From b99505d3faa823d1a595f8c865a17f2ea75f7233 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Fri, 22 Dec 2023 11:34:49 -0300 Subject: [PATCH 01/24] Reference Date Fix First point in #7 --- src/crnpy/crnpy.py | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index a7a73de..b6df9f4 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -423,7 +423,31 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan return df_flux +def get_reference_neutron_flux(station, date = pd.to_datetime("2011-05-01")): + """Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022). + Args: + station (str): Neutron Monitor station to retrieve data from. + date (datetime): Date of the reference neutron flux. Default is 2011-05-01. + + Returns: + (float): Reference neutron flux in counts per hour. + + References: + Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099. + + Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043. + + Bogena, H. R., Schrön, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151. + +""" + + # Get flux for 2011-05-01 + df_flux = get_incoming_flux(station, date, date + pd.Timedelta(hours=24)) + if df_flux is None: + warnings.warn(f"Reference neutron flux for {station} not available. Returning NaN.") + else: + return df_flux['counts'].median() def smooth_1d(values, window=5, order=3, method='moving_median'): """Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content). From a19b0410ce1cacc4337fe18f462c03828079c013 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Fri, 22 Dec 2023 18:54:07 -0300 Subject: [PATCH 02/24] New reference flux corrections Addressing second part of #7 --- src/crnpy/crnpy.py | 113 ++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 111 insertions(+), 2 deletions(-) diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index b6df9f4..7369e20 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -291,7 +291,9 @@ def correction_humidity(abs_humidity, Aref): fw = 1 + 0.0054*(A - Aref) # Zreda et al. 2017 Eq 6. return fw -def correction_incoming_flux(incoming_neutrons, incoming_Ref=None): + + +def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None, site_atmdepth=None, Rc_ref=None, ref_atmdepth=None): r"""Correction factor for incoming neutron flux. This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation: @@ -331,7 +333,28 @@ def correction_incoming_flux(incoming_neutrons, incoming_Ref=None): incoming_Ref = incoming_neutrons[0] warnings.warn('Reference incoming neutron flux not provided. Using first value of incoming neutron flux.') fi = incoming_neutrons / incoming_Ref - fi.fillna(1.0, inplace=True) # Use a value of 1 for days without data + + if Rc_method is not None: + if Rc_ref is None: + raise ValueError('Reference cutoff rigidity not provided.') + if Rc_site is None: + raise ValueError('Site cutoff rigidity not provided.') + + if Rc_method == 'McJannetandDesilets2023': + if latitude is None or elevation is None: + raise ValueError('Latitude and elevation are required inputs for McJannet and Desilets (2023) method.') + tau = location_factor(site_atmdepth, Rc_site, ref_atmdepth, Rc_ref) + fi = 1 / (tau * fi + 1 - tau) + + elif Rc_method == 'Hawdonetal2014': + Rc_corr = -0.075 * (Rc_site - Rc_ref)+ 1.0 + fi = (fi - 1.0) * Rc_corr + 1.0 + + else: + raise ValueError('Cutoff rigidity method not found. Valid options are: McJannetandDesilets2023, Hawdonetal2014.') + + if fill_na is not None: + fi.fillna(fill_na, inplace=True) # Use a value of 1 for days without data return fi @@ -812,6 +835,10 @@ def cutoff_rigidity(lat,lon): 2.52 GV (Value from NMD is 2.40 GV) References: + Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures + for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, + 50(6), 5029-5043. + Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program: Theory, Software Description and Example. NASA STI/Recon Technical Report N. @@ -834,6 +861,88 @@ def cutoff_rigidity(lat,lon): return np.round(zq,2) +def atmospheric_depth(elevation, latitude): + """Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023 + + This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023. + + Args: + elevation (float): Elevation in meters above sea level. + latitude (float): Geographic latitude in decimal degrees. Value in range -90 to 90 + + Returns: + (float): Atmospheric depth in g/cm2 + + References: + Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration. + + McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889. + """ + + density_of_rock = 2670 # Density of rock in kg/m3 + air_pressure_sea_level = 1013.25 # Air pressure at sea level in hPa + air_molar_mass = 0.0289644 # Air molar mass in kg/mol + universal_gas_constant = 8.3144598 # Universal gas constant in J/(mol*K) + reference_temperature = 288.15 # Reference temperature Kelvin + temperature_lapse_rate = -0.0065 # Temperature lapse rate in K/m + + # Gravity at sea-level calculation + gravity_sea_level = 9.780327 * ( + 1 + 0.0053024 * np.sin(np.radians(latitude)) ** 2 - 0.0000058 * np.sin(2 * np.radians(latitude)) ** 2) + # Free air correction + free_air = -3.086 * 10 ** -6 * elevation + # Bouguer correction + bouguer_corr = 4.194 * 10 ** -10 * density_of_rock * elevation + # Total gravity + gravity = gravity_sea_level + free_air + bouguer_corr + + # Air pressure calculation + reference_air_pressure = air_pressure_sea_level * (1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / (universal_gas_constant * temperature_lapse_rate)) + + # Atmospheric depth calculation + atmospheric_depth = (10 * reference_air_pressure) / gravity + return atmospheric_depth + + + +def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc): + """ + Function to estimate the location factor between two sites according to McJannet and Desilets, 2023. + + + Args: + site_atmospheric_depth (float): Atmospheric depth at the site in g/cm2. Can be estimated using the function `atmospheric_depth()` + site_Rc (float): Cutoff rigidity at the site in GV. Can be estimated using the function `cutoff_rigidity()` + reference_atmospheric_depth (float): Atmospheric depth at the reference location in g/cm2. + reference_Rc (float): Cutoff rigidity at the reference location in GV. + + Returns: + (float): Location-dependent correction factor. + + References: + McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889. + + """ + + # Renamed variables based on the provided table + c0 = -0.0009 # from C39 + c1 = 1.7699 # from C40 + c2 = 0.0064 # from C41 + c3 = 1.8855 # from C42 + c4 = 0.000013 # from C43 + c5 = -1.2237 # from C44 + epsilon = 1 # from C45 + + # Translated formula with renamed variables from McJannet and Desilets, 2023 + tau_new = epsilon * (c0 * reference_atmospheric_depth + c1) * ( + 1 - np.exp(-(c2 * reference_atmospheric_depth + c3) * reference_Rc ** (c4 * reference_atmospheric_depth + c5))) + + norm_factor = 1/tau_new + + # Calculate the result using the provided parameters + tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * (1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc**(c4 * site_atmospheric_depth + c5))) + return tau + def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): """Search for potential reference neutron monitoring stations based on cutoff rigidity. From 62c878d0f4b325d358c8e5116171167fcdab0bc9 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Thu, 4 Jan 2024 18:08:57 -0300 Subject: [PATCH 03/24] =?UTF-8?q?Added=20the=20revised=20sample=20weightin?= =?UTF-8?q?g=20procedure=20(Schr=C3=B6n=20et=20al.,=202017).?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Proposed in issue #9 --- src/crnpy/crnpy.py | 200 +++++++++++++++++++++++++++++++++------------ 1 file changed, 147 insertions(+), 53 deletions(-) diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 7369e20..9720bc7 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -689,15 +689,18 @@ def abs_humidity(relative_humidity, temp): return abs_h -def nrad_weight(h,theta,distances,depth,rhob=1.4): +def nrad_weight(h,theta,distances,depth,rhob=1.4, method=None, p=None, Hveg=None) """Function to compute distance weights corresponding to each soil sample. Args: - h (float): Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting. - theta (array or pd.Series or pd.DataFrame): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3) - distances (array or pd.Series or pd.DataFrame): Distances from the location of each sample to the origin (0.5 - 600 m) - depth (array or pd.Series or pd.DataFrame): Depths for each sample (m) - rhob (float): Bulk density in g/cm^3 + h (np.array or pd.Series): Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting. + theta (np.array or pd.Series): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3) + distances (np.array or pd.Series): Distances from the location of each sample to the origin (0.5 - 600 m) + depth (np.array or pd.Series): Depths for each sample (m) + rhob (np.array or pd.Series): Bulk density in g/cm^3 + p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method. + Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method. + method (str): Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'. Returns: (array or pd.Series or pd.DataFrame): Distance weights for each sample. @@ -706,61 +709,152 @@ def nrad_weight(h,theta,distances,depth,rhob=1.4): Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour. Res. 51, 5772–5790. doi:10.1002/2015WR017169 + + Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., + Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., + Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and + validation of cosmic-ray neutron sensors in the light of spatial sensitivity, + Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017. """ - # Table A1. Parameters for Fi and D86 - p10 = 8735; p11 = 17.1758; p12 = 11720; p13 = 0.00978; p14 = 7045; p15 = 0.003632; - p20 = 2.7925e-2; p21 = 5.0399; p22 = 2.8544e-2; p23 = 0.002455; p24 = 6.851e-5; p25 = 9.2926; - p30 = 247970; p31 = 17.63; p32 = 374655; p33 = 0.00191; p34 = 195725; - p40 = 5.4818e-2; p41 = 15.921; p42 = 0.6373; p43 = 5.99e-2; p44 = 5.425e-4; - p50 = 1383702; p51 = 4.156; p52 = 5325; p53 = 0.00238; p54 = 0.0156; p55 = 0.130; p56 = 1521; - p60 = 6.031e-5; p61 = 98.5; p62 = 1.0466e-3; - p70 = 11747; p71 = 41.66; p72 = 4521; p73 = 0.01998; p74 = 0.00604; p75 = 2534; p76 = 0.00475; - p80 = 1.543e-2; p81 = 10.06; p82 = 1.807e-2; p83 = 0.0011; p84 = 8.81e-5; p85 = 0.0405; p86 = 20.24; - p90 = 8.321; p91 = 0.14249; p92 = 0.96655; p93 = 26.42; p94 = 0.0567; - - - # Numerical determination of the penetration depth (86%) (Eq. 8) - D86 = 1/rhob*(p90+p91*(p92+np.exp(-1*distances/100))*(p93+theta)/(p94+theta)) - - # Depth weights (Eq. 7) - Wd = np.exp(-2*depth/D86) - - if h == 0: - W = 1 # skip distance weighting - - elif (h >= 0.1) and (h<= 50): - # Functions for Fi (Appendix A in Köhli et al., 2015) - F1 = p10*(1+p13*h)*np.exp(-p11*theta)+p12*(1+p15*h)-p14*theta - F2 = ((-p20+p24*h)*np.exp(-p21*theta/(1+p25*theta))+p22)*(1+h*p23) - F3 = (p30*(1+p33*h)*np.exp(-p31*theta)+p32-p34*theta) - F4 = p40*np.exp(-p41*theta)+p42-p43*theta+p44*h - F5 = p50*(0.02-1/p55/(h-p55+p56*theta))*(p54-theta)*np.exp(-p51*(theta-p54))+p52*(0.7-h*theta*p53) - F6 = p60*(h+p61)+p62*theta - F7 = (p70*(1-p76*h)*np.exp(-p71*theta*(1-h*p74))+p72-p75*theta)*(2+h*p73) - F8 = ((-p80+p84*h)*np.exp(-p81*theta/(1+p85*h+p86*theta))+p82)*(2+h*p83) - - # Distance weights (Eq. 3) - W = np.ones_like(distances)*np.nan - for i in range(len(distances)): - if (distances[i]<=50) and (distances[i]>0.5): - W[i]=F1[i]*(np.exp(-F2[i]*distances[i]))+F3[i]*np.exp(-F4[i]*distances[i]) - - elif (distances[i]>50) and (distances[i]<600): - W[i]=F5[i]*(np.exp(-F6[i]*distances[i]))+F7[i]*np.exp(-F8[i]*distances[i]) + if method=='Kohli_2015': - else: - raise ValueError('Input distances are not valid.') + # Table A1. Parameters for Fi and D86 + p10 = 8735; p11 = 17.1758; p12 = 11720; p13 = 0.00978; p14 = 7045; p15 = 0.003632; + p20 = 2.7925e-2; p21 = 5.0399; p22 = 2.8544e-2; p23 = 0.002455; p24 = 6.851e-5; p25 = 9.2926; + p30 = 247970; p31 = 17.63; p32 = 374655; p33 = 0.00191; p34 = 195725; + p40 = 5.4818e-2; p41 = 15.921; p42 = 0.6373; p43 = 5.99e-2; p44 = 5.425e-4; + p50 = 1383702; p51 = 4.156; p52 = 5325; p53 = 0.00238; p54 = 0.0156; p55 = 0.130; p56 = 1521; + p60 = 6.031e-5; p61 = 98.5; p62 = 1.0466e-3; + p70 = 11747; p71 = 41.66; p72 = 4521; p73 = 0.01998; p74 = 0.00604; p75 = 2534; p76 = 0.00475; + p80 = 1.543e-2; p81 = 10.06; p82 = 1.807e-2; p83 = 0.0011; p84 = 8.81e-5; p85 = 0.0405; p86 = 20.24; + p90 = 8.321; p91 = 0.14249; p92 = 0.96655; p93 = 26.42; p94 = 0.0567; - else: - raise ValueError('Air humidity values are out of range.') + # Numerical determination of the penetration depth (86%) (Eq. 8) + D86 = 1/rhob*(p90+p91*(p92+np.exp(-1*distances/100))*(p93+theta)/(p94+theta)) + + # Depth weights (Eq. 7) + Wd = np.exp(-2*depth/D86) - # Combined and normalized weights - weights = Wd*W/np.nansum(Wd*W) + if h == 0: + W = 1 # skip distance weighting - return weights + elif (h >= 0.1) and (h<= 50): + # Functions for Fi (Appendix A in Köhli et al., 2015) + F1 = p10*(1+p13*h)*np.exp(-p11*theta)+p12*(1+p15*h)-p14*theta + F2 = ((-p20+p24*h)*np.exp(-p21*theta/(1+p25*theta))+p22)*(1+h*p23) + F3 = (p30*(1+p33*h)*np.exp(-p31*theta)+p32-p34*theta) + F4 = p40*np.exp(-p41*theta)+p42-p43*theta+p44*h + F5 = p50*(0.02-1/p55/(h-p55+p56*theta))*(p54-theta)*np.exp(-p51*(theta-p54))+p52*(0.7-h*theta*p53) + F6 = p60*(h+p61)+p62*theta + F7 = (p70*(1-p76*h)*np.exp(-p71*theta*(1-h*p74))+p72-p75*theta)*(2+h*p73) + F8 = ((-p80+p84*h)*np.exp(-p81*theta/(1+p85*h+p86*theta))+p82)*(2+h*p83) + # Distance weights (Eq. 3) + W = np.ones_like(distances)*np.nan + for i in range(len(distances)): + if (distances[i]<=50) and (distances[i]>0.5): + W[i]=F1[i]*(np.exp(-F2[i]*distances[i]))+F3[i]*np.exp(-F4[i]*distances[i]) + + elif (distances[i]>50) and (distances[i]<600): + W[i]=F5[i]*(np.exp(-F6[i]*distances[i]))+F7[i]*np.exp(-F8[i]*distances[i]) + + else: + raise ValueError('Input distances are not valid.') + + else: + raise ValueError('Air humidity values are out of range.') + + + # Combined and normalized weights + weights = Wd*W/np.nansum(Wd*W) + return weights + elif method=='Schron_2017': + # Horizontal distance weights According to Eq. 6 and Table A1 in Schrön et al. (2017) + # Method for calculating the horizontal distance weights from 0 to 1m + def WrX(r, x, y): + x00 = 3.7 + a00 = 8735; a01 = 22.689; a02 = 11720; a03 = 0.00978; a04 = 9306; a05 = 0.003632 + a10 = 2.7925e-2; a11 = 6.6577; a12 = 0.028544; a13 = 0.002455; a14 = 6.851e-5; a15 = 12.2755 + a20 = 247970; a21 = 23.289; a22 = 374655; a23 = 0.00191; a24 = 258552 + a30 = 5.4818e-2; a31 = 21.032; a32 = 0.6373; a33 = 0.0791; a34 = 5.425e-4 + + x0 = x00 + A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y) + A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13) + A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y) + A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x + + return ((A0 * (np.exp(-A1 * r)) + A2 * np.exp(-A3 * r)) * (1 - np.exp(-x0 * r))) + + # Method for calculating the horizontal distance weights from 1 to 50m + def WrA(r, x, y): + a00 = 8735; a01 = 22.689; a02 = 11720; a03 = 0.00978; a04 = 9306; a05 = 0.003632 + a10 = 2.7925e-2; a11 = 6.6577; a12 = 0.028544; a13 = 0.002455; a14 = 6.851e-5; a15 = 12.2755 + a20 = 247970; a21 = 23.289; a22 = 374655; a23 = 0.00191; a24 = 258552 + a30 = 5.4818e-2; a31 = 21.032; a32 = 0.6373; a33 = 0.0791; a34 = 5.425e-4 + + A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y) + A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13) + A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y) + A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x + + return A0 * np.exp(-A1 * r) + A2 * np.exp(-A3 * r) + + # Method for calculating the horizontal distance weights from 50 to 600m + def WrB(r, x, y): + b00 = 39006; b01 = 15002337; b02 = 2009.24; b03 = 0.01181; b04 = 3.146; b05 = 16.7417; b06 = 3727 + b10 = 6.031e-5; b11 = 98.5; b12 = 0.0013826 + b20 = 11747; b21 = 55.033; b22 = 4521; b23 = 0.01998; b24 = 0.00604; b25 = 3347.4; b26 = 0.00475 + b30 = 1.543e-2; b31 = 13.29; b32 = 1.807e-2; b33 = 0.0011; b34 = 8.81e-5; b35 = 0.0405; b36 = 26.74 + + B0 = (b00 - b01 / (b02 * y + x - 0.13)) * (b03 - y) * np.exp(-b04 * y) - b05 * x * y + b06 + B1 = b10 * (x + b11) + b12 * y + B2 = (b20 * (1 - b26 * x) * np.exp(-b21 * y * (1 - x * b24)) + b22 - b25 * y) * (2 + x * b23) + B3 = ((-b30 + b34 * x) * np.exp(-b31 * y / (1 + b35 * x + b36 * y)) + b32) * (2 + x * b33) + + return B0 * np.exp(-B1 * r) + B2 * np.exp(-B3 * r) + + def rscaled(r, p, Hveg, y): + Fp = 0.4922 / (0.86 - np.exp(-p / 1013.25)) + Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y)) + return r / Fp / Fveg + + # Rename variables to be consistent with the revised paper + r = distances + x = h + y = theta + bd = rhob + + if Hveg is not None and p is not None: + r = rscaled(r, p, Hveg, y) + + Wr = np.zeros(len(r)) + + # See Eq. 6 in Schron et al. (2017) + r0_idx = (r <= 1) + r1_idx = (r > 1) & (r <= 50) + r2_idx = (r > 50) & (r < 600) + Wr[r0_idx] = WrX(r[r0_idx], x[r0_idx], y[r0_idx]) + Wr[r1_idx] = WrA(r[r1_idx], x[r1_idx], y[r1_idx]) + Wr[r2_idx] = WrB(r[r2_idx], x[r2_idx], y[r2_idx]) + + # Vertical distance weights + def D86(r, bd, y): + return 1 / bd * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r)) * (20 + y) / (0.0429 + y)) + + def Wd(d, r, bd, y): + return np.exp(-2 * d / D86(r, bd, y)) + + # Calculate the vertical distance weights + Wd = Wd(d, r, bd, y) + + # Combined and normalized weights + # Combined and normalized weights + weights = Wd * Wr / np.nansum(Wd * Wr) + + return weights def exp_filter(sm,T=1): From 5f28836c51afc781bd119ce18aa0ba713bfb3867 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Thu, 4 Jan 2024 18:10:32 -0300 Subject: [PATCH 04/24] Unversion the crnpy.egg-info #11 --- .gitignore | 2 +- crnpy.egg-info/PKG-INFO | 4 ---- crnpy.egg-info/SOURCES.txt | 10 ---------- crnpy.egg-info/dependency_links.txt | 1 - crnpy.egg-info/top_level.txt | 1 - 5 files changed, 1 insertion(+), 17 deletions(-) delete mode 100644 crnpy.egg-info/PKG-INFO delete mode 100644 crnpy.egg-info/SOURCES.txt delete mode 100644 crnpy.egg-info/dependency_links.txt delete mode 100644 crnpy.egg-info/top_level.txt diff --git a/.gitignore b/.gitignore index 26b422a..25281f3 100644 --- a/.gitignore +++ b/.gitignore @@ -7,4 +7,4 @@ */.cache/* site/* .cache/* -.pytest_cache/* \ No newline at end of file +.pytest_cache/* diff --git a/crnpy.egg-info/PKG-INFO b/crnpy.egg-info/PKG-INFO deleted file mode 100644 index 2a8541b..0000000 --- a/crnpy.egg-info/PKG-INFO +++ /dev/null @@ -1,4 +0,0 @@ -Metadata-Version: 2.1 -Name: crnpy -Version: 0.2.post28 -License-File: LICENSE diff --git a/crnpy.egg-info/SOURCES.txt b/crnpy.egg-info/SOURCES.txt deleted file mode 100644 index 62a3e73..0000000 --- a/crnpy.egg-info/SOURCES.txt +++ /dev/null @@ -1,10 +0,0 @@ -LICENSE -README.md -setup.py -crnpy.egg-info/PKG-INFO -crnpy.egg-info/SOURCES.txt -crnpy.egg-info/dependency_links.txt -crnpy.egg-info/top_level.txt -src/crnpy/__init__.py -src/crnpy/crnpy.py -src/crnpy/readers.py \ No newline at end of file diff --git a/crnpy.egg-info/dependency_links.txt b/crnpy.egg-info/dependency_links.txt deleted file mode 100644 index 8b13789..0000000 --- a/crnpy.egg-info/dependency_links.txt +++ /dev/null @@ -1 +0,0 @@ - diff --git a/crnpy.egg-info/top_level.txt b/crnpy.egg-info/top_level.txt deleted file mode 100644 index 8b13789..0000000 --- a/crnpy.egg-info/top_level.txt +++ /dev/null @@ -1 +0,0 @@ - From 89fd570aa378319dbd2468ca693e3c2d739cc820 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Thu, 4 Jan 2024 18:12:01 -0300 Subject: [PATCH 05/24] Update .gitignore #11 --- .gitignore | 1 + 1 file changed, 1 insertion(+) diff --git a/.gitignore b/.gitignore index 25281f3..6d970eb 100644 --- a/.gitignore +++ b/.gitignore @@ -8,3 +8,4 @@ site/* .cache/* .pytest_cache/* +crnpy.egg-info/* From 1a67744cc6c0f90826a3c388ddeacfc2c70819c7 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Thu, 4 Jan 2024 18:16:48 -0300 Subject: [PATCH 06/24] Update README.md #11 --- README.md | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 83237c4..5ad79b8 100644 --- a/README.md +++ b/README.md @@ -22,7 +22,6 @@ CRNPs are a valuable tool for non-invasive soil moisture estimation at the hecto - Modular: The library is designed to be modular, allowing users to easily customize the processing workflow to their needs. - ## Installation To install the CRNPy library, you can use Python's package manager. Open a terminal and type: @@ -39,6 +38,12 @@ Ideally dependencies should be installed automatically. If not, you can install The CRNPy library is compatible with Python 3.7 and above. See [requirements.txt](https://github.com/soilwater/crnpy/blob/main/requirements.txt) for a list of dependencies. +## Examples + +- [https://soilwater.github.io/crnpy/examples/stationary/example_RDT_station/](Processing and analyzing data from a stationary detector) +- [https://soilwater.github.io/crnpy/examples/rover/Hydroinnova_rover_example/](Processing and analyzing data from a roving detector) +- [https://soilwater.github.io/crnpy/examples/calibration/calibration/](Device-specific field calibration) + ## Authors The CRNPy library was developed at the Kansas State University Soil Water Processes Lab by: From 662336cba634d4fd4c7395c5e1ad57997692940e Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Fri, 5 Jan 2024 01:23:41 -0300 Subject: [PATCH 07/24] Improvements listed in #11 --- src/crnpy/crnpy.py | 92 +++++++++------------------------------------- 1 file changed, 18 insertions(+), 74 deletions(-) diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 9720bc7..35fed20 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -13,7 +13,7 @@ import pandas as pd import requests import io - +import utm from scipy.signal import savgol_filter from scipy.interpolate import griddata @@ -108,12 +108,11 @@ def fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_times return df -def total_raw_counts(counts, nan_strategy=None, timestamp_col=None): +def total_raw_counts(counts): """Compute the sum of uncorrected neutron counts for all detectors. Args: counts (pandas.DataFrame): Dataframe containing only the columns with neutron counts. - nan_strategy (str): Strategy to use for NaN values. Options are 'interpolate', 'average', or None. Default is None. Returns: (pandas.DataFrame): Dataframe with the sum of uncorrected neutron counts for all detectors. @@ -235,7 +234,7 @@ def correction_pressure(pressure, Pref, L): Args: - atm_pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended. + pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended. Pref (float): Reference atmospheric pressure. L (float): Atmospheric attenuation coefficient. @@ -278,7 +277,6 @@ def correction_humidity(abs_humidity, Aref): Args: abs_humidity (list or array): Relative humidity readings. - temp (list or array): Temperature readings (Celsius). Aref (float): Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended. Returns: @@ -377,7 +375,7 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan Documentation available:https://www.nmdb.eu/nest/help.php#howto """ - # Example: get_incoming_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00') + # Example: get_incoming_neutron_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00') # Template url = 'http://nest.nmdb.eu/draw_graph.php?formchk=1&stations[]=KERG&output=ascii&tabchoice=revori&dtype=corr_for_efficiency&date_choice=bydate&start_year=2009&start_month=09&start_day=01&start_hour=00&start_min=00&end_year=2009&end_month=09&end_day=05&end_hour=23&end_min=59&yunits=0' @@ -388,7 +386,6 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan # Convert local time to UTC start_date = start_date - pd.Timedelta(hours=utc_offset) end_date = end_date - pd.Timedelta(hours=utc_offset) - date_format = '%Y-%m-%d %H:%M:%S' root = 'http://www.nmdb.eu/nest/draw_graph.php?' url_par = [ 'formchk=1', 'stations[]=' + station, @@ -466,7 +463,7 @@ def get_reference_neutron_flux(station, date = pd.to_datetime("2011-05-01")): """ # Get flux for 2011-05-01 - df_flux = get_incoming_flux(station, date, date + pd.Timedelta(hours=24)) + df_flux = get_incoming_neutron_flux(station, date, date + pd.Timedelta(hours=24)) if df_flux is None: warnings.warn(f"Reference neutron flux for {station} not available. Returning NaN.") else: @@ -489,6 +486,9 @@ def smooth_1d(values, window=5, order=3, method='moving_median'): Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9. doi.org/10.3389/frwa.2020.00009 + + Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. + Analytical chemistry, 36(8), 1627-1639. """ if method == 'moving_average': @@ -615,7 +615,6 @@ def counts_to_vwc(counts, N0, Wlat, Wsoc ,bulk_density, a0=0.0808,a1=0.372,a2=0. def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017'): - # Convert docstring to google format """Function that computes the estimated sensing depth of the cosmic-ray neutron probe. The function offers several methods to compute the depth at which 86 % of the neutrons probe the soil profile. @@ -645,7 +644,7 @@ def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='S # Determine sensing depth (D86) if method == 'Schron_2017': # See Appendix A of Schrön et al. (2017) - Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref)); + Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref)) Fveg = 0 results = [] for d in dist: @@ -660,7 +659,6 @@ def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='S results = 5.8/(bulk_density*Wlat+vwc+0.0829) else: raise ValueError('Method not recognized. Please select either "Schron_2017" or "Franz_2012".') - return results def abs_humidity(relative_humidity, temp): @@ -1044,6 +1042,7 @@ def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): Rc (float): Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV. start_date (datetime): Start date for the period of interest. end_date (datetime): End date for the period of interest. + verbose (bool): If True, print a expanded output of the incoming neutron flux data. Returns: (list): List of top five stations with closes cutoff rigidity. @@ -1154,7 +1153,7 @@ def lattice_water(clay_content, total_carbon=None): return lattice_water -def latlon_to_utm(lat, lon, utm_zone_number, missing_values=None): +def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None): """Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System. Function only applies to non-polar coordinates. @@ -1167,7 +1166,8 @@ def latlon_to_utm(lat, lon, utm_zone_number, missing_values=None): Args: lat (float, array): Latitude in decimal degrees. lon (float, array): Longitude in decimal degrees. - utm_zone_number (int): Universal Transverse Mercator (UTM) zone. + utm_zone_number (int): UTM zone number. If None, the zone number is automatically calculated. + utm_zone_letter (str): UTM zone letter. If None, the zone letter is automatically calculated. Returns: (float, float): Tuple of easting and northing coordinates in meters. First element is easting, second is northing. @@ -1178,68 +1178,12 @@ def latlon_to_utm(lat, lon, utm_zone_number, missing_values=None): [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#) """ + if utm_zone_number is None or utm_zone_letter is None: + easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon) + else: + easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon, utm_zone_number, utm_zone_letter) - - # Define constants - R = 6_378_137 # Earth's radius at the Equator in meters - - # Convert input data to Numpy arrays - if (type(lat) is not np.ndarray) or (type(lon) is not np.ndarray): - try: - lat = np.array(lat) - lon = np.array(lon) - except: - raise "Input values cannot be converted to Numpy arrays." - - # Check latitude range - if np.any(lat < -80) | np.any(lat > 84): - raise "One or more latitude values exceed the range -80 to 84" - - # Check longitude range - if np.any(lon < -180) | np.any(lon > 180): - raise "One or more longitude values exceed the range -180 to 180" - - # Constants - K0 = 0.9996 - E = 0.00669438 - E_P2 = E / (1 - E) - - M1 = (1 - E / 4 - 3 * E ** 2 / 64 - 5 * E ** 3 / 256) - M2 = (3 * E / 8 + 3 * E ** 2 / 32 + 45 * E ** 3 / 1024) - M3 = (15 * E ** 2 / 256 + 45 * E ** 3 / 1024) - M4 = (35 * E ** 3 / 3072) - - # Trigonometric operations - lat_rad = np.radians(lat) - lon_rad = np.radians(lon) - - lat_sin = np.sin(lat_rad) - lat_cos = np.cos(lat_rad) - lat_tan = lat_sin / lat_cos - lat_tan2 = lat_tan * lat_tan - lat_tan4 = lat_tan2 * lat_tan2 - - # Find central meridian. - central_lon = (utm_zone_number * 6 - 180) - 3 # Zones are every 6 degrees. - central_lon_rad = np.radians(central_lon) - - n = R / np.sqrt(1 - E * lat_sin ** 2) - c = E_P2 * lat_cos ** 2 - - with np.errstate(divide='ignore', invalid='ignore'): - a = lat_cos * (np.remainder(((lon_rad - central_lon_rad) + np.pi), (2 * np.pi)) - np.pi) - m = R * (M1 * lat_rad - M2 * np.sin(2 * lat_rad) + M3 * np.sin(4 * lat_rad) - M4 * np.sin(6 * lat_rad)) - - easting = K0 * n * (a + a ** 3 / 6 * (1 - lat_tan2 + c) + a ** 5 / 120 * ( - 5 - 18 * lat_tan2 + lat_tan4 + 72 * c - 58 * E_P2)) + 500_000 - northing = K0 * (m + n * lat_tan * ( - a ** 2 / 2 + a ** 4 / 24 * (5 - lat_tan2 + 9 * c + 4 * c ** 2) + a ** 6 / 720 * ( - 61 - 58 * lat_tan2 + lat_tan4 + 600 * c - 330 * E_P2))) - - if np.any(lat < 0): - northing += 10_000_000 - - return easting, northing + return easting, northing, zone_number, zone_letter def euclidean_distance(px, py, x, y): """Function that computes the Euclidean distance between one point From 54dfcd571adef6c9613f6a5128bcb61946755a70 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Fri, 5 Jan 2024 17:46:32 -0300 Subject: [PATCH 08/24] Fixes --- requirements.txt | 3 ++- setup.py | 4 ++-- src/crnpy/crnpy.py | 2 +- 3 files changed, 5 insertions(+), 4 deletions(-) diff --git a/requirements.txt b/requirements.txt index 3f061eb..67f2cd1 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,5 @@ numpy>=1.24.3 pandas>=2.0.1 requests>=2.31.0 -scipy>=1.10.1 \ No newline at end of file +scipy>=1.10.1 +utm>=0.7.0 diff --git a/setup.py b/setup.py index 43acb44..5f2cc7d 100644 --- a/setup.py +++ b/setup.py @@ -3,14 +3,14 @@ setuptools.setup( name="crnpy", - version="0.5.1", + version="0.6.0", packages=['crnpy'], package_dir = {"": "src"}, description="A Python package for the estimation and processing of soil moisture data from cosmic-ray neutron counts.", include_package_data=True, long_description=open('README.md').read(), long_description_content_type='text/markdown', - url="https://github.com/soilwater/crnpy", + url="https://soilwater.github.io/crnpy/", author="Joaquin Peraza, Andres Patrignani", author_email="jperaza@ksu.edu, andrespatrignani@ksu.edu", license="MIT", diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 35fed20..e3080d6 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -687,7 +687,7 @@ def abs_humidity(relative_humidity, temp): return abs_h -def nrad_weight(h,theta,distances,depth,rhob=1.4, method=None, p=None, Hveg=None) +def nrad_weight(h,theta,distances,depth,rhob=1.4, method=None, p=None, Hveg=None): """Function to compute distance weights corresponding to each soil sample. Args: From 15df273d5d7969eefc04097d19e946c766b184ce Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sat, 6 Jan 2024 15:25:30 -0300 Subject: [PATCH 09/24] check/convert types #11 --- src/crnpy/crnpy.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index e3080d6..65aeb38 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -134,7 +134,7 @@ def is_outlier(x, method, window=11, min_val=None, max_val=None): """Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference. Args: - x (pandas.DataFrame): Variable containing only the columns with neutron counts. + x (pd.DataFrame or pd.Series): Variable containing only the columns with neutron counts. method (str): Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad window (int, optional): Window size for the moving central tendency. Default is 11. min_val (int or float): Minimum value for a reading to be considered valid. Default is None. @@ -491,6 +491,10 @@ def smooth_1d(values, window=5, order=3, method='moving_median'): Analytical chemistry, 36(8), 1627-1639. """ + if not isinstance(x, pd.Series) and not isinstance(x, pd.DataFrame): + raise ValueError('Input must be a pandas Series or DataFrame') + + if method == 'moving_average': corrected_counts = values.rolling(window=window, center=True, min_periods=1).mean() elif method == 'moving_median': From e1706ac1016a5f959c3bc2bb0833cb3b998c7d59 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Mon, 8 Jan 2024 19:48:30 -0300 Subject: [PATCH 10/24] format and doc update --- .DS_Store | Bin 0 -> 6148 bytes .gitignore | 1 + .idea/crnpy.iml | 5 +- .idea/misc.xml | 2 +- build/lib/crnpy/crnpy.py | 741 +- site/404.html | 176 +- site/assets/_mkdocstrings.css | 58 +- .../images/social/correction_routines.png | Bin 64142 -> 64214 bytes .../examples/calibration/calibration.png | Bin 64782 -> 71743 bytes .../rover/Hydroinnova_rover_example.png | Bin 61445 -> 63061 bytes .../stationary/example_RDT_station.png | Bin 60181 -> 66595 bytes site/assets/images/social/index.png | Bin 57336 -> 57410 bytes site/assets/images/social/reference.png | Bin 59113 -> 59194 bytes site/correction_routines/index.html | 262 +- .../calibration/calibration/index.html | 2688 ++-- .../Hydroinnova_rover_example/index.html | 2345 +-- .../stationary/example_RDT_station/index.html | 2670 ++- site/index.html | 260 +- site/objects.inv | Bin 467 -> 787 bytes site/reference/index.html | 13433 +++++++++++++--- site/search/search_index.json | 2 +- site/sitemap.xml | 14 +- site/sitemap.xml.gz | Bin 310 -> 310 bytes src/crnpy.egg-info/PKG-INFO | 16 +- src/crnpy/crnpy.py | 424 +- 25 files changed, 15624 insertions(+), 7473 deletions(-) create mode 100644 .DS_Store diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..8ceb77b03969e4447ffb693919f548c0470f50d9 GIT binary patch literal 6148 zcmeHK!AiqG5S_Krri##mLXQhx3sxhFcnP)sfDt{Y)W!r2#;i1{J(NPu`a^z+-{Z{g zRBWpk4$f>?Yp@Jh2L2lZbax$yK*25KU+-`DlqPx6YQ2l4inF{@b*t{0dmY@XVNmpnLEi55 zFKKnAR2oj^z3@DVhu!+dvC4{GlEr-;kVG-MTwNqtq=s!Z$f8`w24=&pxwUS+F&cT^ zK~sAByW^%D9qzW8a?jfzk8AGc*7nh9_aS}E)Qcfd;CrKGopA!MIQh)yIp}Ap%I?rc z{to1jKmqZ> - + + + \ No newline at end of file diff --git a/.idea/misc.xml b/.idea/misc.xml index efc4ace..aedf446 100644 --- a/.idea/misc.xml +++ b/.idea/misc.xml @@ -1,4 +1,4 @@ - + \ No newline at end of file diff --git a/build/lib/crnpy/crnpy.py b/build/lib/crnpy/crnpy.py index a7a73de..bc923a1 100644 --- a/build/lib/crnpy/crnpy.py +++ b/build/lib/crnpy/crnpy.py @@ -5,20 +5,19 @@ Created by Joaquin Peraza and Andres Patrignani. """ -# Import modules -import sys -import warnings +import crnpy.data as data +import io import numbers import numpy as np import pandas as pd import requests -import io - +import sys +import utm +import warnings -from scipy.signal import savgol_filter from scipy.interpolate import griddata +from scipy.signal import savgol_filter from scipy.special import erfcinv -import crnpy.data as data # Define python version python_version = (3, 7) # tuple of (major, minor) version requirement @@ -42,24 +41,24 @@ def remove_incomplete_intervals(df, timestamp_col, integration_time, remove_firs Returns: (pandas.DataFrame): """ - + # Check format of timestamp column if df[timestamp_col].dtype != 'datetime64[ns]': raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.') # Check if differences in timestamps are below or above the provided integration time idx_delta = df[timestamp_col].diff().dt.total_seconds() != integration_time - + if remove_first: idx_delta[0] = True - + # Select rows that meet the specified integration time df = df[~idx_delta] df.reset_index(drop=True, inplace=True) # Notify user about the number of rows that have been removed print(f"Removed a total of {sum(idx_delta)} rows.") - + return df @@ -94,40 +93,39 @@ def fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_times for date in date_range: if date not in df[timestamp_col].values: if verbose: - print('Adding missing date:',date) - new_line = pd.DataFrame({timestamp_col:date}, index=[-1]) # By default fills columns with np.nan - df = pd.concat([df,new_line]) + print('Adding missing date:', date) + new_line = pd.DataFrame({timestamp_col: date}, index=[-1]) # By default fills columns with np.nan + df = pd.concat([df, new_line]) counter += 1 df.sort_values(by=timestamp_col, inplace=True) df.reset_index(drop=True, inplace=True) - + # Notify user about the number of rows that have been removed print(f"Added a total of {counter} missing timestamps.") - + return df -def total_raw_counts(counts, nan_strategy=None, timestamp_col=None): +def total_raw_counts(counts): """Compute the sum of uncorrected neutron counts for all detectors. Args: counts (pandas.DataFrame): Dataframe containing only the columns with neutron counts. - nan_strategy (str): Strategy to use for NaN values. Options are 'interpolate', 'average', or None. Default is None. Returns: (pandas.DataFrame): Dataframe with the sum of uncorrected neutron counts for all detectors. """ if counts.shape[0] > 1: - counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)),axis=0) + counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)), axis=0) # Compute sum of counts total_raw_counts = counts.sum(axis=1) - + # Replace zeros with NaN total_raw_counts = total_raw_counts.replace(0, np.nan) - + return total_raw_counts @@ -135,7 +133,7 @@ def is_outlier(x, method, window=11, min_val=None, max_val=None): """Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference. Args: - x (pandas.DataFrame): Variable containing only the columns with neutron counts. + x (pd.DataFrame or pd.Series): Variable containing only the columns with neutron counts. method (str): Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad window (int, optional): Window size for the moving central tendency. Default is 11. min_val (int or float): Minimum value for a reading to be considered valid. Default is None. @@ -147,7 +145,7 @@ def is_outlier(x, method, window=11, min_val=None, max_val=None): References: Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press. """ - + if not isinstance(x, pd.Series): raise TypeError('x must of type pandas.Series') @@ -164,24 +162,24 @@ def is_outlier(x, method, window=11, min_val=None, max_val=None): iqr = q3 - q1 high_fence = q3 + (1.5 * iqr) low_fence = q1 - (1.5 * iqr) - idx_outliers = (xhigh_fence ) + idx_outliers = (x < low_fence) | (x > high_fence) elif method == 'moviqr': q1 = x.rolling(window, center=True).quantile(0.25) q3 = x.rolling(window, center=True).quantile(0.75) iqr = q3 - q1 - ub = q3 + (1.5 * iqr) # Upper boundary - lb = q1 - (1.5 * iqr) # Lower boundary + ub = q3 + (1.5 * iqr) # Upper boundary + lb = q1 - (1.5 * iqr) # Lower boundary idx_outliers = (x < lb) | (x > ub) elif method == 'zscore': - zscore = (x - x.mean())/x.std() + zscore = (x - x.mean()) / x.std() idx_outliers = (zscore < -3) | (zscore > 3) elif method == 'movzscore': movmean = x.rolling(window=window, center=True).mean() movstd = x.rolling(window=window, center=True).std() - movzscore = (x - movmean)/movstd + movzscore = (x - movmean) / movstd idx_outliers = (movzscore < -3) | (movzscore > 3) elif method == 'modified_zscore': @@ -196,10 +194,10 @@ def is_outlier(x, method, window=11, min_val=None, max_val=None): elif method == 'scaled_mad': # Returns true for elements more than three scaled MAD from the median. - c = -1 / (np.sqrt(2)*erfcinv(3/2)) + c = -1 / (np.sqrt(2) * erfcinv(3 / 2)) median = np.nanmedian(x) - mad = c*np.nanmedian(np.abs(x - median)) - idx_outliers = x > (median + 3*mad) + mad = c * np.nanmedian(np.abs(x - median)) + idx_outliers = x > (median + 3 * mad) else: raise TypeError('Outlier detection method not found.') @@ -235,7 +233,7 @@ def correction_pressure(pressure, Pref, L): Args: - atm_pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended. + pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended. Pref (float): Reference atmospheric pressure. L (float): Atmospheric attenuation coefficient. @@ -247,7 +245,7 @@ def correction_pressure(pressure, Pref, L): """ # Compute pressure correction factor - fp = np.exp((Pref - pressure) / L) # Zreda et al. 2017 Eq 5. + fp = np.exp((Pref - pressure) / L) # Zreda et al. 2017 Eq 5. return fp @@ -278,7 +276,6 @@ def correction_humidity(abs_humidity, Aref): Args: abs_humidity (list or array): Relative humidity readings. - temp (list or array): Temperature readings (Celsius). Aref (float): Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended. Returns: @@ -288,10 +285,12 @@ def correction_humidity(abs_humidity, Aref): M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 """ A = abs_humidity - fw = 1 + 0.0054*(A - Aref) # Zreda et al. 2017 Eq 6. + fw = 1 + 0.0054 * (A - Aref) # Zreda et al. 2017 Eq 6. return fw -def correction_incoming_flux(incoming_neutrons, incoming_Ref=None): + +def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None, + site_atmdepth=None, Rc_ref=None, ref_atmdepth=None): r"""Correction factor for incoming neutron flux. This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation: @@ -331,7 +330,27 @@ def correction_incoming_flux(incoming_neutrons, incoming_Ref=None): incoming_Ref = incoming_neutrons[0] warnings.warn('Reference incoming neutron flux not provided. Using first value of incoming neutron flux.') fi = incoming_neutrons / incoming_Ref - fi.fillna(1.0, inplace=True) # Use a value of 1 for days without data + + if Rc_method is not None: + if Rc_ref is None: + raise ValueError('Reference cutoff rigidity not provided.') + if Rc_site is None: + raise ValueError('Site cutoff rigidity not provided.') + + if Rc_method == 'McJannetandDesilets2023': + tau = location_factor(site_atmdepth, Rc_site, ref_atmdepth, Rc_ref) + fi = 1 / (tau * fi + 1 - tau) + + elif Rc_method == 'Hawdonetal2014': + Rc_corr = -0.075 * (Rc_site - Rc_ref) + 1.0 + fi = (fi - 1.0) * Rc_corr + 1.0 + + else: + raise ValueError( + 'Cutoff rigidity method not found. Valid options are: McJannetandDesilets2023, Hawdonetal2014.') + + if fill_na is not None: + fi.fillna(fill_na, inplace=True) # Use a value of 1 for days without data return fi @@ -354,10 +373,9 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan Documentation available:https://www.nmdb.eu/nest/help.php#howto """ - # Example: get_incoming_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00') + # Example: get_incoming_neutron_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00') # Template url = 'http://nest.nmdb.eu/draw_graph.php?formchk=1&stations[]=KERG&output=ascii&tabchoice=revori&dtype=corr_for_efficiency&date_choice=bydate&start_year=2009&start_month=09&start_day=01&start_hour=00&start_min=00&end_year=2009&end_month=09&end_day=05&end_hour=23&end_min=59&yunits=0' - # Expand the time window by 1 hour to ensure an extra observation is included in the request. start_date -= pd.Timedelta(hours=expand_window) end_date += pd.Timedelta(hours=expand_window) @@ -365,26 +383,25 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan # Convert local time to UTC start_date = start_date - pd.Timedelta(hours=utc_offset) end_date = end_date - pd.Timedelta(hours=utc_offset) - date_format = '%Y-%m-%d %H:%M:%S' root = 'http://www.nmdb.eu/nest/draw_graph.php?' - url_par = [ 'formchk=1', - 'stations[]=' + station, - 'output=ascii', - 'tabchoice=revori', - 'dtype=corr_for_efficiency', - 'tresolution=' + str(60), - 'date_choice=bydate', - 'start_year=' + str(start_date.year), - 'start_month=' + str(start_date.month), - 'start_day=' + str(start_date.day), - 'start_hour=' + str(start_date.hour), - 'start_min=' + str(start_date.minute), - 'end_year=' + str(end_date.year), - 'end_month=' + str(end_date.month), - 'end_day=' + str(end_date.day), - 'end_hour=' + str(end_date.hour), - 'end_min=' + str(end_date.minute), - 'yunits=0'] + url_par = ['formchk=1', + 'stations[]=' + station, + 'output=ascii', + 'tabchoice=revori', + 'dtype=corr_for_efficiency', + 'tresolution=' + str(60), + 'date_choice=bydate', + 'start_year=' + str(start_date.year), + 'start_month=' + str(start_date.month), + 'start_day=' + str(start_date.day), + 'start_hour=' + str(start_date.hour), + 'start_min=' + str(start_date.minute), + 'end_year=' + str(end_date.year), + 'end_month=' + str(end_date.month), + 'end_day=' + str(end_date.day), + 'end_hour=' + str(end_date.hour), + 'end_min=' + str(end_date.minute), + 'yunits=0'] url = root + '&'.join(url_par) @@ -398,9 +415,9 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan start = r.find("RCORR_E\n") + 8 end = r.find('\n
Total') - 1 s = r[start:end] - s2 = ''.join([row.replace(';',',') for row in s]) + s2 = ''.join([row.replace(';', ',') for row in s]) try: - df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp','counts']) + df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp', 'counts']) except: if verbose: print(f"Error retrieving data from {url}") @@ -424,6 +441,32 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan return df_flux +def get_reference_neutron_flux(station, date=pd.to_datetime("2011-05-01")): + """Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022). + + Args: + station (str): Neutron Monitor station to retrieve data from. + date (datetime): Date of the reference neutron flux. Default is 2011-05-01. + + Returns: + (float): Reference neutron flux in counts per hour. + + References: + Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099. + + Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043. + + Bogena, H. R., Schrön, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151. + +""" + + # Get flux for 2011-05-01 + df_flux = get_incoming_neutron_flux(station, date, date + pd.Timedelta(hours=24)) + if df_flux is None: + warnings.warn(f"Reference neutron flux for {station} not available. Returning NaN.") + else: + return df_flux['counts'].median() + def smooth_1d(values, window=5, order=3, method='moving_median'): """Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content). @@ -442,8 +485,14 @@ def smooth_1d(values, window=5, order=3, method='moving_median'): Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9. doi.org/10.3389/frwa.2020.00009 + + Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. + Analytical chemistry, 36(8), 1627-1639. """ + if not isinstance(x, pd.Series) and not isinstance(x, pd.DataFrame): + raise ValueError('Input must be a pandas Series or DataFrame') + if method == 'moving_average': corrected_counts = values.rolling(window=window, center=True, min_periods=1).mean() elif method == 'moving_median': @@ -454,13 +503,14 @@ def smooth_1d(values, window=5, order=3, method='moving_median'): print('Dataframe contains NaN values. Please remove NaN values before smoothing the data.') if type(values) == pd.core.series.Series: - filtered = savgol_filter(values,window,order) - corrected_counts = pd.DataFrame(filtered,columns=['smoothed'], index=values.index) + filtered = savgol_filter(values, window, order) + corrected_counts = pd.DataFrame(filtered, columns=['smoothed'], index=values.index) elif type(values) == pd.core.frame.DataFrame: for col in values.columns: - values[col] = savgol_filter(values[col],window,order) + values[col] = savgol_filter(values[col], window, order) else: - raise ValueError('Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay') + raise ValueError( + 'Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay') corrected_counts = corrected_counts.ffill(limit=window).bfill(limit=window).copy() return corrected_counts @@ -483,7 +533,8 @@ def correction_bwe(counts, bwe, r2_N0=0.05): Water Resour. Res., 51, 2030–2046, doi:10.1002/ 2014WR016443. """ - return counts/(1 - bwe*r2_N0) + return counts / (1 - bwe * r2_N0) + def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494): """Function to convert biomass to biomass water equivalent. @@ -505,7 +556,8 @@ def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494): return (biomass_fresh - biomass_dry) + fWE * biomass_dry -def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01): +def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, + p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01): """Function to correct for road effects in neutron counts. following the approach described in Schrön et al., 2018. @@ -525,7 +577,7 @@ def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0 of field soil moisture and the influence of roads.WaterResources Research,54,6441–6459. https://doi. org/10.1029/2017WR021719 """ - F1 = p0 * (1-np.exp(-p1*road_width)) + F1 = p0 * (1 - np.exp(-p1 * road_width)) F2 = -p2 - p3 * theta_road - ((p4 + theta_road) / (theta_N)) F3 = p6 * np.exp(-p7 * (road_width ** -p8) * road_distance ** 4) + (1 - p6) * np.exp(-p9 * road_distance) @@ -535,7 +587,8 @@ def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0 return corrected_counts -def counts_to_vwc(counts, N0, Wlat, Wsoc ,bulk_density, a0=0.0808,a1=0.372,a2=0.115): + +def counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115): r"""Function to convert corrected and filtered neutron counts into volumetric water content. This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010. @@ -562,13 +615,11 @@ def counts_to_vwc(counts, N0, Wlat, Wsoc ,bulk_density, a0=0.0808,a1=0.372,a2=0. """ # Convert neutron counts into vwc - vwc = (a0 / (counts/N0-a1) - a2 - Wlat - Wsoc) * bulk_density + vwc = (a0 / (counts / N0 - a1) - a2 - Wlat - Wsoc) * bulk_density return vwc - def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017'): - # Convert docstring to google format """Function that computes the estimated sensing depth of the cosmic-ray neutron probe. The function offers several methods to compute the depth at which 86 % of the neutrons probe the soil profile. @@ -598,24 +649,25 @@ def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='S # Determine sensing depth (D86) if method == 'Schron_2017': # See Appendix A of Schrön et al. (2017) - Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref)); + Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref)) Fveg = 0 results = [] for d in dist: # Compute r_star - r_start = d/Fp + r_start = d / Fp # Compute soil depth that accounts for 86% of the neutron flux - D86 = 1/ bulk_density * (8.321+0.14249*(0.96655 + np.exp(-0.01*r_start))*(20+(Wlat+vwc)) / (0.0429+(Wlat+vwc))) + D86 = 1 / bulk_density * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r_start)) * (20 + (Wlat + vwc)) / ( + 0.0429 + (Wlat + vwc))) results.append(D86) elif method == 'Franz_2012': - results = 5.8/(bulk_density*Wlat+vwc+0.0829) + results = 5.8 / (bulk_density * Wlat + vwc + 0.0829) else: raise ValueError('Method not recognized. Please select either "Schron_2017" or "Franz_2012".') - return results + def abs_humidity(relative_humidity, temp): """ Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations. @@ -631,7 +683,7 @@ def abs_humidity(relative_humidity, temp): ### Atmospheric water vapor factor # Saturation vapor pressure e_sat = 0.611 * np.exp(17.502 * temp / ( - temp + 240.97)) * 1000 # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman) + temp + 240.97)) * 1000 # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman) # Vapor pressure Pascals Pw = e_sat * relative_humidity / 100 @@ -642,15 +694,18 @@ def abs_humidity(relative_humidity, temp): return abs_h -def nrad_weight(h,theta,distances,depth,rhob=1.4): +def nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None): """Function to compute distance weights corresponding to each soil sample. Args: - h (float): Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting. - theta (array or pd.Series or pd.DataFrame): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3) - distances (array or pd.Series or pd.DataFrame): Distances from the location of each sample to the origin (0.5 - 600 m) - depth (array or pd.Series or pd.DataFrame): Depths for each sample (m) - rhob (float): Bulk density in g/cm^3 + h (np.array or pd.Series): Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting. + theta (np.array or pd.Series): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3) + distances (np.array or pd.Series): Distances from the location of each sample to the origin (0.5 - 600 m) + depth (np.array or pd.Series): Depths for each sample (m) + rhob (np.array or pd.Series): Bulk density in g/cm^3 + p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method. + Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method. + method (str): Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'. Returns: (array or pd.Series or pd.DataFrame): Distance weights for each sample. @@ -659,64 +714,252 @@ def nrad_weight(h,theta,distances,depth,rhob=1.4): Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour. Res. 51, 5772–5790. doi:10.1002/2015WR017169 - """ - - # Table A1. Parameters for Fi and D86 - p10 = 8735; p11 = 17.1758; p12 = 11720; p13 = 0.00978; p14 = 7045; p15 = 0.003632; - p20 = 2.7925e-2; p21 = 5.0399; p22 = 2.8544e-2; p23 = 0.002455; p24 = 6.851e-5; p25 = 9.2926; - p30 = 247970; p31 = 17.63; p32 = 374655; p33 = 0.00191; p34 = 195725; - p40 = 5.4818e-2; p41 = 15.921; p42 = 0.6373; p43 = 5.99e-2; p44 = 5.425e-4; - p50 = 1383702; p51 = 4.156; p52 = 5325; p53 = 0.00238; p54 = 0.0156; p55 = 0.130; p56 = 1521; - p60 = 6.031e-5; p61 = 98.5; p62 = 1.0466e-3; - p70 = 11747; p71 = 41.66; p72 = 4521; p73 = 0.01998; p74 = 0.00604; p75 = 2534; p76 = 0.00475; - p80 = 1.543e-2; p81 = 10.06; p82 = 1.807e-2; p83 = 0.0011; p84 = 8.81e-5; p85 = 0.0405; p86 = 20.24; - p90 = 8.321; p91 = 0.14249; p92 = 0.96655; p93 = 26.42; p94 = 0.0567; - - - # Numerical determination of the penetration depth (86%) (Eq. 8) - D86 = 1/rhob*(p90+p91*(p92+np.exp(-1*distances/100))*(p93+theta)/(p94+theta)) - - # Depth weights (Eq. 7) - Wd = np.exp(-2*depth/D86) - - if h == 0: - W = 1 # skip distance weighting - - elif (h >= 0.1) and (h<= 50): - # Functions for Fi (Appendix A in Köhli et al., 2015) - F1 = p10*(1+p13*h)*np.exp(-p11*theta)+p12*(1+p15*h)-p14*theta - F2 = ((-p20+p24*h)*np.exp(-p21*theta/(1+p25*theta))+p22)*(1+h*p23) - F3 = (p30*(1+p33*h)*np.exp(-p31*theta)+p32-p34*theta) - F4 = p40*np.exp(-p41*theta)+p42-p43*theta+p44*h - F5 = p50*(0.02-1/p55/(h-p55+p56*theta))*(p54-theta)*np.exp(-p51*(theta-p54))+p52*(0.7-h*theta*p53) - F6 = p60*(h+p61)+p62*theta - F7 = (p70*(1-p76*h)*np.exp(-p71*theta*(1-h*p74))+p72-p75*theta)*(2+h*p73) - F8 = ((-p80+p84*h)*np.exp(-p81*theta/(1+p85*h+p86*theta))+p82)*(2+h*p83) - - # Distance weights (Eq. 3) - W = np.ones_like(distances)*np.nan - for i in range(len(distances)): - if (distances[i]<=50) and (distances[i]>0.5): - W[i]=F1[i]*(np.exp(-F2[i]*distances[i]))+F3[i]*np.exp(-F4[i]*distances[i]) - - elif (distances[i]>50) and (distances[i]<600): - W[i]=F5[i]*(np.exp(-F6[i]*distances[i]))+F7[i]*np.exp(-F8[i]*distances[i]) - - else: - raise ValueError('Input distances are not valid.') - - else: - raise ValueError('Air humidity values are out of range.') - - - # Combined and normalized weights - weights = Wd*W/np.nansum(Wd*W) - - return weights + Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., + Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., + Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and + validation of cosmic-ray neutron sensors in the light of spatial sensitivity, + Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017. + """ + if method == 'Kohli_2015': + + # Table A1. Parameters for Fi and D86 + p10 = 8735; + p11 = 17.1758; + p12 = 11720; + p13 = 0.00978; + p14 = 7045; + p15 = 0.003632; + p20 = 2.7925e-2; + p21 = 5.0399; + p22 = 2.8544e-2; + p23 = 0.002455; + p24 = 6.851e-5; + p25 = 9.2926; + p30 = 247970; + p31 = 17.63; + p32 = 374655; + p33 = 0.00191; + p34 = 195725; + p40 = 5.4818e-2; + p41 = 15.921; + p42 = 0.6373; + p43 = 5.99e-2; + p44 = 5.425e-4; + p50 = 1383702; + p51 = 4.156; + p52 = 5325; + p53 = 0.00238; + p54 = 0.0156; + p55 = 0.130; + p56 = 1521; + p60 = 6.031e-5; + p61 = 98.5; + p62 = 1.0466e-3; + p70 = 11747; + p71 = 41.66; + p72 = 4521; + p73 = 0.01998; + p74 = 0.00604; + p75 = 2534; + p76 = 0.00475; + p80 = 1.543e-2; + p81 = 10.06; + p82 = 1.807e-2; + p83 = 0.0011; + p84 = 8.81e-5; + p85 = 0.0405; + p86 = 20.24; + p90 = 8.321; + p91 = 0.14249; + p92 = 0.96655; + p93 = 26.42; + p94 = 0.0567; + + # Numerical determination of the penetration depth (86%) (Eq. 8) + D86 = 1 / rhob * (p90 + p91 * (p92 + np.exp(-1 * distances / 100)) * (p93 + theta) / (p94 + theta)) + + # Depth weights (Eq. 7) + Wd = np.exp(-2 * depth / D86) + + if h == 0: + W = 1 # skip distance weighting + + elif (h >= 0.1) and (h <= 50): + # Functions for Fi (Appendix A in Köhli et al., 2015) + F1 = p10 * (1 + p13 * h) * np.exp(-p11 * theta) + p12 * (1 + p15 * h) - p14 * theta + F2 = ((-p20 + p24 * h) * np.exp(-p21 * theta / (1 + p25 * theta)) + p22) * (1 + h * p23) + F3 = (p30 * (1 + p33 * h) * np.exp(-p31 * theta) + p32 - p34 * theta) + F4 = p40 * np.exp(-p41 * theta) + p42 - p43 * theta + p44 * h + F5 = p50 * (0.02 - 1 / p55 / (h - p55 + p56 * theta)) * (p54 - theta) * np.exp( + -p51 * (theta - p54)) + p52 * (0.7 - h * theta * p53) + F6 = p60 * (h + p61) + p62 * theta + F7 = (p70 * (1 - p76 * h) * np.exp(-p71 * theta * (1 - h * p74)) + p72 - p75 * theta) * (2 + h * p73) + F8 = ((-p80 + p84 * h) * np.exp(-p81 * theta / (1 + p85 * h + p86 * theta)) + p82) * (2 + h * p83) + + # Distance weights (Eq. 3) + W = np.ones_like(distances) * np.nan + for i in range(len(distances)): + if (distances[i] <= 50) and (distances[i] > 0.5): + W[i] = F1[i] * (np.exp(-F2[i] * distances[i])) + F3[i] * np.exp(-F4[i] * distances[i]) + + elif (distances[i] > 50) and (distances[i] < 600): + W[i] = F5[i] * (np.exp(-F6[i] * distances[i])) + F7[i] * np.exp(-F8[i] * distances[i]) + + else: + raise ValueError('Input distances are not valid.') -def exp_filter(sm,T=1): + else: + raise ValueError('Air humidity values are out of range.') + + # Combined and normalized weights + weights = Wd * W / np.nansum(Wd * W) + return weights + elif method == 'Schron_2017': + # Horizontal distance weights According to Eq. 6 and Table A1 in Schrön et al. (2017) + # Method for calculating the horizontal distance weights from 0 to 1m + def WrX(r, x, y): + x00 = 3.7 + a00 = 8735; + a01 = 22.689; + a02 = 11720; + a03 = 0.00978; + a04 = 9306; + a05 = 0.003632 + a10 = 2.7925e-2; + a11 = 6.6577; + a12 = 0.028544; + a13 = 0.002455; + a14 = 6.851e-5; + a15 = 12.2755 + a20 = 247970; + a21 = 23.289; + a22 = 374655; + a23 = 0.00191; + a24 = 258552 + a30 = 5.4818e-2; + a31 = 21.032; + a32 = 0.6373; + a33 = 0.0791; + a34 = 5.425e-4 + + x0 = x00 + A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y) + A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13) + A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y) + A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x + + return ((A0 * (np.exp(-A1 * r)) + A2 * np.exp(-A3 * r)) * (1 - np.exp(-x0 * r))) + + # Method for calculating the horizontal distance weights from 1 to 50m + def WrA(r, x, y): + a00 = 8735; + a01 = 22.689; + a02 = 11720; + a03 = 0.00978; + a04 = 9306; + a05 = 0.003632 + a10 = 2.7925e-2; + a11 = 6.6577; + a12 = 0.028544; + a13 = 0.002455; + a14 = 6.851e-5; + a15 = 12.2755 + a20 = 247970; + a21 = 23.289; + a22 = 374655; + a23 = 0.00191; + a24 = 258552 + a30 = 5.4818e-2; + a31 = 21.032; + a32 = 0.6373; + a33 = 0.0791; + a34 = 5.425e-4 + + A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y) + A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13) + A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y) + A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x + + return A0 * np.exp(-A1 * r) + A2 * np.exp(-A3 * r) + + # Method for calculating the horizontal distance weights from 50 to 600m + def WrB(r, x, y): + b00 = 39006; + b01 = 15002337; + b02 = 2009.24; + b03 = 0.01181; + b04 = 3.146; + b05 = 16.7417; + b06 = 3727 + b10 = 6.031e-5; + b11 = 98.5; + b12 = 0.0013826 + b20 = 11747; + b21 = 55.033; + b22 = 4521; + b23 = 0.01998; + b24 = 0.00604; + b25 = 3347.4; + b26 = 0.00475 + b30 = 1.543e-2; + b31 = 13.29; + b32 = 1.807e-2; + b33 = 0.0011; + b34 = 8.81e-5; + b35 = 0.0405; + b36 = 26.74 + + B0 = (b00 - b01 / (b02 * y + x - 0.13)) * (b03 - y) * np.exp(-b04 * y) - b05 * x * y + b06 + B1 = b10 * (x + b11) + b12 * y + B2 = (b20 * (1 - b26 * x) * np.exp(-b21 * y * (1 - x * b24)) + b22 - b25 * y) * (2 + x * b23) + B3 = ((-b30 + b34 * x) * np.exp(-b31 * y / (1 + b35 * x + b36 * y)) + b32) * (2 + x * b33) + + return B0 * np.exp(-B1 * r) + B2 * np.exp(-B3 * r) + + def rscaled(r, p, Hveg, y): + Fp = 0.4922 / (0.86 - np.exp(-p / 1013.25)) + Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y)) + return r / Fp / Fveg + + # Rename variables to be consistent with the revised paper + r = distances + x = h + y = theta + bd = rhob + + if Hveg is not None and p is not None: + r = rscaled(r, p, Hveg, y) + + Wr = np.zeros(len(r)) + + # See Eq. 6 in Schron et al. (2017) + r0_idx = (r <= 1) + r1_idx = (r > 1) & (r <= 50) + r2_idx = (r > 50) & (r < 600) + Wr[r0_idx] = WrX(r[r0_idx], x[r0_idx], y[r0_idx]) + Wr[r1_idx] = WrA(r[r1_idx], x[r1_idx], y[r1_idx]) + Wr[r2_idx] = WrB(r[r2_idx], x[r2_idx], y[r2_idx]) + + # Vertical distance weights + def D86(r, bd, y): + return 1 / bd * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r)) * (20 + y) / (0.0429 + y)) + + def Wd(d, r, bd, y): + return np.exp(-2 * d / D86(r, bd, y)) + + # Calculate the vertical distance weights + Wd = Wd(d, r, bd, y) + + # Combined and normalized weights + # Combined and normalized weights + weights = Wd * Wr / np.nansum(Wd * Wr) + + return weights + + +def exp_filter(sm, T=1): """Exponential filter to estimate soil moisture in the rootzone from surface observtions. Args: @@ -738,7 +981,6 @@ def exp_filter(sm,T=1): Soil Science Society of America Journal. """ - # Parameters t_delta = 1 sm_min = np.min(sm) @@ -746,18 +988,18 @@ def exp_filter(sm,T=1): ms = (sm - sm_min) / (sm_max - sm_min) # Pre-allocate soil water index array and recursive constant K - SWI = np.ones_like(ms)*np.nan - K = np.ones_like(ms)*np.nan + SWI = np.ones_like(ms) * np.nan + K = np.ones_like(ms) * np.nan # Initial conditions SWI[0] = ms[0] K[0] = 1 # Values from 2 to N - for n in range(1,len(SWI)): - if ~np.isnan(ms[n]) & ~np.isnan(ms[n-1]): - K[n] = K[n-1] / (K[n-1] + np.exp(-t_delta/T)) - SWI[n] = SWI[n-1] + K[n]*(ms[n] - SWI[n-1]) + for n in range(1, len(SWI)): + if ~np.isnan(ms[n]) & ~np.isnan(ms[n - 1]): + K[n] = K[n - 1] / (K[n - 1] + np.exp(-t_delta / T)) + SWI[n] = SWI[n - 1] + K[n] * (ms[n] - SWI[n - 1]) else: continue @@ -767,7 +1009,7 @@ def exp_filter(sm,T=1): return sm_subsurface -def cutoff_rigidity(lat,lon): +def cutoff_rigidity(lat, lon): """Function to estimate the approximate cutoff rigidity for any point on Earth according to the tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest. @@ -788,6 +1030,10 @@ def cutoff_rigidity(lat,lon): 2.52 GV (Value from NMD is 2.40 GV) References: + Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures + for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, + 50(6), 5029-5043. + Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program: Theory, Software Description and Example. NASA STI/Recon Technical Report N. @@ -798,16 +1044,102 @@ def cutoff_rigidity(lat,lon): yq = lat if xq < 0: - xq = xq*-1 + 180 + xq = xq * -1 + 180 Z = np.array(data.cutoff_rigidity) x = np.linspace(0, 360, Z.shape[1]) y = np.linspace(90, -90, Z.shape[0]) X, Y = np.meshgrid(x, y) - points = np.array( (X.flatten(), Y.flatten()) ).T + points = np.array((X.flatten(), Y.flatten())).T values = Z.flatten() - zq = griddata(points, values, (xq,yq)) + zq = griddata(points, values, (xq, yq)) + + return np.round(zq, 2) + + +def atmospheric_depth(elevation, latitude): + """Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023 + + This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023. + + Args: + elevation (float): Elevation in meters above sea level. + latitude (float): Geographic latitude in decimal degrees. Value in range -90 to 90 + + Returns: + (float): Atmospheric depth in g/cm2 + + References: + Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration. + + McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889. + """ + + density_of_rock = 2670 # Density of rock in kg/m3 + air_pressure_sea_level = 1013.25 # Air pressure at sea level in hPa + air_molar_mass = 0.0289644 # Air molar mass in kg/mol + universal_gas_constant = 8.3144598 # Universal gas constant in J/(mol*K) + reference_temperature = 288.15 # Reference temperature Kelvin + temperature_lapse_rate = -0.0065 # Temperature lapse rate in K/m + + # Gravity at sea-level calculation + gravity_sea_level = 9.780327 * ( + 1 + 0.0053024 * np.sin(np.radians(latitude)) ** 2 - 0.0000058 * np.sin(2 * np.radians(latitude)) ** 2) + # Free air correction + free_air = -3.086 * 10 ** -6 * elevation + # Bouguer correction + bouguer_corr = 4.194 * 10 ** -10 * density_of_rock * elevation + # Total gravity + gravity = gravity_sea_level + free_air + bouguer_corr + + # Air pressure calculation + reference_air_pressure = air_pressure_sea_level * ( + 1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / ( + universal_gas_constant * temperature_lapse_rate)) + + # Atmospheric depth calculation + atmospheric_depth = (10 * reference_air_pressure) / gravity + return atmospheric_depth + + +def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc): + """ + Function to estimate the location factor between two sites according to McJannet and Desilets, 2023. + + + Args: + site_atmospheric_depth (float): Atmospheric depth at the site in g/cm2. Can be estimated using the function `atmospheric_depth()` + site_Rc (float): Cutoff rigidity at the site in GV. Can be estimated using the function `cutoff_rigidity()` + reference_atmospheric_depth (float): Atmospheric depth at the reference location in g/cm2. + reference_Rc (float): Cutoff rigidity at the reference location in GV. + + Returns: + (float): Location-dependent correction factor. + + References: + McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889. + + """ + + # Renamed variables based on the provided table + c0 = -0.0009 # from C39 + c1 = 1.7699 # from C40 + c2 = 0.0064 # from C41 + c3 = 1.8855 # from C42 + c4 = 0.000013 # from C43 + c5 = -1.2237 # from C44 + epsilon = 1 # from C45 + + # Translated formula with renamed variables from McJannet and Desilets, 2023 + tau_new = epsilon * (c0 * reference_atmospheric_depth + c1) * ( + 1 - np.exp( + -(c2 * reference_atmospheric_depth + c3) * reference_Rc ** (c4 * reference_atmospheric_depth + c5))) - return np.round(zq,2) + norm_factor = 1 / tau_new + + # Calculate the result using the provided parameters + tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * ( + 1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5))) + return tau def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): @@ -817,6 +1149,7 @@ def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): Rc (float): Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV. start_date (datetime): Start date for the period of interest. end_date (datetime): End date for the period of interest. + verbose (bool): If True, print a expanded output of the incoming neutron flux data. Returns: (list): List of top five stations with closes cutoff rigidity. @@ -846,7 +1179,7 @@ def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): """ # Load file with list of neutron monitoring stations - stations = pd.DataFrame(data.neutron_detectors, columns=["STID","NAME","R","Altitude_m"]) + stations = pd.DataFrame(data.neutron_detectors, columns=["STID", "NAME", "R", "Altitude_m"]) # Sort stations by closest cutoff rigidity idx_R = (stations['R'] - Rc).abs().argsort() @@ -857,9 +1190,10 @@ def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): station = stations.iloc[idx_R[i]]["STID"] try: if get_incoming_neutron_flux(start_date, end_date, station, verbose=verbose) is not None: - stations.iloc[idx_R[i],-1] = True + stations.iloc[idx_R[i], -1] = True except: pass + if sum(stations["Period available"] == True) == 0: print("No stations available for the selected period!") else: @@ -871,7 +1205,8 @@ def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): # Print results print('') - print("""Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations""") + print( + """Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations""") print('') print(f"Your cutoff rigidity is {Rc} GV") print(result) @@ -890,7 +1225,7 @@ def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps): (pd.Series): Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps """ incoming_flux = np.array([]) - for k,timestamp in enumerate(crnp_timestamps): + for k, timestamp in enumerate(crnp_timestamps): if timestamp in nmdb_timestamps.values: idx = timestamp == nmdb_timestamps incoming_flux = np.append(incoming_flux, nmdb_counts.loc[idx]) @@ -927,7 +1262,7 @@ def lattice_water(clay_content, total_carbon=None): return lattice_water -def latlon_to_utm(lat, lon, utm_zone_number, missing_values=None): +def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None): """Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System. Function only applies to non-polar coordinates. @@ -940,7 +1275,8 @@ def latlon_to_utm(lat, lon, utm_zone_number, missing_values=None): Args: lat (float, array): Latitude in decimal degrees. lon (float, array): Longitude in decimal degrees. - utm_zone_number (int): Universal Transverse Mercator (UTM) zone. + utm_zone_number (int): UTM zone number. If None, the zone number is automatically calculated. + utm_zone_letter (str): UTM zone letter. If None, the zone letter is automatically calculated. Returns: (float, float): Tuple of easting and northing coordinates in meters. First element is easting, second is northing. @@ -951,68 +1287,13 @@ def latlon_to_utm(lat, lon, utm_zone_number, missing_values=None): [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#) """ + if utm_zone_number is None or utm_zone_letter is None: + easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon) + else: + easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon, utm_zone_number, utm_zone_letter) + return easting, northing, zone_number, zone_letter - # Define constants - R = 6_378_137 # Earth's radius at the Equator in meters - - # Convert input data to Numpy arrays - if (type(lat) is not np.ndarray) or (type(lon) is not np.ndarray): - try: - lat = np.array(lat) - lon = np.array(lon) - except: - raise "Input values cannot be converted to Numpy arrays." - - # Check latitude range - if np.any(lat < -80) | np.any(lat > 84): - raise "One or more latitude values exceed the range -80 to 84" - - # Check longitude range - if np.any(lon < -180) | np.any(lon > 180): - raise "One or more longitude values exceed the range -180 to 180" - - # Constants - K0 = 0.9996 - E = 0.00669438 - E_P2 = E / (1 - E) - - M1 = (1 - E / 4 - 3 * E ** 2 / 64 - 5 * E ** 3 / 256) - M2 = (3 * E / 8 + 3 * E ** 2 / 32 + 45 * E ** 3 / 1024) - M3 = (15 * E ** 2 / 256 + 45 * E ** 3 / 1024) - M4 = (35 * E ** 3 / 3072) - - # Trigonometric operations - lat_rad = np.radians(lat) - lon_rad = np.radians(lon) - - lat_sin = np.sin(lat_rad) - lat_cos = np.cos(lat_rad) - lat_tan = lat_sin / lat_cos - lat_tan2 = lat_tan * lat_tan - lat_tan4 = lat_tan2 * lat_tan2 - - # Find central meridian. - central_lon = (utm_zone_number * 6 - 180) - 3 # Zones are every 6 degrees. - central_lon_rad = np.radians(central_lon) - - n = R / np.sqrt(1 - E * lat_sin ** 2) - c = E_P2 * lat_cos ** 2 - - with np.errstate(divide='ignore', invalid='ignore'): - a = lat_cos * (np.remainder(((lon_rad - central_lon_rad) + np.pi), (2 * np.pi)) - np.pi) - m = R * (M1 * lat_rad - M2 * np.sin(2 * lat_rad) + M3 * np.sin(4 * lat_rad) - M4 * np.sin(6 * lat_rad)) - - easting = K0 * n * (a + a ** 3 / 6 * (1 - lat_tan2 + c) + a ** 5 / 120 * ( - 5 - 18 * lat_tan2 + lat_tan4 + 72 * c - 58 * E_P2)) + 500_000 - northing = K0 * (m + n * lat_tan * ( - a ** 2 / 2 + a ** 4 / 24 * (5 - lat_tan2 + 9 * c + 4 * c ** 2) + a ** 6 / 720 * ( - 61 - 58 * lat_tan2 + lat_tan4 + 600 * c - 330 * E_P2))) - - if np.any(lat < 0): - northing += 10_000_000 - - return easting, northing def euclidean_distance(px, py, x, y): """Function that computes the Euclidean distance between one point @@ -1068,7 +1349,6 @@ def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=Fa distances = euclidean_distance(px, py, x, y) idx_within_buffer = distances <= buffer - if np.isnan(z[k]): z_new_val = np.nan elif len(distances[idx_within_buffer]) > min_neighbours: @@ -1079,7 +1359,7 @@ def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=Fa else: raise f"Method {method} does not exist. Provide either 'mean' or 'median'." else: - z_new_val = z[k] # If there are not enough neighbours, keep the original value + z_new_val = z[k] # If there are not enough neighbours, keep the original value # Append smoothed value to array z_smooth = np.append(z_smooth, z_new_val) @@ -1160,7 +1440,8 @@ def interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000): z = z[~idx_nan] if idx_nan.any(): - print(f"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.") + print( + f"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.") # Create 2D grid for interpolation Nx = round((np.max(x) - np.min(x)) / dx) + 1 @@ -1195,9 +1476,9 @@ def rover_centered_coordinates(x, y): """ # Make it datatype agnostic - if(isinstance(x, pd.Series)): + if (isinstance(x, pd.Series)): x = x.values - if(isinstance(y, pd.Series)): + if (isinstance(y, pd.Series)): y = y.values # Do the average of the two points @@ -1208,7 +1489,6 @@ def rover_centered_coordinates(x, y): x_est = np.insert(x_est, 0, x[0]) y_est = np.insert(y_est, 0, y[0]) - return x_est, y_est @@ -1242,13 +1522,13 @@ def uncertainty_counts(raw_counts, metric="std", fp=1, fw=1, fi=1): if metric == "std": uncertainty = np.sqrt(raw_counts) * s elif metric == "cv": - uncertainty = 1 / np.sqrt(raw_counts) * s + uncertainty = 1 / np.sqrt(raw_counts) * s else: raise f"Metric {metric} does not exist. Provide either 'std' or 'cv' for standard deviation or coefficient of variation." return uncertainty -def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808,a1=0.372,a2=0.115): +def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115): r"""Function to estimate the uncertainty propagated to volumetric water content. The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts. @@ -1275,17 +1555,8 @@ def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808,a1 Ncorr = raw_counts * fw / (fp * fi) sigma_N = uncertainty_counts(raw_counts, metric="std", fp=fp, fw=fw, fi=fi) - sigma_GWC = sigma_N * ((a0*N0) / ((Ncorr - a1*N0)**4)) * np.sqrt((Ncorr - a1 * N0)**4 + 8 * sigma_N**2 * (Ncorr - a1 * N0)**2 + 15 * sigma_N**4) + sigma_GWC = sigma_N * ((a0 * N0) / ((Ncorr - a1 * N0) ** 4)) * np.sqrt( + (Ncorr - a1 * N0) ** 4 + 8 * sigma_N ** 2 * (Ncorr - a1 * N0) ** 2 + 15 * sigma_N ** 4) sigma_VWC = sigma_GWC * bulk_density return sigma_VWC - - - - - - - - - - diff --git a/site/404.html b/site/404.html index 7cb91ac..66aa860 100644 --- a/site/404.html +++ b/site/404.html @@ -12,8 +12,9 @@ + - + @@ -21,12 +22,15 @@ - + + + + @@ -54,9 +58,6 @@ - - - @@ -80,6 +81,7 @@
@@ -100,8 +102,12 @@
+ + + - + + - + - - - + - - - + - - - + diff --git a/site/assets/_mkdocstrings.css b/site/assets/_mkdocstrings.css index a65078d..049a254 100644 --- a/site/assets/_mkdocstrings.css +++ b/site/assets/_mkdocstrings.css @@ -1,18 +1,13 @@ -/* Don't capitalize names. */ -h5.doc-heading { - text-transform: none !important; -} - -/* Avoid breaking parameters name, etc. in table cells. */ +/* Avoid breaking parameter names, etc. in table cells. */ .doc-contents td code { word-break: normal !important; } -/* For pieces of Markdown rendered in table cells. */ -.doc-contents td p { - margin-top: 0 !important; - margin-bottom: 0 !important; +/* No line break before first paragraph of descriptions. */ +.doc-md-description, +.doc-md-description>p:first-child { + display: inline; } /* Max width for docstring sections tables. */ @@ -21,16 +16,49 @@ h5.doc-heading { display: table !important; width: 100%; } + .doc .md-typeset__table tr { display: table-row; } -/* Avoid line breaks in rendered fields. */ -.field-body p { - display: inline; -} - /* Defaults in Spacy table style. */ .doc-param-default { float: right; } + +/* Keep headings consistent. */ +h1.doc-heading, +h2.doc-heading, +h3.doc-heading, +h4.doc-heading, +h5.doc-heading, +h6.doc-heading { + font-weight: 400; + line-height: 1.5; + color: inherit; + text-transform: none; +} + +h1.doc-heading { + font-size: 1.6rem; +} + +h2.doc-heading { + font-size: 1.2rem; +} + +h3.doc-heading { + font-size: 1.15rem; +} + +h4.doc-heading { + font-size: 1.10rem; +} + +h5.doc-heading { + font-size: 1.05rem; +} + +h6.doc-heading { + font-size: 1rem; +} \ No newline at end of file diff --git a/site/assets/images/social/correction_routines.png b/site/assets/images/social/correction_routines.png index 68eaf3fa34792e3cdb8e95be4bbe4adfc111b43b..cd395b3570e7b4e34c689053f00c16246a7eac79 100644 GIT binary patch literal 64214 zcmeFYg;yI7`aN91y~Vv$a4qgFTD*Ah0;N!b7Wd-CTihv7G`MSUC{VNzibDbfhhQOC z-t@D(-`&6AJ->4}kO^ldlX?8!`$WCfR3;{%Be-|(9nEJ`T4=``{`#H$VxHkp4$JN zDpz6m_#OU#E+qGbQsV*l{~h7g7N~rF@!#tj2;tZK_ozRb^?vGq?*cIO|2`D+#DjIE=2Wetw zX<+ZZJj$fW*RU#m_JawuEAXSHd@DmnAHn_NzhQ$QRN#`I8Tm>Q4hdBJ}<{@&Q z^*Lhg``Y$u#_3!#K@1jn{|)jld1_IB_^S_Xl5*{j$f$dP`Tt z@j(Y-RmpKHjs@(Y<4+3W4d^~Yb77b2;Mk}!Op zpxFF2il zyuFEcVx-QZ2KZ@t^8mv4uJ@k$XW?S*mO6rH+^M4D(fbDljMRGywVGIk&)7Gu)R6ZH zM^YcuWdx@xX2~319SeGWf0{$K93StfEKWSJq)5pX^54|hUvJ8po8RgBxp?6i;u**MTWGDQ}F)hdLVdi|-d(;L=@g(4C;QybD5cvpIs zpX?S5ET`f%N=9hsCtR?)1gB5aFtWJAE}b4vM3J*ogJx#lR1Wj2X?IiQc8^L&L{|({ zw&ID_K1^1i>w2@%&hwviE;TANmr!5Tm=-Z3W(@RSUAq?KtZcxsK4u*pCi477D;6ax zqP`7}!F@Z>t-7O2T%KxQ7Y&qHn;z`r@Kzv%Jx^wJx1v~j?!y+`!!!FSg*1Ff_O<0D zP3~fRR$KC$F>!YMx|CAW37j|znYRc;KirWN|bvAiIC_p7Q{;5&H zywl5(!^Fr(zTwkp?jL_%jr>q8GNg)w_x}`E`NaA9Gw=A%x_U1WtR)hwb3^jV`KW#K z%To<2)&IM2xY{6rgSp@XhAj=XS5tvCYuQb@67HpX;OBbBA08ZKXGfFG6@`-)l5!Zw(zj zNec|o8&&%77~%;;8XclXcW!%C*IN@bI%I!-I*!qqV-X13xl8NdzIe>6i%Z``N@2CBN8A z8u|WX+eS*v{TA}OerX#wB-e5b`asR2nYAy+9!6FmCv{lksUIB`tEFXekzpSH_Z#%{ zg$X;t_E%oMk@`>qs=5cFu$CSYM;tS%6M0hGnsVF{ReNqu0tg`avay0xZ3Fj4)k#}L zaqJh()gAXvH`}CRZlQ{eCHW$h>#c_FpN4Y{M4U?t^Le8o(e8sKK~ILP{ghi^D>6(z zR^C0*tj_20zkxS9n0c(&^g0!HU==_xw{lxlx6|5|CtH z(zSBy`Js94AITG;s<&TCRtMnCC-5#Wrp7Y7dtS1W6BakOp}JkS`K*XP zO->Bfzh=IA9*A9rOR+JxXRQQ~T8FGr*Fo)Ba1`}uAuUGs`eEj>s+LN^RDkJQ(KQ>b z$%ZY%$toi6Ady7FyQg-Q-nU$$h+;!W){Kgd_Zq|knRHhBe-^rd7T|BUk%N~dX#Z@? zU(M@Qm}{i>QhqDP_+gGl#~~%X&nGlHGpgU3K|I&|%oS3tg2*&<*ce@v@LvEL6I4=` zW#XBLDE+CcjZf=*$73dKBy(5B)&lPdF7eGhx>_Ryx=Ey(UH{5A)+dgezOd%~Qz zJX)y5%b-Vqa5#%R61U~-c+hedB4U0K(&&GUJCxg_|4+ku;~%Xo&npJ}EPODK`r4Z4 z`()Lq_YpqHDpHpfr)?@e#xr+Wk}y{#>BVE>crCfeGjDCBhqk+1gES{Q$~%%XTBBFZ zkE5!62O*rAaaaJtH~oxvS6aO9Cl0q1Wj`!#`QF_g@xlwyC>q(8osGKckMJg(yHn=s zH7)d3Ad|Pd%T$8jD6sh?$)uf@VVv(eGu6t&HnHpaH0E-K8hMJUX7*Q_`^4$#;J9YZ z+?LE2cuJOc1(n$!VP_@h0z5r*>7%yLbG?oU+>G?T%c!(B-gQ%cmbo?PJ#YY$NVI() z@Q;zZe(u^!@h(d%=$gIC=NB(ED{RQW9=;a8TAPTLUs(Rxi%Wiw=1Doxp0!V+gq&87 z%}I&5H4*Eo#!*kg@47>t=ey&+tZAI7Z!%@!`HfKLyRM>e!z5E>L}Zr-iJ|#)AdZ27 ze-bKRw)Jyr@rY=qn@T_9%IQVQDfJnn^U@$;mHDkYA1s+2+u8U0!wUM)EqA8~ueL&J zwFcR3H*lciiiu7+yxI<9Is(&xo_iV|_jBR*zc+*;2xFzZpP|^C3&nBHqi7yg)*KU} zN8Nxirxm@EkFkC;TiW5r4g8r7P-U)slt7Gl@W@8MASK>X;B_Xr53T6Cy<&SA+pqHm z8zQxGSw5B>q-o=wl6%~`W4p{C^->c|HoZgx3vn}P+3qk%&IIS_M6U)R#ied8`N?U6 zdf?ad%blj^KA27O3vyl)5lWLIj7Qs8sA0a`#Z{&M26+O{Rd!WtLDJF9r5LHSNW=CJ zw?X5%WPCxrbWfvUl@)TlIC`i9IX4cCzrOnUA=JiVqAb&gX{xjsNZQItcDx2-iPMqyTD}KEPB#9#ySUD>nqimLK3`&;0UA(4cJRNaD?|Q|%O!-va zjG?{mfBWffX(AtxJO}oFn0I#)jGb2>#Bb5~;@B2>b~1LvytyjlPYX1dO%6CHSChQl z4w3=?$lvZd-LvJh|9-7A))@GCFUULF3;a>i+1CRlTnUOh2>}`CV_8i6u!kc$nVD^G zGbw^@*{JpWNds@k7F%yuWUg@CwBRqp#jJg=>TVE`hknIr|CDot+eZ&z{OC9%E7UmT z`(=#(rqa)ICL7EnBYQunt@%T&wd^cagX4{okcuIUc2t4oIgH-lItGan$FGkKe!_mp zl&;=ZVV-5xx1}WF`0@S0m9H^P=`rywlE#$Yg~v|SPPmf7ozczFxlye#~1e&(Ycw>Nm;l)I5*tSC+B z*rdyg1%2$yxA6>p_cZW`uWBuA)m_Ao*J5nJk#R&j}uCM1?s+#sMhNFvvt`|qe{QRuv=bT#WBhkojk>yNBw?``jqZTby`%Ql< z?xOQ*Q!I#AR4f}_Zz0|77vyL=f56xAK^Tpi?|kp()+}dV*|J+lQUz`ZJuun*Xdj!O zV#R&ny5XIP%R~!}$kNoqdhZrB#AtrABy3t&lA^H(EUS*OB94uv{Nv>kyLfoG32FBQ z8NeM)4M)*|`{Fjuaj{h1v(?Lb=dCige1^4_jwplrpkqU%rhd6TJ;mKIO#WuYVnzPx z;qfS+`9unJbNvT>;^DB-W4qv?T)OovQHIU3+d|!hk3f~9pR##vj$m|T|~sG z)Wr;*#r5GM5++)Una0-38-rYAw*LOo$}6BQLlI@6HB)4KyxZLE?alU9k{gMZ#lJg^ zc}LOJsXkov4$FcGdB@3%z1HmxD$L7%Ym!13Q^FDBx``+QD4ksYpl$4|u)4#0cOvK} z|GEX4KawLZTA|^3zL{g{ZcgaPgHN|t=nb~?{?VuRi*%ZTcK)-7Ifr zH&*8F-vuF%q`&5syxXb|HaoWdsZ?D0%4)&zecC<`?$>XLs*_@XZyQ7#fv*{I?oLvv0S`1_j{^YpZKs5 zP?S1K?|e{&SHmmQML9Q%_1fppcM4NaOOt_Gr;bJ-t)a)asV*Put^%`9{7MB8jiH7K=Mj7P(jSE4$lxx)3kcRhC4R1- zA{+Dd5!>ZTLc-|{$N+KYl_zgyunBvA?1OUqS1kxC2|WPIGMdL727S)QRZEdoEp$XsL$RAv-8*t>y(Kg32z^Au zql)cJ8<{p0y6GAaQ-LINYUIPDLWX+94vTsgkD>vDqPG>-L=|nO zzP<3tTA@YJxwK_4P}zF+-rh;f!sRG3&%*Nno~Yi^al|M&-vIU;U%#2Vo%UTp#@ADy zJ6~Kia>(3?rXd!C0!1UKP*-NWm?V6Mcu1Y3{_A!k7RDY3pPMKKi}Xsav=9qVsBjcv z94}{VCDfWhOv(UpUYWIvx|Z$wI%t%|sQ1@NnD0)W-a(I;Hx6;Hs5{WDwxVu5hpE^{ z$UWzkaq?>=&34YxDv=S{pyS6PmDP7%flYtC^iL%3X7k-8Nrci?^ez2zv?2``;`r;1?#hl;$*o*y-#8Yv-#I8H?yyMwOnc$TuB=%2!B<$oqyKskuJ=X{x2>=Q zfROY|i`oc4Kkc?1VR-ABQJ zD8&QH`;blQv{l?SMCY@!3t8#V8B#<18c20n#jC&7rKHPkrC?=k;%pjTz4=}%f-h*# zW&WVuO9ZiEvDo?}s6I(0t?TCY^s;gFcAi6jFQ*(80?IH|*6-kj7c@c*1AU$a-A<6E zEi)xZVsch?SLw0+u8-MR-racX&BD>0Lyy72e7n}TB8PXMM^+c*^2NAwhYc?CU7E7yUMn@Q z)nc(eXZK&}0ia@~J*w|FXjd^uK`>w;WG~vg-4jXcf2`D9AV36hfVzxQ#y+33nzSPt zp<|G|U75yW%1>jXi=iG;{&hJOD4{;BP7z{tZtzK%jc%OH>g31CZNvNc$wYAl$H32} z=QZ)6iW6p*HlugdoWgLn-$Qs0VsxSpYzJC*7bM0PGF}bo)k>7}4^0Vnex+x}0f=Cc zCy%sh7NP_i6bds%JBm^ewdV0m95waBEc~gFSGQ&ICNS4e=%CuWec7j}`%>p{@=?tP z6`c0v9f(}#rm2i%^%jR!(}^te`c`}4Uauf`tEr)@k#l8lgxg&5L4m0FW>V|16!#ar&cd^7B53l4CZ zR!A|DIrm68@DI8)fxi{xvSX)^lR?MHFZoz7=i2@O7v(m01=52gM?-%%cRF#&wl?}} z&ik#_l1qa+s!RArOTaC8ow&+n)p4K3D04clis(lUo1HwO;id~cJYHwV?k53#)LlMb zB#(~R@Q6%AAP7vjn`=vp?)b^djFUR=SUrW+TWUmmfqf)_5~H9C-g#Z|GqjoWN>6$G z$)0WOX3VNo|Cra=yI7kc2+j&((9veXEGzmrVowBt(2{OlYxM@N6RwK&FO#0Zt|Q|1 z?0v5Hnho| z>xF&WFpdC1-2RwqI)W1}&H@*vugee--3wMla~$e}b#8$=3?9}z4l8u<1?m|$NEOzI zJ{jPc>ata%4Em0bo@%b>!-1@5>r8oMM)suni(>*FMDkXnv)$I}T`ToO{l1ecM_B3* zuC&kqWMq;VwsD7k-&ZBu>&n&srC(4U<6s{qOoFZK{fj%VZ0NnuM@6`=?ygDV5C_am zCTF*y-N$_BQ!Mml8a1YDm_A%iYYSvQToS7fM~q)z55Ets6CK2KAWe={w&;ATMSzJ~ z$Qb?ZNIZF1YF6H$3u{_6kr1q&QyY`XH+xSx<%eX^*SIa{^`5c`t&8{GYu{eq?L9M` zhP-5~>bD}{^XoB|IZb)^s`ko$Z}8-FeCt6VlJBrMsOGYBZ+G})<4$|Dzv$AzRR#CJ0O++%-QhE{KVY_w2mT>Y)rLTUy%P+ znNJ@nkSFM54w=$vkiekjw!JNucb5hlxofA1vor9Rap?eBjl;%lhf*V=(c_1*LW9Vl zmy8Cu!RxR*-w+Vr5j)7;&1@_+&cn8Y?jt5g%}V9W{eyHu)&F$z^feKCDtT`v9>~5v zT3(gM#twNyoKWQ}e%rX{qRuajw&zvlc)26c0DC+4CpNd%B)>7@*Co4k=q;sS0V{5= zwLEv`RKLAaB2awEUtD9pu!7DncI%h+Q%j~ohW-5-yQo+WaFBT?>&U5v>4XpU%=c$S zYaCAFb}#q#w#bb;5A35n+; z^r5+riVfu$<_f8uJ$XVBhlti{<_+X(CusiylS>57S?z7%Fu~ghNcjSCY`Od7a#KZpCXO+%daj^ELw{(Ef zVM}uY(02c2CMK=U>rJdYEOg6N_U)~f;5z&>j31$VA~aFX4g$sLEqT@cogYoi8(k*T zMu7xPXm4ccYH~YfY=x%8y7fbcIx48Px0}uCrBGu4L8Fh9E$6ybxsmI_SWF zq5cvnpvo~_*thYLygx~WK{Nzko&d#dE@Sbla*No6yN%)lwuGF;0m+qpv#!au?fG`0 zd%Ud560>a4lTqX20JVV5zS)UtSTtz&ONqNc11DkC2gfLYYa&G`2Qj3c2zl-9<%9Vl zy1@PMo5j56d-BuV$%ckDhXn@P(F+=34dJ)-_}SjBuUFV(nQ`g)CHvb>%8d_O-9iuu zvbo?DSCm?Bm#_P;bLxXcG^; zJ)F2^OHkraKa4|=t7H6!Dfq;1SHkvgwR|(sk#APeXDs|L5kQrwN>?Q&i=jLHWfeFy zXfDr|P-Y#quNjn2-!HnUr5LK^DV8TcJ(Fe~l==|yTCMUir@;rx)$3wwN2ytaT)c?c zuie@qfb?q(jANV6IlHC4buB55*3Dug*R#R{5+y@YBwQQU`0nhYne6=*-)G8y&MiOUtF#;nQ_+xbmA$DS#8hNG-7(UJjp#9#6fo**2DK&7+-~rE15& zDC(CyYDp2QKXv9B2V$k!c+YT|tS-y^rsCB~%}5$eqZIR1L$k|0NYo8E`PTNqE`WINFr_fUz?uBPMg$q6QgOE+wfckF0r~8%GCcATq8z zyzPuSMO5YM)eN<2X;}Dcns|GC90d;dhBX==Q`MQBG2C$in>rm;=5)EMQ_ia#!~Ym& zHVQ39cr;2i2D$eP1#MYWm3tRnB%tqTNTrO$nLl7AFaLo6rz;~-40z} z+mO$X9BDO*-U;dhHGaL1>3P+d!w+&4J9h9WcY8z_{+l%AoS;26=t>fPf&pm8Q0Gth zb=x1wke@zJyKel4l1H3=m$7NFGYqs>2$?29O$GWMT|fHng14i2@Q!;Ws_8z&7}HMZ z>Z);nQ`oTrSvoz{kjd*~PivEt-HSXbeBp*Sr}kSo_1Tu4LD5qi4+Ddb4;WuCmpx+y zT0d`%$26=jr}jh_6fE28Zhu!O5}P*4qBUOFX)R!-!%V=PI!I+{5Z>Du=I)onSu z%U_b4wXcDLZj;$n~#@4++^4$DH)KwIRz2Bqb| zq)TojlVrVQ)!0QMa86Gz7zHk)c_%GlFh8*}Z$5u0Qr0MLuKmsGz#Rw$w4Hd5#UY{> z1E*s3TE{VLQU7fMw~Ts#mBHnudfQn@Q}pqO@#x>46@v*DxARG!BmbfN+$NlS7v@_2 zF9LDX_Qw;;IT}eg!-ZLvkvI2bvy|E&RWzQ>N6U-B-_HJs zdEf?hL+(tzM2N?J;$L_zsm)+WF5#r;Qt0?f!}5!s`>kaqat`c1lqz|tMIsz@xf{z*M@*4fT&KD(g^j2N6Vw*Yt@z89}#c*u8#IBYH&fg zLXISQJVceU@0o+EXwR1qEnH(`bIfaZi}6WgSPD;lwR`jtyRY8ypt_-vR9k7-a**l8s=Pm!w>VU{rYfSvs;5M zC~f1h0B$Wi7fvfD3p_T>olwQS%aQX)xZ^W_gc}!EI)*XG78~$UVDo!$Bb0eNx(qm}Ep`W|>;ilQe1OZ@~{?Mke$v2*?P5(46+o{86qU zmA@zQ1FCxB0K2>TrF>;EYlu$FqNVGL`5-$Y^S3f*vQ%!DP*GB8c`ga*IrDiV*F{5c zKo|xIT@|d!+)e#Y^g1;AR1R%(Z{UK6ZTgQ)VpI&} z`3GU5(m#jL`v&0a)}i4a(ggyx!|kk^IVm9*nRo(*hPOsuC&m;f_t{9|C?fl{0&J)V z8yhuezda40&C};dBRdjz9n zp~MutfhicdcW{1@z<4;k(FKEKQ=;uK$jV2<5Qd}7wNyzzpF_&c6xwS4VPEh`PM`jw zPin#6czyT2q5C$0=r8uI-xavukA)i_%XfV$B03-judw<`9w*k&)Zco%L{$ausNX$w z#?a08+k82_bR@msXGbzILvLuEcT+-0(L3Qct8*kS80w3HfMro+?i5(Ps$}cuT-tW|@uCs)oeVM}nlBIQFlZA-?674+i;-2Ik#4nO5`>ZK(beq1{`~SU zuR!l?*fKfh7RKUS$EDk&3_I-pw%iyVC`I;aGGO$jGEfHP|AuTKdTzpRC6H?Msz*T1 znwF7k5>vk=6d=~7JNe`KmN{!#FC9-{0t6Z}4MvQ8Bx%53>BnR8y*)?&KSo`%t?s3&tfxb%HZzl7yn1L{#Hj=<_9{AlItu(c^%7Y3Y z|E8E20nb@a)q7Qawk%QAB7GzdfD3a5Fc-kSYo!7<7Yf9P+m z97rvkZX5h~$s0JAeIJrRw-Pvpp)1{dZ0HSVg_jlv(!j!AuTai;zKL2lx10S1ztL~m zpd?)gkmO~Y#j?OrttyVM!V@H|#!o^H(gh!7uNR z&{YUvY@Il&{&nI5CxpR6E;ihmsWV&t;^j)~sS>Ya5J55ys1<4ZG4MD?J0dd1t?KMC zK~*faHP7K=rXLg=0rD1uwjPcYMenSZ3e$^eeU~J-W2PEP4YXQ1cW*gmj+<3&a?uq6*n5oR(XCL|E=WiD@K3S zcY`!{@IL}vIPFG^ZY;F6Ql_6QYRl7!M30+jV!h*m?@SQ(W$9mL0OV zg@s~nSxYPZq>?`Vq`Q#tC^mf}vIG4P$^D1P@A#(}=In3Li_MPZH}|b;Cpz^od?M9f zR@qzRV=3``EeALKl1#(V{kqU)c4_fz0=b9ae4*IR%h1XGKX`*-Hu@R{9}DJRHyADW zy)1gNWpAqd$hCYTJQID74%Y9|iNA0Wkkr`h|CJGC5~akQ>l&p{==KX#*AK-{o^Ih( z;Apwq9=KUq?iwal&PyP7btz>?s3jw8F&-0#*^dtyeQD234U5@hub38NC4T0|BKp&` z>m}&}HI5)|U2+bRXi=)fM`I|);ktA6SgC7%9o?>VOZ?Lu#LnIX;u8GmFZ79lx@Dg2iD6)KM&yO-=8Mhtpw4}4AnIn0 zG}jXZ-FSt>$gi$HGTOFEpZy`@>uB=_Pic+6y0?Vt4OpSiX&2%U{VzD~8EF^l^E&^7R0t9g8}JgFPww zo?&AYwO{sv+_OtA5>B$5C4s~68+D9G_SiPaPxddd)B&%6cGPEW+o>h0D*oJj5TQ(n zso{fW$a6Q0a#m}P*ZZ{{3P!p-#AV(P4>xO#Cf>7;8e(95DZ|z#IIv8ihLMupK$w?% zPOFT^8Vx<`9Cf8JK|F8T{SEfOjhS$M!Q?d(GF&8u)Zsw_ z|DBPoke+#&?~_e=BX#Kb1U1nxFU@enw?x)YdeaAMx3rD? zs-mTQL!hRB?fslq0`B2`Ai3>-Uoq0W#O+3Pydmdn?^< z$8Z{W?h2-iV_ z{BVfDvWBa;Pwu9EwIg(wdM;FSC?$&XuuFOjE-U!v`Af8~Y2_cubl4EC@)Si^5Ty5l z@GkZ$)h!K;rGOoUKM>u7K|a$gW(+(RJ4r9py#Kwm<~^9*InS07ZB?oGF)okR`nb$* zw7mL*4!~4b2C2#sj{oo_tT2}3LO^6jizO`G&tCF8$KKmUE@nE~uoGq)xKjx)fR4Sb zXR;T80{T28^VUwQukq({Ji;dJ9tbi%!wQ~ou^=S+uI znt%d!4a5j}HDrsH48K}tT%(?`yc(!|Eu5ASpIZNbif*)cP|Q*IQEwS8z&BypWdTST z^Nc6VY5;?5D00$Tjt)w!T($AoNFLt5Io>KM33&S-Jz$I?&!T9!Zq_{ekj-{?AH`rK z$iU)tStsu=tCUR2QgsqBL%Sk&1$zN4>l_st;{t)SIrNrKw%3^NaqsjMg~HxzWtQXZ zim~H$>eT_^thP(IK=d1@zUm9B<4K<)rHU=sq69ukp?G zAS7-WxxDvaA}M#2;Ea(SPd_ZP=>qSUsBnMp+V`$fO9a&yiD)y7$nQ5(sTCz;d#&&N zV1kZrv!xFe-`4Z{sQ}lz^J>1LDiPyzAY0qZC0FOw-yKi?y|%%=P&Ym~L-rzXg4&De zmo4p*AG7KNxs;LGG<^oLg+N|LN2|0@3}UaIL|Qr9$+^jDWTe7OVnJIO0~2toxS_WQ+t?__5RTrNXt@`7im4o#3sBFt#s z!~Vb}oAem{kvmS#(%4!d5hXi^PnNkkw2tp+_elZ!c%VsR5z#@PC+jaWxjeCr$oXAP zSnWN*uo+D`?#u?VXxo&8yE&NJ0-eFX?UNd#Q)8W!ATUtJRLM9PfAmapM$-2B356Gp z!#G2w-7{{P#&jy4hGSg8xfkrvl+BA)xxZ~4EwBchUVV14~6 z=>k7;zF7UB1|w0{4hu*}Ph>!X-PeIqE3;p}sCw<&sU!y3$UkmG5m%SgY(3Vgs#MQS zeRV&4@?|2SZNnL51{tI(0m^z78!c)g#SDxIGKg4G_&NFZ?bNv-HIU`elmk$cY`jG% zblGdoZ%0>#x>igl_(d*d@8rohw0CSIGqZ1T+S7mKj7#j<1-oqrU98u&#=~@d-7DAB z{@MDOVX{g>Kffl--y8DqL#)S+vq2;+}AwK@q%dbNJ9TR-G^uAD1~Pv2lAxa zX$Mx$Loqb!j=ci+35m0(Mf$}a#a9Q3`<7<#JZ#Rd=*jKn4a^S@j@6QB@Xjx;{Gg`+co!QLn*gV8^R2sCD^BXzBXxpD%1Wcu`857zV+5hYqLRFnh}xQ zybq8kGp3_63p`kM95}ZB%R;j}xMOuP0^ zt6=|)Qw$Z1kzoI4uh_#}6|nIWWjuCmi_x0&4eE~PhE2qLyQXsgQ8;#Uws0AU-&bXf5vTv3~hMv^hYCv|+>%DeG{u7gAeXYQ|9Sy0&! zjPtNvdTg#sDE5fn)KDW}=M@_3k(rwANKL?6$qc;RryQoZu`JP$BcKH;hniL#Ub$h! zV4hw4n9-IkL~BUw(Gxex&^9GWDDuD%7Nuu9~g`e3BTF@!AM4 z5=p|>D*f9SBNT_b&$u`U$$DI09w$-M1@tE#s7ZbY2$lVJZJKIw%F51u60<$YuyVLb zD}K_SU0+Q>MyKXHXxmHp`XfeXwpA&j1Nj;!@-h(+TE`Mtrl_G!ZzcE|l3)AEOp5?sh>xJgrd8=KY^#PHYEL>n{pV0l=vRmfx$2PQmL3 zgK~D!!IAozZT`%zLH;WSk|2ss58L~0xa={OJpHC|O>YhNjp%IQq~u7!T2JI@e0l#*hYXw1{i6OALZh>CO2=# zbo5b>bviv*Fxpd3(d9>tyPv@BL?Bbo)hO-wMoGjd{pK1Vuih`PJ08qjDDc}cxaj*( zl)~gf&p2LS1MyGAT_2YNAV#j3E7+eY!9$2|xGoVrDYrDM;O_eBcD_AvMx=cJ+?zpd z#aijTn{WOg=n!Q{K=TXd{Y|TFf}=xpTBEyW>|x=*<7@-Tx{qTbW+^j@L(4 zL@~(6?+LwU?`bo^O<mO-7OKPbH|dh+vfKj24DInSqY_+;`$NCkzl znzCcE-b@Z=$@YeOXT4-gx>(HPf6WV6c8VHe^J1RaP{RF5jLbjlbuP0VR8kTbvPpP^ z9NJord%O6T%cz;6I1uKo6z27Cwe>_UFHL-m(Yo246LuR{tncLlM$0c2Hhy&oSK#Wm zuTgcqHH>UU4I;$*xRkkY2Hmh0EyDKNW~vqywd^IqhUp$!;o7|Ctxn^zC=U#ysbIEf z|F}#d8DckA)Kr^M+@$$IM3s~N@h*Ep)s;=#p4Z=5_Q|@vaU$;{GlmuLN441VEbHHW ziyYX1l|N_SeKBbI8eRa~kn56@Q?D&OVG@XS(qWygk!F_-si>*5I$$v?iqcBr#3YWq7u6(=ikx*MU#h{JPJe)Qt3;z9w$55=H4T3VRS!!krpM zVIXrQ!&`B}2mmBiP7d49TtD)YzK?zB=O|vhx&b&OGxF%L7rEucoQ;|c2ZNhf3_MMI z-}6DZ8wd-P(JgYxbH6KhI;PCc4qId5PTr{K%++Lth2ckIe>r#PR=V6mul^FB!2z#6t z8T8Ul*bpm;OM!Qb-1*3?UJKNiwDS&*yFK27n@Z7zF~u^4^^&#b3u!H_#z<-bJr7lBJYyUa{2xbUFs9={{5iV;VHWSg&)DsAbFkng zldpp#V9iz>jihv;o(y!x3sd7~@4Ov}hcfwCnadQlJ2xF)M&SF8ww-I6qd`0^Rh+Bg z6ARE^Tn7(|jya(&r=k~#!s?@eII&YtdHW(7H7yta*;6}-J=IuQ>n;85shcG)#2fIV zUR0Z_NoTcm~drfdB!N7}bsN+Js?QaSh9o z-`sZMf&kox1xBAZb%J`o^X=j2Igu64{}f8`29fzPD$ye0`FwM^E`In8Xdrgr(grG z;$JtBc{%u0u(i-19F6OgW`FMZz+WpPOX9mE%!UJ`DbV{6{qU|1YVznzaP>bW86WzR=T5it!^a)%tk?H2bb=jo8B zx2FCI-k;?os0ONT^mNuENG#5jZhvBT|mQ}-6;Z~nmtvAzq*~7zzYnHB+wtueU})*>n^(5KsKFJ%dJ&3 zTW28_D2+hFdck~LQl>!5Vr{+ne#;@x>UkTVi+yzIe6xudE&k}(k3iey6TGbvs5~Q# zzoa1ljX9v()&Fzr$^|8X;>f?t4M`y-MXSgDO(}BVx-$?^GGY!pwUj!npcRy+ZS{P{ z-T!sl8CE(&Iql;l8~64)H5&?( z#S5O4LmfgeLQ+KveqyYJ$wN9M}v zu!hY3G@x=9w7_u}F8`k?0ga)WUsafg^84|&UShQi`|)THs=^rcrhxkM>Ufy~h5kTw z?Xl4HMp)bipV;4HFl_oG?$R3Q2K7U(8)h}6 zy0IzByR+V6oBrud;h1n?WkU=m$M@Lf!BU)V!u4^U!a~Y0eAqICJ^XRFDLSKMRZ~Kz zhTqJ4OkDm8|9~L-xO=_ebxXV7si`khr59*#+ZeGoNu~ z*JR8dP=B>t^Y%0HYTmYRs@B9Nc6e|dk68p7k@p^zG~842Q@tlw0uWLSK=K?q$=mT$^~hfMRl!XtfQ90_as zO#_LJg|K?~|(-CuoRNQPNI_FGFW69IAAN zE(Sa@y#2-eOxd`9B(;jZ#ixA^qVP|Y2JYjyv>SmF{nAsj!kW^(=nLF-`#FRu_ZX(y zP8f-=Q^!EYL|ACRIKK1Pqp_WHpR%P<&66zJUuIxG#}pb#n2 zSekw|k~$|(D}<+p!#GZbf9V?T5AoeGKQxjlWoiwky5o)6eO||*1o5UImO==c4nhZ1 zx&7fM%i`1ANZ96FQStCgNtj(2T!oVLzO<=5cV=A0Y7OjhCuvlZhSk63rc|Odf--Mm*<_QmL-2u*dtV zx7GKy+E=>B_mNB~D1$BrCgdGW-KBD3M#&t#droa&AZow9e9i6o5RnUBL$(?J zeWTd8-?%v4S1j!ADPS!OU*@jUHsM_B$$iz@)SlL8pPCTqm)zYt&v6o*6C5MS9nr-v>? z3%$+rL2d41(BS9ZZ1<`IXx$RC^Hu>pv z>>bW@IwF>}UEQ?bO zX*BTj=nHH2inT}-Y?zqu_bBCVaiaE6qLIGr9|VxA-5DI~70vH7gclB)7qTeo2%0U`GV>M+KhxKu(9s zVq2xLEondSnr+ao2ao6>MLQuCW4-Z`54hcwij1y&ngskw=q^PA5(2X~Sv#iqrH6bH z>0um5Ty^yL5c#0D#R@CD+3X@`E~3RM0>n$v-)VK7F>$w$k*p0j;b}_7hf_*BQr569 zZvtOKZT^WVl}F+QD4_i(rV=TU1;$;jRXAzmC+SjQ&hyx&Mbyg%EVb_z?3i-M*87*I zGBGHm_`}{Cvy-#C@XKo&m5uVTB@8R~J2Lc+aZ5kJ(e6NAbo&!^z zxZkU|NJ_M{#_L&j7-u~V1{>(WlqMs$nd9D4} z%aX7$h%40-&+(KF4ogKMpWz1f6E2+xE8E2l`>nn#G0T#YAZ%Q2hbJz z9I^DK4WI%!1`TIpf(j>9w1@ax8T~E{FFc#;t~xizb(a_!Z=f_5W7Lv{NguZ@nWN)~ z6R|`8TePIaO7+T4$p49RDf{U-|H)Z}!>Ia2nMdW9unD#>VFY*88C~oSB{8N{GbzWp zc0Yl{r<7xd2m8wV_!+E?ZkPm>o=!a4+*aSCo$${??tdT8^EY0gUUuFOvRLF6*iy40 zGGKa`%EmREMqGGP153-4p@!MV3Gkj~P8&l$tNZGnK|XuyuP$MqySQ?xfrdQV7HjqO zzIBON@L`1t>M#!JXg^DqHSGOn7&1*SYq z0U}X{DSM#kkwjx(2(`IT|Mn@qNs~{FizVqyp;kw3!CT?OE3IEb7*@#IPEi(D3s5%vgjbs~kXhHxBP=`t|tX2`x3KW%tx4;uFVO zV_^M_M@r2A!;S}1q=)41xW%VJ15(17>&@oahS&pxMPVDD(1t}mP|!Pq^bT-95slFsp*hUo#s-{Ts6y{ z>>*<_pWaM&G~mH52#6$X^0f};8|6euXSdk7R^NsZe>HI+S}4%4Kv2Nj>RS0hE8tJt zyOi~O_hFqnjhgpmwPFJ&d>0I+jh8PS^FDF9(y_A-IJ z4)d83q%0|&k?FwC1=zl{oS(NcYXvt|xbG#_e*m%`b7;8Ig|9k#E0#W`;P5X_y)WQ+ zW>oDIL)f$jzxa2?Az4QXAMdx0RQ(5Qeuowz6`GGRjf0#bL0eO6;JMB&>QQT zAn==hRf9!R51my3SP8aY^V2%w|NLVAaSBK>i-L^~=g^AnIgTgCrsqI~Zci`*ppTtS z#Ych_MQlUs8(%g-$Fk#a8fJx&5;)kOY|^P^b|-LOuh!8_yMHwxpG+#S*>j;(3z-vq zg)v(BKwx<7yPU&)m7X~n$LW_2oWt^}Ce8(A3ZYu2m58RE9I@0t><>~a%2PH3O*3Kk zBj_x;=U(=Ua4XRG|BKk$I1C0%7nQ;>_I^wH);*;OWA{k(P8N`~pqzY&VIQ=>W~9Cn z5>x)34M5y`V?MN)dYppZ^tK-PRFR4AkWl9Dd3(M34#e)?CZ}_PGxjBZDVq-Y$2l zHdoCQ6aSAUuTuONh0j-Ea5^|axC9eJTF%~U+L#F@CG}hD4m8pmBA8{;XnNJk0Zj2y(yC!h2XHu@W8kwEV@o5cf{^{0$wmG9xuN|BSLriiz4EnKK4 zLD$M3+FSxf|M5O@O^9tfS0fQnkXjJipfdp`PvNR_6`LDTX@ySNE0X5$EVs*UiX_At?hkeq0~>?6ez-(DyiF{2~Pe z)^-Hpr;Ne@Wmm#%a`_oMfBZ0c9EzP*23T@)bssx6J9XI^ZWmY1#kfCkvGfwa*z|cH zbX?v!jCB;%4@LOab5xXgpfwKa-X<#mHavOXAOcasP=nD)kU*M8u4mb7^CHtFw|Tg@ z#zy9aO+eNm>w*ZwG>#rn1@|plk>H2yDyQt^XgsPf#bf&Jgv9?*gq2sOLs@JUO{8)L zrx-^^X%{#hZn>2E`Q6ipL(9#R zRA~x+%~2#D#J{1>SHCKjK8VmQ#KQjiv8&a$1aBg2x)u(R=ahr6FNIf{ zkikE=9XwI)R~AJ`kABkbJy5v_ZpP} z;w+-i7eY6yx2$$7^38ls#4n@igsy=FzR4<Ge<%%ymhB}>2$*JP;Ar%dX zB&@W#^kpdn2Am}At}bacYK;c8I;%#|gF6NP&yJ4h7%54^^3P2zR2ir`eyhdYVjM-N zFsC45%14Ldq)-OntY3uF^NFDTY$#DB$S!{uP>Wav_k$!0^~R@Eon0A%Nm&z1rZ^h! zAHx_+jm0dbB)&s+lfWw)1wX>Al9I7pJHVT^N1}l%Cu_f^LxMO}l(X-yH7H=Rb(h|P`l90AnVaqR!$~eL4;rRp zw6RYF88)vK-&@0bl5#P&il*wgt4AATnO6ypyz$-q&I+{(GjH1V`)dam4))0BBIi9T zV_4S7$mgB=&=xkq;`E8JMyful(yEBi;)D#xCbkUv=fXI7V;&!TVlv}O@{jaOG>9>=Q$jpZpMtvN|>oRhj33BMk+z%3w~78x!k zL4cVq09;wRE0PS<{l@4)G|-4$l9yQk^?n){D1i@K2rSLRdmRkh zbbJ@vyFDFmXwnWRZ5+q$?Q*h=h;qaDV?jGVeoA)*YP)P-W_%iuG=I_u|Ajr5S% z`)gXeLU)_?WVKia-I*D4z{5-Lf1M*ST(+n9CPyEH2&KsKlRvdt$Sh}qh7n_@pCwgD zgioi?3?=cj&AE!WRz?%lI7`-isl6O`q);sDx7EK0Dfbn zT%l5ZnbokCFjw_b=vPkT{& zF^EGNYBxyc`TCnVNhEaE=U-9O zRC|mDzEf<|pJkJEMzUJz4&WK{y|}Z95gOP((LJ?$aQR-&LZ!D@{}}5w2KYzJda?Q? z>-cn$ER>5$AoKL8u?hgqW87*ZKy($`?&qo^-1Q3=@Il6B?Z7lyk7^J=u>c)2$VkMt z)#((|mK3C+ASBDwdL;ScL^AY?-dd{RB*)>Rs;|uaFKB>y!*V7>H034Pw=3U?q-elR zl7Fe}|08nDEjoZ9L^83s2iAVHAeEdBAV5sx5T3H$M^rKxmrLPnp+uzFKQAX%*yhic zY|J5M$F$n#LF>!jzfOwiBg+)`t*a$`;~jzmV-&u=AST)?1)gpicAI)dPbmB3iap-3 zZbF@dpWu7sU}ozFdYV1?5M3$lmD%3h&np2GqO;Lp(*1_WvC}Is5OgBi3Fl|Ho zy(aK0)PU+qBE_?cGv{stUxApPuRb<^XOGdVi(KrL>6}WkAgbXTCHV zx1R94BJ&mNBU8-l7)-(cNBKn6CG79KB;;X*9aifJI5os_98MKel2t(jD=;wP>^6Sx zgWjJTX%oo?Io({+@U*R^2}FFX_SWaHq-sG`HYS^!B$~3@np5DYY2+7Ig~SY)|{#0+su#T0o?rEgi-XJUWm%SB^*E2Cc#(|1_loj=A>2iKd!Hh7$2 z4kqiSv_%>|6h=D64yR5dR20YvD{?(>{P-jPxHEZ z2&h8+2mhe)d9yFMiSp6O5RH#Dgro*cx*1Ac-nYU?MW&REzG5U3`Va;r%JYkyh`!dT|I5OVCbE3~>Zizezd0ZuU4WV-u&hswc{_J0cHxi!-m%?ZP#PAS z$duM#F0k%**mp$43eRIYk5@;!Zh0^3EC)@>gVcTDoD^TznwOq|W{E%;0&btUruxS~~F zZ#ttJRzcew;H~W4GFx$`>sLalB%2juE&CMMm|O5Ijlr)hbsOB;f7F6vB8~#fUB%w= z`*}kzHRqQ}M3A^noe*$-+=$DLXUI=Dmhvc7&DiKLt3Er~i2H*a>z@?-Gmop2h8PPT zEPbDlkP?Pkqq2wFd(BR~HD|4=l94#kY%ckvx@qm?qOA#Ue9!wyx&SfXl6?@s>=Zly zI_Yzws*uS+v8r}MZ!Bxx5w4ut=3JeQT7wTIvL1?gRkb;t8Z`_vFQ=zVq|hm;kr9vO zClI>SKhqbgycqn1$niBAIKZSuV$=F_vIKFuM!d}vRluB@gGH!sN{jnNben23j9Z%X zTAljWLlfMbl*iBn^j~5{=WUs@fgKX+wj}mt=`(CBQxj7%%SZOLcIC;}8gZZCR!Q5` zwMRSq6MxsKrxZiCTZ+#KJH2OWjnTK=(OmQlRhmSkLj+SHpN?NQ5OEG}Sn=ycRMHWt zReNjBTsU}r9*??}!Z02p=JbFX7-u5zRsA*zxU@ADF#b6pLos?g^bip3(}e(1s*`sU zpLfbWsejtj?EO*}s*(L)ESpfPi$*EBbBtv;X>oTcSaZC3o$lY01C^LLjH7d!rk%yb zTFH6n_q;JWG?ti%<{C(Y&?U768Oy;j2d;4oqn;?hRRBR(!qVQ>Ag-E9S$=s{(-AP# zwu*)XRGwwJpGrAX3vB(E4pMmO3#{0y-naA;lv|`ULQ+Zd|U?|s=x(9Zjmw33VAL#2lfu_d2l`JIfKHVZTi&rcC?J8zJC1i=g`B> z5u26SfO>GID=X2{0BFI(18)c9=OihlgYIMIjPdK|^-eC%+Z~A}V&sUXv%XmsuB1F7 zy^VLD_J#|^*G&ptX343zPvSq*^nQGlck*9RatdTkT5>R}{#=?|Vvt(u!JMDat?_$O za+39Ib6mV3=hDEK$PM?OaGqu=Hc&%}GVGIYR7Ci)@d+S28JP5JmR(irI3uTsMM);h znjU4AO8B)L!&it`lZP7UlFV( zNYj1B#g(~p%46P4%gs&jou#u#DzrN8h;4aB=rb#t-G}i1Ymc6-9T`h zyS$Sv+h5D2?L(DPM677F#^!;`hAq29rk-s^&>z?a4mV`4PLe6E_^VZRtBbXye6FHt4a07{5 zi?FqDDx5OltuWZ#ER!PLa{_%VtuU>13nablO`wh82gb96EM3qO75oG`f8R?4JT+s3 za~<4v^7&oAYBI?;sY?BUxob+$844j_KqOT#l`&S0r2RhC;sF8$MNHrY$Zr zjb$&b%6uQMp{V^NNA`OUiZ&m84!8Qyy84jOjh%I$*$AD-IMR+dt%^=$KOix^JEXTb z>OVvQfKPC#!TRS!ang@opFXms*?zXCC0KASsYFMG7+eDA2S-vO2{bTdAX}r)h~7{_ zvq|Yl5j8U2{ISkqcgJ=-M-kux?4nAM?z`J@%lj(e`hP!zNlP=@6hdjs=y1KLyV+6u zV`%I4vflDA#2#pc@2@2YFJC4;%(IK$!=!><1n%+?!InT@CNlI)-{LOM&DB~wwU^$H zGFh-LLHHsCZg2VPvi@ktc_&6z478HqIO` z2G&~wGFSFd9bY&h^Gs+^XG4;K)#!1jbd3P`Pp0l<)cD5!XDhJL?Eo>hB~R9VQ*X3m*sB^a1Yb zXMKgpDl_x531i?5q(55lMZYcK<~jX4;yx=ODN!S~`spP6I<=B}M$$HOOlVETUE+oI z)d$fzZrE*MN#7YPEIngr*3aS4h<%(&(TXO;wSLjKVe0u;=1+9_@rjv*IgQsFlap8J zu*azmiu0|egVdi3|D6kj&RtDEbO87;U>$OurOP2B(S@^YxQc9BqLW_h?zRQ`zBVfzRauI)k?CV|RF ze;k2oPpnW2&Wr!NNQG?CQfXBGc!G*igOr4eSm|rg3~&c4c9^CP zX<`TC%KrM7Vi8!5hj?oUXqq)=5b39r-~f%xkOOHKsmH(4%#jb=9;{po-o=diqZfbJQtOT)v-J$qp$;WBRXH3ZfVk(C=OIHS&0jf%JioSIZFpe7K3KLPAa{Jl-8OfvY*vca-?wOi3gQaM17Wt3+PbgiBpI!A33?|ZBTy8~=U{|k zB9c#eEb>1VL<|?3ue5iX^xFK_z^n0JviM=u_ODR1;dJfiz^XL+zEErqhbTdZ9HnsO zJaoV8?};+LSeVaS1}I4E38Q$x-W*(0ohDJ5UC2;qK?HCO#SQ~{{fjlmcuPUXd|QeC zSY4H_)$aJuMsz4-*SVX^LzUOK_a;yB_xlTn>UOD-Px9dA%4;wsha|d$1UE7_uKS+b z2F=*5fqP!-+4RReB?XI@)P(|~0T%z%JJP=K$*nvC+)8%G z{fLVTemQ7dek?66rGXd1#zUaA7*P5C^AqjyT;D<^ohT}uHs0n=HciwuqJRts zMNGqVvjf_o(rIg1a`ei^OeO&|c|T-;EwKxemtx3Rc*WNQBkh}|-m7T%{~PGH#e#nv zQF$)zUBf0exPR^EJ^rMLHSMTJwE9fcV@;xXUpF_kd@g&+0qF9oPxEkn)2BC{eV#woy_TXN~B3W<0E4%$X04kb0sk~qo z7^6j87F!zUMh)whK!py$^fL2!iBe5F-0;pMW2J^G@`nC6@O~H({boKd^`5X?d{EJ^p7TtztRpxE?dA3)cH=r(^^wn3* zV#QJkF8%tyJS8-OIG%mbE1Zqd5;dc`gA;r}eF0#i?#F@M$-pW6m$gV$b}MocQ}BR? zW;~E)TruynDen+&B@B3A6jJISn_1T-d5~-xDW^+N?}K&DqmErvU@?wzNs^jsC148> z2egt73ZDOB(HydorlNEF7k*u(3f0ARorB=?Q7@^qMNN3(wd+c@n`CBYx89rUq#=}EmR(%_cfCcrx->hWb?hBj_J}V~2}#V716`K#>=z6@rsc%yV9q@m9^LE1 zLNUZhqcv0b@*v9@zdzw;%QzzkFF<{!xCdB(EZ3Ji;+GLS{3O(*5}wwz!OsCYv)7Vh zNg9ZJ)}|3CodcDzE(K)P+(2*wVJO(jj^#J0<%EfgV)q;?eL;Z$Oaou+KkH8D>e`l{ zt9?FMU|E%1Xwt_@rEd*^ynjI-2+txA(e48h>{{(tf(h zeYp`6OA^PDQ_HTSN~P7O$+PVn%EMKeTtU|vn1jO7PTE@0lsHOR(cM%q>Po%kW=3Pl zFIp;4F#)#TXRu_xPeF)9Vg-q^mV+uOy=QN9ft^n#>5`k59FrhUu zF_(;=D`3%T#i5@Z624ySdsc-c`$`C&!ec^U)bQ}34<4jorOZtmu1&$fHluxqo?np@ zCbrty!=W~v%8Dn2hz4WU zvZFTT+jc|f@?{`g?gG(qE!JRwlXZlXm1puJ@yv`cco>yduas6*yz3eFpkgEn!$cx+ zB2s0xEK82~?2i*;tA$qHv8H7-GXNIJ>;|T9%I^phYE$AAAAk_!!zY9&BLA;kZOl0^ z-%{3Mq1#_>1uR;C_@=~|pcRxc6RgS^WNyLH3*M=+7M#OYboxat{1IN+DE+eUU&5os zXTJoCR?Thg+U}4|`RN2HWSLRcQnjq$j-!Bw{@8a0XgwxM5o_~ub%6_!-sdWa@eND) z4jVc#$+2OuDUi9maSoofm~jzR4$oW@GG=49p@m>ExaM>E^?DevgY~O4C2x4lJiL}= zAgD2=$~y8jaNzK8n0HzVO)!XA@NE@MkX!MG8n>342uyx=u`}TDXNqh4t1)=HvNUjy z2zZ}1k!IMNr`4fk6yR|kz0eG)Hf&fqa0P{;P%gNA33$Rxr@&gq!b;Y>@l}1>qbU$h>4-;Cd(bpp~)NPS`5geq<3Khu8s*tB+EbgM@R76n5hn ziM4oT*?2_hm>HF&mG1!g)~|@i84ucj5HAlZ^;>_-0ZM5->?}N}M?vN3=ei+UXRh(KoSLH*zrQ29&goCK-vVJl+-h*d8SXplJjA_{R(E^&iRp<0*W6)@ z6sHVq6Qi&5??jJgxO@|>o3o>>o6_cTNt&uk-#b%Y?aOpt;PhZaiDz`z7u6vz$%@vM z@^d5vW{B}Q{-ihHZ{y8JT0IzLhzl#f-m~BV+<+3zAw|F9r7AJ?A;a(tbF5*(c0Z;< zGgO&w2nGNYpJfLNT6w3pVTNERwX0-x9COqUjd@SY0w>kBMRSY>x^RWCp`g6^?9-@V zVY99~*~O8#htPn?zKfMKttLhtA+ze9=4->08N7ds6}{tCe}@XR@O1<&De0{}t0KI= zKDxUdst0Bi#DjmGO#FWKiTD@t@a}&8ViPARxTT!h3qP?725cPwnsl# zrDNObhM7>;=S8^&z+sYBfEPs((5Y<=F=525=dZPRT7VDY0IXkZw5_@w56fOW@@vlT&L@mPJ_r3IybvX8-h>{cK}@jAObiRG@>C0R#1;x1}bsF(turire7N4I_~*giG$8KLGEpO>XyBPGmxY{mxD6 zJ0e1IxV^Gxbip7_))|q5St7{DVRiAh+ zn5Dps8|$@rG)eIx#gI;I_*Hg! zl4xS${i|3ta+_*sE_%U?!GUlJpk;gYi&h!Km*2EC;6W%L`s0nI|6ex*^92DcwNHvR zAxEUY-Mmy?v3o`Q?&*3@Kp>sqegsuE}xO=?7N2iM0rcQ}^Pleub`9nZLJ z&uvx8Y3E+@A5(bFy-Z9XlLOE@FOSr*kbdd9`4#J1JgmWus;8}Qonk=TpwGBMl=g4e znVy9}rF-ZG$DnDHR8%B3WNYF0iVZGLWZi1FgOE~7ZcY$j?T<&3ZN!#dCFac?irY0x z=%R9_BU5N6_9C~Hb|uBTCYv+gjakkOdgF86OHeuUmA@(}4vrY-@8 z`b<+faa=3{cnxv>?fej^27kAvsCllObNGwh(u_i%DA%h1jjV5VKxC{A_7cZFam z!4piTMJuo3U@=|s8aWPIu}#O0c~p+#_vg*E{Iws&PgzQeW^_*aeE5x5E_I$_(R-ux zb1UPHChHmSg9fp~`YN#2)DmwDYVOpRq?x3V<59zta}3?NbHEy@2)MzEA+1V@2;XDn zGK$&0`$W*W5oe9)U~~*^4?*Elv&$eMvCtcTMwtkI1uGj4TdH2oaFn!zc3aNSJr$#8 zv2G~)9}B0tLN>wYl1Qiu(m?}TO4Eb7kT8OoU><%I5-*IrIMRmlcC(@}o;J@vA63eN zL+lP(nPCsork{>`#_x}IJ1pn2hXN|iQTWF(aSr9wGK;(t2o~rQU^yXpkZ%bgsHrRL z4ne!YPfI%rO(bb1Mn+Nd(^(^%+j=$2b=G69YR#>J_uNVqmhRNbH8Np|8dv*$CAVuNt>@Y(wjlp1b%a#CBuOGBNn{m2Hn+!e!k@hv7 zNCw#rZ->RrB-B_JVT7PeLz!YIN81tLOO zZfj13I>v6w&w!^27dLLoGpIkqIr;BKl}I7f=_<$nDl1m#XtxN*!6=Jvl0Qns$j*Z* z{6=#6);var!z)A>nZ5Kw2qUnSipFAM&HZ+%3iPYxZiccWOJJ6jchM|nT1Qd1H~Pnv zp?JQ%7VASEX@jPGI{p*+z8Itm$$FC!y%JGvSo5Ykj$7LFRmXE%T@t7pK?cMl>>;&*5tkv zD16|5kURfyKnXATjn&Y(+8~Vnm)%Zu8o;_(71#9+V~P77GX89tICZty{rR}oRJM%w z;SX8Ea(NPVi*C+oNKoalMQp2WEF0F5AtrNg5^hME8`foa-@?X^{^9bb`bg5u5@3+u1?#RN0Vt zq3{-9qSAJau}Ym{Aor+`N{pF9q5`a&m^G!M4>d=#a8%*^Wgo%j#P+=^xznuCQXUJB z%lIdoACH_L@Gs|JTYl0ryS{yhPnh*@XMmW1F1iOpj)=a+sOp;7ZlGC6&_!Y1r8AGs zK(FbJF&3rijNahIpauI*MCI^q_24n9lGfSm8zlH#Ykn;|%$V$-{n#ZaRdM!LA&ew0 zoF+N|FMjZ_k|3S1#6O@X*U2oVwVgyDJz{}Wr1t8-IFSzm<6z;dP|UE7DXaKqrNn1~ z(w4_8(#*~Cc>P4BJ!>OVd%u#_y8`=VGq%NaM#=G}gbigB!QR~16Ngm7wtFaPY+%`j za_-=^qW$u1Zc7U`1dZO>mYX}1p=V)-wwzM#zV;$^|CbN^PV(Rrlo&!5F&Yc8+r{GA zacKE25im|2*i+o4C_6uavps5Z-~(FyGhf5trsS{w z4LtO82C~MFxl*4ykMfAzOp|1=mkV1$C(CVRPUp*o+r4wZ+ zG`~Kzp+ekPf$_~HrUbWeul(nHg!|`^prEKx12D8*IrB*3{SeI^YyJ5NXYtCJo9V~0 zNJ(s3AeszL41WEct0}9YxXofdb|N3C-k;1Csxb^R7@GIyt#2nbOEa|=iJBqyi_1vW zI9K-*A=XRi=hejm4yUD|Q(Z8g=k@(Ii>D4E!YB$)QJH@Tm?{2D<$$6gL1<**$GMi; zEREo2r<~X1(UAIuX`-#A?1%;J1?|)t;BkND;{LFx<-T3|0hgUhwU|=ghSQv?qG-Or zd^d%MPqt=%pAiSjOUv5@gX;riyXCb`_4zg#_erBx)k35=V~9#Z6<*Ty*WFu~BkP zWm84UvPm$?wBXlA3>(D8q3WmvvkN}je>S<0aCl5fs98P@kxVMhYft=R;24;dcK~)o zexPCC&po7nN~Q+f`WLf7bu-M7D zbuNRgh~0Cf*l{5W9dc_YgiAX3KW;`skDI|aa6Y&H3{MDPJP+HP%dH41a65w4*((lYs<>IB! zp|%Zdn5O$qC{wGC|CV|8(aZs-gfWfkLi8wVo>(ZrEYMelEmgW&go5{#yRRS(-A5s( z1-0|2Gad`&m#&~N|1fSqcBH}iy!Kn2@}oa%nMdJPl;_eO?eg&L;|gR<-b!|G^NWu_ z3M&tD)@cM$dQLH#Vx5zS4*xJD1o)?Ut!oRQtklHnAnwid{IGNBv~%mSd(B4igHl>Z z_ALP3(PC<>PD)8ro+@#gGI5nI@KxO7D|1`XibJX%3ikv0P*(hW6gL&m1QVM44T&#*bPw44(}t3C?{F2^vBcFrG|@`&~y; zCacuRnLk8*bQ@~;%lI+n+w`!-l3GEaXPd&c%+S2~eB>{?xW~-H=XG3B2!y|n?UHn) zmWWv~K9x11fP^PU>gd;2%$}g9xU?Z3GK`(2iKk*ZzE@XLQJOHk8?~&XlGiiG602?K zBelvJ)yxR7`_}gnjkFQT^cut*CNqfBz>mBgxK2oxIP8}3Tpi-_dgCp!RM)^%bn3}_?5uc-@{14s-B^eNm%tK|I=gL%vZa`UB^Q;@WcW71$egV$R^6+? z6qmccAsklu&(V`5AWJ#bGO@loEoC4i~B+0xui z_@>)3NDs?U9F1q2x1thuPf;8Xb1G1jMAhPocMX0@#J-}`SB`-9>Cx66X;@++%G(+@ zj-b%*0j^K91s!jjugv7QwWQ>ZqN7q27WtRyaD+|Sx<)}67nL9{v>8Vu34RJ2r}Q*= zzA-??=P6H^YU)(ZK3wd(zWq{lo5uUAQ{U%A z|As-Z8wUv#5_7whvo{#wQhzgEE$W{TT|H zdzhreWn$1;eAS&L?<>oLYFM!d)R0NV6>H=4yM1Nj{R~O-1%;B)<>B31 z1(YmT?10*aud2}cmqUXzO20C{HEB4ovao<-|3L;sk-mP@1wZ2>KC@cnv&C}XminUV zQepkN+Y&nt^xazaQS^m}IJ_g~=Ev!p@hDtGprw-0-yqvjWlvIx_oFr314T_cM%cTf>S!BE+qhznAO{zz! zIOZlzB_@${9cQ5hI50woFEua+g?zZ?E=}rZ+Ig&al7hb?z$Wg;_6|)t6Ri;Cpm#V4 z9VO`hWADA+sgD2uaZ+g*l~i^^DY7>mlp>q#o$PtCImW3Jk&$DC>^%;$wY6L%)WKBIK9Viv2D>%`JHA$?Df>^SqSUf>tW3pT#z zj6GjK9HWYnCXs^Aru8=-Wmz7(R4ADzN9RCOV~~P(5UOz*8LfF!7q@q(S!SwiTRh+W z=)+eM`!K7h2O~neJJR=(jBNIf9znKuyWiCKc0361+~i$U<=q+k5d>Q+VC+01`4kc& z2~wGP)r`Z$rx@~p86I<((D44N={0rNAyMWp(WR9?$)%fo z5wLi%DpO~%1`HOfqxU869Yk8ksLZ@-Ot)Mq?DaGwy0QmX*5xa4i#Rkb)iiTK;$Vs1 zz}G+ckqrEM_o8FsK;ej~JTpIEgS^|buGgKvUW3VSYI%ofb>sMr>0&d{UuFsww4^R! zSdxD$1$6;-ANI29Rqw~8H!iO?0~)y=w(@k%zi!0W50xjbUlp@ZRepZTAj>Ugm&6l{ zdH*foof$bcuYZNek-v&264uCbGqG<0*FKusQS$*2dx;|>#3e2LyyXk2DyRGNKRp#C zUm#|Qd+kB^2;sA*V>gj?AZCgEcjZ0W#oc$e5)Sd56JkZhjWYS3UJ6hA-3$=#b;D@l%VE$L0#t0@uji* zFX~K6a@h@K(iFv#O}m&#v9WXd;0bZ_NTmO1Y%09}K=YYemDT=I+03%r7W`$Q;LBxE&Qe#-sIei+qJDh2)K|)$h1fpE2g%Y3Zsh3Qmn9q| z1q{qDc7xoo!hF+v)L$6rWGi$!*W)$Kz_N(oynDAE-`l1w zS_XH@OQ3b8D8hDIR483fmDZdv6@9dpJ}~rEy`eb}22b&S6@2^`(@|!2-8OYtU)&%5 z{>q=3&DP5w*8{)7c2gNdytf`hNFkowrRU%RB{h=ln5cb&1P8~a@~P}1KBmk~GZ~$| zaWm_rC67rDytTZj)9ZKa{%#+bnf-6wcP5~_i8vpL%|Z9wC8Ub)X#uNo{#++?`Vl~l{mLduRq1vVCtox?Q~hIydmqZel|_R$b4J3?Q0-p4GY)h^q4@Y__0d$*h2WNS>)%)tqc_E1l7KCG|$szpQRkT-@G-14W8)RaSDN zZj9_F-?a#~#A5SD6)zmcy>Q03$r}maLbEp=p4O(Q0-4?UkkTB7+cpml5O$tXuduDlTph@!8{ncMZMCI=U-@|N}^NsA8 zX0S<(CbRM56~TQ7Q^9(ys#${22#{|+X3%&(5>%r$7^K0sIRrguC=8S~>zCeTg;YhZ z6*zx5mtaabvifS%cTR)i(5_DY%I>hXFu5_`?MgUouu7J5q|@!R)Ao$ayj>m}Z;&l> z{zF*UU;PWmFXKxe=*RQ?KxXd-DnG~al;%D56xA)1)F~<4zB0zjt#69IB|19My}CvH z{ith%H1mz^AS5ZIFg)vItWm~ceaPDT*UIazjquNq+sb<%?@yVybS=c*YM^QJ_VMf7 zs}`b>m$_rK_shcVSyTdQOmsq`ID}$c3xqG_nSgjC_XT--BdOPA)4M|Fw=Rc;dL^+> z`|K5vJUVGDpKQmMRlLx?jo%%}!+e`B9Z%TVsdsAlCa6w^aU#y8*BISrSn_@*Ijo(v zo2;12Ee!d~ddVimTLF$&^1{9~N1ju<#3MAE!L^ZG?3#s;*R1bH$FLUIawO+Ua~NiN zTBuLYv#@G_)BdUgPR~THV%%%Iw*Xzg%M!G^>Fpit%(5`fh@aW=n9EpQ3-x@e;mq?? zL29??kjruXSBWFX^W(1j8wXtyc%?`hZgY-H7ew*V)24$Ohhai-H?&J)_fNGyi|=Mz zpnvJxG}l&Fesp4vnAH+=Q*7s!5gj>U(+Fb5V06rlk-^grV-w@Qw9R=m0#X`N&mJ_g zAJCO9K3|%>H|5lKN;f1(moC9c9X{B-@>>|0k(dLY@m#tU{8xDasuAeAdft@1(P3kHlSW^+O7Vnb=Uo#=X}5%z z)bYP>*dBslTqxFm;!$wr)dfZ@UqTOh^YZe)v5cP3D>W?NW8;4Rwve*AcXs%`75eoL zkJ162He1$%<_R8iOCirT*@uIxI|qkqZ2fV|I|o+#G$#aFd7080`v8X{4aHz;V$VkG zS0y9c&G$b4uNY$oLiR1ufknueb{Qi z#^8J5VzNKQbzWtrz?S+MJWy;q4+SIY##p29iu#YfC?AU->6;2Y)o7_LQK`P}uuwc7 z*||dpQPe2B19LN8@JpZ{%ie0$n7mY+43~Ie>=o;{7+=1@cVRGljv?bmmp~Hf zMIHXSeLH%-kAi9ZGX3{Fm`a?w67Nod4~TNS70J`8c6az9zzzkQR85=o!Dwx9UrmL* zGy_pCHFDxv&EwV5djl1)Q|l6N&Ti@Tq{oRyC(j+^A+uJ>izw4 z>-c3z6;hxKUR=`X^ZJI$s4rcJn)m!8vGgHUIsLyrcXZ59iicq#_9}Ba&RxkFY-bi@ z^`$he#~u_SqvAWU^p`<@Ey+p;eox`{ax((h?2l4WF3_zsPNrb(U|utJW7)B(j>21i z9{O6AAjDUcnY3(`F4rL-W$ZH&GJ{mu`)^N|(OnzeU0bS0v}F4J-P;Nat?qwtnPqX9 z3M6PX!o$jSk?pxlE8j0D_$}|RNKQ%FJ1AU_&jlr@<@%UtO`mYw;%%fxEGU*A1>$?Z zR%qbz2r{TPmhrZH+4^AV9~m*~y@MfXINV02M?p14yk9y!=OyN2>a1SvO7{Zga&r;% zul+H?pA6W(%QPArhcPlN>cGneN%+;XA(g0hQY4pqL!iJ&-+4*u4D_2j(* zoyr9t4ks}*MkQn|RWYGz|1eDS**44=>ao-$BWQWfB!Es+?lV9_2L>Q86p;|Q$Qhc>pTNE0ekCt;(1IRmgiSo^*p z*awNFb#7l|4joz?9GWN-1Wk(BzmxL^6}x(wo$p(-V8=Ge8G^2)%lSj1_J|twkK)Pf*4 zU%?n8if;svGa@KDrb$^ns>4o)i8*EM9!iR7MY>`ePzY|Dtk8GeVo(}Jt{n+e-+wR! zhFUP{ZX7SafZ%^ji*cOdv?r~+K%M+_gKVuQy~$OGjQTWq#@063jPEL-8xD60s{-8% zKwmSQM0=METzqJ++J;5&u{^o)oIKq~$-Y^%x$zIUMeVGWd)dy+c&95zkzA_SeQk1> znR`hk=mM=Iu>$vq)*?Q(R}QEMGe7qRmu6`6xQi3S=dKdCI>V?IlS0{Mn_~;WmI5x9 zNplLufT3>z@rZi8>JK^0qs8^#Fa~7-4!2BpskgO|W1#%mUVjSnz{&dUD9B}N_Qghu zySvptBw{M)#z$fJZqi)#O^*e||%y>9AA4SYR(j8JK=w$|1sbB8-d5 zrm~@5CBN^wfuu_vSY^U9QH|<5vEvw+1LR7cACw77lXQQE+n!WD-aIPZ(UyZt%4$TrgaBHxxB&MRU)7w{ zu>Z1QUP;N#ahh{So=Rrlsk9({)Dh~UZ&Iw1VE)thN0rQ%iLoJ~iB zzUhW}6U~>uzVE-Gns1`Shnx`o_9u8$Az#FZOFblR-Xh^96B{GKz?Ey^FR>sDb~*J* z?!e@YZ{3oeI$KDRE2gp#T!P! z_hpGU?**X0-HQ;Gl{twZcy(QWx{-%*h&n##rz5Rl0JW;d&e3dg>Qnsn)3MZDh09+a z&H2CBF1^M!+D!G9Ud5;)<0$|WmBpeHY>x6{#bQo6o=S_pvdb(G5)s+oJ!quLjkk9J zJQm6|$f9sUUr(V@%;~{JpJWIVK16lZLvnhYjZq56>Havfb~2Ue`vqN6hi^#g&u-7B zP&=N{QP@=m)Inz=n3c3WVztLaSKN%8QHB{j(EZ_2A&NJHS=8gM4;$dcFSL7`e0O|k z1L|(_uQ`*^X|!SG3&b6@RjD^pyc+Yx96LUrIK8z9*eG?Xk~JEwP*mM&s4tY3|`T$QuKqL-)$5GI_Z#4&Wfzi zABKv%!PQU9n(J=8b^XQ%MoTaW`kp@ZCiUa=p@bOB2Z6R0bK;}zD*go0)pXgEe*$qK zh~eGb-q0iVEELn*dgc7?%Yd@E8PhiXh&?U7*olP8W%4~(=}r?a!@1G***COK$IFG- zi|8AeIARX9v^s4S^)OL`0y7uogk-HcEj)*^cqtmn+-Kr05k#i-_x_xWyYz^2!Wo{M*1#{MG!+mO$=EtAX@vZi z1S@Xt{SIAc^6Rn7O*u#bxP3Dp1pXN-RLTgW|bZ@WyF zCYM+*9CCCz;;vCmfeuS`?9ep|ii@}3jH%ufPEf*pTU8al`6kGd2$6`KQxmftH$n&Ca)?W!hHOut@C9E*(5gK46gAypHYGxY$orn zL1Ny`b$mbm#tf?9yoCE3PPC?V(74OPp+e8QM)if74SPxSFR3V=e4@}3e%p8%k^PbV zOVm@uD@&8yg!9$}%&^-|s8UQ!J(%|;%Y=Dj@^?-Q<3-1IqJmQ;YmcQ0-w zZfG$+51PJ^dAo1GO84@+r?nAW)g0wC zJH_A!n9W3n0QUosNL5Xo1}?swauTak6DtIHjFytF!b#0JWnwpW3F5kkEV+hivuSs) zx+35u;gsv%<4e_RLA~?8M~tR*{;+~!@vp~TSE+Q;)k=u9o&0?o<=!LFv^^6e>iNnc z!HI!Fjskn*+1(W?g8+n|S>VOI5&u8FQR0=9r`kR@%D8Ks;!8m77E5-rR6r8ylaX;8 zBA-JqpZb!2o-*@T&ii*G)ssAsDkJr@v16v7515#nSB8g zRiQXnlj=#poI3MCG&eyBYZ+KwxpD1R_@_vL-s&}vFUENmm-5%1+cNv=t!|wbaP}FP z$FTFB(M~8okrd$##pcfcA-r|gHv#$SS@nyhvS>Ql3^t%>3 zUHbJLWyT20^ab2hW0Q$EszQ?hX;#IGd#c@Z{QKPpa`5|V`%^;kLL$XrjAk3VwIT)O zLnShs6zBL!-Xtj=APd9G*O$JSZHV(DwO!HQb49r>JW? zmGWTQXV^GW%QQt_ogqRlZ-fuX3;4Tq8cyS>>#0`RE-`oZ_}0C&e@niizu#_25q1Nm ztc`MCAbuneE!Wb0NbA9ZFi>sVs%a@CQZIj(>IRJkC9k-f!K+CsGTbdPlxa=p)hA$~_nzL+ijg&3p$-z0%=r zsS&84rKJgX>2Fr_h5!5V+B(ncX4sz8J{}<1XDQHXi~>4B%EE+$mgVb9n89mB8?}Ma zycl}B*5RYiCD;GmDe8+3vE~L@yE^W^NKmbZK(9ovU2sIS`T4~xx4iJNXce->nuoh! zES=IdcRT^buXjkNlgOv&C^V9##;>jEB%?UBm7D(SNRaq3I z&Ryniml{RUC(Zvny&>c23pPx_8J@|?RW6{-Kj^$xcZZc(hV!wd;yp(X7eq&tvKVB> z-VrG2&QU(3I7j6M=!16V9Y_KAj-FHaLB<&y8V*({ED`0$GjrqwH>*P9Y1cU%VTsi= z>~`+;I@FozxcIyOhK$7HI(gXq)~Poe3KT_*D*B8`W*z8CY^*(# z#r+6#WrVT(*~FI1E^}scE4FWG5?Cc44($p#m-2M&3caP*@LSO!>VC z4O&+;1qID5r}lT&X9^4ONzF>;U}7Wwu4uA&Fw$GVbit})k=D3-`pBt=ZYKhxw5ZL< zgg%Es#&SMWlooaH$wV(#S2BDKnjgn4Z~M?{OR@nnNtUo1Gk*M%i} zYo#Z1g{9Y4&=az04pIk)YqP&+I4R!5lX2>j{-U~1^q5|4Vv-Rbm$Z6b+Si z<)M!@F__*7{Vmr8HN!V^rFk`s_rleOLSu%dNTlsBSktlI%Q^>dP)M^{40CMR6CE7t zDrHu<0w^ddqi(%--WT|usskLm?-6Q`j=VbV&fmxf-$rz+3{OYo;QAY_ZUo1da0@lf z@$j=hG`@*yrK^}aqPcxVSuC1_}_iu=Ji?H|C$LcS!Y@ZIX2lG^O?U04=CFqmGNI#)bMPq<*(j=`Hjhht_g ziw_aXhrbKw`&?}r3Y3Q!i>Z;#5yragiZ={!ZhVry< zq&~=d(`+)+*8rUpH80-f!JnNqg%dM%Uw%zmO43q0Icc4_XZOC#syi*f^SeiBBETU6 zPQo&BB~7QY4obGj$JoScg0Wt6aW+`ir6m3U$X-b z3W$RxA8M5z+2ry)5;wlg=N{q<5E964#rgV^yhTPfMuVhsFlx;eJdy)rH9=;|5=H_N z1xVn$m3GAMP)luc!?q;k`-l_Wq(SJmjGk46w71ODKK$kbM&SX7py_JLkZk&L2(9|y zCI@8e%gfI*xIs&T`iuGAHTBY>>|%8=6n)`q^9ID)rva8p^d@1GB`c5p>nkEG+4j}` zGv5yf)EgE-46!k6vn-3R$$iF}^J>b3qaC4Hc?2u#YZP2yW__8j!KKbCw%IeIPA)(I zX4y0`vpZV-a>?*L zk*%|do!cL=uP1d{dH~{`mibcN7rQ)wgUw#1yUSG{2Z|DxM$ceWN%z<%jlMzhS1~$~ zGNCR#Ut#kI>J7+)G=f)Q;j|@8I`sTyA}Nat)4>t0X#<;~eFxZLaD|76czJC`24|U@ z`i5iaCyfmwyKbEgjE-SdPE`jcf{2sHt9u+#Lnjc3c7=_Vm&9TmIIZ0-G@vDwU|U^G z&UC!b!=nac=v4*r*LI-L)A1hoT#oQj27-nQ;qiT`=>i_U-XRr@J{^UmgGcTheH%xr zs@9Z`ekl#}Z%DNc3p4#EJX|a(9$e%^N3wKah?^_ieAPG$Z^0q;fW=-)7@oj|O0>Jv1y9Kz}@Ur`THlRezJG2*)`=E5tC4*;?MTVPD%_`hDIw!e{Ic$dg2baF7ODGY^eCCf zw6ronmy+9b$fFyW|G3K2?AbFSRT&kr-N8WJKhJix8)#e>32MVgdOkfRZ=xiL_sMh5Qexgn%i>d=WC|HOFggn!R)C zmx^_T5`cuVKJ~NZg9=*dXP(1d#JuD-6?cOpgOc=06zB(Q?ka2|L2eoWjQ%FPTv6Xl zWKyRvf~+tYfvOL49G7dQ1=h8+C5(cRfjAY_Y4>L`Rvnt9b<_6|B?S%;>F41G1Tg?} z7oWH6oo}q4hRaSPbBcObh4&}m-fND+LP6b-XlW6xI(Y^vvu4rcngp!u=8)fQFiz=V z;wEa=>WfY#pG%MKv7P`~4Cpl_IROu!lus5x9Htq}6|m|L9NP!oi&To9VKXQzfY0B+ zZ?Z59mOJ}y@h7VWoVPyKBFqAB|m^({_iW?DErDv#=hnZdOgxuwRkl`+WerLM~zYV%dlg$1@ zFnS@4^qpXJa_$&Iwtt0PY7_APNvP0JeOTt4(I#FDy#BwKmg>T?$s^TN1pN8dgvMs+ z4E<hKz*afUKZt%i(e;Sxw-9(rpv<^>>hK^O}|8!iw4|r#=KXszF9_s$4k%z5&7ghR|9{jAf>k`N&YaETM6TH2( zl6;zi*^lwcj0s-HF!IEh1Zg?s_`40>$L=TWDI>4`A9K=6AO3Y!Dc&bOehoBPgfk|7 z?oAWPxhfQFw$?#GeOHvFD-uCtZ^(lgX*Cr)qOl zWx+=|(dnK|TV3us@Pz^V;?{lgizAXaCX$mDXmLd)TWcle563`*N4E0@x$UYql$#(gBewwkZregu7V%1L6H=@16y_dl=h zM=-B75r5H<_cFyC_}^RLz5(9XsVHE)rws0qu?Y@T-FG2qzRZDJOCa(0pU?Lm91k=| z?JJv>9$l}ai&?#qq65b;~w+It-$+37HY_(Il8Q*D|mXEp$>js zL82z{kBiAjx{pt2_2z{}3+RpDZ0>rn!kZnugLGsw+h^ObqbCK5dJJ(gz)Ur=g2!v4RQG}^D;A0N2f%k{oi0>$0 zO3OU#TAkS6fscmBoOBvrxpy|lW`splb__wFDR zLI0d?%yABP(VF7>w{tJgSd-2m{kM7+*Z_edcI*S_pwMa4YPI zso&uvUL&(hqXvv+fv>S9DMAo=GN&v#kn6js(3orGG&bXf~0z=azpyMHiA-?v|#qUZ&VvQr>h zKuiSsoTLAWj_rAekh2*HkQq*C}m4(>Vn{zyE?9th+lK05Aj*sS7)V zH+Z(6kxUYMphg!`C-rLnEq4>4i=9MRgcM2_maJje4TiUL|ECz0dD?y;Q)$-LPqBaj znwYS$0=gNg-*{1x{YrneXq$nak%WuezdX-SpuUS?f6&*%yCcoGdF~hiOo0c?odLp` zadDTk_9YT--(d|4_xL4n1m(m65iM`2zJ)82?wXF{VTn8tm_C{DiuHCB>fQtMDJ{Tu zfm##vwt2ZJRXS(sr0fe5QFkmtOq`JlW-zy zcJG96Ijp6hw$4_3a7R@6n;_q_dN%N_LgY?i?syTHHgN+*!>J_QX#istjWc@NA179m zCC9xVIU{bw=aU@_KynPEivJ_|1$=5@!B&24rFsKF*8%8#ktX`ZeKXw+&eyUkWweq6 z?me?q;I#jh?$h2`4;s4{s+HQb>{$hk)EAE?5GOtfyTANd$dd_#)cEO>C;BJDu!uu# z%MrRDIxH&U^Ne#s=OR7k>a__6xLKT-6YofvXnTC(>s;PW?f*3EHn2(n4UK<(y9In> zS;f0{?H#pO8PS?g-^-hoYT)rQaU6yEpg-K>C>}3qikq&iQUyS?pz0-xdM1G4{QG6V ztTapc?@ur7PnZ4A-~IPb6cqnGga4iZIU4?Z5B_@w|GfwQtqcFHjsMMr|ILK||7Jok zgHpUHi33(6Z!?G~V)uxL1>bQf-B9&F0!wqQbpH6y(+HNh;t1nzk2ciB`UZ(N51JNas3}lyDfGCW z)~-uo9Z4SDyEL@yH%e=7Bse%gfW5#7@PTA(LQhM{xu{1baGo>8=ZR5K+Sr({uAWvY za0QF{1*Vc!5N4&Wy@Wtt!uce@yQT<_)jKLx9=aAG)~TfNIz%?T>`YOfnVqk&Q*(0` zQ?L#gU4VLmJcT!KY?7OGHW&V@E=R5B)Y4*0#OLM7qMG@$AEW7TDi{U zuvGRlw*@e@${*c5%`+}}H5D8~)u8jTH!pQ!JzE3lC{6+9f(lIO#AOs0us_zf&jWs% zSxn+_+gYwP1e9hJYGza#WxFX{~cHm_4N<2=K?CJ*CG$$Fr9VucFT9D}gLMQBU zo~<$>aI2R)KyXv;`S?YT4?6?hE)Jumz#t26tT4^7#&7%hqm0XJYCC$-Yd-j0VoS{? z$0fSX9nT?#4R?x{x~I#g1>FoXQ(<;t!1A#Tqa|(bG$qw=ngfwjSfrZ+@P(SX&B*~% zlP6HoFK+=6*z7omRiWb};#LZ8Lu~_!4)7C2I|HogT6Icfq}CiFU?@wRdgN<_4!x@c zgqrnx(sg8fj=Bksj8j7VSv29@!vQgHe)C)r5N5FNip{*x-y8!&tqAVD2pKafbIvO= zMBku-w1&pKxT}<7?Flv`S{D}4Ym~8%4;f=m6q*7~-pH{IOq?M|Qk-L@EEWUS*!oqj z#j9+~I>4LYEmQs!jAT{&{q<@&#I;WWu#GMIZq=x9 zpS@!*zmPN71@lsxnfiuLW08U{Js&7VBeH?z-fomb5oSr6H~IhEn$CysoooNjIstWl zG$&~#$FuWvDRW%x82W?0xbikV&!a=f05xcj01brD9h_^XKf+a&D%=C?-ujzyeKsR( z;*rrkjB{yZ)CIoZb59A;V+|F~V>s0*c-F{m(ixE*d^Y$6Fqw0JM|(*ESP>US6B7~H zRMbT?tk)*(7RpZnqnak*!?@IyM_K@?H8TqEP~4P$!PoU#%WY>-azOI~ikrhUrHC@X z5|8Q$#sI`otch1xulRujk?^MZ_|06^JW~l+xL|blJXfJ=};tmwR`0G?IgBWyLCB2M?J(ym`GI#(mVyzFUIQ>O}r*Qx;X zRtls016np|^ZQQhe!PL(7ZogtfTT;SJoz7Zwn{Z$#GV))2JJW#$ zUn&T`hP{i7*EnVxcmSu&)0~*4oomf4e8(vDY+5z0aL|}zefaAK>KR@?pabWVaC`$) z;@UPwl}=vC0Hp>?1>PQ$Hq_(dYStqr{cWn#WUHQl9TH;B(sv-rW>G_EXAa~+J)HRa z6=U2ehOFT}Z+Unhyt+7Db|gwC6W-jE)%V6D>t%lkFz(fZ=Nkdo`CS>UZKhzaP2}ix z@ai`@8+4(Wtx5mkZI+(aD0gGX#}}7i&NjTA>hUU=?-7@=y!#)<%L{|8?;QF}V@u(U zO{Vj8J|9bJ1r%qzb=Q(+R;ud#$%fH@fOPVE(1TSnKLRIYTrjZ8K6se6ZtpJP;SOZ- z=(zdR(LYe(+-z|*g>T;QxDs%U1$z=9C)x3ctL;aAr`ju`AWoc8&JWwCP@kE1|aSL zbZ7{OK8b+dv72&$n)PMKSa8A zH)qr98B!tdnp&zl*Ed<#KrSAy$F15bF-Un!6p9&T~$K@Ak2#$V% zyr(PPQ4#FF0bY!c7NN|754Bdmj%$#!W_yk&+lD-#Jt3r>0%diNBA|)#e$=@1<+rZD za@AC}aS0ppVn6%fpG_)a2d4Xzr6;CW6$jBAb7ATPaw=dP&@ow$PK*Iq9*ALkpmFM# z$SEZQnjrPqc|&BP(jR`C0$T->=+z6)+sqAoh+9TCdo>BrxQJF+$G6&rFTIhq^h_xo2hCkirZWzTBoCI$QWC*dk;t9E+1ECdcVSpvd&}C&I<28GfhWqt1d*d~A z4KD0OK#}3w7;Hvbz1C-rC`~dd4PNG43(=?31}+>^SBprH>DJ0RP29zgUs`D|9+5Qm z)^MPq0+26}QxWsSy#g4 zv@d`{2YxW2NA}dG4Gew(w-6Xxz)pvMFh1DXB709DS(@{4)SR#q5U-zkCJI~TFs_0H zd;{i?dy%-TO>;q=u22_<*XH^9t<(>|;c@iE84lDW01{4|^Ro3P?H+gcl#T<13)yDv zCgns%#`R4k49MyUpzsxg^2_F$w0@-*&dbH_VHH&nV$M7h<|j?MAPwHXHHXx;wZaVV zP#@TeHrXOvY8~IwWZ@jefOeuK&@K#Y;{yeAtSO3jBvKEP`Lf%ub!tj2;;`|^p@~?E zoUYG$GBl*#_vLG@%D{kqg?RpwEHn-Fx*XWD$!m_%PQE=e_SVVQP|jADexOaxO~Ar5 z$|fE@6r@pN=MF)Tsq_AWy-q}Si;Q0wkq|-NLQsDax{M5zy$bGeimS3YcvLHVQu)pe zbX^t+n3*oc?Iz=9gw+Of%&CU{C%*p47j2qsunTfg`o{gz?r*#{i$<~FII2w2=Zx9~E$8Y^}$s zYGbFm3P15ad1YG*g2Dt)&%y@mDGFKjhvWQV}5DYkSV-dL4V@Lxs(Ct z59oBmPu6)Fd(`^z#Sev0(!cGLLS57nf2Vz0=72gw1+~pVzdr85Jyg^pZAg}go)lB2 zxZG@iD(!h}czm}1Fl}ROguld*xDLn_z{sV%K-?Au%NhG6Bvo2Y7Kxu%dDb>8O~CVa zrso^Zbyj2^Os8P2lDYN%c1j3){jr$XCj~q~5Bs<`n8|>oBt&v>6CDmO( z?v$rUmdl`80rhN^*Wx$G-**p6f%Jh;`ZvuRST~7VrWbY0T(e7zTMBe|#;;+!sPFaI zI5sH`r-(??ayd4M zCxm0}!~ykMzo*_GmHUFcuP2Y)p&=0S{3hY!%5aXOfD1Nkvh>dJ)U`ZNpO#<>s$8kJF!EL&+$KL=;m{Ef|Cj~{@F7Q@Y9(@-0J z`ZUhU5*!bc)s)pjM}dR}^!ex{nW;3*K+x0q-tnIVxEHl3nFV@|2&A-9ErR0X_PiQp zxEa`(Hfb^&s;*tK{la;Djwh|Se=k7*=yrRMreM9>~*fweni zy+$lZvB9?>2eV1nfSmGWx3u+>!as|*IhBCIX8c;jp+b)yV^v~}6_Ck+C8r!Vq!4{^ zQ3$6fVZhrE+-Vl0G#?Ns9v*ibjM6E*sl zXM(ZjoSCRmWn-DW-TV+<*&B5+doXn%qgY$sQ}xsXur8rM`6FRMqx8s9rO5MOTl5+7 z?4C5wXTPWJ&i_vqStM?R!CKcPudb7jkc>t%N{Y7`)OtMAOj8VHU+iqPGdrq_0hjkr z#;J`X4ztl`U7phTLp;Urwkq0YvkI9 zE>(16>6KvpTu?-CXdRAp|LD2&@^KaDrDMOYjeGO6Wd8VL#A~KCxGQj53EJG!vkNOK zf+W?{lD2jA*nABfdR<=yk43o}D_N=ZV8D9W@)_r_NQb)l5xM~c8fbS4Qx-DP0; z%^oG|x|cu8Ny~I~-bJ$S+}HsZ7<)}e+Q!%G*h>~!dSPw4^vMg(ceXqN7oxHD*u8PT zOc0*k-Pl+JtFLO)FeBj|2qAwu>lEff%PY?lfgB#ORN6Un;kS4od%oPp<-RIi@6(5V zXWjYHk=O|*QO{IumVmXRXz`e-3? zvWoD_$y}0ZF5dfck%f@3U+Rq?puHSdoNk|JI;2))`EFK$ z@{rWlneBQzSdP5A5=gaEz;?NmK(}~+!wjD^PflRGgC0N^p*JqSd|A-k3ZLCu)sl8s=UbyP+%^uSMll;MWoH~fK$FdJG{igxkAy&U= zx&-pJFt&Oce}STt0a06%SzB3RABOAL+Q5CAa;o3XY$bLiQi+i5pw6VNsy=`gb=g#) zgEynjW!DbCJf9rX$D22^v8?0-XB!kveRFpkVf3)V%+*)^y`7eZYgbfFg zuUR6lgD+$BSZ(_LKW7(o=9r{{Wth6#b`Ui_4#^ZIH!^hz1`EXMC;yHQqSs_b`P&CL zB564SH|WpNuCWvW3uoma>Hz~$Wci96zlD_}(39@2P&aTYafRbX3f>qxf*8ySqZbF8 zH6Bku9z8VFN)MAiW~Bm~+B6mw4{eRlx3339l#u#glMcMOuv4A6Rm20J@FUt)w?z8Exp8M5uSpIop55 z4`D?sJv*b{4}dD>C`M$cR8W*ozH+H%g%G7aatN2zt}&G*ei;CE$2f}{Ub8zqTE3j)uLtAdGnj^}k;`&pQ;-Z38o%Re^z>zh!Ens?QI(a6!{)YJp zYW5AYweA=@WM>$rq}Z|MeI{yRFyZ2n@HZ15mufKIfuvdGUeV8?+wm8B7UOF&T3@o3o;=B~C_*z47Lw1+_FZM0-?e#PIQ zwpcF5`nYC(!ZeO2Z)dX5v-`bHM86u4FjcfMg?epBX0IMsKK>`eVu1^6f7v{(JqJYj z$(R~2Q>(fnmx###b+c5clpzrs?;fa)gpl8K?oz9w^y+9J*(ss68f_oN*x&Nn+;Tyx zxwTmQ3ru3RlgFTS?&7;CS)Q*0NOb?<;;`-qwN*5I3#9k~zmB^$S8g@SZ#20%|9>BY zckQ%o>p3tEvKN_^QoMcy>Q-=f;aLc=VGP9m13{T5{18$32@^>ZvKmWn-XMZGHJgmR z>IeEE&hAEldjli3ds0StmKHk19Z*=7yfv?h=e$Ts@z2v zJ)@RS+F2nD?1_nXv)4Mm1KVTD0Mr%>R)vFYq(pR-g5&tY*;QM2>3JUe<6(c_N5>st zD32T)OP~e4)`KLWTe`CK-1=~TSnjZPln8~Tk^NI|M&Zs{pvAUt;ggUy&T@|dP4z9S z(5JL*gW3b7aRavZA)?Csj|5G@Ld2ZW*ylj_HVO>5m;ZaXNH(G8* z$}Y>L6lD+Dsn8gVVzLe)xh=>@LP*JOMj7i^lFGGY$uhFdm8_GQTVsqc&-tW1; z-}n4}fBgRZonPn7$w{1<&+`7fU$5u$`FN>qzln~Iu<=Z_TnSbylncIb-Y63sYj3+(A9` zIkQu{3PLI?dGoo)R#cqw)%(|eroLNKSPyL*&vOC=uaDePw29qPa@F%WGsHKSS&OeC z{xpcfLg>{HOa||;jg9}2KRm119bWb`oX_<*#i)sR)rFN!JJ}0~G{%kR2kiTV zu}~;V9Lm82_S2H0e2(SiYgDr1WZ)UvXu#N%izSJZ;1$xsg$lJpN<=wOeGf2FYk9RC zh{-(Nym_*nOWxM^(I>V6={EU3#w=+Cc$v zV<9KJ)0^ZAgz+p@)PPA=RkerwJOFCVEbtMtpULlu36X)Uc#U5Ul11I2crjk$a^D3` z%&xf&q!$YS-bgtph8D|#Z?-tJ&%5QF+9R;&gRvJW8Bo$mh{Uda4PMfj>hzWl!SPGj zvHQN9w%ev>DQ6Na)+1{wq|laaxt(EQdQ!oqR_a{w_nYZ09ng$~{#b57l@V0GV2v)z zf6>(0r7fkk_as=XrM?mv>xvuZpc@YW|IWtFqhb=%X3nODcXI1=odH{6kM9&mjWxrh zhk19q_Cu2n4vHd9zh;Q%Z`^6}8%fE}v<3kkk;skO(Qxqd@^&omlS6~3N~Imow4i|= z&GmB!+A|VH4Y$QVfvOKWo9;lzB`l7H5RUf`sM>%kQg2M|V#gYrgFh9)+q5ch8ONi7 z=z_LGaI5KKmF`av*{d;-eFtVOT=_i+{Yrz7%&_`iNv3mO;5TF{&sV;WT-feStCm!q zw((y#G}FW;Yo(^w*j|4^ZL1}fzkP)dUTKdz!tu5eCp)bQIxI*H9VEbAO=ZPGOQIMa z;oZ;Z+cJlBfBNLxhv4DtE#nL+9F7Juo}{y@ZKQucn^ciF5g@m!n+vzjE#kQ-H(`5An`3cd1BfQi> zyC-R^rL?r%jEIjV?)J}7EP^R3BCzUi(5mDS{%Qe@O{zs3C?KX}rTt+%w0&wg;?I$7 zd&Hq~>|Z>zw=efs9Y*1k01lrX%zSL5wJ$gsx zpfI(9A|T)^!c`WSs1|bCy^A|^)B$h;3cMvGzPUN#--$Ig2*=33nzU*o#|<)#)p)6A zZceBtu2UUTXDBC54QE?j(}i@i(7J#94ruW;oxWoRElB@m7?;0H+byc3W2<@xUtI+VCKBLYYFjg zM_H8|AWM`|@2o~|0l~Gl_>73^U7pYMt^UF{s^$$dnX*QSDw5pob+^1fa8eu}<$zw6 z!XJzA-oLxGn-Cc;W0H=3wtADU(BaoGDFR6o0Gt5`7K|zAlzCOr29gPO)^^+-UQ=C3 z*1PSwUs~2Sa2AVSq=Z`?>=9$coO*y%(@A48Zt}s`mpft_)MorIL{|Qo(ZE_OAfR?f z;6WtxGB^M}1g8lHp*X23_8*o?P-@i~BTs5k0**9&_}Bmo-^bnyT0JY_y3kU5hnP!;mUV?-cdOb z{j5OyW{+ao#g`LIo%0FM@P&O51AFWkD3%334~Qfr(lCQ#N8upJB0kdC3rMn6{sHT- zrmA5QrsKs2Pb8mw+$=cHrK($4I?$)CPQO#w_WPk5@cgg-)`THuLX(YDsNTdW6#fwl zY61W-&q2@%bd3qvF=n{r-;rLnX28gmRR8cLbqKt%deQv!23`itLVxMgya}CWLBZ>a2zPY}IkJ!w5KjYQ>3E4N@4XcF*5R_}Dm# zc1@*>KjeE#v&X%x9IPZ7nOpOP+ukAYxB+XEOuF-B?vMdNUd|Z$wYHq;Ro_-ryUMU> zE>;r7F;nqQF;>`?G@L8x7Nnc)=rxy%q*1l)&KrAwv6SWAJJXt<4Px=LQS9xR;&i!5 z-+)kl*IH1}a{jg>EPDwuJgL9Tz;F`4X4%AT^1q8HNFE=b>@Ht(&=8(^zePqGa0Q`-cMoAAcz>CmufD7dig&TJl_+) zdFKe(w&tOm>;|>Rjs+pUcoICVVi)CK)waTSIna1V)`H`%72e$#&o!AwtcgC+HyQ`q zM`&rx$}HWw&tHzPsjF?r1q7}SfeUUYvofFnYMW1Ab_8m;$dhOfh_UOG8 z1o45i=-yA#z1sV1zCIucKGRHBMEt04UkRj`_=~ZJk=RNw`x!hweS z@nm*c0OZeLp$5X?3@sFgoFd?WbMMQfWYH;yk&N9LF$1QSj{c?oLg?$m8rBs#?#cj+ zgb5rIU<_{zoEOE)B&n0a3TpR2T4?GKF7%N8Jfk=}2XeuO?JSog!(&IMc}ixNTL-=E ztt66E746F$wQPu#zk+jpHTgPgzIdgo?J-YG(>lFu>eGn#t+yAxwCz;d>WD#>HlqQ~ zZJju|)twbA{3*G&q|6LLvX>!&1hSH@++x7U^94mPBYyfar{EV?A*qE#L3c(lz~V~X z8=G{XPyhDr*&eQ}RNln?>=6G^Z-PQl?Jpt{lO@3VD%1$;nw;is$*6P_yt>%enM(8B z{}Ar~5SkN193B+v8(zAfG<#xezIV<|b)mtwpM%;Rn$3^~>@$=JP$Q6%s zpI<802h^$&sPZReN-Bp*f`^BQk}Bn=5E)mrHkkzI&cT3@ZT3F>RkHnLUO+d}H1oWA zMqJ+A{K>*H0A++XOHAK~A`}M5^dzr8RrwJ&V3rjj*o~6^FFtrA%d6Ti1>oFzxvK5- zjC@!Q@C$8QvGosLT-2npvk*PI4``t&Ec={FwWXEkO!W%^WM&Q=&ycxkXSK=K>()z% zk-;ISHjoAjjiQxEqO^p{c@Q9N+Mi_CgI&+&dDeMj4FzkZl<9|~7oVh}0)&`}%C~Gs zJKD?#l;DNZ_nGub_xVo>saLK(2w7_2WL-6k4C1*`xcxV#2G%#=yEj5y+m_7MngCi2 z$(Cu`t5A^hIL8us{j@_$yr>}**cDEE+SHkHleLOU&nTCr&Oa3NscN~*2o@eoo&#_p z=sXS>0vhdSno?S7$DL{93-k~ZPG$ui?^d4k?T@%a!Su&Dy#+-WW_C;f!(jg_7uu&U z1e?X1!#SO=G79NG-{%%+$2i(nvXey;OeAB+0u5~8>3>5?f53L*CcHF>W~0mlQGz!e z?Fo)TO^__N__X|X$%Px6u*@|qlub!=98~!10>~$@)rwDjECayBEXCi+Lm`L{xyMH-E>W24dC~8QY8C#&n zSbM=tF@1j3amSKl_eYA!vkdS&HMz3=rdfHfpAISg6gj?CQlD6f4`Se&37Wbtqj&?@ zCHZ#6RVfY+jBAHRkt}U`=Ks96Jz6*DA3EIu&R;rR?lkPnrS*^AeIUB}6c)Sc9KPff z)K+EG=%&0qb&+oeq*FIDIVl}IxIK}~=FOtp1{z*dDH{jJxRnO%<2!ElwJyA$ z(`P$lmJigA`IkR$ANK8?sin0|{kafbou@|Z*=I(C2W(J_N1$uD-L=#J14qE-l0X+v z*uYwgIdWitA!=Dpra6)FV`lVc(^oF5b?%_n`JMBrWBRF(o4qB9wPR^$)r3I@lx`M( zxo0yDE;suAcI?N0Qyhbm6jt9~Rvgu9U5?mvah>xzE6uFv+4Y1N1C9J?=d3hrS7-kU z0fAk<2oD5Nal+DripnYCZUl$|>IfkBvH-c~`&94p^jouPn9Z=|+v$%Zi_x6cmb{+1 zqKy*W#i8NeET3Jq5f;)i<%R^hL`TKO>Nu~ZmAE5y`Dkv#=OO(jwZ#o1|3yS=PRcw~ z$~T#4q+v%2e5N%DN@c_r20Ka3u(Qlrm-3vH*gw@H3yH!nKS;mY zd>*&=J1s~b+F~HL!e_T3gCD|H+Dr@Y`T&}=RWdZGUo^f27OL7^E9+lW-H^v)>eE~v zH!u)cC0gm`Ui{wk?fZMN2qJ)*zSzJlqcpgfmue~w1O&nTa>tUQabM;BD~oKrOuhrx zvOEh+3*D-4ijG4MD!gH&6J4CuH77!OTuUhPyMQ=j3Dzg&kkA`7es^l0`|hG^r3TSk zE?3yiD!Exg;8$_|RwNH4rwYZB2F6?YBB`TT%X8Gh#iE-rVp|sC-(^9%*)Tf0JF_ZG z<-CcHe{~$#>(5!?n9)3nKE_Z(Loy)nSr5)j<3rHnSJixzNjPV}#%V1Xg1F>STFOo> z+1s@sF~vA4zCy!+v%cn@U0Fu?Ud>b=?cyxAJa8w2cui}mum5rUaHDAdp|n%NSw_Ns zgnnzwY9^JPT-t=|wARR2K7r2FeBKuCX}_C{Hn2OjX(|$TFZd|99BH0N9x2pSL3K~7pb~%{LeM66UOD=&!ByAM|!ZTTHlBJ zUA2m}p}xsOOAASr)AJpMp~BZ{>k0NZb&oV06w|q4_?J2*{o!wQDo*&)Y@N2Cd3GeV zX8I7E#K8bV+tD)28RG&UC|~@&6LBX4PFAm;jfECzrqaq)xl!~BJ>3B*L)T=jtuqM$ z{1Z=*-{{twhP_3G%Tmfd!66t?klz{1mHz(m^xj3yQIy!G0VfHa1^QrX&Mz5wp|v<$ zWRy^%2vh)N!*2whpHIq9yQHQcnJ-N8)1k__G=4MYkiA7OWk@O{=)5`e{upp}JlVT* z@;-RDz01CUyPqUE`12J`N7S>YBRf9NQw@x39JYdE0h6>OUe3(3Q%!BK95vsY2_g{@ ztaFE5cfzrVsD@!ce;o^0PHXJ`NOxv}yAn3N77nIlmwemw^+&|Rb31iR>DSJ2eQ#Qj z7nn6!^#O99PrEU@|GIO31-u?Bw6rWYj{nkglke!8hy;kl|G( zREhh0KMr`eU2NqAD0Z(oeeK8R)hi!hK|@slT(Y^m$X$bnN&$ud4_{I*3#(OBctSGn8A@=aHe&q z*q_fa5CQ;tI@k>0{W$nvs6^TcECHZnz*LP((5v%f$OX15~GQT z69(@EgC?;6qA(xgAoCsF74xGS@iqjZxJ-cQq{KA;_lnK&hi}C7FNki=^q`bjtX6)i}7#($82 zeMZKHJnTn!;Ga=D+QI-~iK@_ct_W{a#PM{Snu$5jsbsZcZPv1?i}pzHNOfJRs2)h? zFL-G9F5DBk6204#z?U^WBDszBo78Gzx&+|9y+6FTr!!zs_gopVy zGWwVUafdZo-;a409CK*&-6x9W?yO1AN94J$b&UAn=FKiu0bm&lm31aN|`g|9Ir_?h%m$Pzb06bHRLW>t{JpOct4l zm*bYrKR$-LQbVf5#K45Ids%1CTELQg+(9?sTQ`aaO=NUX8b1`%GR;i{cK_9=P z>diNB!uI1~Sufl15;AGPG)fH;nY;}h(w5&ZK}P1Br2|Y|yFD}C-)~_(iV1uu`CY%D zU-%XigDqmP4B(+kfM&W)P1fneN6IGPf6IZbA`AyaYv`+*+n!Hz_OxX1#V{)a?%| zNjn0|cK+WHJD7f8-d1}dRniOU7VYx5mBIqoC3mTI6z1-mi$Cwz@aM1a?~kEFze3>g zkL6#9bztX)p^|1h4uO=75ZDH+ZR2^GXeF4ONTjfM(!ouW6 z6ap^F0Wv)OUmEujMd#f2;w||0b>^>VcIKTXxdKy|qlnBCb>l&tw^Vg1^)!56 pyUb~e4*U&&{vW#We?3aOB+9H^(QzyCXAyM1^-mg|An7=T{|8Pku#f-% literal 64142 zcmeEt1y_`B_q7UwG)lLK(kVHl0s;~uF)(yVcQ;7mP$J#sfOL1abPruKz({w;yyNeQ z|MMZhM=%D}ka|z?)#DBf>?~6jkAHTl& zzc-Isy)eZ3&nHQSSEv5}fBomI{{J!k`^xr_j>%_#1g8e-hb}sB<&I! z{)x!(tq^OFhGzwUPn^)Ow3j@nwr;PRJgAb=gc_Gel8B+^Bd%-kv^|4|@ST>;{5Ib+7;()TG8asW9wVzD#3HyIw z0ftb0m6#_EP?Q>Z>F6GB@sphU>HDudgy_}UPaen1Sb|gHYeClX{`j5R6&S-CSqgOA z_x6xSz`<;r?e0g|)=F9(PqX*Xqcb{4@n4{m?$#JDpa1&97{7RIqtEG>823owKSz88 zc<$&!X)SB<={!z8@rCp_TGi%&gosVMSribN(oWtpJ(!obCbRufmM*NHfGtT6Zr%!;&;Q# zzvP&t>vK(XR6cd5H2;E?y!=0eJm%#j85>^_dZ)Jk^4Q{YQBBoVn*`7(M3ot$!mPOV z{0q|&qs-A1!_~ZFmk$Qq+px=c6ZkE)=ohP>fJ6jqvnJ0{)k3GRN+cD73laLK$j`Fe z@=270B;0y<7#M+eC95HVj!djo&zU^wg_}qrKYNeJV*d|wd&XWXsM)5DZi!Q>mY z-;3DCHycx(Uz-#D4_TU5rO%+w?lqA4zDQD zstRl^yf)d_&Eg@A1AiUQ=weK~^xBgtpp#?9DS;rQU*eO|6?5idbXrro+=wSLR+S(9 zuU)&VhbL4<*#Es?Hsjw@4W-N_lw3`iA%i;TEE>w!*X%@SdOw>9VyO-o&afd|+mqkV ztK(P`^tJdhi5L*C2MW<2HwiHejjqfSI*5eN7%0@3iBx&7j|qNb3HdL0>Aux4gcm&) zrVMkW4nd?863SXeJvrG{k%>7pZ`mc(H!Hc~hp3EJ15I76_S7GlehUE@8%1kxexLcs zsQ%;0fqD-=iLvMMm)mwZ@w(VAQ#cOr;;|*H@G1HK$q)8Ti=l;RdVv!1m!!2pL&xc1Q zO!zO#+ta0|oF_i*3}=1?x&2RNHqYr>z+Id@pITa5zol=Z`$S+i3m%q}K)a#C@?5^jQxXH!45^(9*l?syw*Du?|Z z^ymK*^`0?qSsj5=TH~ofdTLD3u{6rjvRWxlF?r;QEQN4Y*f`hS5{72A(o-#Bxiy{~ zW86h_z}ZG$NUxTbS#ssUn9A=x`k5OAA-nw)of?pU1hU-WzmYYU)>8_|NV~DLJ~QX#C_AzefXPF7b9P6Pz7iO?BhY?$SM+yx?ricI~{~Jf%-5 zQP#9i6vOOm*w3VOJEYP(sf@`?Udw2AXL>K>uit293Lf*jO9d|)+*{Xki)w>TZlWr` zI6rQ^2V78-!!t2&8<4S&BLN~#Qz4@a&p3!EvdRu{$M&c;FK)d&y~ci5H%QWF(j@86 z4Q3%%o=)e#dbD)uAmM*}8KZdLr~D6Wri*Lqj4pHcB=W<_P4Yu)tou8;HUP&PzGnx% zxJ2mf-$^uac$jksD+WhYi(j4Hs9^IJRd)P1XvgC6PR|Fn2fCSd+>X8S+~f*`f@j;E z(CoctWPS_`DnO?R^9t$v>PGNdE;e`P-5nzRZ^jDd+#UAfvqWg!!~1Dc(_ni`D?PjV zm6_%jQ75s=q66zD+aKu6_lt{?nJ&%Ebkd>_u$*eb;bbA=-W{6^*zGgZ;HI6MT`eYm>OqO?KfB; z%)QM!r!1?ab32be{`pSJHE6M>=-W#!C4P_Yi+O9Qb*u5}n8e(s6t*Gvwf3v@(t0^^ z!`N-#M*qyD&ZY#hiad}PzsXWQ3DWt*ew$inZ@DIcJZ613v!{ivGhvY3H`KSd@k%td zrgg60Rh3(^Xt*(6H%qh!EBiXqWg%|@c$*UADs7$7=x)b1eU8&Gucyf_jmM&m-#U`Y z_t4ngz#>@f{3puq2*)H^6OuXswyKZJJIDSyL)s`F*?UyON?0CM*~}#q++1(OBXHhW?X@1_7u_TTN;;;4f%Wg+qk=muh#z)pg{GDdWbKLeY$*Q?H5ezXdar0)?Wx zKqzFTHy=RY1(;XXfz)$petnZPVPESA?ta$>>Q!5UjGL_eHm_im)!VH#zj5h(CHIv- ztS^)tmFRuoMfXFhO=aW-y-a^g)nfZiMz^lhdp7@5q@MKaw|aBX&vcu$Tn7CG?JfSD zh&{StOwAW~#jtY28E|SjgQ7+#fdlIB zk4FVh?Vmhx8d9EDkoR4D;3pzMPclW^{%CDuy9j& zKXF;{XYBwEyS7ad-0hm2_F2Surzqyd*7p86Pu~kyk_;9PmuL7;I-;+k3-p#Ly=|0z2@;a(~+;%k*L{iTso3=F9(9a~% zUJtuiP!GO<_WX#hbpwKDTYTem}6XKg5A}f6GTLJD+VjdUb!u)oV4y9 zr`D|9pZ;A+lPy13M;E(Cy@+~89{R{aQ1ar67UQ5b_GOyPNac`WrPc2jGvnzFAT6q# zYDP)lCHk#juuN|VX;T*Dlaxv4DMzMxp^_zMdr83RO>4w;n7=nY-Ss8evA4e?N&8*C z^StY(yoUXDb{pU$dzpi72sE1}T!y4jIBXQCGTL4fO0_aKeE8tVba*!+PrYJ^Ewl4jA-Ae*p;mGfuWbA?^!Fhj#`S@++SZkjPz4ba17rz(5-j{);|nx zRV@lH#<|onZEp`{PNvfOH{FP)_TBvX5p$n7YrDndF4~N?TpHp{w_|>vx=^*q#FqN7 zZ(qK)R2pS!(2Odw5391YrCu$U?cSJN{_Ck#i_xfhYuoPI|F*1YY0V*X%+FQg@V<86 zw7&hQDd7%be))X_Xdg1I?Knb0qwDR7sUtWuHBBzX)(cvIA64=ZNQn0+)l-*0>)(12 zBhqr!SlnQv$wmc*sv3~>Qj$}!Ra|zEyD!ZS?O$GKln(2(=O-fX=bQ)as3L}7nT?Q4(T2&hAEuWd~|W4JV*RJUj5l33Sln|Cr=SU;JoEoW;*0z%CE z>0-UW_yV!4W$&Nl{!Rw?((PvniKcVuna4ZU8u?dy{pBpp`_N|Zt2GHRd2j1L&9*Nb zNxI{bs2@Fsja-)Cg<=doyZLz})wxA_)hT{w31rIm*QgYGNg%4-$be{?VJT~^ic{dU z$SHmE-o%%9Ob|DQc&^nyK5J#B`#uIYzV4~`IpU#bRc`>GLpgYGOXiO}YOxJ2xM|WK zwdVXge>&FfTCg0Y>zOn}zj+2;PjJ%hBM|Rf>y~&-mFrR&E@`A9AgvVv#4e`B#fLh+ zv+T%Klza8!yGtkKGhAZH-&9ADU4n#^IvNA~TKTSwMYVe+62X1OQoob{HX;(82}v_m zr%OU3#S1x>MCkOvq%9RS7I=R6PY7%hc#}mZCYKqW_W}@10CU+uCc2@MW&0@ZafGv9 zHDm7jai^ioxH*N;4KO}>a@bR7&HL(i4oMGECA;%&EmJlUMM#B9_%R z#@!1GYWNkR5+z>V9xqD2erxEqZ@s4$zfzv*&Y60nXG#jHnRfC#-Crho426)@!J1NE zG80h82eNV66$?Q}>fJfuR>il+wt6kM9E%Ri+fVvH)9WxC?FRVD3i!6%KyAq2em$f_ zOY1t-$`U*^NsRb`qwP7gD{x%MbpTIWm3Vu2YT*3=v;DS=hHqMytqn@S6$+Wvn;DpZ z6ZstF#W?-3Fr8W4)<^?a_$r_w4`bYbHhkkNsoAakozCSu8z#tmzP}io=|6(Kf;>2t z8!qxn$MrXG*vEdjZqM9mmdI?LscB>x#q>i;j*1ji!mMpM92c}jjuoSgPDbh)r2J286DkZcJhgXX%*9%FDOPI-g}n0UXv21yF21p zL;J6G5Ez~}1JnosD?WTwE`))6!^C5tSUcLBT31&vEvCmBBvjBDjn?~)*k0h*rK1a- z@#+U}?PyOmDyX`F=4wY*b<#mgd6EK`%^T7*{AZcoK&DkOCA4KkRaIU-tS(knVXM^r z@@U1~hKnjbQ?X%BxV$k}(sU^F25i`)-LN@&FjcYRglc|*WT$MFK?ZKO(Y8^j%a@Q; zbDVV8Ua{9S_9n%_b5*3S+Q@c4J?Ps03R2s0NQ2DFI%fe-ihOLp42w$ zqG0$Aj>-8ZCHc0TykF&Rv^-0}*EZO_#SzCUGfq|hxcN{x2{qZw`CF90cGCo>PcQxb zc%rHWgn#9iz8RIc+kA7^yDHJ;OK>^ny?Q!kyOo>4fkS)xw~iNFMyERgKkM1X`#-Fi z+JJQK+t26!_RS`AP3fyQ@Ma3ily+ek0LSI7SHAgeD$d^;mu^?fPd}^AC-X|2M&DAf z>-S1neixfkc&F*h+LVJEXNr$yIcxdcgO9CMpldR(rhf{n6rCxE18>4q=TrxOmUhzZ zGI`%o?BMwFnZ-#3*gTyuW20A#$m7utuh>v(P*CY2OP(>!d`mlzO+V zR|vCt1tHcB(7=`@DL&6ob%2m06H=Fg+Ufg9W~Zx6%zuDNL%$kBfFNNyduqm}mlL>y zEaKx-VY(9NA-y4*yjmUA(}E2x=Yk7YT}b?+D+aAmOP2~#+Jh|4stSRhh&3ck#_A)~ zUT5JneCiVla)cLtkkl)Ex%+S!FW9VY0bqu(Y7;$68&iA9g0aF~O z|Me}|k#)N_;v;Y;qvSfUI7L?$*usd&t%Yg&d5ZbpkD+>K+8B|$89LpDUq@Cuo_Zr$ z52M$23x_KJd#e3CJtjmham#uro|@6%l(#H7ElW1PZbhCG)0Au$Wmn=uDtX%R>LJ}7 zG`eVgW?U`+RR!4=<6g&Y&eowWlYNUR72QKpzw&k?nRTPVY<0#SKiS_tS%|7PH__TH zY64WwLJV$qn6?X^K#SqI`aSaXg9&-bd`C`VG5N=`zU&F|czz+bn^p*xs3ey%A1POK zZ1OSu-X-~G3Nw1|PU(hxw4knB&&J2iTgw6J{5Q_u7w#UZ>>ANvMr1a34JO_fv+^UD zruv^fiBJWXB6=FPZiGkYGvD>AR|*$#_fPP)ey3u_012QI#Sb=q%DLvLLCpYyEs%uc zO8sbR&WhFndhSHo+xtQ(9k`?Ms(pY9>-?a{w&Ew{MHZ*<2AN*lK3-A%eUE z)q*JAU-#F$0?|R5dJBF1;#v>M#hisUbaw+Z1?|2LlhO$(;^(fL9KL_&Iu%|v8)jlj zab#4`(y1X`ruke`VP<{19}b(ykknLttKHw3)kkLDd$p2AthlDUfNQ9rtszDXQ>L&y z%4r#x(Q*UX9XzN+xC!R~FIY{kMuY!{r1K)?}F&wiy39DTBD9=RE@D*77*bB2+oi(42g$9){8 zV|r=eqfjb=qhn<;-a}81wso9Uq2DN2f!~InTU&YF?h0z|$uwG<!9GX>75|+G_G(ZFJW?aZ4^k$1shKvaS2}%Ah1sd*Hn9UzDZ0-I)5~-1$-L zQkDI3w<$HQaqFKM%$y3cc9H>isbe|0Huiv|Kif8G-u6F|WhOFCXZF@EUkAb8kZ)$& zew8}UnknH?jEo+iUirww!HT4ivs4m~V@#v%?hIsUGsjX7j@_^dwT3$V*8OPP7ISeX zzA$o~My!5A|8QL(Se*-w?))r7-li5hW3HtjqbjXnq@1RarHT`LvB47sRCXCY?$ z5`vA>MPVuFWJ~XU!Eh&A|+2`tN+K(kUR61t-E^bH@ zBlVbqgay?WI~_kw2!LlH@4H3M=GLYWOkQtA@2*}V&tr=%tyAzdjd{ZU&ca#OgMQf{ z-&#-KYk;})-0qz%he?Q6dyhWq(H_dWI}b7~pXlzNq!xWU zT7cY4twPetFr<>u@Kf)mChz_jwqDE+1tZ%JM1=Y-{om54Vg{`LC915;_n3>Fob^WX z&s_^zDJ@YLH6xlftNWLLgSjj;zUfYMb(8Vf{IM_b>Ckso>gm%!IXvYO55Rq`j)NjM zKhla*p5^T}PYwL@>|A7KrA|(5=O_yc%#UKgw9gx*d4>{l z?;l&k&tDnQ=27qMRaktBWNAb3iL8UC2D)QU$!4+{AZvpLuv;q#^TnID8S^2Dg^^<_ zz4KaX^*ZCv!>38nMEwH`>-s;onf8W~&x+PZ)A`sF(*Sj+N$Gc~@S|_k=r#Oc%*&V$ zF+iPFvBL(U)cl)azBj zB{yXPE?+-SX2%)GzS?6bFiAthKg=JIN3 zmf-02a7D%K)|vA#*(=X~;yNLxQ~BUeCU&`5({Y$As)~(X4A#v}?FY!RxGi1BnD$z^V7&3tjKjRoIwLTxY492Sd7@hP0IzY{G})D2r1l?qJzH=??b zrd0FOe|I6A#S3DbqD(OcMLwDfooVDbhyyB~Yg}m5X%AR)+@P7FpZ&o%QWbpmhr4kY z{rJm^{wTw)?~>vXNn>Qr#h%@y5u71f0ny`{%~5R&rPHK0T7Vn$4EPw~Wxq1(?gcChYKv$(s`wk{<_ytKIoji`(Aumj~4Y6bpLqUC0vu684}LK z$5F~jCD1ot!!M(xhBs~Vh)G}fyC62azXM|!zp|_?Kk@c3#n4Bz$8`-%!ow&kWzT4M zGTe`Gz@T3p4V~fAnye)(2tx+})r-qg8sSSR@k3!g*E*QjuzLKAvyxJOmVF*tw{x7i!mD}?LN%=hzK8pND3I_}Ys?{Y9Zovf zZGP^cW7)MX+%iU5RK;y^cy=FMZs4(;q{9Wcpjd+@@x( zv)l1Qntl>`h%+Qj?Na$JL^$qWNoZWD`mq~GX68T>br{AB!9vT*^lpm~6bOe~WLkRL z6`oja^L|WF4Q}i2N$wx!wkQNj_70Z7yjNXHqLyj6Hsq!tCDh(O67piy;CNiZzp=Yv z>BS0M%E!4${Ns}pDKo4ftKBJ1=6av9nb&v?*lHE&LfUI71yy^CaRuf53~BsoA*QAU zTC7b?_XTi1K@m|zueIkWSHD9IhsKv)%A8N#bM%8Zcz8ck^+s0{HVPytFd^Yq9-~D< z5<>AtU2M_4_0UQ8josI~0;*~T`mbMR`o1s(^28S6Ruqlc2@?f&9GxH103h#=Pw`wN zGJv3@p)3K10I+6dg=$d^0JFFO->G=lwSPb)}Sn7q(nzg!Pz8Ix=Ziu z>*1uBlIQ?1Pzb`Zswd2ZxjeWE@+5{-cNE)VIsucIa>8OgTu z#vp3(?{K`s=46j9jtkzt9r}3a+4EZU?KL7I_6L7IcU*okLsR44}TNe90=oH} zW^Fo)Q;oFgGnrJ1Fp5*ftG1lGrg_}639@@8wVQW4wU_;)i2AMA=olDIY4g{@vz=Z= z?)k^BFB4?bBzXf1cdWee?Ta6e=v(ll#miGEhf~ zQ&pLB@}0P48ETQ#{gX|M_;i!EFZ z#s?P$KYi?15sHRQcz+^{0<;{vbF!@TYs=LTqw&Id&)JU0QFLy6s9923rZJDCp`oi@ zFwTOp=v-Wy)f@IN&3^!AKn+{Z#UEt_Abs;Ok^1W2E0ZOVd1z^&DT;V|N{3AGZ_J0` zElNDx#);lZZ>A@w++d!PTsCfw+Ua{N4^}PeUk*`Sp&0#?-|2V51&tU@?N>KIXHjFL z8K{4iU0ZAM+m5Chazo(KrPh)!A-EZ@%s@xe@m9^dpm>n6Dq%Iv%KpK;2%4BYK-wK( z)oiG-XtQQMGcYR6PW(yiGt_*-^loYukcBX)HXbd<3`kjsI#L{t)jgQ4{TJgMcN4$< zgXX$W1xsFJL-uyt_el0@7yVC>+NeqorUeX;^+dFkk`hOy^b1HtX=vj&zH1-+Jl!4a z`w|+z?}@|jb-9#gLD9*1TCw2x87(acmP@?P&uA3l#coidT8#nev}dkg0=S0~&F)CU zGT0!WLDX<~^GEy|@vwuNQ;^8rqhcAlZaka~v@jC3yq1$%C7b0~=DJsyHQVFXPBUuHiL9ld-rX`@zZDe!tKq>=S2$ z8=eQfP$kUp@^1VrjQ}S$cq<(b>utB$j#p@3RW*l%M3vLJ~up6jZl-YMr!sykeJd=dhy^Q^YeY-eRqe%i}fqtrg6AfXDnfesLE7B5U!iq}=hpc&N;|nDPdwW<{fp^0G7? zA|Lw+M7c45thWm#$e16}$)b8Kt#)6(h~RZj1Sk z-WI0$+oY?4{7V9B)k&l3NmT?! zv1Y#qEOz^tG!dp+4oWfP-iV%(U|BFKjued z2A>;;)^hUTYNfHa_|cBnA2yr0GOHT{((KDi#GPq+v+fU`n&z0h+b1G#mS`W{v7Sy@ zS-oPeJvsoJr}<*`uRYyFLz?h}arvFDQD{#LG(YT&f*0FP_Pc#foV~|7tcrC0o4pZH z#bN?wkH^^BB&MPjkW=ol;%x-`GM}N}Bc^#%LEozA%cyc1P2SkO4&*3~tO79&rcQ)u zO`J-VOa?b4Pcmn7kh~wec5d!s4fznnilH6VNW^CvQ)zTWi^|>Yveiz*5gAdzZ*LzT zO9$p(e9{#ZKEG=_tXRW+VI-lbmXl=$lpU#G3<`XF~F^kygghMbsD?u!dB4n9R1AKp!|Nsu!DwNn5MZ zD5tTvbdGQWWC0e@T}oNI$Rjc>4fd678v;j_>r6KFo(M&xnvZg>-cMA5^{ObTjD6M! z+(rPrh$_9(mWKo?R=f7|gUrIm4oq-o1Ch_qCtnkB+W$JyRp3XJMH`nPy=5Hz`Yd%U zhfhf;zVhxAlZyesCVlGLjc8Z#!z(QJdTQLQdzX@yjrKUqFhQMh%q!ifh zcXow-OAy0#dnzE_R`gG`g|8$zB)&}R7OUV{Mi}Mpb32l)wDBQ?c{0l zjwml5L3v_OZiH$_y-nOYHP3@y?f*hZ(5V2Kg>AIrzOV(yndlu+;1c=*2T)l{K^PkP zAur)oqMYi!W;ChN)OwoZ9af~;_0Ue^lQbVg=HSF8fUq^VnVfX>fvNR*-Pvm2LTnfX zPPy@y<@XE8 z7iC*NNIo`A(drk*^#*%3;roOrA&?K2Vq_{GpOkp|Yz^HuTm_QW*_CiLw?bIN?L+z% zkteIlynIy+%a>cH{szlqu9|L%_w}SGP4*Z_b=_0oo;6vCp#0+}&~SZG20$yB;%~V} zDNv0EgM)5mMb-_i5nR5-Uhl5$v%Er;@9q{l?PP_s zwNR~8gOjcdfq3U!ta*M{F^r73Q4Wn46QcP!Rn91Wx+4xG*6&aNh$NM)YNLNXAzhnV zO-TnvTa|)*L)X$Kc=*~!Lq}kU~-&Q zQKvVU`y?&SwM8-S zDmTx8isBURhU_nmkWHZ?<8<&77fV%;b<|LF9Xf%FX@2UPehgY;pDUJ~R5$jApFJ#b zq+OoqIhzE?RW#A+@C;0I-oBG#q-QAIYMm(kP%NAXH8`k*e&^q=XS=&A0vp z08vB(^01o#I86PQQ~y22J7mj<)JoQLVfDtujUv8^YxfIZpMYTY#)twuw7c29rjcE{ zcSK1D3!C$++p<=zr8njG4X%!JTr?&b|F>rw;uPx76Cmj%N0Wa}>U1XVWIgX2S&Oc* z-pJ1k?(Xole+x=6OJEe92uhQ@=dPC;zP3XpwYR4V_G>(^?m=lV!G~C_X9>P#;1(_=nMe+Hc$HW|k*rz|d+td-HSzl)& zT_NGgBJf0F9vD<`T%i14Z78=ANxl92=j)(e<1FvO#9LR6zcz&9>R&kmUlv0vY#eUK zSHcGH-SW;h_Sl}`U4>3^U%&{YiA)&Ci4uYQT99vMm=k7}hXe6}$;FN|A9@PK$*dmG zEFy`z&lxQiZ9ah%h!C>Y$B=a5eRiZ-m(vMtYV-~S931*gLDhsu zoxINm==D8puOsua((^Am=ex$=#vTJE;*2gIR8X>X3{$4o!sX?_GDFL`ue-x?LWZvA zN2pJH|mp1dkBZ~lu+r_ZCnzrb_h8ME*MQK@`AL^`@wX)w3Y9+m z-g<&hr{Fx4vAlE^2QM+u=|`DY+x9&FdTczFSa9AXoh&J!m__Tqigb7uzexSf^y|D0 zCqVq9M~dT3R+BkvOQ111ks~qo$QQ9#Rcx*-lZN)NzC^cl)#4ltO1NqA(G#m5u^*5p zW7-zs&C|VmKNil+cr60QH;XbT^v`qCgf{j!tG%=O#rhYXMRv^q&D=(Qy;B9fV(nlU z822piwqBJ%sAVw-OhjoJD{Kr*V(-B4>(oOM6n7dKmy|hEeO3%3dsFyD+_vUX6LTYA zRPA2thViaYKKnpwHNS0Ba{2}9R?mRi?DCQCbw-0wvG1Q4E>@iV!10r!dSvjK^roHH zKTRykuG2IFVQ)WyQOAbA!Ig?9%GvEq+ipUJZC01d$McKUY~kU~lt?YYxTs5Og~}8} zQ(nD@da*X?b!G;oX?!lI3ZONn2RFLs>WA}_ny`?V(NeD#V>W8|X0x%YN#$+7d$k#IR*R<+GcUc6kgKL{#|}I+aLQip zWlJ>M)crL@^4535!OFWL!gFrGfm)E-LwK^8;RFv?V8R=&Qw1(SaUQ;aPK=$YwLU8ry!VHV* zz_Y&!D|FVDbk-}x0-LFPhXgp0dPv)(&cfB>(<_2%kR4ykrq#v zyfby`Xq068K(89%NxG}pHU1*1vE@OKYb|gW8c3E1EqJL-AdDR#Yi=7#(0-*~wm9A^ zvFiMoX|lEfof*QsQHAS5^Ct0EXB08!0-2MRPx)63?9bFzjbN9S44PJnm+9nPyoo-B zAJg+kC9UacXKQL@4ci9jNii_*Kj1~wznfOsvrwK)yLd-ZTp@!=$H40soZ93%RPDjT zgjLa_g)l(gIPF;F0o&bL*t${Pda)t4e=kFY=PFs_D&eV|T>Cg8I(-s5#RziGL_6bZ zU$@43#uRgJFq{VqgH3!B+b~xrgLB@bd~Uh+MO5w=xqi>$anNIVCd&OdyMuW4q{}&` zsx>EO^%@4)n_Zk($mJ$C`TZ%9H)FJrB50K(`j|q_7S_pc{{>!o2>Z0xtryw|g6x&& z1`d)dn3x3jF_LY~r%YfZc0PRVjjq5hH8n9w4z>?? zI5}4-Clg37tB*R}|K4foaZ z;KGO_IUOrLAcmi`yZ9we)8;hB_+kCgBkT71`v*rN1IxxDp$&P@J`@$lTE7+s?Quh!a$Ls0O?l6>h$a z;fXyy_L0(5PNZ9M3Ut5k)Vn(>U>ZG}{Le{r)RhSKn8bB2(o{)_p*EHB5QS~52l&6j zg8^18^n0TA-KDCyOtU1Xq%Y|xL#rO=g?x|oY4|D6{*?HM6elL~aPM8>`*-STfGT^_P*S^a1LdBwVPDK4B_3kE&$iM{Np$9qV zqUK???x4i4(;bOp)Bp4|st_ z1ZI;{8;oHbo!aE`5PA0dQCp=n^@lYbXj#P69HkMfk$h>O9JU#TDLwT9Z_CDoqBT9m zMEa~s_r%2A^gg_M?DOx7=L&UP`(KSGem?o{G9u`mY(!4sd!kSyM~~(t^Nph^=g~IR zcNXle6j@kY=n%_c+N}BoIV~xHh2L_5K{gRJUu*amU+uG5b%2q3rh5@K66jxiGc5gJ9j53{*7!8Eo(d<21%p<@ za_7Xi=lFEJ zUB$0jV+T=%kxhHU5=W{w#ACvpXZ$OKWHd-@YZ=-;=K7mY;OZ@ZKpzv0HGF-h+~jp7 zcK_8(694Y!=jJyUcn#V{lE3U7gb+*U=n(qjPq@=1hp~A=juw%zo$L!Kx2(5)8p}Nn zRj3tGDQaH0PpB7N@+k;5{XZM*!&26uDNFE-<|BDtCl^7+656_Vm6E?*iCuZZzVvkF zhKEv6Ix}&fqJtKKaq|VfM+rQ4HltQxN!J3(;Z#*L0s813F0kv;(?Gf&5Rz47AGe^d zIr084@S2>__J#3u)~#q@t>)YG0cE@-!NJZ-am2;lS6g2R8I%0QCkpRlh`wdl24y_I zv!FuJx~IQ)X5W5a5Hb(vchx3+QP$;3oDy5Mf>q1+%2;UH1t{z40%G(M3 zC;kW5n%LyS7+>xh&0|XK!AZ3)pCS(+-{~^l_hB3V`;d8sE0asv&$j{s-=tm&n~lPiA{YEJg%9*$|(o$sas4u5E^C-C>?>`!RR)k)@(81sW54addZ zOJ1i}>FWu3BxrCzU@2FZtDe>DUN%!L$tv4$Q$ZJV(v7YlS>}~+u`C^=%=XPUbsBl= znqAe!IYl)cCSIyH33ynp@k|u zi`|8Zf)JWXG1+IWKAVR5PeH_v{(;cp_mOU&we#Y;v~{4W1tmtWpo+@NfN7!7rsV3M zo}l-Jo&!Tv4SNdE70cz7MB-FH5Q5Tt9M9~q0hsdtw&5QUDv&x>j_4E{zw`aEEBRdbBI-8 zT9Yn>sHEfmPjmqdoHc^H{K!G=A&=RdIPuJ<8m1Q$D-$1Yi(G3;wG~h&9SgF7>M{>i z_C>J#k?vhPz4pl51kBDH-x*jjzyw zk%%gcJnBsCW7Q_IXO-FHbEW!3Cbyp7PMkSu@gxak2;LcmFMUoepxf!qD7dkzED0H1 z06B*BOkOezPDqK*`VaP#Cj1ZLZjFDoE>sHO!T1~;LY)#o6k$bI(q|F2@GXyz*lVH^ zJ=P*J^#)@>ql7-QB&F=EihkRJZTTFLL#8zW_e{(ndwsn*D=@;W^rWJ9yvVHAW&Xz# z-ClzBBffecZ@L4~b&}rZD)XMtr|IsWMqpKpKl5!lOco8KkiR`B?Zbu6KNg=k~UzXfYbU6)9O%sVACg zAMEguJtD-j(|l+$B83F&kat^=g{1Q0szVJO=Gu>4BkS}){5`B11|Io|7I^7s;qil;e|U|9@1yV|W};*DjnUP0~h<&BnHETNB&1ZQC{`ZtR9l(%80b zCug4bJKuTw=EwZYTzk)6d+mk$zE^I#Vu;Bfkt~iC_wSx+QMurqQ%u`9(E;tAVeDPi zDVd&TLx{InXVD_mC-$pu54V1ww;U@OUI+6eHp2K=4i$bQ1nOtO=KcOEubxb4Jz+ub zMxZy5_Rh?^p}T^k*}B0Uq1IgQR9oi$!0|x1Gv+Kd`iI!r4th{_m+Bgx-8PUH*M> z!(a{t8-3W{pmSWQgx$g*w_Cqjze4$%xZ7@$XN6+l>3{(W<{NX63@NXKgi8^3IIgJe zYzvHJ8$Hnyl@u@`_+hWV#cldV%lqsgiNO%H^-kdEw`n@mfxsowo5KAsw~T@&{>E>( zc#Azr!^&y#BQjfBW5H$;UIz0DBOHo}{jVCYTf+?R&{wj@!KTwIM5>$q4WSH)`BsZ| zi8gD|2vN-SfxQh5%Go)vYI}a3TZNCXCx^N1*o-Cw}c6RD_nB;l<8Zjk|Kt?Rw16BjRPHyO(;VpPiwzs;{wGw z>MFae1R`+vNwi0_+ZA&3t2sQqwCUGZnu!^`$#Y?6hI2;1^>CepprR@X3JcZsn8)glU+Vw z=fZn>jUh(duHO>61l6~|KW$R=Z1ix+AB0f^z1;Mx3G`R+X*#((?HKd)+5xEZceuG* zx1SFrx^%rRQC7|emLXrQw;Ub;w6e9I6ba_m6Qj&vDDEs(o012R1jcT9neFMNWL%&6 z?nT7Kor11-pV$?B0v_R@cqKTUA>DSH<%_Q@w-N#sxUqjEmCMZQk z4JE9r(!@IqU1UW|`y~K5^JL$9_~8~`&lrTGI46d;BgbeDd;o}R;Gaz(cfS!-XtkAC zo^Dx}#+wYX+U-nn+Lgsi&LX??FJn{35ht7h~-|1q* ziRiZHRPR!=4~R(8|8=^}Lp$w*=xoV-lX8fjoO6_Na!N2{o$&>ogEDZ_t)H)Ocdkj3 zrc{-+rT9kh832@5t=hp*qU+%P+Rj5IOD=UG2Kkr5-?wmjZ)b!$?UPf4)6YTYlj?sW%_Lo*h4Kc%utg{$o1??TIjXi88~ ziinMe#7g-lO=gUTW;)+OVj63JkUI)JzMf%&%eaHoo{*aCk;%D5JWa0%^#ZYey$ zfTi2UFvn0C(3hOtvibIA(avPN?Hutu7@%|izz0b&7^8=0`Z&v3sHl3qA9*+xSuo9r zZ{@*9t@jbO)OMgd{u^7E1ikE8_H$I{m`tdrt~CcMMY@uqH-x-fu#cesZ#pa+)6}rQ zA|q6L-0bT5*aI5phT}fr6YAuutUzH~1I(Br-2Ka%&!W5N{rt$36p~XVT$Xx#WXg}- z$-@_rR*4AbKVc1((g;>SxRU!ai)(JdVU#H-+a%GEotqbt35XGXq&X?@(5rt5S+pOd zw*jw3Egj6Nz!n!pZQ0}*T6Zg@?gL7eL|dKoQ}4BrZ%VG7ets7RdK~JGdw2$j+YCcJ z?fdN%=0wIIXz1yM*V3~7y-p(oe*c*hz~!8K!K@s?;A|(`srM~+S_@>z^J?mpthJ;C`sZ^=cGb?8vwXz@2!-|W%N zUiJ$xvOYv9Qt0UFBx| zJY|XhikYdTgjY1Qi3##~t>j7@Ec4hyPcy_-BVQ*E*m{gSW8HiS zJm{n}$8x{qX>W-IW@YZ@aWqqqk&X=ry56k?H$X-8{XoOfgzdca5N7D0kom%9{D5Km zv5mR>_oo}CvBPw+5~v(zY<8}V>EyE9S=-C+Q=6iv^6xbeS<46rC%w8Uk?I70C^$CWu^Y;8mf~wUA(GsDt@DS{AMfn)uOd#5ac|FOz z#T>u1^&+O?7qLD)(+p#~)t{L3#NDT|JzCN&VE;_Oq^*7T!Y7Dg%A}pjx;~b|SY*`J z46A3>#FCDKcL|=TFI!%5gN2G&h~)RZCXBiNlD@nN0U1(%Y=x+Z>rOTdf@#_l!}|3k z2PSCuO3(pRmQwEF+w>1|gAiSumyP=MJ!%R-_}KraIj0zMDyObbsn3x^yh~qGcxa4y z-T+E0u^n|xZu7j0mX}y2ylOq6tSho%RIRga$qCsx)-jGKeBE~`I`T#mm_u_L<>gn* zXb5)36`zZ%_XRX(?<#+wM3C2$Gd@~QIKl9oEM5-iKKgo!&$LPzSl1(4H>!MJNO?G# zd@6<|3aD2$NS#Jnh~@b+y7B71{yg0JkWKW>wD}~ZCLk^J4UqyKrY~^2^fCrH)YV~L z9sMSNlpsBl^D4zH^d()`W{$F>7C2TUYxOp$M^aDm?`d(g^NdqG@%dyJLe3gXZ#p(m zXe;YmZOTuxIUqBTFus+w`jWiYw_5J^!>2RQXnByzm9+bW_fAm?%9U}u@es92rkp|!OG2ajj(a;JcbSXw2!xpAZ zW6zb(QmsfAf)xem>HO%4|a^tdFM+(HI`)84~KZ@+}F-OopV_gF6#@ z=>5ZoxdFc`URoQ#<{US7l|Wt-B2k6iaj^J&3Em5Q3g!r<+@ryif2@O}c@{gW8)+ zxL+{c+xzr(#_!EvpJZC(LLsl1^*fJODLzg&FF4c8{&M14bRgTLK9isWesOgDlMYr= zOxB`mo>t(H8zp7i9gROZm+^|3O=fV72#ghmr-N&?`}KLb@d}9>VgKc^+jQw=f7I*a z9q)`e^lVtKFfk=;5xeEY zi5Aph?$@=vdpyZGZX9x9DGMLag6{abMci*|1-1IJIi5{s2PLY<1JwW9C?onR2xi%! zBtf|*;XFYjn(|>F&3(4-BM@Q^Spy=2Z=2gE3js5jlOn&UoBsxYAQS-sQ-F>48Q1J| zbX3HML5%y><$y3Vn|f_CMp_S;&cN-q#W|;qiOkWf(FshVi?7};kE%SZ zouTQ@3D5dXy&o`k8Z3SnsMe3w19UR8t$5mk|EBjR6g39aSt3TV~ZpgT(UH;U;nm%c3G z^g=CK59xva#f4K1xe4f;LJu10-3lqGY**UPR+CX(k>%6ot`AwHOBK=l_FtR3$<3_k z1vebYOyZi@Yb=G-`X-I0-9#C-*xk_fMws+&F|ApC9K53D`lD*6hhRxyAVZZD4V3}t zx~=n3W9V)IgcckMbTl%_Bf!m(bDywS7~{*f`JKBFvz}7kXw%`1nSa&OpLhA|080@`qxFH zxZV)xF;eb5!BQ0@UEJ1YLHJK}BCiLUHA2VskQJAR+r=7Pq{xe*So)AJl;@TePh= zha4J{TR)(1_aq!Z7W~4kiHB_%e;uVNRwic<^MzlXaiD7pi>{ktP-|mO^Q^2&jgr;F zcje2ue#~&sI-r00nhRO(K0|K>Dtf+ZTjBhf#dQ-_uKvWz6wE~WvyS`hFh}K?=A2sax)_=}aC{DQ2>vhS>*g3Hu;xIkQBlBA3 zDdP_y682HKJC7%9c~D@LUu7&~73g zZ`^J($(-RiMhh7J4MauMdBTWx*_C2hXD2MpPlqGa%8HaN;j>KWL$C(RK1J6;4 zajj$}n7(a~fTT>NJ#nV>SWes=Cb!h@`>Nn!SjobwB(&R|RT6U+N>nEl#FCGprF z0s7~^B8&r>)464!oYL&bq9ZV2ezEYcGifSL1R~CcylpFNNmS5=4*VuJVmu{$9DkYU z?ZWL(_w9;d*U<;Px(*UJer6_LtQv*BSv9-7>Y|N>2qh?%`$@DwVgS)G`lq-*$~1p(fj-O;9Tmzn#jH+_Ry z#d|_dOX^3zpt8YXotztboBK1Q=R&7UnqXd>_kG0=vdW#jsb91J+>xqfh^>nv^_jSXt% zsIBycXdN-U&rkwv`SE=)ggwL|MxYYI19eWkF3Q*zMQ0 zj(+M|zGswjp)UpX?gbeMI8?|L6DB_RME^v~s&qe=JH^tdJbq47jE~bUak}1fYYYka z9jJdf(s5CyZzyFWavC@W!$6Rv4_LwxTua54t1Zm-1U=e38dB zsC(t;R;QS7Z74-GM5C^+Vr?wmLA`jz6(r(TZ9{X}lAe6xnNzM(nSt4Gb4cFoppmjs z$x#U}S)}d`;&D#W!c7iJ?bYQOy+|flchT-(w!L_{aeXDQP za@9lgY|Lpz3p0Gp2ek?sLRUgdD_n(4z{xTvh}1jKO#(;Dcqj)?@&7J`OgW$oB%O~r zdoxP@x8PbBNf=zuG6)v616MZGJaM!Bks3gNS<}iQ`dWDuja+u40};W+^Q`dWadTFb zkI5VNE5${F!y1N95?LSo}_h($)0tT1WJ;o@ag=yxAk+f+H^A8pG&SZi`b1)Ob-wpN=&Od-mnxG7#d$Zp%%NrjNpLS$WQz)IAop( zg=US&2>UdCj#dF3@-marD+^T?;q*4;9VpT>UXzRFE3Y<%2_)>Dp8{7lX{ND7$%ZSy7-|~`!Ugz8tP~P)#tC~1sqjtGWQ~?=7w0oB7X_}N~ zc;J7aQXTBBRb7qR@~w9VM8;v9DMe7m#Q%GUh6p}EG9d&*m?v7?5d%A8Y9VM}Q_oiu zt=CZVSO>HPkNQP0T0@5k&JH5Py&}YN8iuvbXO>*p$H{GnPj+~!LNt=UW9fRpzvJje zIvQC!K^;Ax*(v=gRg|mer7tvKv3riDaNOjVCE&ml$ijwlt7b6T+LfYbEj+CGDw|7r5{1u*b*acRxiWEL7@R zu^;>se?GfIViMrg^_BQBjDdG+lt2Figqa8WPA_orQgh${wl*_J1E_pHxnBSb0yU8&PQ=7QDw8{J@daS$?5&> znvAKEIo0ZF_`9ukMyF?4=AP}9gcbuijYE%C7lXG z)rG*}IRviM;>&_d=DP^>Um?D^PA=3v@40e@ie0VMa82OVPk+hrw>LWE5aZ<4b1R;I zvXm%pd_5VlW9FF}KGOF~QIm>tK#6Y2<>xiBI$2UcQJfQDadM%O+n8*b%6S-hHno&p ziBME-vE9B!k^ZMD!5Bsu{6Q45iwc2Sf@))hQBy~$b_j4R7z9Jy>9{;6!PgUUXXShy`~Ea^n0Mf{xgq}Z zVCQ6K%UvA<*muAk>GHF67{8bM8r8H$bv533tSvY}1r)N~m=bPNSQ5i7W`sb6{^A>2 zseq{xu_Ub*84HXfU^mb$}^d4M?nB%+2$exQ;*txZ_Bn-Y;4UsIydsxMlXA#{gf7fJVrT1h%*iy2;Mj)&@=l0$-A@&2GZeI1?bL*BBCO`lB|72vm?wNTPp1Rrb4|fp8&4Ff0%JEQhv1qu6imD9fQS6gbH~<4k@6 zY#w>#5X(Z(MyFX5f|O-1K?9T;)=pLb9|8@8?}n`a>LrY$**ErK3fm}CN0cHAdBw`W z^VFI?oKZ)aF!jL*jjhZxve`rnGl*;NP}p`^Maz(pplcbwN6hHMgSHvg5DL133PXBp z!m|DZR$EWa>@&Vcuh!8#L!)q!0~`ztiCb#e+>$&*O8CM zT^YAz6*RI*^lpr`s;S!bxzrHkX`W`L0(ZgVi=rCB3k4D7p%k1T;031@~{H1kyCI|BYD(c*KU$ zgo&q?4-i9%Y)PbM+il=*`6Xr?4&hWxClxX|J1F63FfOWyly(IQq*@D!*wO7L-%$n& z4sX+A2g&jzf|?rfU-(A9Mpv~Wn+Tz!yi?#9W@C0`+4V-TPp`Q^TN$R#y9Nt=#*O5) zey687P>eK`)?1q&C_-8br4XA>m<;RO618%F3#kRBm6q7an|}| zNnU9G2Imqa4|(MuUy57Pp46!%>IoEU#rPH7P@XeevMWrt$8NDK58JbG@-b zzfD9J`oEYmL__?c-g;Qydl7Z!;Y#0QPqNMA%S4V`Rzf8<5#PIga!n9=mJk%u52xc5DT!17)qR* zpPyX;$croUp3B~|u+JsQlqe)%2B@Om5YhJ-z+OHl0VA4iAX|Jd&_^;1GkN7rp336f zlE$)>VQWj}M3lLoP`UmnzOT_z>B_f{GCU3*$zqKD{M}w^BVq(k-Ug^g{HN{@iOW@U z%|q}XOtHnOwy5;5R3Af?=jTo|iRg@~IU!mGejt8m>cYV{oQ2`T8o370K^;T>BA{<{ zA3|Ol)j?1!S^pmQ9=uS*PZz2wWmG+=$-G;%lC*S;2h-9MA|wlqNnk~5x)9c+A597e zSL=6*;QQ`I_gm55A>UP&@+j+2q%af0tKqGGxLvYLcy0e%Ef^5Du#V4S$luZO6L}lE3f$kZHR%C;RD(+Yz^Z5n;kLIN zpciRl6PpeGR916GkS4-jh;ewKr#7XYYwhG8*b;bq%cs_SAut0$vd|^kGegTwKMF}h z=8;ak2n_cN>}D3$By_CEo8V(u8XISu9pPznfCoGnCg4Ksl9vbS%yl26fb&#S%YaLq zL{_AY&ocEJ=~`asw>qY(Oe1oE!pNZ4o40duIR*|~#0=u9v9MHYeGJx4JpBP?<98*| zOh<`Wf}!hQGQ;{Hyn))=nx+EwY(1WoQx{XWL9zZ-AC;;ND!~k^E=5Omw+D2+$mvgY z3c1jK+{aH`j)TN8uR%5;6s64>!PR!!bOyj3V^xT`%rB2&DtpUHbu!99h&VIMu`Ebo z9CcyG0IKSWL)Su*ms~>E)6ISWyP9}iNpqWfL+An;u)@l^=4EL|n`Z1!B=BhE!xV<~ z9J5y7FcQ`8dfTdP=lL`rQNTJOmP&S*MRFB5LD@zoZtPFW|1xr2L{SD3HS9P(JGS7Cu3mP|`sw_|H% zpd#VFgCYRIzmY`U2$WR;Qq&8Vop4RT>!(%qEGz@ZYpwVv%>tI9&v>Z89{tL%j+l@E z6}pfru763hgIo%a0(=I1Z`hBz%cKj&onQ5RoTy`}&z<;^nE2Y-U2xYQ)Ig}Yv9OP8 z>}K61sAnpo+!+PT5JD~85VTpITanP7cL|JsVkdQ7EUl_gCDi^XZT)MER(u!x6x zL>3cpWEArBSOHXBB6hS51NhQrye#XlR;888WWY_CiV_A4K%o0qSgW=htkhJQqm;#IiMNI>Tj~xCMd8Iimf<)& zD&N;{io!XdT>H4(yLc61T%|mpGphzcLnLHv-q(oGLm9q3_3^rNzAIaKY)MEn4$PqT zQ`_N!;8{msD$~IRS=`q7hWLG}vSi4#?FD?AI8T1>(A`!ITK;@SO1{ppG-+huS`sHp zqg9)-0OfIC7Iw;Snq{i<`ARFIEInuNvFNi`d=$79SJZU;kfV^LN&lOm*GuHqE;;?l zu_T7;_n$x1mavgt4dg}!*Qdp!1|{YvG)Lb=q`B`c2Cwmd@Yhicg7+`W$1EV+GlnfC z>5+R54=X&^@6-g4Hpz~g4`bVP6pR3nE{ zjrXrydGT=X5uN~%5Gy*>a!idH>5x0IWN2}_xLs*S<9;z0o3OTURv;j8qD1LIRbRsb za?G%WwPi2(rn@KcWzR9y1?LnL*H;q(>Z(9`ZwLR+4;g}mKxQwkAx@Q!)sa09^boc$ zqhJ4K=a+zBjKXZZa%{Yzm!${ZP%(w%=LvMd%nKz)+K&xMfCLV#e+)^QAz}WE_Y6df z2V)TIZNH@}s40QqmPbnk2Pf3P0n%JEmJl7G4}r>Ffh*yB6}_gE*2fU+q4=C)cd0*i zFP@3ap@F!D5qq6+vE-HtQblzG>;5PxwBAS4i??oZovFFnu+P@9ai3lodd~-lu|-qT z5=50~7H#A?hJb@e@D$Jtm~X@phOfJ4waVGUF2-}z9bGlYJWBAZa;}0Pp^g96e^ZYl ze2~bPeCuJxunk!$*>oLg4LBa-$zVlrWvS38YkQf9o={4fg``nMt@=n0vb#@!mD%5@ z{_JkNZkDfp;w|P8&Ru&DFm()0%@b*2*&eTq5Uf2Sd^~wAUME50?Zon%`K!c07HTp& z$)pB0tV3c*8!(OzQn=-^0;*#5fpGX)YaVq~FH)3h*6#Z%+yxx(|E|v5Tj=`lmoW3j zr5Ce6|E5D-5uZa%8B7%rtranjBC&pCN<6@kkR41gcjTd|+{@EckM=%=YX$5GvqPpK_q2$ASZ>YnHGqQBT(A$#F!CFAxgFXm(%S;#eHa^Eh>*ufdaGH zR_-c*UuPU=qam}J_WiBjWpl@^#yc^b&E3EwI6wJkUPkZZjVg6QV}r<*#B1b76aB$J ztQ*sUFOphY6ifrn;5t~AVdjvz14eI>A$*7mxtjQ)uUv@&TUEMjDH<-;{ht@pp*Od% z3HaLWJu=6Lq<>t512Plm;I3EEEH^ULmmHi4gZXCIZ|`lDbu=G;>UZdT`n~iEtrqa| zfAO|gE&thrD=X+UXhlptzc905Y?Ycf-}nI9cpuTL{d!*`afcELOE-ERr_S9A^=InpCG6Pb3KO9}0iuk}K;YlLHwV_hu}v`V95f&I-1N z8XSD00V+ncG>hRS-um?d<^_nFi8X~=T0d)cJQn9~+tr(<+PKu&JELQUI zy;tVl@c*zm{KQ|CT5yZtB$A@+^v(^aDI!sF5!rP}R(i@6xBVG&iB?+qD-umEzV^7- z?G_kr;#qO&l|DB$+qwZNMXSmUu3#ufp|9+4E{K>mfraAxuDW(E*lc;+YAdK}2eA$| z%k=`5_|K5AwN~n<3Uf%P*}7eksFBBHss1}XD`^ip5;`|pzUeK4fnB-D&zh1V zYVgg-h-mQqsWO48H(HEb^?tqgV@uz|F6tv~q>#W2 zZdw@J#03A%?iWTrmwx#+V-x;dhx(FAY9lxh0U7S`o?&iv{OL+S!<{v$foSwAYU25w zojcaBTX$4|3q6tE?DvKI=s3-MD&UzrYCq6n6A_c!M^)B8Vi866!Btb;jxeJ#r-hX{ z5hwfQSJBp!d#^p6h&+_N)O6bi+5qx-lx`M)4@74AzkDU3?7*URqz8OD`-vfnXYX8w zD~*m_r5A+D60gl94qM}s?gdRxkc2HBG&R6}Hxq-uHlXX(i()nO64fJD)M}~iS15aD zLx!|#i9!ukZEL1{1@`G18ie=8DRao(-0iD$y$2hq;)UtvgEVxv>VbxTuyGusKX@{XMYS@G*NDD>C(oR< zK9od1?vy`BU$DvW+h_GhawLPqOUbOjTL*r)<;@4UOvutk6e-YMEs{c0riMkA#*K1>tNG4&t=R{^ zh?xCIWvv4pjE_DgRg?^cliGx=SrV})9&Y+7Xe9*u8tU^_2N+jf%bzm1Pi-l5aUMA& zPX!4#{{QXl0m{)mmPdZ1Lyt5JDOwjIR(RSo_lq%)BQHH;$NZGt-fbgD7!;!V)|!n5 zv)?Y;T|I92pI33v9w*m)g^Xp5UIwI)(H?_3Hz$Sdn3|9v!dz3Ub|>|qQ*DLWSg8mj z1IoycZBGm5_~B`ob1|Y!!c5D4tBvsErGRQZM%4(&{6;d6 z5Cz=(C?{aF!1RtVHcyZfDK;7^dJkSx)=p}v{bX>C<foF#*ShN+t0lird55)cD~fmbuef}g`m1dtCuj-_fi)!#=TIMScIww9^8CN${hZSy zoWGQyX#yLTm4<}4)T?AF9ni*Qk(zDf?2iX2CpHs`Yes0%=|a#uH71#v1(hQ!Z9GfZ zhM+IxZ=dPm?e_oy<|@1GFj3$olCgMX349YGx2~b;+M+~F;8i-#@g`*pg{2FnDi$_U zyMtNR$kj3|d0L%$toq5@I0YK ztX&%Y_0A3#DNTdh=hvAo&NY7bg%iTreE)<#V?qv_D3Y2uvvZ5+Zlo**y{Th0OuWOO%4;AnfmLQm=#bhm~&s9RJ1f;r%?y6BY(>S{NE_PE+6M0u_8|2xcf?&)6_t)-HrBW!#v+Ce;0%D{O;XjSl&5L*8~xl@HbnZ zXX=dLzM%27s43q$dR}WYz}3*HMvsSk&V}9E@41;3^e8zj043Y4H)kZIoub2mSU8VM zZsys!-DerPnIIK;wi~xR#GU22>7DBxAQJ_e+<5<}+05GKxqK4-8RY(q!sXTUkJ_T{ z>70$9_K8ZM=5jWN@|QH=?`cHrKyUv;tg|B`?IbdEC&I$W+lpvfe7gI-{ zDsYA`#_dGxV2ZM~Klh;d@%Onm2~6Et2(hP4*4--K!cFohQS{eHj#KfXUA3hON{gP- zBe676S3*rKak8dknb&`X^*!EzJpUHjjj9`Su;CM${DQ*fnivVTXbM$X^!Mu711v61zwdZ6IBGS zF92fAX;rb?VfR~D>|TV3%6yOTuYf`J)M8+`rE1$(D@C^6RtGZd7RCh!#^;rJzFUd?Jt66uOt#TYCofcT_5T;XUB#`WkI zG}nv5!+XGx4nNih41KTyv^_5#bY<@>6aOa{djntUE(z#)y_GJP6+P(6Yr5LZ+Z;>l zcDd5f%mA4I-~X7w-v(_D!OU|UVGy0X9{i637EgPgxbGF|n^1sA-@e_4A^a)Z(3qKl zh8A4I zY{nszvRZ)2G;H?_S8Ych{R+S%Qg2DEZ`Lse(QG?&A3(J>7G|ni)4WpC*4iu?PwNS) zstU6Vhv*%h!}1j>o!Vw%{^I&q-3NK|c4jD5m>MucRve9%-N$J;?~Oy$N&Jie7wq}c zpVpds!w2^+*2{p&$On>&%x|o$bfC{zHPlYTN#^KiG)&xy|A>P0COAA0V4H0gI0Wi% zw969(0~A04tv%1PQ5fD3(1V}TJ*Vm|j)mm?ps`qdus{@{@LA#iF$@n-#3Q4ag=?fL z9_`H+_uV^l(b{nMzIJaUt7k-H<&d9mei-`08EvGPxhQ2y$oJb0yc2%b6a@dTfvZvU zLmkfRnS6Ihq?nN~9>>M+-LEmcJkJ1vApsJl_g0uIcw=vFv>#ZoDBUHDZ0fzmbzI

Be~FXl^dZ)*q2A!ZI1R>hoERmO7tj4)G>G^V-SvYI%g45VyA<%%QbS2t+4=QYH@t4u&MQ0&h^<9$A}(X{PtX9GXKkfP9yeD-v` z#>N(Ly>fi4ma5jOxg^lCw_#}8f5GJn7C0jLI^&NhMTqDLOOh-=81j*bs6_a^AOyYL zX3gueYxHFBWM$ps6Cj;xExBNwAa?WUguof=YIZPj_BV%na_x1Ef|8L)2;yb1>8Yx8 z0f=T5$!aIrZ91`Do4F!TN(5=&`8pvAk%CEJV3~pA%OK-~vESkz1qrtP-Gu;*`pW%0 z^B0d`SstKp?`zu0>FK^rx%yBq(hVDn`Fho3ldn-quFtl=Z5OBVg+vGcar-#ke46w; zq>}Rs(l5xBH;3#>o{>fU?#C4C4-H7->`F@D^v?6^-7&OQqk~R@H=i(FnlOU+t5x~^ zi)L_=b>c}^D391|aEOiVDhG?QzKBl6&t^Y5qet9lCC9yUX2IO5X(b`My~BXU*Z*Z7x0d4%7JTSLNQ=! z;l`!nr_kzf3l+1!_MCCKPgao>6A)x`(n~8)W}Ro_LQltPACF_)T9T|${VADCP1AMB zh-szTf>0U_oHUMLzk=oXxBu{0RasnN^|A<*%hIk~GB4u~-?va$m||pt6UH(1%Ws1n zQ`y{_jaf9K;+!X)es?h|A=*EJAXuR=^Qi->V0FHlqEo4h_o>=Pjfw1})j_gaop z>%4es6m~P#t6Y35!^XzmyJw+rI>KB&bG1o-4@ji}PVxSjKjq$(oR3D?B~5$tsIUC- z6o$gJmI&tuHg?GAdNoQmVsQI;$f}|=m#=CCWcAw?tX^%^NJ+ux%wcQ$$%Wj^^*4Uc zs;I1Tk=%s>#?@HxTyEqdxwctw<8Ax~e~EB4(#<4FGL@E3na!=?=Pq+eI;w}Z!wn~~ z$x;rJaat_qy)mU*MG}AgB zG-s6Q%H&Hvwc_KKy28SSZ{xbDcM%&qj7(j`qRivnQDB&i?}T@Bx7@o?8Bx@u3@a03>in3raeY3cJFje} z?inJ>8aH3K9j&?hqE5-@;@E2<{)E&E<3DDyc)vM0FM9ZJ*}z0X+J65hXZJqu(e0?D z$0m7FyapDAV-!nWlbsoA=7K{TKbm;uj}&Rst8P1_i z{{mOhI01ypOWtdyt_%|XB=PI4Y9dUf4c|)Hi|cCAF3|a)gdy$dCmSIb7jDXiPf@zx z4t`{Nek?1VAkSMb#cUA{J^L_-Wb3fLDMMe?I9HL(F}8!#1^wJ-Qsdo9*A=sYRNQ@W zV5yQ9-@@=a+yaN+mrdtyZPH6h$)vD>g zD_4LKc9y?_0W<_9i%sdJ7aHpaBV&28QK;!yrHdxJg|ZI3i)Xr4O@47Vx#{J&UewHs z=Pm8IuA-qBsmnC#AR)PetYy)vyk+rYFSX;v{; zZNZTEAIrFcKL}9o?>U{;mbB0*{nmWX#7|yjxg`gVUDRPL%Ktjgv1mc5m# za4pyHI*PILWVwMkTt^n@or%W3I+9l|y&|PEP_=(gQwH*M#nS(0%RQ4^zky=PWW~oI zf$aF%k;(5{=9k`$vv*9)hv(`R8ahX?5MVjMAeWkgmeR)Rr9q!U&`9~SFE4TE@cs`T zO6_);PH`0y3TZ!i$9g<>A6?oQS?!{NN1OWV!=lw|tftMnE)cKdB-t%rcOOmHgC{gw z&M%+(XCGNvzpJrlIXX5%%uc=J%?kpw3#ijfS(qX&-|_aPTwoXqD^VLk3n&N^CL75y z)SmT2>IUmWSHo4(1Rum<6fYmOveRrCH%(f{D!R+I`mXCjEW*R}$F>Eu5&5ZB#RV8$ z)=UmI)fOH824K{e-oOL8(M7Xgk1kKIkfN-fAM@}AG)Q2<1R#3`QgdS#ERW5m=$*x{ zo~M#v@zvrYltIby=>(PKP@9P)d+Wv(3tQBjeRTejJKX-nMaVi6KV)Jbw4S1zF|eEd zG8&J%T}Qd(F|N%v;xnKiCah!(y|BLYI%b-b&GyN4bE31NfkPCxEx&Z}xkeU7t$_t$ zr{LUIz6BF4Ckh4(^1aI;;xcfqt)Ua^nBZ)ZPdnHL*VmEfZPC1Zw_9ZFX)zHGvGvhU zkU9zg%ZJXtfY5hQWtAJ(NT@mYB1T0*BFY*k>u1=z^-N}SPZrDe$UtUl*uQl*c5aMP zf#&={n$1MQX?^~KH}BH65S>t)-aT=&Y=vg8_rRc87o8PH}m8isF4)(0FGt6=_gXF5GimQPEYbjnNuo zb<)i>oftDx`Ub`e8fLq4S`X7@$tnp2>yU1I+g}td|4qKUZ>2e5+d@rcP?+ec_cLo9FEFw27g8@* zXe%J?qQk}7ew`6scx(~X>iR~=W?8WS0+O||@&Q+~N11V&?tVN{@nY+13|2znZ-^a; zja2Twf>l2*C4N79#VtsvDWm`VhncSC>ii&>znthgbUyb|E3<|PG%<^*eSu*Sv5LAn zdH-R`xUKrapOMJPqcUFV!wMd|v@_Q%>*julO7QQvpe+=x($!89^uie9F-{0a%tO%h zCtwqFHm1h}l*NU{`|fLcn4&=0@#o0695Yq3h#AO1AxC#AIZh z5U>SCZI5dKQZkXRja3GiFUALa@AsQp$$Eg<6E`Y^mom$Z&T4JFiDi1pQM~N(F?!5= zEM;bhm5ZeW%1jbqs74+z&|m&79!0FGXbOl7heq)$O&&i^T(?%8&n~DiX@=!# z&#uCLSnM1Cnu3c~;>elfxP0!o^y3hkX*O!qrbY6hH%Pt!PSXP(6gAE1Kba-joN$`l zKB79UybI%az8K8zIwE2E`;DXEidU#yW-JT}WEz zRD;TJAQbo{?{$TnbcJ1Xg>{RXnDBCGr+p~|y@J;jf@cdfy^^K86)Ty~5<444%ok2a zYs!m{BV~D|UA>IS&$0Ucvt-}5bt1>MzlUw~!1BdO0zi3=7gf;8N1D?Eu(4B4o{vEi zA!(Kq4lg}_?RUgVYY9y`(|^_t#+7EU)ac^}VvrWHR`~_YBxOAg-B9%5RTS)&mAlE+ zxY}x$ysxrX6gG>gB7|upbQI<^mu9?HC2n8-$yd!;RH&YeUp%BQIuE~W8aiZFF-xjE zSG=JR!|$gQ=36%TL+-aVYWhoZf`zm=w=6uJXnT#+naPyMTG+8rt1Ktk#FH~`a;m>a z2g&)Wa{6X|(DT_22SW4VjrldC816p{^q+96<5H4lyPF*yx2UXkYf7(}I=!Z#qSNgs z%dHwQ)2qrx+C@Xcs&0RQN}2am(LPl*2_o7ocvJj6foPsuz3j&)TzQX8Rr^>`J_JnU z%A?}_*izkfTQ!vk1;yJpq63vgT(Y@;j6s3UvT3}!|+e*n2=BI_K)}g9ullXH8>xy5#W>!m@)p{wD&9W}i4W)knZ@lfPjrisUBQ_(8WRTMiYq?)%BFcJX z4CmYH!rY4=hypqPpRdMgPPIA@O^k=M6DHzil`0A&w_4f~xu1wuGu3R|+0~AWcBbev zQP;_lZ*tK^OP!e;B5 zxo_^_;Q}n@zX^Rlx40Trpwmz*+!sXf#bW3vPU6WQ61In3XsSCOJ_xCa zH4eqfOy_@Gk6xevbt!F0Nn7__xj}AvZi`Vx{ZQ3Iv@25jw2{76irZD)^8G-`W<`yz zHq8?(r=Ovi7jlG(B1&D(w4lKgZDhXzSWqCymnR=;KtaW(D?B8txJg9pqW{Q-x74PQ zVnRv*jOD%w)D6>X`#_oh`dh$2R;PKu)T z-g^W!D}<`5+B>mRo5Ysb;=c0!eD3f4{S)pV-sd#uIEQk*uJOE{&&PPaVtQnX)BQ=& zk$Lg;^Q2G4s7B7$^M62yd#v6wz@sA=6U90rHWO7L(QTAa79ovAJdoslt}mhlE}(-M znZ*R-g&u`CyY`Nj{hy8^$q&Wq(;EXu|61MM2mo~!;kV@YeG|G$ZJpb&g)dVQFnFA6 z#q25Lw#EjB?vz@K^#G*Fr`GCc@$DtQKAuZ;a{#%ZcHY??dPn)*gR|*zrT2#p)7Q{5 z3@`FHbOR1PyhN@XQBpcdUh>(|TgD~Z*6#0vTA1*|$x033HZ|irdGf2`rizD9G3HkE z?_8WHz3R%wE(^1-#P*g(_(6U5T|X=1xJEzq8hKh3LA}7hv*|WHy@PnD)8Lw)*~wc> z+?sK((J|{2Yvn+H?=~-;&aRaBe1$ag%NruSV!5?zDC;kU){W*aPwAzq8(Oj9`N(yz zGCri6&n<*OPLDXEtVgV_cDcsiZCIH7fuV6mukHHa48y0}d0{=*7|pUtO#8|z_oG{0 z>d4A|XfTKBBoEtE7B@DkTYvKA9YLApo;lPtF$0P1xqP!o_4*0AKpv#9m?z+=-b1@1KG*SB10h&rNeH7R4^Np4qvIV+$0k@KzaZBZqe zhF9h4HzxU(U|iftSo7$yJNQ&Nm<5~fx7|gIUz;*lUA6a>y{B}3^D=yC=MA$cZ?0@- z;8wSZLEIfsd9Ry4(Zot*TRio~CgD?=5bI`wiUz)t3h6y#`7)?RCF^HZ8 zhq*quPbK=zhr67vE8r%GkJ-798Rdhv_XFx28l#Vz!!uy@B=;NW&SFrEiAt`?@ z)NZQs&HWYMG4Co&{Ij+Hq+)bMxo0UmhcH!yDAhJ<_GegJ)q0`y4!m~~r1wFS593=N zVlpk`S{5{-oGVAeFNiU1wZ&cBr_u?dZ`4hCF6xZxgoDzw~`6OnipOe_$ogiLYzRU+NS;BnBCvmo2Sj4QmF| zMsCD&^6>N{Y}wOFNPbq54UTqHhN%{G$!f@r2@-OxDDxS$U-+E+7_ocs5I1-AF<}P6 z@)Pct;;jsw+-P~J{2AIrt#GsA@D~mgLwzYPs0oBnh@SanlBKDJ>yx2do8KM|qv6(- zN(NxTu}!|^D+pANQ2TQEGOqJ1M z7Y~`^Io!*Tkc&>EEX4MZeyQ3o{hzQaW!!0Ixn|dIum{h|dh2~bul&(6b&rMT&+&`Ae=UkcgavTSYhLQ$D6LQ;XHklyx3gY*DyWnyGI``T1;zG$^_|M2 z9d{Ht(R`NvI`l@tpON5-dg?3RC3-IXaCo7BJu6ykwcA|oi8ZhP_RF0Dvh>sq3w8dP zV2(VrwTg+Fqw`{8gN-Q}F-tu$0*TlswByo5?Z~%B59>@lq~N>f^Vst^+wnAJcfM72 zMkZX!tcS8^x6e}1jCkmpmZ*462^qHp-Cd?HD~WEqinLk)tFw)lUz!*^40KF&61R5^ z45U>bnrt#Ja*~vld|i+)VUGK{_x&70JbJk&Ssve|0}t{&=1%*XM-64kr%pFTuVPm` zJ)}GvQa&uPBOzw}spB-4AJ(t!kKX7`xSmF_6X{CLwKSifx11P{##I^}N?0eq|rSdN2j9_w9tQIa%Kb^p&q#iIklSVdtwab}O|vq^B&oBc~uvb>ZN?nbEbtfvT#L zr`5~WAedacx+)}9wYj2mxD?JJ|7ot7rkbKDPK-lPka4V9Oc*xUER1UwWG$s85^e9tY4aZtt>8vo_A7?;q~(+F{AaWebF^cP&ATGmX5Jtbk$f3DYq#&5^=5(H51FERK|Snky=QzD;TVLT zr8gFTEq3^4js0Q1&)3)M4ajq7ISTx_>_DzFLWh5o)V&gDIp1``6a z4onxwTQSI)p0w)nv9q*oEw!%@04xB*mU?p{cf8VgW~>o!nGbD}6q~|*#g}%_7S%!& zj+g3Xg&_WE7eXWgTt8|qm%!J6i@RUSy%w1zS<48jL4Vld`Be4>hqbYFT5^hda{SsL zK9;hLzpOWN=0iKLbVA8FThx^-mDo!<1%{q=rs@F^_afTvlwo`dY|+!~#v;kGmm{@Y zk$0?rajOJf$@B3uXOf=X*hQJ|Ge;M)kY2u%PVdD+ahj#~(|fsFZ1GJTelWh}U1LbW_$-OhKDNRmY!0| zVJdAHu#bs*i+OXXpwPL0pM;W z5L6(N);`mHOkf{+k@uncKhgH+?^bh?fXLo?miMsjh#<)Jj;qs%DSG%t^P7^XtC>GT z+!^$9I+qI!zSKW|qs0{xeoyb?tmR)M;@`e{-P`&A%DU*2<-6m~RO;BC$Td1EDGj+5&eyEQF+c^v`y-U98Oi`u z5-;zmsj!!2g6wke1XgtjOYgcd>9?Km(1{=l@=N5&qE&1p8b+HRe$JYL?*`k0HZ#!( zI){!W%{tsbb6!3Tl$@NnFMR1+q*<4=iCt^$pCQ2&i%iwgKpSEm?tD2uXF0IzsgM{4lDj*6Xv#q8fUk!G6qK zK;Ap|SWiDSYwW@7oDv9QK9q4M>c^9JSA8 zcZnYkNgw>(o@_8;fGOI(Q4n(<2xcNfN@iv;>YgR=aJNfh_Y;s=^|g$pb*^?#>(+5B zzDc!W77&q`f{X(F>T2`WUt+OSe9GXo+jo2v5>H*g9`EAWirqBu#q`qSPH>}}6F8Js zQCYC|3$-N9cAM>v`GVL^^E>(3+7C@~S$B9x^&Zp%2`lb(v_fG2*tyfm7scm^qt^GH zn_GPJm5=cai8KJT#g#d?U+uP`k=G6qTi*DVtMm2VhTA64TQXet#QJiEHG0E2XnW3= zLJoVRV#lg$wLi5AyGpDmD|tXPPxdmd1kiCr6>RsEucz& zi2=9mv~1L=DQb`b9Sl4}F81d>AT|2JA{(aAEMtH(Q=<xdAYf427>f#V3oGid`g=g%M`hu4+cL7)mC7MT zojpBII`Pq1vcWK+_C+Vnc$bgc{u%K+jv0LfANu6jFM7EGb{+S%<%zlMdO(E=G@z=o zJ6LpP_O?68=$L>~IorYZQu?N(gJG1T2<$Me$)?(%_YIwK%clPBnUtf!)Kre0gw?!i7(jA>F?g!bIW6t4_%M#!tqTnZ&=boK9Gn zrsoMfm_$JCQ*$M&fs)wfsWqObK=$ZDhy$!8b(^q~j;WP|ID%{8cou;`E~lNLR6BKv z5r3hewtV=E4w$Jd$!`v3{a43mtW40Z6s>*nU;(>KA$;9L8{l*jC|3Z8!2-V{q~ zOYeqNU%!=&#^Jj~Z4f_gq8nj0GJ~Do4T0=?-GT_iK@SY+j-P~ES%Y~xsBTM^MWKx8 z7>g6qdboP~Ep4;ae(uM+IQ%E-DuCW3Ll2MI&m%0tp=ndK_8ylXryXy@QM*my8plr{ z=4rPl=_X-=b~@wYcovkfZT~xurs$|Sbj9(tHr;F+^2k$H z#$ZX6!;YKq)3{4b;9O4nuAgGK2J?L$fso`S96?yz+i0^@q5Snw$58WtNxgeG@t$Yy z-1?<_@aI0wD~>ZN2G^7PFZ-2OJR_HvG`+%%E1m7(kBNR1Kl;g!uKU_@vjH9rjVyWn zGeOtdI-yr-W57Z*!GR!pFoQon=%toa<;U=eYjb~jBucn>3E;bB>r(WqfBj# zF}-xxOEibwKw|!|#MFQgv-A9UL!ItT>QgB%d|QpTVG3}58_qLtEieCY_|0~CWO}Iw zs?&7&M_>NrAup9fiO>N)*+h3rKB{XcMMR44uan0wmUYL$vVdB_j0&S_Rx6O?0*s>2 z8VDEokDaW3j2|u5kE{7%m#a7`J5Q>D7q)uV>dwLx8B{?N^+*IZ6$BMLBRyog?^T@3HDn`@0I`24>E_w+|e6>Iv zQ+FL37)_#d!YSS|2z)G0ym=SCTyyu!BN_G+1ieQGqug3P&LM(CobmvrA7ED1SXmk; zC~4vuPRE@5!ObU#p?$Tt${5-ErjFmys{vd}j>{URED{-Ev+_Ac>CbCFJ76y~?D!S6)es7g`q=^+#5X?*y-*O>GqZY_KOD!#fZPf+%8R3dV8frq^QKfPV}-91kROQ9|u2$``Tv* z8Qa;BL)I^T9oEEv{UDb1v9fgO{OTE{j!scgPJxH$-1-0!V|DHbIf_0uO%skbc{(*g zRM&x8?yW@FxAO1$c+tdlc^P-h=Y8YSQEgULk~EsO=V9VAugsV&T@91lW&tMU)HJ$M z(BSKK7&+Lq>PpvR-}G%P>1mLikb$8o1b3*V)n*Z-4@M(!xL_eDqxzfoxfuvNGhSCp z|5<8IaO(;VT8n`aG|k61M1C%*OoM_V6~E^*;}BGKxbTWz@h0>g#`&VOK%X5k@XBD= zrxengft9ZenF@HUD4I|{!sf%PXM(4NkLOx1OkLsTMgm+_*T9od(=AfOmAED~oWy88 zo)M7r=aaR_-{GqurIWwueJ!Hp@;YLM_17k+DOfpse#LwNk8aLH_5uv0oq@XOZIhFWLRlAl= z6f61GzHOJ|++?>;oAWmP-}|nhicz0|!`5OlY+$_nkNkKiB4^ zzLz*{7Up*8oH=-AArMwrh)Yse-%qKZG=9T@gcd7Nna&BYo)6@|+fmJBTv4GZxeM|u zDvI~A6vc^8r%owp%ZYZsxWY0kh*G^*uM;1atRbJ2;(o-{L8q(zd^aigK5qpPckfou zk-x6~BR!aH2Hi7*S=Q6z;$;d$z+n4#e1s6d{ka(N5> zCmCf63uj_{XecZJXl3I7L2Y^Y=K1KJ8F*XszCdxi(opZ?%}u9loWnLg1ef<13j1Uw zyis!Zb`}v|ifF2BofV$j^w^AvYCHeGrnqlnkiS&R23{pkOJnhBhcI-{>;OSYF0!k< zP3opdF8Pf~_30w#C_ZZKu1H*y2N5DKJ~(vMpYlGSeQVq0tAK{!){mEQh(g46Qri25 z`ksbihOGM060cJIQ*CrX-R|My(6@CfmUOUlNan?xmzbq8Q7$lcwWkE>}Z;bSvR_ap5@Q!^OULsA1O40GK$~OoysKN--yCOBCgbezaI~UM)%Ia zmlVDI1mWFG9yAqvW<7#q;M{{2GXhK-54L>FRE z;GCwrt^$jf{=(*I0c)>a?5gv-|L&Erv_5mYP|$ivqYOGg>)DL~xlL-#ZA@M0pn{IvU+ti&0y#8+I%(dLn*l3YY>GW#@GEY z(an*i=93-l3#Py6X_)c&1$zX%<6BYjc87h|=A!%9yvxWOSFpo~)_BD60GXkyaiaLK`4K#C4LIp`b% z5pHni#X`hzo5k92x;Yl$WT#6DzU%u5cBdZlC^?@pOnv*mqRHu>0v8dJhDFsN+sDa> zb^<1^@7Z}WVtL0cTF67LVtG{E#EoeE;hZJq({o>`iWxc$lGl}l!FOI+bR;wYYIKL7HblFJrVg5j+@ z-AA%qUD^LD#$;+5tPkUeTnB9?CNOf!ZekEn3edJJ4cj$6Cl>yXlCPG2oSvt{CAM9p zkhlt<@%u(bc5tTr!BU;P*B>*5{K3P~GFy^<*V>zSC#RngG2cqrzz*g%Tg~Li*DaxdxrWHm9u1*FMm-@2sN?bamv-szO%*^B;tjpbdiyC-3f7p zCw_IJU$`FI;?=homp^ANaPUUBFNS5qX3n!g9UJ$X>5lP}tIwddl9^!E@WG227+e2S z7d+*9={axu!j*k)O%xSN9gHWN5Qy)e9Ph+Ot8oW#B(nI9pQZ@+JY8x(WeE0=D))LWJ3elg|n4$B_ z2M*3IhhkO^dCP@e^!g%pG|*DXlE&tIHIojZpRYeG4?tw;i zz4m|)5nq?H6;)*;YhVBP0aIWm7hkAq*=|QDb;or@&vIEuk$~*B5-vWPd78i7giXhu z+uP@5sR^NjK>0`SZA2Ct9iS7BRrw7-MFp~{ytv>H_obYxR2%~=9E_RGR9*8ad_2W8 zUOsKFYJ)uFb2R_E4wlvwk4xqWp)>{Y9@&<0wA{sLKPfH1YYuczJ9P7ls= zqCU-(gZS?D@Imo>;`toKsGRLy9HZuy$)_FghGf)D4S9-QyiB93qGI5*Fko^V&0xzn zC*hOl)KW(_MRURy9*AJeNoy~tsQmZD*S|F8#ZNX!`N|H?{Cx6EPJkS%;A7&3rrHoV zs=r^ImcG2FX7pNL=cgXad1P7s^4jXB0YSIN^!0aG^K1pAw9VhuDRHu%eoc9kJo?Rp zaT6+I=hx0rX{7nrxt!D(y*)sx5jNOn=LH_Q7iocIwCV1ZT-d#Szumy7t}eNebMh#A znzB1j5XhaJkEUG)I{|cK?@#gU%j_fo#yo-|Yg$17n%z|sn50=&^r%vykWKx4Bi4;R&>(sF1MsQnXD|d<}4(G84X?;h1PWXBJO)?j!qQq7Sw0s?qs!rgtNPIQ=&E*}d<7waS!) zZy*1-657^^Bure@flV>_Q5pLKuIzZT|7ygAvvrenQXcE4f%IW*1F77Bs{+O5vY_vJ z)HCE>0|}fHAf|xhnw9d(>g(5ZZ%>7Cjg+g*(J7Q{dU7 zW$7p>6z;r*U2HmOs-~17{Azo#WQ+OIXA&T-R(s+eqn?_UOL;s42$-0bm(f7vH78d~ zrU~bGm=4fpw1Cf7#FF|f{FZ*SO zDzu)mPx7&Gt+}Xnlb>D1tE_J7Io@Js0?^|onA7=p8ZbhZdAG%1ah_21tje(Ep7_9# zHmaRZ7E}$KYh?k0jPLikyOhhFUoBp8^O5v(pc`r*8t-gsVlb>2PWBfv)tHd^HW`!w zLUHML0R?^;VKXNCh3#%X!OGc6f!H$}m$;RhkoeP`J(hB8?@Q5xJl@=8b)&_wOJ0YV~$g?1? zD#j*qJd>ZTy4XKnp4&CF3#QZR`cJEox_oVD14_@p!p8reb~Z?e-Dl3g#Wo7*98-Z{x1&5~|DS>oCGIH5< z;DyIw&X{LF!bybBCq}Dw&tWG1Qf`uodI!4=`{M<{)lq}Otq-(Ch;3fp0glhB7;b%8 z*BQwteB_duy$Sl>+0P{sCm~Sv8dP{>4Fk_z8zu)KZ{H#Satx>W>5Y}=sDS&l zBK~SI&=J;iio-QZ4&hk<$=}v5_-O%(*r!C%#ZMA{iGq-M;6Amz%0QC zcF1P7jzmM4{JXjB(-c*56vb4eg9ZIC=D3nK*hNJ<%Q7o8^l$%t9=zt-pgeyYJMkApM`}eI}G#vVD;u{k3=kB z@VJR`ay~7!%xYSdrCD7)^_KhNd6*g71*vLsfO7N61XVpy9_z%XK_7CM{zDCm8DsqT z4YuRvAYh&58PP>W$Y<*LW`J9^-VGl9uGP*gQ)KY8&K~1@e;DA^YW&m`cEPtkvi;p= zIv8HpFUly$D-InfjfI2~C(<$0RV5h6(xyx)PE#YHM;ly#vjL{9RlB#g%64nc#AFCh z1kx*kGO;c2%EG(>J{BYTsZNeT`Blaym6;Pqv67pR9C;bi%NZ4 z!v}-mPge&(wO)SPPkh34@^uEFhX&-p0Sbhyw18Jdqz(L4P|b2LA&UbYW=4kIzBh;> z;8>EWjOi%)u27cH0gPHFl{l73ohrK8Zm2)^S-vn{ZmGqj3h_hpT%q;!cnxkk(>kM&`kDEXSkI zR;{d@k#hS^^UqBoL4C5nCc-4&d!cb>h*05Tt`~miEEkoWu6XH|=ui54o2}%cbX#YMw>Nycn)cQ`^570;)6t1Z zqqJ-~X0!cfO~zRO;Y1?usiC+|*$*8r)D0Wge-pZxi%a+rOAG%i+NsC(bil4%1~NUx zF2Qp7pRtKk@2(UN_?$eJsn3cf&i!|E#N!iI7Wa-1R6oeb6%T>of zgpsLpYqXwH_7i~sk=Ng>uXpc}dJiQ5#*8lJTRQ}Jl_!6huyE+@E*_w|d_aGHXlvMP zSEL*yc0evr%DBhe@EJDvrfh%c?%-XHv|2qswc@IxG*@Df@1Z~ zTZXp)-vIb{r&toe}H9^e1TWBcXzX=O%etG_vZt}#o4@cXgtuIEq&;P zqgibEib{8udMqBGu_u+)gILYA5kE~Clv~;Y|M^l+RW*b`)871Tzpde^OR*~>9;<~z z8tX~m~&c zQU&BPz$%DNjppIk6BsKJy#RH0(Ct=C1k8or8v$Q>3$S`0dOh$5^$VY>M1KKVX|-P| ztdN}3{S^OhYY|Hx#ukmNOk@|(_AiGkTraLcv!Epiic+Zmgq4@z36J*{-3X&AeyLjn zbtMh|$c5RDk2}g6EYH53O|2}Z>6=8DTV!!eN+{&3cK7MUU({CjFg2{vF~JXafgL`Z z>NJ*&@!r3)MFSyoBEqm&NT2|`Nz0UQX@CfwFfMIE)xDsJ3p|-Vg)pi8rYp1G`Xp66 zyS8-CBm7`DjCT0|4<78*PGg46S&2AM>ka?3K7+(XJ(B?Ws%t$}GQ3f^Q=f4;x5@dU z3j0?iyv+Gz{`N89u*H4T`&hQopN|Yw;m<^Cf|iZ*!)zS9?5`oM`!66V(+!+gJaj3oAdT_npl98f^*hcGoMsSDi}_94A{ zh`QBd5mg4(R@hlLq$jE0WRTnT-d&0E!TgG%XKvT$@jzHp6=h^}zggf&>QFkh&VU=d zlyVU0Evtg5Rm(V-eY zIhuINP=hLN3Daa!=y_7BVqp3;o9F7loJ&G6-_Bau0CoB*IzVO;fxLtJ(zEi8i%kYh z+aOR2nRw_fty%DEfn))2wiZB7nI|}yO=WH&`#}S&lKsNOlkTK+g;G9>rPDP`jQ&GJ z9e0AJ5mP@IP!Jz|gG;@PDEV@uwXN02(78qy-G?g-{4ABg1&ygMA1f z?_)?*gG#hUP1|x61l0ZD#?DDu5wo_I13X4dR(49rlcB@hnx0}1o&j@476R3*OB4vR zC|BD<60LV>g2Y)xXmK26(*Sqzdiq{)AUh_K87P_K0Z#?KHH`Mw)4`MVyC86!R z;V$_$loVc9H3709A;3-s(kkg zfX+kAn~C^n0h%|AB{oZ|B?_n$8)mG`08z~YL>gx!`gNzM&X6D-0SzihvouN+RZIl1ATGKhZN$mlqq8ez5@wGAb`?yz~s!s=#W^?~@ncjLV zWenIHz>9kUDTS6kyy}&eX-J6sz1u%;m0|J^;OQOo=;E9z^+P&c2tcQuCbaXwC2`~K zIf~RT6xYd$bP9_5VVrCK`Kny#l;OW${W}N$?gI*nf9K%eIUvWvfA_(^bMWsz_%|!~ zH!Jx6ArjgeFj72SRQepz=TnyYP>F0$hvQq=%uKUp4Ysi}pe`J0I;ls6s=THJUWSJ! z9^p2s-MZ^tc0lGS1R+sM9nU0{J~R$;38S3eKD03H+ z;hZJxDS&M&8~gt$bbpXGLqgva=ApBXsf(&#TStPvp${2ihiZ^3fSu?I=FX`;Fap4c zH3M-BID;QA&MyO*+#Hcv!EYVonVtbCWiBOvn#if>UuUoEdW;nZsMaQ<4`GPr0rX2Z z#*?$P%aOn$ z)pR%<%q-3MZ5ayOFIQ$v%?$2+)YB;39UmCnr5C_^q3(WfqI_z133#+Yv2=W}b~PrE zeR5_Uz=EJ4&$vZ()g3TpcmVng0$?J^xORM169E07-XSZ8$*2tdk&Sn9vw#xvIR6f@ z#iUVR4I!FwEPg#%EhN~37jQ11h&$L3KPK$f)-3a%Ot8kS3cCW~al1Dar&7Gd*Fh^5 z;c4kcP@3Xn^Yc}rfP7QgPuMd+5l!PBxZT^~>@dM^VOA2*SgV$6O#~tlGm~CmfbyT|C5mt_KyRKbmLu^1qt{aWf_ zz|N%7gD=aGt6f9dS3O}*Z%i3HXic4r6?X2jk=Kr)*4cI8>6b zjE0W7;vnESKRHRJwkx+WF43u{eC1Ul!;`3p2YP0HUZ;rVfoX>8qL}}zM&tio4Tlea z7xD2Ikq1L23sM*FgjNHJICQ-P5bqj|W5tW?=~-O_J2G?kz{n^kJ7| zkOHaoG%RN)t%j5%>iG;;_fF}@M_uDl8mq{D|NHn&R{rpz0&e+`Isw*Tesuy%aZ@Pa zQ#mbTS~3E(_lU~Dq8fGz{_14|aXxBe?5q;$AM|-#=FIGPr@bUn? zzfKkm5`jp4-9p4L01o8FPKn=qVOoPthr}IfLh138rr&PXyQmzpCIyxpzIJ}WWrQ#V z$>$UKooihjN(i-hD7{c)9`G`-LNJTmXo21PU`f>dVZ0e*N-P4Z+N*ma{Vl{rQrFx( zzdE^tu+}D74Vc=ehhi@s`GHH7BdkkJ-}Ti;9NurNu2%c;;=(dY!{d{%%(H@UDDW`k z=F3;_^-$G@4TDcCr{&06rX zd;1q<>vwc<#dY4~;8P?zYS-QI8C@BnrUi`cKuARv9(Qz>(HVJbNIa5dOp8V|i*JT} zc3FD*ta{;o7e)pa{Jc)Ce#2shfx#Q}$`12jP z83QWnjvj#7f#UN3a5{i643J7nW6tg5|I;7Lz1O4z`dgvd7~t#CW&qABo1A^MV0@vK zBy5{|Ak=4dr9%)bKxt^xs0A>o15sj3yahs>hJMLn{fvkXquraV*Vp^L*e5be2s|Ti4RDXxkN1SUt@Xa&jlCw$N^$d7WA7$4Z^~9)5Acg^Bb;fiCU`M85 z5^N%qZk;z$C8Ubyv8f)wGg<(2Pq49eqk~p{#=;^bF=)*46K>CZ2SEuqy$+jQ`T!?W z&)Jf=M*XppW&6m3?R9mB%K~98qrz~n3NQe4Xql6p@C`{o39>ghrDSEB=yQYxFY}A> znKT`(hIrU^t^iU|rcR>Px?JRW+r-Yd6o1#ao+r7Up;N)Z=PyeD(P*BAG6sm&^MS?0 zZ^*Sdjb<@*RHN2Z^0|5tq7@rNt29)8D;RX_l16Svw(>qi;QRau%HczUO(`XSUIv7) zds|DW$?3B9JZ0T?CtX*;x$$Va9VN2e%IP_fs!HO#!C?@gQY zkQ5RWRRXdm_uo9IeK`b}pJQ5zKIv12h(C&wM>eqW(hqFLcSnroCY*x+8Lu3*!_nWFMebA)-HSkXHl;qy zZ^^57X3oX0r*ODump~(^=Zj7$Bh|{In2Zt)3vrwoHSob>aTS zl~t&l=j0P(kOXXb(V}+By2)-LfQiz!EA>T`v1WmBBWHfHg1Gjki`^~E`KW&*@9aSk zfRn+?jdFj^7z4z72;`$uu-EUNp7iQHdUeme1CY3??vnPJY zK9MXyCXK4DCuXp$CGoe|ofwBjg!Vx>l5)OO-5VbEfvsDqR3Cqa-%Hpsck%Ghp_1Wm zG6wGm53O-5({!)W8N8dfJh1IHwsMAdzjrjBJ>?z{wSh(pg!lkwGzeq3*eivD>K#L^ zz!FV9y}%Yh_#53hK53vtHcKt~?&>HFVAG^t`1!QiH4mI3_d(Ea;wW<4_@V>v1Y&jD zX-cO_Z%w*-U97r!6vxC?babisVJyLbRQH38oL!V6>~Low&=)tWp7$XnW>Z0g+3?!^W3fkcdF zc_&Qn=AuUVZq3f=gYhI(6D37BXnV+~9W|kLLYJoy%OrEqbE$5UBwAOwP>Z#)C)2-x ze0}@_D5xHIq5Nr?FO^l9Ymte1AfGV4FA2+% z`BCBZB68XMl!CIdJ7hrYWaYt$udPYw=mDUzs%)%+%@14Jl|k9DZ%f2$%94Tn?cOa> zcj+VFh%|qDr$JjXht#D40YcM4atFrWAf^JE_tO*TGXoARnW*w{$rN#xn)p2Rz1mc7 zm>oF1?!EZFk|b7RFt}MYngi_Kcfh920@fxM%+Yn|yIqbEgmrNUVFsGV3m6B_DY2sN zhX+JjX`S)40@Pu#d&}gu32QWH4^?erRR|2CQDplo*v!BhHIUc)L7Wi?`J7QbCqKT~ zo76eiL7xq7gp+-5qvoZ@`@_i9gUAkWSfVvlp`J^!AfayZw#=$H{0%%#gbk>HU3Xxd z)CP#DK-)lHwvp}zESd+)X4`t^Z@!0H3wpZR|GQdO3|=MzUvRKB0y{P{`x>&~Wh*p&K@3k9d6B zMEi(=*(70zg?Tk7#~O>0i91HX=@F~PZss|x`9eW*9>^8;KZI7nkEd^`u!zJjgY1K> zqXNA~^3+r@0n%aW`>w~WsKn+N9_;&ZqJD+aQ%z(NO#EWiN` z9m{YO10CPZcI>_NKSMtQPI~oM$7a)~*FZB)XJs*t`^jp`YQaNun}zVT&B7#!{&Y=$ za0;Cqc4{_4#SfFGNU4Hc*{u>loD9XaUSDF_U3isr%#MI1^YfKqu-LI8kgYpu{oc6| z#SV9K^8$8zp7@%Rl`Jcb zB=h%WM^-w;O)t#-VS@sx?~Z4MZRA`PYbLcokCpo2w^IYLFOpC{IBui~J*;jO$OiE& z*vd!vOoIh!{I|YawC~2~TAr_17%d4c_k9IUNV^&%dGA@^Evfwp-1W9Q*XC1&9_nqr zxg3?#)L57Mf~u(>{6eP%NhXlD$Wk8!0h)d6cV1A=0x4LXtog~dW-Pv^apPt48%`)023p9M}=)i-{K;F8k15CT`Y7DETX@?&@ zGRXt(CeD5Q2Kv-)*n6k+Gp-SKr3m<)5$xjxA0-1*>~tw(SK2?B^3@Iq1I48$AYmzh z#8KyZXZ5-q9G@Ttff~!&A(1R<*-?;$0Z>5*B%M7neB%U(F>Rm^2TUvI&1McPix$Pt zs>%IzzzTJ!Mxg(uoOT*r3ot>CBp8>Ih1pJvG0XQNFzLJaX~{M|(E3DSUHlmc!a&NI z1$qfr+r4ZF9&C;*ZIaRI7ZM9O}^<%cINiax&KTJn^ z0IjR%qpPV~3|uJ0o^$uHzaq!!K27@YC6gxk#J381sl*wXG0_H^lg`e?3_-42Rr5!c z2R!(`Z@l1;D_B&e%84ax<>l>ln!G7*92OmF8yFe?3HqZ1KvQ5{>!Lda=VE)LsU>AY zA@^0=L=%XCl_XmIZAg#iIL2a@+i94`>rdzH%tu6=evQaGc01fNR-{zLd&e`Pdg)3hGVP1OpqVv(F(ek5% zZmO%GXUhk-Q~1ISaJfUqez{u%;T&0t)jZ(KaIG5rFGFj=ivS2K-U>Oe+Buz!+IZ`H z+^$Hz$Q}vHn$*Pe33F-7(!s1x9Mm@|=|zmI8Z>1Ztiwx@ufGCmrmkw04k!ohaleEn z3tj>fp)P+z&2)jO)@nOwsYPxAaZPN)%NGD)dN71SV6UcW3E$t3>Ds#zjcolRQcZUr z3yPdYC(*a9I#hQD>ItQHt6n%VwM#i)fs%Jpcr6TBxqDY`sRpmG+>b4D+&+94SG!4B zg}ht7b(iaV#BuKRahg?{w}5SDSNR?eEyvR;977nU8|kZBI~H9HSfdp^ttN+Hl@-;V z5n^$c0lk)MTxKvolS1=zJ5y+OK8s=smnT_)POUvsLAFO7%N*R@(mR6jX);g!Dqn#< z!p}h59n?x^36#0)Uh>`_CcAp!3-i^W zahjHue2(4Bh&gj&at_cL5LT>o+}FuYWaoxRfH48FaR$JV7_JTDfDv&J$c-LE^`}Wl zk^2jX{N3`Xo%QM3VuhD~Uio3N_xtEp^W6>l+y!yTq+L^*1=9j?cU5L?%X7cmELI{X zod-eNxc+5sTOdKWeY{?bQt;zX*b*THUZy-7hhsTvbAp=3IwNhHA2ngoePvH!yKWnX zKViPI-=;LtP5S-+1O}q%T9MU&A-BT!pI9p71Ew4$QIog^VC#!(LD7*XsjI z)r%{;`q$#o!fMr%Vml})kz_Rkb0N@7sxlq4xe=;HklRPm(n^myijX@Jy}M?>hrWiN z<=;`<;(jhQ8#6_T;J%dJyTjeT8qJhVz5$Q>Hfn$bUTJT|9 z$`7*P1D$k{-#)atbbPGJ6a5qM1ohmF@l#nt^HRv{c--+m36kY$<6bWdnSEuZ)^ZCZ zg%Y`rZ2h&Kj)P61%5=Nh7Z*(JR#p>$s>D+MNsmcN8Mg7eep7&Tss|hM@2yIRe1S!! zU{F>AHQh10(s}0>wUIgBr9QQi=Bn*cS-Lv2Kp*c{f1;=Vspc|vvbWjlJh&g{;j&sM z#xD$}s7v4vJ%=BOYyQR7R+&ep3Vvx4{(rL<%uu>sT1uY1>b4?q-?5f~Lq0vre@vO_ zkFtUd%zg1_lC(E1%S$=6$`#?L=KnHmie#71xeUM|iE9FoZkjSD&CSfS7&RGOL(u2e zP8!`eed*A@DLRLCD~cywe3=P;<^9!ImZGMk>DNHW8>26S1?X^k7hzX-8N*#8>)m;< zBmKljZJXV*`xAUm=cdH$o(E75lIF_Q^HGzK8K9(1X8ubP4|C@Kwj?m9(#etDMKDO=KM+`cYz-MXy4$d#aLFd#ZtljzgzHw5mXFkQM}Y~ z_*SoXzEt8aMDzfEw|)}sEcs{poRjmfg)yXpyWIa|4+wq!(>_p0gkG5*g_t=kJcn%h zv6o?)K-YuHg+p8GI$*~TPxXj37=kPpp>2PjmjhxWpm-bpGm#_0Qd1Z-1qY8QNvQc= zGyD_m3?5Y5|X*`bNMUiGK)N>^RErTshQ&Le13Sv{|T z`eMHx4k+Eo(IdgmHpqr+?Au{R+Tk`_38?x~$kqDwbTG^F#i7Z#Y7X;9a&HiGd&!^< z%nq!UKC?H`y0515+2Z7QB5$r)L1J-8n%tvBZ81{(I$z3%>4x9n_=C9@AVS3=^zNPZ z;W%e=QsVNkHm`Us4DcW#so655wXb<8n%!#b>0{0=`FBp${qJ>X>3>KgPpnN(NFUDbxZ$kO)mFSwW3l6}ToUPrV=lFqFEw3q*OM@IQlW*AN zLM^hv=Xl{=FvuOZ;IsfjN;bKFwX3eL@9$t`(0et|!)4hsLKXe%TcNVLJ6}Dtq|vke zrj&0RI4~s9Ul!e~BgFmbMW6rE-kFC(z4v{5I-T~=xjRt`byAe5Q`t!!r-Vcp)mS@~ zZL%GMtV0Ve2PH*>M0TdKWf%^UBaCItOx8)V&0w;OVKn3Ue0A>oy6@*+{&=3}&*zW1 zF4v{W{C>ahe3#Gr{eFFB22;J~VQ(@TyC;GrSZQGgg_T8NZ%W#JrJcC_IzM7FQ=U8r z!p0H~ux#(ys!FGy67|nXO9urEJug1E9^D_Q$sy@M_y>#MP6jQgyTC0 zQeJF$$?_-w6$n}QC>>1saP;?XRO2O&Bz8vhxr?`h3wA}U-cU3tkG2Lv0mV`bNN8)B znbBq#q%?_987$x~lA`x9K;N^(kxtrr51PTNHLbEVAo#YOP6y`5BS>ZnMT?Bl*_0?t zDCR@{$n$OsAQ2Edg{n&-$?s9F>xu13y)-ljmxn3^h&Bn;G!J&)Vw&}^bG^Iw#&3%p zd4eTtaj#$FIkeppr9|tpwNW|Y51JB0oBdn6*QE#T4BtI^)-TDk!wH zXu0`#dMXww4qHRwbMKcK2254oHgF5s=;Wh{t zxsl+nmq;snPTt^OF!=0_wI z2H!m)A3|=KqZ?^-1*H?9Tw<~6&S21l5?~h8i}PPi37(b=OwP>^7vHC&)CCalQ0$E| zmoT3gavp55!f8R8dr$wR&F$dWMde6Hq4+w-$DW7TvO^+7&06ZogM4ts($$qt0I3>l zrRv-mwHB3$kWW4vQ*B^B))v*f%BQZ>`>^X($hq3U9-am#-hhE#x17AG!>aA|QATYr zpl$|LY1NEP2G4W14ierIrefD0Hz>C}XG!}d;Il)sZ7eAlE(dA{PYnkw9^RMU70ooW z3n?B_p)vt%>Mp&utrKY}a(3r4p(vZ?wbKG_y%iRVa{TnITz6Wy8kx5$P^E&`FRpBD zn~t;3Am!x@wklOxqBZw__TuBx6qJ_296()sgnHd!tZM4TJzw5Ojx{tafk zVox^+lsiLjKDG64I11I^@g9pU1b*PQ$bq|N;40rI9DO_rRmAt~VOG@@Pulu((00b} zmj(=G^?JS}Aj7R^EE zg}dkuYmz@ek}XcS#-f>mDmWo$C^Fm!0^iuj_HQtrSK#w}m^+GDx2%l+=q0;bJ7aW_ zsOeNyIj8l-Vwc>0jmp(=ES)NxFSM|k;j3&(2j1#P7B{ckG6x1j+luGQF~93fxM4hl zwujyf{UpUugpM$%tTzIkP&mOc&%*ywFV$}jW`2EBW#)~S6vBi{u<9?)F)%!`UqO%IFO}8!qqb_6XL^6wBw)a@xCMLcQs(XD6>5d>~LsPZSMB zc>?o-?sN0nWwSW+UfqrQtCinC2ompQD*L4noCVF3rr38A?;yTc(FT1&+oA2 zP8Q@wbLO2ctFIuTxl0CC57p9UdJ5}(&**NVFe(dFPG@S`@wbL)di|6mpIwx9nt!Ck61Ya70eQ50ey?SQpI%=!oRPY0)OKl_OFf~R zA{FK_iO+Up$?W>!VyxWkxc>6NYA#GS?o=+hs zh=p<#mU*@4a^OvokTs4Y=bVg*{SON4_|1z|yS%IFs_aDJ;6>@$H*lF5vZNNl8m5<= zvcnK%B4^s90;2>4wHIhoi<$;8Gts3bYJ=xdh5oBC2u{g>bTNm-@Xxg?72X~A(w$W> zc{pF;KWWm917c$bpFl$#DPm#O%HcPS!bmrIGo%J&jlzRB;l4Ct7Z5l`$394FMheO(08bI4?4os0^1e+sUkPH8P#wFvKG zPhCzoXyE*aw4AY(qf910P-~z|g8mY3>SRw#B}*k}$~tlts*CC| zn4>M#8*0?#70A2}{RgoRWSAehkWxf7P^2vrDdo2N7lQ}RGy()J2T^55Mjl0|f3*dn zQ6-!zRVuo4`NBDV|4D@?Q+jY|6xK35ZPa5;!D~hl?L+_;1<;ZRH8MNo|Py2))fdD|>MPYeWf zR&lYY{~82A)Djmxcs$XnvMw@%>6ORY{r&Kj*Cfz_{T%f`j$W-PQzA)}Q%7qjseDpc z=%B%Qw^sI&dWg4)=2)oR-pPPm6#&g zzI@h-9SQ0whq@NVBT5RZXcI$`5LM=QgOJty8{lgyEqxrC^_?t2nWSs$@iuB>_ zcHkIlT}SNnoCz^8ij()(InsRIxq#V%#O*FE@I-NyaTU+Zj-;fXseQn^-ndFh>s_{- zy{2VKQ%~ld>k)wyH*)Rp#@l@YoNN}tww2Ek232L&Iz~l2W*vSnSc$>RZ2R^F?mq1L z)4fEGsiJwR8bvf)lF{y*Z#F4}yg6_C^P0bwALH z>LLbfX`TzZuBBbuQ#qpFt<&IG0`L#MG3w4m_m;1cAo4(DF#v<)(bjn3Z>nH|Vq!Ct zt$u7fokXNmwZ@cA<~#Y)zCBslc1Kxd`1l=Yt&m8d+}&8LSA~NPOXh$iB~0BOHL3Nx*2_1udC)r^ z|G15zDb?gNS;t&Zg`^k|UHABTK2vjdDVxaNC|s6Tr*!8O|0u-hio**0Zy7Y(LY)>0fvAY1) zY{7!HHE*pFQ`@?Yf$n42-bn0z?|S+PoCAAf^)n`ynXL_B>3f;@mR@u` zVLfbffLSNyJ*&LJxa3@UY*Rkn--VJgsdu&P}H6XZr1`wzvt^Qgxha zeQb-JzKnctD6-qF#4HJx(G}HW(G2#?vEknJ|2F2%*qG-X)mXewIJ;}(52m@P%O zMXW-oway!N*%R?yMjiGzD}|I6z#QYfp44K$jxxt++d%SEg7`x-+2|9!sc56E1weMI zs}7VigZ2*bwT!2Aq{F+Y^X+pD_iNj0%2;6{NvqcPN`Ehpr zCb-FXA@HvSqQUFd!ii}2q%@gw3E$W2%|C$gs*vx}ll48E4DsOGE4jkwtGTRKM7Gof z-;frE!+KO$a&{SmIEeLNnI0O+F<$BNw&)a4 zLeSI!q&!-rbOt0-c{TX0xKBUaj-FQU&_0-p8@PUgV98%xQ$t~eeUY@f7yCht7wq?Q z{fU_qWT8ZP^|vInM86DFP~^1g|5iU>5pp3v2d{fDC>&Uh%1$w_-V3hNdr9=STZX#= z&$$^Z&Qi4P9#n5DG+Q%7j{i40o!Ib#YgAe1s^yys0`d#b@w&KdeAhej#bCIMnzV%? z2l7#RKBdSO50@zLVWN%%*_P)&3#6AtxAjOQ$ zT-T(RuxneVl;!bRPjL)9KPLQr8bkbUX)B-fx2x{0KI=ev-1D8dZV2mJxW~CL0sxee zB&odr%Kei!jAJnm~0^m!k2b!e%5h6^jMk$ z=`NJ{hM=SiT`#o!L7$(m&&c>RPN&N%+w{$Pel%Nqmclrn7cg$!pHT8@!ioit==1ha z`ZC#QQ$%e3Zkc-a(_zKX74hTO;60f@uD~VcsXp;lyBsXfFq!hxOlrdGnl(VWUV@lK}S%$8E7 zJ`3FgRl(){X>=2=G@Eyc8@84&&`&M5&s}j`^hJG3_L*0mT~t3tf*ChZk<{S1b|#*# zKKIkF!qHPkexKkB_?ndV25hU2Ch14SeFz zI({RfSTJk-=3fanJxYdb@MWsREgn#@A2)U85W0{~WEJ-?-2+tGi_*7lHfjy$`)m9; zxj&oVQ1P}iCF+u6umP@^nv(lQ?~?-IkXL^12=Q}qx0^{rp!I-fk!X8+DZl^xQ{M>} zU83oM+K?KG$ZTYS$!3d*J~g(rQ8Us-`SSy57Bl^N)DAah^c8{iiv?LK{@{~qnvSU( z?r?sYocad4ZARhU5zrH)wcGU`*laJ9Sh@F~uF;x|UmB#>wS$%3DX|d%8pdStmhC5X zXCw;?sNFLq-jjEJ7;m0d*hqnnCPt?;wEW#%jnYHli2oTNDAq|s<>hOJLski_Pbx?7 zi`1r(1V_s=1S@iGanCCxPKZA&RE2zjy2(N?Xgi59a&n^}ij6>p7HfH_K0FGTbMK4# zV3TpuVj^}3&bn^XJF;>*PdPPb{^Ehc7C*S~?nexst5{qSmf_Dm$#vlR7!|Y()q$W95xyswb_qjvVdBqza$)B%^H79UWE>F~W7Y-7-u+R(e zc`hzR?7+5b+01MC-qBb-;Rco@EU3(=_1}NR)L??v`x5Q;`;TFAH_3&(%*+lG{q8nE z7_3|V5cZdli-486wS{=l{7}X`ONaR5@aII2+5kEAW!F{@_18wn7w9 z4fYY<2e$###}HaP5!yekM@=1Uf9(qmjW!1Hrlq3DDtyN-Xs=oWq^s)APB3j)fq@&^ zdvPkQ>)EJZ3Bbc}!C7vRfTDR`<$g~db%Fs|qzyh^HZTPvVR1Aqpwda)$E|GrTk_4; zF)V`3#A~l2z^lDLeY!x}Ld+=vjYfNz959!9c<2_U^JNtN1&6!7SBP_S{yYk@c$_?f z381zV8|yRnLUjPJzJfkzm;m51Fhg+E9)c@AVq?&%a&EQF1KU0E7bVxGl2y<;pI)m^ zskFQL)MEP73Tx5|i(%jN(|VG*b_=%tCdT~~sgmJyRW1j3&Ew4Ij$x1Fd?-&#J$khq zdcYZo=UG{vU5bA2=7KjqWGJCRg(bXZvbcz_AtkZmFA0m|shN-9e!SfaDSyC2;JJC(;DskwkSFNyxBUjCR47@CcIc3V_`=gVJFu|2 zCj6*en7yONxvuLMm^(I`{bFmFP$h3~`o-&E2v`x}VIW*>lpv}eKQdV5ekCAuGE|6e=I#UkyTG6fOQt zWlVZe>>rXTa-7#I%SF_7SeyQZS`qB@RjoL<#X!DejU(%N+3s@Of%<*t;3hKwR|Fuq zjAYYP@gkp}5AbjYV4h>oM7>}av#`vf??r(ZtfP2|D{(AnXa=Ouhu~8H|9pS|kW_hW zyW5;)!2Sj?`~sLm1=TH%oNL~%RD;dQ0>?VV-CfV$<*Y<~C(%{5IF93aJDh+SZR%DzQ{AI&T*S>9$rrpaRxVEFIAumfbXJ5j#bFS1S) z`$RlQj>C3vGJ&p22Olh0Ta65(EQ6EIYWvD{4BK;Q25_JtiU>Hf$XNuy$>Hrn?6!o% zRHDs#{k?m$>ELJ+fYxlH8>G5~3wPAdRuM8VVluJYGiezh&m@#9+AjwAB|@&H)oS^< z7*qx;y2w9?knOvMc}y@(p$%e}7O7-BuNB<8qqN8Q_EP4a3$jhBophL)tJl`~T=;tdB|IqW zqQMFrX@&K$Z0^LUA{z8QCVp=zFO=&ACd;!u0CI#z!Nn6E&GzO;Kd;4v%GRh2)I{g; zZ@>hF`^S1d7SH%SYrCp$*t`H8X zkAcO43H98$3VtQ|2>gk+*SMP`#uiLdKM(%_p#6MXo4xSfr{1U#{d)}p+6!i*Tm*}V z>kf~cb#oW`zqRC+?E?hHJ^&YQaXEt$cn0S>41DK?!|LfxR|E4hh|L^_Z g2@C)E{t5NI*ZrogWB2u?GP&XL(?1vd@-+;lNO4MWYoU0s;$Ey2cSvxD;_gyPaVtfOOM&9}x|=T%5Z&pa^D5Ra(5 z_ti&2MnaO4meBOdI9TyaeXHYseR^D85<8u6zSCAZYeQe|g8TZ7A}8$+^Do`0)^?Oe zlvUjWFU;)hs;aq+T|PV~c$-V9BWOP^EU2PVgn8W&sHyU2H>*y#l&bqy1pHB0bY-^D zMz?f#EyJ~<BF zGL=g}Quxms;Y$KOy)=IDfA17duk;M?e^(gQKjl8t|M$MhJTI#Ld)4=y;s4zfaaRBD zc>nRH|DQRMYYWNi|M+_N^hkp~tw(Hl(i_u)hy^mcq;7R@PCTO zvIP=@R53Hnz-WNJ%x8O4VBu%`q)@#e$BDj)pA$2Lzlft(zNlU1n1Z`OQ83~EMq#*- ziyEV>yXjX=yU*rsq=Vz@3&aDYUtTkXYUa3aW0tDhKwt?*+2p!OVuoh%y|m~Txxp(p zs5JTN*0W!nwM`C)jQO<%I`IDo13D95R#VmwN$i!}MF{sw)0uQ_-HYi4AFJ5Dc&Bn`PLX}-cUb|i~|sxi_+C!{rg(pIv~ zG8q~EoQww8nM(w{@_*rFBSpIJ>Q^Oo9@ne_3zs5~DfC`UBInd!l)ma&L7C~?PfnpO zFZQ7HUa-|<2teXZ*cB#e;vKLBeVMv#wEfpdVQGG|e!l#JmT6D5{_n5<3tOimDUnvz<;VHCE!kc( z9NM~MBH;92Rg%n!HL6T?#~W6IPJ^K*Q&L`wYG3@&4x4j=tIkS3DrstlWRH#K$R81f z>J8LzdAvI8!^n8vK}Am2%xF?p@8NYrxs!n?!3NWaB=YSAXYb$@7sMH#pZjHi5{T)( zxuix&(31A^yS^`!)vsmiYld{?1~k7v8<+0mB`|HyH23Y47i-8e?{ybAO)5Hm-p5S; zU!SR#UQ9M|UqaeXz9fhu7Xhz(i{Yc`kp9NGeCPBB^g$R8O5$RYbD2?(mPL**g9Xp5 zMA|E}EzJyqq_?s^f3{DMN_|@c|2{?Ov*lozbizr_6l!ODO`Q4PB;EH?(-@`5_dzl(_l&|?2P5gOz{mAwU~-Jb(^>l%4PNbc2HBpiAp(o=w;8gC z3X6a(Lzi8vkG$=vUSo?zu8XGe4`=N)|2h9~7}wG}JD^}!=r+m%UsHuJSH?<>oy)F? z&$Y-v7j)&hAvA@rDb0cQci#JFDO^Nm6K{W;#5n4cjt@@-N4o_?NLun2?-=!Zl&Gxb z_2=Dg2Zmt%#{ytNUMXsVpT2dzGhbd}@0ez^n#48+Gxj2N`nW>?@!KK-*dly$WI zkK@ASfs^lsuW%mv%q(m6FgfM9rrZHTngI%fjX`arWu?rM=kKb>fBmXFqmGw+sxtDF)>|pmeq%u6Ij-#a6r0NXh58(7Q zY_{=^$TQDYrNdB6z$N z&$c`cicbhQ@>*t~Zv12yUh8j*Qt5xIo3$c5Iw=0|DlE1T=ASXks@`_DZF_rnjhl6m zM%+{Ls<;G$V(!C2RYPcsVdMAM3PASVGB@InUvq6qCWJ0Twxlt+^Qw(6tAlL~I}j%t zdOJ$udA?Qaik>7XLh~@`3r@qRL}C}K4Eg)|lDq-i zrW`qBTOitlW^;Yqh;wc}!a^8$b?$4`t?{W%I&b{yBM{lZA<<+l>n3t8&F@am2lryC z?v71*V?=pLw?85t$rd-FX>1L?dwa03DsVh#r)xA42!AN>+Yry*U~Hr^y5O~6(HsnX zoVM`$<4Cg;&v*}eXyWg*q-$JVlzTD`n4GV}A6ZI(KV%zq!8%$}I0Aj2J{gQeEYwuT zssvn^cHFI?_#Kt{aw_DfDgsOpHybnZS6e*fxQof&@F{92`IHN$iUIP>4URY%%_WP_ z@Bd@v8!c^(ZI{z4WO5rn%#c%wL*n5nH?e!pFq(E@%Bdsi9kEoT_b6%wAgYmsI$Ad( z%7MVWS>62eOt<5wS4yR;ig`QH)6JUI@2B8`SR?B2!zVqU7w>pAQQ$>ZZ4*3iPNS;k zL}^F%=|Uupe0a@z{4GJF_wiElcwmlWU@t>OtIh4M;lK+u%+;HcOTQBXtIVSUjOt(d zDz(0APK$@?&P;!)QFT+=9;Uv#Aq@_%SjGOc900{35vk7w@fmnk#thqrkc&3Cr>hdq z0gibA1EB_WUo(n->B6@T=Ig(IC7wpdZo7d>JDd~4LfxD5z$1$O6m`)hRdgHOC;1U| z4zPMMe3{{^?d_FBecp67Y1F(!&TzLDExcXO50}gp`_won8uCz4f3=#d%bE7qWnCsOQjJ4tU>Vq-=+QX^Ib2UU+A+agEL|ML=&Trd{N%!6?m9PAy$hJ3JdtH7s^ATM4A z*rvbVWh?rygHbeJbG%v#IKW$F@eqOD*^eX>5k*3;!Tw_N(u?b_|<3C3NDt|qwUb$EaBn;q- zNi#|5uCn=!U!TKeQrjjZ>8te>(xf!14bAfHCvJgh6y@@*`=HJ9Y8C<5JATDp!yj+q zo1I4B!KY0b#QpRKDmzaVJ@i{LlF}i+>=j=|vD(R+fQ%RMV_4LA`3_n0GW<=5_&ajr z*X|QMR!@(J8ypliY*isn5(yj8LNdmM4QAwbu>n!JM|vtS3;grfL_lt@?(J>im++fp zGi)3ZOaEmRNAYpJ05h{8`@?cMh+YE1x+*qGDk2)*XiEO}Zry_c=eGPV`v%~{_nv0! zk72%`){>U3tJBEBz^7IP0asW5q4}ex%BarA8#AJ~>uyi`O^f+Tmgd9Xr(COdt)6Tf zB?^~#JGUGB*QXt85M7u1OC1iFcxO|(ox_gy#}RdXZ#fDbgXMu8oO+&_!Ky^lw}&o& ztkYz(NY{6kVv|tKxe?UDp~(`J*a%cXaapcuRV>R%k|j@JcQ2b z2bi$3CTqnj3Si@sc-hS3ueINDwqD_?h!hqucaIp=MJkLt=GF^Jyfx+GOobI2NcruD zg)IbHyBW^!^th&bcN2{)v^2-=gbEC+W5+d73Wy9p;9Z~9F2#WbMEqyZUKzn>lIR;( z0vt(bZefGg_R1%bB$Yc~T+Rsw$F+#G`-UH{`2Dm~)-2fPn+10`_x5E!ZRHDl z|EWI96r3+pbe=6ZM8rNJo6?It+x(_1OQ&C575=^OjVyL*zq-mM(UT34>!PPe_3;Hw z9haxhn=n~RJ35iY`72XH*S~HWUQkkA+(jh(!O1T8I1HLpL-heqMEQxX@yiQUZJ=~6 zClg^#bT?Co8Xq}@*-{RmE643U?M8xIm-Pwnt7pG$o$7n0@vSw~hj^m&RHXsw8IaA^ZW? zB0SgFsYk1nW@K@iTD$B7``S9$ZlAY(B>I1D)8dGS!T(>XQov z*p!^v1v^9d+kH?1pBz)}#P6=?*vU$?nq%^S7nnKw{>-UPlS#6`Hg^NQApx5qJO;5kQJ_Qe_(qiMC#(x&nt zFUeo-DxgJfV^FcoCCT$Fi=WI8=h**ikZe?v_;AlVC`TWbGViVzE8VH~yGe#KWlSn1 zwN5+U;n>fUKuGVIi-1Gg$AE9vg<-(L^fX00kewDqLYa)^9ydrEk|u z%q!|_lLt#oZS&QQSwrlZC)R>no^0GNCxm@rh6msW*89poj}dlpWs zz)p8~zq!jtxO3La&P##yd;|QQGhl9&ZGqa=o}Qh_jw$?7*m_EJ*>hecl2L!Z(~Jb9 z(l73|C9JC*PbcsaaRse<*}q%O@Dsn+v>Hp)R>Gdufjm-kueL@{!#PEz#hb8ioNXN31bGj7bA#7 z5Zx!f%1X9o|E1)+NaVQ!lDd-=8j;2=2>9&}C$Fca#u^9r%jn))M|k~g+tZ=d`2O+1 zEUSj!o+Ag;^9hcOJ9>WE3PeCKd^(Kd?T^&kO0p$wzx77&&jz8MrM0RTyd!eV1qi>( z8ajHQI}jF7zq*Xsx48`y7tg-?luo5NHT4Siw+MRNprPIllJ$YLJuO=CxvX9l3LalC zIYLIceM6O7Sbh}>4R`u&(ax1uz}Mhzdi=AeLvegmXrY#sFAWr<9w1qJ%^f@c zR53;J?pj@1u$XV*Dxo^bgeKPDUP5S+%;$kzj{5j<2sfF0Mc(?)iD5J|)eoD}w3-DF zwUV0=Q7w3wdaCKLIav(2-v+J-{_!*a8uA9`n3 z>IQp&rRjX{)Hhp~^|>3BBl(cph(vWDCZM273s~St63nU)gxl5d%67iLX=~V~!CvKM zX+sxdSsi91Y%{h8i2jybViAh6qW1gpi&3hP7jF`>zLb4tuU?I+pdzFa(a-*5^x~>S{aexLx_XbOUif&)~yFg zd-Id5T$E;)vSA8qt6<^Prsl0H4c>|N?^kngIhyj?cwN`JIe}zKts)oJ94Uqqx@VUP z9M)`DRqX9m7h*^%$JBYP*Ue-<1F9rH*ZatLqsl92e8KZy&+u;V&fcTv&>uRjz&3hX z?f$;h=xD$0-&yZ25opDjfE##=4m;87^t^tdwV(NG@k?njrCw4yyOk*@a_#1_9zND7 zV(8*4;&84L=ylZAQyKwt2Z&t+)!vq`wfc^0Lv~wL#-*9P9%A+xdJ?U!u(<>@yK2@m z?6-x}#I7!o3UB87eoRj=4NljKE22L4we0apkA{MkF*WrNCJsTt0&VRTp}4 zEUcJ!pKwx8_=6@W^ss0s2s5ws(9I|JUa}y(k$(krP+~EIQk~-9r~~F zYXV;Ofd(!hw+`^f_dubk(hf&e`Rdzf0UblVUNSvGAQzFgERm&vPa%bizsYBd zXA=R{8T)V3Xi%hhY)c%LP_6WgpKXnBIxkEPT7YWC^&ZP9=O)Di_foLn`chaej0RS^z?Y( z$e^OhV>$`>zMki*=Y@E3N_`mevUlKoUv^-CtSsoW`(g;2-&t)zT=T(~v#V~sW1-8# z;LQP+(X--mW=Gh4{&j}TY+X*SD#p#3C$7`lIJLe`t+y1Lqwfksa$^cwk)!|N2Z#1r zH|53q)ea(CU2h{Dm1MBLJ4fp^o`xRP_TC7@dsbmCaoG_;E_C#l2dJ(+PW8`3#&kM; zKi^Xy^g{2msdIdV+`1=wv>tVZ2QE`3Q;J%Vuz@ST|8wvLV9W% zruK{Kp`~l0U5D2mx%DO^1465hp-S{%gUra2JBszg%RK*RW^l@O@D8+ighKv7iy^2@CI+C-Md-WSB_T-ET%}Rx-H%$;UKAsnq#&ewKAs8Tj=2=`ygDQB2&$E_ytRGW+4i zg8o`TOUBwEdYT_U%N45dfugrvGokt6_3qh@C!{$_!1CYPcp{ z!GmLLlbq0Li8LQrTxdJ?%suwOOMfsG{QfChWtX0I_o0lrm54llC>oc0YE6%i&c^Sx z2t$`KR|aq#fn(?t90hNDQ!VIJCQ}6!-~P@|iuplJ%=T>#dJo%X&1*Xe)g2eC#AH>+ zu4qH;sML1?R*wX8^x^FZk<@V1)H?dVBd+b&?fEMK|LRrXmKthgQh!_9Q(V)MF3Kf=7Qiu=~) zv+qNganrmL57vVV(yh}1;OS*&BN7g8lTWXm7emSkk>@N(l68zkFRYK-JdgFTEvW;K z4FlA?iN<>4u2b5&Y4}C<&I%llVR)<;N(34yDN+dAR->tseMJ_jPovaAIRV|`D@*kerr1fxp! zrP+f*m|LS62yrRqW@~)cPNHG))aNYYk-{#1(cQTsG1Dx=HYIcx*O`^VNBbMGI^$G4 zJ7>s)!rXRgbHloys-8^s4(2`R!Q200qd+@WU4wB^x;ULOFP-EVVLs{kcK+ORvS>os zkOfCkqYqs}*3&&{!K+=Ugv$@EjiI*qBS=)F38^y*$$GA$!OLAp7(UX%%gP{t^{iLqED`eTH+%&tspS@6)-tPi@2F<~i79GIkhc1syFr9eKiYWo@hzK0i$a^IUPUlJ)-VE`gQ(1X(=+ z6YUtSxWI~OR>idPB-1~2sJ19r_w|A8b+;Fc4e%-qX?%7aYbek zfW$Mm+V`gIfl$i+maY~i!!wwb8q6siPgz1&#ZRp^h#~^ZU8wS3NUpCgH)a8|bh5(& zW2p|)o`|*_-M=~dDBfUyYB$2$KU^9Drqz-s@M1TkW7p`-3DJHLk_3YKuDO+k7}(Fd zHbEtm<3#$;pp3s<&|y^Os1gFOy`CtIwm${#JoU1L^_avmQ*m=i+F;QWSq2oH0dl&0`yL>L zQ~V*U*7NOce|dh+D>bYNAOVaKojbZ23iLC>77goEs<9N+sxLr&w$aRpz;v@8XGo<} z2Zht!*SrXPgC>x_5?^|MtpN&|6;Fl5Gv3`o*#<4K4PTc{?Cy?CLPW@P|LPWq^3QEx z^MG3cUEQiy?E3KFM?k7Z34@m5Ay*pvL$->m+3ow&O@nRdP*XSb*{$DuzhT?4Y9d6< z-{Mn4WMy}WH@1A`-R8Oj^XW*xdn!vVlwO=S@_Aq}^m!=prl~Bvo6%v*3`ex<|FVME z!qAbiT8=bTIOL4N+dbNw@{i7W(UH-bplpspIo4GZ3}ESM;W=f&RQP z2s*wU%Y6;*l#)VTyPrbFJp`ZLU1zI^K)*gjSL=Rk_zLE|q~ytPbs!RdT*Rl#%B^RS zv{!UqJQHZ79M5z2!qsi1TsjxzJG$X)IA8Xx50^s(5+{$oVTfjCNN1ij)R$XIl3e) O#yOsV-2vxd=F z%}&sn*ye5&9d9)6N<{H!1MSiftEsthCPOP&Jv1g@jJr;zl^YeDft9b_U1DAXP*HGMVIQ%ekx|dH zlBP9#01*~}ZFZg@a(}zpebJLwq-+)-8;@JdF|gx6tZ`*!2+=g;Xg;j(?1(*H_4`^q z8Ugl8`;>E!GhdMkC2%dRdn9xp$)wswo(nPgtmUx=bGnwm@TAahZ7DpsD!NY8PKvP@ z=@d^|y;0FB=H*Jj2@aAMHqnMSt>5lR!)S>y8EIJb6b{}6{6Vog?_o_DyK!HeCu}9i ziuL}EAg9ECBj?6KHGN9IicOr0RszI#3pH%Z~@SWHIDPXCvq$CYU z8&T7v-Mb7-^Aiix#^nt$)W$pd$?S?Ws5H&>oz7AZpdcf^R~B7!QqFYy5oZ^OB{igl zO|SDkf)5`UFW3Xn$T+3I71oi@ z#j#sW##p*!IRscM0=>62i9BCDx5KiNneTpc)K;9pNPR$`&MPo}kUKjgCOG4)nf%YvMf6^8AN{sIw@F{leQpDD;^)oZxCmx1wt$&A??Rcd@JN)E0FSD?oV zYY;G2rGBV|(qou@lAG7z$oyGn{|{BhlBxIC1vSk*h@Lv4htV_Oo>1%2kiDo%tc{Jm z<9$%9(Ygt72zSs4tkoKzETteE56md8Ei19vmy3&5 zuYF>)J7^EK{wBprVZR9Uc(qiGVOIobs*YCCGWo2T8;9VDn~Tm<)x>ut{1YjV-@vjL zF+`!Dei-+Fu`q76^vjW&Q&Ez}Z?fnTq~=7dHHhf-s5elNJp|e9bw(MjtqxssIMS+Z zj&{`MsGE3wec?$M4aD~N+5AxGFXA_^RzsHku`f->iO7)ZB<9UAMO#-F_Wcc0LDT&X zie0DI?G{IAelcekOS5&Ai$ydeO(vzS2}X*~(Ao0`P+W#^KsnFgwSUBzJ56_k)#IX0 zhR{pnvGoRDA@6frzQpCLGm`QR3Vy1L`k0eY+hNw!&`>N&;cjo~!Pa+(mUBf7f8F15 zrsE;Mm+=9u>aRIBV4iNt&w;V!PTvbS7MG58)0~0V#S>GB>-=KB2o(ipox6`=VZ<2wgcIVL?4*3iGOiUlz^#<-uNcE zKU{Mq>dRRj^4*orZ3@XHUPUmz`TXCZa$iPtT~qA*c@uZ5q2hd~qc5PJ2pz!SyB#p!WnpE!P9Y z($5Lhy1`GZWJf#(ODdyIq2kM2n{63U9z5qQI%TY_4~Wht16o&RIETM&An0R)qCi_m zk1N~E4Z@~>5Do!rb7<7Ya8yo0^eN#Zvh1{iY|`fZ9*k&VnE*h6}?81=n?(-ky+#HAQ7ym_kX%2Dx^jrMTnZN^3-; zj#nJL(?p>AtP`E)knR51Y`;**FmUsZjGCaqu;Wx~Kf88}%+iNQhn#wCPF;-D1>Aks zU|H~5i}(8YHSyWRuLSqupt5d#OP$7ur2+L*efw0)GN8{n4B`Mht}f*!_9lrP0klRjZ< z>MRk-MqZeUBo|Q5&3rh$H1F31Po@u9#AZ)G`iJ5%%g8Pe8rt18Uh;L`P?BI0r}< z1RW`KPdEjIW&eR86fD+&hu_s)S5)K%7chIfaOXKPlW&AE3q1V&f=>qw6)kn`8%K`W zPj_NMEyJGbOM%vjgIUz;%gl~@Nnhgp|M)!~>)kg!K@BlOJ}d3p-j>hX=e5`KG@Xcy zc{+-{JH6Ft4PEfGPK>c-ggF+J(88D2^hclkEbx4BqrWK%=r`pfv=vLUMIY+am!#2! z254yKJbZ}_uOAnWGsmntn$m-1KgbPGdDuB_#8m2bG6hemB&|M*G%kb0SdTJ0n}1L( zQQUT`#JSYDMoYfQsTLbYw7gFc2$okb*!_1pXOL#4naQ=zG69T!6U6NM&~|Nab<&BtW=y;kFN$<&F;1rdq#xYeHwa?f1^>?9jZJ#A=$mG$P2wzF@N@*!keXtF^^O5gi z2zhh#Tx4~nPq;IXw{oQ++tUaRaF4)#KE9Pl8`(`AmmbJDY9>5QiZZFOd~1fp&nX=x zet+c=t5lYjqw0L;3!ugg%)X5OPJyNZlzN8SS z;B-80X!w|?Mc-K8$Z-3c1{_dU@Tb-YGKMH|c$BcV#>HDB&cW=CMih;Ri6@%-Kp4X2 z{=dpLT&k&r(%4_nAXjvhWtK*DUpxiaa~R#t1yK9DBvU7GbQhisd5KRjC zd!~FYT@5V_6?X0qV(H9!t~0n3XdS*c>bR*2UW0RbO-=43OjyzVQl3S(LwKQNl-MwR z5EfI@6j~jZ0G8J`^>5caqGWN~vucT7s?}0Bm8QSZsH@*VG z;$obyQC2J(pYCuY6_6i)%@gIr@l< z5E~vZ9H}jxyr3qh`6`#$XD68J$=;6!PSfDnQ6P?1X5^?~WkqfWoZtQ2|0o1_FyHV` zd-!}((5gwZh}ODXg87SN?2)V^M{^t>+8UF75vGg)_Ok0>aFW~ykn~`S(^;=Yd2lV) z*JE)mfVEqU8Zji+)EktByF3c<6_?yUa)dU0^2;M7L=zs`gAB*X;I`=A2j-45aRa}@DF5hKH0gXBiD}7KP+qJ$(24I?&KnkDUF4wsp!A^0{PhCX zShnJeRe5G>MWLBNs%Q2BrSua1%a-sn^88(alk!jJBYnjT$a9p4&I=9vB-n3T7=1?+ zp$z7#tv==6-yV&Hk+`!N!FM`po|^IqqWIfw0%na}Z{xt?zQcOO#3ia2P50er#)rEr zQf}8f%Ds`sYuyBoCzUi?hsomx$N6nkgQNgv>*?YGedR@5fQ(9%FxlHfywzTR zVPBa06GDFvyi|!hOF9sIbW+w-iJH7*76fBg zX1gKnj2f7xu_0!xv>w~dsu&ceE z6#yuSa$YUF-AD#J1$mxNLrF|!?d*mJ%|`o?Vhb!YoOw4lvHPf^3cm)Mu}0Taxs!)_ zNL6J22(UQ14>f%R=CQoQjhsjOP7vj~^qqd6i~`dC@yQHJMA-S=&k!eSL~47w9j5NM zPN36wm!tSQhq7J6vS(u^&_J7c`e%3S^djrck^iqS#w;?#SfGH{+cCscs?)7ZL2F<; zV*JeScIjTFMa$VQ=N_RQ-u{fOU7+^0`Mh7rlIiHS&ul}J!H$8Am~YrLAoDn+Km?nQ z*V$r7U|=?cw@+_1kOYCf;|Mjm%3XuXy`GCU*3^7v+gdg>Gw%94!H6CYX-&k@D*kO>7rNz36WW-dj-8gJwlIL%EKh{WXcDP4wcz;$;4|at%kM(VO$ZZGXVzn5o&SMEoE@K!3=-B zDTy8qn?>#lwpoRW*1LDdMt5W=?#^LpsUX$#RX1`hai=Cb-%y>7KbE*HzBe0LBu;CS z#D3*YWtiNpg_^IKu?e;}znia@&2Ka~9k9y4LhY_N^(#7bFYWKMUSiRCtedZdY3I z@6y6_+OvX6c!3OXnS3s^CFgKP4e2~JKgzVY<({-&eyH^Dpya3w*E#NtD;FfE9vZ^$ zu+?9w8+*q6?U;UoPkf;^BCykwFmsp1R9RJh(0mDZj8z*d5dW!DK!=o3erJJQ`|zG` zWWXao2{DV0I-t3%v|d7C)13(&mL|emOV}AP`osA0hreiS!NN-RChR_} z8ly9Cplj#+F&a`>OY-zwnk?c)|M!LfB^-nluI{oV6?Y}?_3za*0sC?N<9K-)u7Ml? z76-TFQ$?73NoAorDW!qXwLEhOuHU=-UhL~@&UX_EZ$78GnhIZLT6-0s1lPQ(^t)e# zL-fW!^i$;8@M@O#^QBQViuI-#`Lgn7IfuX3yYYGV;lw|#JBwXpUWPeDomd`3nlE?l z!I?NM(!BA(qftLmzUDi6yJI$_#(dCPi17*yA{QABKLXx<(2>c=WW`KeM$6^G)~Xg^uli zi5Rm>Jmjo8cE-#PCMvDWSui9q=aN^#(i}j~U6sW+n{L*N)p&@lcVkHnY! z%2zhUGb1wuJBN-3-vS<55!em-!f5ufMXHusCwEBJ=0zD(!zu8F+7FBHd8oPMY2kHt zfAYxO`+(st_ku1@iTlsbs4BMaxZ|qoE5h*nF0rpbdewkn$^3c-VZLE=p`t?U0R9C? zK1Y2}X6b6zUA}l9*-}(3hHG`?q7eu+X)g5c4&xFBceI8({}kt;UF@97gow2F?oJ@? zEoG>yiO#o4G5_bs;+C8gDma?cH5J}*tc}YEAbJ|Oh z+8y^-+WOMNT-!s_&zN%XNkd(_6O%i>;Tmu6F)8$@u?|?b#q3GaAQNMfx})f?sb*J2v3Z|c zea?!OHO4+H#%NIY>d37ahn64PSzZnZMB{#y8aKN%@!Ga}GmjS#@J=v_C6)?svJJkR zoZcjeS*XJm`JmJgykgIhCti=McR$MOH2e-366@r4IZ}m2zBu7YGHgBi;$VY>^v{Ub z7D_M$uufB{_>X#(v#X!Hw)K0#Z`Pl!-M!Eg3XZKAcPDSrf%u`o5t}?|dl^+lG*Qpg z+*Mg?kn`miu+(U_rf~$l)qDrRz&q-SqTN5kX9-KO=i}mSVcCxxH@k*u|2c_;!um8X zJ3p^hC6AmaH`tppP)TLa3NlgrYuO~>&p)>9o75t^x6(KrkrC6|ulKq2F-V8eu}b>X z-*?Y%`6+etn~TQKknZhK1?(HJnRxMb2pd(Ch~ANXLQ-N4#woM=;9%^o>WKi}9m+8*QSY=}C-F z-w4^Y@Sv$PM_p2E;3K6vCF`u9{W5$}EfhX0d59T%Ik(WioaQ1B9rt>S|W4ZIgN}LUE@lu1aXa^6^$Mkv6P6lP+||7jjO764`OCX%AteIuGP0Ze-A+K5i`1q=b0Ji!qv@Le-FJ4i zwnZQj=(z+wuA}EUHkFU%z@iQ&MqRG(Cf5#H4q&f#(6XFQ{X;^`9Csox2!Zp}GD-xY z0uX>*U2C}}sX1zBi%@#wgL24;O<})qra*-;%|mToM0j52lP7bt^|P1FBKv^I58ll1#UB86VTtmdR%T{%567u*@JgLYkJ; ztO}5>=!o7d7}{uy5`>F_mk+QxLu@upg7glf)!pVZkVh$VM#H%9T>$_T-dVom08a|m zc`$cd4Uza06ki-Z{yJG*am9GD=G8+!sDwR0ls-!lV9Rd7GS?5QF|5#Qvt(}`V#ioEEh496}&Mofb-e^Y_MCJfT~Ii!e(`lhE4zc zW_ME+v^x!f%9wm*K%C0KFtsSxl)Siu|illJ&}t#BRj^)223UzJ^nQ+I>d5 z-CIFopBlC*(u;+7jARS5!sp`2r$aI}-fr8re-z5Ix%$!s*ic@`BDR^j-Y-{&1EHVq zxEtw<9o%|4dWuO*Srn@Gs~!9tcW!ks|A6nz+kRNZmD`7>)Vamt9Or(c$#6g1==-0= z;L*I?xd~tqf~6I_g0OPB*wNVdSb%vjt(AocYtvs%WUPjz(aWlnBBG)qt^6ltussoa zg6!cfxbs;Z+7hC@RR5!Py!=Z~9V0JVB+4uoGzXBsUg(J9Gy?wMlz}LOyIip@3i;G$ z8)CPTO9hkbs|z!}bxX2F@do2LL*qFn69qr!Py+sGSL^DO<+^W^@1^OgvQRqXK@mGV z%4au`I#UL<7UTFM+L1dyr3{t}xyVAzUn~9k~-8O(nnskpbPAE5Rm7Y$L2Bs zt71Ar1+jC6HtaDK|Ke5)+4coZ1-Dv?77953&&F{raMdP!aL|*c?l;bLJjH8($z_Tk?);J?&)sISLLv&S%U!H1Tz*9?O}8Ff1}GDXot7Fd{RWXJVpT@t zhBe5RzFEYMungBSN!%!O#C5r6%jXW&X(;$ZF$Q%EAc);mZMUH?C?4~2FoB2?=?c#5 z2nk-_G=c=-q`Yh+azAZUlMxGLn)Ccq6I0_eALJ~aJ!2hC7zxN6huGJK0?|GS5G%=r zg%jaA8a2Kd*t@JAf*!s?0eG6bsJ5Fq+dbin4$4+%f^-Fg3eCTk{L(sYp+M16OK;e- zmP?1Ku5EHtYh+OVPqcynjyMdutBDo~M?#A0J0s}aW8FF7zGggDxH)VT79geq&Vj_b z8RmSlDBdY8S2V4LLIz6?YwF}<3PX5}5PM5WOP&1$X*mD;2Zmou7_+6h9yo;og#7-U zU5AY^_z{}8l>_tcoY^@$%PA&)aUa_-pUQM5L^Jv;RH+M-f(!h|5AI%+3I|Z5iLwBg zxpfmh&Z=r@=y)7KT)cc16?T7#+9K?oYWnfl`WdUOYAlNq4iV=ZasZ#7!^p-dy3on; zk0taXF}I4!%Ce}WmfD5p7bpx&DF%jKuoR_mjPC zk$XS6u69{rZb9Zp0G~a3BGmff_Enkm;`;ewQw21#)Yc1HIU5o@%9sTVBhsn2?ajPp zO8x{2rFmGJUOr90MYPxkWq=g`Wg4 zVSl6ecs|;@B2cSoG?v0OVMvAL`4JEh=VE5C<=W2ZZ>RP@tL&y|?z5qLudK_FWmJF1 z?+S}mUUkdYS!jrQd~K2B*9J(uCC@Kuh)uRA4QDK6U~N}?FSM#?bqE5Um;G@z=)H3N z4!^S{FHB@WPUWmC(d7d*{6vyHovsw=wO?C{;#TmI@zU|Y`&3flHP{DW&qpcI)#k3b zoV~z}(Jt%3WUiyiJw0J7^Ewc(hEoo>a1N|X(+Vj6eA|WvHZmKKDoZN|1_^IMqJvl~ ziwER@7Uz)OVCD&G^SG-0EXF^_Km4z|Z>LE2UgFMjS#5l(_ZW(%7TYz8a`~Sa<+d*2 z?=wp{uRO~Sel^wm3*_-KBeUlWYlfSCWKm)}l8wa=U=7KZsA)QQ zQ^cA0fvarX6Xzc+31jo+J)ww(pSOkJd#<*~h2_UgQTV}9t26CY*~+(M_2{320xbuq zJQ>b{ko0%wEKZ-=b}~icE5nSha+H?1Y=miyXM3MQHAuUGxR|_Vq`#s+nAJKy*pfL2 zHkyVLX&cE1`pOb{)oPV6D%tk+CMgHt8{`yU8Q(Z+Br z^ZJ!Q#EU@=&nh`L;ib3H{Zq+OO4oFK11$`Y-DoaEJ#2dV|55do0dYi4wzxYC3{G$l z65N9YcNi?VySuv+ELhMG+$Fd(1b26L4{mS1-Fw?jp4%%g(@?=p!ZSX>8Ch#G%n{KW(ZFJybPxJyQzK9LMo0Cji={u?J3cISGQoZ#7UDPfDQi=lB z17N{0Hovtg4GcIr=#In0_g>iqdQgPpVYJn+{wj*J&!CICPM9 z$EVp9GUZ8}mVsl;;0UYm3(IijlGwqzz)qvV8IYu^421rOdWEF4>XkC#_oNbz0?oHE zN@U2Fwk>+W7DCYZy|vMz@bwx>#)ogY$`4WLCo4rVVIOBWyH>J$NOXQuQz13teXaKa z-Bic(mFrdLuUh6Tbvx2w%iu4;@uU~Dx?R{zNEXJAokp+WyekJ4ohXt-Zoq5_ zISnxUXz)C0(wqZs!mG;h;t`f(keaa~lhc=fj#*E*Ge?)h1H$b_^Ba2)Dp%2xF@@w8&O^!tlNAdSTL5JJDt;N zGR_;>85-o2pe))To0TFFR8$rGYn;D zb*n~qy9_0usb?>lLanG$Q{gwM*6%Z5osScYp{oY$V#Jyirt~u5Io`C?=|9@;%&2u_ zoM%?j2wXqr>=(qS>Ae;#w=g9Z;Oj?#AFjJZ!m@6hvK`~@cuk_DJOMh*-}uuv4;ZQj5r#A#5I+|B_CZw=qF$ zZa4?sfub@w+r?ifYrHHU)XT+5eBMPj25N06QepVx3EhHH8J`LimsvCmd0Ph-V|hs*;|x)KLQ;>UOohgBz40X-Q`Je@L~+-S|p z9)B^6m%hRj0?7`4l-y-18Z9pP0w6UoC~+6Wnia7wJ2u3XnR{7`O&E&BsM=}zk5U*pSKKHWpWK`fIi;(9rHZEt zbhiw4DWt9#;22v~4*istt@>Rg^mIlWZ|h6Q({6+~>i{Rv6RTv}_a%2?9C5IB>rM>_ z!C_ftR^p3HDxx1I(e~sH+z4UWS11AX#iL_9ko{awuFRbNzgMLM{G0~DAhPbFGRj8* zsm*<5IzB!b2A~Tp!Zm^rx9Dpp`OLza420e(@67a!oia5>Keg#Z!G-I`^65KH@#!mY9`rtgoOY!qCsX!x~gQJs~UDdD$qs?KO~YYkADo+pK%h z2pAYIiy@RLuH9Ez{zPc(7x7bo7u%Sj2uMsu$;t8Q%8NCbmNRMJY++%h{TETB_}TIh zDSmN1;C?;T+>7g2 zS%s!*hOqCXl8A3FO+?v!o^(2fk|iSkn6*8yz>$nw_NKeTlC|-xvdZ>Tw=8Wpb0&$E z51MK%9ZJx$PBT1+OSkgzmg=c~EvJ0U1KpQM2|OK%dmo>vM&(_q%?%r9abjj3zyUis zuCPH`=^Nv*!yhybcUE^cK5WJ16_3IbAD`q`@6h}G7(6^bH9x5%ap-Iy7wo-p$4Rtg zuI{Y^z^;+quXE~X`ngdu7ey`s!pE4t49G@Y9YAjVSKoq^f2~!zn<6T~uxd-hIWl?U z#hDljq9%S=`^Uwg^GDjkD`!)Y`41nioufzAIlGh1h4+kzHk3sdML1NeJ!Q4St<(4moEuJ> z51JoxslE>xGL4bzZ76A|Dls&3U{x|;;@dT!5ETBDb{#k_$7P?%P?wa0W#;)PzDkhw z?>7(i&rbB>_bx>!j3q#C$4mOS!Ra!<>`i8_i_3X`>|xdb`R9Swls7RA_;E0jcm@iW zYOgP8%NAcH(#YQpOMX6C3f90N#eO)jk-CQVBg|cQ4HAgocl>(gRF;`$0`|ZagkBz- zYTZHLpYZvJ=o9Y9%te?ocHJz>H*1kl-*JP;+Zw21WSgH-fVJ3u+>Xt&cO!LjgX!a`}ug#nHD`J9qy zmmNTvvkhc@`@8UDS?cj2{Yg?mre>f1sZFr+Dizvy15z7mf}VKKCEgNv&Ym!?k^p%J zRVaaHNRCO({}$X&`;Ma$aNk=afJf?2i^xqau0LbkVQ^++{%Q3#rt8Y+t>})P{Nx^J zr_WOu3(mWQ8ED;yxd`ZilK+UJ7Kohw7N+aZ|CyU}f)pXc;8Q7HY%BDVl>h;lq}+7< z`^Aseh2d((f0lqkIX)}ezuESfOtvYETWM>3y;ecyiKU;9!gQhAzW;(Z8i#^ zY0S$c@g(;YwE-Z~VU?~wvH!5M%I)6t^Dw=UKwV7Xu`m7EGk$ym|wd@lB2 zw{5m+ExzR`#1*s1Ddlrk4UTOy2zmaS`_Y)^PgLkmZd{|ZCdvx3<)Q0yM9;G&>6YVI z=*!}!V?cFKR`?4PJt`g?{MeWX5iQc_OIbDAuAlh&f|<+a$OT#>d)9G@zO%s~V;pzf z-G0Eg{`N2bD}ASKs9R(u)pK(=6bg{vVeyL@%5!uL8WZa3<`6bAF?yH~X@8M9p8Eh4 zMmYyQ@cp^#{sT?F{=H;->v_iaeh~IAzVB1L@FN9Up}F-!eTuQ+Cx!F&-_tdFstsD8 z)nu54tm4qHS6@3wX+Olf;v3}dQ`kmOnX428yDtnbq0q=edoOnl zy>LUf)(-QHQ9od*tOhuwg*-dota~Y!ZY#e=3LV_fLLm<_uEk9T+Nn%`E*XP#%iyN| zYbfPbmme96L5}nUlU(~rPIP_w0|lw#Ci_@62p%{f4ET+Gv#bQiv2c@3fy9%LEkCvf z#A#_UpFkMm)&%p%zXv`*1~^NTeUfxC;rs~|9m|flSKx+zJ8s6XCFK>P>cTtpptN9x zRZM0pZUJ{9OStx+l%5pKSb0EUd|3)K4>^Lnc$<;sN3`?cslMce?rB#HjjJoV>fkRG z!1pl|FNEW5ZZ{{Na};LAi4mgeuFO^7)o#S={|9XWqbXwa@L}DP$;c6T7Hdo8+4!=$ z7$;8`h5R#Oa*ZPwU$19PISRlV;H>Rj0DXv3?8NHoAJG7e!JG|7<|3f11=~Sqyy*=} z>>V;>Cpd<*kay*|Twj06@gs#*IM{Bf*Yb*s(1usKsrx=x?=A-;NUKX10^>#hY+F5IxrpMi{nzEovrf^@&=^rYoUzP(b|(FC^+Z*64;r_a3{kog|xobc;Ky|G*e~feo}Q zSADtT!>-aZ!(}$d{>IKb1vho`wa<{&VA@_wCO@y`Wt-^h+cd)E@W~I^U?wQK&AV5o z$E}<>>N6N=BG$Z*jh&0pUdOQ)=jl$cqbaXcsY%UdwL<{Fe<;HLBz_r@f~OM)oGDWV zbOsX3uz(2l!avm97e`u&l(M2^tD=-`ekE+PHwHD7^OjeB*UE8oT;9C4V$SUdfgp{} zk*NNi=I$dr$)RWe%yzdaF=x#K(l%I-RYL>w+Hgn=18t zvf=W8=nTx$$8ZfMllB|CN>Cc(#X{CN2U;A>!-J58i84K!&eExsA9T)-?AsQ_{{BQS z*rU&)7RyB8;eC;s`X5iCk8Gf{&%|oi%QdHm$RfEV^8cV=7!O(OWEjfYhjua^ zp-aa&$&)q;brb6_U2j}C~wdCZW5=9Be*@L-%fe_;Uy^`Ew^#Xqo_3MsT=L2kPvNP9|_+b?}@4l=68z|U-E;H4Cc z>)`2I{%^QGm5~_`?&QBIqR&VwVzfMu79k&UDp-*l6yYc4+IOE2G%KQ%!g-~{f1;=| zQ6$00Z4p28!;T!1-^tAH)tESq&Z__Uh*i;rGcktcbr^u`!IG`l)?>&pY45(xt=q%t z2OW-tvN&(6Mi3H9ph@^cFl>sbU2h5NKDeCkeHG8a-^686NxM|l`sIb0n3=dx|Lye` zV|?syBemu^E?_g@;^ z_aO-cO2GdUhn0Y|Au;3v#RWC|WIevm5D^`detp|UplyQsL{z|~{F}X^vp10RGDNzp z#Umi8}?T8LEgwscQCu`3~zm zkQqMc``|FT@lx`_)D4=A=786G+e#FedDxi2Yql!riDlBAR-}b#7+0h@D|{4s z6s^7!Dg_z%)gRu!-M@gyuDx6>>vCd8>sN)UJy~%PdMti$(zDdg?TzP85YoQ@ONuk^ z)^pP+lG+A|IpPt$UI)_6sOOELvUY{)PyX243EDR&nhOn~tjSajAYFF<73CCIV)dk7QF&5fJf*FfMl4&wn}?yvprl4#a0)RT%j`P9cc@#Fi3eZg??D^6mPSB8Fixa-0nec^XY=$(LWD6pd;9iHE5f1Odw z)}J|@Q=HN}VsU8Q5}Kc?mH*e2CJi?Vi+EMqz6RDTEM%P&)xTkbPK|^tKq`4acRYF% zfsTBIL7;bWYp`UhFps$*+*0By$fL2|T)g1A+nWx zl|mL0Y(ooE;Ylf@;fC(5@_QfED`!8G$;Q$$OUDlo0y;DG1l01j`$VpEz0;S+`(h3% zn53Z7%VV)kuJs&>k_U%@(Z3sBx=aUOmGzAV#c;>V%k&Wy zIVyzJP+(ssipjP%J3mlkGM!Reow>kzTs%ziJ@0aD3dO z^M?V@Q%oZ8OsYAHOH$5tmP}Cn!)q}P?|sPnT@#%u_{}l}45l4LYkT@ZUzy(o-jZCH zS19eIM5~!iNt1-#c)6Z2bq<$kN}hk+7@Q_6sW~17_Wdyw=@^WkTyaWS--$T75DY(n zM0JW%1mYDnI3qv>HAcm)ppRPwb-1azD#V?46@z{HMny?Qo397bkFPNW>e6$_VW8nC z4)4E&Wf*TTxKW&$n4W7knay`$w}4(IDEK+19vS)b0$_d1klQovhJe2 zhqJ}dvk)m8oFT@t6C&DWPR|Wf};oH?0*AL ze<&)eUZ@zya5X|hpF1V{axQS=s9UZiZz1LAl>;nLOoF1?iIzEnxg}%y zLa@HOCik2v=rt9Dy>wXgkfU4^>n*9-w zy7p!K;}S2sN+Vi1upnySAB}PLkQ{&7Ud&3a#<4RA<15MX-fO?Uc@~*@he#!2<0^_v z!wOiEFohaj;2vu zgZ`JIzoSrm8;Lh#?VtHg45=?t^={SAT3g8J@&5r^#t5%{(Y`&Xh%Gh>8g{Uytq8F> z0b%2|Vv*2a9nH|oR4ISr;UP?Qv^5_QE8(cG3Mv^fXMs(+@;YyXWB1fs)dnmymra__ zDESw930!d78J+-FWrNdH0*n(vmXnonN-rVMSLM>zIOLmD-AORV&eZfyQfjKT?2V3L~t#fvzC z6*XXGX~1^@Wz(E@Gy=aHay?0dgl5Nr?Vg5$?Pt~_eV_$9XD$HFaB4f6v>&b zT$P1a3UKu3{a@u}sx@D3Qep!+g&7WRkN0e<_bYFRg79K3HGLQ*$!V23D3$AgorRbw z?dQQ3Ip^h(R&CVRs^<2L4L=8g+7hm=N;DSuv~AQ}|CHwoK1D%cZLeSEF_S4_&V$NI zez`rJWZ};~Obx0;4atTLkEcTrv6jK`vd98PV|KOT?T1%E*dJC2*~N78rc3N)*7Ku& z{>DB3I^-teq(ENH8Jnnz>{OliIZ9Ry|6n328WHfuReS2&1u^U5w}P_qj3P>8`%X8w zjoflRW$5UAaUQjmdY7IL|8b4MruJ{@&)(xio!{4$-iY+?{fG-~D=cBmv|WU|>Zm}q z)Q^8D5IbM!V*THEv=4r^T-TZVU-+H%@7y3&gDnDa zi?-72?r;Z(;?0A(QWFiD9sjXmJ@2}mg8G#u>12a3%anxiI3LKq)3e@-^d@@|4jZNCWv{Tr zVan`|2FJWB8cQYv&Ay#4PfT6BlIp)dz#O~#XL4~leRY(i>bie3qsFykNSgmo}x zp-_Gg=eO$&ciD4p=Em|bWfVOF&i$u>yBOh?e21S!f#gW3 zLNsrif3XOi)Wm6$$Ke+~J-eh3Bi~{HdpgL0t-wW~LV+iFAm@;#}N#Fy; zZ+gfJ8zv^}+pb?kl|63Te~ScW|I6yGBK+&hd1O4S1eleSxy|>D<|7`VrZC$1(d?WC(IQ zjhO30(~~Avehniir&0y>lsxj3YRj^x-wyfocy19ZQcJqMrr{dYr>8bxq5NNC)=v_} zyKCdR)Wl9zEcu!@>#j2w%$p7*nuL+>sKn!{WP7;Jjq2j@N7LnwPtTo=19#~uPKXh1 zTH8@o02aoiZw%;z=gi@pH>ja0Q-+3ybEt>Qm$HHa@$BK2%rXiJEMvEg4P3L+%gS;l z`Yc20D1fLfV#yEWmvzKESL-4j*_I>bj@B0T-?ACaYoCwM-d{=;oxS{=x90kzK*Qv^qAhVQkK|%8|_IE=HK{hJ1b*dP4*|g3wtXaB>;zA#EHxD)|RQJ7nBAR4Y)0drFTy>aR+yhVb{Ys+QCyK)K_%4;TNG zGLG?B6Ab*WkU{{sFO$Qhy!LEcQv3J6i3MYfju8CU5a=d569~B(Q}2GVWU0^BO{7KK zXsNi^Z^wnb1qW@bM^2}0qP6Zf8T>bIg0rpOr3o|sH-nDs7#21|teM(|6Aufb{pX`V zOAbjpaZWb{JM{%FoH#ltMu?(A-&#WMBmVT5MPY*hgyn=ofant6Jx}c1UhvXYFwP99 z9J=HEI{T|dS;kxQad0D`Af(5rYx|LLUspitO7K^|nN%{-BG=hTxMy9ox&rC2DlZqy z;eK3RU(jg~GSiAVM851TR(d>Zb!V~;ca|%+K2Re%3{r~xf3pqg;#l25CfxD3@k!ib z-O*z!Q8Y;|=Tf|W_-X9nm08<)=Jw>i#vW<$!k9j39%l$&`0?FTVwPgk@E{m%<&|v& z)Bk%K*xNdDrL?NNxT-WYZLi$Y+JJqhh5iheSEiMxGrF_!BN(LU^b6lJhgKV~6++&c zV&F4IxCy^!G>0YtjiW)bn00U=?4SK6miq_INMD%E)Q_`z>kLY~iuMG+G@YX0{1>a~ zyBP-pr$j;RrHhHE_F+?{a`s8;)hBWIIAZk@YbxI_gO>TbP0L`rew?uzy?kEme=dWY zn)ecM){AhvQ2xB8(zrCPtjQpe3lm5`U-|&pj;XtU1Bo}on z1;O8>G*dU!wJYz?QvB?iaB8+$F?8jYUz?ILpTN-x=m*Ax5ZEgn+GMjse0!}Z2W1n#pLVLb=ZWT6U~vwPX5 zY(IiCV?`TsoS8}UhJdrQ z*<+Dk0-GAMN*#3Lb0DXVYY=xslZJ{0E^=~lnfsR}c?_)Ic(1Tzr24E7elYvWU-guJ z9`td(@;$KanP5|b4u;kQO@r%pmaB1ek*Kr*bBel+_-ns~yS=gHWFTiHzpOR{S%RdG z&e&t5J$^m5DY>!O^XAQQ)K3f}iqI4IFg8suVWgP~L9I%w@5`u2~b6^jqDJR$1a zt|0Upou7=iz!e_YJA^p??lfa6Q&DN-wOfTKxj;%I&{5+(T7Gi>5cXR6x?Y0NcpMu03~HV&BX=PsKjD);mI6d)Qf*x_2|^k^3m-SFz^ zPy@{8EiRz}Po{Jk@@xlzPqHqvuaElsRxyo{yAjIECIzWe-Hrj6VS3yZdG#d0>cqg1 zO4$_-7WhW?n9LGMt!0`W1l%@E9ru(pz(P)ULI3A}xRTN269#v3SK4KykZy}T!UNT{ zS&oDFP$;1IN*yFR=ZDpVD;W6k#5_>TN-)7gKS0vAq!e$qGz+#hR`Sa_)X$aJlkU}r zjVU80sD1ZP5p%*dH8eo{W{~hi8GTuQ3xwsYZ-k)4LW{%pB(*qNXbLx^3$E5 zqP!MTjba6bf{_nlMfVSqfg-%13rGcjc2EumLaP7}okZQKX72BS3@?hw=ARk?m7wC3 zf+{b>sM%;-om3F;pL7`fqT8g=r!!-1d?_1ajkyYudyY}TWu!ROSst2^h~K)&Jt`i# z5g$k<&q2p<;#n<(6!yA5x1CO@?r}Tz9BRDp19AI+krD;eNu`A4HIS;P9j9aBW43OO z9PJ52htAmNyWfF;z-dE<*x+j4#)S8`&zRsqAwOL(p?d2|)UFpoSP?{gFN0r9jvUxWnm3;K5b=c?Ch*R0KHCkN zOTjK(yQ~Ip6L#nrpu2pSY@}6@FSgd3csK5Z9`T^5q^Zek%-d@b!RN(FCD>`M?OU;-kwp z2AW61q^i;vAyG!vygEHCARjo9lDW&-S6lJMsIR5r>L-FI{{6$=&JLlqkZi3Hp+W`Y zz!Pc}C6YPWv}s_Z9i%l$mZ`=SY8_NtIf*4XmF*b0R9y8`Mkx?{eZzbI&T~Be-hBl| zs(7ft%vd)*1VN`wug=&05b@nSdl^co+MoZy?X;4`E?U+Pr6R}fCZ86Zv<815XEZr1 z#$=Jk1&jssr~?JLJ8ukSZc|m6b?>92+&?=V|FemiClAxNmtMK2EEk`O{c`6la-{8^ ztz9>@d}GOL$W`sZBTHI}$on;VQBB<57tP+_k-&f~uH6&Y-1KfUhy zA=)tt>1?%xMNi!3IkU1tJ87IsP5Q4KK{)_Vks3e_2nObK7X&mOzvol{EP_m)N`;^5)`*0bddHuvw zZR(=-@!j+G{-L`_3A^@_y)w}Uh$x>0_;S^EK$cpLkh1xwkmSWNF>mJ?X>3DIgvxk( zFtd0wv7z{AfiTfIjOXXrUy0U(ps9>pHHH-AVe@2d6b#HZQz0RE|6RxKA}+?M{R zf4~JVbVl}el+e@=DY9Sgots6C@dzK>y1WJm!Qs%dS#D#~9(a=Oj%eu+$7;>ZA>3z0 zQBBAUN7MF9h>M_A${6$e)f|=lH73QbRK8l6$kd^I#?5k_RHv~-FGM_-EXe5 z+22inRTJZx-0G$?vDF8|L=QEBP{L6&O{}U-^L)iuiqsbza!k04Yx#f)ASwl+dz zo{ubQcVH7WgtR3k#TRT6QpRt?Yb{(aYjIC?a^NFqtR;HHdqF z6csXP$8_mwVbny@xb`3Z#wl3P;A&FsDk@Ec6z(Tc=92T08&LnNHXa-s2M(6~pw@VXIMZYIbJ|oVGYY(ri_Y!}HI;Ce&*P5o zIoQCl=lZMOnPIesmW~ZrDjaxvWSrNQJk`^gbZO0K29t8fK&^YEf3F&E7eMD{^HsjH zj5Jot3X@A(Lv!c~sjpl`X~%}sOQSI%egQ}CFL$O^6;(!AP9qm*(n;<^edXq2$%G+m zHxcG$N`c?mNED6EK?irO=TDgb2YGpsrTM8&`P4UKZ&j`z1%obXy;s8ik}QiKtQXh( z_|xwf$L@OXjVpkW#=hClV(%$N>T~C&Qir}F^Pg)Q9*bmW(Eoy#M-!jlEDdtTYumUz zy?O@1jOFx2HS}>;s=Np>-w(@UF&paacwHMrjhHF$e>46*C3Gb5+_=ac5P6${&hamZ zupDJQ{|Zusrm}CA`>HUDBF-f8@>wpq?@>Ti&&7--i<`O^ubXo-N7Tnyot+!!a_r*o zO|owIm7n-1*)O~I`;sG{YzT#tT&Yi7H3Ww$B5Y0xHKUj<|7y;0tE(I&*H22Dc}A6X zMw3L|?KA`OCtFbkDdH6%7eEXQzCCQROJ6p_O$9+gG<40tNHEpD7-@B-M8bh*X3FlN zeSN~>UU5aVJT$gnonSTGIGSHw|2b1ZaL)-++Ed51W^1NQM$h4P6(aAlcR~-SwsgT} zOy1r?7^Dm}d!wd%DD)=XWxxDy`QKhHG%p(`M20^4yGPc#LYpx#%cYK{O(RUV)Nqsz zt9;^?Sgd1*D7X~!`sgNQBG57Gp`bO-T{EfDY#S}`1G$WtvTu#AEm4xlk zqoJfoI`3jd{bdIe{pM&sCaSW?s=Qcrhd$kC`7na$0A4k9xR`q z?7Y*s;m343{ulh948SVUT2(2j>5`tymcZsJ5a`Rbc4eKzLNsKsQL6Sk5oc`q%A*O3 zf6--91eTQ{T|9K4dR~q2TyOdfF5SA4`w0;`Ym?)8N>D|sH;%>gXWf?XWOwlOWNNUh zx+wx@A2`)@31O%3`j2}z>F7oMfiI`KfPr1jNq>c4&3`dQR)%w822iDPWX3*EdT%6EsNr%br;Q3yvOs7*D)BX~b^J z8#;)ampi?i<<*&ecf?{4czgoBZ?DV0h7bbhKG~-GyoH?uokp0^Z6ZXl!_l?QH!HQL zi?JsJ6X{=i@@fDPHwj$$EG&&~MHg z{LjdX`+&nYwFXKjMhzO$Ci}ADQg*5SS|Fj@l8<9bRnF;ub#_J`fOL~b(7&50Gp46U zq)zr zRGW^D4Hz$;rWIVT$a*0B(j>02VhV!K^ZVoaxeBuYzoj-X_r*7z{KYe|$0*mbpYf-YrBx37b!S64LU=h@7B$7FzZ0vQvp$4w zX$fje+L@q2{;Wnt_B4O@*ul^*X^11ymX*qql{1rk>?^Z)BjA7)zT>N^Wo|ZB>|#Bcr{Ye zCNex;49m(#r-TJ(Ns3iowtsqJFxJQOO8#h@*$Le@CPKb_>tM@(S;Khc_5jU`O-zRm zjT>)aJ__P|AwSU9c{J(tVH%D-?*neSHllv2{VOycZPEGX+M-LsZ3CCSD-fWdy0#ddu?5#V-^&|iTEdn{Ii`wIdzAherv?$9Vy!_H2+i4L6=uWJG|k4 z=v$`tjqjoyul zM;2-9uQFPb(?ydW^-@}ev37@C`Pt2DZ5s0mqd>hKwNRIfvvGrq#rgQE)y4Yrx^RFb zEoDJZ-{JK1it@4#+;^{-S={OJ6d{53`j@cu96A5q-rdiHSg=gRUm z?>i7;X51urWuOdQq8%gkaq;h3?XD)}gZOQzTn9wNnRSu1tL%2Vtn4(9^z8<++fwX&Jb?p}x8TsYgC_X^bHo9AelL*^-x;X@dA&}%kD~cz% zTm67gKF`%-?y)tWm4roF3~$RSiWk^~(rtw(?-Y2foM2E4VAFyoy`2u$DiaT4D#is2 zxPcm5$(RC`5@5|(0x3kxHS%+t0Z<;mv3YU9A^7esoO}&bvN%gTctGAfbOCNzCQM1W zdk-2_#a3UQ0wJoxHL%2F`onRbVeK+h>iMLy_>>TpQLZjF1qzI#Wl7$!Sx9XQ$+tOT zY@IG*#;GWd7!1VGZEU`3II)=BiW4Iw(ybnzJW&&s zM8=sb4G(rM)QZ{jNF9o>ZEG0CeeplDk+IYn|Fc?Rp5L26gSO3or+G)S2r(?T6i4l= zoH6OtPoN{uq0&aC0xo5t^6*#RU7{^Z>P?;%Ip-^E2C9OEENxsw3$gR&yl|TM<>5Au zi|A@+;63r+1zHOj(etLe&1(C!I}pdqe35j&iy}pZW97h!k)w-y;$Y#xMsTCC#z7az z!eW=1T!$hTpazd%#EqfZNt4D_nju*&Bl`IO)L8{2QW4BZiPY2AWL7Z)aJg_es>Cd3 zJxdJ&VM71gx>0C2uME^ zrSPtoMwl)IYcOH4q|qro?%#Z(d-)*6oBXQJFnRopo-|1349jrMJ~}NDivoJQAbUxF zBgCft#zIF2L?YrJfl!uQFn_(dvMCKcq9*S+uw@)1Y7cDH3lP1^o+y!E^5#W(@yf8q z;;>eZ^Wd=xG(Pm^MTnaOs+k1K*#xVZ1j-c&;Em!!7n52`BR0glm)O}U3-Cit9lhx( z_Y_SR%vOAMi+~ctYP)S${b1Ceij5^^2p3WnpOH3J{P9FC9W@;-iXIV zMp{yoSWWKyW>HBODAiSBZX;#ylQMoOCHT*JjqEE1((KL_(-z`q@r1x}>_)Ct*rh}K z5|WmNY$dDrw4ZNVUHsTj`CdeK}vL-?U)$$PyDpW)aIr7qJg7i4Rx$ej) zTK*AW*a0kcB9fAtf}f+o7yejz3*}fi1)n2j;D0E>r$X`mpse7=CM9J}7tpKG(Rbuu z<2)*z4b-6#trp-ep@ypAmt4f$tK$%m01CdSfY*lPM3wkTW>s&7$OqPND-PH)rD*av zgF29I*{3+m)j|QRNURii)~^1ffIy7zfjIRDmGSmHOi;nHG0hE3SooZ4ZP99?Z2!HU zK7x(ZFBpa_x_(%33YsEw5C=twZlx81?9zeLtHwyAnI7xL-aS`Qa-8@nx*rLzS(tGqRN z8WjvBW(P5X2AgDTvbG7zr;j^@5F<#4&y?NHJy=PG4UR0#x^2#R+`NLQAV&C-spAH! zrGcKiwLZM{h6+4%{#-dv;Q}7|!+-8-=_=KnjR6%gtyc=wsB?&-ZuJRf)*8CZ#3e(H zlIze^xjg<5iUww~6#frTI{>Z{>M((5m>!1Bv*vt!-5?ms67HU#(M~4?2y%b6c5mkYy0u>%P^>d29g1j{GmQHgadKU9qp>NcNDF9!?SQbROyo)iaX zYg`}j>y{ff%}3veAMgpLb-q#qI$uX4SBx9`oJ{8f5%iW0w0lX-hP6bhKH}!3rFg0= z{0}QQ9H}?*zaOaDD_G!(BCv2EUOKev82#|9+jjXn?VR06fsPB7pkf6hRZ5Av#Gu1J zXV%)f(WF&Yg^uj45MV<7D9I@XVE!Uj+C>*u3f&=ChoyVZxo5AY505Zr_3&{bkSvB^hguX=Zv$fqJT}I6q(Z4n>jy&*BIro&k|~Ju zLSYrCh_U=N;DHtmRSZKY#+cJ2J+0~!M}YRY90szZt1!e+l>8MgVSp!s1qqv;J9ck5 z!uz(7;#<6* zvj0J@Z1|swZ zM!;-Y-(%3vzXj9faH2FK54$6IscLW}tk~{TLMskh6AV3TYVw87m~QIGYjhNNTcId! ztW-olym=)=1Ix?p8B8RZ&TBe^ z8pr|ip9fC@4<3&^R?03JxiEZz;zO&C12dwlH>@-5#AjJ4R#}v$9Yd!NI?SY&TIKl~ z<%ZKp`keO+G_X5UVoZ=TY=EZs$az79*SaOAS&y;;#!!=ROB9Ku0D)3ZSu7OwygQWw zDUg;7+sWcHLDJbowFER63je=N@C~Lh6MZo~H+;4kAy&RpGExOSYs{T~s0|ie;~1Oi zE*Nf>Fc8$yrlMU(kanlJNCE*#%z#)T4+>NyTefl^ieUyA_wNFha~;L0bYe`RrzDt2 z-?`y1?2z;rS@c*5;I95`1+%K4n#}3}sSY?)o+iUlCH>rO$g1&T1DSe52~ ziRS4wo&H>{)?@6}ySmlg!^nB}z0v3-p5Jy+he=?nivkJwgEYzt*W??!AlgxB{(p{V z(^=6X9K%NbsYP3HvpB-%Xx+r`8-WTdCx*Wf{W)Njeqy2yj1FA^vxvit7(PVC&-R(l zc5k`n_ian)cfju08pO~Z4 zvWmt`(5qSHVrxCL4Yy`t;}{u4j3{={=TbJ3)A;4kGIlsxLN*Cm=885n!pexPB!8yN zu(8#!mS1JXP|QsMFc? z0`>8XTwu7rBeji?HXL{AZHO^7ckx1%G&&xA-ki?dRJEdLl@N8!zacJBXXO3CYAJ7G z7%PlSq#u0IiN_GlcF}&3@(w05ge>@BVS9(>yU%XRSoD|eoHU$hk9TeYYqzfNp;V{L zmi=d#RjD0oBI_I&#kqp=&Mj?Z`U#Z+CuR;FAXy~EoUGVKm!xl*B$PfvXXc3hx>{iu z-_uMi#0pPuU5hnQK~G1YWz6iGeE^VKg>V1D#e#Y}JIpFwkQF~TRNSWizfSWP3mI(d zV`j3{sMyJ^)tPCh`QT3y(z4Hc|Jg{GU1Z&Z2Ka?d>-A^1QsZv|2ggO0R*j@rzgswQ zosL=vfvKbnR{GB)I#;&|W)JpOElR=8HwV-^-`Z$p8SA~pxybz8>laqeW%Od9i^t`9 zUigOoe8Eg^jE|P(Osf=*tPWtldGcfmn#u$76&LNC!drcjW%JS-xA!o5%#?jON$w~q z`Q-8HH~auWT~7uNY!(e#d|~x?PbRMQm#f@$UPBHJ{J0^2yk*2M zv)5^$6MtZ^GPPqN%U4WAKvk{`RKnfJb z=4{r;0s+H?M}2)(0`({CNof+yN~fR2y7|!2LNy5abd*FR3qw`UT z3Oy|vuPnkNBao+R*{(Cwg4Phm*En+0I3|2EQS&&WqndMP*v4RIIVJ8g>M7G-mwzd|>bU?BZ2DQZ@%OE@Hx4 z)xwKPTi8AlGE~y@Xn{6(M2FtDLJruzagZ~ul&&iIqOS$T#LyG^>_DDyRaj_NX(OQn zJa6_#W99dO`}%4jtm%N{|9_bKs;H`>HC!5$RFH0@rMpGCOH#VKlQoSCxr3mbtnlC6>m<7FncLlmQ^_P7=s7*Cm#BT&x6v;cB>K#WVQ{8r$|2kQg zP34aNVD`|0F;$RxyY0t$w|@Vwc=qq3ReJ0k^^4KBqn4b8636zUfz=cYE%+>}k-sf# zbOb8384=-xgZ_5C7p2SrQ!Jq}Bs`&>_&qlZfq}^M?I+<9M|8Fc;^(G?@Gh~RgfXI? zafjLWCW_X>s-!{F=Ob}ayCV3t*&6Ca>RP_!0p&mg%6g*@!r~g?0mfT z=nMDw#5#kX4Q_t-%h$7h^#`#pWnE7mXs>ocSes4`Y`F;s2+3zjgrSD{ytr-aS$lVr z7Qb7t)1^9`fHyL+y(nu_tb`N`f>7>055{n+c#) z_W1H6?)PA8v;z&&CYt&)UukeMC6usPptK!0(kqlMvN0q<22Ojp6cyQjg_!Oy44e)X zO4fMhm>H`*M;Eg%hh$C7{PBU$#o91Ik0f2vH$s0l1*uMTp?G&~Q!ui!X{7g?YvXno z-z(=99{m@8WyD1^+7a)@Ws3U1L36Kf7(fy=V#ZS7k8fzLc9`~$*`;d8SL+Px0YYKDThczV4+Ehc`b%o?Kg+?=ku$kM-~{ z#n_E_`%a|V^&rLqm%+i+!lx%Xs%I_Vbagr7;B?zvAa`TE*;6ie14>Oxng*;(V)TH6 zes(Ls(v^g-ga~3KsDJJUqJQaO?$*P($6|dw5vx#zXje?65p2{)C~_4>(Ft))nL;_qS2+j0Dt|}&nY!)f>%j+II?ipJLZdm>$`pPb$sGL{2P<0N#ekyaChM2o{9kq-`ImVLQI~Gu zClUP)u6IlQu1DK)u;kl9EAl&c)6}Mt1KS%VYzlb6Gv)%sZnoiudidwO9O*uv@Exnj z?<*h946^EX^D4YGUG(C;n>NuXQh8a>mYMdwkUr^wtuMYMD#cg_rm1-UI=nrzrwU!J zGmxcan|3#B#vB$~NC5d#u%ey%nk->SFf0_I5-kNfm!ptdF)6U`i)mNjH0iJ3NX^4U zZH~NYA&w>uj|5O>Js5u@vyh@?9GTY3J8f$^Oj$Z@SvpO(eLGG4I!%Md4MGODeRqHJ z{`_gu@csQFjB1F#swD$lB%e8DK@HeTN{Z0rD=)?BwdF%gDFW0wvd-%R)GR~4y)QWX zo;4Z`_ujA3|^(B{kIoyK0YSGx+vfoMsoN!z19Uc!&k84@JD)boJ^OZpq$ zVRn_oic1o_pz9>9;FPZ!N&54+{zsPOQw4=ftE1=kmyC_4HxYWA-y9Ar7`ortmaV`LJFi7lr3@Zu1!+ z-5u7gsOEox(q{WffYkc|OYDw{VtS1oPr!>$4j+f&`seQj!_Fz96KdRJjx@EPe3DfB z-z%!r--RQ=O;PbRxaa%*h72-nzD(rJl=)s^Uw70P?aT+3mre{y<$TqOMU%fR7ax~j z(Kzxf3ezSb`)39Z>j%=3QA<*NX6e}l>weoK7i9$AT#0t-n(4%BB2 zDluQ!@Q!EWFyeTKl_+{h9W@v`;@I>*%lMIzqiLz&zULJnEr3$u$GUSQV&PXTQET-0 zAdILKhcL=bvQw~|8P)_xx9*Bih6Dwx5wP^9iC0rfgNfHlv^6Y3P8_wg`L)c+Pvr1# z$Lp*kr%J!R5>gi>C6(po2Cfb7=A!n;i^#_s@F>U1x}IM1^!3Ll5$e*#DFx7DqoyYd zGxA%(QALJ7bLP0gG8|iBik3x}^sVIjX!?5PTX?P>_1%6%T!_JvLqO5(H8_85P)+7= zmfg)WVviq3g<6v2M_%=6fXgyJT3ipp;Wte14PhSneGg=2q%{fv((n57JFAuw`j)QO z(CnIhkB1u@ks$WB>9e5mTz{>SVDazU&q<%bplxP43V-5RY%dWJ$Q2z8Dn0f~6DVB> zt3tCoQuH0rc{nQe!$7|*RW5uV0;`t&oRJLQS(Pz0c--&E%J+9TDQ@0dMZ^aQ0%cBw z@?hWTrNN{HlO=t{^=~qjx7vRy!RasP(9pgh1q&|BSCdf1AzUu7%Coe7O?P}Jt*A%p zX`>-6`L?dk-rKUxBj+ld6w0T`gz%H@@V8Bc%SAzATB-KOnwX$%iA_D&y;}Erl^yN9(`@= z)hmtGT(uLK@zK(l(cOpz6atV&2G~RkqRBb~Azc?DTgl42?MQbp0kxxe`qO@%T4eO4Rk;9Yg3bMS(KLWilkyx~f@B136o^&xTm zJ&)pSlz;P(xpn2c5^RhYr6LD?lCuIdV=5vJH&TUHHxiH3Cx?UO@fdH8DyhReSKqC+ zm`+T5_&sJBFq$cB>4+pAg@i60-Q?%qlvGmM)$kIwZJeq{IvvXR<~3dwdTEjJucP*P zA1-|HfIBN&xit8o+i!}?=0S@G??8nAUiICW2-1WhV*X^ayTk)72Z0R4vK=G03CrZR2!P&dfyHdoHfhLi7TSRx3#8_gkhU??3M z(xAlDHD>MF%_hI#zINSa@+D!Q6}M^LQpr@vzzQi>EZNuxqu+eB1^NqZDjx;R18-~C zgJvf}`IHPgHv-Vdey^`qbmS@2W_+=H_da-}g|^*q;DR_wDwJ*QGcv2gpTZM=FNvaJ z&h@nDi_)+us8q7@at*!hL%5SU3uSS(ZdZuo(YrQbVRzO{GbX`X|Ge5`^ zC-?>{d>EI}<54Vdm)Xab)%%L$NVs81`=di*@kd0cDVx%EkmWA$GXYHAu8I@Y)!&;h ziI%GC>`eulTQms_SXi7?7DBp&rhM9}S-(rc+3<`+^~{ED=U-b?-w~*ZlLG0P2*U#F z+cvN93VJ;xyeW1FO78!B*s}#iUIao-j?~+{KFNm`S+XkhKgQzv!x3YgQ=EJU?$!e7I;qnj;X_Fe&L6E2@IkhnLClfz!eVkhO56vzjPS6r z^}X>NbSo^e7d}2#IK-}&DjChl=!Dk2<37t#)VgzXRs`E}?^0h>VPSzj)Sa`q@9EiFT*Hp=q z2$Uj8uWglexBIbd+*E8n0rPV04yWApyxCKer#6TG$i)nFOuq)_DM!>AtS5!5tECTv z5>o#z6KmM{D257%4aE+YXsZWNKGMf%%VYSi=gIhto^d2dx8dbWl00t!Fjk@`Q}h1a z(JplHyf#JQFHo;DyT*+45_~j4>%JK*;!{+aCM%2pUF~eQTY=q~?O13FO7MC!MJx0< zYC1XtV$Ki^joF1T&n3MNw~6lOjn&eGNz6Ab-qprk7jXSpb&W;(iwEEnqhI#6D$Ln9wZOkb_1E>)YHtROz8yQ#*V7kbi5xg=%D+ za5$pRy_Ahqtf3xssz7pZ%&QV7@&&_8)XC;?y14M=sU8Q%e7RQ=YcM)7mz;asxsc3f z6FHjIPoJ;MrCuB~+BEf=0M-r9!eFL3zp!@%QRMbD*e@mq=*46Om2(jaElW%dsS_4e z&?_N&^yPIL?h0SuT3IJ9$#j^Xjg-}9(+IV@g>;Agz~2_GN!Z;)ccNpATT*$WEq=(W z5XLxKl+z?P#Oe7MeipcAqF~OZga_b=wynRK>d+ZiL#G z)zPZjss(NU+&Hu*B?ndNc@DTW7i{)y`8DQ_LSi@xs;J1AR39mM<{^@v4N+l+iUYT6 zROS?-%DUMp+a&%^&1DNd;4Esu{lz%a+%m-8<#n#bbDVy`I`pYUk9_I#j7So$aQzG> zr&;6yIfBp>Z$6IIlLHqrMkR}k4XLehK?*4RcWcauQy3TPm9X5PbaZ6Ry_Ees0!RkI+q|x=-P{K^-qZNQ zTI%MAiLNfcKc7C&d|2?8TF*gckdi}-x!Y|mLm|PYxeTWm4n_p)g^rEUJrEx3d>!F&^Y_lJh{+) z4&MX}vv~gPz7viCTtTGzU8aPIbO`|-`|?Frb)jrR`{%kkE?t<2&QV7{fjvxuz!%{6_+-(N3?%RcUOao^pJdkJ`R${9Z7 z22&Lonv%eg(tepPlwUg%^1-*>j{~$|ydR|Edq{FDJ~8C1(|0>vhUd0*_g9FGZPX^$ zb#tjhx18h?#;`v*?yo=Ed(mfjqPnb)SZu^zCykC35@K<$h&cks=1LVZiZL^<;978Y zucA7>8uIO`N1uObaQeN}bN$HSsKEZ5Z5D^?iDxfE&`V1|xhf15`h`WMD7DG!ffe_u z=7A^aRe|s&SBFX6f|}FQLWu@G$(L^2?rh$l*dMOz8eET}o}uW*=sETEb!U$w*qILa zUBKjx!(Uubn0c6nvtri62AsMcGFpqurEN8bf|wT9L(KO}9Rp4_k^4?vsuK} zAf%^Mlv}56=KE3p!i>2Vl7F5HE>%b!gWHP+luA-s2CbVK#R-Z_k)1hv`+OX138FA5 zHQE=p?cB~)e-&W?ttd{7=*yGIF&GUMYQmIV%Q+|#K^p3rADKI_xJ^%U=x?PjVDM#G z+u1v>IHzJUD9F-bF;`RY$Ed;OvLG}dr*1r(MZH-5=At8_n6?El={JAm7VBral14@% zv?(V(yla*#C_LrA)PN9w&+;f9IGwVq;SQt;1pnGg+IdP_p#{`HqJok=YO&zb2F`JX zxVC51R@lc|$EiY#s~yDU&2~tODKEIxi1*UQ8E1fgP7&~oXyKUH;jj{|#Ih;4AziN9 zJ8hu&Gkq`@`F-}E{rVjz9Xunn& z+T>;jqdQk>rTzZO?;|>H9{pJv@oxgPH$)D;DJ-+7`wD0 zMY&jSHne%gcv6m|1}+SuZ$(jgMQ_eQbD>?izL{So7^)vdb)+1$qRPo%X_^gTGyHQ0_-;samK$MfgPcrQlsV6^l>UV zTTj7d68L+-^uG)Ha)>6&;@>@-5VqQ`e-=vyg!~{KpMz|~2CLAWI}}67z}0y&0%x-> z1AYAmwb6r+Ial%Fu4hJ--;Ghni9!d^YNZ(C(pEE|TA9G}>y+0?DIeBZU>dT>t?dOU z2N?Uk*QUF_ijq{3Z*wYt>P4QTp^*`0m$uL#$GjLjX_qu%wY0x~#p8OAz~65okrO1v zSY=>UvcW1Ukjzb`H5TENHh?CH9(y&glx^D2mV}3536|8e$Jf`GAIGj4JqThw)lBfj9{Q-lg;HePk7u9yH@|($y|mQ=tR|=f(2*r&zoftY zFwE2f?hZnjB?H1)Yu-NzX~xtg%ib<-!x1N)_$8k5&JK%4AW`)%UQ$Wx zcvqvrtZ)Md!*@aeDLK^!zFvO>lBB2SY$$^FU_GcB_R`n>=n4@$e~MEu;UG?lmSEe@*Nl0HOiq0`>Q}#ouFr2s zjMKj8DRRu3_8`V8*T}uh`^KWF1+y#JBcE21@$=>AC5~rcaW-p#SE*=G z3y_i`wS9My6EzQ2GvtB3T;?QpU^#)=O~-xS`(c3jokBlqG2GnPGFr!GtlDVA8MC%W z*jc6p0LBVX%ydd2B&$Lxx-2C2eC5T+sNyI$b zx9u;*RiZ-qN=3adk^xs$4b)P97YI(}gb~&f@|6p0@95V@W!2)Q>_uJ2h zd~qfKnapTgh#&!B0ib~kU9V<`%q{l$Rz1P!Li7iD@<;sJhohfT1xCuz2U1k{gUgmAqVMO_H(HFzWPn5s7qj;SU9y{-R#Uik_>LFX~w2 zitd~RQk3sZpUa(%FHgAP!&@XSGpnD;=#K|NfLSMQ@7KZguOZXXLWkte4j3K=-3kl&>nW|OPEuCeypg=6OM%X zGyZJ>3J+x!v-Sgl0TRKP?fa3>K)2w(;RvDT0eHGfa)@&_XEkR$wgRLv^*bGJa7|EB z9t<=etKiXs{%z<^s6_Pc-Ww)OJ3TtOTLoE9P*lZwP(!zYHsq3fV(t9$IkSynYR(cJ z;KjLg(!!~A7v>HtKe$W)xy=}6X%tYO`8;?r3SL_Zso52Xi>Z33-(#*tK!jgzRdMzU zXRc)doCwcE$Z5GjLe|XBTP;=@SJa;S3?{Ciqz(uy$#|usyIe7;qQj5rwr?LQ)vSk+ zy&sAWbiG`-mfS5$b7=P(2k~D-^&X_d0X@T_$2UdY(cnL7d~ejKL8Qv2IG2<`6>}D^ z?-gzZC`Y=RIo*NhCxK$tV5HjtP-3r+ow8<5O9}ZHf$9G{99DmdfCwrh5IX#8o%v+N z8ODJ2jE-Je?Sb766(o00xr7lI4Oo*a{e1ssIgQ3bakYa1yts8{BS%6|^g)Dc=aJYN zZ{!1mEMj7?qgWbZDu-d)7TFl>>dY|J{~IbhL8t^Quk6$wU(uAh(QRouiQ*vL+!3hu zK)?Aj$0^-a`(>i1o|Gx6H zv_&XKNCa^Kp!?UJ%>eZ(sK;50J>hJ+9VK3{&vg-aSEKccDk3bA9jl6|K{Lj6??4K& z(qli~UP*&?IK$@yIsLR|K1Q6lBl>$ENd2Io#D=Dp9FzLjtBliUW8$O^@K8M)4lJ=J zlFnRjDB(JlJyW)hBYj@EHtp#@p=ns$0cI#z=R38#;xg%)eXCf0 zxK7wQuLMmy!_}a*aL#~Mg=2|YSFa^c+M$_J;2ePR8hO4;Mi5l)sz<(m6T#!DSZ~vZ zvced*RIR@TI)Fh4pjD=D;ah-X5V56gJPKo@D(_HVr-JpI_UPbEq?C*#9J=cu}hDtN-|J3a;kg?hW3At|o z?*yQ1{0G+?_VqVJmNRh$k^+E5F>W2a|G7gds7r2#Z%ezu{{>wEIW8?u)B#}>_ni`) zsE|w5)k>9@#?8ENt8J(HH!bV>^%$p_Sezytj+Dh9iN{L#*5db5f*$vJ@EVQ%ts-wv zow-)V?O-rzU=c2lFQ}kYb>{u<1ms$ZWHB^K!Dk?R ze1a7oji9W)e2$t}KS9o+rY$XCH|l?srcBVRsFj|AJ%=|#k&sq?gs$aUW@_77PL$Mb z%?DIP{iYvBtQq-O0enP%*qK7EBqsngadelr>$2XF_-IDB2+pl%B;1D0?zJ`hEcspv zEpA<|ER6!?>)Ia=b)%u49bemN%xs#qimke<65AlLA;@N;5t@0Ft!QD_h_2&;F7{ix z{hd(Jnu5<3jJ&b0j4n#TE z4-FeB9`vCUZ-2D1tf`TJskIpyE#HpBIb2%He$dNGQEMsK-)oFyIDs7#kLUs@=kKm_ zOUmawxdeW8u6BSdIJo0b00<%VQN{olrHJ2P|`7FED6<++#mZq7K-n$-{Z@s=ETN z9<$|}+N6m*8>jl+igRxn!CIZ(R?h1#*hoL4WvBhZ{$X2DB*0i zk-!r3JXOK7{b|QBK<`NqNEGpulZG7jqkMdd}mZ&xuHlR_W8RUV<#fy&T-M#B1$KcQ&N^H0S4of6hj` z;ad${0JbeIkqYjpSlArvwTM$|;fK;qWg1`h>CC$#FN=Gs!cP^Im;Rid&+jpMwpJ6W zFMzkbcqt;K2ryq~Gy$~N^?cEj|7e0rljr_t)m$n>$GC926{#Z<7m!SEQ%-dFiWNpl zm4k=|*S8A&Vyo8#(SCBjbrlE{Utf|Qi~#k*g8hhP(^-$a#+w!$7ngvNC!o+r>M&d6 zv&-$FxD1+PDEZNi$F;7_WeNIoW*1YKGhPd~EZatBc5jzyX>NhPI;tSK%@b>c&yKG- zJm7V*xM>&X99q`!R9LH03f?vS{i=83qpjw*%QWJr_U&>hOX5^VLWTL6%B1>cF>(1P}theP(qA+zO?H`4r9mt+_qZ$9i1C;)Q65? zGz-%adTK;n3WM}m0v_gi5CRZ9POA49bE=OxFGz6$j8-+g$ETm4H$Bb@PE2Sp=YqO6A zC?qAoDDOA!0Ld-GFQOAu#q2haAKu)5%F1DNZbZ)4y%UMfFv$r4GD6pgp~x=4RdO5dF!ej0>mNFed6@wLqqP+_snI<737|?D zAsw2+h{Xf&uGdFWw-2I@*Ofz$fW=Ql&A1*-L4f;}LDrmi(knQK_ydF%Lnuq}4U+$UP!aOMsoX6ya#n5X z!e0#25&ooS3symr+yA>Tzy^bh-Kugg-$+Gpk#o^^px2O{2-Uhl77aOm0d8A1S--v_ zh2RuT(caO7BFS`c-{XIOnG`Ix;MW2246Vh&-kRC^1}W5#-^%ur#oT+20WTtxLWGu& z6shHIo6$p+LSiW@(%-#hypmV+kuu?WB$gZ^lb)S7{_k%^2$Y*kIyQ*z_1S&VmWNmt zbCW2ZbN=^U`XKkR3&Q*BB+c3zQv8(SmNFD2sPcaUKKiyBm|HYK*}R_r>J>4Qp31bJ z`ts1FQDo>{xJ~-gl0u+E09WvMNZ<#0_c8CJ`Nmdw7r{zm)V;8Gu!QscPZNhKD!V2x z@~xA0?a*$&<5Ff2;!glgZ)80#utGtD1%S0@)dM1*M(xj+j7hkAJ1^ZL|9b&)u*+5s zY)-}q_yTlLvwisM?bqXyAY ztq2*r2(tzlb*4XM7UaNRd!&@xsKXYknJMlP13_24l2RWYo*(FKlwXPfX-$AqS#W!1 z@E~P}<;N_53jm1@-H%^0>SO*o@R2~(^DB7(M*pf@@mK20=!ym<+{BmuUuj@b+&Kv4 zaX>trnEasVT~2iE@vYp#g9rpHgvNp9vE7NU91O%&`8^cCQ&YimaAW+0^LJ1 zsxyJj-3%DrejihT8vH9S8Mcvx7#W~GpH(1yjlegr`B7S{p|jf}1hK2k4RHVpvAvWN zGIcTJNT^_DfKb#3lG2c6tA^24v>a*L)eqfsh_^h5vTw?=>HhU z;v>(h94BI2mcO{yX1DtTVmI77V_o^Z2nZuhov5VJj5iZaQI*|?St$O zxDJ`lNgNY0)_2opvvqX!W@0o&=5ggyB295pi--xXMQmg9*TaYhy1m zDpc%Yh3<~)!Wlr+foBk1IzY%M_MnlGW?pRpa_)|==9-%Tt6h!S?Oj>>$a(~P02Pj2 z3DH(Ft;0)fzPG7vpvnBo&e-$4Qa-=>E#v%o8w(ZJbKoEd0yPRCB>)||m6{j~8LSH( zR7gFxM|Y+}s`I==4X9*L!#C}t=U5t)>Q8T2aCzP>p%Vg{BtQL&KO}UIZrvU&`COtF z5Su-P%9bvuL{Z2O0Y(}Wdeq|ar7tEO|8qX^SO0|FBJj=(zR?B4)7hWv|8qJlneFn= z%`DK|?T@e>-!pA$+zlUOqDK-IP(??#V_wP&hxXr&vjO;=`XD93&WEvg(C+X=%I=Lq zP_Q{Plv0d))7cdYV0m{OG!GUU65Bka8sD8B_THXTw#Jb{K@`koLRw*gMfwGPc92?8hsvcw3|12iRDRJT&ZpX4Kck&M zji%eW25)3tCl>(MHl0p4#D?r%gHVJ93aQ&iJDAdD_Ib$nK?KYIt@K}+pM*GgU!WqP z=)1K6;c8HC-uhWw2)uO)@E!s(8oTF@`{hgL?(7)XD|Ac)R)pHB#n5WzyZe4kV8(*~ z)Cij_PO) zj)9qrKEt_gh~j#zz{Y&Y{fPMMCo=l@n%`rJFR=U^&vOF(XIqdNJYyaHQ?yWK_MJrk zC!MC_!-?SnxKO&6D?Sjk7$>y;-FtDhXfi8&TO;^iop-bcCaRi0scV`_iBMc`?+RGp zS55?JdGev%Zph;%3Hw$^WMDBn9CUnw$nrBTMNb03fPxX}p!G(fBH9NT+5wDUtKHVm z!O9mT^i0PBkQ;$yE;S*DZH6lH{LOK-P~cZ~*R>_uSiM9u*{DuA_2?6o68g`$7HnmRsazthxq@4lQ8{~8mtBh|fwDYEzr9|yU+H>7wr z1LHFhptm(#7P-|%1w!4Q>sRQY69V?5{_*13XKpnx`yr3a4!<`U`Al@51N8Gh-eRRT zFtFiQ8WgrobXNibylH@CTi1S-EGCoi$>|q(0R&dN)Zu+F^>K&VtNU_@Z*BGL^evLDm~!nVgNO_ zkPIrwCr`6d8_gD~h=J|nqB(B!*NT$7VgC*MmRx>8axSGhwdCTKNg$n~SVWa4b=z*xNbM=kB9Vb>mvV#=?z(=|wTMh38v!u6gbyb&g zgakNqAZ`phZ@SYTwvO?t)j*^BYKXxZB%*h6_&K@3hN4;p>cTbad6X-+xtoH;v`;JB zk;Qj10HmZ@9)IWmsViR?qFZ=^M}gQ8Djh3CMDoc= z{($mGd}YmnI{^e3bb|NptxP|5RU{D05eyr3TXV5@>n1KV{(yAw8nL|g@JFxElKRE9 z5vzqgAe<@(eL!EH;q}4)-b4WLXYYn61bww%_~bUdwXByOncJ$G38X+e5(+%2mp-#8X1Q?o9bzcK~`tmk*83^5)&i=^96Pw31rS-3W zW$FWnj^Xiq<8g?@v=J!WA*#&Z6Na7ndWXGEE)P_VX7if)eY=wz4B(Inv0S{y=L8ji zR{%1|^85n4nsaRKv^5qHq}fu$;3@?5BGD@?vqm*R;N9a@b$>enVBfxv zDHTojC5G-DS}|#{Gm%A<#0+lW2o?MxsRz?#(azt1l1s zlGx!$q3eNgF8&?+3kJ2&vrEMz;2x-SoSOi&-rgF&=6ot!=VMr= zkER<&(qbiH`0{Mzej~m+81RE7MG15=<3_cXLd>-Era1s$CS zi85P!ST-oVzGSSMk2_x~HUZf=WkL!wFFr}%lI0`7!uyI2;mdW<;ixazni{B0UfF1z zG=me@7w>_)8KM*iB0`u{>LIBffbLb+&8IN%?Nm^-ZuP_5tlQU@n@9)%-}0M6?N9M% zD~$g#R2Q+vB1lWP39o3M+Fhn1w1K5R;5>;~56`~s%@y>>p)n6++{hC%XTm*j7S1G~ zOl?0=n+4a5&c^5t1x_V7rC1qndLUEPTDgIYnV|ir%1-*V-s4YTDuA$M{hL7isH?6p zV{-Rpba817yWgba9pua<&`xIgK^NOXG=n9H7vvd9%cS(zw)wTrjT>+a6)#T-ufxT9 zWOW@)=g3D&7T;6wkm|Eqd`UGwbJGE{0WeSWdc3ij(p(u5?9cVM7SohKhzh7MUAtSL z^roz<_-YP2rjom*dRmu02pFTqps}(} zp5zz0cJtG}h{k+SMlIb4Af0k{mcfenyE}c+Z`Dm)P_Hl3cl!S+`9AaO>RPsi2PbC7 zsu|08@+iom9jn-w(|j3Eu`u(yY=4vo+DY6vdWO(MaJ+)XY8Bm8U~2M<5a++~kP1Ke zB|`a6sn9sVh#!@6x5QM4XtnEY?JKeY#MnQ&K{E;HATml?IH_miqGEqv{A&*7^Zms; z^{xUyB)&Oc3qejaY#6zOe@zoO* z8&44oIG}*B1`rHY@YQPzk9=AY1cex)zC#Pr8yHhGxdX)^AiJ z4~a-Gu*4I>J(I9(#1TU%dm0RcmltikqF9U9#W_uIg(h&%VIUTK?&~Y#GRR>B5H=L} zeZfH)IBXxTn17fW^~|q!L#D$W=uH;ZGALqRI5b`ht(>n*3^zf;Lw`)96#tV`IT*9@(=lh zOiEEok174T*Kp-fmuJUA3}gBBmr3-DeeoO=GXSsVKXoMDA@Jm?5r7B1)>+bZt@H8_ z(iS=xU$td(G1srvP-;NlS|a!@jG1$ev_aM=&argP0! zqxP^upw3@>A8`B76vK2KAZlD+{T2oa6sbV!wG2kQg%|IZTYzK2Y+gZ{S&C6bWqGw~ z{|WVr0f%o*$^kJI&Nm?IW0HShHF+1YL2O)N;|v%Q1*J~Xe!l*&vH6@>NNYHtu4Iv@ zZFxK0RT3C!xmT9(~NiJ2onboAB{b z;5Gv4rm$1jYlW8C=;$OYlG95dnf4%q9Nf}?LYt(;pg++k*}n<&Th}eDf?yGNdVJ2+ z04utGakg)313OQ{#4(ajCrKRI7X7ZLJjCL-cn1!e1$lF|DNKoLWh32 z<(>f?`XME~Q3^R$!4k$>$LV*G%}7cbT%@>`*&6WRTvQ@HouV`9+d&q%2-fk8&I~|e z!KoggA*igwBhC|<3bmIqaUWF2GK?pV-aD$iguRXuryv#Yv9?@H^FCqjH+g=^(V4ZP ztz#8a^2V?s{1U!xwo3pR8e_$EL=V|XJ<0MHGK?m4=C6HuI&AHCjYlXd3x5dKzdeB`(z{cjSxp{A4) zADk6Wm`=fw9Q7BmZ~Et@fk|r<$5@(f9H?{sbb~!Ki@}HjbG_R^$pL7+5DTTo;(}C` zA#e?V!6=i)3*Z-AZe2C~CO8Ok5p7^Cm}{+gmMwC+(!crDIva5SIUDtG>;2DB(9wWL z4rCdvKc5?o9pvEDtPt-(fAw#gwZXIJ0*nvj^VdmF?sQPSMJJH}z;KHs4K1!~RjFv| z@?lL?#Vn?p5vu-b0VOa}hAT01@g&`tCLhtyQDEr$~} z79D@`xxV!@*x|4OK=0irnUwxpP?1m`;)SDXNCl2^HsC0q(H^1h`U+H|3Ifcpv`WrC z%y0=M(YyD(fs`sQ&Lg0UiJKlZV~U?7EhB>bB_m0)V8O}^54NR@j0hVxoo!4Az2W=4 zYu24RhN<2wx_vwWt0ExXk_x0qTO=t_pgW{><4gO*%h~V%tUbh6tsUM<1-vvQ?*a#HT~D8nNf)H;aXJ*~bK{4^a zM<*(54!cg@zr^eBI5mJ?`=H6-jjpRT!aLcqkKZBZH*8PeQYL|e;UH?=^*4b6G&A#o zH7S@ar-z&R4BNXX;l6byt$juctbQYn69(|#*q0HwTy*$AcNW*e2l}ssQ6s9~2u6*i zKUfCm~_pvfRyeE;70EKLm_SkSMyDX?3s2a)0}l}E)+SWcNVU-HP;fkeI4DZ;qkT)M1+R*cZ1$bYriA}3{&pxeCdjwN z^>)8yVq0PTkH|!33y4h4uCE~wunYHVbQw6`zaZ`W*xI7p9>1bJoLc zi)Ey3pD-)KYG}DHL^+QX7%?w=9Z;d8KKUuLw4I!9)>F1Rs~3+xfmvzQry)pyz|lGjP5gFf1!-+Vq6m?VXv=Mz_!az|b+Iudn}BtmP6=%I4O} z-iJl<;8Dsn2%56IAJhPmY^K+b?92fLm5s!Ie`!O*V2A9i`cxG3Ap_WF{Yl}G$zncl zXH&HvvsK%+XJEJicv^@n(z`Ul^8xocmj;}rY4s$*kK+<_cXs$Ouqh$LN?W_L(1bW% zVp(Yys8bPZ(15+H2{}-TR*~17WWZ-4mk-fa)Y9%f8vM*ixGyh+~j2 z(O#&Opq;W8Of4Q&GtatpBQ$Pd+l6$mEgPtdQ8Kvh*v;SlMD@Y5-q!+sxX{~Rhk>g)|F5o>_IBCQ0ce7=;gf?;{zgH=Qw%yOe=fAka*06baX1EVd>I1qA zXd-X4*z0k9t7)N=PCGn}og+{r(6`(RlE;HFa!NITquTsp&nX@pDH+aqZtB=1#1^-ALHRAzM( zILa^waRwyhOA9XqSg=q48Nz8@(%r0JEvgc3H$St3I(gMevFq8gq>pR8f0N7Qj5Zf| zkOsVO-RCZ49YE0Iy*%|Ta*(6CsZK`#T!6U5<$JcK@ z0D{`SQ=sS=uv1=~@es#m{c*bLjOyQe49O&!F38F+xhxX{$|)%QbMfs46L~(CSG)`< zx-K>6iKRZ^Xn?kJmy!;U40X%u3cG`GmS@5MGZNv9C$b)I$y{Rv%Du+N>ZLM)!T8Ld zwXk5ko}mj=;dvNeyxEs&Z!zV+s`j|&a7uhY#(+%TsBiW&XLy8cAT@>z&eEeb33ht? z=eR$wjew<0a~EQ31^&(d)83hfL;b)1ex#CwRFYjJDUpQFToNy}XwDb>GkD z;}%)3JOaQkys2K%NUK5L>R036V76XrIu`bG^v>~piP1$p@kWK845S>cNVne^gP5nPBVi@c@XiY&&(~cKOZPI6@OK2PAh~*P(i(xgsT0#bPk${^ zjJ^#jp?l-59Q*d_mAT7aK^R0^c{6;XXfaxs6d|P-i}!|@YHs;(-J}G7e>K<2@*=<{ zzCHF5j*$>xIeyZs=sm~-4YIPo!>Gv#?L7SVRb0}F@fh&9q?RqWcA|z|-0|j-tM^pz z7(Lh*F`^Z?uk%v2p>jG)^KIw%$<>cGuAaHZ`~?VioQ0$eRq(q9(lk18ai`UV2sSfeSIt&{cyM$g>>K-T_ES*PI%juH9%x?2 z@kXaW#Cne70QmG4_Vy@+Ig1RCcTP||}+BP2u5 zv0psLbu9#&D+}D)w<%e)bm@JAUSI@=P-~C&5+FQ%C)4@cnD>{nr_Mh?Y;~5i3hpbu>BQ01A=# z`mD}T`8w}U&G?E8tQpc!H}#!g*nKzvQYyBjxJO_+0buB35b`Zv)c0Ii0ZGxDI?qIw z^-hF%iLl4PR_a*drJbEnEa{kD z9ldkrikbh%y1XX&3#<~UHI%j3_8AE38FA15(#xS#dp9Wp5tg44*~;NY zenKK&5pqxSW7~R=p^zORgBbR%^;JGOiCw{s9ASjY5(ZEZ^V#%6v7FxdDiXtbSn=;) zl^llC<1)tq+J^v?47MY$F>)VG%^m0e6|lB=s#F6O8HfaT(*p4 zWC}P_%u0MV8FOKKF8h)1Ht+0U_z&J^i(cXfNiHfX*FZ$UiwG#!>rxPI^z@Mh0;WFK zR{0_j2_P&zrYOr1+{hIMscB$)$a66P7o&SAI0WD^ab$E}a2YVN0>503$J=szAG>-S zj{YE%VU!xk-yg=~eTPN~w7i{|m%-741LG?cVwyJUAWsT3EX{m3<+~QuG@ET!Eqqf_6K#wg0!3Yex%et6O^{*YvYyeCg*XR137=oF>q9D zgjKZDORtuh;cp!EH8p6lCZEHisZ|DqOgW=hh2cT3L{HYEP+et&r_3wLKP<|r9#UNd z-j`g;E9FD@us}71#>-v7OWHcB;DkdBWn)S5Cq3KKASDQ-I=Ueq1J9ly;fNwZFcx}w zco=4e=k&xM+)d+G?#A`Sc!#GF{Cws+hBPSX@v`!!Eof|1;iPPYu^(2C%4`6!%6d8X0^)A|UHsE5>puly6<38GD0|)jmh21Pr$@-nPur_8lov#HhnH%nJ z86h=VH`Y6I7fRXSnE^c8gO`wTO&6=L>g7FpZQ%70lf{`*YQpOgrYSRE7(nj!Fv_Wy z)-E@FzAMoJe9tEJdL1rKn|xE>h+n<^4*m^ zb)cY83zXo={Vm|3RRbTpQKqij*`G2M3q7JCe=Rs^HT2|`y4tl1-)?){#;7w?u4U~8 z-|NaP3Y01vZ@qX1CV`hnu#ev!LNY@eXD@>9a{IomLY~weN^CcEdFv>o@_P&BYIY06 zGqsF5@Mdn7?#xel1Dp*pqsE+9INI`3_Dg|WPV!qCNXU>b^7a3WTYUk#IC!gdkhg~u zW|iP`NE}sXr=JGS_QxD`PYW&W3%3{A@(*&SsVYaZBJu;UE+ut%04zGb=o~jt*qf*S zeEKYIIbLduAilGTEl!Bah|xk;XKmXo-CKkgPO%8$dDdn@P5az8lGD2n<&2052~?stOZSjXnNHAe12SRQ89aTVssF= z@(yx3JcM}|v$qx?z$!Lcx=Lk@F4m*6M&p+f`m7(HO{^1z562oUx!BOy# zjuZn#u!!)jva3&_T94p>Bg1sQqy3D--Cdf*3I-P26)LAPSRm_s@FwYaP6Ck>-`(0? zy<~g2oQAyRMq;_72b&H2YH<)tnfr+mIv>s=eA(qJ^>eXd>3TlPIH}ZD?ulcmyWx@T9Hcaphcti{dyN944#eM-?pXV8t{%r8FeH(Y%ecLlY`SAYRe2-MRr-&1eZ(8Ye!!B zgwZTENnqwMm`uYNHzN{trr|d{2k?&q5!TEvxOwKB+Z_==H`L|_7bRDIdtOIQ2zlW+ zcR5}EHt1#%kvU8CWkiC-lkX@q86ieU66?v&&Q7Z=R`k|O?aks0WoYE`tr-OW$;-<7 zC$!~7*+tVBKXH~&0=2izB1AQ91+zNiCS>qD^p<}y8P!l>gzWiZzER_-fxXZ$(OHJaY4}o_DC+rQjbtW<_Gv`s*hbH`-(xrBaStFhbpt(ejmudF-_o2fxoBqbf|K>@xfEW=LHSIQ|1Jcx1{ zSSQ`=prst|R?}gu6`Z_hfl=2WpeIVpR!UpUm?sCRH=h9p?TSOi9uSAddw9z>%3fpy zNVrp5dom)>EvNFJ7upp_zvDXaS2G~Hx+0_8^Ik#~G+{LaY8e~w^sB}Xi95Pp_=hFG zmry28rznyxeeztK-1%KdkqDM{&=Zw!CRKp^j^}jL!=GS=niISQM2pdBy40Z#x(+aJ zE{XS6LS@Y;L-c3wY7M&(voa`)kep)Gdn=u;R<3^l@Uk5m@5vZW(2=~frFK_wtZ}-l(szE+eLM$Q>3h zR=r$v_S(Z_!0nY3!dmki5v^^`YAgo*=Ekt=I3Gly9L^O^ur|_MGis>7I zwQkW?%Gn+}kIQ_t2GOq}SGfRcHn6Y1{81l>#F|5j8a|4+1U{6Zc})AtU|bExn05~R+*bm%!l%{xwoazo%aV~z}J|{l@x+RjY~dz zz75nto!bLl%Cu*bNl^(wX&}~BXtn{z5YX52BiWk5EojwNc&n{&aURsyvmq}yUWoU z@Dyz13u_D}xdJ;~Jf5(Yrt1&)X!OlxL0VsGuxM|?*??>}=nj($YBBIAUD$WI2^~SI zaFB;V!F025bd|2N3c8Avw*wJ2r-&Xjt6QWz``-z%ff+2rU1ft(=qvbkD$0ZT4HOJ2 z2akUoh;T_V%O+%1>)yQi#`)K_odv0*R|xAt+tb5cJY3Heqsak1cBl}`jLj*? z-xWqsKeoRSJOc!lby^xJcsx$UqvD^Xb3kJk-j{Bql&^qseT3Sxbq3nI+mntQ-X6ZvlIO}b4{9j_7ZC3&Vd-v+C#w3 znV(v6xIP=EV3i}`kf@ng4$+VRS}C5~FgP=sRdkI}TL;Y4ibh-XJk|kWjFdsZwK)_h zyQ;byA!*Koa1yYFbxguE4_8cVQN_3)ZsgcWM!~sJ0L03Syvu3p(Yk21qpdER=Mc)t z8oGR&H1HTqu3e+zX&I6pjBP);c*5u{-{bQfbnx4jx56(~X!XwI+{u(vlE>@zu~dhY z+c3lUbKg@rxa9%Ob=51^(=yKRYERPcw743xCVE@!f1r9*>Bu8Od4xv|b*eFLLmPZ2 z^XIrxLztvl^vG~!8)ykDCeHr+8KR_}f{R%pl386VPPkDPqHE3k6mPrhh7(^_8_qGK zppaHW{&q&m+l10dU9qa5mNID|I4jlN*|N~wZH=SY&3c>VTe>!YIouiNGIgv^pp-cG@2f`0lH9@0J!uX< zdN)llK3{kG%y)dZhb- z)1(0LM02)hXQezus+?1crUG$ zc7>OEso+#b^>r=`>{?4m`XxBY(_)70WWt80N>L&#;s+lUi>f&&4-5=$jQm=P3Je?r zxfflBqs;YEp|#~y!nP$FbT7E68w;w~`E?ILBzX`5vOY);Xqc;FGbDwevNRfSk8XZ6 z?>UdZtz!14uOFPn!A5fYjKD5ja6jRNn}Q0W=3>$yuiup)cPd@-Mf;NPs$7{tWFO6r z?iSGM#lHVW_=<_$b@Stj?5SYdKw5zmPt*T^c@yZAse`%ho%{jc7oA+zCB*Z_jc8F& za^|>=PEP|9n4%G;=(YFdriUK{1T24?RWj)$fF8KcM>G}fnw6UOz0cY)Ju~3J;_?{M zY)Iit5*Q$$aS@sRNkt~sG^DKZY-S;kUjj+T8p{xB{B=jcxS70|P$BGd{KcHui_#)D zzc~!HgGeUkNR=kJ@Ovxn$SO|Hl^zPgU3%M_|HsajZ}n%3+w*WYOcH2ADjN6A=xp~3 zY>fP~dxk8T2zNdu{WA~t61M}O*Cq0ZGcyCqq5?ePYHK+mujE)f`NMhsC;f4x0SENR zI-_jP{Ip214}uUuKH#NuX8r!wqt*T?jacFlAmj#pt)MBFOK|33qQ#jGBp|ATxaju4 ztjg?J$E(nJsXL%FXQ#AvvztyXb5Iv@Lqwq+dWMI38fVS$~XYZ^jhi_fzZeuQ_7}At|xYLH88i`*YInFa7#A z-zY^==xwnfDh@tOP#T)~CU@&6Vlsdg1QQ^=f zfurTZXg_#;Rno)C<=4xk@UK;Pbe-6L?Qr4d@csFL2CDr=;5;KkicRTg92%k2A< z{F`^gf!_}^lbD~3BVWY!DA&Eix5}{in+}SdMPdmAs|mLOn`ZTnFS>a&Z{SbS(y^Jl zdtckTQ+(wB;tuG7Uh-lE<93AQ+ag7sHM^aSI~A3cOlL0fk@i&Fu*ES=C`^}&62DN% z^!A%)Z^L?JqW3=vcSD{jnylSyd)}t>&_T-BICS{wW!A1WlL|#oWqk{OL=;}NUikiPbF4>AhR29>T=;t;^5mt@`Fi?Gqb}={{jERV^ecY zhp9b;fs9T}=WW4#6BSBnb22fTcdZ|7ZhX+C$15C8Yp-m2xo_DweEvyMU0WPZ{ahnf z(46h>sUmIi3`@)P^G=E9XlK)T>q~cC_UM-{>@+_J?)t1mJwTgm6_-yAE8y4Xm)>WI zeg}!!8REMPNYQFwNxPgpLwxz9fn`5)8sRNjS#Z~j628!Ng97+8gIUK~a?geeYVe5}#`&1_3 zI#`n6H)+E5iq8Zik{Y`)vwltG!Yjl(2uYm8jZOEiIZ+kho=q&(4O5~g5oO8;7~62O z2<(JRbr1zY$#FNK+h; zz>8A$_6%e?BD`6gl9f!vCAb*NA`jW)?vtiNLC@a@ zPGb6LqBT^Yc94yh;}mMpLiWam+`Z7UX-~F-94Gu<=&78D6KoRdjpB!Z1wP3DFjPL# z?+?NI-zbOXMye2}qfn`OH9+8XQDMjS_(PRyM42WPgg5ihv&jOa`zoq4FTsvwD8dm` zwHOnon%6eaL2#f<;9qBHlzLmx^LL7WL>*q<*o zsVOd}PpEBud4JhpASQaS2QiiJ>S3_6z9jJ3R<_i4ZfR`XbU(DOz$JA(wB~v9Y|V() z*UyUyJ{rY;jf2FE7{KF=z5y#H5`2O!R|Jf~(36N5*u>4mhIDys)8W~R3JiZKnNTRE z-dzW`hWNls7}~^j{L3z@YQckj@2Gj{SaKu07(t1NzN@bV=QP zlgm^66+j#s3kyM-l0r>Iet+%#1>UgxH>qX${j>Jp?vWUSaB_K({+{dK=sRw$a@eUqU^W+Hq0j7P8Ll5KO5)g6ctmNuX_vGHTI}0bz z0|52SE`)=~d^q#|g|7ZcD795bK|c~AS)I@=RnV2Qme60tuN(OqhFO$5mO2@+CUbP(W|Ng z7gT~%tj-|4gH$!1H+PVxyp@uqMfZaI6V4nw!upC0QIu0}xT5OGbYG&Ib(< zSKZ}+B{-5Sc;yHAqXwa9Za5!Hv2-!#23a&0Xz=(Xdr-mcNSYruon4BeksVhXxS8as zBL?LgzeNytIAqq>2mu{c&Yvg=MJxDG%$^^;{SU!{j38rx(+OD-Blx{L+nH~M zgHmND8L%i_m1Q)*ln0DaN$;DOx z|JRqlAEEv1Sq;1F-x^8L`R3eqc)q)66FROv+Kh5IHLO4~f#epZ(&Ib|X_LMHU-LIj zenjRKYrF(b4*T9);fnI53SI5T`6EIp`)0x@QUIC>lF9jD*YeW)cg%?Pz%+5#f9yM6 zlZxo*Pi(%oGb&&zi)D~v89e0uIyS@SjN&nmP}mlj$#=#=mM>n8Ww)=kbd-2D-4NAjTq8U*s*Q&T)?Q03pHa z8FCNbf@wq|#=ps(yaR2!I{kL?7WrONkH!c`1nehSE~ZYJH~3#0*OtWtEdhG`{jhx9 zt=|<`hw0;Z(gPCOpVfcw3D`G3ksz{~@{Ne@82% z1%#j%lmA0~wfG{u+^3tpN!D<-xj#m>se@_-zskWhnZFod zE$@ji3|Cahr6CaPSO?a_b~foyD7FoCl}k78>s+5vu0MAq`<-&op)B+mPCg4H;$y;l zbB@&5y4-;-!yu7|g^0haoj&m0TEb79MCx}M6!46YZj1;T0ZOKjaX&it=Ek`N@5_k5 z{DP^yf4U%A%<3 zvFTq0GO+b`{~K%TiLOn->G*s;ZlOl?D&RRyE!$p@GRe))q1UJs`v$y~ir1k*l0)%( zY>?bFbi3Ynng+@efI|0&h9}`ERwm)&8*gl`H;O!gY3D;FsiPhu5^(6hQoLNQ2~>dq z@Nxi^6cPd75J5R$Zc#`qgX~8Vsm0N`-DXI#AK9#7?WWyGpqZ{49+lF8ASt)g+x%}O zyogWm=M!f01Ui)GZ~-^uO4h}Ze!;-rIfw!-=Vs{x5olpGKaLZkMIlFG;1NNDXl;4Z z;Dky`1*1zqvK<<(F5d6E6Ov~b+kJSJi47WnBcAWI)ztIS@r&Bk-ED`QzOh%ojACJe zIv5>N3B$UgG39>s;~7Dr-bIBVWbb-o^6284VENv?Ov;hZK|C36wlV&$W@AFe;krwB< zOK=jc)rjWX<>-e|9Wnb_Fa-E+GpWYO$S^VY%dlMaFC}7GjJZ>^Lu#RAyr=tu`yVNz zg|&)Emex!XNGL#0g>ZsGjvamO=UYyRaoZ%y{gPn<0uBPfsZaRB?nL?H%;Wv;!MgNa zIUD-}q*7;*3va5qIrIa(_tAU>i2?vpe(qyH%PS{>ZU+oaK>n)|hNK-p3f>nqh}x7P zJY(4EwgL$sQ=jqUp;fb|>3LJU&kabi(Rye~pS+y~FXWL*dO*yuVDxbZ96vm22H^iGig>Pv? zQ9%5(+#v>?YlwA237@opFOZU%tZ6!Px^$P3&~NQo@rM_o zTz*-(uk$s=P@UmP%ExDaB`cu7+EPuxC5)=7j;>Iky-4R~xbS4QoiTRIv~5$4f_H9; zDBIaMl;P6D_JPDKT-V-f#{@e8BNG&OM=E>k1mHl!lp07;81M%N53qpwfzAa*QO@bK zoxy>MI#vAvFRmT!^T!Pz5FQ^C4WfT>UuoCVz#L--x6Divtk_xBbp2q``(oRL(iQ!v znP8Fu(V-x-z@W^axBs~VtMNF$)NwTw{qB7a=*KSeJ?gWF=vI8DdFXtk=EUzG(6Bk0(`$X#t|mX2Bh{orx)L3#RLTT_yhV7h37S;lAK7`G-c5FW|2| z%POw%8%Ubs~PfV32fky(2l|1O58XHy-%PXF@7Aqyn#v`AFr@GOZl1BsV3P zmX2n;8tdtvY8Pa?7I9P&^Nx_6wXh+3)l?Sufh$2f)7V3$jFNEu?i1G;O|ul|lIoRN z%a3`z0yp*hGcXku8v3}nsKlem8dl>|y*u((4>xIbY%c|`bV-aW5GJCc!yX7_Gx0dK zaFS;`NHbQob=?;&ZBuZX6(vO6;eNJO4aJ^pMe4XlJFkPGw{1vPCBNZdvHh3*OA)S< z4Trysf#3I8M>dtq?;M6lKJ6EF>w3iU_oe)cws*@r95dPkf~CChjY^gRdnWSj3``j( zs-|z1k{kKeb;n63D;Bh)R%h)Dbnko-75&vxU;l$e{DX|w8RwwDu^SlR44Go@IkvUz!Rmx2<@+<(7m+dI+}uh49?dq(b8 z5|vZ!l%?#!XFa^i?1srMOeoY^ozkvf{;$UFYsJm>jL*&~&bD9&dq=4z4*0l21Id|{ zB(o16YHpX#*d_N1X-LK`SNowcFiI|7D72&c+ih%JGj_R4kaVzV)=-R1gYWbn%DU5E z=;YSi<2L1#KC$BzYK-e&&|SEatX(MWy4km@wzj*yef&>Fc&1@38@gzO+~sDfI%B*t z_C77I+y3;KhF0=mwq!*EHB33DpvYsUa>poJ%$=J|DWW4O=(yvaATN`k@Wp_eJB#7d zv+wTu2Hb{vOCW?CEqSvNWj`LSbyMGM>1{R}E9<*n$I~xPv~$_CZ_#xwm$cnB85fT- zEF8MSV|||A&K9J)-s--H>TvhFMZ~&Kj)yU<&b`K;MRw# z@)KsuQ6iK@?&LWp71O#asKF|=;_It=dWY>DaxXzB( z;rbY$O|PnAhaZTdP^jOkEFR1wmbgXlM8`J80oQ8;Xp5w&4J_iGbNSZg(4XQ>ao84c z8R_3~w2Is24zSp)PNH~ezBm%1qx)^`gnFw+wqdE*viD~H4#{n2b2e5+p<-ZJnEl!{ zu9NB;W&?-d-Y^w zO?lYC{=?UQp7N{LAI_W=G>%xV=Zxa98!6vu@%7k_Aq6Y`^em%giT*~C5ZJzWWIzFX z_0FAj$jT;2!jz$SHLi&Vk?J;F0;bEzWMZWK6j-SfHVHUN?k$%$?B$_X_z3yWdi-eV z?`hIqGvfGlI*Js6^td(&$Qt(N2Z|roXZ&RH3 zMZJi0(WZKu*AGN6UTO@LiZ>+Vh#gc5R-UAJGZgQCNrhwPOL*`meloZ$DrBesW{kJ95A733YAjK?eVP zFB6*fo|)#El>*wz?>}EBj$QU}IE0DCZ@rtBl++zkD6^_*w@8VPKKauv`sZYCd0lH; zlfw;I#5lZJFH822lxptfZ2ngBV|-fF6!$Vlx~D6vspz8Z1LrqZO+Px$V3+@_37>Hb zy;ql}ow;s5G>RL^RNKiN<(`>&aGJlWBQ?C?&A*Sdi+}!EJFf5Q=B;@8s|23bIbM1Z zW>}!nOH2E=rydDkQxEHi3>Lkvk*;h~C}q3Uk!(yT(WYZ6SjL&J#`e3~+M4v&rl4(X z+&*Q!GrPr}%Mr^xx#Ik-wJhwJ-T<-Eb>|}`?}9|{ELqy<3MGMMRV|LX*wMKc??W-u z_y4IG{_+Gjx?=zsr=D)HB-iu==K$M zY12+wi_DY;Yg^S7t1tal-#^~MPhkBT$`mkCm?ZK-?qHd9)MrZ4{ParMI_KeE23)OU zBNxW+)(ZQXMtoi^C7qwvK9$*Tlv+shy){r_sY2bw_}rdNT+eLNrz7T*Jj$_?rB64J z2eFUqkdb+YSa#=G1_K+?MXxt{uanoL%dB2o*;?78kXm;;^gC<9(I{C59Z@r!73qd? z*C$qX1qL&ckDn`RpoaMCe>ic4d3vFx+Q+1Y^YC2h(8Y-IdbH3b9rOi#fkx9BX)d$R znOH-+GUZ0mRM=#GIyH+n8ny4rgNER!Cxaar*|fzu^d4L{~>qUSH;x^JlyJolAr+ zm{%+K{b?AV;eF`RoSKL_=2vh(g%V`6toKyXBc%el_>tB@syC4tx11IIQN8j6Ln(V` zP=`T4hmS$JjD(A8ONf2N#)P)V!YcB~C>-V*mzq_B&9}Sl#YLAjP0XYlWKgKDTqkmT zhMZg>ptAbe`8Y%mzxK`0_nQ|1`y!(~@zqJn4m!0d?=osnWWg?i0o0 z&v}lfh3P48*7|<`qe)5N(Gls+n3F@Z;V9AF|J+{bUc>FU*$|^{`vGEt*P$tQI$6<% zA*^45Y(MLZV!+&rnA}K4?oC^}9ESFvr`E5Tvj(o)^@t`~OPo)QMGtP&e|F}rk14G0 zT06}(!G%IuFcJF)u{47_+K+r!@`IPR^d#h|6?rqo)QyEp>a9~QhmNq0&wO9pZ+OF` z41GC2#Tw_6bz)oZR#@pTrHtMq@tDSjJILBZhgmUy+*z^N*8R-;_dub&NBe2#vzzpN zj;6h*&DbCZA?dMTt^=ugOkfB{cRs_PO4>xbwPUw7ELRt31>;8x?gXT-Jur>$H~TXf zIhh#$?jzPb<*CQflAVV8Wes5(633>qmG-G<+MmkSTcS67Ir~dYK~?Zdmf6@=H@+Ej zb>c$)qzMKYmh5c??3~yt=SCV>l!r_P{8J|MI3!MAy7E-m{P1peYv0=0sVUc;o|4-x z{!BdXtcNP_j*lWDH`sC-V4#;vTzN$C^{N_`92~CsEx9Sj)bA~}u<&K+hTf7eB}@HY zTi#e&;cTWH6l3zK^R?-xjF3czwzd32cl}q= zTSn}$t*Z%j%anHX zmCDe<-utG{9>1jSf1*@dvlta{Vnt-hxP+v3ov6v4&=%5IRQY?_KNnuc`4mAH0t1~y zS20Jd3#lw$?bpD1DGvdgXG7*ip>{K0%#pwE;5PM0NOEdAKqD%aCmABpW(O(OWt?d( zTd4Q6CjUDM0Zp|p;W5AdK0ZSl{Q#>@m`srNGDg-4Gu)fswwJHRwp$5|@|7GyYeaK5 z7l}6M4|J(e7X8Wn`PbSv&3<{B@AQk}#~&YnmujnhD{S*baqonK>P2zIZeR~Ye3{5M zKI`ikOvU@=>P95HHO)nCpue|F|2ad*a>XdE-C3{a2<1kbN>P7#hVsNVXE!l-7Jh!0 zt6Y0{WALfI$zaOP26?WOOn2pZXwaXtQe%|$vg($Pieidy&s54@i+B}#v~807&%@S( zhh3M%V_iN^x#d9+kV<5sR zA^Yriec!+ab3S<~Q_Q7QEQ5pc?zzp+EppYP1Cm+PMj6RC*IGkWVg9NVnR_xwY@T3G zPZ(K2q2AKbi-@iIdR<zz8cZ+sDYWsrqm%g!p>7MJPbtd@92n zlV0MH-RuTOuP?&v^^Jj1$!%%X1)0Vb?+pAloCvtIuZsKgd+hIWotTaqyjjm<({@E7 zkClz>w+HS6&y?5x(ns}-4ipaekB)A8? zi(Czd5aP8M$I9H9y8AtM4F{zYbd@d3B=s*$?NCeo)YvfnNZ4ISl1{NBh#TzjQqSvk zkk#!>X(!sPtnyN(HV1|0W4=awV1CVeeT90sbl7C{ro6a5{lX2|fj{p;lcc6H6-g~W zj|ObsDg7X=#hWSpXL9|&zlSo7^n$eamtZDdjSOykmB^928m2wh-I>9xDD#0?ag~Sj zYLCMOQRP}SKX%r@7$@0}Itu6v&McnP3R*bi+R4A1Ehn5Gw>aJYibsdM!ms&_EgKKmkXqwo!-wJ zXEC=9S9$D)FF)B!FM>jed@iii>W_OGt*1sH o@In4)2*CCH>tFxBJ%dfZ0I$71{kW6lmGw# literal 64782 zcmeFZg;!f$w>?a0k)oxzSMlPmZJ|J+Sh3)eBE?;UTk+!V4nY#!9f}5bx8UwUzVx~8 zz3=lkeB(C;c0$-^oV}OKHRoCcE6PjZVo_kBprGJ>m6rI9g7T~a1qIa!6CL@A!bf*) z6qLKkuM(eBTvGQJofEZ9T(3@!?1z&YDw|83`=BiIc1LIy-x%7@Nn~F6Q@s4X%>7bY z`mMkJvzISX{g*hpiRSCn>-jFq4m?Z>(oThsXiaJchb>~%rYH_!j-{n(c5@MGLaoh5 z2qpF9YoOnY&zP_M|L2QrtYZWI$N#(h{A*U)`~81@hkRE&_w$PXUUfy&J&FJC9|OkT zwY~h;QpwK%|GhH&8iOMH-*s7jzSMvIzc>B->%AN*%l}HxK6}(VRCm zd?qNVA8l%eS=e2u$;}v6EVx*}lwR;JkMj%w$PhYmzI&7NF8i&-0Ra`W-xrzzPL!Ce ziCBD~@p9Rlwi;9x<+d7`&eAqMQ$y45rn}EouzRf93*8hU@D*_PS=xU+wu`O4FeXQk z<1-WQM^3>opoxtIHW2623nFo*kp{Z}RYsnJvpz&YpjsYm8n99E=ZVL*KA&fMZy}Lp zwSKB9nLFA{IB^Y||G!tvlVFjuwENvq?723~J}OPde$x^;wSpMeM12w)0LA2D1hPw# zK2mve=yPwMh>?ovpFYYwDNg*9v=)R;)UzG!jr}o+!-6Z2k*e(qx5ui7-&|=Fm!aUG zzDe6K_+R1W`aJZ)$!%=&gk7jw=z1;UVB&`Seg?o$&8thSw$1|Baz*u6-klY5C2N zpxX&{0;yHRgM@h|2OSRB0^1iwEP+mJLBXnm(%IpKSVsFZU0W?CoWKxTnOS<5Z*d*( z{l;jRjw=>8s9xo>R1v?nS#yzpIUTXijFB_ZC0%;LF00f=l-@oh5)cCJDr!KXhoHqu zP_)WylzjN#)F2Gwo{E4L*QYd0FvJ_Jx>CSWzW+4R$mBVkVMuzwImvHar#Q)1O0Ic2bK(P5yUY7B*Je8lJuM93?6JVTE)1Mm7Ue&kL zpw=oj4KU$p=q0N_&inOO=Q!+~qEls7fB{_4!SguWCk5ev167HVnl~k+4|Xw$-~TsZ z0oI}+sC(+?qiSNmESa^{75w@8p^6_xMFx){9$`*YT|;61SB%(3V(O}D^u6DnDFy<5 zza`lyRO8iP?n{*U-j?*Mj_xx{ZH&c{dSCBUj71$Deaq>2nm2#mzdSgeVV)CgMXA3C z6*W}ygOdxxFgjMSp4MmSqT`7Sn8IJ*eP+d}O0S%1Qw9nTLc{U}rDF`kQbV}1qc?uV zR*_NwF;5ZX0-oM32i@-|%G#mI1y|3yvj6270N>pbE(@J;SzuZy9L+_ST_ADs`;S1k zo%yS0Z>ce!3zH5&A^UnQwKwYqYGWJHiNXTeI8pCppDBa;D6De^BNt>@?{SLqNeRmZ z5DqjofFG@(a*O}X+-t6bH8_-NcohaWC^ficd-6CYwJa&xZi!1GksLNId_L;edAMcy zDVR`(-)%1F?(l`FoPu1MP*cOEeuy*q8~2>4H^`~?qA zE=HZ_J0BZcS!>_`j%HB2>BYs#NxEoJdXyuuu zT?>ckH5XpKQz>|(ZLc9jdSGgNpG>i9mJNu1lXkLwFmN()`1;VJFo-^#Jk?(7@j8Lj zrd?pjUX(Qh|IZH*!G_BHC9w|bD@Ta=(Xnr>$Hq0;(Oq-niQnv5zv_T8=tNmPe(|Ar zxhcGTwZk`3&s>}rKE9X&ym}xwoS*IVi@eOb82cj!7sMB14>J-L6yy?abWRka-QG%C z6o;)6V4W<~9WNL^++7W42@*e9@sV=73H5SuSmX2j$AQ)+AS|6pd+0M&W<;eIUB8_M zYEH0RBg8IH7Tsy25D(=)x+k@{Lkh>hHc*uk%thVUj#x7m_FQ-Co*|kXgYLZwD)Qq8 z(7Wr}RZVVC8Yq@5d z(i6x(U(0(umr%Yr+uRAd8&|O1Hg#K?*JyszU82_#U+#6Z@|AY{Gjc0ci48jEFe#^| zj>q=Y#zx~dl{4G}F=!9mUv3KIOfD zk$PRXRMK@YdxyfzSM#PzHxOb1b`+5^fBk$dK~I>%W{KPbY>KOeUOnaAVMis|7-?$* zXCvF&>w;3VAa0tWD@EM8Zv6z-wL7 z-aJ7P3tQF?8z3hO>(ncI-qP|-v4@B6q9+*&Co%I8Y_}Yiiz>Zd593C6JIkVjZxt?K z2v=*@AxW#|%9w}tyKLm+vREseUU_*w$w2Jtw%i@u7hC}3yW+zgL8m#SXOl-XEB1Pe zei{_rKMbGCbXi(G?1uJRd5!LQhU}%y_2&od3sFE!!I23fP8wRLvD6v=_>y-rQ$lDh z{)pnbGD8@?S*>Dx{@HAhz}@!Z>Tf4{&a0khC=|b#hIRqzxx`r|E9?*B=CN4f5g z1*V!8BrkbPQisKfvEL14R3eXg`Jpu+Kz*G`>m=w%By@nyOax7eq-FJPJ0n#}S^Oqt zIO*LQ?~yxV><0Tbg3oHLp(H-zu#^9_OnZuMbvk}C0zB@)@Hv%xdVGJ0PurERPJNpq+Mnq8J~3iG?HLhJ9mll+A%&9ZW_bYp|mJkO1%TKLh)=tsr7( zKj~vueM(sahR_ZXB=DS|5*Uq064x4xcqXU&J$`Xp$r=Yq8otg&H7BtKZMqGMln6J; zM7l0GInyKX!=u@raZmN~AMMkz@)wZj(a{#fu3asAkVJ}!`~mc&*n2sPjSR_&iD=qs zajsSv=*+lHE0QwTvk}y~&hPP^o+ya%9N9PALY+L1&vJw>C)%1axb)&8mTQO)N}rcC zgUFHA9V-IAZ*@h#I^2JqazT3UB0n*4_Dk{u1?5_5ZF3ZI>pCH-eLy|8MHxKmuV;%X z_!)t3i49Lc=Xx}7=VeDaleE!~ZiDNMVxog0_?M}No&VHY*Lf3DiR)vP7{Om~%P3pa zRcic%#$auoV%^mH?+C(wGql`~P@MW0gJ1l<;OS-+pBQX(S>mF@$#>9aC$pG;LsBVC zXYulRC_u$v9?P=LktZPab;k5{S$kqdVHY%u3G0F*;~vQCaZ?dOubnrNcXUk3E+{2; zrdoh-=oUtrx!-LAnYG*IEp*=bfO<>e@z5YpY9V^Q^~O(J+eV(t3-LJo_GJ=_MM+8c zX>vm8>Y3g$A6(QOaYn3#dgNJ=a`bS`{`dfq1wg>X8!gOiR_lb1H|M^A*Q9B zuL6>HuAf-l?kFwY>?YlEf&3v)~r+JR4PY$m={ zWs~RZh}`iwtSC)ic8t3n8d{Bg=J!j`t&MhRa`>pr3qLdQdX(01;jx0Rdw?z)G5W3a z!g%YWloDW`t_rgUlSP=NL&0d4=E$cm_ne)J5zP;{T~NPLp%NC$n8Zo&ecRi6-P{WL zeGd4^qa$o}wxymBl=dH##4!ooqDnX-qoeS7g^5y;ia85x+-ZEIyR)F+>16UVnEd_P z>=UrV*wxYhvKX`4HYKsNgXb#bg9EHUUfi(!bb`PdtZ zykA|Ip4WKNew~8=GhemReBwJ2^_hqcXdCo3g=(&u#hki?0HTA*3Iu%His(IPIurR| zu^8VqomsW&OV>^A7}EC5vX}du`kq95u{M2p;MLYArV8U@-+=-3ch@H$ddVnQ2XC7) zmON8yTdaV6mItL@=d@xRE`BKNCZ@aOp9&}6&TaeF-p5Z{ZA>+$&-)zqwB6%hL7h|` z`wrHL*S057$8A+N&&Q>vf~)a;Ex&KPMbZmqN}T)|3)RM%PP*}|>np6IQJHGFqqw{4m%l}@&@ zH6IZd0OShpwX~`;M*9l@7I)3e%(KaG#owY`?$fT8VKmgAJsgI_xtgo1p0#E)WpC7E zt)iCS4b3wh?wvily*F2jXXQd*cwLN0#A)UktRe$Y+tK}|A2N!zdUl$zwpPRu4-`w& zQK1K63s;-}I$8oH>bN5z#rRn4$|jp;_j`El$Xx2Hmk=_t!Ly07*DV*F;`?IUg5~D+ ztMx-oDuf| zDTGaH-6i!asdUI6yMVl%IjjmtG;8jBw2UdlsyoSY7nRlv>?d%shi!QpH!$eSFb}h` zw&PDB($sMYS!LhbIfk+Vaw?_@^JVtdx`I$-qGo2r2Av`v&X@K2$y0V^Xb_~2$A7?< z{`80j-9dBKzeo%+QO!eKXV{AwVR?Md-t@hubK9qP$7@54{YgJoC<76?5o#<4Ssr`8 zBoJsp8H+|1izh7sipC?uZ3+C0;)+|Q=0bsLDZ^CXGf*WjRUMyn8T66z8_FbO$_Eqr zy7O$anhf#++b_)A7ARugZQhhb_;aXi7%kZO9pqsdrYEaWzt+MkV^Sd>+La?sZdR`X zxA#u?8%N(5wiDhz#Ad=qoHtS!m}PVZ;x^|=WPP6jh`A@a0XnO=Dlly#s%Gq52h!4vo=gS6 zdDr<#TJ$LR8PF0^m%rDPY8~zax^hbQ;m!`nhqV^%wshEJK&6y3*w3{xMB@NWtCK2^ z*F_K0+@{?Fl@j?cGYv%%tq(cWM%cJjy!57)@-{<82cXl|j8!Qyv3~4w z?Vg||50c=Ys*&rfM~>MnU>30 z3E%P6Ea8=UbDh&I>bf4TZ_J8w znyxIh>K=B9-*a7{Q1!k^vO%VXki9a^;Y#M{VszmCau1zk5JHs% z{=^>`Sgrf{=H^p&5{+S!l^Lf9|IO>;MfS&0vo|BBj{N(=;E!0HrP1Cc(e-0x8tEk= zrQtF@r9?G(AN_!gYAm64t6vyd>t21Chce9gGp3UIe@#t_ZeT?7!3OqrigxaZF~A(O z)1RQ3r0I1RS97%7uu2f6)rq1nlE4|s_>gl4kixn4S=EujsM|5{ggzJ#ecUn^n zoevE8ko4Di5zCP3ABt{Bu(A&BfnvqU?U@bu5&&0f8if?vl@gH1hl)Si`0RErdcM}O zhz+}fwK+4O^=_p8{j>*NpMNLD5+u&Cq{M`3&}+TCbnEF6zrF5qxqA7xlcLsU|K*!A z41RXl^r7KTYq?Ve+Lqrx47aQ~YD%wHtkb?)I{G^|*%F$?$9$JLX*?2)Swu+9INRjz zKZNg@-2{n=W!(P6rdAn4+6e9ADeA)-EzKsf7%}nKpEcpNTe{2_sJ+p$UK-?b50r0U zDnusxR?xP@k;d|)_kNTC|qdk+5ZKOzm!WGm{y9< zB&ECPJDCT9*{k5I!N>h?KCX`>%t@OZB;mYQSF-tTYUIbkkYoFXp!oX%gX-P;45kMu z#%~-((6AoLo%inh8fMrc6DE;L2}ik0)IFRu6rm{Ca<)8Tgk=kSExvmC-)xD+xFEX* zKmYIu*qGlHIOlcDO2{y>pv8ZmVFFLphPKD$eZR)V4F?nXjP_R@GV|RMSN3 zKC_iF06%>hp1FS$K_jjf#(%WrsiMc7kT4Pwwk{$ottHKXT~y_%RS?t5XqJvL_9CdIQUM1MBZ=d)Ilr zE->K3%uUHN<-ilgm!-T^A$ z>xV4UN#@_(-}_xzm5}M;;t-Qju~szkeC5<|v(!pnySvn?Ifi(7tmR&c=!M=lq#sI@ z*Z+llUEhg9DasZ&K6{jY$$Ih7F>3b)=g2GdLCX3G4oUJuu_Kj5Ls-^^3^xf0g%Nj6 z63Dv9BcW}GFuc2y;UL5$X_b?5f z7nL$v?jSm^(!WerRb(k*UY|PS*(?v!XscJcihr>7x~Ge;O$f}lc0c%AuR2K1A_ESw zx#mwjb%l7Cha+3#6~3|-_2%xtoa?0QRIISoc}|x3l66i=^!QQ7dZ`0iGqzVyy;`y? z(spp=lvQnjJZy<+!7e9KNO+E_D?>k(_~^=>wR z(rKbOt2sO-!z0jQSS-tft;?{rj9DP+e~}6U8mTpHUh|hISkP)5^lfhBVYV|IrYQJv zUdf41uW$4gd!)aIQooJQ-9;HuASFU)X>J^WginMGR(@|b|`c&#(2&=@6w;X1w9r>ZQZ*p zPv7l53U`X#Zw9=tWt&3QWi(>`%zW~e22Dq+x||xV8@P5z^dYxrKI{I^(XufIK&5$kIdvL=h(gGBgRrAtMW91=g>G z;kzpS3EH(#3-^qh4y%^?9C5-7T2bB}LKx2JjaRcTz~OYyp|hI#dXUs$Zm)W%3GWFa|m{n6!{ce^1!Bo!IQ z@OX7)#4p(gB-67w>=UJbOEFV&iLhwCD($?24X8`FuHsgw+UpXl<&tT;VuSQbi464K z#3bqHC;qv%ARZo0u3Pjb_K|iZTX6+`s}hMg!x@4X#aF%WvWq-zN4fF$qz(9QA(Ptn?78sxNnc1#$6a= z0hn;Fmz-_?xYi=5Xn{5i3hPy7(Bxg|Ss;8b0?|;n9%mmERu5`B8OBM;udYy|*lnF5 zK{)F4*}D$?!&b}35tp*U)1!Ks)moSbdZ;P0_m)ydZg6^n&o-b5<66xGTChitu;ABLwZ z{x-sKNzba8+A1cUvYCzJ=~7lB(~NtjJ{~W@BJ{OGzaMp-0^MCiP)Hm3aqI3ewu4fe zsU$<70N~~k0&CHlbZ(KU;;JfEo=omvJM*^Md=NcjqfJ2 z=UF7rIN_q*arbtaq)1k8arrd;IhEq2zN%tTgYj;NeStD7?eWDC^-9UIkV{8p&BOW` z%x*NI|LGzIdPd5p5$DC_q1L*N{7 ziicHei?*FPXvD35JF7<`nP3-WC0$fL&&4|xCjv(rO-B+6G1bAJ*u@$Hxr?wTQx<_z zi%@nWGso$o*ntEu5o*MQSET0t^u_12;s1%`9C}5$TTpv0{+a+d8iNtRHI2^I{R`(@ z+W8unn$2Xx&B+dvXr??&;RFalLXpA9=Mw*pe(-U#wcu1oS2J{t({Z9mfN?0@+@u?VO))np&pguuhd1WmOA&5?r^vOv>{ss?^9p zI9+~Q9%NLFVJg2RlT&zDA7227D&D!MySi{%+0=a$rG1fcDrj%<1zGWzrCZE`K6pQ5 zC25I9IuAFM!yAhpb*s7G_aA!gT$H#VKew8jlXsQ%>Z=qTd6dfP>cXk#DK#pg$vwAZ z!TwxFPv8ap$Q=8RGkMPX+n4tgmOK7|cVgWMV zmlAGV_v$|VWFLc=NrnZTnxQAf;Lo|q_e1J7;0Nt^e6ha%EGZLQXirI5{D;WXX!VK8 zgVc?#VlU-L8fMf!wO><#uj5C5(|UiKmY`gbZiU4}8o8dYazxNN+Uocj1(YNR4KIjc z;Nzl!j$|?TtHgRKMQub+{0T3)ddyzWzC1MF6)@$8FEDxDRlb%K7B^S*pG#bWZrWN2 zq<+~urmAuhsDayCESwlv!0V4J2x8u~73-VUHDMJA62B&>WmXeqiEl(oHTfAdY1hI@ z4%f#=8KEMZa^{Xq9VL1Vfscr(hnTtPu&0Z94VV740{7QX?mou!-QwU7GwDvtggu{M zUpg2l9J^}!{s72fgR!?4iM((g3mfvjah z-{Ks&hqdeA8_eSQY}#b**x_KQQf;Udx$8G2n}O=w1{GrZuMB(KzM_+xrK0$C)EW|{ zGTB9G+C>STMwx+_Bb2ZPo-tHbT;Z%U)4Hjp`pG4XDY=s{2ho~Lj=VK6&)U=vY5k4| z@;hKCb2Y%7Zq1GO5w2sv-}rCY?WnzB{NOq5&vl75T%&Qr)x6ct5G6!<2m4(`kIfyO+SNUI3Bf*0f%q7 zfsvfQy{6&*e!pDROA;ux1N9vpGjFryr)g!Dvb?il%jdJosny(z$*Pn4b3(%Kv)1Es z_4sB3M8Ts=h*UaD1|gTKwO7kNNA2Qb--S9GTm3Fcl5jQLPGsd!PuQBCHoNA>aO35GTu5TN4ePpg`*@e6Xig>mnBp4O-Au|EkioW zz^8F)?cl1JwzJ9LVF?x@c~Qlh_z|PKas2clBrn6ee&13~ul81$+Ws9W!toy&{$wDR zH?Lk_%hOQB7iw|Z+3aw1N1j>neEXZF!MmjhBTyIzphiwrl?Nj6(kP%bupYvF1Hvn% zGQ(;H(=2>d-a?5;$p^lZ8ms}thr~{3kQ=RPDV;`9j6p~Oqf5wS%H9!LzN&a*@2`>1 zzs^VHR2KW$prSem{%&>|gqBuq0&zQjt%f5OK}hrm!8;Hy<=SmdG1K&cpk_~1Q)48t z;g|oYT*3%?*97qWQg~a}Rv`mk@y=uEUa~+&Z2a zMJ>!VY;EEezAv#uVvD*wuG4&Zau(L~4Wt0wIAPngmKJ7 zh_gg>K`lVA?hhNIpI)GAbccXJxyd?~)8j~AO}RZakNT%o>rYzzWye^H9{QJ%En@8ebqo;j4+5QyoxRgdREF`e+5Ox>!MypCw;+G>c@pXYkSVUeePUSVuAFOt@@ z$wMh)<$e>Yb`qX~H#{fl(#f+){7t+QEh25@TlTsRxu>my`Yh$Vdb0!W^26wAjOSYb z(hI+zoCyiaqO$a=@%N1->|0(r4DnYWR7{a12W9z^q7%Z>**RXN>tK#go7dtYoBG4u ziiuQ#7_s*mj8V_%cqM8yc=}4ufKX+4Gb>$};)#tiukla){8eRme;y;SuA%Mfw{a5J=z6t#m>{ ztUcSbcQS}B!sis4^R}tmT@NBKBMX<`gWEq$#$0~$P?&G_#qrq__!sq}g@631g_HV{i4oi;5&9$-ASQWE1dLZcw%OP01HK}~X z`BA%+`@n;h1ya7Jw9*#qaxUyi-;d|DrD8gELZU77TvAz8D~K>S{+`90 zCFS~$fu^$ub`BWYzM~{-png58p|m4q7NExKL)^|QIs`-rG_E7GLD$$8+l`_A8Tk#a zHE)uJg5JMsNtP4XPs7o$nZ=jdpcso@P_o z%ZXm>ZfyL=80%3=<6`Iiyjg&H0jz>AP z^~P0b;dl1Q$X=8!s5QlGs@K@$D=DF#y7d;TvU+gU=XGK>-61|tn+iiM*k=`r?G_>& zTvBAX^kfyTtzWyBiU@}sjcjKh)k0qPXqfmL$a5QxFA%}+DpTrq$1X!k+B_ci5Zl{K zI!cz0SxPkSZr=6mD*(lR zVy|V~AI^fdLK_8Ke#HJ*FzCIc`-{dxIT`L%b`D_n18JM~YfBfDDYKB~DB8Po1}ULl z1|n37z4cTNHfQAt7AYijd$eFMfXEK#{*7fktPo`K}jxU;#1QKD& z^mP2f(!`65>JDJB*Zq+R8Cml3u6yN8D^j`Lm7SM;DC=J5{oCsydVixsUwx2--oS=d zyD-ZE^mZ%`tkv`QDWtBaxiqYLLWVR=^W_pM#RmjDeRKTLh7q#8!MB6#->LNiVz=H? zY8fvclD0r1eSX@H|6T3wOiu?eMp0*|L5x)2gp3!}khEvUvhFRVueT?_|Tn^QHQU` zm^OcdkPc4nB!olj5*^hEllNC&r4G@~jVSUP8(;{PHb_)iRwgqKT$Se{V}15R zMDC3tLG?t~QF)`6_Tl2#CJ$oeAwdyvzFuv z5Uf94Oh|5|-7n&|A5644oY*nM0qq3^T{n8U+x7HP2}f@oJsy0$!{RD1K06a)3Nrkw zuNSmdn18Y_Mp6uqM?n09A*$ORIgCCS=YS>CkwBul1E)C#vdls+{Hfc9aDZ#A-YiC?p!~NFAyLsZ!SySTPX+HSe-uEG12W=eIU}i$zW}{ z>=u=jdYY|Nof-T(Uyf`#%N6?2E`n2ha(c-8sVnL5eC}pam3BxP!Q<_ zpyhhV!^o>Xn;?|0)y#8J-~J{NCgv_PUnDP)^}^=LZ?k=FyfJ9|a40SCt*-}$)U{u$ z=Whis&*{{s8%M}4jK3>KI1h<*iDlql?W0{8e`hEViqLLE!f$_B+iolkr7)8jRB31y5;w> z`-;e&!*#$60cFZ52f00mH?WA@M0@C3_^EAgHsk8b3|0<{MOt9i;_p3^e7zJzOID&- zd|`;c-&(cLkFK?anjd{9VYml|xsMRE^fZ2Qq_^M)d~SOL8R7p;8f6W+;Yh->(oTce zv6_QQD{9!~{CvyB4ff(nbfOcSG^Sito`b&Y{e90^EZa!~_1KrFc6dF`*L751l z<*J+9n#vg(cQfz3a;7v}hdo9!+Ei9d93Xil5??zVP;MP!xVfCp26%YnZO8WM_)&JjT)5B%4+znhD?dTxuJX7%2*-yBK??csj)* z8(&;u^TU9Vn{-ycPPB*pBO2q*ISO5yZq8wWN}rnecSS1x+QTL`b!|u;W1+P&0ZC*D zn=r55_#hi=8e$S!O^Mm+K;-6Xs)UiV$e!57E&{a-t<3=K8$ak&t2tx z&W4>pEYyZ8=UmidS;7U)fQ%4Aj1_v~_9lJ(yQD-5G&X{B(pD(Sa1D}d@K7BQgts%+pkfx;$j<(=jg{H?$Rnjq7#z-uUB`$GO z_l}%@uez>O%hc;uwyQ^Q6x$+LSSj8&xh|Yh&ES2^)HlMzUi@T`ZccT3IS3E zr~lJLhwRWa<6-RFv-(32Oy>LQ<1B%o)6(Z&Kd}#K9;&%vTdS(p`k7|9@z1?hO~cxq zsMh+3qD+ZsgSOt*R%{*1@kgDWys%dqYF>9QJ5>3UKUpL2(^;r_g82>;Sz zZTV8EJT%G{>K~}jJPK_TA(IW711&Tg)EvHDfqkia1g62Ykw;< zciA+jsM`(Hv@xmURO;@$%Dp)yy$zNy7NhC?zJCZiIlJ!!`0I%Q_0L?rBrV5hL%mS5 z!@B$pziPGS2gkhoiU?xr!HPZ}ZWE$bGZ2c;%CYvGF36vb19ltbZK z8LI>3&2f}4eu>NvAQAGn*DbyJ3Z&_K*|DD)vGZ8MMswYT$ohY#YumnU)GGS|G)O{W zV|R#f+wf@4oCRPTX^c$l54suz2Kln6R43#%}&#I^P~2#i*}Lh(de^tdR)-_|N5Rv7Qj4jkI^4gO*od%#|CWQ&#KM_f{# zIipMZgF{9RTcrmhm6;`vL85pRW{~#v1z9#n&~z)DYPjBwr|#3qHIamQdx-DRm~PrC zkZ%DtxhHs?fEZqNX`sNM%_9oXj&F&0+x1eFKguT4<8?x}JvKn*NeGhNi;Ad)mLlk% z0iV{*{l3BtR-Vu>#pzln`A|xbXleJ$=fTrjw{s2mMK$rfW{g9Dj-mnal+EM%4@rDw z)k!*L%+d=z)%lx173H`!2105FMs{r>xEhHljUkibJnQ?fH z@e-;D;w|RMPUU%Sq#eJ$;hIMZmF)S#ohKgRj@3if4^G%xH5!T|nP3~Ke$<2Z8QVn8 z+_YbYg_NG>n{UDMXC5_IcfSfVzLZq38k=Do51Ut6WI9cxX;;4E3Wph#df&>O z;J(OlX3nI{M>+oah?9R#iC!Sj$e+NLMny@WygqSj+ef{gx3pvnZP|HdGG7vW!&BCk zp`V}j`$#;MDCxvVWbu#^`WiVb*5=FJrKv{v-i+DTkaN4f6X!zo^FT-mDTv1KAs1Da zMWFFAoIU=;Mnq0ZJw9W>Db@MDUF7bZv{&IO>pwHEo&lDcCBeNtLACQgFdC$tX*!bg zZke>H6$zf(snkDB)L06n%p?0&_WX?G6|E^cRJ1d|I}22iDZ_$B1dDo|M_|N3K;eTsxesv~Ajx(Kp8x8|e4$OB`Hw4wUXWZu&qpRBh^IIe zDhlE7Y4JSDB=c)E42Wi-PCI0YLfEH7Y@e%Zpr=CWQ@pOkj<-77U^3SEtmJ5!$=L{P;+ z5-=*M%uyeQ*$g<*vmbn8s7Xq;@9`r(=OsOoCjDDn{>>VOc;@P+Z=x`J$XEvG#^*m- zMXVmoea!4^>tqN`2I1RUJ4~qwAyI`DYxi` zdGUAQw{rc;BT^;>RIz+{G>tC~U2c=UClQ`TL#hc#(@%BYrvy{DJu6M^XJ(X7c{DPQ zbN~lPskOvsbzxZ?sEUGrri9GI@BzGmj1DN(j=UzRNhq!SNJ+yd`H}}p+>0N>_|ksgw*gt>;Y#jX*vIO6{rYrb9NN0fl=CjBvloOl=XX@tBC{j_ z9JhVxX9G|UWnbEX>y0<$DfwiJm zq0a}_HkT$<4ww3NRHaco?e^JCv{8&#vKg;MuiG?v%P;Thg0@nR=B7+pWTqu$H!w*x zFb7bU|D&H3*PYxRRCoL*!L*<1og!ZRKXi2|^AvJ?7}rtm0|RkHU69Q~f(gAVsGE7G zY?jmH7t&Vk$Ff+h#uIVGq0$nztKCI?O)^C`JYPiK7k*zc5q1(A6&fWGSQljpG5-{g z9hOxpD8sb-O~v3wH~xI3Orw@j9@#?spP2KyizU96V(sK)661qir^g1myW-S>bx}c& zq~}?=<4u;-jKZ*e~ye6x&Ip?g)4EnL4py#rq4HUDLVWW7dX9ex2; zk1ri54Z*s!DO5}H9Bp<|bQqIDB)ymTqxK-8`J}u!LQ@&Z!Vpd3@z zco!m~>%854QUCo93yIyQQ~KGPavHolWu4EgT0rdMR5&4Ze3JHCD05Jy_<-+Nz;9n= z(>RkMfVVn4CW=PpW`>u(TLw2RtKDoR>)9p6vh(QSJ}yrutbH586`Lu{ruBFEY{### z7d+=Nqog;F&F<>(wg@Lu5u9O11i|X785dX$L6tMa{hd{I6;-e#9WevPURYE^_ewr~D5FKfKQKQi~H>y8Vuec0Z}>>WngA=Ma@Pw#p)u z^`24d(`mBds`6BKt939UI4Mdk(seIi3c@iVuW`JG;BE?T^V$ElV4U4z+)2g}&8H!mzu%5KgLDu4 z;!Fqf-S#mZ1FXORUukYhRZHp*18M{cYI16BN!|`kNyBrM6kWYi@OL*C)7;+} z{ABP-g?bD2@=$s4(YiLVis8oZEf9#d)P*aow z0*Jqx3VmK*)dHN%cp2UZgl+1FwFgVsq)LBvAx&@X2@3-7XhBe&dw^W%Wli}M^agQ5 z=JnJnFiwKY{aVEbFCykC&$theo<)!JoPB)m` zWhj3Pr=yaJE9)@%#(&mt=WXah45_~ta=)IfbzYa)*JynGA&=~9q^-j&wkiL*T@|0v zmg>rw%TS}s8$JB?{ZA=1zzHYOw&I{i+yZuA2o;f854$3Hc#rY&?KJ0tomKY>W^hZ0 z-DL#Rv2lrtav};%gO|&vgTzWsTOp~1Kr$C7>7i*lHo~LEE9_y-CSGLEp|nI^)_Q0E)FnV(!8*! z+I4(Bxv03h0EZ)^;hm(BHAkLc}=Usi8{d8`fBG{sLe1m8mUdBB*4 zIJJv%rX}%D|Jl~Jv-eR24DcSzgzB1L&en91 zG_w=VtDa))S;~xkEw?QiB!f7mRbWogRtO^gylR&VCS?y|1o0O9G(~!>c621ZM*K;* z!e1{ZvspO}L3QTI87*>PAw!oLAC-DSC5iC{hDZs&2PL>x^0bzqXxmZp3BPQu+pGyAm z|5*<@%d`_Rn;-~vKEru)$-11i^ReA3+ zYRMXEBC0|bF{=P0?|>z`fWGiWnCP1)^A9HQr!a7__YJ?po1Rr|f?cAN_>%l4X~@F) zwr{Kh!gwi5Q!fO5eOGsx?6ii-vI$!D=)DDKx}%@f~0yIE)GgorCdj5V*w9d zvW^q|z)BzalVyOIe0Zgxq1VG&R?o--hm2dqtyD#f--Y%mK}q4pP1cvskt1sE@Y&u; zE%i%-T6btJH~A%D>Po_>#EPf{Y(epPW535ABcMg94+E*mfq;8= zhlSH-b}CGvf6r)cfYRir@Zi8%0AgoM|8Ud@$NrGQxB{R%#h$f8yn_v?NzU~e#b7}P zCJ&o%Kco0IRYre)&I|A$hKv|_hNn^<;kadq*VCJl2V?Fuz9;#%H1<0b97a`|$7aus zv`o!ArxKizp&pR*g3db3u53k+E`wD|+j=RD&$D%c!DN28iDD9^B~24T?dtarQlM_^ zBEe{V;Pg zUN_+{PWZ0&Bo-u1>MH2SA(gV8AVc7-GwOu>>)E)+MpfR*^0O?xo%(BOr-A8Ae?`DpE~{;3Pr%`T z9(+0T8bQsH+V1NF>@OCO*kmUs-56MEC^J}I=T&HW8VQ2?3-1(XQxs4v&BgZ&N9Dr$ z`bZ*=>bIfORg*xHSt0Z5&=EU-9`Q9jou+N}+-6jCZXZX=xqbn1Pd=5EEUy+p6*L{B z1s;1)h_aLpozgFb6kuZ$Zd?>%)jk{hhNhUG&LBn13K`hru3g(M$Ju;2N4(NZk>|`u z^iKDD<|b=HyN++x6ZGc2cE&HLy24(`Sh3Ph+@edm4HR`-m4W#jxdTae8Dv8wdY&S~ zrByON3NRR3d#c^xO4JS*UcD;s^6w}m{sQbuF%mK#gyMTf3K@SP@n*5Z{-+o@lnWD0 zTkoaI`^v*&Rk6J7Rf7JZ9(f(Jx6X|euvHwoIjSkrba(0msT;0LwwLy53gWrjSu%Hj z;WyN@m~B>N&dfYhSZP4Yyi0AbVxyJn0$V{ zc~K(2i4UNGok+dZn+R_8VU+L?QZ4V`LSxPlSFU5}a=2pZ^RD@yZzDTt8vw?X03!O2l#SwTOw!?;7oz0C#7m3!ZBThcwH$ltS%J?_ zg{0RO??Ew&?x*{?r;2}B_9(@Nmc%xT`0#lS-4-xd9k+&?#SAEgx`7Ov?&EZi@(Nai z^bRvpWA#SluU*}}wrF7QJGyIo_HZGjNw5R-iXmY}9wFo}ta?^N5$81bpMBx8yoYow zdaHjnP?G6_B!A!Nb`btCfe8mujPp&Ogb#C&x<4St{1|Gf#YO}tQeXoPR_FWwQY)sQ{JD1si=XXY`&f8Hk+ zzhUKn8X+pm#S_)NX>Z0{kWh2K+yxrvyF^O!v=KDaR|oNT?Msqymk($o$JR%Ufs50mX>uX<`lT7xnwVb^FmXwMf zP>&&lbZew4cTdP{Sbt<)aC(PJVwc~2(ZIWx>a6ovouS`>T4|nbFH)e=xAyC}%JX%h zz6);}X%VZod30snfEZs_M$Y9RQ}By&%z^^^YH{i4(l^+iy%hZ*H?E75wrDbY?TGkjOpVyS8yybbOpY&Naj zCkz($H?!m~3|D0xOb~Y4T{me2!a*`jgRM&QTm}sZ%2*az7SrB@KVOmjJuvHpLL9iU zJW6yGhRDWiI*P!a2{^X9XPDvpACW;DzHjT7lqISmdiPXKhUQWhw9jGM!DU95kq`Im?eaqYtGJ=w|3U9S0TT z219Xu@oYi9D%nVUjC_ucq_8iX_?|wZ`oMlUu0YPa8?rPAZj{ygau$g9=j9nLBQ6Od zvOK~z z9hbb7++RZe*On15_bI5RwcG?>%#-bzw=ffCm?v!hKG!1XcCi6Z-o%Q1{zrpl=K*vvnI_qTvLh zOMl`$V?{E#BtLOUz(7nL{#v=Q^VJ%vs%^D|tO>>r#%8TEmgrPndXnBQe*@-G;V8T! zxoGtMFbapgOG=$z0T`xgCEvC5Zm|3`bL(#zF1nWfyfR z#oMXx>rEc1Y!vatT0y@SJ=}NH5sHxMv%r@N+)b%fr>*H?JW-wtPYm@mUy?mTo6g*g z4%y{rI?&MX&0x<~&~~hsNWJbav1!TxubU%|1Mdh~H7kvNE9E4+_h#Cv)iZ%xS64yC zC6_+!2eiH8Y5~z}j%@HjJ=qB(nX_2y3xn!+&LkAUfAGYxV7R8}U(`GE4P;ByJ4`lz z#8-^~|3C5h{k<2_v|B-p0>{t&2z3zk>i~x8{II7VVl@VbguW)?5{xF0metur0ox7^ zzK-$T;=1Mgx{Z~u=KWC%0O}a9s|D3NM!u_KWTQZA`QhGt4ZEs)g51Uz0&0F3m7T^H zh(P8>??mNT4d!IG8o)x)vjtkL&INCt|K6?nR)DR@Gxp;N0 zm!I4Aj|+lI;0FQ%Q@?fNQ(+ZOS-(!uzAY^X3h=#U}s8T;nHfCYx{I zDL4P_T8zcy*tuY1QCT*6k=%K=9S0lbyqJd1?^mltYjukV|MfIkjChu zjxwQ63XrtVI?ML7C87vH7426z0$$U8A#zhvd-Qxp*84qS+ay9~$b@)hIZ%OYl?==-IZ0mt&?=Fo|ZpWX#Gc9ta2EtO_7L=OQe*RecRFHTHn z(Oe~#;H*y^>wFOC4%%5vqO<8tPpi7?Mnw#}rr_Bb^cfB;m$TKBRm;@v<_tybH!)uoQi9^uDf;Q}cZ|KnvpjFxQq_<3zgkVm@I} zY!Py3;&M~5-bth(+Lx(9zJoPR=-JNECr7#i$*wKx)u;l zrf$>EYi_3PI@qJqSDv8BF-R4jR$8_t(YNVo+2Ba;!LSZgUG!i9&l@g9{AJG)(Z74D zfT)rUa+%Cd<$r`082jx=>0E0>veH(sKlR=y)R0A}^h-Sq39uTY!(W!CI^tD7%Samq!V^kK z2R*}dKhj(*BmE3{O|qNm88l?ariEJ^ky$pOaVz}V^+^DFDb@PWAm*ZnIxnt>K_f7U z25(cxj&(09ZIjN{0_6!vqbw1bm1P`gY*;tkxu(?ra{~9X%T9`J;ss8LMt}F=uadJi zqT}jAOA9Dt&>N%TE6+|0CCu*yic2gnZKgin&lMRD-J3te;Qs3kE8neVGDHdfB&(b? zIkQt29PAO2)Y;@8Mh+DjY=%5-jZ{{}poah{-LyDe$s)6O$`=i$wjKYvZrcoPJAfxg zq31!3;cRs+#=bR`X7%wF*}P?-XH2scW3PUpDV!BvQeb_j#vxGccH8-yr#DsEp6@)< zC6_V$GUce>45)!zZ<+1$u`Xj!_7rs4hk9B_>~Nam z`RYCaSQei)U~UeZ7nHqSGvW5alL^H9i`mHym_Rb)C3M3k8N`Jd*7xZx#~i(4nbTGj zovJls>|)Xz$T5*tb2eg88|VML!|ckUuL)m(v2abbP{UF>nSI&SyXHcgGV(R3D~rR$ z@XH~`cqh?G^EVDHA2L)|!i;qCo5u>YSTsyy%*0x&<)3^8DTL()>)QyyEnI1+?VTBq zA_x%mT4%YK8}cFB_cpXx@mpTj-$`$_?D9KPUiU@wJ}B`)jPQm|;;gAmxcn-^SV-+b1JX@79=Et=o}0+Vc9gA-Az8Hup0&s|QAW(Cnv3D!%(u zmsu+@B|^2cz8o7tY%TpRrhJ6j=K)GWva}01NFBnIc<)8)xLV)lhr_g`l1j_>Rl*l7 zz!T<02l}At%YNj4=%wx(XK^?co`nXtr%!%=MZdxaj8sh~BwZlNSS97TY%FKcFQax3w}NCpkY@CB2cc;?&GeqFPo79 zR|w433Vdfi;%M3L2!$HQOXm?9Y^N;A%V4~RE${6Ow&meg54r&}leYPk1s=(|uw}kC zL|Pc|g$Q~Izha>Xy`3~RI-J7I095c1WVIP} zr*C|Tx8H)4Rl(RI@J|Q4E=9ADK6J)p z6fc7o&+AQj2~QDe5@_LwIQWOov@r^}N@b|}6lCHj^2X$x&#{ul(kHySj&!H`>c5s( zebRxZD%SZRW8eVjPacuh^-Scp;gzC2jptE;qo*6N9iXrxV$p~bQ<2x6W0;UBt{YS9 z#n~=Z&8ySx7)JlB;FxQk+x&P!$m@r+>yqt=dFEUA2$@>bp@AHdOZ6;Cth2R-rDR)b+Hm#x&~;Whp_k@on^+vJtE4?tc4EFu@N%~s{H(&u|Tf-rB^On$Su4EhQO0~a%HuYM`_6VVQK=4tYLmX2Fts?D!Y(!b{cK;3C%E-8-!9|M*n+K z`;a^yQ{MB}%}%p5qKEZkRUi)EA!|00sdp0dS%)?UbOqL+*s;hSA8!v1w1kPA#O~n@ z=X7l8;6|^7)%3WlIWkibFf=_&c+9oG+v%G(xSP1?honRc{zqtRruB)QOxmV>2;c5$jFtv zRrU7B_xR{|Z;{BUl^BV8)bD;fuu&Q*XGO`PSSg_v#5(ChoG{4@yX_@7%6^4-5aIu` zP1RvWvHob+Cs&Q(FR+DkjY@L~_Z5G;l2y4LIsXus!Q&Oc^$U&|-mN=cNJ(GB)w%gP_C5 zEgxo#g?gmf>g}_)=l*&pZmWZa^CLmEHzZSU-*>I&Q7m})tMz*OnN6?#G|~n@pTtPC zmzq{`qZvBuaR6by-qKHPS_JQXM9Ks9@q5S~tqG3OtS-)mMX>qd|d84~t|mr^3c_h}<<5n*TMX~ zhDB;(P4m+p{zEi-%)wb#6uAHpV?z((x>H)t*=W9?Rzt>%`j+f3+X<4scIe+3c^-XQ z3=^(+pffgufF#}f>%3*(G5gJn!69Z=%^!ud@!Y{4hfheiHw?>bnmGxR*%|NhMoeW# z=Tqm|l!P&q(ZW->00TsOIQvqb+dRDXQi%k4r6wcGdz6?`|5C^X@IFxOu!u`2uowjx zbY**$)gQ_nk(#@*{TXGG00fX!Y5)PS^e|nWI(B_mQ}q0$ITaR=ZN}%sT+hpmg>PUC zNvK*uYUk>!_R2Rr4_>ybCY;wA8Hd0i3b{nqz1IYSZV>rk5d!D=4!_CuRcALBs9NSEhS-=s2eNa)9~%XXcEMrYi&)EWOrR{W8G~4v8=~r2~RL1AL_X_Yq+X-&&a!0z}V3 zOViALmL}Ux58T1@L;&dfD`!gz7K=@9)`pi#!o+`$+Pwb>6V3ONm?`=jTtOGM2FmOH zkMHGP7M!Au&+xOg*2kgFard{}oX=Gd>Zbcl@pnW3dM}8gCig?RS=;>^nF>poJmx{= z3;xUM+Qd!t*KC`;B6UUdJvddC%T^*a5fa9+AsP%J7@L<_Qm=xh&1?lZ0{K2GVduV7 z(U_cSXaC355K}E{NX`z+_KRjCq49I<6VfjPqpj$$#TdGHzQ%?Pr1)AIe)0792eyI# z*o*!XCUnMfc>or)pqCWPDoSk3C?>|iW^)^1{(A{hS>DDB5u$27dTQ-V;NTnkbJI{s ztNxR_h?v25eFj(M{PLLC(!`%0x>iI;(WR9S$8ffifBwEzX@f-pu!7^O2I%jgWymCYQ|Yb=xW7%hm>?+? zj>)BRwF1wP_iU<26pRIPzBd^N*!1mnKoSi(d%uz+`oXS7{){X{&x{gJNOY|j1+cs5 zFI4E+C)g`^wtbQ85l*)2Zdy4&~>DJVW**psUf!RQIs&q8Hm!>MboRIDzn*MB?ZkLi4DOT8h94wDy8{(83R2i)x7`gPtC`d{xe^U z3-P0vFhxi(Y<Uzu{84ubWk zC5A7RS?a5jFSO!sKcthb;OPplEn*qc7I7$k?fj=G@WnoBDo3 zgtoQQGY4zsZMats*bIcm8Irh(~A1 zmILd%y2JnviLxV?RQ$A+o0-IcgdQZlVmf0uiyW9_d&QHf^Nj@L6IWz4OK;F3T#PF3 z6s^+2Da*`s8e&r)!JskZJp-KJL~W6QS$4%@3t@<&J*nV6JX*V-{Hqo$TxXl&xLGkv zAhk)2t7}yB$Y&ktKljvT!CE85+;{2Jux|Z{5>R=x={*b+R$sxX5#Q=EYv~BG@!0*) zVgCrJ?oFSL%B#kqA|(bmb(?-UN_ZDHGF+8|PqqBrhNP|6%*mOCLLF5^ zR_RxyYUhE0r2Z(on#2U-;ij~BWA25BIguC2UlIMEsb2{AN{kU7p8Xo?(@JbLqcZiA zpPc;J>Kc^gmC--M6_vV(HAta+YQ%VfB_zS4Rd}x(*V&GA5 z-v#^-P*M|Tbx(svylVQwDqm)_i~WsuYS3-ED87egd(apxmk7{#QbSZ+37$wT4HfqO zLt-IqBZ$@zuJXCD?v`WGaT4T;jcMs1mIK>pFYJeT44L1b)Y z6@J6Qdssy&FW1F>vB}?vW?ugZ7Zd-?LEJO|M^uy!-jI_+AhRdqP2kkO>c@hNeF2{# zOUa@~X{n_tO3nDYjxp8KvW=50%@M(nw4P7HBuG`u^4P1W{vV4Oph4=(j(hLlt_Nk9 zQuIclZxVKkpRQW}Orgw@#1efsj}B82f$e?a#c)`t4j6TKuVAf*)Ie=LT!%3YrnSh$ z)HY9wz>_NHGh2|?P|@;)K_JJJ_zOK|YRT3-WiwBRV87#|8RJMgEKKB7C41L}y_g6I z&!=&!Nj}k4PMZRwoSWS`1c1BPqdpF_!-Z@n=$?m5LT8U;)cl_-an+Po#zT#lnE7;} zFG35ys)0pqI^)Nd8#5*%{Ez(^+9qw>G7;@CAla!HS)Z2hfTEf`dxMtme$EDP=7>wf zdT^)PRP+V!y|P|Mw~(%#7{*t+&DOI)ffa>klp9nL{-nL9LU5T1pq5<%G6fo${o=l! zzqT4}S7jhdo;jp#1cL^8S*giObCUkTnKc>)gKQ&rz_*-#!k3$ zsCalueGIRiGVkX*EDr|w!u%{ze76mah2%IPv8mb!qY3}$tT-?t{}U3gKfwu-0?Bai*X$DLUWson`9 zKE1~$vfRvzZqMxWy=HaVN&Ri==yk}?bq{t$sJ0HO_ru6l_?hU~0}R$Lq>=*$DS*Dj zzF#6LT9f67K02?~bnuk!RnI?cNZ*GJgZnG$SIefn6Tu#K(+4C@^pz@xQ)K7=HDAC^{8*OF54M?1dx=AAyH;@d`afyN%=59orU z0D8a?Yl5YRK!nw9qPKkun-z2P#&#UodCz#5Wd z#J~ZtDj{u2hXTm>NQZGkhDwI_uUHlimq3xHb&UcSS@W&#?APO;t72>2NR(&L7$f{9 znlKX^;UkqC+xBDE81rfernAh*aoK~_Te`rMhNn@^ zo}Y2akP6FG_NHp1{k|8eq6x-Y6cjkUhh?OWSW1EkKmNn9n1pg#!TddmvRTphouzF- zkf@GFCdh85ySKN126dLrs;JO@DIi)Xo#U@BML+M$r0OMwvsyyg6X-WcckaKT8aCL? z7t&Yn&+faAIY8nEPoWiv6&&O2$z&j@rs1ewOyMHJjqFB#;Cn8jaqrbssckMv@@;$c z^g5p`3RS~pr;7X(udvN*=w{PlKptCwgr+r_nd^FkjK6j(Bcd_ZOJ%AfkVveBTup2u zPlT)r%|k4rC{}M+zW?V*3DG#9cEKnyptqM^T~;>b&1S0ObS8aXh~7T;FBzK5H;N)R z16d~r;qPlj-YYoe^A0Hf?23TIZagmB%1QPnJTO-wFVv!DUU+I`#F!oKZ%g=(0)vM> z;2+(}r9+!1ofAExZwBO=V^RTS#MNO7!FO7hWLfPOC=K-}v1uxifOpV=?b>dYc%wbk zqj3s}5E}TWKOd9e3&bEM#wy3OHxe?Kw1|e|F13CTEwkei`L|^iG6L2;@{|LgK!b9h zkB)FADstZ#-Dwj8HUf6l7HM#(*2Z0cGdF2_9Jn>}=~LcN|5apP%`iVf>=k%L6x##$ z+_8~NwQflsqmGMW2xwFcgW?0eFlwQ*8Y-{q zp5Idp$4oxQFC&@KfP%%UGN!S)!n9jar!Pi~?%uDiKp%&{MQ(Ywh@nc$qUI87e5A`9 zP5L=pn)<&D@;ks8*;M&L)wd-UwZj+ZWH?uDoViH2Lz-#xiaUvabkF7)4vY4z ze+H#c&AFi7#L6hNJCh#1g&T+9nC3%Op#sG>^Q`Z+39HUucjj+hCmMJAA%pBTi@%j~ zR5DJmie_lTy81I1u@&v{jBTVpZ>J@=QNFdEQP+{zh)Pa!_G z{oPFP=}rB}UyBXLI_M=5H@L+sEvsqgJK90)ZMi=`y5!46QCBpjO4r~X9UFUlZ8*E0 zFL2MEXK^>?Zn3H@W~nT*+}Vc!)S-3if^&9~m?vGJFRmF&5i*H6z5K-Vi`CGK^{0{i z*X|oAP8BvBVNl~Ny4#Q2_k$soUU>~ALEq`aD?iavZ=sJlL1QKc$g4V<_0c>qktvhw1qtnG&_-Q=3X+HomCa~mHXL3Q67J`cbUYeRHHm!A#H0WyU6zns`L8SEjl)4 zI3)c~&bJNCZ{PO!$`4zka}rd4+N?&^;Kx_;JXx|0nK9tzS=Blp4bED3-GW1-2`C{0 z?Aw>meGs7KM@45YRZ7;tVZh$Rj<2wH@{3YMFK_+)R<3GbvG~P~(XW6uzP9TfdBqP% zRr;l%(64qq^>^^MC?0MCY9j!8IkR65Q<^p9`vGIJv?zaFiE;6R>OA*G=~!A?R1MQ` zN;9lAC#gvn=g}QQ_upuif(1oCVt`=`?8_X6Goc6k@7`9`pSSo4)(LczzIhe10S z44c7a+cQEHkkn5vw?-=d=-SWCR2s{LI%2d!s7&a)cZ=wGpqih4wmwB!S<8@80X&0S z2J5FzQR%fUq{^mLtCPj^WU1=&6GI9ZhLgU*XHL`O!4J>XipEAR=NQ@uLEx^%E5EY96zUK z;UM3$3t*R1rVLz?rTlB$!qsnP@qh|K%~|P&&keTo;K!>fqqV@!E*BEDhTNjLt?{2Q znxj%Gm3~a{ljOzdU=4Q(j8ei3<9>ztXrIVGK?htDowVx@W}lD zQ(Oui`u`VAsSWcI{V=nsd2Ne~c>w2z?iSfoPU~d?TTUe+A#Kgyc)*0m z=VDn7QsBPTuQ~heeGOG84slM9VQRhlHx^trJn|CjZQI=h#vu06H&ssu0e9qmgE78DL682C1{kP%+9_jQ3Qr44C%QxVX|Xzoi3hxPj91R?f{P6Y@|jfA83| z2>ukTdtn5qkEDZ?At=>2NE|`2XHljR5+~uL6&F&wSJv9KA(dr5=>A4J-_F*r%a+HE z_`tt7*O>q|o*Q*x>~|D`ymM;bA+|-&vuW&(kS+v(r=>eW?2XRO+K>>Uv#N6|;=U@F z2R>pSz~GV2`wOqB6(ZxkDd?p1ILh}hbts|A%8s`;Rl6H$uhCv?(rbPjyIH6g!R+<% z2xsTwmz3*$|}*<*Vh+)?KlX~7(B z9I|A&p~Ayul}sJoQ^EOpp&AxLs{k-48zyP-G^F^{H@4=HE}||&w!?#5gp+E^untls zAZu;-5o{(kc<86EtO9Z6ZYK~eT45Il3iG9Pj}SphU23fG@>u=Pww_k|42NJC3gjT< z_S-wkr2*zVHuFZOQ)TZZ<;1!}{?=9mkPnQ?To!b#45YD=rENwIUBq7h=^1sg(YZRt?^_y9I)K<` zpt5kM3zyG35?VI+7~CBIo+DiQA}@W){PqA>ZWen8R{4WO z`KbXDEKa7_kE70=;w$33rg%*B3x^8DnrKZY z*Ms!rXqDrr0Aq{}a;K`nKw8{ApJZjqI#V<4872g{zJN_2rmiQP983`Fed0CBzA6&; zm5;=kYZ$1!37cwIeFhuPWG9|1m5W^smb(61LfDc|Ub~LGMguU_MXcL92+5o&3ZI(R zjU_ap_KbR{X}ERpF{-|p4JEfiP&z1xRp<5g6B)S?dTyWk2Gr1?ft96&|06XqWXt12q zDvJhg2&Hw47)Af^uKzl(Q-S}eo1i4CU?9KM9W9z8&<6Cs+7{P)k z+kseGrPEnrL&Oj~nouE(4F*m?HWJ_yh5(u`V!$OF8UTyri=>NY3;T*^G>f^*FUK?9 zPJWv>3TrU0D;ed%(SzIl(}nfvLe{UW^Sko-ltWWqv*LE4kc`N{W3Nwi6y^ z@s1r^yYLhpL8!3$b#QL0q_snDeCn-RBZ_Kfo1uwd@h8zFFj)V$U7v+s_lSdNQAm^2 z4?JiU_Am!-jD*h>)A5F+SV+>d<>m`?zF(`%#siFnHL98g|?22)yIHGs~mK0z&Q{Qs%ZmD4;Me@+gB%}>z@G_Dcp2kuOH=*ny3RGhg{tgI|Aq@P_{Fa!(r#RgIlxx6Al70Xrexc~{O z6|#_nnT|&)f@0RCYj@c)xV$xxd1|CS0|NKrIQnX*J^0i;? z+9)fry6`f3)F)#X)iN0brn;Q_y(1j=SA?4TkPf1{gL;e|vS{Q}PskmUqEU5ns73l{&2jMm}z0F|+Q~kqy%M4jk8qyo`Lvn243~_1n2}BGAFP zWS4Zpjh$0c7mu5@DW2IZ5UsZ#W>Z%6+;+fm5QY1!Nnk2*=`1%qa})<7(JiATA0p|{ zv|VN!+h~^77Q#NPc9j}&&w?Y)$&@>V5f@L|Uo^ZW6F&wZo!W>64v4?}z$ugst`e^V zYcwB8V0b!ZZPK_ zII6@hrTL0e-pDs!<=fFANp5_@+pZBBgB{Ku!8Qec$4}?C8hG?hMmXLR%3E4oIDWTE zVj?AOSmQfwR+0EZFZlOC)MTN%?Y^CUz0boN%3+*%!sBsJ2`)Fa%)|%!H!=U!MMLEv zq(S@dZpPTJgq6q-mKqOItTPWzX1;-JwiQ#U&a8_q?J_$%I)gFG^nw!;GVanPgQi0( z-CuAB7)NeBlbM!SXzNB9kOmK8?P*IHEQgI%l77|r0RGovE8-pFPpcvo%?_9 zLFzzuQ(_y%Wn?p!GjTcb%66`&#S7=&TziSLdMn!NQ2;YIOh~_!M`%K7Lzc7i|KJEz zag#(t4TE#@GFmocyIc0tp&xs*8uv%;?ryHBiD61h)3z^C9XKm=_lIeUa}d%In`F9B zDw}C_*}V(8CRyIxtczaHsx$*N2qE{2u96mJg{(@^VT5>vg#jxo(0iRBlK;)ZI`uBt zVmR9Drik^?Njnn$I(oK=(H>X(QyFx#yo9t1kOI8X$%Y$yz`S#jTx!dp>^xmYS|GjX zn=RjZJ8e1E0S^GMmo$u0_Qq(*2+GS3RF&{4Qrn)F4pJ6~aAV-jjR3)~YwP!F6_3iM*~QV2+=3*_P=n|VNj4EUh9NZE~i(5@+gbKir!P!`p? ze}e8it>c`yY;BvP_^CV z%vx?^Lqu7{9kSvM&Cdd=O7X-=Qyev(#cZiwuNVU{+cyNL&MgLFAPY)yyWd3L;JEQq zfP*J2i^#zAV2qjmHgA)ox7)cP2eHy~j{0^s3057^;Wp&nm|j5D@iX3sDi1W6avciD zA=iB|3LZ^2_f{gDpX)Ie_V9h}_Vd-%QYb3YoyYHHh0$ZzqO_yVU54Esrj8OZe?7DU zBya%;PKYX2uibZ?T3DRG&A5C|2F(_Vd8hE!id8BWT@R0t*2oIvZReHQT;qk&%?ZJ#utKyr#GA5 z2QrGCIqWp_?pkIv5jMhpGarSU2_6UUC=Y(^p&TD53t;oUwmN&f_K{~HX-rrE>5_$DVKBO zAXgj-2Rw^d!B#v2=cYm3)(ZD_e3X#f&0s3ec~<}dKUrVBuxlP_xy}#+(mw|UKu|I@ zR8P*^&h;KPdT!b_YpK|kZ@Fqrn?Vd6oDXE?Rk2CR87dXAUXU+o4o75lmCy0&IA3jp zx<>iGWjIRZL7`iUDHu9rip13-E}DuN+lw2U%5REC0;GF4BeGXb=0wtLo0li`;yhZm z0ez(@i#E=dd1iM|vtZgmsj;6|P&knl3A0MnlF$^cx@Wb5<1x3CA_pi1721Z0izaSb zaAITg@TspvN{Wdkr1=Jkb%&i$LIi6Dr{WjiByghk8Onhz5O9G#GwZ&6aliPIHoPMz zRi}s&-W%rv-e9<1hb&Q|XOh`k_hI!27O&;gDfP=EDxQZ2E7Uyp|Gl3rbe@w+_ACGcag83^nD9|{qB3&weFE#=ri4prmuW(JWAyQDvz1Txdl4aW{*zyYpBrsx;`3^*&4lu~AG>Ra%B@f=XGFv4&nK_5F7tswtc zGCsyf1bg-~Zx9qs1fjP>1tvYs;WayOP=076O0oMKLz*zD@*s|B#|2?6mYI09BJ0hr zw8MQ4W@gSaFcTFD@{?^!Krbz)EL{girBRUymL-f9)u~eDvyIzS_{H-4XYAnjDcxeb zPqRhY(2h&|Zwb0mvk+p=0Mx7=91VAA2)>yydKAsIF5xu3w*)ogzZOQJ z^EwxoJZ&xk2;hS-jdXNfQF7e=CWoKg{ zXLXZSW_?srI8#;+^!08xSz61u=O5H%F6%Ze{a(YBuLMX7gB;Tl?KZsNjVforjI24V zt&+m6@eft+_t1&b_!Tyjd7av2kV~&z4?f9`18L)7f%Nd~4A8ev}wlNST&B{P#*9`J2&n3f_Ks7N(x%=f6R$LT;I zBDC%bLD}pNIU{YCvo?_E!RBe#Y|}MfxP)Yw z%J(+S4;QZn%Bp9|kXa82w{+gOt6)1To(>){Ui_7Xvga9i{6{U4D5FrmS8*D$RXEk{ zB_y0^C?KA)je^L?d^7BB&iUm!!u`&R%|#MvjjH=ok;WEg)uO&u@e`vryN2mMG4t&6 z6j&Y9Y8{^XOME-s$SH+^Y>Oojr2KZIl_x7&mZqekQWY3tS#Kztz-9xSOC(5$P{Py? zM4;HO1FGX{#+3TMY$ask<|UgI@#th79=1~hE9PDWSr^+XzSGPln%#Be@wN{UKz6Fd zZXNANYH9)6!{CtEovoyGhNv+Bd9mS_!kf2k7UZ9!4qs9&-I`)6Kn`%^Z`s-E?l9cg zq~h&-D)K&p&dzD}`?IeQSmFekhK7^UX>bK#v7=1Fgh7|uQ%uGsy-?=&_`G}x?lix^ z0uCc69MbaEr7pfVm-O|iH<)fmqqbD7zCJTk$2xnAQQF+sJ{3e08=vJU)Qm&!&`Mxo zVG#?tea%xr(qfaL;>@geeQE@&jfx?6R*KHTDb$B}$|p|LvpZ%uz-rF(4|g-g&hK}a z3n-?P@>DIZQ!Fm)EA*W=&z5Gq+MQZd!LF0g*TlQkm;32jYsGg@Nb*Xvu1$>J$10(~yd^dk zzaV^+u-I|*_r!R2H>YQ&Za)H;iJXs;D4U1w=$Z zkX}U;L8VbAOmuGDn2Yi` zVM@4om#!ASu#Ys<7NYN6*5B~;Tqo{(&G>9Up8OyblFRu^K4^cG?DGQg0iAD!LH9an zUd+dcUPE zk)$7Uq?N;BMbj!*dR76`ftg&SU)|L%-RS>;v%a|}t}fa5`zi=Do66dI5O}50WT@rK zU|NAu&xrJD=J`Ksld3VI@LSty<4x54yWzZw*Korsa`L-!q5j$QtsX<2Z^tfQl_@uj z-a98Qk$>B;FuS1ON_gu`$`jcRzoM!tt#i68<}Hxao_CxjZS^{@@~)<8%SgrKfV!z$ z<&LJYu2G1r0yloGPSmPn)Ok;z0%#L;kl%#D%sq5SM;ODyd1kN8fgWZ zm0mLznFC_Fo2TxAd=t7{c`Nm~!&_b}1xhowf(PjZo9mM<8-%a7R*6o+y`ci1bI$ge zn#!$Td-W>DK>`2y!~Rllbg02_oXIffapi8xp2YCdYBQ9e=&ea^Q*TSlf| zA=fHF{2op~G5#dl(Hx)=8w2a`JJdaR2%!_cLNJ%_e>(Ha-KT7Hjkj!JhnKzQnhDgT zY05WLKkj>}{??|O;XR3#0^{b&WqYi$#(bndf4;hg+(x{I;K1enDz0Y?wMDkEOmPRf* z$d$w^cv7f|?^6X%E@k2z72!Tfi9qvNb2FUz%;qQ6 z3eOYQuY`C=9PUT4wR8H?o38VDBt=bigSE(7M^!BYa1wk#VFQA>k~o z`Vr-i`bWy>@jc4I249B>pTxtHe|_~#Jnz>=(FWPr1wWnoQ)|I|y(eVteG*Up8Y}`> zB75F^+ZT(~!>$P;ixbZC4>OAAT%5saYr`jrXQoOjwtH^m@s;xzRM_3Li{C17v04b= zrLN;Tg z)A(37D=UQ}9skf5qoj{TDu|M;(g}lt=S>oGgVubw_nO)?hJStsUKDKRnz7@E8rc5L zYtK>0R%pv%nZ$2g6>z7s$4^(^F!h1*V?>)vuWD0$vIk;4%|GC4?0Z$;9RAgBkycM> zGA!9~X$8dxZO!=gpeh+d1CGjZZQbgdE|ecGHJ1h1YD2zU z;x+4g&i&1a!RB(-aCD^36KWC+T=9fL1 zC~=fm{&MGf?X!^2hU2ROQfd)Tqx=tQeNR>(T*0~jCiBPO=ke)1lawUFC~Ova>cgLs zapKMDVB8YA!cqRGnFXFFx3!abli2@vq6L!oR>B0g;QxJb{h&gWZ9RN(gL>TVb$p!V zeGB*^8((famm#*&BT&wp^h7S~mp41V`rUEu?yInW9*RC;e;8?#^5`S>tUzX2QR9)j zon1nEj?Z&`ojC`7@ad~uXMx)_DPhZ#cYDd6^8y>a8}jMK3hAU5$@7)Y_w4Lr3S~( z8IcRMg5iVeKKD}uTf7nv7oYS*6lhp`wq_=Ia6O0UD0$eS7gLKtM~$*}%ns0u@MKj}k&=RQ+s()cc9P9{381WQrUSAmMec%StT9uHIxg8IpgA)A8 z`9KjHLTTzUELy$!nAm3;AO82mOPTcYwW1Kkyj!A{hkPAX7Zb24J(;Vu4OCm__ z_8Y`Iv*_$wOP@dR{auWt=?f<%pSJ7XW-8mDe!ixTDDXMXS{t=?)<;w6fv9=0=X&E} zkji4n-T}PhhRsnMhct~$wvOVWPgb3xh2r8~fLP}+4WaW;_++%2j+!Q^dLpO^Y2{PK z*b&HxoGbSO^Q~{+dw6B^h}zu}!QXiD*{(k{@ooDhyC-o)*>tt>j&e?pXvd|rf(JFh z1`-E1Ut)=y$GzVs5_v^#Zh0%4Vx%m4>H@yTr}9U>ICLmw2%^(uF>e&r~^A|qe48~gO+;vACRxE-)UnLX_9=3NoO{PV!KqGr>y8Oe0OBLUU?;w?h)US)32ca^6Wl zMpf-sY5T|JP%@l4pL?uF&NgbzPbvPmMS-@4uz^AR;cyqJl*G1cqIQzPZg1J1Y{O$; zwlcs^vZAe!)>R4N`h0C0iPa{b7V6SwBpTLX-oea^4xcUvNVfLY`2^0d58Bau_F|vt z6~B+3uD;vDC_{Dw(QCcFy40nw#Lef)>rd7z8G^D>2oA}ix>BZM5ciZIhH%jgR+8N)Sv4gtp74TVXmh2axvQ6IK7W@fD+QMe$;xw`3B9&)%C0AE#H=Wk87p86rxUqoY0S+*SH4E z)P_70!ai(^sTbC_*(E!Hgl@>thZnVzKb();NPOF)gW9jXBP6Mm$N5`mq#CDtJ!Vpj zN~+sJxrUbL0k(!)GjkSOI&=vl1_O6wW#9&zx*z^)Wo+IBDNsd#{v=OB9&HhnWcuW@ zTS9~q6GjJ8Rzj*aGm{5MV}XYy@xp{{R0@aLkKwu8d2<_NMGrcv#N(cEuA-K~%+=io zsgZ6G_$%54cI!Ji3o=}|p9YrEkoTm%p%R=&NuWcS%64)|up{c&cK&*!Q7T^fc7d?D z$>U~`TeHrYs`4teYfiz8JCwxp$6evgNnaT4o$zxT!y4w7@)OmqCX46T160^S&s^+e zb$_tVb^VwK;aA`>LfrONFtr(gew6Tcw3G+wpR!XO#+^M7#E;K;V17jBNjagG6~5ea zd|dl|*^PM)wxMQ4wJll(1{(Pyx*nUaN3s$sobNfdd45`rcExk7QN^-@KtP^){C=Q>%R?_u-XUGHeh9l*zy3sZbrZ~WY`OKQ< z=On7gD?pP!pUp3ewK~V9&r$4{4d|ep)Y&lqn35)DHWaKyT3h!Du%)OoECT2M`&Dw&Xh%HO6wP&87>-^YDdKeFOi935uLHEDqng_v=GZG@^f+J(-_8ggf-|FbUJuc2<)yyaV`HeF1>vgcDL zOI7Qj_8!f->-i#gi7m=BN}ZSPk#n_OUzLLA#+f(Q6hmTMf;&obnMxH?RzRcfK28!| zF$5x#-4y1sIzD|09A3Ake3pBOg*g8W+$p>SWMya-wleG375f0kEj_>q^+Q4&6mJVf z1q=>v+^Z2ILA}>}ZrE}wj zE37JJ_E?dGLRv*OQqM4!g%CP?HAg(37o?guw-r(y^5{GVyQ;Cq!VK94$Tb9B2+r%+9wYq;_6m^$`Mz12G^*KX#F5{8Irn&Ngo+*pO8M+@P z<6zR_py<+}ok@5I$?;&?HC(yo@Xobq?jCm$%9e}T*dsVBadS45S+hKGWMlz5>p1NZ zuG|rGWwIpmrYaS;rbxhrZXMa*>*x$dZ$FU$kRBx5ngKXgzMSaHE<#Zl=rbXHFO~Gg zYZgao_<;rAZD<=_ZP#!RR@_F5zKf=IB?Qml);z~aze1L@#_JV3-fM)mQ67%W%LfC@ zD%i>trM}jup5?gjYyVI_p}g_2-<`cL*CZi>KALtpE6vP86lnMAHFesr-&rY7@?Qe9 z7=@fLl4`xD9ZjhS@vpK!Zp9IkJ#g&r-H4&}%dK1Sbur$0(Cv9<8*~ZnI4%Cir_aTo zq!8(4vvzK~uHSlIKW~rKP{Loy<;+kl#4JWVVR`3CSqS8llqNT&)_Webm!~t=D|q{v z6m~aMBn{mot#pG)$vLQ%nJ2AX-^H|E^hgzEFaP+d`g4`6VdHnTi0&PqG)k^296eh1 z1KaF;5r`D|hf{qs3Jd9tdH^{Ip13n6*T<25%A|h9hxFpX;#SR!E>4KvV(m3*E0nd^ zVZ=e4h1ft2rvp?~oa?fwOTV0f`erHanpAO(+REMrM~T|&Lq`Lup;02vOt;qV2wAn> zarsDT<2+paOy1ucQ7v1h{tq>>fc_^{G6i2auIVtDk1aUjVEc73!2JuM)({hfD3F5_ zondpo+7Atcf*c517xSPza!h^k`8`ZYk@v_%+?KnBQUrqX+Xpb#sl1X3`5*WDyy^4_ zLjb?*JT3HBVPE9DKLT*06?*Icy)Qd_v$js*>d%cG*Kip$95_E}WgN%Gxt$%| z5Cs_#;yZ0|7UdMhPCiYQzTqG)okC)MR_a6@27|ttx8fOB?E}d?nRRmS&6YqJ2WkFZ zjV7kWp8E%}VnM`f?zeK`lILQfsFrkta4A0ZnA*>QH)?{J78TMsm zW5di@)lZ0@&nhR@=HJw>v9ydk*L*#4_&U=qzY~?z8^TZh^$U%v1vy^idQ71WMm@#Y z`4UGKAqw8&mTx-UUYIhU(7h6G&@gpia>Ln1B=$nuwZhI|$A+fsMe)|@=6E^l)huOU z)I6^RtT9C!DkA32xEUn1j1B^D?ReFqE`P za_^SaJNZ&k5A0}w0Lqsod|dZF8O&^_kpFzk{(ebXb;^@m24_2&$H)jP#8$}J!cR_u zvgv4^^6)?Z9I-~OtkQ5=utjy_@RxPcAs*sGZ{tHsva>f_2W;(%B&06z|B2+{n!3i5 zQPwB0*(a=LDtXK*^SUHUm|4TU8eaN67HHVsXhyhy4gIgp&)i4BXJ2i0%JTZQ(s-Cv zxA}1=-bw#v4wx6NRZucNVw&#JkuunE;6_$R^?2~C?vy0lFGo((yY$rgcD1$7=qhoh zi)Kf_w!MMd_d>g0KKp}v8L1U14l&ZsrKIj}ju50U@sKH-a^ZYR3gYO4^!G!~Pm_@s zN)IWIIwXA=YPo1veG{cvQ)RPJqz(?&7bC~bYuc=II#A#~I*D9ql=lpK3yKk(rkI2B zc-4J_cnbi?KFUSDeH-v?@fRx`;-57LRlaW&7yl1pQ>`at`@-2fPwN7W2y^fnC!KWu zPhOZSFPNBu#DF5;@|6iHvzH|f9liS;25OEV@Vaiq&GGC7bAfoDqe&4c0MGo1EHwNv z;z)1JoyHi{j2)O*-;MUs5lVX81n1PdR%L9E_Wv&LRvZtatj28%3*ca0wfCuwZF!Af zp}K#Hzr)1-$?@KfrE9TW_b2%6+}@ksD~oYXBf<)&n3+zoflK-4#^dlt*J3i0gnUzI z++i+0E-Qaz!%k&Blh@|!vz?ty6DuPVq!V{DuPb|}|Bg;f`s_~QvBbZa!RR(_;$(RZ z!D@we-CzUdUU@k>=rwr6gV^rt7ANZ2`w#qdoea>NuFXrLUu~te=e$|$9Xwh$Hfqfx z*j^oCx@C0fAJWmpGr7+_WgiCDZp7qfgpG6DH8XSCa{>_wT4D(a;mYIcg`kkBBHGlp z6!l?1G4p+XSQ3?sL~!1JwpQaNSRtN(*EnS7D4DC?^q^T_K0X$ZZmJk{i|~hWoL=LnVh7)D>F{3X$?zshz&*mFM}1fvk5^=awnCYI6n&o(GV~W7N-lMkvjgc% z_C{^-Hk(+{#Hrk8A#9@ejP++e$F%N7mvCk6&{%~7L@VXk#w6mqu@ zF&PF=os4+at`#eLMK1zPxLDf&Yp<6*Gv9J|^l(`*m*Fbe(?%Mi;VwV+{_(D}$}lzH z0((rGU#u6w+@^m&vuzkypW+6Npi(is;$b5x>toCeR8 zy3We2&`uv_dU}s+zY=I@%++N@j?qi(k>E8Ox_dl(u8aku$O!OAD@%J%XSpvYFF-eF zu*7`>JRnR?hE0Ix05$8K3Bv3#g5DNirgl*^I_yJiUYngxN47Noyjv#bs?kzL8sD%Q zZ+heeywWD-9oY#9qV$LAIUYz|UJ)63bDeD-7v;1{ZgMFtkZ zMh!S}E~-xK%4>~AUcOdmYXv5z)^mqa`WOH&AWJ2U8Y25XNWrm#-9j&ZOG(w9buvf~ zQ~L)YCpA6%j=nGYvffi;tSq}-!qV<%VN>tod#uM;L5Q}abne{XWI~lle!(3;2%J44 z@1vb-34u2{Zg2~YQu`L|Gh#HGLs_JE6}b5BIEET1to5QUxK6f_Na_L2sJLIe03#bB z{Yh%gyQnj~ka2=Z33u9Qd3kpW5-;6+4TT))7VXrh|#b5Pgqn-sQ zT}(sVoH#cDz1TZ{qR7GEuVnMlnCi zN%XhbT5%`pJ?-BBi3ak1?-#{db+n^N4uyM{gjm(YKL>SW1y~MIQ5)9E#E&^aau0-0 zyX75KFbVKlJh#>4%gi*$1q6&gRze7g8^^6P`se=wHd54{-hW@nxNl~c@RU&+_hKnY zyZRht5|fv+=+|aO4ps1#gfy6L$0w!WygJTD$P0N}nAlW+EbRFwzffoL%9PT%9`_>X zo=kjv0O|Pv8z4**lRMD|+@;>;AKBXV^s3Kaz6Wxl_K{JM7Qjhcm{?R?I)D88cfR*o z%rTx{s`t6}rrGZJ7gHiGGcmzVA{!^i7=U|i5@7XFHkKt5=yI>Dv*&H$r>^k`+QqD^ zyO!gIPKdb`0aY$_=?L9P8UEdQGNi;N=qpubHPw}ttzu&MQkJ)5CMve@!Mz5%=w0(Tn}viP;*29kE@~5wE!eCr{r!1~Jf|I+>peLcKW&~;SS8!2 zkKedor)F@2%*J%f@iy1(bZWcg{Ppd=i@T0H%pMw7^(I3tYy{h{13`jvP2eUbfy2t7 zAww3fmko54npv~)ydQF)tjN5SB%Ig0MTCM-Ql3CWndWl*1rJ&_^$zH+9SRLjs-1}3 z?VF}9c{LkSw@ve7U*&+{Dm4hp`{!8kt+k&)yu9+)JJ*BuILu?LWW>qZSePh9Wy9%agE$UT(W1m8fMCvPCtf$eTEi6zZ(m@)3(@TQTQw?i82{30@6g;_z=ivqk3{N5 zr8Gjb7Cq`$i)#5NwvP1FXLdLbB%Cbp@Vxs}e$=*k^=-Cn?9YbpH}-|B%WVD=k<-`G-kUhPbP-yqj{$p%3t#^DnkMQmJXd6rT*U0*uycDnFB zVOa zJCA_v^$N>h?1sk75yrqojzLCql+nK^7c}5AAI)OST~R4Gw)LXTsy=$W!1MIf~+Ha7BXAF5h7TC5aOsofiG;YKHHHL+WiOPGp%=b6gDDSx{HkLN= z39Fxq@D56rv%93L`6AY9m95qu)~$@TQ_JXJolh*ZjQ{o5BMnj8W7q8iGALIrCdvWc zmBG(^ba<7Ui=^&y7M8%{DcLyH>fk3k>8JZ`M^xKhrI^dP6H6ZTV(mfL+WUY13DAy8 zc#9z13H|H3Lb^52Ev|OcY_NY7h30=HLiINi^Sm@NE507_s#5`vYd(!$KSS;d8LW%I zsA??@5QYA%P5Z{IVggMb3Zog^g_kt(8(KPLrRN&idEj;S_nv{8nQU0-pD=^gUAjgu zw)3kJg^*C-;jQ(vE>aATJHp!r$*QmE$7lDQ;1%u)tW3A^WLTVernlmTs9mW#^?Qn` zy$`)(^^3n7JFjr&WVe?JX`rta#q_w9;*&iWC(alkPlYWl_T@}*FeGH?%`a*+8V+ew zonyt0jQzz8(AcEE7pMRfWneWbB%RBm;`cEvaI|kzXw|jbWA&rIC8b8Vr5h{)^MpG^ zDHFAQ^uFWiG)giOA>Rk>u4#yZ)dJ+U{W@)yW33Zs zkdqYmXa9?N^)7&>)@`1-st2$-=t5gD^{-1Qdig~-KmvR*{tq6y7FwH~orS8*2k@fT znz@30d(bvh;cEoHJh_hdj1TH_6gU?Y*bu5QF)QKOb{|&beLMmMMqQe25IlrT= zrXNHFHnja2Z-1Lmvvuz?&;yAHDH||QMF&^}Bu3~vgXSn1SR@a#9t#fBBt8f>_?UkP z%EUzIJyH4Psze9%wRZLm1LBYv7_n@%2t;^!OHr^_c3SaM3X%5`8O$C65jjzdy1mC~ zQM&H_k;K>XHqQT=q^M2wF%kDWQ6~QguPto7!{%xtN>l}{3SM1ANPc#o`PJdfS_xvN z-OaY%(*1kSqrT6ct!o8|I@JPI(b{ zUt@6kVe-Ilv#TIEqq@WTs3!K%XO#HA-EsGEnNbn19O!Glk~R)`KoqSEN2iTja}ff~owm|K~Z8cbdbYHT#5usd|#QBD3RQ0kvMoRlUQ zS-2)xQQYvnND^yGeKf9N$8Trwdn(EwN?N*U4wQ7T7*8|HCG(`oY=BHx%eqiTgcLp6 zhck+Ck+o<&I6Sxz0NXUq_edEwZA%B)JB%0O3vbgslam#{$r%93+5MhFjt)oN%t&P& zpcRTqh=TXOL8s%W^%SR{RgHXQSKiV1Vw2vW zwE45RG0zZa9bdG`PM1{{Sq#v8yo@Sz-X(AgR;&H_r}&|c_7Go!zjibzohvmLT!FwH zNFSWx?Wz0DhoKfglnCG5j?Zvl*Qa`puS(|LvYAugvcqBJJ#0%$w@Dzbw{~JqGchf{ zU@A>520v-jwID?A9`DeAV3P!?I7FqK9vgQBencB%!&P6gx^X_n!Nmu}Z)?e}lh;AG zSHka!tSu{NV^qdY$FW{4lEqcdto1L?0mv*WHa@dgWNFpthHxdrEwGTKEnfteKAnSA zdB>FgZkS%4h%if_`Pv&*yb?KRU0uS^%p$few>L|en4Ba4F7XW)X66almifR@07@@S9yMj9BItkcj#pvhoxITVV6I%WR~Z0%XTN{~|RAJJ2QDnQfd z`8KWPOAbAJ>5Z>J6|XjuF;@h7xpImoK=g0>NSrA4CCtwuWz$daxC8@Z}H_;V9@k%Cd(_ zfhi=H&lg!?IXjL;ahlfE2~N|ni&Qcu^xN|9!p7;nc#>+U^zg59A9krc_n+b>fz_N5 zCwrRK1)-W6gFd}e%@~{6rY9fjUls2b`3`c}BDtW)A`(7ZisU4YL5`ZW;4OIK>t-@KetmZQa*dd`EMcpHY!{$Y{Z?>%Kw z4uQiz^k-rn@lhI%K&<>Cm>y@K0aH52a@fa*2#Bv_RQl3?b)Z2Zn^K@`XICiM>bKcm z-lDkuGzGAX?3Nr@(Is{^FVkXk^8L*iO~{)txH+sU_LV6_wX34F#u5+$#QyXy&mZ4L z-v3?%3cT&~W=bL48&WJ@>wfpcl~}zRxlC5go3{oqwdQdKZSO}5E8Jm%Ws_zFd~0?^ zKmu0i!F5v`0l90QOW)b{ftDtW-X`k1HiMXJj;ekzyW4XW)KE_P*sb#n&GW3VguItc zeOmzK1_0vtM|UBh*vGWA*y~&9XoxU_n{n|U(iOo3BV3&zK$DBnUAfik(3Pn`Gu16K z55T;fJCB=yK32ubQD&x?p^()>1{X531A#_%*~9w&{a6;yDB$!$sa~TDebI)(XWD&* z@;z2_ZucItaP-g^%K)+)+UiRKDp^7`Xh@kks2|9F6-2~~!hyNcvwgS&x`J$-Xsy`u z6sOcN;MEnLHIS?tW*Y9)6u1&uGX=`N&&xjMd1f>_NWe|Kd`SgdR)*R9dTZ11;Q3%- zVAOCpsSLDnpiT3^JHw5XWq|ds6hF;bF&O(jjXKQz%5&e{>r&6$FO^nGyGH94rd5mc z&!FvQe)S3kL1ly;xNz#P#a$H`w4P0ZPxzp&e&!Ljd$m67?uYXgR~e#Gw38tmsgaxc zYyNq}i}G@hVIZ*s-&G6NLpj34q|eY}`^=9W31QUA3QBspx&`h#?;lforvF!UW$fRfSnawS*f$fG3rk4zYjvM7JvLO%s#}e3~;TuqSNBMpZF?1mnktM z^(qtM4ZRQTTP=fw1%X`79Z=^hGnOcMzWa5-x~>h|dbra)?n_Xtj3JP>#)_x$-jp>5 zBH3%I!a65U`U0zzr}sKzNx$USFqRYqA0Xm{OHkxVt=CBQZ*lk^|I^~PJUa=%VGB^x z7I>6^?hk+~E1G5~AJx)YfWp*!Hw*;lHdFGek;$h^_2!4=ea%WZ2g8-}t(rEMD@He1NCkulBCu(;(*fSr-g9KZt{kOau=Ylv&f{g8UKz2~kqIO&FZBLG9Gu zsW^aC-0vYxBDaQw3~(N%)e|&ZfJp&Vgkgvc;u9L5R^-pKKcrEfdER^Zu_Z zk{EzoYJ*mZ5RshQShJev#{$fZgX!*P0{gZi6M_9irHTyn&Rapa zANtoLdmt92t>w~e8e8rGRnj?b@-UE3gO6?pgx;unLwsuYJXV)=0-jck+90TgHlS7o z0p|Z+>m+(}UyIlDeaZ7VacU5ly8v4PRpZ)=z{w+X6ZNoyJgD+81Od+hsqf6dX)4&lr9#7O_2z~OmW$(-u=x$sca-^9Fw?d4Y=zm&SUo@0mp z?(9q4?_-hPe*o|8l{GNML^zx3qe`t!C)aNFlI3xO1TgA>K_@SS=x+TH6{O;ybY6E%FQED)Yev;aQ>!9q<*4sFw zoC6$C?f!NaoqlVri>yo1cjURIho-cNPBc;$5Kh3bfp=811SSPQ_vfq~JPuForB2=q zOq!H7WbEEKF+=+8r4ZGi@uT6?A4FwdwToKDLx$!S3ho`FEUjDpf~aY$^CJp?rp^YA z>#VAy9>Cga;*x6=!C~gL`sH>jeRbybmeHwln(9R{hw-#3pQykCBv&waiRyvbjaBhU z8FtMQ3SGrsnwb?fZojV3;0jDq>In>*N8sx=?tXhJ#g+;>={J&O1(2 z6YbaL$iNc@y8~98ardrWFJYggX87A^+D92@yjl_yzt&US(OJiEXESCjm17=#DsNSD zRNXcsriV&-hf)E%0Gq3c2IyBxK+XKf!e5U8x+kpm=ldBb+%cvv%Si6=!yJd5z6(Bd zpRLX1lxJ5NY)~pB9X=eCozl*jWz@WFPEN?wWp{60r8I==snUvlQdH6LUZ)H}Kr zbBIYr=P53Jvz7-;h)59ufa%EMTC0O;1r1VhjPss*!>&^nLg?6ZdAyfJ>wcGSUm7wO zcpZX)2b?i^20-8}&@_7wTK+fUW(EHE250?|>reVfc;A0yfrb0bFPd;^WJ~1+cg(H4 z{5#~o#|yy@sp`WN7IqTK(r7`WKcW~4jLl`oh9hc5K=u!7Fd7^$T&f56LK_e;?m)+f z40J1RJNW2YQtWe(uV6Mefw6@9z9x}dW%=p9EBZEk1#!dp{+nJQ7P0i5gMN3ePdZHk zyqYQo^SXt^ZE0U$#aJY8s4|#ze}5lop*{huV~AEp)Ox8rGCoDw{nqm~+T!ziXP+dr zU5I7B`b|sVYsMI?d`()oij>LCG|bFEfgGa)*xf*r=#Y1nm+5K!-eE8 z-_6y@Bjf;o4oH`!wJn#jR=(YPH^ilxmJMPIfTqOboRSbOhnLlDuP%Y#v$7AF%ThSd z0Is(3=F3`7GBa{%F`g>+m^Ut1%Ae_v$)EfpH}eSYg}^243H7!+Bgf4xsn2G zVH&2C?qm6{<3oCG>>rGd5i}J^e1%XX;7n3W4 zFJwFrH?A0HAG<;@I+%(YZi!Y-{n7*rX~}psKf|-EGEJonF-D&G&?O7;#5t#NDkUrcqz~A>;=)x)na{@iAou9>qz3QzlKNY9 znGsh;j2FNRwI06r7xh$vZcDx!jnpv3>`$uzz7e|!c;}^2e>8Em^OELBa2_T4`-fo_ zyk2gTGDPz|?!~B81m>AH?w?3o0CL z+5tH^Y##jq8oJu9knP=G`B*(*)(r52Z}mx=Uo`8zR=P}-`Cna07#PHt3zUPHq3y?* z2KB=9Yk{n&xt9)x6qwKctf^hT6}dI_3}iaoEWO6mHq@eLQBDph1j<_@ix^shzbKgr zbj^Amg(d&`XANQ7&}lh~#9CL~eERx&$jX#y{z9HRQe9Qo(q84OCV~hv4c<_H=ZZjP zmg>DRrsATpIB5wBc2G_HS(2zDzaT%nN{$$R87|4W^YU&T^snP&9n3QM*DpJSx}?6P zJz~~b^5J(!HzBwa!cHm%9M;2`^eO{T1c(c(>i{onu7rlF71+asN2g~Z!TQ|?2WB5|a+FF7Tn4`ONsO|N%2wL} zIC8Aw`6TIa- z{q!=MHhQjPPV!*8$0$KDbnnkcZNP!(SzoAPFzP^EH}OE#3!&*`-B$25K=K(E5Ndi+ zMGgp(2Vuca(ub&T<3~JbDYC6QlQ$VwJbh`NvxCtlk)QQb9e%UU>+mj>^X_J6IL2_Qlr3iEj! z#VwPeAEVgzPb0m`73+?VDD(M;MBlJxMHF}5?QSZTf% zTvTKcIwNOsv?DS2x5qeA0rvV`Fp+!P$aLnPBR~!SC~;oE-PRv-xJo960QS<0=2}j; zhinTRcw}xNfa&r9Y#olQ&-m2uHzq3Lg0@lfi{Rt3Ds>uYes6er_oX2~DggYJx0B5c z7{VO_qqo?3FXA&R(8ilHcRd=g%hQyPuJ#HN>@RVF58h7E*+besG}3JVL1Upf+iX>b z^4w!kZzSG?w&0F?KyeO4tkfCi-dbPm-z)m*4dw(tf0SSoq=cm< z*?leQ;6$inYe<-W%tp2>8<-=f1IiClXhQ#RnFpO?F}3Xa=%|GwtEQb_(IR;kOt`5_ z>mF>^ldKziPWv@u6InVxAw!#)5J7 zE6kbKG`)*=JOC4MeYhOtZPBEA`q(zE3UT#dq4&!X>g;%pDzqV^s8jw9_kqp{O-{7N zSJ+qvm}EiBZ*0FFRYCi{fU0RXrEY%R1+DON-2bx2oSNk!rtI8f7OH6XIj*D~B}@In zI05ULY%?%E$^2H|A$7sbsNGE!+Uii++W^(g==5$PFxA=EY~LEyTZcDMcOm%t-GY5Wc{^h_A+VN=l0+ zZe})YSs|YIpmbSNgWG&@^4*S~5PQm1Usm@Ta^oNOO7Mcf2Fk?FPQlsLv~Hd5&D{sE zVZE9`PEF;aNeI7W#~(`+WbN4yshSyQy_<T2F?x8CH*=l7UR+vDX_5B zC+rGsDFD_kk8MT41kC(0nBD`DWHFXfd+oDpWy|IDIxkep#=Vuzb@AnV z*@6QPS4GwRqjafgr@H+YP*A!k4VW|CB7hV>G*}{(G%5ho8HUgyx%9nN2YswJurwdE zwCXaHRgA)On05X7K&~)2PJO10i$j+L2O|PG>-kDxHx9C{#OYgt!D66G@!FF*z*ql{ zDF(U>bIV!(Oxb7aVKiD4Fi1RR=tAsgngk@OmPv~XRAK2W56C53wD>qQNT2ojro&q!BTzGtPyu*CS>v{YbBRf*@^1+g z`R=a8)_(d(7kpsto?+zd?^6h~MJbPp8R;@)f&mFDrC_7C(ww`IC%|H)5$P0^%EZ_z zH>q3>U+<^PPFq{!4%*%O&3kTcc-pm6wN|=f3F}WI?d*He^>y({8I7D{ zH0XrDULHlo)pe)BAb*h}5PyW%!+u&=h3kKZDc4eiKshU_*QjW_zJIfGkArE`4U~sU z(9JN)dY(mY(~BISIfB42KIuDC%VD%%bPriJkFY2|`Ex+1uh5r~f&z1(VB}XHY^tm8 zb&3k$*9o4;2c`fQE2%E2>P0whqzaA-%nFu*0d|3I6zrCLa?gW=q1P_vzzundN{Ief z5mGVTc1zJt`9YxD5@TedHMUv~G>5)JV04pR`4fk!NE1h6BtxnXrapS=`~Cd818^~i zI*MSLhUuG=t68f1Nl?)B-3g@Z-_m*P%`s}D*uCOGK_Sd*1^XVbv|X1=I5Ix2?Q=1} zR(-iZM3*7-AbyyQoS0jSwx9jYJvf2>IjShHj3x`!Sv!PjGHq_jjwLffdWjLz_IIcn zgQrzf7c<7hWQO|i1sQzFsG5j7mjA1>p``tKZ1AO#2-_#ik>!W~DSj>Ct-7_WsqxE_ z{_~DU6dr3AOgzQ@BMuMD`|8`nqaW$M2ztD`Es*|~GCZkGPkxgaQwD%%_p{uDl_f84 z3v@q?LZxWmJPRN!q+%QvxSCH7)~=vFo&$mE=V*_nEHvt6c(^m&;>kuM>unj#|{`yIu>nF1)U@|Py( zN%1Qme;?wx{kK16Z_$qj{b%`*%JvUCl!Il?0W9)o-Yn?6`nqpi`{qJ@)y9oZp_(*m_d{9uri91Ez zHN2& zW^@BSSpqO#@bf-L;Laj>0+lFZn4KOy{^5XXDg5Ea$*$uYG$ero%m)Amt_sa+qyA;@ zyDu7^;IT*Dg<$V*rUEFbUPx*vG(OG(jI2V7{sU7A^t9;ZUI62~a$ojdZfMIUyrE5g z(7sC#%z+!)6&iQ}_o8IqB~Tj%_o9zJayodCav&wH>Yy)^R6S@nS>@TxHUX4UiyPnrVQnIRDt z@#xu!eR{ZNOKszqTe4upPc(%*y?v%CGPtTFp1Q}^2nNF;ltwkz?<~<>y)`H-;=FuQNiT!bX~^2H&L$g`OTGgi6Ml@?N+T;& zA-t2Tvv`P9st3Z;{SPVI5oHVvR5CJ#>N_;Ow<_6cAcOv&_Rce^$!*>D*cMiB+fZ46 zOHmL-lq!UxqEsm=(jl@G5JD$_M2d=nilB7qBE3d|5USah1q%?6-h_w<7y>~c0SP3z z&t&hj&mCj$d(OV&-VgV~U1K=b2bGw-Gw=J%fB8*eGF$rx+_Ow2diN(3a+LB&!W<6q zXEG_&@BZ5}|M;G-KDumH=R^Cd+=a$aX)Z42y&azY>o_mS zb+54zI#);bsV|w3;!7zYw8c0mEzi^}TdvK(P~<9xlD0?l!u7pd@(VH}2=2p;20_(x za5S(>zFR=2+2(tMGld}W_O`jj;%n=IP~N@8YDz3_Y%YBMo0qbQMR#5tZcuEK#NN28 z5&Kn7o`o+jCg4?z>Oyy6##`Y}yU&RYoM!&cVj*>9XpeslR#hyRa9CsY7}1thKb z=DCM#3?g38c_0x@uVVBwO zRJrrvwSO#X+M{{QjyC&@jjZ9GeKl!?d>#b{K}m-IyXexiB`CqM(Yvx8#nOubt8p2o zUuU3lM(j&0K>Dgskay@WETd=8yoN2>J?BMRo6an>_l&00_u316+dyg!H`@h)ImUFK z)tsQn@g+)%UWbIfU>Ip8nGC}EoQE$jH3mPlTQd%vl&;vD5is8Z46kVX*V{i; zeC^UeeJZ$S?q#mBOTpmEQ;j-X7@=T{P@C^No(i}&+0N@gsmesXkIttp2+Ic@QOeJu z>SqZ~-9J`tsB!u(rh*8ONITWk`lNeIXaa5CU@`wmSAamH8&1wZ(mo@G?gAz~#`joT)eYB8qlSzzFRP?mN&Kd-=*s#AL&RtkDDs zau|dWb`BL+5Ihg?q^^q_PVe%S42e>0IJi3fOZHNA7=<1iS?b%H7Wy-elXG(!5w^s9 zjTQegaVKaYGKL3LuJ?NH<}a@Gdw3Yx&=?x#^}4J9JrJ^YTgl#`%LtJ3@cRYF^A z5WQ1#8E&SOB}zm!9dms*R5n3t8Xlj4WamskB~~aMV;mhD=jN(2?NM493<9uw;43U@ ztb({kGMVAAMYfdRPA9EdJ5c6!1^Ng9q#*qAc>w*<8mP&)I^4kzp^ZrN+#GCedX^yc zk&PC3`mo$s76q^`SWXZ}cirLpmV3reNSP3vpSW=??;-|dg5X7rQ@=1dmLB%BWD%a!14ad46&-mK?G9dM9CKaKx%rh@lwc6B#Z+WmMAuK>U9fMP^cFk>4SE~ zosi*W_Ql{>oaBb1@R|Ar;6Cb7W+BwSJRzMV_DOK*GMZ5|i3vmeg*6>STK z0)w>S!kVmJ*oM^$yWZT!9JcMfR23|u3$mS8uMB1d^5ak}8P$n^%pF?( zD?HYDK%7Ob73h%T0S5;4ief7BSiyeO+(^ZbMv4P8L0YPdlrT|PUZnoQ;j$?ts7sU36AucjbD$4tMnjko@cg7VtVh+|nnjUr5_rs&?M`|R{R&@}o<;j< zDt0h`a=%ftCi{aY4K1lx?q&yy7*t1I^#!1o$T==tu}-nl)|(vIDkxg;p!qTWeet{x zD_c`O&?|>+U*9yUfD8s0P7t`)GU*(iyg@&l3B1Y4q_zoMM;{*cEQL8ax^$%k`V4Wp zYh0j!6=u1|)*nYUEk4#Bm$0=5;<8OT;g=xZiL979e}2}mHO~IZ+|vN&r=2(^GgEFi zK;#hV(J#3CyeM(s9Gg4RW>pTW4k@f!TMgntoF4gVDQ#|)Lt!=3!uQ@ZLEoQ#a0&Y|e7iayx?qiIHT;m;F0S{JX z#R?=o&0pBb=2IFboi>H*`OfH|zd_Z$^Wd3{-9HyD#eTSBmOV15a7OEVIALr)1L?VzI2^|7t;fU8hBy21*Qws^e8e%#^LE=^F zTkeId6m>N#(6iN+$~u`u9;4&)g$GDcfE+Uzys9=o64ykpgqR=4dS`|8?%}&r;_1Hb z4nX1d+?#tpDB*mK_cNZioVg*4IU*4yCbeXOe&otmnvWNpm1KxT{l4I_S200lp13Me z!tVxxMIwBBJ^%O_=oSWGSU}Slx(AnIiM3~Q^F}_vkLUu-EwmaGe0~o-q3-wsb{tnN z^8A*)R;+KXqps(JrMF^^f|;qk3oGU3#tVE z;aj>tedz}H&;oN3pM1rq<}WGWh3g?)!YUdTSX$-YMsW+Gc@TloG#a%;SyHBr{BPxn zVL?953$8u|Zc0V^MiEgUx7uWfYPky%w@roq{T*Cdx8)4+D}HZuR?ZQuAQ8PSz85un zy@8!JMT>iN4EW27=^dn!*NYT zP8Lm#k7Gton!t_AzA&6MCtL&2>OKZOH9~&xN6GvDwlOOmC64kZz?SwI*u`^433Lma%k~=Jx+85Mb-C+MxOJ%p&g9 z{LDun%MwPE9PvLFIs7>0*xW|mRqyN?=5(`f z*<}phawqP`Y+~P2!ycyhHZTSp?^;V}_B&3$wj3`?5mK_%xQu1LGuG`u05E{4Nk~&^ z@=SL4gcL-6P!)!geq8WYVDQ{eXKAeWdDO0PZ25R;H8+ssJC)y2=sp8-a2O`#X*b>S zRqy9BM71GLMi`FjlT*`1^BCGvJSAAT7-O8)zz4aFvpe4j{C9qHiu^P*KnP!2bsvZ0 zYHrWZ??4kYT2@9uB&}oWYCGCpPq#b8$gwhEPE)M!pL1_yNE$${;^)S;cJGMJ`k&n2*xG;T{+5=1wxXz8npw+Mwot~l=@<{gj0}AF zIiJ!DcziFrr300$3RvF%WSp}oKP>u*Z$DDxV2EcEg1z6u3v7MQbB~DN3RST~7be=f zUvJV*j9~hAC+dUQ36k!igwC7uGhl7s?0UG%2H(nu+Hz1bNs)Jz929M0U7D<0KE6FQ zuIgHAI8ZoUHoa<1>Lw2H;a0xOAO5gRlo69D-xDeTXh!$osxu((H1JL}X|&B|cA_dN zeN4$WUEU_E1UJ2DJZV^DBIwm}iJY2`VOU5U$8PL-D4`DS%7OfAO!@y!3s(;SRb8?+ z|C{zI*%b;|g2b;o?jSCQmaAH~0|~J?P3Z4`3}Ai7#m@5g3m;59@+6Y$zt9+SUL2Jw$2+6B-?; z=R2h=m8jwKz9^W=4 zMnv7f(FRi=6&uHfBi8nc(Gyo44b!8FYuxr9(;XU$=hs!*1mw$wQuL&gy* z#2bOR^7b;06!gY-+M`?PCvzg$wRcWI8+?ZSN-73`=B$Je8oS=-5R36Sq(FsGJ8lT8 zMda_Ra z!X#RNQ)TyTJG5J9BD&3S60swz4H^nZ-65|D77MD-!#PrAx%PCbyC|>V*T!jq1#^5Z zn?Pi+8)X50>e)eMyz!}p^@YSpQ1&iqhVV8Nz@aKo%FZh-(53$D*q91orfp);S<^Lz z)z)b+^ePdBk3u-260FCvN(1SzZB|Vrf=xbz4wJUNKkdW@P#se5#c9QY3-m`CE;pA3 zLFz?2s#rKk1>|h}aAFlqQ#c%tQ&mu0!cVNzC)qd5p1Ix}sRtEJWMCbI5N!FQeXfz$#Y=D_ zJ@Ea9D|!fBQT@}4+GWE(0D8$+Er{Grb>wc^DscYOdR*h`%G&MyIZu9U+r?+%NXz!k zl|EkJ>a-vWfmpZ;Z&{oK!0O^6$=}XJ(XV}${|!{)25V0$u6lOeT(0u0D|gS|FAJ*R zy4_Onx>>3vU=T0P;r<~lE#qIznP=HZ^MZPcQtren!3_ZnZg^m?T(_!`DJtxVyU7`k zN#3s;eU$dL!Hmwu7IgqYGiYZK%ovB4lGn4ECo9vV)1JfP6G`@n@7GB+OHBj?90&{1 zS&qEY>>+i};ecSQzL;!_%$>{M2Sp>jOUcu6$5f=eGg5@aPMq$#JU9+M-oQmUyvOBc z_mF&hHZoJ!3$(-+9S8rWXIc4jFUf-*=}nz{L%(R0);Y4HmD66NqzWVC9fsz%BHv$6 zlw1YyS_hz!AZba{ajJ_iKH=u?1ewWN(nJ=`!LTLz+f4FAjA4>zz|Y3B5Kg+eFO=dO z?B}CCIsGE@$IC+v7`-7d&}7E`VW3H#=;<+@+_EAiaj0;njHy_^wOA{ue?ZMkEl{?x3MPS-r;%Mh2@P zzf@YIw~F<RkX#I2L;6qI zsXC}Zt4rC$WUylde;d$*U|Eg_p{O7J&6of7@u?S8 zruUnjz6S?WUNlpcdJ87?Otqef=a<*MX?bXgAn>Wdrok;hfXE1miB0(?fP21+wiNaf z)7ov^R@izYYpMAR^5;16;LrJ);NS);-lmITl%Zr1w#wmF4TZBR&QRO$^q$?!t^Ik8 zd)8ooLJ2rx5b5h#u;C6IX}Q}09I68Pw_BkvSwUb46xZMv164lB4#Z60{Yt%B_3D<< zIac?@;CYM6(f^$l_Blr;I_o?ygm56UK!I}e!ygM=&F!>lfpPP`v(8@S*;H-q4LvWF zjtuZhh4pU5DIGYg!5c9d6TSUt_EvzD%4OmJ;pxTn{15B>2BWfE6nVz11#go7hpJXv zQ_PM?*O`ck85_8jx?;W1Vy+-BIc0$3J%gq@o16(ej`nBfSwFuplUA z(Jw3R$N1I0y#$yv=*zpkRm^DQz5E-}71 z%U#e`Mobtf35+2CSb&--OmbmGDT?H;9+yG!ekna6CQ!$*F2+=F+uM7Z&s0{_kyB&d zGRlB#dWDGpbpGhGzrL`@o45eN9a4A!)Rd|W&&S(NIQ@xfXr-ey{B6 zST{|8@AknEzGHl#+d&}TX}VsPGd4DjazfZ)4FhP~4$YA+u_vdw{5jwSjeK67_yEUM z;ZK)Z{(i3}yXs7PR5hdj;l|0eU zKwE4W7tZ`HnY({~ap3E8Wrf1*_=fjJMKHck`z?qT>9lG5N?5M4wEjB7%KqzUz8oOnxp9XudE!=XW{_-K0qF%2%8b-{ch4B)KmW?Xxi|Y zE>J!)$K4LZmrSM+$D?+w-r(22^x0WE-kxrF!#+sDvZkGC_K4DG^i%8Wz^gxaU+Eru zrBfFx8fY%O3pcLuMl;V$_fvy-Y8mp&kC-a}oJ%jHD=uTOk>TDX{3JC^LM$<#Y^#EW zXi~)(_1w^cPFhUVt|s*@Vem$q&4dak^C+29D0%(pI_FU1208Y%SLdoqF0hk?H`b&r z!vk(`q!OP+wsnVn$_ zvMxs(F=`bdvV&FY`R&K5cQRf>ezban$*O3%Js`XUQ^RZft}M`;x^1bYFh4xJ(^ICl zB|(U^bvY319!nJs^>##mdP-5c^!n6Y1rdu`T2%Z}5S(OT$u@Lyt^f8>0DI5bG6LU2 zkX&#;g$$Kqbx$&$gw;$9_WM3PF$wn&DdLZWyY55A2NLMt^p}{riRh>{NUS8c*TaWl z+}fD-A0Gzf_<&NM`4IuRV9U5o^3;J^z{KH0}%_C3v|HR*@0ufqamh|LmH z{8K&~%ob!hAg=`ExY+m|#b|E>o5e|VY7P851_Se5pZ4M=1%ro=>mt!QS1dUnJcjNs zcQ>Jy2ih0GxjD`?GQULw+~HDl(9-|fqQUBo8g2ZudVrYGO2IJUZi%cDAV^2cgQ3o) zzL%4C{XGYs^l?fj&jOqMq9Es5=~m5wN|H6~K!)G?<-wj!xj*JyzvIaElGUM2Pi44^ z4sDQz@o&w0)MGPZ^F#U|!pDFc+4 z<#v8kj5AKHdU<4wz|`(UMi4T$sI_k2bSYNk{EHNgJ>unDGQSwMSZqlB5-cY6?BbC$ z`5}}&SoyHubqbAHZjXM%H{HLkMGNk z_2wddq{X~9?4hOVsh6s$Ai=Kl9tD})6g)X7Ex}MK5x+OHOHvc z1aw*d+8k8Q@bHfUkp`=OEPzfmVAP0t&Ru>C ziz3u4f~_SSbEg%t&31a&&qOT1%NW>3SY8k}<(cRJGGuT{aWr&NC!|q>P8sCG{skuE z@01xv8FQ|C3h~l8<6btbs^9i2AGbJ>0GlHp%gUnFLWWyy(2bfk@#1xyks$Qbk>oR~ zm3tKQAP8!q<2{0dU2|chB`wpjvmu+#S>hkONbL^V=EEJzhPyISMbV2j!OM44;!&Cm z_!+6U3z+C=I(N6_i3hs|D#E-B7s`znEb`uY+CI;b2a*sffn?jW?A#~!=3RqTZ|hxC z4J1Oe>Qg(1JY}YI%o^mM(<7YpkS{jTLLJ|wgCZbEN_P(3-6zFh~yF-CZL?!x^9V z`@Z)%|H4^kEf#C-&6>Su@B3F*+(alV%HUvJ90OJgSz;M*-_Q`Yawoh9&5U&(XOrWz4oLuUhH zoP0B?I-xI2ZEbDg-01Qn-(Cm59B@jS*ltOHyH+@!z-2DJW*y5m*UZ1lxIEw;S5)%2 zC{LTVz7gKZD642b!$5!Y_2q}>|M`{7bYROa@jnO1)886D1-|>&pLt(Y{r9M+njR(j z|33OvYx->m{{LR+>&wBkr&|9#GSN8btl#Zg4Iyusj=`*IiWdqP*PRI zuR3W8ta3XZPE;y74p|j%mHI8eQ>hjpOusqvC(F zaD7K_vR^fwl#YmkmW-+wTq6Jp zbvZ}8)m#Y%_B{F6Q?$1KReSsuKibAY=U=6%-sj`zeWW99J0W;VzA`g`3Q!(k1}b3Y zp+)cDH+bEBz||jmMF_X7{B{<(+ktUpTFZu25gmN`T7&7Xy3@JJ7QRx?!o1dNY@Xp01aEffW3eZi8>3`zg7e0RN|S8fTE;XV?@Z@ zeb`t>bLpkd+7deSbN4=RnS-{*s$Z2II#?N!FjUy%f|<*C2SUl1m-%~s?ivn z`odnceDHiigsw3lG?ilwrY~(ML}mNjJS&xA>6G!c`uQQL6oYK1Vvdtso!*w@+L@v< zrC8WO?M6Nu!xtB7xnPjt^Zh1@01lY+&;M&OTDat2$oO0l6KecnUrJk~zE^n<05*SP zyT%`j$@@3Nb+9J4nI(mR*p*7vyn$7YN2FfDvIg%?!Chq9=G!A-ffMgR4?4NL3-L=> z0d2DKO#j>JSX}zG;$zCtcP%NQ5Tc4Q21!bwHe=3rYT%z96lgQ=+t!_eoq*Cd;_x_PIYN4Z03Y$7VH^^Od=_v?@iuZ2X(b z_2`nfUbMiYP$+3|*L$cUHLXE_U_{}L>0C*T52{K3zj`T)WK5klr1GGsv9lMBD#HGg ze8`@un(iK((lY~G(fu?l3OJ{QfUPXtMQ{MD&fm%hiKs|_`au`WG-akxt3nJtev|E= zrZ)IFVkR?yFNHOE7PbQT@3Q08uyz+tN!scNezglZXiDgwV;!W=rY;Cr$-|~v`n*aM zU>{PJN*}@!`PQ+&n6#VzJ++O=Mwg>TGPODA7EV~>BU|@?4^j0&5VIx^!5#s6|Ba~P zGNx)5RdG87wu-VdKb%0|!d1oRmCnB1h0EvmY;Y_Bya5spw47doMGSAhAjas z(MN?p1wZQV*nBI3WGzWWP0%;L#C-F$_+{Jz$RM6J;bM1hF!N~ZpS#?B(3;{K8Bqx7 zF*PsU$K;UXoOa0|h+C30uM*C1Dgf2A%x`sfDf95%zs~@7yg*|S<=r%}DYo-@QCH5M zcz~cpM3GEoh0Uvd-7%c%2R7@>HB`igH8Ca^e6kR|!8jLb^!VySeYkN}6uu)mE&j0e zPS5%MLCYn85Vcw`u40+e2QSv?wpH|SPP}Q?ltwspEwkN&#Gk{%pwS!{3G-V|i(D{- zAJlV+=;-~qspH!`7i+!uLQqp~EHC+qoc?~I!ydQj+6F&GlcYZwo66iuz0X^83Sd_{ zq4FZuWbCOq8OPGShOaaS&Z|8QyrntbVSiYQ?_YWNXAJvR0Mrh1;l~C8hXr&F`rjNS z+iehGW%!=^dtZu%A?^)-N0wb%5~>tvZ*3NoTQ_g(7|&Gefe%b=50b!3aI3bw5nvZT{?y55@5RKag_A&&QJ;bI67-3?jd4N z5Vyd?-#gdX8Zp!EEDAfM*~-iI{Xy3^fh9IFug+v}J8!b!&_PQSR!UMo5&6n@>}@vPD)nH?XnA)#JBafhZa7BL z2N9C{HJ_1m?8+x>?Zq)ED^+PHcc-)3dP#q$j2>8#C(mlG3%b@6H3Zwb93^y1Ao?GnJtp@EGk%e9P z`sAlT-nfs8+YS$#ChkYJ2B)SFThNa9!-Jd{!cghFTUUwgIt}7rwc7r$$Nccefo6S; z0iEQop}xhQTf8+dy>qSWN2L{~hCBWBt$6!ar2s2&!z*ZKO;fTe*vQ4&7I9Y}>RSSyml%C%HXB`4boHLkolABApN3U|^cc>L6EE#4AKGFNS%7HT?d zcEOpu%Uq!w)6GqSo@N;zICB~~p;9~bj{VQd8F}5r3kcgEkKvw&CB|IZ4$C{u2M-4J zH)Chj3qM|jD^PSzHy4I!&CMX+dVQ-gH_iQK0+v|OLB;-Nv$)_$o)RwW6(^Ru-94my z*H+2#ehM(#*jlpAd2)Z@(qQ31)0ok|c_64h0iz?Yv$T(N85=RLXak}3X#g+%u5ro) zomqzK?Zv!_HJE!+&yY_Uec67XHzHgVf&9X{;sOIpcz-gFfd6Fe-Quq0h|AV>cTX<* z49*IGd7+bv!ff{!%^I#p!Z+zpiOc?$IH3{=Oz4}w3MGRtd2dxkcE||ORfRZ6u_1P^ zqO{)<@I`!;Vkxb%3*}pFN;6qjX0-I3F_PC(GnrE+2!;NHbw&?MyaBDh@L+N!6S&ci z9#Ng~KAIEL2S33#8qNj3fuq^HT5@14~^O^~5_T#o>OH@$n%ZpjDS!cxW@Dx7^wHa8M$JBlWnn zBH-~JZHdGNa)Gw^CvT$#KCJ5nw;8Ck(zi>bsL)n<<(sK6HL`JweC5bG@vyDLR(eH! z2d%Wxx&r5O@WA0%9l-rE~I>!VrrgQWZeFV9@8fHqlx5gPh+QeW{qsWxZYO`kZf zKcjeOH5-h=_=@(-tw2@GAFrbFP1md?3rW9U@MQ6=`S~k$v6OdSb}ykN$c87Cse%?} ze}^f=fDCk%Z0IJ(q(llGDMPCXe>%ch>x*TJc<)=O!|{j&8Y(3mD#NG4it~2mJM$zR zJs0I6xny~J;x|Co)v?jDt{U%S6aVoK0#SdZZ=N&T z8%FXqf}K*7{EQ8IkLpUEAC*T)QP~`o5?1>4-b@%wnE2g%zAeSgGW=~HHrNSHAoD+A zr+J;pR9P6+XXk%Wmt2Hh2aU9N z&A#c3W>jfwQ~au-|KPVsZ(imIYyE!A-*yQ}Ktlm|5CF3oz=4@l#fDmt>U8TDeqYV)r^MMpJ{3ye>x4(Rpj8( z$$&eFHyyooxKA1e*1JI%_H32LCsKsVc|{*wFUWXeF2RiorH_WRJbOkfAB}ZozBu!Km~cORHXp%^W&~tTej3(A2kg zZ0Oi&a}T_HxIt7e7`iUWJsi0B^lw=>gx0e3@@l#|9&J(CE~zQ0nqq%uf{wGv#1?s7 zoxQPdyZ9(2!I$p2xcv@h*!y(KNuW0RMuO&EhE3x-AP}z zru)Kg%XrPln{xH+1MWv}oCA#%2i{wZfQwbL0-d_|YjL8yJty~DXm8i~+V6hU>G@d+ zmuXCXmlwc}BldEJJzr_MX7oYCDT)=Azv~1TwuAxL?DJZA-@i5Cvas{Wv0#Yg$L08v|Tk8FtzWU4zH_w~2Bqp)T2%7=>=A$fX zu|Kf5@#VBtb$0#1cO|i>LL$jXtkw_VHYe4;n{we1QQwm>k?8?L=4*y+FbeadIpHG0HQiPZx zTqpyi(O*b`d0l41p8qd1!(t{{N~zNLf@ma+I&kEoARU7tC&4Ao=mZQpO+IgP1$OS#Hum$d|evP6*q=3UYt>LxdaTx-K z1@0Ze68gRKtp_|JW~(5GS~Qj!tkPxbj1K@KT6_3{gLpXJy~~B;uDq;f>N8^2I=y9Q z84syIx4qDEf!NTKlyDrmP9l1n+A4BloN(s{mX6op0sq+^`_T@vT?p-vSG4AaT(;X_;9QJF zR=PpEJN`742?@H>c87~07{lY#HQF+*kX2=&p67HXptj7UCI~V8^r-wrR)9JK&0~NP z{63p^1FRd?=95Hf0utM=Q~DHdPkyR`Co7L$SZt(W z{jKX6ObQolGl%4KQlJYfC2BQ+Uo2>ls66Y@wwd zm>4M2Vaal2?BzwtuaM6n&$A%IvhZ0Sf>*?W+D5T0uA_ji(}o+K8BX-cxIvxRQJvdx zp103by`)ZssVb=pLTKs8(pyTT!q&>t`z|GaSL@ZYbdFGXFh>OU#25a8*N$&oxDL59 zuF=kI56-a}1y0tHWJ^R9U&sYHOkvRsZF%&s?+fi!L z-85fXPb1P)wI4^Z;t!aPe#}ZXS)L5zotl~A=Xg9UXg)sKLS}PBZ(&!^U#xLCGAeO7 z2RbY+X|T(m{Nc4AD%x^MwJ?ZYz(9c8JYrK(EI(KMtBsbB6WzYG>=ql;q$jlDw5yd? zPH`}3zXC1?TL-#ry|cU9!eC=*M%2jCQ!Zb|9@%Q?3LiK=Py|@9p7``NV%-S)9PJZk zUo8NxGR51oC9!<(*^)*OZy*13ewL*-f3!hD?Z- zS4lB&M$nTE%;2d|TWhsI&O+8W^U?fu_A zzUN0*q)()#NwH-p=1N8}t?}sKUwEWTesvYjzEl5rMI9!+U4gGJ_xXN4>v*nh`yU>_ zLe5U1qmCpd{+m*$W-@`X*@|SsT9Q;C)cAE>>hX;WnQX&NjgPdG`9dnC ze+EU>Z^FO){4!uh7Q;WSblk%|NpfpBl$rBuR3T3|5-7q$j6$3?ZtqXO*yvz_(cbZM zoXy|dd8YgPyN&hgbdS=pTxd;1;ukGUmVzpEtpbOXV8G`f+ztrg0e?@!dYX>=p*((B zT?YfG7E^9#BUZ8y3x7E0@HFUHVDq+ZRAPCueQ#$^7c6>$)iVLA5FiLVqOgA zspF$sd?+W1X!rvO!ywxK3(=c2C+4y?pTWv(heaF(ur;6)Y|-Fi-f({wi{Uk5 zt$M-3-eJA9z0FT0z=9zGH{kk~pPAm-+Q-<()p`##oXRliNMsw-p38ch%F^Cu$Liz{XI;4Z-7e;@18Y_O z8x(tLm5u*^J7@eT@`^cLY139IFzG|?m@{oOwQqE%j6DiAaav~@4yAo#Wc;Qz4>2)0 zkOz|L?NH*E(!u&Nrnmd-)r5a-Hf90~my|eYS*~L9V|VCB*C4fD*~y2mbgILPS+QU8 zvOyu7S~Z$lsnr4M1?Kl=`=o6S%5va~41pOv!#=?U0xeD=4H+T}L2n4jIht`G5OvhQ zB;$Z5jRsAU$NCIfU&|#nJvc@u1>v8&nm@H{=l8PA(^ouxbePV%mFfABS@huhm&Z|; zQb^)ob{XaqN8s^9C6+5K!`8j$>|PJ0)%t(v(VGIcgk9QGMbyW> zN%`mo53<>A3|B5`jZvdJ_W6k-TXz4EJ`u{adJ5$1OeslxyYw^j0!D!MPO1Y<#`hAg z!J@W`>dX_ofLjr3^QSnyCLJVgUf+B?F4vmU%G39~ZYdyD)iojlehUZu@Co68oy1mT z$pM=uUS9m!`io3!E>{^Z>QpM4OA}^VZ1v~vr$O>(ErY@h_gU0g3Ry+h2kTV5yPc{(vkDh)rvoah z6plOBjS3}>RVgpJ+)Bu9VG1mD`^NP2wVE$lP$flxXHEQk@RP^!r~`6$hyWp4w`vF* zv9S$sHO9&LF#v4eM`J9Ur2ldK@cWap$W*w-Yxx*h?M#a=Ri)Q;)3cR;m0z4~@H|tj zw)PX7hl_x$?d*s1@#=*X>zrGY8N9WTm9`&p=nKn zB$qh8Bd+m6LgDK}O}r<@7gO68TRWM9w=IwC$3+1gcgt=Uo1W&6j2l*Q9xYa%=lm)g zijTDMs>J?)Wd_j$XvC7uZ5Ovr9$Tu5?f@%-LjjK~%l)vp%-^F+DLbk(t)++lC27yg zhn>*Fx?KK7%^Xe{AoemlduforEx_y?p2xr?^6-Zv`+8>QRg|J%rGfK3^8>ubXB%5Q zn)9xI<&e#%oLVqzdvwf63|={tcptz?4%Qk|={~C%0`;X2LKJX_96y$k>-++LJ59K)fy+OX2ev*(VrRn&gqBEyRtdPg5QOGRkrC(P;-z~GZA@Se{38V->e}gowdnp5&8}z z&NQw5PtLsI>6Q6R9*IPzO5+)#a&H-Pl44THh*^J3uifq>mF2dazPr$KRKd~6C)D$b z@--|cG&ZDFP1QI0Ido-9G%}LbvJ^-Z^vRBN)r*XNfttZHjEKTS4}K@)e|4_{Dqhcp zJQq}Qv7AiD24kk0y3*WsZ$yN;>A5LToh1^5X#hK?qFG-76n}91tnO$CTl0@Q zW=lc-boytz3U#nrCw}Q6AZ9JcrQn0k)$&R!sNzi8J`tv7`%M*kwqfLJ9;T&<#1d$i z=A<-uj&QBB0_Lw~D;^%U=fM}~0vd1zpz@9j&& z8^oGwR^0_nwpSRkP}A&+@!TC^2e!f63?8=HvrC2A{{k6iG|=bytD%(3@PG=g$NgmC zk-JmG9=`g#JXY_yKCQ*bZ&c45xg74bWsFUODFu_JwR=p=1>Sn5it%VZ2%HvONUAdWC?ateVDO>zsI^d@o0y6|Z}0Le?P) z2i7~-Roh%b#~NRmCIBrX`M$r-efDQ99!^S;ImkXe*Ycmy5ia|VS5yCIFPK$?U4kj9 z<8rt0(x<^RWERrPZ3kmlH(>QAF8LDK;nE-7D32FHtox2o!#woFZvxDRaBcaPr;t+Z zd?>3CE2bDD+_L%_@VrYXx z^&3Xkw?DP$y)a}V%4-v*kA$bmPy+J>(tyc^srkI%;LjwNH3xUVQ z^PtJb3|MRPtvU5}bm?bx4WHjK2YS2*X}4aL=I&@a@8T@&u{97`yv7*eYzQ zK#n`keW{N-EAjDx4gn7@WpKB>Hg4JIvmCqpp<1GE7rJ)R{Bg(r6%TKD(mniME_flDb$SS2RF#sFm4iN%DoB0mIVvT>`@B_g z>(huVV+`U-^i+QVwTY5XjZS*x>3mA%#$%iRX>FFxbkH%oVZcCNMx*}|@li7uF-f}K z(wRDP)2`_T{&sWIxg$;e@sZzJ;Pv6#%*)HHX^wqWu#^54u2Y{gwvk5Un2v&u0o-`ps)tf^BFw+^n<7?&6>{DZE< z*&*fZ)mG(ci%!aOucUEB22Qguz_#HX&H|Ipyy&6KIL@Whf*dLeyqtQX+eNZOH=L>d zKi($`F?8gdmXk^qh56=Z`Q`_G$R}QjG)?S65;-i#_gy_B;aNmGj)O_AQ`vp{V|`lO z=Z>>FmV!UWD-+OGjD#b1+N)woT0uc(nfgG1W)uJ>4n?PIvN`ytqetgWQV!-H>cg$J z<{A;ir{uACBd*#=X$!pa=#s<4TDwp?0Cnr-+p(X+>He2LPQ{=Sx$m%tYWp@TyV1G_ zrc}t&sG7XHOr9Ec?>9XssqLLzO31c-$FkkDD|pANVdu4wTT!H?GkBoCzy+@4v9T(2 zv$3A532L&(hIIeMELoRe!# zHT#-pLE?iB(4TYo&(-ZtcYfl7}S_dSKhW|EykSM z4khUA&p`e`J+P3Q#O)tcq5ZF33{*2kBPN<}`vSY@bA;<+z@7}rXPi)@IX+(Ax*mMl zL?Q_JHn$aKsECf>B+;$5a7%jf;Tt41GNYCC(+*5a#8g(pHPBU`OGxXMZ)z9)c824J zo&w+eM*wxg%PY>6+1H*XSe#9$Ng@UO@_cv+#?}3+!5B3*G2t5bTW8 zgR6&pzb&b0TYr-GB*P=-KYa_yp;u(-^-iCp=+6o{1lCn^_s>t2L@p?~g}1{3?q9RF zm_JMAy`XVc7+W7cX<{vUkt z9%Bgi+&v2oFHwR$r-2m?vRjuuuZ-sO-4YIO+={htx^+%?r1HJ%PH}l?RDj)(r`*)B z{-fZ*SF1Axzwj1Jzc1hr%DD}qS>GDhQhaKPEqbwox(4$Y)5<7>DAIxjCM>k4Ci#C* zQxqMq;>|4v2#>vv)8L!01|Kp)Okd3^N;#U6Wv8vbELnd7fM#{oY#`Sad(z$nNt4Kf zp2ZM_X&3BpLyd%S!5{GltItG9>a`>=-jkXoF;`>8>-=qa6*ur%E>DK`mYQ^u*6PrY zncSBn!E&K%ujm&QI7~PfleQu0xTm9;ef>Z`+E+I3JJmhiI{3qa9ZpfvY7RH@64xuz z@xbu&B-M6MY+=`vvcufY{VC2YPcv&!=o`I#A^-vQw#fN$Pu+Ni$f*~E&-eL4*1d(H z(>79IjnX|i-e#>_P;+1SOMF)@yLyiBb)|^3R|i{})&7o9&5&_Lq6*mYafzqoZ5pzG zQmlx3&pSLR!*Mla^LO^~&<@<1#bnTa_|bZCoTVM^mi@wx^@aaYT{^RU`$ffZWMqRV zQj|m=F@%)GoIEtN3_ExAlBgYXd0x$4nfYu!NSf;Tt6bwo@7UU}CJQqIMk#gAEKb^U zSgsC_htF2BSFi##fnhod3Qr4&A>HfF)kx`kQCaMdIC0Hi@S9mcl$muBC!v#tmE2 zmJ}q_(RAR!p;hy0MmD!rNhCg}q?MpALQ$-Jr_oG0ygydSjb7oY_6FEJOUsWACcYz^ z(G&FL^D^bhI~--wuW34%se#SyZr_9h9KVCtP~(fGc$$7^;-cs>{ZNVeSsBiW2N&BNHK*_Rt30aZ5BUV}B0^U6-Qc9(zTaRY^kvLA0cBfrz9I(nKW z?dX6af{q8r$~`<_K1=>O?^*;^rz;fC*lC)gH=|z;!+8v^%(r+!5WoVGRd?!)-Hu$a z`Jp&vWP8I|s!q7%c!Wt#!Hi*T=w&55qd(P;lz8O*K?Z`nC$=K`<?9;xfudHTxeZW;ad3kNKu zB?YSu-?fKm4Y{yS{_jkaHE5#J{Z6=0I#UaxVB8Sb)^{v1w}zyy6@-?YM_i)=Y=Y;{1Tpdx7%N0s1Q1S!fZj%XfHlTlbcX_+Vj> zu}N5CxN&A=KyZf z;_|w(Si-$QZ_p<}P+8piK}lp?+XjCEEK8)IE^2~~NUMgFlI=9q>ATb>6DjpM6%vx{`a#H*ch?V?ALHU{$7ET436Is(zZIf>w3QaSV)Ym?RHrY z^WA!)FPbD=LM6h56y$N7)@u1LP_xW3@G{Z-Q{(r_yB zS9IsQzE1Fw7H~An7(OW4b||o>y<1q(8+r6~qPfM5iI*49Ybr}Z+B95xy^phrNu!JO z!@{t5_><~iKg`|2cErW&Q@Z=0vQR3d?PG1Ya<1WR$T%$Vp%b-!QAH4NtlthvLJqpu z$8oVPEy9vu($PiIojaFw&#kB#q`F7rVc)`XRcg!uvjsSFob!{#M>$VDa$HLA!jT|%KL?+_TntoDyFM66Qknvf*Sh8 zUJl>eY*(4t@c>~P8ESKuhRAp~_MD$OLE|U`PYaZXl~rc~$I{}1+N!H$jlT(_#9cs6 zD^B$K4m>C~>)8Ur!afqCT3D;R>UGTS8(yK>8e6i84%#Ii z)X03GjtcKyDGHFK_|%N@qHp~Nk!;fhn|(=?6vneAT>m76oyP|rj@O(x59y|Lk91tN@^pLCAW9JW_ zft;ncL+nOO0}y2xq-mVOM+w<;-Qtf^1;Fwkq#Apw8PH%eV)~c%?6=!$e}}Yqh*$ca zAw^}Og#_Q-xNWg%=RYN|6X48{(1EG5=R!g_tah{#p}H7KvPk}yG^%zZtAgbycUBFAUQI`hio6t zR5GC&sQ*>e!XdK_;bW1%8QRq~#?gHgB_s zm45>P)0A~+wLuP4tv@8UF_#6bz?Lfp&xiuep!$3$4g8>D0=)s_oP{<)lzFtiEX3#B|3(p5nO!8PebNp;Mdq zUNP;bxwG8m_gEzmcL`nvt>GcxLzZ^ONC>x;-Br({NVk%`VcPet-3V-tr4?PLTlRJ{ zJ1L^!lAolzZHtQ+5{6T$rqHi0MI*$fs|PE>T`Tts1TM=br(m9dM+c=<%~V0&lVcp;S9*pN`0I!< zIVEpvbQsjWBUyWLFBF>&Wr*Z7u1WxvS3Y=}e(T++t><;*n&}Fsz9AC3{sRyY`newU zIMJOV&fjt6DZx`p%**=ml|hX}x>UQ&^N`9fzldHoP&a6kisKqI?a%(OJ}FNO-p-da zU3@bd2A{|0f!fitRdS|PNE&8yw##Q&Aw51wD(tEQgJv~qMWl8$s2d|L8r~+}8t1U& z>nb~Q-dIUhd=&>E2P4H^77)3u*yCBM#fT?h%7iEi#Y0q?3?y3Tfh61Rw6$JQ3Wz{y z?k>=L&$)ewc_bbXK0g0k*$j3Ua)%Wf_*VxGxO9kvk$>@nBmG39eboBO2fN(2GF~g$ zOMPI1RHS}=xqXE^pUK_Bh2Dl(qPzRU5*CW(w!16Peiqc+=;84ge7v%dy;J$H_p0q` z*n&a+8Zj*6bro^#Ap- zL^B(U_Y#Grma5x{yY}doxXj`4d16C?FVbGyxfaVrjJ zO}m!kY4@58+)zcQ4apk%O$|k-(cheln0Ukb6-$`~{SHQQd3HoYy)h3EYOvJ=lxa?m zD${g>iS|G;h5=bch!{s$h#!*UJ|)xcTQjvf_Nt02V+X9X#P3>_ES=x7(mq@=!%Y~nZ z^HNf#o|h~I(ocZADcw3F6sjNV0i3&^eJy@B7xCPY_dVVveEmSf=~}8BDKyLY z>3@CAfsI2l=VFw&aJ;t`B!j+tACWNg2HxDfk|SahFS#*5!JhtJlw#gd3PJR`|i_$Z_MLyh@^*a^3Yju}$NI9^!# zOJrqD>7U+poFZ*u!+)UziC$|k64OWY*>Y*e5iHF)^7sCD=oD$cm$^I*w$X6DpUSkI zQ&zHL{=jzPvgw(od$Pa1otI(B zD6BzJe~6`2!GS&|ltw_Wj(f1o(3d-W$%K(_I_*!o@jpoTldvV%;XR&70e@xEkQ&@0vVV-I9q0e! zBt?oA7CQO^rvUbTf(X*!*AjEDn%q}D%%F)gXZxw=MsNS(bucS7r%HYiFlHIu=}x)c zPZ)1WNE1G7T3>a%s~`|R0DcKq8EQkj@QvoPwDVkxN%z{b(a61HA-s7}JM3|3x3+RJ z_raqn>?c9u6z3d7@}QJgK+z1!K0*YI_#p}o=f!C2j2tqkt!9vH>G)aN%*6I?hPUO$ zO+oMWhqt3eBbQ3Aq({+pmjy<|$8Cc+QziuN_H}=!3QN~XHfPmEu6SPC)?I-(ipqPF z4`7g;o@O6X3r|`?tkT`%8~o4Sw2?Fye((G*D$$&bgI$BMoDDmj)%#_8gy=FUNL!rT zFSP8#E5^JKzi6BbRqWT>8S{#MMdSv19XTw$Wh+i%?SH1>Dre@!+E}~?;FxXbkrF&~ z<}r~1Cio$T)mM~=?y9ZN(GV}|AouUSkOG$IvHaU+(tevPEjK!!g$fx{)^&*yl#k zbd}=6zG~J)j6qXC*y|e`RAJhK&npn`nB&Kp-R%;kC5IB(&8it6TVIoR8U8f&jh-Fj zRag(%J_`@}x>FPc@qCDvx2Iz@r#{E{4E@`DB-N3u_XJyU6{d~rDQESDOi77uJx>%# z&5tLaS%e=E{3)uM6y-N{1p3;@(siP35dS~^#;<(kV?4YcnUGxZNJuDUh>u4eNHCbe z^iva^3$^AirjPqCK#Y(xtvhPpD1xV9W*^SVPK4v^G|NM}YJ(2sf=+@FD9?oS2BStq zp@=Xs|I5!ijve!{Kr%w|a^A)v0oA>XG`_1PBb&IONqYB6F9M3V06c~o8jBa(CP~%p zk(kWoI59D=$kQo*np#M2P@v!X5es!ObA-jjI8iGKL~nOjyw3AOS6r4GMtEe*%YJ*7 zK>Xn>;~f0xZ>^%+joh2?4|DfL1ruU-Ix56+0A@)CZ`}UIxfq!jd%lJnGCY?@WcL-= z#}^i?`uWWl-Q?dxydl1CqDzJxeOHuqZQut;0||tRn2?td;7bb(LcDgtFT}B8$R*ti zJqcJNr9k+FXZo!$?C*>+gQ8NGKWN#_e9-kVql*z~J;ou_)R!LMOzNMYWy~QZl|JvR zO>X;+YjiQssMwXJac15H=cK=@8Qs=fAddxqnN&p_ z`846Bf6k<$L4>Y}%(VtbHS-r3<0^2|`M%bAp&mmtt+kXA(T(di| z1|Dq-MB{}@j+n+6dv5K#7Ju$<%q$qitVqdr9;$>liWG2TW^3_8<@76}TB+F0IqFb! zZ-@9D2e?q?V;y~u099dWb3Bd=1C~QfhwCJyq`$ohQ9~%SYNzDOcE414+4$;cSV{D2xQtRZsrCvrr7Jmtk6f{oIepjbU==q8^Fy58+n2ZcDi^NtO&XqX?h{EQpg! z8*gU9^C7W)aPg725t{n$P ze)?VnrRo|w<6C6xb#&JMS^p$df;$mT#)=+I7%Zi3!j!XXbKX|COW~Xa#lyyl!EJvy zhH$i`&1SNTKR3lNb`{T8l2E2LIPwzdD|%>+d+?9@^bxsr!cS5v7;L~McJ0Q8yQr`8 zc=sxVi#&Q;d2mXkah>R?hO4s$^jUU#aB!s)T1ffp6DwaTK7DeulEhx9g46RS@&bcp z#srfUVOnTC`@j5&7;X+u7aPOO)W=D6Y-nAlrC$_oxrOL^u17bO!+TduXdiPtlDrBg*AqajBvE*)V<*&G6-ehK7v`Fp9w@RA?rLe zCHzbzW}~>DooW~M5^QZHX9dB%i@y25?;~U&-&xYlHL-1_PBhZHUm+fsn_yybdHK!9 zG~wtQ_cQ2A%Wrem=i^=z<8(Nl^Dn_fZ5CS1Y>K8fU;Do@)nU>y{iIHO=ID8Hn!CUq z6J*x2-V#e58$(R*KttmnW>OKSRqf}5L5M|9^nV+kdqjkEcocAm-@p9Yy|9EzCzF-s zhDbt1wc8!`Hd}m>C}n!wlQAVdVCg(2EsbBMOy2>hD`x6?DU;qC<6fVH83O7U9W{a@ zRzUa$!w^pyr-it_tMeUJjuOq~ zqG8t4@Y8+6Hv~4_S?{i@lW0v!suvw9xCI`&$g4hII^(}A1K?G%NEx^MJ`16nMI3^E z+s+7agsER}?wcYueL2gcurI|$`bvBDkOlWY0sH3b&%PV=v`=q?Inf8J`w<@T*%qG7 zd@px7PB{j0D@J7&DY9#(Mi`|WmIONvQ3gJcqH*?haVcxsz;)ZFI`?C+uq$nQmD>2b zF53j73kWCpwUBn|RnOS8!Ij@y8+;-&&t6y2PBuvDxvrOi$h=6)Gxmjbb~-@IF$qA>+9k zL!eT6X*#K*nsK?+x4fcEnDR+T4fW>?vHxyi|0bwK4BDGCz90&$CKZHWP^sbRz6QN? zww2N!q9+4$GUmQdhTh5kp+re8Ktorh_$`(GZEhmAfDjSQobN@ZwM4mr7hv&BcSM1O zrKOrs{A!znKfr@InOhET1C0k`ujGf5H(e;~!8~@5lFcB=i-h1^%-fbDwzR_r+xgxq`9>a-}gm#Dh6l1 z=~@CVElVKS{^~uOD8dWrlY5aEvh~sOSWEV{)UCGCKt}R2gISwJd9z!|r_G7epsGpoLr7O2h zbM8Z?zss?-WojT&$lw?wJmSSI=f!n%@-e?$I)qtuG58N3qzj(>AX`fsTN_1KvcA=Q zGlmH!kN&dwr_R{E8R$EGIshR=+wi(8XNNjbTF)HjFw_yjSVtO)J^;dReECVT?$FC* zXbLLq-bJWU4OCZAhR;LI)8>Uzml;dsC5)tyb`bUn{dUulmxE7U^yR+WdkOAZJEGw0 z)oSMC<88_O61WwsfK%$hqDV>k>ts^^!Yu<}82u5gOi)*9;9;6WZ#|(x!D_=zN#f#7yvldwbX=3iajvdz%Ps^e(ei@4UZUH)SRd=+fFnk?VNY1fzS%AM zQ@*z+FLKLh=uC}*1QCS`hlfx zUGhIl*lcv8a@a-;iE1rAQ3z~jy(w%*U$YM@pyUmunb>uY5U8Qlkmh(urbK>_%lGjy zYaK!3{whYRrjSqWy-<3ALoe@S#eCQck!ZvGvvrEO9p2!Iw&q+FVri!NOaG`525}6b z4taAg$m}Jkkn&Xm)_fWh=t}RK&H}EQAt+9=!uuPJ-*IP5Z3IGLE z4r5F88k166S(Mmy8AIPR-FD>I8haXfT5(76y|lhPFa zq?Q^6C#)_KCL89jT~U$B9fjza&hg=}9%&&ajXVb}V|fkb-h7G5^&VXKh`r$x#%q(; zvNogRNU7e2mCd;}1QyGrYFABz}o~LbNQgx;y{Swm?Z}Ya`{o`~P$@^qIJpYbNOFOOvR{Mc!~qh(JMYK*p02N} zs;jHkS}m_?eX(6vqo`ypN1!hd@hibp3~cps{QCLCo4BviB*T@xgXMKpIM-y`WfZN` zS2ka{LQnp=!IiG8XJ$efJ;0?2zg>DMS8c7qZ^U%{;o~UGe)RWLDW6V@N;_~xz@GfW zMI2-HQ0r(b{xb6r$0yV)(U>Y_9a$SJ$|x*uhs=;8I@thhT#;$id^s*7ximc9O7gys zTYqUR7(-#ROkIA?SuJ8jSp%Q5uky9DS}Fsb)R7Y|k7(gWiJtvVsg z=ve8y6;~0HEt%VE*Hpb~0wdX>`zn&s!nS~B!frA?uRdFWr+x`s7*)}e)x>8D6ejYN z1JJoA#-GlJx~7FEKib->e@^2|Zw#>H@HYYAsm40_7iPuO=8y-Ympk3`L7$M$9QFc? z%jr^-J>dsT{UrTLwc5l=ZCQaBBi-koU9d9NX+*;loA`Ozou%ID?k?Rb&d8@RNeQPE ztCIhX@EThbo$+6encrEFl?9C7*71cVFWQhy>7ygu`sz`gY?$#|GwIU>2gN#L4x@e} zFh^@u6)4x#vpIT$q>&N)%SqV))|xB$G247;glgHwq}IBzIy7ZQavsd>^5WI{m;vKN z;V&rGyIn8c(m`;Zjbis-ZI193=GH|xKz`&l*{KguECS);L6vY=f{mT_Xn z(8Sl{$XJ@u21jiUwI}cT`1~Zb*c`PHU{P&i5%?zj#BLNsFKc~^8*OSiJ;3_vsEMt3 zMd~^Ty&{iMR%&6z;Mtt)bPaaHG)vp` z`#~^gr%eR;P&zkfv$AByvUi>!4*7I|uvt{i12g~_=_S6#$K)v5&mkwYutNi`e*ClJ zwj-Dcf}yVddm;H6LZc`pLWhs0u1fW&kH(nz%W*6ol37CG$9e#xDSCi$?XuQxkGk!i z-iR~vObV(UvB!4WWL~KwNAqCeuW%Nt6YccQa0U+k%7ZiWnBBQ};r%n4)Ei1=p2K0w z3s@}Vp9TgkEphv)K4Lo3)+vLDQl&oH7uRnO6AJ7cVO5#oucH~KYs%6F<2#3-$a(qW zJD1aSkE_SZM#XDc%eVvP=?NDek+sirwZ`i44&PJ>M57wO3pA1Z3Ftb?V@5PL;9zGB zDp$?%(a*%AjvGB-LDa7mqcN6CNwKCfbl(=p1hM^Xthogs60^2E3rm|pWOZ91kDFVH z`cM695d{Ac0Mum_32^D81e@*@mQj!xu+4!mk<`n2-n>2w7%pqxQ8edK^%Io1*Y`az zZ@p{~Zv5WJ^`0GXu{i%nkjRV)Uv~u-lAFYCr zx2?PcafcZiiUWF&FSjgfd5h6&x9t&L!r!>>Y*%T_TjtUQoK9UpgMJU0Qn5Z!^7&6m zcg>eZiLZjKQ|f{y!_3ChYe3IvxJCPn!Md2nP3JL<-f(7f*1`qJ%$1@XJYRV^QA`zfSe3Rs*iLZ zB!(ogoc}72cZhcD-*P!yos(YfP)sp3CWqO7&xUUoPBVK zB=K%kWXol9c0 zn+VvfgoY|*!`9ahM%6MjxpB62c%Rcb`;}UZx!iSF%s{h&9%cDbSlOqN`Ue-G*otl9 z(v68R>dE)1p&Z%6x7=wvk&Jux$bSV%;Rj|Fj+sARbk)`jP~}hA$?klX!zFI&C9Hc5sCHtn*d*>H z@Y)XftF=!%dxl$*1J96)UG9)()0*SDo^rx*;Ot7%7yGSinP|&Ns}0dAa(0Yib5<BVl0p3N!+8tqjryI~ zm%lxy`xkKtu1B5CJp7_bPQ0vER$`3^dS;Qb9=6Ai87;ov3+La1MN#GLL>b91hQ1n; z9!Dtt;b;%Dwb`o{L3RR58w~t-QPItE%QJ5veIOi{K*Bx(=ZgKUwkX?=oHyniy{4qm zxb$TYNW>&RSdwYSQ?7QUgAZ^SN<>o3O2Q$1h`@l6ioCgbXIgxeLB+>28AP+<8{yGM zVk)XgSuOvN^;K3^Vt4W%n7>{gAXwp>p5o`vex0SMdHoL)H-rKC;COzH)5LB3FzUa` zDHRy?6(IpGXu`E}xs%52dtfc$G^(JaNNbVhb8H?x2S>!ka#8wgC7Qgifna-W#B+Zo zPv6>g3C@VhonL&eC3{ltm%sU8Zgor-FPFef_)UYY<(^D*U22GW2o@Kq9*Or?yv#G6 zKFiT;k&336K);9tnvTYCh9|Ws2j=z}W0s+DU_cF7liHlSV42_x*GxL=o99bl%Q(Bu zggh>sk*{B7e#6~E&KqAf&{e#zpEcEOqduC)R$7*Tu@XVe;PC-y3z`dE?qrMsVf^KB zG?qnt!&Gj>o^$1XX4w#HYCNn+hRT`~6HqUuB^}`94oOu|IEM!=r>|q!CnH#sB%H`^ z+%uGhxRG(V&WlOZ8*0L|qx80u$-LHyUxqrUcVd&#jX-vxRMfo(!cQ&KgutV7%kZ5; zGvr{Ky2mdmaWLf*;G{PyPW`QK z$a<^09ihNaozoG2>G+_1i9^@6JVZ$@;GITo?c1$e_gnrzXD<)W$)#b+WOi{Ju@4etmd$r>G_$r*(C))F;0NOk}*6f%& z9}M_B(FbA{B49mfzdU{C895>T@MAgnYze{}y%$dLq3rWj_R7v?QZT!L!i4kJNklsc z(?NIAASl!IsEkcMmSq*Ev)#&&G5j!iji1TOVILoqd>oB0aNk{n5gNbVhCnweB(j+M z*=khBSM17F4f9G>iGVEqx!haf|FdC^|StDy03yWIt@L`;N)awOX{omSPRSS;^S&Vf!3eq8j*86;ouQS7ImNd z823|~;f8ls+T{lWU5*!3v@!L7(23@C?19SPRjo}ZTOUBxrH zptZCWmme~^`7Cfu68@D@6UE-Ti|?!~?kAwsk8RG|8+LQZ(-Jos`Nh*CG?*E(ORCZ6 zJ>c%l|5d^O|B}#pg+9ZYs6N0w#T&`w3hgZpPzo}3`S1>(!4tLj<}JWslFDnt@9j)+ z#k+*ckUzMorhdC(Wd>XtR2Fqbxu8i+PgkNc4_8c=_^aUAJ8Gm8YTc{6A9vMz*mms)3(o$HiW$i>Ni>zn_t}!n0Ie%MKs5`*>N$F<^H~ipnd3?c4g@ssRd0o@?YV`Zaoo1fC-JfP(2j)!PBbKC# zL7MBhSLUQ>D{kk`@HcY+VYq=Ton@z{LkU;qd$|Jw<4X6*=@0~Wv|WMCM%n2o1_r5^*g9D5&7X!}ht?JAR~sYn?84D1 z+LDxfeqZNu(!^tGYTK?QgqJk#vEG_Sh+jat7J#jq@D4Ys&OU#OW@N7=u$|}Xo{0S} z>hwVa08r!nbYRxpuB(O&{x)aPRhg6b=#l+*laOZ7OzazSNcTF5+u~4r7dr*rjGClO zI$T}8>ofaRYF$+>OEb%ac*uf)&VoI*9BSET<3t>S`rQQCdexTTSt1gY9Wj*xL`ACR zPwiHkp)@^a=|RiI+l$johiWQCV={~4rV^OD$sB%*w#9g_6PRK1p}Mw)G%&AuX1&h< zHRY&z^2pvTpz8y9V z8G%$yYJ~6A`#v5sQ_YWGBAR!5P*+DjYU7o&dG5hz?WHI(CI0a@P@2xx=>yzry2>7( z<}zwTM7c!o`gwT(0EV?|;88$O- z!M_@+g@3m5o-LWWV{43jr+=+BBqz4yhpHT`D}9cHVifpJ(uDkOSG+|OaC$*Tl<%ljP4sRn2r}4kBtP6|ZKK;@1y%)h z)$B~ndXmiQP0d`s8i;$=%YAa4kD-MB(?D_l(Nl|~oBu;e#?#1poFu~kslzIWQScsN z8ieGTkM17Zsf#G(bkXX}cW>hOh>KLC;d2B}sp6Kyw?5d=-w=NLP~$mnKsJTG`|+%< z<&E_WfdYlDF%6cZUOMx;$E6t5EfWqyiEuU1wWo|?mqyJ?%fw*Sl3Dj z=WTb?D>P}Vd-`eK-q)u75%l_)OMqQwA9aC@oQ$rYj?QSV-T=P4(h~$}?}v^0P&r6k ztSKXg(QZ|Yz0{&l@!2ecTv*9t30>@x7#~-(vj_67cB9Il_^40}05G{sb2cM3uj2IR zc-45nW=Iaq9s9B1bNjT;3>RVqqJI86*~zC#Q@Qo>fpvrdq000$$(j4F@+N+>vvG>K z?4hEFqKuZchMQ+UwHRKdo&27F^*YK)_ zieDvkOO&)b2>mC?@mICAOy@qo6OzmRgrL5R3H`I_3)1?Iy*?)xQ=0pp%F&H5E^rzn zg39Y=DXn-RE?=O0IaH)8m#Mzf$4C-=>ozKiUx?u#i!c~eo01#roLvD!P_flIDK3m* zY5y2^RGK$wKKdF~5HCZZPi+J5e{fIXQ0#*MfF{}b%m3J66^ud-RFDNJx zVceVc_&hqn_ma$$%#*9C)AI=^h^;L~7kNyyR(rzNnQXAqYde8!1dojQ25{xXEWjqT zDmUy;vsneWamw;c>|kd!beUp@X*w!!47&wX?Y1O&B8i}U3k)@Z3gHQ4$)Zo&YDDP!c0kKJLwV}tRHWmuOpe^oZ5ub<& zQ)+&>xb0aq+yYJpF$!*+$;*KX45?jKdKA1)DyeD|9Hl=e*ky;4cqb=!33iFDhkt}y zK5fJ)_0}_pKSdT2J~FrYpwvXwYiV_V&bs(Kk<-2Yea=&5b=>Kk!?N>QIEOvd5VZzX zHufk$`oS=H;2bXcv_P_{dM;VBxwgFGqsbZu1(HP ztFn7WCC@ISV{|g6%yf}lg7)I# z8J--X{`if~i1{`rs)8qhQX`;lakjIpwG^S51~xguuy`v-(OFdA1z$(9gOcHCS9x9- zPSkO{;%|RCUB2~!VnKl3q7Zoy^j;jOso({c^H*HGhoK9#*_I{gmYZQ+SEawZuFPzO zxp1EhOb1yjPE0@>9T> z2o9lT2QO`nhOi`OP0g^@Un5pe7n@72KHXaPUlMjEPfK&faX$8g#g4hT*;&mss>DP* zY(+O2SrSKKR1#|+H_R&*zc;MAmiHD48E zX!m&ZzsV>`Y~@qzTJUu8{WOfmbQ`0hch{=-P)kn0*<%7=R>g4nxd$h4aeHi)?oyp- zI?3SPTtSH6bewg!NrX$A8q6-}KmNLlwk*rLYf%1sIQaS%f5roSSOePt+QJ1XPB;$0 z+twu7d*SGO(`VaW&gIe&FakI6hBjIEwq3+!<<0>3TVK=Ok^kf_0*wwqc{oJ6s*Pe> zn;U1N%k}xb?8HcyDXMHcsmo|C|C`_ltKeH_aDXCj)-NZOPMYG1NST6!bi7X|1m~@4 z@{%TiaO~#FqV&QQrWg30?7xIqhxBcf6{y_SJ~_jH)z+j_V*yZ`;drO?a%EusN;#s7N(;F1#O-b`N*b6u;?Jjn20)Jow{D z_~L!iPP<7#TX8sE+1fg@YZ_lgB2|da%Fehv=x88p|=b-Y`7nw@OoGx;)+cE z(oFg-;LsElXhhA&xr+JXBIte%c>iPG6yBG)s;nb&m9QDrViPw36Y_I-^+Ee?Bz&H7 zq8^)b&P$#515Ge+^&QcV`)ls|Vke+nPAlLJLn6T#Dawlzgr78El0lph7l%oUFiKX3t zYmDZ>U`+)UY8}(d88(N4%aTszD7*&?bzr= zsnwSA@`MzfIlU#Vh>S1f_K=cft+h$+LzJ9KdO-szn^D#xV88!_iEpfLSJyipDDCg` zA-pbKkln!Id{!P)VN#UN_&_W~IP51cfJ{YT( z2$4#fdVYFDM-LOYgM02P438(LibZtSx)!5FZH}MHO%t=aoe{bAaKVm5BLsEZG~R!3 zV&v%_;ILZjuH}r~U;N{mb2IjGrjxz1Y^@s?fi0U!XR*Aa>hy*-;rCDC?Xi!~NoS*v z_ynnJGn!Ka4=W2&e62pG=K9x(M;F74e8V?wRT-i~9TlA&XOY;zz+p!$0|}c*!4UUz z>PyQaj@Nq$_U}jw%J(hSjX&wpnv-43{6fGFvL~KT>PIdXHUCl}I@lbA{o}7DBy(_V z%d{bO)bwlmqG?Q7^6fPLtpqnDY&~C<%t4WS$;tJ?LGwYlIF`tD7>_-QFa1lUj}QW+ z9d{nh`z7vc@mKRNeRWUx(_uu1VOKG?y}aD_Wo20>z9;fSk^Y!nVH6eF?}|;EFHgvU zY@rG`d+Gj!FV`#3izvoSy&Fn3)sH&}qZZpwCmO<}73~AGSfX%V_gBGp`euE?kW7y3 zkh!q=kQ$#)B69Y#^sJ$A$xQM@>+yU&dL{mCY3+l{HF3n&Tp_8Au-qb(KP z^9d9c9C%~OD}J&~V7np9=DgIOoTOKSmo@u>iA-tTi`vO2{l50Hhv6$ zpbvp|bC7dePG~+29Zj>_V>IC9T8IDk_3ZW6z8+QH_kl-71q2>`u)|4ps1Z({=aXs^ zBIC5sZ>}H(6l=w*IDM`irBlDqPR>-xu=!qaUaK)PrP=5I0$SgG-p*tvJgK1A(Z$PA ztGimXscYsIEhz~5+=nbkkxfXMUBCO7JXc5MfF;KlpOZI}#{Ne^XoM5+(ZT3rHqCH1 z&plc4_eBL{6C9kk)HxmPW62-Ks`jQ_oCpm7P*6-`qnkRx!JcVhUQ0pxc92_40T#`N zF3vFh&#Ty+R%`s;cI?pFlGVx4Wm0afA^j62wdXs`rA?Ik%g&;H%!+&>59Gm7rKd$y z8g0480j8V4UD=O=q#cd9U{M3qym}Bb$zQdbE1`hiS|hPEwFAc3bVFD|Wc(Xp`K#x( zaB{J61&|O83;P@Xw}6u2_Z-DhquObPtIJ5^7si5Cx;8Z(obgSB+0spz#4pq(eO@1e z)CW3o{h8h7C2A;{m3XnNyit0R(Z+~-aWBKs4TLO2RxOrKr->eWPqh6?UV%l9k`>1| z`$9$O(O?YLD3TM3G&Gw8(q_2u%Ft~j$=^{1#RCn>s3k`Z#p?d{Pzz{iZY73ADK=H+ zsu^Mx@pLtw#xPMLV}GNV<6ous#V$!LE+JYun7{xK4NARQ7?n8Ke?1*=pD$+7Nnusg z|CaKt?nN(GKTp#=45;%v*fV`OC8f^OCR-M&Xr2%vsYjR6TiRsG>wqbZBpOS-pQ3JN zx|dm-^~;p+wLJTuWZYw~^ToOtD}EBlQ&?ExCniwBI_I+Uduxv!1U;2s3=v=Ja+nPA z+F*e2EO^)FX9F!j)V<26YQ@+*v-A!#Jp*g<UVHJ@RAf=bgDCF z=dY^raAwPu4@m6p533vQ_712nv-ZsvoI>LjrXlJ>TGhXqfC2Z*!64ULjcRsI#hH02 zum~9p>rh>yDI&8|s5UBQmeDRX-gL(fDE6lAwUcJ8X}@6WPku{sJ3)H~nMs4!md67Q zS7LsGS@wkRe4ImxM|d4N^kEtsPGp1=1%DZhY2DmTyMR=7j=V2Q*PT08pGkxqA4QN8 zF)r|U77fy%ttQ8+I9V?oU&zrJ>=5yB(5lFKS(pym*p3~h^!eY~y5bd56z?XA)vS0v z{JsW{sYV?F(JhKV5Hm)En&ol@@?r9Ryp;6W>V{e`vfJ`lZ^b8Wx%lZ#`vrv$o^lvX zM_gWX!nGv%Iw-zIXasEknvI%43Nq66{WUc2Ty~_2Pi4!D#9KH6BAwO`Z@zP*pn+ zyUJxdl+ODG$`B-BT-H2JQ5>WguqL+5>2jfojzDfHW~nZfJT4GAB$Z2w5vVaF7vzi^ zQ3~!OC+OJiH?Ixd=hQN%9(q8Op>FKeYBt*gvMtjc`H#Z=ZI#>hPk)*~W?z!A3NP9S zB3ft_z&?X|Ea*BChEpQdJ6E1~*I!%kdObnk=1)#hUr+61G3&D252BudOM|CN5}TW6 zKa)b z3I_4M!qH|wrVwP>f?O+BA=}p0fJ4->+N7&ZM0xsOwH>4CemL^M)ctBHaz)eymm zg`ps}Ub^h*NoFiPTGNghho~kaSIxn&oi$POZLLHu{=ZTQio@pbp4IXn-~}PBAMwu_y3W%9qF|^$M!gR*W@b{)l5_Z( z94r;4pl%b%>wqI0+sX&|3@UJ(Ig=7jC zD}1ckm1;6v(zUx09*i8X-M?1?#ewMl-X%N!p5?9)LjpaF+hT#8ujU%_+e^_HuMA*J z-{fgUllCy7>T0D72p4o?{SFb5WWx2Z2O|XBC&?c6TVu3bY~*)>>MeAoz)GwM;L&>* zgl@8AUtI)}#v|$Hi{-R%6Vy$#z_oa%t_x+Kocg}9)DTnCB{9;P{W#zk z9EpG5iP3+5P3VLx*91xkgeHSz=?NH{k*j<-zUE*>(Dx6l9Zf6SO!BVky+x|#P2lMn zGxkCZS->f9A$*wi6t%u1D1P=_?PfwGjiw4UG@quSgB`anslB;~fYaeT&U4?Cvh`(u zur5L-8wfdP^@k4r>WgPBxo(FG^6Q1^tPmL*$KVwt4>+Yap}jWEF)C9Dn=@0u1odMM_HSl$%b#+ zHwgE25seO)4G=(%L%n-_it??xOe~F+^}+me@TEr}QRr#z1@R6^=_B1oHsar_yrxP= zP~=g1pl5p05pzsbRoQjosrJ3FIFKJ5EFtYb`4PuZ4cVL&2XQRGKA$viQqk-!DZ6Q& z^wz?pmNYG+pqyC!#VQnfo`!Ug;-om!YyhQw|2G(T9gDA(aR8>&yHMNZDqn%S!+#=1 zHK>368^(@+WOm>FJVFzs7=I6ugdD2vd{0ADO;K|`o4^kf8=fA1Cvclr$z7{{t1M@BYo^6`V8n`C!_X6(!{8@dbrf}wFC z%r&o{c|r?_-g#z>pzf5LFCe^Gwp0NjT5r14%dDJg|8W?uhj*xzNMs}Um9)mDJO=pa zU%B)Y{?5NhIihF5yCeerrN_KBBjt^%h%ROoYMWyZrpJEo!W2E zMu7FJ7d-SaNlo~D&!jpXLXOyQXtgSbd~3mmv^hcDNELp?WNKB*tN$T31z@Z;w?$O21wM~ED-bJpNg=lkOvQ{6~=YXFd=>^D#1)&h!}miF9g3r z`4koLEdUE%WLyD@U!+^1d9~3^`(+=8N42kWbs#0(hWZrjRIEsoUYpMLIhk)haXIp<}1c@ z=cIs^9!qdQ@`PmNf1A#Ee=e}m1@JN~?J*PJ|5I^){Q zjb+0fE%a|Y#%tbxCmeX?s=9#`gfd#RR`%?`-uAGJ?NA!>Rbez8=Z>R4Wb{Py2{)tl z%tW)Yl0=m^NpUKEI(caJZI>rMtV_)*z$cHREt~fZc2DauXm1^v3jm6LXW4&v!Q*m$bMvy?5 zuTvErO1)vdfd{`CiiF6&O}74&*MW?fTHhn1J=Wd|&mRZwa!%Hq(N!zAH$k=bP+?6xl+Gel(Y9qzRAisNqeZ+u zEL$AOv(oAFK3a~9oY6D$7Pp;vJV2wZglje>BBL!cF5dXCzK1!9#xHAki4nanSwK3_ znXd-d7HS~tB^4O;j_+F`>P_K_I48J$n)r$yjCH~75U;C%m*G;2R9=o1-jqycpgmVd z9jz|0kgTIVTk}EYueQ}X8~?3g3^v#-#+G2^Mqxm|uZGc}`iA^&2sZ({7D5f-a%z^G z`&9Ugud8Ne+WrK7gYQ-{$fdcm#40y5XE@vi4*Zr+WKkj2T_J3ywK$ZPL0V5jreo@B zSJAr!xP`S)i3!5TXE_k74I^1m*_Wk8OapEzEzj#2%{ZtooA}%&K1YnjY`~FGh{^XD zLVi*GM=oe5Q-Y39Kb{KBw-Nv@z!oqt&BY_sXYr0h)8Bi!h}n?{qaL?i5l320*RK-z zHHVHg@O^fJS2-OV{6jE*^QYo%WKODTwU(_C5YPd-Lz(c`D689SV4I%Ug>(dkfiXdS zAI=pl}t-D)@b|HwY?*|s^>xz1n7Nb$0jdpkM6TauO479V!4Np-6C$pPQ zX=GgcF0J$ZY#^@s-P*@_bwY;a`1QM)$toiy(r>T%;E$=RDaEmWRrr*7+W#b3W(hkX z(7&c4LTZy;YBvCsHAZSa-P_1gfF947V_zpZts4^5#ef%skTpq0$g9dVqFEMHp#pd2eM&5^G zu_YwW$CW!y$>f{;>^L%s{p-y7z~#a>Q0No|CdgHP$IE%7yU{aav+A3n$NQd613GhJ zy9tU0?@$z}3gN*6=_4#SPj|fQ!Wg}`-+5hckQt7P#X-vHVEXjZ1d=;l1HbVlpo>^~ z3)^oJwNuw0iKO-p4m}& z(EriQ`oDKP>E87`$&s6ZzbWYu982fJXV52V$+?v$E{lxn^1cr%-G+4(EP2a<)besE z)j#$sTqh0Sgx420B}f!3Z#2}CK5 zPwR78|GauCQ&-{(duvEd%liuXc^&>E-9Ga_La-SxPhBR)!v8@MtcUNK+Pe0usKp^u z?C4=vni1cQm`I{u``MZ1*WJxZOe?JHegnVf5~em?M085+_Zh5cul+Q3i$F3nl?3hL z;*q5@77-1+D5!oH#koV_g&312KLL{he{D)qx%897Ctpke^Rz1?{CtT7z{rW#x2PqXxa+3*GI>X&s zu$R*sf9(_s7ac;1Q&QYGaE~ZQ5EDsiUSKv_$^?9aT|apvAbGTkX^3CPJZ;MyI6sBE zl^GrdO;+|KyBY@L<}e#I!3U|R$sVP_=8_p_HPq77$PIK>Yq;OZ!;BViOWt{qtlUtX zD82WA=@5=NT?TVCyiO;slWN+sFT>|8jXyQV`)kSs(w8F%Q_?x8@HF5;mq8M6ETNrs z?Xqy$4A$vQB3*eod#kFcKG+y>cCH3e_t$wv$y`EehHoH!bM`S#EnWdQn+|d!z^GtO z-;QpQJ3T5R+$^9(RFGBye^hR-&+Cty)_e<)WwsCxL7)m$cprCNK;RNSpOx1?Q({yM z{x}yToA1J3Gklb!_MOy{K0H=37bfg%T+*4G-)Q$Ea8HikeF|8xUwpJ1l~3dn1CN)I zWhSx^uh^}Wvb%ViTNw4xB>1m%7Nf*>YZx}aiCe^@uNSiA&Q>ZQKKcVHfY)>eqIe3qGWOWJOe~j?E6AR#c*(Aa)Kozi8~`Wm3EtbB=-Y%d)ZgJ zg^5)+X$c!k>1_Hw&7k*R<24}^GWGRe`&{GT z>BbYEP=)YpN?h={Sbr3JUVeQoz#lRlB-!0tyCd-R^O%us4BTS-YDzyUiixL{(mXYj zI^k!xTb$>Y>tmj8rRQERxBRtL$1yM-C&5QjQ5)w(Qn4`XyRTUgN#CzOu%r=?<4CYf zWvC(b*zd?ce`e@jGWv2bS3ELw_ryFmY*oo(Vt8YD?xm$#_QQDRPb&8)xBane`lx|r z#upuRL09+4*t`cx>Vja)?{$E#I>8~uqAsN2W|OXCZ>5T@l=zAx+MdIu0`L^W(V_|4 zfvZtfU%u*biCx3Q*F}oXh*v1E7o=bLye%lKu-MKfPh+c4KCAfd9kNxRdef0(h#NFL z^e9@j6JJoeoVQ@r4>S*wDZG#hk}X{P;(7p?1@s@EmyK!As%*(j^=x<2K0L1u988rC zizPpKRv3F$iSgE{N^+!VGBnNimyq8XR5#+BlV^}ejs6_eLorp((W{b)r0PE%(5?qY zKB^QdhMQx$_fHwrr!EEeM<0xv$y7(hEXh;Nm2;Z=0;l3)eK)A9M4377bzlEuB8Ko*JcB2!ey0p) zjOQIFxW9LE<-Zyr=9A`V(y}o2$`1TN>+nM6cn^(Yad?D=#>hN3f>iFF*84QeM2ZMZSn#sn=FY+ixFD71kW6sO?2hn8ni4{G8o?B@$BxY1E8q7NE|= zI$R~H;r-I2)SB$(iZVTz(k5ODA^C%oNTZ=&Yk90JMrkZ#Yj$4$VbflGu$JW%_ zKSe_-N5c}DD{8^A$sZ%@HYa7JAgCQX4Ve#*3bGjXd!;SE7~_ z)XFs#dd_38W#2P!5S}nfTq8KdN^adkm~P&{_pq5?6xXFhkEi{z0(QDPWB?ac7G=&; zqzs#mUksEMx2n=I8|aTcME)Ubhx^CCOn9t>`m3cFEF#uiDY@c%H^>!!W^|r*;S{R? zP-Typ{!TB$3)Birh4t+EpyHtI-h7iADhN3@HW4^+Vy(>I=oaA07i4aZs&aT`E@#`~ zbXYvGUBW)!*aAcdyecfb?l+E2MN7%fMhlP;5TPl#DqN<7)E|Ytv)Rqq9350guCV+Z zpc*6SZqfR+Y4bGL(J5FqMlSN6hWmgPQV5T50zPlch*8h*a7tNUM8m6m2&SGttnAlO zx3q{?`cf0q@)_ozqSL(#{!eE$=_7rDYf?tp_z_XCGEBkeAKKgVVD1%`*xM zJqt^&`VX!~f15ZI zF6)Sk=gogTk0?KXsN~m=33k^_;xAuB3ub~HaA!@2!ZmI(F zxhsFnbz(!M3|eprbG{u9*pADxl0q7(VVZ^?;s|Pg=eDR;ARje-I0P zOg22oS>%Kd_irxO)n=L+?oaZ(=WizB8H&C zCUM!>*@jhfusrLb9mRqaIaaR3sG?X$c*jSKS2FbYk#6VNPbrAJ@0nQBmx;XLP%(9o zg#q*-+=z}K^$V-qO>kljm_uoU8J123DKltMwQBDHyyUp zU3}f5_{GukiYhpP`G7lj9`0)-G3M{~Yq6iHJB(CedjtC?#ii??LFgP?)lvmew4Mgb zFz30reWy2*Rf81N)B~mX8r2*#y@lfk@)NVL{io${^{c#Jp-ANA2e^ktilY`Y!D8;u z#+l=-Q;|jUQQO;p7Nx6ZQI}f?+bD6=#hhD^w-#O3PW-Ty>dhKv{A@{`)8lE&z(s98 z%$$lfBC0}K#uK_Q%YN2(!?>zzG)qMn$OrzRVVB_edT?}K?6yS zJN%nrtGdDC0ifc|4{YpM%%B!A6Vm@leeI-$=95mzxikyRY?$L$D?czr4Y&}UK6AhqsoCN>!vk_9m}F}hL_iG6?L5H93=U_YxoN2 z${lV}s>!1Ririz-(AJn)(?w-3Lh<>WV%#nVr>1KLtKBbnR3?=zGP*t|c9nwiN^G}V zN01B9oNP>04qz)_-MqTHfjW&HsIOn(71l_pT;saJ2*hh~pEC|wHe&_rD`DpdtCAF+ z2`!D4Jo(B89^C)t7@X=l8g-PJOW{os0gRGb)PD3L?EEMcV#B z7CS*x0}GA9><`z4BL*uZhI7~()$BOJCx4iV%rLgtf4gM}R-4bmB+$mBS@3(|2X?|@ z`>-i9mcC?+Ql>yX>N7`es42E^d&o)1QkIB(odZWieFD3r-OQ`S0aDP_*HZh-^g#Z` z9%^c4X=bb7>>Q%!?$(jKmiQ|gh5~5mBMo>_Jxj$xrpC#j!9$?vQ2^R_IcZA7PNPK@ z{5#)y)Wyi8mx^Qhi*uY7dyTe=ihDJ0o3uu)s`*|RDLtr>a`)>CM~bWn(ie-zU5BfK z*v!=QGim7%Mays{rzY8&8twRm8S1ifX#!4F)4Svk^yqnj9m(gvZodp@lMGvJu}ydm$(a5nNQP!uoDc{*vW?09_Jr!@}CeMQw38*j81Oa z{=%PRl-e_chB@&ns~jmvsg+Dy)67WdSj`mHKt5X!8pqlpQCP^gk)!U$X0~#_la>xw z^f>e#&C8vBxx+dvm_B}_DOu4hRXG@_*0UFz&07?RA&NZuO*U%uO2`HvGOv(S*jXuh zHMpE}yeDSYa9CJYmN>c-tA`sFDmR(Q96M<-X0v6z^82v_R)ztyE0cLtcnHJhNDLbe zk&FodH=F^vpW{Y*{_J_GU)XWb9`60P;$TA7nPNZI!ikj`+88l*`l8oq;Ul&DaT!Ms|q%3GtcR zkzC)O_kT2VWQ#R53VDf>2riwxZ4ch2x!N&K3@$yLdeCdB5nejEUxiHc_c_djDm4|E z+|*~zRFw_noNR9$T$u4zvwYK;BtlEceYycC4K6y2T7qX4ZU3~9uvVmu@aEL@MoK0Q zcS~rfo=ogaIPI>GSSso%$O;XTQ;O|9PS`t)n6<-f4ezvK)#zLxX znSNvcIMQUCOmjWW{!nKSd7MjMU{LYOb0{@7>n-)OjuRCI0zI zmK8>-v9fe^!t+{4~c zRomFRRb_Q`E?Ue6Lm_NWYcOO;V$(?-3cGiI`nAq1V#;tX`U;m+=sPgUg}Mq`Iy#JHGYhvl@x#WdT3RIo*P8`4561C0 z$BMF30(0bI+(%(f^IJ}{n~ORaPr4-tZ%X+6Za2}3`2<9WGX%@eZ2E54`M z>dXD}D}lL=>au3uR*_6+r4=ihmk`0Cpp^3xpJoGmjGwwr++gX&=pU#V<>lm$va;zs zofFfm8nj^9kLgnqGuj;T70ex4#QFxQjidj1@VZky(i9OU-wqEyp9qSuwWD;^^PMyQ%o?MsXwXqH)G5wXJR1&`}3v zp^k~@lL}-L{_3p-lZJKwxWqrdgc2Gkt##={p<@TaRvto8sq7 z@)RrG@^j5I29TYLxU7R|q>)t=w7%d8a34PF1(iPOC3I~w##mL&p}k85+*N%MdDbob zTn;;rXSn41_E+0!%C&(HNSHjSl?~ZO_I*;Npu0n~mle-ein0Yk<*}XE;VF&dfPTAP z!1YW^r(V>n1E#B9Z;su#jmDJcPVWg7e|8f+-#x}6!4{{Gy&vM9Epm)471NU}F>$|$ zOPZ|kOQkkgWElza*BYqrC#)l?Q7dJWQBh=_pnp3nl)2?0V&fIyNx<67@`_P_IIpELH4moZpn3W0CilzRy)N$OLmBU04JG<1f!rl0 zDN<9TSI`K!-1Vi>Ma%wvR%|dubDs4HTBlb8U&@$1bhWx_HE-zWw~MgdR8a*+Pc>Wn zmgVXlp6sZ`krGrxl`(G=B5`TdPV)sQnB%p`?`a_((B-`LdOu3p6N1j%*HZh)`AD3)Y zPh2$6cXYQ!=FbPoDNc0@_W9@TNK{VL^k*=7&c52s_-gH*5?6HN4sv38OkH}@^f-g} zhs_{Q<8Rq%XRLSfm5g6%pM5_c=>_oLuf?qu!nbEPI(Ujdm{UGaW+I%N3v`W)vo^m5 zt_lfhtJ%JBa>4_g?6Ti1Sl@j;*`<3RH#Aa9O|js3l|FU<)V|^kxT$T-iqEK7f7zp! zUu%)Eru}zT)ZuJ`X_xjIBDktXU8ota778BABa#JiD4NL-rrE(EYP7SctDLfagIH1~) zvhgi5Hj$T#v(=ERst*j!;HNd*TEV+1JH0odzdYj_H+$S~ME;gKq1Y`^6gG#uR#1$u z(G=qbWz~C%CsW+h#SeC?>iVV0>;QMZ{EQHtZSW+ZqooLiz%MGo@n%s|zMu0MgFz#8 z7*3ddoQ-d!ab;J0{>8y1i%VGJloHoN?KNu`8`_jeqCZIa=Nu`Tl$`-@iD&)PLfi+o z%SV$TQwLF^Vb5i7dCxC0^lgA`=;*2^-|`S@VCVH|Acl0~dIy|sJItuD)!3-yMm5-l z0yoRU8d71y`UD-~q}QsTh!*(Qu>PuEkXb|^FP!0evx9233nNugEmL6jH_ZvQ@4D1) z>-%fLqkZi|w5-5mQr?A8Q@3^i1nU8j1rG=#Ro!7$l)Iu&T2k<8iHyUtC-UuE1|2mF z`=-%2Rzkl!jmYldl^RmnOR`gI&x@15pf7>->OM8Nudl6NC^?07a7ru`=1s@L#eeBi zay^#DWfb7l)vH)y-@U#=QbSezbZ5|JyRGf|}WIkI)Y&#M04Kl4YEZcB)*OzVZbvk}`~LfR0&pAD~j*bi6k=varhjv9UA zsp>A*z-4diR`Zgv(ZW2|Ep1ZJPDpJIK3DnV?!jHk&s1_t@s(%p`6nK|ewOtJKWd>d zbhcM$@B?A%u(|Mv)$7^E_Dfri#cURCDykKVij27l=5DQDzE8z_?^ee|-i<%RkWyGD zY&?E4z{y^#DtfjfHqJ2b^^$gN=E0#j3?6GC*h!;ZYv(!3@2lEyMy!m2*cd8otkQ=< z^a>F9+Gc8%_n?r?q2UgEeta+flRHhCv)*=3r{KE6FtxN}I=UOjR_wwW|E#*Rbo83y z=EcxJIRvxCR$oUIT$b9`ajAJ!$7e@V3VY;gKpQsGN)0>_(X`$^CPZ;R0WRA#{s4tlX0vZpi zq0@;{3d1nbX1kcRI?o!n2KzYP{dq&%oVJJF0ny%r!?j5e#Qkfwm8Y>ia~q%1pwDJT zn6U@5rpWEq3`No6)~R|o>#)F9Mj3LRD*a%RJ=nH}4!>J(jd+Ur9{f&0i0cU0@tyPAJ8w7r?rp-5`vG=5 zOBuH1Qs>xtuH?!XKejHYKv~vd7GtNySQ{qsv51U>x@o@iOIv#flpGSKV{9!(nSYd2-WNEHQ|ZNx zuW81OT*xh{4@}2F!AIPbh~zSw@7THk{K9#6fPaG4*KUx?sVjF;4tzu)&3=Wg zgtLuNV!LLOqer?_p_$KcFJAt(bNYuP$ifw$fLRiAvv8V_9+70~pV|BQ3?g<$Bvy!g zafo#Sg8-Yst^YHU|NWi8UGq<>o^+SsI!_lmDb6AvNs zbt3T@qRquT#tHp}N~U3Mgb!x}1cXWJOS_Kc%BULX>#q;Kq}+-Q_HTPa{Izyaf;OgT z(Zw8|l~NG}m>^a*UiZ%(g#(r4ejm|`YD46Pn`5STpZaG9>FUSkB-I)EH&6*xESCmf zT6UiAW4i=Sx*S@})n<>5(rXC&Nl9*WD+EH(SkaURe;oDPT~>xD#|p={R1_ z|B{Q(ydDnOTa{$K))fO2$hGfmJ|Z@l3EhwiQblZm!@JVS_4lI?L`^zsKqmyzt*dXI z3mU^e$2zggED7~Y-Nf85FEv$LkKr8Ut*L81`)zUr1lMp)XN=~9i->RnrS zMcRBXO(_*9oersp`Cj28e1xH{O4|K{K!KQ^rl_XO(^lu_8=_U$sJ8bwB){kj35~mzNvf zheL0Q$r^_+UVS58c`)>sQBLT`P!%oZ2nkng;Y>8=Z~$|5Zr$(|8R0xmH#IYVD|pa0 z%C(@dT0LX)wO@P*P0Il?>$9*rIL0zBAXFIJY^9@Z{n?B0DkE0sTCROV&%OLyIqIFw zHwVREE6oM%Qzmqd?7xxl_Qgj&bsaa#mu(sLl3sbL0(HKh_VeS(k8C`ji|EIfMxzr= zEQuPF+9P>!GLkRF4YnEim(8n$AP@84`?8@9{4X;Z&ogjeWNyxo*7&k~j=%jtcK6iz zCCA8SI*UeGh*yIC@&OgRO2RGwcBQIbtP(uHIc04RcS5IAjW;d-lcG*#AXIr4#j>21 z6%z%KSDZBAb3v!he9zTNyM0~puMOeB@x3+~u5I!-*H~b864AD9@zb%oovPE);0VpB z_M9178*6Y)!OeGV?lA{#4*MYY+x1tw#xXO_Wp}K-haXX(r2M8gL5!V(c>`0E#t6`C z7dF1pYz5dCJoBYcLB`~h54k>YCzZing6@*4TthDfL2Pm-_q_`xDhBMlU@iEWa`Mrj z13FHa5ycW)s(JW2Di_8&j~^fQx#~DM^8mTIP^W)nEEPMuJ*#qjY0f4ffmIz*Q;L#H zt5Qt8GG|qj9Y!57w11M(PH)_?8r4pnq&WFBD*)LtnaGYEuYX?`tC{XlNFrfNeE3HV zzvbw*WLK`DpSn0L{XW<7P)1elx98A}EsNA##=HA}uU_?_^S0kl7GX4aPH&A?q~wH% zD3fuJ+HNYX7{e+`dDBpuXH47kD9^Wjh2yF8e&ks{t#_pP_I6mjfzx=;)4}nJX*0-!bjlRd5CYM~L zSUoAJ1lqrx>Q4!$hA#~c5sHg2*r+ZHXhz&24bfSyG6KXE3xnk*evZP{pCM2k`?LYU z5iE0k#kuMph?L@&Id?XAux;!bJWwkc$>h5>nafXYP>rHkITkKHp+7ZoN7Fg`cPlr{ z5gBIwdd8I{y5aF0j(f{zil=l-WLqGcu!!?vW+?$qgmfpywZhG%#wp<;F_97n`k&Xs zKP49Cp2z1e#wV8q-Pjwq|67dtxY&n2Txnv`?svO#T;8XJ!{FnALD?zG!eaW>lb9Aj zQ^K(1u>D>7)rHUudcy=KclYPSb@C(>&E`IHZr$-uk``6T3{6a9nL)rU3df|MPv1|Q zTnO_C+HR51K_C!2bdCc@rE%Fh)xM;}%z2N6!0t0YREse1mA^AJbi0L3ZYt;I*)mo6 zb%ic*vK#=D^ouVJe zl_`VjOBqI6-58Cs_n_i5CN%2Mkqw~bib>HM93ry2Q(4bnE#Ve7IAKe^;b5UyLV3*m~^TiE~+U6Xo#g+ROS|j$%4YBo) zsud-Z1;1dnE3f`uj|_8Bs1xQ)*KEIt^LtNr8L>` z1nK^sP8oE>)W2id>Hdn31kuA?}~v<iCVtO^6p4II-H0!8leF}*`Y`gp6<9ojNSPX8v zgC*v{&Ok{K3mM;PbDLt>PJ{TotS;02i?X*iA#*?e6lpS|k8ij8_?_tOHGUJdol~v_ z1s$2yYG}UChY1w%D{m(&Ulz$ow1P&uyE6ZNz#wn?>Qz%fKQY|5|NFc20}37)As`Il z8%xmATkRJ#n+x~4-BOR$LUSKySG9s(dCfStd2(w!{7(NqLhPtc!1XIa(s@P~n;m~# z*kW5~VkXEM4jMf@BAV`Q{cC*X1`G0uVhTho*P!9fKo^m`;m6W_!s9WrDp1V18b{Gk ziO^T?CE-t%n3_1%k;ZEn4rlc@52|AFPKv9_Xpbw`^!!<&8QW_ZMSm@`~D3_t{DX8PI({o7~J z0EgA6di)IQU=kn}_68oX5dUqw_#zdu4r6g0F|~r#reeE?-!kROA!pPua^q#0ck(8~ z7zKsIFiawlQP;XwLj#T{?l~dFrp|KSPTiZ31sLtgOU4^^0q?H;tp6-iy6WNb1$-ua zz5lU8X8R8OVD*`CJer8I4825|cP}I!oQ?U>xCUyj4eW8fCioTcXO?B;`Kx(KVCHPO z_2=k0eE^-TCs-dn8lCr!9r>iv2KUN!lLz)vY?3Y6*k8j#JU1ocmdy8c|GBxaR8LfCC#8%a5!~_Q%4b`=$>K#ei5Py30`U4 zetqd>s6)kBP&Z1#83aEp2n(!y6iI3ty6e>4QJGElA-Sd8tqd4J*FN+A)@X4mP|HK? zI8kH3Gp5dQbN3bzH|*bB?Xf%BI2hQp@T8|?g#M0Ff&q^lY~6ceMQuN_f^mx%Ypo_y zE+fDDb((Sf%+F^`7aiALnA=|%=&JRv+g)iqgb0{eVy4WZxJ(Yl{bC>mPdl8BBn4@H zO#ye!+xDoT)%KpGjJV9}(Fy6!PMTpMIKO^qf1X$r+m6TRhgl(v?aN2KH@{(_?X^LW zQYQA0DsgE`p09z3z4W`HP3$ja|5CLNwQqX+POi*Ne#3L2H$t{$;eBRxw)k5ioINlE$N8H4}co()}1E3F9X*`MNgp}pPCRRzib zUmie?L~>eW{}JEF%MA}6>M?3}S@$qhpyk0R zt1MPynF}rw$!-l!rPS@@%-Cj41@9NjNhOeaYZp}v?6xnD0&xla0M2>>AQm!tefV@y zJ~1iPqp53e;`WEW4{>&!T|5a{uXn!(6tc&oo%WW$hhqoT!A-6cZoJsE$<3O~i}d|a z0uUo^H1pI2R%gGvDJi~J>y0%ct~k!TuX21+#sO6ZmR}(e-HBgFd%xi{!I|_zRA~+ zgvLocWVGel2fx0`5=*;h(2-`EzckMR+VR4jVQ1&=&^zqs^%xJxykO8~kCXXC@Pxzj zV-wxXe4qc>Qbw3%m8iGBRHOQB7mt|-RtqhD88hJvI^8I3Nbd+^qF7u*e*zTavr?cN zY*ks{+)$9evGm)%45%JMLSommR)4Qs`}~T}DrMbUemeemoVl5{mvAw9(R*wjK&O)^ z<1;)DSxV}ppF@8$D<(A7=eS3rC(ST#Y_x-VbGc%IY^dGhke7cy@PP;hhh# z2KB|Bwp5TuUYEQjcIs&~00OHRwqaRRD&J*&^S6sZcT<$0%{#?CLzv!l` z@7s2Fg3R(;*3zZV9(k7U-7rakzu9toCM3oT%w|7z+PWQYNN@-v>4)-rD2rEWV{Otzzch#{-5@grbM<%Is{DSQCLgQS;3L1bDq4;mWDlbDl#wp=_QSm6o2 zcKIt+;mrvEXmRa}afLNk19kdlf5pVQ$@LYDa5Wmuc8wX>HZBD^8WjudBw7e_la7fB znj7ew8W;XN`uq^RIFUjfum9NA-BSFi(z&cEQf?QNc#@+|sMBQ*+{z>+>|(C~ls)=*vH* zGXkndNEY572g=4ytSDP{4e>gygGxYLMxh^Bx_gv90!@0XHo(HL3hq&y zfB)S1Wcl2yjtdikW}KEHMZ0(7Lzz|41<-7v^H6s+Pvr>x5{P8rf6B`_Px)6V{@NNW zE6Eo=L46753&VR^8%qGp8aT({ENp=_F+${~TB!T6A3e#%R{-iW&X(kDjX*U#00(OA zk(kS+{0{9U4FZFm+c3LjA9LNJUN~6q(&$Q6I!pudx+`ovU!u&XjID>Izd)hjZQZAF?4&cE}c^kI_AA> znFPm~YwfrSLH-Xd(e+=O^F!+gt(Y7SzoavxL#4%!I=jNoPJ>ltt|_Y%>^1*43ztjd zV{K>QyJAX!6uj??6<3XEOGZs{m)P|H#!D6T? zdU)phV%Q>?{Pnf#u{mJ<7t!ji3}{;9K%E{(;pdX4sR3)1WOOIvn^Km1lYhUhAFUs6ei<*)b&YP}C3q&@1XKck4jh~}h zy%uX^(?AISvo35J`%W1{+cZL#`3;Ur;>~Zw-4Yo9A}w~o`OMj`-mA7p)DQub9Iqe> zw#1HB<>&utK}dM0Un!Am(_?gxvJF@mfm=>+7_obtlms)3$pUl-FADx8m^d`!6Mk)H zg*R8mojb=f^RNhaU};`nGe3**|7N&qZ!5(bZ15WeNYj4+w;k?|h-<(&e= z7B$ZJ(Phn{IiSr``i^3KrnqDE5(qE7@9q)!O}wX#f$uR1TjX+RZNHcTTs~m z*$3LpG$|2opZQhi9SDZzkdB*Fj@}0ByD@jk#sHTyB-lGNe^LOLhTLke8$`+0S70&1 zW?DthHN-4Ne13jBhommr(AWDm<<;TUjwwtH&FG>iXKM1-S$=!xj@Mlu6_Xv#DqilF z0#K_*s3^ zn9Urs7rNqQ&{^UySsPso!r(H|cI;cB_Iv3S zD}!ciy#}tQ6koG(1PJ1Z=>25xS-l1LO6lkU5i2ZLk3hTK7>whI6}VX(YjxqNMuh$p z@W|K&xh{A6O6Gfk50D@HBFZoCa!CI!a7g}xGL27^Mlt~V#ZgFS|H|GmHF;P~e07&Wb;IWrD&kKsdyPVz3=8rz5?tE> zv8A+jG1Ee}@^03}wYoZ5V1*ICYCHPHDW{wBtg8BJ-{;m>KOZPksr$;iFbid>c>|!P zhL9#pinBk=bi)6jtx9e=oAkbdaRi@0J=WB37LZ7Le9q&6-CVTMQ$r#|--Blk^~f|Q zXC!$A&y#}*x(#%Z-Ma=O&4TTGpLv8?QHNgh*tBn2cN>lDwTzo=lERW-3Fz`T0@s`1 zwVMUyzL`4y$k5b4x5RANh%UyDIQP8s@|lFLgtM@9T|?bs2v^60sl<@JKTw+Wa8dKb z&^seenLFLvUVIeyWS=TA@ox=Z)!iHG+qdf&Nh&8DjCZRir?QZ-(_9^A+^~0K?0?-T z$^hq*y}9Y+Xnnsx^G99^MH}#L;Qt1G;UU{gg!qD*imGzo>_OMbDgzBl3+G~#)f0__ zJx14Yt&5+Cz2MDE6E8mByfQHO>CbI}0zW}30O`RnAVPPpf)jFTYV=f}^VGhJvu3#} z)}!U`mMWc}HAP?5;beHBDxyB~nZ2mV(5DqPxLL-*4-)^?B~`s)UdpBCZMBYVPA z8$@QdV7N?x!7UrWMZz{%w#w^5W2~O^BI}-(FLFF|;o_2rcQ!D0C_f#V$zkC9PjNnS z2yL|z{hWMU&v!13hP~j?%OBN-S<`He%L48WKvh@l*SXsh(BphZC9$;^_4Ih@P%7o` zooQ`G{B2G}hYQiCr@!ig+ov_yIL_1W`dY>4QOa7NLu%YDLIdLr!1uhtuy>7#!;nZL zB{HGSWc#47P$oMv$?5`mwo{NeO}i`~Zg=C5Zd0mLv6033#uUdt2iGRDiwo5zpOM!%Qihde%f{J8%&CjU$Q_*iAf8Rv)3MkM36I3V!~s*- ze4Jm&F87ppR9o&8s^X6I%kSfSZfHR7^CiYAJpnSq4%O}@b#E%-G}{hqmF>PcWqXnU zOgeM0U2iA>-l(@D-&m>`rfRTKJcx`EqVGGx$JIAyEFYEa=;_dL8-w$e@6xJRzv18M zcIyFqY0mQ-yQ(5PGx&voQ+HE*u&~v>7v}q*4aV0R7_`r_5ENT-irMRk@y{zdjs4bElT-Rzjx*qgMgHcQB>TI6T{TvcX&tK?y*v`FW&Dcz@T- z2RD>n&E57|c7Uki{<9i0+-*^&BsnQ&vUOf5So;N_T)k&y%PSp>w0>3(Th7M4_rVKP zUFU{W9R5>TN`=8D==)7o2B4l4p2g<^SfB1Bj){;TV-fQTECC7kCpis;9dq$bjzJzdlm$iZVc z$s>Q!N&4e$W?c5E@V`)-3&uRpz2hdd7M34igRz>FxizEB<9+o`TUE$93bi%~TqE5P zXQPyr3`0~x&DGLUa^c8o+{Z}<3-zgNE(G_j_;>dOKyM5Lm>V_DT2w2k=iW0zE@r{O z@+?cq4o-W+_|EOgToVXoADg0`c|#jOn)pHAWx$I=>F2Ari?7xdM6YO1g_Kt?7TDzD%?j$PBTcq>=nj!6mjWB*5TX_X$?sssd}BX~~6K;gnm#JvexB7XYtr)c`0C}l9z zuQ~E326G=XL=4{nn-F~cE`9vs*gyZN@^Ai!;YIepc`kXU7p^Ps9C+81)Nje?Vf;d1@~huQvuX@; z=^X~>YkK4}tEqcy*O62L@${(q5#P^>9BEjCXzx*f3M*dZ&L_FnBjoGLvG%!7ql34? z__kM9uvSJQeW!b5g>pAkDADsR`^$|mX4re7f0 zPQR1w4xPo>o?I}S05mn36p5+LC80|v&H;uEP2lB3&>Qg7^Dt{=ZE)po4FU#$&k>m0 z!3@YLYg@l691YmtxOPO>U~w2VIeuWT94x#^rc(x8+dHj zFe_^V$&lC2`jZp>@>z7VG%E%V4{4@Q4mI749zV7t#c+c6kiOuA7Auwp&pgL9JJcu; z1s29jeT0ZJDJj-j1sEG;=$W3IGJ^Va{elU8L%U_NP7w_Z10=IB*0bZKwWb!m6UF;$ z7xL+Oz+kDrq=~On$$?{$`a7!!Vle#pXnm!ZtK$>Gx5}Vs)*yF`skA0&xrgltrJAzj z{p`~wzV_e7M2{B<3tcmguCP)$X0aUgci1cumH*E>)&BRLmY=Gcc_sFIs661yRa}$^ z;vPt0Xo55c@NHaamoHie%tXRu9AKF`oeQ}F%+z=>Ufs9;Og}IHp;=Uo>ub}JU%`PO zBmlz^oUbW^Alq<~`U&2)3l2S2)ymP!_=`^uG2A`yNIUZ4cmI(>c7FBlxT~u@2q&na zWk_xK$;#?7b3nrL$O`Ka0$qZu@_`p%tg)Q#)nd)B9!_tZ%tfKf6(nhQ4Uhpp@kuI- z%fs+uF{F?f;OLzW2$Ql0FDD}mSkUYor1-1YV47*Mv9E&$od5-CMxzZ+VIgz#tTY-- zp?;i<32!R|4YL|eP9sV-U?n!G;<+-(PohTDn!XoNmk-T!DZ@r!oCI+8Y-! z<)pEZfvmUw%2Ri65DcQ2Rb}-p9Xf=;)?#)Tt-Lr%N)pu_1pG&6|6C$^ZX>ay=L1OH z>zFIVE{NP5lHqgLGVFwk;^PA>52X0KV6AxYe8pjYNo4~zb7IVZOU-w;U&PIdROk2n zs&q*u#AWlrDngHSPqYl-^jaB3L@+lKUmD$fcote`%THw^@rha}5=@Pmk|YH9Ae{6^&2?Xk2- zN0K`zlMwaC-)t~)l-8bavM?s; z+RaYxRZ6aONTeAj0n=P(4?Z_DY7>|yB;bB@hdTtfqBRMp?GQXofvIY5yhLzsNj#DB z#?Bnm(qRvfsLGa=MXr?~R)#+AL;6eu+L@423-AW_j~!d3n?SakXjSpQ;tGOa04%nSAR@UXlZo{&#Dh_bWVO1j z)@fN#qi#_Dl2pu7zf)Nol^K?c`xek9aEbc8OBp=O=I1)%_aqCl|O+wo!_OngSb}02*Kj zyZqfrp}Ok`D$i}KN;2K{L5f1ps?QA&Pq^yn%Orb?b2l(FmD=frJlN0ol6E1_uU_%) zL_U8&zKn^>v3No{XP^>I-@&ay?3{g)T5W2}IUE)i&wqL8?6AGr@(TpJp~fO8nLN*P zWf(-Rc@Y_sljaBl$GJS9?sFBQCirW@sPr@mw_=CtHdCEyGx>^*&b?e9yD`$n zbAY!T2zcmY_6tj2bOHo@??=1U+PzH;a(wiQka-Q1R2Jx9QqNoB&{pU8mrJWN<@*KT zwNW(tkn^{&R{)3pHY2|d1QFjycmfrf70of|%X6k{f%VD2>`qh+NM!&9)O>&EIACpW z0sZ~kl|d+W{zxofde5?PXOFL?(Zx)*Q4+{b>#7y^ZdV=gM7Ja9CUL-DE8`_%J8`9s z12w8ZuA^?9W&0zdRVRgCAwIp zXBD3|yiN6_>l4o|6jzV_e0_sL{q)yz+{Mf>X#^cMNK|_WowSAb%E;z!bOwQPKe^j` z99S|lMhtUvKJ*SJGO6JYUyQlg4HGEO8mvG7N!_&+WEXjhOQ_mO2M7EJR9DmUijBH|Zvlv$-(EfB#RYXEyF+ON%tb(bR6%p10`F;;#G8;{NqNi9QjqaE2V&zlJN@BIBm` zUc*V!ph}RVUq;a2{cMb(b!z)=)yKEhbnRdt=mRrWL(A+s)p-eQ2Ip@H-NDNIwgm7} z?ZRx@xA`f8yOV^D1zlD%H2Eq?4J@LkQ`Q`jN2ssPfzV!U?jGuQAeqQ2yN`*DfR6(! zmHYuTdqDdu#6K`cU8<^{9`P8#vwM?7OMoG6Eo{+owe^TaI$e_iz%Uq$t^f;+Q(hW5 zDq1<31t8xw0A0YbjwN?Wbq61tOhK82$Ft+Ir_|_{v^Avb!*J{temN+onkO%%eg}u% zUl5lOc9x8DZW+_2TM$N9CFphrEN%B|D=N%OjxM4>V`wjJusL4Xz26h9(>%adFa|JY zJyU`Aj!<)~%-_mwyeY%WrC}h^7`)TxH^2Qp9^<^!KP58!9uh|S&SVQW6Rt0*pMX!Y zgDD~!a4DsEcE%EDAv(^f{k=8#tA3*{LOW0Dc1WMRq*uoht2KP@-8QJKq=r?4ODV=` z=4`%)QRdz&NG~k8agIo8aaFy}&2^~hk#C<0SxB|$b@zSZnD@%j{*!cLQwjK(4J$Fa zRtc^xuRz&74a{lKt?kWBF5xW#nbv_G|PgC z$1$&^Wi?SK%|#Y48`oJyZ5?-bP3^{1RPq<>4D8kE5^%Oo z(gK}-0*k^yEpPrTR|o70lt*F~Kmti71g9#E`W@nd>zJ_v;csA55@%hN*{vHe+Btl) zVe$E0MEF7w{?+R5;2_tyaCz3+9Z(NJylHoEfU`3BBSYA z8It&X3wki;0)7K%sv|WP;2GK|q__i%rXS3&M4(-7VE`ZiB67Vk^KfHotqRbG>CHAc5*(ZDXd=&8EWUyq zfG$)GPkeTGeuIn;rUSHW;MD*N+!4%S0!bwY+YIImGCm`xyV`yh_I zqpYj_Rj`QdM)9`+QMb+}vz7YQG^n$$f}V}SK-@~tKHJ2~2Btry z#759kQaOWuO@&DDaiU`k42SJp3$yo~H!J2Q24RK!)LD8WxHqTL{Qlh`O81j3f;*rD z&cjpOG!)&La+`B#NT_i=!hK2YG%Jrk6`GZ^2+N9ezk!d~hTc7=HvT08J#Nu#VO(G0 z-HJ@l?6oh)3`O3(&PdR)tD}*1O^pYaKcs&enw0%2lo6boF`*)z8DuhF*SF1ml76~2 z6RAfS%>Dvx3u#TZulU}#_FKXkc?G1UoHR*3#wl4rbyR>u1BiZEqJG0}G>{R*q&spd zVEh8GdN%=}asSODp`Eo8&(Z+NRkBgg@U;Y+YDrHnl_ZA=cGzMzV(J~67rbn<9y#|> zg;%C}P6m;hj&H@U^h14n28KD<`ZjdR*ui-U`e3@PpxW^*@Qe?KyBA4isp|&NyV!S( zt&ro4U~?V|aMIPA{WLB1`4r(~U0?1{Wu#|1XWath9YGt#8nm~en|-09kFG%(t{OYnExcmDK#v`vE8Dwi!4A(8EqAJ?4^yqsbyELDvFN#w!F4j4VXsz`OaKs{WcwhE%?^bUE>rXCLh zZDg1ZYX1(WzUEpOmdH0WXanDl^H8aH1Yb%Cn1#bBdi7DSyr?qUy~ez5 z$JS&oC8_PXklD{E?1ewRa)Pv+9zC5_{-AoKo3T;RXT&D_ znPl*xwCbAKfcKR-R%j&zrZ2Rc@uVC;ueU5_Mfy0o@GiIRPed>Bre$eN-P7}(x^wUm zRcxpOoawqI_~A^HMFA-Mz;FYbTeLYh{6mVTgIZ#|n1%!+@vc{Uc6&;j1ivz_>ac*f z$X7rDK~DK=VH*79+o25>TjZxYRucvLNv0y0obQ6DQ7sxCR5tGF8qDu?_lLz5Ehh@^ z>9?Bly_##+Qu-T<{mf2)ig~^ez{0!H-YM=0;G?BPsw9s;@TGbC6(avWGh-GZn+qnu z;W{r0vF$i^0!n#kq-8hG*(-#sT?MAlf&KY(;H4;;r)d@>(v1x6Yh_&-WH zFXZfh{EOvhgQ0v4gdZ4h=1A;xX{B1!fx>Wz_7r?PIP+7r+^=pQ!Pa#a<{H_hUD?vB z4YG^!92{eA>Y2gB9a9Of5bL%0Ow1`{6qLgCZ3$fwGRCaQ`y^Mdx_Z`aJdq~ut_e}S zX+8xk@gL6^=Mg0V1^1ZQ(Vt8hWje_TIMVr~iPo7W zMwwYKhiAC=adOF(!SjM&;Gf)V!2ZuDlKhPK$ci$^dw}G4y-6+dkgLuTBSg^$-1((a zLB9|I%}7eRE0Nj#B3HI);>zLE%ZnE~kXd45zFCcFZ!XgTUD25Nq2Es)ycm8Dcp=z9 zZzpgZ>v&mzHV?LY?^feg3Z_VEfpILH5_ccb2dg0{xC_L!(;^_F55n`uA!wwR1roIJ zkCmys7J$S$J0#Z&iY#u*H&Bbga{khbVdmW!; zQzr->WFoE~JU?F8bbk9&Wgj3vZP%l2v32@%UlX<=m0aRNy30oB8`ee3}cWcMdpD{W$Iw678(3H0EzVL3l5;w z=!cck|4bOF1<+97TW$^tGSN%f6bsl9a1em`2Jk{KVlGVZ`d9{Dm~Ui-03b}7 z#(0L9#@aRI4plM96ra0^QmsJg(m+jS(5EH6XnYr8wvRwL$5pvVN-E!Xjzb9dU+KNo zAL1KHA1p}kJHs06z$7@{0H1s?0hFy%qI+!$z-n^0NR;%Pd#KgYj!5y{XFpzR_J#rL z<4qs}Rh!2b0we$7wtd@w9wu{u)oX_*NSvQ|D~{2D^d zsr$y=%+q5d(LHiB>8}xwmUoZWPimGl^LREqIPGL|k_ZNc>`g@XG|H<38U|P{`+#&~ z0Cs2?cMM3b1I^Xx=f~eLt7FfjZkMlV%Fzoi54Ms1SattA)|Nky^>C5TEhF=yLbtU1 z=NkCp{MmB4h&3~7I%c4USgj|4thFpX!U!4>CPx`?(`kfmC~PiO^r`CGf#G=OJ{9)_ z)M&ik5N;1uEH`JzqYPr!yK)-w7JV8m*C4B`Q72m$Tmzu1wC*8)`#Fc@*SCPL6MPVC zJeXkT+#Gk3P9o98!QYnYP4dkPfLB_P>Ivc6ezpilDb1*_6_ac3}L+7Z+N=cz^*I1LM`k7Xb>b19u1glFd9MJ+59DStKUwR9R6)TAfc)OZqYrFZ3})3(ADBr zA86dSnc>s3EuGTcA-KA%=SKti7FOf3G>Noku{F_b$eHlPDXp zk{HL9ByBSKAnjIT|62nX;Y*1M;H`ld0*z#pbmlX8q2NMw}8~}PH8XPH#A`P z?}NLoZ(pwzjp)8;Jo7fZcnk7O+u7 zF?cBfuLuZ;V4-&v0)#5ngknc8RRj?*6e%JlK?xuPh>D6L8hU66A|g$Q2%(4UbMWrG zv-{5OzB4r#l1g_|r1a+nI*K~W|q33UYFLGw=AAF7#1m%9|M|FhdSI9zNCGKu_^1u77(#tVX?XnQrl+G3y$LRfkA~Cr9~(0m_7dDfUXR0>_-37E}qUKN=49Raz)Vd z?G#Jkzr<+Ls2it51TKH_4imgwvvt{)tEXWWV;ww?kTq$b#dAVW9BA?G`)y|&VupN4 zk`+6wW{XR0F|1knXb(o!07jKZXN7sQ^Jp75x$8!pQbi#Q_+sflsz15}92XEU%)F)k z)7138^7P;xCxNoCPL#m9GzkV6%NHp`CA}_(mUq%YNKlh*A7~fb!>-0VobzM*|X#B7qBxcjgS8{TuHhr>y1S}EMmNNJ9XXPz6ciW^)Squ{!?Rqw~kj2EDPC);qjEwyFXBr z9BrrX)UT=Kb~j&yPPpv*2yR5}mcg4e+=!P~At#=91tW2r*|78WW-@lQmZmwJrLkwZ zywKyq3AZ;7G+NsT+}222QkA;o=i|YQ)vU(8gEIQiG9rAstz$K*eMiNku%VQcK&r$I zp0F{7{|sJ4?bQlj8+)WLl@vz5nvQJ9%06Zo2ciNTVNiB=dZpP*E<_>){?KR?6graF zSJWk=&*fI1WTR|`z!AM7$*>nVT^#4SDTD|~fmYEc? z){z%ymT2_ftJ$^@?@KVv4ob!AazMCb<9F-FL1^zBXdh&0+Xj0O81}$4g$59)At)#n zac{GJ9HL8s&%|%?)FQK`b)M>DctdmHT#9pW8Z(1qd62JK$@}pum|9%@wf0wyTaWG~ zpF+63*_Y#SSv~Y;N7IbDeBR>!#y#sdrEomm3!cQs|CWvX0dbR)LhnnQh}p1HjD-;O zJ;#|cz>c`u7=yr!!VPz8ad||uf?=#CJk*c9U{r&Kl~^loqx?Wa(+~w{psQ2|@*0|? z0WS^7!Vzdjm#7Q%K5HCOgKaM)>+)K@>;YMk>W|CLVSH>3w|Bo=>$`2+n#pG?X^T^n zqoj1^qTh-9u%0LQw9w$%6U}K+7Z$rm-v+d%Lhu`HL-W~mehX3t*@VzCigM#MSC{)R%}hiN;z}(W(4mR1krKT&2^3FVzLe;Q{yjB^<|U>0XyQn??);+E(Kuv_kfH?^Z1^l%A3G4Bj-+8w zi2dq(uzo#WTipIrHx|E8D5UCi&Mh74MmE#QoLWEBGHzg>R~dGFD7& zk0qq(V4qGK8K9?9LQEG|X)4!Z?sLm(2b9mA>62C*3{byNJj*X6f8;BfpCJwsI_KT9 z8W^nOrTJ42LfpJqm->`cB|r2u1LjWb;2uk0S)T#i_Yr7xgv*Q9&5QKU?eS+H5b6*5 zOnLiBxjEIe%#VF5!qT!3t>iOA!2(hs|I z+gplQe+m`VU< z66x^TyHjDfP>5JkFX%jxLBZGn~Fx}BqXpV8Z?PQUvltz&S> zf(8SnyqZ)+YaPA*IlhnZ7RqeAUA2lQOD^0tugg9W(E(HcRc&=S`)kLeNw>8Wg#FWE zcjSV71Sx-6K1oq&u6S54T>7p}{*S`;4H@61!GMG7CHcHgjLQns2zx*PN`1G^jk(q{ z5!SXjg$&&_jB@eE@Yn;!!jGX)BdZU>-iS2Ey#X?B1_pj3ul9CSeCe(pUNZY>oh)0t z7`?Xdd9y<qdyAx`Dn5jr&~m2u4sSs*@o`Z{uVxX=r{( z#*u3oKhU<_fvlxjwJvx={( zhI$Out4NAC$Al*_FfDiyw0x{{DA@+3)vxCliXZUic}8Xu1R_ z_=tsPYDB06#^=Mj5Gj@)*8w;-{UD5V)J&8FbFYwR@NJ2E=|u*RKR*f9v@>sTL-aKF z+cQLwDc?aC48{&r(^;#k>Tj`h7IFT#Dk%Wqg^%C>f&5M@zTjD)Ie;7T%q5+w(2K9P zLGJA^;4*TBt@m}ZQr|lS?6~L*t;GO3G+#f8RNh+BB6N zmxYQr9KYh}xEBgBLj`=+%7D5nhS9PYOfbF_@V z@zZG#^&1QJ_UtQq2u)eED6)Prt(d>pTPGQtbw1{!n?&`-;dv1~+PA^;Tk6ISW|mAS z#H$<_rLmApBWdVB9b}D5#FHt+A3WkiCh1XXr@$4!H_y~YGfbOW`=%Pu(NSdrm!XcVK_UMzQ9I7iuw!M42AnqBLziB7dS#VWkXk30%PkrQc-eRp1fa zfFFjn^zh=m&)s6dPWF<}7a1p0HO1j7Xi^oy)VCQgBIzlke=|!j)$(C@Xqg3n!Rx(t z5xD2#zesOsQ7Gn$$&#LgDqF!c`<+C)<6=JgyOx@*>t0X&CV(t;oilm>WNWsCR!(oP z@fu!8c&2T@B${568arpV7^K_>jrP283Oqdc(i7khj-m+Xgb&fu+ a9J)`-EgGk% zNcA1JZQhYl!r1X(TE4iJqVP{Q5DR_+=v5VNTC>01H~skVO(O-q)!4r)Yt(b+MOq4P zfB8AQvz-(~MU$G8sI_>PcYi(HV&6AD6LDG;P6vQy!ZHu9_D`Gi;~Wo#Dg9xA->G~$8qIjDTpF` zFR`C6$$kRmEo`V_n!qf9jMGhKDpA=W)#)wkE9>?iI2yviHg7A!jqe zFT#WCFPZHsDXd+{3~`+?Y<6_L6U=xKDq_~yp!^anabaGhwy_a$f@#Taz`@3WKIZ$@ zo#6ZocDMu^QKO{T?8T4`3Gst#@b@ zXpt=kgr>b(&{iF74UYzO+cAn*(AQ7z*{pRpyCFhgKM%UTZ}Z z2>hV=dyJiY{f>9M) za&!AFwo4iR%HjC$z$dOmFpmmO*sbxP;C=09GV{b@)~01#4>F%f%91Z#^d77mEpcos zFO@R0-WWa2YVCB|Q!8h4)OF*3rRwzt_k28fc;2B1){2qiW**ZdR!$)~-_{q3hzov& zUP_Ykuti={)`Ko(-xNOCmh0#W-A7ww$%8O!YS_6rsi5Ffeeo^ASC0A#&~p!;5SAvp zzEL;StHc$4!K3~8rBZs7&)Z}5ABUDO8+z0;~}65 zQT7{(L`n6>DR!59ZO@NS0nziTf@{bgpFeblliThTbdD9mf=rhCd2#C;et8aTzmB{O zU^jahR$2TfFq62G+I(d9=KzZ(y*;e-!lkxptwGC|ERfRhTWPq`Hv z9n82ADstrqro)uRS}3|Xg`}U9pVH5x*AFXSyxm{Grn6lj1&~*$JRQM9yALcD_5aKY z@#XErq8(K~FRD%Q@QTU|u$@}}OV;Ktg3D%1+> zLNK1V4KMaygYMEX_brTTH!d1QOmbCB(5u&xQ~0A}MV_3^(hF!o38Vkg9n|W8;33E` zY_%}oDeN?NZtkT1X-?|+#qx!4pLZ9-PFX`d`TVW`ypN^6nxjFfSly9&>+S>e2YLoS zC;Rkdkr(*;ydei?W=G3Y(?u)UMMtgPlqh_^6~Bf8^MgFQYeRTu|EfE7SdseWCH{Kv zF~LWFpW6tJp`p1av)T?+TFmf=qlM(!my;>f{VE zJ=3p$N-gkIhQa%Vf#-i~HK#TIq1CvTK7o6YJNi`l?|bp`r_gk>{67j!D$kFv?oZwl zJ>o%RrXH~8lpY&t#<=!}sYC9w2PjG8$Nb$FJOq^sien+W|<8Ee^0bgzSg1xYQp(6vtF!G4^ z?FVWlVc5LSAG(s)G*uvc&+DbgIsJATI?($yF_r_Q)XZ-M7O>J{z$%T3$g!%BETByh zBScFT#tFhaE(b58kEPWP-FUQX2t<{9B(uRf`9bSrs~1O_`C0px49GX>`JUBd_Sf#Fu%qkVFH&#$?5|GCVPSc_@l2F8=S?M6mI2#a3%vidu3W(~%~ z7`4na{*I0VgP{biwaZex*A^Y_O~7XZ+~k!VJsH&;lP)LR>i(b`+Rr*)Q8@wnYD)D$ z(wvpF!tHCpTjeslj*y2&pDc}01)V9o_S7j&rU_XU`A+TWz7X!lyZ!v+Mf+zEUbO`DVt{nV{@YS{!Re_SuW3 zgx6wfN~*apE8-5p!91x1&!o`Mk<~Cf{Fz2IBA23o64g(qcm!Wwjjl4^i?afy6+nIq zdwYN(mwWn@exdGKRq9qV5S@8L{K6)zmLwS{fFLJ26w`?snn<+&s8OCMvsYQ6qNAs4 zY5ec>hw;yw*T~L3Hqth75uzD7##$PSvCIN1>%3K|Hu8PxSJg5qmu~W}aFh4hc%19+ zJPkgI{bhPfAx4BmJwcWibY4y^7Q^A>_v$RrVhOVyC0~%?hViP=_LiF$klRa1fYy z_!N4OYmmmmL(rjJmdPf zF)yDBNb{<>Ihrj({mgOlci))I=H(~RsP6u^71d}lyCTP>#cN{!GH{~;Itxxxp*;?# ztfW+ypOkBh9|lN`+xN>dsw5S-8~CY(<-GZ8Mu@4eu+kz9&{~q6Kyy;mqNnMuH8KU$ zuTy^s>MFA59PaL$z9c4{qZf0$*&HGX*40&gV#9Olr(sU!gjVPv&LY^fUEpXjXEDt~}OlB5I-fi69<^d>&-{DxBV+sGsJ%b2yt9WQgNzfUh^~y?;GZAmC6^*5TdttzY$wNudu$($z$ZB4p;vTrW7zO literal 61445 zcmeFZg;$gR`v;65At_3XR#3XTry|`TFuJ>?TR^%*N^%0yU87q-Y6F20qmk}z_RP=k zThG7noaY>oa}UmT?)!bkE3S(uH5FL`TuNLtG&BNvx%V1qXpgJW(9k_`uu!k4zVS0a zLpvOifB*J_ch=s5SJo>X59B?pqBMRY>2#y5Y|8F+#YZyqC*0kU79q;q0CNmNVM&!4 zleN!0f`T)5v5%7Y=p$czMjtB665PzrDsl_+0|QH$&fHb!vZn}L7OSS^#3UA`8twGT zwhy!1Dq9{l4kBn-j@|y5$&>%QQ>3LbI{SaFaB9lsKfV6%=cWogss8WP&sxU+|3gvF>i>Vd z|3uUO#{$U>LjL04u^w4B3^Abh%!y2SZB`I9qwA2;r-8}s!!F)600@Osnk&slz$qQs z>mlPmaol6OUX4!@t0kzP+h_o^+#sr2cd=jpn{ii|W-Q8+gI^U%-$^ur;ZtnoLnRbo)qntB8?6WLIBD7#aqdrq7pvp} zu?o3bRQO#g9mGD1`}`>B@YaT)1DOB%=^I_< z815uqEOYm5*dqXjOlZ!P+crkwLj}oq1&U;r0Gl_av7C5KXvu>nnfQg?I7>o+R?@X{ zS!to%toY57k5QH?|1B@8o9};K*p$=cicG1p@+k0|t=vk!{eB!E!BLG~P_6<0!7bY5 z%^93I!1ZUWkNPc7!bLQoDw5EDOj2gIc6o>yhsZ3Yhl`3Gd)SlPlf+zhO#5*GwbHhv z$(wYIH-Zvlyr34MdC9iD_F_4v_l;(Kki5O{IxqFU+86&VTgQByq_E$M!f!P9UmO=3 zm)7%o=LqSVhG{Tc=Bn8&^}#G%_!zvmiQDFd-@c5wFc^Ca^3lp;WGn4~ZCI&UUgGw0 zn9l;lqCL$XtDrB%6N8BBYZVA0ale&fVGslg_3!qK-jR^bMrOA?WoscT_|bPnp7`Hl z{1f&{O4Bg|x*_JBDnt>cXcfX4*H#cM$guZ>lLHIUt`10pZp_N5yh>j{*wgUJqiqq zF7GdCe#}%uko=yqQ|?bI$G^k+F4ne^&RW@?i=f1neYoe8KS!wI_fYK{`}q;!*>28S z3?|os@F#8WywOOpw1-5ezT4F>mNpflb1JsZNT=DjW__;3*#k&3$#<)KcU5RGSeIHk zR#Bst4BxF^`@zYi;YOwG;h--}WPeJu1Vz~7WnQzaD#;imy-YvzL-QooD&|&GpbnTbZd5EoaWi+XN z$S1z6T8%Av3Q3)LQ8KHBobA)X*yd{=Z9`K_&=SNT`I0Y7gDub)ZE>7 ziZ0IejdH|^rIz6ypV~X5rn2{OPK@O&=mNHcxQpUuvpspG6fCYTBlnddgk{P?xn7;D z|KK$^F#N-COw@FCkYE}|>I`g&P5<9L|BAv&KU}#iVy6Bh4gzc1gDIj;KUG;$LIK$^ z01$0S>tcJD$I{_b#?mE`U;e7j6RsR04*%I7wo=Y6F#@`@X0f{bYIpzIq3B|dLytWj zjMQoRH}p8>%d0H>1y#PU7iey(?7tL1OLbgphI9F_?1L z^1}dtK3pijqM93$X}0myBfE+|XU^A?oI@pZ?;Z2!r|6%&=dI48Nz%(@RgDiExMcs{ z!74el6yoaXMEQ!APg6_hlX`Sb&RUlDoe^*7!b&WgW%l|MCmmUMUd=YqYAmJ-z+}7R z<)xmKBO<2QF(BBW5p3G&t-fzttSs%lsFiI1DNBjl-LWZ-G1HB9hvx^qfNA>4HeKdQ z=6G9qFPh&^7#sGyCa;J3b-sJ~BJ*@>XSC*W8Q`@z-J5ftA0v5DlSHxja0~1s+JLf6 zmn$8oCm89w-j)U4dxp!##29tL!wnXT8iBCIQ1ki5)&y)inm4=aiJ4F@+CYgi-$*r_o>*?(buoc`eZzls^Q?{VvTXMC`Xtbj)hWop9prq(E74RQe=DGn&U7074 za?s_Ahx>k%Yqdmp_n|X^eLpP*B;*Gm$!k~bBq^mo*lLT2*lB$>;!<$c6CeZpzHeOJ zP#LS=(W$1UIC`j)GrGnz(T$#NH^XrDUzhnhIHU-le41bKvL7-^(6(W@I~!yZ8+2V& zg!;Z$4;G_sj2dvv$Xwlv8_nQ)SuAkmk&wv9<=yjp)Lz(E z%`RQa*i(2;ELc&sRv=VaSjIFU3%tfBk`z74s$Bmd49UyoRFE=Ec54(k$w;fRJ`7fu zd`NE>zuvohTksUf_ONBRsT{6@mS#NJujp(r+Sn1a$6l%M&+%^>i&MIci(r)75$R(! zz(4hTr0(}qb@9GbMHLY9S;Ex&y7s!|bbfXEaTC8+<)3JUhKik41EuYiU*5k8h`6!U zy|to0Cbf2~Se=ynB#`iae#04gX6Cu?V02^-aVXyeB3Be7?~GNC?-8n;*BKCJ+vU!O zYu1OoL)wi*CT#M%CZTpKK43>#X7@_Z*D6~cZBNGQh|Z?Zs)43J@aDl@f91e>m2G}IboI~MpK&xX655&?Y z>sYz#0vo+o)LhSm&c0d|JoMc?xh6Vube`#no30Q?3=6+j=%zAmNWAPgZL4c1d8v}Q zYkNTpsAw`Q#SiH%(lWH|aXocj6V#zM?_(nixR3CV z!*1q1KH6_hj_ykmUT{C2`>wn#S&#sa9B%PWjO4Y+R~X>70V*%8AQ>gj#&jhaY5*F+ z0ue%O9~sDVbSR7p_-GrE^_iiv{VXIH8C2#5?tyq|24m40nwOdi$JmGB2?JnS#-#I& zfDW+a*f0lB*vM0#cct1^YQ}eZ@+sS`9=+3P>a^pA6rG=4_on;3R<{4G?10Z+NiHVP zDz~&^2|}8^|HP@u7gMZJNK1TUp)-*1^5B3W?KI6_qR8&X=Y2lesIn{P-0a9yn#b}? z>0Sp{yQ_d~e8F{pg)FQ`Aq*r+cQrk5-R_k&?6b+A2=(?~^OJ4f?Cz**|A$OPf)!~- zeJaI+zJVr}TUPv}EybG5L-8fdBo{i%~{YDT~BQJ=m4*RFapgJ3e$m4z;r}Cx%*n>JMltyV*_I^#R<{!` z!NdE|86?Yj8TU(t4~wLV>6DL522U0ICN0WGxKJYJxq`CBJ~ zZi~pZ{D}hBbQ(Xxqyo-}Ho(J{xHUg~Z$91)Vta!3E&qxCyLtWDjLqoNh$vyKC8D6j zsw|xA#eCEg3%J`89*X~*l&Ro6n;c^ClYSf2H1~xC%R(ZqNZA_x6`4WF39@o*EZFsrE zEUI}l^OTxaD5=7x-{vMEkeJ4s-@R?QJg4;=xc(`06;;j{X}RdWqz&KRT?556h>etI z?yt~{uljSN5ovkKP7d?y&%p>CS3gJAcYgL}>H~VMtbJw1kcax|dJy=or=v7`IO>a7O5>epiMxLN5;?OpbeMVDvwg5YmAy@op-C6e0NzlX($kw zBNKpv1A5&=H}CpY2syM-ix5R5xkH$?w}-Rg89CmCH{u!nH(PlL_l46=8v|azMvR5H z;9I%_>-&tkS_Bho#>3iS)$)8roTYK=X$S4YhE#%<#G>C)b7L&oQbb(-Rr=p zM=Onrn)4{Vih6mWv!i|QBD2zXFet!^tJ(itTW(mxz)u=`+HkQOu6)if&|jTw#=igY zk9US_4qz3IQ2p@PybjgRjLzD${sI63d;5~A7&HFZSkhT9m)KUit@X-VzcTHO3S-S- zWZ<8ST7-;DOxww{bJdLj_@>cbx3R@Pa~62F8^KsMSxSHxbhrI75Lre0in#H5oxEaw zM-idhkQZ*zW9nW1OVdy03RNd&>w?@*cpN#N7(Mg|7`VDp?N>aZCyvQoL08?USSec) z>FH)z!)p;tGnyGXt{CxQb01kB8+SbjY688+-XN5MAFne=mdd1vOxu>GJGoIUl3IF<2GZ47?!H`3Ox7 zuf2Uhp%7kcs+H}I%CwUVyuViEh+mbw&mFksibZ$L^9{{1Oqv8Y zl=smPAXWolnP0;LAs9l(SHONnFDZ{5i)Adu^C<*NhfSOySkN-X;JKxqb-v#4$d%N0 z0>)2s$)k|d=LSBy9AdDziMCRj48dT!Hzr*K3Netb;n2g7l8;!=neLK;r!1tCoDLPK`XZ4jcGgsRVi8%kXxlyupz~Rq|DqcfT zcW_)*wfGZwcl%uY;_S|CdB={S?d0{Y_hu#}r2$Los=f7LNTsr~Hc8drlg{|g%JO`@ zq_`~Z1mQf}uRLAFnpuLqER1SUy``iA^WF;zISas{rH9?MqI<95641`{`R6*<(fNfHCOhyd=W5zy1>V5$yB0>}JXo=vIu7VMR!#JWB+Kc;xd!7}qsWhEyKVz+? zbaJkkWJbYMAD3S^)od!7In5|_^{b+WdwFDt^0ywJx8HuI+m>W%JZ<_SLUBO>y?g5e z@$kVS$?|d~u!j#^4OwIRY?O#^3hIGo#6{I;&CY2as8dtESFV4(PT74SGSx-dxU> z?-iFcIsTaZ>hm{yZygcCSOrYa30tA|mBnhawYeSi03IwSr0pdI$fMc4e{HOWUtb8G zw$Nd&Z;lGS_1BJfQ+{0Rtp|1TjMR&#kbMV`zSyqGLuQaI$Dt3R8Sm!ScYlY3?!J}n zD!bGBlN6r+K4%K_;uZ3)Ls6d53dx3|#+|oRn;OPcD=4rRlCkz9S>tX|3~G7U%|l2{ zTXuD`L2!PzW^ACe78^%cYHJ^Lsv6|+B@2xr&T2mqv9^Y_&WU)oJ10Hu#~j=w1E2|#W^}KiRGQASbL6y2@uJ6^2?yQNQ6|mtldIA(-uh;Dgs(pwYn`cH^6km0EP(10O1+h#{k0^WC&Rnfh@gPBy$kR8jVk0( z4`!H75^NWAH+z@^t3ocSZaU;=H}C#&NDi4^YBS|k^08XNL3IvxJkA;Q=A>m6IYzJv`U;9PQ^`NP*nK@8}3iySk zu-xis*}+u{<5zC63P|)}QEvML9$9q~!K9j|9v@s&^R4|}0-s`m7}56AhMHCKuX(sp z9H1&llWonsomxV}!Y?VViXh?KFDXKBZvD>#(rUjsNQr&cX9vcVn)Mi@HTl8kR083U z&&QGOGSgC%Bh=w*K2`ep@b2hmNW%HLe*971W(6xk+S%;;ZCZ!GW#*73X&k7&@paQ) zkKp3fP8=zR8JgF^65sVE-NLLEv5BFFEfwAM`)l*cmLIhNM+08q>x=Fu>8yMKJG(>r zHxFBluzV|-88vn+|AXC#CTB0Y%Cgy(lAOj4CpVX2A6HqXDD)n8_|bqPXaFJo)0 zY8?NUvHB6kqbkArO_`|Alp;K3!FhCuWZGb{JNxqD$lyeLl)S?=@|N~s;8GwHK7CBp z+0u~r(W%EP$UTd0epZ@sx5h~;x)Hgft?iMjvu6k?`?!o03-q936CJ7o!^64!*PeRK zBSPWfj+s>62r5XjgqI_0&#v=g7fKP>%i3J=&42~nKP3|Xov>*ONA<~yDuh7|)p}(% zhcKjvXvCsGz2VvfE$AkAfz+)@bncl!fURs_0Pw7)sOkLT`HFT|e4k&C8#Y(qLuu{p z|Fyy>>tE~ln!X2psOIA#Q1tQtDo!d@!SYG=nmdFAH;lVY!}IgmvBcTo!%GEh8?m89 zxV^}t_Y=KYQ2#*T4a`o)o;RO?zrpKSq4YWsgJn4Hi*k};f~onNh(ld}Qqxz>87mnL z)NmaQ{jGe7b}-~D&~E-EH)HvkXxJdg3a;9tF4W)EKkDk#RFmW8`ARJwed&`J4Cbs5 z7TT`#v{G?&CdkRGM2m=zC%0W;nG~?f5;NV_k&e8YHZqv5uItMM0CH&EYjE`0Fq~tP zZjmt_Vh;dB$sYYP>j+eQjbyc=o7(vow(k_|dQT}%b6h>#62=`@&{69j-3J(-IwMc< zk#{<2sS6z+Fc!#L197~ZvKD*1mwN9l+yZB*{-hQP>kGo`kZLocaQIh~wU(CJwX5Kj z_)YHbgXF9jqgVCO$tYOdd=)a(b|WA+94Fg8`+pcKYd^KJC6 zK2y}`kA_oLC0NA;+%#C+ynHx$bc5Y{sIQ|Mj}nS_b1wcl`Gw2qn7N!&wB38Uz;Xw) zs}*zG{(i%U6)x7>!OpXa-n&cWe)iqnOcee?fRE&HZrRX5T4~hS9JRFxv-sxRhtFyA zO)ab5bjUNKj*A6`Bru&s;!2ct`1NF`p%lC5d4TUYLD|(+(d7u`CxH3YMCXFx1*ODC z@zLD;HUFKZN{(BkDZg1wUViwRVfrlRU>3yDuJ{VM`ygfRe>kA|vf0l_n zmQ`q=W~RR5AXbNg<9xRzWAk5-H%nfu(PFk1s)ScX{qde@D`2^mxigZkWMz<)E5Fkd z4|2h@X*?>!A}uHpZi$!_5HwdtREzSLtR*j9oQ-!Say)pIf^EoZDyVLwo4G z7X8*`E}rl|`&i{T@9lcgV8h(A7sB0q;r=&i5!Al{HvR2iou7{9u*rM~uNCs+2Cye)J|gZuQZ-S6BoC54{|C<(e?4C>ix z8n*8A`~vjejITvhHMg0c#63uF>V#tfJ6ipC+cFMP>8Q(aszniO2s2oH1Z~BcvTYJkoQ8c$TF`}z*qBxbP6n0y zzYmk8Y|fBVyy%loslQHYTqZ^C=A!;s7<+%z>7VGd3FB4@eXhHJSdHkjE$(ZFaBtqI z{r6*U-_(5RWbXF%3gy#yX;qG`NfMR4pTFB zc3Z&PY1)|+U1edzuNVp`qtK_<&U$6aZ5ixJ(0fn2V91I37kV$b?fyxBlDQy~iCs^R zM$jR)&elFQqmZ(A7R^)K;ENdU+CcZ!2!2gv2P75yaF|+33 z8m`iRD6pWzUh{46O5p1`q^NXqHn4giv~UcfZws`q{0L zvt7Io&v@>QqP2xgnMp|n?Bg4eb+-ye(5L({>E1ze>6`%3froa?8()KuA`-eFZO@E? zyt39nUKO{xQ2{Q!VS!HSUWgJXk<|XPC|*CICfvFB<;x{hgNdtxk(9pYLO9eB~fvFoAn&eghX%f~DIP9P^yqcE)!BO0H8w!i_YexgOqxdaYSA zm+~kzoDOn2?*)luL2*4EUOnBg51G+lA`x0_bg4ssnH{Q(f$zlA-MyFS3?e1=mF-cm zrp&k{9(lXdJ>grai`~-ce$PVZwsG_5?oHC@HGUjPnbEXe>=VS=;#Fy!Wuvi&ycmOd zU$oG%7jVo^PpU)}b)G3=eKbIka~Vm>5`6J8tqWxx_u-|jh=C`_5akcE$D@AnFdvZ& zpLUhLcV0^VoXiE@r}jd}EjkXMGtMAbSV5rSKg!Hq+bpExS7C$Q$APz&vH+1IK(8Nd zPc04l@QT{-6o90Z|5u6LW!HOwsh=+A-@uGoTLTt1@>se%S!kg>jb(fMj;^>XO^)(WC6lclpB{l#EvpSy0N(5XS_AG*(+a~UG) z;H83f&#NUI~Z|ey<4lW}7f*9EBa8QkKupFXn#!xeuo!e9D8E(iN9@&p2#?yZj=P6KiM>9jwlY~+B zHS=&G_nhkC0UbJS=BI;6!T!~36d(nJqM*d&e@4Q-(WvjNKS0l)pYi(_m7

