-
Notifications
You must be signed in to change notification settings - Fork 0
/
Model.cpp
247 lines (214 loc) · 9.49 KB
/
Model.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#include "Model.h"
void Model::loadModel(string const& path)
{
//std::cout << "in importer\n";
// read file via ASSIMP
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_GenSmoothNormals | aiProcess_FlipUVs | aiProcess_CalcTangentSpace);
// check for errors
//std::cout << "after importer\n";
if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
{
std::cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
return;
}
// retrieve the directory path of the filepath
directory = path.substr(0, path.find_last_of('/'));
//std::cout << path << "\n";
// process ASSIMP's root node recursively
processNode(scene->mRootNode, scene);
}
// processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
void Model::processNode(aiNode* node, const aiScene* scene)
{
//std::printf(" found %d meshes\n", node->mNumMeshes);
// process each mesh located at the current node
for (unsigned int i = 0; i < node->mNumMeshes; i++)
{
// the node object only contains indices to index the actual objects in the scene.
// the scene contains all the data, node is just to keep stuff organized (like relations between nodes).
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
meshes.push_back(processMesh(mesh, scene));
}
// after we've processed all of the meshes (if any) we then recursively process each of the children nodes
for (unsigned int i = 0; i < node->mNumChildren; i++)
{
processNode(node->mChildren[i], scene);
}
}
Mesh Model::processMesh(aiMesh* mesh, const aiScene* scene)
{
// data to fill
vector<Vertex> vertices;
vector<unsigned int> indices;
vector<Texture2D> textures;
// walk through each of the mesh's vertices
for (unsigned int i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
glm::vec3 vector; // we declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
SetVertexBoneDataToDefault(vertex);
// positions
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
boundingBox = { glm::max(vector.x , boundingBox[0]) , glm::min(vector.x, boundingBox[1]) , glm::max(vector.y, boundingBox[2]) , glm::min(vector.y, boundingBox[3]) , glm::max(vector.z, boundingBox[4]), glm::min(vector.z, boundingBox[5])};
// normals
if (mesh->HasNormals())
{
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
}
// texture coordinates
if (mesh->mTextureCoords[0]) // does the mesh contain texture coordinates?
{
glm::vec2 vec;
// a vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
// use models where a vertex can have multiple texture coordinates so we always take the first set (0).
vec.x = mesh->mTextureCoords[0][i].x * tilingFactor;
vec.y = mesh->mTextureCoords[0][i].y * tilingFactor;
vertex.TexCoords = vec;
// tangent
vector.x = mesh->mTangents[i].x;
vector.y = mesh->mTangents[i].y;
vector.z = mesh->mTangents[i].z;
vertex.Tangent = vector;
// bitangent
vector.x = mesh->mBitangents[i].x;
vector.y = mesh->mBitangents[i].y;
vector.z = mesh->mBitangents[i].z;
vertex.Bitangent = vector;
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
vertices.push_back(vertex);
}
// now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
for (unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// retrieve all indices of the face and store them in the indices vector
for (unsigned int j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
// process materials
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
// we assume a convention for sampler names in the shaders. Each diffuse texture should be named
// as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER.
// Same applies to other texture as the following list summarizes:
// diffuse: texture_diffuseN
// specular: texture_specularN
// normal: texture_normalN
// 1. diffuse maps
vector<Texture2D> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, TextureType::DIFFUSE , scene);
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
// 2. specular maps
vector<Texture2D> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, TextureType::SPECULAR , scene);
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
// 3. normal maps
std::vector<Texture2D> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, TextureType::NORMAL , scene);
textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
// 4. height maps
std::vector<Texture2D> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, TextureType::HEIGHT , scene);
textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());
ExtractBoneWeightForVertices(vertices, mesh, scene);
// return a mesh object created from the extracted mesh data
return Mesh(vertices, indices, textures);
}
// checks all material textures of a given type and loads the textures if they're not loaded yet.
// the required info is returned as a Texture struct.
vector<Texture2D> Model::loadMaterialTextures(aiMaterial* mat, aiTextureType type, TextureType typeName ,const aiScene* scene)
{
vector<Texture2D> textures;
for (unsigned int i = 0; i < mat->GetTextureCount(type); i++)
{
aiString str;
mat->GetTexture(type, i, &str);
// check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
bool skip = false;
for (unsigned int j = 0; j < textures_loaded.size(); j++)
{
if (std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
{
textures.push_back(textures_loaded[j]);
skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization)
break;
}
}
if (!skip)
{
// if texture hasn't been loaded already, load it
if (auto textureEmbedded = scene->GetEmbeddedTexture(str.C_Str())) {
//std::cout << "embedded textures\n";
Texture2D texture(textureEmbedded, false);
texture.type = typeName;
textures.push_back(texture);
textures_loaded.push_back(texture);
//returned pointer is not null, read texture from memory
}
else {
Texture2D texture(str.C_Str(), this->directory, false);
texture.type = typeName;
textures.push_back(texture);
textures_loaded.push_back(texture); // store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
}
}
}
return textures;
}
void Model::SetVertexBoneDataToDefault(Vertex& vertex)
{
for (int i = 0; i < MAX_BONE_INFLUENCE; i++)
{
vertex.m_BoneIDs[i] = -1;
vertex.m_Weights[i] = 0.0f;
}
}
void Model::SetVertexBoneData(Vertex& vertex, int boneID, float weight)
{
for (int i = 0; i < MAX_BONE_INFLUENCE; ++i)
{
if (vertex.m_BoneIDs[i] < 0)
{
vertex.m_Weights[i] = weight;
vertex.m_BoneIDs[i] = boneID;
break;
}
}
}
void Model::ExtractBoneWeightForVertices(std::vector<Vertex>& vertices, aiMesh* mesh, const aiScene* scene)
{
auto& boneInfoMap = m_BoneInfoMap;
int& boneCount = m_BoneCounter;
for (int boneIndex = 0; boneIndex < mesh->mNumBones; ++boneIndex)
{
int boneID = -1;
std::string boneName = mesh->mBones[boneIndex]->mName.C_Str();
if (boneInfoMap.find(boneName) == boneInfoMap.end())
{
BoneInfo newBoneInfo;
newBoneInfo.id = boneCount;
newBoneInfo.offset = AssimpGLMHelpers::ConvertMatrixToGLMFormat(mesh->mBones[boneIndex]->mOffsetMatrix);
boneInfoMap[boneName] = newBoneInfo;
boneID = boneCount;
boneCount++;
}
else
{
boneID = boneInfoMap[boneName].id;
}
assert(boneID != -1);
auto weights = mesh->mBones[boneIndex]->mWeights;
int numWeights = mesh->mBones[boneIndex]->mNumWeights;
for (int weightIndex = 0; weightIndex < numWeights; ++weightIndex)
{
int vertexId = weights[weightIndex].mVertexId;
float weight = weights[weightIndex].mWeight;
assert(vertexId <= vertices.size());
SetVertexBoneData(vertices[vertexId], boneID, weight);
}
}
}