', type=str, required=True)
parser.add_argument('-m', '--mode', help='mode (scratch, retrain_shallow, retrain_deep)', type=str, default='retrain_deep', required=False)
parser.add_argument('-e', '--epoch', help='number of epochs', type=int, required=True)
parser.add_argument('-b', '--batch', help='batch size', type=int, required=True)
parser.add_argument('-s', '--save', help='Path to save models and stats', default=None, required=True)
args = parser.parse_args()
data_path = args.data
save_path = args.save
train_mode = args.mode
num_epochs = args.epoch
batch_size = args.batch
start_time = str(int(time.time()))
list_of_models = get_model_list()
models_to_test = ['alexnet']
use_gpu = torch.cuda.is_available()
plot_colors = get_palet(len(models_to_test))
accfinal = 0
stats_file = save_path + '/' + start_time + '_' + os.path.basename(data_path) + '_' + args.mode + '_stats.csv'
number_classes = len(glob.glob(data_path+'/train/*'))
stats = []
print('Data:', data_path)
print('Mode:', train_mode)
print('Saving models to:', save_path)
print('Saving stats to:', stats_file)
for name in models_to_test:
print('\nTargetting {} with {} classes'.format(name, number_classes))
print('-------------------------------------------------------')
model, params, is_retrained, is_shallow = get_model(name, number_classes, train_mode)
resize = list_of_models[name]['size']
trainloader, valloader = load_data(data_path, resize)
model_stats = train_eval(model, trainloader, valloader, name, epochs=num_epochs, param_list=params)
stats.append(model_stats)
with open(stats_file, 'w') as csvfile:
fieldnames = stats[0].keys()
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for s in stats:
writer.writerow(s)
parse_stats(stats_path)