G6BmWwGSwT({ZXNyqNkH*t2kZC`$|W9ZEU|=Jfk(IA&HSm) zy8%+F_swsv+>H3iib^Vy+aM~8hD?B*Bja=Xx8`A{+S}K$JTvi9?1?{X9sFT^9Asl} zpJM42M3=w&kt#tWG>*zueXPTcG%ruLiD7-YNfEb0_Tmo!TGO6|#|&h>hPDSy>u5wv z0a*rcre`%|BnDwR*#73sS6E!!+{1yA3M_%XyDvSBIzH}@!^b}WOi~Q_LG7abNeL=( zjohCV+s!OPy0c^#vzxRtlCUL*;o+C&h&m)bJCyoKwUz6w#6sJ)K<1E>-!wr{tF0E$bV=As$+zg_1H zjYx=7g~%KL`TN(&Qw}@4p&M9Et!1@0BQ>N!4}RpyVL1!!A`iE9evghyM^wv7qP|bw zwX$&v-4exh$E{-^&3Q6W^mR;EZ@i>+Wd|CK=(ww3@L#RFh4$E$>hDZ9{PjS8!eZje z3`((Gre;gP{@*dtf@_5$?cgeke^VU zw}}m~BnFu(`BS>Xf@X3m~$LvPHKUlo72tqGW>8tE@Pl#nNxGE~2d=bU; z48=%Sg~tasFU8YFwzy}HOQ1iZUf7Gnp-E-V8$O%jVM)Sjc7vH~?LQvjhN@{QzI^Ti z6C!lIyd>lmGAyS6CdE%uBn>4Q-ah=vWcl9$wjj*eC^5U9#`OFMJJ92h>D4GCc zltZO2JaX=h=KRJg^syJsaB{=53z~aEHo*>0^<6SWa|!_%JJ-_n%5k(|EhUv1N>uh5 z73JHkHLPemAf;k;>RemQ8GPhYv|48@0V4kW>N#Om)rmoj0MA%}NXvcBfln18q3p4+ z_0ZfD%ftD7T4EM)o=?t(n=w~s_>`wr>*}f?=ghc)tDo}k63S?0piDz_9#xh8TXU&( zwS6`&$4!)6(R>jdKbSDZR%DeOS5(#ztn0A!8{~SMk-{RX2M%50%re_v3Qf4sxofNm zP{gR}^jTw1z|rSgLN#C5U_X9cyKfmm{Gm-5HBR%Pi=|kd#+TA`q!&?)&q0{pe-1Yk zH0d%JU!u;G>Zl1g$Ui)8Rr9>!D|(j{-?%a-&z+HRgOw#$ziO>(KKpYZ{&&Y_8NgBt zUnM~gw{-{xjkW`7u+`T-DaU~v+m2HIxvO+`y&hMsvt4$27ML*yClwxl+`siZ;^nib z-!pUa=K8XIZynM79gn-kxc+b$w+AmUiFQ4CGkSujFn}HuTjU&+obYgM=)YN~nxx$N z-uxoZOF2uN4Rc?B*eqV_+X{rSoE<9y&wpD#f^CBvCEldK{Ll1INfMJkz}M7KSil4ABd>Qs z86KoTwtr3@Y;{7Z4~JYf1KLqS%L#6rPMbG}@x#SRsiQ=Uy5slTkKDX^e^!{Vn$LRR zrN%%{`rcrMHN}UvQDq*e7!$r*9&si-RhS&S)Z?M!sl9-CplK}nMo0BJ-VQq<_H<@K z%0PHOu3h7(8`$~{g`*z*HNDJuOosb?1MfZbw;Z^LxWrXYVcrT_X&|^u5>01UU!4pYat0Rd+dhX+fj>2C5t_r=eCI_n~XlhftKL#xK+_f}Cgk zYu%v$chgyq_QMrMYnnwo+yOTX4aiMemFd-fPTg^RZ~l0WTU7f;8Iz6&;AYpjCip(0 zf9rt2*f?`~`WQ8ZV71mVMBz|$`j7Hy|JOx}1Y>VHa{iv9PM`M}18n*H8MwN}Pt`2V z;SF~$CkPEIAgOu()vog+KZu{EnE)~TeSgSU8%8!m;;+oZJvsVY_xXVtpyOV(g~4IF zGpT_gft$>r?^nyFrc%Y5Z8Xaejbf|f68kQj(O++jb!UEX|IGe0;HU3B&{(v6FP;^7=&XK}Xf_qdY#{0*K;^)bpM?)8&ug z>6D9s_bJ&1L6(+cI#UAkQ+?!}x)R^-5>zFJ2Of?U%*IPPe>`{1T)Jy;yxXX9%sg!Z zqvWS>s}bc})Vm#V1qIlmCh<_#)ZIDVe#R+CB0wb2UG~};=U`z0Hf-F4GL=#0$RTpA zIiZ0%V71O~wxKRPl_Ge)Z?n0MJi-tpFKkZiS z{JGJ1ao=e?53}y{{UQsdF7>W(o&~`+fu0iEv9kPTqq93yWg3C)W1B{?|G@_AWy*G* zP6UizI69Ettz0Gwv70>$Z_>cGi3$AN0cyUOmc%UaUn#wD%}06XZOQUcQz1q2@7eQG zGa4xAdV&vwYa_2j^oRn${YjU+Ejz5?(+hGuQ^CI_hiqculam5pVOGq4YDw+m=N`>< z3B?-?zI4NMUJ9g2Ydm~p8C>JNRb<a!zIBaH)lAVP zyPb-b=-M$d;AkZ}UCOv)ojXj#s#$qc0{b*t#rp75ZX$iqO(PMXc+1uItMMW%n2k54 z3j!TU*t8xoU{w)bsw};ctvNjjx~6Igle{!zKi}2+i^5l}XE8UMCJX6pD&De$nB^?W z9x}Hk2x2WU8x&zl3**nbF@>bC$mqW3lMoIYkA`|N7J`!Eu6jFtz9aBu z#S%-d^t_zo|Gq9F#csa*cg`pQW~SDp77-tRN_E&CaqD@>we`?`@AGg2rdvNX2A&2F z2{}s)F{na2+01gE9xYx<2s`WVp@t&-*AcR;PD{19C)hE6PYk8u{p-Zkr5w8;1aD`T zFLDDCzEJJS=svHjdNHXKWk4JV-5hmKWr}}7xgT#Y1$l`I;aGgYaSvrwj&c~tS zJv-m@@m<2Xl$;!R4#Nj0dQeNIZY)OJG~Lvm7>$cl{0omzA4(r@hMHaS)=6DRAUe4RXMxnXJvQ4V#E;~FTy24*DC#p5-rzAgEscZT zJLZxofi2U#wn$6s?`{J9wEqxs>oa_~IEor{idTd>7qklmTe5}AMvEVhJZ-!?685`D zIMH_&u~y&ogWxBSU7vOaeN*1u^?ndwYg(RX6rKC}LxcFl2fQ*)k1{e`kq3bXh=t3n z{m+}&;lS%Ir@x(79JxbUuCJ*mZiO1#$l8L2i?O7l=Etu0fgNd^#;sqeDi17%!+lXB z5+8lQ3k4rQ(D+p6v*rQFUZTt)|asRs(x}UuAtjA z>v{w3aOQ0b;f{@(!42zsFOjH$+xW%0sWYNK)pJjyEVqEYKJ)e3&EzWvyoYr#&)8G1 z;+S;lhV9WGHAff`Wu8_(>v+!V)vXDzJwM4y8t2|=+<{WwI(t3LuRTxIB{}88p?(}r zw}PVJ2lg5zA>Txf#G)Y$HS$KD0@iYi-x-cQ_doMkNci=r_9*Jii@=WG2{JR+#23K% zTx-hO=pJ+rWak{@d1UH5Oe)!bH^T-GfA-a01OuCk+3Qa+dfAq4%zvj3Eu8&pEPhp~ zOpzjRUD}79SnBCxX0dnE2Z$}-Bkc9MDuv{6@wSa~{HgL@UX&-pF>a|Q4)f-*Ypv2i2?F)-Ya)73XP+!5HmT;Yp!l+%N4@3v- zI*g^>S2_IP+p`ymzvg#c+4~l|#et&2(b8AqOEX#t!+0{>gUA_tMw7~%teg=9Htg)rmodW+ToXd7$OWkE zYuNGh^s;@pMz-XtzuPswp%Ucpw=Ii$swCMp=C=o*Fe(E9Y+sTLLs9%kV-V-Bv$`?u z#ES4BTE_Mg7upZ~M;LmC!=uS=H`DU++x(==ETI%OZIQ5~LBkEM!oJ5_!u-kDH~?WXZ?Nb>3J3ie!=&-i~w`#i?CF7 zSpOSwr*SxKa5G~B06=|4#?QWprmkO;FCp(dhe@h!8b>Ip;(5m`;IW%(b!?{n%p}Tk za|wCzamOxStJ5=&ZMdE2Tw;LjUu%hxV}$}4h2hL$?_SRPRDUsdIdn=EkUg@%m-n)O zuCelm$)U{nK0(@;rBG+rkghLE%z@_;n>G8T9%|nNT?|={496tDzlpGK-kvviaNb(; z>U1H*F5d^GzRexiOB#;lOM#ZyhAt66E>J>=*=2@M_3@RL3-7IKstKny%WYZl_uq44 zGl1Nh!C(Lu%3hH`Xs6bs%={M>6JxrfU;XTAJqf6^fcQIh=`#Em*Hpr+*A zk}8*-J?Q_U?lXv0p&LR#s~2G@k!s23=}*_3yQqu6emQSiE#g<77gxPE)34@Y$MW88 z_*r_h)fcYMJSi0Mhg5d{U|m%5mhAr=q@CfPP%-RSv%KF?(+Z^u zb?yTsc&X`Azvz1RXwB)WJf9 zmtQ{RJor_2)PJzMxs+a8tM^6qN=sf2KDxOPN0Gye+=1d@kDA7{F#JM66MOJAmWnRp z8w7EDRR9HCjV}}HK!zetB+T#*9Rou*;hl*KMhqmwmedee&^bEy?Cptg%P{Vuh7c-q zsFynLUmafc`dxLas^sh!{A(#TFxXMIDr$f+yb--YMDlr#9gqB~fra@m+PX0y`#2fb!xrNq`h|;wm^dcYI}fX_hQp=XvYt zI=1QFi`avRvnM!1y=4-rf3AK8osBOY5=Sw!E7mv{%W=bp`HdCzEQ@KN4|Oy@iVAFH&k}npg-QeR^W;Bj6A+H}%y1 z6G&pRYV~~(O^(>~mvRM4DSPG5&^hMr`ZlNP-2-VFS@xU{f74VI>3KP86!Nbno@7_* znQGRq%ihU%x@5f(U`Cfykjgnl$5Sj0Vg$Vz`p)SB{tv-Xy<&^>Pb+`y44CBKlMgmi zns>2=@dpzk+g{-MI~MkEPmj$~gzJ$0JoLdPvVDzWsEctwS7lI(LEg+gF$qp|xm)hcrg+euX?JQ95f{y|-q( z=g}eHlV-B%ElCybkpO6xOlhfoBa93R|oCTc=Mg0T{j_? z>Qk-FNcOk7IXMbt&beQ5W~4)py$i?$qyeiobxq?35Dn8WqyS1vhsB#rt)8-3vP0&B zs}+Fp-QEinsN63(Vl`&}xTcGLrF(-?%|xoxC^ZsxJRl2X7NOD+=V@)(gLL6*L+huvRYDk&2% zl9R<%=#jYcAiDud5jOmv1+`O9r^557_uTy^x`MM0oF}LF&eK@vG+4AUx|5_gk$!7# zkU5HitqL*hZxU~Gam-(AfIwI~c8-C&jiR7-*Wi_uimP!inJegYL`|~U4OUEQ0e~8& z?smOPVLuY`x&TAM_Y}OP>DVu?ZD_2dY^5Gum%cTu)ytLgE)H;T1ffWY;v z{*+=Tzy@v}HNo`XJxw0$;Shmr(ee&-H8O^Qi|?U3rg)!8-^EuH$IQNB5X6$^|MmMD zFe-Z+eH-3ChNFqpeJkCRQ;NX!YEEpk>F$g zF0icxb<%iae}iThPc3iCEXv}$14;Ub57DAjqHQ3TMBVc}JW#^Z>oW$Q~?@JzrMJy7&bU=xw$C^FU8*WpKsvgQE*mHyBL9FFH>C@X_8 zBd@(bx1m3m(+RfMk$EqoeD$-+*O712ke8v2SCo2=wj#`e?Umk3?NIe-{SMv{n#MR7 zrO|AvnTdEp=XscLywrXM&DjsgYI7gOvq4WoqHlwuf^aY1%)f7x)S?o(RWs;%tkFPKcy$|;GLnr7&m!@@uehxV)ChYZXU3;36 z6utZJs<#DddCh+jknJ{v1WSt6xXWJ7?h^0+Xu zSE(Jc*GfcT{zzLo{SW`M*Z)mgsv=hqQ_ublG0CX~whCu)KsBY~?4(uvxY}M{^y|p? z=97~`V-PcfV~f!b1!+&@2K2WpfkgJfq!N|(Gd^#>8V4#*)c<~k_B>o$fUR&Sm1LPY z@aWpQ>0bZVbpxjg=Wu9|Sb0>y8JyK;>HbC;q1O-T%y>vVF4Y3P41+N6)3wKGCESyz zf(Jl^{Q#8RG!T^>=CyKdKk`0OtC5Dy#o92F$7TQ2&h?pgU)#lz32r@hv-w{0<`b;j zjl}?$T>kLz&r*&f>Hc~ZhP7)b7j7o+>;EjPv+Ge39M4SNmGxY4_nk4@#b-a>EUdnx zCm1;FQM03)q#TCW+Sm@%7Gd@3%ea+aYoMkFNT&1`8O;DoeC4`S>mHr(khS6y!>iaQ z)<(L7YPePOf?oasbilhgqpU~?YoQ+nB<9=r13Kd1Lbpm8zX>ZNOwLi5AGRt9<;!nk zHWQw)HwW0D)1%Hck^%12(08MhSgiTuGt@IzdNK&ka!RwXDIIm_k`~6IL5dyj^De2& z1kO?#Hx;bf97YNbuxcu;Nc9KUi^9bJ{yBzk()LN|4z8N1(oV&w&1a}6((a{sP5rvs z^es+}63jv@nG@yL)BXa#2GBx z!bp%{A;Fyh!QI`R;5N9syITl@L-644gFAz}ySo$IA^4qr{`=pZ^Dr;-)ctjJ$*Nkb zI|`H1ynR;CZ>+}Z#p$eF4x2t*2E5;VNEUb=EB~1M(bKgr_pLubr3NGKqp!-@$*}$# zBidc;HUP;aN9ZK(#5vWh4Z6U@2E@#Tfr$~VAsQl9(*d-xSQx_Z+twZhMLpr3Di)N>WRMb_y#tBg?^k1g%!(Du?L$i7aS8PNn(h9 zaXoutaE?x|`QbGP{h1Q6i>W@Kb!EdXS9V{+8eGYxm>ni2kj#T z+fZ>Yd83-IC`SjG_7yQ2-|VEYSHJd{KE?#IX%_npksNHnK0odZlJwrOHx@eHor15l zWLdHlZUD#5yas=X>$&8pO;F-2qnS2wahA3VBWzG-V0O@^%>BSaT``lq z-dG+b?}MSIorH8t@G0+=x=Mf0HM$&4J=#=|(0os+Ut5~{y`49#Rp#E0NP=Z&eWJoI zmCMVH?*dk=N7u=cg`_8Nd*$`K8YU=aMk&zv7@XzD`4ogU&S)B2I75ftheA03%>OD4 zh0&_Wh|%MtX=_ry7^5+zq`FNd73Ne>{$M+?_f_?^!*$Nx{+rq7{Q5zXg?CO!>x?6z z$1&%Q7b%Vx6MvHnq)l{qu*exQnpzBF<-2rP_s%!8^m`zj+B%=pi4SG1OkhC+xW3Nw zBjuINjjl<}jwnM0#|6}UA5AEDSbV?TS(ido>TO*lE&fYqA$fyOy_G>MZZ ztnkK-613)u>FEyCralLPIRN&5H*0N!5`)oLor|f@D7JN=T+G8GLo?J2Ee01nfims6 z<%4qTt~z8!S5`$yV#2-*z(CNh>iqzH^>e(c?L@_zSM!IE)RS@0iFLMWyZ{Y z9PnW)5l;X!Y74E1mEWqIbQQnO(%*B8mH$b1%1Y!)OYb=fFP(S)bQvsZ1mFDrBaRG0 zjHbHy%IS+}!s8-1ut2PL$H${pmzmOTPiHe>7ivk>cU;!=KqE|J|2V?zlQoPHT^7Nl z$sbyXi%+zBm5ft;Z5Hq|)$V+rK59YS*ePxE@5NezJ=tXh@@lFwPeBB%uIKd$MH|a) zeTyMEtRIRikwwn)hxYY$TZ6bmc}=t*Ql1+MFki-#)B%mgC5yWoJ_C?1tN>}gvVcdb zz2Hg#kIZkP9q;woii!VTMY5y}>@ez(bUBj)T<;FU|3Li(CZFBt$y$d7a-Xqpr+yRz z{AL?;ujJCZ7(%SB%*zIpKlkf3MLS(6&SGuP|5O>^c-+QDUeo+jaOU>@!>*L)P=DOp zyF<=y5dQCe!1i_)*?k*Ex2QJH9M&^;=LtdIi>+3eI{n_TMctC@4FVUcO2XVMQYDJ` z32m?h!TH-T_YsR;!_%?am^&rM^flBd!w~vI;Xg`U$`Y(BuXWWSj^{?I$R>f!CevC3 z-5L?XJoUv7)5#l(%u-m%B-9I>SdYCaF(JWw@<*2LAl9~U+IzvcU7t;2nsUK3L=Y5= z$=T5{6w@bwRhLGCy87v7)OaoQt${m8kK(~w3EJauyj z@m;8vmtXA&_4-Pf87yIB;UG+K7&>kICsB2a6Acw6?H03?A1=^LqswE2#gb z$=* zAj$ZS_`$nB4IH^wc3fL$PBq=3)%Dx00K!*m9kW=}m%KtRkc3ciW!JEV>g%N|lUOGg5+Hw$u!AD*kpedJb#fCX|rl*@)xl)8E>qq8A4jdaL@T%SZ}r@&6Vuc}T0Yifj>CQU;tL z!!*ky9a;F0{7Bog=a0!(9|@3q1Kzgh6=zCfy8bvhvTYrHT|_Vm&2crziwM1d46IzB zP8;0fjXh#Qno4OEdXp*UITd=CZ3c}qNbRik*vqJc6sFviC$ z;47NFTR-hT>%-gucBNv?oEG2VD6oHmRfzEduwirfQHk4;Y9iGsM72c0rD?v)!gA2S z+J8kkmAvm6^2gnP-IXe?3@SV#F5MPW)JKQ|(7fq%U8At~+2QZpzhD8>vQs#e12`I3 zc8)$h?N;wOw5eTjw_)N#)+aH;=p!QTk^DO0<{_Y zTn;O*(-7+-vJT9cY#@xz51!u}6yPN;Yjf61R}tUuNFFjr>z)W>8uh{pQ~pvMXw`Ao z{kuHs$tuibGx-hf&*^&t@(v66d}pk@E)#P!@Y?Va;yBAQuO=JqC(69|vpI*J&-RbL zyItSb7GL2Y zANU}+(&cawah;s`dBejkYQ6y};OL;m1SYoCZjsg4T4~JRaFPq8MYK!gU^iH+X4bj! zJ=usNVN2{GBUU7r+0v}8>h;mn-Ff1W7b`*R0JR_zdfh6eJHtSurg)BUlg&w%_Td2Y z|8~p1e(3mQou?vAlOgT8KrfN>W+cmZip4Js2S6e$tY!$Y3#!0OP7`FKL1~78UBQL1 zyX5$=aygMwZ!&mFizSVrXiW{zBKUS1IRwX&mmDh7u&sZ?C+_g>qh^ExI(B$Y`tjqW z`{`_{=EKUk37w_F&y$Fi>avNQKT9(W+jwUf4qE+|<4CSka2f?Wg4$wa_E+Z~u2WMx zf#5(^=EBE6uY5f0DvCWH=_=_ln28+@l}6PwW_<{P+>Y<~tglJ7ADVFgQ^+mMdIojZ zVy^tIT?Cp*DLy`myZr<1syEL@{KiBN@5i}qP7MmR`3|V8`<2WOXRmzIW^=;hU?Fej zX;u`C-sIO&dq|r_tS>gk$iV41&5-U`<&9GV79^aAEK@-(Q1TQBTyOrO9x=-gfx5?A zDvXxu$~1CQnxm&;D5p5=KD6ut*kI^QND)yS{7m>(-RFdzpp#S;x)krLwrwVDNzW6T zkXKd?J$D&bW}dAkh{SXzUN(dAGNT6qi&5 z%5txxNc@(g5Y(*+9DTfMcE2OQxu984{x;p!(ls$XNK(MyBoXu}G+RQ|#XzH}kMOZmm4dYu9Y*#xkz zBR>#S^}E!G6F(XB=ph#`*fRr=>eJKP#x*X-gag0+fN`&1Vecb72~n3URy3-IXEI>v zYyV@-*umVNzOjUVuc}d=n8qzM3O_nvneyIT2sGJsqc}Zg>!jah)2IXXHXP0_`3Wr< z%`e_UjU>Jq6}@_`#8bfzwNPH;_~~)>34E!@ex2A!l!p6%+Of(Klze9xCSk?alYh>g zwZ&BPdq)k{`u4B`CB^E|@Hs>0HF2w9J6@$39*DnxY4DpdA)o*B2j{A(9noR&M48gi zoEFo~_7=c|F`I6Sj230-&9;4L#}N_9Yr9s6A6!U!i3E5wqW3xG_0BR{PvgFLtWd~f zi5y8iDYT@~M!q}AaUyWd7=5^ix$bKUkX5}$H&50wfExJ_RoMnFw85j9NQ~WF{$YogsIoV+yT@v!)*!MU6xz9KUaMn(1evRFHz7Ud zX7)rsYZ2zw^#?(D5M`%*yK6oB9RE4l6g#=rcC7~5cv%pnvbBc*1j463bbu2E%n@E_ z**Zbeo~ZboVr_WwGHCo9V~1}JOv?MS-nR%#{=|?m0*I2P7DpN@zL3V`&`7zg$i|Ga z@W!HP1oZ4~rDv_3Ot#cN%A9IR6STfU!ZaZ)K=CqcEO{ljz*(yq{Iqnkw!Z_wQuIOG zk|QWS-n)#Lopb|F;2Vb6(uDYYoRMixiYO-r5HP!Plc?euLN8#a$z1!yo0wJB=S=q5 zxEEpQlSeMdaSCkG?eXc!RIYb-(yGSu#_RLi)~yMjnbZ)WUlgwZ+K8x4m?UQB^Mt~J zova!O;G!?rNEKJtsEf5A)cNHwl!PMXP6@(8Se2h022TU}c0S_k@RizGB2`HowbGoi zZMc8!pBpJet-)*#>b`T+g45t%u5q3G3iVI*TQ-A7-D=L-6+sn0H@A?R;%d|J>(DC8 z!;VOvXtun{7`+@K7eR(C^$_DY*hFkLUgNOSY!y`t9r6(d=ncjt!6&^eJ`lmW)&lx~ zr#eQr(r}pDj#q}!N2$}z1$vg)JaRIqA;f+uDO3Z0_cEjt)I&+nb$5it>|b%Y>m=*sxQ$qYimDJ%``hz3pwT%dDP8blE;>wi~~O+-ChR zbpR`{SQ>hGCb$H|1@C<|4JR3Nol%(lZF>dpYI#FY}>LUcJE<$+isvGMI}Lo%lUWaug%d1S7(oElkA zxSSk!4({+$JxmkMCf_Tq^Oq}SW2fTN4q8VmJ}(4LqvxFIH1S&C3b1I{U9`}TRsQf- zm0skG|GsKg{AKI&tozsc%nw(l&tHfPzW@3!*lJ@NdpA)pbgT_kWpmvEb%u7aBNLkB z3E5C;vL>g}4uht}^H^3wN%Ak=s*EKt3ZH`sx;EDjYdtJ!e|ybqga)*Jm6R7}@TW|! z#eL}x)gl^AVCYG=x8K$@n1#_#x*V|#H}v8}$g-OU$!)1oNEq2;AM5M%go(aq!O zv*i3S!7e+QLp{U{gh)nggO`!grv+cF>RCjf4;d|DTR_9WK7QD)cWF zc6X5WOeSJ4=yw`8e_~lIjg?v7S2-VuBAy0^iA2dsKw`2iyFS5?V|>GOU3ypDvU?1EZ9z?8>}gL z@Ff>KbX3jMU+9RF%h>xHkzaV*_*fx#(SB0GrqC{)pt5!`-9*25-+GPOgQ2%czLZ(! zRtz9WIzliriRx}7vK?eB?-}8=|7rkkos;F+MHimniUK27)e?+8n-Ne^T5A|4iL%$Y z{*&ICPjd~K{>^PD>S%z_m^w_=0UZuY9Sp+*@>h6bV^|-EOJGQ4voeqb6mSFM{JHZFTW&Wn4}8`Pg?j#8Z$=M_TIOJ!R5pC8f@t8 zZF+$DIdUGy5{L!xg6q22yCW!Z1uvO5n%;h5mEtby>rI0F^I_$n)!Fi9POHLOG-LYz zI%ah~ra$B2j_sE795`xm($2=-oIdpE5#-J(SQhCeRU_Gec2&v>E#QZqfo%@hm@{~= zCU8}!WyQx_WADN>mjCM<3Dq$p^tp%hY^;ydr8(G*ZhPol50FGrE?*$Mu=y`v3v;-m z&Nq7*4E*DBjt{($OqSWR|9*^Ke=wpiUdb#IteYXuCrX)azrvz8#$V=j78-otT)jkU z8J497*Mq9g?;bNru>NjRwZlo6qHE|!6MOxLd-ua2AlItws14urw?K%=H~(0Li1C#V zU&BZXX%hACA0dIRECI2;JkAwi!?9DFYI1Ibi!OW~;J!GGDcj!;%?`Hw`(bwbe)-1i zg_xg6jr36yfvaVgk`=Ps}$F8q94&kHVfZkXNkLGN6XS?^8f*Zftu5!>!Bse8tNIm^WOa zBE-(jlBOCn`)w(IEnre+=c;ssjYIQi5q)C1h`=2K5a9`z=(K7^)@n-O$JN43vAL~0 zF@ZH%L|RzCZDs_0VMLlYqzJR{u%pTJCo3fg`H6ChudS+4%FzNQ_~BJmyR<;nP|+^INHbNpQl!O1U;f z5z^yJEE8#4+V5AhXWv(s$;)+zGpf%njvz|Hf}YZv@uZg`R)${O%!7d28KIo!wJ>yX+A{RhtQRKzJO3a_W80=x99sSPZo;Ew zcj6e~UWbM)g&QIg07I-l*XXog8k&!5S8AaOqaZCK&``djX*fNpk_Zhm5aLn=3en4d zX%Ao7bpjiV5x~an6dm{OF>kBoe|#==Fza@=`l|C}K$b9c_)M>S;aKvdy!g|YfCFQT|0m|{GHul%A*7HaG`B226;7n06M4&fX``oEPa zdgrg!C#)9V&#Nky6{U98-=^ofJtwD!gAV7%GW^V#zl#I>4FO=@fud-qON($h+kT>l zsJL3Hcd-L%aXV zzD#5;5gi(Gfx05*1E)VM8@+Us|E{ExK|3>QfDqf$3(zZeSLjYWC&3!%u?*~OFvi%Q z*7zo<1gEhU5@|x9$&&MUi1ooCgu~RKb5nIFRn7QJ8)2;Ta%(dTd?iG_)5n||73V$My|Rn>@b;joFeF3;(6>9s{>u(Via~33&LgxD1}FL z=`fp)+Y|U?9GsZtKk2ad27S+cm@&`t zm#ei`&irpK+QkjwHiUwLUTJ8<`63Xi?2caXnEhTp?`UFy@_n1$(`#((2TA_AICp zd{cQ84J_&rj@Dmj;TJk_O?V1ZwYR*|Oyz$*ye%ia%-BpoGnJr}n=gO-1=-mfOu&0? z0t(u*xcSEuq@b^d>2RnH2)IrhJXLCOMYi#~Qq}E*sw}_1eu)mrCV(9g^{@?{(X9d% zTxHM4C0tb6t=oTk35g^_TvWTLS`v2Z^rXxNOPipzj!n>MK@%puND6 z^x}pM&~sh@;N0c!MkoqB|Af<g~$ORgSn<64gQ~d2hu^L+^$LhjngSve@ke3-asMNkyfx)m z6~9YoY`{G53ogXe+hyFSccsI3NWSkrgvc@f|9E8|jDXLONK()5u1|jeok;^RNq@9} zEt8m*Vm?x+9By&UUS&r=O;_ijoa9)z_onA}jdiRS@Ggq`V~ow7YW!bfn|%Uc6kJ&i zSqGF<7p2AIRzVeUvd`%9wM|DMzP=CGl0Z~$wzB+0EDe3L))9wTE&f)%@y&qd$myD6 zwklGTydK%I(p3~C-7dJ&NNqE=K`7&8d&)e)LQMS{VZn3}Ee+2z6PoXK2$D9|WZ2Ox zktG~%C=yFZ+Ls*byY^bdi?uuW8PelzCtr&Hb&WwW8TGh??lpDzpfU-GvzdA)*kSkT-g^#u?&aP13HZ907;U5hXU88f{ouER7uf7ib(u2?egl>& zchL|SV3OE4_oHw2!x+x zZLr7X>?x_~^3lO&?0ud3>kc7<-_QSksss1tHjHp6nh|);wFj|i}H%Nb+hb>^0 z0wVZ+E@-)|yrQx0h!puH^4ouBPiurLi+)~rVBVlu2tnuosw8#c0(TsF9swWJagjYx=^?qxK<$|pNmZby zI2$@>>(xVdc<^F%*mFVnTnSg-ii=+njypo9lW$B)a6xQ(b_toAMekb|Z^IAvkTbIy z7!PaA6qOGhlZFp6z^7K+<1=G^N2S7U4Yq8mZR)5Xll*g2xGa?j;DR27O1XlSy0Ozg zB%nW~;y2?6{x3aGAZIX?e{w%+K^7f;)EKSt(e_*y56Hf)}1&eB> z+XB6re#4bk%*+#gZzQ@e|7&pYGb>M|pA;ck93s@pgOX89tA=w`*fS>PDF4WKtxRAa}9s?p6jEAaF)k72{n7Anbp7XM=O zygOEfF|o_bdz`$kzvxO_3bZS3C9RSEr&f%--Frh!1>tBI;mLz2`v>GI$q~&-W=sRa z?BZl4M(Cc-${-u-}|muKWO+)gpS#=xPqYM ztn4pVhDii3Ip6lci#NOLoKCCh9KvM-P|9*Fe&3US)ULzf$Qn(Jh|pQYaNtH^b*tg= zbJpA#YTYHNfR-*JAc&09!9P_3{fwvN)u~9jCA;nGY{%q^3sYW)3j^P@P@k&)Rc5Y;{%G&eD^bOL2$}+!r6;u0|AHM0Q1xI)XXpi7OyL)BIuh zGBNoh_p^1t$BX_86VrJPOFk9+f{tp^Q57YO8sj+67?DxOUzVtxi3oEFfLtE=d@gbDi^ z++`xJJj;A|O<2g^2 z@5_^5Cc%W!d?PYq+j3bo%Er)@V@k(%`>&%kCxkz?v5Z!ntSr4&B{_JE@Mhp=JPdfv zQvArKH*ErvzoYZELR=p!fnAj51pX%xRF8e*9<}*?zh9!PL8OSd=NH{B>yFqOR#}O) z^ieEPsHne)@cLK<`%MY_((MoSVhk+W>~IEX)lE~ER~eyq8p)1IyqJb<4Y;UTqgQ`3 zG1vVdizsaXAW251VOUk!=J=`(Ce3l$XIgL=m-1NnK>xqMG+AbWCb`_kDJGX6eCUOX za;SSJ3LisM@Ow0|tVUE;1ReMKh`m{435UzYvYFFXmxLU3zw8x2?a$) zO8FM$v((kg$%)q)oz5R!BIIB?2k)N3uBPRNvRK9TYpR#Y-qpv>!KU~dLSy$p2+LB* zFy{m}T#abjldupo>m+`%;A(Bh)J+4h{UIbx!JDfy9?+Qb)FCB}DiFLI6I{zYQVDn# zwVsB-$TE>Pl|(k&+G(&Gv|ER-WROj2^53fY*6u4JK$jM2H0rsLOKNIh!$C(y!~I;nQvaw5)0@V@vQQDejUcxu z$?Zf9yQddTg3HKX1?+sQn}0b6YfiP0AxQ}MXz#63kPCLY-0k{aA7ncYkNE4J8Oo|_ zYTH1_$S4nY%yX;be=mi#AVR{d(6Y~%31_zso-|bM9l=3vOhrnwA0_kaL(__B%TGOj zZqGLtUp1t*maRw)o_u8Vp{pq8`t^N&VmS?O_>;ohvWBDangutBq5KC&+3A+I{k|_} z$olC3-ha0SG+FF{k-H@2X1*rq>+GGIi5A;`PH!aav6%ogmXeDScb2Zm%z{hIuTd8DG$;K& z#oSEgj9NtrK(Y;`B9U{s z1Pd9DclkwuI$~T;6r%QXTKgtv^LGfgER6AI=PSiPBs=m4&NrIsnsgeJ9cpuu9$G5VoA}O87$Q1{=%P zcI@qZchbv|YIrpWc{R&$B|O1yO}5dAfYvd*IbYlb7BYJ&jwHryk3Y&}sDm^bF3K*# zJ`Y@N`@CKQtJ-N?`vqB83mc-KNqR|pXh@TuHZ8WKk8LK!&3nwIG6k@cE7E^ovzgfN8=cb1|bCeI1{h7l`!ZWj5CpF%uEOALz|%h z8rUn>y9{1lX*>RwQauiTiv1;nqnzARtF~-QV@I0#i7vsKP{Kv^r(HURuD4UfjR!@k zjdKsg9R>33dKFPw$|^U=SIrIloeH)ReCUUcA!hm#t<4?NlOwD}F&OhpI-7L1Epr=7 zQ~7%ZlnFMWY3gu8$#4UWx^{Z4zh04_xY(>8zdGX*wg;(P#Stqj zIYg75m2=ME9<#72uU>AwYj-JG!a>1>pJ<|;6(ZtJT%{#-_@v43hrchC{GYs&0`n7p zYC!{wyq{e&T`rn$qpmybQMbPLCxOT_aq8BzXX5X5XKncAnQ2*;K~UD#WNohxjNAQ8 zn`6NbnWmGouqd}?!-u}#w?0Qxt2A(e@ohOPqg~z>KAbG{Npo-;DeX?G*qNb-tD@T= z2509WhA3aUsPd6(3-{$cn8q>r+5G}vK#-NNe%gm%wq#gbYlN&Eb5D|^h0G{d{g`yy zPY89BpH1;hAk+p5l?L%VWWD|3h0u?lq)$M&y}cdQY+2(I2GzNfs=G4?7Z3<9)IUVaCab*{G^5@H@U!kn@nH{ zc_cS?C;JuE$GXQC z=(sblIMMW{#ayyrvDKn9ppMURa+)mPt4$IkO)@aAEe7k*tF4ct_gvCtfpR-qqNUj* zXw?<0h_b)5h6g>OaX~e1k6CJZabqGQ9 zQ&;#BcMali?mbqc_`PvUgpBBEbcY{mR+4kKWt5}91Gf*bf)DFnQB|9)J=^(kWS=GI zwYA)m?ohKhDTpNIRA#gEj6jIAj-?lVVJqEKkoJNJXxA92p`2wz1dk-2qx4DgIDM5_ z(qzOP0j0b)ZH4dXf>&_YMm13d(^+e+hb2QAbF`5~8{@BF$A$bxF&UI9Qb_LEp9d#r zSbjG91ozQHeGYeBs_l8!f1a|f>C585Ebdq^c^+^iPDb-R*4C`P8PL4?^UxW_BGK{O z`?<2YKG}_6cfYQ>9=;Pw!B|^jhJ7IMe3yy3jy4}uEl_jHNos7uKc4@Pv6XJXJ2b0^ zmX}zz!dMdMq?kZc(SnYfX1oxEj;w@~Pey&F%5}-zAU64{N@oaeY!=u^R~S~zIo-02 zs!qZ*f%ZR9E6j_#ai`5CZK<{<>&`|6q^Bq6XZJI$K#Ua+y2}mrIwTOHdm+{f7vo{Z z<4Zq2>l1o(Je;}D_CLx7E{a!Esx;OKCZOZ6kgv%X({1J$eDbf@RPuyXvzyZZVq`W+NLW!2(2d; zFDMx!TE*>)d(?lt9_kZL!pXUE@nc@q-{{6aExjk)8ol^cz{o` z#|lN0s`@weG&Ym+jwja!4SI(7O^2a<=b>#&Kh$}_fCTPg%F+dkAshDZfTf+rXaP33 zRvY)>_HzQf^rGSHG&+OW>1%fa#&7N^<418ue;%G+4btDdo|jHqEiB7C=%IVg+8Q~WU2v0t zJnp0*|Lor0XiJ-5%h{sq-VmoFgVbl)Fuo__FQec2HKliIpCi90z^C8#Soq$ZrItE3tt<1*y8`x)3NsOGC+^AfqX1IEpB3%z?Tl;K-rPrz@ z11Cgdf5^Iwn$4*WZYZ3wRJj>3cPZ6*x530(EGF^^jFAk4gX$vgMJWDre-cVtETt>n zbTvl4%kFmIF7P~}f|W8SZmRgMKl?RAnUaEZQr>duh; zRO+9mS>!`fInU%DSDB9{_e&RPuD@)J7+2xXr8FxHbn@n^yQf*gUNzj?4IV9H*=*0Z zq%;;4_^Gs`22qS-i_RuZ1=rg$vVw)=C$VHux7Pv$JwZv z&SkD`4NdJg)6oMNWi`=8%yil+I(>hOL=>TE$>TH(S+R0=llo)QTom%h16Hz(6+P9@PL#R{i{l)->Vt`KKmly6LAES@-lkE;Y^l#l~?C z?T%VmWNdZI{bSm*mHh4yC;MN z6kfN3p@YZU#fLTrYdvV2f>2O@03rRvugpSPp|Q4e80D1;r2@}Ze?Q__LiS(cyofgb z-Xbc*RHhVrPK-+MCBNHi`gnT0Vo$s{FYnZu7sjm`rSogmqLN#5Ztc3@*^*ZAxQ=y$ zy;uXMZJDx&Q6_EqOYJgDK(!0_0VwA$wxYhPnrR?=zl60uksF{w%4EaXR~v$^FB5cH zafEahPmaE@OvEYU&vQ(>528z&FKmuU(CdGgkt|5*A|4%4(#I0gwXX+iaz`t7XnP7tXlw-}$EKMj1={PNt4!n`nLS zfo`j|oXeRtBV+Br%QEDz|1r$O^ERj7@SmiQPtDn-WnE9+{W+TJ(xIWCc%_H!A@^}o zty>|KKdXzR2BlLGEmYNSkf`_#Losfah@o?m&Pp+r4!q~MwC8&MI=Njv+!4UwqB;gt zP)74fKvM!zH1!s_yYE=XjZ%8uH53#=Ci$Sn(NZti&7JMuWvf9T?F#L@w$)ZO`A8t?iERf5m% zD=LZYm{o#G9%0$#lUV}hN&Tpi4cLxTCfptz;b)IE*Q|b+a(c~0Z_%`hmB}qRygr#Q zuCNTO41=PJqAhQ`_I@SmSTD0S2z9`KYAw4_yr?Mn;Gr~nzNA&5xuIQpVX;?US^4<< z`YUL-^}aR;Uy%D-i5;Q4CGZQz8ZARPs(yzSub$g)(qM8YTkojQS-i~7* zS)MbMnJiJAfvopg?Jo0_T-x4JQG-PHXNcDsYNTqbg_zHH#m})>%oJ}=T99)$0{_j52(|b$_2x3+Elda~6~v z#;M#p^%{*r?}6<&Lbk- zQuXccUx>UfhrOSU_8@m)2gN{$zSF z6R0n7-F$}HUPF=2`h=$JtHERk=uk@6VAQblD%52RCq~0Nl#DyO@2k*!;aE)^onP$QB)mZw9m5)wS$8Mvwq@{a7F zp#ot;jh5=|bt2po`z)0%M9qrW&!hK~Rxt{L@(0R&?6WvQfD*eCjWSTHEEZa*E*jW4 z1G3gv}e=Tv>N)oG-CeCWhI{c!_7DG^>Xw#?R}q9dbL!XneQa@5=1 zJj#}nW-I{}vP?#E53@vn?F~7BnaKI7L9~8JJ~bU3aPbgWbNcEdKKlXU9U-%tjs}zJ z8*sj?a;ZYQ%1`l^nPxp3x~U8ifjI|So-a`C@Y7F?Xdmqcs`~h-r>nqgu<^cI|A>Rf z@WsQZIXe;KA1>Vp1wq|unNZb|S19qo5Lj7l*+d|!>_V4+_;E5;{<&6->~}}Hm0cyZ zMDkxti%$*UHU+-O@&-4b!UbFE*%>Twy|H}hi~mW0&Ud-+ncUCcgLTLPopgR z`0J;S{$nGEX{%o4pSzQKFMB~L3t!-S59DOeC^K3HC z%Y@v{veGLnO{oVB;UIMy49;ML{T{({x!upL? zy~YUsvb#>3`wNmXAPDsS;>0N`siqKVS>~H#sE}q%(fd#0{QSy_A~x;x5ue$)%^MB3 z>@0o3`WdKB%S59g<5n?3geGzEu~yezM+|^@?jRT~WcG+!I>D@Vl3)$FwJ$+aWmhLF zFKQa^Dg2>w{vM#0O5DdY1w4N-)|awPSnxVy_9T9=TWGT#@FTyS~YZk?%59Fb`ggjZ&4{ddxDthLR)~8e}Aui@?TfLlhi|o5W;3+TWcdvghy z8)UK-H*A-c7%`7Zm3g;I&UwvMxb_eFnx0nva)Ti`@W@EmLRfAo>f+PFi>&;kQ@Y@z zwd&A?M*-@PJahY4n}kFe=o(nRZdNY)Lz|IzMFvtsLE+EM@izFHG&Y_}t6YF!%qWr| zHSLEV^x2C3y}$TqwRvDe>A;i1NvA`a+eL0G>doq4IyyCd@|H|@37)fSZd*ta5Y|zZ z{G%edL+=R-5!B`{rXN6Bef^ZaP*?kZ*n97wrndfHn4=!W0_YK>!%=LAfQo>CfQo>0 z5a~@sYA8|yl8~SvpdzAF>Ae$zv``EYQIXyWEkvXzKm-y3q20C5^Zf3-Gw+?bcjmqC z-22CqnVfOXFv;F~t@SOR@=bL`P=6H7;>+^8@!o4UKVC~Uy5{cBud;`3iU&!V)UVn5 zO7jN~39D>%i&x_roNctK+FEqSD`#N@8$NrE`n$Q}y2p@z|5!)oD`IQQ`W5_m)yP;V zCl*?UygA0;hZ768B?;JJz5;!f{0Qg`Z4oH3s<*#xuJDxk>laCHm-)HzRsB+ZR@>2v z^KZu-i53^;=D+43=fjAJ3zc4$Qpc8_4EuEz;o;xHc6d$-k1w4*uXv?>OuS`%pu`J1 za45rr-A%bkTi-|ifcZ$$)%v-F$$#=RoUy=zwZigeAMKjYnX|Ji6P**{t9+Ax9_hDI zhk~9lTsh`k(gE7Ru*_U^IF{XXSZT|fX6A1!we9WL)YZA%C#v&`` zi^pgZ!NT!d*rk%P6;YQrI!t}!Tjl^W#x?&<~zIm+Gc@g6< zc%$5Hd(Z0efV5+*kp76ZQAOaRb7pV0{WX6w(ZM;yC5|%pGTYU!2Jd7LnG3e-^U3Vx zoQ7W8$m+MM6=P`odsbz5zf7m?2Y+X@KKdqaef0-jFQ=>v%S$%5cjMP;yBFE#LF63V z=;hB(^uT5XwzAs2xcYg?oQoOskN&BpfRp#*yjw z=D@zZue7+9rFWoyA=Bc?ynMFv>vzTR&Sib|Od~ybURwZ9QI$)BKkd?ecwiF1IUM=I z-H~4;8amIXxa;*5u-+O)sTCt?PVM3|lutkSyR1SBs#GqHjQ3U`ADuP(2NJM95Pq12 z;t;GEaetl_f^MB%E-9?NT7hK!Wi9*|T8J4QIASSnuzqRubbbQ0SJJdVn5-ijT=$XG z{suga-iX{JkL=yG1;h;RgJjFu4_YMfT-BQY(ysdE6sxaXRsgz^J`^FNWGT$#1Udig zx%0I%;0(+~HT(VQokdnx&usT^71oay5GO1Ke^+{1TxG2}M2L$?Zuhr~1l*P1?KiED$_Xuz-HGMF9 zX_TbLucfZ7GoIxV@b|{y7Z$tWmKIVt&DJF4xDUNHDqd-B#g`sbH$33U`&K+^Q=HsJ zDlWk!kOkR4Kjz~oiu0hU4%{fdw!ULF^`fLvGm&&UrTJV#zhr}wrGG$`yHxb_leTv@ z;gjS_{0`EJKm0V|gcx#wt?rS=kL7EsCD%ER9WXysZa|pGl`)_=B8EG7c-M(UvX`sb zq*ntepDHc-xZdO2IavgCM>ap9j{XT6WpWwwMMMfU*JW8>IiIvScFOTX^)v^Fen`Q>i zkSpKf`_GM?O~Du$R$nOfseSBw@Qws{#v@B0+PA*j22YfHp_zQW3W%o+{;u-*@nroS zNyc2?K(%$kJHydl4?N#11ai+BR+1H zyfD{gWhVY~ruSl{L>?lPCS%^8%DW)ShY?&(&uVJ}zfPnu7bn!OrrKFCk~>z$UkqFR zkl(T_lJ}-+{-viuOd0;NLBA7EVQudD?6IUP=T|G=Lg$5wPAcFf4+me&A3T5{Mp54} zpV~zTCuc>__=+OZlX1*7y$i{5V?ijw6TX{&xB4-`T)p*-AE1-ZR1QK%_%G}Cc9Fz= zlwk3El{&9JDsj(=$G7v(pO|4FX4W>>=^dkEYVA(GKZJQC3odAD+&Gm+ zLEuRtzQW_kXDPVCdot*2c28L${aY7h>t;sga&LWHmXM}+AxIL$1d7DT{=R6zc##Lv z*eBFMWqq8DgXcY`D`$jl2dU}8If)tRxzACd5}aP9x>d%B=>b1Gj`{2^psxFvyE)6} zn0&mdugv&4tbZ6w(Gy54l90L{oN?owt`JP+flXum*=9z zj>%ZKo0WG>TglY)+StsK8`FM@;J=S?V~&-s1{{|N0PNUR-s4Axl!UK5XDFBL3#(lB z>|sA(`g~@8`@kVn1{OEA#4#pwtYN!`dvIiJI#N+xyY|lOhFdj-YKO7qqWeliKOgnF zEU*0H!lkw>2`M*xOaHeyx{1$y>S;6I^sTK5f97{kfKlY-IjO(xLnReCADowR9#kyauQK)bNK=;U`KdMs-y z`iiR1Q`X{shwnOUY!8KPGpzFBT}LZ?pP9}?_ZM%!vNU`8ay5Wqs^wT*40D)f{HZcF z6rqa@m9%O=#L06O3G7|a3ZIO#*Lg=AQj@KjEcVT~Xt(IN`px!?80&6p+J%vmXAsAF zs)hN;XM2k=oAIolYaI2zJFJb{(|p{y@Oujg5BL0ox*C>oT}pV|LQRm8M@mAO%U%_o zH-lv6D&9nNx+IPnOlCMM@@aM0O5zcea&^5vI!Wq2kb%!Ox4V|{gr zgwYtgEJljIW}!M88`~e%jV^LsO@t~4}s&c?PINhad8^)>6PYkU+Ic`8co`&&gl z9{6z{dn~6e=8_!0Pum=>{hgHx!3r&AiT>7B@N`r7)vD638QeE*%7+sdZu~y}Q26Y` zcDF#<(+6DV&eiNW+2h9imK+1?_g>X)?JQGt4z^ACe{fUNi!zWV)Mb;f%%?(%Q(tZK zYm8_G83FU1%pn)8qxK`2e`wXu_C3GN$Ol!LdY!_GCGMjG;i2bhv5x#F5G#U@>l+st;(R3&>`tx8lqf*1M65B!)c z7r)ws`GnTG&76mtLF2beSq6=-gH8vRyo~l;_~qNNGkGgUMfv616KrhdoXt-PhXhM3 zziD4nZQn*;zV`ayA&1cWpxhqL#6U&KXDa(B?JQge!%#Zjsc&O-yged z{N$FjG#&q4`3LGG-1@lMqlw)oY5t3)o=j@XTU~jQ@9mh0Ag^lM-~f0D)}pcaZoti( znjjhJUJ&kYrprM&oGMp#9iM7}CS*a$j;Tt@l-%U$Y&%1P+-%ARbyk>(E;EWifUddv8^3w|;*miY$5r3tfg=IaAVvKLg(J(N>rNvY}H zinM`=+oFW82XJo{KBY8ncPZlA%4*Al4T*2hb|#w@g1UX=(XFu@t5S3zT2(mUZa{z2 z0yx-%ys`4_)XH1xOwK23CZT%7s*>XMg|*fcv4JySD`rwFJXcP=AkD?%K5#akT?lVq zOWvjlV)-7kB4PGM@w+>{ipK2+`jy<8ex-Q;EcsY-Pll~+-{SGsnm3eZzestG)hxmx zrv>RfFW1P)__I8Vg?%#8lD(B!DUQGt8T6$A6GD2vSAhpi?o-TJED_s%!D}dr*Nb+igY?-9cgiv~w6Z)#e`B#B^Fa>P`1a(Ui} zre&Rcdrg!cygj2~a`$PzF?8D!XFe;wVGFR;w_e9jer1&pJw`76bOk9s-etfzqrMG#NO!s+p zK4RitA4_i*X}og<*07ECEeh+mH+Diy?~9xxn~OY%l9c)5uEXGWi?t(qk}{zF%FYhKW;wz23v9UdoN^bkLSyJGrIL9RXr$Syo(Y&A%1WHD z&RWTlnf9qxB`gA@NmW%*U%A3T&!hdyF=b}J8Xjy=GeY{Q0Usw5v#lz7-#Q=PUwV>> z?*%X*?Av=q6RE^G@&U82ffHZO@Q3Sit!!_UM2*^-J0g&_8Ce;L+|-vVvrY{;qw>tkhocq%7$0o0^Y>g?I-zD9_ufg$oUz4$fBeWN4255t zR224i*=kk-J&@YL0v7;--uCKm^K9^c2|Df+TTj3uqgb-lSa3(r5_TlI-x7QHWOe~jY!)}zas2m<{Gu&n4KfmANlo4i1ZU%lcoOkJ8M~^RU>~kc^LN9 zgEe~nXTMS&{utrJ{rA6P`Ycf^n9YzywGej6FCHB){rcOt!4lTE!|J|UTAh-VF!g>_ zM|J-C?g#N5_1Ik6kY<61bEAl*NwtB23hthUW`{etEH*zQP%st+qsldu0+P5qIv_MF zK3E-{-}r<*|0%A;qto87iQ80Omov+~w5nr!ef&IP4<7DX*~wL@XApJ7&Gh>d0j0j6 zXFMIhCs4BKc~#0Rh8BBZimC7P#%0peyv@@?F?1X;L7edSHeLagIM4RKswSwPc?7UE zgzT5eK2@?^j?HlbRACk{oSWuW;E;);1+N1#KxtZ#4e9~Z0mYs>XWVc>aeFeQpg9;I*P6CDGq}Z zkJDWHhkT-hoXSj%Ew!he^4)c=;0Z%z@}hmR1^Gik>y){cV$YE>!?i-+#4?tGMt%1bUxv(HjHyHxQb0 zoJB-Rz8+Yk1?pi8n5tI|{#5Gd-aZU&U#OJ5{L6f#mplx?UReiENF-Zlfk4oFKW>~R z4{d<3EECDf5qHJqm!AJAGJBMThi?L5Zm2HtNmum*sG3#FT3#sPVzd=p7JHzZD%V7&YJmiN6nUa!OjE3 zvWDiK;#m&S)a)^=V6hOw>hzc5kV1|bf4HqpLD?zxI+Bg=4KL6<1_wPZt&njDvE20v zwi6k+oCrSmb5j`%9eQgRzcZ-_xM|@&MgK(N0wcgIqDWnD#9hwDcj4B~3@+k?ZI;>t zlK{*Jk3)8Y>9ZM12xI<{Ln?wb`4QA5gyG{88em1(4!tU4L>)SG4)8b; z!7}$FqT4Bp`9kGWOlIGljo8l$(l}t*r(z>{oT3d#UUUF6 zOCUK>Xkax1jn|U?^zmi~W*_)GPAU55kZXO}@W~|9mx{7}gZaE@!ZADH(n|fVUT@78 za%ztNCYypwfFbSUAqc!|-HrUg9>f?&$GZ_#!b0XZZyzv+!*|)MzOu$t-i<8DDf_js zM~S>YHLz-DKq^)xd^-E@uTnW+-oueN7v^~Ij`(j!+AL64yw!Ay_*6E1HX3x0(uIyN zHxw&q)k!byqfKNYEyliTLS{CADTFXQWbQXHV&@mP3Cjk%f0FrRp~FM8&|Pj}*(&@H zX+J$8X^asucd96Aj0@b=6D}MN*U*6c=`)~ zZ4tjl)JH9ZER7ICzO8L?PEPunRIhD_XesXqokTe5Ftk$W& zFuR?}wy|69+>&hTqNq^x+J{;LRdS-&~)w6^2Yj$Xyx?=+@bX270L(3HVrEyYK^_hJb z*Nlhf_4%&-tx#xRf2acNnZvA!S_CR-d6Q&qVqzQ(9Z;aLDh(Z&;ia41&sNGFd-=+r zlB^TDb!Hfh7+-Lly*zwkpynAWiZA9&V*B=zcYnevdsRNl6e}4|d`xRDyr?-0`w4zn zPiW9)FM#nbGl5iFXC0uTs5!$kgk6Fv1V43u`6lU`h2Xo*w3X{8hZxBVj++}qEGx4^RSE1!`poH$1dsx`G* zlVFUFmFP+LYn^!{moIgk^SGEKWHW`l!IR$`Mg=c zG3CVw(jWUI^-udwp<%P@%}}jvI%l^{d&tZB%FUJOv1tIE3DqRk%vuinwTQ=qzGk_Xmjm4hy8(mQjwM5?{-&Nk)u&NZCHz7OK-!a~INi*nz$pUk}0#x4gfUho(m4^-cRwpM7=ropmHuOvaB)Xqj| zycC)Bflzp_dk1Avg4KE%Kz)65E5(*sT%E_7jlk%k<-CmEJ9SD7*heG_3iwR|<|AnJ z6wj$@<#8v{calJ|v*$fyw+hW@vXUj&O$7tT1}o|OanSmC;+EUV?cHS+GAbk)VLhnUW2Jj@FjP4Y|7Ni4Zr!{*V7Qz22rAEy}t|xau49r5l>1z z>z%{3FB{I^RFcu?zIn~`)#0Yjuk{aC^rKYHO6G1w@EfB$%+R;j<^U&Yaa4HW)BX^jviA#CYN`@e8OEX4Gi8F;#4_qI29X)b-cl>(2R_Fc;g3x5@7?pboji>5(16=l|j@;CrA$ z2)(O3r#vy1R>fd9&oEf=F^fi~8gDc>bU2FUw?G{s>t!@YB)BbZ5)&5URfVOT-&G!6 zr^RMMNM^kvApvu#cNQ}PFrosAKt^_s5MY`M&7yArhR`Koo+v4yVKA<0iBrCAC42kW z3C_fUxQohbKg{zETF4m0oR4ZB$n{RLcQ>I9l}ba>J0L%dW~2VyQ(zWkSos{Jt;{f; zlne_GP!gh8jPq%5pSMMD5#_5^qUeveL85eHz-8umiYwYmKK$(@rmM9&&uU-u+nEVm z-8^Pug5(jNIp*eK4r4E`PZ&>q3b@S(6dt<^b2JR=7jtc%^}(;NU$Q}3xG3MTk!s-N zk9p*F(FwN7y09>*q(OOpVXl=%OAYm(aK*=`xnd^YKrvv{|L2?McOpF--O3jhCh;n2 z5Og$1{Io(Fyo4>3A*EXZQC8=Kfvl_wY8T{2>O^9*y|Hzv#NuQ;H+vf=_n`^4FK@2~ z_v&|U6s<+#iPDS?*Gv4NaRT5x`rQLUR8udze|XvLm6J| z#d7U~yj+I5f|bEgZw&yAq6K&Wclc@H@m+e~BM)hJ) zW~C{geiqhrVF9p?^(ufzIRLVg?K1+RwZyeVY7!Pp$}!Gi+ugY%sNW+8`>9@7@KpS!@G`pHZ)W|5L5{fpSRgDj5Rcwj`F8GvMCtCb zCY8>_nW;O?oVahXFla+a%L(3f*8AFwM?svr{5T^AP?$YgW6*6sc?fdnEl@3g&UE^X z+{}=eX0Y_6nIIVJ9y$m*etFxgwKmutz$(%gOLS%!Va#^sD2HSH$};~b$n+9JAFw=r z!&&_H9$a6hB3n}!W2%yddYC%H3RzpM9TX=Gl{qn==Va)kN+o{nJC#-S`@^}1hBg`N z!9)s6DR`hhszIz#8C(k6Avv(fJ%F|b0fv@3Z802pG7Zc_BHGbcuY?vvc5QYV?iNIl^9RPd){6_5) zBoG1p^1vf)^Og{FiR+Gyk(`%l33eQE!uR;X>AwWq)kc@WpY%*dIJQm6nekF)B@R)| za0anhVSLGu$2ca1mR1BV9HQD~-OQ7VP?#cyYa2aihZB8!jd|{q#GVUs zmcX?uNnZv|@$fauskP{~4XHcN6x(GSFm9K&GRfvr8Osz`^^6>T_qFRGUwC73g}R;I zNVZx;!NRauz3Z0d%4Uc-$yB-QW|&BC3((V&`S5nj=WXeTH8Ml;#d66CM0Eftj++EaP@$vkaQo75xZ}r?W-T*Hys{dX9DmU$Rw`y6! zos=3=mzmM~JD(n3$l?JP|Lo=C@4?H2%wv438dqkuB& zpH~8;l>g_Y^H0PE|9qBr;vrN>gHzWBDM6vvLsv-e2EEF!Lrw$eW&XeU98u1Ci%Hum9th_P_Z~|MPMG*KE4~EX9A8;{Qaj`_I1n&%XQ5zWXP;|NmD} z{O6GUUwFtmM@Bf%V4igoHkKmAAG z02xwryHf*D;6k7ur8&D3Wu&E+7xSx+68VlR1aB_cD?YyWIstpB7clPgi?eL`evCOm zHuFFJFjcCx0onsUE@6e!Iw<6Yiz-8T#co(g^=_cbyO6Wz@xaI%UfHhVz2^crPmM}K zNzqDCZmDU>P=Z@q^d_WW*bMrP#%__6Biw!s>uUAcMDOHgpeK5rQVO=2+**B5=d-|@ ztimUV^|A{;ZDJZ|Ql6uIH1QNQ7Axo0Ji97~jMk-c|P!4g*kx`9n)9zyT_P>7cs^qs`R4hrdX=?BmL%xt<6Y(N?P=go0%5olWp*v zTn7ro(#>O_n}W0m^ck?WXb913MvJ5-{L&+=cHF04T)SDBV@v zvCgd^Rc~RsujJ}kF-0%cAZ&^nlj`-Dh4e4Enu(Pc*6*zO^;ik!reR>Lu za$5Iogw-wqID#|Xi|x1w{j*!s)!2%2TEO#CbK`RPL`PlNsEuvG#*IYqV6&JiS5>Ki zvQYFGy-M_g6*7+=SB^nqiIKIVjEM_Wll%3- z(qF$iFm<%)MkbK2RC)W>HKwFv4H`!aEn`J38yvsQ*O8;mv|}`Z z{-`m}(`7U<~&U8Kz zr%UpxGwg0ENVm&nq_n{qfTJl4jyWdwB<+D|V2a0FgS03qi)aoWZ|x9lb{95lUhPLV z0EllW@ooHB<=@jcF}7yKcBv$@DUCb{$#dHACbr=J+scN;BT z0$!V+PHr3we*5*t6CGP4<`=tT-qtp%*_7qM&REYG6n57PeL#7Iq8k5Tv($Jt_y(Ze zjBdTSvpY8mGCPS|K|otW)?h53ATIuHS})$aGVfC}UP-|Nn!E7Th`_MC5pP<2iMZ-4 zY$?1V6E~9ZJy_i5#=a$%6J;p;+02i_7M%w#gAoN6rR1(uwgvQC?fvQz0dSM@&Tn&o zZOd;4x@pIOos|a}alxuD%mkOYFcs4{Q>rp8k?g=|_tJ+N7d?G)kLwInRFEF^b2gPb}$UiOjqf}X~H9$2b?0Z||naRC`I z;m)T73CQbFxsM(tPpDA9^pn6xZ$&nzLQI|87YD`ki96S@uI5zJlrhhCZ%x1c!u?eU`UHgW0cQ$A8Saho1mLxBw?#U?NBdD@!(|*Ir+d)0g&TT2FbjksfjjfTE^!#3E!j1EH8OJ$?g{xu@Vvszw`u zVu>+qlfx~F3s^r3k^!)efU{dV6}?!7L^ET7w4u5V3lxeJ<=FdAZ*l^IM8@FI!Lley z@=kQXjjpEmYR2#_xY~@nAEA28L$a~4ew1iWG`|t;bz=y&zAM=A(XG=yrw_j8A;v8{ z+_pG?Fu;Quu%)^98H=)-mu2p3xKhoR=e-_;~h6+fxm!Aw!xF@L&3(Y z3pV|f5k57-=MI=fxAHD!Oh9bL4E?2X7qIxyzk05wCPMUhxl=sB~&D685V=DN| z0&80w$_$)3Vlz4xJZL{=XS3gqjm({0Lt@N#QC*=V0wEMg6@lPo7uOW2k3XG%85r<|0=cJ~O<%KCt`?Ez3~JsZEfLy7qV(xgUqbqywS zIC`vqC<*8{2^Cby3|?oP2imwOC~bpvR0KID4Sh#?hM_aSNaOfzzQT8Q3C1tK)a3wvL$pdIjeqQBFVD4rfS5)F3>30gt(#S(Vz_3 zS5}W+Vqm$3+yF4DAS?%XysXHsWeHGkjg<*!15BF?6*TppM@t~UHs6p zU{+&B)=eG7RTd|_Zk>I0`!ECA(qya3Zh5v_W9;S0?~@l@Hv%py7kAVG`M~tbf!&y` zoi{_s%b2lRE3dr(3?%Obk#+#opOiGNX4TNN&hy}^_QLm+nREDN()qn|y&cxsi@+BH zDnOv5){1q!@aFJ=%f6?$la|kwV?p`&{q3=iiPf%PqFfRN`%p9f6!zkfV6gHXAW=*6 zeuVW$83G|U<;}_cqJAn{PL=6_u3F7BNEu}yEotQD69-a8&k6{0P$h{Zg>Ye^jYHnQoO~QYn=uk_WCvKrFl0}_p znUmXAiSun*sG`=u_S@YsEt4F?FuUFPCXCDu@)jbQ~M-sC#nwFUR;9LEdsT|X9Y9Rp2&|YtK~T&Y2G?!i+$VQlo$h{ z4v#Bk$$|@IDG}`pRWKcNm}i|=zMI=Vy9sbB)sNt>wA(54lE_2zz;QW1FbFZla@le9 zK1mM+Dq7OYk43qN`0y`_vgg&8Hx4#T+#3(>98I<>0{52Hrh!L6!c9=T5N+iQuU^&P z+zChT^tek})&%_MTQxZcl^-oMVab$EFc9DxBg25XK04nq_soP=FsXRnX$*KIq4I&b zh|Kf+)UbdGYJF`3W*8Nuqibi7#>fL}Z(K_AwloT9&V?Xp9oVQj+CH#-2q^RLXvtaT{-=z3`B= zEZ`5K4_t(-g9PQPw@-dQaHOp})v7Q)YS;2c;AjmP3o5LjQqro(TGw}(|8{E8Zd@?Z zgO0vV^k@VIg1w;ND8M=8X$e|6+(T?EY$AShtN0nA1G++g`_@wNs2`Ewg>RuU;FX%Ni>!x!jFX_-LF@xpOziP377 zlFUJ$-L=jwlG)$%d-(l=UO0c4kJKCf_d~~@61HbwJHcXuSd9E|#0`e%M#_}`2x9{u zaS6oLV`>PBS7fqK^pmOpFeL!AN9VNmo_fJ!xi%Q!0|y@AV}Vvgw%qICQ%0m$smn&p zz;J^o2DY*J{$z#KIQij=HKA=9uizO0TdmpdwR^&3!y&;}TUZOA$1Bo$YU0%vjid#G zVI1y%*$$@2dTBQIG@@wYX$+xvrASo{;?=8T`QABw@gI)Y%H!9&ik)avYo~aYc;{1i zI%KjxCj9sKF~xdIM>Q>Oo}^S_WG6qF{=t@&bI4R?lyCB6+%TWBTJQIS%jOlvKpcX# zY5oImOGrnc-|wz}eOhPZPYRs6LR$ZM+1SI&ASL&+T^S^t*F)D-)>^7cix2&OpA6h+u^h@Hu%{GB}e!FSol{4=p zQ1_~La&MLe5IdV?AGth4Nq=gzwlnZh`N5fo2UVZ!HuAf{R)hm%TXK4xA>)WZh0jV$ zxvk6EdSwC=-KWREBi`et)Olo1p|<4gDjwFEKKEX+F{@PmFQ#2(kR*4y)bK|p!V+Jz zneGCrrkFl~y!^XM0R{^%=WgkgBL2Nzr}xL6`*V4+^G_z@&Q8#&|LHo3eRk8(%Tc@- zbrhx1XSYkf55zYb#_gB?A!f;$pux|X3^n%q{z@UA*b6n|re)%TiN-bapvO(&7zDks ziC9G5CD1Mu^x)Te#e5XY| zj-j!-D_H!Un3|PgX%I@2E-J9`j4 zh#c|20B>}%q6%OXea1Q09~zjg)AGYqwjSa~)&l0+tO^z?)>sRm!2#*h?aPN_dVH~2 zDcA1-^-dq~+>x=S4`7f^jLD4hWak9<%@O|xB^9F*&0fG{%H!8$Py`buuNTtN$?5$3 zfY<-t?5$)4&#~u;a+Zk=QRSsLhqy1Pc_95@bbEQwTZ~~v^IP^-eIv14HF$>IEs2s4 zn3qp>!4j|Ri0#uoww}T6rkcByjqrLX?O@LIbw5uq-?UzS1g|pyY%@R-|i~Gw;0WS-88ft zv7)oO^$oC%0r^NKIOV{TVS$*z#B+T6CLw`OmL<%1jyL@P+5zKk=|12!$_6J4G!hS> zp&(F4BX`lFdk6h#85!hR(jP@!s})B4+U*6N;K)42?=m?KdmP=+OyfT}T=oD%rDybCNd(^C(%79JwJp#jJ+(V z+*h+cKcZYVNml=cM2d&|NDVOkJG7%sFN%o-ry6IfHrCz^4swoP}eT!k(kr??qDH*>88cF7Wq?{Ht&-eS!*DN1cYwc_{+3?{m{@wvs>X zf&|%LAmGvclT#IzsHNfet{k#|T1tqFq=Jiw%%Cy3K-*F+aRt@|P9d>NS+v%(v3RQS zZby<`VFl?qV*drvel@Z1gHE=GTNXnZWp#d;wtLhQh-Kzf%FfQ~!E-Dh?aTsgtcdqg zvDHxJ*2D-*fLRN>Jl>oU(tDx>ho6-`!W{uuT*BC%)HLYu++b6I*|x0z1=HJk6Rnbw z1q{!pf;eZa&8u!2=E|P`K4SQyR-s!(#Wn*E5Ah_RT`CE7pMnyPH5&qZX7sN2b2m2> zkig7OlHbH3Gu9O1)}?ItKQy&F#h$P7!FnsE>>aFr;+nau{m>lt)S1sc`oH!d2%x`q zVLWM@LgkdYaf_D6t*<}h!ML<)mcoxob}x^w-z^auRhpn21aMAQZ6n6tjvX{00wtgp zd{RzP%($*J49xRx>@PeC_AZsmr$KpOO+o6%FO?0Nk!h;a1(JKLhaPGHQ&j2hqm=!Y zAh!e~0*i9-Qw*gLqVxO~|8onAE|qhdprZrJoZL{pne-&Y$kMcALV4=?b?LfqTr~^G zU5bhE6pUyWDIw6AJ@8bKf`BH2Y=7D1*i-TmO|o)c-;gWoJ>GE{jY+D^yl1t#U)=(W zch8LZi>cZT0l?BfI>JiVY=FoJ47G75mfoexFAb4*8+BtKn@&oZ!1y#Xt11AvWjL7C z64C;h8%}Q9P>pLJnw+sO2pp(z@vm6IO>EZF-;Iz58Y+|f;g3fjh525IA)13-e38mA zvn$x@z{8oPa_G*8szhpg=R&FTlz}SE<%VW3eC1hqvSAeX%n7&Jevzh|VxwXMOqn=m zEoW=;`wi<;uR&PAe56z#VLK$Tuk=)$*}%dILF$1`njM&EgWsm#g^Z$*YTK4H1r&P~ zQi>90*qxatV9w74Absx8(FqY?+S(cw$dj$a#CxWw9VdN5+}4285a`z4N-j$Nna`Q9 zFIXWySJcUa3$~QfecsD+2U2gyjtTZ|6LBCUPVo=Jl=0UaV0?ns_G|oUa z93L|cHF-7&TUBMm+(m$L5snAT<59#pXR`Yc4%sy$qrV7nL)uP>*Tp5^?%N>*A9SMw zgJbVe1N|NV-x<@=y#-Tm&^3fFvQ1 zaLY?DtHD#G%z=wGw8;C@(0o$p&9v;PqA9^Pgj(I6#;SRkT4DEd!}abXb3VR`)RB20 z99jQ==NT1Ssk_Xbr7~veFbLye<1`)G;C3}S zdWtrn9KDx&$Wt&2ESZ!74h!BiG`6IaPKlP58sd_{9l~QE(AQVLb7YO!iDn@vLz$G8 zn_$ALu;R^XHKaWl;iNNmv_xQ+LY$CZSTccBp3$AXCz;V;G+^dl^H!Bc53iIdP!n_{bX98 zNd~`jXPFHw;}kHVLCH&?3?N$7`0`8B>u62_AQ2$zIZ>U>+6r zn{5HGD)+>8OAUB=3gv@G3QV0p(AX8$G5mHkPqM%l<&WpmP@EbpfyjXs4u5>sc(53% z^bQZDnwzoGdIaJ`pIF>j=_gv?gJ#@YAS0hej|y z%M4iW$7FTeO5uXQYOt45EMw5soBJ_|G9qdE@v2n3*?=p9bxjXkJtXujdiE38!>iH# zo)CKz&Y^E)U8-{~Pd0hW_dW2%V}P=gL$puxn9d;47#EHrj5aT>pdiUF09n6oTm}Q) zs&Wd8Tj@Wul2saRC6aEM@TT@^I%wueNGMwZcn&-hFn}l%@Gt{cxU+NgQcN-ljTH}g z)8k7303Dw?ZKSTAc1oI@hf}pKnUVCPaxtu*?o~39!MF}!Yqf&9AJF>^%Bo;UhWXe= zaxpglgOYsS=MK$imC9S)s#k5H$s2xK_jbrTGBXVR(>P{caA{Ar<2OZGm5Kl`L4u)d zV@D-qJxrhP?yM++C{d`atdrt325!i0vf@!1($XtRnE%G1V`7FIPbad^fEF$P}+A9nzMxZPbCxMqma)+d`EqaMa~@OZ6y$Imy8Ebxi#8k#+uF+keA=EY{nva}|bR zEO%HG4;B=IeE*1R-y$o1K4UZ>IS0RfOhSNLN9E2qk{pvTH zm4l88*}bp>!*3!9kx|~o2Hl^JM|O@~QY_YDV|($!S&&U=gT4HCg-#b$0@R8eDeY>@ z=;$5qpcDGQilm3#b&UbG0okpscIkQYmHk8Xkw1lpud%U(G*@!4adHlPzGJw`I(JFD zHwV}-;G-+gE%`vvpmzaB`P{Uko~tX6QUn0)^c|8tBxQgU)qr%p2=)dvMB`-i@@era zufBoJu2@$MjNwtx^$3CMiQDoN&Ppda2<|d*{WY$uT<U|PLP)@fmRB^Jgtv#*z<8#w!d@+JXECODP`qBB6pTF-z@Bg=o;|0`)0!tI6@bCx} z2{izmA$b}36Y%kgNU5>0gKLD00p_;CQUqf zm2B+Sk?U!1MQbXnjHdEmn7#hO4Dt@8f%GwmGa!=5wu6%%&#Q$>nLVNE&Sd0q^rr$K znLf7f^3kFq#=;i=CK%_q0OSSGM|U*Uli9oMbNbI|HE6r}k!f>o%iZb_%?jXtFnO_O zq!#k(vK^8NKW^EP6MXXq%u2X)i(~D6Y|dFNKpYh14-s22&j+7KLu{=UQ{PY?Vx7=$~WP zAXotH?QaJajbKaz5WE0*CJBl#oi^rYwc2!}hak|tTx~zL2(t$3WL-niXEZ>JMwg65 zensodPDBRSsaS#%NwQ`o1lHL9Hf<1EUtGGXb_~dXr>GzyQKz_m)wd3?!Vg8%xj(@z1KRlbdG*2y-RZ#u~X2~fCT)l3R z0VG;F z`e`YcFOjl+Q}&!TWSf6KRY_ltpwd@W%@%QsfG5CNs3Ky?)umw(#U4X7z}TgLuM9Ma?fL? z#?~C$L}!2aPxm|^p-F}cX-K8(qfGi=F}a{1|1ah@;pYF4`Ar&K?lj{Vsw-f4u2!as zc(*BFGv1~T>+PEQ4}dB76INU!SeLSXSK`k@8NMWk1c5cs&}(xv@&8y!N#heKom zFd7LCe^?8gkMBB9ZCH4C{EW1Q>#b2;sQAMz3W5t@jSJFxbO4}xS3d&N+I@)QULP1J zq_{aOQcwM;0H8Z3f}`39({MTZK2h0esdrR?w*$V?Ie_8#V+bJV$sFZitb>uY`_J7~ zlAo`=3+TA(mlFd4wllJ&7Vt0)`ptrG@(ENRBcS1|bC>^Hd*>Ps_1^CBwpO(Yc~&jt zyo!`%NpdDs5)(3xBMdq@G$Ao$oN5)V4vTWgnVb(9hZyIX38|GsgfXZwNs*ahvT95j z!@mDo*WTB&pJ!j!e(}6`UhEfMxy)t$hu`nMzu)iu`QiFDPv=hjK#!?`TbYBmy>TsL z>eRG}I4=gKI=0Gx=c>^JSgP*6n`zLS{vM8*eP*};L_PmQfdycwt^?nB$ijE#d|&(l zNNu=x0taRrSOJBA^K)`_Dh7TZG0r+1Oeg>0k2+XzQHz0(FA!{{+45fu!?318gB|jH z5mRyw3|06T*+03HU$`O|Wkc3#m` zXNUvooeWpu!|e|4BAQuk=?(nct(~lbLZBT?Tjt2P&#z(2_ZU#eWa{BsM=p$N+`v{a z9JAE)_jvxFz0=mli2v1`%x!oFXCUZD-CW_YZI?dA%8}0ak_H_LkayKcc-^y`omK{% zz9L^wk6%zF3Ap|2puVRX?~T5`tyVz=nT8h;fE^2ICWInR+(#de++G!;mqd5QA=7*c zbcs|IA~<-^k`hUB-6`pBUTSTx!>`ChBW*X6VeFpOE-@*HA4f1}}s!%pd4FzEEOuZhD>O92mX30`lU?4HG&ie-Rmz^6+ zKfo}py6Skj7xn%>^aBSvK8{81KVB*}YzRv~z9QwYaxD1#nqkZ!2xGcknb>ca%~ znuXd5?4wGBtfqGR-mIh!gx|( zTja51YEs}U3hI-T)NGfT4f-3Ya4jU%xroEXfH&tG|FazLGSc|Gm-NI&jveZHVt~w> z@yzQ;eq$5!UwSa9et;cDoPALGz#<=xHDw4e@2%#;Yq%DcfMl2jjskA1B1ss7I3Djq z$4R@XM;c%2JL>9Q)kIr#(cEfVjuxN8FVVWzhkiMA5~&Aab0jsJz_9Z}O_{x@@dmO3 zT6U)u;1g4w`QwPd|$>_VK9?eGzvFYlC!5JQVtvTRqg2{#~pRcJ6-Fzj^na zM4xSW<_J`ZMl&62^%0J^4gwiN(u5NRHc-HvIaZ__p`;w_CEA$Kw0O-hOk=heXXMcl zagc?N>xcdR!4w*F)mp^boNk#-OBrE7i1Q`JvBB?LA@%fDxs(EcY9$pR*euSYuNzXu zJ3Ya!9DvYD2V+?ZCU8qsy>_sH1kBw;*rWo^RmNjUKE1!`6stz6ppY5du}lNR zQOu9G5lSCY`y4ItOm~cykRhXy6O!*CoeZ$84*`JVsZ{L&V|3u-xHln#vN{{Ddexkq z5h5zL!uVof$)ZRF!rPE#5=Q)oOE<9op$s%g&K?ehuo3Q~KFEW(%n0XeoVZt}%Ivj% zJx=3mz|$s)kRoFI&h2>iPN{)4g4@{RBN{r#Eqhx?k=ha`%^7vyi|36`uR6^0F2_&i{uYht;aK!6c5zKxF+@wEO%M-QJ%8Je=Jr6;Uy+|+c=4gIBTf* zm!EI9Q`}^QP9RS}t3eDbY&#v)g!alSBJU!{XuA=DIwD>iW3`;`gUR6}5wcB;=is0C z&rj+^Q}1spE;!b8*POw>=#h+_OV4;YXeix{ul+}-lbCn&j0o4)mT0FPb3R(w=U?fPOPazib0xw23QY{sL5{KRMM(My z77;}%9}TE%&}eI=ewipA6Wv0Jz;(s+oSVzA_eG4g_SwHP)^7PP;1!C46~xUo=uzdX zeU#3@UCqpPinI%wsonv*b8JxF=ro%h=}g)UbiJhd5DY$9hSYlrDu>BG<}(fS9FYjO zR=ecLezifigoUNY!+cK+5oNtOd;QnARN{!gTTN-0)0zDFNR?`ox?&xYD(cbXFgdvD zmVnHWpmD~$o>jY-G*|=`_c|RA@Xt!~O*itsfmcPQ=uE>#v@@|SFW)aJTN&@g-m4(Y z4&)k+!y;;VAf)d&Rse?^toz;!G|OHX^u$aU*{0>t?JRA3T`t^lL;!o>g)xc_yMf5< zdHGC4vYX20g{u;*xeRCG%I#w|q4ZeMU1Vl^o3zW_>li2- zVbeYK@Kvs+77PP#Fs^VuIhQ)A|D)2(d86c%t`Vh*suXw{IX_V!I3NWz$lEu86+Z|IgRalfOyGPWynYkDV4;P(&@ArgK;N{*e(np7 zARPWUnSQ#h4*w(uVhNQG8uop(IEAD|DB(U?)j|HQGzyD)r3u^4^ZE0iTUI-He_2*F z@0L3AA9_7>jvVJMq?>K(AaSvCnPQ9SWFeD8pvLVyKDSwn6-U52xe#=xN<|cOce-2N z=^umv;tP8xJmE#D{Hh_bXKU$S-!59+W5{KMHV+%!PX|C}YX9a6X?VC*BHMD?3W~sL z*SZBn#S-;Rv$x#WE2TF`epeF0%~eoN>zR1ldwwCfDt=M~F1?Y@o?T_i{8lp8BJzuz z?ognsyVDP7#pRH&q9z6Kz?DpGCmC9 zJf&>Y(w|OiN6f3I2;7Re&2y({II4EFzj~YI9L@RLm#m~UGI#wmAE#RixVdCmk0t zkLl3gPEV4&s!0iJCFWla3XxBkrvCPsLkX8E6VJ-3W^V7U$+N09lW$ofwfIFm_;ShS zPF;RkY)Ec&RGVoe`#T0?eB$%sTDbSxRF&0I&PZ*YY}z;7tLZd0e<+`moH(2RgZX;x z=Nq&I-Ze*>t1XstUn#nf7mYtk3toLog6F>FwB6x1AOY$d_l0A&uPwrNGq-a61E&iI zAC1SKOjb?ka|$7yLyU?rQk~(@%#S)Yf@nZYh<7FO@qcQWe12SQx!0&7+T1c`DZ;Xo zux4qDtF2iYZ_^&!I;NeYn|q7w3EEO}0ZpKIzaarv#^!#H6}siX8q#`PWacp`?fvuF z*Q+k3U?9NTq^|dL>}*3V6b31{N7`|hdOLQ?)8qcKlBWOON*Y_Iyc6zu8UJ;|yvf>a zudAN5G8J_n%AEqi}m{kV7!^05>s|1p=6K#x;p(dpte`|ayv zBXSQ0aJ?wvodZMtn)jJOdx6radC>4MqHn>4LI~`eE%EeEb|=vAm*C);EeF__a=e-> zE>W*VYpRsjlpO~{q>}?KfFCeNK=0C1^EAf$yy@|#nr=q=LZqdG?hy}%A((u9j8L5N z9wb_WTM4?%_?vt zgR9BvyUPlZm-Tt`GNn5so+EwH5`$crCET_PWwzopaM5GF&A%xo;&ANmJ2ES3m51<* za}fky2IvkLP#q8iN6oQVF1X%8Ku72AfV+b zl0#B1==slfW0wM#CPbL9Z|tR?_1*G5Jh^Q93#s+tWps(UhH$@}ax@p0|2pJV zh+WWaWF>7YDgFbwCnJ%v-NNYv_6=4R|HNQt_?9&?F%Z6A)u1Wpi#dm;m}5MLsn59(w4$W9oh+57J0_*vlcl}m2Pn|dbf!J5 z1V$iq!bHmKQ}s_^gr2lB(ea_uf5FyT^G&quo|iG*P*t(qIA|n+#kdn;% zOD}E;nERnSS|cSgFmitO+jC##ul8qu$NhRVQIH!x1--8OKRh zfh;M2v{5^tG4NfhwzP~rGky?7=W(PSj_ye7R%g`%#0!awdc{&nW15C=Owor&S*5IB zwU_)jWufPaEqmD7$WX>C@H`<^CmX*--s;;`*IW&W%ifxmup_THeMef@kIv;SK0z-( zB|UOuT;z)h|6GodH8V0VSF^7mE+D6_AXuZN<*dG?{)f-vKj#bCl^=bzjlIBC;UW!Gd%|GJ)N(zX*mW=!jV08;l>l zVbp-B;gitZ<^V?IcuxgA#uq!Ju<*+TlsngdKVPo%F7g;WQ=(zPRZ?jaS@&k$DPtC= zpU4-7l2L~ZxVs7v$9XHhY~C_%g!LX#ZI5oz1)#)-T@bI64flJHj`tN)LO7E~q6nD+ z`(*bFFBPIwpxwCz=4WWZ7I4K1l>K$(HhLd|@(AyefhBm;FQv(MlB(5!QvM`v26$E4duiwcjWFi*@dQAEL(p g&%gfH{HtK~EIOi;5nrkWkHk8Z#fhU;N4$UiPu&YywEzGB diff --git a/site/assets/images/social/examples/stationary/example_RDT_station.png b/site/assets/images/social/examples/stationary/example_RDT_station.png index 22faac3b6824a0442af191dffa56e5a684941fde..645c607d9fd8857a77c4e34a62c4d40951030ac6 100644 GIT binary patch literal 66595 zcmeFZ1y@^bw>3;DR-9tNTUwwH+?^I}DONPN6?b+R5a3Ji z^PKbCzu_D27}(w+*}3+zx#nC~!j%+ca4^X+k&uvZK7Eu_MnXcVLPA1z#Xv)xQGD;E zgY*mu>67FKRrieJ6}Qy48ZOX_v+|Od=>*7bTj`7?UAZIftJiYuv_HNEbf=oL$5ayX z&hr~aMdR@DqREYiy$X1nxW!aB=E1OcaG<)e3XMH{A+nO-YF7V-KYNeNqOh>_PF>!L z=ONu`Tuo!`);JJf9OHG+|NQuz=+Z*^>OTjF(|y)&yI%h5;WQM`e~*klB_MtNzo&{b zTf8)Q@xL!59!4jR%=~{x7}dW%eWUyD>n3x*sQT|wUp)P@hv?DVEC#Fk=Il_QN1Rh3WK1J7~N0BJ;Np2#x+)!OVO)T+k<{8ks<4F8S7i_ffw z+eHdd-y?9oN8xVGlTj}903`5H`oCk=Rp=P1$;#h*UmmGQluiv=F*|~`zll0mQFN{w zt74XGv5zxFwId%7U=EUs|2GG0rYO@U=kW@B)KwF6FiSOmi=FDdCS!H}V8P;#G%T(e z^dpf2kQeEP+XY}Jzq-wiq+y5Im|Znzeh9XGtQ_l z+DA*AzR}TRt?v6*dV$A>%~M~`NN^W;exeHrmuB`}W5D3wE#K+hZBOVu+ajLu$6FjU*L|r&hPv^g%;?r6aK~T)cOb^-7-KOaCozz56&?GX z3ij^;G%d8x&~HnDDb1wB7NPs5W%H(qx^8!@C7_r8N?Tcb$`{z>*FM~;P{P=|epz7P zo(CbZ`nzCd63pNmUHCEJbRJ*N6N61i_B%L7gwz>dU5~gpJfh^hc7aTFsJ+L21jIWK z^D`6RpU~B4jG~TGUS{NA z9hH3hp`5xZ1gZjEE_3|4F0TyzWS}(;qG@l9LiS0qsm0=!DjYOin+8vhZ5GV zPu9=q;sz>T!fdhrH{FA|qU-a@EKdtqc_K_S-LnQD1*%$_B<9gVys`zIfpTjO%W)r& z*=VTW2m2@0C~y~P6He5zulsKm)EODEPn1ksQ$S2XM6LWl==-fl+Od_9IASXQwvm+U5JH z@JHLK&@L9D&acFwWo+^#AWxGj`xAhG&?g1D^XeWlP1C#akZ;q{Wj9Pe)wJVQu>6`o z$ua(KpfWoQf&8z5cjl!ueGSAFr3~VfCYtYFWmB8p&WlP5;cl8r_f#@snTTnqsWS}9 zp(urbzP};aE>h>!1P-OjDtG+|YoZrtZcMN~(-<0@O|WjlW$3uP%KXNk|1Y0Oez(L~ zW=mnPQX^{gC2)^S7>wStj`_SfR}T$WWW;>$HC&t(yDqDCwoAoWc(f*}K=5ONQB+0* z*U$Lvu*5o2a$}6kdolsvZ|*1kZ^>?VgS5wpTd)zqNm*2-a5duyXOm!#FRR#)eH82RNy9MHZ&pDgRz3O#cN? zOM0OrH`{$wPF?qzG^2D&jN|cz7unGnwwVs&5qG8QK@~eul)N3j*<1S_q|b`D&2!`> z+O|0@uwciPtU=%FpNk1fnGyD5CMP;|c|WeLEQ?CRjWi>i2l5)(231-^o1nSWS?;Fx z7{RwXXqS#NFB1)ZO)r z-A#02jH@*?tCtw_V!8Ev+4K<(9nTdcezxu};|YuOb9dfs^!o?V898VsZ;ZM;x7Ol` znDsRJ*lM!m9xObV?fLCgBsS0INuy@dl9gOa)k2+LvqUY(mQB`BmWKo|)y}tN8ar9F z$yY^5cK+!7wi519#oT|SR~^IG;V3fn6-H-O6gjCxYCJL^s0XR3KNex{5qsL3M*Mc1 z0#n5<^=5tTUg~DzNvo|Luui9d3J*6TvI=xx+pH{mQ^rpo@$+T+3 zhP{gz6tlDEQ%CAklSw-&*d)o{L6=IN`dIoe*o_74pA&xhMP1EP^&ljLpe`Q6=mq; zsWIg;3~S&{u-Y1Z#Mk$X*_|mm<>Q|P>KDMAk!a52B|`m4tpr7}Phfw&H1*ElkKPLw z+NJy)FAc_C6Ewoo#RRgcmMHcfQss}VV6mN@iHh(&75H|;R%Ay(dHUfk*smo@>|rU? zV|(b)L+o^{a^ZKmo9mQVs{R!ZOW)Bq$z{Gt zGpfxxZ9d;Z$g{-_y_H&nYq&GPqN5u!XSkttLUGM_^hgu$5k?-od|Qs8iyC^7?O8v& z@6E7sFD5lz!k17au;t9E#{8YzZ@j05$nXA%ghVge$-1AWV~?4&v*?&Bf%w-A}Y4=Mxs9Z>sT?{dpq!+8jmp zvec;c@&|=&TU!$zLZydDk;#vYGu&JWNi(LSloOyTvKRMff{}yS)L)sm#$euVViRNX zVj^0O+MF9zhPv~fb4sK@m=>)qWOmMGdn?=5a&^!7+T;Yjz9-{xTD3SLz-sX->D(Dr?GfW;6RZ=FU^0Vwv&62+)2mt=2dl3 zw@WWHV%XJQ=8nw$wy-HM^X*T9m;H@2S`wlYQN+kK9R>3yVQDbNENIk=Kt?J6Hri4{ zSU+?8i*(5zS`xMS25|~|UHR8$zxQ}Ltk~(9nX0XeBE)@0&7M-_^+n4zU$`+k9|*xw zqsG5Xd(Rw*>T=*A+&rg)b$~*@x#Rdo7ZJJBonEOM1dZD_c8}}$hWTXum~1^H?jFKH$U%Gzo&V+GLX93Wj&D1c8l-{b`=ov({H^I zoH6$v8k}bFfW-H3_3q4l%XIa&WXeiQg=(h-n39C5U#OA~xt#>Z)*$jkCoBOn+=1Tt zP%yR(QNn9~Xx?-DA)djhE28;$norR?-3UBDGPbK#=-9A9ye!0(<>*r^{)@#EvlT)BT-WF z5SE({n0w;+;ZV8%sc%28%W6$cufrc-&z~!QOU*|0J!K3AUsw}UMugQ8%$-L6;ncro zi8N2%_UoUWTK!cOS1%VPaVsaI4})6mwEd;}4L85$>XZeDcPTrC>Ez&iGP@G5W_SyIHgA~#nl;C$+>M^H z*!zQ%L5~qTYv$(icAigOR`C^C$Dhg%!p)e#ImMOHthe)az9-VQ?MKa2`?lE2Pxfq9 z8fq!aqI#28XMS!k%xo*zV2e~xmy0(W?rZw&OcBx<)Di(E)8gXoZxHOYvj3 zus(cObQP+t{n@tj@o)#eN9vX^Hnxmup&0>Wv)C$$T$*poO%AyOBr8Y#(#55chx{gd zzU;kJUGvSF9sw&n~66XhA2|LV#@l4Kjv2ls#>+MqYm#6y!V{eEX(e*O+9cGVN3T^^G#c36@Ww=Od<8oevzB#p+s^oS z4boAMQ@R5s)*2fQMPk6`aXUt#Sr#`}=1oiBJ&cN~?PyHfK4S=Z0Q6@U?v&Pa^mrN( ztJzwT)_K?Kq*>nvcbWNvUs(Kl9DykzyK}bdPWme&h~(-%%cJA+iGs#^j~9`GP4ul| zL;VkCQtF+y=K(aZK4VH@Wj&Z{iCQ78^@{4C{?lYk%@~?iIw8V~ns#ekMPX~;^So@D zonQ^tEeS+P?5i6dyg<5bDNVj$d%DIJgTqEo3J^t16n?+wI7@boxPnE*^c2xvJVe`l zx|Hu6`gDU5DDFhML2)5`PnWl!o~WE?N$%@KPMvj}{z2|4`MI+@ z!&Gl1->iEiY|Nam$^hK!K(IV!X2M7DwsqBnm`2W*c65X`v}eC2CW)>`)boxp0MYp( z%xs}s1>xK1;ijHpCN0H7SL@rMU2eT_nbPq0BXb*7kSb(G>_%DS3fW!RR#T5MrUqUn z)CT4GWMrI}d{8y>a4>0p(|Q1r&B#v!!UB6ee0m2{*~0=N6xJvzynF1zr*Fd3EyB++ z#|1kh)U1rXA)g38G+=Ds)y{?(?%9y8;s=pq6s@TY9@_1 z#M+#8osE&ub|0&uoU5-rhJ%{XCP|Fxvop!Tv;$o>Zf;otYALd@9+dp?rjWbE_@zdh z;!1#luIC3VKUl8Q=ZXh8M0$aC`T&pAHNgBCPXqeeWA|&myKRr-dhMM3g^xEceW75Q z^)6xk&dB_Bo*^-xTk-htA5Ur3HvQk=F6tjVkz>hx9KX;#VsvMXnIE z3zGEaY^%w@knp0;!l-0M=En6Yj&`2S8d7p3Mr8j00s~OD7Zvh zH=+T-SCbgSxHS7Q;uWOu9(Ye_G4?vSZmp>Lp4hSoU3ha!|8e~b$~==lk#vR8KD6Hb-8eYRmtk3 zu>ReR@9M?C7+qs_iT`O*T_e3mH}OvSk9*vZ?qT!Aom?5O=Bt3&_)2}x4_2DrTn>Ws zq0ihsq4+E9;IUWNfyBsVGr(b>l2+PF_yPL(k2wl>vEF4*66M+O`SlqUbFlWdEMQrSfq6(IYy!*zcXKQ>>@xoq6{CXtlY7C+_{Kf+Hy$mybE;N zBi54_t~97}xbA!Q!`((j(#QZBGt&H0`MDAoIJ@S%<0v&X9QEBnV`lI5}^6*`9x+ zi_E9UO@cQlBL|!G<&>)d0B;Si)g1)}569_#LVjJgbDQ8!CJMZF>4+_I;An{MPHXNN zPK1}z@@z3A44(T0Do2c&^)+8El8?`)bww0c36`+;PI9e$Kf-#>O!)04az}?@5)J_T z{1Q3W+5BTN&K8%3sj9wvU@m0Pvprmb;>6MW%&+=xRE##+TI^zvFj4_gW=fdaF0yPI zCW{m0_^tKyM=12$JB)aG@cdk@R|oF~(?-a}~Z zZ&O!NfQl0=-j&kn^zGjDX1yhCjKb1m>4>+wt(}|S=g5lB@hCIjX?PWSQx2LQzHjlY z@jfl}T4?u6T|9iJp+7rbs#jC6?OU2$*tEIHd)m|(xfj1@(Q&u(d>Lxb)={}o)ewRR z_uZPqW(To5*cV?<8FXW^SRSBq+m?K~=A@ohz1w8WW$x3N_cTdzeUhG7ISv98KeO#@ z#45+p=AFH`;j?D)I6YJinp=o5CHdIbL+##pHaL2A_Y&E>8gz_=`~hcYYbB@ zrQ2Hv)1-#W=E-vPAU$s935}RK)Yrdlg7-Ak-21|(6&)ZpgFP(%RFQZOv!`dSxPj4KApOI;2Z8*?JZM}k|SN9 zTB$%0TfX3$gq0^7%R#$p^K%0^(18nbLiK1=c2J&el>arwmX4P$i<$N397@!VXKpds zONp51UO!&xq@*=GE#E2wsZG7by@I=d?0qUEl^#BCo*vm&nko#v5+q);3$L6R5j3cy ztzry99~rC~9tav#R;Au5;2}y+s;C`m&!1aWubIzt=Orl>KcEj#O2Edwmw_;kLcNB*KE(44$m2NhmRFjb`B&MLtWCRr8O1p8tr{GOmhQ>p*vLHxD zZ?fIXzMez7-&jaX>pnh$N4$nRA0GnYb5AE(xA5Q99D-hs-Zxt*Ny}_%#JSBJ3TyA( z$7hN$*qUuk7A`~~!7JYPGNJUMV&2wK3|VB`kS9;n>iuo#VThH+`46_^G#)tnz&V3o zZS8iw=e~Iw0zAVIm|gSoso%WMNK=~_k$X*rSFIbYi-7k}$E(lZz;9=VsurO<*>}ra zIxZI4pYqeUK-M5_r{U5#1b)#Sa`N~eCsGJLN$0fIGA;V86YQfW%M| zrFC0k$gyE^w6K)%E_>XoSan`gPf*=^txB)1(}j6EHa z^jxi7>~R+hOc|Lx4z16C$Z?14U66rPb1%w0vgGnehaDas__j z#)KydTf&M?gFd=#+rjz%eI}$03MilyU67v7^+aAfWVPLnBh>@m?gf+DQRBuFTh+fr z^IJYI8cFGB&tCJJYlvT}Y-+OElz;RvOF>6#T%8dh(35wWR*X$V1)Y@dlvfunO2j6g zmGG%FDO)r_I|AQqUw+Ws(Q{$qBrwpe%kwaL^UYzUU7$l{!yQ2moca`nS`{91rXf-) zNMq#Gr^IhT@dX0dR~q8s*sV2ve#KPJrgBwo6;KSj21qj* z5){yzP@|P2+GrMC_iX(I zc=0Y4EH)w~#DwQe1Ms#*d%x!5hXCvPiW(VfE+d&#JI`iOS-c;uyn4knQvDET3Vq%0 zRl_lD3Si;~tZ~z3U!MtsUQdv@tx1TO*j;Lre>7Z*c*RZ}3mrYpjTl5AR`~AyXc~Q~|arR-6V$-NTNkYq;48~<}+PQ;##i@-Uz|c6ul%G z3C+$Krpj>pPK>gVQHsT;aPc!`cJdGPk69*=^-(RQlEQ&bsRPOSJLhhD_(y-U?C}}| zCeLC`u~t_kN>0i!t=>Nz*N>W-H+SmCDQ(`IGoDX=0jx2)RxC6l$k7uraf&f)G~C0(}gdDLAd3M2A$up>qpdt1ThtxBw zXT-Rjmi8{je`FuQY!9Dm5fIWu-|yhM)E)7?>(iEYsG?u*OnYegQ^&!9La2eS#?*u- z`kLeA3$xYdweAUf4`O8mn@4M_QRWU}{twA4c;SJ- z(i>}Hq+Y}6GYD9t(dmry1TBAHxYpsqb@n@0Boy7fx_*A^PoHp224GTct4IP6HVm|1 zs2w5rs^b9l5NS*kyVWz#ocmuPU$Volt%lvgggo1>aJ;#dsXf(8PSZ=)lRJj+VhJDV z(u=B=(xH^uP-X51&&)8`Y3i-c7ukzs1cTsG32I!|eaym&d{`v;3#4yNs!eSCaY|?U zVgiR_*z3+X(A-3VOoUL9d;JSWINqr`d{@aI_rI_#x!5@55R+$GizGXuBl}w9fQ*f~ z7V*Wt;N(EY zM?ryeoQAxn-C!P_r+C459@pTFW3;k&f6CDrG&A~*dR9=aQUZsk+dI?m&xX!#^T^g3ivt z{TLk~NjwDO7U9*kK)y*?&~MiXm-FOs{08|jnm$1O%`j~YbkRzm^jn`;C>&EvekO?H**da92je2Jk zvLvuqqPC7^Fxb<53iBW0qei2B5y>@6_Z#~#{D{oF_a+&zLYAHP=2S9_XTpPmCt9e; zVp(*LyubK0qG5iM$4aHUP*c9fCfMjPj%4NG6+Z)1F=@=+$Mw^{oAuRm-{EAox)j?k z`PFNs-;w;pG9D!OB?$p^lg5Z+C~1t>x(RqI(lhF7A4WrJs*DWS!N!W2i&S$3UKjPi z;gT+4#T1+>YHG$aGdnvLJ2#5CWdK|0M-I~(9*4KOzHI|{?h7`ZmLW_!dxKfz>l+Na zGzFquEZ)MItfH0q%x#e>G`j_wzbB5y1}5XIp)4slEx*IeDqG^Lg+e0oiu@3AdT_Tc%d zFPaLR!kvcQ$b{X$I{y@LJo6_&Sj`!IfQxt5VI*^h*gU5EwiYi-<)yc)s~N14?F6l> zlwG2{gegE7vSjGMxZq`gQURp8qlsMbzHUWVn2t~wuTN=AS-FWmquH$0Uvwf@S6MLX zZ1|_E%sQK`bk^*|)Zz2?GhM)K2QN$9&Fe8U1aPM5{7T;Fb4+|;pMeo=GvYu?Aos~6 zv3vfDI*wRRO+~g*qLe`}V>GgsGC>)cpQ#3dCI{v8ye}1X%LqCCGJCx?i0Cpi>zDQ` zwPKInepzJ5`ZzJM7_%kGkhKQU83;iiic)Z;k4D$bt5(m_@pvD^SM5dMxhx!vQ#PnAO_Bzv087|!2 zRf&(rBx_g$%&i@Vc_sg#k#F+uH8M0oeuF*%4Z#~UHP#PSq;hx?l;bBmU^J3W8v~Lb!NFU5cJy# zJokUb1si?oMO~to$pkgX`&NZ!4W3CZY=F}-g% zq+-}{9~19(T@SSvhjA?l*R3LBR~%UF9%k#0g=f(ekSs&=BwtI+pISGG#SmyBk-NdBE*hj^drSr_vZa`?LWf%GzvJBbZs;!8K)91K*^3E z6^j131Y#=@89VwE0bg+|QU)2OD$@zE)V-rMF%WO)0YV4!zEII{MDzfZqJkkuR%wS@ z8GZ_cq*+TkH!0G*d)dx(zb9ij5WQ8p6)UiO)V)7a0}@R`SvEgji~l!XQ6+j&seOND zV}WfdZm-`A4$QlmJ5OdeR=*z5Gza7!x`}A*^m#nG-`{6i`(*Q! z`-R%e^P5v)Td@YF=uP1s#BXhJ@Bt61{0_xhOMk?!-InmAJij{_K}dN);=;k%i#&ZD z5_#4-LIQq3HR6r6$6cexJ)qaTlR?neo{b)=u{IbF#mFqAE3wOf`-GD{wXiz34)p>o z>dyOj&;*y7jE>B0zPddeG2ig;6I)hH&GR0z>}UonYjS(sHFdSN+eQ}?8J-;HzzqI2 zaK~?!z0ftHUl%dEi-NczqclFwdp}1f)8s{I*3k=&uOX|AncYxd$DsEVAu^cG&L%)y z3BL#6Y&EnCBXecr$a-s$eD$s+x=de1H1gzYmRARYS77<8p$8Pr66FFmSNkxaf*k{XK_$-gdOG^U0)s_L` z{Rd~&?)-3{!<0JzI*RZ1%&ef~UtA}fB&{Il?}f%seDn4&mAG?B^1YB_BK9C+L`uj*o@cke?MoiKWnM&QkRAo%=-Pg#cim zyAiN!6kw29vT^cPc$!H`Zgf!7>CL3_KJns0Pkef8HiKP>>Buq*!bn{Z(;Y&c&B1H1 zF_v2Dd#ttj!LGUmi|j`@>m#g^mDvJEr@AZxA-_@8QkRx8jDYRf9$32Dg}givLTu9V z>}uNf8$a&*>g1nbUkg4&i!;T|@?GfZn0{QWwav$7`KBDl`}ipnOyhHvTN5$T@49c^ z^41%r>8{4Lf)#E0>At?*`#}5N<7&viW)5C(UGKd!t&uQo}coCB(8_OxTBDL7P~jo zlwAkow`ZDUAFX9ES?T#}%3JDpkzv{Sur9?SF<-V`Agi(cm?C+AnY#>P08@MR3?~zooOM}>iGg+I z^$)TiR;RDN3MXsGe8C)$*6rbzm+%dfRRcAY4@(!n>ta&Cw5o8NpN(J7jTx1!-Tt`N z8-*(>FW=h$%TDCCm=fp55@UyN=!^B$Lgqc}1#ffYRGl$FOL zzB1O*p8^DbOF>#I&2cfm(`c&w>7N55Z11Dc(A!o&FUQ$?D&hFuv!|0!a7?a3QwT(e z3EenWOr)!@v&!m&Q^}Mu_0yR#Udk8+f=Ndo0&{|Gn9c-J)tou+(Xp|KZxcE_QoA>T zL;GVzXZ(hHf#0-uVQ$^>VnUq8JgNwCX|Js%Qlrtl8 z>e2EsFa=s@+S|897XjXR_L)pX8|?OADm-<1G7|!-qn;tWlzQCp0sM}qzN(x_9%)T; zp@tFs4;^48Aat%8eiBRRnF+fpl_*eby2g1?-_g%Zqr5f|zgs3->E#Dx~# z4nH|x)U(}i2$JJRm!QgHeF>Ulo-pk`Bj{N#1(~CwRG{0UNyi4HRPZ7nX8+7-! z)Xy`q(tEG@g-VAT#E{y<@idbF0{e#NbK5PjWDKPt-$@taM~urAxa^1-j3O*%`F|E; zaG80gJ&Q^gxP*QqEZ)#bXc7(X2zVb@$cSr<=Z8;DK_-5b^Q&a&U8H#f&1be_ksr$V zPRx|r1l2%raM}YB$zse#lX2ZKj1_oxi=ln#_A(lvbAlf(ZI-HG64p=n&SawqDSy47 zm-NyLuPr?rw-aB;$XG>`+L#s1o|$JWs+5ez?A0lVn~suF+b}V>e44$E!tr7B3h1=P zM+6yssTOCi)W(bGjWU*!nKi-l6RgsAG}`M6;R&xCd$(n0!#C&K0*ZxBPc{+Lryi3tz^2$#a9l>P5yXaF$TVf+V9UH#in`Lx@PqJh1rHwYc$F|!>( zWbFy8pn~zR{os?CZE&el_wJn$P;E(?`=}}NmO~jA;b{Tr&r&{H>l4j2j+hKeI}NA15P@FvXY z-ZZx4YoZQos4|JIY2s?(Svp4LD{N!h2600UJw=3CJhlfoKKa>EOx!weY0ijsVhV8b zDT$Bsc$xwOiXw&n^o<5AUKLD(ZvA^rmblt3rTCmCR(eUHZQt%=8rH3Xjnz^Yc=C}y z8HT;1NqPI+tevFM1?xo7FMJ-v;OWm2$1tp{MA*pD&s6qxD$Szj;r8dy9*-8qu?3fL zVU|q}4h6-Q@Jf2V*=TwZ%AxSBk7fF}6ibegLI%Ifb+lOWT5u%YNuHm#-Y4@t^bn1X z6ZI+M9ifB&?C|OUNz=mxZHhza}WO)&Oz5|%e6*L-Uf>D<8XX7_JU2@ zh{z!qoJw!`=Nch^&PjW-)=_J=pK z{g&a?@JG3K$#sZP?WU`MPYlNCm$f6^PmK z*~=v)cEw&yqw;87|5PY+>%fxIJ5ia)QS(kP2LH3_hGdWbO|T9Ln8kn*^&NuUlNMYZ zZaB@xkHT5Elvw3^tMJ7vmjgdmyRJ^!prQCR+TDG-2Tmm4`#3+B(Cef?QTv(QG_7 z>QS?UwRS?2v6sSR5>r%Z*G-u6qRO8Qq^hF_d!Xyusjt}I5=QW~KQTAxG@xCopj7}- zJFphfiT3ST=CVD4%3Vaf*GtW+z>5(kWJKiUJPXxd=%)pEOwL;oG?z~?&auul+APh( z>+yNL45`#ewb936rlLCDKXWogcJ>CznPky+`)Aib&M->50JC$09&b0;Gq73%qHYd^ zd@0nl*L;l_Uhm3lVe~_W86J-gP;GF4|5-+)6yto&xWrLa*Q(mrt}@OV|kAxj?x0!bifTe$4Jc0ZY3^wXXbuqAd zi{0d-5JA5ZAAEmA2GqEBZ+!+M_#zgmZm2u@honcgm1J@84Po)#51z`rs!dwu7)He` zlK0PoyVw)43hJ(cosobVG7c|i6C?Ntvtl_mvXkifNZ8reQ(PWK`v4y$nR$8WF$#3j z9>={dmakr9N2bygcfAB-eK5GaHOtz(C`4C)D*tC;oj=o#curU_*YHY{qGqp7eBH+f z$xPzTrNi#XF5}2m`_~87wK=4>Y*b0_FshWgiYV6aLhgcet%uUZo+B_Mvaz|MR8>+B z1joe%*Ura`tCVlR(D@amBXucWFHj7t+4mfhFr=yKaBSeu=2sD$MICG2SKzYFVOc|U zZ0kkvQ0y|lXjb8`lKf)AH7KuCKZIxEcSuL8lC-gc0cmH~d;NhoG=Sx02r_;?IZuC7(-{_6nsk`^X4=iX9j03SjTkQYWOd1O^y!?l<>hUyF*5M3j%z zDf88)dfZjaJ5{p9}K9`i{r_Tr+z^yh}+Gq(qmDjM+iIXNB4E`p5#_ zrKE9ou6<_tqPO&71?Kp`UPBWC6~6#CFjp`DZK(5?83L! zjC|Ha`me!M9PjeF&2hPP$5lr3qz$APTun2e&5XbA$@$plF&(o8<_xFvIljwkmaXB3 zB6S7TwjJ`mzm^S~`A|k;sbOE%hz8EI`KT@so!iVL?&XqbAgedG<}eo!^M*u$sj4p? zf)L6f&TJq47DGfTmF34R()>qwV4g+F|wD+NYS)`~Pya|S>R_1niy`{uQMhP2g?wl%*W%Sgs zdGj8MX?A`#_~2>&n6%rej#Um?bsikXvE2@RrS!9}8cUJCg?K=w!@}heJR$_c?64P1bg44sbSuVO@7ZS zAp4)0g|-tnrXUS2menuIkF^9HH~GHaYX(b*rB^7unr;XbwM4vi;#?bNK2k~;)Ad3g z3WRdP)+*M&q+Yn@k`EABZve*kUXUfIR{eC!w?vlVV@o{W?8BbioAYkmLm zwYAqS=xc!$6`(g_5m3+JWz>;6i;Ct&^TR}K^XtDhRgM~-V9LLJ*$oIZS@`NH^m~k> zO_u`08Q=~u`I2z<`ZRic(b6pOXX`Gu!7h@CXq11du_0Meaf1i6bqUn$o3)Wtehb43 zz1?s_t4=gJM2k$$-=`Tyx;c z`t#qzbDW7F|MK?Xku=w$FcFVHRQ_afbR}&wr-2_Y&Lbr@PXI+0Yj3n2;OiI?51Pzg zyQRk#Dh`Cb7ffYpE)G|T5VCz=^8w@Vgn#XE<-i&VP&*MU>p)f_k&toC4IDPa3L+Md zDK83Nc>9JIO^W-sQnpY`7F}13^Lsx_ss;1s9A3lKi9K2B!Q2ebffUB@jWbr`=^x>+ zV2$L>!8Nk&T^elTg%W0dWq{xcpx&$l$?rNJ+w_vKcc;DvQF(soiWz zGtb+0T|SoKVoOX^AX3bsL|GK`0^NiRmCwiOo3<}+z*b_Y22z%G4qts-NrTJVMxC+h zvS^;2AZ!vX%`!6YFsxYb@Pg3~$U6oC1msJ}(=A3g<-j?mxjzBQ8)04;dww3S@q-#| z@uz7lP9dNMWo`zl!%g1kA@;YCl0>9>8EK=XiI{FGe^dgPP<;oCp@i*(HgQ~{p;8WP zza9NK>eOUDNo9sJF|UopQ!n!zarB4(Yqw)+|E0QwuxQ79j+AXv?6LvgaN0e~^`H5V z!1Rz~g3Z<6Wvv8S^f`Gq%yQgPR!I_0NfPqQS*t#L5T~^BaQ*8=>G2i=Eq4=V{yGsY zoFUVX+!AG&c|?3ZPT!a8$TB(FYFMP!%yIo7k@l3KhiXgvvNi)wSktG)6T`W@b3@I8 zonylrgGCma3bbm0HO$O|xh)-WA<3=8J>Vq44Z=U~hRzZmQjywFjJTFuMj{vX@gbpE#M$DS}omAnf~J3_tyt zOp`1LDM@Roahgl+ogUHqtMnr5JwPNOj+&yc8R)2LVOjL88uz?*!%3SYR&2t5Z+uyl z|2o&n$HzpsY`fuV!Zs?)id5Qx_FwyDP1pG+7Jv7_fyUT*ROpJg?r5O6h0j*nLgm2O zi5epw9F`MFqiPGMTx^*maG?R+Fj_Wvzy(J`N4FQtubh?gtLR0aU|Ca%F2(7nOtsty zCw%`YYd0p_89y4tg)q_w!Gv71g(TI=`G6O~QTjQLaEgVknZSy+)}LQUq#3o`{8DZT zJ1_*hNkIgTdIv-&`tu>>RsxXwWWkLc{C49kf$z81+Bn6X=YNfN8}CJ3EOk} z)9m@&FS>$q)n;mjYUoh;BeH#W$ZYQ)^)fVjfIY1>ULRFl`i1CC9muGZW@^&n$}0=p z%&HaN`Z=fjnSh9sKrQ11UKjat(9O1i`-piAx86rl<>;S|BTMcG zw+m4#&1*a5OSh*~Yr)Fq*cb(lJd4;+>)X9KJKiu`Ta6~HHaiKaOEh{bGB9bvma`Ex zGP#=gL&N{`7SGvsxVH#OExOHO%$Fq?QYrN#Uq%ncfTL0oS?_xjZt`@WBmEKkk!E6v zvZ_0#;RT_RuJm$cc|&CP{l^W|dgJlo_XE>!^YS4>Qxf+iM`V3O|2CVsEjuBL?QqR+ zTxUY}V6r{^F*D}m21?5on%BIuJd+A$QLkS{zl>xkP&KsRoJ9NosCuh_HluZ27l+~$ z_u@`*CqU8SPH=Y%?i7j@FYfN{?(SM#TeL`U*OR%tK;@0!~O^Px*OA zgmwMH92}r*smYAh|1+YuG>AEbeKzBA)Vuw3Wi2M|*e6{>P~TX`10j9sIdIxN+07 zq&;C)&5q;BE*D+%f&0iowsb4ozVH^~D$#*vgT=Ha*E=Z-b+;R4M=?Rav`YL&NzLA2 zeIC~=$p&t@nu|cUlO31Zvh3-K*T7?wHNzYKMqY7xQ`9)Cs5Py3s(XxKTHOzpV~LOf z0-RIPl-}qVJfNy%g9M}c>X{SG!@wB=y|Ig+)6V;!H3p&cfModPo>n};a*LYodR$n2 zG9^GZ#YcwM>DIu$98RaqquPk_9}04evS#DTo-J&_8N@<)rV(lX=sR`gBuI!W7&=)M zE?dsuEO%#;7Ir0>lCZ8eDV5aiKqYdGcom0=?@b~o6z(b6UaF6!L*T!tI1<{2)|%5Hd^ z6AIk1P_?Oe&>mY`L8qWFna?QjY~*P#Dbx0P%6G@28qz(FDaX)=J{u^q+F$0^S+03! z=Lu__wU>E)vg)ddHuSMNZ58w`Y&|?*#1btlHjFZ=VdYjiNFdwK3cEmOr@0{Ym2YW~ zq_TG=VZwdJPqgmSKYJ9nFg_H>MbcQU{1C!y;BGf8rj`6Xxg2Ras^e1Os>!%Fq`klc zbK>qJ!O(^1xkS^lEAl}1LB*)Fjk1;RcCCqdCb8ioJ;R)P4)ph_F^n(S#PA-I^zfav3ja-DZEEU$4<=>5=84H& zQ-4xMAeuXNzIY7tM38#3FB~$XLn{}UX>obsGcIXdX>nYiJG!$ExEDo9Y?c+zYWcFN zTJNj51_q#$cmx}h7>VT#!=dw=^LaGM#I(#OGm z$jT8J-Tb4~md+9d<);(oGsX-Eq0*k6M@5)(tWsL3%KKenZvwq#P@~7NS*yJ z?iT9kWnah-$==aFIKl~=v#ux`V)&6tADswEd06u5rtEuO7rp+*%5F&rkTCVag*dMN z-nHIm&($ASU_-oXlhtf?24akw0#PFWx%CgR{{?|C%FvX+QOf?Y_?4<1nmv;NIZ!B% zfD)vUKUi!1e|LKcbDcA28hoQkd09gMMH=gL#zi=(OE?{}P;K~lv@>@SX-&4$0ye&6 zKVN|xJI`|JSh!C%DhQQkJjxt&5qsWdgf=vKvt1~GGE8CVUoapU1SzRG3?J%{A4%He z5p=En-=F-;$e)6;vy-SoC2_H)J~VJ|8T~`mbPzjzeL-UChUUes(gDO~oXI@v01+ z(bc~^Ad1s0O78~ZiW;Hv8*;{D{GE8XDMs0F;tIQth*eu`B;oAN`2AtlA!dn`ch+mm zhku1L*tBdc*DiSkemoE0lL^ie>79d*LN-My!U^d;&^U|+9VMfBsv)XCj~7$#fN+GR z_1yt%Jf@x=`Nib+zS5&*LLROvIcooiX7$7$W$|rN{s5oxY&qkV6%YKmPqAf~mpCJ! zOS+yVX}K=vfsI-=eGARqiawh9HI$ia@&B;8p3gS*H|yt7;nfcs+k{0_JQ&_ zTLFGo%7KePYi*krC!0aG`R7+m!32EgT94E}zM@Nu*n*E!I2Q1l!Nqm3b|>wG=3EFN z`1DKM_@3`52u9v2sW9@rH=j4Ieqq(8d7ZJ1zT|%`GFm_zRa|dlI{?yLcl(|%bZPo) z{CkRHIu#>OB5Y6P+(6x@S(&RPoLk)X2K`0W0D5ija398krkY)?Z?W)N3lgq#m_aD% zj{a>qf5gbwHTV3cM3+ij7K&^qP3aF4uDQi7*^}W7026ahq?MjW=cXGWQ(fud?CCPp zQon590_mjkQ7utiErkT;{|F#Np3GXvGMQf11>)xU?Gf_aZ-fs22N2;aE^^xh_GG{7@q1q8jPi7j)=JVX7yq~8>>$jhs`wFvw;erk_OJgn zVe?@|(kgpZdyNF7hcgT%XToQb2h#h(N+;YBC%;`a4n2jcYm)6=(69?(N zn;GU-Jsc?voO<&}E84ctlj&Q>#`y*aiti_wqdxz_L#ufqi1YmD0^?F+Aw;)bPA&P3}exkQ>c$;GrGdj@nGyil>eAUgG0c+@QSsJ~nE)9-<7SObAv~J{mkEA}3 z{C8mMj0&8{+0sh1l}1F4N4oL|Aq6OQXOHm7mmi2x2EM)Z?JKF)p!Z#w3j0)O_U z8#$RCa&y7iZ3#a)v>iyTIGT8HE!1x>3D!0+ahr+oj0Ebl8uy%`{^KA+^}QmQ~sV31Q|ZfBZpuFyU2LFFZPPQ{;8$%|BUDReAdb2 zAbPNPTR=5?N|YcWItyME2@z))kh3+R*O~r-=kvO6uq_V>>~^3YIqG>(p72iq@)|78 z%B&yPM2X1ufDDBwG3R0L&BX`5nE5X!x91}dXFFM=>QdO@T5;`f_xykzV+GxXg)Gdb zKs)wH0iGR>k5&e+#BSQPK4xQm(qw>5ieW`lc5JkvI$OQ z{FbuFbr&ro6)%G&&)3C0Nd1M#>Hi~bOO1+AzcA3lg=Wk1!3m#C8|*hKuQ>ykzmYGd zq3e|E``^cx&?aDUzwvD0yjO}6`kMG297rKNx$xb+Xc{vNDGLPg-@8#~Xc;vs8GSkr zBA$GGfX_-uDY-m7A+Qp_pULVPhfuT_J=0UVDzlq(KmKN46(Gdvod|HJbEJA%?%DRB zojK;@+i+$`HrPu@HJ#d7_(yq{=5qC@0+YF&c0KLluel%&#p%Y0iyMA5Isz*~94vh! zwZp1T$B}}@#S*cZtGmss$Fpvf)|yKXCryVSBmX3IWQCfX+_QcyW8c_bQQf4SmYHzS zK4XRvd*qL(zHr(f+4n>UoR9JD9kR&qQ~UVK7gs4f0a^y<>L2x>`Jh|Q4I#o5yMOjWlqMjw;$7CqPG)twcBbvXTSV$0A9^@p_WyE?BbgMJ~TD49N#KH8p@~wNcDLnDaN_yY|D}H+`I0Yq7X4J^i~Ad;9l`iEfa9?;;S+#di^C^ttc$!3 zqszd|?Pj4$0D?zoWQSY(Z3{`K(En^b6tjxU_;WaCK^Y0MMplVO5!myS!@f5CHn{AN zaC{b2_lK(-cYIFz-g(luR<%+Gw>D+WWF;Sb60ugBKfH4>y3_QB5RC1p(+67QaGizL zEIbA1h*LUTc6&6dEbj#f#&WO~JubYi^RubT^?zWhX2xbCa@-gFWu7_bhZ5+vb1P`G zL;mN!1(Sfo0b;Fs2KLqCtfj^;hnh<(Jv>U7|Eq>u)gn@HFvEuqZ(EN7!))b&)touW zLhue^E>lTOnN3~gLY*9HQa{!K+Z%3#N*L9Y7WnwYt$&NrT2s1GRoWSxIC6Eyw$Qs#0kUoy?927uwQQm&CGOp34?H z&OrAY-$&~bY`KKxA-fK54|ZwvM}(9=a#_UYvRIy-_ccySnfCrd;AJyrJF?x#1!`zj zW;WnpC%Nxpw4APN*y5v5vIPI1HAf)<@1>=nX#`zow)lb6(pTqKCQI-Ta`kcIl&!%W z(EI1*TcZ`XdXu;tCxnE0v5iqhWujCOe}(cFR}l2s-;%%}ZCvapPi`h~3=;UJ!_MX; zs*)sEtWJcX({U2*KCvt}*ZE~e9;5ZUl^sB^1*0q97s{PN`v%9bp~ z{CUkC();^p9z%;5IS>-AnGXrb%TziC@~u~Lf+5+H1Y?Le-x)Zki-i*K6RVfQGgoXS zC*>LcFBbI&GDq8(2r=rVncLS~H%8Cu1Da*tS`!6djzM-JN{yd7&~Z3GQm9(C9VE(;;+J{9Ufq_RroL8iHJ)djodMDsuJ_3Y&y-Z?i>4JAqke z?fBn4hNz|A`{SXl_1hsB=P#2EwrlPjL=h$JD+wt6b&0p{HFBY?()mrC+uE6!kT~G~&IlvH zg#6k|ea_9O@;>Yn z{0j^3Z?LEEIGnsvNPbK-*^z~>cY=LiH-*AI@WD$iX{VEi*rRUPhykfnNYepxBD*st z+Y;EoIQ_i6smNua0&wXfV3DlIb4Ocn3~c6n9Mf0He(2leGDA1ANWF#6mG8Z{V!GJ9 z#a^`9)z4ZB{zlfrVV>lC&BtPI)QFk5!An$=GeR}=SIJu^fxN4 zXn34`UMq8S?X6+Eo`?uu&UK&~B&J9++g1zmeSCMv)&NX}eTx7eifR*>vPq?=7cdlD znl_=b^i&e;v5>*<`Az{TjBGY=m71B4uaW*Sog(H5L(UQDi`a&L%4ihie_%uh34GNN zHx&=YH`L-K+#!I~us4#X%lW0^dtNa!>thGCPFN$rfqLtfFcTF*v6Ofx1n~#}#I+`9 zP^&tTi|Cl@GG&5Segm9?Na>kKZq9%g1+Rd#or?#~bmlE*O*me@#}&m@tYLH!sc15I z^E_?|stAnEiY#v8k4cD2f=;FDm~N@ND^?^ zDqYnH8N>HO&(EyVjfl02CQD(mGi0VDX83avk@0hVoFaj8MfyQi#l*RS8D+N%{8X9D zIp5wBgI|M9pDSxH4WQ{u4L&HEIO7kcPAM4rBnvtS%QK%PZfL=?vWz&6(Atr6=_JT# zs^~AX%_){P&Hx7p_sX>j8V%nP>8Lx;-V*hZ?CHdWR@-Gp@OS?;KrdhkzG5Q)gE=!H zIqz~F&$@8gHEnzSI8{vfYO3I*yvu#*`Kk&<=p(i^_@t6?W; z(VQZ=pR;DZwuG>xu+80BYbR&`ha=b;PvhrpeLg0_EMv%)U*%tVn_Lb{@^`2HLv>{j z3N+>>gd!C8TaS?344)i7X7*Wu*=bw#Q_@l2YURw#P!~zggrW#@HZ8CM^2ty zfcX?AfPwh%h&*@LTWpoUwALPRy-u#Y79!b3HENifRTTx{e%_)LoV`?>N;&(F4Tp!9 zn*)b16`0BXIgAKzZaA_0t*XlG9q2wre%8TFJ|}K=_*(BT?z@KR0w0KIO8VO>du4Sj zA=V8$dW|NQH(A_oq>GEJ2ir8{y7s_AS-=SNm~>O^^I<%^Zs@GwB=WrYr$WJLt?*}) zKG4<$z6b6@OBSort#$W9q4aWUUz%mQkt84Y<;l(1eODi)m_fq8bY3zVLao&oeRk2=DEwXJP_zPo^CBo=q zXr|)JPd5O*P)T?Nn(LZ8~^DnvP9*P0qsJ?Bv4YAB3x6#cDldA>F7gR{@ zqOEe$M~b3cwjXDkLkioT@wqz(UdX1aTx8Giw^{eb%q8<#jDUuDvH^Sixwbc4YMbL# zAy*OU_h+!@n- zZYd!o`XezK6RH7B?stI&+{R+m+Ac%Yl}7Vm5^!D$7EpE9$E?`bae~)TELuA)9>n;hK zCp$W5I9hqou}M#^YkNKWNUe zaUR;AdO7o150|WZv^Te6sKqgSxGC89HsiE&IX2G8ts7j-oG2LTef*4icgwc1t(%uL zpPL0&FlDI(fwl1Qs7vB#U`3`0;EtRh68@F<*%K13qn(IR(P*$ZyT(TO2UX7wD-y5; z9bz8_9ibYLyy&8}61>PCs%JFYn_4mv5#zfJ>WjhAaGPev{R+CSqI!7Kn+il$<|1!T zTg%QuL9c^s4Zi06=)$#Sm!*rY8~>|iNX_{=fw`$9HvL5U^jWahgPsM3o!nW zeIpY7Rjwe~ekA{0hOzRAsE1HyCE|E=!_6Wvw68LZ$08qwDNaX`d5-JQbg2IyPtxR$ zXA8H=P=TB1uZSiI>~Q`=qqdZL>XRj51c};KKSMHn4uKKR@w8x7M+e` ze55n)o~rv_Njg|l7-JyGqt)Atqhni6oc@)ok$uh0)8w}o%`ZzsLeyQXWO4${ny5Ns zKav;1osYUs&%#t@9ME+uLMKXz@KV2=FQn-U2pu|*in<&9t27iFA|n_zAkN6Rx;T)S74*afw-A_Pk>j?|zMk?Esbym)0o8$1Z{Pi?}=A zyC!~&91t5ovqvJHk?uF-fRSv+6Z@gC77L_$*z-)ug?ieXGcyJhlneg_ce9wG9%p~4`$T6VZOE@!I=s}Q(lyy#? zc}l)(uWvrNIZPvIfzNJq>m>q_;F*cWWbHhv%HLQ1$6elC1Y@!yB;6-S>WUCiUs+_n z2HK-cdAgIBqRs*1)6;d*Pi(DiON*NFl84)M;>&Ot zKMwFld;$D6=XKcW`sU0(mpt`*VS0m-Ut`kb{uklfqgvM9)ze;oML2d{>Df1;i5Zp0 z4Kzjrx%Pgx`^UeE__CCJ>7gtVrfzhtKz96pEGB!LKE-nL|i5Pz84RZGewQ1q2notQz_*O!iEge=_fFT=Vm&2h;80 zkw<;f-=e~}&4)Ej*M}nO9aPf(8%7-@@kV5MLWH$jA0`l|#$UII1-!rc+R=5=<0#?>gw9Zv@Xn&zVK6 zg<2e^ua#EYQWGgbsiW2phjoyPT(cBr%t%@HROT}xp(YnSfbVl4fCeW;phj_I!7P|w ze*LIMLfy&8FsA2S0x@X7f9P6cvc)}W$4fqZB8rx~)^=?f?a~alEL|Y62xOx(J4GxO z2D=K2t=T*^Sda5c7@Nu4Hj-yfS85Begs#9rq4}@cW)J%m06StwLPtVl|2+UVqXk=z z`fwu}^u)|;imJ;yBsR4Hco;lmCiNq`V?JL)`{~MjoR8Ol&%zLeo7enooJ{`0$`XCM zz}2Frucf4~#>6tAHMh`hGVB7W&IQH0I{M=J*&0UGW$wtcTnH)DGxmqQ-KhG5xh(_m z6T>t(PvK-BBXi8|d46zuLiD5L40e0${dqgp8QKDi+Lm6aRVky!Gd3r_VvsyWFo_vH z+&>cyZJxK@{KctSYxox`E|-IHUU~Ed1!+M@{JITs3zi($j7!Ll#J>l~z*_-&TPJZd z)^WgEF^|rY-512S&RAnq2~#}cmMW-@a%b~+RiPV+(74WQ&PFF@nQ4_G?#m7LM2VS% zL5Fulf}=qomVBK(Yj$P6*QzW8VZ;RB$&557&~Yau)!mlJE5`-nSs5npd|_z{o@ASs20*?B7BJPMMIGW zkUi2eXY#^>{M-m+bui9k-)}=NNno(&8^k+ut1Q~DIar)n$N)|t5S%uH%Lk#fg=>nh6sKt4#42ycS2Ygz#@0F-VS-M)J~ZMhp`d`CagT`e#&1Gh`s;AvW3z*tI2x z;%<9>?@;5jU+`jisy7%AQheJ=a=O#-^VhlpplKJd@zZdeF)=!*!_J`ZLLq|hK^w4! z9~!cD6#a&+RGV(qHI}DIO!7YX=G1Ix4XguN(!ZW@IYfOcd#0) z2NROl1b9mP!e`#4YB3zQJX@c(8Wz11B`~n&6;guad}Vy&8l@B2l(;_}IOC+K!gVWsJ9I+u79jY0X2bDq=(KzFGvlJ);N{z~0^16Iv=CInc!)65=G^sjOKZ!?6_M3|rM7snj1~ z3DI%yasuhw=UI=wu$k*e+;M*v4#W+|{>MX72W6@qDI7*Z8HWV5cCYQS1i!%5WDE&W zs|H|DSD5b80NVNBHhZlEdNq|v>lEp0wUN|bdc%#;NNK#+M?miHILyQab|&F_m9a5& z<;vq9^5dt&-$C#iDm#ZbIAX8nb)~DOE4r&jdvnr!pX` z%jP9g{-Ex^8#ywh%N%j@Tw!VJD*nT)>ZYscDrOS+??3!^tP6sWF#v{`bJdmOoP2JL z_>}4;lK@TGEXjz=P}MsR?P)sH{6!o`(xsomBB%YhBH|Qjd}ep!eY;ff9d?A6s&=OV zVCEf}X9^FLbqHAoBP{RNB?^pBa_;;zbG*o!z!h_W zh7i7ts8GJl@US>J{CKDy`GeQ+`f~nsS(+brj<|Pse~g6ZfVR>FMv8x+%kh1}J!xav zjaA4Y9wR_$@{VA9XjSdi*7Nfln>bUo=z84Fr`tz(?d0#}KSH3n{*aW9erQrB`YwaJ zR;K*O+t2P?W_<)KE~&$SG(ZNsK`fz!`dYz@$m3J&xH&17`5n+U~uyKQ}786^e2`z%?W6 z--IGI!MmLU;rC*jaD}J~4o6JCWXk5rEAwPbs)9UMXikn8uD9*imb=oiGe&6?6aSG< zA4d0ZAP=s1CiC~Xu|_ZmS9hA?!lJyN!&6*(K>rEBV*ohPC@AV<>#EWacS)!S>osLW zLBF~=lgidAtD)Tq=GA@pYglP^lJ*tE4adX2esLz3z1P6I)z`cv=KQO??)xXB+7^@< zw*hV7keBLsJ=-uF$E>tPDfz?$PCUzvU2EL#x_{(cGATg?FwWeYutvV8TBDx2OciJT7&>^|`tYf-!ZHAw|lZF+W z{eqxjU_*L;y5hjkU^?M^Zf#Fq?ye8NOR8gQy(*^FL-x%eW%7P_VfxnhF4URy?&Hg; zJwssu@oR&wy&xrNKV=pnhl`3Vq};Bpjw@R?wR9SpDf5%zqT>Cq*2f7~we@SHvOr7F zhKe$t)T+5{juMNGQ9lHLA#V$fs@IuZ)jFly>t@-O%cvJLXRJ$?i*`!v`k|5G3}{t* zN~>@P-_Ye*v)<^h=%5ME}RrN*TeWW`~0Iue2>@|9;fOC-A$ICic(QbeW?9bVw^ zna_t7(Tjm@MNJlVWX(b9PS>&en5=~&>kFA!gLtgXvQ)%F%HvW^@R{e*e|Q+Wxc z$gsBDoe9i$+p@)ugm69nPxaE59|@pB&i-t1_-PJ!W{z9FlAwJFeMHclkHxSQm+hFL#aBdV{P?cUfNmFmC7#Qt# zR}bjEAojRe6ALVea5n7x`HwC)J-d?Hwco%u-u5G`a= zul!NZW)s@$_yWW>RQ+QLgOOm<*L5oVHxyFnRnS}(@`W|B8k3oE7kkDP8ZY^~ik6Gj zAk!lcjjFAc_O0!8ho;HgKQ52V!mw=F`bruF4u{=mfULG%$1x462RR)t&v)|>duv&S z7!np`jvqDxGoVF{rj7gG^ccbdQbGn>n!KA2bH&m^fjn^86le6)LZ2ax8RmOw4vT6F zhJM?0|5@ad3j|;6nOfhy|2?cc?ugAx(u#A~im4+>tQLB<A z-wQ`m6)dGKaU~AX!$#V02zTh-o?^f$TnA;V2IpV8wUvLr&nPjY|6^(*>)qFTkrWa@T>=Q!X!JyT>0ynbt$arBQH(VN9GVoF}rOM*{C(x3ph&MM!@i(Ru$E zKHWJB*~ekq3GLWhl&E5Byc+o2$i<)8Lp8*$wN!5{PALy91bgx=o+GUaZ4x_`zkS^I94h+9RbyQI+kvDtBD`02XFY&)o@*PRmB zoL{oMI~xb1J1wtS9l(K5X>+Vqvpe(d0B`vGlJK%)8Ac$7ubkXpuRdnSVE-u#g(;z& zL=qA!Vy2KDzB^#%xny^3kAWL4@EYF36HW`nG|Uzz~u5|%>phx zGmFhDdY$_*keDhX`ZPRs@C@>LM@1dS)Npzt=2^M@Voi1NHnpebT>0+DQ$e0Soi=D- zTSM-eYs`|Ef9{lgWuXhR_=6{|ro}(i!2%bnu5(R=&mBjA3+86*yx%rwK5SFT4dtm$ zHs1LkU`op)E@ChYdLs?H;}FjUr>jez|DKHfoOnv@r6N)(EVp-GSgkZ9Jv^QIuv8fl zSMJiEJDiiZHcs%P_>(3+f`}OO)xd8{IuEJFfFF|gmoSF!?jjzWf)VVPkxA!>mduE3 z>i5E8i@(X{r`8E=dI)$|iO?-_XhtDoFnn01upAP@A}|GA^E;bbfBz)Ppj=F#lceW> zvW$Y%*jLvF=Wvt~Nnr>O99A~u?LJIGOM(Oh+_rbAIY$U@S?NTo2jq|I;jt3zFCpnOilsA3DK7k1IbpFm5?7^zb^9aCVNcudHQz9Ufbi z*SwXsK?%xKRqla5<->+fF%7gA%e}k?R9CPMAUe6G11Cd&ARnq(W0N^9DZHRkujiH9 zb5z320?Y&`mJwAVH-NoL{(wmgf1%OewMtwjNv_*v^Hj;c#f`D<@r4=9>>KVBA?3{% z?B<;HsEcmV>dU+)t9NEIWXLm9oGZUVbVs!|rZD?2m>~9cb6toGR|KP`qBSJMb#3;G zYLCMddr_SxRs%04#dwkP9VHDqn}jP0j|(}7{g3qXQ_F1Y>Dnr5v1g17{QtCN9ds#d z;_q|pvF2RXTQYEp8T$|1_#Oh8xY&KgC4=yWb{_LPM8>B}U|IR;lrZ6}NHHtQ4^B@E zrv`Xm$sg^~yP*fBM96n;9qkw}Y8fxx9-#TKi0Sa4vBOS*snlM-)}Sp-xCV(oX=Gw? zH4?vt>QR|U_Uo1b}n7rUbrcmg`j|)rUN!qLmRCMeB(}%b=UM&mf>m@)!_|E zkvhVBouKN2FZuR8?U@>007FRstn&jM-zp%Ru<2_@kxR|-dUgDT%?E~W@c+}5>W5^D zn;Pl+>rBcugfKD17wqxtN$2hIGwa?hZ}qnrExP}(e}!E>O*bIg<$*%)@}RRu^pvrBx9@jE6$t~b+sFVfB}_83 zV1^_h!WArLO~&O49II#AJYFw<8fYtt^fP*d7G~Y-V}SHI|1?HVLq-YNxtQ$_2}W`) z=RAcTq}H zu1u6jv9Yz?FRRc<0R%zbejO8%+fKE^dcO^IwI5b9OG>T!eOOz~JNL@Ftlt!M_WGcXFL+a%WlB{t=JV*{QLriPman90%%opHXr;DZt7i z2d%@g#ALjg-tSo}Vyj1Py+Uuzt=Ecx$Esn~tUm%xSW)Ju-W82S z&Bh6_;@=;MW)Cnx1CNtFrVQ$^se6&wyq$gl7DJ7)w(EP_+jg|_QqaUv;~4H-a_u5T zD77PJSCFtlnSx3!6^f0Atb0l4qTAJ;<4?)ZZe4963`Okvp zFX$dgW}d#^T2}X)IvTs?t6vy1?05=PW|%rSeDn)~Z!Y~)Nb{tjP@n?P53a6#PNbLj z({&E2FnCVh-%(dt`&G>0DgJke^Ud4$kL*Mz~yPJEMLcCT?yDa|+W8t{?hjaTYu#!`>mO+O? zT^u@L{c|Y8+G+h*ijJLbk=hV6peyy0s-lkg!UO`#Hc=_!&h3=q=1o?`EoNT;nC zNEMbUhhR%Ef5kmS!H5g>Ne?-qfXn4;1Z^z6s{BG;Ch+oTmB@VkwP`L6$U0fh4FTX0UAFoI!su3dFmiKlK+pAs2 zA#`$89-}QAHZ46fVy%#E$t&gQwz_n?sxK=eQAclh+>8Bv@?pu9V9L6s3=r5wF`_cp zKopxt>*QSO?{OMm-pONM;cC;

iP`KXs<+9b18$Bfwhwy+9wc7X}InsqS86 z-9jLM+i#jIDRC*dR01jh#K;`IFiB&b&SjVLahFP6O^vE%q-t~p4o%>Z(q3Ok&C51r z)S-pp%1C{5mt9@+K*hRDH(E`3)eg~ers1n%iNbVp3ACN^;ce9*?bt3i`gH&DlQYj( zEcdcumxn|5M;PU|=`33rXMQ^YK7tE2^bDN2@%ApM-EYLsYre02vYY7OQup#Ds#Q18 zokWHLk95?$OSOjlj%6hCX5e@YDocs0suM5iZ$D31BxLez3tZXguW6D}wEU4< zIeYFG*(y-Eq(ZMLxK9_~)^%UEhO7455C6b37T@DSxq2g(XQnqX ztLeH+(o<4?;mJ@4H6A^2Vk+2HMgxF3Xxzu*mchw$lat@xoXO<*%w?QOPWu+|La9^q zBitUpduIJ)l3O^p{?Y8_M(qLRw+7p z!dgw+t7^%f@z)K%S2}=B$-ogrt_lUUq;c46+gFa7q=92=G^5H-!sFFt;I-)%@l{ss z>?=N_Blsg&yG!P5&1RJ}P-K|+>ekhH#dmC~AglYgnr;msw9qp}A3cMjWm&oL7aru- zhBJ8>XvXtk9ct|2O|sni?W$6yXc^f1t4)-GuWTvR4~4nRl&|1x^07x4+fHceSE+)O zRU3I>fMV*}`^oEI`+KmahL6tsM<}S;;Aq{6+fzfWkPZSUs7UP=7RjP#Dz46Lz|hdc zl?kCitetyDeOQ#%mlU$K$5)c1efyM6hlDA2E72s8K&lc2*@(u8-COwD7j5avYan?N)7_UI+hrrY=hheYVp(nUhqi!!*1cA9xlDbRs+f7aH zEhmD|fHfGRUNno|s2V<~i=L=nQN`n~R?QO6eQ;nbcX2GmuyXJm9(fMDsuACKMF#hw)0Ixl+Vk(y*1$42*d(*ID$wri57{LR5Nb zb(c$%{iZW`wccQVQA6N2Xmr1pY1rB}wQYt`8#fkJ2lCSzK4@N@-5hH%4+d(T2IAa2 zW%Fb#EhhUsnH+mb`k|dy@YQxa8GDn;CQtkkKfvVU`dSi;1>eBe7v7;+ zaHC6jp_Wabpy+U)SuZB%CYde7A|@{5GPN*i8g$4R)M)YSUi|rPFi`Y&Zx<)al_Y#k zkOBtySAAYJpUc ^pno-93fC4g9fUFc?WvS^x)k|3dQAwrkB$r6hmH2E3(Prm#NV z*{K|Dqpp$u8ZF) zStqg~>A<_$F>G@YV0L?wmD??hofwZ()(TA7G4V?YFSm(BS8s1>$yN2a)3gB>b5!Z* zR@w_P_3K^Dj-7ohz!FzoY_a_A+&;v>!mT62OFF?VeZI>|DO+B zH#=A9Xytp!A**X2q04Cty1a%*fvk2`P!)(0^4_|zlah&wN@cfKetL8$d%%A>F zkm__*Q*TJZGY_y8X2CNs(km#RSNe@BGC{sqOJ6^$)1U@*K-pFA`%`RY>DgHlJwcHW72{BaFzn`Q-3s;0LfT(S$!LhTM|YYu{$LnkHH9 zrXE*uTKxf_HF|qQv^ab6w%9QuMsFTE}rA!|HJs_W81a`=N%- zQ>O6K!vrbx`hj5dL1xbe|c>es8Q^Ai7WuLtQKO^S)P37botNDFXLEP^y2n&$bNf0vjDG< zJ{ff-9nZwQw2^JUuTZi)`5O*=TesuM`X+^;@1ZS1LnGDLddlQjxtwwCm`we87dV$L zH2pGQm3yBOk3+gYJMu21p;*#&`jfW=D9PO>)bo$ zob0pq+G~BvI;nQ0;y#&Y1{>)bcx0nJ4E{|%h)n$VGw_xNUu@{x>U)f&R2ZVmlD zLx_}s75wHZ?pH3&q<`p9N?(8&*`IeU8oB>jkDeM~T}&zo^XB_J-u5=KLh8E{j?ra) zaf_pc@Dqg?Dz;no+-_lu*5%BeFv8hQ>facm$+F)V(z6K&($5a`3r14rp~xMA911&w zm@Rk{#b9dc9LN8~BMscdx`z!C`h&QV$waK#gc4q(5SXmj)9eOJYVLjom91YA`XTkv z){_46a~ew-=kwuG1h}~5Vuh5;G8TSl3mUXBEN5NX$VXA?8WS~eX{6FGgM}t9EHYM_ zl+c6i>U8qJS|t?|F(n||F#;K6ZAsr*Wr9v<`xAe_qw3d z!lgo$4A~XBc0=$Us@bPNolVyZT@xQx6{(~&fMCG>xWRpdsj7oTU!Jcuv4G&eadb>_ zFoT*rWZ6_$eAa=zL_@vJkV9+MuZaih7>e{B^$aQuAQa8^R+d#Ne;R%P5$nd6Zu~u( zY-XYrWyaRxla@z(EZt+jDXiHz>Z!q)#j^KAJ1YEnDdia`SCl*Qlub2Gl#gM1mi|1x z7i}bG_R;f0b)vYsZA<%3Frsm22fzzkP$z$~f#ZRYLO#>(hHW1D$}@~6l9n5RFAMvLgw)?g~WQoyx&s06;bREWc+TdHr6-+x(15zM$P(!N#WB`YLv0i*OC zkD&GGK@J;b%SzXMm~&Lm{O!Oe5e1aJR zsd)i3Zb$&J{@8iG^WzSN2&B?fyAOoqPM1;*8~|?j>VDy}+4BsuL3IFI;j@@RTEDXj7J&d-l5~jd4elve+^! zk>$CR9nFy|`Vy>T(tG{3FmN{S$aHCbfNl@1FO5Pf`+DTsT+(Vq?JyYr2kD;qSL6Bz zV-W%oCy|&b@i%Ma;lx1 zdwNolBe4x1bzE3KlTLpNSyGv(ak{Uoozoyux@PMZjwUy&t_dJgXn&A*HVIox%#;SXCW zqh&4XrYTV@OkDA@6}RSVE$#8*MP@s-xl_)e7yX=?E?-X08r6NvZ8PVKD=k`jR<@l= zxMNWb{#9D!hgx!n&js!ueS9-6s^lYSP<7sJ!Uf?D?}$7CJMbTa?m7No;FgXQJxP!A?fmLjIB$ru0T2 z>;v+APd7E5+hKafQ&n;K3NLgGJjs-^nDg|mI~OUdMF+i6y#ST zrurux6rTxea%i|LP3TkiD=1{WE%8O|Rq(b*Ot~hTcW3>Pa7^49 zW0f-hz&C4)w!@TyUyJ4s)H|;ULV9-ig0q+0-HokmN}HFoFs5c*HdYeBUh&E+ilGqi zQ1;3hgIiM~qn`0cO_*Mqu%&wH*$sBjKh+FsVac?)DTDxE2Km<-KYv{fpLK$i>)iY4 zWs$JiOA1%^wYIlgQeVq5rW_nknJ4o=r)4*7ij&S>3HbRsVr*-oR-fQasmPes?ss!` zZtdwO77Eyo(&WR)H-|rO%}RBOiim98n2PQ1{>N=iYXfQ0x-c&o^UiOvIyb>k-7?@| z<5kT@>m(0F!B$m~_&ydbw)_-&POw7su@dB72)Ag*<%EUbYdL{f(&fs|vzw5==}B%- z2x`$qHNgT}m=HWIdrL?fbI!RZ-UghPU6tSxJD`{4GBM&UlDNBlPw zv=$Kg%!`Qx_S(>%1B|S=x|Ay9!7<8iD(_@@nrm@oTft^8iyxs0IhGYCXZ^$>3%WGz zOFH|>v;X6IdNa*$lXPFy1{SIs&wVE3DDln&x&3Y=S%wniW;T|S&)vzh56FPpCt8-s4_xde!KP;x!_z~aL1e|1ayI?VT^z@yY(Ew?t zWV0yT%qefaJx?o{(2KBezWTWWlj$WimoXPkC+9#Cd|b-4`SW|I z3OE0iH)&kOk1|Jtfl|OonB6!?HpR<$nex+H%NcZq?$W#V&uf zIJiex2xc|Hm9L>Hn&*cji;5BK$vG1<0hpg&M0*~0Q2nxx%U*YEw|N=A{bgn`mPR6*fhP!<^i={(5F>yRu`M{V!B(LP&(WVgvA}dNb3`LEK@ogV}qyH zNiA@`%hGa%xTB1sB<^}!$zy&;l}i2%2z`S1aCKXZd#G6ZOjF_nD&4`?bCFj+(RFC0 zRSUT@DrXZJ>0{IbigbD8ewV4&RNz*e1-ILy=GpO_qMnVuatP?QNt!l@)~bYI!-Ii7 zV@p%Gu2qjo1IpAEk@sqs8Q>772MrpCh{a+j6pN?jyn_i?bEA&n8$d$UU31eRfR?U6 z@nL8(xHkt{vH;MrPD@4!*;TEA;$W#L%q1EkfYmi)UGunY0@_#5TzbrnJvo2Q6y7|R z|J%G6UvTf5~QvCf;n=1Nj}Y=w*S?@3y{=G{J412+t^igz6OCDO=} zUn+={H2tRY}-^Z ztgTiPp7Bo#>vC>ECW8MD4&Mn1krAb+gJur{ zQIZt$2@n^buxu>V*?VnLRzVh(>nMz?69qx$N@?`*?EcbQb-e0iEWADxA9?<~8NA<1 z6da#6wNI$s)7al8oa7;mLwx1fC0#f_%et@R#O}+KFoOnXv&kbBc=MvfVIBZN3ya(r zZS+Z;f;0nMiBO)@LYR?i=Pc=Z7>g~ap7+n_%|MwA&;paSdOR`@_F<}{W%OQcc{?wX zHMx0lIY;+IRZ6Ak$4>NCXfj@^D`3CgS*mZLZ3f#w1~k}qg-_wYs`K

r^Jb2~#Ng+skifcGqB+ezfz4OoSFZQlL8 z{WQVze3|yQjfw9}DxL^43QoLu0L}iqdFk2t`>4IW#h}stK7hj%Rm>MHRFnr0eS9i$ z5sj>}_2UKA+&prk55%$Om7RMc^;i?q4D7tZVDM8Px1_BF6eupyA7up8Y+OU?DeJ;!)&A2gMmQeNLTA zW7_)wmuksi%d!PIl#WJ?>nf+!MPHkd(N!(i%S|etQf?{7Y}S{2v1C_iGf$XM)iUaE z$rw`~Sn&l7j~+gVe-a<~Z8*ZRD!?wO#~P#@GT z2o-Es=nlBg=6nK0HRMiB^Q5SvRpB5OBl=(|Slz>;vT7J5kYd7Qxc*2I&@TTiKaogI!h_ z&H^E#%R4jm(np#_UV-@7q+SCS9%_>LvLecUv6R!aWH=$cMxFH(%y2J-mq_x}@SSvn z9CYi3ej2V|ifnnPkNQ$G3U0N+*6y>NO4EIP71Vdc^w)pZ&ya5JJKwdh_eR0qa0gbnB=0=?o!Vr#2b?u6|S7B~c&YIa%hbXb+ zPZ*j#eNU6l?3H&`BuEJ7%OaFzm_|<=ig}*!?_p1|ruJt|;2Z7!SG!AkV`i zT^5Pq5Uwb8In|3l><+8-Wb5Z&9D{_V35=14IPtm>sLFo0{M3{uREbIvq9m^tRg}RY z%{ykNbmmU&|Jfv2)_fjZ^{NE-VFy9h_1(>CJChV19R+bYBnvs?bBwFkD+WY)}`VAxLDGjx1%!{)QMDuRy)O ziIjgST%6go>Ak+QUx)hKKXP+ld}(VgZlWmVL&2oNdQqyIey3m9_@m#R!%dM}LV;l{ zkb`~UzHL*F?o@OzVFzY0Z59@~t^hg4(}2sMH<#qW)(dvlyl!Z$AM(!v`Fb&H`(UZ6 zN^-I{@^DmcVskA#+xI7DGvyt3^X9iu3IV~nv|`tft5D6%@A0OY7Ta#WzHnW_)sHV~ zn#k>eeKq98{#bX-VfW7tJl4e6&;hEz@JwNRozEc!A&Cv%?A2Eb-!wUP4je!gxcLU! z+?8@`tG~ED^(U=+({5J5X|Vm>i38+@+-4C%K`&Z2osf6Rymbw%p`T&eKX-1K+K`4g z1|;OE>JgM>h}e`*8>eYd>frWQC^?=yR@LOC#>kT?3qz>vPRXHrK+8MpJMRtLmSAUFOW~iqv#x z68G4ciGAv2JH@;^f)>lf6cjv9oz)n4Q+QZB(TRF2@iJwSK33Ruabo| zRS&wZqf%t(l?NXc8(xm!buB&%Li=(QaOMNm(b}t7S_mBrDT8pMj?zqi|5A!dsUpY~{lrQyNDQWzT z;I;0DGCP<4g0lktw(I=6Ei99j4stXIRF*2DKaG779^XLEYu<#QO_0dFWC=Da@b;0y zrW{)m$=oYJDUqYtG2Pa=bLAxJ1&&Nx?^n-OsfQE(taX7?XgBOIj78ps(0#eW8o!;> z6Au!YgpEZ3fLG<}t+o7!`;q0iT(IxT%_f;`b1DKaYSRHAF}~-0^TgL=3vtbz+M5m| zNO)72&Ca*k4TfifSDpp3(9bO;0UwMB=gy7#@vk(^qDJ!1#+G{D*u5NSQbj?zdScVX zw#CK4t;;u94mq;SOv36KzmDr>3-wvPU!6K3>@`|F1>PLmhI6wK15 zPY~gIZSR~LcUI=|j@(P9W#&zpKN0dUL=eeMrPI>GwEUW>uUmX+>9_`q9;-G3ylkw( zoFi0MB(C2;r_LzZWZrMabKJ5L?wxC26Hww(xc%h{_l(9cAy{?Pxw%u%fxh(seS${T zcD`fQ?U%0&-FsK(tKCFkFb&VDFM82vNlix;+(FQkb~XQ^va?+%Dh(1xuEU%KtZP~a z5tEAy44Yi{LgFYpVVU<-Oi_RlF}wE^efA_xXm#7A_-*22rAIl6 zkbRbqX}a!EAib%*c>?|A!~8LG8p|rgaK=Il|Jeue>RBTpp*7qe$ucuzO$V%gAx8QY zjl#xl{hB+kK`_><+CXX$cS$Il22f12l#QX$XPt!t5B9=H>w(WY+gMgvaZE17b~i6A za2G!srXwW-4Y7nne5pJtw|l}Z7#L{Nl?PmalKiLZVs!_Nydr|y&1F7*uXIJkhNdV@nelKEE`(CGj@FztoJ~-)CaN8*xGMRO?k^+qR~>tH`jZ ztM+@%@r6aH3f|$Iba*vo(LQ?Kq8{QcrFJ4sRTWn*bpxV#*J%5^iANuFvwi!-mL^LG z{u`DX;o^0sj4~5+u_)T85tBmNulFi$Qnnv@^zOpd%Q5bAtGcBXo9^594#TRCG4v94 z&1`l_J%pCJ$%OkjuWA>c!bz&5)kAE23U^)zX7ulNuarZh)xJF%996#Bc$ca&oCMx_ zGVU>`Tlxc5YAck)51>}CfM55j(N4PJc&+nczL+}hU!xCJj7 zV)M*kvsfN2#!)-o;QZ6lA1Ph9##m$ZcYur@Gpp_Q0xxE)vgEmZyNDH1_pa`-=5xE} z`V7xtzn%xO$gmKkU{?7HF!>vc#K?7WeUVGuDdX@g?PL4GrNMfw&CWl?#APf2Wviw0 z#vq_T?aY~=sH3to=BvoTkD%PW_UNda?o%8ov@eaA8dk1zK+!4uXfOF;~2xpyj6e`_Zhbi$3n@Z}Vlg4&b`_l8(;z5<8rLphW;kLvH!_ z-fdBSzn3&qq5#JxFM@Ci7(VB(sclsg@ZiIIol)=-E#hq8_aBlOx8%^P(T1O{DFvmo zKYZmE^b@;_-Y3#QIq-S?=~l%l4F>H*+favWe%Mo;uS5bUB_S=HgmE1K;ez_8`_$=__O;zV}T5p11e-iTI=>LiIy+FXa)Hf(*~p-u1OG1&9LZCSg+5 z(9CwEbL+Z?>qRz?r?<1Gl@h0yhh`I=>hl_ykcI|eEe{VPeQH}Lw+ZJlNRRTIgE@0Z z$j;g)K(sJ{m02&I@C|#R)D>g@kUxq1YpzDXf8jLw>aE`GSAMrWdE_?+dtMd1VxHTU zk!SJ69w1377H1fqFJQW3I*#V0*H^EKmA;&lNODc6_>~*&8V%Vcy++%6 zXGaO5kqwH9OZu+8X)U;|*f;;=volt8#B0e%usYGZo`iR@^T!20e7I22Gq8I8V_+Ux6+uLkK_ALDak!_#EU6Ac2rOy z@r9yL@fEL@d@EFw4rl`OL2NH}pW1hQ>b>aafFYt~?&?Es>Zyi?w6Pgy2vqX0)pcSW zx!Nc`&JT0YZmDQDc1!j|QB}XE7=DK?M5$_?k)dV26FlY?)Z8*Nl^Z7Q>ckaAn0{I4 zRBzc(_RI6e5r(^W7)~{ln#Vt}x>V!6nm0S{Hm~AN9kn&{Gb{ke3J&4q;SQmAj_LJf zwU~+HQhvG4$*%eca7FY^tjVe`WasZCom0rFJ#&M@@Xx%Y*dUOTEP?xU$sX3ds?%%e z?&tWc0f#VqK}QH7lxQcwK~xR$TUnXZTS=xi@kb0jVk04#^%%qj`wyY{l zh#&Z7Z`+AwtY#kyZcI5{3Q8@zqqk6Z|k-1zRO)YGKUNXZK@%)(DXTdsT_c~nD8>| zujT@L+Y)Ol=Od2WL{tvh(Hcx&G6}hj{|bob&nW`=RTr2P`$jY^D9~m8KAUsqVchOu z(M^pF^IwJdA1MbCC=&ay&MUWT^G2sXe#D+|!t)&=U)=&q0eJ5CO>;dCj#oNd*#Mc1 zG`_ckmEOO^@QVFNxkFl?Gdf$9_grG&RM5m73G?QGReN242WLkt{$q+xNfjw>IQ;(VJ7w zf%ivpx2r))iEWb_`EkQbfbBNOKm^UxCr`rb-EH>gbdEFdzGJ}NSO(ZssU70g`*I~v zuS+Tvr%qBH*V^?Y@aL5M=JGFIpv5Rc_6|;ZZy($_x|Sc<7bA=8ZIf;j9uSv4ly(im z7CPAIR%ifJ$Kz+l6U{b@5p@ul&lz`59{q3KuZGxL*h=^wBUZ*-kECn42K!HwU1~@q430=3Gd;65;MFbca z#O*J9cQDq8Gm^KFy;OkzLP=E7(%g`O^}hL53KsG&-bQQ+w#=e=XYsze;=#$4mEU|> zlPt6~FjM#&HHpfDJ(>&DFc%_F`k-^a$2qkXPor(CV@7sUaW1`Ywy>ykA|MLN`+Ozej0$AE`Qz2S>eAaCNUeuhiC_Pz-~g|W(A;FuZtb40T!6<;-)0bzR? z4_2tG43g1UaLJK4m2DQSup+ z67y}Cy?D8Cos01N0oBcpULcKV=7ru++X!M{24z&|C%g}rE5*6CY%E_%AOpU@pX*xI zQr{;+=UbXL^FoUnI4^q9M#{@nf{JF z<8B*hG7$Xh&5PwZ6hO4Uv`o1O8?*yRC;-HjUNqan0)U1Pkaw8*Ron;^G=Z7ae*YRz zlMg{8g-_n2UIY2gK_?Voze%*Y=6uNZ`p#}WQ@eEC;{LttaO;NBxyt4*2}J{4Nz)5m z-nDx#{x}1DRBr2J|HWHAaTIjhh3nT0oC>XOh-|*AX9QjwX4R#e#T~-2~ zptsdRZqJ`U_ptTr%0(EF)*Q;9u%h)8A%IF|t@uVt;4K1*cvk>$kecN{dtNqKxUjw9 zVcrMykdZzz=Fa__QccV3h$Y0gV=v@ik-pdZ1@sk0&;#EwA#NX%z^rgn4J)glua!LQmP1=$C?%h%q7?^qKTu)vtP`6Cv-9XsfoBt#7+1-7ZZR-(=Wo zfPS*FwJJChWoKaS1-+PRH)yr)J3sk;YV9TM2pRiamd?78f8Ayk$Qqt^0v*^00w&ju zXq?+jT{dzm#BcfKt@U?W9au`L^cSL(6*PeyWCAg_55zD23HpO3oC5p|ad82Q!R+ym zaOGSm>_rw(k9GIRkz<^fEJ{`M|Athev6g{ilS!4RnMpbKfM7Fcfl%(ikQ z=_l#N0Z+}v^K*k7C@v58%g-OR8EcR(a#%NFYHDUT zGdBSXU^!e_ps<&1(SPF!O($bw`&UZMllEYVXRmCH&v0x_y5P5HF8EB=-JrghA+SBM z090S|SPcF7T#>pn^JgAk+uUysEAOAVu{F_(R9vXzziTl?>2vCvRAXQm<2+Ih-gYgc ziq?@{?)RYfQR7t?T_|2TLI7tS6Y*ba-J&SQ^L_9xYt(XlrKZ{}X_f$~Eyt`%T3Hlq z>dC`qZh$>RqbcIV92uqt+m$lYQ^l1)tJ&d;5cGX^DIhU64) zl3LkzMsKx=6kP>zIB_3PZ62LD$AI5R^t+Q;z(+N1!Vr|^<8jM_Hof;&(IIR+rxO98 zGXg+^itRJYgrz&z?rkvH`sqml;;jsT62{hsSK6gNrkpLbRaoa4>^v}N@0bh;t|d&@ z@Y%SOtMYwotlfNZ;VZ@Y0usUSRSYD8V^H!NTvMd=4;QIlxDAZ%KzV~h@N1Pl_h`x6 zGMyue`dL|p>?%`5$sSgbVGtk9=RkEGv+l5+12pN>#b#^zCsaAAtZV}4J}9!c%7wGn zqYyI0Yz~3MX;lO*3^`ScdEE`zIVh=*wRtY%EA&;fbr8rNPuxYFwf**m31F>9q;jo? zS7hFU2Zi0w^+FelIA8e~4%wm$g1nm)0slMaG0|Z-w+hET?^aaE4*L1Cnck^ii7o<< z^A>6>9Tbf^3m3+%3<^P6h)RMK7u~;B|JEt9TX^cfS%ai1;5GC%srG31D4-NIfrR*l zndlz0`gm9a`rRiPZ0@^1`|$aA8L7_t8x!V17cPX%FTJPl z?ePcG`je9%8&$`b&F<|OTm-teuDA1NvzU5_hoi3Uw;wxbzCAdcxTkFIO7*q^%wj755z&;2==S&-2rg>a{Ft&@J{J00LNii5>n5_WGhg zN@+=f$aOrT+>eOUmol-*mcNeo>2^T}xsR4zMx|scAgEDgfgRglAPIJ1c#u4E4q|1; zuC~9A+*w$yk8pYLCHAabb~P>F__v3x{mU;I9!ngrQoI4=ad@B|gEoQ2oYJXu5x+ID zqk?ya21#i)6S`?JZo*xjfUu`+!Qi@x7Nnz7l#i+GtEpO;O(~MGLjU1uJ)mi)9>~Ym zxp{$R@0i0JNDItT?yNFXp1>;t&r^V6qzG1yS@FC%SdJ7q^D(NG8EliZY z-S=U&59^O?oseNsJEW`@T}ml)%C3NTug-9?9a2N!Ij}%o^NlU;C@=`NRZD<2pjcZM zW#j@^<@>p%K(h-@sl0CJW)b4t&&Y5qp275LGH{H*C087vO%tKXl&`aW^Sz;AR=VAj zA7ckrN-HfYn10*RaEf%jHk#-Ir;|{$Ki25IdqCWJg8ku1-Ml~Yjd-|fYn_-QyQdHA z%LCY^jLV}h#-`1IhdvjU><%YJRv-xtE58x=mE8QM*mBIV82|%rq3xuYwY`(vrbt5& zb}8m=Pfy?-tUx#~v)wBlE2^#UBt;y2pQa8p625hE))P-RY*6c)533*0*>6%q-@8w> znA~@l-U~ka#`S`kfm!mXdG<)38T*a$qZ@5D)Z1!239|{a znlVdI6JHBq0aDZx6Xe*vvEOWJCjk}$-K6$Wh6d)-a_kYv>vlHf0(4?Gqp8IPTJjOF z5Ap+%h|a^U2!nw>m&4{V8;-=_2C#P%>~3E-Z`PNelDFDSeHA(UwkdWaa5JK|J|xus zS0m<3U<1V=FtZ`WV_$M}4>#_OaPDiw#&R++94XgxyOVn#^w&hq;et~>YbNR^VB zb)6zv*#VHK=Ad3sPiPScZ?kEn1vHo<O+h8P20Z{z^{-c9*6hXkNTRdZ`_UjDpK5(<-vCTd-c$lFy&3j8b=PnX z7~@rP8;s1RRMZfy)heF^{Ydt(2iZBhn|>1%^eCOxe|XelZXamoVRB1lc$ZhR@sXfa z-l0P8J`4-uEtRS7oW317{T}e*bb$cSy=XoZ2{s416n1KVBkjdKXD<&;moji_1*ke- zvHs#|X8`Rw%J8BmoRiOd(nginQSp*J*Rb{xk+6ul_&`PPdqtP8^v*r{vKa-cJY?;x zTRZ+2r~rulObc$qzgg(MgLs|{XLmaQ17)Zv=>zC)^HJ^fNQH<-?>6^m)*{}2KxxLK zd`V&XZRyahskQnhMK`UK$}gW9Dcf4o^#=e8r;8;rR9y7U{eHcQvFD=rQ6wW2B2v}a zwb5OjE*=}dSpd|tTd#t^4N`QSD9+pb5wZ@Ag)Vsae&Ef4{%MT;I3cX=k~?g3Rj>b~ zXtgh>GU)O?%Ca(mgg7_u!3%bqpGp&7E92L?y9> zi=xq&FY|7Mv;r+tnJ26wM%%qE%%>0#8-svNvIOb6r2TkbH;^9v$}0tswnapkuqaUK z0|7WtKbHAlEGzSamlUXnoe~4$8rn;ggYO*(8(_+K-_3AJ>J{4@qX@Y#esv`Gzcm9D z9}pyiVT7e6FW({ou1x=ppQ^ONwkg}8b7N;Kri^*8U8fb3`i)`b9nMKAl+IGn1Jo1t zWo7wop0?jIF|$&=#LCdg1CEaC;=k#mDV}hEts{BGpv~{ z@Gi3fo9Lgk;Ha+FDta43yi6Z)!0-wE_HED-a59V?PyvcEFU3mr1fAXCzs_-nK|)r5 zb;IQ=c$KEX<=1;+)myQdlM6#FjyV?%Bi-_Nvk2Ho^VNLm&jLwPUv3a~AM z|9uJAJb|HdM0jCq1mItpwzOI|B{c&vhC9+{=!SNNL3`^!UjZ^9{SpFa03J3lKP(N& zn)+5tqQH9t)Jg#hbIR}95r%K-|G8fD4d5W*PnXMNE}hMp!+4c1oD0yPX(q7;Lwz2mjV2|Jw`y%LnwW z@c(HXD74#v33cMYJuc7|86!j=r38G0jZsbaJ1aX-Kj~uU!#!8+G;K##z!*rPJ~bBU zbsGXw1p{UqIIP%0Hix^Pa#r+}xZH826685gF7G^Eq#(ZKET{qK@UYQ$eohgPawo>3T_B ztLa6#R5wbNGF?Zh%s*4I`k%Q7l17OEhYqoTKa8kI38n12XeQEu0)14-?$4@q$~#9c zL#Je`z5TK}AU{)~`L%#f%{4IW+tbeYW3p~KMU&J3xXNyLSc|8OaXB>Z2s{>W8J$x) zgP&-cthvDO{E=(*q+Q-=zwA<~kCw}n>Q{kIcjO;MCI%WXtH%IEHHCC6KRKD(|MvoD zF377%C3JCFR}+NXnQBG^x<8!?rJKWffIe_4(jWpeP@T6!DL;)m?EKOmym!t^Euej3 zsr>c)BQ(5OWzxo^}S~yt+x-QH_t|4LW<>NFjk+ z+o;-Afzu~D{g8{yI0c3(v7_b^TmT=|KXlImW-rA4uT*Bt|r?kAy zF;D!M&R>y<=*RdYD%nB~GsKdFgnzWK;Tt`qNboVs1R8a6{#oN_R)%E)kRPCb3~^K3 zJ67I%6(cPOT*vsny}Ch2EC9L_$X3hGvQk#vDt_#c1^y749dXD2s(0UUHX#k!<2@BkD^KfEd7WBtxOLEq9LTVQ!D>nnvmMR-=~3=i!GO*m1v z=C&pzw%JaN!JetU!$7}*9dOWj z{Z-$WwQ^oCUnN91JJ$jj|7 z+xqHG_wfj6f^j@@O4q9I7HkCYL_%*;v)e=O7$A2wwjyF0Y|hgmG=a!!NI~d7F9PFQoPLVQKqytK z%HgZb5b)6)c9Ms|BOYk%tk5mNF{hwJAc^T-I(sEJ+bpvonMegD9e^W9q(EeawH9(G z)qq4yRQ!s%T#Ih#Ub1CX-5p@8HYs$9-ck2dmcb)(ZOdNwY|DDKXgk*_d*}DzRSahW z4`)9xie0b7CIed+53BVlRV zKDeEIo)Q$4Lr*^Ly5m*O!Ec8)QJE!x)1p6ifEQkqLftHxgLvQLvgPc1UpK6j4CrQVtMI6b z*|=SM1aK*jnG`?jLcWA$>o_jO8Du&zDbnM+>r^n1yo}Y=TZ3n30|1Qr5bNHN!pF;Y z4$pH2zIhu_6-2&Cq6@0in|GIUmT*dUKYU=Dn=^9<@ooIYSwZk%snDxhiSyTceaQR#33=?aMjJ@W zPg#ZVs){9_qc;8XVW!B@D*+cLBFQgl8MChmWwaM zuj(ufJ3e*#{psA#pA=`Ky`Z2Tb{4M>U=fO8vUSk~#lpP-45J@32DjJM#sd;?@Aq?ErslXdlGa8}x zn257ctu1VPyN~IO6Qz<8I{7Z#ihnvP>uC@}SI=rA5MFYZlp>9r`I~|Zo;+dmQC~_z z=fa@xBB{|%ef=4u`BqupNV%Q0XI`(y>PXluzwib5B#nfH-YFlJhUEg zt(}j07@;az{+8?$5u1+{_!`<(1b(Y(f`Ln5*R>F6ofpbV3W_ih54GR^JB|Rvnh9?S zdVt?1#CT2Y{l=K*@Ps`3(4NcI?d46n85Z-?myTS6IbnlOxHVWbF%CNkhT-FR=}DKb z@bM&OmJ2p@fq^cSbUYeZk}7|a>G(3cp3WI=!u!7Y{qhE^nS7bYI~DBn99ZHlzlUWj z$iO#Q@nhC46WHY)I2=+$Oq+#4PGQ$svCzJTb{aooUWY5W(r#Sl9#Gv!4V<+(!y|K9 zH$S?V(6x{XFZrSl)U;aF@%^U&wKx6Jh+d080~63wQz9jbIjesfW@J zKzOL4{7WJO4#%H)gRk6;aJv)cLn z9c*KD?v$(!2)wy%E-016no%olXM*7e;(!tXTa2B;#9uH*0a@>66$*#U^R&!#++~$t z$c?O56FBf`0cs*Jl|qX%Cpn+4Q~)ECC_{nA$i3R)$0iesjuW|X3%VZ4SFlL~2v^^z zI_-W!A(-SwThEQBkH`X(_SBdP7lAeN8o;6jY-R7*=}bi!KbC9s`3!XNaX_>Ll#X;6 zB^|v7&SG^|Z8Vr{WCRfZ$elsgiS<9qUcaq_MjCv+e9kTNXf0}-xIkwmK<1@eQ0l>8 z0l@45fA!#b&h1BFG78-mK+f!WCuVkOp`AV{U{ym+NE4_U3Ax~8n)jLm9)uCiq}l*N zC^Eb@L*=%5<6(FuOa7i>CYXq#df=V~hOxklu=!v_hq+aTYwXc$t9vf9x5md8=FFDJ zhn^!H5@0fduREYnY@oKQ&S5XL+BUZd8XaI1sK*S}k4mjz9s5#f?N<6oaqr7@oA4lg z)}`En+zA!q1m*g=QS!s#ZJYCoo83~vnup=EU zBnP*^ewS22q-N>0thBjR1+0Z0Vqgf|aPou1g6Ci)8Fh|&4k)%|Q@1gxGC>{#lkJFF z8py3AyQ=<$$Bm`mzNk>Fiv0CRlc!t9l7sIYhPx!mc}bXg#u)+E*sX(k+QtsgBSc}t zmBA^Q_a2&I*ws6!9^$b6ygLXViS?Zw*)R~?biS4Y2#_w)_#P&R$#@^!g*{NGO#bOl z!}}!^(h0A=9eE<~=avDR8r{i{B;Q?gLDY^Gcu10PYg4f()mtN8W5Hn~jb<;vAP>44 zf+&~5->_Uz-S(&ZyVL8UFect>3fBy0)G5xMp+st5bl*rSpy|YM=ZR!h0R&JAX9q(Q z`dud}^7?Id)bHvPe<`-Q*5Tvn%$UP7`3Xp|#oPVt)Rszzuw{a-h_2boB~wo)es< z{at?zkFgexSs9de3h-V5(x)y58S<1q8~Hc$Lj9$*1%GM$$YVYZSof^oXdv3;7~2Z0 z5D?zeUVA|GW!e1sq5fgn-gc=h&H4(DN9Dg+b<1*ilH39rW2{{;kgoLU`^PzgkzqGl zXhrwUTa|M-`0CijlR(~0pF3bjb9_bL5JFRZAy!2kG%!%jZC`I{IS5SGKnPBUfAW;O z29ebQ!%2vs(jNx#^=bq7X@7`*#@+qz&YLMLz*c@FBD}ra4jN(8u4d=}WD$ka zn;arevQ7N3)rWkJ&-vZ0YJ)TiQb2_=zO; z6OQhHTyH5M^FH~%=FU7E>i+-t?z9(L?lxO@MGJ|tg)F5=5+(aqlx4<}UBi$HcL~{J zNV2b!bwW%LitNi^Fv&iHDa^<)XOdo%21{@4C)kKiB0-muTkmd4JyT*YbQm zUIqQIDt~nHgJuqqiKDD;mLaBNpM#OA$wpg~iEsOCAVvKX!T&;t9B3#|I z?rC2`1JApd?DYJZiXZWWaFS>jO?J^@N1b{WmS6@#%d2uYycs)EK9u8FRbZOCMS60! z2ULLY6I8NzYN~l)5+8`{07w+O=5MedUk{onbBKw>9FKP_!SmVm_mLXU>fcLcER^lS zrx~>-rR;!Pb;QXtC`Gm7TEn(KmKY`XE0u#mBjY%)1rnhvNvHh_w&+pi`E#Q@9RY>Zde%vN5+2j#5nL_vAM0@}vz@gA$ zTVvUq>NdL)CzP*X^s(lc$O&}H^J}@dMz|U29{(aQkODDPeiU1)7*$UZwUU%2L z48ND~^_so&NO6Ae8&_D7j?cW&dJCceI56!&sWOxr2o!|Nk~KBV>@VOF#@3eg zR0Zy7%a;~>b@qtH0r%B6K<0MD+Vsl)_+Nw%48Aw92Ao)Vg|o#BNul!U@6}tUrY5b- zo>G5ru0)O?!(CMLMfZF^l@Qvi%U5~{x+4j(1sUke=nZUT?uxjldH!Yv7F&_DPn=}L zb>6T&SMDykRlNkum^&od;)qSqZlh()^%o)a4WnV>fNly;UHqf+B1B^brsHHtidq#b zaKmekX3^4NW$7TI%(61iu{$h;2S>>qyF*X;C;5t#X?f1MgqtSQy#QZGR6M2Ks5|o( zejVkd@rUBhf@N(Sy>d1Juno$L+U*E;fk*gdI^-A-QX~eC9Y=$9LwT+08D{ENy~GXa zVPnu3>#kbA05QpJJ>vqPHkj^+n^QWydlt$vjGxuVR?oO=Dm4IV{Zq*EY`G6X__o7) z?2oS9K_!)>xzfwjT0?T5G^YC>-5h{mPawE%J)eUEXPlX~(Vx@+${cFGDlmq?k$>@1 z`rU1_NhRm1d0wQbP{v|U1p6K1l-eLBkY5{F(g`y+*6hqX34b?Se_lFGg@F3(k^2~Sd^J^&n%)Y|I^x-{l=;xiG zu4fStgkE=|K}>1{vLe9P6DU&cDL+u~BqOg>#A?1vUw4X1!mR#cT(_DZbT%nM3~u_o zyiT}kDb*=yW{-PSwP{VIF+`?ma~S*A&PwOiBfIW)2^|j~0bD7MOT=Mc+XP$5triK~ zyTfe;qm-9xDm!GwGwY9(|8gx19@zzT-GK~8r;cj0c^z>_C?CUc=a^qMozW+%Y|078 zBtec8;NuX>S!_Z%sh)p2-YCyw7@;xlbo%A|obqp9krNtXnF%8G68%PF+U7X0A?At^ znwrpNt5)@a--kYWFD~FEE_p&3WcUuUK3ma&25plMgrloB)v%kdhN9v}Ry9#`{2luP zIj;lFwe$6e1?^`xVzB6E1~hRlL2W2Yj4rtN{gH~~$&iLi_E7l{@bNI_RcpIWBNqi zmMMCGiX{wdvyKk1A{5=Wy1vA?HQgam*z&Ns(py;utut!r9k$7RDw;SjdJtFS5hSUQ z-{s&^MWGC8a)tS&$hy!Ko0%kn$x0?CW$>n}=<{Nbt(q`bE( z*ijiIT-9Vdf!GMdor(Mr!t6RwDPjO!-j4TIytP{=sVgwXn}MOsSjgdIa)RUg>+o|fV;@(zsL&*DNiv*8;lYpEs|h>~7L1A_236`yO1r%OE&<(*c>eqax-N#>= zFy{bq#=RUIvvslU;;Wg4Ai8u};#Z)C^hw#*&nqqABrB}?0EFg{3Bw9c+X&au!JVAe zAEc!+_C^VGa9J+;j?)TGMd75Yr(9+oH3rhIS$Y;1%G^6J(dO- z2fV99mxtr7b$Tx>ZI+#E$?Ecw8;pU%?o|s!#RXb8aMdFAA6)=I=WKB~pVfl$#iuKT z&X0SoIA{8MHA-3dny7{yjLL;e=}D8Vz%UX{HCnEW)Fopy{Xu#V1 zIJFt5`3F*x(!uI)2rw)DBwW53{%eoRVZpAMU2)*Ce9fkb9SV*~`ZEXlXA5m#Zo-m< z{|l)e`n$GmU5CT^nR`X^edH9^E+3#O?q3fixgA2(u^%?-<`|JOcOdy}Z{8LTqhDbQ1;y+!lJ;JSm7l0E zGDI)F>-L%r0>kVxp!3Rpm_;|&RUCq!99rwU1kRTt5LI>}&NcWvPxXZym6q{DzS=1g zY6Sr-VhHuDN%v~>Qz=to91DL zJS^;xctc^?yO-Wf*1?>VYdYbbv+`r8tIox*G52O}k}V-y=Tk09ub=J^@MYrjV#xAZ z0Jd8!Q3`foPZS5QN(IItO8cHFyANkni39|6c3|nn`58LmbvK)IC|{a}7z8t4G0vKv zRgZ-`40SQTZg1GlB-d<`Z8x{e$%zh5TKRSt=?Pf{kOZzO4GK4k?+WbAP+O85oOIW( z#bT3~L&D%(#*0f*)8G^eS3C|?H)vvXv{{$%nnAQf$Mfm!{-+Cov!Bul7@&wivBi)iD;B=UIdA$c)c zTWY|tsWp+;0ELEBrnK=mVqbh5i3-R|1*)|W=oMRDMQ4ehnJIYtgK8L}xop$SWLI(; zr9FYsh*YVEN^JHCjNSsTmlGgx5T!oIiwO!+dUQ~DmU%Y%Tex0y;Sq{?3nM2W>nVk? z6xGY0Yz+h-$Pd1WIGC7=x1Hl<)szMG+pNwLdtpM<^zUaDf9@Uatf|ed%iPQt46|80 zTau+c`yW=zINz?UOxJ9lJsSfg{r(*b$g~0e;7g?hlZ6FDv`L%afkBVGyp3cl9|IK& z%+1~cL@&Rr#bcUp(a&e8s{n{zdhtnJ`rr-{gAyw!ik*fH3lTPad{;|y8aP9gS>Mi8 z|NMLz%2$jp)yEj4R^Osm?$E2$npa2x`CY)cNBX){%88q2;w}Ew_Tema>{n)$+}z^( zO3tDN-cm12nX3Gq^qOD3)0_8Tu;i~_QTu|{*~B~ap02E-Bao+>M#sQYO&;~xbhN$l z&nZsOil6hf_xK2q%v*vybgI+c*FlYPSs__&RwBD|X45i;_N1i}T6z9k-a)0i)Zh)# z?k`dlvyhTnsk-AflC2mQ)ol1!R4d1*Z5vp6{`kf;!afHS3Gnd>Fe7D5-)67VBL@km z|ATHoh_a?EeFZVNtr%QkeLc3L)G4PZe?l&0YAAdu@P-~vs8f5cA4_SIJECPPg zDxXjfb5?52O~GUsOcUVpu-y3Wdwd9N7jqUi0-P0`iLcCT6*J-JvhgQ)Cu~m8zG5;~ zD+^zfjt3Af{U*hvy5@3(O3CS+8QfeSRm~|}Zx%peO&p`=-HLx<4~DZ&JIYLV)#2!! zvVG?pwjy|Uf5zgiutSlVB{${@0U-j;nbamR=me7S4kgSfNV>;lqy3*xx+#bO6 z1z>CaRT%-@<=o&EZse70JoLxu(2CK9z(kqj z`gH$F1MrL}57s*zX#AmaObS#boZq-@pj6HoDfzNBWY4I@i1?qU1DW8B=9)@6c**_< z!uIk{Bfg5RhUuyz{x1SGpsHcchYWaRy8Z_Ew#pD0j4uxE;b zDyN70S!A3*?JZ&Bx}v^dVeR~O=3l>mTl~SLX14od@ymb22l~K21yGLA+>g>w8`qTG z@3+}>ib4TK7Bl4?x;_C1p6%Hxv0C$UPxsDlgBRBR@a)reYY2;r;>lFwLA#B|p%fie z>WZ#_($w8EJo!)m_4=m*H@&HI?Q@DsuT*q-rM-Te?D@)b4*1(Xt=eTc4mA(Xw1T4R zwK$AdsQ%@2_51f_P0MO-!!^=@0*QQ;BkEdAt7>%!u&wnBHC{M+;XqhkcE=%bc-bcp zc0!zaVMfAcc0!O8jFO;NdlidJ!-$lQ28sKuPeE9un*f7|U~E<|v_6m}Uh4BORpgYk zvT1w@#cZ#}N)3V@%q$pZ{S2K=JbMCfv1D>?P3Z%B{#n!Y2x zxgwxNFYE^IoiM{9q%PB8O<6x`v7rjb?{*q^tW$L)-AEB6MMft1;0mdD$QFUP;&j`v zLZCMq+Ng-@SIb5^CizgBBEg94WjF=T&*HR^(iro%5zmRRmhO7HrQ5{eZ7?C|q$KfH z$ppOzF*T3!g*$leuRVLL(*wziMC7lW(%KDX3>3L=yG}}S79X+i3}Hp@QFcLN4~0R< zG>Y)4W@e2hvR7J%ws_21Nb9W0MJ>A%lxYTN1Q!bie{gx^0^@gFb|>P@0--EaRMHlWN!7Xxc{p6?A=|Al)fWvBG6@db1^}5cid7!hnSSnVR(0D127<_Uz9>Uaid(}Sm zt5F*N?gSs2|Bs#E)^0C4_*~DZWKG^pfp)2Wt0>m<$C%?ov%Z_aM%_Xe_P}X`L)eRLDGgUTYgHZOO^3Mc?LQXzW7JOz@6y?FEFIPh#ptdV3s|l%~CZ>_P23(G9 z@}CPXwk(@S>cULHaF^!k^L{CtnYx`o`cqsOa|UBy5IArZQ2lC5rI*Z`+bL&vjQNyZ z(VoPqdj3FU02_?gWdL00e`EjyaV~ba9Z#84`?CNl4>itjseH%$Xo3KZk*uyU1OW*n zd;C&Qrfg%1Tye02q7F2Sua|((pj`cwXo|0$B!S zoahWaRS5SPRUsO*a9EFZ6UAQSEcY9CZwzwR%DTz;_SftGV_1{^b=@&8JVJDV2XkEfs`SA z5JVso4|-rYiPM5yn?ji{?9za9W-lb`AVQI%vo~}EqdR`$GRyuZRb%KSF1pwqSuw_E4&$DyvH1vWcA=@ND zc9ljBP%#R2opO+BXEO=dos;W}!(e@JSpSD^{V?7&AxZ?&4wHoz#_tLs=EIma>fyEi zY|s&XrOC>8=shnaen zYXdL-qea~~tQ2GO0(cKg?+EF>%(?cc@gU6fQgjSVOk1HJ%*D+m4>_-t0UMW~DrFQK zhWU^WP}=9*&O>f3T=k#NBgkh6*-EWjQVV~h+qL?qdS0?TZZ(wi#b#H>Vq3is{1u4TPWrwvRVCi}y<1Y{f(i*cfipHP#IQbA2gr`d)K-jQbtS)8Zn+T&W+re6L2SK$`q| znU)(&M7RXtzRu_#JBdi3^ds7OL0c#nix%sq$){ydjvG%ppQIX~k=A)d{nDE%5E#sH z>OTbEy#n|T=<8qiofr3{M+5^l{B3y3%YG@p6YXqXjcP}_&HgXH&ZSi>NW4@$J6oj; zEuM>q96AtGp{D?!)e)etyrRgQWue?*R@XO7QtW&v0X(RzZQ z(8825B{9(+c&cey_=FZ_JdB}p1{ZJDFEx{)3r5DnNqc5~$kU?nUV_Yz#xATRb$Q=r z!+k=?UpP@%o*`D1ZM~eIaMM3GhaON<@RjT9Bb8_T0E>)*Swu8`;YEJml{yKYloY8` zc{*eP*cV{=M5V*F(mtk6gS^7Df;ly!5q0k>tEWqw@sl1uWwqvn+1mR!V-xWI9#`Iz zNl6nCgiBpP(bzs*A@Cg2lUQ`DGbT~+lon<=g_ij3*#gjj_~#qDRadnF>E2S*`@V-u z)WYKrwIsU)c0YsIRc5hN;jVRjUEFk+bm~YIXHg0Zc=3=;0#tx_wg03yG@ifhWO`C& z$!z07;(g}tGLa-tMdQa0FYwb&EUpd5~~^oA4l=1Pb}bzkvQP8gprW2{uDj6myMZdr&xj*r1Sa4rUyu6-91X|IVK zY8c_$tch~ocpK0}B?ra`@57#RhdkcFsL&c%Uy}dZbpm{h=rSh3kC?k$x%k<=8Ro%c z)M`9?$vs5B)7{Keu?-ZIlulHlY{=PrrM?HD@IpVWXWQPYsqp~ereD$z^XY{A9ESbe z+c**>W+G}aKBo5zO%@IVUZsXqRM(}{3d+$}q|+tH$&=spY0tOO4r9#>hlth{ z(H_l~OuJx^Gav(XAag{T0ME7+zS$goshXn}R9Un67Tz>E?uXJAm`-W-t*3P6&RllG zh9SCMZ?m3|bU*|N8S~>Azl5Hz`lnno&wRnYV$S#gs&W#GpU@2s!3E- z&_>Q4*iRrV^$6LFf}%HqjH#QC6#2a3+)F-}XUeYAxbD%&*>TQn!``z+e+P_0zi7zCWmOu}i>V+pXaC z4n!N!uaSXLTe46yf6E}e8mK>FINp01 z?W3UrndyamCoh+cgkjj-KR+efUN9f9NonEm8s0RU^wsMFjS#RC@jY~T`F!eC2H#)1 z&#YmjK?0AEqfWv_hD893n7pz((=~N_a#H>^jWLSG7Z+}BmB$+gI`CD6UHR;}tBg*{ zC}RQ+Draf+=z%?_vk%xOXXksMf$FA{9FsA6!V4Mi=W=z}68dbb87+LGyqS7s4zpi# z8N=H>2dIj-a1i!hdID|%xQIZ+&WCu1(dI2DMzD%{jq%9`>wM*Ca9}0JnbOkv+K=Kf z2bDEYo#2v9Bw)6Ql=)u)Rt76Gm;WxER3R|D?ZsWv-VV%8gvgfKT186sJ8GDg=H?FS z93N*i4nNL)LJPYEeL8@-5BKRp@X_8iT4Waok$q-#^@@1+KW}iycI>hXQY^AXt58hz zA6HX86~?E2r~k?=SlFB~ygBWLpR#)dVu~Q-8zaVsQ(Hp#S}k84E;hLk@#j_Cek#QI z`KI(bldOVya;br)JrWGs8{-3rn+E+DTx@n*BW;i0gbr@{NQv5#Qa9t=pBoe`Kka&Rt-Ws0lmx19zo0rGE>1 z-~ag*WwMTyE5JrA^S((w7053D&IL`kTge}f7oWJCMWZh8xF{VsBi>zj!Rly-S>d5K z>7Uc~_GM;iOtYS71ri)7lrb5Kkk-kiehMYka`cFbPKzH{^~q9bK(;5K#0Y?Co1tVD z%iU+zt_GhX26$LFt8W-PmJBZosowr6)Ki{%4A8u!cf&AAig?8Pnhj(~@+-SM-gG$H zg=Jae-s+{)R-Q5N$y35P%w8C4U58`pd~wYJl83@VfjRs+!L` znRmSGovc%Zq4z(}?dCu7kNYV)+12T=>XyQhQu$2)8$g*61+WeFSnrWU#r`Gc!-0Ht z7b5WXyCm~tNa&N0txKvXXd!dp7Q0UZ9ALUM$AVEC9S!CGQ&8NduN5CXy>j4s>Y!af zKnMn)mu^*9`Qpix$TSe)g6_=6czz&Z!H@4LUyN+Huwcf%EFG^}j`0OkyYx%>Uobn#DW(zLy{6myPmIvB=t*g?K0-A;TP_ z(o?yk8I6q%=$XGgK;R<=1B;=ch8Je{p9FqC6^68VF;hh-fpgw(80Q4nmuWr{z70k3 z@+<(}c-X5&dY?URzr8OxPOe(kuwV&J##{FIpaO?kZ=Up)3XqpBGL-BP64y?XWvB_Q z90A3WnD`KqBVxdb6bn;iafSSE;PXNE5&+zLwYP9@3sYS|0;JF?O=No{u73SHEshN8 zgT~h;nJ{PKQrV7KvD+(xU+8}=Z%|J0uhvIui6HUi4?aBT({|cvXhfi40ZISvdQ?IO zO4ifOuukVeH3FW^wu-WP<|*m`JErpTpc{LUnToVjlnFaks7kQv;@64_NB(##k%=W} zBEw6YLRs0Gr1xpz4=w#Owuho+Jid2Sznfn&nATk*m@W;;T?U{SbPtJjoH;LF2240n zq{YldrN8LTuHy_3xbk?gXLF8`NC0JlFfN1a@}&o6w*q^wFRi8oXe`1Q>t`>H?V)Zg zrUdpjKiD?rvq{X@)4Hc}50sKoQ_FwOsF|5L75ZCoj{ zibbA)c@s!82Izw@L<2K{&%5pVW>gfvg=>POU&_VBJ*;*4;%%-FNOc+jsqV>+u%oWR z_}u&EnU!{pVlXubx{gRniOf|1V2|_sMLXtWKMVKC>lR*?l3@a|g=eNa+FqP2zJ4c#z-X(hSfBZ$xvW{N;hnpdCC ziUE-DYQsVagjd%IBw05_C(ub|K(B!T2u#m~9`3}QceFYYRuwIrUHRkjFu&r-E8rLd zC6fKGr6A10la}1`-<^G437?fQ04fo-Z@xf?q(-8=R&>K+|BFTg4lfWmgDie?Sp0$8 zHIk)vI>1;E3)j0YKziGP&9*UHCTDI+t9B}wbr4^_H`Aa5DNiq>^rXl&N~I&cvK;*? z)ZE(*kBz`Rv|+t4S#SbI*te%sRHRI!8}B1_Kxz;vzpIW1$zNpMV6J@oAL$}jP^}n$(6n zI&fLx4IE!*j~MSYM&3^THn?zHT)i6+&IlKJ1A<6-BpZm(Sw1GN^G^Po|Cnj0$7I8! Ts4^|&^=nf0D+iozEWPEUzu+Gq?hK{OuE$7A4Z^v#hxO8!Atk^ zaYF7DUHnS|0=er5lpkJ-+LEdNijG{aS7{ldQ^)& zWKu7m6@A65t1>pzQXanc-`$&(DnA9=15R}}f}gloQ+94!Xku0_aE-9WwLjh8Vg-{* z{s#)y)79zIO2h;erG{U*Sf|*$#{TZVDryGZZN-}G9)|Mxm?jq^w3fa*ALZm?X z4-Sd_3;3BD4?hVCKQNGV91%XFSe>1G%BDKVYN>=-h#ChcX!5z2#5EeiCpxnMMxDfL zccC9x)Nx={#f2Qd(q_2_b-PwOpj*gtdp>iNRvqk4IYdQEVR`;(5|ur)=&tLa7qSu? z<1XpWqwT;m_*o!;R4W_*zdu8F(YoFOCAv)+^=q07g;Z^{(KAN23RTP^01@Uv>vc2s zXRBwNq9N&&Ow6CgbFqXl*nl6WK1pj`&o5z@?HijlSpq06WXF}`y5!duxu3FyXls`~ zQG22>ZJOVG)bDN7l+mh|bTKz@R#Q-}_E8@@h*)5SXuhlSj{AAhS| zcZknZ*u=d+Wm^n+)iqke5{LVZ_OOqdwx9D8cd(978fNH^iAeR!7geSDO`lX3q@L5H zWpzI>ACxq}f69~qf9-N0(BaDUQ7K_66Qh<$TJeN@>0aa4pO4v@vCaer67oM!%0F~0 z{%zIkXcDkIb8J_Fn)^4R{bv*Dd^bk$?>nLq>c--&A7^r_;{ zEitP5J6wxJ%-QK=x&#n_NL4QJt*-+u%n043)&e@45)R5MXDv^*U_@n>0{kJwI-O$8 z%1(V<_>IVgk)dkfCFFo{7Ga55bMZQ>3LFg-31E7q%<`Yo8O4+0NUrULUGsS!rRG=n z8Fnrl)yz3O_+Cz2Dl*ry?e1kDH!Yg}sGj{=DL1~Ao{R?NPx&M|;Cfu?Yae>cgYbT` zke{)-{uqmBvmQ*5wFYTQVxk`rxnMG(wyZ9;#|bnY9wjtA zBKfs%YTOY@AtE!s`@^9X0MQ}cD^g}FuVlLiUWby)b9Q||hRLH&)BnN|RzX$qpG%yF zI^O1{s{Siplr%?JD@VW`ZHd!pVN>%EP|=xp^21jxgs1ufsm>7h7}fL2<%|duFpMyB8vA~QsCn$Ep5(yeBM8cEZ_lvIA6BV@l{gD+KUSQTn0I|nFqsE zL?w=L!Q&kWHa!9S-!Q&mCFHt0 zuJdvlKx+MDZ?>88*2l)rLlSF!rDJs39oS7CM!J)YC(U)!=(PyVdKWM#XJ$^m?deQR zC&LKyd?L_kslAnFUFoR|##Kp+esB!V8&LRMKxROGtIT<~_n&k9JsqIayB$(&?UElQv*kw|Gd)yULYP+$Bt@LLD!LtRB6PtrALvO(L${B>8REdA%R z#vorh;Rb%rYwoO>*|R)^vmosqu;hB&5uEO?WWdjRY=ZEA9(3u2clIYa6f1Bk%eXx$ zZ+U)r&Dm^VwvG%UoP6JFV))y-qb;2?&<$a01c{yl)dVL7U8{H8AE5egLHxL^Ww1c9*IS=aoUPMXTw@`4!l<3%r7cERf0PZxMW?m zT@2meojU?oe_!ZuiZ4S1=stE+8aLqHp6Xc0bh-0oRkvXrH^#2K3h0;R7(M>omVJw9qzd!Jo1G<;P*B_Bc zAX!qPr=U~wz5BsS^i-*s?CTkC5r@>&zRC&K=y$H~6T#i4)sC^cL-ZNd@~;8rYT=G- zbx&reiOwP<-@{tbEP4tEAQ73&@A~~OtsT%X&4^W+6n;RuprdB)xh*s0Dpxx(&%dJB zlf>h2uN=o*5H}tz2oL5xJoLsTG+Ql1F&gNx z+BP~buKR0&!22q+-Ty8!@+L9Sus_C<*V3eQcLG=J(nN*Rj`{ZJ;c^~}V!K1Pwvu*j zip~(Ge&sM~-=kESnn4W&J%J^NfXuQ-BuiI>k%bd|%FYL>B=f_MTs;xjGNyQ}T~ysXa`G^=gn zleAU}yKPb$(uU^x6_K=<{8W~5?7G0Nvj3%|XXq=Bdi3~!byI?93Ql~4W8FM-wuP7k z_0I1%`3th~d#J8vzb4U{OXvZ0f#@i-e(pL5>3k5pTBrEz8^CjfNLF5Xtm13X%;rb* z_k$LN7L(l@n09s`Ia8Ur-o>{fnfff)WUvmJ$F0IdEzuS9mFD>LmFlwn1_m%s+oso%evei-om+f$J<|>Vh%WP-L}b;%_Un;TTIXjv#5;* zJAQ8Se4f5rY@$??f zZn3w8rk}OWtiUa_<+^q(a3#Jps`6Rf*yGD>*(Qq^BD#F=bL+zjjo3M7;`mDD+9s#| zur$1WY$fv*O)WXKmyhoi#%lAXTwld6yIF^pJpY6K0dd4Yq}S<~MXIoCm0rgBE=0I_ zyNzT)pWxk$tc&RIv0ReToy^URsHn*GwuG(0T5`~#%46?lc75rO{f;1H`VY;^c!Pj@ zMQvOENC@kegf#lmMeYa-N`G-|V9Ehk;F=2>?G5>N6w7dFBFxaYPX@{2)X6LhYq%S5 z2A^VoM1M^$CXXJ6W+KJ?B?L`}O#~;H&ob4J&{DsoP#-dMEtQYM_+=qwIL(dFFi@U- zaWrAFt$;d{?+dMjX&27N*oH1h=ut?iD;gn_ev9Ah0)f4y*Vc{-$5SxD4nz(<+O5cl zV?&hg@$YV>j&mco^3W$2^O%w^li9LS^VR*`D9iwXp5cYRpeT6PkR#d}b=aNgFG*U5NJ!d`E<;%n_C{l(+trcxjw z{3snA_hYvuX@eHk-i&Z-nsfd1!+8S7%1tr5z=-A(3xJ&))Q5e^Bgm=mVYaGl6NuRM z*JcO$E7ia2v$c(J8~3Sf+u^0WMk2!L0WD4L*$uFxBJ`@$f)eLqJO=2|-&=j2$tEP| z3h0d#yCg$T)YNXzv8yk|_{&H5gW3ws3xh9bo*h)asA?}rPDFHCUw5k{o`#gCodkR3 zN}0<{!#-U5JxoKcXAyxBM+o;z?a8fT0owb}Gh~hGj{(-#|F*S{cAF1(Y&+4Syp9YC z3IXTl2H_eSIfm)9dE*@UPo{xpOffpWW(`*cc++M`kQYSm#Slq57Y&gSfuM0T}~k0T%an(lF38v+z?H3tK!01lD9r zA8uAKFJ?Y(ybB5t2**EO=0c3yy&XIC5ZD)~kihJ%1br#byqTyHq$&Sc8UHc3lBl6b zBGiIK8xZSy@`i<@g;^R5Vx9|Q$tDex&(26|VR;^ml>sx$gAUQASR15UOLPm8&Q#ku z#sP!OzFOxFx_K6chYuH`ZqjM5c5|BRz1Y>~$V6PP3o<>?Cf=Kw(rynxK*P1ZES=9R zR$JX))e)T)&s3ImRCNU3SaU8vNN|$ot$qaX5x+F_LvjvrY1C!w+P1>t^@b#Mg{_0D z%j1fs*C|Nz2KW+ZfZ|WK9Q$hZ@zpt~+tyUXVJLx1us~hrN|p0JYseA$bCsoRepWj?{RSt zGclBd#l_>6A!FoBCCCH+Z~mWlF+8}fTrJgRHJkcD+Q9b*{GYcnL>ZWjh&6R6H%-Ld zU+ih?Ae;h z%>{x(2aX5nC16}%7v#Ji=Hp)LsJW}#ScY;l7rM~n+o|U;Yu&!dV||cfQDm_M#r0F} zF?sFl?ZyVY+e#Q$-7X%d?t4o^5sQMQWXms3c(}x06KZ0rXiF;2)4XTq^M{w$*?zsm ztEgxG!$%gt^ECB2){2=%h3?cM33O9~nEE|)Lr*RC#RjJ6Y5g@qZT;s(XD(p6$>-5l zs-D*pUR0+KYow$k#!A*Gv#P6W$6KqmFa?Bg7h&R-K>2t-nfK42vOhiFzvQAKVhKy% z=yh7Uj4~(-zNjwSwo%YtN*nOST48arsvlEV{is#P_>}5kkW0uofN|FSA@q62@$f_2 z15Os?v$z)Oa`}#f3bFubHCP=AlSQz>Y||rY4&carhjawqNFNYCnb{;wUqxTrS!OuD z6z30}!qa|Htqo)bez3KdKeq1lS_xU%P`O$st=RBZNdpGLP3I358~ILFRu@`+bpn&+ zBRg+H&#o)4Rs$qceVOd4*6f79+Qh(td8AI@4-8-rx&tPrFViG0-e1t>cIF@3o%&G6 zir=-n-5_5hYE5}CWW;1$NYr*%?2&9X$m1tNM#EyR=e*J|n4?JR=Zm3nYj5tb5Y!oT zedwswTmB=7zPC_1t&vHd5dw5HP{>~OnIsWAbyCTma^sv*@2s*G8n@^8YYn+D#z^Dn z9FP^(tQ6>C2SIHF@nx>WN7f1(pQ2$6n+^-%HW+rxxxS&m!is-Ov8dSIIMt!BMiSM( z4ke4W6<<*amnX?6pw)JIlkQdl^`~!v8zxO~Yzk2*zy7DYj7u}D@i&sL#0-&v+! z8~D}(dzGKLXwF|dyS%C#R#Ew);yY$}VN5NR=pxolFjv>xCpMj$BOV09iNSOf_1?=_ z`sB2Go5w%s4YC~k9la}7vqb8~Ilxzs{NEpY`5^g85EWn!hMv2jvx9=LJ*doi2- zZ^GsoB)V^M~=)(H~Ya zbE*I|{}TiBCMRp!s`B}^AGwVko`eu#h}2|bn-zn2YpuV`yx(dAvAv9~iHb?WsJ{s6w<3FRiT(D-b|&ZaCoO`j5tw$_CTA09xPH+(WVgYHnSM3)ke?D;AxVMx;6T;Te- z2QSb!g?4pZnsKkjN;;;o(}jmk2*P&BF|Q_gjG%T}>H#I3?v>O-A**6tNSMp7H$$2V zE0?!QmZL^lF~==gGbhobBEoQ=rra%sRiQ4_#B-QWW_`Jx&z?QM_P$KBg&$Tz%7+F_dptp4&RaHX6Gach4HJ8=Iz*Cmb%?G+o#MKrj!K?HAvALZE`(m@k;{#yv z2khpyAj#2oGKGhhs;v)I&3~2Z?+h81Cigpm9LE?*IwV!0rVDT}YFB=l->tE}37FX>H1e!KI z2x8luh7U^ch*i@6CB+;fz_-r#u|fV}k+ihg_xDIVK@#YVPI2Eij_exHj{vJPq`7n2 z3_L*X*)5N^hl~oQU-=+R#3T@=*8zLG11I|{YWK2RYlEp7ny?iku8_jTo{>9 zEa>c={g<;_BE;il0BIgm&UI`&i*GU}({ONz5kbp-rg5~74y->f1BRKz&aib%R@AgN zw**L#)>Y1_-A`oI(m69U{#Vtqy(|we(w6*tQZ=6b>XLzU7-U;byQiet@&td>X=n+(j7qUm}<_X(jg8mMJxXX zOlxbUmCs!<5S`z>Y<@~>w0e@p6l#GyP?OtW)XOYVmlDIMDv&Ly3gKu zEzS1EnyAuzG<0#f`}D=5uP=342TydNbB+2wEhGbew9Lj?TJh88`lK7ge?uq(Hu_u5 z?z@E>Q8l zcsa-U)BXCjP_87+h+3iGS*QH@Dc6ri@zKUIDqsmGxE=4pWx0-8Ciz7q&fe~PyHnk6 z%LF-aH?9e(39%E2Y;x6n>=b2 z#gsg!{EYe;5tiVRB;8Qu7PbMlHp|dyB}PEK!FKtwqGL_oW}(W2;3L4r={_t3V9|Ak zeR093)0v;ZR#nE33+fpw12kpUyfN>SCqUC6A)Dn|IvQWzoLJs`J9m_r;n)CAghAjJ+%#wXSJiQ0|~pR z%aIXzS?|ZZmRBL2k5`jgaIa-wYaPok9%__%4}&Ymqgq=g%f9eZ+7&UQf{$6YKLqL( zHim9=QILGYopI?()ufN|L5od&u7MsyaT+FC>-TfF2I+jQ`XA-!PCkNp7je@@>;37v z&fKL_VGd`_{gWKg-Ua&&JHW+SK0Zy6EhrehCj&(b$%V9+8qAaqDxS<3%7B++xGa4= zW=m5zH3P+|@1_vc^;5vTKB1id(Gcc8)a8eX;npq=Sff~~gY?IuzK3^WhjXtQ98Vk; z>x%}<`$k`DeZ=?X$ly-jF&i^459=AMIBs_mn(41fpcGhg=Z1iD&2P2|rMKYJCEwKGCk9S1JiTvhTPF?PcO+4y+13 zECFHKJ2!PPs9>Ky7$go;bV%qHP4a&&Y4>1lLc(?eQULB$fSaw;@rp+_{SO!C`OmmY zG>ytYyA~p%7vgy{TZ6&tU_aL0K#TL^ki!=AS}0G(AEs9Y~t2&k2Nb-qYCCb+&V- z92_G7qAs{Fi?V!26!B`2XC6&}Z~JV+LXajvp!cMZqsqRz!uiS-oPmI^B_(}1@`s{C zUc!Br?>JuPIwSjSx}vWad*GRYxD+G8oe{K;pTf9D$BYSoh!r=P`(zv7!N-I|&?}7+ z4sNh1z5HJ;`Wy-y{3b$Dcrxfc2uLqpn9Ec)5_Q_35ilMJ;ww}VG=dy{v%{5^DK*w-u zMmhTpwgzYi)^Awds3ndE9$6SYQQA%@+to<)TO7>lu*ml|11~g zCPp~iX3S*%Lzq#FG)2AbhL_U&05Z$&o8AfU`OjuJ=ox(Kwc~Au<%1aF_Wk0ZMtElP zxWSvw`I{fHF|{Z*G%Ni~3o`A@n|y~ z?;r*EgY1-vN2V4g*4k|(Ro9QXauu1dpm%h863uqxCr}zM zNq|PG-exa!u|>G^S? zp{Id35jjj{GqiQl>80jPYw>EF0L^N_;#6ln*z9JI8D|*RNYsow1ZZYy6n3^?zP~@9 z(m+7sW^_(zZmBk_0jT7G=PZ(cQn8(xP_);c2H78Nw6 zAXnufq~;2bxm)t|;^#N4ZQE~{y}uPgI&}DN=Lz#}-YrU8Q34IPAq-nOjt@+`NNa}` zwIa3`rF^|(6nYr?@{q5|)5ECmK;|sMyfIn&L+G03X`h<(Pm2M&Uc39DWLs7O4x+)f@N5G5i_}vAjMLH z?4ZO8u7VP-B;jR;WpSbmfLX+KgB+8*g)HVX2 zGplMuxEIa!Sk<+yEmOjsq**@f%7GVL@GO%D(Sv=+Zu? zqJoZOwfd}g2f7M|!iK2zmBc?e^%v1WzsBhjpG8}^MCN$WZ0=(T3m)xit)ZEMd%6$9 zf0XjmqS3#It(|%E2X}8^kKCsBvVja)wF)f`KSl9Q1yFhn3;(iT5j&#jEB(uEkp{Yv zXmbqv8mC~V#|nzQkM*}{HVxv&ylvbdlk5IKW9R9&0Q+6>jm)3D_Qnlq2=?JHA+>3= zmOPd$HY&kfv(;{HzN)Ou=Guq-;+U?#4y%Pq&O*+tmG8I*8*5pYh)OyRh=#g+-}1-- z=-`z#wm=2^^^x1EjNJubK972>j9>pJ_3W8Vr#c=<4q~aj?>x^Dox(-}Ym1e5%<*SoXk3Fm<9=qBC zm_oQCa&K#ckKt`L0A&pWrX=0$o!Sb!T}t`Hc#TGctiyh1sLfYdHcH2NT~DIL8VrXL z`lgyV6(yG_O_wi7o(P+FnW*7Iv*Z8kk}%GM^keo`Oq`KhR8vRl(nnj)U+2ae0P;g$ zVS_#r>mjqZRp@hm`6Cq{&PpH9>1Zn=z5eSjx2+XD)lx2zp0L&zGJuHIiKW0ZF`AA& z=H?2O*XHcZO_)I3>weW^9Ai_{vja8~cTp~-;^x{mpG8A!jzJ^i_ELZ$P! zP0snn!<`Hd)2q_4nQv?SCiOqoFBcCFIm)9J>z(S%=kDJKFI=yvB#ihoqmbt6G(*<9 z8DPnkNq%^7E<4XRTRC&9QyJ)5pAHc+E#vWP>>lvigD_VEiW&AN@kE( zAI~t77CQ&rbRl$ywvh7GIaAwxy{Z*dyWRi{xO$oQ*poY1ow=KK>%solvN(a5KYUET zDDU#{vcMJ-oSm za(D|3?2o|uP(U)iP46Z2%%Mn5hTXiOj0#QLT$lumn=s+$9%s2n*^9|7tglyNmfzf0 zI`>kI(k5ona4utQgdqc@-P6&#YCV5D3$R-@x6OV(%wwH)gxIj@tzUnbdhAY;ox?x7EGakT82K*=D| zs6_Tq(!XZo7x?6E#jdh;MofEJweI)ujV#U>y7(zglv2bfiObZ-6zl}BDvV~hsiknO`q#1ygcn|{&tbU!?ri-(o&jg5 z?v(R*L#Y~5nxh8UVd2qy>DGHNZ8MFc$%Cbl&|SHkzINL79d0EryDXh+)FKH>ckle$b`z>(>6LvG(MzOe^IuDALdP$snI>-(89 z6LDnYqC*O%@Ypu2#62R&hV52>pEZ*vK$^SQGo9|Gz5M*J)?`^$N988L?hY^hY;IC2 zTl^rtUHv#oy!9*Mu3zjhs435!+jR2QH*l{$YukYnk5feD?7$#FG4K)DRJ)|6u!b#^ z&Ks0wVjvzH(@(`s7J89B$ZJAe(j%KqCE$u~O+R{ZI2zJI{Q-SCthC7<74-P%b~6R{ zay$MbFwoSSaKPRMP2EfXq-45gDueI>wS-m?^OYpR2CPB@lgk}4A z5_0-MS&9A3Qis zz(_Q4zls0?3(OD|tNn84E?T7o9x9?drd8Vd#P3x>aSXK6U9ficHdyQIai-&)&ur1?#MeKP zYl`fw1!RY3O`Cp&A`Lw8+%HA@a>UV`QKjn6d7Oj1tX!v`^_5MoTAVmv-<@;XqT2Gm zg6bO90pz_F`q(`{+xZf+kH8w}lDI$-oSs$w3vc9TfCndO?raaz|FmpueAfrBIR1XP z`nbx29S?B0YHz+@oxO4y-psK?RQAF6fI)q}VmI?fOdk95$V&bK8HM&UD0`YXPMuq) z%2my6pq%nuio^YNWdDgq^$~2HyP1se7OdHxGMR{O8a}$;A_;`^HxBtMjRrW^t+}`CZC#^}zNqxN#iPNW%I{`0nY;mFyav za2dTYbQ*fMgPF*M@Ap4>69>LeN_@u^pz8bF5}zgE8-+Kf#qirDTav=QFWDvX9{>eu zne`O3J;6u8pr~s>eZ2dqe%RI9mUYaCSwj`>>EH>mL7TW4! z#4{Or;zsVY>dThiaP-tNxW;??@SXVW3UhBSG@H#H|GCb>7d|v=d^~kb%-mwmy_z<@ z81=8@UN0u!;e_LtX_?J8l#!Jbpp?I3si^NaGcX8=Yyl+?f3rZv;}N@m=b^Mn5~#lZ zQyvRSb>DR?8+7(^l*1I>ol(cgpy`r~@78_`O;UD@<7>ttx8Chtbih}>h_ z!@z3b?hv;{PqRizEcbEz5$*aB;$cAV$n97zGwAw?>7;xpI}@UE^ou4&6xm_VyI-o3 z9xnZ8E%MlzC}PO%wr$T(`;!X{XxwRonKiJEOS1@BQd%PM+o?4c93aYP zqqWs1{D_S|71OHqrGMJob~7p1f}|S%|6LJ20;Df!KC9$qmR22_yxTsoyc+LcqYU4h z%EyQd_B;Gg{kD%e)}|P}giC*1NPtx8`jN1=KxUTA^2Y&lT6*DT7kfqfl~mo)BU(aM zKT{01S#@$nCGgSPBB~Eo*U0NEGTReL^N1sMGo&CW@_k(aG1;plCf;@JE%C05gqQmR zzHzNYmUO2IMkrAI2l2}$nkGFmaZKZu-R*C7N5GVjt)EgBOLSuqZVLqO`W+cLfZUl? zsH@+(I~B9-2uz0=a!#(h&}lc2etPv0J5cm7FC3QKwABbX~c!}$hSBSRzg{?f^+v?))3k&qqJ`RWaBQt1=`c)7(K-7ON z6wkHI`jPH2T(YaAvpTX9am8eXQ`&J6+Ut)rblHD7o+I17ZAYU=@IN(*eX}ioZhs#i zCO0QXH9@S<1$t71_Jj)|z1Y>qF43jN+MxGWM+c*4vxs|UliQh6Jk1U_h#8HK>!T4q zR`?e@|Ko0-Me{3K3i#ftu%^phu}7-7F5tYG)V|bY_MhQ{&L|2y)P@SIL9|A^1D~)Z zQ~trs?*Y$)(Nr`j`e_~|QphRa@8wsN4Inq|^GgNJL(vTNmu>(m1N@ru(eTVW6q1Dm zXcPIurGHkcmwyy{xNx)#c9mz;hr-&S^0&X&U!;JXHNU7kpFv}99?)0%5@k)kP}kIy zQYCZKq6(yCdh}0MB=WrU0_YRqCRB0__RQFl&Ewp>x4NruKBD}1W08?5C%|k>DJKIM zIg(4OWa0tE)^vkOd_31b$zegCBG(;pRwU{Vmz8b01>ydkLmjl_eK!SmcKADoI-3XI z5&icZs{h9s7i3QO(eA`baVHzKv3HMR_4Z->oktu zy7A*x0AX6%4OwyVhJ4fA1V6vO)2GJX!2v_X`;N@>#?WD1GZ?yz5>2-#L-4 z>?ey4cvoj>tF5s*?d~|FIg20t?4Lrkk(R8_dIsI+#{o6u=*y;&lc2pC+^+>Yk>uvA zGw3@GvLHU5rMaxkE4kObkuRd(I1@u!RF_m_u*aMSWPltAF1{GW!wx!y=CtjHmwP{^ zLUe1((!7TllP?5ja&WxV0XwuqXNTe)>2Q;JWUFQW(`1XUod&+EPo9+Q~{UNku`4zkPU7c9_t?e)$G|+sU2$P}`=Q3`-W^$BoEFyl`CHHW2JpF``Ew}|Q zF#R^|OfB};cS0s*BezMsO|SL!xJ#&bb3UN%47HbS<(6k6V{rNWuRKB4n{~}{1@b^x zzerLP9mdlX>L2#-N_Wv~*y+5^n?V~I;|rk(yBX7rW733vG6yhSt|ET4%!!MQs4JU2 z?rI!iDHR?!ZQs7I+9=p2bS8pysV<4M-BoaKRPslj#G=2`DB~k+MajLyK1%St9(A&# za9x#dIP8Pf{i&f@HuJnit8V>K767s@!{+z)H&$F}OV+x&t5GkT@$&C!{+Uo=NNO}I zO$XC3sW`vf>$g|FR0=hIT%#&iiRSo$h`8Wk(tE)Rb~wkwizrM2!WfvkuIQ9(Zfu zMsfaw(0?{g5`$XCN_au6WUaC+h{SnTwdW z+_2rL>C%36M~9&v#NJTl8vItrRHbrg4smbGacmc-|AP&+lj`Pwt*mDKgZpKoL0!G9 zY1IH78X9{0bDUUyi79OddzFbS&-dY4x`m;M$<*SCO3Rr=dTrlRpXsj0ogD@Fv3S&v zmzfC9q;9T6-sZxHU;HIN7<3 z_H1dEsy1~q8*gEXMQ(NrYhIz1qG;-rbIrRK72>x6*+a(JZ@$NB4L-86{;K19$0uXs z;A)zXLmux$wtuC!jZxl3HpAcV^BT&PiPstucS$Y~NXcuk>S@kIN1~{Y(Z`vR_;58D zyFj7+H?NSlkrty~ZJ84}W2TpAIUh&8EcN-9*UaU63@ zboWF}JW|`tXy}}z$F7xRVS$0tb|ZrqSk$ympq@~wm`n2hNnaP&H@xEd^Kf?*HXT_P zf|DZfIUAW8Mogic_|hKr0LE*YqS=nS{?KIfhNI+Py#DhK))C;xtX8O)%b@ zUT>G=uAh`dDqpGp3o|+k^eK6B95Gk%%2VTJu=fMKSHR?!Nyq(Bw|baKLYmWS{c8r? z{V?h&5_F7e)vhMWwcCjPFeAGG0|C@?OVOtm+ltcFsXb>nI5@aYKC*1({QYMB%v7#4 z_Sn5_;^;T;kFhic^fX=eO_MkSt-f@KCEENh4%p`2bv4>Q^rj0f^_W|*?g-XMdoku2 zR#T&A?k0pn+xO4#U&SG>`4M>%%MM@DrCEO9#AqQUpR{@>8K>o zE_-Hs-9tt1ui;>otBHTFL=Ru(^luBo-bF`ODbb&;cxJIRMpdgIi}f zpaC)dXe!O*Wo3BW%))$4!Ot~^d79flYc^TL{q>_>#p=sQl&-MaHVQt8gO5?X5*0MN zI?ffHxT87ta@ud=f7CNdT05qg>KpUVdCV3hFp#LQR{ti4s~|k#JH{dZgQSuvE>yaW z^j%lIQ<8clz36$2&S$#H7vvo;(b(}9>CK<+o-Jel?4PWrw-pQupMH}qU#m(TvTb%^K6;40FVc>R1b6oi6%NMr2oSImv{q_Zd0dXvU` zHV$CDqv}H!_zDf2hhNOQk$eBI3=aD)D;rx}+D(rU;_TgOV7f8JQ#;b3E|HJZu9p}` z`2}P%M4eT;AV;pmvG7OE{Q2NB?;;XjX|i>j+NSZt26eNq#AFl{4lB39T0Q0SBuC7j z5d&lk6BFs-wx)wQ9MksgJZ_HJF;RE{4@HO)Iy%)+BDXKRfqLy^lm6W znLEzaJ~L@h{{YZRyBqdEgXfx{dhQr2KQ;H*gr*iT$B_!Q1U*~K6(z|y&`0mDE)bIm z7|PA&EcQr(KFV(CrV8j0nEne|!(N{0wn`F4f8gpj)#ICgZfQ#)me2<7Sn$iY&JDlAYn$2w zZ$Va6tmZ1qrcV-z#-2>^&t-dfKE0p#>Me|B*MId#n@U`u|BopyB=>>UZ$WeUw{roe zy_OV}=z)KPFKy<9?)t`most~t2AOJ=;FbeXQu_WR8ExnL&OJ2?|7yXuYtA|2~@-aeCiij52-g-LF+F4nS zVq@AU2_@HN5shW8L}oI`s*}Yi$KHmSl_N?ZtCB zN#Y#)CMuUt1z?hN1G_HhRQw3oq@d7WP-UfZ!Gqp&jw+vC$LNe1G+M5_glNai{FIVf zDi$P<_>>g2zOJC5;ghNk{T$<~uUgbK>boCU5Cmd(oq<;~A3WD%;fhFDU@rZ|qZhvE zCpgjDx+PL9;PPJ~>!!Q%ISS0=Nn7_P5%(+Yp_JZPXHhNDoWtJPiB;=X< zbY5t5u?^70rqTt;mw8%`tb&vY#ZK5vCWiz`hcSS0xRDLA_H^@@(b`edrYY-NKs>j* zN?2`#PD2qH*(l5@kS+nH+GnN!pzzL7h zU?s&e`A|@Cjf54QXSg>%%8y*X7JV!&9t22HM;>pX7nvFOyK)rQgG=?5=l?79Z%RktN528u0p;FrtWT zm4N`*Ee_v2PuQw1Pl>eMG_}pE^$YyHTa_2_J`q!4FmC3xx(Cui(#&pcpvpDABxu3wdu4>D5Y>vL+bgbmaft8QAa(IM+wqgVZXbz^T?5_i&UH%(BcF`E4Ocl z5m{gK*Z+JE#rJTSgdb1x88D7J&WltVs!TI{2xei{@VarMsY{#UHc?@Zo$ zHOz^5Kmeqwz_X7;an0tHw_Tq{bHFo9>n!=yyI@sUF^bV?1>fVVnS6z$HeYU z_NAdrVe0TC#8~l4gpMREczIBZyCFB3SsZ?B^RkJng*HZNBXUCI%$ak9YFY=&65D;I zzlWMYVYSe|I8w3$@iUPf>2m(>Iqso?A2X_1Pb+!zF=Bi`s9@45G2QqE2Rj~F8|F*% zK7tPg+{iYcjX^_};{sw$6#*1D< zdQT+mUvr+cKK#Q;pIre%7l6Z%44S}rMJ^d_G8u&mm*}RpVJKU~^0QBtc2)5~h-Z?c zV5wb{$J*VUL~^5sv7$5f5C#r!U2W7ElVTVSzW4%KnKF;1axMXX6V(vj-v49Zs)~?_ zAor3XDZHY2(3O}<3!|atXdivTtkF3RJ)YZ-l;$nb&qhm;ba|9ES~i-IK}Q>&i3`{H7Z5B>)4>ep2!! z6*~F;+TGv*m?vW>!Ik}sJtD4Bwo`OoMRr9sx&K9{`)23x?XOpdyBNDpnqox{v?Yfq zmFQxEXOjJD6iyg>z28P%fOyW?jh1nEQ0gfrSzWBJn>Q5@CUGVU@c`Qf1irx#?rPul$vl%Fx>mzGV_7LTR zuy>9)5%9O zdSzMkQWL01q6976GnTULX$y<5BqR5~>LC(1oU$@B3iu}UlAG<=gAo-IfUiLg^vReg z`sKVg*odA7vHOv>0fynM-cjJIj+*#&U{m&b^nR%3Dtq&(r}5}FMflVw>p@gB0`J&@6ZE9GXK3< zHIn2A&8D5FI>ff{+`QWVRE5?s!8veZ=IDCvWN+K|e?vi&zWAJWLdzO6UHCR)SDT3) z;a{z-9yM1u_1I%NFv`Q-T|#d#A%G*Z(=TNFxFI??$e|>mO4J;^V!EkyR^RgV^mGEV z>o&h!zo*>pWK*Fd!yK&Xw7IG41j8?8`o+3L^by$C%CAi|y9#8#PvCv!d2l30|!E=A``;6jYVuG!Hs0h`L z;YWdS%QFNW9D54Con^iRnf)u#R8dyV#-p^<7oq0WjvAaTox8hB1^T=LkBWoJ$1btc zL-uuQMUgzcx~wP5FK*hxT=CStn-J^6Z!E5#S9!7JM+WF`#7D7kHI+}-2M9-e=i3r< z7S4@TEQIKW`Bxu@)J{)G3QzhrK!3N5r8}R(^9?o|UQ+|dC$i)TsZ+8U~({4NYQn?sLf2gmqc$g%SgsyH-?>zBv; zx}C@WY{z(Po?4h=NpEMa1g>flYjJuDjgd_HuP0De!~!Z=Ui{uS7GDe-XsVAkVP1sA zTt~q{`ZIFr5;|`0&lA4Bulu~yf!DZ}(ev_n6<;SwQSQge%Jub9C{WweN&l%2jWS0C zLyy4~ahjQpd)$z|QSWv78>UrDyLKb19#-^#Z9xA|H|37#UPcyxwbUMDe>%TiIYFWq zQ?vUa@u;_KQy$-g&&_Xv4-Fo=dEACVh@@NI{75n!+FGXIm_nmO-wT4;vK~InG_~KS z4E_5!Kg{;}A5os(QUZijmHzuA7R6||>U}Q4c4UdqG(UU_A%H~slM^K8>Z1-RP9o3s zr^He6%=XZwJUVo~4X^l}MmC`|EyY+_u^&*%kYDxD_?G ziSDesTfg+>1dq#;_r88X$y0CIknsOud$~9+wnjgJ8$MR*3`6+H^{M+9j`%-l%1dz! z2%;7=;bXa0?`~XX%scGv=A$#t6zq!jpwslfk)O-|BlA@hV`27eZHltB+Fyb@2<0+V z)W{W5jUDU?DPt&vlrfkjFfa+LR5>zSM}8qdK^V!NnLgFA^up3S4WJmp_{puN<h}i7{e!`sQSfjIsZpgI5wXI5o1vEp4G~KM zRn>8;cw>H%Cf54fB5rW&Xg%t{V*8ED2o-SeObeb*XJ6ruK3NEk7rvWovApT=yO`_N3efz=ThzdGDM6rs z-(b$Ug?a$nSgLCuTHZ~C9x`a^z-?^L<0ZJ9wYYoVVdA#!sNdu>Imc$z2D*HkHYHnu z#B;}0CQ5x*L9{z;$qyqhSp~QFV=%Sfc5HUgwYqjOSkJfjjm8J@6{$WI@6EptW0|W; zxk>sok{TX4lk|f;Y}l()>u;BOW2SiTQL|qh#m!B1V}#pXz76`2-Tt`<4%uFsU-RY=zR+q5d)&Cdua!Yi*(-q%TcA952gylvHCs)Cx zLyXDN4`7x1m=UgNOhES-5mL*z->bb&aBR-itlD|nlb}iJKzPRdN)ZkB@2%C>GCCVq zbTFNc#+X5)_nek2x^+mA{SuI1>DM>dcbOmPwU@$CAE>e?jK78?kiog(aaks1MLh8G8d{rqA{}@Gg{*!y? zm;V#og+Q5xZCSwYya!*qpfK~)3n`o47CL+Kx&7Y>xt5*0$Ob*r&m~IOvt+s==FkFruh=l`2a8HB!phKg32I)N&bm(AP_|-FF2x2QG7M;Crs?| zO#{twZ3&l@z?12FQO>_^P^0BXIZ-y&Tg!g(Ltf8whSGtVwEm7?FJ`qBCdUZA&B0A!Na zygwPYAdvcsB;+&Mjt>zJ(Bkr4&QG+aJ@Bi+V&k<~7wN#C$^{bqd9uXul^eej#G?J- z>hyp0GCqoJz7)_fgn#dgmaraI(>Nk4Y3eun1*;JR>QzNvQCq@Yk~1woVo&J{Vq`6d zC!c~y5EMX4++FyAe`?f%Ij(+0n0?$)pInz=iNb6aP^dtA@ct=(+wxNyXRx>8t;Lw0 zu8p*6ErvwCU`?PUWM87KrVNeom*(a&O<(dVXE%3-+LyPN3}!&v`ruecaFFkSZ`9gTy|a-=CJ`|YK!M!rIoPFEF zak~jewEjGtX5{YQ4q-r!;2K-XVUmF?OcMfFQ4_BdqGfPHHGB+8S&l1AK#wQRhMyIQ zOKF$k)Pj&Sk>^y}y1d&t;O)lt5E00JGZ+;T&{<*w3ggh&TiP9gFehwf9h?&rPebdAENgRc%wE z5`Eaya9rLIup5EL6~u4sW!XD(3p#lk>YV)2jIOmVU5V(cS8KY|IE)K{u@D-afZ-b? z)yc-XE1=kc&zk&jG#S=7-Z9JKubWseCc>7%wF6jY_ZEHf$sLaF*7|+=PXeKgB0K-N z@z+P?g)}(5(vSl?BR_F0#)aRdV#LMdYOv)vA7z6{e3(&DFC-d)_#qz6xAmgcPkbO)`gtZ)$QCqeZu0d@Tq zwMWq3>HqdCyxcTVE5mndUsj$2s2cCgbfJ?0JXA~)da!sB1!LjEuYHn<;Rdz1=-Y>ZKrljr=b%S8WSr9 zY!AS#&KIoNYyirAyp0e0)`0_O3<@7$6+{>c`h1D3^JL28d(7vPXF6WNbK$E^JDnl9 z_vcQn3A;M{nRBWQj&EXL+Edbd+t+jUyI@eJmIleDdva66ehK22jviBn-)!)9 ze7y-uf~Cce6Y2Sd?@J$B*i}6&@Cgn<-^Rnp7n<$`K-fm)^2#fgaaCP}pi+kV9GS4C zOQGw2Lpny{+jE`E(7!_9najsUJ*IU(r4QUZPfJQ*%&(DT#Y%~x4O4_gm;)ExjVYW& zpXL!3_+4z4KEi9`*P$L262CvyBaB!Ie&6{x2Ap+&W#PcB_X-(YP_iS+>a$nvaFlzA zYt2<=Yxc7hXM%GyarQUV3dT_eGOf8Giu|)^74GmcHJPY&+tE~<%^ru;Ygu0)1?cv* z6~*P|K6jd^W_Rjan!mR%&oLd}&x@=0u1Scw<5jr|SVenPobYzUVL!ah36zNmjX68v zEqf9e+`&X>8*oAhXqK~8()hmn!0%XaeNZQtWn1=>N}8tKZ>Na0YsZ_<>bdc>5Xsc@ ztBdK6tpvl7u+xDD)n_?@st&0n2#P$l6#*nXBX!RT^r)A@`Ceh6FH%tweKP$z=y!q` zYS|Y>wqQFow0MrDmRShR-*P2oXcm~WwWpo;h@?>%Bto<*qCAF%6RmNOER^_9P`r%6 zILP2vAA{z#M3HJ%wmxg)>9J=~Q^Yf0B%aYCYxQ#sYp>d@9xj^S-&p08aiUM{j>`{$ zc=EmleHD!6sOJ5lw`BZcfs3loiDXuFFZg--sMh=hhRF4Oa!lqN%;h`-2t7f@e-yPG zB^@3|8%Z%9!cyhZLLLn9_a44Ps}X6^Vw=&^jy_IXm+?NjDNs##k#9EFI&O8~acCjc zLSfI!E;(Yl zZmv{auJs$m`efu8xXcpPlJYqZU|h5li}dd{euRz#A;B{B5h%qww3E7@0$w6)`OBjLn54lSm7VAkTEb-mW3P?S6FX8kbEv- zgZkSXm)l@bMaV*q{_;kpqHZQ{U*C8w{6e|8f`C!X@V&T+xE-gMsRRR4+itmIEFaU7 zL!7bJ-1+X#rdoIUTkp%rM$!>)5NCC&Go91p>`Lsaub-XOT$)vE#N&2E$4Wg__k(|E ziQon`p{(mH3X%7u{))Ull$Li;!{=!}4o?Dd}@-Dm)Y2#xUj4LGNeZG6i8e zB6HN1GZTKGE{;}<3)a(eDoAUTAQH;8$8^=uD|Jn0{mTjun`$F!C3aCXi1NQck1e)G zl%^k}n)9wYSHkRyy0Y)uzkh*QcEKrX65p)m^X2DRxP<-a+%EVmCOD1pD7nU;H2X%pxI6vcZ~IQ? z<|eF(wfhCo(^GZ{Dql7%|3>z`h?i>v^;{(7ev=Rx+*f(sBt)54V8Hn z#@z3)14aK}^gm|K8me?YTc16v%gdc8=BL7@QEI0$84=lfZ)z*VHRZ#;hitQU1mbZA zp2>z(WFOGSSM9&i9RBI|SPJS(36$oa+r4a6Rv(^JaqEpCSY68{Z!>Sx@gVXQx$ zY3Qk6Iq(eB+YHRV#l=n%)$!)^IYg3rdr+)Ov}nJ+rdj_xfle$v{>ccFMhwVN)z^TX zM|2q-=o4hv84)Gv&=lO80bVqbcD~<8;B@^k7OggHb?IO0XDxM>V!Ilb4G=CTLBfGV z@~=XS7m{>V+OEP9>8<|pCD~%Hn#`CSv#t$`~NQnd*a?<}1#*W+rpD z3uWHx{8~!>rEn7Y5H&hT0iayCrtS^tY(u@7>@(>bxp=-Gb@t(bw|2{Q=fx2fZZmF6 zY9Xjs&F?%V5mFpF6g^bRFga&{nbn};2!A){NkDpN?q2s(ju9lvk2I)1nVVJ5=?y50 zrn95KZS-JJTAgH{%Do@<^>I~9BPlL%9DhBa#r-GZWriC7^;aBu1sxU}gzZpyP+Nyo z>4y5$TM!&q${3U2x8XdUfX#_EL5w5oJT^Ia`S&Rc7N@{Q&>iK@pC6CJ%#w)P1u#Y= z<56>vGwply{#ZNhw!zIdIv7KvlE!&)!^j_kBd;cd;kFqY*!O51nBt+7Ras-R_xIwA ziqu%di<9kT?EYy1FMkVRV@;l7e^X~`(`yL1vTvU+rk;{VnygRojl-u!GdswA4E!NU zL+6guh5cI{PIJ=J$sZWBeqIcRKNfIW6wNt0MV9MBF$4by{AcuE8QC|)NS_3y;n+vh ze7c$V>l}A<$WjT#LLp zr&vD#%O1=H{Ou#_cXLMk)~Y@8u<1!}HS{amR5C?p`hymS(X;0##;o6TvF?)r2>}Ne zM^B{(vvoHqRpqfauLqnrZx76rNjfHbILH*x!Y_lAe&tO&1!^ips=on}4!`w8z7^Ja zBn`erTCX{%5X9p-Q7qPxTD~^a66~W7)0|^9lWQ{t0{mxn=`6JazwywcI3(cwAB2EN z9zgAJ$LRV*(E^&%Q(u{rD=H7Y%Ii;oovh5{eHk^$h^l+-t@E*rLp#~oocxr&6ti+c zK$(peHGr!VSj5Dd)eUm(IB-OX^g8R)x z+UA)934StG(W@iFN-#;f33LHbc#~Dp%L}aujDXZeU6_^?>1`nW7FGVoxxNLic(u*v zthkf(WrTiB&ZfN1L-XkHf8UM%!!|RU4}2>Ci1K%|gsom4Y7|Z-+eI{;NMt~ z(7?gPF%rD8i3ohJC4Geg_!jPLSLR0b-8amk35`sRo-kM$Ler6at27M9v;V9{++P;X zU9Ky~mUBbz^-E%lNQp|)VJ8jCxG^K8>Er(f8Qi7_6Yl?$=82oG0{a2m^w)`t7BmLF znTL~MsU~2l8aO+SpXy`t#n9$YOwXQ75bn}_J|K!f>1aSvO|>#3d1F%?I%f)JM?neu zK5b%RGk`bp1O(5Dms2vz zNswE6qRkW$Y%t7GeFh`h3Yy6;IcxoIxB^}tSo*YrS_*-h^oQ9ykXp_c&x6O(L{Err z2#-9b5wsLo;s%y#Mw(4)&!8e=0m!FS)z`kMc_^W-8^yVZjIDCX5vq$}zZ_S+pCF%Z zu~x+Q4++Kl7DFEu9bu^@o-IO#X=1thpvdD6%3jQWu87kVt99NY4C_Oki+_$quA%>f zD9TK~(B$dF_=*tEbcqc;r@X`u)-*-)MTj^{8vzKmXaxICv6`dF9pW4+aO6Ri5n3ps zdI|^JXUn$c#m)psN@{+DggCBNE;@r2yZ?68RVbuO6|Sge)Xy4cmTmX;2)tj`vqVV$ ztvIOEu{pyB-DKdV6DZo*EXLImZI2MDd7#nBZ_PCq>T`#nBQzk;Q~|Q%Asn?vQg0`_ zMDa1DsVSdz3N3nE`Tt@IGg46~gaj~;5|7;S2WUnvC)zZbiB6)eKe{@D_$`hxp;_Jj zm(gpy9qu5ma~Y;?azL+6edNa0hiNii$HDz zRR={)%9~V2Ymaj93q6SDyr4|IP46rV#W0Ll@ZRfk7rvnXwUdCn(7<|huZ0YFzXSM~64@GxP=0{L#UC=rBCN!OVrJkM% zompa#(8rHhA#vVXrVM~#z+IO;7OnI@YX=Q4jlJftpk+!gUk`ktE|WYpvTiCYBv(3k zZdPeUQX3n+DELfgleeBN&3Nf?$57B<&azD$M>0UTB!6lh7&-r-K;M*UM^@$J2&!-P zU$9nNrZjGipwwSicwMc0x)e4Z*uPmRP@(>KWNu1I8Si1K+aTQ6T!V|O~HJ~^_HoB)f%~}u)8=S zt3xJ3VBTE}qWcik2Er%4K0J1*XXZSKdq^>puK)U1NBBj0bxjz7mXCmyz`U&7{zoCm zVPQcAvbrJD9I76`jis8ehFq)jIe)x>iLvXx9=oIkwir?xA3K;KIhVy3K>>hc ze#|;|X=O^Z*S#0Wks0qg`SkxRRxmnAD?Tx>-hl`)vb~o7;%i*q&u+B7wdb_zGD*p^ znI;$55nx^aJtq^-`cCo$d}Bg_9`c~8a|p};|9i?StTA$9?u?TEppDvH{M_8aB&k^; zl3)IpHSHmN;l`{;^wu!)G)a7;_8kaC3kFZc6b8Go?O=lK?P+JtqVZQ3>~ZC|>H{7y z)0%04LJeQkHgQBt3br`ZAN!`gE@Z+LQH{g|wS~cHtO>$6=#s3M$1eIhA0?v<7bugpSfX9v4 zLp}xq8wJ=msMf-~X_o3_jnRU4ibbCO#G3dho@h+v4t9eLXS!syL0%HR!J35RULO%X%13JM46|4?UA6 z4=xeU9r(v*W&+MCpkG?-`LtVfalw?u=N52zYB3QDBvfjQN;aBiF8`!^a7`CQBd?lb zEp_p$qvz)u-d-75QEVtVoeL9ECVHiKr{*&i5!~Dt{D;P;kk%S1f{GjVLAvxFVZn9t2rxt`kWpAEJE!4sBVXfDT zuUAWjs9uS#P8U`Exi{K0o|xKaMcNtoj?Y9?3^0q{%}Gq4wNn`tGmYXG8e(Vmd#qo) z#z^eR%JV}BH^@_dwZ=1kx&PQwU5A?_rolMls>CzE`Ue+|0i+^_De=klW#>;V*2E5< zz;W7|(V{zgc?2_U$LD&Pf1(<(x4Y|znN@gNrUZ&rGy~7EH8hA;WHS~)Q4UFRlB0}u z?odW0b6Pf0MK+2&zfaY*{WVibM4#YtUf#)$C*FTwef^;2Hxc;SK>u)j+e8s7S~l~QhO;0u~zs1>Fw%z(#2>e0J$fWYo4_Fa@B19AR0_c`NZRE z7l?KtNoHX&a5Dw`!6D;sDw+l=pfNLrQsjwba1~=tjrgn<3arrRQCtHxU0>g5gz;mL zk}_|2*Y())dyKE(c7Jl&{%5Bu^JMiZq;KaI2+&GHp;x^J!Babn_Q4dA} zJRjMT66houEGPLqk1g7k|8&IWFQ_otaXBem{u0(7IazN?9%ughI?K7S^}rGs69sY! zy+#zJmn6^r<%Xikn8aimwV8a6{kPI-_pzmweIWo^iWddB0d>nUNRcge(54M#6NxR$ ztOCni(mGHHq(W1cp=d?VBXFF2bKCTE!IgVrG!U)0`-xWWzYo;*2aB5++IxvoAl0ou z-(v1S4D$h|SEHsWL03}o7K?v>C;2Sr4*C?B)Nlr1VHPo~BFb)nItqMXr$Mbzy@%kBGSQ|qq zV#=F!kRce~+_n}_;HN&cH^=3eXU%C=&ihYGx!+$Ztna14ZG7VL#i0k@_^8%~S7Pu9 zr==NV-z)0HUmtO_i7w%ByVec?(dz?}4(0~9Xl+nqj57gTVt}jZQ?Abneo$S|t`Z>g%azkte3{pdGRWT_zL5$WQ znf4+EVdtGBPyV=C-L~-1(%JeDo~7i&-4mkIlK$KyErTW)x|0yvz&cu^^CD(94TF_u zu4o~JVzRm2>@eW422;a71gE)07>B;X2kl_8Q72!ZXgeepYDufx@-~m6lcZy(7W}`o z-JH*p+5)#4ehqud2+-vvS}g`Hf>PRAxNy*M@o-@)SDHxbF#Q#pYztK}TL|)tQamnn zu)BuwWcU-pr4c{h8dG1_ebcAgnUEy~ef4%%s3?Vg`tI%c?U&@cO53$GMQ=uI^tTy<>L3zTtIGHBlwV_i90?tHX}#%n~;@0=Lp9>4~pY80#-Jf0F-) zbG1z+c&m|Y>0q1eLbUOqI%>8u|HZ25f#>NDei}{-h#th_+9U)1T#+fzKd-&$wh_7` zaBCCc)zwh#SQ1@49_Iz)fG8los+!|33Tar=7CpuyV=68GYhJ9s5-AO4Wou+;=JfrS zvM#4H86{&a%~}VEIWL`||NWu?1aopofp-ZPQtX$4&Mc#>6H6kroWY11A_+JxD&b;rFWH%ITVfG-!zxGf{+N7PSY|F~Pw4 zMhbR)uG&ZDrfbq|KN{E3a-Tk+O^f&kY08f7Gn4v#ow)hJoThgSV@IgB1U!@Xenc>~ zGAl@R=r1gmjL8hrS*=)auu{(d`&;Po6WRK(WVSFj(0BOa;A9)SpJ5n4mBC%3v(8&Drv>Ed9p#cE8Uu~{SuKOC^z(Wp~8L1)6ZB# zuKknCAO#6G(C?20R7oxmcyQc;sI>qlJ&IqBgIk1YQTYdJ*iK3PD@+ThE{6_Mf~W4# zHhwZqvch^d1_^aSLCDpUR){dQuIOnETU)%n= zC;yixr~~toD5X1nUT?Xk!DxCA;ZXJSlHp$P(G5TwV#)aYEQn4*->`RTafeK2-dh23 zx#N4=zR*6`PW6h4{PjrwjbIuXvcpw1W4-$UbW6q=r;pHZgUX zCDj+cHI&l%+IrZ6ka!g z5@X#n$50uAbt;`Y|AsACnxjZ&e)-gpc@ z68{mB{$}|fa(t4^{HJIsw!ux@>s@x+kk2CYDka!@sfLayiztXqzv_Q|aC}OaCpRWf zH?=6h+qhwf7$q7j1a7({gLmRya9^YZ>CWD4Q0W*4N5`G|8_XMPj0L#oIJy5iAGL5o zr~+)I|LMzP9I)9XDYy@*B7Tew^xBK2h3?lpM{{7;wbH`WgXe%VO!b|OzrPRlw^ag zS&=it*UOAO3>q4?W>1;duuRm%O-Q$#XMaZlljjk0#o=)xhq7%+A3SrQdE8!sQ5LzR(Wy#s>IkVy6KDbx{sWIPeXbY$0Nuo=0FmIx{^!MAy?oyV7D#1n;Ux768 z*@gGATBSKlo9wnbZPV+kWRLpi=KJKkFOu`Dmsow$@2$gkS#EDQczuzxuejdWg z!n{#x6?UBkFoS}MB~ANcCN?p;>|#tJ^l>o-P0DM%J9FrQ;ysR><_`SBTmX@QlX3^g zp+BylOzll`B)&>=33A!vEJ)0!>N6<>9)l}e+QT_AgW;%v)yrUFK>|kBlYh-&;QfI=>wz{ z&1Qssnp;2TnC`SLyLacpS64O2v3=CsLBRDC)|*6OAt@;r3OVWckS9O%+=wKQXnp=j zI(a^E9j$zS{r2GTDOP`L%EL04AHF?6re$)8StXoTsRf~_br`Dh)=OIS_TA~Cr+B9f zy){vIrRlg^zXi}fg0s@L36o*x<5VbqxEC%WMh6W;{}Ivl1EMhEN3o!fh`A~XY+R0Q zo9n(w)ME`)mG+(of6b|N8;$`-~w-)l9IplS@TMlirQ>#S}zPfA$z> z;Q9%*-2k1Jn54FF@WdXI7ECqojpiL!f`qcN)-uhiZX$7JBnfyG8(he|2JMbyvuov@ zCaH;i0p~apMAVZ1QR`eo7(Z<^eYntY2TOq*o(xo9TI}VUlNLQMWn^B%pdOw5NuQnG>_6`NrYg$w>SVMsF$-OVEJ0>3ZEY76d z-GD$w-p|@(HyD}4*{b1jC$#3Ho|Zgopq8ur6`(eNKBE6cvQ!qB9vHr^S8kWC(LH3~ zW$A=i(`9tFq*JB4aW?(u3%Bjdg6oJ?%9y1#ZF?$JV4T*XRNijN?iGP6FTn74-e&1E znNsX)R|8&kn)xEKCcRwqRrlU8r@_Rjsq2qjh&Eh#NsCg0G>1DU$1D3MU>i<0YPMnn z*m9VrvsOvfa^<_uW4GBu)%UeaJA1{j7HtCN!LA0d!6>O$H--6&hbhL?8X~0GHe%4Y z)ohaV51ZvVViG~}e&H7kC@2x4Q3iu&plMM8QLFYjV(Ib8$==-@qx~gj1Ncmjb4T3& zXPv==pg}3wUphtg#F%u0>%>^i=CO_3sjW1NM_8u((woasni12R_euM*A8khRY1+2; ztNwcRKGh5i0v|H9Su_NncNu2pUd$jnN$0Kdsy&|GSjB6x7#LKc#7WgjTutJqz_-vOCbgZ1O;GEa%YErXb(6qlWscgxM1IH$hH@9#CJ%PvUE4isYqA?aE)wzuO_cxt+*d8qf3)liyNy6lW7&0knzr) zzHTqt^N<>~PP9S1L4|Ct$WlEPWe~9kj;mJ%b^l4=npOJb`Aix^Cvv4j131o#x%PDQ z&@+5{mga*2FpLZu7YZs@CMt0XNxgydtj&mUPPni%78VK$T}_hO(Z7>URyxsf;ZtRg z5q&p;&F%=E?H)H-ncamW^K+q^FjKXL(w9~#)YyfoSGqk5X*&8}<-;uYJnH!i!Em!%Wdsa*{ur|b!A4H^Fm-i@~o-4#P2uf5o;M=`|gSdSy{)< zqK>6Ittr;J<6w4nXiOnI6C`Rh_yyxtk5LrK!NFX}*~dV-Ym}e`6h-`OdO%RYc!q`C)W7cKlEw~ zpCjt4Dg+`ZIv=ZcoOUhM_03gy|0K``LIuj#wU~31u9XZzpQ7>VfvlU2#G9{2_EXIE zRCdmns5M^z%LaRMLduPoa>?W8YI^x&IO$)7+Cqx;KSFM%DTTLQiCkBMFC@a$`Y!b~ zc`WEqP&^-S(mOcKO)F^PSF6L?5a$;bMi1_WNw8`QX>&>yQLM^L=EcBgTbb(&|+Sw{v0&XRO~St_3e3E>p6=fUwCIrc==-D9-b>|IF zi|S{bS&(+h*x`-WgMI07>Iph(|XujfI_gtys`2eq8BjcxiVT%Gun zgxI>uo-g@SU2lbB1KG{2Cpl)3CYbez{g&Gm

=Fe?ja!{sI|f&tvLWXQ3M#GH$E`u`LGmyvxD$uyj0|t=(%Z6eB~{QbWSjlPW(5P% zzsw}|6qpTY`Ab=X@QE1m=S3?lwUcBfa19Cg*8RQ5&}myD@$tPmKzg>mp1^K2cG8ws zv`$n_A|)Je%I3+FZ-r@w@RqSEeuD%tioARuKoZL2kiiVSHApn>wiHhM^@#9Ec(+1+a6g4fLqz!!o zTyv(5JGPFUkE)5?!^K36qKVp0r~Kz7g?#FwDhSi}tB19IR&^83mFk=$`l{PAjg;KJ z^<$@lrL(n}rx!TKG_+Nz)5pkL`)gz(tJgALmp{coF?@`N{;sT+yQmVss8YT7ZPBJu z;l*0Mi5qo_)RY^0%e`!n6!gjXyB%65RV@I`+~-N(5R8+`Az5!bYtbqVoXsQ8`M-ns z*k5P6GhuPY62I`RM{-ogah-6i7}4_wd}3yqk@wSbmrpd%(V+M`%TAMz*p>G*2Dse8 z;b!c~$J$hJM_6%1aQ*yh*+g>L)AHySVdtQhDkw)fFl^3aIZWG$`m~Et1K`TuRnQh& zCWwh5z@9J^sjZ-l2YFhEx9>G2k6$$Xzo%#wLGyOvVC^jls}~Lx zm$iAJ5qQS=U=Y@vooH2<-0;n7oU7*!t$(xtwdbjQ(#6 z0J_;K?@kVTqrw(I?bPDCV0CFM9OT)DjUabml+#kR?YeFNGV(X;u%sK_-Q7Xv^((5l zYW)=60v`Y!1kyFAOqiWxsmQPp|3;*3okds zHz4(Yo(Fb6txKJ)&o-Ym(|+6Wyw{x7?5V98*hmm!P#5N-RThV*ZfPWmT*XAE9+b8b z`RPT%%`2bWWP2jye+ky|7x2%v6mK{A0g^c0E$?=J{SMgM8}xWwZ`0}AHZvSmNSrC# zqF40rmljR!d2=ikdIZ={<+sjzbw{LC(M|t}n5t;oomv)#yc*8s)oyn4X-p0qxn(_> z;d07MsbhPW2)ahKei4OH!*qM-q~%osp_(0?B9i*tc23jiXO$HilGWH-O^h?P=_{rw zjiw^Eu+4aY=7+Nx+CY;%$kp)p8k{<`=qkXdk1*D{>ec@V7>SKZ-A_WO(%x_!(+ucy)@dO9!KEmt$e40(- zb7gF=p{KR@6oRX%zBB(Ie7aEO9iG)#C-cH^?Asv&c`KMtD`RFF;{8)Us+S8Lh08^6 zFs6^q&rysW+zeYaGV-!Z%Mx^JsB4zb6y+|f*D3B%OET2fB%|gN0|U9mwZ${`>Yfl} zTfuU#toTS6sk2+gi>eJrVPl_HH}sf(dP zN4vQ}f!3I!-K4EpQ5PvAXwZ+YRHyGc2Rr3lddW zYGv1XVPb4v{en70{hFcII8OsV*Si1h^_|=60knye{NwM{$tiimmNY|{LCza=o1oBS z4l*#@$Uv_&X-t+K)S1fuc6FnVV@g!0!y{sa0S|EB@O>DV)3J=bCvjSpL_0r~u5+g^ zH_4fKsdSag*_{u?B&YWit8J2d=T-$5Vq8ztSlQ*Yef?0+i&{?|!1EPmR$7XpE42M4 z#d?OlWJYhu&SWcqdlt5^wEyx!B0~Nm&h<1UjYYa3y}WDqW`|BEenOgsMeXV!d$N`+ z?dv3m>{Y#Oy6-bzR--Uva&+upynJD;xoHzO?_wjxrwU8N*-}S!Bqc4;o9$z{7?3K- zQBgcOo5KS-qJckdjIOhX^6YLzzbk7J?o@M!x{mFsC-)va$ISJC50k%%&D#8RCfpE4 zKxWuqy(DmNVUid%@Zv^>Q^iPXy=lTqgIjhev-VJ$m8lJ>++(m(o@%4=I==L}%++=b zSaHYhmcsKTrCkPw_iBgEgvTY7!}Lz?J8+^t%(`$0b+b+z>)((3dnmAzTwvk`&neuF zE2u2KhuiHkgw^O!;F9YBdj~$8%DNU;xl9jBQZ;ISMt9yf#f@Zkue|G>j-FuW3%nP* zbXu>nVLZC^nzAo|gKPpzU@-8c(oPEp{=CqTsoJ^Hb)x^-i`moG++P&-f{LK~qEbly zuE~d>Ac5TP-4bEibE_lzV2zYD6H2nHjmyyJ$>Ey`R$^fMx}$E>jN(fTjKUM@M%k6c zKF0YZ=JA8?|KiOEbmxWuq!UCb5sdXy)F%q>o48bt97P3LzU$LQSus(|IdLvqi!`0O zP&dv9kjHY?Y=@M2EG3h~1hk^Y#qWd1_W8~k#N+H8#hK!_3+}`@_A3-)=SmpMzWaMS z<>J(Zi=ZR;O9TghKc*j>wcPel{p~da^`Q4ZE^c>mPqUOaTb6VYh(^zm7#ob1Gt|nP-OsKRA57J568mWFf~F!7vS} zJjLot8T04~5fIZ)bvm2}z0l1dVPzp$D`GDrPB~Ou)puK0X5!GLz-{^NFG}c6pSkGM*+8RsRh^SvmH}IGktm1v8MX9xizrB36Ok=S3l1V(z!Hzg zfgVwQKfI!GXTHkFX!ba{wogu&;6u=<0>`?K97d)#IV=vQMd=}&4Nbu(n@XF%FG~ah z1AQ}2{IVto+x|mUfwyYd2$MN-gNd16TQvuY+<1Iqot<|fpC3#4HIYRbICFAaaSDXo z3&qU}VOvWY_*7))8&CW-K1A8yk9>vj76J*_sf%5I+6JlWp0TOB-S*yBFWyww_RD_z z`*Ek(?~n-H?*{6WDkB2-1_IDjeCxM0ik%dQ-pQ5 znQGs8&*kf#`YKvrNt(Er!#--~f&VZ0Hn~bkzP&RWGriG8_@$V|SMR*YJ2LX4OVJa* z&&09+sSDGLN(46DHJWb|+9@#9CZRvR7!lag{60@@%|xSut@9ih>&j}z_eu8D?cFXx ztcCwYe(pwUbR_Jy1;P?_`LZvUSIsO5Q?}&g@^-;7FBsAN%6(O8BsC^-IcKo7gxl=H zAZQ}$+*gNZyw9FNI!f$Sk7h%m>-3$zA8gu+7-TlWjuK=*782pgKdl^%Xgm+@FHAB@ z`mUW(!B~sKJN!A#fwAYEW2QbYPHb%%IT^iiUd)_bqo%oWD(BKZ$Cqdv%9Um*NTTaR zpK86%Xse&?jK??p#vS`nu_J>?`?)H0RjP84qTbtJ>r zMgwx=<(6M?p=r|sZljiii#1>eTX@=AVeNLj=Cn&p(RJOcn9cEhbuH!~*W95>*^(*4 z(n=&i6i&5us5n|%Hb);iHpyXu>{JroZ%ciep!iYczASiJxdrF^jpO4^msIKW;!p}B z!&nuk*^dU^@XZ%JsUo45P$PcZz5G5C7FE~fcmSsNX*#!$Gp7+u{V~~f@T(hb_L6b_ zS!vQu%752w%om2%_ciKt2V-T;Mt{Dysg}%sqZRsbow{`MEMJ-ET?Kx1g|=@+w|2OW zugm=SS=IJnF_q`atN@D(-Rmz}vD~gr$GH$Jq(D;}R&a9| zkD%-o6*cVz*AX+Saw#`zBJNMo%VA|LHJ07PC)@0u>Z#;0%>6c>lw2jh~@6k)Z$4Kk*^L|s6E&GW(GJTorf zkzw9>wK<1GkG6|wN6&=|0B5kG?R|3}?W6eh4^g#dbK?sN*B4gH$_7CZBUUq>{e%RH z#D+FkixBFSg|D_f{qMG^O`J7>I$8-+iorffpkB|d+gOB=H`kNNvO)cYH93vD(>smx z_|vkpzqzo)TfyqJQtl6J5i(Ul3d+2}Ek+)w`iJ1Mi9tH|&0<9qF_^wvGUer~N=IHA zQFqBMl;v@YLJ$7fCjj7-s!1qqaxE`Vsvi87p~i$HE9;F#vWIT&NE0c2s>wB_DY7v{ zIb*hulhWU358 zLHFSyS?9G%`IJzTh*PZtys1``_H3PfZ%Lt_o4UKmoAlrtCMYU~bve`|+OWRKOo!&y zu)qG}O?sWo?(Rj4-IzqG*Ib`etB~5de-PE5DmCG?>KYf1OPstPWd5S^<`+c~Y|9(O z1m)Ll@Cg+|zTgMPDogG{Z^Ps7n&GV3^LBI`B2GM;~@ZFYIqc;h@Tid2`ve#f7k&=6-{+Per6z(pQgSiR>eaceEXT7wTw5 znE1)x?jQEISq-jKIhk;dvAH)#NMrL?On4*LkF#fuNuwslN2*H{(9g-WghbF~22;NU z(aM|2wsF1tExH(5cl1-UP$ur!v%{ut89vn4=vki+9%Z!6DU(Gs9gf})+OT-G|7*_+ zOHB0rxP$+L#VI|7e|T7#d2gz3)DF==7UjGSjwNSV&+1+;qiL;kS<8Our%kWpPv)BP z+{T<+Byn}#ex38;31+vrrR=g_ikAD&#TgxlsIU`w>R6iFUIYNPubT`+tNyWqb>tk( z#?B$M?g&1-tYmPE$u2h`S;jA6k~U?J?H+X<`ng8RO*knDU=OU$%_-J(FzpJleP(06 zFVD)20CrezJjiES@83U*$~X$v`TMW0=S{;hFz80JGab3zvx|t}#1!@tMTMJpWFFqg ztp(+A>VDIXu~qcuOj^$=N0};T=jO5IlDh#7PjcfmbY2fdJ}-Qi&@r<{nh`z7xqz6C ze#9QC>9-a{uM!?JGIT=(@|0!p#wRR%cs*y|q;bM}skn6Ap9#I&IrlVyK99naH_srt zm!;S$-*UufZYwU29_UhK(lJI9Hdy24#W$tT#0YUMMEFTB=JPl4Oagp?`-a5BjdRP) z{(sh*S+N=u?r$GKmS+t#T#!wG2SXG zU2`^hzoY9m*Zk#^)K#Y$;|<}qABP+*2u7j($DH5&0x1Hyp0jgcG;H?Dk>*}qc4@)h z&6`tw6FJLrL|)qxanSANXAhgx*d?#;*?v0!7V%a!h|{_Ils?4rsEb1NjjY14EVg~t z{Y2_rzIUISCQjp*j4hc65AUWmpop$W5N}yfALUK+>O}wC@Fx% z4xzV|dL6DUzd1nr5i%(NorKo#8jQ+C*Fu+O#EqWmA;l@nGPD59o=el!ewPG~>2lVo zb1xHox|~RA89M_Cdp#99G->vW{4Jy^2ziTy4s&VKsE)jy@Q~Fm6J5troRy`O_v~Tt z)(kGF@O!4nEsAf+aUer19Ra8s2zfHs$@e?nD(&(fZI<8Y9$ChpqH_eGL-B6crP1cv zwGB6Z+%51}HO1Pdxs4g0)+M(dS{4RY8&R1-H^kdN7;u>M(I<*;LG&YF%7(F+l=JIw zMX3A`A3Guh@&VtWGjR!=d6o}vbalPb*MAN>zIOVJm)zOYHVIfYd*ZpGS^=^e%+Jtq z^O(1-WR5_XhkaMy;UTI^tH1`I1Cm8$j^bRS%x^Rt- zgaqTzbi?JUQCASGT`l~L6`3B3Eexa|Fcz}g?O|*KUAI_lwhQ9s?UVNmFV*ovS8LHB zeJnq}{ysg}BdfI8(RzSP{a#fvRt>j0rjDz9uN(s>0Q^M5Md-ytID@USNi)7eM2Wud<=z-2z=?`i6F%N6lEFYBLbri(9}=S9Y}&(`?++aqQYH=aO0 z$RN&K>T&y6GL(L*W53($hKIvRW4uSEnAViGCxZ`9vo=~}6NCJe$_U4l)fz*Uj)C9# zl=1eQsV>4fRz#u6>H!`;*NNQR&&%LsBtxasj~kzR-OeK5m~Q7nZibRn?+3I-xAAhEjnDYaIl?wifGMM?#H5q3;80LXeu=o^ufY7x zpa1<$nZ5bL1Y8z>7QZX??)i3BEAd^%!;KRmX8p7C+bmb_nbudEM$zmFwqg%UUzKO} zU@w?E)Vq$P*j!a37#b(?`UHD80sg#KlEk-T3qv}9aCp!c!`5223c?`VogZWt*` zcnq#QZIT2qMv|{N0M+KMUmXg;z(%rcPfriLOJR3IB%*U_pf^3sYLaX@7b99nZbOwE zS9XHl@Iv+ZuQV~=vEwovBcck|$$foq@kbmEE0p4aO5m!%n0ZTMS*B%_B0Bb$Aj2t! zNwc!z^VsgCmCwegBPw%;iuax!x4C*8dZ!mWAfZAKDOrS*3-4wgdGmso7B%fZB3HY4fTPa8>4BG7VO`ez%7JhziKHft> z(ZIm)_fHsIJC%ChPc$d&`B#G@o6M{dSNUJh>9ZfUnLYiYx)w8%=u^z{Qcc3?c!LNK8k3}OdxyaX_QV|qVLp-lQ%@R=`jym-rG_?N z2dKikzS|8t-w03)`2Oo2Na^fyf|BX@%Mb<)^&dlI7cEh_>xybuxKiAl6P3(fWDBS! zS>BKSsNDo;g`?F=89#J6S|>>5M zM!sjii<=q8dcoUX9`c!IYL#&MxI<=w)`{yCSf?MJBR)jQIhgYDq(N5Qd)@w zvHG?k6Er9*5{MHN-Sk|1kW1ll+aXO+el=-J8B>`9J+~OijdRh@x_GTy$cwM|)EYON z_j40A{DT1W`EAoHqqZntHof9Iz`o_TK8>V1T&^LyHLg^CrlJT;F4Wbq6^;_VkiSFB zprFG5Qr!JMh0D_E@%KerYVX&;_mw)uP66al5KDfb@p?FCeh$7v1K@ma-IFz$fH&dr zM6w+Jgl~yHHZorN{b+1##pi#vLI~B%iOX!N;UD`Orlwnav_s@oisM?{OO0?zKb!ZFvP0&C^zi;p zYzMZkD8IfDyX`(+snfdA3wKgi^CC-cN8m(xtn$~9+$^`!Vz{#)#JNH>J8A5`_vzDN z+WRhYvDCk$UV&&B6{S6(YUPSeUUeJpvoKn2S?!70T}aY6n#99dItYr=LmUzSL9~l*E7!`H~u9E6&I*vS4Fes7TV?FsT49 z2zo;IMnS76g_?Towuoh|s)LreBEu%w0f?P`RdUI;GzpZ2fOo4b*kgCngUGLfm`aI& zAjCk1R`zR=_Y3SGggK;+t3qF#bxT-KXO5xs?(;n@$^y~ zZh(N)|D0_H{jJDPG7|6s2RUxZe+2B@fJRvvj>+UO;o>mZqhNpLHa_ybgtE@$X$hF6)ji&wb&HA`F09VC9#5*m0|Y-IWAIRd!B69N90cS0(a+cF5x$^);PHL6x&R(C!ViR*KLoCi4uaB60~H#zt`+n>UfW zUptZcZ$se6D0~v9I*)Cn8v@+d5{sE&$Gg2y2bZ+s?^$|Ic)8(we(7XhSgL8Zr~?mI z2Y_T5o>D--$^@IOacK_(J))j&jvu|QZTP16+|r_t?pEzb6vB$qwRqb)a6hdGYSFdI zFhyHSB{<>jUMYF;B&-d#{PXMSYiAG6t^MBIosSQ5v!+N-5%V#a7OC4pEHQxL@}{X#GS=D=)X|C4zMIaK5&P(Y&hrl!>0q4;+B-6FI>ejaB4!jBw*xURCv@ zh#kBoBLK>1yR?W#%A|~-ARx0gEf|FFY0HSHo-Pf+aKLX~`+0{%UOnNnAzxJ^a5&^c z*{E(VaV0s69^5SR`#GhYwP<^>JuNt|Bh9j~mne9*W&dAXZo<@h1cX2@F7`710GG(% zd0|7#$2tIt=Om>sV%hVS4_SwOt^D0;05_?;a?E???u2izF70<|;<|4J90xEgA0pCQ z!pXd`PYzwy{`P@nO<4`x5-DG#L`OI%7d-SC8|tx<#p)JSB%!$H6DMf2JL};rGc9Z_m**OuQ7}_nru~Jsu z0H=HLN1Kp8Ia&cylhDl}NIhm$quK^!6P4(@Likwc{mhAyyM4-u;P;=ltZ~TR(mS+! z`Kma-dZLrwn}{dZhL+#8+8Ah+m;gybTpR&>q<)3$FU>H+A`Tz3;{V%@1|GeG*He2mK zkK#X%;-4_{|80o-&%XQ5zWdL<`?CW7@6{3iIb{D^AF{qw5r(HLF@QGRwv^F}-t5sR z+T2o2M%3R6E1OGeo7%51qX(mGSrWc+fI8bENINxGyGy^U*bztA-RxbmKrA-c$y-#5 zWJDgA-pI4!&fyQe?1CH92dw52FmPCReGWz)Vi3CUY4Q271Pcg=tcbaZ!+13Rcw}B! zy5=}vDu|>jS4{3sonuWHu5MVeWqFI!Q_Zd0F$2wh&Me%lDMQl=Ws>eOzXIGT)rhIG zReAlG4u=QPD*>B}_Z+2kfa}i)`8#=kF4FTVUmwo< z}@yYjKzH1H2x8e8q#|FOI{eDc?W`0bK|XQ3~(#aLx>+?;i(#qdROLM@>*c z!7riyrU2eF!EBeUa*bbDU6nVk07q7*d|y3R!x^eJ1axc!Nxz_?MGg<8T`Z8Zy?N~` z2qXf4`~$L11?oJJb90^3rL_`$A7D-*x3bbMk$zNdFpq{MdGbyH3XAf^z~GV^hT6(P zb;kF-D`s0@cF^i}L)2SU`$SFpdxQWr0Kfq#uAh@KBHRAm@yaLTJAc@m|xmgghE&GEx6U@)%F#6*t0qQcu#`*J{zL8U**u+5$2<+ z5n3^qmW4}jG>k?1SmUq5l=4vJwZ^IOj26_>hhg3+-}jF)WZZd*WA=NYyiLRKpXHu4 zw2M>SzAbAdM2N5T?_b9SQb;C53ZX+lP>A0Q2n{u-=(@%0NO%d};rtMuyQJw&3DGoH z)P89gT^BXnX%GkrHLma`WC2}(OP%Zd$1zo_-m!w&qV1zKQOj{^&S(!43klscBs!}V zZ}S-fep+i+Qmt!dPMTV%>t|nbn#lFySz$R7HU_6Fg;Dnp*mIY{pM&LoakT2MS_q4d zi{a*1qt0w}!(N(1sH?kBmV}Bf?KH8b0_zi&2&CyKq?4UNQIVQ0kw+W?+hFr?z`WS+ z&drw~)XZz8=2Vip+u^Jh-EHULXMW{y=*-FLpXJ0$Y7~l30RXmT>oEtE90v{-aRZVr z`V!F0ZiS81EA8afd{@^_nI+_sKez0R1wu&qb+Tj zSf+q}1jnfyqWr+%KTO86hsU3jrZwq^qSF0nvmtO&0PV6`-GsEN5Wd>|_?+j+=A_US zL87uu#_)RJ-^w(N3Hzyg zW%s4xRb$$7goNbHq?)vV*d(bg{{g_q)pG1gV0=<(Da#2uB13y^P06(>iKj1@bu0|k z%9*X|@FeB^h~|KVUEDG^jXGbSF3jI_99{eyy|dEp8?tc!^T(47G8MAh)#ec#shMww zukM^u20+t7(ZeHvffOzj-x){(E(itXXUB+nkj+KrAO!5 zgf4!`uuw5dlBv^$sE~v-MWuv~$$3o4-Ebg=8Z%b_80?1jYLVK^P+ZFC5=0bOAESlt zL^;afJdC(}6qyb{k>rf z?y-krQVop)$F9#O_wy1;;Mc+G8j>ZwX_DT>V@)ept~65mG_E{|hM-#LjPRxqtr1AICZEkorT^@jBkPvKJVItF`MQGty{f7dLj1kOS zv5!2{=7$%RnlbHm3wzjIXCM#*`22|zMH1dCBIq4UYw?<+fl*?C6UTmTxQcuTRP!5N zwN7v;(|)nIcYJFSf4VBoEqz;>L236``PjQ?t^$D7MrW_ivH4Pi%LoHa0LyKWsc`e< zT`Fu3yOU5wi#LLvticrrCjib_cxk5sb%+wDR02?{^hwZjzD@s1AcwQdB^`{ny<%6( zUj7z1B1X>Bdjzd|7k`Hr|AAZ;h!YF*b#ty45+Lg0ws50ub3~8Kg;_N992~7nu8>mHBnpD=Ct+g zaJi4dRlv04-h2~dXUdtOT{n?>#=bL7+ZNm~E-S zv%M4P(?Mzd=`&)shXgVXCid8T1D$V!@=<++RCJBSSQPMs$WywHt84od0Zq1I;N#%% zUxFXj$6SZF2`q%syiKRIZ73p)?o`MItH;+a7cZ3uWrgM~3}Q;dH71oNotJ_d)|A>Y?>BhPTZ@%G&Ob#?+i<0+GD z;j!!sYg#QUSo4K(pPXG|YD4r|q7KOzbIUkuCh^pJ$7WvS)09=_Dt*N`x_aZO@wwiepwQIcWPN%1?lmu2 zSL%)%zYkWvDkM1HMQ4LCW+JfgvKlz7j*JjS)VgQN@H{Zw#d|_F%TunnGLL07GCbDcn^`)>NfK%SQ+=&=F@#} z^eHR!TE}f5zZOtkgt$&14Tx2|a7Wrg@}7=--Sq{eqegzD$IJ((UWYcs9w~>r@15^w zb{ZgYaEkkA?G3io_|+# z-_T13%0|CEV#;)4ePi_I+eorAkjVwpfB6HltN>IFyQn55PL_J+BLXvKN!2bON2B-J&7dGQ9Qz=}(CZ0@)6-@8$httinRJykwM2DWz90tNgL-S${6Z2b2X~-&NIlr1_%u)S>yEQ0d zbZY32$@32q`)(EZ8Ti+r)Ab=ODp@*CNMNi0tZ%Zys`X(+l;iLqoPVTW9EziO5J$;x zl={-FSKYXeZ&pbLf|4AFaEh3&sjcLq7_pgMZvp4|z`c&1Fz#XRH~t8sHxM)or_b!m zLlR=5ci7TW@}wu3Xs3Lol6?S`p1dFUnPs=BNsI2AcXTt{1jtg>83mjvjYH?UwK?Wl zOy@*Jq$bqAD**~Bf_FI$JsUxHcf0|!nqF}hhFN5q><2-XMIU^%f(1es)V_`rX%re)Uu8PC7UfEoy*Z(!IgYH{7-oY{2-E$s#}!i-KJaZRXwJs&o>?y6;FHwp7mJ7i!wH zDnrxnwpd<4psL=J2q50V_I(kYfMY#pSsp-^Yo8GcA1I!uyg68jiM@?cL7^#B1grv4c21a>1^()l{(!32} zWcs?Xxjv8$s~Z_xmhoE2K7bmEXS5$R?gk5HuR_Y`c18Y8+0M47(hi7JXnZDuj0AUFzbAJu9C`y>!X*V{}L`E>WgEISg)CW}-wwii0Xh!`oj z%7yJ$b7M{Jhj#;x28xnasN5^$yBFql%C~E`UR0JIWO&|jVa4rL&8q&a68nuDJ2+^h$dpk65f)p) zADSJOW}eN6s?(+K>5$zoM@x9I}p`FO5qH$NO>nwy*W0PL4?g?-N&W9y7+Ud@92 z*`5Y5cSC1`?=&DCCvqkKZ0)a;iU`C0{xlU2nqW-B>I1M<-q}3R*@HWU&zyd<9?6@M z`@8;_+K}R;8R5qP%;0n0H$?8$$DnXwT3KDSqyY&+a?2&jZ9r=$?*}hs7yE8Y|CMo@ zkq*?J!JO1zZCfRS$nKU*SOeud>*KITFnv578g#)i&`${p5jiiFVvcMK4x}@)?1hUzc)Q5!_1u4DLB2B@* z-Nz<&zMC7^t*R$pqKlefXdBVzP(%a$ETCO=++s{;|ui=X|ewQ<1DJ z-JxeR2dFfF01i-=K?V)aW!Qi`;Qdd!(SF$Mvf_Egt%S?!T9JlNI75P@8|Q1^b4ZS3 zS^(Lc)9+Bt{g}~U@(*Spzq^Z{Hs!aHYe3FuCIW4)O7|OLP*leZ@2x=7;AjvgSIa-z zzg*`UhjHxVYwY_sJh`W=@tl$5vWJttM^i<{(HMmi;()J)L|VVD)58+|XnvT5LF0_V z08f#njxt=cCmslzE~)Li_`^OUv#itl4>qVu5GMaC&g%@XdRnpdq$+-%B+CBX)p&y8 z7|#J?PUqx^kfEUTeorcvUNQjbxodj5YH|?sGrf)9-v&cPCqND)(UDuj_<$OFWTFD? z4?nA#oH52G?h8F4JG*->)|SulZku#7{BJQyhdb{JUB-9~a*J+T((A1tKNkq}Aa?LW zKJ94M%Vy24QFFo~L$%z`n0iQ{I$N(m0~Jgtbvpv&b)jr4{W05|8RGjntz~ge`-!oK zrZ|bKPB6iu+k%3ndcYEZusbR>`Slr*`6W=gCGDpqag8ogl=@z_Q_h|>g5Rpe{Rq7g zFy;;NN0<98W9Xp!BX&cMfoD;D78TIFjjP!?33uRt!GQ3awn}kIX~9&esO0->%ZzZF z4OfW$S@}M)M|l!KMtPZlX*U^b%H8~m{Ip2GuG|vn?T$@d#7HfV!mulv>C^a8`Aq)L z!Kt6eH4vG>u<6Euy+19}k8F&1cj2UN&{LS^LY%Oh_a znjoJqD3V+jvo)dCt2*`ple1&jKCb7x1FtL4J-S{E3?`yw-7va8KGLI{%+x_42!28GI!49y&!*lIc)!x_V$k2) zg&&m96#v&M76!vejejkH3fs7}h{5yLj}yeuUgB2&?>K_AcGBR^O}12=4)DuV1MLhj zLg(Vhq0_vtY8$wZ7y*qTb&qPSu;OX6minUjPO`{7B59wr+Gw zx_V}U(4P4uOJ5SSG9dhuNK@LwG|a<+X`h*hfAoB&;5Yzv+kG86^5vZH*u*2TF(7#$ ze{Q;e#C$Sj`M0lGYN+VB_ZGidTb}H_vu6Cok~3%PE8)>_uBSnF!c&vuiuJMfE7-bD z_c~JSjJFSPqMB7#n?nBGqHR#dw)cx&{A68FI*A&uWiy130w3!BR%7syMQcSyxidhc z{Du;`PIY0Ocmmeg2&}QJKm_6EF_YggrMf(H;5`#41$&EQR6fupId{x`X?OB;a&K;TAGu6iXC(_L$3b5Pkk?!sv zO1_cGNq7;SR;Vluz7xDz(3T`A8Z^svUx#aIYw7wX;Wd~l!0lTS5e}Dxhg}`Fm=Lxj zzX9VSlJ_mlD=~48#OCkXx^(nZUp<1ISp&*CD$To_lE-H3sG%$!PxqS;qc|DQ>Bjn* zw9dbe{ch|d7jo9`@iq_rdkv{TudsA0zqq-ym2PAhy2ZEuUyIj83H<>UPdy{$l*W_@+%{vuTy3U zMu=6lZiBQvCXuV88lqa8uR zAiQbr?gZ`HUlUJ)nw$sq>EFw>^U$rbPsV>1=Q93kIN4MeXR6BK5VVP4Dk0XRKFwSA zz04`v3#q=ZDwlke&%N6!SX_@6?OO@Xg@1CHD6GaL)F!_cU!)q0F$Kjmu;p$3(oq%q z@pMDx!+NRdOxkBKWJmz+S@J}dxPP?f@k`VmE2<7Z&?h#+%D5{tlK9^?ftIx^jO8|WS3Q*LDv5xYA*llyqAFUUN7sPD$z6wl9Ahq7b}ec z{>j38pg0hT5YFq`#*wN#%=~spJ($VSf#LDrxkc-T5K2YG>kBOXW$&snm|(wO{!B=5 zqM}fDL*8r`sk*4RS^H#swfq_F3te60VKDP7bpA@su5~j0SCNTZNu37foQYJjO2LlL za75+JOgOF$bTD#3Q9az^fkDYpgMWRy9?YGHsW&B_+zY9k1hM(DK(#{ukp4wDy!8pO z-p(o+3+lH{gDT=4B^cyjZs}3FwW7lvz3?Z-pj?2I=ac&MvMJ!&70s)nT!!y0NPuYp z`kK{M8dZP0jWz0^XuIla`j+k=-O;{|;e?QDtC=~0Nu@3X^P3NzxV>GIw$V(wf66KF z#IJ`NCzEsk!jKC0azBT#_<)HJ)Ha>_i9D*g;>NcaTOW3Ofd_>=^bjLVdGZwL9@|p* zt7re=w7I*6&IBihZsUiQq0VS9N=6*Vjf3irJ5GICL{)$_kbYjs1|{(&mNiq zdbHc=!K~shjA4vdS;RkSCv^FVlxVN7EAw)Tq8IrSBq<8-tr} zS}YDMlagi$DN|Me<4{-kaRKEm?PvRR(%7%>GDv%ZnE-MdnQ@zkeh3G^?gAlEj(ojV z0}0?TbZ@?BC8{8)!tS)od(d{w|HF!ieWZup6F4?F1*u*Np7u4A(%lC~&q|(B)={Ve zqi!Yz*hmF+}W*2+$`Iv z0e(eJ{^VZz$u*OzMq@=q>Z9Zq*INnwNqE%`?QwdMhuACysQsoCX||it7=qD`E2OWs zl{jdp&R!w43$0VgyY02ampK4}SKM=JIHe5M=g*HV8FBg%?z#+QbFO048_C3;E0)f37+Wl_7;oeUb(kl4V*KGIK zznlPAc@7L_0}V52dQ+GjOd&5OY?c;+Urkk=Cs#1GUz3;Ahpe_xSBcvN4y!?LCYDbr z*TyYM6lqf@CXgGRDk`!*0B3?VuK=xR=cb$N^4H1e?9H>@2F_v8i8Evh2X!Ib4H|_4 zaJ8x7X8M?%gEQ9H`^@2LJ5tx*@_Roo%6oQP1u2^hI!)Z7JfJ)%3kKmezRC{=h$pjy zT8~~KnJ6k&;#@*)pj&d0)Vo_g|AjEcdKG{Vb>=Z;(>rR29~ns587v?-w z#R1;^T65sD1=d_M#U^+*G=!)$b1}VpcjqlPG$<*&zs~@yIY2KB!wG(@Mn$EQME4@> z=oH)H8s_?-jt6@NFxi0VBBn*#{>`DO^bY6VV?UBcQd1QeTP>hNe#qj_A?Gc!J_1X4 zK7mP9NFWZyY`2r9Rt$lN8}b}1VufmPYoIOFf1*}$|J3njR^toX$Hd9Za~r4TEQcm2 za$Nm(pHD#Oxe(rn;gO?H@B2A>e0oTxiaN3TRmbbyWy9QQz7rmJMM3fy?uAPC9B@ z35{xrHBY(~ENFE5g(U-TNxPs>ghL0g)8xGALX;2(Cjhvsn%!; zFM?^Z@Du}Q5xmV!+-LA1O(Iw`=_WSw=Ng9~00E0Zy#VZAS{8hb#GZzi)QyuuKEOZ0 zA%9y1>}4Zkyvt}I8bO<2GQ(+C?OXT1tWzAz1|2X&c}gPgz0r^1H!>jOLVIVSQ8&~j z7w`GppJ_V_@AJ-)69J(J@HWWELErww70`TtV3tNyG9iAyC==_MaYlgr<}5C65%T%ek@|0SyKMUMw6m4gvVa!IV+R@dcKF(%!`B1L(Ps z6Xgfdsy;^lwC^jWQ`7z;CyhZJ7-?EjdhpZqH%L(1wA%Mv8UHUbePKCDijF4=1hzrMYTTL2YW>aCz_?gl5T@btYZsH3>u8Pfry) zF`T^9wDf!*;N`&gdU0WH+c9D$Tvv8_!4>^G>{=J^hmkolAY03wjzSN)sp2sM!{N|C zKwR^jKXmdyC-1xTuZQadqWTBeuk3Vu`Av``2i6;gF-MAivFrMMN<~$Ml3>M~1F=+) zfFOFv%q~}j1l)39I4GCezS{LU(aDL{oFfeB-s42zL{fVC^65CL<0@r^6}vfQ)i+*1 znhHe~{%k$c!8X0#vMPi(I=U5gw%tPGT`<9NG$BV<#S*F{(oj>+vF{{Ovj z(K|robsK6*b0v{}_$0T&F*cSjx=R)J7q0??_sFI+!1|6qDNPkRdp*Pj^2~WUW}eJ= zS%!)5%>#dIrRVfv^Em0MlK?rzfoQYvud6!! zA*(%CEgDE87Wbz_1^~!bW8>Wbpm{J!E+g-WFmzkY7CwB{A5?=;{*i9*`W5LO4YfD1 zm!Qx!ChNhHaMZZ926Fh`k{CRA^3$C*n>w}VMKV&}{BQ7&z{OXgCBJQ(m3Pv{2%x17 zI^DP@29?904?pc5*45=)6QorDR3}wngqf4yXzb4iDe@&zpm{ejMpV1{CPQQ>z$7QB z)-meci(}@cS&2svCBB5bH-46~ccM4LJJ_5j+HcYp#`mE?It88Y3k$a#C)&LrBY|0Y zwrO-M@cM()gVj@|P8k3{C@_vd>^XI=={a*9TO=*M2YJpz0re3SI%C2!Dg;!{MBtx^ zD`oQHM$wzQ4hf_g644Azm@apsqO{{Kp|`fExliH&S`Tsj>d~qG_61UIB?IsTrlEJw zUf(=LmjYW@i>#*YLk6?PoQLXt>>TbDP0nEF+*qMr9l5z<9MJsCs8wy|rq4bJDJdpu z3D`o2e247yK^|Gb-cuvm4t)Pp`hVSjE9{|QeB~SARb(Xv+*-X1GFf6jC!!7EP97*>&IPHYJMd| z#@_8lU|(VZ8|3XxNF`WBL&k^dN4=BAL_c8U1woJ%sC&RX8!Ab3-mjq<6Xf+C#Ep{w z5*qwb2|%n4b+sc|(zdVEmtecqcy2+mu85GjlE0fF>&s1Ak>xH7%t)NE*$V!PF@ zm49bQ8}>by>qh%C!5D-jjxtwYdU{_prY5p(x;s|%>-*(}>1&PT_GvHKZE449>FU3u zvq3Gsxgc+QmaPdDe;dqQ0Cf>$aDxWg1fpo@Eu-P&u@yH0Gj7LW(`~H|(3P{6VoDua zeeq=>-0**>axyIsl5C1>tegm2B@*o^r+MO@JOHn z0REVqIxv{Vxxv$dF!uL1NwnNzaC%26zr0bN^5>p4v5mx|foKpd!k7;h`|j;+y$6$D zVme$F;-m?S0Hy%KHfLSS=fOdv7iQ?+^f>zsPN8G-?FO29fyA?`*Emu&Y!LntO{bsRp9tHNqc7ASsFjcpqe{NjM-P+(ljp(Jm2+9WJ;wA(}TY+_gpQ06hW*ZUFAo1sYEY@enP| zg_Pik{&$xGZY%VDbScI4OD3E$)GE=T|K64b15sh1vpfw{anK5L&kh4xzE}q{nX!)C zg{{0GH{w&3N=XxX+lOSpsqd8KK4Bjjme?;b0$Gl4`TS*F!*^}4WG#y(o`PPRVxkh{ zIFl@eK(}L8q_NorhJW1+deN7J&m%np6Z8L#!X*7Wg}Kn!WDh3>FJH|c65j4JHmW)& z3JuZ79LnM>JzosQPJwYdiUE$P@ulNaTqq#RTox=G@>t;%0?1$I%+1X-mTh_=S09ae zvuZ&b49c6JbqAO=)K=qM{+)q5X!L)@KnCOyy&IMwe{*zpN>d>q2Oa7hXQ2_N!oZQK zqi|bWD!Bx=eq&HOMY1I75-CfxmQ;Wd_CUA+J=*@Sx>b$v%V2{*Omk;nc-NWFtAF!3-UYO0NLqFQ6c(qr&`W0r)F+c-%E`O2)e5N^V+cJtDo7WjA5OX@soY~{J+AI>u&y=QZ) z;~METC3$et;Y^pelsPy|Gxu`@FLw&7A@*@Nx5(EUKtPn-{?2Ld;MF6T)r|ZYM&b?e zEVQ@C2gD8JTwg9;szbZSwL+8LvZl4llpRMR^18d9z9sPwf7%=6UH{M0O)XWBAL!so zy2oeN9DT%YgF^P{it1posPMk+7NdxU`@>cc5%Vv-l=L# z(@|bZt+=lL^a|}zPAPFz_PfrA2}E<~ zIbk994SAj@l|D5l<@B2Lm=9TN_=ZbZVjM^-EV(H7G z97q#2W9mR&e~4D}X`JMa*yvn}Vw_npPMVbH6jkdDs(!4lD08z;Ujw3PhiROMtwn;V zF?k1?T4)IP>r? zI^iQR^S*u=-ery1V&@Q=OsTeb7-&UVE0h~laxUW_yD1%<^-U0ttgq`FrH4k|$|qR@ z?+~)Gdj9bxpQP0AVtz~A@*Z<(Nn4upfQ;jgO2dk&OCu|yi@A$bO;@x zw8Cyx;q-Ibso+V@t}E!%Fg+zvY%IQ&Lq=7@*E1uQoQaFE+|5>_4TopHPIs-?Y3g!7 z#jy$EE2yLb+~34Rh%RhWwg%AR*@n*72Dn9iw~o}r9lt)B#?z4nO_mnNvMGvXR|e-N zum_);fxlT5?5a$fnXCSF5!3j-1vm56Ds2WhjhdSLUceAGKC`XFt7KmQ&axGmztOSK zW~tgF+f(QaV7nQ!CHc`dpZZT^yc!TIf*S>cVJ`g+#Kw)EDF4noBS-zyJ4-eFof}RN z>AMxk-13^;B8mwiumvJ7A%^Zi}0uX*LI&@C!1xL=2BEHcf_zTR-Vg zGIeahahywd4P|ZD?NB(c;>$9EhCvt87 z@C%H2R$6|U(!SS2w`NnLuN!U{V=q*-t(rPshlNX*lfu*%53elRq$*VQe`}y3IGCoq zsGF@d6c~(iXAMbCq?U7gKDa8^i(%@&9LH*##J>dcAFn>f8l1q07__?jjV>&cuXlNF377XkP=vrUy43x~S)ZveYBYc3hu)tJFs4b%Ru` z44f9GdQ4(^9`zVq&8_dVOrwe^FiCT%7SStz@KaVU$u^$3?tvEtNm*xM^$ao?S-gQ#qe)Fj zYNU*`fk{meZd*M9&Est;-7=!a_p;)yCuFk&yR%Bh*ts6}L9B7c`_{{+KI|rJ_Q(6Z zH8@S1l!3vMyuik~k^ZWu7sY|{UKfVzOv~ehPNLb-94f62dn%ZlR2ES^&vj>VA9MQX z0CI8gDxT4QKh`(!WI?5TC=~8bGtBj}ijOgBpF?e*r@Z4Oj*VtDqd=-*(>txwTk|W2 zIUoN>TiRfVx#Ij01Iay;(%I66)F{tFD5K$HmJ#g*r9WNWyN%Bx7ClWRM6tQ~;nj~s zVWz`Zbo$;zONr0Ez{)kU`UR=xKy!t$RfY|jAAlrr*uZUqx(@i<6Zcof1@@m%7`$)x zA5wG)0OK;*fc1pi)au~)+fm?3W7FCk-&71oJt`#DUEh97Qpgs;TBoE#+lN(T#q_v{V%KeC_fy&z^jqTzogSx(0BkBC} zULZxF++6*(Y!H{zqR+qO9wU-{NCH4tNI|usA zccP(FBOKlz5NzFQ#_or8CQM7k(Y}Hi^aCt8`xZ$BWZ)14Lr*`51hl_l1j0k8r&Cu}`}rx@cdPGkCL5gdHZMOEO@j+D$nt zajFs5;ve+_6(ufb0M0m(87^>JnV)aT?rEB)3|u;c@R}f2@ZdXG{2Va~z4qR1oC#TM z^VDwfXF~@V9b~XU78k0~Rner!yx@%(zJ6F`=wRfw^egkPw!0D(o)%e%aS;zf}-(IG{}p2&7fFPD32 zurqw2RTO1ujhdXW7LO~|ZL(TlQY%W;;S>4o1enUD&}f0`Xg&V7K!DDtkpsLK5~h0< zPGVE;T=$bw|Gd)gH-Hx00B(8xwa^;FV&t*uT}Se$<%J7jrfV>+*utMEEG7wu>E?P@ z6yBfG-dQ*ADl&o0XWMU8Cm|md{_BG@so+=FqpQ4>_)2pw^1u^+{GaIk0ppJEfDF&> zC|}O*WnNfev%v`{3XpRKzThd|%pN!rfR|f1H!lABpw}X#2gHSaH~0ZpD@Rz{l1~@f z^qvDQNw9qSG(b(}IQ^Vl2>Mw|3x$PF6c`;;i=L_7IongK5labBoUc>U^YC~${=Sz1 zyRBEX+p?j3L(j{TDX|ff`s;C75CX|M$(Zct8p+Tp8gNVy?2Hh*p3*5)Wy{AnK?~gD zCq^fNpm0goH`6_|_UeW$(BA?zrruPhI}qY_YbK=S8hpswpWO?BzUS8V)-$RRv%)T7 z5d#Esdmv(p;FcsodJ1CM`9SD_HV$#CiN!=KKZuXn^dx$5E_Skvc-y0RkBfoIUJ&T! zqI5T;+Alw2_~PbM2$)Hlpq2HAfr^KGY~-t|Vyo2X+)G{|@Yj&ZNZr9o^o#M?N1i|D z#TqV>^a~`aFm0Fh0iTTy1sm$)gML09sS9mZE@OOwHxYW*4rT)GJvoON^-#7Ne&2Wm z(I-spydrkTnCa{c`r?-9szqC_0S_%SsRO#i3+|Zmx{ZdM0(eQFN68IKAkZycrLT#e zT!o%oTr3;b&VkqlO)i6O6ysSzs+IdM@Nk9#g0Nk^DO6e+q)}|K`>IM)RuN=3Zcspt)jWB41H_>!pW+ zvikI+rXP`jEW}a zpA|HYh>V2z_J1CvAd>v{#ZhmoR_J(BG@WJf?p|3eyTI%BQ7Lc0nQxo){O)dfyZVHV zydNyhX^L+K@$;`Q&)#Fd`1?mMH&|=|_kSNltf|NSJb=~tc4|GCYVXTvE^wElZ#q8*DO_dkz-`~+6(|9?}Y z<^I2U|MsT;#~ev$>=NyNqXd3X&6fBzoxubgs%1&&uCAv_+oRRylpz;mXk|lPjenr3WDhDKa$VJT( zE`>VGjiQ=8SxX4o7B8potVd&2?X4f`DeDxlFtJdvpnR%E)oXnK z?B!@Ij4j~jl4j^_~79r0*tOo7~ag!qgR<6uES z29val!kss96Yx(4>{TQGN=5epUuS6}>t6B}+R8b#u~7#_e$fq7Bkc+-=E6Gv;%y8W(BS=}yLq_P{|)m;bLJbdL5-#LI|Zkn7dLWQP)RdrhuI&CB4 z%5mTKhAZ!%@>MnR8YIPEPMMYK09epyEYHAmhy!PTe(xDKPK*UO7LG`z!R^RrjeGc{ zuANTHL-Cfv2AS?y4E=NrKYj%>b~c9eO_SPf9yYITo0bD_53Q&5>g4V*LQOiYyr=0PUM~+ zdwt2y^?KU6&S7KEH(~lsD&`401u1Cu)lZPTjUE6x^t&g*#V^Lhm7{3du*=mdvrQ`e z^;tLqhy0%&A>-wqRoKDeq@r$Y_`a35A-d5VfBXJ#w-e>tOR=pC9_z@7m2<7DcF?E6cTr}Qi-CHc6K;B#9Amoy ze+_^X@yEPM{qBdu8+Tf#J&rXQpO`w)>bD79(o%2KdwI^*_&JXch`Vz4i1-~V+#4OW zI*tyJ7+z1RlQwj03)mUE*Ea54SVMkp`FP%)9f%3`i?!S}BGyoA4QQKoyK(ybKR;i==smVLK7*N-Pm1wdZ>Fd|zG30eR+Wgz4+bpo3!F4-mYO57xgKvi zGE5QKRTI8P?u&0|8!T+(=xNQ?NNz_4JqXr)S0&js*8w|PM+oj)wS8M;ATdo$)U^BKlcrqGTN}D zZ^k$dw%`RYLgpZM_S>GT3?2#tR6WmkR2&_)d@FbGDsu<*zrTM+()##kTqvcHy4Ngs zVI3w(!UpHES3pmTpMqHy)v#;j0qhbQVE$V&R5I`|rV`C_kukSj?1r?AFX(*ZoMx{8 ze5f1Rt0`)2OrEMsEtVCbUh|G>!Wz-A!Cvl!uM3OU@#LC|kL!kaPs`oRN>a$~7RSFzIe}W&FG*RwFmX&Ph=+hm;!_uX@_+@AjrrKj%g)5h@cx+)M4=zL}o$e(u?C$967eSckwekd!FnWiV}f!8Mlk$V0Mee9GX zwC@{EsZi_g6qOJnZRmtK9p1PFwI!gXC{V()u#Ir&YGTuKHeivJUs7c1JMOrnruA`5 z`ZS$-b#v5Okx1q1*m_WJ+HE`$TzOGm^g`pZPI7S@VmCX2blBd2vE39F;hV>?sI#BM z61cu2@6~lXAS}WQ#Cl#^IIgyK#qJ|_zGtjQ%S$rsFpe8fg{kwiuhMKOsq1=`HOVX- zyPZ|)b3TT?OIA_Ta%bsO(c-u)r0XNsI~}4!SSv34u(T;j;SG2?9nDtx-Cf2Z`0ugo zzI(?4>U7i8)0=}igTKPUywF8MWxCUqxk}&``&Ifw+_J9)e$d-kCd^H5`J&-xe0Qp% zFbZN!Rbfs5UOj{;T>BLu87gM zFG|;+x-mIZ2;O=`KvicvFKT?6O;BHTrbvM#A_O`-L4Ai_m(iyMepi3xf^6pwSFRt4 z*o7oKS@!VbSh*QjetZBWR#{2O&&`xK z*9I!y&%}mPhCTYP2z$LlUm~}zzd&C+iQQ;D8`bqVvmUCj)Q80Fm+L4Kd5fhMrwgbUP zyt@lw?k;)SLPxWT40JVzJC)kO$jBD&ZMi#U+X{Ip3p;t%JuPd^JoiJE=|8D)zs7J* z)8*v;y(^C%K~(z4iI<-TaQBl3pT4N=*?vVCo(Qt+{V8)M&7@@><%@i>ylC&9p%@7f zIWk;w+aKd!H}P5}=wtR2zmS*=*#0s)G>@ImN3^%W&!rpWbri3&lOdNLJpXy0LT^SX zwYu^AJLdA47x`&4;*nnbk&a{g>Tw;%_hQt%X8$z4bouu?AE)nHdd4C+!)U|77HToY zHM@GGTZ`e=jgRu9-Y3x_9!*xi^`54i7+Gr*??e9|~&X@0P3^1!u zRQ&nE$@R3GUUo&>3U~dqaDWaxY);3vUd-?(E=|v6{HPK8sAzapJAFQ@I%WQgcUp$r z=b)k0mq%a)K0@FufO+IonR#JtHEf$%XmNYh(GpS9z@OlAh%B<#`_Vv^3wJutD*^*} z4j;IIMkIL+(&07myu5jF)!v`OdjsY8ZuAh`(6N&ee?LQh`F(h78OKsPtb~1kbx%%Y zwz()HzaNmG5|O7LMXh-D3na1VJ{%hM*@hq9I4YOX5%#A8Fov*QxF|;i$5heZ5kxr* z__Qth+SyI*wIZMDW<^oF;-EfeoWA05RJT}s2KIQtJYB}VVs%OQxaU78TW1y6P3PnI zb>(jO4w*)MFJ4^iTN@fR!2DO=Ie$t~1JU32!^@>UW3A40>E#d<|A{t+tz(@=uza{#6$izvQ7KR8~G z7_2iUU6+sy4|z-V38juH6#{$Hc>i6;HG`(WLtTUyf(HED`I#z?4C0@NwSu9#h4)6G z*7@p#q{DR6N9cUaYN(9U{c6igymODV1skHO)v9-XI={>Tf|vMlqYE@VuC>$oyd|QW(N$9zIVE? z-}&@WGZ}-7txj***~?ApvkUyDOfV|wI57lYwhK&NuTH(6ztECkUpMt|P|v>nkN^>c zs-c2dt(?|8*cKg-jx3%76fQLIp3L~wmYCG|Urs+c zEPI;aC&iF?@23dw$)te=X_l=@9E*qaMhp#vqFgtZXr6E&9!P-Ka|eg{qw)^o_jfQS zsCFc&p|y4B#PoAmHSWUo#fIRlQ%>MHcmbvUzaLKaBfYnau=Di zz{Ow)ipsapt0Du-bXu?;8hdz93&{WA{KUH;!@3}+Ur$)TiPlcF4b+jx)M+OONe?0Y zVBDxqX0Og;IL|i#QZK4gW~z+ut|zguXYDH{Rc3F0)h9)sx1&Xbk;)l#7Qh+GGod1o z_m}+(C+-8Dv>WtOoBdNfMnPCN<#cH@Jd%UpbduNuYFk@b>EWIw+Pf!m|C*KMo&K=Y z8J(f%#;eX^lb+`J;s!d==E}Y3{S{x_=?Fwdg30n^FyGY7lmI8^v{K5b_J?g(s>-UYKD*pVLGHIgpd2liH6PzlFC(H3ZM1Yn_U#|{{lIL; zegkv3w<2DLdnB2+3&Yn-z>a7MT<-_=c;8IDy6duAUT6J&!_c7j&m6LNrG#j`0$v@M zvCqzNA3yl+&orD)w#Q7A;}j!3f`hK<3%+#;LI5~%$%gNJnwxl<0c=mrj%g~9O#H3V zQD5MdU(xh;flpS^CAPo70KHmQU5nq61k7Enn!1CDvK#;(Ao(qiHqzg%8HJf@tGfVk z7cVMBH&ZAZ`QWiFDr+|Mc_ayFa!fX)8oLX5t3xVT=#^}JxA9FbIDr}+3ns=q zW*uVGC^s;Grb0Z{y7{pS&G3Hu-SW+L8Mq;{$p2`{xt_tJ>x@~Khme{eFdkkzj81sv zbR%^LHte|1xePlHCQ*E{H;eCx451IOO+f$8rx4nKsb?^&Q*hDzOXQ3^|A3babSZ{LwWA@91* zP=D-C?1CExHu(K6uwWdFtts9H1M7-Fd-jf-E)f_cFTLq*(8Jv09V%Q{`Ng`)px-C*+X{#Kz~V$b#ZcY*hIRZ`x+newZ}k zm1b^L z-S+mvFf6VOnQ^Mj;;t^vx2_K~FKez=887OT%bRjyXIgFa=N_g@Kfzn&L>do|Xfr-$ z6xY`RPq4n;Qe#n98@HaS;yf(O5u z3OkUL%+1Bb{7L*V_4;&+*RT0Xh!gs;`$R%DtXy8oedB`adeS^I<4R9Y@odYEZoNI^ z7A`t^%U9R>fS=0ZnzvY2gE63S?VnuATg?9wZ&gvexy6J`Q${y{h2yBO@%Rt;Ah7I6 zzxaH%>iU=6@oFB2mbz=^pDfD&JR@mp^^+ZI1IRthmv5_;|0m%%W|QbOJEcMSrLvy| zYYs(y6K@ZBTmnk%qCjNk7CcD@s5suUPz_(tsv#&wE#%FdzvN#kbk`Q%o6~`{NvbU! zce!lvc22~?E9j9v$fH-2&~xi(h3ivWa5a&ztQaZsr2k92K>;Vl@W|~)!M%RKY@-mg zZf449I_k-g@+y@*?50V+$i6c1X}3!e#od@ZYu%pln>V$ZPg~I>M8WW80sgaN#P9HZ zO4oWp67-(fKz1@?Yw&8M1Jc2&YzOF!MdI}(*XLfKYLN24%HAeXW?EKw+z1<-ox0$* zBibcE-p33BWZr%&Gxz%l(LUhARv);5W9scyUpZZOI#odf=kl2ma4ya8vcEBp37Qaj zaR4N#kF2YEHQQKTejw;;)ObOGXMP$q^p;0F_c^#{UWZ+@g4_B2%+LKR79CC6{k^GT zLI^F@W(UysHH1xdO_tT{>~vq_?52VarF*YrbbokEB=PEI)o@V;VRYTLzc&a!e^l`TW zsksLgJ|dme4LrOcm|kkwN%g*lCiO88*pX=WaPo5#CZlNTeo$mAepNB{k}Un!plx$r z{T>Fp8lmt7fUaXZ=JYRh#2iIOvvW7Rj|?lA?+_-uCRI7P!5jL?+R*}ukW@!$ z7XaAo!CZRjGg=^iN1|!CtgNxSEl8F+J(CW%`jO`g(LDQP;Pf{z!($9fVAY*Ywp@#s zC`UYLyLx!GMGk+-C)&PFdOl;@HT}4GUoyv-_cMQ>(k8XJ->lTKg_JUPFe;jxf7X!e zrIpEFqHj8lxKgwRKREJ*q;eE6xy6x!6n~|O$-ZLDijPdDAY=PJy>$iLoKQYO=mj(#W+9DHNL0y7ZaU{{sZD>Ot{lftJBNn3T#y@8VwA z_r6EDv~WG39$QG!$zn1UuL>s_HS)k<6L!6i(8p6lifBEX3SJuvlnCj+k{zh#YK zfEle6dO0*b%X8=-!s0fS%BEMuzj)WV#&sH$mE%~!PnwKZ$v!tF+(gv*W%*HbrQESK zqn-K>DqA<~=n=h!9f`Vk9o8UL(b5!;1zON#kF<4c|TAv-Kny^}?~m1VepG~$=j75>h9vW;F3 z?>?5@ilvA$@<(xLCMi$nByWBR(d1rN`klYBw0^FU;TYTUna`S3${HuwN$r#@NgEz& zScN~7Qv0Mq;RT^y8wDh$6zCb|g%u4=w?Qs?4(c@UIMQGZaMx4>8xf1bch02h&c@(1 z-{>PG&c~kE<(ug&+{tDYr_xJI##Tl^#os?y%O@?bia%+CB0|gllO_nhVdQNVtfgt7 zKKyWH3ZNsjw`sJIiijxL9liaOb~D@Q(`!9F-h7)E-b}VW@(raV%xa2n!Y$2z{*!#u5HSZQ9JXdcWG^}9`g0KX1s);SDddU>i zvZTYWBd?aC_zwLHY7R|qJ`Izji7INU2}Aiatwj&Ne`Of5O?{jfvv!i`1JQar|CNTT z)CVuO>4T(BPeCb+M#0XDW!S3un(pZzZ{BZRO;(NFuc#vvxk0J<*?)$J5r+6lJqKU1 zf%=nHlss0nm0VZ`-D(uR$pV>TgII@}N8Ppd4_PL(vDZA?++uh-Ht|YY$)xR9@&og; z6L9({e*KZ5Dh4f~TL9nDNkCxfU)V4`eQ(P!@{U&j1nAEQjV=}4%&pIkLoglrN)(yw z@Zi{iFwqCos0T0H^NYq!N6+fY(gR*ODa{6iciOgDDy+?vZR~CeP!H}7E7f{AsmV`uff*W2Xg=7ursWO7^O5P0s;cT1E_ntse1pGAf9+EJoLCkn)v?jj zltH2h&eI!bI?|JHln zdbElZ!uHhj)=}Nu20v4>>k{T!p8AL=txu5bn=yRM;cLB@vL^FxZJy^btaE0j z+{+O?{!QR|Xk)gtr;|bjdi5L{fR&cXgghFuKakb66cMy-=$F>965|(O3CnN}B1ZS8 zGhKfb=|i2a;CQ38a=a#Hkn*LeC(oJY=OMt`5D_w{kZW6WXmP2@kA%Rou?@+Mn?C_G z^^$Om!c<;Ozf6l_3tVAkI^Z!lsE^36pk+ZDbp1LV@*-he2@qg2W=gd>n>Dr(z3G14 zg~t%x(pcVA-JL#6WB!=wCnJs4e%B{KEtCX{Jns1B-u?8B0(9}s1~=3CR>(r|_@2`D ze1fQ7RKiRC%WcwnSiFO+aEiqK33aWjP}Omb&GLn@4J`TCib(a(sApPRjZ?%=`huvT zL_?G{{?A|+oJpN|FPiLpeR7-`Ep|9+1!3;CHf)bV+--MFc$RBpHFtPFFwr?}-=f~X zjUBzgizF#An6Zj@s=Kj#pArdfFmzBBc?s$Z6F7ETobl4>DOBw1cZnD2r2%R`Vv181 z;fa-~U&(7a53g*73_L}AmsguR9Q6tw^Abw&XjABW@Ak<%pE1vU9|<7@YeKZn+5N`8 zAZyj%z|4KlY<>IB{5mVgfp=gTfY1qcj~8ucH4WPEn$mDQfTWoBXORx9Q<870*Zv|Y z^Nsq>fa&c=Ozpiil)&x=6Owew(-_aw7)+cP9dDK>Wt`zBj5Uo{xWpoKo*HRAY>5-< zegq{lbl}mS62{iqTSl@S3IyJPhm0ABZefG-YRvC0uJLOJn5B%oHcuF|Q~FH0moWA< z1DJn#RVI2J51sDxXiLik4E|!KOc$%=&aYPeT~AtH=DwK`D+%JayX}-(^NH}6lmjGL zMh_Z>U0IA46}!)_0rav_3RhgY>Q0Ow@2MqI|7uBl4rPwS=h6{~6!W?JgO zCWe;Nzd!9yPga{Fc3Ptm_Z^NCjdF z-y7BsGOaEUKeMd&KjLU|onnnnGOWAEEKapOE=HCk0`$_bJMq94!uO2}tG9J7qz%BP ziq>M**pmB4HLneze%*Ah4LcrY@!=P3NRL0PST#Ldi#5Zy(1xvM__}~jFp=D#&Sbjc zu03Nh@?Zz}$);gbudQ7I9e*q6`az^Z`50=Fwg)FAn{ZdOzvxB}}2D59$x zVr69&`uaN~iw)n1`EL>&k6OnkZ#&LO%qzFUoj62K=!nn3i6gR?>g%{HO{GN*Dk4=Jq{jy9fblnMrd^8fu?r- zc`w$!MQD+pg@PPHmKx|_2e=|a$9sIMm_`HLT}MILMFO;#^iRWU_+R}b*dN@du;_u- z1KPARH$X?GU->3|a9u`Q3ayugjw$<+|8%#Y4R(F8rm(UV4xtX0WfW_$`S-dKRnmsc zJpw<&`|WoI?o&9d)_cIslpj6&hD{j=w$U%b>Qk7_9Eqc(NL1Z^^#qVA@M&~@&cjtz zN{fqEZ#9MidJtvJ({?_uPO5H{QNV(!6&sl(S>GaW0g2L7`vKsYN)b#b7d809 z#?>40zf>h-YM-PCLox z=1+)hye>0+`jTIwPP5uJm83Sb+NvU>%o|SG?%T5_w191RdOw7dkHpj&6dY*B2QyfK z9VG?p_=na8?NP|ye#f!{wUqytPt)}rWC@I#0Afiqy^*_2Xz?_onf7_}2j+;Ju`O|x9uVWh(@#+C?YMqQJCs%=H- zTPK^oOrMk1>eZSSfdM~12M!d2cnT{%KB73CS%UE4!AA*@z5dNFgx1J5lGQn9E!#QQ z^8%aqK@1VgMB-ah?7gdrM{H znJcg6qCu>4F(zmtTDdG|2Z?0=npF}~x;qVDXxa`_C~qzWoq{fgiag9WcCFZq$dI_W z#$vk}I4o+~d{qFiK-APrkA~^iAdwN))!)$}6UZ}^WV%@4|Lu8&A zOX5gGZ*IDjEvs4l zhV$!*Je5{eUHMELs&P+k&6;{Wt2}?@O`KaA*0rlFXRLYCq^*27U>T&r?@!vrFJ6`$ zn6_{s#x8d2!H>WAu3J%cp&5-Kr4yik%PC2(OsOkkX|rD_SSbIwf=%3Y;imO4b*B1G z5=#)ZP}`SlS8FvIzR5;-Rs?KGr}Kt?thP+F7%@064~;d?%W8Y`ex$1Su~fu?Ees=* zI7GVp1w7U;x$7;YOyA|l2g7NQ)R3{h4~e0odg%pCM~wI7CR3Sy8f{T$N*|I%tMECt z@1xE~GGV7diu!%XA;96>9dl-;mbbs@q?L?ayrXWNBT{b}cqsdAL!ZL7r63VzsBDl7 zFHS7q+Ft?c)uo$r72`V_5=cvji(b$EMV`5$bFn|5U@B;D>OGj*(8Sa)WFGWRf!AbW z{yD7MNw@L#6k6QU;d5k-wX;{W`0;Qx#sSGad_5~@E7HUfzbqg>^;;3`Y$Lo>WyQ3a z(;BmDH^xmr-0BK~St7Z#s==|$S)OkHmm4+)Kt4Yfb>g*^$8D8I*znz~n?;0a_u9IC zSu0Ye!7}Z%Qrl@HddSVIm(^6%iUA)JcV|c31hr9%^DA&4Ra%?lA|(#}uPNeu^Un#% z8h0;;v>lFbBg+ov=SHsl9Md+ID3GAqcE2DjW2u+Lur(M-xgfvZ5S@?n)%TI{6uInY zt62H#7iY^2nSE}4-Vtx9qzA&BFE)z_B>Xl?_$!gN_*%7!BR$>r*~AJ%7K@QM?meG`ygs_L zwKV4KQ1_dl7e`M-=NGzL+THLgRvf;qG@V;gKG()hE0U5T>G7cz@b!z6aV_A&%rS2~ z8$hu&`kLT-d3X%{RGyNh<#OxAN=x9E`S=?0*CFOB>hN%lSGx)=jd|>3G$cF1*Dn0& zcX#IJdXlf7R&Jl%R2;&(&va&+tJ)7P6Y{Uqrf4P}_7PrT*)c(f?E;C2yM9z8t5kE) zQRlw6Enl(xvjErttBn#{czda7^dUdQ z!G!lM9XkUO_X!s!YPdOEneDej^w$eTKOoU4Ba8lnT17uwLd3l$d14(VQijljEBEiQS6?p!;+ zG3@e<_$5OBC!No^e^}UXp6jN2GpqNL#y?4j31b3rH}&8RPsQ@MhG&P(+#_){@0*F4 zZ%}v1m(yu%9aYTWSzMo^J|q$LpVq)h8KP3-WX;(m(pXI+O(+JP9WP+$DLKIn^Zwz# z8~B@rG5mu=++-&)z&c?~p$5Q)xhX17Z$eZzS*m{hjKG^PPO5io+;eAuH={LmTwRm1 z^+-6Zh#>A#SsGNEpI;t>#427SmT5Un68yq!cRF_@NFH{FU8XkH`VcbWM)aY(<=?=s zWGH9}V0zl&jE%oBYqZ3C*(44FM1f-^&NKHey<}{=PfWX$+~lNf<5@Cn@3R)L(@I$0q86DT||#ZE3}zs zz9G?hH+Ozs)Ez@3MNRhy^?O~jxrzkv-LYfs$+TkU{td+4Y#`}bFtVL6#&H^PN`-o1 znvteMA5kSwTU9enlFuo01p@}jC!0hj;# zRK`8bnTMDt^=FzOXxN(tgEIxz&qGf8Vp@*w%)@v!NxCP4R9 zCV-5uxt|diB2(2$%@$&7`mjWo?Q<;Pu*fT}9PuG|5JKp4?W=G(0{q#bgnd0ieg$_!T+Wuhm}>BI zkBjzRkHM&m5^wX1yF$#hQH#VBUF*2nMg4hQNP-o#O0@#)9vw5$YE%k|iaOJ!YYz8v zz2ew;Yih9$xV^>yA5Kc8?38&Ga+xeg9%rg09_f`EoW;rvIk@Dq3x^9W1d$ z2>5eiNXF=Y;^?CUq_ZCX-Q4PBwhv(p)q%7&aZSZvzg8_}duDs+zHozHTF}I)^HG3_ zM)6H{``Q>(aZI9uKrHmG7fnh|be-=PxTpmr7TS+1Z|kEg%j`wQzjjR##8@~dc&Gksq)M~LDng^z#1MXmcsih2R_a9sIEikcbYLM@)KeS~$}c>4Wxslxy%Kx;oQ z3oKYF7DRGL>2}MWIs@8P(V|?v;pOa^cFt!MR&;4h*m%jM1IYH;iy*=g=Hny!c)s4z zp?E;CR(9MG_$RNPhR@Ho=lKWU0*GX|_>UZsIOvfK)(w12k(Dv28OZ@1c@<`o8`gx$ zaabS;0pY!U`X~Oz7L7kM&~q0(-3YIMqMYVGU5^7FS`X3PPUex)u^cB|OFMa^xv;eu z`e-q}UVNY!G~*%n9=ZV4ITr#_1*^3`sjjM=s9EfwXW9-lxP>XW({!x{ONb!_5>2gRF&mah3O$v|PP_{_tG7PJ?+<6d{&4XFht)=oTw`ro|KL{c z<+Dvwxo;?5XO88@1*OsyAO^kO^sr#}Bz-MY()u(>%#>%3>k)kCWnp7Ez+OkGGxWYi zo4Z_5p1XS0@RkA{-yx(qNn0&-`4c5B(7w^cJVCSLTAHBc?z+33+k8+_OQB=flpq-_yJg>$&AnMvWKDVhF1M~L zgNw)Yb`EpCvPlRU`yh17y=?kg>1yp*dBsuOiip%{eXNyeHU3_+?g=RDf zPyNO%BD!3u*9S>rEJ)}=ra=N#M?3g}F+)|)&Xh;m(J#Cs_$?srYZs{=yVe>x_pBth zPisf7t{`hG$II{CnuC*wLvDz`2-bA`#GSb{h{B*szUg%+WW#r3~H+xBw9O@ zid&f2U(fKh-nz)^J$(1HH*exr?hACwyZH^n3YFY8hz2oT5^Uehbt$uUA7^q^UIYMh z+qV|;fT+svOx{V$bx-i+hhHJ_lEp#<~Mg?G*stjtJGI-zxC6{`P;T9j4i_q363*2FqC=RjMJg zng&sgUMys;%T;tF?~e(;&tmfyBYk<@K45Q1n6aM|_nrwik2PZa$6X6x(3;lJMa*lV zTnc2IjKaa`9PLHo-BviK6%N+^^?Pr`%NU7qVW_uY%vWY}Dd@_7F*-#JUIqzdT?~4Ba?1u_f?&X@Y?(5i9%b<*c#ti`rzbT7)f=x z?Us(7RwXVD^HDWlCwf6QOqT$f-KL0k$Xs%TP`-PRH7YajV$9a9*@{J}<$e))yJY@C-*l8FRo z4H_6k9q8qjTPhU50Q%7U(ur0x8;M>$EoH2SYu(d&hZ8>uHhmA@KL&Unct)YkacPW60X_Zwf`qTBrO%8tzm1Ed zGuUOD-H9k1zUmG5h@0)MaMSAtY$_}>{zs%)#E7xL?`}bpaG{kjIt%yN4E8jK(0#EF z>DoRR599By22n|L73DoEVv{r7PI=e#eiP#HwSYGjy&nk?O`5TS-Hk zmP8~wjCAA-KVVgQLP!{lt`KddGSA z8_#tm5|*!cqu1O00VBa(0UNDn0CDydsiEGPGYI?7`K%|ZS?A{0$gkZQ*L@#P@oyu9 z-U;TiK3@hX1La<*gcMUQ0=!xJ-CG0a*HKW(Z~$)TdMm$@D&^QbaLqrrm&zF7r59n> ztGKskXLqeZj;+9l+kz2@Og;uQ9VwII{vZ`)S@7!LJz@QRHkbq1b!< z^6)kq4l~X=RNcD~0sA3t)cGiT??aZ#;FLLDd#oXg5vGH6asc3`Cka|0l~(Q4r;;6& zN)Kyq9Sw`OLf6}5zKbDwHxJYrgF>!B^w=E2Dz9K3W zDz4~WLM4s)3rYEZN#1}oDu=CYHgnpc;`o~}!gzG>08CH9i+fexj?ZlR$d3zbibm1_ zC@E=t&z2y@?tE1uhQ81G3A%TDKV*K+5^bG7(~26q_o91vppE(3T}^Tq9QFj%rssZ| zYD3*vQu}!G5);e|7|l*#@i6IQ!7km|ght?s3t(UvZeU{SzFVHS7Pe{T#Z+Mmk4#;E zhLU8TpxN`LP#?bv^Xrtv1GB>U%vzHZ{$TMBuG(qIozlqXpN97_TaL6Q9eUS4VkBs} zBHLwG;DX%$MCMoSD0C_fjBDQ{9mZjk>yy|gwzR`V;yvWuS+7lWB|p9OX;1Z^%-6<^ zXC>xL(~I1H6}m$&qzS^)%KP@_*IFjIq<_Vz8ep4JSfuB~YASeE&7Cx3q!w5*IIzL! zx)Q&wYe>_7#v7IUro%Z4DA8M-$CNiGeB!i+yL7PY&V^AxF#IXCKwVvsyrkukI!qxf zeF^y2QKWqRODG9IBI|`&$)FreUM`w<)l#BY<2u9muvsv&jOYz<{v`9)A4Z-^WSwhm zJ>j-vynp&GCt)i=ex0ONAMb0+uqJVn!OK1xCDtUh|1L|P?N}f)k=B!U&j{??a3iQa ztfuEQajbc(3Qv{n~0q>sF-pGrKl)AmcCC$shG^k$CjXmkO|B$X)xneqe(~v zjxPAM$hz|_tkd+B0ckc$45@ps@ax4$4YtCis%csPSp*R;l!%1;uN=p#Dt;x2C{%W$ z9@bw1inYfiO8g=}mEwCPtPX30ea#zk>}Z0nE}mI;vM&vPd|O&B+FDH#1g9S$j51oN z8KAGx-|qxyObrx9&&8hg)v|LhB7RYqJTH*@@4~kU?Y^cZeGGO#fOYuI!itn{#@gZh z+pM0>9>(zI_jC?+-cSvZT#_~ybJQ9vMqFdOUTWOoxB6wH$M*_YB?9c6t<|K!yDn_t z^(AM5%BK~h@oJL54IwLbpO>J>g%dsU&z)gP8w3trp%pb|n=fh|i;sT@f*upg#C})t z)9O5UNGG$Sqr3IOChJeR> zWhlS4?fnGlp@eCt3*vfKQOW$RYG*iXsUrvpmJ$w!ua&P7%QSB~lw9k*dm* zA(i``g`UOh2W3`W^(Qho5)D+jj|b$d6>Vv2HpY&Pts4CGaKRSXfX)6L1(|0tTP4Z) zYz%e+7?h6zOn?u{?0L9f>?2i*X?(pYqHO3-WsnO^oo^SbzG|&~zO8Y4RRnSEZtvbD zHxZVrg2fnk+g;vh;s8c&Oxxznqs#2V66>7Jq_31&@y4259rphHEq|%mS=cH)dG}cb z2f0Zj;()?eQ*DlkQTrx+a84e_LZ0sJXv|9{JShe##U)pjsIGe1z`@+hZkQpeP9UUb zVR?E;2sZQ9p+A-qJZdr+MRvtxWJe8b53hQ z;ipk{d|&e#R^#<7x#b}38zq8-ztQT$lIihwPa1qS2qS4!V~G7@qB(Rx_3oOO6Rm2R@V|DBg-UG%dN+t$2z54PuznI=WtZNps3=B9)>c~%(Y!p0 z9Brb?2BRT~j4nyl+8M#xX~D_9!{jBm8eqZG%xk_1yX~}avoD&`ArcF@b>D1)Bw2c` zIAtAr1cI9`^5NP&EDI`l5ioc|J7B<}P`@THV^Tx3L2x4jr;K{a z{3{g~#^G*9YAdQ#ORIfT&)gr}sQ#o|aMBK0w}&X?FpG{vy%K&%^x}jx*v*oF4*O>( zPh4eD6GZs=3YV({9qhlf$8O9*sms#d%5lG!pDgxViu6w@l$U|jmX6w+u8wO*Gbu#> zYuA%nqaG`k&2Fgr;}!L5d))ZIBrDrU))Do6C>|ca@pv9yF(a zdb008YP9Fnr$^3kyz{l@OhN-bB|7|##UdJhYPKueWJM3J?OO0LY12gl7k$j$+Ei~d z0r~UEbOcVsF;VEuYUUZUr;O9A`cO};V`c5woEXpyGBehlB@^@-EN%U~NZ4wRk{PP6 zOQ2ZpE~I|}8=*3xP{nyls^_6jGo-v#l#Rx%zY6Py)w9yJRp5@LxB1xLO2F=J_ky+N zAiFVb0I?PJh;_ApZCQ_WJ7l#b58i0@1NvJCGEd=nmCP-fmr)Aynq|3=DV@KWFcY5b z_Y_eA1|P;{)$qhKkvg~xH+dS4`}kn{Z#SF7`<3g(zCMjSba~ut!zVomukQ=Ki&DHM zqbc)@7`rwJ?WCH@Emp{VWlrCie%uQ4%o*(F+oLdPZ9tyI${mex<~7<53eTLUWnobX zN8NJ;FZSH=q3uCZj$E&dXSm&+wihXYg|UxunNIG!*m?jl?7kPL5|$aBmE`78dnG~K zn8MbeHGHkex?4`}`ON5hix;9u8*9o(0gZb%b%IYzOboo-IWgt~7r8DM zF93l)PRHVnN|X{3-P!!xpTx_i+2`Q71wJ;)AOBTW$k-x--EFKM)s4NAOgu^W1{4CE zRJD9#f;SpKjCF)ok>Ca1+FH<@YTz1MuF$kMSI`Hxust?AVy=i|is{nG)8G}0E(f(6 zcJKZ#JQb{1j6s@2sk$9)(V4#1916V|HB`SHBV zBA<=W)LM#2`&{{ydYr7-hk*dY@3PJC(c{N0YzS<;#d0AqP5dgP29XhVRE%m@F3T76 zbk*NWhI}eYhyh(&F*YJ$j6p7%TC3Rn*~Gs+GpBCwQ+*@TFulN}+$yPgx?kP5Dy@0P z!hN5wTKVSH=}>^gE6Ueoil0ilf1BpYQ~w{T-ZClG%N@vU^n})D< z+i2SQoTPLcpLNJ1n~6p)c74<7Gr~j1yF2noruW_~>i`(gfuy7AC{?T7)M>c4g9QhxYm zHGLnJgLI#7ak%G1%2Y|H;rf^_9MGdL7ET8qPl||5@&PgTqv?>*EH&zFG>g}zr@5Lh z!%`J;OkHx(_LA$B+7W5ZB623Pk(TrlN@4ZPEJ!0dr!~6hwzVq+M1Uu=Cd$UaWL?blp!3-2 z5ZG0ZNnqtoWU?e5>1Whi$Y5|imCRoK`eO7L6~L-m|bMN<^TkgR{Fx!ty)2yqj@rp4si-G_Ao(+@EN$d zmz~jogVVy85fvp}Y5sn*8W06)olfK@=&es_x}N8KGftJTzEL-Q(DSoiyGQ{}8BX@3 z7A%eG@?TJbE63eJAklggHQ~H@KIL;+mAm@VEz4l1{+QZf;5u3mQ82BBL}i_d2x^y} zBFsbvB`6q)i4R6a{`AQlFC2<0aPJGpGuKu{>doIfba~V`o&ecMgn}J?dwzgLEp`dXSzvslAMwYFV zrd{ijAj!bYDMDORXK+~cg~SBhq*}|Qff?Fo?sMH?ui6~iNy}hmDz+O#gKGCSWE+3c zKQX=MABlX!JmH+~cZPZ6a$n;O;V)|Oe93 zq3PMf&NtZYc|dx6oA%+Cm-)XlF*i)fLE~#KmJLH>is8YdKkonVkws@fAqS-R!Ds3d z!bq70x8aprHM)ziHq<}EITYEW!l-OI%p+RPf2#gg#gxRI-wD>Fvy;t<2Xnlzf(!Q2 zJ=u>B9~tTi@i$c8QxH7E7OrJrk<54HR8O{7D$micYmG@%KrxhAqXx92=N)D-sri{I zcE(>dRB`E+>;}dMB%%)?O~N7rFl$L@5`vnIP*5Y|KayV|G;yJaS%LJw9nsP>05Fj8 z#n=+0RRcSm!`BuKzVY$rDy@DI1c6HiiCews2*_+D#cK@{H>H(8_aFj+r?(&Kx051z zaOeQxwfP8aX!sib*F(|p3B;eCW&%Hk)+_ zjpJgpY0cjmErZX*RZF^Q9&oB!>>~Ehe-+KWv%e2PHxxhiC&S|s-hr$|yXKL1 zy_yHKJy?joxo5RjeUgj@(On>NMRA-N%#QdHZ!_4O&00lFijXpE=-i|60&$GlRP#BG zClgWUnYA>6fzukeQqd^oA2SSPLG|Z2Y&a0!*LE`Ul-hYf<|Ch+96?$$JVswv(KYXr z9S$YS`@Ix3VCXqw=M^qcn@cwSzUZ9mqx>?Br_~1IC_5GeAp2j%xKg|H5=1&UM zO^ZmaE3i-zXd79skAos)7t{c6*Jzbq>0-{XV$lIr%w}+A~H!?`It({v-z1}ZtqW4`F`czReC`lYbfVD_s>Uwl&jJ`J4eNL~h9UB=4 zi8Ls)(F@l;vM4cj3=V!KfN%?|05eFg1yT#pE5-FQTz&u4>!4-2OE_h zyMiFKR$PsvHLcTu>Iqo2;1RKJ%MH~I^9Tjt`|$1gt2aR%0#$X+y<3#5Z)G&d;1|$j z&F^p%^NFA+^6pC;@pg-pE9o?@G?|X@k!Z*G5Hp%(e{SLV?_!i4N&UG{=46oI^^&e- zHidB~{cpe3K^?#%T92pR%fSqLHQVYpcCVMqGLp}vJHzD;mpa}S zm6LRRxzbeDO3_`OTjbtHi>KZ}4@IO{5if+%N@wPJ1nl;GedaU0uHz5SvraZVBNJ>ztr5#52|Ri|H-uM;sN2f{B~wPk0PIDE;>zk)39!e2!Z`s#btLCDnus0@BU= z58$c{IW?&)8_EjRX0+VR39G!^G2IexWsJM9e_`4kcg?=&t!u=QL}VUAf+v*_b> zq;PTl+YDv0^cE{Au~IX$6ZT(GE@fCD_dx?L3>t$9g&)eu$UR(HXXZR7yIPS&qekTO zM#b#Q;)j2h1ecW4rzgkD#<_S6?H-Yn#@{yUy>>ejMYil$XxG9^bm6*QgnPZmzb!Wg zrjCvN=@iFz8?U6YUB=z)QSDdLF1tv!$>gE9C|-8K{#FRzcY<)|)ss5Qymou%LMNqs zcRXr@E5`DP-)FuF0MQRn0X{G3{xYT9_o`H6<}z9nYz9nZxZwVMG{*Ln9KGbjEXsGV zmHE#^>3_yb8_(GkG=T}-p(3WE3QC8>g>^kTT`)?&3OeNxmlYOp79{mc4q4;7f6+2! zN0LlHR0y(B&VAH*T>e%n__1B)2N|Gm3uO6xYWgZRbHxPVB<;U4OlrQNDg$83o|b(I zvNt@ceRy2x{9LXV5K}QXn{$EXrL~;gU?*!gvFBb*6=scEXhJ7H?2^XlxtI{m)^lw_ zwmQxYhHT`Y=KRj*GN_R=@pj!|v?H()1It`94sfQoYa)6X9$8`DRvVNK~yziwRV~gsF zxH>83-+HaHY)_i}DTC+HYo)?bw46pLAR8ogawq%yI=55_h8jx;U5}$uByo#PR@hd> z(Zv#QS6-@oKyLG`F7K0*G``Ro=Ul{x5ddU9w7kAD1}0>e(-PcGz`VGAwS1UU#1G-w zJ@p6Qaji9mLv9VJjsp`(tnc@FVy1b_8|DG{f0+K&u{ zhl|GIeE;7K%MJ4{E2OFZrB<_-5XH(|VZMgbtpKNLJ-p{!Wx*gYDB`P8hhxE=15V_F zDSPlmv-)Zi>3}SA(Y4WCvm^1>Cs{mU%PV8SY zv$p7MZBU-6%akRh)3b~Nj1B8XI@aZSK$qN~U2ao!lP+<~)O$9U9L-PKznoMbS$cdh zmV9TLe&e+siig_K!h8&GXTaYg3Y{DGF}0V>hyJgsYcXkj#$70LuVTHalPgz6PRZnE zBBQl|1Cn4Ki3S2nTF((J@&eSlZ*fu!8b#<5{~;*$2;nCDVOht&;W&~ClZh2Oj2q}t zo*a584TeJyV{1#fxCZ0(!4U$_6e7D6(B0t5Uzn2koC*2Ht8Jtq2qhWH$v>jIe{U7) zuqpzdoF^JlxX1PeTt(bZo?WLB_b%^?S;3#;@7t`8xcPuqPFM8Fxkr zuR^372Fm^?NHW4nscx; z!2=4n;>Jm!@-qKTezRqi-<|fjpt z^me6NjkQFU_&?1mrNl8BF9AX7K;|HkQXFh)Ip<%~=2Lj7X{4<;%|Q@v0~8;A;NiYa zkJ@U{bq{;P6kZq;nT^#q%1-_c#0*lKUb=>K1On;!tdp5*o-7hFOM4wiF${Vj9e3B9 za=VEZ!!9(mCnKqz?Qsi`+c6i$%EpZ$kFoe5f%k82KGfmwmLXzT#BQ#X$3XH@v~t(2 ziE3)(N+vzrDPgX+ZOr@l5f7>XlBCnZ!yQ61I)h8t$cl^^AY0&kuG4D59j+};mVw3Y zRFE3tO6SH?b2&6^=80PKKKif!>xPRcA0lIEv*POYVMbz{3x zBwQWmS)&l+1nF8L{gV<+c^RyaFy(o9K~(~L%7M3qwclFxTLO+{oq?H%hR99g9kRkJ zCSQqBMcz*v8XVt5>y=#y*fv{BpHMc)dX88Nm>`&~BN9|%0LkZ1-%t#>X6{#Ht=q#3 zu`MOo*`_9zWE=-16Rc&4WS8xORCU~sDCGj7p{?y;_~<#5$P_Z9o_N3iTDO0jC>M6+aEj4<^m6VbfRv=zP{d?i{ub8xGpP?Vhk6rs{brf0 zC+`BL3XMAAny-GsdJCDPwNi#cNI^Q)_CQwd-o-d`Ea!IMFOJsAKug^PHS$(yIk^_R z^xheUFy=J;_9wQ6Rj&lK73!8MM6D&6wJ_-gezQ7?*zz23j(JUnoO#yIY4sh;`P@3) z$AluX*0Z-d?T^-!LcELZA_HGA|1A%vfOFO z^kG*NGK=fp0KOGp*)Orhks#8Uh?Bh23$&i+B)o+LNSkQ`=c=)9YsVUM09m;F3sc?R zqaItVS;XC@_(98kn%bnu;oAoMMZAMxT-?tTwIjDflW#ps9Xvm9of0%-Rxc7Q$##+(IZdmwL#zN~i3I9=-{vVeZ#k zMgv1X96a?HtnM` zBf8Y}QuRbJk%`^V&pmzrhABmqRhI9!bHM&7%e zC2(w{!%sXMaDNittc;Yipk$k_lvE33pR;G4onnRA@fKd=Kteo>@B{g)y38ux;_vxp ztFirahgV0AqCpg8B-p8BXTO!s$4h1M*u>^`gd>4>>r!?uwg`oQrU}IE&o?3IL`Kf} znl}(+l`8v^-hbxFl%#knqnxE~9z7W)b+Gn8^VvDlim)kp`~95IEpWw%JV{$)j^qC6 ze8o>$$e-w_U6bnf{0jMg=LWC3QQ(@ZUz? zgG|TKLB)|kbO7r!-pR+YE=`bFls=a{;v#bUdE)usVsDm6P5b!MqWW(+&?|zhIu|3{ zpDpn@vaXo>PW}l+6Xr~nhyrPI)FhJ6;nOos9$ip#X7a2tXjHI?Ia25V?j_O_ZbrB_ zx`A-D6L+sal$ikX&l#umt=&}NNqGVVIrlyh*y;y|Id$UAw_44>j?CsHY^&2(+<~|4 zNQj1TwV{L@qA2Hrc1bmj<(i=eP=!unJwU+VV7f{l>6Q0fC=y}- zTg;`C=w$3UKEqOCZedqS9_c5WR(Is}tST-!sIa+j9180Vo|7ahV0$D=a9fJfzStOU zTiToK8zSGm7gC;8xf!&v`Za$?%{Mg=S>O#*aQn?bgzp*0!bX16QJ4zg^e2JT3$_KRhb9i@ppWIT8Wp;y(%jn^MFMwK{{~f z6Q;4>WF6rf$*`Fi4}*}otv=c;zfQRy=JJ}z^CmHf`HG5m`hM!Zq6H99)qB1Yx@wQ( z(t}v8h60d|A?zpS^*{7T-yIlC*L;KaletmV@YmZf1 zUphqr@YR4ib$hd3b1*i-;Rg!e=tUUqVp}i$YE8gW7bOlDY@Pr;KX0VfF~bk2 zEX}!H5ha$Qi}>f>=nX^iIikFgpa2Hv^D7l*_9>t(t!f~W zV{*kA!O|dT*5tRr`#4p4D+b5MYbw!&sV}Z{TazDUgt01)sIZ_bJumUrUZW^-ORI}7 zjzGbzFU!8S8wh&KNQ7T>Peri6$ptnS_CYGTn#{+Df``AfPVrjRU}CobV)U&NqY7c0 z>9So&6o~6~q|_Gp4H-|Ved+mua{p7EL%#h9n6qmgNKFqgjxbrBtL<66+C#4|qzNLR zefbmOkRGz-?`UbVo;xAW`(_lCspC5LRUC?Iok?pVQ9GoR4fFUw){NWUlR8~p?Q4Dn zJdCiVj^KEq>h_|21ha^t#L>}_xpjF_UP=P z>VV=4)%^UP&T)R8XR_mIuZ@0Pv+(OmXAU7Wr!sCYCK}PNbjbDpQwiMEMO(-k6uMBY zyy1kg6K3;8FdyI&_y3v;>YQ)gtl)X5K-2nN@xfa7G*w}OV<1$79`$VWGCJ#oA_LVf ziL@0uq9$|?;YWV7Vfk>A5=zCXQ@KWfW0&P*XkiVyWhFLM_J%opEzw*ZuI4CVGQ&`_ zsPjMP`Sk%Y7(jqpZH;e;9IKXoyF4y>d;~T3`>9yevYW!DZ0IB9N4@KQ&LQrWr?UW@ z{9y0QrL?pLZ@XOSNd=3fkRSSVY5kQv<~&X?k_aO4)JJI==4OZ4;G7gQUMM;C!BoJR z&(%pooDJWXg4eLH(yvTvNm~tTzEHMa`|kS6DGZU{8}gV8i#i~9@EjQTw>L~}dZtYt}aJ!JbV5To?KFQiKTFZ4Ll*L5!z3+MIio&09_8}NP zQS+=$iK&)HcI0wj>V5}F*80wCwxQII#81;BkBRdca5{3hDx)=+Um=#g!o8hsQ{ocb zh5r3KhYc+}#({*lhRU>M;hb{l&JvR_j zhh0`;X;t~OV8@W8Z`6nFWc}_O#(rwn@MAv=%l8sg)^rkhoPD6`f{2GQYa-W2cXvK| z4dUu98^YBU9SteNb=}WWG==~s6+Y=D1S%4crydWeDPn}oO-B{LI9*fN8T?8)IZ9t! zvCi_Vt*=NL zT0WPL=hun1+YkX>7y2vc`oke=hWx>p86e+H8RE6AkHvqbjDAU1W=?@{*fM2O9U4dWv9Zj9KMMQ+m= z>aq5`0}8OTw;9&zoM`cElkU1q|EYF+q4~TAg%Z2}bfO)obtLvjB_5~;HH~AL344m8 zusg>xxtAXPHd>zfU@yhYxidMtZJ=o}hkIVs7iD1l1hRQUSZNbLpybA7!Zj=|vCPjY zu%4UyQQ#dyvABF=@aA}rBNl|h$y%D1fUTlq+&pX>tp8q^{z2YDoRl8bQp`f)po`IlP$N8Ci4z zQR9Mrb=yXrXuf94oijGoeV+XP2Wf*Q~6rqg*Ch*JU+J*nD7*2JV96%NBAWr6I{{Y8Yf0wR#nI|BqVyh94C)+zR=g)_ z^6Dy@@33&lasI{A`f166?yFfB#Q?DUW#imgOG#jNS2Ea60JlnhVf_qlH7Pp%>5M70 z%uS9Qjys6-8=Y8>2J*s%$2QQZLDP^VD^GR$=;Sx{SGQ5qu1`v#1Y zX>aglzQml&5q>|&BuP_J>k&r)!fZrEpb{t;uji6TuY-Qt#(h0}H7F{Sq;9H*D^>Uh z->mZ-%K9i^P`z^J4|4 zO3z2?@*nAl|HQrM;11m#p?!!5=?AlQ(^al7^7B)EDS3!eQ2a6Fk;+LA2UF-yFx!V8 zG=;2txeGc?n13F^PzJF(q#w`|_bfhRR$D<%Me;aDe(ua-A!;ND{rMsNZ{5YD_*&<> zzzes>6+M=NJO3@Qw%03<@B+A7Lj+O2;>QTrE>;hdCRQaywQiM_U0`>=*qy!l7B9cU42+q)py>*l3M?so?bdl7 zwuyCmMq8}6z#Nvplp>*WlMJ5z(7_qEATcC#XD0@zj1gEe0cib8SRf>Y{jQoL+5$Du zrgHr0@2$W8z`)ey7W6SnN`)_FxH&L3}1S7v-Vs21F*ahtV{VcHkh`CT5|Zxi{*Y>is=Sk+L4zWc4}Ypu;+57cWxl(+U-HqFh?iTV z{aVj^TIML#mCl2FYv!MIO!ptS6U8N@HCT4xM5DpkPTz0)XsrG>Gl7b(3@ZUZT(b&k z)Ntowl_c;Tuar!0TCg57_-F`&iWi%?x`N-G*loQ=EWqHK>*#r}WHhZeSPZFc_+1Qt zg|P3yfPI`&6;kzK^e*yK>Zkek-|;+aLu$`(fL%JOL6+YwP{2Mqyu3|@Uq!uUVI?vV z*cq=}iQiMQ4S*>H8wbTwW7E@n9m`HOZuCXKSgCZHe;idYW|Wp_`Af!9?8N=yiXBcF zI7576R3*^(LM$q{B!$Tmrv*o*b?HSo)RX{%|fx}EB#)6DcD%@KP&na zm^5b6e|Q?h?51%u6oKuJdCM@QM%}?*{`t1>niJFa(Q9E66dD7eVYCN+3z9B{$Q`KISo5zYOblF`lx3`_jM(zO7hQVz+8DK$VM7jK&=_r9V(3b z_1xm6)9#In{be?*au4QQQ)oYo3hVa7Jk~Zo;^E~iG5Tup*mq2n_SwEZfLdAGykaOK zl4)hWN6waGy9dU2bJl4Xmg-dTCwRJJb2okAkpX_LE#bQ~B_MK&$Re|}yk;9CNOe22 zf8OM%)Pk6>in4L%w61bZkVTot)Y61Zfb-E*vn$j-Yt!o&J4Pq9=>C)HXQ?_yH*14K z2&?OVOJ{q$C};5n*Ze_s{5&i~IOui5)2Q%6o|@>hS6Mxt*r8`U!-La%3Ri-1z0Oe0 z)*U#M6P^j-MW9#FkTXgW9FObVMZYS$<76ck1ow@t>PW3@n9*YJYy5r5+G`K&{4#%b zdf-NwbZ3giG1_rfO-kDtKF3^hCE3r-K$^)fbUL9(CXR+d9hE?nOBaz!evt+N`6Vko z{ORn;U$U!mLu)pN0pAtdn&pRT!&B*lo7YA;WZGX{UQI7e-3Qth9fp@5-NCJFZ_e~Q zBi{E5X6@Zhw035dCa^Z?#WWM%z}<@4IzfWGTVpJ(gNei_hvtw%YcB5507d)_HrZO^O%Pz=Bs11dMKV+7}f%_++xOJqeH)&oRbs|fSe|7eKNUD(=hQ>^&|BPphK^=iUdK+Mj z0ay??*@V+)S8Wu^8HJ#w`)YE-`2|31|5TbXia=ZY_icL}J9E&C!WX&eiSDTV4u1sS z2W$#>jYS{&)!9R;r{ZijO zF^twRF}G#6S&0Q1s$|lqebz_Zz=goi_?SxvBjCKYmjhlN3gx}l(QCyIIUlr-;E9ag zX4!X+=7TL+y0)UDQ;<9BFe#TC6Roy^N*kZ;#Y6YtA=t}MtRTA;wj|w7Fjf*~AcTfj ziqhczt=SNv(5KIc9OqXJ-PIzp(1!9@mjaMIFSxpmZaB)$X~r}^8#FUh_`9M^=eu+O zvW+kBpOb*jFJK_A+~R%#tY4Z~?Kq7J)N#W`ID6*;V|LYGd%qHiM`16zxYT&SB{1vF zPBpr~_`bQ8Jsj;5?e7cleW%bCQAZq6Fs?1A^K;@a|5<8}H7bn(wwAHG45S`gjm@td z`h=7W4RaQ;pOTqPEjkNqQ^4PbxrfLQsUmQCwEkeT*yKbEfHsaL;Q3DK?f>)IB}i3E zh`Am*LftOLm|{McV!lwx+l4F}fV~8z_aBbXdg8$MjJqg>g)1e#fBW<~4m$I7% zjt*#WLC$wkF`+$dioqEs+CUShjcfGMiSvH=kDZ%ms|jJov2JblHM(ikKlN&y+{(RM z++07~ZT)8DZ|;jlhoSm>1kXdh8#XXz&Vj{QlfWq0(c+J@g-0$Nba6@O#Tc4Suas_6 z%JVtbP$ne;;9w+f{P9ocH$3@#3u_nl1uHH5{gsMOa}}Yn7Ixj){aFP|!+?;&uXE_| z0zw#wc^mtME@E}RLPXDpNOhm*zPhgPMKPm?E1w~l(jhR-pz?~1Uhq#<@ZcV{VsR`I zp_*iU8)WH65AFYvZxJez2QY*%<*!oMgwV6GAaC$h3^OzY9>c*dZ7k?PH@u7##8kzM zFtJR8pSxoV??&#*@mx?1ok;Y1hr{F%CAj#q!9$dAZ|7X~7D4LsjG4GcsmH!`PRn>N z{%W->eP8&UXLE_~zr0_dyRNRg!mB8qB{J&toWI^hi3*%4+qR^D>|Nh@{uj`~X-r7Z zz}Q3@uF$o^TmBt5`nvv1aM-0Ihl+9w%z9YhKElr^p@*iVf{R@4jAF&LLiVgaLGt)RgWT6-qHkHFKUEYH`Bc<7b&}X+Um1;p-Mki< zbY`fK`+pN>;IB(whgt47|JlMN#s2RDt-YU*2qS8qhklKW(W1jbX(04kSa98oR_%7- zzeRs%810PN?9Yn4=;vsFXuQroaKC&=4~fJK{}n3CfJq^-7U9yl2tc`{_>pKLB3)%s zV`Ziz&a~k;ZawgDhw_bpU*qd%`QF?_WmWZc2={VIUWA_gbP>BhEE_r*(j6%#^h*D^ z4TNO=e8|)=k09ZaStGvGHov_I#gMJg%C)narmUnb{;hJGwH+u*ElQHyM^DfbDgv^? z&tvyH-+o@(@uq=hDv$##MZEziIXV@$f#wZfXUc{Hv!8Y7zx|W`rA|tO?T;+^z_!Ty z`iGrGmCkTHRh}ql?+;}F#hqXQ!p)j+OZ5h39eyM!%L}9pvO;AtX~Um~{BQm&Wh}#p z%a|iJFr>i#X9xePYKcZUqn_~f zQ$38V-B&|aHfysMg)lb@%nbZBrQ6H@D0u((ga++kq4CD%0=fE2qtpNfk3^%EK+yJ* z>SeF=I!XN9!}$2!<)(nPD2uslSuYDj_0+AWe1O8PYb2@R!`R60>&g>1bGcUkkU$1l zh&2*E7pHB!muAEo!ek1sjffX)MtrP`--}Up>+UroZz23Fl#3o-I-To<`*6ApNihF^Uj}mlcOR{G2Mt{SMR(t*V1+s zv(9z{&dIh>q!2XlAytP%4L)QU1lkK5XMK_fD77!~}Zh ziUDTUAtF{*o@d{%ptW%*sXI}S+f!Dm?dJA@1sTwJeHgjHw%sr9r>m|`1hboWm!{xS zSM|6wD|PU$j$IcVQ`>L3@2_w_eoa7=p?~BP{F(#%9r5?w_m3s$-=T8?4Ve1-`w2N# zJe5He%@!>@=ft!_amo!6hR@Gjl$2sEtd2!1DXXToi~QnmH@uHeGBFMJX4Fm5$ibS0 zhqfPUXKe1f^zIhx;9O`bt!h~syvrBDGL}?MXU1r1MMr3RaLRn(IED{p&>Yi3*r4ek z??-?5klU+hIDOJL#O;0sMc&H=O_J20(-s^RYo4mX`m8$B=495uy~p^%}= zf>Pp;yi=CE#X_FOTK!$OVrP+7`5cL%wT2y5l|ReHnqhK<@!ou_NVCq-v&jhHz-@g* z))0pkGI_K#82=L2>Z2&rGFhM#S*Ra>!Z36*q*AAH*H*SGUv3fqG_+`%PtYbln3+jC zoly*-;tlOt99Wpan~*a(1Ou*z znbME=9yI#MkWadavRg3pp#EbZx~OrYj5ml(lv0NGYr{y+)04+z>+LWuw^-0-xK~ML$R)PSMXE#On#O`svh0!sKh`l_w8c6|#iOw+n%+l2`IujrQR@ zcU@((+ojvm@|)pJrX43|axnK`!j7$_7J~$T$4mj%$%OwBLEI>buXLMN;PLKqi&%e6 zgHdnM(2wERO&P_X3Q<^D3{|Z1KH?ES(}WAHrbt%dQKlJtbQ#4n#K(?4_o-N^dL4>2 zmE8^RRVAA{nt9d>xA6K2t)QKSYOA}e(vUbiRrCC^`Th&;KPCz$BqlVoc}j#u5qES@ z_g;A(CngGfcPWxu_j-%EJ1d#N>{u;e>`y$@G|jizspf3LB=Adt_Rb6{{2pY)L)OZI zJcQ#W0TjMUE3LY-ypPhTP*<%mrY)_r5w1rixR40iaRNBBoL;3Uw5=yh&pj^4kEWO` z=gFsN1Byz&1?m5A362OV?!F<2QCBA|%6BW09%8m}CuF|j+S+mLAKDLzUEj0#c>Qxo zm9eEkL&i4o#5u9Xvy6QDi`#1TkgcOd+CX8qg>aBQ(9+#lajug#A%Tl)r{>$!N61U( zkdFg+(dX4C1M|`-{P}Wn74NpG=UvMi^DoC~2C>MH=?j0g z+tX78iyC2OW+2yzpMCYu4(h6TCFzQiE5xj@`&r9@F>dQMjl7CwOJy}BM%jAZAQG;V zAg#)P&A9ah)R`xx^JIlpV4n-l{3iKtCZpSv@4DX9lVu3cj0{1ovMIGm$MOqXj^+B8K>_^Q~SOv`7;X(A{R#gzndaPUSKn-6PHtx7oM1YpkQrX z@xouVaw&o5bLCoRd}(#6UMm7jBXJd`*||=kp}j7tnm>;Mi|yL1bC$R(}Gku6L0o7}AuEEgxOeprMphHSGz96L#wGEe?NG2+ z$;+onWGOybCoaM8()^+UMH%G5v?@MXstP?!s=y%|j#Ph|;GUROo548`y6bFMeD1yl zYkEAvlsGLHVQs74S%xB#CbYw0Gs&>S?q+;VU)-P_Cg|e@#r>H%yyR9Bz0SMNnRrOC?I*@t|H{|zExc*8>ryw3^6+P`xhBShp)Vb3-iBB?`!6a!V zf=Cr^!8v3_IUb931wa+gW9>N9J7C?Sl|vtjlFD23ZWJ-V#C&q~fA@^!RwoUo{HS2} z7?W(#s9~90!pF94OMyknZtC$!;Ei*UaIA1nZIcDt?9j;eW0(P9SDukIM?PguyvTdYc%4eFYJGKu^xsRKH|G--S4_yqO? z3a(XL3@Ykoe8c}YA5Zkm*+?sz2TB>jf1xE|U}8u*ydSDwoblW-A~(LDkE-fWTFkVD zFg9`fyY8rRV8u~|CGD4Yt`VTi<>oNX%>ZhAy(|Q!%ta0h`B=%P8y@&3yjHgOz?4!T zAs`)o&0hCdDs)s!QPM`ft&ss!S*8q}{{BIZBuXlM^Tte= zrd6@Gmub=l&dxmTl-ya|>qLXCs%B~u$u%0w)n?h-$5dC~dzjd~euPm(jmoY464||z zmUGCJvIn6qS_N5HdUMOE6!D1?S+8hSVq4x>US55k<&dGC3V6B=oe#+=!Anohe}R&a zl(MHKdE2;^)5dHhy2Ej=^Q;oL1SXl!roJvU=hXyDp+a2TsiW=rvy#s4+`$X!uF=Ep zt;g>5XcHmO}Sa@?b8 zx({^d+Y`&KJCNv)xLz0VQV6h_>X7w+d-;1Q#OV57m1K72-%XWJT;M2kUX`UKz;duV z*5Xh&JbX;5lj+|@&3*f@#;q?2o|-oJt}*a7r7`+gDtGQ%qm2(v5U=xcX~{`>=VmQ7 zu59tPN!#VLaR86;)pqnp4}Y|X>23Dt;Q!MkT-8=DAxh4!twBM)Sa3ZyINKn5UR8(X zI?q8dqLY-_7>*0hR<48 z(mHY?H_Bv4qpv$Jsm9UJBQg4hsNg(X5a9gx;NlsrsG!mL4EOavU-e$MK5aJ*&KhlJ zg0Pafsre$R;qOG;RO$^n0t#@CLnIaByLE@Htd7o4q29MES?!aaStn-qZIHD)_pb?!bH1)0vd+gXUy!F7WKS83SX(!5pLTi= zuaK^t58d6L4z9I59?y@JG;kg-upw(xO*+k1=kA&sCbi9GB^X;XmDzNo zFKz&bwrXpaoseZWS-S8A@kWOkS=ix5!C`OFp${!|k0B=wLyyEvB9!5E=LsW~nVpj6 zn3$DR+Sko0j6b7Rv%}ZCo`&W)uO=gkjGQ~|&3h3pz-hKX*a*#4Moj|5?6UgSBY(8c zAvFGKE?qXSsJQaq5U5>(KE)*1kh_t>w2@^({|W`whT{8%gW-{ z&y&}Wm8}fof~0wMUV|cL#!%KF9A=c#l2W;h`8jl>MXY0{RCuBDF{ZM|2Ffhz*=Lv> zaIb}mpppS<;4UXFc*6tK3AqoUCwwww zak`HlpyFeH;s}V3KCYPTnZ5~Mr<)#TUtPwd<`>SLu_vjFqh;Bn^ICr&2LRNxE-U4oiG(OVWc58R zC?YM_M_A0_{7!nQ#kq|}>b|V5P$to(#Q@)*uIO~bDj*iMHZ@qzN3oPcdiF7&8 zAqLpJ9)E^dKWj^zNsxF^I%!UMGs$s`deA{^6FvA;!vbSGHWU^<_|&|0qWDbxZM5Rq zw>|+K31Yc;;u3f8oYlzW*cKMbAcIm>f&y2@onXxF^^k3w(!WGC}Fo79Y)0 zyE;OcOG&q4!LY{AZZ&nke*Ch{;3U)6ryOp)fKqxNIB43c^@MrikL9gzN!#kUgmmi; z+bB{CCvmhYg*-Zi-^3vG(cyIiVkKl@t70h#P4|ul<|95@ zY+U`Y=eG9P0NXooTRj=wRoX1>xsDB6v!kly;|4h$*MD<9J$1af(B7V<{RS*uj?X`? zq?$;tLagto1D4;yYJ^LlC9x16Ef{(nb}bJ;+Sy45OsS2ZAqIzpAj+1j*brs!JkZ>p zD;MA7!#HqfNYmH6_*5bH6xN-zOO77p;mIaShPzm*ilsL>oOBH^4RHa^rW? zwO|0qR+%DH^y5ne!A3ObKiT0`_!X~G5C%XNL~88s?=C5kQn+!eBt5v_dI%Z0ws#s9 zVXB^AN7r1L8d=g`cV*IP#7`zV8&x^CF!XX1rzuTu)!b$Wnetm~h$^naxark22yRbB zd0H)IC@Eza`MI=TpL$(K?zRjFn_s%U_+GD$V&*Z3_a`v#WshPZ+kG>n-h36;^)!8q z?@^8nF;Y;LrYvlJnBHA7qD&#{=6eD8S^Tnb^89h)`g!8|mjj&xhXJZu-AtAzWF_lJ z@k9hkC6yXgY{(Bq^-4&Eno>xeN77n@8-$EY|NpS}=HXEH|Np2v?UL?_q|l-yp|USS zQMN*5H)fFR*$o+65{i(qW#9K@WH-#Hgd*!0V;hoW8B3Ni7{htJyFZ`rIp_O3%lA6x z-_Lzrb6;IG^PcznwLD+X=VN(JUw$ipWOArp#2e2Yil)jz&R4}pzFNn0f`{W2PL|hp zYyDCsyGQ)cme$uLhv9My?!dAa{$E|#AKm|SXJ|C&U|Hl%u&N)7r#z!Dvv0t7kdhT6 z?96#VOK1wKYYTAs;U{iTIFXWat2udhv9Q~1Huy`J__^V*Bj!G3b++YPVq&xF z%e~;)ScD6Ie|9Jp)OlYvHW&9O>&?%{Ex0`&bDQQ%IIW6kdIf|sRe$GmEHQRcxsO^u1{8SfS@CUQe;qQk3>QsCgiwT%n=d5` z8%PlW>4=rm`0!CygzTLiwYy4~)_unAE+)}fRKX%V}jV0F0Ik|bB)Z|oXe(SV5aRuQ% zV%pjaqR)qiSe&TpNZ6LWjYj07A04r2dO4rpvAQ+v`76GAI;MM??d9E_57RbYPa8+y zAJT09cBrupj@=qIA(5WxnN2=KXjM0&Bv%GV?bD?R*+j8kizSQ^3 zKcaT7>gK#Qm^8aV0o|44ylwyV`vDz2?Y2fb=c+0?Jl5hmVWvmD2v4Y+{Jp)EB{BCu zxDimAX6#+}jymwdz4Yuyx->bLisPG|bkRxhO;*e&o(-Rkw_vWv-ogiVol=Vysy%mt96r;RP7<&?F^CbVY9`+44d#6tPh!ux7 zo+xOwkJtRtWf>H0m;I1;GN#HMD5jjQ5Ci*6h899FF{W3)=p3rQYv?q-Hx=b(hF^V1 zH-jSAbI#3e&xK-jA|Xto{wzu}QXXvS$Cv6letPWXx%v!`-1H@c#2X)g+nx?Vl)W>O z9ldcgrcZzvYnQaL>35U)>myzI2#<4;^>^5#?~)q!+`=78^p3UUKsp#8MKj`7|ArFp zJRkR!1{Jp_9Uez86xjzMu+p~3izT5f!Y}+?$v0q#m#bTVy}$v6 z&9Oe8(|pW^RZnv-OZ`m3(RjY!=*k-Prz`1>|xKW9XSFgPj8^O16Ujckds`7}fO zF!`COB9JirknWJ0y(nGasE)BqLT^nuudVOapf(7p4aI9SO9>8RKQ2%h zlQ-Pt8vJ2TtXl2cUta4pE|;EJfq*qNHf(q9O`VW-h0_>;1iZj0;d#Fzq@kGm)q{o^PZc7@3ka=^U6Mf` zGtcB~eoNq0zIOrJ-Op??$+8lrqr4NNtQTUtr^)!*H|)5n&V4o*Z#*wxZ(=)|F zh3Bt1Y@sf5cW=L6{asYw-87obU5oIdD99Bor1(GP|AUO4JBT6}k@VY&8gU5%U$6VR z4Lkg-((kaq#u5u+DF&C46)H|wV~mAWkcrmtnA@jsPQC4RjuA@m^-tKgF4+!C(0RQw z5;IjR*zWxK-dx)0ao3;cKPU^IXnj)T<@ww4IR5vvN9+s?NL4aP_|ov?6q(V0eX@zrNaZQc9Dte0e#azw_-y zz}lpeGo4d;d^0wuJ}KjAx5>@Ls{H;nx`Ow=4!mz$n_IaV(`Iw^a_g8yu_Tx|mIZOG zhPlS&BHhNE9{;z_f&R~5m4DxIoG5VlvGzUx5`|EFGp9VOH+_6CqhbY@ks$AlUV2+Q z^f#7_r7InBH2;06Ryfk{_bOSlCMMbD!`X-ucx4pQ4A3#dS|Ehe)K6 zKEMBa!zzQl^K#2U6I6tbPdIKs5?e3Jc35R3Bd2rWNc?zoSho%lI0TRSA8NnPQC1y6wwYV?_W3lnp6~8?fR`sX zzvW7;v-03bWL00qcX&*q#op(cRY-S~YsQ+!5!-I5X6x>T=`h* zx23G{jk;F@-(D>^i)~mvt?5$JKieaAerD)=?R>$TFXnRxG=m)Uc}$j5Pm|6;a&!F3tEUY$q8rDq!AQK( zj;zp!OImt~`(!Y&@#Ml9sqJ{d)YsvtD>pu#jziJEMzWz3DLyLvC5#7fW$rf$;;B6s zOh5$XKqo?ZICz~2?(-0ZkxD5(LHxJ)q3fAD?lt;*t$$TmQu-MynGKmtK$xf%8DuIQx1=`4!h=%NP7A z1qypu>!eqny)ZMpHpzFlbAsz&z3FHl^sevfpKDQHXnLDVsOms_JiLdm+5bPxMuICS+)i}rF+|%*$=5HS#%<&iL``)h~ zJXBsXI5?{=Tl42l%_9?%%Hmm0-T%1Pa6Sj+2qQQS#}`vM3BklTIUy@i)CS7*4-<9yg=sJ znxXF0L=1#!zEG;+_r>Xo?fM~3YW|sf8I#`NVxVVi-H-euFFt;Kc;yiEP2X)*p9gbEISGLkFro4Yd;t7E2zfd7X0`)3-4CJ@ z|5kZ)QBL&FEV6*%v0(oC-kfpBQd}ho_WOaW>(L1Aq~mLDROz^2yknJPbKXsFKkEk_ zpFa;uTAFCbYW{g186IfJBH-=%$iGK3W<>L~bOoOT;}=fry8m?9>!o3!H{if3Ql6Dp zHiku=(F{T^W;t`jQk?Lj(a=pkZ$1IW_znq_3G6?!VJ`&2V@8m>-m8n2A9b`7nI2yr+GB(+51AnDj%Nv{C7w zj%n`b-M9OLIC4wCPpRG*y`)h&y%c>~S#=|*BgFP|&-XS7hwe?AskyN56%-Y9Q3CZC z`>OO5bUAZBFc?-lS;}$o`^XUwF#aA85OF|>mGbUyJKSv11i;TSsti`S_K(XQ{5S;H zD-G@l3qp1+R8ZeDF5CY8kW*gcTzMMzt0Hr2S@L4i4kK`+)y`hRnEY)&w;#$Te+K0HZ{_E~QcNmEq-fH$Gv#jd~CJg*kd(Xd`Md+{l8!QvrCRU(M@I^hWi zl%$eQa{t_2=a1~$^|8lU-|vVXAuYd&17D~sXgwS4b9p9MFt2)q{l=xQxq^%7Ik5tU z>Qm6^!E#pdh0akIy@G-gveHha1{tX+F=NHv+!JiW(GR_b*>i_0vL7)x`r9S6ta4gx z&7HDBjvgiyTeyQPDhAw8v&n%MtMkI+Gr8ku1=U_vvK{4nmvg|GKYt6|L@+ih;%&I9 zZ}1SCWRm{aavor@#R21c*}vYKTX`Cbubf;P^gH1}Wo6TYQ`rhlp*v!sUi_fku(LVd zDd%buxzfztTwv}Jc6fjOow5g*0mrMvrZHHBi5c(Fn#F>C;awvvwd|l`|I@D7D!Xs5 zBqB~nb49yB_;gTh6tSDn?9-cA=%Ow!v)IlLPpu}R=Vzzl?S~#ACW)3hVoDc+4pTkP zDa_DnrGq6he5%;_FjGV(o|TIAKv$QTAbDcSjO?d;WW`dtjRe|u-*%yyl5JUAZA-#*P5M8FmwQTE}zH& z0i9|?FXrQDu<@5>vm~mIo7UKy>74pQL>{{f3Rp}4zVdE&<95V1zL|QPq&$DdkE?iQ zlOv^RdC@~=?flaRCdhpF;;!aB!!=VEJ;Nn3tIjnNIFRW^r=cfip#-t8A=cA5YUa|^ zxC*l>7}mSO*aBiIhge?&zw=U!W0r#gA9iuOMVU!6J7eYPUQuu56YT$NIw7g{6_+=3 z2^WcTACw<(T@x9ouI(ln-V4hjlzN9B{!>Ul^VaCE4er_S%|m)S;{83w4TpQ!5r?UB z%&oQnso4;DLjNyE&WGcC(1kwmoP{A+&iWq?FGh7=43|Vbjwb}T5<-q>M$T-Jovsnh z#s)Js!?XD@#;;wuQRfx<=c*5QFm;;x0q8W-x4I&cVWxbCYzCh4+fc*WoDy(!nQ7f2 zvqKjzSKM>$<fopajYU_<+lA57KU|m7a9O( zteZ$cR!8;xvyxu3KouzXkE`w6;y-^X|F`sj#fax$JSfYxh=0E?UiBZ^jD_Xi#SedW zI?MCie^L1?ANu}9WU-jr?KS$(<^GJof5z@V3*{f3#D8|he zlT`dCgZd{){Qr_R zI;RdCY>)n(!umYz)^pN60BYo?4;l*I?;OYgvY$6zMYz^tiVw_W4fT3#XIv_79&6`5 z)V7$MVHq_``sGkvtr!jU*|ddl--D=J2W+>JRM> z1*(#b1_qMK=qQp`ECzl3LT_pTX$&NEipP#&y%dM@O69N0Q;-6q9<=LPsc& zi?Z5t((A_2JIs|u%h(uB@{c9J^Rb_fEjb^AK~2;in5h*j8&IqC++XcfJ5pBi&B)5C zb*|2`vf5LnaB-K^=h=K+1IG-#h$4xY72sM=_3e1HUeDQ(2?YdMTtafeYS%oriBPW* zfOhoLt08{@c*v*91DY67S?Q%$JLgU;Sf(gl*ARnAA}~M@;al4MYccW*I&jgYYqnmC ze=ebHFrPd&mcyEhT0t{m@N(+{%a613&v+NohQ{kI zF2*`Od_~`InmE3T7n*mh$*<|k@19=hjRoBNWVhE{M|n!8W*fK6*|YNJbuk_QBBCqe zjH*$+ho~03YIDq{-hXD}*MH5%(b|qOAAbc^Q0VD8hJHS6_b>o0C^DGP&t~RUqZdh%m_3xk z-7@cWdPab1GT_-%a-M;qu3#0+I=`MO7&R`yR1Rr=b3SSe{W04b~iH0KME zvoCvG-vq|bOQ~S=%ybM71HK`2`Yg-KNG_uV89Q{OfE^vF(?HpCrqj$cC#)R}@v8GL zk?6_P?>5Or099H~jcf1FdMY_)kPQH#o$c2Bh+X_1Kp|x;nJE}Sz-iCO;nqIROIo{& zkbd};DCHPlABwn zXFNq}uV&D;;K?KGIcI|1VL#WkdH@n?KmWzU%Ib5wbJB24_M`MpN;VXIaOV`u*SjK# z;!)ZUO~T-edk&~o*lKlt&xzg@J}ae(a~)P<8E>Y*{nTx$0Uepi)~w&2D-R zS5=#mN2O{zr-+Y6x4LTg+s=JP&ZTnZqp@ayjGrUQHqge}Mn)EnQbqy!f}ZkftKJx? z(lFMFc{o3)pS#4g^(>xxf#1oACx1QBUDgx75C>q@^E^^Ack@mc2&UOPCr|k@TTZAH zSw5PfT|3?;jiIvtQat-@*?ws!J^sf)lbNhBX05U>tlbnZ$1@GvC;7AUsAtD zM&e)fOP*X@Exq_LZTvyHJInLU%t1!nYzNPuwP-Z-6~0)3IK%KWwP|E{S4Y zcN6_A>G%)U%0geM+DWk^h-fehF&x^DkWP=ooAUEpW?l*nLAp+4fI}s6n>w5^KrKIm zn~uK$gqKV40bYZUE;fWiqZdN3bOH#s^wVmZ`a^^twQc-x=FkHqXNXA8z8Y6bggAU_ zWTP>OB&-^+z2GXMteZg017bG`a06)pD6NLT`Jc;)kn|}m+`;>d-Px3#QKCC-)lAI6 zYv3CY>UuEghfVg^h@$L9Qe~%r+H~QiqKJu5o9M)vggTQY|3*B?Z34+* zlRjWpYbvjNw4wLMQgcX-?I4hCc)OWVHh(KG$UhjFReX}uGE zie1_rxcfxNk^S{HYtGB`9lzrqL;DVahmG`{FPkfWW2u%$ose%6zA^Fr8#I*{*&az& zoYT)w>rwOCb&CcPMtReyap$5ui^qp+M?{+sZkLvcK9IJzhx1ciuu2*{(l-&c2&G4n z)^yY4PFp%tQj(BCeRmQK3-4c!=tl?PIYQBm!|wAN_bFafBe2(#cjD(g>^==1;T6BE z5~WmW%2+4QWrABE4521Gh9#`;B(=U#Cw}lh1nHnmO66m5C%-boKhw_6`q&GkMNP!c z{wfZozNkD_pnQJv3cv>u+YAcd`@GSqRJMo3h+w7opNQd9W?H& zrwU-+HKj*o#Y#Bbcjk{ff3BE-aUF zegT~IASKIJ+I0`&5*3agced~UErIaJfQSuDz1QgyPH4^QW&cy#-gj_VEBj~F84j3ldfGHNND<8ry_>nG7` z^Z@5RoR*c_AiGv#&%J~+C3TP;)*_{qsZw#(R}E#z&5(wT84``jsRod5g0z$^alj2I z*-?E}XAvG!?dL(mtzvG~3S)EL1p4NPBc-L2lTFHWwbx!HN=2>TtCWC{UoQ{NJff_z8nlC#h zs-t(`I8O#3`#jnrve!PGxHp1`5^x+bE);KKL<`J{b*E(b`~8p%aEc;YDV8?X zER^&s?cg=Q915QwEBrbs4yh!jTn0TlBroQKEHS_#oEl#?DyRX)>wiQ(+6dQ&1jQ}i z1kWYM%@p=r(YyA$7f>*@tu&t3)0PERa*Td|tqD>WOnG$hJ$ z=ofUqQst${e}bh?DBQzU`iC}{8V0+u2Qz%B>IKu%gCKv%0F1UH5Kc=or_J=NLBGSAM0P2x$7VuTVv!o_xV;`g^RI9PbursxTGHgIj(`H;Ydbz9+x(Nwq^mo=Sp!)976)Ukvmu6KUo4hUJ`gAP;-zb)f_H~9d zkguW)dx&jyAe|iH+t757=G$h$ds-#})e*&Y@=AS*l-Akg-XHIHLV&Qi^^23VUPY6t z^q3^J1^c0a?nK5+T|(~|>c;(}rnRs1_DA5AW*ogpK*)w$Ui21;>==%)GO1sGo>mut zc`Bs>Eo-_$McpjTrR+dxa~_Z$_)Zwr7T&KNm2N8ZQG2KnA@x+0xTqZE)L@ZwcqIn4 z{oZ)N)8|zW*CxYb|1fae&l&(~DKc@gX#Sk1;X*U7dEA&=tX$kYSlyjhcx zode$kHHOPC-4wZd5yjL9 ztedVDH{uq=CvoJ*SV-MqP(9L;IA-h8FwY|;a94@()d=C+bxR|V zV-k_5y@A~wE^w6JQ#pe0p8cNp*L1TL_akfco6Aw%{rr5%MTI9=S=+lou8ZpQzmy_t z<3+^!1AUOw`^ej@m?V?;!CUuy+?PAM)Zm>{_d4d*$kNht*~aql*!SXjIS0~Bi+~XN zP5{%8DtZZ1Wo{RpbBnG1m&ocTi(JcXAm4%eUU@1J;QEl*#Q0g&Sfk2*PuHpGmcz${ zotm;v_lo=;V!xJ6&vSu4G$&X(^8Aj@;{EV#)NAW*j=i5_TCHkktWS2)uDd=})&0%< zVKz`BEA%7TN@!9HPo%=>6)v zF%R0ITn`hohn{bUgpdEi`+g0>NCh#$ad^7d)Q2AF(rqKtjY%sQr?{FOT<1AV-yDcm zA24LOWosKq3OR~ie|b%@t5@QIrB8h6aDFG2eLD|SeGF<@PJslf6eL+W`{X8kU^#{Ka=#j-8NNRBDY~x==vtc+=$6tEB$I7 zs7ZnH66|8v_aby3&E{)~;ItN#o8gmN4M*Unh9_>mxmCHPqI4~!VxerVfbUyclc9Lt zuP@f(u}aqq3r#0XIVRQe?;YO0x=SlsS30S*zUBtb+Jczvn%Prg1$x<5FNOGNBmaCXIX2 z)REoMjrpo`?_NI21CrBA`xYk`_H9I9L$Ai#+;Ly{cgRO)`FpkbogZ|#GCB=cyI^eg z7fa^(5B4gKl{X$Far{25)x-!Wrj2vd?yCmEuY0s5dhHxY4eZx`OMpP^)I+t^aZJ^r zO2yAM8_UyrOAwAB_UYfoasjm)7sHtkGV$SZ+23r&lc5Eh;o*7+;?A?1h$-5>RwjC; zYgtpvl^X36`7o}nc&eE0Fx2j6QeL7i?-{Jfoeu&CAwJJ>EL?e}ulFb$fGf1GM;%LEKWGT`c*5vv&kL~0X{kcPVyT&~ zFrP35-blyl5{vt3H7V}s0GgAGHc%s@1FRXW2Sedw-_~wi7Z=-PH5v3v^McZYx z&88BX-b>yU@R+8NQf(!66s<3go^~$J#QEr5P_}oGMjyEbKA?T`{S5y!{ocO zCV9xyfea#nRdS*0Adglm?4sQ9#mytr#(gJfBUkCczsL{jx@#lP7IyQq$fO)Iug=W+ zVP3hCV_jMIvKfFWC?&@s4uY3Kqd#i*&gl?P3{`O*2B$tgPwU$wZG)7uhQ|fJ#6fsA}y~Rd%iYPeFo{_ic@v-Ol#Y&QQv48~&#t zh`levSw)uBT{jcYo4TUdm05Vg#|{*bI1TV~w4Hy!=yOR1lXp;%hKdjGrL61nowlWK zWO`92!Z2@K@9_)qpMi?G%~WnLeM{nY*|+vV?lQ@x_z|Lg5~|o%F*)(%7Oh9-%o8l+`aMpGnMS$m{v9ir6IyM{`E0jRW6d$D-8 zv8lQbODd@|3WaWVac3$^RAj^;@x=rP7|stf0m#|AtXlzHPLloF z;_@>Zsc${mDfBT=+Uh7YC^vb##;G3B>V5b3ED&g_K-G@DQBj(=N7$m@6W37U8|i7! zAsP_R0E93<3&R6jZ6leKSJk!LsuI*%DrGpIIpdbdQENGxdsEW4@YU=m?C*%l(3kRW z0|X@bE3>_+)h=bBb0L;}GJmTSK)@!@zC!v#=vi`wHP@QDJ!>|{T-ryT9Yvhqe-A|q zoU8#lc_)I6fBup)mTGwAD4mKG&O-TKd_Sf>9$K0qp9aQwjy4+8ma|NlcT;V;i#h@4qq$L)|=u-2bAe3nFv<#p}a))Gg5X9BTLB<-w zu6@WJ4yC1YROZbiD$+>FYq3AzqRhmcAX}Uo`MlRg*Xz}%A9GGZaKklfOwZa9hIs%k9O4d>s6l`0dZS-} z=W8-GDlk)O(rogvtFDpsu-F6&vi>Gx?_{?8MxQfXYW5Xy*M%dGMx%fD1qM3!SbYWt z^J1U^KDujY%vsOzJCs2qbAr7eZR(t}*lf@f)4it{*$wl)zs|L99c!q1zt&?~NzbSI zRoOwhZ^-Jk_sYzgPk!g2fLdZ=_Sbh?<>#bG4n_98%1nm9Ox@QZUV>L&-J87kd*yhp zSBM0+khbUy_$3XXahZ8!J`fKSNZEeu{8df_9D|^6&D11kCF}z?t4&(Jp{3e>YxwKW z^Fa}1c;AAZHO3_ETej}7uOCSG{A7fCG;;&SUy4S-2e92AjUAF|aSoywM7lDGw@rro zp5fm8p(vTByaN#@@~0&HSa$6-=(Q&ubS6up6w?dYlR1uVob95OKh`pTK2Rs4Mr8Ty z=)Dy!gkEyapRGBgT7!0+N@4|=B*5Y!EmcwJs?g=uvI7Bf+GSE@vo7roXoUH?X!F}V zPnT|2ncE*D_1mCrQpoQ;}J7e&*tLAlmjtnqQ7z?QV~2w$KH( z0xmIUpZzHhV&lkmx0?1wTvK`RBkP$cZgua$yYeCpW47tn$U6HLjZrN7OQFTcw zpq~GRgub9Qn{Rn~Q(Zv|w=hT>R!^Opy=C{EyaX(2Z<~9!2ITBa^HjNVu7WIS_RSr5 zjo}POz_uzT7H|PjJwFGVi1nHc^V6c&g6cZ!vsCL=vVx*+c1SghNgoXk)*^za#!sA!mFH5Jm7i#%@oBz_qFcDS zSvlrMuTY5yHqt0SnRxdrq#gok9p^+^w@cb3*u$o5+UB*he?sq{sW`Ex#8c0JM2#L7 zGxWoo32BJpH-1VW+=m`S@IbEd;}VZ;i$q~!I@s++82}=mBTCTv*@~6ts7PadY*XX= zhmSH^$o2WtA$q@nP)(BBvB=-=1L{P9ef}bGIbww2Grc#Q$CB%_XH|xnwGl+CQ%3;g zmi0(?6w-Am)%)jIOZa|Ik(%Y|~A zbz|-KqaFf3QmRyTRGOb}5%}hn&HKzb4&e(G6!Rlp_XaAXbRdHr^gaXY5(v?6!Ubf3 zOcHD;B|L%9auZB4jph#{9+QDaWn59g_(YraRgsobAkhC~*z;(6c3Sm2d7}H5CsJpe z@g!8yu`aD!7T=`(u5X15!a9|nycH0@{)R*bR@QEqqJI9_aX9PNCEGi^vFI84!vzUExI_RLy zHIp{!6k3Qof8_e|VZ*xa7cT4Fhso}6^vdQ8&|gk;I|yh1j)FSWmOt}zGKrE-ATKiu zg+clDUuQ-ClC7U2n;MkV7*!MYeCYkmlg=js9RN5+^xdtYQcI|`2Xog4UiLJ_sJ3Dd zj31eO8$YvBGq&TBOjs=)4Kb5kr7h1R&PSYCUAtEdY~gE8j=|OT3x6$$6gh2GV};GS zg1~W%nr>!;PEz3PR3)2A>48@jiDBSdY1S?6JF^f5oI%XR-O_;trL%>D+zn+o50`K< zs4t*X(V7f#KCvI0ZZ>59>7@%c z)YxqCA=>_pQ)AIBkP6T~vz~xE`p|}1arF0>c(tR(MxBvHxi7X)(!RbX@&cWhnrsY=~>A1W#mIaJ)jA2JVIgp9)1)%Hw(V#zPUL7Q`Ho>=1 z#c4m%$@ZSy^wyfSH5!@s&y@BH+LT!hr|=9aJsf9todX-P zXYSp+&|1NhfKpXwB&!sfyh(aD2oeC}G$?^mfb$>bKKF4lJT^Nk zQC+i4Nx#SO;4Tf78+G;5(2nE!xj?Z^TWlNAH!(Oh;0at&8rZ%oT4QT z>(2CoSc;y`UeH3E$Bh8%FpZI5K*fMBb9#aUQJ|=(hztay(3jb1$!l#j~nUWeZ9zdNXAWivC z7U6!IJBGpkz};TV$bsof7YGo1#R-s^vm$R!PdAO@bxxj*{x|#XOsKuvP3ZG$s^Ha< zY304A?KZn$s1q#!W3=<&H^<`nM0+Qeb^%Epbl~zVRiCj2z@#+~SC(^66fX9h?UrVd zQMj?6>l5(w4E(g*6Xd0eW1QO~)A}kTrKHZ&EIi8H*1YK!J&d=Z7+0*$!tyd=`V7n2 zM9>+arbG0sKq#eWfH%%Ux%2a-pVIRiVn7XW1FNX1a&TfF*_`2-MdZ$C1P~j z0J~DKJW!BTm-(51*%M=Y&D3DDId>mRhQl+$Umv2wS=i3k)8pUIkp&5}O-i6&gLu#XG+A~p?iK3U}Y%-YncUsTX>0*3R1SEW0Gx_5q1n73y7h*t1k}<1#3V_Jry*T(_35DE&^HOY2Nso-V`PKU zq^@kfn`UKk+4%nFF|E)4@sj{G@r_sV|ENO#e<^3xbWX7#==5pp0x!=LYrlFm4y9@! zr)LdkP{blhz{z1!NzjuXgJFSd+ZAB=2`LHrz_bDx)xjC)r|67@=mworf0W?IEcP04 zxf4mv5-8<(X!ne5nZtEX<-^ZLFy8zI`V!{)sW$tKx3PIm^$5>Pf^t4(56bs03WDeO z5dB*8CD#v6!0imNlEA5$kdjO$w#;(%j!pyiB#D+@DFIXL zA{Iw71(=+an6WC=~-4%lKl&tlbSc`r1yC-1`JK zbj#QB(@@-ck$V^L`63`1I=I(ITJs#S;`#(Qm>p(2phN-QcIS*#!t8Dre-5A);-a}O z0%rsG8*2J4rKF|fo`42qIQ}`R!0U7WI}CKegZQXgrO`ZKj3AaWuI&rpLk2A00a}h4 zcvm=UxdR)D$C8KGr)4Nx^}>&5x%7zpNr z`UU}HxVQYH(9O;dQVOK8JX%g}9WB+Fy$8_o{qn-vG-MNG7yGx+mxIO`ol?TXp0neyqCnO5I`fu22dJN=B%hC{79Ro}*qaTy}WBt4(tDsDcW zlGbt@c~}TEHN614)kPdQZ&rXZI7~o#l5bGw{f~Do+utiE!>^-$40nXiHH@DY(7k zor7vMld5^t8h}Mj$P8xm4)iFiV_GBclbgLF4Ih8{czR{jsR5KZK;2OUv19;pxuCB% zaG;t3EWTxIU3@)1oa+Hz;$uP3P8k5d0qogtA??vEVrjzujtUI5{|lY|;S|9<(%}kq z=?z3HU+zKlEYx&d-xE+=%;uX|T*|U)xl?_n6HQ92)S+VGWxVG@@l%TIXE0e7 zfY$r<)ep)otCwy$7F#tBEx9a4J?iGIbcr-H^zgt3KN1AGpkkp9au)WU$$t&ZOxS6@ z;uwW1CZ91qHr(X=qHGr#2vkK!cX~OEroq3WcSw@ZJ}iw7AAps@GDnH>#f<1@*1_m) zxjtQ#-0>GMzK!JHDbtyrcQPph>}}Mj_-)YjC<|kcUm4ynVulALbmnrlIA{nI1VP~0biVB5#Y8ME zxgF=2{y!iWyTAQElZ!Nu4#iM6zOu$CHjTi<2qfAbCosEgV=z-$-!MYamib@lPWH*0 zpzYM$*8`W^C(7-bk_3qg8;;jUnMY|mgE4K_QYK0Iya?ya{?|ZH2=S^b zAiaUOiA5a;lO=M_H4O}zN>0JPa9DN+lcKLnC8zJ!-)2kT>{ybP1ZnF(-Ku!EK3b{J zCQ1-ju`+}9f+qB;$d_(9OEac-<`OyEm#OMH1GDM}*PrcmM>gZ9fxq)2>t6 z+v^=e4!c7+O}jq2LP z*{Xgd2Wc&nOTEtU1iRUZ5EZX`vzVGM&0T&n)(JvEWfYUt4Mh%I7kb@>R8dPo%R@pnps@Z0L>aa zCK0P9RUSsw>(AqXj8Tw3dx-0sogx0;OO=s&sELs6K3|yippcVM(HY@@7y>NH#2p3&mHiFSaWdp2Zzqb4!KWbKWT+!&YCG03eEoKylucgAjR z{if|L3<$~L9?K(8*#-BtcnSn|LHz50StI{ov&_cEpOluQF2$S}U!&VDx))4mHZZ4y zN*(tL0JpvaU<)<+R}{F%IdvmT)m({w=eFoWUvdM7D^-B#cH-q*INaCeq zx$>L|4b^uCdu(@pWaR}&E4B9G^6#qnOkcosmzYPHsi7;h)ied7)Z9ZmY(VC9%&+Q$ zeKS~<>j?u8ys~7Lg8ktq32^p;*?TbpOa{KRG(P!eWHdb~5K`fcc|@8fk!e34E1+``?h!^MPdm)8;SHEAuXA;`9$R2ZL6- zxU0id4pkozeMYO#M1bhCoK3v6&m_?oU&O?%4HALggex0k&3ZnxVLZAZf#Ub=lPvP1 z?Gl%ae~HXJV>;S7zujTYtzKbh4S_{x zdA9U_Uv%pmsGR@4=zw~8Kj=JiBETp!bnz^3ts7T!?q1e5^mB7S8aCU9_VVHl!1K395j`s#Lp9uU8Fa{8>M; zdyN*1%BzeFDL2&&P2XWp6Wu^NA}A$=bS0D=3zPa^&(nNRTH(v;nB%Pc0}VHeO(qi} z>IRz`C-3+`sgOZ*()`gmrjsEVz1CXCYWA%85Ee=)dwm28yqXiZfoS^E4<2v(#+%H% z<0n!?Y%mprTNfu>%CHfYU8psyYFPB(QgbOX#J%ytr4+dvjAA^FwiWFr>j-)Q!a<%c zBo0$m;lZu?NeR{s9Z=x})9Y1Xk6)UVb3}!Xzz(pm+-aMj9m-2y5L%mgZDTkiEmqd| zDpQC@`~m{Nj5T5qpqpmq6VQ@Dd0KQ3VE<(3i%|2;4t&f*+cHX-@47c^+ zRB)PO{Huim#H&p|3-&ngULyoxB%vmeAmK3! z@U{#BX7icX48g0w%b#4vlPBza$k%8X!TqiaucMukq782lF9tg2WE|T`E<>+w?K>J? zi|&TqDu$cMoFr>D0$jx=jJ|Jw@jbJxO$BKB(Ly#fykU{K;}Sg!;(8R`(6{> z`elxMHoS+MPFS^l{YxK2{GWu4F-Gig3n9^3 z0c>7P*$A=h^B{&FiY_?8mcUimc;UMGdZHkWG#DLd{8Ks6@4DW^C^5^gY2j+|03)r0 zXdo-SAbS={dC$o`Yp=~LY1D>b>?gPF8~(a&-Hd$)7?(UV`BS38yrL!Px&WRoYx+0Z6DyTKXOd;2*lgl@fPyY<$8*KrbvYJ(u+2ZZI2qnZOcW&DMw ziF=w9yHnhMlbr#Z^0QKSiVm*-h6FlYk-oOk41oFxgxQ&@(|&97lez$S2cCgB!vLe+ zi;Pnm{~9$=F?izxIVvE2AbMXR=%D6wt|sQi0z4o3!g`yZS3zSfJ0YhCzO+1s6K}D+GhZpd-zdLMjnqKR z1~yiCG#-tQEu+_$g&;nKr$_8I)cF;tl-D|ZE>~?{x&tvcgC3@fb#_$*uVwQH-o!F6 zwkRg&KJ;ecYflRS%C4ILAvW>hK@{VQr*9Rr0j(A2WzwWT;HcnpAq z4&iS>08nY;5fxB`KUYllae2GsLYE&!51jzVX!Nl{xf?*ygE{KC3iVK<$aU$}(W_jR zY7zDMUadtmf*`f(B*n(UMou0(G3xHrWRaujJ$VH7j8Rt*2fF)s@V9=j4{DnvfxZm= zAO=Fc>L9)gym}0l;LDxI861yW%p5#~iMjymT|Mi&nrSZkUUD2!~Lfq1_>KzVt z;w<$$I<24{m@$pl@tgtOY=Jbgu#oYQRNK`XzYyr80I7T1_+koys0GN>iEHQUdMor9 z622~)>a0}FzQ((tker>`nvKYYCZm)bVN2r!%Pu?sIkL7dOBm{~#mW$bFo_&M#F_A} z!h-pLrHWKwQ3|&J(n_k=u5&eLG^h^wBtUHfZ(O8p(LR3Tl>_ZxF*(TD8zRW1f0n-o zSpNSPlm>t=|DiN)a-4o3n8G|-i(HQd<#OExeL;g#SOx%r;oG5)ja zNp?b8-Jc>oJdrB+Y3>k@0U_p-%F{_VMAUTf<(hH&q2u3apejBG=*9mLA0X8<^9}K! zK-ej*G`#zCfdG~FRhOJs1B#*Ud;+sAO=WS-PBR-qLqOVC zRF`8SS$*ID3?e2tmXh+95V2UH6KEj-r=Y489fy#aI)uSoy3$Z)0N&Tlh<{iq4S%nr zX$T8YiVTg(J#DQLxfrITNk!J3U8alA12Y28pZ>)lSr7$%XrWey%@(%K534~Q*ze%% z*jJsv;VAwAlS8*z1l|iy+*+eT1W#Jt%V+r@-K^fA9%oLLY892NNcko5$zMhAcaM=C zZ+1mG)KQnT!LjPMiWh;t>{J@;7SO^8gZ62X;68^<%AypTtWx;A=0)JcO2sFVJ;t$h=>QA=mtwcqpKU6}no z=jBT!kapXqNDdGUJQO68=Mm`Ka3B~xU}Kn_Ci3k++cY)&9)78&qol`;+ E0L)pw{r~^~ literal 57336 zcmeEu^FL8w3Gqm2P1OfuXw_qO zqcycE3^Q;)=Lb|grT;?k?mr)#(7SJO|0(g`QWGj|{CAzf4_sYwQR|U(l8#@!4XPzI!-XtV;hW+1*+x5azkaG1JYK*v{X#8H^PK#RjwZq`yZDNN z;s2@C->)yFG@K&6qxzp0>!E$04RvZD4e--szMpQGFt-6^xp;R6e)S&cyc0vb;-R<-y58bR- zTPIQ7RU-TP=3u<|4*pmXO%aW}VaZn6>mxj`&X(W5`VOqn8l`jbzN$U+TbTAF(2`VY7|weRQl>D%Tx!- z2(voQjhqVpzqZ#i)}Zi4)))Fnu{Pv2w9`C4vG?+R_ZeHlJC>MtpU~r80zM1!1ZUH9 zj>Qp?x{|MA5XmHJ$4|RSYo5(_u@@g0sWw>DhPZE#3rg-3Jk7w&iT#w2W%pL2LxG>1 z{Ap8V0NF~9{jWL8j5F_@E1!fPq}|5v|J8#5@$8DVx+3Yf*2B?+t|XEK3iXfmfS``S z34$=pQ1;#l$!FcIUeIpLUTT3ernvlE6YEnc78vHN28TfvGZgfW?oe?J9Xp>#L}rH( zzRZ^u|5}Apt7!MTp8BVx+%FvBpS8VkN%W)iUFjWcpD;)81$_VQssG;`zoM8j0E{+4 zj40ngtxMtlA;)9IHItOlo$2IEf^*UiYeFk?+&RY4&wu82$n6s06(<3UBY})-lYQMR z-aYcryaYx!!h|J0X{ON5Oz;*f-LtsB=*g28V)ZnFuGp1n)vAQ%_wQ7+jS(Tz0$s%a zO|YKbpY*()1)~9JdwnW$iS#fUHr&71Mn$d6u~$;BH_#!Eqzm2Ioe26N#V zm{?4TlKD@^C!*O!J*}iV4qvJUlEBk=zc1qiwtZA!`R|0w*q)3aOrOOapAd?MGK-BV zgbT?5iB*PU-}uP2^ZHC&vf>y{Ps}J$St+bhW6w%Oo$fD3)|wHDvZyGAt((X?3ld}3V=)MwTMbCTPC)8F3m4QI^W@GPL$^aJPd)J(e7*aMG4 zTXlG07Omk$WgK<(T4uW^m1KjHQKN%<*qHyuVC14PVqfr$n4aFnO-$t`4qEFy*2MuG zboBP70oI8YEiCRb)jRs?DF^C}l^szlONbA0cwV0NWPP`C3VkQW%PCTx2tc;F7LD{g zYPkIz@UTHgoAD5n{U5C2UQ?G*YxC89zmKO+0pDgeHpH0K<*u@Mclnl^@o4}(TN$aD zN>AdanDj!e-ko!3f~BU}XNJW<8lwktMPLBd;b72Zw)E+sF?uP9qt^`M%H7^b-c({T zxQJd-T`HJHpUP{QP2lwGGta|yJ1uM%!;I;EX&_JP&F=V8g86K!V#`A!mG|kcs>IDe zzmOYW^ClE*9KT*$zVutW&Hp5CwuV}d?F~Oqon3ULg&7T3;JRLu&#B+Wl(N%U2*%is zp3;|nX3D({zUf|JpzN!1-z}Mo1F9_mpgvqS+d%9W@rG3|T^sCR_vG2y55%I^HO}m5 zCLOIesrKJU7LMSez!yeFqd{t9IYRo#-{u%5!&l6xTaF7AaNR&OWQTWl$LwCLiisci zgd|vKCZW9)cp1Cp5#3%3;^isi9#5s24kv zY4h+f#17gr2PZ<1m^`BgwC102-$C)pLv>>#N!3qi0*QI7>2?hlLH~f7jk;`XCNKB6Xm3PHQ(N?ZSrm1 z`_LkTAb)M7e17=JivLA*D>1!N8jK1Rs?r9-V%*R_$*7c>6h^3>33#h+i0UJcm=8_v z2w&kFDZ>Z!ZIs^nvq~zkvEOwePnQ;~voy)|f=#wx;d10ul8bt055z%I`oqj4QmV*H z7~?+iNG7#~AQe4!R;;e0dt5$XLC{yu_C_*1JuJKuGfx`fbq*JFl!ZFaY#bDv9)vjz zyd2o%MwXOWdXL+0?Pvr1QX(?icM!`So?NpJJJ$2|y9q-{imLmD>QcD}z@ohF#g&T0 zxPa42hU}@CWY5#(Z0fC?{;;IGl>FklfPPiCxczrlXVU3N?DI(QxF}rxj#bwa{%e zV-=Ca>P_b-hxWqbd85DSSkG8~>^6FGCa=O@4)B(p)?62ZmP*O6Bjk$}C&41G=;_Tx ze6yeAl#Fup*B#vR7GKklECJiPR9NbaH9G9EppUQlb`zvn^FQ{G#Dcg<#l}=vbt0vu z)^x!!k#aQ{{La=2m4%lD1NLxy>g#AWo`D)m^uh+yALPZ+Ky!n z_eF)W*Hi7y*%LhF2N&i3mjq;4i-W5VfiR+|5#l=j>3(li{hy?kALyS6-#&@b)JJ!0 zE=+d3U*kqTe3#d)E-p9#Y8y><_CM^yE%2m~%d0}bj~L6zz_xP?gIf@&1u?SdjQ|do z+ZftskQp@=|8?afpeY)6jND}2pEXBSn{fMv?+I0VQ|99FAt7krSdk@(r7zG86;6+>qr46kDM4(pw zTCiE^-~DmUYZ9nerW|PFIMa!cpC37KbK1PZY`;vt{FcdFULem%6L4Oe_^I$8E;d|O zT-!m?j6&cqait#BP`wJY!^iM6l>auCyFHJB@03+N{CtJfTC;sS;0V=hw+}+B3$Bh; zp+{ClQ{y@(eo-)8Ti!HzPKUMnz+?0W_^NS_EE3v#w_}lvZ_mKqV#vrr8tee4dmb4Xc^ru&SwR|DX?s=eLEY#DU*@5W&&?@Q zZGmjoFNwH8W<)a(+f_Yvln@aCN@h zIPff|xc|1J+4D4#tdyX7^((DC%#TZb1a6x9+nufetqCE}W zEB&U&R@PDzQo^}wa+~CnMoDCyPd?;BEt0nNSvIWUsLzaKea`R4$M9q^Pdu_?2aBm2 zy}kVn9gJ6I3>QaqP)M_H<5t;9aiTZX?96F9U7*su{VNcI(fz)lmVepU-F~8-j(*$7 z0o~n9>y)PLOjs!3?uy{=P|AtioytR8d!-M-x|&iVTPPT?QCTQ+1#u7e-rJqn?XRiL z^V*779YucLJ}-6+ktg{3_SaTzAcGs5+=iKiXNBLf#P^ma-U~PoAUtA`a@)AK2j&&T;*h z(I;F;E{Qni+*xduTTE@E z$RBifc0qgO?PTJjzZM^Or2KGikx^NibI=wD$H!-%lkuu5-%o7W{u|F1HpeCrj?IgQ z?dt@;d{&+SeG{C|r;>@N?4`3cCG zLsj_JC_)`y^3{QV0E-p&=YK(}TptK1qwsPBpcT*z;$%aEp|a{9eC0Ob1snul2=q?6 z2Bd)}I0RlMB^jO55lSoKr0N;YN@=_v1zrd1Vym|oPci%@V0=JRN?HnBODzAS&##Q7 zc7^clwY6yVGe}=|6z3Mvciyl%K5}gLgnM(NkQt+kL~7cp;a>u!<>I@Kh7jGw_2Eq8 z&r(oObmc8e!vqUs$fUqua^9B}GaX7rtrG5faHB>=HF_YyW^bq>XkdTBrY3^7OV zds2z}{K9Jp{&TLYJ8i>-&fC@6_^=zV-dT}&RUM!6txRfRfzEJ=3xX$c8d|NHwza9` zRt~_ma-_9quM7q%+6(&XVwa~%5)a6%wOfGjAWoS< z9Wx>7(*y(=uGfyU`{%9rwERj-89wUE|B&ahhH4u(hqfc@WxaOby|9j%nLe-cA%T;l z`U7SlUf7PW=eb3ufxj+O_RXD9+uh;d-Vl+hHWjRXwJrozcLjC@v_bo}lPt;nCANRi z!ykP3ux(5$vD>b%)FankRwza_Yw(A7ZfF3DFB@Dg$>HQz4+>uVH)j~Q;zGLDAif2e zb^@-(TJ!kBXokgsUVY{!3I#DKXz@8S(__fbn79j^2BRb$=M=B9xc6nrO$Kxh&Y0+2 zgMra$&uh?$@I>QSzvViWu&)(cR@MMN_ZJU9Wb!*ypUJXuui5sdX*zQ@33Z2(S?=hN zJPBtGMRYSqR9CAB=D$2M+3=dS61se{bq(3lS8=+);s-CLtO2v>HY56uLKN`eQ_m z88saq8T~=??@bwBdL3)vzXVw?F`K$bd36=ewO)_B zdLAZ2TK3%VBinsb)?sSfKfOcGUh%gkEbhD9=ojsU7@n%jhusr7B2y=d-*)-U59~6N z`^=3L(Jmc&3H%L}*=cv-YI6e#AN4~35aoxt`03;u>tQ-j&YU7hFtSeK zvEtW0?#A@&7>}d$g-)&-4;M0kXzTtb@8A5qPQblF&-~o^_i`*X=%vK5k;Uhk18Z_@ z-1I_vmCowH^5tL)SQ%f09v+%%zNV13#EOuDn`ALX0+IMQRrosqW`2ICcC~It^|W9^ z%emm<)duqU$?p*FQERsfQrewtmZ}PYJXi;EqtEu^?6J-Y;;Xt6I+#^tVUna?ar2Jh zI6<&p&zgZbpH+_tE!IPkTg1qpan|lWL|OtFbN>f84LJZbF_ueq?UWIBFpWCPBT@2D zHmGi#FWmvG3TJVsEnq(MkOU24L6*4sWDPF<>g)o*8#0Zrg&Cq4k=bhNzcpHvnKO70)-P}6rSD>D4Sv*4Z*^1Xl z!7le!MC&WuxP)=a(PiDn_+6l1_}i&J@1TeEeg z3u&66LYHqY61h zti`dcBd%u#T*Qxa9}R_>1P{2B#ajp9a=;t5V;pTP{J_cG;c^-Cn*`)TQuhyMIi+x+ zhqJ)y2Qc8T??+;A7!li_nA;Y&TxU7fO%x?5HQKEjjHMelH`;1;T?Y8s4fNma)rNZw zxXvaV<_hwU-?OdiUMX%xME3I?+Ou#wRk#}%-o+}`)nFKvGF?EuSr~CQ= znhz;MTwpu8mUW2ws)Ue5?w~^UP19*o8{qD+x+s-MAVH4a_-Y&NsHGf#jMr{eZESJ1 zB4#FYD`$7ns2#;xS+Z3xRy;EzveXx5QHc8wXBEGdEh>+3MNOKPZ40Wwqk5E%0W+BF z9PvCmQ8@MQPHuA#5Q2KwzMDA&@3NQA zHG6q(bs#Xbw%FCuZ!Tbpj`-Zo}q#w4e|zXjC1c>~}MOHP(&5 zGrmLJallWyRY4RA975f3t*PMPaZtREIN}Vq2y)78pkOjU2VdIi%Mo+&GjNXUC(x=TS3vfoX{&Y$y^4} zBq)G5MoyxjyGLz9!n+}82yNQ0+BawYe=@A{6O3-XA<^*t#ymZm7KtmY>}>*Nwr#oh z^jd0yNn6yHPrtp~Dx=HIq_V2#UhxhDH2SGr zJZ{Wq8K@gM7xRBB|TVhUWWArqIS zB}`-S%5iV9&b|B7>k^kQClQNT@JIVnbiTjr9$j_5((UULN2w=lw*&2`nIU(V$ivi! zyWf@AO}Eed_CU$W%UtS2pjzR94i&di6!PKnU0;ZV-ovaePhyVg(jM+kDzRz3O;b>q z-1S3`Rhu%G_X_0$qFQ-`Do6)-9pBzqe!%auW1WN%-hVyZZlrsG?DkTqE(V2x42cki zKd=txCRO0b*+TqicnFo{ySg9b566>qE)Yv#il$lIM24sWJ3A@?GpR^9;&~=+VKcyu zmNka+4Br4e5djK=>mfhmQesu(zj#v(ty4#@s7Xdf)7qAUVttX}a$ldnZvy?q|5${a?b>06sR=N9A+KZ5KkJ}Nl7 zAiJ_mgr1*mH9}V;vIK$Q6K;bRLj^v6~!?b&fstT5&ExeIe@rlQBqFzL= z&X$}x3R1e8KGGVV%iRF$H&XK3<5cCo)6f)rOMjWF1a06^AXj7EhDY`?*XwcHRqhOM zvyJoI*m{m@H)k%W0ZL@)@?Gyf{&={;#?plZAM5Y!)0Fv0(j*(}%Dw@C#*5h-(yAFy zia#NiIwjbO;^=bs=yd1kl>7kyx206e4@nm3H~BU;?(;Rm14)P2wrRFMEs2B%tR+{N zqv^1yxCMKfHU{;M8eN0oaDv&-^4bh3C%CPRK}EcDR1N9oBaiiF+uU?#-(^q|nrNz) zHd$W8x{ejRDXG59C&@)Uov|9hsq2- z+V2vOKx`F)0NSa6?)Myp0baLuMXdG(y_3V7-(6v5XiMr0nExsG4-sMU{#PrGZrxdqa5?e`%zT2XxZ*CHn*Sx zPr0R|{c4G>;atO}?Yx+TSBrS8gF``c$=a1LKVw*^mZNih@0O{K^qfY8EqQqbez!ko4?FV?zqDX#qwsb9y($uJB5$21oOl;*zfOriS=^bB%Xz$_YAxZiS#G01U z$Ntq30$F=rFT&F~P0#1dz_k8fC>^~9B(=z8T+29{UUx?sue_DFvQsKqGuO}dkZjy? zEiJI_&`kNUb@iQ4St1LzD=vNGBX;V|YpA2;krpqlU4Q46v27U+YcUreyWYZ#ty7iO z%6+lN7fq7~ULAj1Fu#?tY!l$qEyOHs(CrF&eZAgEO=QGJx~eC?y6*U`Y*9hc-}`%z z*Y?LC&EEHAZ#s$vns?_3FvA@EkS8DUB8{zo-WGwoD5*J5J6?tO9p9KC!ng=DchB&M ztsOJ5IRzYlp=2g$0hsHk?p8<<;uGdDFH8218}V#l~{oYkV8`IUih4et-B~4+spBy2WXM`;&cBXjBE5<aq zJi&lvX?NoXh;^kn+LWUtG!=t3k%9AY1UXS=2oG)lML=3t>^dfVTvcF4sXh-_>UJ^q-@K49x>OF<5JiF z>bF|?-EWro*{XK1ZC=jkn(BT>Xu`Onh*h-hdhA3vJ9gWsoTze|hA0~w#ocahI9k>< z)00|NHEqRNMVLqCLcHfh{W6y(S*4lUx)D9x$lR@5|7B)x)Wc%DhW-A=jbShA)v#!*i4Qzm>Tb<671KgpOBGES+t# zlTsaW>awTzw|2Y+&`jF^lt=lS~Bvmc1t*jAEK(3=t23@MdygVl^(8rd)=Ja_U5W~N?QU~5= z(SqzEMi2R_JY67@22_xl)9EQtl*B_d(#N8gsxI&*uHS2IVo;c;`W&B>?Z_2szudC3 zH)B!X`j9LLFWryj{w@knRYu^s1r8t}!-%iFn)=9yf4X8Wb4PK*F>k}|%lFNA4hF{B z&bLrstKvb%)5O(uTgL~h5=c_YknH-~T0`ys^_>yQPgD*XU5s7~depO&jtoQ=69cUl2>YuN z`+*J$T1yvEmU)Bj0XvoSM}g+Ml6yqe!TnZK46u65FWL~jHWXwv2$UCG_P^epMfL;y zuwfZ9XVK-(|EoY{&Xq(ab>4ZAU&N3vZmS5XJ3rFHz6!{sdLSvmeFmBGYa84B*GV7V z_$Fy8`oEg5bl$r_ek;8fB*Mob-!iEQ@z@Y5V{}`JT$5Q0N}D7|oqSZ%N89iD!<@(- zciQ38%j(34_c)JfLUrTEtV(;G4GD|*^h7b+!nIjVySSfKF|t)fR_gtkc!uXz)%GV^ z0p8kzTs{^!MIxT-nOKRDU9aqF(oGb2mlC%MfS1n5QrQ6*x+za<-WqF@2!W0~PsLSE zsP_dzRnB?Q{mGpBz+S4cPCu_|kfz6k$>9QKoP-eXN*5u=`Q!}CV}t~jlkbh*#vJzOYmt?B zXkq=OMoXpt2&#di(7nX2VDQZ2rfkjt7gtZ+pe>PSf`$)2THzO2-cLNTpP`0Vz+tUE zt3x}y?x-rVq3|L`3pc&p%adyL9zM~CkF^%;%H~NS=4I~J#D9v~V;i^xTpvYQ+1an% z=(CoL8OXw|jsf-TX9q_kh}G;>j38r+06j%T+o{bV`tKkF*8^jRM}qbFHpt$?Xmc_dMNy!Zv*LQD=g zhoHoYua?q6%0N)YwcmD02UlN)PDK8Y&$U ziC)^*<(zgZJJ09EgsNS)*<nbaV2R%sL~Eu+c~2w1&LA*W#!l$c88BQcL* zTJUx|c;{D&iwt)V<&yxqBYa0K+kxXjC3nMvbTrLcvv={ z1q+NW&l@=VDlU{#Mvh3x)JEo#8P!Jig$?E`BpXhTqIS71Tlq9obU^K~VG*h^Eg;5J zMq_E^#)W$cuUm}-M!TU<=VZGt?LqmKBXrmvuLYhqf)M-5w$%>-6ac)U;vK%+D-{rG z1C_eG+*}DsJRFvjEU<*HinGK1qfGs0km3_M4~2?a$z)ph=Ljvyu6Eb|%-FF~3Z+lC z>vo+q!Q(&2YpC?<9jnq3eck_j>S21eQcfFJDGnH_zGY=4T}xL)A|w1oB+Lv$kLkiy zY1Xr0^TcZYjT2kZOL_Z!)+MiJz>&>x2GXdhxrL8r`m()}H1E(s*S|+#@Vat9+-$$00^=)CHc5YID_XN^#%8V_feJaiy!NVoK#Zbsso z!nv|M2$OJTm|dOhT?Y|)ea^|}8NhuT23lu?)6#9U=sF%G2FKm)V%@FIUOJ;TUnpH`QD7Fa z?>Hx8g7~vdd0s!Y z@7>=PcLanuB2S*?R7S@p{uy92VGn)U_8X`MOIcT5U?NN!l=#}d7t zp}lMLbW;=N(4;1B5n!$%E~p-9@*_m!Q8P%)&6pHO9}p=T z$i5bubhSCwalcG7Rl>-wnfZWHT)S7T0ta+{`_Qv!yRH}WE$iYtR>k*zk#4#OOyq#w zJ+O$AseVKUWBFaMDZ6$ya-d{TV-H_>b(hX(aq|!7Nb%0`-;*Az`oEF>_H^3D5Z#Ma zy*Ilj1=^0=@!8&cd9mWFe{$)(-fe`+B(r$^5OvMKOtNO3tEOQ$hoRr~;ta-MAo48U z@05=7)r;(Fc@dPEXT*51)A3;;7Ax*{zWm6{dUUBqIbfUR;kulY6^Lh0T^!ba)4hyC zTT;k1rtH9q#OtKFJVy+Ym9sUMR*R2>KUlAuWyVUJUyC2C%qR?Hygdqb)oWPG7$mJ@ z`Jegt*^V=+me}*D-df2eL50w zfbwa4x;CS^u%BJ<;?YrQ!+o-GRa@?l?e_|JZh++_4`t(-R5OT-Yhe}#q-(a_^K1KU zy)3MC45bi0Jgm|({CeYROOM*F`Y>OdK&AXntCcx`N}3*BFy!s;dlKI8HlIVuNStAp z^pU{F+a#I8D`--$7#=nqkF31ht|j3iad=siC`Z{1!vl@eVO-p>KAvWJ1cyjrSyAPw zpqsq^(U#8t>afan?Bv%-4|iXX+LwIvR{RwW4>~iB&zfEic#+oR4abUDY`oyf9wr~B zC=f|$2u|huV?ZT4&@D!j652Bnkd=fnTM3WFpJ;>aqgIwdLJ*lwrKY;J8)zxRcZJCn zNC(^xhpq{!eYHtczII{~#`U0#Z~Uv zbzZ5SRBOs6YxoA{6Y~`sQpR)URAwwE|(#`im+ zZMz!5kf#-EL5>R@-%d6E@gQisab({vv_&EtHh4zL+bnHnOroyi#>Bkk7K@bL7ZJNG ziYIn1Kz(I)4!Oi|*n&~Zz^jnpcSSjn20D z{@S>(PiGCR(Ajh4nnfu>e;d&PNcpG34(5oH@EqtCZXaEDIwWMJ`D5jvt#S)Ti{E^< zHnqbv>#8bdEa8LSy$z zI@Zv$0r%e4)Fm7sma{P+$t5=Mz4|NQ_-J)Q7R1#NAuOa3JD?MdWl*}E>CAr&Wq)m` zC_jiY*=gBO$A^9wS0OiVGfsc<+2TzgyE;+S<6bJ9-IVQ?Shsl}Mwu*AyOSJ?tV|(_ z$#)Hy`D(wBe$HI059=?=nrcF#JnO4GH1Y7xu?=Luk6fRflX>|aKlNN%?0=<S~(htWe#X$c{1 zay^vMq2JdrTWjW;MCNOMID%Ii3;lKpa<6(!2YdTccu zuS*78O_|9*D{yE7g*VgfzziFbaY#P>}RF*nU!FKe;saI(p5FeipGJO zi4U$?&PTe6ZZ-J>=BC8Y(7Hhk7qsNivfGx6_9a>7$_Z@`#`p(_| z*jI9qMjHK7E+jZKEKlCBi?c-0ku!wxsUhcT zB6NnUEjDDuNTUAodda&cri0nQ(86*S{OoloLjk(jByQ%tPs;_3o5X`RA<=S*Mcw-> z=F*=i*Ai1n#iWh+>X+LhX?1qW=t?11%l=V`#c`cF0VeMjfb!}WfFbs@|B2{yeMY#R zOmBve^WGjX;AJ}zSz#?c5`JxwV@RN9bbmqhTS?=nfaxEHcA=hO-zggx3qh1_7x#N% zo~EPbtTNvK4T)RZA5~$uv#sBA((tUQ?z<-RqM%K$rzlL}LTH?&vSn7?>p*9-L?}He zC?$|-uUE&6r|&cvSa&)(3zoqWX1*Yz3_m_v?rUGIj5)Hy!xm&OF>|3#hVbt@Eze~b zXR(2)m^=?yAcwb)OBgRq5_oAgLLpkqip~t)Sz9yZz>VVM=@7xO#0a*dcJU!H3DFPi zbtgUsrE|PGYfQJY6Yp06z)!c=finI>!fb))xxqbOHfrj;rD&23=d?T)QL6}fuYXRu zc|kI2=b7Ro%u1zgVzQ~sPKtboipwq4bqv%cF6CH4u`yhrpy=lpJOb0oEMLC(nu?xh zT6=(=Su_6=$@KM|rcXNiup*du^=l7jRSEqW@IF{(gPJVbhZnP`uqnYUm07u1;^l*X4~SCyIB3V5AC-o=|_YVt8Nck~^QK6SdLw%;UYfS&a6 zlY0idsQR}{st0z;Q|ae#r8RXxA^7oB00qV6uteRKlw?eujT*!sSngg6FE$p1BtlWW zD{GzPpOc91&4)y!)TJ^^E6ESVbcT5wU=j&NFTJXgY6Pp+oJqn=!C5N(&fu}r%QgKh z?wUOHNMrxi`GW>O3}P!h1MO$%_zI7hxhM3D+#oMT?RKD^?QV~6&r+@JRmr1yHktZT zKft?tQ%%1Lxb$I9Y(t4yoSCyH*{6uL!c?pNSIcb_?8!<%7Qb^LI zsMP)HeAUjZUkQ%^LrzvXkB^*=F}52_f7nC(s`ccai~7^l%5g=>@oi6tn2fYLPqqHj zl0&^6@@xa}cP4?B&y#6U0}XX=y!9Sqp*F@J=rd*}$$03&hIIXkySgNf0wQ!k5P(hU z(_iM+%)fSSQsZjBMcUNy7e2KzOzS)nJ!w6_&W_TdEb1Tx5Os~8P9XiF!|CXJ>XQHZ zPvTu+%`8~&*r{VmYLuGCd@>okkCGT=RUD*yMZ3w|x2J;28Tp??(M+PhIPeH^RXZBU zHn5WV5_so-)VqO@Af;?1PlJ;2$0kPGO z>V}QEPD10Wvq%2^67UqM+i|Jst>(EYxaniwbSH%lQ;fnIJRYTJ(7y3!T3gGZj#6e| z1yeHVHxy^BsxmipKkY|mh9vMS-PAraD2XZ`Qkne)gI_zr!sZsMDQ0-mGiZ~XIbhZ0|me%`Py(5Sq?!I}1wn!{QN)6XYYa{PKqin4Nt zouZ-e`ghX?upB#90=g7EcLKWniXdiAe$E8Sd9zF!s;%CPAbI@B4iGJYH*ZFe6t1l- z{sX3tT#*fIS7t95*Q@mW^+AOzbCRl3O4Tq>rDlTlw*YphKp*g|hDLq233+x4E=?vrgdl=d1eGAG8=k z@@pAotn4$Kw2TDj-1n6;6{i zdly4{iI+ucGWnHDimf@dQ2KPj5^i%-yX+)gx`S*6TTRmV+b-3q!NU3k8z@(7MPcYPR@RR*Zh;JCm#$>~hXO>niYAf_cFQd)h@9Lx6wFKer#TJbU zd#c9&orsRwvF739x9;MO4y*T-mU%ADb9}&t^`&nz9g%wSP9?4Ht`e&xCV_tw8WWud z`DynRFrQoS^&PcYvf#q9D(kbVck)sp-HUeuCpcN~LK*1ryH zqSu7EXEGMIp{t~Qf2I7XYwr`zdy;o$pkMMrd1lW^rNxFPbcAAcUv^9~nsZl2__aiQ z;oaAfTOTfZr~uTTE@0EQ8P+oRVF zoP8QvRG-J53zxvc4|Z;`DS4+zg(%L1D#`Uk=X5*c>d-=U#PQ4gX)sbp5Meq~g%c^Gp(cR)m?*{zBzoA0*DTi`-w)^c7D)4+awlr9#YH{g+ZIaZ5pOl%Czqch0+b0BBnG$V^kqmm zd6_cx#cNqe(o~y z2>7R*PCl}mxHmJT zW-R!tsFTzDH8v*nj7>R(<#shohXRx$ko#pWeYvg{TVV9}k$N zjTq#IKWk)ILTl^5`AWLo?{ibLns|RX{>qvJgp z=Jifv?e=g%6%x7qrT`6V0i#%8H5lA z8rQ*0bd`iAE#-RP@$i?dr$ElMDXN5$nx>(^&M?f=aF?$gTe{-+D>AX z+h!p~cXbUQU#4qHtqz7~CjoDaYM-&?aw|n|ch6RD=OEub!2)|!LN@wL8yvvwEm5PZ zCWY_7O}rC1g2xNsP_}ISsPst^!~!UUgE>4 zoeJPL*-x7IuS5IW6O+~-87;SsN&3TCEM!%24qi8Khd!6%qi)3-GQa)FgW8bfFyY$k?wAWX6R1o?rx-p?zrQ<-?_){d4@m3pILkF)$h9&sqM?D zzzf8e>?`l(cx!5|&F{cZjMq%h+hG})HUu#i>)%gfZ|$;u(bVWb!7u4@Yh1VkoU#EU zo!g)m$aXJ^NYD@kT41SF)tsW1p4?@s%vJiUma*1&1(6{?B>1{_>QY%x#vXUzT>^Ji zWzcqobP%ql)EH`sT$70$KZ}dGSQOLHKX!E_uPMi?)5E8#g%2&Y4|cn+%37_tG`^o9 za@y?*59Bh`zSC&CxWDuk3eg#LtAVpI3sy&Iors|e=Eis$s;r-=X4Gv%kpR#{`e%h0 zM~K^g87dOI|M00GMpz#otxCI`dqQyNObn7^u>B=Dn^lO_$3JSnEl!*jKXzDVLu)w5 z?6-%(to$Ii{Z!ARy6^e`%k$&;=nnE|4p^kH9mWLRfL?6=bp7LcBQEJTw(5Y+8h5E! zop4n>v5=0-C}h6MCoeh9p&B8bZU$7fuqLwZDz{j1JjZ_|RNmy7kT0X!*YoE9KG~7a z8oq;nn`2Upxj|fO&TI&l>N#Hy-A6P<=LqR!B3G}da+3{vE+6k2<0%ElM17g*Bhh`R zK^Ws>(rMq`SeZ?EgMzr|dpqrQFG${fi5{iuX8N*vSEm?ZR?8RP6f}n4@osw@dq`ah zs?RUr*WWrlp((1}@T`>Ey%JHRro(x!V*SM3#TOeGR+E}}b=cq^&@ftIp!(7`&G3Xa z9(jUD_iD-`y-~CAVMqb(`i}3xE=nEr#Je4ws6W|j-`+!OX^3Hy!d14W;uUz*LF99ZvOu!w z%CpOb}FE&^s!i((9gVE0y&q1mzJTrniCmc!LHI>)2Vbwf1zzq)gNU`JlsiuT@B~mv@dS` z%YfY)_Rl)UADdDY7&+E3_eoz7IM(zvewsv3B$3j!tS#N4@i34qKA`Ac6s}G*;-=$V z3jBgIf`hqTWqXg_kkzMIEWejc=LT5BA#b%gcA&Op?HN1PH+JY+3 z&my36-NLQwNLA_9<1&{qi*YXdeMaR6M9EK4`w?uA>5(hMS3%pZeNLju!p_s*!@#6} zP4|MyyS`H9u5R>`GM2sLe!Y=@S@a+&v7Rl@VK5$n8*;}bac`8Y;n?*J;ep_QXGrLl z#iPaZi=&EvgEl9Uz@&Q%;5&z!s==4A9NjElTk^`{cAoc|04&)AgG&_F&&&Y+!hX6Cbo7-& zHk%C9f1js)DCwO(ea(RNwSvBv78e!A;R}h$-7`MAVjO2J3iP`p+CVWx+vh*ri!4gu zheOd3S1OM4i#Nk`LzuS-|BMDx5aZ!^tSt_<+cZ#;GV;$a`vZ#Hq!BCDUaIx97#5Ie z6v9=-q@CkRxC=~*77N@t*_liiHF3jMJ9hs({;r)@QPrCrR~;s3P7w*ss4vD}TgbP* zcT^m;vGRe2gQ2WisRcRn%{H$2`ZHGZxbHi}$8UDvROBH%H|=6=qRWBB*=HSXrS4Li zdT8wtg;dw^g&^tVx4)n#CT=##&_@ilN!OX}_7>_rbcpQCN}kLK(w8(yWaWV)%0CvN zR1sN)bDoA~Pj1l>K(B>pOG$=Tt@1H*kVX4xkO_Ta?%*r;V>qxze^dqS=FaOnT;#34 z*wH~X9t{HUm+*H;klbyf93*I59-5F5V_ZkG`kZ^3^WVY`r+IR`JHpqvzIbP+_wW(p zCYn_fZP3%ygSz9s8zetqp2FQZmU$#Ur>}6AW2j^mddu&Nw1*cA=md^DcV7z z!U&{iNL5DZZ;N?K&p^elU`)Hky(>BeUxZ8kH_yurOXlUptbVI|o{!i#K0p)FY{+yJ za@wU_(oKtyILc$kj_H4RGqM8l513jQ;rI!-5!Be&M09Md?(5K#?D|fj zpN~loI39Wg3Nw3-fBnhZd|Yi%#X2uP67!F8cRQQWR^c$GGsIjbsZKh6jBr_G_F_U0 zuBf?}YoD~XCE9OG5=3^XNk_p2kKSX;6Qut^b;1#Bc8M>_q?cy~W`gA8=FC6@Tcb+% z`Q;|Qs?%48(U?+&)zr+lmTQhEe1}}8-MY^(9^y5Pk_Ohw$ecVH$a4wT2jlm~QWXBx z(*}u?EOXH-1BYuZ?$2Mun+_u=kW3p6Wpv?~Q2Qw4iEx4_dz{zFDbY@*N-ODc;G|fX zaUD14AZXXfAxn))E_!N7;%RetQXSt7CH@J0OYNN8Qxz_}9~>0mrAFr4Ez%5-{>qu^q76KkqVrVrI}dYe-_RlX!ToNWj+wASMz5n&orZe8|>I{)is;vw2*MXn!606|yMZab|hc2Ji5?o>K&FL3h_2`mM$ zbL+eL#OFH9f}~A@)_EX6u!y>tr|%`?57#Ds>2<;89g!d$0S?EIj?QG>ps}gzIPhNR z)M~;`86`3tBw}TH@Q#YUKll=!+J>E59g~Gt8x`pu5e%Gvk%Z$QMAclDRT}DB}Gb2C#-cEn{n#Kqgykv|NOjMz79q6 z@}eK`Q;TXa{no3$9wfoE(`nmvAj>(uM0s>@fWT_WA+wn34_sB!kZyv&gp?=6)!Ba+-W8d<=U2ln~o! zQZR`7KOGDtic+MWix{yM7Fxsd!I)AUP2eTWYOTw{uqVR$!XL?sKk`=X(St@rs2Xzi zF5-ff0*@Q%UAvA4enlbkmj&Kxm{L^djK1&ceb9r#-@Sk5m8HGSY01-I*z?9{v%z)1 zeYt{wy!B((lBQUd!{thKj@)V#9bq*G&7NQtx%ynW%vnW4Lms&Fcs@-^>l>A#*VT<< z6%7tv9?4C;Ao;ok)15Z8p~vsmU~51=?-5J#yCK?}c+Cw@D%tP5Yw7<}vZe_7fFvZN zf&vI84j)e|C?51(7$m(36UY{>gH;2Nl-sd$OXkcTr${Jt;%YL_VG&8`e_&5^?EsNd zZz`7vrFtkz0i@5e>Ki4hX6FE?45<@RM_9hQ@t2XoZam z*i){nXoRymWDglotw0}7^)ntO`evnS(9Jke9rj27SCYTi206^m>4X1)Y@$DO7TV%s zub-b8PpqO1t(j+9?+Xp@rcZkE=LnoXka9dnA3SQIFnnS9yifczkqhot*ScAnkbMfu zl2iUS;0Wd_`zZlaE$ScIlG?}uF~HOYa)q2IhiYCQ5hWan!>yB#23>=^XHM&oWGogm*GjV?dt5gY!-_w z#>l(OUC$w1>0{rly14L|>J*p>30m!HN^NT#Wa$d&P728?GJ3bH@P|J#1pVi}L~+IB zMwRtpLY+pDNzE)Zr*j#C;&8RWgdy{7rA<#Cl%6flHH-fQEvaS_srS6LxMH)I$tEbv zcY_uqT?boo&xTar1w_E_QVj_RGV{cprB8y?yttbbQC8e$VeT`{-0r1_+$Y0{JGJOr zYqHV37d>7!>o2La5a}RB$`NhlYHY_=4u8{Fnqa*3cwe`EMHB}2^%#cW2prf4>fA-s zRgLKO^l^2Te4MdVd(NYjrz)>D+v8qcIzu05-{?PuALU6z zv#mCV?;n<1-=lFe{LqUf0>i6CN`w`2nMa!!S5(#Sr&mm{rF(&fpPsbI@WVFp0Z^tQ zDU*@qBE+k{eGY+ET#Q?z;+4GjlImfMIF7j0JuxCzUH!3Dyhkyzk9P!*L4xC&7fx@Q zCPZHp^@o6s16$XZ>l*2p(DvVdZlpB%_vk~fW^BrmQgcf>%f!sV#ZVF_OB;MP2WDj; zuw3C97cV^qA|O9Z`Z(R2;di|7{TdE|GJuq+YyJ6KJbFqRN}moQ+uZQX6_t2T`+E_H z=#{%xY{!9@N?#b@|bp3MB)}$z5|BHRcJut z>1>WW+Uu4x)d8{Ua^wM4p3~Ur+7T%>a(dQWNhhQKn{Q?_D{g{=6gPvBK`Tz;Dp#hp zcK4?~hkwdC$}E|1Muo8Nr08|Ti**t?M=bBX*3Y{4IVWmp1qk&u>|*5`C`x&15ZKY8 z`tHZmwCw7{0Ad2XvOXWfOF4`Au8>`HMQk63DbNb%Z5euX@DXl}yx#o;4oBl|Cg!o# z=C9eAMmR;_rUVz%1#)o;eVh-;L`x5tn3~u)^S^bOS~wP#H`z;y5}VI9p!=Lgkzu-S z)Z?}JdV{G3Qy$_QgpDI)0RpRA4V6yDbG!}p_@=5SK)6#*0*?dRBMLBfSxJy?C_lJF z`ZwsU`67lHL{m^T7dteQy9Fr4u;Y>F7jjgJNNTS#pz5v0v*hUv9p@`5ySqus%zjA{09)jFh^|g8?_OT~ zR(8(r*fiOH@bd!kGrg>f(h0Cb$aBXc0;dSz&Xc!X*H;ID3?+wfN2{ONtwRIo=*^{E zXvTfLj>#^*knc8sc35R6?Z6GB`XxOH#WUN8C^<1uRi?4RY}@QB41shPF{S+RHCsF5 zRrD#RN$GA$VE+vtX?bBN$7K=K2bEJ(mv~0PY)A2-3{=NTP+p0V%e4wD)-~IvinOEK zI1-ol{?|Fud(MiaK3YWi1!m*ohVb(om~MSjGUe(Rqs9hQY&WzDPnaI7igb)>kb^nr zrwD#~?4d|F1wUuEnTuI!v(lu-nW0KXAwE?b?ec*(RhOJUgV5eR^9eFJw-yYi_y=3{x(26w4C-_l>I12)7qc#wGAoyQS~#;T`j} zJY>)qWw(#*_KjO5t9Xmy=$B|PgyXf}1P=`2(wBH~oji5~atag|9}Z~_FPwdN9*CM) zcaDGA4k0`i074RS7iH(9f$9pBiC|!&bnMh>7B$Uo5naO;hS$AB)}v>xBxU)AH-7JZ zTln@&|15H_`cNdB&lR#I#tROy6ssa7~5z>9#ii?SVb2)aG|_>F23(> zR~E(SPxYN6Qh&A8kv{o2tq&q_{w*>=VOY8)?B2^WEP0qm_h{vwjOrrLTAcSC#lz_X z4^L)ltDqaj(@6%IC(tw?W!~ELeqf)nIJ9JUyjL-`i`+W`917cn)w-LC=X34Mu%U)r z3Gx>exnjZ9rPMiXx~I{*J2sk5P%}v&H60Sme?0%z1eMV@UuK3bTfR ziB}I-#|6$;=IK&X=ZNMPM2jyD{HhkF@7}9f&NUBby*EJ@vC10Qc)&M|Fpv>Jc^&W_ z79EGV0;zWA1nfeQ%k~53DJcrPsT}BoyXelYSQZ|TCmtEk4iUb@y;OXzi_C@wIa?U@ zT^LD`Qs+IdEsT&GjPso6mA>x+qDSuC)Vmu3FFG@#f;5O$3{l%#jj|fJsulLc!Asz{ z@_0uKm>sy`#)d1}mTF=7dV9lCQ(O;LQEWQ#|E8~oWZr?&A>{o8hg!U$l(BTG!MJY| z*|;BGgZq^q3PWZJvNM_Z)6AN6PkrT-FDC-g0|;nYo-;*e-CK+-G85-GJ&&gY zuVdu3v~e3lbcgQaKb*30S&Mi?}GK$)W=A2k;i^+lzaKG z1b$DojC=wr!%{Jbbk-IHUyZ;9cPb(s#|raU8GsIwbgreJ3;W1v5@r4sGB7X9a4;I7 ziC9F&8#@I^1=8>c9uxlh6CT>gA}!VYn2!?=WO}mh4$p)AYnjD}J4Pa<#vDZG-Db&Z_8jph~*F=7;IHjQjZdSlp5S6D@bB zY*Hke`J&^8fg}9@ZW71&GUT+=d6sVzSK;GMZyqgu`B@v3{jt5ucRhm{+89`ksmc3F zlumH^k~Z;4e8M)}&^F-1*|4iAI}CQ@^7+&WHTY8wZ0iKGF4_# zy}-JbTd+!MVvk^9&Mg@zisAZ7zMp#8149SetWtw2vfSfWNW-U~ z93_v$vh=>NIDM31;T`d3dScnmy650*(x_-{O}Oo7h%e`O? zeP9z9NkTRIr|+SN$;$ zC&cNT)d+X5cyDx+HYNlpdI;>5(6Dp_{ohjYUz!AJNtxa+rg*!$ZUPY-CAyMAjDAlH zxp#b(rl-er;U=`*D8j=JVB~shSz%^5?JXMHX731X#?Qah4WC1yNGGr(v(kb14x(X$u7{&_8vFB}INR>`> zESX0b*fOAhiM`K_R83cP;Bl=s%-FDG6E|jJ#e0A|>p@vfS*Z{Q@27>BBWtsZ)R$Nl z#*`dtLS1KgpPKh3Wl4=DS}uybcMDT87CjgUQKTPE8ZQxO9nEM)GgomC5-(k5G0W_;l_|9+9ei|v0_8I<0g>su*JMuysX&LESJ$AZ~Urstakc92h3!=g+ zT|S}=j4N>6(Li038p{!iP)dx~3D1)#T=f)zDnpxu3|*g{K=wh1Qt*$)YBX>pudLUo z;n%6Z)13cbdO_bwz`c}Lw6CvWwNUj8GH+;w@4c4piz&;CE}L5mQi~aVf3h(*zW(uxmT>LLxRj9coBDpvsd}&sT80FERD&bx`PTQiQ#%J~UxVG~ttVdU^~_!-r8El!91 z@mx6EjNZR|Wfzm9iFb37*qr|&j%Ef5BW9RO)gYhE>>WFnciYpVnRW6zubwm9^HN9c zSMTmT12&xQaQWN{lfV-oTF%QLc%!C&*RJ)I%k+J6<65--*@Cr+tDhj!$}B|diBm?m zugFnXKV5A~dU{{km!CQ$3<_4w_RIZ2FmivO!B(Hj%c$|oIsEV+KY%wW2qGlGuqT0r z1J$Cjk!G2JEVFPRz_q=M)eyy>;y*~#Xa+}npa1X_J)8y-)%3u~9S<@s32@IA7AK@q ze^gXInOJZpwn40b&Ukd=5%E@{LuVj`MuymOg>Om`G?aQ)qqDA6YoO?AX?X<&Tp(UK zZpV51rTaGTcx36&$PSGYHHM?h10A*+$%5JjL~yR}%v}E33sJc`pxa$h@y~W_H6pBO3;sb4;q1tk(Xg+!>A} z!fiLw<(#K5#fhd->y00(>@m5Dv_IBeGv}~Z|G5~7U?E?OE3)bw(AdyvfuE`1o)@H zM9DX0?6wy1Ztdh{W*;$)Oi71>lJ^)ksNV3d&VFfWaa>`;5eZj~VSq>5eXh~3alTdw zuaHS6`6pkXBp^|6x@FOUCfbJE72yiQ3vFXWQX(R;W23}5w#3G&3F}|KsU{u{;bBsBv{b~%C6ZHT~9-`Ve{1hxKev+`jytu$}(e19F~_{Haa zAEA{{qWZvLpPqswx|x77y-7N!Z@FCk=UbI&bE-}0!>DvU4jyc{YFLH+J73jiTscmu z#|<{2e~f)-Cf`ObRZlWA(w~LKjQ*(EWOrcGI4+Ttr#L!?b2W{7>7O8{<&ih`>QY_%A0_O!4nlpd&|m!;_KP<9i{PlN7@%A~C_-;^nW#ki%{jYgs_uyIT0`V7 z1Ju*>Lz;rTp|a45i)HLoM9A=kEBTS36X;=t?q@)8ajfMYCu)46-PgmdX6royXa!?b zd8R17n+X@NLnW^%J}>aAYtBVKGKZ?rLfU-GV~-%L7`Kjqpn0IJhOfe8*3r(0BfLWD zf8Q04lQtXo@g_G0Cc5Lg(`kWvt(zyYXv=lErc!tqZ`^c0L;iAC=+gXzUF*Q7G}L`k zQZN?C#lGibf!0f4_o`k*O~zox1Bk=;khr9zJWH^*8xsLWueCO+!PkTTmdrL(m|g}) z*L|D0nOyjtyaH_e#EQ=_!RytztwWRDB+T{fUNNFn%ZMXhStzc!e7{+9!esY>K6!z# zKxy_gqd_4Ys83$Kh zCVNCU*Ak4PjS_1?kS(>b{Kh-h8m%V8YD$2lcAk^QxGe}->2n(sei6daC1m1}gKrEw zY8Mg%W>KQ-U9}9>b224+~nv>e1I7bQ(lGAepdkVvTpWRg_qv6%sQ60v?}{~yq2a8 zS)NM&<}E`3&K%LjqW#4pix(Fggv}g>UnANYkPc=P+Xp6Pb%ynZ{!<822ZpwqLMW2d z=@I;pVL8*iDV!Nd7vM{)a4_HeSrRn~jZPs6ur=T#-l8dv{DX~Ro!BGm1C3WdiHEM= zye#E%KOXOn}<=#myViTT8KUb(^V1g{WYUb^NdmCSRJna)CA54OtIiMs7^ zJO}}z;ExQqK}u-DUJBWYCEhy1HJ4xW4O}OEM6lB&T@8*+MmFB_>Qs?jJLg(oc;eck23c zAa70(`z=WD$m@`I-l#kK&WD9xfOLDNGt%*|)01_Gk$Rxq=JE4nHrf zCEp}xe5Bv!JS`$frL({Ph?ruXpm+Z-R_b}toT2@}KbDHKaX zB2|;zUlIcxa8(RXWCLoX3=yJ^i{i7ALH%Jg@CN1p;fH$<}1oTqU?EBmu34zx*pc<+D2X#!190-erm#d<=&q6qeQIqEOS! zIZd@(&wh4jo4Mr|GCe@n{y`GoPg`VoB2^-WYU32eQT>I%FDGQ(g-Z7b?>$S-U}?Mh!~PCW{pTB6k*)+-r@^8fh}TW|0Ex7G$?rx|>y&<5GTHQN{X zhB7853IyE?>fh@~^%9sV>p)sb`aR8WzcxD91Sy5o2z9Z&&Dm|OwYn=4)ES1fyW(b) zZOOA<7K!Cs_~5!Ro(;eD^3U47+q=(hX{Il7m#|q`JqOeO@L1xPj|G?`X?() zffFyZ@HJMg12NR^kpj#)1#mz&I^mTJ(ejchxN)2k!y1`Ylp-?^dUS`c%N{MsrMMn0;hdla7c*X5ikZFl)RAz@Nl)qik5m0T0x6*wEsmS$Jyoc_OFRhjxCTBsncU2 z2pqZUimvChISD=!L=mU8SArAQe0)6yx=`>|^7kmmf9ONn$%g7Tc_lK9{US(zwp_ZZkq9=5l11iyAG?oyBoAD12I@e$A>e z&)HK99XzKW=9}!t}^lz)Ebcbt@&+qWZsABjtONOVyS#Nb&r^d!O$*pL&P> zae>?tO#yqE;&FVhu~WuUI^ShPP58FK0F9(g%88Gu<_jvdDPoThynb5bn*J% z^fnqA((hQUlk9}dM`OKB3}TZUc=@5kb;b;BoKWd?uxQ4iCqbJ#PH#+CJ~#EB>=3zT z3r8n&N%9E_eO#9VaR(ilOn!YYPFF`9;uhvsh+gT=R%k?B?=$N}iRU+!Dr_6Td_}jf z4+u$}gyZ(X*zM)!BVtx$H|MAY7#yW0$xnX>T+WjDCsm`FJ#xPA!M2z z61~)zd55t*;7iBct3eXdcn!DOV7q6XM zp|i@{JQ++yce3>wjU5w7=lNHBVf))W3r*tMnfY%mSgFkV%YEaYco(D~{?zs>1eD`; z`}`U%={h~FO4CXVn8GqL5w7j8!nzMbwe3fjxWI z5@U;*hEO|}g207h8Q@-84owOXu+SCGuoJVnQNH?^nu((KvbPOLdF>Jhu6PV^&k282 zXd+LaWz;Vrbqh+}Y%|t!WtnnE)@|k|8fh1bF)63SlZzRefgi=1(Wg>XW^s))_ccTstsCeb?{GIj3(TriA zm9jM#IHT>gE!Y3-m$UEY(d5&0aK|X<{^PFRr=958eo0sp*p{tLbVw?2^9y~3tC>yf zt*inHk*i;vG0%nr2RD(hh&{&w#2X3ggTV@oi$Q-0>2DpC6 zALh}6VSZYnU{eS_4brSXcQNE9NVO>V7N18w>c}~te>kv1wnoGE!D%DmE^#*pZ+q!J|87x zpT3;Le;-$3UD;17 zj-y3f)dBe&ac@Z542Hmv=r%?_4`a4^3tpLaJbG1sOv#V@_9k>I^m=R8&SKiKlD4>) ziaf`5P7#0@OI8mZSyyD=WKT3MX-B(X|{!FSigWMmTxd36htVk$N1*)zVUr#JdQ z18rQY{9+FW$K4_)#%m-f@L0;xx1j(0qP~8%aWZgsqjqz7mlsF_-2jD3tG~h}EnU$> zpqYy0A^Q`aCRl|f9=Vvlv}BNul{EWpGO$

*2DbFV+{k&$^ezBBrOSLUM)e}~}Eo?%PDjz{GsWt8io z&#v+dKJn@R2I{lUVn=a!$0-xtVG8X@8xvyj zOtrea*|LQfLQXdrs{*o_T6pmp8w{O19a%}q;AML}X3(v5@9xHEu;CoTIVfFbn%|Q% zw$1wF>yhc@P5pb>vo3x`9N5D!eZ>XTIIMcqXMVI^g5||kYu89w7Era`m9;6ew=@GU zmhL7PgsXG}5brt_g*3^C62ag>S4h8kqp(#1wz%0c&fs(Jz}h15#~fbHUK1Jk%`Q`( z@?5d!qf+>Q&|%w5A#RZ(Te8NK0#pV|U2uH2Pl+8RRL`lDy*U15d4qtjyGRsBmnGN2 znPhpIK1rMS@61fP>5Sr~W{<%=%VSG(1k=yQPIN%&o*1+=X~LTOBV4U^ zsP2ZxSKSgXN@vy2H`h%Y)e~I~F{dB$-)Z)JMmz2%%WiqE5A#<*OtD=RS?}u4V$`xL zObx?1Kp?_>EBX*2&o|&`AxG`{Y%V2k^M04d^ZKiaWq-9qtdhTdHJ>N!D)Nb~gz1OQ z3(t3?x`eUE-!^;&lpZCC>%0=gFWXCJ4#7t%D!U0i2EYFtN?JSn0S4FC8nt7+d`hGM z3tjNwFQ3yyUX~E<}T zPE@D|?D!hx5uMIa5LUiYaaR-Rpa%Ihy8dB$Z{mh1#Kj#pu#tQLyQSu$LRt9mK;QMv zYS0_hzask4&@nh#+{EIL3i{|d{@lIgq@nW-I+jgpzkeb<0f45kJ5~#r`V)?{%1Zv6eHj?r0yy_DF>uP#3#)7LB)kIIa1=e`#*oi!W8t?$inM$3qC0MUA^ zCohHyLH=qq07r-4CgNBBbA=P=VYf}!eN)P$ToqzcARt1)?eP4;G~*msR>!CD7c7S7 zW=*}yV%2p4+eo7KMVs)|hs(%=n@q?#T zn{b-(yC7%I7K%Y8&p`1gAnl-|ey691|MQ~Se$u)r&6-UTKr1^f*B~yZbHY%IALFDf z&RS+O!QguhfbEu*(nJ=u?D(euEdAemd($j&-cB&88(U~$bW6*)*O{yyn$pJc5FrJ& z9eZ5raI8g36XA88wK%%bYnX_;hg( z%l2pSICj8su z8Fs%mfM?njXw0ls)`!ps@YRLmBuYjxa(zNIS|ni&Z!_U@&z`dB>u^G{0H8G>PYd(^ z>D5G}dWFnpq&M!fl~w!l<_GSiD#-B>9%jubwhraRSDeef*q8WG2UsMtH+*vgadbKbR*> z&(f@wd{6U#PZ&v6qd=-Q$+X10QpdJIE7thIyJne`i2WW1J<}zTq(U9~na$YA^VHvK25lRpVxQI!`U;GTH}WrMeV^=Wc+*GAtGi8T zC#DA12yps%0#LK0B|@PJt;5;Ji&oHNW8h3~J!tUVg2kne7oCzDy`bqt$8yo+yQIsa zvQ@9SqfUCMmkT(e&6+c9OOXm-H6i2B%=S@U(TS_S6ZY?wWQUZmrWV#nCiSB+DhO-q zYtv6d;tXm_ZhsF-4xLt#>iL#jblcP{q7nA{-_Yc|6~_>PPW#=tM1%#&&%KA3lc@9e zvXX!RMGg!3I7ug+9>ivR$L7SGDWxo=v^RalQ)Wp3rElTq6~>M6@y_*FQ_15%0^P4f%#nwjtog!PAg34&`DbMj%d=BAt_X@+1dNLj#k~^J~EpX?HpXI8;kP` zMGkfuz*OMFb?E%hoD!n+r2Hos2}vn?I*OOhdwC^dZt@!(&pOX&aVyS5tJzfVrRKcS z5Gf4kaXNMIdtxgqoXj0O8SWb2?OuEAUf%EAa?mh>lMu*XZ4#_C${6VIhm@-IWJ5$` z(_~zh{ZCbNo>igGdKqf>J??M@Cx*--&lG@o4vH!=|;1#*TY5O}D`geS6=s>kcIPBQDnky%Ym&r#j>UUYj?k-OPY40MGT^8jpcw{nWIfu;xH}4bSL( z>34{4jSg|WvS^)`OG{45D-T<-NkxmdZObmVtwa47e{Dy9^bnF|OfNJh5lC(lscZvF z^c8@0G^r>T3ogfg&o;e*91!T&u8QQe>Sra$1TI;IZ)d zvAatJtc%itQn?=-8rJU3JsXn9p=Wtu0W`4GAM-)~qet5yK-8}ah@PqW=4OZQ=!r(Cx|5VinKMlrW+*7qH0JV>jOyd>ahCuVNnVaaJNrHSXc zx837ZZvCK5&c*3Yw`Fz0wVgvqO_x>OzB)%`vQa&x{jwZ}=V-^rHbRT@*eAUY5eRa>+_H^q^OBd~RhXOqt^oZ0Fc77SWO?z;{H<_C9x!#K6Dr3=VA$Q0mpJSFv04Om> z#oI_<<%nzd5^>0!LNIl2hCbn}hL*5w5`EB2ijmgtEGbCpYh9n|>m2!VyEyi<;_ox5s*#k7 zz$^b#*`D$kzuq8vUhOhFKR*n)9fn-fa!^IS@2B z`*zf`$!mO}dlOR-d<7B;_Js`Zjj9J*=+I*q^t!hU*+;ZtMFcWgP}> zxts)3D!SjPe(F@z7CUYdC4i|& zw2e)2*J){HV&X%`I@2^eZdyz}#dcxwdd#n-TJN|UYn{r{8gJUNa`v_rE7tbwI8Kji7lS6N$y!FzcLu1Xy2Bj(-SbC>LLh9>TQm&}jQ9K{1{E8vz=t(8PERcAXZpC;9 z{c-&X6?K!-zD%AoRO=O%`*-p85D~Oro0Z#G4X>9&sKqH;EghDSy{|@_pC2G0%b#l6 zK_fybjx}2!YuYQgA7^}qzB?Yh=rK_CLLFD9LP5n^4#%=XUF~NvxSH@8x&mq0B7RKc zd#{VMLT#4nAyOXAFK{8HpnUnhWiBh$HmpIRAwCbq_weytrMhAFcMtX*v#lLrw$3PQAa`ty#TaIJ*+oAxWeB^3{U_ z!-Q$;2@D&|-~56Zzd%N`pYKxNe?`|O1IQN1yj$Uvl?{=}8d;lVSbiGQXtL?=3S;ky zv2An7uW0j*B5Sv5^)TuE=Ij~kw2BL#da3g3CSf)hoGD~gJ-Dj47f9+U&BX8a$jyJ& zi$(ekTkWr>ey{K+barSIE}lfM{G}}{KC@0wwy3sAEO8x@V6YIMxT;p7;jMgBqN;Ij zd&01i6XxAlT73S!P|pP#0O!=QjMNbOf1N__F~{aiK{1vpgzZvR(%)sH%yQQ!DNFQM z8GePtEY`(SERwROv#_q5$Fj-#r176Mudi=;BL>j*Eb5*1mN@icphtKHe_9cno*0Tem4}(D z9{b^#($LASj%9PS99a7Vibd<1FGj|Vh9-^!5@XP0Ph6ksYX{)}wD+D-O|9SFDE5MY zjUsics1zwm?{-9*f^0JmVKu}RoP*AFLkxqcnBMG61h=9}pp@k|!5+G7S2?p-7 z-1~pdJMOvfxZ}Pb@7Ru!FSxQ;>uGb&UzuzMcksy{Iooa2Ep@8oYJ}E%k(9urjs5pP z%9ut;If2H7$mVJ`q0WOKn8AEh1g5ZL4YWn@@j8=>`;0p8kltq!^1DUZD6salLpx!eiKoaY z$G&Q094zfV-6Xx*u<(#m$RUj&e0r>4%Y!d3g_a~0yZ!L=t5;<%j32JSvf>-3n4Kyz zCM~+1QP&EdIq>u@Xz=H_xTm!Hn}Qcor1bZ-I9hmFFI?=ncPFT(H#Q=kr^4FZ1XSr@ z8*T$)XuNXbMH0rro}i{`J^!2%jfEy+Gy*os~Gm;*I()2e{edQ)E5~RDJG?GkBPW&BPTw&Wx9X(&5W2>@x5TY z{*sp-z3pXB_wPqFu(h{Dm0$zo?p?+Yo*A0#jK6)05!F&*MOFD;uUSj%2SJNjf z$UEO8u#dOS&lSaPQPQHZJCu7ifn=NAn~X?x<+!6VAVoZzjtnvh{qI@-4_6;C_4x*G5yI zFSd-(f8s2vDoU}W^+$GJDa#;TnI|wbAEmswDac$BqSBj90zv$#hQDjFC6HwpbII*t zV&{}Lmaw-t^y6(SH+r&JOKKmL9zT(K)k8a`&fK6Val2YC1ydEGzPccQrorOShEcQ= zK1Vl5v?IL-Wc(~)M|@1sl{D;Rkn35HFYE^<Fk@cO)rkDD{lGfo9Hjt`khE^trtzU6**Z9nb4ub&Hx>E!AI+&+WO`Dz})rMiUkcI5Xxr%trDHJUkX3wCJMJo2R$BknW^mmW{Zv?*I{g2$L$xNenX9~gV})a9AC zT^_Nbi9yK3-}XhnBNFvrEsw;`U@o+Ie9@+)pBnf2aT>hgiLZ|e{d|8tJdXc0D|hvU ziLO1e%p!Cp2EL@UC)8Z>ti-LB*IL9Ww07v2y@~1;CHVt5?mc!qEN<^Ib}QD8R>P~# z?P_)CAQh*e1#`2%Ot|lbF<-mMUmsVN+qkmQ{^BNr8d?J4q55yvJiYfZ#Sf#&{WEsw zqr2|wyv7rZU7+(o**@8~KXBRz?XQ)|{A>I$ljWFgBYouay~!`+MtyB;u!+%a+ncc( z^<`IQIO(96TV5SI?NK3Pg|?=J93O6&&`wC)FIRm(b_ZFh8yMm8%&LterC;f_DthBwkPQIwVs+FR`bFp3q z=2j->0Ri5eJn%;oJ+2LoL{*kAPgukz+3tOkS!v}B_xiA^HT{gE)IRvs z_Gal+%7l6R42RC)z?8r5c?R6`Y-M=z@N3%qlKwlqsoa}QykVoaP-AF4$1cfy761(NC|^6*Y(@KGUCztUFa&7Yd4>~Fm`sv zUzIx1)<6@`x^oc8^#yxYxS{;P!@RRIgMR=rc8_r4!H$<${1!DXZtk#i(huQ8v9q!# zY;T$Cbhpn-p`yQ4_ZU}Q*tp^yVwP4|7-}tfyzu(_=Ht+Bun7i{CCA6Qc>kLI5$B}Q zxq;Bu(Mvjt$8Vi%GI=4o(LQCMbNK{`&wl=s{6$1!T$#2j%{BhI1BTSxZm|jB;*#HDE~aR_PRjn zvEnn8bK)r8%BNhW_YB7;h*&l|a9H(V4z#&rtP*cS57{vJiiNfKeQv=`>%{%|Q9JG< zhh2_bXgc^@u+e-K{_6Mkg!#eKir{G3hyMqrb?vEZ?Ps54j!M7;a#UDxct4jL9BaVYLf;du)56{50<+*^Nsb z%8$3rYOqrugGdO{LEW@L@dwmDtIt#jI{51IZ`;i@!q3KK3&GSZ_iZ+IT~V;Vk?f9j z_U~?AkU|k^Uo>LauX%#J-*K`$=0l=4ZXPjTcZgS2TC`|k#5Js>#x)-q)baA?4sxQ} zii!eCrjjSvTESVOlef`Y!PNH}a9~`$6lm0#`Yt zqq=LCI)A=R(AM#!a763(gFKbhY4dbw41M)%3#FWOe-#5a;zrC`*SnjM`swY!AHGSk z7OZyI4#F?8P;Kl(qPCVVnXDPruWQ0#sAt?Vc`YMV5xnzlCZn-6BHDW|KCO_lpGi%V zxGLpfH~IQBmz%c9eE-x;WAvNz`}S|vGsCl1chZwfP7xme@P(^C%mKf!@0A(iNBSYe zCW5O@%8lG~x#QQ!aKQr_h&3UkQd~7tkkP=op@N`0Tt4#qxR%mHGHZ}h& z^uT#?<48+EW+U2TAknF%L@eG!KEJv%4`4~X2BVa5g{#+>W3Z}xcC>j#HQ({QBu2w- z0Onp3`?E?KpeiR5BqtSmsR>!XrN2sx@uYqPK<7L0xNLYz8y)QzT{K`49$KtYxZ0*M zK*fqbtn9`sb4K^!t?ZlGmis~tS0@&xS3w3SefAvmp8T0}*Iu%32IUF{B5HEX ztNZ#GtAm90=x-lBV+9U!_%j!DPqWPlx;2Goi^wIFJcqvHnGIq^y$kqS9maR9NHlv^-f_vsFl!K{1KstB+LALNTS>Z2xX)%W&ts&Vu8D{RmkPH5A~ zsU$Vy{m|22SqG_LB6Bvh7(4s!W?>PfZfHkLj0&G^id+Tt0M0FCjyJjmr4mwhH-t&N zl|)K)1r>jR(AZ|qPl=CzQg;@9HUJ&Q0d&A;VZoc;A2XHj;WGB|3@mWVQo_oLm+p32 zRz0J@#0uc3r1f}tpX-UA0iwLUl%b2AjFPGfu(0dH9Dp9CbibxPH%oZN#~5DH%C`r) zY43Ar)~RT)Kh9#etN7aKi3;+L+f#GlkBlGi-+~?Fs75RxVLJpV2y=pPRJOUqqdjz@ z!iJppnk1gl#U=)VUJv~5a2w6SdO8J@e|v?C(`hu{Crv#oI#<8bILOj5@4gW{^yfv9 z-j)nnFY(B?U{kP+K`LAjZNC6q<}yCZOL#fA2U6$GVXv8IjC(kfzCI3C_QR-e2bo}e zVSk@9k(Z`_uLs(gy7Rx{XHN-ZzcY|;ThP|7dmpS{P+1xQl;n~-PPm}D^Md{xlja<` zVSGzg$B0h5TAAm_1r)2!Km-hLYOl( zsIY)uQ2WsecNkR_Y*IDgCPpNp){dM1SrEei5V$N2Q#@Y;paErJNx1do&*QPMXrKL? z5n_3g^IzBX9xVO)G8?D8P{|MemCF9Zma>@sN3_6l@y*}l+P}B^ckKRMDE~-#{@oS- zo+$qwpMNWB{*4v?#@T<9ihnbxzf;KngLE+}T@tX}v8g|LN6_hKv=D3Ya)=eYgqr2Y zER*)GsTUgPevKVmO}O?WHpx8Q#MH#RQ-TQ3bR< zk#&;&BReCxy}?xrl3RnpCw%5F;fI5ZOFHw)BM`;o_e;z`jTVVs`!*{xQcFwp6UuUm zEf?1EQ?I=ZzN_>o$$>e0Q41n9=2~aX$9XJDXg0Z`0nW8zVg)_R{adS@nj@8P&HmFE z?n4SNH66nXkH{VC)pNxh)$n%ttj59??owp{xr}d5nX(DR^!`@Bw3qz2;n2l-_#Qml za$V(dHcjYgQC5|nXULu>-~MV)eqK9zgSou;FfNvpNTD5C(qlUnR|Kjh_$21Q97d{S zK(oSkf0a9Cq@?J(sU0A6K0T~}YW2mP{$BPbX)P=>{4Bg*!a5&tK)u`i5w^FNyx4(S z2ja+P(}t`=g1uw6SBDw-uIN`IcElGB9C5<1$L?dtw(g!-m`>4<){;__gT<^yjt3QY z{alRthIqQ@*-5VH;8=$+2Nw^I-tBTk0De1N!j!eItVE@+OnDT&rODXd_0Ct8_^N4g zdp}F~p4~-yM}%TNUJy#n2HKe*b;F%4pYWfO7Xh_r-rTGVL?p?Qs)0`o3`eolpFPV6 zCc{T>%i3O5&Wib~bD)Dna>oJuts4+L#Fx+RL!vYEVn#kSMA>A_*ZhH&fw4W{bZf8Z z*Vih~GhNU+F#zaut@0ShiCEL=>P+T%%I7hAO$sHL5oDE_%TLf23aJx!9wF-)E7vtl zP7EGOipgf$!LjQ-&4s9Fy}KMPipSAg5(4C{1AD2CB_~G5S^m0wuvB@%cL?4U-6A46 zkm($40@lUd@ggY~db*LzI<=|G7a%^m_W&K_j(2~~6$~qkXk*AzWptgkN~&Sa@~)D^ z3l)CUMWHtXPBIJ;FavpMgC;`XM|*6CI#nv_)l+a5sDVWe7aIdYBtP(LmnRK*tL!rB$=Hz^^$f)?IP&O*yUQ?D#=@AIrqIMkX7} znNTiM0YxW7l(5sfpnf=McglBb%c8cz{pZdr!snk`A*RzN9MTGloV(Z3j6kjIDl=vr z8wRj}-(UB`cJR9ahxCDFt!gT@6AbGfIsCPkGpA!`as0y3IauK4-QabVP+={FaT#kA zvC8d`J%$gl)o&Pgl-3u+nZqD=aSJ}S2nlfyLpZcJ4J5umY!p=2cLRxhS|FlCFEu@D zSMZ4+k4KEGtn!SgZL0$ZEUJR&b#K?aJ`WyA3ox*LbMdyJd4x8dj&viL<(PT1($~UA zJ}RqU&5rUIPxS};sT$G6#JuSTpLk(d(1L^5&`34h#Pu~SF+DNwMD7of3o3eJ`|IW1 zi@QU{#tVm5)_qJDS1WnI1B3vGQd^=R-2Cs#nFjZ@i}ze8kO+eq~_S0$B^t_;h< z7wvbFF==U>;u*yG-f9&Kn!cdv2XHzu7X9`^+#3)q78DMn;$7Csbd0;pVqlc@hH&+>({c z5)lr~1&vhVfPfLhr_&w3zO=@UyDH>rvvUK#jGH!Rx(#O+{d^_jJ6|}kj+Di9Jf2Js z)mOz`1CTWtaL0~=6DO1GKcxFR*DfTi(7E;J2b8%Aruho!`@NZLKTY92BzNq;} zq84LlTD#KLyJnmA`)abPIs`K=_xV@ZdcWA-9Pco%RrM6;0JQ13*`MUWhr4M79=}|s z6At5`k;|6N2s1=iv$XqTYH`Mp6;uy5KPsxGfbkJS>;61tuSYd1lV^_II}di*FG6PEogTl%uPD+f(PiT$L5lx zeU~?M)I3KNo13fZf@IlrLKew2j7@YRT-m~Yr|uATJ8)ldlX)V0&BAr18K5v-c&=V- zej!&F=QH}lRW~Cp2OKcw02{|cGtcUfF<_0cRJq2E>!Hw^!m=F)-=0hhcx+AD{B>=C zWKGOre!Cs{M^y%vSYaWbPs?>yix(!7aYX5CixPnX@2Z(5ZC-Qr}+65F2gV|4TC5yqD4x_+%INTRh>KP;XBp3ccvbt#PPdPMh;N| zfF*YqKn?N)u8hZ|N$T>XWIp`*Xl}_N!G%_*tmZT8-;7bbkgAvR_4RGS`(sYLgHl%^ z-BSuY+#vBxO^9)A`mL!k9_J)T2Pvr-cm-8Iv!;7@@x`XHm$}Dgs9FH~af;f<*31&V zNo4xus5Tab498iTJb%1>V`^+5>8|?7U2uFq={#mrbrwf_YHh6GhMMoaJlT0>)^{X+ zMB!>o<<8F)FAWs zQ!PjloW4a!mT%Yfm}j4*GvsDb-AJYzxkTuVv6cHrKy0Av>a46mEY>a72Y5U^v^@-v zxX&cjH1zo}#{A{Yma!=%f@8m*Y>xr;$iPl@!6T1iNWl%*7{;0t)97tR5nr8#j=oy` z<@sPoeQ?^#$~Sks+0ku~T!EH8K7hO+n7tKN-@H0Qokf(e65Z zvItguZRpu=(5t0uF91O!v|U!)T!1l%ZZ+f@_BFb*+bEIU*gV1_dMxm@JJz8NAnhK0 zBPK9q(<=D(hiVe%xN=U$;Yd}+R=t7~Dfh9`d|0l|T#j~^kTA%$EYN(JfG-${6HoQF zW&F5ELN?vj>IJ$WMmry0rIX8xnAlNeC-W#tWd|D@c|zd%xv#jNt+Fa;l-4Urz`1C( zEpno;h>XQxpE7wNAA!SpwX^B(Mt(oBHvQ3q+8O--WbG%pXS*w3;eC3P0tBje$M2q< zkLA#b0}>h#r5OYlDs+fl?tSR9?4^XAu-F4_-^EW}af1F2obtBBv_^c5$=_*6VJ$|x z%!PdG4F3)gL^IUtvPtWj6n<6ubMK13;|ZYwVx*Z3OSk)T0T#@qy>G zn)c_-wQ27c2jWz5$u^=Uz{VHVifQP~zMR_&8Aj;5cb^o(400><7l`~;3m1z9tj7lP z0a0;MXtq1<5I$Lh=J^~E?btg6KRenblNzYyH$d}Dq(Pv zkuMNOr|bymMHbpvGDEKa@I8QRWd>QzN+dwMipF+@7L=?(%8k~V01%YEb=d&58qnXl zZ_}Esh2|FJS0YJmLhrM!PL)ACP!(UBxr7S*!Cy9JpNeGXjCUW<*7b7f{nRiofo3`w zqJ|g|cbqF9FR0@gThsBN>QKsCr}c&!1f^b|O%?R-4xq&fKsuieG&nrw6r_p_5YDf2 z_2zR7qiMyE&T+|$6~WjT=-=`g*<B(v=F4Tfwu4# z&=rEPja@1UC`RrZ!#m&-E=u*U)F&4Ls(G>2>3+EGDwXf|RW}^Ucd=yPjbE1wTxY=j zBC)M%i~fZf`>5g+q*n+0Omhc1+*?wSU!H`3O|Z6Lb!V_Mb(F5qhCG|QW9qO?mA0Ka>162!@COXX|4@ms_EQ%&L5sVV|ch&%|h54%_Kn$(u z`Njh8TMwz1E-YqrPZTSmsz5~OB}aZ5L*RXXSS8_v8pS= zV+~4Os3kmwfSLY{G}H*Nd1@Tw{h_@#nQk|1INx)2UFWSWPqO?a?H$DW71W#bS`Je> zg16w|an~ep$^tspak?(hXBt+Fo(5?#v6nND{v%YtIt6ryB6l^9XTSR5#m)gP_xX^C z-(~O9jy$)|yrs%Do||1#t8=S>_cOu45x`x#n>PuC+u%tjUm zg`qecpqiR{0L1!Kd2pOw68okP=t=$Gwl`7J$6hV#@g^1k2Y@iS%fr=?{$%_SxS>Fl z-({b>vR3kEqS{{5;b(<_|>-O=yJLo8f}j=kG#RAas$Qlc;;}&Qwr5 zP#!(YY3{JTBTOErxv@E?2}YZEbNg6T7gF|Ezfb!K7YcHE=QUgjis zpiO8tH@0Za^?q((A4{`|2s(`mGQYeVhZcuL=md+JQX= zL-|~Bz!?}T(!3Gw-PF0;FuXohK7ra~rb6#2f&tzWNbPgHvU=lVIrAC=T8B%Oez}+t zn)<*FDJ)p<*GVc_X6&9uLRnZ&?kD;;wU&Hv5(CJk(sjm4!qm7(0C$b=J%L6P>2bW*x^O%}& z)BFqy)Q+9b+mTKy2$9)q1jOM;wX`U=sv<9)^r%#CLm zDjlb(uy`s$!)!P6^yiG0guVBn@Vu`mDsmXBA4DtiXHvFbT|VOEY2_%vX|=tD&`o)t zlUk$*^J~5fvWe`e-YAOz{z9Ex(f&TheXDyR-x6#p>W8xcWiJYnq*I0!P<#QNF4^od z(Jcq>&l$m`t^e-IRhu#kB>ki`VN5`q$2E?P-`q zvJ2j+jPm$Iee;!06#Ez~H1{&TYbIUs{H4WQ7sIZOwt*qFsk=~g0BiL=v$_|48iWRi zB1@B96OLavs|76l_}?#ydtCV_yVc!p>C<_IP8C1{%mTlPfxB5LbTnM4lz@U6K?w(M zTf)N!T7&5s>zL{!xB0siN)TeXCZ5r8J(iQ3+U=(Bx|dXM*_UHCB5o+HDv16mA=V4T zRLaOZ)xc_o{n^;8CWx*xANG=2ynB)>VD(Fd_-YEbiPM+vlW$JFD|z)$Mz;JfqpYwT z3aHuV#x%M7lu7<404~_FnDPP4A6TZ8B#n{*Fcro7v($jujubL7__jUplfd}(guJE5 zn>yUc7aqJC!lS!>pDmbqFCbx2^1@rPPgXEC_YlwLrN-}&NixmLz&h=5kcR~9Ug1t~ zbw$V4XHgG=!`$IZriC5{`7voP`XQtsJSapHR(}otDI+xec=0sfEBdWvh6^Xj3yiT5 z7-Qx0y2M9`G7O0iD!n~wAI1L}H)Jc@EP1PB5NVrr!;^ ztRnr=9pEs~UM9aGjR3$fVxuTnx7MmY0X>#iUt4xn1M63Z98|P;*W^BzD=F9{dIBN0 z^X&I8!**G}tE+8%QR#|x0z*-xr?p!%!(MIZ!!&cKLx3%B9&mR4@-`ihr?UX4&O zELV{BcSFB6?eFt9vbr};-YG0RyLB|=KZDmwzcmF0Pc1;Glu|Ql*z!o<%Vr$dhJ3UY zw%2@oqURz!HM%?(&l%^Bs|CXju8$3zLJb(PD4HL$flq|$?|FK6NBxkp`(xicTAHk6 zR)Ega&i&D@`oL4W&D=KD>IJ$L?8*04vp`kk=rO&A*kR%~p7`>GcBIk0Q#>9M-(wlh zAb@-qfA=12WuWNl&p?LMrU&@k!J*NlySW?=`^*bhX(`<~UhNFJl60VMJC~otP3)GT z2zGkIx4)P3X``(GyG0&+>Wh<72gii91bNK(L7G$YQqQbRmF>#YT^UVE+{Q(Rj`Z?! z&pHY||D>j`arq{VxgZNR@i$*<>l*ud9m0KBnm(kD0`P0Zt1@b1MpP{I!-`Vsa)}l9 z`^I+Z?1D5)7yhWV`l}Mw0z4t-x{Kw?WsdkZ|7V{o{=Lr;%j!1$-Zgnqt%X%jU1B@z zeHi?YFq*!uUlNqDnm#u_WjH9V$E4?v8{;IO2YOIn8&Snr_>0*yE_ArBfncO?;2MVM z`3NU*I=ewiQdc4mh@j{_vu?QG{B7eq_=1|6CAM*?gXCSsAhLK^SxS(vgfJH;=t%%G zwlPiskQ?YtVHj`|&n4v%az6ELoJpU{mHNE^LtOaPC||K;g2pOaCn6ZzUc915<2;!|vKIQNMq-%NaJ~;fbST#eun^W+5OUNia*CFM8ys zTl|8af}n0*#~f)9y?!<4B}y$ViJf6~{ro020!*#C=F+-D1RUC4M)lg4nNi z5EKGTS+L}I$M&^5%*p8S+cC?JPrwQNO%`}Ty@14$!I2;s4tP25xH`P92dS8xv+0)M zlP;KPpX!SZ@Yarksv92$}#YgMuVLH2o*dH~G$uT`yfuRd$Zk}C?T1k0RZ`<`TR z?lL|AFrU?Lv_upT1;z;{S_M5$hIE&=*tCtnS_e8$BM4YELHeaK*0tU`B||0JX?h^K z(7hYfo+6^%Q`Av{_jR$A+M72)9kI?nFR?F|Jz;l!>YZM0>xEZyg9@~c(VpL)zB_Ky zK12ILdnu2(xK%1|0b2Ln?YfeXFJK`7%RIkp0*=d%D|lNMrJ zf`sqf04N9GL;#o+jI#Tz#Ldh58~VtiK53nC_79!>08#2u5x|jK6LH_-P{Mr7QG#@ zo4K5RNWj#8@$LgkZRS3m~JcAy#L#C?hIXUFzyLF9;E* zhF9^OXk8eT=l>^GfaLM3x0xb@vwkgvbFxGk5BNt^=G%#{Qx-M3$PSn&Bj*T18Rm@kC%o!C<0_d*u=od8bhOIZY573V-<)mByB zr`%1G`VyoTO$?GX3R&fYNSbeT>Js*6c_#F68^cVc1S9H}c5U1RAi*kb2V;)e@yvek za2~3{i>=lH|77!%Jq?(ZwG7a!6S;j+*)~z=E(Z#*gU{86 z&RYzyEbx-&=a-SHfr-oeg()%KD}5Nh+C?1P6-8V>NzAWnB-)|~0g(}_ph-EMz^5rH z*IW!>u%4f4zzf8^Q)^t&^yxf+WV#w1iO`hZB|=j=+#+TnG>qqj6vn* zS$PJqmpS5Vl;so$YARvNh4JMg9T>!b)Ui;FZMY6)4#2=UQZxotRI6UJ;EzW#>+6dN zp_phxgOA!KmT~A=YqsrNYvX%phwTmB6h1#$pt{{me1Tp4t-3%m8Od=sXdJFBHZa-t z2b~OLOb8e33an}V%`HksMx+mH7GkmhF=A}2z^?AwOY0iVlo%0*lLG>Hm7+ihcMU}_jawZc->GQYnNa?po4*FyfSYvOUas(oUubH3SZnpJ{o;<^bmRU8d5v#)%DLxA`*P9NP zUc+np82uf67fZ%_{3TgUKCM@GnwFL9Zs_^;-fMe{FL^g(`pVaEDKo|9-(A>zA#|5^x#|;T`{x&gnR#hedIl8LPeSqcKSGC=`pD?=` zCZjKv9<2rh!g-++JYQsbNe3F2ZvL2g)C}J+2l(Eet$kS2dB7XMZtiCJ>*DALpei+= zyeNhFPW}au;p)Zw!?;bg;i-)?F?#AH7_03LAHXO(tBl{xYuvb^5q9Fx?8Q9K! zp!`(u3p#bghrI#xI$10Ei))+%NZ`k_!tbM+pZ>oK;Sw1)k z2MEnio0GQ~Do`Lwo2 z9p)x5C>G~M65OH&n74je>ZKsJA|J{H-M+IjJ}QZeIgzGjB4WCq2swBrzTM!y#_ENe z$NrjsN=XyQ)9&n`lBax992fky8-zO;U1rJjj0(UtjUBU~^_1jAQPFgkyC|8XGc_aA>(>4Ptl2J>E7Au`FJ_mF<#o++76KJXw8nTpp_weN zNkyKOZPEJ{Ckz=+@X?Y3z=2o=HaBoHQzm0F^SmS=Id_z$&*{qd;mBa0C^vZJqQbMp zbl$UC!=*Xb;Pg5{Nw%UemqXw(&qp8kaXo2@AlcuJ0jYtShq(`Zp|CJ8p{_^ex-6KNo1YmUV#o`_3F(*eImKc#20LoI`blK_; zdv1YJSMp+vRLBTx)g#?=#xiQMIszAbugmPfbA`zs9`3G!4x&n}IT&lTn=w$WTxk~= z4>H7;VQhNuoc32w7A(o5F92qn7Uc2-!Xn1ZyqteAs(@2mJ*~om7F-LnvUcqEq0^v|FwO>{lpEP7OC@@>UYJ;3hC=u=Sd_BlZ$d)*kiSOq2P;+{FS z?U_h3gJ3*o5m;WNsoIxo5Cm(E&B)2D{p!zsA&Q^HzM z$!(5z4@p@VSqOtpK|t74f#Vs;Sa|`Hr2V52@Bv{9@OV+cEHJZ@Jp8HZ+DiJC*nco46UlJ5WEgZ_Fqxd`R50h zlAydW;!T;tj>HhT_j%bVWqX}4!4UhJwM7)+I-qESBFk0Msid+BViY^n9L?NvsY zFHxwN$-Y*RUraBk9=OoN#nWeYxN=}g4waWJvVq|?EVFl~F zYmc8`{~iPAPdR{*faC~HITY-(F2!8{JfisvV?lIJnCIFP%PLZy>-9#d0SpL3vmFnL{-((#b@pqSlF=* zi{RjiNJ}@^7FDs&;lwL%`C)pY%>NsqZ9n9>rj|<0^4SoqD4Cm2WzDe)x*TZY{RIBG zZ{8RDv9%^b+)<%VbwTn9pQI~8#`i*^7Z9ohHnPM^JHh|1{zkd1epRs;zQ|onH4nU2 zlk2BR;-C-0bMq)Z!h5|{pKa!5p>$gD{0krO$jm1K>PaVJS0> zPp&VaP6fRyE0ta#jYzA&1=Re1<5X$Y!OB~e+r!lrcXl?`&%2G9XM$`Ec%A#2XOBQ+ zrUdczTi%Q$>+LON30RFujI66?#6QgdAYUHT<7i=Q+No;ManY|dqxla*DUIvV*4IrG zR@?r5I9T4#&mrZ|P{D=OcSHy0PLn|Js5$fU1$ADoxj^Zrw%Kq)iC^Ar&>&L-Uv0%F zZz6J5?bZdM#4J|OehFBz=A!sC$xkmN_y(jnWDKK~YKP5CivbRF57;I})H^dF_$MS+ z07Qz(4(pHOTmHB)#<)B{^o?$rzwXo!HyKwit_SrSylFk0Trg{L$KY;@TpZocexy?@ zZIcu&tQ8XQb1$8G0u3r|sBeG|*3uzEH@kDlaRAk+laZP;;=v=TWsWPe3<-D`3WDj~ z$1xTcblZDw&K|iB=yYU2*Itr8Q8nr3Q;+A9i-GyXmZr`3Z~*>WiqIeYPg=fuOHNcf z=Eomee!`q-2`AftJdi#c;@spxj9-58%^$7s`SX0EL|{FZX-$d=;?tK^Vto6(9qP zEphtj?QMV1t<9&C%uEq_f8;uLOY`9)44)XF{`hFgM2bl-DX`k5b=g2|2UP%iAdx#$ zZjqBme)^6e|C{A&ZvWr1d`jE@Pb^;px~*rFc2^^E@&4Z=;s;<1tO{5FR7X3ovOCyT zA$@2;{r&suuEZ~*`iI%<#L$l29Ca!;Anj7)p4duT?dH>%S)XB_4!i5;v~cVGfFE2j zuX=1+1@W4LD4;MDX_6kkCl~ z{#9gol!iR2W=rqWmf$PpfKLJyHav z1*6Z0H_3n`U{3wW)L7KU;GP<*z>d}SHY)JIDNwS^RH{mv(eD9#EQ+yyCQQz$FLv=8 zg4jb$;y>(RcI0>_MAT7OAI6$l3;Iu3R6Bd1q+aWS-W|Q8mG%01K`7$Kn(<5|7m2JP zf>lVM_sY2b`(#4S0_bQ}0CIL=ay)SWv-JWFs+eL+ zLN)50a8it5(BlFiJw48(TQB%EnwM6Z8hp^c>x+(R5hcH(AIQq;Iv+FZT1hc-0HDTQ zM4?5@>Xh|BwaWQUoREiy;PqTG>xYxub($ab1l?OM@(84PPxeJ7dHX70s+DZ-_@e9} z?iJ}FQmiu`RX~R}M~HN;1cmSCZEK@lUT7Xr9a#3$ZastX6p7SSZ{o zYY}ou(Nq(k0Z|2#A`~A!qy7V*U*s-nVa0~29Je$xbcMTy9Q#q7uZ7YiMZ4R6P>lqL zSuN>SP>mR0&2vO)G&uT3n(AnjnY6OfAezZHh9SPVC8W z04&=I7rYLD&9ZlQw#$_P-RCNw)$bKG0GH^+W-T5F{QKlEI1`|n%+KBh*4c-xqc&Ad zAi8`JGM>v+X@SaD%|)eK{eox+a|bAmb7T2~g+U{dea-yWQ*a3uKPn-Syd^+!u-&Iye1_lm`p#Ah84wMIsKV>y_+udB z#no5$zcz0K)?G+mmMkx-9lBo_q=Bb;q(#A?X!`Z_ds2-YF8A)9y<%IINAOBckc$%N zHvrqOL)oeMq3_JOP&!k4KW1wT<&l;JDt(;ge$iFLQtLd7S3wM>Wab5dZ)_=higlBB z=YX@_h|oHFDk`Bx$(&fV*h^X`m!xN@ndRXOrQycPwHY8gzw!g1@HUOT$6@exewdeS z9Z>h(1JxyTcJu+IPiz6dK9}YW^rSMf?qnuCA9};p!kEvY6^VNR=pa*AsUz;H{o~#fLm&h??x345U< zMwKNlq~=0+eIB(kULcCd2f8&2gm<0L;Q+YJ+$#qYAap6|eVHi=9MUjwc_*k`(}ao z)2p$b)EA&z69nsClGAL_ZynGMu^_7YG1v{e@M__cblC2(%kK(Kh9leo%gi2`UO zp$y6WK?9IYN-)&haeMjeen=dCVqO0}=F1;J~{1*L8G$KoWVMKB}xGXVYB_cz7Jf77iw~CyBW|h5-FG8(Z?hWdPpng&}swTdrNne6MfiG~Z2^N9?^5+dLd3koutH>CK^(^^2EWBE+(=6A! zWtiVmRM#l<4$JonT972@{er!xE73JD+kWhLEPVKI zhPH`-$`sm!)GZMJhPL z#Qw)iYO)ilprgf0_Qll&5p+KB3GxuH+1p{;D{qH3#O+~e=uKiLkV#inNK3z;1Fa;D zK$q1<7a7oc)NcAoLkh;ITBT!s^8BCk<#g5J7-8(YCTOzLQE^^3B`#;}YXY;;FWjdf zbs-5?njbJs{KlPI+9pW%8<>8??5*TS@imWae-b{-#gl|Ee^gL=kl@5 zIt~(f4?JRk_rkfG63Wq@8RhbcN@EWXgr(JgGTmz5J=*{`Ir(kUF;Fx^R?-j@D4asG zj&dWW;9$~Ao7bA;uekm42L2aACs2MKlbL=*sN3nkrVAU03m_I!B9B|ezAapk_G4v@ez16Y`(SR z01gL&rgKFhNyg~3A$;*vOtp+*-0NCh%jUBFTDbYYx&StFY6c z=c{!_hnjSQ-~T!}_wnyHnC@0(GE;R6L{m zCMg!PfYZCeoo-@njeZ#23e7DDL{7+~?&YriR%}A4$9o&FF|r=_-U)^vYLJL&5il8W zD*WtlZ3~FvQyE10kf(DIN!IfNP(K!6EGP)ccrM?9EB%($8w}@_D{>Prf)s*_JH-Q_ zIbgvc53U63@02CUt8A z0Id+c;sp5B;N@mX{7x%7lR6XIgmB#PUz3#BvCjaC?Nwx^sX$+0)6!H zsWdThGy&j-^k|GckW!BPzKNL6_W_8$32KG|ZrKD2@lzV5QUGG!1I#c0-P{GGI>0kg zSiIsy7&r`7aTvpMsQOf{}6Y zmYPu>Zu+13u=LO|{KJJQXGH^L%lX>fEE5N9zbozpQ-hm8y12lYA+Z1#NS0ai)=^PtU3a*&RVG&Oxr{UG@HDrhsy!oq$c5vF(>fHa_UOXb&VG7q6H zDLr4Iub7&G;>sX~1m%DZ8N57askEK3!KNJO3M@C|%jfd_zrp5ZxC7b{bnT-7-TPt@ zz`}>{Aov($t!t1n6~>2p34jLxUl*u2`llTWOGEF!%`^W0+9_mVXU}ggEBnVPukL|4 PXVJQ;ccbK*&9natt!m+` diff --git a/site/assets/images/social/reference.png b/site/assets/images/social/reference.png index 31d4e1a207790440e9dddebb721f8a7170afab28..5e1c011bb61a0a4b9f3cd8375c77a468317781a3 100644 GIT binary patch literal 59194 zcmeFY^XUcY!LnDDp^o3<hk=`Ov`7z6o)2Kdre%1BvXAREU^#@ z%#se?7mAAXAt51ed}Y3lixj4r#{iGD5@v=k+iRyBg?6s`M^fg~9VUlT*5JOPQ0Um$ zlF-$W?uyUx4qRxj)GpvNp)@942*E!;)_DtZcG3R#S7}UcTCCsy`3`wOuZ_wxw*Ou$ zjp?GF_(bXdF3y6!>3s2j&nn{kf4Ba#SO0ID{_8UT&n5m79xnQB|Bkcu^esSqL?V42 zkF0w}L}HgZdEHR(Xzpp?6Fc@kvT~3mZ68_84B3Wh1YrhQu8Mgv{V$rbJ?>w>OSjX- zwNBaIK27nI8QX5tA4ZN9fV#?18RAQ^DTp&cwITvv3n%hUwxSQIAGt zMB^A52qx(H);+FRyzpCMIGWibu0m`Qi(E&DCk^kG(pl|wU}dUdz$TjkFhvslu?;r{vQxT zn0$!Tjl13C!s83>T~^QgZr=G4^=Y3Z!H6vu>PLzKW-AS-c?I*m5UO1l1y^DKhhOJ; zNAj~z%)vDU_$W-}e3nm1zt#{5dOkA{lqAqCpNjIB&CkpH=-5By)6{FD`hW1Wo+{gW zYEw>~D>S3V!u^3a4=d;^7cXjHI-zc$MspG$b2(OZyTYF>%riY@Iwjo!v%6B6nJZmA#TiO@R+Ao>B9|$Ca(lw#_4D-) zg5{_<2RR`;$dVj!5!$~NYu)roR0g>5L3V|TEG<6q~k*(yX zPIo>sGR)>`f6|p+hvEVGtj(rBfAo_QNP0}=NOXrr6d* z*$J;s_VqA(%i?UjNn&s}f4TI=hcU2=ea1BzKeS&$-s~DPdoeDvIZbg?j|r>B|7~$u z<^9AnN;B;LE_&U4{9A^pjJ1S{hXqr?kO3;Qw%W}N8xe}puNM3S$|L%7>;lf+$!`}^ zi7d&+dc4_0^gC|`OHiLS3(^mdt;`cRi$u(rysxtosR6EW3Pdu8{wJ~`rVQU{n{Jdo z6{ZMxp$gqeFCkE{iG6mqt1cgZXwka=%Gj#>ny)~8Y)Z@0!}Z|P6U)d@A#<}h{jF~^ z?-@QNJUjZ-%SUYPv-}y+AuV42{qxjJp__$BF~4WHZH8$Z|Nx&W`zDigbg>076T zG?=U&%k|G-EKYQ7%?OvpvdOP+^D?Cuv(8Hk){YbA^LJ+*-T!L<>&WJeXCeX@Q_#&d zpRiY4PXPUNC!)8P63Va@jMEyTj(1%%_K8y3>^`=2{l$^ovbX`-24?;T;@CtO#rwX* zr_)et&x!S4gB&497-s3+cwVOSD{bKV{M<5Uck3S>bN4}ahJS2KCAinZvw08u_XlpM zTapDntgF}5%cU=Q5^`dzMoXd8C43(4(kI$7DPd)C447GT{On!#d-HKv0rs-U42%QSp>UXA9tTJp3Q7ru*rbiU3JUu zGJ=Z%)Bi1NC5ib**<`ci%mQt>KNtBgtv*=90pq);E_r>rm9CS=0y35BN3XS@t5~8wCZ?A9CuT*8MqNA3g z=68v8BG;Of4s4loZy?WbJ6T$;W8|$@a^?+abL?`ICr)kt{7rdA|mPWMEf4 z;SjHiO*L-IIKICg;Av#}yZ#6h)lJvRmVjO{*e@FA;kLeXcxf9OZY(4MU*$BK}wrjcYW zmr$`$eqAnN5FvE8>HwxYbo{&)jP(SUKr0MXE&851w`ld^iCF2)XbyZ_|Fq!|HrZYFzB2#1=PC=lMGDFZN+yPV_CHq}%P%N7i`_PS;Szq; zesO+-e}3pR*FB?C>06lUBApZ@&~8gl`(;)Sa;_1gtDWsMSL;-_?pY%E^6zWv8nfe} zRf;-&Eo^=Qfj{}U&~=R_PtzKBm)I~#6?`ij6QQkpo&31f1OoeLn*p$bcH_C~Li)_@ zcf||hp%MMf-hmM{WMv=vf2X}tfptAHh`As0_{y6z|9WOepil7lfP_P^h`6BexF~7;3g$tAFCji6+h=le+^2y{>;3!H-Rl{>SGHK^n%YX% zxsQR1~IZPa1wZTzO15Kk_^T;^pt2ws^b?EKGg-H`|^n<>w3a7g*yHMeB=JT^p+lajeX} zlDT?Bb!yC%<(1Amzw99!2oH;tR^;bOYQ|M}lK|IdgTSUkAtcdY7vAbLhID7eH@wxw z-7YWtf_BKUg_OjdFh!$5;Jg=yk}5ALES@45snE~BEZOTEp)@Gr67hUOd-_$rg=#u% zL8!WJ0Q-p3J{`yMM!ze~e55lkL;j@ccp?Pa10rz7Y_^;pJKzzrg*b~8d-;Fk|9WZm zlKndCKKQ1TJ+NVUYWVMh0v_kymg}o)UV>OTj#h~tFRl~9@&Z;HAcoVDR|Oe%_fKZ; zH<^yTH?&u-OV8}|btt#?ShYW)nm~Tp?wt1IP+K0Bz6^jf?r8bq`y&JzToG-4=lI*% zW0u%1Lr93f*@$1cQs$KTi}UNLlS5Fd)GRUOUJ$C(De28n?6-Zfk@0&8hJl#;EJYVr z&0Y3Pjc+l4gvvgi6y(PB30(J)9K)4fSdpVheOwabN_W?55(YQN#@f$K5A1<1>iDIp zje0GxXSJ9rI!OdzXV_ux3*)eTw-d?idm#M$@|MgZvN>w(r6?~dM*ra_)(lYCLyrkK zL>!Nr(_0>5#HOr|xpOjErb85;ia#*C{p{i3n6?N`rSuYctn&R|ih9{Es=0>BQ8HRY>DS z?zYQVdsP3ErqgWX?Ba&KVqe5cl7&412uNSf(V!nS$GyswAFUoXt+pL_F*Ba!tgA!3v;(1a-TFKmUh}^T4vz7*qjnZMf=Q}su0+*-l4Gx?w z_n|r!n;q@H!|ff9v=u9ebqpuFl1aUOduWQO#B$eZ#1x1jvlYCPUdAwBqdMxVJ;!Nd z4OySh?i`-5oRLXnHOV00MQ|5Bo|X z7fk_eK^|qp4H@^r9nD^)8WjsaPr_+w*RLMVXplH+(qYA(YBD!gO3e3$h@&STjb>4- z+pAJyFi>10Ve`!S2y z9=0H9r%6>noNqyc@jTuQxkq>Bg&S_q)l6#Nfl0+Zr-(75unBp^j=C(J&u0}53& z{pH-fyQTRBoo=47Yr-k7n8I|1T*xI(xPtNTsO%#q!LPAH<>m=2*|nL=UAY8x`=1s( zjebWLsVF`HgBPN|wCl5AE5@4_QcJ^~Rlt;b7()yl`mxNNTQol|Iiy+Q)Tb80jB z2=U@^(RqTzhdaMJ{d7+Xt7m12XII5}VX8GTO<>`WEa2Y&YdOJ9TX~=&BG37xa>GGL z35906f8Dw&TX+rbI;gs&*^5#8wn0Bd z?LT632z6Af>k2GQf?~=lj;sZ|PAdf*dOV77$Sl;u;SifOXv>!}ajW|b{f9k#h~?!j}AZgarP^NK9B*cG5Jyha27 zL&9lHme?Ab7ci@Q2ZdKI3LPxjyFcDN7KH8yTDLc*R{1y7V8dmnXXJe#2KA@i zW!lN3P!wk)m3M13wsLqnCQS*9ITTw?4_j-A4PEZ1HpN@G21tbO z7esD`M_S!RSbixPK405bcy$tW6R)lrsBIe6GZsy(2zD-GTP?N9t+UJSFV(Qi*H~o= z%_k;v2AR)9F_9W4tq0*~xR*x+$#93ld(2;0TmN$WAoZuK_tZRR?SS^%j()0>RF~e) z>~AZ-7$;wsZ;Uj`*S8z-xhJ`posCrW@HKP$I_LgP8JJ(0dtZD!;!vv@^oYuL7!LL z74VONh|3zO-NBII%GwN87R`G5;wntJ@=!{reQ~rhj@0ZEA?G)v(AW#hhT}P?E?;N! zc@Y1@naoa#5uyo+FUJ80PyX_XA8vw=ppN>KtB(5-x%(e&o*q$Z_lIxqj&fk5fpYEs zsY*x~4!AuDeM98-$hRRFg@1RMK0Pb%ji9Xmxh=$8@RHVdC;e}g(jIIxa^HO{c>@E+doSdti4{K6K{yzh{5IKHUJUfT>dMExJ_n8Jh=Eno?bF&vg z7DD;U6$xTv8);k)l#)^R*_=T|S3ER5EY&SIP6}eJ=nPo}fN$}*IhyiPs6`TcZTV1NvQ~6Y-gs|tO`t_u zeN;USToK&7rDI~_Xw4XWmR-=^wKdu?)tCC{^;Lmp#8o~&7<3}}=>9zvL??#vKq{c2 zRO7!mnXQoJ`WJF0Qpy`0UT<)IDQcacksg*})|$w`bgr`tnmFC#X|md*9f5~5m z;}nnLy=n3jyTj5U>?9lee&kJXsz5< zlW^vDLaaLA)K8AB__=a?=-RJZ<{~Z>t@a98`~FP7M@WRli`VbZDV_apRdhA^BlTk! z(DM^sRhT?BZaj(ZeD<4kwvKkBFZu7NEMCubh`VY)+H{BS7qSm!|C>(Ukbn%U?PB`A zsN{aUlgsy{k2wlR>%wq)!bZ_!I*R_h-mp*6l@C3(?`L^e_0%!D$|~U(pS)^s7vJ6( z+QXurH>0w2OxjLwbzIBW3|}*-vB1=nwh7qNQKq*sBJ}b11$EDth_&kvOteabB+|v@ z33QV*?8WHEh#_SgF^5?0%EV>)*ltu}Q#eh5=3gykxTH$5_TOaC$|&)c`rK#glhf{R zo#Z}S%%pl|;ZqFD5w7E->Cd@!f@a?+^d|gZeDF1&fB#iWP9<4j1wP6zoScA_T0yz* zvr#6XT_Jys6cX8Qbxk^s2xdjSwB|X!B%&;LT(;f7l(UNgvQsN5t9fpV-hVHy3xB%g zssowM3Gj5&k^AZ~AL`(H#)r@G#Jw*Q3d5-vVXc+^}!C4Xs>V9{$nW@)PsZ6GtQ$&D91Z z-7YZc7(oZijB6?n{Oz<0y~n`ROTG&DYK$-e-z^c0M)-q&Q0H$OKkC2H&RV*|aF0wh zH-n=_%Ab9q6(3IHU`s=#V`rsp(Vkk*?*n$694+J&ZZ3HG&XSL*RtrVGaP`$VxS==& z^rY16RI12%--9Txr>%1gPYgw2CtJujKEk*?_3J^hE#w<#vU(OQfojoa)lqYQl=7DH z)8nqHiGMKxvsK2`qavx5x(n>D_)yt#s_UX;ssqo3&38rTbd(;5L)yv{)%>@yYMNF< zvVqJg2$0ceq@mkC%E45qhV$u|i}2#h8(;2L4b_nIiRE+Hm1Ytaw`!7Dg^qLG>9ZKu zasJNSTL=J3#vrc%us!~jMw0w^kYC4;^FC1}e$BM&C9D>er5ovlJ$!aT0FDBFm;&&Y zd0|pbeFHBL1pZJ(lon&TbN5SduTOujQD_WaS-BHKjg?gP>h~)9iCd-yxXYNItx{=p zA;8hKL<^rsD7WpyDzW}L^QfIMY^38+i8I@Jetum8lRX~)3m~c@Iai|ZwCEw)L*xOo zzvAHa3kWXO@6t3eC$y-N(~`^5)XEJlPNRlDh+{FXzAJy%&l6Yp&w4r@AVhalCdRs+ z2v&> z`C9%Y&(VskF>_$w$^i?Car54tDZ9Cw zy?P4XD;wP(hKOY1T(6oesXUsV0%vCuw+4&k$<+|8_jm?FN5DZJ2Q}c=3nZWU#D9%g z{myH#K@;$}lPtDnf>@DyKs;V5`}uFqp)UIgiNjBahmKN9BgYr0tWAr($3P{RoK0Um zz^4yzIPe;ZkFVnAe?5m9FUmc#^Kc>5n>Ph3v&(LXdc3)80<_(yk??CiwlQkGSQr-d2od)%jiJ5w6)u1NtfxpEfvRJ?psu~U z-JGGazpv`UH|g3@U*;qHACM~f?WPpQzJCyNGW2#aAZDc{AOag3^*aTP(doNeyN1;? zQ`?6b!z7K*lNNyf+{$WlF^dLiJG}H$^*(e2tCg(E^N{{9UEci2-h zQ{&ATjqzE~ndEv6&SKHC@?nnh^7iJdt_Qi}l?JMV*AFXgcX>lB8OSHF0fQxM+?O_@ zVGEGs4m*YULr7Dj#h%K8kF^duxivbPvjO8Ci$*GZiStKTjN1 zCQxH=S;Az%W!|jyMxsbVhJbzbAB{BPKbU@?#Xn`s9~^RXlJnyyg&y9x1l)xLvDtN9 zv0q#~*J=M5H(XgvpFIg4FJ)`Y0KGK_zt_Mmz7OWBF zEj=~4S7T<8rD9+)%{wDGitfA)M)S$%@_%XHc|fp##%kNNGltdIFJp+op+{)Z&2w(` zi~-_nzv{Tow+}G7Uw>x zA93EhbKI}(7nQ~jTOG7j!X5iz2F)xe%r+=()xTxaD0rEB%+0;c&4a6NoBXl*UD@@D0JWWkS3i!>k~6z@TyURV->G!OXmh7fcA|zuXo^8#8rRCDUQtm4tYq}dvx87C( zKKBa^mKZ%+Rnkxgeio74kEToE`$ik24EaR4I%nFMk8kO7@_-dbdvPKf4F&%gHu74_ z2~d!iZbyJos1|ZIE{-K~yt~;idHVL~=Cyq*(|1f)v)t^iC)5*}$Rrfms0ms(Yg+R3;za75f2MZ^ ze+`ERJQ`+^J89c#5*pu6dfdSTu5zZ`Muo=j3-;Bn(`sk&2|~h@`Aq@8K3+6yTR2qn z9mQ5HAhWY2X&uiy?P71Z|Ne3tBVWv|EHV{0$t+E5Y&oswe;*pJ)%SoYqgCCh_@4@b zJ3bR>c>>`%+i-E}(RO1-^J))9Kam`>^Q zfi`}+zK%HnMyxGgB#`W>8hq;7tBHyPu2nPcRD;7U<2x zbdL!#km1l!x^_aQ3{{lqeLTLRw+92IK00IZVeI-e@q17iqZ(7K_^PgYi+bSWgeW6&W>F zk#rfr{b+n>VMz6Tzq(-Ddag)3QLIqw8Vc#lV+-~-`cZ-Dr|GvI-T(NsZAt)g5|SeXHgBSxvU8sePkG8*?Wc=%oEVbh-vnGJ!_> zcoWc;w;sD7ao=wtdIH$;O-sMUfD>Oeoz^=Vd(RBjEE*&BDX+&a6w(H=u1AWR(3?%* zty*rP=4La{fIP>>g0gp=&A-V^wU(}Imi!2!TJS1O40K!&8^GbRA%>b{SdOjJopmWR zBW;i*IM7zaOncFJb$(BF=QRm7BQ4AR)WN%lU5v49G@bG^_`Z~Bp(njB!}fcQD?5Y# z5xk}RhMc?N?xrJ93#iZX@6T7RG$q#vCVwpS>9!I%pp=7u)?i|bJ3U=~gD}XE@j_aXx;<4ZAAchZ?JTe-Dp}q5G=ri3Nb%+3Md=|M zz@hqVsDk;B2~&`QN)FOR=-5=5sc^K*mSw|W7ve=N|2@N@*C(6xQz`DRg`w?3qwse&e z>M<%pYM3v`_olPd+h zSnru;vF{da z4?PXO0;p8MZ-!rpY}yU$DS$u_C?)%rCvY9&HKChTSg-oJT9C(DZ)RE`frhfk@iBgW zDS&5!D_s4#ya<3XYQt8#zXH>-4zHLQ_d5&jZ}S5eUq)4=T_q10&^0pCBS5C(V6L)r zU#LFS?AsK@Jdn&P&^uI=0XJGoyW}-1ZHXl^hiF6#Z+w^Zy5NpuZ;jc=aESlc_Uh8eK1jvFeRTGNUav0Wb=jh?|w zmQcQ$Scd7VsGt^*H1w?RZX)k+_P7~;)E!wvc5zQ|EB=Is8*yTDQcOiSbuHg|N0uOvNcZ5;Y`>U%p(3{aH>&T4K#x{lZelP(a$P|HG0Z zs)07SWwmM&Uq1ftyd6f}0xS>i0(D6PmY{67wP&anb~L&cZXJbNzs(ShWzXslWSKB! z)Dhg35$o;v!t&XAB&y2ck48uLy&FH6g}Hm$$hEum*43EzNV`QFRMX{EkH7R1?BMBQS6~>@$3i@R{7Ot|((=nAddnq)Z!AmP z|70qkxW$5xzxVot_8`N}cnsN5@j)h|PfPw&)MA<_tE#=E9Zemtf4yfgG&b34O0jkQ ziP-(qx7b43>L^k5VkL{kPN(P^DILnXYDa7%!Z`g}&M34OlMfT%i-Oh)Zs0?{_YJmO z{BW`vmZ-{hSF~8XWE2o*+wUJ`9Q&J5O2UQW+ErQEUi{gW&}W77?FH5Amwc?6?sejL z9cF@EXB|MAgR1Le3#1}x9B|ktM5Aus=DShGFYb`ZGjhRF$uHWTU*XENxe}c0F#18N z)M^bT#kSQ%YWH7S1F@0#@`Q1yFa%nOkk%Li`kVJ{58{tomsM5kjbCA86=%4Y#LgOqTst zSnq-6$QuYMJU5G!&Eu{2oScKIyL=4))(H^zgg3QrWkNREEvQ$+er{ibf0faZZJbil zZfXX2;z(StZ+xDlnMkYMG$JY*`yd5W2}vs}dngz2VaLAtYJnjiC9_`C{w_LnLBD8E z@q2p=Br0jR`Iad#y;65yut~B#S8$LnZ-U zf#il)5Azt1ZHbQG;lT=h@B55A5AD~Ge5{czcv3C-p-WU?NkfSB=tl=A*+?Yw=0Ppa zwGJ30P4}ybdu-mC|MZNsBDamND|Dy+Oo6t|NpBl4%9w+XC2eqe>vL=XS#6OJmj!#M^{V2(5g%Dfd6H$1*~3Sqw&sP)`@+Sffyrg!CwT|&%6lxMGtJ;TQ5fv0OhM*fEtC-Y@W zBjuU16VCD7idL&`nU59 z9YAy2nUK)ZDVW9S`pH$g$vcusW5w^dQ_)zsm(rA)$Sg^Bnoz3v%LSx z7Y_+IWFC_!3PlQ`!;VfiQ4oV=?x~K44n{Hxy`>`{{HDX{V53w?Wca}#x}SRGWGL46 z)~!WtZ_W+RU4nYaS!p)wDYS%Q#eb&YhoOg!C8f>`-_j&lr$fX`^5!_lFG20GrvRz` z1gJBvKktAWEMEVBE$|;#OFUlq;f`kfxZH&tZs$Dib=N>UwODPh%OsZgj;oPs!rejP z8SDje)I)+ZU?QVtQFt-YcQbxl0=oN$$7HDoS?1J@U~i5|w1mPTmG&l?b;#)_TEyen zPQ3URCpqwztB5M@qSO!_cRmXb25<|HG7v5d*ORCrSm=eBvSso zmA#{y#d0p%@2EicXtw^J?rE*M!{l!_J3)|0qpP7jzUa{08e>s+**fXVCPfq;i~^mH z8H#2})14N&V*SoVLNO%LHSKhS6SAO;T5Q@V6qrmwB&wc1{#{z%h8I`!-n+0_BNe)t zz;{oFD9X8~r}+|wmA^r(SfErM(lMdORP9M9moHYT@6kCNVR#>cXO@5l8MFZbNo#BC zS*&d#L97;Cy3s8m7|dusu<_JWJv~Y}<}|V^ra~L^Gx|?u-L6zx+#lqgHuExR76MuG}eE;$5|5%8b1pU@Z(hDFyHB#kE!_0E{H0V+WNexZCT~#?h?yOo@ypD=@w9u9aS;S@=<Rf2#kr}!~oN3g== z-F=7HhmV%q)4u+mZWpEpYyIKZ=R01UHmX`ko#7ENcTWrtYxiH4I)jh6Wex^VSP}mi zd3Y*AkM^+XbY$)AzH4?G9FLcMc7nYcCih_EysQ>KqKBuI8O0`8RasJfCgAb^x5|W& zwfA)4YcdN-=5Fb@6$~eqmiX$FP8QJybU7EY#$y$9)~WJIS;jBU@O}6n7REk04*dN-x$3wJ}9SBxc=7y zkhS2a(C#Fe7gp?6c|B^ZOZechT}AGGr-1b+Cs9!bsxFSA+O_YWo~ysYy6$=B+I@JR z&tuLC7zvoI<#vB3CbaJQiDLo&aINSvbc2Ba-=jgzl@Fj#q0$2mSD(=Bkdp(s4H8$l z<(Nncy@CI5OCx^Yv>Z+GDgZh6`1i@qt=4N&4>!I8fBV55hz5mi+>-YDo*v&#B7F8z zk8`Bti~Ntv;O`bh#3uVldWF<`d7UCG*?l(<;nz1jWF#EWz@Ck}%W%gXWUqqM;}O}3 z54cdnKihJW5HlO{s*)H%iRWnLF&C#j%f*M)ngS0VWH$cZ&Eg2F$vwk}0gGR0{2y}u z%H{vO81~!V88N$jZfD5|~t-oA((PI0O3px^KP=;IIOjdj?ffpY;7U`_IZh?z3h5V(YveJ0*E3S5l=8JsYfsOLoG1Zz68ikI+v*aD&*nFpTDAN;|8MFC1lNy?3KPrj`}u?hU^&50Zn6C zj`sgLNH)~y1c@pAv~BUJ9RNH?hc6nku743P^mkDn)=@3YDabi8ZwT#j7raV$5YBP@ zc{uC~a>Tc$>8p&w)Zg*J*~dGw{aNVgLTVK!FdGNr@Rr7FC}^-i^xtk|zN4L!@j1zm zBV2=mlSlP&!%H<(=OeDg>p1D$^m0ax4{KX)xK~%>bCYqJwtUkcELw4ij3rgx)%-EJ z)x*JaNo`Iu(#Tw~M^_W$4qBbDUDir7lBXx?wg zh4(?;hl_uF@1lDdnz@ziBSqEqrHq!kQc8a(yce4dK@7?zLMUUZ1#7MP#zYs#b@>JQ zeOe`yU?CD(Skrzd!0CppXnkpLmY~buV`6VQa7c?l@eijymbpd*`o=fVoW$(nrT1!o z^#!CprwVFL+7hT7B#hMU=8_d6Y(8oUtOWXNh$Bj6^?L5@j3FOKh3nWK@+S17H=27B znO{#ZJ>{rSa5P%Key9t2|4y!N)#K1s^};C-v#eG5hpDi7xfTiM5om$g0o4T$@H=Yg4F{*aby_zmrJ2Eap4Czmzgk* zhpjO;!R$)#TS;a)x>U=b`=|4IubNBn52vkeD_UNhxdJd@r4FN1H(t*jMM5=`?cp{*C`CR?1Lfe0L}Trqe~1#(w69|!Uu&i{^5z&I`ficTC~>C z0}D%WOf@gRJiy-7Ec*w!gDLp|zU~2L*|PfE1LZ-?M`Zg34v1$AHC(OZ#e5o^S&mtJJ{V^oy@dNz@I z(B`uK+4qGSS*v#P&1f?R%P=C;lm-3phI>`YMNa?|*~jK<*$=^|X6u3@WRt40+>W#!m-m~6jWU}!fWS-S#P*eK(RT@A(7|Nr6 z8>Ng{HY@K!^hF+=$(|h#0!y&UIKKW2U@HD|n;s4N76GW|WyG{L%;-82IcYn`%8Ayc zD(QRy!8QZjTnC8v^~B?gO)357#OYm>tpl%nJ#)}c-HOk#W~PvP9Pu$0m2O&kiq8WI zdmpueDV2U&#Po|4v*QxvsdqM#uA`;&g=pFi8i?YYTlz}d?JCPTCw1eq;o)&O`B<~s z3G|!!77K2QLUnPgg4j0E=?2sot<}NR!D#L0^G|PYee(#zFLT3-hdrx{Hso*%`B&4v zhN7$5P?~39D$KUyicOCc1{$bCP1Q_EJI1>u`xt5UTR%=|^W^6#b!}IilI!K7ZAs^0 z<$=H=b8ILIE$`zw#XEz{BS3i^AEwnq3OE}e682gVZRaWU4M_3B6x_*VtulG z{ct=ZF+G3Z4VRT0j0Sk32^DgThT)$G47nz*w``-M$)s92`bND+x9o>0rgov_;w35f zW(3*$H{0={bWAoEY^qFacycq&m4rve9ul+J^H$58`6mIHYhW&cE|R@tvg5^aI01DG zxLY%pesBt4S|H5MnH6b+e~Y#*+$*L)?trxS_u}6pr0u{fxzE;gId^Cu87MIvIV%Fz zBBbEC`i()9lc z&4_oEIF#CV7cRVnlo~nvRS1$s6B1Frz|#!?{j`^%p2`o`v?J*!qCGT9#oT0 zY%9SnQJMb2eL5Y2iUhh;*21kr#MqyOJ-H>Rb(M-=yT=@_1<{-2as!i`zoRTrZ}5Do z&BoAvL?^1|&k_paRA7FspSQ?%>_qtgGKR5O3NuS5R&J0?`W&U4`0>$`!ecS|)vhWV;l zav=vyVTm@UVP=d)&S{yvbLr`jxh@X3PConejBqPrnYw(Xao}V~{q6vR{%&=#2T+jK z)RhN~>N;iPBkjnp?sK@##*i#Vc28xpybkuu$$g&WFYSpik7Yb=k>$9T$6{!AqzoDLkkw8)dRNSSWx33X9fvA!xbis{@bj1xJCWNJ#K8eBMuvynChD#=yOl` zlY9qB4h=|fnMseN?M49S{a5`w`z7&MD*=xU_$d4f z)?L$%39~5|<+szFY_a-wW@G525O;H`w7>TXD4OWsi;OS)qU09*8doMsgRG--uG+77 zK3S}m=_lW=>ZqfJq}>-<+ia@$X3UMuU-s$~UD@L}@EGESqjLh#$WY=?oP3m6t$!Gx zgzBl;vL~UJT0{reln3p%3-#hjQ1^JS_OL#Iv5w~~D690NCoER3>q4avx>6_h%=iI+F$s4qXJp>QT^N zN-|5iLVCD^uL;4Sq(y~rmI5Rn&mfmd4tljwyYu~_q<%msM@Dl2r$z(7P7PAmQ1>du zW<9C>748KAD!Z)z>)hjZb**M2s3zTuwRau)E;0NKxsXs%Cwqv63+ zF;S`HV8Nr}@MFY2=@b8(X?5g;&%XQYahgDHjb!&s-5aCV&4R6dJ%wa;0)2(y4Vu`$ zTdQ}aE-JU@9tdya;x`)Mb*|6Y2Qm57jV_uEaQM{2;}!sVnQH@`J#I9bSycZzhU`;r zk6)y}lH{p)Ma6J_mK>Z;VyfPIkEPFp!L=Y|6RUx3=b)$bqb4j;mq*OQ`r`)Kp7~h9 zwi#OB7MRm+HILP9coDrK)SHOcF)(cOV++aNtQlp4^YRt;lKTePcg2enTUR3tIM&{n zA36U?WUn3O*cY_6e7!7|Ei?Hh0Fkp5BwlavqSkyoKkBU|lm{2lB*K{rLb* zxgLO2-sSbbt-IPhzA`d>$7;vEVT7S}?M=Shvr@Ek1k?%00pRphu*=t_AEv*;F zpRFdv$by~&>4&pHno8qH@APF{zTHd{WtxMv?r+z}e3ORi>bAlkuLK1i8>0cTkn{y6 zv|Z(}c4D26Ew+^W=haeyeef#FDi~(r?NOArO}R$h@y+ue@qSO0BYxPn)lE;&r0Qc? zi>C6CZJk_4rH;2rMxcQ^9WOG-79k&!a@eR&_>?o#aH$)Z9dk*;gpxF zEdFO(jE$#2wY4!KWA#>6pgb-g#HW9njl)jbb^-dX{(j~>K1Qdan?-|+Q5wERse3UV zkQ+>;-J)yfLQiNYph2=i41t+4%9J-B{u$47bAWaeLn^>3f1-R2!NJU2;-BMxBQ6!l z4l)C-y1?&rDPC}ZxV`plVowKRXvKFeqCfoW#JU^6rmojw3SM=#(erXLzu3p~MOKb9 z1{y`&N>IVHH~@FS1pu&75Sa>I1MyMWw14ycMIv{R(lAKIaKdf}mG@b80wZgT@%ERqTQHb?uVFkom>UD8*GsNMjmqq ze<6k_za8NSU3zqC4COBOR4*3lk+j4^5BH-q83rsiX~~qEUm#B~dCh#4Fe%9B4s$*> z%2%@O&q@uAaZ;2Y-bpM_xMZK@i6H;CXO1s?F4A90f__Hg^nG_0yo!W}WEhazyn+#- za;^-T(zA<{&F@{0B-hdnQ?84ok0t$S4f_AMdaHoAqGel@;K2#*5Q0l^cXw}S+}+(F zApwF1cL>%%;|{?+KyY{0#tCk(bI-kJXTKjl`hzuV&AF;-j!`x0fT0VO1*fB%u%yh} zXIo#dwA9-QjXk$}Os+m3gEu&s;`LTE?nicuwUP1^&rUaX>I1>6Yro1j9yGazDmwQI zfBp&4urj zI1D)6`ZGt)E%pf7&$)G%2a9xr=d!XJQ7vIV-6+1moK%?(6$3&j`*|H!-1#pS+56*S3X4Ll1k~fUHz{R!NDs0^9p~*_<)S1w zT8MH3j@Sfk*LjK z$-MJ8@#9?_7(J-w!(l>ZCgJU0Y%#e8T%3Eav47rA&OIBF(Zw%`YO&l@5Sf-F+*7^$ zWybT5g^UJB#C8DN7d)W(FN|AtmK!xOEWI$dHy!M#h}7DxT%?`ZHeMzJYVOESm!Ef0 zqV_*5tUr(*M;GX!4tZ;4wx1qoQ7ZU{D3`vWzx zY^m=RF8%2k!6^E)&yH2Omzu&R0gBJPL4RdHEc)LPMd#I#c zb>;EAw;g}Z;x>0-4Vs!|tShzUx)8~|qi3i7{8Yt?7}zTpf`h7I^gd);RK6g$K2FW_ zb8%1JBlVJyQSGAFLKb-C@eqe4nTyzH`@VL2pccP9w_jRpJwz{5PH-P{wiwa%Oj2mx z+v_rHDo&S6ZQ^1?AQJtcQ#4ycY|nt&$~=+g0t8UdY#x>J15LlvrJfkxeKM2(=L-eP z(XiCmxK8|(z{ah;Ta4gGGPFf-d)XZ@#0kv^fib@%unHT*qDKm*^Oxm2dexM_AsGpYy;IID zU!_)uSpfP-)|{ctOqD*=NaH?Cp-LHH%~6JwI-J8r10-83+w1uQB+RHa(d^I~U(0!Y zl3elPQ0h$M0dD67gqX~3dA5BVel{K~mvv#B{>>XsAZi19c!sXzLYcZ46<74m$iAm8 zD!XiABtPfgp8jQe&OIi5iqe1b_WZ~t;wT8d{(>5csG#`4t{NRbzdS?QxkT6{J}0}> zb_WIf#ImwTW@$-BhF>(dg_-iPefv9-us$4&&WknF(nEu{-9m>^h~u0AyQp70$ZlPz z?HHSN)d^TI40Erspt#y~?1bmb*;LSGm3iCBmMZHX;61o=t0NiP#%vWR_*0fw&KzY~#)9 z&`B^!|1RZlFcN3f7Ks+kg@_*Rd~6C zVlUgDd;buDyn&2lWBxV$(I15mRRx}jW4NetVsO!LoeJM#SfX4)M3xn*Llm|iyh+I| z&snfBEKy&{0rc3IGmcIq=LD2hsq`6GYv8b8R=2gGxf(nD6U6}^a5zPo8nMPi9qe40 zq0B{g12$<9a|R0*2zZ7^=}D2hRrG+u7J-8d#~q$jPFd5>+kZq?54I%S7H z9C8Ljhl|+#v$9v$2e}c-83*tc7*O(h%f?8yryPmStugXplO%QfHW?pc{Z_nh`?5Ay zBQgT(hsda`FWWCH168R0lWM60-h+nsh!O6O8T?s8Ew8#NqrmS7xX z$iH%S+R&rU8T6aPjn8)qNnru&Sw-ex@4MI%P!F@u56N$#e~E?>EdqM;UepIZ`hBd} zZ!@uVui7(t7Gg4bpgL7F`qllSE^|etJFaxH!>f~qcZAG>gS0T|E<8-kj3TP#V8e3$ zvX9w)oX>`^@O{y^d6UlEf-`Ex^n1T_qC$5wK|*$eyXo&)%c~C9*O_+hAOI8*{U1OH z`WaxmS|h$s=^DxX19RI#xT}_WW_dCpoW=+M-iuvjTn+l1#(MZ(V-vSs9Nw!Ew}oty z7!zA~@O8Q3LTyMwKOnz7NIxeULfCPI40e7F?}^^a)YaH#-5TC}SkU0d126FGtBN_f{QNkf z{!iwN&fP_I%9*ME`<=UZ z_-3e|2R?B0qkx7|I(9A8n?YT39mYQ##cFD*@5V)&pVWzGsR)Hp*5Kj!f8BI1yrExB zE!lc$oeJ2OmHa~hi&*#OzM4>GbhZ+jOV|i0pSCqk)SqZX8w1x8VWU%vuMp05e0p1a zjAAvOcs!qB&7p}CT>7WVdfBsRwh>J3amAIWf12Y*a_N$`7HFC>fbB`EWo zA+gLzx4Zc5S3fk0@*c3QyU$7y-c_=$$4rD2FxXRZ-Sq8;M;!fY5B++}n97M5AM|5L zKmX-3y*c5=K3v4_{>`)Z7TYdWV&lBFLe}RLWRBJRo#fMGAX_cLlx+9iCs-uEIIH_V z`wxUnUkU9ANYji0dOj7@Prmfrn!`EYt60$5f9tcCYd^o`7uhSYX0h8-`8FWYh-*bg zaz%)WUiA`#Xs3bS7QkLjvIs}5+I{XsC@K_)UZ3Y*7#1h$MPVToBKngj#=*OU$=S7g7r%+6uk(rB+mHXpi%bk-$1 z;h@`uK~N$#_dU;A%1gPJF09$p{`Dvt`kqU6e}x27zns7q;akrS`Z}h{Vm4G1p9ol= z?r5?TbBphf%ZTjw3D%+i(VpWs<6T&4dwKlz^1BVrRRJRWuJKP7Am@U+s^HEmr5rA6 zm*x|VdfmN5pvmagOu~Nz7fbSmIyG!6ik-5emEAh>c(9pBJA2|syd)aycPJm;jNoM+Pfv?XBlGDUmN1j!x_VS?e^0X>)9cds>k$cB~8 zU^Ss^sF{iMJyJS7O}mgdj((<2PH47l8N$Q+A0`Hw3XBYGla+48W;CnNkOLsI^e%on zB@#Tg6#n9TtVJ`gRl+?ldzdyLv80(bJ2}oYF2HB+a?dQVQM%a>V7b04wdLA2vKCcg zjIh}w*$1~yH{BeXF*dru)&=w#ucUWgB--pv9RwPdA*VR!2=e?XUG_qtZba-~LArq( z$(UtdyPxx_*G_)+tFs;XB^4649>jwm+GCc~yLPj`EjZ+x3z1SnPjC9p`qiUY7_m-V zw?9YYDqy_tZRtuTl*;?RP8I%5$&dn7kqh-Ce;qF1A)Mu;I`#GqUOry4!lq4VLAN?e zh1Hl6Bceebf;mfG4LqWRx$nHL5WC=Fb;yd?*<>{hrcfKtM6SP-B3j&m4T8zBapF9W0L5=UAklht{mG3~+ZSFK^#%h(?Yvk=I92QFny>Uh z!KisO+o2W#UnunIwF&J*`@222!ewWmd>8fc$h8g*b9~9HWz0lrXa<&bu=Cn+jaAXdii7u+CjW2{`d9kqo5hbc5%S|%q zVurZmx({*7$+z`~IczM?X+Fy{?&u;l;R)-LaN6vm4a?oYR%j!k5+dS9X25JR<9@vv zc*^N=b18zQ&8z0almz|%hQRpS84m<}EXBF330K-;Zk7cJAb10;%-^<$H@b_Ieykcb zC!tI?(^%_og7iXivl%VR7J7}{%tCCL8zRb~tG7ARCLU24cI z9SpDM(M4E#P?p9J85&gosNz~@dKL>maEO@Sf0y7hA6SgGzU;lc{uz(sU-7L4${YP( zrUY4CnwIz3I*KNzoCURB1!0}DZ6{Q@T#q0Z!?pag9D1R)_y+_%Y~WqrDia|ox*X4r zi<#^3Z!LOyET=Zu^%1O=+hB%MJ-&9YC}}1(Bd;SK*=`&-suX0Dg~_7{tS`~V@1QUY>sv$41Y`yMV`^rg%)stAi{@qqu&2}t4Lq!Z-= z6@>u)3f`%lh#AC&MlV~mphlQ_#C*?*>K0&NC<5KiBj$|T;L8VfI!a+4jpt9|pG}sz z?^=!GYN_fp^GYBl1AggQYdbazyk-a4^g(Od1$_f=GV~VH! zR@>`pwv>6sa5|*OhCvVY8uG)H#3O4c&N=4t*R68_gFB4iVEIQFOGz0Wk#Nd2K0pl5 z;;gO1#dx9)C||<~yV#OBnxLolQD!?P%BK*B^6wpafYao+#fE9b2MBV*$X1vxOZFK_ zWsnmb3sZg(%t#1M_)pJ%Ftxo{?*=gGwXFp~Rv+56IlXN`H&tTyWmq!TWU#@au>-fq z#O`EHV#d?dMRefy)0WG9jnImlhhNGJq)}E*2AHA?R1owrhwI}AJkZ#{{rZ;$!fdZf z9Izq?VdU)eDD*)m=8ftsjVL0F@If>q=skSzGK{ z7EwCi(^C=<(xOmtZddx$I_l=i{(Emq9-|MTlwt^NNRa~L<0-3oewvo&K+MQ|-*$Ht zc8E2oS8@nLC-9tAxz%dy8}ec<$#-fo8*gdxBQ?M(pU`a7W?WNYbD#51ywsCI1kKWNkI}i>*hj$f(Ts1x+19K{NBpH$O z`5voDZwZ|RQzh(nFT;Q+P{I-cR1V9Oa}4a*$NB{SpW_EOd`s`+#n=@|moPIkX9_(c z9q-q9g>EASG6bx&jr%FJMahh$xx#OwU8ZlzEk@(dw)||%-C#n|CByt$2`Pvv(Lnp+ zyY56`{;h1E2RAYZ*xHUFOR+{6!>u@b7I1j;R_N8xsxjj9I$m}>@a9OyqR)Sxuo|(g zF8aJLZ?K?v5kYqi|7_q&`Eb_OknR4lq@s5F2g_I)cpb*678nS^#lOpis+M#IQcJz> zm+Q4leaP`I8TFj3H)AOclOfhywmk(#xMh`Y6VZ*G509um!GqPrY?zH~taid8rNHk0 z{~aBXeG&r=w9O1xw z^4J;9BT`~Eo7|96vnl=%N0!$Kp?@C45sfkPm&JpWrxT1Im$N%`A z4PJ>9IG?2pJUwI3X0$~(6BQjkGsG?80jtpWX*eZa6sW4XpA#&|WnBdPf*4KrTp3LO zY1&}b)LMyG`u?y+vWG)D9zO8CKC#s_>w6jF`PGwkz702f{J|Y2RU5Vx1}gQEu!N<} z7^Bo_#kUL@E*7HdhmikX2%T`n=}SBr@d#j-{}V8Ry@!+cDeeJ@|l8= zwS`Uk5quE+uK3arE3Wl{RWk%{NmjQI9?vM1Avjv_>!BHV$mKKG2WeIg%WZ%o|g ztGnahYQyqo$IV?%W(m!Kv){X357#*+-C=|al3nPn?-MgoR$K%8tY#XmlqCafC0Db7 z32TC#^3!W)*fAekZlq({ZYxfTSYXP8#BAm2RdQ8lHYe7oL@sMu35UXLgk|pvNmm9t z<1!AAc1O*(2kYnWl1R)mImN~a)|9C-W%&DV+P;NNw(Wj&VmWud z^%deVx$7wq5yrvyj<*eor6pYR7Ja#WNy958)G;s`_YZD`tM~*aQn$UC-&tYO;S|Z* zu6lh?K}2+ix69!-SQ1zMvn_I8uvHnOW=B`gS*cKiVqd;30WPw}|AmlZU_yX5rHg9r z+j$HwKH_D5605QJ*GNKAzz%AV>-Sb@MKy1{olQ?hzs|vLg0H}hd!3m)FpY$QxGCXu zXC|cMh2C^_^a@v7kc;9GA!gOvtU>=o1(2&tlsg$4b+C4a^3F5HfvhE};Pvd}?jD*_ zr)cWU@!rBeosM5VofW*~zvrOWHi{wl`x^fmh(kh6#M)UOaobh~HxF?Cs)LI|MWmx!Bkt=sx3FsNbb^ot(>Z8Y=(pba~Op#+&(cC|hMgkTf^op^5pwJFuHMKdk ziK>QV;ljI zc=HlX{d(cY@x_p@<^z3bKHq|2sTp7{WN-#UAf@o^g@XOhp-xR`P>#DVQ|IHFikW(Q za|K!hY{lJEF~v^havV;as!mSn{d=w=^)>jTnlpBxiNOPt;ACxuC|8{5rW|2mbNizO zH5~OBDK2+UMwPYkritvEp?fPk<)sL9%_gVKD;!1I|DZ+e;gnxrs6w}K;c$y^9qkD! zs~NQSfo^&IFgP8h^a3cbBM7Y;GhEGAS|7TvMJcF}@$E3QKILCeT+iIDHtk?BK`%4r z%WHCAcWUdHHSt%v;Fui2&QJh`K!%uY`^FU$T}Uj=P;of_d6B5qlY3`BBJU_(YQtss zt>?SAkMG+uvYvP010EGs&wI~=rQh#u9c^v+=n$0k>lb|Cv#JCvfA<(k z{~E7Vb7X&MMY&0DM~yn49*P)NCo-^9ic&6RM^hs;5)y}}_+Rw`+wFef$icMlDF8?W z?K{-5?n{OCFOg=S0XD;uC30Hsi_#62Zxo1hT%Y7VBT)=t=}P?w(J*0gL<;tipwbp; zNGMniLTxugYBg*B&~c4{@d_zBXx;b6<=EaBn3((kwNZAvD41??@`JYRl<*_}!)j;2 zK1Hr-Z(y#Kp$qM8rIwUdtQo-ks>mrnqRmj}P|Nm<1zTPFz z%vSx{L*dgijm~QLg4%qQ6R|aM<*PJkmZ)0Tt*3|if@}#Zqiqn$K@}Adl!VT% z61_G$ztx{Jrq?4XVlw2C03{&FT5ONrVB`*U-2DHL;H z!yPSm1uhgdXroZU@7R>lnBj2}yx@-Vl}F9{e>Wv|O!Ez!xSWhHmKCO}bDUAFyQ9?L zVx}+y!>6=px0P>OZFTm0YxxrZp$DIo93$s3O4&DyT^w1w$%fy+TsV+(RT}{>MTRV0 z1IohkH>i^KIjZ9zoh?Dv@&+k$`JHG^T{w?ZK`x3GWXXxxPm# zVTxl)D%!h$MTcy=>(J>!H|kHwVjO{{>M(FaoR2~T057L0o3F*~i8+eBpHs9`x)cO1w)dkmtw8T&oY^;2RPs zemMO?Jk|R~^>~PNL4?ZIL4rzoIXYGL5EW3^}vJ!AYDk^J``7=iK73mqS0vx%N~P(v<{PzA3_UG9&?ca;9yG-Av#!E$`(wn6Ygq zUKQW+&8UQg&AF#kE7WNH6UkALCHY)_cY8(^6gm>t+CfyzB6dPrvBz>kEh{V^Q}{|+ zmXRnH6N~J-2GjQqTM-f}K~&)MP8)es&#w<_kGj6+g7w_I8uLr?j*`^qEGP9929k>V zVE%FG^iLDYQ?2&^wDMqf?bf1ny^Y5(3+1nv&xb`%OZH9)5kgeJv5 z1+2ZiWBtPdY$j2rLO!F8Vyksm-+Z&SQd|DlB zB_vO8y&PUJ<4(#aG}?iU>g>8!6YEj$vq~yt!1t zjPmF{TPd)Fwshqu=i9IJ=EgfoZ;wui+;M&X4>}Aiq{D13(ICV@q#}bfO)b>C;~ZqW zU6e4lJuArrv1%yg*a=WA@(7C=Fd>Eq{PYuoGJ{zcK^j@~e)$y7SHWG&SEw!pnr{*t zQZjx*Z=Oqg4l!D^pKKC@l|OEYo-OzMsz&hE_Dq`UA1;fiyj(WVKsr;r^3FXl^C*A# z%|wr=-md^YTxM1S_92u;9o43r!_+A8CaULZpmahx_;fK_!?v3m+{Q*Ydo*rrWpgE* z+37(wTz&DY&w2hUOe5QR+CoUY8g&~#`-bBGHA`}k`%5o*>^4ll=_$!r3%otPlk=A? zr$8p{+5CJJ+ok4E3qijA8*VPrvkN)v9)4L_7Nj!66*kq)lvhgc+tjE<729GFd-T!= z89O`3K1L1OSMjdYv-0hVT*Hy}aQ#TC6cC}2?>4kNO9E4^AD$l6@|?o{a+tVk!Lb^(iz{(Mc@@Okcxi6Xg^dp zP{2lf^JR6A=m=s~(iC+uA)Sn)DsH_u1Jk`kY!WNY`WQ71=n*YhyUiPj{=IeTpmM`>{HE1TUExs!MrlqjAAE z7T@}9?VR`ErF~Jo{N?92w%9Jw_v=`c>V;fSo)`QocbgUp#3k<;1Fo=e03&k{D=CVLgA@U zmw}(S*$^W?Sf+RX<;~vG)@HPa8$c_VVQ7(o-g5{u4IU;?YFa}K=7YU?GK~m`3x2i7 zN1#t#jbxGzcY!&SB@mjhQp-lH-LbC-i@rHANtR@e&$^wwkV03m{oC^F5|AGnC-O(& z<)wRmBGH~Icl4t4^_Nyk^h=KYK4U{5W(+}zn!CB9qkyp(a zaekIf^W53eVAJIYRypSQe{z9$!Vg+sBcM2KPi+`bIWmU8K%Q_+xNry-TNc`jG|W`3 zg#02^S~2lXdNRW$g1@-(0nA7jf^ymH{VY1e^7=Upx(oDyk;jHA@m4CuY``tp*^*DW3`fwF8TA znRwdFz}ae9e*Z*1MJ|y%AGc0PEdgpq*Hz)W%ZaM-#UnfOL9kyor^ek?wu3G|N7c-dSDd#?%Hd^TRN!LOG?|j|0)1h>7w>8h>pc`AuZ;^WW?Vt-*3Yz;&!K_L8(v_k3grKhNg*1 zvPtig-S)BsJvoHT_gDJI3F&ds^m*y-&T}jGuATKp=Td@RF2HA(pA{*n^U;lf$cKEg;uj|DE=FI?=K@o3$Xt>YD!#ld2*{TkK=u?BOTdL;1tKm#BQn z3nNcd2QQ_cf?sc?$k_)|$z${{B?mM-@e-n%>EW>a6;2yY|pJuZ%An`dJ1C<^$pN|)f zk2W|Jv?z8Did8IiT>05$*XQqyh9pTHllq2(w;VEc2v z+_>G~1UH_!9|GPYE@x=;gdOPVFpc}$t{IAd@dBblK?t6h>=nU2&Y_}h@wFZpuKnj)l%Q?pkniS0B6A9 zRME8^RMc0liE#h~o$akY@bX<-%XZgXeA+blmV>sDl<)pL5<#;>(9Tm6Pzd|K)BgD0 z%KoH27S`H`j#0n77c$+b^BN5OL$;)Ns~NZ19AEmVXMcEdTkJ(zZqglNU+EhJ=YM;x z)`$)*@P|sMRl8fGR|QLR5*#b!832r2xpOtR=N6d|@1C4jep@>k4F<0^k>ONHW}0Zb zPWM1qwJk#LCIw`)jmCh32z}FoC1idfI|pyxhsJA2Ck=r4VLOM+l>_DRC~zJYv`E%0 z&$_uByVympSsZcQbd{1#)E7VbfRH9^5VmtRC(?{>92E-ZCL8zW@x3ehYX8Bj_~dUz zQY@tPGb~o9kYSUij+-xOqHoCQc-h0|`Wv~5aAjlh=}DxxGo4#5hy705th4+nvM9-` z9Lh2sFKz0mb0&Zi>+ihrtaDPgW9ooP)* zS+jUv?-7f$4CEkTT$LH~9}X)qX~_1}muu|mBWsf0k%S$w-onL7s_QFeXU~op)8J=G zSyWtF2{Tv2cFXY)NY7)?8S~3UF2?yCb)b~FitTNW0t(?(Wb4kXv?qH#N~E!ky(@pP zPUOCk`gn?Rgc-_){<+EzVRmpDA?p1=6Vm+!dI9`rn!V_$n%CADbfMqp;IdzHRUa#d z!W2bCycl6PowAg+wK-yz)$(NfNN6(1D4{i%2^2loQwNlB1$av_5?tb3vtjdX*wZy| z`kiLrcc@~v%B-B?gb&H?)k%`02XCO+jN5xsa&*EWlKPCbq-xJu?isFM8#mSo{{&Qy zguve}l2}u8~An%FE_PtK^S&s2WGj@H!0pyn7qp+)yGjW#b2ejWzaeE2<>3+Rp zt1Q<)$@u9H7S1880#m)VWnEEps7EC*U2B^W%8@xNXKnOcX=b%k%Nr)@GaI0=_|)ZC zTZMpd0n2|B9HVd768991$u`a>VJAxlJn`@m6cR}VrQQcdN9>)TRW(OT*dYL04=6`e zDx{SwluM_Uk_Mu9w`ug!ZA9vPMD4ra`?g*6w9DU|;EVnMngUQNBa4eJP!R^g9!7HV z{{WIMN=SSNW$pdy!U_(zR+#LgdY8AkAqNJpVCn4ezcN|>JDM{kbn8?$v7QH1TE%jz zVAJ!7g+Ms&kIBb&q?|riYFwe-?AyXcFKu*p6=l_WF=TFT?6r$-RG*6xUib0r!Nuo0 z7`Q+pw?!C|2Px`Et%}}C#PAsV?JTHf%};K24Rj~=lDB&$jkWms4BxnMzvNcK+^Zwk zP76}oQRW{C8*SLH6YtCk4%FbA)eJvxlzY8VJn5pIK|7;a{h1g)7Il$u(%*f21+NQ5 z3ML67v{>S8aP3))L}Z=bD-(v%BMhfVl+}(@Ts(cB02&}U93%&~;9l<5;Y6eTd3P7o zujX53Xoo~jo6bMx^J9_sNYeIJ)?WOOu&k+r?4)ncpwq|i|ICcLbhM}JtCI^fOuF)F z{5!{kWNv0^j<~o+M22|}%N6fF#MGl)Y+WoCD*d_;%r^=hBXumw^`i9A@PDd7T!|qz z7tMRMXbPd4SJjv4T(<#d?uAJH;w@Y=f&p9RkP>H);wI#*LR>BaurdQ@fRAewwjYS*gf2S26KzeJ zj`(!{s0Qjk9jx40W#|YwcSJGd(7rQ?FlNwWs%$I#lG^TqzJF|!arLpg1uB^|-}X{m zY~%Sqj2WxNL`gHk7RacwuA( z5kpJldEZG3V$2ctP*Ng4m2PYC^TA|4b|~9zsOJ#66aEgf+yqEI;+3yFHTr%m_IZ#) z&AUr>ovhUUJE8+v$KlyCh`hhdAoYKXfE050u!=k8tRDxqgqU#`|Z2i>VFVOj#g210&X^&`Ck$D}B+Cg+%2nt8~Bs7jF4OGk>#1N3p){hcF~((E;zy z#@s;)GARZ?gQ41+?GDrY`n>=f+sMOVEJcR$$RA2#t6jY_7{cO}PAuk*t-rV&B>Ewx zj!uJPuJ8KidiWwNB9;6c#$dk=ftjkl=ibk_>o_KZ$CfZ&zb<_qT;Sbg<1)8tg-ZU~ z;bfDnsa;=er9+Ec?~3++X8aw|&<2(FpbKRFUo6B-9Tyt^@_G0Nz_CE~K9qorc?Yw> zE2D06-hl9k`tjhP#yHH^L&gMoYZ<1z&?l@ul06}wJft8{8-j~?Bj4F@L@HuG(>EI> zk)7`4xT`PDXPY(Qk8FtVRjqd#-V zJ4f=vHLTJ$v5UD$&(>hM*hq{_DMw)Yr7r%Ysd+;b#$`R(3p@HVrW-wEBC~-{!BoL9 zOrZ?@sT1Rn69Ro6~j=6xQ+eSjbv@$oYQA;+O~z?#;fyL z$2J6vDiRw!p1oKnpHW$Vs6gj<_ydmK{~KC5rlOh{e1Mo1=+pT(W>+f8EwMM^@Zu@a z5)3Sc9uv~Hji68~HUwfpEM`j6dbuS12ju1Go_VBpHbcFDqa z+)94d>x~ec&4-^k%!1HEFYlH3v%MBi$g1)NAokdFL)E7FR@veWWC(Xyv1G(8@C2`tQG(C%VlJQ01WiX zwx;w>1l3Ac9~m1wWz)S*`Dd)`)jeWXoeuWBmC^NmXyn(Zk#yjp!>m7HXw5Fvn@H!Y zq^svQ6NZcSUC!8d9hh5WfOuGaWTR42z?Eyona;np6f!iySMne#z;SBZwT4oLh5Lif zK}9kcLt$3>bEr;Z*v2qq_Ju4|?~immeo(FE<4uxc7*+8!NX3mw{)MojGDc{KZfKix zx4wxTUt1r-?vSublWw$l$vYI}@&$}rvGldu4TJRK;3wDGVyhvK!7`{UW^D`cPvVRh zqPK!8kyO)cA9`su!yGyUq*G4-8f&SMOb>cI(`CZktS4mxq(<@yrhMEcJJ*qsBy*v{ zV&2qUM^rqSR87mQP0N*ce8n7`W_p2pYSQf;OKOGVsiZSoAFlv_z#RwlgI}JhadSx# zo64iMpAn$1g;LEDPbIK}L!M5VDSmlZEikaXEyvF?RzxOj6cmHHHkrya;&}__`H=f6 zKfSX3?nCj@wi$rzk2hU?D^2s$8=HA&f$U+rs24u z`RjF1ph%0-Iv=O*_F&&HviP?ygwgK-prf)tf$Ao05?&qq z>m>!pHNA?2cU2a0D&d{tq4P;cfuJnM-)sxm(+>VzjCH8nTAqDuXhWypC$Ru&02&S^ zl-(p;NIe7lFiRY@f{|==z!;$~nfm3T0lH}pgD=GLR%_(2G^xE(!b`Qm!tc40*Wq$8 zYst`3)2M-}mo2lQt(L)j0iYn4iS4n7?F$cV|GMlr?`v&!m^B@CaDsVzP*vpw6>fXT zf#Th(E}kl>i07!dEYQ*K&;jsFoeLG?Iy8{Gp;0}v*?A_Y?w!HZ_I-47_=T z#)0!;whxO*DW0M4rmVuXyrjtAXn!&?tT zJ0@DoDo_8w5-y2(;)rG9=y}|vzP>g1=Tb4)F4xXJ@Y3&@^KkJvVb$u_i5(duQG#7N z=!nEGP0LqFda)H>laZI~O-am7@fUR9~yy~SN2 z-{NeuAdmd4h-536RA9#z-$q z;wW>5;v6=%!rgWwO~G5zsnb9_aLJ!vR*CrqqzcNeBiKh|L{NLX)T^pzDiD|+ZRh%6 zX$D%g^!1r?=c&CNLI!d!SxyXU#9Byn9tKsMe2^~ul#`Qv0eVNa?2Dys)uPEDPvEvqL{K zo4C)@L8M`w!obqON?~q{Sznq=Vk=cHG@={AB1^-Hw7$3EDTJ#rFl7XsXon#C0eaTC z($0?BBB)hFoW&rd27|zM)sO8phR(s&`bE2*rmT2>H;+`??^h8*83&hnz-JDPRd8u( z{NdHGlef)Xv?g9^LS8nLh-RR2k%O14q#8{q$AFeUEP8hSF%MvdLZwa1K#=D4yDbnFHcTQXz&V+yrgDArQAZy#i%9_l#po;a8q@z>sEwp$gCwes zwT*&GUKqxCX=SB~NUo|#uFfGf9X&0Lp=P5$ilLCN{x6< zsyxe9%oC}MHCr5bGD+2S70BEgvQB@Y34ZyNC#pr^3h^{g&c<7x?muvqL>ff!)O_8J z%6wb(cc~t&esRhpbH(rY}} zSi)X7hky!wij^Z+GojDdSZVzJ6O(73tuTqc)hs(~D+~J54Qs;JAoizx~_gW%N9{MzrRAuEz%Jjo_dQ zn{ekjQJ75dJOr0F4(+ZEO1dB-G?Iel3wI9ggRUNa9!2u-@+pD?Bu< z4w0_#1S0(cXwYY8$EwZ(Vjj1u<>gs}#pY(XtH10zZ~)Ag8U}I73{;caIA(zFd)X`& zRuq1>sWE)1`flnTo>zGA)`JSI0Bjd0L~fia0&!Wu#UWceqTpv1ryC!dp+m*|>e=2d zZx+I|Vaembs2&(NA4~H0JxUFC=kq1&{N#3(>fm_1-?{MFx%S(=nq#8nH>6g*1EF|1 zO^tbu002hsi+ibxM=3738dVPMzFR1`Eu#(L2Q+oMglQXTUfwCqX1*-0lgvAEKC$$Z z@&xP1W=;zI=GaYE4(+f>_F275OMq_lB6Oo2#*}C?mVZsdmvSYw_wjO*Iqet!FW{WEs>A6X!BijT_5se;aS; z-{%C_%K;i~d~uoL4!<+xI&kc2N_va;ekVOtP!g1_Tu_f+q4D4x=&Hqt~TU@_&EG1NC2oxKzrlR$Jx6Qcp6N-#gok+8#vl&Py zVDw+XZOJ#&($}e)B94o+YXg_??s7_!Ffjo~2M;dOHDczqbhA}MXN~aYAG9_v!gXSD z9di$Zb$QV44P3!-@~L!;(ju9fVZT9^jy#zb&3M^vV2!X9C7)TON!XE);bF+1X<414 z7UMDP&ZI7VGcrzAZrCE&zbo|Mold&hE2i({5?@S5AfBjFQz=%yzP`S^58zPNoOFFl z%t%w~d)+BCAq zwc5wmg{$xP1<+@HhanuR+#A$f@|*9}@moA74gD!~#e|;OHltip_HEp3w@6Y}Vvj!n zcp(1YG=Kl4L;iM+hhf7~7G3qbDQU+Vwdr{mFoq<%Jbv*lF*}zygS=CJzW^QqM6?KO z-v%zfJTM7L#vm=98gR7K>#PB`-e^lzs;WJJJwarSr+_`CR7#%37$via$c=@zOMpIKP*pu4ip3L0pioIyl9g9+5A%L9TtTN?*wzuFYi-% zAQZ1_aXKWuWLRO*<3Z?y`)h-Pm%Eqp^P^b)BZ0QkGQg55GyOBs$(=P!V92IwWA z@xy?&ot$5e29AP76A6o+#eDz>Ewi)CR2fjDaD`by?_D(uJ6$)axSKftP!Z@9L42zWP)Zf+gs(NC$f~toXGt{zuyn}D zFlf`||6}hxqng~luTdw)R|e&b0{Lskz}TsmLnk_SinE zqS^5kzm%LgM_8RTG$^oIy=U#So)#}A5;8V+StT9Tbq{-EU53@stOwj`p zMRc^zi~~y+T50y0Jp<)V%o8o}2hb3&YDOq?tK9jTB6x;A1;y-&juCSiM5>yBL%-yC zNuc^0f%r+gK!Zn$F`nJ47vXy^v3R=(rjryDvUAokB$4QlK;u)Xm{A>v+e1Ke*Vv!P)nlK%t8F zeOG*E$xFy*FT&nBHS6AtHtscqU^JMFxyL`st){N!jWMR{8yIN!va}NWKv5=uvU`xO zFDh!q9PT@!baQt@L#2DvC>Tp2u^wIlHmWj>_Ant9t{2)OaG^kEeV3kUt#`zwr10}m9lTSK%?fRwW4K_nR!=SN4VTp+^hP4O4NQ&7*A(qaVUqcH1k0f`k>ZD300Ju2 zIR`BcG_YeogfCg|v6}miuM4efjbGy*Cr?+d-FakTR(n|0G5WM7GNC^z zj?XzEUGV)=AA9A(zidFV$Y^Y#$2#oIZ|n#=8-LjnfuZVh>`bV6H;POF<#oj_25G+wRK~{5s&`% zU&E4Ql#8y(U4Jt9LHMR36V&H}RdBF_D(21GD$HPT(dq{;ZW|ucWqiTI)e`F;!)$bX zDEz$(M5svm??bk@H*V;AM@cC{@2B@Lw_xGJHyc7XJDPzw!Tbx3b# za#arl17C!cy8VNTl(>BKr}gK{o_W&nqz5)ZU_BKc9D;~Cq@SilJg?CltWnKfBKC>MwHsM z1&;GJwFiD~S+W+(U4CMFEoddimVut$Vqq?CH65U<`|({EJyS!u4PKT4zDD7iTmE%^ zKRNQI;&XUl>V}$@QPNh>hXYrI*l6pb_(O3X?0TXk?f6H?8%Wi6U03tXY;)Hv9lo&! zCpLdH{uU*x=)I^~H+x&~^Wby-SB&CbuCpaRZW+dblp`ku{Fmu&J3qGX$MLqV&BvL2 zEY!h>g-;t6H|a)LA`>Yh5m8adCE8&Q>xptjhUc|I(wjeSNQSx}bSr zxr`<{N|DZYoEcD~q?oKhxmh=*7d8jxK^Fc;xmKb^7a(JhX{|o(H6iaQ{-zkYini&j z`ud)pd|c!xu7aJuU5|3<$9t;Pj98rGLedbwK!*gNHwOffHD!JDWs+aj*O>6yBLB$!RU0BX8bXCzlj;br-vOR`o}o+zt=*24HMe zXTGkk>z`Q#yjcw%?GQ=lyqu}%#xL$?;QeV~$93AO(9nfiieO>mrPY2Z3SEKe@&tbVsWr{0k*IR6pKcyXWkkPxyBKE*{Bl_TBw$YL}Wo z^OCpf&W6^T`g*wL1uzxpGOLiMm<~PJmAtQuh=;H zW>9lN&(D}(#FJKH1>9-NJylkIzxw&gn0>@a(@DCd+fi!nSF@{k`eWELizS4GPELn&x{Vp+E?Z6I12jA_W#nhn?B2kmB3yWS zddL@KYBb$ZBY=0+k_)cM0wIh--ulyZETc%k<8t;kXzJzpQ=6<726|=iQ6~Sx9e{H( zg6(I8zo!(I%*eJW_{%ltqM4-BCj7JY+732YWOmC&O5t?nWsd;b1{(3jVWPlN?W3y5lia|&CqWas0v#e;P z<;5WA8Fg0bntm=z z!@JK=gz4s%6R-6I+CExtd1+Y&S^3FNrijWYLP@APS~(w)f7amvbvgTdC9Ar+C%21E zx|WR1v#^7fEj((63zM`NMI+hF!&ioMA&n3I<_%iCCf+@(-}$;N-EtU)vR-Ei{k1B~ zXPLq=AS7Iv&&~7dqyJyglDkJw=T2CLAsvF&`mJ4h!{=$69;OtI+cSO6Yvk8N4!>-( zV9*H|S;_0)FUzkHn_Uz_N^vx;)-;~7tEOZm{#-I#_3!sM+aTTFR%05B^Pgs`Y`mmM zFDcEgvO_-E6uY7|pU&rzns&z6(Znp$N7E6}X?|$f(7}}gT;zF2R@tl)x#Lj%Y$ccN z?ldXiDL@tu&Uudc{usN$XKr|LSM25+$pqro=0*^)V4(Bj`xq?3qP9X6BbIc!w!CWr zSqf2-Ts$~&f-gCKDv)V$90@M6eefg$rpLyT-)A;~r2B zIZjgGSwmk8nk4qcBk=HYr((PysnxNn~ zzZ%rsP~xFNwDoWjn4ME>Qmd-w{s~mgk3uZEP8hjHDcUOErmX412W82c`d*){5;3c} ztKI6?sp8WAjJQ$HDV0jjTPU*OH$JVMs>9wz31nF^{qja~Q4zhxNs&{}k|l;F;7zjM znmMDdCSBYXySeCCp@AHwBQi&Fa zwS?;JYZU=`z(&9;+f&q{*R zwxnseTOC!G)!qtre7v~MuM*4_ByArdyhu6k2=CD`G^Ao@k;q`1A*$F@v6r5nq^W8I zeA6>o4mPx(c0k|n@p#x=D7RX#25H=GNo^^N=5BL*KA`NMp1v=L>T6**L1pL0%}rBY ztEwJv?p`lbOo-xKyBAX2GjLjH$1$(3RBGUtiryz!(Zu!-a74P(Cc&B8KPm9f!@*>| z<|&iLqjy+$2VW2r;I`jBH9SimZx#OKc&UBz*=3FJ^3Jd-GTJi$N+E9?tQ0^(K z+XG1|ZsY#hLivKlEdNXfHJFU~t%Kd^=Fp(6JvSa6+VZsCxHB|=(*&dlYqRHruPZ}- zFYUf2OOant1EZ!v6&spk3Stj<_joR%&&fFN&fcZ?>OY8){c=$t0W74Oh)Oj&4Etx zDE*3T5YT3)?`f(rpCJQB3i+AO;!9Sa-Nk)3NKqFi@lPgF8hc7VGf%&!hFp~$E~p*b z2zRafq%4mM3c19i>3RQ8Xe;m!?Wk`c)1H0{Rn7dN`v4`5PK~FWfX&>? z$5dQ}HH8uF?tPVdV%dE6_1oWbZ6=-h33;cC?ZH2bwQ32?#VT4IEE}aLh?ss5yroIs z$r;g1zz4ZNaI4Y9zh~#G$SIEgZufel$6x;I+sZt}wVn^Hx+h+22X7PN`niD`4OF!1 z8jSg~q|Pp}uaepIg6li3ww18ff`S{mRw<-f0Q|TkH)w z96^@8zdUKRkLOi!Ib3^@O{LW*P)-|=f|DCBl51&}XrS3w__K8SCI)#5DIZVpy-!`Q zd-Uu-^XPkH-3EkjvA|Q;T$JO(=`;txGMsKfPaS`<#(FE?KGV|D`uCrqZJ$3WcbkB; z{Yxi)*7MJy1^bk)r?+efDu-qou9`W_(p89+sP^g4d6vv9&SN^LyPsW$V$zM6Q?xYe zk3m1@cyFUP|35!(d6sYXE7T2{!bOwNamgg}{ykx3fTm0~Lu$BY-Q3Yuw_{NWH=j}5 z<>{_ytQH1I^$Y4LJj;TJ_me_m~@TP+*Wr(Il?T zlEsrOT+^k#KM-(>tFh@gtEhED$ooG7Pf}{$#fy!M9G$e{7rmv5)-lvRbEXiqC0mKbTj(TMg(*sKFCK+zUQIJION!i@N(K7q_sCAZk?`q zeGU>@XpRqQRN_V}r6d%1OIVMfZ#!K(uk!_S(nfO!9<4lbwp`|NI8jfrrr>rLdhd z%@!f)`pKEeY`?szcFJl)APS#)8ZG@~yf=rRnX6y>ZZGVMX2{!XLq)sbNw^tVQ(NU* zuWP2U5C3e{9a*{SSpt=(??~}lp{&G&X5DC5E|&4~Ut=E-ir`tR-ITX$YFqxVaZz*g z!$zR8XDb*+m1eFL=07z4)YG!>hiQ*(`U?Q2897Of<#e(8#fyNQ9o}S@tr(#$1A4On zHl_4=il73lp6kyTHN2c)fD@++Xyg@O$)WCNo>=UsW4~I)h0Ut?u=2?)o`3BDlfplT z=K80q55~k6OHtA1^`GCyRAEXZl}|TMmDVbOOy=I~BIozTnpKsVtZX@12^Aj)2S3RV z&ET5?UMlDSTY~RcsGi)&eV;Hpw1Cqz)_XAf+(J8>wj%;jlgVT~!#?a?AL3BXPFNKI z!a@B}%7?2F{7u)*`(*@G2*|us)16d1Qd!3@{)AZ8lN|TYT{1MYDuTAPX(U5=D=S3e zeX-1nyAzXAiN-o?1K!%CMHd-T*}|z*_twU^j?25BVsDoLs|vh6!FiK-K9Q}|SQBPE zsOwk2*(mx{Cmm4F-{w}#>?O0IQS6QWrS47O8g)5Ew~Ju?6NgPza{{;F?m1lMe z@YY(z<*Y;oPk$D`wYc!Jm2`!*iDfVPZNLVsi6523Ekq@=7h`_MuTNu@Nvm|w$>GKRKj*B4 z0|bZ_U_7yc`Wx%?WXk$ygXD>_d8*9Ajn27pL6udCNA0^p)W!(?pNM@+9IoEq*4$VW zIrtN)M72AD&wZ9O_j}_7iGu@$M@>o@g6r;=w^&-vrj;zu?BXN+pkK*lwRXWr`a}NW za1>4m}Mi}wL-LZW-!(mKomr+S+ zH~sMTKhISHX(ha^Nk4+;q{r)9YAEYVQzimHu0rg!7MRu6EnAhYt%V{;TZZ_jbI;j% z74Q5Re*rM1NU@t$Kv&d67XsOCyeKHZd1gX{mVDmvhn&y=M+`%KFR)hnGp56AMBZOO86V7Pm z$UiKn*Jh2__2+h!1ymodGq}mX%nIBF?RB5ykJ0AD?QTZG>~z7z1P$5^yfeP5tsc{v z6_Uf&M5h!IjDG$nDuRCrTF1HUt?0WLhTUm6(l`E4SmG}`k;l4u{2&--91cPMGlKb* z)sxw_fH!TyFVUh8HqxIZ_ks;ZcIAAwqk1__4A;DcpN?%CSoNV=tJX-oF=Zdicsvz`WvheR%<9}{S zT3~wlWKKfEH2PQz0kQL`$Ld#f`MZ;Mzt5bX?>Ic#1&@*Rdm@+N{h6XSGpXX$!E9j| z?(mV@v{9ipBin#V)&^ZrI(+)opYf9AvZJ;T7>FH()mqH?`b!rE{s$f1W^)dGm@X}*%n=MPV#nG^HdPd!OYVbA+= zI(f>yDVSl+c5Yybfa*&@#(jwNAavc@NX%A z0Ku=j(G=8w{*;Jp-__t0;@oDJnZ$}UX#bc*G_81C^N|BRy|9rrN zlQ_&o#vMwEZU=Wi?JzjwvI_w2u*;$H;yAGnyBS42&b9enF{ z!|o_`k$QY4u}8Uui0xzN9~>+@{CLnYBet3aM23!ARcDfsg&O_+qf@59oyVL<=Dp2B zbhKrgDvBaU?JOMRpAwcxF-XA$y&5l#5_g1)mo^jCSyk(Rz7z7=*FUYD1fLhyV#%j> z*hBrwIrlaeQi|xzJ4IEtyJ-BHti2eTSRj|G{&6HtFKs%zwD9o3kx3hNsU)QeS?eGj zEBN@Dk6atZq&GA3h8kiaM__N!m@*?Nkl5Cr#7S1sG6M=1J1P(HF;7$V3~N<@;%Zi% zW8wjAFb7^UUqp*%!=aR|h>LSL$c2lhL!kckuEKidW?j!l8q>uHc<}yXx@wwoK27WD zQU3cDITyV`SBW!8t*ub`doiP!7t7ZuPRCM|(T|&M;SVjlc!X~je(hg)lEES>t(zCl zwU+BaI|9#|%%)r3q;^ER*IP0>4R!-B!dBNFst{Iy*!*a?5pEN|o3|N@s;v*JSYz?f zIYKgbyaS?ici&rMpwIQmx%_Pv652$>cPIVr3Xhw#Ln$p^c+W{zin54*(XUFf3*J@e zmy=M5--Wi})wB2|FDC7sM9)nLSEaTN!_Ca|ji)Cn;)f&yrCT%kOoT0LpRbm;1|1RF z;F}y5&#CM{23a$GC>{eJAKO)s`fE$yvlJYp1?e^M=(`o4S!U6TT$Zm7r9`}3-||a3 z6vw}xLhK~H*$xQ7Ked?@5HcKL4<*GUX-=Wto5E?{ARCM51{>0!E=D~X0{$-~F05HK zQ_Sp%njTOAE82uq+K!On?{ILKkec3u=IXDlmZ4i`M@9nowpk|?r|pBCG0k{auL^ti zw2D~SNsf;jzT&(if&;AA#6>mZ4fM>)g2O&OsD;Fx!`QHe?h$8-$)kwMJ4DP%P*Jqs z{Nx+~W(Z9Rj(U>IMo!jaB9br|z5+hkY9NHj9{6U3k-j~$v;RV7_f~u0=MBS(D@O2- z^nn8nBK{F3)xEp*;uNsc&_nQ3&%qj?R=H?~j&}Cz%O|6tf>MuKf*bDl&n^oG8=KjEU!TL!0&`C4t0!}qx3fqWTeKo7wC9mO^c0;WcUc^gD zk-a%bo|QaGBPp%S_uOido|UC&_vg_`<=;>_Z-c&eNkFECeF054Tdm1fT8zpJWdK9= z5CsjA!GR|3PZ))6u3e)6?m`c1Aw6JR^Z7J+{!3}?YfTcn&;ZAZC3Mlzk_elN&o{?f z<o#dv z0d1?-0Al=l<$4LXuH2 z6TPDa=<5Qt1^vW90q`SdhOsRScwgO$X`*NS+R1~@WKJ;?|Md}|8p-Ba^7KtLmsTd> z0NsUoQC%e>B&EQg41PpjS&gStrd6O%Q$@4qD>D5#>7R%}OfuCrh5$uv2H&aEo0?Q{ zf?2Q>cTnTv@mkh2Kz=iE{4_r$F%L`=_ZyOn&JE(q6(k6q}!2A;^7zxqEGowQui?HwSHg>qHZ& zh_i98(^@NzldwCOIDyD}MDl6(BvYSZ+`6Tu`;M3xZ!!;7^CX&Nl^Vwg)9CLR_3FaQ z=^Jk%>oOLDFfY;g^~fn&%&m7W+}Dm!7RAdx4VxwH!)gsZA}(g({KuU-(Lc1_O}ZJo zTO~5`%M=^WoDb<7)ycZ_d|K*-L}u^n?YpZn7^!PLwf>f`FxSrS9gfDy$9h!uOHjyb zoHlV&)qFGbZT+Fz5L3^NB%vAQverw&j)Gn0=Et#K+9~i{OXY~KjJ(cEeSO0#b8isq z$F9Akzl_1eQnmEg| zgVT><&J0NRb@bMNH$&pEAA*jcm%ID3-~P_6@36PsL4=>}i?GjSI^8Z;hhV5!P_9Pn zw6$~N)PnEV*Itr=T7~=U#p{((?>mdua-<6H$YOu}Py^TAf=|4tESG6f#(f=s!m$Pj zHJhF?K>be*f5Qz}vI`xgYJ?=IR#$%#QK2Y9;&j?RFhCPqw!B4}mM2`5o3h{~TW3O| z)!MBc=1ONgVd4Wvo|StenG1#atJ9OWxh1=&cdH*3Y3Ot9AwPEQBJ;Fiy1HI4_Ga6+ zPtr1&fa|diM^&x6}YCah&Y)1_pp^dWU_KFcdxJ+$cd~IS2H5Mt&MBytNm7`0@>i z(aBvdYp;##S0Wb!0W;}r;FsGP{Pm6<&0C}$(^Hqpift|PAEN#{{+(i>5>Qa>6tn{n zm5xCkIHu$xyU?B88{N!t#jI^I$^f(R|0FnSG^{mvP1P(3Kas%?PtZE3Hm#)FfM>6H zkfusO6a=rIdQVJ=>|z4&AQbm@5SU+xM(wVBe?OE7!5ILWbepH8EBNy}9P~*nS^iz_7euez9 z{vV)5$flyTLMf&mk;yiD`gu$I;wj{aoQzp5#0tF=$uKe4*>WdgJJa9Z2$_5|)y&iK zs~-m9mxZ7pEty)5?C*827cKrN=aJO_O}$2&Mz&~JTaV`gL@**Cs$O(0tAx5u&;U5T zR=LDA2Y`#%*Ra!ZT@IE>6ge0 zYU+Tb>8j(#svQ(a|z<%G@CsE?6zp~Yv zOnf|gM|SCuU2rTZ8O7w7&+8Em-IwfmSAht4iX>TYjm%ZJ14T3YQpe?lX#q2do9}C! zT%02995i<#czcYQ&P++ps(x2<*UVba`nZ?~_3#kXx3*HKC10!5Z88dP&hcjicfR9? zD!h&MTA30)w)UJR1i&+oJMe`wWat7XR$7&O*Ck)*MH%ttX6#GTeCyf3Be`}a)Aq#KdpD5HaU72O$T?x zhu&F!*3B%iyHqx>3@$k%>i~rn!cpkrf;Wa_U_iC~F{wJ7W5N)m))L9daF- z4;-&J^hj>#v6Mcps8${EsKi7Mhu*(< zTTW8E=(vt``}>V-I!07%Blu!U>Jo=e7&wz|?)%1{1F7jm2qT+cQV8bdwg&^R3XNRb zi3KfrEvFP6IE9nyYzs2bN9QG`rrO)@c^QaGFoFDrq#HnHb#Np?9#WYs`H73UmBEAE@KJ^K*$;4jS1@@HBQUaR@r9d0>F7ISXg$ zCC&em@!Z4bGJ<5JfR{QIvCkH0y;|b%{L1u>L^^KRb42Z)T`Dm4yg5faLRwpm4=uHX zEKYnDdr7D`|KIBg;z(x0f7Wwt2X=F=+3EyEdk&=$tK`Z!ea+Za6{LLhhG|QyDp|iy zMw|+gmIXFuGXgO##aqG+|6P;bcQRDt6i={mH|HVAY%g-A!fC5Icb+A*w$&b+O*h_^z;>Lsk~3m&jHbLiH00rj8IqxK>(f`~-#Pv?4mTfO+-u4+y&P`d~O><=qRM>5qmNsqGnhnLxW=`wJK zVdx-&33GUxDIw09@#VOmF~pbcu8FsfkAq#ey|Bm=lLz{Z46!O|FtaD+DE?tJ7%k*aWEnky9`QHl{KZJF%VO{wj%l3J)?-MeRG6G%%o1Aoi zv$T@}OrVC&>IP*;>i*Ky6ZC!my=W}rlBV$_*=eh1GY3bHDR-hAD_Vk8io1jp9MrTe zX3$>NXLtW#X-_LS#k1Lqk85-4#;@M#r8q=N!)42K1(_b(kPh@@JI$kzz1>x zU8BQO%I28;;nBd_K=TyY4{h4Ov^-;9yubB=kScw{Foju=d?Uc5j-fYPjxX0fRcbAD znc&baER(h(HCWS43o3!258%T`kgGfPhChK>8Ry%T?bP~1f4%eq;SbqKec`;&b;uz!W zz+!HGe?6Rd6e}!A2(fi}>$%dm1D6t&L)|oN%PAKh!p-T3v@JcVg%U)Gg)K+w+S1gB zqY&EN%n3G#_tTW2qr**YrCXvKeP>zJGGuN_US8X}uxL6&kE%DsQup@f=wx}Yt(Nt3 zP^^F!7!#f=19SF^=X&kE&M5(&O8mINPVV3Y^T(j|RwtngPEY+j`K}Omw;2Ia$pO`l zXwMNxKGV3OG{=Nl|3b_qY0U+3;oHQyaHR#srHlxY-Y08v9?zln@how2^j*6%i zvqCEes|+a-`=hTBYq^(FrKI%9Kma6=rpO^kb*Ce`^D^A8OZRU+GdfXPgew6TZEfXH6> z{A*dMv>Bq5P&nEC4Y*epwBaN0Omnzb-g^+~4FIgrCTBc0kE+NiK6>ZZTiPOKkG_p6 zOk8jgAPJQZUyB0IH7kfs3X#tpwKIj~acEiY6(L-mBvvnl#fm2v@yqz2b4&37+c&xN z)Y$RC<~_4J%Zd=i3=yp_7t3+W8;QO4E97E|Vfr(UBY$4!cPK20m1W`WAJNL4oKBqXp>z&ClSjgctO!P#HFD%5Pvb6 zIpxYg9oV4uBdDXNSHs;Aevj^b9a)1Y1wp5+)QIic+EQMRbui~TyQq&}F4KZ413>wv zA_r>S2Dh6l`^Qk<7Pg$g=?CZ(hHsbA*d>HBzrE(CC{Cpl0h&pO6ZQ^rxQtx}tG*>l zT#?ZQ=l|Vuo7frqPT#SwVzPbX!)$-Svk~UqqYMCoixQeD4?JDIf@`(YD3*ZCWpIUe z2_!AACihpMJThmp(KMDOL>$74WvINl_qE>iOPa2m5`(Z0erLF`stR$?*$GfmR9dlL zT;5#KLE_=*z)`mTXY!VVIv`;30Maqp3&DPul=!eY(*_Eq&_fv{)eV`Oh`)vxn7gaL zoJZ9&V5xItXC$ADU>GQ3Zl5;U2q4izuZw_2NuYM7t)pKnYYOgk_j$~jC|3=Dbje|r zb9L+u0deI+?P3a(SZVQG~tb)8AfgA6(B z{W_VqWV}Mnw^}cfafDHe)rnchq2N{&fNcJOn${?<{x3GaT}8?~(S7!pppWde*eoYGtJtZb^IxiH@)2%|Wtp>_`sE zr$#2DduNy@*MxHt{6{8o3y&s2#-SI&YD*v!aOZ3%GKs<9JQc2XcpUp_A!plFBr!h~ z@T+uOl+rPeRLVVxN_dt?5M`^Tb+8?A6>y!`_`7HANadcg^#xp6vDRUR1HPGIxNTj{ zg$JVIw(4dPC$t@21S>bFN6Ey zYU%&gQS<8ia=;6TxcgR-3!kBfy<03o_p}O~*1pS?)0M)5mF!xG#0fDqBBS+kMjV4d z3KKM?=+N4ils&y8J0tL&gwj*Phpe_&#suzQn_D!kyRl87RTT}M4OP|iiRnK_0dCk4qJiHAHe1tp*z}u4rrb=_*gm2|WAg z7V-wm|9sdh%m#uC%kZ~P>RjgJb$Iw>?963RO?_?Y7SQOWB&xOoYATM7{{1eiKFSYZ+UKJfI^!eG5o1)SNaGBrK!#Xv->e z$Wt~8V3dse)r;1_ilDiL!&=a+rVgSHP>_EPac^iz)qbrK`U*uG)zF7YNgOY|0@g!lh_W4MF_ z*A$On-uj|Ctk;U_HTAsX&5bSYTY#_Tk!5n})M7Pe_b~pYf(Hgh=Z7($`R063wsbbM z<}p-fq4OAfNCT{Y&h>Sl&Du&H0v+Ce_H^kiPY46=yKibiAJtUwUZOo`!vMI@xU5GP2lO5e)pfqnv&K9g^r@pbo9=Fa%Poe90OSm94FTXf|eR3UpMKN zjLRyfC*3i~uhvVegEO$fSdY}~pPcpXO*R%~{Q=E|nMaei`OeNwk0oWwk`N2zbAG0Y ze9qCj);VYQ%+5ndLHH1N4Q)A&<&9^)Su$>A#vQffN#PlrNuul2KY-ipnG;nzbV2 z0llmOlIa_6T?<>Qu>x+Rr{q%0Uj-xsGU!!i=#5_yp-zDr>CZTV-YLpX4&VOtlM&G@7nm5DD^_ zw%VBTQ6&pK=WO+_fT9j3QyAzNQ4DQvv}8!kEEHIIe>;CIkMgLa)x+|VBbyv<{x%>P zwLXkn3kqs6TrsNuz#@H(k*^17Sbui_@CwLXZYN;<Q9@{d1CVz^R=N9O9T< zpKzz)Uk@cR#K=U;=Yl}|GSqLSJ?oK^qs@fhp)A-WF0K5dua_^3?0zTud=ep?;(&v1 z3~oiPCnuD&v!H0NXru-*us-*6_s3BIWsDn|{1Lw$_N78wn`7R0^4A#iVA z$gVE?vz3h_g?I5yQhU4Bh)uYw3jJDxEuiekN??3`5vfWS_^zuXG=`4|Ti+#EKqn?^ zn7|O-ru8WD>xpOCTT${p(lZp<{!cF4eRUTo4a{A5s?7`jIE4epNoBIw_SGbJ7u`Tsn5YUM z8YhkkK&2fQIYk~G+C+$g;zidE4F#UR^V0(zZ)Hv%?m-xMecwJOqToHNFk5rF_uhjbCuc&Jb$pvHq5YCuCC8uI%z zf%i!WcFzDdVB0hz2{fB>oL)u?D{T+HkW}WB+21uAcO@zm!9hO|&=cfgS-W^vo|Cd!*A_zgT zf=JFvDLX;1CC`b>?$5PMe%iZOagu*}40CcWXrcxIBw{e)zRj}tgzxI%c&Zey{wZNw z1JLjVlxDAecR=m=4*q^Ca;>+ZIMgA^UbA-qvxy~pw6Ux6zL9xeS(jLVN5q;mj#Cb=uni?n@%f;@jI1k|Z5ig&ZStT%?>-p| zpK>g_0vxEAozB zQI7{Tl;rD25^F+o07V33y}%>1(mX3PZW4BMmon^{RVbFzE?=qMyicQoWB?lKku5;U znVGz5_(fq1D6wpT$-30DrsCk$oN59stuUvk0$_-r4w^Gi`<*TK$uJfjl|#mFqF#i=JP2sbrV&prR2OsQcd89- zLJyb=q?dv^0;3AP;aF&0bI&4SoW86k1oE7Win;oJ7?7eI17!;9Hh55NGm{0B8nksy znev-XIa3}@L7V4xO-}m|Bg%-9Luiz5L+0z}qbk|`2|BIsL06hq&`x6G|0G2l_4I+{ z;K(DZ{KJQ&k+cj3_b!Vv^)^I1`Wchnth%7xW=VxXzxr`%~G2qXQ3A<8Mc6k0|;-(hZrKW8MbRFTma| zAzD>hQeN4hrA#vD*Tpg5=W*C)Vj0jkz$n)Pdh(P^lf4bap;QQvyrUKiYDSg{B*3&)3g2 zf1n?&YGs@uvAlZ&v4{8a9y7-xKj^Bl2=k~pWC*GHOV?O{emJls8oM^dMmcpEV~3n! zV`E?6R!Seukmkow{b!K*a-!QA6Z)<~(DV}Oap~gp>l1Wc!n|X6jHqunj7K6KMBkPm5nTk8O57cg6gI(=Y7X1$0zE_EI{G%u;8qXf;43o9=%|>s$ny;a!>Ru47^;}hOn}n$Pr5T{^ z@#_O0Tju|*th%->)-U1asUJ`)P_GAtx~0`^+%*RE^<*B14Y@ycobgdpU0Y1|W;fuZPa|+Lr zMO2~fBqhc40{YOZmc|(=puvwE!mF9n321s`8fv1o%;L>C_Y7$%eWom_N536@XnhDW zBhoH4V&;q@dh_vStc>aJ%>ntnIo2o4b3kpH=o6C{TIu7~{l^en3?UUb6MWS9Mk}H=%Ip}jBIM8<%uB2+H@Bo+rme`Er#|(U1F~WS~;acWs++*x28(XBO zO!bSBwwT?YqHMI_^k4519S)`iHRY^;H+~1wU;zJ2`>YOeel29mV+K^EyPyl7wEUVR z6XrvW4i}v8RZp)DS<2m423_1f&$FO?m**Lww`4p$V~r}fhpS_I^`5-Y@Sl=aK%rZU zC-+?dO$z*)A4^kf15A$~A9;9W5Obx2Z{K)*TNd8yI7)WfKt-g@draw-0=0!4dW9}1 zRu|c=SZ}UJ9mrAzUqhG!M~fVO9JFFDs2SNLccTJ|I+>27!rj$%gOMmpfz+B-mjo)R ztY%t563D$`lxZ~vMl%*O-1}E+RuR0)8u8@TfSUgN?t?=%gu=@(kacjef4JRo&y0@) zfI%>_IL;Q3D$5*3>}j@1flhzc1e+GU_j%;YP)iDQ$iNlRoQM`>Sly$_&9kMi@Daa^ zGIRiM;@;Fw%54e^PH}JXSJSW0J^sw%hSn`S6=;YcbZ(J-5%e)Vj%%&-Yhe)!h;^(a zbwTUN!RbTBZc)L_ol`8paJfpzO$3)$T3ww5uH1=80V>5mKQosGwadOo1dUp!$+>&B zU?&+G1p=?$?Qe@UP80cId@(khSf{vw>5pfZg?T^VU9`2WkaL&&@QxMrAxz-vkLw~! zp3y+^tQ~pOR#UDe(AugA6qTahUgBGc-|AwQT0H0-31$ZEL4mjBod4G3 zUY|;^S@S)yRMOWuf#5O}Q*D5aYmKj+f_^pedCEskx!9k-7iY351b78|1J6E^N+K0l2HvP5}g1`CyY{h^9Eslz8@lCyCf# z*8;0!<4McPBv^Oy&rQZ*xfX(;de9TXbH~jw)j28un_iX>doX6u=tLtv^XRBhtm{kQ za-NLlLYGMEv0Bci|NV*{Y(=%s8t=u8438WO`W;4gM`tG=V5QjE#t!}Tm7fQ&m z5;&vc45u<6D+o!8kcQ~D-5qle7RER&e{aba+ncX9 zr=q_A$iYpof9udZC8V~M;IbMw1Ji9wxWgdEdRAhXK-&cwM?)CZLn(7xcK8xpa*G?3 zLGm>E^IQqpaVCSqb=V&N$Xt?30!|k`V%5T4eL;%?UPIkwaVG^Zs*I3pCBbH#HU4)$ zAO1LB1AxSP03=>j%cf%ZWMg-*-j8F{GDWD!b|qMLY5UzI9t)WJ!`qwMn6?vCLROG9z^{eqj5$Ls#?=EWJov=FDG=oc-w zWvwc$fkI4{SpYd#3yEk;RI|;lAuEqk_mgrQz1m_2WMEPdoR8$ta`A9eYw&6BESKTQ zHc)Q)?AMJ?&RzdE3K`=<9Osv#wsL2JSARi>)tOSKzVU*;kc zls83Wn%4PT1|TK=tBk&A_S`L??fx$@ElF6-)RizdkOoI}nl4KQnYwA;-*2k7Oa`c< z;gz@MU6UZ4`cRK%3$3)JzBM>N?g@Zd)}=uo%359>TYuU9b{LGtbPut)>N2qwG$}&` z8W}5Z;?E#^fu(i#0O_(b{)Ym%YZfFZ&QA_ku@>u^(lQx0+HTgUmxm)Xm}t-z)7Z`OG4x}W zglJ1iL6@R-#b|i18{Iy8xhh=FB4}qX)p~`4R0ueM3weaCzKP3N0xb^0e6D@e7`TP* zqTKFRyoqJHHb5?uNMJ4lGPX!j&e3e{V&J8;uRE$aQ^>zU+ctR0tZ*`cn&yjRzJ?wR zWH|V((&{LTx&aU|c#MbkfPUNm)83iKG#h=^KL{sTg*o4)1UlgkLi2o`lanq1#CXw?5Z z9Nh?^z(OR!Qqq%DY#Fh~U`IdLR9NW;o65C6`VQkD{x3WEkZIf#2%*PoBGv!cN2bfC z(GTNz9-Wn}&-bL=$ob7TR@_w%@&^nR%R z&*)qfHCr3r$ZC57x$s!sXQz!a#~#c(y+^Dbf}$J4t0KsmomVn{k zdTCQqL+gUG8RKFGVjdXrTRkevAUL&;mhZj#4W(BlkyZ~O^_7QQF%Xufdth~4K51Hl z7fR1xPEu(?>+YECZW%|D+&f0=nCxM!nZjXVnm66QX64jt!9A>IN@~Qg;Yp;=xWCr- zg7xD9`Z-_>N8-im>}t+(6eGK8VuHd0OqZ%XJ4N8FqpeF=@db8Z%&DwXwi2}h;h<7G zX!eNmPG%!eiArm!-rZf*f+rgBU_p0GhAdIM1c&ucfIyw5zpJeAZH2agC`p zh8OOWskbwEx-mTzH!}%+4I?8btbE$$oN(ZRNl0mV7_^D?HflWOq~{N7e=#lYa_AD1 z;D1K|Ey*!TMo2aQn>}**g(5C96&M0l9_IZZOf=hXsB0;8eR-!Pk+yI4 zuBPY^S(A6EP-CvO|5}*~^ta2yzoQ#8l z{(*4+tb8chSe}kgA?ODGc%Q6{t|kyG(=C0}xTo`_CaHZ|^D)`Mn4aP(K~o#x3UDIj zy1;IWu{V7Z{#1Q25wK`fq-O|NOgKukdI_15U#6WBy&dn8yagOH>!>O#OdT~EY0DXl zyHH}*2g&2Oe`W?*i|YYexxsntBZOE3O&ncCErC--PI$NCb)JN(`X(qU^q2i~6tf@; zu>@|;*ja7jQV%Hh%c0?PDJy1=%`oefZlu_?HjXO;VUFE3PwCe&G_f@%W#)lD8MY*& zmY8we9TUbwy$YUduW4TgDKi{oTR6x?0VGu*aRA|)?%2!>K>3n3z-8aQ=<6~*yn5M} zQuj{^>Jx)5xy95DZjB3qUp&j%hLoh(%iL>qbi&1NX8=`v5FEyTWC(Oew7LRv%|%ph zo__c6Ng*?z1yT73*|8c1Vmv%z4_#kORb?hv*uP|q*9!Efm5o#oA{eNIQ+ zD|~#EmBYvYkdcV1@d%O;GS066LqxAwF&Q+Y>L?P%BNzFCaQ{vQRetVCWXU`iua>Rv zB;30=$~P#0+zQeD5efcYI@{`RC3esdk`b-!b@kv)L=A#u5SgL@3r;BKbC8Dw)UB32qrf!=Cz45-mXfS_d+b{3D-G|fPoKGVA-W#4d+BJqd`@hJE6 zr-tqy+bpWm(nQkc_kYBpvq&5&9fp#SOZl9>?a$Fq4GN&fq=OoWg2KA_t1iIu`-J~S zp@-9{z6NGv2n7;TXAaYQXeKy#WSEC%#v%h0RH)ZsUXi)pO)wj;doIV|XOGVwh0pKp zMcS=jD7al{4FK~6;o4Yz|NI)F;RdPk0cr90{-0#{@>Lmrg`F0OU@h?N=qkImw^zz= za(PND$^f!3G=3MdZEqFW_L);4l#k?SlmP3!cJ>*$Rwix9KCltKf1!OlRs~++af`1t izWVNeK*oO!E+SXXv)jGV`vHH&;IOf@J6>vWCi-`OD_igY literal 59113 zcmeFZ^;=Zm`ag^!Af+hXqI7q|2uMix&?z}|3=IMT(kdk_ARwJXGc*WDcQ-@V&@uCj z?{m)Qoa=i2h3_wO5t}`;_Py?S#UfH&RURLQ0tXEZ4gbBuJ54mSCzWVukHJqdQ9n_8 z>t}?9wq5!Dos_nB#=(+T20hRd`7qL|LtV%O8}b2`Oeq>{eWVY0``zpvZwDh;3{Qs{ z6)lrPrE4b{CFR0>%%cRp*PmZ~avSymrgv?MOJuSx-rZ{?_%<;)ejyP)o&o*L%sSdL z6eycI_Zk)f8hai-XP16T_le+NFBt{rHLYm>_w7?UlGl%t|NT4ERl;TOKQjF1+NX4? zpqFOY|9A1{iL@tr|Gn3GE#v?D(|?}T|9edT-ZKAhOZ+E2R6$4on`h$9REICzak@R? zz7M~2cN1of(3P#k;FlyYE9)T(h14B%k%d-KSW@9(ODDXlwZrrLG-;_L5ss%jCB9I| z8mRg|S$Y3*Y=FSa{inso&vnc0Odg|58Lf99Ty8?eq1#IE+6JpM6?Lv7wtPy2p}83k zJ@*H0{+Gpqr4!*gu|HmpwChJ_d;L#Rx2>)_1rnfl7+ivIezCX}#4#!{lCb3eo(iLmp$_)dZ>>W_3v`p)!4nUHPA)@!3?N z=w0ybIXAvQDE*SgdKI%7P6(RitEbzwPaZSJj=xJygy?}7kyIfNGyLyG0JXsOKW#~m zCqH0XF#+&?R8A*i7@-ZQuFhgR*a4)>s#MvgjpL)7r5mY7Hn(0Diu~_85%BaCR)Ifl zD+5v|nNPnnK7HIdO7O&5*9=2(x4-ngxyt7Y3F(Tr>VGU1eL6KCZKPBNViRJTJuc<3 z>PXTdpnj(oZu-oY^sqsXDbCY^j9P|;RLqCA^2fo4w}N7$)wUB@CbWS^&$LSk*A2%a z%a{w-=9+)4*S`91**kUTO!zalEc{mM@KwJzx4xa#X+Tg@Cr-Y)VxIc<_BX%PR#jqF zZRAhj8=rcpdav3)X>3i=3m9t<2h?##vo-^Xob(UPGKG6p2%1U6??P0}-7YwE6u0WFwA!Lq^J_+w6%?^xKFgb!HG| zUt_t${?nygMQwj8SLW1Y7c}uCYHo3ayqnSr# zxKf3|Qg;dD?P4EC&1uNRA6d2RqnS9d-=>W-!%~Z@MR~xYAFJs*A4gWcEpz+5&risz zg6$=`p7yM&#p&$9H23?gLesAO;^v;s@sn;AhW~CE*EF|UE5|+pN?p7!pAG$2*6$t> zU;y=)W6t?JPTu!6KYy8sqw(V+27;MIp=F+27e3Fe6poF<+W%cq>y_@biESAJ`;q0r zY~Z&G(gb^7&iQ`vW~NuFqW_Z^6Y7?Zafkc2c1|ZJ4+JaEZ7^#UfvXuo#j(}GV63nM!Vd-}%GE~)Htuul^mjde zR=EF}0|0$gj&rrXpHpPZ=(*a|Jt5(5F`N=>R|KL{(+I zp$fQu#)#RRM-Eg343h?ae$~3AiNs8Uyv;7sF2YH`(WjzODTzz;e;Yl=ezo_#;oDyi?Px&yyUh*RYAH%#Hp+`NpjyldM^ZGrV&3&o;eb zu(~r?o7Xc)DjAv=V06UvzAJR1?UeAJye*8IPUaKBtFjsr?)|8SX}M~ znL@LevT3&Rvi)O1<*St>hv#+3O&-oJ{I?dcRJ~OOb0Dv^2rVaW$1;xfwTcBl$6P(!w0h;nW2RpP|8-8oy&^hlG=Q&aGs?!XZ2el{BjmI8_?k0f z(;s~3U~*e=K_u^e^Q{3Y_%Y}=a=WqjD&?b zsCT>NYW=l-N%}A!e{!#7I9Hnii|gYbitUfOE8kJbuD zICebzi0K$M8d@(aGru&ujzx$@_Np8YL?}BhDyPTxxz2HqUaNZS|^M2N&@Y{oRYgo(2?(Mn21E zs85*%d-S6=^i(NE+#9`z$vI!-(M8b{p0dglCFGzxD9=aN+!i||HJ-cnQ?JFrW&k6= zz>;SF8-vAwMQNINc+V64+h_Meb2)z5TYN7E>4^1ky}Q_i+>Z2<)^xy~u-=8HIWLzC z3znaaJRLqZ^?y^6S->5TPt=ASuJOJ;HD`1~ zU6KFonX}K5wd8GoU$Va{(0IDvE6D9r1P!IZnPqbE{4KTo*j(1SPfCRu?6M%LuLUMF zvKn`H`x_RT0L|JExD#J@RdLt)1_uke-^fxo#IZIX|J{`xUHVYZha4O8eCZ5vT0}~O z4^nJ+vy?CGx9YY3K2}7-Ll)G=Pye5+ZTljchHK<|$sO6y1JAvR8gM=B#UyV+%6oS$ z{aokKOmGIo1Y6jCXAav$@A{BJXOAenZnSYEQcfMUs1lB2{5twm>se7E;|rj0T&LcN zxJ;253kiO(O_d-k>)5l&?i`*MmCl{!Kge`W-!&8Y;!)kQPZRwDwVusM8dp7eX*QHs zMc0AK^s4pC!YrCCHRMsCTwhD|Lfhq1sF8~*ThJXcQ=VN=Yj#?l7AC-D*k=Q+_8Nm7 z(6Z|~Vz(S-nLsZ>W$y3fInAe{(yA+rU0tzgQ6(isfaoEh&2#%3W)s&8YRwHt^77ty zl=Wx5z$DX&rg>qYX;tp)YhOVfvG`-;=2H;R>N*`DQnBuLV%P>vS~xz;3#vR(=G6L} zP+Z70LK}3AdSc}NdSWNKbtDa&2j&*#3{P`SH`#>ba;^wuu8?0|3B|ctjBOV5*E=Xm zi59$XrWny91;kW!8_U{Y(olq;Z-ASKhYVzpIb4>~+2L`d z;w3On5+;sMaPQrzlJ|^*Sesk8kAg0*o@;*sY90A`f8+`P1@#;<<*7J1EN*C-&T6^( zIWo%mf$a7B44PTHN=)kzpJr-}vJvB1#i6j2>h!hU)srghz+ zF4cdx>F5C(NU!xL4V-Lp6hD+5#UULAI(QrKPcB`hU(Tut3anJX906ObbywMf;T(6Jj2f=ewRs_aI0A6AdDu45dr58g7=1vG(^ey6 z?8no?1F-U7`_~G-@w*8dIPYhMFF2(>;>fcBYV1IlE)6+3C0xlPc_HeJp|-llgSz2M z{>(!=-`g{$+5-8kUy|_!Rg%yH%eGxe`ps_H$iZ7L&|3N3oqk(E-N9v1R6!83SxML( zWH~qE1g(i^L+r@t#9sw_9j#h%8EJtR{x;k#FK3C!5>6puqfK|yg+aeScfYwqt`>U+ z7l(<*Sx{r{<2u=|Z{zECm9s8;9Fu?saLEBZz)fYw4`#k|r<9#Psx9k^PrW-j8$LXxr8~^=V z8S#tropZ~11I?CuSy02~z2Ll|R<}i3&f4pE34zX;Hm@%MSbZrTj-2B4Nicv7#zMW| z=zQWkyPlozeF&M2Mb97r0J^I;^=J>IYkj@QRLwN`!Qg(qtoAV zt0d!Kl;QG<;t;RI?4{){iRaIhopAlvM;`jy+7kKd_!F0|xDac>7zy+4+x_)f+FV2Moqn_qP6-v>vuW42cI~;! z3alhwz#SA%@e-w(DNbTKg$O7Nb^8T$3N9S9L31KOPh)$+)ze*P!Qdz*u3{@#>iaYx zL}r5Vsq|A0@3qZbfoqJX;*~nXW_$0Lj%lJZ1N=S(OJ>)k3-I8_ z<6+i>NDj8IRpfYNgx9gL#&f9RzBJProBU$tm?ZSEex>>zc9`7kk83YVl_>So6CuHDs#<5?-0fR=SoWt40$Guq5m8Ct*3 z=n-rs%c_uh<(NZ5itByAyiV2FTU4|!r-?>dOB3ReZA{k)wYZZIHrq2ZZj#b^$%@{e!#6eoSvv1q4EG2YT<;f8&TMJwm5f$jhhCC7{<- z4Ndc875@FA%Qpp%R%IOo0mtP{wFxDhhnrg2D_tpV#`*z1;(PWRE&Ch`-fKD~1J-+w z8p;_n-Si>3;UyJD{RwLEXF|xc6Kv#?o4D%bzVASd>(D`7X7O(aUv9 z4PL-Hqj`;7q{8EfU0ptF3Ik%k35&6LYT-yfXN;2#2zL)s&vG_~Vqn;0ns%jKU_&o& zq_VtA+f!pHV!J}ox9D_Ng1LTpMl~hlk^rFIz3)Hj^n`mtbevbbZ0(3&%|I{Y&NGl% zs=X~m_@Ls75@)m1Ii>ogr9sp%|4re~lP7;ebex$Rd<55@)6jBV`29g?TgB`AB&*($ zi!w1wwedi-q%l|8YB2mZ%BVH2PbGMo+7+5`cWw5K!RKM^kRr|?o&N13g*HEJ(-Y^C|b`j}!4#fJU<-A?=Lh<5PHe zn}h~BEIw0AtV<>ex`nzYpECy4rL>p{^!d8|MP&m{D~+v@SNGeORu2K0s?GOX$Jt%Z zP-NXk@uZjuE(WlsF|OEKWmq26Q}M9pi`X`$;cS*j^|&qp2z$L>n>vR#r2zs~=I*!e zoDC~u!AIo@a19)jpu_N8?yX3PH+b=hqZGq)8jT6NGV#yNnUHB@=@%=6U_Ep9=vIX)whFIF+YKpqqcYh6jWmH1vyK4>j!TDA)_6m zqLg-Pl1cwqxO-&k>r@K>M`LL1=B1V))hj27(hajQI8bk{I!Gsf`{BbjnUtA^V%0?q zJy5(Nj<2q86q{H_K51LTx11CQUE`yb40p!|kr`}$KzOpZ5&TvN!YesFm=nrSCnWNu z_e{MF5MT=ukCS*+AJgRrjo z0VJC?Edwr^LXF^yI#$g)D)=7A0WXq3EuWTk9u+^ssOVwGjlUO5vt6^237GUh7v_cErXSd(}grBeZn-toZEq1)$ z1;;ZKnu1TyIGS78_}Jbi&p2%t)+dfI`;9Er<-rm!FV44a&Qr3iub>)xpbaBWeWnWE z{-)}?GX2yw5mGM~IJJa$g8#}%zVjh$`0ft-aaX~G=lyhrbJ?$q^s|R-sx^5bFP^V( z{d(4}g`fbo6461nOU`*6krO0!8#I=fdTVBcZ16AsO+VV{ARDY3!f!dmHyp@n79`xb zm~mP~Q37rq@Du+o(zeFzX4;*;EBwFX7U~n1&&ImV43ikizxV`h8vix#&;1c_a}q%8 z-XJ=!X%uKK-xB~pfw=}mZ{C=0d-*ncTWcsOAV_B}Aj?mmi559YxQW~0DsknOaWLa4 z(C7Z|)+40Y(IeKki{i7QHN5jP$mZUtjRmd5YcO^TyMpUYI==Seat}x?phfHfO7tzi zlTqgswI(ogup-G7>{NJC7_zCmIzl3sYo4(7D)df<^3-0=Bw4THt>TX z8u>G>%DvU_z?ZR2RV0E=s%I@F`y!U|I9sew*}bFh?+di~X9vT_nkF+IUp*L{*RIXLr2&#r$&Fxr>lJ@BA*m}%+4sl2e073o)RumY<0 zEH<(cLktcE`%A;Yu0E)oMJhT6q@X%Dg zo!YYf4=^npALbCLE3K*NWJ~c!YWN-_Bw3kXblZD-^bGD)EQMHx?A`$38j4>B<8r7Y zntH9zOP6rU1U7r+$te#izP}Ig;;MRmBL;B6(l0a}ZmSxbJ{vlqD0WLsvi zaM{5R%I655tzu!WhJq~j;S#An#!$AP)Z>z**LzAI7;A7jCdjk%a_96X>J3MEK2OO# z$^vwFENl?1R9nb|uw@zcJ#Pa<#jy>8qQ73@-^oAh5|jwLem@F8_7#^M8@Vh-dT%Ry zyl~&!eXzXmUsZ6_nqd=;l_3OVd-%BDE^Tm z#*&g)okg#rzvwaDw9)&w9&ShCl}+6L0`1RQRyxgnjW$H5 zOl&Jj;1fo;AAjpK{8p0JA~z19jsh6=By2^be;SIMt;XEA^8zVn#P1qMXgSaUbO5 zb9D4w1ZY~zYK+YGlXhJeNdbj->Wva{H9_^ILSZt zb_mnu+gM181{vV7pqbNW&l_UMqC4!##s*zEdP=DR_Zqpc`y(wINkJE({xr|p^1##T z@-Sfm`u5^n1J9uYYFL&^n8j}(v^AS6;I7?uWd1gOM7&?Nx%jyUEk&R;rqqfrkPCUX z5)aH=@$BL-PI@$r;po3Ts3sp&&Wqd&H&lH%xt!C~nOBa^Pc?oG8}57DP^kEWZ)@1^ zj&*sbLO-d)mB`$-gyuMM>5Wc&Qs&7`?A2mO)&-#a23+Z1KpaH}b!IK5f~AiLWL+pQ zXj#<{1ukV(HRi1ITmi%hhMxRdR{)l;*QxB=!|*FfctwwNKC#r4G^^%ISDoGMiWVY{ zf1#4lq}&Fc_K(=WuEXfqaIi>Ko_G2{kk4;9^Vm@p|gtv4OC00Ig*Hpuk3kfDBdPWSIDw19O6p3afEIE)Bm?+{IZd zW!x|&^sRROgpm4=R!_zTROOCCA;7tekvW^>=LN$s^rMyv=Oc5~q9$dlsXlM;c93M* zP!f7i{DpQnlNL&qAd05z*RSB4(Wr&|+}Rxj{+W49MwQyO1=qW}AGv@#T_P(`Bn7c) z&@S%G$vA1b{@LlCy;{K5xSPOakI!%q^}+nypQb4YzYwEB{vyM3VSo+_;u-uS&XB6` zU)hKB`leX$-1->XsUT&9c*g?JW;9Tlv}U_eZlzbtk&MWTg;l$qYv{&{H<*19(D8&=SY@QNGWw7I0v?QP$RD{ z0+`N?;LkjQc5gQ%w-+zapXAV`JSU@I(P=H8(xZg*wVvuw4m!0Rgn;FG6^WhKom-o) zK80)2#>eindPRx3Ic&%Ji|dkm>y{j(mu)7sjm5_iK47F5S8t>v@v`B&wnrDDG)hZ6 zr>Q>@*M};Wy7x`0%;%c#B?$i;jG?*<2Ej6&39)CaOufICBgg{xOlmh?+NV5lq*!YF z>X%ZTYQicgE-DBwVG3bK&C1~1Y>)4G!}wLqk28O4POE>O()ui*9y9fFhhCSZ7GDGG zb4*?UmOS_ThR%^Pt`kI3B2Q~Q^c!6Rlmo6xXw!U#9=*Yubr&LPa{Uc++*37a?SRCC zib60XJu9QfB5w&}9~i@;$E5-K7m-?=-=N|Oz!t*)!q8h0f^0n?pf%WlGF z&fY5+V*#aM+Db&<$+LG&BO{WNN;dfUn>{Yx^*jv@p7P`wwo`I3RWol&s!Tl2g|*M< zLAE#so3hq7MFW-_GvzLohYiv|OKApKzP=t~eL7*u*>VvuzM!&__uLeE_%}H27#n+<8hoUe5?}L0f?$ev0ubIb$A|M%_t< zHb0lHU0A(^coNqGpf&}?4zEpbT8l2XgX-)ZBOCpRo@p;&)XZC>11jRY7%hrC)`P1h zV>vgnp~ns;EEa zmzE9>u&VsnAhPuQKkpY*|Qz0UjxMl4~S>twVmDm4`sA|5l@ zJ@adR`U1DyPI|dy!lioTFyab3i~Tt5$#S5hjT9(vfUVxzO8^e%gqxP>n&Z6BEd(f{<+s2au$3`Bp>yuy5N}^DcVR@E+56KB> z=0cP0M@Ti_(EL^V=Jp4wRIen^!!yxz8Yo8L<;&%U)MEq(R>XHMiV}}X{uk`Wx zjM86Yh4lvK2ikWZ%hDapg;?JsETZ(=CxZB@3#wj$Dw zU+*!ol#(6z5Om)~>VBE3GIC9!_J8HDUseqM!Jg3&E2%T>%aLE;=j@T(C9-J)-@TD1 zx!LgbNO~2=%vi)-c~mjrQB|tGsZVi+FBWYn)wL*I zYf+f>%x+w(esjo0Y1%4y9|ZZn+IIZN;|87GltP5dm0l;wfg;+kP84O8$>gM_KgjCx z=niU8bNwtqu-D-&4^$i-Y=?0<)9JuCTWWr2YIuK&1rx^Dg*R6(dMue7wOu^DF?!2h zkV0f63&eU1V!=t18B9T~)2wHlVHumyDYrOp?O5CwlOP(@Ur2^E4H!`c@S8eZA+2MdI+LWxFwn zSQ*8u$I-x)b1fxA0>OT2J(LS5I77X1jmRMke52?1<8F7INysY&L$5r~WnznKj?(!! z)ywRv2t``23z@VQtzS|)?{k)X_Om~>?Ww$p218DlXlYaL)X`AT#Vw@+J)*DB@J%*K z&hCLF9iy1LZA=tdTYdY-lPKsC;XWWeaA6QiEMxZr^;7Oi%mnY+tZTYtF$||r_w4(gJi#3pYIlp%{TCqPMW$rOYGx$ zUY_$7Ks{TjrXK$<=23fgsyvpUPxzr;D3qY$_3#W6B)Hyamx!%Upve#MT5metg2 zM~<1hZSZBj*OHp{&drnunhv^;c;g8{ys8ow-%MSFfsyrq6Y?ChPOv^2E~*B5hW}*_f5JZ5 zLY=QWg$66kA(?ZWB5kqmV1D4DNdmYe+@dC4qbzr4j}16Ft1hB_H;%i|h+@af8-7~e zT3!sK>f3D0**lu0p~!JIC({~U8Toy_lZCJi_J?Lz2OX(C!E)K6iH1fz?WTaJ_>CThmuPyF0`qhhiqe@Hb$w)9& zR9C>cgg@>;WZF%(X)Eqpew8s2-elU z`)XjGDD%rwSn!9Z1+9%&Kt%NOfMgZ)`foVZlXd0ov4xe>%7J<)r8l-LlfTYWn`)Ad zo;xjm(Vx@#<`&*?Y>U-E_sb_xYS;d0ulIc~)=hWzQsD>K4OPw5c_Mamjm!Lx2!Spr96%+?8%#=OK#`CUq>4+LwP0|XA_pbNa1r?Z zwHzCTuTo$px+XcNQKS`HB`Xr@kTM&QVtfw(bxcfh1M;gBN+yBq%{-^gG&}A%O+d5^ zsbCL_zQJ){=ZTn3riY=Hkdy+}UBWoxGo4ccs@=rd-#v?ik8a3hi0#L=YMy)rNMs}L zZcUDw+OjoS{?ZkJa8JV>2d?K_C|;^;|G8Qa0;R1TNC*#aU+~q`^9t}F4xKr-gP;u& z5_f$Hg+`oNHHH{XrUL!d8y)`s4U9xHE1BL|1g9jUUcJ{(haM#Aq1kPq~-AOOd zQJf`oTrCOF@mgq6Q-tY=x~(e7SSC^mZnxk_VQERx+naoKC7cX$ou=Ko?M@z$HivJGnt?VHo=o~1W%J+-ptJQg=fo_ zXZl=2xf|v}r1+I4iWGjTSo04*D%c$~^}ad%?rP;|*$@Ms&QsrAXGUlLq)Q4N&D7Uc z=2?WfKX}Re>_FM4rSFNn5PI#n9H;%+!FSC}1wa+OV$lbQuQB0mBZzNRUoNCI%eO;_ z?V4(6mOn5>V@G=&-m#_+BObJTIdi`~(Zjty0A_99yBo|lRY4CflM6OOh-qpb_K|)e zIbZV+q4i&ock?DFfvM)84f0`p4ZmXXHxmFpiB0W?n!yS~QIl7iP`jv3*FwcVB2<|J zthg!Mu<81&z62`~iP&Yj*#sCVzLtcic(CrCEVNa{t{`F^acQnvKO@xlp$hA`>-u811+$jjbGaHhq2B+QR;v_c=H^j zCN)_kc<~11H$luLaX4s!ot)R-AXjeg$0Cl)e$|PmKBMVR#)wDzYbnu52tG#!-q=YZ zF9O7`chq}80jLcNz3wkT*+IH3eLHkl-X)#w=S%*>O8zV2BQ^82=CElO-v}3!a(Wb$ zSS6#T8UY+5B?{9+uffU(s;BAMCH`r*)RP!-DfEd+mOg{h5l?hO(&{N_bAyj_#=Aqr z%kF{{HmbzPj6KP__R9+rci*O>S>aEU+3!)XY%(%$yAy-r#OQiE>z^491o~k+uLPo# z)&npUL#Gz~43lXCy%N{fY=@If7zjtWx82pt!&*mzyYvx=6&i+LyzcgNfW}5&=F5`}8UM2yH4c#KUuzKZ?)L*RUj)>5 z=}{E!AGh?OAk1yz%-_q8WZp0!Hl2@byghEDPDA7Iv&K(wR>K(()GkZ$&qoaLbngy$+i|4>5NHn5B}jr2(Km`C|fl`wp1TZ#@Odkr3!oGelhjd8oI zq~qvX>*YtPov)I}vl(EKT0|}fS?EviP?YfZM&><;bKF(fJW$i-23*a!wz5BREsYJy z^l%Kg=rdG$o%*x2EZFjfMA8FUaoW#h(wozPXL_Ga1HEs2)Y~Vs?g}Z5q>I`~3+v^) z3y>!AS0OQYlmiP*2|azYYEu%&S#*g|WU*Ck=4UjPwiGGhkhL5)-#aq^?aU)DMBszn zMU0Q8Usn@K(q6Ah_@AcVrHFfbuXMOB-xYeDqAF(QB*gy+H zB;lJZj)kH$DD}YcN*fate@v58-*&=Y`t*{9Y~wlNmPYa>wUC7RRS-N=!hbdN%B9ri zln&8j@w-s6E#hyaw(*OgHxDxYJC@HmiX6{TmPViB?4_QyJVIjA{i7jxPP{~|*=H*b z|HEdio81~RBF-t4rQv=W%L%0|+@^RSQA&K!h1&D89_Osvw_6J{wCln0q$|W#dU!YO zSjYOc9AMNcpeVNzalP}L`b}t$X0~7B{~=wNhK%FyI(+lF)yo`-=U-?KVUL3{}G7~y@q0#&x^EmdFQ?1m2&Qp#*BHd%Tx zX$`jLA_?g@J}IfQhTV^lUY#7$(rgbXi8j~**-C(uqw3l1o+x5R%`_;u?<&TnuQfpY ztowvTzYmoZe=VwmT&yb?2l>E?ZQPYvugAcfo-s9#gEGk`+n#p#5JJ(J#W2bJkv}9a3+hd?*dDj$jP* zy5^%}7{_sQ60psInlxic(GP@k$o$t>a@I{S^KkuCO+sSexMeHGD)YF;%Dc8Z`(f$9 z!N9Z+o?R2-KJ1X2$DzVVn5X`fjE18MrD%99&5UGTT}W7ptzqPB#RL3lxq`+hvVv}K zrpt;LQeD3PzM(oCmK9@B-J@kcDF-x#!c42a!Hk#tlkqPmtt~cjAEEgF#?v~da^$YY zbVb<)gv-?QQXDnSDDv(mhJ73KIocBaztk5JtG}K6xj}@3kvQ(%=z2@r<}TV2!WO<5*z+dlA}wpvGx7rvHf@z1M+Odz*eDYlHs6w{(PI)He__G zI#a~tCU;+C^>EGIFKZ-Ie*S4p=ah~$c&PZTrk(|B`?Qzw220WQW z!n}PbNWanxC^Kk`EDQbTSwE*O}ULR#~+}}|f?hH?Vap|fSW$bgcGlpQ!#17qT zHFh?+y2)o-3@tlXT386liA>O$*g8%v5vehb)U=!ls2KUENO;4IQXAG03pM_0HKE-W zxD|a3!jjKz{?^GqajZkKH~f|*?2Ajhb0KsC zze3qo!{BtFK69v|<;Fp~n%sU`ddQaw)BwIC^k0Jjw&wYsy`)evv$pv3>V*7gzvD_g zQIk1eL(#H~ZegWIq2pwy7&NzZDUL_sD04qLE^(xV_ov$0k|Sk$bbOD~*BnK4G3Ydh z^;YNbyf;*dak+hzyxcXDePYlvu7H~(d{}CnNtX~;Wfws09C%nzZG43m=rO@JA<6vj zRk@>-@iNNJT@}Z~4c^)-bH$A=ostT(>Q>G_mPu)Zzm)NXfwuX~J@z~!W|{BF4A!wz zW*&w`GTf&OPCEN9SU%5$#>uRX>8EeJnOW@7p=`QN5gS?4t0PH4%O}d0&I&H?qSq8? zsIvVLQ1qqmO3^kSttU8n@HgYa+}NE=XC$4tB@1TqB+DLqEy=g{Du#Y|BxzI@<}RbA zC(Fb{qDkT3(3CR3f9LXoazT>|kbJWnO2t{> zYkB=|qvK}>14~=`&syvxd6`(zKA2uB5#zW|)TX~(%8`hdccR!w!ad=*3w;EQ{~%#_ zvWMd7{;@=~V@g@*dTH>!qSR_IHW~(_!65F4_@B#g$>pnjzS)xcJcz70ckh>MG8@KB zts2ZWL#hqFFLT`ipyl@7H!EG4-V|5#e|pmXAXr&{#Z>VN_S!nQnFnW*JDQOnJlETM zS~6-ND9GsZYKzz4b5lquHkmN^jljYR*q@0mS=r!e&qz}I!_~&%JcaIG-Ww$hs*>cJ zEnw1G=2p{`QTN6j&;cgJobO(}6T=gPJ=3Xukxac{5aq* zhmcN2MoM;O#2>|}D%a$T$O`X|f`|Ht~R-%8c ztDCE6T296${q@sadj=35dh@aAxvQ?7CW7qrl{}AbL@~vp-s4O&@i{3+yN?91k9%7Q zxGMPzGWwHS@@w9j4l~sz4=dxzv)s3jkFK62d(~Eh-Cy=bDF>dud#Bk!%awQ)v~$q0%T$jP!a&8>=vqMBF0A&ogpfl|Gnp9tqT@z8^6(K0|Uj zRTnirCG`I|j^!OkqB)k78(jK)&QHK$cb)gKKPDp-p&b!IVYZvK*go$*+Qs4cK=8qw zN!s7|{yljzn|u-e!NT6VStjsTgu|88`Qs_z*wM!*J-r{jl%1R>f{Uy@F22Tz^=Lh# z+=7mB=ryTgPoNYJ5b<8bk^O+UgPc84v&h38FgjI^S z`0jlb&%V8qyuAys;0c?Kl8|BOtTGt}TzU#VTa;`>^t{2e!q@9UBoF#H^b9`r^!K&t zWynqsu`oN4j?VkBO8J;jz}NscHO6|Qfc_JjVA|GHCAK|KCil_H3-z|Bya&(gWoeme zR&w?-0UlA%#;2OIrjByM6i=!uf6ZV9Rk5Hmp(}|6rGKqg`ZI4iE~ReR6RAW4<}z~0 z6X6`-+vX{oYiXj|ZYq^O;gh6Ieb&bd|5lU7Z+0blla>Y6C|Y;&Yu&BXrae> zY-!WUJu*H=9tJECq_^%Y+4*4opsxa;0lKan>O)Vr%u%P#n(S|t{O*`O?;51>hL@oO z@}RRrD8@2(XFBJw)W<+a*1f7}eN)-_ zrK5HJKo7yOlDY3E5s)QXCu?pQJBriP_(E(zK|!^AyP(rqazk>=>U4WbW{S9fC1vKC zk$O_B&iZwKwg=7Aj3Xy%j0c*I`z$E3_x?pE!!uj2m=X0MUmCp!kTU(e%QiNYD*v;c zPVyax2c}K7A^PxU>mm{T-ar>y8FO5UaJBQ3zEl87>ajt@bak<$R6u8H7MHbhPUk{o%G;tlUw19UhK;@pj?hVKvY>q*Po?{V18$>;gpozO0ic@WN_HMEg%_qZG=B`JG^o zl4@9(52IuAi#O9F`{AqK8dPH3y}!+94*vut1z46iSqSTdK?>+1Q#~bRTCaxv*j?A@ z+h6{Zfv6Xf9|EPj{2CX;AID>;0&xg+pBug^CUB#cHSVONcCTb!H;?P>PbXfa|nk`K{APnUC(o<$e)W9YFV-3*TR~5O|4HZ zY$UVI4)gI~Q4?KTv2HGMfQx&cMRhM*5WgF@A99{r_f1^d}e*8zhl$YW*1(8X4&q#%HeFcRq77$l}5$LMgqIL+DuV~TIjhIX0hqkD)* zO)^sZOA@2NTKqL3tQbc*%zGkyEmPBgVwTa!Z1hHHrs+fsf%?jyB+!A;?vc0$3Q#Z&nPMPnuPMa4^ zU1BbBQ24chvV;J4%U7yUNH#dJ#O{4FD$*?hT?J1-LX6ho^?c-JK9+o;d&Wa!0dLN! zDf?VWZMU8njPuy9H|=@Wli066qlTPT3wC`Cj(|xN2=n}J$o1xERO?$<4!<0VyxSpW z!{X!U%vHE0tlhq}tPLHf$S0bfuTB=V!Y7Qh_T3x)(aST*kYP2{h4XkY+H|^I7C4<; zk8gn6&uF{&7(YD+%rRNfCFr!)be!0*+sk87wYN4k+4PJ^YclhW*I|`VX__G80>@V# zF03=q72`I>xcVoHwz_VgNnj(02_io2u-us;pPd`{LdQUF2=Ub z*1m`&Nb+epdS8GzZs~x8il02wVafDZoju1tQdp#jdk(ui#Yo{#E#lA-Qj{4EW~9@H z8<#To3Xf|*p&A0Pv3{s!U@P|0;cOtbQHG9_ZK=E-A=7 z=8b?HoKkjZuNaT9#_B{}F0JIkt44yct0u})lGB=Q`*l0@N38JWM8u)%3?5uBEu@HM z%S;l??(~b!+~eXfbFlL6e(=9DXC5THx?1N{4}fS-OWQcUo~Ls?^V9ymlcTo-ShI{) z{NE+o{(?+ex09hWcWMSNwpTGgp6goH${co^Qz*9Xyo=Hkmr@BpcVwIXqCE3Q+js7Z zLv_;8ZOy1s>CUP6;IRAn{T?XII*IYoEOTwKK95%2Pc-0Z9+zZC?1~SCSMW*HPWb^1 z&!jl)aH6K66uZdIaB%h#I04`_f#9&^a;wH{%LrBO0XZ0ox~$$Ju16VK8Ir+L}avQ5k7mD@?-~w-d7#@ym}OxoDgiUTf5lP z-?6l!|Gx#=)zTC4!7HLRx)Q7Neqn%L8hw|>VxWjy46&*X7$vLS7#$st16yNufk48G z{&YQh98r55&RRUms0Ljc3vXJn?eNsO;q;%D_n{wd71v0ar_rdFNw}WI1?mKo*VM;0_58HXaF=7_yg~auqc33@&I)~lummgl%dAoxf*OVY z{-cyXd60h9`UaM={^u7jZ}WX%rW{u6$zz_`^+a78s#E}W&IEY5-|D)l$6QaQZA!MRJXXa(v8A7r8__u`wV1$F)fmvln{wxqZ=fcEw{0gY65`TP$+`&_rku6kHB4 z08e8*2W?lY#%mF{mKwq?4d9o?5G%1BIUOLL68g+|ssC zRPTLaOc(9P$8?ieL*J$V4V*G8d%gg@%a2j?dyvrb|2c1kU5=SqDl%j3(B{aGoBYMS zB#55`hvmsSIE^NCd(0AoK=lylZ-l@M)mMkVLR0TD73*0&!#~YY8R8t;7l!?4d7wbC z5a85m+um52P5OWczur@!>Nz!-wbsdhz9{rhUayH%I>8Qo zG(q|9Vaq40$)M@EOC99qLE_0JMz8Xgb}1-TVY0=wu7}Oe99$=zx&Y3)&^G;8&g7xl zk9Gaeg%)O0q8!FXK-1@a@{HPAke^MG!Lh0NN<7Ua$&gs^vxY~fg-LpQGo^Cr7fqlJ z?It!7cJtK_j!a02Vyolwu+t8bN4E&Bal?_wZJ6qpUUoiss)w$2fgsgSHmfEPV;-e{ zd{B7L@JjLy9ZAV?gQcaOh&a*nd!~RI<_a-GV5Ji``k44uC?_2 z1rV+Zd>RZSq0_llT~W1X1})ONA>_%hlFe~SxOY#J#Vdw}On$Zlkxysf+Ns%r)U@xq zMAheKp(P4+1gg8YG$XenHLAlSgOry~CKQVGnLOEXe)EJr2^&%u)Mj&R#*a$U?LFZL z6asPn;kTeYVlm72l%aWf;i5#2ubbWYn$JBcNSt%IaQZFi9#q@B0V3L-2DHb3*q2=w zkL#-TMx1^-3uc$Oxo1GfZZ(yoT+d*_ZrK7ZcSH9lLbE2BNvvF<=ydLa7asStN4p7x z=>O(EM!ff(E>a4%*VLrp$4TY0bu{+3Neq#8k0c{;uuSy-oc|2h6g9QHI(&x>yXJ8C zbmU@^C(Z>38l@ZfHWYk`i}XtM;*p*DzZ@>Y*hx3w zpTaaP9yrY%6W0{g5RiYWjPlG(Kfk9hizne`BD);;+C|r}qsrmSiJwoAQbZuui&ekE z)JI%zNY_2%_T4+U%SA{h0OuJxxz0v zTO8;KzFAX6?R}%|PHE7;CwKL_Sp8ddlvC7!_@yRZP#2Fb2zdwkshYxyU$MipSFFfX zEhKG8=7I~a{O5C-`2qj=D$xO9=d2kewZ?{RmYwMcDaiQV*;WRjBzr-SMuf(}W!4p> z*~9?q5gORF`VGe-vV>r#3x`jPYC|N#%!IrP)6~!BM(H7n2o>0YF3T@!ei7yx z$#$kc3n^GXX0Se+^#HT?=p(3WU!(D|;25*%WOMFM$3@IB^ERS_jB8nB`8j5ox%<;~ z&DSIF*wpFX9+H0%9K$f#x5Fb!f>`Ij2m1UKtjMjPJ10c! zJmG^UJ3FZA59%Cj4AKw!S02iElzj7iHZ6Qp+iOD8xAkgO7|sU6}*y{{sSK+|03 zjVBTnF}uozg_dI(K3yBqI+-~Sla4vOw+6m`%r^#}ZdLrCUUcj9Au3CT=c?pnj2mHELAfsmw3*_+{^J)OscfDxQW}c)(EKqC^-SSK~rCu9?2H zs^_LA-ldv8ohK0tseesSV9xM#c=Y*nLKtmgzWS3aWmp$GMcv&ivL#G*U)Mo~x6NY? zTd_Zr+s77!Pl$ic{VQLYTy?fWpU;P`N=cC?brA7J;IX=?!;{Okywk+>8U&yb4{lkF31T{hIY2 zKE#R|!woMpA)fc4$=0DmGxusa@BFB!uh>b0k4q*hCbh?TO;`W2dvvw>iGeG*3P%tW z2Y$g*MMNU)x?864 zRR=6+NH-i)6Rzmp&$~}}r1Bd-&mlPFi!>=H4;^%x4KtlXh0G;Lc>3MrJI96WTF8hI zN~Hlx67Cy+f1k%qs>tXX!X$7&E=WzRpSMr2yTrTHH#r=(91qrsyjgF@6weE>4{cNv z#`1uqXfr2D8=7fwbuAhv8;E)=| zrc|=x^uMKar$2K~m6lXceyNd1?m)uzeyJK8{66JzH;Y`G8g|a0xyz1i6z9=BtUWjI zWJz<8WSWL7wXxsf!dn0N^?3c9H->5ypUA8k%To4Ag1*Yg*6iQqDWvPr)XYtD%Jx#i zu1`P+hQ{2&$I@6GQ+?w_KC@EPIlRZ-pSb;r?4wVFU28k`u|93};Ysnvb-qRYl%OJ! z$8-ZvL%`^P&2fRi;4nk&b)1T)3by?uXY~1RZNnwj<+XOVO&M^`N>!%Fpy6eUTl;N_ z@`CO-ZOD)A1Lsb@XUXGQdTnkRMsNzF?w4xYD(vf-q@`8n{lEpaXE9m|+u=bjwD zC5&gmq?2e5C){bv(kJyapR6uC0ni!wg?TSL?IJV^4_CrbAeBhYr=i#JY0UgCu70z% zp&L7+_WeQpj>~1bJ#(3f?;T#cYSrAGJZnplbH!CU){K_;N#d82%j137^1yJrh3PjB z531G;d*Y}=vTK~Gygz5)eqDa*k_9C*-}59c#yEF-2wl|wL9PA1d|(IAQn-E6O9&FU{u#X~H#ouY`vP?_kj zaG$I;VLCh1U_2mv4%`u-l?lSWXNFUh7?%@PIUv7EKo=7L}>#@}Bw8h6bAF@Qu11sxJYO~TFYy~p@e}ao>t@1er zT0dkbnuL?{;sP8o?pYATgXM74SLM}f6f8LVqm``sC?+>2;V?&8c=$05S zWe^Vd^o}3`q{3_JC>q(VbMPuuxsBq91M1b#RBU|o4JEZ= zJeFob3~q^1V7{x-?yV>vj1&AXJEQKQ^tOpFMN_lmDO88WqWI|`vj{%q9(y*~W8`QAIki6K?3xi=dd@4J9! zO3p@zFS-;m?1_n^iTKa4sN!(h)Gh)TuPpuF?t`qU-c~`Jt(ELY1z;5#c1N!zs8ijD z{&pSJ?#)YXMcLaVoh7*NS@7o1(?vF?by!*DTXr6ws+jkR>Nj5V!D*-+LCi-fUmC(K zlCb%4Z)01{f6^d@`d>MZG0i26%;XNw?D~ExXSjBK-3tEU`v_b!NW5mfqN@5!PbIxqOjZL$JK3^`_vZQiTZWs{-P z{xQ~Lq@Rm_CgaA*#5rVDb7UMH2?$?ZkA{?$hZr_%!UHcAflli#RkjFGSi@xhizX}d zx}b(9A@b5!IuK_$sVy;;>|T3z&yHJW8j5(ZbX0A8%d*l^b~HdS!6OR0&fu)yFbPu( z^>9jk5yk;n%DWz5o;1X-%q0loNtdsx|88bPKI?uUK}Sg-rR!o4GcuBBwQ>)42#;Yw zk}`$2w(t=yL*v8eg3Zdy>fD4mKg_LM49pxF`A!^G_N&`SoI{9vbge(=vFrVmvJ6@s z?e!BCwa*mLymBrUkV9ks3F9^#++x8pz~hP~{|Om0@6V#GD$A;qVuslN&+8qf@%sWv z3)IFd=i^|@DLDE}Be1|Fr|7pl90etz_p28kexTyNPA%J7)^YQD%Ms!_Q=a{6Xpotp zZ}kE0eUnQVCk z<7vBWRi@eLOB1>M=4M5e1R?i;LhoCvV;oZyXW{3XB}^8uAmoP=@h9@>?+*)nJNEoT zjuJafrrb_+a57($vMXz2mV)vR)TOmK4Wav%$MRy;TemnYF@& z4hswxWzg}o%SSv$G469&b;A9gcxb^(GN*op=A96f+x?S_;P>0IwdMW_l3B?Kmr0H* z;FhpMMr_ttQqLFC)L@)-PG$j*d08 zZ(4%XW>tlu;*)2qOg7DRTv9bVqlcWQ+s=7Rw*5nk%fPkaC}>mOH%zZuVg~|FzdO%z z9<*taPYp&5eq#gl)yz!>ztOC|y80=4HQCXfbtGimG`3R}D^DS=xqGFqH&e@6Y7(pd z&RgNy7E90E>lm-7{I=cuXTCK*aKAOPQql!BGt-H^p(sfU3lnwT^HIX;?T`#ZqW+|f z_Qr(A2@_S}Ig>p|xhV*8#fMIUhR~GBW0~^JIEH>h1-y)tj%Y@wf(H#W(T8_24j#-R z|N5R^0xIbhd_>r~iz-X2J?h(II?#|4G!wHt0UjzLN{?l}J;Wr z+)#f*+gvFqUuUadYy|7ZB8*8D^}lbohxZ9C2~{ARd8Xb8L+YEHI<^Wru+Cbl+E&SK z4BZ|!3k_3igMg&5JVlK3h=Rm93N%m5M%oNplH&>ttER?eX}Lmt;%xc2OS!Oz zJaOH)o)tTuom$BEJzuZJSfuJBnkzO|GrReJfK%gKRI)oCg^@G>OD=sNQANz zJ7NC%Z2jmbU8b2R+mB~+v$MDod{V}Xd2dfD7=Kvk+72Sd(@e@I+l-fAHRj~fb(l+P zsuaat1jh}3%np-a5q0OBd8U^%}0fD9XC4r9Dyn(Z*qhj8op!+o7sYRb7JxfpgfVuQkr(72pBrK%y%f^L~$(ncQQ#xN)3B)w#n2sb?4 zA)=Rppk_t(x6v@*$!NVybVX!3p#-KHhnn66M_D*O*GSxH-rEDFC_WBJdj53{mq0*r zypTYC);$S0lHvA7zK?3zjYBI%M@nlLvF`3Ip!@yO&CXwoD};?Y@GHSdnX+v9 zZYMm*XgAE<3p#mmQ~E1d+oi_iBMZq80HX(soq5zFEmZ0Ln!&-?6R|A`(kz4lsXfzp zdFiS8ClnhY|CHq|zR9KFlO3CFdAfzoq2L&qhpvvyw3!l`o%5wavw}`Y#=rTe2!`hS zG_#*><=#(NYIQViInQ;^Vbn@UFvHb!8ezcAX*YL3eB=G1deC@H2;7A{$Jn_r{&qY4 z1L0(Sr^HvC2T-5DHKBz~wWh5a-MP0M)!+_BS4q*Lj%){K`^Crg_p#|*492oZxc+AD zVnmGt>ba0jl1AL~h3&*g6-%Ki24jpq7KPdQnbDs^3Nw8;<*Z03$orn*wbR(Zq7g}q zqIeNfx_G(&)u#GT{cg7o*ip=63?*}za(Osu{<|`FsI=M8B@?m1@|6vHRbghs(6KCK zTML^QX#COSbpbzN^E%Wa8uh(F5Ug)RAy)Sa=hlnrMBygkxqV9XG_N}8Jnl@r+t&$c zBQ~lmp$Vu#G2{DLJ(6RoR<2;f)zp zBefes+@m;heH&&O^ z#}|E~`@~?bO0`hKjL^wz8K4KYPy6oG*O31V=oNPCuLpB_kYy<@pnWV>wPtxsxMx_LS zzzN~1wgx`9jY z?!%yHY^nBEyyfDr(+!Z6#xlJmq@#+mMYqb6NgW_`yg1As4yEZj-+L=xjQN00moL=gus2iig7j~LVENYWA2pMS^G$dA-(zO z;{LTYBo9zSAH%^7ScZb}7_ZcX`l%mVQ_6d#I3`yd>C7?WXPp8R-{q)Dnn}KgUr~$9 zOeHw554s@NlSL{xLbw4`+f7i;Jv1>I!>Cjaz*-moD@o?Dn_cL5J{+%>g+W7qJh;EDn>d!J$*b%xI_Jg z6c`kiUxlO~GuFd>L!KPD#)3aa&w#Et=M$L4K3-rvO?R30ZBBhFgw4?r!tyycJ*h0` zuEaNra+}MFuT1|-7duaXV7P3xtNDG$Zp%`mvoxb!#I7#D=zjah+au;GR_I<&SIHsf z9v zb#kgQnhCjNO(6Miu6Q#dih(|>&_wsd)DjV>`)TK8Rs!d&g{s-)ZaWZX90;w^I80_{ z=iEgukav3_mn|=43Wl)i8+j_bWAIc9ZQgMz6d!)r29@@XJXYX@R|fcQI$E!FTDP7< z6T#xao6SqZc_O8XYgSu3r+dG+a4uT>c4z6L>!1yG(eqKh`=p{emS<*SSpb?PSh?1Y zkYJAs1R|CGgc4b2O1z$|HnL!M*7Q)EV<`S7r3e&$uQ0OV>aisP*Frjy=d1+?LB;Su zrK9cSxmckoh3U_-cwKuD5|Fn3+f{gWgJ78Sg*2TSPn%*H1v+*);oOR)tjc4Kr8}Kq z7P3o+pr?El0(I^}OB2d;X((lss{Ej4Ql9HkND^B#DKk5p7MVev&g-~!|MICm0}~LJ zG^lVOOSE@#qe@w}&|crM?hOvxoXk9Wq>WeS>DzG~2^|KLvEIz2mTN>G60kU;P?y>q zFEN#-bPB^P3K0V8Mj_;7x?=?!<0rO-X;>(w`}CkV{l;YktHC`?jI6?-`o31 zA)WMVJ2k-0_L(}D?OyrDs_p@ZeSqa^z&Ub*moD6;qE zU%JK}*yBtrWhX>+m{}uv3O2cO#*4qO5J|$+Cpoc1CoM+&httZ6F0Dh4 zdP=M6(Ubz)ufNW)IF(oTO-=mCwcmCtT!v1<-gTBo$3ck_(CVQ6Bz;SpSp{O;CIVxM zq4COW6?li8x$CpkB$<+et*!DZYdzPD75fV0>m$3D*QBpb=pHWwv^wYPmotGBJxTZisyS2b>4F0}kX37x1Mq4@sey>(D?%qS-w-T7w;D>7lIMAW|IhG=N@2M(XN4F& zX}kaj@VX?ZUvh-Edu1OnBCjmx%tvN-z$9t_l@UI@yS?UpWUd~WSNZHjg zW-|Qw@Rc*^vAzTNX@u^#UtwXi*&YW{Y`o2{qpc>3J-nY^=SP)i3SzsyV?%le<<-UJ z`Tus#Iq61ZQRbUUn{2u5;e{4r*Wlqb^|w~>mKpZi+kn`^%A`{9{xM+`+%D3rTqm1c zsOTv6>o#K)z-kwFLgD7yQXn8KlqY7ok0E!tGh}Ig!Uo(=o`SSbOzg-4JlzTsk*t4# z4{UD7GvtZkxm7bCnBi1Z(h%_e9Y}@@-R5FUZ2fwpe#SS05eQ7CZn^5yb07^M$;|#p zoz?gn&-`|{y}Dz!nGFM>AyYt$cS_o)SHYx<%nToQpvwt_^m|AKdMN)Y(CU(g2ZrSg zEwj}6Jq6@5mK_ed?X=jq-Tyl6G1a(j*#^b}8UNkQl}GOx%$WnB9v&Q+e_PW`V+m*V zFZu`bL*U<}Sw-Vt{a^SSl`>R_PA@ND!W8LQQeS&aPUSOf#Ch*fw(7lz07PL4-Mi^WNTxQQlR-(bhKcHv0LJ zK8_x+rilIHSwhxESP6;&zdCg9nS-91@QzOPc^wpD{7d)v<%R%2q+qeuLqy&@h}vrw zH&h{>FYdYeCl;meR)W`rbU&+`gPFgXnJq#lA1qMRd{)mhv5-(jwVr3~R5kU)IYMY7W(v1~NFf*k)P7u^3X~66|)!RGO zpa(0XHRB0twQ138(w97wCi2UOHql#Ujz$FUcF4y+1B>(gq9Dwr=Fa z6cNNuQPWFsZY&5Rk$N3CzP$REXBA8cGV5$$zEAe5wzCIpQ{S*C{x%a)KeH{si+{}i znTI7w(*>k8^GXV~g zXYhz6vxDPrl_0`qrz?2p_6W!*0>H}+e{k;hIN=un$hSddgd`>})55tkPZ5$AVII=b zMZtmSYg+&Qd?yn6k~YOqY(j13Rat6TzJH#uAwh;bZ{s)_NtF7#G4qr%4SkDR zF*=WOJ9!Sp4aPVY;2e6?GmaLg2<+_su8QgnqOru4eM_vCvcOY){L`plTD z;)d#znx)HHUU;!5$NYmuhn-2l)=Lsv*O7+h!bAf9taSTgAe}1*L_yRaviFMuBlR{F zH@n8@Emt_})<9k#X222RB_94(G+-HPu`iGfFg|H%e!z#xi`F~d!yGS*t@Tp`xogd9h6RAR+eGX*N5-psid3 z3o~LFNY6B_htNBsUgI|zy=gM{osfEc#+IfwLIYPVf@^Wb*d6MBg01lqs=MCB7AL=W zQQY$ni!1$vswhU0%F&M;($>nQchb#qfmE*;r7$VkcK{WE;aJ_P~TqY ztUyH*iRRE~>yXCKeI3BKxz3{C{*f@2=3_M`Bdl+C8NkzHFHT_F`)qyeov$UXB{LSvnvx*SA;yAcWR#$)kPDanSE~PfQRHB%qIwVmkm`xGKPiCI3|i3uv(1n zYVyZlE>}yR3Q!Gw{fr@%g^k9u7pmS($@i_suxWH#@+{W{BECZ0I2X+c0wV?GulTs& zlYUl4r>dhNyzZWbPu-q;$hS_c{Jiow+N1dvzgeL29C%&{wTC9t&UJNH!)WFl{Mf0t zb8w1=Xn9B!T-eVDA4(EfHO08s;tpt8U_Lw_s_|xX^e&F@QOvK6IsbkL2 z`ucVg>5om{ATi25Zmm1MMlw{l$@44Sc#^>B47_<;ZnEd6g&$ioL|2Bxq88zJ7YfDy zY|eRIlrn#*b8p%I?RbJRQE8>-p$S5Ihc2MqKQJ_mf85|>a7SG$B=?78RSwL?qV_qj z(k#8h`Up6!qc{l?Buz2xZa&dU%tztsD`?A$P$Y{g!l0)m{4;XZhdef(G7p5D)_!W~@GQrf`25(di@z9# z{)Ky24652{kj~+7`*VNHZ!vL}j`lLdmR3EO1X2eY(PdjB*DNhh6f&B2+Hh3-_?ist zkRn}dF2*SSSi|*u@2+HD9(*-Vip4nyhLAT{Ry64TRVULx2l!vSEJuvx>yYF`_`0! zl$N-R5E4)NGt1fgTS6j%$u5`8g?Px6u=v-alKK-h8!ead^R!-pw`ngD@7yStuB4UL zifHJ*7L$aQriMttk}pq!8ezka%`A{)id&t9qzH|Vbtg~cT~C9)KK+jQI?+xrXE?^k z_yAVP{x)kR&I_jQlCrNl?fmL7C<)#kCk`KsR=zd%mF^JKX9-3na!T?F{QSBu2j&Vm zHk|zRS&XiRFxVy3B_E~Sl{_B=U+2~9K!M{kl`LrG$8t7OTu&N9)I;$)@9KVn~}6OywC+U}c(%r0Nw z-`K=h9+Orr_o>2hV2Cj1yx8}y5B=`Fr{HzB?JsR0MO`|f9yc1#f>RY($Wqh?VB_pv zsQUq7Y%%6?7fWuU@WjmBu7k)IP0r$KCok>{M!6xe2w+ElSf$4CsO~ zGU4^@@6g&WSECSGQ08WPOMpOM>G>H1l&U zE(Hg=z+s>$Twum$av}cmGBOrM>0xW_m-N^r^j~r7=b97zs?bQ9I?JeAMC=lfyvb*v z;mk7S%B*s(PK(leg))Wo%aYN2x9x=R#MS^q>XhY%?^3WCS`;%{Yt%06tLq zXmUcFr7{}nfR_uZ9FKeWZsaJq9#9kbSvHQe@`Tk8Iy{APxypYs5{YKkK{%=?@vmW# zrAdBWCH^TFE1x^HNBMw_4w`lm(2-NrLzAAd%FzV7>R&o{88|G-xUuezoci8netrzED-ug@0IEL zT9WMgO1PZKR$o;p>BD}1tls_bYXD7@Y({Z?Q3Ga>vT$8KFI(c*3Z$p9KaG=gFJ(T$ zW<&ljP#Tcd9*0KXR++0MqFFLT0Sv2x>XTuaY>23gyr!8e>!ZargaI=f91)sYoOX<9 zAt}JdoyQ%VbNiK6*>8+Y18e3QD!G+;hh zl@lzL>+bHYYhKue8b{Wkhw9Kmrnc;AS@Zd`)3Nq@hTCMV3jW`E5@;8F@8~D>j8j5L zhKUln&|Ir?tVE~RU*LshF8<*yN~~e0OMT8#I)1zhGAHP3Ly;P`L^Y7dHADBXa~3Nv z=dPz}*(cHe76on1E7scEkTgnw`?q4TS#u_IpJ#W^PI6dQ9!(aV5Pe<+Z4e8TBMh1n z&&|icrrPk@)35Ut2yx(ox<+E2aS7qlKncY|0nR#=q=`8uB+pyu_g`ywf;c_GLcrtRUQJPGZ-=x~rp79CS%F*V-w5~kII`fq z%35G;6gZNdcfV1=_tO0~m1f@QT#mYIwLaUc41Q*UgY<{>1AMH%>@OceDh2hr>e(pw zj;$1c#4z;#89A~0ZHg2cr*t9uYiQ|h0vk--t^<&4=5F7%a#EZ2BfZo?S>=)lyvP#j z>z|-E_#cVR2csH9c}y{uL9*bG+2yqmr|2*eIbM5+A#cBc%o>AGej_b3wjSmZ{ZAUB zNAY9UULE|gYiDma+id>@Z`8#7!Ga5A*7JR?QL2XEuK^8-T7)48!;O+hH zjE6V!NPhc*Q)9M-Ld~jbmr~VY+Yd?C4IwMQ&D8hfCn!6zZ&`4kR?yYO$$x&L`S$b6 zM~H{2&(zn4g1cgKE~4^XW&UjJ6-1#{1*nrGf4=8OlY`KSj3iYnIkoZSWeFD3#BNog zCNWH0>~qaNMwc@Wd?+z>4JK0)S(Sk|I_x~c+()rmEMaBSBatL7Qt z*>PJQeXWn)iJBx>8jSIX=7k)RI}b>&ww|P$a#1V#Fs{_b|KxeTNVKw8j)2oDVQ#dIki3yKhn1&iUpp1Hh5uT>tFM^Qj@xgl%o5@3HS zJ=uRV?i+rP(rb`Td13$=)Cp7*A(RSQ0%=ToNX{3tF%K)Se-iUa)bSo{5_UrZj4GpE-p+!}5O5l;!Xv$`n@%Wt_2PY>9iYBa z2rxIVvAKjQU9OM-07!li1*Mk#)GzUumS{s&S9kGL{7JKr1zY>$TZ&Lylc*~a$6&K} zYj~XX&~Lezzp)J6Y59q{7Bu`?B*xhuk$6cQ!P1MlLQNs)n$3upG(ZpV7S?K0W#AR_*gxF-3&cM;$vUbkdOj9JX3VMf%N>_I zxs~%LHj9nv#NjY@|0rlO&cP%+TUr>e>z0L?Pdh|Wo zB4~$o7I-|}wtB1HUa3N-s%pNyrydsv8Nz1A{enWZFOJ1pSnghMg+%r%x4b2=&Wl*JC4- zKMGK$mPya1baYm8VE_?)TJ%!Qn@24^aF<9p43OFHA3g+RSIm@-tL7d(gp{i5vvbgT zZZJg%ykdC1E-n|-&`pJw7vIhvnV}q<&owaH5~SglK)q^8$~aL|_E83}3ZTXxvhH3c z7ME}WTsum#qeV~GrZX*hj%q-vt%!((0Hxy?J#o}#vV`M}>%Zf%Lr1M%%88qgZr0#~R;*ICwk<=Wst0$g28|y2_e-sr02;?iGNp32xBRZH zZ%H>6PJ>pgJ5IzTwD{3St@#8gZV59k(!C2XNEt5?Ey%T;aB+MKmpf>i)(CTN*YVv( zg{~jmmF~Kys@=+q+#U@caz8H4w(xLB)bb1Qm=SSrm||;7uvo|%A~z|994d9waW%n0 zseF%1Kbpftlb)^i)+qOGZEY7?2%6sylIW5a#m@snkIyzJ(!=rhzY4_Ie}lKC1?&26^+pIs0J{*6tx$W&%R#q%<7Fe2{7O4zq00svkOMY@|gysqIDyuyY=( zS1;xet|O-8%%>FHS_G^5MOs2O1?!wmdG;VG)*>kO;HKUM(YOO!NilmkzmL0|SBB1R zDfeSR>GW;#RsBS$Galrt=weO%TB&4|Opph|Zq=fNUC$1+=ftdCQx5A6a&~Z=yx4Dz za>CM;)Sh(4APQuXMD(e^*QoDS-&+3DhZCg)d>jmFDMf%3jBkqu^~)3z{Bk*4ici$% zJ4kFMQ7%9dh2t@*)dfNCoi)ZFK;&5FaacRotm z>a$x8HT=q7-<34>XL(4c{ZJqa`#HW)K`s+EXHeWUN0~58A;IFQjn9$t6p@zSqQt0d zcc=T>V&s>*k zc+sGEtj0WnO8YS#&(*N7Q8-9%prSD@)iY}fPMfTIFY>3vB<6u2-Y@oA5?9_fpS5F~ z1uR^`#UoPwZxU4FLvvKu_aY9htul7ebO(lWmefihkZuMsWVIiJyWgTe0#usWy?|L& z&ksA7E<3kwyVo4FjO{0+FHOhi+vVu|4E4F%B1U7LNibl&I1Ekhv zoo_;P^d#_Yv&i{G9ps^_g;NAW@diW8fXci3^Gpt{?%*OY*AcZo^W_A$rAg+Aspiw zbt>|cEWC1V^S z>i!VTJ$E(R>vnj{kjz1&RKL!pf`6EmrrY=ro1|+7m%aAyp%m(W zr@zS}BeZ;%S5(L=n*)bSOIPY>P9LRth8K~_ruAxnT?6W-JzcI-h;ythu3O%%d2ap) z$6~MJ%*|Ez;M7qZO*7#B1ogs zw1C!f0wP>uU(|Kgpib>x?U*(*v+FYHSiTW4rZ4YrV`Tx5dvwF$Q?>caE*bv( zsJ=+a*~~YDp(D&3h+0pTO*ta;;Fg~)^vhPaTvaHlB^;_Tam_L_bE^xpP!R?9MafPV zZqgiO5Eq<`a8XcjV`G96hE0_`Tjd;YwXx&oiZUm3?ru|tZ)cknXXoABYfeTZZ?+LX zd;scr`U@R98=1=~gu>l3$QwyErph)83|zVGvdT2->&LO$wNwR%E4wPRAv#+sscmW# z7Z#}iT6gRgu(m4(Ejf2g2+&{UiTOmGu(%#~(7=!|1Tu1>;_6{3(iqzYsbVh}n4)FZ zJLJ$m?9em7X2H_h*6l}^F;11@{#!pr?hmUI@QcRJ??xkS8+;`WA+_PZUNLX#3uGa7 z?3qM^Wai767BjNYcLDqCs_HF2?YpgGet@m10X*fnc+})!_4DzL+G}h|4Biy?-QK*( z8SeAVU2t<30oUtacdFwC5UY?jzcS}~t-Ma~WNUR&+))*K^Xf#ZcN+E#i!<*{UfWA? z;qE(OP}cPrQLeQPizdxr+W4o(7b(KqC~s?&B5kvNp zb(JYM#^`SP(RkNnrEn&5XaeFOtOP!~J>Hfs)z&|E#l{*WjB&eW%KqTj5Q3))tceT~ z&4~8|`*Wk5imgC(7bkwQOOxWNF6{sOHoyAl{^h7aS;)|FRfOj@WdA2MgmvdP@geCwq8Kkk zMiWhw)tjos_tWrS95V1d^}pii<`pzKJ_ZWij!wf39wJ*W)VwX)HeF@wHJ!X@dOj>_ zzaH*F^o7Z9@gMH~Gx!w15U)OoQ&e!X8o|7}2Kj@^V8DRl~(VDSG{?Hh9#YFd4T*(T# zqn)pnpRvGbL)mD*h+OX#(4~JB8)uGK`eY+Lzy0z`_ldFOE~mi=UX$e8*ED2^`ilT5 z41E>iB62CJMAbk$_;M0o(R8i7f7!X|qG1K(9jCX~JR6rcpUH0S$!_|QUq*MaXGgqj zSQ-p^vxIlnH!v)D_nR#Jz_0{Sq&_?>A$m-SvfgQbN%(P%T2?YjzK)?VnT7pe|CW|b zyh52UH=UPw5Rbzg`%fP&!!_C4AKQ zV!eHUiRvLkbIo1OQX5s~R5@b_b1~s%+I}Ue%i;mkLocPLJ~zX6LI|X_eE+M6z+$Ob zyzrGtUNv7p0As0?9TD3Ydk|M_Y@}e9ccECvGv<*6Wo?vls|zy#|FP)FFXr+hR%E{ml;r`g zwa$$C1&B}jwX}TtR$g}^>0z6G2Zufet$R~_B7&(8@CBW++g7Eh-xBo;RikzzX;o6@ zRSl2qyxKaSBCa(md9R6MFB$Ez-j#EOMY%Y$h_|Fl#!m7eE8fOeT|7mz^?FilujuTSpB-r|)KGa4 z4!&cNXZzyGYQN{_Ftxg0Vd$2a5Sp&vMMZ2%re$@4+b^T5g&z^{VR<2Xs#Vq@HoRqX1u1-pReU*|q#XMuG|L+l4d_w#lT!^gz!wYmn{ zaF;(}CMP*|5RV=$!?!1SrR_CMkE&n%DDQL|zQjBT>rm3D6+awDbD6$_3Gfu~X8}I( zmsRzCycBJ?Os^irujlzZ=G+7mAQ%Kb$#O(DS-R_W-Lxv+$X)hq`_?%X6_fPgdQu*U zIhgtQMG?kklvCfcK~eHr%t5)@!$D&cD7p7;qj2Ei;b!RkIjVPse@n%Po>{hq~hJz|NqLD;3|1Uy?lPVTvRz5I7Enbi?Zx%KR~(hm{0IR#)+ zdmrTyze;{JHh^i;S7c3>wnB?HKe1Yh?f1-beHi7rUIP1^Do*~L{sRmCF+8#o-=Cp< z63m&iSLyNq1znUjJxAg@zUrE5K_%$b^iNv*?ao$Cbwx|(W(ZIzGW%2#{ApJ`nrvU~ z&MJwWk1tB4=4eq4S*cebYoO1N)4T_jN2MtMlv@lQqJK zBRgEPjzwJnhA45!-tMEpI~MiED8*$r)2o3f2jb*<9xJ7v*x~eh4D zaa&sm`s1#nbQwr5vX+T_&Ll^jA17QpGxD_dL~2XdFU=;>8~SM>mRNt!Y>>EK&Anf= zuCP10orZ#`4wDqrgtfvnxzsppUo1s#ID4mEaX&EFY`3~1vUB=JJkRLel+PzrXc1>j zCwBW=@_PvMmP{9hk0U426fTuhM&)qjyG7w)E~7<{N=-NeF`4OiEskIBqX{QPL=D;# zF`QOo1xE~8>PKYPekw`__{?-HoHC>?OJY4&9OWq6OPPtYf5KGtarY8dXIlf46kavq z)8(l<(o(Lqo+HIGqD7DE4Z8AJMN;3-?Ijv zp6@)~TYkIAvJrb#VTv(|0fcA!dbVVFsog^%^=q9_j(g(Ez?}bP$I3y?khE&FwRc1J;&wb@>d|du07yOzu5PM7#4b zK4XajiTp*K=3v=zohH@`LWMfJ{Et5#y?5zQLP%Ob=a=`0x+fE+XNUIBpHC(AP$N#j zWlC3ml%qqtnfUn26R~bLq<-W!+3;SecY`8#wGK-r01Csa_zZ!G@|8x0n*FhbvxSP$ zKdL=kLJUg;S2qLNa$#xBlWh1Z9@y~VaFVPeW|Gf!-0u!kd}P%){k3mWqK-j#j1L6S;kQaVb1(aWyRQ z*mfZFNHm#5Kx!5o8r?vwzU$+tm=hS|9NI5$@cw-6{9U%2fuQ1$qYfy$j*kX@6wS11 zDrNB}O>V<39j^iXg=ag7ll?u@Bk{1iz(){h$MZPEH6+&6YSD~q-l~zh^th(G3wY$P6 zw_P0X{N!|*izdL@c{&U$iVZvu62rFOS}Wb<{fJ0A(`JNmF-mY4;CVj2!Z?hJ&sfO1 zV|nk_-_ls`4rcIyR93#1EY%*)zC4cHCSAmO60Z)wzU8O%=#?IMzn%7gQY^^e`iq!| z8!6(PXf$>~*K=B`4b-L4dSiM~Lm8F~@|xnO7iUaHEt=Q<>v`T?G`{%TXB^h!bOc6b z;+pjdL(9#lMf>dK^V0W8XtUo4liOWY(IM}-APKm%Lnvys&?eJ#9lpn`owhbjM0=@x zPvez~E?TcZ1C`7g4KdXjLX+h%wod6MTE8>Wa;6EFy9p)_4a+$vs#QbUUh1@0*!kzC z2ihP5JqJH$)+dVGx{{fo0TxdyBb8;FgiEQGDR{6nD^bUHyQNU0w~O9cMkLREag91Q zu;?E(2Z1%3g>J`}!%CNZlz7zyXHTp474mEkGNL35sc_0;>}Fd3l`x}OCVKda!ua7p zRJZ*CTR#0MxQx|JfxeVATFO6|j}+|`td+Rg(PgGeO;HG37D6R!a{1Tq1++JZbzA9`~Y|dg!%F#>1~2%RJ;O0i<_#hEZ99d zyig}=|F~#bF^atw9^j;Uq)Vc>$ZgsC%l6K;8vb(#)8EDS2W*TdIOdBx`-ugDZ_0vW zgXSu)1fL5wZJ*w7TI^hJtes)@md!Tx_oSsY>RI)v!Q^(>`bcY7Rz&TPP8(^tuD^^K z93_-mKXY5pQZKN$V#d!`NVi0;tXv^R%tOhB1}@PK*k5_GkL4;Erllm(udn=Stg^Qh zmEWKDaK%|Lc|Sm>S8e_>eUp>>dDdrKX{>kkj)n3?0!zBJ{T0`XsxVqMis~r@LEk^! z&jxAf=jHNcZSBVT?|(0TxWuvm(VmTyLuqq%kF#w`1BLMfJgIa%nA0p@jzHg{@Bx%s zTw|R)u?1b?)Yi-)Y4By^Dxq%}_%U0ME1Xo57qR`zel0HN_dku)`{)1XBIo>f4DcO{ zf(DAZuJ_Q1$rFSUTf=i~wpgWjM8wUd!Q|NU!BleqJF_3e_B{otn1%+)7W|obZq&rX zQ~D~=gHRX7mDq&{q=<*btS60y@zc)y}&zU_gFUrJ-u->L)m1-cINNPs-Gmp zZJ(V9335wdxqCjuDNb0_P2YKB-2F+7Au)Y2;?L^9HAQweN|t?GjwxR@0!wpeP5H&J zlFw@40MFKzlIaeKf9vaHU_h|MGVDwA-}PL=2k)C-W=P4sd-LBr&8D+qB#kRb01jhR zFHZb>MnwDhZDG4vLQxSzV1sHwnbUI2%JEl!FV)Gn#Kg%wA;5KI zvhZDJ=#BUrlK*oT!8Q`1@BFKbRYvvuz8n1y!j8!ToF< z*<@eoCdS+kFxB%=OFRC!gSJ)^UNkOz=;FV7q(7u0j7+vNo1yo7!lK41Evd%Sz0ADn zvqcAvdKX*z<;|U_$A4E)|G|ZW`2h(Lz~BD&YXtkW;@}l4nK&qSMPNUT%5rw|k_b?S zz_!25^^l3pmeI*yMflGnTugs=qwA##{A z(jq57mGr1EsjcM2-*pFAFOlc_YR~!hysp{PYvOS-lDdVwt1qZqqIFiv|GodJ-XvP$ zK7}e<^>yXuw=KM?_PRSZcW~{PqL9er2cMc@JHOu7VUpGkdQSvwZ7ZI&a`(;pb5zp- zmDoIKd~ry)^0p6qkU8#sebR@80U#PH3h0?y;-*~wU7Pza?9KxG2bXwV_9E7MuRip+ z91_XhZT5k4;ASWe`RLv~#Bs64U(1&*U>movKCPF!KgP0D5`1|6E;s3s)B2&lSsW{0 zia^ap&G}UETMKp)uEh)MV*i4^t6!?#LuiC_+`X?02>h@`zXnC2dQ^p>hS9}i$W#D| zxro{f2)l1tPsEil7PlW#{jnbts6o_~^J32T)Q#~gC;x5@(fO@_&AnF|FFd`@!B*^A zgD2510yhx9zh)^4cx4vpf+*y>EB)Vr-bB?2$e3G-j-?fXq`5P>+>Ng+S8MATIhQ5R z04{(`>1UCiuX%YzK;e;NRUmQQBTOz6f%SokI>3H155WD;{n-G74+$6-2qz>qLUh%7 zYRe&15QP3bsQPVf$1zpjiZm8S|J?;|X}TU+?hy@#hmYY-@r$>Y6$`Rn-1g)*OmrMA z`kk2=$DKHs#~BcmO4*&c*`1z*oweR{tG5uzd%QT+$b)B$?p?0X&{mJth{j16@T#@Y zddj{1yJ0M!2e_zqLBIySov#OY%8@Dm-@h*-mS3665x?CebVty`**Jf$z=co$yL(Or z{^Gu80E7n$nZf|%kza@&)qw_w(*rK3dsfS z${Ed*`ej)EVttQHT|oM_wU5Ln{6=RUI>{Q7!X3s{@w3JXCn@K-_899!JvWS@|xJ$o){C7Vpy|7a(Z?4q>)zo=!B1>3no{J!RSw|pBx?t94xop6SQmF>fUHfSs_|S_B&jxsk?6y z78!%a&#e3Z`_jS$UtjbF8>k%B$dzNKlYzC8I&uzdmf`xkP|?pGHIW=KpN7t~?<}eP z-H35k53=X2CPxO_95)tU1(2Lw)gE;Ho7d<7?@z|BtP~ZworX)LbocoRah~1w%;N>f zF@CJ3cA9sgF$LqY)M8bpuVxaU!+h<=--~XyH_C_-!w-Ozxk=}|J;RAUj=cPD`~>yA zJ}?bY2t85n6XYnLn>*Rk&ux1GEf2dFWaZqo)A_!RP0g~r5K313!A}fqnEt)!$eNMM zN@x|wIOS!LGL|@UYIx|`UDNcxNmUN;Wy=KLdi))O_0kINMH2sAw(;DiD#iNAdSiY= zFfTh`LMMC-DJ76c7M$6Zl#?#(yv^@4z zR13M)FNl3M&pd{#m;QvG`;)j!y88!@-I-rnYJwBGT_FxkQ7A=1_C93A+0)nwYa)Z% zW*f;Flr`u;#MsTxJFkEF!|DZ#Btj*_QECPPq>0t2|p48AVfJ*wf{@tMrTii9w75Uq|*+|0;$Q_MGhiYfwN<*xmcYa zli)a=@Xn1hu88Yz80fwF1%lF`*v`HEM&{4oXl_Q*(Ea^eg7S+$rU@Dv4X*$Ge`l>B zTnQWs11J7?foN!~osRyoiGhU`{cDi{A{FbQi+?ZjpUeGc?f$b-{+@;ZoQnTMl>da! zzh~h;x#B;0_CKKF?^*Z{f=bTLr=!W-=jLhHM$_f1$EH)d;7H2q4u@cWe=)&fBMjx* zr$DVP4byl`FPN{Dn4VEQDpED9AfpZZJppx3QR&Zpv~-vS{zXrhH19*{Fhk(t@!cFL$8>Qz)_s7&+ z3=Uf+fy0doj7JHg#HJ)OEM%A z;R4GZVrd0K<_e&`P?bsUeLMLy=*Wx77c|A^vsH2y z-qPmr38Jr*V}^nhMoW)r&_P~lV5Wn-a`)#?8#=!;^PLp71XOy)Pj{+KULHDo4cA}S z&^Ydjd9QdQawSu$O{?`jIcuC}O0xG-e^HLp#3;TPJ_MGikxIPO)+ViQG2PG3C@_pk z=^SrzSP2ydg*FG760_LZ^KQ^pBBDRhim7<>POA-GM9T>?+1mKdbBVG5bz^H4^e({qW}w|}(7ABR@WpxWHV5p-PJu#oQrj#n1P^GAh%to! ztKlW)3dHu%CAERMmH6ik3hI}gFk~h6#eLeNct<&&&!|Ip9^ay~p%s*rQ8_|t(})cu zPmHyGEw;~{CBWxG2(bs)Q@yfIOV%vX@*!^_ zAbIgRLhh&GW-Z2*h|jaQVAB2(B)fv(t)VaWz^00K-17_*`!Mv@W@BM1kRbtQXyfSxd#}A zPAR<;Cy&lTcC|J~W~HB#x`sz#R!cs+f03xKV)G=)+CjgA=Z!v@;d_*kq4JXy;)L)1 zQ7rgU8@PrED*6=LYUT@wJlN=7gR}>{u4=#i$Kb+X0((4(=r1Gc-cMoZN=v_(z14Fm zheb~~K8=N^)&2%5Q(43C!cuL0eR0$8b;CEM4i5XH=lN^A?R2~9_U+p`@wbnR`8eRo zQ)CT&bJKk2u{)yHvTH6R78S{vR%hv#H#d~F{(~@)?6}+W;waR|ay>%J$S}hgbRx+3 z8Z8bU+k@}7ra7P3)NnyHdq8#}z%?2I=GLvjKL!wCR}Ckj*g)6Q*}o3D+Rc4dgi87k z+K$0zyGs$9Ux9t_l{w^N#k*Pct!_H;x&`3bg2imr^GJ4Wh5gfmAgqxdQ{<8R{bdY| zik!~hGw+dSB|7T&#(x%?2%Ohlo-`{h4!X5gG5b~SIA;*Nwr;Ix0A>^ciI>7!RKJIM zc&GZ*a(Ul}_35@TML5+`iH~^qTd?7Nn1VoCsRYII9rt2>v>;~Am5G!=7wSBgbDE$Q zuB%n5l2UK5ltCTMvnxKp^p`{!Tfi;LqGZt2bl~5tds04R#<@J?U^U}wD%6sy5i^29 zmw3z3*J@ui$z##0@}817?gAXb6K;)Q6-0wJ0+A#`N0Hi4|L7Ath_jvZqo$I?*i}hX zt3_G1*VTs|I-iMkJxBLPL*YS3XuKn6irE*PZUbNWO*O#LD<-ZH;abQ&TpFwFKUvt- z;Fr!6;RSE+i7M#jLYhb9<>ZpCp5EaJp-n*L*?k{hR>xbtTlNWRkWa6#zh*7vp^Wo6 zlCY6I_~Fc2hRN*Uu`~tAqgTNa@Nj%A0tZAqNJl5U|Lx%Z(znF`!cxlk_Cz?_Vaxnh zw}n-+=>8woq*`)gYhFLsLy$t=K@3*lLG`twGAC-5xH(u@jb^EPkV8>Ch=`ekN%T4| zy3EVC7}`fr4)D|CNAp1bnO4bnI#>{u+y6@PX&nJ-nm5o0n3yp;oBgu4$bJqp3l1pr z(Zwf8!N<85{Eg;o>0Ko7{86*mQ;X z-%Rx){ey**FG(#cr=X%)V?OC}J@iKN9`Od=HG_wSoPB}YYT^BH3MqLt7wUnMNruB)902+drjn=#`=#R1&7;=lCbRUwE0?Idgr4& ze7n$qkGB*P?5p|kd9m%+#hS&Bx1E4BFFEwIW*_LGdp?3tl1jYV5M&6vg})~+IVZX8 z^*CBQ>-i-f)CHVFso|lEIZ5Ohx}9HA_X>z_>@6%LzLI5I8xp-Sd+e*8FHg+wzWs(Q z70G&DmoHk+^BXh?6t%Y0Uci z+mt*T-)&l3b`SKas7>!LjCF>nfUTI%RKj)7A8r%FHA zJ0=F-i!6n-5QfIA#W)ez=rN^P&oS?DdfOTgmo}T(Q}f0j#RN1I5FRDmPOS;2$mH7Y zF+}#mA8KxCvLa^888Y7#QWmjsu)#DsyX3TtVzsw|L9%`GP^BFm%zsXsxGof&wAxsN$WPr}K0pRIa zisQ)Ei|R#(;4YPb1H2uV(!NOPF!Dx}$JTi1#P=W$l+*@r8Pd9tzyk6pdAomhrCH%& z$1f+Iox~0oXUcE#Sk?54W%0tSI1jb527;Gbze2}V3sj7;dj$sfV5vxCK2=^7a%FRZ z-Z+q!K;Ik`N-aEB&j6<_7LL7Cxada(*>>oi*tOUk-BvyC?%dY+kH3Ztm>CDdGFFD0 z$*ybVSs;>*DHL1kaCx|&&V}^Iifc_{alloKs=IGiXT&Gp11+$b{Mysk@MuT$D2!{O zS0vS6%{Lu4CCL2dK~%=mHP^J0glhU7fSwkh7VZH(tN@iE|GvSk<}C%T8K3>2ALJ)C z^8yKVE3%o8(g0c2Lg%mJ2ev#3ohdOHEj_n#iUm0)H>rsMu!_d<)LtUs-MQ^{-Wp7< zUvM2UpR^xk(K|TQH4xvXSbt7Z9{@-_9+HE*-z?5-{3qJzfqtyjEyUqi^n$M@- zzL6=UzTv@;<{wH8?`h;*L&pUfk8h3vctT!cbcs)A%?3#uHg=M{-KbC+zWe!@oCOMa zDY1dnN3J8D>l)jk0!&3^8vr9k#sL%jhm!%OOM|y^8Uvq30Bi#EU&LZhh-=`n$@-wg zgmOM~b#yoMn|&u_%UZ9K=p&)6S^(T5ut5vD@u45!Y9P65LK-F5<}N~PWsRJc=uNm} z$E#Kw03&xfB_Tnelql%DIH_xFo)3DPYRWT}p_V7V)>s&5DN6GRcoPm=sNB!H;b8r$ z$x@Gz;+cysaUVY{l)5RMCT`)MME%HrqiC48W?t~FGZ^z3NG>(N>BNC@e|I{Yj8^rX z5Vi!{6!b$Ag8eTRHcwL54FLuLRfK`=Xu+DL{M`;tj8SVCx6{_n_u4a&Gq;V6=7*yL z>vFo>a;Hx0T#ox>gvu(DV8!69A@iM2}DnMj>=;6Tt4t?M=>bX)1 z$vQEYkkVO;s!)awd#H`$+=rWFd|Gg+IDAvydKmANv&20j44mW^zHQ(00-y`lA*0H% z5Av9bHMYMUVYf;-e6~~WQ*Bfk+f-os)T9Pt{~&4ycICq~&xF63%2mIz!!%zz{#jjl z6E61=FD9`Sc^m+DkchSiIko$)%`?QzP#jz2*kv4V0rvmUtbh_G!;SfB=e;CW&-Uft_Yg9U6EiFl04h7Vb{)tHC^J zZu+Ds)ZBa@)MJBSn!)XBa_iqt0iDnjxm(`a7_T}I%M=oOP&#c|-$@r1zeFVX`qb=s zLSXr8LJ+Z6{+T&2ROY3=q!_;HMb%Vdd#|E0^Kw&q`dZW=7x+D}Z6NolTW0-o@uP0D z8OBi10pmE>eIwP@rt`JDz)PZ65Uy`^gnR9IO|hM9>YUKQiieade0SA09)wjOn}USl zy2N#EHck4r5{POb&RC95%+Uo_+gUOBN>2Xxp7n!OY6yoUjWUbZ$a2^2ESZg)QUZTR zEHe-#F2u+lr;;gA1))X{*E{@bmLyUM%F`sa5?}eT;p7S^3@YA5W9+q2_eCKg z=fyGK1+m=x)g!U6^8A>hIO{G^*N368aR-<@R8v(U7QYKR_`;5nT29S!^n$_g{kwgyOJthnUU-!4R!Y*arzGSkQ_$_ z2Y{M^)bHL6z(zik=Yd#hZc~hxdoQd;u__DP7&maG7(O)3FGnXh|NiU^-d=h7{(j4C z27B=kVQ{d)Pz3z#Z-^?e89{*rY61Ls;%PlywX}qi8&CXh#N?#@n48H-raHUw;GCUKM(GP%4P4~XuV z=9Ki;v@8Nyf2k(5qkKl; z<~um>#9a2#T8!Giqf!Ewi_}j$YL<7KOYhoV`P9lWV)s{a;Kl#t#7$_xfB!jgBY#eu z!`~C9@?toOWH_B!!?7Te9Jtj1BlXhC1e?y`wPqn3F=8S03af&&)_i)*`E6s9b!u)gk%Sz{erJJ36_b7*sV=2j){zC|@fAJ{pAG&qcg$>wQh%34xCTQN@F zRx9LnlY36A1cBHQG|!cq>wUV$PX|n*jz_#e#7hf&6x5xXoSPLK_aSvAVnIn=r9>Z< z=7b$;b{{M;+dt)Odiz+g@LUm?xN+WDd&Kmq@~>hm%!X?7j>Np+LA!Il_+T^i@cxm z6c;@;6N@mBm&#^F#5X;!_x(b>gcjd!ji17Vp#Rn+m){cEfm!!N#hAyhFD-MkYNhsG zCsjawBysTBHDfo>WCLPFginLja};2rY;Rr%7V})ty@-7}tSVq?nE4facB!AY!S%rp z0E`tCJXxr^24?l_!^Vm2owGGgI}y!eO{I510A%eS`amAso9dMxdGh1kRSSRoa|>Ai zEnu@L1jjc#{w&*){e7Nx)l4wz0hryAI%Kphxda!mlsW8-vn(ZCi3VvuuW5A9sH@LSi-*=Xu zvrA5w=l1HHi(YScCwf%w6F-z3z*b#4s2hM?0hz&}Q9>zc3?svm&P@@}zzm?>yE9JDsmE#)pkreni0C#4qmP51q zGD{?;qRGJ1KG#g4`bc?`Dn^z>P_z$<|ptN zgM$x&cT$U7_%=Cj^d0c8OVApJ4e~hD9lSc|i{r1gR@?4mi%KuRMJ@BMXPhTjPfM?u zrhNSMWRXGlf&RFF9o@Gtl#>EfK|#3@_1meoSq-(exCrBr!Rd|g++(EKY8OJvJjTgE zPa=Vebc;A%%jd=2*@#-)Qq}U|FAG+DC!?qTo3ly0TBiiqFrf3ajVfCD9{6@`rNi3j zlL0Em+?~4&W!N7_JXFllC1=31Pe;-yjv~6-6=I*;k=BVs(`_@Q$R=j$(#pUQ9$&?~pc8+HYJu)% z!Y?7CqUM(3kCz%bb~o-dFi53?T!x6Gur!@kO78zr+dkz;J?T6wP2J_ExRu7F+1xsV zBwt!q|1YHB!X)R%S+P_(p$Dt-38s!cu4YLKWULzJk`aI8!j9!Se0Fu7r3abA)8k%j z!Tc3j4{I-)=cBn?3h$NZcH7Bd^r=01w>~K7Nu$6OZmN)Aw?IB0qv%3wFT>jAU_9_u zjtxxgw!6=VY#%EHu5c^4dhLN03JKc+s^ihS)RLRbscBrmME9=qxPaL(MN=}Xpx{X# zXbfddNgSJE9*@YgLN4KvhsdVpSm%qm=s{hHF2DrW3$cUhC7T%E;MIb5$KPhXo77e= z0t}ljI?X{3&}?O_g&$^GqpKsfFIf!gyN~;DIQk+s96<{f$|nfPDI#pZ)4d&3X;o8F z(Jje8b(s#B0*gu}sCXj1(d>^Y$%9yF*rU+)xm-|>o$V{R2aS1IqaM_9^GfjON(4E0 zr(nQ3zZN=O6^`w`$~`8a_XfAS(v;8=%m_pOI07N$6Y$GP zWyVvNBIcwnmXhclkW=PC*(OFYXI2CLNhMc*t(-_tM@R$$L8R+83EQPo6LE5Q4D^Pk zg~|Xb<9|W|fO6CRCX)ZlyEsuH{lEZQ5Ej&^4pg07?uPA&^CB=T6Bp!gf(Cqjj46cL zm?2`(6fLR*2^Wt{DtRlJ;H9xcAJSr}-*ttJ+!a+P$0$>_;B)*Ps*zU!w}; z$8PWaCZA>BpTkNunl+~a%J!ax$J7JBaPWz>m4XI6LhD-O@N%9|y4M^nT6i&Bhz{r$ zs0ZYkxeWva`$7j<-c9vZf{2)*1`d7iW?*fQj9Gw1`GtqvXE+V%wZlX-M-t4%n*`E_~MkYo9BBfq0V(ZEt|p5x`iZy(x9l_ z-Oz!D6P+v{Gx>#B^Js&F)k3GJA-jXeUZ!QN1vZ&wh_ZKq;#QSMTVc1@U2+x>VdRbb z)Jp+mQu|_(io?Rtd6Lumm!nXdH?gd9uy-we!iG5k7*qoZVYR|qykLPGIMP7F{ZCyV z!&LCQAfQH^6jy|5!~Dy*axCqyr~j{80t5wM!z0Az93uZFY-bO`IyXwow2XWMT~F!X zAilZt-=Ic@71#CkEQIh4<%|yfa&x#w;5+&{W^~$}psTavpf5 zkI3e33Pa&BM!E3cfv-kW7y^XzVj?abYjQ-@YjeqkPGw6)$ zkFWnZ2>GQ;cuiRQge*ayxB*7g88hiDU}2I2D#+Z;ccB$^(;K_n9f{&gFFCdJAAZs> zvXIs6Z9a3L1?ojb&@+c`b(`paoIC)Semr0%4IY{@KaeQ2hWaZp2WzrvzJ^iuTHOP{ zB>67dtEdQ}3wSr@p85T4p!EfxIx(42Z3ab0$YeUPAbRbajDe+YIjDW{obGObr^uhx zAiefjBsoq_zF9N+=T#|g-g4rfFl^t+!F@i#p2APR$HWJN!(3Wo4_m;xWFbCHEA2y8 zGfU;>Gp$+XA;*@1!$|T}Swh(vtSjaBVe-x%49t}?*SefiHUy~dVzyd<_8F}WgPwQNdNq>t)a_|U-b}{cLJN=4(xOTpKOo%p z-7^ZPNZ%M)OOfSG%9J}>4GI6y!n@~85q9qzouu4!wDcK-WSVUShT%0Hg62_><}T;iyY}=5yC&=#XCX9 zFWNT9$@#fI2awpbx>=Js$m@+VgGNHDjbo5aDQH3K<9BxhvTM|7{x7Ep9A^vuB0+4x zpRoV=PuPD4rQpbjQRXI0fbYf2m0%!aWwMl*1~7H z3}9&$$yYZ4R+fG)02b=X5wgWipS9xEva5$^&Rkq|rFlBT_2uqJ*=NTB02F0>j6$#n z9AVjkXVpM-(+MIC-<+k_aUv4HxREBi<0Z#5P9Z8EgE@Gi{%kat*)JWTyYhoAq2$Bk zdVB5e0jd1Gj<3)5A_e5ki@0bB;f_f_1@Wk4Ag|7MEJ8w6gVjti5KjX{9>FLkQqt2o zhhh)njBi?)47KJSqserc7^nHQaOXwH`w1`nQTk<0+$L2a38mvDA5GE!p+dLB+`l<8 zSZr6lN1N6RwMu}mFr)*vU07~+rjz3am?qUSJ$al)h4%2x*EyL5h5;hB1^^Ti|JSl1|z3;_olN1Gj=YAQ8nBRcJ1Ot*yup zKd%d9ssEGd1Df?kbLJRm75CcmRd#Bhxe1&jKFB>vPr9IXy_6}Dt;I{ql|-Pj=L1sR zlrrZt8lSqb+;F!=_;UjEvntm?WBeP?AOlPWxBB;g@N#1WZ)Cc^vbM&vT3~Sq-0XX3;k$pByvLb>K;EoK$R@DDYZew=7_Ub6f@w}i zgK4_%F0nO{p4c=407zP>M#@>Fx_Q;CO5F9Dm^rQX(8Lc3=>`J(MaE{n`p)y|MI3@G za8}GYaA&{1-)FuX?zf((GCyLdf)C_+wpe&OHm7@>-vIY(WoqDy^M5^osr8`+gJp50 z*rAaH{8TLTSTu-m$Y=gDUGTL5pi2QTiqcMwFKsz;ZpL%mKv%cCmaU60w=YxUY~d8v zl?U3MnnaE}wSUmGb7=oj!O|&I&<|Ki_{z!(m>1*d+t6drdfM*dS8%E(ce{9Fb28)+ z=0JO02ok(h1Vq9i9sy<0DFI0xK@^9Sgi^i)ZacegOMtD1O;l2dqM{^7asm>1zWn}G z)Zof}TU72Z`Ea8Q88tAwjXhx_7O!9cxHXbP$6{{21Mnv7{bWT-I1p{tYRBoj_b?{0 zIiO2xK)44QSOW?D+>0CeMj*rT0V?EspyLGxBlLKN&vN0w1klj| z!q|Mq5PI(=+NA)$_Vc~sTT+*M)Y>`$wDQ0RjB{$IDAgxtKd!896^Vcb7w?u)DF{58 z1Uv!*npP$(a&?$z@GFeIMOkr~LPJ{yrzoTm3)sc)FyT~b7oCa@^IP+6PzxZ`?WKm8 zUA=EwU%6bdGQJWz37^sjnW+{uGyqXI_fR6yL8qh-v?Jl_kqdngK`s6;96YUjm~-Jo`c_jsQ_# zZsUtSK*V)>{%}+93EPuKJlbo;p#3fnB)g|0RiMjgfilj+Cs^i6m;=BW6cO`jG1(bp zPiQLBjiUXh1=HZaOpaf_A>KZ@S^qd+BaUagzp`VyKU=5tp_&ttqscb*w^=;)|E7{o ztdg>8aV>!tL0kguOLij%!O|KOwDe?N7_Zf9uJO0FgRp%-L`_MKWcH(n)Kz1F!2zQL zMAt`OTTC{Ad=FlfGvGbVn`~pFQM{zj-E&-771V znX`9%{G4@~WVUdRmJWrvmAxU{`=vJzLloFxfb{+^=65l*(ru039Wy4mLBO z|K4Wx)9rpnv{GEu#ygt9ZK=O8~(!nrN^oZ0~JcOd2lrqnf`E`bpvi>6o!x3f z=ZQKoK>PysCK8@MrN+-Jmz2}7@L{?d201yl-(2`Z^HVpN4!Lio4j!+2Z3HP-L`cR`|klTA!GilI4X8^9Hr4^#DpL1u!n}B z$hdLjL-ruo{aOi>GDzGH#7a$@N+<|@gJBMcWNvGdngRL;FfjpO8r;2sap%KOzOsUV z`!~LR$dt z1cdzOh?{4nLBAd=n6e3Qy-$N2fV=pzOT21eItjRyh6*kIFlYoH$k^%6tlyn( zm3*=XxauA`+xOgy*l1t;4}}s}zm+=%*-*)=t`pf0C~WDK*MTH#2Kt!Tq<#&CGa^bp zMU|tvU%Fg+8cd292cZBPX~yr3M~0gsn84|A+NwLX!e7w8A`xXUS@AgSskxyBG3_Z) z?%e!i_u^`6Z||QWUY0-io@api@F5sX13+beXtygy&i0+c7cj_8a^a#5eWd)qa`LUd zk&4{A!(trJj`oytO%~45N$I`Kim6q_M|mlHK;Tt%(g$PC{UAA_*_w}lG3#XGB!``<8dg38nJ9azKNW6Cc3j!o8bcsS!aSV4-EXT7)A*=pR8Y~Zt_AM%a zkoI9_?c9(=^|XgN{1LfjVWIl%%xyN%^(LZseOnh^WEQ(Ufs?3_x!wcX$eme~^7alr zI2DBB^3dL?lcrNv=`fd^Z%f_VH#Hqkh16F&FtgOz&;3TJrd5!GO3Ih4(NA_E0#rAP zUT_}nn}Wm8g8q9LKB%HqswdZ>>8swHrq;E#K{kTQ9_t_bFByi~l8KM6$H_gm_p1M2HMtM)zna`BM}L6A)nhfQSAtuzq?gG0 zdei-{t{qEr%Pt~Wf9{i&SIhi_q*!}zkKWt-7>V{9PEwm5ytZeS^t`ridTSvDSNbrc z<`Ppq>uITpfaq^hqvK0AFR`pq9EL71{}u1G&dnRDupyN)UjaL4&Xz3GHnW9>7{F3K$nDEPBHWyHD8Qh6TT!U+K-J0~7 zrz|;rz2U%gJN(V#k1=Fwl zx1?4-T%$l^W3Ph2;YWb(vN&cok1q-jbpj4QD8~R_BqW1%v*wE7yS9JQ;m0HH$9`C# ze&YCE;@r*1>QRZLa=qCJ4BIp@R&=hCDIhjlyd*3{dhB!hw4N-7+*Qm(O+!>(*d;J) z=G71%j#r>T=U(STKi zwx+X1A%!w#55-+DxlI>%kR_~S)G-rF)UP$=Ulh{(!B8`)v^oX{Lk-QRb>7T3ZWOJg zr@i^KI3%s6Q1bXTRzu+;ZNEuETMuPUpAb$CY%3`z{$K5#YfO_@7{^(dmqC<8 zCNe4_D!~Os6v()^HM1}+1e-xXKoOinLI~=hTuNIIMXPQ?bP9sBtK7PBDFs^4)`H4J zrJ*RcD&_hP*Or2Slu{|w?m76uEL)Z>*@u1DhkohXr0IE2pL5>-|Ns0>^MdjwIlf`` z#r!f`308eEi1;~eO1bEnc&(oTCYO?_61SXFWiyOXdy>Tl!Kb>f0^PkbZBafA85&vWlZ6do(O{C4w=>w< z2v4SvbzTyM`Y*nyv8gNMX}$aP84MT*cc>tZDdz3R+rud-J}cWUlbBbp!=DM{M?rD& zmVUa8x^$d~$)h#}{Bmn5Glbs!2rumi#s2}u=R(J~G(w2S#d+nW##kFl`V>Of#St-< z=Bp%p&)j|vb!73*!;as7kl6(On~~l^lCNH~G8|e5Lc{tU0KA4@7>w*qd6v!R!=WW(@t|ag_e$+Ir4NYNls6 zt_h#GjSLeK7o6XV+NXDzFp3Gs@cVE$IwDjAUqUu|y%Ru9ZFgLT0KDw>`!STq9!L&_ zWCTcPbkXpz#Sk_@^-+IAvf{`#IETXSqT3MU_gpciyEiXRE9D-qPr?qQTEb)4y=rwf z?7>3Glc$-ZTF({gEL}P7zINo9Ob&<-`zwu>uqnH5ANdk|e+{4fP3`3qbvc_mt+}62K>ym zYggbd$$OSy{w-b4W@FyC@7#7vM7-~K?K=2P2zfFcc%!#d=;H9%PM3<@G?&D`Q2Pl| z%YgMNS}TdL)I~deYy~1&GZYz+UOgW?=6zI-)$#w15mMDP7NbbIF*fNAwVe4Ut_2l{ z_sF#xbBZXLoO^mZpT*%fX z%Y;K1%??ouAu?=RWe7h|8Wwm@SY3nn(NKW-(wd{*6+?gJ0YE+OjKJPoP8A~H#=_h| ziQ&~z(-?`9r>``XQ>a2MXz`h{xDckMe$A81Fs=f`rO@5svDdYhAS7d5RBY9EZN32; z87@-HLjdF+;9+TiDW^5M?QX`!5qqeq>7aI5BDLoNj#&kmh)y@H5E6f;k*+#8yF;*Z z56QlW2ewyo6YcHf4~EGfo0B0%P<)U#pTbTDVD9Cjtor7OpX4ad%Si3RZ>yLBi6XU; zb2=;mJO4A~(C>VdSG@dOE4|2W!n>s=iNuEG)gbpBa5UV_C+myPq)4`hjGBDKY0B|8 z(XZp3F~INbUVeCX$z;^z2k=xP7*l6B))a>|%^1af`kB~TMJG~h&)RiB`zO0-Pw=-% z%7!<0YN=)O>*4)JVTdcCae1f3CrVBq=|IwR*@f+JiO&bgB8Zrtq>^u8rk3P

@@ -148,8 +150,12 @@
+ + + - + - + + - - - + - - - + - - - + diff --git a/site/examples/calibration/calibration/index.html b/site/examples/calibration/calibration/index.html index 15f07e0..1adb942 100644 --- a/site/examples/calibration/calibration/index.html +++ b/site/examples/calibration/calibration/index.html @@ -18,8 +18,9 @@ + - + @@ -27,12 +28,15 @@ - + + + + @@ -56,7 +60,7 @@ - + @@ -72,7 +76,7 @@ - + @@ -97,9 +101,6 @@ - - - @@ -128,6 +129,7 @@
@@ -148,8 +150,12 @@
+ + + + + + + +
+ + + +
  • + + + counts_to_vwc() + + + +
  • + +
  • + + + cutoff_rigidity() + + + +
  • + +
  • + + + euclidean_distance() + + + +
  • + +
  • + + + exp_filter() + + + +
  • + +
  • + + + fill_missing_timestamps() + + + +
  • + +
  • + + + find_neutron_monitor() + + + +
  • + +
  • + + + get_incoming_neutron_flux() + + + +
  • + +
  • + + + get_reference_neutron_flux() + + + +
  • + +
  • + + + idw() + + + +
  • + +
  • + + + interpolate_2d() + + + +
  • + +
  • + + + interpolate_incoming_flux() + + + +
  • + +
  • + + + is_outlier() + + + +
  • + +
  • + + + latlon_to_utm() + + + +
  • + +
  • + + + lattice_water() + + + +
  • + +
  • + + + location_factor() + + + +
  • + +
  • + + + nrad_weight() + + + +
  • + +
  • + + + remove_incomplete_intervals() + + + +
  • + +
  • + + + rover_centered_coordinates() + + + +
  • + +
  • + + + sensing_depth() + + + +
  • + +
  • + + + smooth_1d() + + + +
  • + +
  • + + + spatial_average() + + + +
  • + +
  • + + + total_raw_counts() + + + +
  • + +
  • + + + uncertainty_counts() + + + +
  • + +
  • + + + uncertainty_vwc() + + + +
  • + +
  • + + + data + + + +
  • + +
  • + + + abs_humidity() + + + +
  • + +
  • + + + atmospheric_depth() + + + +
  • + +
  • + + + biomass_to_bwe() + + + +
  • + +
  • + + + correction_bwe() + + + +
  • + +
  • + + + correction_humidity() + + + +
  • + +
  • + + + correction_incoming_flux() + + + +
  • + +
  • + + + correction_pressure() + + + +
  • + +
  • + + + correction_road() + + + +
  • + +
  • + + + counts_to_vwc() + + + +
  • + +
  • + + + cutoff_rigidity() + + + +
  • + +
  • + + + euclidean_distance() + + + +
  • + +
  • + + + exp_filter() + + + +
  • + +
  • + + + fill_missing_timestamps() + + + +
  • + +
  • + + + find_neutron_monitor() + + + +
  • + +
  • + + + get_incoming_neutron_flux() + + + +
  • + +
  • + + + get_reference_neutron_flux() + + + +
  • + +
  • + + + idw() + + + +
  • + +
  • + + + interpolate_2d() + + + +
  • + +
  • + + + interpolate_incoming_flux() + + + +
  • + +
  • + + + is_outlier() + + + +
  • + +
  • + + + latlon_to_utm() + + + +
  • + +
  • + + + lattice_water() + + + +
  • + +
  • + + + location_factor() + + + +
  • + +
  • + + + nrad_weight() + + + +
  • + +
  • + + + remove_incomplete_intervals() + + + +
  • + +
  • + + + rover_centered_coordinates() + + + +
  • + +
  • + + + sensing_depth() + + + +
  • + +
  • + + + smooth_1d() + + + +
  • + +
  • + + + spatial_average() + + + +
  • + +
  • + + + total_raw_counts() + + + +
  • + +
  • + + + uncertainty_counts() + + + +
  • + +
  • + + + uncertainty_vwc() + + + +
  • + + + + +
    + @@ -911,23 +1705,7156 @@ - + + + + + + +

    Reference

    + + +
    + + + + +
    + +

    crnpy is a Python package for processing cosmic ray neutron data.

    +

    Created by Joaquin Peraza and Andres Patrignani.

    + + + +
    + + + + + + + + + + +
    + + + + +

    + abs_humidity(relative_humidity, temp) + +

    + + +
    + +

    Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    relative_humidity + float + +
    +

    relative humidity (%)

    +
    +
    + required +
    temp + float + +
    +

    temperature (Celsius)

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    Name TypeDescription
    float + +
    +

    actual vapor pressure (g m^-3)

    +
    +
    + +
    + Source code in crnpy/crnpy.py +
    671
    +672
    +673
    +674
    +675
    +676
    +677
    +678
    +679
    +680
    +681
    +682
    +683
    +684
    +685
    +686
    +687
    +688
    +689
    +690
    +691
    +692
    +693
    +694
    def abs_humidity(relative_humidity, temp):
    +    """
    +    Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations.
    +
    +    Args:
    +        relative_humidity (float): relative humidity (%)
    +        temp (float): temperature (Celsius)
    +
    +    Returns:
    +        float: actual vapor pressure (g m^-3)
    +    """
    +
    +    ### Atmospheric water vapor factor
    +    # Saturation vapor pressure
    +    e_sat = 0.611 * np.exp(17.502 * temp / (
    +            temp + 240.97)) * 1000  # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman)
    +
    +    # Vapor pressure Pascals
    +    Pw = e_sat * relative_humidity / 100
    +
    +    # Absolute humidity (g/m^3)
    +    C = 2.16679  # g K/J;
    +    abs_h = C * Pw / (temp + 273.15)
    +    return abs_h
    +
    +
    +
    + +
    + + +
    + + + + +

    + atmospheric_depth(elevation, latitude) + +

    + + +
    + +

    Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023

    +

    This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    elevation + float + +
    +

    Elevation in meters above sea level.

    +
    +
    + required +
    latitude + float + +
    +

    Geographic latitude in decimal degrees. Value in range -90 to 90

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + float + +
    +

    Atmospheric depth in g/cm2

    +
    +
    + +
    + References +

    Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration.

    +

    McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.

    +
    +
    + Source code in crnpy/crnpy.py +
    1059
    +1060
    +1061
    +1062
    +1063
    +1064
    +1065
    +1066
    +1067
    +1068
    +1069
    +1070
    +1071
    +1072
    +1073
    +1074
    +1075
    +1076
    +1077
    +1078
    +1079
    +1080
    +1081
    +1082
    +1083
    +1084
    +1085
    +1086
    +1087
    +1088
    +1089
    +1090
    +1091
    +1092
    +1093
    +1094
    +1095
    +1096
    +1097
    +1098
    +1099
    +1100
    +1101
    def atmospheric_depth(elevation, latitude):
    +    """Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023
    +
    +    This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023.
    +
    +    Args:
    +        elevation (float): Elevation in meters above sea level.
    +        latitude (float): Geographic latitude in decimal degrees. Value in range -90 to 90
    +
    +    Returns:
    +        (float): Atmospheric depth in g/cm2
    +
    +    References:
    +        Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration.
    +
    +        McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.
    +    """
    +
    +    density_of_rock = 2670  # Density of rock in kg/m3
    +    air_pressure_sea_level = 1013.25  # Air pressure at sea level in hPa
    +    air_molar_mass = 0.0289644  # Air molar mass in kg/mol
    +    universal_gas_constant = 8.3144598  # Universal gas constant in J/(mol*K)
    +    reference_temperature = 288.15  # Reference temperature Kelvin
    +    temperature_lapse_rate = -0.0065  # Temperature lapse rate in K/m
    +
    +    # Gravity at sea-level calculation
    +    gravity_sea_level = 9.780327 * (
    +            1 + 0.0053024 * np.sin(np.radians(latitude)) ** 2 - 0.0000058 * np.sin(2 * np.radians(latitude)) ** 2)
    +    # Free air correction
    +    free_air = -3.086 * 10 ** -6 * elevation
    +    # Bouguer correction
    +    bouguer_corr = 4.194 * 10 ** -10 * density_of_rock * elevation
    +    # Total gravity
    +    gravity = gravity_sea_level + free_air + bouguer_corr
    +
    +    # Air pressure calculation
    +    reference_air_pressure = air_pressure_sea_level * (
    +                1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / (
    +                universal_gas_constant * temperature_lapse_rate))
    +
    +    # Atmospheric depth calculation
    +    atmospheric_depth = (10 * reference_air_pressure) / gravity
    +    return atmospheric_depth
    +
    +
    +
    + +
    + + +
    + + + + +

    + biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494) + +

    + + +
    + +

    Function to convert biomass to biomass water equivalent.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    biomass_dry + array or Series or DataFrame + +
    +

    Above ground dry biomass in kg m-2.

    +
    +
    + required +
    biomass_fresh + array or Series or DataFrame + +
    +

    Above ground fresh biomass in kg m-2.

    +
    +
    + required +
    fWE + float + +
    +

    Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose) +Default is 0.494 (Wahbi & Avery, 2018).

    +
    +
    + 0.494 +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + array or Series or DataFrame + +
    +

    Biomass water equivalent in kg m-2.

    +
    +
    + +
    + References +

    Wahbi, A., Avery, W. (2018). In Situ Destructive Sampling. In: +Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent. +Springer, Cham. https://doi.org/10.1007/978-3-319-69539-6_2

    +
    +
    + Source code in crnpy/crnpy.py +
    539
    +540
    +541
    +542
    +543
    +544
    +545
    +546
    +547
    +548
    +549
    +550
    +551
    +552
    +553
    +554
    +555
    +556
    def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494):
    +    """Function to convert biomass to biomass water equivalent.
    +
    +    Args:
    +        biomass_dry (array or pd.Series or pd.DataFrame): Above ground dry biomass in kg m-2.
    +        biomass_fresh (array or pd.Series or pd.DataFrame): Above ground fresh biomass in kg m-2.
    +        fWE (float): Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose)
    +            Default is 0.494 (Wahbi & Avery, 2018).
    +
    +    Returns:
    +        (array or pd.Series or pd.DataFrame): Biomass water equivalent in kg m-2.
    +
    +    References:
    +        Wahbi, A., Avery, W. (2018). In Situ Destructive Sampling. In:
    +        Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent.
    +        Springer, Cham. https://doi.org/10.1007/978-3-319-69539-6_2
    +    """
    +    return (biomass_fresh - biomass_dry) + fWE * biomass_dry
    +
    +
    +
    + +
    + + +
    + + + + +

    + correction_bwe(counts, bwe, r2_N0=0.05) + +

    + + +
    + +

    Function to correct for biomass effects in neutron counts. +following the approach described in Baatz et al., 2015.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    counts + array or Series or DataFrame + +
    +

    Array of ephithermal neutron counts.

    +
    +
    + required +
    bwe + float + +
    +

    Biomass water equivalent kg m-2.

    +
    +
    + required +
    r2_N0 + float + +
    +

    Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05.

    +
    +
    + 0.05 +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + array or Series or DataFrame + +
    +

    Array of corrected neutron counts for biomass effects.

    +
    +
    + +
    + References +

    Baatz, R., H. R. Bogena, H.-J. Hendricks Franssen, J. A. Huisman, C. Montzka, and H. Vereecken (2015), +An empiricalvegetation correction for soil water content quantification using cosmic ray probes, +Water Resour. Res., 51, 2030–2046, doi:10.1002/ 2014WR016443.

    +
    +
    + Source code in crnpy/crnpy.py +
    518
    +519
    +520
    +521
    +522
    +523
    +524
    +525
    +526
    +527
    +528
    +529
    +530
    +531
    +532
    +533
    +534
    +535
    +536
    def correction_bwe(counts, bwe, r2_N0=0.05):
    +    """Function to correct for biomass effects in neutron counts.
    +    following the approach described in Baatz et al., 2015.
    +
    +    Args:
    +        counts (array or pd.Series or pd.DataFrame): Array of ephithermal neutron counts.
    +        bwe (float): Biomass water equivalent kg m-2.
    +        r2_N0 (float): Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05.
    +
    +    Returns:
    +        (array or pd.Series or pd.DataFrame): Array of corrected neutron counts for biomass effects.
    +
    +    References:
    +        Baatz, R., H. R. Bogena, H.-J. Hendricks Franssen, J. A. Huisman, C. Montzka, and H. Vereecken (2015),
    +        An empiricalvegetation correction for soil water content quantification using cosmic ray probes,
    +        Water Resour. Res., 51, 2030–2046, doi:10.1002/ 2014WR016443.
    +    """
    +
    +    return counts / (1 - bwe * r2_N0)
    +
    +
    +
    + +
    + + +
    + + + + +

    + correction_humidity(abs_humidity, Aref) + +

    + + +
    + +

    Correction factor for absolute humidity.

    +

    This function corrects neutron counts for absolute humidity using the method described in Rosolem et al. (2013) and Anderson et al. (2017). The correction is performed using the following equation:

    +

    $$ +C_{corrected} = C_{raw} \cdot f_w +$$

    +

    where:

    +
      +
    • Ccorrected: corrected neutron counts
    • +
    • Craw: raw neutron counts
    • +
    • fw: absolute humidity correction factor
    • +
    +

    $$ +f_w = 1 + 0.0054(A - A_{ref}) +$$

    +

    where:

    +
      +
    • A: absolute humidity
    • +
    • Aref: reference absolute humidity
    • +
    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    abs_humidity + list or array + +
    +

    Relative humidity readings.

    +
    +
    + required +
    Aref + float + +
    +

    Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended.

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + list + +
    +

    fw correction factor.

    +
    +
    + +
    + References +

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    +
    +
    + Source code in crnpy/crnpy.py +
    253
    +254
    +255
    +256
    +257
    +258
    +259
    +260
    +261
    +262
    +263
    +264
    +265
    +266
    +267
    +268
    +269
    +270
    +271
    +272
    +273
    +274
    +275
    +276
    +277
    +278
    +279
    +280
    +281
    +282
    +283
    +284
    +285
    +286
    +287
    +288
    +289
    def correction_humidity(abs_humidity, Aref):
    +    r"""Correction factor for absolute humidity.
    +
    +    This function corrects neutron counts for absolute humidity using the method described in Rosolem et al. (2013) and Anderson et al. (2017). The correction is performed using the following equation:
    +
    +    $$
    +    C_{corrected} = C_{raw} \cdot f_w
    +    $$
    +
    +    where:
    +
    +    - Ccorrected: corrected neutron counts
    +    - Craw: raw neutron counts
    +    - fw: absolute humidity correction factor
    +
    +    $$
    +    f_w = 1 + 0.0054(A - A_{ref})
    +    $$
    +
    +    where:
    +
    +    - A: absolute humidity
    +    - Aref: reference absolute humidity
    +
    +    Args:
    +        abs_humidity (list or array): Relative humidity readings.
    +        Aref (float): Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended.
    +
    +    Returns:
    +        (list): fw correction factor.
    +
    +    References:
    +        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086
    +    """
    +    A = abs_humidity
    +    fw = 1 + 0.0054 * (A - Aref)  # Zreda et al. 2017 Eq 6.
    +    return fw
    +
    +
    +
    + +
    + + +
    + + + + +

    + correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None, site_atmdepth=None, Rc_ref=None, ref_atmdepth=None) + +

    + + +
    + +

    Correction factor for incoming neutron flux.

    +

    This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation:

    +

    $$ +C_{corrected} = \frac{C_{raw}}{f_i} +$$

    +

    where:

    +
      +
    • Ccorrected: corrected neutron counts
    • +
    • Craw: raw neutron counts
    • +
    • fi: incoming neutron flux correction factor
    • +
    +

    $$ +f_i = \frac{I_{ref}}{I} +$$

    +

    where:

    +
      +
    • I: incoming neutron flux
    • +
    • Iref: reference incoming neutron flux
    • +
    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    incoming_neutrons + list or array + +
    +

    Incoming neutron flux readings.

    +
    +
    + required +
    incoming_Ref + float + +
    +

    Reference incoming neutron flux. Baseline incoming neutron flux.

    +
    +
    + None +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + list + +
    +

    fi correction factor.

    +
    +
    + +
    + References +

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    +
    +
    + Source code in crnpy/crnpy.py +
    292
    +293
    +294
    +295
    +296
    +297
    +298
    +299
    +300
    +301
    +302
    +303
    +304
    +305
    +306
    +307
    +308
    +309
    +310
    +311
    +312
    +313
    +314
    +315
    +316
    +317
    +318
    +319
    +320
    +321
    +322
    +323
    +324
    +325
    +326
    +327
    +328
    +329
    +330
    +331
    +332
    +333
    +334
    +335
    +336
    +337
    +338
    +339
    +340
    +341
    +342
    +343
    +344
    +345
    +346
    +347
    +348
    +349
    +350
    +351
    +352
    +353
    +354
    +355
    def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None,
    +                             site_atmdepth=None, Rc_ref=None, ref_atmdepth=None):
    +    r"""Correction factor for incoming neutron flux.
    +
    +    This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation:
    +
    +    $$
    +    C_{corrected} = \frac{C_{raw}}{f_i}
    +    $$
    +
    +    where:
    +
    +    - Ccorrected: corrected neutron counts
    +    - Craw: raw neutron counts
    +    - fi: incoming neutron flux correction factor
    +
    +    $$
    +    f_i = \frac{I_{ref}}{I}
    +    $$
    +
    +    where:
    +
    +    - I: incoming neutron flux
    +    - Iref: reference incoming neutron flux
    +
    +    Args:
    +        incoming_neutrons (list or array): Incoming neutron flux readings.
    +        incoming_Ref (float): Reference incoming neutron flux. Baseline incoming neutron flux.
    +
    +    Returns:
    +        (list): fi correction factor.
    +
    +    References:
    +        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086
    +
    +
    +    """
    +    if incoming_Ref is None and not isinstance(incoming_neutrons, type(None)):
    +        incoming_Ref = incoming_neutrons[0]
    +        warnings.warn('Reference incoming neutron flux not provided. Using first value of incoming neutron flux.')
    +    fi = incoming_neutrons / incoming_Ref
    +
    +    if Rc_method is not None:
    +        if Rc_ref is None:
    +            raise ValueError('Reference cutoff rigidity not provided.')
    +        if Rc_site is None:
    +            raise ValueError('Site cutoff rigidity not provided.')
    +
    +        if Rc_method == 'McJannetandDesilets2023':
    +            tau = location_factor(site_atmdepth, Rc_site, ref_atmdepth, Rc_ref)
    +            fi = 1 / (tau * fi + 1 - tau)
    +
    +        elif Rc_method == 'Hawdonetal2014':
    +            Rc_corr = -0.075 * (Rc_site - Rc_ref) + 1.0
    +            fi = (fi - 1.0) * Rc_corr + 1.0
    +
    +        else:
    +            raise ValueError(
    +                'Cutoff rigidity method not found. Valid options are: McJannetandDesilets2023, Hawdonetal2014.')
    +
    +    if fill_na is not None:
    +        fi.fillna(fill_na, inplace=True)  # Use a value of 1 for days without data
    +
    +    return fi
    +
    +
    +
    + +
    + + +
    + + + + +

    + correction_pressure(pressure, Pref, L) + +

    + + +
    + +

    Correction factor for atmospheric pressure.

    +

    This function corrects neutron counts for atmospheric pressure using the method described in Andreasen et al. (2017). +The correction is performed using the following equation:

    +

    $$ +C_{corrected} = \frac{C_{raw}}{fp} +$$

    +

    where:

    +
      +
    • Ccorrected: corrected neutron counts
    • +
    • Craw: raw neutron counts
    • +
    • fp: pressure correction factor
    • +
    +

    $$ +fp = e^{\frac{P_{ref} - P}{L}} +$$

    +

    where:

    +
      +
    • P: atmospheric pressure
    • +
    • Pref: reference atmospheric pressure
    • +
    • L: Atmospheric attenuation coefficient.
    • +
    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    pressure + list or array + +
    +

    Atmospheric pressure readings. Long-term average pressure is recommended.

    +
    +
    + required +
    Pref + float + +
    +

    Reference atmospheric pressure.

    +
    +
    + required +
    L + float + +
    +

    Atmospheric attenuation coefficient.

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + list + +
    +

    fp pressure correction factor.

    +
    +
    + +
    + References +

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    +
    +
    + Source code in crnpy/crnpy.py +
    208
    +209
    +210
    +211
    +212
    +213
    +214
    +215
    +216
    +217
    +218
    +219
    +220
    +221
    +222
    +223
    +224
    +225
    +226
    +227
    +228
    +229
    +230
    +231
    +232
    +233
    +234
    +235
    +236
    +237
    +238
    +239
    +240
    +241
    +242
    +243
    +244
    +245
    +246
    +247
    +248
    +249
    +250
    def correction_pressure(pressure, Pref, L):
    +    r"""Correction factor for atmospheric pressure.
    +
    +    This function corrects neutron counts for atmospheric pressure using the method described in Andreasen et al. (2017).
    +    The correction is performed using the following equation:
    +
    +    $$
    +    C_{corrected} = \frac{C_{raw}}{fp}
    +    $$
    +
    +    where:
    +
    +    - Ccorrected: corrected neutron counts
    +    - Craw: raw neutron counts
    +    - fp: pressure correction factor
    +
    +    $$
    +    fp = e^{\frac{P_{ref} - P}{L}}
    +    $$
    +
    +    where:
    +
    +    - P: atmospheric pressure
    +    - Pref: reference atmospheric pressure
    +    - L: Atmospheric attenuation coefficient.
    +
    +
    +    Args:
    +        pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended.
    +        Pref (float): Reference atmospheric pressure.
    +        L (float): Atmospheric attenuation coefficient.
    +
    +    Returns:
    +        (list): fp pressure correction factor.
    +
    +    References:
    +        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086
    +    """
    +
    +    # Compute pressure correction factor
    +    fp = np.exp((Pref - pressure) / L)  # Zreda et al. 2017 Eq 5.
    +
    +    return fp
    +
    +
    +
    + +
    + + +
    + + + + +

    + correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, p4=0.16, p6=0.94, p7=1.1, p8=2.7, p9=0.01) + +

    + + +
    + +

    Function to correct for road effects in neutron counts. +following the approach described in Schrön et al., 2018.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    counts + array or Series or DataFrame + +
    +

    Array of ephithermal neutron counts.

    +
    +
    + required +
    theta_N + float + +
    +

    Volumetric water content of the soil estimated from the uncorrected neutron counts.

    +
    +
    + required +
    road_width + float + +
    +

    Width of the road in m.

    +
    +
    + required +
    road_distance + float + +
    +

    Distance of the road from the sensor in m. Default is 0.0.

    +
    +
    + 0.0 +
    theta_road + float + +
    +

    Volumetric water content of the road. Default is 0.12.

    +
    +
    + 0.12 +
    p0-p9 + float + +
    +

    Parameters of the correction function. Default values are from Schrön et al., 2018.

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + array or Series or DataFrame + +
    +

    Array of corrected neutron counts for road effects.

    +
    +
    + +
    + References +

    Schrön,M.,Rosolem,R.,Köhli,M., Piussi,L.,Schröter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys +of field soil moisture and the influence of roads.WaterResources Research,54,6441–6459. +https://doi. org/10.1029/2017WR021719

    +
    +
    + Source code in crnpy/crnpy.py +
    559
    +560
    +561
    +562
    +563
    +564
    +565
    +566
    +567
    +568
    +569
    +570
    +571
    +572
    +573
    +574
    +575
    +576
    +577
    +578
    +579
    +580
    +581
    +582
    +583
    +584
    +585
    +586
    +587
    +588
    def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4,
    +                    p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01):
    +    """Function to correct for road effects in neutron counts.
    +    following the approach described in Schrön et al., 2018.
    +
    +    Args:
    +        counts (array or pd.Series or pd.DataFrame): Array of ephithermal neutron counts.
    +        theta_N (float): Volumetric water content of the soil estimated from the uncorrected neutron counts.
    +        road_width (float): Width of the road in m.
    +        road_distance (float): Distance of the road from the sensor in m. Default is 0.0.
    +        theta_road (float): Volumetric water content of the road. Default is 0.12.
    +        p0-p9 (float): Parameters of the correction function. Default values are from Schrön et al., 2018.
    +
    +    Returns:
    +        (array or pd.Series or pd.DataFrame): Array of corrected neutron counts for road effects.
    +
    +    References:
    +        Schrön,M.,Rosolem,R.,Köhli,M., Piussi,L.,Schröter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys
    +        of field soil moisture and the influence of roads.WaterResources Research,54,6441–6459.
    +        https://doi. org/10.1029/2017WR021719
    +    """
    +    F1 = p0 * (1 - np.exp(-p1 * road_width))
    +    F2 = -p2 - p3 * theta_road - ((p4 + theta_road) / (theta_N))
    +    F3 = p6 * np.exp(-p7 * (road_width ** -p8) * road_distance ** 4) + (1 - p6) * np.exp(-p9 * road_distance)
    +
    +    C_roads = 1 + F1 * F2 * F3
    +
    +    corrected_counts = counts / C_roads
    +
    +    return corrected_counts
    +
    +
    +
    + +
    + + +
    + + + + +

    + counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115) + +

    + + +
    + +

    Function to convert corrected and filtered neutron counts into volumetric water content.

    +

    This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010.

    +

    $\theta(N) =\frac{a_0}{(\frac{N}{N_0}) - a_1} - a_2 $

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    counts + array or Series or DataFrame + +
    +

    Array of corrected and filtered neutron counts.

    +
    +
    + required +
    N0 + float + +
    +

    Device-specific neutron calibration constant.

    +
    +
    + required +
    Wlat + float + +
    +

    Lattice water content.

    +
    +
    + required +
    Wsoc + float + +
    +

    Soil organic carbon content.

    +
    +
    + required +
    bulk_density + float + +
    +

    Soil bulk density.

    +
    +
    + required +
    a0 + float + +
    +

    Parameter given in Zreda et al., 2012. Default is 0.0808.

    +
    +
    + 0.0808 +
    a1 + float + +
    +

    Parameter given in Zreda et al., 2012. Default is 0.372.

    +
    +
    + 0.372 +
    a2 + float + +
    +

    Parameter given in Zreda et al., 2012. Default is 0.115.

    +
    +
    + 0.115 +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + array or Series or DataFrame + +
    +

    Volumetric water content in m3 m-3.

    +
    +
    + +
    + References +

    Desilets, D., M. Zreda, and T.P.A. Ferré. 2010. Nature’s neutron probe: +Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46:W11505. +doi.org/10.1029/2009WR008726

    +
    +
    + Source code in crnpy/crnpy.py +
    591
    +592
    +593
    +594
    +595
    +596
    +597
    +598
    +599
    +600
    +601
    +602
    +603
    +604
    +605
    +606
    +607
    +608
    +609
    +610
    +611
    +612
    +613
    +614
    +615
    +616
    +617
    +618
    +619
    def counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115):
    +    r"""Function to convert corrected and filtered neutron counts into volumetric water content.
    +
    +    This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010.
    +
    +    $\theta(N) =\frac{a_0}{(\frac{N}{N_0}) - a_1} - a_2 $
    +
    +    Args:
    +        counts (array or pd.Series or pd.DataFrame): Array of corrected and filtered neutron counts.
    +        N0 (float): Device-specific neutron calibration constant.
    +        Wlat (float): Lattice water content.
    +        Wsoc (float): Soil organic carbon content.
    +        bulk_density (float): Soil bulk density.
    +        a0 (float): Parameter given in Zreda et al., 2012. Default is 0.0808.
    +        a1 (float): Parameter given in Zreda et al., 2012. Default is 0.372.
    +        a2 (float): Parameter given in Zreda et al., 2012. Default is 0.115.
    +
    +    Returns:
    +        (array or pd.Series or pd.DataFrame): Volumetric water content in m3 m-3.
    +
    +    References:
    +        Desilets, D., M. Zreda, and T.P.A. Ferré. 2010. Nature’s neutron probe:
    +        Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46:W11505.
    +        doi.org/10.1029/2009WR008726
    +    """
    +
    +    # Convert neutron counts into vwc
    +    vwc = (a0 / (counts / N0 - a1) - a2 - Wlat - Wsoc) * bulk_density
    +    return vwc
    +
    +
    +
    + +
    + + +
    + + + + +

    + cutoff_rigidity(lat, lon) + +

    + + +
    + +

    Function to estimate the approximate cutoff rigidity for any point on Earth according to the +tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate +neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    lat + float + +
    +

    Geographic latitude in decimal degrees. Value in range -90 to 90

    +
    +
    + required +
    lon + float + +
    +

    Geographic longitude in decimal degrees. Values in range from 0 to 360. +Typical negative longitudes in the west hemisphere will fall in the range 180 to 360.

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + float + +
    +

    Cutoff rigidity in GV. Error is about +/- 0.3 GV

    +
    +
    + + + +

    Examples:

    +

    Estimate the cutoff rigidity for Newark, NJ, US

    +
    >>> zq = cutoff_rigidity(39.68, -75.75)
    +>>> print(zq)
    +2.52 GV (Value from NMD is 2.40 GV)
    +
    + +
    + References +

    Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures +for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, +50(6), 5029-5043.

    +

    Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program: +Theory, Software Description and Example. NASA STI/Recon Technical Report N.

    +

    Shea, M. A., & Smart, D. F. (2019, July). Re-examination of the First Five Ground-Level Events. +In International Cosmic Ray Conference (ICRC2019) (Vol. 36, p. 1149).

    +
    +
    + Source code in crnpy/crnpy.py +
    1012
    +1013
    +1014
    +1015
    +1016
    +1017
    +1018
    +1019
    +1020
    +1021
    +1022
    +1023
    +1024
    +1025
    +1026
    +1027
    +1028
    +1029
    +1030
    +1031
    +1032
    +1033
    +1034
    +1035
    +1036
    +1037
    +1038
    +1039
    +1040
    +1041
    +1042
    +1043
    +1044
    +1045
    +1046
    +1047
    +1048
    +1049
    +1050
    +1051
    +1052
    +1053
    +1054
    +1055
    +1056
    def cutoff_rigidity(lat, lon):
    +    """Function to estimate the approximate cutoff rigidity for any point on Earth according to the
    +    tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate
    +    neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest.
    +
    +    Args:
    +        lat (float): Geographic latitude in decimal degrees. Value in range -90 to 90
    +        lon (float): Geographic longitude in decimal degrees. Values in range from 0 to 360.
    +            Typical negative longitudes in the west hemisphere will fall in the range 180 to 360.
    +
    +    Returns:
    +        (float): Cutoff rigidity in GV. Error is about +/- 0.3 GV
    +
    +    Examples:
    +        Estimate the cutoff rigidity for Newark, NJ, US
    +
    +        >>> zq = cutoff_rigidity(39.68, -75.75)
    +        >>> print(zq)
    +        2.52 GV (Value from NMD is 2.40 GV)
    +
    +    References:
    +        Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures
    +        for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research,
    +        50(6), 5029-5043.
    +
    +        Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program:
    +        Theory, Software Description and Example. NASA STI/Recon Technical Report N.
    +
    +        Shea, M. A., & Smart, D. F. (2019, July). Re-examination of the First Five Ground-Level Events.
    +        In International Cosmic Ray Conference (ICRC2019) (Vol. 36, p. 1149).
    +    """
    +    xq = lon
    +    yq = lat
    +
    +    if xq < 0:
    +        xq = xq * -1 + 180
    +    Z = np.array(data.cutoff_rigidity)
    +    x = np.linspace(0, 360, Z.shape[1])
    +    y = np.linspace(90, -90, Z.shape[0])
    +    X, Y = np.meshgrid(x, y)
    +    points = np.array((X.flatten(), Y.flatten())).T
    +    values = Z.flatten()
    +    zq = griddata(points, values, (xq, yq))
    +
    +    return np.round(zq, 2)
    +
    +
    +
    + +
    + + +
    + + + + +

    + euclidean_distance(px, py, x, y) + +

    + + +
    + +

    Function that computes the Euclidean distance between one point +in space and one or more points.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    px + float + +
    +

    x projected coordinate of the point.

    +
    +
    + required +
    py + float + +
    +

    y projected coordinate of the point.

    +
    +
    + required +
    x + (list, ndarray, series) + +
    +

    vector of x projected coordinates.

    +
    +
    + required +
    y + (list, ndarray, series) + +
    +

    vector of y projected coordinates.

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + ndarray + +
    +

    Numpy array of distances from the point (px,py) to all the points in x and y vectors.

    +
    +
    + +
    + Source code in crnpy/crnpy.py +
    1298
    +1299
    +1300
    +1301
    +1302
    +1303
    +1304
    +1305
    +1306
    +1307
    +1308
    +1309
    +1310
    +1311
    +1312
    def euclidean_distance(px, py, x, y):
    +    """Function that computes the Euclidean distance between one point
    +    in space and one or more points.
    +
    +    Args:
    +        px (float): x projected coordinate of the point.
    +        py (float): y projected coordinate of the point.
    +        x (list, ndarray, pandas.series): vector of x projected coordinates.
    +        y (list, ndarray, pandas.series): vector of y projected coordinates.
    +
    +    Returns:
    +        (ndarray): Numpy array of distances from the point (px,py) to all the points in x and y vectors.
    +    """
    +    d = np.sqrt((px - x) ** 2 + (py - y) ** 2)
    +    return d
    +
    +
    +
    + +
    + + +
    + + + + +

    + exp_filter(sm, T=1) + +

    + + +
    + +

    Exponential filter to estimate soil moisture in the rootzone from surface observtions.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    sm + list or array + +
    +

    Soil moisture in mm of water for the top layer of the soil profile.

    +
    +
    + required +
    T + float + +
    +

    Characteristic time length in the same units as the measurement interval.

    +
    +
    + 1 +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    Name TypeDescription
    sm_subsurface + list or array + +
    +

    Subsurface soil moisture in the same units as the input.

    +
    +
    + +
    + References +

    Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B. and Martin, E., 2008. +From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model +simulations. Hydrology and Earth System Sciences, 12(6), pp.1323-1337.

    +

    Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. +Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.

    +

    Rossini, P. and Patrignani, A., 2021. Predicting rootzone soil moisture from surface observations in cropland using an exponential filter. +Soil Science Society of America Journal.

    +
    +
    + Source code in crnpy/crnpy.py +
     962
    + 963
    + 964
    + 965
    + 966
    + 967
    + 968
    + 969
    + 970
    + 971
    + 972
    + 973
    + 974
    + 975
    + 976
    + 977
    + 978
    + 979
    + 980
    + 981
    + 982
    + 983
    + 984
    + 985
    + 986
    + 987
    + 988
    + 989
    + 990
    + 991
    + 992
    + 993
    + 994
    + 995
    + 996
    + 997
    + 998
    + 999
    +1000
    +1001
    +1002
    +1003
    +1004
    +1005
    +1006
    +1007
    +1008
    +1009
    def exp_filter(sm, T=1):
    +    """Exponential filter to estimate soil moisture in the rootzone from surface observtions.
    +
    +    Args:
    +        sm (list or array): Soil moisture in mm of water for the top layer of the soil profile.
    +        T (float): Characteristic time length in the same units as the measurement interval.
    +
    +    Returns:
    +        sm_subsurface (list or array): Subsurface soil moisture in the same units as the input.
    +
    +    References:
    +        Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B. and Martin, E., 2008.
    +        From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model
    +        simulations. Hydrology and Earth System Sciences, 12(6), pp.1323-1337.
    +
    +        Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020.
    +        Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.
    +
    +        Rossini, P. and Patrignani, A., 2021. Predicting rootzone soil moisture from surface observations in cropland using an exponential filter.
    +        Soil Science Society of America Journal.
    +    """
    +
    +    # Parameters
    +    t_delta = 1
    +    sm_min = np.min(sm)
    +    sm_max = np.max(sm)
    +    ms = (sm - sm_min) / (sm_max - sm_min)
    +
    +    # Pre-allocate soil water index array and recursive constant K
    +    SWI = np.ones_like(ms) * np.nan
    +    K = np.ones_like(ms) * np.nan
    +
    +    # Initial conditions
    +    SWI[0] = ms[0]
    +    K[0] = 1
    +
    +    # Values from 2 to N
    +    for n in range(1, len(SWI)):
    +        if ~np.isnan(ms[n]) & ~np.isnan(ms[n - 1]):
    +            K[n] = K[n - 1] / (K[n - 1] + np.exp(-t_delta / T))
    +            SWI[n] = SWI[n - 1] + K[n] * (ms[n] - SWI[n - 1])
    +        else:
    +            continue
    +
    +    # Rootzone storage
    +    sm_subsurface = SWI * (sm_max - sm_min) + sm_min
    +
    +    return sm_subsurface
    +
    +
    +
    + +
    + + +
    + + + + +

    + fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False) + +

    + + +
    + +

    Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    df + DataFrame + +
    +

    Pandas DataFrame.

    +
    +
    + required +
    timestamp_col + str + +
    +

    Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'.

    +
    +
    + 'timestamp' +
    freq + str + +
    +

    Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'.

    +
    +
    + 'H' +
    round_timestamp + bool + +
    +

    Whether to round timestamps to the nearest frequency. Default is True.

    +
    +
    + True +
    verbose + bool + +
    +

    Prints the missing timestamps added to the DatFrame.

    +
    +
    + False +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + DataFrame + +
    +

    DataFrame with filled missing timestamps.

    +
    +
    + +
    + Source code in crnpy/crnpy.py +
     65
    + 66
    + 67
    + 68
    + 69
    + 70
    + 71
    + 72
    + 73
    + 74
    + 75
    + 76
    + 77
    + 78
    + 79
    + 80
    + 81
    + 82
    + 83
    + 84
    + 85
    + 86
    + 87
    + 88
    + 89
    + 90
    + 91
    + 92
    + 93
    + 94
    + 95
    + 96
    + 97
    + 98
    + 99
    +100
    +101
    +102
    +103
    +104
    +105
    +106
    +107
    def fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False):
    +    """Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values.
    +
    +     Args:
    +         df (pandas.DataFrame): Pandas DataFrame.
    +         timestamp_col (str, optional): Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'.
    +         freq (str, optional): Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'.
    +         round_timestamp (bool, optional): Whether to round timestamps to the nearest frequency. Default is True.
    +         verbose (bool, optional): Prints the missing timestamps added to the DatFrame.
    +
    +     Returns:
    +         (pandas.DataFrame): DataFrame with filled missing timestamps.
    +
    +     """
    +
    +    # Check format of timestamp column
    +    if df[timestamp_col].dtype != 'datetime64[ns]':
    +        raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.')
    +
    +    # Round timestamps to nearest frequency. This steps must preced the filling of rows.
    +    if round_timestamp:
    +        df[timestamp_col] = df[timestamp_col].dt.round(freq)
    +
    +    # Fill in rows with missing timestamps
    +    start_date = df[timestamp_col].iloc[0]
    +    end_date = df[timestamp_col].iloc[-1]
    +    date_range = pd.date_range(start_date, end_date, freq=freq)
    +    counter = 0
    +    for date in date_range:
    +        if date not in df[timestamp_col].values:
    +            if verbose:
    +                print('Adding missing date:', date)
    +            new_line = pd.DataFrame({timestamp_col: date}, index=[-1])  # By default fills columns with np.nan
    +            df = pd.concat([df, new_line])
    +            counter += 1
    +
    +    df.sort_values(by=timestamp_col, inplace=True)
    +    df.reset_index(drop=True, inplace=True)
    +
    +    # Notify user about the number of rows that have been removed
    +    print(f"Added a total of {counter} missing timestamps.")
    +
    +    return df
    +
    +
    +
    + +
    + + +
    + + + + +

    + find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False) + +

    + + +
    + +

    Search for potential reference neutron monitoring stations based on cutoff rigidity.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    Rc + float + +
    +

    Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.

    +
    +
    + required +
    start_date + datetime + +
    +

    Start date for the period of interest.

    +
    +
    + None +
    end_date + datetime + +
    +

    End date for the period of interest.

    +
    +
    + None +
    verbose + bool + +
    +

    If True, print a expanded output of the incoming neutron flux data.

    +
    +
    + False +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + list + +
    +

    List of top five stations with closes cutoff rigidity. +User needs to select station according to site altitude.

    +
    +
    + + + +

    Examples:

    +
    >>> from crnpy import crnpy
    +>>> Rc = 2.40 # 2.40 Newark, NJ, US
    +>>> crnpy.find_neutron_monitor(Rc)
    +Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations
    +
    +

    Your cutoff rigidity is 2.4 GV + STID NAME R Altitude_m +40 NEWK Newark 2.40 50 +33 MOSC Moscow 2.43 200 +27 KIEL Kiel 2.36 54 +28 KIEL2 KielRT 2.36 54 +31 MCRL Mobile Cosmic Ray Laboratory 2.46 200 +32 MGDN Magadan 2.10 220 +42 NVBK Novosibirsk 2.91 163 +26 KGSN Kingston 1.88 65 +9 CLMX Climax 3.00 3400 +57 YKTK Yakutsk 1.65 105

    + +
    + References +

    https://www.nmdb.eu/nest/help.php#helpstations

    +
    +
    + Source code in crnpy/crnpy.py +
    1145
    +1146
    +1147
    +1148
    +1149
    +1150
    +1151
    +1152
    +1153
    +1154
    +1155
    +1156
    +1157
    +1158
    +1159
    +1160
    +1161
    +1162
    +1163
    +1164
    +1165
    +1166
    +1167
    +1168
    +1169
    +1170
    +1171
    +1172
    +1173
    +1174
    +1175
    +1176
    +1177
    +1178
    +1179
    +1180
    +1181
    +1182
    +1183
    +1184
    +1185
    +1186
    +1187
    +1188
    +1189
    +1190
    +1191
    +1192
    +1193
    +1194
    +1195
    +1196
    +1197
    +1198
    +1199
    +1200
    +1201
    +1202
    +1203
    +1204
    +1205
    +1206
    +1207
    +1208
    +1209
    +1210
    +1211
    +1212
    +1213
    def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False):
    +    """Search for potential reference neutron monitoring stations based on cutoff rigidity.
    +
    +    Args:
    +        Rc (float): Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.
    +        start_date (datetime): Start date for the period of interest.
    +        end_date (datetime): End date for the period of interest.
    +        verbose (bool): If True, print a expanded output of the incoming neutron flux data.
    +
    +    Returns:
    +        (list): List of top five stations with closes cutoff rigidity.
    +            User needs to select station according to site altitude.
    +
    +    Examples:
    +        >>> from crnpy import crnpy
    +        >>> Rc = 2.40 # 2.40 Newark, NJ, US
    +        >>> crnpy.find_neutron_monitor(Rc)
    +        Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations
    +
    +        Your cutoff rigidity is 2.4 GV
    +                STID                          NAME     R  Altitude_m
    +        40   NEWK                        Newark  2.40          50
    +        33   MOSC                        Moscow  2.43         200
    +        27   KIEL                          Kiel  2.36          54
    +        28  KIEL2                        KielRT  2.36          54
    +        31   MCRL  Mobile Cosmic Ray Laboratory  2.46         200
    +        32   MGDN                       Magadan  2.10         220
    +        42   NVBK                   Novosibirsk  2.91         163
    +        26   KGSN                      Kingston  1.88          65
    +        9    CLMX                        Climax  3.00        3400
    +        57   YKTK                       Yakutsk  1.65         105
    +
    +    References:
    +        https://www.nmdb.eu/nest/help.php#helpstations
    +    """
    +
    +    # Load file with list of neutron monitoring stations
    +    stations = pd.DataFrame(data.neutron_detectors, columns=["STID", "NAME", "R", "Altitude_m"])
    +
    +    # Sort stations by closest cutoff rigidity
    +    idx_R = (stations['R'] - Rc).abs().argsort()
    +
    +    if start_date is not None and end_date is not None:
    +        stations["Period available"] = False
    +        for i in range(10):
    +            station = stations.iloc[idx_R[i]]["STID"]
    +            try:
    +                if get_incoming_neutron_flux(start_date, end_date, station, verbose=verbose) is not None:
    +                    stations.iloc[idx_R[i], -1] = True
    +            except:
    +                pass
    +
    +        if sum(stations["Period available"] == True) == 0:
    +            print("No stations available for the selected period!")
    +        else:
    +            stations = stations[stations["Period available"] == True]
    +            idx_R = (stations['R'] - Rc).abs().argsort()
    +            result = stations.iloc[idx_R.iloc[:10]]
    +    else:
    +        result = stations.reindex(idx_R).head(10).rename_axis(None)
    +
    +    # Print results
    +    print('')
    +    print(
    +        """Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations""")
    +    print('')
    +    print(f"Your cutoff rigidity is {Rc} GV")
    +    print(result)
    +    return result
    +
    +
    +
    + +
    + + +
    + + + + +

    + get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False) + +

    + + +
    + +

    Function to retrieve neutron flux from the Neutron Monitor Database.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    start_date + datetime + +
    +

    Start date of the time series.

    +
    +
    + required +
    end_date + datetime + +
    +

    End date of the time series.

    +
    +
    + required +
    station + str + +
    +

    Neutron Monitor station to retrieve data from.

    +
    +
    + required +
    utc_offset + int + +
    +

    UTC offset in hours. Default is 0.

    +
    +
    + 0 +
    expand_window + int + +
    +

    Number of hours to expand the time window to retrieve extra data. Default is 0.

    +
    +
    + 0 +
    verbose + bool + +
    +

    Print information about the request. Default is False.

    +
    +
    + False +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + DataFrame + +
    +

    Neutron flux in counts per hour and timestamps.

    +
    +
    + +
    + References +

    Documentation available:https://www.nmdb.eu/nest/help.php#howto

    +
    +
    + Source code in crnpy/crnpy.py +
    358
    +359
    +360
    +361
    +362
    +363
    +364
    +365
    +366
    +367
    +368
    +369
    +370
    +371
    +372
    +373
    +374
    +375
    +376
    +377
    +378
    +379
    +380
    +381
    +382
    +383
    +384
    +385
    +386
    +387
    +388
    +389
    +390
    +391
    +392
    +393
    +394
    +395
    +396
    +397
    +398
    +399
    +400
    +401
    +402
    +403
    +404
    +405
    +406
    +407
    +408
    +409
    +410
    +411
    +412
    +413
    +414
    +415
    +416
    +417
    +418
    +419
    +420
    +421
    +422
    +423
    +424
    +425
    +426
    +427
    +428
    +429
    +430
    +431
    +432
    +433
    +434
    +435
    +436
    +437
    +438
    +439
    +440
    +441
    def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False):
    +    """Function to retrieve neutron flux from the Neutron Monitor Database.
    +
    +    Args:
    +        start_date (datetime): Start date of the time series.
    +        end_date (datetime): End date of the time series.
    +        station (str): Neutron Monitor station to retrieve data from.
    +        utc_offset (int): UTC offset in hours. Default is 0.
    +        expand_window (int): Number of hours to expand the time window to retrieve extra data. Default is 0.
    +        verbose (bool): Print information about the request. Default is False.
    +
    +    Returns:
    +        (pandas.DataFrame): Neutron flux in counts per hour and timestamps.
    +
    +    References:
    +        Documentation available:https://www.nmdb.eu/nest/help.php#howto
    +    """
    +
    +    # Example: get_incoming_neutron_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00')
    +    # Template url = 'http://nest.nmdb.eu/draw_graph.php?formchk=1&stations[]=KERG&output=ascii&tabchoice=revori&dtype=corr_for_efficiency&date_choice=bydate&start_year=2009&start_month=09&start_day=01&start_hour=00&start_min=00&end_year=2009&end_month=09&end_day=05&end_hour=23&end_min=59&yunits=0'
    +
    +    # Expand the time window by 1 hour to ensure an extra observation is included in the request.
    +    start_date -= pd.Timedelta(hours=expand_window)
    +    end_date += pd.Timedelta(hours=expand_window)
    +
    +    # Convert local time to UTC
    +    start_date = start_date - pd.Timedelta(hours=utc_offset)
    +    end_date = end_date - pd.Timedelta(hours=utc_offset)
    +    root = 'http://www.nmdb.eu/nest/draw_graph.php?'
    +    url_par = ['formchk=1',
    +               'stations[]=' + station,
    +               'output=ascii',
    +               'tabchoice=revori',
    +               'dtype=corr_for_efficiency',
    +               'tresolution=' + str(60),
    +               'date_choice=bydate',
    +               'start_year=' + str(start_date.year),
    +               'start_month=' + str(start_date.month),
    +               'start_day=' + str(start_date.day),
    +               'start_hour=' + str(start_date.hour),
    +               'start_min=' + str(start_date.minute),
    +               'end_year=' + str(end_date.year),
    +               'end_month=' + str(end_date.month),
    +               'end_day=' + str(end_date.day),
    +               'end_hour=' + str(end_date.hour),
    +               'end_min=' + str(end_date.minute),
    +               'yunits=0']
    +
    +    url = root + '&'.join(url_par)
    +
    +    if verbose:
    +        print(f"Retrieving data from {url}")
    +
    +    r = requests.get(url).content.decode('utf-8')
    +
    +    # Subtract 1 hour to restore the last date included in the request.
    +    end_date -= pd.Timedelta('1H')
    +    start = r.find("RCORR_E\n") + 8
    +    end = r.find('\n</code></pre><br>Total') - 1
    +    s = r[start:end]
    +    s2 = ''.join([row.replace(';', ',') for row in s])
    +    try:
    +        df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp', 'counts'])
    +    except:
    +        if verbose:
    +            print(f"Error retrieving data from {url}")
    +        return None
    +
    +    # Check if all values from selected detector are NaN. If yes, warn the user
    +    if df_flux['counts'].isna().all():
    +        warnings.warn('Data for selected neutron detectors appears to be unavailable for the selected period')
    +
    +    # Convert timestamp to datetime and apply UTC offset
    +    df_flux['timestamp'] = pd.to_datetime(df_flux['timestamp'])
    +    df_flux['timestamp'] = df_flux['timestamp'] + pd.Timedelta(hours=utc_offset)
    +
    +    # Print acknowledgement to inform users about restrictions and to acknowledge the NMDB database
    +    acknowledgement = """Data retrieved via NMDB are the property of the individual data providers. These data are free for non commercial
    +use to within the restriction imposed by the providers. If you use such data for your research or applications, please acknowledge
    +the origin by a sentence like 'We acknowledge the NMDB database (www.nmdb.eu) founded under the European Union's FP7 programme 
    +(contract no. 213007), and the PIs of individual neutron monitors at: IGY Jungfraujoch 
    +(Physikalisches Institut, University of Bern, Switzerland)"""
    +
    +    return df_flux
    +
    +
    +
    + +
    + + +
    + + + + +

    + get_reference_neutron_flux(station, date=pd.to_datetime('2011-05-01')) + +

    + + +
    + +

    Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022).

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    station + str + +
    +

    Neutron Monitor station to retrieve data from.

    +
    +
    + required +
    date + datetime + +
    +

    Date of the reference neutron flux. Default is 2011-05-01.

    +
    +
    + to_datetime('2011-05-01') +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + float + +
    +

    Reference neutron flux in counts per hour.

    +
    +
    + +
    + References +

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099.

    +

    Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043.

    +

    Bogena, H. R., Schrön, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151.

    +
    +
    + Source code in crnpy/crnpy.py +
    444
    +445
    +446
    +447
    +448
    +449
    +450
    +451
    +452
    +453
    +454
    +455
    +456
    +457
    +458
    +459
    +460
    +461
    +462
    +463
    +464
    +465
    +466
    +467
    +468
    def get_reference_neutron_flux(station, date=pd.to_datetime("2011-05-01")):
    +    """Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022).
    +
    +    Args:
    +        station (str): Neutron Monitor station to retrieve data from.
    +        date (datetime): Date of the reference neutron flux. Default is 2011-05-01.
    +
    +    Returns:
    +        (float): Reference neutron flux in counts per hour.
    +
    +    References:
    +        Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099.
    +
    +        Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043.
    +
    +        Bogena, H. R., Schrön, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151.
    +
    +"""
    +
    +    # Get flux for 2011-05-01
    +    df_flux = get_incoming_neutron_flux(station, date, date + pd.Timedelta(hours=24))
    +    if df_flux is None:
    +        warnings.warn(f"Reference neutron flux for {station} not available. Returning NaN.")
    +    else:
    +        return df_flux['counts'].median()
    +
    +
    +
    + +
    + + +
    + + + + +

    + idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1) + +

    + + +
    + +

    Function to interpolate data using inverse distance weight.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    x + list or array + +
    +

    UTM x coordinates in meters.

    +
    +
    + required +
    y + list or array + +
    +

    UTM y coordinates in meters.

    +
    +
    + required +
    z + list or array + +
    +

    Values to be interpolated.

    +
    +
    + required +
    X_pred + list or array + +
    +

    UTM x coordinates where z values need to be predicted.

    +
    +
    + required +
    Y_pred + list or array + +
    +

    UTM y coordinates where z values need to be predicted.

    +
    +
    + required +
    neighborhood + float + +
    +

    Only points within this radius in meters are considered for the interpolation.

    +
    +
    + 1000 +
    p + int + +
    +

    Exponent of the inverse distance weight formula. Typically, p=1 or p=2.

    +
    +
    + 1 +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + array + +
    +

    Interpolated values.

    +
    +
    + +
    + References +

    https://en.wikipedia.org/wiki/Inverse_distance_weighting

    +
    +
    + Source code in crnpy/crnpy.py +
    1373
    +1374
    +1375
    +1376
    +1377
    +1378
    +1379
    +1380
    +1381
    +1382
    +1383
    +1384
    +1385
    +1386
    +1387
    +1388
    +1389
    +1390
    +1391
    +1392
    +1393
    +1394
    +1395
    +1396
    +1397
    +1398
    +1399
    +1400
    +1401
    +1402
    +1403
    +1404
    +1405
    +1406
    +1407
    +1408
    +1409
    +1410
    +1411
    +1412
    def idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1):
    +    """Function to interpolate data using inverse distance weight.
    +
    +    Args:
    +        x (list or array): UTM x coordinates in meters.
    +        y (list or array): UTM y coordinates in meters.
    +        z (list or array): Values to be interpolated.
    +        X_pred (list or array): UTM x coordinates where z values need to be predicted.
    +        Y_pred (list or array): UTM y coordinates where z values need to be predicted.
    +        neighborhood (float): Only points within this radius in meters are considered for the interpolation.
    +        p (int): Exponent of the inverse distance weight formula. Typically, p=1 or p=2.
    +
    +    Returns:
    +        (array): Interpolated values.
    +
    +    References:
    +        [https://en.wikipedia.org/wiki/Inverse_distance_weighting](https://en.wikipedia.org/wiki/Inverse_distance_weighting)
    +
    +
    +    """
    +
    +    # Flatten arrays to handle 1D and 2D arrays with the same code
    +    s = X_pred.shape  # Save shape
    +    X_pred = X_pred.flatten()
    +    Y_pred = Y_pred.flatten()
    +
    +    # Pre-allocate output array
    +    Z_pred = np.full_like(X_pred, np.nan)
    +
    +    for n in range(X_pred.size):
    +        # Distance between current and observed points
    +        d = euclidean_distance(X_pred[n], Y_pred[n], x, y)
    +
    +        # Select points within neighborhood only for interpolation
    +        idx_neighbors = d < neighborhood
    +
    +        # Compute interpolated value at point of interest
    +        Z_pred[n] = np.sum(z[idx_neighbors] / d[idx_neighbors] ** p) / np.sum(1 / d[idx_neighbors] ** p)
    +
    +    return np.reshape(Z_pred, s)
    +
    +
    +
    + +
    + + +
    + + + + +

    + interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000) + +

    + + +
    + +

    Function for interpolating irregular spatial data into a regular grid.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    x + list or array + +
    +

    UTM x coordinates in meters.

    +
    +
    + required +
    y + list or array + +
    +

    UTM y coordinates in meters.

    +
    +
    + required +
    z + list or array + +
    +

    Values to be interpolated.

    +
    +
    + required +
    dx + float + +
    +

    Pixel width in meters.

    +
    +
    + 100 +
    dy + float + +
    +

    Pixel height in meters.

    +
    +
    + 100 +
    method + str + +
    +

    Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'.

    +
    +
    + 'cubic' +
    neighborhood + float + +
    +

    Only points within this radius in meters are considered for the interpolation.

    +
    +
    + 1000 +
    + + + +

    Returns:

    + + + + + + + + + + + + + + + + + + + + + +
    Name TypeDescription
    x_pred + array + +
    +

    2D array with x coordinates.

    +
    +
    y_pred + array + +
    +

    2D array with y coordinates.

    +
    +
    z_pred + array + +
    +

    2D array with interpolated values.

    +
    +
    + +
    + References +

    https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html

    +
    +
    + Source code in crnpy/crnpy.py +
    1415
    +1416
    +1417
    +1418
    +1419
    +1420
    +1421
    +1422
    +1423
    +1424
    +1425
    +1426
    +1427
    +1428
    +1429
    +1430
    +1431
    +1432
    +1433
    +1434
    +1435
    +1436
    +1437
    +1438
    +1439
    +1440
    +1441
    +1442
    +1443
    +1444
    +1445
    +1446
    +1447
    +1448
    +1449
    +1450
    +1451
    +1452
    +1453
    +1454
    +1455
    +1456
    +1457
    +1458
    +1459
    +1460
    +1461
    +1462
    +1463
    def interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000):
    +    """Function for interpolating irregular spatial data into a regular grid.
    +
    +    Args:
    +        x (list or array): UTM x coordinates in meters.
    +        y (list or array): UTM y coordinates in meters.
    +        z (list or array): Values to be interpolated.
    +        dx (float): Pixel width in meters.
    +        dy (float): Pixel height in meters.
    +        method (str): Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'.
    +        neighborhood (float): Only points within this radius in meters are considered for the interpolation.
    +
    +    Returns:
    +        x_pred (array): 2D array with x coordinates.
    +        y_pred (array): 2D array with y coordinates.
    +        z_pred (array): 2D array with interpolated values.
    +
    +    References:
    +        [https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html](https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html)
    +    """
    +
    +    # Drop NaN values in x y and z
    +    idx_nan = np.isnan(x) | np.isnan(y) | np.isnan(z)
    +    x = x[~idx_nan]
    +    y = y[~idx_nan]
    +    z = z[~idx_nan]
    +
    +    if idx_nan.any():
    +        print(
    +            f"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.")
    +
    +    # Create 2D grid for interpolation
    +    Nx = round((np.max(x) - np.min(x)) / dx) + 1
    +    Ny = round((np.max(y) - np.min(y)) / dy) + 1
    +    X_vec = np.linspace(np.min(x), np.max(x), Nx)
    +    Y_vec = np.linspace(np.min(y), np.max(y), Ny)
    +    X_pred, Y_pred = np.meshgrid(X_vec, Y_vec)
    +
    +    if method in ['linear', 'nearest', 'cubic']:
    +        points = list(zip(x, y))
    +        Z_pred = griddata(points, z, (X_pred, Y_pred), method=method)
    +
    +    elif method == 'idw':
    +        Z_pred = idw(x, y, z, X_pred, Y_pred, neighborhood)
    +
    +    else:
    +        raise f"Method {method} does not exist. Provide either 'cubic', 'linear', 'nearest', or 'idw'."
    +
    +    return X_pred, Y_pred, Z_pred
    +
    +
    +
    + +
    + + +
    + + + + +

    + interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps) + +

    + + +
    + +

    Function to interpolate incoming neutron flux to match the timestamps of the observations.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    nmdb_timestamps + Series + +
    +

    Series of timestamps in datetime format from the NMDB.

    +
    +
    + required +
    nmdb_counts + Series + +
    +

    Series of neutron counts from the NMDB

    +
    +
    + required +
    crnp_timestamps + Series + +
    +

    Series of timestamps in datetime format from the station or device.

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + Series + +
    +

    Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps

    +
    +
    + +
    + Source code in crnpy/crnpy.py +
    1216
    +1217
    +1218
    +1219
    +1220
    +1221
    +1222
    +1223
    +1224
    +1225
    +1226
    +1227
    +1228
    +1229
    +1230
    +1231
    +1232
    +1233
    +1234
    +1235
    +1236
    +1237
    +1238
    +1239
    def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps):
    +    """Function to interpolate incoming neutron flux to match the timestamps of the observations.
    +
    +    Args:
    +        nmdb_timestamps (pd.Series): Series of timestamps in datetime format from the NMDB.
    +        nmdb_counts (pd.Series): Series of neutron counts from the NMDB
    +        crnp_timestamps (pd.Series): Series of timestamps in datetime format from the station or device.
    +
    +    Returns:
    +        (pd.Series): Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps
    +    """
    +    incoming_flux = np.array([])
    +    for k, timestamp in enumerate(crnp_timestamps):
    +        if timestamp in nmdb_timestamps.values:
    +            idx = timestamp == nmdb_timestamps
    +            incoming_flux = np.append(incoming_flux, nmdb_counts.loc[idx])
    +        else:
    +            incoming_flux = np.append(incoming_flux, np.nan)
    +
    +    # Interpolate nan values
    +    incoming_flux = pd.Series(incoming_flux).interpolate(method='nearest', limit_direction='both')
    +
    +    # Return only the values for the selected timestamps
    +    return incoming_flux
    +
    +
    +
    + +
    + + +
    + + + + +

    + is_outlier(x, method, window=11, min_val=None, max_val=None) + +

    + + +
    + +

    Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    x + DataFrame or Series + +
    +

    Variable containing only the columns with neutron counts.

    +
    +
    + required +
    method + str + +
    +

    Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad

    +
    +
    + required +
    window + int + +
    +

    Window size for the moving central tendency. Default is 11.

    +
    +
    + 11 +
    min_val + int or float + +
    +

    Minimum value for a reading to be considered valid. Default is None.

    +
    +
    + None +
    max_val(int + or float + +
    +

    Maximum value for a reading to be considered valid. Default is None.

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + DataFrame + +
    +

    Boolean indicating outliers.

    +
    +
    + +
    + References +

    Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press.

    +
    +
    + Source code in crnpy/crnpy.py +
    132
    +133
    +134
    +135
    +136
    +137
    +138
    +139
    +140
    +141
    +142
    +143
    +144
    +145
    +146
    +147
    +148
    +149
    +150
    +151
    +152
    +153
    +154
    +155
    +156
    +157
    +158
    +159
    +160
    +161
    +162
    +163
    +164
    +165
    +166
    +167
    +168
    +169
    +170
    +171
    +172
    +173
    +174
    +175
    +176
    +177
    +178
    +179
    +180
    +181
    +182
    +183
    +184
    +185
    +186
    +187
    +188
    +189
    +190
    +191
    +192
    +193
    +194
    +195
    +196
    +197
    +198
    +199
    +200
    +201
    +202
    +203
    +204
    +205
    def is_outlier(x, method, window=11, min_val=None, max_val=None):
    +    """Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference.
    +
    +    Args:
    +        x (pd.DataFrame or pd.Series): Variable containing only the columns with neutron counts.
    +        method (str): Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad
    +        window (int, optional): Window size for the moving central tendency. Default is 11.
    +        min_val (int or float): Minimum value for a reading to be considered valid. Default is None.
    +        max_val(int or float): Maximum value for a reading to be considered valid. Default is None.
    +
    +    Returns:
    +        (pandas.DataFrame): Boolean indicating outliers.
    +
    +    References:
    +        Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press.
    +    """
    +
    +    if not isinstance(x, pd.Series):
    +        raise TypeError('x must of type pandas.Series')
    +
    +    # Separate this method to allow usage together with other methods below
    +    if isinstance(min_val, numbers.Number) and isinstance(max_val, numbers.Number):
    +        idx_range_outliers = (x < min_val) | (x > max_val)
    +    else:
    +        idx_range_outliers = np.full_like(x, False)
    +
    +    # Apply other methods in addition to a range check
    +    if method == 'iqr':
    +        q1 = x.quantile(0.25)
    +        q3 = x.quantile(0.75)
    +        iqr = q3 - q1
    +        high_fence = q3 + (1.5 * iqr)
    +        low_fence = q1 - (1.5 * iqr)
    +        idx_outliers = (x < low_fence) | (x > high_fence)
    +
    +    elif method == 'moviqr':
    +        q1 = x.rolling(window, center=True).quantile(0.25)
    +        q3 = x.rolling(window, center=True).quantile(0.75)
    +        iqr = q3 - q1
    +        ub = q3 + (1.5 * iqr)  # Upper boundary
    +        lb = q1 - (1.5 * iqr)  # Lower boundary
    +        idx_outliers = (x < lb) | (x > ub)
    +
    +    elif method == 'zscore':
    +        zscore = (x - x.mean()) / x.std()
    +        idx_outliers = (zscore < -3) | (zscore > 3)
    +
    +    elif method == 'movzscore':
    +        movmean = x.rolling(window=window, center=True).mean()
    +        movstd = x.rolling(window=window, center=True).std()
    +        movzscore = (x - movmean) / movstd
    +        idx_outliers = (movzscore < -3) | (movzscore > 3)
    +
    +    elif method == 'modified_zscore':
    +        # Compute median absolute difference
    +        movmedian = x.rolling(window, center=True).median()
    +        abs_diff = np.abs(x - movmedian)
    +        mad = abs_diff.rolling(window, center=True).median()
    +
    +        # Compute modified z-score
    +        modified_z_score = 0.6745 * abs_diff / mad
    +        idx_outliers = (modified_z_score < -3.5) | (modified_z_score > 3.5)
    +
    +    elif method == 'scaled_mad':
    +        # Returns true for elements more than three scaled MAD from the median. 
    +        c = -1 / (np.sqrt(2) * erfcinv(3 / 2))
    +        median = np.nanmedian(x)
    +        mad = c * np.nanmedian(np.abs(x - median))
    +        idx_outliers = x > (median + 3 * mad)
    +
    +    else:
    +        raise TypeError('Outlier detection method not found.')
    +
    +    return idx_outliers | idx_range_outliers
    +
    +
    +
    + +
    + + +
    + + + + +

    + latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None) + +

    + + +
    + +

    Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.

    +

    Function only applies to non-polar coordinates. +If further functionality is required, consider using the utm module. See references for more information.

    +

    UTM zones +UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See UTM zones for a full description.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    lat + (float, array) + +
    +

    Latitude in decimal degrees.

    +
    +
    + required +
    lon + (float, array) + +
    +

    Longitude in decimal degrees.

    +
    +
    + required +
    utm_zone_number + int + +
    +

    UTM zone number. If None, the zone number is automatically calculated.

    +
    +
    + None +
    utm_zone_letter + str + +
    +

    UTM zone letter. If None, the zone letter is automatically calculated.

    +
    +
    + None +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + (float, float) + +
    +

    Tuple of easting and northing coordinates in meters. First element is easting, second is northing.

    +
    +
    + +
    + References +

    Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87) +https://github.com/Turbo87/utm

    +

    https://www.maptools.com/tutorials/grid_zone_details#

    +
    +
    + Source code in crnpy/crnpy.py +
    1265
    +1266
    +1267
    +1268
    +1269
    +1270
    +1271
    +1272
    +1273
    +1274
    +1275
    +1276
    +1277
    +1278
    +1279
    +1280
    +1281
    +1282
    +1283
    +1284
    +1285
    +1286
    +1287
    +1288
    +1289
    +1290
    +1291
    +1292
    +1293
    +1294
    +1295
    def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None):
    +    """Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.
    +
    +    Function only applies to non-polar coordinates.
    +    If further functionality is required, consider using the utm module. See references for more information.
    +
    +    ![UTM zones](https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Universal_Transverse_Mercator_zones.svg/1920px-Universal_Transverse_Mercator_zones.svg.png)
    +    UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See [UTM zones](https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#UTM_zones) for a full description.
    +
    +
    +    Args:
    +        lat (float, array): Latitude in decimal degrees.
    +        lon (float, array): Longitude in decimal degrees.
    +        utm_zone_number (int): UTM zone number. If None, the zone number is automatically calculated.
    +        utm_zone_letter (str): UTM zone letter. If None, the zone letter is automatically calculated.
    +
    +    Returns:
    +        (float, float): Tuple of easting and northing coordinates in meters. First element is easting, second is northing.
    +
    +    References:
    +         Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87)
    +         [https://github.com/Turbo87/utm](https://github.com/Turbo87/utm)
    +
    +         [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#)
    +    """
    +    if utm_zone_number is None or utm_zone_letter is None:
    +        easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon)
    +    else:
    +        easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon, utm_zone_number, utm_zone_letter)
    +
    +    return easting, northing, zone_number, zone_letter
    +
    +
    +
    + +
    + + +
    + + + + +

    + lattice_water(clay_content, total_carbon=None) + +

    + + +
    + +

    Estimate the amount of water in the lattice of clay minerals.

    + + + + + + + + + + + + + + + + + +
    img1img2
    $\omega_{lat} = 0.097 * clay(\%)$$\omega_{lat} = -0.028 + 0.077 * clay(\%) + 0.459 * carbon(\%)$
    Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab.Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.
    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    clay_content + float + +
    +

    Clay content in the soil in percent.

    +
    +
    + required +
    total_carbon + float + +
    +

    Total carbon content in the soil in percent. +If None, the amount of water is estimated based on clay content only.

    +
    +
    + None +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + float + +
    +

    Amount of water in the lattice of clay minerals in percent

    +
    +
    + +
    + Source code in crnpy/crnpy.py +
    1242
    +1243
    +1244
    +1245
    +1246
    +1247
    +1248
    +1249
    +1250
    +1251
    +1252
    +1253
    +1254
    +1255
    +1256
    +1257
    +1258
    +1259
    +1260
    +1261
    +1262
    def lattice_water(clay_content, total_carbon=None):
    +    r"""Estimate the amount of water in the lattice of clay minerals.
    +
    +    ![img1](img/lattice_water_simple.png) | ![img2](img/lattice_water_multiple.png)
    +    :-------------------------:|:-------------------------:
    +    $\omega_{lat} = 0.097 * clay(\%)$ | $\omega_{lat} = -0.028 + 0.077 * clay(\%) + 0.459 * carbon(\%)$
    +    Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab. |  Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.
    +
    +    Args:
    +        clay_content (float): Clay content in the soil in percent.
    +        total_carbon (float, optional): Total carbon content in the soil in percent.
    +            If None, the amount of water is estimated based on clay content only.
    +
    +    Returns:
    +        (float): Amount of water in the lattice of clay minerals in percent
    +    """
    +    if total_carbon is None:
    +        lattice_water = 0.097 * clay_content
    +    else:
    +        lattice_water = -0.028 + 0.077 * clay_content + 0.459 * total_carbon
    +    return lattice_water
    +
    +
    +
    + +
    + + +
    + + + + +

    + location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc) + +

    + + +
    + +

    Function to estimate the location factor between two sites according to McJannet and Desilets, 2023.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    site_atmospheric_depth + float + +
    +

    Atmospheric depth at the site in g/cm2. Can be estimated using the function atmospheric_depth()

    +
    +
    + required +
    site_Rc + float + +
    +

    Cutoff rigidity at the site in GV. Can be estimated using the function cutoff_rigidity()

    +
    +
    + required +
    reference_atmospheric_depth + float + +
    +

    Atmospheric depth at the reference location in g/cm2.

    +
    +
    + required +
    reference_Rc + float + +
    +

    Cutoff rigidity at the reference location in GV.

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + float + +
    +

    Location-dependent correction factor.

    +
    +
    + +
    + References +

    McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.

    +
    +
    + Source code in crnpy/crnpy.py +
    1104
    +1105
    +1106
    +1107
    +1108
    +1109
    +1110
    +1111
    +1112
    +1113
    +1114
    +1115
    +1116
    +1117
    +1118
    +1119
    +1120
    +1121
    +1122
    +1123
    +1124
    +1125
    +1126
    +1127
    +1128
    +1129
    +1130
    +1131
    +1132
    +1133
    +1134
    +1135
    +1136
    +1137
    +1138
    +1139
    +1140
    +1141
    +1142
    def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc):
    +    """
    +    Function to estimate the location factor between two sites according to McJannet and Desilets, 2023.
    +
    +
    +    Args:
    +        site_atmospheric_depth (float): Atmospheric depth at the site in g/cm2. Can be estimated using the function `atmospheric_depth()`
    +        site_Rc (float): Cutoff rigidity at the site in GV. Can be estimated using the function `cutoff_rigidity()`
    +        reference_atmospheric_depth (float): Atmospheric depth at the reference location in g/cm2.
    +        reference_Rc (float): Cutoff rigidity at the reference location in GV.
    +
    +    Returns:
    +        (float): Location-dependent correction factor.
    +
    +    References:
    +        McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.
    +
    +    """
    +
    +    # Renamed variables based on the provided table
    +    c0 = -0.0009  # from C39
    +    c1 = 1.7699  # from C40
    +    c2 = 0.0064  # from C41
    +    c3 = 1.8855  # from C42
    +    c4 = 0.000013  # from C43
    +    c5 = -1.2237  # from C44
    +    epsilon = 1  # from C45
    +
    +    # Translated formula with renamed variables from McJannet and Desilets, 2023
    +    tau_new = epsilon * (c0 * reference_atmospheric_depth + c1) * (
    +            1 - np.exp(
    +        -(c2 * reference_atmospheric_depth + c3) * reference_Rc ** (c4 * reference_atmospheric_depth + c5)))
    +
    +    norm_factor = 1 / tau_new
    +
    +    # Calculate the result using the provided parameters
    +    tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * (
    +                1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5)))
    +    return tau
    +
    +
    +
    + +
    + + +
    + + + + +

    + nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None) + +

    + + +
    + +

    Function to compute distance weights corresponding to each soil sample.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    h + array or Series + +
    +

    Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting.

    +
    +
    + required +
    theta + array or Series + +
    +

    Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)

    +
    +
    + required +
    distances + array or Series + +
    +

    Distances from the location of each sample to the origin (0.5 - 600 m)

    +
    +
    + required +
    depth + array or Series + +
    +

    Depths for each sample (m)

    +
    +
    + required +
    rhob + array or Series + +
    +

    Bulk density in g/cm^3

    +
    +
    + 1.4 +
    p + array or Series + +
    +

    Atmospheric pressure in hPa. Required for the 'Schron_2017' method.

    +
    +
    + None +
    Hveg + array or Series + +
    +

    Vegetation height in m. Required for the 'Schron_2017' method.

    +
    +
    + None +
    method + str + +
    +

    Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'.

    +
    +
    + None +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + array or Series or DataFrame + +
    +

    Distance weights for each sample.

    +
    +
    + +
    + References +

    Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). +Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray +neutrons. Water Resour. Res. 51, 5772–5790. doi:10.1002/2015WR017169

    +

    Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., +Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., +Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and +validation of cosmic-ray neutron sensors in the light of spatial sensitivity, +Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017.

    +
    +
    + Source code in crnpy/crnpy.py +
    697
    +698
    +699
    +700
    +701
    +702
    +703
    +704
    +705
    +706
    +707
    +708
    +709
    +710
    +711
    +712
    +713
    +714
    +715
    +716
    +717
    +718
    +719
    +720
    +721
    +722
    +723
    +724
    +725
    +726
    +727
    +728
    +729
    +730
    +731
    +732
    +733
    +734
    +735
    +736
    +737
    +738
    +739
    +740
    +741
    +742
    +743
    +744
    +745
    +746
    +747
    +748
    +749
    +750
    +751
    +752
    +753
    +754
    +755
    +756
    +757
    +758
    +759
    +760
    +761
    +762
    +763
    +764
    +765
    +766
    +767
    +768
    +769
    +770
    +771
    +772
    +773
    +774
    +775
    +776
    +777
    +778
    +779
    +780
    +781
    +782
    +783
    +784
    +785
    +786
    +787
    +788
    +789
    +790
    +791
    +792
    +793
    +794
    +795
    +796
    +797
    +798
    +799
    +800
    +801
    +802
    +803
    +804
    +805
    +806
    +807
    +808
    +809
    +810
    +811
    +812
    +813
    +814
    +815
    +816
    +817
    +818
    +819
    +820
    +821
    +822
    +823
    +824
    +825
    +826
    +827
    +828
    +829
    +830
    +831
    +832
    +833
    +834
    +835
    +836
    +837
    +838
    +839
    +840
    +841
    +842
    +843
    +844
    +845
    +846
    +847
    +848
    +849
    +850
    +851
    +852
    +853
    +854
    +855
    +856
    +857
    +858
    +859
    +860
    +861
    +862
    +863
    +864
    +865
    +866
    +867
    +868
    +869
    +870
    +871
    +872
    +873
    +874
    +875
    +876
    +877
    +878
    +879
    +880
    +881
    +882
    +883
    +884
    +885
    +886
    +887
    +888
    +889
    +890
    +891
    +892
    +893
    +894
    +895
    +896
    +897
    +898
    +899
    +900
    +901
    +902
    +903
    +904
    +905
    +906
    +907
    +908
    +909
    +910
    +911
    +912
    +913
    +914
    +915
    +916
    +917
    +918
    +919
    +920
    +921
    +922
    +923
    +924
    +925
    +926
    +927
    +928
    +929
    +930
    +931
    +932
    +933
    +934
    +935
    +936
    +937
    +938
    +939
    +940
    +941
    +942
    +943
    +944
    +945
    +946
    +947
    +948
    +949
    +950
    +951
    +952
    +953
    +954
    +955
    +956
    +957
    +958
    +959
    def nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None):
    +    """Function to compute distance weights corresponding to each soil sample.
    +
    +    Args:
    +        h (np.array or pd.Series): Air Humidity  from 0.1  to 50 in g/m^3. When h=0, the function will skip the distance weighting.
    +        theta (np.array or pd.Series): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)
    +        distances (np.array or pd.Series): Distances from the location of each sample to the origin (0.5 - 600 m)
    +        depth (np.array or pd.Series): Depths for each sample (m)
    +        rhob (np.array or pd.Series): Bulk density in g/cm^3
    +        p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method.
    +        Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method.
    +        method (str): Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'.
    +
    +    Returns:
    +        (array or pd.Series or pd.DataFrame): Distance weights for each sample.
    +
    +    References:
    +        Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015).
    +        Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray
    +        neutrons. Water Resour. Res. 51, 5772–5790. doi:10.1002/2015WR017169
    +
    +        Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L.,
    +        Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C.,
    +        Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and
    +        validation of cosmic-ray neutron sensors in the light of spatial sensitivity,
    +        Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017.
    +    """
    +
    +    if method == 'Kohli_2015':
    +
    +        # Table A1. Parameters for Fi and D86
    +        p10 = 8735;
    +        p11 = 17.1758;
    +        p12 = 11720;
    +        p13 = 0.00978;
    +        p14 = 7045;
    +        p15 = 0.003632;
    +        p20 = 2.7925e-2;
    +        p21 = 5.0399;
    +        p22 = 2.8544e-2;
    +        p23 = 0.002455;
    +        p24 = 6.851e-5;
    +        p25 = 9.2926;
    +        p30 = 247970;
    +        p31 = 17.63;
    +        p32 = 374655;
    +        p33 = 0.00191;
    +        p34 = 195725;
    +        p40 = 5.4818e-2;
    +        p41 = 15.921;
    +        p42 = 0.6373;
    +        p43 = 5.99e-2;
    +        p44 = 5.425e-4;
    +        p50 = 1383702;
    +        p51 = 4.156;
    +        p52 = 5325;
    +        p53 = 0.00238;
    +        p54 = 0.0156;
    +        p55 = 0.130;
    +        p56 = 1521;
    +        p60 = 6.031e-5;
    +        p61 = 98.5;
    +        p62 = 1.0466e-3;
    +        p70 = 11747;
    +        p71 = 41.66;
    +        p72 = 4521;
    +        p73 = 0.01998;
    +        p74 = 0.00604;
    +        p75 = 2534;
    +        p76 = 0.00475;
    +        p80 = 1.543e-2;
    +        p81 = 10.06;
    +        p82 = 1.807e-2;
    +        p83 = 0.0011;
    +        p84 = 8.81e-5;
    +        p85 = 0.0405;
    +        p86 = 20.24;
    +        p90 = 8.321;
    +        p91 = 0.14249;
    +        p92 = 0.96655;
    +        p93 = 26.42;
    +        p94 = 0.0567;
    +
    +        # Numerical determination of the penetration depth (86%) (Eq. 8)
    +        D86 = 1 / rhob * (p90 + p91 * (p92 + np.exp(-1 * distances / 100)) * (p93 + theta) / (p94 + theta))
    +
    +        # Depth weights (Eq. 7)
    +        Wd = np.exp(-2 * depth / D86)
    +
    +        if h == 0:
    +            W = 1  # skip distance weighting
    +
    +        elif (h >= 0.1) and (h <= 50):
    +            # Functions for Fi (Appendix A in Köhli et al., 2015)
    +            F1 = p10 * (1 + p13 * h) * np.exp(-p11 * theta) + p12 * (1 + p15 * h) - p14 * theta
    +            F2 = ((-p20 + p24 * h) * np.exp(-p21 * theta / (1 + p25 * theta)) + p22) * (1 + h * p23)
    +            F3 = (p30 * (1 + p33 * h) * np.exp(-p31 * theta) + p32 - p34 * theta)
    +            F4 = p40 * np.exp(-p41 * theta) + p42 - p43 * theta + p44 * h
    +            F5 = p50 * (0.02 - 1 / p55 / (h - p55 + p56 * theta)) * (p54 - theta) * np.exp(
    +                -p51 * (theta - p54)) + p52 * (0.7 - h * theta * p53)
    +            F6 = p60 * (h + p61) + p62 * theta
    +            F7 = (p70 * (1 - p76 * h) * np.exp(-p71 * theta * (1 - h * p74)) + p72 - p75 * theta) * (2 + h * p73)
    +            F8 = ((-p80 + p84 * h) * np.exp(-p81 * theta / (1 + p85 * h + p86 * theta)) + p82) * (2 + h * p83)
    +
    +            # Distance weights (Eq. 3)
    +            W = np.ones_like(distances) * np.nan
    +            for i in range(len(distances)):
    +                if (distances[i] <= 50) and (distances[i] > 0.5):
    +                    W[i] = F1[i] * (np.exp(-F2[i] * distances[i])) + F3[i] * np.exp(-F4[i] * distances[i])
    +
    +                elif (distances[i] > 50) and (distances[i] < 600):
    +                    W[i] = F5[i] * (np.exp(-F6[i] * distances[i])) + F7[i] * np.exp(-F8[i] * distances[i])
    +
    +                else:
    +                    raise ValueError('Input distances are not valid.')
    +
    +        else:
    +            raise ValueError('Air humidity values are out of range.')
    +
    +        # Combined and normalized weights
    +        weights = Wd * W / np.nansum(Wd * W)
    +        return weights
    +    elif method == 'Schron_2017':
    +        # Horizontal distance weights According to Eq. 6 and Table A1 in Schrön et al. (2017)
    +        # Method for calculating the horizontal distance weights from 0 to 1m
    +        def WrX(r, x, y):
    +            x00 = 3.7
    +            a00 = 8735;
    +            a01 = 22.689;
    +            a02 = 11720;
    +            a03 = 0.00978;
    +            a04 = 9306;
    +            a05 = 0.003632
    +            a10 = 2.7925e-2;
    +            a11 = 6.6577;
    +            a12 = 0.028544;
    +            a13 = 0.002455;
    +            a14 = 6.851e-5;
    +            a15 = 12.2755
    +            a20 = 247970;
    +            a21 = 23.289;
    +            a22 = 374655;
    +            a23 = 0.00191;
    +            a24 = 258552
    +            a30 = 5.4818e-2;
    +            a31 = 21.032;
    +            a32 = 0.6373;
    +            a33 = 0.0791;
    +            a34 = 5.425e-4
    +
    +            x0 = x00
    +            A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y)
    +            A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13)
    +            A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y)
    +            A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x
    +
    +            return ((A0 * (np.exp(-A1 * r)) + A2 * np.exp(-A3 * r)) * (1 - np.exp(-x0 * r)))
    +
    +        # Method for calculating the horizontal distance weights from 1 to 50m
    +        def WrA(r, x, y):
    +            a00 = 8735;
    +            a01 = 22.689;
    +            a02 = 11720;
    +            a03 = 0.00978;
    +            a04 = 9306;
    +            a05 = 0.003632
    +            a10 = 2.7925e-2;
    +            a11 = 6.6577;
    +            a12 = 0.028544;
    +            a13 = 0.002455;
    +            a14 = 6.851e-5;
    +            a15 = 12.2755
    +            a20 = 247970;
    +            a21 = 23.289;
    +            a22 = 374655;
    +            a23 = 0.00191;
    +            a24 = 258552
    +            a30 = 5.4818e-2;
    +            a31 = 21.032;
    +            a32 = 0.6373;
    +            a33 = 0.0791;
    +            a34 = 5.425e-4
    +
    +            A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y)
    +            A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13)
    +            A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y)
    +            A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x
    +
    +            return A0 * np.exp(-A1 * r) + A2 * np.exp(-A3 * r)
    +
    +        # Method for calculating the horizontal distance weights from 50 to 600m
    +        def WrB(r, x, y):
    +            b00 = 39006;
    +            b01 = 15002337;
    +            b02 = 2009.24;
    +            b03 = 0.01181;
    +            b04 = 3.146;
    +            b05 = 16.7417;
    +            b06 = 3727
    +            b10 = 6.031e-5;
    +            b11 = 98.5;
    +            b12 = 0.0013826
    +            b20 = 11747;
    +            b21 = 55.033;
    +            b22 = 4521;
    +            b23 = 0.01998;
    +            b24 = 0.00604;
    +            b25 = 3347.4;
    +            b26 = 0.00475
    +            b30 = 1.543e-2;
    +            b31 = 13.29;
    +            b32 = 1.807e-2;
    +            b33 = 0.0011;
    +            b34 = 8.81e-5;
    +            b35 = 0.0405;
    +            b36 = 26.74
    +
    +            B0 = (b00 - b01 / (b02 * y + x - 0.13)) * (b03 - y) * np.exp(-b04 * y) - b05 * x * y + b06
    +            B1 = b10 * (x + b11) + b12 * y
    +            B2 = (b20 * (1 - b26 * x) * np.exp(-b21 * y * (1 - x * b24)) + b22 - b25 * y) * (2 + x * b23)
    +            B3 = ((-b30 + b34 * x) * np.exp(-b31 * y / (1 + b35 * x + b36 * y)) + b32) * (2 + x * b33)
    +
    +            return B0 * np.exp(-B1 * r) + B2 * np.exp(-B3 * r)
    +
    +        def rscaled(r, p, Hveg, y):
    +            Fp = 0.4922 / (0.86 - np.exp(-p / 1013.25))
    +            Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y))
    +            return r / Fp / Fveg
    +
    +        # Rename variables to be consistent with the revised paper
    +        r = distances
    +        x = h
    +        y = theta
    +        bd = rhob
    +
    +        if Hveg is not None and p is not None:
    +            r = rscaled(r, p, Hveg, y)
    +
    +        Wr = np.zeros(len(r))
    +
    +        # See Eq. 6 in Schron et al. (2017)
    +        r0_idx = (r <= 1)
    +        r1_idx = (r > 1) & (r <= 50)
    +        r2_idx = (r > 50) & (r < 600)
    +        Wr[r0_idx] = WrX(r[r0_idx], x[r0_idx], y[r0_idx])
    +        Wr[r1_idx] = WrA(r[r1_idx], x[r1_idx], y[r1_idx])
    +        Wr[r2_idx] = WrB(r[r2_idx], x[r2_idx], y[r2_idx])
    +
    +        # Vertical distance weights
    +        def D86(r, bd, y):
    +            return 1 / bd * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r)) * (20 + y) / (0.0429 + y))
    +
    +        def Wd(d, r, bd, y):
    +            return np.exp(-2 * d / D86(r, bd, y))
    +
    +        # Calculate the vertical distance weights
    +        Wd = Wd(d, r, bd, y)
    +
    +        # Combined and normalized weights
    +        # Combined and normalized weights
    +        weights = Wd * Wr / np.nansum(Wd * Wr)
    +
    +        return weights
    +
    +
    +
    + +
    + + +
    + + + + +

    + remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False) + +

    + + +
    + +

    Function that removes rows with incomplete integration intervals.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    df + DataFrame + +
    +

    Pandas Dataframe with data from stationary or roving CRNP devices.

    +
    +
    + required +
    timestamp_col + str + +
    +

    Name of the column with timestamps in datetime format.

    +
    +
    + required +
    integration_time + int + +
    +

    Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds.

    +
    +
    + required +
    remove_first + bool + +
    +

    Remove first row. Default is False.

    +
    +
    + False +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + DataFrame + +
    + +
    +
    + +
    + Source code in crnpy/crnpy.py +
    32
    +33
    +34
    +35
    +36
    +37
    +38
    +39
    +40
    +41
    +42
    +43
    +44
    +45
    +46
    +47
    +48
    +49
    +50
    +51
    +52
    +53
    +54
    +55
    +56
    +57
    +58
    +59
    +60
    +61
    +62
    def remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False):
    +    """Function that removes rows with incomplete integration intervals.
    +
    +    Args:
    +        df (pandas.DataFrame): Pandas Dataframe with data from stationary or roving CRNP devices.
    +        timestamp_col (str): Name of the column with timestamps in datetime format.
    +        integration_time (int): Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds.
    +        remove_first (bool, optional): Remove first row. Default is False.
    +
    +    Returns:
    +        (pandas.DataFrame): 
    +    """
    +
    +    # Check format of timestamp column
    +    if df[timestamp_col].dtype != 'datetime64[ns]':
    +        raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.')
    +
    +    # Check if differences in timestamps are below or above the provided integration time
    +    idx_delta = df[timestamp_col].diff().dt.total_seconds() != integration_time
    +
    +    if remove_first:
    +        idx_delta[0] = True
    +
    +    # Select rows that meet the specified integration time
    +    df = df[~idx_delta]
    +    df.reset_index(drop=True, inplace=True)
    +
    +    # Notify user about the number of rows that have been removed
    +    print(f"Removed a total of {sum(idx_delta)} rows.")
    +
    +    return df
    +
    +
    +
    + +
    + + +
    + + + + +

    + rover_centered_coordinates(x, y) + +

    + + +
    + +

    Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    x + array + +
    +

    x coordinates.

    +
    +
    + required +
    y + array + +
    +

    y coordinates.

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + + + + + +
    Name TypeDescription
    x_est + array + +
    +

    Estimated x coordinates.

    +
    +
    y_est + array + +
    +

    Estimated y coordinates.

    +
    +
    + +
    + Source code in crnpy/crnpy.py +
    1466
    +1467
    +1468
    +1469
    +1470
    +1471
    +1472
    +1473
    +1474
    +1475
    +1476
    +1477
    +1478
    +1479
    +1480
    +1481
    +1482
    +1483
    +1484
    +1485
    +1486
    +1487
    +1488
    +1489
    +1490
    +1491
    +1492
    def rover_centered_coordinates(x, y):
    +    """Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed.
    +
    +    Args:
    +        x (array): x coordinates.
    +        y (array): y coordinates.
    +
    +    Returns:
    +        x_est (array): Estimated x coordinates.
    +        y_est (array): Estimated y coordinates.
    +    """
    +
    +    # Make it datatype agnostic
    +    if (isinstance(x, pd.Series)):
    +        x = x.values
    +    if (isinstance(y, pd.Series)):
    +        y = y.values
    +
    +    # Do the average of the two points
    +    x_est = (x[1:] + x[:-1]) / 2
    +    y_est = (y[1:] + y[:-1]) / 2
    +
    +    # Add the first point to match the length of the original array
    +    x_est = np.insert(x_est, 0, x[0])
    +    y_est = np.insert(y_est, 0, y[0])
    +
    +    return x_est, y_est
    +
    +
    +
    + +
    + + +
    + + + + +

    + sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017') + +

    + + +
    + +

    Function that computes the estimated sensing depth of the cosmic-ray neutron probe. +The function offers several methods to compute the depth at which 86 % of the neutrons +probe the soil profile.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    vwc + array or Series or DataFrame + +
    +

    Estimated volumetric water content for each timestamp.

    +
    +
    + required +
    pressure + array or Series or DataFrame + +
    +

    Atmospheric pressure in hPa for each timestamp.

    +
    +
    + required +
    p_ref + float + +
    +

    Reference pressure in hPa.

    +
    +
    + required +
    bulk_density + float + +
    +

    Soil bulk density.

    +
    +
    + required +
    Wlat + float + +
    +

    Lattice water content.

    +
    +
    + required +
    method + str + +
    +

    Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'.

    +
    +
    + 'Schron_2017' +
    dist + list or array + +
    +

    List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method.

    +
    +
    + None +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + array or Series or DataFrame + +
    +

    Estimated sensing depth in m.

    +
    +
    + +
    + References +

    Franz, T.E., Zreda, M., Ferre, T.P.A., Rosolem, R., Zweck, C., Stillman, S., Zeng, X. and Shuttleworth, W.J., 2012. +Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources. +Water Resources Research, 48(8). doi.org/10.1029/2012WR011871

    +

    Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., et al. (2017). +Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. +Hydrol. Earth Syst. Sci. 21, 5009–5030. doi.org/10.5194/hess-21-5009-2017

    +
    +
    + Source code in crnpy/crnpy.py +
    622
    +623
    +624
    +625
    +626
    +627
    +628
    +629
    +630
    +631
    +632
    +633
    +634
    +635
    +636
    +637
    +638
    +639
    +640
    +641
    +642
    +643
    +644
    +645
    +646
    +647
    +648
    +649
    +650
    +651
    +652
    +653
    +654
    +655
    +656
    +657
    +658
    +659
    +660
    +661
    +662
    +663
    +664
    +665
    +666
    +667
    +668
    def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017'):
    +    """Function that computes the estimated sensing depth of the cosmic-ray neutron probe.
    +    The function offers several methods to compute the depth at which 86 % of the neutrons
    +    probe the soil profile.
    +
    +    Args:
    +        vwc (array or pd.Series or pd.DataFrame): Estimated volumetric water content for each timestamp.
    +        pressure (array or pd.Series or pd.DataFrame): Atmospheric pressure in hPa for each timestamp.
    +        p_ref (float): Reference pressure in hPa.
    +        bulk_density (float): Soil bulk density.
    +        Wlat (float): Lattice water content.
    +        method (str): Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'.
    +        dist (list or array): List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method.
    +
    +    Returns:
    +        (array or pd.Series or pd.DataFrame): Estimated sensing depth in m.
    +
    +    References:
    +        Franz, T.E., Zreda, M., Ferre, T.P.A., Rosolem, R., Zweck, C., Stillman, S., Zeng, X. and Shuttleworth, W.J., 2012.
    +        Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources.
    +        Water Resources Research, 48(8). doi.org/10.1029/2012WR011871
    +
    +        Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., et al. (2017).
    +        Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity.
    +        Hydrol. Earth Syst. Sci. 21, 5009–5030. doi.org/10.5194/hess-21-5009-2017
    +    """
    +
    +    # Determine sensing depth (D86)
    +    if method == 'Schron_2017':
    +        # See Appendix A of Schrön et al. (2017)
    +        Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref))
    +        Fveg = 0
    +        results = []
    +        for d in dist:
    +            # Compute r_star
    +            r_start = d / Fp
    +
    +            # Compute soil depth that accounts for 86% of the neutron flux
    +            D86 = 1 / bulk_density * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r_start)) * (20 + (Wlat + vwc)) / (
    +                        0.0429 + (Wlat + vwc)))
    +            results.append(D86)
    +
    +    elif method == 'Franz_2012':
    +        results = 5.8 / (bulk_density * Wlat + vwc + 0.0829)
    +    else:
    +        raise ValueError('Method not recognized. Please select either "Schron_2017" or "Franz_2012".')
    +    return results
    +
    +
    +
    + +
    + + +
    + + + + +

    + smooth_1d(values, window=5, order=3, method='moving_median') + +

    + + +
    + +

    Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content).

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    values + DataFrame or Serie + +
    +

    Dataframe containing the values to smooth.

    +
    +
    + required +
    window + int + +
    +

    Window size for the Savitzky-Golay filter. Default is 5.

    +
    +
    + 5 +
    method + str + +
    +

    Method to use for smoothing the data. Default is 'moving_median'. +Options are 'moving_average', 'moving_median' and 'savitzky_golay'.

    +
    +
    + 'moving_median' +
    order + int + +
    +

    Order of the Savitzky-Golay filter. Default is 3.

    +
    +
    + 3 +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + DataFrame + +
    +

    DataFrame with smoothed values.

    +
    +
    + +
    + References +

    Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. +Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9. +doi.org/10.3389/frwa.2020.00009

    +

    Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. +Analytical chemistry, 36(8), 1627-1639.

    +
    +
    + Source code in crnpy/crnpy.py +
    471
    +472
    +473
    +474
    +475
    +476
    +477
    +478
    +479
    +480
    +481
    +482
    +483
    +484
    +485
    +486
    +487
    +488
    +489
    +490
    +491
    +492
    +493
    +494
    +495
    +496
    +497
    +498
    +499
    +500
    +501
    +502
    +503
    +504
    +505
    +506
    +507
    +508
    +509
    +510
    +511
    +512
    +513
    +514
    +515
    def smooth_1d(values, window=5, order=3, method='moving_median'):
    +    """Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content).
    +
    +    Args:
    +        values (pd.DataFrame or pd.Serie): Dataframe containing the values to smooth.
    +        window (int): Window size for the Savitzky-Golay filter. Default is 5.
    +        method (str): Method to use for smoothing the data. Default is 'moving_median'.
    +            Options are 'moving_average', 'moving_median' and 'savitzky_golay'.
    +        order (int): Order of the Savitzky-Golay filter. Default is 3.
    +
    +    Returns:
    +        (pd.DataFrame): DataFrame with smoothed values.
    +
    +    References:
    +        Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020.
    +        Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.
    +        doi.org/10.3389/frwa.2020.00009
    +
    +        Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures.
    +        Analytical chemistry, 36(8), 1627-1639.
    +    """
    +
    +    if not isinstance(x, pd.Series) and not isinstance(x, pd.DataFrame):
    +        raise ValueError('Input must be a pandas Series or DataFrame')
    +
    +    if method == 'moving_average':
    +        corrected_counts = values.rolling(window=window, center=True, min_periods=1).mean()
    +    elif method == 'moving_median':
    +        corrected_counts = values.rolling(window=window, center=True, min_periods=1).median()
    +
    +    elif method == 'savitzky_golay':
    +        if values.isna().any():
    +            print('Dataframe contains NaN values. Please remove NaN values before smoothing the data.')
    +
    +        if type(values) == pd.core.series.Series:
    +            filtered = savgol_filter(values, window, order)
    +            corrected_counts = pd.DataFrame(filtered, columns=['smoothed'], index=values.index)
    +        elif type(values) == pd.core.frame.DataFrame:
    +            for col in values.columns:
    +                values[col] = savgol_filter(values[col], window, order)
    +    else:
    +        raise ValueError(
    +            'Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay')
    +    corrected_counts = corrected_counts.ffill(limit=window).bfill(limit=window).copy()
    +    return corrected_counts
    +
    +
    +
    + +
    + + +
    + + + + +

    + spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False) + +

    + + +
    + +

    Moving buffer filter to smooth georeferenced two-dimensional data.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    x + list or array + +
    +

    UTM x coordinates in meters.

    +
    +
    + required +
    y + list or array + +
    +

    UTM y coordinates in meters.

    +
    +
    + required +
    z + list or array + +
    +

    Values to be smoothed.

    +
    +
    + required +
    buffer + float + +
    +

    Radial buffer distance in meters.

    +
    +
    + 100 +
    min_neighbours + int + +
    +

    Minimum number of neighbours to consider for the smoothing.

    +
    +
    + 3 +
    method + str + +
    +

    One of 'mean' or 'median'.

    +
    +
    + 'mean' +
    rnd + bool + +
    +

    Boolean to round the final result. Useful in case of z representing neutron counts.

    +
    +
    + False +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + array + +
    +

    Smoothed version of z with the same dimension as z.

    +
    +
    + +
    + Source code in crnpy/crnpy.py +
    1315
    +1316
    +1317
    +1318
    +1319
    +1320
    +1321
    +1322
    +1323
    +1324
    +1325
    +1326
    +1327
    +1328
    +1329
    +1330
    +1331
    +1332
    +1333
    +1334
    +1335
    +1336
    +1337
    +1338
    +1339
    +1340
    +1341
    +1342
    +1343
    +1344
    +1345
    +1346
    +1347
    +1348
    +1349
    +1350
    +1351
    +1352
    +1353
    +1354
    +1355
    +1356
    +1357
    +1358
    +1359
    +1360
    +1361
    +1362
    +1363
    +1364
    +1365
    +1366
    +1367
    +1368
    +1369
    +1370
    def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False):
    +    """Moving buffer filter to smooth georeferenced two-dimensional data.
    +
    +    Args:
    +        x (list or array): UTM x coordinates in meters.
    +        y (list or array): UTM y coordinates in meters.
    +        z (list or array): Values to be smoothed.
    +        buffer (float): Radial buffer distance in meters.
    +        min_neighbours (int): Minimum number of neighbours to consider for the smoothing.
    +        method (str): One of 'mean' or 'median'.
    +        rnd (bool): Boolean to round the final result. Useful in case of z representing neutron counts.
    +
    +    Returns:
    +        (array): Smoothed version of z with the same dimension as z.
    +    """
    +
    +    # Convert input data to Numpy arrays
    +    if (type(x) is not np.ndarray) or (type(y) is not np.ndarray):
    +        try:
    +            x = np.array(x)
    +            y = np.array(y)
    +        except:
    +            raise "Input values cannot be converted to Numpy arrays."
    +
    +    if len(x) != len(y):
    +        raise f"The number of x and y must be equal. Input x has {len(x)} values and y has {len(y)} values."
    +
    +    # Compute distances
    +    N = len(x)
    +    z_smooth = np.array([])
    +    for k in range(N):
    +        px = x[k]
    +        py = y[k]
    +
    +        distances = euclidean_distance(px, py, x, y)
    +        idx_within_buffer = distances <= buffer
    +
    +        if np.isnan(z[k]):
    +            z_new_val = np.nan
    +        elif len(distances[idx_within_buffer]) > min_neighbours:
    +            if method == 'mean':
    +                z_new_val = np.nanmean(z[idx_within_buffer])
    +            elif method == 'median':
    +                z_new_val = np.nanmedian(z[idx_within_buffer])
    +            else:
    +                raise f"Method {method} does not exist. Provide either 'mean' or 'median'."
    +        else:
    +            z_new_val = z[k]  # If there are not enough neighbours, keep the original value
    +
    +        # Append smoothed value to array
    +        z_smooth = np.append(z_smooth, z_new_val)
    +
    +    if rnd:
    +        z_smooth = np.round(z_smooth, 0)
    +
    +    return z_smooth
    +
    +
    +
    + +
    + + +
    + + + + +

    + total_raw_counts(counts) + +

    + + +
    + +

    Compute the sum of uncorrected neutron counts for all detectors.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    counts + DataFrame + +
    +

    Dataframe containing only the columns with neutron counts.

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + DataFrame + +
    +

    Dataframe with the sum of uncorrected neutron counts for all detectors.

    +
    +
    + +
    + Source code in crnpy/crnpy.py +
    110
    +111
    +112
    +113
    +114
    +115
    +116
    +117
    +118
    +119
    +120
    +121
    +122
    +123
    +124
    +125
    +126
    +127
    +128
    +129
    def total_raw_counts(counts):
    +    """Compute the sum of uncorrected neutron counts for all detectors.
    +
    +    Args:
    +        counts (pandas.DataFrame): Dataframe containing only the columns with neutron counts.
    +
    +    Returns:
    +        (pandas.DataFrame): Dataframe with the sum of uncorrected neutron counts for all detectors.
    +    """
    +
    +    if counts.shape[0] > 1:
    +        counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)), axis=0)
    +
    +    # Compute sum of counts
    +    total_raw_counts = counts.sum(axis=1)
    +
    +    # Replace zeros with NaN
    +    total_raw_counts = total_raw_counts.replace(0, np.nan)
    +
    +    return total_raw_counts
    +
    +
    +
    + +
    + + +
    + + + + +

    + uncertainty_counts(raw_counts, metric='std', fp=1, fw=1, fi=1) + +

    + + +
    + +

    Function to estimate the uncertainty of raw counts.

    +

    Measurements of proportional neutron detector systems are governed by counting statistics that follow a Poissonian probability distribution (Zreda et al., 2012). +The expected uncertainty in the neutron count rate $N$ is defined by the standard deviation $ \sqrt{N} $ (Jakobi et al., 2020). +The CV% can be expressed as $ N^{-1/2} $

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    raw_counts + array + +
    +

    Raw neutron counts.

    +
    +
    + required +
    metric + str + +
    +

    Either 'std' or 'cv' for standard deviation or coefficient of variation.

    +
    +
    + 'std' +
    fp + float + +
    +

    Pressure correction factor.

    +
    +
    + 1 +
    fw + float + +
    +

    Humidity correction factor.

    +
    +
    + 1 +
    fi + float + +
    +

    Incoming neutron flux correction factor.

    +
    +
    + 1 +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    Name TypeDescription
    uncertainty + float + +
    +

    Uncertainty of raw counts.

    +
    +
    + +
    + References +

    Jakobi J, Huisman JA, Schrön M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With +Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010

    +

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, +Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012.

    +
    +
    + Source code in crnpy/crnpy.py +
    1495
    +1496
    +1497
    +1498
    +1499
    +1500
    +1501
    +1502
    +1503
    +1504
    +1505
    +1506
    +1507
    +1508
    +1509
    +1510
    +1511
    +1512
    +1513
    +1514
    +1515
    +1516
    +1517
    +1518
    +1519
    +1520
    +1521
    +1522
    +1523
    +1524
    +1525
    +1526
    +1527
    +1528
    def uncertainty_counts(raw_counts, metric="std", fp=1, fw=1, fi=1):
    +    """Function to estimate the uncertainty of raw counts.
    +
    +    Measurements of proportional neutron detector systems are governed by counting statistics that follow a Poissonian probability distribution (Zreda et al., 2012).
    +    The expected uncertainty in the neutron count rate $N$ is defined by the standard deviation $ \sqrt{N} $ (Jakobi et al., 2020).
    +    The CV% can be expressed as $ N^{-1/2} $
    +
    +    Args:
    +        raw_counts (array): Raw neutron counts.
    +        metric (str): Either 'std' or 'cv' for standard deviation or coefficient of variation.
    +        fp (float): Pressure correction factor.
    +        fw (float): Humidity correction factor.
    +        fi (float): Incoming neutron flux correction factor.
    +
    +    Returns:
    +        uncertainty (float): Uncertainty of raw counts.
    +
    +    References:
    +        Jakobi J, Huisman JA, Schrön M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With
    +        Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010
    +
    +        Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System,
    +        Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012.
    +
    +    """
    +
    +    s = fw / (fp * fi)
    +    if metric == "std":
    +        uncertainty = np.sqrt(raw_counts) * s
    +    elif metric == "cv":
    +        uncertainty = 1 / np.sqrt(raw_counts) * s
    +    else:
    +        raise f"Metric {metric} does not exist. Provide either 'std' or 'cv' for standard deviation or coefficient of variation."
    +    return uncertainty
    +
    +
    +
    + +
    + + +
    + + + + +

    + uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115) + +

    + + +
    + +

    Function to estimate the uncertainty propagated to volumetric water content.

    +

    The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts. +Following Eq. 10 in Jakobi et al. (2020), the uncertainty of the volumetric water content can be expressed as: +$$ +\sigma_{\theta_g}(N) = \sigma_N \frac{a_0 N_0}{(N_{cor} - a_1 N_0)^4} \sqrt{(N_{cor} - a_1 N_0)^4 + 8 \sigma_N^2 (N_{cor} - a_1 N_0)^2 + 15 \sigma_N^4} +$$

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    raw_counts + array + +
    +

    Raw neutron counts.

    +
    +
    + required +
    N0 + float + +
    +

    Calibration parameter N0.

    +
    +
    + required +
    bulk_density + float + +
    +

    Bulk density in g cm-3.

    +
    +
    + required +
    fp + float + +
    +

    Pressure correction factor.

    +
    +
    + 1 +
    fw + float + +
    +

    Humidity correction factor.

    +
    +
    + 1 +
    fi + float + +
    +

    Incoming neutron flux correction factor.

    +
    +
    + 1 +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    Name TypeDescription
    sigma_VWC + float + +
    +

    Uncertainty in terms of volumetric water content.

    +
    +
    + +
    + References +

    Jakobi J, Huisman JA, Schrön M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With +Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010

    +
    +
    + Source code in crnpy/crnpy.py +
    1531
    +1532
    +1533
    +1534
    +1535
    +1536
    +1537
    +1538
    +1539
    +1540
    +1541
    +1542
    +1543
    +1544
    +1545
    +1546
    +1547
    +1548
    +1549
    +1550
    +1551
    +1552
    +1553
    +1554
    +1555
    +1556
    +1557
    +1558
    +1559
    +1560
    +1561
    +1562
    def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115):
    +    r"""Function to estimate the uncertainty propagated to volumetric water content.
    +
    +    The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts.
    +    Following Eq. 10 in Jakobi et al. (2020), the uncertainty of the volumetric water content can be expressed as:
    +    $$
    +    \sigma_{\theta_g}(N) = \sigma_N \frac{a_0 N_0}{(N_{cor} - a_1 N_0)^4} \sqrt{(N_{cor} - a_1 N_0)^4 + 8 \sigma_N^2 (N_{cor} - a_1 N_0)^2 + 15 \sigma_N^4}
    +    $$
    +
    +    Args:
    +        raw_counts (array): Raw neutron counts.
    +        N0 (float): Calibration parameter N0.
    +        bulk_density (float): Bulk density in g cm-3.
    +        fp (float): Pressure correction factor.
    +        fw (float): Humidity correction factor.
    +        fi (float): Incoming neutron flux correction factor.
     
    -  
    -  
    +    Returns:
    +        sigma_VWC (float): Uncertainty in terms of volumetric water content.
    +
    +    References:
    +        Jakobi J, Huisman JA, Schrön M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With
    +        Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010
    +    """
     
    +    Ncorr = raw_counts * fw / (fp * fi)
    +    sigma_N = uncertainty_counts(raw_counts, metric="std", fp=fp, fw=fw, fi=fi)
    +    sigma_GWC = sigma_N * ((a0 * N0) / ((Ncorr - a1 * N0) ** 4)) * np.sqrt(
    +        (Ncorr - a1 * N0) ** 4 + 8 * sigma_N ** 2 * (Ncorr - a1 * N0) ** 2 + 15 * sigma_N ** 4)
    +    sigma_VWC = sigma_GWC * bulk_density
     
    -

    Reference

    + return sigma_VWC +
    +
    +
    + +
    + + + +
    + +
    +
    - + +
    -

    crnpy is a Python package for processing cosmic ray neutron data.

    -

    Created by Joaquin Peraza and Andres Patrignani.

    +

    crnpy is a package for processing observations from cosmic ray neutron detectors.

    +

    Modules exported by this package:

    +
      +
    • crnpy: Provide several functions to process observations from cosmic ray neutron detectors.
    • +
    @@ -941,12 +8868,14 @@

    Reference

    +
    -

    -abs_humidity(relative_humidity, temp) + +

    + abs_humidity(relative_humidity, temp)

    @@ -955,6 +8884,8 @@

    Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations.

    + +

    Parameters:

    @@ -971,7 +8902,11 @@

    - + @@ -981,7 +8916,11 @@

    - + @@ -989,6 +8928,8 @@

    float

    relative humidity (%)

    +
    +

    relative humidity (%)

    +
    +
    required float

    temperature (Celsius)

    +
    +

    temperature (Celsius)

    +
    +
    required
    + +

    Returns:

    @@ -1001,37 +8942,41 @@

    - +
    float

    actual vapor pressure (g m^-3)

    +
    +

    actual vapor pressure (g m^-3)

    +
    +
    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    619
    -620
    -621
    -622
    -623
    -624
    -625
    -626
    -627
    -628
    -629
    -630
    -631
    -632
    -633
    -634
    -635
    -636
    -637
    -638
    -639
    -640
    -641
    -642
    def abs_humidity(relative_humidity, temp):
    +          
    + Source code in crnpy/crnpy.py +
    671
    +672
    +673
    +674
    +675
    +676
    +677
    +678
    +679
    +680
    +681
    +682
    +683
    +684
    +685
    +686
    +687
    +688
    +689
    +690
    +691
    +692
    +693
    +694
    def abs_humidity(relative_humidity, temp):
         """
         Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations.
     
    @@ -1043,30 +8988,215 @@ 

    float: actual vapor pressure (g m^-3) """ - ### Atmospheric water vapor factor - # Saturation vapor pressure - e_sat = 0.611 * np.exp(17.502 * temp / ( - temp + 240.97)) * 1000 # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman) + ### Atmospheric water vapor factor + # Saturation vapor pressure + e_sat = 0.611 * np.exp(17.502 * temp / ( + temp + 240.97)) * 1000 # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman) + + # Vapor pressure Pascals + Pw = e_sat * relative_humidity / 100 + + # Absolute humidity (g/m^3) + C = 2.16679 # g K/J; + abs_h = C * Pw / (temp + 273.15) + return abs_h +

    +
    +
    + + + + +
    + + + + +

    + atmospheric_depth(elevation, latitude) + +

    + + +
    + +

    Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023

    +

    This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    elevation + float + +
    +

    Elevation in meters above sea level.

    +
    +
    + required +
    latitude + float + +
    +

    Geographic latitude in decimal degrees. Value in range -90 to 90

    +
    +
    + required +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + float + +
    +

    Atmospheric depth in g/cm2

    +
    +
    + +
    + References +

    Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration.

    +

    McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.

    +
    +
    + Source code in crnpy/crnpy.py +
    1059
    +1060
    +1061
    +1062
    +1063
    +1064
    +1065
    +1066
    +1067
    +1068
    +1069
    +1070
    +1071
    +1072
    +1073
    +1074
    +1075
    +1076
    +1077
    +1078
    +1079
    +1080
    +1081
    +1082
    +1083
    +1084
    +1085
    +1086
    +1087
    +1088
    +1089
    +1090
    +1091
    +1092
    +1093
    +1094
    +1095
    +1096
    +1097
    +1098
    +1099
    +1100
    +1101
    def atmospheric_depth(elevation, latitude):
    +    """Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023
    +
    +    This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023.
    +
    +    Args:
    +        elevation (float): Elevation in meters above sea level.
    +        latitude (float): Geographic latitude in decimal degrees. Value in range -90 to 90
    +
    +    Returns:
    +        (float): Atmospheric depth in g/cm2
    +
    +    References:
    +        Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration.
     
    -    # Vapor pressure Pascals
    -    Pw = e_sat * relative_humidity / 100
    +        McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.
    +    """
     
    -    # Absolute humidity (g/m^3)
    -    C = 2.16679  # g K/J;
    -    abs_h = C * Pw / (temp + 273.15)
    -    return abs_h
    +    density_of_rock = 2670  # Density of rock in kg/m3
    +    air_pressure_sea_level = 1013.25  # Air pressure at sea level in hPa
    +    air_molar_mass = 0.0289644  # Air molar mass in kg/mol
    +    universal_gas_constant = 8.3144598  # Universal gas constant in J/(mol*K)
    +    reference_temperature = 288.15  # Reference temperature Kelvin
    +    temperature_lapse_rate = -0.0065  # Temperature lapse rate in K/m
    +
    +    # Gravity at sea-level calculation
    +    gravity_sea_level = 9.780327 * (
    +            1 + 0.0053024 * np.sin(np.radians(latitude)) ** 2 - 0.0000058 * np.sin(2 * np.radians(latitude)) ** 2)
    +    # Free air correction
    +    free_air = -3.086 * 10 ** -6 * elevation
    +    # Bouguer correction
    +    bouguer_corr = 4.194 * 10 ** -10 * density_of_rock * elevation
    +    # Total gravity
    +    gravity = gravity_sea_level + free_air + bouguer_corr
    +
    +    # Air pressure calculation
    +    reference_air_pressure = air_pressure_sea_level * (
    +                1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / (
    +                universal_gas_constant * temperature_lapse_rate))
    +
    +    # Atmospheric depth calculation
    +    atmospheric_depth = (10 * reference_air_pressure) / gravity
    +    return atmospheric_depth
     
    -
    +
    +
    -

    -biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494) + +

    + biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494)

    @@ -1075,6 +9205,8 @@

    Function to convert biomass to biomass water equivalent.

    + +

    Parameters:

    @@ -1089,9 +9221,13 @@

    + - @@ -1099,9 +9235,13 @@

    + - @@ -1111,8 +9251,12 @@

    - + @@ -1120,6 +9264,8 @@

    biomass_dry - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Above ground dry biomass in kg m-2.

    +

    Above ground dry biomass in kg m-2.

    required
    biomass_fresh - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Above ground fresh biomass in kg m-2.

    +

    Above ground fresh biomass in kg m-2.

    required float

    Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose) -Default is 0.494 (Wahbi & Avery, 2018).

    +
    +

    Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose) +Default is 0.494 (Wahbi & Avery, 2018).

    +
    +
    0.494
    + +

    Returns:

    @@ -1131,9 +9277,13 @@

    + -
    - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Biomass water equivalent in kg m-2.

    +

    Biomass water equivalent in kg m-2.

    @@ -1144,26 +9294,26 @@

    Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent. Springer, Cham. https://doi.org/10.1007/978-3-319-69539-6_2

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    488
    -489
    -490
    -491
    -492
    -493
    -494
    -495
    -496
    -497
    -498
    -499
    -500
    -501
    -502
    -503
    -504
    -505
    def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494):
    +          
    + Source code in crnpy/crnpy.py +
    539
    +540
    +541
    +542
    +543
    +544
    +545
    +546
    +547
    +548
    +549
    +550
    +551
    +552
    +553
    +554
    +555
    +556
    def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494):
         """Function to convert biomass to biomass water equivalent.
     
         Args:
    @@ -1182,17 +9332,19 @@ 

    """ return (biomass_fresh - biomass_dry) + fWE * biomass_dry

    -
    +
    +
    -

    -correction_bwe(counts, bwe, r2_N0=0.05) + +

    + correction_bwe(counts, bwe, r2_N0=0.05)

    @@ -1202,6 +9354,8 @@

    Function to correct for biomass effects in neutron counts. following the approach described in Baatz et al., 2015.

    + +

    Parameters:

    @@ -1216,9 +9370,13 @@

    + - @@ -1228,7 +9386,11 @@

    - + @@ -1238,7 +9400,11 @@

    - + @@ -1246,6 +9412,8 @@

    counts - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Array of ephithermal neutron counts.

    +

    Array of ephithermal neutron counts.

    required float

    Biomass water equivalent kg m-2.

    +
    +

    Biomass water equivalent kg m-2.

    +
    +
    required float

    Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05.

    +
    +

    Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05.

    +
    +
    0.05
    + +

    Returns:

    @@ -1257,9 +9425,13 @@

    + -
    - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Array of corrected neutron counts for biomass effects.

    +

    Array of corrected neutron counts for biomass effects.

    @@ -1270,27 +9442,27 @@

    An empiricalvegetation correction for soil water content quantification using cosmic ray probes, Water Resour. Res., 51, 2030–2046, doi:10.1002/ 2014WR016443.

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    468
    -469
    -470
    -471
    -472
    -473
    -474
    -475
    -476
    -477
    -478
    -479
    -480
    -481
    -482
    -483
    -484
    -485
    -486
    def correction_bwe(counts, bwe, r2_N0=0.05):
    +          
    + Source code in crnpy/crnpy.py +
    518
    +519
    +520
    +521
    +522
    +523
    +524
    +525
    +526
    +527
    +528
    +529
    +530
    +531
    +532
    +533
    +534
    +535
    +536
    def correction_bwe(counts, bwe, r2_N0=0.05):
         """Function to correct for biomass effects in neutron counts.
         following the approach described in Baatz et al., 2015.
     
    @@ -1308,19 +9480,21 @@ 

    Water Resour. Res., 51, 2030–2046, doi:10.1002/ 2014WR016443. """ - return counts/(1 - bwe*r2_N0) + return counts / (1 - bwe * r2_N0)

    -
    +
    +
    -

    -correction_humidity(abs_humidity, Aref) + +

    + correction_humidity(abs_humidity, Aref)

    @@ -1347,6 +9521,8 @@

  • Aref: reference absolute humidity
  • + +

    Parameters:

    @@ -1363,17 +9539,11 @@

    - - - - - - @@ -1383,7 +9553,11 @@

    - + @@ -1391,6 +9565,8 @@

    list or array

    Relative humidity readings.

    - required -
    temp - list or array +
    +

    Relative humidity readings.

    +

    Temperature readings (Celsius).

    required float

    Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended.

    +
    +

    Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended.

    +
    +
    required
    + +

    Returns:

    @@ -1404,7 +9580,11 @@

    - +
    list

    fw correction factor.

    +
    +

    fw correction factor.

    +
    +
    @@ -1413,9 +9593,11 @@

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    255
    +          
    + Source code in crnpy/crnpy.py +
    253
    +254
    +255
     256
     257
     258
    @@ -1449,10 +9631,7 @@ 

    286 287 288 -289 -290 -291 -292

    def correction_humidity(abs_humidity, Aref):
    +289
    def correction_humidity(abs_humidity, Aref):
         r"""Correction factor for absolute humidity.
     
         This function corrects neutron counts for absolute humidity using the method described in Rosolem et al. (2013) and Anderson et al. (2017). The correction is performed using the following equation:
    @@ -1478,7 +9657,6 @@ 

    Args: abs_humidity (list or array): Relative humidity readings. - temp (list or array): Temperature readings (Celsius). Aref (float): Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended. Returns: @@ -1488,20 +9666,22 @@

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 """ A = abs_humidity - fw = 1 + 0.0054*(A - Aref) # Zreda et al. 2017 Eq 6. + fw = 1 + 0.0054 * (A - Aref) # Zreda et al. 2017 Eq 6. return fw

    -
    +
    +
    -

    -correction_incoming_flux(incoming_neutrons, incoming_Ref=None) + +

    + correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None, site_atmdepth=None, Rc_ref=None, ref_atmdepth=None)

    @@ -1528,6 +9708,8 @@

  • Iref: reference incoming neutron flux
  • + +

    Parameters:

    @@ -1544,7 +9726,11 @@

    - + @@ -1554,7 +9740,11 @@

    - + @@ -1562,6 +9752,8 @@

    list or array

    Incoming neutron flux readings.

    +
    +

    Incoming neutron flux readings.

    +
    +
    required float

    Reference incoming neutron flux. Baseline incoming neutron flux.

    +
    +

    Reference incoming neutron flux. Baseline incoming neutron flux.

    +
    +
    None
    + +

    Returns:

    @@ -1575,7 +9767,11 @@

    - +
    list

    fi correction factor.

    +
    +

    fi correction factor.

    +
    +
    @@ -1584,9 +9780,11 @@

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    294
    +          
    + Source code in crnpy/crnpy.py +
    292
    +293
    +294
     295
     296
     297
    @@ -1628,7 +9826,27 @@ 

    333 334 335 -336

    def correction_incoming_flux(incoming_neutrons, incoming_Ref=None):
    +336
    +337
    +338
    +339
    +340
    +341
    +342
    +343
    +344
    +345
    +346
    +347
    +348
    +349
    +350
    +351
    +352
    +353
    +354
    +355
    def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None,
    +                             site_atmdepth=None, Rc_ref=None, ref_atmdepth=None):
         r"""Correction factor for incoming neutron flux.
     
         This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation:
    @@ -1668,21 +9886,43 @@ 

    incoming_Ref = incoming_neutrons[0] warnings.warn('Reference incoming neutron flux not provided. Using first value of incoming neutron flux.') fi = incoming_neutrons / incoming_Ref - fi.fillna(1.0, inplace=True) # Use a value of 1 for days without data + + if Rc_method is not None: + if Rc_ref is None: + raise ValueError('Reference cutoff rigidity not provided.') + if Rc_site is None: + raise ValueError('Site cutoff rigidity not provided.') + + if Rc_method == 'McJannetandDesilets2023': + tau = location_factor(site_atmdepth, Rc_site, ref_atmdepth, Rc_ref) + fi = 1 / (tau * fi + 1 - tau) + + elif Rc_method == 'Hawdonetal2014': + Rc_corr = -0.075 * (Rc_site - Rc_ref) + 1.0 + fi = (fi - 1.0) * Rc_corr + 1.0 + + else: + raise ValueError( + 'Cutoff rigidity method not found. Valid options are: McJannetandDesilets2023, Hawdonetal2014.') + + if fill_na is not None: + fi.fillna(fill_na, inplace=True) # Use a value of 1 for days without data return fi

    -
    +
    +
    -

    -correction_pressure(pressure, Pref, L) + +

    + correction_pressure(pressure, Pref, L)

    @@ -1711,6 +9951,8 @@

  • L: Atmospheric attenuation coefficient.
  • + +

    Parameters:

    @@ -1723,11 +9965,15 @@

    - + - + @@ -1737,7 +9983,11 @@

    - + @@ -1747,7 +9997,11 @@

    - + @@ -1755,6 +10009,8 @@

    atm_pressurepressure list or array

    Atmospheric pressure readings. Long-term average pressure is recommended.

    +
    +

    Atmospheric pressure readings. Long-term average pressure is recommended.

    +
    +
    required float

    Reference atmospheric pressure.

    +
    +

    Reference atmospheric pressure.

    +
    +
    required float

    Atmospheric attenuation coefficient.

    +
    +

    Atmospheric attenuation coefficient.

    +
    +
    required
    + +

    Returns:

    @@ -1768,7 +10024,11 @@

    - +
    list

    fp pressure correction factor.

    +
    +

    fp pressure correction factor.

    +
    +
    @@ -1777,9 +10037,11 @@

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    210
    +          
    + Source code in crnpy/crnpy.py +
    208
    +209
    +210
     211
     212
     213
    @@ -1819,9 +10081,7 @@ 

    247 248 249 -250 -251 -252

    def correction_pressure(pressure, Pref, L):
    +250
    def correction_pressure(pressure, Pref, L):
         r"""Correction factor for atmospheric pressure.
     
         This function corrects neutron counts for atmospheric pressure using the method described in Andreasen et al. (2017).
    @@ -1849,7 +10109,7 @@ 

    Args: - atm_pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended. + pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended. Pref (float): Reference atmospheric pressure. L (float): Atmospheric attenuation coefficient. @@ -1861,21 +10121,23 @@

    """ # Compute pressure correction factor - fp = np.exp((Pref - pressure) / L) # Zreda et al. 2017 Eq 5. + fp = np.exp((Pref - pressure) / L) # Zreda et al. 2017 Eq 5. return fp

    -
    +
    +
    -

    -correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, p4=0.16, p6=0.94, p7=1.1, p8=2.7, p9=0.01) + +

    + correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, p4=0.16, p6=0.94, p7=1.1, p8=2.7, p9=0.01)

    @@ -1885,6 +10147,8 @@

    Function to correct for road effects in neutron counts. following the approach described in Schrön et al., 2018.

    + +

    Parameters:

    @@ -1899,9 +10163,13 @@

    + - @@ -1911,7 +10179,11 @@

    - + @@ -1921,7 +10193,11 @@

    - + @@ -1931,7 +10207,11 @@

    - + @@ -1941,7 +10221,11 @@

    - + @@ -1951,7 +10235,11 @@

    - + @@ -1959,61 +10247,69 @@

    counts - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Array of ephithermal neutron counts.

    +

    Array of ephithermal neutron counts.

    required float

    Volumetric water content of the soil estimated from the uncorrected neutron counts.

    +
    +

    Volumetric water content of the soil estimated from the uncorrected neutron counts.

    +
    +
    required float

    Width of the road in m.

    +
    +

    Width of the road in m.

    +
    +
    required float

    Distance of the road from the sensor in m. Default is 0.0.

    +
    +

    Distance of the road from the sensor in m. Default is 0.0.

    +
    +
    0.0 float

    Volumetric water content of the road. Default is 0.12.

    +
    +

    Volumetric water content of the road. Default is 0.12.

    +
    +
    0.12 float

    Parameters of the correction function. Default values are from Schrön et al., 2018.

    +
    +

    Parameters of the correction function. Default values are from Schrön et al., 2018.

    +
    +
    required
    + +

    Returns:

    - - - - - - - - - -
    TypeDescription
    - array or pd.Series or pd.DataFrame -

    Array of corrected neutron counts for road effects.

    - -
    - References -

    Schrön,M.,Rosolem,R.,Köhli,M., Piussi,L.,Schröter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys -of field soil moisture and the influence of roads.WaterResources Research,54,6441–6459. -https://doi. org/10.1029/2017WR021719

    -
    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    + + + + + + + + +
    508
    -509
    -510
    -511
    -512
    -513
    -514
    -515
    -516
    -517
    -518
    -519
    -520
    -521
    -522
    -523
    -524
    -525
    -526
    -527
    -528
    -529
    -530
    -531
    -532
    -533
    -534
    -535
    -536
    def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01):
    +        
    Description
    + array or Series or DataFrame + +
    +

    Array of corrected neutron counts for road effects.

    +
    +
    + +
    + References +

    Schrön,M.,Rosolem,R.,Köhli,M., Piussi,L.,Schröter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys +of field soil moisture and the influence of roads.WaterResources Research,54,6441–6459. +https://doi. org/10.1029/2017WR021719

    +
    +
    + Source code in crnpy/crnpy.py +
    559
    +560
    +561
    +562
    +563
    +564
    +565
    +566
    +567
    +568
    +569
    +570
    +571
    +572
    +573
    +574
    +575
    +576
    +577
    +578
    +579
    +580
    +581
    +582
    +583
    +584
    +585
    +586
    +587
    +588
    def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4,
    +                    p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01):
         """Function to correct for road effects in neutron counts.
         following the approach described in Schrön et al., 2018.
     
    @@ -2033,7 +10329,7 @@ 

    of field soil moisture and the influence of roads.WaterResources Research,54,6441–6459. https://doi. org/10.1029/2017WR021719 """ - F1 = p0 * (1-np.exp(-p1*road_width)) + F1 = p0 * (1 - np.exp(-p1 * road_width)) F2 = -p2 - p3 * theta_road - ((p4 + theta_road) / (theta_N)) F3 = p6 * np.exp(-p7 * (road_width ** -p8) * road_distance ** 4) + (1 - p6) * np.exp(-p9 * road_distance) @@ -2043,17 +10339,19 @@

    return corrected_counts

    -
    +

    +
    -

    -counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115) + +

    + counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115)

    @@ -2064,6 +10362,8 @@

    This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010.

    $\theta(N) =\frac{a_0}{(\frac{N}{N_0}) - a_1} - a_2 $

    + +

    Parameters:

    @@ -2078,9 +10378,13 @@

    + - @@ -2090,7 +10394,11 @@

    - + @@ -2100,7 +10408,11 @@

    - + @@ -2110,7 +10422,11 @@

    - + @@ -2120,7 +10436,11 @@

    - + @@ -2130,7 +10450,11 @@

    - + @@ -2140,7 +10464,11 @@

    - + @@ -2150,7 +10478,11 @@

    - + @@ -2158,6 +10490,8 @@

    counts - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Array of corrected and filtered neutron counts.

    +

    Array of corrected and filtered neutron counts.

    required float

    Device-specific neutron calibration constant.

    +
    +

    Device-specific neutron calibration constant.

    +
    +
    required float

    Lattice water content.

    +
    +

    Lattice water content.

    +
    +
    required float

    Soil organic carbon content.

    +
    +

    Soil organic carbon content.

    +
    +
    required float

    Soil bulk density.

    +
    +

    Soil bulk density.

    +
    +
    required float

    Parameter given in Zreda et al., 2012. Default is 0.0808.

    +
    +

    Parameter given in Zreda et al., 2012. Default is 0.0808.

    +
    +
    0.0808 float

    Parameter given in Zreda et al., 2012. Default is 0.372.

    +
    +

    Parameter given in Zreda et al., 2012. Default is 0.372.

    +
    +
    0.372 float

    Parameter given in Zreda et al., 2012. Default is 0.115.

    +
    +

    Parameter given in Zreda et al., 2012. Default is 0.115.

    +
    +
    0.115
    + +

    Returns:

    @@ -2169,9 +10503,13 @@

    + -
    - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Volumetric water content in m3 m-3.

    +

    Volumetric water content in m3 m-3.

    @@ -2182,37 +10520,37 @@

    Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46:W11505. doi.org/10.1029/2009WR008726

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    538
    -539
    -540
    -541
    -542
    -543
    -544
    -545
    -546
    -547
    -548
    -549
    -550
    -551
    -552
    -553
    -554
    -555
    -556
    -557
    -558
    -559
    -560
    -561
    -562
    -563
    -564
    -565
    -566
    def counts_to_vwc(counts, N0, Wlat, Wsoc ,bulk_density, a0=0.0808,a1=0.372,a2=0.115):
    +          
    + Source code in crnpy/crnpy.py +
    591
    +592
    +593
    +594
    +595
    +596
    +597
    +598
    +599
    +600
    +601
    +602
    +603
    +604
    +605
    +606
    +607
    +608
    +609
    +610
    +611
    +612
    +613
    +614
    +615
    +616
    +617
    +618
    +619
    def counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115):
         r"""Function to convert corrected and filtered neutron counts into volumetric water content.
     
         This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010.
    @@ -2239,20 +10577,22 @@ 

    """ # Convert neutron counts into vwc - vwc = (a0 / (counts/N0-a1) - a2 - Wlat - Wsoc) * bulk_density + vwc = (a0 / (counts / N0 - a1) - a2 - Wlat - Wsoc) * bulk_density return vwc

    -
    +
    +
    -

    -cutoff_rigidity(lat, lon) + +

    + cutoff_rigidity(lat, lon)

    @@ -2263,6 +10603,8 @@

    tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest.

    + +

    Parameters:

    @@ -2279,7 +10621,11 @@

    - + @@ -2289,8 +10635,12 @@

    - + @@ -2298,6 +10648,8 @@

    float

    Geographic latitude in decimal degrees. Value in range -90 to 90

    +
    +

    Geographic latitude in decimal degrees. Value in range -90 to 90

    +
    +
    required float

    Geographic longitude in decimal degrees. Values in range from 0 to 360. -Typical negative longitudes in the west hemisphere will fall in the range 180 to 360.

    +
    +

    Geographic longitude in decimal degrees. Values in range from 0 to 360. +Typical negative longitudes in the west hemisphere will fall in the range 180 to 360.

    +
    +
    required
    + +

    Returns:

    @@ -2311,11 +10663,17 @@

    - +
    float

    Cutoff rigidity in GV. Error is about +/- 0.3 GV

    +
    +

    Cutoff rigidity in GV. Error is about +/- 0.3 GV

    +
    +
    + +

    Examples:

    Estimate the cutoff rigidity for Newark, NJ, US

    >>> zq = cutoff_rigidity(39.68, -75.75)
    @@ -2325,54 +10683,61 @@ 

    References -

    Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program: +

    Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures +for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, +50(6), 5029-5043.

    +

    Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program: Theory, Software Description and Example. NASA STI/Recon Technical Report N.

    Shea, M. A., & Smart, D. F. (2019, July). Re-examination of the First Five Ground-Level Events. In International Cosmic Ray Conference (ICRC2019) (Vol. 36, p. 1149).

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    770
    -771
    -772
    -773
    -774
    -775
    -776
    -777
    -778
    -779
    -780
    -781
    -782
    -783
    -784
    -785
    -786
    -787
    -788
    -789
    -790
    -791
    -792
    -793
    -794
    -795
    -796
    -797
    -798
    -799
    -800
    -801
    -802
    -803
    -804
    -805
    -806
    -807
    -808
    -809
    -810
    def cutoff_rigidity(lat,lon):
    +          
    + Source code in crnpy/crnpy.py +
    1012
    +1013
    +1014
    +1015
    +1016
    +1017
    +1018
    +1019
    +1020
    +1021
    +1022
    +1023
    +1024
    +1025
    +1026
    +1027
    +1028
    +1029
    +1030
    +1031
    +1032
    +1033
    +1034
    +1035
    +1036
    +1037
    +1038
    +1039
    +1040
    +1041
    +1042
    +1043
    +1044
    +1045
    +1046
    +1047
    +1048
    +1049
    +1050
    +1051
    +1052
    +1053
    +1054
    +1055
    +1056
    def cutoff_rigidity(lat, lon):
         """Function to estimate the approximate cutoff rigidity for any point on Earth according to the
         tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate
         neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest.
    @@ -2393,6 +10758,10 @@ 

    2.52 GV (Value from NMD is 2.40 GV) References: + Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures + for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, + 50(6), 5029-5043. + Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program: Theory, Software Description and Example. NASA STI/Recon Technical Report N. @@ -2403,28 +10772,30 @@

    yq = lat if xq < 0: - xq = xq*-1 + 180 + xq = xq * -1 + 180 Z = np.array(data.cutoff_rigidity) x = np.linspace(0, 360, Z.shape[1]) y = np.linspace(90, -90, Z.shape[0]) X, Y = np.meshgrid(x, y) - points = np.array( (X.flatten(), Y.flatten()) ).T + points = np.array((X.flatten(), Y.flatten())).T values = Z.flatten() - zq = griddata(points, values, (xq,yq)) + zq = griddata(points, values, (xq, yq)) - return np.round(zq,2) + return np.round(zq, 2)

    -
    +
    +
    -

    -euclidean_distance(px, py, x, y) + +

    + euclidean_distance(px, py, x, y)

    @@ -2434,6 +10805,8 @@

    Function that computes the Euclidean distance between one point in space and one or more points.

    + +

    Parameters:

    @@ -2450,7 +10823,11 @@

    - + @@ -2460,7 +10837,11 @@

    - + @@ -2468,9 +10849,13 @@

    + - @@ -2478,9 +10863,13 @@

    + - @@ -2488,6 +10877,8 @@

    float

    x projected coordinate of the point.

    +
    +

    x projected coordinate of the point.

    +
    +
    required float

    y projected coordinate of the point.

    +
    +

    y projected coordinate of the point.

    +
    +
    required
    x - list, ndarray, pandas.series + (list, ndarray, series) + +
    +

    vector of x projected coordinates.

    +

    vector of x projected coordinates.

    required
    y - list, ndarray, pandas.series + (list, ndarray, series) + +
    +

    vector of y projected coordinates.

    +

    vector of y projected coordinates.

    required
    + +

    Returns:

    @@ -2501,28 +10892,32 @@

    - + - -
    ndarray

    Numpy array of distances from the point (px,py) to all the points in x and y vectors.

    +
    +

    Numpy array of distances from the point (px,py) to all the points in x and y vectors.

    +
    +
    - -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    +
    1017
    -1018
    -1019
    -1020
    -1021
    -1022
    -1023
    -1024
    -1025
    -1026
    -1027
    -1028
    -1029
    -1030
    -1031
    def euclidean_distance(px, py, x, y):
    +    
    + +
    + Source code in crnpy/crnpy.py +
    1298
    +1299
    +1300
    +1301
    +1302
    +1303
    +1304
    +1305
    +1306
    +1307
    +1308
    +1309
    +1310
    +1311
    +1312
    def euclidean_distance(px, py, x, y):
         """Function that computes the Euclidean distance between one point
         in space and one or more points.
     
    @@ -2538,17 +10933,19 @@ 

    d = np.sqrt((px - x) ** 2 + (py - y) ** 2) return d

    -
    +

    +
    -

    -exp_filter(sm, T=1) + +

    + exp_filter(sm, T=1)

    @@ -2557,6 +10954,8 @@

    Exponential filter to estimate soil moisture in the rootzone from surface observtions.

    + +

    Parameters:

    @@ -2573,7 +10972,11 @@

    - + @@ -2583,7 +10986,11 @@

    - + @@ -2591,6 +10998,8 @@

    list or array

    Soil moisture in mm of water for the top layer of the soil profile.

    +
    +

    Soil moisture in mm of water for the top layer of the soil profile.

    +
    +
    required float

    Characteristic time length in the same units as the measurement interval.

    +
    +

    Characteristic time length in the same units as the measurement interval.

    +
    +
    1
    + +

    Returns:

    @@ -2604,7 +11013,11 @@

    - +
    sm_subsurface list or array

    Subsurface soil moisture in the same units as the input.

    +
    +

    Subsurface soil moisture in the same units as the input.

    +
    +
    @@ -2619,57 +11032,56 @@

    Rossini, P. and Patrignani, A., 2021. Predicting rootzone soil moisture from surface observations in cropland using an exponential filter. Soil Science Society of America Journal.

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    719
    -720
    -721
    -722
    -723
    -724
    -725
    -726
    -727
    -728
    -729
    -730
    -731
    -732
    -733
    -734
    -735
    -736
    -737
    -738
    -739
    -740
    -741
    -742
    -743
    -744
    -745
    -746
    -747
    -748
    -749
    -750
    -751
    -752
    -753
    -754
    -755
    -756
    -757
    -758
    -759
    -760
    -761
    -762
    -763
    -764
    -765
    -766
    -767
    def exp_filter(sm,T=1):
    +          
    + Source code in crnpy/crnpy.py +
     962
    + 963
    + 964
    + 965
    + 966
    + 967
    + 968
    + 969
    + 970
    + 971
    + 972
    + 973
    + 974
    + 975
    + 976
    + 977
    + 978
    + 979
    + 980
    + 981
    + 982
    + 983
    + 984
    + 985
    + 986
    + 987
    + 988
    + 989
    + 990
    + 991
    + 992
    + 993
    + 994
    + 995
    + 996
    + 997
    + 998
    + 999
    +1000
    +1001
    +1002
    +1003
    +1004
    +1005
    +1006
    +1007
    +1008
    +1009
    def exp_filter(sm, T=1):
         """Exponential filter to estimate soil moisture in the rootzone from surface observtions.
     
         Args:
    @@ -2691,7 +11103,6 @@ 

    Soil Science Society of America Journal. """ - # Parameters t_delta = 1 sm_min = np.min(sm) @@ -2699,18 +11110,18 @@

    ms = (sm - sm_min) / (sm_max - sm_min) # Pre-allocate soil water index array and recursive constant K - SWI = np.ones_like(ms)*np.nan - K = np.ones_like(ms)*np.nan + SWI = np.ones_like(ms) * np.nan + K = np.ones_like(ms) * np.nan # Initial conditions SWI[0] = ms[0] K[0] = 1 # Values from 2 to N - for n in range(1,len(SWI)): - if ~np.isnan(ms[n]) & ~np.isnan(ms[n-1]): - K[n] = K[n-1] / (K[n-1] + np.exp(-t_delta/T)) - SWI[n] = SWI[n-1] + K[n]*(ms[n] - SWI[n-1]) + for n in range(1, len(SWI)): + if ~np.isnan(ms[n]) & ~np.isnan(ms[n - 1]): + K[n] = K[n - 1] / (K[n - 1] + np.exp(-t_delta / T)) + SWI[n] = SWI[n - 1] + K[n] * (ms[n] - SWI[n - 1]) else: continue @@ -2719,17 +11130,19 @@

    return sm_subsurface

    -
    +
    +
    -

    -fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False) + +

    + fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False)

    @@ -2738,6 +11151,8 @@

    Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values.

    + +

    Parameters:

    @@ -2752,9 +11167,13 @@

    + - @@ -2764,7 +11183,11 @@

    - + @@ -2774,7 +11197,11 @@

    - + @@ -2784,7 +11211,11 @@

    - + @@ -2794,7 +11225,11 @@

    - + @@ -2802,6 +11237,8 @@

    df - pandas.DataFrame + DataFrame + +
    +

    Pandas DataFrame.

    +

    Pandas DataFrame.

    required str

    Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'.

    +
    +

    Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'.

    +
    +
    'timestamp' str

    Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'.

    +
    +

    Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'.

    +
    +
    'H' bool

    Whether to round timestamps to the nearest frequency. Default is True.

    +
    +

    Whether to round timestamps to the nearest frequency. Default is True.

    +
    +
    True bool

    Prints the missing timestamps added to the DatFrame.

    +
    +

    Prints the missing timestamps added to the DatFrame.

    +
    +
    False
    + +

    Returns:

    @@ -2813,16 +11250,21 @@

    + -
    - pandas.DataFrame + DataFrame + +
    +

    DataFrame with filled missing timestamps.

    +

    DataFrame with filled missing timestamps.

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
     66
    +          
    + Source code in crnpy/crnpy.py +
     65
    + 66
      67
      68
      69
    @@ -2863,8 +11305,7 @@ 

    104 105 106 -107 -108

    def fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False):
    +107
    def fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False):
         """Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values.
     
          Args:
    @@ -2895,9 +11336,9 @@ 

    for date in date_range: if date not in df[timestamp_col].values: if verbose: - print('Adding missing date:',date) - new_line = pd.DataFrame({timestamp_col:date}, index=[-1]) # By default fills columns with np.nan - df = pd.concat([df,new_line]) + print('Adding missing date:', date) + new_line = pd.DataFrame({timestamp_col: date}, index=[-1]) # By default fills columns with np.nan + df = pd.concat([df, new_line]) counter += 1 df.sort_values(by=timestamp_col, inplace=True) @@ -2908,17 +11349,19 @@

    return df

    -
    +
    +
    -

    -find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False) + +

    + find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False)

    @@ -2927,6 +11370,8 @@

    Search for potential reference neutron monitoring stations based on cutoff rigidity.

    + +

    Parameters:

    @@ -2943,7 +11388,11 @@

    - + @@ -2953,7 +11402,11 @@

    - + @@ -2963,14 +11416,34 @@

    - + + + + + + +
    float

    Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.

    +
    +

    Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.

    +
    +
    required datetime

    Start date for the period of interest.

    +
    +

    Start date for the period of interest.

    +
    +
    None datetime

    End date for the period of interest.

    +
    +

    End date for the period of interest.

    +
    +
    None
    verbose + bool + +
    +

    If True, print a expanded output of the incoming neutron flux data.

    +
    +
    + False +
    + +

    Returns:

    @@ -2984,12 +11457,18 @@

    - +
    list

    List of top five stations with closes cutoff rigidity. -User needs to select station according to site altitude.

    +
    +

    List of top five stations with closes cutoff rigidity. +User needs to select station according to site altitude.

    +
    +
    + +

    Examples:

    >>> from crnpy import crnpy
     >>> Rc = 2.40 # 2.40 Newark, NJ, US
    @@ -3013,80 +11492,84 @@ 

    References

    https://www.nmdb.eu/nest/help.php#helpstations

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    813
    -814
    -815
    -816
    -817
    -818
    -819
    -820
    -821
    -822
    -823
    -824
    -825
    -826
    -827
    -828
    -829
    -830
    -831
    -832
    -833
    -834
    -835
    -836
    -837
    -838
    -839
    -840
    -841
    -842
    -843
    -844
    -845
    -846
    -847
    -848
    -849
    -850
    -851
    -852
    -853
    -854
    -855
    -856
    -857
    -858
    -859
    -860
    -861
    -862
    -863
    -864
    -865
    -866
    -867
    -868
    -869
    -870
    -871
    -872
    -873
    -874
    -875
    -876
    -877
    -878
    def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False):
    +          
    + Source code in crnpy/crnpy.py +
    1145
    +1146
    +1147
    +1148
    +1149
    +1150
    +1151
    +1152
    +1153
    +1154
    +1155
    +1156
    +1157
    +1158
    +1159
    +1160
    +1161
    +1162
    +1163
    +1164
    +1165
    +1166
    +1167
    +1168
    +1169
    +1170
    +1171
    +1172
    +1173
    +1174
    +1175
    +1176
    +1177
    +1178
    +1179
    +1180
    +1181
    +1182
    +1183
    +1184
    +1185
    +1186
    +1187
    +1188
    +1189
    +1190
    +1191
    +1192
    +1193
    +1194
    +1195
    +1196
    +1197
    +1198
    +1199
    +1200
    +1201
    +1202
    +1203
    +1204
    +1205
    +1206
    +1207
    +1208
    +1209
    +1210
    +1211
    +1212
    +1213
    def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False):
         """Search for potential reference neutron monitoring stations based on cutoff rigidity.
     
         Args:
             Rc (float): Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.
             start_date (datetime): Start date for the period of interest.
             end_date (datetime): End date for the period of interest.
    +        verbose (bool): If True, print a expanded output of the incoming neutron flux data.
     
         Returns:
             (list): List of top five stations with closes cutoff rigidity.
    @@ -3116,7 +11599,7 @@ 

    """ # Load file with list of neutron monitoring stations - stations = pd.DataFrame(data.neutron_detectors, columns=["STID","NAME","R","Altitude_m"]) + stations = pd.DataFrame(data.neutron_detectors, columns=["STID", "NAME", "R", "Altitude_m"]) # Sort stations by closest cutoff rigidity idx_R = (stations['R'] - Rc).abs().argsort() @@ -3127,9 +11610,10 @@

    station = stations.iloc[idx_R[i]]["STID"] try: if get_incoming_neutron_flux(start_date, end_date, station, verbose=verbose) is not None: - stations.iloc[idx_R[i],-1] = True + stations.iloc[idx_R[i], -1] = True except: pass + if sum(stations["Period available"] == True) == 0: print("No stations available for the selected period!") else: @@ -3141,23 +11625,26 @@

    # Print results print('') - print("""Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations""") + print( + """Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations""") print('') print(f"Your cutoff rigidity is {Rc} GV") print(result) return result

    -
    +
    +
    -

    -get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False) + +

    + get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False)

    @@ -3166,6 +11653,8 @@

    Function to retrieve neutron flux from the Neutron Monitor Database.

    + +

    Parameters:

    @@ -3182,7 +11671,11 @@

    - + @@ -3192,7 +11685,11 @@

    - + @@ -3202,7 +11699,11 @@

    - + @@ -3212,7 +11713,11 @@

    - + @@ -3222,7 +11727,11 @@

    - + @@ -3232,7 +11741,11 @@

    - + @@ -3240,6 +11753,8 @@

    datetime

    Start date of the time series.

    +
    +

    Start date of the time series.

    +
    +
    required datetime

    End date of the time series.

    +
    +

    End date of the time series.

    +
    +
    required str

    Neutron Monitor station to retrieve data from.

    +
    +

    Neutron Monitor station to retrieve data from.

    +
    +
    required int

    UTC offset in hours. Default is 0.

    +
    +

    UTC offset in hours. Default is 0.

    +
    +
    0 int

    Number of hours to expand the time window to retrieve extra data. Default is 0.

    +
    +

    Number of hours to expand the time window to retrieve extra data. Default is 0.

    +
    +
    0 bool

    Print information about the request. Default is False.

    +
    +

    Print information about the request. Default is False.

    +
    +
    False
    + +

    Returns:

    @@ -3251,9 +11766,13 @@

    + -
    - pandas.DataFrame + DataFrame + +
    +

    Neutron flux in counts per hour and timestamps.

    +

    Neutron flux in counts per hour and timestamps.

    @@ -3262,28 +11781,9 @@

    References

    Documentation available:https://www.nmdb.eu/nest/help.php#howto

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    339
    -340
    -341
    -342
    -343
    -344
    -345
    -346
    -347
    -348
    -349
    -350
    -351
    -352
    -353
    -354
    -355
    -356
    -357
    -358
    +          
    + Source code in crnpy/crnpy.py +
    358
     359
     360
     361
    @@ -3349,104 +11849,268 @@ 

    421 422 423 -424

    def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False):
    +424
    +425
    +426
    +427
    +428
    +429
    +430
    +431
    +432
    +433
    +434
    +435
    +436
    +437
    +438
    +439
    +440
    +441
    def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False):
         """Function to retrieve neutron flux from the Neutron Monitor Database.
     
         Args:
             start_date (datetime): Start date of the time series.
             end_date (datetime): End date of the time series.
             station (str): Neutron Monitor station to retrieve data from.
    -        utc_offset (int): UTC offset in hours. Default is 0.
    -        expand_window (int): Number of hours to expand the time window to retrieve extra data. Default is 0.
    -        verbose (bool): Print information about the request. Default is False.
    +        utc_offset (int): UTC offset in hours. Default is 0.
    +        expand_window (int): Number of hours to expand the time window to retrieve extra data. Default is 0.
    +        verbose (bool): Print information about the request. Default is False.
    +
    +    Returns:
    +        (pandas.DataFrame): Neutron flux in counts per hour and timestamps.
    +
    +    References:
    +        Documentation available:https://www.nmdb.eu/nest/help.php#howto
    +    """
    +
    +    # Example: get_incoming_neutron_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00')
    +    # Template url = 'http://nest.nmdb.eu/draw_graph.php?formchk=1&stations[]=KERG&output=ascii&tabchoice=revori&dtype=corr_for_efficiency&date_choice=bydate&start_year=2009&start_month=09&start_day=01&start_hour=00&start_min=00&end_year=2009&end_month=09&end_day=05&end_hour=23&end_min=59&yunits=0'
    +
    +    # Expand the time window by 1 hour to ensure an extra observation is included in the request.
    +    start_date -= pd.Timedelta(hours=expand_window)
    +    end_date += pd.Timedelta(hours=expand_window)
    +
    +    # Convert local time to UTC
    +    start_date = start_date - pd.Timedelta(hours=utc_offset)
    +    end_date = end_date - pd.Timedelta(hours=utc_offset)
    +    root = 'http://www.nmdb.eu/nest/draw_graph.php?'
    +    url_par = ['formchk=1',
    +               'stations[]=' + station,
    +               'output=ascii',
    +               'tabchoice=revori',
    +               'dtype=corr_for_efficiency',
    +               'tresolution=' + str(60),
    +               'date_choice=bydate',
    +               'start_year=' + str(start_date.year),
    +               'start_month=' + str(start_date.month),
    +               'start_day=' + str(start_date.day),
    +               'start_hour=' + str(start_date.hour),
    +               'start_min=' + str(start_date.minute),
    +               'end_year=' + str(end_date.year),
    +               'end_month=' + str(end_date.month),
    +               'end_day=' + str(end_date.day),
    +               'end_hour=' + str(end_date.hour),
    +               'end_min=' + str(end_date.minute),
    +               'yunits=0']
    +
    +    url = root + '&'.join(url_par)
    +
    +    if verbose:
    +        print(f"Retrieving data from {url}")
    +
    +    r = requests.get(url).content.decode('utf-8')
    +
    +    # Subtract 1 hour to restore the last date included in the request.
    +    end_date -= pd.Timedelta('1H')
    +    start = r.find("RCORR_E\n") + 8
    +    end = r.find('\n</code></pre><br>Total') - 1
    +    s = r[start:end]
    +    s2 = ''.join([row.replace(';', ',') for row in s])
    +    try:
    +        df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp', 'counts'])
    +    except:
    +        if verbose:
    +            print(f"Error retrieving data from {url}")
    +        return None
    +
    +    # Check if all values from selected detector are NaN. If yes, warn the user
    +    if df_flux['counts'].isna().all():
    +        warnings.warn('Data for selected neutron detectors appears to be unavailable for the selected period')
    +
    +    # Convert timestamp to datetime and apply UTC offset
    +    df_flux['timestamp'] = pd.to_datetime(df_flux['timestamp'])
    +    df_flux['timestamp'] = df_flux['timestamp'] + pd.Timedelta(hours=utc_offset)
    +
    +    # Print acknowledgement to inform users about restrictions and to acknowledge the NMDB database
    +    acknowledgement = """Data retrieved via NMDB are the property of the individual data providers. These data are free for non commercial
    +use to within the restriction imposed by the providers. If you use such data for your research or applications, please acknowledge
    +the origin by a sentence like 'We acknowledge the NMDB database (www.nmdb.eu) founded under the European Union's FP7 programme 
    +(contract no. 213007), and the PIs of individual neutron monitors at: IGY Jungfraujoch 
    +(Physikalisches Institut, University of Bern, Switzerland)"""
    +
    +    return df_flux
    +
    +
    +
    + + + + +
    + + + + +

    + get_reference_neutron_flux(station, date=pd.to_datetime('2011-05-01')) + +

    + + +
    + +

    Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022).

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    station + str + +
    +

    Neutron Monitor station to retrieve data from.

    +
    +
    + required +
    date + datetime + +
    +

    Date of the reference neutron flux. Default is 2011-05-01.

    +
    +
    + to_datetime('2011-05-01') +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + float + +
    +

    Reference neutron flux in counts per hour.

    +
    +
    + +
    + References +

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099.

    +

    Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043.

    +

    Bogena, H. R., Schrön, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151.

    +
    +
    + Source code in crnpy/crnpy.py +
    444
    +445
    +446
    +447
    +448
    +449
    +450
    +451
    +452
    +453
    +454
    +455
    +456
    +457
    +458
    +459
    +460
    +461
    +462
    +463
    +464
    +465
    +466
    +467
    +468
    def get_reference_neutron_flux(station, date=pd.to_datetime("2011-05-01")):
    +    """Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022).
    +
    +    Args:
    +        station (str): Neutron Monitor station to retrieve data from.
    +        date (datetime): Date of the reference neutron flux. Default is 2011-05-01.
     
         Returns:
    -        (pandas.DataFrame): Neutron flux in counts per hour and timestamps.
    +        (float): Reference neutron flux in counts per hour.
     
         References:
    -        Documentation available:https://www.nmdb.eu/nest/help.php#howto
    -    """
    -
    -    # Example: get_incoming_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00')
    -    # Template url = 'http://nest.nmdb.eu/draw_graph.php?formchk=1&stations[]=KERG&output=ascii&tabchoice=revori&dtype=corr_for_efficiency&date_choice=bydate&start_year=2009&start_month=09&start_day=01&start_hour=00&start_min=00&end_year=2009&end_month=09&end_day=05&end_hour=23&end_min=59&yunits=0'
    -
    -
    -    # Expand the time window by 1 hour to ensure an extra observation is included in the request.
    -    start_date -= pd.Timedelta(hours=expand_window)
    -    end_date += pd.Timedelta(hours=expand_window)
    -
    -    # Convert local time to UTC
    -    start_date = start_date - pd.Timedelta(hours=utc_offset)
    -    end_date = end_date - pd.Timedelta(hours=utc_offset)
    -    date_format = '%Y-%m-%d %H:%M:%S'
    -    root = 'http://www.nmdb.eu/nest/draw_graph.php?'
    -    url_par = [ 'formchk=1',
    -                'stations[]=' + station,
    -                'output=ascii',
    -                'tabchoice=revori',
    -                'dtype=corr_for_efficiency',
    -                'tresolution=' + str(60),
    -                'date_choice=bydate',
    -                'start_year=' + str(start_date.year),
    -                'start_month=' + str(start_date.month),
    -                'start_day=' + str(start_date.day),
    -                'start_hour=' + str(start_date.hour),
    -                'start_min=' + str(start_date.minute),
    -                'end_year=' + str(end_date.year),
    -                'end_month=' + str(end_date.month),
    -                'end_day=' + str(end_date.day),
    -                'end_hour=' + str(end_date.hour),
    -                'end_min=' + str(end_date.minute),
    -                'yunits=0']
    -
    -    url = root + '&'.join(url_par)
    -
    -    if verbose:
    -        print(f"Retrieving data from {url}")
    -
    -    r = requests.get(url).content.decode('utf-8')
    -
    -    # Subtract 1 hour to restore the last date included in the request.
    -    end_date -= pd.Timedelta('1H')
    -    start = r.find("RCORR_E\n") + 8
    -    end = r.find('\n</code></pre><br>Total') - 1
    -    s = r[start:end]
    -    s2 = ''.join([row.replace(';',',') for row in s])
    -    try:
    -        df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp','counts'])
    -    except:
    -        if verbose:
    -            print(f"Error retrieving data from {url}")
    -        return None
    +        Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099.
     
    -    # Check if all values from selected detector are NaN. If yes, warn the user
    -    if df_flux['counts'].isna().all():
    -        warnings.warn('Data for selected neutron detectors appears to be unavailable for the selected period')
    +        Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043.
     
    -    # Convert timestamp to datetime and apply UTC offset
    -    df_flux['timestamp'] = pd.to_datetime(df_flux['timestamp'])
    -    df_flux['timestamp'] = df_flux['timestamp'] + pd.Timedelta(hours=utc_offset)
    +        Bogena, H. R., Schrön, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151.
     
    -    # Print acknowledgement to inform users about restrictions and to acknowledge the NMDB database
    -    acknowledgement = """Data retrieved via NMDB are the property of the individual data providers. These data are free for non commercial
    -use to within the restriction imposed by the providers. If you use such data for your research or applications, please acknowledge
    -the origin by a sentence like 'We acknowledge the NMDB database (www.nmdb.eu) founded under the European Union's FP7 programme 
    -(contract no. 213007), and the PIs of individual neutron monitors at: IGY Jungfraujoch 
    -(Physikalisches Institut, University of Bern, Switzerland)"""
    +"""
     
    -    return df_flux
    +    # Get flux for 2011-05-01
    +    df_flux = get_incoming_neutron_flux(station, date, date + pd.Timedelta(hours=24))
    +    if df_flux is None:
    +        warnings.warn(f"Reference neutron flux for {station} not available. Returning NaN.")
    +    else:
    +        return df_flux['counts'].median()
     
    -
    +
    +
    -

    -idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1) + +

    + idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1)

    @@ -3455,6 +12119,8 @@

    Function to interpolate data using inverse distance weight.

    + +

    Parameters:

    @@ -3471,7 +12137,11 @@

    - + @@ -3481,7 +12151,11 @@

    - + @@ -3491,7 +12165,11 @@

    - + @@ -3501,7 +12179,11 @@

    - + @@ -3511,7 +12193,11 @@

    - + @@ -3521,7 +12207,11 @@

    - + @@ -3531,7 +12221,11 @@

    - + @@ -3539,6 +12233,8 @@

    list or array

    UTM x coordinates in meters.

    +
    +

    UTM x coordinates in meters.

    +
    +
    required list or array

    UTM y coordinates in meters.

    +
    +

    UTM y coordinates in meters.

    +
    +
    required list or array

    Values to be interpolated.

    +
    +

    Values to be interpolated.

    +
    +
    required list or array

    UTM x coordinates where z values need to be predicted.

    +
    +

    UTM x coordinates where z values need to be predicted.

    +
    +
    required list or array

    UTM y coordinates where z values need to be predicted.

    +
    +

    UTM y coordinates where z values need to be predicted.

    +
    +
    required float

    Only points within this radius in meters are considered for the interpolation.

    +
    +

    Only points within this radius in meters are considered for the interpolation.

    +
    +
    1000 int

    Exponent of the inverse distance weight formula. Typically, p=1 or p=2.

    +
    +

    Exponent of the inverse distance weight formula. Typically, p=1 or p=2.

    +
    +
    1
    + +

    Returns:

    @@ -3552,7 +12248,11 @@

    - +
    array

    Interpolated values.

    +
    +

    Interpolated values.

    +
    +
    @@ -3561,48 +12261,48 @@

    References

    https://en.wikipedia.org/wiki/Inverse_distance_weighting

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    1093
    -1094
    -1095
    -1096
    -1097
    -1098
    -1099
    -1100
    -1101
    -1102
    -1103
    -1104
    -1105
    -1106
    -1107
    -1108
    -1109
    -1110
    -1111
    -1112
    -1113
    -1114
    -1115
    -1116
    -1117
    -1118
    -1119
    -1120
    -1121
    -1122
    -1123
    -1124
    -1125
    -1126
    -1127
    -1128
    -1129
    -1130
    -1131
    -1132
    def idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1):
    +          
    + Source code in crnpy/crnpy.py +
    1373
    +1374
    +1375
    +1376
    +1377
    +1378
    +1379
    +1380
    +1381
    +1382
    +1383
    +1384
    +1385
    +1386
    +1387
    +1388
    +1389
    +1390
    +1391
    +1392
    +1393
    +1394
    +1395
    +1396
    +1397
    +1398
    +1399
    +1400
    +1401
    +1402
    +1403
    +1404
    +1405
    +1406
    +1407
    +1408
    +1409
    +1410
    +1411
    +1412
    def idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1):
         """Function to interpolate data using inverse distance weight.
     
         Args:
    @@ -3643,17 +12343,19 @@ 

    return np.reshape(Z_pred, s)

    -
    +
    +
    -

    -interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000) + +

    + interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000)

    @@ -3662,6 +12364,8 @@

    Function for interpolating irregular spatial data into a regular grid.

    + +

    Parameters:

    @@ -3678,7 +12382,11 @@

    - + @@ -3688,7 +12396,11 @@

    - + @@ -3698,7 +12410,11 @@

    - + @@ -3708,7 +12424,11 @@

    - + @@ -3718,7 +12438,11 @@

    - + @@ -3728,7 +12452,11 @@

    - + @@ -3738,7 +12466,11 @@

    - + @@ -3746,6 +12478,8 @@

    list or array

    UTM x coordinates in meters.

    +
    +

    UTM x coordinates in meters.

    +
    +
    required list or array

    UTM y coordinates in meters.

    +
    +

    UTM y coordinates in meters.

    +
    +
    required list or array

    Values to be interpolated.

    +
    +

    Values to be interpolated.

    +
    +
    required float

    Pixel width in meters.

    +
    +

    Pixel width in meters.

    +
    +
    100 float

    Pixel height in meters.

    +
    +

    Pixel height in meters.

    +
    +
    100 str

    Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'.

    +
    +

    Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'.

    +
    +
    'cubic' float

    Only points within this radius in meters are considered for the interpolation.

    +
    +

    Only points within this radius in meters are considered for the interpolation.

    +
    +
    1000
    + +

    Returns:

    @@ -3759,19 +12493,31 @@

    - + - + - +
    x_pred array

    2D array with x coordinates.

    +
    +

    2D array with x coordinates.

    +
    +
    y_pred array

    2D array with y coordinates.

    +
    +

    2D array with y coordinates.

    +
    +
    z_pred array

    2D array with interpolated values.

    +
    +

    2D array with interpolated values.

    +
    +
    @@ -3780,56 +12526,57 @@

    References

    https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    1135
    -1136
    -1137
    -1138
    -1139
    -1140
    -1141
    -1142
    -1143
    -1144
    -1145
    -1146
    -1147
    -1148
    -1149
    -1150
    -1151
    -1152
    -1153
    -1154
    -1155
    -1156
    -1157
    -1158
    -1159
    -1160
    -1161
    -1162
    -1163
    -1164
    -1165
    -1166
    -1167
    -1168
    -1169
    -1170
    -1171
    -1172
    -1173
    -1174
    -1175
    -1176
    -1177
    -1178
    -1179
    -1180
    -1181
    -1182
    def interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000):
    +          
    + Source code in crnpy/crnpy.py +
    1415
    +1416
    +1417
    +1418
    +1419
    +1420
    +1421
    +1422
    +1423
    +1424
    +1425
    +1426
    +1427
    +1428
    +1429
    +1430
    +1431
    +1432
    +1433
    +1434
    +1435
    +1436
    +1437
    +1438
    +1439
    +1440
    +1441
    +1442
    +1443
    +1444
    +1445
    +1446
    +1447
    +1448
    +1449
    +1450
    +1451
    +1452
    +1453
    +1454
    +1455
    +1456
    +1457
    +1458
    +1459
    +1460
    +1461
    +1462
    +1463
    def interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000):
         """Function for interpolating irregular spatial data into a regular grid.
     
         Args:
    @@ -3857,7 +12604,8 @@ 

    z = z[~idx_nan] if idx_nan.any(): - print(f"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.") + print( + f"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.") # Create 2D grid for interpolation Nx = round((np.max(x) - np.min(x)) / dx) + 1 @@ -3878,17 +12626,19 @@

    return X_pred, Y_pred, Z_pred

    -
    +
    +
    -

    -interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps) + +

    + interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps)

    @@ -3897,6 +12647,8 @@

    Function to interpolate incoming neutron flux to match the timestamps of the observations.

    + +

    Parameters:

    @@ -3911,9 +12663,13 @@

    + - @@ -3921,9 +12677,13 @@

    + - @@ -3931,9 +12691,13 @@

    + - @@ -3941,6 +12705,8 @@

    nmdb_timestamps - pd.Series + Series + +
    +

    Series of timestamps in datetime format from the NMDB.

    +

    Series of timestamps in datetime format from the NMDB.

    required
    nmdb_counts - pd.Series + Series + +
    +

    Series of neutron counts from the NMDB

    +

    Series of neutron counts from the NMDB

    required
    crnp_timestamps - pd.Series + Series + +
    +

    Series of timestamps in datetime format from the station or device.

    +

    Series of timestamps in datetime format from the station or device.

    required
    + +

    Returns:

    @@ -3952,39 +12718,43 @@

    + -
    - pd.Series + Series + +
    +

    Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps

    +

    Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    881
    -882
    -883
    -884
    -885
    -886
    -887
    -888
    -889
    -890
    -891
    -892
    -893
    -894
    -895
    -896
    -897
    -898
    -899
    -900
    -901
    -902
    -903
    -904
    def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps):
    +          
    + Source code in crnpy/crnpy.py +
    1216
    +1217
    +1218
    +1219
    +1220
    +1221
    +1222
    +1223
    +1224
    +1225
    +1226
    +1227
    +1228
    +1229
    +1230
    +1231
    +1232
    +1233
    +1234
    +1235
    +1236
    +1237
    +1238
    +1239
    def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps):
         """Function to interpolate incoming neutron flux to match the timestamps of the observations.
     
         Args:
    @@ -3996,7 +12766,7 @@ 

    (pd.Series): Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps """ incoming_flux = np.array([]) - for k,timestamp in enumerate(crnp_timestamps): + for k, timestamp in enumerate(crnp_timestamps): if timestamp in nmdb_timestamps.values: idx = timestamp == nmdb_timestamps incoming_flux = np.append(incoming_flux, nmdb_counts.loc[idx]) @@ -4009,17 +12779,19 @@

    # Return only the values for the selected timestamps return incoming_flux

    -
    +
    +
    -

    -is_outlier(x, method, window=11, min_val=None, max_val=None) + +

    + is_outlier(x, method, window=11, min_val=None, max_val=None)

    @@ -4028,6 +12800,8 @@

    Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference.

    + +

    Parameters:

    @@ -4042,9 +12816,13 @@

    + - @@ -4054,7 +12832,11 @@

    - + @@ -4064,7 +12846,11 @@

    - + @@ -4074,7 +12860,11 @@

    - + @@ -4084,7 +12874,11 @@

    - + @@ -4092,6 +12886,8 @@

    x - pandas.DataFrame + DataFrame or Series + +
    +

    Variable containing only the columns with neutron counts.

    +

    Variable containing only the columns with neutron counts.

    required str

    Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad

    +
    +

    Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad

    +
    +
    required int

    Window size for the moving central tendency. Default is 11.

    +
    +

    Window size for the moving central tendency. Default is 11.

    +
    +
    11 int or float

    Minimum value for a reading to be considered valid. Default is None.

    +
    +

    Minimum value for a reading to be considered valid. Default is None.

    +
    +
    None or float

    Maximum value for a reading to be considered valid. Default is None.

    +
    +

    Maximum value for a reading to be considered valid. Default is None.

    +
    +
    required
    + +

    Returns:

    @@ -4103,9 +12899,13 @@

    + -
    - pandas.DataFrame + DataFrame + +
    +

    Boolean indicating outliers.

    +

    Boolean indicating outliers.

    @@ -4114,9 +12914,11 @@

    References

    Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press.

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    134
    +          
    + Source code in crnpy/crnpy.py +
    132
    +133
    +134
     135
     136
     137
    @@ -4187,13 +12989,11 @@ 

    202 203 204 -205 -206 -207

    def is_outlier(x, method, window=11, min_val=None, max_val=None):
    +205
    def is_outlier(x, method, window=11, min_val=None, max_val=None):
         """Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference.
     
         Args:
    -        x (pandas.DataFrame): Variable containing only the columns with neutron counts.
    +        x (pd.DataFrame or pd.Series): Variable containing only the columns with neutron counts.
             method (str): Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad
             window (int, optional): Window size for the moving central tendency. Default is 11.
             min_val (int or float): Minimum value for a reading to be considered valid. Default is None.
    @@ -4222,70 +13022,413 @@ 

    iqr = q3 - q1 high_fence = q3 + (1.5 * iqr) low_fence = q1 - (1.5 * iqr) - idx_outliers = (x<low_fence ) | (x>high_fence ) + idx_outliers = (x < low_fence) | (x > high_fence) + + elif method == 'moviqr': + q1 = x.rolling(window, center=True).quantile(0.25) + q3 = x.rolling(window, center=True).quantile(0.75) + iqr = q3 - q1 + ub = q3 + (1.5 * iqr) # Upper boundary + lb = q1 - (1.5 * iqr) # Lower boundary + idx_outliers = (x < lb) | (x > ub) + + elif method == 'zscore': + zscore = (x - x.mean()) / x.std() + idx_outliers = (zscore < -3) | (zscore > 3) + + elif method == 'movzscore': + movmean = x.rolling(window=window, center=True).mean() + movstd = x.rolling(window=window, center=True).std() + movzscore = (x - movmean) / movstd + idx_outliers = (movzscore < -3) | (movzscore > 3) + + elif method == 'modified_zscore': + # Compute median absolute difference + movmedian = x.rolling(window, center=True).median() + abs_diff = np.abs(x - movmedian) + mad = abs_diff.rolling(window, center=True).median() + + # Compute modified z-score + modified_z_score = 0.6745 * abs_diff / mad + idx_outliers = (modified_z_score < -3.5) | (modified_z_score > 3.5) + + elif method == 'scaled_mad': + # Returns true for elements more than three scaled MAD from the median. + c = -1 / (np.sqrt(2) * erfcinv(3 / 2)) + median = np.nanmedian(x) + mad = c * np.nanmedian(np.abs(x - median)) + idx_outliers = x > (median + 3 * mad) + + else: + raise TypeError('Outlier detection method not found.') + + return idx_outliers | idx_range_outliers +

    +
    +
    + + + + +
    + + + + +

    + latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None) + +

    + + +
    + +

    Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.

    +

    Function only applies to non-polar coordinates. +If further functionality is required, consider using the utm module. See references for more information.

    +

    UTM zones +UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See UTM zones for a full description.

    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    lat + (float, array) + +
    +

    Latitude in decimal degrees.

    +
    +
    + required +
    lon + (float, array) + +
    +

    Longitude in decimal degrees.

    +
    +
    + required +
    utm_zone_number + int + +
    +

    UTM zone number. If None, the zone number is automatically calculated.

    +
    +
    + None +
    utm_zone_letter + str + +
    +

    UTM zone letter. If None, the zone letter is automatically calculated.

    +
    +
    + None +
    + + + +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + (float, float) + +
    +

    Tuple of easting and northing coordinates in meters. First element is easting, second is northing.

    +
    +
    + +
    + References +

    Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87) +https://github.com/Turbo87/utm

    +

    https://www.maptools.com/tutorials/grid_zone_details#

    +
    +
    + Source code in crnpy/crnpy.py +
    1265
    +1266
    +1267
    +1268
    +1269
    +1270
    +1271
    +1272
    +1273
    +1274
    +1275
    +1276
    +1277
    +1278
    +1279
    +1280
    +1281
    +1282
    +1283
    +1284
    +1285
    +1286
    +1287
    +1288
    +1289
    +1290
    +1291
    +1292
    +1293
    +1294
    +1295
    def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None):
    +    """Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.
    +
    +    Function only applies to non-polar coordinates.
    +    If further functionality is required, consider using the utm module. See references for more information.
    +
    +    ![UTM zones](https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Universal_Transverse_Mercator_zones.svg/1920px-Universal_Transverse_Mercator_zones.svg.png)
    +    UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See [UTM zones](https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#UTM_zones) for a full description.
    +
    +
    +    Args:
    +        lat (float, array): Latitude in decimal degrees.
    +        lon (float, array): Longitude in decimal degrees.
    +        utm_zone_number (int): UTM zone number. If None, the zone number is automatically calculated.
    +        utm_zone_letter (str): UTM zone letter. If None, the zone letter is automatically calculated.
    +
    +    Returns:
    +        (float, float): Tuple of easting and northing coordinates in meters. First element is easting, second is northing.
    +
    +    References:
    +         Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87)
    +         [https://github.com/Turbo87/utm](https://github.com/Turbo87/utm)
    +
    +         [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#)
    +    """
    +    if utm_zone_number is None or utm_zone_letter is None:
    +        easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon)
    +    else:
    +        easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon, utm_zone_number, utm_zone_letter)
    +
    +    return easting, northing, zone_number, zone_letter
    +
    +
    +
    + +
    + + +
    + + + + +

    + lattice_water(clay_content, total_carbon=None) + +

    + + +
    + +

    Estimate the amount of water in the lattice of clay minerals.

    + + + + + + + + + + + + + + + + + +
    img1img2
    $\omega_{lat} = 0.097 * clay(\%)$$\omega_{lat} = -0.028 + 0.077 * clay(\%) + 0.459 * carbon(\%)$
    Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab.Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.
    + + + +

    Parameters:

    + + + + + + + + + + + + + + + + + + + + + + + +
    NameTypeDescriptionDefault
    clay_content + float + +
    +

    Clay content in the soil in percent.

    +
    +
    + required +
    total_carbon + float + +
    +

    Total carbon content in the soil in percent. +If None, the amount of water is estimated based on clay content only.

    +
    +
    + None +
    - elif method == 'moviqr': - q1 = x.rolling(window, center=True).quantile(0.25) - q3 = x.rolling(window, center=True).quantile(0.75) - iqr = q3 - q1 - ub = q3 + (1.5 * iqr) # Upper boundary - lb = q1 - (1.5 * iqr) # Lower boundary - idx_outliers = (x < lb) | (x > ub) - elif method == 'zscore': - zscore = (x - x.mean())/x.std() - idx_outliers = (zscore < -3) | (zscore > 3) - elif method == 'movzscore': - movmean = x.rolling(window=window, center=True).mean() - movstd = x.rolling(window=window, center=True).std() - movzscore = (x - movmean)/movstd - idx_outliers = (movzscore < -3) | (movzscore > 3) +

    Returns:

    + + + + + + + + + + + + + +
    TypeDescription
    + float + +
    +

    Amount of water in the lattice of clay minerals in percent

    +
    +
    - elif method == 'modified_zscore': - # Compute median absolute difference - movmedian = x.rolling(window, center=True).median() - abs_diff = np.abs(x - movmedian) - mad = abs_diff.rolling(window, center=True).median() +
    + Source code in crnpy/crnpy.py +
    1242
    +1243
    +1244
    +1245
    +1246
    +1247
    +1248
    +1249
    +1250
    +1251
    +1252
    +1253
    +1254
    +1255
    +1256
    +1257
    +1258
    +1259
    +1260
    +1261
    +1262
    def lattice_water(clay_content, total_carbon=None):
    +    r"""Estimate the amount of water in the lattice of clay minerals.
     
    -        # Compute modified z-score
    -        modified_z_score = 0.6745 * abs_diff / mad
    -        idx_outliers = (modified_z_score < -3.5) | (modified_z_score > 3.5)
    +    ![img1](img/lattice_water_simple.png) | ![img2](img/lattice_water_multiple.png)
    +    :-------------------------:|:-------------------------:
    +    $\omega_{lat} = 0.097 * clay(\%)$ | $\omega_{lat} = -0.028 + 0.077 * clay(\%) + 0.459 * carbon(\%)$
    +    Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab. |  Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.
     
    -    elif method == 'scaled_mad':
    -        # Returns true for elements more than three scaled MAD from the median. 
    -        c = -1 / (np.sqrt(2)*erfcinv(3/2))
    -        median = np.nanmedian(x)
    -        mad = c*np.nanmedian(np.abs(x - median))
    -        idx_outliers = x > (median + 3*mad)
    +    Args:
    +        clay_content (float): Clay content in the soil in percent.
    +        total_carbon (float, optional): Total carbon content in the soil in percent.
    +            If None, the amount of water is estimated based on clay content only.
     
    +    Returns:
    +        (float): Amount of water in the lattice of clay minerals in percent
    +    """
    +    if total_carbon is None:
    +        lattice_water = 0.097 * clay_content
         else:
    -        raise TypeError('Outlier detection method not found.')
    -
    -    return idx_outliers | idx_range_outliers
    +        lattice_water = -0.028 + 0.077 * clay_content + 0.459 * total_carbon
    +    return lattice_water
     
    -
    +
    +
    -

    -latlon_to_utm(lat, lon, utm_zone_number, missing_values=None) + +

    + location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc)

    -

    Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.

    -

    Function only applies to non-polar coordinates. -If further functionality is required, consider using the utm module. See references for more information.

    -

    UTM zones -UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See UTM zones for a full description.

    +

    Function to estimate the location factor between two sites according to McJannet and Desilets, 2023.

    + +

    Parameters:

    @@ -4299,31 +13442,57 @@

    - + + - - + + - - + + + + + + + + - @@ -4331,6 +13500,8 @@

    latsite_atmospheric_depth - float, array + float + +
    +

    Atmospheric depth at the site in g/cm2. Can be estimated using the function atmospheric_depth()

    +

    Latitude in decimal degrees.

    required
    lonsite_Rc + float + - float, array +
    +

    Cutoff rigidity at the site in GV. Can be estimated using the function cutoff_rigidity()

    +

    Longitude in decimal degrees.

    required
    utm_zone_numberreference_atmospheric_depth - int + float + +
    +

    Atmospheric depth at the reference location in g/cm2.

    +
    +
    + required +
    reference_Rc + float + +
    +

    Cutoff rigidity at the reference location in GV.

    +

    Universal Transverse Mercator (UTM) zone.

    required
    + +

    Returns:

    @@ -4342,229 +13513,123 @@

    + -
    - float, float + float + +
    +

    Location-dependent correction factor.

    +

    Tuple of easting and northing coordinates in meters. First element is easting, second is northing.

    References -

    Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87) -https://github.com/Turbo87/utm

    -

    https://www.maptools.com/tutorials/grid_zone_details#

    +

    McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
     930
    - 931
    - 932
    - 933
    - 934
    - 935
    - 936
    - 937
    - 938
    - 939
    - 940
    - 941
    - 942
    - 943
    - 944
    - 945
    - 946
    - 947
    - 948
    - 949
    - 950
    - 951
    - 952
    - 953
    - 954
    - 955
    - 956
    - 957
    - 958
    - 959
    - 960
    - 961
    - 962
    - 963
    - 964
    - 965
    - 966
    - 967
    - 968
    - 969
    - 970
    - 971
    - 972
    - 973
    - 974
    - 975
    - 976
    - 977
    - 978
    - 979
    - 980
    - 981
    - 982
    - 983
    - 984
    - 985
    - 986
    - 987
    - 988
    - 989
    - 990
    - 991
    - 992
    - 993
    - 994
    - 995
    - 996
    - 997
    - 998
    - 999
    -1000
    -1001
    -1002
    -1003
    -1004
    -1005
    -1006
    -1007
    -1008
    -1009
    -1010
    -1011
    -1012
    -1013
    -1014
    -1015
    def latlon_to_utm(lat, lon, utm_zone_number, missing_values=None):
    -    """Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.
    -
    -    Function only applies to non-polar coordinates.
    -    If further functionality is required, consider using the utm module. See references for more information.
    -
    -    ![UTM zones](https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Universal_Transverse_Mercator_zones.svg/1920px-Universal_Transverse_Mercator_zones.svg.png)
    -    UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See [UTM zones](https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#UTM_zones) for a full description.
    -
    -
    -    Args:
    -        lat (float, array): Latitude in decimal degrees.
    -        lon (float, array): Longitude in decimal degrees.
    -        utm_zone_number (int): Universal Transverse Mercator (UTM) zone.
    -
    -    Returns:
    -        (float, float): Tuple of easting and northing coordinates in meters. First element is easting, second is northing.
    -
    -    References:
    -         Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87)
    -         [https://github.com/Turbo87/utm](https://github.com/Turbo87/utm)
    -
    -         [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#)
    -    """
    -
    -
    -    # Define constants
    -    R = 6_378_137  # Earth's radius at the Equator in meters
    -
    -    # Convert input data to Numpy arrays
    -    if (type(lat) is not np.ndarray) or (type(lon) is not np.ndarray):
    -        try:
    -            lat = np.array(lat)
    -            lon = np.array(lon)
    -        except:
    -            raise "Input values cannot be converted to Numpy arrays."
    -
    -    # Check latitude range
    -    if np.any(lat < -80) | np.any(lat > 84):
    -        raise "One or more latitude values exceed the range -80 to 84"
    -
    -    # Check longitude range
    -    if np.any(lon < -180) | np.any(lon > 180):
    -        raise "One or more longitude values exceed the range -180 to 180"
    -
    -    # Constants
    -    K0 = 0.9996
    -    E = 0.00669438
    -    E_P2 = E / (1 - E)
    -
    -    M1 = (1 - E / 4 - 3 * E ** 2 / 64 - 5 * E ** 3 / 256)
    -    M2 = (3 * E / 8 + 3 * E ** 2 / 32 + 45 * E ** 3 / 1024)
    -    M3 = (15 * E ** 2 / 256 + 45 * E ** 3 / 1024)
    -    M4 = (35 * E ** 3 / 3072)
    -
    -    # Trigonometric operations
    -    lat_rad = np.radians(lat)
    -    lon_rad = np.radians(lon)
    -
    -    lat_sin = np.sin(lat_rad)
    -    lat_cos = np.cos(lat_rad)
    -    lat_tan = lat_sin / lat_cos
    -    lat_tan2 = lat_tan * lat_tan
    -    lat_tan4 = lat_tan2 * lat_tan2
    +          
    + Source code in crnpy/crnpy.py +
    1104
    +1105
    +1106
    +1107
    +1108
    +1109
    +1110
    +1111
    +1112
    +1113
    +1114
    +1115
    +1116
    +1117
    +1118
    +1119
    +1120
    +1121
    +1122
    +1123
    +1124
    +1125
    +1126
    +1127
    +1128
    +1129
    +1130
    +1131
    +1132
    +1133
    +1134
    +1135
    +1136
    +1137
    +1138
    +1139
    +1140
    +1141
    +1142
    def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc):
    +    """
    +    Function to estimate the location factor between two sites according to McJannet and Desilets, 2023.
     
    -    # Find central meridian.
    -    central_lon = (utm_zone_number * 6 - 180) - 3  # Zones are every 6 degrees.
    -    central_lon_rad = np.radians(central_lon)
     
    -    n = R / np.sqrt(1 - E * lat_sin ** 2)
    -    c = E_P2 * lat_cos ** 2
    +    Args:
    +        site_atmospheric_depth (float): Atmospheric depth at the site in g/cm2. Can be estimated using the function `atmospheric_depth()`
    +        site_Rc (float): Cutoff rigidity at the site in GV. Can be estimated using the function `cutoff_rigidity()`
    +        reference_atmospheric_depth (float): Atmospheric depth at the reference location in g/cm2.
    +        reference_Rc (float): Cutoff rigidity at the reference location in GV.
     
    -    with np.errstate(divide='ignore', invalid='ignore'):
    -        a = lat_cos * (np.remainder(((lon_rad - central_lon_rad) + np.pi), (2 * np.pi)) - np.pi)
    -    m = R * (M1 * lat_rad - M2 * np.sin(2 * lat_rad) + M3 * np.sin(4 * lat_rad) - M4 * np.sin(6 * lat_rad))
    +    Returns:
    +        (float): Location-dependent correction factor.
     
    -    easting = K0 * n * (a + a ** 3 / 6 * (1 - lat_tan2 + c) + a ** 5 / 120 * (
    -                5 - 18 * lat_tan2 + lat_tan4 + 72 * c - 58 * E_P2)) + 500_000
    -    northing = K0 * (m + n * lat_tan * (
    -                a ** 2 / 2 + a ** 4 / 24 * (5 - lat_tan2 + 9 * c + 4 * c ** 2) + a ** 6 / 720 * (
    -                    61 - 58 * lat_tan2 + lat_tan4 + 600 * c - 330 * E_P2)))
    +    References:
    +        McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.
     
    -    if np.any(lat < 0):
    -        northing += 10_000_000
    +    """
     
    -    return easting, northing
    +    # Renamed variables based on the provided table
    +    c0 = -0.0009  # from C39
    +    c1 = 1.7699  # from C40
    +    c2 = 0.0064  # from C41
    +    c3 = 1.8855  # from C42
    +    c4 = 0.000013  # from C43
    +    c5 = -1.2237  # from C44
    +    epsilon = 1  # from C45
    +
    +    # Translated formula with renamed variables from McJannet and Desilets, 2023
    +    tau_new = epsilon * (c0 * reference_atmospheric_depth + c1) * (
    +            1 - np.exp(
    +        -(c2 * reference_atmospheric_depth + c3) * reference_Rc ** (c4 * reference_atmospheric_depth + c5)))
    +
    +    norm_factor = 1 / tau_new
    +
    +    # Calculate the result using the provided parameters
    +    tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * (
    +                1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5)))
    +    return tau
     
    -
    +
    +
    -

    -lattice_water(clay_content, total_carbon=None) + +

    + nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None)

    -

    Estimate the amount of water in the lattice of clay minerals.

    - - - - - - - - - - - - - - - - - -
    img1img2
    $\omega_{lat} = 0.097 * clay(\%)$$\omega_{lat} = -0.028 + 0.077 * clay(\%) + 0.459 * carbon(\%)$
    Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab.Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.
    +

    Function to compute distance weights corresponding to each soil sample.

    + +

    Parameters:

    @@ -4578,22 +13643,113 @@

    - + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - @@ -4601,6 +13757,8 @@

    clay_contenth - float + array or Series + +
    +

    Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting.

    +

    Clay content in the soil in percent.

    required
    total_carbontheta - float + array or Series + +
    +

    Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)

    +
    +
    + required +
    distances + array or Series + +
    +

    Distances from the location of each sample to the origin (0.5 - 600 m)

    +
    +
    + required +
    depth + array or Series + +
    +

    Depths for each sample (m)

    +
    +
    + required +
    rhob + array or Series + +
    +

    Bulk density in g/cm^3

    +
    +
    + 1.4 +
    p + array or Series + +
    +

    Atmospheric pressure in hPa. Required for the 'Schron_2017' method.

    +
    +
    + None +
    Hveg + array or Series + +
    +

    Vegetation height in m. Required for the 'Schron_2017' method.

    +
    +
    + None +
    method + str + +
    +

    Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'.

    +

    Total carbon content in the soil in percent. -If None, the amount of water is estimated based on clay content only.

    None
    + +

    Returns:

    @@ -4612,16 +13770,241 @@

    + -
    - float + array or Series or DataFrame + +
    +

    Distance weights for each sample.

    +

    Amount of water in the lattice of clay minerals in percent

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    907
    +
    + References +

    Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). +Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray +neutrons. Water Resour. Res. 51, 5772–5790. doi:10.1002/2015WR017169

    +

    Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., +Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., +Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and +validation of cosmic-ray neutron sensors in the light of spatial sensitivity, +Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017.

    +
    +
    + Source code in crnpy/crnpy.py +
    697
    +698
    +699
    +700
    +701
    +702
    +703
    +704
    +705
    +706
    +707
    +708
    +709
    +710
    +711
    +712
    +713
    +714
    +715
    +716
    +717
    +718
    +719
    +720
    +721
    +722
    +723
    +724
    +725
    +726
    +727
    +728
    +729
    +730
    +731
    +732
    +733
    +734
    +735
    +736
    +737
    +738
    +739
    +740
    +741
    +742
    +743
    +744
    +745
    +746
    +747
    +748
    +749
    +750
    +751
    +752
    +753
    +754
    +755
    +756
    +757
    +758
    +759
    +760
    +761
    +762
    +763
    +764
    +765
    +766
    +767
    +768
    +769
    +770
    +771
    +772
    +773
    +774
    +775
    +776
    +777
    +778
    +779
    +780
    +781
    +782
    +783
    +784
    +785
    +786
    +787
    +788
    +789
    +790
    +791
    +792
    +793
    +794
    +795
    +796
    +797
    +798
    +799
    +800
    +801
    +802
    +803
    +804
    +805
    +806
    +807
    +808
    +809
    +810
    +811
    +812
    +813
    +814
    +815
    +816
    +817
    +818
    +819
    +820
    +821
    +822
    +823
    +824
    +825
    +826
    +827
    +828
    +829
    +830
    +831
    +832
    +833
    +834
    +835
    +836
    +837
    +838
    +839
    +840
    +841
    +842
    +843
    +844
    +845
    +846
    +847
    +848
    +849
    +850
    +851
    +852
    +853
    +854
    +855
    +856
    +857
    +858
    +859
    +860
    +861
    +862
    +863
    +864
    +865
    +866
    +867
    +868
    +869
    +870
    +871
    +872
    +873
    +874
    +875
    +876
    +877
    +878
    +879
    +880
    +881
    +882
    +883
    +884
    +885
    +886
    +887
    +888
    +889
    +890
    +891
    +892
    +893
    +894
    +895
    +896
    +897
    +898
    +899
    +900
    +901
    +902
    +903
    +904
    +905
    +906
    +907
     908
     909
     910
    @@ -4641,216 +14024,50 @@ 

    924 925 926 -927

    def lattice_water(clay_content, total_carbon=None):
    -    r"""Estimate the amount of water in the lattice of clay minerals.
    -
    -    ![img1](img/lattice_water_simple.png) | ![img2](img/lattice_water_multiple.png)
    -    :-------------------------:|:-------------------------:
    -    $\omega_{lat} = 0.097 * clay(\%)$ | $\omega_{lat} = -0.028 + 0.077 * clay(\%) + 0.459 * carbon(\%)$
    -    Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab. |  Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.
    -
    -    Args:
    -        clay_content (float): Clay content in the soil in percent.
    -        total_carbon (float, optional): Total carbon content in the soil in percent.
    -            If None, the amount of water is estimated based on clay content only.
    -
    -    Returns:
    -        (float): Amount of water in the lattice of clay minerals in percent
    -    """
    -    if total_carbon is None:
    -        lattice_water = 0.097 * clay_content
    -    else:
    -        lattice_water = -0.028 + 0.077 * clay_content + 0.459 * total_carbon
    -    return lattice_water
    -
    -
    -
    - - - -
    - - - -

    -nrad_weight(h, theta, distances, depth, rhob=1.4) - -

    - - -
    - -

    Function to compute distance weights corresponding to each soil sample.

    - -

    Parameters:

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    NameTypeDescriptionDefault
    h - float -

    Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting.

    - required -
    theta - array or pd.Series or pd.DataFrame -

    Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)

    - required -
    distances - array or pd.Series or pd.DataFrame -

    Distances from the location of each sample to the origin (0.5 - 600 m)

    - required -
    depth - array or pd.Series or pd.DataFrame -

    Depths for each sample (m)

    - required -
    rhob - float -

    Bulk density in g/cm^3

    - 1.4 -
    - -

    Returns:

    - - - - - - - - - - - - - -
    TypeDescription
    - array or pd.Series or pd.DataFrame -

    Distance weights for each sample.

    - -
    - References -

    Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). -Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray -neutrons. Water Resour. Res. 51, 5772–5790. doi:10.1002/2015WR017169

    -
    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    645
    -646
    -647
    -648
    -649
    -650
    -651
    -652
    -653
    -654
    -655
    -656
    -657
    -658
    -659
    -660
    -661
    -662
    -663
    -664
    -665
    -666
    -667
    -668
    -669
    -670
    -671
    -672
    -673
    -674
    -675
    -676
    -677
    -678
    -679
    -680
    -681
    -682
    -683
    -684
    -685
    -686
    -687
    -688
    -689
    -690
    -691
    -692
    -693
    -694
    -695
    -696
    -697
    -698
    -699
    -700
    -701
    -702
    -703
    -704
    -705
    -706
    -707
    -708
    -709
    -710
    -711
    -712
    -713
    -714
    -715
    def nrad_weight(h,theta,distances,depth,rhob=1.4):
    +927
    +928
    +929
    +930
    +931
    +932
    +933
    +934
    +935
    +936
    +937
    +938
    +939
    +940
    +941
    +942
    +943
    +944
    +945
    +946
    +947
    +948
    +949
    +950
    +951
    +952
    +953
    +954
    +955
    +956
    +957
    +958
    +959
    def nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None):
         """Function to compute distance weights corresponding to each soil sample.
     
         Args:
    -        h (float): Air Humidity  from 0.1  to 50 in g/m^3. When h=0, the function will skip the distance weighting.
    -        theta (array or pd.Series or pd.DataFrame): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)
    -        distances (array or pd.Series or pd.DataFrame): Distances from the location of each sample to the origin (0.5 - 600 m)
    -        depth (array or pd.Series or pd.DataFrame): Depths for each sample (m)
    -        rhob (float): Bulk density in g/cm^3
    +        h (np.array or pd.Series): Air Humidity  from 0.1  to 50 in g/m^3. When h=0, the function will skip the distance weighting.
    +        theta (np.array or pd.Series): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)
    +        distances (np.array or pd.Series): Distances from the location of each sample to the origin (0.5 - 600 m)
    +        depth (np.array or pd.Series): Depths for each sample (m)
    +        rhob (np.array or pd.Series): Bulk density in g/cm^3
    +        p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method.
    +        Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method.
    +        method (str): Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'.
     
         Returns:
             (array or pd.Series or pd.DataFrame): Distance weights for each sample.
    @@ -4859,72 +14076,263 @@ 

    Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour. Res. 51, 5772–5790. doi:10.1002/2015WR017169 - """ - - # Table A1. Parameters for Fi and D86 - p10 = 8735; p11 = 17.1758; p12 = 11720; p13 = 0.00978; p14 = 7045; p15 = 0.003632; - p20 = 2.7925e-2; p21 = 5.0399; p22 = 2.8544e-2; p23 = 0.002455; p24 = 6.851e-5; p25 = 9.2926; - p30 = 247970; p31 = 17.63; p32 = 374655; p33 = 0.00191; p34 = 195725; - p40 = 5.4818e-2; p41 = 15.921; p42 = 0.6373; p43 = 5.99e-2; p44 = 5.425e-4; - p50 = 1383702; p51 = 4.156; p52 = 5325; p53 = 0.00238; p54 = 0.0156; p55 = 0.130; p56 = 1521; - p60 = 6.031e-5; p61 = 98.5; p62 = 1.0466e-3; - p70 = 11747; p71 = 41.66; p72 = 4521; p73 = 0.01998; p74 = 0.00604; p75 = 2534; p76 = 0.00475; - p80 = 1.543e-2; p81 = 10.06; p82 = 1.807e-2; p83 = 0.0011; p84 = 8.81e-5; p85 = 0.0405; p86 = 20.24; - p90 = 8.321; p91 = 0.14249; p92 = 0.96655; p93 = 26.42; p94 = 0.0567; - - - # Numerical determination of the penetration depth (86%) (Eq. 8) - D86 = 1/rhob*(p90+p91*(p92+np.exp(-1*distances/100))*(p93+theta)/(p94+theta)) - - # Depth weights (Eq. 7) - Wd = np.exp(-2*depth/D86) - - if h == 0: - W = 1 # skip distance weighting - - elif (h >= 0.1) and (h<= 50): - # Functions for Fi (Appendix A in Köhli et al., 2015) - F1 = p10*(1+p13*h)*np.exp(-p11*theta)+p12*(1+p15*h)-p14*theta - F2 = ((-p20+p24*h)*np.exp(-p21*theta/(1+p25*theta))+p22)*(1+h*p23) - F3 = (p30*(1+p33*h)*np.exp(-p31*theta)+p32-p34*theta) - F4 = p40*np.exp(-p41*theta)+p42-p43*theta+p44*h - F5 = p50*(0.02-1/p55/(h-p55+p56*theta))*(p54-theta)*np.exp(-p51*(theta-p54))+p52*(0.7-h*theta*p53) - F6 = p60*(h+p61)+p62*theta - F7 = (p70*(1-p76*h)*np.exp(-p71*theta*(1-h*p74))+p72-p75*theta)*(2+h*p73) - F8 = ((-p80+p84*h)*np.exp(-p81*theta/(1+p85*h+p86*theta))+p82)*(2+h*p83) - - # Distance weights (Eq. 3) - W = np.ones_like(distances)*np.nan - for i in range(len(distances)): - if (distances[i]<=50) and (distances[i]>0.5): - W[i]=F1[i]*(np.exp(-F2[i]*distances[i]))+F3[i]*np.exp(-F4[i]*distances[i]) - - elif (distances[i]>50) and (distances[i]<600): - W[i]=F5[i]*(np.exp(-F6[i]*distances[i]))+F7[i]*np.exp(-F8[i]*distances[i]) - - else: - raise ValueError('Input distances are not valid.') - - else: - raise ValueError('Air humidity values are out of range.') + Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., + Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., + Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and + validation of cosmic-ray neutron sensors in the light of spatial sensitivity, + Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017. + """ - # Combined and normalized weights - weights = Wd*W/np.nansum(Wd*W) + if method == 'Kohli_2015': + + # Table A1. Parameters for Fi and D86 + p10 = 8735; + p11 = 17.1758; + p12 = 11720; + p13 = 0.00978; + p14 = 7045; + p15 = 0.003632; + p20 = 2.7925e-2; + p21 = 5.0399; + p22 = 2.8544e-2; + p23 = 0.002455; + p24 = 6.851e-5; + p25 = 9.2926; + p30 = 247970; + p31 = 17.63; + p32 = 374655; + p33 = 0.00191; + p34 = 195725; + p40 = 5.4818e-2; + p41 = 15.921; + p42 = 0.6373; + p43 = 5.99e-2; + p44 = 5.425e-4; + p50 = 1383702; + p51 = 4.156; + p52 = 5325; + p53 = 0.00238; + p54 = 0.0156; + p55 = 0.130; + p56 = 1521; + p60 = 6.031e-5; + p61 = 98.5; + p62 = 1.0466e-3; + p70 = 11747; + p71 = 41.66; + p72 = 4521; + p73 = 0.01998; + p74 = 0.00604; + p75 = 2534; + p76 = 0.00475; + p80 = 1.543e-2; + p81 = 10.06; + p82 = 1.807e-2; + p83 = 0.0011; + p84 = 8.81e-5; + p85 = 0.0405; + p86 = 20.24; + p90 = 8.321; + p91 = 0.14249; + p92 = 0.96655; + p93 = 26.42; + p94 = 0.0567; + + # Numerical determination of the penetration depth (86%) (Eq. 8) + D86 = 1 / rhob * (p90 + p91 * (p92 + np.exp(-1 * distances / 100)) * (p93 + theta) / (p94 + theta)) + + # Depth weights (Eq. 7) + Wd = np.exp(-2 * depth / D86) + + if h == 0: + W = 1 # skip distance weighting + + elif (h >= 0.1) and (h <= 50): + # Functions for Fi (Appendix A in Köhli et al., 2015) + F1 = p10 * (1 + p13 * h) * np.exp(-p11 * theta) + p12 * (1 + p15 * h) - p14 * theta + F2 = ((-p20 + p24 * h) * np.exp(-p21 * theta / (1 + p25 * theta)) + p22) * (1 + h * p23) + F3 = (p30 * (1 + p33 * h) * np.exp(-p31 * theta) + p32 - p34 * theta) + F4 = p40 * np.exp(-p41 * theta) + p42 - p43 * theta + p44 * h + F5 = p50 * (0.02 - 1 / p55 / (h - p55 + p56 * theta)) * (p54 - theta) * np.exp( + -p51 * (theta - p54)) + p52 * (0.7 - h * theta * p53) + F6 = p60 * (h + p61) + p62 * theta + F7 = (p70 * (1 - p76 * h) * np.exp(-p71 * theta * (1 - h * p74)) + p72 - p75 * theta) * (2 + h * p73) + F8 = ((-p80 + p84 * h) * np.exp(-p81 * theta / (1 + p85 * h + p86 * theta)) + p82) * (2 + h * p83) + + # Distance weights (Eq. 3) + W = np.ones_like(distances) * np.nan + for i in range(len(distances)): + if (distances[i] <= 50) and (distances[i] > 0.5): + W[i] = F1[i] * (np.exp(-F2[i] * distances[i])) + F3[i] * np.exp(-F4[i] * distances[i]) + + elif (distances[i] > 50) and (distances[i] < 600): + W[i] = F5[i] * (np.exp(-F6[i] * distances[i])) + F7[i] * np.exp(-F8[i] * distances[i]) + + else: + raise ValueError('Input distances are not valid.') - return weights + else: + raise ValueError('Air humidity values are out of range.') + + # Combined and normalized weights + weights = Wd * W / np.nansum(Wd * W) + return weights + elif method == 'Schron_2017': + # Horizontal distance weights According to Eq. 6 and Table A1 in Schrön et al. (2017) + # Method for calculating the horizontal distance weights from 0 to 1m + def WrX(r, x, y): + x00 = 3.7 + a00 = 8735; + a01 = 22.689; + a02 = 11720; + a03 = 0.00978; + a04 = 9306; + a05 = 0.003632 + a10 = 2.7925e-2; + a11 = 6.6577; + a12 = 0.028544; + a13 = 0.002455; + a14 = 6.851e-5; + a15 = 12.2755 + a20 = 247970; + a21 = 23.289; + a22 = 374655; + a23 = 0.00191; + a24 = 258552 + a30 = 5.4818e-2; + a31 = 21.032; + a32 = 0.6373; + a33 = 0.0791; + a34 = 5.425e-4 + + x0 = x00 + A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y) + A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13) + A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y) + A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x + + return ((A0 * (np.exp(-A1 * r)) + A2 * np.exp(-A3 * r)) * (1 - np.exp(-x0 * r))) + + # Method for calculating the horizontal distance weights from 1 to 50m + def WrA(r, x, y): + a00 = 8735; + a01 = 22.689; + a02 = 11720; + a03 = 0.00978; + a04 = 9306; + a05 = 0.003632 + a10 = 2.7925e-2; + a11 = 6.6577; + a12 = 0.028544; + a13 = 0.002455; + a14 = 6.851e-5; + a15 = 12.2755 + a20 = 247970; + a21 = 23.289; + a22 = 374655; + a23 = 0.00191; + a24 = 258552 + a30 = 5.4818e-2; + a31 = 21.032; + a32 = 0.6373; + a33 = 0.0791; + a34 = 5.425e-4 + + A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y) + A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13) + A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y) + A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x + + return A0 * np.exp(-A1 * r) + A2 * np.exp(-A3 * r) + + # Method for calculating the horizontal distance weights from 50 to 600m + def WrB(r, x, y): + b00 = 39006; + b01 = 15002337; + b02 = 2009.24; + b03 = 0.01181; + b04 = 3.146; + b05 = 16.7417; + b06 = 3727 + b10 = 6.031e-5; + b11 = 98.5; + b12 = 0.0013826 + b20 = 11747; + b21 = 55.033; + b22 = 4521; + b23 = 0.01998; + b24 = 0.00604; + b25 = 3347.4; + b26 = 0.00475 + b30 = 1.543e-2; + b31 = 13.29; + b32 = 1.807e-2; + b33 = 0.0011; + b34 = 8.81e-5; + b35 = 0.0405; + b36 = 26.74 + + B0 = (b00 - b01 / (b02 * y + x - 0.13)) * (b03 - y) * np.exp(-b04 * y) - b05 * x * y + b06 + B1 = b10 * (x + b11) + b12 * y + B2 = (b20 * (1 - b26 * x) * np.exp(-b21 * y * (1 - x * b24)) + b22 - b25 * y) * (2 + x * b23) + B3 = ((-b30 + b34 * x) * np.exp(-b31 * y / (1 + b35 * x + b36 * y)) + b32) * (2 + x * b33) + + return B0 * np.exp(-B1 * r) + B2 * np.exp(-B3 * r) + + def rscaled(r, p, Hveg, y): + Fp = 0.4922 / (0.86 - np.exp(-p / 1013.25)) + Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y)) + return r / Fp / Fveg + + # Rename variables to be consistent with the revised paper + r = distances + x = h + y = theta + bd = rhob + + if Hveg is not None and p is not None: + r = rscaled(r, p, Hveg, y) + + Wr = np.zeros(len(r)) + + # See Eq. 6 in Schron et al. (2017) + r0_idx = (r <= 1) + r1_idx = (r > 1) & (r <= 50) + r2_idx = (r > 50) & (r < 600) + Wr[r0_idx] = WrX(r[r0_idx], x[r0_idx], y[r0_idx]) + Wr[r1_idx] = WrA(r[r1_idx], x[r1_idx], y[r1_idx]) + Wr[r2_idx] = WrB(r[r2_idx], x[r2_idx], y[r2_idx]) + + # Vertical distance weights + def D86(r, bd, y): + return 1 / bd * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r)) * (20 + y) / (0.0429 + y)) + + def Wd(d, r, bd, y): + return np.exp(-2 * d / D86(r, bd, y)) + + # Calculate the vertical distance weights + Wd = Wd(d, r, bd, y) + + # Combined and normalized weights + # Combined and normalized weights + weights = Wd * Wr / np.nansum(Wd * Wr) + + return weights

    -
    +
    +
    -

    -remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False) + +

    + remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False)

    @@ -4933,6 +14341,8 @@

    Function that removes rows with incomplete integration intervals.

    + +

    Parameters:

    @@ -4947,9 +14357,13 @@

    + - @@ -4959,7 +14373,11 @@

    - + @@ -4969,7 +14387,11 @@

    - + @@ -4979,7 +14401,11 @@

    - + @@ -4987,6 +14413,8 @@

    df - pandas.DataFrame + DataFrame + +
    +

    Pandas Dataframe with data from stationary or roving CRNP devices.

    +

    Pandas Dataframe with data from stationary or roving CRNP devices.

    required str

    Name of the column with timestamps in datetime format.

    +
    +

    Name of the column with timestamps in datetime format.

    +
    +
    required int

    Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds.

    +
    +

    Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds.

    +
    +
    required bool

    Remove first row. Default is False.

    +
    +

    Remove first row. Default is False.

    +
    +
    False
    + +

    Returns:

    @@ -4998,16 +14426,21 @@

    + -
    - pandas.DataFrame + DataFrame + +
    + +
    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    33
    +          
    + Source code in crnpy/crnpy.py +
    32
    +33
     34
     35
     36
    @@ -5036,8 +14469,7 @@ 

    59 60 61 -62 -63

    def remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False):
    +62
    def remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False):
         """Function that removes rows with incomplete integration intervals.
     
         Args:
    @@ -5069,17 +14501,19 @@ 

    return df

    -
    +
    +
    -

    -rover_centered_coordinates(x, y) + +

    + rover_centered_coordinates(x, y)

    @@ -5088,6 +14522,8 @@

    Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed.

    + +

    Parameters:

    @@ -5104,7 +14540,11 @@

    - + @@ -5114,7 +14554,11 @@

    - + @@ -5122,6 +14566,8 @@

    array

    x coordinates.

    +
    +

    x coordinates.

    +
    +
    required array

    y coordinates.

    +
    +

    y coordinates.

    +
    +
    required
    + +

    Returns:

    @@ -5135,47 +14581,54 @@

    - + - +
    x_est array

    Estimated x coordinates.

    +
    +

    Estimated x coordinates.

    +
    +
    y_est array

    Estimated y coordinates.

    +
    +

    Estimated y coordinates.

    +
    +
    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    1185
    -1186
    -1187
    -1188
    -1189
    -1190
    -1191
    -1192
    -1193
    -1194
    -1195
    -1196
    -1197
    -1198
    -1199
    -1200
    -1201
    -1202
    -1203
    -1204
    -1205
    -1206
    -1207
    -1208
    -1209
    -1210
    -1211
    -1212
    def rover_centered_coordinates(x, y):
    +          
    + Source code in crnpy/crnpy.py +
    1466
    +1467
    +1468
    +1469
    +1470
    +1471
    +1472
    +1473
    +1474
    +1475
    +1476
    +1477
    +1478
    +1479
    +1480
    +1481
    +1482
    +1483
    +1484
    +1485
    +1486
    +1487
    +1488
    +1489
    +1490
    +1491
    +1492
    def rover_centered_coordinates(x, y):
         """Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed.
     
         Args:
    @@ -5188,9 +14641,9 @@ 

    """ # Make it datatype agnostic - if(isinstance(x, pd.Series)): + if (isinstance(x, pd.Series)): x = x.values - if(isinstance(y, pd.Series)): + if (isinstance(y, pd.Series)): y = y.values # Do the average of the two points @@ -5201,20 +14654,21 @@

    x_est = np.insert(x_est, 0, x[0]) y_est = np.insert(y_est, 0, y[0]) - return x_est, y_est

    -
    +
    +
    -

    -sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017') + +

    + sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017')

    @@ -5225,6 +14679,8 @@

    The function offers several methods to compute the depth at which 86 % of the neutrons probe the soil profile.

    + +

    Parameters:

    @@ -5239,9 +14695,13 @@

    + - @@ -5249,9 +14709,13 @@

    + - @@ -5261,7 +14725,11 @@

    - + @@ -5271,7 +14739,11 @@

    - + @@ -5281,7 +14753,11 @@

    - + @@ -5291,7 +14767,11 @@

    - + @@ -5301,7 +14781,11 @@

    - + @@ -5309,6 +14793,8 @@

    vwc - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Estimated volumetric water content for each timestamp.

    +

    Estimated volumetric water content for each timestamp.

    required
    pressure - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Atmospheric pressure in hPa for each timestamp.

    +

    Atmospheric pressure in hPa for each timestamp.

    required float

    Reference pressure in hPa.

    +
    +

    Reference pressure in hPa.

    +
    +
    required float

    Soil bulk density.

    +
    +

    Soil bulk density.

    +
    +
    required float

    Lattice water content.

    +
    +

    Lattice water content.

    +
    +
    required str

    Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'.

    +
    +

    Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'.

    +
    +
    'Schron_2017' list or array

    List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method.

    +
    +

    List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method.

    +
    +
    None
    + +

    Returns:

    @@ -5320,9 +14806,13 @@

    + -
    - array or pd.Series or pd.DataFrame + array or Series or DataFrame + +
    +

    Estimated sensing depth in m.

    +

    Estimated sensing depth in m.

    @@ -5336,57 +14826,55 @@

    Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrol. Earth Syst. Sci. 21, 5009–5030. doi.org/10.5194/hess-21-5009-2017

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    570
    -571
    -572
    -573
    -574
    -575
    -576
    -577
    -578
    -579
    -580
    -581
    -582
    -583
    -584
    -585
    -586
    -587
    -588
    -589
    -590
    -591
    -592
    -593
    -594
    -595
    -596
    -597
    -598
    -599
    -600
    -601
    -602
    -603
    -604
    -605
    -606
    -607
    -608
    -609
    -610
    -611
    -612
    -613
    -614
    -615
    -616
    -617
    def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017'):
    -    # Convert docstring to google format
    +          
    + Source code in crnpy/crnpy.py +
    622
    +623
    +624
    +625
    +626
    +627
    +628
    +629
    +630
    +631
    +632
    +633
    +634
    +635
    +636
    +637
    +638
    +639
    +640
    +641
    +642
    +643
    +644
    +645
    +646
    +647
    +648
    +649
    +650
    +651
    +652
    +653
    +654
    +655
    +656
    +657
    +658
    +659
    +660
    +661
    +662
    +663
    +664
    +665
    +666
    +667
    +668
    def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017'):
         """Function that computes the estimated sensing depth of the cosmic-ray neutron probe.
         The function offers several methods to compute the depth at which 86 % of the neutrons
         probe the soil profile.
    @@ -5416,35 +14904,37 @@ 

    # Determine sensing depth (D86) if method == 'Schron_2017': # See Appendix A of Schrön et al. (2017) - Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref)); + Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref)) Fveg = 0 results = [] for d in dist: # Compute r_star - r_start = d/Fp + r_start = d / Fp # Compute soil depth that accounts for 86% of the neutron flux - D86 = 1/ bulk_density * (8.321+0.14249*(0.96655 + np.exp(-0.01*r_start))*(20+(Wlat+vwc)) / (0.0429+(Wlat+vwc))) + D86 = 1 / bulk_density * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r_start)) * (20 + (Wlat + vwc)) / ( + 0.0429 + (Wlat + vwc))) results.append(D86) elif method == 'Franz_2012': - results = 5.8/(bulk_density*Wlat+vwc+0.0829) + results = 5.8 / (bulk_density * Wlat + vwc + 0.0829) else: raise ValueError('Method not recognized. Please select either "Schron_2017" or "Franz_2012".') - return results

    -
    +
    +
    -

    -smooth_1d(values, window=5, order=3, method='moving_median') + +

    + smooth_1d(values, window=5, order=3, method='moving_median')

    @@ -5453,6 +14943,8 @@

    Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content).

    + +

    Parameters:

    @@ -5467,9 +14959,13 @@

    + - @@ -5479,7 +14975,11 @@

    - + @@ -5489,8 +14989,12 @@

    - + @@ -5500,7 +15004,11 @@

    - + @@ -5508,6 +15016,8 @@

    values - pd.DataFrame or pd.Serie + DataFrame or Serie + +
    +

    Dataframe containing the values to smooth.

    +

    Dataframe containing the values to smooth.

    required int

    Window size for the Savitzky-Golay filter. Default is 5.

    +
    +

    Window size for the Savitzky-Golay filter. Default is 5.

    +
    +
    5 str

    Method to use for smoothing the data. Default is 'moving_median'. -Options are 'moving_average', 'moving_median' and 'savitzky_golay'.

    +
    +

    Method to use for smoothing the data. Default is 'moving_median'. +Options are 'moving_average', 'moving_median' and 'savitzky_golay'.

    +
    +
    'moving_median' int

    Order of the Savitzky-Golay filter. Default is 3.

    +
    +

    Order of the Savitzky-Golay filter. Default is 3.

    +
    +
    3
    + +

    Returns:

    @@ -5519,9 +15029,13 @@

    + -
    - pd.DataFrame + DataFrame + +
    +

    DataFrame with smoothed values.

    +

    DataFrame with smoothed values.

    @@ -5531,47 +15045,56 @@

    Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9. doi.org/10.3389/frwa.2020.00009

    +

    Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. +Analytical chemistry, 36(8), 1627-1639.

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    428
    -429
    -430
    -431
    -432
    -433
    -434
    -435
    -436
    -437
    -438
    -439
    -440
    -441
    -442
    -443
    -444
    -445
    -446
    -447
    -448
    -449
    -450
    -451
    -452
    -453
    -454
    -455
    -456
    -457
    -458
    -459
    -460
    -461
    -462
    -463
    -464
    -465
    def smooth_1d(values, window=5, order=3, method='moving_median'):
    +          
    + Source code in crnpy/crnpy.py +
    471
    +472
    +473
    +474
    +475
    +476
    +477
    +478
    +479
    +480
    +481
    +482
    +483
    +484
    +485
    +486
    +487
    +488
    +489
    +490
    +491
    +492
    +493
    +494
    +495
    +496
    +497
    +498
    +499
    +500
    +501
    +502
    +503
    +504
    +505
    +506
    +507
    +508
    +509
    +510
    +511
    +512
    +513
    +514
    +515
    def smooth_1d(values, window=5, order=3, method='moving_median'):
         """Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content).
     
         Args:
    @@ -5588,8 +15111,14 @@ 

    Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9. doi.org/10.3389/frwa.2020.00009 + + Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. + Analytical chemistry, 36(8), 1627-1639. """ + if not isinstance(x, pd.Series) and not isinstance(x, pd.DataFrame): + raise ValueError('Input must be a pandas Series or DataFrame') + if method == 'moving_average': corrected_counts = values.rolling(window=window, center=True, min_periods=1).mean() elif method == 'moving_median': @@ -5600,27 +15129,30 @@

    print('Dataframe contains NaN values. Please remove NaN values before smoothing the data.') if type(values) == pd.core.series.Series: - filtered = savgol_filter(values,window,order) - corrected_counts = pd.DataFrame(filtered,columns=['smoothed'], index=values.index) + filtered = savgol_filter(values, window, order) + corrected_counts = pd.DataFrame(filtered, columns=['smoothed'], index=values.index) elif type(values) == pd.core.frame.DataFrame: for col in values.columns: - values[col] = savgol_filter(values[col],window,order) + values[col] = savgol_filter(values[col], window, order) else: - raise ValueError('Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay') + raise ValueError( + 'Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay') corrected_counts = corrected_counts.ffill(limit=window).bfill(limit=window).copy() return corrected_counts

    -
    +
    +
    -

    -spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False) + +

    + spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False)

    @@ -5629,6 +15161,8 @@

    Moving buffer filter to smooth georeferenced two-dimensional data.

    + +

    Parameters:

    @@ -5645,7 +15179,11 @@

    - + @@ -5655,7 +15193,11 @@

    - + @@ -5665,7 +15207,11 @@

    - + @@ -5675,7 +15221,11 @@

    - + @@ -5685,7 +15235,11 @@

    - + @@ -5695,7 +15249,11 @@

    - + @@ -5705,7 +15263,11 @@

    - + @@ -5713,6 +15275,8 @@

    list or array

    UTM x coordinates in meters.

    +
    +

    UTM x coordinates in meters.

    +
    +
    required list or array

    UTM y coordinates in meters.

    +
    +

    UTM y coordinates in meters.

    +
    +
    required list or array

    Values to be smoothed.

    +
    +

    Values to be smoothed.

    +
    +
    required float

    Radial buffer distance in meters.

    +
    +

    Radial buffer distance in meters.

    +
    +
    100 int

    Minimum number of neighbours to consider for the smoothing.

    +
    +

    Minimum number of neighbours to consider for the smoothing.

    +
    +
    3 str

    One of 'mean' or 'median'.

    +
    +

    One of 'mean' or 'median'.

    +
    +
    'mean' bool

    Boolean to round the final result. Useful in case of z representing neutron counts.

    +
    +

    Boolean to round the final result. Useful in case of z representing neutron counts.

    +
    +
    False
    + +

    Returns:

    @@ -5726,70 +15290,73 @@

    - +
    array

    Smoothed version of z with the same dimension as z.

    +
    +

    Smoothed version of z with the same dimension as z.

    +
    +
    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    1034
    -1035
    -1036
    -1037
    -1038
    -1039
    -1040
    -1041
    -1042
    -1043
    -1044
    -1045
    -1046
    -1047
    -1048
    -1049
    -1050
    -1051
    -1052
    -1053
    -1054
    -1055
    -1056
    -1057
    -1058
    -1059
    -1060
    -1061
    -1062
    -1063
    -1064
    -1065
    -1066
    -1067
    -1068
    -1069
    -1070
    -1071
    -1072
    -1073
    -1074
    -1075
    -1076
    -1077
    -1078
    -1079
    -1080
    -1081
    -1082
    -1083
    -1084
    -1085
    -1086
    -1087
    -1088
    -1089
    -1090
    def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False):
    +          
    + Source code in crnpy/crnpy.py +
    1315
    +1316
    +1317
    +1318
    +1319
    +1320
    +1321
    +1322
    +1323
    +1324
    +1325
    +1326
    +1327
    +1328
    +1329
    +1330
    +1331
    +1332
    +1333
    +1334
    +1335
    +1336
    +1337
    +1338
    +1339
    +1340
    +1341
    +1342
    +1343
    +1344
    +1345
    +1346
    +1347
    +1348
    +1349
    +1350
    +1351
    +1352
    +1353
    +1354
    +1355
    +1356
    +1357
    +1358
    +1359
    +1360
    +1361
    +1362
    +1363
    +1364
    +1365
    +1366
    +1367
    +1368
    +1369
    +1370
    def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False):
         """Moving buffer filter to smooth georeferenced two-dimensional data.
     
         Args:
    @@ -5826,7 +15393,6 @@ 

    distances = euclidean_distance(px, py, x, y) idx_within_buffer = distances <= buffer - if np.isnan(z[k]): z_new_val = np.nan elif len(distances[idx_within_buffer]) > min_neighbours: @@ -5837,7 +15403,7 @@

    else: raise f"Method {method} does not exist. Provide either 'mean' or 'median'." else: - z_new_val = z[k] # If there are not enough neighbours, keep the original value + z_new_val = z[k] # If there are not enough neighbours, keep the original value # Append smoothed value to array z_smooth = np.append(z_smooth, z_new_val) @@ -5847,17 +15413,19 @@

    return z_smooth

    -
    +
    +
    -

    -total_raw_counts(counts, nan_strategy=None, timestamp_col=None) + +

    + total_raw_counts(counts)

    @@ -5866,6 +15434,8 @@

    Compute the sum of uncorrected neutron counts for all detectors.

    + +

    Parameters:

    @@ -5880,26 +15450,22 @@

    - - - - - -
    counts - pandas.DataFrame -

    Dataframe containing only the columns with neutron counts.

    - required + DataFrame
    nan_strategy - str +
    +

    Dataframe containing only the columns with neutron counts.

    +

    Strategy to use for NaN values. Options are 'interpolate', 'average', or None. Default is None.

    - None + required
    + +

    Returns:

    @@ -5911,16 +15477,21 @@

    + -
    - pandas.DataFrame + DataFrame + +
    +

    Dataframe with the sum of uncorrected neutron counts for all detectors.

    +

    Dataframe with the sum of uncorrected neutron counts for all detectors.

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    111
    +          
    + Source code in crnpy/crnpy.py +
    110
    +111
     112
     113
     114
    @@ -5938,21 +15509,18 @@ 

    126 127 128 -129 -130 -131

    def total_raw_counts(counts, nan_strategy=None, timestamp_col=None):
    +129
    def total_raw_counts(counts):
         """Compute the sum of uncorrected neutron counts for all detectors.
     
         Args:
             counts (pandas.DataFrame): Dataframe containing only the columns with neutron counts.
    -        nan_strategy (str): Strategy to use for NaN values. Options are 'interpolate', 'average', or None. Default is None.
     
         Returns:
             (pandas.DataFrame): Dataframe with the sum of uncorrected neutron counts for all detectors.
         """
     
         if counts.shape[0] > 1:
    -        counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)),axis=0)
    +        counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)), axis=0)
     
         # Compute sum of counts
         total_raw_counts = counts.sum(axis=1)
    @@ -5962,17 +15530,19 @@ 

    return total_raw_counts

    -
    +
    +
    -

    -uncertainty_counts(raw_counts, metric='std', fp=1, fw=1, fi=1) + +

    + uncertainty_counts(raw_counts, metric='std', fp=1, fw=1, fi=1)

    @@ -5984,6 +15554,8 @@

    The expected uncertainty in the neutron count rate $N$ is defined by the standard deviation $ \sqrt{N} $ (Jakobi et al., 2020). The CV% can be expressed as $ N^{-1/2} $

    + +

    Parameters:

    @@ -6000,7 +15572,11 @@

    - + @@ -6010,7 +15586,11 @@

    - + @@ -6020,7 +15600,11 @@

    - + @@ -6030,7 +15614,11 @@

    - + @@ -6040,7 +15628,11 @@

    - + @@ -6048,6 +15640,8 @@

    array

    Raw neutron counts.

    +
    +

    Raw neutron counts.

    +
    +
    required str

    Either 'std' or 'cv' for standard deviation or coefficient of variation.

    +
    +

    Either 'std' or 'cv' for standard deviation or coefficient of variation.

    +
    +
    'std' float

    Pressure correction factor.

    +
    +

    Pressure correction factor.

    +
    +
    1 float

    Humidity correction factor.

    +
    +

    Humidity correction factor.

    +
    +
    1 float

    Incoming neutron flux correction factor.

    +
    +

    Incoming neutron flux correction factor.

    +
    +
    1
    + +

    Returns:

    @@ -6061,7 +15655,11 @@

    - +
    uncertainty float

    Uncertainty of raw counts.

    +
    +

    Uncertainty of raw counts.

    +
    +
    @@ -6073,42 +15671,42 @@

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012.

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    1215
    -1216
    -1217
    -1218
    -1219
    -1220
    -1221
    -1222
    -1223
    -1224
    -1225
    -1226
    -1227
    -1228
    -1229
    -1230
    -1231
    -1232
    -1233
    -1234
    -1235
    -1236
    -1237
    -1238
    -1239
    -1240
    -1241
    -1242
    -1243
    -1244
    -1245
    -1246
    -1247
    -1248
    def uncertainty_counts(raw_counts, metric="std", fp=1, fw=1, fi=1):
    +          
    + Source code in crnpy/crnpy.py +
    1495
    +1496
    +1497
    +1498
    +1499
    +1500
    +1501
    +1502
    +1503
    +1504
    +1505
    +1506
    +1507
    +1508
    +1509
    +1510
    +1511
    +1512
    +1513
    +1514
    +1515
    +1516
    +1517
    +1518
    +1519
    +1520
    +1521
    +1522
    +1523
    +1524
    +1525
    +1526
    +1527
    +1528
    def uncertainty_counts(raw_counts, metric="std", fp=1, fw=1, fi=1):
         """Function to estimate the uncertainty of raw counts.
     
         Measurements of proportional neutron detector systems are governed by counting statistics that follow a Poissonian probability distribution (Zreda et al., 2012).
    @@ -6138,22 +15736,24 @@ 

    if metric == "std": uncertainty = np.sqrt(raw_counts) * s elif metric == "cv": - uncertainty = 1 / np.sqrt(raw_counts) * s + uncertainty = 1 / np.sqrt(raw_counts) * s else: raise f"Metric {metric} does not exist. Provide either 'std' or 'cv' for standard deviation or coefficient of variation." return uncertainty

    -
    +
    +
    -

    -uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115) + +

    + uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115)

    @@ -6167,6 +15767,8 @@

    \sigma_{\theta_g}(N) = \sigma_N \frac{a_0 N_0}{(N_{cor} - a_1 N_0)^4} \sqrt{(N_{cor} - a_1 N_0)^4 + 8 \sigma_N^2 (N_{cor} - a_1 N_0)^2 + 15 \sigma_N^4} $$

    + +

    Parameters:

    @@ -6183,7 +15785,11 @@

    - + @@ -6193,7 +15799,11 @@

    - + @@ -6203,7 +15813,11 @@

    - + @@ -6213,7 +15827,11 @@

    - + @@ -6223,7 +15841,11 @@

    - + @@ -6233,7 +15855,11 @@

    - + @@ -6241,6 +15867,8 @@

    array

    Raw neutron counts.

    +
    +

    Raw neutron counts.

    +
    +
    required float

    Calibration parameter N0.

    +
    +

    Calibration parameter N0.

    +
    +
    required float

    Bulk density in g cm-3.

    +
    +

    Bulk density in g cm-3.

    +
    +
    required float

    Pressure correction factor.

    +
    +

    Pressure correction factor.

    +
    +
    1 float

    Humidity correction factor.

    +
    +

    Humidity correction factor.

    +
    +
    1 float

    Incoming neutron flux correction factor.

    +
    +

    Incoming neutron flux correction factor.

    +
    +
    1
    + +

    Returns:

    @@ -6254,7 +15882,11 @@

    - +
    sigma_VWC float

    Uncertainty in terms of volumetric water content.

    +
    +

    Uncertainty in terms of volumetric water content.

    +
    +
    @@ -6264,39 +15896,40 @@

    Jakobi J, Huisman JA, Schrön M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010

    -
    - Source code in C:\Users\jperaza\AppData\Local\anaconda3\envs\crnpy\lib\site-packages\crnpy\crnpy.py -
    1251
    -1252
    -1253
    -1254
    -1255
    -1256
    -1257
    -1258
    -1259
    -1260
    -1261
    -1262
    -1263
    -1264
    -1265
    -1266
    -1267
    -1268
    -1269
    -1270
    -1271
    -1272
    -1273
    -1274
    -1275
    -1276
    -1277
    -1278
    -1279
    -1280
    -1281
    def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808,a1=0.372,a2=0.115):
    +          
    + Source code in crnpy/crnpy.py +
    1531
    +1532
    +1533
    +1534
    +1535
    +1536
    +1537
    +1538
    +1539
    +1540
    +1541
    +1542
    +1543
    +1544
    +1545
    +1546
    +1547
    +1548
    +1549
    +1550
    +1551
    +1552
    +1553
    +1554
    +1555
    +1556
    +1557
    +1558
    +1559
    +1560
    +1561
    +1562
    def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115):
         r"""Function to estimate the uncertainty propagated to volumetric water content.
     
         The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts.
    @@ -6323,12 +15956,13 @@ 

    Ncorr = raw_counts * fw / (fp * fi) sigma_N = uncertainty_counts(raw_counts, metric="std", fp=fp, fw=fw, fi=fi) - sigma_GWC = sigma_N * ((a0*N0) / ((Ncorr - a1*N0)**4)) * np.sqrt((Ncorr - a1 * N0)**4 + 8 * sigma_N**2 * (Ncorr - a1 * N0)**2 + 15 * sigma_N**4) + sigma_GWC = sigma_N * ((a0 * N0) / ((Ncorr - a1 * N0) ** 4)) * np.sqrt( + (Ncorr - a1 * N0) ** 4 + 8 * sigma_N ** 2 * (Ncorr - a1 * N0) ** 2 + 15 * sigma_N ** 4) sigma_VWC = sigma_GWC * bulk_density return sigma_VWC

    -
    +
    @@ -6341,64 +15975,17 @@

    -
    - - - -
    - -

    crnpy.data

    -

    Data module for crnpy.

    -

    This module contains data for the crnpy package.

    - -

    Attributes:

    - - - - - - - - - - - - - - - - - - - - -
    NameTypeDescription
    cutoff_rigidity - list -

    Cutoff rigidity values for the whole world. See crnpy.crnpy.cutoff_rigidity

    neutron_detectors - list -

    Neutron detector locations. See crnpy.crnpy.find_neutron_monitor

    - - - -
    - - + + -
    - -
    - -
    - - @@ -6408,6 +15995,7 @@

    crnpy.data

    + @@ -6435,22 +16023,17 @@

    crnpy.data

    - + + - + - - - + - - - + - - - + diff --git a/site/search/search_index.json b/site/search/search_index.json index 40a8489..9741780 100644 --- a/site/search/search_index.json +++ b/site/search/search_index.json @@ -1 +1 @@ -{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Cosmic-Ray Neutron Python (CRNPy) Library","text":"

    Welcome to the homepage of the CRNPy (Cosmic-Ray Neutron Python) library, an open-source Python library designed for the processing and conversion of raw neutron counts from cosmic-ray neutron probes (CRNP) into soil moisture data.

    This library has been developed with the intent of providing a comprehensive yet easy-to-use workflow for processing raw data from a variety of CRNP, encompassing multiple manufacturers and models.

    "},{"location":"#statement-of-need","title":"Statement of Need","text":"

    CRNPs are a valuable tool for non-invasive soil moisture estimation at the hectometer scale (e.g., typical agricultural fields), filling the gap between point-level sensors and large-scale (i.e., several kilometers) remote sensors onboard orbiting satellites. However, cleaning, processing, and analyzing CRNP data involves multiple corrections and filtering steps spread across multiple peer-reviewed manuscripts. CRNPy simplifies these steps by providing a complete, user-friendly, and well-documented library with minimal dependencies that includes examples to convert raw CRNP data into soil moisture. The library is designed to be accessible to both researchers and instrument manufacturers. Unlike other similar libraries, CRNPy does not require any specific naming convention for the input data or large external data sources, or reanalysis data.

    "},{"location":"#key-features","title":"Key Features","text":"
    • Versatile and instrument agnostic: CRNPy can handle data from various CRNP manufacturers and models. It has been successfully tested on both roving and stationary CRNP.

    • Modular: The library is designed to be modular, allowing users to easily customize the processing workflow to their needs.

    "},{"location":"#installation","title":"Installation","text":"

    To install the CRNPy library, you can use Python's package manager. Open a terminal and type:

    pip install crnpy

    from the Jupyter notebook, type:

    !pip install crnpy

    Ideally dependencies should be installed automatically. If not, you can install them manually by typing:

    pip install -r requirements.txt

    The CRNPy library is compatible with Python 3.7 and above. See requirements.txt for a list of dependencies.

    "},{"location":"#authors","title":"Authors","text":"

    The CRNPy library was developed at the Kansas State University Soil Water Processes Lab by:

    • Joaquin Peraza

    • Andres Patrignani

    The Soil Water Processes Lab at Kansas State University combines a range of experimental and computational approaches to tackle pressing issues in soil and water research. The development of the CRNPy library is a step forward to creating reproducible data processing workflows across the scientific community using cosmic-ray neutrons probes for soil moisture sensing.

    "},{"location":"#community-guidelines","title":"Community Guidelines","text":""},{"location":"#contributing","title":"Contributing","text":"

    To contribute to the software, please first fork the repository and create your own branch from main. Ensure your code adheres to our established code structure and includes appropriate test/examples coverage. CRNPy source code is located in the /src/crnpy/ folder, and tests implemented using pytest are stored in the /src/tests/ folder. Submit a pull request with a clear and detailed description of your changes to include them in the main repository.

    "},{"location":"#reporting-issues","title":"Reporting Issues","text":"

    If you encounter any issues or problems with the software, please report them on our issues page. Include a detailed description of the issue, steps to reproduce the problem, any error messages you received, and details about your operating system and software version.

    "},{"location":"#seeking-support","title":"Seeking Support","text":"

    If you need support, please first refer to the documentation. If you still require assistance, post a question on the issues page with the question tag. For private inquiries, you can reach us via email at jperaza@ksu.edu or andrespatrignani@ksu.edu.

    "},{"location":"correction_routines/","title":"Correction routines","text":""},{"location":"correction_routines/#overview","title":"Overview","text":"

    The CRNPy library provides the tools to correct and process neutron counts recorded with both stationary and roving cosmic-ray neutron probes. Below are two flowcharts describing the typical steps from the correction of raw neutron counts to the conversion into volumetric soil water content.

    "},{"location":"correction_routines/#stationary-crnp-processing","title":"Stationary CRNP processing","text":"

    Dashed lines indicate optional steps. See the complete example notebook.

    "},{"location":"correction_routines/#roving-crnp-processing","title":"Roving CRNP processing","text":"

    Dashed lines indicate optional steps. See the complete example notebook.

    "},{"location":"correction_routines/#incoming-neutron-flux","title":"Incoming neutron flux","text":"

    The CRNPy library includes a complete set of methods for correcting the raw observed neutron counts for natural variation in the incoming neutron flux, including a set of tools for searching and downloading data from reference neutron monitors from the NMDB database (www.nmdb.eu) with similar the cut-off rigidity as the study location (Klein et al., 2009; Shea & Smart., 2019).

    Incoming neutron flux correction factor $fi = \\frac{I_{m}}{I_{0}}$ $ fi $: Incoming neutron flux correction factor $ I_{m} $: Measured incoming neutron flux $ I_{0} $: Reference incoming neutron flux at a given time.

    Implementation

    See crnpy.crnpy.cutoff_rigidity, crnpy.crnpy.find_neutron_monitor, crnpy.crnpy.get_incoming_neutron_flux, crnpy.crnpy.interpolate_incoming_flux and crnpy.crnpy.incoming_flux_correction documentation for the implementation details.

    "},{"location":"correction_routines/#atmospheric-corrections","title":"Atmospheric corrections","text":"

    The CRNPy library also provides functions for correcting raw neutron counts for atmospheric pressure, air humidity, and air temperature (Andreasen et al., 2017; Rosolem et al., 2013).

    Pressure correction Atmospheric water correction $fp = exp(\\frac{P_{0} - P}{L})$ $fw = 1 + 0.0054*(A - Aref)$ $fp$: Atmospheric pressure correction factor $fw$: Atmospheric water correction factor $P_{0}$: Reference atmospheric pressure (for e.g. long-term average) $A$: Atmospheric absolute humidity (g/m3) $P$: Measured atmospheric pressure $Aref$: Reference atmospheric absolute humidity (g/m3) $L$: Mass attenuation factor for high-energy neutrons in air

    Implementation

    See crnpy.crnpy.humidity_correction and crnpy.crnpy.pressure_correction documentation for the implementation details.

    "},{"location":"correction_routines/#biomass-correction","title":"Biomass correction","text":"

    The library provides a function for correcting neutron counts for the effects of above-ground biomass by combining an approach for estimating biomass water equivalent (BWE) from in-situ biomass samples and the BWE correction factor (Baatz et al., 2015).

    Biomass correction $fb = 1 - bwe*r2_N0$ $fb$: Biomass correction factor $bwe$: Biomass water equivalent $r2_N0$: Ratio of the neutron counts reduction ($counts kg^-1$) to the neutron calibration constant (N0)

    Implementation

    See crnpy.crnpy.bwe_correction and crnpy.crnpy.biomass_to_bwe documentation for the implementation details.

    "},{"location":"correction_routines/#road-correction","title":"Road correction","text":"

    The lCRNPY library includes functions to correct for the effect of roads during rover surveys which account for the field soil water content and the road water content following the approach proposed by Schr\u00f6n et al., (2018).

    Road correction $fr = 1 + F1 \\cdot F2 \\cdot F3$ $fr$: Road correction factor $F1$: Road geometry term $F2$: Road moisture term $F3$: Road distance term

    Implementation

    See crnpy.crnpy.road_correction documentation for the implementation details.

    "},{"location":"correction_routines/#additional-corrections","title":"Additional corrections","text":"

    Other correction routines includes corrections for soil lattice water and total soil carbon that are known to affect the attentuation of epithermal cosmic-ray neutrons. A function to estimate the soil lattice water content based on clay content and soil organic carbon content was developed using soil samples collected across the state of Kansas.

    Implementation

    See crnpy.crnpy.estimate_lattice_water and crnpy.crnpy.counts_to_vwc documentation for the implementation details.

    References

    Klein, K.-L., Steigies, C., & Nmdb Team. (2009). WWW.NMDB.EU: The real-time Neutron Monitor database. EGU General Assembly Conference Abstracts, 5633.

    Shea, M., & Smart, D. (2019). Re-examination of the first five ground-level events. International Cosmic Ray Conference (ICRC2019), 36, 1149.

    Smart, D., & Shea, M. (2001). Geomagnetic cutoff rigidity computer program: Theory, software description and example.

    Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., & Looms, M. C. (2017). Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone Journal, 16(8), 1\u201311.

    Rosolem, R., Shuttleworth, W. J., Zreda, M., Franz, T. E., Zeng, X., & Kurc, S. A. (2013). The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system. Journal of Hydrometeorology, 14(5), 1659\u20131671.

    Zreda, M., Desilets, D., Ferr\u00e9, T., & Scott, R. L. (2008). Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophysical Research Letters, 35(21).

    Dong, J., & Ochsner, T. E. (2018). Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns. Water Resources Research, 54(3), 2199\u20132211.

    Wahbi, A., Heng, L., Dercon, G., Wahbi, A., & Avery, W. (2018). In situ destructive sampling. Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent, 5\u20139.

    Baatz, R., Bogena, H., Hendricks Franssen, H.-J., Huisman, J., Montzka, C., & Vereecken, H. (2015). An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resources Research, 51(4), 2030\u20132046.

    Schr\u00f6n, M., Rosolem, R., K\u00f6hli, M., Piussi, L., Schr\u00f6ter, I., Iwema, J., K\u00f6gler, S., Oswald, S. E., Wollschl\u00e4ger, U., Samaniego, L., & others. (2018). Cosmic-ray neutron rover surveys of field soil moisture and the influence of roads. Water Resources Research, 54(9), 6441\u20136459.

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079\u20134099, https://doi.org/10.5194/hess-16-4079-2012, 2012.

    "},{"location":"reference/","title":"Reference","text":"

    crnpy is a Python package for processing cosmic ray neutron data.

    Created by Joaquin Peraza and Andres Patrignani.

    "},{"location":"reference/#crnpy.crnpy.abs_humidity","title":"abs_humidity(relative_humidity, temp)","text":"

    Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations.

    Parameters:

    Name Type Description Default relative_humidity float

    relative humidity (%)

    required temp float

    temperature (Celsius)

    required

    Returns:

    Name Type Description float

    actual vapor pressure (g m^-3)

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def abs_humidity(relative_humidity, temp):\n\"\"\"\n    Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations.\n\n    Args:\n        relative_humidity (float): relative humidity (%)\n        temp (float): temperature (Celsius)\n\n    Returns:\n        float: actual vapor pressure (g m^-3)\n    \"\"\"\n\n    ### Atmospheric water vapor factor\n    # Saturation vapor pressure\n    e_sat = 0.611 * np.exp(17.502 * temp / (\n                temp + 240.97)) * 1000  # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman)\n\n    # Vapor pressure Pascals\n    Pw = e_sat * relative_humidity / 100\n\n    # Absolute humidity (g/m^3)\n    C = 2.16679  # g K/J;\n    abs_h = C * Pw / (temp + 273.15)\n    return abs_h\n
    "},{"location":"reference/#crnpy.crnpy.biomass_to_bwe","title":"biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494)","text":"

    Function to convert biomass to biomass water equivalent.

    Parameters:

    Name Type Description Default biomass_dry array or pd.Series or pd.DataFrame

    Above ground dry biomass in kg m-2.

    required biomass_fresh array or pd.Series or pd.DataFrame

    Above ground fresh biomass in kg m-2.

    required fWE float

    Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose) Default is 0.494 (Wahbi & Avery, 2018).

    0.494

    Returns:

    Type Description array or pd.Series or pd.DataFrame

    Biomass water equivalent in kg m-2.

    References

    Wahbi, A., Avery, W. (2018). In Situ Destructive Sampling. In: Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent. Springer, Cham. https://doi.org/10.1007/978-3-319-69539-6_2

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494):\n\"\"\"Function to convert biomass to biomass water equivalent.\n\n    Args:\n        biomass_dry (array or pd.Series or pd.DataFrame): Above ground dry biomass in kg m-2.\n        biomass_fresh (array or pd.Series or pd.DataFrame): Above ground fresh biomass in kg m-2.\n        fWE (float): Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose)\n            Default is 0.494 (Wahbi & Avery, 2018).\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Biomass water equivalent in kg m-2.\n\n    References:\n        Wahbi, A., Avery, W. (2018). In Situ Destructive Sampling. In:\n        Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent.\n        Springer, Cham. https://doi.org/10.1007/978-3-319-69539-6_2\n    \"\"\"\n    return (biomass_fresh - biomass_dry) + fWE * biomass_dry\n
    "},{"location":"reference/#crnpy.crnpy.correction_bwe","title":"correction_bwe(counts, bwe, r2_N0=0.05)","text":"

    Function to correct for biomass effects in neutron counts. following the approach described in Baatz et al., 2015.

    Parameters:

    Name Type Description Default counts array or pd.Series or pd.DataFrame

    Array of ephithermal neutron counts.

    required bwe float

    Biomass water equivalent kg m-2.

    required r2_N0 float

    Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05.

    0.05

    Returns:

    Type Description array or pd.Series or pd.DataFrame

    Array of corrected neutron counts for biomass effects.

    References

    Baatz, R., H. R. Bogena, H.-J. Hendricks Franssen, J. A. Huisman, C. Montzka, and H. Vereecken (2015), An empiricalvegetation correction for soil water content quantification using cosmic ray probes, Water Resour. Res., 51, 2030\u20132046, doi:10.1002/ 2014WR016443.

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def correction_bwe(counts, bwe, r2_N0=0.05):\n\"\"\"Function to correct for biomass effects in neutron counts.\n    following the approach described in Baatz et al., 2015.\n\n    Args:\n        counts (array or pd.Series or pd.DataFrame): Array of ephithermal neutron counts.\n        bwe (float): Biomass water equivalent kg m-2.\n        r2_N0 (float): Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Array of corrected neutron counts for biomass effects.\n\n    References:\n        Baatz, R., H. R. Bogena, H.-J. Hendricks Franssen, J. A. Huisman, C. Montzka, and H. Vereecken (2015),\n        An empiricalvegetation correction for soil water content quantification using cosmic ray probes,\n        Water Resour. Res., 51, 2030\u20132046, doi:10.1002/ 2014WR016443.\n    \"\"\"\n\n    return counts/(1 - bwe*r2_N0)\n
    "},{"location":"reference/#crnpy.crnpy.correction_humidity","title":"correction_humidity(abs_humidity, Aref)","text":"

    Correction factor for absolute humidity.

    This function corrects neutron counts for absolute humidity using the method described in Rosolem et al. (2013) and Anderson et al. (2017). The correction is performed using the following equation:

    $$ C_{corrected} = C_{raw} \\cdot f_w $$

    where:

    • Ccorrected: corrected neutron counts
    • Craw: raw neutron counts
    • fw: absolute humidity correction factor

    $$ f_w = 1 + 0.0054(A - A_{ref}) $$

    where:

    • A: absolute humidity
    • Aref: reference absolute humidity

    Parameters:

    Name Type Description Default abs_humidity list or array

    Relative humidity readings.

    required temp list or array

    Temperature readings (Celsius).

    required Aref float

    Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended.

    required

    Returns:

    Type Description list

    fw correction factor.

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def correction_humidity(abs_humidity, Aref):\nr\"\"\"Correction factor for absolute humidity.\n\n    This function corrects neutron counts for absolute humidity using the method described in Rosolem et al. (2013) and Anderson et al. (2017). The correction is performed using the following equation:\n\n    $$\n    C_{corrected} = C_{raw} \\cdot f_w\n    $$\n\n    where:\n\n    - Ccorrected: corrected neutron counts\n    - Craw: raw neutron counts\n    - fw: absolute humidity correction factor\n\n    $$\n    f_w = 1 + 0.0054(A - A_{ref})\n    $$\n\n    where:\n\n    - A: absolute humidity\n    - Aref: reference absolute humidity\n\n    Args:\n        abs_humidity (list or array): Relative humidity readings.\n        temp (list or array): Temperature readings (Celsius).\n        Aref (float): Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended.\n\n    Returns:\n        (list): fw correction factor.\n\n    References:\n        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086\n    \"\"\"\n    A = abs_humidity\n    fw = 1 + 0.0054*(A - Aref) # Zreda et al. 2017 Eq 6.\n    return fw\n
    "},{"location":"reference/#crnpy.crnpy.correction_incoming_flux","title":"correction_incoming_flux(incoming_neutrons, incoming_Ref=None)","text":"

    Correction factor for incoming neutron flux.

    This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation:

    $$ C_{corrected} = \\frac{C_{raw}}{f_i} $$

    where:

    • Ccorrected: corrected neutron counts
    • Craw: raw neutron counts
    • fi: incoming neutron flux correction factor

    $$ f_i = \\frac{I_{ref}}{I} $$

    where:

    • I: incoming neutron flux
    • Iref: reference incoming neutron flux

    Parameters:

    Name Type Description Default incoming_neutrons list or array

    Incoming neutron flux readings.

    required incoming_Ref float

    Reference incoming neutron flux. Baseline incoming neutron flux.

    None

    Returns:

    Type Description list

    fi correction factor.

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def correction_incoming_flux(incoming_neutrons, incoming_Ref=None):\nr\"\"\"Correction factor for incoming neutron flux.\n\n    This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation:\n\n    $$\n    C_{corrected} = \\frac{C_{raw}}{f_i}\n    $$\n\n    where:\n\n    - Ccorrected: corrected neutron counts\n    - Craw: raw neutron counts\n    - fi: incoming neutron flux correction factor\n\n    $$\n    f_i = \\frac{I_{ref}}{I}\n    $$\n\n    where:\n\n    - I: incoming neutron flux\n    - Iref: reference incoming neutron flux\n\n    Args:\n        incoming_neutrons (list or array): Incoming neutron flux readings.\n        incoming_Ref (float): Reference incoming neutron flux. Baseline incoming neutron flux.\n\n    Returns:\n        (list): fi correction factor.\n\n    References:\n        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086\n\n\n    \"\"\"\n    if incoming_Ref is None and not isinstance(incoming_neutrons, type(None)):\n        incoming_Ref = incoming_neutrons[0]\n        warnings.warn('Reference incoming neutron flux not provided. Using first value of incoming neutron flux.')\n    fi = incoming_neutrons / incoming_Ref\n    fi.fillna(1.0, inplace=True)  # Use a value of 1 for days without data\n\n    return fi\n
    "},{"location":"reference/#crnpy.crnpy.correction_pressure","title":"correction_pressure(pressure, Pref, L)","text":"

    Correction factor for atmospheric pressure.

    This function corrects neutron counts for atmospheric pressure using the method described in Andreasen et al. (2017). The correction is performed using the following equation:

    $$ C_{corrected} = \\frac{C_{raw}}{fp} $$

    where:

    • Ccorrected: corrected neutron counts
    • Craw: raw neutron counts
    • fp: pressure correction factor

    $$ fp = e^{\\frac{P_{ref} - P}{L}} $$

    where:

    • P: atmospheric pressure
    • Pref: reference atmospheric pressure
    • L: Atmospheric attenuation coefficient.

    Parameters:

    Name Type Description Default atm_pressure list or array

    Atmospheric pressure readings. Long-term average pressure is recommended.

    required Pref float

    Reference atmospheric pressure.

    required L float

    Atmospheric attenuation coefficient.

    required

    Returns:

    Type Description list

    fp pressure correction factor.

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def correction_pressure(pressure, Pref, L):\nr\"\"\"Correction factor for atmospheric pressure.\n\n    This function corrects neutron counts for atmospheric pressure using the method described in Andreasen et al. (2017).\n    The correction is performed using the following equation:\n\n    $$\n    C_{corrected} = \\frac{C_{raw}}{fp}\n    $$\n\n    where:\n\n    - Ccorrected: corrected neutron counts\n    - Craw: raw neutron counts\n    - fp: pressure correction factor\n\n    $$\n    fp = e^{\\frac{P_{ref} - P}{L}}\n    $$\n\n    where:\n\n    - P: atmospheric pressure\n    - Pref: reference atmospheric pressure\n    - L: Atmospheric attenuation coefficient.\n\n\n    Args:\n        atm_pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended.\n        Pref (float): Reference atmospheric pressure.\n        L (float): Atmospheric attenuation coefficient.\n\n    Returns:\n        (list): fp pressure correction factor.\n\n    References:\n        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086\n    \"\"\"\n\n    # Compute pressure correction factor\n    fp = np.exp((Pref - pressure) / L) # Zreda et al. 2017 Eq 5.\n\n    return fp\n
    "},{"location":"reference/#crnpy.crnpy.correction_road","title":"correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, p4=0.16, p6=0.94, p7=1.1, p8=2.7, p9=0.01)","text":"

    Function to correct for road effects in neutron counts. following the approach described in Schr\u00f6n et al., 2018.

    Parameters:

    Name Type Description Default counts array or pd.Series or pd.DataFrame

    Array of ephithermal neutron counts.

    required theta_N float

    Volumetric water content of the soil estimated from the uncorrected neutron counts.

    required road_width float

    Width of the road in m.

    required road_distance float

    Distance of the road from the sensor in m. Default is 0.0.

    0.0 theta_road float

    Volumetric water content of the road. Default is 0.12.

    0.12 p0-p9 float

    Parameters of the correction function. Default values are from Schr\u00f6n et al., 2018.

    required

    Returns:

    Type Description array or pd.Series or pd.DataFrame

    Array of corrected neutron counts for road effects.

    References

    Schr\u00f6n,M.,Rosolem,R.,K\u00f6hli,M., Piussi,L.,Schr\u00f6ter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys of field soil moisture and the influence of roads.WaterResources Research,54,6441\u20136459. https://doi. org/10.1029/2017WR021719

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01):\n\"\"\"Function to correct for road effects in neutron counts.\n    following the approach described in Schr\u00f6n et al., 2018.\n\n    Args:\n        counts (array or pd.Series or pd.DataFrame): Array of ephithermal neutron counts.\n        theta_N (float): Volumetric water content of the soil estimated from the uncorrected neutron counts.\n        road_width (float): Width of the road in m.\n        road_distance (float): Distance of the road from the sensor in m. Default is 0.0.\n        theta_road (float): Volumetric water content of the road. Default is 0.12.\n        p0-p9 (float): Parameters of the correction function. Default values are from Schr\u00f6n et al., 2018.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Array of corrected neutron counts for road effects.\n\n    References:\n        Schr\u00f6n,M.,Rosolem,R.,K\u00f6hli,M., Piussi,L.,Schr\u00f6ter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys\n        of field soil moisture and the influence of roads.WaterResources Research,54,6441\u20136459.\n        https://doi. org/10.1029/2017WR021719\n    \"\"\"\n    F1 = p0 * (1-np.exp(-p1*road_width))\n    F2 = -p2 - p3 * theta_road - ((p4 + theta_road) / (theta_N))\n    F3 = p6 * np.exp(-p7 * (road_width ** -p8) * road_distance ** 4) + (1 - p6) * np.exp(-p9 * road_distance)\n\n    C_roads = 1 + F1 * F2 * F3\n\n    corrected_counts = counts / C_roads\n\n    return corrected_counts\n
    "},{"location":"reference/#crnpy.crnpy.counts_to_vwc","title":"counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115)","text":"

    Function to convert corrected and filtered neutron counts into volumetric water content.

    This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010.

    $\\theta(N) =\\frac{a_0}{(\\frac{N}{N_0}) - a_1} - a_2 $

    Parameters:

    Name Type Description Default counts array or pd.Series or pd.DataFrame

    Array of corrected and filtered neutron counts.

    required N0 float

    Device-specific neutron calibration constant.

    required Wlat float

    Lattice water content.

    required Wsoc float

    Soil organic carbon content.

    required bulk_density float

    Soil bulk density.

    required a0 float

    Parameter given in Zreda et al., 2012. Default is 0.0808.

    0.0808 a1 float

    Parameter given in Zreda et al., 2012. Default is 0.372.

    0.372 a2 float

    Parameter given in Zreda et al., 2012. Default is 0.115.

    0.115

    Returns:

    Type Description array or pd.Series or pd.DataFrame

    Volumetric water content in m3 m-3.

    References

    Desilets, D., M. Zreda, and T.P.A. Ferr\u00e9. 2010. Nature\u2019s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46:W11505. doi.org/10.1029/2009WR008726

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def counts_to_vwc(counts, N0, Wlat, Wsoc ,bulk_density, a0=0.0808,a1=0.372,a2=0.115):\nr\"\"\"Function to convert corrected and filtered neutron counts into volumetric water content.\n\n    This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010.\n\n    $\\theta(N) =\\frac{a_0}{(\\frac{N}{N_0}) - a_1} - a_2 $\n\n    Args:\n        counts (array or pd.Series or pd.DataFrame): Array of corrected and filtered neutron counts.\n        N0 (float): Device-specific neutron calibration constant.\n        Wlat (float): Lattice water content.\n        Wsoc (float): Soil organic carbon content.\n        bulk_density (float): Soil bulk density.\n        a0 (float): Parameter given in Zreda et al., 2012. Default is 0.0808.\n        a1 (float): Parameter given in Zreda et al., 2012. Default is 0.372.\n        a2 (float): Parameter given in Zreda et al., 2012. Default is 0.115.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Volumetric water content in m3 m-3.\n\n    References:\n        Desilets, D., M. Zreda, and T.P.A. Ferr\u00e9. 2010. Nature\u2019s neutron probe:\n        Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46:W11505.\n        doi.org/10.1029/2009WR008726\n    \"\"\"\n\n    # Convert neutron counts into vwc\n    vwc = (a0 / (counts/N0-a1) - a2 - Wlat - Wsoc) * bulk_density\n    return vwc\n
    "},{"location":"reference/#crnpy.crnpy.cutoff_rigidity","title":"cutoff_rigidity(lat, lon)","text":"

    Function to estimate the approximate cutoff rigidity for any point on Earth according to the tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest.

    Parameters:

    Name Type Description Default lat float

    Geographic latitude in decimal degrees. Value in range -90 to 90

    required lon float

    Geographic longitude in decimal degrees. Values in range from 0 to 360. Typical negative longitudes in the west hemisphere will fall in the range 180 to 360.

    required

    Returns:

    Type Description float

    Cutoff rigidity in GV. Error is about +/- 0.3 GV

    Examples:

    Estimate the cutoff rigidity for Newark, NJ, US

    >>> zq = cutoff_rigidity(39.68, -75.75)\n>>> print(zq)\n2.52 GV (Value from NMD is 2.40 GV)\n
    References

    Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program: Theory, Software Description and Example. NASA STI/Recon Technical Report N.

    Shea, M. A., & Smart, D. F. (2019, July). Re-examination of the First Five Ground-Level Events. In International Cosmic Ray Conference (ICRC2019) (Vol. 36, p. 1149).

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def cutoff_rigidity(lat,lon):\n\"\"\"Function to estimate the approximate cutoff rigidity for any point on Earth according to the\n    tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate\n    neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest.\n\n    Args:\n        lat (float): Geographic latitude in decimal degrees. Value in range -90 to 90\n        lon (float): Geographic longitude in decimal degrees. Values in range from 0 to 360.\n            Typical negative longitudes in the west hemisphere will fall in the range 180 to 360.\n\n    Returns:\n        (float): Cutoff rigidity in GV. Error is about +/- 0.3 GV\n\n    Examples:\n        Estimate the cutoff rigidity for Newark, NJ, US\n\n        >>> zq = cutoff_rigidity(39.68, -75.75)\n        >>> print(zq)\n        2.52 GV (Value from NMD is 2.40 GV)\n\n    References:\n        Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program:\n        Theory, Software Description and Example. NASA STI/Recon Technical Report N.\n\n        Shea, M. A., & Smart, D. F. (2019, July). Re-examination of the First Five Ground-Level Events.\n        In International Cosmic Ray Conference (ICRC2019) (Vol. 36, p. 1149).\n    \"\"\"\n    xq = lon\n    yq = lat\n\n    if xq < 0:\n        xq = xq*-1 + 180\n    Z = np.array(data.cutoff_rigidity)\n    x = np.linspace(0, 360, Z.shape[1])\n    y = np.linspace(90, -90, Z.shape[0])\n    X, Y = np.meshgrid(x, y)\n    points = np.array( (X.flatten(), Y.flatten()) ).T\n    values = Z.flatten()\n    zq = griddata(points, values, (xq,yq))\n\n    return np.round(zq,2)\n
    "},{"location":"reference/#crnpy.crnpy.euclidean_distance","title":"euclidean_distance(px, py, x, y)","text":"

    Function that computes the Euclidean distance between one point in space and one or more points.

    Parameters:

    Name Type Description Default px float

    x projected coordinate of the point.

    required py float

    y projected coordinate of the point.

    required x list, ndarray, pandas.series

    vector of x projected coordinates.

    required y list, ndarray, pandas.series

    vector of y projected coordinates.

    required

    Returns:

    Type Description ndarray

    Numpy array of distances from the point (px,py) to all the points in x and y vectors.

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def euclidean_distance(px, py, x, y):\n\"\"\"Function that computes the Euclidean distance between one point\n    in space and one or more points.\n\n    Args:\n        px (float): x projected coordinate of the point.\n        py (float): y projected coordinate of the point.\n        x (list, ndarray, pandas.series): vector of x projected coordinates.\n        y (list, ndarray, pandas.series): vector of y projected coordinates.\n\n    Returns:\n        (ndarray): Numpy array of distances from the point (px,py) to all the points in x and y vectors.\n    \"\"\"\n    d = np.sqrt((px - x) ** 2 + (py - y) ** 2)\n    return d\n
    "},{"location":"reference/#crnpy.crnpy.exp_filter","title":"exp_filter(sm, T=1)","text":"

    Exponential filter to estimate soil moisture in the rootzone from surface observtions.

    Parameters:

    Name Type Description Default sm list or array

    Soil moisture in mm of water for the top layer of the soil profile.

    required T float

    Characteristic time length in the same units as the measurement interval.

    1

    Returns:

    Name Type Description sm_subsurface list or array

    Subsurface soil moisture in the same units as the input.

    References

    Albergel, C., R\u00fcdiger, C., Pellarin, T., Calvet, J.C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B. and Martin, E., 2008. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrology and Earth System Sciences, 12(6), pp.1323-1337.

    Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.

    Rossini, P. and Patrignani, A., 2021. Predicting rootzone soil moisture from surface observations in cropland using an exponential filter. Soil Science Society of America Journal.

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def exp_filter(sm,T=1):\n\"\"\"Exponential filter to estimate soil moisture in the rootzone from surface observtions.\n\n    Args:\n        sm (list or array): Soil moisture in mm of water for the top layer of the soil profile.\n        T (float): Characteristic time length in the same units as the measurement interval.\n\n    Returns:\n        sm_subsurface (list or array): Subsurface soil moisture in the same units as the input.\n\n    References:\n        Albergel, C., R\u00fcdiger, C., Pellarin, T., Calvet, J.C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B. and Martin, E., 2008.\n        From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model\n        simulations. Hydrology and Earth System Sciences, 12(6), pp.1323-1337.\n\n        Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020.\n        Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.\n\n        Rossini, P. and Patrignani, A., 2021. Predicting rootzone soil moisture from surface observations in cropland using an exponential filter.\n        Soil Science Society of America Journal.\n    \"\"\"\n\n\n    # Parameters\n    t_delta = 1\n    sm_min = np.min(sm)\n    sm_max = np.max(sm)\n    ms = (sm - sm_min) / (sm_max - sm_min)\n\n    # Pre-allocate soil water index array and recursive constant K\n    SWI = np.ones_like(ms)*np.nan\n    K = np.ones_like(ms)*np.nan\n\n    # Initial conditions\n    SWI[0] = ms[0]\n    K[0] = 1\n\n    # Values from 2 to N\n    for n in range(1,len(SWI)):\n        if ~np.isnan(ms[n]) & ~np.isnan(ms[n-1]):\n            K[n] = K[n-1] / (K[n-1] + np.exp(-t_delta/T))\n            SWI[n] = SWI[n-1] + K[n]*(ms[n] - SWI[n-1])\n        else:\n            continue\n\n    # Rootzone storage\n    sm_subsurface = SWI * (sm_max - sm_min) + sm_min\n\n    return sm_subsurface\n
    "},{"location":"reference/#crnpy.crnpy.fill_missing_timestamps","title":"fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False)","text":"

    Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values.

    Parameters:

    Name Type Description Default df pandas.DataFrame

    Pandas DataFrame.

    required timestamp_col str

    Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'.

    'timestamp' freq str

    Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'.

    'H' round_timestamp bool

    Whether to round timestamps to the nearest frequency. Default is True.

    True verbose bool

    Prints the missing timestamps added to the DatFrame.

    False

    Returns:

    Type Description pandas.DataFrame

    DataFrame with filled missing timestamps.

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False):\n\"\"\"Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values.\n\n     Args:\n         df (pandas.DataFrame): Pandas DataFrame.\n         timestamp_col (str, optional): Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'.\n         freq (str, optional): Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'.\n         round_timestamp (bool, optional): Whether to round timestamps to the nearest frequency. Default is True.\n         verbose (bool, optional): Prints the missing timestamps added to the DatFrame.\n\n     Returns:\n         (pandas.DataFrame): DataFrame with filled missing timestamps.\n\n     \"\"\"\n\n    # Check format of timestamp column\n    if df[timestamp_col].dtype != 'datetime64[ns]':\n        raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.')\n\n    # Round timestamps to nearest frequency. This steps must preced the filling of rows.\n    if round_timestamp:\n        df[timestamp_col] = df[timestamp_col].dt.round(freq)\n\n    # Fill in rows with missing timestamps\n    start_date = df[timestamp_col].iloc[0]\n    end_date = df[timestamp_col].iloc[-1]\n    date_range = pd.date_range(start_date, end_date, freq=freq)\n    counter = 0\n    for date in date_range:\n        if date not in df[timestamp_col].values:\n            if verbose:\n                print('Adding missing date:',date)\n            new_line = pd.DataFrame({timestamp_col:date}, index=[-1]) # By default fills columns with np.nan\n            df = pd.concat([df,new_line])\n            counter += 1\n\n    df.sort_values(by=timestamp_col, inplace=True)\n    df.reset_index(drop=True, inplace=True)\n\n    # Notify user about the number of rows that have been removed\n    print(f\"Added a total of {counter} missing timestamps.\")\n\n    return df\n
    "},{"location":"reference/#crnpy.crnpy.find_neutron_monitor","title":"find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False)","text":"

    Search for potential reference neutron monitoring stations based on cutoff rigidity.

    Parameters:

    Name Type Description Default Rc float

    Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.

    required start_date datetime

    Start date for the period of interest.

    None end_date datetime

    End date for the period of interest.

    None

    Returns:

    Type Description list

    List of top five stations with closes cutoff rigidity. User needs to select station according to site altitude.

    Examples:

    >>> from crnpy import crnpy\n>>> Rc = 2.40 # 2.40 Newark, NJ, US\n>>> crnpy.find_neutron_monitor(Rc)\nSelect a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n

    Your cutoff rigidity is 2.4 GV STID NAME R Altitude_m 40 NEWK Newark 2.40 50 33 MOSC Moscow 2.43 200 27 KIEL Kiel 2.36 54 28 KIEL2 KielRT 2.36 54 31 MCRL Mobile Cosmic Ray Laboratory 2.46 200 32 MGDN Magadan 2.10 220 42 NVBK Novosibirsk 2.91 163 26 KGSN Kingston 1.88 65 9 CLMX Climax 3.00 3400 57 YKTK Yakutsk 1.65 105

    References

    https://www.nmdb.eu/nest/help.php#helpstations

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False):\n\"\"\"Search for potential reference neutron monitoring stations based on cutoff rigidity.\n\n    Args:\n        Rc (float): Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.\n        start_date (datetime): Start date for the period of interest.\n        end_date (datetime): End date for the period of interest.\n\n    Returns:\n        (list): List of top five stations with closes cutoff rigidity.\n            User needs to select station according to site altitude.\n\n    Examples:\n        >>> from crnpy import crnpy\n        >>> Rc = 2.40 # 2.40 Newark, NJ, US\n        >>> crnpy.find_neutron_monitor(Rc)\n        Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n\n        Your cutoff rigidity is 2.4 GV\n                STID                          NAME     R  Altitude_m\n        40   NEWK                        Newark  2.40          50\n        33   MOSC                        Moscow  2.43         200\n        27   KIEL                          Kiel  2.36          54\n        28  KIEL2                        KielRT  2.36          54\n        31   MCRL  Mobile Cosmic Ray Laboratory  2.46         200\n        32   MGDN                       Magadan  2.10         220\n        42   NVBK                   Novosibirsk  2.91         163\n        26   KGSN                      Kingston  1.88          65\n        9    CLMX                        Climax  3.00        3400\n        57   YKTK                       Yakutsk  1.65         105\n\n    References:\n        https://www.nmdb.eu/nest/help.php#helpstations\n    \"\"\"\n\n    # Load file with list of neutron monitoring stations\n    stations = pd.DataFrame(data.neutron_detectors, columns=[\"STID\",\"NAME\",\"R\",\"Altitude_m\"])\n\n    # Sort stations by closest cutoff rigidity\n    idx_R = (stations['R'] - Rc).abs().argsort()\n\n    if start_date is not None and end_date is not None:\n        stations[\"Period available\"] = False\n        for i in range(10):\n            station = stations.iloc[idx_R[i]][\"STID\"]\n            try:\n                if get_incoming_neutron_flux(start_date, end_date, station, verbose=verbose) is not None:\n                    stations.iloc[idx_R[i],-1] = True\n            except:\n                pass\n        if sum(stations[\"Period available\"] == True) == 0:\n            print(\"No stations available for the selected period!\")\n        else:\n            stations = stations[stations[\"Period available\"] == True]\n            idx_R = (stations['R'] - Rc).abs().argsort()\n            result = stations.iloc[idx_R.iloc[:10]]\n    else:\n        result = stations.reindex(idx_R).head(10).rename_axis(None)\n\n    # Print results\n    print('')\n    print(\"\"\"Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\"\"\")\n    print('')\n    print(f\"Your cutoff rigidity is {Rc} GV\")\n    print(result)\n    return result\n
    "},{"location":"reference/#crnpy.crnpy.get_incoming_neutron_flux","title":"get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False)","text":"

    Function to retrieve neutron flux from the Neutron Monitor Database.

    Parameters:

    Name Type Description Default start_date datetime

    Start date of the time series.

    required end_date datetime

    End date of the time series.

    required station str

    Neutron Monitor station to retrieve data from.

    required utc_offset int

    UTC offset in hours. Default is 0.

    0 expand_window int

    Number of hours to expand the time window to retrieve extra data. Default is 0.

    0 verbose bool

    Print information about the request. Default is False.

    False

    Returns:

    Type Description pandas.DataFrame

    Neutron flux in counts per hour and timestamps.

    References

    Documentation available:https://www.nmdb.eu/nest/help.php#howto

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False):\n\"\"\"Function to retrieve neutron flux from the Neutron Monitor Database.\n\n    Args:\n        start_date (datetime): Start date of the time series.\n        end_date (datetime): End date of the time series.\n        station (str): Neutron Monitor station to retrieve data from.\n        utc_offset (int): UTC offset in hours. Default is 0.\n        expand_window (int): Number of hours to expand the time window to retrieve extra data. Default is 0.\n        verbose (bool): Print information about the request. Default is False.\n\n    Returns:\n        (pandas.DataFrame): Neutron flux in counts per hour and timestamps.\n\n    References:\n        Documentation available:https://www.nmdb.eu/nest/help.php#howto\n    \"\"\"\n\n    # Example: get_incoming_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00')\n    # Template url = 'http://nest.nmdb.eu/draw_graph.php?formchk=1&stations[]=KERG&output=ascii&tabchoice=revori&dtype=corr_for_efficiency&date_choice=bydate&start_year=2009&start_month=09&start_day=01&start_hour=00&start_min=00&end_year=2009&end_month=09&end_day=05&end_hour=23&end_min=59&yunits=0'\n\n\n    # Expand the time window by 1 hour to ensure an extra observation is included in the request.\n    start_date -= pd.Timedelta(hours=expand_window)\n    end_date += pd.Timedelta(hours=expand_window)\n\n    # Convert local time to UTC\n    start_date = start_date - pd.Timedelta(hours=utc_offset)\n    end_date = end_date - pd.Timedelta(hours=utc_offset)\n    date_format = '%Y-%m-%d %H:%M:%S'\n    root = 'http://www.nmdb.eu/nest/draw_graph.php?'\n    url_par = [ 'formchk=1',\n                'stations[]=' + station,\n                'output=ascii',\n                'tabchoice=revori',\n                'dtype=corr_for_efficiency',\n                'tresolution=' + str(60),\n                'date_choice=bydate',\n                'start_year=' + str(start_date.year),\n                'start_month=' + str(start_date.month),\n                'start_day=' + str(start_date.day),\n                'start_hour=' + str(start_date.hour),\n                'start_min=' + str(start_date.minute),\n                'end_year=' + str(end_date.year),\n                'end_month=' + str(end_date.month),\n                'end_day=' + str(end_date.day),\n                'end_hour=' + str(end_date.hour),\n                'end_min=' + str(end_date.minute),\n                'yunits=0']\n\n    url = root + '&'.join(url_par)\n\n    if verbose:\n        print(f\"Retrieving data from {url}\")\n\n    r = requests.get(url).content.decode('utf-8')\n\n    # Subtract 1 hour to restore the last date included in the request.\n    end_date -= pd.Timedelta('1H')\n    start = r.find(\"RCORR_E\\n\") + 8\n    end = r.find('\\n</code></pre><br>Total') - 1\n    s = r[start:end]\n    s2 = ''.join([row.replace(';',',') for row in s])\n    try:\n        df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp','counts'])\n    except:\n        if verbose:\n            print(f\"Error retrieving data from {url}\")\n        return None\n\n    # Check if all values from selected detector are NaN. If yes, warn the user\n    if df_flux['counts'].isna().all():\n        warnings.warn('Data for selected neutron detectors appears to be unavailable for the selected period')\n\n    # Convert timestamp to datetime and apply UTC offset\n    df_flux['timestamp'] = pd.to_datetime(df_flux['timestamp'])\n    df_flux['timestamp'] = df_flux['timestamp'] + pd.Timedelta(hours=utc_offset)\n\n    # Print acknowledgement to inform users about restrictions and to acknowledge the NMDB database\n    acknowledgement = \"\"\"Data retrieved via NMDB are the property of the individual data providers. These data are free for non commercial\nuse to within the restriction imposed by the providers. If you use such data for your research or applications, please acknowledge\nthe origin by a sentence like 'We acknowledge the NMDB database (www.nmdb.eu) founded under the European Union's FP7 programme \n(contract no. 213007), and the PIs of individual neutron monitors at: IGY Jungfraujoch \n(Physikalisches Institut, University of Bern, Switzerland)\"\"\"\n\n    return df_flux\n
    "},{"location":"reference/#crnpy.crnpy.idw","title":"idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1)","text":"

    Function to interpolate data using inverse distance weight.

    Parameters:

    Name Type Description Default x list or array

    UTM x coordinates in meters.

    required y list or array

    UTM y coordinates in meters.

    required z list or array

    Values to be interpolated.

    required X_pred list or array

    UTM x coordinates where z values need to be predicted.

    required Y_pred list or array

    UTM y coordinates where z values need to be predicted.

    required neighborhood float

    Only points within this radius in meters are considered for the interpolation.

    1000 p int

    Exponent of the inverse distance weight formula. Typically, p=1 or p=2.

    1

    Returns:

    Type Description array

    Interpolated values.

    References

    https://en.wikipedia.org/wiki/Inverse_distance_weighting

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1):\n\"\"\"Function to interpolate data using inverse distance weight.\n\n    Args:\n        x (list or array): UTM x coordinates in meters.\n        y (list or array): UTM y coordinates in meters.\n        z (list or array): Values to be interpolated.\n        X_pred (list or array): UTM x coordinates where z values need to be predicted.\n        Y_pred (list or array): UTM y coordinates where z values need to be predicted.\n        neighborhood (float): Only points within this radius in meters are considered for the interpolation.\n        p (int): Exponent of the inverse distance weight formula. Typically, p=1 or p=2.\n\n    Returns:\n        (array): Interpolated values.\n\n    References:\n        [https://en.wikipedia.org/wiki/Inverse_distance_weighting](https://en.wikipedia.org/wiki/Inverse_distance_weighting)\n\n\n    \"\"\"\n\n    # Flatten arrays to handle 1D and 2D arrays with the same code\n    s = X_pred.shape  # Save shape\n    X_pred = X_pred.flatten()\n    Y_pred = Y_pred.flatten()\n\n    # Pre-allocate output array\n    Z_pred = np.full_like(X_pred, np.nan)\n\n    for n in range(X_pred.size):\n        # Distance between current and observed points\n        d = euclidean_distance(X_pred[n], Y_pred[n], x, y)\n\n        # Select points within neighborhood only for interpolation\n        idx_neighbors = d < neighborhood\n\n        # Compute interpolated value at point of interest\n        Z_pred[n] = np.sum(z[idx_neighbors] / d[idx_neighbors] ** p) / np.sum(1 / d[idx_neighbors] ** p)\n\n    return np.reshape(Z_pred, s)\n
    "},{"location":"reference/#crnpy.crnpy.interpolate_2d","title":"interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000)","text":"

    Function for interpolating irregular spatial data into a regular grid.

    Parameters:

    Name Type Description Default x list or array

    UTM x coordinates in meters.

    required y list or array

    UTM y coordinates in meters.

    required z list or array

    Values to be interpolated.

    required dx float

    Pixel width in meters.

    100 dy float

    Pixel height in meters.

    100 method str

    Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'.

    'cubic' neighborhood float

    Only points within this radius in meters are considered for the interpolation.

    1000

    Returns:

    Name Type Description x_pred array

    2D array with x coordinates.

    y_pred array

    2D array with y coordinates.

    z_pred array

    2D array with interpolated values.

    References

    https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000):\n\"\"\"Function for interpolating irregular spatial data into a regular grid.\n\n    Args:\n        x (list or array): UTM x coordinates in meters.\n        y (list or array): UTM y coordinates in meters.\n        z (list or array): Values to be interpolated.\n        dx (float): Pixel width in meters.\n        dy (float): Pixel height in meters.\n        method (str): Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'.\n        neighborhood (float): Only points within this radius in meters are considered for the interpolation.\n\n    Returns:\n        x_pred (array): 2D array with x coordinates.\n        y_pred (array): 2D array with y coordinates.\n        z_pred (array): 2D array with interpolated values.\n\n    References:\n        [https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html](https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html)\n    \"\"\"\n\n    # Drop NaN values in x y and z\n    idx_nan = np.isnan(x) | np.isnan(y) | np.isnan(z)\n    x = x[~idx_nan]\n    y = y[~idx_nan]\n    z = z[~idx_nan]\n\n    if idx_nan.any():\n        print(f\"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.\")\n\n    # Create 2D grid for interpolation\n    Nx = round((np.max(x) - np.min(x)) / dx) + 1\n    Ny = round((np.max(y) - np.min(y)) / dy) + 1\n    X_vec = np.linspace(np.min(x), np.max(x), Nx)\n    Y_vec = np.linspace(np.min(y), np.max(y), Ny)\n    X_pred, Y_pred = np.meshgrid(X_vec, Y_vec)\n\n    if method in ['linear', 'nearest', 'cubic']:\n        points = list(zip(x, y))\n        Z_pred = griddata(points, z, (X_pred, Y_pred), method=method)\n\n    elif method == 'idw':\n        Z_pred = idw(x, y, z, X_pred, Y_pred, neighborhood)\n\n    else:\n        raise f\"Method {method} does not exist. Provide either 'cubic', 'linear', 'nearest', or 'idw'.\"\n\n    return X_pred, Y_pred, Z_pred\n
    "},{"location":"reference/#crnpy.crnpy.interpolate_incoming_flux","title":"interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps)","text":"

    Function to interpolate incoming neutron flux to match the timestamps of the observations.

    Parameters:

    Name Type Description Default nmdb_timestamps pd.Series

    Series of timestamps in datetime format from the NMDB.

    required nmdb_counts pd.Series

    Series of neutron counts from the NMDB

    required crnp_timestamps pd.Series

    Series of timestamps in datetime format from the station or device.

    required

    Returns:

    Type Description pd.Series

    Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps):\n\"\"\"Function to interpolate incoming neutron flux to match the timestamps of the observations.\n\n    Args:\n        nmdb_timestamps (pd.Series): Series of timestamps in datetime format from the NMDB.\n        nmdb_counts (pd.Series): Series of neutron counts from the NMDB\n        crnp_timestamps (pd.Series): Series of timestamps in datetime format from the station or device.\n\n    Returns:\n        (pd.Series): Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps\n    \"\"\"\n    incoming_flux = np.array([])\n    for k,timestamp in enumerate(crnp_timestamps):\n        if timestamp in nmdb_timestamps.values:\n            idx = timestamp == nmdb_timestamps\n            incoming_flux = np.append(incoming_flux, nmdb_counts.loc[idx])\n        else:\n            incoming_flux = np.append(incoming_flux, np.nan)\n\n    # Interpolate nan values\n    incoming_flux = pd.Series(incoming_flux).interpolate(method='nearest', limit_direction='both')\n\n    # Return only the values for the selected timestamps\n    return incoming_flux\n
    "},{"location":"reference/#crnpy.crnpy.is_outlier","title":"is_outlier(x, method, window=11, min_val=None, max_val=None)","text":"

    Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference.

    Parameters:

    Name Type Description Default x pandas.DataFrame

    Variable containing only the columns with neutron counts.

    required method str

    Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad

    required window int

    Window size for the moving central tendency. Default is 11.

    11 min_val int or float

    Minimum value for a reading to be considered valid. Default is None.

    None max_val(int or float

    Maximum value for a reading to be considered valid. Default is None.

    required

    Returns:

    Type Description pandas.DataFrame

    Boolean indicating outliers.

    References

    Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press.

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def is_outlier(x, method, window=11, min_val=None, max_val=None):\n\"\"\"Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference.\n\n    Args:\n        x (pandas.DataFrame): Variable containing only the columns with neutron counts.\n        method (str): Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad\n        window (int, optional): Window size for the moving central tendency. Default is 11.\n        min_val (int or float): Minimum value for a reading to be considered valid. Default is None.\n        max_val(int or float): Maximum value for a reading to be considered valid. Default is None.\n\n    Returns:\n        (pandas.DataFrame): Boolean indicating outliers.\n\n    References:\n        Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press.\n    \"\"\"\n\n    if not isinstance(x, pd.Series):\n        raise TypeError('x must of type pandas.Series')\n\n    # Separate this method to allow usage together with other methods below\n    if isinstance(min_val, numbers.Number) and isinstance(max_val, numbers.Number):\n        idx_range_outliers = (x < min_val) | (x > max_val)\n    else:\n        idx_range_outliers = np.full_like(x, False)\n\n    # Apply other methods in addition to a range check\n    if method == 'iqr':\n        q1 = x.quantile(0.25)\n        q3 = x.quantile(0.75)\n        iqr = q3 - q1\n        high_fence = q3 + (1.5 * iqr)\n        low_fence = q1 - (1.5 * iqr)\n        idx_outliers = (x<low_fence ) | (x>high_fence )\n\n    elif method == 'moviqr':\n        q1 = x.rolling(window, center=True).quantile(0.25)\n        q3 = x.rolling(window, center=True).quantile(0.75)\n        iqr = q3 - q1\n        ub = q3 + (1.5 * iqr) # Upper boundary\n        lb = q1 - (1.5 * iqr) # Lower boundary\n        idx_outliers = (x < lb) | (x > ub)\n\n    elif method == 'zscore':\n        zscore = (x - x.mean())/x.std()\n        idx_outliers = (zscore < -3) | (zscore > 3)\n\n    elif method == 'movzscore':\n        movmean = x.rolling(window=window, center=True).mean()\n        movstd = x.rolling(window=window, center=True).std()\n        movzscore = (x - movmean)/movstd\n        idx_outliers = (movzscore < -3) | (movzscore > 3)\n\n    elif method == 'modified_zscore':\n        # Compute median absolute difference\n        movmedian = x.rolling(window, center=True).median()\n        abs_diff = np.abs(x - movmedian)\n        mad = abs_diff.rolling(window, center=True).median()\n\n        # Compute modified z-score\n        modified_z_score = 0.6745 * abs_diff / mad\n        idx_outliers = (modified_z_score < -3.5) | (modified_z_score > 3.5)\n\n    elif method == 'scaled_mad':\n        # Returns true for elements more than three scaled MAD from the median. \n        c = -1 / (np.sqrt(2)*erfcinv(3/2))\n        median = np.nanmedian(x)\n        mad = c*np.nanmedian(np.abs(x - median))\n        idx_outliers = x > (median + 3*mad)\n\n    else:\n        raise TypeError('Outlier detection method not found.')\n\n    return idx_outliers | idx_range_outliers\n
    "},{"location":"reference/#crnpy.crnpy.latlon_to_utm","title":"latlon_to_utm(lat, lon, utm_zone_number, missing_values=None)","text":"

    Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.

    Function only applies to non-polar coordinates. If further functionality is required, consider using the utm module. See references for more information.

    UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See UTM zones for a full description.

    Parameters:

    Name Type Description Default lat float, array

    Latitude in decimal degrees.

    required lon float, array

    Longitude in decimal degrees.

    required utm_zone_number int

    Universal Transverse Mercator (UTM) zone.

    required

    Returns:

    Type Description float, float

    Tuple of easting and northing coordinates in meters. First element is easting, second is northing.

    References

    Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87) https://github.com/Turbo87/utm

    https://www.maptools.com/tutorials/grid_zone_details#

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def latlon_to_utm(lat, lon, utm_zone_number, missing_values=None):\n\"\"\"Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.\n\n    Function only applies to non-polar coordinates.\n    If further functionality is required, consider using the utm module. See references for more information.\n\n    ![UTM zones](https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Universal_Transverse_Mercator_zones.svg/1920px-Universal_Transverse_Mercator_zones.svg.png)\n    UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See [UTM zones](https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#UTM_zones) for a full description.\n\n\n    Args:\n        lat (float, array): Latitude in decimal degrees.\n        lon (float, array): Longitude in decimal degrees.\n        utm_zone_number (int): Universal Transverse Mercator (UTM) zone.\n\n    Returns:\n        (float, float): Tuple of easting and northing coordinates in meters. First element is easting, second is northing.\n\n    References:\n         Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87)\n         [https://github.com/Turbo87/utm](https://github.com/Turbo87/utm)\n\n         [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#)\n    \"\"\"\n\n\n    # Define constants\n    R = 6_378_137  # Earth's radius at the Equator in meters\n\n    # Convert input data to Numpy arrays\n    if (type(lat) is not np.ndarray) or (type(lon) is not np.ndarray):\n        try:\n            lat = np.array(lat)\n            lon = np.array(lon)\n        except:\n            raise \"Input values cannot be converted to Numpy arrays.\"\n\n    # Check latitude range\n    if np.any(lat < -80) | np.any(lat > 84):\n        raise \"One or more latitude values exceed the range -80 to 84\"\n\n    # Check longitude range\n    if np.any(lon < -180) | np.any(lon > 180):\n        raise \"One or more longitude values exceed the range -180 to 180\"\n\n    # Constants\n    K0 = 0.9996\n    E = 0.00669438\n    E_P2 = E / (1 - E)\n\n    M1 = (1 - E / 4 - 3 * E ** 2 / 64 - 5 * E ** 3 / 256)\n    M2 = (3 * E / 8 + 3 * E ** 2 / 32 + 45 * E ** 3 / 1024)\n    M3 = (15 * E ** 2 / 256 + 45 * E ** 3 / 1024)\n    M4 = (35 * E ** 3 / 3072)\n\n    # Trigonometric operations\n    lat_rad = np.radians(lat)\n    lon_rad = np.radians(lon)\n\n    lat_sin = np.sin(lat_rad)\n    lat_cos = np.cos(lat_rad)\n    lat_tan = lat_sin / lat_cos\n    lat_tan2 = lat_tan * lat_tan\n    lat_tan4 = lat_tan2 * lat_tan2\n\n    # Find central meridian.\n    central_lon = (utm_zone_number * 6 - 180) - 3  # Zones are every 6 degrees.\n    central_lon_rad = np.radians(central_lon)\n\n    n = R / np.sqrt(1 - E * lat_sin ** 2)\n    c = E_P2 * lat_cos ** 2\n\n    with np.errstate(divide='ignore', invalid='ignore'):\n        a = lat_cos * (np.remainder(((lon_rad - central_lon_rad) + np.pi), (2 * np.pi)) - np.pi)\n    m = R * (M1 * lat_rad - M2 * np.sin(2 * lat_rad) + M3 * np.sin(4 * lat_rad) - M4 * np.sin(6 * lat_rad))\n\n    easting = K0 * n * (a + a ** 3 / 6 * (1 - lat_tan2 + c) + a ** 5 / 120 * (\n                5 - 18 * lat_tan2 + lat_tan4 + 72 * c - 58 * E_P2)) + 500_000\n    northing = K0 * (m + n * lat_tan * (\n                a ** 2 / 2 + a ** 4 / 24 * (5 - lat_tan2 + 9 * c + 4 * c ** 2) + a ** 6 / 720 * (\n                    61 - 58 * lat_tan2 + lat_tan4 + 600 * c - 330 * E_P2)))\n\n    if np.any(lat < 0):\n        northing += 10_000_000\n\n    return easting, northing\n
    "},{"location":"reference/#crnpy.crnpy.lattice_water","title":"lattice_water(clay_content, total_carbon=None)","text":"

    Estimate the amount of water in the lattice of clay minerals.

    $\\omega_{lat} = 0.097 * clay(\\%)$ $\\omega_{lat} = -0.028 + 0.077 * clay(\\%) + 0.459 * carbon(\\%)$ Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab. Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.

    Parameters:

    Name Type Description Default clay_content float

    Clay content in the soil in percent.

    required total_carbon float

    Total carbon content in the soil in percent. If None, the amount of water is estimated based on clay content only.

    None

    Returns:

    Type Description float

    Amount of water in the lattice of clay minerals in percent

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def lattice_water(clay_content, total_carbon=None):\nr\"\"\"Estimate the amount of water in the lattice of clay minerals.\n\n    ![img1](img/lattice_water_simple.png) | ![img2](img/lattice_water_multiple.png)\n    :-------------------------:|:-------------------------:\n    $\\omega_{lat} = 0.097 * clay(\\%)$ | $\\omega_{lat} = -0.028 + 0.077 * clay(\\%) + 0.459 * carbon(\\%)$\n    Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab. |  Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.\n\n    Args:\n        clay_content (float): Clay content in the soil in percent.\n        total_carbon (float, optional): Total carbon content in the soil in percent.\n            If None, the amount of water is estimated based on clay content only.\n\n    Returns:\n        (float): Amount of water in the lattice of clay minerals in percent\n    \"\"\"\n    if total_carbon is None:\n        lattice_water = 0.097 * clay_content\n    else:\n        lattice_water = -0.028 + 0.077 * clay_content + 0.459 * total_carbon\n    return lattice_water\n
    "},{"location":"reference/#crnpy.crnpy.nrad_weight","title":"nrad_weight(h, theta, distances, depth, rhob=1.4)","text":"

    Function to compute distance weights corresponding to each soil sample.

    Parameters:

    Name Type Description Default h float

    Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting.

    required theta array or pd.Series or pd.DataFrame

    Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)

    required distances array or pd.Series or pd.DataFrame

    Distances from the location of each sample to the origin (0.5 - 600 m)

    required depth array or pd.Series or pd.DataFrame

    Depths for each sample (m)

    required rhob float

    Bulk density in g/cm^3

    1.4

    Returns:

    Type Description array or pd.Series or pd.DataFrame

    Distance weights for each sample.

    References

    K\u00f6hli, M., Schr\u00f6n, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour. Res. 51, 5772\u20135790. doi:10.1002/2015WR017169

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def nrad_weight(h,theta,distances,depth,rhob=1.4):\n\"\"\"Function to compute distance weights corresponding to each soil sample.\n\n    Args:\n        h (float): Air Humidity  from 0.1  to 50 in g/m^3. When h=0, the function will skip the distance weighting.\n        theta (array or pd.Series or pd.DataFrame): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)\n        distances (array or pd.Series or pd.DataFrame): Distances from the location of each sample to the origin (0.5 - 600 m)\n        depth (array or pd.Series or pd.DataFrame): Depths for each sample (m)\n        rhob (float): Bulk density in g/cm^3\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Distance weights for each sample.\n\n    References:\n        K\u00f6hli, M., Schr\u00f6n, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015).\n        Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray\n        neutrons. Water Resour. Res. 51, 5772\u20135790. doi:10.1002/2015WR017169\n    \"\"\"\n\n    # Table A1. Parameters for Fi and D86\n    p10 = 8735;       p11 = 17.1758; p12 = 11720;      p13 = 0.00978;   p14 = 7045;      p15 = 0.003632;\n    p20 = 2.7925e-2;  p21 = 5.0399;  p22 = 2.8544e-2;  p23 = 0.002455;  p24 = 6.851e-5;  p25 = 9.2926;\n    p30 = 247970;     p31 = 17.63;   p32 = 374655;     p33 = 0.00191;   p34 = 195725;\n    p40 = 5.4818e-2;  p41 = 15.921;  p42 = 0.6373;     p43 = 5.99e-2;   p44 = 5.425e-4;\n    p50 = 1383702;    p51 = 4.156;   p52 = 5325;       p53 = 0.00238;   p54 = 0.0156;    p55 = 0.130;     p56 = 1521;\n    p60 = 6.031e-5;   p61 = 98.5;    p62 = 1.0466e-3;\n    p70 = 11747;      p71 = 41.66;   p72 = 4521;       p73 = 0.01998;   p74 = 0.00604;   p75 = 2534;      p76 = 0.00475;\n    p80 = 1.543e-2;   p81 = 10.06;   p82 = 1.807e-2;   p83 = 0.0011;    p84 = 8.81e-5;   p85 = 0.0405;    p86 = 20.24;\n    p90 = 8.321;      p91 = 0.14249; p92 = 0.96655;    p93 = 26.42;     p94 = 0.0567;\n\n\n    # Numerical determination of the penetration depth (86%) (Eq. 8)\n    D86 = 1/rhob*(p90+p91*(p92+np.exp(-1*distances/100))*(p93+theta)/(p94+theta))\n\n    # Depth weights (Eq. 7)\n    Wd = np.exp(-2*depth/D86)\n\n    if h == 0:\n        W = 1 # skip distance weighting\n\n    elif (h >= 0.1) and (h<= 50):\n        # Functions for Fi (Appendix A in K\u00f6hli et al., 2015)\n        F1 = p10*(1+p13*h)*np.exp(-p11*theta)+p12*(1+p15*h)-p14*theta\n        F2 = ((-p20+p24*h)*np.exp(-p21*theta/(1+p25*theta))+p22)*(1+h*p23)\n        F3 = (p30*(1+p33*h)*np.exp(-p31*theta)+p32-p34*theta)\n        F4 = p40*np.exp(-p41*theta)+p42-p43*theta+p44*h\n        F5 = p50*(0.02-1/p55/(h-p55+p56*theta))*(p54-theta)*np.exp(-p51*(theta-p54))+p52*(0.7-h*theta*p53)\n        F6 = p60*(h+p61)+p62*theta\n        F7 = (p70*(1-p76*h)*np.exp(-p71*theta*(1-h*p74))+p72-p75*theta)*(2+h*p73)\n        F8 = ((-p80+p84*h)*np.exp(-p81*theta/(1+p85*h+p86*theta))+p82)*(2+h*p83)\n\n        # Distance weights (Eq. 3)\n        W = np.ones_like(distances)*np.nan\n        for i in range(len(distances)):\n            if (distances[i]<=50) and (distances[i]>0.5):\n                W[i]=F1[i]*(np.exp(-F2[i]*distances[i]))+F3[i]*np.exp(-F4[i]*distances[i])\n\n            elif (distances[i]>50) and (distances[i]<600):\n                W[i]=F5[i]*(np.exp(-F6[i]*distances[i]))+F7[i]*np.exp(-F8[i]*distances[i])\n\n            else:\n                raise ValueError('Input distances are not valid.')\n\n    else:\n        raise ValueError('Air humidity values are out of range.')\n\n\n    # Combined and normalized weights\n    weights = Wd*W/np.nansum(Wd*W)\n\n    return weights\n
    "},{"location":"reference/#crnpy.crnpy.remove_incomplete_intervals","title":"remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False)","text":"

    Function that removes rows with incomplete integration intervals.

    Parameters:

    Name Type Description Default df pandas.DataFrame

    Pandas Dataframe with data from stationary or roving CRNP devices.

    required timestamp_col str

    Name of the column with timestamps in datetime format.

    required integration_time int

    Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds.

    required remove_first bool

    Remove first row. Default is False.

    False

    Returns:

    Type Description pandas.DataFrame Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False):\n\"\"\"Function that removes rows with incomplete integration intervals.\n\n    Args:\n        df (pandas.DataFrame): Pandas Dataframe with data from stationary or roving CRNP devices.\n        timestamp_col (str): Name of the column with timestamps in datetime format.\n        integration_time (int): Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds.\n        remove_first (bool, optional): Remove first row. Default is False.\n\n    Returns:\n        (pandas.DataFrame): \n    \"\"\"\n\n    # Check format of timestamp column\n    if df[timestamp_col].dtype != 'datetime64[ns]':\n        raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.')\n\n    # Check if differences in timestamps are below or above the provided integration time\n    idx_delta = df[timestamp_col].diff().dt.total_seconds() != integration_time\n\n    if remove_first:\n        idx_delta[0] = True\n\n    # Select rows that meet the specified integration time\n    df = df[~idx_delta]\n    df.reset_index(drop=True, inplace=True)\n\n    # Notify user about the number of rows that have been removed\n    print(f\"Removed a total of {sum(idx_delta)} rows.\")\n\n    return df\n
    "},{"location":"reference/#crnpy.crnpy.rover_centered_coordinates","title":"rover_centered_coordinates(x, y)","text":"

    Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed.

    Parameters:

    Name Type Description Default x array

    x coordinates.

    required y array

    y coordinates.

    required

    Returns:

    Name Type Description x_est array

    Estimated x coordinates.

    y_est array

    Estimated y coordinates.

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def rover_centered_coordinates(x, y):\n\"\"\"Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed.\n\n    Args:\n        x (array): x coordinates.\n        y (array): y coordinates.\n\n    Returns:\n        x_est (array): Estimated x coordinates.\n        y_est (array): Estimated y coordinates.\n    \"\"\"\n\n    # Make it datatype agnostic\n    if(isinstance(x, pd.Series)):\n        x = x.values\n    if(isinstance(y, pd.Series)):\n        y = y.values\n\n    # Do the average of the two points\n    x_est = (x[1:] + x[:-1]) / 2\n    y_est = (y[1:] + y[:-1]) / 2\n\n    # Add the first point to match the length of the original array\n    x_est = np.insert(x_est, 0, x[0])\n    y_est = np.insert(y_est, 0, y[0])\n\n\n    return x_est, y_est\n
    "},{"location":"reference/#crnpy.crnpy.sensing_depth","title":"sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017')","text":"

    Function that computes the estimated sensing depth of the cosmic-ray neutron probe. The function offers several methods to compute the depth at which 86 % of the neutrons probe the soil profile.

    Parameters:

    Name Type Description Default vwc array or pd.Series or pd.DataFrame

    Estimated volumetric water content for each timestamp.

    required pressure array or pd.Series or pd.DataFrame

    Atmospheric pressure in hPa for each timestamp.

    required p_ref float

    Reference pressure in hPa.

    required bulk_density float

    Soil bulk density.

    required Wlat float

    Lattice water content.

    required method str

    Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'.

    'Schron_2017' dist list or array

    List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method.

    None

    Returns:

    Type Description array or pd.Series or pd.DataFrame

    Estimated sensing depth in m.

    References

    Franz, T.E., Zreda, M., Ferre, T.P.A., Rosolem, R., Zweck, C., Stillman, S., Zeng, X. and Shuttleworth, W.J., 2012. Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources. Water Resources Research, 48(8). doi.org/10.1029/2012WR011871

    Schr\u00f6n, M., K\u00f6hli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., et al. (2017). Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrol. Earth Syst. Sci. 21, 5009\u20135030. doi.org/10.5194/hess-21-5009-2017

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017'):\n    # Convert docstring to google format\n\"\"\"Function that computes the estimated sensing depth of the cosmic-ray neutron probe.\n    The function offers several methods to compute the depth at which 86 % of the neutrons\n    probe the soil profile.\n\n    Args:\n        vwc (array or pd.Series or pd.DataFrame): Estimated volumetric water content for each timestamp.\n        pressure (array or pd.Series or pd.DataFrame): Atmospheric pressure in hPa for each timestamp.\n        p_ref (float): Reference pressure in hPa.\n        bulk_density (float): Soil bulk density.\n        Wlat (float): Lattice water content.\n        method (str): Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'.\n        dist (list or array): List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Estimated sensing depth in m.\n\n    References:\n        Franz, T.E., Zreda, M., Ferre, T.P.A., Rosolem, R., Zweck, C., Stillman, S., Zeng, X. and Shuttleworth, W.J., 2012.\n        Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources.\n        Water Resources Research, 48(8). doi.org/10.1029/2012WR011871\n\n        Schr\u00f6n, M., K\u00f6hli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., et al. (2017).\n        Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity.\n        Hydrol. Earth Syst. Sci. 21, 5009\u20135030. doi.org/10.5194/hess-21-5009-2017\n    \"\"\"\n\n    # Determine sensing depth (D86)\n    if method == 'Schron_2017':\n        # See Appendix A of Schr\u00f6n et al. (2017)\n        Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref));\n        Fveg = 0\n        results = []\n        for d in dist:\n            # Compute r_star\n            r_start = d/Fp\n\n            # Compute soil depth that accounts for 86% of the neutron flux\n            D86 = 1/ bulk_density * (8.321+0.14249*(0.96655 + np.exp(-0.01*r_start))*(20+(Wlat+vwc)) / (0.0429+(Wlat+vwc)))\n            results.append(D86)\n\n    elif method == 'Franz_2012':\n        results = 5.8/(bulk_density*Wlat+vwc+0.0829)\n    else:\n        raise ValueError('Method not recognized. Please select either \"Schron_2017\" or \"Franz_2012\".')\n\n    return results\n
    "},{"location":"reference/#crnpy.crnpy.smooth_1d","title":"smooth_1d(values, window=5, order=3, method='moving_median')","text":"

    Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content).

    Parameters:

    Name Type Description Default values pd.DataFrame or pd.Serie

    Dataframe containing the values to smooth.

    required window int

    Window size for the Savitzky-Golay filter. Default is 5.

    5 method str

    Method to use for smoothing the data. Default is 'moving_median'. Options are 'moving_average', 'moving_median' and 'savitzky_golay'.

    'moving_median' order int

    Order of the Savitzky-Golay filter. Default is 3.

    3

    Returns:

    Type Description pd.DataFrame

    DataFrame with smoothed values.

    References

    Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9. doi.org/10.3389/frwa.2020.00009

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def smooth_1d(values, window=5, order=3, method='moving_median'):\n\"\"\"Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content).\n\n    Args:\n        values (pd.DataFrame or pd.Serie): Dataframe containing the values to smooth.\n        window (int): Window size for the Savitzky-Golay filter. Default is 5.\n        method (str): Method to use for smoothing the data. Default is 'moving_median'.\n            Options are 'moving_average', 'moving_median' and 'savitzky_golay'.\n        order (int): Order of the Savitzky-Golay filter. Default is 3.\n\n    Returns:\n        (pd.DataFrame): DataFrame with smoothed values.\n\n    References:\n        Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020.\n        Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.\n        doi.org/10.3389/frwa.2020.00009\n    \"\"\"\n\n    if method == 'moving_average':\n        corrected_counts = values.rolling(window=window, center=True, min_periods=1).mean()\n    elif method == 'moving_median':\n        corrected_counts = values.rolling(window=window, center=True, min_periods=1).median()\n\n    elif method == 'savitzky_golay':\n        if values.isna().any():\n            print('Dataframe contains NaN values. Please remove NaN values before smoothing the data.')\n\n        if type(values) == pd.core.series.Series:\n            filtered = savgol_filter(values,window,order)\n            corrected_counts = pd.DataFrame(filtered,columns=['smoothed'], index=values.index)\n        elif type(values) == pd.core.frame.DataFrame:\n            for col in values.columns:\n                values[col] = savgol_filter(values[col],window,order)\n    else:\n        raise ValueError('Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay')\n    corrected_counts = corrected_counts.ffill(limit=window).bfill(limit=window).copy()\n    return corrected_counts\n
    "},{"location":"reference/#crnpy.crnpy.spatial_average","title":"spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False)","text":"

    Moving buffer filter to smooth georeferenced two-dimensional data.

    Parameters:

    Name Type Description Default x list or array

    UTM x coordinates in meters.

    required y list or array

    UTM y coordinates in meters.

    required z list or array

    Values to be smoothed.

    required buffer float

    Radial buffer distance in meters.

    100 min_neighbours int

    Minimum number of neighbours to consider for the smoothing.

    3 method str

    One of 'mean' or 'median'.

    'mean' rnd bool

    Boolean to round the final result. Useful in case of z representing neutron counts.

    False

    Returns:

    Type Description array

    Smoothed version of z with the same dimension as z.

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False):\n\"\"\"Moving buffer filter to smooth georeferenced two-dimensional data.\n\n    Args:\n        x (list or array): UTM x coordinates in meters.\n        y (list or array): UTM y coordinates in meters.\n        z (list or array): Values to be smoothed.\n        buffer (float): Radial buffer distance in meters.\n        min_neighbours (int): Minimum number of neighbours to consider for the smoothing.\n        method (str): One of 'mean' or 'median'.\n        rnd (bool): Boolean to round the final result. Useful in case of z representing neutron counts.\n\n    Returns:\n        (array): Smoothed version of z with the same dimension as z.\n    \"\"\"\n\n    # Convert input data to Numpy arrays\n    if (type(x) is not np.ndarray) or (type(y) is not np.ndarray):\n        try:\n            x = np.array(x)\n            y = np.array(y)\n        except:\n            raise \"Input values cannot be converted to Numpy arrays.\"\n\n    if len(x) != len(y):\n        raise f\"The number of x and y must be equal. Input x has {len(x)} values and y has {len(y)} values.\"\n\n    # Compute distances\n    N = len(x)\n    z_smooth = np.array([])\n    for k in range(N):\n        px = x[k]\n        py = y[k]\n\n        distances = euclidean_distance(px, py, x, y)\n        idx_within_buffer = distances <= buffer\n\n\n        if np.isnan(z[k]):\n            z_new_val = np.nan\n        elif len(distances[idx_within_buffer]) > min_neighbours:\n            if method == 'mean':\n                z_new_val = np.nanmean(z[idx_within_buffer])\n            elif method == 'median':\n                z_new_val = np.nanmedian(z[idx_within_buffer])\n            else:\n                raise f\"Method {method} does not exist. Provide either 'mean' or 'median'.\"\n        else:\n            z_new_val = z[k] # If there are not enough neighbours, keep the original value\n\n        # Append smoothed value to array\n        z_smooth = np.append(z_smooth, z_new_val)\n\n    if rnd:\n        z_smooth = np.round(z_smooth, 0)\n\n    return z_smooth\n
    "},{"location":"reference/#crnpy.crnpy.total_raw_counts","title":"total_raw_counts(counts, nan_strategy=None, timestamp_col=None)","text":"

    Compute the sum of uncorrected neutron counts for all detectors.

    Parameters:

    Name Type Description Default counts pandas.DataFrame

    Dataframe containing only the columns with neutron counts.

    required nan_strategy str

    Strategy to use for NaN values. Options are 'interpolate', 'average', or None. Default is None.

    None

    Returns:

    Type Description pandas.DataFrame

    Dataframe with the sum of uncorrected neutron counts for all detectors.

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def total_raw_counts(counts, nan_strategy=None, timestamp_col=None):\n\"\"\"Compute the sum of uncorrected neutron counts for all detectors.\n\n    Args:\n        counts (pandas.DataFrame): Dataframe containing only the columns with neutron counts.\n        nan_strategy (str): Strategy to use for NaN values. Options are 'interpolate', 'average', or None. Default is None.\n\n    Returns:\n        (pandas.DataFrame): Dataframe with the sum of uncorrected neutron counts for all detectors.\n    \"\"\"\n\n    if counts.shape[0] > 1:\n        counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)),axis=0)\n\n    # Compute sum of counts\n    total_raw_counts = counts.sum(axis=1)\n\n    # Replace zeros with NaN\n    total_raw_counts = total_raw_counts.replace(0, np.nan)\n\n    return total_raw_counts\n
    "},{"location":"reference/#crnpy.crnpy.uncertainty_counts","title":"uncertainty_counts(raw_counts, metric='std', fp=1, fw=1, fi=1)","text":"

    Function to estimate the uncertainty of raw counts.

    Measurements of proportional neutron detector systems are governed by counting statistics that follow a Poissonian probability distribution (Zreda et al., 2012). The expected uncertainty in the neutron count rate $N$ is defined by the standard deviation $ \\sqrt{N} $ (Jakobi et al., 2020). The CV% can be expressed as $ N^{-1/2} $

    Parameters:

    Name Type Description Default raw_counts array

    Raw neutron counts.

    required metric str

    Either 'std' or 'cv' for standard deviation or coefficient of variation.

    'std' fp float

    Pressure correction factor.

    1 fw float

    Humidity correction factor.

    1 fi float

    Incoming neutron flux correction factor.

    1

    Returns:

    Name Type Description uncertainty float

    Uncertainty of raw counts.

    References

    Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079\u20134099, https://doi.org/10.5194/hess-16-4079-2012, 2012.

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def uncertainty_counts(raw_counts, metric=\"std\", fp=1, fw=1, fi=1):\n\"\"\"Function to estimate the uncertainty of raw counts.\n\n    Measurements of proportional neutron detector systems are governed by counting statistics that follow a Poissonian probability distribution (Zreda et al., 2012).\n    The expected uncertainty in the neutron count rate $N$ is defined by the standard deviation $ \\sqrt{N} $ (Jakobi et al., 2020).\n    The CV% can be expressed as $ N^{-1/2} $\n\n    Args:\n        raw_counts (array): Raw neutron counts.\n        metric (str): Either 'std' or 'cv' for standard deviation or coefficient of variation.\n        fp (float): Pressure correction factor.\n        fw (float): Humidity correction factor.\n        fi (float): Incoming neutron flux correction factor.\n\n    Returns:\n        uncertainty (float): Uncertainty of raw counts.\n\n    References:\n        Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With\n        Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010\n\n        Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System,\n        Hydrol. Earth Syst. Sci., 16, 4079\u20134099, https://doi.org/10.5194/hess-16-4079-2012, 2012.\n\n    \"\"\"\n\n    s = fw / (fp * fi)\n    if metric == \"std\":\n        uncertainty = np.sqrt(raw_counts) * s\n    elif metric == \"cv\":\n        uncertainty = 1 /  np.sqrt(raw_counts) * s\n    else:\n        raise f\"Metric {metric} does not exist. Provide either 'std' or 'cv' for standard deviation or coefficient of variation.\"\n    return uncertainty\n
    "},{"location":"reference/#crnpy.crnpy.uncertainty_vwc","title":"uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115)","text":"

    Function to estimate the uncertainty propagated to volumetric water content.

    The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts. Following Eq. 10 in Jakobi et al. (2020), the uncertainty of the volumetric water content can be expressed as: $$ \\sigma_{\\theta_g}(N) = \\sigma_N \\frac{a_0 N_0}{(N_{cor} - a_1 N_0)^4} \\sqrt{(N_{cor} - a_1 N_0)^4 + 8 \\sigma_N^2 (N_{cor} - a_1 N_0)^2 + 15 \\sigma_N^4} $$

    Parameters:

    Name Type Description Default raw_counts array

    Raw neutron counts.

    required N0 float

    Calibration parameter N0.

    required bulk_density float

    Bulk density in g cm-3.

    required fp float

    Pressure correction factor.

    1 fw float

    Humidity correction factor.

    1 fi float

    Incoming neutron flux correction factor.

    1

    Returns:

    Name Type Description sigma_VWC float

    Uncertainty in terms of volumetric water content.

    References

    Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010

    Source code in C:\\Users\\jperaza\\AppData\\Local\\anaconda3\\envs\\crnpy\\lib\\site-packages\\crnpy\\crnpy.py
    def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808,a1=0.372,a2=0.115):\nr\"\"\"Function to estimate the uncertainty propagated to volumetric water content.\n\n    The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts.\n    Following Eq. 10 in Jakobi et al. (2020), the uncertainty of the volumetric water content can be expressed as:\n    $$\n    \\sigma_{\\theta_g}(N) = \\sigma_N \\frac{a_0 N_0}{(N_{cor} - a_1 N_0)^4} \\sqrt{(N_{cor} - a_1 N_0)^4 + 8 \\sigma_N^2 (N_{cor} - a_1 N_0)^2 + 15 \\sigma_N^4}\n    $$\n\n    Args:\n        raw_counts (array): Raw neutron counts.\n        N0 (float): Calibration parameter N0.\n        bulk_density (float): Bulk density in g cm-3.\n        fp (float): Pressure correction factor.\n        fw (float): Humidity correction factor.\n        fi (float): Incoming neutron flux correction factor.\n\n    Returns:\n        sigma_VWC (float): Uncertainty in terms of volumetric water content.\n\n    References:\n        Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With\n        Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010\n    \"\"\"\n\n    Ncorr = raw_counts * fw / (fp * fi)\n    sigma_N = uncertainty_counts(raw_counts, metric=\"std\", fp=fp, fw=fw, fi=fi)\n    sigma_GWC = sigma_N * ((a0*N0) / ((Ncorr - a1*N0)**4)) * np.sqrt((Ncorr - a1 * N0)**4 + 8 * sigma_N**2 * (Ncorr - a1 * N0)**2 + 15 * sigma_N**4)\n    sigma_VWC = sigma_GWC * bulk_density\n\n    return sigma_VWC\n
    "},{"location":"reference/#crnpy.data--crnpydata","title":"crnpy.data","text":"

    Data module for crnpy.

    This module contains data for the crnpy package.

    Attributes:

    Name Type Description cutoff_rigidity list

    Cutoff rigidity values for the whole world. See crnpy.crnpy.cutoff_rigidity

    neutron_detectors list

    Neutron detector locations. See crnpy.crnpy.find_neutron_monitor

    "},{"location":"sensor_description/","title":"Sensor description","text":"

    The cosmic-ray neutron sensing technology is an innovative and non-invasive method for monitoring soil moisture. The sensing principle is based on the detection of neutrons that are generated when cosmic rays interact with atoms in the Earth's atmosphere. These neutrons, in turn, interact with hydrogen pools in the land surface, and thus, the intensity of neutrons detected near the ground surface is inversely related to the amunt of water in land biomass and the top layers of the soil. Typically, cosmic-ray neutron probes have a large sensing footprint, covering an area of approximately 12 hectares (about 30 acres) and can measure soil moisture up to a depth of 70 cm (about 28 inches), although typically most field applications span a depth between 5 and 40 cm. This makes the technology particularly useful for capturing spatially-averaged soil moisture over large areas, bridging the gap between point measurements and remote sensing. In hydrology, cosmic-ray neutron sensors are used for watershed studies, understanding water balance, and improving hydrological models. In agriculture, they are employed for irrigation management, crop yield prediction, and understanding the effects of soil moisture on plant growth. The technology's ability to provide continuous, real-time data without disturbing the soil makes it a valuable tool for both hydrological and agricultural research.

    Figure 1. A) Stationary detector manufactured by Radiation Detection Technologies, Inc. (Manhattan, KS). B) Stationary detector manufactured by Hydroinnova, Inc. (Albuquerque, NM). C) Roving detector manufactured by Hydroinnova, Inc. (Albuquerque, NM).

    Figure 2. Illustration showing the approximate sensing footprint of stationary detectors.

    "},{"location":"examples/calibration/calibration/","title":"Device-specific field calibration","text":"In\u00a0[1]: Copied!
    # Importing required libraries\nimport crnpy\n\nimport numpy as np\nimport pandas as pd\nfrom scipy.optimize import root\n
    # Importing required libraries import crnpy import numpy as np import pandas as pd from scipy.optimize import root In\u00a0[2]: Copied!
    # Load the soil samples data and the CRNP dataset using pandas\nurl_soil_samples = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/calibration/soil_data.csv\"\ndf_soil = pd.read_csv(url_soil_samples)\ndf_soil.head(3)\n
    # Load the soil samples data and the CRNP dataset using pandas url_soil_samples = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/calibration/soil_data.csv\" df_soil = pd.read_csv(url_soil_samples) df_soil.head(3) Out[2]: field date core_number distance_from_station latitude longitude top_depth bottom_depth core_diameter wet_mass_with_bag ... can_number mass_empty_can wet_mass_with_can dry_mass_with_can mass_water theta_g volume bulk_density theta_v Observation 0 Flickner 22-Oct 1 5 N38.23459 W97.57101 0 5 30.49 45.31 ... 1 52.10 92.03 85.31 6.72 0.202 36.514864 0.909 0.184403 NaN 1 Flickner 22-Oct 1 5 N38.23459 W97.57101 5 10 30.49 69.53 ... 2 51.85 115.97 103.85 12.12 0.233 36.514864 1.424 0.332585 NaN 2 Flickner 22-Oct 1 5 N38.23459 W97.57101 10 25 30.49 214.90 ... 3 51.56 260.97 219.77 41.20 0.245 109.544592 1.536 0.376856 NaN

    3 rows \u00d7 21 columns

    In\u00a0[3]: Copied!
    # Define start and end of field survey calibration\ncalibration_start = pd.to_datetime(\"2021-10-22 08:00\")\ncalibration_end = pd.to_datetime(\"2021-10-22 16:00\")\n
    # Define start and end of field survey calibration calibration_start = pd.to_datetime(\"2021-10-22 08:00\") calibration_end = pd.to_datetime(\"2021-10-22 16:00\") In\u00a0[4]: Copied!
    # Load the station data\nurl_station_data = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/calibration/station_data.csv\"\ndf_station = pd.read_csv(url_station_data, skiprows=[0,2,3])\n\n#  Parse dates (you can also use the option `parse_dates=['TIMESTAMP]` in pd.read_csv()\ndf_station['timestamp'] = pd.to_datetime(df_station['TIMESTAMP'], format='%Y-%m-%d %H:%M:%S')\n\ndf_station.head(3)\n
    # Load the station data url_station_data = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/calibration/station_data.csv\" df_station = pd.read_csv(url_station_data, skiprows=[0,2,3]) # Parse dates (you can also use the option `parse_dates=['TIMESTAMP]` in pd.read_csv() df_station['timestamp'] = pd.to_datetime(df_station['TIMESTAMP'], format='%Y-%m-%d %H:%M:%S') df_station.head(3) Out[4]: TIMESTAMP RECORD station farm field latitude longitude altitude battery_voltage_Min PTemp_Avg ... wind_speed_gust_Max air_temperature_Avg vapor_pressure_Avg barometric_pressure_Avg relative_humidity_Avg humidity_sensor_temperature_Avg tilt_north_south_Avg tilt_west_east_Avg NDVI_Avg timestamp 0 2021-09-22 12:00:00 0 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.52 29.04 ... 4.20 22.30 9.20 973 41.30 26.4 -1.000 1.000 0.311 2021-09-22 12:00:00 1 2021-09-22 13:00:00 1 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.53 29.98 ... 9.02 22.90 9.08 972 32.63 26.8 -0.975 0.950 0.308 2021-09-22 13:00:00 2 2021-09-22 14:00:00 2 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.53 30.43 ... 5.54 23.38 8.68 971 30.25 27.2 -0.775 0.625 0.31 2021-09-22 14:00:00

    3 rows \u00d7 28 columns

    In\u00a0[5]: Copied!
    # Define date in which the probe was deployed in the field (i.e., first record)\ndeployment_date = df_station['timestamp'].iloc[0]\n\n# Filter station data from the first record to the end of the field survey calibration\n# This is important since we are considering the incoming flux on the first day as the reference value\nidx_period = (df_station['timestamp'] >= deployment_date) & (df_station['timestamp'] <= calibration_end)\ndf_station = df_station[idx_period]\ndf_station.head(3)\n
    # Define date in which the probe was deployed in the field (i.e., first record) deployment_date = df_station['timestamp'].iloc[0] # Filter station data from the first record to the end of the field survey calibration # This is important since we are considering the incoming flux on the first day as the reference value idx_period = (df_station['timestamp'] >= deployment_date) & (df_station['timestamp'] <= calibration_end) df_station = df_station[idx_period] df_station.head(3) Out[5]: TIMESTAMP RECORD station farm field latitude longitude altitude battery_voltage_Min PTemp_Avg ... wind_speed_gust_Max air_temperature_Avg vapor_pressure_Avg barometric_pressure_Avg relative_humidity_Avg humidity_sensor_temperature_Avg tilt_north_south_Avg tilt_west_east_Avg NDVI_Avg timestamp 0 2021-09-22 12:00:00 0 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.52 29.04 ... 4.20 22.30 9.20 973 41.30 26.4 -1.000 1.000 0.311 2021-09-22 12:00:00 1 2021-09-22 13:00:00 1 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.53 29.98 ... 9.02 22.90 9.08 972 32.63 26.8 -0.975 0.950 0.308 2021-09-22 13:00:00 2 2021-09-22 14:00:00 2 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.53 30.43 ... 5.54 23.38 8.68 971 30.25 27.2 -0.775 0.625 0.31 2021-09-22 14:00:00

    3 rows \u00d7 28 columns

    This step is useful to trim large timeseries. For instance, the station data in our case extends until 2022-07-11 09:45:00, but the field calibration was conducted in 2021-10-22 16:00. Since all the station observation after the date of the field calibration are not relevent, we decided to only work with the data that we need from 2021-09-22 12:00:00 until 2021-10-22 16:00. This could help getting data of incoming neutron flux from a single reference neutron monitor. So, if you are running this code shortly after the calibration field survey, then there is no need to filter station data.

    In\u00a0[6]: Copied!
    # Compute total neutron counts by adding the counts from both probe detectors\ndf_station['total_raw_counts'] = crnpy.total_raw_counts(df_station[['counts_1_Tot','counts_2_Tot']],\n                                                    nan_strategy='average')\n
    # Compute total neutron counts by adding the counts from both probe detectors df_station['total_raw_counts'] = crnpy.total_raw_counts(df_station[['counts_1_Tot','counts_2_Tot']], nan_strategy='average') In\u00a0[7]: Copied!
    # Atmospheric corrections\n\n# Fill NaN values in atmospheric data\ndf_station[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']] = df_station[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both')\n\n# Calculate absolute humidity\ndf_station['abs_humidity'] = crnpy.abs_humidity(df_station['relative_humidity_Avg'], df_station['air_temperature_Avg'])\n\n# Compute correction factor for atmospheric pressure\n# Reference atmospheric pressure for the location is 976 Pa\n# Using an atmospheric attentuation coefficient of 130 g/cm2\ndf_station['fp'] = crnpy.correction_pressure(pressure=df_station['barometric_pressure_Avg'],\n                                             Pref=976, L=130)\n\n# Compute correction factor for air humidity\ndf_station['fw'] = crnpy.correction_humidity(abs_humidity=df_station['abs_humidity'],\n                                             Aref=0)\n
    # Atmospheric corrections # Fill NaN values in atmospheric data df_station[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']] = df_station[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both') # Calculate absolute humidity df_station['abs_humidity'] = crnpy.abs_humidity(df_station['relative_humidity_Avg'], df_station['air_temperature_Avg']) # Compute correction factor for atmospheric pressure # Reference atmospheric pressure for the location is 976 Pa # Using an atmospheric attentuation coefficient of 130 g/cm2 df_station['fp'] = crnpy.correction_pressure(pressure=df_station['barometric_pressure_Avg'], Pref=976, L=130) # Compute correction factor for air humidity df_station['fw'] = crnpy.correction_humidity(abs_humidity=df_station['abs_humidity'], Aref=0) In\u00a0[8]: Copied!
    # Find the cutoff rigidity for the location\ncutoff_rigidity = crnpy.cutoff_rigidity(39.1, -96.6)\n\n# Filtering the time window from experiment setup to the end of the calibration\ncrnpy.find_neutron_monitor(cutoff_rigidity,\n                           start_date=df_station['timestamp'].iloc[0],\n                           end_date=df_station['timestamp'].iloc[-1])\n
    # Find the cutoff rigidity for the location cutoff_rigidity = crnpy.cutoff_rigidity(39.1, -96.6) # Filtering the time window from experiment setup to the end of the calibration crnpy.find_neutron_monitor(cutoff_rigidity, start_date=df_station['timestamp'].iloc[0], end_date=df_station['timestamp'].iloc[-1])
    \nSelect a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n\nYour cutoff rigidity is 2.87 GV\n     STID     NAME     R  Altitude_m  Period available\n13   DRBS  Dourbes  3.18         225              True\n40   NEWK   Newark  2.40          50              True\n28  KIEL2   KielRT  2.36          54              True\n
    Out[8]: STID NAME R Altitude_m Period available 13 DRBS Dourbes 3.18 225 True 40 NEWK Newark 2.40 50 True 28 KIEL2 KielRT 2.36 54 True In\u00a0[9]: Copied!
    # Incoming neutron flux correction\n\n# Download data for the reference neutron monitor and add it to the DataFrame\nnmdb = crnpy.get_incoming_neutron_flux(deployment_date,\n                                        calibration_end,\n                                        station=\"DRBS\",\n                                        utc_offset=-6)\n\n# Interpolate incoming neutron flux to match the timestamps in our station data\ndf_station['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df_station['timestamp'])\n\n# Compute correction factor for incoming neutron flux\ndf_station['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df_station['incoming_flux'],\n                                                  incoming_Ref=df_station['incoming_flux'].iloc[0])\n
    # Incoming neutron flux correction # Download data for the reference neutron monitor and add it to the DataFrame nmdb = crnpy.get_incoming_neutron_flux(deployment_date, calibration_end, station=\"DRBS\", utc_offset=-6) # Interpolate incoming neutron flux to match the timestamps in our station data df_station['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df_station['timestamp']) # Compute correction factor for incoming neutron flux df_station['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df_station['incoming_flux'], incoming_Ref=df_station['incoming_flux'].iloc[0]) In\u00a0[10]: Copied!
    # Apply correction factors\ndf_station['total_corrected_neutrons'] = df_station['total_raw_counts'] * df_station['fw'] / (df_station['fp'] * df_station['fi'])\n
    # Apply correction factors df_station['total_corrected_neutrons'] = df_station['total_raw_counts'] * df_station['fw'] / (df_station['fp'] * df_station['fi']) In\u00a0[11]: Copied!
    # Compute the weights of each sample for the field average\nnrad_weights = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean())\n\n# Apply distance weights to volumetric water content and bulk density\nfield_theta_v = np.sum(df_soil['theta_v']*nrad_weights)\nfield_bulk_density = np.sum(df_soil['bulk_density']*nrad_weights)\n
    # Compute the weights of each sample for the field average nrad_weights = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean()) # Apply distance weights to volumetric water content and bulk density field_theta_v = np.sum(df_soil['theta_v']*nrad_weights) field_bulk_density = np.sum(df_soil['bulk_density']*nrad_weights) In\u00a0[12]: Copied!
    # Determine the mean corrected counts during the calibration survey\nidx_cal_period = (df_station['timestamp'] >= calibration_start) & (df_station['timestamp'] <= calibration_end)\nmean_cal_counts = df_station.loc[idx_cal_period, 'total_corrected_neutrons'].mean()\n\nprint(f\"Mean volumetric Water content during calibration survey: {round(field_theta_v,3)}\")\nprint(f\"Mean corrected counts during calibration: {round(mean_cal_counts)} counts\")\n
    # Determine the mean corrected counts during the calibration survey idx_cal_period = (df_station['timestamp'] >= calibration_start) & (df_station['timestamp'] <= calibration_end) mean_cal_counts = df_station.loc[idx_cal_period, 'total_corrected_neutrons'].mean() print(f\"Mean volumetric Water content during calibration survey: {round(field_theta_v,3)}\") print(f\"Mean corrected counts during calibration: {round(mean_cal_counts)} counts\")
    Mean volumetric Water content during calibration survey: 0.263\nMean corrected counts during calibration: 1542 counts\n
    In\u00a0[13]: Copied!
    # Define the function for which we want to find the roots\nVWC_func = lambda N0 : crnpy.counts_to_vwc(mean_cal_counts, N0, bulk_density=field_bulk_density, Wlat=0.03, Wsoc=0.01) - field_theta_v\n\n# Make an initial guess for N0\nN0_initial_guess = 1000\n\n# Find the root\nsol = int(root(VWC_func, N0_initial_guess).x)\n\n# Print the solution\nprint(f\"The solved value for N0 is: {sol}\")\n
    # Define the function for which we want to find the roots VWC_func = lambda N0 : crnpy.counts_to_vwc(mean_cal_counts, N0, bulk_density=field_bulk_density, Wlat=0.03, Wsoc=0.01) - field_theta_v # Make an initial guess for N0 N0_initial_guess = 1000 # Find the root sol = int(root(VWC_func, N0_initial_guess).x) # Print the solution print(f\"The solved value for N0 is: {sol}\")
    The solved value for N0 is: 2644\n
    "},{"location":"examples/calibration/calibration/#device-specific-field-calibration","title":"Device-specific field calibration\u00b6","text":"

    The calibration of a cosmic-ray neutron probe (CRNP) is an essential step to ensure accurate soil moisture measurements. The CRNP operates by counting fast neutrons produced from cosmic rays, which are predominantly moderated by water molecules in the soil. The parameter $N_0$ is typically considered a device-specific constant that represents the neutron count rate in the absence of soil moisture conditions.

    $\\theta(N) =\\frac{a_0}{(\\frac{N}{N_0}) - a_1} - a_2 $ (Desilets et al., 2010).

    For the calibration of the stationary detector, a total of 14 undisturbed soil cores were collected at radial distances of 5, 50, and 100 m from the detector. In this example each soil sample was split into four depth segments: 0-5 cm, 5-10 cm, 10-25 cm, and 25-40 cm. Soil samples were processed and soil moisture was determined using the thermo-gravimetric method.

    Figure 1. Horizontal layout and vertical layout used in this particular example calibration, it can be customized by the user depending on their needs.

    Download the following template for collecting your own calibration soil samples:

    "},{"location":"examples/calibration/calibration/#read-calibration-field-survey-data","title":"Read calibration field survey data\u00b6","text":"

    For each sample it is required to know the bulk density ($\\rho_\\beta$) and the volumetric water content ($\\theta_v$). See the details of the calculation used in the filled example.

    "},{"location":"examples/calibration/calibration/#read-data-from-crnp","title":"Read data from CRNP\u00b6","text":""},{"location":"examples/calibration/calibration/#correct-neutron-counts","title":"Correct neutron counts\u00b6","text":""},{"location":"examples/calibration/calibration/#determine-field-average-soil-moisture-and-bulk-density","title":"Determine field-average soil moisture and bulk density\u00b6","text":"

    Using the function nrad_weight() the weights corresponding to each soil sample will be computed considering air-humidity, sample depth, and distance from station and bulk density.

    "},{"location":"examples/calibration/calibration/#solving-for-n_0","title":"Solving for $N_0$\u00b6","text":"

    Previous steps estimated the field volumetric water content of 0.263 and an average neutron count of 1542. Using scipy.optimize.root() $N_0$ is estimated given the observed value of $\\theta_v$ and neutron counts.

    "},{"location":"examples/calibration/calibration/#references","title":"References:\u00b6","text":"

    Desilets, D., Zreda, M., & Ferr\u00e9, T. P. (2010). Nature's neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resources Research, 46(11).

    Dong, J., & Ochsner, T. E. (2018). Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns. Water Resources Research, 54(3), 2199-2211.

    Patrignani, A., Ochsner, T. E., Montag, B., & Bellinger, S. (2021). A novel lithium foil cosmic-ray neutron detector for measuring field-scale soil moisture. Frontiers in Water, 3, 673185.

    "},{"location":"examples/rover/Hydroinnova_rover_example/","title":"Processing and analyzing data from a roving detector","text":"In\u00a0[1]: Copied!
    # Import modules\nimport crnpy\n\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\n
    # Import modules import crnpy import numpy as np import pandas as pd import matplotlib.pyplot as plt

    Load the data stored in the .csv file.

    In\u00a0[2]: Copied!
    # Load sample dataset\nfilepath = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/rover/gypsum_transect_01_may_2018.KSU\"\ncol_names = 'RecordNum,Date Time(UTC),barometric_pressure_Avg,P4_mb,P1_mb,T1_C,RH1,air_temperature_Avg,relative_humidity_Avg,Vbat,N1Cts,N2Cts,N3Cts,N4Cts,N5Cts,N6Cts,N7Cts,N8Cts,N1ETsec,N3ETsec,N5ETsec,N7ETsec,N1T(C),N1RH,N5T(C),N5RH,GpsUTC,LatDec,LongDec,Alt,Qual,NumSats,HDOP,Speed_kmh,COG,SpeedQuality,strDate'.split(',')\n\ndf = pd.read_csv(filepath, skiprows=20, names=col_names)\ndf['LongDec'] = df['LongDec'] * -1 # Raw data is in absolute values\n\n# Parse timestamps and set as index\ndf['timestamp'] = pd.to_datetime(df['Date Time(UTC)'])\n\n# Remove rows with missing coordinates\ndf['LatDec'].replace(0.0, np.nan, inplace=True)\ndf['LongDec'].replace(0.0, np.nan, inplace=True)\ndf.dropna(axis=0, subset=['LatDec','LongDec'], inplace=True)\ndf.reset_index(drop=True, inplace=True)\n\n# Display a few rows to visualize dataset\ndf.head(3)\n
    # Load sample dataset filepath = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/rover/gypsum_transect_01_may_2018.KSU\" col_names = 'RecordNum,Date Time(UTC),barometric_pressure_Avg,P4_mb,P1_mb,T1_C,RH1,air_temperature_Avg,relative_humidity_Avg,Vbat,N1Cts,N2Cts,N3Cts,N4Cts,N5Cts,N6Cts,N7Cts,N8Cts,N1ETsec,N3ETsec,N5ETsec,N7ETsec,N1T(C),N1RH,N5T(C),N5RH,GpsUTC,LatDec,LongDec,Alt,Qual,NumSats,HDOP,Speed_kmh,COG,SpeedQuality,strDate'.split(',') df = pd.read_csv(filepath, skiprows=20, names=col_names) df['LongDec'] = df['LongDec'] * -1 # Raw data is in absolute values # Parse timestamps and set as index df['timestamp'] = pd.to_datetime(df['Date Time(UTC)']) # Remove rows with missing coordinates df['LatDec'].replace(0.0, np.nan, inplace=True) df['LongDec'].replace(0.0, np.nan, inplace=True) df.dropna(axis=0, subset=['LatDec','LongDec'], inplace=True) df.reset_index(drop=True, inplace=True) # Display a few rows to visualize dataset df.head(3) Out[2]: RecordNum Date Time(UTC) barometric_pressure_Avg P4_mb P1_mb T1_C RH1 air_temperature_Avg relative_humidity_Avg Vbat ... LongDec Alt Qual NumSats HDOP Speed_kmh COG SpeedQuality strDate timestamp 0 2 2018/05/01 14:15:00 962.95 962.8 961.4 23.2 35.4 20.9 72.7 13.574 ... -97.37195 393.2 2.0 10 0.8 0.00 270.7 A 10518.0 2018-05-01 14:15:00 1 3 2018/05/01 14:16:00 962.88 962.7 961.3 23.3 35.5 21.0 72.7 13.417 ... -97.37197 387.2 2.0 11 0.8 0.00 270.7 A 10518.0 2018-05-01 14:16:00 2 4 2018/05/01 14:17:00 962.64 962.5 961.1 23.4 35.4 21.2 72.2 13.282 ... -97.37199 388.2 1.0 11 0.8 3.89 356.3 A 10518.0 2018-05-01 14:17:00

    3 rows \u00d7 38 columns

    Next, convert the latitude and longitude to UTM coordinates (x and y). A scatter plot is created to visualize the survey points.

    In\u00a0[3]: Copied!
    # Convert Lat and Lon to X and Y\ndf['x'],df['y'] = crnpy.latlon_to_utm(df['LatDec'], df['LongDec'], 14, missing_values=0.0)\n\n# Create figure of survey points\nplt.figure(figsize = (5,5))\nplt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w', label = \"Observation end\")\n\n# Estimate the center of the observation, assuming each timestamp is observation end time.\ndf['x'],df['y'] = crnpy.rover_centered_coordinates(df['x'], df['y']) \nplt.scatter(df['x'], df['y'], marker='+', label=\"Observation center\")\n\nplt.ticklabel_format(scilimits = (-5,5))\nplt.xlabel('Easting')\nplt.ylabel('Northing')\nplt.legend(loc=[1.1,.8])\nplt.show()\n
    # Convert Lat and Lon to X and Y df['x'],df['y'] = crnpy.latlon_to_utm(df['LatDec'], df['LongDec'], 14, missing_values=0.0) # Create figure of survey points plt.figure(figsize = (5,5)) plt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w', label = \"Observation end\") # Estimate the center of the observation, assuming each timestamp is observation end time. df['x'],df['y'] = crnpy.rover_centered_coordinates(df['x'], df['y']) plt.scatter(df['x'], df['y'], marker='+', label=\"Observation center\") plt.ticklabel_format(scilimits = (-5,5)) plt.xlabel('Easting') plt.ylabel('Northing') plt.legend(loc=[1.1,.8]) plt.show()

    The counts are normalized to counts per minute in case some observations covered a different timespan and total neutron counts are computed.

    In\u00a0[4]: Copied!
    # Define columns names\ncounts_colums = ['N1Cts', 'N2Cts', 'N3Cts','N4Cts', 'N5Cts', 'N6Cts', 'N7Cts', 'N8Cts']\ncont_times_col = ['N1ETsec', 'N1ETsec', 'N3ETsec','N3ETsec', 'N5ETsec', 'N5ETsec', 'N7ETsec', 'N7ETsec']\n\n# Compute total neutron counts\ndf['total_raw_counts'] = crnpy.total_raw_counts(df[counts_colums])\n
    # Define columns names counts_colums = ['N1Cts', 'N2Cts', 'N3Cts','N4Cts', 'N5Cts', 'N6Cts', 'N7Cts', 'N8Cts'] cont_times_col = ['N1ETsec', 'N1ETsec', 'N3ETsec','N3ETsec', 'N5ETsec', 'N5ETsec', 'N7ETsec', 'N7ETsec'] # Compute total neutron counts df['total_raw_counts'] = crnpy.total_raw_counts(df[counts_colums]) In\u00a0[5]: Copied!
    # Define transect start and end dates\nstart_date = df.iloc[0]['timestamp']\nend_date = df.iloc[-1]['timestamp']\n\n#Find stations with cutoff rigidity similar to estimated by lat,lon\ncrnpy.find_neutron_monitor(crnpy.cutoff_rigidity(df['LatDec'][0], df['LongDec'][0]), \n                             start_date=start_date, end_date=end_date)\n
    # Define transect start and end dates start_date = df.iloc[0]['timestamp'] end_date = df.iloc[-1]['timestamp'] #Find stations with cutoff rigidity similar to estimated by lat,lon crnpy.find_neutron_monitor(crnpy.cutoff_rigidity(df['LatDec'][0], df['LongDec'][0]), start_date=start_date, end_date=end_date)
    \nSelect a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n\nYour cutoff rigidity is 2.99 GV\n    STID                          NAME     R  Altitude_m  Period available\n13  DRBS                       Dourbes  3.18         225              True\n31  MCRL  Mobile Cosmic Ray Laboratory  2.46         200              True\n33  MOSC                        Moscow  2.43         200              True\n40  NEWK                        Newark  2.40          50              True\n20  IRK3                     Irkustk 3  3.64        3000              True\n21  IRKT                       Irkustk  3.64         435              True\n
    Out[5]: STID NAME R Altitude_m Period available 13 DRBS Dourbes 3.18 225 True 31 MCRL Mobile Cosmic Ray Laboratory 2.46 200 True 33 MOSC Moscow 2.43 200 True 40 NEWK Newark 2.40 50 True 20 IRK3 Irkustk 3 3.64 3000 True 21 IRKT Irkustk 3.64 435 True In\u00a0[6]: Copied!
    # Download incoming neutron flux data from the Neutron Monitor Database (NMDB).\n# Use utc_offset for Central Standard Time.\nnmdb = crnpy.get_incoming_neutron_flux(start_date, end_date, station=\"NEWK\", utc_offset=-6)\n
    # Download incoming neutron flux data from the Neutron Monitor Database (NMDB). # Use utc_offset for Central Standard Time. nmdb = crnpy.get_incoming_neutron_flux(start_date, end_date, station=\"NEWK\", utc_offset=-6) In\u00a0[7]: Copied!
    # Interpolate incoming neutron flux to match the timestamps in our rover data\ndf['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df['timestamp'])\n
    # Interpolate incoming neutron flux to match the timestamps in our rover data df['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df['timestamp']) In\u00a0[8]: Copied!
    # Compute correction factor for incoming neutron flux\ndf['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df['incoming_flux'],\n                                          incoming_Ref=df['incoming_flux'].iloc[0])\n
    # Compute correction factor for incoming neutron flux df['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df['incoming_flux'], incoming_Ref=df['incoming_flux'].iloc[0]) In\u00a0[9]: Copied!
    # Fill NaN values in atmospheric data\ndf[['barometric_pressure_Avg', 'relative_humidity_Avg', 'air_temperature_Avg']] = df[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both')\n\n# Compute the pressure correction factor\ndf['fp'] = crnpy.correction_pressure(pressure=df['barometric_pressure_Avg'], Pref=df['barometric_pressure_Avg'].mean(), L=130)\n\n# Estimate the absolute humidity and compute the vapor pressure correction factor\ndf['abs_humidity'] = crnpy.abs_humidity(df['relative_humidity_Avg'], df['air_temperature_Avg'])\ndf['fw'] = crnpy.correction_humidity(df['abs_humidity'], Aref=0)\n
    # Fill NaN values in atmospheric data df[['barometric_pressure_Avg', 'relative_humidity_Avg', 'air_temperature_Avg']] = df[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both') # Compute the pressure correction factor df['fp'] = crnpy.correction_pressure(pressure=df['barometric_pressure_Avg'], Pref=df['barometric_pressure_Avg'].mean(), L=130) # Estimate the absolute humidity and compute the vapor pressure correction factor df['abs_humidity'] = crnpy.abs_humidity(df['relative_humidity_Avg'], df['air_temperature_Avg']) df['fw'] = crnpy.correction_humidity(df['abs_humidity'], Aref=0) In\u00a0[10]: Copied!
    # Apply correction factors\ndf['total_corrected_neutrons'] = df['total_raw_counts'] * df['fw'] / (df['fp'] * df['fi'])\n
    # Apply correction factors df['total_corrected_neutrons'] = df['total_raw_counts'] * df['fw'] / (df['fp'] * df['fi'])

    The corrected counts are smoothed using a 2D smoothing function. The smoothed counts are then converted to volumetric water content (VWC) using the counts_to_vwc function.

    In\u00a0[11]: Copied!
    # Smooth variable\ndf['corrected_neutrons_smoothed'] = crnpy.spatial_average(df['x'],\n                                        df['y'],\n                                        df['total_corrected_neutrons'],\n                                        buffer= 800, method='median', rnd=True)\n\n# Estimate lattice water based on texture\nlattice_water = crnpy.lattice_water(clay_content=0.35)\n\n# Estimate Soil Volumetric Water Content\ndf['VWC'] = crnpy.counts_to_vwc(df['corrected_neutrons_smoothed'], N0=550, bulk_density=1.3, Wlat=lattice_water, Wsoc=0.01)\n\n# Drop VWC NaN values before interpolating values\ndf = df.dropna(subset = ['VWC'])\n\n# Interpolate variable using IDW (https://en.wikipedia.org/wiki/Inverse_distance_weighting)\nX_pred, Y_pred, Z_pred = crnpy.interpolate_2d(df['x'],\n                                        df['y'],\n                                        df['VWC'],\n                                        dx=250, dy=250, method='idw')\n
    # Smooth variable df['corrected_neutrons_smoothed'] = crnpy.spatial_average(df['x'], df['y'], df['total_corrected_neutrons'], buffer= 800, method='median', rnd=True) # Estimate lattice water based on texture lattice_water = crnpy.lattice_water(clay_content=0.35) # Estimate Soil Volumetric Water Content df['VWC'] = crnpy.counts_to_vwc(df['corrected_neutrons_smoothed'], N0=550, bulk_density=1.3, Wlat=lattice_water, Wsoc=0.01) # Drop VWC NaN values before interpolating values df = df.dropna(subset = ['VWC']) # Interpolate variable using IDW (https://en.wikipedia.org/wiki/Inverse_distance_weighting) X_pred, Y_pred, Z_pred = crnpy.interpolate_2d(df['x'], df['y'], df['VWC'], dx=250, dy=250, method='idw')

    A gridded map of the Volumetric Water Content (VWC) is created using the interpolated x, y, and VWC values.

    In\u00a0[12]: Copied!
    # Show interpolated grid\ncmap = 'RdYlBu'\n\nplt.figure(figsize=(6,6))\nplt.title('Gridded map')\nplt.pcolormesh(X_pred, Y_pred, Z_pred, cmap=cmap)\nplt.colorbar(label=r\"Volumetric Water Content $(cm^3 \\cdot cm^{-3})$\", location='right')\nplt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w')\nplt.ticklabel_format(scilimits=(-5,5))\nplt.xlabel('Easting', size=14)\nplt.ylabel('Northing', size=14)\nplt.show()\n
    # Show interpolated grid cmap = 'RdYlBu' plt.figure(figsize=(6,6)) plt.title('Gridded map') plt.pcolormesh(X_pred, Y_pred, Z_pred, cmap=cmap) plt.colorbar(label=r\"Volumetric Water Content $(cm^3 \\cdot cm^{-3})$\", location='right') plt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w') plt.ticklabel_format(scilimits=(-5,5)) plt.xlabel('Easting', size=14) plt.ylabel('Northing', size=14) plt.show()

    Finally, a contour map of the VWC is created and displayed.

    In\u00a0[13]: Copied!
    # Show contour map\ncmap = 'RdYlBu'\n\nplt.figure(figsize=(7,6))\nplt.title('Contours')\nplt.contourf(X_pred, Y_pred, Z_pred, cmap=cmap)\nplt.ticklabel_format(scilimits=(-5,5))\nplt.colorbar(label=r\"Volumetric Water Content $(cm^3 \\cdot cm^{-3})$\", location='right')\nplt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w')\nplt.show()\n
    # Show contour map cmap = 'RdYlBu' plt.figure(figsize=(7,6)) plt.title('Contours') plt.contourf(X_pred, Y_pred, Z_pred, cmap=cmap) plt.ticklabel_format(scilimits=(-5,5)) plt.colorbar(label=r\"Volumetric Water Content $(cm^3 \\cdot cm^{-3})$\", location='right') plt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w') plt.show()"},{"location":"examples/rover/Hydroinnova_rover_example/#processing-and-analyzing-data-from-a-roving-detector","title":"Processing and analyzing data from a roving detector\u00b6","text":"

    This tutorial demonstrates how to process and analyze data from a rover using the Cosmic Ray Neutron Python (CRNPy) library. The steps include loading the data, converting geographical coordinates to Cartesian coordinates, normalizing neutron counts, correcting for atmospheric effects, and visualizing the results.

    First import the required packages.

    "},{"location":"examples/rover/Hydroinnova_rover_example/#neutron-count-correction","title":"Neutron count correction\u00b6","text":""},{"location":"examples/rover/Hydroinnova_rover_example/#incommng-neutron-flux","title":"Incommng neutron flux\u00b6","text":"

    Find stations with a cutoff rigidity similar to the estimated value based on the latitude and longitude, ensuring that the reference station is under a similar earth electromagnetic field. Note that the station is hardcoded in the second line as station=\"NEWK\". The user is required to manually define this after considering the potential options suggested. See get_incoming_neutron_flux(), find_neutron_monitor() and correction_incoming_flux().

    "},{"location":"examples/rover/Hydroinnova_rover_example/#atmospheric-correction","title":"Atmospheric correction\u00b6","text":"

    NaN values in the atmospheric data are filled. The neutron counts are then corrected for atmospheric variables. See correction_humidity() and correction_pressure()

    "},{"location":"examples/stationary/example_RDT_station/","title":"Processing and analyzing data from a stationary detector","text":"In\u00a0[1]: Copied!
    # Import required libraries\nimport crnpy\n\nimport pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\n
    # Import required libraries import crnpy import pandas as pd import numpy as np import matplotlib.pyplot as plt In\u00a0[2]: Copied!
    # Load observations from a stationary detector\nfilepath = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/stationary/rdt.csv\"\n\n# Read the DataFrame\ndf = pd.read_csv(filepath, names=['timestamp','barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg','DP','BattVolt','counts_1_Tot','counts_2_Tot','counts_3_Tot'])\n\n# Parse timestamps\ndf['timestamp'] = pd.to_datetime(df['timestamp'])\n\n# Display a few rows of the dataset\ndf.head(3)\n
    # Load observations from a stationary detector filepath = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/stationary/rdt.csv\" # Read the DataFrame df = pd.read_csv(filepath, names=['timestamp','barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg','DP','BattVolt','counts_1_Tot','counts_2_Tot','counts_3_Tot']) # Parse timestamps df['timestamp'] = pd.to_datetime(df['timestamp']) # Display a few rows of the dataset df.head(3) Out[2]: timestamp barometric_pressure_Avg relative_humidity_Avg air_temperature_Avg DP BattVolt counts_1_Tot counts_2_Tot counts_3_Tot 0 2020-04-10 09:47:00 983.8 29.0 9.6 -7.4 14.4 848 716.0 742 1 2020-04-10 10:47:00 982.3 25.0 10.9 -7.9 14.3 436 7200.0 796 2 2020-04-10 11:17:00 980.8 25.0 11.5 -7.4 13.7 389 396.0 354 In\u00a0[3]: Copied!
    # Remove rows with incomplete intervals\ndf = crnpy.remove_incomplete_intervals(df, timestamp_col='timestamp', integration_time=3600, remove_first=True)\n\n# Fill missing timestamps to create a conplete record\ndf = crnpy.fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True)\n
    # Remove rows with incomplete intervals df = crnpy.remove_incomplete_intervals(df, timestamp_col='timestamp', integration_time=3600, remove_first=True) # Fill missing timestamps to create a conplete record df = crnpy.fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True)
    Removed a total of 48 rows.\nAdded a total of 60 missing timestamps.\n

    Utilize the total_raw_counts() function to calculate the total counts across all detectors. After calculating the total counts, identify outliers using the is_outlier() function.

    In\u00a0[4]: Copied!
    # Flag and fill outliers\ncols_counts = ['counts_1_Tot','counts_2_Tot','counts_3_Tot']\nfor col in cols_counts:\n    \n    # Find outliers\n    idx_outliers = crnpy.is_outlier(df[col], method='scaled_mad', min_val=500, max_val=2000)\n    df.loc[idx_outliers,col] = np.nan\n    \n    # Fill missing values with linear interpolation and round to nearest integer\n    df[col] = df[col].interpolate(method='linear', limit=3, limit_direction='both').round()\n
    # Flag and fill outliers cols_counts = ['counts_1_Tot','counts_2_Tot','counts_3_Tot'] for col in cols_counts: # Find outliers idx_outliers = crnpy.is_outlier(df[col], method='scaled_mad', min_val=500, max_val=2000) df.loc[idx_outliers,col] = np.nan # Fill missing values with linear interpolation and round to nearest integer df[col] = df[col].interpolate(method='linear', limit=3, limit_direction='both').round() In\u00a0[5]: Copied!
    # Compute total cunts\ndf['total_raw_counts'] = crnpy.total_raw_counts(df[cols_counts], nan_strategy='average')\n
    # Compute total cunts df['total_raw_counts'] = crnpy.total_raw_counts(df[cols_counts], nan_strategy='average') In\u00a0[6]: Copied!
    # Plot total counts\n# Create a new figure and plot the data\nfig, ax = plt.subplots(figsize=(10, 3))  # Set the figure size\nax.plot(df['timestamp'], df['total_raw_counts'], label='Raw Counts', color='black', linewidth=.8)\n# Set the labels for the x-axis and y-axis\nax.set_xlabel(\"Date\")\nax.set_ylabel(\"Total Raw Counts\")\n\n# Set the title of the plot\nax.set_title('Total Raw Counts Over Time')\n\n# Adjust size of axes labels\nax.tick_params(axis='both', which='major')\n\n# Show the plot\nplt.show()\n
    # Plot total counts # Create a new figure and plot the data fig, ax = plt.subplots(figsize=(10, 3)) # Set the figure size ax.plot(df['timestamp'], df['total_raw_counts'], label='Raw Counts', color='black', linewidth=.8) # Set the labels for the x-axis and y-axis ax.set_xlabel(\"Date\") ax.set_ylabel(\"Total Raw Counts\") # Set the title of the plot ax.set_title('Total Raw Counts Over Time') # Adjust size of axes labels ax.tick_params(axis='both', which='major') # Show the plot plt.show() In\u00a0[7]: Copied!
    # Define study start and end dates\nstart_date = df.iloc[0]['timestamp']\nend_date = df.iloc[-1]['timestamp']\n\n# Define geographic coordiantes\nlat = 39.110596\nlon = -96.613050\n\n# Find stations with cutoff rigidity similar to estimated by lat,lon\ncrnpy.find_neutron_monitor(crnpy.cutoff_rigidity(lat, lon), start_date=start_date, end_date=end_date, verbose=False)\n
    # Define study start and end dates start_date = df.iloc[0]['timestamp'] end_date = df.iloc[-1]['timestamp'] # Define geographic coordiantes lat = 39.110596 lon = -96.613050 # Find stations with cutoff rigidity similar to estimated by lat,lon crnpy.find_neutron_monitor(crnpy.cutoff_rigidity(lat, lon), start_date=start_date, end_date=end_date, verbose=False)
    \nSelect a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n\nYour cutoff rigidity is 2.87 GV\n     STID     NAME     R  Altitude_m  Period available\n13   DRBS  Dourbes  3.18         225              True\n40   NEWK   Newark  2.40          50              True\n28  KIEL2   KielRT  2.36          54              True\n21   IRKT  Irkustk  3.64         435              True\n
    Out[7]: STID NAME R Altitude_m Period available 13 DRBS Dourbes 3.18 225 True 40 NEWK Newark 2.40 50 True 28 KIEL2 KielRT 2.36 54 True 21 IRKT Irkustk 3.64 435 True In\u00a0[8]: Copied!
    # Download incoming neutron flux data from the Neutron Monitor Database (NMDB).\n# Use utc_offset for Central Standard Time.\nnmdb = crnpy.get_incoming_neutron_flux(start_date, end_date, station=\"IRKT\", utc_offset=-6)\n
    # Download incoming neutron flux data from the Neutron Monitor Database (NMDB). # Use utc_offset for Central Standard Time. nmdb = crnpy.get_incoming_neutron_flux(start_date, end_date, station=\"IRKT\", utc_offset=-6) In\u00a0[9]: Copied!
    # Interpolate incoming neutron flux to match the timestamps in our station data\ndf['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df['timestamp'])\n
    # Interpolate incoming neutron flux to match the timestamps in our station data df['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df['timestamp']) In\u00a0[10]: Copied!
    # Compute correction factor for incoming neutron flux\ndf['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df['incoming_flux'],\n                                          incoming_Ref=df['incoming_flux'].iloc[0])\n
    # Compute correction factor for incoming neutron flux df['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df['incoming_flux'], incoming_Ref=df['incoming_flux'].iloc[0]) In\u00a0[11]: Copied!
    # Fill NaN values in atmospheric data and neutron counts\ndf[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']] = df[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both')\n\n# Compute the pressure correction factor \ndf['fp'] = crnpy.correction_pressure(pressure=df['barometric_pressure_Avg'], Pref=df['barometric_pressure_Avg'].mean(), L=130)\n\n# Calculate the absolute humidity (g cm^-3) and the vapor pressure correction factor\ndf['abs_humidity'] = crnpy.abs_humidity(df['relative_humidity_Avg'], df['air_temperature_Avg'])\ndf['fw'] = crnpy.correction_humidity(abs_humidity=df['abs_humidity'], Aref=0)\n
    # Fill NaN values in atmospheric data and neutron counts df[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']] = df[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both') # Compute the pressure correction factor df['fp'] = crnpy.correction_pressure(pressure=df['barometric_pressure_Avg'], Pref=df['barometric_pressure_Avg'].mean(), L=130) # Calculate the absolute humidity (g cm^-3) and the vapor pressure correction factor df['abs_humidity'] = crnpy.abs_humidity(df['relative_humidity_Avg'], df['air_temperature_Avg']) df['fw'] = crnpy.correction_humidity(abs_humidity=df['abs_humidity'], Aref=0) In\u00a0[12]: Copied!
    # Plot all the correction factors\nfig, ax = plt.subplots(figsize=(10, 3))  # Set the figure size\nax.plot(df['timestamp'], df['fp'], label='Pressure',color='tomato', linewidth=1)\nax.plot(df['timestamp'], df['fw'], label='Humidity', color='navy', linewidth=1)\nax.plot(df['timestamp'], df['fi'], label='Incoming Flux', color='olive', linewidth=1)\nax.set_xlabel(\"Date\")\nax.set_ylabel('Correction Factor')\nax.legend()\nax.set_title('Correction Factors for Pressure, Humidity, and Incoming Flux')\n
    # Plot all the correction factors fig, ax = plt.subplots(figsize=(10, 3)) # Set the figure size ax.plot(df['timestamp'], df['fp'], label='Pressure',color='tomato', linewidth=1) ax.plot(df['timestamp'], df['fw'], label='Humidity', color='navy', linewidth=1) ax.plot(df['timestamp'], df['fi'], label='Incoming Flux', color='olive', linewidth=1) ax.set_xlabel(\"Date\") ax.set_ylabel('Correction Factor') ax.legend() ax.set_title('Correction Factors for Pressure, Humidity, and Incoming Flux') Out[12]:
    Text(0.5, 1.0, 'Correction Factors for Pressure, Humidity, and Incoming Flux')
    In\u00a0[13]: Copied!
    # Apply correction factors\ndf['total_corrected_neutrons'] = df['total_raw_counts'] * df['fw'] / (df['fp'] * df['fi'])\n
    # Apply correction factors df['total_corrected_neutrons'] = df['total_raw_counts'] * df['fw'] / (df['fp'] * df['fi']) In\u00a0[14]: Copied!
    fig, ax = plt.subplots(figsize=(10, 3))  # Set the figure size\n\n# Subplot 1: Raw and Corrected Counts\nax.plot(df['timestamp'], df['total_raw_counts'], label='Raw Counts', color='black', linestyle='dashed', linewidth=.8)\nax.plot(df['timestamp'], df['total_corrected_neutrons'], label='Corrected Counts', color='teal', linewidth=.8)\nax.set_xlabel(\"Date\")\nax.set_ylabel('Counts')\nax.legend()\nax.set_title('Raw and Corrected Counts')\n
    fig, ax = plt.subplots(figsize=(10, 3)) # Set the figure size # Subplot 1: Raw and Corrected Counts ax.plot(df['timestamp'], df['total_raw_counts'], label='Raw Counts', color='black', linestyle='dashed', linewidth=.8) ax.plot(df['timestamp'], df['total_corrected_neutrons'], label='Corrected Counts', color='teal', linewidth=.8) ax.set_xlabel(\"Date\") ax.set_ylabel('Counts') ax.legend() ax.set_title('Raw and Corrected Counts') Out[14]:
    Text(0.5, 1.0, 'Raw and Corrected Counts')

    Convert the smoothed neutron counts to Volumetric Water Content (VWC) using the counts_to_vwc(). The function considers the smoothed neutron counts, $N_0$ specific parameter, soil bulk density, weight percent of latent water (Wlat), and weight percent of soil organic carbon (Wsoc). After conversion, plot the VWC against the timestamp for visual analysis. smooth_1d() is applied for smoothing the data using a Savitzky-Golay filter.

    In\u00a0[15]: Copied!
    # Device N0 parameter\nN0_rdt = 3767 # Patrignani, A., Ochsner, T. E., Montag, B., & Bellinger, S. (2021). A novel lithium foil cosmic-ray neutron detector for measuring field-scale soil moisture. Frontiers in Water, 3, 673185.\n\n# Estimate lattice water (%) based on texture\nlattice_water = crnpy.lattice_water(clay_content=0.35)\n\ndf['VWC'] = crnpy.counts_to_vwc(df['total_corrected_neutrons'], N0=N0_rdt, bulk_density=1.33, Wlat=lattice_water, Wsoc=0.01)\n\n# Drop any NaN beofre smoothing\ndf = df.dropna(subset=['VWC']).copy().reset_index()\n\n# Filter using the Savitzky-Golay filter, drop NaN values and timestamps\ndf['VWC'] = crnpy.smooth_1d(df['VWC'], window=11, order=3, method=\"savitzky_golay\")\n
    # Device N0 parameter N0_rdt = 3767 # Patrignani, A., Ochsner, T. E., Montag, B., & Bellinger, S. (2021). A novel lithium foil cosmic-ray neutron detector for measuring field-scale soil moisture. Frontiers in Water, 3, 673185. # Estimate lattice water (%) based on texture lattice_water = crnpy.lattice_water(clay_content=0.35) df['VWC'] = crnpy.counts_to_vwc(df['total_corrected_neutrons'], N0=N0_rdt, bulk_density=1.33, Wlat=lattice_water, Wsoc=0.01) # Drop any NaN beofre smoothing df = df.dropna(subset=['VWC']).copy().reset_index() # Filter using the Savitzky-Golay filter, drop NaN values and timestamps df['VWC'] = crnpy.smooth_1d(df['VWC'], window=11, order=3, method=\"savitzky_golay\") In\u00a0[16]: Copied!
    # Plot the obtained time series of volumetric water content\n# Create a new figure and plot the data\nfig, ax = plt.subplots(figsize=(10, 4))  # Set the figure size\nax.plot(df['timestamp'], df['VWC'], color='teal', linewidth=1.0)\n\n# Set the labels for the x-axis and y-axis\nax.set_xlabel(\"Date\")\nax.set_ylabel(r\"Volumetric Water Content ($m^3 \\cdot m^{-3}$)\")\n\n# Set the title of the plot\nax.set_title('Soil Moisture')\n\n# Show the plot\nplt.show()\n
    # Plot the obtained time series of volumetric water content # Create a new figure and plot the data fig, ax = plt.subplots(figsize=(10, 4)) # Set the figure size ax.plot(df['timestamp'], df['VWC'], color='teal', linewidth=1.0) # Set the labels for the x-axis and y-axis ax.set_xlabel(\"Date\") ax.set_ylabel(r\"Volumetric Water Content ($m^3 \\cdot m^{-3}$)\") # Set the title of the plot ax.set_title('Soil Moisture') # Show the plot plt.show() In\u00a0[17]: Copied!
    # Estimate sensing depth\ndf['sensing_depth'] = crnpy.sensing_depth(df['VWC'], df['barometric_pressure_Avg'], df['barometric_pressure_Avg'].mean(), bulk_density=1.33, Wlat=lattice_water, method = \"Franz_2012\")\nprint(f\"Average sensing depth: {np.round(df['sensing_depth'].mean(),2)} cm\")\n
    # Estimate sensing depth df['sensing_depth'] = crnpy.sensing_depth(df['VWC'], df['barometric_pressure_Avg'], df['barometric_pressure_Avg'].mean(), bulk_density=1.33, Wlat=lattice_water, method = \"Franz_2012\") print(f\"Average sensing depth: {np.round(df['sensing_depth'].mean(),2)} cm\")
    Average sensing depth: 15.36 cm\n
    In\u00a0[18]: Copied!
    # Compute the storage using the exponential filter\nsurface = df['VWC']\nsubsurface = crnpy.exp_filter(df['VWC'])\n\nz_surface = 150 # Average depth in mm obtained from previous cell using crnpy.sensing_depth()\nz_subsurface = 350 # Arbitrary subsurface depth in mm\ndf['storage'] = np.sum([surface*z_surface, subsurface*z_subsurface], axis=0)\n
    # Compute the storage using the exponential filter surface = df['VWC'] subsurface = crnpy.exp_filter(df['VWC']) z_surface = 150 # Average depth in mm obtained from previous cell using crnpy.sensing_depth() z_subsurface = 350 # Arbitrary subsurface depth in mm df['storage'] = np.sum([surface*z_surface, subsurface*z_subsurface], axis=0) In\u00a0[19]: Copied!
    # Plot the obtained time series of soil water storage\n# Create a new figure and plot the data\nfig, ax = plt.subplots(figsize=(10, 4))  # Set the figure size\nax.plot(df['timestamp'], df['storage'], color='teal', linewidth=1.0)\n\n# Set the labels for the x-axis and y-axis\nax.set_xlabel(\"Date\")\nax.set_ylabel(\"Storage (mm)\")\n\n# Set the title of the plot\nax.set_title('Soil Water Storage')\n\n# Show the plot\nplt.show()\n
    # Plot the obtained time series of soil water storage # Create a new figure and plot the data fig, ax = plt.subplots(figsize=(10, 4)) # Set the figure size ax.plot(df['timestamp'], df['storage'], color='teal', linewidth=1.0) # Set the labels for the x-axis and y-axis ax.set_xlabel(\"Date\") ax.set_ylabel(\"Storage (mm)\") # Set the title of the plot ax.set_title('Soil Water Storage') # Show the plot plt.show() In\u00a0[20]: Copied!
    # Estimate the uncertainty of the volumetric water content\ndf['sigma_VWC'] = crnpy.uncertainty_vwc(df['total_raw_counts'], N0=N0_rdt, bulk_density=1.33, fp=df['fp'], fi=df['fi'], fw=df['fw'])\n\n# Plot the VWC with uncertainty as a shaded area\nfig, ax = plt.subplots(figsize=(10, 4))  # Set the figure size\nax.plot(df['timestamp'], df['VWC'], color='black', linewidth=1.0)\nax.fill_between(df['timestamp'], df['VWC']-df['sigma_VWC'], df['VWC']+df['sigma_VWC'], color='teal', alpha=0.5, label = r\"Standard Deviation $\\theta_v$\")\nax.set_title('Volumentric Water Content with Uncertainty')\nax.set_xlabel(\"Date\")\nax.set_ylabel(r\"Volumetric Water Content ($m^3 \\cdot m^{-3}$)\")\nplt.legend()\nplt.show()\n
    # Estimate the uncertainty of the volumetric water content df['sigma_VWC'] = crnpy.uncertainty_vwc(df['total_raw_counts'], N0=N0_rdt, bulk_density=1.33, fp=df['fp'], fi=df['fi'], fw=df['fw']) # Plot the VWC with uncertainty as a shaded area fig, ax = plt.subplots(figsize=(10, 4)) # Set the figure size ax.plot(df['timestamp'], df['VWC'], color='black', linewidth=1.0) ax.fill_between(df['timestamp'], df['VWC']-df['sigma_VWC'], df['VWC']+df['sigma_VWC'], color='teal', alpha=0.5, label = r\"Standard Deviation $\\theta_v$\") ax.set_title('Volumentric Water Content with Uncertainty') ax.set_xlabel(\"Date\") ax.set_ylabel(r\"Volumetric Water Content ($m^3 \\cdot m^{-3}$)\") plt.legend() plt.show()"},{"location":"examples/stationary/example_RDT_station/#processing-and-analyzing-data-from-a-stationary-detector","title":"Processing and analyzing data from a stationary detector\u00b6","text":"

    This tutorial demonstrates how to process and analyze neutron counts of epithermal neutrons recorded with a stationary cosmic-ray neutron probe consisting of three lithium-foil detectors manufactured by Radiation Detection Technologies, Inc (RDT). The tutorial covers all the steps from reading the file with raw data obtained from the probe in the field, outlier removal, atmospheric corrections, and conversion of corrected neutron counts into volumetric soil water content.

    The tutorial assumes that you are working within the Anaconda environment, which has all the necessary modules. Also, make sure that the CRNPy library is installed in your machine.

    The raw dataset to follow this example can be obtained at the .csv file.

    This device was installed in the vicinity of the KONA site of the National Ecological Observatory Network within the Konza Prairie Biological station (39.110596, -96.613050, 320 meters a.s.l.)

    "},{"location":"examples/stationary/example_RDT_station/#neutron-count-correction","title":"Neutron count correction\u00b6","text":""},{"location":"examples/stationary/example_RDT_station/#incomming-neutron-flux","title":"Incomming neutron flux\u00b6","text":"

    Find similar neutron monitors based on altitude and cutoff rigidity, which is estimated based on the geographic location using latitude and longitude values. See get_incoming_neutron_flux(), find_neutron_monitor() and correction_incoming_flux().

    In this particular example we selected the \"IRKT\" monitor since it has a similar cuoff rigidity and altitude as our site. The reference neutron monitor will likely be different for your location. Note that the function only reports neutron monitors based on cutoff rigidity and leaves to the user the selection of a reference neutron monitor based on the altitude of the location.

    "},{"location":"examples/stationary/example_RDT_station/#atmospheric-correction","title":"Atmospheric correction\u00b6","text":"

    This section is about correcting the atmospheric variables. First, fill the missing values in the atmospheric data, then correct the count for atmospheric variables using correction_humidity() and correction_pressure().

    "},{"location":"examples/stationary/example_RDT_station/#sensing-depth-and-soil-water-storage","title":"Sensing depth and soil water storage\u00b6","text":"

    Estimate the sensing_depth() at which 86 % of the neutrons probes the soil profile, and estimate the soil water storage() of the top 50 cm using and exponential filter.

    "},{"location":"examples/stationary/example_RDT_station/#uncertainty-estimation","title":"Uncertainty estimation\u00b6","text":"

    Estimate the uncertainty of the volumetric water content using the uncertainty_vwc() function. Optionally see uncertainty_counts() for estimating the uncertainty of the neutron counts.

    "}]} \ No newline at end of file +{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Cosmic-Ray Neutron Python (CRNPy) Library","text":"

    Welcome to the homepage of the CRNPy (Cosmic-Ray Neutron Python) library, an open-source Python library designed for the processing and conversion of raw neutron counts from cosmic-ray neutron probes (CRNP) into soil moisture data.

    This library has been developed with the intent of providing a comprehensive yet easy-to-use workflow for processing raw data from a variety of CRNP, encompassing multiple manufacturers and models.

    "},{"location":"#statement-of-need","title":"Statement of Need","text":"

    CRNPs are a valuable tool for non-invasive soil moisture estimation at the hectometer scale (e.g., typical agricultural fields), filling the gap between point-level sensors and large-scale (i.e., several kilometers) remote sensors onboard orbiting satellites. However, cleaning, processing, and analyzing CRNP data involves multiple corrections and filtering steps spread across multiple peer-reviewed manuscripts. CRNPy simplifies these steps by providing a complete, user-friendly, and well-documented library with minimal dependencies that includes examples to convert raw CRNP data into soil moisture. The library is designed to be accessible to both researchers and instrument manufacturers. Unlike other similar libraries, CRNPy does not require any specific naming convention for the input data or large external data sources, or reanalysis data.

    "},{"location":"#key-features","title":"Key Features","text":"
    • Versatile and instrument agnostic: CRNPy can handle data from various CRNP manufacturers and models. It has been successfully tested on both roving and stationary CRNP.

    • Modular: The library is designed to be modular, allowing users to easily customize the processing workflow to their needs.

    "},{"location":"#installation","title":"Installation","text":"

    To install the CRNPy library, you can use Python's package manager. Open a terminal and type:

    pip install crnpy

    from the Jupyter notebook, type:

    !pip install crnpy

    Ideally dependencies should be installed automatically. If not, you can install them manually by typing:

    pip install -r requirements.txt

    The CRNPy library is compatible with Python 3.7 and above. See requirements.txt for a list of dependencies.

    "},{"location":"#authors","title":"Authors","text":"

    The CRNPy library was developed at the Kansas State University Soil Water Processes Lab by:

    • Joaquin Peraza

    • Andres Patrignani

    The Soil Water Processes Lab at Kansas State University combines a range of experimental and computational approaches to tackle pressing issues in soil and water research. The development of the CRNPy library is a step forward to creating reproducible data processing workflows across the scientific community using cosmic-ray neutrons probes for soil moisture sensing.

    "},{"location":"#community-guidelines","title":"Community Guidelines","text":""},{"location":"#contributing","title":"Contributing","text":"

    To contribute to the software, please first fork the repository and create your own branch from main. Ensure your code adheres to our established code structure and includes appropriate test/examples coverage. CRNPy source code is located in the /src/crnpy/ folder, and tests implemented using pytest are stored in the /src/tests/ folder. Submit a pull request with a clear and detailed description of your changes to include them in the main repository.

    "},{"location":"#reporting-issues","title":"Reporting Issues","text":"

    If you encounter any issues or problems with the software, please report them on our issues page. Include a detailed description of the issue, steps to reproduce the problem, any error messages you received, and details about your operating system and software version.

    "},{"location":"#seeking-support","title":"Seeking Support","text":"

    If you need support, please first refer to the documentation. If you still require assistance, post a question on the issues page with the question tag. For private inquiries, you can reach us via email at jperaza@ksu.edu or andrespatrignani@ksu.edu.

    "},{"location":"correction_routines/","title":"Correction routines","text":""},{"location":"correction_routines/#overview","title":"Overview","text":"

    The CRNPy library provides the tools to correct and process neutron counts recorded with both stationary and roving cosmic-ray neutron probes. Below are two flowcharts describing the typical steps from the correction of raw neutron counts to the conversion into volumetric soil water content.

    "},{"location":"correction_routines/#stationary-crnp-processing","title":"Stationary CRNP processing","text":"

    Dashed lines indicate optional steps. See the complete example notebook.

    "},{"location":"correction_routines/#roving-crnp-processing","title":"Roving CRNP processing","text":"

    Dashed lines indicate optional steps. See the complete example notebook.

    "},{"location":"correction_routines/#incoming-neutron-flux","title":"Incoming neutron flux","text":"

    The CRNPy library includes a complete set of methods for correcting the raw observed neutron counts for natural variation in the incoming neutron flux, including a set of tools for searching and downloading data from reference neutron monitors from the NMDB database (www.nmdb.eu) with similar the cut-off rigidity as the study location (Klein et al., 2009; Shea & Smart., 2019).

    Incoming neutron flux correction factor $fi = \\frac{I_{m}}{I_{0}}$ $ fi $: Incoming neutron flux correction factor $ I_{m} $: Measured incoming neutron flux $ I_{0} $: Reference incoming neutron flux at a given time.

    Implementation

    See crnpy.crnpy.cutoff_rigidity, crnpy.crnpy.find_neutron_monitor, crnpy.crnpy.get_incoming_neutron_flux, crnpy.crnpy.interpolate_incoming_flux and crnpy.crnpy.incoming_flux_correction documentation for the implementation details.

    "},{"location":"correction_routines/#atmospheric-corrections","title":"Atmospheric corrections","text":"

    The CRNPy library also provides functions for correcting raw neutron counts for atmospheric pressure, air humidity, and air temperature (Andreasen et al., 2017; Rosolem et al., 2013).

    Pressure correction Atmospheric water correction $fp = exp(\\frac{P_{0} - P}{L})$ $fw = 1 + 0.0054*(A - Aref)$ $fp$: Atmospheric pressure correction factor $fw$: Atmospheric water correction factor $P_{0}$: Reference atmospheric pressure (for e.g. long-term average) $A$: Atmospheric absolute humidity (g/m3) $P$: Measured atmospheric pressure $Aref$: Reference atmospheric absolute humidity (g/m3) $L$: Mass attenuation factor for high-energy neutrons in air

    Implementation

    See crnpy.crnpy.humidity_correction and crnpy.crnpy.pressure_correction documentation for the implementation details.

    "},{"location":"correction_routines/#biomass-correction","title":"Biomass correction","text":"

    The library provides a function for correcting neutron counts for the effects of above-ground biomass by combining an approach for estimating biomass water equivalent (BWE) from in-situ biomass samples and the BWE correction factor (Baatz et al., 2015).

    Biomass correction $fb = 1 - bwe*r2_N0$ $fb$: Biomass correction factor $bwe$: Biomass water equivalent $r2_N0$: Ratio of the neutron counts reduction ($counts kg^-1$) to the neutron calibration constant (N0)

    Implementation

    See crnpy.crnpy.bwe_correction and crnpy.crnpy.biomass_to_bwe documentation for the implementation details.

    "},{"location":"correction_routines/#road-correction","title":"Road correction","text":"

    The lCRNPY library includes functions to correct for the effect of roads during rover surveys which account for the field soil water content and the road water content following the approach proposed by Schr\u00f6n et al., (2018).

    Road correction $fr = 1 + F1 \\cdot F2 \\cdot F3$ $fr$: Road correction factor $F1$: Road geometry term $F2$: Road moisture term $F3$: Road distance term

    Implementation

    See crnpy.crnpy.road_correction documentation for the implementation details.

    "},{"location":"correction_routines/#additional-corrections","title":"Additional corrections","text":"

    Other correction routines includes corrections for soil lattice water and total soil carbon that are known to affect the attentuation of epithermal cosmic-ray neutrons. A function to estimate the soil lattice water content based on clay content and soil organic carbon content was developed using soil samples collected across the state of Kansas.

    Implementation

    See crnpy.crnpy.estimate_lattice_water and crnpy.crnpy.counts_to_vwc documentation for the implementation details.

    References

    Klein, K.-L., Steigies, C., & Nmdb Team. (2009). WWW.NMDB.EU: The real-time Neutron Monitor database. EGU General Assembly Conference Abstracts, 5633.

    Shea, M., & Smart, D. (2019). Re-examination of the first five ground-level events. International Cosmic Ray Conference (ICRC2019), 36, 1149.

    Smart, D., & Shea, M. (2001). Geomagnetic cutoff rigidity computer program: Theory, software description and example.

    Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., & Looms, M. C. (2017). Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone Journal, 16(8), 1\u201311.

    Rosolem, R., Shuttleworth, W. J., Zreda, M., Franz, T. E., Zeng, X., & Kurc, S. A. (2013). The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system. Journal of Hydrometeorology, 14(5), 1659\u20131671.

    Zreda, M., Desilets, D., Ferr\u00e9, T., & Scott, R. L. (2008). Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophysical Research Letters, 35(21).

    Dong, J., & Ochsner, T. E. (2018). Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns. Water Resources Research, 54(3), 2199\u20132211.

    Wahbi, A., Heng, L., Dercon, G., Wahbi, A., & Avery, W. (2018). In situ destructive sampling. Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent, 5\u20139.

    Baatz, R., Bogena, H., Hendricks Franssen, H.-J., Huisman, J., Montzka, C., & Vereecken, H. (2015). An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resources Research, 51(4), 2030\u20132046.

    Schr\u00f6n, M., Rosolem, R., K\u00f6hli, M., Piussi, L., Schr\u00f6ter, I., Iwema, J., K\u00f6gler, S., Oswald, S. E., Wollschl\u00e4ger, U., Samaniego, L., & others. (2018). Cosmic-ray neutron rover surveys of field soil moisture and the influence of roads. Water Resources Research, 54(9), 6441\u20136459.

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079\u20134099, https://doi.org/10.5194/hess-16-4079-2012, 2012.

    "},{"location":"reference/","title":"Reference","text":"

    crnpy is a Python package for processing cosmic ray neutron data.

    Created by Joaquin Peraza and Andres Patrignani.

    crnpy is a package for processing observations from cosmic ray neutron detectors.

    Modules exported by this package:

    • crnpy: Provide several functions to process observations from cosmic ray neutron detectors.
    "},{"location":"reference/#crnpy.crnpy.abs_humidity","title":"abs_humidity(relative_humidity, temp)","text":"

    Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations.

    Parameters:

    Name Type Description Default relative_humidity float

    relative humidity (%)

    required temp float

    temperature (Celsius)

    required

    Returns:

    Name Type Description float

    actual vapor pressure (g m^-3)

    Source code in crnpy/crnpy.py
    def abs_humidity(relative_humidity, temp):\n    \"\"\"\n    Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations.\n\n    Args:\n        relative_humidity (float): relative humidity (%)\n        temp (float): temperature (Celsius)\n\n    Returns:\n        float: actual vapor pressure (g m^-3)\n    \"\"\"\n\n    ### Atmospheric water vapor factor\n    # Saturation vapor pressure\n    e_sat = 0.611 * np.exp(17.502 * temp / (\n            temp + 240.97)) * 1000  # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman)\n\n    # Vapor pressure Pascals\n    Pw = e_sat * relative_humidity / 100\n\n    # Absolute humidity (g/m^3)\n    C = 2.16679  # g K/J;\n    abs_h = C * Pw / (temp + 273.15)\n    return abs_h\n
    "},{"location":"reference/#crnpy.crnpy.atmospheric_depth","title":"atmospheric_depth(elevation, latitude)","text":"

    Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023

    This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023.

    Parameters:

    Name Type Description Default elevation float

    Elevation in meters above sea level.

    required latitude float

    Geographic latitude in decimal degrees. Value in range -90 to 90

    required

    Returns:

    Type Description float

    Atmospheric depth in g/cm2

    References

    Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration.

    McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic\u2010Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.

    Source code in crnpy/crnpy.py
    def atmospheric_depth(elevation, latitude):\n    \"\"\"Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023\n\n    This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023.\n\n    Args:\n        elevation (float): Elevation in meters above sea level.\n        latitude (float): Geographic latitude in decimal degrees. Value in range -90 to 90\n\n    Returns:\n        (float): Atmospheric depth in g/cm2\n\n    References:\n        Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration.\n\n        McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic\u2010Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.\n    \"\"\"\n\n    density_of_rock = 2670  # Density of rock in kg/m3\n    air_pressure_sea_level = 1013.25  # Air pressure at sea level in hPa\n    air_molar_mass = 0.0289644  # Air molar mass in kg/mol\n    universal_gas_constant = 8.3144598  # Universal gas constant in J/(mol*K)\n    reference_temperature = 288.15  # Reference temperature Kelvin\n    temperature_lapse_rate = -0.0065  # Temperature lapse rate in K/m\n\n    # Gravity at sea-level calculation\n    gravity_sea_level = 9.780327 * (\n            1 + 0.0053024 * np.sin(np.radians(latitude)) ** 2 - 0.0000058 * np.sin(2 * np.radians(latitude)) ** 2)\n    # Free air correction\n    free_air = -3.086 * 10 ** -6 * elevation\n    # Bouguer correction\n    bouguer_corr = 4.194 * 10 ** -10 * density_of_rock * elevation\n    # Total gravity\n    gravity = gravity_sea_level + free_air + bouguer_corr\n\n    # Air pressure calculation\n    reference_air_pressure = air_pressure_sea_level * (\n                1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / (\n                universal_gas_constant * temperature_lapse_rate))\n\n    # Atmospheric depth calculation\n    atmospheric_depth = (10 * reference_air_pressure) / gravity\n    return atmospheric_depth\n
    "},{"location":"reference/#crnpy.crnpy.biomass_to_bwe","title":"biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494)","text":"

    Function to convert biomass to biomass water equivalent.

    Parameters:

    Name Type Description Default biomass_dry array or Series or DataFrame

    Above ground dry biomass in kg m-2.

    required biomass_fresh array or Series or DataFrame

    Above ground fresh biomass in kg m-2.

    required fWE float

    Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose) Default is 0.494 (Wahbi & Avery, 2018).

    0.494

    Returns:

    Type Description array or Series or DataFrame

    Biomass water equivalent in kg m-2.

    References

    Wahbi, A., Avery, W. (2018). In Situ Destructive Sampling. In: Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent. Springer, Cham. https://doi.org/10.1007/978-3-319-69539-6_2

    Source code in crnpy/crnpy.py
    def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494):\n    \"\"\"Function to convert biomass to biomass water equivalent.\n\n    Args:\n        biomass_dry (array or pd.Series or pd.DataFrame): Above ground dry biomass in kg m-2.\n        biomass_fresh (array or pd.Series or pd.DataFrame): Above ground fresh biomass in kg m-2.\n        fWE (float): Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose)\n            Default is 0.494 (Wahbi & Avery, 2018).\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Biomass water equivalent in kg m-2.\n\n    References:\n        Wahbi, A., Avery, W. (2018). In Situ Destructive Sampling. In:\n        Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent.\n        Springer, Cham. https://doi.org/10.1007/978-3-319-69539-6_2\n    \"\"\"\n    return (biomass_fresh - biomass_dry) + fWE * biomass_dry\n
    "},{"location":"reference/#crnpy.crnpy.correction_bwe","title":"correction_bwe(counts, bwe, r2_N0=0.05)","text":"

    Function to correct for biomass effects in neutron counts. following the approach described in Baatz et al., 2015.

    Parameters:

    Name Type Description Default counts array or Series or DataFrame

    Array of ephithermal neutron counts.

    required bwe float

    Biomass water equivalent kg m-2.

    required r2_N0 float

    Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05.

    0.05

    Returns:

    Type Description array or Series or DataFrame

    Array of corrected neutron counts for biomass effects.

    References

    Baatz, R., H. R. Bogena, H.-J. Hendricks Franssen, J. A. Huisman, C. Montzka, and H. Vereecken (2015), An empiricalvegetation correction for soil water content quantification using cosmic ray probes, Water Resour. Res., 51, 2030\u20132046, doi:10.1002/ 2014WR016443.

    Source code in crnpy/crnpy.py
    def correction_bwe(counts, bwe, r2_N0=0.05):\n    \"\"\"Function to correct for biomass effects in neutron counts.\n    following the approach described in Baatz et al., 2015.\n\n    Args:\n        counts (array or pd.Series or pd.DataFrame): Array of ephithermal neutron counts.\n        bwe (float): Biomass water equivalent kg m-2.\n        r2_N0 (float): Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Array of corrected neutron counts for biomass effects.\n\n    References:\n        Baatz, R., H. R. Bogena, H.-J. Hendricks Franssen, J. A. Huisman, C. Montzka, and H. Vereecken (2015),\n        An empiricalvegetation correction for soil water content quantification using cosmic ray probes,\n        Water Resour. Res., 51, 2030\u20132046, doi:10.1002/ 2014WR016443.\n    \"\"\"\n\n    return counts / (1 - bwe * r2_N0)\n
    "},{"location":"reference/#crnpy.crnpy.correction_humidity","title":"correction_humidity(abs_humidity, Aref)","text":"

    Correction factor for absolute humidity.

    This function corrects neutron counts for absolute humidity using the method described in Rosolem et al. (2013) and Anderson et al. (2017). The correction is performed using the following equation:

    $$ C_{corrected} = C_{raw} \\cdot f_w $$

    where:

    • Ccorrected: corrected neutron counts
    • Craw: raw neutron counts
    • fw: absolute humidity correction factor

    $$ f_w = 1 + 0.0054(A - A_{ref}) $$

    where:

    • A: absolute humidity
    • Aref: reference absolute humidity

    Parameters:

    Name Type Description Default abs_humidity list or array

    Relative humidity readings.

    required Aref float

    Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended.

    required

    Returns:

    Type Description list

    fw correction factor.

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    Source code in crnpy/crnpy.py
    def correction_humidity(abs_humidity, Aref):\n    r\"\"\"Correction factor for absolute humidity.\n\n    This function corrects neutron counts for absolute humidity using the method described in Rosolem et al. (2013) and Anderson et al. (2017). The correction is performed using the following equation:\n\n    $$\n    C_{corrected} = C_{raw} \\cdot f_w\n    $$\n\n    where:\n\n    - Ccorrected: corrected neutron counts\n    - Craw: raw neutron counts\n    - fw: absolute humidity correction factor\n\n    $$\n    f_w = 1 + 0.0054(A - A_{ref})\n    $$\n\n    where:\n\n    - A: absolute humidity\n    - Aref: reference absolute humidity\n\n    Args:\n        abs_humidity (list or array): Relative humidity readings.\n        Aref (float): Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended.\n\n    Returns:\n        (list): fw correction factor.\n\n    References:\n        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086\n    \"\"\"\n    A = abs_humidity\n    fw = 1 + 0.0054 * (A - Aref)  # Zreda et al. 2017 Eq 6.\n    return fw\n
    "},{"location":"reference/#crnpy.crnpy.correction_incoming_flux","title":"correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None, site_atmdepth=None, Rc_ref=None, ref_atmdepth=None)","text":"

    Correction factor for incoming neutron flux.

    This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation:

    $$ C_{corrected} = \\frac{C_{raw}}{f_i} $$

    where:

    • Ccorrected: corrected neutron counts
    • Craw: raw neutron counts
    • fi: incoming neutron flux correction factor

    $$ f_i = \\frac{I_{ref}}{I} $$

    where:

    • I: incoming neutron flux
    • Iref: reference incoming neutron flux

    Parameters:

    Name Type Description Default incoming_neutrons list or array

    Incoming neutron flux readings.

    required incoming_Ref float

    Reference incoming neutron flux. Baseline incoming neutron flux.

    None

    Returns:

    Type Description list

    fi correction factor.

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    Source code in crnpy/crnpy.py
    def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None,\n                             site_atmdepth=None, Rc_ref=None, ref_atmdepth=None):\n    r\"\"\"Correction factor for incoming neutron flux.\n\n    This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation:\n\n    $$\n    C_{corrected} = \\frac{C_{raw}}{f_i}\n    $$\n\n    where:\n\n    - Ccorrected: corrected neutron counts\n    - Craw: raw neutron counts\n    - fi: incoming neutron flux correction factor\n\n    $$\n    f_i = \\frac{I_{ref}}{I}\n    $$\n\n    where:\n\n    - I: incoming neutron flux\n    - Iref: reference incoming neutron flux\n\n    Args:\n        incoming_neutrons (list or array): Incoming neutron flux readings.\n        incoming_Ref (float): Reference incoming neutron flux. Baseline incoming neutron flux.\n\n    Returns:\n        (list): fi correction factor.\n\n    References:\n        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086\n\n\n    \"\"\"\n    if incoming_Ref is None and not isinstance(incoming_neutrons, type(None)):\n        incoming_Ref = incoming_neutrons[0]\n        warnings.warn('Reference incoming neutron flux not provided. Using first value of incoming neutron flux.')\n    fi = incoming_neutrons / incoming_Ref\n\n    if Rc_method is not None:\n        if Rc_ref is None:\n            raise ValueError('Reference cutoff rigidity not provided.')\n        if Rc_site is None:\n            raise ValueError('Site cutoff rigidity not provided.')\n\n        if Rc_method == 'McJannetandDesilets2023':\n            tau = location_factor(site_atmdepth, Rc_site, ref_atmdepth, Rc_ref)\n            fi = 1 / (tau * fi + 1 - tau)\n\n        elif Rc_method == 'Hawdonetal2014':\n            Rc_corr = -0.075 * (Rc_site - Rc_ref) + 1.0\n            fi = (fi - 1.0) * Rc_corr + 1.0\n\n        else:\n            raise ValueError(\n                'Cutoff rigidity method not found. Valid options are: McJannetandDesilets2023, Hawdonetal2014.')\n\n    if fill_na is not None:\n        fi.fillna(fill_na, inplace=True)  # Use a value of 1 for days without data\n\n    return fi\n
    "},{"location":"reference/#crnpy.crnpy.correction_pressure","title":"correction_pressure(pressure, Pref, L)","text":"

    Correction factor for atmospheric pressure.

    This function corrects neutron counts for atmospheric pressure using the method described in Andreasen et al. (2017). The correction is performed using the following equation:

    $$ C_{corrected} = \\frac{C_{raw}}{fp} $$

    where:

    • Ccorrected: corrected neutron counts
    • Craw: raw neutron counts
    • fp: pressure correction factor

    $$ fp = e^{\\frac{P_{ref} - P}{L}} $$

    where:

    • P: atmospheric pressure
    • Pref: reference atmospheric pressure
    • L: Atmospheric attenuation coefficient.

    Parameters:

    Name Type Description Default pressure list or array

    Atmospheric pressure readings. Long-term average pressure is recommended.

    required Pref float

    Reference atmospheric pressure.

    required L float

    Atmospheric attenuation coefficient.

    required

    Returns:

    Type Description list

    fp pressure correction factor.

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    Source code in crnpy/crnpy.py
    def correction_pressure(pressure, Pref, L):\n    r\"\"\"Correction factor for atmospheric pressure.\n\n    This function corrects neutron counts for atmospheric pressure using the method described in Andreasen et al. (2017).\n    The correction is performed using the following equation:\n\n    $$\n    C_{corrected} = \\frac{C_{raw}}{fp}\n    $$\n\n    where:\n\n    - Ccorrected: corrected neutron counts\n    - Craw: raw neutron counts\n    - fp: pressure correction factor\n\n    $$\n    fp = e^{\\frac{P_{ref} - P}{L}}\n    $$\n\n    where:\n\n    - P: atmospheric pressure\n    - Pref: reference atmospheric pressure\n    - L: Atmospheric attenuation coefficient.\n\n\n    Args:\n        pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended.\n        Pref (float): Reference atmospheric pressure.\n        L (float): Atmospheric attenuation coefficient.\n\n    Returns:\n        (list): fp pressure correction factor.\n\n    References:\n        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086\n    \"\"\"\n\n    # Compute pressure correction factor\n    fp = np.exp((Pref - pressure) / L)  # Zreda et al. 2017 Eq 5.\n\n    return fp\n
    "},{"location":"reference/#crnpy.crnpy.correction_road","title":"correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, p4=0.16, p6=0.94, p7=1.1, p8=2.7, p9=0.01)","text":"

    Function to correct for road effects in neutron counts. following the approach described in Schr\u00f6n et al., 2018.

    Parameters:

    Name Type Description Default counts array or Series or DataFrame

    Array of ephithermal neutron counts.

    required theta_N float

    Volumetric water content of the soil estimated from the uncorrected neutron counts.

    required road_width float

    Width of the road in m.

    required road_distance float

    Distance of the road from the sensor in m. Default is 0.0.

    0.0 theta_road float

    Volumetric water content of the road. Default is 0.12.

    0.12 p0-p9 float

    Parameters of the correction function. Default values are from Schr\u00f6n et al., 2018.

    required

    Returns:

    Type Description array or Series or DataFrame

    Array of corrected neutron counts for road effects.

    References

    Schr\u00f6n,M.,Rosolem,R.,K\u00f6hli,M., Piussi,L.,Schr\u00f6ter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys of field soil moisture and the influence of roads.WaterResources Research,54,6441\u20136459. https://doi. org/10.1029/2017WR021719

    Source code in crnpy/crnpy.py
    def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4,\n                    p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01):\n    \"\"\"Function to correct for road effects in neutron counts.\n    following the approach described in Schr\u00f6n et al., 2018.\n\n    Args:\n        counts (array or pd.Series or pd.DataFrame): Array of ephithermal neutron counts.\n        theta_N (float): Volumetric water content of the soil estimated from the uncorrected neutron counts.\n        road_width (float): Width of the road in m.\n        road_distance (float): Distance of the road from the sensor in m. Default is 0.0.\n        theta_road (float): Volumetric water content of the road. Default is 0.12.\n        p0-p9 (float): Parameters of the correction function. Default values are from Schr\u00f6n et al., 2018.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Array of corrected neutron counts for road effects.\n\n    References:\n        Schr\u00f6n,M.,Rosolem,R.,K\u00f6hli,M., Piussi,L.,Schr\u00f6ter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys\n        of field soil moisture and the influence of roads.WaterResources Research,54,6441\u20136459.\n        https://doi. org/10.1029/2017WR021719\n    \"\"\"\n    F1 = p0 * (1 - np.exp(-p1 * road_width))\n    F2 = -p2 - p3 * theta_road - ((p4 + theta_road) / (theta_N))\n    F3 = p6 * np.exp(-p7 * (road_width ** -p8) * road_distance ** 4) + (1 - p6) * np.exp(-p9 * road_distance)\n\n    C_roads = 1 + F1 * F2 * F3\n\n    corrected_counts = counts / C_roads\n\n    return corrected_counts\n
    "},{"location":"reference/#crnpy.crnpy.counts_to_vwc","title":"counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115)","text":"

    Function to convert corrected and filtered neutron counts into volumetric water content.

    This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010.

    $\\theta(N) =\\frac{a_0}{(\\frac{N}{N_0}) - a_1} - a_2 $

    Parameters:

    Name Type Description Default counts array or Series or DataFrame

    Array of corrected and filtered neutron counts.

    required N0 float

    Device-specific neutron calibration constant.

    required Wlat float

    Lattice water content.

    required Wsoc float

    Soil organic carbon content.

    required bulk_density float

    Soil bulk density.

    required a0 float

    Parameter given in Zreda et al., 2012. Default is 0.0808.

    0.0808 a1 float

    Parameter given in Zreda et al., 2012. Default is 0.372.

    0.372 a2 float

    Parameter given in Zreda et al., 2012. Default is 0.115.

    0.115

    Returns:

    Type Description array or Series or DataFrame

    Volumetric water content in m3 m-3.

    References

    Desilets, D., M. Zreda, and T.P.A. Ferr\u00e9. 2010. Nature\u2019s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46:W11505. doi.org/10.1029/2009WR008726

    Source code in crnpy/crnpy.py
    def counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115):\n    r\"\"\"Function to convert corrected and filtered neutron counts into volumetric water content.\n\n    This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010.\n\n    $\\theta(N) =\\frac{a_0}{(\\frac{N}{N_0}) - a_1} - a_2 $\n\n    Args:\n        counts (array or pd.Series or pd.DataFrame): Array of corrected and filtered neutron counts.\n        N0 (float): Device-specific neutron calibration constant.\n        Wlat (float): Lattice water content.\n        Wsoc (float): Soil organic carbon content.\n        bulk_density (float): Soil bulk density.\n        a0 (float): Parameter given in Zreda et al., 2012. Default is 0.0808.\n        a1 (float): Parameter given in Zreda et al., 2012. Default is 0.372.\n        a2 (float): Parameter given in Zreda et al., 2012. Default is 0.115.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Volumetric water content in m3 m-3.\n\n    References:\n        Desilets, D., M. Zreda, and T.P.A. Ferr\u00e9. 2010. Nature\u2019s neutron probe:\n        Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46:W11505.\n        doi.org/10.1029/2009WR008726\n    \"\"\"\n\n    # Convert neutron counts into vwc\n    vwc = (a0 / (counts / N0 - a1) - a2 - Wlat - Wsoc) * bulk_density\n    return vwc\n
    "},{"location":"reference/#crnpy.crnpy.cutoff_rigidity","title":"cutoff_rigidity(lat, lon)","text":"

    Function to estimate the approximate cutoff rigidity for any point on Earth according to the tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest.

    Parameters:

    Name Type Description Default lat float

    Geographic latitude in decimal degrees. Value in range -90 to 90

    required lon float

    Geographic longitude in decimal degrees. Values in range from 0 to 360. Typical negative longitudes in the west hemisphere will fall in the range 180 to 360.

    required

    Returns:

    Type Description float

    Cutoff rigidity in GV. Error is about +/- 0.3 GV

    Examples:

    Estimate the cutoff rigidity for Newark, NJ, US

    >>> zq = cutoff_rigidity(39.68, -75.75)\n>>> print(zq)\n2.52 GV (Value from NMD is 2.40 GV)\n
    References

    Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic\u2010ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043.

    Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program: Theory, Software Description and Example. NASA STI/Recon Technical Report N.

    Shea, M. A., & Smart, D. F. (2019, July). Re-examination of the First Five Ground-Level Events. In International Cosmic Ray Conference (ICRC2019) (Vol. 36, p. 1149).

    Source code in crnpy/crnpy.py
    def cutoff_rigidity(lat, lon):\n    \"\"\"Function to estimate the approximate cutoff rigidity for any point on Earth according to the\n    tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate\n    neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest.\n\n    Args:\n        lat (float): Geographic latitude in decimal degrees. Value in range -90 to 90\n        lon (float): Geographic longitude in decimal degrees. Values in range from 0 to 360.\n            Typical negative longitudes in the west hemisphere will fall in the range 180 to 360.\n\n    Returns:\n        (float): Cutoff rigidity in GV. Error is about +/- 0.3 GV\n\n    Examples:\n        Estimate the cutoff rigidity for Newark, NJ, US\n\n        >>> zq = cutoff_rigidity(39.68, -75.75)\n        >>> print(zq)\n        2.52 GV (Value from NMD is 2.40 GV)\n\n    References:\n        Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures\n        for cosmic\u2010ray neutron soil moisture probes located across Australia. Water Resources Research,\n        50(6), 5029-5043.\n\n        Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program:\n        Theory, Software Description and Example. NASA STI/Recon Technical Report N.\n\n        Shea, M. A., & Smart, D. F. (2019, July). Re-examination of the First Five Ground-Level Events.\n        In International Cosmic Ray Conference (ICRC2019) (Vol. 36, p. 1149).\n    \"\"\"\n    xq = lon\n    yq = lat\n\n    if xq < 0:\n        xq = xq * -1 + 180\n    Z = np.array(data.cutoff_rigidity)\n    x = np.linspace(0, 360, Z.shape[1])\n    y = np.linspace(90, -90, Z.shape[0])\n    X, Y = np.meshgrid(x, y)\n    points = np.array((X.flatten(), Y.flatten())).T\n    values = Z.flatten()\n    zq = griddata(points, values, (xq, yq))\n\n    return np.round(zq, 2)\n
    "},{"location":"reference/#crnpy.crnpy.euclidean_distance","title":"euclidean_distance(px, py, x, y)","text":"

    Function that computes the Euclidean distance between one point in space and one or more points.

    Parameters:

    Name Type Description Default px float

    x projected coordinate of the point.

    required py float

    y projected coordinate of the point.

    required x (list, ndarray, series)

    vector of x projected coordinates.

    required y (list, ndarray, series)

    vector of y projected coordinates.

    required

    Returns:

    Type Description ndarray

    Numpy array of distances from the point (px,py) to all the points in x and y vectors.

    Source code in crnpy/crnpy.py
    def euclidean_distance(px, py, x, y):\n    \"\"\"Function that computes the Euclidean distance between one point\n    in space and one or more points.\n\n    Args:\n        px (float): x projected coordinate of the point.\n        py (float): y projected coordinate of the point.\n        x (list, ndarray, pandas.series): vector of x projected coordinates.\n        y (list, ndarray, pandas.series): vector of y projected coordinates.\n\n    Returns:\n        (ndarray): Numpy array of distances from the point (px,py) to all the points in x and y vectors.\n    \"\"\"\n    d = np.sqrt((px - x) ** 2 + (py - y) ** 2)\n    return d\n
    "},{"location":"reference/#crnpy.crnpy.exp_filter","title":"exp_filter(sm, T=1)","text":"

    Exponential filter to estimate soil moisture in the rootzone from surface observtions.

    Parameters:

    Name Type Description Default sm list or array

    Soil moisture in mm of water for the top layer of the soil profile.

    required T float

    Characteristic time length in the same units as the measurement interval.

    1

    Returns:

    Name Type Description sm_subsurface list or array

    Subsurface soil moisture in the same units as the input.

    References

    Albergel, C., R\u00fcdiger, C., Pellarin, T., Calvet, J.C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B. and Martin, E., 2008. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrology and Earth System Sciences, 12(6), pp.1323-1337.

    Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.

    Rossini, P. and Patrignani, A., 2021. Predicting rootzone soil moisture from surface observations in cropland using an exponential filter. Soil Science Society of America Journal.

    Source code in crnpy/crnpy.py
    def exp_filter(sm, T=1):\n    \"\"\"Exponential filter to estimate soil moisture in the rootzone from surface observtions.\n\n    Args:\n        sm (list or array): Soil moisture in mm of water for the top layer of the soil profile.\n        T (float): Characteristic time length in the same units as the measurement interval.\n\n    Returns:\n        sm_subsurface (list or array): Subsurface soil moisture in the same units as the input.\n\n    References:\n        Albergel, C., R\u00fcdiger, C., Pellarin, T., Calvet, J.C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B. and Martin, E., 2008.\n        From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model\n        simulations. Hydrology and Earth System Sciences, 12(6), pp.1323-1337.\n\n        Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020.\n        Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.\n\n        Rossini, P. and Patrignani, A., 2021. Predicting rootzone soil moisture from surface observations in cropland using an exponential filter.\n        Soil Science Society of America Journal.\n    \"\"\"\n\n    # Parameters\n    t_delta = 1\n    sm_min = np.min(sm)\n    sm_max = np.max(sm)\n    ms = (sm - sm_min) / (sm_max - sm_min)\n\n    # Pre-allocate soil water index array and recursive constant K\n    SWI = np.ones_like(ms) * np.nan\n    K = np.ones_like(ms) * np.nan\n\n    # Initial conditions\n    SWI[0] = ms[0]\n    K[0] = 1\n\n    # Values from 2 to N\n    for n in range(1, len(SWI)):\n        if ~np.isnan(ms[n]) & ~np.isnan(ms[n - 1]):\n            K[n] = K[n - 1] / (K[n - 1] + np.exp(-t_delta / T))\n            SWI[n] = SWI[n - 1] + K[n] * (ms[n] - SWI[n - 1])\n        else:\n            continue\n\n    # Rootzone storage\n    sm_subsurface = SWI * (sm_max - sm_min) + sm_min\n\n    return sm_subsurface\n
    "},{"location":"reference/#crnpy.crnpy.fill_missing_timestamps","title":"fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False)","text":"

    Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values.

    Parameters:

    Name Type Description Default df DataFrame

    Pandas DataFrame.

    required timestamp_col str

    Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'.

    'timestamp' freq str

    Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'.

    'H' round_timestamp bool

    Whether to round timestamps to the nearest frequency. Default is True.

    True verbose bool

    Prints the missing timestamps added to the DatFrame.

    False

    Returns:

    Type Description DataFrame

    DataFrame with filled missing timestamps.

    Source code in crnpy/crnpy.py
    def fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False):\n    \"\"\"Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values.\n\n     Args:\n         df (pandas.DataFrame): Pandas DataFrame.\n         timestamp_col (str, optional): Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'.\n         freq (str, optional): Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'.\n         round_timestamp (bool, optional): Whether to round timestamps to the nearest frequency. Default is True.\n         verbose (bool, optional): Prints the missing timestamps added to the DatFrame.\n\n     Returns:\n         (pandas.DataFrame): DataFrame with filled missing timestamps.\n\n     \"\"\"\n\n    # Check format of timestamp column\n    if df[timestamp_col].dtype != 'datetime64[ns]':\n        raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.')\n\n    # Round timestamps to nearest frequency. This steps must preced the filling of rows.\n    if round_timestamp:\n        df[timestamp_col] = df[timestamp_col].dt.round(freq)\n\n    # Fill in rows with missing timestamps\n    start_date = df[timestamp_col].iloc[0]\n    end_date = df[timestamp_col].iloc[-1]\n    date_range = pd.date_range(start_date, end_date, freq=freq)\n    counter = 0\n    for date in date_range:\n        if date not in df[timestamp_col].values:\n            if verbose:\n                print('Adding missing date:', date)\n            new_line = pd.DataFrame({timestamp_col: date}, index=[-1])  # By default fills columns with np.nan\n            df = pd.concat([df, new_line])\n            counter += 1\n\n    df.sort_values(by=timestamp_col, inplace=True)\n    df.reset_index(drop=True, inplace=True)\n\n    # Notify user about the number of rows that have been removed\n    print(f\"Added a total of {counter} missing timestamps.\")\n\n    return df\n
    "},{"location":"reference/#crnpy.crnpy.find_neutron_monitor","title":"find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False)","text":"

    Search for potential reference neutron monitoring stations based on cutoff rigidity.

    Parameters:

    Name Type Description Default Rc float

    Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.

    required start_date datetime

    Start date for the period of interest.

    None end_date datetime

    End date for the period of interest.

    None verbose bool

    If True, print a expanded output of the incoming neutron flux data.

    False

    Returns:

    Type Description list

    List of top five stations with closes cutoff rigidity. User needs to select station according to site altitude.

    Examples:

    >>> from crnpy import crnpy\n>>> Rc = 2.40 # 2.40 Newark, NJ, US\n>>> crnpy.find_neutron_monitor(Rc)\nSelect a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n

    Your cutoff rigidity is 2.4 GV STID NAME R Altitude_m 40 NEWK Newark 2.40 50 33 MOSC Moscow 2.43 200 27 KIEL Kiel 2.36 54 28 KIEL2 KielRT 2.36 54 31 MCRL Mobile Cosmic Ray Laboratory 2.46 200 32 MGDN Magadan 2.10 220 42 NVBK Novosibirsk 2.91 163 26 KGSN Kingston 1.88 65 9 CLMX Climax 3.00 3400 57 YKTK Yakutsk 1.65 105

    References

    https://www.nmdb.eu/nest/help.php#helpstations

    Source code in crnpy/crnpy.py
    def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False):\n    \"\"\"Search for potential reference neutron monitoring stations based on cutoff rigidity.\n\n    Args:\n        Rc (float): Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.\n        start_date (datetime): Start date for the period of interest.\n        end_date (datetime): End date for the period of interest.\n        verbose (bool): If True, print a expanded output of the incoming neutron flux data.\n\n    Returns:\n        (list): List of top five stations with closes cutoff rigidity.\n            User needs to select station according to site altitude.\n\n    Examples:\n        >>> from crnpy import crnpy\n        >>> Rc = 2.40 # 2.40 Newark, NJ, US\n        >>> crnpy.find_neutron_monitor(Rc)\n        Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n\n        Your cutoff rigidity is 2.4 GV\n                STID                          NAME     R  Altitude_m\n        40   NEWK                        Newark  2.40          50\n        33   MOSC                        Moscow  2.43         200\n        27   KIEL                          Kiel  2.36          54\n        28  KIEL2                        KielRT  2.36          54\n        31   MCRL  Mobile Cosmic Ray Laboratory  2.46         200\n        32   MGDN                       Magadan  2.10         220\n        42   NVBK                   Novosibirsk  2.91         163\n        26   KGSN                      Kingston  1.88          65\n        9    CLMX                        Climax  3.00        3400\n        57   YKTK                       Yakutsk  1.65         105\n\n    References:\n        https://www.nmdb.eu/nest/help.php#helpstations\n    \"\"\"\n\n    # Load file with list of neutron monitoring stations\n    stations = pd.DataFrame(data.neutron_detectors, columns=[\"STID\", \"NAME\", \"R\", \"Altitude_m\"])\n\n    # Sort stations by closest cutoff rigidity\n    idx_R = (stations['R'] - Rc).abs().argsort()\n\n    if start_date is not None and end_date is not None:\n        stations[\"Period available\"] = False\n        for i in range(10):\n            station = stations.iloc[idx_R[i]][\"STID\"]\n            try:\n                if get_incoming_neutron_flux(start_date, end_date, station, verbose=verbose) is not None:\n                    stations.iloc[idx_R[i], -1] = True\n            except:\n                pass\n\n        if sum(stations[\"Period available\"] == True) == 0:\n            print(\"No stations available for the selected period!\")\n        else:\n            stations = stations[stations[\"Period available\"] == True]\n            idx_R = (stations['R'] - Rc).abs().argsort()\n            result = stations.iloc[idx_R.iloc[:10]]\n    else:\n        result = stations.reindex(idx_R).head(10).rename_axis(None)\n\n    # Print results\n    print('')\n    print(\n        \"\"\"Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\"\"\")\n    print('')\n    print(f\"Your cutoff rigidity is {Rc} GV\")\n    print(result)\n    return result\n
    "},{"location":"reference/#crnpy.crnpy.get_incoming_neutron_flux","title":"get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False)","text":"

    Function to retrieve neutron flux from the Neutron Monitor Database.

    Parameters:

    Name Type Description Default start_date datetime

    Start date of the time series.

    required end_date datetime

    End date of the time series.

    required station str

    Neutron Monitor station to retrieve data from.

    required utc_offset int

    UTC offset in hours. Default is 0.

    0 expand_window int

    Number of hours to expand the time window to retrieve extra data. Default is 0.

    0 verbose bool

    Print information about the request. Default is False.

    False

    Returns:

    Type Description DataFrame

    Neutron flux in counts per hour and timestamps.

    References

    Documentation available:https://www.nmdb.eu/nest/help.php#howto

    Source code in crnpy/crnpy.py
    def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False):\n    \"\"\"Function to retrieve neutron flux from the Neutron Monitor Database.\n\n    Args:\n        start_date (datetime): Start date of the time series.\n        end_date (datetime): End date of the time series.\n        station (str): Neutron Monitor station to retrieve data from.\n        utc_offset (int): UTC offset in hours. Default is 0.\n        expand_window (int): Number of hours to expand the time window to retrieve extra data. Default is 0.\n        verbose (bool): Print information about the request. Default is False.\n\n    Returns:\n        (pandas.DataFrame): Neutron flux in counts per hour and timestamps.\n\n    References:\n        Documentation available:https://www.nmdb.eu/nest/help.php#howto\n    \"\"\"\n\n    # Example: get_incoming_neutron_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00')\n    # Template url = 'http://nest.nmdb.eu/draw_graph.php?formchk=1&stations[]=KERG&output=ascii&tabchoice=revori&dtype=corr_for_efficiency&date_choice=bydate&start_year=2009&start_month=09&start_day=01&start_hour=00&start_min=00&end_year=2009&end_month=09&end_day=05&end_hour=23&end_min=59&yunits=0'\n\n    # Expand the time window by 1 hour to ensure an extra observation is included in the request.\n    start_date -= pd.Timedelta(hours=expand_window)\n    end_date += pd.Timedelta(hours=expand_window)\n\n    # Convert local time to UTC\n    start_date = start_date - pd.Timedelta(hours=utc_offset)\n    end_date = end_date - pd.Timedelta(hours=utc_offset)\n    root = 'http://www.nmdb.eu/nest/draw_graph.php?'\n    url_par = ['formchk=1',\n               'stations[]=' + station,\n               'output=ascii',\n               'tabchoice=revori',\n               'dtype=corr_for_efficiency',\n               'tresolution=' + str(60),\n               'date_choice=bydate',\n               'start_year=' + str(start_date.year),\n               'start_month=' + str(start_date.month),\n               'start_day=' + str(start_date.day),\n               'start_hour=' + str(start_date.hour),\n               'start_min=' + str(start_date.minute),\n               'end_year=' + str(end_date.year),\n               'end_month=' + str(end_date.month),\n               'end_day=' + str(end_date.day),\n               'end_hour=' + str(end_date.hour),\n               'end_min=' + str(end_date.minute),\n               'yunits=0']\n\n    url = root + '&'.join(url_par)\n\n    if verbose:\n        print(f\"Retrieving data from {url}\")\n\n    r = requests.get(url).content.decode('utf-8')\n\n    # Subtract 1 hour to restore the last date included in the request.\n    end_date -= pd.Timedelta('1H')\n    start = r.find(\"RCORR_E\\n\") + 8\n    end = r.find('\\n</code></pre><br>Total') - 1\n    s = r[start:end]\n    s2 = ''.join([row.replace(';', ',') for row in s])\n    try:\n        df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp', 'counts'])\n    except:\n        if verbose:\n            print(f\"Error retrieving data from {url}\")\n        return None\n\n    # Check if all values from selected detector are NaN. If yes, warn the user\n    if df_flux['counts'].isna().all():\n        warnings.warn('Data for selected neutron detectors appears to be unavailable for the selected period')\n\n    # Convert timestamp to datetime and apply UTC offset\n    df_flux['timestamp'] = pd.to_datetime(df_flux['timestamp'])\n    df_flux['timestamp'] = df_flux['timestamp'] + pd.Timedelta(hours=utc_offset)\n\n    # Print acknowledgement to inform users about restrictions and to acknowledge the NMDB database\n    acknowledgement = \"\"\"Data retrieved via NMDB are the property of the individual data providers. These data are free for non commercial\nuse to within the restriction imposed by the providers. If you use such data for your research or applications, please acknowledge\nthe origin by a sentence like 'We acknowledge the NMDB database (www.nmdb.eu) founded under the European Union's FP7 programme \n(contract no. 213007), and the PIs of individual neutron monitors at: IGY Jungfraujoch \n(Physikalisches Institut, University of Bern, Switzerland)\"\"\"\n\n    return df_flux\n
    "},{"location":"reference/#crnpy.crnpy.get_reference_neutron_flux","title":"get_reference_neutron_flux(station, date=pd.to_datetime('2011-05-01'))","text":"

    Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022).

    Parameters:

    Name Type Description Default station str

    Neutron Monitor station to retrieve data from.

    required date datetime

    Date of the reference neutron flux. Default is 2011-05-01.

    to_datetime('2011-05-01')

    Returns:

    Type Description float

    Reference neutron flux in counts per hour.

    References

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099.

    Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic\u2010ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043.

    Bogena, H. R., Schr\u00f6n, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151.

    Source code in crnpy/crnpy.py
    def get_reference_neutron_flux(station, date=pd.to_datetime(\"2011-05-01\")):\n    \"\"\"Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022).\n\n    Args:\n        station (str): Neutron Monitor station to retrieve data from.\n        date (datetime): Date of the reference neutron flux. Default is 2011-05-01.\n\n    Returns:\n        (float): Reference neutron flux in counts per hour.\n\n    References:\n        Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099.\n\n        Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic\u2010ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043.\n\n        Bogena, H. R., Schr\u00f6n, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151.\n\n\"\"\"\n\n    # Get flux for 2011-05-01\n    df_flux = get_incoming_neutron_flux(station, date, date + pd.Timedelta(hours=24))\n    if df_flux is None:\n        warnings.warn(f\"Reference neutron flux for {station} not available. Returning NaN.\")\n    else:\n        return df_flux['counts'].median()\n
    "},{"location":"reference/#crnpy.crnpy.idw","title":"idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1)","text":"

    Function to interpolate data using inverse distance weight.

    Parameters:

    Name Type Description Default x list or array

    UTM x coordinates in meters.

    required y list or array

    UTM y coordinates in meters.

    required z list or array

    Values to be interpolated.

    required X_pred list or array

    UTM x coordinates where z values need to be predicted.

    required Y_pred list or array

    UTM y coordinates where z values need to be predicted.

    required neighborhood float

    Only points within this radius in meters are considered for the interpolation.

    1000 p int

    Exponent of the inverse distance weight formula. Typically, p=1 or p=2.

    1

    Returns:

    Type Description array

    Interpolated values.

    References

    https://en.wikipedia.org/wiki/Inverse_distance_weighting

    Source code in crnpy/crnpy.py
    def idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1):\n    \"\"\"Function to interpolate data using inverse distance weight.\n\n    Args:\n        x (list or array): UTM x coordinates in meters.\n        y (list or array): UTM y coordinates in meters.\n        z (list or array): Values to be interpolated.\n        X_pred (list or array): UTM x coordinates where z values need to be predicted.\n        Y_pred (list or array): UTM y coordinates where z values need to be predicted.\n        neighborhood (float): Only points within this radius in meters are considered for the interpolation.\n        p (int): Exponent of the inverse distance weight formula. Typically, p=1 or p=2.\n\n    Returns:\n        (array): Interpolated values.\n\n    References:\n        [https://en.wikipedia.org/wiki/Inverse_distance_weighting](https://en.wikipedia.org/wiki/Inverse_distance_weighting)\n\n\n    \"\"\"\n\n    # Flatten arrays to handle 1D and 2D arrays with the same code\n    s = X_pred.shape  # Save shape\n    X_pred = X_pred.flatten()\n    Y_pred = Y_pred.flatten()\n\n    # Pre-allocate output array\n    Z_pred = np.full_like(X_pred, np.nan)\n\n    for n in range(X_pred.size):\n        # Distance between current and observed points\n        d = euclidean_distance(X_pred[n], Y_pred[n], x, y)\n\n        # Select points within neighborhood only for interpolation\n        idx_neighbors = d < neighborhood\n\n        # Compute interpolated value at point of interest\n        Z_pred[n] = np.sum(z[idx_neighbors] / d[idx_neighbors] ** p) / np.sum(1 / d[idx_neighbors] ** p)\n\n    return np.reshape(Z_pred, s)\n
    "},{"location":"reference/#crnpy.crnpy.interpolate_2d","title":"interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000)","text":"

    Function for interpolating irregular spatial data into a regular grid.

    Parameters:

    Name Type Description Default x list or array

    UTM x coordinates in meters.

    required y list or array

    UTM y coordinates in meters.

    required z list or array

    Values to be interpolated.

    required dx float

    Pixel width in meters.

    100 dy float

    Pixel height in meters.

    100 method str

    Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'.

    'cubic' neighborhood float

    Only points within this radius in meters are considered for the interpolation.

    1000

    Returns:

    Name Type Description x_pred array

    2D array with x coordinates.

    y_pred array

    2D array with y coordinates.

    z_pred array

    2D array with interpolated values.

    References

    https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html

    Source code in crnpy/crnpy.py
    def interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000):\n    \"\"\"Function for interpolating irregular spatial data into a regular grid.\n\n    Args:\n        x (list or array): UTM x coordinates in meters.\n        y (list or array): UTM y coordinates in meters.\n        z (list or array): Values to be interpolated.\n        dx (float): Pixel width in meters.\n        dy (float): Pixel height in meters.\n        method (str): Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'.\n        neighborhood (float): Only points within this radius in meters are considered for the interpolation.\n\n    Returns:\n        x_pred (array): 2D array with x coordinates.\n        y_pred (array): 2D array with y coordinates.\n        z_pred (array): 2D array with interpolated values.\n\n    References:\n        [https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html](https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html)\n    \"\"\"\n\n    # Drop NaN values in x y and z\n    idx_nan = np.isnan(x) | np.isnan(y) | np.isnan(z)\n    x = x[~idx_nan]\n    y = y[~idx_nan]\n    z = z[~idx_nan]\n\n    if idx_nan.any():\n        print(\n            f\"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.\")\n\n    # Create 2D grid for interpolation\n    Nx = round((np.max(x) - np.min(x)) / dx) + 1\n    Ny = round((np.max(y) - np.min(y)) / dy) + 1\n    X_vec = np.linspace(np.min(x), np.max(x), Nx)\n    Y_vec = np.linspace(np.min(y), np.max(y), Ny)\n    X_pred, Y_pred = np.meshgrid(X_vec, Y_vec)\n\n    if method in ['linear', 'nearest', 'cubic']:\n        points = list(zip(x, y))\n        Z_pred = griddata(points, z, (X_pred, Y_pred), method=method)\n\n    elif method == 'idw':\n        Z_pred = idw(x, y, z, X_pred, Y_pred, neighborhood)\n\n    else:\n        raise f\"Method {method} does not exist. Provide either 'cubic', 'linear', 'nearest', or 'idw'.\"\n\n    return X_pred, Y_pred, Z_pred\n
    "},{"location":"reference/#crnpy.crnpy.interpolate_incoming_flux","title":"interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps)","text":"

    Function to interpolate incoming neutron flux to match the timestamps of the observations.

    Parameters:

    Name Type Description Default nmdb_timestamps Series

    Series of timestamps in datetime format from the NMDB.

    required nmdb_counts Series

    Series of neutron counts from the NMDB

    required crnp_timestamps Series

    Series of timestamps in datetime format from the station or device.

    required

    Returns:

    Type Description Series

    Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps

    Source code in crnpy/crnpy.py
    def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps):\n    \"\"\"Function to interpolate incoming neutron flux to match the timestamps of the observations.\n\n    Args:\n        nmdb_timestamps (pd.Series): Series of timestamps in datetime format from the NMDB.\n        nmdb_counts (pd.Series): Series of neutron counts from the NMDB\n        crnp_timestamps (pd.Series): Series of timestamps in datetime format from the station or device.\n\n    Returns:\n        (pd.Series): Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps\n    \"\"\"\n    incoming_flux = np.array([])\n    for k, timestamp in enumerate(crnp_timestamps):\n        if timestamp in nmdb_timestamps.values:\n            idx = timestamp == nmdb_timestamps\n            incoming_flux = np.append(incoming_flux, nmdb_counts.loc[idx])\n        else:\n            incoming_flux = np.append(incoming_flux, np.nan)\n\n    # Interpolate nan values\n    incoming_flux = pd.Series(incoming_flux).interpolate(method='nearest', limit_direction='both')\n\n    # Return only the values for the selected timestamps\n    return incoming_flux\n
    "},{"location":"reference/#crnpy.crnpy.is_outlier","title":"is_outlier(x, method, window=11, min_val=None, max_val=None)","text":"

    Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference.

    Parameters:

    Name Type Description Default x DataFrame or Series

    Variable containing only the columns with neutron counts.

    required method str

    Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad

    required window int

    Window size for the moving central tendency. Default is 11.

    11 min_val int or float

    Minimum value for a reading to be considered valid. Default is None.

    None max_val(int or float

    Maximum value for a reading to be considered valid. Default is None.

    required

    Returns:

    Type Description DataFrame

    Boolean indicating outliers.

    References

    Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press.

    Source code in crnpy/crnpy.py
    def is_outlier(x, method, window=11, min_val=None, max_val=None):\n    \"\"\"Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference.\n\n    Args:\n        x (pd.DataFrame or pd.Series): Variable containing only the columns with neutron counts.\n        method (str): Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad\n        window (int, optional): Window size for the moving central tendency. Default is 11.\n        min_val (int or float): Minimum value for a reading to be considered valid. Default is None.\n        max_val(int or float): Maximum value for a reading to be considered valid. Default is None.\n\n    Returns:\n        (pandas.DataFrame): Boolean indicating outliers.\n\n    References:\n        Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press.\n    \"\"\"\n\n    if not isinstance(x, pd.Series):\n        raise TypeError('x must of type pandas.Series')\n\n    # Separate this method to allow usage together with other methods below\n    if isinstance(min_val, numbers.Number) and isinstance(max_val, numbers.Number):\n        idx_range_outliers = (x < min_val) | (x > max_val)\n    else:\n        idx_range_outliers = np.full_like(x, False)\n\n    # Apply other methods in addition to a range check\n    if method == 'iqr':\n        q1 = x.quantile(0.25)\n        q3 = x.quantile(0.75)\n        iqr = q3 - q1\n        high_fence = q3 + (1.5 * iqr)\n        low_fence = q1 - (1.5 * iqr)\n        idx_outliers = (x < low_fence) | (x > high_fence)\n\n    elif method == 'moviqr':\n        q1 = x.rolling(window, center=True).quantile(0.25)\n        q3 = x.rolling(window, center=True).quantile(0.75)\n        iqr = q3 - q1\n        ub = q3 + (1.5 * iqr)  # Upper boundary\n        lb = q1 - (1.5 * iqr)  # Lower boundary\n        idx_outliers = (x < lb) | (x > ub)\n\n    elif method == 'zscore':\n        zscore = (x - x.mean()) / x.std()\n        idx_outliers = (zscore < -3) | (zscore > 3)\n\n    elif method == 'movzscore':\n        movmean = x.rolling(window=window, center=True).mean()\n        movstd = x.rolling(window=window, center=True).std()\n        movzscore = (x - movmean) / movstd\n        idx_outliers = (movzscore < -3) | (movzscore > 3)\n\n    elif method == 'modified_zscore':\n        # Compute median absolute difference\n        movmedian = x.rolling(window, center=True).median()\n        abs_diff = np.abs(x - movmedian)\n        mad = abs_diff.rolling(window, center=True).median()\n\n        # Compute modified z-score\n        modified_z_score = 0.6745 * abs_diff / mad\n        idx_outliers = (modified_z_score < -3.5) | (modified_z_score > 3.5)\n\n    elif method == 'scaled_mad':\n        # Returns true for elements more than three scaled MAD from the median. \n        c = -1 / (np.sqrt(2) * erfcinv(3 / 2))\n        median = np.nanmedian(x)\n        mad = c * np.nanmedian(np.abs(x - median))\n        idx_outliers = x > (median + 3 * mad)\n\n    else:\n        raise TypeError('Outlier detection method not found.')\n\n    return idx_outliers | idx_range_outliers\n
    "},{"location":"reference/#crnpy.crnpy.latlon_to_utm","title":"latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None)","text":"

    Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.

    Function only applies to non-polar coordinates. If further functionality is required, consider using the utm module. See references for more information.

    UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See UTM zones for a full description.

    Parameters:

    Name Type Description Default lat (float, array)

    Latitude in decimal degrees.

    required lon (float, array)

    Longitude in decimal degrees.

    required utm_zone_number int

    UTM zone number. If None, the zone number is automatically calculated.

    None utm_zone_letter str

    UTM zone letter. If None, the zone letter is automatically calculated.

    None

    Returns:

    Type Description (float, float)

    Tuple of easting and northing coordinates in meters. First element is easting, second is northing.

    References

    Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87) https://github.com/Turbo87/utm

    https://www.maptools.com/tutorials/grid_zone_details#

    Source code in crnpy/crnpy.py
    def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None):\n    \"\"\"Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.\n\n    Function only applies to non-polar coordinates.\n    If further functionality is required, consider using the utm module. See references for more information.\n\n    ![UTM zones](https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Universal_Transverse_Mercator_zones.svg/1920px-Universal_Transverse_Mercator_zones.svg.png)\n    UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See [UTM zones](https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#UTM_zones) for a full description.\n\n\n    Args:\n        lat (float, array): Latitude in decimal degrees.\n        lon (float, array): Longitude in decimal degrees.\n        utm_zone_number (int): UTM zone number. If None, the zone number is automatically calculated.\n        utm_zone_letter (str): UTM zone letter. If None, the zone letter is automatically calculated.\n\n    Returns:\n        (float, float): Tuple of easting and northing coordinates in meters. First element is easting, second is northing.\n\n    References:\n         Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87)\n         [https://github.com/Turbo87/utm](https://github.com/Turbo87/utm)\n\n         [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#)\n    \"\"\"\n    if utm_zone_number is None or utm_zone_letter is None:\n        easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon)\n    else:\n        easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon, utm_zone_number, utm_zone_letter)\n\n    return easting, northing, zone_number, zone_letter\n
    "},{"location":"reference/#crnpy.crnpy.lattice_water","title":"lattice_water(clay_content, total_carbon=None)","text":"

    Estimate the amount of water in the lattice of clay minerals.

    $\\omega_{lat} = 0.097 * clay(\\%)$ $\\omega_{lat} = -0.028 + 0.077 * clay(\\%) + 0.459 * carbon(\\%)$ Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab. Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.

    Parameters:

    Name Type Description Default clay_content float

    Clay content in the soil in percent.

    required total_carbon float

    Total carbon content in the soil in percent. If None, the amount of water is estimated based on clay content only.

    None

    Returns:

    Type Description float

    Amount of water in the lattice of clay minerals in percent

    Source code in crnpy/crnpy.py
    def lattice_water(clay_content, total_carbon=None):\n    r\"\"\"Estimate the amount of water in the lattice of clay minerals.\n\n    ![img1](img/lattice_water_simple.png) | ![img2](img/lattice_water_multiple.png)\n    :-------------------------:|:-------------------------:\n    $\\omega_{lat} = 0.097 * clay(\\%)$ | $\\omega_{lat} = -0.028 + 0.077 * clay(\\%) + 0.459 * carbon(\\%)$\n    Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab. |  Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.\n\n    Args:\n        clay_content (float): Clay content in the soil in percent.\n        total_carbon (float, optional): Total carbon content in the soil in percent.\n            If None, the amount of water is estimated based on clay content only.\n\n    Returns:\n        (float): Amount of water in the lattice of clay minerals in percent\n    \"\"\"\n    if total_carbon is None:\n        lattice_water = 0.097 * clay_content\n    else:\n        lattice_water = -0.028 + 0.077 * clay_content + 0.459 * total_carbon\n    return lattice_water\n
    "},{"location":"reference/#crnpy.crnpy.location_factor","title":"location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc)","text":"

    Function to estimate the location factor between two sites according to McJannet and Desilets, 2023.

    Parameters:

    Name Type Description Default site_atmospheric_depth float

    Atmospheric depth at the site in g/cm2. Can be estimated using the function atmospheric_depth()

    required site_Rc float

    Cutoff rigidity at the site in GV. Can be estimated using the function cutoff_rigidity()

    required reference_atmospheric_depth float

    Atmospheric depth at the reference location in g/cm2.

    required reference_Rc float

    Cutoff rigidity at the reference location in GV.

    required

    Returns:

    Type Description float

    Location-dependent correction factor.

    References

    McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic\u2010Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.

    Source code in crnpy/crnpy.py
    def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc):\n    \"\"\"\n    Function to estimate the location factor between two sites according to McJannet and Desilets, 2023.\n\n\n    Args:\n        site_atmospheric_depth (float): Atmospheric depth at the site in g/cm2. Can be estimated using the function `atmospheric_depth()`\n        site_Rc (float): Cutoff rigidity at the site in GV. Can be estimated using the function `cutoff_rigidity()`\n        reference_atmospheric_depth (float): Atmospheric depth at the reference location in g/cm2.\n        reference_Rc (float): Cutoff rigidity at the reference location in GV.\n\n    Returns:\n        (float): Location-dependent correction factor.\n\n    References:\n        McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic\u2010Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.\n\n    \"\"\"\n\n    # Renamed variables based on the provided table\n    c0 = -0.0009  # from C39\n    c1 = 1.7699  # from C40\n    c2 = 0.0064  # from C41\n    c3 = 1.8855  # from C42\n    c4 = 0.000013  # from C43\n    c5 = -1.2237  # from C44\n    epsilon = 1  # from C45\n\n    # Translated formula with renamed variables from McJannet and Desilets, 2023\n    tau_new = epsilon * (c0 * reference_atmospheric_depth + c1) * (\n            1 - np.exp(\n        -(c2 * reference_atmospheric_depth + c3) * reference_Rc ** (c4 * reference_atmospheric_depth + c5)))\n\n    norm_factor = 1 / tau_new\n\n    # Calculate the result using the provided parameters\n    tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * (\n                1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5)))\n    return tau\n
    "},{"location":"reference/#crnpy.crnpy.nrad_weight","title":"nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None)","text":"

    Function to compute distance weights corresponding to each soil sample.

    Parameters:

    Name Type Description Default h array or Series

    Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting.

    required theta array or Series

    Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)

    required distances array or Series

    Distances from the location of each sample to the origin (0.5 - 600 m)

    required depth array or Series

    Depths for each sample (m)

    required rhob array or Series

    Bulk density in g/cm^3

    1.4 p array or Series

    Atmospheric pressure in hPa. Required for the 'Schron_2017' method.

    None Hveg array or Series

    Vegetation height in m. Required for the 'Schron_2017' method.

    None method str

    Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'.

    None

    Returns:

    Type Description array or Series or DataFrame

    Distance weights for each sample.

    References

    K\u00f6hli, M., Schr\u00f6n, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour. Res. 51, 5772\u20135790. doi:10.1002/2015WR017169

    Schr\u00f6n, M., K\u00f6hli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity, Hydrol. Earth Syst. Sci., 21, 5009\u20135030, https://doi.org/10.5194/hess-21-5009-2017, 2017.

    Source code in crnpy/crnpy.py
    def nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None):\n    \"\"\"Function to compute distance weights corresponding to each soil sample.\n\n    Args:\n        h (np.array or pd.Series): Air Humidity  from 0.1  to 50 in g/m^3. When h=0, the function will skip the distance weighting.\n        theta (np.array or pd.Series): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)\n        distances (np.array or pd.Series): Distances from the location of each sample to the origin (0.5 - 600 m)\n        depth (np.array or pd.Series): Depths for each sample (m)\n        rhob (np.array or pd.Series): Bulk density in g/cm^3\n        p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method.\n        Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method.\n        method (str): Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Distance weights for each sample.\n\n    References:\n        K\u00f6hli, M., Schr\u00f6n, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015).\n        Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray\n        neutrons. Water Resour. Res. 51, 5772\u20135790. doi:10.1002/2015WR017169\n\n        Schr\u00f6n, M., K\u00f6hli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L.,\n        Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C.,\n        Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and\n        validation of cosmic-ray neutron sensors in the light of spatial sensitivity,\n        Hydrol. Earth Syst. Sci., 21, 5009\u20135030, https://doi.org/10.5194/hess-21-5009-2017, 2017.\n    \"\"\"\n\n    if method == 'Kohli_2015':\n\n        # Table A1. Parameters for Fi and D86\n        p10 = 8735;\n        p11 = 17.1758;\n        p12 = 11720;\n        p13 = 0.00978;\n        p14 = 7045;\n        p15 = 0.003632;\n        p20 = 2.7925e-2;\n        p21 = 5.0399;\n        p22 = 2.8544e-2;\n        p23 = 0.002455;\n        p24 = 6.851e-5;\n        p25 = 9.2926;\n        p30 = 247970;\n        p31 = 17.63;\n        p32 = 374655;\n        p33 = 0.00191;\n        p34 = 195725;\n        p40 = 5.4818e-2;\n        p41 = 15.921;\n        p42 = 0.6373;\n        p43 = 5.99e-2;\n        p44 = 5.425e-4;\n        p50 = 1383702;\n        p51 = 4.156;\n        p52 = 5325;\n        p53 = 0.00238;\n        p54 = 0.0156;\n        p55 = 0.130;\n        p56 = 1521;\n        p60 = 6.031e-5;\n        p61 = 98.5;\n        p62 = 1.0466e-3;\n        p70 = 11747;\n        p71 = 41.66;\n        p72 = 4521;\n        p73 = 0.01998;\n        p74 = 0.00604;\n        p75 = 2534;\n        p76 = 0.00475;\n        p80 = 1.543e-2;\n        p81 = 10.06;\n        p82 = 1.807e-2;\n        p83 = 0.0011;\n        p84 = 8.81e-5;\n        p85 = 0.0405;\n        p86 = 20.24;\n        p90 = 8.321;\n        p91 = 0.14249;\n        p92 = 0.96655;\n        p93 = 26.42;\n        p94 = 0.0567;\n\n        # Numerical determination of the penetration depth (86%) (Eq. 8)\n        D86 = 1 / rhob * (p90 + p91 * (p92 + np.exp(-1 * distances / 100)) * (p93 + theta) / (p94 + theta))\n\n        # Depth weights (Eq. 7)\n        Wd = np.exp(-2 * depth / D86)\n\n        if h == 0:\n            W = 1  # skip distance weighting\n\n        elif (h >= 0.1) and (h <= 50):\n            # Functions for Fi (Appendix A in K\u00f6hli et al., 2015)\n            F1 = p10 * (1 + p13 * h) * np.exp(-p11 * theta) + p12 * (1 + p15 * h) - p14 * theta\n            F2 = ((-p20 + p24 * h) * np.exp(-p21 * theta / (1 + p25 * theta)) + p22) * (1 + h * p23)\n            F3 = (p30 * (1 + p33 * h) * np.exp(-p31 * theta) + p32 - p34 * theta)\n            F4 = p40 * np.exp(-p41 * theta) + p42 - p43 * theta + p44 * h\n            F5 = p50 * (0.02 - 1 / p55 / (h - p55 + p56 * theta)) * (p54 - theta) * np.exp(\n                -p51 * (theta - p54)) + p52 * (0.7 - h * theta * p53)\n            F6 = p60 * (h + p61) + p62 * theta\n            F7 = (p70 * (1 - p76 * h) * np.exp(-p71 * theta * (1 - h * p74)) + p72 - p75 * theta) * (2 + h * p73)\n            F8 = ((-p80 + p84 * h) * np.exp(-p81 * theta / (1 + p85 * h + p86 * theta)) + p82) * (2 + h * p83)\n\n            # Distance weights (Eq. 3)\n            W = np.ones_like(distances) * np.nan\n            for i in range(len(distances)):\n                if (distances[i] <= 50) and (distances[i] > 0.5):\n                    W[i] = F1[i] * (np.exp(-F2[i] * distances[i])) + F3[i] * np.exp(-F4[i] * distances[i])\n\n                elif (distances[i] > 50) and (distances[i] < 600):\n                    W[i] = F5[i] * (np.exp(-F6[i] * distances[i])) + F7[i] * np.exp(-F8[i] * distances[i])\n\n                else:\n                    raise ValueError('Input distances are not valid.')\n\n        else:\n            raise ValueError('Air humidity values are out of range.')\n\n        # Combined and normalized weights\n        weights = Wd * W / np.nansum(Wd * W)\n        return weights\n    elif method == 'Schron_2017':\n        # Horizontal distance weights According to Eq. 6 and Table A1 in Schr\u00f6n et al. (2017)\n        # Method for calculating the horizontal distance weights from 0 to 1m\n        def WrX(r, x, y):\n            x00 = 3.7\n            a00 = 8735;\n            a01 = 22.689;\n            a02 = 11720;\n            a03 = 0.00978;\n            a04 = 9306;\n            a05 = 0.003632\n            a10 = 2.7925e-2;\n            a11 = 6.6577;\n            a12 = 0.028544;\n            a13 = 0.002455;\n            a14 = 6.851e-5;\n            a15 = 12.2755\n            a20 = 247970;\n            a21 = 23.289;\n            a22 = 374655;\n            a23 = 0.00191;\n            a24 = 258552\n            a30 = 5.4818e-2;\n            a31 = 21.032;\n            a32 = 0.6373;\n            a33 = 0.0791;\n            a34 = 5.425e-4\n\n            x0 = x00\n            A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y)\n            A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13)\n            A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y)\n            A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x\n\n            return ((A0 * (np.exp(-A1 * r)) + A2 * np.exp(-A3 * r)) * (1 - np.exp(-x0 * r)))\n\n        # Method for calculating the horizontal distance weights from 1 to 50m\n        def WrA(r, x, y):\n            a00 = 8735;\n            a01 = 22.689;\n            a02 = 11720;\n            a03 = 0.00978;\n            a04 = 9306;\n            a05 = 0.003632\n            a10 = 2.7925e-2;\n            a11 = 6.6577;\n            a12 = 0.028544;\n            a13 = 0.002455;\n            a14 = 6.851e-5;\n            a15 = 12.2755\n            a20 = 247970;\n            a21 = 23.289;\n            a22 = 374655;\n            a23 = 0.00191;\n            a24 = 258552\n            a30 = 5.4818e-2;\n            a31 = 21.032;\n            a32 = 0.6373;\n            a33 = 0.0791;\n            a34 = 5.425e-4\n\n            A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y)\n            A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13)\n            A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y)\n            A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x\n\n            return A0 * np.exp(-A1 * r) + A2 * np.exp(-A3 * r)\n\n        # Method for calculating the horizontal distance weights from 50 to 600m\n        def WrB(r, x, y):\n            b00 = 39006;\n            b01 = 15002337;\n            b02 = 2009.24;\n            b03 = 0.01181;\n            b04 = 3.146;\n            b05 = 16.7417;\n            b06 = 3727\n            b10 = 6.031e-5;\n            b11 = 98.5;\n            b12 = 0.0013826\n            b20 = 11747;\n            b21 = 55.033;\n            b22 = 4521;\n            b23 = 0.01998;\n            b24 = 0.00604;\n            b25 = 3347.4;\n            b26 = 0.00475\n            b30 = 1.543e-2;\n            b31 = 13.29;\n            b32 = 1.807e-2;\n            b33 = 0.0011;\n            b34 = 8.81e-5;\n            b35 = 0.0405;\n            b36 = 26.74\n\n            B0 = (b00 - b01 / (b02 * y + x - 0.13)) * (b03 - y) * np.exp(-b04 * y) - b05 * x * y + b06\n            B1 = b10 * (x + b11) + b12 * y\n            B2 = (b20 * (1 - b26 * x) * np.exp(-b21 * y * (1 - x * b24)) + b22 - b25 * y) * (2 + x * b23)\n            B3 = ((-b30 + b34 * x) * np.exp(-b31 * y / (1 + b35 * x + b36 * y)) + b32) * (2 + x * b33)\n\n            return B0 * np.exp(-B1 * r) + B2 * np.exp(-B3 * r)\n\n        def rscaled(r, p, Hveg, y):\n            Fp = 0.4922 / (0.86 - np.exp(-p / 1013.25))\n            Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y))\n            return r / Fp / Fveg\n\n        # Rename variables to be consistent with the revised paper\n        r = distances\n        x = h\n        y = theta\n        bd = rhob\n\n        if Hveg is not None and p is not None:\n            r = rscaled(r, p, Hveg, y)\n\n        Wr = np.zeros(len(r))\n\n        # See Eq. 6 in Schron et al. (2017)\n        r0_idx = (r <= 1)\n        r1_idx = (r > 1) & (r <= 50)\n        r2_idx = (r > 50) & (r < 600)\n        Wr[r0_idx] = WrX(r[r0_idx], x[r0_idx], y[r0_idx])\n        Wr[r1_idx] = WrA(r[r1_idx], x[r1_idx], y[r1_idx])\n        Wr[r2_idx] = WrB(r[r2_idx], x[r2_idx], y[r2_idx])\n\n        # Vertical distance weights\n        def D86(r, bd, y):\n            return 1 / bd * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r)) * (20 + y) / (0.0429 + y))\n\n        def Wd(d, r, bd, y):\n            return np.exp(-2 * d / D86(r, bd, y))\n\n        # Calculate the vertical distance weights\n        Wd = Wd(d, r, bd, y)\n\n        # Combined and normalized weights\n        # Combined and normalized weights\n        weights = Wd * Wr / np.nansum(Wd * Wr)\n\n        return weights\n
    "},{"location":"reference/#crnpy.crnpy.remove_incomplete_intervals","title":"remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False)","text":"

    Function that removes rows with incomplete integration intervals.

    Parameters:

    Name Type Description Default df DataFrame

    Pandas Dataframe with data from stationary or roving CRNP devices.

    required timestamp_col str

    Name of the column with timestamps in datetime format.

    required integration_time int

    Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds.

    required remove_first bool

    Remove first row. Default is False.

    False

    Returns:

    Type Description DataFrame Source code in crnpy/crnpy.py
    def remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False):\n    \"\"\"Function that removes rows with incomplete integration intervals.\n\n    Args:\n        df (pandas.DataFrame): Pandas Dataframe with data from stationary or roving CRNP devices.\n        timestamp_col (str): Name of the column with timestamps in datetime format.\n        integration_time (int): Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds.\n        remove_first (bool, optional): Remove first row. Default is False.\n\n    Returns:\n        (pandas.DataFrame): \n    \"\"\"\n\n    # Check format of timestamp column\n    if df[timestamp_col].dtype != 'datetime64[ns]':\n        raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.')\n\n    # Check if differences in timestamps are below or above the provided integration time\n    idx_delta = df[timestamp_col].diff().dt.total_seconds() != integration_time\n\n    if remove_first:\n        idx_delta[0] = True\n\n    # Select rows that meet the specified integration time\n    df = df[~idx_delta]\n    df.reset_index(drop=True, inplace=True)\n\n    # Notify user about the number of rows that have been removed\n    print(f\"Removed a total of {sum(idx_delta)} rows.\")\n\n    return df\n
    "},{"location":"reference/#crnpy.crnpy.rover_centered_coordinates","title":"rover_centered_coordinates(x, y)","text":"

    Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed.

    Parameters:

    Name Type Description Default x array

    x coordinates.

    required y array

    y coordinates.

    required

    Returns:

    Name Type Description x_est array

    Estimated x coordinates.

    y_est array

    Estimated y coordinates.

    Source code in crnpy/crnpy.py
    def rover_centered_coordinates(x, y):\n    \"\"\"Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed.\n\n    Args:\n        x (array): x coordinates.\n        y (array): y coordinates.\n\n    Returns:\n        x_est (array): Estimated x coordinates.\n        y_est (array): Estimated y coordinates.\n    \"\"\"\n\n    # Make it datatype agnostic\n    if (isinstance(x, pd.Series)):\n        x = x.values\n    if (isinstance(y, pd.Series)):\n        y = y.values\n\n    # Do the average of the two points\n    x_est = (x[1:] + x[:-1]) / 2\n    y_est = (y[1:] + y[:-1]) / 2\n\n    # Add the first point to match the length of the original array\n    x_est = np.insert(x_est, 0, x[0])\n    y_est = np.insert(y_est, 0, y[0])\n\n    return x_est, y_est\n
    "},{"location":"reference/#crnpy.crnpy.sensing_depth","title":"sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017')","text":"

    Function that computes the estimated sensing depth of the cosmic-ray neutron probe. The function offers several methods to compute the depth at which 86 % of the neutrons probe the soil profile.

    Parameters:

    Name Type Description Default vwc array or Series or DataFrame

    Estimated volumetric water content for each timestamp.

    required pressure array or Series or DataFrame

    Atmospheric pressure in hPa for each timestamp.

    required p_ref float

    Reference pressure in hPa.

    required bulk_density float

    Soil bulk density.

    required Wlat float

    Lattice water content.

    required method str

    Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'.

    'Schron_2017' dist list or array

    List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method.

    None

    Returns:

    Type Description array or Series or DataFrame

    Estimated sensing depth in m.

    References

    Franz, T.E., Zreda, M., Ferre, T.P.A., Rosolem, R., Zweck, C., Stillman, S., Zeng, X. and Shuttleworth, W.J., 2012. Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources. Water Resources Research, 48(8). doi.org/10.1029/2012WR011871

    Schr\u00f6n, M., K\u00f6hli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., et al. (2017). Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrol. Earth Syst. Sci. 21, 5009\u20135030. doi.org/10.5194/hess-21-5009-2017

    Source code in crnpy/crnpy.py
    def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017'):\n    \"\"\"Function that computes the estimated sensing depth of the cosmic-ray neutron probe.\n    The function offers several methods to compute the depth at which 86 % of the neutrons\n    probe the soil profile.\n\n    Args:\n        vwc (array or pd.Series or pd.DataFrame): Estimated volumetric water content for each timestamp.\n        pressure (array or pd.Series or pd.DataFrame): Atmospheric pressure in hPa for each timestamp.\n        p_ref (float): Reference pressure in hPa.\n        bulk_density (float): Soil bulk density.\n        Wlat (float): Lattice water content.\n        method (str): Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'.\n        dist (list or array): List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Estimated sensing depth in m.\n\n    References:\n        Franz, T.E., Zreda, M., Ferre, T.P.A., Rosolem, R., Zweck, C., Stillman, S., Zeng, X. and Shuttleworth, W.J., 2012.\n        Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources.\n        Water Resources Research, 48(8). doi.org/10.1029/2012WR011871\n\n        Schr\u00f6n, M., K\u00f6hli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., et al. (2017).\n        Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity.\n        Hydrol. Earth Syst. Sci. 21, 5009\u20135030. doi.org/10.5194/hess-21-5009-2017\n    \"\"\"\n\n    # Determine sensing depth (D86)\n    if method == 'Schron_2017':\n        # See Appendix A of Schr\u00f6n et al. (2017)\n        Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref))\n        Fveg = 0\n        results = []\n        for d in dist:\n            # Compute r_star\n            r_start = d / Fp\n\n            # Compute soil depth that accounts for 86% of the neutron flux\n            D86 = 1 / bulk_density * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r_start)) * (20 + (Wlat + vwc)) / (\n                        0.0429 + (Wlat + vwc)))\n            results.append(D86)\n\n    elif method == 'Franz_2012':\n        results = 5.8 / (bulk_density * Wlat + vwc + 0.0829)\n    else:\n        raise ValueError('Method not recognized. Please select either \"Schron_2017\" or \"Franz_2012\".')\n    return results\n
    "},{"location":"reference/#crnpy.crnpy.smooth_1d","title":"smooth_1d(values, window=5, order=3, method='moving_median')","text":"

    Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content).

    Parameters:

    Name Type Description Default values DataFrame or Serie

    Dataframe containing the values to smooth.

    required window int

    Window size for the Savitzky-Golay filter. Default is 5.

    5 method str

    Method to use for smoothing the data. Default is 'moving_median'. Options are 'moving_average', 'moving_median' and 'savitzky_golay'.

    'moving_median' order int

    Order of the Savitzky-Golay filter. Default is 3.

    3

    Returns:

    Type Description DataFrame

    DataFrame with smoothed values.

    References

    Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9. doi.org/10.3389/frwa.2020.00009

    Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8), 1627-1639.

    Source code in crnpy/crnpy.py
    def smooth_1d(values, window=5, order=3, method='moving_median'):\n    \"\"\"Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content).\n\n    Args:\n        values (pd.DataFrame or pd.Serie): Dataframe containing the values to smooth.\n        window (int): Window size for the Savitzky-Golay filter. Default is 5.\n        method (str): Method to use for smoothing the data. Default is 'moving_median'.\n            Options are 'moving_average', 'moving_median' and 'savitzky_golay'.\n        order (int): Order of the Savitzky-Golay filter. Default is 3.\n\n    Returns:\n        (pd.DataFrame): DataFrame with smoothed values.\n\n    References:\n        Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020.\n        Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.\n        doi.org/10.3389/frwa.2020.00009\n\n        Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures.\n        Analytical chemistry, 36(8), 1627-1639.\n    \"\"\"\n\n    if not isinstance(x, pd.Series) and not isinstance(x, pd.DataFrame):\n        raise ValueError('Input must be a pandas Series or DataFrame')\n\n    if method == 'moving_average':\n        corrected_counts = values.rolling(window=window, center=True, min_periods=1).mean()\n    elif method == 'moving_median':\n        corrected_counts = values.rolling(window=window, center=True, min_periods=1).median()\n\n    elif method == 'savitzky_golay':\n        if values.isna().any():\n            print('Dataframe contains NaN values. Please remove NaN values before smoothing the data.')\n\n        if type(values) == pd.core.series.Series:\n            filtered = savgol_filter(values, window, order)\n            corrected_counts = pd.DataFrame(filtered, columns=['smoothed'], index=values.index)\n        elif type(values) == pd.core.frame.DataFrame:\n            for col in values.columns:\n                values[col] = savgol_filter(values[col], window, order)\n    else:\n        raise ValueError(\n            'Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay')\n    corrected_counts = corrected_counts.ffill(limit=window).bfill(limit=window).copy()\n    return corrected_counts\n
    "},{"location":"reference/#crnpy.crnpy.spatial_average","title":"spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False)","text":"

    Moving buffer filter to smooth georeferenced two-dimensional data.

    Parameters:

    Name Type Description Default x list or array

    UTM x coordinates in meters.

    required y list or array

    UTM y coordinates in meters.

    required z list or array

    Values to be smoothed.

    required buffer float

    Radial buffer distance in meters.

    100 min_neighbours int

    Minimum number of neighbours to consider for the smoothing.

    3 method str

    One of 'mean' or 'median'.

    'mean' rnd bool

    Boolean to round the final result. Useful in case of z representing neutron counts.

    False

    Returns:

    Type Description array

    Smoothed version of z with the same dimension as z.

    Source code in crnpy/crnpy.py
    def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False):\n    \"\"\"Moving buffer filter to smooth georeferenced two-dimensional data.\n\n    Args:\n        x (list or array): UTM x coordinates in meters.\n        y (list or array): UTM y coordinates in meters.\n        z (list or array): Values to be smoothed.\n        buffer (float): Radial buffer distance in meters.\n        min_neighbours (int): Minimum number of neighbours to consider for the smoothing.\n        method (str): One of 'mean' or 'median'.\n        rnd (bool): Boolean to round the final result. Useful in case of z representing neutron counts.\n\n    Returns:\n        (array): Smoothed version of z with the same dimension as z.\n    \"\"\"\n\n    # Convert input data to Numpy arrays\n    if (type(x) is not np.ndarray) or (type(y) is not np.ndarray):\n        try:\n            x = np.array(x)\n            y = np.array(y)\n        except:\n            raise \"Input values cannot be converted to Numpy arrays.\"\n\n    if len(x) != len(y):\n        raise f\"The number of x and y must be equal. Input x has {len(x)} values and y has {len(y)} values.\"\n\n    # Compute distances\n    N = len(x)\n    z_smooth = np.array([])\n    for k in range(N):\n        px = x[k]\n        py = y[k]\n\n        distances = euclidean_distance(px, py, x, y)\n        idx_within_buffer = distances <= buffer\n\n        if np.isnan(z[k]):\n            z_new_val = np.nan\n        elif len(distances[idx_within_buffer]) > min_neighbours:\n            if method == 'mean':\n                z_new_val = np.nanmean(z[idx_within_buffer])\n            elif method == 'median':\n                z_new_val = np.nanmedian(z[idx_within_buffer])\n            else:\n                raise f\"Method {method} does not exist. Provide either 'mean' or 'median'.\"\n        else:\n            z_new_val = z[k]  # If there are not enough neighbours, keep the original value\n\n        # Append smoothed value to array\n        z_smooth = np.append(z_smooth, z_new_val)\n\n    if rnd:\n        z_smooth = np.round(z_smooth, 0)\n\n    return z_smooth\n
    "},{"location":"reference/#crnpy.crnpy.total_raw_counts","title":"total_raw_counts(counts)","text":"

    Compute the sum of uncorrected neutron counts for all detectors.

    Parameters:

    Name Type Description Default counts DataFrame

    Dataframe containing only the columns with neutron counts.

    required

    Returns:

    Type Description DataFrame

    Dataframe with the sum of uncorrected neutron counts for all detectors.

    Source code in crnpy/crnpy.py
    def total_raw_counts(counts):\n    \"\"\"Compute the sum of uncorrected neutron counts for all detectors.\n\n    Args:\n        counts (pandas.DataFrame): Dataframe containing only the columns with neutron counts.\n\n    Returns:\n        (pandas.DataFrame): Dataframe with the sum of uncorrected neutron counts for all detectors.\n    \"\"\"\n\n    if counts.shape[0] > 1:\n        counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)), axis=0)\n\n    # Compute sum of counts\n    total_raw_counts = counts.sum(axis=1)\n\n    # Replace zeros with NaN\n    total_raw_counts = total_raw_counts.replace(0, np.nan)\n\n    return total_raw_counts\n
    "},{"location":"reference/#crnpy.crnpy.uncertainty_counts","title":"uncertainty_counts(raw_counts, metric='std', fp=1, fw=1, fi=1)","text":"

    Function to estimate the uncertainty of raw counts.

    Measurements of proportional neutron detector systems are governed by counting statistics that follow a Poissonian probability distribution (Zreda et al., 2012). The expected uncertainty in the neutron count rate $N$ is defined by the standard deviation $ \\sqrt{N} $ (Jakobi et al., 2020). The CV% can be expressed as $ N^{-1/2} $

    Parameters:

    Name Type Description Default raw_counts array

    Raw neutron counts.

    required metric str

    Either 'std' or 'cv' for standard deviation or coefficient of variation.

    'std' fp float

    Pressure correction factor.

    1 fw float

    Humidity correction factor.

    1 fi float

    Incoming neutron flux correction factor.

    1

    Returns:

    Name Type Description uncertainty float

    Uncertainty of raw counts.

    References

    Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079\u20134099, https://doi.org/10.5194/hess-16-4079-2012, 2012.

    Source code in crnpy/crnpy.py
    def uncertainty_counts(raw_counts, metric=\"std\", fp=1, fw=1, fi=1):\n    \"\"\"Function to estimate the uncertainty of raw counts.\n\n    Measurements of proportional neutron detector systems are governed by counting statistics that follow a Poissonian probability distribution (Zreda et al., 2012).\n    The expected uncertainty in the neutron count rate $N$ is defined by the standard deviation $ \\sqrt{N} $ (Jakobi et al., 2020).\n    The CV% can be expressed as $ N^{-1/2} $\n\n    Args:\n        raw_counts (array): Raw neutron counts.\n        metric (str): Either 'std' or 'cv' for standard deviation or coefficient of variation.\n        fp (float): Pressure correction factor.\n        fw (float): Humidity correction factor.\n        fi (float): Incoming neutron flux correction factor.\n\n    Returns:\n        uncertainty (float): Uncertainty of raw counts.\n\n    References:\n        Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With\n        Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010\n\n        Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System,\n        Hydrol. Earth Syst. Sci., 16, 4079\u20134099, https://doi.org/10.5194/hess-16-4079-2012, 2012.\n\n    \"\"\"\n\n    s = fw / (fp * fi)\n    if metric == \"std\":\n        uncertainty = np.sqrt(raw_counts) * s\n    elif metric == \"cv\":\n        uncertainty = 1 / np.sqrt(raw_counts) * s\n    else:\n        raise f\"Metric {metric} does not exist. Provide either 'std' or 'cv' for standard deviation or coefficient of variation.\"\n    return uncertainty\n
    "},{"location":"reference/#crnpy.crnpy.uncertainty_vwc","title":"uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115)","text":"

    Function to estimate the uncertainty propagated to volumetric water content.

    The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts. Following Eq. 10 in Jakobi et al. (2020), the uncertainty of the volumetric water content can be expressed as: $$ \\sigma_{\\theta_g}(N) = \\sigma_N \\frac{a_0 N_0}{(N_{cor} - a_1 N_0)^4} \\sqrt{(N_{cor} - a_1 N_0)^4 + 8 \\sigma_N^2 (N_{cor} - a_1 N_0)^2 + 15 \\sigma_N^4} $$

    Parameters:

    Name Type Description Default raw_counts array

    Raw neutron counts.

    required N0 float

    Calibration parameter N0.

    required bulk_density float

    Bulk density in g cm-3.

    required fp float

    Pressure correction factor.

    1 fw float

    Humidity correction factor.

    1 fi float

    Incoming neutron flux correction factor.

    1

    Returns:

    Name Type Description sigma_VWC float

    Uncertainty in terms of volumetric water content.

    References

    Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010

    Source code in crnpy/crnpy.py
    def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115):\n    r\"\"\"Function to estimate the uncertainty propagated to volumetric water content.\n\n    The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts.\n    Following Eq. 10 in Jakobi et al. (2020), the uncertainty of the volumetric water content can be expressed as:\n    $$\n    \\sigma_{\\theta_g}(N) = \\sigma_N \\frac{a_0 N_0}{(N_{cor} - a_1 N_0)^4} \\sqrt{(N_{cor} - a_1 N_0)^4 + 8 \\sigma_N^2 (N_{cor} - a_1 N_0)^2 + 15 \\sigma_N^4}\n    $$\n\n    Args:\n        raw_counts (array): Raw neutron counts.\n        N0 (float): Calibration parameter N0.\n        bulk_density (float): Bulk density in g cm-3.\n        fp (float): Pressure correction factor.\n        fw (float): Humidity correction factor.\n        fi (float): Incoming neutron flux correction factor.\n\n    Returns:\n        sigma_VWC (float): Uncertainty in terms of volumetric water content.\n\n    References:\n        Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With\n        Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010\n    \"\"\"\n\n    Ncorr = raw_counts * fw / (fp * fi)\n    sigma_N = uncertainty_counts(raw_counts, metric=\"std\", fp=fp, fw=fw, fi=fi)\n    sigma_GWC = sigma_N * ((a0 * N0) / ((Ncorr - a1 * N0) ** 4)) * np.sqrt(\n        (Ncorr - a1 * N0) ** 4 + 8 * sigma_N ** 2 * (Ncorr - a1 * N0) ** 2 + 15 * sigma_N ** 4)\n    sigma_VWC = sigma_GWC * bulk_density\n\n    return sigma_VWC\n
    "},{"location":"reference/#crnpy.data.abs_humidity","title":"abs_humidity(relative_humidity, temp)","text":"

    Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations.

    Parameters:

    Name Type Description Default relative_humidity float

    relative humidity (%)

    required temp float

    temperature (Celsius)

    required

    Returns:

    Name Type Description float

    actual vapor pressure (g m^-3)

    Source code in crnpy/crnpy.py
    def abs_humidity(relative_humidity, temp):\n    \"\"\"\n    Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations.\n\n    Args:\n        relative_humidity (float): relative humidity (%)\n        temp (float): temperature (Celsius)\n\n    Returns:\n        float: actual vapor pressure (g m^-3)\n    \"\"\"\n\n    ### Atmospheric water vapor factor\n    # Saturation vapor pressure\n    e_sat = 0.611 * np.exp(17.502 * temp / (\n            temp + 240.97)) * 1000  # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman)\n\n    # Vapor pressure Pascals\n    Pw = e_sat * relative_humidity / 100\n\n    # Absolute humidity (g/m^3)\n    C = 2.16679  # g K/J;\n    abs_h = C * Pw / (temp + 273.15)\n    return abs_h\n
    "},{"location":"reference/#crnpy.data.atmospheric_depth","title":"atmospheric_depth(elevation, latitude)","text":"

    Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023

    This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023.

    Parameters:

    Name Type Description Default elevation float

    Elevation in meters above sea level.

    required latitude float

    Geographic latitude in decimal degrees. Value in range -90 to 90

    required

    Returns:

    Type Description float

    Atmospheric depth in g/cm2

    References

    Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration.

    McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic\u2010Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.

    Source code in crnpy/crnpy.py
    def atmospheric_depth(elevation, latitude):\n    \"\"\"Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023\n\n    This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023.\n\n    Args:\n        elevation (float): Elevation in meters above sea level.\n        latitude (float): Geographic latitude in decimal degrees. Value in range -90 to 90\n\n    Returns:\n        (float): Atmospheric depth in g/cm2\n\n    References:\n        Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration.\n\n        McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic\u2010Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.\n    \"\"\"\n\n    density_of_rock = 2670  # Density of rock in kg/m3\n    air_pressure_sea_level = 1013.25  # Air pressure at sea level in hPa\n    air_molar_mass = 0.0289644  # Air molar mass in kg/mol\n    universal_gas_constant = 8.3144598  # Universal gas constant in J/(mol*K)\n    reference_temperature = 288.15  # Reference temperature Kelvin\n    temperature_lapse_rate = -0.0065  # Temperature lapse rate in K/m\n\n    # Gravity at sea-level calculation\n    gravity_sea_level = 9.780327 * (\n            1 + 0.0053024 * np.sin(np.radians(latitude)) ** 2 - 0.0000058 * np.sin(2 * np.radians(latitude)) ** 2)\n    # Free air correction\n    free_air = -3.086 * 10 ** -6 * elevation\n    # Bouguer correction\n    bouguer_corr = 4.194 * 10 ** -10 * density_of_rock * elevation\n    # Total gravity\n    gravity = gravity_sea_level + free_air + bouguer_corr\n\n    # Air pressure calculation\n    reference_air_pressure = air_pressure_sea_level * (\n                1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / (\n                universal_gas_constant * temperature_lapse_rate))\n\n    # Atmospheric depth calculation\n    atmospheric_depth = (10 * reference_air_pressure) / gravity\n    return atmospheric_depth\n
    "},{"location":"reference/#crnpy.data.biomass_to_bwe","title":"biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494)","text":"

    Function to convert biomass to biomass water equivalent.

    Parameters:

    Name Type Description Default biomass_dry array or Series or DataFrame

    Above ground dry biomass in kg m-2.

    required biomass_fresh array or Series or DataFrame

    Above ground fresh biomass in kg m-2.

    required fWE float

    Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose) Default is 0.494 (Wahbi & Avery, 2018).

    0.494

    Returns:

    Type Description array or Series or DataFrame

    Biomass water equivalent in kg m-2.

    References

    Wahbi, A., Avery, W. (2018). In Situ Destructive Sampling. In: Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent. Springer, Cham. https://doi.org/10.1007/978-3-319-69539-6_2

    Source code in crnpy/crnpy.py
    def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494):\n    \"\"\"Function to convert biomass to biomass water equivalent.\n\n    Args:\n        biomass_dry (array or pd.Series or pd.DataFrame): Above ground dry biomass in kg m-2.\n        biomass_fresh (array or pd.Series or pd.DataFrame): Above ground fresh biomass in kg m-2.\n        fWE (float): Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose)\n            Default is 0.494 (Wahbi & Avery, 2018).\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Biomass water equivalent in kg m-2.\n\n    References:\n        Wahbi, A., Avery, W. (2018). In Situ Destructive Sampling. In:\n        Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent.\n        Springer, Cham. https://doi.org/10.1007/978-3-319-69539-6_2\n    \"\"\"\n    return (biomass_fresh - biomass_dry) + fWE * biomass_dry\n
    "},{"location":"reference/#crnpy.data.correction_bwe","title":"correction_bwe(counts, bwe, r2_N0=0.05)","text":"

    Function to correct for biomass effects in neutron counts. following the approach described in Baatz et al., 2015.

    Parameters:

    Name Type Description Default counts array or Series or DataFrame

    Array of ephithermal neutron counts.

    required bwe float

    Biomass water equivalent kg m-2.

    required r2_N0 float

    Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05.

    0.05

    Returns:

    Type Description array or Series or DataFrame

    Array of corrected neutron counts for biomass effects.

    References

    Baatz, R., H. R. Bogena, H.-J. Hendricks Franssen, J. A. Huisman, C. Montzka, and H. Vereecken (2015), An empiricalvegetation correction for soil water content quantification using cosmic ray probes, Water Resour. Res., 51, 2030\u20132046, doi:10.1002/ 2014WR016443.

    Source code in crnpy/crnpy.py
    def correction_bwe(counts, bwe, r2_N0=0.05):\n    \"\"\"Function to correct for biomass effects in neutron counts.\n    following the approach described in Baatz et al., 2015.\n\n    Args:\n        counts (array or pd.Series or pd.DataFrame): Array of ephithermal neutron counts.\n        bwe (float): Biomass water equivalent kg m-2.\n        r2_N0 (float): Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Array of corrected neutron counts for biomass effects.\n\n    References:\n        Baatz, R., H. R. Bogena, H.-J. Hendricks Franssen, J. A. Huisman, C. Montzka, and H. Vereecken (2015),\n        An empiricalvegetation correction for soil water content quantification using cosmic ray probes,\n        Water Resour. Res., 51, 2030\u20132046, doi:10.1002/ 2014WR016443.\n    \"\"\"\n\n    return counts / (1 - bwe * r2_N0)\n
    "},{"location":"reference/#crnpy.data.correction_humidity","title":"correction_humidity(abs_humidity, Aref)","text":"

    Correction factor for absolute humidity.

    This function corrects neutron counts for absolute humidity using the method described in Rosolem et al. (2013) and Anderson et al. (2017). The correction is performed using the following equation:

    $$ C_{corrected} = C_{raw} \\cdot f_w $$

    where:

    • Ccorrected: corrected neutron counts
    • Craw: raw neutron counts
    • fw: absolute humidity correction factor

    $$ f_w = 1 + 0.0054(A - A_{ref}) $$

    where:

    • A: absolute humidity
    • Aref: reference absolute humidity

    Parameters:

    Name Type Description Default abs_humidity list or array

    Relative humidity readings.

    required Aref float

    Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended.

    required

    Returns:

    Type Description list

    fw correction factor.

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    Source code in crnpy/crnpy.py
    def correction_humidity(abs_humidity, Aref):\n    r\"\"\"Correction factor for absolute humidity.\n\n    This function corrects neutron counts for absolute humidity using the method described in Rosolem et al. (2013) and Anderson et al. (2017). The correction is performed using the following equation:\n\n    $$\n    C_{corrected} = C_{raw} \\cdot f_w\n    $$\n\n    where:\n\n    - Ccorrected: corrected neutron counts\n    - Craw: raw neutron counts\n    - fw: absolute humidity correction factor\n\n    $$\n    f_w = 1 + 0.0054(A - A_{ref})\n    $$\n\n    where:\n\n    - A: absolute humidity\n    - Aref: reference absolute humidity\n\n    Args:\n        abs_humidity (list or array): Relative humidity readings.\n        Aref (float): Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended.\n\n    Returns:\n        (list): fw correction factor.\n\n    References:\n        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086\n    \"\"\"\n    A = abs_humidity\n    fw = 1 + 0.0054 * (A - Aref)  # Zreda et al. 2017 Eq 6.\n    return fw\n
    "},{"location":"reference/#crnpy.data.correction_incoming_flux","title":"correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None, site_atmdepth=None, Rc_ref=None, ref_atmdepth=None)","text":"

    Correction factor for incoming neutron flux.

    This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation:

    $$ C_{corrected} = \\frac{C_{raw}}{f_i} $$

    where:

    • Ccorrected: corrected neutron counts
    • Craw: raw neutron counts
    • fi: incoming neutron flux correction factor

    $$ f_i = \\frac{I_{ref}}{I} $$

    where:

    • I: incoming neutron flux
    • Iref: reference incoming neutron flux

    Parameters:

    Name Type Description Default incoming_neutrons list or array

    Incoming neutron flux readings.

    required incoming_Ref float

    Reference incoming neutron flux. Baseline incoming neutron flux.

    None

    Returns:

    Type Description list

    fi correction factor.

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    Source code in crnpy/crnpy.py
    def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None,\n                             site_atmdepth=None, Rc_ref=None, ref_atmdepth=None):\n    r\"\"\"Correction factor for incoming neutron flux.\n\n    This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation:\n\n    $$\n    C_{corrected} = \\frac{C_{raw}}{f_i}\n    $$\n\n    where:\n\n    - Ccorrected: corrected neutron counts\n    - Craw: raw neutron counts\n    - fi: incoming neutron flux correction factor\n\n    $$\n    f_i = \\frac{I_{ref}}{I}\n    $$\n\n    where:\n\n    - I: incoming neutron flux\n    - Iref: reference incoming neutron flux\n\n    Args:\n        incoming_neutrons (list or array): Incoming neutron flux readings.\n        incoming_Ref (float): Reference incoming neutron flux. Baseline incoming neutron flux.\n\n    Returns:\n        (list): fi correction factor.\n\n    References:\n        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086\n\n\n    \"\"\"\n    if incoming_Ref is None and not isinstance(incoming_neutrons, type(None)):\n        incoming_Ref = incoming_neutrons[0]\n        warnings.warn('Reference incoming neutron flux not provided. Using first value of incoming neutron flux.')\n    fi = incoming_neutrons / incoming_Ref\n\n    if Rc_method is not None:\n        if Rc_ref is None:\n            raise ValueError('Reference cutoff rigidity not provided.')\n        if Rc_site is None:\n            raise ValueError('Site cutoff rigidity not provided.')\n\n        if Rc_method == 'McJannetandDesilets2023':\n            tau = location_factor(site_atmdepth, Rc_site, ref_atmdepth, Rc_ref)\n            fi = 1 / (tau * fi + 1 - tau)\n\n        elif Rc_method == 'Hawdonetal2014':\n            Rc_corr = -0.075 * (Rc_site - Rc_ref) + 1.0\n            fi = (fi - 1.0) * Rc_corr + 1.0\n\n        else:\n            raise ValueError(\n                'Cutoff rigidity method not found. Valid options are: McJannetandDesilets2023, Hawdonetal2014.')\n\n    if fill_na is not None:\n        fi.fillna(fill_na, inplace=True)  # Use a value of 1 for days without data\n\n    return fi\n
    "},{"location":"reference/#crnpy.data.correction_pressure","title":"correction_pressure(pressure, Pref, L)","text":"

    Correction factor for atmospheric pressure.

    This function corrects neutron counts for atmospheric pressure using the method described in Andreasen et al. (2017). The correction is performed using the following equation:

    $$ C_{corrected} = \\frac{C_{raw}}{fp} $$

    where:

    • Ccorrected: corrected neutron counts
    • Craw: raw neutron counts
    • fp: pressure correction factor

    $$ fp = e^{\\frac{P_{ref} - P}{L}} $$

    where:

    • P: atmospheric pressure
    • Pref: reference atmospheric pressure
    • L: Atmospheric attenuation coefficient.

    Parameters:

    Name Type Description Default pressure list or array

    Atmospheric pressure readings. Long-term average pressure is recommended.

    required Pref float

    Reference atmospheric pressure.

    required L float

    Atmospheric attenuation coefficient.

    required

    Returns:

    Type Description list

    fp pressure correction factor.

    References

    M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086

    Source code in crnpy/crnpy.py
    def correction_pressure(pressure, Pref, L):\n    r\"\"\"Correction factor for atmospheric pressure.\n\n    This function corrects neutron counts for atmospheric pressure using the method described in Andreasen et al. (2017).\n    The correction is performed using the following equation:\n\n    $$\n    C_{corrected} = \\frac{C_{raw}}{fp}\n    $$\n\n    where:\n\n    - Ccorrected: corrected neutron counts\n    - Craw: raw neutron counts\n    - fp: pressure correction factor\n\n    $$\n    fp = e^{\\frac{P_{ref} - P}{L}}\n    $$\n\n    where:\n\n    - P: atmospheric pressure\n    - Pref: reference atmospheric pressure\n    - L: Atmospheric attenuation coefficient.\n\n\n    Args:\n        pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended.\n        Pref (float): Reference atmospheric pressure.\n        L (float): Atmospheric attenuation coefficient.\n\n    Returns:\n        (list): fp pressure correction factor.\n\n    References:\n        M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086\n    \"\"\"\n\n    # Compute pressure correction factor\n    fp = np.exp((Pref - pressure) / L)  # Zreda et al. 2017 Eq 5.\n\n    return fp\n
    "},{"location":"reference/#crnpy.data.correction_road","title":"correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, p4=0.16, p6=0.94, p7=1.1, p8=2.7, p9=0.01)","text":"

    Function to correct for road effects in neutron counts. following the approach described in Schr\u00f6n et al., 2018.

    Parameters:

    Name Type Description Default counts array or Series or DataFrame

    Array of ephithermal neutron counts.

    required theta_N float

    Volumetric water content of the soil estimated from the uncorrected neutron counts.

    required road_width float

    Width of the road in m.

    required road_distance float

    Distance of the road from the sensor in m. Default is 0.0.

    0.0 theta_road float

    Volumetric water content of the road. Default is 0.12.

    0.12 p0-p9 float

    Parameters of the correction function. Default values are from Schr\u00f6n et al., 2018.

    required

    Returns:

    Type Description array or Series or DataFrame

    Array of corrected neutron counts for road effects.

    References

    Schr\u00f6n,M.,Rosolem,R.,K\u00f6hli,M., Piussi,L.,Schr\u00f6ter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys of field soil moisture and the influence of roads.WaterResources Research,54,6441\u20136459. https://doi. org/10.1029/2017WR021719

    Source code in crnpy/crnpy.py
    def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4,\n                    p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01):\n    \"\"\"Function to correct for road effects in neutron counts.\n    following the approach described in Schr\u00f6n et al., 2018.\n\n    Args:\n        counts (array or pd.Series or pd.DataFrame): Array of ephithermal neutron counts.\n        theta_N (float): Volumetric water content of the soil estimated from the uncorrected neutron counts.\n        road_width (float): Width of the road in m.\n        road_distance (float): Distance of the road from the sensor in m. Default is 0.0.\n        theta_road (float): Volumetric water content of the road. Default is 0.12.\n        p0-p9 (float): Parameters of the correction function. Default values are from Schr\u00f6n et al., 2018.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Array of corrected neutron counts for road effects.\n\n    References:\n        Schr\u00f6n,M.,Rosolem,R.,K\u00f6hli,M., Piussi,L.,Schr\u00f6ter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys\n        of field soil moisture and the influence of roads.WaterResources Research,54,6441\u20136459.\n        https://doi. org/10.1029/2017WR021719\n    \"\"\"\n    F1 = p0 * (1 - np.exp(-p1 * road_width))\n    F2 = -p2 - p3 * theta_road - ((p4 + theta_road) / (theta_N))\n    F3 = p6 * np.exp(-p7 * (road_width ** -p8) * road_distance ** 4) + (1 - p6) * np.exp(-p9 * road_distance)\n\n    C_roads = 1 + F1 * F2 * F3\n\n    corrected_counts = counts / C_roads\n\n    return corrected_counts\n
    "},{"location":"reference/#crnpy.data.counts_to_vwc","title":"counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115)","text":"

    Function to convert corrected and filtered neutron counts into volumetric water content.

    This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010.

    $\\theta(N) =\\frac{a_0}{(\\frac{N}{N_0}) - a_1} - a_2 $

    Parameters:

    Name Type Description Default counts array or Series or DataFrame

    Array of corrected and filtered neutron counts.

    required N0 float

    Device-specific neutron calibration constant.

    required Wlat float

    Lattice water content.

    required Wsoc float

    Soil organic carbon content.

    required bulk_density float

    Soil bulk density.

    required a0 float

    Parameter given in Zreda et al., 2012. Default is 0.0808.

    0.0808 a1 float

    Parameter given in Zreda et al., 2012. Default is 0.372.

    0.372 a2 float

    Parameter given in Zreda et al., 2012. Default is 0.115.

    0.115

    Returns:

    Type Description array or Series or DataFrame

    Volumetric water content in m3 m-3.

    References

    Desilets, D., M. Zreda, and T.P.A. Ferr\u00e9. 2010. Nature\u2019s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46:W11505. doi.org/10.1029/2009WR008726

    Source code in crnpy/crnpy.py
    def counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115):\n    r\"\"\"Function to convert corrected and filtered neutron counts into volumetric water content.\n\n    This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010.\n\n    $\\theta(N) =\\frac{a_0}{(\\frac{N}{N_0}) - a_1} - a_2 $\n\n    Args:\n        counts (array or pd.Series or pd.DataFrame): Array of corrected and filtered neutron counts.\n        N0 (float): Device-specific neutron calibration constant.\n        Wlat (float): Lattice water content.\n        Wsoc (float): Soil organic carbon content.\n        bulk_density (float): Soil bulk density.\n        a0 (float): Parameter given in Zreda et al., 2012. Default is 0.0808.\n        a1 (float): Parameter given in Zreda et al., 2012. Default is 0.372.\n        a2 (float): Parameter given in Zreda et al., 2012. Default is 0.115.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Volumetric water content in m3 m-3.\n\n    References:\n        Desilets, D., M. Zreda, and T.P.A. Ferr\u00e9. 2010. Nature\u2019s neutron probe:\n        Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46:W11505.\n        doi.org/10.1029/2009WR008726\n    \"\"\"\n\n    # Convert neutron counts into vwc\n    vwc = (a0 / (counts / N0 - a1) - a2 - Wlat - Wsoc) * bulk_density\n    return vwc\n
    "},{"location":"reference/#crnpy.data.cutoff_rigidity","title":"cutoff_rigidity(lat, lon)","text":"

    Function to estimate the approximate cutoff rigidity for any point on Earth according to the tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest.

    Parameters:

    Name Type Description Default lat float

    Geographic latitude in decimal degrees. Value in range -90 to 90

    required lon float

    Geographic longitude in decimal degrees. Values in range from 0 to 360. Typical negative longitudes in the west hemisphere will fall in the range 180 to 360.

    required

    Returns:

    Type Description float

    Cutoff rigidity in GV. Error is about +/- 0.3 GV

    Examples:

    Estimate the cutoff rigidity for Newark, NJ, US

    >>> zq = cutoff_rigidity(39.68, -75.75)\n>>> print(zq)\n2.52 GV (Value from NMD is 2.40 GV)\n
    References

    Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic\u2010ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043.

    Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program: Theory, Software Description and Example. NASA STI/Recon Technical Report N.

    Shea, M. A., & Smart, D. F. (2019, July). Re-examination of the First Five Ground-Level Events. In International Cosmic Ray Conference (ICRC2019) (Vol. 36, p. 1149).

    Source code in crnpy/crnpy.py
    def cutoff_rigidity(lat, lon):\n    \"\"\"Function to estimate the approximate cutoff rigidity for any point on Earth according to the\n    tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate\n    neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest.\n\n    Args:\n        lat (float): Geographic latitude in decimal degrees. Value in range -90 to 90\n        lon (float): Geographic longitude in decimal degrees. Values in range from 0 to 360.\n            Typical negative longitudes in the west hemisphere will fall in the range 180 to 360.\n\n    Returns:\n        (float): Cutoff rigidity in GV. Error is about +/- 0.3 GV\n\n    Examples:\n        Estimate the cutoff rigidity for Newark, NJ, US\n\n        >>> zq = cutoff_rigidity(39.68, -75.75)\n        >>> print(zq)\n        2.52 GV (Value from NMD is 2.40 GV)\n\n    References:\n        Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures\n        for cosmic\u2010ray neutron soil moisture probes located across Australia. Water Resources Research,\n        50(6), 5029-5043.\n\n        Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program:\n        Theory, Software Description and Example. NASA STI/Recon Technical Report N.\n\n        Shea, M. A., & Smart, D. F. (2019, July). Re-examination of the First Five Ground-Level Events.\n        In International Cosmic Ray Conference (ICRC2019) (Vol. 36, p. 1149).\n    \"\"\"\n    xq = lon\n    yq = lat\n\n    if xq < 0:\n        xq = xq * -1 + 180\n    Z = np.array(data.cutoff_rigidity)\n    x = np.linspace(0, 360, Z.shape[1])\n    y = np.linspace(90, -90, Z.shape[0])\n    X, Y = np.meshgrid(x, y)\n    points = np.array((X.flatten(), Y.flatten())).T\n    values = Z.flatten()\n    zq = griddata(points, values, (xq, yq))\n\n    return np.round(zq, 2)\n
    "},{"location":"reference/#crnpy.data.euclidean_distance","title":"euclidean_distance(px, py, x, y)","text":"

    Function that computes the Euclidean distance between one point in space and one or more points.

    Parameters:

    Name Type Description Default px float

    x projected coordinate of the point.

    required py float

    y projected coordinate of the point.

    required x (list, ndarray, series)

    vector of x projected coordinates.

    required y (list, ndarray, series)

    vector of y projected coordinates.

    required

    Returns:

    Type Description ndarray

    Numpy array of distances from the point (px,py) to all the points in x and y vectors.

    Source code in crnpy/crnpy.py
    def euclidean_distance(px, py, x, y):\n    \"\"\"Function that computes the Euclidean distance between one point\n    in space and one or more points.\n\n    Args:\n        px (float): x projected coordinate of the point.\n        py (float): y projected coordinate of the point.\n        x (list, ndarray, pandas.series): vector of x projected coordinates.\n        y (list, ndarray, pandas.series): vector of y projected coordinates.\n\n    Returns:\n        (ndarray): Numpy array of distances from the point (px,py) to all the points in x and y vectors.\n    \"\"\"\n    d = np.sqrt((px - x) ** 2 + (py - y) ** 2)\n    return d\n
    "},{"location":"reference/#crnpy.data.exp_filter","title":"exp_filter(sm, T=1)","text":"

    Exponential filter to estimate soil moisture in the rootzone from surface observtions.

    Parameters:

    Name Type Description Default sm list or array

    Soil moisture in mm of water for the top layer of the soil profile.

    required T float

    Characteristic time length in the same units as the measurement interval.

    1

    Returns:

    Name Type Description sm_subsurface list or array

    Subsurface soil moisture in the same units as the input.

    References

    Albergel, C., R\u00fcdiger, C., Pellarin, T., Calvet, J.C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B. and Martin, E., 2008. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrology and Earth System Sciences, 12(6), pp.1323-1337.

    Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.

    Rossini, P. and Patrignani, A., 2021. Predicting rootzone soil moisture from surface observations in cropland using an exponential filter. Soil Science Society of America Journal.

    Source code in crnpy/crnpy.py
    def exp_filter(sm, T=1):\n    \"\"\"Exponential filter to estimate soil moisture in the rootzone from surface observtions.\n\n    Args:\n        sm (list or array): Soil moisture in mm of water for the top layer of the soil profile.\n        T (float): Characteristic time length in the same units as the measurement interval.\n\n    Returns:\n        sm_subsurface (list or array): Subsurface soil moisture in the same units as the input.\n\n    References:\n        Albergel, C., R\u00fcdiger, C., Pellarin, T., Calvet, J.C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B. and Martin, E., 2008.\n        From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model\n        simulations. Hydrology and Earth System Sciences, 12(6), pp.1323-1337.\n\n        Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020.\n        Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.\n\n        Rossini, P. and Patrignani, A., 2021. Predicting rootzone soil moisture from surface observations in cropland using an exponential filter.\n        Soil Science Society of America Journal.\n    \"\"\"\n\n    # Parameters\n    t_delta = 1\n    sm_min = np.min(sm)\n    sm_max = np.max(sm)\n    ms = (sm - sm_min) / (sm_max - sm_min)\n\n    # Pre-allocate soil water index array and recursive constant K\n    SWI = np.ones_like(ms) * np.nan\n    K = np.ones_like(ms) * np.nan\n\n    # Initial conditions\n    SWI[0] = ms[0]\n    K[0] = 1\n\n    # Values from 2 to N\n    for n in range(1, len(SWI)):\n        if ~np.isnan(ms[n]) & ~np.isnan(ms[n - 1]):\n            K[n] = K[n - 1] / (K[n - 1] + np.exp(-t_delta / T))\n            SWI[n] = SWI[n - 1] + K[n] * (ms[n] - SWI[n - 1])\n        else:\n            continue\n\n    # Rootzone storage\n    sm_subsurface = SWI * (sm_max - sm_min) + sm_min\n\n    return sm_subsurface\n
    "},{"location":"reference/#crnpy.data.fill_missing_timestamps","title":"fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False)","text":"

    Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values.

    Parameters:

    Name Type Description Default df DataFrame

    Pandas DataFrame.

    required timestamp_col str

    Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'.

    'timestamp' freq str

    Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'.

    'H' round_timestamp bool

    Whether to round timestamps to the nearest frequency. Default is True.

    True verbose bool

    Prints the missing timestamps added to the DatFrame.

    False

    Returns:

    Type Description DataFrame

    DataFrame with filled missing timestamps.

    Source code in crnpy/crnpy.py
    def fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False):\n    \"\"\"Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values.\n\n     Args:\n         df (pandas.DataFrame): Pandas DataFrame.\n         timestamp_col (str, optional): Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'.\n         freq (str, optional): Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'.\n         round_timestamp (bool, optional): Whether to round timestamps to the nearest frequency. Default is True.\n         verbose (bool, optional): Prints the missing timestamps added to the DatFrame.\n\n     Returns:\n         (pandas.DataFrame): DataFrame with filled missing timestamps.\n\n     \"\"\"\n\n    # Check format of timestamp column\n    if df[timestamp_col].dtype != 'datetime64[ns]':\n        raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.')\n\n    # Round timestamps to nearest frequency. This steps must preced the filling of rows.\n    if round_timestamp:\n        df[timestamp_col] = df[timestamp_col].dt.round(freq)\n\n    # Fill in rows with missing timestamps\n    start_date = df[timestamp_col].iloc[0]\n    end_date = df[timestamp_col].iloc[-1]\n    date_range = pd.date_range(start_date, end_date, freq=freq)\n    counter = 0\n    for date in date_range:\n        if date not in df[timestamp_col].values:\n            if verbose:\n                print('Adding missing date:', date)\n            new_line = pd.DataFrame({timestamp_col: date}, index=[-1])  # By default fills columns with np.nan\n            df = pd.concat([df, new_line])\n            counter += 1\n\n    df.sort_values(by=timestamp_col, inplace=True)\n    df.reset_index(drop=True, inplace=True)\n\n    # Notify user about the number of rows that have been removed\n    print(f\"Added a total of {counter} missing timestamps.\")\n\n    return df\n
    "},{"location":"reference/#crnpy.data.find_neutron_monitor","title":"find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False)","text":"

    Search for potential reference neutron monitoring stations based on cutoff rigidity.

    Parameters:

    Name Type Description Default Rc float

    Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.

    required start_date datetime

    Start date for the period of interest.

    None end_date datetime

    End date for the period of interest.

    None verbose bool

    If True, print a expanded output of the incoming neutron flux data.

    False

    Returns:

    Type Description list

    List of top five stations with closes cutoff rigidity. User needs to select station according to site altitude.

    Examples:

    >>> from crnpy import crnpy\n>>> Rc = 2.40 # 2.40 Newark, NJ, US\n>>> crnpy.find_neutron_monitor(Rc)\nSelect a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n

    Your cutoff rigidity is 2.4 GV STID NAME R Altitude_m 40 NEWK Newark 2.40 50 33 MOSC Moscow 2.43 200 27 KIEL Kiel 2.36 54 28 KIEL2 KielRT 2.36 54 31 MCRL Mobile Cosmic Ray Laboratory 2.46 200 32 MGDN Magadan 2.10 220 42 NVBK Novosibirsk 2.91 163 26 KGSN Kingston 1.88 65 9 CLMX Climax 3.00 3400 57 YKTK Yakutsk 1.65 105

    References

    https://www.nmdb.eu/nest/help.php#helpstations

    Source code in crnpy/crnpy.py
    def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False):\n    \"\"\"Search for potential reference neutron monitoring stations based on cutoff rigidity.\n\n    Args:\n        Rc (float): Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV.\n        start_date (datetime): Start date for the period of interest.\n        end_date (datetime): End date for the period of interest.\n        verbose (bool): If True, print a expanded output of the incoming neutron flux data.\n\n    Returns:\n        (list): List of top five stations with closes cutoff rigidity.\n            User needs to select station according to site altitude.\n\n    Examples:\n        >>> from crnpy import crnpy\n        >>> Rc = 2.40 # 2.40 Newark, NJ, US\n        >>> crnpy.find_neutron_monitor(Rc)\n        Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n\n        Your cutoff rigidity is 2.4 GV\n                STID                          NAME     R  Altitude_m\n        40   NEWK                        Newark  2.40          50\n        33   MOSC                        Moscow  2.43         200\n        27   KIEL                          Kiel  2.36          54\n        28  KIEL2                        KielRT  2.36          54\n        31   MCRL  Mobile Cosmic Ray Laboratory  2.46         200\n        32   MGDN                       Magadan  2.10         220\n        42   NVBK                   Novosibirsk  2.91         163\n        26   KGSN                      Kingston  1.88          65\n        9    CLMX                        Climax  3.00        3400\n        57   YKTK                       Yakutsk  1.65         105\n\n    References:\n        https://www.nmdb.eu/nest/help.php#helpstations\n    \"\"\"\n\n    # Load file with list of neutron monitoring stations\n    stations = pd.DataFrame(data.neutron_detectors, columns=[\"STID\", \"NAME\", \"R\", \"Altitude_m\"])\n\n    # Sort stations by closest cutoff rigidity\n    idx_R = (stations['R'] - Rc).abs().argsort()\n\n    if start_date is not None and end_date is not None:\n        stations[\"Period available\"] = False\n        for i in range(10):\n            station = stations.iloc[idx_R[i]][\"STID\"]\n            try:\n                if get_incoming_neutron_flux(start_date, end_date, station, verbose=verbose) is not None:\n                    stations.iloc[idx_R[i], -1] = True\n            except:\n                pass\n\n        if sum(stations[\"Period available\"] == True) == 0:\n            print(\"No stations available for the selected period!\")\n        else:\n            stations = stations[stations[\"Period available\"] == True]\n            idx_R = (stations['R'] - Rc).abs().argsort()\n            result = stations.iloc[idx_R.iloc[:10]]\n    else:\n        result = stations.reindex(idx_R).head(10).rename_axis(None)\n\n    # Print results\n    print('')\n    print(\n        \"\"\"Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\"\"\")\n    print('')\n    print(f\"Your cutoff rigidity is {Rc} GV\")\n    print(result)\n    return result\n
    "},{"location":"reference/#crnpy.data.get_incoming_neutron_flux","title":"get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False)","text":"

    Function to retrieve neutron flux from the Neutron Monitor Database.

    Parameters:

    Name Type Description Default start_date datetime

    Start date of the time series.

    required end_date datetime

    End date of the time series.

    required station str

    Neutron Monitor station to retrieve data from.

    required utc_offset int

    UTC offset in hours. Default is 0.

    0 expand_window int

    Number of hours to expand the time window to retrieve extra data. Default is 0.

    0 verbose bool

    Print information about the request. Default is False.

    False

    Returns:

    Type Description DataFrame

    Neutron flux in counts per hour and timestamps.

    References

    Documentation available:https://www.nmdb.eu/nest/help.php#howto

    Source code in crnpy/crnpy.py
    def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False):\n    \"\"\"Function to retrieve neutron flux from the Neutron Monitor Database.\n\n    Args:\n        start_date (datetime): Start date of the time series.\n        end_date (datetime): End date of the time series.\n        station (str): Neutron Monitor station to retrieve data from.\n        utc_offset (int): UTC offset in hours. Default is 0.\n        expand_window (int): Number of hours to expand the time window to retrieve extra data. Default is 0.\n        verbose (bool): Print information about the request. Default is False.\n\n    Returns:\n        (pandas.DataFrame): Neutron flux in counts per hour and timestamps.\n\n    References:\n        Documentation available:https://www.nmdb.eu/nest/help.php#howto\n    \"\"\"\n\n    # Example: get_incoming_neutron_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00')\n    # Template url = 'http://nest.nmdb.eu/draw_graph.php?formchk=1&stations[]=KERG&output=ascii&tabchoice=revori&dtype=corr_for_efficiency&date_choice=bydate&start_year=2009&start_month=09&start_day=01&start_hour=00&start_min=00&end_year=2009&end_month=09&end_day=05&end_hour=23&end_min=59&yunits=0'\n\n    # Expand the time window by 1 hour to ensure an extra observation is included in the request.\n    start_date -= pd.Timedelta(hours=expand_window)\n    end_date += pd.Timedelta(hours=expand_window)\n\n    # Convert local time to UTC\n    start_date = start_date - pd.Timedelta(hours=utc_offset)\n    end_date = end_date - pd.Timedelta(hours=utc_offset)\n    root = 'http://www.nmdb.eu/nest/draw_graph.php?'\n    url_par = ['formchk=1',\n               'stations[]=' + station,\n               'output=ascii',\n               'tabchoice=revori',\n               'dtype=corr_for_efficiency',\n               'tresolution=' + str(60),\n               'date_choice=bydate',\n               'start_year=' + str(start_date.year),\n               'start_month=' + str(start_date.month),\n               'start_day=' + str(start_date.day),\n               'start_hour=' + str(start_date.hour),\n               'start_min=' + str(start_date.minute),\n               'end_year=' + str(end_date.year),\n               'end_month=' + str(end_date.month),\n               'end_day=' + str(end_date.day),\n               'end_hour=' + str(end_date.hour),\n               'end_min=' + str(end_date.minute),\n               'yunits=0']\n\n    url = root + '&'.join(url_par)\n\n    if verbose:\n        print(f\"Retrieving data from {url}\")\n\n    r = requests.get(url).content.decode('utf-8')\n\n    # Subtract 1 hour to restore the last date included in the request.\n    end_date -= pd.Timedelta('1H')\n    start = r.find(\"RCORR_E\\n\") + 8\n    end = r.find('\\n</code></pre><br>Total') - 1\n    s = r[start:end]\n    s2 = ''.join([row.replace(';', ',') for row in s])\n    try:\n        df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp', 'counts'])\n    except:\n        if verbose:\n            print(f\"Error retrieving data from {url}\")\n        return None\n\n    # Check if all values from selected detector are NaN. If yes, warn the user\n    if df_flux['counts'].isna().all():\n        warnings.warn('Data for selected neutron detectors appears to be unavailable for the selected period')\n\n    # Convert timestamp to datetime and apply UTC offset\n    df_flux['timestamp'] = pd.to_datetime(df_flux['timestamp'])\n    df_flux['timestamp'] = df_flux['timestamp'] + pd.Timedelta(hours=utc_offset)\n\n    # Print acknowledgement to inform users about restrictions and to acknowledge the NMDB database\n    acknowledgement = \"\"\"Data retrieved via NMDB are the property of the individual data providers. These data are free for non commercial\nuse to within the restriction imposed by the providers. If you use such data for your research or applications, please acknowledge\nthe origin by a sentence like 'We acknowledge the NMDB database (www.nmdb.eu) founded under the European Union's FP7 programme \n(contract no. 213007), and the PIs of individual neutron monitors at: IGY Jungfraujoch \n(Physikalisches Institut, University of Bern, Switzerland)\"\"\"\n\n    return df_flux\n
    "},{"location":"reference/#crnpy.data.get_reference_neutron_flux","title":"get_reference_neutron_flux(station, date=pd.to_datetime('2011-05-01'))","text":"

    Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022).

    Parameters:

    Name Type Description Default station str

    Neutron Monitor station to retrieve data from.

    required date datetime

    Date of the reference neutron flux. Default is 2011-05-01.

    to_datetime('2011-05-01')

    Returns:

    Type Description float

    Reference neutron flux in counts per hour.

    References

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099.

    Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic\u2010ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043.

    Bogena, H. R., Schr\u00f6n, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151.

    Source code in crnpy/crnpy.py
    def get_reference_neutron_flux(station, date=pd.to_datetime(\"2011-05-01\")):\n    \"\"\"Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022).\n\n    Args:\n        station (str): Neutron Monitor station to retrieve data from.\n        date (datetime): Date of the reference neutron flux. Default is 2011-05-01.\n\n    Returns:\n        (float): Reference neutron flux in counts per hour.\n\n    References:\n        Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099.\n\n        Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic\u2010ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043.\n\n        Bogena, H. R., Schr\u00f6n, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151.\n\n\"\"\"\n\n    # Get flux for 2011-05-01\n    df_flux = get_incoming_neutron_flux(station, date, date + pd.Timedelta(hours=24))\n    if df_flux is None:\n        warnings.warn(f\"Reference neutron flux for {station} not available. Returning NaN.\")\n    else:\n        return df_flux['counts'].median()\n
    "},{"location":"reference/#crnpy.data.idw","title":"idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1)","text":"

    Function to interpolate data using inverse distance weight.

    Parameters:

    Name Type Description Default x list or array

    UTM x coordinates in meters.

    required y list or array

    UTM y coordinates in meters.

    required z list or array

    Values to be interpolated.

    required X_pred list or array

    UTM x coordinates where z values need to be predicted.

    required Y_pred list or array

    UTM y coordinates where z values need to be predicted.

    required neighborhood float

    Only points within this radius in meters are considered for the interpolation.

    1000 p int

    Exponent of the inverse distance weight formula. Typically, p=1 or p=2.

    1

    Returns:

    Type Description array

    Interpolated values.

    References

    https://en.wikipedia.org/wiki/Inverse_distance_weighting

    Source code in crnpy/crnpy.py
    def idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1):\n    \"\"\"Function to interpolate data using inverse distance weight.\n\n    Args:\n        x (list or array): UTM x coordinates in meters.\n        y (list or array): UTM y coordinates in meters.\n        z (list or array): Values to be interpolated.\n        X_pred (list or array): UTM x coordinates where z values need to be predicted.\n        Y_pred (list or array): UTM y coordinates where z values need to be predicted.\n        neighborhood (float): Only points within this radius in meters are considered for the interpolation.\n        p (int): Exponent of the inverse distance weight formula. Typically, p=1 or p=2.\n\n    Returns:\n        (array): Interpolated values.\n\n    References:\n        [https://en.wikipedia.org/wiki/Inverse_distance_weighting](https://en.wikipedia.org/wiki/Inverse_distance_weighting)\n\n\n    \"\"\"\n\n    # Flatten arrays to handle 1D and 2D arrays with the same code\n    s = X_pred.shape  # Save shape\n    X_pred = X_pred.flatten()\n    Y_pred = Y_pred.flatten()\n\n    # Pre-allocate output array\n    Z_pred = np.full_like(X_pred, np.nan)\n\n    for n in range(X_pred.size):\n        # Distance between current and observed points\n        d = euclidean_distance(X_pred[n], Y_pred[n], x, y)\n\n        # Select points within neighborhood only for interpolation\n        idx_neighbors = d < neighborhood\n\n        # Compute interpolated value at point of interest\n        Z_pred[n] = np.sum(z[idx_neighbors] / d[idx_neighbors] ** p) / np.sum(1 / d[idx_neighbors] ** p)\n\n    return np.reshape(Z_pred, s)\n
    "},{"location":"reference/#crnpy.data.interpolate_2d","title":"interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000)","text":"

    Function for interpolating irregular spatial data into a regular grid.

    Parameters:

    Name Type Description Default x list or array

    UTM x coordinates in meters.

    required y list or array

    UTM y coordinates in meters.

    required z list or array

    Values to be interpolated.

    required dx float

    Pixel width in meters.

    100 dy float

    Pixel height in meters.

    100 method str

    Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'.

    'cubic' neighborhood float

    Only points within this radius in meters are considered for the interpolation.

    1000

    Returns:

    Name Type Description x_pred array

    2D array with x coordinates.

    y_pred array

    2D array with y coordinates.

    z_pred array

    2D array with interpolated values.

    References

    https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html

    Source code in crnpy/crnpy.py
    def interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000):\n    \"\"\"Function for interpolating irregular spatial data into a regular grid.\n\n    Args:\n        x (list or array): UTM x coordinates in meters.\n        y (list or array): UTM y coordinates in meters.\n        z (list or array): Values to be interpolated.\n        dx (float): Pixel width in meters.\n        dy (float): Pixel height in meters.\n        method (str): Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'.\n        neighborhood (float): Only points within this radius in meters are considered for the interpolation.\n\n    Returns:\n        x_pred (array): 2D array with x coordinates.\n        y_pred (array): 2D array with y coordinates.\n        z_pred (array): 2D array with interpolated values.\n\n    References:\n        [https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html](https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html)\n    \"\"\"\n\n    # Drop NaN values in x y and z\n    idx_nan = np.isnan(x) | np.isnan(y) | np.isnan(z)\n    x = x[~idx_nan]\n    y = y[~idx_nan]\n    z = z[~idx_nan]\n\n    if idx_nan.any():\n        print(\n            f\"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.\")\n\n    # Create 2D grid for interpolation\n    Nx = round((np.max(x) - np.min(x)) / dx) + 1\n    Ny = round((np.max(y) - np.min(y)) / dy) + 1\n    X_vec = np.linspace(np.min(x), np.max(x), Nx)\n    Y_vec = np.linspace(np.min(y), np.max(y), Ny)\n    X_pred, Y_pred = np.meshgrid(X_vec, Y_vec)\n\n    if method in ['linear', 'nearest', 'cubic']:\n        points = list(zip(x, y))\n        Z_pred = griddata(points, z, (X_pred, Y_pred), method=method)\n\n    elif method == 'idw':\n        Z_pred = idw(x, y, z, X_pred, Y_pred, neighborhood)\n\n    else:\n        raise f\"Method {method} does not exist. Provide either 'cubic', 'linear', 'nearest', or 'idw'.\"\n\n    return X_pred, Y_pred, Z_pred\n
    "},{"location":"reference/#crnpy.data.interpolate_incoming_flux","title":"interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps)","text":"

    Function to interpolate incoming neutron flux to match the timestamps of the observations.

    Parameters:

    Name Type Description Default nmdb_timestamps Series

    Series of timestamps in datetime format from the NMDB.

    required nmdb_counts Series

    Series of neutron counts from the NMDB

    required crnp_timestamps Series

    Series of timestamps in datetime format from the station or device.

    required

    Returns:

    Type Description Series

    Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps

    Source code in crnpy/crnpy.py
    def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps):\n    \"\"\"Function to interpolate incoming neutron flux to match the timestamps of the observations.\n\n    Args:\n        nmdb_timestamps (pd.Series): Series of timestamps in datetime format from the NMDB.\n        nmdb_counts (pd.Series): Series of neutron counts from the NMDB\n        crnp_timestamps (pd.Series): Series of timestamps in datetime format from the station or device.\n\n    Returns:\n        (pd.Series): Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps\n    \"\"\"\n    incoming_flux = np.array([])\n    for k, timestamp in enumerate(crnp_timestamps):\n        if timestamp in nmdb_timestamps.values:\n            idx = timestamp == nmdb_timestamps\n            incoming_flux = np.append(incoming_flux, nmdb_counts.loc[idx])\n        else:\n            incoming_flux = np.append(incoming_flux, np.nan)\n\n    # Interpolate nan values\n    incoming_flux = pd.Series(incoming_flux).interpolate(method='nearest', limit_direction='both')\n\n    # Return only the values for the selected timestamps\n    return incoming_flux\n
    "},{"location":"reference/#crnpy.data.is_outlier","title":"is_outlier(x, method, window=11, min_val=None, max_val=None)","text":"

    Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference.

    Parameters:

    Name Type Description Default x DataFrame or Series

    Variable containing only the columns with neutron counts.

    required method str

    Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad

    required window int

    Window size for the moving central tendency. Default is 11.

    11 min_val int or float

    Minimum value for a reading to be considered valid. Default is None.

    None max_val(int or float

    Maximum value for a reading to be considered valid. Default is None.

    required

    Returns:

    Type Description DataFrame

    Boolean indicating outliers.

    References

    Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press.

    Source code in crnpy/crnpy.py
    def is_outlier(x, method, window=11, min_val=None, max_val=None):\n    \"\"\"Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference.\n\n    Args:\n        x (pd.DataFrame or pd.Series): Variable containing only the columns with neutron counts.\n        method (str): Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad\n        window (int, optional): Window size for the moving central tendency. Default is 11.\n        min_val (int or float): Minimum value for a reading to be considered valid. Default is None.\n        max_val(int or float): Maximum value for a reading to be considered valid. Default is None.\n\n    Returns:\n        (pandas.DataFrame): Boolean indicating outliers.\n\n    References:\n        Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press.\n    \"\"\"\n\n    if not isinstance(x, pd.Series):\n        raise TypeError('x must of type pandas.Series')\n\n    # Separate this method to allow usage together with other methods below\n    if isinstance(min_val, numbers.Number) and isinstance(max_val, numbers.Number):\n        idx_range_outliers = (x < min_val) | (x > max_val)\n    else:\n        idx_range_outliers = np.full_like(x, False)\n\n    # Apply other methods in addition to a range check\n    if method == 'iqr':\n        q1 = x.quantile(0.25)\n        q3 = x.quantile(0.75)\n        iqr = q3 - q1\n        high_fence = q3 + (1.5 * iqr)\n        low_fence = q1 - (1.5 * iqr)\n        idx_outliers = (x < low_fence) | (x > high_fence)\n\n    elif method == 'moviqr':\n        q1 = x.rolling(window, center=True).quantile(0.25)\n        q3 = x.rolling(window, center=True).quantile(0.75)\n        iqr = q3 - q1\n        ub = q3 + (1.5 * iqr)  # Upper boundary\n        lb = q1 - (1.5 * iqr)  # Lower boundary\n        idx_outliers = (x < lb) | (x > ub)\n\n    elif method == 'zscore':\n        zscore = (x - x.mean()) / x.std()\n        idx_outliers = (zscore < -3) | (zscore > 3)\n\n    elif method == 'movzscore':\n        movmean = x.rolling(window=window, center=True).mean()\n        movstd = x.rolling(window=window, center=True).std()\n        movzscore = (x - movmean) / movstd\n        idx_outliers = (movzscore < -3) | (movzscore > 3)\n\n    elif method == 'modified_zscore':\n        # Compute median absolute difference\n        movmedian = x.rolling(window, center=True).median()\n        abs_diff = np.abs(x - movmedian)\n        mad = abs_diff.rolling(window, center=True).median()\n\n        # Compute modified z-score\n        modified_z_score = 0.6745 * abs_diff / mad\n        idx_outliers = (modified_z_score < -3.5) | (modified_z_score > 3.5)\n\n    elif method == 'scaled_mad':\n        # Returns true for elements more than three scaled MAD from the median. \n        c = -1 / (np.sqrt(2) * erfcinv(3 / 2))\n        median = np.nanmedian(x)\n        mad = c * np.nanmedian(np.abs(x - median))\n        idx_outliers = x > (median + 3 * mad)\n\n    else:\n        raise TypeError('Outlier detection method not found.')\n\n    return idx_outliers | idx_range_outliers\n
    "},{"location":"reference/#crnpy.data.latlon_to_utm","title":"latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None)","text":"

    Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.

    Function only applies to non-polar coordinates. If further functionality is required, consider using the utm module. See references for more information.

    UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See UTM zones for a full description.

    Parameters:

    Name Type Description Default lat (float, array)

    Latitude in decimal degrees.

    required lon (float, array)

    Longitude in decimal degrees.

    required utm_zone_number int

    UTM zone number. If None, the zone number is automatically calculated.

    None utm_zone_letter str

    UTM zone letter. If None, the zone letter is automatically calculated.

    None

    Returns:

    Type Description (float, float)

    Tuple of easting and northing coordinates in meters. First element is easting, second is northing.

    References

    Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87) https://github.com/Turbo87/utm

    https://www.maptools.com/tutorials/grid_zone_details#

    Source code in crnpy/crnpy.py
    def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None):\n    \"\"\"Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System.\n\n    Function only applies to non-polar coordinates.\n    If further functionality is required, consider using the utm module. See references for more information.\n\n    ![UTM zones](https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Universal_Transverse_Mercator_zones.svg/1920px-Universal_Transverse_Mercator_zones.svg.png)\n    UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See [UTM zones](https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#UTM_zones) for a full description.\n\n\n    Args:\n        lat (float, array): Latitude in decimal degrees.\n        lon (float, array): Longitude in decimal degrees.\n        utm_zone_number (int): UTM zone number. If None, the zone number is automatically calculated.\n        utm_zone_letter (str): UTM zone letter. If None, the zone letter is automatically calculated.\n\n    Returns:\n        (float, float): Tuple of easting and northing coordinates in meters. First element is easting, second is northing.\n\n    References:\n         Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87)\n         [https://github.com/Turbo87/utm](https://github.com/Turbo87/utm)\n\n         [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#)\n    \"\"\"\n    if utm_zone_number is None or utm_zone_letter is None:\n        easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon)\n    else:\n        easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon, utm_zone_number, utm_zone_letter)\n\n    return easting, northing, zone_number, zone_letter\n
    "},{"location":"reference/#crnpy.data.lattice_water","title":"lattice_water(clay_content, total_carbon=None)","text":"

    Estimate the amount of water in the lattice of clay minerals.

    $\\omega_{lat} = 0.097 * clay(\\%)$ $\\omega_{lat} = -0.028 + 0.077 * clay(\\%) + 0.459 * carbon(\\%)$ Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab. Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.

    Parameters:

    Name Type Description Default clay_content float

    Clay content in the soil in percent.

    required total_carbon float

    Total carbon content in the soil in percent. If None, the amount of water is estimated based on clay content only.

    None

    Returns:

    Type Description float

    Amount of water in the lattice of clay minerals in percent

    Source code in crnpy/crnpy.py
    def lattice_water(clay_content, total_carbon=None):\n    r\"\"\"Estimate the amount of water in the lattice of clay minerals.\n\n    ![img1](img/lattice_water_simple.png) | ![img2](img/lattice_water_multiple.png)\n    :-------------------------:|:-------------------------:\n    $\\omega_{lat} = 0.097 * clay(\\%)$ | $\\omega_{lat} = -0.028 + 0.077 * clay(\\%) + 0.459 * carbon(\\%)$\n    Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab. |  Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab.\n\n    Args:\n        clay_content (float): Clay content in the soil in percent.\n        total_carbon (float, optional): Total carbon content in the soil in percent.\n            If None, the amount of water is estimated based on clay content only.\n\n    Returns:\n        (float): Amount of water in the lattice of clay minerals in percent\n    \"\"\"\n    if total_carbon is None:\n        lattice_water = 0.097 * clay_content\n    else:\n        lattice_water = -0.028 + 0.077 * clay_content + 0.459 * total_carbon\n    return lattice_water\n
    "},{"location":"reference/#crnpy.data.location_factor","title":"location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc)","text":"

    Function to estimate the location factor between two sites according to McJannet and Desilets, 2023.

    Parameters:

    Name Type Description Default site_atmospheric_depth float

    Atmospheric depth at the site in g/cm2. Can be estimated using the function atmospheric_depth()

    required site_Rc float

    Cutoff rigidity at the site in GV. Can be estimated using the function cutoff_rigidity()

    required reference_atmospheric_depth float

    Atmospheric depth at the reference location in g/cm2.

    required reference_Rc float

    Cutoff rigidity at the reference location in GV.

    required

    Returns:

    Type Description float

    Location-dependent correction factor.

    References

    McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic\u2010Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.

    Source code in crnpy/crnpy.py
    def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc):\n    \"\"\"\n    Function to estimate the location factor between two sites according to McJannet and Desilets, 2023.\n\n\n    Args:\n        site_atmospheric_depth (float): Atmospheric depth at the site in g/cm2. Can be estimated using the function `atmospheric_depth()`\n        site_Rc (float): Cutoff rigidity at the site in GV. Can be estimated using the function `cutoff_rigidity()`\n        reference_atmospheric_depth (float): Atmospheric depth at the reference location in g/cm2.\n        reference_Rc (float): Cutoff rigidity at the reference location in GV.\n\n    Returns:\n        (float): Location-dependent correction factor.\n\n    References:\n        McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic\u2010Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889.\n\n    \"\"\"\n\n    # Renamed variables based on the provided table\n    c0 = -0.0009  # from C39\n    c1 = 1.7699  # from C40\n    c2 = 0.0064  # from C41\n    c3 = 1.8855  # from C42\n    c4 = 0.000013  # from C43\n    c5 = -1.2237  # from C44\n    epsilon = 1  # from C45\n\n    # Translated formula with renamed variables from McJannet and Desilets, 2023\n    tau_new = epsilon * (c0 * reference_atmospheric_depth + c1) * (\n            1 - np.exp(\n        -(c2 * reference_atmospheric_depth + c3) * reference_Rc ** (c4 * reference_atmospheric_depth + c5)))\n\n    norm_factor = 1 / tau_new\n\n    # Calculate the result using the provided parameters\n    tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * (\n                1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5)))\n    return tau\n
    "},{"location":"reference/#crnpy.data.nrad_weight","title":"nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None)","text":"

    Function to compute distance weights corresponding to each soil sample.

    Parameters:

    Name Type Description Default h array or Series

    Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting.

    required theta array or Series

    Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)

    required distances array or Series

    Distances from the location of each sample to the origin (0.5 - 600 m)

    required depth array or Series

    Depths for each sample (m)

    required rhob array or Series

    Bulk density in g/cm^3

    1.4 p array or Series

    Atmospheric pressure in hPa. Required for the 'Schron_2017' method.

    None Hveg array or Series

    Vegetation height in m. Required for the 'Schron_2017' method.

    None method str

    Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'.

    None

    Returns:

    Type Description array or Series or DataFrame

    Distance weights for each sample.

    References

    K\u00f6hli, M., Schr\u00f6n, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour. Res. 51, 5772\u20135790. doi:10.1002/2015WR017169

    Schr\u00f6n, M., K\u00f6hli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity, Hydrol. Earth Syst. Sci., 21, 5009\u20135030, https://doi.org/10.5194/hess-21-5009-2017, 2017.

    Source code in crnpy/crnpy.py
    def nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None):\n    \"\"\"Function to compute distance weights corresponding to each soil sample.\n\n    Args:\n        h (np.array or pd.Series): Air Humidity  from 0.1  to 50 in g/m^3. When h=0, the function will skip the distance weighting.\n        theta (np.array or pd.Series): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3)\n        distances (np.array or pd.Series): Distances from the location of each sample to the origin (0.5 - 600 m)\n        depth (np.array or pd.Series): Depths for each sample (m)\n        rhob (np.array or pd.Series): Bulk density in g/cm^3\n        p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method.\n        Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method.\n        method (str): Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Distance weights for each sample.\n\n    References:\n        K\u00f6hli, M., Schr\u00f6n, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015).\n        Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray\n        neutrons. Water Resour. Res. 51, 5772\u20135790. doi:10.1002/2015WR017169\n\n        Schr\u00f6n, M., K\u00f6hli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L.,\n        Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C.,\n        Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and\n        validation of cosmic-ray neutron sensors in the light of spatial sensitivity,\n        Hydrol. Earth Syst. Sci., 21, 5009\u20135030, https://doi.org/10.5194/hess-21-5009-2017, 2017.\n    \"\"\"\n\n    if method == 'Kohli_2015':\n\n        # Table A1. Parameters for Fi and D86\n        p10 = 8735;\n        p11 = 17.1758;\n        p12 = 11720;\n        p13 = 0.00978;\n        p14 = 7045;\n        p15 = 0.003632;\n        p20 = 2.7925e-2;\n        p21 = 5.0399;\n        p22 = 2.8544e-2;\n        p23 = 0.002455;\n        p24 = 6.851e-5;\n        p25 = 9.2926;\n        p30 = 247970;\n        p31 = 17.63;\n        p32 = 374655;\n        p33 = 0.00191;\n        p34 = 195725;\n        p40 = 5.4818e-2;\n        p41 = 15.921;\n        p42 = 0.6373;\n        p43 = 5.99e-2;\n        p44 = 5.425e-4;\n        p50 = 1383702;\n        p51 = 4.156;\n        p52 = 5325;\n        p53 = 0.00238;\n        p54 = 0.0156;\n        p55 = 0.130;\n        p56 = 1521;\n        p60 = 6.031e-5;\n        p61 = 98.5;\n        p62 = 1.0466e-3;\n        p70 = 11747;\n        p71 = 41.66;\n        p72 = 4521;\n        p73 = 0.01998;\n        p74 = 0.00604;\n        p75 = 2534;\n        p76 = 0.00475;\n        p80 = 1.543e-2;\n        p81 = 10.06;\n        p82 = 1.807e-2;\n        p83 = 0.0011;\n        p84 = 8.81e-5;\n        p85 = 0.0405;\n        p86 = 20.24;\n        p90 = 8.321;\n        p91 = 0.14249;\n        p92 = 0.96655;\n        p93 = 26.42;\n        p94 = 0.0567;\n\n        # Numerical determination of the penetration depth (86%) (Eq. 8)\n        D86 = 1 / rhob * (p90 + p91 * (p92 + np.exp(-1 * distances / 100)) * (p93 + theta) / (p94 + theta))\n\n        # Depth weights (Eq. 7)\n        Wd = np.exp(-2 * depth / D86)\n\n        if h == 0:\n            W = 1  # skip distance weighting\n\n        elif (h >= 0.1) and (h <= 50):\n            # Functions for Fi (Appendix A in K\u00f6hli et al., 2015)\n            F1 = p10 * (1 + p13 * h) * np.exp(-p11 * theta) + p12 * (1 + p15 * h) - p14 * theta\n            F2 = ((-p20 + p24 * h) * np.exp(-p21 * theta / (1 + p25 * theta)) + p22) * (1 + h * p23)\n            F3 = (p30 * (1 + p33 * h) * np.exp(-p31 * theta) + p32 - p34 * theta)\n            F4 = p40 * np.exp(-p41 * theta) + p42 - p43 * theta + p44 * h\n            F5 = p50 * (0.02 - 1 / p55 / (h - p55 + p56 * theta)) * (p54 - theta) * np.exp(\n                -p51 * (theta - p54)) + p52 * (0.7 - h * theta * p53)\n            F6 = p60 * (h + p61) + p62 * theta\n            F7 = (p70 * (1 - p76 * h) * np.exp(-p71 * theta * (1 - h * p74)) + p72 - p75 * theta) * (2 + h * p73)\n            F8 = ((-p80 + p84 * h) * np.exp(-p81 * theta / (1 + p85 * h + p86 * theta)) + p82) * (2 + h * p83)\n\n            # Distance weights (Eq. 3)\n            W = np.ones_like(distances) * np.nan\n            for i in range(len(distances)):\n                if (distances[i] <= 50) and (distances[i] > 0.5):\n                    W[i] = F1[i] * (np.exp(-F2[i] * distances[i])) + F3[i] * np.exp(-F4[i] * distances[i])\n\n                elif (distances[i] > 50) and (distances[i] < 600):\n                    W[i] = F5[i] * (np.exp(-F6[i] * distances[i])) + F7[i] * np.exp(-F8[i] * distances[i])\n\n                else:\n                    raise ValueError('Input distances are not valid.')\n\n        else:\n            raise ValueError('Air humidity values are out of range.')\n\n        # Combined and normalized weights\n        weights = Wd * W / np.nansum(Wd * W)\n        return weights\n    elif method == 'Schron_2017':\n        # Horizontal distance weights According to Eq. 6 and Table A1 in Schr\u00f6n et al. (2017)\n        # Method for calculating the horizontal distance weights from 0 to 1m\n        def WrX(r, x, y):\n            x00 = 3.7\n            a00 = 8735;\n            a01 = 22.689;\n            a02 = 11720;\n            a03 = 0.00978;\n            a04 = 9306;\n            a05 = 0.003632\n            a10 = 2.7925e-2;\n            a11 = 6.6577;\n            a12 = 0.028544;\n            a13 = 0.002455;\n            a14 = 6.851e-5;\n            a15 = 12.2755\n            a20 = 247970;\n            a21 = 23.289;\n            a22 = 374655;\n            a23 = 0.00191;\n            a24 = 258552\n            a30 = 5.4818e-2;\n            a31 = 21.032;\n            a32 = 0.6373;\n            a33 = 0.0791;\n            a34 = 5.425e-4\n\n            x0 = x00\n            A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y)\n            A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13)\n            A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y)\n            A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x\n\n            return ((A0 * (np.exp(-A1 * r)) + A2 * np.exp(-A3 * r)) * (1 - np.exp(-x0 * r)))\n\n        # Method for calculating the horizontal distance weights from 1 to 50m\n        def WrA(r, x, y):\n            a00 = 8735;\n            a01 = 22.689;\n            a02 = 11720;\n            a03 = 0.00978;\n            a04 = 9306;\n            a05 = 0.003632\n            a10 = 2.7925e-2;\n            a11 = 6.6577;\n            a12 = 0.028544;\n            a13 = 0.002455;\n            a14 = 6.851e-5;\n            a15 = 12.2755\n            a20 = 247970;\n            a21 = 23.289;\n            a22 = 374655;\n            a23 = 0.00191;\n            a24 = 258552\n            a30 = 5.4818e-2;\n            a31 = 21.032;\n            a32 = 0.6373;\n            a33 = 0.0791;\n            a34 = 5.425e-4\n\n            A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y)\n            A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13)\n            A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y)\n            A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x\n\n            return A0 * np.exp(-A1 * r) + A2 * np.exp(-A3 * r)\n\n        # Method for calculating the horizontal distance weights from 50 to 600m\n        def WrB(r, x, y):\n            b00 = 39006;\n            b01 = 15002337;\n            b02 = 2009.24;\n            b03 = 0.01181;\n            b04 = 3.146;\n            b05 = 16.7417;\n            b06 = 3727\n            b10 = 6.031e-5;\n            b11 = 98.5;\n            b12 = 0.0013826\n            b20 = 11747;\n            b21 = 55.033;\n            b22 = 4521;\n            b23 = 0.01998;\n            b24 = 0.00604;\n            b25 = 3347.4;\n            b26 = 0.00475\n            b30 = 1.543e-2;\n            b31 = 13.29;\n            b32 = 1.807e-2;\n            b33 = 0.0011;\n            b34 = 8.81e-5;\n            b35 = 0.0405;\n            b36 = 26.74\n\n            B0 = (b00 - b01 / (b02 * y + x - 0.13)) * (b03 - y) * np.exp(-b04 * y) - b05 * x * y + b06\n            B1 = b10 * (x + b11) + b12 * y\n            B2 = (b20 * (1 - b26 * x) * np.exp(-b21 * y * (1 - x * b24)) + b22 - b25 * y) * (2 + x * b23)\n            B3 = ((-b30 + b34 * x) * np.exp(-b31 * y / (1 + b35 * x + b36 * y)) + b32) * (2 + x * b33)\n\n            return B0 * np.exp(-B1 * r) + B2 * np.exp(-B3 * r)\n\n        def rscaled(r, p, Hveg, y):\n            Fp = 0.4922 / (0.86 - np.exp(-p / 1013.25))\n            Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y))\n            return r / Fp / Fveg\n\n        # Rename variables to be consistent with the revised paper\n        r = distances\n        x = h\n        y = theta\n        bd = rhob\n\n        if Hveg is not None and p is not None:\n            r = rscaled(r, p, Hveg, y)\n\n        Wr = np.zeros(len(r))\n\n        # See Eq. 6 in Schron et al. (2017)\n        r0_idx = (r <= 1)\n        r1_idx = (r > 1) & (r <= 50)\n        r2_idx = (r > 50) & (r < 600)\n        Wr[r0_idx] = WrX(r[r0_idx], x[r0_idx], y[r0_idx])\n        Wr[r1_idx] = WrA(r[r1_idx], x[r1_idx], y[r1_idx])\n        Wr[r2_idx] = WrB(r[r2_idx], x[r2_idx], y[r2_idx])\n\n        # Vertical distance weights\n        def D86(r, bd, y):\n            return 1 / bd * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r)) * (20 + y) / (0.0429 + y))\n\n        def Wd(d, r, bd, y):\n            return np.exp(-2 * d / D86(r, bd, y))\n\n        # Calculate the vertical distance weights\n        Wd = Wd(d, r, bd, y)\n\n        # Combined and normalized weights\n        # Combined and normalized weights\n        weights = Wd * Wr / np.nansum(Wd * Wr)\n\n        return weights\n
    "},{"location":"reference/#crnpy.data.remove_incomplete_intervals","title":"remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False)","text":"

    Function that removes rows with incomplete integration intervals.

    Parameters:

    Name Type Description Default df DataFrame

    Pandas Dataframe with data from stationary or roving CRNP devices.

    required timestamp_col str

    Name of the column with timestamps in datetime format.

    required integration_time int

    Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds.

    required remove_first bool

    Remove first row. Default is False.

    False

    Returns:

    Type Description DataFrame Source code in crnpy/crnpy.py
    def remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False):\n    \"\"\"Function that removes rows with incomplete integration intervals.\n\n    Args:\n        df (pandas.DataFrame): Pandas Dataframe with data from stationary or roving CRNP devices.\n        timestamp_col (str): Name of the column with timestamps in datetime format.\n        integration_time (int): Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds.\n        remove_first (bool, optional): Remove first row. Default is False.\n\n    Returns:\n        (pandas.DataFrame): \n    \"\"\"\n\n    # Check format of timestamp column\n    if df[timestamp_col].dtype != 'datetime64[ns]':\n        raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.')\n\n    # Check if differences in timestamps are below or above the provided integration time\n    idx_delta = df[timestamp_col].diff().dt.total_seconds() != integration_time\n\n    if remove_first:\n        idx_delta[0] = True\n\n    # Select rows that meet the specified integration time\n    df = df[~idx_delta]\n    df.reset_index(drop=True, inplace=True)\n\n    # Notify user about the number of rows that have been removed\n    print(f\"Removed a total of {sum(idx_delta)} rows.\")\n\n    return df\n
    "},{"location":"reference/#crnpy.data.rover_centered_coordinates","title":"rover_centered_coordinates(x, y)","text":"

    Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed.

    Parameters:

    Name Type Description Default x array

    x coordinates.

    required y array

    y coordinates.

    required

    Returns:

    Name Type Description x_est array

    Estimated x coordinates.

    y_est array

    Estimated y coordinates.

    Source code in crnpy/crnpy.py
    def rover_centered_coordinates(x, y):\n    \"\"\"Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed.\n\n    Args:\n        x (array): x coordinates.\n        y (array): y coordinates.\n\n    Returns:\n        x_est (array): Estimated x coordinates.\n        y_est (array): Estimated y coordinates.\n    \"\"\"\n\n    # Make it datatype agnostic\n    if (isinstance(x, pd.Series)):\n        x = x.values\n    if (isinstance(y, pd.Series)):\n        y = y.values\n\n    # Do the average of the two points\n    x_est = (x[1:] + x[:-1]) / 2\n    y_est = (y[1:] + y[:-1]) / 2\n\n    # Add the first point to match the length of the original array\n    x_est = np.insert(x_est, 0, x[0])\n    y_est = np.insert(y_est, 0, y[0])\n\n    return x_est, y_est\n
    "},{"location":"reference/#crnpy.data.sensing_depth","title":"sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017')","text":"

    Function that computes the estimated sensing depth of the cosmic-ray neutron probe. The function offers several methods to compute the depth at which 86 % of the neutrons probe the soil profile.

    Parameters:

    Name Type Description Default vwc array or Series or DataFrame

    Estimated volumetric water content for each timestamp.

    required pressure array or Series or DataFrame

    Atmospheric pressure in hPa for each timestamp.

    required p_ref float

    Reference pressure in hPa.

    required bulk_density float

    Soil bulk density.

    required Wlat float

    Lattice water content.

    required method str

    Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'.

    'Schron_2017' dist list or array

    List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method.

    None

    Returns:

    Type Description array or Series or DataFrame

    Estimated sensing depth in m.

    References

    Franz, T.E., Zreda, M., Ferre, T.P.A., Rosolem, R., Zweck, C., Stillman, S., Zeng, X. and Shuttleworth, W.J., 2012. Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources. Water Resources Research, 48(8). doi.org/10.1029/2012WR011871

    Schr\u00f6n, M., K\u00f6hli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., et al. (2017). Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrol. Earth Syst. Sci. 21, 5009\u20135030. doi.org/10.5194/hess-21-5009-2017

    Source code in crnpy/crnpy.py
    def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017'):\n    \"\"\"Function that computes the estimated sensing depth of the cosmic-ray neutron probe.\n    The function offers several methods to compute the depth at which 86 % of the neutrons\n    probe the soil profile.\n\n    Args:\n        vwc (array or pd.Series or pd.DataFrame): Estimated volumetric water content for each timestamp.\n        pressure (array or pd.Series or pd.DataFrame): Atmospheric pressure in hPa for each timestamp.\n        p_ref (float): Reference pressure in hPa.\n        bulk_density (float): Soil bulk density.\n        Wlat (float): Lattice water content.\n        method (str): Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'.\n        dist (list or array): List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method.\n\n    Returns:\n        (array or pd.Series or pd.DataFrame): Estimated sensing depth in m.\n\n    References:\n        Franz, T.E., Zreda, M., Ferre, T.P.A., Rosolem, R., Zweck, C., Stillman, S., Zeng, X. and Shuttleworth, W.J., 2012.\n        Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources.\n        Water Resources Research, 48(8). doi.org/10.1029/2012WR011871\n\n        Schr\u00f6n, M., K\u00f6hli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., et al. (2017).\n        Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity.\n        Hydrol. Earth Syst. Sci. 21, 5009\u20135030. doi.org/10.5194/hess-21-5009-2017\n    \"\"\"\n\n    # Determine sensing depth (D86)\n    if method == 'Schron_2017':\n        # See Appendix A of Schr\u00f6n et al. (2017)\n        Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref))\n        Fveg = 0\n        results = []\n        for d in dist:\n            # Compute r_star\n            r_start = d / Fp\n\n            # Compute soil depth that accounts for 86% of the neutron flux\n            D86 = 1 / bulk_density * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r_start)) * (20 + (Wlat + vwc)) / (\n                        0.0429 + (Wlat + vwc)))\n            results.append(D86)\n\n    elif method == 'Franz_2012':\n        results = 5.8 / (bulk_density * Wlat + vwc + 0.0829)\n    else:\n        raise ValueError('Method not recognized. Please select either \"Schron_2017\" or \"Franz_2012\".')\n    return results\n
    "},{"location":"reference/#crnpy.data.smooth_1d","title":"smooth_1d(values, window=5, order=3, method='moving_median')","text":"

    Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content).

    Parameters:

    Name Type Description Default values DataFrame or Serie

    Dataframe containing the values to smooth.

    required window int

    Window size for the Savitzky-Golay filter. Default is 5.

    5 method str

    Method to use for smoothing the data. Default is 'moving_median'. Options are 'moving_average', 'moving_median' and 'savitzky_golay'.

    'moving_median' order int

    Order of the Savitzky-Golay filter. Default is 3.

    3

    Returns:

    Type Description DataFrame

    DataFrame with smoothed values.

    References

    Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9. doi.org/10.3389/frwa.2020.00009

    Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8), 1627-1639.

    Source code in crnpy/crnpy.py
    def smooth_1d(values, window=5, order=3, method='moving_median'):\n    \"\"\"Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content).\n\n    Args:\n        values (pd.DataFrame or pd.Serie): Dataframe containing the values to smooth.\n        window (int): Window size for the Savitzky-Golay filter. Default is 5.\n        method (str): Method to use for smoothing the data. Default is 'moving_median'.\n            Options are 'moving_average', 'moving_median' and 'savitzky_golay'.\n        order (int): Order of the Savitzky-Golay filter. Default is 3.\n\n    Returns:\n        (pd.DataFrame): DataFrame with smoothed values.\n\n    References:\n        Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020.\n        Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9.\n        doi.org/10.3389/frwa.2020.00009\n\n        Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures.\n        Analytical chemistry, 36(8), 1627-1639.\n    \"\"\"\n\n    if not isinstance(x, pd.Series) and not isinstance(x, pd.DataFrame):\n        raise ValueError('Input must be a pandas Series or DataFrame')\n\n    if method == 'moving_average':\n        corrected_counts = values.rolling(window=window, center=True, min_periods=1).mean()\n    elif method == 'moving_median':\n        corrected_counts = values.rolling(window=window, center=True, min_periods=1).median()\n\n    elif method == 'savitzky_golay':\n        if values.isna().any():\n            print('Dataframe contains NaN values. Please remove NaN values before smoothing the data.')\n\n        if type(values) == pd.core.series.Series:\n            filtered = savgol_filter(values, window, order)\n            corrected_counts = pd.DataFrame(filtered, columns=['smoothed'], index=values.index)\n        elif type(values) == pd.core.frame.DataFrame:\n            for col in values.columns:\n                values[col] = savgol_filter(values[col], window, order)\n    else:\n        raise ValueError(\n            'Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay')\n    corrected_counts = corrected_counts.ffill(limit=window).bfill(limit=window).copy()\n    return corrected_counts\n
    "},{"location":"reference/#crnpy.data.spatial_average","title":"spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False)","text":"

    Moving buffer filter to smooth georeferenced two-dimensional data.

    Parameters:

    Name Type Description Default x list or array

    UTM x coordinates in meters.

    required y list or array

    UTM y coordinates in meters.

    required z list or array

    Values to be smoothed.

    required buffer float

    Radial buffer distance in meters.

    100 min_neighbours int

    Minimum number of neighbours to consider for the smoothing.

    3 method str

    One of 'mean' or 'median'.

    'mean' rnd bool

    Boolean to round the final result. Useful in case of z representing neutron counts.

    False

    Returns:

    Type Description array

    Smoothed version of z with the same dimension as z.

    Source code in crnpy/crnpy.py
    def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False):\n    \"\"\"Moving buffer filter to smooth georeferenced two-dimensional data.\n\n    Args:\n        x (list or array): UTM x coordinates in meters.\n        y (list or array): UTM y coordinates in meters.\n        z (list or array): Values to be smoothed.\n        buffer (float): Radial buffer distance in meters.\n        min_neighbours (int): Minimum number of neighbours to consider for the smoothing.\n        method (str): One of 'mean' or 'median'.\n        rnd (bool): Boolean to round the final result. Useful in case of z representing neutron counts.\n\n    Returns:\n        (array): Smoothed version of z with the same dimension as z.\n    \"\"\"\n\n    # Convert input data to Numpy arrays\n    if (type(x) is not np.ndarray) or (type(y) is not np.ndarray):\n        try:\n            x = np.array(x)\n            y = np.array(y)\n        except:\n            raise \"Input values cannot be converted to Numpy arrays.\"\n\n    if len(x) != len(y):\n        raise f\"The number of x and y must be equal. Input x has {len(x)} values and y has {len(y)} values.\"\n\n    # Compute distances\n    N = len(x)\n    z_smooth = np.array([])\n    for k in range(N):\n        px = x[k]\n        py = y[k]\n\n        distances = euclidean_distance(px, py, x, y)\n        idx_within_buffer = distances <= buffer\n\n        if np.isnan(z[k]):\n            z_new_val = np.nan\n        elif len(distances[idx_within_buffer]) > min_neighbours:\n            if method == 'mean':\n                z_new_val = np.nanmean(z[idx_within_buffer])\n            elif method == 'median':\n                z_new_val = np.nanmedian(z[idx_within_buffer])\n            else:\n                raise f\"Method {method} does not exist. Provide either 'mean' or 'median'.\"\n        else:\n            z_new_val = z[k]  # If there are not enough neighbours, keep the original value\n\n        # Append smoothed value to array\n        z_smooth = np.append(z_smooth, z_new_val)\n\n    if rnd:\n        z_smooth = np.round(z_smooth, 0)\n\n    return z_smooth\n
    "},{"location":"reference/#crnpy.data.total_raw_counts","title":"total_raw_counts(counts)","text":"

    Compute the sum of uncorrected neutron counts for all detectors.

    Parameters:

    Name Type Description Default counts DataFrame

    Dataframe containing only the columns with neutron counts.

    required

    Returns:

    Type Description DataFrame

    Dataframe with the sum of uncorrected neutron counts for all detectors.

    Source code in crnpy/crnpy.py
    def total_raw_counts(counts):\n    \"\"\"Compute the sum of uncorrected neutron counts for all detectors.\n\n    Args:\n        counts (pandas.DataFrame): Dataframe containing only the columns with neutron counts.\n\n    Returns:\n        (pandas.DataFrame): Dataframe with the sum of uncorrected neutron counts for all detectors.\n    \"\"\"\n\n    if counts.shape[0] > 1:\n        counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)), axis=0)\n\n    # Compute sum of counts\n    total_raw_counts = counts.sum(axis=1)\n\n    # Replace zeros with NaN\n    total_raw_counts = total_raw_counts.replace(0, np.nan)\n\n    return total_raw_counts\n
    "},{"location":"reference/#crnpy.data.uncertainty_counts","title":"uncertainty_counts(raw_counts, metric='std', fp=1, fw=1, fi=1)","text":"

    Function to estimate the uncertainty of raw counts.

    Measurements of proportional neutron detector systems are governed by counting statistics that follow a Poissonian probability distribution (Zreda et al., 2012). The expected uncertainty in the neutron count rate $N$ is defined by the standard deviation $ \\sqrt{N} $ (Jakobi et al., 2020). The CV% can be expressed as $ N^{-1/2} $

    Parameters:

    Name Type Description Default raw_counts array

    Raw neutron counts.

    required metric str

    Either 'std' or 'cv' for standard deviation or coefficient of variation.

    'std' fp float

    Pressure correction factor.

    1 fw float

    Humidity correction factor.

    1 fi float

    Incoming neutron flux correction factor.

    1

    Returns:

    Name Type Description uncertainty float

    Uncertainty of raw counts.

    References

    Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010

    Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079\u20134099, https://doi.org/10.5194/hess-16-4079-2012, 2012.

    Source code in crnpy/crnpy.py
    def uncertainty_counts(raw_counts, metric=\"std\", fp=1, fw=1, fi=1):\n    \"\"\"Function to estimate the uncertainty of raw counts.\n\n    Measurements of proportional neutron detector systems are governed by counting statistics that follow a Poissonian probability distribution (Zreda et al., 2012).\n    The expected uncertainty in the neutron count rate $N$ is defined by the standard deviation $ \\sqrt{N} $ (Jakobi et al., 2020).\n    The CV% can be expressed as $ N^{-1/2} $\n\n    Args:\n        raw_counts (array): Raw neutron counts.\n        metric (str): Either 'std' or 'cv' for standard deviation or coefficient of variation.\n        fp (float): Pressure correction factor.\n        fw (float): Humidity correction factor.\n        fi (float): Incoming neutron flux correction factor.\n\n    Returns:\n        uncertainty (float): Uncertainty of raw counts.\n\n    References:\n        Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With\n        Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010\n\n        Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System,\n        Hydrol. Earth Syst. Sci., 16, 4079\u20134099, https://doi.org/10.5194/hess-16-4079-2012, 2012.\n\n    \"\"\"\n\n    s = fw / (fp * fi)\n    if metric == \"std\":\n        uncertainty = np.sqrt(raw_counts) * s\n    elif metric == \"cv\":\n        uncertainty = 1 / np.sqrt(raw_counts) * s\n    else:\n        raise f\"Metric {metric} does not exist. Provide either 'std' or 'cv' for standard deviation or coefficient of variation.\"\n    return uncertainty\n
    "},{"location":"reference/#crnpy.data.uncertainty_vwc","title":"uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115)","text":"

    Function to estimate the uncertainty propagated to volumetric water content.

    The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts. Following Eq. 10 in Jakobi et al. (2020), the uncertainty of the volumetric water content can be expressed as: $$ \\sigma_{\\theta_g}(N) = \\sigma_N \\frac{a_0 N_0}{(N_{cor} - a_1 N_0)^4} \\sqrt{(N_{cor} - a_1 N_0)^4 + 8 \\sigma_N^2 (N_{cor} - a_1 N_0)^2 + 15 \\sigma_N^4} $$

    Parameters:

    Name Type Description Default raw_counts array

    Raw neutron counts.

    required N0 float

    Calibration parameter N0.

    required bulk_density float

    Bulk density in g cm-3.

    required fp float

    Pressure correction factor.

    1 fw float

    Humidity correction factor.

    1 fi float

    Incoming neutron flux correction factor.

    1

    Returns:

    Name Type Description sigma_VWC float

    Uncertainty in terms of volumetric water content.

    References

    Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010

    Source code in crnpy/crnpy.py
    def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115):\n    r\"\"\"Function to estimate the uncertainty propagated to volumetric water content.\n\n    The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts.\n    Following Eq. 10 in Jakobi et al. (2020), the uncertainty of the volumetric water content can be expressed as:\n    $$\n    \\sigma_{\\theta_g}(N) = \\sigma_N \\frac{a_0 N_0}{(N_{cor} - a_1 N_0)^4} \\sqrt{(N_{cor} - a_1 N_0)^4 + 8 \\sigma_N^2 (N_{cor} - a_1 N_0)^2 + 15 \\sigma_N^4}\n    $$\n\n    Args:\n        raw_counts (array): Raw neutron counts.\n        N0 (float): Calibration parameter N0.\n        bulk_density (float): Bulk density in g cm-3.\n        fp (float): Pressure correction factor.\n        fw (float): Humidity correction factor.\n        fi (float): Incoming neutron flux correction factor.\n\n    Returns:\n        sigma_VWC (float): Uncertainty in terms of volumetric water content.\n\n    References:\n        Jakobi J, Huisman JA, Schr\u00f6n M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With\n        Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010\n    \"\"\"\n\n    Ncorr = raw_counts * fw / (fp * fi)\n    sigma_N = uncertainty_counts(raw_counts, metric=\"std\", fp=fp, fw=fw, fi=fi)\n    sigma_GWC = sigma_N * ((a0 * N0) / ((Ncorr - a1 * N0) ** 4)) * np.sqrt(\n        (Ncorr - a1 * N0) ** 4 + 8 * sigma_N ** 2 * (Ncorr - a1 * N0) ** 2 + 15 * sigma_N ** 4)\n    sigma_VWC = sigma_GWC * bulk_density\n\n    return sigma_VWC\n
    "},{"location":"sensor_description/","title":"Sensor description","text":"

    The cosmic-ray neutron sensing technology is an innovative and non-invasive method for monitoring soil moisture. The sensing principle is based on the detection of neutrons that are generated when cosmic rays interact with atoms in the Earth's atmosphere. These neutrons, in turn, interact with hydrogen pools in the land surface, and thus, the intensity of neutrons detected near the ground surface is inversely related to the amunt of water in land biomass and the top layers of the soil. Typically, cosmic-ray neutron probes have a large sensing footprint, covering an area of approximately 12 hectares (about 30 acres) and can measure soil moisture up to a depth of 70 cm (about 28 inches), although typically most field applications span a depth between 5 and 40 cm. This makes the technology particularly useful for capturing spatially-averaged soil moisture over large areas, bridging the gap between point measurements and remote sensing. In hydrology, cosmic-ray neutron sensors are used for watershed studies, understanding water balance, and improving hydrological models. In agriculture, they are employed for irrigation management, crop yield prediction, and understanding the effects of soil moisture on plant growth. The technology's ability to provide continuous, real-time data without disturbing the soil makes it a valuable tool for both hydrological and agricultural research.

    Figure 1. A) Stationary detector manufactured by Radiation Detection Technologies, Inc. (Manhattan, KS). B) Stationary detector manufactured by Hydroinnova, Inc. (Albuquerque, NM). C) Roving detector manufactured by Hydroinnova, Inc. (Albuquerque, NM).

    Figure 2. Illustration showing the approximate sensing footprint of stationary detectors.

    "},{"location":"examples/calibration/calibration/","title":"Device-specific field calibration","text":"In\u00a0[1]: Copied!
    # Importing required libraries\nimport crnpy\n\nimport numpy as np\nimport pandas as pd\nfrom scipy.optimize import root\n
    # Importing required libraries import crnpy import numpy as np import pandas as pd from scipy.optimize import root In\u00a0[2]: Copied!
    # Load the soil samples data and the CRNP dataset using pandas\nurl_soil_samples = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/calibration/soil_data.csv\"\ndf_soil = pd.read_csv(url_soil_samples)\ndf_soil.head(3)\n
    # Load the soil samples data and the CRNP dataset using pandas url_soil_samples = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/calibration/soil_data.csv\" df_soil = pd.read_csv(url_soil_samples) df_soil.head(3) Out[2]: field date core_number distance_from_station latitude longitude top_depth bottom_depth core_diameter wet_mass_with_bag ... can_number mass_empty_can wet_mass_with_can dry_mass_with_can mass_water theta_g volume bulk_density theta_v Observation 0 Flickner 22-Oct 1 5 N38.23459 W97.57101 0 5 30.49 45.31 ... 1 52.10 92.03 85.31 6.72 0.202 36.514864 0.909 0.184403 NaN 1 Flickner 22-Oct 1 5 N38.23459 W97.57101 5 10 30.49 69.53 ... 2 51.85 115.97 103.85 12.12 0.233 36.514864 1.424 0.332585 NaN 2 Flickner 22-Oct 1 5 N38.23459 W97.57101 10 25 30.49 214.90 ... 3 51.56 260.97 219.77 41.20 0.245 109.544592 1.536 0.376856 NaN

    3 rows \u00d7 21 columns

    In\u00a0[3]: Copied!
    # Define start and end of field survey calibration\ncalibration_start = pd.to_datetime(\"2021-10-22 08:00\")\ncalibration_end = pd.to_datetime(\"2021-10-22 16:00\")\n
    # Define start and end of field survey calibration calibration_start = pd.to_datetime(\"2021-10-22 08:00\") calibration_end = pd.to_datetime(\"2021-10-22 16:00\") In\u00a0[4]: Copied!
    # Load the station data\nurl_station_data = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/calibration/station_data.csv\"\ndf_station = pd.read_csv(url_station_data, skiprows=[0,2,3])\n\n#  Parse dates (you can also use the option `parse_dates=['TIMESTAMP]` in pd.read_csv()\ndf_station['timestamp'] = pd.to_datetime(df_station['TIMESTAMP'], format='%Y-%m-%d %H:%M:%S')\n\ndf_station.head(3)\n
    # Load the station data url_station_data = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/calibration/station_data.csv\" df_station = pd.read_csv(url_station_data, skiprows=[0,2,3]) # Parse dates (you can also use the option `parse_dates=['TIMESTAMP]` in pd.read_csv() df_station['timestamp'] = pd.to_datetime(df_station['TIMESTAMP'], format='%Y-%m-%d %H:%M:%S') df_station.head(3) Out[4]: TIMESTAMP RECORD station farm field latitude longitude altitude battery_voltage_Min PTemp_Avg ... wind_speed_gust_Max air_temperature_Avg vapor_pressure_Avg barometric_pressure_Avg relative_humidity_Avg humidity_sensor_temperature_Avg tilt_north_south_Avg tilt_west_east_Avg NDVI_Avg timestamp 0 2021-09-22 12:00:00 0 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.52 29.04 ... 4.20 22.30 9.20 973 41.30 26.4 -1.000 1.000 0.311 2021-09-22 12:00:00 1 2021-09-22 13:00:00 1 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.53 29.98 ... 9.02 22.90 9.08 972 32.63 26.8 -0.975 0.950 0.308 2021-09-22 13:00:00 2 2021-09-22 14:00:00 2 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.53 30.43 ... 5.54 23.38 8.68 971 30.25 27.2 -0.775 0.625 0.31 2021-09-22 14:00:00

    3 rows \u00d7 28 columns

    In\u00a0[5]: Copied!
    # Define date in which the probe was deployed in the field (i.e., first record)\ndeployment_date = df_station['timestamp'].iloc[0]\n\n# Filter station data from the first record to the end of the field survey calibration\n# This is important since we are considering the incoming flux on the first day as the reference value\nidx_period = (df_station['timestamp'] >= deployment_date) & (df_station['timestamp'] <= calibration_end)\ndf_station = df_station[idx_period]\ndf_station.head(3)\n
    # Define date in which the probe was deployed in the field (i.e., first record) deployment_date = df_station['timestamp'].iloc[0] # Filter station data from the first record to the end of the field survey calibration # This is important since we are considering the incoming flux on the first day as the reference value idx_period = (df_station['timestamp'] >= deployment_date) & (df_station['timestamp'] <= calibration_end) df_station = df_station[idx_period] df_station.head(3) Out[5]: TIMESTAMP RECORD station farm field latitude longitude altitude battery_voltage_Min PTemp_Avg ... wind_speed_gust_Max air_temperature_Avg vapor_pressure_Avg barometric_pressure_Avg relative_humidity_Avg humidity_sensor_temperature_Avg tilt_north_south_Avg tilt_west_east_Avg NDVI_Avg timestamp 0 2021-09-22 12:00:00 0 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.52 29.04 ... 4.20 22.30 9.20 973 41.30 26.4 -1.000 1.000 0.311 2021-09-22 12:00:00 1 2021-09-22 13:00:00 1 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.53 29.98 ... 9.02 22.90 9.08 972 32.63 26.8 -0.975 0.950 0.308 2021-09-22 13:00:00 2 2021-09-22 14:00:00 2 KS003 Flickner Rainfed South 38.23461 -97.57095 455 13.53 30.43 ... 5.54 23.38 8.68 971 30.25 27.2 -0.775 0.625 0.31 2021-09-22 14:00:00

    3 rows \u00d7 28 columns

    This step is useful to trim large timeseries. For instance, the station data in our case extends until 2022-07-11 09:45:00, but the field calibration was conducted in 2021-10-22 16:00. Since all the station observation after the date of the field calibration are not relevent, we decided to only work with the data that we need from 2021-09-22 12:00:00 until 2021-10-22 16:00. This could help getting data of incoming neutron flux from a single reference neutron monitor. So, if you are running this code shortly after the calibration field survey, then there is no need to filter station data.

    In\u00a0[6]: Copied!
    # Compute total neutron counts by adding the counts from both probe detectors\ndf_station['total_raw_counts'] = crnpy.total_raw_counts(df_station[['counts_1_Tot','counts_2_Tot']],\n                                                    nan_strategy='average')\n
    # Compute total neutron counts by adding the counts from both probe detectors df_station['total_raw_counts'] = crnpy.total_raw_counts(df_station[['counts_1_Tot','counts_2_Tot']], nan_strategy='average') In\u00a0[7]: Copied!
    # Atmospheric corrections\n\n# Fill NaN values in atmospheric data\ndf_station[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']] = df_station[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both')\n\n# Calculate absolute humidity\ndf_station['abs_humidity'] = crnpy.abs_humidity(df_station['relative_humidity_Avg'], df_station['air_temperature_Avg'])\n\n# Compute correction factor for atmospheric pressure\n# Reference atmospheric pressure for the location is 976 Pa\n# Using an atmospheric attentuation coefficient of 130 g/cm2\ndf_station['fp'] = crnpy.correction_pressure(pressure=df_station['barometric_pressure_Avg'],\n                                             Pref=976, L=130)\n\n# Compute correction factor for air humidity\ndf_station['fw'] = crnpy.correction_humidity(abs_humidity=df_station['abs_humidity'],\n                                             Aref=0)\n
    # Atmospheric corrections # Fill NaN values in atmospheric data df_station[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']] = df_station[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both') # Calculate absolute humidity df_station['abs_humidity'] = crnpy.abs_humidity(df_station['relative_humidity_Avg'], df_station['air_temperature_Avg']) # Compute correction factor for atmospheric pressure # Reference atmospheric pressure for the location is 976 Pa # Using an atmospheric attentuation coefficient of 130 g/cm2 df_station['fp'] = crnpy.correction_pressure(pressure=df_station['barometric_pressure_Avg'], Pref=976, L=130) # Compute correction factor for air humidity df_station['fw'] = crnpy.correction_humidity(abs_humidity=df_station['abs_humidity'], Aref=0) In\u00a0[8]: Copied!
    # Find the cutoff rigidity for the location\ncutoff_rigidity = crnpy.cutoff_rigidity(39.1, -96.6)\n\n# Filtering the time window from experiment setup to the end of the calibration\ncrnpy.find_neutron_monitor(cutoff_rigidity,\n                           start_date=df_station['timestamp'].iloc[0],\n                           end_date=df_station['timestamp'].iloc[-1])\n
    # Find the cutoff rigidity for the location cutoff_rigidity = crnpy.cutoff_rigidity(39.1, -96.6) # Filtering the time window from experiment setup to the end of the calibration crnpy.find_neutron_monitor(cutoff_rigidity, start_date=df_station['timestamp'].iloc[0], end_date=df_station['timestamp'].iloc[-1])
    \nSelect a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n\nYour cutoff rigidity is 2.87 GV\n     STID     NAME     R  Altitude_m  Period available\n13   DRBS  Dourbes  3.18         225              True\n40   NEWK   Newark  2.40          50              True\n28  KIEL2   KielRT  2.36          54              True\n
    Out[8]: STID NAME R Altitude_m Period available 13 DRBS Dourbes 3.18 225 True 40 NEWK Newark 2.40 50 True 28 KIEL2 KielRT 2.36 54 True In\u00a0[9]: Copied!
    # Incoming neutron flux correction\n\n# Download data for the reference neutron monitor and add it to the DataFrame\nnmdb = crnpy.get_incoming_neutron_flux(deployment_date,\n                                        calibration_end,\n                                        station=\"DRBS\",\n                                        utc_offset=-6)\n\n# Interpolate incoming neutron flux to match the timestamps in our station data\ndf_station['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df_station['timestamp'])\n\n# Compute correction factor for incoming neutron flux\ndf_station['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df_station['incoming_flux'],\n                                                  incoming_Ref=df_station['incoming_flux'].iloc[0])\n
    # Incoming neutron flux correction # Download data for the reference neutron monitor and add it to the DataFrame nmdb = crnpy.get_incoming_neutron_flux(deployment_date, calibration_end, station=\"DRBS\", utc_offset=-6) # Interpolate incoming neutron flux to match the timestamps in our station data df_station['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df_station['timestamp']) # Compute correction factor for incoming neutron flux df_station['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df_station['incoming_flux'], incoming_Ref=df_station['incoming_flux'].iloc[0]) In\u00a0[10]: Copied!
    # Apply correction factors\ndf_station['total_corrected_neutrons'] = df_station['total_raw_counts'] * df_station['fw'] / (df_station['fp'] * df_station['fi'])\n
    # Apply correction factors df_station['total_corrected_neutrons'] = df_station['total_raw_counts'] * df_station['fw'] / (df_station['fp'] * df_station['fi']) In\u00a0[11]: Copied!
    # Compute the weights of each sample for the field average\nnrad_weights = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean())\n\n# Apply distance weights to volumetric water content and bulk density\nfield_theta_v = np.sum(df_soil['theta_v']*nrad_weights)\nfield_bulk_density = np.sum(df_soil['bulk_density']*nrad_weights)\n
    # Compute the weights of each sample for the field average nrad_weights = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean()) # Apply distance weights to volumetric water content and bulk density field_theta_v = np.sum(df_soil['theta_v']*nrad_weights) field_bulk_density = np.sum(df_soil['bulk_density']*nrad_weights) In\u00a0[12]: Copied!
    # Determine the mean corrected counts during the calibration survey\nidx_cal_period = (df_station['timestamp'] >= calibration_start) & (df_station['timestamp'] <= calibration_end)\nmean_cal_counts = df_station.loc[idx_cal_period, 'total_corrected_neutrons'].mean()\n\nprint(f\"Mean volumetric Water content during calibration survey: {round(field_theta_v,3)}\")\nprint(f\"Mean corrected counts during calibration: {round(mean_cal_counts)} counts\")\n
    # Determine the mean corrected counts during the calibration survey idx_cal_period = (df_station['timestamp'] >= calibration_start) & (df_station['timestamp'] <= calibration_end) mean_cal_counts = df_station.loc[idx_cal_period, 'total_corrected_neutrons'].mean() print(f\"Mean volumetric Water content during calibration survey: {round(field_theta_v,3)}\") print(f\"Mean corrected counts during calibration: {round(mean_cal_counts)} counts\")
    Mean volumetric Water content during calibration survey: 0.263\nMean corrected counts during calibration: 1542 counts\n
    In\u00a0[13]: Copied!
    # Define the function for which we want to find the roots\nVWC_func = lambda N0 : crnpy.counts_to_vwc(mean_cal_counts, N0, bulk_density=field_bulk_density, Wlat=0.03, Wsoc=0.01) - field_theta_v\n\n# Make an initial guess for N0\nN0_initial_guess = 1000\n\n# Find the root\nsol = int(root(VWC_func, N0_initial_guess).x)\n\n# Print the solution\nprint(f\"The solved value for N0 is: {sol}\")\n
    # Define the function for which we want to find the roots VWC_func = lambda N0 : crnpy.counts_to_vwc(mean_cal_counts, N0, bulk_density=field_bulk_density, Wlat=0.03, Wsoc=0.01) - field_theta_v # Make an initial guess for N0 N0_initial_guess = 1000 # Find the root sol = int(root(VWC_func, N0_initial_guess).x) # Print the solution print(f\"The solved value for N0 is: {sol}\")
    The solved value for N0 is: 2644\n
    "},{"location":"examples/calibration/calibration/#device-specific-field-calibration","title":"Device-specific field calibration\u00b6","text":"

    The calibration of a cosmic-ray neutron probe (CRNP) is an essential step to ensure accurate soil moisture measurements. The CRNP operates by counting fast neutrons produced from cosmic rays, which are predominantly moderated by water molecules in the soil. The parameter $N_0$ is typically considered a device-specific constant that represents the neutron count rate in the absence of soil moisture conditions.

    $\\theta(N) =\\frac{a_0}{(\\frac{N}{N_0}) - a_1} - a_2 $ (Desilets et al., 2010).

    For the calibration of the stationary detector, a total of 14 undisturbed soil cores were collected at radial distances of 5, 50, and 100 m from the detector. In this example each soil sample was split into four depth segments: 0-5 cm, 5-10 cm, 10-25 cm, and 25-40 cm. Soil samples were processed and soil moisture was determined using the thermo-gravimetric method.

    Figure 1. Horizontal layout and vertical layout used in this particular example calibration, it can be customized by the user depending on their needs.

    Download the following template for collecting your own calibration soil samples:

    "},{"location":"examples/calibration/calibration/#read-calibration-field-survey-data","title":"Read calibration field survey data\u00b6","text":"

    For each sample it is required to know the bulk density ($\\rho_\\beta$) and the volumetric water content ($\\theta_v$). See the details of the calculation used in the filled example.

    "},{"location":"examples/calibration/calibration/#read-data-from-crnp","title":"Read data from CRNP\u00b6","text":""},{"location":"examples/calibration/calibration/#correct-neutron-counts","title":"Correct neutron counts\u00b6","text":""},{"location":"examples/calibration/calibration/#determine-field-average-soil-moisture-and-bulk-density","title":"Determine field-average soil moisture and bulk density\u00b6","text":"

    Using the function nrad_weight() the weights corresponding to each soil sample will be computed considering air-humidity, sample depth, and distance from station and bulk density.

    "},{"location":"examples/calibration/calibration/#solving-for-n_0","title":"Solving for $N_0$\u00b6","text":"

    Previous steps estimated the field volumetric water content of 0.263 and an average neutron count of 1542. Using scipy.optimize.root() $N_0$ is estimated given the observed value of $\\theta_v$ and neutron counts.

    "},{"location":"examples/calibration/calibration/#references","title":"References:\u00b6","text":"

    Desilets, D., Zreda, M., & Ferr\u00e9, T. P. (2010). Nature's neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resources Research, 46(11).

    Dong, J., & Ochsner, T. E. (2018). Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns. Water Resources Research, 54(3), 2199-2211.

    Patrignani, A., Ochsner, T. E., Montag, B., & Bellinger, S. (2021). A novel lithium foil cosmic-ray neutron detector for measuring field-scale soil moisture. Frontiers in Water, 3, 673185.

    "},{"location":"examples/rover/Hydroinnova_rover_example/","title":"Processing and analyzing data from a roving detector","text":"In\u00a0[1]: Copied!
    # Import modules\nimport crnpy\n\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\n
    # Import modules import crnpy import numpy as np import pandas as pd import matplotlib.pyplot as plt

    Load the data stored in the .csv file.

    In\u00a0[2]: Copied!
    # Load sample dataset\nfilepath = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/rover/gypsum_transect_01_may_2018.KSU\"\ncol_names = 'RecordNum,Date Time(UTC),barometric_pressure_Avg,P4_mb,P1_mb,T1_C,RH1,air_temperature_Avg,relative_humidity_Avg,Vbat,N1Cts,N2Cts,N3Cts,N4Cts,N5Cts,N6Cts,N7Cts,N8Cts,N1ETsec,N3ETsec,N5ETsec,N7ETsec,N1T(C),N1RH,N5T(C),N5RH,GpsUTC,LatDec,LongDec,Alt,Qual,NumSats,HDOP,Speed_kmh,COG,SpeedQuality,strDate'.split(',')\n\ndf = pd.read_csv(filepath, skiprows=20, names=col_names)\ndf['LongDec'] = df['LongDec'] * -1 # Raw data is in absolute values\n\n# Parse timestamps and set as index\ndf['timestamp'] = pd.to_datetime(df['Date Time(UTC)'])\n\n# Remove rows with missing coordinates\ndf['LatDec'].replace(0.0, np.nan, inplace=True)\ndf['LongDec'].replace(0.0, np.nan, inplace=True)\ndf.dropna(axis=0, subset=['LatDec','LongDec'], inplace=True)\ndf.reset_index(drop=True, inplace=True)\n\n# Display a few rows to visualize dataset\ndf.head(3)\n
    # Load sample dataset filepath = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/rover/gypsum_transect_01_may_2018.KSU\" col_names = 'RecordNum,Date Time(UTC),barometric_pressure_Avg,P4_mb,P1_mb,T1_C,RH1,air_temperature_Avg,relative_humidity_Avg,Vbat,N1Cts,N2Cts,N3Cts,N4Cts,N5Cts,N6Cts,N7Cts,N8Cts,N1ETsec,N3ETsec,N5ETsec,N7ETsec,N1T(C),N1RH,N5T(C),N5RH,GpsUTC,LatDec,LongDec,Alt,Qual,NumSats,HDOP,Speed_kmh,COG,SpeedQuality,strDate'.split(',') df = pd.read_csv(filepath, skiprows=20, names=col_names) df['LongDec'] = df['LongDec'] * -1 # Raw data is in absolute values # Parse timestamps and set as index df['timestamp'] = pd.to_datetime(df['Date Time(UTC)']) # Remove rows with missing coordinates df['LatDec'].replace(0.0, np.nan, inplace=True) df['LongDec'].replace(0.0, np.nan, inplace=True) df.dropna(axis=0, subset=['LatDec','LongDec'], inplace=True) df.reset_index(drop=True, inplace=True) # Display a few rows to visualize dataset df.head(3) Out[2]: RecordNum Date Time(UTC) barometric_pressure_Avg P4_mb P1_mb T1_C RH1 air_temperature_Avg relative_humidity_Avg Vbat ... LongDec Alt Qual NumSats HDOP Speed_kmh COG SpeedQuality strDate timestamp 0 2 2018/05/01 14:15:00 962.95 962.8 961.4 23.2 35.4 20.9 72.7 13.574 ... -97.37195 393.2 2.0 10 0.8 0.00 270.7 A 10518.0 2018-05-01 14:15:00 1 3 2018/05/01 14:16:00 962.88 962.7 961.3 23.3 35.5 21.0 72.7 13.417 ... -97.37197 387.2 2.0 11 0.8 0.00 270.7 A 10518.0 2018-05-01 14:16:00 2 4 2018/05/01 14:17:00 962.64 962.5 961.1 23.4 35.4 21.2 72.2 13.282 ... -97.37199 388.2 1.0 11 0.8 3.89 356.3 A 10518.0 2018-05-01 14:17:00

    3 rows \u00d7 38 columns

    Next, convert the latitude and longitude to UTM coordinates (x and y). A scatter plot is created to visualize the survey points.

    In\u00a0[3]: Copied!
    # Convert Lat and Lon to X and Y\ndf['x'],df['y'] = crnpy.latlon_to_utm(df['LatDec'], df['LongDec'], 14, missing_values=0.0)\n\n# Create figure of survey points\nplt.figure(figsize = (5,5))\nplt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w', label = \"Observation end\")\n\n# Estimate the center of the observation, assuming each timestamp is observation end time.\ndf['x'],df['y'] = crnpy.rover_centered_coordinates(df['x'], df['y']) \nplt.scatter(df['x'], df['y'], marker='+', label=\"Observation center\")\n\nplt.ticklabel_format(scilimits = (-5,5))\nplt.xlabel('Easting')\nplt.ylabel('Northing')\nplt.legend(loc=[1.1,.8])\nplt.show()\n
    # Convert Lat and Lon to X and Y df['x'],df['y'] = crnpy.latlon_to_utm(df['LatDec'], df['LongDec'], 14, missing_values=0.0) # Create figure of survey points plt.figure(figsize = (5,5)) plt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w', label = \"Observation end\") # Estimate the center of the observation, assuming each timestamp is observation end time. df['x'],df['y'] = crnpy.rover_centered_coordinates(df['x'], df['y']) plt.scatter(df['x'], df['y'], marker='+', label=\"Observation center\") plt.ticklabel_format(scilimits = (-5,5)) plt.xlabel('Easting') plt.ylabel('Northing') plt.legend(loc=[1.1,.8]) plt.show()

    The counts are normalized to counts per minute in case some observations covered a different timespan and total neutron counts are computed.

    In\u00a0[4]: Copied!
    # Define columns names\ncounts_colums = ['N1Cts', 'N2Cts', 'N3Cts','N4Cts', 'N5Cts', 'N6Cts', 'N7Cts', 'N8Cts']\ncont_times_col = ['N1ETsec', 'N1ETsec', 'N3ETsec','N3ETsec', 'N5ETsec', 'N5ETsec', 'N7ETsec', 'N7ETsec']\n\n# Compute total neutron counts\ndf['total_raw_counts'] = crnpy.total_raw_counts(df[counts_colums])\n
    # Define columns names counts_colums = ['N1Cts', 'N2Cts', 'N3Cts','N4Cts', 'N5Cts', 'N6Cts', 'N7Cts', 'N8Cts'] cont_times_col = ['N1ETsec', 'N1ETsec', 'N3ETsec','N3ETsec', 'N5ETsec', 'N5ETsec', 'N7ETsec', 'N7ETsec'] # Compute total neutron counts df['total_raw_counts'] = crnpy.total_raw_counts(df[counts_colums]) In\u00a0[5]: Copied!
    # Define transect start and end dates\nstart_date = df.iloc[0]['timestamp']\nend_date = df.iloc[-1]['timestamp']\n\n#Find stations with cutoff rigidity similar to estimated by lat,lon\ncrnpy.find_neutron_monitor(crnpy.cutoff_rigidity(df['LatDec'][0], df['LongDec'][0]), \n                             start_date=start_date, end_date=end_date)\n
    # Define transect start and end dates start_date = df.iloc[0]['timestamp'] end_date = df.iloc[-1]['timestamp'] #Find stations with cutoff rigidity similar to estimated by lat,lon crnpy.find_neutron_monitor(crnpy.cutoff_rigidity(df['LatDec'][0], df['LongDec'][0]), start_date=start_date, end_date=end_date)
    \nSelect a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n\nYour cutoff rigidity is 2.99 GV\n    STID                          NAME     R  Altitude_m  Period available\n13  DRBS                       Dourbes  3.18         225              True\n31  MCRL  Mobile Cosmic Ray Laboratory  2.46         200              True\n33  MOSC                        Moscow  2.43         200              True\n40  NEWK                        Newark  2.40          50              True\n20  IRK3                     Irkustk 3  3.64        3000              True\n21  IRKT                       Irkustk  3.64         435              True\n
    Out[5]: STID NAME R Altitude_m Period available 13 DRBS Dourbes 3.18 225 True 31 MCRL Mobile Cosmic Ray Laboratory 2.46 200 True 33 MOSC Moscow 2.43 200 True 40 NEWK Newark 2.40 50 True 20 IRK3 Irkustk 3 3.64 3000 True 21 IRKT Irkustk 3.64 435 True In\u00a0[6]: Copied!
    # Download incoming neutron flux data from the Neutron Monitor Database (NMDB).\n# Use utc_offset for Central Standard Time.\nnmdb = crnpy.get_incoming_neutron_flux(start_date, end_date, station=\"NEWK\", utc_offset=-6)\n
    # Download incoming neutron flux data from the Neutron Monitor Database (NMDB). # Use utc_offset for Central Standard Time. nmdb = crnpy.get_incoming_neutron_flux(start_date, end_date, station=\"NEWK\", utc_offset=-6) In\u00a0[7]: Copied!
    # Interpolate incoming neutron flux to match the timestamps in our rover data\ndf['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df['timestamp'])\n
    # Interpolate incoming neutron flux to match the timestamps in our rover data df['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df['timestamp']) In\u00a0[8]: Copied!
    # Compute correction factor for incoming neutron flux\ndf['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df['incoming_flux'],\n                                          incoming_Ref=df['incoming_flux'].iloc[0])\n
    # Compute correction factor for incoming neutron flux df['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df['incoming_flux'], incoming_Ref=df['incoming_flux'].iloc[0]) In\u00a0[9]: Copied!
    # Fill NaN values in atmospheric data\ndf[['barometric_pressure_Avg', 'relative_humidity_Avg', 'air_temperature_Avg']] = df[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both')\n\n# Compute the pressure correction factor\ndf['fp'] = crnpy.correction_pressure(pressure=df['barometric_pressure_Avg'], Pref=df['barometric_pressure_Avg'].mean(), L=130)\n\n# Estimate the absolute humidity and compute the vapor pressure correction factor\ndf['abs_humidity'] = crnpy.abs_humidity(df['relative_humidity_Avg'], df['air_temperature_Avg'])\ndf['fw'] = crnpy.correction_humidity(df['abs_humidity'], Aref=0)\n
    # Fill NaN values in atmospheric data df[['barometric_pressure_Avg', 'relative_humidity_Avg', 'air_temperature_Avg']] = df[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both') # Compute the pressure correction factor df['fp'] = crnpy.correction_pressure(pressure=df['barometric_pressure_Avg'], Pref=df['barometric_pressure_Avg'].mean(), L=130) # Estimate the absolute humidity and compute the vapor pressure correction factor df['abs_humidity'] = crnpy.abs_humidity(df['relative_humidity_Avg'], df['air_temperature_Avg']) df['fw'] = crnpy.correction_humidity(df['abs_humidity'], Aref=0) In\u00a0[10]: Copied!
    # Apply correction factors\ndf['total_corrected_neutrons'] = df['total_raw_counts'] * df['fw'] / (df['fp'] * df['fi'])\n
    # Apply correction factors df['total_corrected_neutrons'] = df['total_raw_counts'] * df['fw'] / (df['fp'] * df['fi'])

    The corrected counts are smoothed using a 2D smoothing function. The smoothed counts are then converted to volumetric water content (VWC) using the counts_to_vwc function.

    In\u00a0[11]: Copied!
    # Smooth variable\ndf['corrected_neutrons_smoothed'] = crnpy.spatial_average(df['x'],\n                                        df['y'],\n                                        df['total_corrected_neutrons'],\n                                        buffer= 800, method='median', rnd=True)\n\n# Estimate lattice water based on texture\nlattice_water = crnpy.lattice_water(clay_content=0.35)\n\n# Estimate Soil Volumetric Water Content\ndf['VWC'] = crnpy.counts_to_vwc(df['corrected_neutrons_smoothed'], N0=550, bulk_density=1.3, Wlat=lattice_water, Wsoc=0.01)\n\n# Drop VWC NaN values before interpolating values\ndf = df.dropna(subset = ['VWC'])\n\n# Interpolate variable using IDW (https://en.wikipedia.org/wiki/Inverse_distance_weighting)\nX_pred, Y_pred, Z_pred = crnpy.interpolate_2d(df['x'],\n                                        df['y'],\n                                        df['VWC'],\n                                        dx=250, dy=250, method='idw')\n
    # Smooth variable df['corrected_neutrons_smoothed'] = crnpy.spatial_average(df['x'], df['y'], df['total_corrected_neutrons'], buffer= 800, method='median', rnd=True) # Estimate lattice water based on texture lattice_water = crnpy.lattice_water(clay_content=0.35) # Estimate Soil Volumetric Water Content df['VWC'] = crnpy.counts_to_vwc(df['corrected_neutrons_smoothed'], N0=550, bulk_density=1.3, Wlat=lattice_water, Wsoc=0.01) # Drop VWC NaN values before interpolating values df = df.dropna(subset = ['VWC']) # Interpolate variable using IDW (https://en.wikipedia.org/wiki/Inverse_distance_weighting) X_pred, Y_pred, Z_pred = crnpy.interpolate_2d(df['x'], df['y'], df['VWC'], dx=250, dy=250, method='idw')

    A gridded map of the Volumetric Water Content (VWC) is created using the interpolated x, y, and VWC values.

    In\u00a0[12]: Copied!
    # Show interpolated grid\ncmap = 'RdYlBu'\n\nplt.figure(figsize=(6,6))\nplt.title('Gridded map')\nplt.pcolormesh(X_pred, Y_pred, Z_pred, cmap=cmap)\nplt.colorbar(label=r\"Volumetric Water Content $(cm^3 \\cdot cm^{-3})$\", location='right')\nplt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w')\nplt.ticklabel_format(scilimits=(-5,5))\nplt.xlabel('Easting', size=14)\nplt.ylabel('Northing', size=14)\nplt.show()\n
    # Show interpolated grid cmap = 'RdYlBu' plt.figure(figsize=(6,6)) plt.title('Gridded map') plt.pcolormesh(X_pred, Y_pred, Z_pred, cmap=cmap) plt.colorbar(label=r\"Volumetric Water Content $(cm^3 \\cdot cm^{-3})$\", location='right') plt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w') plt.ticklabel_format(scilimits=(-5,5)) plt.xlabel('Easting', size=14) plt.ylabel('Northing', size=14) plt.show()

    Finally, a contour map of the VWC is created and displayed.

    In\u00a0[13]: Copied!
    # Show contour map\ncmap = 'RdYlBu'\n\nplt.figure(figsize=(7,6))\nplt.title('Contours')\nplt.contourf(X_pred, Y_pred, Z_pred, cmap=cmap)\nplt.ticklabel_format(scilimits=(-5,5))\nplt.colorbar(label=r\"Volumetric Water Content $(cm^3 \\cdot cm^{-3})$\", location='right')\nplt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w')\nplt.show()\n
    # Show contour map cmap = 'RdYlBu' plt.figure(figsize=(7,6)) plt.title('Contours') plt.contourf(X_pred, Y_pred, Z_pred, cmap=cmap) plt.ticklabel_format(scilimits=(-5,5)) plt.colorbar(label=r\"Volumetric Water Content $(cm^3 \\cdot cm^{-3})$\", location='right') plt.scatter(df['x'], df['y'], marker='o', edgecolor='k', facecolor='w') plt.show()"},{"location":"examples/rover/Hydroinnova_rover_example/#processing-and-analyzing-data-from-a-roving-detector","title":"Processing and analyzing data from a roving detector\u00b6","text":"

    This tutorial demonstrates how to process and analyze data from a rover using the Cosmic Ray Neutron Python (CRNPy) library. The steps include loading the data, converting geographical coordinates to Cartesian coordinates, normalizing neutron counts, correcting for atmospheric effects, and visualizing the results.

    First import the required packages.

    "},{"location":"examples/rover/Hydroinnova_rover_example/#neutron-count-correction","title":"Neutron count correction\u00b6","text":""},{"location":"examples/rover/Hydroinnova_rover_example/#incommng-neutron-flux","title":"Incommng neutron flux\u00b6","text":"

    Find stations with a cutoff rigidity similar to the estimated value based on the latitude and longitude, ensuring that the reference station is under a similar earth electromagnetic field. Note that the station is hardcoded in the second line as station=\"NEWK\". The user is required to manually define this after considering the potential options suggested. See get_incoming_neutron_flux(), find_neutron_monitor() and correction_incoming_flux().

    "},{"location":"examples/rover/Hydroinnova_rover_example/#atmospheric-correction","title":"Atmospheric correction\u00b6","text":"

    NaN values in the atmospheric data are filled. The neutron counts are then corrected for atmospheric variables. See correction_humidity() and correction_pressure()

    "},{"location":"examples/stationary/example_RDT_station/","title":"Processing and analyzing data from a stationary detector","text":"In\u00a0[1]: Copied!
    # Import required libraries\nimport crnpy\n\nimport pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\n
    # Import required libraries import crnpy import pandas as pd import numpy as np import matplotlib.pyplot as plt In\u00a0[2]: Copied!
    # Load observations from a stationary detector\nfilepath = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/stationary/rdt.csv\"\n\n# Read the DataFrame\ndf = pd.read_csv(filepath, names=['timestamp','barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg','DP','BattVolt','counts_1_Tot','counts_2_Tot','counts_3_Tot'])\n\n# Parse timestamps\ndf['timestamp'] = pd.to_datetime(df['timestamp'])\n\n# Display a few rows of the dataset\ndf.head(3)\n
    # Load observations from a stationary detector filepath = \"https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/stationary/rdt.csv\" # Read the DataFrame df = pd.read_csv(filepath, names=['timestamp','barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg','DP','BattVolt','counts_1_Tot','counts_2_Tot','counts_3_Tot']) # Parse timestamps df['timestamp'] = pd.to_datetime(df['timestamp']) # Display a few rows of the dataset df.head(3) Out[2]: timestamp barometric_pressure_Avg relative_humidity_Avg air_temperature_Avg DP BattVolt counts_1_Tot counts_2_Tot counts_3_Tot 0 2020-04-10 09:47:00 983.8 29.0 9.6 -7.4 14.4 848 716.0 742 1 2020-04-10 10:47:00 982.3 25.0 10.9 -7.9 14.3 436 7200.0 796 2 2020-04-10 11:17:00 980.8 25.0 11.5 -7.4 13.7 389 396.0 354 In\u00a0[3]: Copied!
    # Remove rows with incomplete intervals\ndf = crnpy.remove_incomplete_intervals(df, timestamp_col='timestamp', integration_time=3600, remove_first=True)\n\n# Fill missing timestamps to create a conplete record\ndf = crnpy.fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True)\n
    # Remove rows with incomplete intervals df = crnpy.remove_incomplete_intervals(df, timestamp_col='timestamp', integration_time=3600, remove_first=True) # Fill missing timestamps to create a conplete record df = crnpy.fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True)
    Removed a total of 48 rows.\nAdded a total of 60 missing timestamps.\n

    Utilize the total_raw_counts() function to calculate the total counts across all detectors. After calculating the total counts, identify outliers using the is_outlier() function.

    In\u00a0[4]: Copied!
    # Flag and fill outliers\ncols_counts = ['counts_1_Tot','counts_2_Tot','counts_3_Tot']\nfor col in cols_counts:\n    \n    # Find outliers\n    idx_outliers = crnpy.is_outlier(df[col], method='scaled_mad', min_val=500, max_val=2000)\n    df.loc[idx_outliers,col] = np.nan\n    \n    # Fill missing values with linear interpolation and round to nearest integer\n    df[col] = df[col].interpolate(method='linear', limit=3, limit_direction='both').round()\n
    # Flag and fill outliers cols_counts = ['counts_1_Tot','counts_2_Tot','counts_3_Tot'] for col in cols_counts: # Find outliers idx_outliers = crnpy.is_outlier(df[col], method='scaled_mad', min_val=500, max_val=2000) df.loc[idx_outliers,col] = np.nan # Fill missing values with linear interpolation and round to nearest integer df[col] = df[col].interpolate(method='linear', limit=3, limit_direction='both').round() In\u00a0[5]: Copied!
    # Compute total cunts\ndf['total_raw_counts'] = crnpy.total_raw_counts(df[cols_counts], nan_strategy='average')\n
    # Compute total cunts df['total_raw_counts'] = crnpy.total_raw_counts(df[cols_counts], nan_strategy='average') In\u00a0[6]: Copied!
    # Plot total counts\n# Create a new figure and plot the data\nfig, ax = plt.subplots(figsize=(10, 3))  # Set the figure size\nax.plot(df['timestamp'], df['total_raw_counts'], label='Raw Counts', color='black', linewidth=.8)\n# Set the labels for the x-axis and y-axis\nax.set_xlabel(\"Date\")\nax.set_ylabel(\"Total Raw Counts\")\n\n# Set the title of the plot\nax.set_title('Total Raw Counts Over Time')\n\n# Adjust size of axes labels\nax.tick_params(axis='both', which='major')\n\n# Show the plot\nplt.show()\n
    # Plot total counts # Create a new figure and plot the data fig, ax = plt.subplots(figsize=(10, 3)) # Set the figure size ax.plot(df['timestamp'], df['total_raw_counts'], label='Raw Counts', color='black', linewidth=.8) # Set the labels for the x-axis and y-axis ax.set_xlabel(\"Date\") ax.set_ylabel(\"Total Raw Counts\") # Set the title of the plot ax.set_title('Total Raw Counts Over Time') # Adjust size of axes labels ax.tick_params(axis='both', which='major') # Show the plot plt.show() In\u00a0[7]: Copied!
    # Define study start and end dates\nstart_date = df.iloc[0]['timestamp']\nend_date = df.iloc[-1]['timestamp']\n\n# Define geographic coordiantes\nlat = 39.110596\nlon = -96.613050\n\n# Find stations with cutoff rigidity similar to estimated by lat,lon\ncrnpy.find_neutron_monitor(crnpy.cutoff_rigidity(lat, lon), start_date=start_date, end_date=end_date, verbose=False)\n
    # Define study start and end dates start_date = df.iloc[0]['timestamp'] end_date = df.iloc[-1]['timestamp'] # Define geographic coordiantes lat = 39.110596 lon = -96.613050 # Find stations with cutoff rigidity similar to estimated by lat,lon crnpy.find_neutron_monitor(crnpy.cutoff_rigidity(lat, lon), start_date=start_date, end_date=end_date, verbose=False)
    \nSelect a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations\n\nYour cutoff rigidity is 2.87 GV\n     STID     NAME     R  Altitude_m  Period available\n13   DRBS  Dourbes  3.18         225              True\n40   NEWK   Newark  2.40          50              True\n28  KIEL2   KielRT  2.36          54              True\n21   IRKT  Irkustk  3.64         435              True\n
    Out[7]: STID NAME R Altitude_m Period available 13 DRBS Dourbes 3.18 225 True 40 NEWK Newark 2.40 50 True 28 KIEL2 KielRT 2.36 54 True 21 IRKT Irkustk 3.64 435 True In\u00a0[8]: Copied!
    # Download incoming neutron flux data from the Neutron Monitor Database (NMDB).\n# Use utc_offset for Central Standard Time.\nnmdb = crnpy.get_incoming_neutron_flux(start_date, end_date, station=\"IRKT\", utc_offset=-6)\n
    # Download incoming neutron flux data from the Neutron Monitor Database (NMDB). # Use utc_offset for Central Standard Time. nmdb = crnpy.get_incoming_neutron_flux(start_date, end_date, station=\"IRKT\", utc_offset=-6) In\u00a0[9]: Copied!
    # Interpolate incoming neutron flux to match the timestamps in our station data\ndf['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df['timestamp'])\n
    # Interpolate incoming neutron flux to match the timestamps in our station data df['incoming_flux'] = crnpy.interpolate_incoming_flux(nmdb['timestamp'], nmdb['counts'], df['timestamp']) In\u00a0[10]: Copied!
    # Compute correction factor for incoming neutron flux\ndf['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df['incoming_flux'],\n                                          incoming_Ref=df['incoming_flux'].iloc[0])\n
    # Compute correction factor for incoming neutron flux df['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df['incoming_flux'], incoming_Ref=df['incoming_flux'].iloc[0]) In\u00a0[11]: Copied!
    # Fill NaN values in atmospheric data and neutron counts\ndf[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']] = df[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both')\n\n# Compute the pressure correction factor \ndf['fp'] = crnpy.correction_pressure(pressure=df['barometric_pressure_Avg'], Pref=df['barometric_pressure_Avg'].mean(), L=130)\n\n# Calculate the absolute humidity (g cm^-3) and the vapor pressure correction factor\ndf['abs_humidity'] = crnpy.abs_humidity(df['relative_humidity_Avg'], df['air_temperature_Avg'])\ndf['fw'] = crnpy.correction_humidity(abs_humidity=df['abs_humidity'], Aref=0)\n
    # Fill NaN values in atmospheric data and neutron counts df[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']] = df[['barometric_pressure_Avg','relative_humidity_Avg', 'air_temperature_Avg']].interpolate(method='pchip', limit=24, limit_direction='both') # Compute the pressure correction factor df['fp'] = crnpy.correction_pressure(pressure=df['barometric_pressure_Avg'], Pref=df['barometric_pressure_Avg'].mean(), L=130) # Calculate the absolute humidity (g cm^-3) and the vapor pressure correction factor df['abs_humidity'] = crnpy.abs_humidity(df['relative_humidity_Avg'], df['air_temperature_Avg']) df['fw'] = crnpy.correction_humidity(abs_humidity=df['abs_humidity'], Aref=0) In\u00a0[12]: Copied!
    # Plot all the correction factors\nfig, ax = plt.subplots(figsize=(10, 3))  # Set the figure size\nax.plot(df['timestamp'], df['fp'], label='Pressure',color='tomato', linewidth=1)\nax.plot(df['timestamp'], df['fw'], label='Humidity', color='navy', linewidth=1)\nax.plot(df['timestamp'], df['fi'], label='Incoming Flux', color='olive', linewidth=1)\nax.set_xlabel(\"Date\")\nax.set_ylabel('Correction Factor')\nax.legend()\nax.set_title('Correction Factors for Pressure, Humidity, and Incoming Flux')\n
    # Plot all the correction factors fig, ax = plt.subplots(figsize=(10, 3)) # Set the figure size ax.plot(df['timestamp'], df['fp'], label='Pressure',color='tomato', linewidth=1) ax.plot(df['timestamp'], df['fw'], label='Humidity', color='navy', linewidth=1) ax.plot(df['timestamp'], df['fi'], label='Incoming Flux', color='olive', linewidth=1) ax.set_xlabel(\"Date\") ax.set_ylabel('Correction Factor') ax.legend() ax.set_title('Correction Factors for Pressure, Humidity, and Incoming Flux') Out[12]:
    Text(0.5, 1.0, 'Correction Factors for Pressure, Humidity, and Incoming Flux')
    In\u00a0[13]: Copied!
    # Apply correction factors\ndf['total_corrected_neutrons'] = df['total_raw_counts'] * df['fw'] / (df['fp'] * df['fi'])\n
    # Apply correction factors df['total_corrected_neutrons'] = df['total_raw_counts'] * df['fw'] / (df['fp'] * df['fi']) In\u00a0[14]: Copied!
    fig, ax = plt.subplots(figsize=(10, 3))  # Set the figure size\n\n# Subplot 1: Raw and Corrected Counts\nax.plot(df['timestamp'], df['total_raw_counts'], label='Raw Counts', color='black', linestyle='dashed', linewidth=.8)\nax.plot(df['timestamp'], df['total_corrected_neutrons'], label='Corrected Counts', color='teal', linewidth=.8)\nax.set_xlabel(\"Date\")\nax.set_ylabel('Counts')\nax.legend()\nax.set_title('Raw and Corrected Counts')\n
    fig, ax = plt.subplots(figsize=(10, 3)) # Set the figure size # Subplot 1: Raw and Corrected Counts ax.plot(df['timestamp'], df['total_raw_counts'], label='Raw Counts', color='black', linestyle='dashed', linewidth=.8) ax.plot(df['timestamp'], df['total_corrected_neutrons'], label='Corrected Counts', color='teal', linewidth=.8) ax.set_xlabel(\"Date\") ax.set_ylabel('Counts') ax.legend() ax.set_title('Raw and Corrected Counts') Out[14]:
    Text(0.5, 1.0, 'Raw and Corrected Counts')

    Convert the smoothed neutron counts to Volumetric Water Content (VWC) using the counts_to_vwc(). The function considers the smoothed neutron counts, $N_0$ specific parameter, soil bulk density, weight percent of latent water (Wlat), and weight percent of soil organic carbon (Wsoc). After conversion, plot the VWC against the timestamp for visual analysis. smooth_1d() is applied for smoothing the data using a Savitzky-Golay filter.

    In\u00a0[15]: Copied!
    # Device N0 parameter\nN0_rdt = 3767 # Patrignani, A., Ochsner, T. E., Montag, B., & Bellinger, S. (2021). A novel lithium foil cosmic-ray neutron detector for measuring field-scale soil moisture. Frontiers in Water, 3, 673185.\n\n# Estimate lattice water (%) based on texture\nlattice_water = crnpy.lattice_water(clay_content=0.35)\n\ndf['VWC'] = crnpy.counts_to_vwc(df['total_corrected_neutrons'], N0=N0_rdt, bulk_density=1.33, Wlat=lattice_water, Wsoc=0.01)\n\n# Drop any NaN beofre smoothing\ndf = df.dropna(subset=['VWC']).copy().reset_index()\n\n# Filter using the Savitzky-Golay filter, drop NaN values and timestamps\ndf['VWC'] = crnpy.smooth_1d(df['VWC'], window=11, order=3, method=\"savitzky_golay\")\n
    # Device N0 parameter N0_rdt = 3767 # Patrignani, A., Ochsner, T. E., Montag, B., & Bellinger, S. (2021). A novel lithium foil cosmic-ray neutron detector for measuring field-scale soil moisture. Frontiers in Water, 3, 673185. # Estimate lattice water (%) based on texture lattice_water = crnpy.lattice_water(clay_content=0.35) df['VWC'] = crnpy.counts_to_vwc(df['total_corrected_neutrons'], N0=N0_rdt, bulk_density=1.33, Wlat=lattice_water, Wsoc=0.01) # Drop any NaN beofre smoothing df = df.dropna(subset=['VWC']).copy().reset_index() # Filter using the Savitzky-Golay filter, drop NaN values and timestamps df['VWC'] = crnpy.smooth_1d(df['VWC'], window=11, order=3, method=\"savitzky_golay\") In\u00a0[16]: Copied!
    # Plot the obtained time series of volumetric water content\n# Create a new figure and plot the data\nfig, ax = plt.subplots(figsize=(10, 4))  # Set the figure size\nax.plot(df['timestamp'], df['VWC'], color='teal', linewidth=1.0)\n\n# Set the labels for the x-axis and y-axis\nax.set_xlabel(\"Date\")\nax.set_ylabel(r\"Volumetric Water Content ($m^3 \\cdot m^{-3}$)\")\n\n# Set the title of the plot\nax.set_title('Soil Moisture')\n\n# Show the plot\nplt.show()\n
    # Plot the obtained time series of volumetric water content # Create a new figure and plot the data fig, ax = plt.subplots(figsize=(10, 4)) # Set the figure size ax.plot(df['timestamp'], df['VWC'], color='teal', linewidth=1.0) # Set the labels for the x-axis and y-axis ax.set_xlabel(\"Date\") ax.set_ylabel(r\"Volumetric Water Content ($m^3 \\cdot m^{-3}$)\") # Set the title of the plot ax.set_title('Soil Moisture') # Show the plot plt.show() In\u00a0[17]: Copied!
    # Estimate sensing depth\ndf['sensing_depth'] = crnpy.sensing_depth(df['VWC'], df['barometric_pressure_Avg'], df['barometric_pressure_Avg'].mean(), bulk_density=1.33, Wlat=lattice_water, method = \"Franz_2012\")\nprint(f\"Average sensing depth: {np.round(df['sensing_depth'].mean(),2)} cm\")\n
    # Estimate sensing depth df['sensing_depth'] = crnpy.sensing_depth(df['VWC'], df['barometric_pressure_Avg'], df['barometric_pressure_Avg'].mean(), bulk_density=1.33, Wlat=lattice_water, method = \"Franz_2012\") print(f\"Average sensing depth: {np.round(df['sensing_depth'].mean(),2)} cm\")
    Average sensing depth: 15.36 cm\n
    In\u00a0[18]: Copied!
    # Compute the storage using the exponential filter\nsurface = df['VWC']\nsubsurface = crnpy.exp_filter(df['VWC'])\n\nz_surface = 150 # Average depth in mm obtained from previous cell using crnpy.sensing_depth()\nz_subsurface = 350 # Arbitrary subsurface depth in mm\ndf['storage'] = np.sum([surface*z_surface, subsurface*z_subsurface], axis=0)\n
    # Compute the storage using the exponential filter surface = df['VWC'] subsurface = crnpy.exp_filter(df['VWC']) z_surface = 150 # Average depth in mm obtained from previous cell using crnpy.sensing_depth() z_subsurface = 350 # Arbitrary subsurface depth in mm df['storage'] = np.sum([surface*z_surface, subsurface*z_subsurface], axis=0) In\u00a0[19]: Copied!
    # Plot the obtained time series of soil water storage\n# Create a new figure and plot the data\nfig, ax = plt.subplots(figsize=(10, 4))  # Set the figure size\nax.plot(df['timestamp'], df['storage'], color='teal', linewidth=1.0)\n\n# Set the labels for the x-axis and y-axis\nax.set_xlabel(\"Date\")\nax.set_ylabel(\"Storage (mm)\")\n\n# Set the title of the plot\nax.set_title('Soil Water Storage')\n\n# Show the plot\nplt.show()\n
    # Plot the obtained time series of soil water storage # Create a new figure and plot the data fig, ax = plt.subplots(figsize=(10, 4)) # Set the figure size ax.plot(df['timestamp'], df['storage'], color='teal', linewidth=1.0) # Set the labels for the x-axis and y-axis ax.set_xlabel(\"Date\") ax.set_ylabel(\"Storage (mm)\") # Set the title of the plot ax.set_title('Soil Water Storage') # Show the plot plt.show() In\u00a0[20]: Copied!
    # Estimate the uncertainty of the volumetric water content\ndf['sigma_VWC'] = crnpy.uncertainty_vwc(df['total_raw_counts'], N0=N0_rdt, bulk_density=1.33, fp=df['fp'], fi=df['fi'], fw=df['fw'])\n\n# Plot the VWC with uncertainty as a shaded area\nfig, ax = plt.subplots(figsize=(10, 4))  # Set the figure size\nax.plot(df['timestamp'], df['VWC'], color='black', linewidth=1.0)\nax.fill_between(df['timestamp'], df['VWC']-df['sigma_VWC'], df['VWC']+df['sigma_VWC'], color='teal', alpha=0.5, label = r\"Standard Deviation $\\theta_v$\")\nax.set_title('Volumentric Water Content with Uncertainty')\nax.set_xlabel(\"Date\")\nax.set_ylabel(r\"Volumetric Water Content ($m^3 \\cdot m^{-3}$)\")\nplt.legend()\nplt.show()\n
    # Estimate the uncertainty of the volumetric water content df['sigma_VWC'] = crnpy.uncertainty_vwc(df['total_raw_counts'], N0=N0_rdt, bulk_density=1.33, fp=df['fp'], fi=df['fi'], fw=df['fw']) # Plot the VWC with uncertainty as a shaded area fig, ax = plt.subplots(figsize=(10, 4)) # Set the figure size ax.plot(df['timestamp'], df['VWC'], color='black', linewidth=1.0) ax.fill_between(df['timestamp'], df['VWC']-df['sigma_VWC'], df['VWC']+df['sigma_VWC'], color='teal', alpha=0.5, label = r\"Standard Deviation $\\theta_v$\") ax.set_title('Volumentric Water Content with Uncertainty') ax.set_xlabel(\"Date\") ax.set_ylabel(r\"Volumetric Water Content ($m^3 \\cdot m^{-3}$)\") plt.legend() plt.show()"},{"location":"examples/stationary/example_RDT_station/#processing-and-analyzing-data-from-a-stationary-detector","title":"Processing and analyzing data from a stationary detector\u00b6","text":"

    This tutorial demonstrates how to process and analyze neutron counts of epithermal neutrons recorded with a stationary cosmic-ray neutron probe consisting of three lithium-foil detectors manufactured by Radiation Detection Technologies, Inc (RDT). The tutorial covers all the steps from reading the file with raw data obtained from the probe in the field, outlier removal, atmospheric corrections, and conversion of corrected neutron counts into volumetric soil water content.

    The tutorial assumes that you are working within the Anaconda environment, which has all the necessary modules. Also, make sure that the CRNPy library is installed in your machine.

    The raw dataset to follow this example can be obtained at the .csv file.

    This device was installed in the vicinity of the KONA site of the National Ecological Observatory Network within the Konza Prairie Biological station (39.110596, -96.613050, 320 meters a.s.l.)

    "},{"location":"examples/stationary/example_RDT_station/#neutron-count-correction","title":"Neutron count correction\u00b6","text":""},{"location":"examples/stationary/example_RDT_station/#incomming-neutron-flux","title":"Incomming neutron flux\u00b6","text":"

    Find similar neutron monitors based on altitude and cutoff rigidity, which is estimated based on the geographic location using latitude and longitude values. See get_incoming_neutron_flux(), find_neutron_monitor() and correction_incoming_flux().

    In this particular example we selected the \"IRKT\" monitor since it has a similar cuoff rigidity and altitude as our site. The reference neutron monitor will likely be different for your location. Note that the function only reports neutron monitors based on cutoff rigidity and leaves to the user the selection of a reference neutron monitor based on the altitude of the location.

    "},{"location":"examples/stationary/example_RDT_station/#atmospheric-correction","title":"Atmospheric correction\u00b6","text":"

    This section is about correcting the atmospheric variables. First, fill the missing values in the atmospheric data, then correct the count for atmospheric variables using correction_humidity() and correction_pressure().

    "},{"location":"examples/stationary/example_RDT_station/#sensing-depth-and-soil-water-storage","title":"Sensing depth and soil water storage\u00b6","text":"

    Estimate the sensing_depth() at which 86 % of the neutrons probes the soil profile, and estimate the soil water storage() of the top 50 cm using and exponential filter.

    "},{"location":"examples/stationary/example_RDT_station/#uncertainty-estimation","title":"Uncertainty estimation\u00b6","text":"

    Estimate the uncertainty of the volumetric water content using the uncertainty_vwc() function. Optionally see uncertainty_counts() for estimating the uncertainty of the neutron counts.

    "}]} \ No newline at end of file diff --git a/site/sitemap.xml b/site/sitemap.xml index da75983..2b39ff3 100644 --- a/site/sitemap.xml +++ b/site/sitemap.xml @@ -2,37 +2,37 @@ https://soilwater.github.io/crnpy/ - 2023-07-30 + 2024-01-07 daily https://soilwater.github.io/crnpy/correction_routines/ - 2023-07-30 + 2024-01-07 daily https://soilwater.github.io/crnpy/reference/ - 2023-07-30 + 2024-01-07 daily https://soilwater.github.io/crnpy/sensor_description/ - 2023-07-30 + 2024-01-07 daily https://soilwater.github.io/crnpy/examples/calibration/calibration/ - 2023-07-30 + 2024-01-07 daily https://soilwater.github.io/crnpy/examples/rover/Hydroinnova_rover_example/ - 2023-07-30 + 2024-01-07 daily https://soilwater.github.io/crnpy/examples/stationary/example_RDT_station/ - 2023-07-30 + 2024-01-07 daily \ No newline at end of file diff --git a/site/sitemap.xml.gz b/site/sitemap.xml.gz index 1a6c0315a30fea092133c2b832a5e27f6e5b6f96..0d74e3fb4384b7ddd65af55eec26df786b6cddfc 100644 GIT binary patch literal 310 zcmV-60m=R!iwFoa$eLvW|8r?{Wo=<_E_iKh0M(RDYr`-MhVT6qA@{^-8SI0^y^OK* z=+41))WqOendCIhzn_zalJj8D>SFojwRj|B=le@*qcad2bVa;Pvp52$u`;eM;_t&p z@)GamChy5I_$Zhi7jff#_a?+J3@IBAt?D>Mss-yNY*;L!$kNwXZlVxVfonELZc)pr z3WqX`#tzB@rM2-*e@qPuO|Bb7E+*glm}1{zC3o5GDap1;_8csWwzBC)xf)IcKeAHB zj=5MVR~~T#`Wu=?BG5iett9NdalrSCOK<`T7Yp|c$>12NtbjF{Zkp{q)51lyoekHn zl{H6FGw(Wo1a`vk_QmH|5gO<4tjbv_7sEsJz$qMKHJy&uX&{{I%{CH#)^7eIRH IN=*d-0I2Sm`Tzg` literal 310 zcmV-60m=R!iwFos*~Mf6|8r?{Wo=<_E_iKh0M(RDZ-X!lhVT6qh&zO}hkXdr%QWpg zb!U_Y7b1n2*`btwzd%vNdD5iTmpHH9SdSeg`To+{=nTXLT@gQ}Ssa1WSQ%Fr@%P~) zd5QOOllNp9d=$)%i@5Q=dlO<9hLnwmR&|^r)q-^sHY^rVWa(=xH&KYGz%`pAx2WY* zg+m!eV+ZAd(%Sf@Kc)tSCfAK37n5&&OtEjVlG|*%OS0!=mj%nBt!%ncu7(rAkF1oj zV=h+8l}Frw{)VQJ2(%AVD+zmV9PmBk5}bg-#lk&9GB`#mD_~8gn`V2@v~W>vXT!B? zWzCV)%)8DXft@hCeepR~gvL2Mt8!M##qbb4u%G9x=%$rl?}u`c|G$NK3BRNK1#qIT InoR`&02y+Zv;Y7A diff --git a/src/crnpy.egg-info/PKG-INFO b/src/crnpy.egg-info/PKG-INFO index b9fbcc5..dde5303 100644 --- a/src/crnpy.egg-info/PKG-INFO +++ b/src/crnpy.egg-info/PKG-INFO @@ -1,18 +1,23 @@ Metadata-Version: 2.1 Name: crnpy -Version: 0.5.1 +Version: 0.6.0 Summary: A Python package for the estimation and processing of soil moisture data from cosmic-ray neutron counts. -Home-page: https://github.com/soilwater/crnpy +Home-page: https://soilwater.github.io/crnpy/ Author: Joaquin Peraza, Andres Patrignani Author-email: jperaza@ksu.edu, andrespatrignani@ksu.edu License: MIT Description-Content-Type: text/markdown License-File: LICENSE +Requires-Dist: numpy +Requires-Dist: pandas +Requires-Dist: scipy +Requires-Dist: requests [![GitHub Workflow Status (building)](https://img.shields.io/github/actions/workflow/status/soilwater/crnpy/python-package.yml)](https://github.com/soilwater/crnpy/actions/workflows/python-package.yml) [![GitHub Workflow Status (publish)](https://img.shields.io/github/actions/workflow/status/soilwater/crnpy/python-publish.yml?label=publish)](https://github.com/soilwater/crnpy/actions/workflows/python-publish.yml) [![PyPI - Status](https://img.shields.io/pypi/v/crnpy)](https://pypi.org/project/crnpy/) [![GitHub commits since latest release (by SemVer including pre-releases)](https://img.shields.io/github/commits-since/soilwater/crnpy/latest/main)](https://github.com/soilwater/crnpy) +![JOSS submission status](https://joss.theoj.org/papers/e65c1bb5fee58c39289efc4547d1fd10/status.svg) # Cosmic-Ray Neutron Python (CRNPy) Library @@ -32,7 +37,6 @@ CRNPs are a valuable tool for non-invasive soil moisture estimation at the hecto - Modular: The library is designed to be modular, allowing users to easily customize the processing workflow to their needs. - ## Installation To install the CRNPy library, you can use Python's package manager. Open a terminal and type: @@ -49,6 +53,12 @@ Ideally dependencies should be installed automatically. If not, you can install The CRNPy library is compatible with Python 3.7 and above. See [requirements.txt](https://github.com/soilwater/crnpy/blob/main/requirements.txt) for a list of dependencies. +## Examples + +- [https://soilwater.github.io/crnpy/examples/stationary/example_RDT_station/](Processing and analyzing data from a stationary detector) +- [https://soilwater.github.io/crnpy/examples/rover/Hydroinnova_rover_example/](Processing and analyzing data from a roving detector) +- [https://soilwater.github.io/crnpy/examples/calibration/calibration/](Device-specific field calibration) + ## Authors The CRNPy library was developed at the Kansas State University Soil Water Processes Lab by: diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 65aeb38..8536df7 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -5,20 +5,19 @@ Created by Joaquin Peraza and Andres Patrignani. """ -# Import modules -import sys -import warnings +import crnpy.data as data +import io import numbers import numpy as np import pandas as pd import requests -import io +import sys import utm +import warnings -from scipy.signal import savgol_filter from scipy.interpolate import griddata +from scipy.signal import savgol_filter from scipy.special import erfcinv -import crnpy.data as data # Define python version python_version = (3, 7) # tuple of (major, minor) version requirement @@ -42,24 +41,24 @@ def remove_incomplete_intervals(df, timestamp_col, integration_time, remove_firs Returns: (pandas.DataFrame): """ - + # Check format of timestamp column if df[timestamp_col].dtype != 'datetime64[ns]': raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.') # Check if differences in timestamps are below or above the provided integration time idx_delta = df[timestamp_col].diff().dt.total_seconds() != integration_time - + if remove_first: idx_delta[0] = True - + # Select rows that meet the specified integration time df = df[~idx_delta] df.reset_index(drop=True, inplace=True) # Notify user about the number of rows that have been removed print(f"Removed a total of {sum(idx_delta)} rows.") - + return df @@ -94,17 +93,17 @@ def fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_times for date in date_range: if date not in df[timestamp_col].values: if verbose: - print('Adding missing date:',date) - new_line = pd.DataFrame({timestamp_col:date}, index=[-1]) # By default fills columns with np.nan - df = pd.concat([df,new_line]) + print('Adding missing date:', date) + new_line = pd.DataFrame({timestamp_col: date}, index=[-1]) # By default fills columns with np.nan + df = pd.concat([df, new_line]) counter += 1 df.sort_values(by=timestamp_col, inplace=True) df.reset_index(drop=True, inplace=True) - + # Notify user about the number of rows that have been removed print(f"Added a total of {counter} missing timestamps.") - + return df @@ -119,14 +118,14 @@ def total_raw_counts(counts): """ if counts.shape[0] > 1: - counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)),axis=0) + counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)), axis=0) # Compute sum of counts total_raw_counts = counts.sum(axis=1) - + # Replace zeros with NaN total_raw_counts = total_raw_counts.replace(0, np.nan) - + return total_raw_counts @@ -146,7 +145,7 @@ def is_outlier(x, method, window=11, min_val=None, max_val=None): References: Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press. """ - + if not isinstance(x, pd.Series): raise TypeError('x must of type pandas.Series') @@ -163,24 +162,24 @@ def is_outlier(x, method, window=11, min_val=None, max_val=None): iqr = q3 - q1 high_fence = q3 + (1.5 * iqr) low_fence = q1 - (1.5 * iqr) - idx_outliers = (xhigh_fence ) + idx_outliers = (x < low_fence) | (x > high_fence) elif method == 'moviqr': q1 = x.rolling(window, center=True).quantile(0.25) q3 = x.rolling(window, center=True).quantile(0.75) iqr = q3 - q1 - ub = q3 + (1.5 * iqr) # Upper boundary - lb = q1 - (1.5 * iqr) # Lower boundary + ub = q3 + (1.5 * iqr) # Upper boundary + lb = q1 - (1.5 * iqr) # Lower boundary idx_outliers = (x < lb) | (x > ub) elif method == 'zscore': - zscore = (x - x.mean())/x.std() + zscore = (x - x.mean()) / x.std() idx_outliers = (zscore < -3) | (zscore > 3) elif method == 'movzscore': movmean = x.rolling(window=window, center=True).mean() movstd = x.rolling(window=window, center=True).std() - movzscore = (x - movmean)/movstd + movzscore = (x - movmean) / movstd idx_outliers = (movzscore < -3) | (movzscore > 3) elif method == 'modified_zscore': @@ -195,10 +194,10 @@ def is_outlier(x, method, window=11, min_val=None, max_val=None): elif method == 'scaled_mad': # Returns true for elements more than three scaled MAD from the median. - c = -1 / (np.sqrt(2)*erfcinv(3/2)) + c = -1 / (np.sqrt(2) * erfcinv(3 / 2)) median = np.nanmedian(x) - mad = c*np.nanmedian(np.abs(x - median)) - idx_outliers = x > (median + 3*mad) + mad = c * np.nanmedian(np.abs(x - median)) + idx_outliers = x > (median + 3 * mad) else: raise TypeError('Outlier detection method not found.') @@ -246,7 +245,7 @@ def correction_pressure(pressure, Pref, L): """ # Compute pressure correction factor - fp = np.exp((Pref - pressure) / L) # Zreda et al. 2017 Eq 5. + fp = np.exp((Pref - pressure) / L) # Zreda et al. 2017 Eq 5. return fp @@ -286,12 +285,12 @@ def correction_humidity(abs_humidity, Aref): M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 """ A = abs_humidity - fw = 1 + 0.0054*(A - Aref) # Zreda et al. 2017 Eq 6. + fw = 1 + 0.0054 * (A - Aref) # Zreda et al. 2017 Eq 6. return fw - -def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None, site_atmdepth=None, Rc_ref=None, ref_atmdepth=None): +def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None, + site_atmdepth=None, Rc_ref=None, ref_atmdepth=None): r"""Correction factor for incoming neutron flux. This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation: @@ -318,13 +317,25 @@ def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Args: incoming_neutrons (list or array): Incoming neutron flux readings. incoming_Ref (float): Reference incoming neutron flux. Baseline incoming neutron flux. + fill_na (float): Value to fill missing data. If None, missing data remains as NaN. + Rc_method (str): Optional to correct for differences in cutoff rigidity between the site and the reference station. Possible values are 'McJannetandDesilets2023' or 'Hawdonetal2014'. If None, no correction is performed. + Rc_site (float): Cutoff rigidity at the monitoring site. + site_atmdepth (float): Atmospheric depth at the monitoring site. + Rc_ref (float): Cutoff rigidity at the reference station. + ref_atmdepth (float): Atmospheric depth at the reference station. Returns: (list): fi correction factor. References: + Hawdon, A., D. McJannet, and J. Wallace (2014), Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia, Water Resour. Res., 50, 5029–5043, doi:10.1002/2013WR015138. + M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 + McJannet, D. L., & Desilets, D. (2023). Incoming neutron flux corrections for cosmic-ray soil and snow sensors using the global neutron monitor network. Water Resources Research, 59, e2022WR033889. https://doi.org/10.1029/2022WR033889 + + + """ if incoming_Ref is None and not isinstance(incoming_neutrons, type(None)): @@ -339,17 +350,16 @@ def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, raise ValueError('Site cutoff rigidity not provided.') if Rc_method == 'McJannetandDesilets2023': - if latitude is None or elevation is None: - raise ValueError('Latitude and elevation are required inputs for McJannet and Desilets (2023) method.') tau = location_factor(site_atmdepth, Rc_site, ref_atmdepth, Rc_ref) fi = 1 / (tau * fi + 1 - tau) elif Rc_method == 'Hawdonetal2014': - Rc_corr = -0.075 * (Rc_site - Rc_ref)+ 1.0 + Rc_corr = -0.075 * (Rc_site - Rc_ref) + 1.0 fi = (fi - 1.0) * Rc_corr + 1.0 else: - raise ValueError('Cutoff rigidity method not found. Valid options are: McJannetandDesilets2023, Hawdonetal2014.') + raise ValueError( + 'Cutoff rigidity method not found. Valid options are: McJannetandDesilets2023, Hawdonetal2014.') if fill_na is not None: fi.fillna(fill_na, inplace=True) # Use a value of 1 for days without data @@ -378,7 +388,6 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan # Example: get_incoming_neutron_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00') # Template url = 'http://nest.nmdb.eu/draw_graph.php?formchk=1&stations[]=KERG&output=ascii&tabchoice=revori&dtype=corr_for_efficiency&date_choice=bydate&start_year=2009&start_month=09&start_day=01&start_hour=00&start_min=00&end_year=2009&end_month=09&end_day=05&end_hour=23&end_min=59&yunits=0' - # Expand the time window by 1 hour to ensure an extra observation is included in the request. start_date -= pd.Timedelta(hours=expand_window) end_date += pd.Timedelta(hours=expand_window) @@ -387,24 +396,24 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan start_date = start_date - pd.Timedelta(hours=utc_offset) end_date = end_date - pd.Timedelta(hours=utc_offset) root = 'http://www.nmdb.eu/nest/draw_graph.php?' - url_par = [ 'formchk=1', - 'stations[]=' + station, - 'output=ascii', - 'tabchoice=revori', - 'dtype=corr_for_efficiency', - 'tresolution=' + str(60), - 'date_choice=bydate', - 'start_year=' + str(start_date.year), - 'start_month=' + str(start_date.month), - 'start_day=' + str(start_date.day), - 'start_hour=' + str(start_date.hour), - 'start_min=' + str(start_date.minute), - 'end_year=' + str(end_date.year), - 'end_month=' + str(end_date.month), - 'end_day=' + str(end_date.day), - 'end_hour=' + str(end_date.hour), - 'end_min=' + str(end_date.minute), - 'yunits=0'] + url_par = ['formchk=1', + 'stations[]=' + station, + 'output=ascii', + 'tabchoice=revori', + 'dtype=corr_for_efficiency', + 'tresolution=' + str(60), + 'date_choice=bydate', + 'start_year=' + str(start_date.year), + 'start_month=' + str(start_date.month), + 'start_day=' + str(start_date.day), + 'start_hour=' + str(start_date.hour), + 'start_min=' + str(start_date.minute), + 'end_year=' + str(end_date.year), + 'end_month=' + str(end_date.month), + 'end_day=' + str(end_date.day), + 'end_hour=' + str(end_date.hour), + 'end_min=' + str(end_date.minute), + 'yunits=0'] url = root + '&'.join(url_par) @@ -418,9 +427,9 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan start = r.find("RCORR_E\n") + 8 end = r.find('\n

    Total') - 1 s = r[start:end] - s2 = ''.join([row.replace(';',',') for row in s]) + s2 = ''.join([row.replace(';', ',') for row in s]) try: - df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp','counts']) + df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp', 'counts']) except: if verbose: print(f"Error retrieving data from {url}") @@ -443,7 +452,8 @@ def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expan return df_flux -def get_reference_neutron_flux(station, date = pd.to_datetime("2011-05-01")): + +def get_reference_neutron_flux(station, date=pd.to_datetime("2011-05-01")): """Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022). Args: @@ -469,6 +479,7 @@ def get_reference_neutron_flux(station, date = pd.to_datetime("2011-05-01")): else: return df_flux['counts'].median() + def smooth_1d(values, window=5, order=3, method='moving_median'): """Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content). @@ -494,7 +505,6 @@ def smooth_1d(values, window=5, order=3, method='moving_median'): if not isinstance(x, pd.Series) and not isinstance(x, pd.DataFrame): raise ValueError('Input must be a pandas Series or DataFrame') - if method == 'moving_average': corrected_counts = values.rolling(window=window, center=True, min_periods=1).mean() elif method == 'moving_median': @@ -505,13 +515,14 @@ def smooth_1d(values, window=5, order=3, method='moving_median'): print('Dataframe contains NaN values. Please remove NaN values before smoothing the data.') if type(values) == pd.core.series.Series: - filtered = savgol_filter(values,window,order) - corrected_counts = pd.DataFrame(filtered,columns=['smoothed'], index=values.index) + filtered = savgol_filter(values, window, order) + corrected_counts = pd.DataFrame(filtered, columns=['smoothed'], index=values.index) elif type(values) == pd.core.frame.DataFrame: for col in values.columns: - values[col] = savgol_filter(values[col],window,order) + values[col] = savgol_filter(values[col], window, order) else: - raise ValueError('Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay') + raise ValueError( + 'Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay') corrected_counts = corrected_counts.ffill(limit=window).bfill(limit=window).copy() return corrected_counts @@ -534,7 +545,8 @@ def correction_bwe(counts, bwe, r2_N0=0.05): Water Resour. Res., 51, 2030–2046, doi:10.1002/ 2014WR016443. """ - return counts/(1 - bwe*r2_N0) + return counts / (1 - bwe * r2_N0) + def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494): """Function to convert biomass to biomass water equivalent. @@ -556,7 +568,8 @@ def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494): return (biomass_fresh - biomass_dry) + fWE * biomass_dry -def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01): +def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, + p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01): """Function to correct for road effects in neutron counts. following the approach described in Schrön et al., 2018. @@ -576,7 +589,7 @@ def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0 of field soil moisture and the influence of roads.WaterResources Research,54,6441–6459. https://doi. org/10.1029/2017WR021719 """ - F1 = p0 * (1-np.exp(-p1*road_width)) + F1 = p0 * (1 - np.exp(-p1 * road_width)) F2 = -p2 - p3 * theta_road - ((p4 + theta_road) / (theta_N)) F3 = p6 * np.exp(-p7 * (road_width ** -p8) * road_distance ** 4) + (1 - p6) * np.exp(-p9 * road_distance) @@ -586,7 +599,8 @@ def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0 return corrected_counts -def counts_to_vwc(counts, N0, Wlat, Wsoc ,bulk_density, a0=0.0808,a1=0.372,a2=0.115): + +def counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115): r"""Function to convert corrected and filtered neutron counts into volumetric water content. This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010. @@ -613,11 +627,10 @@ def counts_to_vwc(counts, N0, Wlat, Wsoc ,bulk_density, a0=0.0808,a1=0.372,a2=0. """ # Convert neutron counts into vwc - vwc = (a0 / (counts/N0-a1) - a2 - Wlat - Wsoc) * bulk_density + vwc = (a0 / (counts / N0 - a1) - a2 - Wlat - Wsoc) * bulk_density return vwc - def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017'): """Function that computes the estimated sensing depth of the cosmic-ray neutron probe. The function offers several methods to compute the depth at which 86 % of the neutrons @@ -653,18 +666,20 @@ def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='S results = [] for d in dist: # Compute r_star - r_start = d/Fp + r_start = d / Fp # Compute soil depth that accounts for 86% of the neutron flux - D86 = 1/ bulk_density * (8.321+0.14249*(0.96655 + np.exp(-0.01*r_start))*(20+(Wlat+vwc)) / (0.0429+(Wlat+vwc))) + D86 = 1 / bulk_density * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r_start)) * (20 + (Wlat + vwc)) / ( + 0.0429 + (Wlat + vwc))) results.append(D86) elif method == 'Franz_2012': - results = 5.8/(bulk_density*Wlat+vwc+0.0829) + results = 5.8 / (bulk_density * Wlat + vwc + 0.0829) else: raise ValueError('Method not recognized. Please select either "Schron_2017" or "Franz_2012".') return results + def abs_humidity(relative_humidity, temp): """ Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations. @@ -680,7 +695,7 @@ def abs_humidity(relative_humidity, temp): ### Atmospheric water vapor factor # Saturation vapor pressure e_sat = 0.611 * np.exp(17.502 * temp / ( - temp + 240.97)) * 1000 # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman) + temp + 240.97)) * 1000 # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman) # Vapor pressure Pascals Pw = e_sat * relative_humidity / 100 @@ -691,7 +706,7 @@ def abs_humidity(relative_humidity, temp): return abs_h -def nrad_weight(h,theta,distances,depth,rhob=1.4, method=None, p=None, Hveg=None): +def nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None): """Function to compute distance weights corresponding to each soil sample. Args: @@ -719,48 +734,90 @@ def nrad_weight(h,theta,distances,depth,rhob=1.4, method=None, p=None, Hveg=None Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017. """ - if method=='Kohli_2015': + if method == 'Kohli_2015': # Table A1. Parameters for Fi and D86 - p10 = 8735; p11 = 17.1758; p12 = 11720; p13 = 0.00978; p14 = 7045; p15 = 0.003632; - p20 = 2.7925e-2; p21 = 5.0399; p22 = 2.8544e-2; p23 = 0.002455; p24 = 6.851e-5; p25 = 9.2926; - p30 = 247970; p31 = 17.63; p32 = 374655; p33 = 0.00191; p34 = 195725; - p40 = 5.4818e-2; p41 = 15.921; p42 = 0.6373; p43 = 5.99e-2; p44 = 5.425e-4; - p50 = 1383702; p51 = 4.156; p52 = 5325; p53 = 0.00238; p54 = 0.0156; p55 = 0.130; p56 = 1521; - p60 = 6.031e-5; p61 = 98.5; p62 = 1.0466e-3; - p70 = 11747; p71 = 41.66; p72 = 4521; p73 = 0.01998; p74 = 0.00604; p75 = 2534; p76 = 0.00475; - p80 = 1.543e-2; p81 = 10.06; p82 = 1.807e-2; p83 = 0.0011; p84 = 8.81e-5; p85 = 0.0405; p86 = 20.24; - p90 = 8.321; p91 = 0.14249; p92 = 0.96655; p93 = 26.42; p94 = 0.0567; - + p10 = 8735; + p11 = 17.1758; + p12 = 11720; + p13 = 0.00978; + p14 = 7045; + p15 = 0.003632; + p20 = 2.7925e-2; + p21 = 5.0399; + p22 = 2.8544e-2; + p23 = 0.002455; + p24 = 6.851e-5; + p25 = 9.2926; + p30 = 247970; + p31 = 17.63; + p32 = 374655; + p33 = 0.00191; + p34 = 195725; + p40 = 5.4818e-2; + p41 = 15.921; + p42 = 0.6373; + p43 = 5.99e-2; + p44 = 5.425e-4; + p50 = 1383702; + p51 = 4.156; + p52 = 5325; + p53 = 0.00238; + p54 = 0.0156; + p55 = 0.130; + p56 = 1521; + p60 = 6.031e-5; + p61 = 98.5; + p62 = 1.0466e-3; + p70 = 11747; + p71 = 41.66; + p72 = 4521; + p73 = 0.01998; + p74 = 0.00604; + p75 = 2534; + p76 = 0.00475; + p80 = 1.543e-2; + p81 = 10.06; + p82 = 1.807e-2; + p83 = 0.0011; + p84 = 8.81e-5; + p85 = 0.0405; + p86 = 20.24; + p90 = 8.321; + p91 = 0.14249; + p92 = 0.96655; + p93 = 26.42; + p94 = 0.0567; # Numerical determination of the penetration depth (86%) (Eq. 8) - D86 = 1/rhob*(p90+p91*(p92+np.exp(-1*distances/100))*(p93+theta)/(p94+theta)) + D86 = 1 / rhob * (p90 + p91 * (p92 + np.exp(-1 * distances / 100)) * (p93 + theta) / (p94 + theta)) # Depth weights (Eq. 7) - Wd = np.exp(-2*depth/D86) + Wd = np.exp(-2 * depth / D86) if h == 0: - W = 1 # skip distance weighting + W = 1 # skip distance weighting - elif (h >= 0.1) and (h<= 50): + elif (h >= 0.1) and (h <= 50): # Functions for Fi (Appendix A in Köhli et al., 2015) - F1 = p10*(1+p13*h)*np.exp(-p11*theta)+p12*(1+p15*h)-p14*theta - F2 = ((-p20+p24*h)*np.exp(-p21*theta/(1+p25*theta))+p22)*(1+h*p23) - F3 = (p30*(1+p33*h)*np.exp(-p31*theta)+p32-p34*theta) - F4 = p40*np.exp(-p41*theta)+p42-p43*theta+p44*h - F5 = p50*(0.02-1/p55/(h-p55+p56*theta))*(p54-theta)*np.exp(-p51*(theta-p54))+p52*(0.7-h*theta*p53) - F6 = p60*(h+p61)+p62*theta - F7 = (p70*(1-p76*h)*np.exp(-p71*theta*(1-h*p74))+p72-p75*theta)*(2+h*p73) - F8 = ((-p80+p84*h)*np.exp(-p81*theta/(1+p85*h+p86*theta))+p82)*(2+h*p83) + F1 = p10 * (1 + p13 * h) * np.exp(-p11 * theta) + p12 * (1 + p15 * h) - p14 * theta + F2 = ((-p20 + p24 * h) * np.exp(-p21 * theta / (1 + p25 * theta)) + p22) * (1 + h * p23) + F3 = (p30 * (1 + p33 * h) * np.exp(-p31 * theta) + p32 - p34 * theta) + F4 = p40 * np.exp(-p41 * theta) + p42 - p43 * theta + p44 * h + F5 = p50 * (0.02 - 1 / p55 / (h - p55 + p56 * theta)) * (p54 - theta) * np.exp( + -p51 * (theta - p54)) + p52 * (0.7 - h * theta * p53) + F6 = p60 * (h + p61) + p62 * theta + F7 = (p70 * (1 - p76 * h) * np.exp(-p71 * theta * (1 - h * p74)) + p72 - p75 * theta) * (2 + h * p73) + F8 = ((-p80 + p84 * h) * np.exp(-p81 * theta / (1 + p85 * h + p86 * theta)) + p82) * (2 + h * p83) # Distance weights (Eq. 3) - W = np.ones_like(distances)*np.nan + W = np.ones_like(distances) * np.nan for i in range(len(distances)): - if (distances[i]<=50) and (distances[i]>0.5): - W[i]=F1[i]*(np.exp(-F2[i]*distances[i]))+F3[i]*np.exp(-F4[i]*distances[i]) + if (distances[i] <= 50) and (distances[i] > 0.5): + W[i] = F1[i] * (np.exp(-F2[i] * distances[i])) + F3[i] * np.exp(-F4[i] * distances[i]) - elif (distances[i]>50) and (distances[i]<600): - W[i]=F5[i]*(np.exp(-F6[i]*distances[i]))+F7[i]*np.exp(-F8[i]*distances[i]) + elif (distances[i] > 50) and (distances[i] < 600): + W[i] = F5[i] * (np.exp(-F6[i] * distances[i])) + F7[i] * np.exp(-F8[i] * distances[i]) else: raise ValueError('Input distances are not valid.') @@ -768,19 +825,36 @@ def nrad_weight(h,theta,distances,depth,rhob=1.4, method=None, p=None, Hveg=None else: raise ValueError('Air humidity values are out of range.') - # Combined and normalized weights - weights = Wd*W/np.nansum(Wd*W) + weights = Wd * W / np.nansum(Wd * W) return weights - elif method=='Schron_2017': + elif method == 'Schron_2017': # Horizontal distance weights According to Eq. 6 and Table A1 in Schrön et al. (2017) # Method for calculating the horizontal distance weights from 0 to 1m def WrX(r, x, y): x00 = 3.7 - a00 = 8735; a01 = 22.689; a02 = 11720; a03 = 0.00978; a04 = 9306; a05 = 0.003632 - a10 = 2.7925e-2; a11 = 6.6577; a12 = 0.028544; a13 = 0.002455; a14 = 6.851e-5; a15 = 12.2755 - a20 = 247970; a21 = 23.289; a22 = 374655; a23 = 0.00191; a24 = 258552 - a30 = 5.4818e-2; a31 = 21.032; a32 = 0.6373; a33 = 0.0791; a34 = 5.425e-4 + a00 = 8735; + a01 = 22.689; + a02 = 11720; + a03 = 0.00978; + a04 = 9306; + a05 = 0.003632 + a10 = 2.7925e-2; + a11 = 6.6577; + a12 = 0.028544; + a13 = 0.002455; + a14 = 6.851e-5; + a15 = 12.2755 + a20 = 247970; + a21 = 23.289; + a22 = 374655; + a23 = 0.00191; + a24 = 258552 + a30 = 5.4818e-2; + a31 = 21.032; + a32 = 0.6373; + a33 = 0.0791; + a34 = 5.425e-4 x0 = x00 A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y) @@ -792,10 +866,28 @@ def WrX(r, x, y): # Method for calculating the horizontal distance weights from 1 to 50m def WrA(r, x, y): - a00 = 8735; a01 = 22.689; a02 = 11720; a03 = 0.00978; a04 = 9306; a05 = 0.003632 - a10 = 2.7925e-2; a11 = 6.6577; a12 = 0.028544; a13 = 0.002455; a14 = 6.851e-5; a15 = 12.2755 - a20 = 247970; a21 = 23.289; a22 = 374655; a23 = 0.00191; a24 = 258552 - a30 = 5.4818e-2; a31 = 21.032; a32 = 0.6373; a33 = 0.0791; a34 = 5.425e-4 + a00 = 8735; + a01 = 22.689; + a02 = 11720; + a03 = 0.00978; + a04 = 9306; + a05 = 0.003632 + a10 = 2.7925e-2; + a11 = 6.6577; + a12 = 0.028544; + a13 = 0.002455; + a14 = 6.851e-5; + a15 = 12.2755 + a20 = 247970; + a21 = 23.289; + a22 = 374655; + a23 = 0.00191; + a24 = 258552 + a30 = 5.4818e-2; + a31 = 21.032; + a32 = 0.6373; + a33 = 0.0791; + a34 = 5.425e-4 A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y) A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13) @@ -806,10 +898,30 @@ def WrA(r, x, y): # Method for calculating the horizontal distance weights from 50 to 600m def WrB(r, x, y): - b00 = 39006; b01 = 15002337; b02 = 2009.24; b03 = 0.01181; b04 = 3.146; b05 = 16.7417; b06 = 3727 - b10 = 6.031e-5; b11 = 98.5; b12 = 0.0013826 - b20 = 11747; b21 = 55.033; b22 = 4521; b23 = 0.01998; b24 = 0.00604; b25 = 3347.4; b26 = 0.00475 - b30 = 1.543e-2; b31 = 13.29; b32 = 1.807e-2; b33 = 0.0011; b34 = 8.81e-5; b35 = 0.0405; b36 = 26.74 + b00 = 39006; + b01 = 15002337; + b02 = 2009.24; + b03 = 0.01181; + b04 = 3.146; + b05 = 16.7417; + b06 = 3727 + b10 = 6.031e-5; + b11 = 98.5; + b12 = 0.0013826 + b20 = 11747; + b21 = 55.033; + b22 = 4521; + b23 = 0.01998; + b24 = 0.00604; + b25 = 3347.4; + b26 = 0.00475 + b30 = 1.543e-2; + b31 = 13.29; + b32 = 1.807e-2; + b33 = 0.0011; + b34 = 8.81e-5; + b35 = 0.0405; + b36 = 26.74 B0 = (b00 - b01 / (b02 * y + x - 0.13)) * (b03 - y) * np.exp(-b04 * y) - b05 * x * y + b06 B1 = b10 * (x + b11) + b12 * y @@ -859,7 +971,7 @@ def Wd(d, r, bd, y): return weights -def exp_filter(sm,T=1): +def exp_filter(sm, T=1): """Exponential filter to estimate soil moisture in the rootzone from surface observtions. Args: @@ -881,7 +993,6 @@ def exp_filter(sm,T=1): Soil Science Society of America Journal. """ - # Parameters t_delta = 1 sm_min = np.min(sm) @@ -889,18 +1000,18 @@ def exp_filter(sm,T=1): ms = (sm - sm_min) / (sm_max - sm_min) # Pre-allocate soil water index array and recursive constant K - SWI = np.ones_like(ms)*np.nan - K = np.ones_like(ms)*np.nan + SWI = np.ones_like(ms) * np.nan + K = np.ones_like(ms) * np.nan # Initial conditions SWI[0] = ms[0] K[0] = 1 # Values from 2 to N - for n in range(1,len(SWI)): - if ~np.isnan(ms[n]) & ~np.isnan(ms[n-1]): - K[n] = K[n-1] / (K[n-1] + np.exp(-t_delta/T)) - SWI[n] = SWI[n-1] + K[n]*(ms[n] - SWI[n-1]) + for n in range(1, len(SWI)): + if ~np.isnan(ms[n]) & ~np.isnan(ms[n - 1]): + K[n] = K[n - 1] / (K[n - 1] + np.exp(-t_delta / T)) + SWI[n] = SWI[n - 1] + K[n] * (ms[n] - SWI[n - 1]) else: continue @@ -910,7 +1021,7 @@ def exp_filter(sm,T=1): return sm_subsurface -def cutoff_rigidity(lat,lon): +def cutoff_rigidity(lat, lon): """Function to estimate the approximate cutoff rigidity for any point on Earth according to the tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest. @@ -945,16 +1056,16 @@ def cutoff_rigidity(lat,lon): yq = lat if xq < 0: - xq = xq*-1 + 180 + xq = xq * -1 + 180 Z = np.array(data.cutoff_rigidity) x = np.linspace(0, 360, Z.shape[1]) y = np.linspace(90, -90, Z.shape[0]) X, Y = np.meshgrid(x, y) - points = np.array( (X.flatten(), Y.flatten()) ).T + points = np.array((X.flatten(), Y.flatten())).T values = Z.flatten() - zq = griddata(points, values, (xq,yq)) + zq = griddata(points, values, (xq, yq)) - return np.round(zq,2) + return np.round(zq, 2) def atmospheric_depth(elevation, latitude): @@ -984,7 +1095,7 @@ def atmospheric_depth(elevation, latitude): # Gravity at sea-level calculation gravity_sea_level = 9.780327 * ( - 1 + 0.0053024 * np.sin(np.radians(latitude)) ** 2 - 0.0000058 * np.sin(2 * np.radians(latitude)) ** 2) + 1 + 0.0053024 * np.sin(np.radians(latitude)) ** 2 - 0.0000058 * np.sin(2 * np.radians(latitude)) ** 2) # Free air correction free_air = -3.086 * 10 ** -6 * elevation # Bouguer correction @@ -993,14 +1104,15 @@ def atmospheric_depth(elevation, latitude): gravity = gravity_sea_level + free_air + bouguer_corr # Air pressure calculation - reference_air_pressure = air_pressure_sea_level * (1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / (universal_gas_constant * temperature_lapse_rate)) + reference_air_pressure = air_pressure_sea_level * ( + 1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / ( + universal_gas_constant * temperature_lapse_rate)) # Atmospheric depth calculation atmospheric_depth = (10 * reference_air_pressure) / gravity return atmospheric_depth - def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc): """ Function to estimate the location factor between two sites according to McJannet and Desilets, 2023. @@ -1031,14 +1143,17 @@ def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth # Translated formula with renamed variables from McJannet and Desilets, 2023 tau_new = epsilon * (c0 * reference_atmospheric_depth + c1) * ( - 1 - np.exp(-(c2 * reference_atmospheric_depth + c3) * reference_Rc ** (c4 * reference_atmospheric_depth + c5))) + 1 - np.exp( + -(c2 * reference_atmospheric_depth + c3) * reference_Rc ** (c4 * reference_atmospheric_depth + c5))) - norm_factor = 1/tau_new + norm_factor = 1 / tau_new # Calculate the result using the provided parameters - tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * (1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc**(c4 * site_atmospheric_depth + c5))) + tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * ( + 1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5))) return tau + def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): """Search for potential reference neutron monitoring stations based on cutoff rigidity. @@ -1076,7 +1191,7 @@ def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): """ # Load file with list of neutron monitoring stations - stations = pd.DataFrame(data.neutron_detectors, columns=["STID","NAME","R","Altitude_m"]) + stations = pd.DataFrame(data.neutron_detectors, columns=["STID", "NAME", "R", "Altitude_m"]) # Sort stations by closest cutoff rigidity idx_R = (stations['R'] - Rc).abs().argsort() @@ -1087,9 +1202,10 @@ def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): station = stations.iloc[idx_R[i]]["STID"] try: if get_incoming_neutron_flux(start_date, end_date, station, verbose=verbose) is not None: - stations.iloc[idx_R[i],-1] = True + stations.iloc[idx_R[i], -1] = True except: pass + if sum(stations["Period available"] == True) == 0: print("No stations available for the selected period!") else: @@ -1101,7 +1217,8 @@ def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): # Print results print('') - print("""Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations""") + print( + """Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations""") print('') print(f"Your cutoff rigidity is {Rc} GV") print(result) @@ -1120,7 +1237,7 @@ def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps): (pd.Series): Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps """ incoming_flux = np.array([]) - for k,timestamp in enumerate(crnp_timestamps): + for k, timestamp in enumerate(crnp_timestamps): if timestamp in nmdb_timestamps.values: idx = timestamp == nmdb_timestamps incoming_flux = np.append(incoming_flux, nmdb_counts.loc[idx]) @@ -1189,6 +1306,7 @@ def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None): return easting, northing, zone_number, zone_letter + def euclidean_distance(px, py, x, y): """Function that computes the Euclidean distance between one point in space and one or more points. @@ -1243,7 +1361,6 @@ def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=Fa distances = euclidean_distance(px, py, x, y) idx_within_buffer = distances <= buffer - if np.isnan(z[k]): z_new_val = np.nan elif len(distances[idx_within_buffer]) > min_neighbours: @@ -1254,7 +1371,7 @@ def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=Fa else: raise f"Method {method} does not exist. Provide either 'mean' or 'median'." else: - z_new_val = z[k] # If there are not enough neighbours, keep the original value + z_new_val = z[k] # If there are not enough neighbours, keep the original value # Append smoothed value to array z_smooth = np.append(z_smooth, z_new_val) @@ -1335,7 +1452,8 @@ def interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000): z = z[~idx_nan] if idx_nan.any(): - print(f"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.") + print( + f"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.") # Create 2D grid for interpolation Nx = round((np.max(x) - np.min(x)) / dx) + 1 @@ -1370,9 +1488,9 @@ def rover_centered_coordinates(x, y): """ # Make it datatype agnostic - if(isinstance(x, pd.Series)): + if (isinstance(x, pd.Series)): x = x.values - if(isinstance(y, pd.Series)): + if (isinstance(y, pd.Series)): y = y.values # Do the average of the two points @@ -1383,7 +1501,6 @@ def rover_centered_coordinates(x, y): x_est = np.insert(x_est, 0, x[0]) y_est = np.insert(y_est, 0, y[0]) - return x_est, y_est @@ -1417,13 +1534,13 @@ def uncertainty_counts(raw_counts, metric="std", fp=1, fw=1, fi=1): if metric == "std": uncertainty = np.sqrt(raw_counts) * s elif metric == "cv": - uncertainty = 1 / np.sqrt(raw_counts) * s + uncertainty = 1 / np.sqrt(raw_counts) * s else: raise f"Metric {metric} does not exist. Provide either 'std' or 'cv' for standard deviation or coefficient of variation." return uncertainty -def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808,a1=0.372,a2=0.115): +def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115): r"""Function to estimate the uncertainty propagated to volumetric water content. The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts. @@ -1450,17 +1567,8 @@ def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808,a1 Ncorr = raw_counts * fw / (fp * fi) sigma_N = uncertainty_counts(raw_counts, metric="std", fp=fp, fw=fw, fi=fi) - sigma_GWC = sigma_N * ((a0*N0) / ((Ncorr - a1*N0)**4)) * np.sqrt((Ncorr - a1 * N0)**4 + 8 * sigma_N**2 * (Ncorr - a1 * N0)**2 + 15 * sigma_N**4) + sigma_GWC = sigma_N * ((a0 * N0) / ((Ncorr - a1 * N0) ** 4)) * np.sqrt( + (Ncorr - a1 * N0) ** 4 + 8 * sigma_N ** 2 * (Ncorr - a1 * N0) ** 2 + 15 * sigma_N ** 4) sigma_VWC = sigma_GWC * bulk_density return sigma_VWC - - - - - - - - - - From b8e984dfc6e2cef9b2ed2cb4948cbaf3074e0e62 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Tue, 9 Jan 2024 01:17:58 -0300 Subject: [PATCH 11/24] fixed examples + expanded tests #11 --- build/lib/crnpy/crnpy.py | 21 +++++++++++++++++++-- setup.py | 3 ++- src/crnpy.egg-info/PKG-INFO | 1 + src/crnpy.egg-info/requires.txt | 1 + src/crnpy/crnpy.py | 9 +++++++-- src/tests/test_calibration_rdt.py | 3 +-- src/tests/test_functions.py | 17 +++++++++++++++++ src/tests/test_hydroinnova.py | 2 +- 8 files changed, 49 insertions(+), 8 deletions(-) create mode 100644 src/tests/test_functions.py diff --git a/build/lib/crnpy/crnpy.py b/build/lib/crnpy/crnpy.py index bc923a1..507f688 100644 --- a/build/lib/crnpy/crnpy.py +++ b/build/lib/crnpy/crnpy.py @@ -317,13 +317,25 @@ def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Args: incoming_neutrons (list or array): Incoming neutron flux readings. incoming_Ref (float): Reference incoming neutron flux. Baseline incoming neutron flux. + fill_na (float): Value to fill missing data. If None, missing data remains as NaN. + Rc_method (str): Optional to correct for differences in cutoff rigidity between the site and the reference station. Possible values are 'McJannetandDesilets2023' or 'Hawdonetal2014'. If None, no correction is performed. + Rc_site (float): Cutoff rigidity at the monitoring site. + site_atmdepth (float): Atmospheric depth at the monitoring site. + Rc_ref (float): Cutoff rigidity at the reference station. + ref_atmdepth (float): Atmospheric depth at the reference station. Returns: (list): fi correction factor. References: + Hawdon, A., D. McJannet, and J. Wallace (2014), Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia, Water Resour. Res., 50, 5029–5043, doi:10.1002/2013WR015138. + M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 + McJannet, D. L., & Desilets, D. (2023). Incoming neutron flux corrections for cosmic-ray soil and snow sensors using the global neutron monitor network. Water Resources Research, 59, e2022WR033889. https://doi.org/10.1029/2022WR033889 + + + """ if incoming_Ref is None and not isinstance(incoming_neutrons, type(None)): @@ -694,7 +706,7 @@ def abs_humidity(relative_humidity, temp): return abs_h -def nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None): +def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=None, Hveg=None): """Function to compute distance weights corresponding to each soil sample. Args: @@ -723,7 +735,6 @@ def nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg= """ if method == 'Kohli_2015': - # Table A1. Parameters for Fi and D86 p10 = 8735; p11 = 17.1758; @@ -1287,6 +1298,12 @@ def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None): [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#) """ + # utm module requires numpy arrays + if not isinstance(lat, np.ndarray): + lat = np.array(lat) + if not isinstance(lon, np.ndarray): + lon = np.array(lon) + if utm_zone_number is None or utm_zone_letter is None: easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon) else: diff --git a/setup.py b/setup.py index 5f2cc7d..f646fcf 100644 --- a/setup.py +++ b/setup.py @@ -19,6 +19,7 @@ "numpy", "pandas", "scipy", - "requests" + "requests", + "utm" ], ) \ No newline at end of file diff --git a/src/crnpy.egg-info/PKG-INFO b/src/crnpy.egg-info/PKG-INFO index dde5303..a12720e 100644 --- a/src/crnpy.egg-info/PKG-INFO +++ b/src/crnpy.egg-info/PKG-INFO @@ -12,6 +12,7 @@ Requires-Dist: numpy Requires-Dist: pandas Requires-Dist: scipy Requires-Dist: requests +Requires-Dist: utm [![GitHub Workflow Status (building)](https://img.shields.io/github/actions/workflow/status/soilwater/crnpy/python-package.yml)](https://github.com/soilwater/crnpy/actions/workflows/python-package.yml) [![GitHub Workflow Status (publish)](https://img.shields.io/github/actions/workflow/status/soilwater/crnpy/python-publish.yml?label=publish)](https://github.com/soilwater/crnpy/actions/workflows/python-publish.yml) diff --git a/src/crnpy.egg-info/requires.txt b/src/crnpy.egg-info/requires.txt index 4ecb749..07118c5 100644 --- a/src/crnpy.egg-info/requires.txt +++ b/src/crnpy.egg-info/requires.txt @@ -2,3 +2,4 @@ numpy pandas scipy requests +utm diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 8536df7..507f688 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -706,7 +706,7 @@ def abs_humidity(relative_humidity, temp): return abs_h -def nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg=None): +def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=None, Hveg=None): """Function to compute distance weights corresponding to each soil sample. Args: @@ -735,7 +735,6 @@ def nrad_weight(h, theta, distances, depth, rhob=1.4, method=None, p=None, Hveg= """ if method == 'Kohli_2015': - # Table A1. Parameters for Fi and D86 p10 = 8735; p11 = 17.1758; @@ -1299,6 +1298,12 @@ def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None): [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#) """ + # utm module requires numpy arrays + if not isinstance(lat, np.ndarray): + lat = np.array(lat) + if not isinstance(lon, np.ndarray): + lon = np.array(lon) + if utm_zone_number is None or utm_zone_letter is None: easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon) else: diff --git a/src/tests/test_calibration_rdt.py b/src/tests/test_calibration_rdt.py index fa04d59..b951b11 100644 --- a/src/tests/test_calibration_rdt.py +++ b/src/tests/test_calibration_rdt.py @@ -31,8 +31,7 @@ def calibration_example(): df_station = df_station[idx_period] # Compute total neutron counts by adding the counts from both probe detectors - df_station['total_raw_counts'] = crnpy.total_raw_counts(df_station[['counts_1_Tot', 'counts_2_Tot']], - nan_strategy='average') + df_station['total_raw_counts'] = crnpy.total_raw_counts(df_station[['counts_1_Tot', 'counts_2_Tot']]) # Atmospheric corrections diff --git a/src/tests/test_functions.py b/src/tests/test_functions.py new file mode 100644 index 0000000..39054c6 --- /dev/null +++ b/src/tests/test_functions.py @@ -0,0 +1,17 @@ +import crnpy + + +def test_correction_bwe(): + r2_N0 = 6.4/1210 + N = 420 + Nv = 574 # Eg. 1 from Table 3. in Baatz et al. 2015 + BWE = 51.5 + Nv_ = crnpy.correction_bwe(N, BWE, r2_N0) + assert abs(Nv - Nv_) < 5 # 5 counts of difference is acceptable + +def test_correction_humidity(): + # From Rosolem et al. 2013 Fig 2. + fp = crnpy.correction_humidity(20, 0) + assert round(fp,1) == 1.1 + +def test_correction_pressure(): \ No newline at end of file diff --git a/src/tests/test_hydroinnova.py b/src/tests/test_hydroinnova.py index 56ce68c..f25a101 100644 --- a/src/tests/test_hydroinnova.py +++ b/src/tests/test_hydroinnova.py @@ -22,7 +22,7 @@ def hydroinnova_example_mean_value(): df.reset_index(drop=True, inplace=True) # Convert Lat and Lon to X and Y - df['x'], df['y'] = crnpy.latlon_to_utm(df['LatDec'], df['LongDec'], 14, missing_values=0.0) + df['x'], df['y'], zone_letter, zone_number = crnpy.latlon_to_utm(df['LatDec'], df['LongDec']) df['x'], df['y'] = crnpy.rover_centered_coordinates(df['x'], df['y']) # Estimate the center of the observation # Define columns names From dc24a229844f5869303b896a2c36a4593acf1207 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sat, 20 Jan 2024 16:30:41 -0600 Subject: [PATCH 12/24] Test functions #11 #9 #7 --- build/lib/crnpy/crnpy.py | 6 +-- src/tests/test_functions.py | 98 +++++++++++++++++++++++++++++++++++-- 2 files changed, 97 insertions(+), 7 deletions(-) diff --git a/build/lib/crnpy/crnpy.py b/build/lib/crnpy/crnpy.py index 507f688..e44618b 100644 --- a/build/lib/crnpy/crnpy.py +++ b/build/lib/crnpy/crnpy.py @@ -306,7 +306,7 @@ def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, - fi: incoming neutron flux correction factor $$ - f_i = \frac{I_{ref}}{I} + f_i = \frac{I}{I_{ref}} $$ where: @@ -961,7 +961,7 @@ def Wd(d, r, bd, y): return np.exp(-2 * d / D86(r, bd, y)) # Calculate the vertical distance weights - Wd = Wd(d, r, bd, y) + Wd = Wd(depth, r, bd, y) # Combined and normalized weights # Combined and normalized weights @@ -1088,7 +1088,7 @@ def atmospheric_depth(elevation, latitude): density_of_rock = 2670 # Density of rock in kg/m3 air_pressure_sea_level = 1013.25 # Air pressure at sea level in hPa air_molar_mass = 0.0289644 # Air molar mass in kg/mol - universal_gas_constant = 8.3144598 # Universal gas constant in J/(mol*K) + universal_gas_constant = 8.31432 # Universal gas constant in J/(mol*K) reference_temperature = 288.15 # Reference temperature Kelvin temperature_lapse_rate = -0.0065 # Temperature lapse rate in K/m diff --git a/src/tests/test_functions.py b/src/tests/test_functions.py index 39054c6..7952002 100644 --- a/src/tests/test_functions.py +++ b/src/tests/test_functions.py @@ -1,5 +1,6 @@ import crnpy - +import numpy as np +import pandas as pd def test_correction_bwe(): r2_N0 = 6.4/1210 @@ -11,7 +12,96 @@ def test_correction_bwe(): def test_correction_humidity(): # From Rosolem et al. 2013 Fig 2. - fp = crnpy.correction_humidity(20, 0) - assert round(fp,1) == 1.1 + fw = crnpy.correction_humidity(20, 0) + assert round(fw,1) == 1.1 + +def test_correction_inncoming_neutrons(): + incomming_neutrons = crnpy.get_incoming_neutron_flux(pd.to_datetime('2013-01-01 12:00:00'), pd.to_datetime('2013-01-05 12:00:00'), station='IRKT') + fi = crnpy.correction_incoming_flux(incomming_neutrons['counts'], 210) + print(incomming_neutrons['counts']) + # check that fi is between 0.9 and 1.1 + assert (fi > 0.9).all() and (fi < 1.1).all() + #check that highest count has the highest correction factor + min = np.argmin(incomming_neutrons['counts']) + assert fi[min] == np.min(fi) + #check that lowest count has the lowest correction factor + max = np.argmax(incomming_neutrons['counts']) + assert fi[max] == np.max(fi) + +def test_correction_pressure(): + fp = crnpy.correction_pressure(1013, 1013, 130) + assert round(fp,1) == 1.0 + +def test_count_to_vwc(): + # From Patrigani et al. 2021 + N0 = 3767 + N = 2580 + vwc = crnpy.counts_to_vwc(N, N0, 0.033, 0, 1.33) + assert round(vwc,2) == 0.15 + +def test_weighting(): + # create vector from 0 to 350 m with .1 spacing + x = np.arange(0, 350, 0.1) + y = np.repeat(0, len(x)) + h = np.repeat(10, len(x)) + + + p = np.repeat(1013.25, len(x)) + Hveg = np.repeat(0, len(x)) + bd = 1.1 + SM = 0.02 + sm = np.repeat(SM, len(x)) + + # calculate weighting function using Schrön et al. 2017 method + weights = crnpy.nrad_weight(h, sm, x, y, bd, method="Schron_2017", p=p, Hveg=Hveg) + # check that the sum of the weights is 1 + Max = 0.01147 + Avg = 0.00029 + Min = 0.00000 + assert round(np.sum(weights),5) == 1 + # Compare to the values in supplementary material of Schrön et al. 2017 + # check that the max weight is 0.01 + assert round(np.max(weights),3) == round(Max,3) + # check that the avg weight is 0.00029 + assert round(np.mean(weights),5) == round(Avg,5) + # check that the min weight is 0.00000 + assert round(np.min(weights),5) == round(Min,5) + +def test_correction_inncoming_neutrons_RcMethods(): + # Test Hawdon 2014 Method using Baldry location from the original paper + RcJUNG = 4.50 #4.49 + Rc_local = crnpy.cutoff_rigidity(-32.87, 148.54) + reference_counts = 159 + # GEt JUNG for entire 2012 + reference_data = crnpy.get_incoming_neutron_flux(pd.to_datetime('2012-01-01 12:00:00'), pd.to_datetime('2013-01-01 12:00:00'), station='JUNG') + reference_neutron_flux = reference_data['counts'] + assert np.abs(Rc_local - 4.7) < 0.5 # check that the calculated local cutoff rigidity is close to the measured value reported in the paper + fi = crnpy.correction_incoming_flux(reference_neutron_flux, reference_counts, Rc_method='Hawdonetal2014', Rc_site=Rc_local, Rc_ref=RcJUNG) + paper_fi_range = [0.87, 1.04] + assert round(np.min(fi),2) == round(paper_fi_range[0],2) + assert round(np.max(fi),2) == round(paper_fi_range[1],2) + + # Test McJannet and Desilets 2023 Method using data from the supplementary material + CRNSelevation = 604 #m + CRNSlatitude = -22.282 #deg + CRNSlongitude = 133.251 #deg + CutoffRigidity = 10.08 #GV + # Simulate a 1:1 relationship between incoming neutron flux and counts to get Tau + # This is not a realistic scenario but it is useful for testing + reference_counts = np.array([2400]) + reference_neutron_flux = np.array([1200]) + site_atmdepth = crnpy.atmospheric_depth(CRNSelevation, CRNSlatitude) + assert round(site_atmdepth,2) == 963.47 + JUNG_atmdepth = 665.18 # From supplementary material of McJannet and Desilets 2023 + fi = crnpy.correction_incoming_flux(reference_neutron_flux, reference_counts, Rc_method='McJannetandDesilets2023', Rc_site=CutoffRigidity, Rc_ref=RcJUNG, site_atmdepth=site_atmdepth, ref_atmdepth=JUNG_atmdepth) + f0 = 0.5 + #if the formula for fi is fi = 1 / (tau * f0 + 1 - tau) get tau + tau = (1/fi[0] - 1) / (f0 - 1) + Tau_paper = 0.4753 # From supplementary material of McJannet and Desilets 2023 + assert round(tau,2) == round(Tau_paper,2) + + + + + -def test_correction_pressure(): \ No newline at end of file From d1a2ff4cee2a8dfddf23b9a332c0cffb4e458409 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sat, 20 Jan 2024 16:30:48 -0600 Subject: [PATCH 13/24] Update crnpy.py #8 --- src/crnpy/crnpy.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 507f688..6c6b9b9 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -241,6 +241,8 @@ def correction_pressure(pressure, Pref, L): (list): fp pressure correction factor. References: + Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012. + M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 """ @@ -282,6 +284,8 @@ def correction_humidity(abs_humidity, Aref): (list): fw correction factor. References: + Rosolem, R., W. J. Shuttleworth, M. Zreda, T. E. Franz, X. Zeng, and S. A. Kurc, 2013: The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System. J. Hydrometeor., 14, 1659–1671, https://doi.org/10.1175/JHM-D-12-0120.1. + M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 """ A = abs_humidity @@ -306,7 +310,7 @@ def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, - fi: incoming neutron flux correction factor $$ - f_i = \frac{I_{ref}}{I} + f_i = \frac{I}{I_{ref}} $$ where: @@ -333,10 +337,6 @@ def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 McJannet, D. L., & Desilets, D. (2023). Incoming neutron flux corrections for cosmic-ray soil and snow sensors using the global neutron monitor network. Water Resources Research, 59, e2022WR033889. https://doi.org/10.1029/2022WR033889 - - - - """ if incoming_Ref is None and not isinstance(incoming_neutrons, type(None)): incoming_Ref = incoming_neutrons[0] @@ -961,7 +961,7 @@ def Wd(d, r, bd, y): return np.exp(-2 * d / D86(r, bd, y)) # Calculate the vertical distance weights - Wd = Wd(d, r, bd, y) + Wd = Wd(depth, r, bd, y) # Combined and normalized weights # Combined and normalized weights @@ -1088,7 +1088,7 @@ def atmospheric_depth(elevation, latitude): density_of_rock = 2670 # Density of rock in kg/m3 air_pressure_sea_level = 1013.25 # Air pressure at sea level in hPa air_molar_mass = 0.0289644 # Air molar mass in kg/mol - universal_gas_constant = 8.3144598 # Universal gas constant in J/(mol*K) + universal_gas_constant = 8.31432 # Universal gas constant in J/(mol*K) reference_temperature = 288.15 # Reference temperature Kelvin temperature_lapse_rate = -0.0065 # Temperature lapse rate in K/m @@ -1098,7 +1098,7 @@ def atmospheric_depth(elevation, latitude): # Free air correction free_air = -3.086 * 10 ** -6 * elevation # Bouguer correction - bouguer_corr = 4.194 * 10 ** -10 * density_of_rock * elevation + bouguer_corr = 4.193 * 10 ** -10 * density_of_rock * elevation # Total gravity gravity = gravity_sea_level + free_air + bouguer_corr From a70f0cfe031aa15afe01a7bb4691c9be01aa5ba5 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sun, 21 Jan 2024 20:45:14 -0600 Subject: [PATCH 14/24] Examples upgraded to new 0.6.0 version --- build/lib/crnpy/crnpy.py | 47 ++-- docs/examples/calibration/calibration.ipynb | 63 +++-- .../rover/Hydroinnova_rover_example.ipynb | 254 ++++++++++++++++-- .../stationary/example_RDT_station.ipynb | 26 +- src/crnpy/crnpy.py | 37 +-- 5 files changed, 328 insertions(+), 99 deletions(-) diff --git a/build/lib/crnpy/crnpy.py b/build/lib/crnpy/crnpy.py index e44618b..0b974c2 100644 --- a/build/lib/crnpy/crnpy.py +++ b/build/lib/crnpy/crnpy.py @@ -241,6 +241,8 @@ def correction_pressure(pressure, Pref, L): (list): fp pressure correction factor. References: + Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012. + M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 """ @@ -282,6 +284,8 @@ def correction_humidity(abs_humidity, Aref): (list): fw correction factor. References: + Rosolem, R., W. J. Shuttleworth, M. Zreda, T. E. Franz, X. Zeng, and S. A. Kurc, 2013: The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System. J. Hydrometeor., 14, 1659–1671, https://doi.org/10.1175/JHM-D-12-0120.1. + M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 """ A = abs_humidity @@ -333,10 +337,6 @@ def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 McJannet, D. L., & Desilets, D. (2023). Incoming neutron flux corrections for cosmic-ray soil and snow sensors using the global neutron monitor network. Water Resources Research, 59, e2022WR033889. https://doi.org/10.1029/2022WR033889 - - - - """ if incoming_Ref is None and not isinstance(incoming_neutrons, type(None)): incoming_Ref = incoming_neutrons[0] @@ -473,7 +473,7 @@ def get_reference_neutron_flux(station, date=pd.to_datetime("2011-05-01")): """ # Get flux for 2011-05-01 - df_flux = get_incoming_neutron_flux(station, date, date + pd.Timedelta(hours=24)) + df_flux = get_incoming_neutron_flux(date, date + pd.Timedelta(hours=24), station=station) if df_flux is None: warnings.warn(f"Reference neutron flux for {station} not available. Returning NaN.") else: @@ -502,7 +502,7 @@ def smooth_1d(values, window=5, order=3, method='moving_median'): Analytical chemistry, 36(8), 1627-1639. """ - if not isinstance(x, pd.Series) and not isinstance(x, pd.DataFrame): + if not isinstance(values, pd.Series) and not isinstance(x, pd.DataFrame): raise ValueError('Input must be a pandas Series or DataFrame') if method == 'moving_average': @@ -1098,7 +1098,7 @@ def atmospheric_depth(elevation, latitude): # Free air correction free_air = -3.086 * 10 ** -6 * elevation # Bouguer correction - bouguer_corr = 4.194 * 10 ** -10 * density_of_rock * elevation + bouguer_corr = 4.193 * 10 ** -10 * density_of_rock * elevation # Total gravity gravity = gravity_sea_level + free_air + bouguer_corr @@ -1228,26 +1228,29 @@ def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps): """Function to interpolate incoming neutron flux to match the timestamps of the observations. Args: - nmdb_timestamps (pd.Series): Series of timestamps in datetime format from the NMDB. - nmdb_counts (pd.Series): Series of neutron counts from the NMDB - crnp_timestamps (pd.Series): Series of timestamps in datetime format from the station or device. + nmdb_timestamps (pd.Series or np.array): Series or array of timestamps in datetime format from the NMDB + nmdb_counts (pd.Series or np.array): Series or array of incoming neutron flux counts from the NMDB + crnp_timestamps (pd.Series or np.array): Series or array of timestamps in datetime format from the CRNP device Returns: (pd.Series): Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps """ - incoming_flux = np.array([]) - for k, timestamp in enumerate(crnp_timestamps): - if timestamp in nmdb_timestamps.values: - idx = timestamp == nmdb_timestamps - incoming_flux = np.append(incoming_flux, nmdb_counts.loc[idx]) - else: - incoming_flux = np.append(incoming_flux, np.nan) + # Create a DataFrame from nmdb timestamps and counts + df_nmdb = pd.DataFrame({'timestamp': nmdb_timestamps, 'counts': nmdb_counts}) + + # Set the Timestamp column as the index + df_nmdb.set_index('timestamp', inplace=True) + + # Reindex the DataFrame to the timestamps from the CRNP device using the nearest method + # This will match each CRNP timestamp with the nearest NMDB timestamp + interpolated_flux = df_nmdb.reindex(crnp_timestamps, method='nearest')['counts'].values + + #drop NaN values + interpolated_flux = interpolated_flux[~np.isnan(interpolated_flux)] - # Interpolate nan values - incoming_flux = pd.Series(incoming_flux).interpolate(method='nearest', limit_direction='both') + assert len(interpolated_flux) == len(crnp_timestamps), "Length of interpolated flux does not match length of CRNP timestamps" - # Return only the values for the selected timestamps - return incoming_flux + return interpolated_flux def lattice_water(clay_content, total_carbon=None): @@ -1290,7 +1293,7 @@ def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None): utm_zone_letter (str): UTM zone letter. If None, the zone letter is automatically calculated. Returns: - (float, float): Tuple of easting and northing coordinates in meters. First element is easting, second is northing. + (float, float, int, str): Tuple of easting, northing, zone number and zone letter. First element is easting, second is northing, third is zone number and fourth is zone letter. References: Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87) diff --git a/docs/examples/calibration/calibration.ipynb b/docs/examples/calibration/calibration.ipynb index 34984fd..50b075f 100644 --- a/docs/examples/calibration/calibration.ipynb +++ b/docs/examples/calibration/calibration.ipynb @@ -188,18 +188,18 @@ "" ], "text/plain": [ - " field date core_number distance_from_station latitude longitude \n", - "0 Flickner 22-Oct 1 5 N38.23459 W97.57101 \\\n", + " field date core_number distance_from_station latitude longitude \\\n", + "0 Flickner 22-Oct 1 5 N38.23459 W97.57101 \n", "1 Flickner 22-Oct 1 5 N38.23459 W97.57101 \n", "2 Flickner 22-Oct 1 5 N38.23459 W97.57101 \n", "\n", - " top_depth bottom_depth core_diameter wet_mass_with_bag ... can_number \n", - "0 0 5 30.49 45.31 ... 1 \\\n", + " top_depth bottom_depth core_diameter wet_mass_with_bag ... can_number \\\n", + "0 0 5 30.49 45.31 ... 1 \n", "1 5 10 30.49 69.53 ... 2 \n", "2 10 25 30.49 214.90 ... 3 \n", "\n", - " mass_empty_can wet_mass_with_can dry_mass_with_can mass_water theta_g \n", - "0 52.10 92.03 85.31 6.72 0.202 \\\n", + " mass_empty_can wet_mass_with_can dry_mass_with_can mass_water theta_g \\\n", + "0 52.10 92.03 85.31 6.72 0.202 \n", "1 51.85 115.97 103.85 12.12 0.233 \n", "2 51.56 260.97 219.77 41.20 0.245 \n", "\n", @@ -372,28 +372,28 @@ "" ], "text/plain": [ - " TIMESTAMP RECORD station farm field latitude \n", - "0 2021-09-22 12:00:00 0 KS003 Flickner Rainfed South 38.23461 \\\n", + " TIMESTAMP RECORD station farm field latitude \\\n", + "0 2021-09-22 12:00:00 0 KS003 Flickner Rainfed South 38.23461 \n", "1 2021-09-22 13:00:00 1 KS003 Flickner Rainfed South 38.23461 \n", "2 2021-09-22 14:00:00 2 KS003 Flickner Rainfed South 38.23461 \n", "\n", - " longitude altitude battery_voltage_Min PTemp_Avg ... \n", - "0 -97.57095 455 13.52 29.04 ... \\\n", + " longitude altitude battery_voltage_Min PTemp_Avg ... \\\n", + "0 -97.57095 455 13.52 29.04 ... \n", "1 -97.57095 455 13.53 29.98 ... \n", "2 -97.57095 455 13.53 30.43 ... \n", "\n", - " wind_speed_gust_Max air_temperature_Avg vapor_pressure_Avg \n", - "0 4.20 22.30 9.20 \\\n", + " wind_speed_gust_Max air_temperature_Avg vapor_pressure_Avg \\\n", + "0 4.20 22.30 9.20 \n", "1 9.02 22.90 9.08 \n", "2 5.54 23.38 8.68 \n", "\n", - " barometric_pressure_Avg relative_humidity_Avg \n", - "0 973 41.30 \\\n", + " barometric_pressure_Avg relative_humidity_Avg \\\n", + "0 973 41.30 \n", "1 972 32.63 \n", "2 971 30.25 \n", "\n", - " humidity_sensor_temperature_Avg tilt_north_south_Avg tilt_west_east_Avg \n", - "0 26.4 -1.000 1.000 \\\n", + " humidity_sensor_temperature_Avg tilt_north_south_Avg tilt_west_east_Avg \\\n", + "0 26.4 -1.000 1.000 \n", "1 26.8 -0.975 0.950 \n", "2 27.2 -0.775 0.625 \n", "\n", @@ -550,28 +550,28 @@ "" ], "text/plain": [ - " TIMESTAMP RECORD station farm field latitude \n", - "0 2021-09-22 12:00:00 0 KS003 Flickner Rainfed South 38.23461 \\\n", + " TIMESTAMP RECORD station farm field latitude \\\n", + "0 2021-09-22 12:00:00 0 KS003 Flickner Rainfed South 38.23461 \n", "1 2021-09-22 13:00:00 1 KS003 Flickner Rainfed South 38.23461 \n", "2 2021-09-22 14:00:00 2 KS003 Flickner Rainfed South 38.23461 \n", "\n", - " longitude altitude battery_voltage_Min PTemp_Avg ... \n", - "0 -97.57095 455 13.52 29.04 ... \\\n", + " longitude altitude battery_voltage_Min PTemp_Avg ... \\\n", + "0 -97.57095 455 13.52 29.04 ... \n", "1 -97.57095 455 13.53 29.98 ... \n", "2 -97.57095 455 13.53 30.43 ... \n", "\n", - " wind_speed_gust_Max air_temperature_Avg vapor_pressure_Avg \n", - "0 4.20 22.30 9.20 \\\n", + " wind_speed_gust_Max air_temperature_Avg vapor_pressure_Avg \\\n", + "0 4.20 22.30 9.20 \n", "1 9.02 22.90 9.08 \n", "2 5.54 23.38 8.68 \n", "\n", - " barometric_pressure_Avg relative_humidity_Avg \n", - "0 973 41.30 \\\n", + " barometric_pressure_Avg relative_humidity_Avg \\\n", + "0 973 41.30 \n", "1 972 32.63 \n", "2 971 30.25 \n", "\n", - " humidity_sensor_temperature_Avg tilt_north_south_Avg tilt_west_east_Avg \n", - "0 26.4 -1.000 1.000 \\\n", + " humidity_sensor_temperature_Avg tilt_north_south_Avg tilt_west_east_Avg \\\n", + "0 26.4 -1.000 1.000 \n", "1 26.8 -0.975 0.950 \n", "2 27.2 -0.775 0.625 \n", "\n", @@ -624,8 +624,7 @@ "outputs": [], "source": [ "# Compute total neutron counts by adding the counts from both probe detectors\n", - "df_station['total_raw_counts'] = crnpy.total_raw_counts(df_station[['counts_1_Tot','counts_2_Tot']],\n", - " nan_strategy='average')\n" + "df_station['total_raw_counts'] = crnpy.total_raw_counts(df_station[['counts_1_Tot','counts_2_Tot']])\n" ] }, { @@ -824,7 +823,7 @@ "output_type": "stream", "text": [ "Mean volumetric Water content during calibration survey: 0.263\n", - "Mean corrected counts during calibration: 1542 counts\n" + "Mean corrected counts during calibration: 1543 counts\n" ] } ], @@ -857,7 +856,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The solved value for N0 is: 2644\n" + "The solved value for N0 is: 2645\n" ] } ], @@ -869,7 +868,7 @@ "N0_initial_guess = 1000\n", "\n", "# Find the root\n", - "sol = int(root(VWC_func, N0_initial_guess).x)\n", + "sol = int(root(VWC_func, N0_initial_guess).x[0])\n", "\n", "# Print the solution\n", "print(f\"The solved value for N0 is: {sol}\")\n" @@ -905,7 +904,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.10" + "version": "3.11.7" } }, "nbformat": 4, diff --git a/docs/examples/rover/Hydroinnova_rover_example.ipynb b/docs/examples/rover/Hydroinnova_rover_example.ipynb index 089ce8a..761b23c 100644 --- a/docs/examples/rover/Hydroinnova_rover_example.ipynb +++ b/docs/examples/rover/Hydroinnova_rover_example.ipynb @@ -164,18 +164,18 @@ "" ], "text/plain": [ - " RecordNum Date Time(UTC) barometric_pressure_Avg P4_mb P1_mb \n", - "0 2 2018/05/01 14:15:00 962.95 962.8 961.4 \\\n", + " RecordNum Date Time(UTC) barometric_pressure_Avg P4_mb P1_mb \\\n", + "0 2 2018/05/01 14:15:00 962.95 962.8 961.4 \n", "1 3 2018/05/01 14:16:00 962.88 962.7 961.3 \n", "2 4 2018/05/01 14:17:00 962.64 962.5 961.1 \n", "\n", - " T1_C RH1 air_temperature_Avg relative_humidity_Avg Vbat ... \n", - "0 23.2 35.4 20.9 72.7 13.574 ... \\\n", + " T1_C RH1 air_temperature_Avg relative_humidity_Avg Vbat ... \\\n", + "0 23.2 35.4 20.9 72.7 13.574 ... \n", "1 23.3 35.5 21.0 72.7 13.417 ... \n", "2 23.4 35.4 21.2 72.2 13.282 ... \n", "\n", - " LongDec Alt Qual NumSats HDOP Speed_kmh COG SpeedQuality \n", - "0 -97.37195 393.2 2.0 10 0.8 0.00 270.7 A \\\n", + " LongDec Alt Qual NumSats HDOP Speed_kmh COG SpeedQuality \\\n", + "0 -97.37195 393.2 2.0 10 0.8 0.00 270.7 A \n", "1 -97.37197 387.2 2.0 11 0.8 0.00 270.7 A \n", "2 -97.37199 388.2 1.0 11 0.8 3.89 356.3 A \n", "\n", @@ -229,7 +229,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAroAAAHPCAYAAAC8+nn2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwJklEQVR4nOzde1wU9f4/8NeyCIqIpmleUpYkSwM7pRltUZDkJZbYkOqofe12uh07aYIX0KNpCl5QO5X183RKLQVLQDRITXPJTTZNu0GYYnnLTM0KVlFgl8/vD5phh5297zIL834+HjyKmdn5zIzszns/8/68PwrGGAMhhBBCCCHtTIDUB0AIIYQQQogvUKBLCCGEEELaJQp0CSGEEEJIu0SBLiGEEEIIaZco0CWEEEIIIe0SBbqEEEIIIaRdokCXEEIIIYS0SxToEkIIIYSQdokCXUIIIYQQ0i5RoEsIIYQQQtolCnQ9tGfPHiQlJaFv375QKBQoKipyeR+MMeTk5GDQoEEIDg5Gv379sGjRIu8fLCGEEEKIjARKfQBt3aVLl3DzzTfjySefREpKilv7mDJlCj755BPk5OQgOjoav//+O37//XcvHykhhBBCiLwoGGNM6oNoLxQKBTZv3gytVssvq6urw+zZs5GXl4c///wTUVFRWLJkCeLi4gAAhw4dwtChQ1FRUYEbbrhBmgMnhBBCCGmHKHXBx1544QUYDAZs3LgR3333HR566CGMGTMGVVVVAICPPvoI1113HYqLixEREQGVSoV//OMf1KNLCCGEEOIhCnR96OTJk1izZg02bdqE2NhYDBw4EOnp6bjrrruwZs0aAMBPP/2EEydOYNOmTXjvvfewdu1aHDx4EKmpqRIfPSGEEEJI20Y5uj5UXl4Os9mMQYMGCZbX1dWhR48eAIDGxkbU1dXhvffe47d75513MGzYMBw+fJjSGQghhBBC3ESBrg9dvHgRSqUSBw8ehFKpFKwLDQ0FAPTp0weBgYGCYHjw4MEAmnqEKdAlhBBCCHEPBbo+dMstt8BsNuPcuXOIjY0V3ebOO++EyWTCjz/+iIEDBwIAjhw5AgAIDw9vtWMlhBBCCGlvqOqChy5evIijR48CaApsV6xYgfj4eHTv3h0DBgzAo48+ir1792L58uW45ZZbcP78eXz66acYOnQoEhMT0djYiNtuuw2hoaF49dVX0djYiMmTJyMsLAyffPKJxGdHCCGEENJ2UaDrodLSUsTHx1stf+yxx7B27Vo0NDRg4cKFeO+993D69GlcffXViImJwfz58xEdHQ0A+OWXX/Cvf/0Ln3zyCTp37oyxY8di+fLl6N69e2ufDiGEEEJIu0GBLiGEEEIIaZeovBghhBBCCGmXKNAlhBBCCCHtElVdcFNjYyN++eUXdOnSBQqFQurDIYQQIgHGGIxGI/r27YuAAOo7IsTfUKDrpl9++QX9+/eX+jAIIYT4gVOnTuHaa6+V+jAIIS1QoOumLl26AGj6cAsLC5P4aAghhEihpqYG/fv35+8JhBD/QoGum7h0hbCwMAp0CSFE5iiFjRD/RAlFhBBCCCGkXaJAlxBCCCGEtEsU6BJCCCGEkHaJAl1CCCGEENIuUaBLCCGEEELaJQp0CSGEEEJIu0SBLiGEEEIIaZco0CWEEEIIIe0SBbqEEEIIIaRdopnRCCGEtBlmsxl6vR5nzpxBnz59EBsbC6VSKfVhEUL8FAW6hBBCXCZFwFlYWIi0tDQcP36cX6ZSqbB8+XKkpKT4tG1CSNtEqQuEEJ8ym80oLS1FXl4eSktLYTab22WbUrXrSZu19SaoZpVANasEtfUmp19XWFiIyMhIxMfHY8KECYiPj0dkZCQKCwt91m5hYSFSU1MRHR0Ng8EAo9EIg8GA6OhopKamOt02IURmGHFLdXU1A8Cqq6ulPhRCnGIymZhOp2O5ublMp9Mxk8nk8zYLCgqYSqViAPgflUrFCgoKnHr9pboGFj6zmIXPLGaX6hoYY47PwxdtSnWu/tqmQqFgSUlJzGAwMKPRyAwGA0tKSmIKhcKptl1t12QyMZVKxZKSkpjZbBasM5vNLCkpiUVERLTK33RLdC8gxL9Rjy7xK77oEbO3T1/2wPmiXbn3wDk6D6l6/aRo15M2a+tNf/2YLZaZ+eW2mM1mpKWlQaPRoKioCDExMQgNDUVMTAyKioqg0WiQnp5u8+/Z3Xb1ej2OHz+OzMxMBAQIb1sBAQHIyMjAsWPHoNfrbe6DECJTUkfabZWU3+Kl6JlrjTY96Z2y1UNkb5/OtGev58neOk/bdfU87WmLPXCX6hrYpboGdt54hW937cYCFhDUkSU+8KDoeWzatMnrbZ43XuGXt+a5OmrX0za5dmz92KLT6RgAZjAYRNeXlZUxAEyn03m13dzcXAaAGY1G0fU1NTUMAMvNzbW5D1+hHl1C/Bv16LYxUvXMudOmK20VFhZi3Lhx6NOnD+bPn4+PP/4Yn3/+uc3eKWf27ajHa9y4cT7pgfNFu3LrgRsydweGzN2B4Qt38cvmfR2M/i/lo2LwU6LnMWXKFK+3OXzhLn55a56ro3al6uE8c+YMACAqKkp0Pbec285b+vTpAwCoqKgQXc8t57YjhBAOVV1oQ7gASqPRIC8vD1FRUaioqEBWVhZSU1ORn5/v9ZHHrdGm2WzGc889h9DQUBgMBhgMBgBNo6mXLVsGAEhPT0dycrLoqO6mgEth8bsZZrMZ02Zk8AEeFwxwgdEDDzyAPXv2oKCgAB06dBCs02q1SJuZifvGJqLODMF+ufZCggKtgj/uXCwDS1fbtXWeYgGPZWB0fHGi6LXlAqK8vDybAZFarYZer0dcXJzV691ttzUDIsvzaK02LUkR/HnaZuWC0QCa/m65f88DcxIQEmS/aoJlwBkTE2O13lHA6W67sbGxUKlUyMrKEryvAKCxsRHZ2dmIiIhAbGys3f0QQuSHAt02wlEAZS9IAsD3vokFZwAQEmT9p+Bum662tWjRIpw/fx5JSUnIzMwUBNMPP/wwFi1ahI8++gh6vR4j1HdZ7W/4wk8F++MDsdQVyNT2EA3wZs+ejZKSEuzdu1cQ4HFB0/gtvyN6/i7B6ywDvJYs152wE1hatjtCfRcfSFYuGO0w6HSHP/TAeSsgOvX6RJw5dQKhoZ2ttrc8v9YOwqQI/jxtU+z9HhKkFF1uydOA0912lUolli9fjtTUVGi1WmRkZPCfE9nZ2SjZsRP9X8rHwNnbUblgtMP9EULkgz4N2ggpeubcbdOVtsxmM1atWmU3mP7vf/8LoCkYs/cIWYw7AV5UVBSwZY9L7XitXRvr2lIQBvgmIGINV/DTkUN2z+Oaa65p9SBMiuBPqh5ORwFncXEx8vPzfVJPNyUlBfn5+UhLS+N77wEgIiIC69dvQMZBrzdJCGkHKEe3jWiLj0edodfrce7cOcyePdtmMM0Vh3c2/+7AnASsTgjByRXj3Mrpq6iowMkV47A6IQQH5iQI9lu5YDQOzBn513+t161OCBHsX2zfig7B6N6zt1WP94FvyqHoECx6TCFBgX/9KC2WKfnltlgGRI2NjYJ1zgZh7rTLBUTFxcXQarWCfGStVovi4mLk5OS4FBANGBDu8Dxef/11r7bpDF+ca2u1GRIUiOOLE3F8caLTvaBcwFleXg61Wo2wsDCo1WpUVFQ4ncrkTrtc20ePHoVOp0Nubi6279yNb78/hPvGNn95diaHnBAiI1KPhmurWnukraejnd0Z2e1um6605exo6p49ezKTyWRz3+eNlwVVARyNSk9MTGRdunRh9fX1VussR6y7WnXBmXYdjTy3HCnfstpFTe0Vm8dji2XVhbKyMlZTU8PKysp8WnXBsu2WFSYiIiKcrvPqznl4s01Xj6+125XqXBmTpvpLS+5WcfAmqrpAiH+j1AU/VVtvEuRvtqXHo6605eyj9RdeeAFKpRIhIh1UYo/RHT1i/fjjj8EYw7hx4+w/fjW71ivkTLsDop53uA/A9nSnK1yc7tTeI19Xe+BclZKSguTkZK9MFcudx7QZTTnU2LIHJ1eMg+ravoLz8Gabrh5fa7cr1bkCTX+n3solJ4QQn5E60m6rfP0tXqwHTYqeOU/adKYtZ3pAe/fubdVb5Ox52Ovx8mVvmL19535YwMIHDmIBIV35c1DdGM1yPywQ/bd2t/ZtS/7QA+cNlr3a23fubrPnQTzn6OlRa/zNU48uIf6NAl03+erDzdEHd3t8PGormNZoNG4HdZbs3ex8eSN01O72nbv5f+Oa2iuCdf463amU3J3QgbR/tjoGPJke2VkU6BLi3xSMMdaaPci2LF68GBkZGZgyZQpeffVV0W3efvttvPfee/zj7GHDhiErKwsjRozgtzl79ixmzpyJTz75BH/++SfuvvtuvP7667j++usBAL///jvmzZuHTz75BCdPnkTPnj2h1WrxyiuvoGvXrk4fb01NDbp27Yrq6mqEhYW5f+ItqGaV2F1/fHEizGZzqz+q9HWbYo/pIyIikJOT4/XawP6iZXoKl9pRWlqK+Ph4GAwG0XQOg8EAtVoNnU4nq0fHzrw3iDy1fC9tL97K1/9uWbKQS03y1ueKr+4FhBDv8Isc3S+//BKrV6/G0KFD7W5XWlqK8ePHQ61Wo2PHjliyZAlGjRqF77//Hv369QNjDFqtFh06dMCWLVsQFhaGFStWICEhAZWVlejcuTN++eUX/PLLL8jJycGQIUNw4sQJPPfcc/jll1+Qn5/fSmfsGSly43zdppS5hlKxlfcqVe1bQtoqy/eSpzXHCSHtjMQ9ysxoNLLrr7+e7dy5k91zzz1sypQpTr/WZDKxLl26sHXr1jHGGDt8+DADwCoqKvhtzGYz69mzJ3v77bdt7ufDDz9kQUFBrKHB+cef3nhcJfZomx7PEk8rbLRX3Hvg5IVL/Hvj5IVL9N4gAq39/qHUBUL8m+Q9upMnT0ZiYiISEhKwcOFCl15bW1uLhoYGdO/eHQBQV1cHAOjYsSO/TUBAAIKDg/H555/jH//4h+h+uEdOgYG2L0ddXR2/f6DpcZUnbI2oXy4yot6ZovWk/aDpTh1hNv6fEHoiIoYxBpPJBLPZ7HhjQtoApVKJwMBAKBQKh9tKGj1t3LgRX331Fb788ku3Xj9z5kz07dsXCQlNhftvvPFGDBgwABkZGVi9ejU6d+6MlStX4ueff7b5ofbbb7/hlVdewTPPPGO3rezsbMyfP9+t42ypsLCQzx/Ly8sT5I+lpqYiPz8fYzQPeKUt0vZIOfuUPxObFS92aSn//5SjSwDPZwNsb+rr63HmzBnU1tZKfSiEeFVISAj69OmDoKAgu9tJNhjt1KlTGD58OHbu3Mnn5sbFxeFvf/ubzcFolhYvXoylS5eitLRUkNt78OBBPPXUU/j222+hVCqRkJCAgIAAMMawbds2wT5qampw3333oXv37ti6dSs6dOhgsz2xHt3+/fu7PADBbDYjMjIS0dHRor11Wq0WFRUVqKqqkl0gY2twllzJcYCePTQYjTijtT9j/XkwWmNjI3+ePXv2RFBQkFM9YIT4M8YY6uvrcf78eZjNZlx//fVWM6u2fIEkNm/ezAAwpVLJ/wBgCoWCKZVKu6WTli1bxrp27cq+/PJLm9v8+eef7Ny5c4wxxkaMGMH++c9/CtbX1NSwO+64g40cOZJdvnzZ5eN3Ny+L8i9tc3f2rfasvdS+9YZLdQ1NNYhviOL/TgJCurLwgYNY7oe+nwmMtB3eqDnuLH/O0b18+TKrrKxkly5dkvpQCPG6S5cuscrKSocxnGRdZiNHjkR5eblg2RNPPIEbb7wRM2fOtPlNe+nSpVi0aBF27NiB4cOH29w/VyqsqqoKBw4cwCuvvMKvq6mpwejRoxEcHIytW7cKcnp9jfLHrHFz0tfWmy2WNf+/nHt2afapZtuLt2LiI6m4P0mLir+WfbpjG1YszcbER1IRrPReySjStnljNsD2xG5vFyFtlLN/15JFEF26dLEK9jp37owePXrwyydNmoR+/fohOzsbALBkyRLMnTsXubm5UKlU+PXXXwEAoaGhCA0NBQBs2rQJPXv2xIABA1BeXo4pU6ZAq9Vi1KhRAJqC3FGjRqG2thbr169HTU0NP7CsZ8+ePk8XoPwxa2K5l8MX7uL/nx5JE8uSUbkfbETUyzsBACNG3EYlo4goOZYsJIRY8+uuspMnTwoi9rfeegv19fVITU0VbDdv3jy8/PLLAJp6QqdNm4azZ8+iT58+mDRpEv7973/z23711VfYt28fACAyMlKwn2PHjkGlUvnmZP5CI+qJKyhvuYler8fx48eRl5eH0I5BVl9+MjIyoFarodfrqQec8OiJCCHEr+6apaWldn+3HJRjy4svvogXX3zR5vq4uDgwCSeDoxH11ioXjAbQlK7A9eQemJOAkCD5XANiH6X8EEJsUalUmDp1KqZOnSr1oXgFNzvmH3/8gW7dukl9OC57+eWXUVRUhG+++UbqQwEAUOKOBLj8sfLycqjVaoSFhUGtVqOiokKW+WMhQYF//Sgtlin55XJUW2/660eYt8wtlxvLlB8xckz5IY7V1pugmlUC1awSWb5v2rpTp07hySefRN++fREUFITw8HBMmTIFFy5ckPrQvCYuLs4qQFer1Thz5gw/1oh4Rp5RhB+g/DFiD+UtC7VM+WGM8e+da665BitXrqSUH0J8yGw2t+r96qeffsIdd9yBQYMGIS8vDxEREfj+++8xffp0bNu2DV988QU/WVRrM5vNUCgUPhvkFxQUhN69e/tk33JEPboS4vLHxo8fj7i4ONkHudx89ccXJ8q2J5eI41J+iouLcfvtt2PAgAGIj4/HhAkTMHLkSGzfvh2pqamyfw+RJvRExLsKCwsRGRnJv+fi4+MRGRmJwsJCn7U5efJkBAUF4ZNPPsE999yDAQMGYOzYsdi1axdOnz6N2bNnC7Y3Go0YP348OnfujH79+mHVqlX8OsYYXn75ZQwYMADBwcHo27evIMWxrq4O6enp6NevHzp37ozbb79dkDq5du1adOvWDVu3bsWQIUMQHByM//3vf+jYsSP+/PNPwXFMmTIF9957LwDgwoULGD9+PPr164eQkBBER0cjLy+P3/bxxx/HZ599hv/85z9QKBRQKBQ4fvw4SktLoVAoBPsuKCjATTfdhODgYH4WVUtcR8CTTz6JLl26YMCAAfjvf/9r9xpbjgvq1KkTbr75ZuTn5/PrueP49NNPMXz4cISEhECtVuPw4cOC/SxevBjXXHMNunTpgqeeegpXrlyx226ra41aZ+2RP9dOJG3fpboGdqmugZ03XuFrxp43XuGXy9X06dMZAKbRaJjBYGBGo5EZDAam0Wi8Xh+VtF3ce8bWjzf5872Aq6PrTq14jmVNYsv3nC9qEnMuXLjAFAoFy8rKEl3/9NNPs6uuuoo1NjYyxhgLDw9nXbp0YdnZ2ezw4cPstddeY0qlkn3yySeMMcY2bdrEwsLC2Mcff8xOnDjB9u3bx/773//y+/vHP/7B1Go127NnDzt69ChbtmwZCw4OZkeOHGGMMbZmzRrWoUMHplar2d69e9kPP/zALl68yK655hr2v//9j9+PyWQSLPv555/ZsmXL2Ndff81+/PFH/rj27dvHGGuq93/HHXewp59+mp05c4adOXOGr50OgP3xxx+MMcYOHDjAAgIC2IIFC9jhw4fZmjVrWKdOndiaNWv4tsPDw1n37t3ZqlWrWFVVFcvOzmYBAQHshx9+sHmdFy5cyG688Ua2fft29uOPP7I1a9aw4OBgVlpayhhrrvt/++23s9LSUvb999+z2NhYplar+X188MEHLDg4mP3vf/9jP/zwA5s9ezbr0qULu/nmm535p/aIs3/fFOi6yRsfbjRBAnGE/kaamUwmplKpWFJSEjObzYJ1ZrOZJSUlsYiICFlPqkGaUKDbxNNAV6r33BdffMEAsM2bN4uuX7FiBQPAzp49yxhrCvLGjBkj2OaRRx5hY8eOZYwxtnz5cjZo0CBWX19vta8TJ04wpVLJTp8+LVg+cuRIlpGRwRhrCnQBsG+++UawzZQpU9i9997L/75jxw4WHBzMB6hiEhMTWVpaGv/7Pffcw6ZMmSLYpmWgO2HCBHbfffcJtpk+fTobMmQI/3t4eDh79NFH+d8bGxtZr1692FtvvSV6HFeuXGEhISGsrKxMsPypp55i48ePFxzHrl27+PUlJSUMAP83dccdd1hNyHX77bf7VaBLqQvEr5jNZpSWliIvLw+lpaUwm82OX0RkgSsxlpmZaZUbFxAQgIyMDBw7dgx6vV6iIyT+onLBaFQuGI0DcxL4ZQfmJPDLiXOkfs8xFyok3XHHHVa/Hzp0CADw0EMP4fLly7juuuvw9NNPY/PmzTCZmlJYysvLYTabMWjQIL4mf2hoKD777DP8+OOP/P6CgoIwdOhQQRsTJ05EaWkpfvnlFwDAhg0bkJiYyFdKMJvNeOWVVxAdHY3u3bsjNDQUO3bswMmTJ126DocOHcKdd94pWHbnnXeiqqpKcI+0PD6FQoHevXvj3Llzovs8evQoamtrcd999wnO+7333hOcd8v9cgN+uf0eOnQIt99+u2D7lv8WUqNESAnQTGDiCgsLkZaWJigjx+Uiya0SBYfLWyZUYow4T+wzlKvkQpwn1XsuMjISCoUChw4dwoMPPmi1/tChQ7jqqqvQs2dPp/bXv39/HD58GLt27cLOnTvxz3/+E8uWLcNnn32GixcvQqlU4uDBg1Y5/txEVADQqVMnKBQKwfrbbrsNAwcOxMaNG/H8889j8+bNWLt2Lb9+2bJl+M9//oNXX30V0dHR6Ny5M6ZOnYr6+noXrobzOnToIPhdoVCgsbFRdNuLFy8CAEpKStCvXz/BuuDgYJv75a6Brf36I+rRlcCQuTswZO4OwSj64Qt38cvlqLCwEKmpqYiOjobBYIDRaITBYEB0dDRSU1N9OuiBtA2WJcbEykZRiTFCvEuqsn49evTAfffdhzfffBOXL18WrPv111+xYcMGPPLII4LA84svvhBs98UXX2Dw4MH87506dUJSUhJee+01lJaWwmAwoLy8HLfccgvMZjPOnTuHyMhIwY8zlQ8mTpyIDRs24KOPPkJAQAASE5s7Jvbu3Yvk5GQ8+uijuPnmm3HdddfhyJEjgtcHBQU5fHI5ePBg7N27V7Bs7969GDRokNsDcLlBdSdPnrQ67/79+zu9n8GDB/OTcHFa/ltIjQJdIjnL6V2LiooQExOD0NBQxMTEoKioCBqNBunp6ZTGIHOWJcZa9ibQrIJEDFVy8YyU77k33ngDdXV1GD16NPbs2YNTp05h+/btuO+++9CvXz8sWrRIsP3evXuxdOlSHDlyBKtWrcKmTZswZcoUAE1VE9555x1UVFTgp59+wvr169GpUyeEh4dj0KBBmDhxIiZNmoTCwkIcO3YM+/fvR3Z2NkpKShwe58SJE/HVV19h0aJFSE1NFfSGXn/99di5cyfKyspw6NAhPPvsszh79qzg9SqVCvv27cPx48fx22+/ifaUpqWl4dNPP8Urr7yCI0eOYN26dXjjjTeQnp7uzqUFAHTp0gXp6el46aWXsG7dOvz444/46quv8Prrr2PdunVO72fKlCl49913sWbNGhw5cgTz5s3D999/7/Zx+YTPs4XbKU8GINCIeiEu4d1gMIiuLysrYwCYTqdr3QPzE9wo3NzcXKbT6WQ92Cr3wwIWENSRjdU+xL93tuk+Z4kPPMgCgjpS1QXS6trzYDTGhFUXysrKWE1NDSsrK/Np1QXO8ePH2WOPPcauueYa1qFDB9a/f3/2r3/9i/3222+C7cLDw9n8+fPZQw89xEJCQljv3r3Zf/7zH3795s2b2e23387CwsJY586dWUxMjGCAVX19PZs7dy5TqVSsQ4cOrE+fPuzBBx9k3333HWOsaTBa165dbR7niBEjGAC2e/duwfILFy6w5ORkFhoaynr16sXmzJnDJk2axJKTk/ltDh8+zGJiYlinTp0YAHbs2DGrwWiMMZafn8+GDBnCOnTowAYMGMCWLVtmdQ1WrlwpWHbzzTezefPm2TzuxsZG9uqrr7IbbriBdejQgfXs2ZONHj2affbZZ4wx60FxjDH29ddf88fJWbRoEbv66qtZaGgoe+yxx9iMGTP8ajCagjEJ58Ntw2pqatC1a1dUV1cjLCzMrX3U1pv4VIXKBaNl2+OQl5eHCRMmwGg0CnKiOEajEWFhYcjNzcX48eMlOELpUN6ykGqW/R4Wymcmrc0b9wJfuXLlCo4dO4aIiAh07NjR7f2IfQ5FREQgJydHlp9DxD84+/dNqQtEcjS9qzjKWybEM1TFxTtSUlJw9OhR6HQ65ObmQqfToaqqioJc0iZQj66b/PlbfFtjNpsRGRmJ6OhoFBUVCcrYNDY2QqvVoqKiAlVVVbKZ+YquiTjLiiXcYM4DcxIQEtR0DeT6VIRYa62nIf58L/BWjy4h/oh6dEmbYTm9q1arFfRearVaFBcXIycnR1YBndT1K/1VSFDgXz9Ki2VKfjkhAD0NIYQ0o0CX+IWUlBTk5+ejvLwcarUaYWFhUKvVqKioQH5+vuwekVHNWPu4nt2W/08IVXEhhFiiLhAJmc1m6PV6nDlzBn369EFsbKysei1bSklJQXJyMl0TCPOWY2JirNbLNW+ZY9l7Sz25xBL3NCQvL8/m0xC1Wg29Xo+4uDhpDpIQ0mroDiERGk0vTqlU0s0HwvqVYjm6cq0ZS7MKEkfoaQghxBKlLkiA8seII5S3LI5mFSSOUBUXQoglqrrgJndH2tJoevuotrAQ1a8Uojq6xJHW/oylqguESIOqLvgpGk1PXEH1K4UqF4xG9rA6oGgWv+zU6xOB/GlNy4ns0dMQQoglCnRbGeWPiautN/31I8y95JbLGZe3PH78eMTFxcn6Br29eCsmPpKKqBuu55d9umMbhg65ARMfobQf0oSquMiLSqXCq6++KvVheE1paSkUCgX+/PNPqQ+lXaBAt5VR/pg4yr0kjliWjdr4wUZ++YgRt1HZKGKFnoa0fadOncKTTz6Jvn37IigoCOHh4ZgyZQouXLgg9aF5TVxcHKZOnSpYplarcebMGXTt2lWag/Iif/gSIu8ESAnQaHriKspbbmJZNiq0Y5BVPi6VjSItURWXtuunn37CHXfcgUGDBiEvLw8RERH4/vvvMX36dGzbtg1ffPEFunfvLsmxmc1mKBQKq/RDbwkKCkLv3r19su+2qr6+HkFBQW69lnp0Wxnlj4mrXDAalQtG48CcBH7ZgTkJ/HJCKO2HEOnU1pugmlUC1aySVkknmzx5MoKCgvDJJ5/gnnvuwYABAzB27Fjs2rULp0+fxuzZswXbG41GjB8/Hp07d0a/fv2watUqfh1jDC+//DIGDBiA4OBg9O3bFy+++CK/vq6uDunp6ejXrx86d+6M22+/HaWlpfz6tWvXolu3bti6dSuGDBmC4OBg/O9//0PHjh2t0gumTJmCe++9FwBw4cIFjB8/Hv369UNISAiio6ORl5fHb/v444/js88+w3/+8x8oFAooFAocP35cNHWhoKAAN910E4KDg/lSpJa4DrQnn3wSXbp0wYABA/Df//7X7jVubGzE0qVLERkZieDgYAwYMACLFi3i1586dQoPP/wwunXrhu7duyM5OVkwMPrxxx+HVqtFTk4O+vTpgx49emDy5MloaGgA0NRbfeLECbz00kv8+XE+//xzxMbGolOnTujfvz9efPFFXLp0SXA+r7zyCiZNmoSwsDA888wzds/FLkbcUl1dzQCw6upqt15fUFDAVCoVA8D/REREsIKCAi8fadtyqa6Bhc8sZuEzi9mlugapD0dSl+oa2KW6BnbeeIW/JueNV/jlcqPT6RgAZjAYRNeXlZUxAEyn07XugRFZ8/Re4EuXL19mlZWV7PLlyx7vqzU/my9cuMAUCgXLysoSXf/000+zq666ijU2NjLGGAsPD2ddunRh2dnZ7PDhw+y1115jSqWSffLJJ4wxxjZt2sTCwsLYxx9/zE6cOMH27dvH/vvf//L7+8c//sHUajXbs2cPO3r0KFu2bBkLDg5mR44cYYwxtmbNGtahQwemVqvZ3r172Q8//MAuXrzIrrnmGva///2P34/JZBIs+/nnn9myZcvY119/zX788Uf+uPbt28cYY+zPP/9kd9xxB3v66afZmTNn2JkzZ5jJZOI/6/744w/GGGMHDhxgAQEBbMGCBezw4cNszZo1rFOnTmzNmjV82+Hh4ax79+5s1apVrKqqimVnZ7OAgAD2ww8/2LzOM2bMYFdddRVbu3YtO3r0KNPr9eztt99mjDFWX1/PBg8ezJ588kn23XffscrKSjZhwgR2ww03sLq6OsYYY4899hgLCwtjzz33HDt06BD76KOPWEhICH9tL1y4wK699lq2YMEC/vwYY+zo0aOsc+fObOXKlezIkSNs79697JZbbmGPP/644HzCwsJYTk4OO3r0KDt69KjV8Tv7902Brpu88eHG/UHn5uYynU7HTCaTF4+wbaJAtxl3HWz9yI3JZGIqlYolJSWx+vp6wXunvr6eJSUlsYiICHofEQFff6a090BXii/cX3zxBQPANm/eLLp+xYoVDAA7e/YsY6wpKBozZoxgm0ceeYSNHTuWMcbY8uXL2aBBg1h9fb3Vvk6cOMGUSiU7ffq0YPnIkSNZRkYGY6wp0AXAvvnmG8E2U6ZMYffeey//+44dO1hwcDAfoIpJTExkaWlp/O/33HMPmzJlimCbloHuhAkT2H333SfYZvr06WzIkCH87+Hh4ezRRx/lf29sbGS9evVib731luhx1NTUsODgYD6wben9999nN9xwA/9lgjHG6urqWKdOndiOHTsYY02Bbnh4uOAz96GHHmKPPPKI4LhWrlwp2PdTTz3FnnnmGcEyvV7PAgIC+L/V8PBwptVqRY+N4+zftzyT/fwE5Y9ZCwkKpFqoRBSX9jNu3Dh0794dFy9e5NeFhobi4sWLKCgokF3aDyG+JDYY2HLQsC8/r5kLZf7vuOMOq9+5QVAPPfQQXn31VVx33XUYM2YM7r//fiQlJSEwMBDl5eUwm80YNGiQ4PV1dXXo0aMH/3tQUBCGDh0q2GbixImIiYnBL7/8gr59+2LDhg1ITExEt27dADTl8mZlZeHDDz/E6dOnUV9fj7q6OoSEhLhwFYBDhw4hOTlZsOzOO+/Eq6++CrPZzH/mWR6fQqFA7969ce7cOZv7rKurw8iRI0XXf/vttzh69Ci6dOkiWH7lyhX8+OOP/O833XST4DO3T58+KC8vt3s+3377Lb777jts2LCBX8YYQ2NjI44dO4bBgwcDAIYPH253P86iQJcQP8XlJtfWm/kby4E5CQgJkncgp1AoEBcXh9mzZyMqKgoVFRVYsGgxKm96GtP2A2M0JtkO2CPNaLrotisyMhIKhQKHDh3Cgw8+aLX+0KFDuOqqq9CzZ0+n9te/f38cPnwYu3btws6dO/HPf/4Ty5Ytw2effYaLFy9CqVTi4MGDVl+SQ0ND+f/v1KmTIMcUAG677TYMHDgQGzduxPPPP4/Nmzdj7dq1/Pply5bhP//5D1599VVER0ejc+fOmDp1Kurr6124Gs7r0KGD4HeFQoHGxkbRbTt16mR3XxcvXsSwYcMEwSjH8rq70qblvp999llBnjRnwIAB/P937tzZ7n6cRe90CdFoemKP2N9DSJBStn8nluXFLCuWxMTE4MNNHyLq5Z38dvTRRqTsiWxPpPjC3aNHD9x3331488038dJLLwmCsl9//RUbNmzApEmTBIHnF198IdjHF198wfcMAk2BXVJSEpKSkjB58mTceOONKC8vxy233AKz2Yxz5865Ve1o4sSJ2LBhA6699loEBAQgMbH572rv3r1ITk7Go48+CqBp8NeRI0cwZMgQfpugoCCHJREHDx6MvXv3Cpbt3bsXgwYNcvsJ1vXXX49OnTrh008/xT/+8Q+r9bfeeis++OAD9OrVy6MZ/8TO79Zbb0VlZSUiIyPd3q8rqOoC8StmsxmlpaXIy8tDaWkp1UQlPLFZBbkJRa6Ymh9x6vaU0UQjhHhJSFDgXz9Ki2VKfrmvvPHGG6irq8Po0aOxZ88enDp1Ctu3b8d9992Hfv36CaoDAE2B39KlS3HkyBGsWrUKmzZtwpQpUwA0VU145513UFFRgZ9++gnr169Hp06dEB4ejkGDBmHixImYNGkSCgsLcezYMezfvx/Z2dkoKbE/5TjQFOh+9dVXWLRoEVJTUxEcHMyvu/7667Fz506UlZXh0KFDePbZZ3H27FnB61UqFfbt24fjx4/jt99+E+0NTUtLw6effopXXnkFR44cwbp16/DGG28gPT3dnUsLAOjYsSNmzpyJGTNm4L333sOPP/6IL774Au+88w5/XldffTWSk5Oh1+tx7NgxlJaW4sUXX8TPP//sdDsqlQp79uzB6dOn8dtvvwEAZs6cibKyMrzwwgv45ptvUFVVhS1btuCFF15w+3zsoW4PCdAjNXGFhYVIS0sTlC/hyqjIucg75S03ESsvJtZr96KuFtA1LafrJl+U+tO2XX/99Thw4ADmzZuHhx9+GL///jt69+4NrVaLefPmWdXQTUtLw4EDBzB//nyEhYVhxYoVGD266W+gW7duWLx4MaZNmwaz2Yzo6Gh89NFHfA7umjVrsHDhQqSlpeH06dO4+uqrERMTA41G4/A4IyMjMWLECOzfv99qYoQ5c+bgp59+wujRoxESEoJnnnkGWq0W1dXV/Dbp6el47LHHMGTIEFy+fBnHjh2zauPWW2/Fhx9+iLlz5+KVV15Bnz59sGDBAjz++OMuXlWhf//73wgMDMTcuXPxyy+/oE+fPnjuuecAACEhIdizZw9mzpyJlJQUGI1G9OvXDyNHjnSph3fBggV49tlnMXDgQNTV1YExhqFDh+Kzzz7D7NmzERsbC8YYBg4ciEceecSj87FFwVzJ9ia8mpoadO3aFdXV1S5366tm2f+WKMebc2FhIVJTU6HRaJCZmcnnXmZlZaG4uJim7SQoLS1FfHw8DAYDYmJiANB7iTjm6xQxT+4FvnblyhUcO3YMERER6Nixo9SHQ4hXOfv3Lc+uQ+JX7OVeFhUVQavVIj09HcnJyTSiXsbEZhXkeu0uXmnAiKzdAIB9GfHo0sm9GXSI/zKbzdDr9Thz5gz69OmD2NhY+jwghDhEga4E6JGakOXUri2nVAwICKCpXQmA5vJiqamp0Gq1yMjI4Hv+Fy1eBgx+CgDQpVOQbNJ/uODv9OnTOH/+PHr27Il+/fr5PAh0N+h0t3fVk7QmSv0hRN7kcTfwMzSaXoimdrXPFz1ZUvSOeaPNlJQU5OfnIy0tDWq1ml+uirwBGNzczqeffsZP4RkXF4e4uLhWCfw8CThdDQLFgr/AwECYTCangkApgk53WKY15eXlCdKaUlNTKa2JEGKf3ekkiE3emA2HZgFr0t6mdvXmjHdiU0WHh4ez+fPnu71/sX2qVCqnp5925+/W3TZttWXrGhcUFLBrrrlG0E5gYCDr2bOnS225cn5i5xYYGOjWOTrbbkFBAVMoFEyj0TCDwcCMRiMzGAwsKSmJKRQKNnz4cKZQKOy27e6/o0KhYElJSaLt2mrP3dm1LGfDM5vNgnVms9kvZsNr7zOjEeKvaApgH/PnDzdf8OV0xVJO7erKeTkTGLgT0Nnar1hQkZ2dzUJDQ+3u395xuhuouHodvNWmK23ZCv40Gg1TKBQMgNNttWbAed542apde0Ggs8GfRqMRfd9IEXS6O521N74E+3qqdX++F3CBQG1trdSHQojX1dbWUqDrS1J+uPn6g7slb/fG2WoDgFUQx/3uzbbcPS9HbXjS29Vyv2JBhbP7t9cL6knvmDsBkrttutoW145Go7HZTpcuXZhKpbLZ1skLF60CsJMXLvk84HQ1CHQ2+HvjjTdEg0Apgk5328zNzWUAmNFoFF1fU1PDALDc3FzR9Z4+vXCGPwe6JpOJVVZWst9++03qQyHE63777TdWWVnpMAaSZ1JoG+Zpfpw7eYCtlR8nNrXrwoUL8fHHH3tl/5ZcOS9n6h67UznC3n71e4QD9JzZf9rMTNw3NhF1FnNsWO57f9nnHg36c2emKXcHGrraljPtfPTRRzAajU61xYldqvOoTbVajbS0NBQXF7vUrj3O5rRzs0l5K7fdk1x6dwfg9unTBwBQUVHBl5SzVFFRAQDo3rM3X2qO+1yj3N6mAZzdunXDuXPnADTVRm05jS0hbQ1jDLW1tTh37hy6devmcBwEBboScnVwTmt/cLtb9svVCTHstbN161a75cXcmXzD1fNyJuhyJ6BztF+gOXhwZv/jt/yO6PnC11vuL/vmGsE+W/LFoD9fDTRs+YXN2XbcacsWXwecXHDYkrPB3+XLlwXbt9yvr4LOlu0B7g/AFSspx2lsbER2djYiIiKgvlMN7Gr+W6eShc169+4NAHywS0h70a1bN/7v2x4KdCXias+spx/c7gSE/tQbZ6unsTV7Ge3xVUDHBRVO7X/LHrv78iRQAdwLkNxt09W2nG3HXlsXLtYhdmmpYJ1+Rjx6hIrX5PVFwMk5MGekzSDQ2eBv+/btiIiIQGxsrOD1vg46W7bnCXsl5bKzs1GyYyfWr99g9RRD/0UZTpw+QyUL0fSkrE+fPujVqxcaGhqkPhxCvKJDhw5Of0mlQFcC7vTMehqcuRMQtlbZr9YuL+Zqe84EXe4EdPb2azabMfSD5qDCmf2fXDEO2z7ehmExatHjDFYqPApU3AmQ3A2ObLXFafmFbdjtdyB84CAsXLgQW7duFW2nS5cu6NGjh+22Qq2Pv0eo7Zq8vgg4nVlnGfwlJycLZhLMzs5GcXExhg0bhpKSEuTn53utx9JR0MnNYGivPXdq2toqKRcREYH+L+Uj4yCQcbD5s4z72x8wrYBKFlpQKpXtvveaEDEU6LYyd3tmpag162+9cWI9ja3Ry+hMgOdOQGd/v4GCoGLGjBkIDw/HokWLsGXLFtH9q67ti4T4u1FnZiL7a+JpoOIqbwRHlux+YUtdgY+XJuGBBx4Q5HlnZWWhpKQEjDGsXbvWJ4GftwJOZ+vZ2gr+AgMDwRjDhQsXHKYyeTvo9GXOa0pKCpKTk61SvQbO3m73dRUVFbjtttusXufo6QUhpB1pjZFx7ZG7I23dHbnsaZmd1hwxb9mmM5UQLNsxXq4TvMbZWpmuVF3wpBKAs1UXysrKWE1NDSsrK3Or6oLlPluOGk9MTLS7f2eOs+U+IyIivDoS3VdtOhq9b6uObq9evXx2fvbq6Pr6unIVWNavX89WrlzJ1q9f3yqVWFq78osttj7XamqvsPCBg9jw4cNFqy4MHz7cayUL/bnqAiGEyou5zd0PN2fL5ax9P1cQrHircLonNVBdCd5cbYtrJ/GBB/nX7N6z1+n6rq15Xo726+0g0jKomD9/vlf2L0Wg4o02nfnCZjKZ2K5du9icOXPYnDlz2K5du1ot8GvtgNOSnCegETv36dOnMwCidZUBsOnTp3ulbQp0CfFvFOi6ydc9utt37rb64PZGcOaterPe7qm6VNfAcj8sYOE3RPHHFxDSlakib2C5H7ZeT5w3zsvXQaS/9KZJSc5BnS1yviYtz91RXWVbtY3dQYEuIf5NwRhrTugjTqupqUHXrl1RXV2NsLAwp19nNpsRGRmJ6Oho0VzOBx5MxfeVlfjiwFe4Pbuphqdlzun24q1W1RoiIiKQk5Pj05qQrpZCcxVXA9MWV3MJneXr8yK+4Wo96PbMsqKKWJ66HK9NaWkp4uPjYTAYRPPwDQYD1Go1dDqdx1UX3L0XEEJaBwW6bvLkw82y6kLLwTnfDXnW7muPL05sl8GZVIGuP6NgjjiD3jvW8vLyMGHCBBiNRoSGWpfTMBqNCAsLQ25uLsaPH+9RWxToEuLf6M4pAXsjlzHE8euVSmW7q/3obhF7QghpydOa0YSQ9oMCXYlw5XJKS0tRWloKAIiLi8MI9V1QKpWyC/jcLWLfHrkzuQeRL/qSaM2y3F/uh/mIenkngKZr1TEwwCeTWxBC/BPdMSW0ZcsWQb7twoUL+dnRxmge4LeTa8AnV+5M7iE37TF9x130JdGaZY3jvz/yd2DwUwCAffv2Y+WyxT6pGU0I8U8BjjchvsDl6UZHR8NgMMBoNMJgMCA6OhqpqanYsmWr1IcoCa6I/fHFibK+URPbCgsLERkZifj4eEyYMAHx8fGIjIxEYWGh1IdG/MgYzQPY8EE+Kg5X8csSxtyP8kNHsOED301uQQjxLzQYzU2eDEBwVHlBq9WioqICVVVV1OMgQzSK3jbLgZyWM5FlZWXxvXQUwBCg9Qbp0WA0Qvwb9ehKQK/X4/jx45g2IwPXZW6DalYJH9wEBAQgIyMDx44dg16vl/hIiRRCggL/+lFaLFPyy+Wq5fTZMTExCA0N5afP1mg0SE9Ph9lsdrwzQgghsiDfu6aEzpw5AwAYMmQIUPy51fqoqCjBdnJD+ZdEDPcFMS8vT/AUBGj+gqhWq6HX69tdVRJn0XunGQ3SI4QAFOhKonvP3lB0CMbX5d/zyyxH1cu59E1hYaHVhBjcAD25PZLm8pVJE+6LH/dFsCW5f0Gk944Q9/SDe1rWhMn6qQghckSpCxJ4dlctBkwrwLPb/uCXDV+4C0Pm7sCQuTtkW/rG0QA9Gmwkb5a1UcXI/QsivXcIIcQaDUZzkycDEBwNkji5NEl2g2pogB5xhP5GxNF1EddagzppMBoh/o2e4UiAyx3btHkr5n0dDAA49fpEsIYrCA9XyS7IBSj/0hLlWYqzrI2q1Wqtps+Wa21Ueu+Io3rUhBCAAl1JcD0JDz34AOZ93fRh/O7qtxB+rXyDGsq/bEJ5lvbZmz5bjl8QAXrvEEKIPX6To7t48WIoFApMnTrV5jZvv/02YmNjcdVVV+Gqq65CQkIC9u/fL9jm7NmzePzxx9G3b1+EhIRgzJgxqKqqEmxz5coVTJ48GT169EBoaCjGjRuHs2fP+uK0nPbQww8hLi5OlkEuQPmXAOVZOislJQVHjx6FTqdDbm4udDodqqqqZBnkAvTesaVywWhULhiNA3MS+GUH5iTwywkh8uAXObpffvklHn74YYSFhSE+Ph6vvvqq6HYTJ07EnXfeCbVajY4dO2LJkiXYvHkzvv/+e/Tr1w+MMajVanTo0AHLly9HWFgYVqxYge3bt6OyshKdO3cGADz//PMoKSnB2rVr0bVrV7zwwgsICAjA3r17nT5mysvyLrnnGcr9/In76G/HPuPlOkTPb0pZWJ0QgoT4u716HeheQIifYxIzGo3s+uuvZzt37mT33HMPmzJlitOvNZlMrEuXLmzdunWMMcYOHz7MALCKigp+G7PZzHr27Mnefvttxhhjf/75J+vQoQPbtGkTv82hQ4cYAGYwGJxuu7q6mgFg1dXVTr+G2FdQUMAUCgVLSkpiZWVlrKamhpWVlbGkpCSmUChYQUGB1IfoMzqdzu7fYFlZGQPAdDpd6x4YaRPk/N6xp6CggIUPHMTCZxaz8JnFTNEhmKlUKq9eD7oXEOLfJE9dmDx5MhITE5GQkOB44xZqa2vR0NCA7t27AwDq6uoAAB07duS3CQgIQHBwMD7/vGlihoMHD6KhoUHQ3o033ogBAwbAYDDYbKuurg41NTWCH2+orTdBNatEMDuaXHH5l+Xl5VCr1QgLC4NarUZFRUW7z7+kPEvX0XunmZzfO7ZwqUBDh9yAjdoeqJhzD8r2lFIqECEyI+lgtI0bN+Krr77Cl19+6dbrZ86cib59+/JBKxewZmRkYPXq1ejcuTNWrlyJn3/+mQ8Qfv31VwQFBaFbt26CfV1zzTX49ddfbbaVnZ2N+fPnu3Wc9lhOV6rfo/f6Y7W2JiUlBcnJybKrOmCZZxkTE2O1Xq55lsR5cn3viGk5XTSXzsFNF63VapGeno7k5GRZXh9C5ESyHt1Tp05hypQp2LBhg6AH1lmLFy/Gxo0bsXnzZv71HTp0QGFhIY4cOYLu3bsjJCQEOp0OY8eOtSq746qMjAxUV1fzP6dOnfJof7X1JuRtKkT0LcP5ZfcnP4iBNwxB3iZ59zQolUrExcVh/PjxshmgFxsbC5VKhaysLDQ2NgrWNTY2ynYSETG19aa/fswWy8z8cjmT43tHDFdyLTMz02bJtWPHjkGv10t0hISQ1iJZj+7Bgwdx7tw53Hrrrfwys9mMPXv24I033kBdXZ3ND+mcnBwsXrwYu3btwtChQwXrhg0bhm+++QbV1dWor69Hz549cfvtt2P48KaAsnfv3qivr8eff/4p6NU9e/YsevfubfN4g4ODERwc7MEZCzXVeAwGtIv5Zf3/tQEAkHEQCFYWyvJxo1xRjVjnUX1U4ohlKpBYXWpKBSJEPiQLdEeOHIny8nLBsieeeAI33ngjZs6cafOGvnTpUixatAg7duzgg1cxXbt2BQBUVVXhwIEDeOWVVwA0BcIdOnTAp59+inHjxgEADh8+jJMnT+KOO+7wxqk5ZJmuYIucH6vV1pv4YKZywWjZzE1PNWKJp+T63mmJS/F54403sHr1aqu61M8884xgO0JI+yXZp2CXLl2sBt507twZPXr04JdPmjQJ/fr1Q3Z2NgBgyZIlmDt3LnJzc6FSqfic2tDQUISGhgIANm3ahJ49e2LAgAEoLy/HlClToNVqMWrUKABNAfBTTz2FadOmoXv37ggLC8O//vUv3HHHHaK5kb6g1+txcsU47N6tQ9TfbrWannLfvv24d8kx2c1kRCjP0hlcDVRbU7sSEhsbi549eyIzMxMajQZ5eXn8E5KsrCzMnj0bvXr1olQgQmTAr7/unzx5UpBf9dZbb6G+vh6pqamC7ebNm4eXX34ZQNOjqGnTpuHs2bPo06cPJk2ahH//+9+C7VeuXImAgACMGzcOdXV1GD16NN58802fnw/nzJkzYA11GP63aARY3JxDgpQICQrE8L9F89vJieXc9M3Lmv9fLr1TXJ4lESf2d8C9d+SK3jvWAgICkJiYKDoY7YEHHsDBgwclPkJCSGvwiwkj2iJPioSXlpYiPj4eBoMBQ28dbvWo0WAwQK1WQ6fTySrgUc0qsbueci+JJXpM34zeO0KWn7FiT+q8+RlLE0YQ4t/ke2eQkOUI+6KiIsFNiEbYEwrgnBMSFCi7AI44h+pSE0I4dAeVAI2wF0e5l4S4h947QlSXmhDCkXxmNLmimYyshQQF/vVjnbcsh15Nqg9L3CX3905LVJeaEMKR3yegH6ER9sQS1Yd1jVh9VHrvEMD6qdlL02fhiZI/AABRh97BxzJ9akaIHFGgS/wO5V4SRwoLC5GWlmZVH3X58uWyfBrCofdOM8u61CNH3osB0woAAN9XVsr2qRkhckRVF9zkjZG2dLMmlixLRInlWcrxEbSYwsJCpKamQqPRIDMzU1Aflctvp/cPAZreU2azGbo9ZXhRVwsA2JcRjy6dggB45z1FVRcI8W8U6LrJ0w837mZ9f5IWFYOfAgCs1XTHiqXZdLOWOaq6YJvZbEZkZCSio6MF9VGBptxLrVaLiooKVFVV0WNp0ipl1yjQJcS/0WA0CZjNZqSlpUGj0WDjBxv55SNG3IaioiJoNBqkp6c7NVVwe2Q2m1FaWoq8vDyUlpbK9joQa3q9HsePH0dmZqYgyAWaJgjIyMjAsWNNswrKEb13CCFEiLqKJKDX63Hi9BmseT8XV0zNHercaPuXps/CvXffKcspgCmdg/Is7aH6qLbRe8caV3btwsV6xC7VAQD0M+LRIzRIysMihLQi6tGVwJkzZzBgWgEeL/5dMKp++MJdGDJ3Bz86WG43ay6dIzo6GgaDAUajEQaDAdHR0UhNTUVhYaHUh0gkZlkfVYxc66PSe0ccV16tU1Dzra5TUIBsy64RIkeUo+smT6cAfnz7JbvbnFiikdUUwJR7SZxBfyfW6JrYxg3wvHCxDrFLSwEA+hlx6BEaDIAGoxEiBxTousmTDzez2YyBNwxB1E034d33N2BE1m4ATSPsOwYq8PdH/o7K8m9kdWNqzbnp/R3Vh7XPsuqCrVkF5fSont47ttFgNEIIpS5IQKlUYsXSbHz8URGe/L+J/PLyrw9iwsOp+PijIuTk5MgquKHcyyaFhYWIjIxEfHw8JkyYgPj4eERGRsr20bMYmlVQiN47hBBiGwW6EuFu1hXff88vGznyXtnerCn3kvIsXZGSkoKjR49Cp9MhNzcXOp0OVVVVsnvfAPTesadywWhULhiNA3MS+GUH5iTwywkh7R+lLrjJW4+r6DF1E7nnGcr9/In76G/HMV/WpqbUBUL8G/XoSqzOzPD49kvI+DYMI9R3yfZGxM1NX1xcDK1WK+jR1Gq1KC4ubtfpHFQflrhL7u8dZ1jWE9bv0VN9YUJkhAJd4jfknHtJeZauq603QTWrBKpZJfzoermS83vHkcLCQgwdciNOLNHgxBINxtx3L+W9EyIjFOhKpLbehNp6E4yX6/llu3R6GC/XyfqmLdfcS8qzJJ6S63vHHsp7J4RQjq6bPM3Lao2yN6TtoDxL53FfBGvrzfyEKwfmJCAkqOm60EQABBC+pwoKCrB3715+LMSdd96JcePGeeU9RTm6hPg3uiP4qcLCQln3xMgNl2eZmpoKrVZrsz6s3INcAPygIkuWMwzSl0TvkGqgbMt21Wo1ysrKbB6HrYFmXN77s88+i0GDBllNjfzMM8/go48+kuVU64TICaUuSMBsNgP50xB16B3sz7yXX35gTgIqXr4PUYfeQXp6umwHTMg195LyLNsGs9mM0tJS5OXlobS0tFXep8626a33jqf1nN09Dst2Jz72BB7ffgmD5u7EvaPGuHwcXD57ZmamaOrC7NmzBdsRQtonCnQloNfrceLHI5iTMQOhHTvwy0OClAjtGITZs6bTCHuZ8laepT8HY2JcCYy4Gqjzb6njl516fSJOrhgH5E/zaTAmRQDY2m1Kldfast1ffz3Lr1MoFFi/fr3gOPI2Ff411qH576y23syPf+jVqxcCAwOh0WhQVFSEmJgYhIaGIiYmBkVFRUhMTERgYCB69erlk/MhhPgHCnQlQCPsxbX2AD1/DQaVSiXi4uIwfvx4xMXFufy4uC0GY64ICQrE9uKteHJS86yCZ06dQNmeUgwdcoPPgjEpAkBn2+TeO7aCPmeZzWakpaXZDA41Go3dp03uHodlu7kf5mPorcMRENSRXz/6/iTMefkV3HTzLfxxZBwMxpC5OwRpK8MX7sKQuTv4VAaTyWSzZF9mZiZMJvk8MSJErmgwmps8GYDgydz0UuTNtVabngzQc7UgfGFhIdLS0qzy9pYvX+5U76k7BejdbdOVtrjASKPRIDMzk8/zzcrK4vN8HZ2fO9fS3TbdGVjGDTK6aegtqBj8lOA4nRm450mb7g4W9HWbA2dvt3q9GEdtevLZBLj/HrZs9+9FFxzuw2AwYPyW3+1ul31zDSZMmACj0YjQ0FCr9UajEWFhYcjNzcX48ePt7sseGoxGiH+jwWgSiI2NhUqlQlZWlugNLDs7GxEREYiNjRW8ri0FZ+625+hYvJGnahmY5eXlCQKz1NRUn+TDutum5TV0pGVvHPd3xfXGabVapKenIzk52WEw1rys+f9tBWOetOnOwDJukFFeXp5VMMZNrqFWq20OMvK0TVsTekjZprMctSnV0yZBu0WfOdw+KioKJ+/piTXvrkGiNkX0y8P+ss8BNJXmEwvaqWQfIfJAga4ELEfYJycnY8yYMejUqRMuX76M7du3o6SkxGqEfVsKztzBD9C76Sa8+/4GjMjaDaDpxtUxUIG/P/J3pH/4jVXA5Gpw1paCQbHHvfba8vdgzFsj26UIxvy9zcoFDwEQ9hi7w7KeszvBYeWC0VbHYRl8OtOu2D7+35huuH/USGz7eBu/HWuoQ/i1fQT7DglS8u8LdzsUCCHtCwW6EklJSUF6ejpee+01FBcX88uDg4ORnp4uCCDbUnDmbnvcAL2N69dZDdALCQrE7FnTRQMmV4OzthIM2urJtdeWvwdjYtwJjKQIxvy9TbH31IE5IxESFOhSm54Gh2LHYRl8utMuALyxcjlU1/ZFQvzdVsdRZxbPvqOSfYQQgAajSaawsBA5OTkYNWqUYJDJqFGjkJOTIxjYwgVKtgZVZGRk2K3SwA3OsDdooyVP2nSnvdYK0tpKMOhsuoIlT2dX46oZHJiTwC87MCeBX+6LNkOCAv/6se6VsxUcWQZFjY2NgnXOBmPUpnibXHBYXFwMrVYr+GzSarUoLi5GTk6O14ND8XYv8uu3bd+GV155Bfv377c6jpCgQBxfnIjjixOtzosr2fdd5WGM3/I7ohftwZ33xFPJPkJkhHp0JeBqb2lbCc480bL3qmVvpa2AydWeMn/vmXOWWOApRW+cFI+HpeipayttckGfJ7jgMC0tDWq1ml8eERHhdHDoznHYajc4OBiN9XV49NFHXT4Obr/3jU1E9Pym9+u2j7chIf5u6sklRC4YcUt1dTUDwKqrq11+rU6nYwCYwWAQXV9WVsYAMJ1O59b2LV2qa2CX6hrYeeMVFj6zmIXPLGbnjVf45d44Rk/bM5lMTKVSsaSkJGY2mwXrzGYzS0pKYhEREcxkMtk8R64tW214ox1X23O3TbFr2HQdL9ttr6CggCkUCpaUlMTKyspYTU0NKysrY0lJSUyhULCCggK7x+rquXmrTXdMnz6dBQcHMwD8T3BwMJs+fbpP2mOs6VxVKpWgzYiICJ+do1RtMtb0d6vT6Vhubi7T6XQO3xO+areurs7t43Dns8hVntwLCCG+R4Gumzz5cMvNzWUAmNFoFA0qampqGACWm5vLGGs7wZkn7THmWcDkSlttKRi0bMeVttp7MMZdT41Gw1atWsXeffddtmrVKqbRaHwaXDMmTQDoSptSBaj+yPK9I/bjDRToEuLfKNB1k7d6dMUCprKyMqboECxY3paCM3fb49psjYCprQSD7lxDxvw/GPO0HW988WuPxP7GVCqVz3t//RUFuoQQCnTd5MmHm8lkYuEDB7HEBx5kZ6trBY/UjJfrWOIDDzJV5A1WAU5bCc48ZTKZ2K5du9icOXPYnDlz2K5du3wStLTnYLA98zSVp72y/GJqMBiY0WhkBoPB5ykk/oxSFwghNDOamzydDcfRDELzb6nDvK+DAQgHOwUrFe12ZjSOpxNjkPYtLy+vVWa8aks8nbmtvfP25DWWaGY0QvwbVV3wU1yQC1jXTvVW4X1nKZXKVmtTiokx2goppn/2R76oYtHWSTFxByGEtAXUo+smT7/Fc5MqGC/X4/ZsHQDgtfgQvKirtfs6T0sH+TPqlbKNermb0d+JNerllg716BLi32jCCIlwRdu7dArilyXEx7pVtL+98HRijPaK6+WOjo4WFPCPjo5GamqqYHIROZBqUgN/5unEHe2d2WxGaWkp8vLyUFpa2jTlOCFEFijQlZjlB65+jx7BSoXLsxm1F1JMjOHvWk4uEhMTg9DQUH5yEY1Gg/T0dNnduLnJBcrLy6FWqxEWFga1Wi3bGa88nUWtPSssLERkZCTi4+MxYcIExMfHIzIyUnZfEAmRKwp0JVRYWIjo6KH872PvHyvrD2DqlbJGvdy2paSk4OjRo9DpdMjNzYVOp0NVVZXsglyAerltoachhBDK0XWTp3lZ3Afw/UlaVAx+CgCwVtMdK5Y2T+0ptxs25V5ao9xL4gqxXO6IiAjk5OTQ54mPPk8oR5cQ/0Y9uhIwm82YNiMD9ydp8e77G/jlUX+7Fbkf5uP+JK0sH0dTr5Q16uUmrqBe7mb0NIQQAlCPrts8+RZfWlqKx7dfsrvNiSUa6HQ6WZYCol6pZtTLbZ8v66OStq21noZQjy4h/o16dCXg7GAqOQ26skS9Us2ol5sQ99DTEEIIQBNGSKJPnz44+dgY7N6tQ9TfbuUnhOBmQNu3bz/uXSLvD+DWnKTC33EVBtLS0qBWq/nlERERsszlBprrUNfWmy2WNf8/9ewSy0oUYk9D5FyJghA5odQFN3nyuKq+vh5hYWG47777kLepAFEv7wTQ9Oi1Y2AAkpOTsWvXLlRXVyMoKMjB3ohc0MxozRxNod2eJ1ZxhNI5mlnOtJiRkcHPtJid7b1Bv5S6QIh/k+8noITKyspQV1eHkpIS/P2RvwN/VV3Yt28/Vi5bjJKSEjDGUFZWJtteTbpZW6NebkJcQ09DCCEUPUiAy719//33MWfOHJzYqgEA3Luk6QP4/fffx6OPPirbHF1CHOFmCaytN1ul/sgVpXOIS0lJQXJyMj0NIUSm5PnJJzEu93bgwIE4evSo1Qfw/v37BdvJCd2sbaNe7mZi587NIChX3N+GJe5LACDvdA56GkKIfMn3riChloMkLD+A5T5Igm7WhBBCCPEWCnQlwJWMSk1NhVartTlIgh6tEYB6ue0JCQqkLz9/oXQOQgixJt87pMS4QRLTps/C+C2/A1v24OSKcQjv10fWgyToZm2NermJMyidwz5K/SFEnuidLjWFQuoj8Ct0syaEEEKIt1D0IJG8TYV49NGJGH1/Eir/WrZt5268viIHD42fiE15G2Tbq0uEqJfbNqotbI3SOYQo9YcQeaMJI9zkSZFws9mMgbO3290m4MN/oaqqSvY3bdKMHr0KFRYWIi0tDcePH+eXqVQqLF++nL4kEp6vJxehCSMI8W8Bjjch3qbX6x1uc+zYMae2I0SOuBmvoqOjYTAYYDQaYTAYEB0djdTUVBQWFkp9iIQQQvwA9ei6yZNv8Xl5eZj42BP49dezqEMgYpeWAgD0M+LQIzQYRuNF9L76KuTm5mL8+PE+OHpC2i6z2YzIyEhER0ejqKgIAQHN39cbGxuh1WpRUVEh2ycilM4hZJm6IJb64+mTEerRJcS/UY+uBLiJICorKwFYDkZTWCyX54QRHLPZjNLSUuTl5aG0tBRms9nxi4gs6PV6HD9+HJmZmYIgFwACAgKQkZEh2ycihYWFiIyMRHx8PCZMmID4+HhERkbKuoc7JCjwrx+lxTIlv5wQ0r659S6vqakRXa5QKBAcHIygoCCPDqq9i42NxYBpBXi8+HegWNe8fGnz/8t1wgiAci+JfdzU2FFRUaLrueVym0KbS+fQaDTIy8vja3NnZWUhNTVV1mULCSHy5VaPbrdu3XDVVVdZ/XTr1g2dOnVCeHg45s2bh8bGRm8fb7vgzGPEnJwcWT5upNxL4gj3pKOiokJ0PbdcTk9EzGYz0tLSoNFoUFRUhJiYGISGhiImJgZFRUXQaDRIT0+X9ZMRrhrF8cWJ1JNLiIy4laP73nvvYfbs2Xj88ccxYsQIAMD+/fuxbt06zJkzB+fPn0dOTg6mT5+OzMxMrx+0P/A0L6u23oQtW7Yi49/zAO1iAMCp1ydiQN/eyMrKwviH5NfzQrmX9lHuZRP6O7FWWlqK+Ph4GAwGxMTEWK03GAxQq9XQ6XSCKceJ5yhHlxA/x9xw7733sg8++MBq+QcffMDuvfdexhhj7733Hrvhhhvc2X2bUF1dzQCw6upqj/ZTU3uFhc8sZuEzi9n2nbuZyWTy0hG2PTqdjgFgBoNBdH1ZWRkDwHQ6XesemB8oKChgKpWKAeB/VCoVKygokPrQJFFQUMAUCgVLSkpiZWVlrKamhpWVlbGkpCSmUChkd11yc3MZAGY0GkXX19TUMAAsNze3lY+s/fPWvYAQ4htupS6UlZXhlltusVp+yy23wGAwAADuuusunDx50ul9Ll68GAqFAlOnTrW5zdtvv43Y2Fg+VSIhIQH79+8XbHPx4kW88MILuPbaa9GpUycMGTIE/+///T/BNr/++iv+7//+D71790bnzp1x6623oqCgwOljJb5BuZfiKJ3DGjeFdnl5OdRqNcLCwqBWq1FRUSHLXFRK53CMBrgSIlPuRMfXX389mzlzptXymTNnskGDBjHGGPvyyy9Z3759ndrf/v37mUqlYkOHDmVTpkyxud2ECRPYqlWr2Ndff80OHTrEHn/8cda1a1f2888/89s8/fTTbODAgUyn07Fjx46x1atXM6VSybZs2cJvc99997HbbruN7du3j/3444/slVdeYQEBAeyrr75y8gp451s89dIJUY+uNZPJxFQqFUtKSmJms1mwzmw2s6SkJBYRESHbJwEmk4npdDqWm5vLdDqdrK8D/Z3Y5svPWurRJcS/uRXobtmyhQUFBbGhQ4eyp556ij311FPs5ptvZsHBweyjjz5ijDH25ptvspdeesnhvoxGI7v++uvZzp072T333GM30G3JZDKxLl26sHXr1vHLbrrpJrZgwQLBdrfeeiubPXs2/3vnzp3Ze++9J9ime/fu7O2333a6bU8/3Cwfver0ZXz6QuIDD8ry0StjdLMWQ8E/cRalc4izvC4Gg4EZjUZmMBi8dl0o0CXEv7kV6DLG2E8//cRmzpzJHnzwQfbggw+yWbNmsWPHjrm8n0mTJrGpU6cyxpjLgW5NTQ3r2LEjH1wz1tSjO3z4cPbzzz+zxsZGtnv3bhYaGso+++wzfpv77ruPJSYmsgsXLjCz2czy8vJYSEgIq6qqstnWlStXWHV1Nf9z6tQptz/cWgZ0l+oa+EDXeLlOlgEdh27WQpR7SVwh1nMZEREhu/cNpzW+PFOgS4h/czvQ9Ya8vDwWFRXFLl++zBhzPdB9/vnn2XXXXce/nrGmgHTSpEkMAAsMDGRBQUGCHl/GGPvjjz/YqFGj+G3CwsLYjh077LY1b948wc2D+3Hnw43rpdPpy9ilugZ23tg8IO288QrbvWcvU3QIlm0vHd2sm1GPrmOWXxQv1TVIfTiSo3SOZq3x/qFAlxD/5nYxwT///BP79+/HuXPnrOrlTpo0yeHrT506hSlTpmDnzp3o2LGjy+0vXrwYGzduRGlpqeD1r7/+Or744gts3boV4eHh2LNnDyZPnoy+ffsiISEBAPDvf/8bf/75J3bt2oWrr74aRUVFePjhh6HX6xEdHS3aXkZGBqZNm8b/XlNTg/79+7t83EDzYKqmCSN2CNZxU1QOmFYgu0FXnJSUFCQnJ1MpLTRNLqJSqZCVlSVaSis7O1vWk4sQa0qlkkqI/YUGuBJC3Ap0P/roI0ycOBEXL15EWFgYFIrmaWwVCoVTge7Bgwdx7tw53Hrrrfwys9mMPXv24I033kBdXZ3NwCYnJweLFy/Grl27MHToUH755cuXkZmZic2bNyMxMREAMHToUHzzzTfIyclBQkICfvzxR7zxxhuoqKjATTfdBAC4+eabodfrsWrVKqsKDZzg4GAEBwc7vjhOcHbks5xHSNPNuolSqcTy5cuRmpoKrVaLjIwMfsar7OxsFBcXIz8/X5ZfAmrrTX/912yxrPn/aVIAYlmNQqy+MFWjIKT9c+tOkJaWhieffBJZWVkICQlxq+GRI0eivLxcsOyJJ57AjTfeiJkzZ9q8cS9duhSLFi3Cjh07MHz4cMG6hoYGNDQ0CHq9gKZgget1rq2tBQC72/habGwsrrnmGgz5/m18uOlDXDExvid3f+a9eHzieHz9zdeIXfRTqxwP8W9cKa20tDSo1Wp+eUREhCxLaXGGzN1htYx7HwHA8cWJrXk4fqW23sRfn8oFo2Ub9NMTEUKIW59+p0+fxosvvuh2kAsAXbp0sXqc1LlzZ/To0YNfPmnSJPTr1w/Z2dkAgCVLlmDu3LnIzc2FSqXCr7/+CgAIDQ1FaGgowsLCcM8992D69On8VMSfffYZ3nvvPaxYsQIAcOONNyIyMhLPPvsscnJy0KNHDxQVFWHnzp0oLi52+3xc1djYiO0lWzHh4VS8NH0Wv/zJ/5uI7SVb0bNnz1Y7Fn9EN2ohSucgxHX0RIQQ4lb0MHr0aBw4cADXXXedt49H4OTJk4Jv4G+99Rbq6+uRmpoq2G7evHl4+eWXAQAbN25ERkYGJk6ciN9//x3h4eFYtGgRnnvuOQBAhw4d8PHHH2PWrFlISkrCxYsXERkZiXXr1uH+++/36flw9Ho9zp8/j+zsbKxevRojR96LAdOaJqz4vrISixYtQmZmJvR6PT2+JzxK5xCqXDAaQFO6AteTe2BOAkKC5Bu0UDqHNXoiQoi8KRhjzNUXvfPOO1iwYAGeeOIJREdHo0OHDoL1DzzwgNcO0F95Mr95Xl4eJkyYAKPRiE6dOln10tXW1iIsLAy5ubkYP368j87AP1neqMWCFzneqAHq4baHrk0z1awSu+vlnM5hNpt98kTEk3sBIcT33LojPP300wCABQsWWK1TKBQ0taIDLQdIxMXFNd+st2/HmsSrBNvJCeVdEkJ8gZ6IECJPbgW6rTVoq72yN0ACAJbn5NAACQKAHkU7IyQokL4A/YXSOQghRIjukhKwHCDxwIOpmPrSS7jwZw2/ftuu3Vi/9l3UmRlCZHZ/ohu1EPVwE1eIffEJCVLSFyJQigshcuX0O/21117DM888g44dO+K1116zu+2LL77o8YG1d9wAiWn7g/GP7TWCdf3/tQEZB4GMgztkF8jQjZoQQggh3uJ09LBy5UpMnDgRHTt2xMqVK21up1AoKNAlxEuoh9sxXw0yassonaMZpf8QIm9uVV0gno+0NZvNiIyMxE1Db8HGDzZaTRrx5P9NxPeVlTj6w/eyv2kTeuxqS2FhIdLS0nD8+HF+mUqlwvLly6lsFAHg+0oUVHWBEP8W4HgT4gt6vR7Hjx/HnIwZCO0YJOihC+3YAbNnTcfxo4eh1+slPEpC/FdhYSFSU1MRHR0Ng8EAo9EIg8GA6OhopKamorCwUOpDJIQQIjG3enTNZjPWrl2LTz/9FOfOnbOqwrB7926vHaC/8vRbvGUt3YCgjoJBR5ULRsNcd1m2tXTbInp83rq4JyLR0dGiU7tqtVpUVFSgqqqK/h1kzte1ualHlxD/5tY7fMqUKVi7di0SExMRFRUFhULh7eNq9yxr6Q69dTi/nHssbThYIdjO16QI1Oy16cnxePJad1IE6PF56+OeiOTl5VmV5wsICEBGRgbUarVsZxekL17NaIArITLH3NCjRw9WUlLizkvbjerqagaAVVdXu/V6k8nEwgcOYokPPMjOVtey8JnFLHxmMTtvvML+vFjLbr/zbtazZ0+2a9cuZjKZvHz0QgUFBUylUjEA/I9KpWIFBQUOX3uproE/9kt1DV5pU2xd+MBBTrXjybm4cz4FBQVMoVCwpKQkZjAYmNFoZAaDgSUlJTGFQuF0u46YTCam0+lYbm4u0+l0Pv+b8He5ubkMADMajaLra2pqGACWm5vbykcmPU/fA+2Vu59Vjnh6LyCE+JZbObpBQUGIjIz0KMCWO6VSCaSuQMXgpzAiqznVY/jCXbj5ld349a4ZOH/+PBISEhAZGelUvmFtvQmqWSVQzSrhH9c5IkWeo6M2x40bZ7Uu6qabfHoutfWmv36EI7O55WLMZjPS0tKg0WhQVFSEmJgYhIaGIiYmBkVFRdBoNEhPT/d4psDCwkJERkYiPj4eEyZMQHx8vNN/E+2V5RMRMdxyuc0uSHnLtnGVKI4vTqTeXEJkxK0c3eXLl+Onn37CG2+8Idu0BW/kZTkaDVwx5x5UVFQgKysLxcXFyM/Pt/so3NXH7p7kObqb9+aozQceeAB79uzBhQsX0KFDB76di1ca+C8E+zLi0aVTkKAdT3M23RmZXVpaivj4eBgMBsTExFitNxgMUKvV0Ol0bj8+5wIXjUaDzMxMREVFufQ30V5Rjq41uibSoBxdQvyb04Fuy5vp7t270b17d9x0003o0KGDYJ0ceg288eHGBXHGy/W4PVsHABhyeB0+zFuPgIAAPojzVdDpSaDmbskeV9t0th1Pg053zsdyQGFoaKjVeqPR6NGAQgpc7LP8EpCRkcF/CcjOzpbll4DW+OJFrFGgS4h/c/r5TdeuXQW/P/jgg14/GLkRC0BnpL2E0I5BgmWOBte4O03smTNnAABRUVGi67nl3Hbe4Ks2Pd2vOxMzWD4+FwssPH18TgOu7ONmF0xLS4NareaXR0REyC7IBaR5P7clNECPEHlyOtBds2aNL4+D/GXIkCGiy31xk/IkUHN3xi5X2xRr57X4ECTEx3rtXAD3RmbHxsZCpVIhKytLtMc1OzsbERERiI2NtbkPeyhwcSwlJQXJyckUwMD3X7zaMqqMQoiMuTOCLT4+nv3xxx9Wy6urq1l8fLwng+PaDG+OtLUcDazTl4luU1ZWxgAwnU4n+vpLdQ3svPGKoHoDt9wWk8nEVCoVS0pKYmazWbDObDazpKQkFhERYXeEv6sjmR21mZiYyLp06cLq6+sF64yX6/h2amqv+ORc3Dkfy6oLZWVlrKamhpWVlXml6oJOp2MAmMFgEF1v72+CyI+33gPtja8ro1DVBUL8m1uBrkKhYGfPnrVafvbsWRYYGOjxQbUFvgp0Ex94sNWCTsY8D9R80SYAq3WJDzzosB1fBp2OzqdlOaeIiAiP26PAhbhKqveAv2qN9xAFuoT4N5cC3W+//ZZ9++23TKFQMJ1Ox//+7bffsq+++oplZWWx8PBwHx2qf/HGh5tYT6yyczeW+MCDbPeeva0SdDLmu0DN3TY9OR4pzoUx39W5pcCFuEqq94A/ao2nIhToEuLfXCovFhAQwJcTE3tZp06d8Prrr+PJJ590JXuiTWqN8mInlmgANA2uycnJ8WkuGc2M5r/E8gtb42+irXBnNrv2rr29B9zl68ooAFVdIMTfuXRHOHbsGBhjuO6667B//3707NmTXxcUFIRevXrJ8sPUV3Jzc1vtJqVUKlt95L69Nj05HinOxZdowBVxVXt7D7iLBugRQlwKdMPDw9HQ0IDHHnsMPXr0QHh4uK+OSxayh9Xh0UcnYvT9Sai84TEAwOqxV+H1FTnYtn0bgvM20M2KAKDARYxl/ejmZc3/Tz27xNeVUQgh/s+tmdG6deuGr7/+GhEREb44pjbB08dVlpMB5H6Yj6iXdwJoevTaMTBA9pMB0ONo4oi7k5bIAb1/mvl6YhFKXSDEvwU43sRacnIyioqKvHwo8sJNBpCZmWlzMoBjx45Br9dLdITE39TWm6CaVQLVrBK+N5MQYh83sUh5eTnUajXCwsKgVqtRUVEhy4lFCJEbt77mX3/99ViwYAH27t2LYcOGoXPnzoL1L774olcOrj2znAwgJCjQqvdJrpMB0ONo4ix3Jy1pz+j9I47y3AmRL7c+9d555x1069YNBw8exMGDBwXrFAoFBbpOoEES4tydzrg9o+BFnDuz2bV39P6xjfLcCZEnt+4Ix44d8/ZxyA4NkiDOouCFEEIIcY/HXR/cWDauvi5xjlKpxPLly5Gamork5GSMGTMGnTp1wuXLl7F9+3aUlJQgPz9fdo/W6HE0cZVY6o9c0fvHNhqgR4g8uf1Of++997Bs2TJUVVUBAAYNGoTp06fj//7v/7x2cO1dSkoK0tPT8dprr6G4uJhfHhwcjPT0dFkOkqDH0dYoeCHOovcPIYQIuVV1YcWKFXj++edx//3348MPP8SHH36IMWPG4LnnnsPKlSu9fYztVmFhIXJycjBq1CgYDAYYjUYYDAaMGjUKOTk5KCwslPoQiR8ICQr860dpsUzJLyeE2FZbb/rrR5jjzi0nhLRvbtXRjYiIwPz58zFp0iTB8nXr1uHll1+WRQ6vN+voiuXoyr2OLrFGj17F0XS3xB5f11umOrqE+De37pRnzpyBWq22Wq5Wq2VXDstdXB3dvLw8XDE1YsjcbQCaA5iMjAyo1Wro9XoaKUwAUC6qmMLCQqSlpeH48eP8MpVKheXLl8sy9YcQQoiQW6kLkZGR+PDDD62Wf/DBB7j++us9Pig5sKyjK0audXQJcRY341V0dLQg9Sc6OhqpqamU+kMANHUeVC4YjQNzEvhlB+Yk8MsJIe2bWz268+fPxyOPPII9e/bgzjvvBADs3bsXn376qWgATKz16dMHig7BOPBNOaL+diu/nMsjO/BNOb8dIUTIbDYjLS0NGo1GkPoTExODoqIiaLVapKenIzk5WbZpDJTS0YQG6BEib27l6ALAwYMHsWLFCvzwww8AgMGDByMtLQ233HKLVw/QX3kjR3fg7O12twn48F+yzdGlm7Q4ui5NSktLER8fD4PBIDrhisFggFqthk6nk2XqD6V0WPNVjjvl6BLi39x+pw8bNgwbNmzw5rHIijPBSU5OjiyDGLpJi6Pr0oxSf2zjUjo0Gg3y8vIQFRWFiooKZGVlITU1Ffn5+bL7ewEox50QuXIpRzcgIABKpdLuT2AgPQ5yVuWC0cgeVgcUzeKXnXp9IhQFacgeVifLmxHlXYqj6yJkOYW2GLlOod0ypSMmJgahoaF8SodGo0F6ejrMZrPjnRFCSDvgUurCli1bbK4zGAx47bXX0NjYiCtXrnjl4PyZNx9XGS/XIXp+00QAqxNCkBB/tyx7cqnkmji6LtbomoijlA77fJH6Q6kLhPg55qEffviBabVaplQq2aRJk9jx48c93WWbUF1dzQCw6upqj/d1qa6Bhc8sZuEzi9mlugYvHF3bpNPpGABmMBhE15eVlTEATKfTte6BSYyui7iCggKmUChYUlISKysrYzU1NaysrIwlJSUxhULBCgoKpD7EVpebm8sAMKPRKLq+pqaGAWC5ubmtfGTSKygoYCqVigHgf1Qqlcd/J968FxBCvM+t8mIA8Msvv+Dpp59GdHQ0TCYTvvnmG6xbtw7h4eEeB99yw+WOHV+cKOuRwJR3KY6ui7iUlBTk5+ejvLwcarUaYWFhUKvVqKiokG0eKqV0iKPUH0Lky+VAt7q6GjNnzkRkZCS+//57fPrpp/joo49s3oSJY7X1JqhmlUA1q0TWU1LSTVocXRfbUlJScPToUeh0OuTm5kKn06GqqkqWQS4AxMbGQqVSISsrC42NjYJ1jY2NyM7ORkREBGJjYyU6wtZHecuEyJwr3b9Llixh3bt3Z0OGDGFFRUW+6mVuEyh1wftMJhNTqVQsKSmJmc1mwTqz2cySkpJYREQEM5lMEh2hNOi6EFdQSoeQr1N/KHWBEP/m0nPyWbNmoVOnToiMjMS6deuwbt060e3oMZBzuN5b4+V6ftkunR7xd6uhVMqvoLlSqcTy5cuRmpoKrVaLjIwMvjRSdnY2iouLkZ+fL6vBRQBdF+IaLqUjLS1NMFV7RESELFM6KPWHEHlzKZKaNGkSFAqFr45Fdrji5ZZe1NUCuqYKDHKs+Ug3aXF0Xezz1WQAbVVKSgqSk5NpchEIU3/EKlHIOfWHEDlwe2Y0ufNGSRnVrBK761eMkGctXYBmALOFros4CnSJLb4uRUflxQjxb3Q3kIjZbAbypyHqppvw7vsbMCJrNwDgwJwEdAxU4O+P/B3pH36D5ORkWQYySqVSlnU+HaHrIsSl/9TWmy2WNf8/BbyEUn8IkTe6C0hEr9fjxI9HsHH9OoR27MAvDwlqys2dPWs61Go19Ho9BTaE2CCW/jN84S7+/+WY/sOhXu5mlPpDiHzJ95NPYjRAwjG6UVuja0KIeyhvmRB5orukRFoOkGjZ80QDJAhxrHLBaABN6QpcT+6BOQkICZJv8ELpHLZR6g8h8iPfTzyJWRZ2FxsgIcfC7hy6UVujayJO7Ly59B+5onQOQghpJt+7gcRogIRtdKO2RteEEM9R6g8h8kPvcgnRAAlCvCMkKJCC/b9QOgchhDSjQFdiKSkp0Gg0ePPNN/Hjjz9i4MCB+Oc//4mgoCCpD00ydKO2RteEOIvSOaxR6g8h8kXvbokVFhYiLS0Nx48f55f95z//wfLly2Xbo0s3amt0TQhxH6X+ECJfAY43Ib5SWFiI1NRUREdHw2AwwGg0wmAwIDo6GqmpqSgsLJT6EAlpE8xmM0pLS5GXl4fS0tKmCVlkjkvnOL44kb4QEUJki6YAdpOn0z5aTkuZ+2E+ol7eCaDpEXXHwACPp6UkRC7EnoqoVCpZPxUhQpapC2KpP558EaApgAnxb9SjKxG9Xo/jx48jMzNTUFoMAAICApCRkYFjx45Br9dLdISE+D96KkKcERIU+NeP0mKZkl9OCGm/6B0ukTNnzkDRIRjXDRosOkDiukGD+e0IIdbMZjPS0tKg0WgEtahjYmJQVFQErVaL9PR0JCcny/KpiNlsplnACCGyR4GuRPr06YMB0wowYunnguWWAyS47eSKbtTW6Jo0456K5OXl2XwqolarodfrZTcbFqVziKMydITID6UuSMSZGc/kOjMa0HSjjoyMRHx8PCZMmID4+HhERkbK+lE0XRMh7mlHVFSU6HpuudyeilA6ByGENKNAVyJKpRLZw+pwamUqhhxexy//f2O6YcgPTb83Pvw66szyGytIN2prdE2scU87KioqRNdzy+X0VKRlOkdMTAxCQ0P5dA6NRoP09HSqSkEIkQ/mJ7KzsxkANmXKFJvb/Pe//2V33XUX69atG+vWrRsbOXIk27dvn2Abo9HIJk+ezPr168c6duzIBg8ezN566y2rfZWVlbH4+HgWEhLCunTpwmJjY1ltba3Tx1tdXc0AsOrqaqdfI6agoICFDxzEwmcWs/CZxUzRIZipIm/gf79U1+DR/tsak8nEVCoVS0pKYmazWbDObDazpKQkFhERwUwmk0RH2Promoij62JNp9MxAMxgMIiuLysrYwCYTqdr3QNrx7x1LyCE+IZf9Oh++eWXWL16NYYOHWp3u9LSUowfPx46nQ4GgwH9+/fHqFGjcPr0aX6badOmYfv27Vi/fj0OHTqEqVOn4oUXXsDWrVv5bQwGA8aMGYNRo0Zh//79+PLLL/HCCy9Y5fm1hpSUFJSXf8f/XvTRx/jiwFf877X1ZtTWm/jyOO0dVaOwRtdEnFKpxPLly1FcXAytVivo6dZqtSguLkZOTo6scpgpncM+qrdMiPxIPhjt4sWLmDhxIt5++20sXLjQ7rYbNmwQ/P6///0PBQUF+PTTTzFp0iQAQFlZGR577DF+8MkzzzyD1atXY//+/XjggQcAAC+99BJefPFFzJo1i9/XDTfc4MWzck2XTsE4vjgRqlkleFF3GdDp+HVym72HbtTW6JrYlpKSgvz8fKSlpUGtVvPLIyIikJ+fL7uBV5bpHDExMVbrXUnnkGLgoy/bpAF6hMiT5D26kydPRmJiIhISElx+bW1tLRoaGtC9e3d+mVqtxtatW3H69GkwxqDT6XDkyBGMGjUKAHDu3Dns27cPvXr1glqtxjXXXIN77rkHn3/+ua1mAAB1dXWoqakR/BDvo7xLa3RN7EtJScHRo0eh0+mQm5sLnU6HqqoqnwQvUvQIutJmbGwsVCoVsrKy0NjYKFjX2NiI7Oxspwa5ejLwsbbeBNWsEqhmlbj0JMqdNp1ti8txj4qKwqpVq/Duu+9i1apViIqKkm2OOyGyIWXeRF5eHouKimKXL19mjDF2zz332M3Rben5559n1113Hf96xhi7cuUKmzRpEgPAAgMDWVBQEFu3bh2/3mAwMACse/fu7N1332VfffUVmzp1KgsKCmJHjhyx2da8efMYAKsfb+ZlXaprYJfqGth54xU+R/e88Qq/XA7kkndpMpmYTqdjubm5TKfT2T0ff74mrpyHL9utqb3idF77pboGt3LgCwoKmEqlErz/VSoVKygocOr17rTrTpsFBQVMoVCwpKQktnvPXr7NxAceZAqFwuHxWr7eYDAwo9HIDAYDS0pKcur17p6nO2060xb3/hk+fLjotRw+fLhH7x/K0SXEv0kW6J48eZL16tWLffvtt/wyVwLd7OxsdtVVVwlezxhjy5YtY4MGDWJbt25l3377LXv99ddZaGgo27lzJ2OMsb179zIALCMjQ/C66OhoNmvWLJvtXblyhVVXV/M/p06d8tqHmyc37faEuw5Tp05lAJhGo2FlZWWspqaGlZWVOX2jdbfd1grWPA1eWuOaOEOKwM9Wu5YDOn0R6Hoa/LnTridtctdI0SGYb1MVeYPD4/TkS5W7X9TdadOVtrgBevauJTwYoEeBLiH+TbJAd/PmzQwAUyqV/A/3YaRUKu0GG8uWLWNdu3ZlX375pWB5bW0t69ChAysuLhYsf+qpp9jo0aMZY4z99NNPDAB7//33Bds8/PDDbMKECU4fvzerLji6aUvRa+ZJm97quQoODhb8HhER4VHPjrPt+jJY80bw4uw18SUpAj+xds9e+JPp9GVsrPYhhwFPawZinrbrjTZraq+wLdt3823++uclh+fqSdUGrh1bP95s05W21q9fzwIDA+1ey8DAQLZ+/Xqbx2gPBbqE+DfJBqONHDkS5eXlgmVPPPEEbrzxRsycOdPmAISlS5di0aJF2LFjB4YPHy5Y19DQgIaGBquR6Uqlks9XU6lU6Nu3Lw4fPizY5siRIxg7dqynp+USLm9Mo9EgLy8PUVFRqKioQFZWFoqXJiE/Px/bi7e6PYCitt6EIXN3AAAqF4x2ek731h60Yfc6FBdjypQpSE5O9vpgGHvtpqamen0wk6dT1qakpCA5OVnymdE8PQ8ul1Js6msANv9OxdpVzSppWnnDY/x2tgZwcu8FS84M9vR0BjZ32vVFm7dnNw9ytXWuUgx89HWb58+fh8lkslu15KOPPsL58+fd2j8hxL9JFuh26dLF6oOtc+fO6NGjB7980qRJ6NevH7KzswEAS5Yswdy5c5GbmwuVSoVff/0VABAaGorQ0FCEhYXhnnvuwfTp09GpUyeEh4fjs88+w3vvvYcVK1YAABQKBaZPn4558+bh5ptvxt/+9jesW7cOP/zwA/Lz81vt/J0JFp5//nmcP3++1QIxwLPgz50Axt51yP0wH1Ev78RmAAtuv8PnQRPXrq+CNW9MWatUKiWfzlaKwM9Ru77UHoM/Wzyp2lC5YDSApvcB9+95YE4CQoLsfxFzp01X2urZsycAx9eS244Q0r5IXl7MnpMnTwpuaG+99Rbq6+uRmpoq2G7evHl4+eWXAQAbN25ERkYGJk6ciN9//x3h4eFYtGgRnnvuOX77qVOn4sqVK3jppZfw+++/4+abb8bOnTsxcODAVjkvwHGwMGPGDMTHx7sViEkV/Pmi54pTtrcMoxPivdKmM+36IlhzJXhxtzfe28SOQ6ogTKxdsYBn9hAjJv491er1rRmIedquN9qsrTdh+MJP+WXOnKtl1QbLzwDAcdUGsb/RkCClw79dd9p0pa1+/foBcHwtue0IIe2LXwW6paWldn+3fJRuS+/evbFmzRqH282aNUtQR7e1OQoWampqHD5usxWISRX8uUPsOogF6id/Ocsv90bQJ0Ww5s0ap1KSIvCz1a7Y38KAvtfYCIRaLxDztF0p2gSaJ+FITU2FVqtFRkYG/1QnOzsbxcXFyM/P92q6jK/b5K7lokWLsGXLFqtrmZWV5VTJNUJI2+RXga6cOAoWvvzySwBt63Gpt3quxAL1RZVdsOiv5ZaBelvqpXMmeFFF3oBht99hszceQKv09Np7KjDs9jskCcIcXT+O+k612Mvd1taCP7F/O8vljq6zp5NwhAQFujy5jbttOtOWo2tZUlLi9X8/Qoj/UDDGmNQH0RbV1NSga9euqK6uRlhYmMuvN5vNiIyMRHR0tOhN+6677oLBYIDBYBANxAwGA9RqNXQ6nVXvquWNTiwIs3WjKy0tRXx8vFtttmzf2WBM7DrwA4xsELuxufqo39H112q1qKioQFVVld0boKvtWuZAiwUvA2Z8ZPf1lQtG8+2tTgjB7+d/9WhQmq2ZqBz9G6wYUWf3PJwJiNxJz3B0/Xw5G5rYIM2IiAjk5OT4VZvuvH/EyGFmNG/8+3l6LyCE+BYFum7yxoebvZv2Rx99hGuuuQYjRoxwOxBrq8HfdYMGo7KyEstWvIrKv0bTOwrUpQqa3G3X1g132v5gu689MCeB//Jy6vWJYA1XAADh/fpYVcVwdGz2qms4Oo7jixMlCfwA29fv8ccfx/XXX+/ToKwtBH/eCnTbI1/8+1GgS4ifk7a6Wdvlyzq6XG1UTycJ8LROaWtOTCBazzbyBp9PnCFVbVpbdYpt1Vx1VDdU7N/H3r+/ozq4uR8WOFX71R9mRps/fz4LDw93uxZye0MzLNrmbr1te6iOLiH+jXp03eTNb/H2ehnayuNSb2h5HYbdfgei5zf1XvoyH1WKXjpHWvbGiuUtW/opayzf4/7t94egVCptpq4EKxVO99zXmZlfVH+wxbJXPjMz06oGsy9TGfydv1Tu8Ce+uCbUo0uIf6NA102t+eHWFh6XEu9qeUMGAP0ePe5PfhD9/7UBgHU6B5dDHT6z2O6+147p7HQu9gj1XX4bLHkr1aa9okC3GTdu4cLFesQubZo4Qz8jHj1CgwB4VsmFAl1C/Jt8P/n8iKMbkhSTBPjDxARyJjaa/Pfzv/I5uU3bCCsV2KqW0ZIr1TXcGUHfWqQoh9eW+PO/XWsTeyLCBbyAvPOWCWnvKNAlfot6lYUc1dflSqKtTghB7N2xNlMX9pd9zm/fluv5SjVxBSGEkLaj9ebRJFZq601//QhrlXLL5aywsBCRkZGIj4/HhAkTEB8fj8jISBQWFkp9aJKJjY1FeL8+GFq5Gj9ljRX05lrWr02IvxshQYGCmr5c729IUKCgHq1l/dmW+/H3AvqWtZDFtJWAnRBCiO9QoCuhIXN3YMjcHYJZy4Yv3MUvlytugFF0dDQMBgOMRiMMBgOio6ORmpoq22CXK3xfXFwMrVYruDZarRbFxcXIyclx2Ovtrf1Irb0E7L5iNptRWlqKvLw8lJaWwmw2O34RIYS0MzQYzU3eGIBA9S6t0QAjx7xVFUOq6hreJOUEEv7MXo1kOV6P5sFodYhdWgoA0M+IQ4/QpnrRNBiNkPaLAl03eePDzd0ZzNozb83O1l5xecunT5/G+fPn0bNnT/Tr18/rM6O1Je0hYPcmKrlmG5UXI0R+5BdJ+RGxD9mWI+nlhgYY2Wavl87d4LQ9VNdISUlBcnJymw/YvcFsNiMtLQ0ajUbwRCQmJgZFRUXQarVIT09HcnKyLK8PIUR+KEeX+BUaYCSO8pbt4wL28ePHIy4uTrZBHFdyLTMz02bJtWPHjkGv10t0hNLiSq4dX5wo6w4FQuSEUhfcRI+rfINydK3RNSHOysvLw4QJE2A0GhEaGmq13mg0IiwsDLm5uRg/frwERyg9b6fr0L2AEP9GPbp+gkZIN2kvFQG8Sa/X48TpM/huyLO4LnOboPQc9dIRS/RExD4qW0iI/FCg6wfow1coJSUF+fn5KC8vh1qtRlhYGNRqNSoqKmQ5kMZRPrKc85Y5tfUmqGaVQDWrRNY1qKnkmm1c+k9UVBRWrVqFd999F6tWrUJUVBSl/xDSjlGgKzHKvRSXkpKCo0ePQqfTITc3FzqdDlVVVbILcmvrTejeszcUHTpaLBNOKiL3XjrSjJ6IiOMG6Q0bNgwVFRWYPHkynnzySUyePBkVFRUYNmwY0tPTZfskjZD2jHJ03eSNvCzKvST2mM1mDJy93e42P2WNlfXfCZXoE0cl14S4soUKhcJm2TXGmFtlCylHlxD/Js+7gJ/gRkjn5eXZHCGtVquh1+vbfAko4houUMEjb9jdjuuly8/Pl12QC0B0BkHLmQblOOkKQCXXWjp9+jQCAwMxduxYm2XXtm3bhtOnT0t8pIQQb6NAV0JUM9Y+XxR3bwssC/5P03THkCFD8HX593h22x8AgFOvTwRruAIACLi2ryzzlolj7aFGsrecP38eJpPJbtm1jz76COfPn5foCAkhviKPyMFPWY6QFpsFjHIv5cey4H/uh/mIenknUPw5DswZCWz7FADQq3tX5Cxe5dGMaO1F5YLRAGynLhACAD179gTguFOB244Q0n7QYDQJ0QhpcdxAq9p6s8Uy4QCs9spewX/O2bNn0a9fP1lPjMAJCQr860dpsUzJL5czqkTRrF+/fgAcl13jtiOEtB/yvhNIjBshnZqaCq1Wi4yMDH6ARHZ2tmxzL+Wcd3nmzBkoOgTjukGDBYE+oEDlgtEwGi+i95I62aazEOIOrlNh0aJF2LJli9XA36ysLFl2KhAiBxToSoyrGZuWlga1Ws0vj4iIoNxLGerTpw8GTCvAiKWfC5ZbBvrcdqQZN7UrEVaiaF7W/P9y7Ol21KlQUlIiy04FQuSAyou5ydslZbw9LWVbJueSUfX19Rg0d6fdbc7+JxXV1dUICgpqpaMibYlqVond9XL+QuCLsmtUXowQ/9Z+I4Y2hkZINxMLZLm8y/aurKwMJ1eMg0KhwOj7k1B5w2MAgP83phveWLkc27ZvQ2P9FZSVldHfCyEuorJrhMhP+48cCGlDzpw5A9ZQh/fXr8fseQuAG5qWJ95/P/q/mIv+g5/CyRXjKEe3BXoi0owqUdhXZ2Z4fPslAGGoHHeXbP9OCJELqrrgJ2iEtDUu7/L44kRZ9OYCzbm3AwcORHn5d/zyzZs3i25Hmh5HR0ZGIj4+HhMmTEB8fDwiIyNlO302VaIghJBmFOgS4kcsS851Du6AygWjUblgNNR33slvEz5wEIbdfgd9IULz5BrR0dEwGAwwGo0wGAyIjo5GamqqbINdYo0rT3jhYj2/7MLFelmULSREzmgwmpu8NQBBzgOviDjLmdG+G/Ks3W3Xjuks28f0ZrMZkZGRiI6OFkzrCjSVjNJqtaioqEBVVZUsrw8R8tUgPRqMRoh/oyhKYnKuGeuIXPMuLUvOYYj9bePj46FSqbB8+XLZlaLjJtfIy8uzOa2rWq2GXq+ngXuEECJTlLpA/JLc8y5TUlJw9OhRrE4IwfyoGrwWH8KvG3J4HdZqumP/jLtk/ZieG5DnaFpXGrhHCCHyRT26EqMR0tYsH93n5eXxhd2zsrKQmpoqm4k0lEolRifEAwCMl+sAXdPfx4d56xHasamGbq+YGBQVFUGr1SI9PR3Jycmy6PUGmgfkVVRUICYmxmo9N62rnAfuyfWpCCGEcChH103ezsuqrTfxaQyVC0bLNjeX8i7F7dilw7O7agGI/30YDAao1WrodDrZPKanvxX7xCZHkGuaC9A8HuLCxTrELi0FAOhnxKFHaDAA98dDUI4uIf6NUheIX+HyLjMzM23mXR47dgx6vV6iI5TG7+d/xYklGlTMuUf0hizHx/TctK7FxcXQarWCqgtarRbFxcXIycmRbZCbmpqKm4begvCZxQifWQydvky2aS5Ac9k1LrAFgB6hwVR2jZB2jgJdPyHHmrFiKO9SnOVjejFyfUzPDdwrLy+HWq1GWFgY1Go1KioqZJPi0pLZbEZaWhoSExOx8YON/PIRI25DUVEREhMTkZ6eDrPZLOFREkJI65BvREX8EuVdirOsryv2mD47OxsRERGIjY2V8CilQdO6Cun1epw4fQZr3s/FFVNzZlptfVNgO21GBu69+07ZVqPgOhUIIfJAObpuorws36C8S9ssB+llZGTwg/Sys7NRXFws2x5MIrRhwwbMLu9md5sTSzRYv349Jk6c2DoH5Ue8PUCP7gWE+DdKXSB+hfIubaPH9MQZ58+f9+p27YncyxYSIkeUuuAnqAxQM8sJE9RqNb88IiJC9gEdPaYXR1VLmvXs2RO/ZDyCUaNG4d33N2BE1m4ATWULOwYq8PdH/o7TgYHo2bOnxEfaurgnIomJiZg+fTo6deqEy5cvY9u2bbIqW0iI3FDqgpu8+biKygCJo+CfOIsC3WalpaWIj4+HQqHA/UlaVAx+CgCwJvEqrFy2GMXFxWCMybIU3dVXX43ffvvN6rP26quvxoULF9xKiaLUBUL8G6UuSIzrZYiOjhY8ppdzGSCOUqlEXFwcxo8fj7i4OApy/1Jbb4JqVglUs0r42qByVVtv+uvHbLHMzC+XI27g4rBhw1DxQxW/PGH0WFRUVGDYsGGyG7jIlS08ePCg6GftwYMHZVm2kBA5kG+3hx/gygBpNBrBwKsYGc92RYgruF5cS9wMgwBkObqey3NPTU3FWE0yvv9rec6SbOz+ZBtKSkqQn58vq8+U06dPIzAwEGPHjrX5Wbtt2zacPn1a4iMlhHgb9ehKiCZHsI96LoWo95I4a4zmAWz4IB/fHznKL0uflYmKH6qw4QP55aKeP38eJpPJ7metyWSS5QA9Qto76tGVEE2OQFxBvZfWKheMBtAU8HPX4sCcBIQEyae3UkzT30owoF3ML+v/rw1gADIOAuMfkuzQfMpWrjY38M7RZ63cBugRIgfUoyshmu1KHPVcEmdx07daBrYhQUqa1pUI9OvXD4Djz1puO0JI+0FVF9zkjZG2NDmCONWsErvr5dhzCYAP8m31Xso5sKOqC0Lc34rxcj1uz9YBAF6LD0H83Woolcp2d30cvTeClQpERkYiKioKW7ZssfqsTU5Oxvfff09VFwhph9rXp10bYzloRKvV2pztSk5BLrFNLDjhei/ljqZ1FQoJCkRhYSGmzcgAUlcAALRJYxHer4/HZQvFyv4B8HkpwJbtqtVqlJWV4cyZM8j41jrAbJnWY++zVo4D9AiRC7pDSowmR7BGeZekrZGq5rOtdrmyhfcnacE9rN+9W4cVS7MdTo5gr3dcrOb3Nddcg8bGRsFALlt1wMX27UxvvFi7wcHBqKurAwCEzyx2eK3os5YQmWLELdXV1QwAq66u9sr+TCYT0+l0LDc3l+l0OmYymbyy37bsUl0DC59ZzMJnFrNLdQ1SHw5xkVR/063dbkFBAVOpVAwA/6NSqVhBQYFTr3f379xWu5s2bWIqlYolJSUxs9kseI3ZbGZJSUksIiKC1dReEW3X1vEUFBQwhULBkpKSmMFgYEajkRkMBpaYmMgUCgXLzs7mlyUlJTGFQmF1DcT27ej8bbWr0WiYQqFg69evZzp9GUt84EGm7NyN39d54xV2qa7Bap/e/vvw9r2AEOJdFOi6iT7cfE+qQLc9Bmie7Nudf4fWDv6485s6dSrr06dPq7VrKwizFeh5o01n2gXADAaD6GvLysoYALZ9525Bu9zPeeMVq2CxpvaKU8Ez93fVcpnYvk9euMjOGy+zkxcu2QxOTSaT0+2azWaW+MCDDq+ltz9X6F5AiH+j1AXit0KCAvHjojHQ6/XYUrCpVR4Jezods7uDolxt13i5DtHzm9I6VieEICH+bpvXpbWnmOYem2s0GuTl5fG5kFlZWQ4fm7vbnuX5aTQazJ492+ftejrhi+UAquZlzf9v62/HUbvJycnYvn07Bg8eLPr66wYNhqJDME7+chZAF75dy5xWjuWyE8ePIy8vz2YdWrVaDb1ej7i4OKtlj2+/ZLXv2KWldts7vjiRrzXubLtp6el4ouQP0fMmhMgTlRfzIzRBglBhYSEiIyMRHx+PCRMmID4+HpGRkU5Pi+zq9ZRqOmZX2y0sLER09FD+97H3j7V5XTw5J3fKvLUMwmJiYhAaGsoHYRqNBunp6TCbzaKvd7VN7vyioqLQt29fJCUlYcuWLT5vF/B8wpchc3dgyNwdguBu+MJd/HJbHLWbmZkJk8mEDRs2iL7+9mV7MWBaARZVdhG06wxXan57ow64q7XGh/8tGieWaJB9c43VFwUqW0iIPFGPLvFLrd0r6K+9cy3bzdtUiEcfnYjR9yeh8q99bNu5G6+vyMFD4ydiU94G/rp4ek7uTFDhag+cJ21ant/UqVMxcuRIFBQU+LxdjlQTvjjb7jvvvIPnnnvOqpSWIwfmJFgNAtXv0WPMkqZ6szExMVavEav5bbmsctxdAIQ9x/oZcegUpMTl+kbELtUJ2uNY1hp3pl3L31s+XaEJVwiRJwp0/YC7QVJ7JUXQ2ZoBmrvtxsbGIuNgMPq/lM8HuQDw7LY/gMFPof/gp5Ce/i/+unh6Tu5ozeDP8vyOHTvWau1yXA3CWnK3uoiz7X711VeipbRO7diJ9es34L6xiQ7b5crXJcTfDZVKhaysLNGa39nZ2YiIiOBLjbVcJvY+7REazFddaNkeJzY21ul2W/5eZ6YS8YQQCnT9AvU0CEkRdPp779yZM2dsPgK3xD0qj4uL8/ic3AnEWjP4szy/K1eutFq7HFeCMDHu1kV2tt0lS5ZgxowZVqW0uF5/WwGm2GN8ezW/Fy1ahI8//hiLFi1CbW2tV+uA22s3KysLJSUleP/997F//36+zQ0f5KPOzKy+6B6YM/Kv3xRUtpAQGaFAl/gdKYJOf++d69OnD86cOYOTK57Ar7+eRUBQR6t2jMaL6L2k+bp4ek7uBGKtGfxZnp8UQadUE744225KSgpSUlJcru9ra/INW3Voe/fujauvvhqZmZnIzMwEYLs2rdi+HU32Yavd4OBgMMbw6KOPCtqctj8YGQeFX3Ytv+hy79WmtmnCFULaPanLPrRV3iwpY6+sjxzrx+7atcup8ki7du0SXe/O9XSljJE97pTFcrZdnU7HXxexdrjrotPpJD0ny9JXZWVlrKamhpWVlXm95FbL82utdsXOt2UptYiICKdLmrlLqnbFStW1Rkm+lm3U1dWJtsn9+9n6ofJihMgLBbpu8sWHG02Q0GTXrl0sMDCQaTQa0QBNo9GwwMBAm4Eux18DNHfbtQzsjJfrBO3YCly9cU7uaK0grOX5rV+/nvXt29cvgr/WQBPNWHPmi643rxsFuoT4N78JdLOzsxkANmXKFJvb/Pe//2V33XUX69atG+vWrRsbOXIk27dvn2Abo9HIJk+ezPr168c6duzIBg8ezN566y3R/TU2NrIxY8YwAGzz5s0uHS8Fur6Tm5vLANgN0ACw3Nxcu/tpj71z7gSu/tTz5wti59e7d282depUCv5kzN4Mb55MZtISBbqE+De/CHT379/PVCoVGzp0qN1Ad8KECWzVqlXs66+/ZocOHWKPP/4469q1K/v555/5bZ5++mk2cOBAptPp2LFjx9jq1auZUqlkW7ZssdrfihUr2NixY/0m0CVNuEf02dnZogFaVlaW4BG9t/l775w7gWt77/lr7+dHXCcW6HpjJruW6F5AiH9TMMYkrcFy8eJF3HrrrXjzzTexcOFC/O1vf8Orr77q1GvNZjOuuuoqvPHGG5g0aRKApoFKjzzyCP7973/z2w0bNgxjx47FwoUL+WXffPMNNBoNDhw4gD59+mDz5s3QarVOH3dNTQ26du2K6upqhIWFOf064pjZbEZkZCSio6NRUFCAvXv38oNp7rzzTowbNw4VFRWoqqry6Sxp/sxsNrs8yIgQObP8XBEbsKjVat36XKF7ASH+TfKZ0SZPnozExEQkJCS4/Nra2lo0NDSge/fu/DK1Wo2tW7fi9OnTYIxBp9PhyJEjGDVqlOB1EyZMwKpVq9C7d2+n2qqrq0NNTY3gh/gGN6q8uLgY48aNQ3BwMDQaDYKDgzFu3DgUFxcjJydH1oGdUqlEXFwcxo8fj7i4OFlfCw7NLEjs8XQmO0JI2yRpXZWNGzfiq6++wpdffunW62fOnIm+ffsKguTXX38dzzzzDK699loEBgYiICAAb7/9Nu6++25+m5deeglqtRrJyclOt5WdnY358+e7dZzOol66ZrZKCtkqW0QIIfZIVSubECItyQLdU6dOYcqUKdi5cyc6duzo8usXL16MjRs3orS0VPD6119/HV988QW2bt2K8PBw7NmzB5MnT+YD4q1bt2L37t34+uuvXWovIyMD06ZN43+vqalB//79XT5uWwoLC5GWlobjx4/zy1QqFZYvXy7boC4lJQX3jU1E9PymGpirE0KQEH+3bIN/Sy2nN5VzLVCaWZA4o1evXgAc15XmtiOEtA+S3QEOHjyIc+fO4dZbb+WXmc1m7NmzB2+88Qbq6upsBjQ5OTlYvHgxdu3ahaFDh/LLL1++jMzMTGzevBmJiU0FyIcOHYpvvvkGOTk5SEhIwO7du/Hjjz+iW7dugn2OGzcOsbGxKC0tFW0zODgYwcHBnp20DYWFhUhNTYVGo0FeXp5g5p/U1FRZ92Ba/g3E3i3fHm5iG80sSJwVGBiIRYsWYcuWLVY5ullZWQgMpC9FhLQ3kr2rR44cifLycsGyJ554AjfeeCNmzpxpM6BZunQpFi1ahB07dmD48OGCdQ0NDWhoaLDKv1IqlWhsbAQAzJo1C//4xz8E66Ojo7Fy5UokJSV5elouM5vNSEtLg0ajEQyQiImJQVFREbRaLdLT05GcnCyrII966cTRdSHEPefOnYPJZEJJSYnojHIlJSVgjOHcuXNSHyohxIskuyt26dLFKleqc+fO6NGjB7980qRJ6NevH7KzswEAS5Yswdy5c5GbmwuVSoVff/0VABAaGorQ0FCEhYXhnnvuwfTp09GpUyeEh4fjs88+w3vvvYcVK1YAaJquUmwA2oABAxAREeHLUxbFDZDIy8uzOUBCrVZDr9cjLi6u1Y9PKtRLJ46uizV3p18m8sJNGZ2VlYXVq1db5f4vWrQImZmZNqfEJoS0TX7d/XPy5ElB8PfWW2+hvr4eqampgu3mzZuHl19+GUDTALeMjAxMnDgRv//+O8LDw7Fo0SI899xzrXnoTqMBEoR4RqwXOyRISb3bRCA2NhYqlQplZWU4cuSIaNnCiIgIxMbGSn2ohBAv8qs7Qcv82Ja/Ww7UsqV3795Ys2aNS+1KWUqY6z1wNEBCbr0MXC/dhYt1iF1aCgDQz4hDj1Df5Em3FdR7SYh7uLKFqampGDduHDIyMqDRaFBRUcGXLczPz5dVihghcuBXga4ccb0MWVlZokXMs7OzZd7LoLDx//JEvZe2hQQFyjJ1gziPyhYSIj90d5SYZS+D2AAJufYyiOWixi7V8f9PAQ0hxB0pKSlITk6mmuWEyAQFun6AehmIq6j30hpNuEKcVWdmeHz7JQBhqBx3F/2dENKOUaDrJ6iXQYhyUYkraMIVQgghYgIcb0Jai1KpRFxcHMaPH4+4uDjZBrlAU49l04/SYpmSX04Ih5twJTo6GgaDAUajEQaDAdHR0UhNTUVhYaHUh0j8RG296a8fYR1qbjkhpP1RMClLDrRhNTU16Nq1K6qrqxEWFib14bRbxst1NAWwCHpM38RsNiMyMhLR0dGigzm1Wi0qKipQVVUly+tDhFSzSuyudycdiO4FhPg36tH1I7X1JqhmlUA1q4R6F9DUUzd0yI04sUSDE0s0GHPfvYiMjJR9D11hYSEiIyMRHx+PCRMmID4+XrbXhZtwJTMz0+aEK8eOHYNer5foCAkhhEiJAl3il+hxtDi6LkI04QpxxYE5I3Fgzkh88tLd/LJPXrqbX04IaX8odcFN3nxcxfXe2hp4JbecVHocLY6ui7XS0lLEx8fDYDCITrhiMBigVquh0+lkNYU2EUepC4TIDwW6bvLmh5svPnzbMgpexNF1sUbBP3EFBbqEyI+8ugpJm0CPo8XRdbFGE64QV1DZQkLkhwJdP0AfvkJ9+vQBAFRUVIj2XFZUVAi2kwu6LuJowhXiLJpCmxD5ocFofoBqxgqp1WoEBwdj0aJFaGxsFKxrbGxEVlYWOnbsKAhq5CA2NhYqlQpZWVmi1yU7OxsRERGIjY2V6Ailk5KSgqNHj0Kn0yE3Nxc6nQ5VVVUU5BJCiMxRoEv8TllZGerq6lBSUgKtViuoLqDValFSUoIrV66grKxM6kNtVdxj+uLiYtHrUlxcjJycHNk+pqcJV4izuCm0jy9OlGVnAiFyQu9wP8J9+Modl2P6/vvvY86cOVaPo99//308+uijsspF5dBjekI8RxOuECIfFOgSv8PlmA4cOBBHjx61uiHt379fsJ3cpKSkIDk5mW7ULdTWmzBk7g4ATXnv1FNHxBQWFiItLQ3Hjx/nl6lUKixfvpy+KBLSDlHqAvE7lrmoCoVC8DhaoVDIOheVQ4/pCXEdTbhCiPxQoEv8DuWiElfU1pv++jFbLDPzywkBmtIV0tLSkJiYiKKiIsTExCA0NBQxMTEoKipCYmIi0tPTYTabHe+MENJm0IQRbvJFkXDKGxPiHjGeOH0GA6YVAAAUBWlYviRL9o8Y6TF9M5pwhTjDVxOu0IQRhPg36tH1E4WFhYiMjER8fDwmTJiA+Ph4REZGyvpRGlcyatvH2/hl3333reyDXEKI606fPg3A8YQr3HaEkPaBAl0/QHlj4mrrTagzMwyLaa4uUGeGrB9J02N6a5ULRqNywWgcmJPALzswJ4FfTggAnD9/HkDzxCotccu57Qgh7YN8n3f6CS5vTKPRoKioCAEBTd89uLwxrVaL9PR0JCcnyy6NgXs0b4mbOQ6Q5yNpuibWaLYr4oyePXsiMDAQWVlZgs9aoHnClcDAQPTs2VPCoySEeBv16EpMr9fj+PHjyMzMFHzwAkBAQAAyMjJw7Ngx6PV6iY6QEELavn79+sFkMtkd5GoymdCvXz+pD5UQ4kXU5SExbtIDR3ljcpwcgXvsfOFiHWKXlgIA9DPi0CM0WMKjkhZ3TWrrzXxP7oE5CYLpo+WKJlwh9nBlC6+++mqUl5dbTbgybNgwXLhwQdZlCwlpjyjQlRg36UFFRYXoSGAub0yukyM0Udj4f/mhx/SEuIcrW5iamsqXEuvUqRMuX76M7du3o6SkBPn5+bJLESOkvaPyYm7yVkkZs9mMyMhIREdHi+aNabVaVFRUoKqqSnYfwFQ2yjYqL0aIe/I2FSLjoPCpkCdlC6m8GCH+je6OErPsZdBqtcjIyEBUVBQqKiqQnZ2N4uJi6mUgVugxvTWqQ02ckZz8ADIOCgd1fvfdt+jSSb4pUYS0Z9Sj6yZvf4sXm389IiICOTk5sq0by5XLspWPSr2YhCP2/lGpVFi+fLls3z9EiPs8scz55zxx9TFMee4pBAV1cPlzhXp0CfFvFOi6iWZGaz30mJ7Yw9Wh1mg0yMzM5J+IZGVl8U9EKNgljlKhOK4+KaFAlxD/RuXF/IhSqcQI9V3I+DYMj2+/hDozfQch4sxmM0pLS5GXl4fS0lKYzWbHL2qHWtahjomJQWhoKF+HWqPRID09XbbXh7huxowZUh8CIcSLKNAlfi9YqcDaMZ2RfXMN9pd9LvughaaLbkZ1qImzKheMxjdz7sW59elW69Y9eRs+S78HN/ywHq+//jrq6+slOEJCiC9QoOsnaGpXcRTUCdF00UJUh5o4KyQoEGv/txq9Hs2xWvfYu1/inpzPcPjGR3HlyhW8+eabEhwhIcQXKNnRT9DUrta4oO7+JC3YI28AANZqumPF0mykpqbKLveSpotuYpmzvTqhNwCqQ02c8+OPPwKdr3duO0JIu0A9usQvWQZ1Gz/YyC8fMeI22eZe0mN6a+o71VCpVMjKykJjY6NgXWNjI7KzsxEREUGzXREAwMCBA/Hzm0/gtYRuyPvHbfzyjNs6ojTtbvxnZFd+O0JI+0A9un6CpnYV0uv1OHH6DNa8n4srpuZBeVxqx0vTZ+Heu++EXq9HXFycREfZulx9TN/eqlVYlpvj1JmBrKXL8eijE6kOdRsgZWUZs9mMm266Cdf+cw1e3PUngC/5ddlfXkH2l3sAAB07dsQ///nPVjkmQojvte07XztCU7sKnTlzBgOmFeDx4t+B4uYUDst0Dm47uZD7dNG203uC0f+lfJR/8ALUajW/LiIiok2kt0gR/EnRpqe1jj354mbZdvjMYrvbjh49GkFBQU7vmxDi3yh1gfilXr16eXW79iA2Ntapx/TDbr/D5wMbfV3ezJ39L1y4ECtXrsT69euh0+lQVVXl90GuJ4Mta+tNUM0qgWpWiUv/rp4O8HSnXSkHUbZse/+Mu7BW0x1DDq/jtzkwJwEVL9+Hmyr/h++++05WKVGEtHuMuKW6upoBYNXV1VIfSru0a9cu1qFjZ3Z/kpadra5l4TOLWfjMYnbeeIUZL9ex+5O0LDAwkO3atUvqQxVlMpmYTqdjubm5TKfTMZPJ5JX9FhQUMIVCwZKSklhZWRmrqalhZWVlTKPRMIVCwQoKCvhrZevHmWO8VNfAb19Te0Ww3aZNm5hKpWIA+B+VSsUKCgpsXoPtO3fz+7tU1+DwHMX2n/thAbtU18DOG6/w+1q7sYCFDxzEFB2C7R6LP7L8tzQYDMxoNDKDwcCSkpL4f0t7LP+NHF1Tb7XpTrsmk4mpVCqWlJTEzGazYJ3ZbGZJSUksIiLC5nvkUl2D1b/7eeMVfrm7bRsv1wn+xhljrKysjAFgOp3O4Xlx6F5AiH+T53Nx4hfsPT49d+4cGq5cwrbiLXjy/yYCg58CAJR/fRArly3GtuJiMMZw7tw5t9vwFXce0Tr7WDYlJQX5+fn45z//KXhMHxgYiKuvvtqp4+NniMqfhhM/HnF4jNHRQwXbAYBGo0FeXh6uGzQYI5Z+DgbgofGp2JS3ASkpKVbXQNEhGAOmFTg8trxNhcg4GAw88gZ0mu4Y/rdofpaziY80VdoYo3mA3/7JSROROPo+bFy/TjAjWmtX5XD1sbonFTTEcpUt/99W255W7XC3XW4QZV5ens1BlGq12ma+vScVaRy1zSnbW4bRCfFUjo6QdohSF/yQFLNeedKmu48y7T0+5fJMs7KyUPH99/zrEkaPxXdDnsWAGR9B0SHYbj5qe35Ee/bsWdxxxx2YP38+Pv74Y5SWliImJgapqanIHlaHygWjcWBOAr/9gTkJfy0byS+Luukmq2N8aPxE5G0qFAQwQ6Jvhk5fhl/OXUDfvn2h0WiwZcuWv2Yh68xvN3bMWKSnp2PTpk38NdDpy3D2wp/YtnM3v92mzVtF0yjMZjMyMjL430eMuM3hLGdjx4x1akY0Z/8tW+u950kFjSFzd2DI3B2CYG/4wl38cl+06Um7UtY6ttd2SFAgymffjRNLNPj9/K8A2n+eOyFyRIGun2mLOXuuciYY5PJRy8rKUHWogp8Z7eOtRfx+wsNVNstGSZET6M50tK5OFMK1kZSUhM8//xxz587F2LFjceedd/JtzJ6ZjmClokXFDvbX65tze999fwOG3jocAUEd+WPs/1I+Mg4GC4KZyhsew+PFv+OO5Qb88ssvmD17Nq6YGq2O+4WX0nD851/wr5ear8Hjxb9jxNLP8ey2P/jt5n0dbBUc1dabsEu3B6fOnBW9DpaB2MF9Bqwd0xknlmgwJ2OG10qtufM+cHeiFymCP6kCTstBlGIcBZeVC0bb/OLGVavxRttUjo6Q9olSF/wIF5xxj4Vb41GsJ2268yjTlceny5cvR2pqKsaNG9dUTmzUWHxd/j2AWgDAywuzUGdmgNkkaKstPaJ19bGsK22MUN9lsc9PrdoZkdXcy3p8caLV/myJiooSPe7ntv/Jpydkans4vT+g+Tr0/9cGi2MWXgexQMxR0Hbi5zOigSiH+7d0933g7mN1TypouFuK0NOqHe62azmI0vL9CDhX69iTijSO2s7KyoJKpUJgYCC0Wi2VoyOkHaJA10+0xZw9d27yrgRqXD5qWloanij5AyjZK9h+3tfBmPf1Dqu2pMoJbI0eM1faCAkK5I+Vz8t1YN/0O9GnT2/849nJ+KTzvQCagxn9Hj3GLLHdOyZ2HGLB0anXJ+Ld1W/hoYcfcuqYOGKBmKOgbV5FGOZVCP89W/5bSjHjnCfBn7uBn1QBp1Kp5L+0tnatY3ttL1q0CCUlTe+L2NjYNlOOjhDiGgp0/YQnwZm7gZmnAaE7XA0GU1JSkJycjIGzt/usDW9xp8fM1V4yd3vluHZ26fR4UVdrs52fjhwCa6jD9RED8Mlf4/y4YCYh/m4+UKr4MB8BAQGC4x5yeB2+/epLnDlzBhXappxhsSCINVxB+LV9/n979x4UVfn/Afx9dnEXXAVFZRAEFE0oBSLxlhY6kTfEsYs6kylpZSreRktMK0tSs7yU99QJNcO0vIyZ5gU1R7RJDS/lCBreBiWrQRek1lg+vz/6sV9WQGF3z+6yvV8z+8ee85zneR/g7H72cM6zVuvOzeoNs9mMqNg4YOAHlfJVVYjVpGiznoStavYcB7ae5XRF8efKgrPih1Zb5zqu+MHNUWO/9957eOihh5z+5RVE5ESunvahrnL0lDIZGRkCQIqKiqpcbzQaBYBkZGRUWlfT6aQcOaaIbdP+HDx4UADIsWPHqlxf3fQ+tRnL1jHs2S8R+6ZRqumUTfZO1WQs+d8+Ff1lqnb7wqKSKtuVT0/Vv39/OXr0qBT8UWhpp9F5W6Yeuzdfxf1r2Sai2nwZm/83PdqBw1mW6dOqmv6quqnWKratye/S3uPg3v2r6VRf5ftw71RqrVq1UnV6NFeMWU6tafdcOTanFyNybyx0beToFzd7ijNbCzN7C8KK49f0Td4Rc2o+aCx7x7Blv8rVpPiydyxbx7h3nMQBz9x3++rGiYuLEy8vLwEgSj29pb+Mzfffrrb5Ks6NW10hVtOi7X4/X0ccB7YWuiKuKf5cWXB6Gha6RO6Nha6NHP3i5ojizNkTuds6rqMKofuNZc8Ytu5XxbHVPmNm7xg13b66dps3b75voWRvvtoUYjVpe7/fpaOOA/pvYqFL5N5Y6NpIjRc3e4szZ56BtFddKAbt4YwzZvaOUdPtbR2nLp01dNVxQHUfC10i96aIiDjsgt//EKPRCD8/P9y+fRu+vr4O67eqb9Vq1aoV5s+fr9rdwK4YE3DOt5a54pvRqG5y1XFAdZta7wVE5BgsdG2k5oubK4ozFoREPA6o9ljoErk3Fro24osbERHxvYDIvfErgImIiIjII7HQJSIiIiKPxEKXiIiIiDwSC10iIiIi8kgsdImIiIjII7HQJSIiIiKPxEKXiIiIiDwSC10iIiIi8kgsdImIiIjII7HQJSIiIiKP5OXqAHVV+TcnG41GFychIiJXKX8PKH9PICL3wkLXRkVFRQCAkJAQFychIiJX+/PPP+Hn5+fqGER0D0X4MdQmZWVluH79Oho2bAhFUVwdp1pGoxEhISG4du0afH19XR3nvphVHcyqnrqUl1nVcfv2bYSGhqKwsBCNGjVydRwiugfP6NpIo9GgRYsWro5RY76+vm7/hlGOWdXBrOqpS3mZVR0aDW95IXJHPDKJiIiIyCOx0CUiIiIij8RC18Pp9XrMnDkTer3e1VEeiFnVwazqqUt5mVUddSkr0X8Rb0YjIiIiIo/EM7pERERE5JFY6BIRERGRR2KhS0REREQeiYUuEREREXkkFrp1TH5+Pl588UU0adIEPj4+iIqKwokTJ6ptf+TIEXTr1s3SPjIyEosWLaq2/QcffABFUTBp0iS3zPruu+9CURSrR2RkpFtmtaVfV2Vt2bJlpZ+roihISUlxu6xmsxlvv/02WrVqBR8fH7Ru3RppaWmw975aNbIWFRVh0qRJCAsLg4+PDx5//HEcP37crpy2ZK0oKysLXl5eePTRRyutW7ZsGVq2bAlvb2907twZP/74o1tmPXz4MJKSkhAUFARFUbB9+3a7c6qVde7cuejYsSMaNmyIgIAADBw4EDk5OQ7JS0QPxm9Gq0MKCwvRrVs39OzZE7t370azZs1w4cIFNG7cuNptDAYDxo0bh+joaBgMBhw5cgSvvfYaDAYDRo0aZdX2+PHj+PTTTxEdHe3WWdu1a4f9+/dbnnt52fdnrFZWW/p1Vdbjx4/DbDZbtvn555/x9NNPY9CgQW6Xdd68eVixYgXWrVuHdu3a4cSJExgxYgT8/PwwYcIEt8r6yiuv4Oeff8bnn3+OoKAgbNiwAQkJCTh37hyCg4OdlrXcrVu3MHz4cDz11FP47bffrNZt2rQJkydPxsqVK9G5c2d8/PHH6N27N3JychAQEOBWWe/cuYOYmBiMHDkSzz77rE3ZnJX1+++/R0pKCjp27IjS0lJMnz4dvXr1wrlz52AwGBySnYjuQ6jOSE1Nle7du9vdzzPPPCMvvvii1bKioiJ56KGHZN++fRIfHy8TJ060awy1ss6cOVNiYmLs7rcitbI6qt+K1PwbqGjixInSunVrKSsrs3kMtbImJibKyJEjrdo8++yzMnToUJvHUCNrSUmJaLVa2blzp1Wbxx57TGbMmGHzGPZkHTJkiLz11ltVHkedOnWSlJQUy3Oz2SxBQUEyd+5ct8taEQDZtm2bbQErcEZWEZGbN28KAPn+++9tGouIaoeXLtQhO3bsQFxcHAYNGoSAgADExsZi9erVteojOzsbR48eRXx8vNXylJQUJCYmIiEhwe2zXrhwAUFBQQgPD8fQoUNx9epVt8zqiH6dlbWiu3fvYsOGDRg5ciQURXG7rI8//jgyMzORm5sLADh9+jSOHDmCvn37ulXW0tJSmM1meHt7W7Xz8fHBkSNHnJ41PT0deXl5mDlzZqV1d+/excmTJ62Of41Gg4SEBBw7dsytsqrFWVlv374NAPD397crLxHVkKsrbao5vV4ver1e3nzzTfnpp5/k008/FW9vb1m7du0Dtw0ODhadTicajUZmzZpltW7jxo3Svn17+euvv0REHHJGV62su3btks2bN8vp06flu+++k65du0poaKgYjUa3y2pPv87OWtGmTZtEq9VKfn6+zTnVzGo2myU1NVUURREvLy9RFEXmzJnjllm7du0q8fHxkp+fL6WlpfL555+LRqORtm3bOjVrbm6uBAQESE5OjohU/s9Ifn6+AJCjR49abffGG29Ip06d3CrrveCgM7rOyGo2myUxMVG6detmd14iqhkWunVIvXr1pGvXrlbLxo8fL126dHngtnl5eXLmzBlZtWqV+Pv7S0ZGhoiIXL16VQICAuT06dOWto4odNXIWpXCwkLx9fWVNWvWuF1We/p1dtaKevXqJf3797c5o9pZN27cKC1atJCNGzfKmTNnZP369eLv72/XBwi1sl68eFGefPJJASBarVY6duwoQ4cOlcjISKdlLS0tlbi4OFmxYoVlmbMKXTWy3stRha4zso4ePVrCwsLk2rVrduclopphoVuHhIaGyssvv2y1bPny5RIUFFSrftLS0ixnlLZt22Z5Ey5/ABBFUUSr1UppaanbZK1OXFycTJs2rdYZy6mV1VH9OiNrucuXL4tGo5Ht27fbnLGcWllbtGghS5curdQmIiLC7bKWKy4uluvXr4uIyODBg6Vfv35Oy1pYWFjpGFcUxbIsMzNTTCaTaLXaSgXj8OHDZcCAAW6V9V6OKnTVzpqSkiItWrSQvLw8u7MSUc1x1oU6pFu3bpWmpcnNzUVYWFit+ikrK4PJZAIAPPXUUzh79qzV+hEjRiAyMhKpqanQarVuk7UqxcXF+PXXXzFs2DCbcgLqZXVUv87IWi49PR0BAQFITEy0OWM5tbKWlJRAo7G+vUCr1aKsrMztspYzGAwwGAwoLCzEnj178OGHHzotq6+vb6VjfPny5Thw4AC+/vprtGrVCjqdDh06dEBmZiYGDhxo2ZfMzEyMGzfOrbKqRa2sIoLx48dj27ZtOHTokKr7QERVcHWlTTX3448/ipeXl8yePVsuXLggX3zxhdSvX182bNhgaTNt2jQZNmyY5fnSpUtlx44dkpubK7m5ubJmzRpp2LDhfe/6dsSlC2plnTJlihw6dEguXbokWVlZkpCQIE2bNpWbN2+6Xdaa9OsuWUX+vX4wNDRUUlNTbc7njKzJyckSHBwsO3fulEuXLsnWrVuladOmMnXqVLfL+t1338nu3bslLy9P9u7dKzExMdK5c2e5e/euU7Peq6p/sX/55Zei1+tl7dq1cu7cORk1apQ0atRICgoK3C5rUVGRZGdnS3Z2tgCQhQsXSnZ2tly5csXtso4ZM0b8/Pzk0KFDcuPGDcujpKTE5qxEVHMsdOuYb775Rtq3by96vV4iIyNl1apVVuuTk5MlPj7e8nzx4sXSrl07qV+/vvj6+kpsbKwsX75czGZztWM4otBVK+uQIUOkefPmotPpJDg4WIYMGSIXL150y6w16dedsu7Zs0cAWG6scQQ1shqNRpk4caKEhoaKt7e3hIeHy4wZM8RkMrld1k2bNkl4eLjodDoJDAyUlJQUuXXrll05bcl6r+quJV2yZImEhoaKTqeTTp06yQ8//OCWWQ8ePCgAKj2Sk5PdLmtVOQFIenq6XVmJqGYUETu/ToiIiIiIyA1xHl0iIiIi8kgsdImIiIjII7HQJSIiIiKPxEKXiIiIiDwSC10iIiIi8kgsdImIiIjII7HQJSIiIiKPxEKXiByqR48emDRpkqtjEFkcPnwYSUlJCAoKgqIo2L59e622v3z5MhRFqfT44Ycf1AlMRA7DQpfIg7300ktVvkH36dPH7r4PHToERVFw69Ytq+Vbt25FWlqa3f0TOcqdO3cQExODZcuW2dXP/v37cePGDcujQ4cODkpIRGrxcnUAIlJXnz59kJ6ebrVMr9erNp6/v79qfRPZom/fvujbt2+1600mE2bMmIGNGzfi1q1baN++PebNm4cePXpYtWvSpAkCAwNVTktEjsQzukQeTq/XIzAw0OrRuHFjAMDChQsRFRUFg8GAkJAQjB07FsXFxZZtr1y5gqSkJDRu3BgGgwHt2rXDrl27cPnyZfTs2RMA0LhxYyiKgpdeeglA5UsXWrZsiTlz5mDkyJFo2LAhQkNDsWrVKquMR48exaOPPgpvb2/ExcVh+/btUBQFp06dUvVnQwQA48aNw7Fjx/Dll1/izJkzGDRoEPr06YMLFy5YtRswYAACAgLQvXt37Nixw0Vpiag2WOgS/YdpNBosXrwYv/zyC9atW4cDBw5g6tSplvUpKSkwmUw4fPgwzp49i3nz5qFBgwYICQnBli1bAAA5OTm4ceMGPvnkk2rHWbBgAeLi4pCdnY2xY8dizJgxyMnJAQAYjUYkJSUhKioKP/30E9LS0pCamqrujhP9v6tXryI9PR1fffUVnnjiCbRu3Rqvv/46unfvbvlPSIMGDbBgwQJ89dVX+Pbbb9G9e3cMHDiQxS5RHcBLF4g83M6dO9GgQQOrZdOnT8f06dMrnXl9//33MXr0aCxfvhzAv0XAc889h6ioKABAeHi4pX35JQoBAQFo1KjRfTP069cPY8eOBQCkpqZi0aJFOHjwICIiIpCRkQFFUbB69Wp4e3vjkUceQX5+Pl599VV7d53ogc6ePQuz2Yy2bdtaLTeZTGjSpAkAoGnTppg8ebJlXceOHXH9+nV89NFHGDBggFPzElHtsNAl8nA9e/bEihUrrJaVF6n79+/H3Llzcf78eRiNRpSWluLvv/9GSUkJ6tevjwkTJmDMmDHYu3cvEhIS8NxzzyE6OrrWGSpuoygKAgMDcfPmTQD/nhGOjo6Gt7e3pU2nTp1s2VWiWisuLoZWq8XJkyeh1Wqt1t37AbGizp07Y9++fWrHIyI78dIFIg9nMBjQpk0bq4e/vz8uX76M/v37Izo6Glu2bMHJkyctd6XfvXsXAPDKK68gLy8Pw4YNw9mzZxEXF4clS5bUOkO9evWsniuKgrKyMvt3jshOsbGxMJvNuHnzZqXj5H43np06dQrNmzd3YlIisgXP6BL9R508eRJlZWVYsGABNJp/P/Nu3ry5UruQkBCMHj0ao0ePxptvvonVq1dj/Pjx0Ol0AACz2WxXjoiICGzYsAEmk8kyG8Tx48ft6pOoouLiYly8eNHy/NKlSzh16hT8/f3Rtm1bDB06FMOHD8eCBQsQGxuL33//HZmZmYiOjkZiYiLWrVsHnU6H2NhYAP9OoffZZ59hzZo1rtolIqohFrpEHs5kMqGgoMBqmZeXF9q0aYN//vkHS5YsQVJSErKysrBy5UqrdpMmTULfvn3Rtm1bFBYW4uDBg3j44YcBAGFhYVAUBTt37kS/fv3g4+Nz33/1VueFF17AjBkzMGrUKEybNg1Xr17F/PnzAfx75pfIXidOnLDMEgLAcr1tcnIy1q5di/T0dLz//vuYMmUK8vPz0bRpU3Tp0gX9+/e3bJOWloYrV67Ay8sLkZGR2LRpE55//nmn7wsR1ZIQkcdKTk4WAJUeERERIiKycOFCad68ufj4+Ejv3r1l/fr1AkAKCwtFRGTcuHHSunVr0ev10qxZMxk2bJj88ccflv5nzZolgYGBoiiKJCcni4hIfHy8TJw40dImLCxMFi1aZJUrJiZGZs6caXmelZUl0dHRotPppEOHDpKRkSEA5Pz582r8WIiI6D9CERFxYZ1NRFTJF198gREjRuD27dvw8fFxdRwiIqqjeOkCEbnc+vXrER4ejuDgYJw+fRqpqakYPHgwi1wiIrILC10icrmCggK88847KCgoQPPmzTFo0CDMnj3b1bGIiKiO46ULREREROSROI8uEREREXkkFrpERERE5JFY6BIRERGRR2KhS0REREQeiYUuEREREXkkFrpERERE5JFY6BIRERGRR2KhS0REREQeiYUuEREREXmk/wOFhUM35RGEXAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArsAAAHPCAYAAABTOBLIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxzUlEQVR4nOzde1wU9f4/8NeyyE1E0zQvKUuSGoId0wrXSEhMk13ZkPKoHSs7XU6e0gIvIJV6EjJBu39/1SmtlNWEDXPxktaSFFum1knCEk3UQ5TmKdhEwF0+vz9oxl32wl6ZhXk/Hw8excwwn5lxd+e9n3l/3h8JY4yBEEIIIYSQbihA6AMghBBCCCHEVyjYJYQQQggh3RYFu4QQQgghpNuiYJcQQgghhHRbFOwSQgghhJBui4JdQgghhBDSbVGwSwghhBBCui0KdgkhhBBCSLdFwS4hhBBCCOm2KNglhBBCCCHdFgW7XrB//34olUoMHjwYEokEJSUlLu+DMYb8/HyMGDECwcHBGDp0KHJzc71/sIQQQgghIhIo9AF0BxcuXMD111+P+++/HzNnznRrHwsXLsRHH32E/Px8xMXFob6+Hr/++quXj5QQQgghRFwkjDEm9EF0JxKJBB988AFUKhW/rKWlBTk5Odi8eTN+//13xMbGYs2aNUhMTAQAHD16FGPGjEFlZSVGjhwpzIETQgghhHRDlMbQCe6//358/vnn2LJlC7799lvcddddmDZtGqqrqwEAO3bswDXXXAOtVouoqCjIZDL8/e9/x//+9z+Bj5wQQgghpGujYNfHTpw4AbVajW3btiEhIQHDhw9HZmYmbrnlFmzYsAEA8OOPP+LUqVPYtm0b3n33XWzcuBGHDh1Cenq6wEdPCCGEENK1Uc6ujx0+fBiMMYwYMcJieXNzM/r16wcAaG1tRXNzM959911+u7feegvjxo3DDz/8QKkNhBBCCCFuomDXx1pbWyGVSnHo0CFIpVKLdeHh4QCAQYMGITAw0CIgvu666wAAp0+fpmCXEEIIIcRNFOz62NixY2EymXD27FkkJCTY3GbixIkwGo04ceIEhg8fDgA4duwYACAyMrLTjpUQQgghpLuhagxe8Mcff+D48eMA2oLbdevWISkpCX379sWwYcNwzz334PPPP0dBQQHGjh2LX3/9FZ988gni4uIwffp0tLa24sYbb0R4eDheeOEFtLa2YsGCBYiIiMBHH30k8NkRQgghhHRdFOx6QVlZGZKSkqyW33vvvdi4cSMuXbqEZ599Fu+++y5qa2vRr18/TJgwAStXrkRcXBwA4KeffsJjjz2Gjz76CD179sQdd9yBgoIC9O3bt7NPhxBCCCGk26BglxBCCCGEdFtUeowQQgghhHRbFOwSQgghhJBui6oxuKm1tRU//fQTevXqBYlEIvThEEIIEQhjDAaDAYMHD0ZAAPUhEeJvKNh1008//YShQ4cKfRiEEEL8xJkzZ3D11VcLfRiEkHYo2HVTr169ALR9uEVERAh8NIQQQoTS0NCAoUOH8vcFQoh/oWDXTVzqQkREBAW7hBBCKKWNED9FyUWEEEIIIaTbomCXEEIIIYR0WxTsEkIIIYSQbouCXUIIIYQQ0m1RsEsIIYQQQrotCnYJIYQQQki3RcEuIYQQQgjptijYJYQQQggh3RYFu4QQQgghpNuiGdQIIYR0GSaTCeXl5airq8OgQYOQkJAAqVQq9GERQvwYBbuEEEJcJkTQqdFokJGRgZqaGn6ZTCZDQUEB0tLSfNo2IaTrojQGQohPmUwmlJWVQa1Wo6ysDCaTqdu22xXPtbHFCNmyUsiWlaKxxejU32g0GkRHRyMpKQlz5sxBUlISoqOjodFofNpmeno64uLioNfrYTAYoNfrERcXh/T0dKfbJoSIECNuqa+vZwBYfX290IdCiNOMRiPT6XSssLCQ6XQ6ZjQafdpecXExk8lkDAD/I5PJWHFxsVN/f6H5EotcqmWRS7XsQvMlxphz5+BJu7baFOpc/bHd4uJiJpFImFKpZHq9nhkMBqbX65lSqWQSicQn19hoNDKZTMaUSiUzmUwW60wmE1MqlSwqKsrnr2d76H5AiH+jnl3iV3zVM+Zov12tTXd6xQDPeuP8pSfOmXMQogdQqF5HT9ptbDH++WMyW2bil9tiMpmQkZEBhUKBkpISxMfHIzw8HPHx8SgpKYFCoUBmZqbd17M7bQJAeXk5ampqkJ2djYAAy9tWQEAAsrKycPLkSZSXl9vdByFExISOtrsqIb/Jd3bvXGe166veOEf77ahNR/v1VZuenKs9nvbGdXZP3IXmS+xC8yV2ztDEt7txSzELCAphKTPutHsOnrRrq81zhiZ+eWeea2e0y7Vl78cWnU7HADC9Xm9zfUVFBQPAdDqd19pkjLHCwkIGgBkMBpvrGxoaGABWWFhodx++RD27hPg36tntYoTIlXO3XVfa0mg0mDlzJgYNGoSVK1di586d+Oyzz+z2UDm77456vmbOnOn13jhftelur5gnvXFC9cTFPL0HMU/vwfhn9/HLnvk6GEOfKELldQ/YPYeysjK327XV5vhn9/HLO/NcO6Ndd9TV1QEAYmNjba7nlnPbecugQYMAAJWVlTbXc8u57QghxBxVY+hCuCBKoVBArVYjNjYWlZWVyM3NRXp6OoqKinwyItnX7ZpMJjzyyCMIDw+HXq+HXq8H0DbKeu3atQCAzMxMpKam2hzt3RZ0Scx+N/H7NQ/yuICAC5BmzJiB/fv3o7i4GD169LBcd2c6MpZmY+LkaVb7bWwxIiwo0CoA9LRNlUrl8DxtBT7mAVLNcyk2ry8XFKnVartBkVwuR3l5ORITE73SZmcGRebnUFZW1mntcoQKAD1tt2rVVABtr13u3/RgTjLCguxXVDAPOuPj463WdxR0utMmACQkJEAmkyE3N9fifQUAra2tyMvLQ1RUFBISEhzuhxAiThTsdhEdBVEdBUpcL5ytAA0AwoJsvxTcadfVtlavXo1z585BqVQiOzvbIpi+++67sXr1auzYsQPl5eW4SX6L1f7GP/uxxf7Mg7FTDoK85cuXo7S0FJ9//rlFkBcQEIDK6x4ArgNuztPZ3G977rbZ2GLkA8oNi5fhtlsn2gw6PSFEMOaLoOjMy3NRd+YUwsN7Wm3f/tzcadfdQEyoANDTdm2958OCpHY/CwDPg0532gQAqVSKgoICpKenQ6VSISsri/+cyMvLg1arxeatRRi+fDeAtmva0T4JIeJBnwZdhCe9c0Dn9gq60pbJZMKrr77qMJh+4403ALQFY44e69rT2T1u7rYZExPj8HiECIqE6omzFaiwS0348dhRh+eQmJiITZs2udWuu4GYUAGgEL2dzgSdRUVFPqm3m5aWhqKiImRkZEAul/PLo6KiUFRUhGmKGcg65PrnAyGk+6Oc3S6iqz4q7Uh5eTnOnj2L5cuX2w2muQLyzubjHcxJRtWqqXg9OQyAe3l+G1KuwOl1M/FSUpjVfg/mTP7zv8lut9m3/0CrXNivj3wHSY9g9O0/0ObfhgUF/vkjNVsm5ZfbYx4Utba2WqxzJgB0p00uKNJqtVCpVBb5ySqVClqtFvn5+S4FRcOGRXZ4DomJiV5vtyO+ONfObDcsKBA1z6Wg5rkUp3pDuaDzyJEjkMvliIiIgFwuR2VlpdMpTa62ad728ePHodPpUFhYCJ1Oh/98dxTTFDNczisnhIiI0CPkuqrOHn3r6Shod0d8u9OuK205O8q6f//+zGg02t33OcNFm/VYHY1WT0lJYb169WItLS1W67iR7A2NTXarENirAetMm86OSrdVAcPTagwVFRWsoaGBVVRU+Kwag3m77StPREVFOV15wt1z8Ga7rhxfZ7cpZLtCVYVpz90KD95E1RgI8W+UxuCnzHM5q1ZN7VKPSl1py9lH7P/85z8hlUoRZqOTyt4j9Y4eue7cuROMMcycOdNrj2OdbbOvE/tyNDVqzXOuDQjs6BFwR71xXE+cq9LS0pCamuqVaWXNz2HipCQMe7IYACA5eszqHLzZrivH19ltCtmuVCr1am45IYT4jNDRdlfl62/ytnrSPO2ds7ffjrjbrjNtOdMTOnDgQKteI1fOw1HPl696xTpqM3L4CCbpEcwCwnpb1JHleq69MUuVLf7SG+cJo9HIdu/9hL9uDY1NQh8SEZCjJ0kNjU2d8nqnnl1C/BsFu27y1YdbRykA3fFRqb1gWqFQeBTYmXMU5PkqAHSmzY3vFbqcCiH01KhCcjcdh3R/7b8Aezp5iyso2CXEv0kYY6wze5LtycvLQ3Z2NhYuXIgXXnjB5jYajQb/93//h2+++QbNzc0YPXo0VqxYgalTp/LbXLp0CXl5eXjnnXdQW1uLkSNHYs2aNZg27XK91Ly8PGg0Gnz//fcIDQ2FXC7HmjVrMHLkSKePt6GhAb1790Z9fT0iIiLcPu/2ZMtKHa6veS4FJpOp0x9ZAvBpu7Ye2UdFRSE/P98ntYP9Rft0lbCgQJSVlSEpKQl6vd5maoder4dcLodOpxPdY2Rn3h9EnMzfS3njmjF3Vltt8PblDLkUJW9+rvjqfkAI8Q6/yNn96quv8MYbb2DMmDEOt9u/fz+mTJmC3Nxc9OnTBxs2bIBSqcSXX36JsWPHAgBycnKwadMmvPnmmxg1ahT27NmDO++8ExUVFfw2n376KRYsWIAbb7wRRqMRy5cvx+23346qqir07Gldw9PfCJUr58t2hco7FJqtXFihKm8Q0pVx7yWTyYTo6Gi3a5ITQrohobuWDQYDu/baa9nevXvZpEmT2MKFC136+5iYGLZy5Ur+90GDBrFXXnnFYpvU1FQ2d+5cu/s4e/YsA8A+/fRTp9v1xmMreyPt6TGtuHlaeaM7494Hp89f4N8fp89foPcH4Qnx/qE0BkL8m+A9uwsWLEBKSgqSk5Px7LPPuvS3ra2tMBgM6Nv38tj25uZmhISEWGwXGhqKzz77zO5+6uvrAcBiP+01NzejubmZ/72hocGlY23P0Uj79o/XnKmaQLoPmhrVGczO/xOxoycj1hhjMBqNMJlMHW9MSBcglUoRGBgIiUTi1PaCRlBbtmzB4cOH8dVXX7n19wUFBbhw4QLuvvtuftnUqVOxbt063HrrrRg+fDg+/vhjbN++3e6bnDGGJ598ErfccovdD0egLc935cqVbh1nexqNBunpbflkarXaIp8sPT2dnw2IiJOQs1T5O1sz6CU8X8b/P+XsEk+nUe5uWlpaUFdXh8bGRqEPhRCvCgsLw6BBgxAUFNThtoINUDtz5gzGjx+Pjz76CNdffz2Atqk+//KXv9gdoGZOrVbj73//O7Zv347k5MszWZ07dw4PPvggduzYAYlEguHDhyM5ORkbNmyw+WZfsGABSktL8dlnn+Hqq6+2256tnt2hQ4e6PCCByyeLi4uz2WunUqlQWVmJ6upqUQYztgZsiZVYB+05QgPUSEeE+Iz11wFqra2t/Hn2798fQUFBTveEEeKvGGNoaWnBuXPnYDKZcO2111rNwGrrjwTxwQcfMABMKpXyPwCYRCJhUqnUYVmlLVu2sNDQUKbV2p8d5+LFi+y///0va21tZUuWLGExMTFW2/zzn/9kV199Nfvxxx9dPn53c7QoH9Mxd2fq6q66Q11cb7rQfIkVvl/MIkfG8q+TgLDeLHL4CFb4vm/L75Guwxs1yV3hrzm7Fy9eZFVVVezChQtCHwohXnfhwgVWVVXFLl682OG2gnWbTZ48GUeOHLFYdv/992PUqFFYunSp3W/carUa8+fPh1qtRkqK/V6ckJAQDBkyBJcuXUJxcbFFqgNjDI899hg++OADlJWVISoqyjsn5QTKJ7ONm8O+/fz2HLH28NIsVZZ2az/E3FnpmK5UofLPZR/v2YV1z+dh7qx0BEu9W1KKdE2ezhjY3XTY60VIF+TK61qwCKJXr15WAV/Pnj3Rr18/fnlWVhZqa2vx7rvvAmgLdOfNm4cXX3wR8fHx+PnnnwG0DUDr3bs3AODLL79EbW0t/vKXv6C2thYrVqxAa2srlixZwrezYMECFBYWYvv27ejVqxe/n969eyM0NNSn5035ZLbZysUc/+w+/v/p8TQxmUzIyMiAQqFA4dYtiF2xFwBw0003UkkpYkWs5QwJIdb8+uteXV0dTp8+zf/++uuvw2g0YsGCBRg0aBD/s3DhQn6bpqYm5OTkICYmBnfeeSeGDBmCzz77DH369OG3+b//+z/U19cjMTHRYj9bt271+TmZj7RvbW21WEcj7YktjS1GyJaVQraslO8BF6Py8nLU1NQgOzsb4SFBqHkuBTXPpSAsKBABAQHIysrCyZMnUV5eLvShEj/BPRmZPXs2EhMTKdAlRKT86tlwWVmZxe8bN250uN6WSZMmoaqqyuE2TMBJ42ikvW1Vq9pmwWtsMfE9ugdzkhEWJK7rQOyjFCBCiC0ymQyLFi3CokWLhD4Ur+Bm0fztt98sOuq6ihUrVqCkpATffPON0IfC8+ue3e6Kyyc7cuQI5HI5IiIiIJfLUVlZKcp8MqAtJ7ftR2q2TMovF6PGFuOfP5Z5zNxysTFPAbJFrClAxD56KtK1nTlzBg888AAGDx6MoKAgREZGYuHChTh//rzQh+Y1iYmJVkG6XC5HXV0dn55JPCfOKMIPUD4Z6QjlMVsyTwEqLi7G559/zr93Jk6cSClAhPiQyWTq1PvVjz/+iAkTJmDEiBFQq9WIiorCd999h8WLF2PXrl344osvHE4E5UsmkwkSicRnA/+CgoIwcOBAn+xbrKhnV0CUT2aNm9+ey8UkhMOlAO3YsQN9+/ZFUlIS5syZg6SkJPTt2xc7duxAfn4+vY8IPRXxMo1Gg+joaIv3XHR0NDQajc/aXLBgAYKCgvDRRx9h0qRJGDZsGO644w7s27cPtbW1WL58ucX2BoMBc+bMQXh4OAYPHoyXX37ZYv2KFSswbNgwBAcHY/DgwXj88cf5dS0tLViyZAmGDBmCnj174uabb7ZIm9y4cSP69OkDrVaLmJgYBAcH480330RISAh+//13i3Yef/xxTJo0CQBw/vx5zJ49G1dffTXCwsIQFxcHtVrNb3vffffh008/xYsvvgiJRAKJRIKamhqUlZVBIpFY7Lu4uBijR49GcHAwP9uqOa4jYP78+ejVqxeGDRuGN954w+E1Zozh+eefxzXXXIPQ0FBcf/31KCoq4tdzx/Hxxx9j/PjxCAsLg1wuxw8//GCxn+eeew5XXXUVevXqhQceeABNTU0O2xWEr+ugdVf+WleRdB8Xmi+xC82X2DlDE19T9pyhiV8uRlz9VIVCwfR6PTMYDEyv17OUlBSf1E8lXRP3frH3423+ej/g6uw6U4fUHvOaxebvOV/VLGaMsfPnzzOJRMJyc3Ntrn/wwQfZFVdcwVpbWxljjEVGRrJevXqxvLw89sMPP7CXXnqJSaVS9tFHHzHGGNu2bRuLiIhgO3fuZKdOnWJffvkle+ONN/j9zZkzh8nlcrZ//352/PhxtnbtWhYcHMyOHTvGGGNsw4YNrEePHkwul7PPP/+cff/99+yPP/5gV111Ffv3v//N78doNLKrrrqKvf7664wxxv773/+ytWvXsq+//pqdOHGCP64vvviCMcbY77//ziZMmMAefPBBVldXx+rq6vja6gDYb7/9xhhj7ODBgywgIICtWrWK/fDDD2zDhg0sNDSUbdiwgW87MjKS9e3bl7366qusurqa5eXlsYCAAHb06FG71zk7O5uNGjWK7d69m504cYJt2LCBBQcHs7KyMsbY5XkBbr75ZlZWVsa+++47lpCQwORyOb+PrVu3sqCgIPbmm2+y77//ni1fvpz16tWLXX/99c78U3vEldc3Bbtu8saHG02gQJxBr5M2RqORyWQyplQqmclkslhnMpmYUqlkUVFRop94g1Cwy/E02BXqPffFF18wAOyDDz6wuX7dunUMAPvll18YY22B3rRp0yy2mTVrFrvjjjsYY4wVFBSwESNGsJaWFqt9HT9+nEkkElZbW2uxfPLkySwrK4sx1hbsAmDffPONxTaPP/44u+222/jf9+zZw4KCgtj//vc/u+c2ffp0lpGRwf8+adIktnDhQott2ge7c+bMYVOmTLHYZvHixRaTZUVGRrJ77rmH/721tZUNGDCA/d///Z/N4/jjjz9YSEgIq6iosFj+wAMPsNmzZ1scx759+/j1paWlDAD/mpowYQJ75JFHLPZx8803+12wS2kMxK+YTCaUlZVBrVajrKwMJpOp4z8iomBeeqx9rhyVHiPmqlZNRdWqqTiYc3kq+YM5yfxy4hx/fc+xPysqmU99PGHCBIttJkyYgKNHjwIA7rrrLly8eBHXXHMNHnzwQXzwwQcwGtvSWQ4fPgzGGEaMGIHw8HD+59NPP8WJEyf4/QUFBWHMmDEWbcydOxdlZWX46aefAACbN2/G9OnTccUVVwBou5+tXr0aY8aMQb9+/RAeHo6PPvrIoqSqM44ePYqJEydaLJs4cSKqq6st7pHmxyeRSDBw4ECcPXvW5j6rqqrQ1NSEKVOmWJz3u+++a3He7ffLDQDm9nv06FGb197fUFKkAGi2MNs0Gg0yMjJQU1PDL+Nyk8RYoYLD5TGLHZUeI86y9RnKVXchzhPqPRcdHQ2JRIKqqiqoVCqr9d9//z2uuOIKXHnllQ73wwXDQ4cOxQ8//IC9e/di3759ePTRR7F27Vp8+umnaG1thVQqxaFDh6zy/cPDw/n/Dw0NtQiuAeCmm27C8OHDsWXLFvzjH//ABx98gA0bNvDrCwoKsH79erzwwguIi4tDz549sWjRIrS0tLh0PRhjVm0zGyVUe/ToYXX+7ev5c7jlpaWlGDJkiMW64OBgu/vljsPefv0V9ewKIObpPYh5eo/FyPrxz+7jl4uRRqNBeno64uLioNfrYTAYoNfrERcXh/T0dJ8OhCBdg3npMVslpaj0GCHeJVS5v379+mHKlCl47bXXcPHiRYt1P//8MzZv3oxZs2ZZBIBffPGFxXZffPEFRo0axf8eGhqKGTNm4KWXXkJZWRn0ej2OHDmCsWPHwmQy4ezZs4iOjrb4caYiwpw5c7B582bs2LEDAQEBSEm53DFRXl6O1NRU3HPPPbj++utxzTXXoLq62uLvg4KCOnyCGRMTg88++8xiWUVFBUaMGOH2gFxuoN3p06etznvo0KFO7+e6666zee39DQW7RHDm08CWlJQgPj4e4eHhiI+PR0lJCRQKBTIzMymlQeRo9kHiKqru4hkh33OvvPIKmpubMXXqVOzfvx9nzpzB7t27MWXKFAwZMgSrV6+22P7zzz/H888/j2PHjuHVV1/Ftm3b+NlVN27ciLfeeguVlZX48ccf8d577yE0NBSRkZEYMWIE5s6di3nz5kGj0eDkyZP46quvsGbNGuzcubPD45w7dy4OHz6M1atXIz09HSEhIfy66Oho7N27FxUVFTh69Cgefvhh/PzzzxZ/L5PJ8OWXX6Kmpga//vqrzR7TjIwMfPzxx/jXv/6FY8eO4Z133sErr7yCzMxMdy4tAKBXr17IzMzEE088gXfeeQcnTpzA119/jVdffRXvvPOO0/tZuHAh3n77bbz99ts4duwYnnnmGXz33XduH5fP+Dh/uNvyZEACjbK3xCXB6/V6m+srKioYAKbT6Tr3wPwENzq3sLCQ6XQ6UQ/AKny/mAUEhbA7VHfx751dus9Yyow7WUBQCFVjIILorgPUGLOsxlBRUcEaGhpYRUWFT6sxcGpqath9993HBg4cyHr06MGGDh3KHnvsMfbrr79abBcZGclWrlzJ7r77bhYWFsauuuoq9sILL/DrP/jgA3bzzTeziIgI1rNnTxYfH28x6KqlpYU9/fTTTCaTsR49erCBAweyO++8k3377beMsbYBar1797Z7nDfeeCMDwD755BOL5efPn2epqaksPDycDRgwgOXk5LB58+ax1NRUfpsffviBxcfHs9DQUAaAnTx50mqAGmOMFRUVsZiYGNajRw82bNgwtnbtWqtrsH79eotl119/PXvmmWfsHndrayt78cUX2ciRI1mPHj1Y//792dSpU9mnn37KGLMeKMcYY19//TV/nJzVq1ezK6+8koWHh7N7772XLVmyxO8GqEkYE3Du3C6soaEBvXv3Rn19PSIiItzaR2OLkU9bqFo1VbQ9D2q1GnPmzIHBYLDIkeIYDAZERESgsLAQs2fPFuAIhUN5zJZky0odrqfcZiIEb9wPfKGpqQknT55EVFSURY+jq2x9DkVFRSE/P1+Un0PEP7jy+qY0BiI4mgbWNspjJsRzVOHFc2lpaTh+/Dh0Oh0KCwuh0+lQXV1NgS7pMqhn103++k2+KzKZTIiOjkZcXBxKSkosSty0trZCpVKhsrIS1dXVopkdi66JbeaVTLgBngdzkhEW1HYNxPp0hNjWWU9G/PV+4K2eXUL8EfXski6FmwZWq9VCpVJZ9GKqVCpotVrRTQPrr/UthRYWFPjnj9RsmZRfTgiHnowQQjgU7BK/kJaWhqKiIhw5cgRyuRwRERGQy+WorKxEUVGR6B6XUU1Zx7ge3vb/TwhAFV4IIZaoK0RgJpMJ5eXlqKurw6BBg5CQkCCqHkxzaWlpSE1NpesByzzm+Ph4q/VizWPmmPfiUo8uaY97MqJWq+0+GZHL5SgvL0diYqIwB0kI6TR0lxAQjbS3JpVK6eYDy/qWtnJ2xVpTlmYfJM6gJyOEEHOUxiAQyicjjlAes200+yBxBlV4IYSYo2oMbvJk9C2NtLePag9bovqWlqjOLnFGZ3/GUjUGQjofVWPwczTSnjiL6ltaqlo1FXnjmoGSZfyyMy/PBYqebFtOCOjJCCHEEgW7AqB8MmuNLcY/fyxzMbnlYsblMc+ePRuJiYmivkHv1n6IubPSETvyWn7Zx3t2YUzMSMydRek/5DKq8CIeMpkML7zwgtCH4TVlZWWQSCT4/fffhT6UboOCXQFQPpk1ysUkHTEvJ7Vl6xZ++U033UjlpIhN9GSkaztz5gweeOABDB48GEFBQYiMjMTChQtx/vx5oQ/NaxITE7Fo0SKLZXK5HHV1dejdu7cwB+VF/vJFRNwJkQKhkfbEFZTH3Ma8nFR4SJBVfi6VkyK2UIWXrunHH3/EhAkTMGLECKjVakRFReG7777D4sWLsWvXLnzxxRfo27evIMdmMpkgkUis0hC9JSgoCAMHDvTJvruqlpYWBAUFuf331LMrAMons1a1aiqqVk3FwZxkftnBnGR+OSGU/kOIcBpbjJAtK4VsWWmnpJYtWLAAQUFB+OijjzBp0iQMGzYMd9xxB/bt24fa2losX77cYnuDwYA5c+YgPDwcgwcPxssvv2yxfsWKFRg2bBiCg4MxePBgPP744/y6lpYWLFmyBEOGDEHPnj1x8803o6ysjF+/ceNG9OnTB1qtFjExMQgODsabb76JkJAQq1SDxx9/HJMmTQIAnD9/HrNnz8bVV1+NsLAwxMXFQa1W89ved999+PTTT/Hiiy9CIpFAIpGgpqbGZhpDcXExRo8ejeDgYL5EqTmuA23+/Pno1asXhg0bhjfeeMPhNW5tbcWaNWsQHR2N4OBgDBs2DKtXr+bX19bWYtasWbjiiivQr18/pKamWgyWvu+++6BSqZCfn49BgwahX79+WLBgAS5dugSgrdf61KlTeOKJJ/jz41RUVODWW29FaGgohg4discffxwXLlywOJ9nn30W9913H3r37o0HH3zQ4bl0iBG31NfXMwCsvr7e7X0UFxczmUzGAPA/UVFRrLi42ItH2rVcaL7EIpdqWeRSLbvQfEnowxHUheZL7ELzJXbO0MRfk3OGJn652Oh0OgaA6fV6m+srKioYAKbT6Tr3wIjoeeN+4AsXL15kVVVV7OLFix7vqzM/m8+fP88kEgnLzc21uf7BBx9kV1xxBWttbWWMMRYZGcl69erF8vLy2A8//MBeeuklJpVK2UcffcQYY2zbtm0sIiKC7dy5k506dYp9+eWX7I033uD3N2fOHCaXy9n+/fvZ8ePH2dq1a1lwcDA7duwYY4yxDRs2sB49ejC5XM4+//xz9v3337M//viDXXXVVezf//43vx+j0ciuuuoq9vrrrzPGGPvvf//L1q5dy77++mt24sQJ/ri++OILxhhjv//+O5swYQJ78MEHWV1dHaurq2NGo5H/rPvtt98YY4wdPHiQBQQEsFWrVrEffviBbdiwgYWGhrINGzbwbUdGRrK+ffuyV199lVVXV7O8vDwWEBDAjh49avc6L1myhF1xxRVs48aN7Pjx46y8vJy9+eabjDHGLly4wK699lo2f/589u2337Kqqio2Z84cNnLkSNbc3MwYY+zee+9lERER7JFHHmFHjx5lO3bsYGFhYfy1PX/+PLv66qvZqlWr+PNjjLFvv/2WhYeHs/Xr17Njx46xzz//nI0dO5bdd999FucTERHB1q5dy6qrq1l1dbXV8bvy+qZg103e+nDjXtiFhYVMp9Mxo9HopSPsmijYvYy7DvZ+xMZoNDKZTMaUSiVraWmxeN+0tLQwpVLJoqKiRP8eIpY64zOlOwe7Qnzp/uKLLxgA9sEHH9hcv27dOgaA/fLLL4yxtsBo2rRpFtvMmjWL3XHHHYwxxgoKCtiIESNYS0uL1b6OHz/OJBIJq62ttVg+efJklpWVxRhrC3YBsG+++cZim8cff5zddttt/O979uxhQUFB7H//+5/dc5s+fTrLyMjgf580aRJbuHChxTbtg905c+awKVOmWGyzePFiFhMTw/8eGRnJ7rnnHv731tZWNmDAAPZ///d/No+joaGBBQcH88Fte2+99RYbOXIk/4WCMcaam5tZaGgo27NnD2OsLdiNjIy0+My966672KxZsyyOa/369Rb7/tvf/sYeeughi2Xl5eUsICCAf61GRkYylUpl89g4rry+xZn850con8xSWFAg1UolNnHpPzNnzkTfvn3xxx9/8OvCw8Pxxx9/oLi4WFTpP4T4mq0BwuYDiYX4vGZ/Tg9g/lh8woQJFttMmDCBHxh111134YUXXsA111yDadOmYfr06VAqlQgMDMThw4fBGMOIESMs/r65uRn9+vXjfw8KCsKYMWMstpk7dy4mTJiAn376CYMHD8bmzZsxffp0XHHFFQDacnufe+45bN26FbW1tWhubkZzczN69uzp0vkePXoUqampFssmTpyIF154ASaTif/MMz8+iUSCgQMH4uzZs3b32dzcjMmTJ9tcf+jQIRw/fhy9evWyWN7U1IQTJ07wv48ePdriM3fQoEE4cuSIw/Ph9r1582Z+GWMMra2tOHnyJK677joAwPjx4x3uxxUU7BLip7hc5cYWE39zOZiTjLAgcQdzEokEiYmJWL58OWJjY1FZWYlVq59D1egH8eQBYJrCKNpBfOQymlq664qOjoZEIkFVVRVUKpXV+u+//x5XXHEFrrzySof74YLhoUOH4ocffsDevXuxb98+PProo1i7di0+/fRTtLa2QiqV4tChQ1ZflMPDw/n/Dw0NtQiuAeCmm27C8OHDsWXLFvzjH//ABx98gA0bNvDrCwoKsH79erzwwguIi4tDz549sWjRIrS0tLh0PRhjVm0zG/OB9ejRw+r8W1tbbe4zNDTUYZutra0YN26cRUDK6d+/v1ttmu/74Ycftsib5gwbNoz/f1e/FDhC73aB0Uh7Yo+t10JYkFS0rxHz0mPmVUzi4+Px/rb3EbtiL78dfbQRf+yR7IqE+NLdr18/TJkyBa+99hqeeOIJi8Ds559/xubNmzFv3jyLAPCLL76w2McXX3yBUaNG8b+HhoZixowZmDFjBhYsWIBRo0bhyJEjGDt2LEwmE86ePetWBaQ5c+Zg8+bNuPrqqxEQEICUlMuvq/LycqSmpuKee+4B0BbkVVdX8z2XQFuPcUflEmNiYvDZZ59ZLKuoqMCIESPcfpJ17bXXIjQ0FB9//DH+/ve/W62/4YYbsHXrVgwYMMCjWQFtnd8NN9yA7777DtHR0W7v11VUjYH4FZPJhLKyMqjVapSVlVHNVMKzNfMgN+lIk/FyL4dufwVNRkKIl4QFBf75IzVbJuWX+8orr7yC5uZmTJ06Ffv378eZM2ewe/duTJkyBUOGDLGoGgAAn3/+OZ5//nkcO3YMr776KrZt24aFCxcCaKum8NZbb6GyshI//vgj3nvvPYSGhiIyMhIjRozA3LlzMW/ePGg0Gpw8eRJfffUV1qxZg507d3Z4nHPnzsXhw4exevVqpKenW0xbGx0djb1796KiogJHjx7Fww8/jJ9//tni72UyGb788kvU1NTg119/tdkrmpGRgY8//hj/+te/cOzYMbzzzjt45ZVXkJmZ6c6lBQCEhIRg6dKlWLJkCd59912cOHECX3zxBd566y3+vK688kqkpqaivLwcJ0+exKeffoqFCxfiv//9r9PtyGQy7N+/H7W1tfj1118BAEuXLoVer8eCBQvwzTffoLq6Gh9++CEee+wxt8+nI9T9IRB6xGZNo9EgIyPDorQJV2JFzEXgKY+5ja3SY7Z67x7XNQK6tuV03cSL0oC6tmuvvRYHDx7EihUrMGvWLJw/fx4DBw6ESqXCM888Y1VjNyMjA4cOHcLKlSvRq1cvFBQUYOrUttdAnz598Nxzz+HJJ5+EyWRCXFwcduzYwefkbtiwAc8++ywyMjJQW1uLfv36YcKECZg+fbpTx3njjTfiq6++spo84amnnsLJkycxdepUhIWF4aGHHoJKpUJ9fT2/TWZmJu69917ExMTg4sWLOHnypFUbN9xwA95//308/fTT+Ne//oVBgwZh1apVuO+++1y8qpaeeuopBAYG4umnn8ZPP/2EQYMG4ZFHHgEAhIWFYf/+/Vi6dCnS0tJgMBgwZMgQTJ482aWe3lWrVuHhhx/G8OHD0dzcDMYYxowZg08//RTLly9HQkICGGMYPnw4Zs2a5dH5OCJhthI/SIcaGhrQu3dv1NfXu9XFL1tW6nC92G7SGo0G6enpUCgUyM7O5nMxc3NzodVqaXpPgrKyMiQlJUGv1yM+Ph4AvY9IxzojVczT+4GvNDU14eTJk4iKirLocSSkO3Dl9S2+7kPidxzlYpaUlEClUiEzMxOpqak00l7EbM08yPXe/dF0CTflfgIA+DIrCb1C3Z9ph/gnk8mE8vJy1NXVYdCgQUhISKDPA0KIUyjYFQg9YrvMfBrY9tMvBgQE0DSwBMDl0mPp6elQqVTIysrinwCsfm4tcN0DAIBeoUGiSQPiAsDa2lqcO3cO/fv3x5AhQ3weCHoSeLrT0+pJihOlARFCxHFH8EM00v4ymga2Y97u1RKql8zTdtPS0lBUVISMjAzI5XJ+uSx6JHDd5TY+/vhTfrrPxMREJCYmdkrw50nQ6WoQaCsADAwMhNFodCoQdPfxfmfn1punOKnVaosUp/T0dEpxIoR0rMNpJ4hN3poxh2YM637TwHp7Vjxb00pfddVVbNGiRW7t39b+ZDKZ09NUu/uadadde23Zu8bFxcXsqquusmgjMDCQ9e/f36nzM2/P2fOzdV6BgYFOX9f2bTrTbnFxMZNIJEyhUDC9Xs8MBgPT6/VMqVQyiUTCxo8fzyQSiVvX1pl2lUqlzXY7as/VmbjMZ80zmUwW60wmk9/MmtedZ1AjxF/RdMGdwF8/3HzJV1Mbt7+hmbfz8ccfM4VC4bMbmivn5Exw4M2AjtufeXCxadMmNnjw4A73b2+fngQrrlwHW9fFnXZdacteAKhQKJhEImEAXA48OyPoPGe4aBXsOgoCnQ0A7b1v3J3+1dPA053pr73xRbgzpmT31/sBFww0NjYKfSiEeF1jYyMFu74m5IdbZ3x4t+dub6CzwQoXNIwfP94qmAsMDGSLFy/u8BhdDcJcPaeO9u/tgK59cOHK/m3t09NgpTODJFfb4tpQKBR22+jVqxeTyWQ2z6+trYvs9Pk/LAKw0+cvsHOGiz4NOl0NAp0NAF955RWbgaA7Qacr7doLPN1pt7CwkAFgBoPB5vqGhgYGgBUWFtpc7+lTDGf5a7BrNBpZVVUV+/XXX4U+FEK87tdff2VVVVVOxUDiSxDt4jzNl3N3cIivc+bS0tKQmZmJtWvXQqFQoLi4+PLgo9WrkZ+fj/j4eK/l5rlyTs7URHanokRH+z1Q8Rk/cI8x5tT+p9yRAqlUanOf5fs9Gwjo7oxU7gxAdLUtZ9rYsWMHDAaDzfOz1R4AJDyv86hNuVyOjIwMaLVaq3bttdkRZ3PcuVmnvJXr7mluvTuDcgcNGgQAqKys5MvNmausrAQA9O0/kC9Dx32uUa5v26DOPn364OzZswDaaqe2n3aWkK6GMYbGxkacPXsWffr0cWpcBAW7AnNlwI4QH97ulgVzddIMk8mEbdu2QalUWrWzfft2h+XH3GnLlXNyJvDyRUCXd30DgLYgwtn9x63ch/bM98ntzxZfDQT0xQDE9l/anG3D1XYc8XXQyQWH7TkbAF68eNFi+/b7dbUSjLPttm+P486gXFvl5jitra3Iy8tDVFQU5BPlwL7Lr3MqZ3jZwIEDAYAPeAnpLvr06cO/vjtCwa6AXOml9fTD290Z29wtC+aLnjl7vY6d2ZY9vgjozIMLV4K5jrgbrHRmkORqW8620b4d8/YaW4y42GJCwvNl/PLyJUkIDQqw+f7wRdDJOZgz2e570tkAcPfu3YiKikJCQoLF37tbCcbZdtu35wlH5eby8vJQumcvNm3ajGazWcUbW0wo/6ICp2rrqJwhAIlEgkGDBmHAgAG4dOmS0IdDiFf06NHDpS+qFOwKxNVeWk8DNHcfQXdWWbDOLD/malvOBF6+COiCpRI+uFi0aJFT+389OQwJtybY3KfJZMKYre4HK50ZJNlri9P+S9u4mycgcvgIPPvss/jwww9tttGrVy/069fP5vmFBQUiLCiQ/1LI6Rduv2avL4JOZ9aZB4CpqakWMw7m5eVBq9Vi3LhxKC0tRVFRkdd6LjsKPLmZDjtqz9W6t/bKzUVFRWHoE0XIOgRkHbr8Wca97oc9WUzlDM1IpdJu34tNiD0U7ArAnV5aoWrRuvvo0lc9c/Z65XzZljNBnjcDOvPlXHDBGMPgwYM73H9y0q1WN7TL+wz0SrDiKm8FSUAHX9rS12Hn80rMmDEDy5cvt/gCWVpaCsYYNm7c6JPgz1tBp7N59PYCwMDAQDDGcP78+Q7TmtyZbMFR4OnLHNi0tDSkpqZapXwNX77b4d9VVlbixhtvtPq7jp5iEEK6Gd+Oleu+PBl9686oZk9HQgtVbsjZCgnm7RguNlv8jbP1NN1py5VzcqUaQ0VFBWtoaGAVFRUel9dqP6I8JSWlw/13VM6s/Qj1qKgor49Q7+g83Gm3oxH99ursDhgwwGfn56jOrq+vK1eZZdOmTWz9+vVs06ZNnVKhRYiKMLbY+1xraGxikcNHsPHjx9usxjB+/HivljP012oMhJA2FOy6yZMPN2fL6Wx8r5D/AG9obPJKcXVPa6S6EsS52h7XTsqMO/m/+WT/507XgHWnLXfOqaP9+iKQ5IKLRYsWsUGDBnm8f6GCFU/bdeZLm9FoZPv27WM5OTksJyeH7du3r9OCv84OOs2JeYIaW+e+ePFiBsBm3WUATpUzdBYFu4T4Nwp23dQZPbu7935i8QHujQDNm7NfebvX6kLzJVb4fjGLHBnLH2NAWG8mix7JCt/3fu+YrwNTXwWS/tKrJiQxB3b2iPmatD/3juoue3uiGgp2CfFvEsYY80V6RHfX0NCA3r17o76+HhERES79rclkQnR0NOLi4mzmX864Mx3fVVXhi4OHcXNeW51PLgd1+/YPkb3EsoJDVFQU8vPzfV4z0pUyae7g6mTa42p+oTN8fU7EN9ypF91dmVdasZWzLsZrU1ZWhqSkJOj1ept5+Xq9HnK5HDqdzivVGDy5HxBCfE98n4J+oKMBO5UxDwPXgQ90AfPKCcE4cfy4IAGaVCrtdmV6/PmcKKCzz53BVd2Vu5VWujOhBvQSQvwT3T0F4mhUM2Ic/60/B2iecLeOKyGEmPN0AgxCSPdCwa6A0tLSoFAo8Nprr+HEiRMYPnw4Hn30URjRltYgtqDP3Tqu3Y27E4AQcaIvidbMSwEWvl+E2BV7AbRdq5DAAJ9MgEEI8V901xSQrRnUXnzxRZszqIkx6BMreiztHMq3bkNfEq2Zp4r9ddZfgeseAAB8+eUBrF/7nM9qShNC/FNAx5sQX+BmUIuLi4Ner4fBYIBer0dcXBzS09Oh0WiEPkTBcPmYNc+liPqGTezTaDSIjo5GUlIS5syZg6SkJERHR4v6fUMsTVPMwOatRaj8oZpfljxtOo4cPYbNW303AQYhxP9QNQY3+bIag0qlQmVlJaqrq6nnQYRodL1j5lNtm89alpuby/fYUSBDOrO6C1VjIMS/Uc+uAMrLy1FTU4Ps7Gw0GVshW1YK2bJSNLYYERAQgKysLJw8eRLl5eVCHyoRQFhQ4J8/UrNlUn65mLWfajs+Ph7h4eH8VNsKhQKZmZkwmUwd74wQQogoiPvOKRAqi+MY5WISe7gvimq12uKJCAD+i6JcLkd5eXm3rFjSEXrvXEYD9wghHOrZFcCgQYMg6RGMg98csRpx39hixMFvjvDbiQ3lYl5GucvW6IuiffTesWTrCQkX9NL7iRBxoWBXAAkJCRj2ZDHu0/7PYpT9+Gf3IebpPbi/9DdRlsWhQXukI+b1U20Ra/1Ueu8QQoh9NEDNTZ4OSOho8MS6m5pFNciGBu0RZ9DrxBpdE/s6a7AnDVAjxL9Rz65AqlZNRd64ZqBkGb/szMtzISnOQN44cQW6gOWgPXu5mGIZtGcymVBWVga1Wo2ysjIabGWGq5+q1WqhUqksejFVKhW0Wi3y8/NFFdTRe8e+mKf3IObpPTafoNmqZ00I6Z4o2BVIWFAgZt+VhiNfH+SX7dz+AY5//x1m3yWuQBegXEwO5V12jJtq+8iRI5DL5YiIiIBcLkdlZaUoy47Re4cQQhzzm2A3Ly8PEokEixYtsruNRqPBlClT0L9/f0RERGDChAnYs8fy2/mlS5ewatUqDB8+HCEhIbj++uuxe/duq3299tpriIqKQkhICMaNGydYr4d5D1TCreIdOU25mJR36Yq0tDQcP34cOp0OhYWF0Ol0qK6uFl2gC9B7x5GqVVNRtWoqDuYk88sO5iTzywkhIsH8wIEDB5hMJmNjxoxhCxcutLvdwoUL2Zo1a9iBAwfYsWPHWFZWFuvRowc7fPgwv82SJUvY4MGDWWlpKTtx4gR77bXXWEhIiMU2W7ZsYT169GBvvvkmq6qqYgsXLmQ9e/Zkp06dcvqY6+vrGQBWX1/v1jkTS0ajkclkMqZUKpnJZLJYZzKZmFKpZFFRUcxoNAp0hL4l9vMn7qPXTscaGptY5FIti1yqZbv3fuL1a0H3A0L8m+DBrsFgYNdeey3bu3cvmzRpksNg15aYmBi2cuVK/vdBgwaxV155xWKb1NRUNnfuXP73m266iT3yyCMW24waNYotW7bM6Xbpw837iouLmUQiYUqlklVUVLCGhgZWUVHBlEolk0gkrLi4WOhD9BmdTscAML1eb3N9RUUFA8B0Ol3nHhjpEsT83ulIcXExixw+gg92JT2CmUwm8+o1ofsBIf5N8DSGBQsWICUlBcnJyR1v3E5raysMBgP69u3LL2tubkZISIjFdqGhofjss88AAC0tLTh06BBuv/12i21uv/12VFRU2G2rubkZDQ0NFj/e0NhitJhBTczEnItJeZeuo/fOZWJ+7zjCpQaNiRmJLap+qMyZhIr9ZZQaRIjICFpZe8uWLTh8+DC++uort/6+oKAAFy5cwN13380vmzp1KtatW4dbb70Vw4cPx8cff4zt27fzI9p//fVXmEwmXHXVVRb7uuqqq/Dzzz/bbSsvLw8rV6506zgdMR9pX76/HMlJt4o2bxdou2mnpqaKbhYo87zL+Ph4q/VizrskzhHre8ee9lNLc5UquKmlVSoVMjMzkZqaKtprRIhYCNaze+bMGSxcuBCbNm2y6ol1hlqtxooVK7B161YMGDCAX/7iiy/i2muvxahRoxAUFIR//vOfuP/++60+zCQSicXvjDGrZeaysrJQX1/P/5w5c8blYzbX2GKEepsGcWPH88ump96J4SNjoN4m7t4GqVSKxMREzJ49G4mJiaK4ESUkJEAmkyE3Nxetra0W61pbW5GXlyfKiUZsaWwx/vljPfug2Ht4xfjesYdKshFCOIL17B46dAhnz57FuHHj+GUmkwn79+/HK6+8gubmZrsf1Fu3bsUDDzyAbdu2WaU/9O/fHyUlJWhqasL58+cxePBgLFu2DFFRUQCAK6+8ElKp1KoX9+zZs1a9veaCg4MRHBzs7ulaaavxGAyonuOXDX1sMwAg6xAQLNWI9tGjGHH1Y9PT06FSqZCVlYXY2FhUVlYiLy8PWq0WRUVFog5eOLbqo5rXUa15LqUzD4f4KfPUIJPJZNXjTalBhIiHYMHu5MmTceTIEYtl999/P0aNGoWlS5favamr1WrMnz8farUaKSn2b2ohISEYMmQILl26hOLiYj7VISgoCOPGjcPevXtx55138tvv3bsXqampXjizjjkzSYCYH681thj5gKZq1VTRzGPP5V1mZGRALpfzy6OiokSdd0mcJ9b3ji1cys8rr7yC119/HTU1Nfw6mUyGhx56yGI7Qkj3JdgnYa9evawG4/Ts2RP9+vXjl2dlZaG2thbvvvsugLZAd968eXjxxRcRHx/P986Ghoaid+/eAIAvv/wStbW1+Mtf/oLa2lqsWLECra2tWLJkCd/Ok08+ib/97W8YP348JkyYgDfeeAOnT5/GI4880hmnjvLycpxeNxOffKJD7F9usJrG8ssvD+C2NW2P1xITEzvlmIh/oLzLjnH1Ue1NAUsI0JYa1L9/f2RnZ0OhUECtVvNPS3Jzc7F8+XIMGDCAUoMIEQG//tpfV1eH06dP87+//vrrMBqNWLBgARYsWMAvv/fee7Fx40YAQFNTE3JycvDjjz8iPDwc06dPx3vvvYc+ffrw28+aNQvnz5/HqlWrUFdXh9jYWOzcuRORkZGddl7sUjPG/yUOAWY36LAgKcKCAjH+L3H8dmJiPo/95WWX/18svVRc3iWxzdbrgHvviBW9d2wLCAhASkqKzQFqM2bMwKFDhwQ+QkJIZ/CrT8CysjKL37kA1t56WyZNmoSqqqoOt3v00Ufx6KOPunB03mM+8n7MDeOt1ot15D3lYhLiHnrvWCsvL8cvv/yC5cuX2xygtnz5csjlcnqCRogI+FWwKxbmI+9LSkosbkQ08p5Q3qVzwoICRRnEEedQ7WpCCIfuogKgkfe2US4mIe6h9441ql1NCOEIPoOaWNGMR9bCggL//LHOYxZD7ybVjyXuEvt7xxaqXU0I4YjzU9BP0Mh7Yo7yLl1jq3YqvXcIx/wJ2ow701F53QMAgA0pV2D92udE+wSNEDGiYJf4HcrFJB3RaDTIyMiwqp1aUFAgyqciHHrvWOKeoD25JAu4rm3Z5Mm3QXb1YNE+QSNEjCSMMSb0QXRFDQ0N6N27N+rr6xEREeHWPuiGTcyZl4+ylXcp1sfR7Wk0GqSnp0OhUCA7O9uidirXW0fvHwJcfk8ZLrbg5jwdAOClpDAk3SqHVOq9cnXeuB8QQnyHgl03efrhxt2wpytV/OO1jYq+WPd8Ht2wRY6qMdhnMpkQHR2NuLg4i9qpQFsepkqlQmVlJaqrq+nxNIFsWanD9d7qBadglxD/RgPUBGAymZCRkQGFQoEtW7fwy2+66UaUlJRAoVAgMzPTqWmFuyOTyYSysjKo1WqUlZWJ9joQa+Xl5aipqUF2drbN2qlZWVk4ebJt9kGxovcPIYRYoi4jAZSXl+NUbR02vFeIJuPljnVuFP4Ti5fhtlsnirLYOaV2UN6lI1Q71TF6/1jiSrKd/6MFCc+3pTGUL0lCv/AgIQ+LENLJqGdXAHV1dRj2ZDHu0/7PYrT9+Gf3IebpPbi/9Dd+OzHhUjvi4uKg1+thMBig1+sRFxeH9PR0aDQaoQ+RCMy8dqotYq6dSu8fa1zptdCgy7e60KAAUZdkI0SMKGfXTZ7kaJWVleG+3RccbnNqjQI6nU40PbuUi0mcQa8T2+i62MYNUDv/RzMSni8DAJQvSUS/8GAA3hv0STm7hPg3Cnbd5MmHm8lkwvCRMYgdPRpvv7cZN+V+AqBt5H1IoAR/nfVXVB35RlQ3prKyMiQlJUGv19uc7Uiv10Mul4viCwDVj3XMvBqDvdkHxfbInt4/ttEANUIIQGkMgpBKpVj3fB527ijB/L/N5Zcf+foQ5tydjp07SpCfny+qAIdyMdtoNBpER0cjKSkJc+bMQVJSEqKjo0X5CNoemn3QGr1/CCHEPgp2BcLdsCu/+45fNnnybaK9YVMuJuVcuiItLQ3Hjx+HTqdDYWEhdDodqqurRfe+4dD7x7aqVVNRtWoqDuYk88sO5iTzywkh4kBpDG7y1mMremTdRuw5h2I/f+IZev045uva1ZTGQIh/o55dgTWbGO7bfQFZ/4nATfJbRHkjAi7PY6/VaqFSqSx6NlUqFbRabbdO7aD6scQTYn//dMS81nD5/nKqPUyIyFCwS/yGmHMxKefSdY0tRsiWlUK2rJQfdS9mYn7/OKLRaDAmZhROrVHg1BoFpk25jfLgCREZCnYF0thiRGOLEYaLLfyyfbpyGC42i/rGLdZcTMq5JN4g1vePPZQHTwgBKGfXbZ7maHVWSRzSNVDOpfO4L4ONLSZ+UpaDOckIC2q7LjRZAAEs31PFxcX4/PPP+bEREydOxMyZM732nqKcXUL8G90V/JRGoxFtb4wYcTmX6enpUKlUduvHij3QBcAPNDJnPhMhfVH0HqEG0Jq3O2DAAADA2bNn7R6DrQFoXB78ww8/jBEjRlhNofzQQw9hx44dopyWnRCxoTQGAZhMJqDoScQefQsHsm/jlx/MSUbliimIPfoWMjMzRT2IQoz5mJRz2TWYTCaUlZVBrVajrKys096nzrbrrfeOpzWf3T0O83bn3ns/HtjbhAf2NmHuvfe7dAxcfnt2drbNNIbly5dbbEcI6b4o2BVAeXk5Tp04hpysJQgP6cEvDwuSIjwkCMuXLaaR9yLlrZxLIQIyT9p0JTDiaqSuHNvMLzvz8lycXjcTKHrSp8GYPwSArrbr7nkKkevavt2ff/6FXyeRSJCXl2dxDNzYh8aWy6+1xhYTGluM6N2vPwIDA6FQKFBSUoL4+HiEh4cjPj4eJSUlSElJQWBgIN9zTAjpvijYFQCNvLevMwfu+WtAKJVKkZiYiNmzZyMxMdHlx8ZCBGSdOfNbWFAgdms/xPx5l2cfrDtzChX7yzAmZqTPgjF/CQDtteso8HOFyWRCRkaG3SBRoVA4fPLk6DgcHYt5u4XvF2HMDeMREBTCr586XYnX39qI99Rb+WOIeXoPYp7eY5HGMv7ZfYh5eg8e/aQZRqPRbjm/7OxsGI3ieGpEiNjRADU3eTIgwdN57Ds7j64z23N34J6rReM1Gg0yMjKs8vgKCgqc6kV1p0i9u2260hYXGCkUCmRnZ/N5v7m5uXzeb0fn5861dLdNdwabcQOPRo8Zi8rrHrA4TmcG83nSprsDCN0dVOdKu8OX77a5D3POtOnp55O772Hzdv9act7hPtSpfSGXyxG5VOtwu1NrFDAYDAgPD7daZzAYEBERgcLCQsyePdvhfjpCA9QI8W80QE0ACQkJkMlkyM3NtXkDy8vLQ1RUFBISEqz+1pMgrTMDNE/a7Oh4PM1dNQ/O1Gq1RXCWnp7uk/xYd9s0v34dad8jx72uuB45lUqFzMxMpKamdhiQXV52+f/tBYGetOnOYDNu4JFarbYKxrgJOORyud2BR562aW/SD2+36Wq7znCmTaGePFm0W/Kpw225Y1gZ24C77r7L5peI8v3lmLamrWyfraCdyvkRIh4U7ArAfOR9amoqpk2bhtDQUFy8eBG7d+9GaWmpzZH3nR2kdXZ7/MC90aPx9nubcVPuJwDabl4hgRL8ddZfkfn+NxaBk6sBWlcKCG099nXUlhABmadtukOIYMwvAsAO2q1adRcAy95jd5jXfHYnSKxaNdXqOMx7lJ1p19Y+/t+0Pph++2Ts2rmLP4bIqwdZvQ/CgqQICwpEctKtbncqEEK6Fwp2BZKWlobMzEy89NJL0GovP4oLDg5GZmamVRDpSZAmRI+dO21yA/e2bHrHauBeWFAgli9bbBU4uRqgdZWA0F6PrqO2umIQ6E5gJEQw5g8BYEft2npPHcyZDEDiUpuePHkCbL+3ufewu+0CwCvrCyC7ejBum3QLZs6c2WGgSuX8CCEcGqAmEI1Gg/z8fNx+++0Wg05uv/125OfnWw124QIme4MtsrKy7FZwcDSIw94jck/ac7fNzgjWukpA6GzqgjlPZ2HjqhwczEnmlx3MSeaX+6LNsKDAP3+kZsuk/HJbzIOi1tZWi3XOBmNdoU3vtetam1yQqNVqoVKpLD6fVCoVtFot8vPzvR4k2m73D379rt278OCDD2LmzJlWxxAWFIia51JQ81yKxblx5fy+rfoBs7f/D3Gr92PipCQq50eIyFDPrgDc6TXt7CBNiKCwfS9W+55LW4GTqz1mXbFX0NFxmBOiR87TNt0hRI+dUL2E7rTLBX4cd6qYcEFiRkYG5HI5vzwqKsrpILH9cXjSbmBgIFr/rKzgyjFw+5xyRwriVra9X3ft3IXkpFupR5cQMWHELfX19QwAq6+vd/lvdTodA8D0er3N9RUVFQwA0+l0Hv0N50LzJXah+RI7Z2hikUu1LHKplp0zNPHLvXWMnrZpNBqZTCZjSqWSmUwmi3Umk4kplUoWFRXFjEajzfa4duzt39M23GnP3TZtXb+2a3jRYXvFxcVMIpEwpVLJKioqWENDA6uoqGBKpZJJJBJWXFzs8FhdPTdvtemOxYsXs+DgYAaA/wkODmaLFy/2SXuMtZ2rTCazaDMqKspn5yh0u0ajkel0OlZYWMh0Ol2H7wtftLtv3z62b98+t47Bnc8hd3hyPyCE+B4Fu27y5MOtsLCQAWAGg8FmYNHQ0MAAsMLCQv5vvBGk+TpA87RNxtwPnFxppysFhObtuNJWZwdGnd0mdz0VCgV79dVX2dtvv81effVVplAofBpgM+YfAaCjdoU6Pn9k/t6x9eMtFOwS4t8o2HWTt3p2bQVNFRUVTNIj2Gq5p0GaED12rrbJtevrwKmrBITuXD/GhAl4OqtNb30R645svcZkMpnPe4D9FQW7hBDGKNh1mycfbkajkUUOH8FSZtzJfqlvtHi8ZrjYzFJm3Mlk0SNtBjlC9KAJ8fi0ubmZrV+/nv3zn/9k69evZ83NzV5vozsHhN2Zpyk23ZX5l1O9Xs8MBgPT6/U+TyfxZ5TGQAhhjDGaQc1Nns6Y09EsQyvHNuOZr4MBWM961J1nUAM8n8iCdG9qtRpz5szplJmxugpPZ3jr7rw9uU17NIMaIf6NqjH4KS7QBaxrq0qlUq8V6HdGZ7YnxOxmXUVnf+nwV76obtHVCTG5ByGEdBXUs+smT7/Jc+WADBdbcHOeDgDwUlIYHtc1Ovw7V0v5dCXUO2Uf9XZfRq8Ta9TbLSzq2SXEv9GkEgLhCrv3Cg3ilyUnJbhV2L+78HQii+6K6+2Oi4uzKPAfFxeH9PR0qwlIujuhJj3wZ55O7iEGJpMJZWVlUKvVKCsra5uenBAiChTsCsz8A7d8fzmCpRK3Zj3qDoSYyMLftZ+AJD4+HuHh4fwEJAqFApmZmaK7cXOTDxw5cgRyuRwRERGQy+WinRnL05nWujuNRoPo6GgkJSVhzpw5SEpKQnR0tOi+KBIiVhTsCkij0WBMzCicXjcTAPDwvkYMHxkj2g9g6p2yRr3d9qWlpeH48ePQ6XQoLCyETqdDdXW16AJdgHq7HaEnI4QQytl1k6c5WuYDsZ5ckoX7tP8DAMQefQs7d5SIsneKcjGtUS4mcYWt3O6oqCjk5+eL7vME6LzPFMrZJcS/Uc+uALhH09OVKhS+X4TYv9zAr3v7vc2YrlQhY2m26B5NU++UNertJq6g3m5L9GSEEAJQz67bPPkmX1ZWhqSkJEQu1TrcbuO0nqIsE0S9U5dRb7djvq6fSrq2znoyQj27hPg36tkVgLMDrMQ0EMsc9U5dRr3dhLiPnowQQgCaVEIQ3AfrRkVf3HTTjWhsMfETRxzMScaRrw9h8uTbMOij3UIepqA6e+IMf8ZVHsjIyIBcLueXR0VFiTK3G7hcp7qxxWS27PL/Uw8vASyrVNh6MiL2KhWEiAWlMbjJk8dWLS0tiIiIwJQpU7B9+3Y0GVv5R7GVK6Zg9l0zsW/fPtTX1yMoKKiDvRGxoBnULutouu3uPPlKRyi1w5L5YOCsrCx+Vsa8vDxotVqvfGGkNAZC/Ju4PwUFUlFRgebmZpSWlkKlUuGJxcv4dX+d9VfsLC0FYwwVFRWi7d2kG7Y16u0mxHX0ZIQQQhGEALhc3Pfeew85OTm47daJ/LqAqCi89957uOeee0Sbs0tIR7jZBNunAJlPxiI2lNphX1paGlJTU+nJCCEiJd5PPwFxObvDhw/H8ePHrT6ADxw4YLGdmNAN2z7q7b7M1rlzMw2KFffaMMd9EQDEndoB0JMRQsRMvHcGAbUfNGH+ASz2QRN0wyaEEEKIN1GwKwCunFR6ejpUKpXdQRP0iI0A1NvtSFhQIH0B+hOldhBCiG3ivUsKzHzQxMRJSRj2ZDEAoPnr/2Dr1q2iHTRBN2xr1NtNnEGpHY5RGhAh4kXvdgGlpaWhtbUVjz+ZyS/75ZdfsGTJEkilUlEGvHTDJoQQQog3UQQhIPU2De6552+YOl2Jqj+X7dr7CV5el4+7Zs/FNvVmUQa8xBL1dttHtYetUWqHJUoDIoTQpBJu8rSIuMlkwvDljmdIC3j/MVRXV4v+5k3a0GNYSxqNBhkZGaipqeGXyWQyFBQU0JdEwuuMCUhoUglC/FtAx5sQXygvL+9wm5MnTzq1HSFiw82KFRcXB71eD4PBAL1ej7i4OKSnp0Oj0Qh9iIQQQvwE9ey6ydNv8mq1GnPvvR8nT/+ESS/o+eXc42mD4Q8MvPIKFBYWYvbs2d48dEK6NJPJhOjoaMTFxaGkpAQBAZe/s7e2tkKlUqGyslLUT0UoveMy8zQGW2lA3nhCQj27hPg3cT8HFVDf/gMBAN//8H27NW3fPX48dhSAOCeWAOhmTewrLy9HTU0N1Gq1RaALAAEBAcjKyoJcLkd5ebkoJxGg9A5LNOiVEOJWGkNDQ4PNH4PBgJaWFm8fY7f08L5GDHuyGA/v+s1i+fhnP0bM03tEPbGERqNBdHQ0kpKSMGfOHCQlJSE6OpoeTRMAl6fbjo2NtbmeWy7G6bYpvYMQQqy5Fez26dMHV1xxhdVPnz59EBoaisjISDzzzDNobW319vGKhlarRX5+vuh6M+lmTTrCPe2orKy0uZ5bLranIiaTCRkZGVAoFCgpKUF8fDzCw8MRHx+PkpISKBQKZGZmwmQydbyzboirUlHzXAr16hIiMm7l7L777rtYvnw57rvvPtx0001gjOGrr77CO++8g5ycHJw7dw75+flYvHgxsrOzfXHcgvM0R4vLI9v2wYd45utgAMCZl+eCXWpCZKQMBWtyRffIkXIxHaPUjjb0OrGtrKwMSUlJ0Ov1iI+Pt1qv1+shl8uh0+lEmd7hS5SzS4ifY2647bbb2NatW62Wb926ld12222MMcbeffddNnLkSHd23yXU19czAKy+vt6j/VxovsQil2pZ5FIt2/heIdPpdMxoNHrpKLsWnU7HADC9Xm9zfUVFBQPAdDpd5x6YHyguLmYymYyhLambAWAymYwVFxcLfWiCKC4uZhKJhCmVSlZRUcEaGhpYRUUFUyqVTCKRiPK6FBYWMgDMYDDYXN/Q0MAAsMLCwk4+su7PW/cDQohvuJXGoNfrMXbsWKvlY8eOhV7fVlnglltuwenTp53eZ15eHiQSCRYtWmR3G41GgylTpqB///6IiIjAhAkTsGeP9VSqL7zwAkaOHInQ0FAMHToUTzzxBJqamvj1RqMROTk5iIqKQmhoKK655hqsWrWK0i4ERrmYtlFqhzVuuu0jR45ALpcjIiICcrkclZWVKCoqEt1TEYDSOzpiMplQVlYGtVqNsrIy0aZzECJK7kTI1157LVu6dKnV8qVLl7IRI0Ywxhj76quv2ODBg53a34EDB5hMJmNjxoxhCxcutLvdwoUL2Zo1a9iBAwfYsWPHWFZWFuvRowc7fPgwv82mTZtYcHAw27x5Mzt58iTbs2cPGzRoEFu0aBG/zbPPPsv69evHtFotO3nyJNu2bRsLDw9nL7zwgpNXwHvf5KnH7jLq2bVmNBqZTCZjSqWSmUwmi3Umk4kplUoWFRUl2qcBRqOR6XQ6Vlgo7qcijNFrxRFff85Szy4h/s2tYHf79u0sKCiIjRkzhj3wwAPs73//O7v++utZcHAw27FjB2OMsddee4098cQTHe7LYDCwa6+9lu3du5dNmjTJYbBrS0xMDFu5ciX/+4IFC/hUCs6TTz7JbrnlFv73lJQUNn/+fItt0tLS2D333ON0u974cOMexabMuJNPZdCVi/dRLN2srdEXAOIKSu+wZn5N9Ho9MxgMTK/Xe/WaULBLiH9zK9hljLGTJ0+ypUuXsjvvvJOpVCq2bNkydvLkSZf3M2/ePL7X1dVg12QysaFDh7KXX36ZX6ZWq1nv3r3Zl19+yRhj7MSJE2zUqFEsLy+P3yYvL49FRkayH374gTHG2DfffMMGDBjgMJetqamJ1dfX8z9nzpzx6MPNPLAzXGzmg90LzZdEG9gxRjfr9igPk7jKVi9mVFSU6N47jHXeF2gKdgnxb24Hu96gVqtZbGwsu3jxImPM9WD3+eefZ3379mW//PKLxfKXXnqJ9ejRgwUGBjIA7B//+IfF+tbWVrZs2TImkUhYYGAgk0gkLDc312FbzzzzjMXNg/tx98NNp9MxSY9gpiuvYOcMTXywe87QxC40X2Kf7P9ctD12dLO+jHp2O2Y+yPNC8yWhD8cvUHpHm856/1CwS4h/c7vY4O+//44DBw7g7NmzVgO75s2b1+HfnzlzBgsXLsRHH32EkJAQl9tXq9VYsWIFtm/fjgEDBvDLy8rKsHr1arz22mu4+eabcfz4cSxcuBCDBg3CU089BQDYunUrNm3ahMLCQowePRrffPMNFi1ahMGDB+Pee++12V5WVhaefPJJ/veGhgYMHTrU5ePm1NXVYdiTxbhP+z9Au49fzk1nab6d2KSlpSE1NZXKbAFISEiATCZDbm6uzTJbYp58hNgnlUqpvBho0CshpI1bwe6OHTswd+5cXLhwAb169YJEIuHXSSQSp4LdQ4cO4ezZsxg3bhy/zGQyYf/+/XjllVfQ3NxsN7jZunUrHnjgAWzbtg3JyckW65566in87W9/w9///ncAQFxcHC5cuICHHnoIy5cvR0BAABYvXoxly5bhr3/9K7/NqVOnkJeXZzfYDQ4ORnBwcIfn5axBgwYB/7ng3HYiRDfrNlKpFAUFBUhPT4dKpUJWVhZiY2NRWVmJvLw8aLVaFBUVifKLAFerurHFZLbs8v/TxAHEvEKFrdrDYq9QQYhYuHU3yMjIwPz585Gbm4uwsDC3Gp48eTKOHDlisez+++/HqFGjsHTpUrs3b7Vajfnz50OtViMlJcVqfWNjo0XvF9AWMLC2lA2H23Rm6bGEhAQ03ROFG8begI2b1bgp9xMAwMGcZIQESnD3XXejeeBA6rEjfJmtjIwMyOVyfnlUVJRoy2wBQMzT1mUHzZ+M1Dxn/fkgFo0tRv76VK2aKtrAn56MEEIAN4Pd2tpaPP74424HugDQq1cvq0dLPXv2RL9+/fjlWVlZqK2txbvvvgugLdCdN28eXnzxRcTHx+Pnn38GAISGhqJ3794AAKVSiXXr1mHs2LF8GsNTTz2FGTNm8AG0UqnE6tWrMWzYMIwePRpff/011q1bh/nz57t9Pu5obWnC7tIPMf9vc4HrHgAAHPn6ENavfQ67S7Xo379/px6PP6GbtSVK7SDEdfRkhBACuBnsTp06FQcPHsQ111zj7eOxUFdXZzExxeuvvw6j0YgFCxZgwYIF/PJ7770XGzduBADk5ORAIpEgJycHtbW16N+/Px/ccl5++WU89dRTePTRR3H27FkMHjwYDz/8MJ5++mmfno+58vJynDt3Dnl5efh//94AXNe2fPLk2yC7ejBWr16N7OxslJeX0+N8AoBSO9qrWjUVQFvqAtejezAnGWFB4g1cKLXDGj0ZIYRIGPds3wVvvfUWVq1ahfvvvx9xcXHo0aOHxfoZM2Z47QD9ladzoavVasyZMwcGgwGhoaFWPXaNjY2IiIhAYWEhZs+e7YMz8E/mN2tbAYwYb9Yc6u22ja7LZbJlpQ7Xizm1w2Qy+ezJiKf3A0KIb7l1V3jwwQcBAKtWrbJaJ5FIaBpGJ7QfOJGYmHj5pr17NzakXGGxnVhQHiYhxBfoyQgh4uVWsNuZA7m6K0cDJwCgID+fBk4QAPRouiNhQYH0JehPlNpBCCHWxH2XFJD5wAmlaiaSp0xBYHAogLaawbs/1uG9DW+h2cQQJqL7FN2srVFvN3GWrS8+YUFS0X8hAijdhRAxc/rd/tJLL+Ghhx5CSEgIXnrpJYfbPv744x4fmBikpaUhMzMT7wdMwne1luuu/ucmZB0Csg7tEVUwQzdrQgghhHiT0xHE+vXrMXfuXISEhGD9+vV2t5NIJBTsOkmj0SA/Px/DlkwS+lCIH6Pebsd8OfCoq6LUjssoDYgQ4lY1BuL56FuTyYTo6GjExcWh8P0iBAQEWAQzMT+8g6OV3+Lbb/+DXqHem7mNdF30GNaaRqNBRkYGampq+GUymQwFBQVUUooA6JwKFVSNgRD/FtDxJsQXysvLUVNTg+zsbISHBCEsKNCip27xk4tQc/wHHPpSL+BREuK/NBoN0tPTERcXB71eD4PBAL1ej7i4OKSnp0Oj0Qh9iIQQQvyAWz27JpMJGzduxMcff4yzZ89aVWf45JNPvHaA/sqbdXYDgkKsBiF9uXgiBl55hejq7HZl9Di985g/GbE1DaxKpUJlZSWqq6vp30DkOqN2N/XsEuLf3HqXL1y4EBs3bkRKSgpiY2MhkUi8fVzdnnmd3TE3jOeXc4+n9Xq9xXa+JkSg5qhNT4/H3b93N1WAHqd3Lu7JiFqttirbFxAQgKysLMjlctHOQEhfvC6jQa+EEDA39OvXj5WWlrrzp91GfX09A8Dq6+vd+nuj0cgih49gKTPuZL/UN7LIpVoWuVTLzhma2O9/NLKbJ97K+vfvz/bt28eMRqOXj95ScXExk8lkDAD/I5PJWHFxsVN/f6H5En/8F5ovedymrXWRw0c43YYn5+PuuUgkEqZUKpler2cGg4Hp9XqmVCqZRCJx+jo6YjQamU6nY4WFhUyn0/n8NeHvCgsLGQBmMBhsrm9oaGAAWGFhYScfmfA8fT93V+68t53l6f2AEOJbbuXsBgUFITo62qMgW+ykUimQvg6V1z2Am3Ivp32Mf3Yfrv/XJ/j5liU4d+4ckpOTER0d7VT+YWOLEbJlpZAtK+Uf3XVEiLzHjtqcOXOm1brY0aN9ej6NLcY/fyxHbHPL7TGZTMjIyIBCoUBJSQni4+MRHh6O+Ph4lJSUQKFQIDMz06NZBTUaDaKjo5GUlIQ5c+YgKSnJ6ddEd2X+ZMQWbrnYZiCkPGb7uAoVNc+lUK8uISLjVs5uQUEBfvzxR7zyyiuiTWHwRo5WR6OEK3MmobKyErm5udBqtSgqKnL4SNzVR/Ce5j26kwvXUZszZszA/v37cf78efTo0YNv44+mS/yXgi+zktArNMiqDU/Ox90R22VlZUhKSoJer0d8fLzVer1eD7lcDp1O59bjdC54USgUyM7ORmxsrEuvie6Kcnat0TURDuXsEuLfnA52299QP/nkE/Tt2xejR49Gjx49LNaJoffAGx9uXCBnuNiCm/N0ANpKjr2v3oSAgAA+kOvoRuXuAAxPAzV3AkRX23SlDU/Ox91g13ygYXh4uNV6g8GAiIgItwYaUvDimPkXgaysLP6LQF5enii/CPj6ixexj4JdQvyb089yevfubfH7nXfe6fWDERtbQeiSjCcQHhJksayjATfuTidbV1cHAIiNjbW5nlvObecNvmzTk327O3GD+eN0WwGGJ4/TaRCWY2lpaSgqKkJGRgbkcjm/PCoqSnSBLiDM+7kroUF7hIiX08Huhg0bfHkc5E8xMTE2l/viRuVpoOZOgOhqm7baeCkpDMlJCV49H3dHbCckJEAmkyE3N9dm72teXh6ioqKQkGB9vB2h4KVjaWlpSE1NpSAGvv3i1dVRtRRCRM6dUW1JSUnst99+s1peX1/PkpKSPBkw12V4c/St+ShhXXmFzW0qKioYAKbT6Wz+/YXmS+ycocmiqgO33B6j0chkMhlTKpXMZDJZrDOZTEypVLKoqKgOR/67Msq5ozZTUlJYr169WEtLi8U6w8Vmvo2GxiafnY+n1RgqKipYQ0MDq6io8Lgag06nYwCYXq+3ud7Ra4KIj7fez91NZ1RLoWoMhPg3t4JdiUTCfvnlF6vlv/zyCwsMDPT4oLoCXwW7KTPu7HKBmqvtdtQmAKt1KTPudKoNXwWezpxT+3JPUVFRHrVHwQtxlVCvf3/VWe8hCnYJ8W8uBbv/+c9/2H/+8x8mkUiYTqfjf//Pf/7DDh8+zHJzc1lkZKSPDtW/eOPDzVaPrLRnH5Yy4072yf7PXb5RuVtH0heBmidteno8QpwPY76phUvBC3GVUK9/f9RZT0co2CXEv7lUeiwgIIAvNWbrz0JDQ/Hyyy9j/vz5rmRSdEmdUXrs1BoFgLYBN/n5+T7NLaMZ1PyXrXzDznhNdBXuznrXnXWn178nfFktxRxVYyDEv7l0Vzh58iQYY7jmmmtw4MAB9O/fn18XFBSEAQMGiPID1VcKCws77UYllUo7fUS/ozY9PR4hzsdXaBAWcVV3ev17ggbtEUIAF4PdyMhIXLp0CfPmzUPfvn0RGRnpq+MShbxxzbjnnrmYOl2JqpH3AgBev+MKvLwuH7t270KwejPdsAgACl5sMa8vfXnZ5f+nHl7iy2ophJCuw60Z1K644gocOnQI11xzjS+OqUvw9LGV+YQBhe8XIXbFXgBtj2FDAgNEP2EAQI+niWPuTgQiFvT+adMZk49QGgMh/i2g402sqVQqlJSUePlQxIWbMCA7O9vuhAEnT55EeXm5QEdI/E1jixGyZaWQLSvlezUJIY5xk48cOXIEcrkcERERkMvlqKysFOXkI4SIkVtf9aOjo/Gvf/0LFRUVGDduHHr27Gmx/vHHH/fKwXVn5hMGhAUFWvVCiXnCAHo8TZzh7qx33R29f6xR3jsh4ubWp96///1v9OnTB4cOHcKhQ4cs1kkkEgp2nUADJ+xzd/rj7oqCF9vcnfWuu6P3j22U906IeLl1Vzh58qS3j0N0aOAEcRYFL4QQQoj7PO4C4ca3cfV3iXOkUikKCgqQnp6O1NRUTJs2DaGhobh48SJ2796N0tJSFBUVifIxGz2eJq6wlQYkZvT+sY8G7REiTm6/0999912sXbsW1dXVAIARI0Zg8eLF+Nvf/ua1g+vu0tLSkJmZiZdeeglarZZfHhwcjMzMTNEOnKDH05YoeCGuoPcPIYRYcqsaw7p16/CPf/wD06dPx/vvv4+tW7di2rRpeOSRR7B+/XpvH2O3pdFokJ+fj9tvvx16vR4GgwF6vR6333478vPzodFohD5E4gfCggL//JGaLZPyywkhjjW2GP/8scx755YTQro3t+rsRkVFYeXKlZg3b57F8nfeeQcrVqwQRU6vN+vs2srZpTq7pD16BGsfTY9LHPF1TWaqs0uIf3PrbllXVwe5XG61XC6Xi7JUlju4OrtqtRpNxlbEPL0LwOUgJisrC3K5HOXl5TSCmACg3FR7NBoNMjIyUFNTwy+TyWQoKCgQbSoQIYSQy9xKY4iOjsb7779vtXzr1q249tprPT4oMTCvs2uLmOvsEuIsbnasuLg4i1SguLg4pKenUyoQAdDWiVC1aioO5iTzyw7mJPPLCSHdm1s9uytXrsSsWbOwf/9+TJw4ERKJBJ999hk+/vhjm0EwsTZo0CBIegTj4DdHEPuXG/jlXE7ZwW+O8NsRQqyZTCZkZGRAoVBYpALFx8ejpKQEKpUKmZmZSE1NFWVKA6V2XEaD9ggRN7dydgHg0KFDWLduHb7//nswxhATE4OMjAyMHTvW28fol7yRszt8+W6H2wS8/5ioc3bpZm2NrsllZWVlSEpKgl6vtzkxi16vh1wuh06nE10qEKV22OarvHfK2SXEv7n9Th83bhw2b97szWMRFWcClPz8fNEGMnSztkbXxBKlAtnGpXYoFAqo1WrExsaisrISubm5SE9PR1FRkShfLwDlvRMiVi7l7AYEBEAqlTr8CQykx0LOqlo1FXnjmoGSZfyyMy/PhaQ4A3njmkV7Q6I8TGt0TayZT7ltixin3G6f2hEfH4/w8HA+tUOhUCAzMxMmk6njnRFCSDfhUhrD9u3b7a6rqKjAyy+/DMYYLl686JWD82fefGxluNiMuJVtkwW8nhyG5KRbRdujSyXZrNE1sY2uizVK7XDMV2lAlMZAiJ9jHjp69ChTqVRMKpWyefPmsVOnTnm6yy6hvr6eAWD19fUe7+tC8yUWuVTLIpdq2YXmS144uq5Lp9MxAEyv19tcX1FRwQAwnU7XuQcmILom9hUXFzOJRMKUSiWrqKhgDQ0NrKKigimVSiaRSFhxcbHQh9ipCgsLGQBmMBhsrm9oaGAAWGFhYScfmfCKi4uZTCZjAPgfmUzmldeIN+8HhBDvc6v0GAD89NNPePDBBzFmzBgYjUZ88803eOeddzBs2DCPA3Cx4fLIap5LEf3oYMrDtEbXxL60tDQUFRXhyJEjkMvliIiIgFwuR2VlpShzUym1wzZKAyJE3FwOduvr67F06VJER0fju+++w8cff4wdO3bYvRGTjjW2GCFbVgrZslLRT11JN2trdE0cS0tLw/Hjx6HT6VBYWAidTofq6mrRBboAkJCQAJlMhtzcXLS2tlqsa21tRV5eHqKiopCQkCDQEXY+ymMmhLiUxrBmzRrWt29fFhMTw0pKSnzV29wlUBqDbxiNRiaTyZhSqWQmk8linclkYkqlkkVFRTGj0SjQEXY+uibEFZTaYakz0oAojYEQ/+bSM/Nly5YhNDQU0dHReOedd/DOO+/Y3I4eCTmH68U1XGzhl+3TlSPpVjmkUnEWPJdKpSgoKEB6ejpUKhWysrL40kl5eXnQarUoKioSzYAjgK4JcQ2X2pGRkWExrXtUVJQoUzsoDYgQ4lI0NW/ePEgkEl8di+hwxc3NPa5rBHRtlRnEWg+SbtbW6Jo45qvJArqqtLQ0pKam0gQksEwDslWhQuxpQISIgdszqImdN0rNyJaVOly/7ibx1toFaLYwW+ia2EbBLrGnM0rUUekxQvwb3REEYjKZgKInETt6NN5+bzNuyv0EAHAwJxkhgRL8ddZfkfn+N0hNTRVtMCOVSkVZC9QRuiaWuFSgxhaT2bLL/09BL6E0IEII3QkEUl5ejlMnjmHLpncQHtKDXx4W1Jaru3zZYsjlcpSXl1NwQ4gdtlKBxj+7j/9/saYCAdTbbY7SgAgRN/F++gmMBk10jG7W1uiaEOIeymMmRLzoTimQ9oMm2vdA0aAJQjpWtWoqgLbUBa5H92BOMsKCxBvAUGqHfZQGRIg4ifdTT2Dmxd9tDZoQY/F3Dt2srdE1sc3WeXOpQGJFqR2EEGJJvHcEgdGgCfvoZm2NrgkhnqM0IELEid7pAqJBE4R4R1hQIAX8f6LUDkIIsUTBrsDS0tKgUCjw2muv4cSJExg+fDgeffRRBAUFCX1ogqGbtTW6JsRZlNphjdKACBE3eocLTKPRICMjAzU1NfyyF198EQUFBaLt2aWbtTW6JoS4j9KACBG3gI43Ib6i0WiQnp6OuLg46PV6GAwG6PV6xMXFIT09HRqNRuhDJKRLMJlMKCsrg1qtRllZWdukLSLHpXbUPJdCX4oIIaJG0wW7ydPpIc2nsCx8vwixK/YCaHtcHRIY4JUpLAkRA1tPR2QymaifjhBL5mkMttKAPP0yQNMFE+LfqGdXIOXl5aipqUF2drZF2TEACAgIQFZWFk6ePIny8nKBjpAQ/0dPR4gzwoIC//yRmi2T8ssJId0bvcsFUldXB0mPYFwz4jqbgyauGXEdvx0hxJrJZEJGRgYUCoVFrer4+HiUlJRApVIhMzMTqamponw6YjKZaLYwQggBBbuCGTRoEIY9WYybnv/MYrn5oAluO7Gim7U1uiaXcU9H1Gq13acjcrkc5eXlops1i1I7bKMSdYSIE6UxCMSZmdHEOoMa0Hazjo6ORlJSEubMmYOkpCRER0eL+rE0XRNL3FOP2NhYm+u55WJ7OkKpHYQQYomCXYFIpVLkjWvGmfXpiPnhHX75/5vWBzHft/3eevfLaDaJb/wg3ayt0TWxxj31qKystLmeWy6mpyPtUzvi4+MRHh7Op3YoFApkZmZStQpCiLgwP5Gbm8sAsIULF9rdpri4mCUnJ7Mrr7yS9erVi8XHx7Pdu3dbbbd+/Xo2YsQIFhISwq6++mq2aNEidvHiRYtt/vvf/7K5c+eyvn37stDQUHb99dezgwcPOn289fX1DACrr693+m/snVPk8BEscqmWRS7VMkmPYCaLHsn/fqH5kkf772qMRiOTyWRMqVQyk8lksc5kMjGlUsmioqKY0WgU6Ag7H10T2+i6WNPpdAwA0+v1NtdXVFQwAEyn03XugXVz3rofEEJ8wy96dr/66iu88cYbGDNmjMPt9u/fjylTpmDnzp04dOgQkpKSoFQq8fXXX/PbbN68GcuWLcMzzzyDo0eP4q233sLWrVuRlZXFb/Pbb79h4sSJ6NGjB3bt2oWqqioUFBSgT58+vjpFu9LS0nDkyLf87yU7duKLg4f53xtbTGhsMfKlc7o7qlJhja6JbVKpFAUFBdBqtVCpVBY93iqVClqtFvn5+aLKaabUDseoHjMh4iT4ALU//vgDc+fOxZtvvolnn33W4bYvvPCCxe+5ubnYvn07duzYgbFjxwIA9Ho9Jk6ciDlz5gBoG5Qxe/ZsHDhwgP+7NWvWYOjQodiwYQO/TCaTeeeE3NArNBg1z6VAtqwUj+suAjodv05ss/zQzdoaXRP70tLSUFRUhIyMDMjlcn55VFQUioqKRDcYyzy1Iz4+3mq9K6kdQg2G9FW7NGiPEPESvGd3wYIFSElJQXJysst/29raCoPBgL59+/LLbrnlFhw6dIgPbn/88Ufs3LkTKSmXA8UPP/wQ48ePx1133YUBAwZg7NixePPNNx221dzcjIaGBosf4n2Uh2mNroljaWlpOH78OHQ6HQoLC6HT6VBdXe2TAEaonkFn201ISIBMJkNubi5aW1st1rW2tiIvL8+pga+eDoZsbDFCtqwUsmWlLj2VcrVdZ9vhct5jY2Px6quv4u2338arr76K2NhY0ea8EyIqQuZQqNVqFhsby+fTTpo0yWHObnvPP/8869u3L/vll18slr/00kusR48eLDAwkAFg//jHPyzWBwcHs+DgYJaVlcUOHz7M/t//+38sJCSEvfPOO3bbeuaZZxgAqx9v5mhdaL7ELjRfYucMTXzO7jlDE79cDMSUh2k0GplOp2OFhYVMp9PZPSd/vybOnocv22xobHI6z/1C8yW3cuKLi4uZTCazeP/LZDJWXFzs1N93VrvFxcVMIpEwpVLJPtn/Od9myow7mUQi6fB4zf9er9czg8HA9Ho9UyqVTv29u+fqTrvOtMO9f8aPH2/zOo4fP97j9w/l7BLi3wQLdk+fPs0GDBjAvvnmG36ZK8FuYWEhCwsLY3v37rVYrtPp2FVXXcXefPNN9u233zKNRsOGDh3KVq1axW/To0cPNmHCBIu/e+yxx1h8fLzd9pqamlh9fT3/c+bMGa99uHly4+5ujEYjW7lyJQPAJkyYwMrLy1lDQwOrqKhw6WbrapudHax5EsBUVFT4/Jo4S4gA0Fab5oM8fRHsdqUAkPs7mUzGJD2C+TZl0SM7PE5Pv1i5+4Xd1XZdaYcbtOfoOsLDQXsU7BLi3wQLdj/44AMGgEmlUv6H+0CSSqUOA44tW7aw0NBQptVqrdbdcsstLDMz02LZe++9x0JDQ/kP0WHDhrEHHnjAYpvXXnuNDR482Onj92Y1ho5u3P7Qc+ZKm97sweJ65wGwqKgouzfrrtRb52kAY36sjq6JrwkRALZv85fzvzNdeQW7Q3VXh0FPZwVits6xs9u90HyJNTQ2se27P+Hb/Pn3Cx226Wk1B64tez/eateVdjZt2sQCAwMdXsfAwEC2adMmu8fXEQp2CfFvgg1Qmzx5Mo4cOWKx7P7778eoUaOwdOlSuwMS1Go15s+fD7VabZGHy2lsbLQasS6VSsHaAnsAwMSJE/HDDz9YbHPs2DFERkZ6ckou4/LIFAoF1Go1YmNjUVlZidzcXGifV6KoqAi7tR96NKiiscWImKf3AACqVk11ah54IQZy2LsWq1evRmlpKVasWIHly5d7dYCMo+ufnp7ukwFOnkxxm5aWhtTUVL+YQc3TqXq5/EpbU2UDsPk6tdWmbFlp28qR9/Lb2RvUyb0PzDkzANTTmdqEaNdWmzfnXR74aq9NoQZD+rLdc+fOwWg0OqxmsmPHDpw7d87lfRNCugbBgt1evXpZfbD17NkT/fr145dnZWWhtrYW7777LoC2QHfevHl48cUXER8fj59//hkAEBoait69ewMAlEol1q1bh7Fjx+Lmm2/G8ePH8dRTT2HGjBn8TfeJJ56AXC5Hbm4u7r77bhw4cABvvPEG3njjjc46faeChX/84x84d+5cpwZjngSA7gQwgP1rMeaG8Tgy+hEMG/0INryXgeXLl/u8TV8Ga4DngZNUKvWLqW+FCAAdtelL3TEAtMfTag5Vq6YCaHsvcP+eB3OSERbk+AuZq+260k7//v0BdHwdue0IId2P4KXHHKmrq8Pp06f5319//XUYjUYsWLAACxYs4Jffe++92LhxIwAgJycHEokEOTk5qK2tRf/+/aFUKrF69Wp++xtvvBEffPABsrKysGrVKkRFReGFF17A3LlzO+3cOgoWlixZgqSkJMF7zlxp0xc9WJxTp2qc7sHy5946ZwOYU/+t43stne2R9xVbTweECMRstWkr6FkeY8Dcv6Zb/X1nBWL+0G7VqqlobDFi/LMf88ucadO8moP5ZwDgXDUHW6/TsCBph69fV9t1pZ0hQ4YA6Pg6ctsRQrofvwp2y8rKLH7nAlh7620JDAzEM888g2eeecbhdgqFAgqFwsUj9J6OgoWGhoYOH711Zs+ZM226q/21sBWoS3qE4NR/69DYYvRK4CdUb52zAczAgQOBykavtu1NQgSAttq09VoYNvgqO8FQ5wRi/tCuu21yE3Wkp6dDpVIhKyuLf7qTl5cHrVaLoqIir6fO+LJd7jquXr0a27dvt7qOubm5TpVjI4R0XX4V7IpJR8HCV199BUD4njNX2vRWD5atQH3oY5vxTCXwTOUei0C9q/XWdRTArH5uLWTRI/GXG28G9un4NjhhQYFu5WG7w9HTgXE3T+j0ALCja8eRT5Tb+nO3dbUA0Na/m/nyjl4v3pioIywo0OVJcNxp15l2OrqOpaWlPvn3I4T4DwnjRm0RlzQ0NKB3796or69HRESEy39vMpkQHR2NuLg4mzfuW265BXq9Hnq93mYwptfrIZfLodPpbPaymt/wbAVjtm54ZWVlSEpKcrtN87ZdCcbaX4trsnc53N7Wzc3TNttff5VKhcrKSlRXVzu8Cbo7AJDLi25/4/025mGHf1vzXIpFmytjGxB5tfsD1RzNVsUP/rJj3U3Nds+DC8Q6CoxcvX6Orp2zbbrL1sDNqKgo5Ofn+3QGLlfb7ejfzdkgVAwzqHnr38/T+wEhxLco2HWTNz7cHN24d+zYgauuugo33XRTpwVj/hIAPrF4GWJiYvD1ke/wyO7fAQArxzbjrjtnALAdqHs76PRVsGbetq0bb+vdLzv8u6pVU7Htgw/xzNfBAIAzL88Fu9SEYcMise75PIvj7ejYOqq64UzQJEQAaK/N++67D9dee61PA7OuEAB6K9jtjnz170fBLiF+Tsi6Z12ZL+vscrVTvTGRgCd1TDt78oL218K8IL6vJtcQsnatrVrGjmqydlRbtP2/j6N/e2dq5DpbH1boOtArV65kkZGRbtdK7m5oJkbH3K3J7QjV2SXEv1HPrpu8+U3eUW+DP/Wc+fpxLWB5Lfr2H4iH97UN0vJlbqpQvXWO2OqV7ajHbkzV66isrMR/vjsKqVRqN4UlWCpxqQe/s3KE3WHeO5+dnW1Zq9rHaQ3+zp//3YTki+tCPbuE+DcKdt3UmR9uQgRj/hgAiomtG/KefTrcMf0O7Nr7CR7e9RsAyyD2P4e+glwuR+RSrcN9b5zW06XcbH8NmryVdtNd+eu/m1C4cQzn/2hBwvNtgz/LlyShX3gQgI4H7jlCwS4h/k3cn35+xNGNSYiJBPxl8gKxsjXK/H/nfga71IyxcaOBXZ/9ud3lCgb2qmi052rVDXdG1ncGoUrldRX++u8mFFtVXrigFxB3LjMh3R0Fu8RvUe+yJX72qKoqm+u5cmmvJ4ch4dYEu2kMByo+47d3p+yavxCqVjIhhJCupfPm3CQ2NbYY//yxrGXKLRcrjUaD6OhoJCUlYc6cOUhKSkJ0dDQ0Go3QhyYYrs7suufz8GPuHah5LoXv1TWvbZucdCvCggItav5yPcBhQYEW9WrN69O234+/F9k3r5VsS1cJ2gkhhPgWBbsCi3l6D2Ke3mMxu9n4Z/fxy8WIG3QUFxcHvV4Pg8EAvV6PuLg4pKenizbg5Yrja7VaqFQqi2ujUqmg1WqRn5/fYe+3t/YjtO4StPuSyWRCWVkZ1Go1ysrKYDKZOv4jQgjpZmiAmpu8NSCBamJaokFHHfNWtQwhq254i5CTTPi7juooi83lAWrNSHi+DABQviQR/cLbalbTADVCui8Kdt3krQ83d2Y66868NYtbd8b11pWVlQEAEhMTkZiY6PUZ1LqK7hC0exuVZLOPSo8RIj7iiqT8kK0PWvMR9mJDg44csxXYbdq0ye3euu5QdSMtLQ2pqaldPmj3FpPJhIyMDCgUCounI/Hx8SgpKYFKpUJmZiZSU1NFe40IIeJCObvEr9CgI/sol9k+LmifPXu2273c3QVXki07O9tuSbaTJ0+ivLxcoCMUFleSzXyAJyGke6M0BjfRYyvfoJxd2+i6EGep1WrMmTMHBoMB4eHhVusNBgMiIiJQWFiI2bNnC3CEwvJF6g7dDwjxb9Sz6ydo1HSb7lIpwNv26faDzXoF38Y8jCajZeUB6q0j5ujpiH1U0pAQcaJg1w/QB7CltLQ0FBUV4ciRI5DL5YiIiIBcLkdlZaVoB9b8/PPPDteLPZe5scUI2bJSyJaViro+NUAl2ezh0oBiY2Px6quv4u2338arr76K2NhY0acBEdLdUbArMMrDtC0tLQ3Hjx+HTqdDYWEhdDodqqurRRfocpOLXNF/oNky60lHxNxbRyzR0xFr3KC9cePGobKyEgsWLMD8+fOxYMECVFZWYty4ccjMzBTtEzVCujvK2XWTN3K0KA+TOGIymTB8+W6H29Q8lyLq1wqV7rOPSrJdxpU0lEgkdsuxMcbcLmlIObuE+Dfx3gn8ADdqWq1W2x01LZfLUV5e3uXLQxHXcIEKZr3icDu9Xm8xgYKYAl0ANmcZNJ+NUGyTspijkmyX1dbWIjAwEHfccYfdcmy7du1CbW2twEdKCPEFCnYFRDVlHfNF8feuwHxCgCcVfRETE4Ovj3yHh3f9BgBo2rIIZ386AwCQr2lGVFSUaHOZiWPdoY6yN5w7dw5Go9FhObYdO3bg3LlzAh0hIcSXxBE9+CnzUdO2ZgujPEzxMZ8QoPD9IsSu2AtoP8PBnMnAro8BACGBAdi7qxRnz54VdW8d0PYlCLCfxkAIAPTv3x9Axx0L3HaEkO6FBqgJiEZN28YNvmpsMZktsx6U1R05mhCAc/r0KUilUppAAW05uW0/UrNlUn652FGVijZDhgwB0HE5Nm47Qkj3QncDAXGjptPT06FSqZCVlcUPmqA8TEtiycOsq6uDpEcwrhlxnUWwD0hQtWoqDIY/MHBNs2hTWwhxB9exsHr1amzfvt1qMHBubq4oOxYIEQsKdgXG1ZTNyMiAXC7nl1MepjgNGjQIw54sxk3Pf2ax3DzYB4Dq6urOPCy/x00BS9qYV6m4vOzy/4ut17ujjoXS0lJRdiwQIhZUesxN3i4144spLLsqMZeTcqbc2P9em41+/frh+PHjon2NEMdky0odrhfrFwNflWOj0mOE+DfK2fUT3KhpysMUdx6mVCrF30K/xul1M3Hd9xv55f9vWh/EHn0LZ9anIysrCzU1NTQ1MCEuoslqCBGn7h05ENIFxYwYDnapGUeP/AcY1bYsZfp0DH28EEOvewDzH5qI7Oxsyts1Q09GLFGVCvuaTQz37b4AIAJVM28R9euEELGgnl0/QaOmrXF5mDXPpXT7Hl1zXKm5t95+m1/2wQcf8P9fVVVlsZ3YaTQaREdHIykpCXPmzEFSUhKio6NFO9U2IO6nI4QQ0h4Fu4T4GW7k+IsFz6NyxRRUrZoK+cSJ/Pq1616ALHokxt08QcCj9A/cBBxxcXHQ6/UwGAzQ6/WIi4tDenq6qANeYokrXXj+jxZ+2fk/WkRR0pAQsaMBam7y1oAEMQ/GIvZxQdywJTscbrdxWk/RPrI3mUyIjo5GXFycxRSwQFs5KZVKhcrKSlRXV4vy+hBLvhy0RwPUCPFvFEkJTMw1ZTsi5jxMriTdkwccb5eUlASZTIaCggLRDbLhJuBQq9V2p4CVy+UoLy+nKXMJIUTEKI2B+CXKw2wLeI88k4zXk8OwPMbAL4/54R1sVPTFgSW3iPqRPTdAr6MpYGkgHyGEiBsFuwKrWjUVVaum4mBOMr/sYE4yv1yMKA/zsl6hwZianIS/3nUnv+x99SYk3jIBA/r2Rnx8PEpKSqBQKJCZmQmTyeRgb90LN0CvoylgxTyQz2QyoaysDGq1GmVlZaJ6fRBCCIdydt3k7RytxhYjn9JQtWqqaHN1KQ/Ttj37dHh4XyMA268PvV4PuVwOnU4nmkf29FpxzNYECmJNeQEuj484/0czEp4vAwCUL0lEv/BgAJ6Nj6CcXUL8G/XsEr/C5WFmZ2fbzcM8efKk6CZU+N+5n3FqjQKVOZNs3pTF+MiemwJWq9VCpVJZPAVQqVTQarXIz88XbaCbnp6O0WPGInKpFpFLtdCVV4jy6QiHK7vGBbcA0C88mMqxESICFOz6CbHWlG2P8jBto0f2tnED+Y4cOQK5XI6IiAjI5XJUVlaiqKhIlD2YJpMJGRkZSElJwZatW/jlN910I0pKSpCSkiK6lBdCiLiJN6oifsk8qIuPj7daL9agjqu9m5uba/ORfV5eHqKiopCQkCDgUQojLS0Nqampoq3c0V55eTlO1dZhw3uFaDJezlJrbGkLbp9ckoXbbp0o2ioVXMcCIUQ8KGfXTZSj5RuUh2kf92haoVAgKysLsbGxqKysRF5eHrRarWh7MomlzZs3Y/mRPg63ObVGgU2bNmHu3Lmdc1B+xBclDel+QIh/ozQG4lcoD9M+emRPnHHu3DmvbtedUElDQsSJ0hj8hJgnUGiPC+oyMjIgl8v55VFRUaIP6uiRvX1U0aRN//798VPWLNx+++14+73NuCn3EwBtJQ1DAiX466y/ojYwEP379xf4SDuX+ZORTZs2oaGhAV999RV2796NmTNnori4WNSfLYR0Z5TG4CZvPraiEkG20RcA4goKdtuUlZUhKSkJEokE05UqVF73AABgQ8oVWL/2OWi1WjDGRFumbt68eVi8eLHF5214eDjCwsLw008/ufUZQ2kMhPg3SmMQGE2gYJ9UKkViYiJmz56NxMRECnT/1NhihGxZKWTLSvnaoWLW2GL888dktszELxcbbjDjuHHjUPl9Nb88eeodqKysxLhx40Q3mJEraSiXy3H33Xdbfd4mJibi7NmzWL16tdCHSgjxAerZdZM3vsnTYCziDurBtCRbVupwvRhH3nNfou9QpOK7mL8DABYOOYVPPtqF0tJS0aUDqdVqzJkzB5GRkRgzZozNz9sZM2bg4MGDqK2tdfnzlnp2CfFv1LMrIJpAoWPUi3kZ9WASZ01TzMDmrUX47thxflnmsmxUfl+NzVvFFegCl0sVnjp1yu7n7fLly/HLL7+I+vOWkO5K3F1CAqMJFIgruN5cc+Of3cf/vxh7MIG23m2gLfDnrsfBnGSEBYn3aUjbayUYUD3HLxv62GYwAFmHgNl3CXZoPmXvqUdCQgKuvPJK/Prrr/R5S4gIUc+ugGhWLPuoF5M4i5vu1Ty4DQuS0jSwhCeVSvHYY48BoM9bQsSIcnbdRDm7vkV5mNa4IN9eD6bYAzvKZb6Me60YLrbg5jwdAOClpDAk3SqHVCrtdtfGmfeGyWTCkCFDMH78eHz44Yde/bylnF1C/Fv3+sTrYrgJFNLT06FSqezOiiW2QJfYZitA4XowCU0Day4sKBAajQZPLskC0tcBAFTKOxA5ZJBXShq2Lwsol8tRUVHh0zKBtkoRAm1jH+7bfcFq+/YpPlKpFK+99hrS09ORmpqK7Oxs+rwlRCToLikwmkDBNsrDJF2NEHWh7bXJVWOYrlSBe2j/ySc6rHs+D+np6Q4/WzrqIbdVFzw4OBjNzc387/bqhNvatzM98rbavOqqq9Da2opz584hcqnWqetFn7eEiBQjbqmvr2cAWH19vVf2ZzQamU6nY4WFhUyn0zGj0eiV/XZ1F5ovscilWha5VMsuNF8S+nCIi4R4XQvRZnFxMZPJZAwA/yOTyVhxcXGHf+vua9xem9u2bWMymYwplUpmMpks/sZkMjGlUsmioqJYQ2OTzXYdHU9xcTGTSCRMqVQyvV7PDAYD0+v1TKFQMIlEwjZt2sT0ej1TKpVMIpFYnb+tfXd0/vbaTElJYRKJhOXl5bFfzv/OdOUV7A7VXfy+zhma2IXmSzb36e3XiLfvB4QQ76Jg10304dY5hAh2hfri4ct2Pdm3t4MxXwWARqORrVy5kg0YMMCtNt1t114wZi/g64w2ATC9Xm/zbysqKhgAtnvvJxbtcj/nDE02A0aj0ehUEG00Gq1+t7Xv0+f/YOcMF9np8xfsBqiutMkYY4aLzfy+GhqbvHrNHaH7ASH+jdIYiF8LlkqwcVpP1NXV4UDFZz5/NOzp1M3uDpJytV3DxWbErWxL73g9OQzJSbfavS5CTEfNPUZXKBRQq9V8bmRubm6Hj9Hdbe+RRx7BuXPnoFAosHz5cp+3CbSlEWRkZEChUFgMMo2Pj0dJSQlUKhUyMzORmppq9e9jPqjq8rLL/2/vtdNRm6mpqdi9ezeuu+46m39/zYjrIOkRjNM//QKgF9+ueY4rx3zZxmk9UVNTA7VabbcuuFwuR3l5ORITEy1+t5VTm/B8mcP2ap5L4WuRO9um+TYVn1dganKSzWtACBEXKj3mR2gCBUsajQbR0dFISkrCnDlzkJSUhOjoaKenUHb1ego1dbOr7Wo0GsTFjeF/v2P6HXaviyfn5G75t/bBWHx8PMLDw/lgTKFQIDMzEyaTyepv3WlTo9Fg5syZuHjxIpRKJbZv3+5Sm56cqycTw8Q8vQcxT++xCPDGP7uPX+5um9nZ2TAajdi8ebPNv7957ecY9mQxVlf1smi3I67WBfdG3VpX2wwLCsSR5bfi1BoF/nfuZ6vtqaQhIeJEPbvEL3V2z6AnPXSA73rp2rer3qbBPffMxdTpSlT9uY9dez/By+vycdfsudim3sxfF0/Pyd1JLFztjfOkTe4cJ0yYAL1e7zDotNemJ+cqxMQwzrb51ltv4ZFHHrEqsdWRgznJNgeFHqj4DEBbPdr4+Hirv2tfp9b896qZtwCw7EEuX5KI0CApLra0IuF5nVV77fflTJvmy/r2H8iXMOSestDELISIE/Xs+gHqbbDkSc8g4N719HTqZl/10pm3azKZkHUoGEOfKELVyHv57R7e9Rsqr3sAQ58osrguQk1H3ZkBIHeO06ZN67Q2zXkyMUzVqqmoWjUVB3OS+WUHc5L55Z62efjwYahUKosefZVKhTPr05E3rtluu/Ym50hISIBMJkNubq5V0Nza2oq8vDxERUUhISHB6ndbE3/0Cw/GleEh6BceZLM9AC612X6ZfKIchBACUM+uX6DeBkue9AwC7l1PoaZudqVdZ4JSLnhNTEz0+JzcLf/mTm+cu21yx37jjTe63aY77XLMgzFbE8O0D8bMuVs32dk216xZgyVLlliV2OJ6/82/+Jm3a+8LoaO64Lm5uSgtLcV7772HAwcOeK1uraM2V69ejZ07d2L16tVobGzk6+WW7tmLTZs2o9nsuzD3xfdgzuQ/y51RSUNCxISCXeJ3hAg8PQnQgM4JDOvq6nB63f34+edfEBAUYtWOwfAHBq65fF08PSdfB2PeCAC5Y4+IiHDYZm5urt02PTlXISaGcbbNtLQ0pKWluVz719HkHPbq1AYHB4MxhnvuuQeA/bq1tvbd0WQg9tocOHAgrrzySmRnZyM7O5tvd+gTRcg6BGQdsnzKwrFunyZmIaTbE7ocRFflzVIzHZX8EZt9+/Y5VTpp3759Nte7cz1dLXFkj6sljVxpV6fT8dfFVjvcddHpdIKeE2OWpbEqKipYQ0MDq6io8Ho5LvNz3LZtm802uXqsnV3zNioqyumSZ+4Qok1O+1J2zc3NPi/XZ6t8nq1l3L+fvR/GqPQYIWJDwa6bfPHhRhMotNm3bx8LDAxkCoXCZpCmUChYYGCg3WCX4+r19DRAc6dNV9o1D+zM64leaL5kN3j1xjm5q7OCMfNzzM3NZZGRkRZtDhw4UJAAsLtOoOHvnPmyS5NKECIufhPs5ubmMgBs4cKFdrcpLi5mycnJ7Morr2S9evVi8fHxbPfu3VbbrV+/no0YMYKFhISwq6++mi1atIhdvHjR7XZtoWDXdwoLCxkAh0EaAFZYWOhwP+4GnkL0ljnbrjvBqz/1APoqGLN1jv3792crV66kAFCk7L3/PZnsxB4Kdgnxb34R7B44cIDJZDI2ZswYh0HnwoUL2Zo1a9iBAwfYsWPHWFZWFuvRowc7fPgwv82mTZtYcHAw27x5Mzt58iTbs2cPGzRoEFu0aJHb7dpCH26+wz2uz8vLsxmkcV9QuMf13ubvM6i5E7yKoQdQDOdInGcr2PV0tjt76H5AiH+TMMaYl9OAXfLHH3/ghhtuwGuvvYZnn30Wf/nLX/DCCy84/fejR4/GrFmz8PTTTwMA/vnPf+Lo0aP4+OOP+W0yMjJw4MABi9Hsnrbb0NCA3r17o76+HhEREU7/HemYyWRCdHQ04uLiUFxcjM8//5wfYDNx4kTMnDkTlZWVqK6u9ulsav7MZDK5PPCIEDEz/1yxNYhRpVK5/blC9wNC/JvgdXYXLFiAlJQUJCcnd7xxO62trTAYDOjbty+/7JZbbsGhQ4dw4MABAMCPP/6InTt3IiXFcgSuq+02NzejoaHB4of4BjfaXKvVYubMmQgODoZCoUBwcDBmzpwJrVaL/Px8UQd3UqkUiYmJmD17NhITE0V9LTg0AyFxRKi604QQ4Qlab2XLli04fPgwvvrqK7f+vqCgABcuXMDdd9/NL/vrX/+Kc+fO4ZZbbgFjDEajEf/4xz+wbNkyj9rNy8vDypUr3TpOZ1Fv3WX2yg3ZK2lECCGOCFVLmxAiPMF6ds+cOYOFCxdi06ZNCAkJcfnv1Wo1VqxYga1bt2LAgAH88rKyMqxevRqvvfYaDh8+DI1GA61Wi3/9618etZuVlYX6+nr+58yZMy4fsyMajQbR0dFISkrCnDlzkJSUhOjoaGg0Gq+205WkpaXh26rvEblUi8ilWuze+wmqq6sp0AX1YpqjGQiJM7j7REczz5nfTwgh3YNgPbuHDh3C2bNnMW7cOH6ZyWTC/v378corr6C5udlur+bWrVvxwAMPYNu2bVZpCE899RT+9re/4e9//zsAIC4uDhcuXMBDDz2E5cuXu91ucHAwgoODvXHqVjQaDdLT06FQKKBWqy1mJUpPTxd1T6b5v0XCreLt6Sb20QyExFmBgYFYvXo1tm/fbnPikcBAmlyCkO5IsHf25MmTceTIEYtl999/P0aNGoWlS5faDWrUajXmz58PtVptlYcLAI2NjVb5WFKpFKyt8oTb7fqKyWRCRkYGFAqFxaCJ+Ph4lJSUQKVSITMzE6mpqaIK9Lgeufa9dRyxznhE14UQ95w9exZGoxGlpaU2Z54rLS0FYwxnz54V+lAJIV4m2J2xV69eVrlTPXv2RL9+/fjlWVlZqK2txbvvvgugLdCdN28eXnzxRcTHx+Pnn38GAISGhqJ3794AAKVSiXXr1mHs2LG4+eabcfz4cTz11FOYMWMGpFKpU+12Jm7QhFqttjtoQi6Xo7y8HImJiZ1+fEKh3jrb6LpYc3eqZiIu3NTSubm5eP31163GAqxevRrZ2dl2p88mhHRdft0NVFdXh9OnT/O/v/766zAajViwYAEWLFjAL7/33nuxceNGAEBOTg4kEglycnJQW1uL/v37Q6lUYvXq1Z19+E6hQROEeMZWb3ZYkJR6uYmFhIQEyGQyVFRU4NixYzZLGkZFRSEhIUHoQyWEeJngdXa7Km/VVSwrK0NSUhL0ej3i4+Ot1uv1esjlcuh0OlH17HKP68//0YyE58sAAOVLEtEvvC1vWqyBjHkag61eTLFeF6Dt2nA931Wrpor6WhDbzMdHtE9j0Gq1bo+PoDq7hPg3uhsIjOttyM3NtVnoPC8vT+S9DRI7/y9O1ItpX1hQoCjTOIjzqKQhIeJEd0iBcRMopKen2xw0wfU2iGlwGmA7NzXheR3//xTUEELckZaWhtTUVKppToiIULDrB6i3gbiKejGt0aQsxFnNJob7dl8AEIGqmbfQ64SQbo6CXT9BvQ2WaIQ9cYVGo0FGRgZqamr4ZTKZDAUFBfRlkRBCRE6wGdSINalUisTERMyePRuJiYmiDXSBtp7Lth+p2TIpv5wQDjfoKC4uDnq9HgaDAXq9HnFxcUhPTxf1LITEEs22R4g4UTUGN9Ho285hPsJ+ZWwDIq8Wd483hx7ZtzGZTIiOjkZcXJzNAZ4qlQqVlZWorq4W5fUhlmTLSh2udzc1iO4HhPg36tn1M40tRsiWlUK2rJR6GgDs1n4IydZ/4tQaBe772xwkJSUhOjpa1L11Go0G0dHRSEpKwpw54r4m3KQs2dnZdidlOXnyJMrLywU6QkIIIUKjYJf4LXo8bY2uiSWalIW44mDOZBzMmYyPnriVX/bRE7fyywkh3ROlMbjJ24+taLIAS/R42hpdE2s0KQtxBaUxECJOFOy6ydsfbr76EO6qKIixRtfEGn0BIK6gYJcQcRJXdyHpMujxtDW6JtZoUhbiCippSIg4UbDrJ+hD2NKgQYMAAJWVlTZ7MSsrKy22EwO6JrbRpCzEWTTdNiHiRAPU/ATVlbUkl8sRHByM1atXo7W11WJda2srcnNzERISYhHcdHcJCQmQyWTIzc21eU3y8vIQFRWFhIQEgY5QOGlpaTh+/Dh0Oh0KCwuh0+lQXV1NgS4hhBAKdol/qqioQHNzM0pLS6FSqSwqD6hUKpSWlqKpqQkVFRVCH2qn4R7Za7Vam9dEq9UiPz9ftI/saVIW4ixuuu2a51JE2ZlAiNjQu9zPcB/CYsflnb733nvIycmxejz93nvv4Z577hFVfipAj+wJ8RaamIUQ8aBgl/glLu90+PDhOH78uNVN6cCBAxbbiUlaWhpSU1PpRt2O+Wx7VaumUo8dsUuj0SAjIwM1NTX8MplMhoKCAvrCSEg3RGkMxC+Z56dKJBKLx9MSiUTU+akAPbInxF00MQsh4kPBLvFLlJ9KnNXYYvzzx2S2zMQvJ4RjMpmQkZGBlJQUlJSUID4+HuHh4YiPj0dJSQlSUlKQmZkJk8nU8c4IIV0GTSrhJl8VEac8MksajQZPLskC0tcBAE6vmwnZ1YORn58v6seN9Mj+MpqQhTjLVxOz0KQShPg36tn1IxqNBtHR0UhKSsKcOXOQlJSE6OhoUT9WS0tLw5Ej3/K/79q5i0pKEULcUltbC6DjiVm47Qgh3QMFu36C8siscY+hm82eKI6Ll6PZxET7eJoe2VurWjUVVaum4mBOMr/sYE4yv5wQzrlz5wBcnoClPW45tx0hpHsQ77NPP8LlkSkUCpSUlCAgoO07CJdHplKpkJmZidTUVFGlNHCP6c1xs8sB4nw8TdfEGs2KRZzVv39/BAYGIjc31+KzFrg8MUtgYCD69+8v4FESQryNenb9QHl5OWpqapCdnW3x4QsAAQEByMrKwsmTJ1FeXi7QERJCSNc3ZMgQGI1GhwNfjUYjhgwZIvShEkK8iLo+/AA3MUJHeWRim0CBewR9/o9mJDxfBgAoX5KIfuHBAh6VsLhr0thi4nt0D+YkW0wzLVY0IQvpCFfS8Morr8SRI0esJmYZN24czp8/L9qShoR0VxTs+gFuYoTKykqbI4S5PDIxTqDQRmLn/8WHHtkT4j6upGF6ejpfZiw0NBQXL17E7t27UVpaiqKiIlGlixEiBlR6zE3eLDVjMpkQHR2NuLg4m3lkKpUKlZWVqK6uFtWHMJWUso9KjxHiHvP3DsfTkoZUeowQ/0Z3SD9g3tugUqmQlZWF2NhYVFZWIi8vD1qtlnobiAV6ZG8b1akm7ti1cxeSk26l1woh3RQFu34iLS0NRUVFyMjIsMojKyoqEmVdWcpPJa7QaDTIyMhATU0Nv0wmk6GgoECU7x9iiSvNd/6PZqt1X3zzHW6Oj0dQUA96SkJIN0RpDG6iGdQ6Dz2yJx3h6lQrFApkZ2fzT0Zyc3P5JyMU8IpbR2lRHHeemFAaAyH+jUqP+ZlmE8N9uy8g6z8RuEl+i+gDXWKfyWRCWVkZ1Go1ysrKYDKZOv6jbqh9ner4+HiEh4fzdaoVCgUyMzNFe32Ia5YsWSL0IRBCvIyCXeL3gqUSbJzWE3nXN+BAxWcUtICmljZHdaqJM6pWTcU3Obfh7KZMq3XvzL8Rn2ZOwsjvN+Hll19GS0uLAEdICPEVCnb9BE0DaxsFddZoamlLVKeaOCMsKBAb//06BtyTb7Xu3re/wqT8T/HDqHvQ1NSE1157TYAjJIT4CiU/+gmaBtYaF9RNV6rAZr0CANio6It1z+chPT1dlHmYNLW0dQ431akmzjpx4gTQ81rntiOEdBvUs0v8knlQt2XrFn75TTfdKOo8THpkb42bFSs3Nxetra0W61pbW5GXl4eoqCiaFYtg+PDh+O9r9+Ol5D5Q//1GfnnWjSEoy7gVL07uzW9HCOk+qGfXT1CZLUvl5eU4VVuHDe8Vosl4uWAIl+bxxOJluO3WiSgvL0diYqJAR9n5XHlk392qWHDpPO1TfRAkRe7zBZg7i+pU+zshq82YTCaMHj0aVz+6AY/v+x3AV/y6vK+akPfVfgBASEgIHn300U45JkJI5+jad79uhKaBtVRXV4dhTxbjPu3/AO3ldA7z1A5uOzER8yN7x6k+wV22TrUQAaAQbXqjDrK7X+DM245cqnW47dSpUxEUFOTUfgkhXQOlMRC/NGDAAK9u110488heFj0S426e4NPBjr4ue+bO/pubm/Hvf/8b+/btQ2FhIXQ6Haqrq/060PV0AGZjixGyZaWQLSt1+t9WqDaFGlTZvu0DS27BRkVfxPzwDr/NwZxkVK6YgtFV/8a3334ruvQoQro9RtxSX1/PALD6+nqhD6Vb2rdvH+sR0pNNV6rYL/WNLHKplkUu1bJzhiZmuNjMpitVLDAwkO3bt0/oQ7XJaDQynU7HCgsLmU6nY0aj0Wv7Li4uZhKJhCmVSlZRUcEaGhpYRUUFUyqVTCKR8NfK3o+zx3ih+RL/N7v3fsJvt23bNiaTyRgA/kcmk7Hi4mK712D33k/4fV1ovtTh+dnaf+H7xexC8yV2ztDE72vjlmIWOXwEk/QIdngs/sj831Gv1zODwcD0ej3/7+jMOZj/G3V0XYVq02g0MplMxpRKJTOZTBbrTCYTUyqVLCoqyuF75ELzJat/+3OGJn65O20bLjbz+2pobGKMMVZRUcEAMJ1O1+F5maP7ASH+TZzPyInfsPc49ezZs7jUdAG7tNsx/29zgeseAAAc+foQ1q99Dru0WjDGcPbsWbf270vuPq519hFtWloaMjMz8dJLL2HHjh388uDgYGRmZuL9Do6Pn0mq6EmcOnHMqWO8Y/odYJcuT7OqUCigVqtxzYjrcNPzn4EBuGt2OrapNyMtLc3qGkh6BGPYk8UdHBmg3qZB1qFgYNYr0Cn6Yvxf4viZ0ObOaqvAMU0xg99+/ry5SJk6BVs2vWMxa1pnV+tw9fG6p1U17OYv/8lW+0K0CVweVKlWq+0OqpTL5Q7z792tVtNR25yKzyswNTmJytQR0k1RsOuHuloOnzfy6DhcwMXlnObm5uL//XsDcF3b+uSpd2Do44UYFvMwTq+b6TA31dMcQXfOy3zaWrVa7ZMATKPRID8/HykpKbjjjjsQGhqKixcvYteuXcjPz8fmrfFITZ1hc7BjY4sR45/9GAAQO3q0zSBx89YipKbOwLYPPgQQDADYtfcTjIkZhfHjx+GGMbHYvn07AgICLB5j3zHtDr5CxqxZs6BQKLDhvULExMTg6yPf4eFdvwEAtn3wIe66sy1gNb+mJpMJWVlZQPo6AG2VN8KCAq2CsSl3pFi0WfJBkVOBmzP/np313vM0AHQn+BOiTUDYOsiO2g4LCsSR5bciIiIC/7u+EED3znknRMwo2PUzQgVong4ccVVHQeHWrVshk8lQUVGB6qOV+Pzzz1FXV4e+H5bg4X2NAIDISJndclKdEXS2527PmSs9ZvbaAIBHHnkEKpUKy5dm4u60VMCikgf78+8v5/m+/d5mhIf0sDrGrEPByDq0B1ygC6AtUN2lR4/Zr2C5qh+ajK0AWi2O859PZGD67ZPx2BOXj++a7F2A9jOL6/TM18F45uu21ygXIDW2GFG+vxxn6n7BUDvXgAvGDn2px8ZpPZGUlIQter3bvYXtufM+cLe3U4gAUKig0xuDKt2tVuNK21SmjpDui4JdPyJEgOZJm+7e6J0JCpcuXYq1a9fi7rvvxsyZM9tKjd1+B74+8h2AtmB3xbO5aDYx/P/27j0q6jrvA/j7x21mRDAgCcKRWwESiJzllArmdb1Qpq4PmKuGVmuK2mrrSXtylxLlSAWYutojrZcS7BhYjxlrbKHHB9BKxVtuYFjqurqu+6DgbeTyef7oYZaRizAX5uL7dc78we/2fQ8ww3t+8+M7aGzoVCG01bdru3LGrCtjPD44ocXxvmo1xuMZJQZjNO8/9b//t8371ywqKqrNzHP2XNVfqvCfE31a5etI8/G0C/JaZDb8HrRVxjo7BRvQ8c/T2MeBsWc7TS2AxpQ/a4wJGP5T5d0v0DpbMI2dreZeY2dkZCAoKAguLi6YOHEip6kjclAsuzbCHq/hs9R1dM2F7cEHH9RPJzXr8xrg8zKDbds6Q9iV49vj27VdGaOHm4s+q/463XuIiorCuaG98dJLc7Bx0xZ9+Ty0bBQOHyzHuMRxODlxX6eOA7RdkM6vnYZN/7UBSclJncrUrK0y1pnidq+fZ/XKsd3+qXSmFkBjyp81xgQAZ2dnZGVl4T/+o/vnQe5o7JUrV+Lzz39+XAwZMsQupqkjIuOw7NoIe7yGz1hdKWxTp07FhAkTEPr6Hosc35yMPXPWlTNmpo7x5d7/wct7b7Y7xsmTJyH1OoSHBkHqb+uX93BzxqjhTyIwwB8ZGRk4uaPg/6/Z/XfmyMqtOHbkW1y8eBEnJ+7DwIED2yxCUn8bgX38DdadWj4GjY2NiI6NAyauapWvrTLW6eK2p+PfHVMeB8ae7bRGAbRm6fzVr35llnmQW76AM8fYb775Jh599NFu/4ALIupm1p4Owl6Ze6qZ/Px8ASB1dXVtrq+trRUAkp+f3+b6zk43Zc4xjZ0OaO/evQJADhw40Ob6tqb/6cpYxhzfHPfL1CmWOjOlk6lj1N78932qu6Vrd3+dTieBoWGt8jRPXfX0009LeXm5XLpSo9/GyU2tn5bs7nwt71vQI+Ht5svfUajfrmR/Watp1VpOjXWvKdiat73Xz9PUx8Hd968z03G1vA93T7MWHBxs0anTrDFmM0tOyWfNsTn1GJFtY9k1krmf3KxR0Ewds+XY3TXvZncUQmPvl0jnC5gp45lrjKeemdTh/u2NExcXJy4uLgJAFFeV/nj5Ozrer6v5Ws6d214Z60pxa+/7a47HgbFlV8Q6BdCapdMRsewS2TaWXSOZ+8nNGgXNHkthdxRCU+5X89iWPnNm6hid3b+97Xbs2NFhWTI1X1fKWGe3be/naa7HAd2/WHaJbBvLrpEs8eRmjYJmjjGNZelS6Ohv15o6Rmf3N3Ycezp7aM3HAdk/ll0i26aIiJjtAuD7SG1tLXr16oVr167B09PTbMdta67P4OBgvPPOOxad87a7x2xm6Un8rfEBHWSfrPk4IPtmqb8HRGQeLLtGsuSTm719ghqRo+DjgIzBsktk21h2jcQnNyIiAvj3gMjWdf4jjoiIiIiI7AzLLhERERE5LJZdIiIiInJYLLtERERE5LBYdomIiIjIYbHsEhEREZHDYtklIiIiIofFsktEREREDotll4iIiIgcFssuERERETksF2sHsFfNn7JcW1tr5SRERGRNzX8Hmv8uEJFtYdk1Ul1dHQBAq9VaOQkREdmCuro69OrVy9oxiOguivClqFGamprw97//HR4eHlAUxdpx2lVbWwutVovz58/D09PT2nE6ZE9ZAfvKy6yWwayWYY9ZT506hfDwcDg58epAIlvDM7tGcnJyQp8+fawdo9M8PT1t/o9GM3vKCthXXma1DGa1DHvKGhAQwKJLZKP4yCQiIiIih8WyS0REREQOi2XXwalUKqSlpUGlUlk7yj3ZU1bAvvIyq2Uwq2UwKxGZE/9BjYiIiIgcFs/sEhEREZHDYtklIiIiIofFsktEREREDotll4iIiIgcFsuunblw4QKmT58OHx8f9OjRAwMGDMDhw4fb3b60tBTx8fHw8fGBRqNBREQEcnJy2t3+o48+gqIomDhxok1m3bJlCxRFaXW7ffu2zWUFgKtXr2LevHnw9/eHWq1Gv379UFRUZHNZhw0b1ub39amnnrK5rACwevVqhIeHQ6PRQKvVYtGiRTb5O1BfX4/ly5cjNDQUarUaMTEx2LNnj0k5jcnaUllZGVxcXDBgwIBW6woLCxEZGQmVSoXIyEh88sknNpn1u+++w+TJkxEUFARFUbB69WqTc1oyb25uLoYMGQIvLy94eXlh1KhR+Oabb8yWmYg6xk9QsyM1NTWIj4/H8OHD8ec//xm+vr6orq7GAw880O4+7u7umD9/Pvr37w93d3eUlpbipZdegru7O2bPnm2w7dmzZ7F48WIMGTLEprN6enqisrLSYF+1Wm1zWe/cuYNf/vKX8PX1RUFBAfr06YPz58/Dw8PD5rLu3LkTd+7c0e/zr3/9CzExMUhKSrK5rHl5eVi6dCk2bdqEwYMHo6qqCjNnzgSADl/IWSPrsmXLsG3bNuTm5iIiIgJffPEFJk2ahPLycsTGxnZb1mbXrl3Dc889h5EjR+If//iHwboDBw5gypQpSE9Px6RJk/DJJ58gOTkZpaWleOKJJ2wq682bNxESEoKkpCQsWrTIqGzdmXffvn2YOnUqBg8eDLVajbfeegujR4/Gd999h4CAALPlJ6J2CNmNJUuWSEJCgsnHmTRpkkyfPt1gWUNDg8THx8v7778vKSkpMmHCBJPGsFTWzZs3S69evUw+bkuWyrphwwYJCQmRO3fumHzsZpb8HWgpJydHPDw85Pr160aPYams8+bNkxEjRhhs88orr5g0lqWy+vv7y7p16wy2mTBhgkybNs3oMUzJOmXKFFm2bJmkpaVJTEyMwbrk5GQZO3aswbIxY8bIs88+a2xUi2VtKTAwUHJycowLeJfuyCvy8/Oth4eHbN261aixiKhreBmDHdm1axfi4uKQlJQEX19fxMbGIjc3t0vHqKioQHl5OYYOHWqwfPny5ejduzdeeOEFm896/fp1BAYGok+fPnj66adRUVFhk1l37dqFQYMGYd68eXjooYcQFRWFjIwMNDY22lzWu/3pT3/Cs88+C3d3d5vLmpCQgMOHD+vfBj5z5gyKiopMuuTCUll1Ol2rdx00Gg1KS0u7PevmzZtRXV2NtLS0NtcfOHAAo0ePNlg2ZswYlJeX21xWS+muvDdv3kR9fT28vb1NjUxEnWHttk2dp1KpRKVSyWuvvSZHjhyR9957T9RqdafODgQEBIibm5s4OTnJ8uXLDdaVlpZKQECA/POf/xQRMcuZXUtlPXDggHz44Ydy9OhR2b9/v0yePFk0Go1UVVXZXNbw8HBRqVTy/PPPy6FDh2T79u3i7e0tb775ps1lbenrr78WAPL1118bndPSWdesWSOurq7i4uIiAGTu3Lk2mXXq1KkSGRkpVVVV0tjYKMXFxaLRaMTNza1bs1ZVVYmvr69UVlaKiLR59tHV1VXy8vIMluXl5dlk1pbMeWa3O/KKiKSmpkpoaKjcunXLLLmJqGMsu3bE1dVVBg0aZLBswYIFMnDgwHvue+bMGTl+/Lhs3LhRvL29JT8/X0REamtrJSgoSIqKivTbmqPsWiJrWxobGyUmJkYWLFhgc1kfffRR0Wq10tDQoF+WlZUlfn5+Npe1pdmzZ0tUVJTRGS2dde/evfLQQw9Jbm6uHD9+XHbu3ClarbbDAm+trJcvX5YJEyaIk5OTODs7S1hYmKSmpopGo+m2rA0NDRIXFycbNmzQL2uv7N79O7Ft2zZRqVQ2l7Ulc5bd7sibmZkpXl5ecuzYMbNkJqJ7Y9m1I3379pUXXnjBYNn69evl4Ycf7tJx0tPTJSwsTEREKioqBIA4Ozvrb4qiiKIo4uzsLD/88IPNZG3Piy++2Opaw66wVNYnn3xSRo4cabBNUVGRABCdTmdTWZvduHFDPD09ZfXq1Ubla8lSWRMSEmTx4sUG23z44Yei0WiksbHRprI2u3Xrlvztb3+TpqYmefXVVyUyMtKonMZkrampafMx3rzsq6++EhERrVYr2dnZBvtmZ2dL3759bS5rS+Ysu5bO+/bbb0uvXr3k22+/NUteIuoczsZgR+Lj41vNQlBVVYXAwMAuHUdEoNPpAAARERE4ceKEwfply5ahrq4O7777LrRarc1kbW/90aNHER0dbVROwHJZ4+PjkZ+fj6amJjg5OemP6+/vDzc3N5vK2mzHjh3Q6XSYPn26UflaslTWmzdv6r+fzZydnSE/v3i3qazN1Go1AgICUF9fj8LCQiQnJxuV05isnp6erR7j69evR0lJCQoKChAcHAwAGDRoEP7yl78YzG5QXFyMwYMH21xWS7Fk3rfffhsrVqzAF198gbi4OPOHJ6L2Wa1mU5d988034uLiIitXrpTTp09LXl6e9OjRQ7Zt26bfZunSpTJjxgz91+vWrZNdu3ZJVVWVVFVVyaZNm8TT01Nef/31dscxx2UMlsr6xhtvyJ49e6S6uloqKipk1qxZ4uLiYtL1pZbKeu7cOenZs6fMnz9fKisrZffu3eLr6ysrVqywuazNEhISZMqUKUbn646saWlp4uHhIdu3b5czZ85IcXGxhIaGSnJyss1lPXjwoBQWFkp1dbXs379fRowYIcHBwVJTU9OtWe/W1lvtZWVl4uzsLKtWrZK//vWvsmrVKnFxcZGDBw/aXFadTicVFRVSUVEh/v7+snjxYqmoqJDTp08bndWSeTMzM8XNzU0KCgrk4sWL+ltdXZ1JeYmoc1h27cxnn30mUVFRolKpJCIiQjZu3GiwPiUlRYYOHar/es2aNfLYY49Jjx49xNPTU2JjY2X9+vUdvt1rjrJrqawLFy6Uvn37ipubm/Tu3VtGjx4t5eXlNplVRKS8vFyeeOIJUalUEhISIitXrjS4hteWslZWVgoAKS4uNimfpbPW19fLG2+8IaGhoaJWq0Wr1UpqaqpJBdJSWfft2yf9+vUTlUolPj4+MmPGDLlw4YJJOY3Jerf2riv9+OOPJTw8XFxdXSUiIkIKCwttMuuPP/4oAFrdOjqONfMGBga2mTctLc3kvER0b4qIke/7ERERERHZOM6zS0REREQOi2WXiIiIiBwWyy4REREROSyWXSIiIiJyWCy7REREROSwWHaJiIiIyGGx7BIRERGRw2LZJSKzGzZsGBYuXGjtGEQAgP3792P8+PF4+OGHoSgKPv300y7t/9NPP0FRlFa3PXv2WCYwEZkVyy6Rg5s5c2abf6jHjh1r8rH37dsHRVFw9epVg+U7d+5Eenq6yccnMocbN24gJiYG69atM+k4X375JS5evKi/jRgxwkwJiciSXKwdgIgsb+zYsdi8ebPBMpVKZbHxvL29LXZsoq4aN24cxo0b1+76O3fuYNmyZcjLy8PVq1cRFRWFzMxMDBs2zGA7Hx8f+Pn5WTgtEZkbz+wS3QdUKhX8/PwMbl5eXgCA7OxsREdHw93dHVqtFqmpqbh+/bp+37Nnz2L8+PHw8vKCu7s7HnvsMRQVFeGnn37C8OHDAQBeXl5QFAUzZ84E0PoyhqCgIGRkZOD555+Hh4cH+vbti40bNxpkLC8vx4ABA6BWqxEXF4dPP/0UiqLg6NGjFv3eEM2aNQtlZWX46KOPcPz4cSQlJWHs2LE4ffq0wXbPPPMMfH19ER8fj4KCAiulJaKuYtklus85OTlhzZo1OHnyJLZu3YqSkhK8+uqr+vXz5s2DTqfD/v37ceLECWRmZqJnz57QarUoLCwEAFRWVuLixYt499132x0nKysLcXFxqKioQGpqKubOnYvvv/8eAFBXV4fx48cjOjoaR44cQXp6OpYsWWLZO04EoLq6Gtu3b8fHH3+MIUOGIDQ0FIsXL0ZCQoL+3ZCePXsiOzsbBQUFKCoqwsiRIzFlyhRs27bNyumJqDN4GQPRfWD37t3o2bOnwbIlS5bg97//vcEZ2ODgYKSnp2Pu3LlYv349AODcuXOYPHkyoqOjAQAhISH67ZsvV/D19cUDDzzQYYbExESkpqbqx87JycG+ffsQERGBvLw8KIqC3NxcqNVqREZG4sKFC/jNb35j6l0n6tCRI0cgIggLCzNYrtPp4OPjAwB48MEHsWjRIv26uLg41NTU4K233sL06dO7NS8RdR3LLtF9YPjw4diwYYPBsuaiunfvXmRkZODUqVOora1FQ0MDbt++jRs3bsDd3R0vv/wy5s6di+LiYowaNQqTJ09G//79u5yh5T6KosDPzw+XL18G8POZ4f79+0OtVuu3efzxx425q0Rd0tTUBGdnZxw+fBjOzs4G6+5+gdjSwIED8f7771s6HhGZAS9jILoPuLu745FHHjG4eXt74+zZs0hMTERUVBQKCwtx+PBh/PGPfwQA1NfXAwBefPFFnDlzBjNmzMCJEycQFxeHtWvXdjmDq6urwdeKoqCpqQkAICJQFMVgvYgYc1eJuiQ2NhaNjY24fPlyq8dIR/+MVlFRAX9//25MSkTG4pldovvYoUOH0NDQgKysLDg5/fzad8eOHa2202q1mDNnDubMmYPXXnsNubm5WLBgAdzc3AAAjY2NJuVovpRBp9PpZ4k4dOiQScckanb9+nX88MMP+q9//PFHHD16FN7e3ggLC8O0adPw3HPPISsrC7Gxsbhy5QpKSkoQHR2NxMREbN26Fa6uroiNjYWTkxM+++wzrFmzBpmZmVa8V0TUWSy7RPcBnU6HS5cuGSxzcXFBaGgoGhoasHbtWowfPx5lZWV47733DLZbuHAhxo0bh7CwMNTU1KCkpAT9+vUDAAQGBkJRFOzevRuJiYnQaDQdvvXbnl//+td4/fXXMXv2bCxduhTnzp3DO++8AwCtzvgSddWhQ4f0M4cAwCuvvAIASElJwZYtW7B582asWLECv/vd73DhwgX4+Phg0KBBSExM1O+zYsUKnD17Fs7OzggLC8OmTZt4vS6RvRAicmgpKSkCoNUtPDxcRESys7PF399fNBqNjBkzRj744AMBIDU1NSIiMn/+fAkNDRWVSiW9e/eWGTNmyJUrV/THX758ufj5+YmiKJKSkiIiIkOHDpXf/va3+m0CAwMlJyfHIFdMTIykpaXpvy4rK5P+/fuLm5ub/OIXv5D8/HwBIN9//70lvi1ERHSfUER4YRwR2Z68vDzMmjUL165dg0ajsXYcIiKyU7yMgYhswgcffICQkBAEBATg2LFjWLJkCZKTk1l0iYjIJCy7RGQTLl26hD/84Q+4dOkS/P39kZSUhJUrV1o7FhER2TlexkBEREREDovz7BIRERGRw2LZJSIiIiKHxbJLRERERA6LZZeIiIiIHBbLLhERERE5LJZdIiIiInJYLLtERERE5LBYdomIiIjIYbHsEhEREZHD+j/HN8Lefu3v+QAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -240,7 +240,7 @@ ], "source": [ "# Convert Lat and Lon to X and Y\n", - "df['x'],df['y'] = crnpy.latlon_to_utm(df['LatDec'], df['LongDec'], 14, missing_values=0.0)\n", + "df['x'],df['y'],zone_n, zone_letter = crnpy.latlon_to_utm(df['LatDec'], df['LongDec'])\n", "\n", "# Create figure of survey points\n", "plt.figure(figsize = (5,5))\n", @@ -453,7 +453,7 @@ "source": [ "# Compute correction factor for incoming neutron flux\n", "df['fi'] = crnpy.correction_incoming_flux(incoming_neutrons=df['incoming_flux'],\n", - " incoming_Ref=df['incoming_flux'].iloc[0])\n" + " incoming_Ref=crnpy.get_reference_neutron_flux(station=\"NEWK\"))\n" ] }, { @@ -495,6 +495,230 @@ "df['total_corrected_neutrons'] = df['total_raw_counts'] * df['fw'] / (df['fp'] * df['fi'])\n" ] }, + { + "cell_type": "code", + "execution_count": 11, + "id": "678b96e9-8d18-475e-8e56-1c458f224bdb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    RecordNumDate Time(UTC)barometric_pressure_AvgP4_mbP1_mbT1_CRH1air_temperature_Avgrelative_humidity_AvgVbat...timestampxytotal_raw_countsincoming_fluxfifpabs_humidityfwtotal_corrected_neutrons
    022018/05/01 14:15:00962.95962.8961.423.235.420.972.713.574...2018-05-01 14:15:00641605.4591244.282933e+06305101.1051.059591.00013613.2316301.071451308.372165
    132018/05/01 14:16:00962.88962.7961.323.335.521.072.713.417...2018-05-01 14:16:00641604.6484294.282929e+06345101.1051.059591.00067513.3086981.071867348.762056
    242018/05/01 14:17:00962.64962.5961.123.435.421.272.213.282...2018-05-01 14:17:00641604.4266954.282844e+06294101.1051.059591.00252413.3714011.072206296.751456
    352018/05/01 14:18:00962.41962.2960.923.535.521.272.013.191...2018-05-01 14:18:00641599.5414174.282997e+06319101.1051.059591.00429913.3343611.072006321.356301
    462018/05/01 14:19:00962.48962.1960.823.635.421.472.213.130...2018-05-01 14:19:00641587.9848004.283574e+06379101.1051.059591.00375913.5271871.073047382.376183
    \n", + "

    5 rows × 47 columns

    \n", + "
    " + ], + "text/plain": [ + " RecordNum Date Time(UTC) barometric_pressure_Avg P4_mb P1_mb \\\n", + "0 2 2018/05/01 14:15:00 962.95 962.8 961.4 \n", + "1 3 2018/05/01 14:16:00 962.88 962.7 961.3 \n", + "2 4 2018/05/01 14:17:00 962.64 962.5 961.1 \n", + "3 5 2018/05/01 14:18:00 962.41 962.2 960.9 \n", + "4 6 2018/05/01 14:19:00 962.48 962.1 960.8 \n", + "\n", + " T1_C RH1 air_temperature_Avg relative_humidity_Avg Vbat ... \\\n", + "0 23.2 35.4 20.9 72.7 13.574 ... \n", + "1 23.3 35.5 21.0 72.7 13.417 ... \n", + "2 23.4 35.4 21.2 72.2 13.282 ... \n", + "3 23.5 35.5 21.2 72.0 13.191 ... \n", + "4 23.6 35.4 21.4 72.2 13.130 ... \n", + "\n", + " timestamp x y total_raw_counts \\\n", + "0 2018-05-01 14:15:00 641605.459124 4.282933e+06 305 \n", + "1 2018-05-01 14:16:00 641604.648429 4.282929e+06 345 \n", + "2 2018-05-01 14:17:00 641604.426695 4.282844e+06 294 \n", + "3 2018-05-01 14:18:00 641599.541417 4.282997e+06 319 \n", + "4 2018-05-01 14:19:00 641587.984800 4.283574e+06 379 \n", + "\n", + " incoming_flux fi fp abs_humidity fw \\\n", + "0 101.105 1.05959 1.000136 13.231630 1.071451 \n", + "1 101.105 1.05959 1.000675 13.308698 1.071867 \n", + "2 101.105 1.05959 1.002524 13.371401 1.072206 \n", + "3 101.105 1.05959 1.004299 13.334361 1.072006 \n", + "4 101.105 1.05959 1.003759 13.527187 1.073047 \n", + "\n", + " total_corrected_neutrons \n", + "0 308.372165 \n", + "1 348.762056 \n", + "2 296.751456 \n", + "3 321.356301 \n", + "4 382.376183 \n", + "\n", + "[5 rows x 47 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, { "cell_type": "markdown", "id": "8fbd8cfc-6b69-4a1c-a662-77531c3df4f1", @@ -505,7 +729,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "6e09f8aa-3a13-4c5d-9b2f-9976c778f2e7", "metadata": {}, "outputs": [], @@ -542,13 +766,13 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "2a595e5e-5ace-4db3-afc2-e11ca26fa0da", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAIoCAYAAACFyIQ8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1xT5/fHP0kQ2XsFBIJ7sQQFI1GqOEETqaP+rFrtsK22Wgsq4KpKcFBrh1WrrV2KSotgwa+zYqOiooiCtWqtgCJDREBERW/y+yMSCWTcQEIQnvfrldcLnjw557lJbu655zmDIZFIJCAQCAQCgUBohzD1vQACgUAgEAgEfUEMIQKBQCAQCO0WYggRCAQCgUBotxBDiEAgEAgEQruFGEIEAoFAIBDaLcQQIhAIBAKB0G4hhhCBQCAQCIR2CzGECAQCgUAgtFuIIUQgEAgEAqHdQgwhAuEV46233gKHw1E7Ly8vDwwGAz/++KPWZGoCh8PBW2+9pVWZBAKBoG2IIUQgtBC3bt3C3Llz0b17d5iYmMDExAS9e/fGnDlzcPnyZX0vj0AgENolBvpeAIHQHkhNTcXkyZNhYGCAqVOnwtvbG0wmE//88w+SkpKwefNm3Lp1C+7u7mplbdu2DWKxuAVWTSAQCG0fYggRCDrm5s2beOONN+Du7o5jx46BzWbLPb927Vp8++23YDJVO2gfPXoEU1NTdOjQQZfLJRAIhHYF2RojEHTMunXr8OjRI+zYsaOREQQABgYG+Pjjj+Hq6iobe+utt2BmZoabN29izJgxMDc3x9SpU2XPNYznqaiowFtvvQVLS0tYWVlhxowZqKioULie5ORk9O3bF0ZGRujbty/27duncJ5YLMbGjRvRp08fGBkZwdHREbNnz8aDBw/k5kkkEqxevRqdOnWCiYkJXnvtNVy5coXWe1MXxxQfH49Nmzahc+fOMDExwYgRI3D79m1IJBKsWrUKnTp1grGxMfh8PsrLy+VkpKSkIDQ0FM7OzujYsSO6dOmCVatWgaIouXnBwcHo27cvLly4AC6XC2NjY3h4eGDLli201kogENomxCNEIOiY1NRUdO3aFQEBARq97vnz5xg5ciSCgoIQHx8PExMThfMkEgn4fD5OnjyJ999/H7169cK+ffswY8aMRnMPHz6M119/Hb1790ZcXBzu37+PmTNnolOnTo3mzp49Gz/++CNmzpyJjz/+GLdu3cI333yDixcv4tSpUzLP1LJly7B69WqMGTMGY8aMQVZWFkaMGIHa2lrax7pz507U1tbio48+Qnl5OdatW4dJkyZh6NChSE9Px6JFi/Dvv//i66+/RkREBH744QfZa3/88UeYmZlhwYIFMDMzw59//olly5ahqqoK69evl9Pz4MEDjBkzBpMmTcKUKVOwd+9efPDBBzA0NMSsWbNor5dAILQhJAQCQWdUVlZKAEgEAkGj5x48eCC5d++e7FFTUyN7bsaMGRIAksWLFzd63YwZMyTu7u6y/5OTkyUAJOvWrZONPX/+XMLj8SQAJDt27JCN+/j4SNhstqSiokI2dvjwYQkAOZkikUgCQLJz50453QcPHpQbLy0tlRgaGkpCQ0MlYrFYNi86OloCQDJjxgyV78+tW7ckACT29vZya4qKipIAkHh7e0uePXsmG58yZYrE0NBQ8uTJE9lY/fetjtmzZ0tMTEzk5g0ZMkQCQPL555/Lxp4+fSrx8fGRODg4SGpra1WulUAgtE3I1hiBoEOqqqoAAGZmZo2eCw4Ohr29veyxadOmRnM++OADtToOHDgAAwMDubksFgsfffSR3LyioiJkZ2djxowZsLS0lI0PHz4cvXv3lpubmJgIS0tLDB8+HGVlZbKHn58fzMzMcPz4cQDA0aNHZZ4cBoMhe/38+fPVrrs+EydOlFtTnffszTffhIGBgdx4bW0tCgsLZWPGxsayvx8+fIiysjLweDzU1NTgn3/+kdNjYGCA2bNny/43NDTE7NmzUVpaigsXLmi0ZgKB0DYghpAO+OuvvzB27Fg4OzuDwWAgOTlZYxkSiQTx8fHo3r07OnbsCBcXF8TGxmp/sQSdYm5uDgCorq5u9NzWrVtx5MgR/Prrrwpfa2BgoHDLqiH5+flgs9mNjK0ePXo0mgcA3bp1aySj4dwbN26gsrISDg4Ocsaavb09qqurUVpaqlKmvb09rK2t1a69Djc3N7n/64yi+nFT9cfrxylduXIF48ePh6WlJSwsLGBvb48333wTAFBZWSn3emdnZ5iamsqNde/eHYA0XolAILQ/SIyQDnj06BG8vb0xa9YshIeHN0nGvHnzcPjwYcTHx8PT0xPl5eWNgkQJrR9LS0uw2Wzk5uY2eq7O66HsAtyxY0e1mWS6QiwWw8HBATt37lT4vL29vVb1sVgsjcYlEgkAaZD4kCFDYGFhgZUrV6JLly4wMjJCVlYWFi1aRMoMEAgEtRBDSAeMHj0ao0ePVvr806dPERMTg4SEBFRUVKBv375Yu3YtgoODAQBXr17F5s2bkZubK7tT9/DwaImlE3RAaGgotm/fjnPnzmHAgAFal1+Xll9dXS3nFbp27VqjeYDU29OQhnO7dOmCo0ePYtCgQXJbT4p018ns3LmzbPzevXuNsst0QXp6Ou7fv4+kpCQMHjxYNn7r1i2F8+/evSsrQ1DH9evXAUDrlbUJBMKrAdka0wNz585FRkYGdu/ejcuXL2PixIkYNWqU7AL1xx9/oHPnzkhNTYWHhwc4HA7eeecd4hF6RVm4cCFMTEwwa9YslJSUNHq+zrvRVMaMGYPnz59j8+bNsjGKovD111/LzWOz2fDx8cFPP/0kt2V05MgR/P3333JzJ02aBIqisGrVqkb6nj9/LkvNDwkJQYcOHfD111/LHcfGjRubdUx0qfMY1dddW1uLb7/9VuH858+fY+vWrXJzt27dCnt7e/j5+el2sQQCoVVCPEItTEFBAXbs2IGCggI4OzsDACIiInDw4EHs2LEDQqEQ//33H/Lz85GYmIiff/4ZFEXhk08+wYQJE/Dnn3/q+QgImtKtWzfs2rULU6ZMQY8ePWSVpSUSCW7duoVdu3aByWTSigdSxNixYzFo0CAsXrwYeXl56N27N5KSkhrFxwBAXFwcQkNDERQUhFmzZqG8vBxff/01+vTpIxfHNGTIEMyePRtxcXHIzs7GiBEj0KFDB9y4cQOJiYn48ssvMWHCBNjb2yMiIgJxcXEICwvDmDFjcPHiRfzvf/+DnZ1dk98zunC5XFhbW2PGjBn4+OOPwWAw8Msvvyg1Lp2dnbF27Vrk5eWhe/fu2LNnD7Kzs/Hdd9+RQpUEQjuFGEItTE5ODiiKkgVo1vH06VPY2toCkMZnPH36FD///LNs3vfffw8/Pz9cu3atUWArofXD5/ORk5ODzz//HIcPH8YPP/wABoMBd3d3hIaG4v3334e3t3eTZDOZTOzfvx/z58/Hr7/+CgaDgXHjxuHzzz+Hr6+v3NxRo0YhMTERS5YsQVRUFLp06YIdO3YgJSUF6enpcnO3bNkCPz8/bN26FdHR0TAwMACHw8Gbb76JQYMGyeatXr0aRkZG2LJlC44fP46AgAAcPnwYoaGhTToeTbC1tUVqaio+/fRTLFmyBNbW1njzzTcxbNgwjBw5stF8a2tr/PTTT/joo4+wbds2ODo64ptvvsG7776r87USCITWCUPSXL88QSUMBgP79u2DQCAAAOzZswdTp07FlStXGgWCmpmZwcnJCcuXL4dQKMSzZ89kzz1+/BgmJiY4fPgwhg8f3pKHQCC0CYKDg1FWVqYwcJ1AILRfiEeohfH19QVFUSgtLQWPx1M4Z9CgQXj+/Dlu3ryJLl26AHgZ0EmnKSeBQCAQCAR6EENIB1RXV+Pff/+V/X/r1i1kZ2fDxsYG3bt3x9SpUzF9+nTZ1sW9e/dw7NgxeHl5ITQ0FCEhIejXrx9mzZqFjRs3QiwWY86cORg+fHijLTUCgUAgEAhNh2SN6YDz58/D19dXFp+xYMEC+Pr6YtmyZQCAHTt2YPr06fj000/Ro0cPCAQCZGZmyorKMZlM/PHHH7Czs8PgwYMRGhqKXr16Yffu3Xo7JgKBQCAQ2iIkRohAIBAIBEK7hXiECAQCgUAgtFuIIUQgEAgEAqHdQoKltYhYLMbdu3dhbm4u14mbQCAQCK8WEokEDx8+hLOzs056/j158gS1tbValwsAhoaGMDIy0onstggxhLTI3bt3G3XLJhAIBMKry+3bt5tc9V0ZT548gbmFI54/q9Kq3DqcnJxw69YtYgzRhBhCWsTc3BwAUJC1FhZmyhtVyqh9TFu25Oo/tOdSRfRPLpa9qfpJLxBXPKE9l2lhSG+irTVtmYwONGUCkDzTzZ0WqmtoT6Vu0286Kn6kwXpr6XdUZxgp7t6uCJYT/e8C07cv/TU4adAwWJNu8aZW9Oc+vE97quSxBhenu4W0pj09lE1bpGEAh/bcJ7wZtOfO29a45YpETOHerSt4XFUOYwsb2Hv0AYPJgvCtrrTl2t1NoD234vODAICDBfex+tJt3Kl6eT51sjDBEm9XjHKTVti3eldxnTVFSF70vqMDw4beb07Vo6dwG/2F7Hddm9TW1uL5syr08VkNFku7xgpFPcGV7CWora0lhhBNiCGkReq2wyzMjGFhTscQoi9bYkLfCKCM6fdMYmkgV/yUoj2XSVeuaUfaMjUzhHS0NSl5TnuqJp+DmNIgeZOpI0NIg+8C05z+DyzDwoT2XIjFoCgKotNXUVT8AGwna/C4vRpVYQcAmNI33MBQf9NBUWKITl/F3YJCsB2twAvoBhZLzZaIGb3v71Mj1d8FSizBqfz7KKp+CldbE/D6OqvXDcDQwoyWfgAwNJL/7hZcOoHsP75FVVmRbMzCjg2fsR/C3MK34cuVYlFF/7sgNjTAH3ll+ODkdYSFhiIxJgZ9+/ZFbm4uhLGx+CAtDT8G98JYjh0saL63ACB5Rv+7y9BALgCdhjkYGBiDZUDjWqEBJCxDc4ghRCAQFEKJxRBdLUVxxWM4WRmD18sBLB3EStQnKeUMPo35GXn5JbIxjrsjPo+djnB+oO707j+LT5f8Kq/XzR7xyyYgPLSfzvQCQPLfRVh85Bryy180vf3tIjhsK6x/dyDCefQ9M5pQcOkERD8uQ2hoGGJiomXGSGxsLNJ+XIa04c4IFWi/VxwllmBpVj7CQkORnJIii70JDAxEckoKBHw+lomOY8wLr1Bbh8FigMHSruHCkBBDSFNI1hiB0MqhxBKc+Pce9ly8jRP/3gMl1n3pr33n8tFj/n6ErDqMN78WIWTVYfSYvx/7zuXrTGdSSgYmTIuHp1d/ZGRk4OHDh8jIyICnV39MmBaPpJQzutG7/ywmTN/QWK93ACa+uwVJaVk60QtIjaD/25sFL26wvG6/IExadRBJon/VC9EQsZhC9h/fIjQ0DCkpyQgMDISZmRkCAwORkpKC0NBQfBb9GSiKvgeYLhkllSiofITomJhGAchMJhNR0dHIr3yEjJLG23gEgq4ghhCh2VBiMU5cLcHuM3k4cbUElCZxHk3RR4mRfiEfCYevIP1CPihKO/ooSoz0iwVIOHoV6RcL5OTKnku/gfTLhVrTqY7knEL0XnsMI7ecxIyd5zFyy0n0/uJPJOfe1ZnOfefyMemLv+A5YLD8xXnAYEz64i+dGEMUReHTqJ8QFhaK5OQUuYtzcnIKwsJCEbHkF61fnClKjE+X/KpSb+TK33XyeVNiCRYfuSbzjsjpTklBWGgoFm7L0Lru0puXUVVWhJiYaIXGSHR0NPLzCnDmlPYNz5LH0niAvn0Vx5jVjdfNa/Mwmbp5EDSCbI21QSixGCdv3ENRxROwrYwQ1M1eZ1sa+84XYOHeS8grfRlgynGwwPq3/BE+kKN1fUnH/0HE18eRd/dlIDLH2RrxH72G8Nd6Nl3uieuI3CRCXlE9uWxrrJ8jDdhs9JyTJda/E4jwQZ2brFMdyTmFmPJzJsJCQ7G7QSzFlIQ0JEzxh6Cvs1Z1UmIxIn+9qHLrYuFOEQSzQ2nFsNBFdOoq8vJLkLBbiacgKhpcLhei01cRzKMfqK1W72maes/eQDC3h9b0AsCp/PvIL6/GbhXeES6XC1HuXQR7ay9r6XGVNHBcrTFSXKo1nXU4GktjeXJzcxEY2HirMzc3V24egdASENOxjZF06j/0WnIQw+OPY/r2DAyPP45eSw5iX9Ztrevad74AkzedVOw5WH8cSRl5WtFT541Z8MURTIhKQt9+XHl9/QZhYvQ+JB2nn1lXn6QT1zFp6R/w9B/UYHtiECYt/QMTl+xv/Jw/D5NiDyPp1H9aOcaGUGIJFqVeVektWHzoH61vk4muliKvtErl1sWtkkqIMrV73EXFUiNT3cW5bp7W9JbQ1FtSoVW9AFBU/ZSe7vv0MxXpYGwhjb+pMzoaIjNGnBy0qhcABjpaws3SFMLYWIgbeI7FYjHihEK4W5pioKOl1nW3RupihLT9IGgGMYTaEEmn/sOkuKPwDGhgmAQMxhtbTmvVGKLEYizce0m1W//nC8126yeduI7uU3Zg2Md7sXFPJgAgN/cK7t6920hf5DfpGuujKDEiN4kUb42kpGDMmDEwNzfH778nKT7G78/qZNvk5H9lyL//UKVBknf/IU7m0U8Lp0NxhTS7Su3F+d5DreplO0lTmtVdnOvmaU2vI029jlZa1QsA7BfZS2p122qQdUcDhy5esLBjI1aJMSIUCuHOcUPgIO0Hp7OYDKzq547UtDQI+Hy53ykBn4/UtDSs7OcOFrNpF3OKEiP90h0k/Hkd6ZfutNgWNuHVhhhCbQSKEiPyh3OqPQi/52gtfufktXvqPQfFlRBdLVEiQT1KPTWenpgwYQKSkpLk9RWWQ5StmbEnunwHeUUPEB2t+DhiYmLw8OFDnDp1SvExFlVAdKUIdKDEYpy4Vordmfk4ca1U5WdR/FBas0mdQVI3T1s4WUlTedVenO21W1uFN6gXOO6OEAqVeArihPDgOIHH7aVdvVwaet0cwAvoplW9ADDI3RbuNmYqvSMebCvwtLz9yWSy4DP2Q6SlpYHfwBjh8/lIS0vDcuFyxSULtMBYjh1+DO6FS6Lj4HK5sLCwAJfLxWXRcVnqfFNIEv2L7jN3YljEPrwZdwjDIvah+8ydOgk41xYMJkMnD4JmEEOojSC6Uoy84krVhklpFU7euKcVfUWVND0HD5rm1lfpqUlORlhYGCIiImTBsy+3Eao1O477j+gdR1FjY0f2XLn6Y9x38Q56LT+I4V8cx/Tvz2D4F8fRa/lB7Lt4R+F8pxd1etQZJE4a1POhA6+XAzgOFqovzo6W4PXXbmwUi8XC53EzkJqaBoGggadAwEdqahriV0/T+sWZxWLi89VvqtS7ftnrWo2HkulmMrBmeA+V3pF17w7UiW437yHgvbUSf525IGeM/HUmC7y3Vuokdb4+Yzl2uCDoh/2jvLBtSE/sH+WF84J+zTKCJq06CE+/oBbLviO0HUiwtA5gWNjTKyJnSL+QluS/WyqfL3okLZam1oNQXQtGhyZeTOrtPbNtXnoOVAU9sq3VvA/PFWcBibJvI6/oARKUeGqioqKkgaQiEYKDg18aBtbGkFDPAZqxM2xrU3rHwWYrf87cEKh91uh5cbU086V+0HNCg6DnN75LQ8L0/hB4usi9NqizHdxtzSGMjZULWgZeGiQcW3MEcbRXb4XhaAsDAOvnDMakFdKLc1T0yxozcUIhUtPSsHdFKFgW9LeoJCb05o6fMgY7mB5YtkgILpcrG3fnuGFHwrcIFoxCeb35rGf0i1tamiqfGz5lJH4zMsWnkd/J6fVwd0Tijo8RPra/csEm9M5hw6AuCscnBXWBQS8nRG49Ka/b1Q6JX76J8BGqA8OrnjX+Xipj8bQGxuu0fqDWfowLGadQVlIMO0cn+A0cBBaLBZuOObTlMlzoe8usYsbJ/R9G+5XKoSgxIredkd00KQzw334K/OCeUqPSluY5Y0i/8n9TIXWEWgfEEGojsG1pXtAttVPFNKjHS8+Bsgu1h5MleL0cmyRfE0+NTJ+LNXgaZtfwvFzAYVspPY7Y2FiYm5tj0KBBcq+TO8beTkrlNwx6VvQjvTjtBMb2cZaLi2AxGVgb1gtTflZukCRM8W9yLIUqwgd3w94VoYjc0uDi7GyNvStCET5Y+9tEdYwVjMKYscORcTITJcWlcHRywMCg/jrbpqkjfHwQ+OMGQiTKxd3/bkkrSw/sqRNvTCPdvK7gcztDlHMXReWP4NzdDTx/jxbRzWKxMCBosM716BJR5n+qb5rqsu8uFyLYt5X1gtRFujtJn9cYYgi1EXieqi/ocUIhPBwsENTDXiv6WEwm1r3hg8lfq/AcRL7W5B9zuoZdeXm5bBth72q+xvpYLCbWzx6ESZ8pPo4DBw5AIpHg9fBwxce4aKhKnXVBz6pTpFNx8r8yDOkq/9kIPF2QMB1YlHoCXG6qbJxja66T1Pn6hA/uBv6gLhDlFKLo/iOwbU3B83RpsYtz0BDdVZFWpTc42BsSX/peFu3pZiLYR2rEM1x097m2ReoC99Vn32m2bU5oPxBDSE9QFAVR+iUUFZeD7WQDHq9vs+56WSwm1r8fpHJLY8+cIK3WExrf3w17PuJh4e6/5C7UHo4W2Bv5WrPqCKkz7GJjY2FgYIC5c+fCw8Uae1fzER7cvUm6wnldsXf5mMbbE87W2Lt8DAA0fs7JEnsXDUX4QNUNRZsb9CzwdMHYPs44+V8Zih8+gZO5EYI62ejEE9QQ6cW59dxBUxQl5ykK4vnq3FNEaP3UBe6r9Ybb0u/L1mIwdZDuLiZbY5pCDCE9kJScgU+jfkRefrFsjMNxwufr30P4+KAmy5VtaWxqYJg4WGDPnCCM93dr1roVMb6/G8b5dcLJa6UoqngMtpUxgno4oINF84J41Rl2Bw4cwMcT+2Ecrxt43p2a7alouD3BtjEFz/Nl40vZc3fLwbY2Bq+3Ey2d9YOeVf1Iqwp6ZjEZ8t4iDbrPtxX+SD6IZYuEKMh/mRXo5t4Jq9ctxjjBSD2ujKBveP07g8O2Vu0Nd7YGz8tFhRRCe4YYQi1MUnIGJkxdi7CwUCTsrhc4K4zFhEmr8Nvepc02hsa6muPktXsoqnwMtqUxgnrorrI0IN0mG9JLeZxMU1Eaq9JMD5Ay6m9PKH2uq2Z1bGgFPduZI6hz07Jl2gN/JB/EzCkfIiwsDHt27613zggx442P8NPur4kx1I5hsZhY/yEPk5b9oXybfuXYFtnW1RRdpLuT9HnNYUgkEt13cGwnVFVVwdLSEpXFCbBQkDVGURS69v0Qnl7+ctkNgPSiKBDwkZt7ATf++aGRy18s+h/tdYjz6ZfGZ1rTD54WV9GvWcM0o1ki30p9BVmKEktjVSqfgG1rRs8DpCQbTfFc+tlHqH5Ee+qzG9Jih/WzxhQGPSvIGlOJBh4hhhH9rSMDX3f6cnv2pj0XTvSDqx88lV8DRVHw7/0avL18kJycrOCcEeByTjay/j6icpvMkqU667I+kkoNWkuU0KtbJSkqVj/pBZrECJW4zaI99/5j+ud6Dyv6WWMGT+gfm6ToJu25miApLELSXzcQ+a18KxwPZ2us+4AnF+DP4ND7nlc9fAyrvotQWVkJCwsLra637lrhP3IzDDpoJ4GljufPHuP8oQ90su62CvEItSCiU38jL79YfV8jUS6Cg731tMrWhyxWxbCDvpfSJJQGPduZa24EtTMyTmaiIP829uzeq7KMwumT58EbEqCnVRJaA7IA/8uFKLpfLb1p8mqZAP+mopP0eRIjpDGt9xsCYM2aNWAwGJg/f77SOdu2bQOPx4O1tTWsra0REhKCc+fOyc0pKSnBW2+9BWdnZ5iYmGDUqFG4ceOG7Pny8nJ89NFH6NGjB4yNjeHm5oaPP/4YlZWVWj0e+v2UyhU+T3h1EXi64O9Fw3Do/SD8NNUfh94PwpWFw4gRpIa6xp99+/YFRVFIT09HQkIC0tPTQVGUThuEEl49WCwmgn1dMSWkF4J9XVu1EURoPbRaj1BmZia2bt0KLy8vlfPS09MxZcoUcLlcGBkZYe3atRgxYgSuXLkCFxcXSCQSCAQCdOjQASkpKbCwsMCGDRsQEhKCv//+G6amprh79y7u3r2L+Ph49O7dG/n5+Xj//fdx9+5d/Pbbb1o7pvr9lFRmNzjZaE0nofXQKOiZoJa6xp/ffPMNtm7diry8PNlzHA4H7733ntw8AuFVgsQItQ5apblcXV2NqVOnYtu2bbC2Vh2cunPnTnz44Yfw8fFBz549sX37dojFYhw7dgwAcOPGDZw5cwabN29G//790aNHD2zevBmPHz9GQkICAOnd5u+//46xY8eiS5cuGDp0KGJjY/HHH3/guSbxI2rgDeoNjruT6r5GHmzweKqryRII7YWBQf1hZ2+L6OhoeHp6Nuo5FxMTA3t7W3CD/PW9VAJBc1gMgMXU8oMYQprSKg2hOXPmIDQ0FCEhIRq/tqamBs+ePYONjdSr8vTpUwCAkdHL9GQmk4mOHTvi5MmTSuXUBZoZGCh3mj19+hRVVVVyD1VI+ym9pbqf0rp3SW0UAqEeTAYToaGhSE5ObtRzbsyYMY1ihwgEAkETWt3W2O7du5GVlYXMzMwmvX7RokVwdnaWGVE9e/aEm5sboqKisHXrVpiamuKLL77AnTt3FDbSBICysjKsWrVK5nZXRlxcHD777LNG45Kim5BUK64LM36AHRK/mY6IuFT5lHA3eyRuew/jB7lAUto4w4VhTD+zgGmvQeEwmj25AM1crpKaxr23FMo0oJ+FRbevEwDNMsEU9AlTioqO8Q1hWnakPZfu+wUA6ED/wi95pkGGmQv9isoMe/oZZk+opmeuZJzMRGnpPcQoqcwdExMjbRYqysWgwVwlUoDnBua0dRqYPKU9V2JNrx8Vw9SUtkyY0d8aN2ZV0J7by/oq7bl3HtH3sLma0X+/GM4atGeh6J/Dj91H0J77XELvvHxoqvtK1GRrrHXQqgyh27dvY968eThy5IicB4cua9aswe7du5Geni57fYcOHZCUlIS3334bNjY2YLFYCAkJwejRo6GockBVVRVCQ0PRu3dvrFixQqW+qKgoLFiwQO61rq7qK/GGj/QEP6QPRDnFKCqpBNvREryAbu0qsI8SiyH6pxTFTymwbUxoFygktC/qB0srQhYsXVTSYmsiEAhti1ZlCF24cAGlpaXo16+fbIyiKPz111/45ptv8PTpU6XbRvHx8VizZg2OHj3aKMDaz88P2dnZqKysRG1tLezt7REQEAB/f/m7nocPH2LUqFEwNzfHvn370KGD6nTtjh07omNH+nf99WGxmAjm9mjSa1919mUWIHLXReSVvtxK5DhZYv3MAQjnqm5ZQWhf1AVBq0swcGQ3rbkvgaBPSPp866BV3YIPGzYMOTk5yM7Olj38/f0xdepUZGdnKzWC1q1bh1WrVuHgwYONjJv6WFpawt7eHjdu3MD58+fB5/Nlz1VVVWHEiBEwNDTE/v37m+SRIqhnX2YBJn35FzwHDJYPfPXnYdKao0g6Tb/wHaHtMzCoP9zcXSEUCpUkGMTBneOGwEGkhhCBQGgarcojZG5u3sgFbmpqCltbW9n49OnT4eLigri4OADA2rVrsWzZMuzatQscDgfFxdIqp2ZmZjAzk8bKJCYmwt7eHm5ubsjJycG8efMgEAgwYoR0X7nOCKqpqcGvv/4qF/hsb29Pgpe1BCUWI3LXRYSFhsq1mwgMDERySgoEfD4W7jgJfoA72SYjAJAmGKxcG42ZUz6EQCBAVFTUy8rccXFITU3F97u2kXOU8EpCYoRaB63KEKJDQUGBXNDk5s2bUVtbiwkTJsjNW758uSzGp6ioCAsWLEBJSQnYbDamT5+OpUuXyuZmZWXh7NmzAICuXbvKybl16xY4HI5uDqadIfqnFHmlVUhQEvgaFf2isvbfxQj2pN9mgNC2GSsYhR0J32LZIqFcgoE7xw3f79qGMMEYPa6OQCC86rR6Qyg9PV3l//ULrCnj448/xscff6z0+eDgYIWB0wTtUlwhzbBRW1m7vKbF1tTaoMQSnLxZhuKqJ3CyMEJQFzuwyB0exgpGYczY4cg4mYmS4lI4OjlgwKAg4gkivNIwmDqIEaLI74WmtHpDiNB2cLKSpr+rraxt07hhbXsg+VIhFu6/gvyyh7IxdztzrBvXBwJv0oqDxWIhaMjL7w0lIUYQ4RWHyZQ+tC2ToBHkHSO0GLyeDuA4WEAYq6SytlAIDycr8Ho76WmF+iP5UiHe2HEWXoFD5ILIvQKH4I0dZ5F8qVDfSyQQCIQ2CTGECC0Gi8nE+v/zRWpaGgT8BpW1+XykpqVh3cz+7S5QmhKLsXD/FVkQuVz15JQUhIWGYtEfV0BpUPySQCBIoSgKf53IxN7dB/DXiUxQFKXvJcmoC5bW9oOgGWRrjNCijO/vhr3zBiNy11/gclNl4x5OVti7OKRd1hE6eeMe8sseYrfKIPJUnLxZhiHdSNNWAoEuKfuOImrh58jPe+lRded0wuq1izBuPP1q1IS2DTGEdIAk929ITAzVT3Sw080CNNkjfq5BawcNgvoYHZV/tcKHdAE/yAOiqyUoqnxKv7K0Bu0tNHoPjDQoivmcflwK05xei4CSp9J5aqsnP6fAtDSC5An91gMsOxrfwzpM6LdmkbDoy5U8p/9ZdGDSa1kBANDg6/Cgln5LEGMN2nEUGg2jNe9pB/qLPf43/SrZpQ/ov19Bnr1pz7197x7tucN60K/hZGH4gPbcJwz6rVlKyhu/v3+m7cfitz9FWFgYdif8Jiu7ECsUYvobH2PF1p8wePRYpTIfPdR9LTmdFFQkTVc1pn3tQRBaDSwWE8F92ZgypCuCPZ3b3XZYfeoHkStCFkRuqUGvNQKhHUNRFL5cEYOwsLBGzXpTkpMRGhaGrauXtqptMn2zadMmcDgcGBkZISAgAOfOnVM6d9u2beDxeLC2toa1tTVCQkJUzn///ffBYDCwceNGHay8+bTfqw+B0Erg9aIRRO5ggaAeZFuMQKBD9pnTuFuQj+joaIXbzdFRUbhbkI+ccxl6WqGU1hIjtGfPHixYsADLly9HVlYWvL29MXLkSJSWliqcn56ejilTpuD48ePIyMiAq6srRowYgcLCxkkd+/btw5kzZ+Ds3HprwxFDSIdQlBjpuUVIEP2H9NwiUJQGvnxCu4HFZGLdJG+VQeRrJ3mDRdJiCQRalJVIOwyo226+/2Jee2fDhg149913MXPmTPTu3RtbtmyBiYkJfvjhB4Xzd+7ciQ8//BA+Pj7o2bMntm/fDrFYjGPHjsnNKywsxEcffYSdO3eq7d2pT0iMkI5IOpOPyJ8vIK+kXmNRRwusn+6H8ED68QqE9sF4fzfsmROEhXsbBJE7WGDPnCCM93fT4+oIhFcLO0dpCQ51NctsHfVcqoPFlD60LROQtYmqQ1mT8NraWly4cAFRUVGyMSaTiZCQEGRk0POY1dTU4NmzZ7CxsZGNicViTJs2DZGRkejTp09TjqTFILeYOmB/5m1Mik+HZ/8GjUX7D8ak+HQkncnX9xIJrZDx/m74Z00oji4KwS/vD8LRRSG4uiaUGEEEgob4BHLh7OaOWCXNeoVxcXB2c4fngIF6WqEUXW6Nubq6wtLSUvao68/ZkLKyMlAUBUdHR7lxR0dHWe9OdSxatAjOzs4ICQmRja1duxYGBgYquzq0FohHSAcsTchW3Vj0FxH4/V1B6uISGsJiMjGkl6P6iQQCQSksFgvzVsRi8dvTwBcIEF2vWa8wLg5pqalYsfWnNt2i5fbt27CweJl5p8gbpA3WrFmD3bt3Iz09HUZG0ky7Cxcu4Msvv0RWVhYYjNafxUY8Qjqg4N5DRKuoCXOruBKiq/RTZAkEgjQTSHTiHBJ3p0F04hzJ+CGoZGjoOKz5/hdkXboMLpcLCwsLcLlcZF26rDZ1vqWo6zWm1ccLj5CFhYXcQ5khZGdnBxaLhZIS+WtSSUkJnJxUbx3Gx8djzZo1OHz4MLy8vGTjIpEIpaWlcHNzg4GBAQwMDJCfn49PP/20VTYxJx4hHaG2sagG9T8IhPbO/n1HELNoPfLz7sjG3NxdsXJtNMYKRulxZYTWzNDQcRgyKhTZZ06jrKQYdo5O6NovoE17gjTF0NAQfn5+OHbsGAQCAQDIAp/nzp2r9HXr1q1DbGwsDh06BH9/f7nnpk2bJrdNBgAjR47EtGnTMHPmTK0fQ3MhhpCOUNtY1JrUhCEQ6LB/3xFMe2P+i8J4iS+3OIRCzJzyIXYkfEuMIYJSWCwW/AbxZP9X17YeT6IuWmI0Rd6CBQswY8YM+Pv7Y8CAAdi4cSMePXokM1qmT58OFxcXWZzR2rVrsWzZMuzatQscDkcWS2RmZgYzMzPY2trC1tZWTkeHDh3g5OSEHj16NPMItQ/ZGtMBbvbmahqLWoJH4kAIBLVQFIWYResVFsZLTk5GWFgYli+OI9tkBEIzmDx5MuLj47Fs2TL4+PggOzsbBw8elAVQFxQUoKioSDZ/8+bNqK2txYQJE8Bms2WP+Ph4fR1CsyAeIR2waooP3vpaWhMmKjpadgcbJxQiNS0NeyOC23UlZQKBLqdPXkB+3h3sTkhUHHMXFQUul4uMk5kIGtLYA0sgtGZaU4uNuXPnKt0KS09Pl/s/Ly9PY/lNeU1LQQwhHTBuhCf22loicstJcLlc2biHszX2rghF+OBu0oFaDfp8GejmoxJrEKvENNdBQSxN+odpgokGW48a9TCjL5dhRL9XEUOTNWgyV5P34Xkt7akMiW4+N0oiH9B5t0jam0ptzF1ReaPXNpWsEhfacy/eKlI/CcCDh09py7xzu5L23L8PXKc994SK/n8N6ehgSntuRi/6PRMH9nelPdfSrJr2XE2wN6PXJ08skehEP6H1QQwhHRE+uBv4g7pAlFOIovuPwLY1Bc/ThXiCCAQNcHJyAKA+5s6RTbaaCa8eDCYTDC1XjNe2vPYAMYR0CIvFRLAP/TsgAoEgz8Cg/nBz7wShUIjk5GS57TGxWIy4uDi4c9wQOIh+B3QCobXAZDLA1HKwtLbltQeI6UggEFotLBYLq9dFIzU1FQKBQL4Pm0CA1NRULI9bRtKhCQRCkyEeIQKB0KoZKxiJn3ZvwpKFQrmYO0dHB2z7dSvCBGP0uDoCoekwmNr34DCIe0NjyFtGIBBaPWMFI7EybpEsZggASkpKsTJ6FVKTD+hxZQQC4VWHGEIEAqHV80fyIcyc+jH69w+Q2x7z9vLB2//3LjGGCK8kWm+voYN0/PYAMYQIBEKrhqIoLFkoVFlU8bOolaSoIoFAaBLEECIQCK2ajJOZKMi/g+joaKVFFfPzCnDm1Fk9rZBAaBp1WWPafhA0gwRLE/QCRYkhulqCooonYFsbg9fbidRYIiikuLgUgPqiiiVFJQqfJxAIBFUQQ4jQ4iRl5CHypwvIK3lZQZfjZIn1b/kjfKCHHldGaI2QooqEtgqToYM6QgziEdIUYgjpE0MNWlZUVOlkCUxL7bQloEtSRh4mrT+OsNBQJMTEvOwkHhuLSWvTsHdxCMK5SowhDVpLMFgafLWNNfgcNGibAU0qvNbSb2+hkVxNMLWmP/c5/ZYRz0GvpQEAiCWNjy1gUADc3F1VFlV047ijPzcIlERxPaE7D+l/zx89o/9Z0G2dcerIv7Rlip9p8D3X4CKqSRCt+Olz+nPF9FtRZP9N32tnbkn/XDPWoH3IVZrzntbopsVHfUhBxdYB2YsgtBgUJUbkTxcQFhqK5JQU+aDXlBSEhYZi4Y5MUJSO+o8RXklYLBZWrlVdVHGZcAUpqkggEJoEMYQILYboagnySioRHROjOOg1Ohq3iisg+rtYTysktFbGCkZhR8K3uHQ5G1wuFxYWFuByubiUcxnbdv6AUEGYvpdIIGgMk8nUyYOgGWRrjNBiFD2oAUCjk3h5TYutifDqMFYwCmPGDkfGyUyUFJfC1tEdAYMCiSeIQCA0C2IIEVoMtrUJAPVBr2wbkxZdV2uDosQQZeWj6N5DsO3NwevnTjLqXsBisRA0RPrdqRWb6Xk1BELzYLIYYGq5AKK25bUHiCFEaDF4vRzBcbSEMDYWySkpjYNehUJ4OFmB19tJj6vUL0lHryDi88PIKyyXjXFcbBD/6QiEh/TR48oIBAKhbUJuMwktBovFxPoZfkhNS4OAz5cPeuXzkZqWhnUz+7db70fS0SuY+OkeePbjyr03nv24mPjpHiQdvaLvJRIIBC1CCiq2DohHiNCihA/kYG/ka4j8SSTXSdzDyUp16nwbh6LEiPj8MMLCQpGc/NJbJm0jkQKBgI/IDUfAf60XWCQYkkDQCDFFoeDKBTwsvwdzG3u49fEDk8SWEV5ADCFCixM+kAP+ADdpZenKp2DbmLT7ytKirHzkFZYj4TclGXVR0eByuRBl5SM4oIueVkkgvHpcPXUER79fj/LiO7IxG6dOCHk7Er0GDdfjyqR1oDSpBUVXJkEz2u+Vh6BXWCwmgvuyMWVIVwR7OrdrIwgAiu49BEAjo+7FPAKBoJ6rp44gUTgfXH9fue1mrr8vEoXzcfXUEb2uj2yNtQ7a99WHQGglsO3NAbzMnGuILKPuxTyCFIqicPqvU9i3Nwmn/zpFOtATZIgpCke/X4/Q0DCkpCTLFXBNSUlGaGgYjv6wHmLynWn3EENIx1CUGOnZt5Fw7B+kZ98mVZMJCuH1cwfHxQZCYSzEDVqJSNtICOHRyRa8fu56WmHrIy05Fdy+A/D6KAE+fGs2Xh8lALfvAKQlp+p7aYRWQMGVCygvvoOYmGiF283R0VEoL7qDgisX9LRC6TaWtr1BZGtMc0iMkA6QlD2ApMYQ+87mI/LXLOSVvOwTxnG0wPo3+2F8gDsY9jb0hWrSl0wTNDlpNOgpRBtNjkuTIGEDDb7aZqa6kWtAv8cWy7AD4mPGYeKcnyAQ8BEVFS3rwxYXJ0RqahoSN80Ay9Jco55rMNKgJpNEA7lP6Re9NDapVD/pBQYMen2+kvcdw7tTIxAWFoY9u/e87FknFOLdqbOwI+FbjBWMks1/Lqb/WTzX4Hv+8BG99dbkVdCWyTSi/x1jdKAf8NvB2pj+GjrQP9ceVWnQm62M/vfGo4c97bmKeo09LL8HQP12c9X9UoX90jTpoUZ4tSEeIR2x72w+Jm04Ac/+g+VTofsPxqQNJ7DvbL6+l0hoZYSP8kLiphnIyT4j10YiN/sMEjfNQPgoL30vsVVAURSiFm5AWFgYkpPltzySk5MRFhaG5YvjyDZZO8fcRmpIqdtuNrOmb3BpGyaTISuqqLUH8QhpDPEI6QBKLEbkr1my5qJyqdApKRDw+Vj4qwj80d7tPkiYIE/4KC/wh/eFKPM/FJVWge1gAV7/zuR7Uo9TJ7OQn1eI3Qm/KcmwiwKXy0XGyUxZFWpC+8Otjx9snDohNlaIlJTkRgVchcI42LA7wa2Pnx5XSWgNkF9XHXD6ehnySqpUNxctqYQop1BPKyS0ZlgsJoIDu2LKuH4IDuxKjKAGFBeVAVC/5VFSXNpiayK0PpgsFkLejkRaWir4fIGcZ57PFyAtLRVDZ0botZ4QyRprHRCPkA4oodtc9P6jFlsTgdBWcGLbAVDfs87RyaFF10VoffQaNBwTozfi6Pfr5Qq42rA74fWoL9CLq986QoTWATGEdIAj3eaithoE6RIIBADAoKB+cOe4QCgUIjm58ZZHXFwc3DluGBjUX4+rJLQWeg0ajh6BQ2WVpU2t7FpNZWkmk9lo10AbMgmaQd4xHcDtbgeOowWEsUpSoYVCeDhagufpoqcVEgivLiwWC3HrFiA1NRUCgfyWh0AgQGpqKj5bEwVWK7jQERojEVMoy7uEwpzjKMu7BIlY90HtTBYLHK8B8AwOBcdrQKswggitB+IR0gEsJhPr3+yHSRukzUWjouulQguFSE1Lw94FQ0jsB4HQRATjh2FHwrdYtkgot+XhznFrlDpPF4qicOnsafxXUAgbB0f07h+oc2NKIhGjquwaap88wLMnVTDoaA4jS3tY2vcEQ8d39hIxhYqiq6iteQBDE2tYsXuBwdTt8RZdPYl/jm5DdXmxbMzMxgk9Q94Fu1eQTnW3RkiLjdYBMYR0xPgAd+xdMASRv/4FLvdlgTcPR0vsXTAE4wNIYTzCqwNFiSE6cx1FJRVgO1ph8Gt+OjUSKIrCqZNZKC4qgxPbDoOC+jXSN1YwCmPGDkfGyUyUFJfC0ckBA4P6N2ldf/6RjA1LFuJ+aYlszKmTG96K/gzckWHNPh5F3C/MxO2re1Dz8GVQt4GBAZ4/fw4TCwe4ef0f7FwH6ET3vZsZuHX2JzyqeHm8plaO8AiYAfsuA3Wis/CKCBcSVyM0NBQxMTGym8PY2FikJa6G38Ql7c4Y0kVwMwmW1hxiCOmQ8QHuGNffFaKrpSh+UAMnaxPwejmQ7uHtHIoSQ3Tu35fp8QO6orkmBUWJpSn39x6CbW+u1ZT7pNTziFixF3kF92RjHHdHfB47HeF87aenJ+87hqiFG5Cf9zKr0p3jgrh1CyAYP0xuLovFanaK/Dcrl2LPtm/x/Plz2ZizszPYTg5YO2cWFm36QevG0P3CTFzP/KaRUSAUCpGamope3VyRdepLYNA8rRtD925m4Mrh9YoNkrT16DMiEo49B2lVp0RM4cqhrQgNDUVKg5IiKSkp4PP5OHF0O5x6DNS5V4pAaAi5IusYFpOJ4D5OeCOoM4L7OBEjSAtQlBjpl+4g4c/rSL90RydtSyhKjPSzN5GQehHpZ29qTUfS/7LRbfBKDJ38FaZ+9COGTv4K3QavRNLBy02XeSgH3YatxdA3t2DqJzsx9M0t6DZsLZIO5TR/vannMfHtb+HpHSBfGNSrPyZMi0dSyplm66hP8r5jmDo5Al6e/eT0eXn2w9TJEUjed0yr+v78Ixk7N3+FUaNGyenz8/ND1oUL6Ofnhx/jVmi1OKNEIsbtq3tkRoGigpDl5eUYM2YMbl9OgESTSuLqdIsp3Dr7k0LdKSkpCA0Nxa2zP2s9bqcsLwcP7xchRklJkejoaDwsL8L9AsXFD9sqTBa0X1CR2JEaQ67KbRCpoVCIhOPXkX6pUOf9zShKjPScu0g48S/Sc+7qVF+S6F90n7kTwyL24c24QxgWsQ/dZ+5Ekuhf7ek4lINuw9dj6LStmLogAUOnbUW34eubbVgk/S8bE9//Hp4+gfJGhU8gJs75qUnGUNKhHEyc+zM8fQfKy/QdiIlzf0bSgYtNXi9FiRGxYi/CwkKRnNzwgp2CsLBQRCz5RWtGAp2K0dGLvtCqvi+WLkJYWJhSg6S4qAjFt/Pxd6b2DL6qsmuoeViq1CiIiorCrVu3MHr0aDyqKkHlvX+0prui6CoeVZSoNEgeVRSj4u7fWtMJAE8elgNQX1Lk6Yt5TUFMUci7fA456WnIu3yONFMl0IZsjekARicnMEw7qp/HoG+HSgzomflJJ64jctNfyCuqkI1x2FZYP3sQwnldG79Ak7tNg8brTTp5E5HbziCvuJ4+Jyus/yAI4YO70ZBJ//YlKf06Jq06iLCwUCRE19tOiI3FpFVp2Lty7EudmuyT1+vHlfS/bEz8+FepjsT6WxaxmPjxr0g07Ijw0T705Bq/7BRPUWJExO6XGRVy1caTUyAQ8BG5Jg38sP7qt7SeP3spc02aapmrk8EfSbOC+bMncv+KTl9HXsE9JOxRdsGOBpfLhUiUg2BeH6ViWcyn6nUDEP11kVbF6G2bf4Cjow3sHFwxiOdLKyaIybBtNHbxbAbKSopVGiR1gdhlJcUKe5A9ffyM1rHV7x/2nHoIQL1RYGws7Q0mZtUo7RPG6kj//DE07oAHhdW0dDMYj2BmQ783mTqMzKV9FdWVFDGztoehofS9YrLon8N3LqYjZVMcyu7elo3ZObuCPycK3sHygfN5d6savlwhdD/b5kBihFoHxCPUhkg6cR2Tlv4BT78gee+AXxAmfXZAq14TQGoETVp9CJ7+DfT5B2HSijQk/XVDa7ooSozIb0WKvRMpKQgLDcXCzaJmeaMoSoyI1ckqPSCRsSlN0iE6cw15BaWIjlZuVNwquAfRWfqfkejcTeTdLtOqzPoUlUqbpaotDFpS0ST5jfQV0fMaLPhkE6b+3yqMDHkPfXoImrxdVlZaTEsfAFg7ODZJhyI6GFsBUN8D6/HjxwAAQxNrrenuaPbSIFGl28hMg4bQNLDjeMLclo1YJSVFhEIhzG2dYcfx1Fj2v2eP4YclcxDo5yP3OxTYzwc/LJmDS+kHtXUYhDYKMYTaCBQlRuSmF4ZCQzd/naHw3WmtbVtRlBiR287I+qkp1Lf1lNb0iS7fQV7RA+UX/eho3Lr7AKLLTW9bIjr3Lz3D4pzmhkWdsaDWqCil36m9qLRK6zLrw3awBKD+osl2tGqS/Eb62PQu0ps2bZKLHfq/SQubZAzZOTjR0mdt74he/toLCre07wkTCwelRkFcXBw8PDzwv//9D6ZWTrBi99KabhvXPjCzdlJpkJjZsGHrrvg71VQYTBb6jJyNtLQ08Pn8Bu0u+EhLS0Ofke9pHCgtFlM4ufMLhIaFIaXBdmpKSjJCQ8Ow/9u4VrtNRlpstA6IIdRGoG0o5NzVjr7cIuQVV6jup3b3gdb6qdW1I1HftqS66TpoGxb0XOv1qTMW1BoVL4wPWjIdLLQusz68gK7guNpDKFR2wRbCw90RPK52LtQ8nhc4HLZSfUKhEB4eHpg9e3ajWJ6ohV9qHDvkE8iFs5u7SqPAwMAAby+N1WqpAAaTCTev/0NaWhrGNTAK6gpC2tjY4MCBA/AImK7VLCoGk4Xur72j0iDpHvy2TjK3XPrwEDBlOU5kXACXy4WFhQW4XC5OZGQhYMpyuPThaSyz8OpFVJQUIiY6WknMUxTuFd7GzUuZ2joMQhuEGEJtBNqGQrl2+pvVyWmpfmp17UjUXvRtzZqug7ZhYaGxbF5gD3DcHFQbFW724AUoiONSJnNAF3Bc7bQqsz4sFhPxy8YjNTUNAkHDCzYfqalpiF81VWtp+iwWC/Gff6BQ37hx45CWlob4+Hg5o6Qulifv1h2cEmkWGM5isfDx8liFRsG4ceOQmpqKsLdmgzt6nFaOrz52rgPQY9A8HP/rnJxR8L///Q8SiQT/3CxEnxGROqnp49RzEHzHxyD91Hk53emnL8B3fAyctJw6Xx+XPjwMn/8TBr/9OQZMisHgtz/H8Pk/NskIAoBHFdKSDup+h6rut84GvEyGDjxCDOIR0hQSLN1GqG8oqOxvZqOd/mZ1clqqnxrPqxM4bGsIY2ORXK8OCVCvbYmzNXheTW9bwhvQVWZY1A8+lumoMywGaG5YsFhMxH82GRNnfQOBgI+oqHrVxuOESE1NQ+J372pkVLBYTMTH8DHxgx+Uy9z6TrMMlfAxvkj87l1ErNwnV8HZw90Rv/30CcLHabfGTXj4YCT+9hkiPt0sp8/AwAC//PILwsPDG71GZnQXl2ms77XQcYjb/gu++ixGTp+toxMivtquEyOoDjvXAbB18UflvX9QW1OO2qdVMOxoARNHts6rPDv1HATH7oEov30FT6vL0dHMBjaufVqkhg+DyYJ9Zx+tyDK1sgeg/nfIwraVNuBlMrVfQZyUaNEYYgi1EWgbCp7O2tHXlw2OkxUNfcoNE4oSQ5RTiKL7j8C2NQXPq5PSizaLxcT6D3mYtOwP5W1LVo5t1kWfxWIifokAE9//XrlhseXtJusID/NH4g9zEbF8TwOjwgGJ372L8DG+mssc7Y3EzbMQEZsiL9PNHombZzVJZiMdY3zBH+kN0dl/UVRaCbaDJQYPpZHd1lR94YPB5w+CSHQZRUXlKCkpx4JPNqFLly4K58uMbie7Jul7LXQcBo8KRfaZ09IAanMb9PLXfXsNQLpNZuXYW25MWYaY9nWzYOvu1SK6dIVLL19YObogNlaIlJTGDXiFwjjYu7iiizdpwEtQDkMikTTOCSU0iaqqKlhaWuLB0U9goe30+We1aufUZY2FhYYqNhSWj2mcQl+rXq6MBncadVljSvWtCFWaQp/01w1EbjnZIM3fGuvn8BA+pLti/WKJ9HXfipBX9EA27OFsjXUf8OR0Mcw12CKzs5df2/+yEbE6GXm3X3oYPNzssT6GTz91HpBLn6+PtF3FNVm7Cl5gD7CoJwrnKuR547ReabXqm/WqVXeRGiosDe51NHCpM0zpZzJJLJ3or0EBFEWhW9c34enpp9BTJxAIkJN7Ebn/7FNqvFwuo+/FK3xI/7M4lpFPa96l/9HPoNTEENI0fZ72GjSQa6BBCQxNcO1KL3Pt37PHkPZFJEJDwxAdHVWv5EUc0tJSMWv1JrkUetrp8zXV2DQjCJWVlbCw0Hw7XBV114oPdojQ0aTp2/mKeFpTjc0zeTpZd1uFeIT0CEWJIcq+jaL71WDbmoHn49q8bYwh3bF31VhEbvpL3jvgbK3YCGom4UFdsHfJSERuOymvj22l1giatCJNcT2gpX9g76qxSo2h8MHdwB/UBaLLhS/fNy8XrXonwkf7gD/Cq3EbDK3FwjARPKhBgHEzk1pYLCaCB9Ko2/QKUhc7NHHCcgWeujikpqZi19517b7bvERM4UHh36h9VA5DUxtYu/RuF+0qugYMw6zVm5CyKU7ud8jexbWREUQgKIIYQnoiKf0aIr9OR97dl54NjrM14j96DeGv9Wyy3PAh3cEf4A5Rzl0UlT8C28YUPE9n3W1jBHUBf6AHRLlFL/X1ZYNlbKRwPkWJEbnlpOIigCkpEPD5WPitCPwg5YYHi8VEsK+rTo5HTsdAJZ4pQoujLHaI49EJu/aua9SDrL1ReuM0bp78EY8qXnZ1N7VyQpegt+DQjavilW0D7+BR8OQNx81Lmai6XwoLWwd08e4PZis3jltTQcVNmzZh/fr1KC4uhre3N77++msMGKA4BnDbtm34+eefZdvSfn5+EAqFsvnPnj3DkiVLcODAAfz333+wtLRESEgI1qxZA2dn7YRnaBMSVaUHktKvYVJ0Mjz9BskXIuw3CBOj9yHpePNK6rNYTAT7dMKUoT0Q7KM87kZbsFhMBHu7YMpr3RHsrdo7I8opRF5RBY16QHd0umbCq0d4+GDc+PdX/Hn8C+zctRSHjn6H3H/2ESPoxmnkpK3Fa0H+cr8nrwX5IydtLUpvnNb3ElsEJouFbv0C4Td8HLr1C2z1RlBrYs+ePViwYAGWL1+OrKwseHt7Y+TIkSgtVZxtl56ejilTpuD48ePIyMiAq6srRowYgcJCabmUmpoaZGVlYenSpcjKykJSUhKuXbuGceN0l3zQHEiMkBap2/etOLccFmbKPSLdRm+Ap+9AJfEOfORezMD1/y2QNyie0I9bkDyin7LOMDZRP6lOLo04JXUkHP4bby7fj4cPH8LMrPHe+MOHD2FhYYGdq8MxZVSDlFhNYhGsNKido0mclKEh/bkGGszFi63SegHJvAAlXrHnGqxXkxYqSmKaFGJEPxtQbOlOe65EQt9ofyamH0tzpbwz7bn5lY9pz6Ubb5JxqoC2TE1aSzx9/BR/fj0TwVx/ua7ugPT3hM/n40TGBbw29weNtsms7ej/LrB0FCNkbqX4N1QRz54+pz1XrKBViiJqH1fj+w+G6jRG6KNfTukkRujraYNw+/ZtuXV37NgRHTsqjl0NCAhA//798c033wCQfndcXV3x0UcfYfHixWp1UhQFa2trfPPNN5g+fbrCOZmZmRgwYADy8/Ph5ubWhCPTHcQj1MKILuQh78591dWL79yH6EKefhaoY9h2NOsB2Wn3x6G1k3TgIroFrcDQSRsxde4ODJ20Ed2CVjSraSqh7XM/PxfV5cr7pUVHR+Ph/SLcz29fXd0JgKurKywtLWWPuLg4hfNqa2tx4cIFhISEyMaYTCZCQkKQkZFBS1dNTQ2ePXsGGxvlAe6VlZVgMBiwsrLS6DhaAmIItTBF92hWL76nefXiVwGetys4ztI0f6VFAF1swPNtXXcMuiTpwEVMnL1dcVf62duJMURQypNqev3Z6uYRWhe6bLFx+/ZtVFZWyh5RUVEK11BWVgaKouDoKN9Pz9HREcXFxQpf05BFixbB2dlZzpiqz5MnT7Bo0SJMmTKlVWayEUOohWHb06xebN/6vizagMViYv1HwUhNS4OgUXsBabXi9fOG6TyuqbVAUWJErNqnutHr6mSt9WwjtC2M9NRElaAdmAyGTh4AYGFhIfdQti3WXNasWYPdu3dj3759MDJqvJ357NkzTJo0CRKJBJs3b9bJGppL+7jatCJ4fhxwOtmqbovQyRY8P45+FtgChAf3wF6hADlZp+RK/OdmnUbi2gkIH6q9JpOtHdFZmo1em9hBntC2sXXvCzMb1U1UzW2130T1VUQsplB49QJunDmEwqsXIBa3zkasLY2dnR1YLBZKSkrkxktKSuDkpLoGWHx8PNasWYPDhw/Dy6txcc46Iyg/Px9Hjhxpld4ggKTPtzgsFhPxkaMwcf4u5dWLN/5fm/eIhAf3AJ/XDSdzi1FUVg22nRl4vm5t/rgbUtcZXlcd5AltGwaThV7D30Pa3lXg8/mIrlfYVCgUIi0tDf6TlraLekKquJn5J87s+RIVpS+bTls6OCNw0jx09n9Nb+tqDenzhoaG8PPzw7FjxyAQCABIjehjx45h7ty5Sl+3bt06xMbG4tChQ/D392/0fJ0RdOPGDRw/fhy2trYarUuRvOLiYtTU1MDe3l5lPJKmtK+rTishfHhfJG78P+RczJD3iFzMQOLG/0P48PZx98ZiMRHsz8GUUX0R7M9pd0YQ8LIzvK46yBPaPs69g+A/aSnST59v0NX9AvwnLYVz7yB9L1Gv3Mz8E4e+WYygAX5yW/G8Af1weNNi/Hf+uL6XqHcWLFiAbdu24aeffsLVq1fxwQcf4NGjR5g5cyYAYPr06XIxRmvXrsXSpUvxww8/gMPhoLi4GMXFxaiurgYgNVomTJiA8+fPY+fOnaAoSjanVoMs3YcPH2Lz5s0YMmQILCwswOFw0KtXL9jb28Pd3R3vvvsuMjMzm338xCOkJ8KH9wV/aG+ILuSh6F4V2PYW4Pm1T2OgPcMLoNnotYkd5AntA+feQWD3HIj7+bl4Ul0OIzMb2Lr3bfeeILGYwpk9XyI0NEyuF1lgYCBSUlLA5/Nxcu9X4PQbDKYe3isWkwGWlj1CTZE3efJk3Lt3D8uWLUNxcTF8fHxw8OBBWQB1QUGB3G/T5s2bUVtbiwkTJsjJWb58OVasWIHCwkLs378fAODj4yM35/jx4wgODla7pg0bNiA2NhZdunTB2LFjER0dDWdnZxgbG6O8vBy5ubkQiUQYMWIEAgIC8PXXX6Nbt6ZV1yeGkI6hKLFSY4fFYiJ4AP36JoS2B4vFRPzS8Zg4e7vOOsgT2gcMJgt2Ht76XkarouhaNipK7yIm5nel5QW4XC6KrmXDpZefnlbZOpg7d67SrbD09HS5//Py8lTK4nA4aG6JwszMTPz111/o06ePwucHDBiAWbNmYcuWLdixYwdEIhExhFojSUdyEbH+IPLu3JeNcTrZIj5yVLvZ/iKoJ3yMLxK3voOIVfsad5Df+o5WOsgTCO2RRxXSxsnqYvBqKssUPq9rWkOMUGslISGB1ryOHTvi/fffb5YuYgjpiKQjuZg4f5e0sWhivcaiwlhMnL+rXcUCEdQTPsYX/JHe9CpLEwgEWpha2QGQxtr1798fIpEIRUVFYLPZ4PF4shg8E0s7fS6T0IAHDx5AIpHAxsYG9+7dg0gkQo8ePZR6h5oLMYR0AEWJEbH+oOLGoskpEAj4iFx/EPyhvcmFjiCDxWIimEsavRII2oLdwwdWDs6YO3cu7t+/L7elw+FwYGtrCysHF7B7+OhlfQy8rPujTZmvMtu3b4dQKAQAREZGYufOnfD29sby5csxb948vPPOO1rXSQwhHXD6ainy7txHQqLy2jBcLhei3LsIHkhzT1ODfj4MG2v6i31Ov0cPQ5O+VXT757A60Jf57Cn9uUwNDEymBqdBLf2ebxqhyXuryVxN3gfqGf25GnwWrKrb9OVqUPiPyaK/3r629OswVTyh3xvt8VN6tWhsHOj3ZjPsSP9cd7Cn34rmsQb9uGqf0a+x8+ihBuelBogp+jEmz58rOycYcOs3FBcO/oqwsDAkJCTIvPOxsbFITU2Fz+hpMDBo/BvQEltMZGusMV999RWuXLmCx48fw83NDbdu3YK9vT0qKysxZMgQnRhCxB2hA4rpttEobZttNAgEAqE1IBZTyL/wJ8LCwpCSIl+5PSUlBWFhYcjL+pMUV2xFGBgYwNjYGDY2NujatSvs7e0BAJaWlmBo2XtWBzGEdIAT3TYaDq2zyiaBQCC0BYqvZ6Py3l2VTWkrSgpRdC1bL+vTZa+xVxUWi4UnT6Se9xMnTsjG62oU6QJiCOkArp+HrDaM0jYabvbgDeiipxUSCARC26eGZtZYXXYZQf8cPXpU1hfN0vJlIdmamhp89913OtFJDCEdwGIxEB8jbSAqEChpLBo9jgRKEwgEgg4xqZc1poi68brsspaGydTN41Wm4RZYcXExAMDBwQH9+/fXic5X/C1rvYSP9kbi5lnIyT4j30bj0lkkbp6F8NGk8BmBQCDoEqfuPrC0d1bZlNbKUX9ZYwT1jBgxQuc6SNaYDgkf7Q3+CE+Izt1EUWkV2A4W4A3oQjxBBAKB0AIwmSwMmPQx0r6NUtqUduTcNXpprwEALAYDLC0HAGtbnr5pboVqOrTqK/KaNWvAYDAwf/58pXO2bdsGHo8Ha2trWFtbIyQkBOfOnZObU1JSgrfeegvOzs4wMTHBqFGjcOPGDbk5T548wZw5c2BrawszMzO8/vrrKCkpafYxsFhMBA/shil8PwQP7EaMIAKBQGhBOvu9hpAP4yA6myXnnT+ZeREj565Bl/5D9b1Eggp0lSlWn1brEcrMzMTWrVvh5eWlcl56ejqmTJkCLpcLIyMjrF27FiNGjMCVK1fg4uICiUQCgUCADh06ICUlBRYWFtiwYQNCQkLw999/w9RUWt/jk08+QVpaGhITE2FpaYm5c+ciPDwcp06daonDJRAIBIKO6Oz3Gji+g1F8PRtPHpbD1MoO7B4+evME1SGN6dF2HSGtimsXtEpDqLq6GlOnTsW2bduwevVqlXN37twp9//27dvx+++/49ixY5g+fTpu3LiBM2fOIDc3V1aee/PmzXByckJCQgLeeecdVFZW4vvvv8euXbswdKj07mDHjh3o1asXzpw5g8DAwCYfC0WJydYYgaAlKIqCSJSLouJyODo7gcfzAovVvjusE+jBZLLg3NMPBgat5/eXFFRsHbRKQ2jOnDkIDQ1FSEiIWkOoITU1NXj27BlsbKQVap8+lVY9NTIyks1hMpno2LEjTp48iXfeeQcXLlzAs2fPEBISIpvTs2dPuLm5ISMjQ6kh9PTpU5l8AKiqki+QmPS/S4iITUHe7ZepmRxXO8TH8EmwNIGgIUn7TuLTyO+Ql1csG+Nw2Fgf/yHCw4focWUEAkFXtMSNTqszhHbv3o2srCxkZmY26fWLFi2Cs7OzzKipM2iioqKwdetWmJqa4osvvsCdO3dQVFQEQJqeZ2hoCCsrKzlZjo6OstQ9RcTFxeGzzz5rNM6wdMS+9BxM/OAHadPVvQ2arn7wA377eQHGj+hN/8AM6ZfHB0ODO54OGsg1NKG/BCsnWvMkBh3py3xIv9aH5HEl7bkatdiQaNDe4qkG7TieaNCmwIj+e4ZaDdpmaNBuRRMkzzR4H54+UjiclHYBE9/eLD2fEuTPp0kTl+G3Xz5F+Djlnlsjw4e0l8BzoV9l+MFjN1rzzE3ot5KxtTKmPdeLTb8oa+FD+p/Dv3fpV70vvl9De+5ziv758+Qx/e+jpTX994xub6+nBro5H+rDZGi/15i25embixcv6lxH6/ERArh9+zbmzZuHnTt3ynlw6LJmzRrs3r0b+/btk72+Q4cOSEpKwvXr12FjYwMTExMcP34co0ePblRpVFOioqJQWVkpe9y+Le2pRFFifLrkV1nT1fpl3ZOTUxAWFoqIpb+C0uBHgUBor1CUGBErElWfT0t+BUWRNgkEAkFzWpUhdOHCBZSWlqJfv34wMDCAgYEBTpw4ga+++goGBgYqf+ji4+OxZs0aHD58uFGAtZ+fH7Kzs1FRUYGioiIcPHgQ9+/fR+fOnQEATk5OqK2tRUVFhdzrSkpK4OSk3LPRsWNHWFhYyD0A4PS568jLL0F0tPKmq7fySiA6c12Tt4dAaJeIzlxHXsE9NedTMUSnr+pphQRC02DooL0Gg8QIaUyr2hobNmwYcnJy5MZmzpyJnj17YtGiRUr3CtetW4fY2FgcOnQI/v7+SuXXleu+ceMGzp8/j1WrVgGQGkodOnTAsWPH8PrrrwMArl27hoKCAgwcOFDj4ygufQCARtPVEg22b9ogFEXhr5MXUVRUDjbbhgS+EhRSd56oPZ+KK1pqSa0WiqKQlXEKZSXFsHN0Qr+Bg8g5RXjlqaqqwo4dO1BcXAwPDw94e3vD09MTJib0wzVU0aoMIXNz80Y/dqamprC1tZWNT58+HS4uLoiLiwMArF27FsuWLcOuXbvA4XBkMT1mZmYwMzMDACQmJsLe3h5ubm7IycnBvHnzIBAIZBUrLS0t8fbbb2PBggWwsbGBhYUFPvroIwwcOLBJGWNODtYApOXbFb1e1nTV0bLRc+2FpH0n8enCbY0CX+M//wDh4YP1uDJCa6PuPFF7PjlZteSyWh1HU1OwYVk0CgvyZWMubu5YsFKIkDC+HldGUAbJGqNHeHg4Ll26hP79++OPP/7AtWvXAABdunSBt7c39uzZ0yz5rWprjA4FBQWyIGdAmgpfW1uLCRMmgM1myx7x8fGyOUVFRZg2bRp69uyJjz/+GNOmTUNCQoKc3C+++AJhYWF4/fXXMXjwYDg5OSEpKalJa+QO6A6Ou6PqpqscR/ACuzdJ/qtO0r6TmDB5NTw9/eX6sHl6+mHihOVISvpL30sktCJ4gd3BcbNXcz45gcftpacV6p+jqSmImPkm+nl7yZ1T/by9EDHzTRxNTdH3EgmEJpORkYEDBw7gwIEDyM3NRXV1NTIyMhAREQEHB4dmy2dIWqJ+dTuhqqoKlpaWqLz9I46m52DC9A0ICwtFVNTLsu5xcUKkpqZpnjVG6ShrTNyyWWMURaFrz1nw9PRHcnKKXMyHWCyGQMBHbm4Wrt/4pZFLv1VkjdVoILc1ZI091yCA2ECDLRQTM/pzNcliMTBUOFw/a0zh+aQmawyG9LOKnhrQ/2Hd/y+9rLG796ppy9Q0a4yiKIzt74V+3l5ITk5WcE4JcPFyDjYfO0t7m+xVyxozMqZ/DtPOGqupxhf/NxCVlZWy+E9tUXet2HAsB8Zm5lqV/bj6IRYM89TJuvXFwIED8e2338LX11cn8l85j9CrQvi4APz28wLkXM6Ub7qak4nffl6A8HEB+l6iXhCdzEVeXrHqwNdbdyESXdbTCgmtkfBQPyR+/wFyLp1tcD6dV28EtXGyMk6hsCAf0dHRSs6pKNzJz8OVzAw9rZCgjLr0eW0/2hrr1q3DsmXL5Or2aZNWFSPU1ggfFwB+aH+ITl9FUckDsB2tweP2ateVpYuKygHQCHx9Ma89QFFiiDJvoejeQ7DtzcHr596uvyPKCA/1A3+UL0RnrqOopBLObs4vzqf2HQxcViKNs1N3TpWXNr93IoGgDzgcDqqqqtC7d29MnjwZgYGB8PX1haurq1bkE0NIx7BYTATz+uh7Ga0GNlta8Vtt4OuLeW2dpEM5iFh7AHl37svGOC42iP90BMJDyPemISwWE8GDegIAGMbtN9mgPnaO0m1odeeUjYNji66LoB4SLE2PuiboQ4YMwenTp7F582ZUVVXBxsYGvr6+OHz4cLPkk9tOQovCC+oLDsdJdeCrhzN4PNXNdtsCSYdyMPHjX+HpO1A+aLwfFxM/3YOko1f0vUTCK0C/gYPg4uYOoVCo5JyKQyd3Dvr017wUCIHQGsjNzcX+/fvx888/Iz09HQ8ePMDNmzfx3XffYdCgQc2WTwwhQovCYrHw+bp3kZqaBoGAL2cACAR8pKamYX38+21+u4OixIhYe0BlteTIDUdI9XGCWlgsFhasFCI1NRUCgaDBOSVAamoqPvksts2fU68i2i6mqAsPU2ugf//+ePRIvv0Oh8PB+PHjsXz58mbLJ1tjukAipteTSoM+W5pkgjE6mtKX20GDNTzTIFBNRcBeeDgPv+1dik8jvwOXy5WNe3iw8dvepQjnBwJUbbPWymDR31qTPKbfh0qjXmMqMsFEmbeQd+c+EhKVB41zuVyIMv9DsD+ngVz6S4AmbWQ0aa30hH6mEMQavGcarFfy8AF9uRa2tKd2NFXw3VPCuK705t11Vhy/o4iaZ/Qz/Z5S0qTf4DHjsO77X7BxRYzcOeXizsG6739B8JhxeKJBBqGzPf3fEFNj+n3Usv+mH6fUUQO55iaKsw0VYWBAz1B4wqQvk6Bb5s2bhxUrVmDv3r2NeoJqA2IIEfRC+Pgg8McNhEiUi6LicrCdbMDj9W03d61F96TGl9qg8TINjDRCu2ZoGB9DRofh4pnTssrSvoHcdnNOqUNMUcjPPY9HlWWwsLEHx9MfTD2/NyRGiB4TJkwAAHTr1g3jx49HQEAAfH190bdvXxgaNt9gJYYQQW+wWCwEB3vrexl6gW0vrR2iNmjcTrs1RghtGxaLBf9BPH0vo9Vx5eRhHN62DuXFd2RjtuxOGDV7EfryRuhxZQQ63Lp1C5cuXUJ2djYuXboEoVCIvLw8GBgYoEePHrh8uXnlVkiMEIGgB3j93MFxsVEdNN7JBjxfegX7CASCYq6cPIw9q+eB6+8rFz810M8Xuz77GLmi5mUcNQdSR4gehYWF6Ny5M5YtW4bff/8dN2/eREVFBY4ePYrZs2c3Wz4xhHQMRYmRLrqChN9OIV10hQS/EgBI08DjPx2hOmh8XgipJ0QgNAMxReHwtnUIDQ1DSkqyXFJCSkoyQkPDcPC7dRBTGlRg1yIkWJoec+bMwdmzZ+XGzM3N4ezsjOnTpzdbPtka0yFJ+8/h0yW/Iq+gVDbGcXPA56vfRPi4AXpcGaE1EB7SB4mfT0bE54flg8Y72SBx3USED2u/vbMIBG2Qn3se5cV3EBOTqDApITo6ClwuF3k559HZp31W+38VuHbtGoKDgxuNHz16FH/88QdSU1ObJZ8YQjoiaf85TJjxBcLCQpGwJ0bWG0kojMWEGV/gt58+wfjQfvpeJkHPhIf0Af+1XhBl/oeisodg25mD5+tGPEEEghZ4WH4PgDT5gKIoiEQiFBUVgc1mg8fjyZISql7Ma2mYTAZYJFhaLRYWFnjwoHGWKI/HQ0xMTLPlE0NIB1CUGJ8u+VVWI6buTqSuRoxAwEfE0p0YN8qHXPAI0mrJDVPkCQRCszG3sQcAfPPNN9i6dSvy8vJkz3E4HLz33nsAAIsX8witk1GjRiE+Ph67d++WG2cymaitpV/uQhnkKqwDTp+7jryCUtWNRfNLIMr4R08rJBAIhLaPe19/mFnZIjo6Gp6envIV3D09ERMTAzNrW3A8/fWyPhIsTY9Vq1bhxIkTeP3115GTkwMAePLkCdauXQsvr+Z3ISAeIR1QXFoJgEaNmJKKlloSgUAgtEuYTAZCQ0ORnJzcwDufjHHjxkF05pyeV0hQh6urK86cOYMPPvgA3t7e6NixI54/fw5LS0v88ccfzZZPDCEd4OQgbQaptkaMo1VLLotAIBDaFfm551FVXoaYGMXe+ZiYGL0GS5OCivRxd3fHgQMHUFBQgOzsbHTo0AEBAQGwsWl+g25iCOkAbkBPcNwdIRTGysUIAfVqxHAcwRvYk75QDVpsSMT0eyUwaumn80uea7AXW1mqfg4AhoGOythr0gqDpcFpoElLEjMN1lDzmP5cQ/qtB1D7jP5cTVphaNCuAdWP1M9pCibGGqyBfjsOCUX//Hlq25vWPEMm/XPHoCP9asfPxfS/uw80aM2iyVfhQRV9wcam9M/358/pL6JWSVuSB/ekLT3UeecflJaitsFvYcP/Ca0DNzc3uLlpt74aiRHSASwWE5+vflNljZj4VW+SQGkCgUDQIWbW0iDoOi98Q+rGzfQULM1k6uZB0AzylumI8HEB+O3nBci5nAkulwsLCwtwuVzk5mTit58XIHwcqVlBIBAIusStjx9snDohNlaosIK7UBgHW7Yr3Pv46WV9TOggWBptc2tMl5CtMR0SPi4A/ND+EJ2+iqKSB2A7WoPH7UU8QQQCgdACMFksDJ0Vgd/jPgGfL0B0dFS9mm5xSEtLxaSYjXpvvkrQL8QQ0jEsFhPBvD76XgaBQCC0S3pxh+P1qC/w5w/xchXcbdmumBSzEb0H6a/pKpMhfWhbZluFy+Xi5s2bKCkp0apcYgjpGIoSE48QgUAg6JFe3OHoETAUBVcu4HHlfZjZ2MO9jx/xBL1iTJ48GWVlZVqXS67IOiRp/1l09Z2H18I+w/+9/RVeC/sMXX3nIWn/WfUvJhAICqEoMdLP5yEhLRvp5/4jjYwJtGCyWOB4DYBncCg8vAa0CiOoNRVU3LRpEzgcDoyMjBAQEIBz55TXV9q2bRt4PB6sra1hbW2NkJCQRvMlEgmWLVsGNpsNY2NjhISE4MaNG01aWx3z5s3DqlWrmiVDEcQQ0hFJ+89iwvQN8PTqL1/N1Ks/JkzfQIwhAqEJJP15Fd3Gf4uh7/+MqZF7MPStbeg2egOSjijOCiIQCOrZs2cPFixYgOXLlyMrKwve3t4YOXIkSksVl0FJT0/HlClTcPz4cWRkZMDV1RUjRoxAYWGhbM66devw1VdfYcuWLTh79ixMTU0xcuRIPHmiQR2HFoIYQjqgYa+xwMBAmJmZyXqNhYWFImLpr+ROlkDQgKQ/r2Liot/g6ceVv7nwHYiJ83cRY4jwytFaPEIbNmzAu+++i5kzZ6J3797YsmULTExM8MMPPyicv3PnTnz44Yfw8fFBz549sX37dojFYhw7dgyA1Bu0ceNGLFmyBHw+H15eXvj5559x9+5dJCcnN+ct0wnEENIBp89dR15+iepeY3mk1xiBQBeKEiNi4zGVNxeR6w+SmwsC4QVVVVVyj6dPnyqcV1tbiwsXLiAkJEQ2xmQyERISgoyMDFq6ampq8OzZM1mV51u3bqG4uFhOpqWlJQICAmjLbEmIIaQDikulVWxJrzECQTuILhYg72656puLO/chupCnnwUS9I6YopB3+RxyT6Qh7/I5iCkNqp/ribqsMW0/AGl/LktLS9kjLi5O4RrKyspAURQcHR3lxh0dHVFcXEzrOBYtWgRnZ2eZ4VP3uubIbElI1pgOcHKwBkB6jREI2qKorBoAjZuLe1UttqbWCEVRyDx9CqXFRXBwYqM/dxBYegoKFlMU/rt8Hg/LS2Fu44DOXpp3eBdTFAr/ycKjB2UwtbaDS89+CoOcr54+gj9/iEd58R3ZmI1TJwydFYFe3OHNOo5Xldu3b8PCwkL2f8eOGrQH0oA1a9Zg9+7dSE9Ph5GRkVZkPnjwABKJBDY2Nrh37x5EIhF69OiBPn10U4qGGEI6YKC3Mzhu9qp7jbk7gNfPFXiqgz5Mz+gHo0k06bOlSQMimnXen9c+hejMdRSVVIDtaAVeYHftlBfQoCcYw4D+XIkmvdEea/DZatI/TJM+X5p8Zob0j03ygH7vLkYHDd6z54r7fLGtpX3F1N5c2JgqllGhQYCmmTXtqU+eW9KaV1LDBEVRuHjmNMpKimHn6ATfQK5CI4VtqngLQxEdDF5+vmnJqVgZtRwF+QWyMTd3NyyJXQ5bO1v8d/sB7B2d4DdQvXGkSZuGWwUVjcZuZv6JM3u+REXpXdmYlYMzgt+KQPeBIY3mKyIn/SDO7f0KlfdeyrC0d8aASR+js99rsrH/LhzH0W+jEBoahpiYRFnBxNjYWPwe9wlGzFmDzv4v54vFElr6ax9X05rXHJgMgNXELC9VMgHAwsJCzhBShp2dHVgsVqPaPCUlJXByclL52vj4eKxZswZHjx6Fl5eXbLzudSUlJWCz2XIyfXx8VMrcvn07hEIhACAyMhI7d+6Et7c3li9fjnnz5uGdd95Re0yaQrbGdACLxUT8iokqe42tXz6h3dcTSkq7gG4BizF0/FpMfX8rho5fi24Bi5GUel7fSyO0ALI0+IO5SD+fpzK+h+fjCo6zNYSxsQpbJcTFCeHRyRa8fu4a6M1Rq1db/JmagvEB3pg9fgxi3p+F2ePHYHyAN/5MTdGK/LTkVLw7dRa8vbzlfm8c7B3w4Vuz8fooASLfnYm3xo3GaD9PHPlDO3oVcTPzTxz6ZjGCBvjJrSVoQD+krP8U1zOOqpVxPeMojn4bBV6AvAxeQD8c/TYK/104DgAQiymc2/sVQkPDkJKSLBc7lpKSgtDQUJzd+xXE4ta5TabLrTG6GBoaws/PTxboDEAW+Dxw4EClr1u3bh1WrVqFgwcPwt9f3tvn4eEBJycnOZlVVVU4e/asSpkA8NVXX+HKlSs4f/48IiMjsW/fPmzatAknT57EN998o9nB0aR9X4l1SHioHxK//wA5l87K9xq7fA6J33+A8FD99LZpLSSlXcDEtzfD0ztAPgPIOwAT3/62XRtDFCVG+tmbSEi9iPSzN3V+oaYoMdIzbyEhNbtF9AEN0uCXJGHo+z+j2/hvkXRccQIBi8VE/EevITUtDQK+kpuLBcPV3lwkHbuKboJNGPreT5ganYSh7/2EboJNSDp2VReHCQBIS07DwrenoZ+3l9y6+3l7YeHb05ptDFEUhZVRyxEWFobk5JfGwN27d3HhwgWMGjVKTq+vtxfmvzVVJ8aQWEzhzJ4vVRgmYTjx8waV8TtiisKJnz5XadxkJn4NsZhC8fVsVN67i5iYaIWxY9HR0agoLUTRtWytH2tbYsGCBdi2bRt++uknXL16FR988AEePXqEmTNnAgCmT5+OqKgo2fy1a9di6dKl+OGHH8DhcFBcXIzi4mJUV0u9aAwGA/Pnz8fq1auxf/9+5OTkYPr06XB2doZAIFC5FgMDAxgbG8PGxgZdu3aFvb20Ia6lpSUYWvaeyXTqRCoBgNQY4o/yfbH1Uwm2o6X2tn5eYShKjIgVibIMoLofsLoMIIGAj8jPEsEf3U/he0VRYt1spyldLyWtDl78AE5WHXSqL+lQDiLWHkDenfuyMU4nW8QvGoPwkZ7a13f0CiI+P4y8wnJ5fQvHIHyE4nicZut8kQYfFhaKhN9j6vV+isXE6H1IFI5H+Gs9G70u/LWeSBSOR8TXx+VaJXh0skXi55MRHqI6fiDp2FVMXCj93iX81kDvwkQkrpuI8GG9tHqsFEVhRdRnMiNF/rueDIFAgI2fLcGQ0WFNjuU5e+oMCvILsGf3Hpl8iqLw6aefqtS7flk0ho5pul5FFF3LRkXpXcTE/K7EMIkCl8vFnatZcOvbX6GMO1ez8KCkEDExvyk1brhcLoqvZ6OmQlplWF3sWE2l9qsRa4PmFEBUJVNTJk+ejHv37mHZsmUoLi6Gj48PDh48KAt2LigokPssNm/ejNraWkyYMEFOzvLly7FixQoAwMKFC/Ho0SO89957qKioQFBQEA4ePKg2jojFYuHJkycwMjLCiRMnZON1RpYuIIaQjmGxmAge1PhHXVdQlBiiszdeGl4B3XRueL3U+cIwCegGloogA9GZ68gruIeEPcozgLhcLkRnrjd675JSzyNixV7kFdyTjXHc7BG/YhLCwzQPxlRHUsoZfBrzM/LyX+6fS/VN1LpXL+lQDiZ+/CtCQ0ORkNjgQv3xr0j86k2tGkNJR69g4qd7FBsG835F4pdvat0YapgG38gI5vMR+U06+IMVG5vhr/UEf3B3iLJvo+hhLdj25uD1c1f7HZfqPara+P7yKPjBPaDN0OIzCoyUOqTfdalhcPHMafgP4jVJR0mx9LtZ3xgQiUTIy8tDQkKCSr0XMk5hQNDgJulVxCOahkn1g3sKn6//nFrjpqIMJlZ2ANTHjplY2tFZfrtm7ty5mDt3rsLn0tPT5f7Py8tTK4/BYGDlypVYuXKlRus4evSoLLDb0vJlDF5NTQ2+++47jWTRpX27JtoYSQey0I27DEMnbMDUOd9j6IQN6MZdhqQDWbrTmZaFbtwlGPp6PKZ+uB1DX49HN+4SJKVdUPqaopJKAJqXF0hKPY+Jb3/bYttpSSlnMGFafOPq4N4BmPj2ZpXHqCkUJcacz6Ru/5QUJXVy1v1Pa9tWFCVGxOeH1dTl0Z6+OtSmwUdH41ZhOUTZt5XKYLGYCPZzx5QxXgju70HL0BddLEBeobr0+3KILhYokdA0SoqllXnVfdfLSpqeUuzoJL1rr7voA0BRUREtvfeaoVcRpvUME0XUjZtZ2yuVUfecOhkmVnZw6u4DS3tnxCqJHRMKhbBycAG7h49Gx9FStJaCiq0JZVtgDg4O6N9fsRexuRBDqI2QdCALE9/9Dp4+DYwEnwBMfPc7nRhDSWlZmPjuFiWGiXJDge0otfLV/dDVLy8g3U7bq/rC/VmiFg0FCp/G/KxG329a0xe7+RhKyqoQE6PiQn27DKLzt7SiT5SVr94w0KK+Ominwd/Xrhu8qOwhPb0v5mkLRycHAOq/63aOqrNzVBEwKBBu7m4QCoUyY6AuU0edXvtm6FUEu4cPrBxUGSZxsHbqhE69+imV0alXP1g7uqg1bpy6+4DJZGHApI+RlpYGfoPYMT6fj7S0NARM+hhMpv77ihGaTlVVFb788ktERUXhu+++w9mzZ1FTU6M1+cQQagNQlBgRnyWpvmivTNLq3T1FiRGx8rcmGQq8wO6y8gJKM4DcHcAL7C4br9tOU3nhzi+F6Mx1rRyf6PRV9dXBtaSPosT45ldptdWWqpNTdI+mYXBPu4YB284MAA0j2NZMy3rN6el9MU9bBCowUuqQftfj4OLOgW8gV4kE9bBYLCyL+wypqakQCATIyMiAj48PnJ2VGyRxcXHo5M6B38BBTdarCCaThcDJ81QYJqkYMn2ByoanTBYLQ2Z8qtK46T/xI5lx09nvNYyYswaic1lyiSknz11slDrf2mgNWWOvAuHh4Vi9ejUuXbqEr776CkFBQbC0tETPnj0xefLkZssnhlAbQHT2BvJuqzESCu5BdLZ5nX8b6WyiYUKvvMBEuS2Pum2ylqrWXVRMtzp4ZbN1iTL/Q1m51AOi9kJtr74uCB3Y9jQNA3vtGgY8XzdwnG2UG8FCITxcbMDzcdW+XhcVeuOE8OhkA56vm1b1slgsrIhbLmekvPyuC5Camor5y1c3O2A5VBCGbTt/wKXLl8DlcmFtbY27d+8iNTW1kTFRpzdypVAnxRa79B+KkXPX4GRDwyTzIviRn9OqI9R9YAhCPoyD6Gxj4ybkwzi5OkIA0Nn/Nbyx5neMW7QZIe+vwrhFmzF5zW+NjCCxmMLdfy7g3zOHcPefC602rZ4gT0ZGBg4cOIADBw4gNzcX1dXVyMjIQEREBBwcHJotnwRLtwHox9w0/6L9UmdFs3TWlReIWJEonwHk7oDE7z9sFPhct03WUtW62U50q4PTK6inijqvi7u7O4RCoVyWDyC9UMfGxsLRzgI8fw9AQq8gnCp4/dxlhoHSop+udlJ9WoTFYiJ+/jBMXPQbBAI+oqKiZUHacXFCpKalIVE4XusB/lK9IZi4MFGx3tQ0JK6bqJPEglBBKNZ9/ws2roiR+667uHOw7vtfMDSMryU9YRg1djTOnjqDkuISODo54n7ZfayO+UxObyd3Djb+uBPDx2pHryK69B8KD78hKLqWjUcVZTC1sgO7hw/MLU1oy+js9xo4voNl2WF1MUHKtrmYTBZceilPYPjv/HGc2fslKktVF2hsSVpL1lhrx8vLCwYGL82Vjh07wt/fv1H9oqZCDKE2QP2YG11ftF/qtGq2zvBQP/BH+9FKha+/naayWne97bTmwOP2AsfdsUX01Xld3n//fURHR0MgECAqKqpeFpcQaWlpWPHxizo5mlSWVgKLxUT8pyMw8dM9yg2DL9/UiWEQPrQXEtdOQMTGY/JGsIuN0tR5regd1guJ6yYiYuPRBun3NjpJna/P0DA+howOo1VZujmwWCxwB8tvd43hh+LsqTMaVZbWBuoME7oynHs2Pzvzv/PHcXjT4hfVp3+Xqz6d9m2UQi9TS6CLray2uDW2bt06LFu2DL/99ptOWoUwJBIt3F4SAEgDuiwtLVHxzwZYmBurf4Embz2luPUAII0x6TZkNTx9AhVetAUCPnIvncH149GNL2xMDWxhycstBXo6z+L6qZWqL6YatPhI+uMcJr77HcLCQhVfuLe9h/Ax/TSWq1Tfi6KPSvVtfQfhY3yVC6imF19DUWJ0GxEPz34DMX36DERGRsqlp5qbm8PYUILCPxdJ30tN2mYoaVlRR9Kxq4jYeFSujpCHiw3WzR2C8OAeyl9Y+4z+GpSsl6LEEOUUouj+I7BtTcHzdAHrkQZtSUxonGMvYNi/TJ+mKDFEWfkoKqsG286scfq9jS1tueJOKj7/ehTX0C9DQEnot1t5JqZ/1at8qvq7UJ+b5fQDUQuK6cetXb1Gv57P08f0v2NMlvL3QSymsH/VFAwO9EdKSmNvK5/Px19nshAWvVPO21T75BH2Lh6NyspKWq0qNKHuWnH4WgFMzbUr+9HDKozo4aaTdeuL27dv480338SdO3cwefJkBAYGwtfXF66u2tlCJx4hHSOtsfMvikorwXawBC+gq27c/jF8TPzgB+V395vf0qpeWjq3vadVneFj+iFx23uI+CxJ/o7ezV7eCNKWPmXbd2726o0gDWCxmIiPGImJCxIAAL/88guqqqqQmZmJQ4cOIiPjDHZ88X+68c4M6wV+cA+ILhbgbtEDsO1MwfN2bZGinywWE8FajgWirbe/drf8CK2X0puXUVVWpLL6dCqXi9Kbl+HUTTvnNF3I1hg9Xn/9dZSUlGDIkCE4ffo0Nm/ejKqqKtjY2MDX1xeHDx9ulnxiCOmQpAMXEbFyH/Ju1yv+52qP+GXjET7GV6tGUvhobyRunoWI2JQGF207JG5+C+GjvJt9PPR16sYwAaTGEH+kT4sVjWxUHdzWRCfGbPjwPkjcMAUR8YfA470srOfRyRa/ffF/CB+um67LwAvDwJ8DyVO2+skEwivG40pplXZ18YyPq+4rfJ6gf3Jzc5GRkQFv75fXsby8PFy8eBGXL19utnxiCOmIpAMXMfG9bdKqvXsbVO19bxs+fT8Ev6VeRN7tl65ijqsd4peOb7KnIXy0N/gjPKVGQmkV2A4W4A3ootO7e5nOczfldRrR37bQFBaLiWCuim0bXeirq3D9jH5ncE0JH94H/KG9ILqQh6Kyh2DbmYPnx2n3LVkIhOZgbCnd6lQXz2hsQX9LVFswdOAR0lU/Ln3Sv39/PGqwbc7hcMDhcDB+/PhmyyeGkA6Q1tjZp7Scf0DAAMRvPoKxY8MaG0mztzdr24XFYiJ4YDdtHk6r1NlWYbGYCB7QWd/LIBDaDA5dvGBhx0ZsbCxSUhrHMwqFQljYOcOhi5ceV0lQxbx587BixQrs3bsXVlZWWpdPbjV1wOnz/ymt6yORSHD3btGLZohKChGuTm6RDuAEAoHQ1mEyWfDlz1FZoNFn7Ad6qT5NCirSY8KECTh69Ci6deuG9957D99//z2ysrJQW1urFfnEI6QDil9U/1W0Jy0SiXD37l38/rvi7syyhqNn/0UwVzup4AQCgdCecfcZgsGzVuGvlE1IrRfPaGHnDN5bK+HmPUSPqyOo49atW7h06RKys7Nx6dIlCIVC5OXlwcDAAD169Gh2nBAxhHSA04vqv4r2pOk2Qywq1V7xQwKBQGjvuPsMgatXEIqvX8LjqvswtrCFQxcvvfYhI1lj9CgsLETnzp0xbtw42djDhw+RnZ2tlWBpsjWmA7j+ncFxVdxLy9Gxcafo+sgKETpor/ghgUAgEKTbZE7dfOHhFwKnbr56b8ZKtsboMWfOHJw9e1ZuzNzcHM7Ozpg+fXqz5RNDSAewWEzELxuvsJfWF19sgIGBgYpmiEJ4uNmDF9BVT6snEAgEAqH1cO3aNQQHBzcaP3r0KKZMmdJs+cQQ0hHhY3yR+N27yMk+K9c08Mrlc5j/7mtIS1PRcHSJgKRMEwgEQhunbmtM24+2hoWFBR48eNBonMfj4cyZM82WT2KEdEj4GF/wR3orLJoY2M8DESsVVEjWYsViAoFAIBBedUaNGoX4+Hjs3r1bbpzJZGolc4wYQrpAIpH1EWMxGeAN6CI1hkoqIDpzA7yArggf7QN+cHeIMv97WYiwf2epJ6j2SWOZmvSX0mRuRw08T880+MLR7RlloMEefUcj+nMZGhzXUw36W2ny3lbQD3iXPNWgUOMTBd8PJTAsNYg1e0J/DZIS3VThpUrofxbiimLacw0D6X9uDA3eB6YrvR5iHZiPacsUizWJW6E/t6OKflwNsTc1pD03p5r+70J5aTXtudWV9L/nLh7WtOfShdkCwTYsABp8LLRltjVWrVqFAQMG4PXXX8eKFSvg6emJJ0+eYO3atfDyan79J2II6ZikAxcRsWqf4grSIb0QHEhigQgEAoFAUIarqyvOnDmDDz74AN7e3ujYsSOeP38OS0tL/PHHH82WTwJRdEjSgYuYOHs7PH0C5WKBPH0CMXH2diQdbH7aH4FAIBBeTUiMEH3c3d1x4MAB5OXlYc+ePdi/fz+uX7+OgQMHNls28QjpCIoSI2KV8jYbAgEfkXGp4A/vSwKjCQQNocQSiG6Voaj6KdhmHTHI3Rastpg3TCAQ5HBzc4Obm5tWZRJDSEeIzv6LvNtlSNjbuM2GXAXpzP/I9hiBoAHJlwqxcP8V5Jc9lI2525hhzfAeEPRm63FlBIJmkIKKyikoKNDI4CksLISLi0uTdBFXhI6oqwytvoJ0VYutiUB41Um+VIg3dpyFV+AQue1mL24w/m9vFpL/LtL3EgkE2pCCisrp378/Zs+ejczMTKVzKisrsW3bNvTt2xe///57k3URj5COqKsMrajNRt24dJ5Fi66LQHhVocQSLNx/BWGhoUhOabDdnJICAZ+PqKMnMLanE9kmIxBecf7++2/ExsZi+PDhMDIygp+fH5ydnWFkZIQHDx7g77//xpUrV9CvXz+sW7cOY8aMabIu4hHSEbyAruC42ilssyGrIO1qB17/znpaIYHwanHyZhnyyx4iOkbJdnN0NPLuP8SpfN2k9r8qUBSFM6K/8Mdve3BG9BcoitL3kghKYOggUJrRRrbGbG1tsWHDBhQVFeGbb75Bt27dUFZWhhs3bgAApk6digsXLiAjI6NZRhBAPEI6g8ViIn7peEycvR0CAR9RUdHo27cvcnNzERcnRGpqGhI3zWj3gdIUJYbo/C0U3asC294CPH+Pdv+eEBRTXCWtK6N2u7lag5pMbYxD+5MRt2Qx7uTny8Y6ubsjavUaDBkzVo8rIxCahrGxMSZMmIAJEyboTAe54uiQ8DG+SNz6DnKyz8i12ci9dFZaQXpU8wtBvcokHclFt+HrMXTaVkxdkICh07ai2/D1SDqUo++lEVohThbSgppqGxabdWyxNbUmDu1Pxtzp/wdfLy+5+ClfLy/Mnf5/OPJHir6XSGgAiRFqHRBDSMeEj/HFjZMr8Ofe+dj5zUz8uXc+rouWt/s2GklHcjFx/i54+g6Ur7HkOxATP/6VGEOERgR1sYO7nTmEyhoWC4Xg2JpjkLutnlaoPyiKQtySxQgLC0NycjICAwNhZmb2olxHMsLCwvD58hiyTUYgKIAYQi0Ai8VEMLc7pgj6I5jbvd1v/VCUGBHrD8pqLMn/aKcgLCwUkev+B4rSoJ0Foc3DYjKwblwfpKalQcBv0LCYz0dqWhriQrq3y0DpzNOncCc/H9HR0UrKdUThTn4eLmSc0tMKCYogBRVbByRGSAdIbtyAxFS9e55hb0dfqIEGHxVTA0PrXpn6OXUYdqA/t/aZ0qdE5/OQd+c+EhLV1Fg68TeC/TkvnzRSLrPxWun3KZLcL6cvV4M+VJr0BKPyG6+BEotx8kYZiqoeg21hjKBudmAxmWDaaNBz7flz2lPF9+j3gRI/bH6jQ8VyVX/G4zo7YNcbflh8KB1cbqpsnGNrjl1v+EHQx1nh62rP5CscV4RhoDvtuYx7t2jNe2I8gL5MBv0bAGMD6Xes8l4BAPXxUxX3SmFI40bMyoj+740mPbn6DXClPfdOIf1efbkH/6U9tyavgtY8iqLfH47wakMMIUKLU1QmveCqDXoto39hbmvsu3gHi5IuI+/ey6KBHHtzrA33wuvD2ncBTkEfZ4ztxcapvPsoevgEbHMjDOK078rSDk5OANSX67B3dGrRdRFUw4AYDGjX861tea2BgoICuLq6NsqIk0gkuH37drMrTbfvPZoWgqLESM++g4Q/ryE9+0673/Jh25kBoBH0+mJee2PfxTt447vT8AyQLxroGTAEb3x3GvvO0vdutFVYTAYGd7bDZO9OGNzZrl0bQQAQMGggXN3dIBQKlZTriIOrOwf+3EF6WmHrQCIW42HVdZTfP4+HVdchkej3t5jBEOvk0dbw8PDAvXv3Go2Xl5fDw8Oj2fKJR0jHJIn+ReTWU8grqpCNcdhWWD97EF4P12BrrA3B83UDx9kGQmGsXB82oF6NJRcb8Hy120/mVYASi7Eo6bLKooELfxVhXH9XsDTZAiW0aVgsFpbFrcZ7U2dAIBAgKiqqXrmOOKSmpuKrn3aCxWLpe6l64/6dTBTk7ELNw1LZmLGJHZycx8PKxkd/CyOoRSKRKKyPVF1dDSMjDUIFlEB+SXVIkuhfTPrsADz9guTv7P2CMOmzA0g6ekXfS9QLLBYT8fOHITU1DQJBg6BXAR+pqWlYP29YuwwqP3mjDHn3VBcNvFVSCdHVUiUSCO2VMfyx+G7nT8i+fEmuXMelnMv4budPGDlOoO8l6o37dzJxLeNLDB0yQO73ZujQQNz6dzsqyrP1si4mKJ082goLFizAggULwGAwsHTpUtn/CxYswLx58zB58mT4+Pg0Ww/xCOkIihIjcusplXf2kRuOgP9ar3Z5wQ8f2guJaycgYuMxcLlc2biHiw0S105A+NBeelyd/iiqkgZoqoufKn5Q02JrIrw6jOGPxciwMTh7KgOlxcVwcHJCwKCBYLFYeKRBrkFbQiIWoyBnF0JDQ5HS4Ld4f0oKxvH5+PPPZFhae4HBaH+/xa2ZixcvApB6hHJycmBoaCh7ztDQEN7e3oiIiGi2HmII6QhRzl3kFVUgQcWdPZfLhSgrH8H9m7/H+SoSPrQX+EN6QHSxAEVl1WDbmYHn69YuDcM62BbGANQHvTpZm7TougivDiwWC9zBQfpeRquhquwf1DwsRYyS3+KY6GikpXJR/fBfmFt0b9G16SKmpy3FCB0/fhwAMHPmTHz55ZewsNBNb05iCOmIovJHAGhkRtXLCmqPsFhM+RT5dk5QNztw7KVFA+t7EoGXRQM9HC3B6+Wgx1USCK8OtU8qAKj/LX72rKqllkTQkB07duhUPjGEdATbxhQAje7z9uYtui5C64bFZGJtuBfe+E5aNDAqul6POqEQqWlp2LtgCAmUJhBoYmhkBUD9b3GHDrrxNqiCpM/T59ixYzh27BhKS0sbZUb+8MMPzZLdLEOoc2f1ndOZTCYsLCzQo0cPjB8/HpMmTWqOylcGnqczOGwr1Xf2nWzB60e/eBuhfTDetxN2v8fFoqQTckUDPewtsPs9LsYHkO8MgUAXC7ueMDF3QGxsrFyMECD9LY4VCmFsYg8z8/Zdn6s189lnn2HlypXw9/cHm81WmEHWHJplCInFYjx//hx3796VCjMwgJ2dHcrKyvD8RUVbZ2dnlJaWIjs7G3v37sX27duRmpoqF/TUFmGxmFg/exAmfZaGcePGISYmRnZnHxsbiwMHDiDx88ntOh6GoJzxvp0wzttZYWVpAoFAHwaTCTfP/0Na2pfg8/mIrudljRUKkZaaBo+u7+glUJrBkOggRkiiVXmtgS1btuDHH3/EtGnTdCK/WYZQdnY2hg8fjp49e2L16tUICAgAg8GARCLB2bNnsXTpUlRWViI3NxdlZWX45JNPcODAAXz++eeIiorS1jG0Ohhm5mCYdQTD2BgSiQQnTpxAWlqa7Hlzc3NIJDr8stbqpv2BpJJ+yXvaPNcg1fPRI/pzxRr8uNTQz8CSPKRfdl/SzDQdFpOJIT0axwKJKzVo81FGf73PS+i/v4/z6H8XDM3o3/QwOmhwMaLon0NMc/prKN50jvZctlBxS4+GGHho8JnpCNMO9NdgqkE3HU0I7ku/svU/tvQTAjoaqVtwL3Qe4IKTuzbKZalaObhg+Jw4dPZ7rdErah9X4/IF2ktoErpId29L6fN11NbWyn1u2qZZhtCiRYvw9OlTHD58WM7dyGAwEBgYiIMHD8LX1xeLFy/Gli1bkJiYiN69e2P37t1t2hACXjQW/fIYxo4Nw++/J+HUqVMoKioCm83GoEGD8Hp4eLtOnycQCISWpOuAYejsH4z8y5moqSiDiZUdnLr7gMlsv0UmXxXeeecd7Nq1C0uXLtWJ/GYZQikpKXjrrbcapSTWwWKxMGbMGPz000/YsmULjIyMMHToUCQkJDRH7SuBKLsAeXcfIOH3GHTo0AHBwcFyz5P0eQKBQGhZmEwWnHv66XsZMkj6PD2ePHmC7777DkePHoWXlxc6dJD3AG7YsKFZ8pvliqiqqkJVleqUw8rKSlTW21Kxs2sfbSVoNxZt5+nzBAKBQNA/mzZtAofDgZGREQICAnDunPIt4itXruD1118Hh8MBg8HAxo0bG82hKApLly6Fh4cHjI2N0aVLF6xatapJYSGXL1+Gj48PmEwmcnNzcfHiRdkjOztbY3kNaZZHqHfv3khISEBERITCDLL//vsPu3fvRu/evWVjBQUFsLe3b47aV4L6jUVJ+jyBQCAQGtJa0uf37NmDBQsWYMuWLQgICMDGjRsxcuRIXLt2DQ4OjeMUa2pq0LlzZ0ycOBGffPKJQplr167F5s2b8dNPP6FPnz44f/48Zs6cCUtLS3z88ccara+usKKuaJZHKDo6GpWVlfDx8cGCBQvw+++/QyQS4ffff8eCBQvg6+uLqqoqREdHA5AGPB0+fFinQU+tBZ6PGzjO1hDGxiruBk3S5wkEAoHQCtiwYQPeffddzJw5E71798aWLVtgYmKitD5P//79sX79erzxxhvo2LGjwjmnT58Gn89HaGgoOBwOJkyYgBEjRqj0NKlCJBLhzTffBJfLRWFhIQDgl19+wcmTJ5skrz7NMoTCw8Oxfft2AMDGjRsxadIkBAcHY9KkSdi4cSMkEgm2bt2K8PBwAFIr8vvvv8fKlSubvfDWDovFRPy8YUhNkxbGk2ssyucjNS0N6xcMJ4HSBAKB0E6pixHS9gN4GbpS93j6VHHWYG1tLS5cuICQkBDZGJPJREhICDIyMpp8bFwuF8eOHcP169cBAJcuXcLJkycxevRojWX9/vvvGDlyJIyNjZGVlSU7lsrKSgiFwiavsY5mX4VnzZqF27dv48cff8T8+fMxa9YszJ8/Hz/++CNu376Nd955RzbXysoKfD4fXbvSK1y1Zs0aMBgMzJ8/X+mcbdu2gcfjwdraGtbW1ggJCWlkcVZXV2Pu3Lno1KkTjI2NZRZvfYqLizFt2jQ4OTnB1NQU/fr1w++//07/jVBA+Gs9kbjmdeRknZLrBp178TQS17yO8JA+zZJPIBAIBIIiXF1dYWlpKXvExcUpnFdWVgaKouDo6Cg37ujoiOLi4ibrX7x4Md544w307NkTHTp0gK+vL+bPn4+pU6dqLGv16tXYsmULtm3bJhcoPWjQIGRlZTV5jXVopcWGpaUlpk+frg1RMjIzM7F161Z4eXmpnJeeno4pU6aAy+XCyMgIa9euxYgRI3DlyhW4uLgAABYsWIA///wTv/76KzgcDg4fPowPP/wQzs7OGDduHABg+vTpqKiowP79+2FnZ4ddu3Zh0qRJOH/+PHx9fZt8HOGv9QR/cHeIsus1FvVp341FCQQCgQAAFBhar/sjlXf79m25JqXKtrB0xd69e7Fz507s2rULffr0QXZ2NubPnw9nZ2fMmDFDI1nXrl3D4MGDG41bWlqioqKi2WttlVfj6upqTJ06Fdu2bYO1tbXKuTt37sSHH34IHx8f9OzZE9u3b4dYLMaxY8dkc06fPo0ZM2YgODgYHA4H7733Hry9veU8R6dPn8ZHH32EAQMGoHPnzliyZAmsrKxw4YKOK2oRCAQCoV3CZIh18gAACwsLuYcyQ8jOzg4sFgslJSVy4yUlJXByol8AsyGRkZEyr5CnpyemTZuGTz75RKlnShVOTk74999/G42fPHmSVqsvdTTbI1RbW4vk5GRkZmaioqICFNXYumUwGPj+++9py5wzZw5CQ0MREhKC1atXa7SempoaPHv2DDY2NrIxLpeL/fv3Y9asWXB2dkZ6ejquX7+OL774Qm7Onj17EBoaCisrK+zduxdPnjxpVP+nPk+fPpXbd1VUSiDp+D+I+PIY8u4+kI1xnK0RP28Ywkd7a3RsBAKBQCBoE0NDQ/j5+eHYsWMQCAQAIHMmzJ07t8lya2pqGtUYZLFYjZKH6PDuu+9i3rx5+OGHH8BgMHD37l1kZGQgIiJCK0UWm2UI5efnY/jw4bh586bK2gCaGEK7d+9GVlYWMjMzm7SmRYsWwdnZWS7w6+uvv8Z7772HTp06wcDAAEwmE9u2bZNzte3duxeTJ0+Gra0tDAwMYGJign379qmMZ4qLi8Nnn32m9Pmk4/9g4uLfERYWioTfX/YaE8bGYuLi35HYwYDECREITYASS3DqzgMU1zyFk0lHDHK2Aoup3UaMBIKuaS3p8wsWLMCMGTPg7++PAQMGYOPGjXj06BFmzpwJQBo64uLiIvPm1NbW4u+//5b9XVhYiOzsbJiZmcmumWPHjkVsbCzc3NzQp08fXLx4ERs2bMCsWbM0Xt/ixYshFosxbNgw1NTUYPDgwejYsSMiIiLw0UcfaSyvIc0yhD755BP8+++/mDZtGmbNmiUzNJrK7du3MW/ePBw5cgRGRkYav37NmjXYvXs30tPT5V7/9ddf48yZM9i/fz/c3d3x119/Yc6cOXIG09KlS1FRUYGjR4/Czs4OycnJmDRpEkQiETw9PRXqi4qKwoIFC2T/V1VVwdXVFbC2BGViiIivjyMsLBTJyS87HgcGBiI5JQUCAR+RXxwFf6Q3vXghTaxoXc19okG/pBdNd9WiyfdFF/oBiMvp9+NiWtHfZ5cY0i/dL6mm3x+OaUn/3GA6mNGe++TyPdpzTXtrUBhVg55gzwrVFxhNuVmKmDO3kF/xsjeam4UJVvq4IczNVuFrTO2Maa/Bbpgb7bmwp7d1kFFI//M1N6R/TriY0/8+ljyiv4bKp/TPn+XdD9Cee9/mDdpzB3U4pn5SHUZ36c+tptdTr+rRU+ygL/WVZvLkybh37x6WLVuG4uJi+Pj44ODBg7IA6oKCAjnvzt27d+ViZ+Pj4xEfH48hQ4YgPT0dgPS6u3TpUnz44YcoLS2Fs7MzZs+ejWXLlmm8vtu3byMqKgqRkZH4999/UV1djd69e8PU1BQFBQVwc9PgnFUAQ9KM7p9WVlbo378/jhw50qxF1JGcnIzx48eDxXp5AaEoCgwGA0wmE0+fPpV7rj7x8fFYvXo1jh49Cn9/f9n448ePYWlpiX379iE0NFQ2/s477+DOnTs4ePAgbt68ia5duyI3Nxd9+rz00ISEhKBr166NMsyUUVVVJQ3eurgaWVfuYOibW5CRkaGwoGJGRga4XC7+/Ok9BAd0US9cE4NFk6artfQbg2rUdJUYQhDX6GgNmhhC1vQNgEf/u0l7rqGHJe252jSEUm6WYtqhKwgLDUV0jLyXNTUtDTt4PRQaQ6bdVMca1keTz7jDG2NozUuqDKMt81UzhASMn2nPve9C3xCyfajBdaVUN4aQ1bDPUVlZKRd0rA3qrhW3yy7AwoL+zQo92dVwtfPTybr1BYvFQlFRUaPijvfv34eDg4PCkBxNaJZHSCwWNyujqiHDhg1DTk6O3NjMmTPRs2dPLFq0SKkRtG7dOsTGxuLQoUNyRhAAPHv2DM+ePVO5V1nzovu4tvYzgZetM0iLDQJBO1BiCWLO3EJYaCiSUxR4Wfl8LP/rOEZ3siHbZARCG0KZv6a6urpJu0cNaZYhFBAQgKtXrzZ7EXWYm5s3MhxMTU1ha2srG2+4V7l27VosW7YMu3btAofDkdU9MDMzg5mZGSwsLDBkyBBERkbC2NgY7u7uOHHiBH7++WdZo7aePXuia9eumD17NuLj42Fra4vk5GQcOXIEqampTTqWutYZpMUGgaAdThdVIL/iEXbHxDS6aWEymdJGxqmpyCitQpCTBh6rNgZFUbiQcQplJcWwc3SC38BBSm8iCfqFoYP0ee2n4+uPutATBoOBZcuWwcTERPYcRVE4e/YsfHx8mq2nWYbQmjVrMHjwYPz222+YMGFCsxdDh4Z7lZs3b0ZtbW0j/cuXL8eKFSsASAOwo6KiMHXqVJSXl8Pd3R2xsbF4//33AQAdOnTAgQMHsHjxYowdOxbV1dXo2rUrfvrpJ4wZQ8/13RBe/87gdLKFUBgrFyMEvGixESeEh6sdeP6k8zyBQIfiR9KtUXVe1pLHGmwNtzGO/JGC+GXRKCzIl425uLkjYqUQXkM1r+hLIOiTixcvApB6hHJycmBoaCh7ztDQEN7e3oiIiGi2nmYZQmlpaXjttdcwefJkDBkyBP369VO4J8lgMJqc4lYXeKXs/7y8PLUynJycsGOH6rC3bt26NbuSdH1YLCbio8Iwce7PEAj4iIqKlsUzxMUJkZqahsQv32z3hRUpSgxR7l0U3a8B29YEvL7O7f49ISjGyVQaD6POy+pobNjoufbAkT9SsGDmmwgLC8Nve3a/jJ8SCrFg5ptYvuVH8EaP1fcyCfWo3xJDmzLbCnXNVmfOnIkvv/xSZzFPzQqWbuieVqqEwWh2MNOrQP1gaQtz6b5l0qEcRMSlIu/Ofdk8D1c7rF8civBhvekLb4PB0kmn/kPk92eRV1QhG+OwrbD+3YEI5ykoW0CCpaVraKfB0pRYAu+Ec/AKek0uRgiQelkFfD4u/3Uc58K8G8UItfVgaYqiMMbfC/28vZCcnNz4vREIcOHSZfx44jytbTISLN0ywdJF90/rJFiabcttU8HSuqZZHqE6a42gnPCRnuCH9IEo8z8U3XsItr05eP07S70ez9u+caiMpFP/YVLsYYSFhiKhQfbPpFVp2Lt0lGJjqB1BiSU4ebMMxVVP4GRhhKAudu06CJjFZCA20APTXjQyjoqu52UVCmVZY+3xPbqQcQqFBfn4bc9uxfFTUVHgcrnIOZcBn4FBelolgdB0jh07hmPHjqG0tLRREtMPP/zQLNnNMoSGDBnSLOXtBRaLieDArtJtoMz/sPfAJalB5OveLreBKEqMyO1nVGb/LNx2Enxu53b5/gBA8qVCLNx/BfllLz0k7nbmWDeuD8IH0yi30Ebhd3HALyOBmJPHweW+TGRwtzBVmjrfHigrkSaJqIufKi8tUfg8QT+0loKKrZ3PPvsMK1euhL+/P9hsNhgM7d7saKXpKkE9irbIOJ1sEb9wDMJHKP7xaquIrhQhr7gSCaqyf7hciHLvIti7k55WqT+SLxXijR1nERYait0NvGVv7EjDHpMOGO/fvAJirzL8Lg4I87BH+o17KHlcC0djQwx0sGiXnqA67BylhR3VxU/ZODg2eo5AaO1s2bIFP/74I6ZNm6YT+RoZQgUFBQAAFxcXsFgs2f90aG7lx1eZpEM5mDj3Z2mrjcR6FzZhLCbO+xWJX77ZroyhonJp3Sa1NZbu17TYmloLlFiChfuvqPSWLdr7F8b16wQWzRi9tgiLyWjXKfIN8Rs4CC5u7hAKhQpjhOLi4uDs5g7PAQP1uEpCQ0iwND1qa2vB5XJ1Jl8jQ4jD4YDBYODq1avo3r277H91MBgMPNcgePWVp0MHoIM0c4WixIhYk6a41Ubyi1Yb6/8H/mg1rTaaWNhRHZKHGhR01OQzVBH/xH4R7Ku2xpJ5B/kAaQ30SzQI9mTamdKeCw2MD7rJBAAgeSQNWj91rRT5ZQ9V18rhpuJUYQWC+7LVCzahHyxtOtyd9lxNAsGZZvSzuJj29NfbUYMgbJajBp+xYQfaUx9YDqU170pWOW2ZHGf6Aa6P651nby5ajnVz3wZfIEB0VNTLG664OKSlpuKjDdtQUv0MgPoEiScanD+PvEfRnmt7L432XMnFLNpzK/ZeoT23+NI9nK+uwb1nFOw7sOBvZgKWgutYdTtI8HlVeOedd7Br1y6tNFhVhEaG0PTp08FgMGBpaSn3P0E5onM3kXe7DAl7lVzYol5sA2X+h+DA9hEczOvtBI6TJYSxsQqzf+KEQng4WYHXm14fp7ZEUZU0e0ytt+xB+/OWEVQzcGQYFn7zPX6MWyF39+zk6o6F33yPvoPpGyxtlT/yy7DkWj7uPH4iG+tkbISFTrYYYdXyxW1JQUV6PHnyBN999x2OHj0KLy8vdOggf7NSVxy5qWhkCP34448q/yc0pqi0CgCNC9uLee0BFouJ9TMHYNIa5dk/exeHtMtAabaF1COi1ltmbdLoOQJh4MgwDAgZjb8zz+DBvRJY2zuid/9AsFgsPHzcjrzyCvgjvwwzT1xDWGgoEuvH3q1ejXlpafjSw0UvxhBBPZcvX5ZVkK77DaxDG84YEiytY9gOUje32gubQ/uq9xDO9cDexSGI3CGSu3v1cLLC3sUhCOe2z4rbQd3swLE3V+MtswSvFwl6JSiGxWLBM3CQvpfRqqDEEizLKlAce7d/PwTjxmH9n8cwzNJM4TaZrmAyxGBqOaZH2/JaA7ou1UMMIR3DG9AFHFc79a02+nfW4yr1QzjXA/wAd4j+LkZReQ3YNibg9XZql56gOlhMJtaGe+GN71R4yyJfa9fv0f+zd+ZhTVxfH/8mg4DIosgWZAludWNRUTAQwa1WiRCp60+rtb7a2qK1VlTAulWCC1W7WLVWrVXrjqDEpa2KAqK4i9a9IlTZXEFRkUnePyKBQCATSEgg9/M8eR6ZXO49GcPMmXPPOV8CQV3S8p8jq7AYO6vLvYuKAk8sxrkXxfCxUCOfjNAoqLMj9M8//+Cnn37C2bNn8ezZM6UdpFksFu7eZd61tjFBUWzERoVg+JSN1UttrB5vsDc2imIj0N1R12boFUO7OmHHZB5mx51Q6JXjZmuJHZN5CO3F1Z1xBEIDJK9YliCuKkWh4G395tewINVCH6Fai0XoNc+ePcOGDRvkQu+dOnXCxIkT5TnLdaFOjtCJEyfwwQcf4M2bNzAyMoK9vT2MjKpOWQcVj0ZByPvumP/VB/j595OKNzZnG+xePR6hH3jo0DqCPjK0qxOCPR2RcvsRcgpfgWPZFP7tbAy6ZJ5AqC32ZrLkWlUpCrZNVMuPaBJSPs+Mc+fOYeDAgWjatCl69uwJAFi5ciVEIhH+/PNPdOvWrU7z18kRmjNnDkpLS/Hrr79i/PjxjDRsDI24Q5cxMzoBmdmP5MdsrC0QNp6PqM/7GmwkiKAais1GwHt2ujaDQGjw9LKzgoulWfW5d9HRcG5qCm9zUoSgj3z11VcIDg7G+vXr5cGW0tJS/N///R+mT5+OkydP1mn+Ot2FL1++jFGjRuGTTz4hTpAS4g5dxvApG+Hu5Yu0tDQUFRUhLS0NvfwCsHDVIST8dVX1JAStQUskSLqWi+0n7yIp4yFouvE9SREIBFkDzkXdXJAoFkMYHKxwPRYGByNRLEa4Q8t6TZQGysvnNf1qbJw7dw6zZ89W2HEyMjLCrFmzcO7cuTrPX6eIULNmzWBnR55YlUHTEsyMTqi5kWJMIkIGdGkQUSGaliD5yoPypObOHK3ZTdMSrSdQ70u/j/CtF5FZoW0B18EKyz/2Rmgvw6xYIxAaM0NcbbApAJh77Ch44vLGjs5NTUnpvJ5jaWmJrKwsdOjQQeF4dnY2LCzq/v9WJ0do8ODBSE5OrrMRjRFtNVIsE26tomSvReJO3EL46mRk5jyVH+M6WGH5//ki1E+z1W5xp+4hfFM6MnOfK641oSdCezprZI196fcxYuVJCIKCsL2SlteIpWLsmt2XOEMEQiNkiKsNejyTMuosXR+QHCFmjBw5EhMnTkRsbKy83UpqairCw8MxevToOs9fpzvo8uXL8ezZM0ybNg3FxaTTbUW00Ugx7kgG2vVbir5j12LMV9vQd+xatOu3FHFHMupucHVrnriFEd8cgLu3n0I42d2bjxHRfyIu9V/NrXXqHkYs+Rvu3vyqay35G3FpmXVeg5ZIEL71oryfiK+vL8zNzeVaXoKgIMz67RzZJiMQGikUiwUfi2YQWFvCx6KZzpwgAnNiY2MRGhqKcePGgcvlgsvl4uOPP8awYcOwdOnSOs+vVkSob9+qujrm5uZYvXo1fvvtN7Rv3x6WllUbA7JYLBw9erT2VjY0WGxw7GUlfSobKdpbMdKvivvrn+qFW8N+x+61ExE6yEs2uES1lhATaFqC8NXJyrf33gmAzvo1BSHezlWiUvSD58qmrALLVPYVpCUShG84U6PY6KzNyQj2cmRWOVWNDlXyP3nIzC/E9hq1vHhI/idXeVm/JfMwLMuKeZNMo55qbDEbq5HQWfSY+VjzFoyHsm8y13ZitWnHeKxRE1PGY2HEXBMMJa8YD5X+e5vx2Dc0s//j3LwCxnM+evyS8diXRSWMxzYxYZ7HKVFDx+3/OuYwn/fMGcZjD45LYTy27+fMI9NOliaMxhWWlAJXmH8XagNLKgFLquGIkIbn0weMjY3x/fffIyYmRt6Kp02bNjAz00xyu1qOUFJSUrXvvXjxAhcuKBfJM0Q9Mn7PtqobKbrYgN+zjcq5aFqCmYvja843ik5AyPseGt0mS77yHzJznmJ7ZC2dBjVIuVnAzEG5no/AzrXXIMt9xlTLi/mNk0AgEAia59ixYwgLC8Pp06dhaWkJMzMzuLu7AwCeP3+Ozp07Y+3ateDz+XVaR627pkQiqdVLWZPFxg5FsRE7V4jERDGEwhDFKgVhCBITxVgeOYSR41KWbxRZnUMSEYl7WQVITr+j0c+Q8+7JVKXT8KTu26I5z5k5KGWOTG1xaF6u5aWMci0v5iroBAKBUCukEu28GgmrVq3CpEmTlO40WVlZ4dNPP62z4CpQxxwhQs2EDvLC7rUTkXHpNHg8HiwtLcHj8XD18hnZVtYHnozm0ZVwK6elrNW8SqfBuu7hSY4VMwelzJGpLfwOduDaWUIUHQ2JRPGCoaDl1an2UScCgUBgBHGEauTy5cv44IMPqn3//fffx/nz5+u8Tp0cob59++L333+vcczWrVuV5hYZCqGDvHD75Dwc2zkN2378GMd2TsOtE9+U5/MwoKJwqzK0JdzK93ACl9NChdPQXCNOg/97tqodFHsr8DvWrV0DxWZj+f+6yvqJhFSK1IWEIFEsxrKPvRtESwMCgUBozOTl5aFJk+pzAY2MjFBQwDz/rjrqdLVPSkpCZmZmjWPu37+PEydO1GUZg6eicKtSJyFGBDcXW/B7Mi/DZwJFsbH8C37NTsOEHhpxGig2G8tGeNa81hgvjUhMDO3hgl1f9kZG+knFSN25ZFI6TyAQ6g+pVDuvRkKrVq2qDQAAwJUrV8DhcOq8jtbV51++fFmjR9fYiTt0CTMXxytIbHCdbRA7V4jQgcq3uipTlm80/LMN1Qu3rp2olShGaEB77Pp2CMJXJ8v7NwCAm0Nz7JrTH6E8zTkNQ71dsPMLf8zaVUmTzc4SO7/wx9Cerppbq4cLgrs7IflGPnJfl4LToqlWGjcSCAQCoXYMHjwY33zzDT744AOYmipWlL569Qrz58+HQCCo8zpqO0JZWVkKPz979qzKMQCgaRrZ2dnYu3cvuFxurQ1syMQduoThn22QlbzvqlTy/tkG7F7zMeM8obJ8o5mL4xUdEhdbxdJ5LRAa0B4h/m2RfOqWVrs9AzJnKLibE1JuFiDn+StwrJrC/z1brYiNUmw2Ajs5gGXOrJyWQCAQNIo2cnoaUY7Q3LlzERcXh/bt2yMsLAzvvfceAODGjRtYvXo1aJpGVFRUnddR2xHicrnycngWi4Xvv/8e33//fbXjpVIpli9fXnsLGyiMSt5FBxAywJ2xQxE6yAsh73sgOf0OcvILwbGzBL9n23qJYlAUu84l8ozXYrMR0NG+XtYiNFxoWoLktBvIyX0GjkNz8Ht1IBE9AqERYW9vj1OnTmHKlCmIiIiA9N22H4vFwsCBA7F69WrY29f9XqG2IzRu3DiwWCxIpVL8/vvv8PT0hJeXV5VxFEXB2toaffv2rTHru7GSnH6HmcRG+l0E9mLecI6i2Ajs1V7T5hIIDYq4xHOYOX8nMrPy5ce4LnaIXfw/hA7pqUPLCAQ1kEgBiYYjOJLGkyMEAK6urjh48CCePn2KO3fuQCqVol27dmjRgnkDWFWo7Qj99ttv8n+fOHECEyZMwLRp0zRmUGNBVyXvBEJjJy7xHIZ/8pNsy3lnpS3n8d9j9+YviTNEIDQyWrRogR49emhl7jolS3/88cca9coaDabNwHGShetUSmw42QMmzVTP+fYN8/XVyad58ozxUDqniPFYyXOG9j55zXhOGKvxudSQCGjiYc54LKuN6k7g8rEWNozHFjVlljgPAOZN8lUPKrPB3JrxWLCYn9+C7oMYj7UrZS6VAOOa+0TRNI2ZC3bXvOU8fyeEIweCoipISrxhLlvB6tSN8diEq8z+JoyM1Di3uS8Yj/33CPMmqjY9WjEe69yW+fcmvagf47HeZn8zHhs4zonx2OJs5g+UkrfMIjDFb0sZz1lrSI6QXlCnDfXo6GhkZGhP8LMhw/dtD66LrYqSdzvwfZhvixEIhk5yyjVk3s+tucv6vRwkJ1dfcmsISKUSFD65gcc5Z1D45Aak5Oaon5CGinpBnSJCLi4uePbsmYZMaVxQFBuxC0Zg+MSfqy95X/8ZSe4EQEukSMl8jNyi13CwMIU/tyUotuHp0xFUk5P7BACDLed34wyRJ3nn8fDuHhS/LG80Z9bMFh0sP4VDBz8dWkYg6Cd1uguPGjUKhw8fxvPnzJTGDY1QgTd2b/gcGZfPKDbuu5KO3Rs+R2gQ8xB8YyX+6kN0WnkMA39Nxfid5zHw11R0WnkM8Vcf6to0nUPTNJJPpGP3DjGST6QbpGZfZTgOsi0blV3WHdTYEmxEPMk7jzsZa9G3j49CU9K+fXxwcV80cm+k6tpEQkVIREgvqJMj9M0338DDwwN9+/aFWCxGfj7z3AVDIVTgjdtnluDYvtnYtvZTHNs3G7dOxyBU4K1r03RO/NWHGL39HDx6BSpctD16BWL09nMG7Qzt3/cXvDoOQtCAjzFxXDiCBnwMr46DsH/fX7o2Tafw/TuD6+pQ85azGwd8PvOcq8aCVCrBw7t7IAgKQkJCAnx9fWFubg5fX18kJCQgKCgIt5I2QCohDjWh4fD27Vv069cPt2/f1toadXKEzMzMcOjQIVy8eBHBwcHgcDigKKrKy8hI6w2s9RqKYiPQrwNGh/oi0I/0OgFk22GzD16HICgI8ZUu2vEJCRAEBWHOkRugG1kpKBP27/sLH42aDg/3rooOontXfDRqOuLiTuraRJ1BURS+W/oJEhPFEAorSbEIQ5CYKEbsskmKidIGQtHTWyh+WYCoKOX5U5GRkXjxJAdPsq/pyEJCFSQS7bwaEU2aNMGVK1e0ukadPBQ+ny9vrkggqEPKvUe4/7gIO6q5aEdERoLHS0RK5mMEtGZefdXQoWkaUbOXQyAQID4+vlJVVDyEQiHCZ65FSIifQd7sASBU6Ic92yPw9ZyNil3W3TjYs+sbhA7116F1uuPtG1mKgqr8qTcvDDd/itAwGTt2LDZs2IAlS5ZoZf46OUJJSUkaMoNgaOQWycrrVV20c4vUKK9vBJxKOY/7mf9hx/bd1VRFRcgacSZfQWBgVx1ZqXtChX4IGcpHcvJV5OQ+AcfBGnx+F4N1DgGgiYkVANUtO0zUaanQCKGlUpwuKETe67ewN20CX1tLULp6oNeGSGojEl0to7S0FBs3bsTff/+N7t27o1kzxZYzK1asqNP8hr1nRdAZDhYyfS9VF20HC9Mq7zVmcnNklT4qq6JyyFM9RVEIDGSm1WcIWLRoD7NmtoiOjkZCQoKCIy2RSCASiWBuzYG1c2cdWqlbErMfY/6lbGQVFcuPuViYYUEXJwQ5GbaDqM9cvXoV3brJiotu3bql8J4mdqU05gg9ePAAly5dQmFhISwtLeHl5YVWrZg38CIYFv5uNnBtaQFRdDTilVy0Y0QicFtawJ/bUodW1j8OHFsADBpxcshFm6AIi8WGY5thSBSvRUhICCIjIyt03RZBLBaj69AosNiGGTVLzH6MT1JuQRAUhJ1RFTqSR0djoliMDb7t6t8ZIg0VGXH8+HGtzl/nrN07d+5gwIABcHFxQXBwMMaOHYvg4GC4uLjg/fffx507zDufEgwHis3C0sEdkSgWQxhSKek1JASJYjGWDOxgcP2EeP7d4cp1gkgkqqYqKgZubo7g8z10ZCFBn7G274627p/h2HHFlh3HktLRdWiUwfYRoiVSzL+cXWNxxsJr/4Gu720lUj7PmOTkZIwdOxY8Hg8PHjwAAGzZsgUpKWp0rq+GOjlC2dnZ8Pf3x9GjR/Hee+9h0qRJmDdvHiZPnowOHTrg77//Bp/PR3Z2dp0NJTQ+hF0csX20N66kJSlctDPSTmD7aG8Iu9SP2r0+QVEUopeGIzExEUKhsFJVlBCJiYlYHvuZQefCEGrG2r47OveKRofuM9GmyyR06D4TnX0XG6wTBACnCwqRVViMyBqKM+4XFuN0geFqP65evRpcLhempqbw8fFBenp6tWOvXbuGDz/8EFwuFywWC6tWrVI67sGDBxg7dixatmyJpk2bwt3dHefOnVPbtr1792LgwIFo2rQpLly4gDdvZDmmz58/h0gkUnu+ytRpa2zhwoXIz8/Hzz//jE8//bTKXt26deswZcoULFq0COvXr6+ToQ0JVhNTsFRoJgEA2Gqcfglz3RupOmNflTAeW5rDXANJWsRs3iGtrDH4Yx5S/3uK3Jdv4NDMBH5OLUCxWaCfVkqUppk/6UjeMO+V0qSbM+OxLIe2jMei5BVzG9jln/XDD/mgdi3DnPBVClVRXDcn/LFrGYKFvVHK8FQ0MWF+znJeMc+3YbGYz/uAPYDxWKgh7yQpZe4MssH8+8A2Ym6EbQtmY5uYMP9bb/Yuf44J/pNr6kemKDzbrGkTxvM+L2SubWhMMY/aPguYyXhsczbzBFjTrEc1vl90JhM4qjr3rsjBDFaeMp1I1uu3QDxjE2qFVCrRuPxJbebbuXMnZsyYgbVr18LHxwerVq3CwIEDcfPmTdjZ2VUZX1xcjNatW2P48OH46quvlM759OlT+Pn5oU+fPjh06BBsbW1x+/btWumTLl68GGvXrsW4ceOwY8cO+XE/Pz8sXrxY7fkqUydH6MiRIxgyZAg+++wzpe9/+umnOHjwIA4dOlSXZRo8NC1B8qnryMl7Bo59c/B5HUkvoQpQbBZ6u5Ccl4oIh/bDkOBApCZfRE7uI3AcbODH7/ouEvRW1+YRCA0KjpXswZQUZyhnxYoVmDRpEiZMmAAAWLt2LcRiMTZu3Ig5c+ZUGd+jRw+5Eryy9wFg6dKlcHZ2xqZNm+TH3NzcamXfzZs30bt37yrHraysNCLzVae7cX5+frUedhldunRBQUFBjWMaM3H709G263T0GfIt/vd/P6LPkG/Rtut0xO2vPuxIIACybbLegd4YOeoD9A70JtthBEIt8W9vC66tJUTR1XQk11VxhhYbKhYWFiq8yraTKlNSUoLz58+jf//+8mNsNhv9+/dHWlparT/a/v374e3tjeHDh8POzg5du3at9c6Qg4OD0nzjlJQUtG7dutY2llEnR8jW1hb//PNPjWP++ecf2Nra1mWZBkvc/nQMG78S7p49FXI93D17Ytj4lYjbf1rXJhIIBEKjh2KzsWy4h0EVZzg7O8PKykr+iomJUTru0aNHoGka9vb2Csft7e2Rm5tb6/X//fdfrFmzBu3atcORI0cwZcoUTJs2DZs3b1Z7rkmTJuHLL7/EmTNnwGKx8PDhQ2zbtg0zZ87ElClTam1jGXXaGhs4cCB+++03bNiwARMnTqzy/saNG3HgwAF8/PHHdVmmQULTEnw9dysEgiDExydU6hCcAKEwBDPnbkVIUA/ypE8gEAhaZmh3Z+yc4ofwnUng8RLlx7ktLXRYnCHVQpWXrPItOzsblpaW8qMmJsxzzzSBRCKBt7e3PJm5a9euuHr1KtauXYvx48erNdecOXMgkUjQr18/FBcXo3fv3jAxMcHMmTMxderUOttaJ0do/vz5OHDgACZPnoxVq1YhICAA9vb2yMvLw8mTJ3Ht2jXY2Nhg/vz5dTa0oZF86joys/KxfWc1VQoRkbIOwaeuI9AABSIJBAKhvhna3RlBjtZIyXyM3KLXcLAwhT+3ZaOKBJVhaWmp4AhVh42NDSiKQl5ensLxvLw8ODg41Hp9DoeDTp06KRzr2LEj9u7dq/ZcLBYLUVFRCA8Px507d/DixQt06tQJ5ubmtbavInVyhFxcXJCamopPP/0USUlJuHZNUcyvT58+WLNmDZydmVflNBZy8p4BYNAhOPdZPVlEIBAIBIrN0h/9Qj2Q2DA2Nkb37t1x9OhRCIVCALJoztGjRxEWFlZrM/z8/HDz5k2FY7du3YKrq6vac2VlZcHZ2RnGxsZVnKusrCy4uLjU2k5AA52l27Vrh2PHjiE7O7tKZ2lDdIDK4Ng3B8CgQ7BD83q0ikAgEAh6g550lp4xYwbGjx8Pb29v9OzZE6tWrcLLly/lVWTjxo1Dq1at5HlGJSUl8vzgkpISubKEubk52raVtRj56quvwOPxIBKJMGLECKSnp+OXX37BL7/8orZ9bm5uyMnJqVLK//jxY7i5uYGmmbfHUIbGJDacnZ0N2vGpDJ/XEVwXO4hE0Qo5QkBZh2AR3LgO4PM66tBKAoFAIBg6I0eOREFBAebNm4fc3Fx4eXnh8OHD8gTqrKwshXvYw4cP0bVruehzbGwsYmNjERAQIBdj79GjB/bt24eIiAgsWrQIbm5uWLVqFcaMGaO2fVKpVKmm2IsXL2BqWveWB2o7Qp988onai7BYLGzYsEHt32vIUBQb3y0ei2HjV0IoDEFERLnuT0yMCImJYuzZ8jVJlCYQCARDRU8iQgAQFhZW7VZYmXNTBpfLhZTBFpxAIIBAIKiVPYAsUgXIfIhvvvkGZmZm8vdomsaZM2fg5eVV6/nLUNsR+u233xiPZbFYck/O0BwhAAgN7ok9m7/C13O3KnQIdnO1x57NXyE0uOqWGYFAIBAIBODixYsAZBGhjIwMGBsby98zNjaGp6cnZs5k3q28OtR2hJg2WLpz5w4WLFiAu3fvqm1Ug4fFlr0AhIb4IkTQ811n6afg2Lco7yxtpjqjv4xSlgXjsVRhze3mFUxtwryVVO4J5ppxr58ya9H/7DnjKeHYmnkI1MzWTPWgd5jmPmU8lvU8n/lYC+bN2ZqwmctxvKKtGI8tljDv2P2aZn7O1EGiRu5mqRqDSyXMn3xNjYxVD3oHm8V8bGkpsy+wvxfz0uxmTZhHid+oITtjpEZllDo2NDViPpZiqaGh0m8446GlEubVQ0YsZtcmqvAlsOgg43lrRYUGiBqds5FQpjo/YcIEfP/994yq4GqD2o6Qj49Pje8/evQICxcuxPr161FSUgJ/f38sXbq01gY2BiiKjUB+Z12bQSAQCARCg6NMpuOff/5BVlYWSkoUtSyDg4PrNL/GkqWLi4sRGxuL7777DkVFRejcuTNEIhGGDBmiqSUaNOV6YxWiQro2ikAgEAi6Q49yhPSZe/fuQSgUIiMjQ55yA0CeQF3XqrE6K3/SNI2ff/4Zbdq0wYIFC2BlZYUNGzbg8uXLxAl6R9z+M2jb9Uv0ESzE/yb+gD6ChWjb9UvE7UvRtWkEAoFAIOg106ZNg5ubG/Lz82FmZoZr167h5MmT8Pb2rpLIXRvq5Ajt3r0bnTp1wtSpU/HmzRssWbIEt27dwoQJE6p0UzZU4vafwbBxK+Du0UNRb8yjB4aN+JY4QwQCgWColEWENP1qZKSlpWHRokWwsbEBm80Gm82Gv78/YmJiMG3atDrPX6utsaSkJMyePRvnzp2DsbExvv76a0RGRqJ58+Z1NqgxwUhvbNZ6hAT3ImX0BEItoGka59NS8SgvFzb2Dujey4/8LREaDnrQWbohQNM0LCxkBUM2NjZ4+PAh3nvvPbi6ulbpXl0b1HaEBg0ahD///BNsNhvjx4/HokWL4OTkVGdDGiPJp64j834etu9QoTeWfBWBgZ46spJAaJj8dSABsfMi8SDrvvxYKxdXzFwkwoAhITq0jEAgaJIuXbrg8uXLcHNzg4+PD5YtWwZjY2P88ssvaN26dZ3nV9sROnLkCFgsFlxcXJCbm4vJkyer/B0WiwWxWFwrAxsyOXmysmzVemNP6s0mAqEx8OeBeMyYMBYCgQB7du6QNysViUSYMWEsVmzaSpwhgv5DyucZMXfuXLx8+RIAsGjRIggEAvD5fLRs2RI7d+6s8/y12hqTSqW4d+8e7t27x2i8stbYhgDHvgUAJnpjzHu9EAiGDk3TWDY3AgKBAPHx8ZW2nOMhFArx3fwo9B0sINtkBEIjYODAgfJ/t23bFjdu3MCTJ0/QokULjfgXajtCTJ0fwju9MVf7mvXG3Djg85VHjAgEQlXOpaXiv6z72L1zRzVbzhHg8Xg4n5aKnv69dWQlgcAAUj5fI/fu3YObm5vS96ytNRdAUNsRcnV11djijR253ti4FdXrje36xuCfWmmpFJdfv8IjuhQ2lBE8TZuCMtAoIkE1Bbm5AFRvOT/Ky603m/QRmqbxz9nTeJKfB2s7e3j4kKIMQsOiTZs2cHV1RZ8+feQvbeQka6yhIkE5ocE+2PP7jKp6Y1x77Nn1DUKH+uvQOt2T9LIIPxU+wcM3r+XHHE1MEWZpjcBmzGVFGis0TSM5+TJycx7DgdMSfD5Jqrd1cACgesvZxt6hXu3SJ04dScRvovnI/S9LfszB2QUTIxfB74Pai2ASNIxUqoWIUOOpGjt27BiSkpKQlJSE7du3o6SkBK1bt0bfvn3ljpG9vX2d1yGOkBZ4buoBqWn5TbzfiK44/+EknEo5h7zcfNg72IHn7w0p2wyPGUrvmFCFjNdvZtqMubGmJoyHstXQKrp9R/UfY1ppEZa+yUGQQIC9UVHyaFn04sWIEovxZQEHPVDRGXpd7VyVaf6Y+Vjzdi0Yj6V8HjIeCzM1NMFQ1Yb9+/5C1OzluJ/5n/yYK9cJy5d/gaGhgYzmLQHzi6xFk8eMxz4vYa6jpo5+mITBRbybLw9OLq4QiUQKOUJA2ZZzDJxcuejey09rNpTR04nZ/3HxW+adb2k17mOFb6peQE4c3I+lX3wCgUCAyN07FRLJRZ9PwPKNW9BPUHMiOVuNiKxZE+bfsWclzozHPnrN/Mn/dSnz8/tcyTlTxssi5tdcgnYIDAxEYGAgAOD169c4deqU3DHavHkz3r59iw4dOuDatWt1Wod0PawnKIoCP8AHw0YOAT/Ax+BD1LRUit8kTxEkECAhIQG+vr4wNzeHr68vEvbvR1BQELYbPYUEjefpRh327/sLH42aDg/3rgqNOD3cu2LkiEjsi0vStYk6g6IohH8bg8TERAiFQoXzIxQKkZiYiK8XRhvk3xhN01i9aK48kbzi31V8fDwEAgFWLZhbZ0kCgoYoqxrT9KsRYmpqir59+2Lu3LlYuHAhpk2bBnNzc9y4caPOcxNHiKAT/pG8Qu7b14iKUt5jKTIqCnmlr3EDzFXZGws0TSNq9vIabmZBmD3rJ4O+mQ0YEoIVm7biwuUr4PF4sLS0BI/Hw8UrGQZdOn/lzCnkZGchMjKy2kTy/+5n4uLpUzqykKAAcYRUUlJSgpMnT2LhwoXo06cPmjdvjs8++wxPnz7FTz/9pJECLrI1RtAJT6Wy8LSqhNdnYLh32Ig4lXIe9zP/w47tu2tsxJmSfBkBgd10ZKXuGTAkBH0HC0hn6Qo8zs8DoPrvqsCAE8lpmsblM6fwOC8PLe3t4enDM+jvjD7Tt29fnDlzBm5ubggICMCnn36KP/74AxwOR6PrEEeIoBNasGRfPVUJr80N8Cuam1MAgEEjzpxH9WaTvkJRFCmRr0BLO1niqKq/K1sDTST/60ACln8TgYfZ5Unkjs4u+GL+YgQODq5/g6RaiOA0ovL55ORkcDgc9O3bF4GBgQgICEDLlszzE5lCtsYIOqETuykcmpgievFiSCpdCCQSCUTR0bA3MkUHNNWRhbrDgWMLoPymVRl5I06OTb3ZRGgYePjwwHF2QbRIpPTvqiyRvKsvr5oZGi9/HUjAjAlj0d3LUyGvrJuXJ+ZOGo+kg/t1bSKhEs+ePcMvv/wCMzMzLF26FI6OjnB3d0dYWBj27NmDgoICjaxDHCGCTqBYLHzMbgGxWIyQ4GCFC1NIcDDEYjFGl7YAG4bXT4jn3x2uXCeIqr2ZieDm1gr+pJSeUAmKovDFvMUQJyYipJpE8ukLFhvcVhBN04idF6k07y4hPh5BAgF+XvRN/efdSaTaeTUSmjVrhg8++ABLlizBmTNn8OjRIyxbtgxmZmZYtmwZnJycqo2cqwNxhAg6o5eRBb4EB+lHjiokvJ49chRfonLpvOFAURSil4bXUBUlxtJlYQZ3MyMwI2BwML79ZTPOX7pcJZGcSel8Y+R8WioeZN2vNok8MiICD7Lu4/IZkkSuzzRr1gzW1tawtrZGixYtYGRkhOvXr9d5XsNLwCDoFT1gge6l5riBV3iGUjSHETqUNjXISFBFgocOwJYdqxA1e7lCI06umxN27hIx7iNEMEwCBgfDf2AQrpw5hcf5eWhpZw8en2+wznNZl3FVeXeP8/LqzSYARHRVBRKJBOfOnUNSUhKOHz+O1NRUvHz5Eq1atUKfPn2wevVq9OnTp87rEEeonqBpukpDRRKPk8EGC51gpmsz9I7goQMQFNwXp1LOIzenAA4cW/D8u8Pc+IWuTSM0ACiKQlceX+FnQ6Wsy7iqJPKWGuhSTNAczZs3x8uXL+Hg4IA+ffpg5cqVCAwMRJs2bTS6DnGE6oH98Ucwd9YSZN0v7xDs4uqERUu/gUA4SIeWEfQdWSPOnro2g0Bo0HTv5YdWNXQjF8XEoJWLKzx96jmJnESEamT58uXo06cP2rdvr9V1iCOkBZ6XOEFSYgkAOJwQjykfTYVAIMDOHbsV2t1PGP0ZYjdtRX8Ge/acZsz/q5o1YS6bISlgHl14W8y8p8977ZmFu548ZZ7YV1LCeChMW6ghHWLWhPnExcwbPEpfPGE81sJCjfAgm7m9NIv596YJWzvNK0vVuDCrIy+hFmrYoI68hClVzGiclTFzuQZj6iXjsUYsNf4o1OA1zVwe5lVpc8Zj814x/w9WRxbldanq/98p33yLbyaPR4hQiMiIiPJrcUwMxImJ+PaXzWCxKXmucb3kHBNHqEY+/fTTelmHOEJahKZpREfNllcqlD2FlHUIFgqFWDk/Cn0GCQw6bE0gEAjapiyJfPWiuQp5d44urvj2l80I0EUfIYJeQBwhLZJ+KgXZ9+9j144d1ba75/F4uJCWih6kKRyBQCBoFWVJ5B667CxNIkJ6AXGEtEh+LrNKhUcG3O6eQCAQ6pPKSeQEAqlb0iJ2DuWVCsooO25joO3uCQQCwaCRSLUgutp4GirWF8QR0iI9ef5wdnWt0iGYpmkcO3YMYWFhsLG3h2fPquWcBAKBQCAQgJiYGGzcuLHK8Y0bN2Lp0qV1np84QlqEoihERS9V6BC8bds2uLi4oF+/frhw4QIe5eVB6NsVfycm6NpcAoFAINQnRGKDEevWrUOHDh2qHO/cuTPWrl1b5/n12hFasmQJWCwWpk+fXu2Y9evXg8/no0WLFmjRogX69++P9PR0hTEvXrxAWFgYnJyc0LRpU3Tq1EnpyUtLS0Pfvn3RrFkzWFpaonfv3nj1qm4lxR+ECLFmy3ZcunIFPB4PY8eORbdu3RRF/zw9MHPCWOIMEQgEAoFQidzcXHA4nCrHbW1tkZOTU+f59dYROnv2LNatWwcPD48axyUlJWH06NE4fvw40tLS4OzsjPfffx8PHjyQj5kxYwYOHz6MrVu34vr165g+fTrCwsKwf3+52nBaWho++OADvP/++0hPT8fZs2cRFhZWpdqrNnwQIsTRCxmwc3CAQCBAQkKCguhffHw8BAIBVs6Pqn/RPwKBQCDoBo3nB2mhCk0PcHZ2RmpqapXjqampcHR0rPP8elk19uLFC4wZMwbr16/H4sWLaxy7bds2hZ9//fVX7N27F0ePHsW4ceMAAKdOncL48eMRGBgIAJg8eTLWrVuH9PR0BAfLekd89dVXmDZtGubMmSOf67333tPYZzp/Jg35ubmIiooipfQEAqFRQ9M0zqSmIS83D/YO9vDx60V6pSlDqgXHRdr4HKFJkyZh+vTpePv2Lfr27QsAOHr0KGbNmoWvv/66zvPrZUToiy++QFBQEPr376/27xYXF+Pt27ewtraWH+PxeNi/fz8ePHgAqVSK48eP49atW3j//fcBAPn5+Thz5gzs7OzA4/Fgb2+PgIAApKSk1LjWmzdvUFhYqPCqDlJKTyAQ6huapnEy6Rx27jiMk0nn6iXifDDhAHju3hg2KARfTJiMYYNCwHP3xsGEA1pZj6ZpXDyVjL/j9+DiqWQSVW+EhIeHY+LEifj888/RunVrtG7dGlOnTsW0adMQERFR5/n1LiK0Y8cOXLhwAWfPnq3V78+ePRuOjo4KTtSPP/6IyZMnw8nJCUZGRmCz2Vi/fj1695ZFXv79918AwIIFCxAbGwsvLy/8/vvv6NevH65evYp27dopXSsmJgYLFy5kZFfFUvqaRP9IKT2BwByapnEhLRWP8nJhY++Abr38qo080DSN8xXGdq9hrDbsTEs5Kxdd7uXfQ+trx+87ijnhq3A/szxNwJXbCkuWT4dwaD+trHkw4QAmjZkAgUCAXTt2KkgKTRozAcs3GqEfA0khphwT78f3C6LwMOu+/BjH2QVfzFvcIDpFS6USSDUcwdH0fPoAi8XC0qVL8c033+D69eto2rQp2rVrBxMT5lJKNaFXjlB2dja+/PJL/PXXXzA1NVX795csWYIdO3YgKSlJ4fd//PFHnD59Gvv374erqytOnjyJL774Qu4wlZW2f/rpp5gwYQIAoGvXrjh69Cg2btyImJgYpetFRERgxowZ8p8LCwvh7OysdGzFUnplon8xMTFwcuWiB88PlBKpo/uF5ozPQzNr5VEnZZha/Ml4bN5D5lpjzRlKFZUynxLqpGux2cz1otjWanzXXr9hPlaNC5K06BHjsSwzS+Y2mLRgPLRUyvyiYkwxf+p+Xen/WFMOyV8H4rFyfhQeVLgJtnJxxVcLo6vcbI8l7kfsvMgqY2cuEmHAEMWx6miNsViq/4/F8YlYFDEfWfez5MdcXF2wIGY+goRBVcarozVmKi1QejxuXwr+N3IxBIIg7Ni+p4JDEo3/jZiFXbsXY2hoYLXzviy1YWyDRCq7jdA0jYUR82uUFFq1YC4GBA1h9P9971nNhSqnjyRi+dSJCBIIsHfnDvlnjBaJ8M3k8Zi6Yj169B9c5fdK3jL77r56wVyHkVA/mJubo0ePHhqfV6+2xs6fP4/8/Hx069YNRkZGMDIywokTJ/DDDz/AyMioxpBnbGwslixZgj///FMhwfrVq1eIjIzEihUrMGTIEHh4eCAsLAwjR45EbGwsAMiz0Tt16qQwZ8eOHZGVlYXqMDExgaWlpcKrOpSV0pdVjQmFQiQmJuLrhdFkH50BtFSKi6+L8XdxIS6+LgYtrZ9yUVoiQdL5+9j+5zUknb8Pmm58T17a5q8DCRjs7YFPQgZj1uRP8EnIYAz29sBfB9SrmPw7MQHhn3yEbp4eVSowwz/5CEcrVGAeTUzAjAljlY6dMWGs2murgzg+EZPGfAJPD0+FtT09PDFxzP9BHC/W+Jo0TePrWeshEAQhPr5yYUYCBIIgzAr/WeNbSGdSTyH7/n1ERkZWmwf53/1MnE+rmvSqLjRNY/OSBQgSCJAQH6/wGRPi4xEkEGDnd4sg0fdtMpIsXS0zZszAy5cv5f+u6VVX9Coi1K9fP2RkZCgcmzBhAjp06IDZs2dX6yQsW7YM0dHROHLkCLy9vRXee/v2Ld6+fVvlD5OiKHkkiMvlwtHRETdv3lQYc+vWLQwaNKiuH0tOWSl9dNRsBdE/J1cuVmzaWuXJlAk0TePS6VPyp2svX57qX9IQtFSKy29e4TFdipaUETxNmoJS42m6Npx4VYSfXzxBzpvX8mMcE1N8bm6NgKYWWlt338X/MDvuCjILiuTHuI4tEDu1D0L7VO1vQajKXwdkDolAIMCeCk/wIpEIMyaMxYpNW9GXwbYJTdNYMS9SZeQhcJAAALByflSNY7+bH4W+gzUvfEzTNBapiJAsjFyID4Z8oNG1k1OuIjMzF9u3V1eYEQkej4fk5MsIDOymsXXzc/MA1E8e5PVzp5H3Xxaidu9U+hkj3xWf3LxwBh171N81kaA5Ll68iLdv38r/XR0sDdxz9MoRsrCwqPJH1KxZM7Rs2VJ+fNy4cWjVqpV8u2rp0qWYN28e/vjjD3C5XOS+S0o2NzeHubk5LC0tERAQgPDwcDRt2hSurq44ceIEfv/9d6xYsQKA7ESGh4dj/vz58PT0hJeXFzZv3owbN25gz549Gv2MH4QIMUAwRCbI+t+DOm0NKNsfd3RxRWzslwgZqn6iuTqcKC7C6qIneFjBIXE0McUXFtYIMNOOQ3LiVRHmPX4IgUCAyKio8lD44sWYJxZjUUtHrThD+y7+h1G/nIIgKAjbK6wrio7G8Mh92C0aSpwhFdA0jVgVzst386MQMEi1Q3IhLRUPsu5jz86axYwvnj4FAIzGnk9LRU8NV2ueST2NrPtZ2LlD+c26bO3Tqafh19tPY+vm5DwBoNohyc15rLE1AcDOwR5A/eRBPs1n5nQ9K8ir81pahYiuVsvx48cBQB7IWLt2bbX5unVFr7bGmJCVlaXQQGnNmjUoKSnBsGHDwOFw5K+ybS9AloDdo0cPjBkzBp06dcKSJUsQHR2Nzz77TD5m+vTpiIiIwFdffQVPT08cPXoUf/31F9q0aaPxz0BRFHrxAzD4wxHo6d+71k7QnIkfobuScP+YkV8jYd/fGre7jBPFRZj76CG6D+ivuHb/fpj76CFOFBepnqQCTLa6aKkUP794IruRVurDlLB/P4KCgrDmxRONb5PREglmx12BICioyrrxCQkQBAUh/Kcksk2mgvPvnBdV2yYXGGyblEUUVN0EC/JyUcBwrDaqNfMYRkjycvM1ui6HI6uYVaVx6MBpqdF1ffx4SiWFAMU8yO696u70tbArd7qUUXa8ua19ndci6JYmTZrgypUrWl1DryJCykhKSqrx58zMTJVzODg4YNOmTSrHzZkzR6GPkL5C0zS+X6A83J/w7uk6cvYKCIL7aD7cL5VidVG5Q6Kw9v79CAkOxuq/j0LgYM5om4zpVteVN6+Q8+Y1IqvpwxQZFQWeWIwrb16hq6mZhj4tkHL7ETILirC9uv5Pke+2GS5lI7C7q8bW1SWyCqf0ChVOPev8PWLqvDBxSMoiCqoiD7YVIg+6qNa0ZxghsXew0+i6fP8u4HIdIBJFIz4+QUlhhghubq3A53tqdF2KovCNaDE+HTsOQqEQERER8uhpTEwMEhMTsWLTVo1ckzp6+8LeyQXRIhESlBSfiGJiYO/kgve6+dR5La2iDUmMRiixMXbsWGzYsAFLlizRyvwNLiJEAC6dPoWHKp6uM+/9h9SUCxpf+/KbV3iowiF5+OY1zr9ULU3y13PZVpd3pchS9/79MO/xQ5x4VR5ZeiyRlR6pupGWjdMUOYWvGK2b87huFSY0LUFS6nVsj0tDUup1nUWYEuMPoUen3hAOHIlPx0+FcOBI9OjUG4nxh+o0b0XnRRnqOCTdevmhlYvqyENXXx66+vIYjdVElKIyPn6+cHF1qXFtV64LfP00K7pMURS+WzYJiYlihISEVCrMCEFiohjLln+ulcKMwSHBWLf1d7mkkKWlJXg8Hi5nZGDd1t9rlQepDIqiMH7OAogTExFSqfgkRCiEODERI7+eBzYpPmkUlJaWYs2aNfD29sann36q8WRp4gg1QJg+XefmKC+trQuPaWYOySMVdfG0VIrYAuZbXS3ZsuClqhtp2ThNwbFsymhdTkvm7Q0qE5d4Du16zkZf4RKM+XQt+gqXoF3P2YhLPFevDlJi/CFMGP0ZPD28KlU4eWHC6M/q5Ax1Z+i8dGPgkFAUhRmLRDVWYE5fsBgURYGiKHy1MFon1ZoURWFezMIa154vmq+1SlEbGyscPnxYwSFJP5umsnS+rgwOCUbKlYvYdTARP23cgF0HE5F8+QIGh2i2r4/vQAHCf9yAsxcvK3zGsxcvV1s6r3eQqjFGXL16Fd26dYOFhQVu3bqFixcvyl+XLl2q8/zEEWqAMH26duDYanztlhQzh8TGqGaH5PzLV3jwSnVk6cobWUTGw6QpOCamiF68WOmNVBQdDUcTU3iYNK3V56oO/3Y24NpaQBQdrfwGLhLBrZU1+F7K+0epIi7xHIZP/Bnunj0VbpTunj0x/JOf4Njly6oOUkKaJj6aAjRNY97sxfLtVmVaePPnRNe65JqiKMxU4byo45D0F4Rg+cYtuHBZMfJw8UoGlm/cotBHqJ8gBCs2bVU6trbVmkwJEgqwfttGXL6ieLO+knEZG7b9qrSPUF2J25eCYSMXw9fXH0lJSTh48CAWLlyIXr18kZer2QTp6qAoCrzefAhHDAOvN19rzp7vQAF++vsMIjfuwedLVyNy4x4sS0xtGE4QoFeO0OrVq8HlcmFqagofH58q4uUVuXbtGj788ENwuVywWCysWrWqxrmZCKjXxPHjx6t9HTt2rFZzVoQ4Qg0QL18eHF1cEV3D0zXXzQl+/porjS3D06QpHBk4JN2b1eyQlEWMmG51USwWPje3hlgsRkhwsGIoPDgYYrEYU8ytNV6+T7HZWBrqgUSxGMLK2wwhIUgUi7E8LBAUpf6fEk1LMHPBrmr7vQwePBiv30iRkpKi4CANG7Nc485QSvIlZN3PrnG79X5mFtJSqr84qmLAEM06JP0EIUhIv4z18QchWrcR6+MPIv7MJaWdiwcMCcHBc1ewMeEglv2yERsTDkJ89rJWnaAygoQCnL6ahrjDe7HmtzWIO7wXaRlpWnGCKvcQ8vPzw6BBgzBv3jykpKRiyBCBVnoI6RKKotCxBw+9Bg9Fxx48sh1WC3bu3IkZM2Zg/vz5uHDhAjw9PTFw4EDk5ytP5C8uLkbr1q2xZMkSODjUvJ3NVEC9JrKysiCtphCmpl5/TNH7ZGlCVSiKwpcLojFn4kcIEQoRWSEpURQTA3FiIrbt/E474X4WC19YWGPuO4ckslI5uVgsxmIbR5UOSVnESFUiacWtroCmFljU0hE//30UPHF5IzpHE1Otlc4DwNCuTtgxmYfZcSfA4yXKj7u1sq5T6Xzy6VvIzCrA9p3Ko2JRUVEQi8V4+/atgoMkFIZgZuTvCBHUPYm5jNxcWWdrbVc4DRgSgr6DBRqTuqAoCt5+fMZjNV0izxSKojRaIl8duuohRKglEqkWyufVT5ZesWIFJk2aJFdWWLt2LcRiMTZu3Ki0gKhHjx7yDs81FRipI6BeE25ubsjJyYGdnWJhwePHj+Hm5lZnx544Qg2UvkHBWLJhC75fEKXQnLGVKxfbdn6n1T5CAWYWWGzjiNVKHJLFNo6M+gh1b9YUrZrKIksJ+/dXrfqoZqsroKkF/E3NceXNKzyWlKIl2wge9dDIcWhXJwR7OiJNaoycxy/AaWkOvpdzrSJBZeTkPQPAIBG7QrsIhZtZ6nUE9i7/XZqmkZx6HTm5T8FxaAG+X0fGtjg4yCQV6qPCSZcOSWNHVz2EGhoSmsati+l4/igPVjb2aN+1Z6OLJFUWATcxMVGqzVVSUoLz588riJey2Wz07y8rYqkLFQXU6+IISaVSpY0TX7x4USs5rsoQR0gL5BeXoJgqUTnO1Ij5TZRrWVXZ/pPRgRg/4iROp55BXk4+7Dl28PXzgT11BSi9r2SWqkjMmzG2waVjeVn6RzDD/6R2SH/6Avlv3sLOpAl6tigvmX/zXPXnj3C2xVSxGMLgYERUiCzFvIssLeU4wqJZ+ZffSH6dYiEANZfINzE3Zvy52M2ZaWyxAQR6dWY8L9g1X1g5DuX9XmpyPsokYMqQO0iPXgLGsvMQty8FX89aj8zM8vJzLtcBy2OnMkqMDQzoBFduqxq18LhuTggM6ACKKsQbmnn0zZhirmFWokYyuDrOrzr6YWrI1EEqZfg3zFJHm605cwMqXcGbc9oDUP2dsrJtixdvq3dq1fn/LS5twnjsy7fMqzpfVhapq8mGV28Zjz11+AAS1yzB45z/5MdacpwgmDIH7r0Hyo+9fvla2a9rFi02VKysezl//nwsWLCgyvBHjx6BpmnY2yv2XLK3t8eNGzdqbUZdBdQByCvCWCwWvvnmG5iZlV/3aZrGmTNn4OXlVev5yyA5Qg0cWcidh9CRQvj15tWrVhnFYqGXtQVCONboZW2hdlRmoLUllnIccf7oUYWckQtHj2IpxxF9LbQnmaEP8Hu9B66LHUQi5YnYIpEIbm5u4PMVt37KHSSZI1WWHOvu7q2YcO3ujRHD52JfXJJKWyiKQvSymTUmMy9e+jXRwtNzeP7d5Q5t9SX7zuD5e1czQ+PmwvFD+H3+VPTy7qrwHe/VvSt+nz8VGSeP6NpEjZGdnY3nz5/LXxUjPvWx9pdffolt27bVKWJTVhkmlUqRkZGhUC1248YNeHp64rfffquzvSQiRNApfS0sEGBujouvXuFRaSlsjIzQtan2t7r0AYpiI3bRSAyf8BOEwhBERESWy4ZER+PgwYPYtWuXgvNR3hCPA75/lyrJsYrSFbJ8olnhPyM4RHXlTsjQAdiycwWiZsUqbLdy3ZywZecKhAwdoJ0TQdAYZQ7tRyNnVNvUcPOOHw3SoZXQNOK+j0aQQIC4vXuRmpqKAwcOgMPhIC5uL0JDP4R47VJ09utff9tkWowIqRICL8PGxgYURSEvT1GOJC8vT2UidHVUFFAvg6ZpnDx5Ej/99BPevHnD6DtYJrMxYcIE/PDDD7DQ0sMxcYTqCbk4an4ubOzeiaOqsTXWmKFYLHibaa4bdEMiVNADuzeFYea8nQrOh4Ndc0ilUvz++2a0atWqws1MhMREMfbsnAuKopB04rJGk2NDhg6AILgvTqWcR27OIzhwbMDz726QN86GSnUOrSvXGZt3/Ihg4cAafrvxcvtSOgoeZsNv6udo3769gioBl8vF5MmTkZh4AP9eOYe2XfW8I7UGMTY2Rvfu3XH06FEIhUIAsgeuo0ePIiwsrFZz1lZAvTo2bdqE5ORkrFu3Dv/++y92796NVq1aYcuWLXBzc4O/v3+t7CyDOEL1wHHxfvywsKo46teLROjPQG2b0LgJFfRAyKDuSE67iZy8Z+DYNwe/13tIOHS+ioPk5mqPPTvnInSo7A9fG8mxFEWBH9Czth+HoAcoc2h9ePW7da5vPH8kq3iMjJSJ/27fvr284lUkQlRUFACg6Ilmtd9qRKqFiJBU/flmzJiB8ePHw9vbGz179sSqVavw8uVLeRVZZbHzkpIS/PPPP/J/P3jwAJcuXYK5uTnatm3LSEBdHfbu3YuPPvoIY8aMwYULF/DmzRsAwPPnzyESiXDw4EG156wIcYS0zHHxfkT830cQCATYu3NH+daHSISZE8YidtNW4gwRQFFsBPorVnlV5yAZWZcnT1cU2KwpOVbTApsE/aeyQ0tLDNcJAgALaxsYGRlh0KBBVTQa4+PjERISgsOHD6NZc5v6M0pPtMZGjhyJgoICzJs3D7m5ufDy8sLhw4flCdRZWVkKEeeHDx+ia9eu8p9jY2MRGxuLgICAKnqgmmDx4sVYu3Ytxo0bhx07dsiP+/n51akarQziCGkRmqbxw8KaxVFXzo9Cn0ECg35SI1SPMgepIroS2CQQGhosyDSrqmsaGhkZicTERLDQ+ERLmRAWFlbtVlhl54bL5Vbb4LA66uIg3bx5E717V225YWVlhWfPntV63jJIkooWYSKO+t/9TFxIS9WRhYSGTkWBTaGwfgU2CYSGROETZk1DXzyrxx5LeiSxoc84ODjgzp07VY6npKSgdevWdZ6fOEJa5FE+M3HUMhFVAqE2hA71x56dc5GRcU6hDcHVq+e1LrBJIDQUrGxkfZNU6SRaWNe9aShBs0yaNAlffvklzpw5AxaLhYcPH2Lbtm2YOXMmpkyZUuf5ydaYFrGxKxdHrSl/o0xElUCoLaFD/RES3AvJKVeRk/MEHI41+P5dAGMrXZtGIOgF7bx6wtbRGdHRIiQkVG0aKhLFwMbRGa096rHHkhbL5xsTc+bMgUQiQb9+/VBcXIzevXvDxMQEM2fOxNSpU+s8P4kIaREm4qhOrlx066V9DSJC44eiKAQGeGL0qD4IDPAk22EEQgXYFIXQL6MgFiciJESxaWhIiBBicSKCPpvd6KQ2GgMsFgtRUVF48uQJrl69itOnT6OgoADffvutRuYnESEt4GT+FhYWspbvi5YsxKQxE6ptbrZ+20ZwLFTLUTQ3zma8vrSwiLmxbOa+cIu2LRiPfXyd2T67nRVzKQyWGrba9HNhPm8zNTqfGqlxkZQwl1VgNWvOfN6XTxkPpUyZyxSYNmF+fl+xXzEe24y5AgNMjZgPZixvAYBiMZdgYLPUkHYoZdb/ypSB5E4ZJRLmfxPPS7RTDaiOzEhRCfPzdSOP+bWpqJj5OZMwrJTq7P8+xi38EYlrlii0pbBxdMa4hT8qSGzUCyQipBbGxsbo1KmTxucljpCWGRwyBOu3bcLCiHkKf3guXFes37YRQUKBDq0jEAgEw8K990B09uuPf6+cQ9GTfFhY26G1hzeJBOk5r1+/xpUrV5Cfn19lhyU4OLhOcxNHqB4YHDIEAwWDcSY1DXm5ebB3sIePXy8YGTV+GQkCgUDQN9gUpRfdo6W0FFJas+X6mp5PHzh8+DDGjRuHR48eVXmPxWKBpplH35VBHKF6gqIo8HpXbgPeeEOYBAKBQFCBnjRU1HemTp2K4cOHY968efImj5qEJEsTCAQCgUDQW/Ly8jBjxgytOEEAiQgRCHoJTdNITr2OnNyn4Di0AN+vI6kCUwJN00g/lYr83FzYOTigJ8+PnCdCw4GWyl6anrORMWzYMCQlJaFNmzZamZ84QgSCnhGXkIavIzYj836e/BjX1R7fxYxHaEgvHVqmXxxKiEd0VASy75eLGTu7uiIqOgaDQoS6M4xAIGiUn376CcOHD0dycjLc3d3RpIlidem0adPqND/ZGiMQ9Ii4hDQMG7Mc7h49FPqcuHv0wLAxyxGXkKZrE/WCQwkJmPLRGHh5eCicJy8PD0z5aAwOJcTr2kQCQSVSqRRSiYZfamqANQS2b9+OP//8E3v37sWPP/6IlStXyl+rVq2q8/wkIkQg6Ak0TePriM0QCIIUBFRl6tgJEApDMDPyd4QM9AJFGe4zDE3TWBwZqVTMOP6dmLFobiTeFwwh22QEQiMgKioKCxcuxJw5c6rodmoCw72aEgh6RnLqdWTez0NkZFQ1Ir2RuJeZi+RT13VkoX6QnpqK7Ps1ixlnZWYi/RQRMyboOTTK84Q09tL1h9I8JSUlGDlypFacIIA4QgQ9gJZKkfakCAk5T5D2pAh0IwztMiEnV9YxWpVIb07es/oySS/Jz2UmZlw2jkAgNGzGjx+PnTt3am1+sjVG0CmH8p5h8Z1cZL8ol2xwNm+KuW0dMMi+ue4M0wEcB5mEiSqRXo6BnZfK2DkwEzMuG0cg6C20RPbS9JyNDJqmsWzZMhw5cgQeHh5VkqVXrFhRp/mJI6QF7F+KYcluqnIcy6w54znfwom5Adl3GQ8tOXNf9aB3GNkx01UCALNHqrWoEv97jM8uZ0IQFIRdUVFyHTZRdDQ+E4uxZUBnBLe2lY8vfcM85lt6v5DxWKPWaug1qaPj8/ol87HGTcHr7gaOgzWio6ORkJBQRR07JkYEN1d7+Hd1gvQVQ82m4ueMTTCyYq7tZNvkGeOxpcbNGY99UWqncky/wLZwcXWCSCRSyBECysWMXbnOGBDIBUU9AACw1dAao6UmjMeWMhz7+DXzXKUXJW8Yj817yfz/zMKYuQ3mxsxvDXkvmdsrUSPa69CS+fWmqJj5/+/rN8y00di0GiJ5taQswVnTczY2MjIy0LVrVwDlDzplsFh1V2ggjhBBJ9ASKRZc+Q+CoCDEJ1RKDE5IgDAkBHNTjiOIawNKHQXIBkrc/nR8PXcrcnKfIDExEcHBwYiq4BzGxIiQmCjGns1fGXSiNCDr0r54WSTGj/qiWjHjzTt+NPhEaZqmcf3caTzNz0MLO3vSY4nQYDl+/LhW5yeOEEEnnH5UiKyiYuyMqiYxODISPF4iTuU8A78Vc9X7hkjcoUsY/tkGCARB2L4zCnfv3sWsWbMURHrdXO2xZ/NXCA3uyTwa1IgZIhyIzTt+xNxZiirirlxnbN7xI4KF9awirmecPpKIzUsWIO+/LPkxjrMLJkUtAn/QEB1aRlCANFTUC4gjRNAJea9koWxVCa+5xcxD/w0RmpZg5uJ4hZJ5X19fjBo1CidOnEB4+Ew8fJCJG2e/g7Ea2xWGQLBwIIKG9MeplHPIy82HvYMdeP7eBh/1OH0kEcunTkSQQICo3Tvl0bJokQjfTpmAb9ZsIs4QoUGxaNGiGt+fN29eneYnV1aCTrBvKtt/V5Xw6mBmXK921TfJ6XeQmf0I23cpRsYoikLfvn3x00+rwePxcOrMTQTyO+vQUv2EoijwA3SvIq4v0DSNzUsWIEggQEKlHksJ8fEIEQqxXjQfvPcHG7zDqBcQ0VVG7Nu3T+Hnt2/f4t69ezAyMkKbNm2II0RomPjaWMLFwgyi6GiFHCHgXcKrSARu82bgcZrrzsh6ICdfltRNSuYJmuD6udPI+y8LUbt3Kt1yjoyIAI/Hw9X0NHj28teRlQSCely8eLHKscLCQnz88ccYOnRonec37KxLgs6g2Cws8HBColgMYUiIgkyCMCQEiWIxFvd0a/SJ0hw7SwBVKyHKICXzBHV4mi/Tp1PlWD/Oz1P6PqF+kdJSrbwMAUtLSyxcuBDffPNNnecijhBBZwicWmLLgM64knwcPB4PlpaW4PF4yEg5XqV0vrHC79kWXGcbiETRkFQqza9YMs/nddSRhYSGRAs7ewCqHeuW78YZMhKaxq3zaTh7JAG3zqdBQjfClsyNnOfPn+P5c+YtQqqDbI0RdEpwa1sEcW1wKucZcotL4GBmDB6neaOPBJVBUWzEzhVi+GcbIBSGICIisryfkkgEsViMBXM+1LWZhAZCR29f2Du5IFokUsgRAmSOtSgmBhwXV3Tp2UuHVuqei8cPY98P0Sh4mC0/ZuvojKHTotC1zwf1Z4hUol5vMqZzNjJ++OEHhZ+lUilycnKwZcsWDBo0qM7zE0eIoHMoNqvRl8jXROggL+zZ/BW+nrtVoRTcyMgIUqkU82P2YNO2k/hu8ViEBvfUoaUEfYeiKIyfswDLp05EiFCIyAo9lkQxMRAnJuKbNZsMOlH64vHDWB8xRVZVt3dXeVVdtAjrI6ZgUsya+nOGSPk8I1auXKnwM5vNhq2tLcaPH4+IiIg6z0+2xuoJmpYgKfUGtsedQVLqDdCNsA06ofaEBvfEnYursDBiOACgVy9fJCUlyfOm3D17Ytj4lYjbn65jSwn6ju9AAcJ/3ICzFy8rbDmfv3zF4EvnJTSNfT9EI0ggQNzevXj9+jUOHDiA169fIy5uL4KCBNj3o4hsk+kZ9+7dU3jdvXsXp0+fhkgkgoWFRZ3nJxEhLfDmNzHemJa3Z4+/9hBzjtzA/Scv5Mdcrc0R+1kvhPq1ZjRnE78+jNeXtnJjPFby5CTzsWpIXJhxmjEax1JjC6zkBfOeQkZOavxxlDJruQ8A0gc5jMeybG2Yz/vsKaS0BJt+P4ohQwTynkLAu27b8QkQCkMwM3Izgt+bwry7dHNL5jYUq9GosQnztgZUE+aSFVYsNZ7NjFXL2JTBUmMsmjGPTj4vacVo3KPiYsZzFpUw/z5WJ1nR8/0gdO/3Aa6fO41nBXlobmsP9569QFEUXr5V/Xf8Ro2owvOXzOUtrJox/96UqmEDm6HMws2L6Sh4mA2/qZ+jffv2yMzMlL/H5XIxefJkJCYewM2L6XB+T/vtKojEhn5AHCEtE3/tIf634zwEQUHYUUlPa0SMGLsi+jN2hgiNm+QL95H54Am276mm23ZEJHg8HpIvZiHQm6sbIwkNBoqi0MXHr/xnA8m7q4lnj/IBAJGRkRAIBNi+fbtCTl5UVBQAoPBRPlAPjhChembMmMF4LBFd1WNoiRRzjtyoUU9r1qYUhPhyDV4/igDkFMgiMip7Cj16ofR9AoFQM5bWLWFkZIRBgwYpCPbKoq7xCAkJweHDh2FuzTyaWydIjlC1KOsdpAwiuqrnpGY+xv0nL7CjRj0tHpKv5SLQw1FHVhL0BY6tbDtPVbdtjo15vdpFIDQWWGChtLQUkZGRyhtORkYiMTERrGq2HAn1h7aFVitCHCEtklP0GgCDJ/wnzPMHCI0XfjdXcFtZQySKVsgRAir0FHJqCX5XFx1aSSA0XJ4/eQRA9TW56Onj+jGIRIQY8+zZM2zYsAHXr18HAHTu3BmffPIJrKys6jw32Y/RIhwLUwAMugZbm9WbTQT9haLYiP36fSQmiiEUVuq2LQxBYqIYy2cMINuoBEItaW5jB0D1Ndny3TiCfnDu3Dm0adMGK1euxJMnT/DkyROsWLECbdq0wYULF+o8P7miahE/bku4WptDFF1N12CRCG6c5uB3dtCRhQR9I7R/Z+z+biQyLpxSKH2+ejENu78bidD+JIGTQKgt73XzgY2jM6KjRUqvySJRDGxbuaCtZ496saesakzTr8bGV199heDgYGRmZiIuLg5xcXG4d+8eBAIBpk+fXuf5ydaYFqHYLCwZ2AH/2yHT04qILO8aHCMSIVEsqxojT/iEioT274yQPh2RfOE+cgqKwLG1AL+bK/meENSCpmml5fOGDJuiIJwaiQ2RnyMkRIjIyAoNJ0UxEIsTMVH0M9j1dZ5oieyl6TkbGefOncP69ethZFTushgZGWHWrFnw9vau8/zEEdIyws6O+GMUMOdIEni8RPlxbksLUjpPqBaKYiOwB/N+UARCRU4fEWPL0gXI+y9LfszeyQUfRyxAr4ECHVqme7wCP8BE0c+I/1Gk0MndtpULJop+hldgPUpsEBhhaWmJrKwsdOjQQeF4dnY2aajYUBB2dsSQjhykZj5GTtFrcCxM4cdtiabdSaUYgUDQLKePiPHdtIkyCYndO8slJEQiLAubiFk/bSDOUOAH8OAPwJ3LZ1H4KB+WNnZo69mj/iJB75BKtdBQsRFWvI0cORITJ05EbGys3HlNTU1FeHg4Ro8eXef5iSNUT1BsFnq3rqfeFAQCwSChaRpbli5AkECgILrq6+uLhPh4hAiF2LxkIXr2H0S2ySgK7btVbVNB0D9iY2PBYrEwbtw4lL5TAmjSpAmmTJmCJUuW1Hl+knRAIBAIjYTr504j778sRFXXJyciArnZ9/HP2dM6spCgQFn5vKZfjYSyKj5jY2N8//33ePr0KS5duoRLly7hyZMnWLlyJUxMmEv4VAeJCGkBE6EvTMxNVQ80bqJ6zDskGeeYG/DiJeOhJt2ZV6yVXFejtwal+Xb+aqhF4e295xpfHwAoe+a6Sihkrt0lfcVcR43VRI3nl6fa0VyDJfN5WRw1qiLZany2kleMh0qbNWc8Vp1mekbsNwzHMf97MFYjKf51JV2yx7l5AFT3ySnIzUVJafWfU0IxT7i1asb8OqbOZytlq6E1xmZ+K3OwYnBtBvBSDek9gnbw8PBAjx498H//938YNWoULCws4O7urvF1SESIQCA0WGhagqS029iecB5JabdBN8KKGXVobsusT04LW/t6s4lQAxKpdl6NhBMnTqBz5874+uuvweFwMH78eCQnJ2t8HeIIEQiEBkncoctoF7AYfUf9iDHTNqPvqB/RLmAx4g5d1rVpOqNjd1/YObkgWlRNn5yYGNg7u6KjN8mNIeg/fD4fGzduRE5ODn788UdkZmYiICAA7du3x9KlS5Gbm6uRdYgjRCAQGhxxhy9j+JSNcPfyVejA7e7li+FTNhqsM8SmKIwNnw9xYiJChEKFcxMiFEKcmIix4fPrvTqKoBwpDUhpqYZfuv5UmqdZs2aYMGECTpw4gVu3bmH48OFYvXo1XFxcEBwcXOf5iSNEIOg5tESCpGu52JF6D0nXcg1++4emJZgZfQACQRDi4xPg6+sLc3PzdwriCRAIghAu2m+w56nngCB8tepXpF+8rNCd/NSZs/hq5Xr4vB+kaxMJZejR1tjq1avB5XJhamoKHx8fpKenVzv22rVr+PDDD8HlcsFisbBq1aoqY2JiYtCjRw9YWFjAzs4OQqEQN2/erJVtFWnbti0iIyMxd+5cWFhYQCwW13lO4ggRCHrMvvT7eG/6fvT/9k+M/TEZ/b/9E+2nxiPu9H1dm6YzktPvIjP7ESIjo5RWRkVEROJeVgGS0+/qyELd03NAEP739TdybS0AeJKfi22xi3Dmz7rfOAiNi507d2LGjBmYP38+Lly4AE9PTwwcOBD5+flKxxcXF6N169ZYsmQJHByUF0OcOHECX3zxBU6fPo2//voLb9++xfvvv4+XL5kX81Tm5MmT+Pjjj+Hg4IDw8HCEhoYiNTW11vOVQRwhAkFP2Zd+HyNWnoR7z96K2z89emNEbJLBOkM5+YUAVFdGlY0zRNL/EuP7GZPh38tH4bvTo6snVnw5kThD+kKZxIamX2qyYsUKTJo0CRMmTECnTp2wdu1amJmZYePGjUrH9+jRA8uXL8eoUaOqLV8/fPgwPv74Y3Tu3Bmenp747bffkJWVhfPnz6tl28OHDyESidC+fXsEBgbizp07+OGHH/Dw4UOsX78evr51z3cj5fMEvYCWSJGa9QS5Ra/hYGEKPxdrUGqUHDc2aIkE4VsvQhAUhPiEBIXGePEJCRCGhGDWlmSE9HA2OA0yjp0lAFkFlLKLYFllVNk4Q0NC09i6fGGNTRW3Ll+IHv0+ILlCjZjCQsUHARMTE6VOS0lJCc6fP4+IiAj5MTabjf79+yMtLU1j9jx/LmtpYm1tzfh3Bg0ahL///hs2NjYYN24cPvnkE7z33nsas6kM4ggRdE789RxE/H0L95+8kB9ztTZHTP/2EHbk6NAy3ZF8PR+Z+YXYHlXN9k9kJHg8HpKv5yGwi2GdI37PNuA620AkikZ8fILC+ZFIJIiJEcHNxRb8nm10aKXuuH7+NPL/y0LU7p3VNlXk8Xi4fu40Ovv46chK7VFZbLajt6/edtHWhlp82XzOzs4Kx+fPn48FCxZUGf/o0SPQNA17e8WWCvb29rhx44ZGbJJIJJg+fTr8/PyqjeQqo0mTJtizZw8EAoFW/w+JI0TQKfHXczBmtyzysSMqqlwJOjoaY3aLsW04DNIZyn0maxaocvvnKfOmgo0FimIjNmoIhk/5DUJhCCIiIuXfm5gYERITxdi95hODi5SV8axAlteh6rvztCCv3myqL6oTm/1o9gL4DjSsJPHs7GxYWpZHRTXRgbm2fPHFF7h69SpSUlLU+r39+/drySJFDPNKQdALaIkUEX/fkm//KFT/JCRAEBSEyL9vgW5EDcKY4tBc1kdbVWM8Tgt1+m03HkI/8MTuNZ8g49Jphcqoq5fPYPeaTxA6yFPXJuoMQ22qWCY226OrZ5W8qO+mTcTpI3qYFyXRgrzGu+ulpaWlwqs6R8jGxgYURSEvT9ExzsvLqzYRWh3CwsKQmJiI48ePw8nJqc7zaQMSEdIGzVsCFgxuUK9rnz1fI2ZmzMcWFTMfq2GHJDXzMe4/eYEdNW7/JCL130fo7dpSrbnVCTe/zWKeVFty9xnjsSad1RDZrSSb4efUHFxbS4iioxVyhIB32z8iEdzsLOHnbA1JUfWyHyya+WeTFjOX2GBL1EjIbNaM+Vhz5mNDB3dFyEBPJKffQU5+ITh2luD3bKs8EvSWmRQGAEhp5jIqTa2eMBrHZrVgPGcTNXLj2ErGdu7RC/bvmipWzBECmDdVlKghM2JhzPw2YmrEfHvD1Ij5c/rT4jfYtqxmsdk/li/E+4Ih6GLLbM4i3QVQ6hVjY2N0794dR48ehVAoBCD7nhw9ehRhYWG1nlcqlWLq1KnYt28fkpKS4ObmpiGLNQ+JCBF0Ru4L2c1JVQi/bJwhQbHZWDrMHYliMYQhIQpPuMKQECSKxVg6whOUOtpcjRCKYiOwV3uMDvFGYK/2BrsdVhE2RWHsrAW1bqoooWlcPZOKlMQ4XD2TCprW/w59GelpyMmuWWz2YdZ9ZKRrLvlXE5TlCGn6pS4zZszA+vXrsXnzZly/fh1TpkzBy5cvMWHCBADAuHHjFJKpS0pK5OKnJSUlePDgAS5duoQ7d+7Ix3zxxRfYunUr/vjjD1hYWCA3Nxe5ubl49Ur/tvNJRIigMxzMZY9cqqp/ysYZGkO7OWPHZzzM3nMSPF6i/LibnSV2fuGPod4uOrSOoM/4vB+EGd9vwNZlC8Dj8eTH7Z1dMeP7DdU2VTzzpxhbl2k3x4amaVw5cwqP8/PQ0s4eHj4y+6ocUyMi9CSfmdhs2Th9oawbtKbnVJeRI0eioKAA8+bNQ25uLry8vHD48GF5AnVWVpaCg/nw4UN07dpV/nNsbCxiY2MREBCApKQkAMCaNWsAAIGBgQprbdq0CR9//LHaNmoT4ggRdIafizVcW5jXuP3DtTaHnzPzcsvGxtBuzgj2aoWU2wXIefYanOam4HdyMPhIUGOhOqdAE/i8H4Qe/T7A9XOn8bQgDy3eVVCVRYIk76qryt4rfPoEq76ahCCBAFG7d8oT0KNFInw3bSK+/mFDnZ2hEwf3Y/WiucjJLne0rG3tIJFI8OzxI/kxjrMLpi8UoW8QM/kEazvZDVvVQ1XZOEJVwsLCqt0KK3NuyuByuZCq2D5V9b4+QRwhgs6g2CzE9GmHMftk2z8RkRWqf0QiJIrF2DbUy6D7CQGybbKA98ov4CziBGkcmpYg+cxt5OQ9A8ehBfi+2t9mU+YUcJxdMClqEfiDhmhkDTZFKS2RVxb5MTYxQbfu3avvPbRsIXr0/6DWZczJhw7g2ykTIBAIELmr3NFavHgxDh48iJiYGISFhcmdrzkTP8KSDVsYOUPuPXuB41xzXpSjiyvce/aqle3aQpvl8wTmkCsqQacIOzhg21AvXElNUqj+yTiVhG1DvSDsUPeqBYJ60BIJTlzPw47TmThxPQ+0OonRdV2bliDp9B1sP3ARSafv1IteWJz4Atrx5qLvh7EY8/mv6Bu6HO18IxEnVq8DrjqcOLgf30weD28vxQqn7l6e+HbKBCQfOqC1tc/8KcaKL6tWVw3o3x8Xzp9HfHy8wviyHJvc7Pu4fu50rdakaRrro+dBIBAgPj5eoUJ0//79EAgE+OWXX9C0aVO58xUkEOCHhXMZ5ShRFIVP535bY17U5KhFCk4cTdM4dTIF+3btxamTKQ0iF4qgHVjShhS/0nMKCwthZWWFZ3d+gqWGq8akWVmqB5WhxhOBNO+R6kHvKLmkXHdGKUyjOO9spSVSpGY/Qe6LN3AwN4Gfc9XO0tLXzKuaJG+YX9RYTZg/D0jflt+YaYkUp3KeIfflGzg0MwGP01zB5rpUjVWGlkjk22OOLZvB/z1bRttjLDPmQV9pcSn2ncvCrF2XkVlBnoJrZ4llIzwVcpLYtuaM52W1cmQ0Lu7oP5i58m9k/ve4fG2nloiNECB0oHvVXzA2ZWwDmijPM4sTX8DwSWshEAQhMrJCHytRtKwf0YYpCA3qXu20T636Mlr+n8flVWM0TWO0X1d4e3kiXkn0IkQoxPnLV7Ap6azK6MvTV8z/JgDZdtiXA33Ro6un0siJUCjE1atXcfv2bYW1i4qKYGlpiekr1sBfEKowp5WJ6u/Y5bQUzBwlS/pXtnWVlpYGHo+H48ePy3NKyo6tjROjux+/xvkL38jOQ/KhA1i3+BuFKJujiysmV4iydWwpxcGEA1gYMQ/Z98vHObu6YH7MIgwOkY0rKizEexw3PH/+XKEfjyYou1fc/8gPlmpU3TGau6QUrltStWJ3Y4VEhOoRmpYgKfUGtsedQVLqDYNVx1YGxWaht2tLjOjsiN6uLdXaDqMlUpzMfoJdN3JwMvtJvfQdSribD8/t6RgcfxGf/PUPBsdfhOf2dCTcVcNZZMi+C9noOPcwBsQex7hf09B/6d/oMEeMfefUcI6ZrHMuCyNXp1TVNuvZGyNXp2h8vYrEHf0Hw2fugnvXXoprd+2F4WG/I+5IhsbXpGkJZi7aU7OK/cI9Gv87vXLmFHKysxBZQ4VTTtZ9XNVChdP1c6eR91/11VURERG4d+8ekpOTFd4ry7FpXsveQ48ZJjPn5ORUOfYoL5fxOvxBQ7D55Hl8t3M/on5cj+927sdvJ84pbDUeTDiASWMmwMtDMSLm5eGJSWMm4GCC9qJxBP2EOEL1RJz4PNr5RqJv6HKMmfKLLPwesBhxhy7r2rQGTcLtPLj/loZBu89jwsGrGLT7PNx/S9OKQyJf824+PjpyDR7+fRQupB7+ffDRkWsaXXvfhWyMWnsK7j7adU5oiQSzdl2usbnl7F2XtbJNRtMSzFzxV80OyRKxxh2S5DO3kZlVULOK/f18JJ++pdF1mToFj7VQ4VTWTVodh6Qsx8ZBRe+hmmhZIZlZGfIGoRxOlWM29uptj1MUBa9e/ugb8iG8evlX2Q5bGKF8iy4+Ph4CgQCLIufX2zaZvpTPGzrEEaoH4sTnMXziGrh7KipBu3v5YviUjcQZqiUJt/MwJjGjXhySMmiJFFGn79XoMMw9fU8jUSlaIsHsPRn14pyUaZtF1tDc8l5+IVJuFtR5rSprX7iPzAdPanZIsh8h+ey/Gl03J+8ZAAZOQd5zja7L1CloqYUKp7Ju0qrWfvLkSdXeQ7Pm1zpRukuFZGZJpe+rTB8uBm5ubuDz+fJjopgYtHLlwsu39pV0NE3jUloKjiXsxaW0FFw+nYLs+9VH4yIiIpCVeR9nUvWr3xBBuxBHSMvQtAQzF+yu+WlXtJ9sk6kJLZEiIvluvTgkFTmV8wz3n72s0WHIfPYSp3Ke1XmtlNsFyCyoH+ck96msw7hKp+C55puh5Tx6wWztgiKNrsuxbw6AQZTC3kqj63r48Gp0CkQxMeC4uKKLFiqcOnr7yrtOK11bJIKJiQnCwsLkhQvnLl2pc+k8RVGYFLVIaTJzcHAwEhMTMWnSJBQXFys4X9PmL65Tldr43t3x9chgRE+dhK9HBkM0dTIA1d+1vNz66TcklUi08iKoB3GEtEzy6Vuqw+9ZBUhOv6sjCxsmqQ+e1ptDUpHclwy7Yb+sezfsnGevGa2lCefEoYVMlkWlU2CleW0zjo05s7VtLTS6Lt+nHbguthCJoquJUojg5moHvm97ja5LURS+mLe4xgqnSZELtaK2rbLrtFiML5auxoItcZi+Yg0WbInD93+maaSZIn/QEHz7y2acv3RZoUL09NlzsLJuicjISPmxC5evMC6dV0byoQNY+NnH6F6pKs/P1wcA8NNPPyn9vbLvmr0D6TdkSJA+QtqAxZa9AOS8q75ReTOrUKVTZ0rVqCRRp8LsLfMnDZYJw4u4GhVbeFs+NveVTA9K5XkteqOy06pUjXwA2yZNAKhu3GbbpAkkRSWM52WZNalyzMHMmNFaDk2Nq62oY1o1xu9oB66dam0z//feCTVpsJcRv5sruK2sIRJFIz5eydoxIrg5tQTfvRXwuoKDWapGHod5VXspALFzhRj+6a/Vq9hvmFJjPyGLJsy2X40pRa28AUOEMPp1C35YGKXQ+bmVCxeL1m1G78HM+gip89/AZskKEPwGCUCxN2DzEsWu0w7Orgj/cQN8BwpgrEYPJSM1jBg1YjiGfxiKs6dSUZCXA1t7DnrwZH2OKh8zacL89uRm9Uz+b5qmMUE0V54HpNATKSEBwcHBEIlE+Prrr9GkSfnfXdkWnSvXGYEBHfHypWa3RJWihc7S0PR8BgBxhLRMxfB7TTczjh0pc1QHh2YM5TneOROaope9FVysmtXoMLhaNUMvDWyn+LexhauNRc3Oia0l/NupUaZfDRSbjWUjPDFydfXNLXd+4a+VjtYUxUbsjAEYPnNX9Q7JitFaaXAYOrgrdq/7P8z8dp+CU+DmaqeydL6u9AkKRu8PgnDp9Ck8ys+FjZ0DvHx5eFsP9zHfgQL06D9I1lk6Pw8t7GRdp7URhaoMRVHw5feuapOSY7UhLSUdWfezsXPHLqXR4qioKIjFYgQEBOC7776r8F2LQWJiIjbvWF0v5wGQdV/WeENF0hFHbYgjpGX4vu3l4fdqn3ZdbMHv2UaHVjY8/JxaqJbnaN4MPE5zja5LsVlY7O2K8eLqHYbNfTtqpBs2xWZhWUgXjNpY/Vo7JvM05pwM9XbBzi/8MWtX/WubhfbrhN2xIzBzxd+KDolTS+xeMRqhAzprb+0yFfszd5CT/xwcR5t66SwNyJyCyj1y3qoT6arj2l2UdJ1u6OTlyqJ0qqLFt27fVPiuuXKdsXnHagwRDtS+kQS9gjhCWoai2IhdMALDJ/5c/dPumk+IaraaUGwWYnq3xZj91TsJWwZ01oo8xxCuLTb3BeYmH1dwGFytmmFz344YwrXV2FpCLyfs+MQXsxJOKDontpbYMZmHoV2dNLYWIHOGgrs5IeVmAXKevwLHqinj5o11JbRfJ4T074Lk85nIeVQEjo0F+N259eSQsBHIe5cLVE3zRULDwN7BDoDqaPGGrd+DYrORm5sPBwc79PLvUW+RoDKktBRStu5FVw0d0llag8g7S9/9uUpn6bjEc5i5YBcys8orfNxcbLE8MhihgzxVzq1WZ+mSt4yHSgueMh775jzzSgrGOUIUc0dFWlw1DybhVh4iTt7B/acv5Me4LcyxuAcXwa0155CUQVfqLJ2W9xy5xSVwMDNGL3srBcerafsWyqZQirIcIYV1JVKk3C1A7vPX4Fibwb+dDSPnhG3NvPuysvNb7bz2zLdyWRw1+sAYqfFsps5YczUSrdVwhEptlEcdKnOxoCPjOV+rEREqKGaeh1aWI8QEdXKEmjVh7jw4WzL/Phqp8RBjXiFXi6Zp9OjUG54eXko7dwuFQlzJuITz/xyt0fEpLCyCq62XVjtL3w3tAQs1cqGYUPS2FG3izpLO0mpAIkL1RKjAGyGDuiH59C2ZsKN9c/A9OSQSVEdC2ttD0NYOqf89lUtd+Dm1AF4ydwZrC8VmwV/DW281rRXQTvakq44kCIFgaFAUhUVL52LC6M8gFAoRERGh0zygmiCiq/qBXl9RlyxZAhaLhenTp1c7Zv369eDz+WjRogVatGiB/v37Iz09XWHMixcvEBYWBicnJzRt2hSdOnXC2rVrlc4nlUoxaNAgsFisKuKDdYWi2Aj064DRob4I9OtAnCANQbFZ6O1ijREdOejtUlWjjEAgGBYC4SBs2r4Wl69cUijVv5JxmeQBEaqgtxGhs2fPYt26dfDw8KhxXFJSEkaPHg0ejwdTU1MsXboU77//Pq5du4ZWrVoBAGbMmIFjx45h69at4HK5+PPPP/H555/D0dERwcGKfSpWrVoFlhohZAKBQCDoHwLhIAwa8j7SUtKRl5sPewc79PLvCWMj/Wk4KJFIIdFwBEfT8xkCeukIvXjxAmPGjMH69euxePHiGsdu27ZN4edff/0Ve/fuxdGjRzFu3DgAwKlTpzB+/Hi5qvHkyZOxbt06pKenKzhCly5dwnfffYdz584paN4QCAT9haYlSD53DzkFReDYWoDv7UairQQAsm0y/4DKHbr1xxEi6Ad6ebX44osvEBQUhP79+6v9u8XFxXj79i2sra3lx3g8Hvbv348HDx5AKpXi+PHjuHXrFt5//32F3/vf//6H1atXw8GBWXLnmzdvUFhYqPAiEAj1R9yfV9FuYCz6jv8FY2ZuR9/xv6DdwFjE/am8SzWBoE9I6XeVYxp96fpTNTz0zhHasWMHLly4gJiYmFr9/uzZs+Ho6KjgRP3444/o1KkTnJycYGxsjA8++ACrV69G797lDby++uor8Hg8hISEMF4rJiYGVlZW8pezs3OtbCYQVEFLpDhxOx87z2XhxM18rajANzTi/ryK4V9uhXvXXopixl17YfiXW4kzRNB7iPq8fqBXW2PZ2dn48ssv8ddff8HUlHmZZRlLlizBjh07kJSUpPD7P/74I06fPo39+/fD1dUVJ0+exBdffCF3mPbv349jx47h4sWLaq0XERGBGTNmyH8uLCyUOUPPHwE0A/vV6o/PfKzk4WPGY6VqVFcZOZmrMS+zUmz6eblkAi2RIvW/J8h98QYO5ibwc1JMfGab11xiXhF1xpbmFzMea+rEvGM0y5R5VQq7BimMfeezMWv3FWQWlEccubaWWDbcA0O7q3C+1bgosls2YzxWre+uOk4bw7E0LcHMZQflYsYVZRTi4xMgFIYgfPkhhPTrpP42GYv5+CZvchmNszJxZzxniRoCzNoqiVcHMzXK55savWY81tb0FuOxTV5mMx4rfcVMOoNVpHmBYYJ+olcRofPnzyM/Px/dunWDkZERjIyMcOLECfzwww8wMjICXYMmVGxsLJYsWYI///xTIcH61atXiIyMxIoVKzBkyBB4eHggLCwMI0eORGxsLADg2LFjuHv3Lpo3by5fFwA+/PBDeV6RMkxMTGBpaanwItSOhJu5cP81FYO2n8WEA1cwaPtZuP+aioSbzG40jZV957Mxck0q3H16K0Y9fHpj5JpU7DvP/AbQmEi+cB+Z/z2uWcw4+xGSz93TkYUEgmpIREg/0CtHqF+/fsjIyMClS5fkL29vb4wZMwaXLl2qtu/DsmXL8O233+Lw4cPw9vZWeO/t27d4+/ZtlYslRVFyxek5c+bgypUrO6nFjQAAMvtJREFUCusCwMqVK7Fp0ybNf1CCAgk3czEm4TI8/AIVbvYefoEYk3DZYJ0hWiLBrN1XIAgKQnxCAnx9fWFubi6LeiQkQBAUhNl7rhjkNllOQREABqK778YRCARCdejV1piFhUWVC1uzZs3QsmVL+fFx48ahVatW8hyipUuXYt68efjjjz/A5XKRmyu7aZqbm8Pc3ByWlpYICAhAeHg4mjZtCldXV5w4cQK///47VqxYAQBwcHBQmiDt4uICNzc3bX5kg4eWSBFx4o78Zq+wxZGQAGFICCJPJkHQzl6/vPZ6IOVWATILCrE9qpqoR2QkeLxEpNwqQEAHex1ZqRs4trJO0SrFjG3V6ChNINQzRGJDP2hw95asrCzk5OTIf16zZg1KSkowbNgwcDgc+ats2wuQJWD36NEDY8aMQadOnbBkyRJER0fjs88+08VHIFQg9b8nuP/0BSJruNlnPnmB1P+e6MhC3ZHzXJajoDLq8dzwchn43VzBdWoJkShaHtktQy5m7GwDvjd5kCEQCDWjVxEhZSQlJdX4c2Zmpso5HBwc1N7iIhJs9UPuC1mytKqbfdk4Q4JjJdOrUxn1sGpa5b3GDkWxETtrMIZ/ubV6MePvx5J+QgS9RiqVQCrRbANfqdTwtsrrCrlKEHSKg7lM4LLspl6ZsuNl4wwJ//a24NpaQhRdTdRDJIKbnSX822teXLYhEPp+F+z+fiwyLqYpyChcvXQau78fi9D3mQmiEggEw0bvI0KExo2vYwuYGDdBdHQ0EirkCAGym71IJIKJcRP4OjJXcm8sUGw2lg33wMg1YghDQhARWSHqIRIhUSzGzil+jFToGyuh73dBSL9OpLM0oUEipaWQskiOkK4hjhBBp5x++BRvSt5CLBYrVYoWi8WQSqU4/fApAi0NKyEYAIZ2d8bOKX6YtfskeLxE+XE3O0vsnOKnuo+QAUBRbAT6tNG1GQSC2hD1ef2AOEIEnVKW+7NlyxbMnTsXPB5P/p6bmxu2bNmCsWPHGmSOUBlDuzsjuGsrpNwqQM7zV+BYNYV/e1uDjgQRCASCpiCOEEGnlOX+tGnTBnfu3EFycjJycnLA4XDA5/ORnp6uMM5QodhsgyuRJxC0DU1LkHz6FnLynoNjbwW+b/t63VYl6vP6AXGECDrFz8kari3MIYqORnxCgkIn77KEYK61OfycrKufhEAgENQkTnweMxfsRmZWgfwY18UWsQuGIzSouw4tI9Q3xBHSAqUpl1HaVLXWFduKeZSD7dGJ8VjKgnkTubcnrjCfl8Nca0zyiFlvGxMLYywLdceojdUnBO/4xBcmLpZqaVaxzJhrjTVpyzwRW/Kc+RYd1U6NCI6WdOdYnKqNQqulqRpl+KZq6JKp0/nayJj52DcvmY9VQ5MLapQfS18x61z9HrWf+fpmwYyHtmRwnSnD3iyf8Vhayvza1NLkH8ZjWc//YzwWL5n/rUlfM/8uSB/8h7ikmxgRGQ+BIAjbd0bJrzmi6GgMn7gGu0RC9O/BZW5rLSHJ0voBcYQIOkfo5YQdn/hiVsIJhYRgrq0ldnziC6GXkw6tIxAIjQmaliD8xyTlgr3vutnP+ukEzm500a2hhHqDOEIEvUDo5YQhHq2QcrcAuc9fw8HKFP5tbBXU5wkEAqGuJF/ORubDp9i+tybpGh5OZTzQui2kakw/II4QQW+g2CwEtLPTtRkEAqERk/NIto2mspv9YzW2XgkNGuII1TO0RIKU2wXIefYajq0swe9oR8qgCQQCoZ6wb2EGQLV0jV1zM63bQnKE9APiCNUj+y5kY/aeDGQWFMqPce0tsXxsNwz1cdWhZQQCgWAYSFlSGBkZ1djN3sjISOMOinJjNL81BqKTqTYkFFFP7LuQjVFrT8HdpzfS0tJQVFSEtLQ0uPfojRErTmDfmfu6NpFAIBAaPflPXqG0tFTezb7i9VgoFEIsFqO0tBQFT5lVvhIaPsQRqgdoiQSz92RAEBSE+IQE+Pr6wtzcXF6lIAgKwqytF0GrU2ZMIBAIBLXh2MhaP4hEImRkZCgK9l69iujoaACAQ0s1WkTUkrJkaU2/COpBHKF6IOV2ATILChEZVX2Vwr2850i+zrzPB4FAIBDUh+/pDK5jC5xKTcWtW7dw/Phx/PHHHzh+/Dhu3ryJtFOn4NbKGjz3Vro2lVBPEEeoHsh59hoAgyqFp8X1ZhOBQCAYIhTFxvKpgUgUi/FhaChMTEwgEAhgYmKCD0NDkSgWY1lYQL1IbUhpqVZeBPUgjlA9wGluCqC8GqEyZccdWmi/SoFAIBAMndDA97BLJETGhVTFrbGLp7BLJERo4Hu6NpFQj5CqsXrAv50tuLaWcj2tylUKMSIR3OytwO9IeugQCARCfRAa+B5C+O2QfDkbOY9egmPTDHxP5/oXXdVwdRoRXVUf4ghpASPfLjAyNy3/GUDs3CYYPv0PCIUhiIiooKcVI9PT2v3TODTxdq9+0paOzA14y1yjp4lfKeOx0jzmOUyUFXNdMsaUvNX8nABgylxXyaiHM/N51ekP1YK5JhiLYv5nK6WZ//+y1NEPo9TQBFMHNfTDpCVqbCWro2GmxjlDaQmjYVI11m9Pb2E8Vnr/HuOxKGX+uV5sOcd47FuuFeOxxu97Mh4rffyY8ViY1077jgIQ6FEhF0gqAUrfva/G+SI0bMjWWD0ROqALdq/6HzIupimGYi+dxu6fxiF0YA1OEIFAIBAaHRKJdl61YfXq1eByuTA1NYWPjw/S09OrHXvt2jV8+OGH4HK5YLFYWLVqVZ3n1CUkIlSPhA7ogpC+nZB8PhM5BYXgcFqA36N1vYZiCQQCgaAfSCSARMNyirVxhHbu3IkZM2Zg7dq18PHxwapVqzBw4EDcvHkTdnZVUzaKi4vRunVrDB8+HF999ZVG5tQl5A5cz1AUG4E9W2N0kBcCfdsSJ4hAqCM0LUHSqVvYHn8WSadugaZJPy4CQR1WrFiBSZMmYcKECejUqRPWrl0LMzMzbNy4Uen4Hj16YPny5Rg1ahRMTJSnFqg7py4hESECgdBgiTt4ETMX7UNmdoH8GNfZFrHzhiJ0cFcdWkYgqEabEaHCwkKF4yYmJkqdlpKSEpw/fx4RERHyY2w2G/3790daWlqtbNDGnNqEhCMIBEKDJO7gRQyfvB7uXj6KsjVePhg+eT3iDl7UtYkEgs5wdnaGlZWV/BUTE6N03KNHj0DTNOzt7RWO29vbIzc3t1Zra2NObUIiQgRCA4CmJUhOu4GcvGdw5LQEn9fRoLdVaVqCmYv2QSAIQnx8eUsKX19fxMcnQCgMQfi3+xAy0NOgzxNBv5FIZS9NzwkA2dnZsLS0lB+vbguLQBwhgh5B0xIkX81BzpOX4Fg3A78Lh9zEAMQdOIuZ87YjM6u8fQHXxQ7fLR6L0OCeOrRMdySfuo7M7AJs31WNbE1EJHg8HpLP3EEgr72OrCQQdIelpaWCI1QdNjY2oCgKeXl5Csfz8vLg4MC8rYe259Qm5C5D0AviUu6i/Sfb0W9WPMYu+Qv9ZsWj/SfbEZdyV9em6ZS4A2cxfMIPcPfsqbj949kTw8avRNx+/SxH1TY5eU8BqJatycl/Xm82EQjqog/l88bGxujevTuOHj1awS4Jjh49il69etXqc2ljTm1CHCGCzolLuYsRi4/A3dtf8Wbv7Y8Ri48YrDNE0xLMnLddvv3j6+sLc3Nz+faPQBCEmd9sM8gqKY59CwCqZWs4dsyb/REIhsqMGTOwfv16bN68GdevX8eUKVPw8uVLTJgwAQAwbtw4hcTnkpISXLp0CZcuXUJJSQkePHiAS5cu4c6dO4zn1CfI1hhBp9C0BOHrT0MQFKQgP+Lr64v4hAQIQ0Iw69cUhPRyA6VjW+ub5LQbyMzKx/adKrZ/Tl1HIL+zjqzUDXxeR3CdbSESRSvkCAHvZGtiRHBzsQXfp60OrSQQakYirX0DxJrmVJeRI0eioKAA8+bNQ25uLry8vHD48GF5snNWVpbC39jDhw/RtWt5VWZsbCxiY2MREBCApKQkRnPqE8QR0gKS9n6QWKpu+S6VMg/IGUmLmBvw8hnjoVJLC8ZjWaU083nfvGY0LuXBG2TmPsP2qGpu9pGym31KoRECWqnRRt+I+VebxVFjz9qKeSMwljoyFE2qJjLmPpXJN6jc/nlaApgpj3ywqCaMTaBZTRmPVQcKzCVfYMTMXgrAdzHjMeyj75TL1iSKsWfL1zBq/u6iK1FDSuaVGn9rJa+YjXvwgPGU9D/MZTMkRcwkPgDg7d2njMcaWamRWGvM/Dom+fc+47EsE+bfXbXkMJhK37xkfm5ri1QCaDqeK63lhGFhYQgLC1P6XplzUwaXy4VUqtrjqmlOfYJsjRF0Sk6+rNeF6lyPQqXvN2Y4HGsADLZ/3o0zNEKDfbFny9fIuHJWUbYm4xz2bPkaocG+ujaRQCA0AEhEiKBTOHayqoarV6/C17fqjas810N19UNjg+/XCVxXh5q3f9w44Psb1rZYRUKDfRES1APJp64jJ/cZOA7N37UWMLSNVEJDRKKFiJCmt9oMARIRIugUfs82sLe1wuLFiyGp9BcskUgQHR0NB1sr8Hu20ZGFuoOiKHy3ZAISE8UQCkMUEsmFwhAkJooRu2Siwd/0KYpCIL8LRg/3RyC/i8GfDwKBoB7EESLoHIlEgoMHD0IoFFa62Qtx8OBBSBjsRTdWQoU87PljDjKunFPc/rl6Hnt2RCF0qJ+uTSQQCLVEH8rnCWRrjKBjktPvouBxEWJiYrBu3TrweDz5e25uboiOjkZkZCSS0+8ioJVhdkYNFfIQMsQHyan/ICfnCTitbMH370wiHwRCLaFpCZKv5eDBo5coeP4KtlZN0cqmGfidSRNXQ4Q4QgSdUpYEHRYWhvDwcCQnJyMnJwccDgd8Ph/FxcWIjIyUjWtlq2NrdQdFUQjs7f7uB/JnSyDUlrjUfxH+62lk5pY32zQyMkJpaSm4DlZY/n++CPVrXS+2kBwh/YC4vgSdUjFZmqIoBAYGYvTo0QgMDARFUQadLE0gEDRLXOq/GBH9J7p48xW24QcNGgQWiwWbVm0xIvpPxKX+q2tTCfUIcYQIOoXfsw24zjYQiaKVJkvLG+MZYLI0gUDQHDQtQfjGdAiCgpCQULlTezwEAgEeP3mCoMGDMWvDGdD1EFohOUL6AXGECDqFotiIjQqpsTJqeWQw2bcnEAh1IvlaLjJznyOyuuatERG4d+8ePhg0CPdynuHU9Vyt20QcIf2AJBvoAJqmkZx8GTkPn4DDsYE/39OgE19DB3li95pPMDM6QTFZ2sUWu9d8gtBBnjq0jkAgNAZynhQDUN28tWlTWYf13KcMu4YTGjzEEapn9sUlIXzmamRmPpQf43IdsWz5VAwNDdSdYTomdJAnQt53R3L6XeTkF4JjZwl+zzYkEkQgEDQCx9oMgOrmra9eyRwgG3M1JHJqiVQqZSRVoe6cBPUgjpAWyCnughdGVZN7DyUk4LOxcyEQCLB9+165NpJIJMLIEZFYv20TBocMUTqnlTFzrSKzpsw1wdBCDZ0tdfS7cvMZjZPeui3/NxtAQEsALd+du7t3ofAnbc5ca4zVogXjsWCr8bnUGIumzHXcwFYjIshi7hzSYN5yoFTC/MLPZjGPv0vUuMxI1NitN2mmhpNc/Fz1mNqgjsYVQ1hNmH8utpka30ea+Q3y1aMXjMea26ihUfdWjX2bZpqNkvM7O4DrYIXo6GgkJCjr1B4DNzc3HDp0CEZGRriWo4bmHKFBQx636wmaprE4MhICgQDx8fFKE/UWRc4HTavhxBAIBAKBERTFxvJPekIsTkRwcHCV5q2JiYlo0aIFDh48iNLSUtzP1b4jRHKE9AMSEaon0lNTkX3/Pnbt2FFtoh6Px8OZ1DTwevvryErdQtMSJF99iJzHxeC0NAO/iyPZGiPIoWkaKcmXkJv7CA4ONujX282gc+sI6hPq1xrjBnbCtiNHIBaL5ceNjIwglUpx+/Zt+daSmyNp2WEoEEeonsjPlVUgqErUy8vNqzeb9Im45DsIX5+GzJxn8mNcTnMsn9QLofy2ujOMoBfE7zuG2eHf475Cbh0H3y2fjNBQvg4tIzQ0Vk/rg21/3YSvry8+//xzPH78GLa2tmjVqhX8/PwQGhqKI0eOYMLAzohaf0qrtpCGivoBedyuJ+wcZLk4ZQl5lSk7bu9gX2826QtxyXcw4tvDcO/urxCudu/ujxHfHkZc8h1dm9ggoGkaSUmXsH37USQlXWo026zx+45h9Ig58HDvrvj9cO+OYSMWIS4uWdcmEhoQZ27moZSmsXLlSnz00UeYPn06xowZg8DAQDRp0gSRkZF4+/Ytzt1mludIaPiQiFA90dPPD86urhCJRIiPj1eaqOfCdYWPXy8dWln/0LQE4evTIAgKQnyFBEZfX1/EJyRAGBKCWetTEMJrDbIJUj1xcSfx9cx1yMzMkR/jcjlYHhvWoKsRaZrG7PDv5bl1Ct+P+AQIhSGYOesXhITwyDYZgRE5j18CUB2dz33yUuu2SKSaj+BISNGY2pCIUD1BURTmikRITExUqrKemJiIeaKFBncxT776EJk5z6pvchYZiXs5z5B89WE1MxDi4k5i2PCFcFcSMRkxfC72xSXp2sRak5J8CfczHyIyMrKa3LpI3LuXg+TkDB1ZaJjQEilScp9j770CnLhbALoe7740LUHSlYfYnnQHSVcegqbV8yQ4LWXVp6qi8w7WzKtUa4tUC4nSUrI1pjYkIlSPDAoJwdqtW7E4MlKhcaAL17XG0vnGTM5jZk3OysYRFKFpGl/PXAeBIAjx8QlKIyazwn9GcAi/QTrZubmPADD4fuQ8qTeb9AVaIkHyjTzkPH8FjlVT+Le3BcXW/rNtYtZjzLuUhazCd3+Tqbfg2tICSwd3hLCLo1bXjkv9F+Eb0xUEU7kOVlj+SU/GQql891bgcppDFB2tEIUG3kXnRSK4ObYArxNH4/YT9BMSEapnBoWE4OSVK9h58CBWb/oFew4lIPXKWYN0ggCA07K8yZky5KKr78YRFElOzkBmZg4iI6uTDYjEvXsPkJx8ud5to2kaJ5LOY8f2IziRdL5WOUsODjYAGHw/ONa1N7QBsu9sFt77+gD6Lz+Gj35JQ//lx9Ah8hD2nc/W6rqJWY8xIfkmPHv3VYg+evQKwOitZxGvxchtXOq/GBHzN9wrCaa6e/MxIuZvxkKpFMXG8s/8kSgWQxhSSdYnJASJYjGWfepXLxWrpHxePyARIR1AURR69e4NI9YbXZuic/hdHFU/nXGag6/lJ82GSk7OYwCqIyZxe5MAAPwa5Fwql6f7872UjqVpGskpF5CT8+idREzVcfvijmN2+A9VOqgvXT4NQ0P7VLv2w5wnCmv7873gynWESBStEPECKojyunHA57vXcJa0C01LkHz2X+QUFIFjawF+j9ZavYnuO5uFEd+fhCAoCNujosobs0ZHY+QaMXZO8cPQ7s4aX5eWSDHvUlaN+XxzDp3AkE4cUGyWZteuIJhabS7hphSE+HIZnfvQ3u2wa0EQwtemKMr6OLbArgVBCO3dDoUvyfXZUCARIYJOoSg2lk/qVfPT2aReja6fEE3TSDpxGdt3HEfSicu1rvDicFoCUB0x+Xn1XvTvOxXvtRulNGdoX1wSOr0XioH9P8P4sXMxsP9n6PReKOL3HVMYF7/vGDq9F4oB/T7HuLHzMKDf5+jYfhj2xR2vMNdxjBoRoSRnqRtGjYhQGFs2vmP7YRjQ7/Mqa1MUhaXLv6xRlDd22eQat/1omkZS8lVs352MpOSrGq2mizuSgXb9lqLv2LUY89U29B27Fu36LUXcEe3kLNESCcL/uCh3CBQasyYkQBAUhNl7rmhFOT0tvxBZhcU15vNlPipCyr1HGl9bpWBqWS7hNeZCqaG92+HWlvE4unIYts4dhKMrh+Hm7+MQ2rudps2vFhIR0g9IREgLmBk9QjMj1U8T6sgUPH7DbP8bAFgmzOc1ZT9lNI6mJUg+l4WcvOfg2FuB79OuZufEuAkzA9hshAa0xy42G+HrFJ/OHG0sMC3UE9ZWZqClgJEa0hIwUiMfpomJ7POduY2cvGfg2DdX/fnqQNy+FHw9az0yM8sv2ur0xJFWOA/+vT3B5XKqjZiIRCK0atUK165dw/Xr1yESRWPE8LnYtXuxvJpsX1wSRgyXSb/sqCT9MnrEHPyxaxmEQ/shft9R/G/EHKXjRo2IwB+7lmFIcCBmhf9YY5XX7Fk/QhAcCIqi3pXGRyiRnYnG6BFzsGv3Ygz7MBDU7sUIn7la8endjYM9O6IQGuIL0G+rOdep+Hr2r4rn2tUe30V/hNDgqnpTshPM7O8n7uAFDA/7HQJBELbvjlKwfXjY79i96n8IHaA8UlcjVPXRlOQbBcjML8T2GhwCHi8RKbcKENChUiuOGuatjFRJ8nNeseyapir6+N+dJ3gD5X//lKM5YxtYFWxgWumV8/il6rKpCrIoFIDALhVygaQSoPTd/39p42g/QVANS0oU2jRGYWEhrKyscC//CiwtVetMqeMIFb2VXdRomkZ6airyc3Nh5+CAnn5+VZ6GbUyY990xffGPyjFxB9Ixc+4fyMwq76vBdbZF7PxQhA7upvyXcpnlCkifPpP/m6YlSM54iP2n7mLH8dvIq1C+yuU0R+y0vgjt04HRvLBhnjMSl3QXMxftQWZWQfl6LraInTcMoUGKn49lZsV4XigZG7cvBcNGLoZAEITISMWbZ2KiGHt2zVPpDEkr6Z3FxZ3E8GHzIRAEISIiUsFBEYvF2LNnD0JDQwHInCOhMARXr17EjVvbAQDvtRsFd/fuSts6CIVCZFy9iMvX9sCj04fwcO9W47if183F4Pc/Q1pamlJhy7S0NPB4PBz5ey38+V7o9F4oPKpdu9xOiqJkW3LJl5Gb8xgOnJYI7FVzZ+m4fakYNiq6+nO95WulzpD0xeMazz8g+662482Du5ePUgdUKAzB1YtpuHVohsyhfsG8FFvyb1a17+1IvYexPyajqKgI5uZVnYqioiJYWlpiy+ReGOXDVXjvTUZBlfHV8Sq/anFCat5zCI9eU/l/myjwBN9RudafGd+JsQ3s5uV5gUkZD9EvMlHl2kdFAgS6q9hGN2Wmv1f4sgQthOvw/PlzWFpqtst02b1im2kbmLE0W8RQLKUx5vVdrdjdWGlc+w2NnEMJCejt4YGRgwdj6iefYOTgwejt4YFDCQlaWzPuQDqGj/8e7p49Fbc5vHwwfNIviDt4QWNrURQbT4pe44e4y+jJ61OlueLwyH2IO35DY+sBsq2N4ZPWwt3TR3E9Tx8Mn7QWcWLNfT6apvH1rPXyCi9FvbkECARBmDnrF7W3bkJDe2P3noXIyDgPHo8HS0tL8Hg8XLx4UcEJAqomUCcnX0ZmjeXpEci89x/W/bwb9zMfqBx3MukcAAY9WnIfMSyNL0/0pigKgYHdMGr0AAQGdlO5Hfb17F9rPtdzt9Z6myz5zG1kZhfUnKT+32Mkn8+s1fzV4dBcJnCqMnncSg0hVIb42lrCxdIMouhoSCrtv5Tl83GbNwPPobnG1+Z3kgmm1rS2m0Nz8DupISJNILyDOEINBJly/Vh4eXgo3LC9PDzw2dixWnGGaFqCmXP/qPFmEr4oTu0+HjWtF74utcb8h/CfkjS63syYRBWfb6/G1ktOuYrMzFwVFV6164kTGtobt+9sxbHjK/FF2FAAwLVr1xScoDLkzkjOY+QyTLb+99//GI0rCy+r7NHiYMO4NL7MRnVITrmm+lxn5iL51HW15waAnLznCjZWRr5VU1BYq/mrg9/RDlw7y5odAjtL+Le31ei6AECxWVjo6VxjPt+3PbgaT5QG3uUSTuhZcy7hhB4NLpdQItXOi6AeDetbY6AwUa6PjorSuKRCctoNZGbl13wzySpA8pnbmlkvg0FzxQdPkHxJMyXCyWf/ReZ/j1V8vnyNfb6yXjfa6okji5h0xYcf9gYAXL+u/CYvd0Y4LeHAMNm6dWsnRuMCArzhym0FkUik/EYdIwLXrRX8+V6MS+PLbFQHxuc695nacwMAx1627akyMmOr2a0Jis3G8rFda3QIlg7z0Fo/IYFzS2z0b4/LJ48pRB8zUo7j9/6dEOymeQesjFCeG3bN6Y+Mc8kKa189l4Jdc/ojlOemtbUJjRviCDUA0lLOIvv+/Rq3JbIyM5GemqrRdctuEipvJnnPlb6v9npPmCZEvtDMegVFzNbLe6aR9cp63Wi7Jw6f7yFPoK7OGXFzawU+3xN8vie478rTlY+NAdfNCZ9+PlyFgyMb1zuwO5Ysn15NB3VZldeSZdOqlMarslNdGJ/rWm7j8H3agetsW7PtTi3B786t1fw1MbSnK3Z91RsZ6ScVHYL0k1orna+IwLkl0gd7Ir5fZ6zjtUOiwBMXhnlr1QkqI5Tnhltrh+OoSICtM/viqEiAm2uHNVgniFSN6QfEEWoA5ObKkpRV3bDLFO41RdlNQuXNxF6NBOKa1rNm1vqe05J55UmN69laMFvPvrlG1uP7dwGX66Dixl/3njgURSH2uyk1lpwvW/45KIoCRVFYHvvFu7HKpV9iln0JY2PjGhyc8nEURUE4tB/+2LUMVzIuKEYNrl7E9l1LIBzaV26nqtL4MjvVP9edVZ9rrgP4vI61PMdsxM4PrdH25eEfaG2rZmhPV9xcFYy/w/tiy+Re+Du8L65HD9K6E1QGxWbBz94KoVxb8B1baGU7rNq1KTYC3R0xOqAtAt0dG9x2WEWII6QfNNxvkAHh4GAHQPUNu0zhXlPwe3UA18Wu5puJiy34Pprpu8F3L2+uWG3+Qytr8L00c7Hn92gNrlNLFZ/PTmOfj6IofLdsUp164jClPIFa0Rm5evWiQuk8AAwNDcSu3YuVOi5lpfMAanRwKo4rG3vtZjyO/P0LNm9djCN/r8W1G3vlTlD5uL7YvmtJlTmV2akOFEXhu6X/V/O5Xjy2Tuc6dHA37F71P2RcTFO0/WJa7Uvn1YBisxHQwR6jfLgI6GBfL/IaBEJjhJTPaxBtlc/TNI2uHQfAy8Oj2tLlyxkZOHH5MiiK0mj5fFnVWOXS7JgYERITxdi9frLyEvpalM8DQFzyHYxYeBCCoCBERFZYTyRColiM3aKhzEroGZbPxx3JkPeCUf75PlMooa9r+TygvI+QmxsHscsY9hFiM2//9baUrVByXlNn6ddvjZGafBE5uY/AcbCBH79rtZ2lmYwrgwXVuWtlnaUL8nJV2lkGVao6EVlZHyE3rgNiF4+tto8Qk/J5Oc+eyNo+nM9ETkEhOLaW4HdX0t1YQ+XzlZG+VN4/SRl1LZ+vDmNzY8Zja1s+r1H0qHx+A0s75fMTpaR8Xh2II6RBtNlHaNee0/hs7FgIBAJERERUuGHHIDExEWu3bsWgkBAA9dNHyM3FFsvnabaPkHy95DsIX5eKzJzy99wcW2D51D711kfIzcUOy+d9qPE+QmXIZCquIifnCTgca/B7q77xl6GOIySRMmxsCeCtRPMl1wAzR6gMI3YJ47FMHCHg3bk+dg45uc/AcWgOPq9jjedaXUeIEcQRAkAcIfncxBHSK0hn6QZC9cr1XAUnSBuEDumJkMHeSE66wLyzdF3W47dFCK81kjMeIufJS3Csm4Hv7ggjBs5lrdYL6oaQD7zqrbM08K7CK6BCEjC74SnDNxQoikIgX7vbVARCbdBGuTtJEVIf4ghpkLLgWlERs6omdSJCL942hX+fPhCnpOD8mTMoyMuDrb09uvv4gKIoFBWWPx0bmzCvqip5wfzJr5u7C/Auj/dlsQoJkRfMBAulNQgbdmtnC0BWifLy9VuwKDVEEE1eMx8rkT3Ryj6fi2y9aj4fq5R5hAWlavx5qeEIaS8ipB1JAfUiQswjHFQp8ygLXjP/nktfvmI+7wuG3zOGfw8AIClmHhWTvipVPegdb94wH/v6LfOxTUqYPzCUvmL+2djGWro90cwSuwvf/T9oc9PklRbcFm3M2dghjpAGKSqSlWN7tOGpGEkgEAgGyG+6NkB9ioqKYGWlmcrYMoyNjeHg4IBpufc0Om8ZDg4OMDZmvmVp6JAcIQ0ikUjw8OFDWFhYgMWqv3LSwsJCODs7Izs7m+wJawlyjrULOb/ahZxf9ZFKpSgqKoKjo2OV/m2a4PXr1ygpYR4hUwdjY2OYmppqZe7GCIkIaRA2mw0nJ+bJgJrG0tKSXOS0DDnH2oWcX+1Czq96aDoSVBFTU1PirOgJpPEEgUAgEAgEg4U4QgQCgUAgEAwW4gg1AkxMTDB//nyYmDDrj0FQH3KOtQs5v9qFnF8CoXpIsjSBQCAQCASDhUSECAQCgUAgGCzEESIQCAQCgWCwEEeIQCAQCASCwUIcIQKBQCAQCAYLcYT0kAcPHmDs2LFo2bIlmjZtCnd3d5w7d67a8SkpKfDz85OP79ChA1auXFnt+CVLloDFYmH69OlasF7/0db5VXfexow2zjFN0/jmm2/g5uaGpk2bok2bNvj222+1qgWlr9Tlu5aamgojIyN4eXlVeW/16tXgcrkwNTWFj48P0tPTNWw5gaB/kM7SesbTp0/h5+eHPn364NChQ7C1tcXt27fRokWLan+nWbNmCAsLg4eHB5o1a4aUlBR8+umnaNasGSZPnqww9uzZs1i3bh08PDy0/VH0Em2d39rM21jR1jleunQp1qxZg82bN6Nz5844d+4cJkyYACsrK0ybNq2+Pp7Oqct37dmzZxg3bhz69euHvLw8hfd27tyJGTNmYO3atfDx8cGqVaswcOBA3Lx5E3Z2dtr6OASCziHl83rGnDlzkJqaiuTk5DrNExoaimbNmmHLli3yYy9evEC3bt3w888/Y/HixfDy8sKqVavqaHHDQlvnV1PzNga0dY4FAgHs7e2xYcMG+ZgPP/wQTZs2xdatW+u0VkOiLud31KhRaNeuHSiKQnx8PC5duiR/z8fHBz169MBPP/0EQKad6OzsjKlTp2LOnDmaMp9A0DvI1piesX//fnh7e2P48OGws7ND165dsX79erXmuHjxIk6dOoWAgACF41988QWCgoLQv39/TZrcoNDW+dXEvI0FbZ1jHo+Ho0eP4tatWwCAy5cvIyUlBYMGDdKo/fpObc/vpk2b8O+//2L+/PlV3ispKcH58+cVrg1sNhv9+/dHWlqaRu0nEPQOKUGvMDExkZqYmEgjIiKkFy5ckK5bt05qamoq/e2331T+bqtWraTGxsZSNpstXbRokcJ727dvl3bp0kX66tUrqVQqlQYEBEi//PJLbXwEvUZb57cu8zY2tHWOaZqWzp49W8pisaRGRkZSFoslFYlE2voYekttzu+tW7ekdnZ20ps3b0qlUql0/vz5Uk9PT/n7Dx48kAKQnjp1SuH3wsPDpT179tTK5yAQ9AXiCOkZTZo0kfbq1Uvh2NSpU6W+vr4qf/fff/+VXrlyRfrLL79Ira2tpX/88YdUKpVKs7KypHZ2dtLLly/LxxqqI6SN81vXeRsb2jrH27dvlzo5OUm3b98uvXLlivT333+XWltbG5yzqe75LS0tlXp7e0vXrFkjP0YcIQKhHJIsrWdwOBx06tRJ4VjHjh2xd+9elb/r5uYGAHB3d0deXh4WLFiA0aNH4/z588jPz0e3bt3kY2maxsmTJ/HTTz/hzZs3oChKsx9ET9HG+a3rvI0NbZ3j8PBwzJkzB6NGjZKPuX//PmJiYjB+/HgNfwr9Rd3zW1RUhHPnzuHixYsICwsDIMv/kUqlMDIywp9//gl/f39QFFUlgTovLw8ODg7a+SAEgp5AHCE9w8/PDzdv3lQ4duvWLbi6uqo1j0QiwZs3bwAA/fr1Q0ZGhsL7EyZMQIcOHTB79myDcYIA7ZxfTc7bGNDWOS4uLgabrZjWSFEUJBJJ7Y1tgKh7fi0tLav8/f/88884duwY9uzZAzc3NxgbG6N79+44evQohEIhANn5P3r0qNx5IhAaLboOSREUSU9PlxoZGUmjo6Olt2/flm7btk1qZmYm3bp1q3zMnDlzpB999JH8559++km6f/9+6a1bt6S3bt2S/vrrr1ILCwtpVFRUtesY6taYts4vk3kNBW2d4/Hjx0tbtWolTUxMlN67d08aFxcntbGxkc6aNateP5+uqc35rUzlrTGpVCrdsWOH1MTERPrbb79J//nnH+nkyZOlzZs3l+bm5mrroxAIegFxhPSQAwcOSLt06SI1MTGRdujQQfrLL78ovD9+/HhpQECA/OcffvhB2rlzZ6mZmZnU0tJS2rVrV+nPP/8spWm62jUM1RGSSrV3flXNa0ho4xwXFhZKv/zyS6mLi4vU1NRU2rp1a2lUVJT0zZs39fWx9AZ1z29llDlCUqlU+uOPP0pdXFykxsbG0p49e0pPnz6tYcsJBP2D9BEiEAgEAoFgsJA+QgQCgUAgEAwW4ggRCAQCgUAwWIgjRCAQCAQCwWAhjhCBQCAQCASDhThCBAKBQCAQDBbiCBEIBAKBQDBYiCNEIBAIBALBYCGOEIFAIBAaHCdPnsSQIUPg6OgIFouF+Ph4tX4/MzMTLBaryuv06dPaMZigtxBHiEAgaJSkpCSwWCwsWLBA16YQGjEvX76Ep6cnVq9eXad5/v77b+Tk5Mhf3bt315CFhIYCcYQIhAZEdU+xFV9cLlfrdrBYLAQGBmp9HQKhOgYNGoTFixdj6NChSt9/8+YNZs6ciVatWqFZs2bw8fFBUlJSlXEtW7aEg4OD/NWkSRMtW07QN4j6PIHQAGnTpg3Gjh2r9L3mzZvXrzGV6NmzJ65fvw4bGxud2kEwbMLCwvDPP/9gx44dcHR0xL59+/DBBx8gIyMD7dq1k48LDg7G69ev0b59e8yaNQvBwcE6tJqgC4gjRCA0QNq2bau3W09mZmbo0KGDrs0gGDBZWVnYtGkTsrKy4OjoCACYOXMmDh8+jE2bNkEkEsHc3Bzfffcd/Pz8wGazsXfvXgiFQsTHxxNnyMAgW2MEQiNm3759GD16NNq2bQszMzNYWVmBz+dj7969SscfP34cgwYNgqOjI0xMTGBvbw8+n49ffvkFQHn+DwCcOHFCYUvut99+UxhT2VHjcrngcrl48eIFvvzyS/kaHh4e2LNnj1J7MjMzMXLkSFhbW8Pc3BwBAQE4efIkFixYABaLpXSrg0DIyMgATdNo3749/r+dew1peo/jOP6e81KhNdQMwZj1oCTIWiUOm5SXbNBlURZhFw2hB4EVDkorqWGRFtoFgoi0K1EJI7PMlqYrRcoEfaaghJaKSkVlhZTuPJDzP2dHs3NOlpd9XyDs/7uw799Hn/3+/9/P29tb+bPb7TQ3NwPg7+9Pamoq4eHhhIWFkZWVxdatWzl58uQoVy9+N1kREmICS09Px9PTE4PBQGBgIN3d3dy9e5f4+HjOnj1LSkqKMvb+/fusWbMGjUaDyWRSxtfX13Pt2jV27txJcHAwhw8fxmKxoNVqSUpKUuYvXLjwh/V8/fqVuLg43r17x4YNG/j8+TM3b95k06ZNlJSUEBcXp4xta2sjIiKCjo4OjEYjOp2OxsZGVqxYQXR09Ej+m8QE09PTg1qtpra2FrVa7dTn7e393Xnh4eE8evToV5cnxhgJQkKMQ01NTd99NKbX6zEajQAUFxcze/Zsp/6enh4iIiLIyMggOTmZKVOmAJCfn4/D4aC8vJwFCxY4zXnz5g0wsKpz5MgRLBaL8vm/aG9vJywsjIqKCjw9PQFISEggNjaW3NxcpyCUlpZGR0cHx44d48CBA0p7fn4+ycnJ/+l7hWvR6XT09fXR1dVFZGTkv55XV1dHYGDgL6xMjEUShIQYh5qbm7FYLEP27dmzRwlC/wxBMPCLOCkpCbPZTE1NDcuWLXPqnzx58qA5fn5+I1D1gFOnTikhCCAmJgatVktNTY3S1tvbS0FBAQEBAZjNZqf5O3bs4MSJEzQ2No5YTWL86enpoampSbl++fIldXV1+Pr6MmfOHLZs2cL27dvJyclBp9PR3d1NWVkZoaGhrFq1iitXruDp6YlOpwPAarWSn5/PxYsXR+uWxCiRICTEOLRy5UpKSkp+OK6rq4usrCwePHhAS0sLX758cepvb29XPm/evBmr1YperychIYGYmBgiIyNHdPeXRqNh1qxZg9qDgoKorq5WrhsbG+nt7WXJkiV4eXk5jVWpVEREREgQcnEvXrwgKipKuU5NTQUgMTGRy5cvc+nSJY4ePYrZbKatrQ1/f3/0ej2rV69W5mRmZtLS0oK7uzshISHcunWL+Pj4334vYnRJEBJignr79i1hYWG0traydOlSYmNj0Wg0qNVq6urqKCwspLe3Vxm/ceNG7ty5Q25uLufPn+fcuXOoVCqioqLIycn5V+8A/ci0adOGbHd3d6e/v1+5/vDhAwABAQFDjp8xY8ZP1yLGt+XLl+NwOL7b7+HhgcVi+e7KaWJiIomJib+qPDGOSBASYoLKy8ujtbWVzMxMDh065NSXlZVFYWHhoDkmkwmTycTHjx+pqqrCarWSl5eH0WikoaHht51RNHXqVGBgRWsonZ2dv6UOIcTEJ9vnhZig/twmbDKZBvU9ffp02Lk+Pj4YjUYuXLhAUlISnZ2dPHv2TOl3c3Ojr69vZAv+m7lz5+Ll5UVtba3TqhWAw+FweowmhBA/Q4KQEBOUVqsFoLKy0qn9xo0bFBcXDxr/5MmTIcPNn6sykyZNUtp8fX15/fr1SJbrxMvLi/j4eDo7Ozl9+rRT39WrV2loaPhl3y2EcC3yaEyIcWi47fMwsPV827ZtZGdnk5KSQnl5OVqtlvr6esrKyli/fj1Wq9Vpzu7du2lvb8dgMBAcHIxKpaKyspLnz5+j1+sxGAzK2OjoaG7fvs26devQ6XSo1WrWrl1LaGjoiN3j8ePHKS0tJS0tDbvdrpwjdO/ePYxGIyUlJbi5yW85IcTPkSAkxDg03PZ5gL179xIUFITdbmffvn2Ulpby7ds3Fi1ahM1m49WrV4OCUHp6OlarldraWh4+fIiHhwfBwcFkZ2eza9cup4Ppzpw5A8Djx48pKiqiv7+foKCgEQ1CM2fOpLq6mv3792Oz2bDb7SxevBibzUZBQQHw17tEQgjxf6kcw712L4QQY5DBYKC6upr3798Pe1KwEEL8iKwrCyHGrI6OjkFt169fp6qqitjYWAlBQoifJitCQogxy8/PD51Ox7x585TzjyoqKvDx8aGqqor58+ePdolCiHFOgpAQYsw6ePAgRUVFtLa28unTJ6ZPn05UVBQZGRmEhISMdnlCiAlAgpAQQgghXJa8IySEEEIIlyVBSAghhBAuS4KQEEIIIVyWBCEhhBBCuCwJQkIIIYRwWRKEhBBCCOGyJAgJIYQQwmVJEBJCCCGEy/oDkKSU28Q1NLoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAImCAYAAABD186GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1hT1xvHv0lQQZbspRBcxcESEAhGcVYLGqAVa9Xa2mFb22r9gQpoHZVQFa12WGdrbS2CFaGCdRcNiBtU1DpaEdQwVYaKyk1+fyCBkHUDCUE4n+fJ88jJyXnPjbn3vvc97/m+DLFYLAaBQCAQCAQCQS5MXU+AQCAQCAQCoS1DnCUCgUAgEAgEJRBniUAgEAgEAkEJxFkiEAgEAoFAUAJxlggEAoFAIBCUQJwlAoFAIBAIBCUQZ4lAIBAIBAJBCcRZIhAIBAKBQFACcZYIBAKBQCAQlECcJQKhlbh48SLee+899OrVCwYGBjAwMECfPn0wc+ZMnD17lvY477zzDthsNq2+DAYDS5YsUdlvyZIlYDAYtOdAh8DAQAQGBmp0TAKBQNAFerqeAIHQEdi4cSM+/fRTvPLKK5g9ezYGDBgABoOBq1evIiEhAT4+Prh58yZ69eqlcqxFixZh9uzZrTBrAoFAIADEWSIQtE5WVhY++eQTBAUF4Y8//kDnzp0l740YMQKzZs3Crl27YGBgoHScx48fo2vXrrQcKgKBQCBoDrIMRyBoGT6fDxaLhY0bN0o5So2ZOHEi7O3tJX+/8847MDIywqVLlzBmzBgYGxtj5MiRkveaLsNVVlbigw8+gIWFBYyMjDB27Fhcv35drq309HR4eHigS5cucHZ2Rnx8vNx+YrEY69evh4eHBwwMDGBmZoY33ngD//33n0y/lStXwsnJCfr6+hg0aBD++usvul8PGAwGPv30U/z888945ZVXYGBgAG9vb5w8eRJisRirVq2Cs7MzjIyMMGLECNy8eVPq84cOHQKPx0P37t2hr6+P3r17Y+bMmSgrK5PqV7/UmJOTg7CwMJiYmMDU1BRTp05FaWkp7fkSCISOB4ksEQhahKIo/P333/D29oadnZ1an3327BkmTJiAmTNnYsGCBaitrZXbTywWIyQkBCdOnMCXX34JHx8fZGVlYdy4cTJ9jxw5Ah6PB39/f+zcuRMURWHlypUoLi6W6Ttz5kxs27YNn3/+OVasWIH79+9j2bJl4HA4uHDhAmxsbAAAS5cuxdKlS/Hee+/hjTfeQGFhIT744ANQFIVXXnmF1rGmpaUhJycHX3/9NRgMBubPn4+goCBMnz4d//33H77//ntUVFRg7ty5eP3115GbmyvJsfr333/h7++P999/H6ampsjPz8eaNWswZMgQXLp0CZ06dZKyFRoaivDwcHz00Ue4fPkyFi1ahCtXruDUqVMyfQkEAgEAICYQCFqjqKhIDED85ptvyrxXW1srfv78ueQlEokk702fPl0MQPzTTz/JfG769OliJycnyd9//fWXGIB43bp1Uv1iY2PFAMSLFy+WtPn6+ort7e3FT548kbRVVlaKzc3NxY0vB9nZ2WIA4tWrV0uNWVhYKDYwMBDPmzdPLBaLxQ8ePBDr6+uLQ0NDpfplZWWJAYiHDRum+Mt5AQCxra2tuLq6WtKWkpIiBiD28PCQ+l7Wrl0rBiC+ePGi3LFEIpH4+fPn4tu3b4sBiFNTUyXvLV68WAxA/MUXX0h9ZseOHWIA4t9++03lXAkEQseELMNpiePHj2P8+PGwt7cHg8FASkqK2mOIxWLEx8ejb9++6NKlC3r06AE+n6/5yRJ0gpeXFzp16iR5rV69WqbP66+/rnKcv//+GwAwZcoUqfa33npL6u9Hjx7hzJkzCAsLg76+vqTd2NgY48ePl+qblpYGBoOBqVOnora2VvKytbWFu7s7MjIyAADZ2dmoqamRsc3hcODk5KRy7vUMHz4choaGkr/79esHABg3bpzULr369tu3b0vaSkpK8NFHH6FHjx7Q09NDp06dJLavXr0qY6vpXMPDw6Gnpyf5HgkEAqEpZBlOSzx69Aju7u549913ad3w5DF79mwcPHgQ8fHxcHV1RUVFhUweBqFtY2lpCQMDA6mbez2///47Hj9+DKFQiAkTJsi837VrV5iYmKi0UV5eDj09PVhYWEi129raSv394MEDiEQimXZ5fYuLiyEWiyVLbU3p2bOnxLa8zytqU4S5ubnU3/W5XYraa2pqAAAikQhjxozBvXv3sGjRIri6usLQ0BAikQh+fn548uSJynnVf3f1x0IgEAhNIc6Slhg3bpzcnJF6nj17hoULF2LHjh14+PAhBg4ciBUrVkh0aa5evYoff/wReXl5tPM+CG0PFouFESNG4ODBgxAKhVJ5S/379wcA5Ofny/0sXd0jCwsL1NbWory8XMphKioqkupnZmYGBoMh0y6vr6WlJRgMBgQCAbp06SLTv76t3p6iMenqQTWXvLw8XLhwAdu2bcP06dMl7U2TwJvOy8HBQfK3vO+OQCAQGkOW4XTEu+++i6ysLOzcuRMXL17ExIkTMXbsWNy4cQMAsHfvXvTs2RNpaWlwdnYGm83G+++/j/v37+t45gR1iYqKAkVR+Oijj/D8+XONjz98+HAAwI4dO6Taf//9d6m/DQ0NMXjwYCQnJ0siMwBQVVWFvXv3SvUNDg6GWCzG3bt34e3tLfNydXUFAPj5+UFfX1/G9okTJ+RG0zRNvUPZ1KHbuHGjws80nWtSUhJqa2uJgCaBQFAIiSzpgH///RcJCQm4c+eOZLt4REQE9u/fj59//hl8Ph///fcfbt++jV27dmH79u2gKApffPEF3njjDRw9elTHR0BQh4CAAPzwww/47LPPMGjQIHz44YcYMGAAmEwmhEIhdu/eDQC0ltzkMWbMGAwdOhTz5s3Do0eP4O3tjaysLPz6668yfb/66iuMHTsWo0ePxv/+9z9QFIUVK1bA0NBQyhEPCAjAhx9+iHfffRdnz57F0KFDYWhoCKFQiMzMTLi6uuLjjz+GmZkZIiIisHz5crz//vuYOHEiCgsLsWTJErWW4ZqLi4sLevXqhQULFkAsFsPc3Bx79+7FoUOHFH4mOTkZenp6GD16tGQ3nLu7O8LDw7U+XwKB8HJCnCUdcP78eYjFYvTt21eq/enTp5KlAJFIhKdPn2L79u2Sflu3boWXlxeuXbtGluZeMj766CP4+/tj3bp1+Oabb3Dv3j0wGAx0794dHA4HR44cwYgRI5o1NpPJxJ9//om5c+di5cqVePbsGQICArBv3z64uLhI9R09ejRSUlKwcOFCTJo0Cba2tvjkk0/w5MkTLF26VKrvxo0b4efnh40bN2L9+vUQiUSwt7dHQEAABg8eLOm3bNkyGBoaYv369fj111/h4uKCDRs2KNRv0iSdOnXC3r17MXv2bMycORN6enoYNWoUDh8+DEdHR7mfSU5OxpIlS/Djjz+CwWBg/PjxWLt2rUINLAKBQGCIxWKxrifR3mEwGNizZw9CQkIAAImJiZgyZQouX74MFosl1dfIyAi2trZYvHgx+Hy+1LLNkydP0LVrVxw8eBCjR49uzUMgEF56lixZgqVLl6K0tBSWlpa6ng6BQHiJIJElHeDp6QmKolBSUgIulyu3T0BAAGpra/Hvv/9KylvUKzKrsyWbQCAQCARCyyDOkpaorq6W2pFz69Yt5ObmwtzcHH379sWUKVPw9ttvY/Xq1fD09ERZWRmOHj0KV1dXvPbaaxg1ahQGDRqEGTNmYO3atRCJRJg1axZGjx4ts3xHIBAIBAJBe5BlOC2RkZEh2aXUmOnTp2Pbtm14/vw5li9fju3bt+Pu3buwsLCAv78/li5dKtlpdO/ePXz22Wc4ePAgDA0NMW7cOKxevVpGe4ZAIBAIBIL2IM4SgUAgEAgEghKIzhKBQCAQCASCEoizRCAQCAQCgaAEkuCtQUQiEe7duwdjY2PapSoIBAKB0PYQi8WoqqqCvb09mEzNxxVqamrw7NkzjY9bT+fOnaUKZhNaBnGWNMi9e/fQo0cPXU+DQCAQCBqisLAQ3bt31+iYNTU1MDaxQe3zSo2O2xhbW1vcunWLOEwagjhLGsTY2BgAUHA8GiZGNH6gNU9pjy26rLgwaFNqix/R7suy7kq7r7iKfl0zRtdOtPsyzenPAU1EPJWihTpsACCupvf/VltYRXtM0SP6T5hiinZXMPTpPxHrWRnS7+vZm/4kuqvxACEW0e7K6NqN/rDV5fTn8Kia/rh37tHu++TANdp99X3tVHd6ASvkLdp9F+6V3Ukroijcu3YBjx6Ww7CbBexfcQeTxUL0a/Si4wYX9tC2X7K2rlTTgXsPsOIfIe5UP5G8193IAPNd7PCqvRkAwOp9H9rjiu9X0O7LsDSj1a/y8TM4hW+RXNc1ybNnz1D7vBIDPJaDxdK8M0NRNbicuxDPnj0jzpKGIM6SBqlfejMx0qfnLOnRX6oTdaVfiqFWn/6Nl2VAf1xxLe2uYBio4SypcWzQU8NZeqadpVCxiN4G0lp9+t+BqJb+plQxRb8vowv970tPjf8zPaMuqjvVY2xAv69YBIoSQXDqBoTFFbCzMQXXtw9YLFmnj2GohqPPeEyrH0WJIDh9DcLSKthZGYPr7SzXtmRcQ/q/3U5dFF9uKZEYWXcfoOjRM9gadsZI/R5g0Vz6YZnQd3K7dDWS+vv6ycMQbF+DB8V3JW1mNg7gvj0XJm/SqxJgoMZv4UknPaTfvY/Pz91CcFAQdsXEYODAgcjLywM/Nhafp6djsx4LQQ7mMDGkP664hv7/A0ONcQFoNaVCT88ALD01zg+akDQQzUOcJQKBIBdKJELmzTIIK2pgZ6qPIb0tad/Am0vyvvOIWJqM/MJSSRu7hxXiF4ch7LVBWradg4iv9iC/sKzBdncLxM97DWFjBmrNburNEkRn/ovbDxsiwuzMm1g1dRBCfbWn1n/95GHsjY9AUFAwYmL+kDgtsbF87I2PQKrPavBCR2nUJiUWY9nluwgOCkJKaqokF8jPzw8pqakI4fGw7NhRjLWnF/152WGwGGCwNO/YMMTEWdI0ZDccgdDGoURiHL9djqTL93D8djkompGtlrAn5w76LTmA0Wsz8PbPJzF6bQb6LTmAPTl3tGYzOf08Jn6wCa4evsjOzkZVVRWys7Ph6uGLiR9sQvK+89qzvS8HE2dugauHn7RtT39MnP0bkg/macVu6s0STE2/BLchw6Xt+gxF+Jpj2HPqtlbsiigKgu1rEBQUjNTUFPj5+cHIyAh+fn5ITU1BUFAwouevAUWpseZLg1NlVSioeozomBiZpGkmk4mo6GgUVD3GqTL6S9gEQmtAnCVCi6FEIhy7XoKdZwpw7HoJKBH9vJNm2aNEyLh4FwkZN5Bx8S4oSnP2KEqEjEv3kHD8X2Rcuic1dv17O0/cQsaVIq0fJwCk/FOEgRszMXbHabyTegFjd5yG65YspF4r0prNPTl38OaWbLj6DZO+gfsNw5tbsrXiMFGUCBHL/kBwcBBSUlKlbt4pKakIDg5C5LJkjf5fS9n+ao9y26v+0rhtSiRGdOa/kiiLlN3UVAQHBWHebzla+Z3duXoeD4rvIiYmWq7TEh0dhfxbd5CVqVkHtbimLkVg4ED5kbr69vp+7R4mU3svgkYhy3DtEEokRuZ/ZSiqqoGtsT6G9LQEi6mdsOyenDuYv+cS8hs9CbItjbHyTQ+Eejtq3F5y1n+I3HIS+UUNCZ1sW1Oset8PYQE9WzZ29i1EbjsrO/Y73gAg+561CVa95YlQH80fJ1DnKE3Zk4vgoCDsbJLbMSU1HTt4AO8VW43apEQizN9zSekyyYKU4wibEag0l0ddBKduIL+gFAmJCiIOUdHgcDgQnLqBQM4rGrNbZ/sm8gvLkJCkwvbZWwj07aUxu1l3H+D2w0fYqSTKwuFwILhagsABmv1/fvSgbqlRldNSJCyV+35zsdGvyy3Ky8uDn5+fzPt5eXlS/QiEtgJxP9sZe84UoP+KI3h1Qyam7ziLVzdkov+KI0i5dFf1h9W1pSQCMemHTOw5W6ARO/URnbmbT2Di8gMY6DVE2p43F+GxB5Gc9V+zbSRn30L4iqNw9ebKjr3iKCZ+fUT2vcFDEb7uOPac0cxxNoYSiRH19w2lUYfo4zc1viSXebMM+WVVSpdJbpVWQpCr2WMWFj8EoPrmLSymv+uJtu2SCnq2SzW7NFT0iF6UpegBveR0dTA0swTQ4Jw0pb7d1s5Ko3Z9LY3haNwV/NhYiJpEzEQiEeL4fDgad4WvpeZ3oLVF6nOWtPEiaBbiLLUj9pwpQPi643Dzl3Ze3PyHYfL2Mxp1mJpGIOTdzOcnXWjxEkLyiVvo+9EujIxOw7o/6y7geZcv4969e7JLFltPNWuphKJEiNx2VuGxvPbaazA2Nsbu5GT5SyUJml8qySq8j9sPqpU6Lfn3q5F1575G7QoragDQcBzK6G+vp4OdTTcAqm/edjamGrULAHbWpvRsW2n2Bm5r2BBlUWbX1kwNaQ2adO83CGY2DoiN5ct1Wvj8OLCduyNgiGaT6lkMBr4c4IC09HSE8HhS16kQHg9p6Wn4coADWM3czUWJRMi4XISdmf8h43LrLJUTOgbEWWonUCIRIn/PUeq8LEi/qrFIBK0IREklMq81P4yffOIWwr8+LBvRcXXFG2+8geTkZGl7wocQXBaqbUdwpQj5RRUKjyUmJgZVVVXIysqSf5zFlRD8U6LSDiUS49h/ZUi8cAfH/itT+n9R9ELLSWXUgabmE13sTOskL1Q6DpZGct9vLlzfPmA7WoHPVxBxiOPD2dEKXN8+GrVbZ7s32D0sldvuYQmut7NG7QY4mMGpm6HSKIuzjSm4/aw1ahcAmCwWuG/PRXp6Gni8EKnzi8cLQXp6Gvgr5oKljq4ZTYIczLHZtzcuHDsKDocDExMTcDgcXDh2FJt9+yDIQVYLig57Tt3GK7NTMWrpAUz9VoBRSw/gldmpWkuS1wQMJkNrL4JmIc5SO0HwTwnySyqVRyLKqpD5X5mCEdSDdgSi4onc91VBUSJE/nxavvOXkoLg4GBERERIdutI7N1Xf8lC+OCJ1BhNkYwtlHXEJE7LQ+XHmZJ3D/2/OYpXt2RheuI5vLolC/2/OYqUPPmihrYvtGtURh3U0TuiwZDelmBbGiu/gVuZgOuh2TwtFouJ+C/fQFpaOkJCmkQcQnhIS0vHqi/DNJonJWV7Uahy25HjNG6bxWSAP6SXkihLOlZO9dSaXENfv1EYHxGPrDPnpZyWrLM5GB8Rr3HZgMYEOZjjxOiB2D20H9YP7oXdQ/vhxOiBLXKUwtccg6vP0FbdVUjoOJAEb23QzZqWEB+jM30xMsYt5Sd7UU2dYqTKXSaPn4HRqeUX38YRCGWJmnamNI5RTqhckHcP+UUVSFDk/EVF1SW/CgQIDAxssNfNQO54So/FzIDesdjJqipLnJaunSGukVbtFD2uUxBP+acIU3bnyE3UnpyQjh2veyLERTqBN8DJAk5mRuDHxkolWgMNTgvb3AgB3Zt3c5EHy84ILACrZvggfFXdDTwqOloy3zg+H2np6UiKHA6WGf3lMIYhPc2c18NHIqlbd0RG/AAOhyNpd3Z2QNKu5QgJC0Tj/1kmQw2FdpFyRdWwicOxS98QEQt/l7btaIldP76DsLHu8j/Ylf45bMCVLZnxJrc7OvezQOT24+Bw0hrsOphjFz8UYcNdVI5bTdGPPM0d2+Q3PPYdUIum4VRWNoqLimFjawPfAH+wWCx0pU7SGlPMpp/0bhMlfS6H0v6kYihKhMgdOUo3JczbIQAvoCdYLCYYFvTOGUaXGg3MToUNorP00kCcpXYC3Ru+rYlmpO8bRyAU3cydrU0w5JXmJYiqE+2R2LPrBm4zdg1x+9uCbWOi8FhiY2NhbGyMgIAAqc9JHWdf+cdJicSIOnJd6YU8+mgGxve1kdqxyGIyEDeyL6bsVuy07OC5a2WXY5g/G0mRwxH5i0DacbA1RVLkcIT5szVus57QsEBM4HEhEFxAkbActnYW4HLdtbIc1JSw8YPBe80bgkPZEJZUws7aBNzBvbQSzZKy6+cEnk8PCK4WQ/jgCezMDDB0lKfW7dbDYrHAGTqkVWxpA0FOgfIHq/pdhVeKEOhqr6NZKkBb2/yJdIDGIc5SO4Hb3xZsW1PlkQgrYwzpZakReywmEytCXfHmFsU388RZQ5q9hEDX+bt//75kySIpalSzbjAsFhOrpg5C+Br5x7Jv3z6IxWK8HhYm/zg/DlB4nFkFdYnayreHpyGr4D6Gsi2k3g9xscWO1z0RdSRDKurANjfCDp67xmUDGhPmzwZvsOOLG/hj2Jl1BbefTavcwFksFgIDtavWrdg2E4H+ms+LomV3YEPUh9FKjlJ7oH6zgcoHqwfNSwkgEACSs6RTKEqEDMFlJPyRiQzB5RaJ3rFYTKx6x1tp/sOK8QM0GokI9eyOne/749LJY1I5D3mnjiNx1pAW6Sw1dv7k5c7ExsZCT08Pn376KfLOZSIpalSLdJZCfZ2QNHcYLp05Ln0sZwRImjsMu/4XKPve6eNI/DgAoV6KC8W2NFE7xMUWeR9zsX+qL7aFeGD/VF9cfC9Aq45SPfU38MncXggcaNdqkQ5FUBSFjIzz2JlwCBkZ5zWuLk14OanfbKByU4KZ5muwtRimlmQDmnGdX79+PZydnaGvrw8vLy8IBAKFfTMzMxEQEAALCwsYGBjAxcUF33zzjVSfzZs3g8vlwszMDGZmZhg1ahROnz4t1WfJkiVgMBhSL1tb7V/bmgOJLOmI5LSziFiShPzbxZI2tpMNVi+firAJvs0aM8zfGUnzRyBiyzHpSISVMXa+64sQd4cWz7spoZ7dMcHdXqaGmFqFVuVQ7/yFr1Ac7fl8wkBM8GODO8BWIzfyUF8nTPDpAcHVEhQ9eAxbs67g9rOWRI3q3xMKK2FnaoAhfa1URs4aJ2orXR5V8n2xmAypqJP4ecfbDr0nOQORET8gP78hIZ7NtkP86o8RFjZUhzMj6Bqup6PKqLqzrSm4/dvmTbgtkJiYiDlz5mD9+vUICAjAxo0bMW7cOFy5cgWOjrIPvYaGhvj000/h5uYGQ0NDZGZmYubMmTA0NMSHH34IAMjIyMDkyZPB4XCgr6+PlStXYsyYMbh8+TIcHBruRQMGDMDhw4clf7fGkntzIM6SDkhOO4uJM75HcHAQEnY2Svjlx+KNt9fgj+1zW+QwBdmYIvPfMhRV1sDWRB9DemlPwRuoW5Ib1lfz25vrnb/IbU1yZ+y6tTiSpAgWk6lQLbn+PbEj/aTqAEdzeonaaozZ0diTnIHwiQsRHByMhITdUufLxDcWY9cfS4nD1IFR9WCVlp6OpPkjdB4ZlYe2tvmrO+aaNWvw3nvv4f333wcArF27FgcOHMCPP/6IuLg4mf6enp7w9PSU/M1ms5GcnAyBQCBxlnbs2CH1mc2bN+OPP/7AkSNH8Pbbb0va9fT02mw0qTHEWWplKEqEiMWJkjpUUgm/KakICeEhYtFv4AX5NPvkZjEZGNZHs8q7uiLM3xm8wU4QXCmqS361NNJYJKk1oJWo/bqnVp3ZlxmKohAZ8QOCg4ORkpIi93yJjNgAHi+gzT6RErSPwgcrW1MkzR+BMH/NamS9LFRWVkr93aVLF3TpIh3FfvbsGc6dO4cFCxZItY8ZMwYnTpygZScnJwcnTpzA8uXLFfZ5/Pgxnj9/DnNz6QfDGzduwN7eHl26dIGvry/4fD569tT8g3BLIc5SKyM4eQ35BSWqa2CduIpA7gAdzbJtwWIxG3ax6L18N0SlidpyZAMIDQgEF5Cffw8JCbuVny+CiwgM9FQwCqEjIPNgZWYAbv+2/WClNekAUd2YPXpI51MuXrwYS5YskWorKysDRVGwsbGRarexsUFRkfKC3d27d0dpaSlqa2uxZMkSSWRKHgsWLICDgwNGjWrQ7/L19cX27dvRt29fFBcXY/ny5eBwOLh8+TIsLCwUjqUL2u6vCEBcXBwYDAbmzJmjsE9ycjJGjx4NKysrmJiYwN/fHwcOHJDq8/z5cyxbtgy9evWCvr4+3N3dsX//fhlbPj4+MDY2hrW1NUJCQnDt2jWNHxP9GlgPNG6boDvkJWpf+ohLHCUVFAnLAdSdF3UJ3hlISEhARkYGKIpqJCGh2bIvhJeT+geryUN7IdDVvk07Sq1BYWEhKioqJK+oqCiFfRlNSsyIxWKZtqYIBAKcPXsWGzZswNq1a5GQkCC338qVK5GQkIDk5GTo6zfI14wbNw6vv/46XF1dMWrUKKSnpwMAfvnlF7qH2Gq02cjSmTNnsGnTJri5uSntd/z4cYwePRp8Ph/dunXDzz//jPHjx+PUqVOSNdWFCxfit99+w+bNm+Hi4oIDBw4gNDQUJ06ckPQ5duwYZs2aBR8fH9TW1iImJgZjxozBlStXYGhoqLHjalwDS6kAog09IT/Cy0PTRG2Camzt6r6v77//Hhs3bkR+fr7kPTabLcmPsLMjOV+Elw9t5yyZmJjAxMREaV9LS0uwWCyZKFJJSYlMtKkpzs51y5uurq4oLi7GkiVLMHnyZKk+8fHx4PP5OHz4sMr7uaGhIVxdXXHjxg2l/XRBm3S7q6urMWXKFGzevBlmZsqdhrVr12LevHnw8fFBnz59wOfz0adPH+zdu1fS59dff0V0dDRee+019OzZEx9//DFeffVVrF69WtJn//79eOeddzBgwAC4u7vj559/RkFBAc6dO6fRY+P6vQK2o7XyOlRsG3A5/TRql0B4GeFy3WFlZYbo6Gi4urrK1AiMiYmBtbUZuFzlF2ECoU3CYgAsphZe9B2wzp07w8vLC4cOHZJqP3TokFT+lyrEYjGePpWWQFm1ahW++uor7N+/H97e3irHePr0Ka5evSq3WoKuaZPO0qxZsxAUFCS1tkkXkUiEqqoqqSSyp0+fSoX+AMDAwACZmZkKx6moqAAAmWS0xjx9+hSVlZVSL1WwWEzEL52ktA5V/FdTO3z4mECoh8lkIigoCCkpKTI1Al977TWZXCYCgaAec+fOxZYtW/DTTz/h6tWr+OKLL1BQUICPPvoIABAVFSW1g+2HH37A3r17cePGDdy4cQM///wz4uPjMXXqVEmflStXYuHChfjpp5/AZrNRVFSEoqIiVFdXS/pERETg2LFjuHXrFk6dOoU33ngDlZWVmD59eusdPE3a3DLczp07cf78eZw5c6ZZn1+9ejUePXqE8PBwSdurr76KNWvWYOjQoejVqxeOHDmC1NRUhaJ2YrEYc+fOxZAhQxTmFgF1eU5Lly6VfSP/X0CJbk7YAFPs+vp1RHz3t/TOjR6W2LVuKkJ9rCEW3pL+kBo1qFiWmq1EX49YjXBx0zppSvsqEGSUB6NrJ/rjPlVjDjX0BQ7FIjGtfkzjzrTHrK8jR2vcTvRPW3U0mRh29POnGLZOtPtCjRqITREILqC4uBwxChTQY2JiwOFwkHHsGoYFeikcp5MacxB3VaPunYUa55qxMf2+5vSXaw1YFbT7GjH+pd33PuhF68wNn9EeU+xEv46cqnp+jWF60C/XImbRPC8rH9Ees7m0FemASZMmoby8HMuWLYNQKMTAgQOxb98+ODnVnedCoRAFBQWS/iKRCFFRUbh16xb09PTQq1cvfP3115g5c6akz/r16/Hs2TO88cYbUrYaJ5nfuXMHkydPRllZGaysrODn54eTJ09K7LYl2pSzVFhYiNmzZ+PgwYMykSA6JCQkYMmSJUhNTYW1dYPuz7p16/DBBx/AxcUFDAYDvXr1wrvvvouff/5Z7jiffvopLl68qDTyBNR523PnzpX8XVlZKbP7QBFhw13AC/aC4OwtCEurYGdlDK63c4eJKFEiETJvlEFY+QT2tsbgulirFHgkdDwaJ3jLoyHBu6zV5kQgtEc++eQTfPLJJ3Lf27Ztm9Tfn332GT777DOl4zXOL1TEzp076U5P57QpZ+ncuXMoKSmBl1fDEyJFUTh+/Di+//57PH36VKGWSmJiIt577z3s2rVLZvnOysoKKSkpqKmpQXl5Oezt7bFgwQJJclpjPvvsM/z55584fvw4uneXrRLeGHmaFerAYjER6KvGk1Y7YU/OHcxPvoj80ipJG9vaBKve8kSoT/NLpBDaH/UJ3io3RNhppuYhgdCaaFs6gKA52tSj/MiRI3Hp0iXk5uZKXt7e3pgyZQpyc3MVOkoJCQl455138PvvvyMoKEjh+Pr6+nBwcEBtbS12794NHo8neU8sFuPTTz9FcnIyjh49KteRIrScPTl38OamE3D1HSadrDt4KMLXHceeMwWqByF0GLhcd7DZ9so3RDg7YAjXQzcTJBAIHYI2FVkyNjaWCbcbGhrCwsJC0h4VFYW7d+9i+/btAOocpbfffhvr1q2Dn5+fZPujgYEBTE3rcg9OnTqFu3fvwsPDA3fv3sWSJUsgEokwb948iZ1Zs2bh999/R2pqKoyNjSXjmJqawsCgDRZgfAmhRCLMT76I4KAgqdIffn5+SElNRQiPh3kJxzHBqztZkiMAqKsTtSp+FsInLkRICA9RUY0U0OP4SEtLx86kOKLeTXgpaSs5SwTVvHR3pKaJZhs3bkRtbS1mzZoFOzs7yWv27NmSPjU1NVi4cCH69++P0NBQODg4IDMzE926dZP0+fHHH1FRUYHAwECpcRITE1vz8No1mTfKkF9ahWgFybpR0dG4VVwJwT8lOpohoS0SGhaIpF3LcenSeXA4HJiYmIDD4SAvLwc7k+IQGjZc11MkEAjtnDYVWZJHRkaG1N9NE82avi+PYcOG4cqVK0r7iMX0djgRmo+w8gkA1cm6RQ+ftNqc2iKUSIysgvsoqqqBrbE+AhzNO3ztuNCwQEzgcSEQXECRsBy2dhYIGOJFIkqElxoGU0s5S1THvl5ogzbvLBHaD3YmdcuZqpJ1bbt13GXPlKtCRB2+jtv3G7RInMyNEDeqL0L6tT2httaExWIhMHCQ5G+RmDhKhJccJrPupY1xCRqFfKOEVmNIH0uwrYzBj1WQrMvnw9nGBFwXawUjtG9SrgoxZVcO3DiBUsnvbpxATNmVg5SrQl1PkUAgEDokxFkitBosJhMrwtyQlp6OEF4T9XIeD2np6Vg52bNDJndTIjGiDl+XJL9LKVWnpiI4KAjRh6+DoimISSAQGqgrwnwBCTv/RkZGjkJB4tamPsFbGy+CZiHLcIRWJdSzO3Z+yMH85GPgcNIk7c42JkiaPbTD6ixlFdzH7fvV2Kkk+Z3DSUNWwX0M60k0hQgEuiTvycT/IjchP7+hUCybbYf41R8jLGyoDmdGeJkgzpIWqM25iVoD1WU5WD26aWcCnehHZsRP1XjCUiMRkdFJcT5JmD8bPF9HZF4rhbDiCewsutJX8BbRL98BNZ6uGF3pnwoMEc1cGYp+FKjkxZOuquT3EooCQ5/+XFlW9EuuwMiQfl+mGpcOlhrzBf3yIWI1AuM1XeiXT9A3oF/upNT4Vdp9KTH9Uj3Zd+n/dorPPKbd15vtSrvv3aoaWv0CHHxoj2lkRn+n6zMR/d9jVY38Uj37Uv/EzKlfITg4GAkJDbITfD4fE99YjG9/2YFXJ4TI/Ww1jVqfLUVropRaGLOjQ5wlgk5gMZkY1s8GAMBQw7lrr9ia1JX3UZn8bqJ+GSACoSNCURS+il6I4OBgpKSkSOu6paQgJCQEKxdFY1TQeLKrkqAScpciENoAQ3pawslSefI729IYQ8gSHIFAi1NZJ1B4+zaio6PlL21HRaHwdj7OnsjS0QxJztLLBHGWtAwlEuHY9RLsPFOAY9dLQKmzjEToMLCYDKwM7q80+X1FcP8Or7dEINClpKgYgOql7dLiIrnvEwiNIctwWmRPzh3M33MJ+WWNCsZaGmNFqCtCPZUX6SV0PELcHLBz+mDMS5NOfmdbGmPn9MEIcXPQ4ewIhJcLa9u6ZX5VS9tWNvLznVoFFrPupY1xCRqFfKNaYk/OHby5JRuufk0KxvoNw5tbsrEn546up0hog4S4OeDqglE4+AkX26f64OAnXFxZMIo4SgSCmvgGcNDDyQl8Pl9BEeY49HBiw5sToKMZkmW4lwniLGkBSiTC/D2XlGrmLEjJA0WRJTmCLCwmA8N6W2HSoB4Y1tuKLL0RCM2AxWJhEX850tLSEBISIr20HRKCtLQ0zPuKT5K7CbQgy3BaIPu/cuSXVSFBhWaO4EoRAl3tdTRLAuHlg6IoCASXIBSWw9rWHkO47uRmR1DIa7wJ2PjbdnwVvRAcDkfS3sOJrVQ2oLXQWm048oClcYizpAWKK+v0SVQlFgrv09dHIRA6OsnJx/G/iI3Iz28o+8Jm22Plqs8QGhaou4kR2jSv8Sbg1eAgnMo6gZKiYphaOcCbE0CcbIJakGU4LWDTSDNHHvXtduZdW21OBMLLTHLycbwxcSlcXb2kcwBdB2FSeDT2JGfoeoqENgyLxQJnKBch4W/Alzu0zThKJGfp5YE4S1rAv6cF2Co0c5ytTMDtr8NdGATCSwJFUfhfxEYEBwchJaVJDmBKKoKDgzB/3vdtpt4XgUBofxBnSQuwmEysCHVVqpnzdchAsMj2TgJBJQLBJeTnCxEdrSAHMCoat27dRabggo5mSCA0j/pyJ9p4ETQLyVnSAixrA7zB7oukbl0Quf24dMFYW1MkRQQizM8JePaM/qB06qbVo0ZletFD+rW4mGrUT1MHsRrzZajxPTD06dfiUguac2AZqFGXTR3UETbV70K/b20t/b5i7ezkpCA737vCuhpdqnIA7wgrUCtW43gV8G+VP+2+F0uqVHd6QXnFE9p975RU0+6bdegm7b57lNRsbIqxKb3SOicHWNMe028gfX05MzXOXyaD/jXEwoBe31o1rkuE9g9xlrRImJ8TeD49ILhaDOGDJ7AzMwC3nw2JKBEIamBrZwFAtbignS0pBUN4uWAwmWo9AKozLkGzEGdJy7BYTAQOtNP1NAiElxYu1x1stj34/FikpKRKLcXViwuynbsjgOupw1kSCOrDZDLA1EIytjbG7OgQ95NAILRpWCwWVsXPQlpaOkJCeHLFBeNWzm4zO5wIBEL7g0SWCARCmyc0LBBJu5Yj4n/fS4kLOrEd8HvSSoSEjtTh7AiE5sFgaicKxCBhEI1DvlICgfDy0PS+IiZJuAQCQfsQZ4lAILR59iRnIHziQri5ekstw7m5eeGt8HlI2XNE11MkENSGSAe8PBBniUAgtGkoikJkxA8IDg5GSkpKE1HKFAQHByNq3joiSkkgELQGcZYIBEKbRiC4gPz8e4iOjlYgShmF/Ft3kCXI0dEMCYTmUb8bThsvgmYhCd4EnUCJRMi8VgphxRPYmRtgyCvWYBFtEIIcioTlAGgUpi4qa7U5EQiEjgVxlgitzp6zBZiXdAH5JZWSNra1CVa+6YFQH0cdzozQFiGilIT2CpOhJZ0lBoksaRriLOmSzvTLYYjKH2llCkxjNUpyqJM0SMnfpbTnbAEm/ZCJ4KAgJMTEYODAgcjLywM/NhaTvktH0hdDETrYSfG4apX6oFeuAQCgR/9UYBgY0OuoRqRM/FyN0jfaopsp7a7iWvrzZbDol60QiWX/HwKGeNESpfQf4gORWL7WUllNb9pzqHpGv+xLeUUN7b6C7Nu0+z57Sj//Sp1kXnVuzLW19OZQS9E/Jy/9e592X0MD+uekQRfN38qeVNMvZdNciCjlywNZ9yC0GpRIhHlJFxAcFISU1CbV41NTERwUhHk7ckGp4xAR2j0sFgsrVn2uVJSSv2IuEaUkEAhagzhLhFYj81op8ksqER2joHp8dDRuFVdAcLVERzMktFVCw4ZjZ1IcLl06Dw6HAxMTE3A4HFzKy8GOxNXghY7S9RQJBLVhMplaexE0C1mGI7QawhdV11Ul6hY9pF+dndBxCA0bjgm8ocgU5EIoLIOVrQMChgwiESUCgaB1iLNEaDXsTOtyfVQl6tp2o5kT1E6hKBEEFwohLHsEO0tDcN17gMUiT4pA3ZLcsEAvAMBzUcf+nRBefpgsBphaEJDUxpgdHeIsEVqNIa9YgW1tAn5sLFJS5STq8vlwtjEFt5+1DmepW5IzriHyuwzk33sgaWPbm2HVZ4EIC3xFdxMjEAiEDgx5XCW0GiwmEyvD3ZGWno4QXpNEXR4PaenpWDnFo8PqLSVnXEN4dApcvQKkvhvXQQEIj05BcsY1XU+RQCBoECJK+fJAIkuEViXU2xGJs4ZgXtJxcDhpknZnG1PVsgHtGIoSIfK7DAQHB0ltj6/fKRjC42He98fA4/YhS3IEgpqIKAo3c0+joqwEppbW6O0xGEyS60ZQA+IsEVqdUG9HTBjUvUHB28oQ3H4dW8FbcKEQ+fceIGG34p2CHA4HgguFCBzUMR1KAqE55Py9H3u+jUXpvUJJm5V9D4R+HgPP4WN1ODOAwWSAoYUokDbG7Oh03LsTQaewmEwM62eDN/3YCBxg26EdJQAQltWJjqos6VGmHXFSAqE9kvP3fmyO+hi+Xh5SS9u+gzywOepj5Py9X6fzI8twLw8d+w5FILQR7CwNATTsCGyKpKTHi36EOiiKwvFjZ5C0cx+OHzsDiqKvfE1o34goCnu+jUVQcDBSU1KkRHBTU1MQFBSMPd/xISK/GQDA+vXr4ezsDH19fXh5eUEgECjsm5mZiYCAAFhYWMDAwAAuLi745ptvZPrt3r0b/fv3R5cuXdC/f3/s2bOnRXZ1CXGWtAxFiZCRJ0SC4D9k5AlBqVEagNBx4Lr3ANveDPzYWIiaKJhLdgo6mIPr3kNHM2x7pO45DFeXYIwb9R7enbYA40a9B1eXYKTuOazrqRHaADdzT6P0XiFioqPlLm1HR0eh9G4Bbuae1tEM65bLtBFVUncZLjExEXPmzEFMTAxycnLA5XIxbtw4FBQUyO1vaGiITz/9FMePH8fVq1excOFCLFy4EJs2bZL0yc7OxqRJkzBt2jRcuHAB06ZNQ3h4OE6dOtVsu7qEIRaL5RfxIqhNZWUlTE1NUbY6FCYGnbAn5w7m77mE/LKGGkNsS2OsCHVFqGd3sGy60h5b/FwNJ0udE0WNccUi+j8VdU5Whr4aiZbqLNepUeuMYWpCf1y6deTUqP2HmhokH7mCiRFJCA4OQlRUtKRuXlwcH2lp6dgVH46wkf3pj6nuHLqqoVvUhX6Ei9HNlv64nbrQ6pa8JxNvhH+F4OBgREc3fFd8fizS0tKxMykOoWHDJf3vPHKjPYXyJ89p9xVco682f3j/Ddp91an3RqlxDhsY0q/T15lmvTVza/q/hadP6Nfdc+5pTruvZTfZOpBnDqTipy9no6qqCkZGRjLvV1VVwcTEBNOXrIXX6Aky7z95VIX5Y9xRUVEBExM1rg80qL9XhH/9Fzrraz5a/KzmEZIWjKM9d19fXwwaNAg//vijpK1fv34ICQlBXFwcLZthYWEwNDTEr7/+CgCYNGkSKisr8ddff0n6jB07FmZmZkhISNCY3daCRJa0xJ6cO3hzSzZc/YZJbwP3G4Y3t2RjT84dXU+R0MYIG9kfu+LDcen8CamSHnk52c1zlNopFEXhf5GbEBwcjJQmyyspKakIDg7CgnnfkSW5Do6pZZ1em6qlbRML3em6MZkMiTClRl8vHlYrKyulXk+fPpWZw7Nnz3Du3DmMGTNGqn3MmDE4ceIErePIycnBiRMnMGzYMElbdna2zJivvvqqZExN2G1NyG44LUCJRJi/55KkYKy8beALUo4jdHRvsg2cIEXYyP7gBbpAcP42hGXVsLM0AneQE/mdNEIgyEN+fhESEuQvr0RF1e0czBTkStS+CR2P3h6DYWXfA7GxfKSmpsiI4PL5cbBy6IFe7j46nKV26dFDetl+8eLFWLJkiVRbWVkZKIqCjY2NVLuNjQ2KioqUjt+9e3eUlpaitrYWS5Yswfvvvy95r6ioSOmYLbGrC4izpAWy/ytHflkVEpQUjOVw0iC4WozAgXY6miWhrcJiMRHo46zrabRZhEX3AdDYOSgsa7U5EdoeTBYLoZ/HYHPUx+DxQhAdHdVouTYO6elpmLH8B53qLWlr51r9mIWFhVLLcF26KF7mZjCk5yEWi2XamiIQCFBdXY2TJ09iwYIF6N27NyZPnqzWmM2xqwuIs6QFiitrANC4mD8gBWMJBHWxs63LZVFVY9DOzrJV50Voe3gOH4sP4n7Enm9jweFwJO1WDj0wY/kPcA/Urc6StjExMVGZs2RpaQkWiyUTzSkpKZGJ+jTF2bnuoc7V1RXFxcVYsmSJxFmytbVVOmZL7OoCEtvXAjYmdcmGKreBm5FCoASCunC5A8Fm24LPV7BzMI4PZ2cHDOF66GaChDaF5/CxWPJHBr5Yn4AZy9bhs+9+R0zC0TbhKDGZTK296NK5c2d4eXnh0KFDUu2HDh2ScjBVIRaLpXKi/P39ZcY8ePCgZExN2W0tSGRJC/j3tADb0lh5wVgrE3D7tT3vmUBo67BYLKxe9SHeCP8KISE8uTsHdybFgUXKWbRJRCIKxTcv4HFFGbqaWsKmtzuYTO3+XzFZLPT18gcAPK8l8i1NmTt3LqZNmwZvb2/4+/tj06ZNKCgowEcffQQAiIqKwt27d7F9+3YAwA8//ABHR0e4uLgAqNNdio+Px2effSYZc/bs2Rg6dChWrFgBHo+H1NRUHD58GJmZmbTttiWIs6QFWEwmVoS64s0tdQVjoxptbY7j85GWno6d7/uTpF0CoZmEhQ7BzqQ4zI/8Vuop1NnZQUY2QB0oisK5LAHKiotgaWMLDz+OVp0usYjC/cLLqKkqw7PHFejc1RT6xpawYA8EQ8sOhFhEoex2HmqqyqFvbAFLJ+3bzM/JwLk936Oi9J6kzdTKHl6hn4LtGahV222RtlLuZNKkSSgvL8eyZcsgFAoxcOBA7Nu3D05OdaWVhEKhlPaRSCRCVFQUbt26BT09PfTq1Qtff/01Zs6cKenD4XCwc+dOLFy4EIsWLUKvXr2QmJgIX19f2nbbEkRnSYPQ0VlytjLB1yEDic5S475EZwmoqaHfVx00pLNEUSIITv8LYUkl7KxNwOW60Xb2m6OzRFEUBII8CIvuw87WHFzuQBmn5TnDFBRFIVOQC6GwDHZ2lhjC9ZDr3KjSWaIoCj+sWoHtm37E/bKGxHB7RyfMXhKLEUGyOjxAy3SWiv7JwvW/t6D6QUPOhp6eHmpra2Fkbou+I96HXb8hKsdtjs7S3csCXD24GVX3hZL3jM3t0G/MB3AYwAWgeZ2l/87+jYM/LEBQUDBiYhoeIGNjY5Geno7hH8RKOUwt1VlSBN3IUmvoLE3/9gg6G2hBZ+nJI/zy+UitzL2jQiJLWiTUszsmuNsj82YZhBU1sDPVx5Delh2+DlpHh6JEEJy9BWFpFeysjMH1dkZLn+cpSqQ1uYHk/RcQEbsX+YUNTgTb0QrxX76BsKBBGrEhZW9PJv4XuQn5+Q1OBJtti9WrPkRYqLTzwGKxWiwPsP/PFHw5dzbKShocHycnJ3z00UfIOnECC96bhq+3/qrQYWoORf9kIWdPLIKCghATE9NolxYfaWlpeMXZAed3xwKvx9BymNTh7mUBziR+JWM7NjYW6YlfAZMWSRwmTSESUTiZtA5BQcFS2/jrSo+kgsfjQbDnBzi6c7W+JEcgNAdy19YyLCYTw/pa400fRwzra00cJQ3QUELmX62VkKEoETLO5iNh/yVknM3XmI3kg3no82o8RkzfhCkRCRgxfRP6vBqP5CNXmj/mkSvoM+E7jPhgG6ZE/YERH2xDnwnftWhMydj7L2Dix9vg6uEnLa7q7ouJH2xAcvr5FtuQsvdCmdvV1Vvanqs33gj/Csl7MlUPogb7/0zBrGlvwW/wYCl7bm5uiI6OxvS330ZQcDC+XbpQYyKXYhGF639vQVBQEFJTU5uIaqYgODgY9+/fx2uvvYbrR7dCLNKcuKZYROHqwc1ybaempiIoKAhXD23WqE0AEF7LRUXJPcTEKCo9Eo2K0rsovnlBo3bbOkwWtCNKSfxNjUPu3O0QSiRCxuUi7Mz8DxmXi0CJtJ/QSIlEOHa1CDuzb+HYVe3ZTM7OR99ZezBy0V+YuuYYRi76C31n7UFydr7mbBy5ij4hP2DEh79gSnQyRnz4C/qE/IDkI1dbNu7BPEyc/RtcPf2lHQFPf0yMSGqWc1NfIsV1EEd6zEGcujEPyd+RSQeKEiEidi+Cg4OQktL0pl6nlB25bLfGHMkGZW7F9iLmbdaY00JRFOJiFih1WubNm4f58+bh7u185J7UjKrw/cLLqH5QhBhFOmwvckHGjRuH6vtC3C9o/v9hU8pu56HqvlCh7ejoaFSVC1F2W3M2AeBxRV1UUpWcSn2/5iKiKFw/l40zB1Jx/Vw2KZJL0BhkGU4LsBy7gdWVRq6IGlEmRi29kz75xC1E/nQa+cUVkja2jSlWTfdCmD9bpr86eUhMBblFySdvI3L7OeQXVzbYtDXFqne8EeZPQ1yxM716VclZ/yF81d8IDgpCQuOli9hYhK9KR9KCUQjjNLKnp8bjlX5dzkPyoTxMnLcLwcFBSPgjRqrm2MR5u7Br7VsIGy3/gi+DkbHknxQlQsSqvySOgJSqe0oqQkJ4iFx7BLzXPFUvnz173jDmmsPKx1y1H7wR/ektyT2W1v0SnP4P+YVlSEhSdFOvU8oWnLiKQE5fxePWPlNtG42VuZXb++6bRNhYd4Odoz24Q2RzmeTBlCNydyo7C4W3byNp506FTguHw0FlZd3vurioCLVNzpcnT+nfjFmd6mw8f/IAgGrHwcDgRQ5ZbRWMjBWLCbL06F9HHhdX0bLNFFehmyW9nMpaGjlTXYzoaWMZmVtJjkekxrXJ1KgLTh9Kx+/xy1BypyER2bq7I96K+BKDRwdJ2q7dfkBrzKePZUuDaBpti1ISNAeJLLUjkk/cQvjXh+Hqw5WOMvhwEb7qb41GXyQ2T95GeHwGXH2GStv05iJ8xVEkZ9/SiB2KEiFyy0lJCRmpKEBqKoKDgjDv5zMtinLUOTT7lUdSVu1vlg3BqZvILyxDdLRiR+BWYRkEZ+l/X4Jz+ci/W658zDvlEJzLV3u+ACAsrXMSVIqrllTIfV9te0X0nIgvFmzDWzPWYvioeejtMqPZS3MlL8TwVNk7c+YMAMBSQ0J5XYwbHAd51Lc/eVLnvBqYWGjEbuOxVNnWpE0AsO3jAVMre8TGytfG4vP5MLV2gG0fj2aNf/pQOtZ98QEGe7pLXYcGe7pj3Rcf4PShdA0cBaEjQ5yldgJFiRD582nlzsT2cxrN76EoESK3n1Nuc9tZjdgUXBYiv6gC0UpKyNwqegjBlebXFBKcy0f+He04H/UOhUrHo7RS7vtyxyyjFyVQZ8zG2FnV7aJRKa5qTX/XoVJ7tma07P3www/SuUyTljfLYbK2taVlb/+BA3BwZMPdVzNCeRaOA2FkbqvQcYiLi4OzszP++usvmFjaw9LZVSN2AcCmtztMLFU4LVb2sOntrjGbAMBksuDzxmdIT08Hj8eTcmh4PB7S09Ph8/qnzUruFlEUfo9fhqDgYKQ2KaycmpKCoOBgJMQva5NLcvWRJW28CJqFOEvtBMGVIhrORAUEV4s1Z/NqMfKLK1XbbIEDU4/w/mMANByDF/2aZYNuJKUZzke9Q6HS8bCiv83XztJY42M2huvFBru7hXKlbEcrcH17N2t8GXucfmA72Si0x+fz4ezsjJkzZ8rmMs3fonYu02DOEPRwcgKfz1doz9jYGCezs/Hpl19pTG+JwWTBZdQHch2HkJAQpKWlwdzcHPv27YPruJka3R3GZLLgFTpLqdMyKGSWVnakOQ8ajpEf8SE4dR4cDgcmJiZ1y7inczDyIz6cBzVPG+v25XMouVOAmGgFyeNRUSi+U4B/zp3SxGEQOijEWWon0HYmHjTfmZCx+aK2XWvUwLMzr8ufUOkYmNPXrpKxQTeS0gzng+vbG+welsodjx6W4HrTL6DL9WKD7aDCmeluAa4XW+35AnUFfeMjxyItLR0hIU1v6jykpaVj1cIQjUkUsFgsrI59W669CRMmID09HfHx8VJOiyTid0sIQaZ6ScksFgsxsSuQlpaGkJAQGXtpaWno1EUfcVt+RaAGZQMAwK7fEHhNXIiME2elHIe//voLYrEYN24LwZm6BN1dh2rULgA4eQxD4PvLcfxkE6fl1HkEvr8cTh7DNG6zHudBw/HG8l0IivgBw99fhqCIH/DGV0nNdpQAoPp+KQDV16GHpZp7UNQUTIaWIkttsBDtyw5J8G4nNHYmlBYXNWu+MyFj80VtO9U2W14DjzvADmxbU+UlZGy7gdtfDQHEpjYaRVIaJ0xLbLTA+WCxmIhfFIqJM7coLNGx69upajkeLBYT8RGvYuLcBMVjrn2rRc5M2OiB2LX2LUSs2i+tlO1ohV0b30fYa57NHluuPZ4f/vg1Av+L2S5lT09PD7/++ivCwsJkPiNxyoX31bY3lheCH39NQGzMfCl7FlbW+CAyGtNnR2hNwduu3xDYvuKP8oI81FSW4enjCnTpagp9E0t07zdIq3pDTh7D0MNtCIpvXsCTynIYmFi0StkRoC66Zf9Ky7SxGmNkbgVA9XWom1UbLC/FZIKhDTkZIlGjcYiz1E7g9rel4UyYarQeHbefDdg2JqptKnBgKEoEwZUiCKuewc68K7gD7BTe2FksJla974fwWMUlZJIWjGqRY1AfSZk453etOB9hr3li18b3EfHVHlnH49upCHtV/dyUsNEDsGvNZETEH5Aes7sFdq2ZTH/nnlIbA8Eb0R+Cc/kQllbCzsoE3OHuWivXE8bzAy/YB4ITVyEseoDikof4YsE29OrVS25/iVNuR1/xuTFjeSEYHTwep09koqSoCHqmFnD31W6Zk3oYTBYs2bL5Qa3ltNj11byoaGvjNMAL1t0dEcvnIzUlReY6xI+Lg013R7h4+SoZhUBQDil3okHqJewf7HoXJhqWDgAN6YD63XDBQUHynYnI4TLyAeKntbSnwOgkO9/63XAKbc4fIVc+IDn7FiK3nUV+USOJA1tTrHrfD2EBPRUf4/GbiPz5tNTnnG27YeW7PtKyAQDQjf5yGcOiYfdP8qE8RKzaj/w75Q02ultgVeRY9ZwPE/mJzxQlguDUTQhLKmBnbQqub2+wnqqxPPpCOkBmzHP5EJZVwc7SGFwvdp0zo60nTAXHJg+GacscdIqi0Nv9M7i6+ciN+IWE8JCXdw43rm5V6ODcrqG/tCSspr9l/Gge/Xy8k5n5tPt2NaRfpkYd6YDOXeg7YV0M6El6iCjt3EK6d6f/G3twLQvrvvgAQcHBiI6KapD8iItDeloaZn+zWSIfQF86oBpfvzFYq+VOPv5ZgC5djTQ6NlA39x/f5ZJyJxqERJZ0CEWJILgshPD+Y5WRFTqEcZyRtGAUIn8SSEcZbE3lOkqaIMzPCUkRgYjcfhwcTpq0TSWOUviKo/L1kmLTkRQzRqHDFMZxBs/XqS4iVf+99bfVaJRDbiSl3vnQACwWU7kuUXPHHKzYyXyZqc9lemNavMKI3x+JC1slEtSWEYkolP53UbKsZtXTrcOUDhk8Ogizv9mM3+OXSV37bLo7SjlKBEJzIc6SjkjO+q9OPFLNyIoqwjjO4Hk5QHC1GMIHj2Fn1hXcfjZaWzIB6hwmnk+PFzafwM7MAFxXB7k2KUqEyG1nJXIDUkKKqakI4fEwb2smeH6KnRMWi4lAV3utHY/ERjt1Pl5GFOUyOTvb4Y/EhTI14zoahReP40LaelSWNRTGNbG0g3vwJ+jhpvkk8bbI4NFB8B4xFv+cO4WHpcXoZmUDFy9fMNuwE01EKV8eSBaYDkjO+g/hcYfh6s2VFXKMPYjkrP9aND6LxUTgQDtM5vZC4MCWRavUt9lTqU1aEgfChxBcFsr9PKHjEsbzw80L3+HvfUvx+09z8PfhlbhxdStxlC4eR+YvX2Kon3Q9vaF+Xsj85UsUXjyu6ym2GkwWC/0Hc8AJCkX/wZw27SgRXi5IZEkbmHUDDOWXJ5BEVuSVqKiPrPyUBd6oAdIOB81yJwCAx/TzXxjd1BAUrKWf3wQFteGE1XX5NirlBqqeS0qQSKFGCROGqRrH9lgNeQN9xaUnpMespj8mXizLnr3VsPTn7Szf6VSn7p46/2dGhvT7qgNLjcsMQ7ljz9IDAoe/SEruRPP/AQAD9L8zkRppnL0c6P/GivpoVhUbqFt627/qRwQFBSM1NUXqepKamgoejwdB+gb09h0OJpOlVsTBlOYu1tpa7dSBVOf/4ewV+rIAdMuokHInhMaQyFIrI7hQiPx7DxSrREdH49a9BxBcvKOjGWoXO/O6G7JKLSMLLd242yjJBy6hz+hVGDFtI6bMTcCIaRvRZ/QqJB+4pOupEdow9/7JQUXpPcTEKBBkjI5GReldFN+4oKMZEgjtA+IstTLCskcAaERWyh+12pxaE+5AO7Btu4GvqNQDnw9nezNwXR10NMPWJ/nAJUz8/De4evpLL8t6+mPi578Rh4mgkMcPywCovp48rihrtTkR6EPKnbw8EGeplbGz7NiRFRaLiVUf+CEtvU4vSUoVmsdDWno6Vs4MaJU8q7YARYkQsWKf8uK9K//SaE0/QvuhazdLAKqvJ11NLVttTgT6MBkMrb0ImqVj3JHaEFz3HmDbm6mOrLh119EMtU/YkF5IWvgqLp3NlCq3kHc+C0lLghA2tI+up9hqCM7eUl28t7AMgrO3dDRDQlvG3sUTplaqCuM6wKaPZgvjvoyIKAqFl8/gn6y/UHj5LESitldYl9Aynj9/jsLCQly7dg3376uv6K8MkuDdyrBYTKz6LBDh0SmKlai/Gt/uIythQ3qB5+8MQZ4QwsqnsLMwVCg30J7RZvFeQvuHyWTBO+wzpG+KBo/HQ3Sj6wmfz0d6ejpGfMjvMHpLirhx6ggEv67Bw+K7krZuNg4YMuUL9PYdqbN5kQTvllNdXY0dO3YgISEBp0+fxtOnDYn53bt3x5gxY/Dhhx/Cx8enRXY61p2pjRAW+AqS+CG4dC5LNrLy1XiEDdOsYGFbhcViItDdAZNHuiDQo0eHc5QA7RbvJXQM2IMCMeJDPgSnmhbGzcGID/lgDwrU9RR1yo1TR5C2OgJDfAZJLfsP8RmE9G8icfPUEV1PkdBMvvnmG7DZbGzevBkjRoxAcnIycnNzce3aNWRnZ2Px4sWora3F6NGjMXbsWNy4caPZtkhkSUeEBb5SF1m5eAfC8kd1kRW37h3SYejIcL2dVRfv7WEJrresEjqBUA97UCAcPbgovnEBjyvK0NXUEjZ9WqcwbltGRFEQ/LpGgbRCCni8EGTtWIuePoE6+a5YTAZYWogCaWPMtsiJEyfw999/w9VVfl3NwYMHY8aMGdiwYQO2bt2KY8eOoU+f5qV5EGdJy1CUCIILhRCWPYKdpSG47g0RFBaLiUBPRx3PkKBLWCwm4ue/homf/6a4eO+3U4kTTVAJk8mC3Ssvf2FcTXL3n/N4WHwXMTF/KJBWiAKHw8HdqznoMcBbR7MkNJddu3bR6telSxd88sknLbJFnCUtkpxxDZHfZSD/XkPhRra9GVZ9FoiwwFd0NzFCmyLsVVfs+nYqIlbsky7l0cMSu76dirBX5T81EQgE5Tx6QE9a4dHD0labU2NIztLLA3GWtERyxjWER6cgODgICbubFIuNTkESPwRhQ3rpepqENkLYq67gjRpAT8GbQCDQwtCsQVrBx8cHAoEAQqEQdnZ24HK5kpxAw25WupwmoRk8ePAAYrEY5ubmKC0txfHjx/HKK68odIxbCnGWtABFiRD5XYbykibfHwPPn9wMCQ2wWEwE+hIHmkDQFA4ug9DNxgGffvoZysvLkJ+fL3mPzWbDwsISZjbd4dDPUyfzY0A7mkgMtO/I0pYtWxAXFweRSIR58+Zhx44dcHNzw+LFi/H555/jww8/1LhN4ixpgexrpci/9wAJuxWXNOFwOMi8Xo5AbzatMcVP6dcpYpiqsXOKZp0ktelKr64UAKBzJ/p9nz2n35ephiPauTP9vjU19PqpU8NNHdSp96bOd6DWd0vzOwAgfnCPdl+GkRr108T0v19Hg0zafR8+5aju9IJHNfS/M3PzrrT7du5EP9nYmmYNNwB48pT+b6eGZt+yCvq/BXWgW8MNAGqfK/otMNDTZyTOpW1HcHAwEhISJFH+2NhYpKWlwWv8dJ0lwpNluObx3Xff4fLly3j8+DEcHR1x69YtWFlZobKyEkOHDtWKs0TCGlqgqJxmSZOyqlabE4FAIHQ0RCIK/50+guDgYKSmSivkp6amIjg4GP+dPkIEKl8yWCwW9PX1YW5ujt69e8PKqm4Z1cTEBAwtqZcTZ0kL2FrQLGliadxqcyIQCISOxr1/cvCw5C5iYuRH+aOjo/Gg+A7uXs3RyfxIbbjmoaenh5oXEf5jx45J2quqtBeAIM6SFuC4O4LtYA4+X0FJkzg+nLtbgEtkAwgEAkFrPKJZaFhXu+EIzePo0aPo0qULAMDU1FTS/uTJE2zdulUrNomzpAVYLAbi545GWlo6QkKaFIsN4SEtLR2rvhhFkrsJBAJBixjSLDSsq91wTKb2Xu0ZIyMjqeW2oqIiAIC1tTUGDdKO1lg7/0p1R9jI/tgVH45L509IlzTJycau+HCEjeyv6ykSCARCu8bexRPdrB0QG8tXUGg4Tqe74QiaYcyYMVq3QXbDaZGwkf3BC3SB4PxtCMuqYWdpBO4gJxJRIhAIhFaAyWSB89YcpK+bBx4vBNHRUY0KDcchPT0NQV+s0tluOBaDAZYWEpK1MWZbRizW0q7uRrTpu3ZcXBwYDAbmzJmjsE9ycjJGjx4NKysrmJiYwN/fHwcOHJDq8/z5cyxbtgy9evWCvr4+3N3dsX//fpmx1q9fD2dnZ+jr68PLywsCgaDFx8BiMRHo44zJ41wR6EN0lQgEAqE16T14JMbNXonM09KFhrPO5CDoi1Xo7TtS11MktBBt7YBrTJuNLJ05cwabNm2Cm5ub0n7Hjx/H6NGjwefz0a1bN/z8888YP348Tp06BU/PutDqwoUL8dtvv2Hz5s1wcXHBgQMHEBoaihMnTkj6JCYmYs6cOVi/fj0CAgKwceNGjBs3DleuXIGjI0nEJhAIhJeV3oNHoqd3IO79k4PHlWUw7GYFh36eOi80XJdfpA2dJY0P2eFpk85SdXU1pkyZgs2bN2P58uVK+65du1bqbz6fj9TUVOzdu1fiCP3666+IiYnBa6+9BgD4+OOPceDAAaxevRq//fYbAGDNmjV477338P7770vGPXDgAH788UfExcU1+1goSkSW4QgEDUJRIghOXK07p2zNwA3oDxZLtzc9QtuHyWShe39vMFltZ4mKiFK+PLRJZ2nWrFkICgrCqFGjVDpLTRGJRKiqqoK5ubmk7enTp9DX15fqZ2BggMzMOlXfZ8+e4dy5c1iwYIFUnzFjxuDEiRMKbT19+hRPGylrV1ZWSr2ffOQKItYcQv7d+5I2toM54ueOJgneBEIzSP7zFP638Dfk3y6WtLGdbLE67h2EhfjrcGYEAkFXdFanAkMzaXPO0s6dO3H+/HmcOXOmWZ9fvXo1Hj16hPDwcEnbq6++ijVr1mDo0KHo1asXjhw5gtTUVFBUnWprWVkZKIqCjY2N1Fg2NjaSLYnyiIuLw9KlS2XfMDNHcuY1TIxIqiuk+0ejQrr8WEyMSMKuDe8hbHhf2sfFaOLsKUVPjafsWjWUa9UoYcLoZkt/3E5daHcVV5bRH/eJGgJlLDVOBbrlRmrol6gRP6VfMoLRif6FQUypUSZHnXIn6qDGuOKnTxS+l7z/IibO+qXunNopfU69MWUFdm39GGFBXvI/3Jn+b9fNNIt234fWg2n3NTWi//9mpk+/BJCLBf0oQtEj+r/zf+8/ptVPndIsz57Tv948qqFfmsXGypB23040I0s1j1ohaZihndpw2hizLXP27Fmt22hT60GFhYWYPXs2fvvtN5lIEB0SEhKwZMkSJCYmwtraWtK+bt069OnTBy4uLujcuTM+/fRTvPvuuzKh+6ZJYmKxWGniWFRUFCoqKiSvwsJCAHXLBBHLUySFdBtL7KekpCI4OAiRsamgKC3VDiMQ2hkUJUJEXJryc2rpH+ScIhAIWqFNRZbOnTuHkpISeHk1PB1SFIXjx4/j+++/x9OnTxXmJiQmJuK9997Drl27MGrUKKn3rKyskJKSgpqaGpSXl8Pe3h4LFiyAs7MzAMDS0hIsFksmilRSUiITbWpMly5dJCqijTlx7j/kF5YhIUlBId2oukK6grO3SJV5AoEGgjM0z6mT1xEY4KKjWRII6sHQUs4SowPmLD18+BBbt25FUVERnJ2d4eHhAXd3dxga0o86KqNNOUsjR47EpUuXpNreffdduLi4YP78+QodpYSEBMyYMQMJCQkICgpSOL6+vj4cHBzw/Plz7N69W7JU17lzZ3h5eeHQoUMIDQ2V9D906BB4PJ7ax1FUWrf8o7KQbmml3Pc7Cg2Juo9eJOr2I4m6BLkIS+rOFZXnVHFFq82pLUJRFE5lZaOkqAjWtrbwDfAn5xShQxAWFoZLly7Bx8cHf/31F65fvw6RSISePXvCw8MDSUlJLRq/TTlLxsbGMhdDQ0NDWFhYSNqjoqJw9+5dbN++HUCdo/T2229j3bp18PPzk0SHDAwMJDVjTp06hbt378LDwwN3797FkiVLIBKJMG/ePImduXPnYtq0afD29oa/vz82bdqEgoICfPTRR2ofh61VXYHcvLw8+Pn5ybwvKaRrZaL22O2F5D9P1yXqFpRI2thONlgdNx1hPJKoS5DGzrruXFF5TtmYyrzXUdiXuhfLohai8HaBpK2HkyO+jFuO13jjdTgzgiLIbjjNcerUKRw7dgze3t4A6jZgXb58GRcuXMCFCxdaPH6bylmig1AoREFBw8Vg48aNqK2txaxZs2BnZyd5zZ49W9KnpqYGCxcuRP/+/REaGgoHBwdkZmaiW7dukj6TJk3C2rVrsWzZMnh4eOD48ePYt28fnJyc1J4jx6sn2D0slRfSdbQC19tZ/S+gHZD852m8Mf0buLoPlqqb5+rmgzemrEJyaraup0hoY3B9aJxTTtbg+tHfNNGe2Je6Fx9OmQ4PN3epc8rDzR0fTpmOfal7dT1FQhtHHVFmOmLQgYGBYDAYMq/Gqz9LliyRed/WVo3NQY0YOHCg1BJ9ly5dMGjQILz77rsyEkPNgSFuDZ3wDkJlZSVMTU3x8PIqHM68hokfbUVwcBCioqIlO3fi4vhIS0tXezecWrvW2vBuOIoSobfnHLi6D0ZKSqrUj1skEiEkhIe8S2dx4+L3cpcP2sRuuCqa47aJ3XD0dxQx1PkOjNTIA1BHIa+z4l1gjXfDyT2nNLQbjmFkQbvv8WL6u+FKHz+j3Ved3XB9uokQ4DoIHm7uSElJkXNOheDCpYvIvHgOpTX0d57S3Q13r7Sa9pja2g2nzo48+rvhqvHl+EGoqKiAiYlmVwHq7xVrjlyCgZGxRscGgCfVVZg70pX23BMTEzFt2jQpUeYtW7YoFGWeM2cO7O3tMXz4cIkYdHx8vJQY9P379/HsWcNvvry8HO7u7tiyZQveeecdAHXO0h9//IHDhw9L+rFYLFhZqV/YOCMjA6tWrcLu3bubtUFMFW1qGa49ETbOA7s2vIeI5SngcDiSdmdHqzpHaZwHUEPvYtSeEJy4ivyCEiQkqkjUzbqKwKHy81MIHZOwsW7Y9cN0RMSlSZ9TTtbKHaV2zqmsbBTeLkDSzkQF51QUOBwOTmVlo6dXoG4mSZBLW5EOUFeUmY4YdGOtQ6BOFqhr166YOHGiVLuenl6zo0mNcXZ2RlVVFfr164fJkyfD19cXnp6eGqvAQZwlLRI2zgO8MW4QnL4JYUkl7KxNwB3cu0MreAuLHwKgkahb9KC1pqRzKEqE4+cLICyvhp2FEbju3Tv0b0QZYWPdwBs9EIIz/0FYUQs7G1Nw/fp26O+r5EWepqpzqqSoCD1bbVaEtkBToWR5O7ibK8rcGHli0E3ZunUr3nzzTZndaTdu3IC9vT26dOkCX19f8Pl89Oyp/i/19ddfR3l5OYYPH47Tp09j06ZNePDgAbp16wZ3d3ccPXpU7TEbQ5wlLcNiMRHo3zHzKORhZ9MNAI1EXVuz1pyWzkg+ehURa48g/14jlXd7M6yaNQxhgeR3Iw8Wi4lAv96AYcdN5m6M9YunclXnlLUGnt4JmkXbCd49evSQal+8eDGWLFki1dZcUebGyBODbszp06eRl5eHrVu3SrX7+vpi+/bt6Nu3L4qLi7F8+XJwOBxcvnwZFhb0l8MB4MqVKzh58qRUPdmCggLk5OQgNzdXrbHk0XEfxwg6gcvpB7ajtfJEXbYtuAH9dDTD1iP56FVMnP8HXL040onugwIQvjAVyRnXdT1FwkuAb4A/ejg5gs/nKzin4uDIdoJvANll2tEoLCyUEk6OiopS2FddUeZ6FIlBN2br1q0YOHAgBg+WzvEbN24cXn/9dbi6umLUqFFIT08HAPzyyy8q7TbFx8cH1dXS+XOOjo7g8XhYvHix2uM1hThLhFaFxWJi9fKpSEtLR0gIT8pJCAnhIS0tHfH8t9u9NgxFiRCx9oh8RerUVAQHBWHe+mNEkZqgEhaLhS/jliMtLQ0hISFNzqkQpKWlYRH/q3Z/Tr2M1EeWtPECABMTE6mXPBHl5ooyAw1i0ElJSTJi0PU8fvwYO3fulORDKcPQ0BCurq64ceOGyr5NmTNnDpYsWYIHD7STwkGW4bQBk0lvB5A6xf+Y9HeGwECNnUqd1Ng1UEt/N48ywiYMxh+/fIH/LfxNOlGXbYM/ts9FWJA3UKugnpieGt+ZkRpLeersnKNZG078RHEC//GcAuTfu4+E3QoS3aNfJLqfL0Cgp3QoXVyruH6aDGrsjBRDjZ1zj9WYgzqos5PzoRoClGqE9MWKfntyGGpzmnbfstoBtPs+E9H/nVPiTnh1Qhg2/MbC8he/m3oc2Wxs+O03vDqBB0oMGHem/3xsZ0xv55xRF/r/Z6eulqju9AJ9NcY1N6Z/HdPTo/cdPNFT45r7EtNcUWa6YtBJSUl4+vQppk6dqnIuT58+xdWrV8HlctU7CNTlLAFAnz59MGHCBPj5+cHT0xNubm5ynUR1Ic4SQSeETRgMXpB3nYJ3SQXsbMzA5fTrMIm6wvJHAGgkupfT35ZN6NiM4/EwJjgYp7OyJAregwMCSETpBSKKwo3c06h+UApTSxv09RwMpo6/m7YiSqlKlLk5YtD1bN26FSEhIXJzkCIiIjB+/Hg4OjqipKQEy5cvR2VlJaZPn672Md+6dQu5ubm4cOECcnNzsWLFCuTn54PFYsHFxQUXL15Ue8zGEGeJoDNYLCYCuQMARsdwkBpjZ1EX/VOZ6G5h1KrzIrzcsFgs+A8dqutptDnO//0XktfFovReoaTNyqEHJs5ZBK+R43Q4s7bBpEmTUF5ejmXLlkEoFGLgwIFSoszKxKBnzZolaZ8+fTq2bdsm+fv69evIzMzEwYMH5dq9c+cOJk+ejLKyMlhZWcHPzw8nT55slhi0k5MTnJycpKJhVVVVyM3NbbGjBBBRSo0iEaW8uhomxjRE8NRZ1qK59AOgTSzDMbqqsVNJDWdJ/EyN5R+xGvk+6izD0VwTFysRr6QoEfpO/hmuXgFISZUjzsnjIe98Fq799k7Lom3qLGupIR6pjjCmWqgzX5Ea/7/q7KxR47erSHxVHuotw9E/hykxfQHLmlr6/8fFj+id71XP6F+bdLEMd/7vv7BpwccICg5GTHSDmGksn4/0tDR8vHKjXIfpSXUVPh3aX6uilBuy/tGaKOVHAS5amXtbJTMzE8bGxnB3d9fK+B3vkb6VoSgRMk5cR0LKGWScuE4SdgkA6qJqq2ZxkZaejhBek0R3Hg9p6elY+TG3wyxLEgjaQERRSF4Xi6DgYKSmpEhtpEhNSUFQcDD+WLccIkqNSgYaRNsJ3h2Jzz77DOfOnZNpv379OioqWl5gmyzDaZHkfTmI+GoP8gsbSnSwe1giflEowl7z1OHMCG2BsGF9kfTVeET+IJBOdLc3Q9Ky8Qgb2keHsyMQXn5u5J5G6b1CxOxOkruRIvqFuvn1nNNw8SbSCi8z165dw7Bhw2Ta//77b6SmpmLfvn0tGp84S1oieV8OJs7cguDgICQkxUhCv3x+LCbO3IJdG99H2Bj6YXlC+yRsWF/whvSGIPdOg4K3mwOJKBEIGqCirG7Zb+DAgaAoCgKBAEKhEHZ2duByuZKNFBVlxTqZH5PJAKsNJHi3B0xMTHD//n306tVLqp3L5SImJqbF4xNnSQtQlAgRX+2RaOjUP9H4+fkhJSUVISE8RC5PAW9kx9n9RVAMi8WUkQcgEAgtx9SyTiTx+++/x8aNG5Gfny95j81m48MPP3zRT7meEKHtM2HCBMTHxyMxMVGqnclkShX0bS7kTq0FTpz9D/mFZYiOVlws9lZBKQSn/9XRDAkEAqH908djMEzMLBAdHQ1XV1dppXxXV8TExMDEwhJ9PQerHkwL1BfS1caro8Hn8yEQCDBq1CjJ7reamhqsWLFCqgRKcyGRJS1QVFpXvFClhk5Jpdz3CQQCgaAZGEwmgoKCkJKS0iTKn4IJEyYg69QZHc+QoAksLS2RnZ2Njz/+GB4eHujSpQtqa2thamqKvXv3tnh84ixpAVuruq2aKjV0rDvGlk4CgUDQBTdyT6OivBQxMfKj/DExMTpN8G4ropTtBScnJ+zbtw+FhYXIyclBp06d4OvrC3Nz8xaPTZwlLcAZxAa7hyX4/FipnCWgUbFYRytwB/dSMkoLUKNcA9TZMquGbpG4skx1p3rUUdFVR8BSHZ0ldcalWaaGYdCV9pDKSqPIjKuGxpH4uRpr9eroFrHoXzrEjx7RH1cdrScDGlpm9ahTL4qirxtEWfSm3beTiL5GWCcm/b61YnVKOdC/aYhoSvCVV9P/jZnRLKECAE/U0G96+lz+day8uE5ZWlWUv1QohNNTaXvq2Ce0LXr06IEePTSbB0pylrQAi8VE/MIQpcViV8XwSHI3gUAgaBETi7oE7/poflPq201eJIK3NvVlRLXxImgW8pVqibBxHti14T1cyj0JDocDExMTcDgc5F04hV0b3kPYOA9dT5FAIBDaNb3cfWBp3wOxsXyImkRORSIR+Pw4WDk4ore7j07mx4SWErzRMZfhtAlZhtMiYeM8wBvjBsHpmxCWVMLO2gTcwb1JRIlAIBBaASaLBd6sKPy0cBZ4vBBER0c10ryLQ3p6Gt7jr9d5QV1C24c4S1qGxWIi0L+vrqdBIBAIHRL3wLGYsfwHpP4QJ6WUb+XgiPf46+EROFZnc2My6l7aGLejwuFw8O+//6K4WLNCo8RZagUoSkSiSwQCgaAj3APHwpU7Gv9eOIOq+6UwsbRGb3cfElFqh0yaNAllZWpsMKIJcZa0TPJfuYhYniJbH25hCMJelb9Dg0AgKIaiRBBcvIuiqmewszQC18ORPHwQVMJksdBnkF+b2lavLQHJjihKWc/s2bO1Mi65wmiR5L9yMfGjrXD18JNWjvXww8SPtiJ5/wVdT5FAeKlIPn4Dfadsw8g5SZiyKAUjPv4NfV7/Ecl//6PrqREIhHYMcZa0BEWJELE8RVIfzs/PD0ZGRpL6cMHBQYjk7wVFqaFtQyB0YJKP30D4l3vh6h0g/fAxKAATF+wmDhPhpYOUO3l5IM6SlhCcvkmjPlwZqQ9HINCAokSIXC+Q//CRmorgoCBEfnuUPHwQCAStQJwlLVFf943UhyMQWo7g4l3kCx8ofviIjsatu/chyC3Q0QwJukZEUbhx/iTOHfoTN86fhEid6gQ6on43nDZe7Z0HDx7g/v37AIDS0lLs3r1bofioJiAJ3lqivu4bqQ9HILQcYXk1ABoPH2XVrTantghFUcjOPI3iohLY2FrDf8hgsHS040tEUbh2/hQelhajm5UNXhnk2+xx8i+dReX9UpiYW4Ht6i2zi+1Cxn6k/hCHsnuFkjZL+x7gzYqCuw6lAQjaYcuWLYiLi4NIJMK8efOwY8cOuLm5YfHixfj888/x4YcfatwmcZa0wZPH4A60A7u7hfL6cN0twB1oDzymXweKFs/UqA2np9utsxQlguBcPoSlVbCzMgbXp6fynU3q6Pjr0a+hhk5q1NfqXEOvX7UaNdH01Ki1pkbtMojo1fcCAHTuRH8O6tRao1lLDwBQK//Y7LrV1YFT9fBha24g//upovl/BoBhZka771PKmHbf+09scfpEFkqKimBta4vBnACFjoy5/n+0x2XhKQAgdc8hxMyLx+38u5L3nNgO+OrrubC0NEORsAymVn3hG+BHy4HSY9L7PeTfk42OX848iIObV+J+0R1Jm7ltd/A+jYb7sFdpjVv16Dn+OXEIf2+Lx4OihmMys3XA8Hci4MIZDQD458Qh7FkxF0FBwYjZnSQRnYyN5eOnhbPwetQ36PeiLwBQNM+Jp4/p12tsLkwGwNLKbjiND9mm+O6773D58mU8fvwYjo6OuHXrFqysrFBZWYmhQ4dqxVkiy3BagsViIn7ea8rrw0WO7dBbnpMPXEKf0aswYuoGTPliB0ZM3YA+I1cg+cAlXU+N0ApQlAgZuYVIOPIPMnILleYbcV3twbbrBn5srNyyFXF8PpwdzMF1V108k6JEyMgpQMLhq8jIKWiVPKfUPYcxzH0g3nxtLD6f8Q7efG0shrkPxF+pKRoa/xCmTZoLN9dBUtcaK0s7zJg6H6+NmoEZ0+bh9bEh4AwcjPSUNI3YlcflzINIXD4bHG9PqblwvD2xbdEsXDh2gNY49U5QgLf0MQV4D8KeFXPxz4lDEFEU/t4Wj6CgYKSmpkjlsqWmpiAoKBhHf45vs0tyZBmuebBYLOjr68Pc3By9e/eGlZUVAMDExAQMLSW3d9w7dSsQNmYgdq2biks52dL14XJPYte6qQgb3XF1lpIPXMLEz3+Dq6e/9M4mT39M/HR7h3aYKEqEjPO3kXDwCjLO326Vm3lr20w+fgN9p/2CkV/8ganL/8LIL/5A32m/IFlwU25/FouJVTMDkJaejhBek4cPHg9p6elY+ekwlQ8fyceuo+/knzHy8yRMXZqOkZ8noe/kn5F87Lo2DhNAnaM0ZdL/4OHmJjVvDzc3fDxtSosdJoqiEDMvHsHBwUhJaXAY7t27h3PnzmHs2LFSdt3d3PHBlBlacZhEFIWDm1cqdV72ro9T6bzQcYIytq3G7bwzeFB0FzEx0XJz2aKjo3BfeAcFl89p/FgJukNPTw81NXXR4mPHjknaq6qqtGaTIRaL1YjTE5RRWVkJU1NTPDy7FCZG+pJ2ihJBcPZWw1KTt3PdRV3UBnbu6GAZjqJE6DN6FVw9/eUuUYaE8JCXexLXD8+TvfkxmXXf55n/GhTRFS3daWgZjqJEEJy6AWHxQ9jZdAN3oDW9iOD9h7TN1y8dJWdcQ+R3Gci/17DMxbY3w6rPAhEW+Epdgzq/m1rVT9TJx28gcr0A+UIlNptSqcZFqckyXPLxGwhfko7g4CBER8c01OqKjUVaejqSFr+GMG5v+XMV3ETkxizkCx9K2pwdzLHy02GK5woAtbVIPnYd4Yv2Krb71XiEDesLhqMj7UN7Yh+o9H2KouDqEgw310FISUmR81sPwYVLl5CRe0lqaUydZTjBsdN4bdQMZGdnS5YoKYpC79694erqqsTuRZy4dErhktx/D+ktwx29VCT5960Lp/DTvOlSc2lMdnbdg+Osb3egj6fs+/XcyDmJHz6fonKcgPCZyEraiKqqKhgZGcn0q6qqgomJCUIjV2LgsCAA6izDVWP1m36oqKiAiYlmc0vr7xV/Xs6HobHm81YfVVViwgC2VubeFqiuroahoaFMFKmkpAR37tzBoEGDNG6T5Cy1AiwWE4G+vVrFVkMOUCXsrEzA9WJrfamvwRl8YbPeGVSA4Owt5N8pR8IuxbIKHA4HgjP/IdBP+qaZvP8iIuLSZBXRo4IRNtZNswcGIDn9PCKW/YH8gtIGe90t6uy96qpZWxnXEB6dgqCgICTslr6Zh0enIIkfotwhaI7NF9pFwcFBSIjWvk2KEiFyQ6ZEAqD+/79eAiCEx8O8TVngceQ7wGHc3uBxekJw6R6E1c9hZ2kIrnsPlb9xihIh8geBcrvrBeAN6a3Ri2JW5nnczr+LnQl/KPitR4HD4eD0iSz4c4c2y0aRsO5caJz8LhAIkJ+fj4SEBKV2T2WdBGdoQLPsyqPqfqnMXBpT315ZXqJ0nPr3VY0D1Dk+qnLZjMyslE+c8FIhzzEGAGtra1hbW2vFJlmGa0ckH8pDn3FrMOKdzZgSmYgR72xGn3FrkHxIe9spJXlH0zZiytwEjJi2EX1Gr1K6jCYspSmrUCodvUg+cAkTZ/0iXxF91i9I3n9RQ0f1wl76eUz8YANc3X21vlRIUSJ8Gn8YQUFBSE2VryM07/tjGl0eo6NdpGmbgkt3kS98qFwC4N4DCC7dUzgGi8VEoEd3TB7TH4GDnGg9DAgu3lEtPXDvAQQX7ygYoXkUCek5DyVFRXLfp4OtnSUASG2bFgqFtOwWF2m22KixuZXMXBpT325iofyGVv++qnEcXQfDzNYBsbF8ublsfH4czO26w3GAF/2DaEWIKOXLA3GW2gnJh/Iwcc7v8nOA5vyuFYdJad7R578pdCbsrBpkFeQhkVWwathpRFEiRMSlKVdEj0vT2I2dokSIWPaHcntfp2vMHv+XEygur0JMjAodoQuFCkZQH9raRRq0KSyv2yGo0lG+r8ZOQk3aLdesXVs7es6Dta1ts21whnjBie0APr/BYbCzs6Nl18bWptl25eE00Bvmtt2VOi+W9j3Qy81H6Ti93HxUO0G23eE00AfD34lAenoaeLwQqesQjxeC9PQ0jHg3ghTM7QA8fPgQq1evRmRkJNavX48TJ07g0SPNnc/EWWoHUJQIEav2K7+xr9qv8ahExIp9ym2u/EuuTa63s0RWQe7Opjg+nHtYguvTU9IuOPMf8u+UK1dELyyD4Az9XA9lCE7dQH5BaavYoygRvt+VA4COjpDmTn762kWas2lnYQiAhqNsbqgxm2rZtdCs3YAhg2QcmXrqfutxcGSzMZjT/KUwFouF2JURSEtLQ0hIncPg4eEBe3t7xCraPRgXB0e2E3wDFOcNNQcmi4UxH8xT6ryM/yRKpfPCZLFUOkGB7/wPTBYLLpzReD3qG5w4myO1kebEuRwZ2YC2BtkNpznCwsLw9ddf4/Lly1i/fj0CAwNhamqKvn37Ijw8vMXjE2epHSA4l6/akbhTDsG5fM3ZfJF3pNKZOHtL5rMsFhPx81XIKiwIklpeqV+Say1FdGHxQ3r2Slu++0KQW4Cyh3UOicqbuaXmbuZ2FkatbpPr6qBaAsDeDFxXe43ZBACuW3ew7cxU23XrrlG7LBYLcSv/J+XINPzWQ5CWlobo5fwWC0fyQkfj18Q1uHjpPDgcDszMzHDv3j2kpaWB13T34Au7X/KXaEWwcsCQMZi0cJ2M85J9LhfvfPUDbZ0lF85ohM5fg6yz56WdoLM5CJ2/RqKzBAD9OKPx8cZ9mMb/GaGRKzGN/zM+3rBPxlESURRuXzqNy8f24fal021WUoCgPqdOncJff/2Fffv2IS8vD1VVVTh9+jSioqJgb9/y6wlJ8G4H0M8B0lxplZbaDHvVFbu+nYqIFfvA4XAk7c49LLHr+7dlkqfrl+RaSxHdzqYbPXtW9EUJFVGvOu3k5AQ+ny9391JsbCxsLIxp6QjRhevmIHEgUlLlCKeqoV1EFxaLiVUfDUH4kjoJgKjoaElSeRyfL9kNp+lNCSwWE6tmcRG+aK9iu1+N18pmCF7oKOxIXI35keukfuuObDZ+/HUHxvFCNGRnNIInjMCJzHMoEpbB1s4SZWUPsGjBmiZ2nbB5x08ICgnWiF15DBgyBv38R+J23llU3S+FsbkVnAZ6w9RYX/WHG+HCGY2+viNQeOUcqu+XwcjcEj36e8mNTDFZLLDdBisc6+qJQzj6U7yUUGZTgcvWRlv5RR0xZ2ngwIFS17AuXbpg0KBBGtsZR5yldkDjHCDlN3bNbSHVhM2wV13BGzWAloI316enakX0Jkt3LYHr2wdsR6tWsWdnWRfh+eijjxAdHY2QkBBERUU17Ezj85Geno4lHwzRqOQEi8XEqk+4CP9SiQPBD9G4AxE2tA+SlgQhckOmtKNsb6ZUNqDFdof1RdJX4xH5g0DW7gvZAG3BCx0FvzEf0Fbwbi4sFgvcYdIOw4SQURIHSh0F75bCZLHg7N68EidNx3FyVewE0eHqiUPYHfdFncp3zC4ple89K+bKRKpaC20tmXXEZbgVK1Zg0aJF2L17N/T11XPK6UB0ljSIRGfp5CIpnSWFqHPTU9KXokToM+E7uA7iKNYtyjmB63tmyd741Ciz0XgOtGzmnsT1/f9TfbOlqfWUfOASJn66HcHBQYiKanRjj+MjLS0du9a+JS30qUb5Dnnfb30Cu0J7ayYjbPQAhUOKaQqkUZQIfSduhqtXAN6ePh2RkZHIz8+XvG9sbAwDPRHu7Jn5wllS45Sl8RtLPn4DkRsypbWL7Lph5Xu+CAtQ4Ayq9duVP1+KEkFwpQjC+49hZ94V3P62YKhRloRposYF0dJc2u6FOxCWV8POwghc9+5Sv1F1yp0wnOkLy1YwXWj3FauRIVErol+q5wnVjXbf2xX0yuoUPqRfrin3eqnqTi948ugZ7b4MJWWQRCIKv80NwZDBg5CaKhu15fFCkHnmPKasSgaT2XAteva4Ghs/DNSqztLBawVa01ka84pju9VZksft27cxbdo0FBYWYvLkyfD19YWnpycc1dBNUwaJLLUCEu2jsirYWRprXPuIxWIifu5oTIxIQkgIT/6NfeXE1re5bqpGbYa96opda99CxKr90pGB7hayjpKm7MlbKuxuodJRUofGS0QA8Ouvv6KyshJnzpzBgf37kX3yJH5aPkFrellhQ/uAF9ALgnO3GhyXAXZa1+disZgIbJKb1BoyrSwWE4GDNHMBJbR97v2Tg4cldxETI1/rKjq6TnPq3j856N7fu1XnRpbhNMfrr7+O8vJyDB8+HKdPn8amTZvw4MEDdOvWDe7u7jh69GiLxifOkpZJPnQZEfEHkH+3XNLGdrBAfMSr4AW+AsH52w1LUDQ1Y+QRNrI/dsWHI2LNoSY3dnPsWjkRYSP7tfhY6Nu0qCvnMkbz5VzCRg8Eb0T/VhPelCwVNhbddOuu+aWpRktEXC5X0u5sb4ZdyydodYkIeOFAuDlo1QaBoAsePZQV7WxMffvjh2Vy3ye8HFy5cgUnT56Em1uDOHFBQQFycnKQm5vb4vGJs6RFkg9dxsS5CXXqyH80Ukfmx+KNL36HjaUJissaEqDZDuaI/98YhI1qXsQibGR/8AJdpKNYno5ajRBIbJ6/DWFZNewsjeqcPsOuWrPJYjEROFgzuUm07TVWYH/2XCt2wob1BW9Ibwgu3oGw/BHsLAy14pgRCB0Jw24Nop3K8iu7vujXmjC0FFnSVjHZtoyPjw+qq6ul2hwdHeHo6Agej9fi8clVWEtQlAgR8Qfk6hC9/fZ0MBgM+PgNlRZzHMTBxP8lIvnw5WbbZbGYCPRmY/JYVwR6a7/UicSmjzMmj3NFoI/yUicE5bBYTAR6OmLyqH4I1LKjSyB0BOxdPNHNWrnAZTcbB9i7eOpohgRNMGfOHCxZsgQPHjxQ3bkZkCuxlhCcy0f+XVkdIoqiEBkZieDgYNmyFvVijmsOtUqleQKBQGjvMJkscN6ao1Tg0v/N2VLJ3a02NyJKqTFef/11HD58GH369MGMGTOwadMmnDlzBk+fPtXI+GQZTksIy+SLKKoucPmiiOz52wj0cW61+RIIBEJ7pffgkRg3eyUyf18rlV/ZzcYBYz9fgd4+I3Q4O4ImuHXrFnJzc3HhwgXk5uZixYoVyM/PB4vFgouLCy5ebFntUOIsaQk7S/kiinQLXGpCGZpAIBAIdfQePBI9vQNx98o5PH5Yhq7dLGHv4qmTiFI9ZDec5igsLASbzZbKT6qqqkJubm6LHSWALMNpDa4XG2wH2fpndAtcakIZmkAgEAgNMJksdO/vjb6cseje31unjhJAluE0yWeffYZz585JtRkbG8PGxgZTp05t8fjEWdISLBYT8RGvytQ/09PTg5GREZYvX664iGx3C3AHOelo5gQCgUAgvFxcu3YNw4YNk2n/+++/MXny5BaPT5wlLRI2egB2rZmMS+ezJYUguVwuunYB9u3bp7iI7NzRZBcUgUAgtHPql+G08epomJiY4P79+zLtXC4Xp0+fbvH4JGdJy4SNHgDeiH4yCt6pR68iIl6OEvXqSc3WWSIQCAQCoSMyYcIExMfHIzExUaqdyWTi2TP6pXMUQZwlbSASSdfOEokAsbiuRpZYDIhECBvZDzxOTwhyChrEHOt1deSJHmqojpwMSmoqyaCGGKP4Cf16UQyWGj9Ddeq90aw5BwCofkS/L93abJVqJOnX0N/eKn6iRs0sU0OtzIEqVuP7UgPRffq14Z5Xl6vu9IIuXvTqnAGAWI3fOcOJ/rid9eh/Z89E9P/fmAz68+3EpH9eWnWlN4ecfNmneUWUl9D/Dh6WPabd19qBfo6niOb5++w5RXvM5sICwNJCEEi3mVi6gc/nw83NDaNGjcKaNWvg5uaGmpoarFixQkrVu7mQtR4tk3z4MvoEr8OI937ClAW7MOK9n9AneB2SD19uJCA5sNUEJAkEAoFAaMr69evh7OwMfX19eHl5QSAQKOybnJyM0aNHw8rKCiYmJvD398eBAwek+mzbtg0MBkPmVVMj/UCkjl1lWFpaIjs7G507d4aHhwcMDAxgbGyMvXv3YtWqVc0aszHk7qxFkg9fxsT/JcJ1EEe+UvfRq7qeIoFAIBB0RFvJWUpMTMScOXMQExODnJwccLlcjBs3DgUFBXL7Hz9+HKNHj8a+fftw7tw5DB8+HOPHj0dOTo5UPxMTEwiFQqmXvr5+s+2qwsnJCfv27cPt27eRmJiIP//8E9evX4e/v3+zxmsMQywW01xTIKiisrISpqameHgiBoYGndEneB1cB3GQkpIqJUApEokQEsJD3vkTuJ78Cb2IkraW4fS70O+rzjIcRX95QmvLcF0N6PfVwjKcuJz+MhFZhquD7jIcJRJDcLUIRdVPYWvUBQE9zMFSsl+6i5cN/UmYm9Huyhw8lHbfJ53pi8yqswxHiemfP89ERrT7VjylN4eDV4poj3khr5h2X50vwz2pxs+zRqKiogImJia0x6dD/b3idL4QRhoeGwCqKysxmG1He+6+vr4YNGgQfvzxR0lbv379EBISgri4OFo2BwwYgEmTJuHLL78EUBdZmjNnDh4+fKhVu60FiSxpCcH528i/e1+m3AnQoNR96+59CHKa50ETCB2VlLx76P/NUYzdcRrvpF7A2B2nMXBjJlL+oX/TJhDaAtqOLFVWVkq95JX+ePbsGc6dO4cxY8ZItY8ZMwYnTpygdRwikQhVVVUwNzeXaq+uroaTkxO6d++O4OBgqciTJuyqG4G6e/euWv0bQ5wlLVGvwK1SqbusWu77BAJBlpS8e5iccBZu/oFSS9tuAYGYsieXOEyElwpti1L26NEDpqamkpe8aE1ZWRkoioKNjXT01cbGBkVF9M6n1atX49GjRwgPD5e0ubi4YNu2bfjzzz+RkJAAfX19BAQE4MaNGxqz6+Pjgw8++ECpNEBFRQU2b96MgQMHIjk5mda48iC74bREvQJ303In9UiUui3ph8UJhI4MJRJj/oGrCA4KQkpqw9K2n58fUlJTEcLjITojA+P72ihdkiMQOgqFhYVSy3BduihOu2A0yXMSi8UybfJISEjAkiVLkJqaCmtra0m7n5+f1L0vICAAgwYNwnfffYdvv/22xXYB4OrVq+Dz+Rg7diw6deoEb29v2NvbQ19fHw8ePMCVK1dw+fJleHt7Y9WqVRg3bhytceVBIktagjvICWwHc5lyJ0AjpW4Hc3A9HXU0QwLh5SIzvxy3y6sRHaNgaTs6Gvn3q5FVSH8re3uEoihkHjuJ3Yl/IvPYSVCU9rfAE5oHQ0tLcPXOhomJidRLnrNkaWkJFoslE80pKSmRifo0JTExEe+99x6SkpIwatQopX2ZTCZ8fHwkkaWW2K3H3Nwc8fHxuHfvHn788Uf07dsXZWVlEhtTpkzBuXPnkJWV1SJHCSCRJa3BYjER/78xmPi/RISE8BAVFY2BAwciLy8PcXF8pKWlY9eKNzq8XABFiZCZm9+gNeXh2OG/E4J8iqrqkr9VLW0XVdNPVG9v7E3Zjy/n81Fwu1DS5ujUA8tWRGN8yFgdzozQVuncuTO8vLxw6NAhhIaGStoPHTokVZS2KQkJCZgxYwYSEhIQFBSk0o5YLEZubi5cXV1bZFce+vr6CAsLQ1hYmFqfUwfiLGmRsFEDsGv1JESsPihfqXtoXx3OTvckZ1xD5HcZyL/3QNLGtjdD/OyRCBvuoruJEdoktsZ1W45VLW3bGqmxw7MdsTdlP96d/AmCg4ORuDNJ8nDG5/Px7uRP8HPCerw64Q1dT5PQCG0VvVV3zLlz52LatGnw9vaGv78/Nm3ahIKCAnz00UcAgKioKNy9exfbt28HUOcovf3221i3bh38/Pwk0SEDAwOYmpoCAJYuXQo/Pz/06dMHlZWV+Pbbb5Gbm4sffviBtt22BHGWtEzYqAHgDe8HwfnbEJZWwc7KGNxBToqVujsIyRnXEB6dguDgICTsjmm4sMfGYuKC3dj19evEYSJIMYRtAScLI/BjY6VyloAXS9t8PtjmRgjoYa5klPYJRVH4cj4fwcHBSElJkc7nSklBSEgIFi+Iw6igULBYHVHfmaCMSZMmoby8HMuWLYNQKMTAgQOxb98+ODnVFXQXCoVSO882btyI2tpazJo1C7NmzZK0T58+Hdu2bQMAPHz4EB9++CGKiopgamoKT09PHD9+HIMHD6Ztty1BdJY0SGOdJRMjfdUfUMdZakc6SxQlQt/wzXD1CpCvQcXjIS/nBK7/8ZHskhzRWerQOkv1u+GCg4IQFd1oaZvPR1p6OnaEeiDExVbmc+1dZynz2EnwXp2M7OxsuVG37Oy6Yt6796eAMzSA1rhEZ0n7OkuX7pbAWAs6S1WVlXB1sNbK3DsqJLKkBcT/3oK4a2fVHS0t6A+qTp0zdeq9lauRDKuOo6LEsRLk3kH+vQdI2K04UZfD4eD4iWsI9Ogu/WE1nDuGOs6dOo4NzXHVcWpqb1fKtFEiMTJvlaGo6ilsjbtgiLMlWEwGmKZqfAfP6TvOoodqOGxVLS9MKXcOj5V/txN6WmHH656IOpIBDidN0s42N1LoKAFAzWn6N3R9P/rnj7j0Nu2+T+3o16diMtSoOcd8hPKSuhwlVflcZUV3oMeg9/9s3Jne7YGpxpqP+0D6TuvN2w9p9z2/9x/afR/9+0B1JwAURb+OHqH9Q5wlQqsjvF8XlVCpQXVfO9GLl4GUvHuYv+8qbpc3FON1sjDGitf6ISyAfoSiPRLiYovxfW2QdbuctoJ3e8fWzhKA6nwuGztrmfcIuoMBERhQYyVAjXE7GgUFBejRo4dcKYLCwkI4OrZs5znZdtQKUJQIGXlCJAj+Q0aeEBTV8X7IjbEzrwvv11/AmyLRoDJXYwmpHZGSdw+TfzsDN/9h0sKL/sMw+bcz2JNzR9dT1DksJgNDnSwQPsAeQ50sOrSjBACcIV5wYjuAz+crkCqJA9u5O/wCfHU0w7aBWCRCVeV13C8/i6rK6xCLdXstZjBEWnt1NJydnVFaWirTfv/+fTg7t/wBk0SWtEzyyduI3H4O+cUNyyxsGxOsetsLYcFqLMO1I7iu9mDbdVOaqOtsbwauq70OZ6kbKJEY8/cpF15ckHwcE9ztwVJnuZXQrmGxWIhdGYFpk+YiJCQEUVFRjaRK4pCWloZfE9d06OTussLTKLj4Ox5XlkjaDLpawtY+FN3MPXQ3MYJGUCRmWV1dLVW8t7mQq60WST55G+HxGXD1GSoVIXD1GYrw+AwkH7+h6ynqBBaLiVUzA5CWno4QHk/quwnh8ZCWno6VH3I6pN5S5q0y3C6vUiq8eKu0Epk3ynQ0Q0JbhRc6Gr8mrsHFS+fB4XBgYmICDoeDS3k5+DVxDXiho3U9RZ1RVnga17LWYcTQwVLXmxEj/HDr5hY8vJ+rk3kxQWnt1VGYO3cu5s6dCwaDgUWLFkn+njt3LmbPno1JkybBw8OjxXZIZElLUJQIkdvPKY0QzPtRAF5Arw7pFIRxeyNp8WuI3JgprUFlb4akxa8hjNtbh7PTHUVVdcm3KvO5KknyKUEWXuhoBE8YgROZ51AkLIOtnSU4Q7w6dERJLBKh4OLvCAoKQmqTa/GfqamYwOPh6NEUmJq5gcHoeNfil5364rxisRiXLl1C584Nm6s6d+4Md3d3REREtNgOcZa0hOBqMfKLK5GgJELA4XAguHgXgZ49dDRL3RLG7Q0epycEl+5BeP8R7MwNwXW175DOYz22xnU73VTWFDRRQxaB0KFgsVjgDhusumMHoaL0HzyuLEGMgmtxTHQ00tM4qK66CWOT1hUK1lZ+UUfKWfr7778BAO+++y6+/fZbGBvTl5FQB+IsaQnhg7onf5URgvLqVptTW4TFYsrKA3RghjhbwsnCWHk+l5UJhvSx1OEsCYSXh+dPHgJQfS1+/lxWvoPw8vDzzz/jyJEjOHLkCEpKSmQ2Ovz0008tGr/jPsJrGTuzuid/lTu+LIxabU6Etg+LycCK1/opzef6OsyVJHcTCDTpZNANgOprcadOrS/eWC8doI1XR2PZsmUYM2YMjhw5grKyMjx48EDq1VJaFFnq2bOnyj5MJhMmJiZ45ZVXEBoaivDw8JaYfGng9rMB28ZE9Y4vNwcdzpLQFgkZaI+EqT6Yv++YtPCipTESpvog1JNE4ggEuphauaCriTViY2OlcpaAumtxLJ8Pg65WMDLumHmS7YUff/wR27Ztw7Rp07QyfoucJZFIhNraWty7d69uMD09WFpaoqysDLW1dQq09vb2KCkpQW5uLpKSkrBlyxakpaVJJWG1R1gsJla97YXw+HRMmDABMTEN9c9iY2Oxb98+JC0b36HzcwiKCRloj/H97eQqeBMIBPowmEw4ur2F9PR14PF4iG5UJieWz0d6Wjqce7+vk+RuBkOspZyljlfF7NmzZ1KbhTRNi5yl3NxcjB49Gv3798dXX32FwYMHg8FgQCwW49SpU1i0aBEqKiqQl5eHsrIyfPHFF9i3bx9Wr16NqKgoTR1D28PYGDDsDBjoQywW49ixY0hPT2/0tjG0WpJPWwV6K6tU92kONGs1AQAe098FJlajRp46pUnolgURqyjdoQoWk4Fhvaxk7VerUWpERa21xlBq1OJ6dJd+rp1eV/plcvS60N+1RalRyqWTMf053Nt0gXZf+4X0c8f0HHS/g1Ff7yH9vqDX99lz+ho2Axzp193rpEffeaHG9VHRow/YnnbITFwndUM1tXLAyJl8sAcFynzi2ZNHuHiO9hSahba2+Xck6YB63n//ffz+++9YtGiRVsZvkbM0f/58PH36FPv375cKbTIYDPj5+WH//v3w9PTEggULsGHDBuzatQv9+/fHzp0727ezhBfSAZuzMT44GLuTk5GVlQWhUAg7OzsEBATg9bCwDi0dQCAQCK1JL58RcPYahtsXz+FxRRm6mlrCpo87mMyOK6vQnqipqcGmTZtw+PBhuLm5oVMn6QekNWvWtGj8FjlLqampeOedd2S2Y9bDYrHw2muv4ZdffsGGDRugr6+PESNGICEhoSVmXwoEefeQL3yIhJgYdOrUCYGBgVLvE+kAAoFAaF2YTBbsXhmk62lIINIBmuPixYsS8cmmyfzylL3VpUXOUmVlJSorlW+3rKioQEVFheRvS8uOseVZWF63pEGkAwgEAoFA0C71ekvaokXrP/3790diYiJu374t9/38/HwkJiaif//+kraCggJYWcnmYbQ37Cy6AiDSAQQCgUCQD5EOeHlokbMUHR2NBw8ewN3dHZGRkUhOToZAIEBycjIiIiLg4eGBiooKREdHA6jLVj948KBWM9bbCtyBDcVi5VYBJ9IBBAKBQCBoDIFAgKlTp8Lf3x93794FAPz666/IzMxs8dgtWoYLCwvDli1bMGfOHKxevVpqXVAsFsPIyAgbN25EWFgYAODx48fYunUrBgwY0LJZvwSwWEys+sAf4V/ViQtGNdquGsfnIy09nUgHEAgEQgeG5Cxpjt27d2PatGmYMmUKcnJy8PRp3a7lqqoq8Pl87Nu3r0Xjt/hOPWPGDBQWFmLbtm2YM2cOZsyYgTlz5mDbtm0oLCzE+++/L+nbrVs38Hg89O5NT/wrLi4ODAYDc+bMUdgnOTkZo0ePhpWVFUxMTODv748DBw7I9Fu7di1eeeUVGBgYoEePHvjiiy9QU9Owrbq2thYLFy6Es7MzDAwM0LNnTyxbtkwmKqQOYdzeSFo0FpfOZUpVAc87l4mkRWMRNlTVdlcCgUAgEAiqWL58OTZs2IDNmzdL7YTjcDg4f/58i8fXSG04U1NTvP3225oYSsKZM2ewadMmuLm5Ke13/PhxjB49Gnw+H926dcPPP/+M8ePH49SpU/D09AQA7NixAwsWLMBPP/0EDoeD69ev45133gEAfPPNNwCAFStWYMOGDfjll18wYMAAnD17Fu+++y5MTU0xe/bsZh+HpFhs3j0Iyx/DzqIruAM7drFYAoFAIAAABYZWNJE6ns7StWvXMHToUJl2ExMTPHz4sMXjt8lCutXV1ZgyZQo2b96M5cuXK+27du1aqb/5fD5SU1Oxd+9eibOUnZ2NgIAAvPXWWwAANpuNyZMn4/Tp05LPZWdng8fjISgoSNInISEBZ8+e1eCREQgEAoFQB5MhAlMLS2baGLOtY2dnh5s3b4LNZku1Z2Zm0irNpooWO0vPnj1DSkoKzpw5g4cPH4KiZD1aBoOBrVu30h5z1qxZCAoKwqhRo1Q6S00RiUSoqqqCubm5pG3IkCH47bffcPr0aQwePBj//fcf9u3bh+nTp0v12bBhA65fv46+ffviwoULyMzMlHHGGvP06VPJuigAuTIKyYKbiNycjXzhQ0kb264bVn3gj7CR/WX6EwgEAoFAUI+ZM2di9uzZ+Omnn8BgMHDv3j1kZ2cjIiICX375ZYvHb5GzdPv2bYwePRr//vuv0vId6jhLO3fuxPnz53HmzJlmzWn16tV49OiRVMHeN998E6WlpRgyZAjEYjFqa2vx8ccfY8GCBZI+8+fPR0VFBVxcXMBisUBRFGJjYzF58mSFtuLi4rB06VKF7ycLbiL8q/0IDgpCQqPacPzYWIR/lY6kTp1I3hKB0EwokRjZxRUoevwMtl07w9/GlNTOI7xUaGubf0eUDpg3bx4qKiowfPhw1NTUYOjQoejSpQsiIiLw6aeftnj8FjlLX3zxBW7evIlp06ZhxowZ6N69O/T0mj9kYWEhZs+ejYMHD0Jfn369oXoSEhKwZMkSpKamwtraWtKekZGB2NhYrF+/Hr6+vrh58yZmz54NOzs7SR2ZxMRE/Pbbb/j9998xYMAA5ObmYs6cObC3t5eKQDUmKioKc+fOlfxdWVmJHj16gGFiApFBJ0RuOYng4CCkpDRUuvbz80NKaipCeDzM25AJ3nAXevlLLUg019i4NfRqogGAmKJf743Bon+DE9fQX4sXq1E7TFRBv4Ya04hmEWh9+ueCWI3vlqFGrTWmTRfafR9dK6fd18jFXHWnetT4LTwVPqLVb29+KRaezkdBVUM9O0fjrlgysDuCusvOrbOlAe05WAbQl/Ng2Fir7vSCK+WOtPsadqKf02iuT/+3U/mM/vdQ8bSWVr85Jt/QHrPM5gPafcd0O0m7r9jqHu2+dOtLVlbX4Ff6oxJ0TEFBAb766ivExMTgypUrEIlE6N+/PwwNDVFQUABHR/rnnzxa5CwdPXoUI0eOxC+//NKiSdRz7tw5lJSUwMvLS9JGURSOHz+O77//Hk+fPgWLJb+OT2JiIt577z3s2rULo0aNknpv0aJFmDZtmmRnnqurKx49eoQPP/wQMTExYDKZiIyMxIIFC/Dmm29K+ty+fRtxcXEKnaUuXbqgSxf5NyNBbgHy7z1Awu4YmXIwTCazodzJhUIEDnKi9wURCATszS/F9KNXERwUhMQmEdv30tOx1a+PXIeJQGhrMBhiLUkHaLFQexvF2dkZQqEQ1tbW8Pb2lrSXl5fD2dlZboqQOrTIWRKJRJIkak0wcuRIXLp0Sart3XffhYuLC+bPn6/QUUpISMCMGTOQkJAgSdBuzOPHj2UcFhaLBbFYLFk+VNSnudIBwrK6MiYqy52U0XuSJhAIdUtvC8/eRnBQEFJS5Udslx4/irEOZmBpoB4UgUB4OVCUClRdXd2slaqmtMhZ8vf3x9WrV1s8iXqMjY1lnAtDQ0NYWFhI2qOionD37l1s374dQJ2j9Pbbb2PdunXw8/NDUVERAMDAwACmpqYAgPHjx2PNmjXw9PSULMMtWrQIEyZMkDhg48ePR2xsLBwdHTFgwADk5ORgzZo1mDFjRrOOxc6yroxJXl4e/Pz8ZN6XlDuxNGzW+ARCRyS7uAIFFY+QGKMkYpuWhpOllQiwNtXRLHUPRVE4lZWN4qJi2NjawDfAX+HDJkF3MLQkHaAdOYK2SX0qDIPBwJdffomuXbtK3qMoCqdOnZIU2G0JLXKWvv76a3C5XPzxxx944403WjwZOgiFQhQUFEj+3rhxI2prazFr1izMmjVL0j59+nRs27YNALBw4UIwGAwsXLgQd+/ehZWVlcQ5que7777DokWL8Mknn6CkpAT29vaYOXNms7PouR6OYNubgR8bK/UEDDQqd+JgDq57j2aNTyB0RIoePwOgOmJbXPO81ebU1tiXuhdLo75E4e2G62QPJ0csjluGIePClXySQHj5yMnJAVAXWbp06RI6d27IKe3cuTPc3d0RERHRYjstcpb27t2L4cOHY9KkSRg2bBg8PT0l0ZzGMBgMSSK1umRkZEj9Xe8AKXpfHnp6eli8eDEWL16ssI+xsTHWrl2rVCpAHVgsJuJnj8TEBbsVlzvhhxBxSgAUJYLgajGED57AzswA3H425HshyMW2a92FUFXE1kaffhJ8e2Jf6l58MOVdBAcHI2lnYkM+F5+PD6a8i3W/dMaY8SG6nibhBaTcScv5+++/AdSl7Kxbtw4mJiZascMQK9vzr4KmYXCFRhiMFidXvQxUVlbC1NQUD49GwsSoLvE7+e9/ELHuCPLvPZD0c3Ywx6rPRyB0KL2yLwDU27VWq8Z3/ewZ/b6VVbS70t0Nt+fUbUT+dh75xQ0aVWwbE6x62wthfrKJ7y/TbjjxU/pzFT1UYzecMc3deACY3ejvhqs8nE+7rwFbjSUuDe6Go0RiDEo+B3fucLkR2xAeDxePH0X2GFepnCWjnt1oz4Gpxvfb5U1ZxWBFnDH6kHbf5uyGoygKHFdveLi5IyUlRfa7CQlB7sVL2H/uEq0lObq74XyK1NgN9wr93XBWT4/T7iu+r53dcN38vkJFRYXGb8D19wph+QmYmBhpdOy68athZ8HRytw7Ki2KLNV7dATFhA13AW9oXwhyCyAsq4adpRG4Ho5gsZgQU/QuRu2VPaduI3zNMfk6VPHpSIoIlOswdRQokRiZ+eUoqqqBrbE+hrAtOryOEIvJwHJvJ0xPV1ygeqtfnw6Z3H0qKxuFtwuQtDNRfj5XVBQ4HA7OZmfBdwh9J49AeFk4cuQIjhw5gpKSEpnNWT/99FOLxm6RszRs2LAWGe8osFhMBHqx65abcguQdPgK7CyNMMS149aIo0QiRP52Xumupnm/CsDz6dEhv6OUvHuYf+AqbpdXS9qcLIyw4tV+CPVn625ibYDxbCv8MgJYeOwoOGlpknYnk64dWjaguKgYgOp8rtIXm2AIuoeIUmqOpUuXYtmyZfD29oadnR0YGn5gapO14doj8pbj2PZmWPVZIMICX9HhzHSD4GoJ8osrkaBsVxOHA8HVYgQOtNPRLHVDSt49TE44i+CgIOxsEnGbnJCOnQZ6CPHorutp6pTxbCuMMjPGydJKFNc8h41+J/hZmXTIiFI9NrY2AFTnc1nZ2rbqvAiE1mDDhg3Ytm0bpk2bppXx1XKW6nehOTg4gMViSe1KU0VL1TNfZpL//gcTF+xGcHAQEnY3WW6KTkESP6TDOUxFD+qUl1XqUD2gl1/QXqBEYsw/cFVpxG3+n8cx3s2BLMkxGB1aHqApvgH+6OHkCD6fLzdnKS4uDj2c2PD2D9DhLAmNIQnemuPZs2fgcDhaG18tZ4nNZoPBYODq1avo27ev5G9VMBgM1NZ2oPwcPVbdC3U7vSK+Paq47EkID/O+P4aQEQOULzepkeAtZqrxXWshaRsAoCK52ta4TiRM1VOwrWEXqaRudZK2xTX0vwemOf0yEAy6Too6y4eP67a6Z94sxe3yauxUGnFLw4nihxjWT3WEgGlCX4zNZDj9/DBRFf2NAeokTLPM6c/XQET/98iy7Kq60wsY+vT1iGqdubT7XrkkW2hbEWwL+vprT2rrd/51wqeL+Vjw3jTwQkIQHRXV8GAWF4f0tDQs2/gLympqAag+N2pq6Z1rYrfhtOdqWfoX7b6if67Q7vvkj1zafYUXS3Dm4SOUPHsO686d4NPNUG5EskqdjTIEnfP+++/j999/b/bOe1Wo5Sy9/fbbYDAYEnmA+r8JihHkFCD/7n0k/KHg5hf1YrkppwCB3mzdTFIHcF2swbY2Ua5DZWMCrgv92lvtgaKqul15KiNuDztWxI1AjxFBE/D11l+xbkmM1FO2gxMbX2/9FX5jZCscdCRSb5ZgwdmbKHzUcP70MDRAFNsaY61aP0pJRCk1R01NDTZt2oTDhw/Dzc0NnTpJy4esWbOmReOr5Sw11Thq+jdBFmFZXeRGddmTarnvt1dYTCZWveWJ8HWKdzUlzR4KFk15ivYC3YibXTf6kTBCx2JE0AQMGxuE3JMnUFZcBEsbW3j4ccBisfD4ece7idaTerMEU/fnITgoCElSuYDLMSs9HT/0d9KJw0TQDBcvXpQodddfJ+vRRFCHJHhrGTtLYwB0yp5oXmujrRPq44ik2UMR+ftxcDgNu5qcbUyQ9H/2zjuuqfP745/kIqAMQVkRgVD3AFFQIBBE66gSSOTrrKvW1i5/1VocgKsqoc5qv61W/WqnxYmgYGttKwqIe+FonYAjLBc4ALnJ749IJBCSG5IQIM/79cqr9ebkeZ5cktxzz3PO58wIwYi+ppfnFvyGAzza2miMuAV3Ma2IG0E7KIqCbxDzLcLmDi2VISbrVh25gPsgEkYg/vDfGOzQsEUCbJYUbAPkFxlizMaOoaWMiLNkYPi93cF1bQOxOE4pZwmoSrp81fakt+k5BoDcYYrwbY/0fwqR//gFXOxagt/VyeQiSlVQbBaWC7ph3E91R9x2/B/fZM8PgVAfMu8/Ru7jZ2pyAWPBS0nFqcfPEGBvejeuBM3o7CxduXIF33zzDU6dOoXHjx+rVOpmsVi4efOmrlM1SSiKjVUzB2HUnF0QiYSIjq528YsXIyUlFbuWjzRJLaEqKDYbod1JOXMVIi9XJEwC5qYcUYq4cR1skDCpr0lG3AgEXch/Llc515QOUVjRsD0FWZAZSGep3o05mjSPHz/Gli1bcPXqVbBYLHTr1g1Tp05V2YZNW3Rylo4cOYK33noL5eXlMDMzg7OzM8zMag+pQ0eVZoEwtAsWfdAf63cpX/w8Xdtg1/KRiBzYzYirIzRGRF6uCO/RDhm3il8reL/hYPJyAQRCfXBpJW/7oykdwsm8YXsKEukA/XH69GkMHToULVu2RL9+/SCTyfDVV19BLBbjjz/+QJ8+fXQaXydnad68eaisrMT//vc/TJ48mVG/IVMj8a+riFr7J3LuPVQcc7C3wvQxfRE7JdikI0oE9VBsFvp3dDT2MgiEJk9QOzt42FmpyQWMg5tVS/S1Yy7ZQGhcfPbZZ4iIiMDmzZsVQZvKykq89957mDlzJo4eZd5rUBU6XakvXLiAsWPH4t133yWOkgoS/7qKUXN2wasPD1lZWSgtLUVWVhYCgwfgi41HkHzkX2Mv0aShpVIc+bcQ20/l4sjVfNDaNCsmEAhNBorNgjjwDaSkpkIkjFD6PRYJI5CSmoporlODK8BXSQcY4qEt69evh6enJywtLeHr64v09PQ6bRMTEzF48GA4OjrC1tYWgYGBOHjwoJLN5s2bwefzYW9vD3t7ewwaNAgnT55Uslm8eDFYLJbSw6WeCvOnT5/G3LlzlXa3zMzMMGfOHJw+fbpeY1ZHp8iSjY0NnJxIVY4qaFqKqLV/qhajTJKLUc5e9xeE/bs0iegSTUtx9HI+8h89h4t9K/C7GS4Jm5ZKDZ7wvffcXcxNvIicoteinFwnW6wY60NyggiEZoiwoxN+easn5h3+G7yUVMVxN6uWJi8bsGPHDsycORPr169HUFAQNm7ciGHDhuHKlSsqu28cPXoUgwcPhlgshp2dHb7//nuEh4fjxIkT6N27NwAgLS0N48aNA4/Hg6WlJVasWIEhQ4bg8uXLcHV1VYzVo0cP/Pnnn4p/1zfwYmtri7y8PHTt2lXp+J07d2BjY1OvMaujk7MUFham1vs0ZQwlRlnVjFdS/BQcB2vwfdwN7mwlHruN2d+fRE7+E8UxrrMtVk7ogxH+zFWfmbD3VB5m/3oOOYWv1Y65TrZY+XZvvTkxe8/dxdhNxyAIC0NCjd5rY/4rrzYjDhOB0PwQdnRCv+dgpODdEDSWnKU1a9Zg6tSpeO+99wAAa9euxcGDB7FhwwbEx8fXsl+7dq3Sv8ViMZKTk7F//36Fs7Rt2zYlm82bN2P37t3466+/MGnSJMVxMzOzekeTqjNmzBhMnToVq1atAo/HA4vFQkZGBmbPno1x48bpPL5OV9kVK1bgyZMn+PTTT/H8+XOdF9OcMIQYZeLhf9DpPxsw8KNfMH5BEgZ+9As6/WcDEg//o/uC65rz2G2M/vJPePnxlULXXn1DMHrNEew9kau3ufaeysPodUfh1S9Eea5+IRi97ij2nmLei7AuaKkUcxMvKvRWAgICYG1trWg/IwgLw9wd58mWHIHQTKFYLATYWyPC2R4B9tbNuvlySUmJ0qO8vLyWTUVFBc6cOYMhQ4YoHR8yZAiOHTvGaB6pVIrS0lK0adOmTpvnz5/j5cuXtWyuX7+Odu3awdPTE2PHjsWtW7cYzVmTVatWITIyEpMmTQKXy4WHhwfeeecdjBw5EsuXL6/XmNXRKrI0cODAWsesrKzw7bff4ocffkCnTp1UluixWCz89ddf9V9lU8OMAsfZDgADMUonG4BBhVPi0Ruqm/GK4zBq3h7sWj0GkYN6yI2f6acPH01LMfv7k2qbus755SjCvdvV2iajC54xnofVgg1aKkPUL2fVzjV72xEIOmuxJaeid1jGtSLkFJUiQUPvtYx/C+vsvcayY9ZnjGXHPKxP8RwY28KSeZ8zPH7EfA29mIeq2ZevMrZldenEfA0tmPeRg5kWlUvlzNvDyK4zlzkplzJPCC56yPyG8lFJGWPbJ0+Z9+mztGC+xcH0fmFw67uMx5Qdy2Rsm/4Jc9uA6V01G73CpbUFI7tW5S+BjMuMx60PLJkULJkBIkuvxnRzc1M6vmjRIixevFjpWHFxMWiahrOzs9JxZ2dn5OfnM5pv9erVePbsGUaPHl2nzbx58+Dq6opBgwYpjvn7++Onn35C586dUVBQgGXLloHH4+Hy5cto27Yto7mrMDc3x7p16xAfH4+bN29CJpOhY8eOaNVKi99LNWjlLKWlpdX53NOnT3Hu3DmVz5li/zh+Hw/NYpTtmYlR0rQUUav/UJ//tOYQhAO66XVLLv1KPnLyn+jkWDAl42YxcotLNTaQzbhejP46qFdLnpDeawQCwTS4c+cObG1tFf+2sKjbUax5nZbJZIyu3QkJCVi8eDGSk5PrzGFesWIFEhISkJaWBkvL182yhw0bpvh/Ly8vBAYGokOHDvjxxx8xa9YsjXMDwN9//43p06fj+PHjsLW1RatWreDl5QUAePLkCXr06IHvvvsOfL5uivZaXVmlUmm9HqqEKps7FMXGqs+HICUlFSKRULn6QiRESkoqVs4YxMi5qcp/iompO//p9t0HSD+rvy0xAJC8uhNuCMciv4ShE1Oi21yc1q97r6mC9F4jEAgNhkxquAfkSc/VH6qcJQcHB1AUVSuKVFhYWCvaVJMdO3Zg6tSp2Llzp1LEqDqrVq1SaB15e3urHc/KygpeXl64fv26WrvqrF27Fu+//76SU1hF69at8cEHH+jcRBfQMWeJoJ7IQT2wa/UYZJ89Bh6PB1tbW/B4PFw6lyXfNnuTmRgl4/ynapVd+oDTRh6+bAjHwsWWoRNjq9tcwR0dwHWQ916T1thnIL3XCARCg2JgZ4kJ5ubm8PX1xaFDh5SOHzp0CDwer87XJSQk4J133sGvv/6KsLAwlTYrV67E0qVL8fvvv8PPz0/jWsrLy3H16lVwOBzG679w4QLeeuutOp8fMmQIzpw5w3i8utDJWRo4cCB++ukntTYJCQkqc51MhchBPXA9ZQb+3vIutn05Cn9veRfX9n/6Or+IAdWb8apC4Ug46l4eWR1+dxdwXVo3iGMR3MEBHhqcGK6jDYI7aZHbowKKzcbyEV6v9FZqRPyEQqSkpmL5GB/Se41AIJgMs2bNwv/+9z9s3boVV69exWeffYa8vDx8+OGHAIDo6GilCraEhARMmjQJq1evRkBAAPLz85Gfn48nT15XTK9YsQLz58/H1q1bweVyFTZPn74uaoqKisKRI0dw+/ZtnDhxAiNHjkRJSQkmT57MeO0FBQVo0aLu/EUzMzMUFRVpczpUotMVIS0tDTk5OWpt8vLycOTIEV2mafJQFBv8Ph7gONpAUlSK9LO5oGnmnn/1ZrwqHYl4MTzbtwW/j37L+CmKjZVT+jWIY0GxWVgR0UP9XOE99DLXiN7tsf29QGQfP6Ic8Tt1lMgGEAiEhkMmM9xDC8aMGYO1a9diyZIl8PHxwdGjR3HgwAF4eMivKRKJBHl5r6uRN27ciMrKSnzyySfgcDiKx4wZMxQ269evR0VFBUaOHKlks2rVKoXN3bt3MW7cOHTp0gWRkZEwNzfH8ePHFfMywdXVFdnZ2XU+f/HiRa0iVXWhcyNdTTx79kyt12cKJP55GVGr/1BqecJ1bYNVMwcx2oqryn8a9fmOupvxrh5jEL2lSJ4nds4bhNnfpyuFZD2dbfXuWIh6uWL7FH/M2VejgayjDbZP8Yeol6uaV2vHiN7tEdGrHTJuFEPypAztONYI7mI4oU0CgUBozHz88cf4+OOPVT73ww8/KP1bXbFXFZoCKQCwfft2BitTz/Dhw7Fw4UIMGzZMKXkcAF68eIFFixZBIBDoPI/WzlJ17xKQd/mteQwAaJrG3bt3sWvXLnC53HovsKmT+OdljPp8h7zkf3eNkv85u7BrxShGDlNV/lPU6j+UnZb2bZVlAwxAJM8TQn8PHD2ZA8njF+DYtTSYYyHq5Ypwr3bIuFmM/JIyuNhaIriDYRrIUmw2+neWbyGybLQoWScQCAR9oGV+kVbjmgjz589HYmIiOnfujOnTp6NLly5gsVi4evUqvv32W9A0jdjYWJ3n0dpZ4nK5inJCFouFdevWYd26dXXay2QyrFy5sv4rbMIwKvlf9yeEocxankQO6gHhgG5IP5sLSVEpOI424PfxaJB2KRTF1lkegPFcbBb6dyINZAnqoWkp0k/cgKTwCThOrcH379gkWgcRCAT94ezsjGPHjuGjjz5CdHQ0ZK+2IFksFoYOHYr169drrOpjgtbO0qRJk8BisSCTyfDTTz+hV69e8PHxqWVHURTatGmDgQMHqs1Ub86kn83Ve8sTimIjtK+nAVZLIDQdEn+7gKi4fci58zpxk+vmiFULRyByeG8jroxA0AKpjLn6p7bjmhAeHh44cOAAHj16hBs3bkAmk6FTp06wt7fX2xxaO0vV9y6PHDmCKVOm4NNPP9XbgpoTVaX8mlue6Lfkn0BoziT+dgGjPtoq39reWWNre9pm7Nr0PnGYCAQTxN7eHn379jXI2DoleL/zzjtqe8GYLJYWgKUFOK7yc6Ox5YmrA6BJkr2CeUsDbZA+Zt6Cgb7PvI+dtFSL9WpzF2SA3CUAMO/JXJKA5cllZmjPfEyZcxfGtuwXD5iPa2XH2BZa5KCVDWEuB9Ly4SnmazBT34qCpqWIEu9Xv7UdlwzRfwYqbcnJzJmLmbK8mUtwHLnDfGuazWbeeqbwIfP1nsnIYWzbsSfz7Yj2rsza9eSZRTIe082SeeN1v9Fumo1e8eLmY8a2dDmzdlAvKvTTNkotJGepyaDTBn9cXJzakj1Th+/nCW77tupL/t0cwPcj22oEAhPSs/5BTl6hejX7nAKkH2Peu645IpPSeJiXDcnVI3iYlw2Z1PS6KDQJGoEoJYEZOkWWPDw88PDhQ82GJgpFsbFq7nCM+vSXukv+100w+aRUWipD5p2HyH9aDhdrCwS5tTFI9Ruh6SMpeAyAwdZ2AfMoTnOj4Nox3Ez/Hs8evW5fYWXvgg78KejYc4QRV0YgNF10ukqPGzcOBw8eVFLtJCgTOdQLu76egOxzWcoCiOePY9e6CYgcovpH31RI+icfPTdm4K1tJ/FO8gW8te0kem7MQNI/zLpdN2domkZa2jkkJPyJtLRzJtljsSYcZzsADNTsnfWX2NmUKLh2DNn7v8SAID8lYdcBQX7I3v8lbp0+bOwlEqpDIkt64eXLlxgwYACuXbtmsDl0cpbmz58Pb29vDBw4EKmpqSgsLNTXupoVkUO9cP3QbPz98wfYtmYc/v75A1z7I4o4Sv/kY/yec/AOClX6YfcOCsX4vedN2mFKTDyCzp3expsDZ2DC+CV4c+AMdO70NhITTVsNnx/YFVx3J/Vb21xn8HnM+i42J2RSGjfTv0dYWBiSk5MREBAAa2trBAQEIDk5GWFhYTix82tIyZYcoZnRokULXLp0SSFrZAh0cpZatmyJ3377DefOnUNERAQ4HA4oiqr1MDMzuFB4o4ei2Aj174Bxgt4I9e9Att6kMkT/dQ2CsDAk1fhhT0pOhiAsDDFp10GbWAksIHeURo9aCC8v5eiAl5cvRo9aiMTkLGMv0WhQFBurloxDSkoqRKIabXFEQqSkpGLVUtPc2n509wqePcpHbKzqfK6YmBg8LrwHyb/njbNAQm2kUsM9TIxJkyZhy5YtBhtfJy+Gz+cb1JMjNF8y8x4i99FTbK/jhz06JgY8Xgoy7zxEiEdbI62y4aFpGrOj1kMgECApKUlltVdUzE8QCvqBoigjr9Y4RIb3xa7vP0XUou3KavZcZ+z+aRYiI/yNuDrjUf5Mnj+qKZ/r+ZPiBlsTgdBQVFRU4H//+x8OHToEPz8/WFlZKT2/Zs0ancbXyVli0h+GQFBF/tNyAJp/2KvsTIX09IvIyZEgISFGvZBp5lWEhpjuNm5keF+IIgKRfuwqJAWPwHG2B5/XzSQjSlVYWDGTKmnVmrmkRXOElsqQVViCghcVcG5pjkAnW+MVlNSj6S3jcU2MS5cuoU+fPgBQK3dJH0Edsj9GMAou1nI9HU0/7FV2poJEItdQ0ljtlW+61V5VUBQboXzD9URsati37w4rexfExcUhOTlZydmWSqUQi8Wwc3IFp4uP8RZpZPbnFGH+qRzklbzWl3O3bYUlPu4QuJtOBLs5cviwYYsX9HYbdu/ePRw4cAAJCQlITU3FvXv39DU0oRkS5N4GHvbWEMfVkagrFoPbxhpBbqYlesrhyH+wNVZ7uZhmtRehblhsCh34U5CamgqhUDmfSygUIjU1Ff6jPwWbbZrbt/tzijD576voFTJQ6dz0ChmIKen/IiWPudir3iDVcE0GnZ2lW7duYciQIXB3d0d4eDgmTJiAiIgIuLu7Y8iQIbhx44Y+1kloZlBsFuLf7IyU1FSIavywi4RCpKSmQhzayeT0lvh8b3C5HA3VXi7gB5letRdBM86defAKn4fDmaeVpErSMk/DK3we3vAbYOwlGgVaKsP807lqC0oWnb/T8AUlxFnSK+np6ZgwYQICAwMVAZuff/4ZGRkZOo+t0zbc3bt3ERQUhIKCAnTr1g0hISFwcXFBQUEB0tPT8eeff4LP5+PkyZNwc2MuXU8wDURdXbDtP70R/VcaeLwUxXFuG2tsG+EDUVfmrSSaCxRFYeWqjzF61MI6hUx3b5ttssndBM04d+bBqaM/Ht29gvJnD2Fh1Qb27buDZaIRJQDIKniCvCfPsENdQUlKCrIKSxDswqzNC6FxsWfPHkycOBHjx4/HuXPnUF4uz3ctLS2FWCzGgQMHdBpfJ2dp8eLFKCgowKZNm/Dee+/Ven7Lli2YNm0alixZgs2bN+syVdOipRXQqqVmO22SzrQQJGRVMu9pJNOihxtd8Iy57XNmaxA4tMbwsX1xTPIY+c/K4WJlAR7HDhSbBfpJ7eRuGc38zq+ynPk5s+jtxNiW5dqBkZ3sZRnjMdnS17YjRf7YvXMBPp+9Sbnay5OD3TsXIFIYyHytWpQQl1owj1axwHzcErsQxrbaINMiMM6yZL5eis28qKBtcQvGtpYWzH9urVoyHzd8RF15W946jVv6jNlvA5vF/PemfNAHjG1bsplfMyzuqu8k8fiE/L1oygV84mwJax/5b4G07CWwk/ES6oVMJoXMAFEgQ4zZ2Fm2bBm+++47TJo0Cdu3b1cc5/F4WLJkic7j6+QsHTx4EBERESodJQCYOnUq9u/fj99++02XaZoFNC1F+okbkBQ+AcepNfj+HUGZme6dXnUoNgt8V5KDU53IEcEQRgQiPf0SJPkPwXFpAz6/pzyiREQFCQSt4LSW37xqLCixsWzQdRH0x7///ouQkNo3Zra2tnj8+LHO4+vkLBUWFqJHD/XVKD169DB5ZynxwDlELd2LnDuv9U24bg5YtTASkcN7G3FlhMYMRVEIDe1l7GUQCE2e4M6O4DraQhwXhyQVlYLxYjG4DjYIfqOBZRUMJSBpgqKUHA4HN27cAJfLVTqekZGBN954Q+fxdUrwdnR0xOXLl9XaXLlyBY6OjrpM06RJPHAOoz74H7x8ApTVmH0CMGraZiQeOGfsJRIIBEKzhmKzsWKUt9qCki/DuplcQUlz4oMPPsCMGTNw4sQJsFgs3L9/H9u2bUNUVBQ+/vhjncfXKbI0dOhQ/PDDD9iyZQumTp1a6/mtW7di//79eOedd3SZpslC01JELd0LgSAMSUnJKtWYZy/dC+HQXiYtpkcgEAiGZoSvG3Z8FITZO44oF5Q42CBhUl+IvFyNsCqZgSrXTE+Ucs6cOXjy5AkGDBiAsrIyhISEwMLCAlFRUZg+fbrO4+uc4J2SkoJp06Zh7dq16N+/P5ydnVFQUICjR4/i8uXLcHBwwKJFi3ReaFMk/cQN5NwpRsLOOiowqtSYT9xAKK+zkVZJIBAIpsEIXzeEcR2QcasY+aVlcLGxRPAbDiSi1AzIy8vD0qVLERsbiytXrkAqlaJ79+6wsrJCXl4e3N3ddRpfJ2fJzc0NmZmZ+OCDD3D48OFaW3IDBgzAhg0bTFY2QFL4BAADNeZXdgQCgUAwLBSbhf4dG0lqCGl3ojc8PT0hkUjg5OQEPz8/xfEHDx7A09MTtBYV5arQud1Jx44d8ddff+Hu3bs4d+4cSkpKYGtrCx8fH5N1kqrgOMn1OjRVYFTZEQgEAsGEMJSApAlKB8jqcBCfPn0KS0vdqxz11huuffv2aN++vb6Gaxbw/TuC6+YAsThOKWcJqKbG7O4Ivn9HI66SQCAQCISmyaxZswDIm+UuXLgQrVq1UjxH0zROnDgBHx8fnefR2lmqT1Y5i8XCt99+q/XrmjoUxcaqBSMw6oP/1anGvGvT+yS5m0AgEEwRElnSmXPn5BXlMpkM2dnZMDc3Vzxnbm6OXr16ISoqSud5tHaWvvvuO8a2rGoK1aboLAFA5PDe2LXxPUQt3ausxuzuiF2b3ic6SwQCgUAg1JPDhw8DAKZMmYJ169bB1tbWIPNo7SxVLUwTeXl5WLJkCW7evKnkNJkELJZSK5PIsD4QvuVTW8HbhrlqNcvCirGt7PEj5mttwTyqdf/Yfca2z54wb4FQUsrYFO08mLdraNmWQcuZV1jdZ97KpUVpsWYjACzrNozHxEvmLTagxWeBNmP+w1FebpgfGW3aktAy5n9fqYz5z1cL9gvGtmyZBWPbSi0ar/b1bMvY1sacubr/i0rmUQQzLaq+Wpox+7u1YDP/7rBZL5nbDhAwtmW1YP5dN5My+22yKHkGzE/RbKgLRJRSb3z//fcGHV9rZ6l///5qn3/06BHEYjG+/fZblJWVITAwEMuXL6/3ApsLFMUm8gAEAoFAIBiQK1euIC8vDxUVyr0NIyIidBpXbwneZWVlWLt2LVasWIHHjx+ja9euEIvFEIlE+pqiSaOyN5yxF0UgEAgE40FylvTGrVu3MGLECGRnZ4PFYimq46p2tnSVDtA5s1gmk+F///sfOnXqhJiYGLRq1QqbNm3CpUuXiKP0isQD59ApaDEGjvoK4z/ZioGjvkKnoMVI3H/S2EsjEAgEAqHJM2PGDHh6eqKgoACtWrXC5cuXcfToUfj5+SEtLU3n8XVylpKSktCjRw988MEHePr0KcRiMW7cuIH33nuvlmK1qZJ44BxGTdsMLx//Gr3h/DFq8jriMBEIBIKpUhVZMsTDxMjKysKSJUvg6OgINpsNNpuN4OBgxMfH49NPP9V5/Hptw2VkZGDu3Lk4fvw4zM3N8dlnnyE2Nhb29swTlk0BmpYiaomG3nALEiAc7kfkAwiEekDTNE5kZqEwPx9OLi7wDwoERZENbkITgSh46w2apmFtbQ0AcHBwwP3799GlSxd4eHjg33//1Xl8rZ2liIgIpKamgs1mY/LkyViyZAkRo6wDeW+4Is294bL+QWhwdyOtkkBomhxI3o8l0fNxJzdPcczNwx0L45dhuDDciCsjEAgNTc+ePXHx4kW88cYb8Pf3x4oVK2Bubo5NmzbhjTfe0Hl8rZ2llJQUsFgsuLu7Iz8/H9OmTdP4GhaLhdTU1HotsCnDuDdc/uOGWhKB0CxITUrBtPHvQiAQYOf2HQqxV7FYjGnjJ2PTth+Jw0Ro/BDpAL0xf/58PHsml7FYtmwZBAIB+Hw+2rZtix07dug8fr224WQyGW7fvo3bt28zsjc5naVXMO4N52LXkMsiEJo0NE1jSfQiCAQCJCUl1djeToJIJMLSmAUYKhhOtuQIBBNh6NChiv9/4403cOXKFTx8+BD29vZ68UG0dpaYOkiEqt5wjup7w3k4gx/Y1YirJBCaFicyjyMvNw87tu+oY3s7GjweDycys8ALCTbSKgkEBhDpAJ25ceMGOnZU3V+1TRsthIE1oLWz5OHhobfJmzsUxcaqhSMwatrmunvD/TjD5JO7aZkMF8tf4IG0Em3ZZvC2aAnKRKORBM0U5BcA0Ly9XZif32BraozQNI1zx4+huCAfDs4u6B3Agxlbb9J6BEKjoHPnznB1dcWAAQMUDy6Xq/d5yDfHwEQO741dm95H1BIVveF+nIHI8H5GXJ3x+aukFKuKH0JSXqY4xrGwxMfWbdC/pY0RV9Y4oGka6ZlXIJE8BIfTBvyg7iYvZurs4gxA8/a2k4tLg66rMfF3SjLWLo7FvbxcxTFXdw/MWiLGIIHQiCsjKCGTGSiyZDrVcEeOHMGRI0eQlpaG6dOno6ysDO7u7hg4cKDCeXJ1ddV5HpZMZkJn1cCUlJSgdevWePJ4P2xtlft30TSN9PRsSCQPwOG0BZ/vBVCtGI9NSZn3X5LlXWJsK806x9g2Zz1z2+yzFRptsuhSrKyQIEwgQGxsrCLqFrdsGVJTUzEDHPSFssPk1p55xMmuNWNTvDHYjbFtqwk8zUYAwFUdGlZJW/dahxITjyLq8w3IyZG8HpLLweovpyBSFMRsXHPmPbNe0MxD1k8rnRjbymT67Q1H0zR4Xn7w8e6llLMEyLe3RSIRLmRfRMbFM4qcJTMW89572vSnM6eYfy9fSpn/LbQ5Z2W08u/I7/uS8MnEtyEQCBATE6OU/J6SksI4+Z0FZhfxVmYPGa9Vm3NQIWXeA7FSyryf37OXzC55T0tK0I/LwZMnT/TenLXqWvE4+0vY2ljqdWwAKCktg53XPIOsvTHz8uVLZGVlIS0tDWlpaTh+/DjKy8vRsWNHneUDTHv/pwGhKAqhoT4YN+5NhIb6mHziKS2T4UfZI4QJBEhOTkZAQACsra0REBCA5H37EBYWhgSzR5DCNH35xMSjGDVyEby8/JTFTL18MXJcPBKTMo29RKNBURQWxS9BSkoKRCKR0vkRiURISUnBAvFSk/yO0TSN+Nh5iuT36t+rpKQkCAQCLI1ZoHPrB4KeqKqGM8TDBGnRogVCQkIwe/ZsREdH4+OPP4a1tTVu3Lih89jEWSIYhavSFyh4WYbYWNUaVDGxsSioLMM/YN4tvrlA0zSiPt9QxwUvGQJBGKLmfW/SF7zhwnBs2vYjzl+8AB6PB1tbW/B4PFzIvmjSsgGnjmXiTm4uYmJi6kx+z8vJxYnMLCOtkKAEcZb0QllZGf7++28sWLAAfD4f9vb2+PTTT/H06VNs2LABeXl5mgfRAMlZIhiFR7JKAJqTdB+jssHW1FhIT7+InBwJEhLquuC9EjPNuIzQ/t5GWqXxGS4Mx1DBcKLgXY3CfPmWLUl+Vw9N0ziTlYmignw4OrvANzDIpD83TZn+/fvj1KlT6NChA0JCQvB///d/6N+/P5ydnfU6D4ksEYyCPUvup1cl49ak6ridCfrzEok8B0SzmCnzXJHmCkVR4IUEQzR6JHghwSZ/wXNy4QDQ/L0y5eT3Q/uTMczXC+9EDMPs96fgnYhhGObrhUP7kxt+MTIDRZXqkTS+fv16eHp6wtLSEr6+vkhPT6/TNjExEYMHD4ajoyNsbW0RGBiIgwcP1rLbs2cPunfvDgsLC3Tv3h179+7VaV5VHDt2DA4ODhgwYADefPNNDBw4UO+OEkCcJYKR6MZuCecWlohbtgzSGiFjqVQKcVwcnM0s0RXME0KbCxyOPNFa0wWP46I/DRFC86AvLwhuHh4Qi8Uqv1fx8fFw53rAPyjQSCs0Lr8lJ2HmO+PRu5e3Uq5b717emPnOeOM4TI2AHTt2YObMmYiNjcW5c+fA5/MxbNiwOrevjh49isGDB+PAgQM4c+YMBgwYgPDwcJw797oIKCsrC2PGjMHEiRNx4cIFTJw4EaNHj8aJEyfqPa8qHj9+jE2bNqFVq1ZYvnw5XF1d4eXlhenTp2P37t0oKiqq/4mpBqmG0yPqquFUQYN5BUezroYLC0NMtWo4cVycSVfD0TSNTh0nwMvLV6WYqUgkxKXsM7h+eaPmSEozrIZTjKvFvZ6pVsNFR0dX03aLN+lqOJqm0b9XT/h4e9dZRXnuYjZ+O30RFEU1TDXc6S9ga22AarinZbDzW4Q7d+4ord3CwgIWFrXPlb+/P/r06YMNGzYojnXr1g0ikQjx8fGM5uzRowfGjBmDhQsXAgDGjBmDkpIS/Pbbbwqbt956C/b29khISNDbvDUpLS1FRkYGDh8+jLS0NFy4cAGdOnWq8+aTKSSyRDAagZQNZptzcPLgX0pJuqcO/qXSUTIVKIrCqtUfISUlFSKRsEa1lxApKalY9eUUk99yIqjmrQgRvv35V5y/eFHpe3U+O9ukk99PMkh+v5ubgzNZzafS1M3NDa1bt1Y8VDkgFRUVOHPmDIYMGaJ0fMiQITh27BijeaRSKUpLS5UUs7OysmqNOXToUMWY+phXFVZWVmjTpg3atGkDe3t7mJmZ4erVq/UerwrTSwghNCoCKRt4VVjjH7zAY1TCDmboWtkSbJi2gndkZAh27f4CUZ9vUBYz9WyH3QnRzHWWCCbJWxEiDA4Lx6ljmSjMl8DJhYO+vCC0Mn9p7KUZjaqkdk25gEUFDZj8buBGuqoiSzUpLi4GTdO18nycnZ2Rz7AQYPXq1Xj27BlGjx6tOJafn692TH3MC8gdtdOnTyMtLQ2HDx9GZmYmnj17plD1/vbbbzFgwADG49UFcZYaCNWilMZeVeOADRa6g7lAp6kQGRkCoTAI6ekXXyt4871hVlmm+cUEk4eiKATwQ2ocNV1nqSqpXZPyu6Nz80l+t7W1ZbyFWLPZrEwmY9SANiEhAYsXL0ZycjKcnJS355mMWd95q7Czs8OzZ8/A4XAQGhqKNWvWYMCAAejQoQPjMZhAnKUGIDHxKD6P2lhLiXnlqukYERlqvIURGj1yMdPeygdNT02BQNCZftWS31XlLMXHx6O9Bxe+gQ0YtTVwZIkJDg4OoCiqVjSnsLBQY1XZjh07MHXqVOzatQuDBg1Ses7FxUXtmLrMW52VK1diwIAB6Ny5M+PX1AfiLBmAJy9dIXspz7fZl3QQk8d+AYFAgIQE5dYDo0fNx5Zt/0OYKEzjmK3N7zCe39zMnLEtXfycsW3lc+ZX6U4dmd8ZPHzE2BQvGbYqAICWNswTddnWzM+Z7AWzc8Z69pjxmGBpkT6oxd8XFPOvuDbJyto4bJUy5oUM2iQ2a0OlFsUUbBbzN2fOfsrY1raFRLPRK1qglLEtpIYRJ61kM4tIvKCZV1K8oDmMbcsqmX8WKmgmzgELs74QY9aUCRCJRCqT39d8/wtYbDakMhmkDVH71AicJXNzc/j6+uLQoUMYMWKE4vihQ4cgFNbdRzAhIQHvvvsuEhISEBZW+xoWGBiIQ4cO4bPPPlMc++OPPxRpBfWdtyYffPABY1tdIM6SAaFpGvPnfKlQYq66k6lqPSASifBFzBd4K/wtkqxLIBAIBmZwuBBrvv8FqxbGKOUCtvfgYs33v2BwuGk2GZ41axYmTpwIPz8/BAYGYtOmTcjLy8OHH34IAIiOjsa9e/fw008/AZA7SpMmTcK6desQEBCgiA61bNkSrVvLnecZM2YgJCQEy5cvh1AoRHJyMv78809kZGQwnrcxQZwlA3Is4zTycu9ix/ZddVZf8Hg8HM88jqAQkrBLIBAIhmZwuBADhwtwJisTxQX5cDCmgncjiCwB8jL/Bw8eYMmSJZBIJOjZsycOHDgADw8PAIBEIlHSPtq4cSMqKyvxySef4JNPPlEcnzx5Mn744QcAAI/Hw/bt2zF//nwsWLAAHTp0wI4dO+Dv78943sYEcZYMSEF+IQDN1RdVdgQCgUAwPBRFoV9wzeR30+bjjz/Gxx9/rPK5KgeoirS0NEZjjhw5EiNHjqz3vI0JorNkQJxd5JUBmpSYq+wIBAKBYEJIZQZqpEu0pvUNcZYMCC/YD+4e7VW2Hnj58iU+//xzODi0hVQqNekO8gQCgUAg6EJ8fDy2bt1a6/jWrVuxfPlynccnzpIBoSgKy1bMQ0pKCkQikUKJOT4+Hm3atEFWVhaKix9g5PBRCOgZiNSkVGMvmUAgEAgNhVRmuIeJsXHjRnTt2rXW8R49euC7777TefxG7SzFx8eDxWJh5syZddow7X68du1adOnSBS1btoSbmxs+++wzlJUpi/vdu3cPEyZMQNu2bdGqVSv4+PjgzJkzOr2HCNFQ/Lj9v7hw8Zyi9UBMTAxCQ0OV2lj08u6FqePfIw4TgUAgEAhakp+fDw6ntjSFo6MjJBLmsh110WidpVOnTmHTpk3w9vZWa8ek+/G2bdswb948LFq0CFevXsWWLVuwY8cOREdHK2wePXqEoKAgtGjRAr/99huuXLmC1atXw87OTuf3EiEainNX/0TSbz/B0ckBAoEAycnJCAgIgLW1tUJKQCAQ4IuYL8iWHIFAIJgCBslXMlCFXSPHzc0NmZm1+/plZmaiXbt2Oo/fKKvhnj59ivHjx2Pz5s1YtmyZWtu1a9cq/VssFiM5ORn79+9H795y5eOsrCwEBQXh7bffBgBwuVyMGzcOJ0+eVLxu+fLlcHNzw/fff684xuVy9fOGIN+Soyg2igqLERsbS6QECARCs4WmaRzLOIN8SRFcOI7gBfsSLTlVyAzk2MhMz1l67733MHPmTLx8+RIDBw4EAPz111+YM2cOPv/8c53Hb5TO0ieffIKwsDAMGjRIo7NUE1Xdj4ODg/HLL7/g5MmT6NevH27duoUDBw5g8uTJCpt9+/Zh6NChGDVqFI4cOQJXV1d8/PHHeP/99+ucq7y8HOXl5Yp/l5SUqF0bkRIgEAgNCU3TSM+49Lq3YHBPgzst+/YeQuzclcjNuas45sFtj7jlsxESNtUgc9I03Th0kwhGY86cOXj48CE+/vhjVFRUAAAsLS0xd+5cpV2k+tLonKXt27fj7NmzOHXqVL1er6r78dixY1FUVITg4GDIZDJUVlbio48+wrx58xQ2t27dwoYNGzBr1izExMTg5MmT+PTTT2FhYYFJkyapnCs+Ph5ffPEF47VVlxJQ18iRSAkQCMygaRonMo+hML8ATi7O8A/iqb1Iyu2zUJifDycXF/gHBTbIRZWmaRxJPwOJpBgcjgOC+T4GnzdxbwY+n7MZOTmve29xuS5YveJ9RI4INsic+/YewsSxMyEQCLA9YZdSe6eJY2fiu18cMEyLVhZMOLgvCV/Oj8a9vFzFMVd3D0QtETd6RW6ZTAqZAaJAhhizscNisbB8+XIsWLAAV69eRcuWLdGpUydYWDBvdaSORuUs3blzBzNmzMAff/wBS0tLrV9fV/fjtLQ0xMXFYf369fD398eNGzcwY8YMcDgcLFiwAIA8IuXn5wexWAwA6N27Ny5fvowNGzbU6SxFR0dj1qxZin+XlJTAzc2tzvVVlxKoq5GjB9cdgcH9wGIpf9gflHdkfB7atWPebI3VKkOz0SvyC5hXWDBsdA0AqNSiz5g23ahZFHNbtp0WX6iycs02gHah8KcPGZvKWjHvxcXSwrZSyrznXAv2Cy3GVT63VQ5LQX4BnF2clRwWmRZplKnJKVgWE4M7ua8vkm4eHpgvFte6IFOQ4kDyfiyJno87uXnV7N2xMH4ZhgvDGc9bnZrfU1Uk7z2E2DmrkJtzT3HMg+uK+BWzIBrxpsrXtNCmT9+z4lqHEvedxMjJX0EgCENCQmw1pyUOI8csw+5tcxEpClQ7LG3eRu3zCrtXvf9omkbMnJVq2zvFxcbiLcEwRo6i5OlLjTZHD+zHwg8mI0wgwO4d2xXvM04s7wEXs/57BL0lUHrN85fMckKfP2XeN5PQeLC2tkbfvn31Pm6jSvA+c+YMCgsL4evrCzMzM5iZmeHIkSP4+uuvYWZmpjbxuar78c6dO2t1P16wYAEmTpyI9957D15eXhgxYgTEYjHi4+MV+kccDgfdu3dXel23bt2UJN5rYmFhAVtbW6WHOuqSEsjKyoJIJEJKSgoWxS8k4WMN0DIZzpc/x18vSnC+/Dnohmh4CYCWynDkRhES/r6GtAt3QTNq3kmozoHk/eB5+WHkMCE+mTINI4cJwfPyw4Hk/VqOsw8fTpgAH29vpe+Rj7c3PpwwAb8lJ9ead9r4yfDx7lXDvhemjZ+s9fxMSd57CBPHzIK3Vx+leb29+mD8mCgk7f1L73PStBSfz/8FAkEYkpJqFpIkQyAIQ1TMD3ovJMnKOIW83LuIiYmpMyczLycHJzKP6WU+mqaxful8ecFMUpLS+0xOSkKYQICt8Ysad8EMSfDWiVmzZuHZs2eK/1f30JVGFVl68803kZ2drXRsypQp6Nq1K+bOnVunE6Gp+/Hz589rfXkpioJMJoPs1YU2KCgI//77r5LNtWvX9N6jpkpKYP6cL5UaOXpw3bHl180QiIZrPWbNrYURA80aZmtBJsPFihd4SFeiDWUGb/OWoLSI/NSHo2Wl2Pj8ISQVr2UfOOaW+KBVG4RY2hhs3qTse5ibchW5D153g+dy7LDy/UBE8plH/UyZA8n78f74KRAIBNi5fYfSFs3746dg87bv8VbECI3j0DSNpTHzNUYwhggEoCgKNE1jSbR6+6UxCzBUMFyv3xuaphE7Z5XaeWPmfoXwiFC9zpt+7Cpy8gqRsKOuQhJ5E9n0zCsIDfHS27z5DHMyC/ML9DLfxRNZkNzJQ8zOHSrfZ8yrgpnLp7LgHWCYbUeCcTl37hxevnyp+P+60GZHoi4albNkY2NT64tmZWWFtm3bKo7Xp/txeHg41qxZg969eyu24RYsWICIiAjFj9Rnn30GHo8HsViM0aNH4+TJk9i0aRM2bdqk9/cZIRqKsPBBOJp+CQWSAjhznBEQ5F+vH0xVWwtcrgtWr5xmsLwEADj6ohQbnj+EpLya02JhiY9atUFIS8M4LUfLSvHF4/sIEwgQG/t6ayFu2TJ8kZqKRXbtDOIwJWXfw7ifTkEQFobt1eYVx8Vh9NJU7FzwFnGYNEDTNL6IXqjWcVgSswiDwyI0fg9OZB7Dndxc7Ny+XW1V6cnMTASGhOBkZibu5OZh53bVF9Uq+xOZWeCF6O87cyzjDHJz7mF7wm6182ZmnEVIf/1tG0gKHgPQ7LRI8plv1zPBhWFOppOLs17me1Ao/63X9D4fFurHOTMIjaSRblPl8OHDAKBwmDZu3IjOnTsbZK5GtQ3HBHXdjzkcjuIxY8YMhc38+fPx+eefY/78+ejevTumTp2KoUOHYuPGjQqbvn37Yu/evUhISEDPnj2xdOlSrF27FuPHjzfI+6AoCkEhPESOGYGgEPVJqXVR19aCl5cfRo5eisS9zPORtOHoi1IsenQffoMHKc3rO+hNLHp0H0dflGoepBpMttVomQwbnz9EmAqNquR9+xAWFoZNLx7qfUuOlsowN+UqBGFhSKqpjZWcDEFYGOZsziJbcho4kZmFO7l5GrZochlt0VRFJjRHMPKV/svUXl/kS4oZzVtlpy84znYANPek5LjY63XewOC+dbZ3qsrJdOdy4R/Eq2ME7Wjr5AJA8/ts46Qf54zQeGnRogUuXbqklwhSXTR6ZyktLU1JS+mHH35Q6niclpam2E6r/qjeJdnMzAyLFi3CjRs38OLFC+Tl5eHbb7+tJTgpEAiQnZ2NsrIyXL16Va1sgLGpubWgMi9hzma979fTMhk2PH8on7cOp+W758ydlr9KSzHpUR5mPbqDuCcSzHp0B5Me5eFombLDlV3xApKKsjo1qmJiY3G/vAzZFcwTj5mQcasYuQ9KEVOXNlZMDG5LHiP90n29zmtMaJrGkbQz2LH9II6kndHLZ6iAsYOjOQpQFZnQdJF0cnFR+i9Te33hwnFgNG+Vnb7g87qB6+4EsTiuDqdFDE+uC/hB3esYoX7IczJj1OZkzo9bqrctR2//QHDc3BFXh3Mmjo8Hx90DPfqqT2Q3KqTdid6YNGkStmzZYrDxG72zRFCN5jv1GNy+LUF6uuof6vpyseIFJOVldToPVU7LueeanZa/Sksx5959+A6pEaEa/Ca+eHxfyWF6IJWXzGm62FbZ6Yv80jJG80oe6FY5Q9NSpGVdR0LyGaRlXTdapCpp79/o3iUSQwd9iMkT5mPooA/RvUskkvb+rdO4zowdHM1RAP8gHtw8PDRGMPoFyYVd+wUFwc3DXYO9B/yD9HtR5QX7woPrqnZermd7BAX30eu8FMXG6mUTkJKSCqFQWMNpESIlJRWrxO8YJK8xXDQUP27/Vqm9E4/Hw8Xs8/hx+7cYLozQ21wUReHjBcuQmpICYQ3nTCgSITUlBe9Gf0EKZkyEiooKbNiwAb6+vvjggw/0nuBNnKUmCtOtBUk+85J0JjykmTktxbR6p4WWybD2wUOVrV9Ubau1ZcvT6zRdbKvs9IWLjSWjeTltW9V7jsTfL6BT/2UYOPa/GP/pjxg49r/o1H8ZEn+7AKDhHKmkvX9j3Oh58PbyrVW5NW70PJ0cJv+gQIYOi+YtGoqisEC8TG0EIzYuTnGRpCgKC+PV2y8Q6y/iUX2dcSui1M4rXv6ZwS7mDm1t8Pvvvys5LadOHmMkG6AL4aKhOHv1b+z/Yxs2//QV9v+xDWeu/IVw0VC9zxUyPBxLNv6I0+cvKL3PMxcuqpQNaHSQaji9cenSJfTp0we2tra4du0azp07p3icP39e5/EbVYI3gTnVtxbUJVNyXJhppTClDfXaaVE3rwOl/qN17vkL3Csrw241ESpeaiqyK17Ax6IVvMxbgmNuibhly5C8b18tjSpxXBzaWVjCy7ylrm9RieA3HODR1gbiuDgkJSfX1sYSi+HJsQO/Z/16DyX+fgGjPvpBroezU1kPZ9RHW/H5tIHYfeACcu68zmvhujth1RdjECnw0/n9VUHTNObOXldHAnYyRCIh5s35GuER/et1cacoCovil+D98VMgEokQHR2teK/x8fFISUnB5m3fMx57uDAC3/3yC5bFxChVlbpzufjul19q6SwNF4Zj07YfsSR6fg17D2za9mO9dZY0IRwxGD/vWIPYOauU5uV6tse2Havq1FnSheoaS3PnzkNJSQlOnTqF33//DVlZx/U+nyooikJw/9q/D4YgZHg4fAYOxeVTWXhYWIA2Ts7o0bdhxEZ1hiR4642qZG9DwZLJGkikxgQoKSlB69atkVd0Fra2mquyKqRWjMd+KVV2AmiaRpBXH/h491IpcCkSCXHp0hlc/2er2h+Nl99vZbyGY4vOgZbJMOFhHnwHvanSaRFGRODsn38hmeuuVkbg95ISxNyXoLS0FNbW1rWeLy0tha2tLWJbc/BmS7l+laIaLiwMMTWq0lJVVMO5d2jB+L21H9GpzueqV8NFx8S8vsiLxUhJrbsajtWpg9o5aVqKTqFiePnIHZJa51IoxO+//4633hqK2Nj5So5USkoqdm2drtFhYtkxy8NJO3IBAwbNQVZWlkonOCsrCzweDwf//A79Q33xgmbuhL+otFP8/4Hk/fgieqFS9aY71wMLxV9guDAcUhnz+zcp5LIAJzMzFbIZ/YJUt7mgWPJqGSYK3mwW861c6xbMKq1omsbxjJPIlxTDheOAoOA+ar+XLSktIsIlr9sj0bQUHXvPhFevfio/UyKREJeyT+N69nqNzkS5ObMbAG0+C89eMs/PuvmY+QX/GUOhSUAbUcpSTOrTEU+ePNGooactVdeKR/s+hK2VfhSmlcZ/Vg77iO8MsvbGSl5eHtzc3FQmeefl5cHd3V2n8UlkqYlStbUwbfxkFXfqYqSkpGL3zgX631pgsfBRqzZYlJoKYUSESqflC/t2GvWWHBhGqKpvq4VY2mCRXTtsPPQXeKmpiuPtLCwNJhsAACIvVyRMAuamHAGPl6I47smx00k2IP3kTeTcKUbCzjqiazHyZNnPPpulOEfVIz2zF++AcFgfUJTuu+kSifzirLFyK1+3yq3hwnAMFQyvU8FbWyiKQmBIiFb2+pQH0GZefcoD1IWxNJYI9UQqM1BkyfRiIJ6enpBIJErdOwDgwYMH8PT01LlQhThLTZi6thY8PTnYvXOBwXSWQlra4Au0w4Y/azstX9i3Y6Sz1LtVS7haWkK8bBmStNhWC7G0QZCFNbIrXuCBtBJt2WbwagAxTJGXK8J7tEPGrWIU2VuB07YV+D3b6eSoSArljZc1NlYuUI5eKF30jv+L0KBuiudoWor04/9CUvAYHGc7hLzlyMgR4XDk0QFNzquLi+6VW8ZyWEwBY2ksNTVomsbV08fxuKgAdo7O6OYX0DS27Qh1IpPJVEaVnj59Wq/2aTUhzpIBePbSEeyXmkOfFLuC8ZiOltdUHp88pgsmjNyOjPTziiadoT1agqLYkD2SaByX3Zp5CNitw+veYePRFmNlbXDqyTMUVlTCydwMfVtbKZyWlxr7OrEwl9MWM9REqMTO7WBjpfzhNzOTvzYEmhOqW7Rk/vFmW2vui8YGMMDHFWZ96t6yU36B+vmrdG405p1xOLWeU0R6ip+B1UL+N0zcdxKfz/8FOXmvt2W4Hj9g9ZdTEClSnzjND+gMLpcDsThO5fZNfLwYnp7t8Gb/DqDYpSiXMg/tm7EZ9tID8FLK3Pk0g34rH6tgg/kdqEymhbOshT9fLmUeJbWweR2Z4HjKOw5obNbt7g6ppXqdpYpKZmkCZTTzz0IZzbz/YGkF8/54zyuY/83+St6LxHVxKLp/R3HMsZ0bImfEos+AYYpjL56WqXq5fiE5SzpTVenGYrGwYMECtGr1+tpA0zROnDgBHx8fnech1XDNAIqi0D/UF2PHDUX/UF+9bMswmpfFQoCdNSKc7BBgZ611dGeInQ3Webri7J9/KVWynPvrL4id22GAleHalzQG+P06guvmUKceTlxcHFxdXcHn82u9VuFIvRIgrErq9erVT1mg1NsPI9/+EolJ6sUeKYrC6lUfICUlFSJRHeXmK6eRu+9GDp/vpXB669RY8mwHPt/bSCs0Lif+SMWmeR/B39dH6TPu38cHm+Z9hLOHfzP2EglaUlXxJpPJkJ2drVQF988//6BXr15Kuov1hUSWCEZliJ0NfGGF82Uv8ICuRFvKDD6Wht9WawxQFBur5osw6sMtEImEiI6OUco7S01NhZ+fb63QsuKi5+EMPq9brcapqirZoqK/hzBcfUudyMgQ7N61CJ9HbayxrdsOu3ctQmQk89wggnGgKAqrV07DyNFLVH6mUlJSsXPXEpN0eqU0jV9WLEaYQIDEPXuQmZmJ/fv3g8PhIDFxDyIj/4PEr8XwCRkCdkOdHxJZ0pmqKrgpU6bg66+/ho2NYW6yibPUQMircI6hML8ATi7O8A/ioYECQI0eisWCb8v66xQ1ZSKH+WDXd1MRtSxJ2UFxd0TUB29i9aa/67zo7f7xM1AUG2npl/WW1BsZGQKhMAjp6dmQSB6Aw2kLPt/LJC+uTZXISD5271yIz2dvqpXLuHPXEkRG9jfi6ozH1dPHUXA3D0GffITOnTsjJydH8RyXy8W0adOQkrIf18+fRBffRqz6TVDJ999/j/T0dGzcuBG3bt3Crl274Orqip9//hmenp4IDtYtT5I4Sw3AgeR9WBozH3dycxXH3Dw8sCh+McJEjVw0jWBwIof5QDjEG+knb0BSWAKOky34/TqCotgI6ONZ25HycMbuHz9DZEQ/AFok9UqYlaNTFIXQUJ/6vyGC0YmM5EMo5L1yeh+Cw2kDPt8LLDP96pA1JR4VyQslYmJiIBAIFH1A5XIcYsTGxgIAnhQXqhtGv8gMFFmSmU5kqYo9e/Zg4sSJGD9+PM6ePYvycnmuZGlpKcRiMQ4cOKDT+MRZMjAHkvfhgwmTIBAIsHP7dqUv5/vj38XmbVuJw0QARbERGli7W7YqRypkUIBSXlr1xqnqE8X1K1BKaNyocnpN7xL6mtZtHWBmZoZhw4apEF5NUuia2bTRb68+tRiqj5sJSgcsW7YM3333HSZNmoTt27crjvN4PCxZskTn8clGkAGhaRpLY+pqdpsEgUCAJTGL9d7sltC8qHKkxgn9EBrYuVYCv7EapxIITQsWKisr6+ynGRMTg8rKSm2KFgmNiH///RchKjTXbG1t8fjxY53HJ86SATmReQx3cnPVNLuNRl5OLk5kNkwLAkLzpHrj1Dor2eKnkLwjgknz5EERAM3b1SUPdRNe1QrSG05vcDgc3Lhxo9bxjIwMvPHGGzqPT5wlA1KYL98j1yg6mM+sZQKBUBeREf2w+8fPkH3hpJIMw6Xs09j96zyNOksEQnPH3tEZgOam2K0dnFQ+T2jcfPDBB5gxYwZOnDgBFouF+/fvY9u2bYiKisLHH3+s8/gkZ8mAOLm8/nKqFYh7ZUcg6EJkRD8Iw/yQfuyqQsGbP8CXRJQIBADd/ALg3N4dcXFiJCfX7qcpFsfD0dUdnXz6NdyiiHSA3pgzZw6ePHmCAQMGoKysDCEhIbCwsEBUVBSmT5+u8/gksmRA/IN4cPPwgFgsriOXJB7uXA/4BzVMd25C84ei2Ajl98C4kUEI5fcgjhKB8Ao2RWHCnMVITU2BUChS2q4WCkVITU1B5KcxDaexRNA7cXFxKC4uxsmTJ3H8+HEUFRVh6dKlehmbRJYMgL1FLmwtrAEAy1d+ivFjolQ0u41HSkoKft25Am1b3tc4ZosyzTZVyF6UMrZlUczTGe3eaM3Y9tGNx4xtnVoz99nZbObrdeK3Zz6uDfM2DDBj+GMq1aIdRyvm51b2/AnzcWnma2CxmP8dWlAvmK9Bi2tPCzbzcaVatBqhWMzPA5ulqVXPa8q1aPUho5i376ikmX8ensIwkWkWw7YvFTSztigA8M8D5ufgaRnzv5lUxqz6y/fNYfhoxUbsWrtUSY7Dqb07PlqxEb5vvm53YmbWALEEElnSO61atYKfn5/exyXOkoERjXgT23asQvScNUpfTq5ne/y6cwVEI9404uoIBALBtPB9cxh6hw7BtXMn8aS4AK0dnNG5dz8SUWoGlJWV4eLFiygsLKy1mxMREaHT2MRZagBEI95EeEQoMjPOIl9SDBeOA4KC+8DMjBSpEggEQkPDpih09TO+SreMlkFG618TyRBjNnZ+//13TJo0CcXFtasZWSyWzhI9xFlqICiKQkj/vjWOmm6olEAgEEweIkqpN6ZPn45Ro0Zh4cKFcHbW/9Y0SfAmEAgEAoHQpCksLMSsWbMM4igBJLJEIDRKaFqK9OPXXksABNRW7ibIVfKzMk6hIL8Qzi5OCAzuSyoACU0HWiZ/GGJcE2PkyJFIS0tDhw4dDDI+cZYIhEZGYsppRC3eiZy8IsUxrrsjVi0ejUiB/qs8mir7k37Hwrli5OXeURxz93DDkuUxCBe9ZcSVEQiEhuabb77BqFGjkJ6eDi8vL7Ro0ULp+U8//VSn8cmtKoHQiEhMOY1RU9fDq5e/kg6MVy9/jJq6Hokpp429xEbB/qSDmDLuY/Ty9lE6T728fTBl3MfYn/S7sZdIIGhEJpNBJjXAg6GUQnPi119/xcGDB7Fnzx7897//xVdffaV4rF27VufxSWSJQGgk0LQUUYt3QiAIQ1JSco2u6MkQiYSY/cUuCAf3NOktOZqmMX+OWNGgumb3eJFIhEXz4jE8fDDZkiMQTIT58+djyZIlmDdvXq1erPrAdH9xCYRGRvrxa8jJK0JMTGwdjZdjcDu3EOknrhtphY2DrIxTyMu9q7ZBdW5OHrIyThlphQQCQ2i8zlvS68PYb6zhqaiowJgxYwziKAHEWSI0AmiZDMcfPcW+gkc4/ugpaBMMIQOApOAxAM2NlyUFWih4N0Py8wsBMGlQXdhgayIQCMZl8uTJ2LFjh8HGJ84SwagcfPAEA0/fwNsXbmHm1Tt4+8ItDDx9A78XmZ5DwHG2A6C5KzrHmXkrjOaIi4u8K7ym8+TsQrrHExo5tNRwDy1Zv349PD09YWlpCV9fX6Snp9dpK5FI8Pbbb6NLly5gs9mYOXNmLZvQ0FCwWKxaj7CwMIXN4sWLaz3v4uKi9doB+fb8ihUr0L9/f/zf//0fZs2apfTQFZKzZAAsc/+GpbWlZkNrLS569u0Ym8pycxjblp3MZ2xr6cS8B1TLR+UabQ7cf4jp/96BIEyAnbGxir554rg4fJKaiu/7d0G4h4PSa+gy5vHllxLmfahadLRnbMtY8O0p8/nRwgI8n/bgONshLi4OycnJtbqix8eL4enuCH6vdkAZw7GfMnc6ZVLm59bSjPm4LVsy/5y/bOGg0WZQqCe43HYQi+OUcruAaufJ0xVDB7iBouSfb236vdEyC4PYPnup+b1VUUa3Ymxb9Jz5e7MxZ57DZdWCWYeBwufMe7i10KK3I8eW+bktrWD+2TVvwSxG0AJa9IusJ1UJ2YYYVxt27NiBmTNnYv369QgKCsLGjRsxbNgwXLlyBe7u7rXsy8vL4ejoiNjYWHz11Vcqx0xMTERFRYXi3w8ePECvXr0watQoJbsePXrgzz//VPy7vnmG2dnZ6N27N4DaN1Islu7dMoizRDAKtEyGJf9IIAgTICm5RjJzcjJEQiEWpR/GcLe2oLT4gW2qJB44h6gleyEpeIyUlBREREQgtpoDGR8vRkpKKnZtet+kk7sB+Y/p8pWfYuzoaIhEQkRHx9Q6Tzt2ik0+uZumaZw/fgzFhflwcHKBTwAPWnU1JpgMa9aswdSpU/Hee+8BANauXYuDBw9iw4YNiI+Pr2XP5XKxbt06AMDWrVtVjtmmTRulf2/fvh2tWrWq5SyZmZnVO5pUncOHD+s8hjqIs0QwCicelOLO0+fYGVtHMnNMDHi8FGQVPkGwi51xFtlAJB66jFGzEiAQhCFhZyxu3ryJOXPmKDVe9nR3xK5N7yNyeG+g/IURV9s4GBE5ADt2ijFn9n+Vz5OnK3bsFGNEZKjxFtcIOJy6D19/EYv7ebmKY+3cPTB3aTwGhwuNuDKCEgYWpSwpKVE6bGFhAQsL5YhdRUUFzpw5g3nz5ikdHzJkCI4dO6a3JW3ZsgVjx46FlZXyDsX169fRrl07WFhYwN/fH2KxGG+88Ybe5tUXxFkiGIXCMvnWgcYkXS22GJoiNC1F1KqDSnIBAQEBGDt2LI4cOYLZs6Nw/+4tXD2yEObm5OtanRGRoYgQ8pGRfgESSTE4HAcE83uZfETpcOo+RL83EQKBAHt2bFdE3eLEYsx8ZzzW/rCNOEwmgpubm9K/Fy1ahMWLFysdKy4uBk3TtdqEODs7Iz+feZqGOk6ePIlLly5hy5YtSsf9/f3x008/oXPnzigoKMCyZcvA4/Fw+fJltG3bVqs5lixZovb5hQsXar3u6pBfX4JRcLKUq6teunQJAQEBtZ5XJOm2alHrueZE+pkc5Nx7gITdyhE2iqIwcOBAfPPNt+DxeDh2+hZCeZ2NuNLGCUVR6B/ax9jLaDTQNI2vv4hVqUGV/EqDauXCGAwcLjB5p7JRYOBGunfu3IGtra3icM2oUnVq5vXIZDK95PoA8qhSz5490a9fP6Xjw4YNU/y/l5cXAgMD0aFDB/z4449aJ2Xv3btX6d8vX77E7du3YWZmhg4dOhBnidA08W9rAzfrVhDHxSnlLAGvknTFYni0tkKgU/Ou/JIUlwJgIBdQaHrVgQTtOX/8GO7n5WLPju11alDxeDycycpEv+AQI62S0FDY2toqOUuqcHBwAEVRtaJIhYWFemlK+/z5c2zfvl1j5AcArKys4OXlhevXtdeSO3fuXK1jJSUleOeddzBixAitx6uJaWeKEowGxWJhYVcOUlJTIBIKlVpWiIRCpKSm4ovebs0+uZvjYAOAgVxAM3caCfqhuFB+wdPkfBcV6Gd7haAbMlpmsAdTzM3N4evri0OHDikdP3TokFI+YH3ZuXMnysvLMWHCBI225eXluHr1Kjgcjs7zAnJnccmSJViwYIHOY5HIEsFoDG/XBpsALD36N3gpKYrjHq2tVMoGNEf4vlxwXduqL4N3dwTfv6MRV0loKjg4yauKNG1vOzrrXn3U1KFpGldPH8fjogLYOTqjm1+AyW5Nzpo1CxMnToSfnx8CAwOxadMm5OXl4cMPPwQAREdH4969e/jpp58Urzl//jwA4OnTpygqKsL58+dhbm6O7t27K429ZcsWiEQilTlIUVFRCA8Ph7u7OwoLC7Fs2TKUlJRg8uTJentvjx8/xpMnukfmibNEMCrD27WBsJsLsgqfoOD5Szi3aoFAp9bNPqJUBUWxsSpqKEbNSqhVBi8Wi5GamopFn4dpHohAAOATwEM7dw/EicVIrpazBFQ53/Fo78GFb2CQEVdpfI4fTMXPyxej4G6e4phze3dMnLsYAUMb8PsmkwJS7QUkGY2rBWPGjMGDBw+wZMkSSCQS9OzZEwcOHICHhwcAuQhlXl6e0muqNI0A4MyZM/j111/h4eGBnJwcxfFr164hIyMDf/zxh8p57969i3HjxqG4uBiOjo4ICAjA8ePHFfNqw9dff630b5lMBolEgp9//hlvvfWW1uPVhCUzxfbEBqKkpAStW7fG47NLYKtnUUqWFqKU0tNHGNuWpaje/lE9MPOPyuN/HzK2tbTXQgRQC1FKS3sGf4NXtOK3Z2zL7uLJcAHM31diVi6iluxFzp0ixTEzMzNUVsoF/7hujli1cIT20gGVzAUDYa9FfoIZ88R7lp5FKRXjgvkFwVCilM8qma/3RaUdY1tdRCmrquHCBALEREe/dr7j45GaksK4Gs4QopQPXzD/O1iaMc8S0UaUMi11H1Z/OhVhAgFiY2KUqgVTU1Lw+ddbEDA0DM+flmJSn4548uSJxrwfbam6VhSJw2Frqf8ilpKyl3CM2W+QtTdWPD2Vf5fZbDYcHR0xcOBAREdHw8bGRqfxSc5SA0HTUqSduImElHNIO3ETdD3k6AnNl8jhvXE9czEWRwkAAIGBAUhLS1PkcXn5+GPUtM1IPFA7iZFAqM6AsAjE/+9nnL1wETweD7a2tuDxeDh3IdvkZQNomsbPyxcjTCBA4p49KCsrw/79+1FWVobEPXsQJhDglxVfgKZNsBNtE+f27dtKj5s3b+L48eMQi8U6O0oA2YYzCC9+OIIWFq9PbfK1AkQfvYHcR08VxzzsrbFqsi9G9K0tJa8Kdv9AxvOzPLiMbeknZxjbVpYz/wGxdmHeGkUbKrW4izVzZn53LnvJ3HmVSRgmxzq00WxTxZMnkNFS/PBrJsLDBUr5SwEBAUhKkquaz168CxEd3mGs4s2ysWa+hqe3mNuaM28FIdMiwmamTcdwc+aRQ1gw/zy2aMX8TlxKMe8/V1LRkrHts5daRARVMCAsAiFvhdVS8LZoYYYXlcw+61IZs8jSUy2iOrYWzC85FVrcUDLdtb90OgsFd/MQ9MlH6Ny5s9KWEZfLxbRp05Cyfz+unj6ON3p4M56/vjSWdicEzRBnycAkXyvA+H0XIAgLw/Ya/c9Gr0vFzhkhjB0mQvMm/cJd5Nx/hIQ96lTNeUi/eA+hvd3qGIVAkENRFHyD+MZeRqPiYWEBACAmJgYCgQAJCQlKOYKxsbEAgMdFBcZcJoEh2mgxrVmzRqe5iLNkQGipDNFHb0AQFlZn/7M5CUcR4dselDZ31IRmieSBPPKoUXPpwVOVzxMIBPXYOTjAzMwMw4YNqyXamZSUBKFQiN9//x22bRuoEtfA7U6aO6q0lVRBGuk2cjLvPkLuo6fYrqH/Wfo/hQjtTkp5TR1OW/mWmaay7yo7AoGgJTIWKisrERMTo/I3OSYmBikpKQBMoxq3qWPo5rnVIc6SAcl/Vg5Ac6Qg/zFpjEoA+L3ag9vOXq2quaerPfjerkZcJYHQdHn8QF5tquk3ueRBkcrn9Q6JLOmVx48fY8uWLbh69SpYLBa6d++Od999F61b6y7qS/Z+DIiLlTyxVZM6s4sd88RPQvOFothY+Ul/pKSm1qlqvuLj/oyTuwkEgjJtnOTyGJp+k+0cdW/zQWhYTp8+jQ4dOuCrr77Cw4cPUVxcjDVr1qBDhw44e/aszuOTX10DEtTeHh721hDHxUFaQ3hMESlwtgW/K/OKGkLzJjK0M3YuEyL7bKZS2felc5nYuUyIyFDSTJdAqC89+gbCub074sRilb/J4vh4uLh5oJtf7W1wQ1BVDWeIh6nx2WefISIiAjk5OUhMTMTevXtx+/ZtCAQCzJw5U+fxyTacAaHYLMSHdMT4ffJIQXQ1AbR4sRgpqfJqOJLcTahOZGhnCPkdkX7hLiQPnoLT1hr8Xu1JRImgNTRNK8kH+PGCTLalByCvEJw4dzFWfzoVQpFIpWjn519vabhzREvlD0OMa2KcPn0amzdvhpnZa7fGzMwMc+bMgZ+fn87jE2fJwAg7O2NbRC9EH00Dj/e6/xnX3prIBhDqhKLYCO1DPhuE+nM4dR++/iIW9/NyFcdc3T0wc3EcBgpMV5gyYGgYPv96C35evlipUayLm4dCvZvQ9LC1tUVeXh66du2qdPzOnTtElLKpIOzsDEFHJ2TefYT8Z+VwsbJAUHt7tOpD9sUJBIL+qWp5IhAIsGfHdiUtoTlTJ2LFlp9N3mHqO+gtozfSlckMJEppgl3MxowZg6lTp2LVqlXg8XhgsVjIyMjA7NmzMW7cOJ3HJ85SA0GxWQhx10LRmUAgEOoBTdP4+otYCAQClVpCIpEIa7+Yj/7DBCa/JdfT37QbCjcnVq1aBRaLhUmTJil6arZo0QIfffQRvvzyS53HJ0kQBAKB0Iw4f/wY7ufl1qklFB0djXu5OTh3/JiRVkhQUCUdYIiHiXD+/HkAgLm5OdatW4dHjx7h/PnzOHfuHB4+fIivvvoKFhbMWy7VBYksGYCWQh+0tGLwxzFjfvplFy4wt31WxtjW0od5JV7FPw8Y27KYNmsCAC0Sl1tqMW5ZXiljW23WS5Ux69vFLmGunyV9zrwbO6sF82gA2565LIWsXIs1tGYujMly1qLaU5tiB7YW+mR2zE1lUi36D9pXMLbV5ithpoVxzR5qRQXy3oWatIQK8iWo1MMWkDb93iwo5u+rnGb+WdDmfHGsmV04n5rp1p+P0DD06dMHvXv3xnvvvYe3334brVu3hpeXl97nIZElAoHQpKFpKdJO3kLCgQtIO3kLtAlWAlXHwZmZlpCDE+kaYHSkMsM9TITMzEz06dMH8+bNA4fDwYQJEwyi7E2cJQKB0GRJPHQZnYavxcB3t2D8nJ0Y+O4WdBq+FomHLht7aUajlz8P7dw91GoJubpz4RPAq2MEAqHpEBgYiM2bNyM/Px8bNmzA3bt3MWjQIHTo0AFxcXG4e/euXuYhzhKBQGiSJB66jFGzEuDVJ1BJ7dyrTyBGzUowWYeJoij838JlSE1JgVAkUjo3QpEIqSkp+L9Fy0w6ubuxIKMBGS0zwMPY76zhadmyJSZPnoy0tDRcu3YN48aNw8aNG+Hp6Ynhw4frPD7JWSIQmgC0VIqM60WQPC5Du7ZWCO7iaNJipjQtRdSqgxAIwpCUlFyj4isZIpEQs1cfhHBgN5MU8wwNi4B480/47xexSlpCru4eiP/fzxgQFmHE1REUGGrLzIS24VTRoUMHzJs3D25uboiJicHBgwd1HpM4SwRCI2fv2TuYuzsbOUUlimNcJ1usGN0LI/xMU7gy/Wwucu49QMLu2DoqvmLA4/GQfiYHof3eMNIqjU/NS6bUBPV3CKbFkSNHsHXrVuzZswcURWH06NGYOnWqzuOa3i0XgdCE2Hv2DsZ+dwxe/iHKW039QjDm2wzsPZ1n7CUaBUmRvNJRU8WXpJh5RWRzIi11H2LenwQ/n15Knxtfn16Ifm8iDqfuM/YSCcDrdieGeJgQd+7cwdKlS9GhQwcMGDAAN2/exH//+1/cv38fmzdvRkCA7r3+SGSJ0CigpbJaCueUNrXWzRBaKsXc3dkQhIUhKbnGVlNyMkRCIebuPIqIPu1NbkuO4yhvX3Dp0iWVP4RVFV8cB93bHDQ1aJrGf5fMVylKmZyUBKFIhP9+MR8hb4WRvCVCk2fw4ME4fPgwHB0dMWnSJLz77rvo0qWL3uchzhLB6CRfK0D00RvIffRUcczD3hrxIR0h7Gy6LWEyrhchp6gECbF1bDXFxIDHS0HGv0Xo3820zhO/jwe4rm0hFscp5SwB8oqv+HgxPNu3Bd+Xa7xFGokLJ+SilHt2bFf5uYmJjgaPx8P548fgG8Q30ioNC03TuHDiGB4UFKCtszN6+fMapWMokxqo3YkJ5Sy1bNkSe/bsgUBgWEV607odJTQ6kq8XYPy+C/AOClXaLvAOCsX4fReQfK3A2Es0GpLHcnFRjVtNT7QQZ2wmUBQbq6KGIiUlFSKRUOmzIxIJkZKSipWfDzXJ5O7iAvl3RtPnprgwv8HW1JCkHdiHsbze+L+R4Vj8yXv4v5HhGMvrjbQDZOuxObJv3z4IhUKDO8Om90tCaDTQUhmi028qtpkCAgJgbW2t2GYShIUh5ugN0CZ0l1Qdjp0lAM3igpzWzFW6mxORg3tg15pxyD6bBR6PB1tbW/B4PFw6l4Vda8YhcnAPYy/RKJiyKGXagX2Y//5k+NbI1erj0wvz35/c+BwmqYFanZjob6YhYclMsT2xgSgpKUHr1q3x+IIYtjaWDF7APPlUdu++DiurG2l+iWajV5SfL2Q+MIO2BkfvPMTwPWeRlZWlMu8kK0t+ETzwnz4IcZM3IaafM29BQL9knuRItWB+3yBl2HepZTfmjZNZKuanpTJ0izsE74D+SjlLgHyrSSQUIvvEUVyZP6TO/C52K+Y77VItzi3lyNxBY7kxvyizrKwY28LcHIBcRiD9TA4kRSXgONqC78utHVGy1KI3lBb5X5VugYxtc0qZt2Co2cJEHc9qfM5pmsbIQB/06eWN5Go5S4D8cyMUiXDuQjZ2HDur9m6czWKWM2hvyfwzZq5FpI/NYv55LCmXv+/hft7o08tbKVcLePV9EYlw7mI2sv/ZzygKUVLyFO0d+uHJkyewtbVlvBZG6311rbj/QX/Ymus/G6akohLtNh4xyNpNFRJZIhiN/Gfyvlqatguq7EwNis3CiogeSElNhUhYY6tJKERKaiqWR/Qw+UR4imIjtN8bGBfmg9B+b5jk1lt1KIrCp4vi1IpSTl+4tE6HgaZpnD2WjoN7d+FMZjpoumkoHJ7JysQ9DQ2E7+bm4FjGGSOtsDZVOUuGeBD0C0nwJhgNFyt5ZEBTRVOVnSki6uWK7VP8MWffEfB4KYrjXEdbbH83ACKf9kZcHaGxMiAsAvH/+xlf1xKl5EK8+SeE1iFKmZa6D/9dMh/383IVx9q5e+DTRXF6E7KkaRonj2WgMD8fTi4u6McLBoBax9haXp2KGTYQzpcU1X/xeqZKcdsQ4xL0C3GWCEYjyNUeHnZWEMfFqdxmiheLwbW3RpCrvRFXaXxEvVwR7tUOGTeLkV9SBhe7lgju4GjyEaXmAk3TOH0sE0UF+XB0doEfLwiA7n/bAWERCHkrDOePH0NxYT4cnFzg7R+oiChVVYwVFxTAwdkZjx88wPwP3oFAIMCeHdvRs2dPXLp0CXFiMaLfm6gX5e/fk5MQFzsXd3JfO2OOTk6QymR4UPTaiXHz8MB8sRjDhELGYzs4y7d7Nd58cRzru3yCCUOcJYLRoNgsiIM7YMKrbabomBjFD3S8WIyU1FT8EuZFnALIz1X/Tq9+5E1MU6khoGkp0k/dgqSwBBzn1uD369Ag23kH9yVh+fxo3K0WyWnv7oHPl4gxOJy5o1AXFEUpyQNUKXiriiBZWFjA19fXYNpMB/cl4dPJ4yEQCLBz+2tnbNmyZThw4ADi4+Mxffp0XLp0CWKxGB9OmIDvfvmFscPkGxgEV3cPiMVilTlL8fHxaO/BBS/Yt17rNwREOqDpQH51CUZF2NEJv4R54WLGYaWKpuzMNPwS5gVhRydjL9EkoaUyHLleiB2n83DkemGDVSTStBRpp24j4bdspJ26DboBlIgTf7+ITgO/xMC312P8zF8wcNy36BQqRuLvFww6b5Xz0LuXt1JeUe9e3pg1ZQIO7U82yLxV6t6+NeYdNGgQzpw5g6SkJCX7Km2me3k5OH/8WL3mpGkay+dHK4Qyq1e+7tu3DwKBAJs2bULLli1f9fdLgkAgQFxsLOOcKYqiELVEjJSUFIhq5GqJRCKkpKTg8y/ilCJr6UdOYtf2VKQfOdlkcrMIxoFUw+kRUg1XDQbVcNWhpTJk3nuE/GcVcLEyR5CragXvxlYNR0tlyCp4gvznFXBpZY5A59aKdetaDVcTWiqTb8WVlsOltSWjrbj6VMMlnb+LOcmXkFutVYiHgw1WCHsqcqQMUQ2XmHYNs9cfRc69h4pjXNc2WDVrMCLf7F77BeZa5LLVUQ2X+PtFjPrkRwgEYYiJiVVEO8TiOKSkpGLXhncQ+VavOoetbzUcTdMY3Lsnemuo3Eo9dUFjJKdmNZw6XlZWYjSvN3zVzHvp0iVcv35dad7S0lLY2tpiyYYtGDpilNKYTKrhTqQfxcTwtzRWvh4+fBihoaFKx3YcOIDAkBC145eUv/7/Q/uTsWphDO5Vj9Z5cPH5F3EYHC6Eu00e9u09hNi5K5Gbc1dh48Ftj7jlsxExYrB8zAaohsudGGSwajiPnzNJNZweIZGlBoSmpUg7fgMJ+84i7fiNBrlrbipQbBZC3NpgdFcXhLi10XrrjZbKkH7/EXbfKED6/UcNEgnZn1OEPolnEH7gAt5Pu4rwAxfQJ/EM9ufoP4E06cI9dIs7hCHfHMWkH09gyNdH0G3pQSSdv6v5xdrMc/4uxm49Du+A/soioQH9MXbrcb3PV0Vi2jWMnp8Mrz485R54fXgYFbUTiX9d0fucNC1FVHwKBIIwJCXV0PlKSoZAEIbZ4v0G+Z6ePpaJuwwqt85kZep13ip1b3Xz3r59G+np6UrP6arNVMQw+VoikdQ6VpivnXjm4HAhDpy+iK3JB7Bi01ZsTT6A1FMXFNua+/YewsSxM+Ht1Vv5M+7VGxPHzsS+vYe0fn+E5g9xlhqIWqH+t9ejU8R/DXIRMDX23S5C712nIUi5gKl/X4Ug5QJ67zqN/TnFBptzf04RJv99Fb34A5R+cHvxB2Dy31f16jAlXbiHsd+fMLgDQ0tlmJN8Sa1I6Nx9l/XuiNK0FLO/PaLeafnqT707LemnbiHnTjFiYupoJxMdg9t5xUg/eVOv8wLMnYeqCi99wVTdu7rTIpVKIY6Ph6s7Fz4BPJWv04RjteRrVSgEVjmcWsecXLR30CiKQr/gEAz/z2j0Cw5R2nqLnbtS5XZg1dbf/HkrG2xLjkgHNB2Is9QAVIX6vXwCGuyu2VTYd7sIk/68Au8aTos3fwDeSbtqEIeJlsow/3SuWqdiwelcvTgVtFSGOfsuN4gDk3GzCLnFpYhR04sup6gEGTf1GzlLv3AXOfcfqXda7j5A+tncOkaoH5JC+Ra0RsehkPlWNVOYOg9VFV76gqm698OHD2tpM/3fomX1Tu724wWh/avka6lU2emtSr729PQEn89XOubO5aJfUFC95gReyRRkHMWBPTtxMuMoTmUcRW7OXbWRtZzbdxuVFhOhcUCcJQPDKNRvgLtmU4CWyjD/ZI5aR2LhWf04LdXJKniCvCfP1DoVuU+eIeOW7o5axs3iBnNg8p8w60VXZacvJA+eMppXUvxU5fP1heMkz+XQGO1w0n/OBxPnob0HF76B9XcUVNHLn4d27h6Iq2NesVgMCwsLTJ8+XVFsce5Cts6yARRFYe6yeJXJ1xEREUhJScH777+P58+fKyVkx8bF1dtBO7Q/GcP9vPGucDjmTHsX7wqHY+4H7wJoPFpMMqnUYA+CfiHOkoFhFOo3wF2zKXAs/zFyGTgtWQVP9Dpv/nOGyuOlujsV+SUN58C4tGbWi67KTl9w2lozmpfjYK3Xefl93wDXzQFicVwdDosYnu4O4PfroNd5AfXOg6rKLX3O+38Ll9Wt7p2aioX/3YRv96RgyYYtWL8nFbuyzulFkHJohAgbfk7A+YsXlSpfT54+jTYODoiJiVEcu5CdrZVsQE0O7U/GrCkT0KdGxV+gvz8A4JtvvlH5OqLFRKgLorNkCNhshRaOpEheUaTxrvnBM/3p51S8ZGwq06KSRpt9cK3Ss7WsnKuigKnT8qxc451WZTnz8+BoJr+AaRK/c2ZRkD4ur/W8Ktg2qiu7nC1bMJurZQvIymtXCsosmV9sgzs4wsPBRr1IqKMtgjs4Atok4Gs493yvduBy7NXO6+naBvzuLkBZtfNZqUVeiYrvFgVg1exhGDXjF4hEQkRHV9P5ihcrquHU6S21oB/W+VxNLGr8KSJGiNCCvQ1xsdFKKtvuXC6+/nEbhkaIGI2rTTWcGZuFQeFCsLf8jHWLa6h7e3Dx5ZafMfCVY8S0jxvTHnIAMHIkDyNGpCEr4yQK8gvh7OKEwOB+AFDrmNxRZHZ+nSwLFP9P0zTWLp6tyEtS0oxKTkZERATEYjE+//xztGjRQvE6hYPs6YqB/Tvj2TPm1cr1xkAK3iAK3nqHOEsGpnqoX93FjuNo06Drag44t2LWLsW5VYtaz+lCoJMt3G1bqb24e9haIciduXRAXQR7OsCjrQYHxsEGwW846DwXxWZhhbAnxm6tWyR0+7sBehcJpSg2Vn7Cx+gF++ucd5d4hEFEIiOH9MSudRMQteKAkuPg6e6gUTZAHwwTijBEEI6TxzKrtfoIQiX0G1GqycCwCPSvUvcuyIeDswt8Anh6j2SpgqIoBPevLbmg6lh9yEg/j9yc+9iesEdlxDk2Nhapqano3z8Eq1evqeUgb98Z3yDnAQBkMgOJUhJFIL1DnCUDw+/XQRHqT0pScbGLF8OzfVvw+3gYcZVNE56LHTxaq2+X4tHaCoFOrfU6L8VmYYmPO6aoUR7/nt9FL04FxWZh+fBuGPdL3XMlTOqrNwdG5NMe298NwJzkhu1FF9m/M3YuDcfs9enKTotrG+wSj0DkgK4GmReQO0zCN7sj/fRtSIpKwXFt02AK3oDceQjkK+sIaRM002Xe6urezYX8fHmuoKaI8/Xr/yh/1jxdsX1nPEZEDjD8IglNDuIsGRiKYmNVbDhGffRD3aH+1WNMvlN6faDYLCzrx8UkdU5Lf/04LTURuLfF9/wuWHj0b/BSXjsVHrZW+J7fBQL3tnqbS9SzHRIm9MXcAzUcGAcbJEzqC5GXq97mAuQOU7i3KzJuFiH/SRljAUxdiezfGaIB3ZF+/g4kD56C09YafB+3BvluUBQbof6vcpPqELAkNA1cXORRVk0R520Jy8BmsyGRFIPDcUAw36fBIkpVyGgZZGzSSLcpQBS89YhCwTv7y1oK3om/X0BU3H7k3HldIeXZvi1WzhqMyEE9NI4tu6OFlo4WOUt0wTPGtuXZzCtEWNpcWLXIWVKl4L3vdhHmn8xB7pPX74VrZ4XFPm4I99B9e6omspoK3oUlKHhRAeeW5gh0slU4Fa24zCNadeUsVYeWypBxuxj5z8rhYmOJ4DccNCt4t2Z+4ZeVMQ9nUM6tGNuytEiWZbXQQpXbTIt7PWsr5rZaOEusdl0Y2+aV92dsW65FZOlRGXNVe22+lkxzlqxaMHcw7CwMU2Vmbaacs9S9SyS8vfqojOaLREJcunQOV/7dpdY5Kil5Cgf7Nw2q4H0zsi9sWug/ZlH6shIdEk8RBW89QiJLDUTkW70gHOyF9JM35c06nWzB7+pEIkp6IMLTEWEeDjiW/xgFzyvg3MocPBc7yF4afi+DYrMQ7KLfbT51c/Xv4FjvhHgCwRSgKArLV87AuNHz6ozmN2RekjpII92mQ6O+UsfHx4PFYmHmzJl12iQmJmLw4MFwdHSEra0tAgMDcfDgwVp2a9euRZcuXdCyZUu4ubnhs88+Q1mZ6nJrJvPWB4piIzSwE8YJfREa2Ik4SnqEYrPAb2ePkR2dwW+nuq8cgUAwDUQjMqU93wAAOvlJREFUBiJh55e4mH1WuUH3pXMkL6kO1q9fD09PT1haWsLX17dWy5vqSCQSvP322+jSpQvYbLbKa+UPP/wAFotV61HzuqvNvMak0UaWTp06hU2bNsHb21ut3dGjRzF48GCIxWLY2dnh+++/R3h4OE6cOIHevXsDALZt24Z58+Zh69at4PF4uHbtGt555x0AwFdffVWveQkEAoHQeBGNGIjwiP7ISD+P/PxiuLjI85JamDWeGympVAapAaJA2o65Y8cOzJw5E+vXr0dQUBA2btyIYcOG4cqVK3B3d69lX15eDkdHR8TGxta6hlbH1tYW//77r9IxS8vXKSrazmtMGmVo4+nTpxg/fjw2b94Me3t7tbZr167FnDlz0LdvX3Tq1AlisRidOnXC/v37FTZZWVkICgrC22+/DS6XiyFDhmDcuHE4ffp0veclEAiNA5qWIu10DhJ+v4S00zlEDZ+ggKIo9A/1xZixQ9E/1LdRbL01RtasWYOpU6fivffeQ7du3bB27Vq4ublhw4YNKu25XC7WrVuHSZMmoXXrutMQWCwWXFxclB66zGtMGqWz9MknnyAsLAyDBg3S+rVSqRSlpaVo0+a1xk1wcDDOnDmDkydPAgBu3bqFAwcOICwsTKd5y8vLUVJSovQgEAgNR+LfV9FpxHoM/PAnjJ+fiIEf/oROI9Yj8e+rxl4agaARGf2qIk7vD/n4Na9P5eW1RXIrKipw5swZDBkyROn4kCFDcOzYMZ3e39OnT+Hh4YH27dtDIBDg3LlzDTKvIWh0ztL27dtx9uxZxMfH1+v1q1evxrNnzzB69GjFsbFjx2Lp0qUIDg5GixYt0KFDBwwYMADz5s3Tad74+Hi0bt1a8XBzc6vXmgkETdBSGY7cLMKO83dx5EaR3vvdNUUS/76KUXN3w8uXp9yg2peHUXN3E4eJ0OipSvA2xAMA3NzclK5Rqq5vxcXFoGkazq+aLFfh7OyM/Pz8er+3rl274ocffsC+ffuQkJAAS0tLBAUF4fr16wad11A0qpylO3fuYMaMGfjjjz+U9jWZkpCQgMWLFyM5ORlOTk6K42lpaYiLi8P69evh7++PGzduYMaMGeBwOFiwYEG9542OjsasWbMU/y4pKZE7TA8eAeXG02qpvMtcpl/2nLnMgJkT83JxqYoS/7qgn8jvdmipDMckj5H/vAIurczB49jVStQ2s2auxq2NbdmDF4xtW7kzK8Vla6EczlLTliTpwj3M2XcZucWv/64eDjZYEdEDol4aNJa00FuhHFsytmVpUS6uDTIZsy00mpYiau2figbV1VtaJCUlQyQUYva6vyDkvyqk0Cbhn8X8HlJW+oCxrWVL5pFnWqaF7IQB5AC0wZxiXnVqzmbeDNkGzPtlyh5qcXEtYyaXYlbK/DehsXLnzh0l6QALi7qvS6wabWtkMlmtY9oQEBCgpHMVFBSEPn364L///S++/vprg81rKBqVs3TmzBkUFhbC19dXcYymaRw9ehTffPMNysvL69xz3rFjB6ZOnYpdu3bV2kZbsGABJk6ciPfeew8A4OXlhWfPnmHatGmIjY2t97wWFhZqP3wE5uy7VYTYE7eVtJI8Wlshzt8TEW+YblPLpAv3MPb7ExCEhWF7bKyiBFocF4ex36di+xR/zQ5TMyT9wh3k3H+EhD11N1Hm8XhIP5+HUF+ucRZJIGjA0NIBtra2GnWWHBwcQFFUrWhOYWFhraiPLrDZbPTt21cRWWqoefVFo9qGe/PNN5GdnY3z588rHn5+fhg/fjzOnz9fp6OUkJCAd955B7/++mutPCQAeP78ea0fVIqi5H15ZLJ6z0vQD/tuFWHiocvw5g9Q2k7x5g/AxEOXse+WYYTsGju0VIY5+y5DEBaGpORkBAQEwNraWh49SU6GICwMc/dfNsktOUmx3KnW2KC6mHkkg0AwRczNzeHr64tDhw4pHT906JBSOxhdkclkOH/+PDgcToPOqy8aVWTJxsam1o+flZUV2rZtqzgeHR2Ne/fu4aeffgIgd5QmTZqEdevWISAgQOGltmzZUpGlHx4ejjVr1qB3796KbbgFCxYgIiICFEUxmpdgGGipDLEnbiscAqXtlGT5dsr8jMMI42pWq25uZNwsRm5xKbbHqouepCDjZjH6dzKt6BvHQa7IrbFBtYN1g66LQNCGxtLuZNasWZg4cSL8/PwQGBiITZs2IS8vDx9++CGA2tddADh//jwAeRJ3UVERzp8/D3Nzc3Tv3h0A8MUXXyAgIACdOnVCSUkJvv76a5w/fx7ffvst43kbE43KWWKCRCJBXl6e4t8bN25EZWUlPvnkE3zyySeK45MnT8YPP/wAAJg/fz5YLBbmz5+Pe/fuwdHREeHh4YiLi2vo5RNqkHn3IXKfPNPoEByTPAbf1bTkHPJL5OJtmqInVXamBL+XG7jt7NU2UfZ0bQO+T+PSaiEQGiNjxozBgwcPsGTJEkgkEvTs2RMHDhyAh4e8wXvN6y4AhY4hIE+h+fXXX+Hh4YGcnBwAwOPHjzFt2jTk5+ejdevW6N27N44ePYp+/foxnrcxQXrD6RFFb7i0ubC11m8uk6ygQLPRKypvPWQ+rhYJ3jItelAxTfDeeeU+puy/iNLSUlhb144ClJaWwtbWFlve7I5RnZxBtTKMf69NgndLVxtGdmxr5n3OWFa139eR60UY8s1RZGVlqYyeZGVlgcfj4Y/pIXVGllgWzM8X206LnmhajAuHNpptqtCi39veozcwat4eCMLCVDZR3vXlfxA5oKvc2E6L/lgWWhSXWDN/b0UtmUuhPKtknuD94AXz77AhErzttThdduZ5mo1eoVWC92P9J3iXlL6AXY/ZBu0Nd/lNb9iY6T/No7SSRo+/LpLecHqkUeUsEUwPl1dOZdW2SU2qjru00qLBajMhuIMDPBxsII6Lg1SqXCVWFT3hOtoguIP+mwU3BSIHdMWuL/+D7LOZSi0tLp07puwoEQgEgo40uW04QvMioJ09LFq0QFxcHJJVbKeIxWJYmLeAv3PDNKttTFBsFlZE9MDY71MhEgpVRk+2T/E3uVyu6kQO6AphSGekn8+DpPgpOA7W4Pu4k76LhCaBjJZBxjJ+zhJBM8RZIhiV4/cfofzlS6SmpkIkEiE6Orpah/B4pKamQiaT4UTBE5PLWQIAUS9XbJ/ijzn7joDHS1Ec5zramKxsQE0oik3kAQhNEkNLBxD0B3GWCEYl/6lckPLnn3/G/PnzlUpGPT098fPPP2PChAnIf15hrCUaHVEvV4R7tUPGzWLkl5TBxdYSwR1MrzqQQCAQjAVxlghGpSpnqUOHDrhx4wbS09MhkUjA4XDA5/MV/fxMMWepOhSbZXLyAASCoaFpKdJP3oCksAQcJ1vw+3Vs0C1cqVQGqQGiQIYY09QhzhLBqAS1bwOP1laKEvDQ0FDFc4okZjsr8Dh2RlsjgUBofiT+dh5Ry5KQc6dYcYzr5oBV80WIHOZjvIURGiXEWTIAFUcuocJSc18wdmvmpdpmPh2Y29oyK20HgIoj1xjbUu2YC/yxipiV4lMAvhzeDW9vrzuJ+dexvrCs6sdGM+sdBgAsS+Yfb5uOzPOhpKXMtgRbdLRjPCbYWtzNamHL4rgwH9dSC7kLLT5jkDL/m8FMiwjiU+Y9EKHNnTbD/nQAgBfM+705lu1lbMtuE87Y1roF889DG4vbjG2lMmbfnxZl9xmPKSsuZG4rZd5zDmXPmY9bVIzEtH8xOiYJAkEYEnYqtxEa9eEW7BSLMKgvl/n89YQkeDcdiLNEMDqiHu3w61hg3sE05STmtjb4dawvRD3aGXF1BAKhOUHTUsz+b5rqJsyvugbM+eYITm0lgqaE1xBnidAoEPVoh/BuHGTmPICktAwcG0sEcduSJGYCgaBXmDZhPpZ9z+BrIdVwTQfiLBEaDRSbhZA3TFNgkUAgNAxMmzDnP2Cm9E0wDYiz1MDQUhkybhcjv7Qc7VxsENzJAZQ2+SoEAoFAqDfO9q0AaG7C7GTXyuBrITlLTQfiLDUgSZfuY+6Bq8h98Doxletog+WR3hjRu70RV0YgEAimgYwlg5mZmdquAWZmZgZxYmovxjDbcCAtX/UOCWk0EEmX7mPcL6fgHdgfWVlZKC0tRVZWFrz8+2PspmPYe+6usZdIIBAIzZ7Chy9QWVmp6BpQ/fdYJBIhNTUVlZWVKHrEvLk2oflDnKUGgJbKMPfAVQjCwpCUnIyAgABYW1srqi8EYWGYl5gNWpsSawKBQCBoDcfBCgAgFouRnZ2t3IT50iXExcUBAFzaWhl8LVUJ3oZ4EPQLcZYagIzbxch9UIqY2LqrL24XlSDjenEdIxAIBAJBH/B7uYHbzh7HMjNx7do1HD58GL/++isOHz6Mf//9F1nHjsHTtQ14XqTvIuE1xFlqAPJL5f3PNFVfSEpI2JdAIBAMCUWxsfL/QpGSmor/REbCwsICAoEAFhYW+E9kJFJSU7Fiev8GaXsio2UGexD0C3GWGgAXG7kyclWVRU2qjnNsWzbYmggEAsFUiQztgp1iEbLPZipvw507hp1iESJDuxh7iYRGBqmGawCCPR3g0dZG0f+sZvVFvFgMT0dbBHciGkMEAoHQEESGdoGQ3wnpF+5AUvwMHAcr8Hu5NXwjXQNU3ZFGuvqHOEsGoEVQZ7Swet1nqwWAVWBjdExS7f5n8fL+Z7tWjIJFQLe6B3Vm3uOL9bKcsa05n/mXSlbAPKdKm7532iAr16JflBawLCjGtmZ9OjI01OLr5aiFo2ymue+gAm1KiC2Z9/4DZaCfjgottqK16AcGcy16zpUx//4AWthqoUbftnQbY1vZ7Rzma6hk/v15kqA6El4T6+7MP7vmb3ZnbIvHT5jbttJCE6laIQ0FILR7td/Wly+Bl6/+X6vPAaG5Q5ylBqIq7Dv7v2ng8XiK457t22DXilGIfFONo0QgEAiEZodUCkgN0NGJFFbrH+IsNSA1w77tOPbg93Zv0LAvgUAgEBoHxFlqOhBnqYGhKDZC+3gAAFgWhtmqIhBMCZqWIv30bUiKSsBxtAXfz5PcgBAIBL1CnCUCgdBkSTyYjajlB5Bz94HiGLd9W6yaOxyRQ72MuDICQTMkstR0ILdfBAKhSZJ4MBujPv0FXr0DlVsI9Q7EqE9/QeLBbGMvkUAgNBNIZIlAaCLQtBTpJ29C8uAZOE6twffvaLLbTTQtRdTyAxAIwpCU9FqOIyAgAElJyRCJhJi94jcIB/Uw2XNEaPxIZfKHIcYl6BfiLBEaDbRUivSrhch/9Bwu9q3A7+YEik0udACQ+NsFRMUlI+fOa/kGrpsjVi0cgcjhvY24MuOQfvwacu4+QMKuOloIRceAx+Mh/fRthPp3MNIqCQRCc4FciQiNgr0nctFlRjIGfXEQE75Ox6AvDqLLjGTsPZFr7KUZncTfLmDUR1vh5ROgvN3k449R0zYj8cA5Yy+xwZEUyDV4NLYQKippsDURCNoilRruQdAvxFkiGJ29J3Ixes0RePUNUXYG+oZg9JojJu0w0bQUUXHJiu2mgIAAWFtbK7abBIIwzF66FzRtWr+OHOfWABi0EHK0bbA1EQiE5gtxlghGhZZKMfuXsxCEhSEpuYYzkJwMQVgY5vxyDrSJ3iqln7yJnDvFiImpe7vpdl4R0k/cMNIKjQM/oDO47dtCLI6DtMZnQyqVIj5eDE83B/D9PI20QgJBM1KZgSJLJGdJ75CcJQPA9goA25aB/L42LSPKnjE2lT17xNiWZaNFi4vKSua2ZWWMzDIu3kdOQQkSYutwBmLkuSeZz80R2u8NyHLzmK9Bi3wnlrMT83EdHJnZUcxbqMBc9edF8kTee0HjdtPjl0Cr1rWeZ1FatPkwN1AjZ6kWnxuG6zUDsGrJWIyauh4ikRDR0TVaCKWkYteWj0G1dZa/oLKC+RoqtLB9qsX3soh5u6CX2feZj/vspWajV7zIYb4t2bIts88DS4s2LrJc5u+L1VKLz25lKXNbput9ocXnoJ7IpIAhbgNlpnlvaVBIZIlgVCQP5f29NDoDxVr8GDYjOM52ABhsN7nYNdCKGg+RAj/s2vIxsi+cUO4cf/Ekdm35GJECP2MvkUAgNBNIZIlgVDht5BGVS5cuISAgoNbzCmfAwaZB19VY4Ad0AdfdCWJxnFKJPFBtu8nDGfzArkZcpfGIFPhBOKwP0o9fg6TgMTjOduAHdCZyAYQmgdRAkSUTzVowKOQXhWBU+D1c4Oxgi2XLlqnMPYmLi4OLgy34vlzjLNDIUBQbq74Yg5SUVIhEQqUEeJFIiJSUVKxcOs6knQOKYiM0qCvGRQYgNKirSZ8LAoFgGMivCsHoSKVSHDhwACKRqIYzIMKBAwcgNfEN+EiBH3ZtnY7sCydrbDedwq4fZyAyvJ+xl0ggEOoBkQ5oOpBtOIJRSb+cj6KHTxEfH4+NGzeCx+MpnvP09ERcXBxiYmKQfiYHof3eMOJKjcvr7aZ/ISl6Co6LHfiBJIpCINQHmpYi/XI+7hU/RVFJGRxtW8LVwQr8Hi7kO0VQCXGWCEalKsF7+vTpmD17NtLT0yGRSMDhcMDn8/H8+XPExMSYbIJ3deTbTd0AsxbGXgqB0GRJzLyF2VtPIif/ieKYmZkZKisrwXVpjZXv9kNkUMPcmJGcpaYDcaEJRqV6gjdFUQgNDcW4ceMQGhoKiqJMPsGbQCDoj8RjtzE6/k/09OMrbfkPGzYMLBYLDq4dMTr+TyRm3jL2UgmNDOIsEYwKv4cLuK4axAXbtzXZBG8CgaAfaFqK2d+fhCAsDMk1BXCTkiAQCPDg4UOEDR+OOd+fahBVfJKz1HQgzhLBqFAUG6uihqqv9vp8KMkjIBAIOpF+JR85+U8QU5cAbnQ0bt++jbeGDcNtyWMcu1pg8DURZ6npQHKWjABN00jPvAJJwRNwOG3AD+4BShu152ZG5OAe2LVmHKJWHVRO8G7fFrvWjEPk4B5GXB2BQGgOMBXAbdlSrlz+zf7shlkYoUlAnKUGJjHpGD6f9z1ycvMVx7hcF6xe/h4iRwQZcWXGJXJwDwgHdkP6mRxIikvBcbAB35dLIkoEAkEvMBXAffHiBQDg74v5tWz0jUwmg0ym/0ZuhhjT1CHOkgF4zO4CKbt2QvL+pIOY/PaXEAgESNj+upeVWCzGyLFx+Hn7WkSMGKxyTBtrLb64tBY9jZxdGJuyzJh/XGQFhcxtr98EIN8T7m8PwN4agAy4dRu1vvKtmPcvY7Wu3SutTrR4b4x7vlkyT0pnadMnkK2FbQsL5rbaVNlp82OszXtrYcnYlHlHMkD24olmo/pQSTO31WJvhNVCi5sES8P8jD/LZ9b3ztbZivGYspdanAMb/Ubb+T054Lq0hjguDknJqtTw4+Hp6Ynff/8drq6uuHfvnl7nJzRtyG17A0HTNObPEUMgECApKUllcuH8eStB01r8+BIIBAKBERTFxsp3+yElNRVCYUQtAdyUlBTY29sjJSUFI0eObJA1kZylpgNxlhqIrIxTyMu9i5iYmDqTC3Nu38WxjDNGWmHjgKalSLskQUL6TaRdkjRIRQqhaUDTNNKOXEDC9sNIO3KB3FgQtCYy6A3sXBqOrIw0JTX83377DTKZDAUFBfDz88PXX39t7KU2OOvXr4enpycsLS3h6+uL9PT0Om0lEgnefvttdOnSBWw2GzNnzqxls3nzZvD5fNjb28Pe3h6DBg3CyZMnlWwWL14MFoul9HBxYb7b0ZCQbbgGIj9fvi2lKbkwX1LUYGtqbCRm5WD2j2eQU/B6y4Tr3BorJ/siMpBrvIURjE7i3gx8PmczcnKq5fp5OGN13ERERtTOPyEQ6iKyf2cM8XVHm7D18PL2xsSJE+Hs7AxXV1fw+XywWCwIhUL8/vvvqKysNOhaGoso5Y4dOzBz5kysX78eQUFB2LhxI4YNG4YrV67A3d29ln15eTkcHR0RGxuLr776SuWYaWlpGDduHHg8HiwtLbFixQoMGTIEly9fhqurq8KuR48e+PPPPxX/bqzFTiSy1EC4uDgBeJ1EWJOq4y4cxwZbU2MiMSsHo1cehldfZbE4r758jF55GIlZOcZeYqOHpmmkpV9Cwq4MpKVfajaRl8S9GRg5Zhm8vPyUPxvefTFy4mok7jtu7CUSmhinrxeClkqxYcMGzJo1C+PHj1cI4bLZbMTExBjcUWoISkpKlB7l5eUq7dasWYOpU6fivffeQ7du3bB27Vq4ublhw4YNKu25XC7WrVuHSZMmoXUduaHbtm3Dxx9/DB8fH3Tt2hWbN2+GVCrFX3/9pWRnZmYGFxcXxcPRsXFeA4mz1EAEBveFu0d7iMXiOsQX48H1bA9esK+RVmg8aFqK2T+egSAsDEk1xeKSkyEIC8Ocn86QLTk1JO47jo4+n2JA2GK8PXUtBoQtRkefT5GYdMzYS9MJmqbx+ZzNEAjCkJRUU0gwGQJBGKLm/9JsHENCwyB5IE9e1xTpNzRSmYFyll7VX7i5uaF169aKR3x8fK01VFRU4MyZMxgyZIjS8SFDhuDYMf39fjx//hwvX75EmzZtlI5fv34d7dq1g6enJ8aOHYtbtxqnejpxlhoIiqKwbEUMUlJSIBKJVCYXLvtydqMNQRqS9KsFyClQIxYXE4Pb+U+Q3gAicU2RxH3HMXLianh5960deXn7yybtMKVnXEJOTj5iYuoSEozB7Zx8pB+7aqQVmia0TIbMwidIzCvG0VvFoKUNV6pO01KkXbyPhLQbSLt4v143UZy28go+TZF+QyMzUHK37NUpuXPnDp48eaJ4REdH11pDcXExaJqGs7Oz0nFnZ2fk5+tPPmHevHlwdXXFoEGDFMf8/f3x008/4eDBg9i8eTPy8/PB4/Hw4MEDvc2rL0jOUgMSLhqKH7d/i/lzxErii1zP9mplA5o7kkfMxOKq7AivoWkan8f+rIi8VDkUVZEXkUiIqOjvIQz3b5KOuETyEACDz0b+44ZaUqOBlsqQcbMYkgfP4WJjgWBPB1BsbQQV6kfq3YdYfOku8kpffR9P3IBHG2t8ObQrRD3aGXRuVU1w69P8lu/dHlyOfd0yAmIxPFzskNvEP1e2trawtbVlZMtiKX92ZDJZrWP1ZcWKFUhISEBaWhosLV/LgwwbNkzx/15eXggMDESHDh3w448/YtasWXqZW1+QyFIDEy4airNX/8b+P7Zhy08rkXroB5y78pvJOkoAwLF/LRanCkUz3Vd2hNekH7uKnNwCzZGXzCtGWZ+uFWwcjjxkr/Gz4WKn0zqbGkkX7qFb3CEM+eYoJiecxtBNmei+6m8kXbpv0HlT7z7E1OPX0av/QKUopjcvFG9vP4Oky4abPzHzFkbH/wmvGk1wvfz4Wje/pSg2Vn7CR0pqKkTCGm2WhEKkpKZiyXuBBnsvVTQG6QAHBwdQFFUrilRYWFgr2lQfVq1aBbFYjD/++APe3t5qba2srODl5YXr16/rPK++Ic6SEaAoCsH9AzBqbBj4/fs1yTt+fcLv5gyus1wsTmU+l1gMT5fW4HfT/Yvb3KiKqGiKvOzZm4m0o9lqnRWappGW9sqxSavbsWHqACXuzUDHru9iwKA5eHvilxgwaA46dn0XiXszGI/JD+4JLtdFfaNlrgv4vG51vi9DQ9NSpJ3JQcLBS0g7k2Pw3LqkC/cw9vsT8A7or+ywBPbHuF9OGcxhomUyLL50V21uYfQf/xpkS46mpZi99aT6vEYtm99G9u+MnUvDkX0mU0lG4NLZTOxcGo6I4I56fx+NEXNzc/j6+uLQoUNKxw8dOqS0A1IfVq5ciaVLl+L333+Hn5+fRvvy8nJcvXoVHA5Hp3kNAdmGIxgdimJj5WRfjF4pv8uLjnmtbh4vFiMlNRU7Zw9oVq1PaFqK9Kx/ICl4DI6zHUKCe9br/VVFVDS1cPjmu1R8810quB4uWP3lFESKlH8EE5OO4fPo75VL87kuWL1yGiJHBL+225uBz2dvqm234v1adiPHLINAEIaEhNhqavVxGDlmGXbvmK+wVykLUG3M1Svex8gxyyASCREdXe2zES9GSkoqdv/8udobDpqmcTTzH3kvRufW4Ad01ttnKfHwP4ha9xdy7j96vfZ29lg1401EDuiqlzmqQ0tlmLPvssJpUNp2TU6GSCjEvN+OILw7R+9bcseLSpBX+hw71OQW8ngpyMx5gJA3HPQ6d/pleRPcBLVz85B+OR+h3sy3AiP7d4YwuCPSL96F5MEzcNpage/dHhTFRskz1ZVj+kQqBaQG2DnV1l+dNWsWJk6cCD8/PwQGBmLTpk3Iy8vDhx9+CACIjo7GvXv38NNPPylec/78eQDA06dPUVRUhPPnz8Pc3Bzdu3cHIN96W7BgAX799VdwuVxF5Mra2hrW1tYAgKioKISHh8Pd3R2FhYVYtmwZSkpKMHnyZB3PgP4hzpIBaEk9QkvqpUY7Nov5XdDjlx6Mbe206PIhe1HK2Ja2sED6qVuQFJWC42gDft836r7omJszXwSeITKQi52zB2D2j+lKdzPO9lZYNMYHwn6vtD7YWlzktLClW7RA+unbkBSVgONoC76fp+4XVJnqv29iyilELdyBnLzXLWG47k5YvWwCIiP6aR63mmPA5/cE18MZYnGcUs4SII+8iMViuLq64vLly7h69arcWXn7S+z+dZ7CYUpMOoaRb3+p2rEZvRS7dy1CZGQIEhOPYuTopXU7QK/s5BVs/1OfRzX3fxAKeUjel6Xeqdoei8gRQdi9PRafz/2fcqNlD2fs+nEGRoT1gayOFj+J+08iav6vNc61I1YtHInIsD6qzy/DFiaJhy5h1Lw98rXvqbb2uDiMmrcHO5eGI7J/Z0ZjMSXjZjFyi0uxXYPDknG7GP076LcEu6BM/pumKYqZd/MhXshUX1ps2jNvAVT9is+0ek3y4JlmT+H5C6V/UgBCuzgCeHW+qsrrn2vRNqqJM2bMGDx48ABLliyBRCJBz549ceDAAXh4yK87EokEeXl5Sq/p3bu34v/PnDmDX3/9FR4eHsjJyQEgF7msqKiopYa+aNEiLF68GABw9+5djBs3DsXFxXB0dERAQACOHz+umLcxwZKRjnt6o6SkBK1bt0bhw8OwtbXWaK+Ns/Ss8vWdGk3TyMo4hfz8Qri4OCEwuK/SnbVdi1zG48ryme0NJx44i6jFu5Fz93WVArd9W6yKFiByqFftce9JGK8BD1/fldO0FOLdF/DNgX9QXPL6R00hTjm4B+NhmfaGSzz8D6L+e7j2e5s7XOV7gxXDH3yL2j2zElNOYdSUbyAQhCEmRtk5SElJxe4fP9PsMNXo95aYnIWR41dCIAhTiryIxWKkpqZi9+7diIyMBCB3oEQiIS5ln8b1S98BADr2+BBe3n4qnS2RSIhLl87in6tb0aXrFHh5+aq1u37tR6SnZ2PAwFnIyspSGe3KysoCj8fDn38sx3vTvoKXl7q5z+D6lc2gKAo0TSM94zIkkofgcNoguLerWoc2cf9JjJq8rs5zvWvzh6odpkfF6s8/5J/TTsPWwKt3oOq1C4W4dDYT//465fUanzLrtQYAlddU91bcceYOJv10EqWlpYq78+qUlpbC1tYWP47zwxif9rWef/7PQ8ZrePlU2VnILHyCyCNXNf5d973ljWCOncoxbfq7MZ6f3fb19yct+z7ejEnROPdfYgFCvTRElsyZ9UAseVYB+8jNePLkCeMkaaZUXSu2WXZAK5b+0zCey2iML7tpkLWbKs1nX8NE2J90EH26DUT4kPF4f9JnCB8yHn26DcT+pIMGmzPxwFmMen8TvHoHKidW9g7EqOk/IfFgtt7mSj6Zhy92nEdgyJuqxSnTb+htLkDuKI2at0f1e/v0F72+N5qWImrhDvWaQQu2aZ3zEikMxO5ts5F98ZRS7sW5c+eUHCWgdtJ3euYV5ORqKM2/fR/r1+9DTo5Eo116ejYkErnTqSkKkJZ2QbMswG0J0jMuA5Dn+oX298a4saEI7e+t1lGiaSmi5v+q9lzPXrKn3vlF6WdykHP3Qd1rj4nB7fuPkH7xbr3GrwsXW3klkUZxWxstGigzJMDRFu42rdTmFnq0tkKgsxahbYbwu7somuDWnddoB373xtkqg9D0Ic5SE2J/0kFMHvsJenn3Vrqw9/LujcljPzGIw0TTUkR9kaj+ovNlql6SWhmJU27O0lsCLU1LEbXuL/XvbcVvepsvPetf5OQVqncOcgvqpRkUKQzEjexvcfi3pZj+wXAAwOXLl5UcpSoUWxaSh4xL82/evM/ITiJ5AA6nLQDmGjaax2QeDakiPesfzec6rxDpJ+pXdSMpKlFaY02UtoX0SHAHB3g42Kh1GrgONgj21G/OEABQLBYW92yvvoKsj4dB5Asoio2VU/qpnXvFlL5NLq9RKjPcg6BfmtYny4ShaRrz54ghEAiQlJRU48KeBIFAgAVz4/WuZJx+4jpy7hSpv+jcKUb6Kd1VVxmJU0oeI11P1T7p5/OQc/+R5vd2+rZe5pMUPAbA4AL7yk5bKIpCaEhP/EckL3m+elW106Uot+e0YVya36FDO0Z2HE5b8Ple4HI56ivYPDkI7d+L4ZhtVD6vDqZVgvU91xxH+daGxrW3rb0VqwsUm4UVET3UOg1fDutmML2lsPZtsCWgEy4c+Vspinkx/TB+CO2GcK7+nbQqInme2DlvELJPpytXr53OwM55gxDJ8zTY3AQCcZaaCFkZp5CXexcxMTF1XNijkZtzB1kZp/Q6r+RVU1uNF50i5onidc7FVJzygX7EKSXFT5nN9yqKoCscZzsADC6wr+zqCz+omyLpW225fVB38IO6g+uhoTTfsx0+/jiCgQPUDny+FyiKwupVHyAlJRUiUY0LukiIlJRUrFrxPkJDvTXLAnhywA9mnqdWRfUqQVXoeq75vlxw27dVvy3Uzh5879p5Q7oi6uWK7VP8cfH4ESWnIfv4ESRM6AtRT8MKQ4a1b4PjQ72Q2L8bNvh3xL63vHFa1MegjlIVkTxPXPtuFP4SC/BL1ED8JRbg3+9GNllHqTHoLBGYQZylJkJ+vjzhU9OFvcpOX3Be5R9ovOg4alHlUtdcTMUp2+pHnJLjYM1sPkf9JEjyA7uA6+6k3jnwcNZZM4iiKKyOn6zeWYmfAoqi5LZfTlFvu3IazM3NNTtAK6cpCg0iI0Owe9ciZGefUY4CXDqD3TsXIHJEsHzuldPUj/nl1HrpkPEDu2o+1+5O4Pt3quc5ZmPV7LfUbwt9zDfYtpColyuuxg7GH9ND8OM4PxycFoTLnw80uKNUBcViIcipNSLdHRDMsWsQ5XDF3BQboV7tMK5/R4R6tWtyW2/VIc5S06HpfspMDBcXJwAMEjtf2ekLvn8ncN0c1V903BzA78u81UCdczERp+TYga+nCwLfxx3cdvZ1z1f13vz0c9dKUWysWjJGvXOwdLxefvxfJ32fVnZWsk8ryQYAQKSIh92/zlPh2JxVyAEA6hwgZTvFuJEhuHH9Jxz+cyV+/SUah/9ciev/bFXSY4ocEYzdOxcgO/t0bafqlWxAfaAoNlYte1vtuV658D86nevIwT3VihrqWzagJhSbhf6dHDHGpz36d3BsUIeFQDA1iHSAHjGkdEBJuT36dBuIXt69kZSUpKLMWoSL2edx5spfaGvJvAKHiXRAVTVczdL0KlHAXd9MqlViX1/pgMSsHIxeeViuBqxKnHLBW4jkM1PWZSIdUFUNV+d7+3pCbfkAHaQDANU6S54ezli1dDwznaUWzCudaBkL6ZlXFOX2/KDudUZqaDNLRTVbVe6RKluaphnZKZBWal4nTSM9/RIk94vl6wzuoTGiJHv2SO3zgGqdJU93J6xc+J+6dZYYSAco1vDggVxgVIWoYS30IB2gcg1lzPMUdZEOqIsW1sw11eorHaBXGpF0wBaW4aQDpsqIdIA+Ic6SHjG0zlJVNZxAIEB0dHS1C3s8UlJS8OP2bxEuGtpgOkuebg5YOS9MrzpLgNxhmv3jGeQUvG6W6enSGismNZzOkqebA1bOGaZ3naUq5Are/75W8OZ7MY9yaOEsga2F7qya9eoEA2fptS3zCz8TZwl4da6PnFeca75/J/XnWktniTHEWSLOUtXYxFlqchAF7yZEuGgoftz+LebPESspGXtw3RSOkqGIHN4HQn4H5greuswVyIWwnzvSrxZA8ug5OPatwO/mbLDchMgBXSGM8NO/grcaKIqN0ODXuUmsJpx30dihKDZCeV2MvQwCoRaGKvMnKUv6hzhLeqQqSFdawuwOUrvIkjya0H8gD0dO7MPJrDMoKCyGs5MD+gX6gk2xUVIir0hjt2B+BysrfaHZqIrnFejT43V1zzM17QBk2vRVqmOcPm+0BSDX7HlW/io6wWJ2VwgALEqLNZiZo08PVwCu8vleqLmrljL82lQwd4BYlBbRlxZayENoFVlibqoVBossaVEVWa7F5/xpmRZr0OIz9ox5+4zKMs3tkhRr0CayVMH8b1H5kpmtmRafc9kL5u+Lbah2Iy+ZeSclr+Y35ObLCwO5NYYa15QhzpIeKS2VOysduAIjr4RAIBAaIduMvQDtKS0tRWuGW/pMMTc3h4uLCz7N14+GmypcXFxgrlWPToI6SM6SHpFKpbh//z5sbGzAYjVcZUpJSQnc3Nxw584dsj9tIMg5Nizk/Boeco61QyaTobS0FO3ataulbacPysrKUFFhuGa95ubmsLS0NNj4pgaJLOkRNpuN9u31L0LHFFtbW/IjaGDIOTYs5PwaHnKOmaPviFJ1LC0tiTPThCBZpQQCgUAgEAhqIM4SgUAgEAgEghqIs9QMsLCwwKJFi2BhYahyJgI5x4aFnF/DQ84xgVB/SII3gUAgEAgEghpIZIlAIBAIBAJBDcRZIhAIBAKBQFADcZYIBAKBQCAQ1ECcJQKBQCAQCAQ1EGepEXLv3j1MmDABbdu2RatWreDj44MzZ87UaZ+RkYGgoCC0bdsWLVu2RNeuXfHVV1/Vab99+3awWCyIRCIDrL7xY6jz+/jxY3zyySfgcDiwtLREt27dcODAAUO+lUaLoc7x2rVr0aVLF7Rs2RJubm747LPPUFbGvJdbc0Hb81udzMxMmJmZwcfHp9Zze/bsQffu3WFhYYHu3btj7969el45gdA0IQrejYxHjx4hKCgIAwYMwG+//QYnJyfcvHkTdnZ2db7GysoK06dPh7e3N6ysrJCRkYEPPvgAVlZWmDZtmpJtbm4uoqKiwOfzDfxOGieGOr8VFRUYPHgwnJycsHv3brRv3x537tyBjY1NA72zxoOhzvG2bdswb948bN26FTweD9euXcM777wDAGpvDpob9Tm/VTx58gSTJk3Cm2++iYKCAqXnsrKyMGbMGCxduhQjRozA3r17MXr0aGRkZMDf399A74ZAaBoQ6YBGxrx585CZmYn09HSdxomMjISVlRV+/vlnxTGapvH/7d1/TNT1Hwfw53F3nBEigfJTBooomb+u8AegA8kh6tSNkWRlaLq2TGuKmY4c4NBQpyVzZpq/mohLRUVDIhT8BYaiTP/AIzEkFcWyQjFR4fX9w/X5egJX6J3cwfOx3ca9f3w+r/drY7zu83nfh7CwMEybNg3Hjh3Dn3/+ib179z5jxLbFUvldt24dVqxYgQsXLkCr1ZojVJtlqRzPmjULZWVlOHTokDImPj4excXFz3wuW/Is+X3zzTcREBAAtVqNvXv3orS0VOmLjY1FbW0tDh48qLRFRUXhpZdeQkZGhjlCJ7JZvA1nZbKyshAUFIQ33ngDbm5u0Ov12LBhQ6uOcfbsWRQWFiIsLMyoffHixejWrRumT59uzpBtiqXym5WVheDgYHz44Ydwd3dHv379sHTpUjQ0NJh7CVbPUjkePnw4SkpKUFxcDAC4dOkSsrOzMW7cOLPGb+2eNr+bN29GRUUFEhMTm+0vKipCZGSkUdvo0aNRWFholriJbJqQVdHpdKLT6WThwoVy5swZWbdunXTq1Em2bt36r3O9vb3F3t5e7OzsZPHixUZ9x48fF29vb7l586aIiMTFxcnEiRMtsQSrZqn89unTR3Q6nbz33nty+vRpycjIEBcXF0lOTrbUUqyWpXIsIpKWliZarVY0Go0AkA8++MASS7BqT5Pf8vJycXNzE4PBICIiiYmJMnDgQKMxWq1W0tPTjdrS09PF3t7e7GsgsjUslqyMVquV4OBgo7bZs2fLsGHD/nXupUuX5Ny5c7J+/XpxcXGR7du3i4hIbW2t+Pn5SXZ2tjK2oxZLlsiviEhAQID4+PjIw4cPlbaVK1eKh4eH+YK3EZbKcX5+vri7u8uGDRvk3LlzkpmZKT4+Ps0WVe1Za/P78OFDCQoKkq+++kppa6lYejzfIiLbtm0TnU5nnsCJbBg3eFsZT09P9O3b16jt5Zdfxu7du/91bo8ePQAA/fv3x40bN5CUlITJkyejoqIClZWVGD9+vDK2sbERAKDRaGAwGODv72/GVVgvS+T3n+NqtVqo1Wqj416/fh3379+Hvb29GVdh3SyV40WLFmHKlCmYMWOGMqaurg7vv/8+EhISYGfXMXYVtDa/t2/fxunTp3H27FnMmjULwKPffxGBRqNBbm4uIiIi4OHhgevXrxvNrampgbu7u2UWQmRDWCxZmdDQUBgMBqO28vJy+Pr6tuo4IoL6+noAQGBgIM6fP2/U/9lnn+H27dtYvXo1fHx8ni1oG2KJ/P5z3O3bt6OxsVH5o11eXg5PT88OVSgBlsvx3bt3mxREarUa8ugK+dMHbGNam18nJ6cmv/9r167F4cOHsWvXLqVADQ4Oxo8//og5c+Yo43JzcxESEmLmFRDZoLa8rEVNFRcXi0ajkSVLlsjPP/8s6enp4uDgINu2bVPGLFiwQKZMmaK8X7NmjWRlZUl5ebmUl5fLpk2bxMnJSRISElo8T0e9DWep/FZVVYmjo6PMmjVLDAaDHDhwQNzc3CQlJeW5rs8aWCrHiYmJ0rlzZ8nIyJBLly5Jbm6u+Pv7y6RJk57r+tra0+T3Sc3dhjtx4oSo1WpJTU2VsrIySU1NFY1GIydPnrTUUohsBoslK7R//37p16+f6HQ6CQwMlPXr1xv1x8XFSVhYmPI+LS1NXnnlFXFwcBAnJyfR6/Wydu1aaWhoaPEcHbVYErFcfgsLC2Xo0KGi0+mkZ8+esmTJEqM9TB2JJXL84MEDSUpKEn9/f+nUqZP4+PjIzJkz5Y8//nhOq7Ierc3vk5orlkREdu7cKX369BGtViuBgYGye/duM0dOZJv4nCUiIiIiEzrGjkgiIiKip8RiiYiIiMgEFktEREREJrBYIiIiIjKBxRIRERGRCSyWiIiIiExgsURERERkAoslIiKyOUePHsX48ePh5eUFlUqFvXv3tmp+ZWUlVCpVk1dOTo5lAiabxmKJiMyqoKAAKpUKSUlJbR0KtWN1dXUYOHAg1qxZ80zHycvLQ3V1tfKKiIgwU4TUnrBYIrIhLX0afvw1aNAgi8ehUqkQHh5u8fMQtWTMmDFISUlBdHR0s/3379/H/Pnz4e3tjRdffBFDhw5FQUFBk3Gurq7w8PBQXh3tH1/Tf6Np6wCIqPX8/f3xzjvvNNvn4eHxnKMxNmTIEJSVlaFr165tGgd1bNOmTUNlZSV27NgBLy8v7NmzB1FRUTh//jwCAgKUcRMmTMC9e/cQEBCAOXPmICYmpg2jJmvFYonIBvXq1ctqb3M5ODggMDCwrcOgDqyiogIZGRm4cuUKvLy8AADz5s1DTk4ONm/ejKVLl8LR0RGrVq1CaGgo7OzskJWVhdjYWGzdurXFDyLUcfE2HFE7tmfPHkyePBm9evWCg4MDunTpghEjRmD37t3Njs/Pz8eYMWPg5eUFnU4HLy8vhIeH45tvvgHw//1IAHDkyBGj239btmwxGvNkMefn5wc/Pz/U1dVh7ty58Pb2hk6nw4ABA7Br165m46msrERsbCxcXFzg6OiIsLAwHD16FElJSVCpVM3eViE6c+YMRAS9e/eGo6Oj8jpy5AgqKioAAF27dsWcOXMwZMgQBAUFYfHixZg5cyaWL1/extGTNeKVJaJ2bOHChbC3t8fw4cPh6emJmzdvIisrCzExMUhLS8Ps2bOVsd9//z3Gjx8PZ2dnTJw4URlfWlqK9PR0zJgxA35+fkhMTERycjJ8fX0xdepUZf5/2Sv14MEDREZG4tatW4iOjsbdu3exY8cOTJo0CTk5OYiMjFTGXr16FSEhIaiursbYsWMxcOBAGAwGREZGYuTIkeZME7UzjY2NUKvVKCkpgVqtNupzdHRscd6wYcOUDwZEj2OxRGSDLl682OJtuGHDhiEqKgoAkJ2djZ49exr137lzByEhIVi0aBGmT58OBwcHAMCmTZsgIigoKMCAAQOM5vz+++8AHl0dSkpKQnJysvJza1y7dg2DBw9Gfn6+spH2rbfewqhRo7Bq1SqjYmnBggWorq7GihUrMG/ePKV9y5YtmDZtWqvOSx2LXq9HQ0MDampqMGLEiP887+zZs/D09LRgZGSrWCwR2aCKigokJyc32/fxxx8rxdKThRLw6JP11KlTER8fj1OnTiEsLMyo/4UXXmgyx9XV1QxRP/LFF18YfePo9ddfh6+vL06dOqW01dfXY+fOnXB3d8dHH31kND8uLg7Lli3DhQsXzBYT2Z47d+7g4sWLyvtffvkFpaWlcHFxQe/evfH222/j3XffxcqVK6HX6/Hbb7/h8OHD6N+/P8aOHYutW7dCq9VCr9fDzs4O+/fvR1paGpYtW9aGqyJrxWKJyAaNHj36Pz08r6amBqmpqTh48CAuX76Mv//+26j/2rVrys+TJk1CZmYmhg4dismTJyMiIgIjRoyAm5ub2eJ2dnZGjx49mrR3794dRUVFynuDwYD6+noEBQU1+Sq3SqVCcHAwi6UO7vTp00a3Y+fOnQvgUTG9ZcsWbN68GSkpKYiPj8fVq1fh6uqK4OBgjB07VpmTkpKCy5cvQ61Wo3fv3ti0aRM3d1OzWCwRtVO3bt3C4MGDUVVVhdDQUIwaNQrOzs5Qq9UoLS3Fvn37UF9fr4yPjY2FVqvFl19+ia+//hpr165Vnqe0atUqszy/qUuXLs22azQaNDY2Ku9ra2sBAN26dWt2vLu7+zPHQrYtPDwcItJiv1arRXJycotXYOPi4hAXF2ep8KidYbFE1E5t3LgRVVVVSElJQUJCglFfamoq9u3b12ROdHQ0oqOjUVtbi8LCQmRmZmLjxo0YPXo0DAYDnJ2dn0vsTk5OAICbN28223/jxo3nEgcREcBHBxC1W/98RXrChAlN+o4dO2ZyrpOTE6KiorB+/XpMnToVNTU1+Omnn5R+Ozs7NDQ0mDfgx/Tp0wc6nQ4lJSW4f/++UZ+I4OTJkxY7NxHRk1gsEbVTvr6+AIDjx48btW/fvh3Z2dlNxh86dAj37t1r0l5TUwPAeOO3i4sLrly5Ys5wjeh0OsTExOD69etIS0sz6vv2229RVlZmsXMTET2Jt+GIbJCpRwcAQFJSEqZMmYJly5Zh9uzZyM/Ph6+vL86dO4e8vDxER0cjMzPTaE58fDyqqqoQHh4OPz8/qFQqHD9+HMXFxQgJCUFoaKgyNiIiAt999x1iYmKg1+uhVqsxbtw49O/f32xr/Pzzz5GXl4dPPvkE+fn5GDRoEAwGAw4cOICoqCjk5OTAzo6f94jI8lgsEdkgU48OAB4VS927d8eRI0cwf/585OXl4eHDh3j11VeRm5uLX3/9tUmxtHDhQmRmZqKkpAQ//PADtFotevTogeXLl2PmzJlGD/dbvXo1AODw4cPYs2cPGhsb4eHhYdZiycfHB0VFRfj000+Rm5uLgoICvPbaa8jNzcXOnTsB/H9vExGRJanE1NcJiIis0PDhw1FUVIS//vrL5BOZiYjMgdewichqVVdXN2lLT0/HiRMnMGrUKBZKRPRc8MoSEVktV1dX6PV69O3bV3k+VEFBATp37owTJ06Y9bYfEVFLWCwRkdVKSEjA/v37UVVVhbq6OnTr1g0jR47EokWLEBgY2NbhEVEHwWKJiIiIyATuWSIiIiIygcUSERERkQksloiIiIhMYLFEREREZAKLJSIiIiITWCwRERERmcBiiYiIiMgEFktEREREJvwPU8rv0fzNrO0AAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -582,13 +806,13 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "858a04a9-6c7a-457f-865d-58419d821054", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAIiCAYAAACjYk5cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6PUlEQVR4nOydeVhTZ/r3vxAF3NhcWBQILnUXrbIK1SpVKbGkrmXsaGnVblir49Jg3SUR5efY1k61VqnzjnUbbaihtR1QWrBRUOsCLq11QWVxBURUNMn7B00kkJDtJDlJ7s915aqcPHme+4Ryzvfcz704KRQKBQiCIAiCIAibxNnaBhAEQRAEQRDGQ2KOIAiCIAjChiExRxAEQRAEYcOQmCMIgiAIgrBhSMwRBEEQBEHYMCTmCIIgCIIgbBgScwRBEARBEDYMiTmCIAiCIAgbhsQcQRAEQRCEDUNijiAIgiAIwoYhMUcQdsKff/6Jt99+G127doWbmxvc3d0xdOhQfPLJJ3j48KFZ1jx79iyWLVuGK1eumGV+giAIQjctrG0AQRCmk5WVhYkTJ8LV1RVTp05Fv379UFdXh/z8fMyfPx/FxcX48ssvGV/37NmzWL58OYYPHw4ul8v4/ARBEIRuSMwRhI1z+fJlvPbaawgKCsLBgwfh5+eneu/999/HxYsXkZWVZUULzcejR4/g4uICZ2faZCAIwnGhKyBB2Dhr1qxBTU0NtmzZoibklHTv3h2zZ88GADx9+hQrV65Et27d4OrqCi6Xi5SUFDx+/FjtM1wuFzweD/n5+QgLC4Obmxu6du2Kf//736oxX3/9NSZOnAgAePHFF+Hk5AQnJyfk5uaqxvzrX/9C37594erqCn9/f7z//vuorKxsstYbb7zRxO7hw4dj+PDhqp9zc3Ph5OSEnTt34uOPP0bnzp3RunVrVFdX48mTJ1i+fDl69OgBNzc3tG/fHtHR0fjf//5n4LdJEARhe5BnjiBsnP3796Nr166IiorSOXb69OnYtm0bJkyYgH/84x84evQoRCIRzp07h2+//VZt7MWLFzFhwgS89dZbmDZtGrZu3Yo33ngDgwcPRt++ffHCCy/ggw8+wKeffoqUlBT07t0bAFT/XbZsGZYvX47Y2Fi8++67uHDhAr744gsUFhbi8OHDaNmypVHnu3LlSri4uGDevHl4/PgxXFxcsGzZMohEIkyfPh1hYWGorq7GsWPHcOLECbz00ktGrUMQBGEzKAiCsFmqqqoUABQJCQk6x548eVIBQDF9+nS14/PmzVMAUBw8eFB1LCgoSAFA8csvv6iO3bx5U+Hq6qr4xz/+oTq2Z88eBQDFoUOH1Oa8efOmwsXFRTFq1CiFTCZTHd+wYYMCgGLr1q1qa02bNq2JvcOGDVMMGzZM9fOhQ4cUABRdu3ZV1NbWqo0NCQlRxMfH6/wOCIIg7BHaZiUIG6a6uhoA0K5dO51jv//+ewDA3Llz1Y7/4x//AIAmcXV9+vRBTEyM6ueOHTuiZ8+euHTpks61srOzUVdXhw8//FAtnm3GjBlwd3c3KYZv2rRpaNWqldoxT09PFBcX448//jB6XoIgCFvFIcXcL7/8grFjx8Lf3x9OTk4Qi8UGz6FQKJCeno7nnnsOrq6u6Ny5M1JTU5k3liCawd3dHQBw//59nWOvXr0KZ2dndO/eXe24r68vPD09cfXqVbXjgYGBTebw8vLCvXv39FoLAHr27Kl23MXFBV27dm2yliEEBwc3ObZixQpUVlbiueeeQ//+/TF//nycPn3a6DUIgiBsCYcUcw8ePEBISAg+//xzo+eYPXs2vvrqK6Snp+P8+fP47rvvEBYWxqCVBKEbd3d3+Pv7o6ioSO/PODk56TWOw+FoPK5QKPReSx+02SOTyTQeb+yVA4AXXngBf/75J7Zu3Yp+/frhq6++wvPPP4+vvvqKUVsJgiDYiEOKubi4OKxatQqvvvqqxvcfP36MefPmoXPnzmjTpg3Cw8PVMvTOnTuHL774ApmZmXjllVcQHByMwYMHU6A1YRV4PB7+/PNPSKXSZscFBQVBLpc32YqsqKhAZWUlgoKCDF5bmxBTznXhwgW143V1dbh8+bLaWl5eXk0yXAEY7L3z9vZGUlISduzYgWvXrmHAgAFYtmyZQXMQBEHYIg4p5nSRnJwMqVSKnTt34vTp05g4cSLGjBmjugkqswclEgmCg4PB5XIxffp03L1718qWE47IggUL0KZNG0yfPh0VFRVN3v/zzz/xySef4OWXXwYArF+/Xu39devWAQDi4+MNXrtNmzYA0ESMxcbGwsXFBZ9++qmaJ2/Lli2oqqpSW6tbt244cuQI6urqVMckEgmuXbumtx137txR+7lt27bo3r17k5IrBEEQ9giVJmlESUkJMjIyUFJSAn9/fwDAvHnzcODAAWRkZEAoFOLSpUu4evUq9uzZg3//+9+QyWSYM2cOJkyYgIMHD1r5DAhHo1u3bvjmm28wefJk9O7dW60DxK+//oo9e/bgjTfewOzZszFt2jR8+eWXqKysxLBhw1BQUIBt27aBz+fjxRdfNHjtgQMHgsPhIC0tDVVVVXB1dcWIESPQqVMnCAQCLF++HGPGjMErr7yCCxcu4F//+hdCQ0Px+uuvq+aYPn06/vvf/2LMmDGYNGkS/vzzT/znP/9Bt27d9LajT58+GD58OAYPHgxvb28cO3YM//3vf5GcnGzwOREEQdgcVs6mtToAFN9++63qZ4lEogCgaNOmjdqrRYsWikmTJikUCoVixowZCgCKCxcuqD53/PhxBQDF+fPnLX0KBKFQKBSK33//XTFjxgwFl8tVuLi4KNq1a6cYOnSo4rPPPlM8evRIoVAoFE+ePFEsX75cERwcrGjZsqUiICBAIRAIVO8rCQoK0ljqo3G5EIVCodi8ebOia9euCg6H06RMyYYNGxS9evVStGzZUuHj46N49913Fffu3Wsy7//93/8pOnfurHB1dVUMHTpUcezYMa2lSfbs2dPk86tWrVKEhYUpPD09Fa1atVL06tVLkZqaqqirq9P/CyQIgrBRnBQKhqOZbQwnJyd8++234PP5AIBdu3ZhypQpKC4ubhIA3rZtW/j6+mLp0qUQCoV48uSJ6r2HDx+idevW+Omnnyh2jiAIgiAIi0HbrI0YNGgQZDIZbt68qVZjqyFDhw7F06dP8eeff6q2gn7//XcAMCqInCAIgiAIwlgc0jNXU1ODixcvAqgXb+vWrcOLL74Ib29vBAYG4vXXX8fhw4fxf//3fxg0aBBu3bqFnJwcDBgwAPHx8ZDL5QgNDUXbtm2xfv16yOVyvP/++3B3d8dPP/1k5bMjCIIgCMKRcEgxl5ubqzHYe9q0afj666/x5MkTrFq1Cv/+979x48YNdOjQAREREVi+fDn69+8PACgtLcWsWbPw008/oU2bNoiLi8P//d//wdvb29KnQxAEQRCEA+OQYo4gCIIgCNvi888/x9q1a1FeXo6QkBB89tlnWov1b968Gf/+979VBdUHDx4MoVCoNl5bncw1a9Zg/vz5AAAul9uk5qVIJMJHH33ExCkxBtWZIwiCIAiC1ezatQtz587F0qVLceLECYSEhGD06NG4efOmxvG5ublITEzEoUOHIJVKERAQgFGjRuHGjRuqMWVlZWqvrVu3wsnJCePHj1eba8WKFWrjZs2aZdZzNQbyzBEEQRAEwWrCw8MRGhqKDRs2AADkcjkCAgIwa9YsvbxkMpkMXl5e2LBhA6ZOnapxDJ/Px/3795GTk6M6xuVy8eGHH+LDDz9k5DzMhcNks8rlcpSWlqJdu3Z696YkCIIgCLagUChw//59+Pv7w9nZ/Btrjx49UuvMwjQKhaLJ/djV1RWurq5qx+rq6nD8+HEIBALVMWdnZ8TGxupsY6iktrYWT5480RrXXlFRgaysLGzbtq3Je6tXr8bKlSsRGBiIv/3tb5gzZw5atGCXfGKXNWaktLQUAQEB1jaDIAiCIEzi2rVr6NKli1nXePToEdy9/PDkUaXZ1mjbti1qamrUji1durRJT+Xbt29DJpPBx8dH7biPjw/Onz+v11oLFy6Ev78/YmNjNb6/bds2tGvXDuPGjVM7/sEHH+D555+Ht7c3fv31VwgEApSVlanaILIFhxFz7dq1AwCUnF4P93atTJpLceyISZ+XyeT49VwFyu89hK9XK0T19gGHY7nwxe+OXMHi/3ccJTerVccCO7lj5d8H45UIrtnWbXzet6sfYdn2ExaxQ9c5f3fkCqb93yGMGT0a8+bPR+/evXHu3Dmkr12LAz/+iG3/eNGs340me9lij0wmx/MffIs+gyKxY+dONY+AXC5H4muv4dzJIzj+CV/j/8dOQyIYtylPegFj/7YO2dnZCA0NbfJ+QUEBXnrpJez/Zi5iInsyvr657TH1GgMAeUVleGX5AZ02fbd0DGL6+TV5X5/f27020c2+L73hpvr34QPf4XPBHNy4cQNt27ZtMvb+/fvo0qUL3hf9E/PeGqVzba8H+TrHNKbx92rqd2RpqmvrEDRtu+p+Zk7q6urw5FElwl7dAE5L0+6ZmpA9eYiCb5Nx7do1uLu7q4439soxwerVq7Fz507k5ubCzc1N45itW7diypQpTd6fO3eu6t8DBgyAi4sL3n77bYhEIrPYaiwOI+aUrlz3dq1MF3OtXYz+7L7DlzB/awGulFepjnF9PbD2zTCMG9rVJLv0Xf+Ndbngxcdj16JF6NevH4qKiiBMTcUb67KwWxBrFjs0nXeLFi0wMCQEuzI3mNUOXee8c+FILN1+AmN5PIgzM1Vixd/fHy+++CL4CQlY9k0+Eod1t4jolsnkrLIn93QpSm5WY9eyZfD09Gzy/pKlSxEVFYVTl+9i+AB/tfecwoeaxabq+w8B1MfRaBIG4eHhqnGm/r1bxZ4XX4Ti6GHTbKp9op9NtU/g3uiapu/v7Wnb5kVF6+pnN0bfAC6A+v7XERFNhWJxcTEA4KXn/dHOvfl5vWtyAWN+r42+1zGDA8D19cAn69er/a0B9Q8qn37yCYL9PDFmcIBFH7h1YclQIU7LVmjRsrXZ5nd3d1cTc5ro0KEDOBwOKioq1I5XVFTA19e32c+mp6dj9erVyM7OxoABAzSOycvLw4ULF7Br1y6d9oaHh+Pp06e4cuUKevY0/4OivrDn/04bwtgb1L7DlzBJlI3+Q2IglUpx//59SKVS9B8Sg0mibOw7fIlhS9WRyeSYv7UAvPh4iDMzERERgbZt2yIiIgLizEzw4uOxIKMQMpmc0XW1nfeYMWNw/MQJlJaWms0Ofc55zuajuFJehZRFi5rEoTg7O0OQkoLLZZXIKy432R59yCsuZ5U9ZXdrAQD9+vXT+L7yuHKcJfDz8QQAVdmBxiiPK8c5mj0A4OfdWm3txqhs8jbfjTq6yyPVv/uERsCnSyBShULI5ep/23K5HEKRCEHcQERGay41wRQNr98cjjPWvhkGSVYW+AkJatcnfkICJFlZWJMUypiQk8nkyD1dih25F5F7upTxa6294uLigsGDB6slJsjlcuTk5CAyMlLr59asWYOVK1fiwIEDGDJkiNZxW7ZsweDBgxESEqLTlpMnT8LZ2RmdOnUy7CTMDIk5C2EtIdUQa4iE5s47MzMTPB4P8+bNg0wmM4sd+pxz6Z37AMwjVoy5eLNNPBkrCszllQOAmMie4AZ2glCYqlEYiERCBAf5WGSLlY32AEBMX19wfT0gTNVik1CIYD9PxPRt3rOhjbtth+s1TinoOBwO3hAsQ5ZEggQ+X004JfD5yJJIsHz1oiY9sc1Bw/83xw3tit2CWJw5loeoqCi4u7sjKioKRcfzGd8heG7mbowU7Mfra3MwUrAfz83cbfaHeHth7ty52Lx5M7Zt24Zz587h3XffxYMHD5CUlAQAmDp1qlqCRFpaGhYvXoytW7eCy+WivLwc5eXlTWL0qqursWfPHkyfPr3JmlKpFOvXr8epU6dw6dIlbN++HXPmzMHrr78OLy8v856wgZCYMxJDb1Rs8LZYQyToPG+BAJcvX0ZeXp5Z7ND3nAHmPRjGXrzZ4FFpiLlFgTFwOM5IXzEZEkkW+PxGHhV+AiSSLKxdPsliW2PmsMdUMWys18kcIlwp6CJH87BgwxYU/nZKTTidOXMKGTs2gseP0zmXd00uIzY1FnS/fzkJOaKx+M/8kcgRjcWFTRMZFXLW3JWxByZPnoz09HQsWbIEAwcOxMmTJ3HgwAFVUkRJSQnKyspU47/44gvU1dVhwoQJ8PPzU73S09PV5t25cycUCgUSExObrOnq6oqdO3di2LBh6Nu3L1JTUzFnzhx8+eWX5j1ZI3CYmDlrwwZvS0ORoClmxRwiQe/zbvBHyKQd+p6zj1cbCFNTNcbNGCNWlBdvXnw8djSK05skaj4msKF4YsoeU1CKgkmielEgSElRnY9IKIQkq/58LB1TNI4Xij0ZyZi3ZBeioqJUx4ODfLAnIxnjeE0D2h3JHuCZ12n+1jx1m/w8zRYfq43oLo+Qf90NkaN5CIuNw9nCI7h3qwJeHX0w89WBFvHINcYpfKgqho7DcW4S88kEjXcnlH/Pyl0ZfkICFmTkIyGCq/NvqD4pJYNxG22F5ORkJCcna3wvNzdX7ecrV67oNefMmTMxc+ZMje89//zzOHLE9GQkS0BizgQaXgh0YQ0h1RhriAS9z9vPzyx26HvOomlDkJjGjFgx9eLNRvFkqCgw5xarml28UCTEDUae9ALKKirh5+OJmMieen83DbcKmfD4mGqPORg3tCsSIrjIKy5H2d1a+Hm3RkxfX6vaxOFw0D+i/v+RhnF1umDKK9cQQ67jxqDcndjRzK5MVFQU8orLmxWTTuFDgb8SbQiiMSTmLAQbvC3WEAm6zlsoFKJz584YOHAgpFIp43boe87jhnYFx9mJEQ8GExdvNnlUGtrENlEA/OVRie4NoF6cVekYr427bYczIhYa2mMqTAkNfb1O+opwfePlGqP0zjX8mQ0Y+z03/r40zcGGXRnC/iEx9xcymdyop2l9LwJs8bZYWiQ0d95CoRASiQQAVMGk5rBD33NmSqwwdfFmo3gy11aUqWgTFzKZDNL8AlSU34SPbydERoc1u53HlKAjtMMWAdcYpTBr7npujMeZiV0ZS3m6CduFxByAfZJCzFuyC1dKnjXs5QZ2QvqKyYzGubDF22JpkdDcee/6KBYdPFqZ3Q59z5kJscLkljpbxVNzWPLG05yHSCL+AUsWrkLJ1WuqY4FBAViR9nGzgfYk6NiJpX4nDR/QDf1/WdPDvam7MiTkCH1weDG3T1KIiUkbwOPFY8euBoHqwlRMTNqgV+CyIS56tnhbLC0S2HDeljpnNmypOwK6hFxS4jvg8XjYtXO3mjc4KfEdnZmTbBJ05o7pargOW7H078KU76Lx74stuzKEfeOkUCgU1jbCElRXV8PDwwOVlzepKrDLZHL0CF2A/iFhEIub3nT5/AQUnS7E7wVpOv/QLHGxJWyHhtmszcXp2RuWEgTNCTmZTIbQPi8gZMBAiMViDX/XfJw+cwoFxT83u+XKFjGnxJzXGEN/b8bGzJkC234fhqA4elhjF5xgP0+sSQrVO4Go+v5DeAa/jaqqKp1dE0xFec+MnLTFLB0gnj6phXT3WxY5F0fApEeB1atXw8nJCR9++KHWMZs3b0ZMTAy8vLzg5eWF2NhYFBQUqI2pqKjAG2+8AX9/f7Ru3RpjxozBH3/8oXr/7t27mDVrFnr27IlWrVohMDAQH3zwAaqqjA11ridPegFXSm4iJUVbDbQUXL5agTzpBZPWIRwPSxUiZRNs8exI8wtQcvUaUlJStNY2vHqlBNL8Ai0zsBOn8KGMf8fmmNNcWENAMoVT+FCMn/t3/HHqE4217JS/B1v6fRDswuht1sLCQmzatElrrzMlubm5SExMRFRUFNzc3JCWloZRo0ahuLgYnTt3hkKhAJ/PR8uWLZGZmQl3d3esW7cOsbGxOHv2LNq0aYPS0lKUlpYiPT0dffr0wdWrV/HOO++gtLQU//3vf409BZRVVALQI1D9r3EEYQhs2Fq2R3Td1CvK62Nf+/XrB5lMhry8PJSVlcHPzw8xMTGqv2vluObWYaM3iKltVxINlofDccaLMyZa2wzCDjFKzNXU1GDKlCnYvHkzVq1a1ezY7du3q/381VdfYe/evcjJycHUqVPxxx9/4MiRIygqKkLfvn0B1Fdu9vX1xY4dOzB9+nT069cPe/fuVc3RrVs3pKam4vXXX8fTp0/RooVxmrRhP8VmA9V19FOkLVZCG7aYwGAMbBIGPr71PRM3bNiATZs2qRUP5XK5qgKhynG2iD6Zl7o+a4uwVWAThLUxykXw/vvvIz4+HrGxsQZ/tra2Fk+ePIG3tzcA4PHjxwAAN7dntYecnZ3h6uqK/Px8rfMo99mNFXIAO/spEoStwTZxEBkdhg4d2yMlJQX9+/dXb5/Uvz8WLVqEjh076NXQne1be8ZkW9o6bP+dEIQ1MFjM7dy5EydOnIBIJDJqwYULF8Lf318lBHv16oXAwEAIBALcu3cPdXV1SEtLw/Xr19VaPDXk9u3bWLlypdYWHEC9SKyurlZ7NYZt/R0JgmgefW/kzk7OiI+Ph1gsRkREBNq2bVvfgUMsxssvvwwnZyfzGmpB9ImzsrdYLBJ0BKGOQSrl2rVrmD17NrZv367mSdOX1atXY+fOnfj2229Vn2/ZsiX27duH33//Hd7e3mjdujUOHTqEuLi4JsHLQH2GTXx8PPr06YNly5ZpXUskEsHDw0P1CggI0DhO2U/xzKkC9UD104VW66dIELYCGwWCNL8AN2/ewiItHTgWLVqEmxW3bC4BQhfaBBsbf0dMQIKOIJ5h0B7l8ePHcfPmTTz//POqYzKZDL/88gs2bNiAx48fa031T09Px+rVq5Gdnd0kaWLw4ME4efIkqqqqUFdXh44dOyI8PBxDhgxRG3f//n2MGTMG7dq1w7fffouWLVtqtVUgEGDu3Lmqn6urq5sVdGzrp8h2ZDI5BfY7OGwVCQ0TIDShbwKEEluL01ImSLD198Mktva7IQhzYZCYGzlyJM6cOaN2LCkpCb169cLChQu1Crk1a9YgNTUVP/74YxOB1hAPDw8AwB9//IFjx45h5cqVqveqq6sxevRouLq64rvvvtPpGXR1dYWrq6u+p8ZoP0V7R1O9JK6vB9a+GWaXJTcIdqCvJ0aZ2KArscmWEyB04QhCTgkJOoIwcJu1Xbt26Nevn9qrTZs2aN++veppd+rUqRAIBKrPpKWlYfHixdi6dSu4XC7Ky8tRXl6Ompoa1Zg9e/YgNzcXly5dQmZmJl566SXw+XyMGjUKQL2QGzVqFB48eIAtW7agurpaNY9MJmPiezAaR8tkVRbD7T8kRj2wfEgMJomyse/wJWubSFgANouFyOgwBAYFQCgUaklsEiGIG6hXAoQS2tJjN/T7IRwdxtt5lZSUqMWpfPHFF6irq8OECRPUxi1dulQV81ZWVoa5c+eioqICfn5+mDp1KhYvXqwae+LECRw9ehQA0L17d7V5Ll++DC6Xy/RpEBqQyeSYv7UAvPh4tTZVEREREGdmgp+QgAUZ+UiI4NKWqx1jDSFnyM2aw+FgRdrHSEp8B3w+HwKB4FkHDpEIEokEGTs2Ntv9gTAfSi8a0wLMHj10jb+j+/L71jGEYD0O3c6LCRzJM5d7uhQjBfshlUo1bl9JpVJERUUhRzTWIWqrOSpsF3NKJOIfsGThKpRcvaY6FsQNxPLVi5rty9oc9iYWjMXQ30dz3xvTos5WfkfGnPf96vsI7tSX2nkRTWDcM0fYL2V3awHo0THjr3EEYU14/DjEjR0FaX4BKspvwse3EyKjw0zyyNmj90dfTBFdys82/O7MtTWqaS02QVvChDkgMWckjuSRU+LnXf90prNjhjfzT3GOgC1kCLM5Vk4THA4H0cMiGZ3TkQSdObZCLQXbfk8k4ghz4nBiTnHsCBStXUy6KTmikAOAmL6+4Pp6QJiaqhYzB/wVWC4UItjPEzF9fa1opW1CGcK2BduEAlPYm+Bgw+/J3r5Tgp2w67HfgiiOHla9DP2co8LhOGPtm2GQZGWBn9CoY0ZCAiRZWViTFMo6bxLboQxh28RebtJ32w5XvewRa52foWvKZDLk/yzF3l2ZyP9ZavVKDYRt4XCeOU00FGjNeewcWcgpGTe0K3YLYjF/ax6ioqJUx4P9PLFbEEteJAOhDGHbhu3xWZqwV9GmDw3P3Vy/M6aSdQKDArAi7WOjk3UIx4LEXCM0CTsSceqMG9oVCRFc1sd32QJ5xeW4Ul6FHVpaTwlSUhAVFYW84nKrZwjbWrycJWGzqHNk8dYcjb8XU393xn7PEvEPSEp8BzweD7t27laV0REKhUhKfAcZOzaSoCN0QmKuGUjEaYfDcba6uLAHKEPYvmBa1LFViOVfb9qBJ7rLIytYwhyNvXaW+O5lMhmWLFwFHo8HsVis7pkXi8Hn87H0o1TEjR1FdRGJZiExRxBWhDKE7RNjRR0bxZsm4aZrHJPCrvH6lhCNlvo9SPMLUHL1Gnbt3K3ZMy8QICoqCtL8Asazsgn7wuHEXF5RGcYMDqAtQYIVUIawfaOPqGOTgNNXuOk7j7HCqzk78q+72bwXUElF+U0Auj3zynEEoQ2HUzSvLD+A52bupgxBghVQhrBj0DizkU0ZpPnX3VQva85tzFhbx8e3E4BnHvjGKI8rxxGENhzuDpGdnU0lHwhWocwQPnOsPkPY3d0dUVFRKDqez5oMYUp+YAZHEHC61mTSDlsXdJHRYQgMCoBQKIRcLld7Ty6XQyQSIYgbiMjoMCtZSNgKDrfNGhoaSiUfCNZBGcKEJWCD+GHaBlveduVwOFiR9jGSEt8Bn8+HQCBQZbOKRCJIJBJk7NhIyQ+EThxOzAHsK/lAEABlCJsDmUzGaG9WW4UNIs6cmBqjZ014/Dhk7NiIJQtXqdXuDOIGUlkSQm8cUswBVPKBIOwdKsRaj70LuYbYqqjj8eMQN3YUPXgQRuOwezhU8oEg7BdlIdaQAQPVkkpCBgxEUuI7kIh/sLaJFsHcQi7nSInaiy3YYoIEh8NB9LBIjJ+cgOhhkSTkCINwSM8clXwgCPvFkQuxWkrAaBNuDY+PjAi0iC3NYa7adwTBNhxOzBUUFODTTz6BJCsLuwWxFGBOECzH0OxPey/Eam2Pk74euMbjrC3uSNgR9ozDibmXXnqJmsIThB1jT4VYrS3cGmLqNqohXjttazElCEnYEfaGw4m575aOoQ4QBGHHNCzE2lyLNLYXYrUnIcfUfObYxrVGuzCCYBqHE3Mx/fxIyBGEHdOwEGvDmDnANgqx2rOIYxJzxedp+/6NEXmG/C5JRBKm4HBijiAI+8aWC7GyRcixWcRpQmmvOePyzP27sdWyKgQ7IDFHEITdYWuFWNki4gDbE3INYVs2rTHYckcLwnqQmCMIollstS8rjx+HUS+PxJaN/8aVS1fB7RqEt96ZChcXF2ubpoJEnPmwZWFHXjrCUEjMEQTBWkxpSq+pA8TmzzNY0wGCLULO3kScJnKOlNicoAMo65bQH8oEIAhCK7bqlaMOEM3Dxq4N5sbWzzX/uhukN9jxAECwDxJzBEHYFY07QERERKBt27aqDhA8Hg9LP0qFTCaztqkWx9EEXGMc+dwJ+4bEHEEQGrG2V87YLVZlB4iUlBStHSCuXimBNL+AASvZjyN64ZqDvgfCHqGYOcIoZDI58orLUXa3Fn7erRHT15fq99kR1hZypmALHSAsES9HooUgHAcSc4TB7Dt8CfO3FuBKeZXqGNfXA2vfDKMWaYTVsZcOEKZAQq55bDUhgiC0Qa4UwiD2Hb6ESaJs9B8SoxZY3n9IDCaJsrHv8CVrm0iYiC175QD1DhByuVztPVvoAGEKtJ2qP/Q9EfYEiTlCb2QyOeZvLQAvPh7izEz1wPLMTPDi47EgoxAymVz3ZAQrsXUhBzzrACGRSMDn89UeOvh8PiQSCZavXsTKDhCmQOLEcOg7sy0+//xzcLlcuLm5ITw8HAUF2uNeN2/ejJiYGHh5ecHLywuxsbFNxr/xxhtwcnJSe40ZM0ZtzN27dzFlyhS4u7vD09MTb731FmpqasxyfqZAYo7Qm7ziclwpr0LKokWaA8tTUnC5rBJ5xeVWspCwF0ypLwc86wBx6vRJREVFwd3dHVFRUTh95pTVO0CYI16ORAlh7+zatQtz587F0qVLceLECYSEhGD06NG4eVNz7Gtubi4SExNx6NAhSKVSBAQEYNSoUbhx44bauDFjxqCsrEz12rFjh9r7U6ZMQXFxMf73v/9BIpHgl19+wcyZM812nsZCMXOE3pTdrQWgO7BcOY6wLezBK9cQHj8OcWNHQZpfgIrym/Dx7YTI6DDyyBFqUPycbbBu3TrMmDEDSUlJAICNGzciKysLW7duxUcffdRk/Pbt29V+/uqrr7B3717k5ORg6tSpquOurq7w9fXVuOa5c+dw4MABFBYWYsiQIQCAzz77DC+//DLS09Ph7+/P1OmZDHnmCL3x824N4FkAeWOUx5XjCMORyeTIPV2KHbkXkXu61GJb1vYm5JRwOBxED4vE+MkJiB4WSUKO0Ah9j9ajurpa7fX48eMmY+rq6nD8+HHExsaqjjk7OyM2NhZSqVSvdWpra/HkyRN4e3urHc/NzUWnTp3Qs2dPvPvuu7hz547qPalUCk9PT5WQA4DY2Fg4Ozvj6NGjhp6qWSHPHKE3MX19wfX1gDA1FeLMTLWtVrlcDpFQiGA/T8T01fyUQzQPZQnbP0xusZIAYRby0GlmQGw3uLRuy/i8dbU1kO4GAgIC1I4vXboUy5YtUzt2+/ZtyGQy+Pj4qB338fHB+fPn9Vpv4cKF8Pf3VxOEY8aMwbhx4xAcHIw///wTKSkpiIuLg1QqBYfDQXl5OTp1Us96b9GiBby9vVFezq5wIhJzhN5wOM5Y+2YYJomywE9IgCAlBf369UNRURFEQiEkWVnYLYh1qHpzhnq0FEcPazyuzBLmxcdjx6JFqu9VmJqKSaL679Vcgs5evXL2DAk586D8XknUWY5r167B3d1d9bOrqyvja6xevRo7d+5Ebm4u3NyePVC99tprqn/3798fAwYMQLdu3ZCbm4uRI0cyboc5ITFHGMS4oV2xWxCL+VvzEBUVpToe7OdpVsHBBpgQPQ3nUAq7xlnCSo+nMkuYn5CABRn5SIjgMi6UScgRRFOs5aWTyWQ4W3gE925VwKujD/qERthdaEBj3N3d1cScJjp06AAOh4OKigq14xUVFVrj3ZSkp6dj9erVyM7OxoABA5od27VrV3To0AEXL17EyJEj4evr2yTB4unTp7h7967OdS0NiTnCYMYN7YqECK7DdIAwl+BRzpu3eQ+ulFdhRzNZwlFRUcgrLsfwAaYH3NqCgPOuyTU5o5UgTMHSgk76owRfi5ah4vozr6tPl0C8IViGyNE8i9nBRlxcXDB48GDk5OSAz+cDqA/tycnJQXJystbPrVmzBqmpqfjxxx/V4t60cf36ddy5cwd+fn4AgMjISFRWVuL48eMYPHgwAODgwYOQy+UIDw83/cQYxD7vvoTZ4XCcMXyAPxKHd8fwAf4k5Eyg3LsLAPNkCTuFD23yImwb2mK1HJb6rqU/SrAm+S2EDgpRq4sYOigEa5LfgvRHiUXsYDNz587F5s2bsW3bNpw7dw7vvvsuHjx4oMpunTp1KgQCgWp8WloaFi9ejK1bt4LL5aK8vBzl5eWqGnE1NTWYP38+jhw5gitXriAnJwcJCQno3r07Ro8eDQDo3bs3xowZgxkzZqCgoACHDx9GcnIyXnvtNVZlsgLkmSMIjVhS9Pj5eALQ3X5KV5awvQk1c3rnZDKZ3ZcsIZjB3B46mUyGr0XLEM/jIVMsVguzyBSLkcDnY9vq5QiLtV5tRDYwefJk3Lp1C0uWLEF5eTkGDhyIAwcOqJIiSkpK1HY2vvjiC9TV1WHChAlq8ygTLDgcDk6fPo1t27ahsrIS/v7+GDVqFFauXKkWt7d9+3YkJydj5MiRcHZ2xvjx4/Hpp59a5qQNwEmhUCisbYQlqK6uhoeHB+7tSYJ7axdrm0OwGEuLIplMjh6hC9A/JAxicdMsYT4/AUWnC/F7QZrdekCbg2lBJxH/gCULV6Hk6jXVscCgAKxI+9isxYSZymQlz5x1MJegO3PkMBa//iqkUqnGhzmpVIqoqCis/M+36NZ3AP42qBuqqqp0xpmZivKe+faXuWbLZt00c7hFzsURcLg7w568Sxat30XYDtbahuRwnJG+YjIkkizw+QmN2k8lQCLJwtrlkxxSyAH1HjrvmlxG5pKIf0BS4jsIGTBQ7XsOGTAQSYnvQCL+gZF1CEJf7t2qD+rXFWahHEcQmnC4u8PMT3/GSMF+PDdzNzWFJwBYT8Q1ZBwvFHsyknHmVIFa+6mi04XYk5GMcbxQq9rHBkwVdTKZDEsWrgKPx4NYLFbvLSwWg8fjYelHqZDJZMwZzTDklbMe5vruvTrWbxPqKsauHEcQmnA4MXfjxg1IpVL0HxKDSaJsEnQOjrVFXEPG8ULxR+EaHBQLsH3TuzgoFuD3gjQSco0wVtRJ8wtQcvUaUlJSNGcNCwS4eqUE0nztzbsJx8Ycgq5PaAR8ugQiVSiEXK6+YySXyyEUieAbEIQ+oU23YAlCicOJOdWTeGYmePHxWJBRSFuuDggbvHGa4HCcMTy6NxLHR2J4dG+H3VrVB0NFXUV5fb0oXdtZynEEoQmmBR2Hw8EbgmXIkkiQwOerbf8n8PnIkkgw7aOllKBDNIvD3imU9bsul1Uir5hdbTkI88JGEUcYj76izse3vi2Pru0s5TgmYbKNF2F9mBZ0kaN5WLBhCwp/O6UWZnHs5Gks2LDF4evMEbpx6NIkptTvImwTEnL2i1LQact+jYwOQ2BQAIRCIcQNSkAAf/UWFokQxA1EZHSYBaw1HIqXYxdMlyyJHM1DWGycw3WAIJjBocWcvvW7CIKwHbTVp+NwOFiR9jGSEt8Bn8+HQCB41ltYJIJEIkHGjo1083Qw5HIZSs//htrK22jt2QH+vQbB2dk6/w9wOBz0j6AHTsJwHFbMyeVyiIRCBPt5IqYvu3qsEeaBvHKOgzZBx+PHIWPHRixZuEqtt3AQNxAZOzaatc4cwS7hBAAXCw9CumM9Km+Wqo55dvJHZOKH6B46wmp2EYShOJyYu3//PoqLiyESCiHJysJuQSwFmROEDSOTyZEnvYCyikr4+XgiJrInOBznZgVd3NhRjHeAUHaVKCstx+1bd9ChY3v4+ftaddtWKZ5q7t3Ew+p7aN3OC228O1lFRLFNOF0sPIgDny5EfDwPixbtVXlpU1OFyPp0IcZ8kEaCjrAZHE7MdelS3wcz2M8TuwWxGDe0q5UtIghm0CZq7G3NhuyTFGLekl24UvIsA5Ub2AnpKyZjHC+02S3X6GGRjNmhqatEixYt8PTpUwQGBSBxwXKLB7FrEk9KmywtotgmnORyGaQ71iM+nofMzEYttDLFSEjgI3/nJ+g6eJhVPYcEoS8O55L68oNhyBGNxYVNE0nIORCNt1hlMjly889hx14pcvPPmb08jbnX2ycpRI/QBRjBF2HK219gBF+EHqELsE9SyOg61l6z8foTkzagf0iYWjmH/iFhmJi0QWUHkx0kNKHsKjGgv3qT9Li4ODg5OaFTRx+LN0tXiqfosOc12tQtwB8HPl2Ii4UHzW5LY+HUsFhzZqYY8fE8SHd+ArnccsWaS8//hsqbpVi0SHPNwZQUASorbqD0/G8Ws4kgTMHhxNzEmK4YPsCftlbxl8A4XYoduRet1uLMGjZYWoSYez19RQ2TWGPNhshkcsxbsgs8XjzE4sxG3RwywePFY/7S3Wr/P5lD0DXsKpGZ2diO+q4Sd+7cwcvx8di2erlFukuoiyfNNt29ewcvvxxvERHFRuFUW3kbgO6ag8pxBMF2SNFYATaIqH2HL+G5mbsxUrAfr6/NsUqLM0vZ0NArZ2kRYu71jBE1pmKNNRuTJ72AKyU3kZKySEs3hxRcvlqBPOkFtfeYFnT6dJW4fPky4saMQfm1qzhbeITR9TWhSzypbIobYxERxUbh1NqzAwDdNQeV45hCJpPhzJHD+GX/Ppw5cpjVreMI24LEnIVhi4iaJMpG/yEx6gLDgi3OrGGDpUWIJdYzVtSYgjXWbExZRSUA3QKhrKKyyRa3RxVzW4v6dpVo1aoVAMs0S9dXPCltMreIspZwag7/XoPg2ckfqalaWmgJRfD06Qz/XoMYW1P6owTvjQzH4tdfxbo572Dx66/ivZHhFt1+J+wXEnMWhA0iSiaTY/7WAvDi4yFuvAVjoRZnlrShoVfO0iLEEusZImqYwhprNsbPxxOAboHwx6VyjVvcuTvXMuKl07erxMOHDwFYplm6vuJJaZO5RZQ1hJMunJ05iEz8EFlZEiQkNGqhlcBHVpYEka/NZiz5QfqjBGuS30LoIPW4ytBBIRaPpyTsExJzFoINIgoA8orLcaW8CimLtAgMC7Q4s5YNlhYhllhPX1GjHMcE1lizMTGRPcEN7AShMFWjQBCJhPDt5Illad82u8VtqqBr2FVCsx0iBAcH44cDB0xqlm5I94dn4knbd/OXTT8csIiIsrRw0pfuoSMw5oM05BccV2uhlV94gtHsWplMhq9FyxDP4yFT3CgBRCxGPI9nsXhKwn4hMWch2CCigGety3QKDDO2OLOWDZYWIZZYTx9RExzkg5jInkavwYY1G8PhOCN9xWRIJFng8xPUBAKfnwCJJAsyuRxjx/J0bnGbIuiUXSUkEgkSEhrbwYdEIoF3+/b4PivLYs3Sn4mnLO02ebfH999nWUxEWUo4GWPXlPRv8WrKRox+bxVeTdmIKWv3MWrP2cIjqLhegkVa4ipTBAKLxVMS9guJOQvBBhEFPGtdplNgmLHFmaVsaFyOxNIixBLr6SNq1i6fxGj2tjXW1MQ4Xij2ZCTjzKkCNYFQdLoQSxe8ilu3qy2ypa7sKnH6jHqT9B9++AEKhQI3Km5ZvFn6M/F0QqNNf14vs7iIsoRwMgZnZw669BmC56LGoEufIXqLW337sirjJHVd+y0RT0nYLw5XNNhaNBQwERFNt1os1Sc2pq8vuL4eEKamQpyZ2bTZuAVanFnCBk2tu5QiZGLSBvD5CRAIUhr05hRCIsnCnoxkxkSIpdZTipp5S3aptagKDvLBnoxkjOOFmnoqrFhTmx0JcYObFC7eLT4KQP8tbm3FhfWlYVeJxh0gZNwXrNLvtXvoCHQdPIw1HSCAZ8LJkVDGSeq69lsinpKwX0jMWQg2iCigXmCsfTMMk0RZ4CckQJDSQGAY2OJMJpMjr7gcZXdr4efdGjF9ffX6HJM2aKK5HqyWFiGWWk+bqDGnd8waa2qCw3HG8OjeascabnE3+/D01zhThNwzOzR3lci/brpoGhkRaFDcnBJHFE9so09oBHy6BCJVKESmWNzk2i8UiUyKpyQIAHBSKBQKaxthCaqrq+Hh4YF7e5Lg3tqlyfvGChNDUGaz8uLjtQoYS3Wl2Hf4EuZvLcCV8irVsWA/T6xJCtXLBk2f5/p6YO2bYXqfg6k2aKM5MafE0m2orN32ytGQyeToEboA/UPCIBY3fXji8xNQdLoQvxekgcNxZkTMaSP/uhsj8xgj5gjzoe82K/AsmzWex0OKQKC69gtFImRJJHpvw9fev4+/DeqGqqoquLu7m2K+TpT3zLe/zIVL67aMz19XW4NNM4db5FwcARJzYEaY6Iu5BIwxGCtgG4rSlEWLnl2YUlMNFqVMi2h9hBzhGCgLNvN48Vq3uJWeUVsQcwB7BJ1cLkPp+d9QW3kbrT07WG3b1loYIuSUSH+U4GvRMlRcf/Y79A0IwrSPluodT0lijtCGw4s5JoWJvljCC2guZDI5npu5G/2HxGjcLuYnJKDoeD4ubJpo8XMiIUc0Zp+kEPOW7MKVkpuqY8FBPli7fJLaFretiDnA+oLuYuFBSHesR+XNUtUxz07+iEz80OrJDJbCGDEH1JcpOVt4BPduVcCrow/6hEYYFE9JYo7QhkPHzDWu/aYUJsrab/yEBCzIyEdCBJfxbMDhA/wZm8+SKEus7GimxEpUVBTyissteo4k5AhNWDuuj2khZ20uFh7EgU8XIj6eh0WL9qoeflNThcj6dKFVy4xYCmOFHFAfV9k/gq5VBPM4tJhjqzBhM2wpsdIQWxdyFE9nXjQlSNgyxiZDmIpcLoN0x3rEx/OQmSlWe/jNzBQjIYGP/J2foOvgYQ615UoQbMCh7xhsFCZshw116hpi60Jun6RQY7upfZJCa5tGsBhTvEPGUnr+N1TeLMWiRVqK36YIUFlxA6Xnf7O4bZbCGt87QeiDQ4s5tgkTW6BhiRWNhXAtVGLFKXyoXQi5iUkbmm03RRBsobbyNgDdD7/KcQRBWA6HFnNsESa2hLJGnCSrvkacWvX/hARIsrKwJinUrNuEti7igPqt1XlLdoHHi9fZboogNGFpL1Frzw4AdD/8KscRBGE5HFrMsUGY2CLjhnbFbkEszhzLU2+jdDzf7LXy7EHIAUCe9AKulNy0SLspwn6xpKDz7zUInp38kZoq1PjwKxSK4OnTGf69BlnMJktiie9aJpPhzJHD+GX/Ppw5chgymczsaxL2gUMnQADPhMn8rXnqFfr9PC1axNfWGDe0KxIiuBYtsWIvQg541kZK33ZTBGFtnJ05iEz8EFmfLkRCAh8pKQ2K3wpFyMqSYMwHaZT8YCSa6tD5dAnEG4JlFu3rS9gmDi/mAOsIE3vAUiVW7EnEKTG03RRBaMOS2a3dQ0dgzAdpyN+xXu3h19Ons12XJTG3V65hh4hFe3Y9K/kiFGJN8lt6d4ggHBeHKxpceXkT3Nu1anas4uhhC1lF6MIehRxgeLspwjKYo3iwJWrNWbpUiaN1gDCnmJPJZHhvZDhCB4Vo7N2awOfj2MnT+Dz7CB7X1lLRYEIjDueZ25NZgG7cTs3W8tIkIEjgWRZ7FXFKOBxnpK+YjIlJG8DnJ2htN0VCzrJ41+SatRuEveDszEGXPkOsbYZdcLbwCCqul2DRnl2aS74IBIiKisLZwiPo1neAlawkmOLJkycoLy9HbW0tOnbsCG9vb0bmdbg7xYwPtxhVy8seSmHYCo7yPY/jhWJPRjLOnCpQTyQ5XajWN5SwLN41uYzOF93lEaPzaYLqn5kPc3+3925VANAdP6scR9ge9+/fxxdffIFhw4bB3d0dXC4XvXv3RseOHREUFIQZM2agsNC0UlQO55m7ceMGSkpKIBSmYmLSBoNvmkqhQZ46zTiKEGMKa7ebIjRDHjrCUnh19AGgO35WOY6wLdatW4fU1FR069YNY8eORUpKCvz9/dGqVSvcvXsXRUVFyMvLw6hRoxAeHo7PPvsMPXr0MHgdh4uZU+7PMxGX5KiCjgQb4SgwKejsMXbOEjT0jFnj/MztmWscM6dQKJCXl4eysjL4+Phg3T//ieOnzlDMnI2SmJiIjz/+GH379m123OPHj5GRkQEXFxe8+eabBq/jcJ45JcpaXlFRUciTXjCqd6MjeOlIuBGODHnodNNY7BgruPQRTcoxlhJ1lti+5nA4eEOwDGuS30JYeDjKSktRWlqqer9FixbgJb0NDsd+E0zsmR07dug1ztXVFe+8847R6zismAOYq+VlT6KOxBtBqMOUoIvu8sgi3jlzo0vgWEIAWVrUmZvI0TwkTH8P4s2fg8fjYe/evc/Kk6SmIvOrf6HnwMEIiRpmbVMJA7h37x4UCgW8vb1x69Yt5OXloWfPnjq9dMbg0GKO6Vpe+oo6SwkmfcQliTeC0I2teOjMVXOOrQkW9iLqZDIZpD/sB2/sWLXyJBEREcjMzEQCn49tq5djrfh/VraU0JevvvoKQqEQADB//nxs374dISEhWLp0KWbPno3p06czup7Dijm5XA6RSIjgIB/ERPZkdG62CCS22EEQ9oAyy9UWRJ2psFW8acMcos6S34G+5UnOHzct45GwHJ9++imKi4vx8OFDBAYG4vLly+jYsSOqqqowbNgwEnOmcv/+fRQXF1MtL4IgjMIULx1bt1ptTbxpw1Y9dfqWJ6m8c9NiNhGm0aJFC7Rq1QqtWrVC9+7d0bFjRwCAh4cHnJycmF+P8RlZTpcuXQAAwUE+VMuLIAijYPO2q66tVnsRbs1ha6JO3/Iknu07WdQuwng4HA4ePXoENzc3/Pzzz6rjNTU1ZlnP4cTc5vVv6ewAQRAEoQu2CzrCdr6HPqER8OkSiFShUGNLL6FIBN+AIPQaTM4HWyE7Oxuurq4A6r1xSmpra/Hll18yvp5Jamb16tVwcnLChx9+qHXM5s2bERMTAy8vL3h5eSE2NhYFBQVqYyoqKvDGG2/A398frVu3xpgxY/DHH3+ojXn06BHef/99tG/fHm3btsX48eNRUWF4ReyJCWEYHt2bhBxBECZjTLcIS3SEIGwLZXmSLIkECXw+pFIp7t+/D6lUigQ+H1kSCaZ9tBQcO+5/a2803k4tLy8HAHTq1AmhocyLcqMVTWFhITZt2oQBA5rvFZebm4vExEQcOnQIUqkUAQEBGDVqFG7cuAEAUCgU4PP5uHTpEjIzM/Hbb78hKCgIsbGxePDggWqeOXPmYP/+/dizZw9+/vlnlJaWYty4ccaaTxAEwQgk6AgmiBzNw4INW1D42ym19n7HTp7Ggg1bEDmaZ20TCRMYNWqUWec3apu1pqYGU6ZMwebNm7Fq1apmx27fvl3t56+++gp79+5FTk4Opk6dij/++ANHjhxBUVGRqvbKF198AV9fX+zYsQPTp09HVVUVtmzZgm+++QYjRowAAGRkZKB37944cuSIxhgDbezJLKBtVoIgGMWYLVe2JkMQ1iNyNA9hsXE4W3gE925VwKujD/qERlDBYDvA3M22jFIz77//PuLj4xEbG2vwZ2tra/HkyRN4e3sDqG9hAQBubs8uas7OznB1dUV+fj4A4Pjx43jy5Inaer169UJgYCCkUqnGdR4/fozq6mq1FwDM+HALRvBF6BG6APsklOZNEI6ATCZHbv457NgrRW7+OchkcsbXIA8dwQQcDgf9I4bihbHj0D9iKAm5Bnz++efgcrlwc3NDeHh4k5CthugK8Xry5AkWLlyI/v37o02bNvD398fUqVPVum8AAJfLhZOTk9pr9erVBttujgzWhhgs5nbu3IkTJ05AJBIZteDChQvh7++vEmZKUSYQCHDv3j3U1dUhLS0N169fR1lZGYD6vWYXFxd4enqqzeXj46Pah26MSCSCh4eH6hUQEAAAuHHjBqRSKfqHhGFi0gYSdARh5+yTFKJH6AKM4Isw5e0vzPow512Ta7CoI0FHELrZtWsX5s6di6VLl+LEiRMICQnB6NGjcfOm5nItukK8amtrceLECSxevBgnTpzAvn37cOHCBbzyyitN5lqxYgXKyspUr1mzZpn1XI3BIDF37do1zJ49G9u3b1fzpOnL6tWrsXPnTnz77beqz7ds2RL79u3D77//Dm9vb7Ru3RqHDh1CXFxck+KJhiAQCFBVVaV6Xbt2DQDQtm1bREREQCzOBI8Xj/lLd5vlKZ0gCOuzT1KIiUkb0D8kTC2o3NwPcyToCIJZ1q1bhxkzZiApKQl9+vTBxo0b0bp1a2zdulXj+O3bt+O9997DwIED0atXL3z11VeQy+XIyckBUJ+g8L///Q+TJk1Cz549ERERgQ0bNuD48eMoKVEvadOuXTv4+vqqXm3atDH7+RqKQWrp+PHjuHnzJp5//nm0aNECLVq0wM8//4xPP/0ULVq0gEwm0/rZ9PR0rF69Gj/99FOTpInBgwfj5MmTqKysRFlZGQ4cOIA7d+6ga9euAABfX1/U1dWhsrJS7XMVFRXw9fXVuJ6rqyvc3d3VXmon7uwMgSAFl69WIE96wZCvgSAIG0Amk2Pekl3g8eIhFmciIiLCog9zJOgIghnq6upw/PhxtVArZ2dnxMbGag21akzjEC9NVFVVwcnJqcku4OrVq9G+fXsMGjQIa9euxdOnTw0+B3NvlxuUADFy5EicOXNG7VhSUhJ69eqFhQsXajV2zZo1SE1NxY8//oghQ4ZonV9Zi+WPP/7AsWPHsHLlSgD1Yq9ly5bIycnB+PHjAQAXLlxASUkJIiMjDTkFNZRVtcsqKo2egyCYpnFPXWrLZhx50gu4UnITO3Yt0tgiSSBIQVRUFPKkFzA8urdZbDA0McIWkyKUItTW7CbYgTKeXYmrq6uqPpuS27dvQyaTwcfHR+24j48Pzp8/r9c6jUO8GvPo0SMsXLgQiYmJas6fDz74AM8//zy8vb3x66+/QiAQoKysDOvWrdNrXSW//fabQeMNxSAx165duybtRtq0aYP27durjk+dOhWdO3dWxdSlpaVhyZIl+Oabb8DlclUxbm3btkXbtm0BAHv27EHHjh0RGBiIM2fOYPbs2eDz+apUXg8PD7z11luYO3cuvL294e7ujlmzZiEyMtKgTNbGKKtq+/l4Gj2HoyOTyZEnvYCyikr4+XhSlrAJNBZxjY+TqDMM5UOarhZJ5n6YY3NxYVOI9HsAaX4B9h6+CR/fToiMDlM90JOwsx+GhQagdbt2jM9be/8+NgGqeHYlS5cuxbJlyxhdSxnilZubqzFE7MmTJ5g0aRIUCgW++OILtffmzp2r+veAAQPg4uKCt99+GyKRqInotCaMd4AoKSlRewr+4osvUFdXhwkTJqiNa/gLKysrw9y5c1FRUQE/Pz9MnToVixcvVhv/z3/+E87Ozhg/fjweP36M0aNH41//+pfRdsrlcohEQgQH+SAmsqfR8zgy+ySFmLdkF66UPAtA5QZ2QvqKydQmzQC0iTht45gUdYqjh+1WJCof0nS1SLLEw5whgo7t3rnoLo8gEf+A0IWrUHL1mup4YFAAVqR9DB4/rsmWMZvPh7Au165dU/OEaRJIHTp0AIfDadIooLlQKyXKEK/s7GyNdXGVQu7q1as4ePBgk5CsxoSHh+Pp06e4cuUKevZkj3ZwUpi7+AlLqK6uhoeHB65fv46SkhKIREJIJFnUn9VIlIHlPF48UlIWoV+/figqKoJQmErfq57oK+K0YawI07auvYk6mUyOHqEL0D8kDGJxZpMWSXx+AopOF+L3gjSLeZMN8dCxTQApBZpE/AOSEt8Bj8dDSkpKg799ISQSCTJ2bASPH6d1Hradly1Re/8+/jaoG6qqqnSKDlNR3jO/+e1Ps3nmDDmX8PBwhIWF4bPPPgNQ/zccGBiI5ORkfPTRRxo/0zDES9MDnVLI/fHHHzh06BA6duyo047t27dj6tSpuH37Nry8vHSOb0h1dTUyMjJQXl6O4OBghISEoH///mjdurVB82jC4cSckuAgH6xdPokEhxGw8SZpa5gq5JToK8AMWc+eRF3Dhw6B4JnwsObDnK0JuoZeNplMhtA+LyBkwECINfQQ5fP5OH3mFAqKf9YZ8M2Gc7M1HFnM7dq1C9OmTcOmTZsQFhaG9evXY/fu3Th//jx8fHyaDfEaOvTZNU0Z4vXkyRNMmDABJ06cgEQiUYvH8/b2houLC6RSKY4ePYoXX3wR7dq1g1QqxZw5cxAXF4dt27YZfM6xsbE4deoUQkNDUVJSggsX6pMvu3XrhpCQEOzatcvgOZUwvs3Kdjavf4s6QJgIGwLLbRWmRFzj+TQJMGPXsqet13G8UOzJSMa8JbsQFRWlOh4c5GM177Eyy1UfUWftLdfG26XS/AKUXL2GXTt3a/nbFyAqKgrS/AJEDzM+OY0gGjN58mTcunULS5YsQXl5OQYOHIgDBw6oRJihIV43btzAd999BwAYOHCg2phDhw5h+PDhcHV1xc6dO7Fs2TI8fvwYwcHBmDNnjlocnSFIpVLk5uaqerM+fvwYZ86cwcmTJ3Hq1Cmj5lTicGJuYkIY3Nu1srYZNg1bAsttjcbiSiaTI6+4HGV3a+Hn3RoxfX2NfsCwpEi0NcbxQpEQN5h1iTr6xtFZK/5MU6mUivL6+Fhdf/vKcbrmJ+8cYQjJyclITk7W+F5ubq7az1euXGl2Li6Xq7PF1vPPP48jR44YYmKzDBgwAC1aPJNdrq6uGDJkSLNVPvTF4cQcYTpsCiy3FRqLrX2HL2H+1gJcKa9SHeP6emDtm2EYN7Srpc3Tir146TgcZ1Z6iY3t6arEXGJIW807H99OAHT/7SvH6bMOCTrCUVizZg2WLFmC//73v4xnwtI+I2EwMZE9wQ3sBKEwFXK5esFVyhJuiiYhN0mUjf5DYtS7EgyJwSRRNvYdvmQlSzXDtNePUMeYnq5Kors8Ur2YQNdckdFhCAwKgFAo1PK3L0IQNxCR0WGM2EMQ9gSXy0V1dTX69OmDlJQUfPfdd6ruVKZCYo4wGA7HGekrJkMiyQKfn6AmSPj8BEgkWVi7fJLVt7HYgKat1flbC8CLj4c4s1FXgsxM8OLjsSCjkHUt5kjQmRdTBJ0SbcKu4XFdL11wOBysSPsYEokEfD6/0d8+HxKJBMtXLzKo2j11viAchfHjx+PKlSsYOnQofv31V0ybNg1cLhcdO3ZU1dU1FtpmJYyCjYHltkBecTmulFdhxyItySMpfyWPFJdj+AB/K1mpGXvZcmUrTBYXNqdA4vHjkLFjI5YsXKX2tx/EDdRZloTQjUwmw9nCI7h3qwJeHX3QJzTC7K2gCMtQVFQEqVSKkJAQ1bErV67gt99+w+nTp02am8QcYTRsDSxnC5q8WWV3awHokTzy1zi2YU+JEWzEVrpF8PhxiBs7CtL8AlSUN+0AYSgUO1eP9EcJvhYtQ8X1Z43efboE4g3BMkSO5lnRMoIJQkND8eDBA7VjXC4XXC4Xr776qklz012XMAllYHni+EgMj+5NQu4vtG1L+nnXF4dUBoo3RpU84m16EUnCNmFiy9UScDgcRA+LxPjJCYgeFmmy98jRt1ulP0qwJvkthA4KUdu+Dh0UgjXJb0H6o8TaJhImMnv2bCxbtgyVlZWMz013XoKwIDF9fcH19YAwVUvyiFCIYD9PxPRtvkWNtaEYOvPiXZNrM6KOMB2ZTIavRcsQz+MhUyxWi6XNFIsRz+Nh2+rlkMll1jaVMIEJEyYgOzsbPXr0wMyZM7FlyxacOHECdXV1Js/tcGJuT2YBcvPPsS7AnLAfmhM6HI4z1r4ZBklWFvgJjZJHEhIgycrCmqRQm/BwkqAzP44m6BzVO3e28AgqrpdgUUqKxljaFIEA5deu4vzxQitZSDDB5cuXIRaLMWvWLNy5cwdCoRChoaFo166dxr6xhuBwMXMzPtwCgBrCE9Zj3NCu2C2IxfyteerJI36e2C2IZVWdOV1QUoT5sZU4OqZwxPi5e7fqG8jriqWtvKO7GDPBXm7cuIGuXbvilVdeUR27f/8+Tp48SQkQhnLjxg2UlJRAKEzFxKQNlHlJWIVxQ7siIYLLWAcIwr5xNEHnaHh1rG9JVVRUhNDQUOTl5aGsrAx+fn6IiYlRxdJ6ttevGDPBTt5//30kJyerifZ27drB39+/SUsxQ3E4Maeq6SXOBJ+fgPlLdyMhbjDdRAnGcAofqtcWJIfjzLryI8ZA3jnzQ0LOvukTGgGfLoFInjULd27fVmtFxeVy0b5DB/gGBKHXYHI82DIXLlzA8OHDmxzPzs7G/v37IZEYn+TisApG2RD+8tUK5EkvWNscws4gccMMiqOHVS+CsFc4HA4i48bi+LFj6Nevn1osbb9+/XD82DFEjOGB40z15mwZd3d33Lt3r8nxmJgYk3vAOpxnriHUEJ4wJ/p66OwBc3jnGn93+n6XJKQJW0Mmk0H6w37weDxkZmaqkiAiIiKQmZmJhIQEHDkgwfh3ZlvZUsIUxowZg/T0dOzcuVPtuLOzs8kZrQ7rmQOoITxhfhxJWDApXE2Zy948ebTFav+oslm1dIZJSUmhbFY7YOXKlfj5558xfvx4nDlzBgDw6NEjpKWlUTarsVBDeMJSOJKHzlTMIQgdSVATtgllszoGAQEBOHLkCN59912EhITA1dUVT58+hYeHB/bv32/S3A4n5u7fv4/i4mKIREJIJFnYk5FMyQ+E2VEKCnsXdaZst5rruyFRR7CdhtmsERERTd6nbFb7ISgoCN9//z1KSkpw8uRJtGzZEuHh4fD29jZpXocTc126dAFADeEJ62AuL11DoWKLgtESNpOoI9iKMps1VShEplisttUql8shFIkom9XOCAwMRGBgIGPzOZxLavP6t3BQLMDvBWkk5Air4BQ+lFFB0Xgua4sVQ4WZpcWnLcXUUbycY8DhcPCGYBmyJBIk8Plq2awJfD6yJBJM+2gpZbMSWnE4z9zEhDC4t2tlbTMIwmQvXXOizRa2da1tG3nqCDYROZqHBRu24GvRMrXOML4BQViwYQsiR/NQe/++FS0k2IzDiTmCYBPGiC5DxIe1ki90xc5ZW8g1hEQd+3DEll5AvaALi43D2cIjuHerAl4dfdAnNAIcDnnkiOZxODGXJ72A6vsP4efjiZjInpT8QLACc4outmXTsskWgmAbHA4H/SPowcKeiYqKwp9//omKigrG5nQ4MTf2b+tU/+YGdkL6iskUO0fYFIZmjFpLPDVc19qCUiaT6+yDyzYPHcXLEYR9MnnyZNy+fZvROR1OzGVnZyM8PBxFRUUQClMxMWkDZbUSrMAcgoctXjBr2rHv8CXM31qAK+VVqmNcXw+sfTMM44Z2bTK+sQglCIJgktmzme/k4XB7jKGhoWjbti0iIiIgFmeCx4vH/KW7IZPJrW0aQegtHvQRR2wRctZk3+FLmCTKRv8hMWoZgv2HxGCSKBv7Dl9q9vO2lPlKEITj4nBiriHOzs4QCFJw+WoF8qQXrG0OQRhEcyKDBEj91ur8rQXgxcdDnJmJiIiIZw9ymZngxcdjQUahXg9ySlFH3ytBEGzEocUc8KxNSllFpXUNIYi/sIV4OFsgr7gcV8qrkKKl36UgJQWXyyqRV1xu0Lwk6p4hk8mQ/7MUe3dlIv9nKWQymbVNsggymQxnjhzGL/v34cyRw3qdtzGfIQh9cbiYucYo26T4+Xha1xAbRSaTI096AWUVlZQhzCCGxM81ToggoVFP2d1aALr7XSrHGYoprcvsAYn4ByxZuAolV6+pjgUGBWCZKAXe7b1RUX4TPr6dEBkdZvXSGjKZjLFyH9IfJfhatAwV10tUx3y6BOINwTJEjuYx9hmCMASHvuvK5XKIREIEB/kgJrKntc2xOfZJCtEjdAFG8EWY8vYXGMEXoUfoAuyTFFrbNLvAGA8dCbln+Hm3BvDsga0xqge5v8bpi0wmR+7pUuzIvYjc/HNmibc1JJPVGt4xifgHJCW+g5ABA9ViETt19MHMqbPAHz0Zb0+r/29onxcgEf9gdpu0If1RgvdGhmPx669i3Zx3sPj1V/HeyHBIf5QYNdea5LcQOihE7bxDB4VgTfJbGuc05jOEfXDv3j3cvXsXAHDr1i3s27cPxcXFZlnL4cRcQUGB6o+Jz0+ARJKFtcsnkTfJQPZJCjExaQP6h4SpB5aHhGFi0gYSdAxhrS1XNcFyutSqCULG2hLT1xdcXw8IU1Mhl6t/Ri6XQyQUItjPEzF9ffW2Zd/hS3hu5m6MFOzH62tzrP4AIxH/gNA+L1hUPMlkMixZuAo8Hg9isVgVi1haWorjx49jzJgxateEkAEDkZT4jsE2RXd5ZLKtTAopmUyGr0XLEM/jIbPBeUdERCBTLEY8j4dtq5eriWljPkPYB1999RUGDx6MIUOG4IsvvsCrr76KnJwcvPbaa/jqq68YX89JoVAoGJ+VhVRXV8PDw0PtWHCQD9Yun0RlSQxEJpOjR+gC9A8Jg1ic2aQpNJ+fgKLThfi9II1EsoE0t21tKa+brlIelqwZZ2hZEU2fnyTKBi8+HoKUFPTr1w9FRUUQCYWQZGVhtyBWr3kaz5WyaJFqLqEwFRJJFqMljvTxzCm9YzweDykNzk0oFEIikSBjx0bw+HGM2NOQ/J+l4I+eDKlUioiICAD1oqV79+7o378/xBoaxfP5fJw+cwoFxT8btL1pShcImUyG90aGI3RQiMbm9Ql8Po6dPI3Ps4/oZdOZI4ex+PVX1c67IVKpFFFRUVj5n29VRX+N+Uxz1N6/j78N6oaqqiq4u7vrHG8KynvmN7/9idbt2jE+vyXPxRoMGDAAR48excOHDxEYGIjLly+jY8eOqKqqwrBhw3Dy5ElG13O4O+3+b+Zi+6Z3cVAswO8FaQ4t5GQyOXLzz2HHXqlB20V50gu4UnITKSlaAssNyBA21gamsbYdMpkcK9aK0bnfbK3b1paIz9JVyuPbWy6ssUVXWREAGDe0K3YLYnHmWB6ioqLg7u6OqKgoFB3PN0jINZsZa4USR9q8Y/X2iMHj8bD0o1SzeHwqym8CUI9FzMvLw5UrV5CSkqLlmiDA1SslkOYXMG6PNs4WHkHF9RIs0mJTikCA8mtXcbbwiF7z3btVX61fVwymcpyxnyHsgxYtWqBVq1bw9vZG9+7d0bFjRwCAh4cHnJycmF+P8RlZTkxkT7i3a2W19dmSMLBPUoh5S3bhSslN1TF9O2IoM391BpbryBA2xQYmsbYd+ySFeHfeNty6XQ0ej4dFjbw+DQtbG9PLVV8aCxblDVBZyoPPT8D8pbuREDfY7P/P6rQlIQELMvKREMHVacu4oV2REMHV2QGiOZSZsTu0ZcYKUhAVFYU86QUMj+5t+AkbiDS/ACVXr2HXzt1axVNUVBSk+QWIHhbJ6No+vp0A1MccKr1NZWVlAHRfE5RC0BIwLaS8OvoAUD/vhihjMJXjjP0MYR9wOBw8evQIbm5u+Pnnn1XHa2pqzLKew3nmrAlbEgZMjXdTZv7qDCxvJkOYLTF31rZjn6QQE974DA8fyTF27FhkWtHro7OUhwVrMjJdVoTDccbwAf5IHN4dwwf4GyxG9c6MtVCJI03eMU32mEM8RUaHITAoAEKhUBWL6OfnB0D3NUEpBC1BQyHVnE36Cqk+oRHw6RKI1AbnrUQul0MoFMHTpzPK5f7IOVKi32dEIvgGBKFPaFOhR9g22dnZcHV1BQC1EK/a2lp8+eWXjK9HYs5CWFs0KJHJ5Ji3ZBd4vHiIxcYJh5jInuAGdoJQqCWwXEeGMBM2MIG17VCuHxkZgZqamma2qNRFlLni1fQVLKWHC8weM2fusiKGondmrIVKHDX0jjVnjznEE4fDwYq0jyGRSMDn8yGVSjFw4ED4+/sjVVuyiUiEIG4gIqPDGLdHG0wLKQ6HgzcEy5AlkSDhr/NWXscTEvjIypIg8rXZcHauj7/LOVKC3MIbeH58cv1nEhp9hs9HlkSCaR8tBYfDQc6REp2vnwuv6bCSYAvatlM7deqE0FDmd3xIzFkAa4uGhjAR78bhOCN9xWRIJFng8xPULlD6ZAgzGXNnCta2Q7n+mDH1QerWFlHmKuVh67YAembGMljiyLsmt9n3NXnH1Owxs3ji8eOQsWMjTp0+iaioKHh5eaG0tBQSiQQJCY2vCXxIJBIsX73IovXmmhVfjYSUvkSO5mHBhi0o/O2UWgxmfuEJjPkgDd1DRzT5TPfQERjzQRryC46rf6ag/jO1HgNUnjwAkMtluH72GH7/9QCunz0GuZwyXe2F6upqfPLJJxAIBPjyyy9x9OhR1NYy80DqcDFz1kB5096xy/rxNkzFu43jhWJPRjLmLdmFqKgo1fHgIB+dWX1M2WAq1rZDOa/yKU1XXI25hUtDwdIwTg0wvpSHPdgC1D/ArH0zDJNEWeAnJGjMjN2TkWyx+Feldywp8R3w+XwIBIJn9ohEqmxWc4onHj8OcWNHQZpfoCoQfPfOXSwTCNWuCUHcQLNl1upCKb6+Fi1Ts8k3IAgLNmwxqmBv5Ggeatr1Ren531BbeRutPTvAv9cglUdOE91DR6Dr4GE6P3Ox8CCkO9aj8map6phnJ39EJn6oUSgStsW4ceNw6tQphIaGYv/+/bhwod5R0K1bN4SEhGDXrl1Gz01izgJYWzQ0pGG8W7PCQY/tonG8UCTEDTY4oYNJG0zB2nYo53V3dweXy4VQKNRY1kFoIeGij2DZLYi1iGBhky1KlJmx87fmqT/A+HnWZ8YynCzjXZPbbIkSpXdsycJVVhNPHA6nSYJFfMIYNYFn7Q4QkaN5CIuNY6wDRM6REjg7c9ClzxCDPqfrMxcLD+LApwsRH8/DokV7Vf+/p6YKkfXpQoz5IA2BfS23TU0wj1QqRW5uruoB/vHjxzhz5gxOnjyJU6dOmTS3w9WZq7y8yeLZrLn55zCCL9JZa+igWGB2zxwbasSxwQY22NFw/alTp2HSpEng8XhqXpbU1FR8//33BpXRMBVNtd2C/TyxJinUYjaw0RYlMplcY2asOcq16FNvTiaTsUo8MYUpNebMQcOtUKaRy2XYPu9VRIcNRmamhpp4CXzkF57AxBX/xua3R1KdORslMjIS//rXvzBo0CDG5ybPnAVomDCgSTRYsqWYMt5tYtIG8PkJEAgaeDxEQlXxU3OKKDbYwAY7Gq4PAKmpqdi0aZOal8XHu61FhRzATCkPe7RFiTIz1hLo8s7V29PUO0YwizmFHACUnv8NlTdLsWjRXs018VLqS82U/X7arHYQ5mXNmjVYsmQJ/vvf/6oyXZnC4cRcnvQCqu8/tGiNN2uLhsaYEu9mTzawwY6G6+/f/6y1UEfP1ng/vjdSJj9vFeFiScGiCzbZQjgW5hZxSmorbwPQHYrzsOqORewhzAOXy0V1dTX69OmDyZMnIyIiAoMGDUJAQIDJczvcNmtDGhaGtUQxX03Faa3ZUowNBYzZYAMb7JDJ5Phl617WeJ8IwzFnVwx9tlvtDWtvs1pKyAHA9bPH8K3wHZ2hOLx//BOS/5tD26w2SlhYGCoqKjBs2DCUlJTg1KlTqK6uhre3NwYNGoSffvrJ6LkdzjOXnZ2N8PBwter6/3h/DP773XGzdwAwNmHAXHA4zhapVs92G9hgh/MxKXmfbBzF0cMWaXNGmB9LCjkA8O81CJ6d/JGaKtQYM6csSOz33ACL2kUwS1FREaRSKUJCQlTHrly5gt9++w2nT5u2he5wj/6hoaFqNd4GD34e6Rt+sFgxX6VoSBwfieHRvcn7QlisaT1hu+iqO0cwh6WFHFCf6RqZ+CGysjQUF25YkNjJ9hNbHJnQ0FA8ePBA7RiXy8Wrr76KpUuXmjS3QysJhUKB0tKyv5pVW795NuFYKI4eJiFH6A0JOvNjDSGnRGtx4WYKEhO2xezZs7Fs2TJUVlYyPrfDbbM2JC8vD6Wlpdi7V3MGkaWbZxOOAQk4wlj0yW4lbBd9iwsTtsmECRMAAD169MCrr76K8PBwDBo0CP369YOLi4tJczu0mCsrKwPAjmK+hP1C4s1xUP6uKXbOdKK7PLJoEoQ1vXINMaYgMWEbXL58GadOnVIVCRYKhbhy5QpatGiBnj17mhQ359BizsfHB4D1OxEQBGFfUDIEQRCNuXHjBrp27YpXXnlFdez+/fs4efIkJUAYSkFBgSqw9J//XIcWLVogVVvzbAsW8yXsE/LKOS7miol0pNi56C6PLLIOW7xyRPN8/vnn4HK5cHNzQ3h4OAoKCrSO3bx5M2JiYuDl5QUvLy/ExsY2Ga9QKLBkyRL4+fmhVatWiI2NxR9//KE25u7du5gyZQrc3d3h6emJt956CzU1NUbZ//777+Po0aNqx9q1awd/f39MnTrVqDmVOJyYe+mll1SBpcVnjuHDd15CVlYW+PwEtQwiPj8BEkkW1i6fRBmnhFGQkCMA+v+AIJhg165dmDt3LpYuXYoTJ04gJCQEo0ePxs2bNzWOz83NRWJiIg4dOgSpVIqAgACMGjUKN27cUI1Zs2YNPv30U2zcuBFHjx5FmzZtMHr0aDx69OwhYsqUKSguLsb//vc/SCQS/PLLL5g5c6ZR53DhwgUMHz68yfHs7GwkJiYaNacShysavP+buU06QLCtmC9h+9ANnNAEU1uvjpYEYe7YOVvxzNXV1mDTzOEOWTQ4PDwcoaGh2LChvv2hXC5HQEAAZs2ahY8++kjn52UyGby8vLBhwwZMnToVCoUC/v7++Mc//oF58+YBAKqqquDj44Ovv/4ar732Gs6dO4c+ffqgsLAQQ4bUxzEeOHAAL7/8Mq5fvw5/f8Nqg/r6+kIikajmUnL27Fm88MILuH37tkHzNYRcTqgv5vtH4RocFAuwfdO7OCgW4PeCNBJyhFGQkCMIZjHndqutCDl7pbq6Wu31+PHjJmPq6upw/PhxxMbGqo45OzsjNjYWUqlUr3Vqa2vx5MkTeHt7A6hPRigvL1eb08PDA+Hh4ao5pVIpPD091cRXbGwsnJ2dm2yX6sOYMWOQnp7e5LizszPq6uoMnq8hDpcAMfZv61T/btjlwdodAAj7gIQc0RyUGEHYGpGdH6Gde0vG571fXS/QG/clXbp0KZYtW6Z27Pbt25DJZKqkRSU+Pj44f/68XustXLgQ/v7+KvFWXl6umqPxnMr3ysvL0alTJ7X3W7RoAW9vb9UYQ1i5ciXCwsIwfvx4LFu2DP3798ejR4+QlpaGAQNM6+7hcJ657Oxss3d5IBwTEnIEYT7M4Z0jr5z1uXbtGqqqqlQvgUDA+BqrV6/Gzp078e2338LNzXo9fwMCAnDkyBE8fPgQISEhaNWqFdq1a4f9+/dj7dq1Js3tcJ65xu28+PwEzF+6GwlxgynRgSDsGJlMjrzicpTdrYWfd2vE9PW1yt88eecI4hnu7u46Y+Y6dOgADoeDiooKteMVFRXw9fVt9rPp6elYvXo1srOz1bxfys9VVFTAz89Pbc6BAweqxjROsHj69Cnu3r2rc11tBAUF4fvvv0dJSQlOnjyJli1bIjw8XLX9aywOrV6UXR4uX61AnvSCtc0hbBjyyrGbfYcv4bmZuzFSsB+vr83BSMF+PDdzN/YdvmRt04zCkcqTmAvyytkOLi4uGDx4MHJyclTH5HI5cnJyEBkZqfVza9aswcqVK3HgwIEmSQfBwcHw9fVVm7O6uhpHjx5VzRkZGYnKykocP35cNebgwYOQy+UIDw836ZwCAwPxyiuvIC4uzmQhBzi4mAOoywNhOiTk2M2+w5cwSZSN/kNi1MoP9R8Sg0mibJsVdI6IperOEexj7ty52Lx5M7Zt24Zz587h3XffxYMHD5CUlAQAmDp1qtoWbVpaGhYvXoytW7eCy+WivLwc5eXlqhpxTk5O+PDDD7Fq1Sp89913OHPmDKZOnQp/f3/w+XwAQO/evTFmzBjMmDEDBQUFOHz4MJKTk/Haa6/pnclaUmLYQ0PD0imG4PBijro8NI+y8GnjF1EPfRfsRiaTY/7WAvDi4yHOzERERMSzMIvMTPDi47EgoxAymVz3ZAxC/98QhGFMnjwZ6enpWLJkCQYOHIiTJ0/iwIEDqgSGkpISVYtOAPjiiy9QV1eHCRMmwM/PT/VqmE26YMECzJo1CzNnzkRoaChqampw4MABtbi67du3o1evXhg5ciRefvllREdH48svv9Tb7tDQULz99tsoLNQem19VVYXNmzejX79+2Lt3ryFfiwqHqzPXsKaNXC4Hn5+AotOF+L0gjWLmGmDszcZRYoHoZmwb5J4uxUjBfkilUo0t+6RSKaKiorD/5RBE+3nCfVwvi9lm6t8KG2rNyWQySPMLUFF+Ez6+nRAZHQYOx7xN4ZmsOWdrW63WqDN3+WYx2rkzX2fufvV9BHfqa5FzsSZ37txBamoqtm7dCjc3NwwePBj+/v5wc3PDvXv3cPbsWRQXF+P555/H4sWL8fLLLxu1jsMlQBQUFCA8PBxFRUUQiYSQSLKwJyOZhNxfGCNS1ALLT5eqBZbbo7gjIWc7lN2tBfAsnKIxyuPltfU1nqr3nbeYoLP1RAiJ+AcsWbgKJVevqY4FBgVgRdrH4PHjrGiZ/oyMCARge6KOsB3at2+PdevWITU1FVlZWcjPz8fVq1fx8OFDdOjQAVOmTMHo0aO1XqP0xeHE3EsvvaT6d3CQD/ZkJFNxYBgvUPYdvoT5WwtwpbxKdYzr64G1b4Zh3NCuqnlt6aZFYs1+8PNuDaA+nEKTZ04ZZuHb2kV1zJKCzhS8a3Kt5p2TiH9AUuI74PF42LVzN/r164eioiIIhUIkJb6DjB0bzSboors8YrwjxMiIQBJ0hFlp1aoVJkyYgAkTJphlfofbZtXUzsuRMUW4KAPLefHxSFm06NkFPTUVkqws7BbEYtzQrmqfYZOoI9Fm/8hkcjw3czf6D4mBODMTzs7P/t7lcjn4CQk4nXcIx8cNBsfZSe2zlhJ0pvxNWEPMyWQyhPZ5ASEDBkIsFjf9Tvl8nD5zCgXFP5tty9Vc7b3YLuhom5XQhsMpmeiW9/BaFzmGtbwL52NSh72hm5rIYGxgORsSKNhgA2EZOBxnrH0zDJKsLPATEtSyWfkJCZBkZWHlkKAmQg6o99ARTZHmF6Dk6jWkpKSoCTlAWe5JgKtXSiDNL7CShcaj3HYlCFvD4bZZNaHtxs4mL5ImrClI8orLcaW8CjsWLdJ8QU9JQVRUFPKKyzF8QNMUbmttv9qKiGNLgVt7YNzQrtgtiMX8rXmIiopSHQ/288S2Eb0xlttR62dtZcvVklSU1xdR1RWHqBxna1AcHWGLkJhrhsY3fraIOzYIEn0Dy5XjtGEpUceG70xfdMUhEoYzbmhXJERw1QRyyO9VGj1yjTG3oLO1RAgf3/pelbriEJXjbBUSdYQtQY/6BmDNemtsq/HWMLBcE6r6fX+N04U5z40t35k+UIFb88HhOGP4AH8kDu+O4QP89RJySti65WqNThCR0WEIDAqAUCiEXK4eRiGXyyESiRDEDURkdJjZbLBk8eCREYG0/UowQklJCTSlKSgUCoOLCzfG4cRcXlEZduReRO7pUkYKhZpb3LFJwDUkpq8vuL4eEKamar6gC4UI9vNETF/D+tcxeb5s/e60wdYCt0Q91fvOm03U2dL/pxwOByvSPoZEIgGfz1ePQ+TzIZFIsHz1IrPXm7M0lhR1crkM188ew++/HsD1s8cgl8sAAKez/7TI+oR5CA4Oxq1bt5ocv3v3LoKDg02a2+G2WV9ZfkD1b3NsXTEVf8f2i7sysHySqD6wXJCSospmFQmFqmxWY+O8Gp6/MVtQbP/+NGFqHCKhP6aIMoqjA3j8OGTs2IglC1epxSEGcQPNWpaEDZh7+/Vi4UFId6xH5c1S1bE27p0QGDIFnn6m1SIjrItCoYCTU9MdgZqaGrWuE8bgcGIuOztbVTRYmJqKSSLNJTSYxhbFhS6aCyxn8js1RNjZ8vfMVBwiYX5I0NULurixoyzeAYItmEPUXSw8iAOfLkR8PA+LFu1VPSDXF5xdjx4R7zK2FmE55s6dC6C+H+zixYvRuvWz8COZTIajR49i4MCBJq3hcHXmmrTzSkhA0fF8XNg0kbIFjcRamZeNhZ0tCzlA/9ZTOaKx5JkzEHNtjzIt6IzxQrOhrZe1MFe9OWMwVdTJ5TJsn/cqosMGIzOzaf2+hIQEHPz5KGrv36I6czbGiy++CAD4+eefERkZCReXZ0XKXVxcwOVyMW/ePPTo0cPoNRzOM9cQ2rpiBmVguaWxdfHWmIZxiJoK3Bobh+goWCNJQbmmo3vpCNO7SJSe/w2VN0uxaNFejWEWKSkpkEiitHyaYDOHDh0CACQlJeGTTz4xi3h1eFcUbV0RbEGfArdrkkLJg9wAZVKCtbNNmbLDmAcUa2S0EpoxJUGitvI2AN1hFoTtkpGRYTYvpEN75gDDS2gQhDmxVByirWJt0aYPpnrrbK3uHKGOsbF0rT07ANBdv4+wbXJycpCTk4ObN282qQSxdetWo+d1aDEnl8shpK0rgmVoKnBryx0gbEGAmQPagnVsDN129e81CJ6d/JGaKtQYMycUiuDR0Q9Vt8rMYS5hAZYvX44VK1ZgyJAh8PPz05jZaiwOJ+YKCgqeZbMKhZBIJJg3boDN3igJ+8RacYhM4qgirjHGiDryztkHhgg6Z2cOIhM/RNanC5GQwEdKikCVzSoUipCVJcHIt5cje+MSM1tNmIuNGzfi66+/xt///nfG53a4bNaGBAcHo723N+6U/knZrATBECTimkdfUWeImKOMVvajr6jTVGfO06czIl+bjcC+Ydg0czhls9oo7du3R0FBAbp168b43A7nmZNIJKiuroafnx9iYmJQUFBA2awEwQAk4piFvHP2hb5euu6hI9B18DCUnv8NtZW30dqzA/x7DYKzMwd1tTUWsJQwF9OnT8c333yDxYsXMz63w4m5mJgYtacAymYlCNMgEWcY5ig47F2T69DeOVtBX0Hn7MxBlz5DLGARYUkePXqEL7/8EtnZ2RgwYABatmyp9v66deuMntvhxFxjKJuVIIyDRJzx6CvoyDtnf5i7HRjBXk6fPq3q9NA4O9nUZAiHFnNUiJUgjIOEnOlQSzB2Et3lEQDzx+KZWmSYsD2UxYPNgcOJuYbZrEw0hCcIR4JEHLPoI+jIO2c5lEKu4b/NKer0KTJMgs++yMvLw6ZNm3Dp0iXs2bMHnTt3xv/7f/8PwcHBiI6ONnpekxTM6tWr4eTkhA8//FDrmM2bNyMmJgZeXl7w8vJCbGwsCgoK1MbU1NQgOTkZXbp0QatWrdCnTx9s3LhRbUx5eTn+/ve/w9fXF23atMHzzz+PvXv3GmzzSy+9BHd3d0RFRaHoeD4VYiUIPSEhxzz6eOZIyDVPdJdHaiKM6TmU75m6hrGMjAhUvYaFBljFBoIZ9u7di9GjR6NVq1Y4ceIEHj9+DACoqqqCUCg0aW6jPXOFhYXYtGkTBgwY0Oy43NxcJCYmIioqCm5ubkhLS8OoUaNQXFyMzp07AwDmzp2LgwcP4j//+Q+4XC5++uknvPfee/D398crr7wCAJg6dSoqKyvx3XffoUOHDvjmm28wadIkHDt2DIMGDdLb7u+WjkF17RObL8RKEAShhJIfDPekGSPONH3GVkqjENZn1apV2LhxI6ZOnYqdO3eqjg8dOhSrVq0yaW6jlExNTQ2mTJmCzZs3w8vLq9mx27dvx3vvvYeBAweiV69e+OqrryCXy5GTk6Ma8+uvv2LatGkYPnw4uFwuZs6ciZCQEDUP3q+//opZs2YhLCwMXbt2xccffwxPT08cP37cmFMgCIKwKhQvZx60edEaetiY9LI1nteaXjyC3Vy4cAEvvPBCk+MeHh6orKw0aW6jPHPvv/8+4uPjERsba7CarK2txZMnT+Dt7a06FhUVhe+++w5vvvkm/P39kZubi99//x3//Oc/1cbs2rUL8fHx8PT0xO7du/Ho0SMMHz7coPVfWX5A9W+urwfWvhlG26wEoQPaYrUO+myxkldOM9YWVPqsT149x8LX1xcXL14El8tVO56fn4+uXU3TIQaLuZ07d+LEiRMoLCw0asGFCxfC398fsbGxqmOfffYZZs6ciS5duqBFixZwdnbG5s2b1RTs7t27MXnyZLRv3x4tWrRA69at8e2336J79+4a13n8+LFqPxqor2YNANnZ2c/aeaWmYpIoi+LmCIKwKOSVIwDDBef9avL42TIzZszA7NmzsXXrVjg5OaG0tBRSqRTz5s0zuZCwQWLu2rVrmD17Nv73v//Bzc3wJ4rVq1dj586dyM3NVfv8Z599hiNHjuC7775DUFAQfvnlF7z//vtqom/x4sWorKxEdnY2OnToALFYjEmTJiEvLw/9+/dvspZIJMLy5cubHA8NDUXbtm0REREBcWYm+AkJWJCRj4QILsXPEYSdI5MrIK2oQnltHXxbuyDSxwMcZ+aaXRMEQWjjo48+glwux8iRI1FbW4sXXngBrq6umDdvHmbNmmXS3Ab1ZhWLxXj11VfB4XBUx2QyGZycnODs7IzHjx+rvdeQ9PR0rFq1CtnZ2Rgy5Fll64cPH8LDwwPffvst4uPjVcenT5+O69ev48CBA/jzzz/RvXt3FBUVoW/fvqoxsbGx6N69e5PMV0CzZy4gIKBJHzipVIqoqCjkiMZSOy+C0II9bLPuv3ILHx+7ipKqB6pjgR5tsGpIEMZyO1rMDiZ7s9IWq2NhyX6m1JuVeUpKStClSxc8ffoUFy9eRE1NDfr06YM2bdrg2rVrCAzUXapGGwZ55kaOHIkzZ86oHUtKSkKvXr2wcOFCrUJuzZo1SE1NxY8//qgm5ADgyZMnePLkCZyd1b1iHA4HcrkcQH2cHYBmxzTG1dUVrq6uOs+J2nkRhP2z/8otTDt4Drz4eOxatAj9+vVThVpMy8rCthGwqKAjCG141+Rqfa/Fg4eWM4RgnODgYJSVlaFTp07o06eP6vidO3cQHBwMmUxm9NwGibl27dqpxI+SNm3aoH379qrjU6dORefOnSESiQAAaWlpWLJkCb755htwuVyUl5cDANq2bYu2bdvC3d0dw4YNw/z589GqVSsEBQXh559/xr///W9Vn7JevXqhe/fuePvtt5Geno727dtDLBbjf//7HyQSidEnD1A7L4Kwd2RyBT4+dhW8+HiIMzNVD4UNQy0W5x3Cy4EdzL7lymSsHHnldNNQGJnz+2pOgBGEEm0boTU1NUaFrjWE8Q4QJSUlah60L774AnV1dZgwYYLauKVLl2LZsmUA6pMqBAIBpkyZgrt37yIoKAipqal45513AAAtW7bE999/j48++ghjx45FTU0Nunfvjm3btuHll1822la5XA6RSIjgIB+88OZ4OGmImVMcPWz0/ARB1NNYxFhy21ZaUYWSqgfYtWhRE+++s7MzBCkpiIqSQFpRhWg/T0bXNla8mVooWFOWpLmyO2UyGaT5Bagovwkf306IjA7TuktjLMrz0fccNIkr5TGmRB0JOEJf5s6dC6C+/+qSJUvQuvUz55FMJsPRo0dVPVuNxWQxl5ub2+zPV65c0TmHr68vMjIymh3To0cPozo+NEatnZdICIkkC3sykrUmPzS8qJKwIxwRU4WXJkFjiMgxdf3y2joAaLKroER5XDnOWNieoWoOgScR/4AlC1eh5Oo11bHAoACsSPsYPH6c0fNqK9mRf91Np826RJap3joScYSh/PbbbwDqPXNnzpyBi4uL6j0XFxeEhIRg3rx5Jq3hcL1ZX3rpJdW/g4N8sCcjGeN4oXp9loSdZmQyOfKKy1F2t5Y6a9gh7uN6GSWomBI3ynmMFXW+resvnEVFRYiIiGjyvjLUQjnOULusQXMixJDaZQ3HGirsJOIfkJT4Dng8Hnbt3P0sDlEoRFLiO8jYsdEgQcdEzTVDhZa+3jpLCDh97ikKEx84COtw6NAhAPU5Bp988olZEj4Myma1ZZSZOfu/mYvq+w/h5+OJmMieJosORxd1+w5fwvytBbhSXqU6RsWY7RN9xZS5RY6hok4mV+D5fccREvOiWswcUB9qwU9IwOm8Qzg+brBeMXPmPj9Ts1hNFUX6iDqZTIbQPi8gZMBAiMXipt8pn4/TZ06hoPhnnVuuhtrbnH2mii5N3yvTQs6Ue0Z1bR28JmZQNivRBIfzzMVE9oR7u1aMzefI3rp9hy9hkigbvPh47GiUIUjFmI2HrZ5OXR46S3mqDPXUcZydsGpIEKZlZYGfkABBSorq/1WRUAhJVha2jeitU8ixZRvV3IkP+sSnSfMLUHL1Gnbt3K05DlEgQFRUFKT5BYgeFqlzLaa423a4SeLLuyZX7ftlUsg52v2B0ExOTg5ycnJw8+bNJtU4tm7davS8DifmlMhkcuRJL6CsopIxL51S2DnCH61MJsf8rQXNZghSMWbDYbuns7Ggs6bAMUTUjeV2xLYRwMd5hxAV9SwDPsijDbaN6N1sWRJLnqM5Eh9MmUuboKsovwlAdxyicpymuc1hFxOQgCPMxfLly7FixQoMGTIEfn5+cHJiLnveIcXcPkkh5i3ZhSslzy403MBOSF8xWe/4ueZwBFGXV1yOK+VV2NFshmAU8orLqRizntiKp5MtHiol+oq6sdyOeDmwg0EdINh2rpYuR6LNS+fj2wmA7jhE5bjG85kTU71zTGDP137CeDZu3Iivv/4af//73xmf2+FcJt8dOIGJSRvQPyQMUqkU9+/fh1QqRf+QMExM2oB9EuN6zmrC1KdsNqMssqzryZyKMetHY09nRESEWts5Xnw8FmQUQibTXCSbqBdeusQXx9kJ0X6emNCtE6L9PLUKOX3mYhpd1wtdQs6cQqnx3JHRYQgMCoBQKGyyVVRf8kmEIG4gIqPDVJ93hKbyiqOHScgRWqmrq0NUVJRZ5nY4Mfdx6l7wePEQixvdMMWZ4PHiMX/pbkZvmE7hQ+1S1CmLLCufwBtDxZgNQ+npTGnG03m5rBJ5xeVWstB2UAqxhi9DP0s0paEg43A4WJH2MSQSCfh8vtqDMZ/Ph0QiwfLViyAta2MVEWdpD6Y5RJxMJkfu6VLsyL2I3NOl9CBnB0yfPh3ffPONWeZ2uG3Wkuu3sWuPlhum4K+tQekFDI/uzei6TuFD7eqJLaavL7i+HhCmpmrMEBQJhQj280RMX18rWmk7kKfTvLBdoLHZK6dpreguj8DjxyFjx0YsWbhKzdvgGxCEBRu2wHMIz+w2sAFzXNc1xc4GerTBooFdGF+LsByPHj3Cl19+iezsbAwYMAAtW7ZUe1/Z9coYHE7MAXrcMCsqzbKuPcXScTjOWPtmGCaJtGcI7hbEUvKDnjT0dDYXg0SeToINKMUjjx+HuLGjIM0vwC9n78Grow/6hEYw3gHCGCwRO8f0tbx633m1PsKNY2ffNrF9JWFdTp8+rer00HhXy9RkCIerMwcAUqlU4w1TKpUiKioKB8UCxj1zjbEHQQdofoIM9vPEmqRQVgTr2woymRzPzdyN/kNitNZCKzqejwubJpJAtjNM9coBlvXMsQV9PHPmFHNMXMMbJ+3oqokY//LLOPDjj1RnjmiCw3nmArt0gFCYCrFYw9bgX31aYyJ7mt0Oe/HSjRvaFQkRXFbWRbMlyNNJGIsjCjl9MYd3zhwiTomuPsL/mDcPB3780eT1CfvD4cTcqkXjMe29L8HnJ0AgaHDD1KNPqzmwh1g6DseZyo8wwLihXbFbEIv5W/PUYpCC/TxZU5aEYBYmvHKE5TCnkAN09xHu3du8O0aE+amsrMSWLVtw7tw5AECfPn3w1ltvqXYOjcXhxJyXRxvMnjkKu8SH1W+YBvZpZRJ7EHQEM5CnkyD0Q98kCKa8c6Zeo/Upbq2rj7BSABC2ybFjxzB69Gi0atUKYWH1ZXv++c9/QigU4qeffsLzzz9v9NwOJ+bG/u1ZtohPJ08kjgvHK2OeZ6QDBEEwAXk6CX2hLVbdWFvIGdJLONLHA4EebbRWCfi/9HSj7SCsz5w5c/DKK69g8+bNaNGiXn49ffoU06dPx4cffohffvnF6LkdTr1kZ2er6iGFhUfjk00/4W5lDQk5giAIQg1T6sdV7ztvkJADnvURlvzVR1itfl9CgsPHy33++efgcrlwc3NDeHg4CgoKtI4tLi7G+PHjweVy4eTkhPXr1zcZo3yv8ev9999XjRk+fHiT99955x2j7D927BgWLlyoEnIA0KJFCyxYsADHjh0zak7VPCZ92gYJDQ1VKxTM5ydg/tLdSIgbTIKOQazdLN7a6xOELuyxmLg9YYyIM1S8aaK5PsKbhvXE2z9fMHkNW2TXrl2YO3cuNm7ciPDwcKxfvx6jR4/GhQsX0KlTpybja2tr0bVrV0ycOBFz5szROGdhYSFkMpnq56KiIrz00kuYOHGi2rgZM2ZgxYoVqp9btzauRJS7uztKSkrQq5d63ctr166hXTvTMoYdTsw1hMlCwTKZHHnSCyirqISfj6fVt22tKWas3Sze2usTBBNQ8oP1sJaQU6Ktj/CDpzIAjinm1q1bhxkzZiApKQlAfZ/TrKwsbN26FR999FGT8aGhoQgNrY+B1/Q+AHTs2FHt59WrV6Nbt24YNmyY2vHWrVvD19f0AviTJ0/GW2+9hfT0dFXM/uHDhzF//nwkJiaaNLfDuyqYKBS8T1KIHqELMIIvwpS3v8AIvgg9Qhcw2ufVIHsOX8JzM3djpGA/Xl+bg5GC/Xhu5m7sO3zJImtPEmWj/5AY9d63Q2IwSZRtdhusvT5BEOzBmHg5aws5Jfr2EbZ1qqur1V6PHz9uMqaurg7Hjx9HbGys6pizszNiY2MhlUoZsaOurg7/+c9/8OabbzYp4Lt9+3Z06NAB/fr1g0AgQG2tcZ140tPTMW7cOEydOhVcLhdcLhdvvPEGJkyYgLS0NJPsd2jPHNCgsr6Pp1Gf3ycpxMSkDeDx4rFjV4Nq3cJUTEzaYPEMWaWY0VQ9fJIoy6wlLho3i1cG7yqbxfMTErAgIx8JEVyzeAmtvT5BEJaFDW29zCHk2ITXg3y4O7difN4WDx4CAAICAtSOL126FMuWLVM7dvv2bchkMvj4+Kgd9/HxwfnzzHz/YrEYlZWVeOONN9SO/+1vf0NQUBD8/f1x+vRpLFy4EBcuXMC+ffsMXsPFxQWffPIJRCIR/vzzTwBAt27djN62bYhDizlTCwXLZHLMW7ILPF68WhFia8XjWVvMKJvF72imWXxUVBTyisvNkq1p7fUtja6YK3OVu7HVUjrmiFGz5vdAmazMY8jv095FnKW4du2aWgcIV1dXq9ixZcsWxMXFwd9f/d4wc+ZM1b/79+8PPz8/jBw5En/++Se6deum19wHDx5EcnIyjhw5And3d7Ru3Rr9+/cHAFRVVaFv377YuHEjYmJijLbf4cRcQUEBwsPDGSkUnCe9gCslN7FjlxbxwFA8nt72WFnMWLtZvLXXNxfGihBtn9N1w9JnPXN3MLGV5AB76eRCkJCzFu7u7jrbeXXo0AEcDgcVFRVqxysqKhiJZbt69Sqys7P18raFh4cDAC5evKi3mFu/fj1mzJih8Tw9PDzw9ttvY926dSTmDOGll15S/dvUQsHKODud4sGEeDyD7LGymLF2s3hrr88ElhAxTK5hDjFjK0KuIYZ+D7Z4jvYMCTl24+LigsGDByMnJwd8Ph9A/c5aTk4OkpOTTZ4/IyMDnTp1Qnx8vM6xJ0+eBAD4+fnpPf+pU6eajYkbNWoU0k2sIehwYm7/N3NRff8hIxmnyjg7neLByHg8g+2xspiJ6esLrq+H1oKXIqEQwX6eiOlr+pMUG9c3Bnu5qTOx9WoP34WtbkHbI0z3ZAVIyFmTuXPnYtq0aRgyZAjCwsKwfv16PHjwQJXdOnXqVHTu3BkikQhAfULD2bNnVf++ceMGTp48ibZt26J79+6qeeVyOTIyMjBt2jS1+m8A8Oeff+Kbb77Byy+/jPbt2+P06dOYM2cOXnjhBQwYMEBv2ysqKtCyZUut77do0QK3bt3Sez6Nc5j0aRskKqwHThWVoKyiEnnSCyYJupjInuAGdoJQmKoWMwcYHo/HxE3A2mLG2s3irb2+vtiDaNGEKV46e/pO7HXrNedICWNzjYwINGruxp8DTE+C0Pf31JyQO/Njuerf/Uez52HRnpg8eTJu3bqFJUuWoLy8HAMHDsSBAwdUSRElJSVq97zS0lIMGjRI9XN6ejrS09MxbNgw5Obmqo5nZ2ejpKQEb775ZpM1XVxckJ2drRKOAQEBGD9+PD7++GODbO/cuTOKiorURGRDTp8+bZCnTxNOCoVCYdIMNkJ1dTU8PDwQ2KUDSq7fVh3nBnZC+orJRm+1NsxmFQgaiIcG8Xj6zs3Exb9hNqs2MWPuWmua6rwF+3liTVKo1erMWXJ9bdiTYNGX5v6fdpTvQ9N3oOvcddWYs2TyA5MizlQ0iTkAGsWcPp45poWcEnMJuuq6pwj6f4dRVVWlM87M5LX+umdWXt4E93bMZ7NW338Iz+C3LXIu1mbWrFnIzc1FYWEh3NzU/3YfPnyIsLAwvPjii/j000+NXsPhxNyYMaOxdOkytRIihoquxuyTFGLekl24UnJTdSw4yAdrl08yaE6mnuTZIGas3YHB2us3xFFEC6Gdhn/btiLk2CTilBgi5gDrCDpzeuZIzNkmFRUVeP7558HhcJCcnIyePet3686fP4/PP/8cMpkMJ06caFJ6xRAcTszdu3cPnp6equNyuRx8fgKKThfi94I0o2/4THSAYHJbhk1ixhEhAUdoQnH0MOvFHBtFnBJtYg6wrncOqBd05t5iJTFnu1y9ehXvvvsufvzxRyhll5OTE0aPHo3PP/8cwcHBJs3vcDFz5iohwuE4W6T8iL5wOM52UUvN1iARx36s2XqPzUKOzSLOWO62Hc5YIoT7uF7NCjqKlSOaIygoCN9//z3u3buHixcvQqFQoEePHvDy8mJkfocTc5qwdAkRwv4gEWcbaAqJMDVu1lKQkGsebYkQugQdZSATlsTLy0vVM5ZJaN8Nli8hQtgHTuFDVS+C/SiTlfqHhKn37Q0Jw8SkDVbrpaxEl1fOXNiDkLMU7uN6WdsEgtCIw3nm5HJ5k59NaelFOB4k3mwPtrXeMxRzeeUcRcgxud1KEGyEfVctM5OY+JraUzmfnwCJJAtrl09i5UWcYA/khbNdlK33UlK0t967fLUCedILVrGvOa+cLQg5uVyG62eP4fdfD+D62WOQy2WMzW0Ixn5X9HdN2DoO55k7W3QcUVFRqp9NbelFOEbmrKUv9tYM0rdH2NZ6ryHW2F5lUshdLDwI6Y71qLxZqjrm2ckfkYkfonvoCMbWMRWmvHO6EiEIwho4nJj7LXelqgME3SRNR1NNO66vB9a+GWbVAr1MYmkhZ8tB+tpQChZrbXWxrfWevjDtlWN6W/Vi4UEc+HQh4uN5WLRor6p+Z2qqEFmfLsSYD9IsLuia6whB262EtXjy5AnGjBmDjRs3okePHozP73AqRllCJHF8JIZH9yYhZwLKbhP9h8SoB5QPicEkUTb2Hb5kbRNtjmdB+uGsDNI3hLtth6tejY9Zmoat99gUN2vJ7VWmhZxcLoN0x3rEx/OQmSlGREQE2rZti4iICGRmihEfz4N05ydW23I1FEMe2igRgjCUli1b4vTp02abn5QMi7CluA2ZTI75WwvAi4+HODNT7UIuzswELz4eCzIKIZPJdU/GYiz5O5HJ5Ji7VAwejwexWP3mKBZngseLx/ylu1n/neoj2Cwt6jgcZ6SvmAyJJAt8foLDxc2aI9Gh9PxvqLxZikWLUjTGIaakCFBZcQOl539jfG1dNCeErZU1TBCvv/46tmzZYpa5HW6blWCGvOJyXCmvwo5FWgLKU/4qxFxcbrPFiy0trvOkF1By9Rp27dxttuLW5sSYm6Qlt73G8UKxJyMZ85bsYkXcrK2LitrK+h7XuuIQlePYhLb/7wypOaf0zlH8HKEvT58+xdatW5GdnY3BgwejTZs2au+vW7fO6LlJzBFGUXa3FoAeAeV/jSN0w+YgfV2YIkwsGU83jheKhLjBDpdcMjIikHHvXGvPDgB0xyEqx5lKc628GqMtZk4fDC0ibK6ECJlcAWlFFcpr6+Db2gWRPh6Mr0FYlqKiIjz//PMAgN9//13tPScnJ5PmJjFHGIWfd2sAegSU/zWOaRpePO0lfsVWg/SZ8jBZykvHhtZ7tu6VAwD/XoPg2ckfqalCZGaK1bzJcrkcQqEInj6d4d9rkEnrGCLiDMGSrb4MZf+VW/j42FWUVD1QHQv0aINFA7swtgZheQ4dOmS2uUnMEXrR+EIVIlcg0KMNhKmpEGdmNrmQi4RCBHm0QcjvVai+WK3XGg1FmSEXxup95xkXdNaIX3wWpC+EWNz05sjG4tZMixLKNjQfTHvnnJ05iEz8EFmfLkRCAh8pKQJVNqtQKEJWlgRjPkiDszPHaHvNDRPbrUqY2nbdf+UWph08B158PHYtWvTsO01NxdsSiUlzE9YnLy8PmzZtwqVLl7Bnzx507twZ/+///T8EBwcjOjra6HlJzBHNou3CxHF2wqohQZiWlQV+QgIEKSmqi45IKIQkKwvbRvQGx1l/17Gjx54og/QnJm0An8+HQPDs5igSCSGRZGFPRjJrtgTN5V0y57arvjabU1Ba0yvHtKDrHjoCYz5IQ/6O9WpxiJ4+nY0uS2IJEdeQ5gQdAKNFHWD4NU0mV+DjY1dViWVqnUoyMxH/8ss48OOPBs1JsIe9e/fi73//O6ZMmYITJ07g8ePHAICqqioIhUJ8//33Rs/tpFAoFEwZymaqq6vh4eGBysub4N6ulbXN0QpbGj7rexHStB0Q5NEGK4cEYSy3o7nM0whT3jlrZxX/O/shlixchZKr11THgoN8sHb5JFbUmbOkGGlOVFlTFJki9vS12xY6PyiRy2UoPf8baitvo7VnB/j3GmSwR45JEWdMzFxzv1Omrsu6rqv5ZZUY+/0pSKVSjaEW2dnZeOmll1BVVQV3d3dGbNKGue+Z1fcfwjP4bYucC1sYNGgQ5syZg6lTp6Jdu3Y4deoUunbtit9++w1xcXEoLy83em7yzLEMY9z7TGLok+RYbke8HNihSaCuIR45Qp2psa0Qd/YXSPML8OBKLquC9C0toNgaW2aoXUqhwIbzMUcyhLMzB136DDHaHjbQ3BY/U9dlXV678to6ANqToHr3Zl8WO6E/Fy5cwAsvvNDkuIeHByorK02am8QcAcC0LU6OsxOi/TyZM4YAh8PBK4MfA4MjrW2KCjYIEVuFvjt12CLgDIHpB+3GOwnV+87Dt7ULAO1JUOfOnWNsfcLy+Pr64uLFi+ByuWrH8/Pz0bWraR2THE7MyWRy5Oafc6iyBM1hT3FqTCRCWHuLVQmbkgBIiNgf5vDO6VrPFtCVgGPOnRP3cb0wWiYH98QVrYll/5eebpa1CcswY8YMzJ49G1u3boWTkxNKS0shlUoxb948LF682KS5HU7MDRq+GCXXnxWxtPWel8ZiTyKOMB8k5AhjsBXxpglrCjoOxxlr3wzDJJHmxDJKfrBtPvroI8jlcowcORK1tbV44YUX4Orqinnz5mHWrFkmze1wLqk+/QbbfM9LU7FnIWfKubHFK8cGrNVDlbAcTAqukRGBai9bR9f/++a8Vowb2hW7BbE4cywPUVFRcHd3R1RUFIqO52PbP14027qE+XFycsKiRYtw9+5dFBUV4ciRI7h16xZWrlxp+tyOls167949eHp6qo7L5XLw+QkoOl2I3wvSWLHlas4ECHsWckqM3WolMVcPiTh2YK5s1sYYst1qK0LNlA4QDdEV7mDOa7VMJkdecTnK7tbCz7s1Yvr64sHjp/CamEHZrDZKSUkJAgICNHZ7KCkpQWCg8X9fDrfNaos9LwmCIMyFUqA1FHW2Ito0wZSQ0wdzb7naal9rQjPBwcEoKytDp06d1I7fuXMHwcHBkMlkRs9tfTcUC2Bbz0tzeYgcwSsHOM55mgPyyjku9rRNyhT6/D2QR5/QF4VCodErV1NTAzc30zzxDueZ0wRbe14SlkVx9LBDX5hJyBG2jiW9cg2xdn1Qgt3MnTsXQH3M3OLFi9G69bOe5TKZDEePHsXAgQNNWsPhxJxcLm/yMxt7XjINeasIgrBnrCXklGh6ECSBRwDAb7/9BqDeM3fmzBm4uLio3nNxcUFISAjmzZtn0hoOJ+YSE1/DkiVLWd3zkmkcUcgxUXPOkSCvHGHLmFPI6SpV0hz6ePpJ8Nk/hw4dAgAkJSXhk08+MUvCh8OJubNFx9UaQgcH+WBPRrLD1ZkjNOOIW60k5AhbxtoeOVMx5HrjdP8hgAzzGUOYlYyM+t/d2bNnUVJSgrq6OrX3X3nlFaPndjgx91vuSpwqKnGYDhCO6JUjCMIxsHUhRzgWly9fBp/Px5kzZ+Dk5ARlZThlUoQp2awOJ+Y4HGcqP+Ig0FZrU8gLZxtYqsacLWNJIWfKVitBKPnggw8QHByMnJwcBAcHo6CgAHfu3ME//vEPpJvYqs3hxJwj9WYlr5xx2OpWKwk1wlEgjxxhi0ilUhw8eBAdOnSAs7MznJ2dER0dDZFIhA8++ECVKGEMDifmqDcrYY+QkCMcBRJyhK0ik8nQrl07AECHDh1QWlqKnj17IigoCBcuXDBpbvt0STWDo/RmJa9cPY7wPZCQIxwFawo5+jsjTKVfv344deoUACA8PBxr1qzB4cOHsWLFCnTt2tWkuR3OM7djx05Vb9aIiAiIxZng8xMwf+luJMQNtostV2sImDM/ljf7fv/RvhayhBlsdauV0I1MJoM0vwAV5Tfh49sJkdFh4HA41jbL4bEFjxvFzhGm8PHHH+PBgwcAgBUrVoDH4yEmJgbt27fHrl27TJrb4cScrfRmZXtFcV3iTdt4WxN1hH0hEf+AJQtXoeTqNdWxwKAArEj7GDx+nBUtUye6yyOzJ0EYI55MsckWxJo+NPTQGSrsTPHukYi0fUaPHq36d/fu3XH+/HncvXsXXl5eGtt8GYLDiTlNsK03K1sxVMBpm8PSgs7es1q9a3JpC0gPJOIfkJT4Dng8Hnbt3K0qHC4UCpGU+A4ydmy0a0HHhJhSzqGPXfYi3ppD+XfXWGiZ4+/xbtvhuC+/z/i8hPm5fPkygoODNb7n7e3NyBpOCmWhEzunuroaHh4eqKqqalJ9WSqVIioqCgfFAtZ45gDjK4ObY5uVCSHXEGt46IwRdLa01UqCTjsymQyhfV5AyICBEIvFah56uVwOPp+P02dOoaD4Z9ZtuRoj6CwppPKvuzmEcGMD96vvI7hTX433MaZR3jMrL2+Ce7tWzM9//yE8g9+2yLlYG2dnZwQFBeHFF19Uvbp06cLoGg7nmXPU3qymwLSQU85JW67MQh467UjzC1By9Rp27dytJdRCgKioKEjzCxA9LNJKVmqG7UJJaR/FIhKEZg4ePIjc3Fzk5uZix44dqKurQ9euXTFixAiVuPPx8TFpDYcTc47Ym9UU9BVyMoUCpx8/xB35U7R3boEBrq3A0REDYGlBZ2vbrTKZHHnSCwbVRCRBp5mK8psAnoVUNEZ5XDmOMAxbiUUkCGswfPhwDB8+HADw6NEj/Prrrypxt23bNjx58gS9evVCcXGx0Ws4nHpR9mZ1d3dHVFQUik4XsrY3q7FbfJYWLD8/vI+/3S7B7NvXsOJuGWbfvoa/3S7Bzw91x3eYw+vHJNZKQtknKUSP0AUYwRdhyttfYARfhB6hC/QqoeNdk0vB0o3w8e0EACgqKtL4vvK4chyhP8pYxJABA9XKPoUMGIikxHcgEf9gbRMJgjW4ublhxIgR+Pjjj7F8+XJ88MEHaNu2Lc6fNy08yuHE3G+5K3FQLMD2Te/ioFiA3wvSNAq5u22Ha3w5EvoIrZ8f3seSO6UY8lKs2oV8cOxILLlTyjpBZwt15/ZJCjExaQP6h4SZVBORBN0zIqPDEBgUAKFQqCXUQoQgbiAio8OsZKFtIpPJsGThKvB4PIjFYkRERKBt27Z/lX0Sg8fjYelHqSb1nCQIe6Curg6//PILli9fjhdffBGenp545513cO/ePWzYsAGXL182aX6HS4DQFMxpqkgz503TWkkQ+ggsmUKBv90uwZCXYiHOzGwSVJ7wyis4kZ2D7R0CdW65KrHEtiubEyFkMjl6hC5A/5AwiMVNv1M+PwFFpwvxe0Ga3mEBjvYQoo2G2awCgaBBqIUIEomEddmstkD+z1LwR0+GVCpFREREk/eVyWXiH3exLhbRFqEECNtkxIgROHr0KIKDgzFs2DDExMRg2LBh8PPzY2wNh/PM3WsTzbi3zd48ePp6yk4/foiyx4+QsmiRxqDylEWLUPr4EU4/fsj42qbAZu9cnvQCrpTcREqK5u9UIEjB5asVyJPq3/qFPHT18PhxyNixEadOn1QLtTh95hQJOSOhWESC0E1eXh7at2+PESNGYOTIkXjppZcYFXKAAyZAEM1jiJi6I38KQPeFXDnOUBscMdtVWetQ13dqaE1EpaCz9QcNU+Hx4xA3dhRlXTJEw1hETZ45ikU0jcYZwv0GsKd0FqE/lZWVyMvLQ25uLtLS0pCYmIjnnnsOw4YNw/DhwzFs2DB07NjRpDUczjNnKZi6abK5zll75/pnAV1B5cpxhnLmx3LVi2kM9c5ZKhGiDXc4AN3fqZ+Pp1Hzk5cO4HA4iB4WifGTExA9LJKEnAlQLKL5kIh/QGifF8AfPRlvT5sF/ujJGB5G3mNbpE2bNhgzZgxWr16No0eP4vbt21izZg1at26NNWvWoEuXLlof4PWFxByhwlDRNMC1Ffxc3ZC6apXGC7kwNRX+rm4Y4Gp6vIW5RB3b0H1zNL0mIgk6gik4HA5WpH0MiUQCPp+vlrDD5/MhkUiwfPUiEswGoi1DuF/f/tY2jWCANm3awNvbG97e3vDy8kKLFi1w7tw5k+YkMUeoMHRbk+PkhPfaeiMrKwsJr7yidtFJeOUVZGVl4d223nonPxBAx4d5zdwcEyCRZGHt8kkm10QkQUcwBcUiMktzGcI7duywtnlW5fPPPweXy4WbmxvCw8NRUFCgdWxxcTHGjx8PLpcLJycnrF+/vsmYZcuWwcnJSe3Vq5d6gtyjR4/w/vvvo3379mjbti3Gjx+PiooKg+yWy+UoKCjAmjVrEBcXB09PT0RFReFf//oXfH198fnnn+PSpUsGzdkYipkj1Og/2tcgD9iwVu2wor0//pWdg6isLNVxf1c3rGjvj2Gt2pnDTLtmamwrYMdGLFuwGFFRUarjwUE+rK2JSDg2FIvIHLq6lTgqu3btwty5c7Fx40aEh4dj/fr1GD16NC5cuIBOnZrGZNbW1qJr166YOHEi5syZo3Xevn37Ijs7W/VzixbqsmjOnDnIysrCnj174OHhgeTkZIwbNw6HD+sfeuPp6YkHDx7A19cXL774Iv75z39i+PDh6Natm95z6ILEnBm523a4VTwgpmZrGiPoot3aGtwBwtZQHD1ssRjGqbGtMKVwjcEdIAyBukUQTKKMRSRMQ1eGsKOybt06zJgxA0lJSQCAjRs3IisrC1u3bsVHH33UZHxoaChCQ+sffDW9r6RFixbw9dW8K1VVVYUtW7bgm2++wYgRIwAAGRkZ6N27N44cOaIx6UcTa9euxYsvvojnnntOr/HG4HBiTiaTIf9nKT09MgzHyQmD3Fpb2wy7gsNxxvBo82avkaAjCHahK0PY3qiurlb72dXVFa6urmrH6urqcPz4cQgEAtUxZ2dnxMbWF6s3hT/++AP+/v5wc3NDZGQkRCIRAgMDAQDHjx/HkydPEBsbqxrfq1cvBAYGaq2tqIm3337bJBv1weHE3PCwOFy/dkP1M/UP1Iyh3jlL4IilSgiCcCwaJkGJxeImhcMtjeLYEShauzA/b20dACAgIEDt+NKlS7Fs2TK1Y7dv34ZMJmvSjN7Hx8ekNljh4eH4+uuv0bNnT5SVlWH58uWIiYlBUVER2rVrh/Lycri4uMDT07PJuuXl7Lo/OtwGfL++/S3aP9CWvR4knhwDSoYgCPbQXIZwYmKitc1jnGvXrqGqqkr1auh9MzdxcXGYOHEiBgwYgNGjR+P7779HZWUldu/ebTEbmMLhxNyOHTtsqn+gtRq9K7FXQWdMSy/A+r8PgiDsH20ZwsVnNdeftGXc3d3VXo23WAGgQ4cO4HA4TbJIKyoqtMa7GYOnpyeee+45XLx4EQDg6+uLuro6VFZWmnVdJnA4Mae5RZIAV6+UQJqvPc3ZkbFXQUc8g7xzBMEuePw4FJ79BeIfd2HTts8g/nEXDh393tpmWQUXFxcMHjwYOTk5qmNyuRw5OTmIjGQu6aampgZ//vmnqtXW4MGD0bJlS7V1L1y4gJKSEkbXZQKHi5nThD31DzRX31E2xtARBEHYM40zhO9X37eiNdZl7ty5mDZtGoYMGYKwsDCsX78eDx48UGW3Tp06FZ07d4ZIJAJQnzRx9uxZ1b9v3LiBkydPom3btujevTsAYN68eRg7diyCgoJQWlqKpUuXgsPhqLazPTw88NZbb2Hu3Lnw9vaGu7s7Zs2ahcjISKOSU0QiEXx8fPDmm2+qHd+6dStu3bqFhQsXGv39OJxnThPm7h9oy3FzDek/2pe8dLDfrVbyzhEEwVYmT56M9PR0LFmyBAMHDsTJkydx4MABVVJESUkJysrKVONLS0sxaNAgDBo0CGVlZUhPT8egQYMwffp01Zjr168jMTERPXv2xKRJk9C+fXscOXJErU/qP//5T/B4PIwfPx4vvPACfH19sW/fPqPOYdOmTU2KEgP1te42btxo1JxKHM4zp7HtlFAIH59OKCstR/7PUipXooOGgs5S3joSkQRBEI5NcnIykpOTNb6Xm5ur9jOXy4VCoWh2vp07d+pc083NDZ9//jk+//xzve3URnl5uWoLtyEdO3ZUE6LG4HBiLjExEUuWLEG/fv1QVFSEDz74ACdPnsTTp0/xbtJsAOYpV2KtAsIEQRBMweQ1zF52LAhCXwICAnD48GEEBwerHT98+DD8/f1NmtukbdbVq1fDyckJH374odYxmzdvRkxMDLy8vODl5YXY2Ngm/dRqamqQnJyMLl26oFWrVujTp49Gl6NUKsWIESPQpk0buLu744UXXsDDhw8Nsrmo+IxadtCxY8cwZswYi5QrMebiZamOA46EsZmsBOGIeNfkql5Mz0sQjsSMGTPw4YcfIiMjA1evXsXVq1exdetWzJkzBzNmzDBpbqM9c4WFhdi0aRMGDBjQ7Ljc3FwkJiYiKioKbm5uSEtLw6hRo1BcXIzOnTsDqA9sPHjwIP7zn/+Ay+Xip59+wnvvvQd/f3+88sorAOqF3JgxYyAQCPDZZ5+hRYsWOHXqlMG96nILfkDR6XMoKy3HMoEQYaFhaoUZleVK+Hw+ln6Uirixo2jLlWiCJVt7EYS9Qh1ICEdi/vz5uHPnDt577z3U1dUXTXZzc8PChQtNrq9nlGeupqYGU6ZMwebNm+Hl5dXs2O3bt+O9997DwIED0atXL3z11VeqlGIlv/76K6ZNm4bhw4eDy+Vi5syZCAkJUfPgzZkzBx988AE++ugj9O3bVxWwqKkmTXMos4P8/H1RUV6BlJQUi5YroQsXQRAEQTgeTk5OSEtLw61bt3DkyBGcOnUKd+/exZIlS0ye2ygx9/777yM+Pl6tX5m+1NbW4smTJ/D29lYdi4qKwnfffYcbN25AoVDg0KFD+P333zFq1CgAwM2bN3H06FF06tQJUVFR8PHxwbBhw5Cfn691ncePH6O6ulrt1RBdzYzNWa7EUEHHVg8QlSohCPvG0K1QmUyO3Pxz2LFXitz8c5DJLN9+St2e+l7ce3dlIv9nqVUKwxtjQ/51N40v6Q03C1hMmJu2bdsiNDQU/fr1M9ghpQ2Dt1l37tyJEydOoLCw0KgFFy5cCH9/fzUh+Nlnn2HmzJno0qULWrRoAWdnZ2zevBkvvPACAODSpUsAgGXLliE9PR0DBw7Ev//9b4wcORJFRUXo0aNHk3VEIhGWL1+u1Q5dzYwtUa6EYkYIwjrIZDJI8wtQUX4TPr6dbDaDnU3nsU9SiHlLduFKybMHYG5gJ6SvmIxxvFCtnzPXVqtE/AOWLFyFkqvXVMcs3Ytbmw2JC5YjcjTPIjYQ1mXu3LlYuXIl2rRpg7lz5zY7dt26dUavY5Bn7tq1a5g9eza2b98ONzfDnxBWr16NnTv/f3tnHtbUmbbxO4kFFQRXNhVQ27qLVEAIolhpLSVKilXGamXQ1vpVu2jdAKt1IXGrdVqtdjoV7aboFIOGVmekakGjoFVxK9YFsQpoRwUV65Kc7w9NJJCQ9SQnyfO7rlyXnLx5z/Mmx5w7z/ssm7B161at13/22Wc4cOAAtm3bhsOHD+Pjjz/G5MmTsWvXLgBPyom89dZbSE1NRWhoKD755BN07doV69at03mutLQ0rX5vly5d0nq+bjNjXeVKpFIpgoIDETUgwuR1EtyFkh8cB7a8KnLZTwjvMRDiocl4K+UdiIcmI7zHQIMJT1zw8tTF3HWwQY68GCNTV6F3SIRWMlnvkAiMTF2FHLl5P/7NRS77CamjJyGkT1+b9uI2xoY+ffpi6ZQJUOyUs24DYX+OHDmCBw8eaP6t73H06FGLzsNjDBViqYNMJsMrr7yi9ctPqVSCx+OBz+fj3r17en8VLl++HIsWLcKuXbsQFhamOX737l14e3tj69atSEhI0Bx/44038Mcff2DHjh24cOECOnfujG+++QZjx47VjElOTkaTJk3w3XffGbS9pqYG3t7euHD1JFp4tQDw5D+bSCRCWlqaplyJVCqFXC5H1sa1rP+CM9Y7Z2yhWrY6QOjCltus1qozZ0jMKZUqFJysRMX1Wvi3bo6Ynn4QCPT/5uHqFri5cCWmky2vSt3/8+np6Zr/8xKJpNH/81zw8tS3x5x1mIox309KpQrPhM9E75AIyGS5WjHIKpUKYnEiTpQU40zREr3/l6x53SmVSoT3GIiQPn21ktue2CNGyfFjKDq5lzUv5t6LT+HtIf0RHhqCXB02JIrFOHS0BKt3HTDJhtpbt/BaaBdUV1fDy8uLDdM1qO+ZN7akwqu5m/Xnr72PViOzbLIWLvDgwQO89NJLWLt2rc7dREsxyTM3ZMgQHD9+HEePHtU8wsLCMGbMGBw9elTvRbl06VIsXLgQO3bs0BJywKMFPnjwoEESgkAg0HjMgoODERAQgNLSUq0xZ86cQVBQkClL0EJfM+OS48dsIuQA47/ErCUalCoGX+eexydbz6Cw4iaUKqO1vBbWEnJKhsGRv2qxq7YGR/6qhdL43xZWJ2ffeTw7cTOGpG3H2GX5GJK2Hc9O3IycfeftZpMrwpZXRalUYu6sRRCJRJDJZIiMjISnp6cmg10kEmHe7MwGHjcueHmssQ5TMfaHZoGiFGXlV5GenqEnmSwdFy5WoUBRqmcG66IoLEL5xUs2T26rG9t2qvgAqv4oR4YeG9LT0lB56SJOFR+wqg0Ed3nqqadQUlLC2vwmxcy1aNGiQcKAh4cH2rRpozlevz/akiVLMHfuXHz//fcIDg5GZeUjEeDp6QlPT094eXlh0KBBmDFjBpo1a4agoCDs3bsXX3/9tWb/mMfjYcaMGZg3bx5CQkLQt29fbNiwAb/99hv+/e9/W/QGiMTxiB/2IitxJ8bGs9gqfm572TXMOXQR5dV3Hh34sQL+7k2xZEBnDAtu1/iLWWDv3Vv4/PZ1VNz7S3PM370p3vZsjUHNWtjUlpx95zFKuguihARszMh44unIzMQoaR42p8UhKbqzTW2yNVzwytUXKtYsGaS+yWdv2qz3Ji8UCqEoLNL0w2TTHnMxZx1sUlF1E4DhZDL1OF1YM27OHslthX9ohx3duFZllA3qcYRrMHbsWHz11VdYvHix1ee2em/W+v3R1qxZg/v37+PVV1+Fv7+/5rF8+XLNmE2bNiE8PBxjxoxBjx49sHjxYmRmZmLSpEmaMe+//z7S0tIwdepUhISEID8/H//973/RpUsXi21WlysZkZyIAYOirPKlbGo8C9s30u1l15Dy82mExAzW8i70ixuClPxTWCX7ndXz12fv3VuY+78rCHshroE9c/93BXvv2q6htFKpwox1RRAlJECWm6vt6cjNhSghATOziu2emecKsOlVMecmby8vT2PYMxNfF/6+LQE8SRqrj/q4ehzb1E1ua8weayW31RdyANCqna9RNqjHEa7Bw4cPsWbNGoSFheGtt97CtGnTtB6WYHE7r/r90Or/XVZWZnAOPz8/ZGVlGRw3e/ZszJ492wTr7EPdeJbsTZu14llSR08yewuX1z/arCbvShWDOYcuasRKXe9C7rZtSBw+HGt25WPAjgoIeDyz4tOUDIOSe3fxP9VDtOE3QR/3ZhDweHrHfn77+iNvR2P2NPU02x5d6IuXKzhZibLKamzM0LNNlJ4OoVCIgpOViO2j3XKFigdbFzaFijkZ7FwTToD9M/HrExPVFcGBPpBIMnXGzEmlEnQK8kVMVFeb2FM3uU1XzJw1k9t0CTkA6BEeCd8OgciUSHTGzEmkUvh1DEKP8IafH+G8nDhxAs899xyAR2FideHpuV8ai9U9c66OreJZTEFRVY3y6jtI1yNW0jMycOXeXyi5Z1prNDV7797Ca3+W470/L2HB9Qq89+clvPZnuV7vWsm9u6i49xdr9phKxfVaAEZsEz0eVxdLhRzX6nLpw1aZnGx6VczJYLe1l8cYuJaJLxDwsXxBMuTyPCQmJmp52sXiRMjleVg2f1SjiUTWtUeABUvmQC6XQywW17NHDLlcjvmLM1jdFhcIBPh72kfIk8uRWM+GRLEYeXI5UmbPc8hyOIT57N69W+/j559/tmhuEnNWhovbMpW1j9qGGBIrzXt5muwFM2e79H+qh0bZox7HNv6tmwMwYpvo8ThrkSMvxjPhM/G8WIoxb63B82IpngmfafMyDmr0xW3asgQGm0LFnJs814STueswB1NDP9q2aYEdO3ZoJZMVHyzElqwpjdaZM+dchrBFcps+r5yaqKEizFz1FYqPHNPuB360BDNXfUV15lyQ8vJy6CsgUl5ebtHcJOasjLnbMtZKgNC1lej3OK3ckFjxMyH9vPdQvwbbpXW9kLnbtiEhIQFrbl9vkKHaht/EKHva8JtYbYu1MWJ6+iHYzxuSzEzdN2yJBJ38WyKmp7YtlnjljK3LZW/Pna0zOdkWKqbe5Lng5bHGOszFGJGlvpYjowZiz549+PHHHzF//nxERUWi8upNq5zDHETieBSf+gWyndn4YsNnkO3MRtHJvTYtJRM1VITP8w9i4bdbMe2TtVj47Vas3nWAhJyL0qlTJ1y7dq3B8f/973/o1KmTRXObVGfOkdFVZ44NCvcqIB6aDIVCoTOeRaFQQCgUQrYzWyvTzJr15urXmlOqGDyXcxghMYO1YtSAx3WXEhNRUrAbh5P6QcA3ft++sOImhv14zOBa/9G2I0KbPvFqKRkGr/1Zjn5xQ5C7bVvDGkzDh+PXXfn4rm0g+r7kb7Q9hmisxlzdbNa0OnW7pBIJ5Hm6s1nNFXPG1uVaPO9VzPpoi8kV9S1FfXO1Z70uXXXdgoIDMX9xhlVuxqZ2TmDbHnOxZQcIXd9RltaY40IGtbkY8syxAdWZc2z4fD6qqqrQrp129YiLFy+iR48euHPnjtlzW5wAQWhjTvAt22VJBHweFoUFISUvD+LERJ1iZcPz3U0ScoDx27f1t0sFPB7e9myNuXl5SBw+HOn1SoHk5eVhQZsAqwo5QyRFd8bmtDjMWFcAoVCoOd7Jv6XVy5Ko63JtzNZfl0soFCJ5/GoMGybCxuw6748kEyNTVxm1dWUu6jIR9iyBwWbJIOBJBjtX7DEXU9dhCbpKKBl7LRcoShE7oHuD+RwVewg5wnFRZ6ryeDx8+OGHaN68jnNDqcTBgwfRt29fi85BYs7KqLdlUkdPglgs1ttZQn0TMEXImZPJqmZYcDtseB6YU7AbQuGTNjJB3h7Y8Hx3s+rM1d2+bSyrTr2tWpdBzVpgQZsAfL4rH8K8PM3xAPemWNAmwOp15oxp45UU3RmJkcFGdYCwZIvV2Lpczz0XquXteJREkwuxOBEz5m1GYnw/nbYplSoUKEpRUXUT/r4tERPV1azgc3tnctpSqBgD1+yxB/UFnTVqzBGEs3PkyBEAAMMwOH78ONzcnng63dzcEBISgunTp1t0DhJzLKCOZ5k7a5GWlycoOFArnsUWhYLrMiy4HV4ObAtFVTUqa+/Dr7kbony9TfbIqYny9UagtwckmZk6t28lmZkIcG+KPu7NdL5+ULMWGNDUU2dJE1vEyulCIOA3KD9iberW5WpMBE+Y8IbJ3g5zm53Xp/XtPZwrgUFwg7qCzthruW6NOUf2yNkapVKJU8UHcONaFVq180Vw9572Nokwg927dwMAUlNT8emnn6JFC+uHelECBEvYM/i2MS+UgM/DAP+WeLWLDwb4tzRbyKnnWhQWBPnj7VKt9Pvhw5GXl4f/82ytt94c8GjLNbRpc8Q190Jo0+aNjuUKlpYjqVuXS1fChUQiQZMmTTBmzBidr9fn7bB2s/OEvnc5l8lJcAO1IDN0LatrzPV8YSKue8aSkDMBxU453h7SHx+OfQUrpk7Ch2NfwbRhz9vbLMICsrKycPToUYwdOxZCoRCXL18GAHzzzTcoLCy0aG4ScyzSWGcJW3vl2OLR9m13lBTu0cqq+3VXvtnbpfbyytmKunW5xOKGdbny8vLw8OFDnD59WufrdXk7lEoVps/NhkiUAJmsXhcLWS5EogTMmLfZpGxYgYDPyUxOghtc94w1cC2LIZfnYd6SBU51jdgiXk6xU46lUyYgPDRE6z19ro/u7WzCMfjhhx8wdOhQNGvWDL/++ivu3bsHAKiuroZEIrFobhJzdsBZhJyaYcHt8GtSP/yjbUfMbe2Pf7TtiO/aBtq8v6otsFa3hyRROLZkTcHxY0VaIvhESTGyv5pslLejbkV9tpqdj4trZpMSGIRjct0zVnMtHys5RteIFVAqlVgv/QgJIhFyZTKEh4fj0KFDuHDhAia//ba9zSMsYNGiRVi7di2+/PJLPPXUU5rj0dHR+PXXXy2a2+Vi5tSV7O2VkeZsQk6NgM/DuMTOOL6z0qJ5nN0rV5ckUTgS4/vpTFbg83kYmboKYnEi0tLqZB9LJZDL87Ala4pWUgObgejj4poh/tQvnMvkJLjBdc9YxP4tFsUjp9E1YgVOFR9A1R/lyNiSDZlMhg8++MCotpgE9yktLcXAgQMbHPf29sbNmzctmtvlxFxsRDz+uHRZ83dgUEcsWDLH6X49eiV1a1Bvzhb0HupntqBjS8gZk8lqDGz0YBUI+A2SGIAnnrvpc7O1S6UE+eosS2JOILppdlImJ9E4rnCN2GKL9ca1KgDAuXPn8Prrr0MkEmHjxo3o1asXDh48iLi4ONZtINjBz88PZ8+eRXBwsNbxwsJCdO5sWfkrlxNzvXr2xpbN/65Tt0uC1NGTbLId4KxeufqoRZkuUedKnjdLacxzVx+2m52ra88RhKtiq9pyrdr5AgBmzpyp6fGt/v8cHs5esXCCfd5880289957WLduHXg8Hq5cuQKFQoHp06fjww8/tGhulxNzGzduRMuWLQGo63bJIBaLMW92JuKHvWjT6unODheEm7W8cvZCn+dO17jlC5JN2po1FRJ0hKtiyyLBPcIj0aqtD65cuYIffvihQQws4bjMnj0bKpUKQ4YMQW1tLQYOHAh3d3dMnz4d77zzjkVzu9xVoq+S/cWycigKi+xkFcEGji7kTKWxpAprdYxwxR8lhGtj624PAoEAA4aJAeiPgSUcEx6Ph4yMDFy/fh0nTpzAgQMHcO3aNSxcuNDiuV3OM6cLtivZ2+sGaK+4OS7gakJOjSlbs+ZCHjrCVbBX266IIfHYnvVPvTGwhGPj5uaGHj16WHVOEnNgt5I9eTJsj6sKOTXGbs0SBKEbe/de7REeCd8OgciUSJBbr8c34dj89ddfKCkpwdWrVxuUnho+fLjZ87qcmKNK9s6Nqws5giAsw95CDni01fr3tI+wdMoEJIrFSH/c47uoiEKBHJkdO3Zg3Lhx+PPPPxs8x+PxoFQqzZ7b5eT+6NGjbVbJnrxyhLNC1zbhjHBByKmJGirCzFVfofjIk2LML7zwgr3NIizgnXfewciRI1FRUQGVSqX1sETIAS7omTtx8rhW3a6g4EBWypJY+2bHHNxn1utcKW6OTa8cGzXmCILgDlwScmqihooQERePU8UHcONaFZp5tEDmRN09mwnuU1VVhWnTpsHX19fqc7ucmNtT9BNOlJymKuVOBm2v2h5KhCCcBS4KOTUCgQC9Ix/9mKy9dcvO1hCW8Oqrr2LPnj3o0qWL1ed2OTFniyrltAVlW0jIEQRhLlwWcoRzsWrVKowcORIFBQXo3bu3Vn9WAHj33XfNntvlxBzbkJCzLSTk7At55whHhoQcYUs2btyI//znP2jatCn27NkDHo+neY7H45GY4wok5GyLMwo5pVLFao044hFKpZKawrs4JOQIW5ORkYH58+dj9uzZVi83Q2LOSpCQIywlR16M6XOzUVb+pHh1cKAPli9Itkr3BrZwNO+cXPYT5s5ahPKLlzTHAoM6YsGSOaz3ZyYIwnW5f/8+kpOTWakbSD/5LaT17T2sCzlzM1mdHWfK0s2RF2Nk6ir0DonQKp3TOyQCI1NXIUdebG8TG8UW/w+sgVz2E1JHT0JIn75a73NIn75IHT0JctlP9jaRsAHklSPsQUpKCrKzs1mZm8cwDMPKzByjpqYG3t7euHD1JFp4tbB4PlveuCwVc84keupjq61WNkuTKJUqPBM+E71DIiCT5Wr9alOpVBCLE3GipBhnipY4zJYrFz11SqUS4T0GIqRPX8jqVdV/9D6LUXL8GIpO7qUtVyfGkYVc7a1beC20C6qrq+Hl5cXqudT3zBtbUuHV3M3689feR6uRWTZZC1d499138fXXXyMkJAR9+vRpkACxYsUKs+embVYTsbX3gYRc49Tk/ObwsXMFilKUlV/FxuyMBu53Pp+PtLR0CIVCFChKHaZNFxe3XhWFRSi/eAnZmzbreZ/TIBQKoSgsYj3jnbAPjizkCMfn+PHjCA0NBfCkjaiauskQ5uByYq7VnUJ48Zs1OG7oxmOPLSRH2l5VqhgoqqpRWXsffs3dEOXrDQHfsovTVaiougkA6NWrl87n1cfV4xwF9f8Zroi6qspHsYiG3mf1OIIgCGuye/du1uZ2OTGnD0eI9+Eq28uuYc6hiyivvqM5FujtgUVhQRgW3M6OljkG/r4tATz6pRYZGdngefUvOPU4R4Mros7XzweA4fdZPY5wLsgrRzgzJOY4ijW8crbYYt1edg0pP5+GKCEB2RkZ6NWrF06cOAFJZiZS8vKw4XmwLugcfatVGPEM/H1bITMzE7m5DWPmpFIJOgX5Iiaqqx2ttJz6P5hsLe6iBkQgMKgjJBKJzpg5qVSKoOBARA2IsKldBPuQkCO4wIIFCxp9fu7cuWbPTWKOgzjK9qpSxWDOoYsQJSRAVkeEREZGQpabC3FiIj4s2I2XA9vSlqse1OVIKqpuQC6XY/jw4cioI4qlUgnk8jxsyZriMMkPxlJX3NlC2AkEAixYMgepoydBLBYjLS2tzvsshVwuR9bGtZT84GSQkCO4wtatW7X+fvDgAS5cuIAmTZqgS5cuJOaIhtjCK6eoqkZ59R1kZ+gJ3E9Ph1Aoh6KqGgP8W7JqC9veOebgPqtntKrLkYhECdiYnYFz585h5syZEAqFmjGdgnyxJWsKp+vMWQNbee1E4nhkbVyLubMWab3PQcGByNq4lurMWQAVYiaIxjly5EiDYzU1Nfj73/+OV155xaK5ScxxDEfxygFAZe19AIYDytXjiCcolSpMn5sNkShBU44kMjISf/vb37B3717MmDEdVy6X4bRCCjc31/tvyqbXTiSOR/ywF0l4WAG110uxU4710o9Q9Ue55jkuFGImrxzBdby8vDB//nwMGzYMr7/+utnzONe+jYPjSEIOAPwe1x6qn2KtRn3cj4UaRbpwpDIs6nIk6enaXk2BQIDnn38eq1atRmXVDewv+t2OVnIDNpKTBAIBBgyKwojkRAwYFEVCzkQK/2iqJeSWTpmA8NAQrULMfexYiLmufYTzsHr1agQHB6Np06bo378/ioqK9I49efIkRowYgeDgYPB4PKxcubLBGKlUivDwcLRo0QI+Pj4Qi8UoLS3VGhMbGwsej6f1mDRpklXXVV1djerqaovmcL2f/C6ArURNlK83Ar09IMnM1IqZAx4HlEskCPL2QJSvt03scSSctRwJW3AlI9bVqS+QlEol1ks/QoJIhNw6SSWRkZHIlcmQKBZj9gwJWoQOx6CgB3axkXAOsrOzMW3aNKxduxb9+/fHypUrMXToUJSWlsLHp2EGem1tLTp37oyRI0di6tSpOufcu3cvJk+ejPDwcDx8+BDp6el48cUXcerUKXh4eGjGvfnmm1rJC82bNzdrDZ9++qnW3wzDoKKiAt988w3i4y3zYJOYcyJs7ZkS8HlYFBaElLw8iBMTkZae/iSgXCKBPC8PG57vTskPOnD2ciRsYeukCeIJukTSqeIDqPqjHBlbsnXGzaY/LsR8qvgABIJoDOjwl81tJJyDFStW4M0330RqaioAYO3atcjLy8O6deswe/bsBuPDw8MRHv4o1ljX8wCwY8cOrb/Xr18PHx8fHD58GAMHDtQcb968Ofz8/CxewyeffKL1N5/PR7t27ZCSkoK0tDSL5iYx5+DYe2txWHA7bHgemFOwG0KhXHM8yNsDG57v7lR15qyZBBET1RXBgT6QSDJ1tvBylnIkbGLvUieuhD6RdONaFQDDHmb1uMI/mrIm6EjIOS/379/H4cOHtQQPn89HXFwcFAqF1c6j3ups3bq11vHvvvsO3377Lfz8/DBs2DB8+OGHZnnnLly4YBU7dUFijkPw+kc7XNwc8EjQvRzY1u4dIGxRa079+Vgq6gQCPpYvSMbI1FUQixORlpbeoBzJexNfRIGiFDFRXZ2uLAkb2Lvwt7OKycZEUqt2vgAMe5jV49jCmYWcUqnEqeIDuHGtCs08LO8rzjVqamq0/nZ3d4e7u7vWsT///BNKpRK+vtrXka+vL377zToODZVKhffffx/R0dFaP05ee+01BAUFISAgACUlJZg1axZKS0uRk5NjlfNaC5cTc8yhA8DgwfY2w+kQ8Hmslx/hEtYQdUmicGzJmoLpc7O1ymS4u7uBYRis/GInVn6xE8GBPli+INnpy5M4Os7oKTQkknqER8K3QyAyJRKtmDng0c1RIpXCr2MQeoQ/EXrW9s45s5DTlSVsa2q2nQFYyKivuf8QANCxY0et4/PmzcNHH31k9fMZYvLkyThx4gQKCwu1jk+cOFHz7969e8Pf3x9DhgzBuXPn0KVLF4PzTps2zWgbVqxYYbzB9XA5MQcAD/cXoOBkJSqu18K/dXMMHD+CPB8Ojr06QFi69ZokCkdifD8UKEqxbcevWLl2J1544QVkZMx50k1DkomRqatcot6cM+Ho4s4YkSQQCPD3tI+wdMoEJIrFSK9TiFkilSJPLsfMVV81yBZWz812DJ0jo84SThCJkLElG7169cLBgwcRFxdnb9OsyqVLl+Dl5aX5u75XDgDatm0LgUCAqqoqreNVVVVWiWWbMmUK5HI5fvnlF3To0KHRsf379wcAnD171igxp6u2nC54PMt2slxOzG07UIZ53/2KssonacDB//gFy8ZHICm6MwDLt9AswVG3Wl0ZS710AgEfMVFdMf7drzBsmEgrhi4yMhIyWS7E4kTMmLcZifH96IeHg+JIGbmmeLuihoowc9VXWC/9SMvD7NcxCDNXfYWooSKD5zFX1DmrV65ulnDODz9g37592L59u5bocRa8vLwMrsvNzQ39+vVDfn4+xGIxgEee3/z8fEyZMsXsczMMg3feeQdbt27Fnj170KlTJ4OvOXr0KADA39/fqHPs3r3bbPtMweXEXMrHuzFMJMLGen1ER0nzsDktDknRnbXElD2FHWEcXOnLaomoU9ed25itp5tGWjqEQiEKFKWIHdDdKvYShC7MEUhRQ0WIiIvXxHa1aueLHuGRRtfvM0fUOauQA55kCUdP/j88++yzKCsrs7dJdmfatGlISUlBWFgYIiIisHLlSty5c0eT3Tpu3Di0b98eUqkUwKOkiVOnTmn+ffnyZRw9ehSenp54+umnATzaWv3++++Rm5uLFi1aoLKyEgDg7e2NZs2a4dy5c/j+++/x8ssvo02bNigpKcHUqVMxcOBA9OnTx6x13Lx5E1999RVOnz4NAOjZsyfGjx8Pb2/LSni53E/8l4YOhSw3F5GRkfD09NT0ERUlJGBmVjGUSpXWePKSEaZizjVDdedcB3snajSGJQJJIBCgd2Q0Bg5LQu/IaLMKMRtb7NeZhRzwJPs3PT0dvXv31hRj3rVrl50tsx/JyclYvnw55s6di759++Lo0aPYsWOHJimivLwcFRUVmvFXrlxBaGgoQkNDUVFRgeXLlyM0NBRvvPGGZsyaNWtQXV2N2NhY+Pv7ax7Z2dkAHnkEd+3ahRdffBHdunXDBx98gBEjRmD79u1mreHQoUPo0qULPvnkE1y/fh3Xr1/HihUr0KVLF/z6668WvDsAj2EYxqIZHISamhp4e3tj165dGDJkSIPnFQoFhEIh8qXDENsnQOcctvTSGSMI7F2WhAtwxSunD2OvmT2Fp/G8WAqFQqEzK1B9ff4sS9PyzOm6TsibzH24uNXKRYGky1PHRTutzbH9v2Dh+L8hPj4esjqJJer7WHV1NetbrupzXXw9Gl4sJUAEfbPPJmvhCjExMXj66afx5ZdfokmTR+/pw4cP8cYbb+D8+fP45ZdfzJ7b5bZZu3fXvUWl8Xxcr9X7WjaarRPOTWOivO61ZLDunESCTv4tMYD/p0Ghb63yKQR7tL69hzOCjsviqP72K5dttS48TUeC+mEXhONy6NAhLSEHAE2aNMHMmTMRFhZm0dwud5Wo96nro6m437rxQoC07coduO6VMwRzcJ/mwT+kwLKxIZDLH3XTqNvjUpyYCHleHpamhpuU/KCem+Am9t5udaT+pY5kqzWo/t81APrDLgjHxMvLC+XlDcvMXLp0CS1aWFZD0OXE3PJly6BSacfF1fV8xPQ0nOZsixskeVVcj6TozticFofjhwogFArh5eUFoVCIE4cLNck55lBXNBIE4EoeLsekbjFmwnlITk7GhAkTkJ2djUuXLuHSpUvYtGkT3njjDYwePdqiuV1um3XHzp16+4huTosz2vPB9pYr3Xhdk6TozkiMDNaqgxjT089q5UhoC5Zb2Gu7dUCHv0jQcZjGijETjsvy5cvB4/Ewbtw4PHz4qGjyU089hf/7v//D4sWLLZrb5RIgNnwwuEGduU7+LbE0NdwszwdbN0VjxZyrJ0E4+larvSFRZ3/sFTvHhpir23rK1PIkhDZ1iwarizEfPHgQL7zwAiVAOBgnTpzQ2jKvra3FuXPnAABdunQxq89rfVxOzN3YkgoP9yZW9XxY+4ZoilfO1cUcQIKOC5AoNB9nEXO6Wk/5dgjE39M+arRwMKEffe28SMw5Fnw+H+Hh4XjjjTfwt7/9zeL4OJ3nsPqMDoBAwEdsnwCMjn0asX0CLN7CsueWKAkZErRcoG5cHsXoOQbWbKWl9iKFh4ZoJe+Eh4Zg6ZQJUOyUW+1crkTUUBE+zz+Ihd9uxbRP1iLjn9/Z2yTCDPbu3YuePXvigw8+gL+/P1JSUlBQUGDVc7ikZ86ruRsr57CGd8LcGyAJGhK2XIe8d/pxZO+cUqnE20P6Izw0pEF8l0qlQqJYjENHS7B61wHacrWQ2lu38FpoF/LMOSh37tzB5s2bsX79ehQUFODpp5/GhAkTkJKSYnGPWZf0zLGFpZ4IS17vldTN5cUMCVpuQ5467mEN75y69VSGjppofD4f6WlpqLx0EaeKD1h8LoJwZDw8PJCamoq9e/fizJkzGDlyJFavXo3AwEAMHz7corldLpuVC7B5U/NK6ubSoqYm5zeXF7VchrJpnQ916ylDrejU4wiCAJ5++mmkp6cjKCgIaWlpyMvLs2g+EnNWhgveBxJ0JOi4jr27qSiVKhQoSlFRdRP+vi0RE9XVauVfzMGeHSEsLVNStyaarlZ06lpp6nEE4er88ssvWLduHX744Qfw+XyMGjUKEyZMsGhOEnNOilrMuKqoI0HHfewl6HLkxZg+Nxtl5Vc1x4IDfbB8QTKSROE2t8fRaawmmkqlgkQqhV/HIPQIbyj0CMJVuHLlCtavX4/169fj7NmzEAqF+PTTTzFq1Ch4eHhYPD/FzOmA1z+6wcNRcWVB46pC1pGwddZrjrwYI1NXoXdIhFbWZe+QCIxMXYUcebHNbHEWBAIB/p72EfLkciSKxVrva6JYjDy5HCmz51HyA+GyxMfHIygoCJ999hleeeUVnD59GoWFhUhNTbWKkANcNJvVe/Bgs+bgwhaqubiysHF0QatUqljrCMEl2P7RpFSq8Ez4TPQOiYBMltvAgyQWJ+JESTHOFC2xy/trr21WNZZmtuqqiebXMRApsx2rzpw6KYSLHTIom9UxGT58OCZMmACRSMTajxqX22blhZnv6uf1j3ZYQefKcXSOvOWas+88Zqwr0upYEuznjWXjI8zu1cpV2N52LVCUoqz8KjZmZ+jMukxLS4dQKESBohSxA7qzZoc+7Bk3Zy3q+wZUKsfyFdTN7uWaqBvQ4S/cqrFebUDCdmzbto31czjfz3uC0IEjCtmcfecxSroLvcNitLcEw2IwSroLOfvO29tEq8Pmj6WKqpsADGddqse5GpaUKVEXDY54rq/WtRrxXF+HKBo8oMNfetevfq6xMWxir/MSjoXLeeYI9lCqGCiqqlFZex9+zd0Q5esNAZ9nb7M0OJKHTqlUYca6IogSEiDLfbIlGBkZCVluLsSJiZiZVYjEyGCn23Jly0Pn79sSgOGsS/U4wjiUSiXWSz9CgkiklQARGRmJXJkMiWIxNiyej4i4eE7GzZkqlPSNZ8ODRyKOMBbnugsQdmN72TU8l3MYw348hjf3nMawH4/huZzD2F52zd6maeEoHrqCk5Uoq6xGeoaeLcH0dFyouImCk5V2stDxiInqiuBAH0gkmVCpVFrPqVQqSKUSdAryRUxUVztZ6Jg4atFga3u8TJlPqVTi+IF9+GV7Do4f2AelUsmqbYTzQ2KOsJjtZdeQ8vNphMQM1tpiCYkZjJSfT5OgM4OK67UAjNgSfDzO2WBju1Ug4GP5gmTI5XkQixO1rlWxOBFyeR6WzR9l93pz9sQcAeFoRYPZFkqGtmQVO+V4e0h/fDj2FayYOgkfjn0Fbw/pr9mKJhFHmAOJORNx5DIlbKBUMZhz6KJmOzAyMhKenp6a7UBRQgI+PHQRSo4FQtfk/Kb14Br+rZsDeLL1Vx/NluDjcYRxJInCsSVrCo4fK4JQKISXlxeEQiFOlBRjS9YUqjNnBnWLBuuCK0WD7eHtqn9OdWxheGiI1o+J8NAQLJ0yATcPbbWpfYTz4HKlSW5e+AJeLZpZNJejZrSyIVoKK25i2I/HoFAodMYhKRQKCIVCbH85BAP8W1r9/Gxh79g6pVKFZyduRu+wGK2YOeBxGY3ERJw4XIjSL0Y6XcxcXdj68cS1DhB1sXdGq6mxX0qlEm8P6Y/w0BCdRYMTxWIcOlqC1bsO2C1mjgveLqVSifAeA9GnT1+d75NYLEbJ8WMoOrlX7/t0q+YWOvn0pNIkRAO48e1FOCyVtfcBGN5iUY9zFOp77mztvRMI+Fg2PgLyvDyIE+ttCSYmQp6Xh6Wp4ZwRIGzBVlFhgYCP2AHdMXpEFGIHdHf699EUTBU+XC8azAUhBwCKwiKUX7ykN7YwLS0NF8vKoSgsspOFhCND2ayERfg1dwNgOENQPc6RUQs6W3ntkqI7Y3NaHGasK4BQKNQc7+TfEpvT4pyuzlxj2LuXqy1xxHpzUUNFmLnqK6yXfqR1rfp1DMLMVV8ZXTRYqVTiVPEB3LhWhVbtfNEjPNIiEWiMkFMqlVAUFqGq8ip8/XwQNSACABocs1SMVlU+ah9n6IevehxBmAKJOcIiony9EejtAUlmps7tQKlEgiBvD0T5etvRSutiyxInSdGdkRgZ7BIdIAzhSoLOEYkaKkJEXHyjYqwxsaarg4Rvh0D8Pc28DhLGCDm57CfMnbUI5RcvaY75+LSDilHhz2v/0xwLDOqIBUvmQCSON9kONb5+PgAM//BVjyMIU3C9OwJhVQR8HhaFBTW6HbgwLIhT9easgS23XgUCPmL7BGB07NOI7RPgkkJODZfjVZVKFfYUnsbGHxTYU3gaSqXK8ItYt0mJwr0K/JCdi8K9igYlMPRh7takQCBA78hoDByWhN6R0VpCrrEsTkOJAaYWHTZWyKWOnoSQPtqFjsPDI/C/P69DKpU+yczv0xepoydBLvvJ5PdETdSACAQGdYREItFTGkeKoOBAjWeQIEyBEiDMgMs3lMZgU3xsL7uGOYcuorz6juZYkLcHFoYFYVhwO9bOywXsnSxhK7jUI5bXP5pTSQw58mJMn5uNsvInW2TBgT5YviDZrAxZa2yz6vI6meJhsmYRXLVYSxCJkJGejl69euHEiRPIlEiQJ5fDq3UbxAijrJJAYezWaniPgQjp0xcyPckIJ06cwO+//w6BQGB0goIh1AJSJBIhLS1N8z5IpVLI5XJkbVyr87NRbwWXXbiI9yfNpAQIogEk5syAxJxuuN4BwhKMWRubos7eQoprPWJ12mOBeLLIFnkxRqaugkiUgPT0DM0NWiLJhFyeZ3bJE0sEXV3RkF5HPEkkkkZFQ12sJeYMZrsmJmLHjh3Ys2cPoqMbbqOrM+IXfrsVvSMb32Y31qNYuFcB8dBkg1n4u3fvRmxsrNYx2c5sDBgUZdR5dKFLZAcFB2L+4gydn4mu8STmiPq47H4NF7dEHB0Bn4cB/i3xahcfDPBvabaQU6oYFFbcxL/PXUVhxU2716izd3eLnH3n8ezEzRiSth1jl+VjSNp2PDtxs816s3KtR6xee0IiMDJ1FXLkxTazRalUYfrcbIhECZDJ6tVZlOVCJErAjHmbbfr9olQqMXfWIohEIshksno2ySASiTBvdqbBLVdrZYEa7BCRno6HDx+ipqZG5+vZKDpsbDJCRUVFg2OWJiiIxPEoPvULZDuz8cWGzyDbmY2ik3v1Crm6W8GXL1+26NyE8+KSYi5HXoxnwmfiebEUY95ag+fFUjwTPtOmNwFCN/YWTrrsMba7BRueT3sLqfo9YnUVhZ6ZVWwzsdKoPXYQTwWKUpSVX0V6up62a2npuHCxCgWKUpvYAzwpgZHOkRIYxnaIKC7W/f1rbNFhU8Rn3WSExs7p7+/f4Jg1EhQEAgEGDIrCiOREDBgUpXPbVp8oJwhduJyY27bjV4xMXYXeIRF2/1VPaMO1tmD27m7BBSHFtR6xBu2xsXiqqLoJwAgPz+NxpmBuay+ulcAwtkPETzt26EwMkEil8OsYhB7hDbdDzcWYZIROnTohJiZG6xgbCQr6klQaE+UEUR+Xu0LmZP7AqS0R4hH2Fk66UFRVo7z6TqNC5mL1HSiqqvXMYBlcEFJc6xFrtD1miCdz8PdtCcAID8/jcbbAWK+TMR4ma2y19giPhG+HQGTqEU4SqRSt2/ngwOMiw+YUHTan0PGCJXMgl8shrnfO4cOHQy6X480330Rtbe3j3r1iyOVyzF+cYdXix3LZTwjvMRDiocl4K+UdiIcmI7zHQMhlPxkU5QRRF5cTc+V//MmpLRFbwcX+o3Wxt3DShTndLaz5PnNBSHGtR6zR9thIPMVEdUVwoA8kkkw9Hh4JOgX5Iiaqq1nzm+Od41oJDGM6RLz50WLMWr0OxUeOafXMPXS0xKSiw6YgEscja+NaHCs5qnXO4kNFaNO2NdLT0zXHSo4fMyppxBT0lUZRl0E5f/YCAP3XOkHUxSWLBnPlVz3xBC62BbN3d4u6wqWx87MppGJ6+iHYz7vRotCd/FsipqcfazaYZI+F4slUBAI+li9IxsjUVRCLE5GWll6n3IREk81qy8xjtdcpdfQkiMVivSUwbNley9gOEYaKDuvCEu+hSByP+GEv2qQDRF3qx8Opr2N1kopYLMamb/6NjoEdIJFIGpRPIYj6uKSYM3hztOGWCPEIewsnXdi7uwUXhJS6R+wo6aOi0Gl1ylxIJRLI8/KwOS3OZmLFGHtsLZ6SROHYkjUF0+dma7ddC/I1uyyJpai9TnNnLdKyKSg40OoeJmMxpkOEuuiwLVEnI9THkvIjhlDHw2Vv2qw3SUUoFGLWh9OwdNEnGlEeGBjImk2EY+NydeYCO7RFSOijGLmGhSITcaKkGGeKljR6M3DEOnNc32ZVqhg8l3MYITGDdQoXcWIiSgp243BSP5vWrlMnZYgSEnQKhw3Pd9dZFNlaNefU2az6zm+rHq266rp18m+JpanhnKkzV98eW7f+YrOIsbk153T1HTXHw2TNAsLWxFrlU2zND9m5eCvlHdy6dUtnhuqtW7fg5eWFLzZ8Bnd3N6ozRxjE5TxzizJGIOXtf3JmS4R4hLotWEqefo/Lhue727wI8bDgdtjwPDCnYDeEwicthYK8PfQKOWuSFN0Zm9PiMGNdgbbXx7+lzYSc2g4u9Yg1xh71jy5biTqBgI/YAd1tci5j0ed1IuyLKX1aBwyK0mwFqztAEER9XM4zd/PCF9i190SD1judgnyxbP4oo7ZEyDPHHlxtC2Zqdwtrd4OwdwcIZ8DWnjprYo32XpbARc+co3rlAOPaielqHXar5hY6+fQkzxzRAJfzzAGPYlwS4/txpq8j8YRhwe3wcmBbzrUFU3e3MJaanN+sKugEAj5i+wRYbT5XxNaeOmvS+vYeuwq6AR3+4qSgc1S4mKRCODYWqZfFixeDx+Ph/fff1zvmyy+/RExMDFq1aoVWrVohLi4ORUXalcdv376NKVOmoEOHDmjWrBl69OiBtWvX6pyPYRjEx8eDx+NBJpOZbbt6S2T0iCjEDuhOQo5DWKstmD1hs08rYRnMwX0O6V0nnuDIXjk1+kqjsFEGhXB+zPbMFRcX44svvkCfPn0aHbdnzx6MHj0aQqEQTZs2xZIlS/Diiy/i5MmTaN++PQBg2rRp+Pnnn/Htt98iODgY//nPf/D2228jICAAw4cP15pv5cqV4PEc7+Zub7ySujnMVqujQ0KOIAhj0FcahTxyhKmY5Y66ffs2xowZgy+//BKtWrVqdOx3332Ht99+G3379kW3bt3wr3/9CyqVCvn5+Zox+/fvR0pKCmJjYxEcHIyJEyciJCSkgQfv6NGj+Pjjj7Fu3TpzzHZ5SGSwD73HBFuY296L4DbG9GklCEOY5ZmbPHkyEhISEBcXh0WLFpn02traWjx48ACtW7fWHBMKhdi2bRvGjx+PgIAA7NmzB2fOnMEnn3yi9brXXnsNq1evhp+f4bpa9+7dw7179zR/19TUmGQnQZgKCTnH4uH+AhSq2lLcLMEZDAn2Jnfu2sYQwuEwWcxt2rQJv/76K4qLzWtIP2vWLAQEBCAuLk5z7LPPPsPEiRPRoUMHNGnSBHw+H19++SUGDhyoGTN16lQIhUIkJiYadR6pVIr58+ebZaMzQ9ut7EBCzrHQVacuONAHyxck26XIL+F6kKeVsCYm/Qy9dOkS3nvvPXz33Xdo2tT0zKbFixdj06ZN2Lp1q9brP/vsMxw4cADbtm3D4cOH8fHHH2Py5MnYtWsXAGDbtm34+eefsXLlSqPPlZaWhurqas3j0qVLhl9kBBQ43ThKFYPCipv497mrKKy4CaXK+Svf2ELIKZUq7Cm5go17zmJPyRUolSrDLyJ0oi7E3DssRqsnZu+QCIxMXYUcuXk/VG0BCQDHp/XtPfQ5ElbHpDpzMpkMr7zyitaevlKpBI/HA5/Px7179/Tu9y9fvhyLFi3Crl27EBYWpjl+9+5deHt7Y+vWrUhISNAcf+ONN/DHH39gx44deP/99/Hpp59q1eJRKpXg8/mIiYnBnj17DNpet86cV4tmxi65Ac4m5qzppdNVIy7Q2wOL7Fwjjk1sIeR0epH8vLFsfIRdui84MkqlCs9O3IzeYTG6O40Y2QXGntizRAlXypM4YjarNQRcza27aNnpLaozRzTApG+rIUOG4Pjx4zh69KjmERYWhjFjxuDo0aN6hdzSpUuxcOFC7NixQ0vIAcCDBw/w4MGDBv3pBAIBVKpH3ofZs2ejpKRE67wA8MknnyArK8uUJRD18ErqpvUwF3Xbq5CYwVrejpCYwUj5+TS2l12zotXcwFZCTqcXKSwGo6S7kLPvPOs2OBMFJytRVlmN9IwMPT0x03HhYhUKFKV2spBwNsgTR9gCk+R2ixYt0KtXL61jHh4eaNOmjeb4uHHj0L59e0ilUgDAkiVLMHfuXHz//fcIDg5GZWUlAMDT0xOenp7w8vLCoEGDMGPGDDRr1gxBQUHYu3cvvv76a6xYsQIA4OfnpzPpITAwEJ06dTJ91YRe6gsUYzx3ShWDOYcuQpSQoOXtiIyMhCw3F+LERHxYsBsvB7Z1yJpxurDV1uqMdUWNvq8zswqRGBnMWS8S16i4XgsADb7H1KiPV1TdtJVJJmPvAsKEcZCAI2yJ1e8A5eXlqKio0Py9Zs0a3L9/H6+++ir8/f01j+XLl2vGbNq0CeHh4RgzZgx69OiBxYsXIzMzE5MmTbK2eYSJGOO1U1RVo7z6jn5vR3o6LlbfgaKqWs8MjoWtkh0MepHS03Gh4iYKTlbaxB5nwL91cwBPel/WR33c37elrUwiTITrW6zkiWOP1atXIzg4GE2bNkX//v0blC+ry8mTJzFixAgEBweDx+Ppjbk3NOdff/2FyZMno02bNvD09MSIESNQVVVlzWVZBYs3wuvHq9X/u6yszOAcfn5+Jm+X2qOlrLPFy5mKvkzYytr7AAx7O9TjHBlbZq0a7UV6PI4wTExPPwT7eUOSmakzZk4qlaBTkC9iorra0UrCESEBxy7Z2dmYNm0a1q5di/79+2PlypUYOnQoSktL4ePj02B8bW0tOnfujJEjR2Lq1Klmzzl16lTk5eVhy5Yt8Pb2xpQpU5CUlIR9+7ilB2hvhrAYv+ZuAAx7O9TjHBVblx8x2ov0eBxhGIGAj2XjIyDPy4M4MVErDlEsToRcnodl80dxftuahAO3oM+DfVasWIE333wTqampmpafzZs319tEIDw8HMuWLcPf/vY3uLu7mzVndXU1vvrqK6xYsQLPP/88+vXrh6ysLOzfvx8HDhxgba3mwO1vLIJz6Np2jfL1ho9HUyxatEiTtKJGpVIhMzMTvp7NEOXrbWtzrYKlySHmUteLpOt9lUok6OTfEjE9DRfRJgBe/2jw+kdjxLTXsSVrCo6XFGn1xDxRUowtWVOozhxhNLSlajk1NTVaj7rF/tXcv38fhw8f1qpPy+fzERcXB4VCYdZ5jZnz8OHDePDggdaYbt26ITAw0OzzsoX18405DnPoABgH9xBxBbXAufHv01AxDH788UeIxWKkpaWhV69eOHHiBKRSKX788Ue0bWbZe26smLJWqRUuFAFWe5FGSR95kdLS05+8rxIJ5Hl52JwWx3kvkq3g9Y82emySKByJ8f1QoCh12A4Q9kiEqBuvZkqZEq7HuZmKKwm4U/lV8OBbv8XYHZUSANCxY0et4/PmzcNHH32kdezPP/+EUqmEr6+v1nFfX1/89pt53/nGzFlZWQk3Nze0bNmywRh1MidXcDkxR1ifY89648/ae5BKpfjiiy8gFAo1z3Xq1AmZmZlIT0+HoqoaA/xb6pzDWuLJnGxcNuywFknRnbE5LQ4z1hVov6/+LbE5Lc6l6syZItaMQSDgI3ZAd6vOaWvUosIe2a1qgaYWdc4m2HThSiLOVly6dEmrzpy+LVGicUjMERajDsCfMmUKZsyYgYKCAlRUVMDf3x8xMTGora1Fenq6VgKErURT3fPoE3ZcE3D1SYrujMTIYBScrETF9Vr4t26OmJ5+DuVFMgVrizZXwJ7lSpxdxJGAYxcvLy+DRYPbtm0LgUDQIIu0qqrKqF7t5s7p5+eH+/fv4+bNm1reOUvOyxYk5giLqRuoHxkZidjYWK3n1YH6nYc+Da8+AbY2TwPXRVtjCAR8xNrxvWMTEm/WgerPWRcuiTilUoUCRSnOlV21tyl2wc3NDf369UN+fj7EYjGAR3HD+fn5mDJlCmtz9uvXD0899RTy8/MxYsQIAEBpaSnKy8sRFRVl8bqsCYk5wmIMlnugQH2iHiTg2IEEneVwScQBQI68GNPnZqOs3DWFnJpp06YhJSUFYWFhiIiIwMqVK3Hnzh2kpqYCaNiw4P79+zh16pTm35cvX8bRo0fh6emJp59+2qg5vb29MWHCBEybNg2tW7eGl5cX3nnnHURFRSEyMtIO74J+SMwRFkOB+kRjkHCzLfaMo3NUuCbg1OTIizEydRVEogRszM5AYGAg2rdvb2+z7EJycjKuXbuGuXPnorKyEn379sWOHTs0CQzl5eVajoQrV64gNDRU8/fy5cuxfPlyDBo0SFMP19CcwKO2oXw+HyNGjMC9e/cwdOhQfP7557ZZtAnwGHtU37UD6qbBN7akwouyWVlBV0P4Tv4tsTQ13KUC9V0ZEm7cggSdfrgq4NQolSo8Ez4TvUMiIJM92vFQ38ds0Zxefa6fAp5mLZs1/spZm6zFFSDPHGE1XC1Q39Uh4cZ9aNu1IVwXcWoKFKUoK7+KjdkN2/kRRH1IzBFWxZkD9V0VEm2ODQk6xxFwdamouglAfzs/gqiLS4s5pVJFXiSCeAyJNufFVQWdI4o4Nb7tHm09qqsEEERjuKyY0xXfFeznjWXjIyyO76p/U2QOcqshL0EAJN5cDVcRdI4s4OqiOn0STZo0QWZmJnLrVQkgiPq45NWRs+88Rkl3oXdYjFaj7d5hMRgl3YWcfefNnlvXDVLdE7LugyDsBV2Drouz9hJVr8sZ1sYc3Afm4D5cvXkXDx8+RF5eHsRiseZeRRC6cDnPnFKpwox1RRAlJGjVRIuMjIQsNxfixETMzCpEYmSwSVuupt4cdY0nDx7BFiTeiLpw0UvnDELMUureA9TF2CUSSYM2iQRRH5cTc/tPV6GsshobMxpmCPH5fKSlp0MoFKLgZKXRgfzWulHy+keToCOsCok4Qh+2FHQk1AxT/7tfXYx9/759OHPmDPbt24dz587hjTfesJOFBJdxuW3Wyht3AejPEFIfV/cbNYS1b5Z08yUshbbzCWNhQ2TV3fJ0lq1PttH1I15djF2el4cRSUlwd3fHSy+9ZAfrCEfA5Txzfq2aAdCfIaTuI6p2cTcGWzdL8tARpkCijbAEUztGkDizLo191ydFd8bmtDjMWFdA26xEo7icmBN297W4j6gtbp4k6FwTEmaEvSCRZhlsfV/XLcZ+rqIGEz/dy8p5CMfG5cScpX1EbXmzJUHnGpCAI4jGsdb3oDX/r9nyu1ldjP25p9uSmCN04nJiDtDvuu7k3xKb0+L01pmzx02XBJ1zQgKOIBqHje+9+nOa+v+QvosJruKSYg4wvY+oPW++JOicAxJwBKEfe3zHGRJ39L1LOAouK+YA4/qIcuUGTILO8eDKtUPoRqlUoUBRioqqm/D3bYmYqK7Uzs/GcO07jWv2EISxuLSYqw/Xb74k6LgB168TwjA58mJMn5uNsvKrmmPBgT5YviAZSaJwO1rmuNB3E0HYD5cTc7ywSPBaNLO3GWZDgs4+kIBzHnLkxRiZugoiUQI2ZmdoEqAkkkyMTF2FLVlTSNAZwNbfQTU5vxkc45XUzQaWEAQ3cTkx5wyQoLMtJOScB6VShelzsyESJUAmq9fOT5YLsTgRM+ZtRmJ8P9pyrYc9vnOMEXH6xpK4I1wJEnMEoQcuiTiK77IOBYpSlJVfxcZsPe380h6381OUInZAdztZyR3s+aPRFCFHEK4OiTkHhaveOaVSZXSGMJfhkpCj+C7rUVF1E4AR7fwej3NV7P3dYqmQI68c4Wo43l2W4Cw5+87j2YmbMSRtO8Yuy8eQtO14duJm5Ow7b2/TTIJrQm5k6ir0DomAQqHArVu3oFAo0DskAiNTVyFHXmxvEx0Kf9+WAJ607auPpp3f43GuBnNwn8MLOYJwRUjMEVYhZ995jJLuQu+wGG3RERaDUdJdDiHouNacvn58V2RkJDw9PTXxXSJRAmbM2wylUmVvUx2GmKiuCA70gUSSCZVK+31TqVSQSiXoFOSLmKiudrLQ9qgFnL1FHEBCjiDMhcScA8MV4aFUqjBjXRFECQmQ5dYTHbm5ECUkYGZWMadFB1fey7qo47vS0/XHd124WIUCRamdLHQ8BAI+li9IhlyeB7E4UeuHh1icCLk8D8vmj3LI0ABT4JKAU2MtIUdbrIQrQjFzhMUUnKxEWWU1NmboER3pj4PKT1YaLNJsD7go5ACK72KLJFE4tmRNwfS52drt/IJ8nbosCZeEW13IG0cQlkNizsHhQiJExfVaAEaIjsfjuAJXRZyauvFdkZGRDZ539fguS0gShSMxvp/TZwjb+7vBECTkCMI6ONc3l4tib1Hi37o5ACOCyh+P4wL2fs+MgeK72EUg4CN2QHeMHhGF2AHdnUrIcW0LVRdsCDnaYiVcFef59nJx7ClOhN184O72FDIzdYsOiUSCpu5uEHbzsZOFT+BakkNjUHwXYSqOIOIA8sgRhLWhbVYnwl5brvt/u4p79x8gLy8PYrEYaWlpmhZJUqkUeXl5YBgGCp4PBuG6ze1T4ygiri6uGt9FmAYJOOelbu1Or+ZP2dscgqOQmHMy7CHo1LFw33zzDebMmaMtOjp1wjfffIOxY8c+CtTvYFPTNDiikFPjKvFdhOlwXcSRgLOMnH3nMWNdEcoqq+1tCsFx6G7ghNhauKhj4bp06YKzZ89i9+7d+P7777F79278/vvv6Ny5MwDA7/ofNrVLjSMLOTXOHN9FEERDdNXu3LVrl73NIjgKeeacFFt66GJ6+iHYzxuSzEzIcnMRGxureU4TqO/fEjE9/WxiT12cQcgRhC647pUjzKd+7U51yafwcAqrIHTjcmLuhscAPPRsYfLrWt/eY31jWEYtZNj+0hcI+Fg2PgKjpHkQJyYiLT29TsycBHJ5Hjanxdncm0RCjiAIR6Sx2p0EoQu6SozkumesvU0wG1uImqTozticFofjhwogFArh5eUFoVCIE4cKsTktDknRnVm3gSAI18ZZYvQM1e4kiPq4nGeuPkqlEorCIlRVXoWvnw+iBkRAIBDoHKsWdI7qpWPbQ5cU3RmJkcGazCv/1s0R09PPLvFd5JUjCMJRqVu7U1fBcIKoj0uLObnsJ8ydtQjlFy9pjgUGdcSCJXMgEsfrfd11z1gSdHoQCPh2b9lFQo4gCEdGHYecmZmJ3DoxcwShD5e9QuSyn5A6ehJC+vTVKsYa0qcvUkdPglz2U6Ovv+4Z65Bbr45UNNccnHltBKGGkh/04wxbreo45Ly8PAwfPlxzjyoqKrK3aQRH4TEMw9jbCFtQU1MDb29vXLh6Es09miO8x0CE9OkLmUym9atHpVJBLBaj5PgxFJ3cq3fLtT6O6KlzthsCCTnCVXCU/7v2ElbO0tbr5bk/Iv9YBR4+fKh1vLq6Gl5eXqyeW33P/CngaXjwjbsPmsIdlRLxV87aZC2ugEt65hSFRSi/eAnp6ekN3Nd8Ph9paWm4WFYORaHxv4Ic1UvHBkqlCntKrmDjnrPYU3IFSqXK8IsIwsoolSrsKTyNjT8osKfwNF2HhMPx4nMdNELO3d3dztYQXMYlY+aqKq8C0J8ppD6uHmcsjpggYe04Ol0Vy4P9vLFsfASrGa3klSPqkiMvxvS52Sgrf/J/ODjQB8sXJFMLNBvildTNKbY97cVbQ7thdlYxhr70EnJycvCf//wHIpHI3mYRHMQlPXO+fo8avp84cULn8+rj6nGm4mheOmsJIV0VyxUKBXqHxWCUdBdy9p23ynnqQ0LuCeSNeiTkRqauQu+QCO3rMCQCI1NXIUdebG8TCZZxFgF58Pc/8eDhQ2RkZOCpp55CTEyMvU0iOArFzFkpZk4XjuShs9Q7p1Sq8OzEzegdFqNVsRx4/J4mJuLE4UKUfjHS6qVKSMw9grxRj67DZ8JnondIBGQyHdehOBEnSopxpmiJw7ZEc5R4OTUUN2c+G/ecxdhl+bh16xY8PT019zGKmSPq45jfZhYiEAiwYMkcyOVyiMVirV/vYrEYcrkc8xdnWCTkAMfy0FkqiNQVy9N1VCzn8/lIS0/HhYqbKDhZadF56kNC7hHkjXpEgaIUZeVXkZ6u5zpMS8eFi1UoUJTayULCGihVDAorbuLf566isOImlKqGPgl7iEhrxwvXrTdHEI3hkjFzACASxyNr41rMnbUIQqFQczwoOBBZG9c2WmfOFBy1Jp2pGKpYrj6uHkdYD6VShelzsyESJWh5oyIjIyGT5UIsTsSMeZuRGN/PYb1RxlJRdROAEdfh43GEYZRKFScKgavZXnYNcw5dRHn1Hc2xQG8PLAoLwrDgdlpja3J+s5mHjo144fp9rwlCH879zW4AkTgexad+gWxnNr7Y8BlkO7NRdHKv1YScGkfy0JmLoV+Q6uPqcYT1cGRvlLVj/Px9WwIw4jp8PM7RsPUWa86+83h24mYMSduOscvyMSRtO56duJm1+FdDbC+7hpSfTyMkZrB2fdCYwUj5+TS2l12zi11sxQur683J8x71vaY6c4Q+XDJmroVXC7vY4AgeOnNvFvaKmaNtVmDjDwqMeWuNJq6mPrdu3YKXlxe+WTMJ7f1boaLqJvx9WyImqqvBz0KpVKFAUWrUa0wZC5gX42foHM4eM2dLMacWKKKEBKRnZKBXr144ceIEJJmZkOflGd1z2VrbnUoVg+dyDiMkZrDe75iSgt04nNQPAj5P67Vseuds8d1X3+tHMXNEfRzv28yBcdSuEcZQ/xekVhxiYiLkeXlYmhru0kKOrUxTY71R0+dtwvNiKca8tQbPi6V4Jnxmo7F0OfJiPBM+06jXmDJWPd7UGD9jziEQ8LF8QTLk8jyIxfWuQ3Ei5PI8LJs/yujr0B7ZwfrOaUshp1SqMGNdEUQJCZDl5iIyMhKenp6Ptu5zcyFKSMDMrGKbZksrqqpRXn2n0bjci9V3oKiq1jMDO9giXjgpujPO/HMUts17yVJzCSeFxJwdsJWgs/WNKCm6MzanxeH4oQIIhUJ4eXlBKBTisGIv3h3eC61bNLVbqQx7l+wwVeyYQkxUVwQH+kAiyYRKpb0ulUoFiUSCJk2aIDwi2iThZKzYMlWY1Y/x0xIKslyIRAmYMW+z1mdkyjmSROHYkjUFx48VaV2HJ0qKsSVritGZvWx+Zlw6py7sldDUGJW19wEYjodUj6sLm8kQtooXFgj4iOnlb9EchPNCYs5KKJVKFO5V4IfsXBTuVUCpVDY6nm1BZ+5NwVJvl/oXZL50GN5L7AXfVh648r9b+EfucbvF29j7Bsl2pqlhb5QcffuGIDd3m1HCyRSxZY4wMzXGz5xzJInC8XvxUvwsS8N3X/wffpal4UzREpOEnK2zgw2e04b/b7iY0OTX3A2AYQ+0elx92BJ0FC9McAESc1ZALvsJ4T0GQjw0GW+lvAPx0GSE9xgIueynRl/HlqCzd5kKgYCP67f+wqfbTiIierBVA4JNxd7vhTlCxBz0eaMOF+8HAHz22SqjkyNMEVvmJF+YmnFqboKHQMBH7IDuGD0iCrEDupu0tWqLz8ykc9p4W5OLAiXK1xuB3h6QZOr2QEslEgR5eyDK19tmNgHaGaf67Ork3xIxPf1sapczsnr1agQHB6Np06bo37+/wYSQLVu2oFu3bmjatCl69+6NH3/8Uet5Ho+n87Fs2TLNmODg4AbPL168mJX1WQKJOQuRy35C6uhJCOnTVzu7qk9fpI6eZHNBZ48bkS4buBBvw4X3wpaZprq8UUvmjQRgWqkOU8SWOaVATM04tXW5EXtkBxs8p423NbkoUAR8HhaFBTUal7swLKhB8kNd2PDO2SNe2BXJzs7GtGnTMG/ePPz6668ICQnB0KFDcfWq7rab+/fvx+jRozFhwgQcOXIEYrEYYrFY63unoqJC67Fu3TrweDyMGDFCa64FCxZojXvnnXdYXas50NVlAUqlEnNnLYJIJIJMJqsnFmQQiUSYNzvTpluu1rgROUIBYWNs5ELJDlsLkfreqPb+rQGYVqrDFLFlTikQQzF+UqkEnYJ8ERPV1WR7rIE9atUZfU4bbWtyVaAMC26HDc93x7GC3Voe6JKC3djwfPcGdeZ0wYag0xcvfOJwodFZv0TjrFixAm+++SZSU1PRo0cPrF27Fs2bN8e6det0jv/HP/6Bl156CTNmzED37t2xcOFCPPfcc1i1apVmjJ+fn9YjNzcXgwcPRufO2p9XixYttMZ5eHiwulZzcJmiweoKLLdu3bbanIrCIpRfvIR1X2Xh9u2G87777rt44YUXkL9zD6IGRDQ61y30Q6s7hRbbdK7s0a+UwMBA1NTUNHg+MDBQM+65kGC98zA6goiNtqGixjgbKmrw3NNtzToH79Zdw3ZY6b2wBK8WzQAABw8eRHh4w3gt9TaBV4tmqDFiTaYS0isQgR3aYv78j7Bx46YGZRMWLJiPoI7tENIrUHN+U14DwOT5AWBB2isY939fICHhZXzwwXR0794dp0+fxscfL8eOHTvx9Zq3cKf2ntlrsAR7fGZGn7P5U6ix4P+mKcSFdsD6abH48JtfIBTKNceDfL2xflos4kI7GGVLzf2HVrVrUEAr7BW1RNHVGlTdvQ/fZm6I8PECn88z/lwsvIdxoR1waGUA9p+uQuWNu/Br1QzC7r4QCPhW+8zU89iyotgdFTs7F+p56383u7u7w93dXevY/fv3cfjwYaSlpWmO8fl8xMXFQaFQ6JxfoVBg2rRpWseGDh0KmUymc3xVVRXy8vKwYcOGBs8tXrwYCxcuRGBgIF577TVMnToVTZpwTD4xLsKlS5cYAPSgBz3oQQ96OPTj0qVLrN8z7969y/j5+bG6Dk9PzwbH5s2b18CWy5cvMwCY/fv3ax2fMWMGExERodP+p556ivn++++1jq1evZrx8fHROX7JkiVMq1atmLt372od//jjj5ndu3czx44dY9asWcO0bNmSmTp1qgnvpG3gmLRkj4CAAFy6dAktWrQAj6c/psLa1NTUoGPHjrh06ZLTFEZ0xjUBzrkuWpNjQGtyDOy9JoZhcOvWLQQEBLB+rqZNm+LChQu4f589TzDDMA3ux/W9crZi3bp1GDNmDJo2bap1vK53r0+fPnBzc8Nbb70FqVRqN1t14TJijs/no0OHDnY7v5eXl9N8oalxxjUBzrkuWpNjQGtyDOy5Jm9vb5udq2nTpg3EjT1o27YtBAIBqqqqtI5XVVXBz093Eo6fn5/R4wsKClBaWors7GyDtvTv3x8PHz5EWVkZunbtasIq2IUSIAiCIAiC4Cxubm7o168f8vPzNcdUKhXy8/MRFRWl8zVRUVFa4wHgv//9r87xX331Ffr164eQkBCDthw9ehR8Ph8+Pj4mroJdXMYzRxAEQRCEYzJt2jSkpKQgLCwMERERWLlyJe7cuYPU1FQAwLhx49C+fXtIpVIAwHvvvYdBgwbh448/RkJCAjZt2oRDhw7hn//8p9a8NTU12LJlCz7++OMG51QoFDh48CAGDx6MFi1aQKFQYOrUqRg7dixatWrF/qJNgMQcy7i7u2PevHmc2lu3FGdcE+Cc66I1OQa0JsfAGdfkKCQnJ+PatWuYO3cuKisr0bdvX+zYsQO+vr4AgPLycq1Md6FQiO+//x5z5sxBeno6nnnmGchksgblfzZt2gSGYTB69OgG53R3d8emTZvw0Ucf4d69e+jUqROmTp3aIEuWC/AYxoY5zgRBEARBEIRVoZg5giAIgiAIB4bEHEEQBEEQhANDYo4gCIIgCMKBITFHEARBEAThwJCYM5HLly9j7NixaNOmDZo1a4bevXvj0KFDescXFhYiOjpaM75bt2745JNP9I5fvHgxeDwe3n//fRas1w0ba/roo4/A4/G0Ht26dWN7KRrY+pxMndeasLGm4ODgBp8Tj8fD5MmT2V4OAHbWpFQq8eGHH6JTp05o1qwZunTpgoULF9qsnyUba7p16xbef/99BAUFoVmzZhAKhSguLmZ7KVpYcu3v27cPTZo0Qd++fRs8t3r1agQHB6Np06bo37+/pg+tLWBjTb/88guGDRuGgIAA8Hg8vb1ACcKaUGkSE7hx4waio6MxePBg/PTTT2jXrh1+//33RuvNeHh4YMqUKejTpw88PDxQWFiIt956Cx4eHpg4caLW2OLiYnzxxRfo06cP20vRwOaaevbsiV27dmn+tlVjYrbWZM68XF9TcXExlEql5jUnTpzACy+8gJEjRzrsmpYsWYI1a9Zgw4YN6NmzJw4dOoTU1FR4e3vj3Xffdcg1vfHGGzhx4gS++eYbBAQE4Ntvv0VcXBxOnTqF9u3bs7omc9el5ubNmxg3bhyGDBnSoCJ/dnY2pk2bhrVr16J///5YuXIlhg4ditLSUtaLsrK1pjt37iAkJATjx49HUlISW+YThDb2bAzraMyaNYsZMGCAxfO88sorzNixY7WO3bp1i3nmmWeY//73v8ygQYOY9957z+LzGANba5o3bx4TEhJi8bzmwNaarDWvObB57dXlvffeY7p06cKoVCqLz2UIttaUkJDAjB8/XmtMUlISM2bMGIvPZQg21lRbW8sIBAJGLpdrjXnuueeYjIwMi89lDJasKzk5mZkzZ47O74SIiAhm8uTJmr+VSiUTEBDASKVSS8w1CrbWVBcAzNatW80zkCBMgLZZTWDbtm0ICwvDyJEj4ePjg9DQUHz55ZcmzXHkyBHs378fgwYN0jo+efJkJCQkIC4uzpomG4TNNf3+++8ICAhA586dMWbMGJSXl1vTdL2wtSZrzGsubH5Oau7fv49vv/0W48ePb9D8mg3YWpNQKER+fj7OnDkDADh27BgKCwsRHx9vVft1wcaaHj58CKVS2aBHZrNmzVBYWGg12xvD3HVlZWXh/PnzmDdvXoPn7t+/j8OHD2t95/H5fMTFxUGhUFjVfl2wsSaCsBv2VpOOhLu7O+Pu7s6kpaUxv/76K/PFF18wTZs2ZdavX2/wte3bt2fc3NwYPp/PLFiwQOu5jRs3Mr169WLu3r3LMAxjU88cW2v68ccfmc2bNzPHjh1jduzYwURFRTGBgYFMTU0NW0vRwNaaLJnXUthaU12ys7MZgUDAXL582Zqm64WtNSmVSmbWrFkMj8djmjRpwvB4PEYikbC1DC3YWlNUVBQzaNAg5vLly8zDhw+Zb775huHz+cyzzz7L1lK0MGddZ86cYXx8fJjS0lKGYRp66y9fvswAYPbv36/1uhkzZjARERGsrKMubKypPiDPHGEjSMyZwFNPPcVERUVpHXvnnXeYyMhIg689f/48U1JSwvzzn/9kWrduzXz//fcMwzBMeXk54+Pjwxw7dkwz1pZijo016eLGjRuMl5cX869//ctimw3B1posmddSbPE5vfjii4xIJLKKvcbA1po2btzIdOjQgdm4cSNTUlLCfP3110zr1q1tIrrZWtPZs2eZgQMHMgAYgUDAhIeHM2PGjGG6detm9TXowtR1PXz4kAkLC2PWrFmjOcY1McfGmupDYo6wFSTmTCAwMJCZMGGC1rHPP/+cCQgIMGmehQsXan5Rb926VfMFrX4AYHg8HiMQCJiHDx9azX5dsLEmfYSFhTGzZ8822UZTYWtN1prXHNj+nMrKyhg+n8/IZDKL7DQFttbUoUMHZtWqVQ3GdO3a1XxjjYTtz+n27dvMlStXGIZhmFGjRjEvv/yy+caagKnrunHjRoPvNR6PpzmWn5/P3Lt3jxEIBA3Ezrhx45jhw4eztRQNbKypPiTmCFtB2awmEB0djdLSUq1jZ86cQVBQkEnzqFQq3Lt3DwAwZMgQHD9+XOv51NRUdOvWDbNmzYJAILDMaAOwsSZd3L59G+fOncPrr79ulp2mwNaarDWvObD9OWVlZcHHxwcJCQkW2WkKbK2ptrZWq+E2AAgEAqhUKvONNRK2PycPDw94eHjgxo0b2LlzJ5YuXWqRvcZi6rq8vLwafK99/vnn+Pnnn/Hvf/8bnTp1gpubG/r164f8/HyIxWIAj9adn5+PKVOmsLKOurCxJoKwG/ZWk45EUVER06RJEyYzM5P5/fffme+++45p3rw58+2332rGzJ49m3n99dc1f69atYrZtm0bc+bMGebMmTPMv/71L6ZFixaNZqHZcpuVrTV98MEHzJ49e5gLFy4w+/btY+Li4pi2bdsyV69eddg1GTOvo62JYR7FmAUGBjKzZs1ifR11YWtNKSkpTPv27Rm5XM5cuHCBycnJYdq2bcvMnDnTYde0Y8cO5qeffmLOnz/P/Oc//2FCQkKY/v37M/fv32d9Teauqz66tiQ3bdrEuLu7M+vXr2dOnTrFTJw4kWnZsiVTWVnJ1lI0sLWmW7duMUeOHGGOHDnCAGBWrFjBHDlyhLl48SJbSyEI2mY1le3btzO9evVi3N3dmW7dujH//Oc/tZ5PSUlhBg0apPn7008/ZXr27Mk0b96c8fLyYkJDQ5nPP/+cUSqVes9hSzHHMOysKTk5mfH392fc3NyY9u3bM8nJyczZs2dttSTWPidD87IJW2vauXMnA0AT1G1L2FhTTU0N89577zGBgYFM06ZNmc6dOzMZGRnMvXv3HHZN2dnZTOfOnRk3NzfGz8+PmTx5MnPz5k2brEeNqeuqj774ss8++4wJDAxk3NzcmIiICObAgQNWtlw/bKxp9+7dDIAGj5SUFOsvgCAew2MYG5VFJwiCIAiCIKwO1ZkjCIIgCIJwYEjMEQRBEARBODAk5giCIAiCIBwYEnMEQRAEQRAODIk5giAIgiAIB4bEHEEQBEEQhANDYo4gCIIgCMKBITFHEARBEFbil19+wbBhwxAQEAAejweZTGbS68vKysDj8Ro8Dhw4wI7BhFNAYo4gCIIgrMSdO3cQEhKC1atXWzTPrl27UFFRoXn069fPShYSzkgTextAEARBEM5CfHw84uPj9T5/7949ZGRkYOPGjbh58yZ69eqFJUuWIDY2VmtcmzZt4Ofnx7K1hLNAnjmCIAiCsBFTpkyBQqHApk2bUFJSgpEjR+Kll17C77//rjVu+PDh8PHxwYABA7Bt2zY7WUs4CtSblSAIgiBYgMfjYevWrRCLxQCA8vJydO7cGeXl5QgICNCMi4uLQ0REBCQSCf788098/fXXiI6OBp/Pxw8//IClS5dCJpNh+PDhdloJwXVom5UgCIIgbMDx48ehVCrx7LPPah2/d+8e2rRpAwBo27Ytpk2bpnkuPDwcV65cwbJly0jMEXohMUcQBEEQNuD27dsQCAQ4fPgwBAKB1nOenp56X9e/f3/897//Zds8woEhMUcQBEEQNiA0NBRKpRJXr15FTEyM0a87evQo/P39WbSMcHRIzBEEQRCElbh9+zbOnj2r+fvChQs4evQoWrdujWeffRZjxozBuHHj8PHHHyM0NBTXrl1Dfn4++vTpg4SEBGzYsAFubm4IDQ0FAOTk5GDdunX417/+Za8lEQ4AiTmCIAiCsBKHDh3C4MGDNX+r499SUlKwfv16ZGVlYdGiRfjggw9w+fJltG3bFpGRkRCJRJrXLFy4EBcvXkSTJk3QrVs3ZGdn49VXX7X5WgjHgbJZCYIgCIIgHBiqM0cQBEEQBOHAkJgjCIIgCIJwYEjMEQRBEARBODAk5giCIAiCIBwYEnMEQRAEQRAODIk5giAIgiAIB4bEHEEQBEEQhANDYo4gCIIgCMKBITFHEARBEAThwJCYIwiCIAiCcGBIzBEEQRAEQTgwJOYIgiAIgiAcmP8Hqqzix5lmEAMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAIgCAYAAADa0y5LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADuzElEQVR4nOyde1xT9f/HXzAvEDpMuYQCgpfUBBXEgCHe8cZ0k29q5qX8aVlqaoYXQPOSjFQ0tdLQyi4WoYaQgyLNiCGIoqBY5qVEUFHREtTEy9l+f9DmBhu7nbOd7Xyej8ceDz377PN5n43tvM778744KBQKBQgEAoFAIBAIrMTR2gYQCAQCgUAgEHRDxBqBQCAQCAQCiyFijUAgEAgEAoHFELFGIBAIBAKBwGKIWCMQCAQCgUBgMUSsEQgEAoFAILAYItYIBAKBQCAQWAwRawQCgUAgEAgshog1AoFAIBAIBBZDxBqBYCecOnUK06dPh7+/P5ycnNCqVSsEBwdj3bp1+PvvvxlZ8+rVq1i5ciVKS0sZmZ9AIBAIQDNrG0AgEMxnx44dmD17Nrp164ZFixbhueeew6NHj1BcXIyPP/4YhYWF2LdvH+3rXr16FatWrYKfnx/69OlD+/wEAoFAIGKNQLB5CgsL8cYbbyAqKgoZGRlo2bKl6rmoqCi8/fbb+PHHH61oIXMoFArU1dXB2dnZ2qYQCAQCY5BtUALBxpFIJHBwcMD27ds1hJqSFi1aYOzYsQAAuVyOdevWoXv37mjZsiU8PDwwbdo0XL58WeM1gwYNQkBAAI4dO4bIyEg89dRT6NSpE9577z3I5XIAQG5uLvr16wcAmD59OhwcHODg4ICVK1eq5vn+++8RHh6Op556Cq1bt0ZUVBQKCws11nrllVfg5+fXyO6VK1fCwcFB45iDgwPmzp2Ljz/+GD169EDLli3xxRdfAAC2bduG3r17o1WrVmjdujW6d++O+Ph4495MAoFAYCFErBEINgxFUTh06BD69u0LHx8fvePfeOMNLFmyBFFRUfj+++/x7rvv4scff4RAIMDNmzc1xl67dg2TJ0/GlClT8P3332PUqFGIi4vDrl27AADBwcHYuXMnAGDZsmUoLCxEYWEhZs6cCQD45ptvIBKJwOfzkZqaik8//RT//PMPBg0ahPz8fJPPOSMjA9u2bcM777yDnJwcREZG4ttvv8Xs2bMxcOBA7Nu3DxkZGXjrrbdw7949k9chEAgE1qAgEAg2y7Vr1xQAFC+++KLesWfOnFEAUMyePVvjeFFRkQKAIj4+XnVs4MCBCgCKoqIijbHPPfecYsSIEar/Hzt2TAFAsXPnTo1xFEUp2rdvrwgMDFRQFKU6fufOHYWHh4dCIBCojr388suKjh07NrJ3xYoVioY/UQAUrq6uir///lvj+Ny5cxVt2rRp+g0gEAgEG4WTnrW8vDyMGTMG7du3h4ODAzIyMoyeQ6FQIDk5Gc8++yxatmwJHx8fSCQS+o0lEGjil19+AVC/7ajO888/jx49euDnn3/WOP7MM8/g+eef1zjWq1cvXLp0Se9aZ8+exdWrVzF16lQ4Oj75mWnVqhX+97//4ciRI/j3339NOo8hQ4bg6aefbnQOt2/fxqRJk5CZmdnIS0ggEAi2DCfF2r1799C7d298+OGHJs8xf/58fPLJJ0hOTsYff/yB/fv3N7qwEQhM4+bmhqeeegoXL17UO/bWrVsAAC8vr0bPtW/fXvW8knbt2jUa17JlS9y/f9/steRyOf755x+982hD25xTp07FZ599hkuXLuF///sfPDw8EBoaigMHDpi0BoFAILAJToq1UaNGYc2aNYiJidH6/MOHD7F48WJ06NABLi4uCA0NRW5urur5M2fOYNu2bcjMzMTYsWPh7++PPn36YNiwYRY6AwKhHh6Ph6FDh+L48eONkgQaohRfVVVVjZ67evUq3NzcaLNL31qOjo4q75iTkxMePHjQaJwu71jDpAMl06dPR0FBAWpqapCVlQWFQgGhUGiQJ5BAIBDYDCfFmj6mT5+Ow4cP49tvv8WpU6cwfvx4jBw5EufPnwcA7N+/H506dYJUKoW/vz/8/Pwwc+ZMxgqPEghNERcXB4VCgVdffRUPHz5s9PyjR4+wf/9+DBkyBABUCQJKjh07hjNnzmDo0KFGr63MPm3obevWrRs6dOiAb775BgqFQnX83r17+O6771QZogDg5+eHGzdu4Pr166pxDx8+RE5OjtH2AICLiwtGjRqFhIQEPHz4EL/99ptJ8xAIBAJbIHXWGvDnn38iNTUVly9fRvv27QEAsbGx+PHHH7Fz505IJBL89ddfuHTpEvbs2YMvv/wSFEXhrbfewgsvvIBDhw5Z+QwIXCM8PBzbtm3D7Nmz0bdvX7zxxhvo2bMnHj16hJKSEmzfvh0BAQHYt28fXnvtNXzwwQdwdHTEqFGjUF5ejuXLl8PHxwdvvfWW0Wt37twZzs7O+Prrr9GjRw+0atUK7du3R/v27bFu3TpMnjwZQqEQs2bNwoMHD7B+/Xrcvn0b7733nmqOiRMn4p133sGLL76IRYsWoa6uDlu2bAFFUQbb8eqrr8LZ2RkRERHw8vLCtWvXkJSUBFdXV1V5EQKBQLBZrJvfYH0AKPbt26f6/+7duxUAFC4uLhqPZs2aKSZMmKBQKBSKV199VQFAcfbsWdXrjh8/rgCg+OOPPyx9CgSCQqFQKEpLSxUvv/yywtfXV9GiRQuFi4uLIigoSPHOO+8obty4oVAo6rM0165dq3j22WcVzZs3V7i5uSmmTJmiqKys1Jhr4MCBip49ezZaQ1vmZmpqqqJ79+6K5s2bKwAoVqxYoXouIyNDERoaqnByclK4uLgohg4dqjh8+HCjebOzsxV9+vRRODs7Kzp16qT48MMPdWaDzpkzp9Hrv/jiC8XgwYMVnp6eihYtWijat2+vmDBhguLUqVOGvn0EAoHAWhwUCrU9Cg7i4OCAffv2QSwWAwDS0tIwefJk/Pbbb+DxeBpjW7VqhWeeeQYrVqyARCLBo0ePVM/dv38fTz31FH766SdERUVZ8hQIBAKBQCDYMWQbtAFBQUGgKAo3btxAZGSk1jERERF4/Pgx/vzzT3Tu3BkAcO7cOQBAx44dLWYrgUAgEAgE+4eTnrW7d+/iwoULAOrF2caNGzF48GC0bdsWvr6+mDJlCg4fPowNGzYgKCgIN2/exKFDhxAYGIjRo0dDLpejX79+aNWqFTZt2gS5XI45c+aAz+fjp59+svLZEQgEAoFAsCc4KdZyc3MxePDgRsdffvllfP7553j06BHWrFmDL7/8EleuXEG7du0QHh6OVatWITAwEEB9+YE333wTP/30kyr7bMOGDWjbtq2lT4dAIBAIBIIdw0mxRiAQCAQCwbbYunUr1q9fj6qqKvTs2RObNm3SGa6Un5+PJUuW4I8//sC///6Ljh07YtasWY2y3m/fvo2EhASkp6fjn3/+gb+/PzZs2IDRo0db4pQMhsSsEQgEAoFAYDVpaWlYsGABtm7dioiICKSkpGDUqFH4/fff4evr22i8i4sL5s6di169esHFxQX5+fmYNWsWXFxc8NprrwGor+cYFRUFDw8P7N27F97e3qisrETr1q0tfXp6IZ41AoFAIBAIrCY0NBTBwcHYtm2b6liPHj0gFouRlJRk0BwxMTFwcXHBV199BQD4+OOPsX79evzxxx9o3rw5I3bTBac8a3K5HFevXkXr1q11tqwhEAgEAoGtKBQK3LlzB+3bt4ejI/NNiOrq6rR2RqEDhULR6FrcsmVLVWcUJQ8fPsTx48exdOlSjePDhw9HQUGBQWuVlJSgoKAAa9asUR37/vvvER4ejjlz5iAzMxPu7u546aWXsGTJkkalu6wNp8Ta1atX4ePjY20zCAQCgUAwi8rKSnh7ezO6Rl1dHfhPe+FR3W1G5m/VqhXu3r2rcWzFihVYuXKlxrGbN2+Coih4enpqHPf09MS1a9eaXMPb2xvV1dV4/PgxVq5ciZkzZ6qe++uvv3Do0CFMnjwZ2dnZOH/+PObMmYPHjx/jnXfeMe/kaIZTYk25D12RFw9+KydG16KKTut+Ti5H4fmbuF57H558Z4R3dQPPAndI6uwvqcQ76adRcfOO6pivW2usjgnAmCDDBC0vNMCoNSlKjoKSS7h28w6ecWuNm//cw4rNB1Bx9Z8nNrR/GmsWDMfYYT2Nmlsf3x/8Dcs2/aRzre8P/oZpi9MwcuQIxMYuQo8ePXDmzBkkJ6/Hjz/m4PPXwg1+X+hgf0klXtleiJEjRiB2kZo969fjxxzL20PJ5QhZkYPn+gqQ+u23Gnf0crkckya9iDNlx3AiYx54PPr+lh06BWk9LpOVQTgmHgcPHtTaTuro0aOIioqCdL8EkZGBtNkDAIq/ShrbU3wRY17bqdee/dunIzLEnzZbmvqdyT97A6JNubTapOvzUOfPWu3tvY5U/INjB6TYuWoRrly5glatWjUac+fOHXh7e0PywTaMFI1THe/MP2aQfYD2z0cXv355yKD3KHPBIPTv5gHA+N89uqm9WwffARKLxFU9fPgQj+puo5/oA/CaO9M6N/XoPo5lvonKykrw+XzV8YZeNXUaeuG0eeYaIpPJcPfuXRw5cgRLly5Fly5dMGnSJAD1v10eHh7Yvn07eDwe+vbti6tXr2L9+vVErFkT5YfKb+XEvFhz1r7/va+4Aot3n0T5jVrVMT8PPtZN6I1xIY2DJJlgX3EFpu84AmF0NNISEhAQEIDTp09DkpiI6TuykDanmUG28Ix4D9NzyhC7Nhvll2+pjjVr1gx9+vRG2ncfPrFBkoiXl+zGni1TEDOCnotsek4ZXl6yG0JhNNK+S2i0VtqmyXhny0GMGSNERkamSoi0b98egwcPhlgkwqqMPLwY5mcRUU3J5ViZ8RvGCIXIyLS+PQDw65nrqLh5B2krV6JNmzaNnn/nnRUQCAQ4+UcVBoV2pmVNhy4hOp+rrb0HoD6ORdtFPzQ0VDWOz3ehxR4VffpDcaFY0567dYbZc7eO3t+eoSGgCk5qfaq27hHtNjkY8F62Al/r8WEBfFw6U180vKKiAmFhYY3G/PbbbwAAHz9/tPrvAt6VfwSA4Z+hwoj3d/SskfD75gQ2b9qk8V0D6i/kWzZvhr8HHyN6eYHn6AieoLfBczONJUN5eM2d0az5U4zMzefzNcSaNtzc3MDj8Rp50W7cuNHI29YQf//6G5HAwEBcv34dK1euVIk1Ly8vNG/eXGPLs0ePHrh27RoePnyIFi1amHJKjGBZdw6H0Pal3ldcgYkf5SPw+QEoLCzEnTt3UFhYiMDnB2DiR/nYV1zBuF2UXI7Fu09CGB2NjMxMhIWFoVWrVggLC0NGZiaE0dFYsvskKLmctjXTc8owft4uBAaFa5z3yJEjcfz4CVy9evWJDRmZEAqjsWjdD6Ao822gKDli12ZDKIxGRkaD8/1vrQUSKcov30J8fEKjGBBHR0fExcfj4o1a5J+tNtseQ8g/W43yG7WIT2CHPQBQVXMfABAQoN2roDxeVV2r9Xm68fJqBwA4fVq7Z0l5XDmOcXvc+YbZ4970RckUdAkIL1dnq9hUL66080rMKLh38EGiRAJ5g98YuVyOpKQk+HT0Q4ggQu9cumhK5DeEx3NE8nIRpFlZEItEGr9PYlH98bUTetMm1ChKjtyiP5EqLUFu0Z+0/MZxgRYtWqBv3744cOCAxvEDBw5AIBAYPI9CocCDBw9U/4+IiMCFCxc0/hbPnTsHLy8vVgk1gIg1i2ENkaQNSwuBpsRSZmYmhEIhYmNjQVHUExvi4nGx8iZkxRfNXl9WfLFpIRYXj6vXbwMwQIj8J1iMgZLL8euZ6/j2SDl+PXPdoM/XYGFkgj2mYukLv74LbmRkIPz8vCCRJOq46Evg79+e9i1QXfZFhvjDz7td0/b4uNG6BaqONiHRv5s7/Dz4kCTSY5MxIkinnTweJixcjiypFCKxWFMcicWQSqVY/K4EPB7PJKFmCjEjArFnyxSUHc2DQCAAn8+HQCDA6aN5SJvTH+NCfGkRauk5ZegatR5DpqZg8sJUDJmagq5R65GeU0bDWdg/CxcuxCeffILPPvsMZ86cwVtvvYWKigq8/vrrAIC4uDhMmzZNNf6jjz7C/v37cf78eZw/fx47d+5EcnIypkyZohrzxhtv4NatW5g/fz7OnTuHrKwsSCQSzJkzx+Lnpw8i1hhE/QvOFm+JpYWAfrEUh4sXL0ImkzW2gQYvjXIOfecLGCBEXI2L2dhXXIHuS7MwbO1BTP34MIatPYjuS7P0elANFkZG2mMOdF/4zYXH42FD8ixIpVkQixt4RMQiSKVZSF7/GqMZXerihcdzRPKS0U3as37xKFrj+fTBc3TEugm9tXuNGLapKaE1f8YUzE5OQenJUxriqPRUGbZ88TVGjBWbLdSMFZYxIwJx/td4HFwyDF+9HoGDS4bhzHvReGHeGNqEmrbdhcCgcIyft4sINgOYOHEiNm3ahNWrV6NPnz7Iy8tDdna2qh93VVUVKiqe/LbK5XLExcWhT58+CAkJwQcffID33nsPq1evVo3x8fHBTz/9hGPHjqFXr16YN28e5s+f3yjrlA1wKmbNmrDFW6IuBLTFjBgjBKiCk3p/yAwVS1VVVY1toMFLo7491dT5errxIZEkasSsAf8JEYkE/h589O/mbvC6yi1vYXQ0UhvEBU78KEt1x64NdWGkLY7GFHvMRXnhn/hR/YU/Lj5edU5JSRJIpVnYs2UKLRd+Qy+0MTEDsHfPCrwdm6KxFeLv3x5796xATMwAs23Rh0OXEFX8mtJDE7s2W9MeHzdaYzB1wRP0bhS/Ni7EF2lz+mPx7jwIBFKL26SL+TOmYO4rk1BccBjV16/B3fMZhAgirFougcdzxJAZwwEY9ttmKA13F5TfZ2UohlgswqJ1P0A0rKdFxbwtMnv2bMyePVvrc59//rnG/9988028+eabeucMDw/HkSOW8eKaAxFrFoJOkWQOlhYChoolLy+vJzbQ6KVR357SKsT+W+u92BF4ccE3EItFiItTEyISCaRZ9eLK0GD+hlveGj/OmZkQi0RYsjsPY4O9tc7ZpDAywR66YOOFPyZmAESiCMhkZaiqugUvr3aIjAy06EW/oWATDesJWfFFVFXXwsudj8gQf4tdhHUJtnFzos2yyZQt0K78Izhf2/g7r7KVx0NoZGNBTdf2p/rnYix0JhIodxdS9+gOxRAIBJAVX6QtOYdgfxCxpgVtP0zmfOmpgpOs8ZZYWgjoE0sSiQQdOnRAnz59UFhYSLuXRrk9NX7ersZCTG2tmBGB4Dk6NvaKePCb9IJpQ7nlndrElrdAIEX+2WoM7KE9k0mnMDLBHjqh48LfFKaIAh6Ph0GD+tCyvqmoCwMez9GqF92Ggk0pPGxBCFgqTs2SGLy7YKHkHIJtwmmxpn5hoCjqyd355VLa787Z5C2xpBBoSixJJBJIpfXrP/300/U2MOClMXR7KmZEIIQuj5F/thpVNffh5eqM/t3cjf5M6NryHhfii7HB3mbbQzfWFiPGoPG9toLXzVooBZu1S03o8641HEs35njX6MLg3QUGMoUJ9gMnxZpDpyCNekHp6Xl4OzYF5eVP4qb8/LywIXmWKu7FXJc6VXCSVd4SSwqBpsTS7s1T4NbWhfEtI0O3p3iOjjq9XYZC55Y3HfbQCZMXfzqyDdUx5HtNJ2wQBupYW6gZgz161JQYGophqeQcgm3CSbGmTnp6Hl4YvwpCYTRSUzULpr4wfhXtgcps8pZYUghYO5YH0O8R0lVc1FjYsuXNZSz9vVbCNsFGB+aKaGO8a0xg7c/E0FAMklxAaAoHhUKhsLYRlqK2thaurq6oub0ffL4LKIpCl67TEBjYV+sdj1gswunTJ3D+3Bfg8Xhmf+HpEgNsw5bu4JuCzs9HPRtU15a3teLOTMVWvGrGfq+ZwJ4EG12fjS7BZimvmrU/E21dXPx93LB+8Sijwj5q79ahTfA7qKmp0Vv531yU18ywFz6hvYPB40f/4sjemRY5D3vALCmflJQEBwcHLFiwQOeY9PR0REVFwd3dHXw+H+Hh4cjJydEY8+jRI6xevRqdO3eGk5MTevfujR9//LHRWv369UPr1q3h4eEBsViMs2fPmmM+ZLIylJdXNVkw9eLFq5DJSA0ce4duIa3c8m6q0CahHrq3P8n3mp105R/REGYN/880dP+dGUvMiECcP7AIh76aha83TsKhr2bh3E+xViufQrAtTN4GPXbsGLZv345evXo1OS4vLw9RUVGQSCRo06YNdu7ciTFjxqCoqAhBQfVNgZctW4Zdu3Zhx44d6N69O3JycjBu3DgUFBSoxvz666+YM2cO+vXrh8ePHyMhIQHDhw/H77//DhcX43r/Kf4qgaKVE66W1jf81V8D7BYtd2Xa0urtATYEMpsDU58Jm7a82QoTF9CqqnrPRUBAwH8JBjJUVVXBy8sLkZGRGt9rprD21hubsWZ8mrU/F1tKziGwC5PE2t27dzF58mTs2LEDa9asaXLspk2bNP4vkUiQmZmJ/fv3q4TYV199hYSEBIwePRpAfQuInJwcbNiwAbt27QKARp62nTt3wsPDA8ePH8eAAabFnhheA6wdgMcmrdEQItjYBdOfBdsSBEyFic+WKU+Hsh/ohx9+iJSUFJSXl6ue8/Pzw2uvvaYxjimsLQzowNreKCawh8+FwD1MusWfM2cOoqOjMWzYMKNfK5fLcefOHbRt21Z17MGDB3ByctIY5+zsjPz8fJ3z1NTUAIDGPMZiUD8///bo7/XQ5DW0YYuixh6xR9FsKzApAiIjA+Hu3gbx8fEIDAzUbO8TGIiEhAR4eDzNWN9QdexR7NgDDl1CyGdDsCmMFmvffvstTpw4gaSkJJMW3LBhA+7du4cJEyaojo0YMQIbN27E+fPnIZfLceDAAWRmZmq0IFJHoVBg4cKF6N+/v84tTKBeBNbW1mo81DGon9/CoSRLx0BsSfzYkq3Whu6bC0tcJB0dHREdHY2MjAyEhYWhVatW/7X3ycDo0aMbxbIxCREF7MVWPhuluHToEgKHTkHWNodgBYz6xaqsrMT8+fOxa9euRp4wQ0hNTcXKlSuRlpYGDw8P1fHNmzeja9eu6N69O1q0aIG5c+di+vTpOjO15s6di1OnTiE1NbXJ9ZKSkuDq6qp6+Pj4NBqjrAFWVlKoGQheeoTRFjr26l1juwiiCk6y3kZ7xhIXR5msDNev/40EHR0kEhIScO3aLZJgQADAPsGmIcyIB5DwH0bFrB0/fhw3btxA3759VccoikJeXh4+/PBDPHjwQKfASktLw4wZM7Bnz55G26fu7u7IyMhAXV0dbt26hfbt22Pp0qXw929cJPDNN9/E999/j7y8PHh7ezdpb1xcHBYuXKj6f21trU7BZo0aYLYcv0bJ5TYXOG+r77W9YKmLjnqCgTYskWDQEFuMk+KSSLDW58Ol95hgHkaJtaFDh6KsTPNudPr06ejevTuWLFmiU6ilpqbi//7v/5Camoro6Gid8zs5OaFDhw549OgRvvvuO42tUoVCgTfffBP79u1Dbm6uViHXkJYtW6Jly5YGnZu1snRsUbDtK67A4t0nUX7jybaynwcf6yb0xrgQX9YlG9ja+8sm6PocLXlRUiYOGJY4ZDlsUbBxCUt9PkSgEUzBKFdI69atERAQoPFwcXFBu3btVHercXFxmDZtmuo1qampmDZtGjZs2ICwsDBcu3YN165dUyUIAEBRURHS09Px119/QSaTYeTIkZDL5Vi8eLFqzJw5c7Br1y588803aN26tWqe+/eb7q9IoBdlsdfA5wdoBm4/PwATP8rHvuIKAOwRSGyxg8tY+uIUGRkIPz8vvYlDlkgwaAi5ULMbJj4fsqVJoAPa962qqqpQUVGh+n9KSgoeP36MOXPmwMvLS/WYP3++akxdXR2WLVuG5557DuPGjUOHDh2Qn5+PNm3aqMZs27YNNTU1GDRokMY8aWlpdJ+CxWGTF6opKLkci3efhDA6GhmZmZqB25mZEEZHY8nuk6D+u0BaUyiR2DTuwuPxsCF5VpOJQ8nrX+NEQ3eC8dAhqog4I9ANJ9tN3T6xGvxWxidIMA3bxcWvZ65j2NqDKCws1Lq9VFhYn6RxcMkwjdpilhajbH8fbQU6PjdrXqy0NXL392+P5PWvMdIX1FjYvCVKRIbhKD9HS71ntbX34NpmDGk3xTE438idYDhVNfVbznoDt2s0t6YtHcNmi3GABPqJiRkAkSgCMlkZqqpuwcurHSIjA1njUWt4cbemeLMFcXa+Nsyq3Q90YQvvHcH2IWKNYDBers4ADAjc/m+cNbFFwWaLGbZsh8fjYdCgPtY2wyAsJd5sTVyoN4BX/puNoo1AYBIi1ggG07+bO/w8+JAkJiIjM1OjhpVcLkeSRAJ/Dz76d3O3opVPUHrzbEG06cuwtTS2vgVqDxjz/ukSdpb4DJjyeKmLNEutSSCwFXLbTjAYnqMj1k3oDWlWFsSiBoHbIhGkWVlYO6G3Vm+QNQUT2xM4DM2wJRB0oa2QKlNC7XxtmMZD1zFz5zZkrD1BURRyc0uRmvozcnNLQVGUtU0isAjiWSMYxbgQX6TN6Y/Fu/MgEEhVx/09+Eib098qXiBDYOu2aMMMW6W3UplhKxaJsGR3HsYGe5MtUYJVMEUUqb/GEA+YqcLLXjxs2pJh/Py8sCF5FiuSYQjWh4g1gtGMC/HF2GBvm4uvYuO2aP7ZapTfqEWqjtZIcfHxEAikyD9brZFhyyRs90QSmIdOr1XDudTFFR3r2LpgS0/PwwvjV0EojEZqagICAgJw+vRpSCSJeGH8Kuzds4IINgIRa2yCrd4fbfAcHS0mHuiGTe+zqRm2BAKdWHJLkYm1bFWwURSFt2NTIBRGIyOjgWc9IxNisQixi7ZDJIpQZTH/WdvPmiYTrAS7XSEchHg1LANP0JsV77V6hq022JRhawwkucA2MDfGjE3Y4rnIZGUoL69CfLwOz3pcPC5evIrUHymbPD8CfXBSrMmKL4Ki5PoHEuwepWizlnhTz7DV2hqJZRm2BNuHjkQANmNL51VVdQuAfs969fVrFrOJwE44KdbGvLYTXaPWIz2nTP9gK8AGjw8TsGXrsSksLdzMybBlxB47/dvjOvYu0BrC9vNUfhYUPxKAfs+6u+czFrONwE44GbN28OBBbN60CePn7cKeLVMQM8LyDZ0J7EdduDApNG01w5bAbpgQLIfL/27y+Qi/trSvaSpsi2PT9nmECCLg7dsREokEGRkZjWtXJiXBp6MfQgQRljSVwEI4Kdb69eunKouw6N1MCF0eo0X/IGubpQGbguAJzAs3W82wJTCPtbxE+oSZvtewQbixoeNBU58fj8fDkjVJmPfyZIjFYsTFxamyQZOSkiCVSrHli69Z0yKNYD04KdaAxmURhvS3tkUEW4GpEiDWzrC11y1QiqJY2x+0KWxJpOmbx1zhZu5cTZUPYQJjPrsRY8XY8sXXWLssDgKBQHXcp6MftnzxNUaMFTNgIcHW4KxYA54Eb173ZF/wNvGqsR821m0zFXsVarZYbNTWRZq+uZsSW4bYoBxjjgDU9h6bK+DM+dxGjBVjWPQYFBccRvX1a3D3fAYhggibuKkgWAZOizVVWQR3vpUt0cQeLv5cwp5Emz1hi8VG7VGoMbUWHaJNHWsnJfB4PIRGsuvvkcAeOCvW6oM3JfD3cUNkiL+1zSHYAbYq2uzRq2ZKsVFrwgWRxhR0izYCgY1wMnr56NGjEItFkEqzsH7xKPB47HkbbO1CT2gMWwruchlDi43KZNYt32OtchqHy/+2C6Gmjj2eE4GghJOetaioKPj7uJGyHQRGsQVPm72KSkOLjSrHWQPiTWMG4mkj2COcFGv7t0/HyMhurPKoAey+qBNMp6EgsubnbK/irCFeXu0A1MelhoU1FkWqeNX/xlkSItIsAxFtBHuCk2ItMsSfdUKNwB2aEky0lwPhiDhrSGRkIPz8vCCRJGrErAFq8ar+7REZaTnPujUD2JkSavlFlVqP9w/1YWQ9UyCijWAPcFKsEQhsxRRxpS7wuCrOGsLj8bAheRZeGL8KYrEIcXHxasVGJZBKs7B3zwqLJRfYozdNl1DT95y1hBzbCvYSCMZAxBpLIFugBFNho0BTXCiGQ5cQq9oQEzMAe/eswNuxKRrFRv3921usbAfXRBrTr6dL6BFvG8HWIGKNQCDYLTExAyAUhmHr1u/x559X0blze8yePRYtWrRgfG1LCTVLxqKZK9ToXJ8O4Ua8bQRbgQRuEQgEuyU9PQ/duk/HWwu34sOPMvDWwq3o1n060tPzGF2XaaGmLFPBJaHWELrtIaU/2M/WrVvh7+8PJycn9O3bFzKZTOfY/Px8REREoF27dnB2dkb37t3x/vvva4xJT09HSEgI2rRpAxcXF/Tp0wdfffUV06dhEkSssQCyBUog0I+yg0FgYF8UFhbizp07KCwsRGBgX7wwfhVjgs0SQs3SsE2oEbhHWloaFixYgISEBJSUlCAyMhKjRo1CRUWF1vEuLi6YO3cu8vLycObMGSxbtgzLli3D9u3bVWPatm2LhIQEFBYW4tSpU5g+fTqmT5+OnJwcS52WwTgoFAqFtY2wFLW1tXB1dcXtE6vBb+VkbXM4KdLYGF9FYAZrxqxRFIUuXachMLCv1mxQsViE06dP4Py5L2hNMiBCzbIwlazA5i3Ru7W1CPZ9BjU1NeDzmW2VqLxmhr3wCZo1f4rWuR8/+hdH9s40+DxCQ0MRHByMbdu2qY716NEDYrEYSUlJBq0ZExMDFxeXJr1nwcHBiI6OxrvvvmvQnJaCeNasAFVwkpNCjUCwFNboYMCkUCNbdNphSkhaY5uZq9TW1mo8Hjx40GjMw4cPcfz4cQwfPlzj+PDhw1FQUGDQOiUlJSgoKMDAgQO1Pq9QKPDzzz/j7NmzGDCAfT1aSYKBBbE3gUbJ5cg/W42qmvvwcnVG/27u4DkS/U+wPpbuYGDtJuBMwWavmqVoKNjY7HVjiq79/dDC2YXWOR/ev4cjewEfH03v6IoVK7By5UqNYzdv3gRFUfD09NQ47unpiWvXrjW5jre3N6qrq/H48WOsXLkSM2fO1Hi+pqYGHTp0wIMHD8Dj8bB161ZERUWZfmIMQcSaBbA3kQYA+4orsHj3SZTfqFUd8/PgY92E3hgX4qv1NWQLlGApLNnBwB63PgEi1HRBxBu9VFZWamyDtmzZUudYBwcHjf8rFIpGxxoik8lw9+5dHDlyBEuXLkWXLl0wadIk1fOtW7dGaWkp7t69i59//hkLFy5Ep06dMGjQINNOiCGIWGMQexRpQL1Qm/hRPoTR0UhNSFAVG5UkJmLiR1lIm9Nfp2AjECyBpToY2KtHjWA4RLyZB5/P1xuz5ubmBh6P18iLduPGjUbetob4+/sDAAIDA3H9+nWsXLlSQ6w5OjqiS5cuAIA+ffrgzJkzSEpKImKNK9irUKPkcizefRLC6GhkZD65CIaFhSEjMxNikQhLdudhbLA32RIlWA1LdDCwhFAjXjXbw9DPjIg6w2nRogX69u2LAwcOYNy4carjBw4cgEgkMngehUKhNSbO2DHWgIg1BrBXoQYA+WerUX6jFqkJOgK34+MhEEiRf7YaA3s0fcdDIDAJkx0M7NmjRoSaZSCizjgWLlyIqVOnIiQkBOHh4di+fTsqKirw+uuvAwDi4uJw5coVfPnllwCAjz76CL6+vujevTuA+rprycnJePPNN1VzJiUlISQkBJ07d8bDhw+RnZ2NL7/8UiPjlC0QsUYz9izUAKCq5j4AAwK3/xtHIFiTmJgBEIkiIJOVoarqFry82iEyMpD1HjVrQYQa+2go6u7fvWMlS6zLxIkTcevWLaxevRpVVVUICAhAdnY2OnbsCACoqqrSqLkml8sRFxeHixcvolmzZujcuTPee+89zJo1SzXm3r17mD17Ni5fvqwqnLtr1y5MnDjR4uenD1JnjUbsXagBwK9nrmPY2oMoLCzUGrhdWFgIgUCAg0uGNfKskQQD/VCUHLLii6iqroWXOx+RIf7g8WxzO9navUHpxtIijcvdCYzFWs3hrcH9u3cwu38Pi9ZZm7rpICPZoF8tGGaR87AHiGeNJrgg1ACgfzd3+HnwIUlM1IhZA/4L3JZI4O/BR/9u7hqvI0JNP+k5ZYhdm43yy0/KSfh5t0PyktGIGWFeIDzBPGzZm2brQoxAIJCiuLTAFaEGADxHR6yb0BvSrCyIRSKNNj5ikQjSrCysndCbJBcYSXpOGcbP24XAoHDN1khB4Rg/bxfSc+gr3kqwf/KLKlUPAoFg+xDPGg3wBL05JdjGhfgibU5/LN6dB4FAqjru78HXWraDeNWahqLkiF2bDaEwWqPMRFhYGDIyMiEWi7Bo3Q8QDetps1uiBOMglfO5iZyicO5EEW7fvIE2bh54NjgUjjS2QyPYLkSsEUxiXIgvxgZ76+1gQISafmTFF1F++RZS9+hujSQQCCArvohBoZ2tZKXxKC4U213cGoHAFMU/Z2P3xndRfeWJN9S9gw8mLFyOkKGjrWgZgQ2Q23Sa4KIo4Tk6YmAPT7wY5oeBPTyJUDORqur6LhB6M2yra7U+TyCoQ7Y+bY/in7OxNXYWQoP7aIRBhAb3wdbYWSj+OdvaJhKsDBFrBEYgQs1wvNzrM6GULZAaomqN5G57GVOKC8XWNkErFEUhN7cUqak/Ize3FBRFWdskAkeRUxR2b3wX0UIhMjMyEBYWhlatWiEsLAyZGRmIFgqx5/01kJO/UU7DSbFGFWm/KJoLESj1kPfBOCJD/OHn3Q4SSSLkcrnGc6rWSD5uiAzxt5KF9kV6eh66dJ2GwUMW4qXJiRg8ZCG6dJ2G9PQ8a5tG4CDnThSh+kolEuLjtYZBxMfF4cblCpw7UWQlCwlsgJNiLf/sDTzML7G2GQQCAIDHc0TyktGQSrMgFjfIsBWLIJVmYf3iUSS5gAbS0/PwwvhVCAzsq5l1G9gXL4xfxQrBZk5yAdkCtT1u37wBQH8YhHIcgZtw8tdftCkX3ZdmYe+W/bTPzXWvEtfP31RiRgRiz5YpKCupLyrM5/MhEAhwuvQI9myZYtN11tiyFUpRFN6OTVFl3apvN2VkZEIojEbsou1kS5RgUdq4eQDQHwahHEfgJpzMBj148CA2b9qEiR9lIQ3AC/PGWNsku4AINfOIGREI0bCedtPBgG3IZGUoL69CaqqerFtZGQYN6mMdIwmc49ngULh38EGiRILMjIxGhcYlSUnw8PbFs8GhVrSSYG04Kdb69euHjMxMiEUiLNmdh7HB3mjRP4i2+Q2pu9aUsLHFmm1EqNEDj+doU+U5DIUNZTyqquo7Q+jNuq26pfV5tsPVLVBbbzXlyONhwsLl2Bo7CyKxGPFxcQgICMDp06chSUpCllSK2ckppN4ax+GkWAP+u5OOj4dAIEX+2WoMdDzJiOAwZU7la2xRtBEIbMXLqx2A+m0lbX1tVVm3/40jECxFyNDRmJ2cgt0b34VAIFAd9/D2xezkFFJnjcBdsQao3UnX3AdQL47oEmx0zKM+B5uFG/GqEQzB2t61yMhA+Pl5QSJJ1OgUAahl3fq3R2Sk9eIDSecC7hIydDSCB40gHQwIWuG0WFPdSbs6W9kS/bCxpRURaQRbgsfjYUPyLLwwfhXEYhHi4uJV201JSRJIpVnYu2cFeOTiyCnY1OLJkcdD934C/QMJnIOzYk0ulyNJIoG/Bx/9u7kDIOLDUMj7RLBVYmIGYO+eFXg7NkVju8nfvz327lmBmJgBVrTO/pHLKVw/fxL/1tzEU65u8OzaG46O1hPHpMUTwVbgpFg7evQotmzeDGlWFtLm9Kc1uYBJrO1dIyKNYC5MbYVSFAWZrAxVVbfg5dUOkZGBOj1kMTEDIBJFGDzeGBuKCw7jetVV/H2zGm3d3OHp1R4hggireeuU4uje7Ruou3MbTq3awOVpD6uIpPITuShO/wA11VdVx1zd2yMk5k34BQ8yaU5zkguULZ6ihUIk7N2t8rImSiTYGjuLxIoRWAUnxVpUVBT8PfhIm9Pf5sp2WFKwEXFmW1CU3OJlP6yxZkPS0/PwdmwKysurVMf8/LywIXmWTk8Zj8ejtTxHzvcZWLssDpcrLqmONWvWDI8fP4a3b0csWZOEEWPFtK1nCNrEkdImc0WSKbYc2h6P6GghEhK+eyKMEhORtT0eQ16TGG2LOUKtYYsnZfyissWTSCzGnvfXIHjQCBIzRmAFnCzglLlgEM79Gm9zQo0JeILeOh/2DEXJkVv0J1KlJcgt+hMUJdf/Ihavl55Thq5R6zFkagomL0zFkKkp6Bq1Huk5ZbSuY+01G9nAgo4EOd9nYN7Lk9GnV6CGDaNGjYKDgwOe8XDHvJcnI+f7DMZtUaIUR5GhwVpt6uLrhUPb41F+IpdxW+RyCsXpHyA6WojMzAa9LzMzER0djeL0DyGXG16M2NxyHaTFE8HW4KRYGzhtiE0XGjVVSDUSY6GBFhUs2rC0aAIsLzKYXi89pwzj5+1CYFC4pmAJCsf4ebsYOS9rrNkQS3Yk6Mo/otOGtcviIBQKkZnZ0IYMCIVC3Lp1C9HR0Vi3PN4i3RE0xZF2m/7++2+MHj3aaJFkCtfPn0RN9VUkJOgQRvHxqKm+guvnDdsxoKOuGmnxRLA1bFex2DB0CBRDBZsuTxkrvCJW8gZZUmQwvR5FyRG7NrtJwbJo3Q+0imBz16Sr/ZSyI0F8vO6OBBcvXoVMxtzfU3HBYVyuuIR4HR6auLg4XLx4ESNHjkTlpXIUFxxmzBYl+sSR0qZRo0YZJZJM5d+amwD0CyPlOF30D/WhrQCutVo8ySkKfxwrwJEfMvDHsQLISWszgoEQsWZh6BQougSbvq1MNnhFrGGDpYWNJdaTFV9E+eVbTQuWypuQFV8093SsuqY2DO1IcOVKNXJzS5Ga+jNyc0tp9W5VX79mkA3Ozs4a45nEUHGktEmfSDKXp1zdAOgXRspxDaFTpClRb/Ekl2t+/5hq8VT8czaWju2Pta9OQErcXKx9dQKWju2P4p+zaVuDYL8QsWZBmBQohsaaWcMTwxYbLC0yLLFeVXUtAANaKP03jg6ssaY21DsSaEN5/O3YFAweshAvTU7E4CEL0aXrNNpi2dw9nzHIhvv372uM1wZdBXENFUdKm3SJJLrw7Nobru7tkZiYqF0YSSRwde8Az65PfruUAo2pVlLKFk9ZUilEYrHG77FILEaWVIrxby2jLblAmXkaGtxHY63Q4D7YGjuLCDaCXohYsxBMCRRjkwHY4BWxlg2WFhmWWM/LnQ9A/4VZOY4OrLGmNtQ7EugSAc2aNUO/fuGMJR+ECCLg7dsREh0emqSkJPj7++PHH3+ET0c/hAgizF5TH/rEkdKmH374oZFIYgJHRx5CYt5EVlYWRCKRpjASiZCVlYWQmLlwdOQxKtAaomzxVHSiFAKBAHw+HwKBAEdLTtJatqNh5qlGgkVGBqKFQux5fw3ZEiU0CRFrFoINIglgh1fEWjZYWmRYYr3IEH/4ebfTKViSkiTw93FDZIi/yWswsSYdcWvKjgRSaRbEYk0RIBaLIJVK0adPb2Rmfs9Y8gGPx8OSNUmQSqWNhIhYLIZUKkW7du2QlZWFxe9KLFJvrSlxpLSpbdu2yM7OVokkpvELHoQhr0kgKzqhIYxkRSUY8poEU96YapWG7CFDR+O97/OxZMduzEr6EEt27EZSpozW+mok85RAB5yss2YN2CCSAE0B0WQzawa9ItayQV1k6OwNSaOwscR6PJ4jkpeMxvh5u3S2UNqzZQqt2c/WWFMXujoStG9fv7X3wQcf6rw5EggEkMnKDK631pV/BOdrG/+9jhgrxpYvvsbaZXEaNjRr1gwKhQLXq29iyxdfW7TOmkocpX+g1aYLFddMqm1mrk2+fSJVHQxCw3qwovcl0y2eSOYpgQ6IWLMQbBBJgOUFC5tssLTIsNR6MSMCsWfLFMSuzdZsoeTjhj1bpiBmBP2Nya2xpk5btHQkuHKlGlOmJum/OfovScFcRowVY1j0GFZ1MFAXR2zoYAAAA8L9gHA/i69rTdQzT5v67ac785RgXxCxZiHYIJIAegWEqdXrremZsbTIsNR6MSMCIRrW06LdBKyxpi4adiTIzS0FYMDN0X9JCnTZEBppem/RCL+2tCUZKHF05MGrWzCtc5qCNbY42YJ65ql6twSAucxTgv3hoFAoFNY2wlLU1tbC1dUVt0+sBr+VU6PnmW6do8wGFQqjdQoUS3kk0nPKELs2G+WXn3gW/H3csH7xKINs0PZ6P+92SF4y2uBzMNcGc7B0myQ2tGViG0z0CFVCURS6dJ2GwMC+Wm+OxGIRTp8+gfPnvjDK66VtG5ROzBVr+UWV+gdZEC6LNHXU+5DGx8WpfvslSUnIkkqNSmi4f/cOZvfvgZqaGvD5zO7EKK+ZUzcdRAtnF1rnfnj/Hr5aMMwi52EPELH2H3SID0OwpkBpiKkCQl10xscnPPnhkSQaLTqJiOEuTIo14EkrKl03R3v3rNDZO1QXTIs1wDYEm7JB/L81N/GUq5vGtioRaNop/jkbuze+i+orTz4fD29fjH9rmVEJDUSscRMi1kCv+DAEWxYoFCVH16j1CAwK1+2xKD2Ccz/F2sw5EawD02IN0N7k3d+/PZLXv2a0UAPsX6w1FFra5tLWIN7VvT2mLF1JaxalPSKnKJw7UYTbN2+gjZuHSQkWRKxxE86LNSI+jCO36E8MmZqCwsJCrbFAhYWFEAgEOPTVLAwK7WwFCwm2giXEGlC/JaqefBAZGWhywL8lxBpgGcFmigdMfTsvIf6JtzJRIjF6O49gGkSscRPOJxgo65+l7tFd/0wgEEBWfJGID7CnBIm9YcveVrbTMPmAC/QP9VEJNrq2JRsWd1X+XiqLu4rEYux5fw2CB42wejkOAsHe4LxYI+LDONhSgsSesFS8JMF2oCMzlO7YMVVx1727dRZ3FQgEOHeiiNG6ZQQCF+H8rTtbWufYCtaomG/PWKOhPcE2iPBra20TNCDFXQkE68F5sUbEh3Eoa6TpbvGThfWLR5EtPAOwVkN7AsEU1Iu7aoMUdyUQmIPzV1QiPoxHWei1rKRQo8/f6dIjFq9eb8uwpV8sgb2wybumXtxV240tKe5KD3KKwh/HCnDkhwz8cayANHgnACAxawDY1TrHVmBT9XpbhcRLEmwJRx4PExYux9bYWRCJxTqLu5LkAtPRVovNvYMPJixcTrJsOQ4Ra/9BxIfx8HiOJEPWDEiyBsEQmGhDZSohQ0djdnIKdm98V+PG1sPbl5TtMBONsih7d2uURdkaO4u8vxyH83XWCARrQWr8Wa7WGp1YqtaaErYINXXoKO5KeIKcorB0bH+EBvfR2j9UJBbjaMlJJGXK8OD+v6TOGot59OgRrl27hn///Rfu7u5o25aeUAb7vALoQVZ8kQRtE6wOiZcEFBeKrW2C0XTlH7G2CVbHkcdD934ChI0So3s/ARFqZqIqixIfr7Msyo3LFTh3oshKFhKa4u7du0hJScGgQYPg6uoKPz8/PPfcc3B3d0fHjh3x6quv4tixY2atYb9XgSYY89pOdI1aT8oiEKwOSdYggo1AIGVRDGPr1q3w9/eHk5MT+vbtC5lMpnNsfn4+IiIi0K5dOzg7O6N79+54//33G4377rvv8Nxzz6Fly5Z47rnnsG/fPqNsev/99+Hn54cdO3ZgyJAhSE9PR2lpKc6ePYvCwkKsWLECjx8/RlRUFEaOHInz588bfd4AR2PWDh48iM2bN2H8vF2cuSAS2AuJl6wXbLa2JdqVf8TiW6IE+0S9LEpT8atcLouSlpaGBQsWYOvWrYiIiEBKSgpGjRqF33//Hb6+vo3Gu7i4YO7cuejVqxdcXFyQn5+PWbNmwcXFBa+99hqA+vaIEydOxLvvvotx48Zh3759mDBhAvLz8xEaalhWc0FBAX755RcEBmrXEc8//zz+7//+Dx9//DE+/fRT/Prrr+jatavR58/JmLWamhq0atWKEzFBBIItYWuCDWA+ho2NMWsEelGPWUv/7jscPnwYVVVV8PLyQkREBGL+9z/Ox6yFhoYiODgY27ZtUx3r0aMHxGIxkpKSDFozJiYGLi4u+OqrrwAAEydORG1tLX744QfVmJEjR+Lpp59GamqqkWfELJxVKKSOFYHAPsiWqCZEqHEDZVkU6f79aNu2LQYPHoyXXnoJgwcPRtu2bSHdvx/j31rG2djAhw8f4vjx4xg+fLjG8eHDh6OgoMCgOUpKSlBQUICBAweqjhUWFjaac8SIEQbPaUk4K9YAUseKQGAjRLARuIqDgwMGDRqkkWw0cOBAODg4WNs0xqitrdV4PHjwoNGYmzdvgqIoeHp6ahz39PTEtWvXmpzf29sbLVu2REhICObMmYOZM2eqnrt27ZpJcyr5559/8Pff9TdU1dXV+O6773R2+DAXTsasKSF1rAgEdkJi2AhcQk5R2L3xXUQLhRqlO8LCwvD9999DJBZjz/trEDxohFXsCw/pAOdWrWmd8/7dO/gKgI+Pj8bxFStWYOXKlVpf01C0KhQKvUJWJpPh7t27OHLkCJYuXYouXbpg0qRJZs0JAJ988gmSkpIgl8uxePFifP311+jVqxdWrFiBefPmqeLi6IKzYo30/SQQ2A0RbASuoCrdsXe3ztIdAoEA504UoWMP+0qIq6ys1IhZa9myZaMxbm5u4PF4jTxeN27caOQZa4i/f/31PTAwENevX8fKlStVYu2ZZ54xaU4A+OCDD/Dbb7/h33//ha+vLy5evAh3d3fU1tZiwIABtIs1Tm6DHj16lDN1rAgEW0Zxodgmt0UJBGPgcukOPp+v8dAm1lq0aIG+ffviwIEDGscPHDig0UlDHwqFQmObNTw8vNGcP/30k0Fz8ng8ODk5oW3btujSpQvc3d1V58PEtjUnPWtRUVGk7yeBYEPYkpeNLu8aSS7gDqR0h34WLlyIqVOnIiQkBOHh4di+fTsqKirw+uuvAwDi4uJw5coVfPnllwCAjz76CL6+vujevTuA+rprycnJePPNN1Vzzp8/HwMGDMDatWshEomQmZmJgwcPIj8/X689zZo1Q11dHZycnPDrr7+qjt+5c4fO036yHiOzspz926djZGQ34lEjEGwIpYfNFkQbHYKNTT1BCczybHAo3Dv4IFEi0dpuSpKUBA9vXzwbHIoH9/+1oqXWY+LEibh16xZWr16NqqoqBAQEIDs7Gx07dgQAVFVVoaKiQjVeLpcjLi4OFy9eRLNmzdC5c2e89957mDVrlmqMQCDAt99+i2XLlmH58uXo3Lkz0tLSDKqxdujQIZUX0NXVVXX8/v37+PTTT+k6bRVmqZWkpCQ4ODhgwYIFOsekp6cjKioK7u7u4PP5CA8PR05OjsaYR48eYfXq1ejcuTOcnJzQu3dv/Pjjj43mMqZ6cVNwreAogWBP2MrWKMkQJRiKsnRHllQKkViskQ0qEouRJZVyunSHktmzZ6O8vBwPHjzA8ePHMWDAANVzn3/+OXJzc1X/f/PNN3H69Gncu3cPNTU1OHHiBN54441GMYEvvPAC/vjjDzx8+BBnzpxBTEyMQba0atVKY7tTGfvm4eGB4OBgM85SOyYrlmPHjmH79u3o1atXk+Py8vIQFRWF7OxsHD9+HIMHD8aYMWNQUlKiGrNs2TKkpKTggw8+wO+//47XX38d48aN0xijrF6ckJCAkpISREZGYtSoURpKmkAgcAdbEWzmiLYIP3qaQDNJhF9b1YNgOiFDR2N2cgqKTpRqtJ47WnISs5NTEDJ0tLVNJDRBw3ptdGNSB4O7d+8iODgYW7duxZo1a9CnTx9s2rTJ4Nf37NkTEydOxDvvvAMAaN++PRISEjBnzhzVGLFYjFatWmHXrl0A6KlerKzGvEPyAjr7tCMeNgLBTrCFrVFztkXZth1qrDBjm/1sRk5ROHeiCLdv3kAbNw88Gxyq4VG7f/eOxTsYbM0/w0jpDkudhyUIDAxEWRlz/cZNilmbM2cOoqOjMWzYMKxZs8ao18rlcty5cwdt2z75sj948ABOTk4a45ydnVVBfsrqxUuXLtUYo6968YMHDzQyP2pr64vfvhq/FwDg590OyUtGkyQDAsHG0RfPRlEUZLIyVFXdgpdXO0RGBoJn4S0lc+LYlOLI2qLHVO+ZttdZ+1zYiiOPh+79DM9wJLADpgsXG+1W+vbbb3HixAmDvVkN2bBhA+7du4cJEyaojo0YMQIbN27E+fPnIZfLceDAAWRmZqKqqgqA6dWLk5KS4Orqqnooi+9duXIFhYWFCAwKx/h5u5Cew5wa5ioOXUJswttBsC+0bY2mp+ehS9dpGDxkIV6anIjBQxaiS9dpSE/Ps7h95saxWWO7kaltTrJ1SiAYjlFirbKyEvPnz8euXbsaecIMITU1FStXrkRaWho8PJ6kIG/evBldu3ZF9+7d0aJFC8ydOxfTp09vdOdrbKXhuLg41NTUqB6VlZUA6gMDw8LCkJGRCaEwGovW/QCKkht9PoQnoqzho+HzBIKlUE9ASE/PwwvjVyEwsK9G0HZgYF+8MH6VTQo2wDKxbJYSU0S0EQj6MWob9Pjx47hx4wb69u2rOkZRFPLy8vDhhx/iwYMHOrcW0tLSMGPGDOzZswfDhg3TeM7d3R0ZGRmoq6vDrVu30L59eyxdulRVedjU6sUtW7bUWmBPibKZu0AggKz4IgaFdtb7HnAVcwWX8vW2EBROsA8enz2Ktxd8AKEwGhkZmRotfDIyMiEWixC7aDtEogib2hJVwsTWqDVFE1u2egkEU2jRogWj8xvlWRs6dCjKyspQWlqqeoSEhGDy5MkoLS3V+YOXmpqKV155Bd988w2io6N1zu/k5IQOHTrg8ePH+O677yASiQDQV71YG6SZu37o9IwRTxvBUsiKL6L88i3ExydobeETFxePixevQiazThgEXaU9zPFMqW9xssW7xSZbCARDKS5m1hFhlGetdevWjdphuLi4oF27dqrjDasIp6amYtq0adi8eTPCwsJU3jFnZ2dVIbmioiJcuXIFffr0wZUrV7By5UpVc1Ql+qoXmwpp5q4bQ0SVqYHbxNNGYBrlDZi+Fj5VVbcsZhOTGOKZolsEURSF4oLDqL5+De6ezyBEQJ+XknjaCIQn0N7BoGEV4ZSUFDx+/Bhz5szRKM3x8ssv4/PPPwcA1NXVYdmyZfjrr7/QqlUrjB49Gl999RXatGmjGq+verEpkGbu2jHU85Wenoe3Y1NQXl6lOubn54UNybMQEzOgiVc2XouINgLdKG/A9LXw8fJqZ1G71GGi8XvDzgdMealyvs/A2mVxuFxxSXXM27cjlqxJwoixYtrWIaKNYCvcvn0bn376Ka5duwZ/f3/06dMHvXv3houLi9lzm1RnzVZR1oy5fPkyKioqkJQkgVSaRXqEqmGMUHth/CoIhdGIj09AQEAATp8+DYkkEVJpFvbuWWGwYFOHiDYCXVCUHF2j1iMwKFwjZg2ov1ETi0U4XXoE5/9KtXjMWkPoFmxMk/N9Bua9PBlCoRDx8fFq338JpFIptnzxNa2CTQkRbKTOGpsZMmQIysrK0K9fP1RUVODcuXOQy+Xo1KkT+vTpg927d5s8NyfFmhJ/HzesXzyKCDU1DN367NJ1GgID++q+CJ4+gfPnvjD6IkjEGoFO0nPKMH7eLgiF0YiLeyIqdN2oWTOe0lYEG0VRiAoKQFDvXsjQ0sdSLBaj9FQZfjpRxpgI5rJoI2KNvbi4uODXX39FSEj978iDBw/w22+/4eTJkzh58qRRzQMawslG7qSDgXnIZGUoL69CaqruwG2BQACZrAyDBvWxjpEEAoCYEYHYs2UKYtdmayQj+fu4afWoW7NZPBNbokxQXHAYlysuYU/atzq+/3EQCAQoLjiM0EjjveuGQLZGCWwkICBA4zvRsmVLBAcH09IrlJNibfzIXuC3Mr5OHKEeZUA2E4HbDl1COONdoyg5ZMUXUVVdCy93Prl5YIiYEYEQDetp1Hut/jdoSeFmC4Kt+np9kpi+779yHJM0jM8jEKzJ2rVrsXz5cnz33Xcm1aJtCk6KNYJ2DL0oKQOy2Ry4zXbSc8oQuzYb5ZefCFrS/ow5eDxHk+soWlq4KUt6sFW0uXs+A0D/9185jmmIl43AFvz9/XHnzh306NEDkyZNQmhoKIKCguDr62v23OQ2nmA0kZGB8PPzgkSSCLlcs/ODKsPWvz0iI4no0IYyjiowKFyzqj5pf8Z61LsjMA1dddjoJkQQAW/fjpBIJDq+/0nw6eiHEEGERe0itdkI1uZ///sfKisrMXjwYBw9ehQzZsyAv78/2rVrhyFDhpg1NxFrBKPh8XjYkDwLUmkWxGKRhuAQi0WQSrOQvP41k4OLtbWtshcoSo7YtdmqqvphYWGk/ZkNYinRxkbBxuPxsGRNEqRSKcRicYPvvxhSqRSL35VYJcOWFNQlWJPff/8dmZmZ+Oyzz3Dw4EHcvHkTFy9exGeffYaBAweaNTfZBiUAMH57JyZmAPbuWYG3Y1M0A7f925tctqMpu+wljk1ZVT91j57kDNL+zCawREICG+PYRowVY8sXX2PtsjiN779PRz/GynYYgy3HsskpCudOFOH2zRto4+aBZ4ND4Wjl0jIEw+jXrx/u3r2rcczX1xe+vr6qjkymQsQawWRiYgZAJIowqYOBsdiLaDO4qj5pf2ZTKC4UMy7YlLBFuI0YK8aw6DGMdTAwF1uMZSv+ORu7N76L6iuVqmPuHXwwYeFyhAwdbUXLCIawYMECrFy5EmlpaXj66adpnZuINYJZ8Hg8i5bnsHXRZnBVfdL+zOawVNkPNiUg8Hg8xspz0IWteNmKf87G1thZiBYKkbB3t6omYKJEgq2xszA7OYUINpbzv//9DwDQtWtXjB07FmFhYQgKCkKvXr3QsmVLs+YmMWsEm8RWY9oiQ/zh592u6eQM0v7MprFkAoLyQbBt5BSF3RvfRbRQiMyMDI1Y1syMDEQLhdjz/hrIKcraphKa4OLFi9i3bx/mzZuH27dvY+3atQgLC0Pr1q3Rq1cvs+bmpGdtz4+nSFFcNWxR9ChRt90WvG08niOSl4zG+Hm7IBaLdFbVJ3+Xto2li+uyydvGRtjuXTt3ogjVVyqRsHe31ljW+P8KDZ87UYSOPUiWPVvp2LEjOnbsqBGfdufOHZSWluLUqVNmzc1JsfZq/F4ApK4VwToYW1WfYLswHcvWEDbGtrEFNgu22zdvANAfy3r75g10tJhVBGPJz89H69at0bt3b9Wx1q1bIzIyEpGRkWbNzUmxduXKFVRUVEAiScT4ebs4f4G09AWFYFpVfYJtYq0WVkS42Q5t3DwA1Mes9uvXDzKZDFVVVfDy8kJkZKQqllU5jsBO3nzzTbz55psaYg0Azp07B09PT43e5MbCSbGmXtdKLBZh0bofIBrWk9MXSmv2RDQHW9j61IU5VfUJtoc1b4rINim7s0KfDQ6FewcfzH3zTdy6eRPl5eWq5/z8/NDOzQ0e3r54NjgUD+7/az1DCU1y9uxZrfXUfvnlF2RmZiI7O9vkubmrTvCkrtXFypuQFV+0tjmsgO3iR1mM1JKV5AkEurD23yxJSGAnjjwe+g6LxvHiYgQEBGgUGg4ICMDx4mIEDx1N6q2xHD6fj7//bnxTEBkZiaNHj5o1Nyc9a+qQulaNYYuXzdoXNgLBXiFbpOxCTlE4fjALQqEQmZmZqiSDsLAwZGZmQiQS4ejP2Rg/L87KlhKaYuzYsUhOTkZaWprGcUdHRzx8+NCsuTntWQNIXaumsLRYIl4zAsHycMHbxuYtUEAtGzRBe2eT+Ph43LhcgXMniqxkIcEQJBIJZDIZhg0bpsr+rKurw9q1a0npDnMgda30w6SXjQgyAhdha0IPiWuzHiQb1D5wc3NDYWEh3njjDfTp0wctW7bE48eP4erqiv3795s1NyfF2p07d/Dbb7+RulZGoEtYGXvRIQKNQGA3Db1sti7e2O5VAzSzQZvqbEKyQdlPx44dkZ2djcrKSpSUlKB58+YIDQ1F27ZtzZqXk2LN29sbAKlrRQdEfBEIxsNW75o2SHwb8yizQRMlEmRmZGhshcrlckiSkkg2qI3h4+MDHx8f2ubjpFjbIXmBdDAgEAgEI7E3rxtbcOTxMGHhcmyNnQWRWIz4uDhVZxNJUhKypFLMTk4h2aAchpNibfzIXuC3crK2GQQCgWDTsD3OzRa2QJWEDB2N2ckp2L3xXY3OJh7evqSJO4GbYo1AIBCsjS1theqjK/8I6wSbLQk1JSFDRyN40AicO1GE2zdvoI2bB54NDiUeNQI3xRpp5E4gEAj0wkbBZos48njo3k+gfyCBtQgEAvz555+4fv06bXNyUqyRRu4EAvegKDnpxcowbBFstuhVI9gPEydOxM2bN2mdk5NijTRyJxC4RXpOGWLXZqP88i3VMXKzRiAQmGD+/Pm0z8nJ20r1Ru5CYTQWrfsBFCW3tlkEAoEB0nPKMH7eLgQGhWv0XAwMCsf4ebuQnlNmbRPtCmt3QyBeNYI9wkmxpoQ0cicQ7BuKkiN2bTaEwmhkZGQiLCyM3KxZAGsLNgLB3uDkNqg6pJE7gWC/yIovovzyLaTu0d5zMS4uHgKBALLiixgU2tlKVtKPMm6MadFEURRksjJUVd2Cl1c7REYGgmfFzEVLetXkFGVU1qax4wkEdTgv1kgjd/MhgdsEtqK8CdPXc9GebtbUA/zP14YxJtjS0/PwdmwKysurVMf8/Lywbu2rcHdvg6qqn0HxIxEiiLCqgAPoF0rFP2dj98Z3UX2lUnXMvYMPJixcrrUemrHjCbbBP//8A4VCgbZt26K6uhp5eXno1q2bzt8bc+D0FZU0cjef9JwydI1ajyFTUzB5YSqGTE1B16j1JA6IwAqUN2HKm7KGmHqzRlFy5Bb9iVRpCXKL/rT6NipFUcjNLUVq6s8okuWBoijVc0xkZ6an5+GF8asQGNhXIw7Qza09XposweAhC/HS5ERMHTMSUUEByPk+g3YbDKX452wsHdsfa1+dgJS4uVj76gQsHdsfxT9nmzzf1thZCA3uo3HuocF9sDV2VqN5jR1PsA0++eQThISEoG/fvti2bRvGjRuHn3/+GS+++CK2b99O+3qcFGvKL4tYLIJUmoX1i0cRT5AJkMBt+4V9YsQ0eyJD/OHn3Q4SSSLkcs3XmHqzRtcNCl0FcdPT89Cl67QmBRKdgo2iKLwdm9IoDvDq1as4fvwERo4cqfF7ENS7F+a9PJlxwaZtC5RuoSSnKOze+C6ihUJkZmRoxEBmZmQgWijEnvfXQP6fWDZ2PKFptm7dCn9/fzg5OaFv376QyWQ6x6anpyMqKgru7u7g8/kIDw9HTk6OxphBgwbBwcGh0SM6OlqvLR988AF+++03HD9+HIsWLcK+ffuwdetWFBQUYOvWrWafa0M4qVC8vb0hEAhwuvQIKdthIiRwmxnYIJLY5i01xx4ezxHJS0ZDKs2CWCzSuGCbcrPGthsUXR4ubQKJLsEmk5WhvLwK8fFP4gApisLbb78NoVCIzMyGvwcZEAqFWLc8XsPjxzRMCKVzJ4pQfaUSCfHxWmMg4+PicONyBc6dKDJpPEE3aWlpWLBgARISElBSUoLIyEiMGjUKFRUVWsfn5eUhKioK2dnZOH78OAYPHowxY8agpKRENSY9PR1VVVWqx+nTp8Hj8TB+/Hi99vB4PDg5OaFt27bo0qUL3N3dAQB8Ph8ODg70nLQanBRrOyQv4NBXs3Dup1hOCzVzhIEycFv9B1uJMVm2bBAnbLCDouRY/eEBdIiUWFUksU6M0GBPzIhA7NkyBWUlhRAIBODz+SbdrLHtBkWXh6spgUSHYKuqqq9Vpx6XI5PJUF5ejngdoiQuLg6Vl8pRXHDY7PW1oc2rxoRQun3zBgD9MZDKccaOJ+hm48aNmDFjBmbOnIkePXpg06ZN8PHxwbZt27SO37RpExYvXox+/fqha9eukEgk6Nq1K/bv368a07ZtWzzzzDOqx4EDB/DUU08ZJNaaNWuGuro6AMCvv/6qOn7nzh0zz1THeozMynKs2cidLcH45hYJpSNwmy2FSq1tR3pOGd5YuQ/Vt+5CKBQiISEBAQEBOH36tEULNzcUI8oLnFKMiMUiLFr3A0TDelrkb5ZOe2JGBEI0rKdZ3z22ZZYqPVypqbrsiYNAIEBxwWGERg5QPWdu0oGXVzsA9fF+YWH14q+qqj7JQN/vQfX1ayavayxMCKU2bh4ANM9dHWUMpHKcseO5SG2t5jWiZcuWaNmypcaxhw8f4vjx41i6dKnG8eHDh6OgoMCgdeRyOe7cuYO2bdvqHPPpp5/ixRdfhIuLi975Dh06pLLT1dVVdfz+/fv49NNPDbLJGDjpWbMWbNleosNbYW7gNls8ONa2Iz2nDC+8+RXuPwDGjBmjZQvJch4burylbLWHx3PEoNDOmCQMwqDQzkYLTrZllmrzcGmzh26BFBkZCD8/L404QC8vLwD6fw/cPZ+h1ZamUBdKTdlkjFB6NjgU7h18kCiRaI2BlCQlwcPbF88Gh5o0nq2E+T6NCL+2tD7CfJ8GAPj4+MDV1VX1SEpKarT+zZs3QVEUPD09NY57enri2jXD/r43bNiAe/fuYcKECVqfP3r0KE6fPo2ZM2caNF+rVq20bnd6eHggODjYoDmMgYg1C2FtUaCErq0ccwK32bKdZG07lOuHh4fh7t27TWwhWUYksU6MsMweujNLFReKzbNHzcPVlD0NBZK5pTx4PB42JM/SiAPs06cP2rdvj8REXb8HSfDp6IcQQYRZaxsDE0LJkcfDhIXLkSWVQiQWa/yWi8RiZEmlGP/WMlVZEGPHc5HKykrU1NSoHnFxcTrHNhRHCoXCoPiw1NRUrFy5EmlpafDw0C7OP/30UwQEBOD555837gQsBBFrFsDaokAdurwV5gRus8WDY207lOuPHDkKgPVFCVNlLuzFHiYyS82yR4uHS9OexgKJrpprMTEDsHfPCpSVHYdAIMDTTz+Nq1evQiqVQiTS9nsgxeJ3JYzVW4vwa7y1xZRQChk6GrOTU1B0olQjBvJoyUnMTk5pVDfN2PFAfXLEH8cKcOSHDPxxrMCus0X5fL7Go+EWKAC4ubmBx+M18qLduHGjkbetIWlpaZgxYwZ2796NYcOGaR3z77//4ttvvzXYq6aL27dvY8OGDVi0aJEqM/TevXtmzamEkzFrloZNsS50eiuUgduxa7MhEAhUx/193JqMsWKLx8Tadijn7devHwD9cS1MixJ1MaIeIwZYSYywzB7lDcr4ebsgFosQFxevii1MSpJAKs3Cni1TLBaDqvRwvTB+lRZ7kiCVSrHli69VAonu4rgxMQMgEkVodDC4efM2Fi3eofF74NPRD1u++BojxoppXd8QlEJp98Z3NWzy8PbVKZQMnTd40AiDC+0aM54U0G1MixYt0LdvXxw4cADjxo1THT9w4ABEIpHO16WmpuL//u//kJqa2mQ5jt27d+PBgweYMmWKWXbGxMSgrKwM/fr1ww8//IBz585BLpejU6dO6NOnD3bv3m3y3ESsWQBriwJ11L0VdAgDUwK36bbBVKxth3JePp8PPz8/SCQSZGRkNBIlEollRAn7xAi77AFMv0HRheJCsVn11pQerrdjU5oUSEx1MeDxeBg0qI/GsXHjIlUCzpIdDCL82mrNCjVWWBmKI4+H7v0E+gcaMV5ZFy5aKETC3t2qv/dEiQRbY2dhdnIKeoZGmmW3rbJw4UJMnToVISEhCA8Px/bt21FRUYHXX38dABAXF4crV67gyy+/BFAv1KZNm4bNmzcjLCxM5ZVzdnbWSAgA6rdAxWIx2rVrZ5aNRUVF+PXXXxESUv+dfvDgAX777TecPHkSJ0+eNGtuB4VCoTBrBhuitrYWrq6uuH1itUWzQXOL/sSQqSkoLCzUKgoKC+tLChz6ahbjnjWKkqNr1HoEBoVr9VaIxSKcLj2Ccz/FMnYRZIMNbLBDff1p017GhAkTIBQKERcX9+RHOjER2dnZFq0HqC071t/HDesXj7JKqRu22QPQm9VNR3Fc9R6dDQWStZqqM9E5QR+W7A1KN3KKwtKx/REa3AeZWm7aRGIxjpacxDtfZ2PuwADU1NSAz2f2hlZ5zTxRcQ2taF7rbm0tgn2fMeo8tm7dinXr1qGqqgoBAQF4//33MWBAfabzK6+8gvLycuTm5gKoL3irXlJDycsvv4zPP/9c9f9z586hW7du+OmnnxAVFWXWOYWGhmLbtm2MJBgQsWYBrC0KGqJMdhAKo3V6K5i+CLLBBjbYob5+eLgAKSkpuHTpkur5Z9z5+PAdkcVFCVtKzLDVHjqhq5OBOpZq5G6IDZbGVgXbH8cKsPbVCXpv6hds+Ryb5r3CSbHGdnJzc7F+/Xp89913cHKiV2Nwcht0z4+n0NmnncV+8Nm2nUP3Vo6t2sAGO9TX379fqjru3rY15kwJQ8IbQ60iSpRlLtgC2+yhE3O3QrVhTZEGWE+o2TKG1oWruVVtMZsIxuHv7487d+6gR48emDRpEkJDQxEUFARfX1+z5+akZ01Jw8KnTN+9s207hw3eCjbYwAY7rL0+wbow4V2zFmwQarboXSOeNdsnJCQEt27dwuDBg1FRUYHS0lL8888/aNOmDXr37o1Dhw6ZPDcnPWtXrlxBRUWFRnV4AIxXsaejijqdsMFbwQYb2GCHtdcnEOiADULNVlGvC6ctZk1ZF65Lb/sR9vbG77//jiNHjqBXr16qYxUVFSgpKUFpaalZc3Py1r1hjbPZKzMsVrDW3CrqBALB/jC3QC5BE21119gOKaBr+/Tr1w93797VOObr6wuRSIQVK1aYNTenlYKjoyMWL16Cv2vuIzra+gVrCQSCeVAFJ1UPgmUhXjXzMaWALoE9LFiwACtXrsQ///xD+9yc3AZVp7a2Fo8fP0ZCgvUL1hIIBNPQJs7Uj/EEvS1pDoEF6Kq7xnaYqgtHYJ7//e9/AICuXbti7NixCAsLQ1BQEHr16qW1M4MxcF6sHTt2DAA7CtYSCATjMNSD1nAcEW/005V/hFXeNVsUakqMLbhLYAcXL15EaWkpTp48idLSUqxduxbl5eXg8Xjo3r07Tp06ZfLcnBZrcrkcOTk/ArB+NX0CgWAc5mx1slG8MVHCg0AgWI7Kykr4+flptMC6c+cOSktLzRJqAEdj1tQbDBcWHoGnG581zZkJBELTMBGTRuLc6MHa9d0IBGvy5ptv4vjx4xrHWrduDU9PT7P7jnJSrHl7e0MgEOB06RHs/WAqPlohglSa9Z94K9QQc1JpFtYvHkWyNgkEK2MJQUUEG4FAMJWzZ89i4MCBjY7/8ssvmDRpkllzc3IbdIfkhUYdDNhQTZ9AIDTG0gKKKjjJim1RW4UNsWu2HK9GsF34fD7+/vtvdO6smYwYGRmJhIQEs+bmpFjTBtsK1hII9oYtea2sJdhI3Jrtkl9Uif6hPtY2g2BFxo4di+TkZKSlpWkcd3R0xMOHD82am5NK5NX4vRgyNQVdo9ZrFLwlBWsJBGawJaGmxBZtZgtcil3LL6pEflGl6t8E7iKRSCCTyTBs2DBVQkFdXR3Wrl2r0dXAFDipRq5cucJYhwICgfAEWw/ct2XbrY21BJultkDVRVrD4wRu4ubmhsLCQrRo0QJ9+vSBs7MzWrdujf3792P9+vVmzc3JbVD1DgVisQiL1v0A0bCexJNGINAI24QOJZcj/2w1qmruw8vVGf27uYPnqP87rzwPEsdGAAwTY8oxZFuUe3Ts2BHZ2dmorKxESUkJmjdvjtDQULRta14LNE6KNSWkQwGBwAxsE2r7iiuwePdJlN94Utzaz4OPdRN6Y1yIr0FzWCqOzZ7i1tiQbEAXpnjMSBwbd/Hx8YGPD32fPeddSaRDAYFAH2zc9txXXIGJH+Uj8PkBGqV5Ap8fgIkf5WNfcYXBc7Ht3AiWwZytTbItat9UVBj++wHUh2GZAufFGulQQCDQAxuFDCWXY/HukxBGRyMjMxNhYWFPwiAyMyGMjsaS3SdBNSiI3eScLDxPNsOlZANdKOPbiHCzP/r164dXX30VR48e1TmmpqYGO3bsQEBAANLT001ah9PboKRDAcEesHbDcjaLl/yz1Si/UYvUhAQ4NohPc3R0RFx8PAQCKfLPVmNgD0+D52V6S9SWtkIpioJMVoaqqlvw8mqHyMhA8Bo0Hbf17VDlViYdYkt9DvUtUkPnfnj/ntk2EOjjzJkzkEgkGDlyJJo3b46QkBC0b98eTk5O+Oeff/D777/jt99+Q0hICNavX49Ro0aZtA4nxdqdO3fw22+/ISlJAqk0C3u2TCHJBWZAUXJSn84CGCKKLB0Mz2ahBgBVNfcBPAl3aIgqDOK/ccZAiucC6el5eDs2BeXlVapjfn5e2JA8CzExA6xoGTPQKdronIdgPdq2bYvk5GSsWbMG2dnZkMlkKC8vx/379+Hm5obJkydjxIgROn+DDIWTYs3b2xsA6VBAB+k5ZYhdm43yy7dUx/y82yF5yWjyvpqBuSLIEkKC7UINALxcnQHUhzuEhTX27KjCIP4bZyxMvs9s966lp+fhhfGrIBRGIzU1AQEBATh9+jQkkkS8MH4V9u5ZoSHYbN27pg7doo1g+zg5OSEmJgYxMTGMzM9J98cOyQs49NUsnPsplggKM0jPKcP4ebsQGBSuGbhN6teZBV0iiMmG57Yg1ACgfzd3+HnwIUlMhLxBXJpcLkeSRAJ/Dz76d3M3eQ1bej/ogqIovB2bAqEwGhkZDWIBMzIhFEYjdtF2UBSl8Tp7i1/rH+pDsj0JFoGTYm38yF6kQ4GZUJQcsWuzm/yxXrTuB1CU4YHbBGa8VXTMaauChOfoiHUTekOalQWxSKRxUyEWiSDNysLaCb0NqremDybeH8WFYtrnpAOZrAzl5VWIj9cRCxgXj4sXr0Im48YNGxFsBKYhaoVgErLiiyi/fKvpH+vKm5AVX7SShbZFQzFEyeX49cx1fHukHL+euW5UtqIh8zP9OjYxLsQXaXP6o+xoHgQCAfh8PgQCAU4fzUPanP4G11kzBFt/rwylqqo+7EFvLGDVrUbP2Zt3TQkRbAQm4WTMGsF8lHXp9P5Yk/p1eml4gaejgGtTaxkSY2VvomNciC/GBnub1MHAWOiOY2Nj7JqXVzsABsQC/jeuIfYUv0YgWALiWSOYhLIunfJHuSGkfp1+tHmt6Czg2tS6xthkL/AcHTGwhydeDPPDwB6ejAg1Jfb6HiqJjAyEn58XJBIdsYBJEvj7t0dkpO6YYHv0sBHvGrepqKiAQqFodFyhUBhdPLchnBRre348hdyiP0k8lRlEhvjDz7td0z/WpH6dTrRdzJko4NrU+hrbrnYs0qwFne8n22LXeDweNiTPglSaBbG4QSygWASpNAvJ619rVG+NYBhyOYWqsyfw59GfUHX2BORySv+LCFbH398f1dXVjY7//fff8Pc371rIyW3QV+P3AiAlJsyBx3NE8pLRGD9vF8RiEeLi4lWp+6R+nW6auoAzVcDVVHsI5mPPtdhiYgZg754VeDs2BQKBQHXc3799o7IdumBiOzTCry0Ol/9N65zG0D/Ux6ySHuUnclGc/gFqqq+qjrm6t0dIzJt4UNsRjx/9S4eZBAZQKBRwcHBodPzu3btwcnIya25OirUrV66goqICEkkixs/bRWqtmUjMiEDs2TIFsWuzNX+sSf06regTRkwWcCVYD7oEGxtj12JiBkAkitDbwYBgGOUncnFoezyio4VISPhOdQOcmJiIrO3x6BYxH22eMa+4KoF+Fi5cCABwcHDA8uXL8dRTT6meoygKRUVF6NOnj1lrcFKsqZeYEItFWLTuB4iG9SReIBOIGREI0bCepINBExjqvWK6gCvBeli6s4Ql4fF4GDSoj8mvV8au2VPCgSneNbmcQnH6B4iOFiIzM0PlXQ8LC0NmZiZEIhF+yUuFq8e7TJhMMIOSkhIA9Z61srIytGjRQvVcixYt0Lt3b8TGxpq1BifFmhJliQmBQABZ8UUMCu1sbZNsEh7Pkbx3DTBle1G9gGtGZqbGVihdBVwJ1sWet0XNRT3hwB6Em7GC7fr5k6ipvoqEhO+0hkHEx8dDKhWA70Uy7NnGL7/8AgCYPn06tmzZgtatW9O+BqfFGkBKTBDow9z4L2UB14kf1RdwjYtXiwOUSCDNykLanP6MZjESmMccwcbGrVAmsBdvmzGC7d+amwD0h0Hcr21cu47ADnbu3Imff/4ZP//8M27cuNEo+e6zzz4zeW7OizVSYoJgDnQH6CsLuC7enQeBQKo67u/Bp72AK8F6EA+bYdiDt81QwfaUqxsA/WEQznzttesI1mf16tVYtWoVQkJC4OXlpTXZwFQ4LdbkcjkkElJigmAcTGdQWrKAK8F6EMFmHLZcSNcQwebZtTdc3dsjMTERmVrCICQSCVzdO8CjM0ncYivbtm3D559/jqlTp9I+Nyd//ZX1gEQiEaRSKf43nCQXEPRjyVpklizgSrAepvw9sa3mGsEw9BXMdXTkISTmTWRlZUHUoI+tSCRCVlYWQmLmwtGRZNqylYcPH2pURqATTl4BvL29IRAI8NtvvyEkpC++++k3UiCXoBNSMJZAINCBPsHmFzwIQ16TQFZ0QqOPrayoBENek8AveJBlDCWYxMyZM/HNN98wMjcnt0E/+eQTdO7cGZGRkTh69CjJBiXohIg0AtOQ7VB2EeHXFgAYK6yrb0vUL3gQfPtE4vr5k/i35iaecnWDZ9fexKNmA9TV1WH79u04ePAgevXqhebNm2s8v3HjRpPn5qRYGz9+PPj8+oQCkg1K0AYRaQRLQgQbO1AKNeW/rSXYHB158OoWzMjaBOY4deqUqvhtw77Z5iYbcFKsqUOyQQnqEJFGsBbGCDaulPBoCJNJBupCreExJkSbckvUnNZUBHahrLfGBJwWa6ThOEEJEWkENkA8bNZBm1Br+DyTXjZdECFHUMLJBANlho1YLIJUmoX1i0eRbFCOQpIHCJbknx/+0juG/D1aFn1CzdhxdNI/1KfRIzykg8XtYAtbt26Fv78/nJyc0LdvX8hkMp1j09PTERUVBXd3d/D5fISHhyMnJ0fn+G+//RYODg4Qi8Vm2SiTyTBlyhSEh4fjypUrAICvvvoK+fn5Zs1rlkJJSkqCg4MDFixYoHOMoW/Ypk2b0K1bNzg7O8PHxwdvvfUW6urqVM8/fvwYy5Ytg7+/P5ydndGpUyesXr26UYVgQ1Bmg54uPUIajnMUItII1uDpUZ30jiGeNfMxxFOmfBg7r6mvJZhHWloaFixYgISEBJSUlCAyMhKjRo1CRUWF1vF5eXmIiopCdnY2jh8/jsGDB2PMmDGqPp7qXLp0CbGxsYiMjDTLxu+++w4jRoyAs7MzSkpK8ODBAwD1DiKJRGLW3CZvgx47dgzbt29Hr169mhynfMMkEgnatGmDnTt3YsyYMSgqKkJQUBAA4Ouvv8bSpUvx2WefQSAQ4Ny5c3jllVcAAO+//z4AYO3atfj444/xxRdfoGfPniguLsb06dPh6uqK+fPnG2X7DskL6OzTjjQc5yBEoBEItosx8WqWEFPa1mBqu5TrbNy4ETNmzMDMmTMB1Dt4cnJysG3bNiQlJTUav2nTJo3/SyQSZGZmYv/+/SrtAQAURWHy5MlYtWoVZDIZbt++bbKNa9aswccff4xp06bh22+/VR0XCARYvXq1yfMCJoq1u3fvYvLkydixYwfWrFnT5FhD3rDCwkJERETgpZdeAgD4+flh0qRJOHr0qOp1ysKA0dHRqjGpqakoLja+QOQzbq1RVV0LWfFFItg4BBFqBHuBi8kFttK9oCmRSIRcY2prNSsxtGzZEi1bttQ49vDhQxw/fhxLly7VOD58+HAUFBQYtI5cLsedO3fQtq3m57N69Wq4u7tjxowZTW6rGsLZs2cxYMCARsf5fL5ZIhAwUazNmTMH0dHRGDZsmF6x1hBtb1j//v2xa9cuHD16FM8//zz++usvZGdn4+WXX9YY8/HHH+PcuXN49tlncfLkSeTn5zcSg4Yw5rWdqn/7ebdD8pLRZCvUjiEijWAr0LUFao6wUe/HaQlsRYTRAR3evru1ls8L7Mw/Bj7fhdY5a3EPAODjo5lgsWLFCqxcuVLj2M2bN0FRFDw9PTWOe3p64tq1awatt2HDBty7dw8TJkxQHTt8+DA+/fRTlJaWGn8CWvDy8sKFCxfg5+encTw/Px+dOukPgWgKoz/1b7/9FidOnMCxY8dMWlDbG/biiy+iuroa/fv3h0KhwOPHj/HGG29oqOglS5agpqYG3bt3B4/HA0VRSExMxKRJk3Su9eDBA9WeMfBEwR88eBChoaE4ffo0JJJEjJ+3i8Su2SFEpBEIxqMunugWblwSZgTDqKysVNU9BdDIq6ZOw1plCoXCoPplqampWLlyJTIzM+Hh4QGgPo5sypQp2LFjB9zc3Ey0XpNZs2Zh/vz5+Oyzz+Dg4ICrV6+isLAQsbGxeOedd8ya2yixVllZifnz5+Onn36Ck5OT0Ytpe8MAIDc3F4mJidi6dStCQ0Nx4cIFzJ8/H15eXli+fDmA+uDCXbt24ZtvvkHPnj1RWlqKBQsWoH379hoeOHWSkpKwatWqRsf79euHVq1aISwsDBkZmRCLRVi07geIhpEeofYAEWkEXVByOfLPVqOq5j68XJ3Rv5s7a/quGupV07cFSqcgMle4EXFG0Aefz9cQa9pwc3MDj8dr5EW7ceNGI29bQ9LS0jBjxgzs2bMHw4YNUx3/888/UV5ejjFjxqiOKRMWmzVrhrNnz6JzZ+O6Gi1evBg1NTUYPHgw6urqMGDAALRs2RKxsbGYO3euUXM1xEGhUCgMHZyRkYFx48aBx3vS9oKiKDg4OMDR0REPHjzQeE6dtLQ0TJ8+HXv27FHFnSmJjIxEWFgY1q9frzq2a9cuvPbaa7h79y4cHR3h4+ODpUuXYs6cOaoxa9aswa5du/DHH39oXVObZ83Hxwc1NTUafxyFhYUQCAQ49NUs0nLKhiEijdAU+4orsHj3SZTfeBIj4+fBx7oJvTEuxNeKltXDRrHWFLrEG5sEmtJGNtlkLndraxHs+0yj6xgT1NbWwtXVFTW399O/DVp7D65txhh8HqGhoejbty+2bt2qOvbcc89BJBJpTTAA6h1E//d//4fU1NRGJTnq6upw4cIFjWPLli3DnTt3sHnzZjz77LNo0aKFUedUUVEBb29v1NXV4ffff4dcLsdzzz0HFxcXVFZWwtfX9N8ZozxrQ4cORVlZmcax6dOno3v37liyZIlOoab+hjUUagDw77//wrHB3S2Px4NCoYBSS+oa01TpDm2BitogLadsFyLQCIawr7gCEz/KhzA6GqkJCQgICKgPg0hMxMSPspA2pz8rBJu5WFKUsF0AqYtJ9X8zYbcl4/yUsV5cY+HChZg6dSpCQkIQHh6O7du3o6KiAq+//joAIC4uDleuXMGXX34JoF53TJs2DZs3b0ZYWJjKK+fs7AxXV1c4OTmprv1K2rRpAwCNjhuKv78/qqqq4OHhgZCQJzdVt27dgr+/PyiKMmlewEix1rp160Yn4eLignbt2qmOG/uGAcCYMWOwceNGBAUFqbZBly9fjrFjx6oE4JgxY5CYmAhfX1/07NkTJSUl2LhxI/7v//7P5JNXQlpO2QZEmBFMgZLLsXj3SQijo5GRmam66QsLC0NGZibEIhGW7M7D2GBvq22J0uVVI+gXTnR52yydiMF1Jk6ciFu3bmH16tWoqqpCQEAAsrOz0bFjRwBAVVWVRs21lJQUPH78GHPmzNHYkXv55Zfx+eefM2Kjro3Ku3fvmhQ6pg7taSWmvGHLli2Dg4MDli1bhitXrsDd3V0lzpR88MEHWL58OWbPno0bN26gffv2mDVrltlBe6TlFPsgooxAJ/lnq1F+oxapCQmNvPOOjo6Ii4+HQCBF/tlqDOzRdPwLm7GWp4uiKBQXHEb19Wtw93wGIYIInbssTGKseDJVtBGRZj1mz56N2bNna32uoQDLzc01en5TRdzChQsB1CdAvPPOO3jqqadUz1EUhaKiIlWDd1MxW6w1fENMecOaNWuGFStWYMWKFTrHtG7dGps2bTKpVEdDjh49qsoGTUqSQCrNwp4tU0hygZUhIo3ABFU19wHo3tpQhUH8N87S2HLHgpzvM7B2WRwuV1xSHfP27Ygla5IwYqzYYnY0JaD0Nb03RLSxRaApLhRDcbdO/0CCRVF2RVAoFCgrK9OIdWvRogV69+6N2NhYs9bgZCP3qKgo1b/9fdxI2Q4zoSg5ZMUXUVVdCy93vtGFholIIzCJl6szgPpwh7CwxhdkVRjEf+PYCtu2QHO+z8C8lydDKBRiT9q3T+IAJRLMe3kytnzxNeOCTZ9Ia/hvY0QbEwJN3SaC/fDLL78AqI/h37x5MyOJH0Zlg9o6ysyW/duno/ZunUnCgqBJek4ZYtdmo/zyLdUxYwoNE6FGYBpKLkf3pVkIfH6ARswaUB8GIRaJcPpoHs68F23xmDVjvGpNCQ1Lb4FSFIWooAAE9e6FjIyMxu+pWIzSU2X46UQZo1uihoo1wPJilylhVnu3Dm2C3+FcNijX4aRnLTLEH/xW5gX7EeqF2vh5uyAURiN1j1qGnYGFholQ0w2b64HZGjxHR6yb0BsTP8qCWCRCXHy86m81SSKBNKs+G5TN7y/bvGrFBYdxueIS9qR9qz0OMC4OAoEAxQWHERrZuP0OXZyvDdMp2By6hFjFk0W8Z9zm559/xs8//4wbN240qlbx2WefmTwvJ8UaYP7WHdehKDli12ZDKIxGRkaDDDsDCg0ToaYbttcDs0XGhfgibU5/LN6dB4FAqjru78G3+bId1kgsqL5en9WvLw5QOc5aKAWbJcQuEWmEVatWYfXq1QgJCYGXl5dB3RUMhZNi7fuDv+GdLQdN3rojALLiiyi/fAupe3Rk2MXFQyAQQFZ8sVGhYSLUdGPpemDKbTgufCbjQnwxNtibNR5LWy7X4e75DAD9cYDKcUzSlHcNsMz7R4QaAQA+/vhjfP7555g6dSrtc3PSlTRtcRoCg8JRWFiIO3fuoLCwEIFB4Rg/bxfSc8r0T0BQFRDWm2HXoNAwF0SBqTSsBxYWFvakLVpmJoTR0Viy+ySoJgpBG4O6WLDljERj4Dk6YmAPT7wY5oeBPTxZvfUJsKdbQUNCBBHw9u0IiUTSaKunvhxSEnw6+iFEEGEV+yyF4kKxxYQaVXCy/lF02iLrEYzn4cOHEAgEjMzN7l8qhhg5cgQyMhpcDDMyIRRGY9G6H0BR9FwM7RllAWHlHXRDtBUaJkKtaZT1wOKbqAd28UYt8s9Wm70WV8QZgRl4PB6WrEmCVCqFWCzWuPEVi8WQSqVY/K7EKvXWLAVTIk0pyh7ml+DQpz/h642ZOPTpT7TdpBGYY+bMmfjmm28YmZuT26CxsYuM3rrjMtpElkAuh593O0gkiRoxa4D2QsNEqOnHUvXAdAk1nqA3+ZwshCFima1eNSUjxoqx5YuvsXZZnIY3waejn0XKdqijbyuUTugWadq+c03FrQ7t6UXr+gT6qKurw/bt23Hw4EH06tULzZs313h+48aNJs/NSbHWo0cPrcdJj9DG6Lp48xwdsU78nPYMuwaFhokAMAxL1APTJxKIYCMYw4ixYgyLHsOKDgaWgE6hput7pi9udeer7O7JymVOnTql6lTQcNfJ3GQDTtZZO3jwIIYOHdro+cLCQggEAhz6ahbnPWuGXrC13QH6e/CxlmQuGg3T9cCM2fokgo057MGrxlaY9K7RJdSa+m4Z8htw6sivuHTzDqmzxjE46VlLTl6PwYMH69264yrGXKjZlmFnyzBZD8zYGDXiYbMedGQvHi7/W/XvCL+2Zs/HZSzhTVNiaB9bAvfgpFj78ccciMUixMXp3rrjIqZenJUZdgTzYaIemKnJBESwsRNjvWpK4UZEm/FYwpumjqFxqwT2cvv2bXz66ac4c+YMHBwc0KNHD8yYMQOurq5mzctJsbZ01mB89l2DiyHHe4SSizJ7MMdbSXeWZ8P5yN+J8dDVUspcDpf/bfeCja5EA0uLNCWGxq0S2ElxcTFGjBgBZ2dnPP/881AoFHj//fchkUjw008/ITg42OS5ORmzpo5b21aYOyUcCW8M5aRHjVx8bRc2lN9g6u+nqXOz1t+sJd5vQ8SaIZ419W1QbdizaDNXrNEh1Ez9GzUkZq30159Reec+iVljIZGRkejSpQt27NiBZs3qfWGPHz/GzJkz8ddffyEvL8/kuTnpWTt48CBCQ0NVfSxXfZCFgK7PcM6rRoSacTB1sTbkc2CDMNMG3R0QDDlPJoUcW99nY9An1NTH2LNoMwVzhZrZf38GxK3ufDUMr2wvNGsdAjMUFxdrCDUAaNasGRYvXoyQEPO85pwUa/369dMohquvj6U9wrRQs3YjcrrXZ/Iibg8CQf0cTPnbous9sIf3sinozgLlwtaooVhbqCnRF7daX2eNiDU2wufzUVFRge7du2scr6ysROvWrc2am5NiTR06i+GyrTm8LnuYFmrWbkRO9/r2LgDoxlBvG3lf2QGbvGyGeAWZsNMcocbE72lTcau19x/Rvh6BHiZOnIgZM2YgOTkZAoEADg4OyM/Px6JFizBp0iSz5ua8WAPoKYabnlOG2LXZrGkO35Q9IvMEfpNYuhE50+sTQWE6urxt5D1lJ4YIJXuEbUJNCcmytz2Sk5Ph4OCAadOm4fHjxwCA5s2b44033sB7771n1tzc2PPTg7Y+lsaQnlOG8fN2saY5vD579hVXMLKupRuRM70+ERX0wRP0Vj0IBHuAxPwSGtKiRQts3rwZ//zzD0pLS1FSUoK///4b77//Plq2bGnW3JwXa+YWw6UoOWLXZkMojGZFc3i99jAomCzZiJzp9YmoINgiXPCO0XmOpnjVlI3WCQQlhw4dwnPPPYfa2vrduaeeegqBgYHo1asXHj16hJ49e0Imk5m1BifF2tGjR1XeJrFYBKk0C+sXjzIpvkxWfBHll28hPl6HQIiLx8XKm5AVX6TLfPPsYVAwWaoROdPrE6FGsAZM1lgjNMZUoUYgNGTTpk149dVXtZYgcXV1xaxZs8xq4g5wVKxFRUWBz+dDIBDgdOkRs4rhKuPc9AoECzWHN9geBgSTekFHbdDRiJzp9YlQIxDsH7qF2j8//KV6ELjHyZMnMXLkSJ3PDx8+HMePHzdrDU6Ktf3bp+PrjZNw6KtZOPdTrFkJAMo4N70CwcR4OMbsYUAw9e/mDj8PPiSJiZA32GaVy+VIkkjg78FH/27utK9Nx/pEqBEI9g8TQq2p/xPsn+vXr6N58+Y6n2/WrBmqq83bzeKkWKOTyBB/+Hm3g0SiQyBYuDm8XnsYFEzKgo7SrPqCjurJDWKRCNKsLKyd0JuxemvmrE+EGoHt0F1jzZYxNW7NWKGmLz5NlzAjXjZu0aFDB5SV6U4kPHXqFLy8vMxag5NibcxrOzF5YSqGTE1B16j1ZmVr8niOSF4yGlJpFsTiBgLBzHg42u2xgGBSFnQsO5oHgUDwZLv5aB7jZTvYsD6BYC24kFxgDqYItaYwRIwRwcYNRo8ejXfeeQd1dXWNnrt//z5WrFgBoVBo1hqc7A3asN2UVJpldhN3bXXN/H3csH7xKNbUWfP34GOthQrT2loHA+JZI1gTfckFdPQDtTd0FcdtqjeopQXb06M6GbWeIdTef4R2b+wmvUFZxPXr1xEcHAwej4e5c+eiW7ducHBwwJkzZ/DRRx+BoiicOHECnp6m183jpFhT/+OQy+UQi0U4XXoE536KNcsDxsYOBr9+ftBqgslWIEKNYE2IUDONpjoZ0CXYDMn+1CXYmBBqABFrbOXSpUt44403kJOTA6WscnBwwIgRI7B161b4+fmZNT/nOxjQ2W6Kx3M06/W0U1RGKmATCA1g200VwTSa6mt6vjasScHGNEwJNQJ76dixI7Kzs/HPP//gwoULUCgU6Nq1K55++mla5ue8WAMsX17DEpB6QLYLHfW2zG1Kba9obcPm54UNybMQEzPA4u8b8apZHocuIbR+zk+P6qThXSNCjds8/fTT6NevH+3zkttJWL68BpOQ6trGwbYtULoKozp0CSFFVhuw79S/2tuwBfbFC+NXIT09T/W+kffO9qEje9bQ3welQCNCjcAUnPesWaO8BlMQkWa7MCUO1Oe1lNdI37lYww6KovD28GmqNmzK7h7KNmxisQixi7ZDJIoAj8fTeD1T9tqLVy2/qBIA0D/Ux8qWGA7d3jWACDUCs3BSrB09elSVDZqUJFFlg9py3AoRaraJJT04dIkPc21mUgTpsk0mK0N5eRVSU3W3hRMIBJDJyjBoUB+L2asLW6ipphRpACCXU9jzZSb+rbmJ0LAeeDY4FI7/iV5rYu3YNQKBLjgp1qKiolT/9vdxM7tsh7Vhg1CzdqkOU7D2FmhTooeiKMhkZaiqugUvr3aIjAxUeXzoXFebALGUgKTT66fP5qqq+hg1vW3Yqm5pfV59DTpEm61vs6oLtfITuShO/wA11VcBALmfAu4dfDBh4XKEDB1tLRP1woR3jcBdHj16hOHDhyMlJQXPPvss7fNzUqzt3z4dtXfr7CITjA1CbV9xBRbvPonyG08SNPw8+FhnoZputoa+C3V6eh7ejk1BeXmV6ph6ELwlbbEUpgghY2z38moHoD4+NSyssddKFbf63zhD1mXqQm+oV81aW6ANhdqh7fGIjhYiIeE7BAQE4PTp00hMTMTW2FmYnZzCqGBrKiNUCfGuESxB8+bNcfr0aTg4ODAyv+2qFDOIDPHHJGEQBoV2tmmhxgb2FVdg4kf5CHx+gGbQ9vMDMPGjfOwrrrC2iazCEKH2wvhVCAzsqzMI3p4xJLjflASAyMhA+Pl5Nd0Wzr89IiMN97CbmozQ1Hg2b3/mF1U22vosTv8A0dFCZGZmICwsDK1atUJYWBgyMzMRHR2NXe+tQl5hufWM1oMhn521PfAE22HatGn49NNPGZmbk541e8HaXjVKLsfi3SchjI5GRmaDoO3MTIhFIizZnYexwd6s2xK19A+wIRcFiqLwdmyKUUHw9kpD75W5HkAej4cNybPwwvhVEItFiIuLV3mBlHGre/esMPl9bWgf09trlvaqqYs0JdfPn0RN9VUkJHynNQ4wPr4+DvD6+ZPId+RZNQGBeNcIluDhw4f45JNPcODAAYSEhMDFRbOQ8MaNG02em4g1gsnkn61G+Y1apCboCNqOj4dAIEX+2WpSnNcAzAmCt1fo3KaNiRmAvXtW4O3YFAgEAtVxf//22LtnBa1bzGzZXqaL/qE+jQTbvzU3AeiPA1SOYyuGxK7xBL2tfnNMYD+nT59GcHAwAODcuXMaz5m7PUrEGsFkqmruAzAgaPu/cYSmoSMIntA0MTEDIBJFMJa8YQ7GbIFG+LW1uHetoWB7ytUNgP44wNCwHujez/plPZryrrFRsNli0hbX+eWXXxibm4g1gsl4uToDMCBo+79xhKahMwieoBsej8cZzyTdKLcy84sq4dm1N1zd2yMxMRGZamEQQH0coCQpCR7evng2ONRa5hoFmwRbU0lbQ3t6Mb4+gX0QmW6jsMEl37+bO/w8+JAk6gjalkjg78FH/27uVrKQHRi6JcZEEDyBwAT9Q33g6MhDSMybyMrKgkgk0kiIEYnFyJJKMf6tZayot2YohiYcMBnzqi9pa39J4/hBrrB161b4+/vDyckJffv2hUwm0zk2PT0dUVFRcHd3B5/PR3h4OHJycjTG/Pbbb/jf//4HPz8/ODg4YNOmTWbbKJPJMGXKFISHh+PKlSsAgK+++gr5+flmzUvEGsFkeI6OWDehN6RZWRA3+LEWi0SQZmVh7YTexHVvIMogeKk0C2Jxg/dTLIJUmoXk9a+xYsuOQC+mZIHqK1nBNP1DfTDljakY8poERSUnIRAIwOfzIRAIcLTkJONlO5jC0JsrJgRbw6Qt9QzbjMxMCKOjsSL9NO3r2gJpaWlYsGABEhISUFJSgsjISIwaNQoVFdorDuTl5SEqKgrZ2dk4fvw4Bg8ejDFjxqCkpEQ15t9//0WnTp3w3nvv4ZlnnjHbxu+++w4jRoyAs7MzSkpK8ODBAwDAnTt3IJFIzJrbQaFQKMy20Eaora2Fq6srbp9YDX4rJ2ubYxZs8Kwp0eay9/fgYy2L66xZIhvU1CBzbXXW/P3bI3n9a7TXWSOwA1NLdrCh3RQAyCkK504U4fbNG2jj5mGxDgamCFZDskKNyeal87f41zPXMWztQRQWFmoNhSgsLFQlx9TU1IDPZ7aftfKaWXN7P/h8F/0vMGrue3BtM8bg8wgNDUVwcDC2bdumOtajRw+IxWIkJSUZtGbPnj0xceJEvPPOO42e8/Pzw4IFC7BgwQKDz6EhQUFBeOuttzBt2jS0bt0aJ0+eRKdOnVBaWoqRI0fi2rVrJs9NYtYIZjMuxBdjg705GwxLd+Yfm4PgCQRtOPJ46N5PoH+gjWBM4WM649gMTdriGg8fPsTx48exdOlSjePDhw9HQUGBQXPI5XLcuXMHbdsy55E+e/YsBgxofEPN5/Nx+/Zts+YmYo1ACzxHR06U57BUSQYSBM8dzCmEa42sUC5haEsqugSboUlb9kRtba3G/1u2bImWLVtqHLt58yYoioKnp+Y1xtPT02Bv1YYNG3Dv3j1MmDDBPIObwMvLCxcuXICfn5/G8fz8fHTq1MmsuTkp1mTFF+2m3RTBcthb7SwCgaAfYwQbYN62qHrSVoaWDNskiQQd3Vrj0s07Jq9hCoq/SqCgOXRIcbcOAODjo1nWZcWKFVi5cqXW1zSsVaZQKAyqX5aamoqVK1ciMzMTHh4ephlsALNmzcL8+fPx2WefwcHBAVevXkVhYSFiY2O1br0aAyfF2pjXdqr+7efdDslLRtt0I3cCgUAgGIYp3QyMafquHg9rrHBTJm1N/Kg+aSsuXq3ThkQCaVYWdr4ahle2Fxo1L5uprKzUiFlr6FUDADc3N/B4vEZetBs3bjTytjUkLS0NM2bMwJ49ezBs2DB6jNbB4sWLUVNTg8GDB6Ourg4DBgxAy5YtERsbi7lz55o1NyddSgcPHnySDh0UjvHzdiE9p8zaZhkMm5ILuALxqhGYgM29QAmamPIboCzzYUxC07gQX6TN6Y+yo3kaGbanj+YhbU5/jAmyfoFhOuHz+RoPbWKtRYsW6Nu3Lw4cOKBx/MCBAxrdSBqSmpqKV155Bd988w2io6Npt70hFRUVePfdd3Hz5k0cPXoUR44cQXV1NVavXq0za9VQOOlZ69ev35N06P96Li5a9wNEw3qSLVECgWBTkLg1y2GMh60hxnjcmkraqr3/yKT1bZ2FCxdi6tSpCAkJQXh4OLZv346Kigq8/vrrAIC4uDhcuXIFX375JYB6oTZt2jRs3rwZYWFhKq+cs7MzXF1dAdQnLvz++++qf1+5cgWlpaVo1aoVunTpYrSN/v7+qKqqgoeHB0JCnoj7W7duwd/fHxRFmXz+nBRr6mj0XCy+iEGhna1tEoFAIBBYijmCTYk+TxtVcJIzSVuGMnHiRNy6dQurV69GVVUVAgICkJ2djY4dOwIAqqqqNLxXKSkpePz4MebMmYM5c+aojr/88sv4/PPPAQBXr15FUFCQ6rnk5GQkJydj4MCByM3NNdpGXZXQ7t69Cycn82L+OC/WALWei9W1ekYSCAQC+1DWG+OSh82aRYHpEGxN0ZSY492tA7CbsbXZzOzZszF79mytzykFmBJDxJafn59OgWUMCxcuBFCfAPHOO+/gqaeeUj1HURSKiorQp08fs9YgYg1qPRfdmS0wSCAQCEqYiFezlS1Rc+20dvcGgHnBRrAdlF0RFAoFysrK0KJFC9VzLVq0QO/evREbG2vWGpwXa6qeiz5uiAzxN2su9QBUpu+6SJKBeVAFJ40K+lVcKCZJBgSbgC2CTZ+gMkRwaTsPc4WasZmgTUEEGwEAfvnlFwDA9OnTsXnzZkY6S3BSrB09ehShoaH16dBJEkilWdizZYrO5AJTLtJc+RL/88Nfesc8Pcq8YoAEAsE4GgoausWbpTxbbPCgEQiGsnPnTv2DTISTYi0qKkr1b38fN+zZMkVrnTVzPSm2LtgMEWLmzENEHIEtmFJ7y5Ygooc5bP13nkA/v//+OyoqKvDw4UON42PHjjV5Tk6Ktf3bp+vtYEDXlpetfJHpEmbmrmlJAUe2QrlHU3FiyucsIdpIfTX7wlZ+5wnM8tdff2HcuHEoKyuDg4ODKnlB2WWBlO4wksgQf/CbaJ3BhQuyNcSZIajbxUbPGxFstoOpgsiSoo1gWZj8TOn8XSDCzzaZP38+/P39cfDgQXTq1AlHjx7FrVu38PbbbyM5OdmsuTkp1prqDcrEhZhtd11sFWoNUdrJNtFGBBs7odtbpT4fEW4ES9LU74tD7T0LWkIwhsLCQhw6dAju7u5wdHSEo6Mj+vfvj6SkJMybN0+VNWoKnBRrunqDMnkBZotgsxWhpg6T3jZjt0KVEMHGDiy1nUi8bQQCQR8URaFVq1YA6vuZXr16Fd26dUPHjh1x9uxZs+bmZG8lbb1B953619pmEQzgnx/+Uj2sDRvEN9c4Xxum8bDW+gQCgdCQgIAAnDp1CgAQGhqKdevW4fDhw1i9ejU6dTLP0cBJsdawN6hQGI3YRdvNCv4zBGt7YtggcOiEDaKNCDbLQKdIoigKRbI8SPfuRpEsz6TvvTm2ELFnHYhXlMA0y5Ytg1wuBwCsWbMGly5dQmRkJLKzs7Flyxaz5uakWFNH2Rv04sWrkMnKrG0OwQTMFWzmFhgmgo1Z6BQ3Od9nICooAFPHjMTCma9g6piRiAoKQM73GVa1i0Ag2D4jRoxATEwMAKBTp074/fffcfPmTdy4cQNDhgwxa27OizVArTdo1S0rW0IwFeJhI+gj5/sMzHt5MoJ690JhYaEqFCKody/Me3kyEWx2DPGqEZjkwoULOp9r27atqnSHOXAywaAhqt6gXu0YX4uuRAPScorABejc+ly7LA5CoRAZGRlwdKy/T60PhciAWCzGuuXxGBY9BjwejxYbiUAgELjBs88+iw4dOmDw4MGqh5+fH61rcF6sqXqD+rdHZGTjLgYE2+GfH/4yOVvU1KxQdUiGKH3Q7bEqLjiMyxWXsCftW5VQU1IfChEHgUCA4oLDCI0cQMuaXPO6URSF4oLDqL5+De6ezyBEEGG08GUCIpoJTPPrr7/i119/RW5uLubOnYu6ujr4+vpiyJAhKvHWoUMHs9bgpFjT1ht0754VrPhhsVUouQJHbtbi+v1H8HRujjA3PniO5rt+uQ5FUZDJylBVdQteXu0QGRlo93+nTIic6uvXADwJeWiI8rhyHME4cr7PwNplcbhccUl1zNu3I5asScKIsWKr2UWEGsESREZGIjIyEsuWLcOjR49QWFiI3Nxc5ObmIjU1FQ8ePECXLl3MKt/BSbGm0RvUvz327lmBmBh67qa5iPTyLaw8dRkVd56UP/Ft/RRW9vKG0Jv5rWV1zPGusY309Dy8HZuC8vIq1TE/Py9sSJ5lt3+vTHmj3D2fAVAf8hAW1ngNZSiEchzBcJSxgEKhEHvSvkVAQABOnz4NiUSCeS9PxpYvvraKYCNCjWANmjdvjgEDBqBfv34IDw9HTk4OduzY0WRcmyFwMsFAul+Cb75OwC+HNuL8uS8sfuGzp60y6eVbmFFwHr0HDtEI2u49cAhmFJyH9LLtJG3QEQNIV6JBenoeXhi/CoGBfTXe18DAvnhh/Cqkp+fRsg6bYHLbMEQQAW/fjpBIJKrUeiX1oRBJ8OnohxBBBGM22CMNYwHDwsLUyiJlQCgUYt3yeMbLItkzDWsL/lnbz9omEbRQV1eHQ4cOYfny5YiMjMTTTz+NefPm4e7du9i2bRsqKirMmt9Boew0ygFqa2vh6uqKmtv7wee7WNUWOi7qxooLujMmKbkCoT+eQu+BQ5CRmakRCySXyyEWiXAq7xCOjOhl8S1RU71r5satAeaLcYqi0KXrNAQG9kVGhpb3VSzC6dMncP7cF3azJWqJ+C51D1BcXJzKA5SUlASpVGo1D5AtUyTLw9QxI1FYWKjVY1lYWAiBQICv9v9IWyygIdiKV82Uv/u7tbUI9n0GNTU14PP5DFj1BOU18/aJ1U320zZp7rt1aBP8jkXOg2kGDhyIY8eOoXPnzhgwYAAGDhyIgQMHwtPTk7Y1OLkNai9YOyP0yM1aVNz5F2kJCdqDtuPjIZBKceRmLSI8XC1qm6nboWxINJDJylBeXoXUVB3va1w8BAIBZLIyDBrUxyxbrY0lg/BHjBVjyxdfY+2y+mQCJT4d/YhQMxE2xgKySahxLcmEqxQUFMDLywuDBw/GoEGDMGDAALi5udG6BhFrBJO5fv8RAP0/1MpxBMNQ1vvT977ael1Aa1zIRowVY1j0GFZmLdoibIsFtIZQY/LvWFuGLYF93L59GzKZDLm5uVi7di0mTZqEZ599FgMHDsSgQYMwcOBAuLu7m7UGEWtWgi2N3c3B07k5AP0/1MpxlsaayQbmeNeU9f70va+WqAvIFNb0OPB4PItuydkz6rGA6vXrAMvHAjIt1Cz9N6srw3ZewnKL2kHQj4uLC0aOHImRI0cCAO7cuYP8/Hz88ssvWLduHSZPnoyuXbuqfrtNgZMJBgR6CHPjw7f1U0hcs0Zr0LYkMRHtWzqB/8djK1loGtYuNhwZGQg/Py9IJIk6guFtuy4g2RoynK78I40ebILH42HJmvqYP7FYrJEMIxaLIZVKsfhdCeOeSybel4aB/ZakqW4bi2fNtKgtBONxcXFB27Zt0bZtWzz99NNo1qwZzpw5Y9acxLNGMBmeowNW9vLGjOxsiEUixMXHP0nbT0xEVlYWVj3dHoEDbNcDZA14PB42JM/CC+NXQSwWIS4uXi0YntQFtHf0CQ9dz1tLBFszFpApkWZN9HXbiI6Oxo8//mhVGwmayOVyFBcXIzc3F7/88gsOHz6Me/fuqboafPTRRxg8eLBZaxCxRjALoXc7fCoAVv56CAKpVHW8I/8pfBrxrMXrrLEJc7ZCY2IGYO+eFXg7NkXjAkjqAhJ0YYhwYUqIWDoWkG0eRjrR123j7bffJmKNZbRp0wb37t2Dl5cXBg0ahI0bN2Lw4MHo3LkzbWsQsWbDWHu7TonQux1GtW9LOhjQTEzMAIhEEZzrYMBlmBYhps5viMjTFQtoS8LK2l41QH+GbY8ePSxpDsEA1q9fj8GDB+PZZ59lbA1OijWZrAy1tfesfvGzhyQDJTxHB4uX57AFzC3jwePxbL48hzpsuBgSjMeWBJetoy/D1tzYJwL9zJo1i/E1OJlgIBwTj5cmJ2LwkIXo0nWaXVaDJ5heGJdu7EWQE5iFCCLrwpYbCX3dNjZs2GAlywjWhJNi7eDBg5xo36MO3d0LCMZBBBuBQDAEfRm2JF6Nm3BSrPXr10+tf10mhMJoxC7aTvrXERiFCDYCgZ2wxaumRJlhW3LyFAQCAfh8PgQCAUpPlWFdyifWNo9gBTgZs6aOrbbvYUtyAcE4zI1hI9gnZAvUerBNqCnRlWF7/949a5tGsAKcF2uAddv32FOSAcEwiGAjEAiGQLpt2BZJSUnw9PTE//3f/2kc/+yzz1BdXY0lS5aYPDcnt0EbYg/tewiasCW5QBdcFOhs9WBYG+JVsx7kb5JAJykpKejevXuj4z179sTHH39s1tycF2tyuRwSSSKeeaYdrlypRm5uqSp2zVqtRgjcgIuCjUAgEOyVa9euwcvLq9Fxd3d3VFVVmTU3J8Xa0aNHVdk1oaHP48cfc3Dt2i1MmZqkKufx4a5rGq9hUrCRLTHuQgQbgWAdyE04gW58fHxw+PDhRscPHz6M9u3bmzW3WWItKSkJDg4OWLBggc4x6enpiIqKgru7O/h8PsLDw5GTk9No3KZNm9CtWzc4OzvDx8cHb731Furq6jTGXLlyBVOmTEG7du3w1FNPoU+fPjh+/LjRdkdFRamya4qLj2PkyJEa6dGBgX0x7+XJyPk+Q+N1xMtGYAKuCDay3dcY8p4QCPbDzJkzsWDBAuzcuROXLl3CpUuX8Nlnn+Gtt97Cq6++atbcJicYHDt2DNu3b0evXr2aHJeXl4eoqChIJBK0adMGO3fuxJgxY1BUVISgoCAAwNdff42lS5fis88+g0AgwLlz5/DKK68AAN5//30AwD///IOIiAgMHjwYP/zwAzw8PPDnn3+iTZs2Rtsu3S/B7dt3sGjxDoSE1Jfv0GyWmwmxWIR1y+MxLHpMow4H52vDaP+RZTLRgNRYYz8k6YBAIBBsm8WLF+Pvv//G7Nmz8fDhQwCAk5MTlixZgri4OLPmNkms3b17F5MnT8aOHTuwZs2aJsdu2rRJ4/8SiQSZmZnYv3+/SqwVFhYiIiICL730EgDAz88PkyZNwtGjR1WvW7t2LXx8fLBz507VMT8/P1PMR2RkIE6cOI+qqpuIj0/Q2ixXWc6juOCw1mwcWxNsBPbDBcHWlX+EeKcJBIJd4uDggLVr12L58uU4c+YMnJ2d0bVrV7Rs2dLsuU3aBp0zZw6io6MxbNgwo18rl8tx584dtG3bVnWsf//+OH78uEqc/fXXX8jOzkZ0dLRqzPfff4+QkBCMHz8eHh4eCAoKwo4dO5pc68GDB6itrdV4KFGW6dDVLFd5XNlUVxtkW5RAN0SsE2wZiqKQm1uK1NSfNZK1uG4TRVEokuVBunc3imR5rHhfCMzRqlUr9OvXDwEBAbQINcAEz9q3336LEydO4NixYyYtuGHDBty7dw8TJkxQHXvxxRdRXV2N/v37Q6FQ4PHjx3jjjTewdOlS1Zi//voL27Ztw8KFCxEfH4+jR49i3rx5aNmyJaZNm6Z1raSkJKxatUrrc8oyHbqa5SrLeSib6jYFnV42Q71rPEFvUhhXB2wv26EPe/ewscG7RlFUo2KjDcMdbAGKoiCTlaGq6ha8vNohMjLQaueRnp6Ht2NTUF7+JOvNz88LG5JnISbGOrXCmrIpcJhl/gZzvs/A2mVxuFxxSXXM27cjlqxJwoixYovYQGCOhQsX4t1334WLiwsWLlzY5NiNGzeavI5RnrXKykrMnz8fu3btgpOTk9GLpaamYuXKlUhLS4OHh4fqeG5uLhITE7F161acOHEC6enpkEqlePfdd1Vj5HI5goODIZFIEBQUhFmzZuHVV1/Ftm3bdK4XFxeHmpoa1aOyslL1XGRkIPz8vCCRJGptlpuUJIFPRz+ECCIMOjfiZSPQieJCsV172Qy5uWHKG5HzfQaiggIwdcxILJz5CqaOGYmooIBGCUWWtMkU0tPz0KXrNAweshAvTU5UZbJbo89xenoeXhi/CoGBfRsla1mr97I+mwz5vM0l5/sMzHt5MoJ699KwIah3L61JbATbo6SkBI8ePVL9W9ejtLTUrHUcFAqFwtDBGRkZGDdunMadG0VRcHBwgKOjIx48eKDzri4tLQ3Tp0/Hnj17NLY3ASAyMhJhYWFYv3696tiuXbvw2muv4e7du3B0dETHjh0RFRWFTz550hdt27ZtWLNmDa5cuWKQ/bW1tXB1dUXN7f3g811UX2ahMBpxcfEICAjA6dOnkZQkgVSahS1ffG3SnY+5XjZDL9KGeta4lmBgrmeNkstR0JyPqupaeLnzERniDx7PulVu7NHT1tTNDVPeCOXFUygUIj7+yXdeIpFAKpU2+Z1nwiZTfyvUf7vi4xPUziMRUmkW9u5ZYTFvFkVR6NJ1GgID+2okawH1N75isQinT5/A+XNfWMzrZ4hNpadO46cTZYzZRFEUooICENS7FzIyMrTYIEbpqTKjbbhbW4tg32dQU1MDPp/PhOkqlNfM2ydWg9/KeAdNk3PfrUOb4Hcsch6W4NGjRxg+fDhSUlLw7LPP0j6/UVegoUOHoqysDKWlpapHSEgIJk+ejNLSUp1/cKmpqXjllVfwzTffNBJqAPDvv/82CvLn8XhQKBRQasmIiAicPXtWY8y5c+fQsWNHY05Bg5iYAdi7ZwXKyo5rNMs9ffoE9u5ZYfIPsLkeNiYvzJRcgcM3apB+6SYO36gBJTdYq3PCnn3FFei+NAtDpqZg8sJUDJmagq5R65GeU2ZVu+zRy6ZLqDDljaAoCmuXxUEoFCIjIwNhYWFo1arVfxngGRAKhVi3PF6rt4xNHhKKovB2bAqEwmhkZGQ2OI9MCIXRiF203WJeP5msDOXlVU0ma128eBUymeW+Q4bYVHmpHMUFjWti0UVxwWFcrriE+Ph4HTbEMW6DvbF161b4+/vDyckJffv2hUwm0zm2qqoKL730Erp16wZHR0edJcYMKRtmCM2bN8fp06fh4OBg9GsNwaiYtdatWzcKyHdxcUG7du1Ux+Pi4nDlyhV8+eWXAOqF2rRp07B582aEhYXh2rX6gH1nZ2e4uroCAMaMGYONGzciKCgIoaGhuHDhApYvX46xY8eqBOBbb70FgUAAiUSCCRMm4OjRo9i+fTu2b99u1hsQEzMAIlGEjrgP02NrlHFs1o4pUfeqSS/fwspTl1Fx51/VMd/WT2FlL28IvS3faott9uwrrsDEj/IhjI5GaoKmt2L8vF3Ys2UKYkYEWtwuJUrBZo9eNiUNBZVmSZ0MiMVinSV19KG8eO5J+1bnxVNbBjiTNpmCUoikpjadyS6TlWHQoD6M22NospYley/TkUBmLsq5rWmDPZGWloYFCxZg69atiIiIQEpKCkaNGoXff/8dvr6+jcY/ePAA7u7uSEhIUJUAa4ghZcOMYdq0afj000/x3nvvGf1afdC+t1NVVYWKigrV/1NSUvD48WPMmTMHXl5eqsf8+fNVY5YtW4a3334by5Ytw3PPPYcZM2ZgxIgRSElJUY3p168f9u3bh9TUVAQEBODdd9/Fpk2bMHnyZLNt5vF4GDSoDyZNGopBg/rQ9oP74a5rJseU0H1Bll6+hRkF59F74BANz0DvgUMwo+A8pJct28SebfZQcjkW7z4JYXQ0MjK1eysWrfsBFCXXPxnD2JOXraF3jUlvhKkXT7Z5SNgmjtSTtbRhjd7LhtpkSAKZqSjntqYN9sTGjRsxY8YMzJw5Ez169MCmTZvg4+OjM27dz88PmzdvxrRp01SOoYaolw3z8/PD8OHDMWnSJBQXm/Yb+/DhQ2zbtg19+/bFrFmzsHDhQo2HOZgt1nJzczVqqX3++efIzc3VeF65nan++Pzzz1VjmjVrhhUrVuDChQu4f/8+Kioq8NFHHzUqeCsUClFWVoa6ujqcOXPG7IrATKLcNgkMDGEs4JYn6G3QOEquwMpTl7ULkcxMCKOjsarssllbkMZsZ1rCHmPJP1uN8hu1iE9oYiun8iZkxRctZlNT2FMCgrpgY9IbYerFk20eEraJI0OStfz92yMy0nJeaboTyEwhRBABb9+OkEgkOmxIYtwGW6Bhea0HDx40GvPw4UMcP34cw4cP1zg+fPhwFBQUmLy2IWXDjOH06dMIDg4Gn8/HuXPnaE0wMLmDgb1jTtxZ09sm9d0RYhdth0hkmXIBR27WouLOv0jTJUTi4yGQSnHkZi0iPLTfgTSFsduZTNtjClU19wEY4K2ortX6vKlQlByy4osmJzNYqsyHpbbz1QWVuSV1GqJ+8dQW8K3r4smkTaagLkS0Bc9bWhzxeDxsSJ6FF8avgkgk0kjcUCZr7d2zwqLhH+o2icUinQlkTNrE4/GwZE0S5r08GWKxGHFxcWo2JKkSWmyhZAxVdBqUc3N657xfn0Hp4+OjcXzFihVYuXKlxrGbN2+Coih4enpqHPf09FSFVpmCIWXDjOGXX34x2RZ9cLKRe1PQUYJD/7aJ5QJunx7VCdf/+1LoEyLKccZgynYmk/aYiperMwADvBXu9GUtpeeUoWvUetYlMzTEEiUilN41Jr0RyounVCqFWCzW+HsVi8WQSqVY/K6k0cWTbR4SpRCRSrMgFosanIcIUmkWkte/ZnER4Obmih9//FEjWevYsUKLZqaqoyuBrPTUaZMz/Y1lxFgxtnzxNUpOnmpgQ5nFbGA7lZWVGiW2mmrL1DB4X6FQmBXQb0jZMGOoqKiArgIb6uFhpkDE2n/QWSfN0G0TS8WUeP53R6RPiHgaeedk6nYmU/YAppft6N/NHX4efEgSm9jK8XFDZIi/SfM3JD2nDOPn7UJgULjmNnlQOMbP26USbBQlR27Rn0iVliC36M9GMXNMe9UsXT/LVEFlKKZcPJm2yRT0ZbJbUhwp/0bCwvojNzcX2dnZ+P/2zj0sirr9/29Y5aC4lhwMFQTNs4goJSxgVCgq6K4kmnmq9Omkj3kgFbRQkyUPmfmUZQezPJCShAYk2pMkCNqDguE3fx4h1DCRUrTytDu/P2hXlt2FPc3OzM79uq69Lv3s7Mz92R1m3nN/7sOyZcsQHh6Gy5ftG3valISEoTh75gsc+H4ttm9bjAPfr8W+YxV2FUmxYxTYX3YCW77Zi7WfbMaWb/ba3QY+I5VKdV6GKv57eXlBIpHoedGuXLmi520zh9dffx1TpkzBjBkzEBQUhLFjx0KpVCI9PV3vPmAKgYGBqK2t1Ruvq6tDYKB19w7RL4OyUcjW1GWT5mJKbBmPFOYlhX+7NlCmpSF7t4FlE6USXaVtEOZlntfI0uVMtuyxBomzM1aND8aE93ONLptkrp9sk3prKpUaSSvztKUXDC2Tv7bqW6jUaixcvRdVjbyTAV08sWbhKLtkpTYtEWGv5XyNoFq5pCE7U4Nf1wCbeCNixygQEzfarA4GbNhkbT3G5jPZ7YOxc2TkyJFYsmSJ3UM+DKFJIAPYud6baoOhHtOWcLj6D5vsR0i4uLhg8ODB2L9/P8aOHasd379/P+RyucX7NaVsmDkY8/TdvHnTokYCjRGtWGPzj3biCAle51NMibMTlg7ogum5uVDI5UhuHFOiVCInNxefynpA4myeO9nS5Uy27LGWsaH+2DEzEguyS3RuyIF+XjYt21FYWomqi3XIyGy+9MKEV7dh9Oh4ZGRyU0bE3iUiGrehskRQmYMlN0+2bbKExkKEC/hWRqQ5HKHDzKGq37k2gTPmzZuHKVOmIDQ0FOHh4fjoo49QXV2Nl156CYB+2TAA2qD+mzdvora2FuXl5XBxcUHfvn0BmFY2zFTbgIZl2tdffx1t2rTRvqdSqXDkyBEMHDjQqvmLUqydq38EHiw5bRqellsObrVnwO2DI7sh/lvgUxmw9IfvIcvJ0b7XVdoGn8p6WFTXrPFyZnMeREPLmfFdPG1ujy0YN3s0xs6MsyrovyU0SQotidxBg0Ka9bwpXpoKQ2eQrZIBuC4RYUtvhK3go01cwvU5IhbELNI0TJgwAXV1dVi+fDlqamrQv39/5OXlaQvjNy0bBgAhISHafx89ehTbt29H165dUVVVBaChbJiTkxOWLFmCS5cuwdvbG6NHj0ZaWppZtpWVlQFo8KxVVFTAxcVF+56LiwuCg4ORlJRkybS1iFKssUXjZQ1NTMn8pI26XprATi3GlLBVkiG+iydGduqAw1fr8dvfd9HRvTXCvKQWe7CsXc60tT22QiJxRvSQ7qztX5Ok0JLInT59htneCls2025cIsLS5Xxz4UOTd8J0uDhHLEHI51ThuVqcPnYE165ewQNePvDr2ZdrkzjjlVdewSuvvGLwvcblwDS0tJSpKRuWmppqlV2aLNDnnnsO69evR7t27azanyFIrNkAY7EnfIgpaYrE2clm5TBssZxpS3uEQlRoIAK6eBpdJlcqlWjVqpXRgs/GvBWN+0VmZOgunY5LXGZ24DnfSkQQ/EMI54hQhdqhqt9R+t887Fz7JmovXdCOe/p25tAqojk+++wzFBYWYuPGjTh//jwyMzPRuXNnbNmyBYGBgYiMjLR435QNaiUtBQmz1R1Bu38TC+Na29zcGA3LmT1w/IfvdbLSfjr4PafLmZZg6ndp9XEkzlizcJTR0gu5ubm4d+8eTp48afDzhrwVbPSL5GuJCII/8P0cEbpQ25D0IoYMGqjzvYYG08MRX9m1axdiY2Ph7u6OY8eOaQv83rhxA0ql0qp9OzGWpDwIlPr6erRv3x7Hqi/DQ2p90Jq12VzGMHcZVFV83KTtGvcJtTUqNcP5cqa1gtReYk1DVn4Fklbm6WR7Bvp5YWXSCCxY/S2CQsINeisUCjlOnDiGM6c/194ECwrK8fgT81BSUmJwOaqkpCFp4sD3a80O9Da0tBoY2AlrVr/AWokIod5kzYGt6wcXcHGOmIIQz6NDVb9DrVJh0ZhIDBk0EFm7duHQoUOoqamBr68vgoKC4OXlhevXr0Nqg/tYc2jumXUfjIfUxkVx6/++C8+Xd9plHvYiJCQEc+fOxdSpU9GuXTscP34c3bp1Q3l5OUaMGGFVAV9RLoOqVCocKTxocUYXmxdZobYQEuNyprUkxAZBHtPPYDKDs7MTEmdvNTlBhc1Abz4u5xP8go/niNCEWuMkgtPHjqD20gVEzHoFPXv21AbEAzDYtJzgB6dOncLQofoPJ1KpFNeuXbNq36IUa/KoMPx68X4MQBf/rli4It2kWklCfhp+cGQ3Vr1rQsbeXjXtcY0kMyTEBiFz/WQkrczTKyNiKPaM7UBve5eIoEQD4cF1GZHGCO3caZrtee3qFQBASkoK4uPjkZGRoX1gW7ZsmdXV8Al28PX1xdmzZxEQEKAzXlRUhG7drFv5EWXM2oD+/XRiAEKCB2D2tEnI35Pd7OeELNQcHbZi8rgkITYIZ/a/hu+3vIhtayfi+y0v4vS+JIPLSnxspk0QhGVIO3ihVatW2v7SjWNQMzIyuDaPMMKLL76IV199FUeOHIGTkxN+/fVXbNu2DUlJSUazWE1FlJ61jIwMPPDAAwA0tauyoVAosOr1FMTEjTbouiehRnCBIc+boebtpjSutnczbWvR/M0JzUvSEnQtYRehnS/Gaqjdu3fPaH9pgp8sWLAA169fx+OPP45bt25h6NChcHV1RVJSEmbNmmXVvkUp1gzXrmpoI1NafEhb9NLeF1V7xKs52lKoI3rUTMGQYLOmth+fcQTRRgKNMIf6368CMB6DSvCXtLQ0LF68GD///DPUajX69u0LDw8Pq/crSrFmCM0fhaS+ED2kLi1sTfABWwk1ruLVrMWYYONboLetaCx4+C7cSJxxA9/PC1N5wMsHgPEYVILftGnTBqGhoS1vaAYk1v6B60rbQs0C5QqxetRMgU+B3mzBN28biTPCEowtgfYcNATenf2QplRid3a2Xvkegr/cunULP/30E65cuaL3W40ZM8bi/YpSrIk9AFvoS6Ek1O5jyLsmJrjwtpEw4yd8Ee62wFkiwfh5r2ND0ouQKxRISU6+nw26fDnX5hFG2Lt3L6ZOnYqrV6/qvefk5GRWUfKmiFKsTZz4NN54I5U3AdhceNWEKthIqOkjdsGmwZiIsvQmTqJMOAhRqLXUnD30yVF4Zc1G7Fz7pk4MqlenLmybRljIrFmzkJiYiDfeeAMdO3a06b5FKdZ+/rncoQKwLUVogo0NoSbUeLWmkGAzDokugm+0JNQ0hD45CoOiY/Uauc96jBIP+MiVK1cwb948mws1QKRirbxsI44fP8+LAGyuY9WEItjIo9YyJNgIMSI0r5qpQk2Ds0SC3o/cdy78ffOGrU0ibMS4ceNQUFCA7t31C51biyjFmhgCsM2B74KNhJrpkGAjCH5irkgjhMd7772HxMREFBYWIigoCK1b6/ZTnT17tsX7FqVY4wtce9Uaw1fBRkLNfEiwEWJBKF41EmriYPv27cjPz4e7uzsKCgrg5OSkfc/JyYnEGmEb+CbY2BZqfI1XU6nUKKpxQU1NHR5SX9U2dzcHzYMAiTbDqFQqh6xFJyZIqBF8Y8mSJVi+fDkWLVpk804TJNYIgkdk5VcgaWUeqi7WaccCunhizcJRSIg1v6wMedn0yco6iPlJG1FVVaMdCwjwxdtrXhRdkpG1mCKY2EjwEIpQA4CIgA4k2ETCnTt3MGHCBFZaglGTMY6w1RKoqvi4TfajgS/Ljnyxw55k5VcgcfZWBIWEo6SkBDdu3EBJSQmCQsKROHsrsvIrLNovc7ZU+xI7WVkHMS5xGYKCBut+x0GDMS5xGbKyDnJtIu84Ux9m9GXt583dl2Z/QiMioIPei3A8pk2bhh07drCyb/KsEQQPUKnUSFqZh/j4OGRn79Y+mYWFhSE7ezcUCjleW/Ut5DH9zF4SbUxjwSY2j5tKpcL8pI3NfsdJr30EuTxCtEuiXAohY8cWUpsxc2gs2Mjz5hioVCqsWrUK+fn5GDBggF6Cwdq1ay3eN4k1AWNrr5oGvsWuiYHC0kpUXaxDRuZiPRe6s7MzkpNTIJPJUFhaieghtkkLF1tcW2FhBaqqapCR0cJ3XFghqmxxvgsgvttnCzTCjUSbsKmoqEBISAiA+y0sNTRONrAEEmscYIvlKLaEmgZzBZtKzeDw1Xr89vdddHRvjTAvKSTOlp2cYlwCramtBwD072+42KVmXLOdLRFLXFtNTUMcYIvfcU2dwfcdCTEIICFC8W3C5sCBA6ztm8QaYTU5F+uw9KeLqL7xl3bMv10bLB3QBfFdPDm0rHlUxcd5kxHq6y0F0PA0FhamfyPVPKVptrM1YvCy+fo2nIstfse+/D1nrYEEmjAgLxthCBJrAoRtr5oGU7xrORfrML34DOLj4rBj8WJtv1VlWhqm5+Zix8yOGBvqbxd7hYwspCt8fdojLS0Nu3fv1lmmU6vVSE9XItDPC1Ghgaza4chetqioIAQE+EKpTNOJWQMafceBnRAVZX7WLV8hgSZcSLQJj+XLlzf7/htvvGHxvkms2Rlrl0DtJdRMQaVmsPSni4iPi0P27iYB27t3QyGXY+HOgxgzqAskLKQyOwqach01V64jJycHY8aMweJGwjc9XYmcnFxkrp9sVXKBqTiqYJNIJHh7zYsYl7gMCoUcyckpet/xV5mpDpFcQCLNcSDRJhy+/vprnf/fvXsXlZWVaNWqFbp3705iTSxwIdSa864dvlqP6ht/YcdiIwHbKSmQyXJQdKoWj/WxfWNbR0BTriM+Pg4ZmYtx7tw5LFiwADLZ/V6AgX5eyFw/2aI6a5biqMuiCQlD8VVmKuYnbdT9jgM74avMVIeos8alUFOpVCgtPoTa3y7Du+NDCJWJN7PW1mhE2816um3zlbKyMr2x+vp6PPvssxg7dqxV+xblr86cLwPj4eZwNyJ7c7PXg8ABEwK2r/9tT7MEg6FyHWFhYXj66afxww8/4LXXkvDrhXM4+e08uLhw86fqiF62hIShkMsjHK6DAdfetPw92Vi5JBkXq3/RjnXx74qFK9IRO0bBnWEEwSFSqRTLly9HfHw8pkyZYvF+RL021bhYqD0Kh1qzby6XP5tmZz44shseHNkNvu3dAeinKGvQBmz/sx2hi6ZcR0qKrmdSIpHgiSeewHvvvY/LtfUoLvulmb2wjyMW05VIJIiOHoiJE59EdPRAEmpWkr8nG7OnTUJI8ACdYsMhwQMwe9ok5O/J5tQ+guCSa9eu4fr161btQ5SetZZoenPi2rPAhzg1Q+U0Int5I8BHCmVamk7MGvBPwLZSiUAfKSJ7edvTVMHAZbkOc3HUZVFHgGuhplKpsHJJMuLj45Gdnd2k2HA2FAoFVr2egpi40YIXxQTRHOvXr9f5P8MwqKmpwZYtWzBixAir9k1izQToRmUYibMzVo0PxoT3c6GQy5Gc0ihgW6lETm4udsyMpOQCI3BdrsMSHHFZlLCO0uJDuFj9CzJ3fGmk2HAyZDIZSosPYUiU8GMCCcIY77zzjs7/nZ2d4e3tjWnTpiE5OdmqfZNYMwNrblSOuJQEAGND/bFjZiQW7DwImSxHOx7oI8WOmZFUtqMZokIDEdDFs/lSEnYo12Euhs5lEnDcwLVXDQBqf7sMoGUPsWY7gnBUKisrWds3iTUzIc+CPmND/TFmUBcUnapFzfW/4dveHZG9vMmj1gISiTPWLByFxNlb9UpJKJVK5ObmIvXfMVybaRIk4MSLd8eHALTsIdZsR5hH0wzb3v0dpw4gYTpODMMwXBthL+rr69G+fXtcO7YcUg83q/dn6s3IkWqrOSJcdzHQ1Fmruni/zVGrVq1w7949AEBAF0+sWTjKrqU72IIEnO3gg1cNaBATw0L6IyR4gE7MGtDgIVYoFCj/qQL7jlVQzJqZGMqw7dTFD79evIDr169DKmU3REJzz6z7YDyk7q1b/oA5+/77Ljxf3mmXebDJvHnzTN7WmkbuonR9qFRqFBw5h4ycMhQcOQeVSm3Rfuy1tMm1mCDYJSE2CGf2v4als4cBAMLDw1BQUKDNqAsKCUfi7K3Iyq/g2FLrsVfmNWE/JBIJFq5IR05ODhQKhU42qEKhQE5ODha8qSShZibGMmwH9O/HtWlEI8rKykx6lZeXW3UcUXrW/Ds9iOpf/9COW+u5aM5bYKsbEnnX2IMPYlilUqPHsNUICgk3GL+mUMhxovwwTu9LsksXAy4gr5t58MWzpsGQF8ivawAWvKmkOmtm0tRbyTAMCgsLUVNTAw8PD4wZM4Y8ayJDlDFrfQc8ih27ljaKD0pD4uytFleJN5YtSp4DYcCHhu6ammsZmUa6QSSnQCaTobC0EtFDunNkJbvwrWQOn+GbUAOA2DEKxMSNpg4GNqBxhm12djbmz5+Pqqoqrs0iTODatWv49NNPcfLkSTg5OaFv3754/vnn0b59e6v265iP6C2QkfElwsLC4OHh8U8toN2Ij4/Da6u+tXhJFCBxRliOkGqu2Qt7F60mrEcikWBI1FDEjxuPIVFDSahZiCZz9ty5cxg3bhyCgoK0S6Hfffcdx9YRxigtLUX37t3xzjvv4Pfff8fVq1exdu1adO/eHceOHbNq36L0rLHpudBki9JNhTAHIdZc44rm/rbE4I3jo1eNsC2azNkFCxboFRt+5JFHuDSNaIa5c+dizJgx+Pjjj9GqVYO8unfvHmbMmIE5c+bg4MGDFu9blGLNELb0XJBQEx5cL4UKteYa3zD1b08Moo4QLqGyCHj5dMSvv/6KXbt26TkYCH5SWlqqI9SAhsz+BQsWIDTUumsOnQH/oPFcdPytlpfB/FzHVBHsoqm5lpOTC4VC3iSjTo6cnFysXjDSYZML7I2xJVZ60CL4gEQiQdxTiQCMh0YQ/EMqlaK6ulpv/MKFC2jXrp1V+xbllV+tVuv9v2kfS1XxcV6KNsJxSYgNQub6yagoK4FMJoNUKoVMJsOJ8sMWJ78Q5sNnAUdLoOIhZlQ8gPuOBALYsGEDAgMD4ebmhsGDB6OwsNDotjU1NXjmmWfQq1cvODs7Y86cOXrbbN68GU5OTnqvW7duWWTfhAkTMH36dOzYsQMXLlzAxYsX8eWXX2LGjBmYOHGiRfvUIMpl0IlPP403UlNb7GPJJ28WCUf24XopFGgQbPKYfigsrURNbT18vaWICg0kjxrHUKYqYW9CZRHo4t8VSqVSr9iwGNmxYwfmzJmDDRs2ICIiAhs3bsTIkSPx888/w99fv63h7du34e3tjcWLF+v17GyMVCrFqVOndMbc3Cwrmr9mzRo4OTlh6tSp2qLmrVu3xssvv4y33nrLon1qEGedNa92qL56Qzse6CPFyvHB2j6WXN+wDUFizb7w8Rwg+AVXgo3P3rWmrZGodId1aArjxsfHIzk5Gf3798eRI0cwbNgw0dVZGzJkCAYNGoQPPvhAO9anTx8oFAqkp6c3+9no6GgMHDgQ69at0xnfvHkz5syZg2vXrlkyBS3l5eUYOHCg9v9//fUXzp07B4Zh8PDDD6NNmzZW7R8QqWetdFksfqq+ptfHkq83aBJq9ocPXjaC31CfYF0MFcXt4t8VC1ekU1FcC4kdo8D6z7dh5ZJkyGQyrs1hhfp63aQ+V1dXuLq66ozduXMHR48exaJFi3TGhw8fjuLiYquOf/PmTXTt2hUqlQoDBw7Em2++iZCQELP2MWjQIISEhGDGjBl45pln0L59ewQF2TZsRZRiTeLsjMf6dGz4N92QCSNoRDKdI4QxSLA10NgDlLnjy0YFx5WYPW0S1n++jQSbhTQtNuzRrh1emPCUXW24tr8Sqta2lQs37jYsE/r5+emMp6amYunSpTpjV69ehUqlQseOHXXGO3bsiMuXL1tsQ+/evbF582YEBQWhvr4e7777LiIiInD8+HH06NHD5P0cOnQImzZtwqJFizB//nwkJCRg+vTpePzxxy22rSmiFGuAcG7A5FXjHhJtRHMY62AiFlQqFVYuSdarB9ZQcDwbCoUCq15PQUzcaFoStRBNsWEAuFnvWIWxL1y4oLMM2tSr1hgnJyed/zMMozdmDmFhYTp1LSMiIjBo0CD85z//wfr1603eT3h4OMLDw7F+/Xrs3LkTn332GWJiYhAQEIDnn38e06ZNQ5cuXSy2ExBpNqhkCKVCE+ZDwploDj5ljdoTTWuklJQUIwXHk3HhlyqUFh/iyEKCz0ilUp2XIbHm5eUFiUSi50W7cuWKnrfNGpydnfHII4/gzJkzFn3e3d0d06ZNQ0FBAU6fPo2JEydi48aNCAwMxKhRo6yzzapPE6xC4oB/aEq60G9DGEKMgk3TGqmlVmma7QjCXFxcXDB48GDs379fZ3z//v02jeVjGAbl5eXw9fW1el/du3fHokWLsHjxYkilUuTn51u1P9EugxKEtdDyqHBRqdSslUdhe1m0h/QwrzJCNa2RWmqVptmOICxh3rx5mDJlCkJDQxEeHo6PPvoI1dXVeOmllwAAycnJuHTpEr744gvtZ8rLywE0JBHU1taivLwcLi4u6Nu3LwBg2bJlCAsLQ48ePVBfX4/169ejvLwc77//vlW2/vDDD9i0aRN27doFiUSC8ePHY/r06Vbtk8QaTyHPjXAg0SYssvIrkLQyD1UX67RjAV08sWbhKJsWHhZL8kFz9cAaWqWlw69rAEJlERxaSQidCRMmoK6uDsuXL0dNTQ369++PvLw8dO3aFUBDEdym3QMaZ3UePXoU27dvR9euXVFVVQUAuHbtGl544QVcvnwZ7du3R0hICA4ePIhHH33UbPsuXLiAzZs3Y/PmzaisrIRMJsN//vMfjB8/Hm3btrV84v8gyjpr144th9TDsqJ39oLEmrCxRLjZ4jcnwdg8WfkVSJy9FfHxcUhJWdwoazENOTm5rHWKsLVo45NnDTBcD+zEiRNIT09HTk4OZYPakJv19Rjk/5Bd66ydS3gE7VjIBu2e9T+7zINthg0bhgMHDsDb2xtTp07F888/j169etn0GORZ4yEk1IRPc942c39flVqNolO1enUBzT2u2FGp1EhamYf4+DhkZ+9ukrW4GwqFHK+t+hbymH427xjh6F42Y/XA/LoGkFAjHB53d3fs2rUL8fHxrGU8k1gjCBaxVnh/XVqNBTuPo+rK/XT9AB8pVjXquNHScUm4NVBYWomqi3XIyFxsJGsxBTKZDIWllYge0t3mx3d0wQY0BGg3pmkfZoJwRPbs2cP6MSgblIfQzZUAGoTahPeLEPToUJSUlODGjRsoKSlB0KNDMeH9InxdWt3yTkCeWg01tQ2Ct6WsRc12bOCo2aKaZdBBA4N1ztVBA4Mxe9ok5O/J5tpEghA0JNYIm6FSq/HDyd/w5eEq/HDyN6joqdpiVGo1Fuw8jvi4OGTv3o2wsDB4eHg0LNnt3o34uDgs3Hnc5O+Yyo0Avt4NcTGa7MSmaMY12/GZHtLDXJugpWlRXJ1zNTsb8fHxWPV6ClQqFdemEoRgoWVQniKRBQvq5mrpch1hmKJTtai6Uo+MxUaW7FJSIJPloOhUrbZ1milY0/O06fkoNA9wVGggArp4QqlM04lZAzRZi0oE+nkhKjSQQyuFh6YobuaOL40WxZXJZCgtPqStwi92qOE9YS7kWSOsxlbLdcR9aq7/DcCEJbt/tjMHUx8CGhcANvQZIT1MAIBE4ow1C0chJycXCoVc51xVKOTIycnF6gUjbZ5c0BRHWwqlorjmkb8nG8NC+mPK6BGYN+NZTBk9AsNC+tNSMdEsJNZ4jBA8F7ZeriMa8G3vDsCEJbt/tjMXQwKsJXFm6n74TEJsEDLXT0ZFWQlkMhmkUilkMhlOlB9mrWyHo9O4KK4hqCjufTSxfSHBA3QeFkKCB1BsH9EsVGeN5/D9RvjDyd8Qs/I7lJSUGKxeXlLScFP8bmGMWct1YkelVqP3olwEPToU2bv1l+wUcjlO/HgQJ9+KM1rGw94I4eFCA5sdDEzBFlmhfKm1plKpMCykP0KCBxgsiqtQKFD+UwX2HasQ9VKfrb4nqrMmTvhxlSeMwvcbIJvLdWJG4uyMVeODkZObC4W8yZKdXI6c3FysHB/MG6EG8P/BojESiTOih3THxPgQRA/pblehZiv4kmQgkUiwcEVD8VuFQtFkeVmBnJwcLHhTKWqhBlDDe8I6KMGAsIrGy3XN9QW0dLlOzIwN9ceOmZFYsPMgZLIc7XigjxQ7ZkbyMnHDmgQGMeFoNddsVRSXi8B7Q8cEYHM7KLaPsAYSawKAz5mhkb28EeAjhTItzeByXbpSiUAfKSJ7eXNopXAZG+qPMYO6mNzBgA9QFwVxEjtGgZi40c2KnObEWP6ebKxckoyL1b9ot+/i3xULV6Sz1gHB0DG9fHzAqBnUXa21qR3U8J6wBv5e8QlBIMTlOqEhcXbGY3064umwADzWp6Ngvku+PmCwiUqlRsGRc8jIKUPBkXNQqbhNrFGpVDhSeBA5X+3EkcKDrNc6k0gkGBI1FPHjxmNI1FAdodZcFiQXgffGjjnkkUfwe91VpKen29SOxg3vm3Z2MLXhfQ/pYXSX/s9iGwjhQgkGAoLPNz9DddYCfaRYSXXWHAZzepQ2hi0PG9dJAk3Jyq9A0so8VF2s044FdPHEmoWjDGaZ2moZ1FiiAReeKmM0bvSekpKibfSuVCqRk5ODDp5ekIWH2S1BwZRg/xMnTuDMmTOQSCQ2s8PShvcqlQqXj3+Mmpo6SKVtET86hRIMRAaJNQHBZ7EGWH4zFwJcz43r49ui6LEtRZu5wohtsvIrkDh7K+Lj45CSsriRGElDTk6u0bIgbGWFtiSO7NlcvSVhJJfLsXfvXhQUFCAiQt+rpMko3/LNXpsV1T1SeBBTRo9oMYv9wIEDiI6OtqkdhkS0X9cALHhTafA3yd+TjbffmI+qqhqdcRJr4kK0MWt8eyp3BDTLdbaAa3HSGK67M/Dh+BPeL0J8XBwyFjcSImlpmPB+rknJDrYWahphlJGpK4wSZ2+1e700lUqNpJV5iI+P0+mM0NBuaTcUCjleW/Ut5DH97HKNadr+SdeebCgUCqx6PQUxcaPtkqHZUoeDlJQU5OTkoL7ecE9WNgLvTQ32r6mp0Ruz1g5TYvs0VHy3CrOnLWs41zMazvUjR44gJibGKhsI4SFKdbLnu/9Dj2Gr8cSUjZg0LwNPTNmIHsNWIyu/gmvTjMJ3r5ot+bq0Gr0X5SJm5XeY8uEhxKz8Dr0X5XLSCYHr7gxcH59vRY+bCiPdPpS7ER8fh9dWfWvXWLHC0kpUXaxDSoqR1mDJKai8cBWFpZV2sYdvJSJMFUb/+5/hWCw2Au9NLeTr6+vLih3NxfZp6Nb2EOYnbdQ71x955BGrj08ID1GKtakLdiAoJFz35hcSjsTZW3kt2MQA1+KkMVwLFa6PD9zvUZrSTI/Syiv1KDpVa2QPtoVvwggAamobPEItemlqDXuObA3fSkSYKoz27t1rceC9uZgS7B8YGIioqChW7dDQNBGkW9tDKCysQFVVjcFznRAfojwDRoyI5c1TOXEfPoiTxnAtVLg+PsC/osd8E0YA4OvdEG/TopfGm524nKbFcfnW/skUYeTdsaO2iK49iuo2V8h3zJgxyMnJwb/+9S/89ddfrBf3NZQl+3CPqdi9p8HzaexcJ8SFKMVaUtJrvHkqJ+7DB3HSGK6FCtfHB9jvUWq2PRwLI0NEhQYioIsnlMo0I2JEiUA/L0SFBtrFHluUiLAlpnQ4eGP1O/jPF9tRdvwnnZ6t5T9VsJYMoSnk2/SYP5aWooOnF1JSUli3w1j5kKCgwXj33SwAxs91QlyIMsGgT58+Bse5eCo3BbHEq/FBnDSG6+4MXB8f4F/R48bCqHEwv9YeOwsjoKF11ZqFo5A4eysUCjmSk1MalWRQarNB7ZXApBFHs6dNgkKhMFoiwp7tn0ztcGBq4L0t7TJ0TMD2HQya0nwiSENiyr59+5GWtgK7d++hpVCRI0qxdvLkSXTq1ElvnIuncuI+fBAnjeFaqHB9fOB+0eMJ7zcUPU5uVAYiXalETm5DNmhzmbq2zATlmzDSkBAbhMz1k5G0Mk9HjAT6eTWbncpW2ylbtX+ytU0tiTFN4L09MXZMNu3oIT2MgoLyZrNkk5NT8M03OcjJydU513/88UfW7CL4iyjrrI0YEYvc3DwDhRDlOFF+GKf3JfGqjIdYPGsqtRq9F+Ui6NGhBsWJQi7HiR8P4uRbcXYr49G4bIUxocJm+Qyuj9/YDkuLHrNRFNdQnbVAPy+sXjCSkzprGiwpCcRmcVwuem0SDTSNJWxKRsZ/8cykNNy4cQMeHh5679+4cQNSqRRz5jyF7OxiqrMmckQp1gBg9Oh4o0/lXF7smyIWoaaBL+KkqU1cdmfg+vgaqIMBO7DdyYCwPS0JMVMoKCjH40/Ma7kw7/drERUVhMLCCupgIGJEKda+WDUBb6z/jndP5YYQm1gD+CNOGsN1kV6uj28N1NC9eUis8Q9biLGWUKlUeLjHVAQFDTYYf6lQyHHixDGcOf25jje0vv5PtH9gNIk1kSHKmLUxMf0wcXSIQzyVOyJjQ/0xZlAXXokTW3ZnEOLxCUIs2EOoAQ2xcm+veRHjEpcZjb/8KjOVlq0JAFaW7khPT4eTkxPmzJljdJusrCwMGzYM3t7ekEqlCA8PR35+vt5269atQ69eveDu7g4/Pz/MnTsXt27dsvi4LSGROCN6SHdMjA9B9JDuJNR4hkacPB0WgMf6dBSMF4nQhbxq9sNeIsORsfd3mJAwFF9lpqKi4qhO+ZATJ47hq8xUJCTYN9mC4C8We9b+97//4aOPPsKAAQOa3e7gwYMYNmwYlEolHnjgAXz22WcYPXo0jhw5gpCQEADAtm3bsGjRImzatAkymQynT5/Gs88+CwB45513LDqu0BHj8ifhWJBQI4iWSUgYCrk8QhuT5uvriaioIPKoETpYJNZu3ryJSZMm4eOPP8aKFSua3XbdunU6/1cqldi9eze++eYbrVgrKSlBREQEnnnmGQBAQEAAJk6cqJeibM5xhQwJNYIQD2yV7yCEg0QiQXT0QK7NIHiMRWtLM2fORFxcHGJiYsz+rFqtxo0bN9ChQwftWGRkJI4ePaoVZ+fPn0deXh7i4uKsOu7t27dRX1+v8+IzquLjJNQIh0AIXjWVSo2CI+eQkVOGgiPnqM2cyKFlZILPmO1Z+/LLL3Hs2DH873//s+iAb7/9Nv7880+MHz9eO/b000+jtrYWkZGRYBgG9+7dw8svv4xFixZZddz09HQsW7bMIjsJgrAMIQg1Q3XaArp4Ys3CUZxkhJN3jSCI5jDLs3bhwgW8+uqr2Lp1K9zc3Mw+WEZGBpYuXYodO3bAx8dHO15QUIC0tDRs2LABx44dQ1ZWFnJycvDmm29addzk5GRcv35d+7pw4YLZNtsLR/GoqdRq/HDyN3x5uAo/nPzNbk3XHR2hfK9CEWqJs7ciKCRctx9jSDgSZ29FVn4F1yZaDHmHLIO+N4LvmFVnLTs7G2PHjtUJfFSpVHBycoKzszNu375tNChyx44deO6555CZmam3vBkVFYWwsDCsXr1aO7Z161a88MILuHnzJvbs2WPxcRujqRlz7dhySD3MF5ts4ShCzVB9tAAfKVZxWB/NERDS98p3saZSqdFj2GoEhYQbr23FURcTqrfGHUISa1RnTZyYdTV68sknUVFRgfLycu0rNDQUkyZNQnl5uVHBlJGRgWeffRbbt2/XE2oA8Ndff+n1RpNIJGAYBgzDWHxcIeBIQm3C+0UIenSorrfi0aGY8H4Rvi6t5tpEQSKk75XvQg0ACksrUXWxDikpi432Y6y8cBWFpZV2t405W2r3YxLCEmqEeDFLKrdr1w79+/fXGWvbti08PT2148nJybh06RK++OILAA1CberUqXj33XcRFhaGy5cvAwDc3d0btX4ajbVr1yIkJARDhgzB2bNn8frrr2PMmDGQSCQmHVeIOIpQU6nVWLDzOOLj4nR6eoaFhSF7924o5HIs3HkQYwZ1oXppZiCk71UIQg0AamobvJPGrhuacc12BEEQfMDmV/iamhpUV99/2t+4cSPu3buHmTNnwtfXV/t69dVXtdssWbIE8+fPx5IlS9C3b19Mnz4dsbGx2Lhxo63N4w2OItQAoOhULaqu1CNlsRFvRUoKKq/Uo+hULUcWChOhfK9CEWoA4OvdsNxy4sQJg+9rxjXbCRHyFBGE42H1InRBQYHO/zdv3tzs+waNaNUKqampSE1Ntfi4QsKRhBoA1Fz/G4AJ3op/tiNMg75X2xMVGoiALp5QKtMMxqylpysR6OeFqNBATuyjrFD7IjRhy5wtBXPTcGcfwrGhNSnCanzbuwMwwVvxz3aEafD9e5XIggXlVQMa2sytWTgKOTm5UCjkOnGACoUcOTm5WL1gJLWfIziHOVuq9yLEiygbuXONRBbsUN61yF7e6PhAW6xYsQJ79uzR81akpaWh4wNtEdnLm0MrhUdkL28E+EihTEvTiVkD/vECKZUI9JHa5XsVmihrjoTYIGSun4yklXmQyWTa8UA/L2Sun8xJnbXGkHfNPvDJq0ZCjGgJEmsc4WiCTa1WIy8vDwqFAsnJyejfvz9OnDiB9PR05OXlwbsdf0qlCAWJszNWjQ/GhPdzoZDLkZyScv97VSqRk5uLHTMjbZ5c4EjCzBgJsUGQx/RDYWklamrr4estRVRoIG88atYKNo0QoTIeuvBJoAEk0gjTIbHGIZqbotBFW9GpWtTW/4309HRs3LhR11sRGIi0tDSkpKSg6FQtHuvTkUNLhcfYUH/smBmJBTsPQibL0Y4H+kixY2ak1XXWxCDMjCGROCN6SHeuzWCVHtLDohdsfBNoGkioEebAj8dIkSPE2J/GaALcZ82ahbNnz+LAgQPYvn07Dhw4gDNnzmDWrFk62xHmMTbUH//vrTh8tzAGW16KwHcLY3DyrTirhJrQzzkxYKubOV/FCpv0kB7WvvgGxZ9ZzoYNGxAYGAg3NzcMHjwYhYWFRretqanBM888g169esHZ2Rlz5szR2+bjjz9GVFQUHnzwQTz44IOIiYnR9ijnG+RZ4xFCXRptHAgfFhaG6Ohonfe5DoR3BCTOzlZ7JUmcCQ9bxa+JYVmUj8KsKdaINJVKjcLSSpy7UNfyxg7Ijh07MGfOHGzYsAERERHYuHEjRo4ciZ9//hn+/voPrrdv34a3tzcWL16Md955x+A+CwoKMHHiRMhkMri5uWHVqlUYPnw4/u///g+dO3dme0pmYVa7KaHD13ZTTRGaYFOp1ei9KBdBjw41GAivkMtx4seDOPlWHOfFW8UGCTTHgdpR6SMEgQZY7yXNyq9A0so8VF28L9TE1m5qyJAhGDRoED744APtWJ8+faBQKJCent7sZ6OjozFw4ECsW7eu2e1UKhUefPBBvPfee5g6dapJ87AXdOfkIUK7wWoC4XNyGwLhdcohyOXIyc3FyvHBJNTsCC1zOh62Wj7ji8BpvFRpjk18XuJsii1+s6z8CiTO3oqgkHCUlJTg0qVLNrJOONy5cwdHjx7F8OHDdcaHDx+O4uJimx3nr7/+wt27d9GhQweb7dNW0DIoTxHakijbgfBEy5A4Eweam7+12aJcediMiSwhiC9zsIWwVqnUSFqZh/j4OG0R5/p6x2qF1nQ+rq6ucHV11Rm7evUqVCoVOnbUDQXp2LGjtoWlLVi0aBE6d+6MmJgYm+3TVohSrKmOnIDKvbXeON3srGNsqD/GDOqColO1qLn+N3zbuyOylzd51CyEzkeiOawVbfaMY3M0IdYctkweKCytRNXFOmRk6recsyf/r/gPtHWW2HSff6pVAAA/Pz+d8dTUVCxdutTgZ5ycnHT+zzCM3pilrFq1ChkZGSgoKICbG//CpEQp1oxhzJPF1U1TaN41wDaB8I4ICS+CLWwh2tgSbGIRaWxld9bUNnidjLWccwQuXLigE7PW1KsGAF5eXpBIJHpetCtXruh52yxhzZo1UCqV+O677zBgwACr98cGohZrKrXaJC+Qqvg4CTbCIkikEfaisWAwV7jZWrA5qkizd8mNjp4eAO5n2jsiUqm0xQQDFxcXDB48GPv378fYsWO14/v374dcLrfq+KtXr8aKFSuQn5+P0FD+dg4RrVj7urQaC3YeR9WV++vlAT5SrBofbDC+igQbYQ4k0ggusaTkhzGBZaqIcySBxpc6aAyAVq1aIS0tDbubZNqLjXnz5mHKlCkIDQ1FeHg4PvroI1RXV+Oll14CACQnJ+PSpUv44osvtJ8pLy8HANy8eRO1tbUoLy+Hi4sL+vbtC6Bh6fP111/H9u3bERAQoPXceXh4wMPDw74TbAFRirVvyi7guY8PIz4uDhmLF2tb+CjT0jDh/VyDAfFc33xJsAkDrs8TgtBgi0QEwLFEWHPwRaA15krdTdy7dw+5ubnaVn6GaoqJgQkTJqCurg7Lly9HTU0N+vfvj7y8PHTt2hVAQxHc6upqnc+EhIRo/3306FFs374dXbt2RVVVFYCGIrt37tzBuHHjdD7XXNwcV4iyzpq/VzsEhz1mck0wPt2ASbDxEz6dIwTRFGoMfx8+ijJjFBw5hyembNS28tOIDMC+ddZyH3qYlQSDuMtn7TIPR0CUnrXqqzewY7F+do2zszOSU1Igk+WguLWUl30DycPGL0ikEULAVp0QhICQxFhLRIUGIqCLJ4qLD+H06dM4dOgQzp07hxkzZnBtGmFnRCnWAOPZNZpxTRYOHyHBxj0k0gihYatlUS5wJAFmDhKJM9YsHIXE2Vvx1FMJSE5OwYgRI7g2i+AA0Yo1Y9k12j6W3vx2y5Jg4wYSaYTQ4auXTayCrCUSYoOQuX4yklbmQSaTcW0OwRHijFnr9CCCB0doK0JrUKvVUCjkOFF+GKf3JUEi4X/mDQk29iGBRjgi9hZsJMaso3Ej93+lfEUxayJDlJ61FXOGY9rCnVAo5EhOTtFmg6anK5GTk4vM9ZMFIdQAXSFBws12kEAjHB02lkVJkLGHROKM6CHdMahfZ/wr5SuuzSHsjCjF2piYfgbdyoF+XshcPxkJsUEcWmc5JNysh0Sa7bC154aEADtYsixKvwVB2BdRijWgIQ5AHtMPhaWVqKmth6+3FFGhgYLxqLVEU9FB4s04JNBsA9vLao33T2LBthgTbHz6nvnWDpAg7IloxRpw360sBsjrpgtd4K2D6wB1zfGtEROaGCBHfFizBD4JMw2mXKta2ob+1glHQNRiTazY++LFF3FIF23r4FqgGcJSb1tWfgWSVuah6mKddiygiyfWLBwl2DAIR8HW1wvN/ujvnxAyJNYI1jF0kbSngKOLtHXwUaQZwlRvW1Z+BRJnb0V8fBwyMhu1m1OmIXH2VkHHrQoVe1wPGh+DrgmE0CCxRnAC28uydDG2HqGItKY0J9pUKjWSVuYhPj5Op3RPWFgYsrN3Q6GQ47VV30Ie00/US6L2giuvu6r4OF0jCEFBYo3gHFslQzjyxdee8VVCFWlNcXo4VE+wFZZWoupiHTIyjbSbS06BTCZDYWmlaOJZuYLr8AgSbISQILFG2BxrhQVdQHWxV3yVo4i0xjQVbJo2ckJuNydEuBZmBCF0SKzZkKY3Oz5mV7ENBW7bFnvEVzmiSGtMY8GmaSMn9HZzfEVoooy8a4RQILFmBS3d5AwtwzgyFLhtW2wRX+XoQsxUNH+LUaGBCOjiCaUyzWC7ufR0JQL9vBAVGsihtcJBaOKMIIQKiTUTsfSmZ4t6UEKAArdtj6nxVUU1LoiOHsiNkQLC6eFQtAKwZuEoJM7e6hDt5rjA0QQaedcIISBKsebULQRO0rb2PaaDe9kocNv2mBxfVVNn8H3CME/NfA6ZgMO1m2MTRxNoBCE0RCnWuMKRvWwUuG17TI6v8vW0q12OwFMzn3PodnO2QEwCjbxrBN8hscYBjuhlO1N1FQAFbtuSoU+PQ8Dre5qPrwrshKgo8gRZQqtejyKaxJkOYhJoBCEk6ErFEY4U+K1SqfHZrqPw8PCAUqmEWq3WeV+tViMtLQ2Bfp4UuG0CTg+HwunhUEgkEry95kXk5ORCoZCjpKQEN27cQElJCRQKOXJycrFm9QuQSCRcmyxYHOnv0BpUxcdFL9TEPn+C35BY4xDNTVnoFJZW4pdLv2Px4sXIycmBQqHQERZyuRy5ubmYNnYQLTM1g6HzISFhKL7KTEVFxVHIZDJIpVLIZDKcOHEMX2WmIiFhKEfWOg6O8ndoCSTSdOHjd6FSqVFw5BwycspQcOQcVCp1yx8iHA5aBuUBQl8W1cShzZo1Cz179sT8+fN1ArcDAgIAAD0CvLgwTxA0JxYSEoZCLo9AYWEFamrq4OvriaioIPKo2Rih/x2aAx9FCaGPobqVXh3acWgRwRXk5uAJQn6ybxwIn5CQgLNnz+LAgQPYvn07Dhw4gC1btuhsR9zHVK+ORCJBdPRATJz4JKKjB5JQYwkh/x2aCgk1YaCpWxkUEq6zUjEoNJxr0wgOIM8aYTVNC402CItoAA3xagqFnAqNNkEMokCoiMnDRujDh8zQ5upW7tixAw8++CCn9hH2hzxrPEKoN3CJxBlrFo5qNhB+9YKRFK/2D0L9ncUE/UYEl2jqVqakGK5bSYgP8qzxDKE+1SfEBiFz/WQqNNoMJACEhVD/Fgnh01LdSkJ8iF6sqVQq3gVuC/UmkRAbRIVGjUBCTZgI9W+RsA6ul0JbKohNiA9Ri7WsrIOYn7QRVVU12rGAAF+8veZFzksiCPUmIZE4UzupRpBIEz5C/VskhIsmDjgtLQ27d+sXxCbEh2hdHllZBzEucRmCggbrxFgFBQ3GuMRlyMo6yLWJhMAhoeY40G9J2BNNHHBubi7GjBmjc4+aOHEi1+YRHODEMAzDtRH2or6+Hu3bt8fvddkYNPhlBAUNNtjGR6GQ48SJYzhz+nPOl0TpiV6Y0M3dMXGEv0cq3WE6XGeFZuVX4NlFmbj55y3tmL+/P6qrq3H9+nVIpeyWQ9LcM3MfehhtnW17L/xTrULc5bN2mYcjIErPWnHxz6iqqjGaaZOcnILKyl9RWFjBkYX3EeJNX+wVt4X4mzkiKpUKBQXlyMj4LwoKyqFSqazeJ/22hD1JiA3C0n/HALifBVpdXc2lSQRHiDJm7fLl3wEYz7TRjNfU1Bl8394IKWbGUMXtgC6eWLNwlCgyQulmzg/YjEfV/MZC+ZskhM3LE8OQ/PZeDB8ei3nz5qGyshIzZszg2izCzojSs/bQQx0ANGTaGEIz7uvraTebWkIIIsBYxe2gkHAkzt6KrHzuPZVswpffiA2PkpCwVzwqX35vc+F6aU9I8GHJ+MhPF3D37j0sWbIETzzxBBITE7k2ieAAilnjecxaY/j8JK9SqdFj2GoEhYQb/07LD+P0viSHLeXBh5s3nzOc7YFKpcLDPaba7W+bz3+TzcEHESIUuBa3GTllmDQvAzdu3ICHh4f2PkYxa+LCMe+aLSCRSPD2mhebrbi/ZvULvBJqfKelitvJySmovHAVhaWVHFno+FCGM1BYWCGYeFTCclRqNX44+Ru+PFyFH07+BhVPylmwEa/buOYaIV5EGbMGAAkJQ/FVZirmJ23Urbgf2AlfZaby0gvB59i1lipua+MA/9mOsC0qlQrzkzYa7CWYnb0bCoUcSa99BLk8wqEfQjRxpvaIR+Xr3yIbqNRqFJ2qRc31v+Hb3h2Rvbwh4ajt0del1Viw8ziqrty/lgT4SLFqfDDGhvpzYhPAXrxu097LhDgRpWdNQ0LCUJw98wUOfL8W27ctxoHv1+LM6c95KdT4TktPf9o4QG9yd7OBUD1Kto6v08SZCikele98XVqN3otyEbPyO0z58BBiVn6H3oty8XWp/bMSvy6txoT3ixD06FBd7/GjQzHh/SJObALYjddt2nv5xx9/tKHlhFAQZcza9WvfQCpty7U5FsHXp3mKWeM2Zi0j4794ZlKaNq6lKTdu3IBUKsWSxZPRt29Xk1urmduOzZztLY2va+4Y9oxZ4+vfoimYGrOmEUfxcXFIWbwY/fv3x4kTJ6BMS0NObi52zIy0mzdLpVaj96JcBD06FNkGqvor5HKc+PEgTr4VZ1OvX0sxa/a69jX13FHMmrhwzLumA8OHIHZDNH36MxQHuHrBSIcVaqbCVqamqR6lFWlb8cykNDz+xDw83GNqs3FsWVkH8XCPqXj8iXkmfcac7S2Nr2vpGLaOR+Uqs5YPtQpVajUW7DyO+Lg4ZO/ejbCwMHh4eDQsre/ejfi4OCzcedxu8WJFp2pRdaUeKYuNeI9TUlB5pR5Fp2rtYo8Ge8XrJsQG4cz+1/DNR89ZtR9CmIj7zung2PuCnxAbhMz1k1FRVgKZTAapVAqZTIajPxbh1WkR6PBAG84K5PLh5meu+DGHqKggBAT4QqlM0+sdqFarkZaWhnbt2qGoqMgkYWSumDJn+6bxdToiIHs34uPjkPTaR3rCyNRjaOJRKyqO6pyHJ04cMysetbnfi02vWlZ+BXoMW40npmzEpHkZeGLKRvQYttrupW/4Jo5qrv8NwIR4xH+2sxUteSHtGa8rkTgjKjTQ6v0QwoPEmg3hU30rri74mqe/77e8iDnTItHRS4pff7uGdZuLOLvp8OHmx3amZnMepTFjxiAvLw+bNm1CREREi8LIXDFl7vaWxNeZewxr41Fb/L1YOnf4VKuQK3FkDN/27gBMiEf8Zzt7QfG6hD0gsWYj2PSaNKWlpVCuL/gSiTN+v/YX3v3iEB4NH8rpTYfr7wKw3JNkLsY8Svn5+VAqlRg3bpzO9saEkbliytztLcnYtETgSSQSREcPxMSJTyI6eqBZS58t/V6vrfrW5t5ZlUqNpJV5dj+uMfgmjiJ7eSPARwplmmHvcbpSiUAfKSJ7edvFHg2NszUN2pWuRKCfF3nEbMCGDRsQGBgINzc3DB48GIWFhc1u/8MPP2Dw4MFwc3NDt27d8OGHH+q8f/fuXSxfvhzdu3eHm5sbgoODsXfvXjanYDEk1mwAn+pb8eGCzwcbuLDD2NKYPTM1m3qUliyejHv37mHWrFkGtzckjMwVU+Zub0nGpj1Lcpj0e7FQM5BvtQr5Jo4kzs5YNT4YObm5UMibxCPK5cjJzcXK8cF2LylC8br2YceOHZgzZw4WL16MsrIyREVFYeTIkUZ7pVZWVmLUqFGIiopCWVkZUlJSMHv2bOzatUu7zZIlS7Bx40b85z//wc8//4yXXnoJY8eORVlZmb2mZTJ09liJvbwmpsKHCz4fbOCTHfYUGoCuR+nJJwcBME8YmSumzN2+pfi69HQlAgM7ISrqfm0qe5bkMPn3snHNQL7VKuSjOBob6o8dMyNR8eNB3XjEHw/aNTO1KcbidU+UH0bm+smi6IvMNmvXrsX06dMxY8YM9OnTB+vWrYOfnx8++OADg9t/+OGH8Pf3x7p169CnTx/MmDEDzz//PNasWaPdZsuWLUhJScGoUaPQrVs3vPzyy4iNjcXbb79tr2mZjKiK4mqqlNTX/2WzfWqewj/5ZA5u3ryp9/7s2a9i2LBh2Lv3fzo3H6vx6QPmvL76P3eh4Ubj7++P+nr9i7q/v792u0H9OtvOHp7ZwJUdTvV/6o1pysQcOXIEjzzyiN77mrpJUmlb1Bv4vDUEB3eDv39HLFu2FBkZX+qVFVi+fBm6dn0IwcHdtMc29zOWHOPN5dMwZepbiIsbhfnzk9CnTx+cPHkSb7+9Bnv35mPLF4vw55+3rJqHpZj8e3m4of7mLb33LT6uh5vdjqv6+65J2z3Zzxef/SsMb2T9AJksRzve1asdPvtXGJ7s54t6E/dlK57s54sfUzui5MxV/Fb/NzpK3RHewwsSZ2fWbJGY8H3HRPTA0a//jeKyX3D56g085NUOspCukEicbXqeaPZlz6pbfzJqwMYLIX8yDTtsem12dXWFq6urztidO3dw9OhRLFq0SGd8+PDhKC4uNrj/kpISDB8+XGcsNjYWn376Ke7evYvWrVvj9u3bcHNz09nG3d0dRUVFFs2JVRgRceHCBQYAvehFL3rRi16Cfl24cIH1e+bff//NPPTQQ6zNwcPDQ28sNTVVz45Lly4xAJhDhw7pjKelpTE9e/Y0aHuPHj2YtLQ0nbFDhw4xAJhff/2VYRiGmThxItO3b1/m9OnTjEqlYvbt28e4u7szLi4utvkCbYioPGudOnXChQsX0K5dOzg5OdnlmPX19fDz88OFCxccqvCfI86L5iQMaE7CgObEDgzD4MaNG+jUqRPrx3Jzc0NlZSXu3LnDyv4ZhtG7Fzf1qjWm6baGPt/S9o3H3333XfzrX/9C79694eTkhO7du+O5557DZ599ZtY87IGoxJqzszO6dOnCybGlUqnDXLAa44jzojkJA5qTMKA52Z727dvb7Vhubm56S4X2xsvLCxKJBJcvX9YZv3LlCjp27GjwMw899JDB7Vu1agVPz4bYVm9vb2RnZ+PWrVuoq6tDp06dsGjRIgQG8i9zlxIMCIIgCILgLS4uLhg8eDD279+vM75//37IZDKDnwkPD9fbft++fQgNDUXr1q11xt3c3NC5c2fcu3cPu3btglwut+0EbACJNYIgCIIgeM28efPwySefYNOmTTh58iTmzp2L6upqvPTSSwCA5ORkTJ06Vbv9Sy+9hF9++QXz5s3DyZMnsWnTJnz66adISkrSbnPkyBFkZWXh/PnzKCwsxIgRI6BWq7FgwQK7z68lRLUMygWurq5ITU1tdh1eiDjivGhOwoDmJAxoToQtmTBhAurq6rB8+XLU1NSgf//+yMvLQ9euXQEANTU1OjXXAgMDkZeXh7lz5+L9999Hp06dsH79ejz11FPabW7duoUlS5bg/Pnz8PDwwKhRo7BlyxY88MAD9p5eizgxjB3zfwmCIAiCIAizoGVQgiAIgiAIHkNijSAIgiAIgseQWCMIgiAIguAxJNYIgiAIgiB4DIk1M7l06RImT54MT09PtGnTBgMHDsTRo0eNbl9UVISIiAh4enrC3d0dvXv3xjvvvGN0+y+//BJOTk5QKBQsWG8YNua0efNmODk56b1u3bJdj7zmYOt3unbtGmbOnAlfX1+4ubmhT58+yMvLY3MqWtiYU3R0tMHfKS4uju3paGHrt1q3bh169eoFd3d3+Pn5Ye7cuYI+/+7evYvly5eje/fucHNzQ3BwMPbu3cv2VLSYO6fGHDp0CK1atcLAgQP13tu1axf69u0LV1dX9O3bF19//bWNLTcOG3P6v//7Pzz11FMICAiAk5MT1q1bZ3vDCdFBpTvM4I8//kBERAQef/xxfPvtt/Dx8cG5c+eaTfNt27YtZs2ahQEDBqBt27YoKirCiy++iLZt2+KFF17Q2faXX35BUlISoqKiWJ7Jfdick1QqxalTp3Q+a49K2GzN6c6dOxg2bBh8fHzw1VdfoUuXLtr2ZUKdU1ZWlk4rmbq6OgQHByMxMZHtKQFgb17btm3DokWLsGnTJshkMpw+fRrPPvssADT7sMTnOS1ZsgRbt27Fxx9/jN69eyM/Px9jx45FcXExQkJCeDcnDdevX8fUqVPx5JNP4rffftN5r6SkBBMmTMCbb76JsWPH4uuvv8b48eNRVFSEIUOGsDSbBtia019//YVu3bohMTERc+fOZcl6QnRw2ZhUaCxcuJCJjIy0ej9jx45lJk+erDN27949JiIigvnkk0+YadOmMXK53OrjmAJbc/rss8+Y9u3bW71fS2BrTh988AHTrVs35s6dO1bv21zYPPca88477zDt2rVjbt68afWxTIGtec2cOZN54okndLaZN2+eTY7VEmzNydfXl3nvvfd0tpHL5cykSZOsPlZLWDOnCRMmMEuWLGFSU1OZ4OBgnffGjx/PjBgxQmcsNjaWefrppy011WTYmlNjunbtyrzzzjuWGUgQjaBlUDPYs2cPQkNDkZiYCB8fH4SEhODjjz82ax9lZWUoLi7GY489pjO+fPlyeHt7Y/r06bY0uUXYnNPNmzfRtWtXdOnSBfHx8SgrK7Ol6UZha0579uxBeHg4Zs6ciY4dO6J///5QKpVQqVS2noIebP5Ojfn000/x9NNPo23bttaabBJszSsyMhJHjx7Fjz/+CAA4f/488vLy7LK8y9acbt++reeZdnd3R1FRkU3sbg5L5/TZZ5/h3LlzSE1NNfh+SUkJhg8frjMWGxuL4uJim9jdHGzNiSBYgWu1KCRcXV0ZV1dXJjk5mTl27Bjz4YcfMm5ubsznn3/e4mc7d+7MuLi4MM7Ozszy5ct13isqKmI6d+7M1NbWMgzD2NWzxtacSkpKmC1btjDl5eXMwYMHmaeeeopxd3dnTp8+zdZUtLA1p169ejGurq7M888/z5SWljIZGRlMhw4dmGXLlrE1FS1szakxR44cYQAwR44csaXpzcLmvNavX8+0bt2aadWqFQOAefnll9mYgh5szWnixIlM3759mdOnTzMqlYrZt28f4+7uzri4uLA1FS2WzOn06dOMj48Pc+rUKYZhGINeqNatWzPbtm3TGdu2bZug59QY8qwRtoLEmhm0bt2aCQ8P1xn797//zYSFhbX42fPnzzM//fQT89FHHzEdOnRgtm/fzjAMw9TX1zMBAQFMXl6edlt7ijU25mQIlUrFBAcHM//+97+ttrkl2JpTjx49GD8/P+bevXvasbfffpt56KGHbGe8EezxO73wwgtM//79bWKvqbA1rwMHDjAdO3ZkPv74Y+ann35isrKyGD8/v2bFqq1ga05Xrlxh5HI54+zszEgkEqZnz57MK6+8wri7u9t8Dk0xd0737t1jQkNDmQ8++EA7ZkysNT0ft27dyri6utrG8GZga06NIbFG2AoSa2bg7+/PTJ8+XWdsw4YNTKdOnczaz5tvvsn07NmTYRiGKSsrYwAwEolE+3JycmKcnJwYiUTCnD171mb2G4KNORljxowZevEpbMDWnIYOHco8+eSTOtvk5eUxAJjbt29bbrAJsP07/fnnn4xUKmXWrVtnlZ3mwta8IiMjmaSkJJ1ttmzZwri7uzMqlcpyg02A7d/q77//Zi5evMio1WpmwYIFTN++fa2y1xTMndMff/xh8LqmGfvvf//LMAzD+Pn5MWvXrtX57Nq1axl/f392JtIItubUGBJrhK2gbFAziIiI0MtuPH36tLaRrKkwDIPbt28DAHr37o2Kigqd95csWYIbN27g3XffhZ+fn3VGtwAbczL2fnl5OYKCgiyy0xzYmlNERAS2b98OtVoNZ2dn7X59fX3h4uJiveHNwPbvtHPnTty+fRuTJ0+2yk5zYWtef/31l/Y30iCRSMA0PKBabrAJsP1bubm5oXPnzrh79y527dqF8ePHW2WvKZg7J6lUqndd27BhA77//nt89dVXCAwMBACEh4dj//79OlmT+/btg0wms/EM9GFrTgTBCpzJRAHy448/Mq1atWLS0tKYM2fOMNu2bWPatGnDbN26VbvNokWLmClTpmj//9577zF79uxhTp8+zZw+fZrZtGkTI5VKmcWLFxs9jj2XQdma09KlS5m9e/cy586dY8rKypjnnnuOadWqlV3iodiaU3V1NePh4cHMmjWLOXXqFJOTk8P4+PgwK1asEOycNERGRjITJkxgfR5NYWteqampTLt27ZiMjAzm/PnzzL59+5ju3bsz48ePF+ycDh8+zOzatYs5d+4cc/DgQeaJJ55gAgMDmT/++IOXc2qKoSXDQ4cOMRKJhHnrrbeYkydPMm+99RbTqlUr5vDhw2xNRQtbc7p9+zZTVlbGlJWVMb6+vkxSUhJTVlbGnDlzhq2pECKAxJqZfPPNN0z//v0ZV1dXpnfv3sxHH32k8/60adOYxx57TPv/9evXM/369WPatGnDSKVSJiQkhNmwYUOzSzH2FGsMw86c5syZw/j7+zMuLi6Mt7c3M3z4cKa4uNheU2LtdyouLmaGDBnCuLq6Mt26dWPS0tJ0YtjYhK05nTp1igHA7Nu3zx7T0IONed29e5dZunQp0717d8bNzY3x8/NjXnnlFbsIG7bmVFBQwPTp04dxdXVlPD09mSlTpjCXLl2yy3wYxvw5NcVYfFdmZibTq1cvpnXr1kzv3r2ZXbt22dhy47Axp8rKSgaA3qu5/RBESzgxDMtrAgRBEARBEITFUJ01giAIgiAIHkNijSAIgiAIgseQWCMIgiAIguAxJNYIgiAIgiB4DIk1giAIgiAIHkNijSAIgiAIgseQWCMIgiAIguAxJNYIgiAIwkYcPHgQo0ePRqdOneDk5ITs7GyzPl9VVQUnJye91969e9kxmBAE1BuUIAiCIGzEn3/+ieDgYDz33HN46qmnLN7Pd999h379+mn/36FDB1uYRwgUEmsEQRAEYSNGjhyJkSNHGn3/zp07WLJkCbZt24Zr166hf//+WLlyJaKjo3W28/T0xEMPPcSytYRQoGVQgiAIgrATzz33HA4dOoQvv/wSP/30ExITEzFixAicOXNGZ7sxY8bAx8cHERER+OqrrziyluAL1BuUIAiCIFjAyckJX3/9NRQKBQDg3Llz6NGjBy5evIhOnTppt4uJicGjjz4KpVKJq1evYsuWLYiIiICzszP27NmDtLQ0fP7555g8eTJHMyG4hpZBCYIgCMIOHDt2DAzDoGfPnjrjt2/fhqenJwDAy8sLc+fO1b4XGhqKP/74A6tWrSKxJmJIrBEEQRCEHVCr1ZBIJDh69CgkEonOex4eHkY/FxYWhk8++YRt8wgeQ2KNIAiCIOxASEgIVCoVrly5gqioKJM/V1ZWBl9fXxYtI/gOiTWCIAiCsBE3b97E2bNntf+vrKxEeXk5OnTogJ49e2LSpEmYOnUq3n77bYSEhODq1av4/vvvERQUhFGjRuHzzz9H69atERISAmdnZ3zzzTdYv349Vq5cyeGsCK6hBAOCIAiCsBEFBQV4/PHH9canTZuGzZs34+7du1ixYgW++OILXLp0CZ6enggPD8eyZcsQFBSEzz//HCtXrsQvv/wCiUSCnj17Ys6cORSvJnJIrBEEQRAEQfAYqrNGEARBEATBY0isEQRBEARB8BgSawRBEARBEDyGxBpBEARBEASPIbFGEARBEATBY0isEQRBEARB8BgSawRBEARBEDyGxBpBEARBEASPIbFGEARBEATBY0isEQRBEARB8BgSawRBEARBEDyGxBpBEARBEASP+f8jvx5FzZVOXAAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -627,7 +851,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.10" + "version": "3.11.7" } }, "nbformat": 4, diff --git a/docs/examples/stationary/example_RDT_station.ipynb b/docs/examples/stationary/example_RDT_station.ipynb index c287b57..852a9a9 100644 --- a/docs/examples/stationary/example_RDT_station.ipynb +++ b/docs/examples/stationary/example_RDT_station.ipynb @@ -28,7 +28,7 @@ "\n", "import pandas as pd\n", "import numpy as np\n", - "import matplotlib.pyplot as plt\n" + "import matplotlib.pyplot as plt" ] }, { @@ -111,13 +111,13 @@ "" ], "text/plain": [ - " timestamp barometric_pressure_Avg relative_humidity_Avg \n", - "0 2020-04-10 09:47:00 983.8 29.0 \\\n", + " timestamp barometric_pressure_Avg relative_humidity_Avg \\\n", + "0 2020-04-10 09:47:00 983.8 29.0 \n", "1 2020-04-10 10:47:00 982.3 25.0 \n", "2 2020-04-10 11:17:00 980.8 25.0 \n", "\n", - " air_temperature_Avg DP BattVolt counts_1_Tot counts_2_Tot \n", - "0 9.6 -7.4 14.4 848 716.0 \\\n", + " air_temperature_Avg DP BattVolt counts_1_Tot counts_2_Tot \\\n", + "0 9.6 -7.4 14.4 848 716.0 \n", "1 10.9 -7.9 14.3 436 7200.0 \n", "2 11.5 -7.4 13.7 389 396.0 \n", "\n", @@ -204,7 +204,7 @@ "outputs": [], "source": [ "# Compute total cunts\n", - "df['total_raw_counts'] = crnpy.total_raw_counts(df[cols_counts], nan_strategy='average')\n" + "df['total_raw_counts'] = crnpy.total_raw_counts(df[cols_counts])\n" ] }, { @@ -215,7 +215,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAE8CAYAAAA2UqvOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeh0lEQVR4nOydd3wUxfvHP5dL7tITSkKR0HsPRb5I702KqIhKUwTRoFIERBRRBEQpiliw0VFUQIq0IEU6SO+9Q2jp5XJ3uf39kd8Ms3u7e3uXu9wlzPv14kVub293dnd25vnM88wzOkEQBHA4HA6Hw+FwOBwOx634ebsAHA6Hw+FwOBwOh1MY4WKLw+FwOBwOh8PhcDwAF1scDofD4XA4HA6H4wG42OJwOBwOh8PhcDgcD8DFFofD4XA4HA6Hw+F4AC62OBwOh8PhcDgcDscDcLHF4XA4HA6Hw+FwOB6Aiy0Oh8PhcDgcDofD8QBcbHE4HA6Hw+FwOByOB+Bii8PhcB4Ttm/fDp1Oh+3bt3u7KByOLDqdDpMmTfJ2MTgcDsdtcLHF4XA4HkSn02n6p0UATZ06FX/99ZfHy7xgwQJR2fz9/fHEE09g0KBBuHXrlsfPr5XU1FR8/PHHqFevHkJDQxEUFITatWtj3LhxuH37treLBwBYv369R8RDRkYGJk+ejLp16yI4OBgRERFo0aIFFi1aBEEQ3H4+V5HWJaV/5cuX93ZRORwOxyP4e7sAHA6HU5hZvHix6POiRYsQHx9vt71GjRoOjzV16lQ899xz6NWrlzuLqMgnn3yCChUqwGQyYd++fViwYAF27dqFkydPIjAwMF/KoMTly5fRvn17XL9+Hc8//zyGDh0Kg8GA48eP4+eff8aqVatw/vx5r5YRyBVb33zzjVsF1927d9GuXTucOXMGffv2xfDhw2EymbBixQoMHDgQ69evx9KlS6HX6912Tldp2bKlXV1/7bXX8OSTT2Lo0KF0W2hoKAAgKysL/v7cNOFwOIUH3qJxOByOB+nXr5/o8759+xAfH2+33Rfp0qULGjVqBCDXQC5evDimT5+ONWvWoE+fPl4rl9VqRe/evXH37l1s374dzZs3F30/ZcoUTJ8+3Uul8zwDBw7EmTNnsGrVKvTo0YNuf/vttzFmzBjMmDEDsbGxGDduXL6VyWazwWw224nwihUromLFiqJtw4YNQ8WKFWXfAW+LeA6Hw3E3PIyQw+FwvExGRgZGjx6NmJgYGI1GVKtWDTNmzBCFg+l0OmRkZGDhwoU09GrQoEEAgGvXruHNN99EtWrVEBQUhGLFiuH555/H1atX3VrOFi1aAAAuXbpEt5nNZkycOBENGzZEREQEQkJC0KJFC2zbtk302wYNGqB3796ibXXq1IFOp8Px48fptuXLl0On0+HMmTOK5VixYgWOHTuGCRMm2AktAAgPD8eUKVNE2/744w80bNgQQUFBKF68OPr162cXEtm6dWu0bt3a7niDBg0ShbldvXoVOp0OM2bMwA8//IBKlSrBaDSicePGOHjwoOh333zzDQBxOCnht99+Q8OGDREWFobw8HDUqVMHX331leJ1A7lifdOmTRg0aJBIaBGmTZuGKlWqYPr06cjKyoLFYkHRokXxyiuv2O2bmpqKwMBAvPvuu3RbdnY2PvroI1SuXBlGoxExMTEYO3YssrOzRb/V6XQYPnw4li5dilq1asFoNGLjxo2qZdeCdM7WpEmToNPpcP78efTr1w8RERGIiorChx9+CEEQcOPGDfTs2RPh4eEoWbIkZs6caXdMrdfE4XA4noB7tjgcDseLCIKAHj16YNu2bRg8eDDq16+PTZs2YcyYMbh16xZmz54NIDccURp+ValSJQDAwYMHsWfPHvTt2xdlypTB1atX8d1336F169Y4ffo0goOD3VJWIt6KFClCt6WmpuKnn37Ciy++iCFDhiAtLQ0///wzOnXqhAMHDqB+/foAcoXar7/+Sn+XmJiIU6dOwc/PDzt37kTdunUBADt37kRUVJRqWOWaNWsAAP3799dU7gULFuCVV15B48aNMW3aNNy9exdfffUVdu/ejSNHjiAyMtKJu/CIZcuWIS0tDa+//jp0Oh0+//xz9O7dG5cvX0ZAQABef/113L59WzZsND4+Hi+++CLatWtHvXBnzpzB7t278c477yiec+3atQCAAQMGyH7v7++Pl156CR9//DF2796N9u3b45lnnsHKlSsxb948GAwGuu9ff/2F7Oxs9O3bF0Cud6pHjx7YtWsXhg4diho1auDEiROYPXs2zp8/bzdfcOvWrfj9998xfPhwFC9e3KPzrl544QXUqFEDn332Gf7++298+umnKFq0KObNm4e2bdti+vTpWLp0Kd599100btwYLVu2dOmaOBwOx+0IHA6Hw8k34uLiBLbp/euvvwQAwqeffira77nnnhN0Op1w8eJFui0kJEQYOHCg3TEzMzPttu3du1cAICxatIhu27ZtmwBA2LZtm2oZ58+fLwAQtmzZIty/f1+4ceOG8OeffwpRUVGC0WgUbty4Qfe1Wq1Cdna26PdJSUlCiRIlhFdffZVu++OPPwQAwunTpwVBEIQ1a9YIRqNR6NGjh/DCCy/Q/erWrSs888wzquWLjY0VIiIiVPchmM1mITo6Wqhdu7aQlZVFt69bt04AIEycOJFua9WqldCqVSu7YwwcOFAoV64c/XzlyhUBgFCsWDEhMTGRbl+9erUAQFi7di3dJn3ehHfeeUcIDw8XrFarpusg9OrVSwAgJCUlKe6zcuVKAYAwZ84cQRAEYdOmTXblEgRB6Nq1q1CxYkX6efHixYKfn5+wc+dO0X7ff/+9AEDYvXs33QZA8PPzE06dOuVU+QVBuR6T43700Uf080cffSQAEIYOHUq3Wa1WoUyZMoJOpxM+++wzuj0pKUkICgoSHduZa+JwOBxPwMMIORwOx4usX78eer0eb7/9tmj76NGjIQgCNmzY4PAYQUFB9G+LxYKHDx+icuXKiIyMxOHDh10uW/v27REVFYWYmBg899xzCAkJwZo1a1CmTBm6j16vp94Sm82GxMREWK1WNGrUSHRuEoL477//Asj1YDVu3BgdOnTAzp07AQDJyck4efIk3VeJ1NRUhIWFabqG//77D/fu3cObb74pmg/UrVs3VK9eHX///bem48jxwgsviLx8pNyXL192+NvIyEhkZGQgPj7eqXOmpaUBgOr1k+9SU1MBAG3btkXx4sWxfPlyuk9SUhLi4+Pxwgsv0G1//PEHatSogerVq+PBgwf0X9u2bQHALjS0VatWqFmzplPld5XXXnuN/q3X69GoUSMIgoDBgwfT7ZGRkahWrZro/jt7TRwOh+NuuNjicDgcL3Lt2jWULl3azngmYXTXrl1zeIysrCxMnDiRzvkqXrw4oqKikJycjJSUFJfL9s033yA+Ph5//vknunbtigcPHsBoNNrtt3DhQtStWxeBgYEoVqwYoqKi8Pfff4vOXaJECVSpUoUKq507d6JFixZo2bIlbt++jcuXL2P37t2w2WwOxVZ4eDgVHY4g969atWp231WvXl3T/VWibNmyos9EeCUlJTn87ZtvvomqVauiS5cuKFOmDF599VVNc55IPVG7fqkg8/f3x7PPPovVq1fTeUorV66ExWIRia0LFy7g1KlTiIqKEv2rWrUqAODevXui81SoUMFhed2F9F5HREQgMDAQxYsXt9vO3n9nr4nD4XDcDZ+zxeFwOAWct956C/Pnz8eIESPQtGlTREREQKfToW/fvrDZbC4f98knn6TZCHv16oXmzZvjpZdewrlz52iq7iVLlmDQoEHo1asXxowZg+joaOj1ekybNk2USAMAmjdvjn/++QdZWVk4dOgQJk6ciNq1ayMyMhI7d+7EmTNnEBoaitjYWNVyVa9eHUeOHMGNGzcQExPj8vVJ0el0smtU5eTkyO6vlFpd7hhSoqOjcfToUWzatAkbNmzAhg0bMH/+fAwYMAALFy5U/F2NGjXw119/4fjx43RekhSScIT1OvXt2xfz5s3Dhg0b0KtXL/z++++oXr066tWrR/ex2WyoU6cOZs2aJXtc6b1mPaqeRu5ea7n/zl4Th8PhuBsutjgcDseLlCtXDlu2bEFaWprIu3X27Fn6PYHNZMfy559/YuDAgaJMbCaTCcnJyW4rJxFQbdq0wdy5c/Hee+/Rc1esWBErV64Ule+jjz6yO0aLFi0wf/58/Pbbb8jJycFTTz0FPz8/NG/enIqtp556yuH6UN27d8evv/6KJUuWYPz48ar7kvt37tw5GjpGOHfunOj+FilSRDYEMC/eL6VnBgAGgwHdu3dH9+7dYbPZ8Oabb2LevHn48MMPUblyZdnfPP3005g2bRoWLVokK7ZycnKwbNkyFClSBM2aNaPbW7ZsiVKlSmH58uVo3rw5tm7digkTJoh+W6lSJRw7dgzt2rVTLXdBojBeE4fDKVjwMEIOh8PxIl27dkVOTg7mzp0r2j579mzodDp06dKFbgsJCZEVUHq93s6b8vXXXyt6ZFyldevWePLJJ/Hll1/CZDLRcwNib8L+/fuxd+9eu9+T8MDp06ejbt26iIiIoNv/+ecf/Pfffw5DCAHgueeeQ506dTBlyhTZ86SlpVEh0ahRI0RHR+P7778XpfresGEDzpw5g27dutFtlSpVwtmzZ3H//n267dixY9i9e7fDMikREhICAHbP7eHDh6LPfn5+NCOjWkryp556Cu3bt8f8+fOxbt06u+8nTJiA8+fPY+zYsSLPk5+fH5577jmsXbsWixcvhtVqFYUQAkCfPn1w69Yt/Pjjj3bHzcrKQkZGhvrF+iCF8Zo4HE7Bgnu2OBwOx4t0794dbdq0wYQJE3D16lXUq1cPmzdvxurVqzFixAia3h0AGjZsiC1btmDWrFkoXbo0KlSogCZNmuDpp5/G4sWLERERgZo1a2Lv3r3YsmULihUr5vbyjhkzBs8//zwWLFiAYcOG4emnn8bKlSvxzDPPoFu3brhy5Qq+//571KxZE+np6aLfVq5cGSVLlsS5c+fw1ltv0e0tW7akC/BqEVsBAQFYuXIl2rdvj5YtW6JPnz5o1qwZAgICcOrUKerZmTJlCgICAjB9+nS88soraNWqFV588UWa+r18+fIYOXIkPe6rr76KWbNmoVOnThg8eDDu3buH77//HrVq1aLJJpylYcOGAHIXHO7UqRP0ej369u2L1157DYmJiWjbti3KlCmDa9eu4euvv0b9+vVV094DwKJFi9CuXTv07NkTL730Elq0aIHs7GysXLkS27dvxwsvvIAxY8bY/e6FF17A119/jY8++gh16tSxO0///v3x+++/Y9iwYdi2bRuaNWuGnJwcnD17Fr///js2bdpEw0oLCoXxmjgcTgHDi5kQORwO57FDLhV4WlqaMHLkSKF06dJCQECAUKVKFeGLL74QbDabaL+zZ88KLVu2FIKCggQANMV1UlKS8MorrwjFixcXQkNDhU6dOglnz54VypUrJ0qD7Wzq94MHD9p9l5OTI1SqVEmoVKmSYLVaBZvNJkydOlUoV66cYDQahdjYWGHdunV26dIJzz//vABAWL58Od1mNpuF4OBgwWAwiNKzOyIpKUmYOHGiUKdOHSE4OFgIDAwUateuLYwfP164c+eOaN/ly5cLsbGxgtFoFIoWLSq8/PLLws2bN+2OuWTJEqFixYqCwWAQ6tevL2zatEkx9fsXX3xh93tIUpdbrVbhrbfeEqKiogSdTkef/Z9//il07NhRiI6OFgwGg1C2bFnh9ddftyu3EmlpacKkSZOEWrVqCUFBQUJYWJjQrFkzYcGCBXb1hmCz2YSYmBjZpQYIZrNZmD59ulCrVi3BaDQKRYoUERo2bCh8/PHHQkpKiug64+LiNJVViiup3+/fvy/ab+DAgUJISIjd71u1aiXUqlXLpWvicDgcT6ATBA0zeTkcDofD4XA4HA6H4xR8zhaHw+FwOBwOh8PheAAutjgcDofD4XA4HA7HA3CxxeFwOBwOh8PhcDgegIstDofD4XA4HA6Hw/EAXGxxOBwOh8PhcDgcjgfgYovD4XA4HA6Hw+FwPIBXFzWeNm0aVq5cibNnzyIoKAhPPfUUpk+fjmrVqon227t3LyZMmID9+/dDr9ejfv362LRpE4KCggAAiYmJeOutt7B27Vr4+fnh2WefxVdffYXQ0FB6jOPHjyMuLg4HDx5EVFQU3nrrLYwdO1ZzWW02G27fvo2wsDDodDr33AAOh8PhcDgcDodT4BAEAWlpaShdujT8/FT8V95c5KtTp07C/PnzhZMnTwpHjx4VunbtKpQtW1ZIT0+n++zZs0cIDw8Xpk2bJpw8eVI4e/assHz5csFkMtF9OnfuLNSrV0/Yt2+fsHPnTqFy5crCiy++SL9PSUkRSpQoIbz88svCyZMnhV9//VUICgoS5s2bp7msN27cEADwf/wf/8f/8X/8H//H//F//B//x/8JAIQbN26oagifWtT4/v37iI6Oxo4dO9CyZUsAwP/+9z906NABkydPlv3NmTNnULNmTRw8eBCNGjUCAGzcuBFdu3bFzZs3Ubp0aXz33XeYMGECEhISYDAYAADvvfce/vrrL5w9e1ZT2VJSUhAZGYkbN24gPDzcDVfL4XA4HA6Hw+FwCiKpqamIiYlBcnIyIiIiFPfzahihlJSUFABA0aJFAQD37t3D/v378fLLL+Opp57CpUuXUL16dUyZMgXNmzcHkBtiGBkZSYUWALRv3x5+fn7Yv38/nnnmGezduxctW7akQgsAOnXqhOnTpyMpKQlFihSxK0t2djays7Pp57S0NABAeHg4F1scDofD4XA4HA7H4fQin0mQYbPZMGLECDRr1gy1a9cGAFy+fBkAMGnSJAwZMgQbN25EgwYN0K5dO1y4cAEAkJCQgOjoaNGx/P39UbRoUSQkJNB9SpQoIdqHfCb7SJk2bRoiIiLov5iYGPddLIfD4XA4HA6Hwyn0+IzYiouLw8mTJ/Hbb7/RbTabDQDw+uuv45VXXkFsbCxmz56NatWq4ZdffvFoecaPH4+UlBT678aNGx49H4fD4XA4HA6Hwylc+EQY4fDhw7Fu3Tr8+++/KFOmDN1eqlQpAEDNmjVF+9eoUQPXr18HAJQsWRL37t0TfW+1WpGYmIiSJUvSfe7evSvah3wm+0gxGo0wGo15uCoOh8PhcDgcDofzOONVz5YgCBg+fDhWrVqFrVu3okKFCqLvy5cvj9KlS+PcuXOi7efPn0e5cuUAAE2bNkVycjIOHTpEv9+6dStsNhuaNGlC9/n3339hsVjoPvHx8ahWrZrsfC0Oh8PhcDgcDofDySteFVtxcXFYsmQJli1bhrCwMCQkJCAhIQFZWVkAciecjRkzBnPmzMGff/6Jixcv4sMPP8TZs2cxePBgALlers6dO2PIkCE4cOAAdu/ejeHDh6Nv374oXbo0AOCll16CwWDA4MGDcerUKSxfvhxfffUVRo0a5bVr53A4HA6Hw+FwOIUbr6Z+V8reMX/+fAwaNIh+/uyzz/DNN98gMTER9erVw+eff06zEQK5ixoPHz5ctKjxnDlzFBc1Ll68ON566y2MGzdOc1lTU1MRERGBlJQUno2Qw+FwOBwOh8N5jNGqDXxqnS1fhostDofD4XA4HI4aR48eRf369b1dDE4+oFUb+Ew2Qo7nycjI8HYROBwOh8PhcAolJ06cQGxsrChHAIfDxdZjwrx582hY5c2bN71cGg6Hw+FwOJzCBRFZqampXi4Jx5fgYusx4ZtvvgEAZGVlISYmBpcuXfJyiTgcDofD4XAKD35+uWY1F1scFi62HhNOnDgBAEhKShL9z+FwOBwOh8PJO9nZ2QCAlJQUL5eE40twsfUYQFLpA8D9+/cB8PlbHA6Hw+FwOO7EZDIB4GKLI4aLrccA1ot17949ALnp8jkcDofD4XA47oGILR5GyGHhYusxIDExEUFBQQAeeba42OJwOBwOh8NxH9yzxZGDi61Czv79+1GnTh1ERUVBp9NxzxaHw+FwOByOByBiKzk52bsF4fgUXGwVcjZs2AAAKFq0KIxGI+Lj4wHwhoDD4XA4HA7HnRCxde3aNS+XhONLcLFVyClVqhQAwGq1wmAwYP369QCA+fPnQ6fTebNoHA6Hw+FwOIUGIrYuXrzo5ZJwfAkutgo5er0eABATEwOj0QgAiIiIwJ07dwAANpvNa2XjcDgcDofDKSxkZWXBYDBwscURwcVWIScrKwt169bFqlWrqNiKjY2l31+5csVbReNwOBwOh8MpNJhMJlSsWJEOaHM4ABdbhZ7MzEzUrFkTRqORiq3AwED6/YQJE7xVNA6Hw+FwOJxCg8lkQtmyZfHw4UNYrVZvF4fjI3CxVQjZunUrrl69CiDXsxUcHAwAVGyR/5s3b46VK1fiyJEjXiknh8PhcDgcTmHBZDIhJiYGAPDgwQMvl4bjK3CxVQhp164dunXrBiBXbJE1tqSerYYNG6JLly5YsWKFdwrK4XA4HA6HU0gwmUyIiIhAZGQkXWqHw+Fiq5CSnp4OIDeMUCq2yP+hoaEoW7YszGazdwrJ4XA4HA6HU0gwmUwIDAxEdHQ0F1scChdbhZTMzEwA4jBCg8EA4JFnKzQ0FAaDAdnZ2d4pJIfD4XA4HE4hgYstjhxcbBVSsrKy6P/Es6Uktrhni8PhcDgcDsd1kpKSkJmZycUWxw5/bxeA4xnkxBZZc4sVW0ajkYstDofD4XA4nDxQtGhRAECLFi242OKI8Kpna9q0aWjcuDHCwsIQHR2NXr164dy5c6J9WrduDZ1OJ/o3bNgw0T7Xr19Ht27dEBwcjOjoaIwZM8Yu5eb27dvRoEEDGI1GVK5cGQsWLPD05XkVslhxZmYmDSOUE1s8jJDD4XA4HA7HPXDPFkeKV8XWjh07EBcXh3379iE+Ph4WiwUdO3ZERkaGaL8hQ4bgzp079N/nn39Ov8vJyUG3bt1gNpuxZ88eLFy4EAsWLMDEiRPpPleuXEG3bt3Qpk0bHD16FCNGjMBrr72GTZs25du1eov09HSEhoYCAPz8ch83myCDe7Y4HA6Hw+Fw3ENgYCCioqK42OJQvBpGuHHjRtHnBQsWIDo6GocOHULLli3p9uDgYJQsWVL2GJs3b8bp06exZcsWlChRAvXr18fkyZMxbtw4TJo0CQaDAd9//z0qVKiAmTNnAgBq1KiBXbt2Yfbs2ejUqZPnLtDDHDt2DFFRUShdurTiPnJii8/Z4nA4HA6Hw3E/gYGBMJvNMJlM3i4Kx0fwqQQZKSkpAB7FvRKWLl2K4sWLo3bt2hg/fjzNtAcAe/fuRZ06dVCiRAm6rVOnTkhNTcWpU6foPu3btxcds1OnTti7d69iWbKzs5Gamir652vUr18frVu3Vt2HFVskjJB4tkJCQmAwGHDjxg0uuDgcDofD4XDySGBgIB/I5ojwGbFls9kwYsQINGvWDLVr16bbX3rpJSxZsgTbtm3D+PHjsXjxYvTr149+n5CQIBJaAOjnhIQE1X1SU1NpIgkp06ZNQ0REBP1HVgT3NS5fvqz6fXp6OsLCwgDIe7aMRiMOHz6McePGebagHA6Hw+FwOIUcIrYsFou3i8LxEXwmG2FcXBxOnjyJXbt2ibYPHTqU/l2nTh2UKlUK7dq1w6VLl1CpUiWPlWf8+PEYNWoU/ZyamuqTgisnJ0f1ey1hhIBj0cbhcDgcDofDeYTNZoPZbKZ2FcA9Wxx7fMKzNXz4cKxbtw7btm1DmTJlVPdt0qQJAODixYsAgJIlS+Lu3buifchnMs9LaZ/w8HCaFl2K0WhEeHi46F9Bw2azISMjg4otnU4HQJwgg4gtf3+f0d0cDofD4XA4Ps+4cePs7MjAwEAEBARwscWheFVsCYKA4cOHY9WqVdi6dSsqVKjg8DdHjx4FAJQqVQoA0LRpU5w4cUKU9SU+Ph7h4eGoWbMm3eeff/4RHSc+Ph5NmzZ105X4JiSro1RskRGY4OBgKrzIfC4Oh8PhcDgcjmMOHjxot417tjyDyWTCmDFjIAiCt4viNF4VW3FxcViyZAmWLVuGsLAwJCQkICEhgc6junTpEiZPnoxDhw7h6tWrWLNmDQYMGICWLVuibt26AICOHTuiZs2a6N+/P44dO4ZNmzbhgw8+QFxcHBUSw4YNw+XLlzF27FicPXsW3377LX7//XeMHDnSa9fubi5cuIABAwaIthFvXEhIiGh7UFAQQkJCoNfrqWeLNwocDofD4XA42iGD2KwAKF68OJ+z5QEOHz6MGTNm0HVkCxJeFVvfffcdUlJS0Lp1a5QqVYr+W758OQDAYDBgy5Yt6NixI6pXr47Ro0fj2Wefxdq1a+kx9Ho91q1bB71ej6ZNm6Jfv34YMGAAPvnkE7pPhQoV8PfffyM+Ph716tXDzJkz8dNPPxXotO8sDx8+RNWqVbF48WLZ7wMCAgA8ahRq166N+Ph4AI/mfK1evZpu43A4HA6Hw+GoQ+wqIqxatmyJUqVKcc+WByCC1lGuAl/EqxN1HLkCY2JisGPHDofHKVeuHNavX6+6T+vWrXHkyBGnyldQOHv2rOizv78/rFYrANjNVSPfkxBKdh2I69eve7CUHA6Hw+FwOIUHkniMiK1Vq1YBAJ+z5QGIR6sgii2fSJDByRusS9VsNouSXcglviCNAyAWWySkkMPhcDgcDoejDvFsEWFFIom4Z8v9cLHF8SpsXHCvXr1EAou8+Cys2OrcubNnC8fhcDgcDodTCJGGEbJii8/Zci8FOYyQi60CDHnJU1JS6LYNGzaIxJScZ4vNPFi0aFEMHjwYAJCWluaponI4HA6Hw+EUKtTEFvdsuRfu2eLkO1euXKEq/+HDh6Lv2IrIii3SKLBiDADN/sjFFofD4XA4HI42WLHl5+dHB7OJ2CqIacp9Fe7Z4uQ7JPU9ADx48ED0HUmOATieswUAEyZMAMDFFofD4XA4HI5WWLHFTtsgf7P2GCdvcM8WJ99hE1uwnq2YmBhaEfV6PW0IAGXPVs2aNTF69GgutjgcDofD4XA0wmYjZMUWX8PU/XCxxcl3QkND6d+s2MrKyqIVUc6rBdiLLQAICwsTia3PP/8cf/75p7uKS8nMzIROp8P9+/fdfmwOh8PhcDic/ELJs0XEFk+S4T642OLkOyEhIfTvxMRE+nd6ejoEQUBgYKBsJkJAXmwFBgaKvGXjxo3DwIED3VjiXMj8MOk8Mw6Hw+FwOJyCBJv6nXu2XCMtLQ3Hjh1T3eepp57C1q1bAXCxxclHjEYj/Ts9PR0A0KJFCyqYQkJC7DxbpFFgQwvZ42VnZ4u2eaKRIEKPTxrlcDgcDodTkGHDCNm1Sonw4mLLMe+88w7q16+vus/evXuxcOFCAFxscfIR8lLrdDqkpaVhxIgRorC/kJAQRc+WnNiSS1PqyYmd7ELMHA6Hw+FwOAUNJc+WTqdDQECA3SA2xx42OotgNpupJ4vdBnCxxclHiNgKDQ1FamoqihUrhsjISPp9cHCwomdLDjnPlifgIovD4XA4HE5hgNhVGRkZorn0QO6gN4k84igjN7Vl3rx5aNeunWgbmf/GxRYn3wgKCgLw6GU2GAwiF7ZcGKEa+bUAHxFbPIyQw+FwOBxOQeX+/fv466+/AORO55CKLWniMY48cmIrMzPTbltB9mxpt8Y5PkX9+vWRkpKCnJwc3Lt3TzSHC8j1bEnDCNU8W1xscTgcDofD4Wjj559/pn9zseU6crapXBQUmdpSEMUW92wVUARBwHPPPQeDwYDU1FQqtojActazld9hhFxscTgcDofDKaiwA9RcbLmOnNhSsxG52OLkGzabDX5+fjAajRAEgYqtwMBAAM7P2covzxZ5SbjY4nA4HA6HU1CRiq2wsDDR92FhYUhMTMSpU6fyu2gFCq2eLQIXW5x8g4gtMk+L/M/O5VLKRiiHwWDIV8+WLybKmDp1Ko2/5nA4HA6Hw1GCFVtpaWmynq2JEyeidu3a+V20AoXcnC3u2eL4BFKxRTxb5P+goCCnwwg96dm6du0aypUr59MrgE+YMAHDhg3zdjE4HA6Hw+H4OKzNlJqaKiu27t+/n9/FKnDIia3H3rOVlZUlyhJy7do1fPnll9i8ebNbC8ZRhw0jBB6JLDKB0Gg0Op2N0JOerW3btuH69ev0JZGu4fXRRx8hOTnZY+fXijPeQA6Hw+FwOI8nrNhKSUmRFVscx6jN2ZLzcD0WYqtnz55YtGgRACA5ORlNmjTBzJkz0bNnT3z33XduLyBHHiXPVmpqKv3sjHDwtGcrIyMDAOiaE9KX5ZNPPsHKlSs9dn6tFGSx9fzzz+PKlSveLgaHw+FwOIWWrKwsCIIgspmSk5PtxBa79ilHGeLZYoUVGwUlFVyPhdg6fPgwWrRoAQD4888/UaJECVy7dg2LFi3CnDlznDrWtGnT0LhxY4SFhSE6Ohq9evXCuXPnZPcVBAFdunSBTqezm1dz/fp1dOvWDcHBwYiOjsaYMWPsPCfbt29HgwYNYDQaUblyZSxYsMCpsvoaSnO2iKgJDAzMU4IMZ7xiWiDlql+/PgD5l0Wv17v1nK7ArlVW0Pjzzz/x+++/e7sYHA6Hw+EUWoKDgzFw4EDs3LmTbpMTW0WLFs3vohVIiG1KFi0GHgkvq9VqZ88/FmIrMzOTukY3b96M3r17w8/PD//73/9w7do1p461Y8cOxMXFYd++fYiPj4fFYkHHjh2pYc7y5ZdfyoqFnJwcdOvWDWazGXv27MHChQuxYMECTJw4ke5z5coVdOvWDW3atMHRo0cxYsQIvPbaa9i0aZOTV+87KIUREpz1bEnDCN3t4ZEuUMe+LOQF8wWxVZA9W4C4seJwOBwOh+N+Fi9ejPPnz9PPcmGExYoVy+9iFUiIbc8O+BPPVmERW067LypXroy//voLzzzzDDZt2oSRI0cCAO7du4fw8HCnjrVx40bR5wULFiA6OhqHDh1Cy5Yt6fajR49i5syZ+O+//1CqVCnRbzZv3ozTp09jy5YtKFGiBOrXr4/Jkydj3LhxmDRpEgwGA77//ntUqFABM2fOBADUqFEDu3btwuzZs9GpUydnb4HXuXnzJtLS0mTDCL/++muYzWbk5OQ45dkyGo2wWCwQBAE6nQ4BAQHIyspyW5mlApp9Wch59Ho9EhMTcfHiRTz55JNuO7czcLHF4XA4HA7HGbhny3XkxBbxbOXk5IiSZVSqVKlAii2nPVsTJ07Eu+++i/Lly6NJkyZo2rQpgFzRExsbm6fCpKSkABBX0MzMTLz00kv45ptvULJkSbvf7N27F3Xq1EGJEiXotk6dOiE1NZWubbB37160b99e9LtOnTph7969imXJzs5Gamqq6J+v0LNnT2zatEk2jHD48OEYNWoUwsLCaBp4LZDfk8ruqTBCAjtSQbxeer0eQ4cORZMmTdx6biUyMzMRHh4Ok8lEt3GxxeFwOBwOxxnkPFtcbGmDzNnS4tkKDQ19PMTWc889h+vXr+O///4TeabatWuHL7/80uWC2Gw2jBgxAs2aNROtSTBy5Eg89dRT6Nmzp+zvEhISREILAP2ckJCguk9qaqqi92batGmIiIig/2JiYly+Nnfj7+8Pq9UqCiMkixkT+vfvj7lz52o+JhFb2dnZOH78uNMhfRaLRXXhPmmmQznPliAI+SpqExMTkZaWJkrNWtDFltTdzuFwOBwOx7Okp6dzsZVHlMQWO4is1+t9cp1WRzgttl599VWEhIQgNjZWlBu/Vq1amD59ussFiYuLw8mTJ/Hbb7/RbWvWrMHWrVvzJOJcZfz48UhJSaH/bty4ke9lUIIIAj8/P+pqjYiIEO0TEhJiF3KpFkYYHBwMIPee16tXjwoQtYXlWL744gvVhfukmQ5ZsUU8W57MhigHEaqenKuW33DPFofD4XA4+Y801TtP/a4NMkjM2i9Kni29Xv94eLYWLlwo6w3KysqiKeGdZfjw4Vi3bh22bduGMmXK0O1bt27FpUuXEBkZCX9/fxra9uyzz6J169YAgJIlS+Lu3bui45HPJOxQaZ/w8HDFUDuj0Yjw8HDRP1+B3Ac/Pz8qFPJaPiI8+vfvL9q+du1aTb+X3l8AuHXrFv1bTWyR+pSdna1Z3LmT7Oxs+pIX5GyEABdbHA6Hw+HkB1L7SOrZkiYu48hDxFTlypWpPUi2HTlyBHv27KH73rt3D8uXL8//QuYRzRNzUlNTIQgCBEFAWlqaKGwtJycH69evR3R0tFMnFwQBb731FlatWoXt27ejQoUKou/fe+89vPbaa6JtderUwezZs9G9e3cAQNOmTTFlyhTcu3ePnj8+Ph7h4eGoWbMm3Wf9+vWi48THx9P5ZgUN1rNF5htpeanVPFtK9OzZU5MAkoav2Ww2lClTBmfOnEH16tXtwgh79+5Nj0s8W/kttsjISXZ2Nn3BuWeLw+FwOByOI4oXLy76LBVb0ukdHHlYu+X27duoVKkS3UZsfcK1a9ecznzuC2gWW5GRkdDpdNDpdKhatard9zqdDh9//LFTJ4+Li8OyZcuwevVqhIWF0TlWERERCAoKQsmSJWWTYpQtW5YKs44dO6JmzZro378/Pv/8cyQkJOCDDz5AXFwcFSDDhg3D3LlzMXbsWLz66qvYunUrfv/9d/z9999OlddXYD1bbHIHbyIVW+QzSXoiFyJI0tcToWM2m/NVbJFzmUwmeh99If28KxDhSDJKmkwmpxKkcDgcDofD0U5UVJToMxdbrsHaj2TevpzN+Prrr2PevHn5Vi53ollsbdu2DYIgoG3btlixYoVo4p/BYEC5cuVQunRpp07+3XffAQANCSTMnz8fgwYN0nQMvV6PdevW4Y033kDTpk0REhKCgQMH4pNPPqH7VKhQAX///TdGjhyJr776CmXKlMFPP/1UINO+A2LPltRjpIYrni2tKK2DQASN3IuTlpaGiIgIkWcrP2E9WwXdI8TGPG/atAlffPEF/vnnHy+XisPhcDicwgnr2Tp37pxdFmd3Z3UurLD2Y1JSEgD7KJ2IiAh8//33hV9stWrVCkDuAsExMTGi5Biu4ooXQ+435cqVswsTlNK6dWscOXLE6fP5Ir7o2ZK+GFrEVlJSEiIiIug15HeCDFK27Oxseu6CmOUGeHS/LRYLkpOTkZiY6OUScTgcDodTeAkJCQEAjB49WjHii+MY1n58+PAhAHt7sKBP8XBadpcrVw7Jyck4cOAA7t27Z2ecDhgwwG2F48jjqtjyhmeL1A8lsVW+fHmRh8kbc7ZMJhN92Quqh4v1bFmt1nwXrhwOh8PhFAa2bt2K5s2bO0yYRaYdeCOxl68zatQoLFu2jE4PUoO1H4nYki4DxHoJC6KIdVpsrV27Fi+//DLS09MRHh4uumidTsfFVj7AhhHOmjUL//77r0fPJwiCw8rtShgh8b4Q0TN16lQ0a9Ysz+XVCjtni4gsZ9ap2r17N0aOHIkDBw54pHzOQO73kSNH0L179wIrGh8nEhISUL9+fU2dEYfD4XDyh3bt2uHbb7/FG2+8obhPcHAwtYu42LLnr7/+ks1SLQdrr5AwQiK6CKxnSzo3riDgdCzg6NGj8eqrryI9PR3JyclISkqi/3joUv7AerYaN26M0aNHa/rd5MmTsWTJEsXvt27dKrtdaeFnFiWxdfPmTfz444+Kni12X63nchdE5GVlZbnk2fr1119x8OBBj5TNWcj9v3LlCu7evcs9WwWAgwcP4u7du7yj5nA4HA9x584dTJs2zenfKUUNkfa6bNmydts4zvHXX39h/fr1IvuR/C0VW6yX8bEQW7du3cLbb79NF8Hl5D+sZ8sZSpYsiZdfflnx+zZt2qBy5cp229PT0x0eW0ls/fPPP5g5c6as8Z+RkQFAPE9Ky7ncBWkgP/jgA8THxwNwzrPlSw0sW252Dlp+QTIgcrRDEsPw+8bhcDieYe7cuXj//ffddjxir/z11190my/ZAr6CllC/Z555Bu+8845IWJEBb6nYImvJtmzZEu+8844bS5o/OC22OnXqhP/++88TZeFohPVseerYLEQUqaEktu7cuYPU1FSYzWa78prNZty6dUskts6fP+9KsV2CnPf27dsYO3YsAOc8W77UwLLeQW9kV/z88895qnknIe8VF1scDofjHd577z18+umndtuVxAKxddiM3L5kC/gKWu1TPz8/3Lhxg362Wq3IyclBUlKSaP3YiIgIAMCOHTswbtw49xY2H3DaWu/WrRvGjBmDSZMmYcWKFVizZo3oH8fzEEHkiTWh5I6ZF8/WzZs3qdiSrpmWkJCAMmXK4Pbt22jTpo3Dc2zZsgV9+vRxm9iXayALumfL398fJpMp3z1bhSXTZ37CPVscDofjWRx5WKZPn44PP/xQdZ9evXpRA5/tawlabAFfshfyA0f3vVKlSgByE2GwA/pWqxUpKSkQBAHR0dF0O/FsFVScTpAxZMgQABCtY0XQ6XSiEXaOZ3A1jFALcsfUIkCUUr/fvHkTGRkZCAgIwJQpUxAXF0f3SU5OBpC73pY0rSdZ8JilQ4cOAIATJ07gzJkzji/GAXJp3hMSEnDw4EE0btzY4e99qfHMycmBv78//P39vRJGWNhIT0/H0aNH0bx5c4+dg2Rb4mKLw+FwfAtWLKxevRoAkJKSgunTpwNwXmzZbDaPDJAXVC5fvgwg1+YKCQmhgstisdCBSFZgEc9WQcVpa91msyn+40Irf/BkGKHcMbWEpCl5tkjcbXJyMlq3bi1qbIjYyszMtBNbaudkXct5Qa6BvHPnDp588km3HD8/sVqt0Ov1VGzxbIR5Y+rUqWjRooXbjnf//n3q+X/48CFMJhNNKJSfSWE4HA6HY48gCJg/f77qWpvz5s2jfasrYutxwpn07PXr16d/W61WZGdnIyAgQJQUo6B7ttxvrXM8Tn55tkaNGgU/Pz9Nni0lscViMBhELyDJRpiSkmI3V0ztnIGBgQ7Lo4W8Nn6+7NnKycnhgx95wN3vVpcuXdCzZ08AQPHixTFw4EDq0eKeLQ6Hw/EMWo3+xMREvPrqq7hw4YJo+1NPPSX6TOaVaxVbv/zyCwAuttRo2rQp/dtqtcJkMiEwMFB0jwu6Z8vpMEK58EGWiRMnulwYjjbyy7PVt29frFy50qHY0ul0dqMOWsQW8WylpKRo8mz5+/vDarW6LRGD1sbPZDJh//79aNWqlWi7L4kt1rNFjPfPPvsMlStXxgsvvODx8/vSvXAHpGHXssacGjqdDkuWLEFaWppo+/nz5+k5uNjicDgc70LaaKl9sXfvXvq3n58fXQuUjdJR6/969OgBgIstNdhkI0eOHMHnn38Oo9EoElsF3bPltNhatWqV6LPFYsGVK1fg7++PSpUqcbGVD+SX2PLz84O/v7+mkDTpat+s2PLz84PNZhMJqooVK4o8W+xESEDes2U0GmG1Wt3m2ZI2kIGBgbKG76xZszBhwgS7/X1JYEg9W0BuSvuAgIB8EVuFDSKEMjMzERISkqdjHTp0CGFhYQAehQz6+/vTeXVcbHE4HI53ITYMEUVyYoEVTKytpGYLkP0eJ7G1ZcsWXL9+XfP+bLjg/v37cfDgQZQuXVoktvLaD3sbp631I0eOiP6dPHkSd+7cQbt27TBy5EhPlJEjwZNhhOxojZ+fHwICAlQ9W0oChBVbUVFRAHJHjEiZe/fuTcVWamqq3bXICTwyV8tdc7akjV9MTIzsfmSyJpnQSfAlsSWds0XwpTL6Iv/8849sfSLiyB0LtYeFhdFFGMnxDAYDFVt8zhaHw+F4BkceFmJ7kEgbuQV2AaB9+/aKA71cbInp0KEDtZu0EBAQIHpONpvNLoywoC8t4xZrPTw8HB9//LHD9Jkc95Dfni1nxBZpUKSeLSD3ZSEvlNFoFIURSq9F7pykofOEZys4OBilS5dW3Y+kKpX7PcvBgwftFuTzNHKeLYCLLUfEx8fLZm4k9ZQMCLgCufdhYWH0vSBiKyAggHu2OBzOY4NOp8PZs2e9dn4lsUO8Ks8//zyARwO9Op1OJBjYTMpStIgtX59D/eqrr6JGjRpeObd0GgkAuzBCLrb+n5SUFKSkpLjrcBwV8itBhhaxJW1A5MQWgZ2zZTAYaH1JSUmxS4kq59ki1+2JBBnR0dFOv8xKDeyTTz6JAQMG5KlszuJtz1ZhE3WkbpABAVcg69OFhYVRYUVEOBdbHA7ncYHYA7du3fJaGZTsGBLZcO/ePQAQ9Z+s2DIYDIr9XGHwbC1fvlxVDLdu3Rpbt271yLnZMEJCYGCgyB4t6GLL6Tlbc+bMEX0WBAF37tzB4sWL0aVLF7cVjKNMfnq2AgICVOdsSRuQnJwcxdBD1k3Mhm4lJSWJvF+AvNgi5/JE6vfo6GjZ0RXpflq2A7mpvvMT1rPFjXftkDr52muvQRAE/PzzzwAe1bW8pNAngwkhISH0OESAsWKLhxFyOJzCDFlDyZsGs9VqlTXqQ0NDRY4CNtKBFVtGo7FQiy1H7NixA/PmzUPbtm3dfmwlzxZLQRdbTlvrs2fPFv2bM2cOtm/fjoEDB2LevHmeKCNHQn7O2ZLzbNlsNmrQO+PZAiDybAFAqVKl6LkISt40ss0Tnq0iRYogICAAGzduRIkSJRR/s2nTJvq3WgOb3wa0mmdLp9Nhz549+VqeggKpjz///DNN0Qs8qhtalj1QgnTgOp2Oii3yPyu2EhISXD4Hh8Ph+DpEbLmr73YG0sYrteXly5cXfVbzbClR0MXWl19+qWmOVVpaGi5evIi+ffu69fwBAQF0aRSCtK48dmLrypUron+XLl3Cvn37MHXqVDqpnONZvD1na9SoUbTiy3m22P8BsUdLKraIsGHPGxwcTBtnllq1agEQr2+RF9gGMiIiAgEBAShevLjdNbH7de7cWZO3I7/F1rPPPotLly4phhEeOXIkX8tT0NEqtr788ksMHz5c9juS3SonJ4cKK/I/EVuVK1fGlStX3FVsDuexxGKxICwszC4rLsc3IP15XpbRyCtKbbnVahV5VkgbrdPpRHZIYfZsLV26VNN+aWlp+PXXX7F8+XK3nj8gIAArV67Ejz/+SLc99p4tlps3b+LmzZvuKgtHI6QSeisb4b59++jfrnq2yDWQF4i9lqJFi8omJjAYDAgJCXHbRFO28QsPD0dAQIDDsEngkcfClzxbZG6RVGwRyLbjx497ZH5VQZ2zReqjdKBIaxjh6NGj8c0338h+R7y/NptN0bNVvXp1LrY4nDySkZGB9PR03Lhxw9tF4chARIs3kkQ48myxa3caDAan52wtXboUn376qeL5C4LYkq4DqUR6erpH+noyn58VvYGBgaJzPXZiy2az4ZNPPkFERATKlSuHcuXKITIyEpMnT/bpylSYIOsNeGudLfY5a/FsyUE8W8RVLBVbhw8ftlsfisRcu6vBFgQBxYsXx9q1a6lnS05sSRsXIgTV6runxNb48eMRHx+v+L2S2CKGf7169bB27VqPlK0goNPpcPz4cdFnwH51elLHHHm21OoAqUc5OTmwWCwIDg6mz+G3337DwYMHUb58edy5c8f5C+FwOHZ403PCUcabYougNHBmsViokR8aGirybGkJI3zppZfodAg5CpPYSktLc/o6tOxP7j8btSQNI/RGCKo7cdpanzBhAubOnYvPPvuMrrU1depUfP31106nfp82bRoaN26MsLAwREdHo1evXjh37pxon9dffx2VKlVCUFAQoqKi0LNnT7uMKdevX0e3bt0QHByM6OhojBkzxs5I2r59Oxo0aACj0YjKlStjwYIFzl66zxAcHAzA82KLzAFyVzZCwN6zRV4g4lHT6XQoWrQofvjhB/z++++i3xKx5a5Gi6zl8PTTT6NHjx7o1auXJs+WNENd//797fbxlNj67LPPMHbsWMXvlRJksAJMa8PqDAXJs3Xo0CG7bWQdLAKpY6NGjcK0adNcOg+pR8SzFRwcTBNkEMLDw3lCEw4nj/iyIcvxrthSCwm/efOmotgCgI8//pj+zYYRxsbGaj6/TqeDTqfz6TrqjNhyFi3znsn9Zz1bj30Y4cKFC/HTTz/hjTfeQN26dVG3bl28+eab+PHHH50WMDt27EBcXBz27duH+Ph4WCwWdOzYURQn27BhQ8yfPx9nzpzBpk2bIAgCOnbsKPKgdOvWDWazGXv27MHChQuxYMECTJw4kR7jypUr6NatG9q0aYOjR49ixIgReO2110TJDgoS+e3Zkr4srGEtbUDkxBa7v3TOljNhhFarFUaj0a1hhOS8LVu2RI8ePZzybJHtS5YssTu2Jw1oueuPjY3FjBkzHIYRcsQLFZP6KB3AIfX4xo0beP/99106D+vZMpvNCA0NteuswsLC+LPhcPIIaRO5Z8s38abYIvaLnNEfExODM2fOUI/KzZs3RRE1bN/PhhFu377dqTL4+fn5rNgSBMFuEFCJtLQ0TQOrrIdKyxx3Jc/WYx1GmJiYiOrVq9ttr169usiI0cLGjRsxaNAg1KpVC/Xq1cOCBQtw/fp10cjz0KFD0bJlS5QvXx4NGjTAp59+ihs3buDq1asAgM2bN+P06dNYsmQJ6tevjy5dumDy5Mn45ptv6AjF999/jwoVKmDmzJmoUaMGhg8fjueeew6zZ8929vJ9Ak96tlq0aEH/Vkr9zr4A0sZTGkb49ddfi77XMmerWLFismu2uVtsCYJgdw8DAgIgCAKOHDmC27dvy/7u4cOHyMrK8po3R+76/fz8ULFiRfj7+8su0ssa9J4wSAqSkcMuOC0tN3mm7ugYpZ6tkJAQuwn83LPF4eQdX18w9nHHV8UWgRj70naf7R8MBgOeeOIJALnttjP4stjKyMjQbMtojdhhQy61iC2yPyu2pJ4tdy354y2cttbr1auHuXPn2m2fO3cu6tWrl6fCEAO7aNGist9nZGRg/vz5qFChAmJiYgAAe/fuRZ06dUTpujt16oTU1FScOnWK7tO+fXvRsTp16oS9e/cqliU7Oxupqamif76CJ8XWmDFjsGvXLnp8pdTvcn+zn3NyctCwYUO7TG1SzxYJI2QbNTZZAXvunJwct3u2pMY2edkbNGhA142TNkRjx45FcHCw18SWXKPNpn6Xw9MGfUEKI2TFlhRStzwhtoKDg+2SYXDPFsdXmTJlimrIsi9B+omCNOjzOJCeno6UlBQ698kbgkPL/Fu5dZ50Op3I1jAYDDhw4AAuXbrkdBl8WWw5Gxqopa9nxZYzYYRKc7YGDhxI7d6CitM5tD///HN069YNW7ZsQdOmTQHkipkbN25g/fr1LhfEZrNhxIgRaNasGWrXri367ttvv8XYsWORkZGBatWqIT4+nj7MhIQEu3WRyGeyfo3SPqmpqcjKypJ1T06bNk0Ur+tLkDBCT6DT6ej8KSWxxaLm2SLH2bJlC80SpSS2WNgXLisri4ovd3u2PvzwQzsRzTa6ZDRO2riQ0Z3r16+7pRwAcOzYMdStW1eTsSB3/eyixnJwg/4RxANvMpkwefJk0XdEtLojVb40jDAkJAQrV64U7cM9Wxxf5YMPPgCQ2+d7A5PJhA8//BBffPGFw31Jm1iQBn0eB2bMmIHExETUqFEDgO97tpR+S/YpUqSIS2XwVbE1a9YszJgxw6nfOCu2nAkjlM7ZIucqyDkWCE67Rlq1aoXz58/jmWeeQXJyMpKTk9G7d2+cO3dOFILmLHFxcTh58iR+++03u+9efvllHDlyBDt27EDVqlXRp08fjxso48ePR0pKCv3nSyllicL3lAHNruOVlJSECRMmiO630pwtvV4v8mwRsVWzZk106tQJANCtWzcUL17cLoyQPaZUbBHcnY1w586ddl4O9mVXyj5Ezu+oDp48eVJzWerXr4/Nmzdr2ldJbKl5tjwttgqSkfPw4UNMnDhRdpAlJycH27Ztw/z58/N8HtLJWK1W2Gw2hISE2N2nsLAw2Gy2PC2ezOEURg4fPowZM2ZoMlLJ+8PDCX2LjIwMJCcna85S7AlI3VAz+uXEliAIonY5L+t7+vn52V27lkWE84rNZlO1K+Lj453Ohuus2JKb1qC0v1o2woKOS7WndOnSmDJlitsKMXz4cKxbtw7//vsvypQpY/d9REQEIiIiUKVKFfzvf/9DkSJFsGrVKrz44osoWbIkDhw4INr/7t27AICSJUvS/8k2dp/w8HDFSXdGo9FnY0SJZ8tTgpP1bN2/fx9AbqNJKr/SnC129IYVWyyLFi0CABw9ehQA7I4pXWuBvUZ3e7bkYM9N/pY2LsQbJpfVjqVOnTpOiRCt8dByxocjsbVs2TL873//01yWwkxiYiJWr14t+53ZbEa7du0Uf9u1a1cMGzYMPXr0cHge0rkToSvnkSax/yaTyS4jIofjSW7dukXnoPgipP/IyclxGDLvTWOeo0xOTg4yMzO9KoZd9Wzl5OSIyptXscX224cOHUKjRo08Pki5Z88edOrUye4dOnDgAIKCgtCwYUNs3LjRqWOSMguCoBiJw9p+WgZ6tSTIKOho9mxduHABL774ouzcpZSUFLz00ku4fPmyUycXBAHDhw/HqlWrsHXrVlSoUEHTbwRBoA+wadOmOHHiBO7du0f3iY+PR3h4OGrWrEn3+eeff0THiY+Pp2GQBQ0iAvNDbJHGhs1Ww74AlStXpn+z+yuJLZIG1VXPVn6KLSXPlrvDAUgnoLUxd8WzBYBm1Xvc5zU8fPhQseNVSopC2LBhg2iVezWI2CLvqZzYIiGyPMyTk5/cv38fZcqUwYMHD7xdFEWIcaglDIl7tnyTgiK2pIvaA7CLOJCzZ7QiFVv5FSlF7Bk2wzcANGnSBHXr1nV4TV999RUuXrwo+52aHcQ+Zy12KrFJAgIC6HvPhhEWBjSLrS+++AIxMTGyWVgiIiIQExOjKbaaJS4uDkuWLMGyZcsQFhaGhIQEJCQkUAP78uXLmDZtGg4dOoTr169jz549eP755xEUFISuXbsCADp27IiaNWuif//+OHbsGDZt2oQPPvgAcXFx1KAfNmwYLl++jLFjx+Ls2bP49ttv8fvvv2PkyJFOlddXIBXTU6OSxGDX6XRUZJGX9dixY7h165bs75TCCOWQztnSIrZIgow//vjDbg0ud+Hn50dfdiXPlrshjZHWxtxVsUUoKGJr27ZtHlmv7OHDh4qd/rVr1xz+XkmESyEdtRaxxedtcTxFTk4OtmzZItpG2nN3ifyJEye6fXFu0h5qCbHlni33YzabNQldNaxWKzIzM30ijFCtHk2fPh3x8fGibVKxlZd+k7WNyLHzA9LnyGV3BtTvSbVq1TBixAh89NFHou3ShCOvvPIKTUYn3QeQb2OkNhW5t7GxsVi8eDGAwhdGqFls7dixA88//7zi93369MHWrVudOvl3332HlJQUtG7dGqVKlaL/li9fDiD3Zu/cuRNdu3ZF5cqV8cILLyAsLAx79uxBdHQ0gNxKvG7dOuj1ejRt2hT9+vXDgAED8Mknn9DzVKhQAX///Tfi4+NRr149zJw5Ez/99BOdR1QQsdlsqF+/vkeOzYZvSMVW/fr1FbO5afFsEaSLGjvj2QKA/fv3O3dRTkBEltSoLlWqFKpVq6b6W2lnYrVa7UJYpbhTbMmtT0bwpGh097EFQUDbtm2xcOFC3L9/362en6ysLMVOnywpoYZWsaXk2WK9p0FBQYoLUXM4eSUzMxPz589Hhw4dRNtJ3dQyn0ILCxYswLlz5zTte/fuXU1GvDNii3u23E+dOnXQrFmzPB3DFzxbWrIRhoeH22Wsttlsbiuv1LOVX2KLiBi5iDS9Xq96fefPnxcdgyBN479gwQL8+OOPePDgAe3HHImtmzdvij6z3qxnnnmG/l2Y0Cy2rl+/TgWOHMWLF3faNUpCAqX/Bg0aBCB3btj69etx9+5dmM1m3LhxA0uXLrUzeMuVK4f169cjMzMT9+/fp4u7srRu3RpHjhxBdnY2Ll26RM9RUPGkdyIiIgJArlFIxJaWRe9c8WyR5+RMggzAs9cvFVvkmnr37o3+/fur/lbaoE+cOJHOHVTCWbGlNmerTp06ir/zFZf8sWPHHO5DGuOoqChER0fjjTfecGsZlDpeLW0YqRfffPON6n7SOVsksQ0r1gwGAwIDA3kYIcctrF27FsWKFaOfu3fvjiFDhtjtRybnV6xYEb/++muez2s2mzUbkCVLlsSHH37ocD9igHHPlnc4f/48Dh48mKdjELHl654tucEudyYu8pbYIueR82wFBATIXp+S14n0W8QWlP42KioKr7zyiui8AOgyTH379sXbb7+NtLQ0lC1b1u63BGL/PbZztiIiIlTXF7h48aLTC71xfJOSJUsiMTERERERdp4tJU6dOuWSZ4t0qOxLxY78e0psqb3EpB6TcrCNiiPXtnTE9sKFCw7LQtaM09oRqXm2pKnMWdgkJO7k7NmzmsLvAODcuXOoX7++Q08OGSUndYh8NplMbumolMSNUrgFC6mD0jXkpLCeLb1eT+s8O5hgMBhgNBq5Z4vjFpYvX06XNgCguIQBmwmNRJLkBWfEFgBN87udEVtkH19Mr/04Y7VakZGR4dXno5aNkCRCK1++vN13OTk5HhNbnhYRp0+fxtChQ6mtIOfZMplMmDlzpt12qX1B7AXSF5PlS+TsEKIRcnJycPToUdSpUwdxcXGoXbs2li9fjq+//trungqCIAqxJ/3jY+vZatmyJb7++mvF7+fMmZOn1O8c34KsJ7FmzRoAjsVWzZo1RZ4tsl6REtJQLFYIsMYoaziQOVtA3hd0Vmv0yTwaqdjS6XSK2SsJ0gnnznQuWht2tpH766+/MGDAAE1ztjzVwNeoUQOHDx/WtC8RFY7uCzEGSZgTafCDgoLw7rvvulRO9r4peWqV6jl771wJIzQYDPR37Hvh7+/PPVsctyEdLFAawGHFljsMSmfFljPtt5aQQ+7Z8j1u3ryJDRs2eD2MUM2zJQgCTp06Jeso8GQYIZvRzxNMnz4dP/74I10LVMsgIkEaWkz6XqlwY+8nuQ4yGE3sEaPRaBeaz16zXIIestbrYztna/z48diwYQOee+45HDhwgK4/tX//fjz77LPYtGkTxo8f78mycrxA165d0b59e01hhGyDYrFYFBcKBB4ZrOTFYxsiVjCwCwezc7byKrbUGlFyDlJGZzxb0oyazjSmWo0e9l6tXbsWixcvRlJSEjXi//e//1Fvmatl8RSk4XZkmBEDS85j5uri6ayQSktLo39XqlSJ/q1Uz1mDzxWxFRAQQN8HVmyRzJzcs8VxB8nJyaLP+SW2srOzMXr0aM2DBlq866S94nO2vIOjgUUltm3bRgcB79696zCMMDMzE++9916eyqoGu96hFLVlBfIjjNBTfTKxm3r27AlA3rPFwjpKpIMb5P5I++xatWrRv8l1ENuJFVtStKxdFhAQ8PiKrdjYWPz555/4999/0bRpUxQtWhRFixbFU089hZ07d+L3339HgwYNPFlWjpcIDQ116NkCxAkyMjIyZNOpEtQ8MOS7gIAAr4gt6ZwtZ8SWFE97tipWrEi3ESN+79696NOnjxOlzD+IkeXoWkmDP3bsWNHvADhMOKIEK7BYOnfuTP9WquesEak1vEEqtkh9ktbdgICAPGf94jwe7Ny5U7UtlhpVWsRWXuseWfz15MmTmuZjAtrEFhsl4Qju2XI/rq7717ZtWzzzzDP0uWVmZtI6Jvd8duzYgenTp7teUAcQT42S2FKKwPGk2JIbZJbD1YWPWbsJUH+HRo8ejc2bN8tOmwCUB0jJGqwsUs+W3IB7iRIl6N9K997f3//xTf0OAE8//TSuXbuGP//8E5999hmmTZuGFStW4OrVq5oW+eQUTEJCQjSJLTaMMC0tTVNjLedOJy9olSpV7MQWMVTzOu9IrVMmLnci+vJLbLFGz7Zt23DmzBlZNzspe+/evUXzLdiGS8774ksNlyOjSK1zkI7eayU9PR1BQUGiZ9inTx9ReLSa2CJlNhgMDu9leno6fXbZ2dkisSUdaOBii6OVN954Azt27FD8Xi2MkG2L3OnZYsOOtC7VoGWwzBmxxT1b7sddc/BtNhutb3LPx9P9kpJni5xXzbPl6TBCNftg69atssuFaEGaMVrtPOHh4QgMDKTeRaVwSy22jFRsEfuNTEuRonTv69ati1KlSjk8X0HC6SWxg4KCaGpGzuNBaGgo0tPT7RoeaSMpXQQ5MjLS4bHl3OnEGC1RogTS0tJw9OhR1K1bF1lZWfni2SLrxSxcuBCTJk1yas6WFFc8W0ePHkXbtm3pdul9JsdctWqVaDsrtuRGlKTzn7yBNP5bCan4cEeZ09PTERoaCqvVSsP2goKCoNPpIAgCSpQooSi2TCYT9W4ZDAbs2rVL9VxNmjTB6dOn6W8NBoNsGCGgnBWKw5GSnZ0tqivr16+HTqdDly5dANhnVWP3ZUOm3OnZYsWW1nBYZ8II+Zwt70Cyp7oK22+RqAJvPB9Sf6T1iJSFbY+joqKox4ZdPiivsLYR8KgPV7MPrly5AiD3Pjrb/0mPq3bfyfV/9NFHmDx5st2+fn5+DgXx7du3ATwSWzabDXq9noo+Ir6kx1bybO3evRsAMGTIkELzTufNYuU8FhDPltSlLR3FvHHjBpo3bw4g17BVCyNkjw3IJ8goUqQI9u/fj9jYWJoog4gdT3q22DVphg4dKjJYnA2tcGXOVmxsrOp+SmV35NnyBZwNI3QnpE6ygpn1cvn7+6t6toghmZ2djZYtW6qeiwgtgIcRFjY2bNhAM3LlNxaLRfTudOvWDV27dqWfpe0i2/7kh2crOzsbt2/fxokTJ1R/wz1bhRc5A5qEt6ot4eEpD5eSZ4vUL7a8V69edTl8Uo3Lly9j7ty59LMWzxYplyvzeZUGaAH7TLzE3lLK/qnT6Ry+VytWrAAgnrPl5+dHPe3Z2dmyA9WOlrt56aWX8O+//6ruU1DgYovjECK2pIZozZo1ZfffsmULTp065bDR2rdvH1566SUA8gkyihQpQl98slgveWE96dlauXIlZsyYAQD477//RIaJkjucULt2bdFnT8zZUjpmQRBbpBNw1rPlDkhoK9vos/Ov/P39FRNkZGdn007K2cyBagkyyHkLo9g6ePAgGjVq5O1iuJ1t27Zhy5YtXjm32WxWfXfUBqHY37EGnDs9W1lZWWjTpg3q1q2r+ht3ztm6efMmli1bJvoNJ++4Kn5I+8Z6/9m5hEr111PPTklskXKwtkRwcLBdRE5ebQ0CESSAc2LLmUyCSrD3XHo8Ym+RLIByqd+1PpvAwEBZEWs2m10SW4UJLrY4DiFhhOnp6SIjXmltpQ4dOuDIkSMOxVaTJk1kXzZilLLCJikpCcHBwZonljpCrQPX6XS0DGlpaaL15RyJrZo1a2LEiBH0s7NztvJyXQVBbLGLXquRVwNQp9PZja6TMEK20WfnTyUkJNBwCCmsZ0tuXorS9eh0Ors5W3JhhIVRbP3+++84dOiQt4vhdnJycrxm1JvNZk2DMnKGMqmjy5Ytw8SJE+l2ZzxbcseVhhGqGYdyBq4SWsTWrl27EBMTg99++010fI73UPNsAcptuyfFltFo1OTZAuyzMLpDbC1atAitWrWyO7faNZP3yhWxpebZIgPXBOlSJHLvm9ZnIwiCbHimIAiy9cKbUxryGy62OA5hPVtqEzal4kpLGCFBbs4WO8KUlJSEsLAw1QUKncFRp8wmx2AX4FSah0ZSrNpsNtF8qc2bNzssS9GiRVGuXDlYrdY8hfQ4mrNF8GYDR+67s2GErpR5z549os8kjFAaOkggnduPP/5odyyTyUTFVnp6OooUKYI2bdrQ75UWfA8ODlZdZwsovHO2fCkhizuxWq1eE1sWi0W27SLtDHlP5NpH8rs//vjD7pha8fPzw3fffSfaJhVbau8q2VdLaJSW1O/sOowAF1u+gJw4YcWW0vP0pNgKCgrS5NkC7JNgucP7EhQUJBqk0zJoTKIs3CG22PdCmmCK7QP1er3dfZLON2Nhy28wGETtk16vx4kTJ+j8q8cdp8XWgAEDMH/+fEXjglP4CAkJoZ4t4uWSY9OmTShTpgz97Ezss5zYknq2wsLCqGEgXXjPWbSKLUBsjChNGiaLP+fk5GjyKq1btw737t0DkNv5BAYGwmq15klEavVsedIIdnRspYnsqampqqOfrogt6RxDuTBCuSUI5FK7s2GE6enpCAkJQdGiRen3U6ZMEe1PnkVoaKjDMMLC6tkqrGLLG56ttLQ0pKSkKIYRjhkzBoA2sSXFWaE/duxY0bvqitj69ddfHc7FYNdsVEJ6Li623EdewwhZ2GU3lJ6np56dxWJBcHCwVz1bQUFBov5Ii2eL2FmO1siSwxnPFtsH+vv7OxVGyD7L0NBQO7FVu3ZthyHFjwtO1yKDwYBp06ahSpUqiImJQb9+/fDTTz/hwoULnigfxwcg62wRz5aS1yQ0NFTUqObVsyUnttzh2XruuecwatQo1X3YBog0ttWqVXNo9NtsNk1iq3v37njnnXcAPFo/zGKxaL6uJUuW2G0ryGKrZs2aqFq1Kg4fPoxFixa5RXxIxZajMEICqWNsPWfDCInYItdau3Zt0cLIwKM6ExoaahdGKO28C+ucLbllHQoD3hBbzZs3R8mSJRXDCKXvk1x9UlpI1dlrSU9PR9WqVelndg6jI7HF7qsUsistV8eOHbF9+3bZfaQhvVxsuQ9X319f9WwpZSN05Nlyl9jKT8+WWjZCqWdLLozwv//+o9vYBBnVqlWTLSMAap9JRSzp9x73d9PpWvTTTz/h/PnzuHHjBj7//HOEhoZi5syZqF69usirwSk8kDBCYqwqLUgcFhYmElvOeLbIC1qyZEmPi60VK1Y4zCbGNrB6vR5JSUl48803He6v5NmyWCx2k+rZDFpqnq2PPvoIGzduFG3r37+/3X5axZYnDUVHHbPSPIxbt27h7t27ePnllzFw4EDFhRWdQU5sSbMRqo3CksGC4OBgZGdn0xHB9PR0kYezbt26dveUFVtZWVk4f/78Yzdny5nU3QUJb4itS5cuwWQyKa79Q7aR90TO80/2UaqrjmCFEruwuCueLcDxmoVsW3L8+HHZfbQu4sxxHWfvqVybytYdb3i21MIIHXm2vBVGSBKSeWLOltJAuF6vx/79+9G4cWO6jfVs7d27VzTwIbX3lixZQm0r0q6QQUsta7UWZlyW7EWKFEGxYsVQpEgRREZGwt/fH1FRUe4sG8dHiIiIwKlTp7Bnzx6EhIQods6hoaGil9rZFKoXLlzAzp07ZRNkJCYmIiwsDM2aNQPgeQOOvQ69Xo/IyEjFldSBRw2KkthatmyZKKU82RcQhxGSDuHdd9+l+33yySd4++23HZZZ65wtTxqKjo7taD0csl3L8+3atSsN35RD2rhrDSMkHQipvyEhIUhMTKQptolni2AwGGi5b9y4AeDRsyD73b17lz4TuUWNC+OcLVIXtC50W1CwWq357q0rUaIE/VtNbBHUwgili7lqFVtKRp8zixqzRrdcuC67HwmzBnL7IDm42PI8zvYXjuqTNxJkyIktpTDC/PBsORNG6O5shGlpaaIQeGlU0eHDh0W/ZcVWcHCwKNEH69ki/eWBAwcAPLqvOp0OBoPBbvDzccPpWvT+++/jqaeeQrFixfDee+/BZDLhvffeQ0JCAo4cOeKJMnK8TJMmTRAeHo5jx46pCijpaImzYYSVK1dGiRIlZD1bM2fORFhYGDp06IBPPvkkT3O2wsPDHe7DNk7Sxlhu5JbsI02QQSBpcNmGLScnh2bvkXq2pKNrWiaUF+QwQun3WuZsbdiwAfPmzVM8l1IYoVKCDALxYJL6GxQUJDLqpGLLaDQiJycHCQkJKFu2LK5fv047aPb40jDCzp07Ayj8nq3CJra84dkqWbIk/VstjFBtsEL6zpH6rcWY1Ol06Nixo+x3bFtssVg0e7bUxNbQoUPx3HPP0c9K84SlYounfncfrmb+deQJ8vUEGdIkWO5IKBUcHOy0Z8tT2Qizs7NFNhC7r16vt0s6w2YYlN4ruUimb7/9lh6LoPauPy44LbY+++wzXLp0CR999BF+++03zJ49Gz179nSYEptTcNHr9ahRowZSUlJUxZbRaBS9jHlNkKGU3TCvxik7SqwEa5jIdQ6NGzemCzgDjxoWJc/WTz/9BEBseLJGW2BgIJ2z5e/vbyfYtBisSmJLOlLnC54tq9VKxdArr7xi973FYtFkBCqFtAJisZWdnY2UlBS7MELp70uUKEHbMnbBbbZTSUtLE4ktf39/2Gw26tXasmWLrNdAGka4YcMG+vvCKLaIseDrYuvPP//E559/rnl/b4gtNmxVbqCCtFHkf7nBKOmcLWJwOTImX375ZQDAsWPHZL9nz2U2mzXP2VJ7d8+ePSv6zL5/LNyz5TncJbakGYy1hBH+888/0Ol0LiWHkOLIsyXtZ2bPni367I7ByaCgIJhMJrt7qnZvyf2Quwc7d+6kSXHkUMtGaDKZEBERQa9busapNIHGt99+i4cPHwLQJrYIBWEpmvzEabF15MgRTJgwAQcOHECzZs3wxBNP4KWXXsIPP/yA8+fPe6KMHB9Ar9cjJSWFNpw2m83uxdPpdKIRDKXMfXLILWosHQ0hLzNJMeoqWkZZ2MZJbhHb/fv3i7JpOfJsEdiG02az0Q4gKysL06ZNo8kUpMd48OABDh48qFpmpTDCoKAgLFiwQHReT+Ho2Ow6WyEhITh06JCobOS+JyYmonjx4qLfyYUSqY2ismIrPDwca9assQsjlP6erRvh4eEYOHAgHWggSOds+fn5Yc2aNXRNqYSEBHpcuWcifW8KaxghCeNcu3atl0uiTv/+/TFu3DjVfZYsWUKXgPBG6nf2fGphhKRdVPNskWORwStHYossGKyEq54tLQu6EpQ8W9JQYS623I/SPTWZTAgPD7eLIJA+O6kdoMWzRdKFu2Oej5pnS25Ar0iRIqIEMO4SW8CjCBWl+ZMsVqsVYWFhdn1PcnIypk6dihkzZij+Vs2zZTKZEBsbi23bttntKye2AODkyZMA1MWWWsp8ObHl6/2Cu3FabNWrVw9vv/02Vq5cifv372P9+vUwGAyIi4tDjRo1PFFGjg/g7++P9PR0+kLpdDrZcDzWWHXG/c6+8MQoDQwMlPV45dWzpWWUxZHxq9PpoNPp8NVXXwEQe7bURmzZxiknJ4dm/Tl16hSA3ExBcp4tAFi9erVqmZQat8zMTFFj680EGdJwp5s3b8p+v3TpUlGHl5WVJTvCpya22I6aGHmOwgildWPBggUIDw8XnVu63pxer8eZM2fwxhtvAMjt3OXEFjm29P4X1jBCYoSRrJu+xq1bt3D//n1NIbr9+/dHpUqVkJmZ6RXPliNPuzNii7yjRGzlVaA449li91U7r/S9VvJsKWWY47gPpbqekpKCtLQ03LlzR7RdapBLQ+Klz4zUR7kBzrw+TxICFxwcLDrv1atXUaFCBcX+g93XnWKLePm1iK2cnBwULVpUJLYaNGiAKlWqKM5hJKhlI8zOzkZQUBCNzJGGEUqzFQLAvXv3qM3Dwr6XcoPvBGIXli9fnm57+umnVa+hsOG02BIEAYcPH8asWbPQo0cPtGnTBkuWLEGdOnU0TeLnFEz0ej1dnJXgSGy5SlRUFFasWGEXfkCMjLCwMNy6dcvl42spo1ZPw2uvvQYAIpe8mgBgjfarV6/SBo+MJiUlJSEgIEDz+k8sciFrQG7jyja2vhJGCNjPq2Lvu1J6aRatYYSEwMBAUScg/T17j0knFBgYaCf02NTv0udtNptlQ1SIgJbWrcIqtrSIGG9SpkwZNGjQwKnfpKWleV1suerZOnPmDA4dOmQntlz1qpLjsO+mM2GEavdQarilp6cjMzPTbm0uVrxFR0dzseVGHIURknZP2jZLw8mkA1hKYkvqfQHyLrbYOdBsPT937hwA5QFhdl93ii3SJ2n1bEnF1oULF/DgwQOH884debYCAwPpO6bFs3X//n1RP5ecnIyaNWuKxJbae0/qwN9//+104rTCgtNiq2jRomjSpAmWLVuGKlWqYOHChXjw4AEOHz5sF+vqiGnTpqFx48YICwtDdHQ0evXqRV8CIDeU6K233kK1atUQFBSEsmXL4u2337abMHj9+nV069YNwcHBiI6OxpgxY+w6kO3bt6NBgwYwGo2oXLmyKHSJ4xh/f39kZWWJPC5yL7wraVJDQkJopjcg96Xt3bu33X6kgerVqxeOHj2Kq1evOn0uQJtnS2sjL/VgKIUmEFij/eLFi/TvJ554AsAjsSXn2XJGyEqvkb0eX0qQ8eDBA/qddPHEChUq0L+VFlF3VmxJOwT295UqVUK/fv3oZ1IWo9Fo1+ZIwwhZ0tPT6SRjOQH8+uuvi7JNsnO2fvzxR9EctoJMQRCQUs/qrVu3VOtwSkqK18WWkmfrgw8+oOJDbs5Wr1690KhRI2rIkvbbVYOWjNLnl2fr888/F2VCA8R1rFmzZlxseQCluk62//zzz6Lt0r5H+llp7hR7HlK38vqeKYktdqkWtd+5owzkfIGBgTTagpTFkWerXLlyuHLlimh7yZIlqWdLaxsrFVtyg4qAuthi+7KIiAgEBwererZYyPkCAgLcknCkIOK02FqyZAkePnyI//77DzNnzkT37t3tsrdoZceOHYiLi8O+ffsQHx8Pi8WCjh070gp5+/Zt3L59GzNmzMDJkyexYMECbNy4EYMHD6bHyMnJQbdu3WA2m7Fnzx4sXLgQCxYswMSJE+k+V65cQbdu3dCmTRscPXoUI0aMwGuvvYZNmza5VO7HEb1ebye21LINzp07V/Ox09PT8eqrrzrcjzRQkZGRKFasGO7fv6/p+ImJibh+/Tr97E6xxYY2kt/JCc7atWujQoUKosaJbQB37doFnU6HpKQkxTBCZ0agpb9nG0JfmLNFOgn2GUpXrw8KCqJrdijN2dA6Z4uFbezZ31+8eBHvvfce/Uw6IaPRKOvZUirDnDlz6N/kvu/atYvWu3LlyuGLL76g+7Bztj744INCMxBkNpvRpk0btGvXzttF0UyZMmXslhNg63RqaqrH52xdu3bNLiOYljlbU6ZMAZD73mRnZyuKRjJwQEaYXfVskeO4miBDqY1NSEig80mioqIwY8YMZGRkyApIaXZDLrbch1x4Hwupk7NmzRJtt1gseOutt+hnaX9Llm+RHoc9j9QD5CpKYosdHFX7HQA0bdrULWttseuQSj1bFy5csOvjrFYrmjZtikuXLtEEFUBupAURW9J2QglpGCEbSi8NI2Qhg+D37t2TXY9Mq9gidUBtPnthx2mx1a1bN02ps7WwceNGDBo0CLVq1UK9evWwYMECXL9+nU40r127NlasWIHu3bujUqVKaNu2LaZMmYK1a9fSF2fz5s04ffo0lixZgvr166NLly6YPHkyvvnmG9oQf//996hQoQJmzpyJGjVqYPjw4Xjuueec9sQ9zkhXA5f+LcUTo/ONGjWifxcpUkRzQ/PLL7+IjGgtIyu9e/dG+/btHe6n1+vRqlUrGo6kFEZYqVIllC5dWlE0FC9eHIIg4O2331b0bDmTmUn6bAYMGED/9tacrWHDhtE5auTdZD1bUrGlpWHWMmdLzkvKnlMJR2GEjsqwcOFC+nezZs3o9ajN2VIKlyyIWCwWBAYGFjgDWDoHZciQIfTv/PBslS9fHk2aNLFbJkLub7ltERERuHbtmmL7Rd69atWqoUmTJi4/HzmxtXr1appIRO3cgHI7xA7UlS5dGpGRkbBYLIqLxRP0ej1P/e5GHIURstszMjLQs2dP7Ny5EydOnBDNxyHPbfny5bLHkQupk85tchVHYkuJL7/8kv69bt06t6x1xYotUhZyj6tWrWo3DcdqtSIqKgpVqlSha1cBoBmLAch6oeRgM5EmJSUpii1pf1imTBkAuWJLKqasVis+++wz+jk6Olrx/OygNPdsOcF///2HsWPHom/fvujdu7foX14gFZpdcE1un/DwcPrw9u7dizp16ojSeXfq1Ampqak06cDevXvtOp5OnTph7969iufJzs5Gamqq6N/jjNSDA8g3WORFcve6CgEBARg0aBD9XLRoUYcNzYEDB3D8+HFYLBbR/BEtHXK1atUQHx+vqWzPPfecaHROboQnKChIdW6OdG4Pe5/Lli0LIG9iy2g0UrHqLc/WvHnzqNeH3Aep+JSKLUcNM6mXCQkJ+Pvvv0XfkdHRVatWibarzdliYT1bx48fF33Hii2lEb3o6GiRcUnOKx2sYutFXtaP8zUKqtiSlveXX36hf6empuZLGOHFixfpejWAWFSoJcgAcsXW2rVrsXXrVtljE0EfFRWFb775xmXPFplI70ydNZvNaNmyJRo0aKBYL9gBBz8/P/j7+8NqtdI2kf1eKrYKWl0rCCjVdfZeh4aGYs2aNXj//fcBiNtV8tyUImHkPFueDiN01K+w4eRGo9Fu/rgrhIWF0f5OTmBKE1OQZFtPPvkk9u/fT7ffunULp0+fBqA9jJCcb968efjnn38UwwilNh151+TE1okTJ0Sf27Ztq3h+8lvu2XKC3377DU899RTOnDmDVatWwWKx4NSpU9i6davDDClq2Gw2jBgxAs2aNUPt2rVl93nw4AEmT56MoUOH0m0JCQl26yaRzwkJCar7pKamKq4BM23aNERERNB/MTExLl9bYYC8hOzLQhpUuSx57nC7s/j7+4sayCJFijgUW02aNEG9evVgs9k0zxVwtWxs4yl37f7+/qop66UCgO2s/Pz80KhRIzoq9uuvvzosExFbbAdHzuHNOVvkukgjzob65eTkiAwptYaZnIccb/To0XbZjbSsWK9lLS+5gQN2zpZSFsiAgAA7T9WFCxfQpEkT0TZiTALcs+ULqJXXnZ4tQRDsRDwL6b8Ax+F37LbIyEhVrz/bFkq9yUBuGKOWEXM5z5YjsrOzYTQaVYWRVGyRwQjybrFeBvbcXGy5F2c8WwS5QVny3JQSI8gJD3eFEZJ21Wg04sqVK7QP9EY9UQsjBOzXI7NardDr9WjSpInIswUAixcvFh3HEeQ8ZJ4769kig7mA/eAjeRelCTIAsdDr0KEDunTpgnr16qmePygoiHu2tDJ16lTMnj0ba9euhcFgwFdffYWzZ8+iT58+oofmLHFxcTh58iR+++032e9TU1PRrVs31KxZE5MmTXL5PFoZP348UlJS6D+yYOnjiprY6tGjB93mqZF5qVHsTBihVGy5e1Rar9fTRl3Js6XX6xEQEACz2ezwHplMJtF9zs7ORkREBDUytIwOkX2efPJJuo00ct6cs0XqEbkHrCAym83IycnB2LFjAah7tsj9JseTrvEByC+mKx3FV2v4ibEhF76kFEYoXex43LhxNGMlAFSuXNnuWKxnqzCFQZnNZgQGBha4a1Irb0pKitvmbK1cuVLROAEehfDExsaKFvnVEkao1jY68gaVL18ezzzzjMPyJyQkwGazYd26dQ73JZjNZhgMBvj5+SneQyWxRfZnPfzcs+U55DxO7HdyIfGkLWSNdtJ+Kk0/UUuQ4Q6xRSJFiDdIEARN3tzq1au7NT15aGioXRihzWaj/YxUbBHPFhFbcgOZctch916R+0j6SfJMEhMTRRFpUrFF+umkpCQ7u4Z8ZzQasXnzZgDKg63k/FxsOcGlS5fQrVs3ALkPLCMjAzqdDiNHjsQPP/zgUiGGDx+OdevWYdu2bbSDYUlLS0Pnzp0RFhaGVatWiYzNkiVL4u7du6L9yeeSJUuq7hMeHm63BgTBaDQiPDxc9O9xhryErOEp58FR8hTmFTmx5Uy8sic9W3q9HgkJCTTFOntfyGKper2eeraKFSumery0tDRR2CNZ8Z0YGXLGP6nrhMDAQOj1eixevBhHjx4FkD9iy5FnizxHObFFKFKkCAB1UUl+T+611nSyycnJGDJkCJ3Dptbwk/vEdmi9evUCoJz6XSrCunTpgh9//FG1TIU19XtB8myxRoZa5k4yIOCOd0huPRuWjIwMREZG0veXYLVa7Za+cEZsETEjCILIq8qiJWR50KBBeP3117Fv3z6H+7LndsazpdPpEBAQgAMHDmDXrl0A7D1brDelMC4O7i3U0pPPmDFDNgKJbd+PHDkCwHEYoTRDLeBesaXX60UZX202m6b29vTp03bJcvKCkmeLiFY5z5a/vz+qVq2Khw8fyr6TcvdHSYAdOnQIH3/8MYBH95f0tQSlMEK570jbqCVNPimnWth+YcdpsVWkSBFaYZ544gm6snRycrKmsB0WQRAwfPhwrFq1Clu3bhWleiakpqaiY8eOMBgMWLNmjd0IdtOmTXHixAncu3ePbouPj0d4eDhq1qxJ9/nnn39Ev4uPj0fTpk2dKu/jjJpni8VTYkv6ogcGBjoMuWIzDnnas3X8+HEMHToUNpsNfn5+GD16NIBHIoBkGDSbzaIRwYoVK9K/ycT8tLQ0kZAkYou8d1Kx9cMPP9BRO0JoaCjOnj2LUqVK0dFzX/JsyYURArn3iXQ6ap6tFStW0P0B7WIrMTERMTExmDlzJgBtni1W+JIU/Uqp39lyaF1nqrCOyBckscW2a1arlYb3SeunxWJxaxihHBEREShXrhyuX78uOzH/+PHjKFOmjGIZwsPDVQeitITeRUVFyf6WvC+kDXJ2+Q3i2VJLZiEntgRBoB40qWeLTStdmOY8ehslsXXq1Ck6iKhEcnIy6tevDz8/P9SvXx+A2LPFGuieTP1OvENs3bBarZrEltwivnlBTmwdO3aMZuSV2rZk4JbUb7m6rVVs5eTkiDIyKy0SLrXpBg4cSKfgSAe8SVIwLcvKsM+Re7Y00rJlS5o44Pnnn8c777yDIUOG4MUXX3Q6xW9cXByWLFmCZcuWISwsDAkJCUhISKAvGhFaGRkZ+Pnnn5Gamkr3IQ+4Y8eOqFmzJvr3749jx45h06ZN+OCDDxAXF0cr6bBhw3D58mWMHTsWZ8+exbfffovff/8dI0eOdPbyH1vkYrHlxJanDCvpi67FQCVzCPPDswUABw8epA3k66+/DuCRUc56tljYZROId0qatlnq2ZLe91KlStmNUAH2IWtqYksQBLcshaDU2JLrJmVX8myFhobSOubv74///e9/sscbOHAgAHvPliPPGhnxJ79Tm7MlJ7bIPWSfgZJni4stC4KCggrEtel0Ovq8lyxZQgcoWMN+0KBBsFqtbgsjlKurgiAgNTVVUewAoAOLSkInJCREdeCTHRCTerbI38WLF5f9LVmygLRbasms5MjOzqZhhFo8W8RYZmHfK7PZLBJbhdFD7A0yMzNlRZDJZFKcUw888jo2btwYQO7zK1WqFACxZys9PZ0+K097tsh8afK+WSwWr9QTNkEGec8GDhyIr7/+GoC9mGLLDiiHxT948IBm8AaUwz7Z9oYd5GUh71pcXBw++ugjPP/88zSEmWT3JezevVv0G8CxZwvIXRqFzQ79uOC02Jo7dy769u0LAJgwYQJGjRqFu3fv4tlnn7Vb3M4R3333HVJSUtC6dWuUKlWK/iMpQg8fPoz9+/fjxIkTqFy5smgfModKr9dj3bp10Ov1aNq0Kfr164cBAwbgk08+oeepUKEC/v77b8THx6NevXqYOXMmfvrpJ3Tq1MnZy39skfNsuTsJhhrS0RAtBipp3D09Z4s0NqmpqTRBBjHiifHNztkibN++XTHxytChQ7Fz504AuQ0YEVs6nU7Rne8ItQQZR44cQefOnfMchqN0b0lMt1RsSRvwsLAwkbCPjo5WHUUl95mILUfeTlInyO/URtnKly8PQGzckd+xz4D9m/Vssd4vNQqr2CKGcEGYs6XT6egzYNd+Y0eASZiaJz1bGRkZEAQBxYsXF70bXbp0oX+Td0e6vlFMTAzKlCkjqndyYfJsGmhS98jizmQ9H6VQ5z59+gB45KXQWsfZsquFEebk5Iiyh1osFrtwYvZ9lHq2uNhyDyEhIbh9+zYAcZsu52llF5pOTEzExx9/jNKlS9Nt7NweQu3atREbGys6PgnvW7x4sWgOdF4gYYRSz7U3wk1ZzxZbT8nAiLTvImUn/+TEVk5ODl5++WXRsjjXrl2T3Y/c57Zt24raExbSlw0dOpTmRiCD1tI5esQTp2UOOVuH+vXrh2nTpjn8TWHD6QBKdiTLz89PpFCdDSFzZCS2bt1akyFZrlw5rF+/3uGxSAwxx3nk1tnKz/hbqQdCLouWFGJomEwmO89WuXLlZBslVyD3JjU1FQEBAfDz86PbiDEil40wNjbWTmyR1KwGg0Hk1YmMjERqaipteFmUQgKkqHm2yLbs7Ow8PVclI5RMNJYmyJCKLWKIAY8acbXQIHI+IqLS09NF4Rjs/T579iwd0SPnUBJbN2/epG0dqXubN2+m6eXZ+sj+TcR1586d0aZNG8VysyjNmyno+EoY4ZUrV1CxYkXVvsTPz48+A7a+sZ4t8pw8KbZIHxoRESHyTi1atIh6u5QEhdFoxA8//EBHnIHc90KtXybvekxMDK5evUqvi4y2K+3PChwlBEGwe79IGKHNZsOoUaOQnJyMHj160PdSmoiKTflOyM7ORnZ2Ni5dusTFVj7Avr9Sg9vf3x/ffvstatWqBSB3yQKpAJcbALt16xadd8iKrY0bN2LAgAE0ykP6nmVkZNBEE1pCx4lnlLVbtIYRupvQ0FBcvHgRgHjAgNgp0vvEenUNBoOi2GKfiSAIqFOnjt1+NpuN3ku1aA65ufmOwv5Ye0SLZ+txxaV1tqRkZ2dj1qxZsnOuOIUDrWGE//vf/+xWiHcHcmGEjgxUYnQnJSXZeba++uort5WNNDZpaWl2ni02jFDq2dLr9ejYsaPoWEOHDqWeXbYRi4iIgMlkQlRUlJ3Y0rr+lprYIsfUGvqmhKPBEdLoKoktnU5nV9fUvFXSLEvp6el488036fdsHalWrRo9piOx9cQTT9BOcPLkydiyZQs6dOgg8myRei4XRlijRg3Nsene8mx5Mpzm0qVLSE5O9okwwjNnzjjch/Vsse8om1iJFVvuWD6BHIM9FnkeISEhoneDNSyJcfXgwQNRG2wymWA0GkXJcpSSEhDYuvvMM88ohhcRyPnIe6A2MCP33EmCjOvXryMpKQkjR45E69at6b7S+yontkwmE7744gvUqlWLZrwEoLq0Bsd12P5CKrasVqvd0hjSOcVk7jwg72llwwilbb60DpGkMlozEZNQPKlny1thhGRgVK5Pk/NsseJHrm8m3i+C0nVpbbPk7DytvwG42FJDs9jKzs7G+PHj0ahRIzz11FP466+/AADz589HhQoVMHv2bD4HqhCjNYxwz549NPzNnciJrXv37qmKA/IbqdgiI0bumqjJ3geS+l3q2fLz84PBYBDNs/D390f37t0VGyI2ZJDMkahYsaLdfdcaykPuh5rYyus6T45G/MlzUJqzJSe2RowYgffffx8NGza0Ox65d+RZ3rhxA999953DcmoJIyRERkbS+ahkf5IERbquGjGKnemsvCW2atSo4bEkQVWrVgUAn/BsaVlLDXhUl1iDhfV+E7Hl7jlb7LEsFgt0Oh2CgoJEYos1aMngyoMHD0RiigiZV155BfHx8YiMjFQd/S9evLjIUNIS+SEVV2piS24wjE39Trhx4wbN+iY1Fi0Wi+zaP8Tot1gs+OCDD/DBBx/wBBkeQk1sAfbrEJJQVALbx2VkZNgJLtazRY4lTSShRGJiour8RCJGpJ4tb4cRsnYLuadyni02okjJs8W+S0r2EOvZUkPOziPILa8CyIutP/74w66cjzuaxdbEiRPx3XffoXz58rh69Sqef/55DB06FLNnz8asWbNw9epVhxlqOAUXrWGE7s7gQ5AmSvD398eGDRtoCm852DUipJ4tvV7vMbHFhvqRBoqMrv3555+iawC0ufVJ3HSlSpVE57t48aJotXs11OZskcbQ054t0qGoiTqp2KpSpQqmTJliJzIrVqxo14i3bNlSUzkdebaUIPuT+qPT6WTDCPMitrSIA5vNprogrhYuXbokmlgN5E5e1rqkghqkY/eFdbbk6v2nn34q2odN2EDaCkEQRBm8SPpod4URyq1jROYokWVVpNcAPBIxDx48sMt+SZZ8aN++PQIDAxU9WytWrEDv3r2dnndL3k1HC94CufN71qxZIxJQRBBK63jv3r1hNpvtxBbr2frxxx/xzDPPwGQy0ffMbDajTp06mDx5Mg8jdBPSNtWR2JIa4XKRFuzgllzWPfI/sS/YdahYpO11sWLFVNfC8qUwQjZBhpzYkva9Sp4ttu2SLjWjFDLMera0eLjklpeJjo6W3Zc9/+rVq7Fu3To899xzdud/3NEstv744w8sWrQIf/75JzZv3oycnBxYrVYcO3YMffv2zddkCZz8R2sYoSdIS0uzW+ya1De1ECE5sbV8+XKcOnUKfn5+6NmzJ8qVK5fn8rF1XxpGSDoW6egaoM2oJvebiC2pZ6tSpUqaR+7VwghJ55NXsaVkfLVv3x7AI5Gl1CnIebYI0usMDQ11uRF3xrMl9zu2LHJhhM68G1KxJR0ploPNmKeFDz/8EBs2bHC439SpU+lyHu7AlzxbbN2cM2eOaB+dTmc32i1dz8rdc7bY8xCI2DIajXYhtlKUPFsEg8GgKLZq164tete0Qt5J8t5IPUljxoyhfy9YsAA9e/YULXos59kiJCcnw2w2i957NrTMYDDAaDQiOzubvmeZmZn0ey628kb//v1x7tw5u7aZDfFkk8cQpO3Vhx9+qHoe6f6sZ0tqR6q1HSRK5NSpU4r7qIURNmrUCFu2bFEtqzvR4tmaPXs2Vq9eDUDZs8WKVWkYoVK/qtWzRWwUad974MAB7NixQ/Y3bBtStWpVug6v9PyPO5rF1s2bN2kYT+3atWE0GjFy5MjHNmf+44Y3sxGGhobaCRUtngliCJBOXBAEmklTr9djxYoVuHLlSp7LJ10QlQ0jZD1b0hElLe8Oud8kjFDq2XIGLWIrr2GESqNm0mQXSqEfamJLet0hISEuN+Kuii3WsyXdBjyak+CKZ4tcixaxlZCQoPn4QO5o6LvvvutwP5PJ5JYQG/K++pLYYq9L+tzZOVsEi8Uieh88lSBDybNFPJd79+6V/f39+/dFYspsNotCtIxGo6LYYgeBHMHeK/JusmKrbNmyNHMn2xZu374dAOhSMWR/uVFzAChRogS+/PJL0TXYbDZVsWWxWEQGIhdbrrNkyRIsXrzYzmAndX327Nno37+/3e+k7ZWj5QDY/f/880/qSbfZbKJ3ISAgQNHLJggCJk+eDEDeC0NQCiO0WCyoWLGi08sV5QWS2ANQFlujRo3CqFGjaDnlEmSw74eSZ0u6LIRWzxZ5NtJ72rhxY/qOS9EyYDNgwAC63trjimaxxbp4gdwbrHUhUU7BR+uixvmFtNOXIzs7G8HBwdSzRTLJAbkGmLtCHtnGjmQMJAYeabz0er1LQkbq2WLFVtu2bV0qrzc8W6RTUEqMwaIktqRriRHPVmJiImbMmOFSebV6BaX7K/2OGAeuiC3SUWoRW6Quff/995rPo6WuZ2VlFTqxRa5brRxyYks6t8NTc7bkxBZbv5TWmjObzaKFYgGxoavm2SIGm5Y2vGzZsvRv6SCS2WwWHYP9+9ChQ2jatKkoLJV435Tu39GjR+2MSfIuGY1GBAYGwmQyid4v7tlyH3IpxsmzUvIgOWsTsO3b888/j6lTpwIAjZZijyutJ+xCy1u3bgWgLrbYRY0JFotFNvGKp3Hk2SLhl02aNAEgFltGo1HWsyWds5WVlYXixYvbRexo9Ww5k86doNQ+sUyZMuWxzwau2VoWBAGDBg2iL4rJZMKwYcNEi3gCwMqVK91bQo5PIJcS1JtiS8uIrNlsRlRUFJ3kPn/+fBQpUgRJSUlu9cpJswHJebZcFVvkfgcHB+OVV15B7dq16Zo4b7/9tlPH8qZni0x+Jh4tOc/WiBEj0KpVK1qvpPVrwYIF2LRpE15++WUAuZ6tnJwcLFq0CP/995/seUnnTVLuSmENSS2wCTLUvncljNAZsUU66zfeeAPDhg3TdB5HYisnJ0d23owr+JLYIs/KkdhiU6YDuXXmxIkT9LO719lSm7PlKISQIBVTrFAxGAyKA6JaPVtXr15Fhw4d6GdSh7799ls0bdoUZrMZer2eXgtb7+/fv4927dqJro9N/S6HzWaz82yx7QHxbLHHJHXNYDDwBBl5RK/X27XNjjzubLuiJSO19Djs/Czpc5W+s+TzxYsXqfdGKrbi4+PRrl07upyD0pyt/BZbkZGRyMjIgMVikRVbJHz7iSeeAGAfRkh+48izJZfxcePGjdSzpObZclZspaWlaeqvOE54tgYOHIjo6GhEREQgIiIC/fr1Q+nSpeln8o9TOPE1z5YzYotw8OBBuvaRsx4NNeQyJcrN2cqLZ8vf3x+//PILwsLC6LU7KxjlEgX8+++/uHjxIu3wPOnZYjs8ObE1e/Zs9OrVS9GzVaxYMTzzzDP0M/FsLV26VLE85HrkQltsNpsoLbEW5MIIyf3s27cvnn32WbvvHUHEFrknWjq6vD4nOUj9dIdni3TAvpAgQ4vYSklJwQsvvCDa1rBhQ5FI91QY4aJFi6jQJkag3OKxcrBiSiqm2TBC6XekXXLUDoaEhNj91mazoWHDhujatSvMZjONEgDs6265cuVE992RZ4sNGwTEni0SDjZz5kzcu3dPVEZybu7Zyhv+/v7IysoS1Qut3vr3338fu3btcngOJeM8JydHs9jav3+/KLyUpWPHjjSKRW5R4+vXr3tFbJHIjOTkZDuxVb16dbqNvBtKYYTs/bNarXaeLaWsgYsXL3ZYRmfCi4Hc9ie/72NBRbO1PH/+fE+Wg+PjkJeP9WSOHj0aVapU8Up5tAg9qdi6ceMG9Yq407NFGsfw8HCkpqbCz88PgYGB6NixI21g3SG2CKTszopdOc9Wq1atULZsWbqIaV48WyEhIdSA1Ol0OHbsGOrWrQsgt5NkOwm1kXvSecg14mzHEhAQgNOnTyt6tQDIjgYSXAkhJdfHloNsY0P6nLmPUrGlxROUl+d08+ZNUcKZqVOnYsKECXRittVqRa1atTBq1CgMHjzYpXOULl0ad+7ckTWY8hu5OVtSQanFSCfZCKVhhEePHnVpPgKpN6NGjUJ0dDRefvllagRqXTuP9WxJjU42jPCLL74QzdnTaiDJiS3We5ueng69Xk+vRdomlSpVCmfPnqWfiWdLqU6wnixALLZ0Oh0VoWyWSLL0BRdbrkOeHwkjjI6ORkJCAsLDw2ldVwvXmzdvHvr166dpGRIlsWWz2TSHEWZmZiIyMhL379+X7QdJPZDzbPXq1Qvvvfdevg8WBwUFwWg0IikpyU5sNWzYkL4n5B7Iebb8/PxE989sNuP06dP0s8lkku3rgEftoJY5Wxz3477hfU6hhjRebOdetGhRDBo0yCvlIY3QvXv3cOTIEYwfP55mFsrKyoLNZrMTW0DunCfAvZ4t0gG88cYbtGz+/v7YtGkTbfjyKrbkst+5Q2wB4lS4rnhMwsPD8dFHH8Hf31907MOHD9O/c3JyREab2toopDNwJLYiIyOxf/9+lC5dWvFYzoTmaYE1SqSw81iVskLJIQ0j1OI1ceU5kfs/a9YsUdY4si7ZsmXLAOTWh9OnT+Obb75x+hyE6tWrY8yYMV5bQ4zQr18/XLhwAYA4bbVer8f48eOdOpacZ+vw4cOIjY0VPbMxY8bYtTtysL9hEz44I7bYOVvSOt69e3c8+eSTAHK9wq4QGBioOChB2jT2nZRbh4u9TrPZrOrZYsUVIPZ0+fn5UY+WdHF44PEUW3fu3EHPnj3zfBzSNxGxRQbOihcvrilxz9ChQzWv96h0nK1bt4r6BTXPFklwASiv/wTkhrlJ52yR33vDI1O0aFFZsWU0GrFgwQIUK1aMii05zxZZr5Mwd+5c2r6RPoTYHF26dBGdW8vgotq95OQNLrY4miCNoNKE6/yGdLAJCQlo0KABPvvsM7z//vsQBAHBwcH44osvIAiCndFDjGF3erZIB1CjRg3FY5csWVIktjp16qTp2HIeoLyGEUoNHZvNliexpdfr0bt3b/j5+YlGzaQp8cl5a9asqerZ0iK2hg4dipIlSwLIHT1XwmQywWg0ui1rqpxni8Cur+aK2PK0Z0sp1ItcE1mMlHT2zmY8ZMnJyUHx4sW9LraWLl2KRYsWAcidT/L7779DEAQkJSU57bWTE1ts+B9h9erVePDggcPjsfdFGkY4ZcoUTWVi2+OOHTuKvnv33Xep2CpevLim40mRriPH4u/vT+dssdtYpM8/Ozvb4ZwtpTBCPz8/3L17F8CjRW9ZHkextX79erogdF4g7f7du3eRlZVFhZOfn58mz5YzKBn0X375JWbNmkU/q4kts9mM0NBQ/P7774phz1arFa+99hrOnz9vV3bpEgP5RZEiRXDy5ElRP0tC7AcOHIhhw4bRzIGsl5eILWlI5J07d+jfZrNZJLbWr18vOreWDLxcbHkOLrY4miCGoLsa3LyitKAymWNBRrGlhricpyivkA6AeFikx7548SJeeOEFfPXVV3Sb1ixycgvMEuPG2WsgxqU0jEAQhDwlyLDZbPDz86Mds5z3hzVQhwwZIhrBlIpGLWLL39+f/k5tRFVpwrCrkGuQm7OlZb0TOVwRW64kAlASWwQiEIjxQgxbVyAhMKyx5i3Y+3n69GlkZGTAarXaZbdUokyZMgDkxRapj+x7Q7b98ssvOHbsmOwxd+/ejVWrVtHPJDyOiC2tYYlEbK1atQq//vqr3fdBQUGYM2cOXbYFyPU6qiFdGFypnSHZRdlBFkdiy1EYoSAIdp4tNvPsa6+9BkBebD2OCTLc9W4R43/GjBnYv3+/aFCSPCt39f1qHjLW+6wWRkgSUQUHB4sG7tgw9vPnz9N9pWW/f/++W/sFrRQpUgSvvfaaXT9Lyse2McCjPoX1bJEEGoB4kCc7O1t1zpaWMMIBAwbghx9+cOHKOI7gYoujCWeMx/xAzquj0+loI0Y6Y2mIGTvZ2l0Q45SssC49dqVKlaDT6VCmTBk60qx1VE1uoryWNcbk6NOnD0aMGGHXgbFiy5XnTMSWTqej4ZvAI8Pr2rVrOHXqFD1vWFiYqIOUdg5qYotNUEHuAwmRIp5FNrTKZDK5dbRObc5WXsUWuSdaxFZeRvCV6h7xbJFy2Gw21XBPNYjY0urZcvU8WstCsNlsdABDa0Kn2bNnIyUlRTb1O6mPcmJr8ODBePXVV2WP2bx5c+zbt49+Tk5OBqAe3hQUFGQXDkiM4mrVqikOQL311lvUmJs2bRqOHj2qeK0bNmxA9+7d7Y4hh5xnS25tPLkEGUp1gg2dAsTzVvz8/DB48GDUqFGDe7b+H3d5jVlPS0JCAq1XnvBsqYktrQkySL0LDAzEqVOn6MAFKavZbKb1XBqaCuTOW9Ua9uhOlNoc1i5hl5xgPVuZmZnQ6/WoUqUK1q1bh1atWokGF8xmMw3TlUOLvRASEoIhQ4Y4dU0cbXCxxdGEJ40hV1ASW6SRun//PoxGo93SBM56tkqWLOnQWCcNKBkpVxs5kkuh7yyuLshLfqsmtrTOFWFhPVuCIFDDk1xr7dq1kZGRQc8bGBgoCv2Qdg5qYou9DlIHSKgouackvBBwv2dLbc4WeS56vd6pNdCIQZqeni6akK6GK0alnGeLfQ+IZ2vkyJF0G1lYlyU9PZ2KAyWcEVtmsxmlSpXSnIHPWdh7lZOTgx49egDQPuASGBiI8PBwasyzIbHs4r4E9p5qbTcTEhLw66+/qoqtjIwM/PTTT6JtZGDBUXtGvg8JCVE1dkuWLGlX/9wZRugo9XtGRoZdGKFOp8Mrr7xCB6qCgoK42Pp/nPFsLVmyRNHzx4otk8lEPaZsf6HWrzmDWv1jr8dgMODvv//GrVu36DapZ4u09aQ+kN/37duXJsOS82x5S2xJ7RGCI89W+fLlcfHiRfq5W7duiIqKEj3Pu3fvqrYfpF9213PkOIemGfbOxASTjoxTuPA1saU0ikuM+AcPHiA0NNTOoHLWs3X69GmHHVqLFi1w4cIFOi9CzfBhwwK0sG/fPjtjNS9eOT8/PzuDRBAEet9cMXilni2p2CKhIazYYnEU9qD0HbkP5L6TjqdUqVI0hCQ/PVsEZ1OnE4M0LS0NERERsoaklLwYley7I00bDIi9NHLX0qJFCxw7dkz1vXBWbKWmptLrdzfsvSILqDoDu84TqWPk2sn/cp4tQHu7OWfOHAiCgPnz5ysaSzqdzq7d05rCXWubYTAY0L59e7vzKh2ThBFKz9O2bVu0aNHCbnDHkWdLKrbIu/XLL7/QbUFBQdQLy1KYxFZKSgoePnxIk0AowS7yq1YHzpw5g/79+yMoKIguT8EiFVtyni13LAkBaBdbAQEB+OOPP6DX62mILPFWEZFfq1YtWs8AeU+fxWKxq/+3b9/2WbGVk5OD69evw2Aw0DLWqVMHX331lagvI8KM8MILL2DgwIGi96ds2bI0c6evRSc9bmgSW7169dJ0MJ1O5/U0vxzP4GsvqpJngfVshYSE2Bknznq2tM7rqFy5MgAgMTFR9Tdy65WpQVaTlzuGK54tIohYWM+WI4+FHKSjJ6mxieEpvcdKWa2kYig2Nhb16tVTPScbRkjW0CKijk0GoJYK1xXkPFt5HSlkPVsRERGangFrVP7yyy9o3769wwWadToddDodzZoJwC6piRS59lwtDI3AejuB3HukVF/Z0CBPkFcDnBVbiYmJAB7VZXJsLZ6t4cOH4++//8aVK1fszkGegaMsaWxInc1m0zx/0xmxVbNmTfTu3RsrV65UPbacZ4sM1qxZswYhISFYtmwZbt68iZ49e2L16tUOPVsmk8lh2/g4eLaefvpp7Nq1y2HbQt6dnJwc2eckCAI2bdpEM9OR+9O5c2csW7aMtp2s2MrMzKQh8azYcpdtpzWMkNSDEiVK0G1kAXdW5JPFxpXKaLVa7does9msKHw8iVLdJmKLhBGuX78eHTp0oH1j5cqVaZZIgvSdrlmzpt37c/bsWbz33nuYM2cObYu4Z8s7aLI4SdiEo39caBVepk2bhunTp3u7GBQtYYQhISF2+7GNmidwJM7cEUaYF7ElZ1yz2Qjz4tkKDQ1FRkYGFVtyog6wF1fSzrdYsWIODXp24Wgy+kfmGrGG76xZs9z6rNWyEboK69mKjIx0es7W4MGDacY9NcjzIKmCAcd1SG40W8v9ZD1b5LOjc+Rl7TApEydOxMcffyw6PotaNkwp7Fp3xGMqFVtKni12kGrFihW4evWq6rkciS1W+AGPnp87xRYA/Pzzzzh58iSA3JAsvV6Pa9eu2R1TmiCDJFUhRqFer8elS5dodAyZU6JWH1wVW8Qr4EkuXbqEHTt2ePQcgHjZDDWk9VDKqVOnRCnAyf3ZtGkT9u/fT7ezYuvMmTOyCTKsVisGDhzoxFXIo9WzRd5RuUEkVuSzHh615798+XLRZ294tpTaW2kYYUZGhiiTspwHm32njUYjVqxYgUmTJolsi6CgIJrgx9cGzB83+JwtjiYaNmyIsWPHersYFKUwQtLpkDDCvHq23I2radvljuGJOVt5EVshISEisSXt+Mh5iSFG/ndlDSzWkCeeK+LZyszMpPOPDh48iKZNmzp9fCXyw7PlypwtLXWBiFC203X0HhRUsTV58mRMmjRJdHxCy5YtnTK0pAIHEHuiAHHZldaTI/dC7flq9WyRZDDk+Wmds+UIYqhFRkaiVq1aAHLXDbNarXZGr5xni3hEpOUlOEr9To6rRlBQECwWC3r06IGNGzfS7e7MfPn555/j5s2bdtvbt2+P1q1bu+UcamgNP3UU4icVpRaLRba9YtuEK1eu0GcgDSN0R7p0tfaefY+kwp0tN5mzBTxabBxQf7f69Okj+uxLYotcIxkwkCaKIfdMaX4k+1ykz2jkyJH0XeZ4D5cszoyMDKxfvx7ff/895syZI/rH4eQHjjxbJpNJ1rPliWyEzkBWs8/Luk95EVuA/RxMIrbCwsJcCiMkISxSsSU1AEhHSNLxV6tWDYmJifjkk09oeIhW2DlbZNSPiAnWa1G0aFFRyn134a51u4BHo5lkzpKj0fnMzExYLBaaBhtwLl08O4rtKIxQzogjRg45/4YNG+zuhytiK7/CCCdMmCC7n1q4HCB+5jdv3sS6deschhHKrTunJiodhdGRsgwdOhSJiYmaxZZae8cKJGc87mRRY/bYcXFxouUq2O/+/fdf2Gw2h2IrICBAdskLAnnf69SpI1qv0J1ia9y4cZg9e7bddncOCLgDR2LrqaeeEn1mky+wSMXdpUuXANiHEfr7+6NChQp5mpuvNoeWbbtJmdgMgwRW5DsKI1TCl8QWKQsJIyT3muDIs8W+t9L2w9/fn05zAHgYobdwWmwdOXIElStXxosvvojhw4fj008/xYgRI/D+++/jyy+/dOpY06ZNQ+PGjREWFobo6Gj06tUL586dE+3zww8/oHXr1ggPD4dOp5M1BhMTE/Hyyy8jPDwckZGRGDx4sGi9BiA3q1aLFi0QGBiImJgYfP75585eOseHcDRnC4DPerbyOjqYl2yEGzduxO3bt0WdKxFbxYoVc9qzxYbVhYaGIj09nRrzSp4tIrYePnyIIkWKoHv37vjuu++cOq+c2CI4EyLmLOw6LtJtrsJ6tiIjI2GxWPDZZ58p7h8SEoJDhw7h6aefptucFVtkSYSMjAzRwpgsSmFZpP79/PPPAICtW7fa7SMVW46SaQCeM2SlYksp1JfUo927d4u2k/dV+m4MHjxY1iunti4VoL5wOJsg4tVXX7Vb/Jz1jBcpUkRzGKHa90ePHsW4ceMAOCe2iGfLz88PCxcuxNdffw0/Pz9ERkbalRcAWrVqBQCawgjZY0ghnmxp254fa7r52lQJNjufFsxmMw0HZdswaZvZokULAPaeLX9/f1y6dAl//fWXy2XWus6WdN1B1vum5NkqqGKLrdMk9bs0TBAQt6NKSy7IvcOOvMUcz+O0xTly5Eh0794dSUlJCAoKwr59+3Dt2jU0bNgQM2bMcOpYO3bsQFxcHPbt24f4+HhYLBZ07NjRbnSjc+fOeP/99xWP8/LLL+PUqVOIj4/HunXr8O+//2Lo0KH0+9TUVHTs2BHlypXDoUOH8MUXX2DSpEl88bYCjCPPFgDZbISk0fGWZ0uv1+d5vRK9Xo+vvvoKjRo1cvq3M2fOBCAeCSVztkJDQ+28C4MGDVJdd4Nd5NeRZ2v+/PlYsWIF7TgSEhKcLj9BLoyQ4MnMmXLCqly5cnk6JvEQ/PbbbzQb3/jx4x3+jr1uYmTs3r1bsUMnzzYzM5NOjFdDmqKfIDXc5bwQ7KLGbPnkyG/PlpIhT8QW8Qb873//A/CozSDJMQipqakOPVss5DhqopIVWz///LMoTA541G7JCQ011AZmSpUqhfLlywNwXmyR59y6dWsMHz7cbh+5cgUGBsqKImn2UiWIJ87TYkvunnl7gW4p7HwqLaxcuVLk5SBI28y4uDgAufeUPYder6eJdlxFTWyx10HEFbnnrNhy1bPFzl/zhtgi3L59W/SZlMVRGCHblmkNI5Tuy/EOTouto0ePYvTo0XRkOTs7m3qK1ASRHBs3bsSgQYNQq1Yt1KtXDwsWLMD169dx6NAhus+IESPw3nvv0Y5PypkzZ7Bx40b89NNPaNKkCZo3b46vv/4av/32G63QS5cuhdlsxi+//IJatWqhb9++ePvttzFr1ixnL5/jI8g19lKxFRkZKbvuC+A9zxYJI8wLOp0Ob7/9tksNaOPGjQGIOzVBEKhXRdppL1y40G5tHxbSEZIwwvT0dEWxValSJfTu3Zt+zosng8105w3PFsvTTz9tZ4g7Ayv8tYgggnQ9IkDey0QggiA1NVVTivWgoCBNc7bUxJa35mzJHZ/Ahs2xwoutR0lJSXTwkLxnUi+TyWRymCCDRYtna9asWaphVtLBInclbCHvsTNedy1tqbSuBAYGIjg42G7hZAC0bTh16pTqeYlYkLZ/cplW84JcH+Nrni1St7WKLfaaunTpgjFjxgBQHqDS6/Ww2Wy4e/cuZs2a5RajnazhxUKiHVjYTIuAumeLrA/p6PmvX78ezzzzDADverZKlSqFIUOGYOLEiaKysOtsyXm2WLGlNYyQHJfjXZxuoQMCAmglj46Opjn8IyIicOPGjTwVhoRpOGNw7N27F5GRkaJR/vbt28PPz49m29m7dy9atmwpqpCdOnXCuXPnFGPDs7OzkZqaKvrH8R3kjF6p2IqIiLDr7L0lsgjuCCPMC6TRZY0GQRCQmpqKokWLOm1MsGJLmo3QneuDSdHr9TQUTtp559XTpIZSZ651iQA52PvCZqByhJzYUgsnYsWWWpgWITAwUDWMkOAuseWKZyspKQnh4eGqoZzSe8IKTXYBbLZ/iIyMpAYOeWeqVKliN9HcUYIMFi1ztgDltXjYY0jfpbzOIZQLj3WEligB6XfFixeHTqfDqlWr7PYNDg7GtWvXsGHDBtXzKoktOc9WRkaG6vwvNQqC2CJ1Se69J8+UrbPSjHSrV68GoDxARe7pli1bALjHaGcTrRBbb9asWYri58aNGxAEQdWzNWXKFOzZs0f2+UjfJ/Kee0NsdejQgf79ww8/0AEG6ZwtJc8Wa98ohRHK2RfuTOjEcQ2nLc/Y2FgcPHgQQG4M9sSJE7F06VKMGDECtWvXdrkgNpsNI0aMQLNmzZw6TkJCgl0GJH9/fxQtWpSGKSUkJIjWagAerd2gFMo0bdo0RERE0H8xMTHOXA7HCxCxRRpXNc+Wt8JB3BFGmBfI/ZB6tlJTU1GsWDGnF64knXRgYKDDMELWSJe+s86i1+vRokULnDt3Dg0aNKCd0d27d7F58+Y8HVsNT3RUzogt9vxyYkvt+RGDzGKxaPJs5SWMkKwB5ek5WxcuXEBaWpqonKdPnxbto+bpZPsF6T0h91dtcERLGOGYMWNEiSS+/fZb0fdST5YWseVsGKEjXGkPXfFsFStWDIC8kAkODkbZsmVRoUIF1fNWqVIFgL04l0v20qFDB6cGbx3hq2JL7j0lz7RNmzZ0m9y7cO3aNephkULEljuXvGDF1hNPPAEAaNCggeKC47Nnz8Yff/yh6tkCgFu3btk9n7i4OLslC7wptnr16iWqo+Tdl/Nsse84eY+0hBGqzdmKjIwUTbHh5B9OvzlTp06lLt8pU6agSJEieOONN3D//n3MmzfP5YLExcXh5MmT+O2331w+hjsZP348UlJS6L+8eu047kXO6CUJMkj9lMtGqGWk3ZP4+/t71bNFrl86Z4t4tpwVW5cuXULx4sURFhaG0NBQpKWlKU5WZp/FwIED89Rxh4eHAwCqVq0KnU5H14WJjo6m33kCT4stRyJUbtFPdrva82ONU0+LLZKhkuwrTXzE4o45W+x9UfOMvPvuu6LPPXv2pH9///332LZtG/3Mrq9FkIoELWGEM2bMwMmTJ+lzlmbtJXWXoCa2pN4krQkyHOFKvXbVs6WEVuOXHEO6ZhkRW+y1HD9+XNMxtVKQxBbZ9uGHH9J5iFKxdeHCBVGdl0I8LY6yHjoDO3AdFBSEhw8fomrVqqr16M6dO4qeLXZpBunziY6OpgKfQMSIWrhufkHm3ZKysHO25O4HK7aUvFlybQG5RwcOHED//v3dU3iOUzjdQjdq1IiOlERHR2Pjxo1ITU3FoUOHUL9+fZcKMXz4cKxbtw7btm2jC7BppWTJkrh3755om9VqRWJiIg0RKVmyJF2zgUA+s2EkLEajEeHh4aJ/HN9BLYyQPFOpKx7IHcnu37+/bIx4fuBtz5ZOp6MdKIENI3S2M71w4QIdaS5dujRu3rwpmkfAdn5s5zF9+nSXO+79+/eL0p4D9garp/C2Z4u9Z86GEbLkRWwpzdkiZbh27RqOHj0qSpBBMtHJ4eycLXb9I/I8pIMHSu/3F198Ifo8YsQIOt8uJiZGtIaSdOQcUBZbjhJk3Lt3D0eOHJEtk1RcuRJG6A3PFskMrJaQRlouVmw1adJEZPBKE90oQZ6BdB0sci5SJ+7du5cncVQQwghJvZN778k7QZJaAPKeLWlbymI0GmE2m+3WlcsLgYGBeOutt2jZiOdRLURRGkbIerZI2cxmM3799VfR7+QGNg0GA4KCgrw+pQB4VOfZ91oujJDA9j+s7cpei1wdJcdSa1s4nsXp2ta2bVvZ9Oupqalo27atU8cSBAHDhw/HqlWrsHXrVofhA3I0bdoUycnJoqQaW7duhc1mQ5MmTeg+//77r6ihiI+PR7Vq1fI014LjPdTEFmlQpAtuArmNzqJFi7zmXfL2nC3gUagCIS9i69atW3SksnLlyrhw4QJt7A8dOoTz58/TfdlnkZeMVk8++aRdR1RYxJZSe5SZmQmdTidKxOGsZ4ulUqVK9G+SeYzMgSMEBQU5nLN17949Op+VtK99+/YFIDbyqlWrplgWZzxbNpsNMTEx2LNnj+wxgFzRpjSIJkWn06FIkSK4cOECDWmSwt5nVzxbgPLaXoBzni3paL67wrsGDx7sdHbeJ598EgBw//59xX3UPFv79u1DVlYWkpKS0Lp1a6fCulavXo2vv/5atI3cAyIcS5QooZqMxBXyO/zc0fm0eLbYtlIu06OagAwMDITJZJIdzMnLPEGSWl4uVI7w+uuviz6zop7t20nZfv75Z7twSCWx5c1MhCxksIHcS6UwQjmIY+KTTz7BRx99RLfL1QUutryP0y309u3bZTtFk8mEnTt3OnWsuLg4LFmyBMuWLUNYWBgSEhKQkJAgGsFISEjA0aNHcfHiRQDAiRMncPToUWp01KhRA507d8aQIUNw4MAB7N69G8OHD0ffvn2p8fDSSy/BYDBg8ODBOHXqFJYvX46vvvoKo0aNcvbyOT6CmtgKCAhA586d0atXL1GDJZcBK79xRzbCvJKdnY3+/fvTe6gktkjnpmbImc1mOl+qSpUquHHjBl599VUAwKJFi+jEakfHySuFQWz169dPsYN9+PAhAODBgwd0W148W+yk+djYWAiCIJpLAeSOajsKI+zVqxf9m5yb3CNyXaNHj6aGefPmze0WRJXO2Tp9+jRNvCTl1q1bot+Qc7EGY3Z2Nho2bIiuXbvKHkMOuXTYciF6rootJa8WYF931cKplEL38vpuhYWFqS7xIAdpT9VEstKcLZbIyEh88cUXePHFF0Xb1YzNHj16iAYMAHux5SpqyULyy7NFzu1oAEJNbJGyOhJbBLnIJCK25BJx5KXOkd+y9UNaV77//nsMHjyYfmaFM+vZItcpJ6zkthmNRp8RHcHBwahTpw6ty47CCFmIRzAuLk40iCFXR8mxfOW6H0c0vy3Hjx+n8c+nT5+mn48fP44jR47g559/VhwZVOK7775DSkoKWrdujVKlStF/y5cvp/t8//33iI2NpR1By5YtERsbizVr1tB9li5diurVq6Ndu3bo2rUrmjdvLhqli4iIwObNm3HlyhU0bNgQo0ePxsSJE/lEwQKMnBeUiC1/f39s2LAB1apVox3N4sWLaeYlb+LtMELC/v378c8//wDINU5SUlLsxBZpmKVGz8WLF7Fjxw4AoOIWkDekHjx4oBj65E4Kg9h64YUXRPeoXbt29G9iaCjF7Dvr2apRo4bdcaSZ9rTM2WLD9UjZpIZU6dKl6QDa7t27sXbtWtHxpGGEtWrVoiPfUi5cuADgkUEtF0ZIBgDymhiBGLzsM5ca4KTMWtbZUmLQoEEYPXo0/axWx5SSUngzJMoZsaU0Z6tRo0Z2WUSvXLlil9xADXeJLVKX8prhMS+QPsJRaK2zni2le/PGG2/Q/oDFaDQiOzubhh+6y7MlF6IrJ67Z+sOKLTnPlly/6uueLb1ej+PHj9P+i4QRavFskfD98PBw0UCZUhihwWDgKeC9iOYWun79+oiNjYVOp0Pbtm1Rv359+q9hw4b49NNPFTPaKEEms0r/DRo0iO4zadIkh/sULVoUy5YtQ1paGlJSUvDLL7/YGV9169bFzp07YTKZcPPmTYwbN86psnJ8i7Jly9LQHLJ2VGpqKi5cuCAbmiAIglc7T4K3E2SwkDS0NpsN2dnZKFq0KARBoIscE6QNdPv27encFovFQr+X6+ySkpJoqIQnxRbxnBREyH0xGo2ie82umUWMHXbOhcFgwMcffwxAWWy99NJLOHbsGP1crlw5zJkzB5GRkZgyZQqAR8/3p59+wsmTJ/HSSy8BUE79zj7H0qVL4+233wbwyBCTiuugoCC7lNMscmGESkYhMb6lx5OGERqNxjy/75UrV8ZXX30lEm3SY6alpdFzKu0jB0kEtWPHDgwbNoyu6QVoE1vSc2gRWz/88IOo33QXaoKAlHfkyJEICAhQTZAhpUyZMnbeVjV8WWyVKFECK1as0Lw/6SO0ii1Hc7Yc8eSTT8oOThDPFolycLfYUvNssfsBjj1bcu+Ar4stKSSMUItnq1SpUhAEAf7+/njiiSdkB57Y43KvlnfRLLauXLmCS5cuQRAEHDhwAFeuXKH/bt26hdTUVBo+xOHkB6SRfeeddwAAu3btwtdffy07WuYra0v4imcLsO+ISGeblZVFPQiAvdhiDXB2Iq9c5/vw4cN8EVuTJ0+m6/R5Ek96toxGI/R6vd18pPHjx2P9+vUAxGIrICAAEydOxOTJkxXDCI8cOYJLly7RzxUqVKCT06tWrUqPQ6hVqxY6duwIIPe5r1u3DoIgID4+3s5zBeTWFdKJZ2Zmwmw22xlSUrEl7fTlEmTIeUmBR8k4yPGIYS0NI3SH2PLz88Pbb7+tehwitlihqOW8ZG04EoLLomYIKo1MaxFbQ4YMkV1QNq9oEVtGoxFBQUGKz9UduEtsuSMJhJR79+7h77//1rw/ec5K63v+/PPP0Ol0tN6pebbYuZNKKCUAI2KLtDt58eCy5NWzZbFYNGUWLshiy1UvFBdbvonmt6VcuXIoX748bDYbdfmTf6VKlfKoIcXhyEHWyJE2qHKeLW+tqyXFFxJkENh5Kv7+/tQbXL9+fVFImbSjZt91NoxQjsTERLuMS55Ar9fnS8ZQT9Qjcl9I3L40K9tnn31GvbjsnAty3/V6vaJnKycnRyTQWOOeGDzS50eed1JSErZv345r166hY8eONHRbKraISGzatCmqV69u59kKDAxUFVuk7GazGUuXLgWQK7aqVatmlzJeKrbmz59vd91EbHkitE7Js3Xu3Dls3boV//zzD/bv36+YmbdTp04AHoW9SsVW06ZN8eyzzyqeX/oOuXP9I1dRCyMk5TIYDKhXr57s3Dh34arYSkpKQmRkpNvSm9+6dUt2UMbZQTa9Xi/ySrPs3r0bgOM5W1qEFmC/MDxBKrZYITp06FA0a9bM4bHlcNazJQiCXbITqWdL7joLmtgibblcGKHWgQoutnwTl1roS5cu4a233kL79u3Rvn17vP3226LRUw4nP3jrrbdw+fJlVbHla54tX0iQQWDTf4eHh9N7RZLRENhFLQGxYceGEcrx8OFDer2+kGo3r3iiHul0OgiCQOe8Sif+s4wdO5b+TQx1NbFltVpFAk1ObCktkEuulWSbi4yMtCtPZmYmDAYDDAYD7t69iytXrjgMI5QaOqxn66effgKQm5Xx/Pnz1KNHkIqtn3/+2e66lTxbzoSkKSE9JklcsnbtWrRr1w6dO3dGYmKi7Bo+y5YtQ506dQA8Mm7ZtuvatWvYvn276nuSF8+Wp9Di2QoKCsK///6LihUreqwcroqt8+fPIyUlxS4kT02kXLx4UTHZRJkyZbBu3Tq77c60+zabDQ0bNsTRo0dlv5fO6VIKI9TqHVHzbGVnZ9PEPOx55syZg127dmk6vhS5tsfRYJxUbLnq2apVqxZdd8zXUAsjfOGFFxz+vlKlSnYJiMhxudjyLk630Js2bULNmjVx4MAB1K1bF3Xr1sX+/ftRq1YtxMfHe6KMHI4ser0eFSpU4J4tF2HnNbJiS0paWhpdMBSw92ypdeiJiYnUMCgM3u/8EO1hYWGiOTws7EKu7H1VCiPMycmh3hdAbFSR5yGtjyS8kBzr8uXLAB6JJPYcWVlZMBgMsotqkv+1hhGazWbExsYCeLSGjDSMimQjzMrKEpVDSxjh3LlzkVfYY5IFWVkBS65FzrB+8cUX6ZwlIrZYkVS2bFmHBrnSO+TN+ahaEmTkhyfBVbFF6k5WVhZMJhN9hlOnTkX79u1lf1OlShXVBFvsEg0EZ8VW0aJFFQWddE6XUhghO2dZDSXPltFohMlkwo0bNwDkbeFxFjnPltq6UmfOnLHzcks9W3LI9bUdO3YUpUr3JdRSv8+ZM0d22SWWixcvyq5pqNfrudjyMk6Lrffeew8jR47E/v37MWvWLMyaNQv79+/HiBEjeNIJjldgM6sBvu3ZCgoK8pkQBrbxVRNbhGPHjqF3794iz5ejMMKHDx+Kwt0KOvlVjzp37kwNICVDmmx35NliBQtrVCl5tp588knYbDZqWJG10uTOQTxbbB2QZsxzZs4WmYhPzsXOw9u2bRv++usvALmGMbvujtSzZTAY7ISRO5d+sNlsCA0NxcOHD2XXRlMyrInYIvfAWY+UL4otrZ4tT5NXsTV8+HAEBQWJRLxchj7C3bt37baR9oEV4GSbs2LLYDAozh+TeraUxJY7PFtEbD399NOYNm2apuM5Qs2zNWDAALt16X788UeaVEa6v5rY8pUoEq2QtlzOs6XX6zUtRi8H92x5H6fF1pkzZ0RrHxBeffVVnD592i2F4nCcoVKlSqJU/77s2XrzzTcxdepUbxcDgHbPFuH+/ftYtWqVaJujMML09HTu2XIBg8FAxU7NmjVV93XVs6U0ZwuAaPL9zZs3ATx6hypUqIC6desCUBdbpExEbJF7Jx1sYOdsZWRkQK/X0+tghSJ7HWyGNOCRsbljxw6sW7fOLQky5CDH1Ol0CAwMxIMHD2SzuCkNQERFRcHPz4++M85Ogi9oqZsLgtgi9fzff/8FoDxnSxrGJveMybFYsUXqMrvtww8/FM2llCIIAgwGg2JZtIgt1jvi6F1Qm7OVkZGB27dvY+7cuWjQoIHqcbSi5tmqXbs2Pv30UwDq7a0Wz5bcEjG+jDsSZMhRs2ZNl+fXcdyD02IrKipKNo746NGjiI6OdkeZOBynUQpHkFsrx5tERET4xHui0+nsxJYjMSQNIbHZbA47BdbzxedsaYesb0NS+8bFxSnuqya2rFarSKRo8WwRyLHIvCR2IeF3330XgHwYIalH5PdEbBGDUDqfifVsZWRkICIighq2rGeLCK8+ffogKytLZKySsu3btw8A7BJkuOu5sUYrMUTVJq5L723x4sURGBiI4sWLY8WKFU7PYZK+o2XKlHHq9/mNt8IInXne0uQP0ncoISEBS5cupYKRzF2UE1tkAIAVVmQbEUgWiwWffvopTXJByMnJofXeZrPBaDQiPT0dOTk5MJvNonKRY127dg3BwcH47bff8Pnnn4uO54zBrrROYWBgIK5cuQKbzYbSpUtrOpYW1Dxb7Da150jeRbUF3UlIdEFBLYwwL3Tp0gUffPCB247HcR7N1s8nn3yCzMxMDBkyBEOHDsX06dOxc+dO7Ny5E5999hlef/11p1eg53DchdbYb04ufn5+ooQB4eHh0Ol0qoJL2pkRA9rRHDRiGBSGZ5Cfni0AtOPt2rWr4r5yYYSknDk5OSLvkFbPFvBIXJP5J2yadVI+Oc8WOS6pLyQbITEkpeeTE1vEQCW/mTFjBl599VX06NEDTzzxhGIYYVRUFC0jK4w88dyIaJQLIyT3TnqttWvXxtixY6HT6dC7d2+nvW/SAYtq1ap51WsfGBhIE7vIQcorlzDE3bBiy1H6dpvNhgULFkAQBFqPSB2Seom6d++Ofv36Acg18OUWCyaQcFk5sUXqwr179wDAziNKwhhJ+YxGI5YuXYpff/0VH3zwgUhMseFxwcHBWLdund00Di1rNRGU9gsMDMTFixdRqlQpt841VstGyJ5H+t62bduWrg9I2jwS2ih95mPHji1wnmB/f3/FMEJOwUaz2Pr444+Rnp6ODz/8EBMnTsTXX3+NVq1aoVWrVpg7dy4mTZrElTPHa7ANrVynUBgMfXei0+lE4WnECFfrnKSerfT0dIdhhMCjlLW+khgkL+SnZwvIvec2m02142XFFut9AtQ9W3IjySxSscWeQ6/XQ6/Xy3q2WKFHriUnJ4caotJ6QPY7efIk7t27JxJbRIyMGTMGFosFkZGRCA4ORmZmpsizRQxgUo8fPnzoEbEl9WwBYqO5XLlyAB6Fd0nvbXh4uNsn53tzvtbNmzdx4sQJxe/ZdbY8DbkP7HxDgvT537lzB6+88orIQ0r6EKnYIp5dIPeZk6QVcu8NOwAg3UbKkJCQICovYe/evfRvMmcLAG7fvo0HDx6Ikm6w51YK0dTqHVETwuR9unPnjsPjOIPaOltq/USvXr3w5ptvAnjUbsTGxqJDhw52cwenT5/u1jLnB+ycrYImFDnqaBZbpKHQ6XQYOXIkbt68iZSUFKSkpODmzZt45513vNrocx5v2Hh6uc7HV+Zs+Qo6nQ6tW7dG48aNYTAYNIkt6cih2WzW1CmULVsWiYmJhWKCbn57trKzs5GTk6MagsmKLVI+1gvlLs+WnNiS82xZLBZ07NiRZsUi10JEn5Jn6+rVqzh69Kis2CIUKVIEERERSE5OFhm2ffv2FR1LEASPiC32ORAjlU2JT7w85N55YoJ+/fr10ahRI7cf1xWKFSsm69kjELGVH4kKWLElbassFosoSQsrsByFEbJzgti6K2fvkDrJ9jfk+KRuErElnWtEjtehQwc6ZwsAkpOTkZ2dLRKQ7PGVxNa///4rK/6kqD2/jh07onnz5qhXr57D4ziDmmdLLYwwMDCQ3hf2/un1erdlSvQm5Nqzs7O5Z6uQ4dQkCmnjEhYW5pEV6TkcZ2E7UrnOh3u2xPj5+SEyMhIHDhxAcHCwS54tIrZYA4Sst9enTx98/PHH9JhqHXpBIr/FltlspuJGCVZsESOMXaCV9WyxczMczdlSCyPU6/Xw9/eX9WyZzWb06dPHztAm86+kAx9ST0JERAR9n6V9TmRkJIoUKYKkpCSRZ4ukhLdYLAgNDcVbb72VL3O2pOUn81rIvSP3gHi83MGRI0douKSvk59iCwBdokLaVmVnZyM4OBjvvvsuzGYzXUKBFVtkwE76W6lRT5ATMqTesr8hxyfbSBihUvKLLVu20DBCIFdsmc1mUbnY3yrNh3v//fdFXjlC7dq1RZ/lErwQ/Pz8sGPHDhw6dEhxH1dQm7OlFkYYGBhIv5c+F0ehowUBVmxxz1bhwqmnWbVqVYfeK7n1JTgcT6O2aCrAPVtSWEM0KCiIii01o16ajctisdiFEbIT/okx6s1Ow91JOWbMmIGePXu69ZhykHs2cuRImEwmzWJLzrPFii12IMKRZ4sYL1JjkfVsWa1WGAwG0TM2m80i45r8TTxscmLLz8+Pbo+IiKDLC0gN0pCQECq25Ixdi8WC//3vf3bZCD05Z4t9L0qWLIkyZcqgU6dOokRSSovTFnbyM4wQAK1HUsFEntGGDRuQmZmJ7777DkBuXZWuXSRd201JbMllE5TzbJH3j9Rl6RwxALhy5YrdeVmxJfVsscJCSxvHvgvjxo3DoUOH8OWXXwJQ92xpPb6zqGUjVOsvAgMD6ffs/fP39y8Uni1yP7jYKnw49TQ//vhjl/P8cziehHu2nEMaDqXFs8VmhgPUwwjZMBhvdhoxMTFuPd4TTzxBQ9Y8CTGOyNoyjsIIDx06hDFjxog8W4IgwGaziYw41ugl51ASW506dcLSpUvpZ6nYIs9VKrZ27NiBYcOG2Z2TlEMaPpWTk4Pg4GA6FyYoKEhkkLLLOgQEBKBo0aJISkrC8ePHRcfR6XSYNGmSbPZLT3q2Xn75ZSxZsgQmkwnBwcG4ceMG/vnnH0yfPp2WgQ01fBzJT8+WnNgiwig9PR0nT56k2y0WCxYuXCjaVyq+2PrK1vP09HTcvXsXr732GtauXQsAiI+PByAWW6Teq4ktuayUbBghyUhIsFqteP3119GhQwcsWbIEhw8ftr8ZCvj7+4uu49lnn9X8W3eRF8+WNAsh+W1hEFvkfjgaYOMUPJyygvr27esTaas5HCmO5myppWd+HJEu+KpFbCUlJYk+k3TESsY6MbK9mRijSpUqXju3O3Hk2crKysKMGTOoV9dms1Fj5P/au/PoKKp8D+Df7k66kwAJBLOTBIRHWCUsGoKDAkYCokMwbqAiiIPRRAkM4GFEcfQ8ERxklAfoOyzhyaYoy8goiKwiYXwgW4JgQAQGk+AASQiQjdz3B+/WVHVXdzpLpzud7+ecHEhXdfXt9K3q+6vfXdSNR73B8PY+848//hg9evTAjBkzlGMCNQdb8jF1+YxGo3KH3zqzVVFRgRYtWijBlp+fn9IgraysxIkTJ5R9fX190aZNG1y+fFlp4Krl5+cr9c0VY4gfeeQRnDlzRikncGsR6K+++gqDBw9WXnvIkCHYt2+fWxqynkReAyIiIhrl9WSwZZ0Rldeuq1evahrl5eXlSrc+ybp3jl5mSy7NsGPHDmzevFnZLmfGUz9HBltZWVl47bXXlBuD9roRSurut76+vjbBlq+vL1JTU7FmzRqHx7Hm4+OjuQ5kZmbW6vkNwVFmq6ZgS1L//bwt2GJmy/s4nR/m5BfkyV599VW89dZbAGy7EZ46dQpPPvmkO4rlsdR3/WfOnImBAwcCcBxsWd/xrSmzJRta7vzS6NSpk9teuyGZTCaMGzfO7jZJ3Y1Jb7FPdWNFBj32gmGDwaC5uabXjRDQD7asj2k2m3W7EXbt2hWLFi2yyRipx7W0b99ec9w2bdqgqKhIk82WSktLldeeOXMm/ud//gdAw2W2MjMzlfFh8i67v7+/JvAEbv3tEhMTm/33pr+/P4QQjTZm015mSy7Ge/XqVU0XvOLiYpu6IcdzSdbd1YBbwaPeGCG52LdeZuvChQvYsGGD08FWTd0IZT2vbQbEx8enURaZdqSu62ypr1/WGUdvCLbU3QiZ2fIutZ6NkMgT3XbbbRg/fjwA2/EBHTt2bPaNHmvqYGv06NFKo9pRYKTujtaqVStUVlZ6fDdCbwm2jEYjli9frrtN70tZ7+4+oD03ZGPF0eejDrbsZbYsFotNGawXSVUHW99//z1+++03AMCJEydw4cIFzfeLuoxyXKAkuxEKIWwyEsCtxrSsd7fddhuefvppAK75/vL390dAQAAMBoPdaat53Wlc169fx4svvmi34V1VVaVkUAHbbD0A5OXlaX7Xy2xZB1vy3JDXVb3MFgBs2bJFtxuhHkfBlvq6W5dgy95073PnzlXGcrmSLHNN62xZsxdseVtmq6KigpktL+N0sFVdXc0uhOTRPKFx31TYawTq/e3mz5+PHj16aBopQUFBTncjdOfn4a3dCJcuXWp3G9AwmS0ADjNbsrHYtm1bm8/YemyvOti6ePEiHn/8cc12dTdf665CZWVlmsk8WrZsCZPJpJn4Q7p69WqjdVv18/NTljOwN+seg63Gt2PHDt3JUwwGAwIDA/HTTz8pj12+fFlTX4KDgzXbAeeCrTvvvBOtW7fWnXFTHWytWLEChYWFNsfV42jq99oGW+p6aDKZ7AZb06ZNw6RJk2o8Xn05WmfL2cyWdTdCb5iNUH0T1NEskdT0NPw0M0RuIr80GWzVzDrzIOk1VDMzMzFw4EBNsBUYGFjjOlvuDH5l4yIuLq7RX7uhWDeQpPvvvx/PPvus7jbJXmZL786wo8+nS5cuNvvLYEuObVEHWzKT6CjYAoCdO3dqyjdixAgkJCTYlLGyshJlZWXKEiM+Pj4wGAx2u6WpuxG6mjrYspfZku+JGpfehBFCCPTt21fz2JUrV9CiRQts2bIFx48fx3PPPWeTMVWPB5afc3h4OCorK5Vz9IcffkBxcbGyhpa9YAu4tRA04PyYrevXr6O0tNRuN8Lazhbo4+PTaBOW2ONonS1nx2zpdSMcMWKES8rbWNTX/MYa50iNg8EWeQ1mtpxz4MABfPvtt7rb7F3gzWazJtjy9/f36DFbwcHBuHTpUpNZj0iPuhGl/n9SUpJmP1dmttSLIFt3I5SNP/XsZvJY1sGWxWKxaXQuW7ZMs71z587K/6WqqircuHFDuTkgj28v2GrszJYsl71ga/Xq1boZOHItGfRYS0lJ0fx+5coVtGzZEsnJyejatSt8fX11xwJK8lwLDw/HtWvXMHr0aM12GUCpz71Tp05pzl855s/ZboQAUFhYWOvMVmBgIPbs2WPzuI+Pj1snLQIcZ7YcBY81TZAhb354A296L+TmYGv27Nm488470apVK4SGhiIlJQUnT57U7FNWVob09HS0bdsWLVu2RGpqqpKGl86dO4cRI0YgICAAoaGhmDZtms2FbNeuXejTpw8sFgs6deqErKwsV789amTMbDmnb9++dhdZjYmJ0X3c19dXE2yZzWZlPI3eF7e7gy2g6XfD0MtsVVdXY9q0aZr99BpbI0eO1FwD5d9CfUfbepyJPUeOHEH//v1x8+ZN7Ny5EwUFBTavKT9jeSe6pswWoF0UVr0ull5myzrYksf//vvvNcf0tG6EZrPZbhaZXKeoqEg3IJdj+KScnBzN5yMX6rZH1q2OHTtqrodSZWUlTCaTcm7duHEDe/fuxeDBg5V9ZGbr7NmzDt+Dui7pTZBRU7BVXV2tdM/t0KGD5j16SrCll9lytGRDTWO2XLEmGFFDcGvN3L17N9LT07F//35s27YNlZWVGDp0qGaxwMmTJ+OLL77AunXrsHv3bvz66694+OGHle03b97EiBEjUFFRgX379mHFihXIysrC66+/ruxz5swZjBgxAoMHD8bhw4eRmZmJ5557Dlu3bm3U90uu5ePjgwULFth0FSHnWa+lJVlntsxms0d3I/QGesGWwWCwGQckt6ln4dy/f7/SGAkODlbWBlM/V26vaVzRHXfcgdatW6O6uhqrV68GAJvB6M7MRqjXOFVvl6wzW+puhPK48r1ar0/krmDLXmaL3OPKlSuIjIy0ebxNmzaaGwFr1qzRBFs1fX4+Pj7Iy8tDnz59bJYwkPz8/JRzKyAgAFVVVWjXrp2yXd4EmTFjhu7CyJIMHOS/elO/A/aDLfW1efHixcoEO54UbOnNRuhoMXJH3Qirq6u9ZgY/dY8C8g5uDba2bNmCcePGoXv37ujVqxeysrJw7tw5HDx4EMCtht/SpUvx3nvvYciQIejbty+WL1+Offv2Yf/+/QCAr7/+GsePH8fKlSsRHx+P4cOH46233sLChQuVi9OHH36IDh06YN68eejatSsyMjLwyCOPYP78+W5779TwDAYDMjIy2Livh4yMDN2MkF5m6/z58/jtt9+UhrA12ajxli/AxqZudNS0qDFg27WuqqoKRqMRly5d0l3c+a677kJ8fLxTZbl27RomTpyICxcuoHfv3soNjZ49ewKoOaA2m802DUvr+iQbVvJ9L1u2zGbMlnWwpW58/e53v2vUMVspKSn485//DODf79/dY2HolitXrthdSFq9qDGg7a7lTFe2Tp06OaxjFosF1dXVeOmll5TH7AVmMsvliHwf5eXlymPqQMpeWdX7+Pv7K70WTCaTxwRbeutsORNsjR49GhkZGcrj6tkNk5KS0L17d9cUvJG4+/OhhudROVd5V1029g4ePIjKykrNGIUuXbogJiYG2dnZAIDs7Gz07NkTYWFhyj7JyckoKSlBbm6uso/1OIfk5GTlGHrKy8tRUlKi+SHydoMGDdKd+tc6M+Hr64s//elPGDFihG6DXQihdF2xXiSUnGNvggxr8i6o9do5cmwVYJuJAm7NNHjo0CGnyiJn+tq9ezemTZsGs9mMefPmKQuqyobSxIkTbbo5Av8OttTBiLo7uHU2C7jVpfXcuXNYtWqVTTdC2UCWz0tKSkJoaCiqq6sbraESERGBu+++G4Bz01ZT48nJyYHZbEZGRoZyY1ayXhpEfd5YB/OAtgue5CiotlgsuHnzJv7rv/5Lecze+CxHXQnl+S/rujPdCOUNjb1792qyX+r9PCGzJQPIxMRE5TFnMlvyPa9evRr33nuvzXONRiO+/vprHDt2zCXlbizu/nyo4XlMsFVdXY3MzEzcfffd6NGjB4Bbg1zNZrPNHaqwsDBlAGxBQYEm0JLb5TZH+5SUlNjtnz179mwEBQUpP3p3hom8kd6dUrPZjKqqKvTo0QOrVq1SGhujRo2y6Yb26aef4oMPPlAaCdaLhJJz1J+Do2BLLqRq3QBU39mu7xo08s789evXlc91ypQpyh1k+TqxsbGYO3euzfPNZjOuXr2qaejKtbasyy67B6m70lhPRKHuvpefn48NGzYox3ZHQ0Vv2mpyn4KCAhQVFWHBggVISEiAwWBQZqrTG1cn6QVb6v9b76fHYrHYzIZYn2BL1mtnuhEOGTIEAHQXqdcLttTZssYk18qTi03LcgGOuzXXtGSJyWTS7Wrd1DDY8j4eE2ylp6cjJycHa9eudXdRANzqT11cXKz8nD9/3t1FImoUeg172SBp164dxowZo/yuN2PSo48+qtycGD16NMaMGePC0novZ7sRGgwGXLlyBRMnTtQ8fvjwYeWzlAFZXam7Qend1a9psP7u3btx5swZpRvQf/zHf+DSpUvKdr3FltWvY53ZUo+zCQ8PR8uWLZVju6MrnzMNRWpc6jE9ly5dwt/+9jcAtpkt9e/yc6xPsFVcXIwPP/xQ85i9YEt9Drz77ru6+6hvmPz66684evSo3dkI5RAM6+eq91NP/e5JXbydmSCjNs9tyhhseR+PqJkZGRnYvHkzdu7cqRlIGh4ejoqKChQVFWn2LywsRHh4uLKP9eyE8vea9gkMDLTpeiNZLBYEBgZqfoiaA70vLHmeyIaJ/LLWa4iorV69Gv3792/gEjYPznYjBG51y7G+lj3xxBNKY+uxxx6zO27EGernWjdW1eWzl9l56qmnNM8NCgrCv/71L2W7OkCS3VLVDQ573QjV3JnZ8rbGnjdQL3Lbpk0b5bNxdWZLL9i3DrZkfbl06RIuXrwIg8GAxx57DOvWrVP2se7RU1FRgaFDh6JXr16aboTqOme93INeN0KTyYSOHTvaPNfd5PuJioqy2fbRRx85vH7Jc9+Tgsf6YIbc+7j1TBNCICMjAxs2bMCOHTts+kb37dsXvr6+2L59u/LYyZMnce7cOaWvb2JiIo4dO6ZZiHDbtm0IDAxEt27dlH3Ux5D7qPsLE9Etel/A1mNkHDV6qWHUJtgC9Bt56ufVJ+uibsTVJbOVlpYG4N8D3Fu3bm2T2ZJ3sfv16wchhKbBYT1Bht603qdPnwZwa3KExubMxArUuNTBlprRaNTULfV50RCZLb2GsnVZ5M2Dv/zlLwgLC4MQAr6+vnjkkUeUfe6++27k5eUp50VFRYWyZltZWZlyc8XRtcFeZis6OhpCCI/KxBqNRgghNGs9PvHEE+jRowcmTpzosKzy7+kt5x8zW97HrTUzPT0dK1euxOrVq9GqVSsUFBSgoKBAGUcVFBSECRMmYMqUKdi5cycOHjyI8ePHIzExUblbPnToUHTr1g1PP/00jhw5gq1bt2LmzJlIT09XGoZpaWn4+eefMX36dJw4cQKLFi3Cp59+ismTJ7vtvRN5KvWXt/zykg0O2dCW51ZNmS2qO2e7EUrWX9BdunRpsDuk9Q22rOuNdbClPqZ83+r3Yx1sZWZmYvPmzZrXmD9/PubNm4fnn3/eyXfVcNiN0PM4GqeoV9+Ahsls6Z0DciIVSS9LY31eGQwGdOrUSQm21Nms69evK+Wyfr1//OMfyv/tBVtNxQMPPODUZBcy2PKWzBaDLe/j1mBr8eLFKC4uxqBBgxAREaH8fPLJJ8o+8+fPx4MPPojU1FTcc889CA8Px/r165XtJpMJmzdvhslkQmJiIp566imMHTsWb775prJPhw4d8Pe//x3btm1Dr169MG/ePCxZsgTJycmN+n6JmgLZsH///feV7i/yi102lmVmgZkt16lvZuv69esN1vhQB1t63QidDbZkZuu2226zWdTY3jEB226E/v7+yoQHUvfu3TFlyhS3TGbEboSeIy4uDoD9zBYATJ8+HW+99RYA/cyWukuu3jXO0XllXQdOnz6NV199FZ07dwYATJ06VXcMlzxHrAN2vXFLjoIt9U1kdaNdHrcpBVvOYmaLPJ1bzzpnBj/6+flh4cKFWLhwod19YmNj8eWXXzo8zqBBg5ye5pioOZNfWL6+vjbTD8sGgVxDi5kt13F2NkLJOti6ceOG3TGptVXfCTKsM1tyzR9J3Y1QcjRmy9OwG6HnkHXQUbA1a9YsVFVV4bXXXtM8XlNmS14PHWUwreuAXHj7H//4ByorKxESEoL333/f5nnyHDEajZqbG+rzQv7/1KlTyrlt/Xp5eXm6ZZHP9eZgy1syW974GTV3/GYgIg29geTWmS35Rc/MluvUthuhKzNbNU2QUd9gSz0xkqRuZMqMmKc2QpjZ8hzyM3AUbAH66zrpjdmyWCxKb5rbbrutxte3dw60bt0aISEhdsumN5W7NfU5YS+zpZ54Ri8o9JaARI2ZLfJ0nvnNRURuo7dAqwyq5Be8bPw2VOaEbNW3G+G1a9c0g83ro6HGbMl/nQm21NO7yyDNU4Mt2ciTGV9yH2eDLb0slV5my9fXF6NGjUJubi4iIyNtjnPhwgXNDHp1bfDL5zk77s9esGUPM1tNB4Mt7+MdtwGIqME4ymzJxrsMsvil4DrqYMOZRoReI+r+++9vkLI0VDdCuT0qKsqmm6R1N8JWrVph6dKlAP4d3HvyBBR5eXno16+fu4vR7DnTjdAevcyWrLvdunWzmY7d398fkZGRWLJkCXr27Amg/tkV6+erz4vy8nJlvCyDrX/ztsyW+tpP3sE7aiYRNRj1mC1JfrHLbjD33XcfBgwY0PiFa0Z2796NZ599FoBzjQi9Rpfenfi6qO8EGfI5ssHn5+eHsLAwjBo1Ctu2bbP7ujK4sg7yPVGnTp3cXQTCrXPljTfewOLFi53a35nMVk3PnTBhgpLVrM16dpcvX7Z5zF6wZTabceXKFSQkJGjKaL2/vXNQHsdbsj9qMjjx5Jsxztq9ezeWLFni7mJQA/O+WxxEVC96wZbsRijHLERGRuK7775r/MI1I+3bt8edd96JZcuWOdVA0gvIGmoCk4bqRiiP4+Pjg8jISISHhyMpKcnu68oGYkxMDKqrq72iMUWuZTQaMWvWLKf3rynY0qvvknpGTbk8gTPB1saNG1FaWqq7XpyjYKu0tFTJrtlbZys4OBi//fabzXG9raudmvyblJaWurcgDeCee+5xdxHIBRhsEZGG/DJWNzLMZjMWLFjAL4JGJhtezmS21Pv4+vqisrKywSYwaahuhNbBluweWNPr+vn5MdAip9SnK5msx+rsrbNdpWVm05lga+TIkXa3OQq2gH9neWUZrc+5tm3b6gZbcXFxOHXqlMPgsamSga5eppDIE7AbIRFp6GW2DAYDMjIyOEarkdWm4ahudMkgxhWZLb0yyde2F2zJx9XBVlxcHEJDQ5V99JYCkY+x3pGz6pO5kfXM19cX06ZN0zxmrWPHjprf77jjDgDac0WOOawNezcVZBAn1xGT++kFWwDwxRdf1FhmbyH/FuqF0ok8CYMtItLQC7bIPWqTzVEHQQ0dbNV0t/78+fMA7I8Rk+9DNkR9fX0xZ84cvPLKK069LrNa5KzaZrb0pn5v1aoVHn74YQD2uxFmZ2fj5MmTyu/jx4/Hvn37NOfKfffdV6uyAPYzW8XFxQCAZ599Fvv27VO2Wwdbsmui+kZGc8FgizwVuxESkYZeN0Jyj9o0HNXBsSszW3omTJiA3r1728zWZu84Pj4+Tr232kw2YE9UVBSnZG9GanPOdOvWDY899pjyuzyH2rVrp1wH7XXFDQkJUSYMAm5dNxMTEzV1ti5ZNuvyy3NYneVNTEyscX9vnHWwJgy2yFM1v7ORiBxiZstz1Kbh2LNnT3z++edITU1t9MxWx44dneqiJI+j1wjV60Y4fPhwDBw40MlS6svLy2NmrBmpzTmTm5ur+V0GKO3atUNZWRmAf48Hcpb6XKlLwGNd/i1btqCgoECZhdCa9bkkz/nmdv2ePn06+vTp4+5iEOlisEVEGgy2PEdtGo4Gg0Hp+iQHzzd0sFXfTFNVVRUA599X+/btsWfPnnq9pidPF08Nrz4TZMjZBdu1a4czZ84AqH2wpc4CN0RmKyYmxmYRcDX1a3Ts2LHZBltz5sxxdxGI7OKYLSLS0FvUmNwjOjq6Ts+Tn2FDdyOsb4bI0fO7d+9er2MTAfWr8927d8eCBQsQGBionEONndlyNEOnXpdGdbC1aNEi5eZCc+xGSOSpGGwRkYb88m5ud0Y90aBBg+o0nbFs8DVUsBUWFlbvYwwbNgxLlizBhg0bdLfPmDEDRUVF9X4dar727NmDZcuW1fn5Pj4+yMjIgMFgUK6D9Qm26pLZcpSJ1Zv0Qp0JM5lMzTazReTJeOuDiDRk9oFf1p5Bb+HTmkRFRSEnJ6fGdayclZ2drVnAtS6++uorAP+eItuayWTiRBZUL/Ud36cmr4P16UbY0Jmtu+66y+axyspK5f8mkwnBwcF1fm0icg2ejUSkIRsL7EbYdEVFRelOOFFX4eHhDXYsoqagISbIqEtmy16wdf78eWUNLbXy8nLN68nsF2+WEXkOdiMkIg3ZWOCXddNVn0kCiAi4du0agMYfs2WvG2G7du10t/3hD3/At99+C+BWsCWno2dmi8hz8BuZiDTUC89S0zR06FB3F4GoSevduzfGjx9f66BFHWzV5aZHbWfPNJlMSldjo9GoBFt1yaoRkWsw2CIiDTk9N7sRNk1CCDz66KPuLgZRk9ayZcs6TbYxc+ZM5f91mb2zLuMsZWBlMpnQs2dPfPDBBwgMDKz1cYjINRhsEZEGuxESEdXNjBkzMG/evDo/vy7BlsygmUwmmEwmvPTSS1zIm8iDuDXY2rNnDx566CFERkbCYDBg48aNmu2FhYUYN24cIiMjERAQgGHDhiEvL0+zT1lZGdLT09G2bVu0bNkSqampKCws1Oxz7tw5jBgxAgEBAQgNDcW0adOUu/dEpBUbGwuA3VCIiOqiNtfOMWPGICUlRfm9vsEWEXketwZb165dQ69evbBw4UKbbUIIpKSk4Oeff8amTZtw6NAhxMbGIikpSRm4CgCTJ0/GF198gXXr1mH37t349ddf8fDDDyvbb968iREjRqCiogL79u3DihUrkJWVhddff71R3iNRUxMdHd2gM9kRETUntRmrtWrVKs3ac7Uds6V+PQZbRJ7JrdPVDB8+HMOHD9fdlpeXh/379yMnJwfdu3cHACxevBjh4eFYs2YNnnvuORQXF2Pp0qVYvXo1hgwZAgBYvnw5unbtiv3796N///74+uuvcfz4cXzzzTcICwtDfHw83nrrLbzyyit44403OC6FiIiIGkx9ZgOdMGECzp49W6fXY7BF5Jk8dsyWXDtCnVI3Go2wWCzYu3cvAODgwYOorKxEUlKSsk+XLl0QExOD7OxsALcW4+zZsyfCwsKUfZKTk1FSUoLc3FyHr19SUqL5ISIiInKkPsFWfHw8/va3v9Xp9RhsEXkmjw22ZNA0Y8YMXLlyBRUVFZgzZw7++c9/Ij8/HwBQUFAAs9mM1q1ba54bFhaGgoICZR91oCW3y232zJ49G0FBQcpPdHR0A747IiIi8kZjx47FRx991GivJ4Mtrq9H5Jk89sz09fXF+vXr8dNPPyE4OBgBAQHYuXMnhg8f3igXlBkzZqC4uFj5OX/+vMtfk4iIiJq2Fi1aYOLEiY32erJNxBkIiTyTRy8x3rdvXxw+fBjFxcWoqKhASEgIEhIS0K9fPwBAeHg4KioqUFRUpMluFRYWIjw8XNnn+++/1xxXzlYo99FjsVhgsVga+B0RERERNRwZZDHYIvJMHpvZUgsKCkJISAjy8vJw4MABjBw5EsCtYMzX1xfbt29X9j158iTOnTuHxMREAEBiYiKOHTuGixcvKvts27YNgYGB6NatW+O+ESIiIqIGJGePZbBF5JncmtkqLS3FqVOnlN/PnDmDw4cPIzg4GDExMVi3bh1CQkIQExODY8eOYdKkSUhJScHQoUMB3ArCJkyYgClTpiA4OBiBgYF46aWXkJiYiP79+wMAhg4dim7duuHpp5/G3LlzUVBQgJkzZyI9PZ2ZKyIiImrSGGwReTa3BlsHDhzA4MGDld+nTJkCAHjmmWeQlZWF/Px8TJkyBYWFhYiIiMDYsWPx2muvaY4xf/58GI1GpKamory8HMnJyVi0aJGy3WQyYfPmzXjhhReQmJiIFi1a4JlnnsGbb77ZOG+SiIiIyEUYbBF5NoPg6qVOKSkpQVBQEIqLixEYGOju4hARERHh/PnziImJwdmzZxETE+Pu4hA1G87GBk1izBYRERER2QoNDUXXrl0RGhrq7qIQkQ6Pno2QiIiIiOyzWCw4fvy4u4tBRHYws0VEREREROQCDLaIiIiIiIhcgMEWERERERGRCzDYIiIiIiIicgEGW0RERERERC7AYIuIiIiIiMgFGGwRERERERG5AIMtIiIiIiIiF+Cixk4SQgAASkpK3FwSIiIiIiJyJxkTyBjBHgZbTrp69SoAIDo62s0lISIiIiIiT3D16lUEBQXZ3W4QNYVjBACorq7Gr7/+ilatWsFgMLi7OE1SSUkJoqOjcf78eQQGBrq7ONTMsT5SXbHuUFPEekv1wfpjSwiBq1evIjIyEkaj/ZFZzGw5yWg0ol27du4uhlcIDAzkiUoeg/WR6op1h5oi1luqD9YfLUcZLYkTZBAREREREbkAgy0iIiIiIiIXYLBFjcZisWDWrFmwWCzuLgoR6yPVGesONUWst1QfrD91xwkyiIiIiIiIXICZLSIiIiIiIhdgsEVEREREROQCDLaIiIiIiIhcgMEWERERERGRCzDY8kKzZ8/GnXfeiVatWiE0NBQpKSk4efKkZp+ysjKkp6ejbdu2aNmyJVJTU1FYWKhsP3LkCEaPHo3o6Gj4+/uja9eueP/9921ea9euXejTpw8sFgs6deqErKysGssnhMDrr7+OiIgI+Pv7IykpCXl5ebr7lpeXIz4+HgaDAYcPH3Z43Pz8fIwZMwadO3eG0WhEZmamzT5ZWVkwGAyaHz8/vxrLTHXnDfWxffv2NvXmnXfeqfHYNZVnz549eOihhxAZGQmDwYCNGzfWeMzmpLnWHV7LmjZvqLcA8Pe//x0JCQnw9/dHmzZtkJKSUuOxjx49ioEDB8LPzw/R0dGYO3euZntubi5SU1OV8+Kvf/1rjcdsbppr/SkrK8O4cePQs2dP+Pj46O6/a9cum+uewWBAQUFBjeV2K0FeJzk5WSxfvlzk5OSIw4cPiwceeEDExMSI0tJSZZ+0tDQRHR0ttm/fLg4cOCD69+8vBgwYoGxfunSpePnll8WuXbvE6dOnxccffyz8/f3FggULlH1+/vlnERAQIKZMmSKOHz8uFixYIEwmk9iyZYvD8r3zzjsiKChIbNy4URw5ckT8/ve/Fx06dBA3btyw2ffll18Ww4cPFwDEoUOHHB73zJkz4uWXXxYrVqwQ8fHxYtKkSTb7LF++XAQGBor8/Hzlp6CgwOFxqX68oT7GxsaKN998U1Nv1OXX40x5vvzyS/Hqq6+K9evXCwBiw4YNzv5Zm4XmWnd4LWvavKHefvbZZ6JNmzZi8eLF4uTJkyI3N1d88sknDo9bXFwswsLCxJNPPilycnLEmjVrhL+/v/joo4+Ufb7//nsxdepUsWbNGhEeHi7mz5/v7J+12Wiu9ae0tFSkpaWJ//7v/xbJycli5MiRNvvs3LlTABAnT57UXPtu3rxZ05/VrRhsNQMXL14UAMTu3buFEEIUFRUJX19fsW7dOmWfH3/8UQAQ2dnZdo/z4osvisGDByu/T58+XXTv3l2zz+OPPy6Sk5PtHqO6ulqEh4eLd999V3msqKhIWCwWsWbNGs2+X375pejSpYvIzc11KthSu/fee+02UIKCgpw+DjW8plgfY2Nja90oqG15GGzVrLnUHTVey5q+plZvKysrRVRUlFiyZEmt3ueiRYtEmzZtRHl5ufLYK6+8IuLi4nT3r++50Vw0l/qj9swzzzgMtq5cuVLnY7sDuxE2A8XFxQCA4OBgAMDBgwdRWVmJpKQkZZ8uXbogJiYG2dnZDo8jjwEA2dnZmmMAQHJyssNjnDlzBgUFBZrnBQUFISEhQfO8wsJC/OEPf8DHH3+MgIAAJ9+pc0pLSxEbG4vo6GiMHDkSubm5DXp8cqwp1kcAeOedd9C2bVv07t0b7777Lqqqqhy+z7qUhxxrLnXHWbyWNQ1Nrd7+8MMPuHDhAoxGI3r37o2IiAgMHz4cOTk5Dt9ndnY27rnnHpjNZk15Tp48iStXrjh8LtnXXOpPbcTHxyMiIgL3338/vvvuuwY7rqsw2PJy1dXVyMzMxN13340ePXoAAAoKCmA2m9G6dWvNvmFhYXb7ve7btw+ffPIJJk6cqDxWUFCAsLAwm2OUlJTgxo0buseRx9d7ntwmhMC4ceOQlpaGfv36Of9mnRAXF4dly5Zh06ZNWLlyJaqrqzFgwAD885//bNDXIX1NsT4CwMsvv4y1a9di586deP755/H2229j+vTpDt9rXcpD9jWnuuMMXsuahqZYb3/++WcAwBtvvIGZM2di8+bNaNOmDQYNGoTLly/bfa/2yqN+Xaqd5lR/nBEREYEPP/wQn3/+OT7//HNER0dj0KBB+OGHH+p1XFdjsOXl0tPTkZOTg7Vr19b5GDk5ORg5ciRmzZqFoUOHOv28VatWoWXLlsrPt99+69TzFixYgKtXr2LGjBl291EfNy0tzekyJSYmYuzYsYiPj8e9996L9evXIyQkBB999JHTx6C6a4r1EQCmTJmCQYMG4Y477kBaWhrmzZuHBQsWoLy8HEDd6yM5j3VHi9eypqEp1tvq6moAwKuvvorU1FT07dsXy5cvh8FgwLp16wAA3bt3V447fPjw2r8pcgrrj1ZcXByef/559O3bFwMGDMCyZcswYMAAzJ8/3+ljuIOPuwtArpORkYHNmzdjz549aNeunfJ4eHg4KioqUFRUpLkzUlhYiPDwcM0xjh8/jvvuuw8TJ07EzJkzNdvCw8M1s9/IYwQGBsLf3x+///3vkZCQoGyLiopCfn6+sl9ERITmefHx8QCAHTt2IDs7GxaLRXPsfv364cknn8SKFSs0MxMGBgY6/0ex4uvri969e+PUqVN1PgY5p6nWRz0JCQmoqqrCL7/8gri4ON36WFN5yHnNre7UBa9lnqep1lv5eLdu3ZTtFosFt99+O86dOwcA+PLLL1FZWQkAyvXMXnnkNqqd5lZ/6uquu+7C3r1763UMl3P3oDFqeNXV1SI9PV1ERkaKn376yWa7HFz52WefKY+dOHHCZnBlTk6OCA0NFdOmTdN9nenTp4sePXpoHhs9erRTgyv/8pe/KI8VFxdrBleePXtWHDt2TPnZunWrACA+++wzcf78eaf+BvYGlVurqqoScXFxYvLkyU4dl2qvqddHPStXrhRGo1FcvnzZ7j61LQ84QYaN5lp31Hgta3qaer2Vv6snOKioqBChoaGamQWtyQkyKioqlMdmzJjBCTJqqbnWHzV7E2ToSUpKEqNGjXJqX3dhsOWFXnjhBREUFCR27dqlmRrz+vXryj5paWkiJiZG7NixQxw4cEAkJiaKxMREZfuxY8dESEiIeOqppzTHuHjxorKPnDZ02rRp4scffxQLFy50etrQ1q1bi02bNomjR4+KkSNH2p36XYhb0yDDydkIDx06JA4dOiT69u0rxowZIw4dOiRyc3OV7X/+85/F1q1bxenTp8XBgwfFE088Ifz8/DT7UMNq6vVx3759Yv78+eLw4cPi9OnTYuXKlSIkJESMHTvW4XGdKc/Vq1eVOgtAvPfee+LQoUPi7Nmztfobe6vmWneE4LWsKWvq9VYIISZNmiSioqLE1q1bxYkTJ8SECRNEaGiow5sERUVFIiwsTDz99NMiJydHrF27VgQEBGga2OXl5UrdjoiIEFOnThWHDh0SeXl5tfobe7PmWn+EECI3N1ccOnRIPPTQQ2LQoEFKXZHmz58vNm7cKPLy8sSxY8fEpEmThNFoFN98842zf163YLDlhQDo/ixfvlzZ58aNG+LFF18Ubdq0EQEBAWLUqFEiPz9f2T5r1izdY8TGxmpea+fOnSI+Pl6YzWZx++23a17DnurqavHaa6+JsLAwYbFYxH333SdOnjxpd//aBFs1lTkzM1PExMQIs9kswsLCxAMPPCB++OGHGo9LddfU6+PBgwdFQkKCCAoKEn5+fqJr167i7bffFmVlZTUeu6byyGlsrX+eeeaZGo/dHDTnusNrWdPV1OutELcyEX/84x9FaGioaNWqlUhKShI5OTk1HvvIkSPid7/7nbBYLCIqKkq88847mu3y+9z65957763x2M1Fc64/sbGxuuWW5syZIzp27Cj8/PxEcHCwGDRokNixY0eNx3U3gxBCONvlkIiIiIiIiJzD2QiJiIiIiIhcgMEWERERERGRCzDYIiIiIiIicgEGW0RERERERC7AYIuIiIiIiMgFGGwRERERERG5AIMtIiIiIiIiF2CwRURERERE5AIMtoiIiIiIiFyAwRYRETU748aNg8FggMFggK+vL8LCwnD//fdj2bJlqK6udvo4WVlZaN26tesKSkRETRqDLSIiapaGDRuG/Px8/PLLL/jqq68wePBgTJo0CQ8++CCqqqrcXTwiIvICDLaIiKhZslgsCA8PR1RUFPr06YM//elP2LRpE7766itkZWUBAN577z307NkTLVq0QHR0NF588UWUlpYCAHbt2oXx48ejuLhYyZK98cYbAIDy8nJMnToVUVFRaNGiBRISErBr1y73vFEiInIbBltERET/b8iQIejVqxfWr18PADAajfjggw+Qm5uLFStWYMeOHZg+fToAYMCAAfjrX/+KwMBA5OfnIz8/H1OnTgUAZGRkIDs7G2vXrsXRo0fx6KOPYtiwYcjLy3PbeyMiosZnEEIIdxeCiIioMY0bNw5FRUXYuHGjzbYnnngCR48exfHjx222ffbZZ0hLS8O//vUvALfGbGVmZqKoqEjZ59y5c7j99ttx7tw5REZGKo8nJSXhrrvuwttvv93g74eIiDyTj7sLQERE5EmEEDAYDACAb775BrNnz8aJEydQUlKCqqoqlJWV4fr16wgICNB9/rFjx3Dz5k107txZ83h5eTnatm3r8vITEZHnYLBFRESk8uOPP6JDhw745Zdf8OCDD+KFF17Af/7nfyI4OBh79+7FhAkTUFFRYTfYKi0thclkwsGDB2EymTTbWrZs2RhvgYiIPASDLSIiov+3Y8cOHDt2DJMnT8bBgwdRXV2NefPmwWi8NcT5008/1exvNptx8+ZNzWO9e/fGzZs3cfHiRQwcOLDRyk5ERJ6HwRYRETVL5eXlKCgowM2bN1FYWIgtW7Zg9uzZePDBBzF27Fjk5OSgsrISCxYswEMPPYTvvvsOH374oeYY7du3R2lpKbZv345evXohICAAnTt3xpNPPomxY8di3rx56N27N3777Tds374dd9xxB0aMGOGmd0xERI2NsxESEVGztGXLFkRERKB9+/YYNmwYdu7ciQ8++ACbNm2CyWRCr1698N5772HOnDno0aMHVq1ahdmzZ2uOMWDAAKSlpeHxxx9HSEgI5s6dCwBYvnw5xo4diz/+8Y+Ii4tDSkoK/vd//xcxMTHueKtEROQmnI2QiIiIiIjIBZjZIiIiIiIicgEGW0RERERERC7AYIuIiIiIiMgFGGwRERERERG5AIMtIiIiIiIiF2CwRURERERE5AIMtoiIiIiIiFyAwRYREREREZELMNgiIiIiIiJyAQZbRERERERELsBgi4iIiIiIyAX+D6/P/5PwYzojAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAE6CAYAAADgC0jTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADf6klEQVR4nOydd3gUxf/H35eraRwJJITeQTB0kPqlCCaINFFR0SiK2CgiRUVFVEQURUQsWChKUURAqpGOUiJIld47oSQhPZe73P7+yG+G2b3dvb3kLncJ83oeHnJ7e7uzbXbe8/7MZ3SCIAjgcDgcDofD4XA4HI5XCfJ3ATgcDofD4XA4HA6nLMLFFofD4XA4HA6Hw+H4AC62OBwOh8PhcDgcDscHcLHF4XA4HA6Hw+FwOD6Aiy0Oh8PhcDgcDofD8QFcbHE4HA6Hw+FwOByOD+Bii8PhcDgcDofD4XB8ABdbHA6Hw+FwOBwOh+MDuNjicDgcDofD4XA4HB/AxRaHw+H4EJ1Op+nfli1b3G7rww8/xO+//17s8rz77rsel7tcuXLo0KEDfv7552Lt39usWrUKffr0QaVKlWAymRAZGYnu3btj4cKFsNvt/i4eAO9cNzmOHj2KwYMHo0aNGjCZTKhYsSJ69eqFP/74w+v7Kg6DBw/W9AwMHjwYW7Zs0fw8cDgcTmnA4O8CcDgcTllm586dos+TJk3C5s2bsWnTJtHyxo0bu93Whx9+iIcffhj9+/f3ZhEVefjhhzFmzBgIgoCzZ8/iww8/xKBBgyAIAgYNGlQiZVBCEAQ8++yzmDdvHnr16oXPPvsM1atXR3p6OjZv3oyXX34ZN2/exCuvvOLXcgK+uW7Lli3DoEGDUKdOHUyYMAENGzbEtWvXMHfuXPTq1Qvjxo3D1KlTvba/4jBhwgS8+OKL9PPevXsxbNgwfPjhh+jWrRtdHhUVhaioKOzcuVPT88DhcDilAS62OBwOx4e0a9dO9DkqKgpBQUEuywORSpUq0XK2b98eHTt2RK1atfDtt9/6XWx98sknmDdvHt577z288847ou/69OmD1157DadOnfJT6XzL6dOnkZCQgCZNmmDLli0IDQ2l3z3yyCN46aWX8Mknn6Bly5Z47LHHSqxcdrsdOp0OBoO4aVG3bl3UrVuXfs7LywMA1K9fX/Y5KA3PBofD4WiFhxFyOByOn0lNTcXLL7+MqlWrwmQyoU6dOnjrrbdgs9noOjqdDtnZ2fjxxx9p2FXXrl0BADdu3MDLL7+Mxo0bIywsDNHR0bj33nvx999/e7WcNWvWRFRUFK5duyZavnjxYsTFxaFy5coIDg5Go0aN8MYbbyA7O5uus2bNGuh0OuzevZsuW7p0KXQ6HR544AHR9po2bYqHHnpIsRx2ux0ff/wx7rrrLkyYMEF2nZiYGHTq1Il+1nKOz507B51Oh3nz5rlsTxp++e6770Kn0+Hw4cN4/PHHYbVaUalSJTz77LNIT08X/U7puuXk5GDs2LGoXbs2LBYLIiMj0bp1a7ehmtOnT0dOTg5mzpwpElqEadOmoXz58pg8eTIA4MCBA9DpdJg9e7bLun/88Qd0Oh1WrlxJl508eRKDBg1CdHQ0zGYzGjVqhK+++kr0OxLuN3/+fIwZMwZVq1aF2WwutsCVCyMcPHgwwsLCcOzYMcTHxyM0NBSVK1fGRx99BABISkpCp06dEBoaigYNGuDHH3902W5ycjJeeOEFVKtWDSaTCbVr18Z7770Hh8NRrPJyOByOO7izxeFwOH4kLy8P3bp1w+nTp/Hee++hadOm+PvvvzFlyhTs378fa9asAVAYjnjvvfeiW7duVGCUK1cOQKGQAICJEyciJiYGWVlZWL58Obp27YqNGzfSxn1xSU9PR2pqqovzcPLkSfTq1QujRo1CaGgojh07ho8//hi7du2i4ZJdunSB0WjEhg0b0KZNGwDAhg0bEBwcjK1bt8Jut8NoNOL69es4dOgQXnrpJcVy/Pvvv0hNTcXQoUOh0+ncllvrOS4KDz30EB599FEMGTIE//33H8aPHw8AmDNnDgD16zZ69GjMnz8fH3zwAVq0aIHs7GwcOnQIKSkpqvtcv369yHWUEhISgri4OPz6669ITk5Gs2bN0KJFC8ydOxdDhgwRrTtv3jxER0ejV69eAIAjR46gQ4cOqFGjBqZNm4aYmBj8+eefGDlyJG7evImJEyeKfj9+/Hi0b98es2bNQlBQEKKjoz08g9qw2+0YMGAAXnzxRYwbNw6LFi3C+PHjkZGRgaVLl+L1119HtWrVMHPmTAwePBixsbFo1aoVgEKhdc899yAoKAjvvPMO6tati507d+KDDz7AuXPnMHfuXJ+UmcPhcAAAAofD4XBKjKeffloIDQ2ln2fNmiUAEH799VfReh9//LEAQFi3bh1dFhoaKjz99NNu9+FwOAS73S50795dePDBB0XfARAmTpzodhsAhJdfflmw2+1Cfn6+cOLECaFv375CeHi48O+//yr+zul0Cna7Xdi6dasAQDhw4AD9rlOnTsK9995LP9erV08YN26cEBQUJGzdulUQBEFYuHChAEA4ceKE4j5++eUXAYAwa9Yst8chCNrP8dmzZwUAwty5c2XPB3veJk6cKAAQpk6dKlrv5ZdfFiwWi+B0OukypesWGxsr9O/fX9MxsFgsFqFdu3aq67z++usCAOGff/4RBEEQvvjiCwGAcPz4cbpOamqqYDabhTFjxtBl8fHxQrVq1YT09HTR9oYPHy5YLBYhNTVVEARB2Lx5swBA6Ny5s8flJ79dsmSJ4nebN2+my55++mkBgLB06VK6zG63C1FRUQIAYe/evXR5SkqKoNfrhdGjR9NlL7zwghAWFiacP39etK9PP/1UACAcPnzY42PgcDgcrfAwQg6Hw/EjmzZtQmhoKB5++GHR8sGDBwMANm7cqGk7s2bNQsuWLWGxWGAwGGA0GrFx40YcPXq0yGX7+uuvYTQaYTKZ0KBBA/zxxx/4+eefqWNAOHPmDAYNGoSYmBjo9XoYjUZ06dIFAET77969O7Zv347c3FycP38ep06dwmOPPYbmzZtj/fr1AArdrho1aqB+/fpFLrcUb51jOfr27Sv63LRpU+Tl5eH69etuf3vPPffgjz/+wBtvvIEtW7YgNze3yOWQIggCAFDn74knnoDZbBaFSP7888+w2Wx45plnABQ6gBs3bsSDDz6IkJAQOBwO+q9Xr17Iy8tDUlKSaD9q4Z7eRKfTUfcNAAwGA+rVq4fKlSujRYsWdHlkZCSio6Nx/vx5umz16tXo1q0bqlSpIjqm+++/HwCwdevWEjkGDodzZ8LFFofD4fiRlJQUxMTEuITDRUdHw2AwuA0pA4DPPvsML730Etq2bYulS5ciKSkJu3fvRs+ePYvVgB84cCB2796NHTt24Ntvv0V4eDgee+wxnDx5kq6TlZWF//3vf/jnn3/wwQcfYMuWLdi9ezeWLVsGAKL99+jRAzabDdu2bcP69etRsWJFtGjRAj169MCGDRsAFAqfHj16qJarRo0aAICzZ89qOg5vnGMlKlSoIPpsNpsBQNN5/+KLL/D666/j999/R7du3RAZGYn+/fuLzq8cNWrUcHvs586dAwBUr14dQKEI6du3L3766ScUFBQAKAwhvOeee3D33XcDKDxPDocDM2fOhNFoFP0jQufmzZui/VSuXNntcXqDkJAQWCwW0TKS6l+KyWSiSTgA4Nq1a1i1apXLMZHjlh4Th8PheBM+ZovD4XD8SIUKFfDPP/9AEASRGLh+/TocDgcqVqzodhsLFixA165d8c0334iWZ2ZmFqtsUVFRaN26NYDCbISNGjVCly5d8Oqrr2L16tUACl2jK1euYMuWLdTNAoBbt265bK9t27YICwvDhg0bcO7cOXTv3h06nQ7du3fHtGnTsHv3bly4cMGt2GrdujUiIyOxYsUKTJkyxe24La3nmDTm2aQZAIolxtQIDQ3Fe++9h/feew/Xrl2jLlefPn1w7Ngxxd/dd999+Oqrr5CUlCQ7bisnJwfr169HbGwsYmJi6PJnnnkGS5Yswfr161GjRg3s3r1bdM9ERERAr9cjISEBw4YNk9137dq1RZ+1jJnzNxUrVkTTpk1pwhApVapUKeEScTicOwnubHE4HI4f6d69O7Kyslwmvf3pp5/o9wSz2SzrmOh0OuqoEA4ePOgyx1dx+d///oennnoKa9asodsmjW3p/r/99luX3xuNRnTu3Bnr16/Hpk2bcN9999HtGgwGvP3221R8qWE0GvH666/j2LFjmDRpkuw6169fx/bt2wFoP8eVKlWCxWLBwYMHReutWLFCtTzuULpuLJUqVcLgwYPx+OOP4/jx48jJyVFc99VXX0VwcDBGjBghyvhIGDt2LNLS0vD222+LlsfFxaFq1aqYO3cu5s6dC4vFgscff5x+HxISgm7dumHfvn1o2rQpWrdu7fJP6uSVBnr37o1Dhw6hbt26ssfExRaHw/El3NnicDgcP/LUU0/hq6++wtNPP41z586hSZMm2LZtGz788EP06tVL5PKQeZVWrVqFypUrIzw8HA0bNkTv3r0xadIkTJw4EV26dMHx48fx/vvvo3bt2l5PbT1p0iQsXrwYEyZMwIYNG9ChQwdERETgxRdfxMSJE2E0GrFw4UIcOHBA9vfdu3fHmDFjAIAeW3BwMDp06IB169ahadOmmjLajRs3DkePHsXEiROxa9cuDBo0iE5q/Ndff+G7777De++9h44dO2o+xzqdDk8++STmzJmDunXrolmzZti1axcWLVpUrHOmdN3atm2L3r17o2nTpoiIiMDRo0cxf/58tG/fHiEhIYrbq1u3LubPn48nnngCbdq0wejRo+mkxnPmzMEff/yBsWPH4tFHHxX9Tq/X46mnnsJnn32GcuXKYcCAAbBaraJ1ZsyYgU6dOuF///sfXnrpJdSqVQuZmZk4deoUVq1a5TIZd2ng/fffx/r169GhQweMHDkSDRs2RF5eHs6dO4e1a9di1qxZqFatmr+LyeFwyip+TtDB4XA4dxTSbISCUJhB7cUXXxQqV64sGAwGoWbNmsL48eOFvLw80Xr79+8XOnbsKISEhAgAhC5dugiCIAg2m00YO3asULVqVcFisQgtW7YUfv/9d+Hpp58WatasKdoGPMhGOGzYMNnvxo0bJwCgGQR37NghtG/fXggJCRGioqKE5557Tti7d69sZr8DBw4IAIT69euLlk+ePFkAIMoip4UVK1YIDzzwgBAVFSUYDAYhIiJC6NatmzBr1izBZrPR9bSe4/T0dOG5554TKlWqJISGhgp9+vQRzp07p5iN8MaNG6Lfz507VwAgnD17li5Tum5vvPGG0Lp1ayEiIkIwm81CnTp1hFdffVW4efOmpmM/fPiw8PTTTwvVqlUTjEajEBkZKfTs2VNYs2aN4m9OnDghABAACOvXr5dd5+zZs8Kzzz4rVK1aVTAajUJUVJTQoUMH4YMPPqDrqGUUdEdRshFKnxlBEIQuXboId999t8vymjVrCg888IBo2Y0bN4SRI0cKtWvXpueqVatWwltvvSVkZWV5fAwcDoejFZ0g/H/KIg6Hw+FwOBwOh8PheA0+ZovD4XA4HA6Hw+FwfAAXWxwOh8PhcDgcDofjA7jY4nA4HA6Hw+FwOBwfwMUWh8PhcDgcDofD4fgALrY4HA6Hw+FwOBwOxwdwscXhcDgcDofD4XA4PsCvkxpPmTIFy5Ytw7Fjx+iklh9//DEaNmwoWu/o0aN4/fXXsXXrVjidTtx999349ddfUaNGDQCAzWbD2LFj8fPPPyM3Nxfdu3fH119/LZqkMC0tDSNHjsTKlSsBAH379sXMmTNRvnx5TWV1Op24cuUKwsPDodPpvHMCOBwOh8PhcDgcTqlDEARkZmaiSpUqCApS8a/8OclXfHy8MHfuXOHQoUPC/v37hQceeECoUaOGaILBU6dOCZGRkcK4ceOEvXv3CqdPnxZWr14tXLt2ja7z4osvClWrVhXWr18v7N27V+jWrZvQrFkzweFw0HV69uwpxMbGCjt27BB27NghxMbGCr1799Zc1osXL9KJIPk//o//4//4P/6P/+P/+D/+j//j/y5evKiqIQJqUuMbN24gOjoaW7duRefOnQEAjz32GIxGI+bPny/7m/T0dERFRWH+/Pl49NFHAQBXrlxB9erVsXbtWsTHx+Po0aNo3LgxkpKS0LZtWwBAUlIS2rdvj2PHjrk4aUr7KV++PC5evIhy5cp56Yg5HA6Hw+FwOBxOaSMjIwPVq1fHrVu3YLVaFdfzaxihlPT0dABAZGQkgMLQvTVr1uC1115DfHw89u3bh9q1a2P8+PHo378/AGDPnj2w2+2Ii4uj26lSpQpiY2OxY8cOxMfHY+fOnbBarVRoAUC7du1gtVqxY8cOWbFls9lgs9no58zMTABAuXLluNjicDgcDofD4XA4bocXBUyCDEEQMHr0aHTq1AmxsbEAgOvXryMrKwsfffQRevbsiXXr1uHBBx/EgAEDsHXrVgBAcnIyTCYTIiIiRNurVKkSkpOT6TrR0dEu+4yOjqbrSJkyZQqsViv9V716dW8eLofD4XA4HA6HwynjBIyzNXz4cBw8eBDbtm2jy5xOJwCgX79+ePXVVwEAzZs3x44dOzBr1ix06dJFcXuCIIiUppzqlK7DMn78eIwePZp+JlYhh8PhcDgcDofD4WghIJytESNGYOXKldi8ebMog2DFihVhMBjQuHFj0fqNGjXChQsXAAAxMTHIz89HWlqaaJ3r16+jUqVKdJ1r16657PfGjRt0HSlms5mGDPLQQQ6Hw+FwOBwOh+MpfhVbgiBg+PDhWLZsGTZt2oTatWuLvjeZTGjTpg2OHz8uWn7ixAnUrFkTANCqVSsYjUasX7+efn/16lUcOnQIHTp0AAC0b98e6enp2LVrF13nn3/+QXp6Ol2Hw+FwOBwOh8PhcLyJX8MIhw0bhkWLFmHFihUIDw+n46esViuCg4MBAOPGjcOjjz6Kzp07o1u3bkhMTMSqVauwZcsWuu6QIUMwZswYVKhQAZGRkRg7diyaNGmCHj16ACh0wnr27ImhQ4fi22+/BQA8//zz6N27t6ZMhBwOh8PhcDgcDofjKX5N/a40Xmru3LkYPHgw/TxnzhxMmTIFly5dQsOGDfHee++hX79+9Pu8vDyMGzcOixYtEk1qzI6xSk1NdZnU+Msvv9Q8qXFGRgasVivS09N5SCGHw+FwOBwOh3MHo1UbBNQ8W4EMF1scDofD4XA4HDUOHTqEu+66CwZDwOSg4/gIrdogIBJkcEqG7OxscG3N4XA4HA6H4xuaNGmCL7/80t/F4AQQXGzdIZw7dw5hYWE4ePAgrl27Brvd7u8icTgcDofD4ZQ5lOZw5dyZcLF1h7B8+XIAQGZmJmJiYvDWW2/5uUQcDofD4XA4ZY/8/Hx/F4ETQHCxdYfw77//AgBsNhsA4OjRo/4sDofD4XA4HE6ZhLS1OByAi607hlOnTgG4XQE4HA5/FofD4XA4HA6nTEHGxXOxxWHhYusOIS0tDcDtCqCgoMCfxeFwOBwOh8MpU5DwQR5GyGHhYusOITU1FcHBwcjJyQHAnS0Oh8PhcDgcb5KXlweAO1scMVxslXHsdjuio6ORkpKCmJgY3LhxAwB3tjgcDofD4XC8CRFb5H8OB+Biq8yTmZlJBVZMTAx2794NADz1O4fD4XA4HI4XISLr8uXLfi4JJ5DgYquMk5ubS/+uWLEiFi1aBABISUmBTqejY7k4HA6Hw+FwOEWHiK1Tp07RZBkcDhdbZRxWbFksFvr3zZs3AQAnT54s8TJxOBwOh8PhlDVyc3NhNBqRnp6O1NRUfxeHEyBwsVXGIWLr5s2bMJvNAICuXbvi1q1bAID//vvPX0XjcDgcDofDKTPk5eUhKioK4eHhuHr1qr+LwwkQuNgq4+Tk5CAmJgYVKlSgYstiscDpdAIA3nnnHZ6ZkMPhcDgcDqeY5OXlwWKxIDo6GtevX/d3cTgBAhdbZZBTp07hr7/+AlDobIWEhAAAFVvk/1q1akGn02HWrFn+KSiHw+FwOBxOGYGLLY4cXGyVQeLj49GlSxcAhWIrODgYAETOFgBYrVaMGTMGv/zyi38KyuFwOBwOh1NGIGKrUqVKXGxxKFxslUEMBgP9Oycnx0Vskf/DwsJQo0YNPtM5h8PhcDgcTjHhzhZHDi62yiBEXAHiMEKTyQTgtrMVFhYGk8nEZzrncDgcDofDKSZcbHHk4GKrDCIVW+SzktjizhaHw+FwOBxO0cnJyUFaWhoXWxwXDO5X4ZQ2iJMFiMWWXq8HIBZbZrOZiy0Oh8PhcDicYtC4cWOcP38eAwYM4GKLI8KvztaUKVPQpk0bhIeHIzo6Gv3798fx48dF6wwePBg6nU70r127dqJ1bDYbRowYgYoVKyI0NBR9+/bFpUuXROukpaUhISEBVqsVVqsVCQkJdK6psgbrbOXk5FDxJSe2eBghh8PhcDgcTvE4f/48AHBni+OCX8XW1q1bMWzYMCQlJWH9+vVwOByIi4tDdna2aL2ePXvi6tWr9N/atWtF348aNQrLly/HL7/8gm3btiErKwu9e/dGQUEBXWfQoEHYv38/EhMTkZiYiP379yMhIaFEjrOkIWJLEARkZWUhLCwMABAUVHi52QQZ3NnicDgcDofD8Q4WiwVRUVFcbHEofg0jTExMFH2eO3cuoqOjsWfPHnTu3JkuN5vNiImJkd1Geno6Zs+ejfnz56NHjx4AgAULFqB69erYsGED4uPjcfToUSQmJiIpKQlt27YFAHz//fdo3749jh8/joYNG/roCH1LcnIyrl69ihYtWoiWE7Fls9lkxRYfs8XhcDgcDofjfSwWC4KDg5GXl+fvonAChIBKkJGeng4AiIyMFC3fsmULoqOj0aBBAwwdOlTUW7Bnzx7Y7XbExcXRZVWqVEFsbCx27NgBANi5cyesVisVWgDQrl07WK1Wuo4Um82GjIwM0b9A44knnkDLli1dlhOxlZmZKRJbJIyQOFuhoaEwmUxIT08vsyGVHA6Hw+FwOCWFxWKByWSC3W6HIAj+Lg4nAAgYsSUIAkaPHo1OnTohNjaWLr///vuxcOFCbNq0CdOmTcPu3btx77330nFGycnJMJlMiIiIEG2vUqVKSE5OputER0e77DM6OpquI2XKlCl0fJfVakX16tW9daheQ+khNhqNAApTkGZlZSE8PByAvLNFhFelSpV8XVwOh8PhcDicMg0RWwDgcDj8XBpOIBAw2QiHDx+OgwcPYtu2baLljz76KP07NjYWrVu3Rs2aNbFmzRoMGDBAcXuCIECn09HP7N9K67CMHz8eo0ePpp8zMjICTnBVqFBBdjkZqyYNIyTOltFohE6no2GEAHgoIYfD4XA4HI6HsFmfAbHYys/Ppx3gnDuXgHC2RowYgZUrV2Lz5s2oVq2a6rqVK1dGzZo1cfLkSQBATEwM8vPzkZaWJlrv+vXr1K2JiYnBtWvXXLZ148YNRUfHbDajXLlyon+BBhFbdrtdtFxJbBFnS6/Xw2g0isQWh8PhcDgcDkc7R48epRmfiaiyWCz0b96RzQH8LLYEQcDw4cOxbNkybNq0CbVr13b7m5SUFFy8eBGVK1cGALRq1QpGoxHr16+n61y9ehWHDh1Chw4dAADt27dHeno6du3aRdf5559/kJ6eTtcpjZQvXx5AoWhkYcVWZmami7MVFBQEk8kkCiPkcDgcDofD4WiHdOQLgkA7r6XOFsd7fPjhh4rDfwIZv4qtYcOGYcGCBVi0aBHCw8ORnJyM5ORk5ObmAgCysrIwduxY7Ny5E+fOncOWLVvQp08fVKxYEQ8++CAAwGq1YsiQIRgzZgw2btyIffv24cknn0STJk1odsJGjRqhZ8+eGDp0KJKSkpCUlIShQ4eid+/epTYTIXB7zFZubi4EQcB9992HzMxMKra6dOmCvXv3IjQ0FMBtZysoKAhmsxnh4eEiZ4vHFnM4HA6Hw+FogwxFcTqdMBgKR+ZER0dTZ0saecQpHm+99Ra++eYbfxfDY/wqtr755hukp6eja9euqFy5Mv23ePFiAIVOzH///Yd+/fqhQYMGePrpp9GgQQPs3LmTJn0AgOnTp6N///4YOHAgOnbsiJCQEKxatYo6OQCwcOFCNGnSBHFxcYiLi0PTpk0xf/78Ej9mb0J6TGw2G+666y5s2LAB//33HxVNWVlZAAqzMwJiZ2v16tVo2bKlSGyV1XnHOBwOh8PhcLwNEVsFBQU04qp///7Q6XQwGo3c2fIBxDgoTfg1QYa7lJjBwcH4888/3W7HYrFg5syZmDlzpuI6kZGRWLBggcdlDGRIj0l+fj5OnDhB/2Ync168eDHuvvtuAGJnq127di7bkyYn4XA4HA6Hw+HIQ9pVDocDYWFhWLp0KR2ewcWWbyiNYqv0lZhDIQ8x+zDbbDaR2CK2NiAWW3LwZBkcDofD4XA42mCdLWnmQZPJxMWWD1DKIh7IcLFViiHOFhnjBgA9e/YUjb1iH3w2jJCFJAnhYovD4XA4HA5HG6zYstvtLmKLj9nyPtzZ4pQopMckNTVVtNyds8WOZQOAefPmAeBii8PhcDgcDkcrRGw5HA7Y7XZRO4o7W76BO1ucEiMnJwcbN24EUJgOn4UkxgDEYkvJ2ZJbl8PhcDgcDoejjDtni4st78OdLU6JMX36dDq/w82bN0XfZWRk0L/ZB19pzFbNmjURHBzM59zicDgcDofD0Yia2OIJMrwLSarHxRbHL0idrfT0dPq3FmfLZDLh119/RXZ2tg9LyeFwOBwOh1P2IGGE3NnyHWSIDA8j5JQYYWFh9G9WbIWFhYmcLa3ZCMPDw5GZmUk/b968Ga+//rpXy0zQ6XSYNWuWT7bN4XA4HA6HUxIQt4UnyPA95FxyZ4tTYrBii02QERoaivT0dFgsFgDawgiBwrnK8vLy6Od33nkHU6dO9Xq5CVu2bPHZtjkcDofD4XB8jdPpBMBTvxeX7du3q37/9ttv4+233wZQOp0tnhGhlBIaGkr/ZhNihIWF4dq1a6hQoQLy8vI0J8gwm82w2Wz0s68zE7qb0JrD4XA4HA4nkCFiSy4bIR+zpY0jR46gU6dOyMvLU8wdMHnyZPo3d7Y4JQb7QGdmZqJt27bIzMykIoz8r9XZkvbA+FpskQqKw+FwOBwOpzQiFVtsm0vaic2Rh7Q92TliAWDdunWyHfNcbHFKDPYGzMjIQFhYGMLCwqjICgkJAaA99XtJO1scDofD4XA4pRkitshYeXaIR2hoqCjyiCMPaZNKXcD4+Hhs3brVZf3SGEbIxVYphXWGsrKyqDiSOltaE2SQgZxExPEwQg6Hw+FwOBxlXnvtNQC3s0CzYkuaeIwjj5zYIpkHyf8spbH9yMVWKYWIrccffxyZmZk0zlXqbLGWtpqzRcQVyfbCxRaHw+FwOByOPIIgYPfu3QAKxZbRaBS1nbjY8gxWbJG2qJyLJSfAAh0utkopTqcTnTp1QmRkJDIyMlzElqfOFvk9CSXkYovD4XA4HA5HHjaD861bt0SuFsDFllbIWC05sSXXXuVii1NiOJ1OBAUFwWw2QxAEKpbIw+7pmC0irsjNzjpivoCLLQ6Hw+FwOKWV3Nxc+nd6ejrCw8NF3xOxdeDAgZIuWqmCCCtWbJG/udji+BUitohIUhqz5Uk2QsDV2fKVKApEsbV+/Xq89dZb/i4Gh8PhcDicAEcqtuScreTkZDRv3hwnT54s6eKVGtScLR5GyPErUrFV3DBCg8GAoKAgerNLnS5vUKdOHZw+fRpAYIqt0aNH48MPP/R3MTgcDofD4QQ4rNhSCiNMTU0FcFs8cFwhYos9R2ptTy62OCUGG0YIuIqtihUrAtAeRggUCizibJHtsTHJxUEQBJw9exZJSUn0M8uiRYuwa9cur+yrqPDKkMPhcDgcjha0OFtpaWkAbre/OK7IhRGSZXLC6o4QW3v37sV///1HP69YsQL9+/fHm2++yWfKLkGUnC3yQNeuXRuAfBih0kNvNptdnC1via3s7GxReaRi64knnsDDDz/slX0VldIutqZOnYolS5b4uxgcDofD4ZRZ7HY77Ha72wQZ5cuXR0pKCgAuttSQCyNUmugYuEPE1gsvvIATJ04AAM6cOYPHHnsMISEhWLJkCZ1vQCtTpkxBmzZtEB4ejujoaPTv3x/Hjx9X3bdOp8Pnn38uWm6z2TBixAhUrFgRoaGh6Nu3Ly5duiRaJy0tDQkJCbBarbBarUhISMCtW7c8Km8goTRmi2S+qV69OgCxi6XF2ZIOSvSW2CJW+qOPPgpAPozQ35VRaRdbr7/+Op566il/F4PD4XA4nDJLp06dUK1aNfz00090mZzYItmiAf+3bwIZNWfrjhVbJ06cQPPmzQEAS5YsQefOnbFo0SLMmzcPS5cu9WhbW7duxbBhw5CUlIT169fD4XAgLi6OuiAsv//+O/755x9UqVLF5btRo0Zh+fLl+OWXX7Bt2zZkZWWhd+/eogsyaNAg7N+/H4mJiUhMTMT+/fuRkJDg2cEHEEphhGRiveDgYBiNRtHgQrUxW4A4jJCIIW+LLTX8XRmVdrEFlI1j4HA4HA4nUNm1axeuX7+OL7/8ki6TCyOsUKEC/TsQx6kHCneCs2Vwv4oYQRDohLobNmxA7969ARQ6KTdv3vRoW4mJiaLPc+fORXR0NPbs2YPOnTvT5ZcvX8bw4cPx559/4oEHHhD9Jj09HbNnz8b8+fPRo0cPAMCCBQtQvXp1bNiwAfHx8Th69CgSExORlJSEtm3bAgC+//57tG/fHsePH0fDhg09Owl+JiUlBdevX5cNI0xISMCVK1dgNptF47UA984WG0ZIrrG3QkOJlU5QcrYEQcD69esRFxfnlf16QlkQKqWxEuJwOBwOpzSj5GwRSJuK44onY7ZatGhRKts5HjtbrVu3xgcffID58+dj69atVPycPXsWlSpVKlZhiCsjvUETEhIwbtw43H333S6/2bNnD+x2u6hxXqVKFcTGxmLHjh0AgJ07d8JqtVKhBQDt2rWD1Wql60ix2WzIyMgQ/QsUPvzwQ7z//vuyYYStW7fGkiVLEB4ejuDgYNHvPHG2vC22pM6WXMWj1+vx77//Ij4+vsQepo4dO+Kvv/4CUDbEFofD4XA4nJJFztliP3OxpYwnzla1atXuDLE1ffp07N27F8OHD8dbb72FevXqAQB+++03dOjQocgFEQQBo0ePRqdOnRAbG0uXf/zxxzAYDBg5cqTs75KTk2EymRARESFaXqlSJSQnJ9N1oqOjXX4bHR1N15EyZcoUOr7LarXSMVCBgMFggMPhEIURWiwW0ToNGzbEP//8I1qmVWydO3eOiiNPxJbaxH1awhH1er1qnK4v2LFjB3788UcAXGxxOBwOh8PxnKysLBexxQ7j4GJLGU/EVlhYWKk8lx6HETZr1kyUjZDwySefuIStecLw4cNx8OBBbNu2jS7bs2cPZsyYgb1798pObKaGIAii38j9XroOy/jx4zF69Gj6OSMjI2AEF8noxzpbVqtVtI5Op6NCmOAujDA0NBQrVqxAv3796DKtYisnJ4dO3Cfdr9x23CXIsNvtVEj6GuLmcbHF4XA4HA5HDZ1OJ9uGCQ8PV/xNaRQIJQVpe7FtMKWO97CwsDvD2apTp47L+Bug0Llo0KBBkQoxYsQIrFy5Eps3b0a1atXo8r///hvXr19HjRo1YDAYYDAYcP78eYwZMwa1atUCAMTExCA/P5/OZUC4fv06DWuMiYnBtWvXXPZ748YNxdBHs9mMcuXKif4FCkTUss6WlvIRkaUkMMPDwzFnzhzRsm+//VZTmYhgYR+M69evy8biAupjtqTb8TVyZedwOBwOh8ORQtpgkyZNEi2XOlssXGwpQ9pezz33HB3WQdqMN2/eFCXfCw0Nxffff4+srKySL2gx8FhsnTt3TlZV2mw2l3Tr7hAEAcOHD8eyZcuwadMmOjcUISEhAQcPHsT+/fvpvypVqmDcuHH4888/AQCtWrWC0WjE+vXr6e+uXr2KQ4cO0bDG9u3bIz09XTRp7j///IP09PRihT76CzlnS4vYIiJLSWyxc3IRfv75Z03uFnlYWHezUqVKGDt2LIDbgoawbt06HD58GMBt4cWKrZJ0maRl43A4HA6Hw5GDtHPY/AIAF1tFhW3vff/996Jl77//vmgOVr1eD5vNhpycnJItZDHRHPe3cuVK+veff/4pClsrKCjAxo0bXcSSO4YNG4ZFixZhxYoVCA8Pp+OnrFYrgoODUaFCBVHqTKBQEMTExNAMglarFUOGDMGYMWNQoUIFREZGYuzYsWjSpAnNTtioUSP07NkTQ4cOpU7N888/j969e5e6TISA2NkiYkvNvpailIJUqTLIzs6m+1GCCBZpKCmZk01OsO3YsQN33303/c5fzpa30tsHEjk5OQgJCfF3MTgcDofDKVOQdo5crgAluNhShm3vkWR0pF1IRJVer0dBQQGdGko6dCbQ0Sy2+vfvD6DQFXn66adF3xmNRtSqVQvTpk3zaOfffPMNAKBr166i5XPnzsXgwYM1b2f69OkwGAwYOHAgcnNz0b17d8ybN080BmjhwoUYOXIkzVrYt29f0RwJpQnW2SJ/e+JsKaEmtqSVihTyYEiFHPksJ7aIyGEfJu5sFR8yvvD69eslNu6Nw+FwOJw7ATmxtXr1arRv317xN1xsKcOKrczMTAC324CknWi1WrFx40aqM0pb20az2CI3Su3atbF7925UrFix2DsvyiRv586dc1lmsVgwc+ZMzJw5U/F3kZGRWLBggcf7C0RYZ4vckJ6MKfPU2dISG0sEizTEVE1s5ebmArj9MOl0uhLPRgiUPbGVk5ODjIwM5OXllboKicPhcDicQEZObEnngJXCxZYybOe61NkiOBwOGI3GUjdWi+DxmK2zZ896RWhxig4rtohQ0RJG6M7ZUsrwQmxbNaSTIRPU5usiYous43A4ZLPS+JqyJrbk0qhyOBwOh8Nxz+HDh1VzEJCIIumYLTlIu+tOE1u7d+/WnEVcztmSzm1rt9thMBhKrdgqUq72jRs3YuPGjbh+/brLDSTNZsfxPmwY4T333IMhQ4aIQiaLipLj5YmzJb0f1JwtEj5IfpOUlIS///4bQOlwtvLz81GhQgVcuXLFozFzvuby5csAeCr70kDjxo3x22+/oXHjxv4uCofD4XAAxMbGokaNGjh//rzs90pjtuTQ6/VwOBylMl15cTh69Kjmddm2CmlvSrOe33HO1nvvvYe4uDhs3LgRN2/eRFpamugfx/ewzlZ4eDh++OEHTb+rXLkypk+frjhf2Jw5cxATE+OyXIuzpRRG6HA4MHnyZOTm5iI0NFT0HXlo2N8kJiYC8K+zpTW8NSMjA1lZWbhy5YoviuUxjRo1AgBs2bIFAHe2SgNHjx7Fpk2b/F0MDofDKZMIgoBx48Z53Kl669Ytxe9IW6Z8+fJut0M6wu80Z0sLBw8exMyZM0Wd68QNk4otu90Ok8lUasWWx87WrFmzMG/ePCQkJPiiPBwNsM6WJwQFBWHUqFGK39eqVQsJCQn45JNPRMu13NxKYYSXL1/G22+/jT59+qBGjRqi3g6pswUAUVFRAEpWbJ05cwYzZsygn0kPijuIKPN0wm1fQc4jeamUtNjKzc1FcHBwie6zNEPucX7OOBwOxzfY7XZ8+umneOyxx9CqVSuvbLNChQr46quvXLIvy3Gnii0t7aL+/fvj7NmzePHFF11+Jzefb7ly5TB48GAsX77cewUtITx2tvLz80vl3FRlCdbZ8jYWi8VlWXGcratXrwIonJiucuXKou/y8/ORnJwsEgVk/rSSnmCYFaFahV6giS1y7sm1KEnBmpycjJCQEE33CqcQEgnAxRaHw+H4BvJeVIpYWbduHbp37+6yXO297nA4aMewO+5UsUXap2qRQuTaXLp0iU7zRH6XkpIiSvCl0+kQFhaGMWPGYNu2bb4qts/wuLX+3HPPYdGiRb4oC0cjRGx5Y5yWFLnsdcVxtkjj++bNmy4hivn5+ahcuTI++OADWCwWtGvXjn4nJxQuXryIgQMH+jyrpFahF2hiizhyJGlKSTpbJOSChy5qJzU1FUDg3D8cDodT1nA3Vmru3LluQ7lnz55Nw/SBwnetFlcLuHPFFnmvKbWnRo8ejQsXLgAoFFtkeAv5XWpqKqKjo+n64eHhPjEYSgqPwwjz8vLw3XffYcOGDWjatKlLuNVnn33mtcJx5ClqGKEW5CYv1iI+lBJkEG7evIm7775b9jcnTpxAUFCQSDzK7XPatGlYsmQJlixZgieffNJtmYrKmjVr8Pjjj7tdj1TigdJYLigogMVi8VsYYVkjMTER8fHxPru+RGyVxUm1ORwOJxAgbQklh0UumgcQv9eXLl2KY8eOoVq1arh48SIXWx5gt9tlh2VMnz6d/n3hwgV06NAB+/fvp+c9JycHVqsVFy9eBACEhYWVTIF9hMet9YMHD6J58+YICgrCoUOHsG/fPvpv//79PigiR4ovwwjlxJaWcDSlMEJCWloaypcvj0mTJtFlRAw4HA4EBQWJjkdun0qVorcZNGiQpiQZgZZdyOFwwGw2+yWMkBAowrO43Lp1C/fffz9OnTrlle0VFBTgp59+QkFBAXJzc5GamkrFFpkCgcPhcDjexV1nMRvNs2bNGiQnJ7usQ+YxvXz5Mk6cOMHFlgbcOVssGRkZNCMv+Z3NZhMlVQsJCfFBKUsOj52tzZs3+6IcHA8oKWfroYcewt69ezU9LEphhNJts41xVhTo9XrRd3L7LMkJegsKCtxWpu5iwUsa7mx5D3IveivD6uLFi/H000+jXbt2GDlyJP78808sWbIEAHe2OBwOx1e4a7+wbZ7evXvjiSeeEH0/duxYrFq1in7evn07nfNJC5s2bUJsbOwdK7a0dPo2b96ciinSrs3LyxO5WdJs1qWNIs2zxfEvJeVstW3bFuHh4Zp6hsh8E2puj1RsETFgt9tdjkXuAZVz3XyFtOdq3bp1uO+++2QFYaBUog6HA+Hh4bTxvmHDBqxZswbTpk3z+b6J4AwU4VlcyH2cnp5erO3ce++9sFgsdAB2Wloa9u7dC+D2/c/FFofD4fgGd2GEpBOXfC9NWCR9fw4ZMgQANIutu+++m4stGYKCgug5YSeHzs3NxYgRI5CXl3dnO1vdunVTDRXic8b4npISW0FBQTAYDG57JvLz83Ht2jUA8sLDZDIhPz9fFLfbtGlTmjyDhBGy+NvZstvtNGyxoKAA8fHx2LNnD1q2bEnXIQ3yQAknlDpbU6ZMAeD6svAlZUVskfu4uGKLRAJ07twZQOE4LXJvc7HF4XA4voXUt0rvadKuIO9N4qbItXPDwsJowjCtYgsQC4s7gRMnTtCMgUqd9ez5Zc/llStX8OWXXyIoKEjkbJVk+88XeNxab968OZo1a0b/NW7cGPn5+di7dy+aNGniizJyJPgyjJC9oYOCgmA0Gj1Kwy5XodWqVQtAYY8RKfOkSZNoBjs5sSUn8EpabBHI8RNHgkCONVAqUemYLX8QKOdCKw6HAzqdDjdu3BAtJ8ehNrGlJ5D7KTU1lf5NxBYfs8XhcDi+gbynldoxpF1BRJRSIgadToeBAwfSz1rm4iTcaWIrLi4OX375JQBlZ4sVWzqdzkXcOp1O0bXwRNwGIh6Xns0gwvLuu++W2pmdSxsl7Wx5IrbkKpSqVavixIkTCA4Opg9UcHCwi9hiXZGSdrZCQkJgs9loxSwntoYOHYohQ4a4DPyUCswLFy4gKyuLDvgsKaTOlj8obc4Wuc6XL18WzZviLWcLKIw1Z8UWEVnc2eJwOHcKISEheP311zFx4sQS3S95Tys1+kl76t133wWg7GyNHDlSlDHZU2crUCJglNi4cSN69OjhlXc4G/KnFkZIUIqWY8MIPRG3gYjXWutPPvkk5syZ463NcVQoqQQZ3hJbFStWBACR2DKbzbQhm5OT4zJnWEln0ouKihI9zHJiC4BIyCg5Wx06dHBJc18S+NPZIhV0aeu9I9dZ+oIhx5GRkVHsfYSHh1NhlZKS4uJscbHF4XDKOrm5udiwYUOJ75e8v5XaMaSu/+qrrwAoTzJvMplEGZHLWhihNHJHyvvvv4+3335b07bIGH5A+byz7VeltizrbHGx9f/s3LmzxFJz3+mUpLNlNBo9Ej5yvTdEbLH3B+tSpaWliXo2unbtKrtPT0Sfp1itVhiNRjRo0ACAstjKzMykfyuJLTIWraQhzpY/G++l1dlasWKFrLPljd7I8PBwup+srCx6jngYIYfDuZNQEjK+xJ3Yki5XEkVms7lMiy13TJw4EZMnT9a0bvny5enf3NkqxOMwwgEDBog+C4KAq1ev4t9//8WECRO8VjCOMr50ttgbWqfTKTpbOTk5stlh5CoU0ohlnS0i6iIjI5GamorLly+jTp06AAorNbl9loTY2r9/P0JCQhTF1ooVK5CQkCAqo7RBzoZIlhROpxOCIMg6WzVr1kSfPn1oDLWvy1GaINd5w4YNuHnzJl3uTbEVFhZG98PeV0Rsyc3rwuFwOGUNf3TIuxNbUjGgtJ7JZBIJrLIkttatW4dff/1V8/rdu3fHsmXLYLVaZb/XIrakY7aaN28u+j4oKKjI4jYQ8bi1brVaRf8iIyPRtWtXrF27tsRjce9UfOlsseF8ZK4paeVz8OBBxTkP5OaeqlChAgB5sUUmC2QJCwuTdYdIOVgHoriQcoSHh8NoNCI4OBhhYWGiY2b/Hjp0KL744gsAys6WP3rviJCSG7N14cIFLF68uETKUVqdLel9SK6pO4F/4MABtyGjYWFhLuO0yN/16tXD2bNnPS43h8MR0717dyQmJvq7GBwVAtXZYiN6yHpSt8VsNoveb0qJNOQIdLG1fv16/Pvvv6rrkGgkp9OJTZs24eDBg4rrsmJLSzZCAOjbty9Onjwp2h/b+X/HOVtz5871RTk4HiCdF8KbSMWWXDbCK1euKP6eVChsxUJ6J6RjtgD5BygqKkp2MtmCggKEhoaiSpUqWg/HLUSwli9fnpZFGjopPX7iWimlfvfHC2XSpEkAoDhmiyw7d+4cIiIiFHukikppH7NFOg+ys7MRGhpKj8NdCO3KlStx5MgR2e/IOTGZTIrO1l133YXExEQUFBS4jFvkcDja2bRpEyIjI9GzZ09/F4WjgD+cLXfZCMn8lCkpKTCZTKL12PcZW48DQOXKlQEAO3bscNsWC3SxxQ6PUCI8PBw2m01RjLKwbSAtYYTkb7Y9aLFYRG5WaRdbRbZG9uzZgwULFmDhwoXYt2+fN8vEcQNpGPoiEQL7ABBnS/qwkEpDroKREyBsBkIC6UliHyCyvQoVKiA1NRXx8fEi0UV6oLyZ1UcQBHzyyScYOHCgZrFFzrvSpMa+FFvLly/Hhx9+6LK8evXqAOSdLeB2EobatWujX79+Xi+X2j0RSERGRuLNN9+kn8l1JteepIB394ImqN2LZNt6vR52ux0hISEiZ+uTTz5BrVq14HA4RCGMHA6naKg1ADn+x59hhEqNfrvdjvDwcAAQRbXodDrReFrW/QJud0y3b98eHTp0UC2DXq8vNWJL6Z1GzpEWscXiyZgtVlxJxdYdF0Z4/fp13HvvvWjTpg1GjhyJ4cOHo1WrVujevbvLXDXumDJlCtq0aYPw8HBER0ejf//+OH78uGidd999F3fddRdCQ0MRERGBHj164J9//hGtY7PZMGLECFSsWBGhoaHo27cvLl26JFonLS0NCQkJNPwxISGhxMfVeAsyVsoXA+vlxJZSg1P6UJpMJtWxLnLOlhyRkZFISUnBunXrsHv3brqciC1vVlpOpxMPPvgg2rZti5dffhmAdrFFjvF///uf6Htfiq2hQ4firbfecllev359AFBMkMEez+XLl71eLjlHMxBJS0vDwoUL6WdyXsizROowchyrV6/Gfffdp7g9LWIrKChIVmwBhS93nU7HMxJyOJwyC6kLA23MVlpaGm7dukVDAqVDCL755hv6tzSM0BNKk7OlJI48EVvse1FLGCH5m+18N5vNd7azNWLECGRkZODw4cNITU1FWloaDh06hIyMDIwcOdKjbW3duhXDhg1DUlIS1q9fD4fDgbi4ONF4nQYNGuDLL7/Ef//9h23btqFWrVqIi4sTCbtRo0Zh+fLl+OWXX7Bt2zZkZWWhd+/eogs+aNAg7N+/H4mJiUhMTMT+/fuRkJDg6eEHBKSHxRcNNC1ii1Q40uVs+BV77sn6FovFZcyWXOUVGRmJq1evAhA33klqc286W06nE0FBQYiJicHYsWMBeC62pBCx5Yt5NZRCzWrVqoX4+HhERET4JfV7aXG2gMK5rgjkOv/+++8Abj9T5HjOnz+vmq5Yq9jKz88XJcogmEwmv09EzeGUFbizFZiQNl2gia02bdrgp59+EoktNuMe+64wmUz0/SbtzHdHWRBb5BxpSVTGvhe5s1WIx6VPTEzEhg0b0KhRI7qscePG+OqrrxAXF+fxtljmzp2L6Oho7NmzB507dwZQKJJYPvvsM8yePRsHDx5E9+7dkZ6ejtmzZ2P+/Pno0aMHAGDBggWoXr06NmzYgPj4eBw9ehSJiYlISkpC27ZtAQDff/892rdvj+PHj6Nhw4aenga/Qm5MX4itSpUq0b8dDods6nclsRUWFuYSRtirVy9RuaXOllzjvEKFCnRcmHSiY2+LLUEQXBKNGI1GXLp0Cfv27UOLFi1cjjMvLw/Z2dmqWYuAwoyNpDfIWyiJrYKCAjRs2BAGg8HFPZHiiwZJaRqzxU6+Lr23lZKeKOGJsxUaGupybcjcLdzZ4nA4ZRUittQiWnyFmtgiy8h7Wpr4i/2NyWSiiZSqVq3qURlKk9hSaj+Qc0PeVVqdLS3ZCEkbjBVUd7yz5XQ6ZQ/aaDQW+2Yik9xGRkbKfp+fn4/vvvsOVqsVzZo1A1A4dsxut4uEXpUqVRAbG4sdO3YAKJwDzGq1UqEFAO3atYPVaqXrSLHZbMjIyBD9CzR8EUZYrVo1kTsl52wphQqGhYW5fCfNgqfF2QoPD6djWNh7qqCgwCfOlrTSMBgMeOKJJ9CyZUsArpX0oUOHEBYWppiymxxTSTpbDocDer3eb70/pSWMUIpS2l9vii12zFZOTo5oHe5scQKVnTt3olWrVv4uhkdwZyuwcDqduHr1qku9V5Kojb8lybbYMVsEnU4nqt9NJhNefvll7Nq1y+MylCaxpSSOiCuppS2sJYzQE2fr3nvvxfDhw93uN5DxWGzde++9eOWVV0QZ6S5fvoxXX30V3bt3L3JBBEHA6NGj0alTJ8TGxoq+W716NcLCwmCxWDB9+nSsX7+eTpSbnJwMk8kkmrEaKHRoSGM4OTkZ0dHRLvuMjo5WbDBPmTJFlOKeJCAIJHzVG05ufHdjtrQ4W3q9Hk888QS+/fZb0baJaJCrgAwGA+0Jkz603hRbZOyOnLPFIj3OlJQUAMCaNWtkt1uUOZrOnj1LOxvUUEr3T66Vv8VWaQgjZCFZHAnkWu/fv1/T7+WmOiCQl5ZOp0N+fj5CQ0OxefNm0Trc2eIEKr/++iv27t3r1zJMnjzZo3nouNgKLP766y/Ex8crzklZEqg5W2T8O+n8lc4dyv7GaDTCaDSiTZs2HpchUMXWkSNHoNPpNDlbRGyRdorau549Vk/CCJXGbE2bNg21atVSO5SAx2Ox9eWXXyIzMxO1atVC3bp1Ua9ePdSuXRuZmZmYOXNmkQsyfPhwHDx4ED///LPLd926dcP+/fuxY8cO9OzZEwMHDsT169dVtycIguwAPLV1WMaPH4/09HT67+LFix4eke/xhbPFQsII169fjyVLltDlnozZ0uv1CA0NxfPPPw8AdE4ict7ZB5b8bTAY6N9sI9Tb2QiffPJJUVkI7sQW6dmRmwsMuH0c69ev11yWOnXq4NFHH3W7nloYIXe23EPO3+HDh6HT6fDnn3+Kvif31lNPPaVpe2phh+Ql43Q6aRih9AXFnS0OR5m3336bdtRpgYutwCI7Oxu3bt1SnCalJFDLRkjElTTihixj3/3FebcGBQW5HHtJuX2bNm1SFFCkI4OMkQfciyMittSuJfud0r7l2uds+4Z1tkr7eC2gCGKrevXq2Lt3L9asWYNRo0Zh5MiRWLt2Lfbs2YNq1aoVqRAjRozAypUrsXnzZtlthIaGol69emjXrh1mz54Ng8GA2bNnAwBiYmKQn5/vMi/T9evX6fijmJgYXLt2zWW7N27cEI1RYjGbzShXrpzoX6Dh695w4pYAEFnnSmKLDSVlxRZL9+7dRQ1Tud4RVuxIxZa3wwgBz50tIrZYMcUeE/n78ccf96gcWnpwiyO2HnzwQY/K4wmlxdkiE2yfOHFC9nuHw4HevXvLLgeATz/9FKNGjaLLyb0o94IiywoKCqjYksKdLY6/SE5O9kvj11MCvQOHo0xBQQFycnIC1tkiY8hIuaRinS1vccWW9D4ODQ116ezzBd27dxdlVQQKn/21a9fKHpOSOCLlJ+0frWJLqSNRTmwFBQXR9pjFYqHtndI+Xgsoxjxb9913H0aMGIGRI0fSxBSeIggChg8fjmXLlmHTpk2oXbu25t+RC9iqVSvqvhCuXr2KQ4cO0bkP2rdvj/T0dJFg+Oeff5Cenu52foRApiTFFnuzs71UbAITtveG/C8X9sY+ZHKNc7YCYN07X4ktT50tuZe/XPZFT9FSmRdHbJGMe3dyggwyHlSp987hcMiGh5JeyHHjxmHGjBl0udp4ADlnSwp3tjj+onLlyvj444/9XQy3eFLfc2crsAh0sSWdvF5aPofD4RV3RSmM8OzZs0XepidI53F88cUX8cADD8heD/bduG7dOqxevRrA7XPlqbOl1E5lzwf73BqNRgQFBYnCCO8oZ2vTpk1o3Lix7OC49PR03H333fj777892vmwYcOwYMECLFq0COHh4UhOTkZycjJtYGdnZ+PNN99EUlISzp8/j7179+K5557DpUuX8MgjjwAArFYrhgwZgjFjxmDjxo3Yt28fnnzySTRp0oSKwEaNGqFnz54YOnQokpKSkJSUhKFDh6J3796lLhMhi3R+J2/jcDjoA0EESHJyMp3nzOFwiMI+2Yn7CgoKEBQU5Pbl54nYIgkybty44dWJeT11tuRg19GyvhxKQkrLOp6EEfqiQeILZ+vIkSM4d+6c17YH3Ha2lObYU7p2SiGjas4W28AgY7akcGeLUxJs2LBB9t721vP1yy+/qE6RUBxKg/tWFnE6ncUequBwOJCbm6soZkoCLWIrIiICv/32GypXruzyWxJaWJwGv9KkxiXVOcBm4AVut6ukY9KA287WpEmTEB8fjz59+gC4fe2IBiC//frrrzFv3jzR9rU4W+w67Hn45ZdfEBsbe+eGEX7++ecYOnSobDid1WrFCy+8gM8++8yjnX/zzTdIT09H165dUblyZfqPZLDT6/U4duwYHnroITRo0AC9e/fGjRs38Pfff9OxPwAwffp09O/fHwMHDkTHjh0REhKCVatWiRqmCxcuRJMmTRAXF4e4uDg0bdoU8+fP96i8gYTT6fT4fHtKQUEBfUjJgzh48GB88sknAFwrL6mzpUU8KCXIIMg5WwCwcuVKTw5FFU+cLSUnVC3VqdZJhLWcL7UEGXq93m89u74Ys3X33XfjvvvuQ05OjkuYcFEh9ZfSmE+S/ESKO7HlibPF3l/E2eJii+MLBEHA5cuXcd9994nG3RK8VV+sXbsW27Zt07RuVlaWpmRABE/qFO5seY9PP/3UJWGEp5D6kbQj/CG21Opo8l1ubi4eeughFwFAOngB3zhbSu9zbyMVW3Li12q1ir5bu3at6DdKztawYcPwzDPPIDc3l85L5k5sJScni8IV2fPQv39/WCwWmM1muvyOCiM8cOAAevbsqfh9XFwc9uzZ49HOBUGQ/Td48GAAhTGby5Ytw+XLl2Gz2XDlyhWsWLHCJRuMxWLBzJkzkZKSgpycHKxatcole2BkZCQWLFhA07gvWLAA5cuX96i8gURJvFTq169PH1LyALLzZEgrL6mzpUU8KCXIIEjFFjuA1Vt44mxNnTpVdhtKztaFCxdQrVo1l8pODm+EETZu3Njlu5Ko0D1xtg4fPqwYxiclLCwMcXFxitNBeAp5bpTEllIiHDmxtXHjRixfvhyA+pgtqdhi72HibPEwQo43yM7Ohk6no73Py5cvp+Og5cZifPfdd3jssceKvd/8/HzNoqhFixYeZfcN9NDkssqxY8eKvQ3S6CbZ7gLV2SKdXew6JEGGN5wtf4stNtsgcPvdxB4vSXuvNGaLXDsitqTns1+/fjRyhD1Wm82Gffv2YdGiRTSjYOXKlel2qlat6pIczGAwwGKxyLYJSyuar/S1a9dU1aXBYMCNGze8UiiO/7l16xZGjBhBRQJpbLIJTNiK87PPPiuSs+UuQUZJiC2pcJW6t2ylQtKfSlFytrS8ZB544AEA3gkjbNeunct30grd20I9LS2NhpZqaRjFxsa6dWVJhV+vXj1RGnaHw1EsYULKJ41hJyj1uMs5Tz169KDhiGrOFgkjlKYZJn9zZ4vjLUhWMVJfX7p0ye1vpHMhFgVPxNapU6dcGn9qcGfLP5C5p4oDqRdJveoP4ayWjZC8l0eMGCH6zP7Wl2LLV/erw+FAfHw8bT9JO3vJOSEhgsBtsaXUEUrKv2rVKgCu52r37t3074KCAnz++ecYMWIEDh06hJYtW2LOnDk4f/68y3ZPnjyJ+++/X7TMaDSKOvbvKLFVtWpV/Pfff4rfHzx40CXelVN6sVqtCAoKwtNPPw3g9subbbizDcy4uDiRs0Um2XWHuzFbxJYGILL0vYlUjEgdT/Y4g4ODZbfBVuhs2KCWlwux64sSRnj58mXcfffdyM/PV/y9rxsgL7zwAsaPHw9A+5gtpXA9AhEfUnH90EMPyc6ZpxVyHys5jUrhgu4EnhZni7zM2HuYO1scb0LEv7tU20UdV6qEJ2LLU3iCDP9Q3AzMDocDc+fOBaAtg52vcOds/fDDD+jWrRsA1/L5OozQV/frxYsXsW7dOhw5cgSAchghi9TZkr7Lybk5ffo0ANfzyXYYks5fs9lM5+qTa5/89ttvsm0q4mwR7qgwwl69euGdd96R7YHNzc3FxIkTZVMmc0o31atXxwcffODicAHih42k7GSz+2h5QOTSwLOV2oULF0T7KwmxRWKX2f0S3DlbEydOFKVw9yRLX1HCCM+fP48jR44gMTGRfjdhwgTRlAa+TsfOVuRaG1zuykReBjk5OaJ7bu/evZpmsFeClFWpZ11JhLlzntw5W2phhNzZ4ngL0jklNyaDbdh5e47G/Px8fPnll14JPZPCxZZ/IM6Wp3XT1atX8dFHH2Hbtm3YunUrAPcRHu+9955itEFxkQuZI5BEXuxnFl85W+T956swQuIgtW7dGoBnYsuds0UYOHCg6DPbYciKLdKGkxNbSufUaDSK2lp3lLP19ttvIzU1FQ0aNMDUqVOxYsUKrFy5Eh9//DEaNmyI1NRUvPXWW74sK8dPhIWFyToCbOWl1+tFYYTZ2dlFDkNg082XhNiSvqDVnC0lsUXWkYbSSucdk8OTjDvSCouUPTc3l373/vvv44cffqDr+FpssefPW73bpMIn6eoJxXG1gNsvffY+Zq+3r5wttTBCo9GoeQwb587mxIkTOHPmjOL3pMHqLvubtydUzc/PR2ZmJkaPHu3V7QLa6hQ+rsv7kMa3J8lMAOCrr77C+PHjRdfEnbP17rvvYuHChUUsqTrEqVESW+w7taTGbJG/3XUOFPU5lWYZlT4f7Pumdu3auHXrFr3e5BxI2w1Op9PlHCjNmUrOK9teIue5QYMGLsukGAwGmM3mO3PMVqVKlbBjxw7ExsZi/PjxePDBB9G/f3+8+eabiI2Nxfbt2xUnCOaUbkJDQ2XFFltxBgUFicIIMzMz6cOrBvuAkoqHOGL169f3i7NVnDFbZIAoQUuWPrJNtuI5ffo0tmzZ4pLJkF3nyy+/xNChQ2W/88XYNi14S9gphTkVt47JyspCZGQkvY/NZjNSU1Ppdr0ltpxOJ713pc6WNIyQiy2OVr744gvMmjVL8XvS2UMamCUltsjz4W3HDNDmbJH6gjtb3oM0cJWmyVBCrgHtzzBCNWfL6XSqOlsFBQX0XaolzF8JqdhSmkRZSmhoKB0P7Qnu8iew7xudTger1YpBgwYhKChI8d1bUFDg0oGu5HqyzhaBnL+TJ0/SZUrOXoMGDUTz7t5RYgsAatasibVr1+LmzZv4559/kJSUhJs3b2Lt2rU0ywin7BEWFuY2jFDqbGVlZWkSW2phhJUqVUJeXh4OHDgAu92O7OzsYseRyyGt8FhBuW7dOo/GbEnFlruxE8DtSoj8f/r0abRq1QrdunUTJSRh1xEEAW+++SYOHz7s8h2gHuPs7QZJUZwtrWGEUqKiogAUvVGXlZWF6Oho6nAZjUbodDokJydj4MCBimKLfano9XrReQdcX+TffPMNXnnlFQCu2QjZFwcRW94eQ8Mpm9hsNtG9cvbsWUyfPp1+lmaPVbqvfOFsAZ6HnGlBSwOdz8XlfaSZBLVCGtBsHe/PbITkWVBKkMG+N9kpha5evYp169Z5zdlij508l2phhORdWpS58KTPvfR9y54L8t0jjzyCDh06KF4jp9Pp0tmt9B52Op3Q6/WicysnVpUE7LRp0/Dwww/TeXDLQidKkQJGIyIi0KZNG9xzzz2IiIjwdpk4AYaSs8WOnQkKCsLevXvx9ttv0/W0hBHKORWkUiP3VvPmzfHVV18hMzPTJ+n6pRVenTp16N/x8fEeOVvS8V6eiC1y3PXq1VMM3SBldTgcLhWQkrNVkmGEWvdVVLElnXjRE5xOJ7KzsxEVFUXvY/Y8GQwGTc6WyWRCbGysannZLHAOhwMFBQVUbLHniztbpY8LFy7ggw8+8Mu+7Xa7qD56//33RaF70oZlSYYRAoXPid1ux8aNG722bS0dONzZ8j7k3vE0RFPN2Vq8eDFOnTpV/MJ5gDtniy3vu+++i/fff1+0jjcm1j19+jTee+89+lmLs0WETFEEqrvOO/b9yb6L9Xq9qrMlvbZKYouMhSPtmIoVK8pu151bGBMT4/P2S0lRMkn+OaUaVmyxjdF+/frRv9ne/uPHj+OPP/5w62ydOHECGzZscFkuFVtA4UvcV2JLWuENGDBAlMaUbZgoVY5KFRSp1NReWFJnSw2yTn5+votIVBJbJTmewdtjtqR4knBESk5ODgRBEIkt9gVqMBgUE2RIxZYUuTnnCKS3X0lsGQyGMim2CgoKEBER4XEYUqBz6NAhLFq0yC/7zs/Pl+0hJ2gVW952oEg9l5ubiwULFqBHjx5e27a7Z/3SpUv4+++/AXCx5U20dBTKQeo+9h5gO2Z//vlnL5ROO54kyNDr9S5Ztcn3xRFb0k5aLWKLvIuKEvXg7jdsm4YVMwaDQdXZkrY51MSWXq9HWloaAHF0FEtxQjNLG1xscdzCPihKjVH2IbznnnuwdOlSt2Krfv36NCwMuP3Q63Q66PV6kTNWrly5EnO2AHGDmo0xVoJ9MfXq1Ysudzd2AgDuuusuAMpuD/tbUjnZ7XbNYsvXlKSzpVVsderUCR9++KFoGbl3o6Ki6Dllz2FQUBCuXLkiez9IxZb03paWl2xDp9PR35IEGXeKs5WdnY1bt27h7Nmz/i6KVykoKPBbQob8/HxRQ0paDvKdWlKAlJQUdO7cuchlkHt22TBCb09j4K6xX716dTpXIRdb3kPLeGM51Jwtpe99id1uh9ls1uRsAbfraYI3xNb3338P4PazoyWMkLyvihIy7+6ZYTvNpWJLSajJnSupQ161alW6f71eT+sFk8kkGzXCxRaHwyB1tuSSVOj1etq4JRVrcSZFlM6z4EuxJfeCZitWtfnlCM2bNwfgWiGtXr0agHrlFxUVhZo1aypWctKxcUBh418tjLCsjtnSKra2b9+OmTNnipZlZWXBbDaL7ku27OTl1rhxY5ftsU4AcaMSEhLosm3btonWJ9ciJCSE/lau86Esj9kiL2JfpTf2Fw6Hw29iy263i+oS8vfkyZPp9+z/cvWOlomOWdhn9dFHH0X37t1d1mHFltb6Ratjonauy0qIUSBS1DBCueddi9jylVC22+0IDg7W5GwBri6UNMy/KJCx3uRd4Imz5Wk2SMD9mC32e0/CCNWcLZPJRIUqEVsffvghNm7cCLPZLCu2ytq7QY0750g5RSY0NBRZWVkQBAFZWVkuyQGAwod0/Pjxoka+lgQZSpDUn4SgoCDk5OS4jInyBnIPPFuxejJ3jLRCmjFjBgDXF9bBgwexZ88eAIUVn8Vi8VhslWZnS0pBQQGuXr1KP7ub60NLA0Da60YyZLJJTtiyq01+KXW2srOzRUmB3n33XdH65FqEhYXRFyzZ753kbAHen0DX3/jD2SooKMCVK1dcwgjJ32SsrFRsaT33as8te6w7d+7E5s2bRXMJAkUTW88++6ym9dREmdRF486W9/DmmC02yYaS2PKVcLbb7QgJCdHsbEmTYHnD2SLbJO8kLWMMidgqyrySas+9NITYkzBCtTFbYWFhok4evV6PyMhI3HvvvdzZQhHEVpUqVTBo0CB89913OH78uC/KxAkwwsLCIAgCMjIy4HA4ZEUUqZDY77zpbJFxH95wtn788Ucauge4d7ZIz5I0KYIcchUS4NpgaNasGZ1wkKS0V2pwy4UNjRs3TnOCDF/jDWdr6tSpqFKlCjIzM/HOO++4FR9aesWlYotkyGRfpqxgJQ03ueQBbKNOp9PBbrfTzJgtWrRAp06dROuT7VosFvpb0hFxp4zZIufRF+nA/Yk/xNb333+PqlWruoQRSp8DLc6WXKNWrXHGboN0gEnHtZB73BOxpTWl9S+//ILXXntN9jtpQ5Q7Xd7DV85WSafxJs6WUjZCd86WN8WWJ0kvvOlssUjH0MqFEZ48eZJOkE4oKChAo0aNRMvYuj08PJzuV9oO4mKrCGJr2rRpKFeuHD777DM0atQIlStXxmOPPYZZs2bh6NGjvigjx8+Qgf3Xrl0DIO9YkYeGFVieOlsVK1akf0udLTLQ0hup3//44w9RR4Fc44CtBARBwIYNG2jSDGmFwyJXeZPl69atk61kCwoKVJ2t5cuXY9KkSXRdAPj1118DUmwVdcwWGRe3du1aTJo0SfFceJIgQ7oNkiFTydkiDUa5VMc2m42+WMh2yb3YqFEjl5cG+4Imv5O7L/R6fZl3tryd+c7f+ENskYaXzWZTTZAhHbPFrkvudbmyqzX+2PWVsnUWxdlSyuwqBztJO4tUbPEU8N6DXHdPz6nc9Wc7q/wxZkstjNCds+VJAislgoKCYDKZXMSW2vuSPGveFltpaWkICQmh10kaRpiZmYkGDRq4ZI10Op14/vnncejQIbpM6mxdunQJAwcOdGkHmc1mniDD0x88/vjjmDVrFo4dO4arV69i+vTpMBgMGDFihKaef07pg7wUv/rqKwDyc03JOVueiq358+fTEEWj0Sh6GaempiI0NJSKCOkgVk+Qzl0lh7QXKywsjJbn8OHDePrpp2V/J1d5k+Xx8fFYu3aty3fSMMIGDRpg7Nix9PuXXnoJ77zzDgBxw0ctjFBtzJa3KYqzJUXaE680yJ4NI/z0008xatQozfuQCyNkIQ1GuZdCXl4evedIWUlIq8lkouW+fPmyqFdP7jpIr1tZHbNFGgtlzdlyOBwl7qBER0cDAC5evCgbRkjQEkboqdhiv5N7NgRBkJ2KwV1d4G6CenZC9wYNGsiuw8WW7yiqs+WuLgsksSUXiaLkbBV3fFFwcLBLh53aufXVmK3MzEyEh4fTd5PU2VIa0+l0OmEwGERzkUnFFgAsWbLEpR1kMplkO9242HJDVlYWEhMT8fnnn2PGjBn47bff0KRJE4wcOdLb5eMEADqdDg888ACOHDmC0NBQxR56QOxseRpGWL58eZqcQOpsTZs2jU5A+9dff4lcME8hGXPUkIottlLQ6XSKjS2lMELiimlxtkiMuVxZ2N8XdcyWL8c1FNXZIsfubiJNtgEwbtw4OiZOCySMkH2ZyoURyoU3seKPhH2Sc2w2m2m5qlWrhvfff59uV4voLavOFg8j9B7kfrpw4YJqNkK1MELyzMnda+7CCJs2bYqqVauKnkvW+WCfZ1K/uBM+amLrn3/+EXWKKc3nKRVb/kpcUhYpqthyV5dJ349sFmJf4GmCDBLJQ/BWEoeQkBAXZ0vt3JIOjKKILXfjHIODg+n7S+psScMH2W2qJchgO9cPHTokus5Kz3pxhpqUNjy+i9q2bYuoqChMmDABDocDb775JpKTk7F3717RTPacskVsbCzS09MV3SryELIVVXETZEh7mEiscXEbp1rCV6RiS/q5Xbt2sr9TCiMcOnQoAPmKmzhbbEOJFVtsg90bYsuXuHsxs9+TkKivv/4av/zyC4Dbx5eenq4Yjsn+r5WCggKkpKRoCiNs0aKFy+9ZsWW32xEaGkrvCbPZDKfTSV9aa9eupX+rxfn/+++/dJ2yKLZKi7N17tw5PPLII5rX94fYYu8/NWdLLfU7KbPS2BUlunfvjv/++w9XrlwRLSc971JXizxT7hwOtXpY2uBT6sThzpbv8JWzJb2Wctfs5s2b0Ol0svNweoqnzla9evXw+OOP08/ecl9YZ0vLuSXryCXIyMjIQHx8vOJv1ZytvLw8mM1mKoDYMhgMBjpkg2Xnzp1u59mStve0tEfq1KmjeAxlDY/F1smTJxESEoI6deqgTp06qFevnk/ScXMCC71ej/T0dCqmnE6naD4p8mCxPRjeyEbIWtYEk8lUrMaplheymrMFAC+++KJsRankbBHkrHQitnbu3Ik9e/bA4XCIBAEpy6effirapyep392NUSsOnoQRku8FQYDFYsHIkSMxbNgw+j25rsePH3dxL+Pj47Fq1SpN+5EycuRIvPbaa6rZCOVCFydNmoTBgweLvsvPz0dISAg93yaTCfv27aMNA1Y8qYURkn2X9TDCb7/91s8lUWfx4sX47bffVNfZvHkztm/fDqfT6ZfU76yg8SSMUG5duZA/tfuPdApIIT3uvhBb0jpUaX5H6RgyLra8h5YxW507d8bmzZtFy9y9m6X3hdyzdOLECQDA9evXNZVVDU+dLZ1Ohz59+tDPvhBbWsIIHQ4HwsPDRc6WIAi4fPkyjh49inXr1imOh3WXjdBisdBpaaRhhHJia9OmTbJDJKQJMljcia0333zzjsoe6rHYSk1NxebNm9GxY0ds2LABXbp0QUxMDB599FHMmjXLF2XkBAAGgwFZWVn0BanT6UShHaTCYsVWcSxiMmbr0KFDLj04xXW2tDSUpJWK9LNOp4NOp3N50Sg5WwRpeNzhw4eRm5tLz9uGDRvoy4FAxNa4ceNkB7zLlTEoKEj0WWmckjfwJEGGdGDwjh07RN+TRtVnn32GunXrir5bt24dTVvraWOXzJXmqdh6++230bp1a1G63JycHJGzZTKZkJ+fj7i4OAAQZZZUc7ZYsVUWnS3SENCada6kyc7OxokTJ1xSIctx7733olOnTvjyyy/97myxDSlpo8oTscU2gIoiUoorttTCCKX1rVJYsfS54WLLe2hxX/7++2/MmTNHtMzddddyzUjd4Y3njESKSPer0+lw/vx5WTHFruutMMKiOFuRkZEisTV9+nRUq1aNdmSnpKTI/lbtGthsNpjNZhqdIw0jlGYrJPthna3atWsD0C62yLNer149umz8+PGKZSyLFOkuatq0KUaOHImlS5fijz/+wP33349ly5aJeqg5ZQu9Xo+8vDzRC1pObLG9lZ5km5Ly+eefo3PnzgBcK6Tw8HBkZ2fL9sBowRNnizQclHq3unbtKvrsztkiIQHkfPXt2xcHDhygxxIVFeUSRki2Z7FYNIstQNyY8mVYoSfOlvTcS9dnG1VqSVDc7Ud670VGRtLlSmKLbTSyy9n07YTQ0FBZN5dsh7zs5JwtUvayLra0iBh/MmrUKDRs2NCjcp49e9YvYquozhZ73968eRN//PEH3Rb7HBTFWSWNQKW5rpScBILa+0HawCWdMImJiaLGoVTocbHlPbSGEUqvv7u6TPq93PY9SZHuDjVnC1AO7Sd409kiIlLLuXU4HFRskXuedO6Sz0URW8TZImhxtojYIufi8OHDGDJkiGoYIXteSfvj1Vdfxaeffkr3dSfhsdjat28fpk+fjn79+iEyMhLt2rXDf//9h1deeQUrV670aFtTpkxBmzZtEB4ejujoaPTv318U7mS32/H666+jSZMmCA0NRZUqVfDUU0+5xI7bbDaMGDECFStWRGhoKPr27euSUSUtLQ0JCQmwWq2wWq1ISEiQVfAceUgKa7bxyIaPkhcs2/DUWkk9/fTTuP/++0XL4uLiaE+JtEKqVasWmjdvjhUrVnh0DARPxBZpkGitGNw5W0RskXNz4cIF0We73a7obAUHB6tWzmpiS5rgw5sUxdkiSI+H7cUzGAyKjpy7BoBUqBGxpdPpFBNkJCQkoFWrVnQ9gtlsdmlQhISEiJwtlvz8fJw7dw6AvNgymUxISEigc72xYYcnT56kvYalnUAXkGQqC1Zspaamqo4xczqdAeVsseXYuHEj1q1bB+C2CGGP5a233kKvXr2wfft2AGKxU1LOFruup85WdnY27r//fhw5coQuZ++xBx98kIstL6J1AvklS5aIrqs74S79Xu6akfvWW86Wmthy52x5SxSEhoa6TPTuztmqVq0anE4nzcxJ0rGT3xdVbLHPnlaxxbZtgoODERERoSq22PNG9keSnEm/vxPwWGy1adMGixYtQv369fHTTz8hJSUF//77Lz799FM88MADHm1r69atGDZsGJKSkrB+/Xo4HA7ExcWJ5mfZu3cvJkyYgL1792LZsmU4ceIE+vbtK9rOqFGjsHz5cvzyyy/Ytm0bsrKy0Lt3b9FDPGjQIOzfvx+JiYlITEzE/v37kZCQ4Onh37Ho9XpVsUUgD9W9994rsozVmDdvnmxKdIJchVS3bl3cuHFD0/adTicOHjyouj0pUtdCq3BUSv0OAA899BB1bsg6pFIcOnQoWrdujaysLDgcDllnS6/Xi+5p6XFI98tWbL5MsVrUMVvs/wT25WE0GhUzMblrVEnFFnFhBUFQdLY++ugjOj5FKrak7oc0jJBl//79mD9/PgBQQTVlyhTROj/99BNt7LJjtjZs2ECFWmknPz8f3bp1C9j0vuT6sUKmQoUK6Nevn+JvSmLMVkZGBk6fPi1apsXZ+umnnwAUNoTIMckJRzIexmAw0HNQHGfLE7HFnmslsSUIgijEaNmyZcjOzqbPIHtMUvHGxZb38CQZEfv+ttvtLm004PZ98dZbb4nGYsk9S1IHqDgUxdlixVbr1q2LXQagMCKHvP+lztbNmzddDAKHw4Fy5cohNjYWu3btosvY/2/evCm7L+l5Y9+zNptN0dmS1tVkahWpswWInTrAdQ5U9j1L3pFs+zFQ3wu+okhjtnbv3o1PP/0UvXv3LtYks4mJiRg8eDDuvvtuNGvWDHPnzsWFCxewZ88eAIXz2Kxfvx4DBw5Ew4YN0a5dO8ycORN79uyhjkB6ejpmz56NadOmoUePHmjRogUWLFiA//77jw5YP3r0KBITE/HDDz+gffv2aN++Pb7//nusXr1a5KRxlGGTARDkXAfyAh0zZozXHiZSIXXp0oUui4iIUExRKmXv3r3o2bMn/aylAtfpdGjatClatmwJQL1i+OKLL0RlVVr3rrvuouEwcrPWx8bGYuzYsYqp3w0Gg6js5BkgyDlbxB3U6/UYOHCg4jEUB63O1g8//IBvvvlGtJ70BcheU6PRqNj75a6xy2bFXLp0KT777DMAheFISmKLRRpGKG20qoURkmN6+OGH6XxsJBulXNnZMEKl+cVKI3a73SX0NZAg1096bdmOGQCYPXs2/bugoMDnztZzzz2HevXqiRp8WrIRkoaM1WpFTk4OBgwYQCcLZyGdmYIg4Nlnn3XZDsHdMSqJralTpwJw72wphTbn5+eLxnLWqFEDdrudXid2G3a7nT5/FouFp373Ip5kIxQEAS+++CL27NmDmTNn0ilcWEaOHEmTarHRSWrOVkmILbn3NZv864UXXtDc1lCDFVukLOQ92KZNG1SvXl20vsPhgF6vR9u2bem4V/LMkN8rDaVQy0aYmpqqGkYI3D4nbdq0AVAo6qRRO8HBwaK6sX79+qJ9Kokt8m69k5JjAEUQW8URV+4glTcJ+VFaR6fTUVdlz549sNvtdHA6AFSpUgWxsbG0wt65cyesVivatm1L12nXrh2sVqvLAH2CzWZDRkaG6N+dDHkI2Z4JuZclefG5m7DSE0hlzyajiIyMdDtm6+rVq1izZg3sdrvImdD6Qj5w4AAqVKgAQN3y7tatGxU1amGEbKNaLgEHW0GyFRU7KFWt7NIymkwmOqeYXq/HQw89pPjb4qDV2Ro6dKjLoFhpNiWps6VUIUv343Q6MW/ePPriIGJVEAT89ddfdL3U1FSPxZbZbKYJNghqzhYhODiYXm92n7Vq1RKtx94XcpniSitEbAGBOf8ReQalrqW0gffcc8/Rv0sijJA8A+z0EkphWuzf5D4kYmv58uWiiYEJbAa/b7/9FmFhYZonP2YhYfjSe/bQoUMuZZMex6uvvqrYMSPNMGgymeBwOGgDnB3XabfbafhSIAv70ognYmvAgAH49ttv8cknnwCQH69pNptpPci+/9TGbPkrjLBOnTq0g0yv1yvO8+YJ4eHhtLNVem7lohkKCgpgMBhwzz33ULFF2l9r1qwBoByqrRSqmZmZiXfeecclwyGBnAvSWUmOW5ogA3DtbG/atKnoM9thzIYR3ql4LLYKCgrw6aef4p577kFMTAwiIyNF/4qKIAgYPXo0OnXqhNjYWNl18vLy8MYbb2DQoEFU9CUnJ8NkMrk8DJUqVUJycjJdJzo62mV70dHRdB0pU6ZMoeO7rFarS6/DnQZ5COXE1sMPP0yX+VJssQ3giIgIt2Jr7Nix6N27N5xOp2IYjju0hOGxjpOas8WmrJcKMmmsNFuR5eXloXXr1sjOzkZBQQF+/vln2e1LJ2s2mUw0lJPNTujPMVvS9dyJLSWkL+ETJ07gmWeeoS8RUtHn5+eLnIu0tLQiiS0pbOp39ntWeOXm5lJHgoiOS5cu4YcffhBty2Aw0JdjWXS2gMBMXECun/Scq5U1Ly/Pq2LrwIEDLs8MEQ979+6ly7Q4W6zYUsreB7g+c1LHPCMjA2fOnHF7zZScLYJSGCFxrJW2LxVbZrMZgiDQ5WxDMT8/n4stH6F1zBYLySDLjocndWlYWBi9j9ltqmUj9Mb1JFOp2O126HQ67NixQ/TMKXWOentMv1oYoRyss/Xvv/+ioKCAPuMffPCBaDtyv2WRzrFHwg91Op3IhCAdiOScEFPj1q1bsNvtqtPLVKtWDQsWLKCf5Zyt4ODgO87RIngstt577z189tlnGDhwINLT0zF69GgMGDAAQUFBePfdd4tckOHDh+PgwYOKDUm73Y7HHnsMTqcTX3/9tdvtCYIguqhyF1i6Dsv48eORnp5O/128eFHjkZRN5MQWaWSOGDGCLiONq+LMsSVFrkLSEkZIGtxSseXJy0OL2GJdKXfOVn5+Ph33Id0GW7mzvUJ5eXmwWq1UbCmJEGmHgtFoRKNGjej2SyJGWuu5VRNbr732GgDPxBbpiSM9h+T85eTkuCRAYEMoiiq2QkND6XVmBRYbvpiXl4cmTZqgadOmdN2qVau69AiyzlagZ/DzhPz8/IB2tkjDQnrO1cqanp7u1TFbzZs3xx9//CFaRupO4pZPmDBBNK2KuzDC4OBg1fmJpGJGOhb0wQcfRN26dd02dG/cuAGHw4HExETZ7+V+n5+fD5PJhKCgIMVzKCe2gNvJhdgoE9bZ4mO2vIu7MVtyczyRdxj7LiP1Y7ly5eh7mO08kOtM9WYYIRFb5J37999/a8o2SJIleYuwsDCXMEJ3CTIMBgMNyTxy5IjLO1HJrVNztoDbz1hmZiaduxK4XSeS9zOpvwVBQHp6uqhtwz6np0+fhk6nE5WPfc+RZ5iLLQ9YuHAhvv/+e4wdOxYGgwGPP/44fvjhB7zzzjtISkoqUiFGjBiBlStXYvPmzahWrZrL93a7HQMHDsTZs2exfv16UShjTEwM8vPzXVyO69evo1KlSnQdknmK5caNG3QdKWazGeXKlRP9u5ORC5kif8ul+PSG7U5QElvunC2r1QqgsKKx2+20AvG2s6XX6+k9KE2Qwc4RRpytMWPG0IqKzKBuMBhQpUoVuq6c2MrKyoLT6VQMW5NWYqGhoejcuTO2bdsGk8nkM7FVHGdLOl4mNTWV3jtqYkt6Dck50SK2TCYTBg8e7FJ2FumYLcLbb78NQCyqWDEmFVsVKlTAgQMHFI8DKPtjtoDAdrak96BaWfPz870eRiidsJfUp3fddRfatm0rGhcBFDakrly5AkEQROVg62OliA1APGYLEDurQGHGYcC9QJ49ezbuu+8+2ssuRcnZMpvNLgJPrnwE8nz9+OOPAFydLSJK1ULFOJ6j5r5cvXpVVNcRSAforVu36Jhicl+Gh4fLii3p3IuA98UWO/ehTqfTNI/W66+/7tXnvCjOlsFggF6vR7169XDmzBmXd6KnzhYJYSdCOTQ0VDFrMbt9NkkXge30kI71AsTvTdbZulPxWGwlJyejSZMmAAqVOqn4evfuTeNItSIIAoYPH45ly5Zh06ZNsimPidA6efIkNmzYQMfQEFq1agWj0Yj169fTZVevXsWhQ4fQoUMHAED79u2Rnp5OM7oAhRNtpqen03U46qiFEbIPGKlM5TIVFhW5CkVu7iMprAUO3LbQi+JsqY3ZIscfGRlJ45rJ/chWLsTZYu9DMgDVYDBg7ty59BmQhhGyzpZUbPXq1Qvnz593Kdevv/6KuLg4dOzYUVROb+NJNkKC0kvC6XRqElvHjh2TXS5NQJKdnS1qTKempkKn02Hu3LkuZWdRcraaNWsGQCyG2evBOrpqKcRZ2IZnWR2zFchii9wzpLHndDplw/uAwmPyttiS3oOZmZmoWbMmatasiV27duHq1aui7wsKClC1alXMmzdPdF5JebWKLYJU+JBOLC3XbOvWrYrfKY3ZIh0/Wp0t8nyRyXOlzhZp9IeGhpap58ffqAkCtmOQhdw7t27dQvXq1REfH48xY8YAEIcRyjlb7H68OWaroKBANH5WKrbU3ovedGHkxNb58+dVMwqyoepshzG7jhzu0utLnzGC1NmqWbMmgELDAhALU3Zojdy7Wq4TnjtbHlCtWjVa+derV4/O67F7926Px+kMGzYMCxYswKJFixAeHo7k5GQkJyfTB83hcODhhx/Gv//+i4ULF6KgoICuQypVq9WKIUOGYMyYMdi4cSP27duHJ598Ek2aNEGPHj0AAI0aNULPnj0xdOhQJCUlISkpCUOHDkXv3r3RsGFDT0/BHYlcggxyvdmHivSYSGcTLw5yFa5az6i0fKThQe4ZXzhbBFJB9ujRA1WqVHHp3bHb7aLzRcS+Xq9HaGgovR89CSO02WyoUaOGS7lq1qzpUarVLVu2FDuMTauzpdYDTUQyuefkphAgoYZSpC6B1NlSchGkKIktOfGtFkaoBfZeJo0QrecxkGHniwtksSXtRS8oKEDz5s1FCXkAYMiQIXA4HF4LIyTXWNr4yMjIQFRUlKJwIOW8cOECnXcHuH3v6PV6j8IIpc4WQe4Yn3nmGdFntXe+krNFwgi1OlvSziX2uWLHbIWEhAT83G6lhfz8fNnxVUBhx7oSRGy98847AAozTg8bNgxA4b1C7um8vDzZ547gbWcrJCSE3o9anS1vwybIIGWZPn06unfvDsC1Q5c4W8Dtcyc9H6QuIu1wgrv5LO+77z7ZMpL9DRw4EHFxcYiKioIgCKhYsSIAcRti6NChtPORPINK7y02jLB3797o3Lmz7HplGY/vsgcffBAbN24EALzyyiuYMGEC6tevj6eeeoqmkdXKN998g/T0dHTt2hWVK1em/xYvXgygcDD5ypUrcenSJTRv3ly0DptFcPr06ejfvz8GDhyIjh07IiQkBKtWrRLdGAsXLkSTJk0QFxeHuLg4NG3alM6Fw3GPVmeLVJLerMCKKrZIhUrm4yIVvTSrjhpaE2SwZSXrBgUFiRojxNki+x49ejSaN28u2gYJKzQajdi+fTvuueceCIIAq9VKB4lLK2WluaikkP0q9Sx169YN06dP17QtFi3OltR5U7t2UmeLTMLKQkJEpUgTA+Tk5IgcJmmPrNK5YFMXs9eQnEP2fmC/Z50tOQEsB3svk4ZkII5x8pT8/Hx6bgLxeMg1JI17aaNP6kySMDVvOVtyY1WAQrFVsWJFkdhq0aIFPZekoXb06FHR78hxPPnkk5r2SxpGer0eFy9edDkmuWdUWj8ohTSz5WQh94Ra/T1v3jzVfbBii50mg3UvOMUjNjYWS5YsAeD67ErngGOnFElNTUW3bt3w4IMP0mXkvjWZTFTATZs2TTSmmv3/559/dnGAigMZsyVdRiip+Z5YZ4u9T5XmCyUJMoDb507uGd26datouMKNGzdcOiyk51EpNwLZX5MmTfDnn3/S5SSijG03BQUF0U516byWUlhnq06dOqqOeFnF4ymcP/roI/r3ww8/jOrVq2P79u2oV6+e7ER2arjrva1Vq5amHl6LxYKZM2di5syZiutERkaKMqVwPENuni01seVN5O4BtWxWBFKxk9421tnq2rUrNm3a5HbfnoQRkm2zDXI5Z4uIiC5dutCwQVKJvvLKK/jtt98AFLpeZF3i9mRkZLi8HLSKLS32vdT58XS7So1Qdp4pQP0lSo6VHLvcy1BJbEnLz06GunDhQtF8a9Kys2zcuJH+jqwzceJE+jf70mHvDeJslS9fXnNnDusssPdoaZ/0MZDCCHU6HXbv3i2aoFSapIXcu+RaSM8/K7bI74sTEsP2tLPk5ubCarWKGmFvvvkmPv/8c2zfvp021KR1LUnrLBeOr4bBYMCgQYNw6NAhTJ48mS6Xe19K60FPnS02jPDHH39Ep06dUKVKFdG8Rr/++qvqPkm9vn//ftE8W+y4HE7xYOdnkz670g6t8ePH02t26tQpl6y47PUh9RtJZQ64iq1Bgwa5fMdSsWJF/PDDD+jfv7+mYyFhhAR/OVtsggy2w8BqteLq1auyIYLsWHk5Z6ugoECUbCMoKEg287b0PCrVW0rTmRAxJU18Jq0rldrrZH98zFYxaNu2LUaPHo2+ffti9+7d3igTJwDRGkbYokULr+9bydlyNxiaVOxSseV0OtG8eXOMHDnS7b7lGtdyZSGwjeSgoCCR2JI6W3q9njotZL0GDRqIkrmQ8x4WFgadToe8vDxERUWJ9q91DjgtDcOiNIq1JMiQJkxRu3akF43ca+T6s8ls5AZnA4Via86cOVi+fDndD2mU1qtXz2V6CqVzUq5cOfrSqly5MpYuXYqJEyeKrh0JrWCvMXkpVa5cWbGMUuTCCEtCnAiC4JPOEaDwOmzevDmgwgilDimpD5RClvR6vUi8WywWF7FVHJTEFhmHxDpbYWFh9DkgZcrNzRUJkaysLJjNZtFzouY8EUh99emnn7qtI6QCtChhhGazmT5HQ4cOxQMPPCCbwIogLVNeXh4yMjLQokULHD9+nD5/BoOBiy0vwd5D0vevtHNPek9IXQtSj9eoUYOGzLH1jlrWQ7llKSkpWLlypdtjIMg5W1rHbHkT1tlix6yRjkPpeWbDCInYkluHlF9tvCKZjN0dcu084Pb1krY91CZPlu4f4GLLI7Kyslxe0Pv370efPn1EkzByyhZawwiff/55rzes5LZHGkJq6d+VxBZxn6TJVuTQIlCkGXrYBrl0Dqbk5GRa0ZJMQwUFBbLjksg6QOF5Dw0NhU6no4NWCVrngNPSg1dcsaXkbFWuXFnzfohgIduNiIjAU089RQdaA4XpewHXCYKPHz+OIUOGiJaR+kruemu5vjqdDgMGDIBOpxOJ76pVq8LpdIpeIORl40lDXK/XQxAECIKgOE7CF0ydOtVt+EdRmTx5MtLT0wPG2QJcr4nUIZITWySjGnBbbGlJ26wFdsC+dHloaKioQcaKLdK5kpOTIxobm5GRAbPZjPr162P79u3o0aOH6vVt0KABgNt1jJbkEtKe7+I4WyxsVIxUIErPDxtOdf36ddSsWRMJCQmoWrUqT5DhJdiOIvY+FwRB87hXgk6no++4r776yiW6QG0+Ly3RK0pheASp2NLpdH4LI8zOzobT6RQ5W0rjndiOWzVni5x/tYRh0ulvlJBr5wG3nTjptVYSW2TMHltOgIstTVy6dAkdO3akk/yOHj0aOTk5eOqpp9CmTRuYzWZs27bNl2Xl+BGtYYQ6nc7rtnzLli1dlhkMBqSkpKgKJjVnS6/Xa25ou4M9/pSUFFGaVKmzdenSJTreUDqBoBzkHBOxVb16dVEDZ+rUqdiwYYPbMrLHonZMvnK2SDYjgpqzRc4LG8L5448/ujhFderUcZmSYdq0aS7bI9me5CZd9zQMTDqGT3q/k3vMU7EFFJ57T5yt/fv3F8tdYSfNJaxZswb//vtvkbdJIOUKpDFbbBn27duHn376CYDynDc6nU4ktsiYIC1pm7Wg5myFhYUpOlvkd5mZmaKwnrS0NFrfdOjQARUrVlQUW+PHj6fZgz1pbJJ1yXbdia3ExERRY5hN/c6ya9cuOshfaZqVJk2aYMaMGcjLy6Pn4NatWwgJCcFPP/3Ex2x5Ebaxzd7ncg12LfcPO15Y2uBWc7bcPWPPP/+8bNgcQRCEgAkjJB0jbGg7oJx1V8nZYqdaYAWZO2dLy7OhFEao5JBLr1m/fv3w9ddf47333pNdTy3DcFlH8132xhtvICsrCzNmzEDHjh0xY8YM/O9//4PBYMCJEyfw22+/oX379r4sK8ePaA0j9AVz5sxxiRPXUsHLia0TJ07gq6++QlBQEE1OoYanYis1NVUxjFBaYamNAyOQl4TBYEBoaChNoEGIiIhQHL8kRcuxFKUByTb4lX5P7hvSOFSr+KViiyAXR65FlJB7R+48eSq2yL3O3vNyUx/4WmwJgoAWLVpoHmi8atUqvP/++6Jlctdq/vz5LpPsFgVynY1Go2rmuZKEPd6dO3e6fC+X6evy5cv0szSM0JdiSxpGGBwc7HJPpaSkiJytmzdvujjpSmKrVq1a9BppqYcIpKzkt9Jnkh3ndfjwYdx///2YNGkSXcZOaixl9erVsNvtinWDTqeD2WyGzWaj5y4tLY3WLex8dRzPmTFjBr1+7HuefS7kslxKr+V///2nuh+pQC+qs5Wbm0s7TJQg22TvUyK2LBYLfv75Z00RLt6APDOZmZkuSV4If/31F3WFlJwttk3hcDi86myRDk2pKFqwYIGsmSLtNLVYLHjppZdk93+no7mVvHnzZnz99dcYPnw4fv75ZwiCgEceeQRz5szxeEAup/ShFkbo6zTVRqPRZWCmJ2KLzLOVn5+P4cOH09/36dPHbSWgpTHONlZSUlIUE2RIKzAtx8CKrbCwMNStW1f0vSeNC1+N2ZKGmahtl1TOamnRtYot6aSu7pBr4BXX2ZL+TY7L12KLhL5pvf4vvfQSJk6cKFomd+5Y16A4kJd2UFCQpsyhJQF7vHLXXVpGu91OU5UDrgkyfC22SLbBhQsXokGDBi77u3HjhkhsXb9+XdSDbzabFccNsvVSUcKoyHZJaO27775L90nYsmULAIicd6UwQgCYOXMmWrdurXj/keyuNptNNGci6/5zsVV0Ro0ahYSEBADie5v8ffPmTdkMq9JrGRsbq7of9h7ZtWsXnfRden8bjUbVeoMkklJDLtkNEVvlypXDY489VmLzPhkMBlgsFhexxYqgQYMG0c4JqbNFwmfZZ5zNjEq2ExYWhlmzZon2rdXZIvWJ9F1bpUoVOl8ni9Z3hZaO7bKOZrGVnJxMG3oxMTEIDg5Gv379fFYwTmChJra80TjzFC29sTabDSEhIdTZunTpEp1s2F0adEJxnS3yYtHr9bJiwR1SZ0sqtsjL0RPkjomd0NVT5F7MUkgvHXkhsL1w0p5OJbElDS9yOp0oKCiAIAj48MMPPS434LkrK+dssX9L04hrQU5subsOZJD6O++8o+k+kltHbh+5ubleeZ5J50heXl7AiC32HMidDzlny+FwiOaI8cWYLTmRx4qkbt26QafTuewvPz9f9EzY7XZRqKyas8U22NzVpc8//7zLMiLWnE4nBEGQDT/as2cP2rdvT+tfQDmMkHDw4EFVZ8tisbh0CHBny/uw4/LJfaeUTMfTOpSt79u2bYvBgwcDcH0OjEaj6jOmJZsw2abcHFb+CGkjSTJYsUWyoQIQOelK82yxHSVsNkLy7tDpdOjUqZNov1qdLSK2tJ6bVq1aaV6vLMwdWRw8ekrYClIaIsUp28i9TKXzvpQkWp2tqKgoOqB34cKFNCue1t5cLWKLfdmwkxazzpZer3epwLQ0QEljyWAwoF+/fnSibgDo2LGji+OnhtqxkGvoK2fL6XTCbDbTdeUGCH/wwQd47bXXFMVW7969sWjRIvqZZFg6cOAAvvjiC8XydezYEV999ZXsd926dVM7NBfkslOy9xK51zyZHLoozhYRW0lJSUVuYMpdq9zcXK80WEljPjc3NyDFljQsGQDOnDkj+pyVlYUNGzbQ59ZXzpY7sUX2L3e9pJPHsyFRamJLq7M1b948dOnSxWV537590b59e9r5Q54HtiF948YN1KxZU3R8amGEBKX7j3W22HcOeSeRqTXu9EZdcSD1GysAyH2udJ8UR2yxOJ1O0TNlMpkU6w1BEBTF1r59+2i4I7lPpHNhslOwlCTly5dHenq66P2gNN2KXBihnLMlnTYkNzfXZVxcXl6epqlISOeNliymAPDjjz/K1qUcVzQHawuCgO7du9ObNjc3F3369HG5KHKDrjmlHzlni/ztj4aUJ2KLTKi7e/dudOvWDcuWLfN4UuOilI3tkJBztrScN9bZev3114tVNrkEGWfPnsW5c+doJtGiXEv2N2rOlslkoi9xqdhKSUnB448/jjp16ihO9mowGPD444/TeViIs7Vw4ULV8uXl5blkQ1QrqxpykxqTv7t06YJJkyahc+fOHqVUL47YAm43YNXQ6mx5K4yQ7Q0PCgoKiJh9tgys20L43//+J/o8efJkHDlyhCZ38dWYrU2bNqFJkyY0O6BUbJF3rtz+pJ0trNgym83FFluhoaEu4oeUIzIykjZ4yTakDWmp2HLnbAHKHTakPt2zZw9WrFghKiNw+33kL9eiLMC27whqCSyA29e+XLlysmMhpSiJLWl6cjWxdePGDVHyGpaWLVuiY8eO2LZtm2wY4fnz59G0aVO/3CMRERFITU11EVshISEoV64ckpOTadp9aRhhZmam7Jgt1tkin+WMkAkTJrgtn6fOlslk0izM7nQ0iy1pvD8PIbyzIA+9tMf1iy++QLNmzfxWHjWI2CJcvHgRTzzxBADvOltSSIO8Y8eOtAEl52xpadSyYqu4yB1L//79cfDgQdp495az1aVLF8TFxeGtt96i22VfsmwYIbmnpNkZ3Z170kP5888/q66Xl5cnm3K2KNdWzdkaNmwYbbAX1dlSSkMuhRVbNpvNI4fT6XTijTfeoNfg4MGDaNasGebNm0fDCMePH48jR46IGrWeQMpfpUqVgHG23IktKZcuXQJwu+FhsVhgt9tdwgj/++8/NG7c2OOxT0TEfP3119i8eTOOHDlCe/fZ+1U63xyLVmercePGOHLkCP2O3b6aaAwNDXWZV4nNEkp608nzIG141ahRQ9bZKso4MZIgAwBmz55Nl5NjJOfJX65FWYBcl9zcXERGRsLhcLhkwZQSFBSExMRE1KhRA40aNXK7DzVnSxoeqnRvuguJI9MjyDlbM2bMQIMGDbzyTvWUiIgIpKWluYgto9GIKlWqIDk5mbZZtDpbJHtsfn4+3W5RU6yT+sQf0UplnSKLLc6dBXno2Ze7TqfDiBEj/FoeAFi/fj0yMzNx/PhxjB8/nvY+5+fnu8xBRcSPL5ytfv36YcWKFbRsM2bMEJVXuq3iiq2iOlss5GWmNH5EC06nE127dkVISAjd3l9//YXz588rii32ZaN0jO6Or127dli0aJHbbIy5ubleC3mWc7bkxGFRnS3yO61jtgBt8yNJQ+g++eQTVKtWDQDoZPRffPEFdba+/fZbTYJEiYKCArRp0wYDBw7EsGHD/Ca2ZsyYQQUI6fk1GAxIS0tDr169cOnSJRw8eFD2t6TB5i5BRtOmTfHFF1/QunDv3r2axiiwzz95BshzKDcmSe6ekI5jZJ+FDh06oGbNmli8eLHLpOLs86B2r4WEhChOmq7X66lglwsjBArFtjR1uFq6eDXYMbDly5eny6XO1p02bqt3796YPXu2aCLiokI6Rux2Ow4cOICJEyfS66fmbMXHx2veh9L1P3z4MM6ePUs/qzlbZPk999yDXbt2QRAE2fcFGUMrfbckJyf7RZBHRkbKiq3IyEh8//33ePzxx0XiVpr6Xeps2e12mr3QZrPR90dwcDA++OADvP322x6Vj7TvPOks5GijZCYY4JR65MSWP2Ebu3FxcXjuuefw5ptvAihshLdv3x42m81lxnMivrSGAHkiaOrXrw9AvvHbuHFjl9Ss0kGscpBGmNwcUZ7GyssdC1nGZvfyFKfTiQcffBBms1nUwGSvERmzRWDPBXl5SF9+7s79K6+8AsB1VnspeXl5XhNbas5WUbNasWKLhFm6EydsA1gt5S+BvS7SGH/yXXZ2NnW2pPOieUpBQQEqVqwInU7nV2eLzbD2wQcfoFevXgAKna0BAwZoOk7W2VIKI0xJSaF/Hzt2TFPZWEFFnm/yHLLZu9TCCKX1MXsPxsfH49lnnwUgFifs/pS2SwgNDVWsZ1hnS2ky1JiYGJcwQpPJVOQQXjK+hRWPcs7WncSaNWuwefNmr2wrOzubduSEhISIQoDVnC1PUKqL//zzTzRt2pR+VhNbZK7M1atXA1AWB2SqFGkZMzIy/BZGeObMGVF9QULsW7Zsia+++koUtinNRijttGTHe+Xn5yM3N5c6wG+99RaN5NEK2baWdwrHM7jY4miCPPSBIrakPVXsy3vPnj04f/48cnJyXMbqkHArX4gt0ugnqeYJycnJ+PPPP9G4cWPaSz537lxN82Ox4VjFKRsA1KtXT3Ebcj3qWnE6nQgKCnIZm8OKLfJCAYDp06eLXo7k5eups0W2705IyQ0YLiruUr8XdZs6nU40XsqdOGEFvRZni4W8SKUvVDLZprfEFjt2MRDGbAGg2UjT0tIQERGhabwBqUPMZrOi2GLFLGnY7dixA4sXL5bd5vXr1zF16lT6WTr/XLly5fDMM8+Itqcmtl555RVRA47l119/dUkFzc7XJ90umzRGTWyx2UXJOtIGbGRkpGwYYVEnTyeRCezvidgi19LT56Es4M25LocOHQqg8J5kO0qU3g2e1n9qziZ7XdXCCAsKChAUFESvPZvQAyi8V9hnUvouuXbtmtfeCZ4QERGB7777zmXOKnLvGgwGep4dDodsGKFcQibgtrNlNpuLlc7+66+/Rs+ePYv8e448XGxxNBHIzhbgOqjabDYjOzsbVatWFS0nISdaX/aeVFrkJSINv6pUqRLCw8Oh1+sxatQoANoHoJJtScOAPC0bUCgGf//9d9mXEGnkFSV8gIgtaXpqIp7y8vKwadMm+kKJiIgQ7Yect+KILbX4e286W2qp34vzgtPr9aKsTu7uT7b33lNni81axZKRkYHc3Fzk5+fT0Dt3E5QqwYotLc5Wbm5uiQoyIra0PIdNmzZFamoqjEajYup39m9yP/Tp0wePPfaY7DbfffddLF26lH6WzptmNBpd6rj77rvPZTtEpMXExMi63wDwyCOP0JDRcuXKuXQGsbz11ltYtWoV/RwSEqJ4X8uN2ZKeT4PBIJsgoyhiKygoCLVr18ZLL70kelZIg5uEat9JzhY5j8Xt8GE5ePAgjEYjzRrpLozQW9kIpbgLI9Tr9VQwPfTQQ6LvnU4nLl68qLjtS5cuKSaP8SVKHazkudHr9SKxxTpbeXl59Lj37t2LoUOHip6D/Pz8YoXpEl566SWeadwHcLHF0QSpUANVbEl7M/Pz82ksNAtpnGh92ZNGihZIzLxaY0Yuhb4aJFxMLQTQE6QuA7mupIGiND5DDdbZYhv15FinTZuGf//9l74ErFarqJeU/KaoYis4OFgxQYQgCCXmbJHvHn30UZeXvzv0ej29b8LCwtwKD7ZB6emYLSLOpL/LyMhAXl4efvvtNzph6Jo1a2S3deXKFdX9eSq2+vTpgz///NPtcXiD77//HmfOnNHsbBkMBirM2Ixp7sSW2rbJoHZCeno65s+fT3vo5cTWl19+6dKRIx2zpeVYpA0+9tmoWLGiqBHqaRih9BmWXnvibKnd33LP/dSpUzFt2jRaXjmxBdx5c22RZ1mL2Nq0aRPOnTvndr28vDz6ntcSRuhNZ4vFZDLh4MGDshkOibNF7k3pc3Ho0CHUrFlTcdv+EltKk4zLOVtsHVqrVi2cPXuWOlstWrRAs2bNRM7W6dOneXKYAIaLLY4myEs1UMSW9KUu7d232+3Izs52aVh46myNGzdONGhXiVOnTuHRRx8FUJiBSwk2LEALb7zxhtvU5p4gFVukYUMqeGnmMS24c7aIgJMb3A7cvrc8zQ7FOltKYots25fOlrSx8csvv1CxohW9Xo/09HSEhITQRr0anjpbLGrizOl0irYn18CaPXu2i2MsxVOxdevWLcUwOG9DJunVKrbItSb3p9zE03JhhGqNHulzlp6ejqeeegorV66kjUjpfaXT6WgZyP3ujfqYfXZMJpNI7ISGhip2erBhhFKx1bNnT7Rv3552wJDzo8XZkjtv48aNQ5s2bQC4ii1phtyyILYEQcD+/fvdridNUKJEcnIyunfvrimLdF5eHr0nfDFmS6vYMhqN2Lt3Lzp06ECXkWlc2HC6CRMm0HtDK1euXAlYsUU6dC5dukQ7i5s0aYJTp04hMzNTVB+xYuvNN990EVt33323rw6F4yGaWjdqE4ZKGTlyZJELwwlcSJhLoIgtd2GE+fn5sNvtir24WkOWDAYDatWq5XY9MrnnrVu3VNNwKw0kV6JSpUp0XikpRU1dLie2SANFzZVTgogtg8EgauiQYyXLyAtFSWyx17Rbt27o37+/6n61iK3ipsKVIudseSuM8NatWwgPD3eZb0YO9jyvXr0aOp0O7du3V1yfdQ+l51Uta55cOS5fvqxaNuD2PQFoG7NFsoeWJBUqVPCoF5gICdLQd+dsSTsPtm/fjk6dOkEQBJfzSsQXO0eUnGPAhnNnZWV5lPJfCbYBSJ7RHTt2oEOHDrBYLJqcLekxv/jii+jXrx91QHv37o05c+ZQZ0ttbKjRaFS9F6RiSzr3Y1kQW8uWLcPDDz/sNqOlFmdr69at6Nq1q2j98ePHo0ePHujevbvL+rm5uYiOjgYA1TDCuLg4rFu3zqdhhFLIu5g4WwBoeK87KlasiJs3bwIofOcoCR9f4k5skTDC/fv3Izc3lybRqly5MiwWC50knqzLii2dTofMzEzR8/D6668jISHBJSszp+TRJLamT5+uaWM6nY6LrTJKs2bN8MwzzwSMRe0udIE0sqVii1T0vsqO5i7phadhhGoUNYxQbcxWcZytsLAwmmoXuH2s7DgUQFlssS9tMlmqGmR9ObHVqFEjHD16FN9++y1dxxtocbaKAnG2wsLCkJWV5ZHYmjJlCr777jvakFCjoKDAZe4stQadXCNGy/F66mw5HA6vZsDavHkz3nvvPcXvZ8+ejbCwME3PoTTM9fDhwwBuT6rNrgMoi61Dhw7Rv6Xik53njjwnco1YqbPljXtP6mwBhRldt2/fDp1Oh7vuugtAYeIhFtbZIvUIKTtJsELKt3btWmzatImOKVG71u7eMVKxxSIdI+Zt8vLysHTpUo+zvHnKmTNnNK0nPf9yEKEF3H7vffTRR9i0aRP++ecfAOL7Nzs7W3R/sQkyatWqhbp162Ljxo1o1qwZ1q1b57MwQnIfyHXwsvULG3qnxubNm9GkSRP62d/OFitkpWGE2dnZiIiIoM+7TqejYoudfoR9DgRBwH333SdKhBUUFOTyvuX4B01iS0sYFadsExoaijlz5vi7GBSlkDNpw1E6pkFtzpqSwFNnSw1fjNlKT09XnLNECSK2QkNDRWJL6myRayN9edaoUYO+9D1BbczWkSNH0KRJE2zZsgVWq9VrnQRyzhZZ5i1nS0uyCGnvPdvDKYdc6nelz+6+Kw1ia86cOdi6davsdzqdDgMHDgSgrdNDaUyhIAiyUyZIhQeBnA85Z4s8N6zYUnO2yP1OEucU595jnx2yb51OR8O36tevLyvIibNFsmmyvyfjZaTTP2hJ/W4wGFC9enXFBAfBwcGw2+1o0qQJhg8fLvrOW5kvV65ciZCQEPTo0UO0/Oeff8azzz7rc7F148YNAGKHWA7yzCg9w9LrpuT6SRMj7dq1C0Dh+WQz1RoMBpf6zpdhhIB8Jl7W2ZJGVCgRGxuL+vXr4+TJkwD8I7bYfYaEhNB6m83IW1BQIEqOQSDnjRWZcve6tN4JCwvDCy+8QDseOf6Bj9nilEqUGnzsS0en07lUqOQF4a95fwLB2Tp27BjtEWOdrfDwcNjtdo8m5AVuv/ikYoscqzR7m8VioYLr0qVLmDlzJlq0aOHxsciFEco5WNJkBMVBztkiFKfBazAYaAhqUFCQ6v1ps9mQl5eH+Ph4lzmGlFBzr9REjlwjjhw72bfT6YROpxMNvi+K2PJmGKHa/t544w16v0hD0NSQNn7eeecd1fnpyPbIuWc7H9SyrKmJLTb5RmpqKg1fLg5sY9YTl4JMasz+ply5ckhNTXVxtgAgMTFRU4IMo9GI48eP4/7775f9njzj5cqVo+PvCN4SW/369ZPN/lhSIYpEbLl7JtyJLelEx0rrSVOnE6RhhAaDAZ07dwYg3/GkBa1RBuQ5kAuVZcdsaQ0jBMTXz9/OFis62XNJppeQ1jfkvLHOlhxy9Rhxpzn+o0hi69KlS/j666/xxhtvYPTo0aJ/njBlyhS0adMG4eHhiI6ORv/+/XH8+HHROsuWLUN8fDydIFNu0KjNZsOIESNQsWJFhIaGom/fvrh06ZJonbS0NCQkJMBqtcJqtSIhIaFI41M4gYFSw5atdNUGd9+pzhYRQyS9Myu2SLpvT0MJ2TBC1mEhxyontkgjoEKFCqhUqRL27t3r8bGQ7ZvNZvpC9vULtKi9ue5gna1Lly659KizWCwWfP7554iNjUXLli0BeC622Cyb0jmYCEohWeTYiSgnmcDY+lQqtrSM2fKms6UmtthpFNjzRjpA1q9fL8piquRsLVq0SDYNPNk3O/UBcPt+zcnJUSyfzWajZbr33nsVj0EQBERERBRL4BNGjRpFs056cl8TZysoKAh9+vTBCy+8AEB8ftkG4YIFC5CamqopQUZwcLDi+BYy/lIuusHXc7qVVCcdET/ungnyvZIIJKKN4HA4aNuIvXfYTjKgcHwT4Jogw2Aw4O2336YdLNLtaMHT1ORy422L4mwBgSW22HuJnEMSRsjOsUWQOltKYkvunvE0+RTH+3jcYti4cSMaNmyIr7/+GtOmTcPmzZsxd+5czJkzR1P2HJatW7di2LBhSEpKwvr16+FwOBAXFyd68LOzs9GxY0d89NFHitsZNWoUli9fjl9++QXbtm1DVlYWevfuLbqZBw0ahP379yMxMRGJiYnYv38/EhISPD18ToDDii21ytRfzpan2QiVWLJkSZHCAsiAWyJOWLFFzhfbm7ps2TKX3lEppJeROFvSxil5wXXs2BFffPEF9Hq9bM+3J+h0OtG5JMfj60HPar2KxZkI+MqVK5g3bx49Di3uoslkoi9g9n7S6XQuSSykYouN4z9x4oTs9i0Wi6qzBRRe2+vXr7uUQTqpcUk7W2o93eyxs2KLnMtWrVohNjaWigapM8Ui52xJxRZxkbWIrezsbFqmnj17uk2Q4A2xZTQaaXIVT7ZHxLher0fFihVlRbtUvKWlpcFisagKogsXLsj+lkCSN/hDbJVUJx15lrSKLa3OTn5+vmyyBKmztWXLFgDiZ5cIABI2WtQOJzmxJZemnRyb3Hu8qM7WuHHj6N/+DCNcvXq1SxQOoC2MUGlMKEFuPCMXW/7H4yswfvx4jBkzBu+//z7Cw8OxdOlSREdH44knnvB41unExETR57lz5yI6Ohp79uyhVjURRErzQ6Snp2P27NmYP38+7Q1esGABqlevjg0bNiA+Ph5Hjx5FYmIikpKS0LZtWwCFc620b98ex48fR8OGDT0qNydwYSswtXCF0h5G+PDDDxfpdxUqVECrVq3oeSKVfFZWFsLDw10GGy9dupQ2ppVgx2xlZWW5pHIn2zObzRgxYgSA28KkqC9sdo4Vk8lERZavxZaSs5Wamio78bSneDKY2Wg00oY5+Z/c1+fOnVNNz65lfqbg4GC3Y7YuX75M7w+219jfY7bU9kca6wComwvcri/0ej3+/PNPOJ1OhIaGUsEjJ0Sk4xEBVyc3MzMT0dHRdLma2Prss89Qv3599wfoZciz6snzyIppd+sQkpOTUbFiRTRt2tRl3UqVKqFVq1ZYu3at7G8JJAGAnPCRZlv1NiX13pC6okqQulZJbLRt21Y0HpYVVf/88w8qV66Mq1evuogtsn/Wle7bty8qV65M1ymq0JdLeFGhQgWa1p1Ajk1OnEmdLZJUyF3n3SuvvAKdTodXXnnFL2KLuHQNGjTAl19+iRMnTuDDDz8UHYvT6YTdbnc5FjZjIfu/FLl7gYst/+NxS+fo0aN4+umnARRewNzcXISFheH999/Hxx9/XKzCkPAl6US0auzZswd2ux1xcXF0WZUqVRAbG4sdO3YAAHbu3Amr1UqFFlCYbclqtdJ1pNhsNmRkZIj+cQIfrT1c/na2/JnVkQ0PIy/MjIwMlCtXziV0TMv5lGYjlKYjlmuQkhS+RRVber2evrTZMVu+nldEaZyCN4QWIG78u0NuvJHWOcu0jJuwWCyqYYRAYT3pLbFVVGerefPmLuPy1O5bNlsX60ayjRmLxSLbGJNGWMiFcZFjJQ1l8u4g6+bk5Hg8qa+vUcuAqATbIFdCboqOihUrol+/fi5TFQQHB+O3336j4kCpLCQEVm4KAqmzpWUCbk8oqfcGOy+ZGu7CCC0Wi6hOlG4vOTkZgGsYISu+2fN59epV+ndR71O5TqCYmBg0a9ZMtIzUBykpKS5ikK1fjEYj/v77b5fxe0qQ59wfYou8sypUqICnn34akydPBuD6XrHZbC51OCm3uzFbcveoN7KWcoqHxy2d0NBQ+sBWqVIFp0+fpt9pST2shCAIGD16NDp16oTY2FjNv0tOTobJZHJp7FSqVIlWJMnJyaLeTEJ0dDRdR8qUKVPo+C6r1crnKSglsI0stThuf4/Z8kaCjKLCulek4s7IyIDVanVxtrSIrezsbFgsFhpGqCS22HNep04dAEV/Yev1eoSEhODy5ct49dVXqdiaM2eOy3hNb6KWIMMbeCLa5Jwt0kCRinlpOJqWcRNawggdDoes2GLDfHw9ZuvAgQOidPY5OTl0DJIc5N4DxAkESK+z9J5kz520AXTt2jUA4tBbcs5IKOjUqVNx7Ngxenzr1q1THS/sLnTQF7ApprVSFGcLuN2hIL0nQkJCEBwcjHvuuUfxt+z+5KJdpFNbLFq0yO0E3J5AGrK+fn94KraU6umCggK0adPG7fNOIokIUrEld08WtQ6Ue/fFxsbixx9/FC0jx7Zjxw6XZClSZwsAkpKSXLbbvn17l2za/hRbwcHBEATBxVBgwwgBebElTZyj1KGm5mxVqlTJ55k0OfJ4/LSQ+TcA4IEHHsCYMWMwefJkPPvss2jXrl2RCzJ8+HAcPHgQP//8c5G3wSJNXy33ElFLcT1+/Hikp6fTf0ppaDmBhVax5e8wQn87W9IwwvT0dOpseSK2BEHA6dOnUadOHYSFhSEzM5Oed/IyJNtgX9gkrXRRIRnUqlSpgvDwcCq2goODvdq4klLUDFxa8WTwuNFopA6VO2dL2ljSIva1iK2CggJFZ4usl5WVRceAKFHcMVtsPX7q1CnF9cqVKycacN+gQQP6d7NmzbB06VKXRpia2EpNTQUgbhSTuoWU45dffsG4cePoOuy4ETn8Iba0CCcpWpwt6fb0ej2di1BObMmVSQm5+0XNifEG7PglX0KOobhiy+Fw4P7778eUKVMUt/Hff/+5LGM7ShwOh2w4o7cc2OTkZEyePNnlerPHfvDgQdFzIR2zBciLD4vFQqMoCP4UW0rIiS3p+ZA+b0ptCLm2DfntpEmTsGDBAu8UmuMRHoutzz77jIbjvfvuu7jvvvuwePFi1KxZE7Nnzy5SIUaMGIGVK1di8+bNoixZWoiJiUF+fj7NiEW4fv067bWMiYmhPZAsN27cUBz8bzabUa5cOdE/TuDDZvFRarxNmDDBbYPHVwSas0Uq+bS0tCKJratXryI3Nxd169ZFlSpVcPXqVfqSJC9HMmCXfVk2a9asyIL31KlTtMOHIJce2Bf42tnypAFDsraxv5O6ioSiOFtKA8/Zbcs5W3a7HfPmzaPrHTx4UDHjIbsdrc7WzZs3VROI2Gw2xXpdGjZepUoVeh/WqlULAwYMUN23tEFH7m05Z4uloKAA33zzjeq2Cf4QW0XJsknWTUlJcbtdAskqDAADBw4U7U+ada4oHRqs2MrKyvJ6+D+5V3zdWadVbJH7TqljkbwP1c6l3Pg5cp+bzWbk5+e7hBkCxRNbGzdupH+TyXulzxb7TLFz2gHyzpbRaMRPP/0k2oacIAlksUWuU15enqKzRY5bKSGTmrPl6zHNHGU8bjHUqVOHPpwhISH4+uuvcfDgQSxbtkw2o4wagiBg+PDhWLZsGTZt2oTatWt7Why0atUKRqMR69evp8uuXr2KQ4cO0d7z9u3bIz09nU7UBxQODk1PTy92DzsnsGCz+CiJrffffx+NGjUqyWJRAmXMllRspaSkFElsXb58GVFRUbBYLKhZsyYEQcCZM2cAFPaY2mw22nMq7ckuqmCpW7euS2O6pMRWSTpb0gZdpUqVsGzZMvqZdbbIulrdIXZupY4dO6Jhw4Yuk4cqjbViG1m5ubm04UQaQxs2bMCtW7c8OkeeOFtRUVE0zbgcNptNUUzKdXIEBQXh/PnzeO+999zuW9oAko7HAuQb4hcvXqTPhTv8IbYA4Msvv0T37t01r88mS9AKSSkOAGPHjqWZ18aMGeORs3XgwAFs2LDBZTkrttq1a4dJkyZ5XEY12DmnfIk3nS2DweBxfUXuc4vFgry8PK+LrSZNmrjsS1pGabZodtyWdMwW+T3JJ0AobWLLkzBCYkw88sgjohBKLrYCkyKJLbmerFu3boli4bUwbNgwLFiwAIsWLUJ4eDiSk5ORnJws6rVMTU3F/v37ceTIEQDA8ePHsX//fjrWymq1YsiQIRgzZgw2btyIffv24cknn0STJk1odsJGjRqhZ8+eGDp0KJKSkpCUlIShQ4eid+/ePBNhGcPhcMBoNOLdd99125vuD7w5qXFR0ev1eP7553H16lVR77RUbOXn52vKhkUatgaDAbVr16bP3alTpzBs2DDaIPXlOIey4mwNHjyY/i0999evX6eZ2gB5sUUaX9JzLW3Asx1bNWrUwLFjx/DUU0+J1gkKCpJ9cbPb/vXXX3Hy5EkAt8WWtBG2du1aKuRmzZol20hjx2ylpKSIOsbkkEYqsNu02WwwmUz44YcfXH6n1MlRo0YNxWeSPXfS3xNny53YOnTokOy2vYU3QrqGDRvmURhrTEyM22khpMglgNHr9Rg9ejQmTpwoWq6WKKtp06aywpAVW4cPH/aobFooqTBCb47Z8kRsEQEtFVtykx4Xpw5kf6uU8OHhhx/G/Pnz6We2PnQ4HC7OllwYodzzTu7xQBEeTz75JEaNGgVAPYxQ6myRcNymTZuKkr+pJcgIlGO+E/H4aTl37pzsxbTZbLLZgdT45ptvkJ6ejq5du6Jy5cr03+LFi+k6K1euRIsWLfDAAw8AAB577DG0aNFC1JCePn06+vfvj4EDB6Jjx44ICQnBqlWrRDfrwoUL0aRJE8TFxSEuLg5NmzYVPcicsgHpyZs4caKol6tu3bp+S4rBEijOFgC89tprqs5WrVq18NdffwEQNzjz8vKwcOFCALfFLUHamDp58iTdhy977MuCs9WqVStRYzcsLMylscUKAjVny929zootciwNGjQQNZ7JeA0pbP3PZjWUjtUjnytVqkTLxYpFgiAIIrH15JNPihoPLGQ70nBzVmyQDgC5pEhF6eRQG7OlNYxQjbi4OHz55Zey+wt0PD2frLPFUqVKFZfshO+88w727Nnj0faV5tnyVt0faGGE3nK2/ve//+H48ePo27cvAHEYoc1m87qzJSfUpB2R0vBHVmzl5+drGrNVGpyt+fPno0uXLgDUsxFKHUBy/klCGYJc/cGdLf+jOfn+ypUr6d9//vknVdVAYcWzceNGl4GI7tDyUhk8eLCot1cOi8WCmTNnYubMmYrrREZG8oGBZYz09HRYrVa8/PLL+PrrrwEUTgUgV+mqJUMpSciLz1fOiBbIeWCfBzmxxQ4uZ0XVokWLMGTIEDzxxBOw2+2i8y19ueXk5MBoNCI/P9+njUhpCJyv8KWzRYRWmzZtsHv3bgCF405YAcb+bTKZ8OCDD2Lq1KmKYmvGjBmwWCyicz9lyhR06dIFe/bsQatWreixPPPMMxg4cCDmz5+Pl156STGMkF2Wm5uL1q1bw2g0UnElHTMZHBxMoxXkesilZZdmD2MhHXpqKfJJGKHWxpca8+fPF00roiS2lJwtnU4ne99//vnnGDVqFPr06UPfrcOHDwfgO7G1bt26Yk28LYdWJ8xsNqNz586KYksOi8WCli1belQeJbFlt9s9cu2UKKrYev7555GXl+cypkgJT8WWuzFb7qaCqFOnDho0aOAyIb2as+VtscWOZyZiil2PFVt2u93F2ZIrT2kQWyxBQUHQ6XTIy8tz62wB4rpCrY3DxZb/0Sy2+vfvD6DwhpaLi61VqxamTZvm1cJxOGqQCuSJJ56gYuuZZ56RbVAESm+xXq/3awghcPtcNG/eHPv37wcgFlt2u90lAYHNZqOVPfm9IAiyM92z5ObmwmAwID8/36fOYp06dZCamupzx7AoiQS0QhqDu3btovux2+1YunQpnfBT6my1a9cOf//9NwYNGgTANYzw2LFjMBqNovv/9ddfh06nQ40aNQCIXbrQ0FC88MILeOmllxAUFIS//voLGRkZOHv2LKKiokQJJYBC8WQymeg1zsnJEZUduC22BEGQ7SEn4p4NI1SCJEKSNkKlYYRms1n2XvDUAX3yySdFnz11toKDg2UbqiQZhJzj4Glonlbuu+8+r29Ta12m1+sRHBzs0TxyRUFJbKmN4/OEooYRfv/99wDgsdhSSvCRlpaGyMhIvPbaa6rl0epskQRgSmJL7rn1VhghQercqDlb7KS/anPEqYktaUKWQMFgMMg6W8TgKEpUBRdb/kfz0+J0OuF0OlGjRg1cv36dfnY6nbDZbDh+/Dh69+7ty7JyOCJIpRMVFSVaLtf4D4QQQqCwzP4MIQRunwt2skuS+l2v12PGjBkuvX5sY5J1LqRhhNKetZycHHo9fC14vTWxsBq+CiOMiorCI4884rLcZrPhhRdewJgxYwC4ii1SFiVnq6CgQNRQMpvNLoJReizsMWZkZOCNN95A8+bNaaY+qbNlMplgNBrx7bffIjQ0VDTmDyhssDmdTtjtdtlGG1v2M2fO0PkaX3jhBXz33XeidYnYIp0BbFYz9pwpOVvFbWApia3MzEwsWLAAJ06cwJIlS9C8eXPZ/RHxRsIv2QYiSTC1evXqYpWxJNEqYAwGA+666y6fTzquJLbcJV9p2bKly8TYcmhxtlJTU2UFticIggC9Xo8DBw7Ifk/uO5IJtLhjtshkuwSyvprYKk5yMTVni32HkPUEQXAZw6rF2ZLbj8lkoh1EgYher5cVWySpV1FELhdb/sfju00txIPDKUnMZjNOnjyJevXqiZYrhREGAgaDwe/OFmmMSEN6iLNFQthYWCeBnT9JGkYoJTc3l4qCQBG8xcFXYYSk0SQlPz9flJTogw8+oN+Rhq6a2HI4HNRVYn/DHoPSsZDGD2nYkeso52zp9Xp635AysGGEQOG9INcIZZ2to0eP0uXfffcdypUrh+eff54uk4otkoyFRc3ZKi7Se51cl+PHjyMhIQGvvfYa/v33Xzp/V0hICF3nsccew2OPPYYFCxbIiq19+/bB6XQWyf3xV4i01rrMbDbj448/9nFpii629u3bhxUrVqB169aq6xG3ljyv1atXd1mnQoUKiI+PR2JiotZiu+B0OtGqVSsaeSBF+myqhREWxdki95PFYoHNZqMdICydO3cu8ntVTWyR/4ngJEjF1t69ewGoO1tyVKtWzWWS5EDCYDDIhhF27NgRgPpxvvzyy6IhPuw2AS62/EmRWgxbt25Fnz59UK9ePdSvXx99+/bF33//7e2ycThukQotQN51CJSGfiA5W1JHkIgtuXECVapUoVnnyIs4OzvbbRgh62wFyjXwBr5K/U44duwYgNtiSw7SYGfFljSMkDhbpFHEzhfobiJbkqmV/JZkKlNytghqYkstjJANNSX7koZRkTFb0jBXuTBCaVjSG2+8IXucniA9VykpKSIBS8QkuQ6ss7Vw4ULawSEntiIiInweZudttDpbJdXBVFSxBRQ2SKWdAVIRS7bTrl07GoYrx/Hjx7UUVxGn04nIyEhkZWXJfk+emfT0dNFnufXczbMF3Ha25Objy8vLw8WLFz0qvzu0hBE6nU66XkZGBk3WRJDWX1o7HKKiovD7778XqdwlgVIYYYsWLZCSkqJ6nF999RU+/PBDl+XkXAXiOLU7BY/F1oIFC9CjRw+EhIRg5MiRGD58OIKDg9G9e3csWrTIF2XkcIpNoDhbwcHBfq/wyLmQplYmYksp3fuvv/6KmTNnYsiQIQBuiy018UjGbLH7Lc2QY/B1gpOGDRuiYsWKsNlsqFq1quw6Wp0tVuCw4UJqzpbT6USnTp0A3BYQcmKLOFvsuDDpRKtGoxFBQUGanC1SVrneWUEQaIpkd2KLFYDk/ylTprhs01PIfq5cuYJHHnkEKSkpovDVGzduALh9/lmRERQURMUWEWH+TJTjDTxJkFESqI3Zcsfhw4fd9vyT+87dmK3iHq/T6YTJZFJ1rIDbTq+7MVvuQuakzhaBhBFevHgRHTp0wLx58zw5DEXk6h4iCCpXroyEhATExMSIRKJ0agDyW1IfyT1LgZAUy1NIGKGcQFabDkENg8EAi8Xi805CjjIe1/STJ0/G1KlTsXjxYowcORKvvPIKFi9ejI8++sjrEwhyOFo5ceIE/duXqX+LS9u2bbFu3Tq/loG8UMuXLy9aHh4eThNkyJGZmYnXXnuNfq8ljJB1vrjY8gySlUsJrc4WK3BYZ0tpzBZQ2Egh1y01NRXA7fuloKAAZrMZderUkRVb5P4gZdfpdDRJhrsxW9nZ2Yop59njUOoQcDqdGDt2LG7duqU4WWpxYCcftVgsuHnzpqgBRMQWOSbpvombTK6dtwbp++vZ0upYBbKzRa4VuXZK9R8A6u67w53YmjdvHg4ePKj4vSAIMJlMqiIKKJzflP0spahjtgis2Hr++eddkqMVFTk3ijyvRqMRP/30E4xGo2q5yTGriS25MM9Ah3R4enNMWdWqVQM6dPJOwOMWw5kzZ9CnTx+X5X379uXjuTh+g62U5RoegdLQDwoK8njyb29DGiOsexASEuK2B7SgoEDUEJELI5T2JAqCUKbCCKVjGnwJmeOmoKAAXbt2dZmHyBNni5Rbq7NFtgu4ukgFBQV46qmnUKVKFVEYoZKzBdzOSCiXWEDqbFmtVtnGI+nFHz9+vKKzRcTmiRMnVCc7LSpSsZWdnS0K/SNjecj5lzYWw8PD6fxoGzdu9FoG39jYWK9sx1NKi7OlJrZIBwApo7RDoKCgABs2bIBOp8P27ds1lUPueFnB+cwzz+DFF190WYd0KDidThrCZ7PZ4HQ6Rfc8ebZOnz6NkJAQnDp1SjbBjtyYLbnnne2EYSFjti5cuOBV4aLmbMklyJBDmqxErk4mSSVKE0phhMUhJiYGy5Yt89r2OJ7jsdiqXr26bAaojRs3lspeBE7ZgH2ZyL1sA0VsBQLkXLCij7xs1Sp4u90uaixrCSNkt8nFlmcQZ6ugoABt2rSh2eoIcs6WXDbCnJwc2TFb7sQWETykkcduk4wDkXO2iOvEii2LxeIikKT7URNbe/bsQe3atVGuXDm0a9dOcVtknxkZGaqTnRYXvV5Pzz8bRnjlyhUAt8+V9D7R6XR4++230aBBA9x7771eyaDpdDrRq1evYm+nKNStW1fTev4WW3JhhMuWLcOtW7eowCH3iXSc1PLly0Vp87U8++xk3wSpuydNUPTvv//SMEYits6fP49hw4YhMTGRTjgMiJ2skJAQbNmyBb/99pvLPuXGbMnV10pjtsgcfWfOnPFq+46cQzlhJSfACM2bN8fIkSMB3BZZTZs2BeD6fhkwYIDfnoviQMQWD/krW2gWW88++ywyMzMxZswYjBw5Ei+99BLmz5+PBQsW4MUXX8Qrr7yCsWPH+rKsHI4i7iomLrZuQ15KbHIRLWJL2jusJYyQ3Wb9+vWLVN5AoqSdLZI0Qm6CYTlni4gNUk41Z8tdggxyvYl4YnuSyUSpcgkySIY09pk0m82K4Vlku1lZWTh+/Lis2Fq8eDEcDgfKly+PkJAQxdTaZB+ZmZk+dbZYscWGEZKQS1J+uYb/O++8Izsmrbhl8gcffPABnQNOjUAMI3z99dexY8cO6mQRAS8VW9J7TUvopztnC3AVW5cuXaJ/kzFbQKGAv3nzJr23AHFHhtq7TS6MUE5sKY3ZYsewVatWTXE/RYWte9QEGKFOnTqYMWOGaFlISAgmT57sco2//fZbxfDIQEYp9TundKNZbP3444/Izc3FSy+9hF9++QX//fcfRo0ahVdeeQWHDh3C4sWL8cILL/iyrByOImzFFMjzbAUC5FwYDAb07dsXNWrU0OxssZB5ttjfREdHu/zOYDAgLS0NL730kjeK71dK2tkiYYRBQUEuYkvO2SL/a8lG6G7OMNJ4IY1NqdhScrYyMzNRtWpVLFiwQHQsSqFcrLD68ccfZcUWaQBHRETAarXi1q1bonUmTJiAjIwMeo9GRET4xNlix7nJiS2C0pgyb/D8889jwoQJPtu+J5hMJtWsfOx6JYFOp1MUW+RZImRnZ4vmfiNhqlKxJX3uiiu2yPal2WDJ8zhgwACcOXOGrn/r1i3YbDbFibOVMhaePn2a1s+saFFztqSEhoZi5syZAHwzCbBcPcouk9ZNco4hWU9av5RWsaKU+p1TutEsttgejwcffBDbtm1DSkoKUlJSsG3bNvTr188nBeRwtMBWTHKVFHe2bsM2RlasWIGWLVsWydmSm9T4+++/p39v3bqVbrN8+fKlPvMa4L8wQjlnixVbTqcTgiC4OCoOh0MURhgWFkZ/L53cWAq53mQQvjSMUOpssWKrW7duiImJER2LUkY4qbBSE1vly5dHREQE0tLSXByHQ4cOUbG1f/9+nzS2pGO2ALHYIudSGnrpTb799lv07t3b69v1JSXpbMnV9TabDQ888AANhbt8+bKL2Nq3bx8A+TFbLFpCIuXWIctIIg4lgbN8+XKcPXuWrn/r1i3k/197dx4dRZXvAfzb2ZoQkjYBsrLI8EhgAFllGxAUCGEV8Y0onAAOgqyCwHFcZg44cx7bUUBU1KcIOKIMGhYdITOyCwQGESQIskgEGRP2dBKWrPf9wbtFVXX1lqTTS76fc3Kgq6urq5JbVfdXv7uUlNgNtuydV7Llgv48MJpY2l5mCwCmTZvmcNCQqnA2gqD+fUfBln4fvT3FSmV5os8WeZ9btR9/HEaTagd1gMXMlmP6G2p4eLhys3X0NE1/MystLbVpRqhuHiVvjN66aci/eXUGeS1atMCyZcuqpa+NM2azGcuWLcOpU6cMR+hTNyME7h6vUWZL/gDGT6ft/c3l31tWPo0yW2VlZQgLC0NISIjynQUFBTaVa2eZLfXfyFGwFRERgejoaJSWliqVVqmiokIpj0lJSR4td/YyWw0aNMD48eOVYarl70Q9Wmpt5O0+W3fu3EF2djZyc3ORnZ2NRo0a4ebNmygpKVEeJkiyGaykD7bUr/XXUvnd6uOVwZCc8kM9CIaUn59v0xxTHWzpM1vuBD/BwcGaultKSorNPFNy3+w9lPTUuVRdma2QkBCb64u/BltsRhiY3KqFJCcnIyYmxuEPkTc4C7aY2brHqBN0VTJb9j4jK9zeumnk5uYCuDshc3UJCgrCjBkzaiyzdfDgQXzzzTeGzQhlmZf/jhw5UpnkVB1sqRlVep1NaiwZ9dmS+6mu7KxZs8amoiP7nxkpLy/XzD0XHh6uCbYuX76MjRs3ArhbgZJD0MvMqdSrVy+sW7dO+W75e6nOc1/dr0QdbLVt2xbA3eP84IMPlGBLHpe3RyD1Nm/32bp165bygEQOYiJHV12zZo1mXf1E2vpz6Nq1a5rtDh8+XLnWnDhxAoD2PJPb0wdb6jI+bNgwzJgxQ/M9zpoRtmzZEtu3b7eZf0pPf/1Vn7vA3QdIslzX9H3S6NrjaIAMNiMkf+VWaXz11VertWMvUXVR3ySMLrKBMDhDddFXRsLDw5UbnLt9tkpLS+0+QZQVDm89YZR9MOzdoH2duoJqb+4p+R4AZGRkKIGluhmhmjvBVr9+/ZCVlaUMOW/UjFDup75suJPZKikpQWRkpJK9qlOnjmZ76sqvnHvHYrHgo48+stnW+fPnlfLmiYBYPaiMLFeRkZH4/vvvERQUpPnOAwcO4LvvvsPBgwcDogltZZnNZs1Iep7kKNiSgz3IwAi4W/YuXbqkWVc9EAVgG2zpm/Bt3rwZw4cPx7hx4/DCCy8A0F5zZPk9fPgwzp07Zzgx8n/+8x+bfZbn0O3bt1FUVGQTbIWEhOCRRx5RAjx79Nf0oKAgzf6tXLnS4ec9yVlmy51mhPrri7+ec2xGGJjc+ms++eSThh3gibzNYrFg+fLleO6552wuUpcuXfLbCrcn6Csj6enpmr4o9rib2ZIVe940KkcdGAUHB2P8+PHYtm2bzXrqJ6CyImkvs2WUYXD0BFV9vTdqRii3qe83og+ww8LCDEcQ/OMf/4h33nlHM1hAnTp1NPutHuZdbjc6OlpTaZZu3ryprGOxWPDGG29g48aNSjajqu6//37lwY68pkRERBj2f+vatasycW1tboLvycFC9OwFW1OmTFGCLXVgU1paajPAxM8//6x5be8hh/w8cO/v27p1a2zdulVznqkfFgwZMgRLly612a7ROag+/y9dumTTjFCfwdULDQ01HC1WTjIuqd+v6cyWJ5sR+ivZjJCZrcDicuhfm28W5PtMJhOmT58OwLZyHxsba3fSxtpIXxnp1q0bunbtCsD1zFZkZCRKS0tdakbozSeMroyU5qvUFbagoCA8+eSThk21jSb0tpfZMsoyOvr7qIMte5kts9lsUzFQD8Qhj0XdF+b48eMAgMWLF6OwsFBTsdRn39SVYbn/MTExhsFWYWGh8nszmUyGD1+qi6ywqofH1v8ued+sWWVlZZg0aZLhoBGy7+Evv/yiLDMKts6cOaN5bTQRt/rzgHaqBf1n1MHWyZMncfXqVc26gPF111Gwpb7u2quU6/t0SuomsIC2zE6ePNlwcmRP8WRmy1/JwJEPKQNLpUYjJPJlfCLkmKNz2egCv3LlSvTu3VtzM7NYLC43I/Tm4CT+3HxUn9kC7mV5Zs6cafOeWnVlttSBhL3MVv369W3Kjb65eVhYmKbSKfs4Ge2XvkJVVFSkGXIduJvZ0g9kANwNtvTl0VMBjzqzJTHY8i5ZxrKysgzfj4mJwaFDh5TXJSUlNsGWfjATo8xWZGQkgoODlazd008/jR49euCf//wnAO01T98H7MsvvwSgPTeNzkH1OVGZYEvdZ1ZdDvWZLfV7PXr0wPr16w235wnORiPUH5u9vn9GoxH6K/l35RgIgcXlYKuiooJNCMkv8ImQY46aVBoFTgMGDMCUKVM0NzMZbLmS2fJmsDVgwACvfXdV6ftsAfeCLdkUSf2emr3MllFlxVFmS13xsTdARmxsrPJ/2afJWbAFQHnCD9wNLP/4xz8CsC2fhYWFNsNky8EO9MdeVFRUY30EjYItfXDlz5lVfyTLvTqgUuvZsye+++475bXMbK1fvx5fffUVtmzZgsuXL2s+89JLL9lsp379+ggNDdUME5+VlYWTJ09q9gOwDbbk5MXOMlv6YEs92qj6IZe98zchIQGA8fVBfY5584GAu5kte4GlzAbVr18fTzzxRPXuZA2Tx1idAzuR9/lnD0IiBxhsObZ+/Xrs37/f8D15g1YLCQmxGeDAlWBLZmYcNcPxpOvXr2POnDle+e7qoG9GCACDBw9Gq1atNOu5k9lytxmh+n19M0L5vQ0bNlTKgAyy9MGW2Wy2qXQ+9NBDyv/DwsKQnJysrKtWWFioNEuUFTEZbOkrJN7IbKmbTOp/l/3797cZcIE8R5ZRdSCv9tRTT2ley8xWx44dMWjQIISGhmr6CNrToEEDhIaGon379obvq8+7s2fPIi4uTnkt+4y524xQ7q/8rLPMVnJyMubOnWtT/vWZLW9yN7Nl71olmxEGBwf7/cif8u/KYCuweDXYWrBgAR588EFERkYiNjYWw4cPx6lTpzTrCCEwb948JCYmIjw8HH369MEPP/ygWae4uBjTp09HgwYNEBERgWHDhilPj6QbN24gPT0dFosFFosF6enpNvNrUGBgsOVYQkKCMsKcXtOmTW2WhYSEIDQ0VDPAgcViUebZspdJkMGCt4Kt6Ohov27GZdSM8Msvv7S5/hlVtkaOHAmg6n22AODChQuYMGECysvLYbVasW7dOpSVlSl/V1eCLaPMlrrPldlsVrZhlNnSB1uyic2rr76q+Rv7WjNCADUyJxvdJYMte/d22TdVOn36NMrKypTyJSfqdqZDhw52r3tyknFp27ZtGDhwoPJa1k0uXLigrOdsgAzZB00GW+qBLxzNkydbI6n7LOv7bPlaZsvR0O/2jlUGW/YGSPEnsgUJg63A4tVga/fu3Zg6dSoOHDiAr7/+GmVlZUhNTdWk5hcvXowlS5bgrbfewqFDhxAfH4/+/ftr2uvPnDkTGzduxLp167B3714UFRVhyJAhmkreqFGjcPToUWRmZiIzMxNHjx5Fenp6jR4veV5GRgbeffddb++G3zK6wMvMlrpvQ1RUlNPMlj4jQu4xakZoMplsKij2gqXi4mKUl5cjJiZGaXbobp8tAEhKSkLz5s1RUVGB77//HgCQnZ2tPG1X99mSlTp9dkpffgBtkBIWFqbsh1GfLdmMUJ/ZioqK0vT/qulgKzg4WPM79efgPhDIa42c9kGvTp06mD17tvL6008/BXAvO+lKE9Tz58/jzTfftLuuejTNPn36YO/evUrWFrj3ACQzMxNvvvkmAOMHhEbnpTqz5Ww0QvW1uVOnTkoTR3/KbLnTjLCiosIm0PVHsm7LhzSBxavBVmZmJsaNG4fWrVujXbt2WLVqFS5cuIDDhw8DuJvVWrZsGV555RWMGDECbdq0wZo1a3Dr1i188sknAACr1YqVK1fi9ddfR79+/dChQwd8/PHHyM7OVoZJPnnyJDIzM/HBBx+ge/fu6N69O95//3384x//sMmkkX8bMWKEYXaGXNO+fXtNxQC4WwEJDQ3VVJbr1q2L27dv4+TJkzb9afSMBjIg54yaERqxV8G3Wq0oKyvDpk2bMGHCBJttAncnAh4yZIjTfQkKCsInn3yCF198EeHh4Vi0aBH27NkD4G5FR5/Z0lcew8LCNA/RAGgmMlYHWzJQ+9Of/oTg4GDDPlsys6Wek+sPf/iDYZ8tTwVAycnJ+OyzzxxWDqlmOQu2wsPD8dprr6F58+Y2y4F75dbR37FJkyYwm80OBwaqqKjARx99pEy8ba/ifOTIEQDGQYTRPsgMlzqQsrev+gdh8rpuMplqbJJpZ5z12bL3YOmtt97C//zP/yjL1RO8d+jQwRO7WmPk9cxb81OSZ/jUncFqtQK4dyPNyclBXl4eUlNTlXXMZjN69+6t9Dk5fPgwSktLNeskJiaiTZs2yjpZWVmwWCyaJgTdunWDxWKx23eluLgYBQUFmh+iQBcTE2Mzl5NRZis8PByffPIJrly5gmeeecbhNvXz1pBrjDJb7sjPz1f6V8lKir6StWfPHpuKpxH5/VlZWUhPT0eTJk3w2WefYd26dQDuVVIjIiIwfvx4m74sMthSf7+6MqFuRiiXx8fHo7y8HPPnz7dpRli/fn0Ad4Mt2Uejffv2qKioqLFgKzg4GI899phmGYMt75IZpR9//BEA8M4772Dz5s1o2bIlgHtZU33mVf7dZNlRPwhwNgCQntlsRnl5OcaOHass048sJ7cps8NG32FUlpw1I5Tbu3DhArZt26Y5F9TbU58TjRo1MjwOT2vfvj2mTp1qs1y9b/qRc+WxTp06FS+//LLN8qCgIIwaNcqvs1uO5nUj/+UznVuEEJg1axZ69uyJNm3aAADy8vIAQNO5VL4+f/68sk5YWJjNk6O4uDjl83l5eYYjKcbGxirr6C1YsACvvvpq1Q6KyA/pb/Iy2CorK4PJZMIbb7yh3BD69+9vk3U4dOiQpn8XM1uVo65EOQu24uLiUFhYqPm95+fnK0+3ZQWmsk9L1d8vm/+pH3CpK34ffPCBzeflPFtms1mpMN53332a99VPp+UySV35BbTB1t///ncUFBQoQ2rXVLBlhMGWd8lKtuwXNWnSJADAhg0b8OOPPypBlr1ASZad8PBw5eFSSEiIYQXYUWZL369SXz+JjY3Fr7/+qgRHrma2nDUjjI+PhxACo0ePVvZdT30+LF68GPHx8YbH4Wkyq6fn6Hx11IxQ/b4/N+cNlCHsSctn7gzTpk3DsWPHlDbUavoTRwjh9GTSr2O0vqPtvPTSS7BarcqPeiJEokBmNAKUrJyYzWZMnz7dcHAAqXPnzspIc8uXL9cMU06uc6d5Wk5ODnbt2qVZtnnzZpth2ivb6Vr9/UYVVWed9fPy8pCTk6NUJBISEjTbVGe21JMlS7K8GWW2IiIikJCQoKyj37+arHj5cyUvENjLaLzzzjsoKipS/j76zJakz64C9s89RwMDyb6Nkv6BlHz4KwM6k8mEvn37apr0Gj0guXnzJrZv3+50NEKZEXIWbPniRMDq37c+s6Vv4i6pM1v+jsFWYPKJkjl9+nR88cUX2LlzpyalLZ+46LNPly9fVrJd8fHxKCkpsWmjrV9HPkFSu3Llik3WTDKbzYiKitL8ENUGRjcs2adB/2RYn3HQmz59umYCXnKdoyGQ9cLDw21GAJw/f75SKZMdyBs3blypfVF/v1FFVb5vr8nVmDFjANzrcxIZGanJeKozW3Ib6r4X+kEzZLClD9gc7UNNCITKnj+zF2yFh4fbDMhiRAY26gDH3rnnaIAMZ+vK8ltWVoaLFy+itLQUY8aMwWuvvaasI8uSuk700UcfoV+/fppmhEZlzihoNNKtWzeH79e0++67D8OGDbNZ/sQTT6CiogJdunQx/Jw89yvT3NrXMNgKTF69MwghMG3aNGzYsAE7duxAs2bNNO83a9YM8fHx+Prrr5VlJSUl2L17N3r06AHg7ig7oaGhmnVyc3Nx/PhxZZ3u3bvDarXi3//+t7LOwYMHYbValXWI6C6jm7esqOhv4kaZLaoe7gRbgHEFUma29Ntzl/r7K5PZktdZWbYiIyM180+ZzWZNM0IhhGaUQXuZLRm8qekzfGxGWHu4Os2Es8yWOmB3N9gy2ra+GaJ8SJWTk4PGjRujuLgYoaGhSElJUeYCCwoKwtmzZzFu3Djlc7KZ8K1bt5QHYEb7J/fN0YMHIQT69u1r931vuHHjBiZOnKi8lhnANWvWODyPZZ/OQDj/2GcrMHm1z9bUqVPxySefYPPmzYiMjFQyWBaLBeHh4TCZTJg5cybmz5+PFi1aoEWLFpg/fz7q1q2LUaNGKeuOHz8es2fPRv369RETE4M5c+agbdu26NevHwCgVatWSEtLw4QJE/Dee+8BACZOnIghQ4YgJSXFOwdP5KPkzTs6OlrJGMvKgbwRyAqFs8wWVZ67o9zpK3/x8fEoLCyslkxPVZsRSvKYoqKilKGo5TaNKrqSrFjKz4eFhSEjI0PzpDs1NRXLli3Dgw8+aPidNYHNCL3L1YERnGW2XOkv6U6wpe8zrg8Kr1+/ruyTOmPVvHlzzfZks7rc3Fxlm/r9e/vttx2eS/5URuvVq2fTlNDeegAzW+S7vPoY4J133oHVakWfPn2QkJCg/Pz9739X1nnhhRcwc+ZMTJkyBZ07d8Z//vMf/Otf/9K0gV66dCmGDx+OJ554Ar/73e9Qt25dfPnll5oTb+3atWjbti1SU1ORmpqKBx54AH/7299q9HiJ/IGsWHfq1EmpvOiDLdnhm5ktz6lqZquiogJlZWXVUgFx1ozQ1WBLlq2YmBjNYB7qzJZRBVGf2QLuTvOgDgKjo6MxY8YMm9YKzGzVHjKI+e1vf+twvdGjR2PFihU2y12d78rRcv35sXz5cjRr1gzLly8HADz77LPo1KmTZp1Lly4p568+E60+r2VF/Ndff1Wuyfr9mDZtmsNmhP4UbLlKBluuBGa+jsFWYPJqZsuVE8NkMmHevHmYN2+e3XXq1KmDN998U5kg0EhMTAw+/vjjyuwmUa0iK4xBQUE2N3wZbMlmXMxseY664l6ZYKukpATl5eU+mdlKSkrSLNc3I9Qz6gfjKgZbtYd8OORsHinZMmbKlCma5UbBib0yba/+og+2evbsqXzX4MGD8Zvf/Abz58/XrHPjxg3DzJb6WEwmk9LSYPv27UoTQEd9tvw9s+UqGWzdvn3by3tSdQy2AhPvDESkIW/eRjdq+eRYBluyeRdVP3ebERoFW76W2ZLHZLFYNFnRRo0aOawgMtgiV7gabNljL7O1Z88e5ZonuRpsqQdvkHPCGVWonQVb9erV0wwEZi+zBdztC2bveAIx2JLXEnW23F8x2ApMvDMQkYajDIOsYMiKhy8OHRwoqhps3bp1C6GhoTaVxKqqSmZLCgoK0gxD36hRI7ebEbqqJiuXsjJN3iGDrcrOJ2f0uaCgIPTq1QsnTpzAmTNnbN5XD7wF2A+21IwGQdA3I5TnvPy8flAZR8GWHHo+EPowuUIeJzNb5KsYbBGRhrzJG92oZV8t2Wzjzp07NbdjtYy6kuZKx3+jv1f37t2rpV+d+vurEmzJYF0GW7Jyqw621Nv46aefAFQt2KopFy9exLvvvuvt3ajVqhpsOeqzFRsbi//6r/9Slsuy3LFjR2zbtk1pkqgProyysupgS05xo89sybIur8cys5WQkADAcbBl9D2SL59DVRUImS22FglMDLaISMNRsNWgQQMAd2/YDz30EPr06VOTu1arjB07FqtXrwbg+ihreg0bNqyWfVGPnlaVZoT6YKtRo0b4/PPPkZycbNiMUH6X/Fc/0qAraqpymZSUxIqSl8nz5OWXX8Yf/vAHtz/vzgAZsiwHBwejb9++yqAX7mS2rl+/rpRpe5kt+T2RkZG4ceMGfve73wG4VynXZ73Vr42yJIEcbAVCS4vvv//eZlJs8n9eHSCDiHyPo2BLXXnfvXt3je1TbWQ2m/HYY49h3LhxlR5lq7om+FUHW0ZZA3eDLZPJhMTERNSpUwePP/645rNG/cNMJlOlA85ArlySliyn/fv3R//+/d3+vFFZsVem9RnjmJgYALaZX6Nga8qUKQgKCkJ0dLSyvr0+W+pg686dO0rzW3Wwp2axWJS+XUaZLZkZI9/UokULb+8CeQCDLSLSsBdsZWRk2AxZTJ4lA5vKBhqVbU6l5+z7K5vZUjexMspsyQqoemRMdzHYqj0qe57oqR9u2CvT+v55LVu2BGCbaTJqdtusWTMsWrQIwL1gTD8RsVGwpf5emcXR75/MgAH3WiJI586dQ5MmTQyPh4g8h80IiciQ/iY+YsQING3a1Et7UzvJildlK5GeyGwZ7YujQVXU1MFWSkqKZrJXo1Ew1ZmtymKwVXtUV7AFAN988w0A+4PTPPDAA5rXzZs3BwBYrVZl2eDBgw0zW2r6zJa+GaEk+2jJzJTRBMzAvf60s2fPRocOHTTvNWvWrNYMmkHkSxhsEZEh3pS9z1eCLfX3G+2LrBg6awKjDrYGDRqELVu22KyjLnfqOYYqi8FW7VFdwVadOnWU+bHsXQefffZZZGVlKa9DQ0Oxb98+9OrVS1n2+9//3ul36Yd41w+QIc8ZGbQ1bNgQWVlZGDFihOH+yWBL/SCjNpCZPyJfxGaERGSIwZb3yQqXt4MtdWbLqP9Ys2bNsGTJEvTr18/hduRxyGaBzvrI6Edkq4zWrVtX+rPkX9w9T55//nnD5XKEQMD+6HDBwcHo1q2bZlmPHj1w8uRJzTrO6CeO12e25Dks34+NjdWUaf25IfuSVde57y/q16+PwsJCb+8GkSFmtojIEIMt3+FqJTIzM1Pz2hOZLaOmpGFhYXj++eddziIZrafOeql17twZPXr0cGd3NV5++WXk5+dX+vPkP9QPBVyxZMkSLFmyxGZ5XFyc8n93p05QnyuunH/6YEvfZ2vkyJHYvHmzsl39CKP2MlvV1V/TXyxduhTPPfect3eDyBCDLSIyxGDLd7g6GuGAAQM0r6s72KqoqEC7du2qvD1HmSp9IHbo0CFN5dddwcHBsFgslf48+Y/qakaozmzJvlKuUgd87lxD7QVboaGhGDZsGK5evQrAdtAL/XcMHTpU+VxtMnz4cLzxxhve3g0iQ7Urz0xELmOw5TsqO1xzdTcjrK7+T0YjtMk+F0bvEbkiPDwcRUVFVdrGqlWr8OijjyqvayqzJYMjGdzpz7XLly8DsH1Qob5OP/bYY8q1orY1IyTyZTwbicgQgy3fcP36dURHR1fqs9VV4XK3wmnkL3/5C+Li4pCYmGg4B1JiYiKuX7/Oju5UaUePHq1ysDVu3DjNa3czW+pgy51rqAyu5PfpgyoZbOmp1zOZTMrna1tmi8iXMdgiIkMMtnxDZQMtAOjTp0+17MPEiRPRpUuXKm3jz3/+s9N1qnKsRHL49epUlWaE7mS29N+nD7YSEhJw7tw5m8/rB5SRzQyZ2SLyHTwbicgQb9b+zdV+Xq4IDQ3Fgw8+WG3bI/IXVWlGWJkHVvaCrS1btuDOnTs266snBjeZTEhMTARwb9JjIvI+DpBBRIaY2SKi2q4qzQgrk9mSwZ1+eVRUlOHcWdHR0bh27Zrymfr16wMArly54tZ+E5Hn8NE1ERmqytxG5D2PP/44/3ZE1eD555/H+PHj3fqMOthyZUAZV5sROhITE2OzPRmAEZH3MdgiIkNsRuifPv/8c2/vAlFAMJqDy5m+ffsq/3dlKHp9sCUnUa7KA5OPP/7YcBAaIvIO1qaIyBCbERIRuadjx46wWq2wWCxuT7IMVC3YkoHb6NGj3f4sEXmOV9ua7NmzB0OHDkViYiJMJhM2bdqkef/SpUsYN24cEhMTUbduXaSlpeHMmTOadYqLizF9+nQ0aNAAERERGDZsGC5evKhZ58aNG0hPT4fFYoHFYkF6ejry8/M9fHRE/q1nz57e3gUiIr8j54pzJbOlz0DJAS8qE6hV1zx4RFS9vBps3bx5E+3atcNbb71l854QAsOHD8e5c+ewefNmHDlyBE2bNkW/fv1w8+ZNZb2ZM2di48aNWLduHfbu3YuioiIMGTJEc6EaNWoUjh49iszMTGRmZuLo0aNIT0+vkWMk8kdCCDzyyCPe3g0iIr8j57hyJWB67LHHNCOHysyW0ciDzjDYIvJNXm1GOHDgQAwcONDwvTNnzuDAgQM4fvw4WrduDQBYsWIFYmNj8emnn+KZZ56B1WrFypUr8be//Q39+vUDcLetcuPGjbFt2zYMGDAAJ0+eRGZmJg4cOICuXbsCAN5//310794dp06dQkpKSs0cLBEREQU82QTblcyWnsViQevWrZUh3N3BYIvIN/nskFXFxcUAtHNIBAcHIywsDHv37gUAHD58GKWlpUhNTVXWSUxMRJs2bbB//34AQFZWFiwWixJoAUC3bt1gsViUdex9f0FBgeaHiIiIyBWVCbZCQkJw/Phxt+f3AhhsEfkqnw22WrZsiaZNm+Kll17CjRs3UFJSgoULFyIvLw+5ubkAgLy8PISFhSE6Olrz2bi4OOTl5SnrGM1NERsbq6xjZMGCBUofL4vFgsaNG1fj0REREVGgevvtt5GWllaj38lgi8g3+WywFRoaioyMDJw+fRoxMTGoW7cudu3ahYEDBzodJU0IobnoGF2A9OvovfTSS7BarcrPL7/8UvmDISIiolpjypQpmpY5NYHBFpFv8umh3zt16oSjR4/CarWipKQEDRs2RNeuXdG5c2cAQHx8PEpKSnDjxg1Nduvy5cvo0aOHss6lS5dstn3lyhXExcXZ/W6z2Qyz2VzNR0RERERU/RhsEfkmn81sqVksFjRs2BBnzpzBt99+i0cffRTA3WAsNDQUX3/9tbJubm4ujh8/rgRb3bt3h9Vqxb///W9lnYMHD8JqtSrrEBEREfkzBltEvsmrma2ioiKcPXtWeZ2Tk4OjR48iJiYGTZo0wWeffYaGDRuiSZMmyM7OxowZMzB8+HBlQAyLxYLx48dj9uzZqF+/PmJiYjBnzhy0bdtWGZ2wVatWSEtLw4QJE/Dee+8BACZOnIghQ4ZwJEIiIiIKCAy2iHyTV4Otb7/9Fg8//LDyetasWQCAsWPHYvXq1cjNzcWsWbNw6dIlJCQkYMyYMfjzn/+s2cbSpUsREhKCJ554Ardv30bfvn2xevVqTb+utWvX4rnnnlOCtGHDhhnO7UVERETkjxhsEfkmk1DPpkd2FRQUwGKxwGq1Iioqytu7Q0RERATgbqD19NNP48MPP/T2rhDVGq7GBn7RZ4uIiIiIjI0YMQITJ0709m4QkQGfHo2QiIiIiBzLyMjw9i4QkR3MbBEREREREXkAgy0iIiIiIiIPYLBFRERERETkAQy2iIiIiIiIPIDBFhERERERkQcw2CIiIiIiIvIABltEREREREQewGCLiIiIiIjIAzipsYuEEACAgoICL+8JERERERF5k4wJZIxgD4MtFxUWFgIAGjdu7OU9ISIiIiIiX1BYWAiLxWL3fZNwFo4RAKCiogK//vorIiMjYTKZvL07fqmgoACNGzfGL7/8gqioKG/vDtVyLI9UFSw/5I9YbqmyWHZsCSFQWFiIxMREBAXZ75nFzJaLgoKC0KhRI2/vRkCIioriiUo+g+WRqoLlh/wRyy1VFsuOlqOMlsQBMoiIiIiIiDyAwRYREREREZEHMNiiGmM2mzF37lyYzWZv7woRyyNVCcsP+SOWW6oslp3K4wAZREREREREHsDMFhERERERkQcw2CIiIiIiIvIABltEREREREQewGCLiIiIiIjIAxhsBaAFCxbgwQcfRGRkJGJjYzF8+HCcOnVKs44QAvPmzUNiYiLCw8PRp08f/PDDD8r7169fx/Tp05GSkoK6deuiSZMmeO6552C1WjXbuXHjBtLT02GxWGCxWJCeno78/Hyn+5idnY3evXsjPDwcSUlJ+Mtf/gJ7Y7Xs27cPISEhaN++vdPt7tmzB0OHDkViYiJMJhM2bdpks864ceNgMpk0P926dXO6baqcQCiPu3btsikzJpMJP/74o9Ntr1ixAs2aNUOdOnXQqVMnfPPNN5r3N2zYgAEDBqBBgwYwmUw4evSo023WFrW57PBa5r8CodwCQHFxMV555RU0bdoUZrMZzZs3x4cffuh027zmVV5tLjsBfc0TFHAGDBggVq1aJY4fPy6OHj0qBg8eLJo0aSKKioqUdRYuXCgiIyNFRkaGyM7OFiNHjhQJCQmioKBACCFEdna2GDFihPjiiy/E2bNnxfbt20WLFi3E448/rvmutLQ00aZNG7F//36xf/9+0aZNGzFkyBCH+2e1WkVcXJx48sknRXZ2tsjIyBCRkZHitddes1k3Pz9f/OY3vxGpqamiXbt2To99y5Yt4pVXXhEZGRkCgNi4caPNOmPHjhVpaWkiNzdX+bl27ZrTbVPlBEJ53LlzpwAgTp06pSk3ZWVlDre9bt06ERoaKt5//31x4sQJMWPGDBERESHOnz+vrPPRRx+JV199Vbz//vsCgDhy5Iirv9qAV5vLDq9l/isQyq0QQgwbNkx07dpVfP311yInJ0ccPHhQ7Nu3z+G2ec2rmtpcdgL5msdgqxa4fPmyACB2794thBCioqJCxMfHi4ULFyrr3LlzR1gsFvHuu+/a3c769etFWFiYKC0tFUIIceLECQFAHDhwQFknKytLABA//vij3e2sWLFCWCwWcefOHWXZggULRGJioqioqNCsO3LkSPGnP/1JzJ0716VgS83Ryfroo4+6tS2qPv5YHmWF+caNG24da5cuXcSkSZM0y1q2bClefPFFm3VzcnJY8XCiNpUdNV7L/Js/ltutW7cKi8XidkWW17zqVZvKjlqgXfPYjLAWkKnjmJgYAEBOTg7y8vKQmpqqrGM2m9G7d2/s37/f4XaioqIQEhICAMjKyoLFYkHXrl2Vdbp16waLxeJwO1lZWejdu7dmYrwBAwbg119/xc8//6wsW7VqFX766SfMnTvXvQN2wa5duxAbG4vk5GRMmDABly9frvbvIGP+Wh4BoEOHDkhISEDfvn2xc+dOh8dZUlKCw4cPa44LAFJTUx3uD9lXW8qOO3gt833+WG6/+OILdO7cGYsXL0ZSUhKSk5MxZ84c3L592+52ec2rfrWl7LjDH695DLYCnBACs2bNQs+ePdGmTRsAQF5eHgAgLi5Os25cXJzynt61a9fw17/+Fc8++6yyLC8vD7GxsTbrxsbG2t2O/JzRd6v37cyZM3jxxRexdu1a5eJQXQYOHIi1a9dix44deP3113Ho0CE88sgjKC4urtbvIVv+Wh4TEhLwv//7v8jIyMCGDRuQkpKCvn37Ys+ePXa3e/XqVZSXl7t1XGRfbSo7ruK1zPf5a7k9d+4c9u7di+PHj2Pjxo1YtmwZPv/8c0ydOtXudnnNq161qey4yl+veQy2Aty0adNw7NgxfPrppzbvmUwmzWshhM0yACgoKMDgwYPx29/+1ibLZLS+ejutW7dGvXr1UK9ePQwcONDhd8vl5eXlGDVqFF599VUkJycbHtc333yjbLdevXpYu3at4XpGRo4cicGDB6NNmzYYOnQotm7ditOnT+Orr75yeRtUOf5YHgEgJSUFEyZMQMeOHdG9e3esWLECgwcPxmuvvQbAcXl09bjIsdpYdpzhtcz3+Wu5raiogMlkwtq1a9GlSxcMGjQIS5YswerVq3H79m1e82pAbSw7zvjrNa96UwbkU6ZPn44vvvgCe/bsQaNGjZTl8fHxAO4+hUhISFCWX7582eaJRWFhIdLS0lCvXj1s3LgRoaGhmu1cunTJ5nuvXLmibGfLli0oLS0FAISHhyuf0z85kWnguLg4FBYW4ttvv8WRI0cwbdo0AHdPXiEEQkJC8K9//Qvdu3fXjGCk3293JCQkoGnTpjhz5kylt0HO+Wt5tKdbt274+OOPAQCdO3e2KY9msxnBwcGG265Kea2NalvZqSxey3yLP5fbhIQEJCUlwWKxKOu0atUKQghcvHiR1zwPq21lp7L85ppXY73DqMZUVFSIqVOnisTERHH69GnD9+Pj48WiRYuUZcXFxTYdLK1Wq+jWrZvo3bu3uHnzps12ZAfLgwcPKssOHDjgUgfL++67TxQXFyvLFi5cqHSwLC8vF9nZ2ZqfyZMni5SUFJGdna0ZlccR2OlgqXf16lVhNpvFmjVrXNouucffy6M9jz/+uHj44YftH7i421l88uTJmmWtWrViZ3EX1eayo8ZrmX8JhHL73nvvifDwcFFYWKiss2nTJhEUFCRu3bpld9u85lVNbS47aoF2zWOwFYAmT54sLBaL2LVrl2Z4THUhX7hwobBYLGLDhg0iOztbPPXUU5qhQwsKCkTXrl1F27ZtxdmzZ+0OWZyWliYeeOABkZWVJbKyskTbtm2dDh2an58v4uLixFNPPSWys7PFhg0bRFRUlOHQ75KroxEWFhaKI0eOiCNHjggAYsmSJeLIkSPKsLOFhYVi9uzZYv/+/SInJ0fs3LlTdO/eXSQlJSnHTtUrEMrj0qVLxcaNG8Xp06fF8ePHxYsvvigAiIyMDIfblsMgr1y5Upw4cULMnDlTREREiJ9//llZ59q1a+LIkSPiq6++EgDEunXrxJEjR0Rubq5bv+dAVJvLDq9l/isQym1hYaFo1KiR+O///m/xww8/iN27d4sWLVqIZ555xuG2ec2rmtpcdgL5msdgKwABMPxZtWqVsk5FRYWYO3euiI+PF2azWTz00EMiOztbeV8OV2z0k5OTo6x37do1MXr0aBEZGSkiIyPF6NGjXRri+NixY6JXr17CbDaL+Ph4MW/ePIdPgl0Ntuzt99ixY4UQQty6dUukpqaKhg0bitDQUNGkSRMxduxYceHCBafbpsoJhPK4aNEi0bx5c1GnTh0RHR0tevbsKb766iuXjv/tt98WTZs2FWFhYaJjx47KEL7SqlWrDI9r7ty5Lm0/kNXmssNrmf8KhHIrhBAnT54U/fr1E+Hh4aJRo0Zi1qxZLmUmeM2rvNpcdgL5mmcSQjftMxEREREREVUZRyMkIiIiIiLyAAZbREREREREHsBgi4iIiIiIyAMYbBEREREREXkAgy0iIiIiIiIPYLBFRERERETkAQy2iIiIiIiIPIDBFhERERERkQcw2CIiIiIiIvIABltERFTrjBs3DiaTCSaTCaGhoYiLi0P//v3x4YcfoqKiwuXtrF69Gvfdd5/ndpSIiPwagy0iIqqV0tLSkJubi59//hlbt27Fww8/jBkzZmDIkCEoKyvz9u4REVEAYLBFRES1ktlsRnx8PJKSktCxY0e8/PLL2Lx5M7Zu3YrVq1cDAJYsWYK2bdsiIiICjRs3xpQpU1BUVAQA2LVrF55++mlYrVYlSzZv3jwAQElJCV544QUkJSUhIiICXbt2xa5du7xzoERE5DUMtoiIiP7fI488gnbt2mHDhg0AgKCgICxfvhzHjx/HmjVrsGPHDrzwwgsAgB49emDZsmWIiopCbm4ucnNzMWfOHADA008/jX379mHdunU4duwYfv/73yMtLQ1nzpzx2rEREVHNMwkhhLd3goiIqCaNGzcO+fn52LRpk817Tz75JI4dO4YTJ07YvPfZZ59h8uTJuHr1KoC7fbZmzpyJ/Px8ZZ2ffvoJLVq0wMWLF5GYmKgs79evH7p06YL58+dX+/EQEZFvCvH2DhAREfkSIQRMJhMAYOfOnZg/fz5OnDiBgoIClJWV4c6dO7h58yYiIiIMP//dd99BCIHk5GTN8uLiYtSvX9/j+09ERL6DwRYREZHKyZMn0axZM5w/fx6DBg3CpEmT8Ne//hUxMTHYu3cvxo8fj9LSUrufr6ioQHBwMA4fPozg4GDNe/Xq1fP07hMRkQ9hsEVERPT/duzYgezsbDz//PP49ttvUVZWhtdffx1BQXe7OK9fv16zflhYGMrLyzXLOnTogPLycly+fBm9evWqsX0nIiLfw2CLiIhqpeLiYuTl5aG8vByXLl1CZmYmFixYgCFDhmDMmDHIzs5GWVkZ3nzzTQwdOhT79u3Du+++q9nG/fffj6KiImzfvh3t2rVD3bp1kZycjNGjR2PMmDF4/fXX0aFDB1y9ehU7duxA27ZtMWjQIC8dMRER1TSORkhERLVSZmYmEhIScP/99yMtLQ07d+7E8uXLsXnzZgQHB6N9+/ZYsmQJFi1ahDZt2mDt2rVYsGCBZhs9evTApEmTMHLkSDRs2BCLFy8GAKxatQpjxozB7NmzkZKSgmHDhuHgwYNo3LixNw6ViIi8hKMREhEREREReQAzW0RERERERB7AYIuIiIiIiMgDGGwRERERERF5AIMtIiIiIiIiD2CwRURERERE5AEMtoiIiIiIiDyAwRYREREREZEHMNgiIiIiIiLyAAZbREREREREHsBgi4iIiIiIyAMYbBEREREREXnA/wGHJH9f7n/bXAAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -450,7 +450,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAE8CAYAAAAsbktAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUVReH303vlTQgJCG00KvSizRBkCYgonRFRIogKviJFAWxgogoKqICooBgpRfpnSC9hBBCCOm9l/n+mMzsbnbTG+W+z5Mnu7N3Zu7Mzszec885v6ORJElCIBAIBAKBQCAQCARlwqSqOyAQCAQCgUAgEAgEDwPCuBIIBAKBQCAQCASCckAYVwKBQCAQCAQCgUBQDgjjSiAQCAQCgUAgEAjKAWFcCQQCgUAgEAgEAkE5IIwrgUAgEAgEAoFAICgHhHElEAgEAoFAIBAIBOWAMK4EAoFAIBAIBAKBoBwQxpVAIBAIBAKBQCAQlAPCuBIIBMWia9eudO3ataq78ciyfft2mjdvjpWVFRqNhvj4+KrukuAB5tatW2g0GtasWVNk2zFjxuDr66u3TKPRMG/evArp2/2Er68vY8aMqepuVBoluS6qCvFbJLjfEcaVQFAGgoKCmDhxIrVr18bKygoHBwc6dOjAsmXLSEtLq+rulZhLly4xb948bt26VdVdUdm/fz8ajcbo37PPPluu+0pNTWXevHns37+/XLdbVmJiYhg2bBjW1tasWLGCn376CVtb2wrb35o1a/TOs5WVFfXq1ePVV18lIiKiwvb7sKGcx1OnThn9vGvXrjRu3LiSe1UxHDlyhHnz5j2yRr9Go+HVV1+t6m480FTms14gqEjMqroDAsGDyt9//83QoUOxtLRk1KhRNG7cmMzMTA4dOsSsWbO4ePEiq1atqupulohLly4xf/58unbtajBTvXPnzqrpVB5Tp06lTZs2esvy97GspKamMn/+fID7amb05MmTJCUlsXDhQnr06FFp+12wYAF+fn6kp6dz6NAhVq5cyT///MOFCxewsbGptH4Iyh8fHx/S0tIwNzcv1fppaWmYmWmHEEeOHGH+/PmMGTMGJyencuqloLIp63VRHlTGs14gqEiEcSUQlILg4GCeffZZfHx82Lt3L15eXupnkydP5saNG/z9999l3o8kSaSnp2NtbW3wWXp6OhYWFpiYVI4D2sLColL2UxCdOnXimWeeqdI+lJaUlJQyeZoiIyMBynXQWpw+9enTh9atWwMwYcIEXF1d+fTTT/n9998ZMWJEqbd7P1HYPfYwo3gkS0tZ1hXcv5T1uigPHuRnvUAAIixQICgVH374IcnJyXz33Xd6hpVCnTp1mDZtmvo+OzubhQsX4u/vj6WlJb6+vsyZM4eMjAy99Xx9fenXrx87duygdevWWFtb8/XXX6vhEhs2bOB///sfNWrUwMbGhsTERACOHz/Ok08+iaOjIzY2NnTp0oXDhw8b9CssLIzx48dTvXp1LC0t8fPzY9KkSWRmZrJmzRqGDh0KQLdu3dRwDCVEzlice2RkJOPHj8fDwwMrKyuaNWvGDz/8oNdGieH/+OOPWbVqlXoO2rRpw8mTJ0t87vMTGxvL66+/TpMmTbCzs8PBwYE+ffpw7tw5g7bp6enMmzePevXqYWVlhZeXF4MHDyYoKIhbt27h5uYGwPz589Xj180r2bt3L506dcLW1hYnJycGDBjA5cuX9fYxb948NBoNly5d4rnnnsPZ2ZmOHTsCcO/ePcaOHUvNmjWxtLTEy8uLAQMGFBqG2bVrV0aPHg1AmzZt0Gg0ejkgGzdupFWrVlhbW1OtWjWef/55wsLC9LYxZswY7OzsCAoKom/fvtjb2zNy5MiSnGYAnnjiCUCeXChqu7m5uSxdupRGjRphZWWFh4cHEydOJC4uTm+bp06donfv3lSrVg1ra2v8/PwYN26cXpsNGzbQqlUr7O3tcXBwoEmTJixbtkz9XDnn+VHC8nTPb0H3GEB8fDzTp0/H29sbS0tL6tSpw5IlS8jNzS3xuSoNheW75L8WlWO+du0azz//PI6Ojri5ufHOO+8gSRKhoaEMGDAABwcHPD09+eSTT4q1r61bt9K4cWOsrKxo3LgxW7ZsMdpX3f7MmzePWbNmAeDn56feO7du3aJLly40a9bM6Dbq169P7969i3dydAgJCeGVV16hfv36WFtb4+rqytChQw3uI+X7P3z4MDNmzMDNzQ1bW1sGDRpEVFSUXltJknjvvfeoWbMmNjY2dOvWjYsXL5a4bwrKM/vXX3/l/fffp2bNmlhZWdG9e3du3Lhh0P748eP07dsXZ2dnbG1tadq0qd41DiV7/pTndaHc52FhYQwcOBA7Ozvc3Nx4/fXXycnJ0Vs/JiaGF154AQcHB5ycnBg9ejTnzp2r0DwuY/c5aL8D5Tfs8uXLWFtbM2rUKL12hw4dwtTUlDfffLNC+id49BCeK4GgFPz555/Url2b9u3bF6v9hAkT+OGHH3jmmWeYOXMmx48fZ/HixVy+fNlg8HL16lVGjBjBxIkTefHFF6lfv7762cKFC7GwsOD1118nIyMDCwsL9u7dS58+fWjVqhXvvvsuJiYmfP/99zzxxBMcPHiQxx57DIC7d+/y2GOPER8fz0svvUSDBg0ICwtj06ZNpKam0rlzZ6ZOncrnn3/OnDlzCAgIAFD/5yctLY2uXbty48YNXn31Vfz8/Ni4cSNjxowhPj5ez7gEWL9+PUlJSUycOBGNRsOHH37I4MGDuXnzZrFCUJKSkoiOjtZb5uLiws2bN9m6dStDhw7Fz8+PiIgIvv76a7p06cKlS5eoXr06ADk5OfTr1489e/bw7LPPMm3aNJKSkti1axcXLlygR48erFy5kkmTJjFo0CAGDx4MQNOmTQHYvXs3ffr0oXbt2sybN4+0tDSWL19Ohw4dOHPmjEHYytChQ6lbty6LFi1CkiQAhgwZwsWLF5kyZQq+vr5ERkaya9cubt++XWDYy9tvv039+vVZtWqVGqbn7+8PyIOKsWPH0qZNGxYvXkxERATLli3j8OHDnD17Vs/TlZ2dTe/evenYsSMff/xxqcL6goKCAHB1dS1yuxMnTlT7N3XqVIKDg/niiy84e/Yshw8fxtzcnMjISHr16oWbmxtvvfUWTk5O3Lp1i99++03d/q5duxgxYgTdu3dnyZIlgDxIOnz4sME1VlyM3WOpqal06dKFsLAwJk6cSK1atThy5AizZ88mPDycpUuXlmpfAAkJCQbXLkBWVlapt6kwfPhwAgIC+OCDD/j777957733cHFx4euvv+aJJ55gyZIlrFu3jtdff502bdrQuXPnAre1c+dOhgwZQsOGDVm8eDExMTHqZEBhDB48mGvXrvHzzz/z2WefUa1aNQDc3Nx44YUXePHFF7lw4YJeftnJkye5du0a//vf/0p8zCdPnuTIkSM8++yz1KxZk1u3brFy5Uq6du3KpUuXDK7tKVOm4OzszLvvvsutW7dYunQpr776Kr/88ovaZu7cubz33nv07duXvn37cubMGXr16kVmZmaJ+6fLBx98gImJCa+//joJCQl8+OGHjBw5kuPHj6ttdu3aRb9+/fDy8mLatGl4enpy+fJl/vrrL/UaL+nzpzyvC5Cfn7179+bxxx/n448/Zvfu3XzyySf4+/szadIkQJ5Q6d+/PydOnGDSpEk0aNCA33//XZ0cKi4FPevLGqUREBDAwoULmTVrFs888wxPP/00KSkpjBkzhgYNGrBgwYIybV8gUJEEAkGJSEhIkABpwIABxWofGBgoAdKECRP0lr/++usSIO3du1dd5uPjIwHS9u3b9dru27dPAqTatWtLqamp6vLc3Fypbt26Uu/evaXc3Fx1eWpqquTn5yf17NlTXTZq1CjJxMREOnnypEEflXU3btwoAdK+ffsM2nTp0kXq0qWL+n7p0qUSIK1du1ZdlpmZKbVr106ys7OTEhMTJUmSpODgYAmQXF1dpdjYWLXt77//LgHSn3/+afS85T92Y3/BwcFSenq6lJOTo7dOcHCwZGlpKS1YsEBdtnr1agmQPv300wKPPyoqSgKkd99916BN8+bNJXd3dykmJkZddu7cOcnExEQaNWqUuuzdd9+VAGnEiBF668fFxUmA9NFHHxV6vMb4/vvvJUDvu8vMzJTc3d2lxo0bS2lpaeryv/76SwKkuXPnqstGjx4tAdJbb71Vov3t3r1bioqKkkJDQ6UNGzZIrq6ukrW1tXTnzp1Ct3vw4EEJkNatW6e3fPv27XrLt2zZYnBc+Zk2bZrk4OAgZWdnF9hGOecFHUdwcLC6rKB7bOHChZKtra107do1veVvvfWWZGpqKt2+fbvA/ReEsv/C/ho1aqS2V+6V77//3mBb+a9L5ZhfeukldVl2drZUs2ZNSaPRSB988IG6PC4uTrK2tpZGjx5d6L6aN28ueXl5SfHx8eqynTt3SoDk4+NTaH8++ugjg3MtSZIUHx8vWVlZSW+++abe8qlTp0q2trZScnKykTNXOLrPQIWjR49KgPTjjz+qy5Tz36NHD73n42uvvSaZmpqqxxkZGSlZWFhITz31lF67OXPmSIDeeSsIQJo8ebL6XnluBQQESBkZGeryZcuWSYB0/vx5SZLk78zPz0/y8fGR4uLi9Lap25eSPn/K87pQ7nPd56kkSVKLFi2kVq1aqe83b94sAdLSpUvVZTk5OdITTzxR4HWtS1HPeoX8v0XG7nPd7en+nuXk5EgdO3aUPDw8pOjoaGny5MmSmZlZoc8ggaCkiLBAgaCEKKF49vb2xWr/zz//ADBjxgy95TNnzgQwyM3y8/MrMFRm9OjRerkhgYGBXL9+neeee46YmBiio6OJjo4mJSWF7t27c+DAAXJzc8nNzWXr1q30799fzaHRxVhIVXGOy9PTUy/3xtzcnKlTp5KcnMy///6r13748OE4Ozur7zt16gTAzZs3i7W/uXPnsmvXLr0/T09PLC0t1RnNnJwcYmJisLOzo379+pw5c0Zdf/PmzVSrVo0pU6YYbLuo4w8PDycwMJAxY8bg4uKiLm/atCk9e/ZUv2NdXn75Zb331tbWWFhYsH//foPQuNJw6tQpIiMjeeWVV/RyJJ566ikaNGhgNOdPmWEuLj169MDNzQ1vb2+effZZ7Ozs2LJlCzVq1Ch0uxs3bsTR0ZGePXuq12R0dDStWrXCzs6Offv2Adocsr/++qtAL46TkxMpKSns2rWrRH0vDGP32MaNG+nUqRPOzs56fe7Rowc5OTkcOHCg1PtbsWKFwbW7a9cu1StaFiZMmKC+NjU1pXXr1kiSxPjx49XlTk5O1K9fv9B7TbnGR48ejaOjo7q8Z8+eNGzYsNT9c3R0ZMCAAfz888+qBzcnJ4dffvmFgQMHlio/T/cZmJWVRUxMDHXq1MHJyUnvnld46aWX9O7xTp06kZOTQ0hICCB7hTIzM5kyZYpeu+nTp5e4b/kZO3asXr5q/ufe2bNnCQ4OZvr06QY5lUpfSvP8Ka/rQpf8z7ROnTrprbt9+3bMzc158cUX1WUmJiZMnjy5WNtXKOhZXx6YmJiwZs0akpOT6dOnD19++SWzZ882+rsoEJQWERYoEJQQBwcHQA5dKA4hISGYmJhQp04dveWenp44OTmpP/AKfn5+BW4r/2fXr18HKDTsIiEhgczMTBITE8tV9jkkJIS6desahGooYYT5j6tWrVp67xVDq7iGRpMmTYwq5eXm5rJs2TK+/PJLgoOD9XIAdMPXgoKCqF+/vp7CWXFRjkU3RFMhICCAHTt2GAg55P+uLC0tWbJkCTNnzsTDw4O2bdvSr18/Ro0aVaqBQ2F9atCgAYcOHdJbZmZmVmR4V35WrFhBvXr1MDMzw8PDg/r16xt838a2e/36dRISEnB3dze6XUWgo0uXLgwZMoT58+fz2Wef0bVrVwYOHMhzzz2HpaUlAK+88gq//vorffr0oUaNGvTq1Ythw4bx5JNPluhYdDF2j12/fp3//vtPzbsrqM+l4bHHHjM6eFMMubKQ/75ydHTEyspKDc3TXR4TE1PgdpTrqW7dugaf5Z+oKCmjRo3il19+4eDBg3Tu3Jndu3cTERHBCy+8UKrtpaWlsXjxYr7//nvCwsJUow3k511+inr2FHTsbm5uehNCpaGofSuhtoU9m0vz/Cmv60LBysrK4N5wdnbWe36HhITg5eVlEJaZ/7evKAp61pcX/v7+ap5g48aNeeeddypsX4JHE2FcCQQlxMHBgerVq3PhwoUSrVdc71BhqmX5P1MS7T/66COaN29udB07OztiY2OL18kKxNTU1Ohy3YFRaVi0aBHvvPMO48aNY+HChWps/vTp0ytNiMAYxr7H6dOn079/f7Zu3cqOHTt45513WLx4MXv37qVFixYV2h9dD19xKcgoKGq7ubm5uLu7s27dOqPrKIM0jUbDpk2bOHbsGH/++Sc7duxg3LhxfPLJJxw7dgw7Ozvc3d0JDAxkx44dbNu2jW3btvH9998zatQoVTyloHsrf7K9grHvJjc3l549e/LGG28YXadevXrGT0A5UtLjAOP3VUXda6Wld+/eeHh4sHbtWjp37szatWvx9PQs9QB6ypQpfP/990yfPp127drh6Oio1kIyds9X5fmoqn2X93VR0Lr3A6W5b5TSInfv3iUmJqbcPGMCAQjjSiAoFf369WPVqlUcPXqUdu3aFdrWx8eH3Nxcrl+/ricOERERQXx8PD4+PqXuhyJs4ODgUOhAxc3NDQcHhyINwpKEB/r4+PDff/+Rm5urN7i+cuWK+nllsGnTJrp168Z3332ntzw+Pl5vltbf35/jx4+TlZVVoIBGQcevHMvVq1cNPrty5QrVqlUrdniTv78/M2fOZObMmVy/fp3mzZvzySefsHbt2mKtb6xPioqfwtWrVyvt/BvD39+f3bt306FDh2JJnLdt25a2bdvy/vvvs379ekaOHMmGDRvU0CYLCwv69+9P//79yc3N5ZVXXuHrr7/mnXfeoU6dOqo3ID4+Xi+0Kr/3tKg+JycnV2odsfzoHocuJTmO0qJcL4o3XBdj131+Cnt2mJqa8txzz7FmzRqWLFnC1q1befHFF0s9YN+0aROjR4/WU7pLT08vdQFj3WOvXbu2ujwqKqpcQngLQ3mGK6I6hfWvPJ4/FYmPjw/79u0jNTVVz3tlTB2xPCnpffPVV1+xa9cu3n//fRYvXszEiRP5/fffK7SPgkcLkXMlEJSCN954A1tbWyZMmEBERITB50FBQaqMbt++fQEM1MY+/fRTQM6RKS2tWrXC39+fjz/+mOTkZIPPFblhExMTBg4cyJ9//smpU6cM2ikzl8oPdHEGKX379uXevXt6ilvZ2dksX74cOzs7unTpUppDKjGmpqYGM68bN240kCMfMmQI0dHRfPHFFwbbUNZXBgT5j9/Ly4vmzZvzww8/6H124cIFdu7cqX7HhZGamkp6erreMn9/f+zt7Q0k+YtD69atcXd356uvvtJbf9u2bVy+fLlM11VZGTZsGDk5OSxcuNDgs+zsbPUcxsXFGXx3igdWOab8IUsmJiZqrpLSRhmg6uZFpaSkGJQFKKrPR48eZceOHQafxcfHk52dXextlRYHBweqVatmkN/15ZdfVvi+da9x3dC6Xbt2cenSpSLXL+rZ8cILLxAXF8fEiRNJTk7m+eefL3Vfjd3zy5cvL9RTURg9evTA3Nyc5cuX6223LAqRxaVly5b4+fmxdOlSg3On9KU8nj+VQe/evcnKyuKbb75Rl+Xm5rJixYoK3a+x+z8nJ4dVq1YZtA0ODmbWrFkMGTKEOXPm8PHHH/PHH3/w448/VmgfBY8WwnMlEJQCf39/1q9fr8rdjho1isaNG5OZmcmRI0dUSXKAZs2aMXr0aFatWkV8fDxdunThxIkT/PDDDwwcOJBu3bqVuh8mJiZ8++239OnTh0aNGjF27Fhq1KhBWFgY+/btw8HBgT///BOQw+d27txJly5deOmllwgICCA8PJyNGzdy6NAhnJycaN68OaampixZsoSEhAQsLS154oknjObOvPTSS3z99deMGTOG06dP4+vry6ZNmzh8+DBLly4ttuBHWenXrx8LFixg7NixtG/fnvPnz7Nu3Tq9GWiQ8z5+/PFHZsyYwYkTJ+jUqRMpKSns3r2bV155hQEDBmBtbU3Dhg355ZdfqFevHi4uLjRu3JjGjRvz0Ucf0adPH9q1a8f48eNVKWRHR0e9+kMFce3aNbp3786wYcNo2LAhZmZmbNmyhYiICJ599tkSH7e5uTlLlixh7NixdOnShREjRqhS7L6+vrz22msl3mZ50aVLFyZOnMjixYsJDAykV69emJubc/36dTZu3MiyZct45pln+OGHH/jyyy8ZNGgQ/v7+JCUl8c033+Dg4KAOGCdMmEBsbCxPPPEENWvWJCQkhOXLl9O8eXPVE9yrVy9q1arF+PHjmTVrFqampqxevRo3Nzdu375drD7PmjWLP/74g379+jFmzBhatWpFSkoK58+fZ9OmTdy6dUv1hI4ZM4YffviB4ODgAiX0S8uECRP44IMPmDBhAq1bt+bAgQNcu3atXPdREIsXL+app56iY8eOjBs3jtjYWJYvX06jRo2MTt7o0qpVK0AuHfDss89ibm5O//79VaOrRYsWNG7cmI0bNxIQEEDLli0NtlHc89qvXz9++uknHB0dadiwIUePHmX37t16OZYlQanZtHjxYvr160ffvn05e/Ys27ZtM8hRKm9MTExYuXIl/fv3p3nz5owdOxYvLy+uXLnCxYsXVWO/rM+fymDgwIE89thjzJw5kxs3btCgQQP++OMPNSy9NMJJxaFRo0a0bduW2bNnExsbi4uLCxs2bDCYEJEkiXHjxmFtbc3KlSsBuWTE5s2bmTZtGj169FBLdwgEZaLS9QkFgoeIa9euSS+++KLk6+srWVhYSPb29lKHDh2k5cuXS+np6Wq7rKwsaf78+ZKfn59kbm4ueXt7S7Nnz9ZrI0myTPRTTz1lsB9FUnbjxo1G+3H27Flp8ODBkqurq2RpaSn5+PhIw4YNk/bs2aPXLiQkRBo1apTk5uYmWVpaSrVr15YmT56sJxX8zTffSLVr15ZMTU31ZGzzy99KkiRFRERIY8eOlapVqyZZWFhITZo0MZDbVaR9jUmQU4DseUmOPT09XZo5c6bk5eUlWVtbSx06dJCOHj1qtL+pqanS22+/rX4Pnp6e0jPPPCMFBQWpbY4cOSK1atVKsrCwMOjf7t27pQ4dOkjW1taSg4OD1L9/f+nSpUt6+1CkkKOiovSWK7K/DRo0kGxtbSVHR0fp8ccfl3799ddCj1+SjEuxK/zyyy9SixYtJEtLS8nFxUUaOXKkKpWuMHr0aMnW1rbI/RRnfyXZ7qpVq6RWrVpJ1tbWkr29vdSkSRPpjTfekO7evStJkiSdOXNGGjFihFSrVi3J0tJScnd3l/r16yedOnVK3camTZukXr16Se7u7pKFhYVUq1YtaeLEiVJ4eLjevk6fPi09/vjjaptPP/20QCl2Y/eYJElSUlKSNHv2bKlOnTqShYWFVK1aNal9+/bSxx9/LGVmZqrthgwZIllbWxtIZ+enqPPYpUsXPSl2SZKv0fHjx0uOjo6Svb29NGzYMCkyMrJAKfb811lB30n+fRUk+75582YpICBAsrS0lBo2bCj99ttv0ujRo4uUYpckWc6+Ro0akomJiVFp7A8//FACpEWLFhk9H8U9r3Fxcepzx87OTurdu7d05coVycfHR09WvKDzX5BE9/z589XnSNeuXaULFy4YbLMgKECKPf9zq6DzfujQIalnz56Svb29ZGtrKzVt2lRavny5XpuyPH/Kcl0UtK6xEghRUVHSc889J9nb20uOjo7SmDFjpMOHD0uAtGHDBoNt6FLUs163z/mf7UFBQVKPHj0kS0tLycPDQ5ozZ460a9cuve9ZkcHfvHmz3rq3b9+WHBwcpL59+xa6X4GguGgkqYoyXAUCgUAgeADx8PBg1KhRfPTRR1XdlQeKZcuW8dprr3Hr1i0DNTsQ5/VhZevWrQwaNIhDhw7RoUOHqu6OQFDhCONKIBAIBIJicvHiRdq1a8fNmzcrPGTsYUKSJJo1a4arq6ta50wXcV4fDtLS0vREbHJycujVqxenTp3i3r17xRK4EQgedETOlUAgEAgExaRRo0ZqIXFB0aSkpPDHH3+wb98+zp8/X6AqmzivDwdTpkwhLS2Ndu3akZGRwW+//caRI0dYtGiRMKwEjwzCcyUQCAQCgaBCuHXrFn5+fjg5OfHKK6/w/vvvV3WXBBXI+vXr+eSTT7hx4wbp6enUqVOHSZMm8eqrr1Z11wSCSkMYVwKBQCAQCAQCgUBQDog6VwKBQCAQCAQCgUBQDgjjSiAQCAQCgUAgEAjKASFoYYTc3Fzu3r2Lvb19hRW9EwgEAoFAIBAIBPc/kiSRlJRE9erVMTEp3DcljCsj3L17F29v76ruhkAgEAgEAoFAILhPCA0NpWbNmoW2EcaVEezt7QH5BDo4OFRxbwQCgUAgEAgEAkFVkZiYiLe3t2ojFIYwroyghAI6ODgI40ogEAgEAoFAIBAUK11ICFoIBAKBQCAQCAQCQTkgjCuBQCAQCAQCgUAgKAeEcSUQCAQCgUAgEAgE5YDIuRIIBIJHGEmSyM7OJicnp6q7IngAMTU1xczMTJQtEQgEgjyEcSUQCASPKJmZmYSHh5OamlrVXRE8wNjY2ODl5YWFhUVVd0UgEAiqHGFcCQQCwSNIbm4uwcHBmJqaUr16dSwsLIT3QVAiJEkiMzOTqKgogoODqVu3bpHFNQUCgeBhRxhXAoFA8AiSmZlJbm4u3t7e2NjYVHV3BA8o1tbWmJubExISQmZmJlZWVlXdJYGgcoiPgbsh0LBlVfdEcJ8hjCuBQCB4hBGeBkFZEdeQ4JFk2TsQehO+3V7VPRHcZ4gnokAgEAgEAoFAUBIi78r/00XOqkAfYVwJBAKBQCAQCAQlQZM3hI6Pqdp+CO47hHElEAgEAoFAIBCUBEUAKD62avshuO8QxpVAIBAIHijGjBmDRqNBo9FgYWFBnTp1WLBgAdnZ2VXdNYFA8KiRIIwrgT7CuBIIBALBA8eTTz5JeHg4169fZ+bMmcybN4+PPvrIoF1mZmYV9K5w7sc+CQSCEpCbCxlp8uvUlKrti+C+QxhXAoFAIHjgsLS0xNPTEx8fHyZNmkSPHj34448/GDNmDAMHDuT999+nevXq1K9fH4DQ0FCGDRuGk5MTLi4uDBgwgFu3bqnb279/P4899hi2trY4OTnRoUMHQkJCADh37hzdunXD3t4eBwcHWrVqxalTpwCYN28ezZs31+vb0qVL8fX1Vd+Xtk8CgeA+JTlRNrAA0oRxJdBHSLELBAKBQEtGOtwLrdx9enqDZdnqI1lbWxMTIyeW79mzBwcHB3bt2gVAVlYWvXv3pl27dhw8eBAzMzPee+89nnzySf777z9MTEwYOHAgL774Ij///DOZmZmcOHFCLao8cuRIWrRowcqVKzE1NSUwMBBzc/MS9a+kfbKwsCjT+RAIBBWIbiigMK4E+ahS4+rAgQN89NFHnD59mvDwcLZs2cLAgQMLbB8eHs7MmTM5deoUN27cYOrUqSxdulSvzZo1axg7dqzeMktLS9LT0yvgCAQCgeAh414oLJxSuft8Zzn41C3VqpIksWfPHnbs2MGUKVOIiorC1taWb7/9VjVQ1q5dS25uLt9++61qMH3//fc4OTmxf/9+WrduTUJCAv369cPf3x+AgIAAdR+3b99m1qxZNGjQAIC6dUve15L2qVevXqU6HwKBoBJQjCs7BxEWKDCgSo2rlJQUmjVrxrhx4xg8eHCR7TMyMnBzc+N///sfn332WYHtHBwcuHr1qvpe+eESCAQCQRF4esvGTmXvs4T89ddf2NnZkZWVRW5uLs899xzz5s1j8uTJNGnSRM/zc+7cOW7cuIG9vb3eNtLT0wkKCqJXr16MGTOG3r1707NnT3r06MGwYcPw8vICYMaMGUyYMIGffvqJHj16MHToUNUIKy4l7ZNAILiPiY2Spdg9awrPlcCAKjWu+vTpQ58+fYrd3tfXl2XLlgGwevXqAttpNBo8PT2Lvd2MjAwyMjLU94mJicVeVyAQCB4qLK1K7UWqTLp168bKlSuxsLCgevXqmJlpf85sbW312iYnJ9OqVSvWrVtnsB03NzdA9hpNnTqV7du388svv/C///2PXbt20bZtW+bNm8dzzz3H33//zbZt23j33XfZsGEDgwYNwsTEBEmS9LaZlZVlsJ/S9EkgENynRN4FV3ewdxKeK4EBD6WgRXJyMj4+Pnh7ezNgwAAuXrxYaPvFixfj6Oio/nl7l3wWVSAQCASVh62tLXXq1KFWrVp6hpUxWrZsyfXr13F3d6dOnTp6f46Ojmq7Fi1aMHv2bI4cOULjxo1Zv369+lm9evV47bXX2LlzJ4MHD+b7778HZEPo3r17egZWYGBgkf0vbp8EAsF9SORdcPMCaxvhuRIY8NAZV/Xr12f16tX8/vvvakx7+/btuXPnToHrzJ49m4SEBPUvNLSSk7kFAoFAUGGMHDmSatWqMWDAAA4ePEhwcDD79+9n6tSp3Llzh+DgYGbPns3Ro0cJCQlh586dXL9+nYCAANLS0nj11VfZv38/ISEhHD58mJMnT6o5WV27diUqKooPP/yQoKAgVqxYwbZt28rcJ4FAcB8TeRfcq4ONnTCuBAY8dMZVu3btGDVqFM2bN6dLly789ttvuLm58fXXXxe4jqWlJQ4ODnp/AoFAIHg4sLGx4cCBA9SqVYvBgwcTEBDA+PHjSU9Px8HBARsbG65cucKQIUOoV68eL730EpMnT2bixImYmpoSExPDqFGjqFevHsOGDaNPnz7Mnz8fkIUvvvzyS1asWEGzZs04ceIEr7/+epn7JBAI7lMkSWtcWdsK40pggEbKHyxeRWg0miLVAnXp2rUrzZs3N1ALNMbQoUMxMzPj559/Lta2ExMTcXR0JCEh4cH8kYu+BxFh0KhVVfdEIBDcp6SnpxMcHIyfnx9WVmWTQRc82ohrSfBIER8Dr4+Eye9C1F34fS2s2FLVvRJUMCWxDR46z1V+cnJyOH/+vKr69Ejw7svw2dtV3QuBQCAQCASCh4uYSPm/q7scFpiRBjk5VdsnwX1FlaoFJicnc+PGDfV9cHAwgYGBuLi4UKtWLWbPnk1YWBg//vij2kZJFE5OTiYqKorAwEAsLCxo2LAhAAsWLKBt27bUqVOH+Ph4PvroI0JCQpgwYUKlHluVkiFqegkEAoFAIBCUO4nx8n9HFzksECAtFezsC1xF8GhRpcbVqVOn6Natm/p+xowZAIwePZo1a9YQHh7O7du39dZp0aKF+vr06dOsX78eHx8fbt26BUBcXBwvvvgi9+7dw9nZmVatWnHkyBHV+BIIBAKBQCAQCEpFYpxc48reQVYLBEhJFMaVQKVKjauuXbsa1AfRZc2aNQbLikoR++yzzwotMPxIIUkgCigLBAKBQCAQlA/7/gRTUzAxlb1XAH+ugwlvVG2/BPcND33O1SNHVqb2dbZhIUuBQCAQCAQCQSlIiIM7wdrxVXUf8PSG1OSq7ZfgvkIYVw8bsdHa15kZVdcPgUAgEAgEgoeJ8LxUlcFj5P8aDdRrLBtdAkEewrh62IiN1L7W9WIJBAKBQCAQCErPvTtySGCvZ7TLHJzkPCyBIA9hXD1sxOl4rjKE50ogEAgEAoGgXIiNBCdXMNORLHBwlhUE74+ysYL7AGFcPWwkJ2pfZwpJdoFAIBAIBIJyITFOK2Kh4OAMOdmQIvKuBDLCuHrYSNExro7vEzMpAoFAUI7cunULjUaj1lw0xv79+9FoNMTHxwOy8q2Tk1Ol9E8gqApycyVGjNjM5ctRVd2ViiUhTg4D1MXBWf4vQgMFeQjj6mEjJRms8uoubN8I545Dbg5kZ1dtvwQCgaCcGDNmDAMHDjRYnt+oqQi8vb0JDw+ncePGxV5n+PDhXLt2TX0/b948mjdvXgG9Ewiqhri4NDZsuMC0aduruisVS2K81phScBTGlUCfKq1zJagAUpLApRrczVO0CQ2C/X9ByA34bEPV9k0gEAgecExNTfH09CzROtbW1lhbW1dQjwSCqiclRZYmT0t7yCdyE+MMjSvFkyWMK0EewnP1sJGSBO41tO/jY+HCKUiKh/DQKuuWQCAQVCbGvENLly7F19dXfa94wBYtWoSHhwdOTk4sWLCA7OxsZs2ahYuLCzVr1uT7779X1zEWFvjPP/9Qr149rK2t6datG7du3dLbr25Y4Jo1a5g/fz7nzp1Do9Gg0WhYs2YN48aNo1+/fnrrZWVl4e7uznfffVcep0QgqDCSk2V14rS0h7i+Zm6u7LlyzGdcWdmAhaWQYxeoCM/Vw0ZKElTz0L7PzABrW0hLgWv/gZd31fVNIBDc96SmZnHlSnTRDcuRBg2qYWNjXqn7VNi7dy81a9bkwIEDHD58mPHjx3PkyBE6d+7M8ePH+eWXX5g4cSI9e/akZs2aBuuHhoYyePBgJk+ezEsvvcSpU6eYOXNmgfsbPnw4Fy5cYPv27ezevRsAR0dH6tWrR+fOnQkPD8fLywuAv/76i9TUVIYPH14xBy8QlBNa46pyPFdpaVls23aDwYMDKmV/gFwoOCfb0HOl0YCrB0SFV15fBPc1wrh62EhJBDsH7fv0VEhPk18HX4MuT1VNvwQCwQPBlSvRtGq1qlL3efr0S7Rs6VWidf766y/s7Oz0luXk5JR43y4uLnz++eeYmJhQv359PvzwQ1JTU5kzZw4As2fP5oMPPuDQoUM8++yzBuuvXLkSf39/PvnkEwDq16/P+fPnWbJkidH9WVtbY2dnh5mZmV54Yfv27alfvz4//fQTb7zxBgDff/89Q4cONThOgeB+QzGuUlMrx3M1Zco2vvvuLBERr+Publsp+1TD/vILWoA8ca0UGBY88gjj6mEjJQlsdYyrK+dAygV7RxEWKBAIiqRBg2qcPv1Spe+zpHTr1o2VK1fqLTt+/DjPP/98ibbTqFEjTEy0EfIeHh56YhWmpqa4uroSGRlpbHUuX77M448/rresXbt2JeqDwoQJE1i1ahVvvPEGERERbNu2jb1795ZqWwJBZZKUJNfVzM7OLfO2WrVahZWVGYcPjzP6+Z07iXz33VkAEhLSK9G4ipf/O7gYfubpDcf2VE4/BPc9wrh6mMjOhrRUsLWHbv1g319yOGA1T+jQE3ZtkaXZNZqq7qlAILhPsbExL7EXqSqwtbWlTp06esvu3LmjvjYxMUHKV4oiK8twVt3cXD8cUaPRGF2Wm1v2QWNRjBo1irfeeoujR49y5MgR/Pz86NSpU4XvVyAoK4rnKv89VxrOnCk8vO7SJa3ce0JCRpn3V2wSYuX/jk6Gn9nZQ2pK5fVFcF8jBC0eJlLzCtjZ2sPIV6FLX/l9LX+o4St/LtRsBALBI4Cbmxv37t3TG+wVVpuqtAQEBHDixAm9ZceOHSt0HQsLC6MhjK6urgwcOJDvv/+eNWvWMHbs2HLtq0BQUSjGVWGeqyNHQomNTSvzvm7fTlBfJySkl3l7xSYxXhausDSi/GllI6dhVMIkjOD+RxhXDxMpSfJ/O3v5v4WV/N+9OlSvJb++K2KCBQLBw0/Xrl2Jioriww8/JCgoiBUrVrBt27Zy38/LL7/M9evXmTVrFlevXmX9+vWsWbOm0HV8fX0JDg4mMDCQ6OhoMjK0s+8TJkzghx9+4PLly4wePbrc+ysQlDe//36FP/6Q67gpRlZ+JEmiQ4fVDBu2kZycshkgoaEJWFqaApXtucqTYTcW/WOdF5qYUXbjUfDgI4yrh4nkRPm/bZ5xZZoX9eleHdyqg8YEIsOqpm8CgUBQiQQEBPDll1+yYsUKmjVrxokTJ3j99dfLfT+1atVi8+bNbN26lWbNmvHVV1+xaNGiQtcZMmQITz75JN26dcPNzY2ff/5Z/axHjx54eXnRu3dvqlevXu79FQjKm4EDf+Gff64Dcr2r3FzD0MDERNkI2rMnGDOzhRw4EGJ0W8UJK7xzJ5GGDd0AeO65zaXtdslJjDOUYVewtpH/p6VWXn8E9y0i5+phQvFcKcZVUrz83706mJqCpRVkVKILXSAQCCqAgjxDXbt21Rucvfzyy7z88st6bRQVwIK2s3//foNlunWrfH19DQaA/fr1M6hRpRvSN2bMGMaMGaO+t7S0ZNOmTUaPISUlhbi4OMaPH2/0c4Hgfic5ORMHB0u9ZXfvJum979JlDdnZ7/Dnn9cYMKA+mjxvkFKMGODtt/cwenRz6tVz1Vs3MjKVGjUcOHv2HhkZOWRl5WBmZqJuo8JIiDWUYVewyjOu0oVxJRCeq4eLlHyeq/gY+b9HXlFhc3MwktAtEAgEgqolNzeXyMhIFi5ciJOTE08//XRVd0kgKBWKcqAuf/993WDZO+/sY9CgX7hwQavEee1ajPp60aJDDBu20WC9qKgU3Nxs1Pcff3wEE5MFBYYklguhN+Hi6YJrhSqeq3QRFigQxtXDRUqSnGhplqd01W8E+NQFp7xZH3NLyKrE+GSBQCAQFIvbt2/j4eHB+vXrWb16NWZmIrBE8GDh7CzneSclGRo5s2btUl+PGCGXOvjsM1n4xcRE63HKX2Pvzp1Eg21FRaXi5mbDr78+A8DHHx8FKBexjAL5fK7836eu8c+tRFigQIswrh4mkpO0YhYAdRvDO8u1yZfm5pBVgTM7AoFAICgVSrhhaGgo3bt3r+ruCAQlxsfHCTCu4OflpS2EvXBhN0xMNKSnZwNahcHiCl1ERaXg7m5Lnz6yoaMYVUpeV4VgkRfm2PQx7t5N4urVaP3PrfIUBEVYoABhXD1cpCRpQwKNYW4hwgIFAoFAIBCUOwEBcjHw8PBkg89SU7Vjj9q1nenYsZb6PitLNqoyMgzLE+RflpmZQ1JSJtWq2WBnZ6H3WYXJsufmQEwkjJgE5ha0a/cdDRqs0AtnFJ4rgS7CuHqYSEkCm0KMKwtLyBRhgQKBQCAQCMqXBg2qYW5uYhDKl5srkZiYwVtvdeCPP55Fo9GwceNQVq2SRWCysmQDKiMj22CbycmZeoaZks+VXzADDGXZJUkqH29WQhxkZ0E1TyRJUutsjRmzVdvG1FQeYwnPlQBhXD1cpCWDjW3Bn5uJsECBQCAQCATlg65yZtu2NalRw4GwMH3jKjExA0mCli296N+/PgDu7rZ06eILFO65AjkMUEHJ58rvtQKIj9f3XK1ffx5Hxw8IDU0waFsi4vJCAJ2rcfWqLLjRsqUXFy9GkZmp02drG0hLMbIBwaOGMK4eJtJSCzeuzC3k2ReBQCAQCASCMqIYRj4+jnTv7oe/vzPbtwfp1bqKi5NzopydrfXWNTOTh6BKzpWSg6Xg4SGPZyIitAaLogioGFdr1w6iR4/agGFYoBK29/77B+nSZU2hYYNnz4YXXGNLx7jaseMGFhamzJzZjvT0bP1tWtkIz5UAEMbVw0VqirZKuDFEWKBAIBAIBIJy4JdfLlCnzucAfPhhT0xNTXjllTYEBt4jJCRebad4lJycrPTWNzeXh6D5wwI7d/YBoGlTDwA9T5hiXNnby2GBI0c2ZdeuF3B2tjLwXMXFye+//vo0Bw6EEBh4z+hxBAbeo2XLVaxZE0hkpBHPU1y0HPlj58COHUF06lRLlYLXDVmUPVfCuBII4+rhIq0I40rUuRIIBAKBQFAOzJq1i9BQ2fCxtpZLB7Ro4Qno16tSjB5Fql1B8VzlDwts0sQdkIUvbGzMuXkzTl1HybnKHxbo6WnHvXuykIbiAVNyo/L3Iz/K9seN+wMPj4/RaOZz7pyOIRYXDc7VkIDDh0N54gk/bGzkkjd6xpWVrfBcCQBhXD1cFGVcmVmInCuBQCCoJNasWYOTk1NVd4N58+bRvHnzqu6G4CHD0lJbi83KSn5dq5Yjlpamam4SaD1Ihp4rU8AwLNDeXjac3NxsqF3bmeDgeHUdredK37jy9nYkNDSRF17YgrX1+6SmZnHpUpReG93wQl2M1cfSK3qcZ1yFhiaSmJhBs2YeBRhX1qKIsAAooXElq6TcJj29fOQuDxw4QP/+/alevToajYatW7cW2j48PJznnnuOevXqYWJiwvTp042227hxIw0aNMDKyoomTZrwzz//lEt/72uys+WQv8JyrixEEWGBQPDgM2bMGAYOHFjV3SiS4cOHc+3atQrfz5o1a9BoNAZ/3377bYXvW/DoohhUoDWMTE1NcHW1UfOsQOsxcnQsXligkvrk5WWPj4+jngeqIEELGxtztmy5wtq1/wFw9GgoISEJaj4WYDzkD4wKXiieOEA1rk6eDAOgSZNCjCsRFiigFMZVnTp1CA0NLZedp6Sk0KxZM1asWFGs9hkZGbi5ufG///2PZs2aGW1z5MgRRowYwfjx4zl79iwDBw5k4MCBXLhwoVz6fN+iKNQUFRaYKTxXAoFAUBlYW1vj7u5eKftycHAgPDxc72/kyJGVsu+ysnHjRY4fv6OnCie4/9E1rhTlP5CNJiXUD2RBC3t7CzUMUKGgsEDFMPPyssPNzZaoKK3BkpyciZmZCRYWpnrbqlFDvwzNqlVnAJg/v6u6LCLCsP4WwIULUQbLdI+NuChwrsbatedp3bo63t4Oxo0rSyuR1y4ASmhcmZiYULduXWJiYopuXAz69OnDe++9x6BBg4rV3tfXl2XLljFq1CgcHR2Ntlm2bBlPPvkks2bNIiAggIULF9KyZUu++OKLcunzfUtxjCtrEQ8sEAgePrp27crUqVN54403cHFxwdPTk3nz5um1iY+PZ+LEiXh4eGBlZUXjxo3566+/1M83b95Mo0aNsLS0xNfXl08++URvfV9fX9577z1GjRqFnZ0dPj4+/PHHH0RFRTFgwADs7Oxo2rQpp06dUtfJHxaohOf99NNP+Pr64ujoyLPPPktSUpLaJikpiZEjR2Jra4uXlxefffYZXbt2LTBSQ0Gj0eDp6an3Z21tbbStse0NHDiQMWPGAHDlyhVsbGxYv369+vmvv/6KtbU1ly5dKrQfpWHYsE20bfsd7u4f6y1PTc0qu4y2oFRIkkTXrms4cCCkwDaKATJiRGO9ulMWFqZ6EuXx8ekGIYFQcFhgnz51AVnavVo1a6KjteOW6OhUXFys0Wg0ettasqQHN25M4dataQD8+utFANq39yY6ehZPPOFHZKTx8c/p03cNlqWl5SkX5ubInitXd8LDk2ja1B2NRmPcuLKwgowKKmQseKAwK7qJPh988AGzZs1i5cqVNG7cuCL6VCaOHj3KjBkz9Jb17t270JDDjIwMMjK0sw2JiYkFtr1vSS2GcWVjB6nGZ24EAoEAICsrlejoK5W6z2rVGmBublOmbfzwww/MmDGD48ePc/ToUcaMGUOHDh3o2bMnubm59OnTh6SkJNauXYu/vz+XLl3C1FQe3J0+fZphw4Yxb948hg8fzpEjR3jllVdwdXVVDQ6Azz77jEWLFvHOO+/w2Wef8cILL9C+fXvGjRvHRx99xJtvvsmoUaO4ePGiweBPISgoiK1bt/LXX38RFxfHsGHD+OCDD3j//fcBmDFjBocPH+aPP/7Aw8ODuXPncubMmUrNmWrQoAEff/wxr7zyCh07dsTExISXX36ZJUuW0LBhw3LdlzKwNsYLL2zht98uk539DqamIkW8Mhky5Ff+/TeE2bP3cPjwOKNtJEnCzs6Cr77qp7fc3NxUDfUD2bjKL8MOup4r/bDALl18kKR3AfI8V1qP5o0bsfj7Oxtsy9bWAn9/FwCefLIO27ff4LvvngbA1dUGDw9bwsMNxz85ObmEhBga8IpwBvGxkJMDLu6kpNzB1lYORzTuuRKKzAKZEhtXo0aNIjU1lWbNmmFhYWEwMxYbG1tunSsN9+7dw8PDQ2+Zh4cH9+4Zl+AEWLx4MfPnz6/orlUsiueqsJwra1v5xs/OkmVFBQKBIB/R0VdYtapVpe7zpZdO4+XVskzbaNq0Ke++Kw/I6tatyxdffMGePXvo2bMnu3fv5sSJE1y+fJl69eoBULu2Nhfj008/pXv37rzzzjsA1KtXj0uXLvHRRx/pGVd9+/Zl4sSJAMydO5eVK1fSpk0bhg4dCsCbb75Ju3btiIiIwNPT02g/c3NzWbNmDfb2chjTCy+8wJ49e3j//fdJSkrihx9+YP369XTv3h2A77//nurVqxd5/AkJCdjZ2anv7ezsCv3dK4pXXnmFf/75h+effx4LCwvatGnDlClTSr29gjAmJqCwb18wAMePh9G+vXe571tgnPDwJLZskSdYPD3tkCSJEyfCCAtLondvf9XASEzMYOzY5npeKzD0XEVHpxkoBQKYmGgwMdEYhAXqCmVUq2ZDQkIGMTGpuLracONGLHXquBTa/3/+eY7U1Cy1nyDXzDImxa7kg9nbW5CUlMm2bSPp02cdEREpZGfnYhabFzLo6k5KSia2tvLYSfHa6XuuLCGzbJ6r3FyJZcuO8corbfTOg+DBosTf3NKlSyugG1XL7Nmz9bxdiYmJeHs/YA/y4oQF2thp29o7VXiXBALBg0e1ag146aXTlb7PstK0aVO9915eXkRGykVEAwMDqVmzpmpY5efy5csMGDBAb1mHDh1YunQpOTk5qodLdx/KJF6TJk0MlkVGRhZoXPn6+qqGVf5+3rx5k6ysLB577DH1c0dHR+rXr1/IkcvY29tz5swZ9b2JSdk9PatXr1YFpArzxpWFmBhtqJarq3ayVpIk1bNx6VKUMK4qkVOntGFyDg6WvPnmbj766Ii6LCxsBl5edkRGphg1mvLnXAUFxdK4sfHcQ3NzE9V7qXiuLC21+VTe3g4AzJmzhzfe6MDRo3cYOLDw54VGo9EzrADc3W25di2Gq1ejqV+/mrpcUTL8/fdn6dbND4BWrbxYufIUCQkZLBtlx5ITPoyLMiUlRWuwKaGBBmGBZfRc7d59kxkzdiJJMGNGuzJtS1B1lNi4Gj16dEX0o9zw9PQkIiJCb1lhs4gAlpaWWFpaFvj5A0GxjKu8z1KShXElEAiMYm5uU2YvUlVgbq7vjddoNOTmyoO2gnKPyrIPxdAwtkzZb0n7WRZMTEyoU6dOsdtKiiRbHllGaiCeO3eOlJQUTExMCA8Px8vLq8z9zE9MjOy5Gju2OZs3X1aXnzgRpgoZ3LoVX+77FRRMeHgyJiYaOnWqRUxMKps2XUKjkb1Y4eHJ/PLLBbp18yMiIoXWrQ29qrqeK0mSuH49lsGDA4zuSzeEMDU1C3NzE70Q0O7da+Pv78zff19nzZpzmJhoGD68UYmPyd3dlpwciQYNVqghh6AVzzAWtvjzz+fp7OLBx+erk7nmYp43THv/GhpXeWGBublQyskN5b5MSBC5Ww8ypfr2c3Jy2Lx5M++99x7vvfceW7ZsIScnp+gVK4F27dqxZ88evWW7du2iXbuHfAYgNUW+sc0KsZcVz1WqUGQSCASPDk2bNuXOnTsFyqIHBARw+PBhvWWHDx+mXr16qteqMqhduzbm5uacPHlSXZaQkFDucu5ubm6Eh4er73NycgwUdWNjYxkzZgxvv/02Y8aMYeTIkaSllW8NH0mSVOEBHx9HUlIy1cHljz+eo3p1e9q1q2k0J0ZQcYSHJ+HubkuNGg7s23eL5ORMDh4cy927Mxk4sAHr1p1nzJituLhY06mTj8H6ssEkTxjExqYRH59eYCifmZnWyxUXl46Li76RY2KiYdq0xwkLSyIzM4fz5yfh4+NU4mPKL6ghSXL43cSJfxl8Xq2anP9ZzdGME//FA3D3bnJeWKDWI2ZlZaaGMgKyWiCUqZ6oooKoG1YpePAosXF148YNAgICGDVqFL/99hu//fYbzz//PI0aNSIoKKhE20pOTiYwMJDAwEAAgoODCQwM5Pbt24Acrjdq1Ci9dZT2ycnJREVFERgYqKdeNG3aNLZv384nn3zClStXmDdvHqdOneLVV18t6aE+WKSlgHURCeFqWKAQtRAIBI8OXbp0oXPnzgwZMoRdu3YRHBzMtm3b2L59OwAzZ85kz549LFy4kGvXrvHtt6v5/PPlTJo0tVL7aW9vz+jRo5k1axb79u3j4sWLjB8/HhMTk3INyXviiSf4+++/+fvvv7ly5QqTJk0iPj5er83LL7+Mt7c3//vf//j000/Jycnh9ddfL7c+ABw6dJvly08A4OvrRE6ORGZmDpmZOWzYcJGRI5tQu7aznudq0aKD/PVXxdcOe1RJSclk3rx/uXcvGVdXa7Vob0CAGyB7GE+fDufcuQg2bRpqVAVQ13MVGioLhNWqZVzhWQ4hlNvGxKQaGFcA48a1wMnJijZtqtOwoVupjks3Lyw3VyI4OJ7p03dw9qych6Ub3rhu3WAAqpHIicvyeOnGjVgkSStkkf845QV52yhD3lVOjjy5IIyrB5sSG1dTp07F39+f0NBQzpw5w5kzZ7h9+zZ+fn5MnVqyH6JTp07RokULWrRoAcgqSS1atGDu3LmAXDRYMbQUlPanT59m/fr1tGjRgr59+6qft2/fnvXr17Nq1SqaNWvGpk2b2Lp1632pbFiuJCWAnfGHl4oSFig8VwKB4BFj8+bNtGnThhEjRtCwYUPeeOMNNeKiZcuW/Prrr2zYsIHGjRszf/48Jk6cxeOP9yM7u3IHOZ9++int2rWjX79+9OjRgw4dOhAQEICVleEgtrSMGzeO0aNHM2rUKLp06ULt2rXp1q2b+vmPP/7IP//8w08//YSZmRm2trasXbuWb775hm3btpVbPxIStPkpSlHYlJQstm27TmxsGi+80BRfXydCQuIBeVD89tt76d//53Lrg0CfK1eiAdkrM23a4+pyxfjo31+bt6hb20oXXYPpzh3ZuKpZ06GAtqZqzlVsrKHnCmQlwMjI19m3r/RpKbrGVWJiBvfu6U8y29trP3d1tWFxnywux9twIcocr2oWXL0andeXwoyrvG2UQY49LU0OM9TziD1kJCSks337DYPQ5IeJEudc/fvvvxw7dgwXF62L19XVlQ8++IAOHTqUaFtdu3Yt9OSuWbPGYFlxvoyhQ4eq6k2PDIlx4GAoT6qHpTVoTIQc+8PCzatQw0cbiiAQPCLk/23Yv3+/QZv85TdcXFxYvXq10e1JkoSPTzv27z+Bm5stsbFp3LwZB0B2toSZGdy6dcvoerr4+vrqLRszZoye2uC8efMM6m9Nnz5dr+aUvb0969atU9+npKQwf/58XnrpJaN9N7af/OTfr7m5OV9++SVffvml0fajRo0yiBp57LHHyCznIvSKxPbRo+PVHJOUlEw2brxE06YeNGniwbFjdwgNTSQmJlVVdhNUHEoI5pUrk/XC7xTPqUaj4ebNqURFpWJiYtybamFhqhoHd+4kYmZmgoeH8Xxw3bDA2Ng0o8YVyEaYUherNOgaVwkJ6WpB4e++exp/f2eDYxnZRsPsvHmEfv3r88335wH0wgINjCvlt7gMohZKra+H2XO1aNFBPvzwCGvXDmLkyKZFr/AAUmLPlaWlpV7BQ4Xk5GQsLCyMrCGoFBLjwcGp8DYmJnLooPBcPfjk5sKiabD646LbCgSCQlEGd4q4Qk6OVmCisDpMFcHZs2f5+eefCQoK4syZM4wcORLAQM3wYUBRm2vbtqY6aJ05cydHj96hWzdfAPz85EnDzp3XcPx4GKDNiRGUPyEh8VhbmxUYxgfyd/LYYzUK/NzcXGt03LmTSPXq9gXWKTM3N1FrSsXGpuHqWjHfra5xFR+fzpUr0ZiYaBgzprmhBy42Cu8wbd5j1x511de6SoayEZmtXa8cPFcPu3GVnp7Nb7/JMv9r156v4t5UHCU2rvr168dLL73E8ePHkSQJSZI4duwYL7/8Mk8//XRF9FFQHJLiizauQM67EjlXDz4peRMcNy4V3k4gEBSJbsFT0DeoKtu4Avj4449p1qwZPXr0ICUlhYMHD1KtWrWiV3zAiIxMwd1d9mgoggcbN17i5s042ratCcATT/jRr189Ll2KYt06eTBW0HeSmZlDYmIGiYkZHD9+pxKOQCYkJF4Nf3sQCA1NYPHig0YjgW7fTsDHx6lMOX4WFloFwNDQxAJDAgGCguL4/PMTpKZmcfduEm5uFW9cxcSkMWfOXnJzJePet+Crem8bNdLmeXXoUEt9LXuudK7FcvBcpaXJxpViZBVGdnYuL7ywhWvXYkq9v/Lmr7+ucf268f6cO3ePgIAV3LgRS+fOPpw+fddoO5BDgL/44gR//HG1wDb3MyU2rj7//HP8/f1p164dVlZWWFlZ0aFDB+rUqfNQ1sB6YEiMLzosEOS8K+G5evBJylPPKsMMmUAgkNGtyQNVa1wpOcXJycnExsaya9cuvVpaDxNRUamqceXpaUdi4lvqZ08+KcvKm5hoePvtTgD88891QPY8KLkpurRp8w3u7h/RseNq2rb9rtxzOnJzJX1PBXDxYiR16iynceMv+fXXiyQmlq3OUWUwefI/zJmzly5d1hh8FhKSoOe1Onp0PMeOjS/R9s3NTfQ8V4UZVwpbt17h1q34AuthlRXdcL4NG2RlzE6dahlvnFfaZvrUx2jWzIMaNeT+9+1bV629BrIXq7xzrhSjqjjGVXh4EmvX/seoUVtKvb/y5ODBEPr3/5mZM3cafHb+fATNm39NamoWBw6MYdKk1kRFpfL22/rq3l98cYIRIzazZk0gU6ZsY8CADZU6UVJelNi4cnJy4vfff+fatWts2rSJTZs2cfXqVbZs2YKTk1MFdFFQJFmZch5VcT1XIufqwScpXv6fngpXzlVpVwSCBxVl8K3Msivvs7MlbG3NMTHRVInn6lFB13MFsqjAyZMv8s8/z+mp0Pn4aAf7devKHq7wcP3fsYiIZP77L4KMjBzOn5eLMsfGlq90/Nixv2Nvv5iPPz6iDn6XLj1GdnYuCQkZDB++iZUrTxaxlarl6NFQ/vxTVls8ePC2GpKnEBKSoHe+27atyeOP1yzRPnSLCMvGlX2Bbf/772Xc3W0ZP/4PAFq0KLgmaVnQ9VB9841cbHvr1meNN05NBktrPlvWh8DAl3F1tWbJkh6sWtVPr1lF5FyVRNBCKYB86VJUqfdXnigqnkq/dFEMru++e5pOnXyoV88VgEWLDqltJEliypRtbNhwgfHj/8DTU1a4PnMm3GB79zslNq4WLFhAamoqderUoX///vTv3586deqQlpbGggULKqKPgqJQvBjF8VxZ2WgLDgseXJJ06r5s+q7q+iF44HmYFZsKIyUlk9Onw4mPT1cHMooMcnZ2DmZmJpibmwjjqhjkv4aCg+P4/PPjRa4XGZliEAbWunV1+vSpq7fMw8NOfe3vLxtXt27Fs2nTJXXfP/+sX6cLDA2wsvDGG7v48cdzZGXl8uabu7G2fh9n5yV8++1ZJkxoobbLzb2/76eOHb8H4JNPegFw8qR+aFZISLyecVUaFKNDkqQiPVdNmngwY0Zb0tOzsbAwpUGDigt/1S0eDBQonkFaqlZdGVnE4403OqgeLIUC1QLLQdAiv4fUGMrkQVKSvtDM9u03mDLln0p/dp05I8vaGyv6feFCJO++24V+/WS1yRYtPOnSxQdbW3P1Hv7lF7nm3YwZbXFzs2HVqn40aeLOf/9FVM4BlCMlNq7mz59PcrLhAys1NZX58+eXS6cEJSQxXv5fHM+VpVWZbnzBfUJiHJiawXOvQGiQ+E4FJcbcXJYUTk1NreKeVA23b8sTFImJGepssSJkkZMjYWZmajh4EgByWN716zFcvhxFVlaOeg0p19S77+5n2rTtHDtWeDhPfs9VQZiYaFixQi65oqjOPffcZoYO3cj167GAXDMrP+HhhuJbxnj77T1qMWNj3LmTyEcfHQFg164XmDSpNQBNm3rw5JN1ePnl1mpbY7P2peHYsTtGB6llRclte/XVx/DwsOXvv7U1w1JSMomJSStVkV5d5CLCOcTHp5OamoW3d+HGmrI/b2+HMikCFofatYsxCZ2aDNZFX5cGghamZrJwWCWFBep6ZnWN+hEjNvPFFyfVMNqycPduEm++uatYkwZBQbG4uloTFpaod14kSSImJk1PiEaj0fDaa21JSclSZfF37gyiRQtPPvmkN5GRs+jfvz7z5nVlxIgHLyy6xFLskiQZTXQ8d+6cnjy7oBJJlCWDsXcquq2FpcjTeRiIugfVPMC7NuTkQPQ9qO5T1b0SPECYmpri5OREZKQcQmVjY1OuhWrvZ+7dSyYlRR6YpKSkkpWVg0aTS3Y2xMQkkpyciqWlNaamuaSlZZKeXsAM9yPKjRuRea8kwsKySEtLwMnJCVNTeWCsDMT27QtWhSnyI0lSsY0rgFatvAC5HpaDgyUREXIERlRUCnXrunDo0G3at/fmyJFQdZ2jR+/QrJlnofuIjExRQ5MGDWpgdHB/+LDWcGvXriadO/vwxhsd9HKTbt2aRt++68stFLFdu++oUcOeO3dmFKt9UFAsbm62esINxoiOTmXRoiewsDClT5+67N8fAsjy5HfvysZoeXiuLl+OJihIHpsUlXOlnMfi5GaVlf/+e5klSw4XqnZIakqxjSu9yReNpswT2IqgRXHCAnWvtaioFDw87AgJiVdLFpw9G87TT9cv9r43b75EkyYeasgewDvv7GX16kBeeKFZoflwWVk53L6dwNChjdiw4QIhIQnqdpKTM8nMzMHVVf85qhSm/uuva4SGJvL994G89FJLvTaDBwcUu//3E8U2rpydndFoNGg0GurVq6f3I5yTk0NycjIvv/xyhXRSUATnT8jhfsJz9egQfQ+qeYJj3oRGQqwwrgQlxtNTzm9QDKxHgdxcOVTJ0lKumxMXl0VOTi6WlmZkZGQTGxtOTk4umZmWaDQakpMzMTFJKHrDRkhPzyYiIhlvb8cCawI9SGRm5hAZmaJ6+CQJkpPNqF+/pnotAeqg+vLl6AK39euvF8nKyqV+/eKFgTVt6kHXrr689lpbzpwJ5+hR2St29WoMYWFJRESksGJFX+7dS2bjxqGMHr2Vd9/dz7vv7jcIB9Nl2bJj6usTJ8L01OBA9my+9toOAGbNaq8KI+SXKvfxccLHx7FcjCvFyCmuFywhIZ06dZYDcPDgWDp2NC7UkJycSWys1jPVooUnP/98ni+/PMnkyf/wwgtyzaGyeq6UcMzHH/8WKNpoql9fHoTPmdOpTPstDra2FixY0K3wRmkpemGBBWHUs21hCZmln8BWBFGKCguMjk7V82zevBmHh4cdO3cGodHI98t//xX/uX7vXjLPPLORtm1rcvSoVsAkNy+ycOfOIBo2dCvwORYamkhOjkSPHn5s2HCBmzfjVONKKXGRv4SC4kV86aW/1GU9e/oXu8/3M8U2rpYuXYokSYwbN4758+fj6Kh9sFhYWODr60u7du0qpJOCIrhwGjr2BjPzotuW8cYX3CdE34PaAVrj6pPZ8M02eeZMICgmGo0GLy8v3N3dycoyVF972Dh0KIQJE/4E4MCBsfz551U13GvixFZ8/fVpte2QIQE0b+7J3LkHOXduEhYWhh6NmJhUzp+PwM3NlkaNDGd1n376Z65di2HZsieZNm07deu6sGHDM3rKZQ8Sr7++U01aX7bsSf7++zphYan89lsLfvzxHMOHN8bKyowbN+RQvStXCjauZszYSffufnTv7lesfVtbm7Nv32gAvv66H8ePh/HSS3+qQggATz1VjyFDGgLQo4cfFy7Ig8vMzByD72/u3H2sW3eemzfjmDLlMX755SLr1p03MK7Wrv2P8PBkfvhhIKNGNSu0jy4u1uUiya6ct+J6kLZvv6G+fuONXRw5Ylzd73//2wtoDcMWLTzJyMhhyhS5Wu5PP/0HQPXqBQtQFAfl+8/NlWjdujpeXnaFtnd1tSnUAK50EuPAs2gRDwO1QAALK8go/QR2VJQcYluU56phwxVERaXSvr03J06Ece5cBO3aefPzzxfo2dMff39no6GyBbFrVxAANjb640glZG/mzJ3Y2JjrhcDqEhQkf+edO/tgbm6ivgfZEAQMapiZmZnQunV1Tp2S8/48Pe3UnKwHnWIbV6NHyw81Pz8/OnTogJlZiSMKBRVBTg7ERhbrQQCU+cYX3CfEx4KTi1adCCAjTfZgCgQlxNTUVA3pepj58cdLhISkMHt2R2rVcsXOzoaQEDm8rH59T/U1wMyZnbl4MZJbt1KIiclUi9mCPLvs6PiB3rZ1B4eSJLFnTzC7d99GkmDgwM0AhISk8NFHJ/jggx4VeZgVQm6uxK+/XuW555owfnwLmjTx4MiRcNatu4yn5yfEx6czZ85efvxxINHRqQQEVCM01LihkZ2dS3h4EvPmdSlVKGqTJh40aeLBW2/tVmfFe/Xyx8pKOy5p2dJLfb1ly2WGD2+svk9NzWLhwgOAPMB7++1OODtbsWDBASZPbkOjRu7k5kq8//4BNm26TMeOtYo0rADc3W05cSKsRMeye/dN3N1tadrUQ12mhHXpyn4XhpJ3prtufiRJYtkyWWREMa7atfPG1dWamJg05s7tzIIF2nNSFlat6sf+/bcYPDiAatVsCiwgfN8SFw0NWxTZrCI8V1FR8jOoqJwrxQhbsKArr722gxMnwnj55dbcuZPIwIEN8PCw5ccfzxWYypMfZSIiNVWeZIuISGb06K3s2BGktilssuTmzThMTTX4+jrh5+esGtjKtgCjNcyOHh3PmDFbmTixFZ06PTzRNyW+4lNSUtizZ4/B8h07drBt27Zy6ZSgBMRGyQaWWzHlS4Xn6sEnNweSEw3VIZNKF7okEDwq3LwZx/DhjVi0qDuAXi6ObsjK8eMTqF7dXh2EhoTo31tnzxpKA0dGag2z5ctP0LPnTxgTYsy/rQeFlStPEhWVyrPPNqZJE9kQCAhwIzU1Sx3Q372bxLffngWgSxcfIiKSDQo0gzyTLUn6KoClwcfHicGDA0hMfIuNG4fqfTZ0aCNmz+4IwLPPbtYL11PUx9avH0xGxv/w8LBj9uxOWFiYsndvMAB//nmVuXP3899/EXqy8IVRv74rN2/GlUgEpWfPn2jW7Cu9ZUpoWHENT92B7OXL0UYHwbqqgIpnyszMhF27XmD37heYN68r8+d3ZevW4cXue0E0auTO5MmP4eVlX+ECFeVOTo48eensVmRTo8aVpVWZxljKc8RYWGBqapaqwmhhYcry5X3o3r02ffvW5Y8/rpKTk0t8fDqOjpb4+7uQkpKl5iYaIycnlwMH5Jy7Eyfk6yM0NIFjx+7g6fkJO3YEsXr10wwa1AAAZ2ftfSBJkp4BePlyNL6+Tpibm1K3rouewX/tWgzW1mYGaosgX4Nr1w5+qAwrKIVx9dZbb5GTY/jgkCSJt956y8gaggolTP4hwNO7eO2VnKtHVH75oSApEaRcrXH1+hL5v6IaKRAIDIiJSeX48TC9wqG6xtXjj9dg2rTHiY9/U012V4wrRVlQ4fhx2TvRuLE7ly9PBuCVV/7mrbd2M27c70ybtl1tmz/MpSIU4CqDrVuv8uSTdfQEKp5/vikbNgzh2Wcbs2vXC9Sq5ci+fcGYmGjo1s0PSdKGFemizGQryn+lZdu2kaxbNxh7e0sDIQcrKzMWLerOv/+OAdCrP7Vs2XHc3GwYNChAzSGxsjKjaVMPAgNlOeng4Hi1fXE9OQEBbuTkSFy7FsPWrVeMHntxSEiQB+fGCiXnJzs7l337bukt0xXgAFleXcl/Av3jadHCi+7da6PRaJg7twsDBjQoVZ8fGuJj5N9Xl+IZVwbhexZly2uPikrFy8vOaFjgU0+tx9HxA6KiUsnMzFHDLZ94wo+YmDSCg+NJSMjA0dFKrRGlhOTl586dRMzMFtKlyxr++OMq+/ffolcvf8LCknjpJTl0+t13uzB2bAvWrh2MlZWZXg7g11+fxtr6fVJSMtm1K4g//7xG+/byOLRxY3f+/vs6Xbuu4eDBEI4fD6NePdeHIu+0uJQ4tu/69es0bNjQYHmDBg24ceOGkTUEFcr1C+DkWqwHASB7riQJsrPA/MGM+3/kUdQhFQETrzzDWiksLBAIDJg8+R9MTTV66lm6ssyWlmYsXfqk3jrW1ua4u9sSEhLPjh03+PffENLSsvjqq9OMGNGY9euHkJsrUaeOC5s3X9Zb99KlVwgLS6JHj9poNNoyJcHBcRV0hBVHbGwahw7d5v33n9BbbmZmwvDhjdWQOxcXawID79GkibsqUnDtWoyBFLei6FdWz1VxlAY7d/bh5ZdbsWzZcaZPb4uNjTm7dgXxyitt9MIIle3FxsoDSN3wuuIaV82be2JqqmHs2N85deoudeu6cO3alBIckUxCgjw4T0zMICEhnU8/PcqcOZ2wtDQcsv33X4Se8V+3rotBXaCAgBXq6/DwmSXuzyNFbF5B3mIaV0bDAkupyJyenk1yciYNG7px7tw9g8/3778FwOnTspfJy0v2QAYEyKIwgYH3yMzMwcnJCjs7eXyXnJxpsB2A998/oL5etOggIBtTO3cGcf58JJ9+2ovp09sCch5W69bV9by/W7ZcAeDFF//k558vYGqqYfnyPoAs/LJkyWH+/TeEzp3XADB5cpuSn5AHmBJ7rhwdHbl586bB8hs3bmBrW7ZZKEEJyUiH/f9Ayw7FFzJQcnSEHPuDRfBV2SAGnbpmeQNDO0f5+xeeK4HAKAkJ6WzefJn3339Cb6Dv7GyNhYWpKvNtjFq1HLl9O4GRI39j8eJDLF16nICAanz55VOAXINJEVpQWLKkBwEBbvToURuAL76QBx2ennZERKQwduzvaujXg8DmzZfIysrh+eebFtpOCRtq1syTRo3cqVfPldWrAw3a/fDDOWrXdq4U6W2AWbM6kJycydNPb+DMmXBiYtJo06a6QTs5/0ie6Y+L0w4ki2tcOThY6iXol1Y5UPFcJSZmsHnzZRYsOMA335wx2lYx1jdtGsqoUc1o3tyTc+f0jStF3nvYsEZl9hY+9MTlhVQ6F61iaWlpZpgbVQZFZiXfqmZNBzIycgos8K6EfSr3W82aDtjZWXD0qDxp4ehoqRpXutexLlevxqivFU98mzbVadzYHY0Ghg9vrBeW6uJiTVRUqhqCqnihfv75AgMG1OfOnRn07SsX/84vXAEwZcpjxTkFDw0lNq4GDBjA9OnTCQrSJrnduHGDmTNn8vTTT5dr5wRFEHZLFjFo37P465RDBXFBJSBJkJU343Q7CN6fBmu/kN/n91yZmsrey3uFF+y8Hzl8+LY6mHkkuHdH/h5FWG6lEhaWRHZ2Lu3aGYZPx8W9yaFD4wpc18fHkfPnI4mJSVOlhd95p7NeHk6NGvrqal266OcPTJ78GJL0LidPvgjAmjWBemFq9wPZ2blG86POnbvHW2/toUULryI9RS4uch0bPz8nzMxMaN7cUw0BVJAkiatXY5gwoUWZhROKS+3aznz33dPs33+L1q2/wdLS1GiOh4uLtWoQxcdrfyNL0k/FYHR2tiI+Pl2VrS8K3YG04rlKS8vm8mXZk6KEK+YnODgeOzsLBg8O4IcfBuZJcEeo27t+XR5Ef/FFH3755ZlHppZdqYmLAkvrYtW5cnCwJCkp31iqDJ4rJd+qZk35eaLrFcvO1l5H27bJUWKKAaXRaAgIqMaxY7KR5Oio9Vz17bteb93cXImnn/6ZfftuMXt2R9LT31Y/Mzc35fnnmzB0aCMDxUhvbwe2b79B3brLSUzM0JvPnz27oxqGqNCkib56qr//o1UHt8RPtg8//BBbW1saNGiAn58ffn5+BAQE4Orqyscff1wRfRQUxN0Q2WPhVcx8KxCeqweFLxfCG6Pk12dlqWiunZf/J8bJD39dpcDcHNi5GS4an92835AkiZ07g+jY8Xvq1/+C48cfPMOwVKz9Avb/JSY3KhklxMvR0bDAqo2NuUF4mC7+/s7qzO7nnz/JvHld6NOnrl4bZcDarl1NcnLm8vjjxtVbdT0195t9/eqr/zBgwAaD5W+9tYfY2DSee66xkbX0USTmfX2dAPl8K4aCQmxsGvHx6dSpU7mDrREjmnDjxhRGjmzC++8/YVSkQt+4KnlYIGjPQY8etcnJkQoVFNBFNz8rLi5dFVjZuvUqYJj3p3D1ajS1azur1+Djj9cgLi6dOXP2UKvWZ9SrJ0/KjRtXtPqdADks0MWtWNFADg6WZGTkkJGRzZkz4SxdeqyMnit5olHxruvmXenmTu3aJUePKQYUyPl+Srito6MltrZaSXVz84X8+OM5QkMTmD17N3/+eQ1bW3P69q2LpaUZ27aNZMWKvgC8+WZHfvnlGYO+DR/eSH0dEZGs3ievvdbW6PPuzJmJXL36Kr17y3WrKmsi5X6hxDlXjo6OHDlyhF27dnHu3Dmsra1p2rQpnTt3roj+CQojMlx2XVsa/kgUiOq5EsbVfUt2ttagSk+FO3miJVH35Id2YpxhwWiTPEWmY3uhkX6F8/uRHTuC6NNnHSAXGGzb9rsqq3MiSRJhYUlcvRpNy5ZeODtbF71SaVF+r++3kfVDjjJQLq7qmy4BAdrci4YN3ejdu47RdnFxb2JpaVrspO37Kbk7PT2bn3++gJWVGR98cIisrBzeeacLkiRx8mQY8+Z14bXXiq5j2aOHHz/+eI7mzWX1WicnKwNp8K+/Po2pqUZPKr2y8PNzZu3awQV+rhhXkiTlCwss/neljMkbNXJj40ZZfa04daOuXYtRc2guXoxkwID6fP99oBqGZUzWfuXKk3z77VmGDtXmwffoURtHR0s++OCwuqxv37pYWxejDqYgz7gqXmFrZbImMTGDDh1Wk56ezbRfa6Ap5eS1Ehao1Dc7ezac6OhU7OwsDDxDgF69vG7dfPnxx3MA1K9fDUtLfZXG0aO3qq8HDmzAli1aVcgnnzT+TNNFEfkBeOON3YSFJTF7dkdVeTU/ZmYm1Kvnyt9/P0dOzqP3e1eqYlUajYZevXrRq1ev8u6PoCQkxmqLyBYX1XMlZs7vWyK1krncDZXDP+s2gusX5deJ8YYy7NPfkwsJh92qvH6WAYNQCmTpWWMJ2xXN8eNhtGv3HQBdu/rq5c/ExKQajR8vM7nFl2oWlB0lh6VExlV8DBzbS9MmHQBo397bqJSwQkkNt/sl5yo0NIGuXX8gMTGDxMQMZs+WS6307l0Hf39nYmLSaNzYsECyMV54oRnDhjVS72PH9BjiY5IZNOgXNBqYMaMdX355kvHjW9yXYULVq9uTkZHDvXvJeh6nksy6Kx4kxXi8cSO2QE8mgKmphpwcOVSySxdfUlIyuXYthlmz2rNt2w3u3k1SRVWuXInG09NOvdb++us6gF6NLI1Gw6hRzVi+/ATJybO5fj1W9STeN5w+JEud165fdNvKJi4KatYuVlNFoTIhIUPNvYrLNMellJ6r6OhUbG3Neeqperi4WPPbb5f5/PMTAAalBgC9wtijRzdj9+6b2NlZGPXEW1rKyoZdu/ry22/DStw33d/mrVtlMQtv76JzJk1NTXgESigaUCo/XUpKCv/88w9fffUVn3/+ud6foBJJjDf0YOQjISFdr1I2FnkDAOG5ui9JTs6k37DfmXrUV15w5yZEhUObLqAxgdCbcsKts6v+ijV84cmhcPsGvD3+vveM6NYEUrh4MarS+3HlSjRLlmhneBU1JoCNGy9SrdpH5SydnTetbaSchaDiiI9Px8zMBBubEszez58Mm76jpb8lgYETOXhwbLl4mxSvzuefHy8wYb28OHgwBI1mfqGS4LNn7+HmTa2CYcOGbjg7W7Ft23VVCEF3hrwodAdhTqe2ER2XydatV9iy5QqdOn1PWFgSw4Y1KmQLVcfjj8uz8//+G6J3TkpmXMn/a9Z0wNPTTq/ej/H28gpnzsi10yIiUpAkuYaXubm83zFjmpGWlk1AwAqcnZcwYMAGOnZcTVBQLI0bu/Pmmx30tvnJJ72IjHwdW1sLmjf3LJXHtsKQJFj5HiyaVtU9MU5cdLHVlx0d5fOqTN4A3Ek0LXZYYFJSBp9+epT58/fTpcsa4uPTcXa2VtX57txJUtv+9ttlXFysGTu2udFtaTQa1q4dzFdf9TP47MiRcaSmvs2oUc1YsqRHqfPubtzQV74sbLLpUafExtXZs2epU6cOI0aM4NVXX+W9995j+vTpzJkzh6VLl1ZAFwUFkhBXoOdq+/YbzJ27j9atv6FOneXk5ub9iFuInKv7laysHLp3/5G/D8ey/JIXZ1OqwaUz8o+Rbz3wqMGh3VdZti0V3IyE1PjlzQJGhEFCLJIkcfz4nRIVtKwsjA32lMFFZRERkUxAwAp1Fk5B8Sj88cc1QK4HUm4oP2rCc1WpxMen4+RkVfxBRUqStrRBciLNmnmWWxjfoUNjqV/flaSkTE6frthrfvt2OfH9/PkIo58HBt5TayS98kprOnasxfr1g2nf3pujR++os/GF5aQVhqOF9jrXzeMwJiyix9mjcHhnqfZZFmrUcMDHx5GffvpPTwSgNMaVUkz12rWYAttKkqTuR8mXUbz6Dg6W3L0rD64nTmytt94ff1zl8OFQrl6NYejQhgaFes3NTXFzu09VAaN0rvnsout4VSpZmfKkdbGNK9lztXu3VkH7dhwFTl7fvBnHrl1aMbi9e4OZOXMn8+b9y4EDIepzCmSvkCK5DrIqX/36rqxa1b+EByXfbyYmGn74YaBeeF9J8fd30TPulDqAAkNKbFy99tpr9O/fn7i4OKytrTl27BghISG0atVKCFpUNsZyb/L4/PPjLFx4QI3XPns274FmKdQC71f+/TeEEyfC2NX/Oh5Opqy5WR3On5I/rF4LvGvTaWEC0/dWM25c1W0EXeVZK+nOLd56azdt237Hhg0XKvEotCQnZ2qN+nyEhSWptTkU8tdmqWjmzNmj9/6ll+RctX//vQVo499LWwi0UITnqlKJi0sv2ex9WIj2dXI5GtfIXqATJ17E3NyEvXuDy3Xb+VES3vOLSgCkpGTSosXX3L2bxMWLr7BixVMcPDiWZs08qVfPleDgeDIyymZcedhqr/MBA+oTE/MG//47pmgP4or58P2npdpnWenQoRb//HMdGxtzXF3l/MuSGFdvvdWRbt18qVvXhbp1XVTP1fnzEXTsuFpPkTErSzasevXy5/z5SMLCEtXJHQcHSxo1ksMx/fycOHBgDKtW9SMz83/Mnt1RleGeMOH+z7HV416o9vWxvVXXD2PERsuTma4eRbdFGxb41lt7qFbNBjs7C87fzpKf79nZBu1btvyaXr3Wqu/zFwqOiEhRn1MeHraEhMgiJkOGBKj7K8m1OHRoQz7+uARq0sVg9eoBhIfPZMuW4TRrVrzz9ChSYuMqMDCQmTNnYmJigqmpKRkZGXh7e/Phhx8yZ86ciuijwBiSZDz3Jg+lcFzz5p44O1sxZ85e+aFuZi6Hl4mwwPuOf/+9hUc1S7q7RfP8sPr8fMmGnLQ0cHUHKxvw1saBSx4FxPA/Nwk0Jkx55zgffiiLYuiGt1QWkiRRrdqHtGv3HTVqfMrnnx9XP0tPz+aPP67y5JN11CKuTk5WpKQYL3ZYUeQfMH71VT9q1XJk584gtZ9AoTPPJUZxfgjjqlK5fTuhZDWV4nRCVMvZuAJ5kNSypReXL0eX+7Z1UQZiigdEF91w14YN9Wfqq1e35+7dJPUeyJ8cXyxyc3jCM57fe1xh/WgJS3MNLi7WdO5sKIFeIFmV+0wAudjp4MEBfP75k2q+ZUkGtHXrurJ372gsLc2oW9eV69djkCSJxYsPcfhwqJ7qnxJVMGCAHHWwZ08wSUnyMdvbW7Bjx/OcO/cyGo2GTp18ePHFVpibm7JoUXeuXHmVe/dmFkss474iNlouH+Lipp9ffD8Qkyd371q8HMNq1WzU8gO9e/vTqpUXp67lCaEYGWMpkxxK+ZH8BX4vXYpSjStddcdvv5XLHPXrV6+YByLz669DmTmzfYnWKQ6ennYMHNhAyPoXQomNK3Nzc0xM5NXc3d25ffs2IKsIhoaGFraqoDxJSYac7AKNq/j4dKZMeYyzZyfy00+D2L37pjzA1WhkUQshaCFzfB+E3x/X7e3bidT2tECjgUHPtiAqWcPRSHsy3X2Iikohy19bwDOlWgEDFBNTTia4sGKrdnBYrmFtxeT8+UgyMnI4cSKMu3eTmDZtOzdvxpGdncvChf8SE5PGyy+3VmPV/fyc1FncykJJd9myZTjXrr2KRqPhmWcCWLXqDBERycTEyD+Sb7+9txxzY0RYYFUQHByPn59T8VeIiQRrG3kiKqVi7h8/P+cKn/hQBnOXL0fxzjt79UQ0lFnx69enGKxXo4Y9ycmZam5kqTxXyUmYaiSe9o1nhNkxOLav8PZZmbBto37I+u0bJd9vGWnf3pvNm4cxfnxLNRS0tDLSdeu6kJCQQXR0KtbW8jnUHVArxpWnpx3167ty8mSYGhZob2+Ju7utnliFLu7utnh4GCrI3ffERoGjq5zSkFj5E3+FEh0hj5GKGRao0Wj45BNZ2K15c0969KjNtqMxvHiwNsePhBS4npJfnN+4On8+UjWu/P1dSEh4i7t3Z+DkZEVMzBtMntwGgL17R/Hrr4Zy6YL7hxI/MVq0aMHJk3Lxwy5dujB37lzWrVvH9OnTady46DoYgnJCLSRbsHGl3KRPPVWPyZPb8O67+wkNTZDl2IXnSh5df7MEPphR1T0BZCPI2xmwtadt59o08LXl2X11qT7fAnf3j9kdpJ09jkku2BC5naGdyRw8OMCohG9Fc+KEXBeoRg17dVb877+v8fTTP7No0SHGjm1OvXqu6uDF2dm60o2riIgUevXyZ+DABtStKwuETJrUhszMHGbN2sWFC5Fq23JXdssxDBkRVBy3bsWXTDHtzk05NMjWHpINvT7lQe3aTgQHl3xwefJkGBrNfCZO/LPItooM+ldfnea99w7qeZBDQuIxMzMxanQqieqK8Vcq40rJWRs0Rv99QZw6AJu/g91bdZYdLPl+y5GyGlc+Pk6A7DlVQiGVSRtADRG0sDClQwdvtm27oRrEujWMHiqiw2Wpc0dnuJ0n0FSZSBLcvGr8s5gIcHKVI3yKyYAB9XnuuSaMH9+CMWOak5aey7fXPHji6a16ecS6OXz58+t00a3F5+Bgqcrzu7hYq56ibt38GDr0/hSFEciU+ImxaNEivLzkfI/3338fZ2dnJk2aRFRUFKtWrSr3DgoKQDGuHIs2rgAWLuxGeno2f/55Lc9zJYwrkvLCM1IqZvBUUu7cSaSmXRa4uGFqasInn/cnLNWSmCT5odz3qZ/VtroFBfNzI0UpPjkcXx8HNe+uMtmy5Qp+fk6Ehr7GhQuTaNLEnalTt3PgQAgbNw7lu+/kMIe9e0fz7bf9sbAwrVThjZCQeH777TLOTpaw4StZHAZt8dOffvoPkI1TMK5uWFrePVOTwP8qXxnxUSUlRfbAFNtzlRQPJw9A+x5g5wDJxou3lhU/P2fu3Enk1Km7BASsKHZY7MqVch7mqlWFFwz/778I1q07r7csIkKbPxgbm4aLizWmpobDACXUTDGuil0iITsb1n+ZJwiSd95adQR7R6M5KHrE5g2ygy7J/33rycZVFSqfmpqW1biSE/51jSvdZ7fyzDM3N2Hs2BYEBcWxdesV7Ows7qs6aMWmqHDn7Gy4cBoaNJMnhm/fgFnPV07fFPb9KSsVht6UI1e+WaLNQY+OKHZIoIKzszXr1g3G2dmamjUdmD0pgD4140hNy6Zv33WkpcmiHampWvGOf/+VvVrJyZlqXp9CmzbVy3BwgvuFYj8x5s6dS2pqKq1bt6Zbt27ExcXh7u7O9u3bSUxM5PTp0zRr1qwi+yrQRfVcORl8lJ2dS1JSpp5x5ehohbW1uRxDb2tXIXkEDxxR90+8tyRJhIYmUNM8URWr6Nu/PrdvT2f/fm3dpaeflmPzlUruoaEJ9Or1k97A7HaKJU1rmjDgKX+anV7LzZtxlVpT58qVaP755zqSJIdNaDQaWrSQj2nHjud55pmG6gxc48bujB/fEnNzE71E74pGmTkc07+6PFP++4+APIhq1EgbElK7thNQfsZVZo6GBWe9GfTifvbvv0Xt2svUH19BxaCEv/n5GZ+IMuDGZXlA36oj2FWc58rPzwlJghkzdnDlSjTnzhVP0MXfX3scugM2Xdq1+45mzb4iPj6d+vW1ZRuOHQtT77PU1CxsbY3P0NeoIRtXQUEl9FxdvwB7/4DtG7XGlb0jWFrLBdELIzRPce1GnnHVsr3s1Ugrv4mNklJWz1W1ajZYW5tx82acquin5NukpWVRq9ZSQOu5atLEnW3bbjyYXquUJJj4VOEqj7GRkJoM9ZoUGHVT4ZyVc5G5GwJbf5QNrBsXtf0rpphFQSx6+zH+6X2Fy9t7ExGRwj//yLXIlN/ojh1rcejQbbKyckhOzqRGDQdu3dLK0o8e3bxM+xfcHxT7ifH++++TnKyd9fLx8eHmzZuFrCGoUBLj5fA+K8MCp8pAOr86luodcHGXHyKPOrqKYFUsCRsXl05aWjbeOVFyzao8vL0d6dLFF0l6F0l6l82bh2FubqLWLlux4iS7dt3k+PEw7bYyzXG1zII7t2jjJg9Mliw5ZHS/CQnpaDTz+fXXi+V2LFeuyDPQP/00SF22dGlvjh+fQIcOtYyuU9meq6tXY3B3t+XJjnmzlDrf/759o9Uii4onq7yMq7uJ8mBNkiS+/PIkwcHxrFhxsly2Xew+3E3i6NH7I8+wMlBC79SwwPiYwnPeQoNkg8DFHewcK8xzpYi5KGG7yn1TFIrgARhXsrxxI5Zjx+4AclHs7dufp2ZNB+zsLDh16i69e68lMzOHlJSsAlX7rK3NcXa2KnlYYF4+NpIkewBNzcDaFqysi46WCM2TqE7NOyb3PMnolELUOr//FA5VnGR7WY0rjUZD9+61+fLLU6ohfOtWPKNHb2X06K1qOwsLUzQaDV9++RSOjpaqwMUDReAx+f+2XwtuE58XReHkWmSNzgrh5AG4HCi/DgvRXpNBl+X/kXfBzbNs+8grd9PA24LGjd35889rrF37nxpBMmhQA5KTM/nzz2skJ2dhZ2eBj48TNWs63H/FngWlpthPjPwJ3eWR4H3gwAH69+9P9erV0Wg0bN26tch19u/fT8uWLbG0tKROnTqsWbNG7/N58+aps+XKX4MGDcrc1/uOhFj54WRErUWJs9eN3QVZ8Uk2rty0IRiPMtd1DIqEqk2svXNN9qLVNImFmn4FtjMzM8Hf34WrV2UFO6XIpO4MdlyaCU7Z8fDeFAKc0ninxR2WLDmszqDp7TdP7GLLlisGn5WWmzfjsLExp0MHbS0bZ2frQutrmCfHkZVYeeGZV65EyzP6qXn71AlncXOzZdCgAE6efJGJE1tja2vOpk2Xy2W/oXmXmZmpRi3QOm/efnVWs6KLygL06bOO9u1XV8q+7gdu3ozDwsJUDnXLzoLXR8JLT0FqAQZzdITsPdZoZM9VBYUNe3s74uRkpar26eb4FUZCQrp630+Y8IfB58eP31Ffr107CF9fOTz3zz9HALBv3y0WLz5ISkpmocWBq1e3VweExVYL1OQNKXJzZc+VnYN8Hq2sZSGDHZvkz/KTniYPbJWQLBMTqJY3yC3s/B/eCWsqTrJdCZksrXEFMG3a49y8Gcfhw/KExp49wfz44zk2bryktrGwkM9vx461iI5+w2gh2PueyLwJvtiogsMDE3SNqyrwXO3cLO/Xrz4EX9FGAMVEyEZ9Qhx4GZ8ALDaWeZPamRl07OjNDz+c44UXttCnzzoAOnTwpk2b6vzyy0WSkzNVL+WNG1O4cmVy2fYtuG8o/ROjHEhJSaFZs2asWLGiWO2Dg4N56qmn6NatG4GBgUyfPp0JEyawY8cOvXaNGjUiPDxc/Tt0yPis/QNNATLs6enZ6iDamOcqIyMbnN3kB+CjysdvwbShcGK/HPoD2od+FRG6YTMA3raZ0LBFoW3r1nVRBz1KeF14uHYAEp+ai5NO8c65re/RvbsfTz21nuXLj+ttKyxMXm/fvmCqVftQL+m2tBw/Hoa/v3PBMq0Lp8CS1/UWmQedJ+tm5SmDXb4cLQttKLPkx/fBb2v02rRuXR0zMxNeffUxtm27Xi7GyO34vJlwUw03bsQyYEB9UlKycHJawo8/nsPEZIG2Jl0FoXg7FIn53btv6hXBfNi4ejWGunVdZC9EhNbDy87N8Oc6+CxfCZGYCG1okJ1jhYVQm5mZ8L//dVLfHzgQQo8ePxaZI5mQkEGzZrLhoRQA1kXxgDVq5KYn0921q69aAPTGjThSU7MLrTfVrJknaWnZmJmZGM3LMoqJjnGVnKD1TlhaQ+BR2PgthN82XC8sWPZ2NWsrvzczlw1b0E6AVAFl9VyBbDB5edmpIj/GCkcrxlVZ91WlKPdJZgYc2m68TUIsmFvI3szK9lzl5kLIdeg3Auo21nqwqnlAYoJWNdizgDInxcUib1I7I10vUiMlRZ4AtbW1oFs3Xw4duk1UVIpar8zS0qz4uY2C+55i38UajYakpCQSExNJSEhAo9GQnJxMYmKi3l9J6NOnD++99x6DBg0qujHw1Vdf4efnxyeffEJAQACvvvoqzzzzDJ999pleOzMzMzw9PdW/atWqFbDFB5iEOKPG1bhxvzNlyjagkLBAO3vISHs0a+1IElwJlGdDc7JhUF4+045Nxd5EfHw6kyf/rdaAKSt37iRyOzobU42Ep3Wm/MNTCJ6edmqYWmysrDx1+XI0Z86E4+HxMcdCTHDy1F4bZrlZrH/VkR49arNkyWGDfYOsnBcTk2ZUvUihoPwOXVJSMtm48SKjRxeQf5maLP/AXdcvbGxhkktmbuUkcOfk5HL1ap5xpTsr/s8Go3khjz9eg7i4dCIiyh4aeOGefIxJKdncu5dMu3Y1cXa2Ijs7Vw0TUgZhFUFWVo76Pa5ff5433thFz54/0bPnTxW2z6rm6tUY6tXLyzsKu6X94K/18PtPcPEMRN/TLtc1rmwdKjQ/ddq0tmzdOpw33+zA6dPh7NkTzLhxvxe6TkJCBjVq2PPhhz0AbaSCwrVrsXTt6suFC68YTHB88UVfGjZ0486dxDzPVcHG1ZNP+gOUbMJF2V9ujjwBaCcLOmClk7RvbGLv12/l/0/0l//b2oNNnnFlLCwwKxNWf1L8fpWS8jCurKzMeOUVWUK7SRPjYglFFlV+EEhOBG/5muGn5fDfCcM2cVGy10qjUcPnKo3UZNnAcnSB2nnRTM7VZHGNpHgd48q7wE0UC4s8b3BmhiqINGGCdsLU1tacp56qx927Sfz7bwh16riUbX+C+5IShQXWq1cPZ2dnXFxcSE5OpkWLFjg7O+Ps7IyTkxPOzhXr5j169Cg9evTQW9a7d2+OHj2qt+z69etUr16d2rVrM3LkSLUWV0FkZGSUyUisEhLj9GZ+IiNTmDDhD37+WTtozW9cWVqayRXBlTytohKMH0by50941JTDAK6cK7Yq1VdfneLLL0+pxWbLQnx8Ot7enzFzYxZeNpnFmiF2c7NRBS0UI+ubb86wefMl9b1zbf0fCNffv2TSpNaEhSURFqa9vpXcLQVldi0/f/11DVvbRUVKR4eFJSFJ0LKlVwENdPLcEuJkj5EkYW4ikZWrqRSDPzg4noyMHH3jyqeu/P+u4bNCkZK/fDmK3FypTB6s/+7Kg7W7kenEx6fj4WFHUNBUPD219WoUEYGK4O2396q1VRYsOMBHHx1RP3sYwwQlSeL8+QitSEnYLXlw107/d4SbeWGxOTny4L+aYlzZyYIKFVSXzMzMhAEDGtC8uTbP4/jxMLX+G8D16zHk5mq/m5iYVBwdrVSvVK1a+pOLt28nFJi7YWNjzrBhDbl4MZLU1IJzrgB69fIv+QEp50mS5LBA+zzjylLHuIrK57nJzYWbl8G/oTywfWY8TJkv1xkzMTEMC0xKkL3MR3aVvH8lRLEVy+pNatxYNqpsbMxVBUJd3NwKn1B7IEhOBC+d351DO7TiJAqR4apgE7Vqy/+N5I1XCInx8n8HJ2jZAQaOgmkL5UnqxDi4FyqHpVqW0egzMZW9cxnp2NiYk5n5P774oq/6sY2NOZ061aJnT/n4PTwegu9eYECxnxj79u1j79696l9B7yuSe/fu4eGhr+Ti4eFBYmIiaWnyDP7jjz/OmjVr2L59OytXriQ4OJhOnTqRlFRwaMHixYtxdHRU/7y9yzhzURkkxcszMHmMHfs73313Vq+Jo2MBnivrvIdZFaowVRkxOrOmAc3lX89nJ5KVlMyxf84WuJpCamoWs2fvASgXdbu7d+XrMi0zLyTQpDjGlS1RUfJ3d/58JK6u1iQnZ+rlTTm55c36KuIYFpZ06lQLS0tTfvjhnNpuz55gvW0XJAe9Zk0ggJooX9TxKHVyDLiq3TcrF8oyuHeCsVCMq4w04+uVI5cuyddAQH1nuPofVPeBNz+WrwVdz0Ye/v4umJubsG7deUxNF/D116dLve9bseBjpx04e3jY4uxsTXDwNN57rxu1azur+XTlTVpalp4xBbB69dOMHy/PqpqYLHjoDKzbtxOIiEjR5vuFhcj3hG2eMfvcK/Ls9Z1b8vv4aHmwrxpX9rKhkFqxE1HK4BtkeW7lvgwLS6RevS94+235mXPwYAjHj4fRqVMtunTxBWSBi6tXtTm0YWGJqtpfQfuKikrl1q34QnOuPDzsaNTITQ1bKhbK5IgSFqgYV9V18lii86kiJiXI5/jJofL7J4dCLX/5frR31A/ZjgiDzath12/F71MZUG6HshpXrVvL8tp37iSydu1ghg/Xr1GUPz/6gSQ5Uc6xUzhzWK4huUfHExsVDu55UuMmpjDgBXmSd94k47l45YlSZ83eSf6d7fecnN9s7yQbXmG3yu61UjC3UOXdzc1N9cL9bG0t0Gg0rFkzkICAavTpU7d89im4ryj2E6NLly7F+qtq+vTpw9ChQ2natCm9e/fmn3/+IT4+nl9/LVjBZvbs2SQkJKh/oaH3uZJWbq6B50qpX/LBB93VZfl/EFRBC6u8mZK0R9BzFZknv/7syzDxbfm1qzsvH65Nu35/qsZBQZw8qQ3ZeuaZjWUejOrur6ZtBpgWnTju5mZDWlo2YWGJXLkSrcqzX74czfPPN6VNm+q0ezIvLC8jDfqPBGtbVahhyZLDrF59lqysHE6fDtfLyyjIc6UM+HWLIhpD8YoVOLi7cEpWYQPtrObF05ibSGTmmsiJ7WVg27br3L5duLrbf/9F4OBgSfWTW+WQMDsHOU7ezsGosImZmQl167qqkxe//FK0smJB8uoxKdDEWXvfeXjIg3wrKzPefrszw4Y15OTJsAoxcg4cCDFYNnZsC5Yv76O+N6Y+96CSmyvxzjv7sLQ0pV27vEFT2C3ZuDLNG+zYOcie63t5z3xl4K9rXEGF5/3Uq+eKt7cDv/02jMaN3Xnuuc20arWKmjVlr9Tq1YEEBt7jmWc20qlTLcaObU7Nmg6kpb1NtWo2TJ++g5ycXHJycrl7N6lQ46pJE/nYrl+Pxcam8ByP//6bxK1b04t/IIpxJeUJWtg7ye97DIThE+VBZ/78VkW51tUNA9y8tJ6u+Bh4e7zsEakkFI9hWY2rmjUd+OmnQfz00yCefbYxK1c+pfd5gfmpDxLJeQImb36sP0n480r5vyTJ36WbTlSDUqz3TnDFKxgrxlX+XC//hnKY6fmTZRezULCwNFAg7tOnDqANAa1e3Z5LlyaLsMCHlAcqc9LT05OICP1Zr4iICBwcHLC2tja6jpOTE/Xq1ePGjYKT5S0tLXFwcND7u69JTZZ/xHRyruLj05k5sx39+tUrcDVZ0ELHc/WohQVKkpxb5eYl/9jnJUzfCMtg9TV5wL9q1ekCPVLZ2bls2qQf5qDkPJUWXSGBZ2vHwOtLilynWjX5+/vvP/leePxxrQrfu+924cSJF2ndvZFsVI2ZAU4u8g9Lbg7du/uRmJjB+PF/cPToHbKzc+nRo7a6fkpKJqdP32XIkF/VXIvU1CzV2xMdXfjx3rwZh6urdcEz4onx4FNHf1lctDYsMLP0xa1DQuLp23c9r722g6ysHH777TJ79+p75lavPss77+yjQwdvNKfzhG5cdQbSqcaNi7p1tT+AheWpJCZm8NNP57CxWWTg5ZMkiZgUaOysPYf5f1g7dKhFeHgyV6/G8O+/t4zK058+fReNZj4azXxycoo/2xseLh9bRMTrJCa+RULCW4Asu/35508CFRuSWJlkZeUwa9ZOfvrpPxYt6i7fMxnpcm5VDR+tS8LWQfZcxed5C+/dkQeGrvmMqwouNG5hYcrt268xaFAAc+d2JiMjhzNnwhk4sAEtW3oRGZnCxIl/YWqqYcOGZ9TwYSsrM9auHcT27TfYvPkykZEp5ORI1KxZ8G+Y7jVXVN6oiYkGB4cSeFVy8raXnS3XB1M8V2bm0HOQLFhxfJ++LLsy4eViJB/Jrbr28yidvLjaDaBNxU/mlpdxBfD8803p1k1Wgs0fVfLAI0my58reURaL8A8wbJMYL3/v7kaMK9APGa8IYqNloyd/TrNfPfkZAPphjWXB3EI22HT4/fdnOX9+0oNZHFpQYh4o46pdu3bs2bNHb9muXbto165dgeskJycTFBSEl1cBOSAPIsrMX94MTGRkCkFBcbRo4Vlo8UHDsMBHzLiKuCOLKeQb3NdtvU59PX/+vyxceADWf6lVE8rjf//byxdf6NckUmrUlBZdgYmnu3poE20LQcmlU4qj1q2rLRKqW2CUAS/IyboOznlhOkkMG6YNR1m2TFYObNpUO6jp3HkNrVt/w2+/Xeaxx74BZG9Gbq6EpaWpXvJ8SEg8q1efVVXnbt6MY+7c/YXPxCUnynluuuz5HQvTPEGL9NIbV76+ywBwcLBkzpw9DBnyK927/8iQIb9y714y6enZvPGGnKfx3uvN5BCj3kPguUnyBmwLlt3WHQzl5EgcP36HV175W/UwPf/8b9Srt5xFiw4yatRWAHbtCuKTT46oIZxJSZlk52po5qINx80/cO3RozYuLtYMG7aRrl1/YOrUbQZ9+fFHbWilbn2zoggPT8LV1Rp3d1vs7S319j1hQkuAIpXq7ndu305gzZpAunX7gU8/PcYzzzRkxoy834e7IfIgsLqP7FkBebDl6KJ9pobdkusrmec9RxXj6sNZFW5gKQwd2oiYmDe4fXs6W7YMZ8+eUYAsdPLWWx31PM0AvXvXoUULT3777bKq/llgWC6ywTR9+uMAPPFEwWUfSoWSc5UUL5/j/KJLStjvX+u1ywKPyWGAdkb6XM0DYvI8GnF5Id0vvgmT52q/G4Cpz8C+P8vlEHRR7u/yVvDTHWDrFi1/YElLkSd8FWPaVMcjapMXgqsYyUpYIICZTrt7FRwxpAjV5PcSajTwxNNyXqAxo7A0mJtDVla+RaZ64b+Ch5sqNa6Sk5MJDAwkMDAQkKXWAwMDVQGK2bNnM2rUKLX9yy+/zM2bN3njjTe4cuUKX375Jb/++iuvvfaa2ub111/n33//5datWxw5coRBgwZhamrKiBEjKvXYKhTlIZXnXldm5594wg97+4JnGWVBi+xHV9BCUZ3qP1JdpJs4rnD9ShTs/QM+eUtvuSJg0alTLW7enApAaGj5FRg1sy7ebKYyKFb2rRhUzZt7Gg8vsc0btKQk4eBgSWzsG1Svbs9vv13G1dWa0aOb06yZYVX6s2fvkZsrqQqC3t6OesbV4MG/Mn78H9Sv/wVhYYm0bPk1gJ4Bp0dOjuwZcjec6DDXFJ5zVRLFsjVrAvn4Y63IzW+/XcbL6xOsrd8nJiaNy5cn09I5zyjuNUQ7k1mIcVWrlnwOu3TxITg4jlmzdrFy5SmGDJHDjdetO8/167EsXXpMXefdd/fz+uu7+PDDw6SlZaleTlerbH6fas0v3a7BLf3aY1ZWZrzwQlPOn5cHlPk9b6ANJQQIDLxHeno2AQErWLXqdIHGUVRUCnPm7CUmxvj5tbY2p0YN+zIbV5IksWjRQWJiKu/Zkpsr8cEHh5g6dRs+PksZO/Z3zp+P5OWXW7FqlU69IEWlzs0LfPM8/E6usmc3IU42vMJuQU1f7TrKgD8rUzbOKgkXF2u8veWBqpOTFZs2DWXDhiFMmfKY0faDBjXgn3+uqwI1hXmuAD777Ekk6V1Gjmxavh1XwgIVT6BjPuOqRp4xpxt+G3EH/AqYVLJ3lO9JSZJzdyyt4PFuskGs6/VITYbdW4vu3/F9WlW4YlCenqv8XLkymaNHx3Phwivlvu1KJynvd1BRh8zLN+KxLvJ3k5GuHbco9ctA/zuMqeCwQF0V0Pz0GQYrthRaY7JEmFlAVsHKu4KHnyo1rk6dOkWLFi1o0UJOqJ4xYwYtWrRg7ty5AISHh+sp/fn5+fH333+za9cumjVrxieffMK3335L79691TZ37txhxIgR1K9fn2HDhuHq6sqxY8dwc3sIZocU7gTLA8E8QYs9e27SsKEbXl72qufKysowll71XFlaybM1j5rnSsnn0ZEFvnlT/pGf1DASRajPMldnAKrj2r93L5mmTT345Zdn8PFxwtzcpMj8nkK7kxeS06GDN693yy22SpFiQN++LRsIbm62bN2qneE2QEnezzMcnJ2tVTW/gAA3qlWz4dixCWrzOXM6smmTnFx+926Sqi5Xs6aDnnGl+/rrr0+TkJDBpUuvMH16W+P9UAwXJQ8D1JlOC9OCjaugoFgcHBYb1OjSJScnFxMTDe3aGdYoGTOmufrazMyEBvbJcDtIPt+6M+s2dgUaV3PmdGLVqn6MHNmE69djsbaWBwVbtlxRxT4AOew2DyXy7OOPj2Jjs4i//roGgKtlNk973WNY7Rh9gY883n23C7/88gyrVvXj+vVYA0PF3l7rnd616yYODou5ciWaiRP/om7d5Xnb2Me3355R2/36q5wn1qBBwWUp6tRxKXNY4O3bCbz99l6mT6+8vJizZ8OZPXsPy5efoEeP2nzwQXdu3pzKypX9cHbWCRdPSpBD/mzs5AH6J+vBzVN+jmZnyTkjSk6WgoUlzPpQfp1ZdYOlIUMaMnx44wJzcwYNCiApKZPPPpONeyV0uNJRwgIV4yp/fsvAUbKQkK70fUqStqZVfuwc5O8m8CgEXdb/blzy/aZrihjO5ObIAjrvvAjvvgy3rhVxMFrjqth1vkpA/frVaNu2jDWV7hcU40rxXClhn9V95f+J8bIR7eKm/zun67mq6NqbUfe0uZQVjZGwQMGjRZVWLOvatWuhidtr1qwxus7ZswWrum3YsKE8unZ/oyhe5f3Qnj4dTvv28kNaKUZoTN7TwsKUuLgceT0rm0fPc6Ucr470a3BwPADzOsSx4bYnccm5sofLKa/BjUsQ0JzU1CzCw5NZvLg7Xl7yQKBGDYcyhQUqxskbb3Tg6SuXwbJ49dh0PVfm5iZYW5sxYEAh4YR2Ws+VwqRJrdmz56YqB2tpqRXSeO+9J1QBi2vXYtQcNG9vB27ejCMrKwczM5M8+f8WfPvtWRYuPECPHrUJCChkEkORwdcdSOUZvIqgxVfrgwjfnMrMme3V41yzJpC0tGymTt1OnTouRtWVQkMTyc2VGD68EUeP6uc6zZrVnpSUTD78sCemWWnw7lj5A+/a+iEitvZw23huprW1OS++2IoTJ8LIzZXYuTOIp5+uzx9/XOXll/8q8JDnz+/Kb79d5ty5CBYvlnO8XC2ztF5UIwVVnZ2tGTaskVpMWM5j016zaWnaPJmtW68YrA+wceMlMjJyGD++BRqNhvXrL9Crlz9//VWwB79OHRe+++4sb77ZQU8avCQkJMgGyNq1/zFt2uOqSlpFohTSPXZsPI8/XshgNSleHvwpyfaK2qpSNPTqeTlstbqP/nqKt6WMYisVSaNGbnh62qlholWW16F4rpTBdv6wQDMzqFkbzuvUQEpJ1ta0yo/y7FqxQP4/YpL2s+4DZC+4t78smnDtfOF9083ZCrsly7lPmacNATWCYlyZmz9QGRSVj2pcOcn/FcNCyWFKipfzGfOr8ZnpnPuKFLSQJNkz1q6SjCsLC4OwQMGjRYmfGCkpKbzzzju0b9+eOnXqULt2bb0/QSWQb3Y1IiJFL8Z+6dLe7Nz5gsFqlpam2pl1a5tHz3OVZmhchYTEY2NjjpuzObvfleOhoyOS5Bmu6j6q5K9S38nfX5tP5O3tQGhIHBzagUYzn48/1pe5LgolJNHJyUr+cTKWc2AExTt5+3YCTk5WRStN2eh7rgD69q1LcvIc5s6Vk8J1t6HRaKhTxwV3d1s2bbqk57m6fTsBC4v3uH07geTkTAYO1Bp19etrc7+Mkpy3fyV0BKC+HJZkbiKRnGXKpCXXWbDgADNmaD0fBw9qDZD+/X9WX0uSxI4dN8jOzlXDofr2rasX1z5uXHMaNnTj11+H4uvrhHeczmy1cz5D0MVdVosrRBK4VSsv+vWrh6enHW+/3YmbN6fqeasAWrTw5OjR8ezbN5q5c7tw9uxEGjVyU5UhXa2ytQMJRQLcCLVqyedJya1TSE3NokYNe559tjEg52npeqqvXYshOjqVmzfjOHv2HomJGRw9GsqwYQ0xNy9YjbJzZ5+8/n9dYJui0BV4WbnyZCEty4dDh26zdu1/dOjgXbhhBbLCqq7XVMGjhqzSeWK//D5/aJBV3kx7hmEI8f2CRqMhIECenNmwYUjVdUS3Tp21jez5y49u+G12tjzpZVuEcaWga/iamkLzdnJtohbt5fCzwrwFykRG+57QczBcOgOTni60vmFOjvyZMmkpKICkeHmiSvkele9B+b6UOlKe+e5R3bDAZONRA+VCSrJ8nQnPlaCSKLFxNWHCBL777js6derEq6++yrRp0/T+BBVMdpbsXs8zriRJIjIyBXd3radq2rS21KtnONBVwwJBNjAetTpX6anyj72O3Hl0dCpubjZorKxpWVPilVdaczMsTZ4NbdCM5PAoMjKyVaU1XYljb29HQi/eJmv1UgBmzdIWtZQkSc2JiohIZurUbQZ5Q8osv6ODhTzYNqaWZQQTEw12dhaEhCQYFIo2irmFHIqRL+Qt/+z2778/y507cv6imZkJkya1ZuXKU+psuG4eR6tWqwC5Zs6uXS/w+OM1GD26WeH9UD1XOgOmSf8DwMJEe27GjWvOTz/9R2RkCtnZuZw8eVetC6MUR01Ly+Kzz47x5JPrGDv2d4KC4jAx0eDj48SyZU+q29K9LwAI1Sn8nD9kqYaPHPqlG7KUD1NTE/78cwR3787gscdq4OfnrBd26OBgyaFD42jbtiZdu/oC8sC3TZsa6nHamuVqB+qKyIIRXFyssbU11ws9TUhIJygoDhsbczXXrl27mto6TsBjj32jFpn+9deLnDp1F0lCK0deAIMHa5O5i5PjtmDBvzz33Ga9ZbrGVWpq4Up0pSE5OZPERPm+ycrKoVOn7zl3LoKmTYsxaEqM14Yt6WJmLqvSnTks3ytunoafm5joXzv3IatXD+DDD3swfHjjyt/5vTsw63mtBwMMvVYKinElSZCWrF1mDGUipnYDePfLgkOnldwupVCsMRLjZQNgzHToO1y7PH9RYx0UNc7CJiUEyM92Gzvtb6vyfHPzks95fCxE3DViXOkET1VkJI3yTC8o56q8EcbVI0+Jjatt27axceNGlixZwvTp04VxVdkkxusVuYyLSyc7O9dwEGkE2XOVN+B5hDxXJ0+GYWa2gLjoJK1SYh5xcelyXoalFaSn0rKlF1ejNKS4eiPZ2OH/eTV69vxJzXvRDc+qWdOesIhUkrK0P7xKHtWPP56jVq2lBAfHMX/+vyxffoLz5/XLCCieK8eT2+UfI2N1XgrAwcGS3FxJ9W4USf5inEZ4+un6eh7Q2bM7YmdnwU8//YelpSlubtpjj4lJw87Oglq1HOnRozbHjk1QDYgCSU7Mm920kwUFrGzk8/7ul1j0f1ZttnDhE5iaavjxx3NcuBBJamoWr776GC+91JKgoDiGDdvIE0/8yMyZOwE5BO3tt/dSq5YjFhamevkmuuIPAIRqpe8NjCtvfzlv48S/hR8H+p6+778fwObNwwDo3dtfrWOiS+3a8r6cLbP1xaoyM+TzUsA+atVy1DOuWrf+hrVr/8PGxlz97t3dbfn00160auXFihV9VaPdw8OWjRsvcfz4HRwcLAvNtwLZI7prl+zxvnUrvtC2IAt2/PzzBb1lsbFpaDTw1FN1CyxIXVJCQuL58suTvPnmLry9P8PR8QNatVrFq6/+A4CzsxVDhhRD5Ss1peBBvHLveXrLxU3zk5sLu7bI27hP8fV1YtasDlWz8+P7IC4abuhcD/nvLwVbe/l8ZqRpJ3wK+l6cq8HYmTBjsRzGWxCKIWekTp1KcoK8HxNT+Xk4doa8/N2XCwz5VDxXIiywCJIS9Ccu2veQ/5uZyd7i6xfkfLz8xpVuPayMtEK9iGUiRqlfV7pw5xJjZi6Mq0ecEj8xnJ2dcXERRc+qjMS8H4+8B1lkpPxjbyzHKj+2thbqrC/Wto9MztXq1WfJyZG4dD1RLyQQFOPKSv7RTU6ibRMnciUN++46ciHKgshUMw4evM2uXTcxMzPRExOo5mpNTEIWSbZaj9OSJXJezcmTsjJSZGSK6iFat+48KSnyzPtff12jV6+1ALgc3JS3weI/+JV8JD8/p+Kt4FmrxGpnlpZmPPlkHe7dS+b/7J13fBP1G8c/SdMm3Xu3lO7BKnvvvUFExIWoICoggqLg4AcOFAVRhoiiTJEhSzaykb03lNFJ994r+f3x5O6y27Tpku/79eorzeXucknuvvd91uexsbHQ6s3SpImrcc0v83LIuyk2A2Z/D/ywhZb7BqD/K1351by8bNGrlz/27InC2bPxkEjEaNXKk48EbdlyG2fPxiMgwBFnz76O559virS0Aj41TvWQ1JwOiXHUxJhDM0XM3hHo0Au4dLLyn0nJ4MHB+Oyzbvjll6E6X+dqj9KKVAwvTpLYgNHbqJG9Wlogp+ZnbW3BR2siIlzRurUXLl6cyEuqAySv/uhRJmbPPoK2bb0qVYfj60vGNdcM2ljS0wvg4CCDra2UTyetDrdupaBt21/wzjt7sXjxOYweHYGICFdcvpyIlStJsCMxcQZ6965ESnpRgdb1z8NFjStKG+IiLQx1uLolVYedocgVQIZVrvI80ydoIRIBnfuqiRDphI9cGXAg5eaoR80796PtSkuAW5d0bsJFrlhaYAVoGldj3gRWKGtRPX3J+Aao3k4Vv2D6Hca8SSmlZVWsU1IogAkDgb836H49LYkceZVMva825hZV/yyM/wRGG1eff/45PvvsMxQUPB0T83oHl/agvHElJpLnT8tDr4PAQEfExeUIcuxPSeSKK0qOTyoEZFYoL5fzUaPMzEKKXDm6AJlpiHAuRnOnfKz+JxsPM+mGKhIBq1ZdgZOjDKIVXwJ3SeHNOTMa2cVmyGo3GADQsaUzFi8+h5ycYl6opaBAGGAXLjwDG5v5sLf/Wq12yM6inIwOP22hBn0EBNDv7++vZwKjiU9jqtUzkmHDSLI6L69ELQVRJKpCf5Y8lcmN2EwtPdPT0xZRE+Pw9yza54gRYTh+PBqbNt1CixbusLIyx9ixzVBa+inu3n0HISHO+Pzznmjf3geTJrUGIPT/4n5vQMO44sQqmigNEF2e9YBQMkKN9DpKpRLMndtTb3NQThUswkHlmuOKuzllNR34+dnrVKS0tJSgQwcfxMW9p9arSHUS+OKLzeDpSeOCaqNpQ3CRy/h4dePqxo1k+Pkt1tm6oKioDFu23MLChaeRmJjHpzPm51d/cvHHHzeQmlqAhITpyM+fjZUrh+L69Uk4c+Z1fh2ptJK6TEWFWpFrHk55TlOBTpN6HLmqU7j0LlVHQUXGVV6OkCqsK13TGGztKerM3R/vXQd++kL9Os7L0Z5c/28FPd7WLZLFpceytMAKyM1Wr6UViYRzwkplbqI55trYUQTRWencqKrDNz2ZDKyd63S/npZMzktjnIHVgaUFPvUYbVwtXLgQBw4cgLu7O5o1a4ZWrVqp/TFqGO7mobwZcWp1FfU1AajZrFyuIPlxy/qrFnj1ahIiIpbhmWc2VdmDrkpaGqV8PH5SBFhZY/78U3Bw+AZ5eSXIylJGrhxdgKw0iPJz8FpwCnYcjMPmY1mwEMvRqytNTJ1K0oBLp4D1S+l5IeVxx1o2AgB8/Jofysvl+N//jvHZDb16rcWyZUJhf/fuQkF2hw4+uPbcHXriH2rUwM9Nort2bVS5DZxchV4+RjBoEBl8LVt68sZLixbu2LPnBcycaWQKUnaG/lQhAEFuYgxpQZ9rzJgmcHKyxLFj0bzQAkC1YKGhLrh3bzJeeKEZAKB798aIjn4XW7aQfHxmpmAAqBlXyQk04ctSTgD9Q7UPolEgeVBN3NPI0dESD/5qj5197wkL3ZUGT1ZFkassreWcAWnoug8NdcGMGdRAt6KUQA6KUEr5ZrQcf/11B7Gx2Th8WLvvVnJyHp57bivef/8QfvjhHJydrZTGlXGTC4VCoWYYA9RuoEuXRvDysuV7DZmZidGypQd69fLHihWDK/8GhiJXQcrebHr6rPHUUiPhBgfnqFOtV/TSMzZxY0BuNv2pCiFUFbEZ7ePwTnp+Yh+N1WcOC+vkaRgAAN1Hh78MnNyn03BmaoGVJCudesbpYtR4oEs/YNoX+rfnIpNVVeR8eEf4X9c9Li2p9uqtAGZcMYyXYh8xYkQNHAaj0uRkkCdIqbITF5cNZ2dLnXUemkREkFf20qVEhNfjyNW+fVG4cycNd++m4cyZeFy/PgmurhWnPepCoVDg1ClSiboWUwL0s8HZoyTV/dlnR5GRUUhGg6OUDNfsTEwKT8aa4g7YuO8J/G1L0DTIBodPKFXeAD4FxVlEN+PoZPLQN/EApkxph+++O6NXOe/YsVcRH58DNzdrMpDe3gWUQD33vBJ88UVP+Ps7oEuXShpXVjaUplBaolvBSw/OzlY4dOhltGrlyXtx5XKFTjn0CnkSo9ug4ZCY86kUtrZS7N37Io4efYy3325b4a79/Bz4/wsLaR8SiVg9upYUTwbN8JdJCppLy1PFRynPHvvQqEhiZQj0kAC2Kr2SbOzI2EtP1ruNn58D0tMLkZ9fAmtrISW1tFS/4MSXX/bC/fvpEItFGDcuEleuJBmW6tfA11fboOPq7Q4efIhnnglXa6HBpcByUOTKwqjIlUQyD+XlCkgkYpSWfsovj43N1llXKJVK9Pd100dhgf7IVWgzSk/q+4zu14eMBXZvrLoIUF4u8OEr5KVv07Xi9es7bw4BxkwEeg2j59z3wqkFtutBqny64IyrrHQac63tdNe5GYuHN7XOKCsVaq/u3wC6DaT/05KBMB1NkyM7UsQjIRoIVm+AztQCK0lGihB90sTDF3h1uuHtOadHVY0r1RYah3fSNaZq7KUnA2GRVdt3VbCwAEqYcfU0Y7RxNWfOnJo4DkZlKC4CYh+pFYXGxeXA17dyKRVubtaIjPTAgQMP8dLo+hy5Ska3bn5YuXIIOnf+DTNmHMT8+b3VxBYqy8KFZ5CSko9WrTxx+F4Czj2R8oqJXMNNf38HwEFMHq+EGEgtLTBlanu89touWJrJ8W5/KyQeTcO4YGWTQ2Wag7MiF4Atpr5HKoG2inzMnt0fe/c+wNWr2opzzs7knVOLNnCTVKuK0zpVadLEDYsW9a94RQ4rpXFakGeUcQWQ1DcAXgxFM7pgEE5ivrycap66DtC/rrl6EXC7dt5qKniVpV+/QCxbNggTJ7ZWb/6ZnECRqbAW9KcLqQxw9yHjytRwOfiB4eRptbSiPj0G1Mr8/AQ5ds45AgCDBgXp3Wb2bGHy7uJihfXr9RgMeggOdkJUlHo0jRPJ2LDhBhYs6KtWvzV69Ba1dZ2dLY2KXMXFZfOT2LIyOUpLy/k0rLi4bJ2NoY1GLjccuRKbCQIHuhjyIhlX+VWsuUqOp6jYii+BZTsq3TC8XlKYT+IEf/0uGFcFGt/LxI/0by8xp4hRVjql6lU3JZBj8Fjgh0/JYEtQRli5iEZpCf0GvYdrb+fhQ84tncYVSwuskIJ8clxUUu1WJ9WNXMU8pBYK8Y+BP1cAB7YCny4lQ16hENICawsLWcVRcMZ/mirHui9duoT169dj/fr1Bpv6MkzIT18AF0+oGVfnzyeo9fWpiAEDAnHgwAPILSzrbeQqOjoLgYGOCA11wbhxLbBu3XX4+S022HBaH7t330fPno2xdu0IpOaL0eGLAhw69AgffNAJEyZQGuvgwSGUFggA8Y8AGzsMGUK1Ru82SYR/cQw29YrCIN8sWkc5kfCTqCtT2ZTlwdraAj/9pDtV6eLFieoLyssBeTlFU56fZPRnMwpLpfGmOQkyAqlUgoAAR3z5Za/KbVBSDLw3Bti3CUhJIONCpT+bFhJzkzReNDMT4+232/JpZADoBstFriqiUWDNGVcSc+EmL7Oi6Flygt5NuIhckybLsXXrbQAkvW50SqYRhIQ449ChR4iKEmrBsrOLYGVljsLCUqxZcxXJyXQe6WoFoFCgUpGr9PQCPPvsZnz00WG15VwDa4B6+Hl4GOd40Ak30bGsWgQcEgkZRAVVTAtUrUVKjKvaPuoLGUonk+rksSAPaKTf4NfC3om+E00hhOrANYWOfUj7bdmJHBf5uUDKEzKwNRtEA5TC5eEjGGQqMLXASnBHOf9z86z6PjinR1UMEoWCIletu5DEvoWUlCs/n0yvZabRvci1GsdnLDLLet10nFHzGD1ipKSkoFevXmjbti2mTp2KqVOnonXr1ujduzdSU1Nr4hgZHJwXriPJnKalFeDKlST07Vv55s0DBgQhNbUAV+JBA5m8vMJtapvs7CJ+0jZhQmvY2lqgvFzBK6XpY+/eKL6ZLEAiDBcuPMHAgUFo0sQNC7sL6Ve9e/vj55+HICFhOvVO4hrKxj0CrO3g6mqN/LxZmNgkHXh8V/2NcrMAhQLWhRlYOIHyuJ0s5ZAWUX1Yhw4+yMiYiU2bnsXPPw8BQLVRXI8mnowUMrBeeMd0Ewx9WHPGVfUK8h8+nFr5FLPMNHrctpp6CAGGjauaVFjKzqDzXVMKWBd+QcDD28D186Y9hlKlccVJr1taA6EtgMf3gJgonZuo9lXjIkR9+gSoR+RMDFdn9/77hzBlyl4UF5chK6sIERGueOaZcCxdeoFviPzvv6/x2w0bRimfMTFZsLY2R0FBqcEo55o11/DXX3fwxx831JZfv07XaX5+CQoKStVaAFQZzpGkLy2wMrh5A4/vV7yeLlRFS1Ke6F+vIZChcp8vU6ZKF+Trr7HShZMrkJ5iWuOKSwPjlP8696PH2AeCceuop/ZQZgUc3Q1Eq/++TC2wElw5TYZ1ddKo+chVFRy+GSmCcf/MeGDpdnrMTKNr7RFX1xxS9eMzFpkVRXdZ3dVTi9F36ClTpiA3Nxe3bt1CRkYGMjIycPPmTeTk5GDq1Kk1cYwMDgspMOwlIDwSAHDkCHnaevf2N7CROp06+UImk6DHu3dQLke99K5kZxfD3p5S18LCXBATMw0ymQSdO/+GLVtuIS4uG3Fx2Zgz5yiSkvKwd28UYmOzMXjwH2jf/lecOxePkSM3oXHjxSguLsNzz1Gqx/TweDzf0wGNGzugZ09/iEQieHkpJ6+WVkKjXaUssJW1BWBlqx3FyM2m1JPiQgSEknHVNUik1kDT0dESzz3XhDd8p0xpp/1BuUmWrtofU2NV/ciV0XDGFQDsWEvS54akcM1NE7nSSRLV2cG9EsYVl7oY/8jwesbCRa5adaJrOTySvOsAkKI7NdDMTIzy8s+watUw3uFgaWl0NrdRdOvmh6lT22HXrntYuvQCPv74CO7dS4e9vRTvvtse9++n45tvyFj28LDB8uWD0KSJK3bufB5ffNETS5cO4lOVHz8Woru3b6eqCdRERaVTA28NHZfNm2/h3Xf38am1lenhVyHcpE1fWmBlaNsNuHa2ahPArAxKm7KyAVbOV++31tC4qNKqIJHqWVGQR5+tU1/DDhQONy8a/3KztFsiVBUbO7q+blyg66tpG0BqCdy4KIzN+gR1lA5LPFJ3pAmRK2Zc6SU3ixpvV0eJT6ojLVChANb+wKvz6oW7PzcKpEexGOihzB6Jvg9E3aKolT7BjZqgummOjAaP0cbV/v37sXz5coSHC00bIyIisGzZMuzbt8+kB8dQQaFQTvyFyen69dcRGelhVC2SubkZPvqoM/IKynE+1aZepgZmZxepSVo7Olpi/vzeSE0twHPPbUWjRovRqNFizJt3Ap6eCzF48B/YvPkWAGpu26HDKly8+AS9evnjjz9GUWpVaQlQWoL1cyPw6NFUbU+kSCREr6xVvk9dxkBeLq8m129EC3z1VS/8/JqNICusgr+/IzIzP8To0U20XuOLrh1qoW+cpUrNVW2RqfRwd+xNjxXd3CQ1qLCUnEA3XddK5N1b2VD6YJ6JleHKSsmA7D6Y6m5klvQnEhtMNxOLRXjttZbIzPwQN2++hRkzOpn2uHQQHCz8VgsXnsHx4zFwcJChc+dGGD8+Env2UKTN0VGGt95qi5s33wYAfPxxN0RGeqB1a0rBCQpaAlvb+Xjzzb/RpMly+Ph8j+ef34ri4jJERWWgWzc/FBV9witCBgU5YefOe/jxx/Po0uV3AKiymI0a3CSnon5JhmjbndKL7lQw2dNFVjpd56PG0/MbJo6K1iYPbpFIhEgkCAlwxtVrM4C5Kyreh5sXkJpEY6CpIldiMaXcpiUBno0oldPdCzj4FzlXpDL9tW49h5CSoEZkX6i5aphpgbdubcHcuSKUlNTguJ+TVX0D2cyMMhdUjZG0ZFJ9/O5DyiTQR+xDOodU7y9WNnRMKU/IuArWcf+tSZhxZRxlZcDuP4A9fwp16MlPgG2/k/HeADF6xJDL5TA311amMzc3h1yuX8GKUU1KimlyppSsffgwA7t338fkyRUrqWnyySfd4OJogV2xTvVO1KK0tByFhWV85Irjrbfa4Pffh+P06dfQubMv3N2t+f5GAPh6FI4zZ17H5s2j+agVZ0Sa2drob3zrrDSuVA0q7sYfqqIypZDTBEMshpWfL2bN6gp3bwe1yJUquupS6JjyydPKNeCsSSykNImvzSLbzHQ6X9v1oOcVGU7m5jWXFhj7kKJWkopVNQHQcZtadptLCwQEL69YTFHTSqZrNmniVispSpoprB07+vCy7itXDsVHH3XG1Knt9F5Lrq7WeOedtnjuuSbIyyvBypWX8frrLTF5clts2nQLMtmXOHz4MZo0cYWFhRm++KInevf2x/Llg7T2VZkG6RViirRArgdWfhXaQ2Qrpaq7DyYPe5p+hch6T2424OpFBhIXNSjIF0RzKoOXH6VN5ZjQuAIE50mAUpV06Ev0GPeoYgPAzkFrIqcWuTq+B5g+Frhz1VRHW+Pcvr0ZAFBYmFnBmkbC1bEB9BsaaLFRaTTrlFTT8Q2l46Y8IUVCzbHIzQtIiKEMhIBw3dvWFLz6Yf2aX9VbLv9L2S3bVwsCT6f2A3s3qUfKGxBG55f06tUL7777LjZu3AgvL0pnSkhIwHvvvYfevXub/AAZSriJntK42rLlNqyszPleP8ZgZibG0H6NsGF3Lj5Nz4aV8YJsNUZODqmSaTZjlUolePXVSADAqVNCnceiRf3RtevvOHeORAGOHh0HX1877f4/XMTGkCofp3Zko9JzhZsMNwqixpScXPjl0zR4c6/b2uuMXBmkML96kz1jEIkAmQwo0m4CW2NkplGNg6+yJrCiSalmb5Az/wDlcuqRUl2ibhjnvTS1cVVeDuzfLKS/qGJlU3UVuhpCU/78zz+f5ZdJJGLMn9+nwn0sXUqG0qRJrbFr1z18/XUfSKUSrFt3nVcfHDmSJj1du/rhn39IWn3TpmeRkpKPe/fS0KVLI3h6VrMHEmCatEAzM3JSVOSNLi5Sj5AoFBQ5bd6enrt4NFzjqrycxlJbO1JnS4ihZUUFlEJdWVRbMlTUuNkYAsMpLbCjUgbeU5kGHP+Yb6GhFzsHisLI5eTMlFnykSuxWARcOEmGxNZVwMxvlQ6rWmpKW22MF4MyyA+fUgrldxvI2NbXMNoYZFYaxtU9ulYsrUnJUR952bqNOw8f4PQhuv58Kl86YRJY5Mo4VCP5qYk0t+JqO+Oj6+SQqovRkaulS5ciJycHjRs3RmBgIAIDA+Hv74+cnBwsWbKkJo6RAQC5WcgtEWPv+VykpuZj2bIL6NGjMSwtK+mJ12DWBx2QUGCBdZurWKBtIuRyBebMOYo9e+7j+vVkfP31KQDQilzpw9LSHKGhQpFyjx6NERioI82OiwwYUgtTVXHTJFAp4tBd6VmPe0g3YQ5be/KOG5PWVphfdfWyqiC1rOXIldK44lS8VPqMJCVdhVxTTEWiEbla9R2welH1jyMpDngSCzRpXfG6HKY2rpKVNV+6vn8rG6CwfhlXzZu74+bNt9ChA01O+drEKtCzpz++/34ApFLy5Z04MR6rVw/HpUsTERmpnab53HNNMHlyOyxZMghjxjSt8vuqUWgC4wqga0jTG61QAMf30kQqIxV4ZwQV+XOc3E/GFBeh5lLXGiKcGIuNHTmjMlNVHFdGjGVSGRCidAyGtzTd8Q15AfhplxC54poGpyVVLMVt7wRcOA5Mew6Y+TIAIXKF1CRKTQsMJ/GZd0YAf28w3XHXMHJ5mel2lhAt1KadOUz3wcqosFaEzBIoVrm2Ht+j39Hdy7AzIjdHd/p+YLiQYuatQyWyJqmO+uHTSPxjEqAxk1DPuexMwbi6dYmcHQ0MoyNXvr6+uHz5Mv755x/cvUsXWHh4OPr0qdiTyagGT2Iw/mQQ/lp3AjY2Z2FuLsZ331Xdox8c2RjDGmXi7fm3YR12HS+9pKO5oom4di0JO3bcxccfd1OXxwZw5kwc5s07obWNalPYisjIoAGsa1cDalVck0tDE4AmrSksrWo0PTOeJvwtOwNf/gY4uVC9VXYGMPA5YT0utSU/t/KFs4UFtWxc1XLvjcw0Ut4TicjDqYy6FhSk4eefW6J79zno0eN/wvqqfa7yhChXWWkhSssKYWlZhdq0rHTK47a0BprrEBXRh7UtEK1bwa9KqKrFaWJlU20Vx5qgSRM3/PXXc/j331it67Y6NG/ujubN3U22v0pRVECRBrNqplTqkliOfQCs+5F+40Bl+tHDO4JYCafyyj13cadUpnQDjVfrK1x03saeHCeZacC5o/S96pI5N8SMr2l/pu75pZpmbWVN6dAKecX1lpySKGcsrvpWeO3SSUrhnTwHeO95WnbmMAlMNQDKyqoxOY19CPz6DfDBAkqt3LCMjKnkBPpezMyAgMo3KdeL6rVVVgbEPABadSE1wIQY/dvl6TGuOGeas1uN3GfLyoogEolhZqYjrV+ZkXLn0V5s/qstPv20DGI9jbITEi7Azs4btra1IGxVH+F6YHbuB/x7kAz3ee/QudC8Han23r0qRP4bCFW6Y4pEIvTt2xdTpkzBlClTmGFVC5TFPMaBJ44IC3PBiBFh2LHjeYSF6ZGVrQxmZviqWwbkcuDll7cjPb1mcoPPnIlDZOTP+N//juPmzRSt17/66hQaNbLH4cOv4OzZ13H37jsoKfkEQUGVn0hPmtQa5uZiHD78iv6VuMiApYG0wMbBwDtzhMaY3LKZ39INxN2LbtwzvgbmrRQUpgDAxoEe9dRd6aSgDiJXtZkWmJUmGJoOzvykJy+PvJDx8WfU15dZCelxD4Qauj/WDcCCBVVUetq6iiZBHXsbV9vm3ZgmD4UmMnpU5as1sbZRMybrE15etrrFWBoapkrB1UxdAoTfVqHQLbOekUqGVVAEPeciKB++0qDqdwBQ2hxAziQnF/Io374MNA6tXJsDVczMhKh2TSE2Ewxqlwr6HGkeyxmV/muJcYCnLxkX3HoNSGa7vLwaxtX+zRT5P3eMnsc9BLoMoDTL6CiqvzOFgSxVMa4SHtP3GxAG2Dsbdk7lZQsRSlWc3YDZP5BRWAMsXOiJFSsidb8oswLEYpx/tJUOMU+IVJeVFeHmzT8RG3sKeXnJ+PXXdli1yrBIUUlJHtLS7hpcp8GSmUoObA8f4NnXaVl+Ll23oyfQ9Xb/Vt0eYxWoVOTqxx9/xMSJEyGTyfDjjz8aXJfJsdcMh8+mIa9EjN9/H86n6lSX8MZWuPylA1p9nIW5c4/jwoUn+O23YQgPr34O/JUribhw4QnefHM3vywqKl0tDWj//gfYuzcKW7eORq9eVc+JHj48DCUlnxpeqSBfWXdUgVpYy45VOwgucsVNPiqirIwaQrequWawWshqMS1QXg7kZPMTkfv3d+PBgwPIzY1H69ZvAgDS0u6isDATlpbKfH0vP7pRZmcCZ4/wu3ocpx3ZrDRJcUCbbsDYt4zbLiiCvN0xD4CwFlV/fw5Olv6tT7Rfs3Mw2EiYYQIKC7RSAhUKhX5xG33IdKQFck2BzcyE//dvoXS3Jq3oHOQUMwH11gt7NvKtNeoVMVH0nWme+xlKB5mTq+BIenCbZM/rK1yqcXAFKabtepBxPOQFSg1UTVFOiiPRBIBUCIEaGUvv39+Nv/56ATNnpumOiBgNnd/VilxxUaPzx4Au/em8cHQmoyc703StRGwdqNk8QGm1ltaU+ZCaSM4RzVpGgIyxkmL9oihceqgJuHVrCwID+0Emo/cqKspCUVGW2joKhQIKhZyiVNa2ECmzYL7/3gfOzqHo3v0zxMScxKVL6oqa2dkGInMAdu16HbdubcZnn5VDJGqYypV64VI+XdxpHBkwmgxrkYhKBboNrHknTA1QqV/p+++/R35+Pv+/vr/FixfX5LE+tZSUlGPOzhK0bSRH+/YmVJ+wc0RL5wK0a+eNJUvO4+zZeERELIdINBcffnhI72YKheHi2NjYbLRp8wtvWF2+PBGOjjJERVEjx4KCUjx+nIlp0/aje3c/PPNMLSj5FBaQZ0xcQwMTV1CbY0CVKTcbeG8MKVdxTWO5G3Y1yMtLxq1bWypeUSpDZkHNNTDNyUngo1LIzSbjRDkobtw4FBcuLMXduzuwbduLAIDs7FisXNlK2IF3YxSKSlFw6xRw8QRyevTEny6X+ZfnzhWhsNBwI2k1FAqSc20UaHzhuZ1yMDdV3VVhAaXStO6i470cK2+UAygvL0V09LHqH9OlU8C7o4W6hAbI3bs7EB9/tuIVszPUbtBXr67Gt9+6GHc+AbrTApOUBlVejvA/QPU7RQVkWHuqXOcePpRiHNyk/n73n08hCWxNMlLpfDW3EBryFuTV7/TGaV+QjL5bBZErmSV5zmWWwASNz54YR/LugCBiVFgAvDEAOPq3yQ71338XoKQkFwcPfmCiPdL5VV5exShbcRFFrYKbUrrWNeW15uAspAK6m8i4cnajVFmAIrrN2tJ55qxMIX58D3j/RfUecZyynDLlU6FQ4PHjIxXOUThyc59g/foBFY4hRUVZ2Lr1Oezd+zbOn1+KBQuErKGsrGilUaXA6tXd8Oefw1FQkAa5tTXEKk3U09PvYdu2F7UMK0KELVuew65db6C0VHDeJCdfx4MHB5CSQpGbjIyHOrZt4HD1p84qqeLmFsJ1NvxloW9ZA6JSM83Hjx/D2dmZ/1/f36NHDbgxYj3mq69O4kKMAl+PlBjvaTWEnT2Qk4kffxyA555rgmvXJvHy5ps36+4rMXeuCAMHDoJINBeTJu1GcbF2oey77+6Hl5cEI0fewldfOaFlS08EBzvjl18uY8SIP2Ft/RUCAn7EvXvp+PHHgVX6TAqFArm5RhgKxYVGpS4UFWXzA1qlkMoo7ciQcfUkhoyO7WuENId+z2itlpZ2D7t2TYBCUbnWBn///Qa2bn0OpaWGPamxomT8mPkDHj36p1L7rQxlZcUoKiIP9vff++D775VRVa6Hl70jX0wtFtNgqTqhzcqKRmbmY2zaNBI7z36CBT5H8NP+0QCAOF8r3LNUT6dLTb1T+YPLyyaPZ1U8q7zak4nSZUuKAQs955+tA50XlWxl8e+/C7BmTU9kZj6u3jHtXEfGY3EtpopWgZKSfJ2TJYVCjk2bRmLVqo4oLjacVqnISsd1ixjeg3/o0AcoLMxAUtI15b4qaeToSgvkGlTnZtMkvGUnmihmZwivaTpR3L2ovUNiHNUcVJV9W4CrlTAuq4rmZ01PFtT9VL3JxtZb1SZN2wBvzjLOweJCE73JrwTT84I8Ie2RS+XmIo6Hd1b7ELOzY/Hw4SEoFHQunD//Y+XPyUpQ5bTA2IfkJOs3ip7/8g09OjiTIfrSFKCv9j2sSji50jVTWkIKcb7KpsA+jenx5H66b+7+Q9iGS8NVjvF37+7A2rW98eDBfr1vo1Ao+Ht7QsJ5PHx4AKtWdcTx45/r3SY7m5wmN278gX37pqCwUEhT/OEHf9y7twtZWY8RG3sKUVF78O23rlhv8Q9E5ZVtT6TA7dtbcOXKKmzYMBB37mzDuXNLsGJFC2zYMAAWFlTOkJR0Vc9nkiM3NxHFxbkmPW9qhbQktbKB/wpGu/HnzZuHggLtCUdhYSHmzZtnkoNiCNy5k4olS87jjbYl6NWsGg0wdaH0mLdv74NNm55F8+bu+OmnIdi+fQyio7MQE5OltjrXK6NZs5NwcMjEunUn8OGHwkQ9I6MQAwduwJEj5/DGGx+jRYstKCubAQAIDnZCdHQWdu68BwCQySTYt+9FNG/ujlu3tuDo0TlQKBQoL6+4z1F5eQkOH56NRYu8K5/uUFxkVAPRP/4YhJ9+MlKpzN4JyDLgCefSSNKTgZ1r6X9rbRW2Xbtex5Urv2qlHGhSWJiJL76QIS6OapeysgxPtlPFtL+7d3fg6NE51UsVUbJ16xh8840DHj+mND5elSo7AydtHyE2P4o/b0aP3qxzHz/+GIC7d3fg6rU1AIA8s2LAqxEKrLQLgIuKMpGcfKNyhu+X79JjVZSsJBLtppYAcGQX9eQwluIiQKpHAdPOgSYwleifpFAo8O+/NMHJzNTtzCotLcCJE18a/H0VCoWQ9mTqfl4mpKysGPPn2+D8eW0l2uTkG/z/f/89Qe214uIcREUJTe1Tsx9ge/YWLFrkzafuAMDatb2QnHwDv/zSBnPnivDgwQGt9zl6dA7+/HMEPZFKgRLBGM1KvQ95wmOkSvIQn3EDJ8rPY2n+SqBZOxoLHt/TL/YQ2RGFuSlQnD9mxDeiwq3LwF+rULb0U2ze/CwuXlyBo0c/Q25uYtX2x6Gq4vnHMvXX0lOFKJVEpaqgfY/qvSdo4nrixBfV3o+xlJeXIDHxsvoyRzIcl0zxgeK6UiGW+w3fnEWGxfT5wGvvkwGtdFAcOvQhdu58Dcbyyy/tsH59P6Sn34ebG6koPnx4sPq/pRJ9Y8GePW9jy5bndL4GAIi+T+Ngs7bqggLObnQ/7THYdFL6zu4Uyb19he6VvspSASsbpLtaoej8QXquWtecGEuCQMqaKy69ztC988KF5fjpp6ZIS7uLtLR7/PJjxz5DXNwZHDz4AWJj/8WjR//wEa2cnDh9uwMApKTcxMGDM9SWPVbE4UGRep2Uj49QdmBurrveOibmBDZvHoX9+4USm4SEcwCA5ORrSEu7iytXflPb5vTp77BokRe+/toO9+/vRoMiNYl3ZvyXMNq4mjt3LvLytGWDCwoKMHfuXJMcFEMgL68E4eEu+Lx7ToWRl0ePDuPu3R2V37mdA5CTCbm8HNeureUNmy5dfNCmzQUsWNAe9+/v4VdPSKDJjLW1E6ZN+wEzZ36LHTsOIDr6JL75xhHffdcX//xzB3Z2wiRRIqFjDg4WvJx//jkKhYUfw9X1CK5fX4+tW5/DiRPzcOHCcixfbrh4Pj8/BV98IcW//37NP9dHcbHKpLGkSH/kQAecwWIUdo6GI1fcJDYhmlItAJ3eVM4rxkWE9JGWdgfl5cX8+hkZD9U/swZlVlRzcuHCMpw4MQ+3bm0yuP/KEBVF58fatRo97rIzccQhCr//NRQFBVRvZGnpjF69vkS/fgsxZ44CH3yQpraJo2MgGtlFwEHijILp/+MNNlXu3t2BFSuaV87w5XK5XT1RUJCG8vISlJQYIXkusxIkvAFK7/pjObBcv4dTLyU66gU4uGLsvIqNnPj4sygpofXS09XbKKSk3ERWVjTOnv0BR49+ggcP9uGPP4Zg+fKmWLDAGZcu/QIAyMh4gHnzxEiQKyduVWmKW0vk59NvePv2Vq3XVCOwlJpDBlNOTgI2bhyGP/4YhJISSmc/LKfrubAwHcuWhatFTy9eXMFPru/f/xvbt7/MT0azsqJx4sQ83Lu3kwxSCxkvC/zw4UH8sDwUn7vtwnLPf7Gq+A8cdXiA9MIEJFnkUOH/v4cAv2Cdv728UQAW+BzBycuG65hVKS8vFSbK/2wHADyxyMGdO39hz563cOLE59i9m2oaY2JO4MKFn2jdx/cqL2e8fyuNSxZSirar8CjzKu6Zq0z4B4xG6uhRuGuCCd22bS/i6NEKameVFBfnYMmSEDUDu6qsXdsHK1e25seGgoJ0LFjWGLG2BUBqMtV/unsLkStXT6oLEYl4QzMv/jbu3NmO06cX4OrV3wEAV678hhs3NvLvU15egujoY0hPj4JCocCDB/uxfTuJMHHneUFBGpo3JwXCDRsGYOXKVrh2bR1KSwtx+vRCvQ4V/YiU7637t7948Sfcvm0gpfzmBUr/k0iAKf8TltdElMFZaaRtX01ZIKHNkZ0di7lzRVgq247f3c4jT1yMggwVQ+fBbeqZJhLh778n4tYtcuBJJNqOrJKSfBw4MB379k0BABw9+ikOH/5IbZ3ffuuEM2e+w++/d8G6dX2xalVHFBSk4cgR9VpZiUTdUXvixDx+7vXCC3vx2muCA87dXahb7Nr1YwBAZOSreP/9ZEyceAkDBvwAgO6PFhaGW14kJV3F7793xa5dr+Onn5ojLe0eTp9eiH/++VBtnQZFWnLFbRIaIEYbV/qKgK9duwYnp4ZXdFbfadvWGydPjoebeSHd7Aywbl0fbNo0kg8LKxRyw9EPO0cgPxe3b27Cjh3j+IEpNfUQhgzZAze3+9i4cQhWreqIDRsGYe/e6QAAS0shFbBt20NYs6YbioqyIJX+i27dTiAgQLgBlJWRR2/06Cbw9bXD3r0v8L1rdu9+E9u3v8yve+nSCmRmPtSbDldYmKF1M+VuSgCwadNIrF3bG+fOLcHcuSJ8/bUdsrKi6cUiIXKQlHRVa7DUhstVrziSVlZWjNTU2xS5yjYQuVJOnktEZUiX5AONQ3SuVlBAxtKffw7H11/bIyHhgsH1OC5dWoGvv7bTqSqkUChQoHH6cBNKffn4iYlXoFDIUVpaiJ07X8eDB/uxbdtLKCzMwKVLKzF3rkhn/5SUlFuIjRf6/Pz+e1cAgJWVC7p2nY2OHacrnzuje/c5/HoDBixGaPvxyCpLx48rInDnzl/8awMHLgUAXLmyil8WHX0MMTEn1dIgrl1bi99+6wKUlaJYVAY55MgsTMS337riiy+kmD/fFmlpd1FQkI4//xyu9/rIzo5DnGWuelrgfZVzz1ilsGIDxr1Muby4EOXlpbhzZxv/mVSNgNLSAjx6JNRCakYqf/qpGX74wR9PntD5Eh19HFFRe5CaeguFhRn8ROLyZfoOd1qcxiNpOm/05+en4vPPzZGSctO4z2ZiHjzYj9WruwMQVLbKyoqwffvLOHLkE0RHH4dCIcfly7/A2pomtwkJ5zFvnhnu3t2B77/3QUzMcQBAbm4CirOTcF8qqHWlp5O3+tVXj8PDI5I/p6RSO1y4sAzXr6/HlSu/ITn5Bn74QRDaycp6TGOw0kgxNNE9kqF0SqUmAiPH6VyHc4Tcy6AGmteuraMo758rcG/FRFw4v1RrvFu1qgO++cZB+UFSAEcXpJmrK1pyKZKrV3fH3r1vA/m5uP79aORv+I5fhxuXS0sL8PffE4W0ysJ8Srvq+wwwYhw5gTJSKaKgUGCd+X78mbBceLNnX8dvV2di06YRer8LYzHkMKPXU3HgwAxkZETh7Nmq98ErLMzEo0eHERt7EgBw6tQ3OHPmeyQknEdJSR4S7eXAg5tUO9dzKO8IUygUOHBgOlaubIO9txYDABaub43Nm4X0uJycBOza9Tq2bXsBc+eKsH79APz990SsWdMTS5eG4N69ndi27UVcv75Oy4kWGNgPISFDAdD5v2PHK9ixYxwOHXqfNwyMpUo1V6UlVPvE1YmKRMCc5cC8n6t0DLpITLyMuXNFyMmJp75pAPU8GvICYG6BxMQr/LopFnlY6H0MKyx2oDAvDQqFAvKY+8jxdYdcXobLl3/hFWjv3duFgwffV3uv69fX4+zZ78Hd23U5bHTx7beuSEq6gmbNXkCLFmQMN2pEQlQdO86ARCJDeXkJnJyC0KvXlwgOHghf304Y02gyBpS0xcSJFyESURaGVEqS8TKZEywsrOHp2QqOjpT+6OoagVmzchAaOhyhocPw0UfZePvt23jzzav8scTGnuSdlSkpN7BsWRgOHVL/nDk58ZX6XPWBzMxH2FDwJ2Jl9dfBV1Uq3efK0dERIpEIIpEIISEhagZWeXk58vLyMGnSpBo5yKcdkUhEN3QDkauLF4UiyeTka/DwiMSJE1/i2LHPdPZYOH9+GeLu7sQoiBH3mCYi3EQmOfm62rqaxZ5FRYLnsmlT9fSsbt1Oqj2Xy0uxfn1/PHx4EK+/DjRv3hk7doxD27bvaH0GblJXXJwDmcxB6xhWreqIpk2f19rGy4uUqjjPkWrEIz7+HBwcGisjB+Rt2rbtRaSm3kaXLrNgYaEemr9zZ5va4FRSkquzv1JJSR4SEi7A378n9u6djCtXfsWnIcshjjeQmqecxG53uoG7ViloFtEII3U4KwoKUpWfjSZWv/7aDhMnXoanJzXbzMtLxsGD03Hjxh9q20VF7VV+DzvRpQsVG+fnp+DRo8PYtes1fkIFAFZWroiNPYULF5Zj79538Oyzm5GYeAlhYSPh49Me2dlxvNhE377f4erV33D1KqUiZGQ84NMUdKEZVeIia9bW2ukjPXr8D5aWTti//13Y2nrxE6viYmHC4S8NRJs2k5CWdgcXLghpSmvW9AQAvP76Gbi5NYO5uRV27KCJ7KUTC7Hb5zBc7QKR+mOg2nuuXNka/fsvxr17u7BhwyD4+/dCr15f4O7dnbh2bTXMzKQU1ZMCc4oG0kZ3rgBrfxB2kpoEeBnoq6ZJSbHOXiylpQVQiBWwAFCSm475X5C61cSJl5CVFY3Nm0dhypQHcHIKxL59U3lDwMHBH6dPfwt//14IChqgtk/OaD53brHaci7iwf0eqWY5WOd2EXO2rwECI/DkyQXI5WW4dWsL3NxM1LxXDwqFAmlpd+DqGqG2PCcnARs20HdeXJzD11WWlOTi+vX1AICTJ7/k13/++V04e/Z7REcfBUAOFs39FeXqbpTu69sJzs4hSEq6Cnf35pBIZEhIIENn7963tdbPzHwER3ML3rDW9F6bKcQoF8nh5hyOhNwoKJbHQSSRkBy4DrgIZGlZEc6e/QEHDkxDq/AXMPSfdPzpewBQZjV+ELkSVn7NgMgOQvqaQgGkpyAuyAl/59AY3LbtO7h0aSXS0u6q1aDl3TyJ7c43EBaTizH4GGlp97BsWRgGDlwCCwtbXL78Czw8ItG27dvA0d30+XoPB+TlKNi6FH98F4zBfb+HZxvBeCgqyuZV07jo4I0bG+Hh0ULrN/3mGyeEhQ3HsGG/GayvNTe3RmlpPr77zh1vvnkFGzcOxcSJl3gDmmPr1ud4QZeUlJuQy8v19hAyxObNo/jzBgBOnqSUxDZtSFk0y7IcuHaO7rtdhJ6ST55cVE7SgcTES2giE9LlxGJzyOWl2LbtBbX3evjwAMzNBbXKf/9dwDtOeGNZiZNTEFxdI3D/viCUwUWXoqL24o8/BqNHj7nw8mqD/PwUJCScR0jIEIOfVVdaIHc9AXQ/Mze3UleiS06gOlDfAGGZ6v8m4N49+owPHhxAq1avCy8o67h0pbrnmhVjwUJXtG45AZcctgC3tsA2Vl1u/Zoyxbxv3wU4dOhDXLr0M5o3fwlisQRmZlKUlqo7JFq0eAVt205GRsYDrd+OY8iQlYiPP4Nr19bC27s9Hj36B97e7XDmzEIAwIsv7oOTUxC/fphfX+DsYwBiTJ+eALm8jFeADA8XxilnZ6rr4wzg55/fwQcxXF3pnjF9egIePjyInTvH6/0unZ1DIRKJkJFRuf6MV678juDggbCxqThqpFDIleNkiypda7ooLS3E9Sur8UCSiJT4nzG59GOYm5u49KUOqXTkavHixVi0aBEUCgXmzp2rphK4YsUKnDp1CsuWLat4R4yqoeL5jo4+zg9KHEeOfMz/z6X/REVRqkZRkXaq2r59k3Ez4RBuWD3hIx2HDr2Pmzf/xOnT+vtC5OXRpL1Dh/cgkzlW6tAfPjzI///rr+1x7dpa/Pqr+g1JlRUrIvlCcw6ueP/mzT/Vlu/cOR7l5aWYO1f3TZv39BeRoEVm5iOKMkHwYKtCuc7v8s9VJym3b2/F3LkiHDo0E4sX+2Ht2l4oLS1EXBylAORaKgxGrtIzH2Cu7wHctSID4saNP7B+vXDTzstLwpUrv+vcdt26vvz/Z84s0jKs1N4nXYhcLVsWjm3bXlAzrACgf//vkZh4CXv3kpG7detz+Pffb7BqVQecO7eEvzkB0PKMaRpWzZu/DEOIxRKMGbMDVla6+7K1azcF48efhKdnK97Dx/GO/dt4xepFiMVmGDRoKXr3nq+1fWbmY8yfb6OWUrT75CwAQGqOtrpSaWkBHj+mHjbx8Wdw8uSXKChIw6ZNI3D37g61dMmM3BgUFmbi4dIJSC9PB4aS0iHSk7X2q4+NG4dhf+EhyM3Vz/OrV9fgq6+ssfTPbngsTcfmU+/xrxUWZvKpqdyEn/venZ1D+QLnDRsG4v793fwEF6C6g27dPtPxufNRVlakrZD36C5w/wafFmVmZq61bVTUPsydK0JJSR7Ky0sRE1MNeXwA588vwfLlTXDjxh84e3YxH61Wrbk5f34pbyzp6/Hi4OCHjIwHymfaY8CxY59h8/43AAABPt345QMG/AixWAJ390gAgK9vF1hZGa4dOXNmIfJQBBQXoaysGDt3vqr2ukspTZ4DA/ujoCAVecUZOg2rsrIi/P33m3j8mCb2pYoSHDgwDQBQnpmilSr87dWJOPzHOLVaioL0GMx124HfcsjhEezZFYMGLcWECeeRn5+Mn35qxq+76TjVbtwVRePk0XlYtozG8BMnPueVyfbufYcm4KcPobBDZySWxAOunrjQszESpNlYeeI1PH4gjOOZmXRdlZeXQC6n6P62bS/g55/JIbNmTS/8++8CKBQKFBVl4urV1VoTw5KSfCxdGoq4OIpy8y0ZAPz8c0vk5MTjyZOLattkZj5WU8pMTLyMU6fmo7y8tNIp8YWFmdi4cSg/bmty8SKlUiaLM3Fflgq07YYCeQH/XZ069ZXa+qtd6boMChqIwYNpW13XB7e9SGSm3eNPBQsLGzJ09RAVtReXLq1EeXkptm17CRs3DsXWrWPw22+dkZR0Dampd7B587MoLS3gjbLy8mLk5MTj6NHP+Ki4atbI/Pm2OHbsf9i7dwquXVPWA3NtBZQqiVlZ0fxvZQpiYk7w6f1///0GCgrSUdp/BCk1isXYvXsSDhygMbFp0+fRpIl6bdilK7/w/+fm6m5l8cMP/jhz5juUlOQiLu40wsNHYfbsPLz66nF4ebWBmZkUvXt/jREj1sDbuy2aNh0DF5dwtGz5htp+Ro36ExYW1ggI6IM5cxRo1IiyMVSdwFwEisfBGSgvA/JzYGPjDjs7b1hbuyq3F1RjHRwoOh4cLCjiaTohbG29EBBAfTVDQ4dh8uT7fPooAMycmYHJk+8iLOwZlfFQP6WlBdi16zVs3DjM4Hr37+9BSUk+zp1bgpUrW6ulkJaU5PMOXWG/hWpqh4bYu/dtHDtJKfa5JRm4cWMDAIq8cXO069c34PDhj/Xuoz5T6cjVuHHkEfb390fnzp0hkVR6U4YpUBbEl5eXYM2aHgCAOXMUKC0tgFxeBheXMMTFnYaVlQvi409j/nxbfkKdmfkY588vQ7duH0MslqilUW1zvgH7LEFN7a+/xgIAunefg86dP8Tly7+qFVYOHz4Bjo4+CA4ehIcPD/CGm4tLWJWb3HE3Z4nEEmVlhcjOjsHq1d0wduxu+PnRIGboZqSrgHPSpGu4f383jh+fh379FkJWUoRkWSFWqEQxUlPvwNOzlda2qmzb9iLc3Vtg0KBlOHGCBoLTp7/lX//ll7a8x2nxtXfwRlkHeJeW6MxJv5F8TGuZat3I+vX9kZx8nf8eVCksTEdZWRE2bRppUAkJALKyYvjPpy01LcJLOV3QuMlobN/+kvbGgNrv3ahRV8TGnoSnZ2skJl7iPbOqdOw4Hdevr9N7PK1aTUBY2HC9r4tEIv5mY2dH4hMvvrgPAQF9If79eyBNiJR26fIROneeie+/9+WjGjdvUl0DF9GwsfFQa9qoSocO03H27CKterMrV37Tud2SlO+ABd8BSud5S4RgCBS4cWcTykquoHnzl9Q80gBIVn3lfKBtd5R36ct7oMuytqN/6ZuIjz+L8vISfnKem5+EtW5JgEo21JYtzyI0lG58Fy/+hBs3NiAl5SYiI19Dt26f8GMAAPzzz0daYiHNm78ID48W2Lx5lNryL7/U9gwWiktgWV6O3EL6PnWlwh4//j861twnuHBhOc6d+wFvvnkV7u40iT916hu0avUGAAUyMx/Dx6e91j5UuXp1NQDwsvwODv5wcGisFrFUdRjpw9bWG6Ghw3HhwlJMnfoQP/6o7lmPjT0FAGhS4IFnX9yPud9Ywc+vG9q3p/Sq0NChOHJkNsLChvPnEUfz5i8hJGQYAgP74ptvHPHgwX5c8LVDz5JiJK6erXUsFgq6JwaGDMSZ84uxaJEXWrd+E82avciPYw8fHsT69f0BAJcvrwQAZJkJkxFxcTHgqC0Zfsr6PrBxKP/88S3BueZRYosh4eQQ8vCIBEDqcxzxhYKD4cgJIQ03Pz9FLXJz8+o6eGTcxT6Xs4hd+SnmzFEgtkyob1m7S5jccinJ+/ap97Xkanuio48iOvooIiNf5V+7dWsTmjZ9Hjk58Wja9HlERe1Devp9nDmzCL6+nXSm6Go6hVR/X1/fzvDx6YBTp75Gevp9XL++DpMmXYO7e3Ot/dy+/RcyMh7A0TEAT55cqFTR/+OCe3jsCrzfdjF+W9URGRkP8PHHRXrH37Fjd0EsliA9/T5On14Ad/cWSE5WdxLOmpWHc+d+xJEjdP7Y2zdCdnYsPD1bITHxMvz9e/HLZ83KQ2zsKWzYIESmp09/gj17JuHy5V9w//7f/HjFpfT//HMkvy4XGQXIcff996RYGRk5XjCgVODubxcu0LmPJ9HItTNHbvZdeNu0w59/Dkdy8nXMnl3ARxi4tHHNDJDi4hwoFAo+uqlKUVE2jh79VEuk5ttvXWBl5YJ3Bt/B0T3v4NIlSj8MCRmKUaPo2vRyb4lDR2Zpf/kAPD1b45lnNvDOA0D9OkhOvob+/SmN1M+vGyZM0E63F4nEeOed2ygpycOVK78CAD76KJtP5+MICurPZ5N07foxkpOvaUdl7ZTOgpwsUoTVg5mZOWbOzND5Xantzs4HM2YkQSKRQSazR7t2U3D9+np07Pg+75hwcgpCTk4cSksLIRKJcevWZjRv/pLWsXFCKVwKuSakxpyAjRuHoHXrN/mI24ULy9GkyRikpd3F9u0vITHxMj78MBMymQMUCgWWLg1BWVkRPvggVed+VeFqhjvlNEZssDP+/nsC8vKScfQolWxMnHgZ+/dPRWFhBpo3fwmurrXQsseEGG0h5efn4/Dhw+jfv7/a8gMHDkAul2PgwIEmOziGkrIyoLwMReIy7FYWwHKsWNGC91S0aDEOVlauOHPmO7V1jh2bgwcP9qFRoy4ICOiNvDx1BaLsvCdak+YuXT6CRCJD+/ZT8OTJeRQVZeH+/d2wsrLjPUgvvrgPixeTgtLw4atx48YGXLz4E8zMLFBaWgCRyIyXlgWAUaM28sabJgMG/AiFQo4DB6bBysoVDg5+OHz4I7RvPw2FhRlaA7GDgz+mTn2Ar76y5qMQwrHPhrt7c5ibW+HIkY/xzTcOaI0muFSknsIYF/cvQkKGGBzU4uJOIy7uNFJTbyM9XTvcnpqqvs8oWSq8M9O05L9jY//F8WL1lEkOrpEuJzMeGNgP9+4J8r4vvXQQ69f30zkx7tPnG76Y1cUlDIGBA3Du3GLExJzE7t0TtdYPceuIwDgrIC8PDg7+BhUG/fy644UXduP06e/QrNkLWL++P8LDn0XnzjNx8OAM3qDSNZn5LO8FlHfogR9j5iIsbITe99AkIKAP3nsvnjeyYGVNDaBVEInEaukrqukzAPDyy/9g3+aXEZ0u5Os7O4cgPf0+IiPHqdVpvPHGOZw48QX/Hfbt+x2srJz1pl9cufobgp06Y8edhcAdmkSEhY2EtbUbpFIqRs45vhnf5y1Asz3rcOOYcK1dyjqJ9D8GV6pHVVFRFq9kxdWEcN+Po6M/unX7lFfIKy8v5g1qgDzfTk5ByM8XbnC+vp31euoXeB/F21kPEBVLdUJcHWNS0lWIxRLExv7LR8+WLhWacv78cyQGDPgRvr6dcOTIbBQVZeLu3R3IyIjCnDn65YBv3tyEpKQrasuOHJnNeytViYx8DcHBg7Bly7MwM7OARGKpZoBZWjphwIDF6Nv3G0gklrC2dkOvXl9qqQc2kpO62cyZ6WrGsJtbU37yxNU29ugxFw4O/mjRQjsim12aga32N3ErQX1yPnnyPezcMArIzIK3dzt++aVLP+PSpZ8xYsQauLk11TouVRwcGiMvPxkKt45Avt7VAAC37+/g/++XEw67MsMCA0F2kXiQc1V7Pyqe6J17JgDugDiXIpdLl4YiPf0+uvm/iNv3d6jVdnGppZpjr0RiqVYzy0lYAyKUlRXxKZ/Xr6+Hpye1/SgoSEVxcQ5KSvIwfPhq2Np6Yt++KUhPv69Wf6Ua1e/QYTq6d/8UYrEEFy4s58ciXe0oCgszsWXLs3q/m1atJuDyZSEKIpM5okWLV3DuHKUBRyue8PfYlStbaxl8AGArt4RYTNOp5s1fwunTCxAe/oyacUURZ2u1NHO5vBzTpsXCwsIGEolUrYbVwsIaQUHCPOv118/C1taTn+hqOoKcnILVUsJUM0ZUI8KHDr2PO3e2aW1jaenM/67z5pnBWmyNfPt84NfdmDUrly8X+OorK7Rs+TqGDfsV//67AIcPz8L77yfz6ZsFBWn46afmyMtLROPGPTBunGDAKxQKrFnTU+v65ygoSMO336pHkFVFiBxd1JsCNyvyxQ0ZnWMTJ6pHOTk4A9bDoyVvvFYElxkQGNhfy7Di4NL0e/XSo3BppTQ4CyuO5KhGbQ1hYyOo6nl7t8OECRfUUhG5FMPMzEe4enU1zpz5DhYW1ggLG6lmYKm2sVFN8eV4+PAgb9RfuvQzn1ESG3sS8+apJ7zl5j7B/fu71SKh+jh06EMACvTtuwBisTmaufdA33gZjgS1QnzyJd6wAoCVK1vxioq5uQkNzrgyWtDio48+QrmOvhwKhQIfffSRji30c+LECQwdOhReXl4QiUTYsWNHhdscO3YMrVq1glQqRVBQEFavXq21zrJly9C4cWPIZDK0b98e58+fN+q46hv37+zAj54ncDRmg5rHPTr6uFoIuLQ0H46O2jnRnPcmLy8JJ058wXtO2zclyVgrqSOvYsPBqfwBwMiR6xAcrJ3TbW/fCCNHrkNAQF+4uoZj4MAf8cknxZg+PQHvvHMXs2aR50wqtceUKQ/U6qU+/bQUvXvPR9OmY/HMMxvQvv0UpecbiIh4Fp07f4S4uNPYuvU57Nkj1PLNnJmOTz8txdSpDyESieHoGKhWhzNo0HL06kUeOCenIHTuTJPmS9CW7r548Sd8840DTp78CllZ0di1awJsbXX3RIqJOc5Hk7iIgi6O2z/EhS/7AAoFEhLO8x6iv7Y+r3ebBQvoZssZDGKxGQYP/gkdO87A+PEn0bhxD7Rs+Tpsbb3RrJmQDz527N8IChoAiUSG8eNP4Z137vARoNWru6lFEvk6CCu6aWDGC7AS6c9vtrdvhP79v4eFhQ169PgfnJ1D8PrrZ9CjxxxYW7ti5Mi1ePvt23jhhb0QicQYP/4kfxOaMP4MRFmZkLj6YPr0eAQG9tP7PrrgDSvueAu0Ff400wc5xGJzODuHwNlGvR6Km6Q5O4firbcEwQZv73bo12+h8rUQtG49AU2bjjWYIvbEWpjA3b27A0uWBOGPP4SUjrT7JwERcMNaW0ZZl2HF1e6MDZuN2bOFCayuujYHh8YAwF8rAAkjcBLEAE2SRCKx2g1z3LgjmD49AdbWws1ZpBButsuPvcRHUbkx5eefW+Knn5qpXX+aJCVdRmLiJf59uYka1+wyLe2eVm8yLlrCTTLDwkboNKzs7f3QqdP7/Lk7cOASvPyyIOjRvfsciEQiiMVmynoREd5/PxmtWr2B0aO34LXX/uUnvLaW7vx7qo5tgFBk3r79FERGvop27SZrGVbPPLMBUqkdriX9g1tW6pPayOBn4eQUhOEv/oX27adBKrXXmpDt2DEOK1e2VvOkaxISMgypxYkodKl4onX7CdWVdu/6KRpJ/dWaUE+Zop0WFODZQWtZaKjuaDLnZEtPvw9raze07zsHvsUOAIDAQmeIxeZ85Eo1HRWgyZ9qBIqLPgwfrp7uHBNznM9GyMx8hFOnvoZEYglf344IDOyHyZPvQSw2x6VLFN1TKOS8CqKdnQ969pwLmcwBFhY2fI0UAEHACJRKGh19jG9doAup1A6DBy/HG2+cx/TpT9Cjxzy8914sfH078ets/UsYuzWdaaGhw/Ba+x/xanJrfpxyd2+GDz/MQpcu6hEWzqhv2vR5REaS88bW1hP29r6wtHSEubmV3ok8AD4azJ3TrVqRoe7kFIyPPsrGlCn38fHHRejUSbsBsVxeyhs/nGE1dOivatGb6dMT1M6dfLnw2/7xh/r9/8qVVcjIeIjDh+kz/vornV+3bm3Bt9+68g7c6Ohj/FhQVJSN33/vqmVYPf/8LjRpMkbnZ/bwiES/foKzOCxsBKZKXsVY19cx1fYdPOP+CiZPvo833tA/x3vxRSpetLPz0buOLmbMSMSYMduM2kYNmdKJY6peiTrw8mqjlppob0/O7n37JvPzos2bR2HrVnKIP3iwHydPfqWWRsmN3wBlLRQUpGulFioU5fDx0R5DADqfVMWnALoOubRngNSXCwszcfr0Aj7zJz8/BVYKGWBjj0aNu0EXXG2cpnhXQ8DoyFVUVBQiIiK0loeFheHBg4pzPVXJz89HixYt8Nprr+GZZypuRPf48WMMHjwYkyZNwoYNG3D48GG88cYb8PT05CNpmzZtwvTp07FixQq0b98eixcvRv/+/XHv3j24udXjLvIGOHx8DjIlhTgfvQ2urk0QFjYSJ09+oZYaBAB9+izQikoBwg0hJeWG2o3G3ZWK1oe3nYOgbpMRGNgXcnm5TrUZrsDd1VVdKr1585fUcn9pUufAX/D9+3+P0NDhcHSkvOK3374NsdgMYrEEXbqoG+MWFtZ4/fWz8PRsqV5YC0pP69Bhmpa4hKOjv9oNz9bWU23b3r2/MnhzBSj9KD7+jFaqiFhsjnHjjvBqdwDw7LObkZ+fgnv3dgGglAXNyMlepzsITbyDX39tDwcHf7z77iOUakiAt237jppRmJHxgPcsiURitGmjPqEdNoxSFBQKOTw926Bly9f4yfPs2QX8thERozB58j0+wtChw3s4e/Z7BAUNQmrqbSjMJUBIBHD/Bhzk1ngCSq3iBlszMynKy4vx6qvH+Yk8h2bhq6trOO9NatSoC6ZMicLJk/PhIfWhvk3OJrjeLLUjVwDQr99CHD36KdLSaOLeqtUEZGVFY8SINTAzM0e/8HfgfeUBdjnRuTFy5Hpcv74OEokUbm7q57Czc7BWpGXatGh89ZU1L1IAAM8OW4ttu19HnCgNKKeJFdcXKTb2JHJyEnDjxgbczt4LKG2/MMe2yC9MR1yRfmW5l18+iN9/7wp3iRvMza3w8suH1GrsVHFyCtRalp+fjD17hAkmN4nibrSvvHIYZmYWsLX1wowZiZg3T4ye7iMREFOIVTIhxWlM6y+Q6WyFgwen49ChmXqPV5WCgjR+0qsqNLFkSZBatGzgwKVo147q+woL0xEQ0BfZ2bEoLMxA+/bTcP/+Hq1002nTovn/33svDnZ2Pmo1kD16/E/vcUVEUKSir+9LOBCzGjK7is9FqdROywjgaNbsBTx6dIhPZ1Rl+NjNgEgEZ+cQDBhAQgeWlk4GGxuHhg7no9N9skJg1XEILH064Pz5H3GwQL3XlggiKCCcnyKRmI8O9eg1Dzj5tlrvHyenQIwYsRb//DMTfVq/j0Ybd0IxdCgO3luhtl+tGhEN3NyaYdIkSney7DgYuLEStuUyWFmaIzn5GmJjT/H3Gw+PSHh4tERCwjm1dhqXL/8CW1svtWgeR3z8GUgklsjJScCVK6vQqtUbcHYWFFTl8lIkJV1BfPxZZfp7KcaPP6lWrwIA/fp9x0ej//rreYSHj4SZmQVWrmyN0tIC3oj08emgJc4kldpDLJbA27stAKB7d6rb9PJqa/C7GTlyPWJijmPo0JVA3CNg6x5SVgyiuRE3Nk+d+gg5OXFYvbo7b1zJZPYYPvw3RESM5tM4DdG27WS1a2PAgB8QEfEcSkpycfnyLxg69BfeKJNIpOjbdwH8/Xthw4aB8PfvzUcXmzd/GS1bvo7ly+kYbW091RwwEokUTk6B6N37ay2Jck5909OzFaRSO0RHH8OqVULPpqysx9i583Ve9EiV337rhICAPigpyVeLnj/zzAb4+/eCjY0HZDJ7Ncfx88/vRHp6FDp2fE/tfi4SieDoGADH4kIgJQFoHclHazjIqWKOX39tB2/v9nBwaAx7+0ZaDuSKqIzQg0EslcaVjvtXTWFrSynF0dHHeCMcIAMoJeUWHznu2vUTPrMoL0+oH/7pp2bKtF3tDKNGjbqiZ88vsG5dH7XlR49+imbNXlRbxqmsfvaZnI90ccJjgFK9uCAV1rJAwMEZgYH94OISzt/PNVFt2txQMDpyZW9vj0ePtCcKDx48gLW17qZo+hg4cCC++OILjBw5suKVAaxYsQL+/v5YuHAhwsPDMXnyZDz77LP4/vvv+XUWLVqECRMmYPz48YiIiMCKFStgZWWF337TvugbCu6Owg2nceOeOpW8WrWaAEdHf3h4UKg6JGQoOnWaCXt7Pzg700T7wgVBQtfCwgbNm76Al1PaIMS5PcRiM/j6doKfX1c0a6brwuqMDz5Ig69vR63XDNGhwzTesAJoQq56A9XEx6c9zMwsIBZLMHasYOx07Dgd4eHaBviwYYI0d8+en/NFnxyaRtrzz+/C2LG70b79NLXlqoYV12vi3Xcfo1GjLhgyZCX/mrNzMD+xGT58NUaN2oiBA5fizTevqu3z+19ogpGV9RhXr65BYXGW2vs1aTIGs2cLHq0lS4QbRNu2k7U+p+rn6djxPbWbomY+ter3Gxn5Kl566SA6d/6A3x4zvwXCW2KQWU/067cQU6ZEoVUrSiGcOTMNc+YotAyrymBt7YYBA76HOFM5EJrCuLKyoYaSGtHyiIhReOed2xg+/HeMGrURQ4euxMsvH+RvLhYSS7TM98EbLx7FK68cQUjIYDz7rCCGonrj0YW5uRUmhn2ON5KF2qEmLV+Gm1tTxJRT9CE0dIRa/5gdO8bhn38+xBMzoc5NVFyMfmbd4G7mjtGjtaV/ueLmOSWvwV5O46dUqp2mOmtWLj7+uEhNOW3s2L/RooUg8x0SMgSjR2/h66+kUlvMmaNQS4URiUT45JNidDXvCE9bOud6ZwVjVnxvhD0u4T32qnWFmrzwwh60aUMF9w8fCpEk1RoPAGoTqX37JmPuXBEvVGBl5Yy+fb+Fi0sYGjXqrJUWExSknl7OeZ0NefZ10eZUAgZnRKCxa2ujttNFy5ZvoG3gaDyf2hKDM1QcjDoU8Lix4IMPUjFkyM+YPbuAF2Pp128hnn9+B1xcqDaks7QjWorCEPTbJjQqcsS11GOwsLBBKz8yCsRm5ni5sDfMRRb4+OMi+PtTT7lhZsqxztYByM0iZbed64Cjf6NFi5cxY0YiWjh1hWO5FZwat8XHXf5Ch7zGePaZjXj//WSEhg7VrhdUYmnphDFjtvNji6UbZUTYlUsBkQiXL/+i5nTq3Pkj2Nv7oaAgXStdzd7eD66u4XjttX+1FBYjIkYBUCA/P0XLM/7qqyQKcfPmJly+/AtcXMLg69tZ61g1x7/z55eirKyYL6y/d28nmjYdi7ZtJ0MsNsebb15F164fw97eDyNGrNHaH0BOuw8/zNRpFAJU0zh0qPK+4OEDiMRaPcG4/XC/s+Z3HRw8kB+vDDFo0BIMGSIYxtbWbggPH4lmzV7EG2+cR+PG3bW2CQoagKlTH+Kllw4gLGyk8lgC4eoajg8+SENk5Kvw8+sGyOUYPXor3nhDiJJ7eLTQ2h+HpaUTXn75Hzg6BvKqtoAIdnY+WobV1KkPYWPjifz8FNy48YdaqjtADgvOgPHz64aRIwX1wtDQYejUaYbW/RsACUWkJlFDax0N4n19O8Hbuy3efz8FL798EObmVpg2LabCOlCTI7WksaEGI1eaqN7XZsxIQps2b6NDh/egUMjVVHxPnvwC9va+kEgs+ayO0tJCpKffQ2lpPl9vpkrjxj3h799T5/tyYhSaqCo3q4rTHDnyMQoK0mBdLAIcnCASifh7j64I2VMRuRo+fDimTZuG7du3IzCQPF8PHjzAjBkzMGyYYeWR6nLmzBn06aM+ee7fvz+mTZsGACgpKcGlS5cwa5YQjheLxejTpw/OnNEviFBcXIziYmGSlJNTfzT3c3LicePBDv65nZ03AgJ6w8LCVm0y06cPRWfMzS0xbtxRuLs3h6WlE/r2peV///0mLl9eCUfHQPTp8zWcnUNgJrNBQLEzUFa5HhhWVs6m+2CVIMQqAiGFrrhvmaol78vBTTb9/LqhW7eKeldRXZKzc7Ba3YYmgwYtg7W1K5+e1rr1BJSXlyA19ZaySJkk0h0c/GBhYc175PXlTWuqigGCEalKWVkR3nzzSqW8mRXRvv00JCVdgYtLONzdm0OhUKBTp5mCCpWPP6yvnkHHjt8oP/MStGr1Op9rXi0ylDddJ1MYV1zeer5OKXPVgnk1lL2IvH076GxhMGNGklakRBNP56ZA6SmMTW2JpCBKK/P0bIWkpCvoKm+JZs3GYteu1/j14+JOo3Pk2/j3KjkxGkkaobkiGD7pCkxq9TkQMQrt2k1Ffn4SWrZ8XV1t08qGl+pXNZwHDlyKoKD+On+XkJAhCA4ejKgoMnZ69qxcE3czMwsgPhpmvv74bFwpRG8qU37KSrW8tb16fcUX33fu/BEcHf0RHDwIQUEDlVGFM3xNQ2XgGlx6eLRCaOhQhIaSSMOoURtx/vwS9Oz5BYqLsw0KzTz77Ga9ypNqlJdDAjHa5Pua5Fxs1KgzGrW3B46ReuYeJ+1URo727aeiffspEInEaN2aHBdc1N3HhxxU48Ydo9TPA5eAW5chyc1D/7Im+EV2CnJ5GYa+ugMFm55BixavIODkPczOaAFIpHxLgxBHpSfY1p4aXB/aBvy9gcR0eirFL9JTADMzwMEJEmdP9M8MBbx6AtZusLZ2w+zZ+di+/WVYW7vDa98xpDcNgmPboWjeXN0TzaVSNi52gku/93ghEgD4+OMiSCRSnDv3o1rfwTZt3sLFiz/xXnBf307o338RDh2ayd+7unefw0uCOzmpRyD8/LoiMnI8btzYgOLibPTq9ZVeKXcvrzb85O3gwRl85JK7T7ZuPRF+ft3h59cN9va+8PBoob9WRolM5sCnOHboMB3m5lY4d+4HNUMEAH3fbp5CY3gNLC2d4OPTEb16fanz9aoiFpvxETddcCUCnGOCc7JYWTlThDYhGvjuQ0Q8PwmIEIxI1bHGxTEYxWUFfGZDaWkBxGIzjB9/Ejdu/MEryTZp8jxf6z18+O949Ogf2Ns3wvPP71BTBh4xYg3fLkOTkJDBOpdrfzAXIEVZM6TDuOLQ1fqjVhGLAZllpWquTEmnTjPh5BQEKytnDB68DAqFgm8dEBjYj6/F8/Jqi4SE87xxpZnyClBte+vWExESMoR36g8Y8CMvemUo2gRAK8rFiXWdOkWOJqdCc8CFxkWuPn/QoOWQSKRYvrwJmjV7AYmJV3QIc9V/jDauFixYgAEDBiAsLAw+PnTRxsfHo2vXrvjuu+8q2Lp6JCUlwd3dXW2Zu7s7cnJyUFhYiMzMTJSXl+tc5+5d/Up28+fPx9y5lZuY1Daa3bYlEhmsrFzw0UfZWLGiOVJSbqJHj3lqE/vGjXto7cdFWQjq5taUv/HwjVBLqtBgsDa4ew0DMsNgG9TOYArLhx9m6ezIzvHS8E3YsON5KEQKPooWHv4MOnSYjtatJyA3NxFr19KNx9bWGxERz2r1W+AMKIC8ljY2Hlrfc4cO70EsNkerbWfxncMugx+NM6w+/DAT169vwL59k9G4cU+TGFYA+PQkDpFIxBvaAAAff5qMFRUCMkuYmVno9dIaTXoyTfgqaHpdKbgasYI8ncaVXgrzAYm53mOolKNARudASJEbQl4jtapBg5ahX3k7yE4dBSQyhIeP4vPNy8oKEeLaAf+CjKvxQbOBS6eAzGS+J9bAgT/oeCOoNaBWjVy1bfuWbu+tEpFIhA8+SFVTAK2QogIg/hHQayhEZiq3gFJ142rq1Id8FKJp0+fRp48ggy8SifhWBqqiA76+nWBp6Yy+fRfA0tIJ331HY/Grr57A6tVCXr3m9+/v36vSxeZNmoyu3OdMU5HLdzTRRMtZuLdMFD+P0hd0C1SQEaBuCLRs+RocHQP46L+NjTvVb95IBa7ThN3zk43ACl9+jOZrPu6tA+5eBUC1ZwFX4mHt0phes3UAou8DB/4SahTzcwFrW77RMMRmQEgzuiYungT6CwIPI0euA7Izgc03gcjJQHP1tDuAavzc162Hf7Ez0OwFXLu2Fg8fHsDgwT/xY2+TJmNw4AAZITNnpsPMzBwdOkxTM5ratJmENm0m4cKFnyCRyODkFMSL8mimdwGAv39vXL1KqZqRkbon5QAwYcIFtXYcXA3f+PEn1MZUe3tfvfvQxYgRaxAffw4dOpAaI1fPq4VfMP/7aCIWS/D666aTMDeWXr2+QOvWE/k5AM+RXZROengn0L4nsO134MYFeE6bi0D7Fuj+2B7uH+1GTu4TnDr1FQoK0tCjB82TbG090anTDBw69D5CQ4chLGwELl/+Bc8+uwlBQf15p5e3dzsEBQ3EgwdU99SixSsIDR2ms/m8roi9TvwEAQdDxlW9QGZVq5ErAOr3edBY1DZiHMrvXsaQkX/h1uPd8PZuD2trV6xZ0wv5+SkoLS3EL7+Qoa6azv3uu9pZau3bT4GlpRO2b38JPj4dtIwrTmFYlf79v0dBQTpatHgFS5cKmTWuOSKKRELIGLKwsIGzczBmzsyAhYUN1q7tpbOdUH3HaOPK3t4ep0+fxqFDh3Dt2jVYWlqiefPm6NZNd0FaQ2DWrFmYPn06/zwnJwe+vsYNwjWFZhqErS0NJiKRCC1bvoEDB6ZVqvFa06ZjcfDgDPVcWok5ha1L66lxVVQAx3IrDAmYqLcRJ4AKJUwDndvgo4ReSJ3wJh82l0hk6N9fEDIAqLHutGkxFTbJE4nECAzUromRSm3Rtess4PhUQFvzBS+LR+JcUCk/iNCxO/AeRs06qxrFm+pxkBQPNNae1FSJfw8Bty8D8Y/53ijVhotcGZu3np9L9VoGmpZWiEwljUdp5EkkUkjsPYC8XKC0BIP7/wh7e1+cPbsYAOBjrjJuOLsLUTzPCsYTe0fgMRkr3Pns5tbMoGGliqHmrFpkZ1ETWleNlKSyUjUnhaNjAJ+Gp9mLDqDUoxs3/oCZmZRXUHvtNXVFwmbNXkRhYTovRc5haVkLUfAMFePK2lb/esbg5ApM+wKwd4KnkQ1VxWKJVtoyAMBLeS1KzCFy9cSMGUlaTdTh6kkGUHERLKUOiEx3EAxGN09q+AoAI18Ftq8Gkp8AAaFARooQtbOyASI7AGcOqxlXAIR2BxoqpxwWFtbwbzsWOEVeb+74VOsobGzc8emnpSgrK+J7pelLAW/bVqgR7NTpAzRtOlb7MwP89zVkyMoKo5VjxmxHeXkptm59jq8t0SdQVFl8fDroLeRXo01XYPkxIDVR+7qqY6RSO91Nwe8rhX3yc4GLJ4C9VPNknpKMl+xfAVwfA1JbuEhD9aZPvv9+CqRSO0gkUnz0UZbOdUaP3oL584VomK7fGTBiDAtUyWKxd9K/Xn3A0oocfXVJaQkGHUgC4AU8vqsmLGZr64WcnDheDVYkMsNrr53CnTvbDBq7XPsZL6+2yMx8hJiY4+jc+UM4OQXD3b05jh//H1xdm+D06W/x5oRL8HAjx45CocBzz/2FlJRbuHt3O6wvFfDGVa9eX8DZOZRXP+QCBi+/fAhmZiZw1NYyVWpWJRKJ0K9fP3Tr1g1SqdS4G3s18PDwQHKyevPO5ORk2NnZwdLSEmZmZjAzM9O5joeH/uJEqVQKqbR+/niWlo5o03gkws7HAm99goAIQeGJS5UrKEircD+2tp747LNy9cmaSEQpDfXVuEpV5u4b0bBVJwV5sFBI4N1Id72YSCTG22/fgrm5lWm6j7t6YmLWOIhfnYHs7Fhs3EhpVwH2zRAwVjtCGhQ0AC+9dAABAbpFDGoEW+XAmW+CFNjr58mDuPVXobD+0yWGt6kslsqbcqG2YqBBCvIB62qmOFqp1JCq9vWztqXmkG8Ng7XUEv0jO6DZhIvIz0+BOD4XvXJCkdm9C+CiMuZUZGyqRK4kEhnc3Zvzqb4mp1ipdijTcMqUUpqkp2crhIfT5NvKygUjRqxRa3DJMXLkOrRu/aYyNVekJpnM8cwzQh3FK68c4SPEWl70miBdpXGYKer/OJq2qXgdY+CMKw8fQGymJrfM46Q0pLLSacwuKRYMIR+hphWd+5JxlZFCxlVOlvoEtFVnYOXXtB8HFQM3RWlcuRoo4h/3HvDKNABAnz5fo0WLcWrGFUBzg8o4+zS30RdRsrFxx6xZeVp9lHQRFjZCq0dbrRjxABCsFPF4fL/eGVc6yckCEmOBRoFkmK9fRuf1zYt03715AWhTscO8Mql3FhbWePXVEwYFXjiGDv1FbwkAj1RG96/c7Oo5z2oDazs1sZk64YpKSUxCjNr45ebWFFeu/MZHn6ZOJVE6XfXtqoSHP4PY2JNo3vwlBAcPwrp1fdCx4wz+fHjhhT2Qy8vg798bHjv3Ajc/B5ZRDWd4+DMID38G3SMnAxfG8uOTVGqnliHEoanu2lAwWtBCLpfj888/h7e3N2xsbPD4MfXJ+fTTT7Fq1aoKtq4eHTt2xOHD6n01Dh06hI4dadJsYWGB1q1bq60jl8tx+PBhfp2GyODQyQgsdkFgyEA1Q1Y14lIZdHrB67Nxlak0GtOqaVzlZtGjjX5PjKtrRJVEHHTi4g7PTAXc3ZshJGQwXn/9LN6UvADY6X5/kUiEwMB+teakACB48vNzDa9XGX78DJj7tnrjZD8TRcM4A8nYyFVBnpBSWFUaBelerjqZLS4Ezh2FV7kjgoMHAhmp6GrWjtQdXVQmyRUdi70TkJMNyCnkOWnSNQQFDTC8TVXhjCuppnFFdWoTJ16iCKySFi1e0ZlGKRKJ4efXDS4uYXBxCYWXl2HRCH//nvDzo+J7U6W/GiQ9hSKCn/9Ck8j6ChfV9DJggHOGUGaaUG/ioUyJ8gsGwloAc1fQeWRuQcYTQF5zVSdBCDV9xt5NFL3kSE2k9ELVaK0mIhHVkYBaAgQH105Py8oYVhxcxAwgqXGTOMsqg60DGfAn99ff+6kq96lnFVp3BYqLgLxsYPDzNE7duEBR0tba6aFVxc+va6Vqqlq1ekNNBl8vX64CvtMtolCvsHei77IuuX2Z7lmNAoFkdSVod3fqR3bmzEKj5kCc4qVUagsHBz9MmRKlZWiLxRIEeXSi1PjiQurXGveIr4fGA2WNV0VZHQ0Uo42rL774AqtXr8aCBQtgYSFMppo2bYpff9VWGDFEXl4erl69iqtXrwIgqfWrV68iNpYKQ2fNmoVXXhGa5k6aNAmPHj3CzJkzcffuXSxfvhybN2/Ge++9x68zffp0/PLLL1izZg3u3LmDt956C/n5+Rg/XndT0AZBcZEQZVLBwcEPEyde5vPBq0R9Nq64CUL8Yy21OKNIT6GJZHUjGZXFyY0mQcqJso9Pe3jkmhvs0l7rSC2p0L26xlWxsqFmSTENngAw4Lnq7VMVmRWd+8YcZ0E+8O/BiterCBs7wM4R6D9Kfbl3Y1JcVI1gzH2bfu/kBKEOwNWTvKwtKqFSZe9E8vUq/YpqjCI9kStueQ0ybNiv6N59TvVljitDTiZ9r/X95i2VkYR3iHYzbh5HZUpcZhqQpozoc5FRqQx4/xs6L0XKGgbOMVWQR+mxHJyRdmQXcFVFljw1kdIL/wO88MIevPTSQbRq9XrtvrGdI3DnCjBllHDvqq+cP07OI9WU8MYhZOBfINn1eu2QsLJRj7zWVxyEjIQ6I/4R/dYOLlrnZVDQAMhkDsjIeIB+/RaZ/r3P/CP8f/863SffHg6c2EdRUu/GFLH/D2J0WuDatWuxcuVK9O7dG5MmCTUiLVq0MCgaoYuLFy+iZ09B2pGrexo3bhxWr16NxMRE3tACAH9/f+zZswfvvfcefvjhB/j4+ODXX3/le1wBwJgxY5CamorPPvsMSUlJiIyMxP79+7VELhoUxUVUmK8jssF1Ca8yFlJhglzfyEonT2lyArBzLfBMFQ3k9BTyKtZWZMjZjYzBrAwhnSc3q34ZVyIRYGUL5BuZbqcJN9EDKMXwxXcEpTJTIBbT5NAY4+qSspj2kXHjkU4WbdS9PKQZ/d25AixURnlSntC5Gqysb5DKgB+28t5+g9grBWlyMmt+0qAvclULqlZOTkEG+1OZlNxsIf21vvNRBRMbqUwQqBCJyPCXaNfBAaDzh49cFahHrgAgLJLEF1YvAlpsovMzpf7VClWV4OBBdfPGYS2obrKsFDh1ABjyQsXb1AXychq3+j8L+KoYUOYWwOCxwA+fAh6+hqOYjMphX8fGlUJBKpbtetC96dE9tZelUju88cY5iERivtbJpMQ9pPlQegqwY62w/MRewFxKxtV/FKONq4SEBAQFaf8IcrkcpaWGpY016dGjh0GVq9WrV+vc5sqVK9orqzB58mRMnqy/V1CDo7TENMprurCxM03djakpLiKvq3djkozlUmGqQnK8eopWTcPVd6SnkHFVXER/dg61dwyVwdqm+pGrVJWm1eXllGNuarj8+srCRWAcDRfAmwQLlXzw+Md0nnbuJyyTVHKI5episjIAE2mB6IX7fjQl6rl+Yma1lEpV0+RmC86N/wJefjQW2jlQlEQfPv7A1TM0iS7UiFwBwNS55D3Oz6VGrB6+dB1HVNNR97QzYhzQZySwdjHwQL88dZ2TEENGd0gzOpeGvijU/TVrC3yzBpBYGNwFo5LYO9E8prREK/OoVsjOEOozi4t0RlQN9R2tNvHRQHhL4OwRcna27Q4EhJEypcySHBL/UYxOC4yIiMDJkye1lm/duhUtW7LBuUYoK9XvpawuNkZOXGuLLKW351llaoceFasKyc8F7l4DmlS/iWil4SJUnNGal62+vL5gbWsC40q9YajJVNlUMdq4UkZgPGohHUzVQIl7RDdRrhbGGOwcKSKRmVrxutWlqJCcNbqMqAIT1ODVF/JyGk7kqjL4BtA5lpNl2Lhq3YXSAs8fJ2NZs97PQgrMUMrq//U78MFLFDH9j6QF1hlmZhSBdvFQV6qsb3COSk5kZ/jLQFsV8QpndyGSzqge3PdYV9Errl7dxYMi2rlZNJ+sLTJTybGtkNPzoS9SZkdpCd3T/WtB2KiOMDpy9dlnn2HcuHFISEiAXC7Htm3bcO/ePaxduxa7d++uiWNk1KTXw8YOSIqrmX1XhyxlzYCrB02SjYyK8iTG0QSDK+SuDSyV6RRcyh1XR1PvIle21ZtM71wHPNLw0NbEZzTWAcCpxNVGrY2qcRVDSktwq4JxJZHQjebaeaB7JZtpVpXiIp2NlQGQxHx9cwJUhYRoUkNr37PCVRsMPv7A0d1kHBk6t7k+QL8uoEfNyBUAhLag/VxR6b/kWj3ZcoYSZzea1CoU9VPNLj2Ffntj+gYyqgaXkZCdoa4eW1twmSUuHkLUKjtDrV+fGgf/AoKaUHSpupSV0X3b3gmYPp8UdjnRnokfUfS0mf4m2A0doyNXw4cPx99//41//vkH1tbW+Oyzz3Dnzh38/fff6Nu3FqWknyZqMnJlbFSgtuAGAgdnwNy86t4WTsZd32BSE5hb0M2L62/BqQXVNy+6VTXSAouLgL83ALcuq5+bDjXQd8TWHsjLqvz65UphjVADAgGmQjUt8O41MlqqehNt0hqIiTLNcRkiL0f3hBswjXpkfWD9UjLKm5uoMXZ9wCeAPMCxDyjVRh+av62uNgBisZA2y9X4VTU7gKGOiwelYmXUQhS6KqQn0/2wPhp+/zVU073rgrQkGgdlliqKo3rEVjJSgc2/AL99Z5r3zlHOe+yd6F4c0Up4rV0PoPug//Q5aJRxVVZWhnnz5sHf3x+HDh1CSkoKCgoKcOrUKfTr16/iHTCqRk1GrmzthbS1+kRGGhXUyqxo8l5l4yqFjAjNou6axsqGcq0BSsOwkBpO5akLrKshaKGqaqcq2VtTNVd5RtQFcl59E0oJ60U1AlRWSqpvla2z0sTRhb7X6ihjVoZHd/TLzBvzPddnUhKAXkPrt+KZsfj6U3Sz5xDqZ2WI+atJCa5jH/29qzhj6pMfSca9vkXWGyphkXS/vnSqro9EN1nptVOPyhCEZxKi6+b905KF699B+Zt/PR04tkd73RsX6NFUTmAuFbImHK4NAKOMK4lEggULFqCMk1xm1A6lNRy5Kiyof3Lsj+4IEyOJRJD5Npb0ZNM2EK0sVtbqxpWbV+VU42qT6tRc5SgHzhGvAL2GCctr4jMamxZYWFB7KRiaQjO+1ZjMOzhTZCK1GuItFRF9nwqLm+qpQayP4jbGUl5OPcPs/2M3dXML4OMfgBcnV+zxdfUAPlkCvP6+/nVenQ5M+4LOu/+waletY2VNAhFPYur6SHTTkFQ0GzoiEdCpD3Dkb0Aur/33T0sS7oXWNoLAz/ol2gbf/Rv0aGxPSX1wxtV/bRyuJEbPhHr37o3jx4/XxLEw9FFWw5EroH55rOVyHlkRcgAAP5lJREFUIOqmUCdV1ciVQqGUYa8DGX7VyFVqPZU55owrA4qdeuEiV90G6U8xMxW29pSGyDUfrIiiQu0eTjWFpjHpXoV6Kw4ubWNeDSqdRkfR792pj/Zr5ha1Isde4+RmkZH6lN7UK429o3qvNobpcHEXaj/rG8y4ql3adqPsoLowttOSBKVkkYgi2m99Qs/vXhPWUyjIuBKLab5iCtGL7Aza31N6rhmdvzJw4EB89NFHuHHjBlq3bg1ra/WJ1bBhw/RsyagyNRm5snGgx7wc06UKKBSUEhHZQf9xpyZSTm5ghPZribF0PKHVNK4WvA9E3QJ6Dzd+2+piZSN4gHKzAf8alDutKta29L2WFOsXONBHZhoNnDa2QKnS6KmpdgHc4JybLUQhb12i5oO6DOeiAkFUpLZxr0ZDRC6dsariLZWhpIj6W4l1KAVKZfR6Qyfr6U5HYdQDnNyA+HN1fRS6yc2mbABG7RAYQWPu5X9JlKa2KCuj8grVLA4zM0qX9wumHlQcyfF0Tx8xDtixhgwt1RqpqpCVQaUQuu41TwFGG1dvv/02AGDRIu2mhyKRCOU1XS/wNFJaSqIONYGtskYmN8t0+3xwC1jxJfD8JKDPCN3rfD6FIju/7NNOcUlQeni4upCqGFfycjKsAG0p4trA0poGK4BSrWqiFqm6cKpwOVlCXvbBbaQe+fJU/alH8nLg5AH6fcRmglFVU98zNxHISCXDKSOVGl126Q+8+p72+kWFgLQWjSvPRuQQAICAakjLmlsAo98A/v6j5pTGSor1G8EWsvrbUNwYnvJ0FEY9wNsP+GcHnYv16TyUl9P96CmNJtQJFlKgY2+6t/YaVnsqjRkpFMHXlSLv4UNNhTnOHSOHZL9ngON7gOsXqm9c1bdzv5YxOi1QLpfr/WOGVQ1RVpPGlUpUwBQoFMBtZZNnfWlc+zar1CMlar/Obcd1iDfWuCotAb7/mP5v1x3oMaTy25oKa1vhM+blUoSnvsH14ODqp7b8CmxeCZzYByTF69/u3nXyenGRRU4xr6bSA7kIxJrFwJxJZFgB+h0C2Rm1lxYIAJ+vJEGAGV9XP8Ls7EYGZE2p9pWUABZ6UoylMqC4kqmX9ZnsDDJM65uADOPpoWUnQCwCLp+ueN2apkgl1Tc3m+7R7NqoXfqPot/h8b3ae09OrVJXzbm7N5CkYlzdvkJqtRZSoEkrusdXlyxmXFWa0tJSSCQS3Lx5s6aOh6GL0pKa65gutQTMJKabzP17iCS6Ad2N8xQK4K/fhOfxj7TXKSmiSSrX5NRY4+pJDHDnKv0/6vW6aYjICVqUlQLFhfUzcsUbV1nk0TywVXjNUCSTaxw8cjw9cvWANdWzghuguX5srbtQv4zH97XrxYqLSLDh4omaORZ9eDcGwiOrvx9OwU3Vq2hKSorV5eNVkUr/G2mB2RkUldXVJJnBqA2sbSn1ihMJqCs2/wJMfoai+QCQrBTLcWey+7WKiwdFhuJ0zHdqCr6/po75j7s33eML8mmOEn1fqHF39xFa2FSHrDTA0bn6+2mgGGVcmZubo1GjRixCVdvUZORKJFIXX6gu187So6W1MAlXhet9IJWR0aRrEqmZumRublwdCldIPGN+3SgFAkLNFScUUh8bNlrbUd1Udqa6tDpgWKI9K50MM05yXCwGFqwDnn2tZo5TNT1u0mwqyH1mPJ1LXOolhy6DviHh4Uufl0szNDWlxdriOD9upT+p5X8jLfAp95gy6gkBYep1LXXBwb/oMUN5T0yOp/GlPgos/ZcRiahPXW0aV3nZ5DjXVX/MCS+lJNA8rbyMFC4BqmMuyKv+nDAzXRBpegoxOi3w448/xuzZs5GR0cAnMQ2J0pKaE7QAKMpS1X5HmiTGkYBE7+HA9XPasp6cMTV7MRV3JsZp70PTuDKTCI1hK0NaMm0fFmns0ZsOKxtKA+AMvbqInlWEWEwetej7QtPmWd/TY4GBSGZWutAzg8PJtWYLV79cBXzxK9CmGz33V9Y2aaZZ5DXwJrgWUvpNuLpDjqS4qqk6alJSTBEqVaxs6E8qoyhrQycrjYlZMOoeFw8a/01x3VYFVUcJ1zj2SSwdV02pDzP041vLxhWnCqmrdtdNaVwlJ5DBDVAdFiCoC8ZHV/29y0opMvYU91Mz2rhaunQpTpw4AS8vL4SGhqJVq1Zqf4waoKy0ZgdDa1ug0ETGVWYaKSVxEr+71qm/zil5ObqS8XP9nHbKn6ZxJTEycsXJj9Zl92+u/ujedUAkFrxC9Y3WXSjayEWAXNxpkm0oTbQuIgPu3sLgDwjvn59LBbgzX6aUVK5Pk6yO1AJNgVcj9chV/GPgkwnAqQPV3/d/XdCirJScKy46VCQZjNrE2Z0co5pZATVNaiLwx3L1PkZZyvE9/lHtKtYxBPyCyJjJzqyd9zMkuW9lTZkKWRnkoLSyEe6pjQIpzX39j1W/H3AZJE+xcWW0WuCIESNq4DAYBqnxyJWNaSJXhfnk+XZ0BoIiSE2Oi4hw5OdQLYSlFdCsDbB/M4WlORlqQHdaoFE1V7Gk4FaXcDewPX/SZ6spmfLq0igIyN0MnDtKA6Gtg7oYhy7yc+tHzr6rp6BuCNCE4sV36P+GPLn28iP1Jo7oKHq8chroOqB6+y4pBsz1nItSmZA+1BC5cAL4+Sv6v2Pvuj0WBoNLSU9Prt3MhV8XAA/vCEIWZhLg7nWgU1+KnNRFaxIGENkREP9Ikuw9a0FkKzfLsOS+jS3Nxy6eBFp1FpzREnPgzdnAF1NIfGzEK8a/d4bSmH+K0wKNNq7mzJlTE8fBMERNR66srE3jXeOiH1zKmKevdk1MXg5gZUsXMjcBTk9WN66KizSMKwuKRj26S3nsFZEYQ81t6xJ3b6BzP0q5G/1G3R6LITgj6eJJ4JlXKVWQay6sj/xc+g3rmk59gJ3KyCgn28+ltb00pW6OyRS4epKRIy+nVMsYpXFlCpGL0hL9qo7SBhy5SowTDCvgqfaYMuoJ/P0tpXL3LVNQWiKknp05TNd032eo9mrkOLr/+gbUzrEw1LG2JYl+bjyvabLSDfddtLajcyXlCTBKo17aqxE5qE7uA/qOpGM39r2Bp3ocNjotkOPSpUtYv3491q9fjytXrpjymBia1GQTYYAmyqaIXHHSn9wFZe+kLTCQnyuIOzi40GQ+TUOZRlPRjPPWxzyo+BjycinsXteRKwAYP50kurkUyfqI6uDbbxQ9OjhrG8WqFOQB1nXQO0yTyI70KLWkJs0KBZ3HNvYUOW2ocP3COIUvVeNKs4bRWEqK9UuxV2RU12duXqTH974EJv+PPLEMRl1iZUOODM37W00S91gZnbag8dDZjbIoSoqBe9doHWZc1R0+AboVkmuCzArU+mzsgBsXaA4W2lz79UFjgMIC4Ojuqr23hbTm2rM0AIw2rlJSUtCrVy+0bdsWU6dOxdSpU9G6dWv07t0bqampNXGMjJpUCwToJmCKmqvUREr5c3Kl5/aOdJGpqkvm5Qg9n8zMKC89SUPUokQjcuXgTHVc6cnkzTdEolIIwKseGFcNAakMmLUIeO8rwYB3cdc/IVAolMZVPYhcefsBz74OfPUbRXuS40lBsD72FDMG7oZUkEfXTvxjoM9IivZe/rd6+zYkxW5rL/TBaWg8vAMEN6VeLZEdWME+o37g4k5ZF7VFsvJeGtaCHoObCffja+foXu9URwq6DMDVw7Dj0lTIyyl65Oiqfx3uPhnRWreasbM7OTB13XMunqT0U9UeaqpkpJKTvS7r3usYo42rKVOmIDc3F7du3UJGRgYyMjJw8+ZN5OTkYOrUqTVxjE83cjkZVw1BLTAlkS5Irr9MeCRN5s4eFtbJy1HPAw6K0O4Foqvo3tEZ2L8F+P4Tw8eQGEcCEpzUKKNiAiOocSCHkzsZsrom2SXFdD7WB+NKbAYMGE1GfGhzOrYju6j2ryFjxRlX+eR4KCkGWnYEAsKBmxeqt29DghZ2DqTK2RC/v+T4+isaw3h6cXYTFGNrg+QEckZyLUA69xOMq6tnKWr1FE946xxrW8quqWkHVk4WzR0NpeVx9/CISP3rBIZT39AyFbXmmChgxZfA2SPArcu6t0uMqR/ZQ3WI0cbV/v37sXz5coSHh/PLIiIisGzZMuzbt8+kB8eAIEFeozVXNjShqigqVBGpier9MxoFkeyrqtx6Roow2HPraMqx5+Vqp51xg8SdClJQ05IAJxfmua4Obp6UDqCrZxSXNmZVD9ICVWkUJBgNtaXGVFNw321BniBm0SiQDMioajZwLy3Rf21wTo/aVjerLnI5TSqZQ4VR33B2N01D1sqSpLwOnnmV2lb4h1ATWTMJOcVYSmDdYmNHczp9EZ/qkJ1ByrlxjwRBCUPG1YDRFOE0lELtG0DnDSfXDgDH99I8z9FFf5PsJ7FPvbPLaONKLpfDXEeKmrm5OeRyuUkOiqFCaQk91mRaIOfBKKzmBZ+aSBNzVVzcBc+dQkHpZqqNfa1t6TOmJgKxypqq9GS6Kami+VwfaTq2ZRhHo0B6jH+s/VpmPVUBMjOr2T5btQkXuSosIC+huzelCrp5kuGo6kU0luIi/WmBdg70mJtd9f3XBTmZFJHTHHsYjLrG2UAWQE2QHE/jRXhLarguElFNDZdqzIyrusVamX5nqn6MxUU0dwKA3RuBdUuA9UuBTI36d104uwPvf0MOcH1wr3H19KUlwK1LQNPWQHATYc725wpg0Wy6NxXk0zzBmxlXRtGrVy+8++67ePLkCb8sISEB7733Hnr3ZvK3Jofr71TTaYFA9TpyKxQUNdLs/O7kJuSc52XTJEjV+OHee9Z4YN5kIPkJHYemlLadipStISNel2HGMA4XDzJ6713Xfo0btJ0M5HLXFTXhDawL+JqrXBJx8Qum57YO9JhXDePHkKAF1xOlOvuvC3KUkcr6ZvAzGK6edM3pygIwNQoFRXBV+wFycNc0N5Yw6gZbpXHF9WOsDqmJwDsjaO4kLwfuKgVLkuLIuJGY666lMgY7RzLQOfW/y/+Ss7zrQMA3kARUUpOAf3YAty+TsBBX987SAo1j6dKlyMnJQePGjREYGIjAwED4+/sjJycHS5YsqYljfLop4yJXNZwWCFTPuMrNJi+KphfEyUW4sfANhFW8KZrpZXev0qOmgdRtgFCIq29gUigoHM3Sg6qHSAS06UpSvgf/UhckSU8ldb76lhaoyic/1vURVA+JORmv0fcpcsXJOHPGT1UjS1z9pr6aK2tli4SGlhbIpYGqOmAYjPoA1+9QVxaAqdHlvORorDSqvBvX/HEw9MOnXpsgdf2GSv3t2aPUeL59T0rdj4miDKHq1tdJJHTMnHGVFE/jbKNAioIWFQC/fE1zOqmM3jchhuredRn5TxFG97ny9fXF5cuX8c8//+Du3bsAgPDwcPTp08fkB8dA7USuOO9GddKBuFoczaZ1NvY0WVMohEkb54EHtKU6uWiJZuTK0hp4cxYw/z2aTKnug+P6eaod49LaGFUnpBnlVm/+hYzaNl1peWYqTfzrY1H0s6/TY+OQuj0OUxDaXJDA5WRyeeMqq2r75FKM9RlXYjMaCxpaWiBvXDnU6WEwGFq4uAOWVkDsw5pvycE5L3VFcKd/TY6V+jhuP004ONP4mxQPNG9fvX2lJwvtbn77jhzbA58Dzh0lx2jLTqY7Zm6MVa2r91XOsx7dJdn225fJCMvOILVmffeZpwSjjSsAEIlE6Nu3L/r27Wvq42FoUloLkSvO41sdjzUX9dIUorBzoEG9uFBITVCdBHEREN9ASh+8d40+qy4vNNflPjtT8AiqcvAvevQPreqnYHCo5ubHRAnGVXpK/UwJBKhA979CaHO6QQZGCOc651CoqvFTUkyPhm56tvYNMC0wg6JuNemAYjCqgkgEuHnXjhw7lyHi4KT9mpW19jJG7SMWU7rck5jq7ystmYyY0hKaf3UbSJFJSyuq1zVVzZODkxC5Sk0E3Lzof3tHyqpIjAUiO5EwWWYaReX8/wMOzmpS6bTAI0eOICIiAjk52ilZ2dnZaNKkCU6ePGnSg2OADBOgZicO5hZk5FRHZY2Tb9aMRHHe9pws+rOQUviYgxv0bewotJydqT+czRuBOvLXFQpKvRjxivCejKrj4Sv8f/6YUOeWkVp/jav/EuGR9Dj0BeFakFnS9cUVFxsLF102aFw5NLy0wJREw0XZDEZdYqhvYGWRyytu8M1Frlh6bP3Gy4/KF6oLV1/OzRH9guheMfRFms91MJEGgoOzYFylaChCz14MLNkGBITS/C3lCZAQDTRmDu5KG1eLFy/GhAkTYGenXSBnb2+PN998E4sWLTLpwTEgXDg1LS3OhZerChe50qzFUfW252ZrGz4yK2DEOGD8dCEypW+iZCGl/d3WIceenUE3H28dES2G8YjFwOT/AX1HUrSKS9dkxlXt4OwO/LxHO5WoOhO1TyfQo7kB48rSuuEJg3AKaQxGfcTZBI2Ed60D3h0tzAd0kZ1BTkrWhqR+wxlX1VWQTEuhuRKXkeCvrM3tNwpY9Kfpap64uWFRAaWka4qWcXj5kXFVXv7fSM2vJpU2rq5du4YBAwbofb1fv364dOmSSQ6KoQKXFljTKS/2joJ3oioU5NOEXKoh88wbV1n0p2lciUTAkLE0Yec8bobU/noMJsUazYGJkwh3ZhN/kxHZAXhuIhnMD+/QoJmbRYMto+Yx0yEtX52+Odw1o08tEKCJWUlJ1fZfVyQ/YcYVo/7i7kXGVamO6yr+MfDwdsX7OK7sIarZE1KV7Aw2NjcEvBuRoVKdaGaRsszCxR14YybVG6umfkqqVPGjGwdnOrfio+k5lxaoSVgLerSxY3XvMKLmKjk5WWd/K35HEglSU6uYrsLQDx+5qmHjytWTZJ+rSkEuTcI10/k4sYycLKVx5aB/H9yNQVPMQhW/YFIlzEpXVx1kimE1g0hEaZpZ6fQbAyztsi7x8AXOHiZDyZji9Ed3K7eeuQVQWly1Y6sLykopx1+1dx6DUZ/wDaS0voRobY/+/96ix5V79PfpKy4SRGyi7+vvVcWMq4ZBQDiN3VE3AdcqpjNzDjZnNyC4qemOTReuHnT+/r2enPD6olIePsB7X9H8TWy0EPl/jkp/A97e3rh586be169fvw5Pz6o1cVy2bBkaN24MmUyG9u3b4/z583rXLS0txbx58xAYGAiZTIYWLVpg//79auv873//g0gkUvsLCwur0rHVObxaYA2H+t29qUdGVUPVBQXa9VYAed9t7MjLoistUBVfZUqfX5D+dbhQd5KGBy8nkwYsQ8Ybo2o4upBKYK6y3rK6vTMYVSekKRm6SfGV30ahAL6aRv/3Gma4142FtOqRq9zs2k8p5OrD2KSSUV/h5M8TotWXl6g4MW5d1r/9zYv06OQKnD6kv89jVrpuMQtG/cLGjkSKuL5UmmSkAj99YThKyWXqONWCUykwgh5vXaY6Ll0ZFRxNWrEsAiWVNq4GDRqETz/9FEVFRVqvFRYWYs6cORgyZIjRB7Bp0yZMnz4dc+bMweXLl9GiRQv0798fKSkpOtf/5JNP8PPPP2PJkiW4ffs2Jk2ahJEjR+LKFfU6nCZNmiAxMZH/O3XqlNHHVi9o2QlYvlNbhc/UuPuQol9V665KivQXyts6ADnZNBEyZPx07AOs2A1EtNK/jpsnqeE8vKO+PDuD9m3owmdUDUcXGsy5/mLWzLiqM0KbU53i+WOV30a1p8rwlw1HvMwtdKcvVYRCAbw3Bpj7jvHbVgculZk1EGbUV6Qy8vhrpoFdPUOPEnPg34P6t797jVKxXngHiLpFEQ9dsMhVwyG0BSkj6+Kv34BLpyhSpI+MVBrHa+P3llnSPQcAOver+ff7j1Bp4+qTTz5BRkYGQkJCsGDBAuzcuRM7d+7EN998g9DQUGRkZODjjz82+gAWLVqECRMmYPz48YiIiMCKFStgZWWF3377Tef669atw+zZszFo0CAEBATgrbfewqBBg7Bw4UK19SQSCTw8PPg/FxcXnfur94jFZLTUdH8KrlaJ84gYS3GRdr0Vh609pTXkVRC5AirOFRabAUFNgAcaxlVaMjUsZpgeRxcgMx3IUxpXtsy4qjOkMiAwTNsLbgjVYnprW8PrWlQxLZCTFk5NBDatNH77qsI5g9ikklGfcfHQNq6ibpKU9shxwNWzdA/VRWIc0CgIiGhJzzN0OJ4VClILZNdBwyAonISiNNtqlJaQYQUYVoXNTKMSCFPWVhli2hfA4OfpfGVUikobV+7u7jh9+jSaNm2KWbNmYeTIkRg5ciRmz56Npk2b4tSpU3B3N1Aro4OSkhJcunRJrQGxWCxGnz59cObMGZ3bFBcXQyZTn8RbWlpqRaaioqLg5eWFgIAAvPjii4iN1S99WVxcjJycHLW/pw4HpWFSVVELQ8aVizs1tissUJf4rir2TkIUBaDmwf8erJ0Q+dOIgwsZx5y3zKqCCTqjZpFZUZS5sqQk0uPcFRWva17FtEDOKRPSDDixt/pKWJUlK11IPWYw6isuHsCjO0BZmbAsMY4U1kKbU+1gQjSl5l8/p75tVjrgqGw+a2mtu2VKQR7tg0VwGwZeyh5Umv2uUp7Q7xgYbrg1Tmaaes15TRMUAYx8tfbe7z+AUVVnfn5+2Lt3L9LS0nDu3DmcPXsWaWlp2Lt3L/z9jZfATktLQ3l5uZZR5u7ujqQk3dKl/fv3x6JFixAVFQW5XI5Dhw5h27ZtSExM5Ndp3749Vq9ejf379+Onn37C48eP0bVrV+Tm6u4TMX/+fNjb2/N/vr4mMAAaGjZ2lJ5Q1chVSbF+4yq0OT06uZqmS73MitRyOC4cp8fa8uI8bXCD+KVTgE8AS72sa6SWgI70bL08uEVODa72wxBVTQvkevB0HyQIztQGXCoUK6Bm1Gc69yXD6fE9YdmTWGoo692YxtQLx4GPXwd+nKNeb5OdLhhN9o66U/e5641FrhoGbt6AmUTbuOL6X4W1UE/n1qS2jSuG0VTpjuTo6Ii2bduiXbt2cHSsXXW2H374AcHBwQgLC4OFhQUmT56M8ePHQ6xycx04cCBGjx6N5s2bo3///ti7dy+ysrKwefNmnfucNWsWsrOz+b+4OAOFhP9VxGIqhq2ycVUEWOgxrtp0A56fBMz63jQGkMxSvXCeS5l8bmL1983QhhvE798Q5FYZdYfm+V8RD26TEEZlqGpaYH4uOWc4MRpjBDeqQ1Y6m1Ay6j/+yqaq3P01P5cmz56+5NAIaQ4c2i44KK8rRb2KCinjgzeunKje8oOXgL1/CoYW98gELRoGEgmJcyVoGlcxVDvu5UdOKn3jPDOu6j116u5zcXGBmZkZkpPVc5GTk5Ph4aFbotLV1RU7duxAfn4+YmJicPfuXdjY2CAgQI88KQAHBweEhITgwQPdUuNSqRR2dnZqf08ldo7aOcCVxVBaoFQG9BlhusFAc3KZlgy068FSImoKNxUV0I4m6vrOqDpSmf76DE3k5eQx59JQKsJcSv3MysuNO6a8HKrnclTWbhryupqSrAx23TPqP5bWlHHBGVdcZMpTWcMy8lUSdHrlXVqWqay30YxIuXpSulhmGrBtNTDjBRKK4lK22bXQcPDy066dTYyluibu99aXGsiMq3pPnRpXFhYWaN26NQ4fPswvk8vlOHz4MDp27GhwW5lMBm9vb5SVleGvv/7C8OHD9a6bl5eHhw8fVlkq/qnBxl7op2EsxQbUAk2NzIrSori6jsw0Sjlk1AwSc+phBrDmgPUBY2qu0lMph59rYVARXINhY1MDOePKQkrpLvm6U7BNDlNIYzQUONVVgCIUIrFwXQaEAq+/D7Tvqb6ephqmLtXg9GQSrXFwpigYo2HQKAiIfSD0MgUoLVDNuNKRAlpUCBTmM+OqnlPnierTp0/HL7/8gjVr1uDOnTt46623kJ+fj/HjxwMAXnnlFcyaNYtf/9y5c9i2bRsePXqEkydPYsCAAZDL5Zg5cya/zvvvv4/jx48jOjoap0+fxsiRI2FmZoaxY8fW+udrUNjZVz1yVWIgcmVqZJaAQk51XgoF3YiYx65m+Xwl8N2Guj4KBlBx5GrHGmDqs+TNjrlPy3wqWRNrrnSQGJsamJ9LdZsiEWBlDRTkG7d9VWG9fRgNBQcnwVhKjCOhJ13GkKpxpZnu12MIicbMWgS8oZzzZGUAqUmskXZDI6w5jeOxD+l5uTLLwLOCyBWnFskEvOo1da4AMGbMGKSmpuKzzz5DUlISIiMjsX//fl7kIjY2Vq2eqqioCJ988gkePXoEGxsbDBo0COvWrYODgwO/Tnx8PMaOHYv09HS4urqiS5cuOHv2LFxdWXTDILYOQM71qm1bbKDmytTILOmxqICaLJeVMi9OTcOiA/UHmSU5FsrLdYuLnD1C6mEPblFfHHfvyjsfpErjqqgIMEYUMj9XkHm3sgEK84zYuIqUlZEziJ2bjIaArYOQLpsYJ6QEauIbAJz5B1i3BDi+hyJcXJ8hV09g5rf0v38Y8PtCIP4RSbl3YT2IGhSuykwqzuBOfQKUl1G6oKUVGd66IlecRLszm8/WZ+rcuAKAyZMnY/LkyTpfO3bsmNrz7t274/bt2wb39+eff5rq0J4u7J3oYlYojO+rVVwkGD01DXejKSoEypSS7Mx7zXha4K6zwgLARsMCKi0hTzZAHtHkhMpHrQAh/dNY4ygvhyaF3D7ya8i4KiujCaq1rZB6yKLWjIaAnQMQ/5j+T4oloSdd9BwKXDtLhhVAKYO6EIvpnn36H0oTHvicyQ+ZUYNYWdMjN44lJdCjuzfNv9y8gDOHgQ691cf59GQyuB2YQ7k+Uy+MK0Y9wdWTJmfZOorEC/KFwUCT0hLypOvKB68JuJ42edmCJDubYDGeFnyVdW83zlERvCrXzwuR3NRESi/yalX5fVsqr2Fj0/rUIlfWVBNgahQKYPZrlBYT0kzou8KufUZDwNaBxCeKi0iEyVNPyxczM+C9r4Bju0mmPTBc/z4dnIFHdynawa6DhoXYTOmIUhpX2RlkNNkrFbhHjgOWzgWmjQZ+3kPGtEhEdbSOzqwlSj2nzmuuGPUINy96THmivvzPFcDUUcDty7q34wYHa2PyiKoBN/hkZwKZrL8H4ynD3Rto3g7Yvkb7tQe36Dpu0or+T4w1LmWWc5AYK0iRnwtYK50etg5AjEahtinIzhDqDe7foHQoM7PKi3UwGHWJrT2QnwNEK+sgPQ0oeIrFQK9h1CNSYq5/Pc6gYi0yGiaqEfjsDKp7FyuNpubthP59bw4Gtq6i/zNSWH1dA4AZVwwBF3fyjKgaV5lpwOGd9H9qou7tatu4srajSVV2BuUr29obvgExGP812nSj3HtNYYuUJ2R8OboKxdB2RvQitFRGpzUjT7EPgSQ9/f/Ky6nGi0td6dib1Ms0ZYarS4ayyN83kK73q2cBr8ZMIY3RMPD0pejruh9J3bZxUPX3yRlX4ZHV3xej9rHWiFypOonFZsCH3wnP/9lBjxmpTMyiAcCMK4aAuQVNypIThGV3rtINwcxMvzebq6+oLeNKLKYJY3aGevd6BuNpgWs9wBVDc6QkUuSKi1a5ewNtulZ+v2ZmVNOoWjMllwPz3gHmTNK9Tayyf6ALiRDBzZseTS3HzvX+GTSGomK3LgH9njHtezAYNUVgBKXvJcUDnfsJEYrq4OBMDtGQZtXfF6P20YpcaWTg+IcBrbvQ/+VlwP2bJNfOWs/Ue1jNFUMdNy/1yFXKExrApTIDxlUtR64A8twkP6FCehYiZzxtcM161y8BZnxN/ysUVOzs7A606kw1ie17Gh/Z0VT7U5UK1iV2c/MibRPanJ5z44CpRS0y0yhipTqRbN/DtO/BYNQUYjEwZS5w4RjQbZBp9tm5L6XF1ua9l2E67JyE+VZ6qrZ4iVgMvPUJjesfjgM2LKXU0g69av9YGUbBIlcMdVw9qNiWIzWRhC5UPSyacMutanGAD25KnusHt4Bg5rVjPGU4KSNTd64KywrzSVjG0YVEXwY9T4aWsVhZqxtGMVHC/7qkgfNy6D05T7ylFU0KTB25So4H3DyFmsuOfUzj/WcwagtXD7ouOVGm6mLvRI4URsPEyYUi8goFkJYIuHjoXs/ZnRzfCdGAXzAJnTDqNcy4Yqhj56DeSDjliYpxpccTnZ9LE6raVK9pHEx1HqUlgJ8JctcZjIaEuQXwvDJNj1PM5BqPVjdN1sqGri2OmCih/UHMA+31VZUCAWUjYQPOGGNQKKjWIDsTiI8GvJWy8ku3AePfq/7+GQwGo65wdKXU7rwcaq2hz7gCWH1dA4MZVwx1bOwpnYgjNZG8xaqSoZpoTq5qA9WcY6YUyHgaCQijxxRljSRXf+VoYuPq7jWgYy+6xmN1GFd5Oq5/awPjhTFkppFa6R/LyGvLeWxlVixqxWAwGjZOrlTTenI/PW9kwFHMzXOYcdUgYMYVQx0bW0otKimmXjd5ORS5srImz4ou8nNrNyUQYMYVg8F5MjlVQM64qu71oGpc5eVS9DqoCd34L58GHt9TX78gV7vHnbUtLa8uT2LoMfo+HRNLh2EwGP8V/EPocdvvQKNAwN1L/7pjJgLvzAHCW9bOsTGqBTOuGOrY2NNjXg6Qqiy0dPMCpFZAkT7jKqf2I1d2DsL/lla1+94MRn3AVnmt5iiNq8x0un6rK01uZSM0Eebk1738KP027iHw5bvkaeXSEXVFrqWWwuvVIf4xPaanCMfBYDAY/wVsHQRjadhLhtd1cAZadtQWFGLUS5haIEMdrtA2L5tknQHA1QuQWRowrlQaiNYWYjOgaRtKW2SDDeNpxNyCDKEcZRpvVnr1UwIBikJxUaekOLq+3L2B7oMBiQQ4thdYsxg4cxh4/xsgK4MmCarITGRcJcQo+++J6RjcPKu/TwaDwagvzJhf10fAqAGYccVQh+uPk5FGkSsrG0oVtLQykBaYR9Gt2ubdz0kemsF4WrG1B3Kz6P8sE/V848Rr5HJqBuzgDFhISelsxDhyupw/Bty/QWl7xYWAb4D6PiytgJys6h2HQkFiGmGRwCtTaRlzpDAYDAajnsPSAhnq2DlSL5m0JCAxXvAUyyypcWdZmfY2xYWCmlhtIhKRJ53BeFrhmmkDQFaaaYwrJze61nMyycnCOVw4Ro2ntD8AWKn0umoWYssMpBFXljtXyHiL7ECRaiZgwWAwGIwGADOuGOqIxSQHmpoI3LtOheyAYDzpSvUpKiDji8Fg1C7ObtRgEqCaK1MYV65KOeDUROrBoioeA1DPlSn/o/+fxALtegj1XxyG0ogrS0oijUfN21dvPwwGg8Fg1CLMuGJo4xsAnD8OZKRQs15AxbjK116/qEjwZDMYjNrD1RNITaL02Jws7ShTVeB6raQlARmpuvfpqGJwteyk/brMqvo1V9kZFJkTs9sUg8FgMBoO7K7F0KZdd6GOg1Pn4iJTmnVXcrkyLZAZVwxGrePiQUZIzANAIQccTNCWQCojoyY5gQwsN2/tdZxUDK6AUO3XOUELhUL3e5SXA4/uGj6OrHTTfB4Gg8FgMGoRVrDC0IZrTgqQZxwQ0o2y0tWL10uK6JEZVwxG7dO8LQlQbPqZnju6Gl6/sri4A7evkBHk6av9urkF8Ot+/dvbOgDlZRRNs3dUf624CPjoVXLgfPmb/t4u2Rmshx2DwWAwGhwscsXQxt4JsLQGQpsLghGOzoCZhOowVOFSf5hxxWDUPrYOQIv2wMPbgmS6KXD1FCJLno2M3z5YWat584L2a4/vCZHxJ9H692Eq9UMGg8FgMGoRZlwxdLNgLTDja+G52IyK51MSga2rqImoQqFiXLFGvgxGnRAeSY8WMpJMNwUePvTo7q0deaoMDs7Uh27Xeu3UwEd36TillkBirP59sMgVg8FgMBogLC2QoRtLa+1lHr7AP9uF50lxpBQGUJ0Gg8GofcJb0mNES9Ptk0v99W5c9X30Hg788CmQFC+kFsrlwMFtQPN2JMSRmqR72/Jyao7MjCsGg8FgNDBY5IpRefyUvWx8/IHGISTVnpdDy6xs6+64GIynGQdn4ItfgTdnm26fIc3JaBv9RjX20YycLhdPCMsyU4G8bKBTX5J4z0jVvW1ullKgg6UFMhgMBqNhwYwrRuVp2oY8yQOfAzr2BuKjSU1MJKKaLAaDUTd4+Ji2obaVNTBjviBoUxWkMiCyI3D1rLAsMY4ePRuRxHumHuMqS9kYmUWuGAwGg9HAYMYVo/IEhgML/wDa96RGo2WlQHQUYOcASMzr+ugYDEZ9IyAMSIimsQIAUp7QWOHsRpGr9FRKFYx9oL5dttK4YlLsDAaDwWhgMOOKUTW4dJ3bl00n/8xgMP5b+AaQYZXyhJ5npJHBJBZTtK24ENizEZg3Gbh+XtguKx0QiUkNkcFgMBiMBgQzrhhVg0vXSU8BWnWq22NhMBj1E3ulEyY7kx6z0igdEAC8/enx5kV6/PEzYbvsDMDOHjAzq53jZDAYDAbDRDDjilE1bO2F/5u3r7vjYDAY9Rd7B3rM4YyrdMBBaVw5u1GK4MM7wvpc+mB2hmCYMRgMBoPRgGDGFaNqiFU8yi4edXccDAaj/iK1pJ5Wudn0PFMlciUWC8YUR2E+PWals3orBoPBYDRI6oVxtWzZMjRu3BgymQzt27fH+fPn9a5bWlqKefPmITAwEDKZDC1atMD+/furtU9GFeF64cgs6/Y4GAxG/UQkoih3TiY1E85MU5dX58YQjsICemQNhBkMBoPRQKlz42rTpk2YPn065syZg8uXL6NFixbo378/UlJSdK7/ySef4Oeff8aSJUtw+/ZtTJo0CSNHjsSVK1eqvE9GFflgATB3RV0fBYPBqM84OJNRVZgPlBQLkSsAmD6f0oojO9JzPnKVwXpcMRgMBqNBUufG1aJFizBhwgSMHz8eERERWLFiBaysrPDbb7/pXH/dunWYPXs2Bg0ahICAALz11lsYNGgQFi5cWOV9MqqIlQ3g3biuj4LBYNRnXDyoH15mGj1XNa5s7YGpc4HRE+h5YQEgL6dIF4tcMRgMBqMBUqfGVUlJCS5duoQ+ffrwy8RiMfr06YMzZ87o3Ka4uBgymUxtmaWlJU6dOlWtfebk5Kj9MRgMBsMEuHoCKYlAejI9d9LRusHKih4LC4DMdOp95exWe8fIYDAYDIaJqFPjKi0tDeXl5XB3d1db7u7ujqSkJJ3b9O/fH4sWLUJUVBTkcjkOHTqEbdu2ITExscr7nD9/Puzt7fk/X19fE3w6BoPBYMA3gGqo9mwigQvVyBWHpTU9FuYDqTSWw9Wz9o6RwWAwGAwTUedpgcbyww8/IDg4GGFhYbCwsMDkyZMxfvx4iMVV/yizZs1CdnY2/xcXF2fCI2YwGIynmFadgdZdgIe3AXdvErnQRGJOBlZ2JhlXIhGLXDEYDAajQSKpyzd3cXGBmZkZkpOT1ZYnJyfDw0O3vLerqyt27NiBoqIipKenw8vLCx999BECAgKqvE+pVAqpVGqCT8RgMBgMNUQiYPwMEqgIaqJ/PSdXICOFGg27egLmFrV3jAwGg8FgmIg6jVxZWFigdevWOHz4ML9MLpfj8OHD6Nixo8FtZTIZvL29UVZWhr/++gvDhw+v9j4ZDAaDUQPILIGxbwFtu+lfx8kVyEwFoqOAxiG1d2wMBoPBYJiQOo1cAcD06dMxbtw4tGnTBu3atcPixYuRn5+P8ePHAwBeeeUVeHt7Y/78+QCAc+fOISEhAZGRkUhISMD//vc/yOVyzJw5s9L7ZDAYDEY9w8kNuH2ZlAUNGWEMBoPBYNRj6ty4GjNmDFJTU/HZZ58hKSkJkZGR2L9/Py9IERsbq1ZPVVRUhE8++QSPHj2CjY0NBg0ahHXr1sHBwaHS+2QwGAxGPcPDBzi+h/5v0rpuj4XBYDAYjCoiUigUiro+iPpGTk4O7O3tkZ2dDTs7u7o+HAaDwfjvc/UssPR/QONg4JMldX00DAaDwWDwGGMbNDi1QAaDwWD8BwmKoIbDr31Q10fCYDAYDEaVqfO0QAaDwWAwYGMHfL26ro+CwWAwGIxqwSJXDAaDwWAwGAwGg2ECmHHFYDAYDAaDwWAwGCaAGVcMBoPBYDAYDAaDYQKYccVgMBgMBoPBYDAYJoAZVwwGg8FgMBgMBoNhAphxxWAwGAwGg8FgMBgmgBlXDAaDwWAwGAwGg2ECmHHFYDAYDAaDwWAwGCaANRHWgUKhAADk5OTU8ZEwGAwGg8FgMBiMuoSzCTgbwRDMuNJBbm4uAMDX17eOj4TBYDAYDAaDwWDUB3Jzc2Fvb29wHZGiMibYU4ZcLseTJ09ga2sLkUhU14fTYMnJyYGvry/i4uJgZ2dX14fDeMph5yOjqrBzh9EQYecto6qwc0cbhUKB3NxceHl5QSw2XFXFIlc6EIvF8PHxqevD+M9gZ2fHLk5GvYGdj4yqws4dRkOEnbeMqsLOHXUqilhxMEELBoPBYDAYDAaDwTABzLhiMBgMBoPBYDAYDBPAjCtGjSGVSjFnzhxIpdK6PhQGg52PjCrDzh1GQ4Sdt4yqws6d6sEELRgMBoPBYDAYDAbDBLDIFYPBYDAYDAaDwWCYAGZcMRgMBoPBYDAYDIYJYMYVg8FgMBgMBoPBYJgAZlwxGAwGg8FgMBgMhglgxtV/gPnz56Nt27awtbWFm5sbRowYgXv37qmtU1RUhHfeeQfOzs6wsbHBqFGjkJyczL9+7do1jB07Fr6+vrC0tER4eDh++OEHrfc6duwYWrVqBalUiqCgIKxevbrC41MoFPjss8/g6ekJS0tL9OnTB1FRUTrXLS4uRmRkJEQiEa5evWpwv4mJiXjhhRcQEhICsViMadOmaa2zevVqiEQitT+ZTFbhMTOqzn/hfGzcuLHWefP1119XuO+KjufEiRMYOnQovLy8IBKJsGPHjgr3+TTxtJ47bCxr2PwXzlsA2LNnD9q3bw9LS0s4OjpixIgRFe77+vXr6Nq1K2QyGXx9fbFgwQK112/duoVRo0bx18XixYsr3OfTxNN67hQVFeHVV19Fs2bNIJFIdK5/7NgxrTFPJBIhKSmpwuOucxSMBk///v0Vv//+u+LmzZuKq1evKgYNGqRo1KiRIi8vj19n0qRJCl9fX8Xhw4cVFy9eVHTo0EHRqVMn/vVVq1Yppk6dqjh27Jji4cOHinXr1iksLS0VS5Ys4dd59OiRwsrKSjF9+nTF7du3FUuWLFGYmZkp9u/fb/D4vv76a4W9vb1ix44dimvXrimGDRum8Pf3VxQWFmqtO3XqVMXAgQMVABRXrlwxuN/Hjx8rpk6dqlizZo0iMjJS8e6772qt8/vvvyvs7OwUiYmJ/F9SUpLB/TKqx3/hfPTz81PMmzdP7bxRPX5dVOZ49u7dq/j4448V27ZtUwBQbN++vbJf61PB03rusLGsYfNfOG+3bt2qcHR0VPz000+Ke/fuKW7duqXYtGmTwf1mZ2cr3N3dFS+++KLi5s2bio0bNyosLS0VP//8M7/O+fPnFe+//75i48aNCg8PD8X3339f2a/1qeBpPXfy8vIUkyZNUqxcuVLRv39/xfDhw7XWOXr0qAKA4t69e2rjXnl5eUVfa53DjKv/ICkpKQoAiuPHjysUCoUiKytLYW5urtiyZQu/zp07dxQAFGfOnNG7n7ffflvRs2dP/vnMmTMVTZo0UVtnzJgxiv79++vdh1wuV3h4eCi+/fZbflnW/9u5/5io6z8O4E/gK0do/HJwnBdgtHlWJBDOG9cPKLGwMHKtZVknzaXnjwUm0iyb9kegFdBkNdsa6MJFhU42p7IpsFL5o+AKDsXIQqoB1hSUqcePe33/cNz46AEHnp7HPR/b5w/e7/fn9Xm/by8+3Iu7z7unR1QqlXzzzTeKsYcOHZK5c+dKS0uLU8XVSCkpKaO+IQkODnY6DrmeJ+ZjTEzMhN8ETHQ+LK7G5y25MxLvZZ7P0/J2YGBAtFqtfPXVVxNa5xdffCGhoaFitVrtbe+++67odDqH42/1d8MbeEvujLRixYoxi6uLFy9OOra78GuBU1Bvby8AICwsDADQ0NCAgYEBpKWl2cfMnTsX0dHRqK+vHzPOcAwAqK+vV8QAgGeffXbMGH/++Se6uroU5wUHB0Ov1yvO6+7uxltvvYWvv/4agYGBTq7UOX19fYiJiUFUVBQyMzPR0tLi0vg0Nk/MRwDYvn07Zs6cicTERHzyyScYHBwcc52TmQ+NzVtyx1m8l3kGT8vbxsZG/PPPP/D19UViYiI0Gg0WL14Mi8Uy5jrr6+vx5JNPwt/fXzGfM2fO4OLFi2OeS455S+5MREJCAjQaDRYtWoQTJ064LO7txOJqirHZbMjJycFjjz2GuLg4AEBXVxf8/f0REhKiGKtWq0f97urJkyfx7bffYtWqVfa2rq4uqNXqm2JcunQJV69edRhnOL6j84b7RARZWVkwmUyYP3++84t1gk6nQ2lpKaqqqlBeXg6bzQaDwYC///7bpdchxzwxHwHg7bffRkVFBWpra7F69Wrk5+cjLy9vzLVOZj40Om/KHWfwXuYZPDFv//jjDwDAtm3bsGXLFhw8eBChoaFITU3FhQsXRl3raPMZeV1ynjfljjM0Gg127dqFffv2Yd++fYiKikJqaioaGxtvKe6dwOJqilm3bh0sFgsqKiomHcNisSAzMxNbt27FM8884/R5e/fuxYwZM+zHjz/+6NR5JSUluHz5MjZv3jzqmJFxTSaT03NKTk6G0WhEQkICUlJSsH//foSHh+PLL790OgZNnifmIwC88847SE1Nxbx582AymVBYWIiSkhJYrVYAk89Hch5zR4n3Ms/giXlrs9kAAO+//z5eeuklJCUloaysDD4+Pvj+++8BAA8//LA97uLFiye+KBoXc0dJp9Nh9erVSEpKgsFgQGlpKQwGA4qLi52O4S7/c/cEyHXWr1+PgwcP4ocffsB9991nb4+MjER/fz96enoU//3o7u5GZGSkIsapU6ewcOFCrFq1Clu2bFH0RUZGKnaoGY4RFBSEe+65By+88AL0er29T6vVorOz0z5Oo9EozktISAAA1NTUoL6+HiqVShF7/vz5WL58Ofbs2aPYOTAoKMj5F+UG06ZNQ2JiIn7//fdJxyDneGo+OqLX6zE4OIj29nbodDqH+TjefMh53pY7k8F72d3HU/N2uP2hhx6y96tUKsTGxqKjowMAcOjQIQwMDACA/X422nyG+8h53pY7k7VgwQIcP378lmLcEe5+6Itunc1mk3Xr1smsWbPkt99+u6l/+IHIyspKe1tra+tND0RaLBaJiIiQTZs2ObxOXl6exMXFKdpeffVVpx6I/PTTT+1tvb29igciz507J83NzfajurpaAEhlZaX89ddfTr0Goz0EfqPBwUHR6XSyYcMGp+LSxHl6PjpSXl4uvr6+cuHChVHHTHQ+4IYWN/HW3BmJ9zLP4+l5O/zzyE0J+vv7JSIiQrHz342GN7To7++3t23evJkbWkyAt+bOSKNtaOFIWlqaLF261Kmx7sTiagpYs2aNBAcHS11dnWK7yitXrtjHmEwmiY6OlpqaGvn5558lOTlZkpOT7f3Nzc0SHh4ur7/+uiLG+fPn7WOGt/LctGmTnD59Wj7//HOnt/IMCQmRqqoqaWpqkszMzFG3Yhe5vi0xnNwt0Gw2i9lslqSkJHnttdfEbDZLS0uLvf/DDz+U6upqOXv2rDQ0NMiyZcskICBAMYZcy9Pz8eTJk1JcXCy//PKLnD17VsrLyyU8PFyMRuOYcZ2Zz+XLl+05C0CKiorEbDbLuXPnJvQaT1XemjsivJd5Mk/PWxGR7Oxs0Wq1Ul1dLa2trbJy5UqJiIgY858CPT09olar5Y033hCLxSIVFRUSGBioeFNttVrtua3RaCQ3N1fMZrO0tbVN6DWeqrw1d0REWlpaxGw2y5IlSyQ1NdWeJ8OKi4vlwIED0tbWJs3NzZKdnS2+vr5y9OhRZ19et2FxNQUAcHiUlZXZx1y9elXWrl0roaGhEhgYKEuXLpXOzk57/9atWx3GiImJUVyrtrZWEhISxN/fX2JjYxXXGI3NZpMPPvhA1Gq1qFQqWbhwoZw5c2bU8RMprsabc05OjkRHR4u/v7+o1Wp57rnnpLGxcdy4NHmeno8NDQ2i1+slODhYAgIC5MEHH5T8/Hy5du3auLHHm8/w1rI3HitWrBg3tjfw5tzhvcxzeXreilz/tGHjxo0SEREh9957r6SlpYnFYhk39q+//iqPP/64qFQq0Wq1sn37dkX/8N/zG4+UlJRxY3sDb86dmJgYh/MetmPHDnnggQckICBAwsLCJDU1VWpqasaNezfwERFx9iuERERERERE5Bh3CyQiIiIiInIBFldEREREREQuwOKKiIiIiIjIBVhcERERERERuQCLKyIiIiIiIhdgcUVEREREROQCLK6IiIiIiIhcgMUVERERERGRC7C4IiIiIiIicgEWV0RENKVlZWXBx8cHPj4+mDZtGtRqNRYtWoTS0lLYbDan4+zevRshISG3b6JEROTxWFwREdGUl56ejs7OTrS3t+Pw4cN46qmnkJ2djYyMDAwODrp7ekRENEWwuCIioilPpVIhMjISWq0Wjz76KN577z1UVVXh8OHD2L17NwCgqKgIjzzyCKZPn46oqCisXbsWfX19AIC6ujq8+eab6O3ttX8Ktm3bNgCA1WpFbm4utFotpk+fDr1ej7q6OvcslIiI3IrFFREReaWnn34a8fHx2L9/PwDA19cXO3fuREtLC/bs2YOamhrk5eUBAAwGAz777DMEBQWhs7MTnZ2dyM3NBQCsX78e9fX1qKioQFNTE15++WWkp6ejra3NbWsjIiL38BERcfckiIiIbpesrCz09PTgwIEDN/UtW7YMTU1NOHXq1E19lZWVMJlM+O+//wBcf+YqJycHPT099jEdHR2IjY1FR0cHZs2aZW9PS0vDggULkJ+f7/L1EBHR3et/7p4AERGRu4gIfHx8AABHjx5FQUEBWltbcenSJQwODuLatWu4cuUKAgMDHZ7f3NyMoaEhzJkzR9FutVoxc+bM2z5/IiK6u7C4IiIir3X69Gncf//9aG9vR0ZGBtasWYOPPvoIYWFhOH78OFauXIn+/v5Ri6u+vj74+fmhoaEBfn5+ir4ZM2bciSUQEdFdhMUVERF5pZqaGjQ3N2PDhg1oaGiAzWZDYWEhfH2vP4783XffKcb7+/tjaGhI0ZaYmIihoSGcP38eTzzxxB2bOxER3Z1YXBER0ZRntVrR1dWFoaEhdHd348iRIygoKEBGRgaMRiMsFgsGBgZQUlKCJUuW4MSJE9i1a5cixuzZs9HX14djx44hPj4egYGBmDNnDpYvXw6j0YjCwkIkJibi33//xbFjxzBv3jw8//zzbloxERG5A3cLJCKiKe/IkSPQaDSYPXs20tPTUVtbi507d6Kqqgp+fn6Ij49HUVERduzYgbi4OOzduxcFBQWKGAaDASaTCa+88grCw8Px8ccfAwDKyspgNBqxceNG6HQ6vPjii/jpp58QHR3tjqUSEZEbcbdAIiIiIiIiF+AnV0RERERERC7A4oqIiIiIiMgFWFwRERERERG5AIsrIiIiIiIiF2BxRURERERE5AIsroiIiIiIiFyAxRUREREREZELsLgiIiIiIiJyARZXRERERERELsDiioiIiIiIyAVYXBEREREREbnA/wHjFxj5Bgo/lAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAE6CAYAAAD6N6hdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3QUVRuHn02y6T0kJIGQhBIIvUmV3rtKU7o0ARsCoqBSFEERBWygn1KUothQKdIEQQidIL2mAQHSe898f0xmdje7aZBCuc85OdmduTNzZ3dm9v7u2zSSJEkIBAKBQCAQCAQCgeC+MKvoDggEAoFAIBAIBALBo4AQVwKBQCAQCAQCgUBQCghxJRAIBAKBQCAQCASlgBBXAoFAIBAIBAKBQFAKCHElEAgEAoFAIBAIBKWAEFcCgUAgEAgEAoFAUAoIcSUQCAQCgUAgEAgEpYAQVwKBQCAQCAQCgUBQCghxJRAIBAKBQCAQCASlgBBXAsF98N9///H888/j7++PtbU19vb2NG3alMWLFxMbG1vR3Ssxt27dYt68eQQHBxutmzdvHhqNpvw7Bfj5+aHRaEz+JScnl+qxtm3bxrx580p1n6VBbGwszz77LB4eHmg0Gp566qkyPV7Hjh0NPmcbGxsaNWrEsmXLyM3NLdNjP0p07NiR+vXrm1wXHR2NRqOpsOutJPe0n58fY8aMUd/v27cPjUbDvn371GUP6r1zv3Ts2JGOHTsW2c7Pz4++ffuWfYfKgYq8Lgt61leqVEltU5G/RwJBUVhUdAcEgoeV//3vf0yZMoXatWvz+uuvU7duXbKysjh+/DgrV64kKCiI3377raK7WSJu3brF/Pnz8fPzo3Hjxgbrxo8fT8+ePSumY0Dbtm1ZsmSJ0XJbW9tSPc62bdv44osvHrhB4nvvvcdvv/3GqlWrqFGjBq6urmV+zOrVq7N+/XoA7t69y8qVK3nttdeIjIzkww8/LPPjC8qW+7mnmzZtSlBQEHXr1lWXPaj3jqDkBAUFUbVq1Qo7/qBBg5g+fbrBMq1WW0G9EQhKhhBXAsE9EBQUxOTJk+nWrRubN2/GyspKXdetWzemT5/OX3/9VSrHSk1NNSkgcnJyyM7ONjh2WVK1atUK/bF1dnamVatWFXb8+yUtLQ0bG5t73v7s2bPUqFGD4cOHl0p/JEkiPT290D7Z2NgYfOa9evWiTp06fP755yxYsMDkYKc4+33QyMrKQqPRYGHxeP0k3s897ejo+FDfj4LCqejvtnLlyhXeB4HgXhFugQLBPbBw4UI0Gg1ff/21SXFjaWlJ//791fe5ubksXryYOnXqYGVlhYeHB6NGjeLGjRsG2ykuRPv376dNmzbY2toyduxYQkND0Wg0LF68mAULFuDv74+VlRV79+4F4Pjx4/Tv3x9XV1esra1p0qQJmzZtMurXzZs3mThxIj4+PlhaWuLt7c2gQYO4c+cO+/bt44knngDg+eefV10xlFloU24YJT2vY8eO0a5dO2xtbalevToffPBBqbiYffHFF7Rv3x4PDw/s7Oxo0KABixcvJisry6jtX3/9RZcuXXBycsLW1pbAwEAWLVoEwJgxY/jiiy8AQ9eU0NBQANLT05k1axb+/v5YWlpSpUoVXnzxReLj4w2OobgH/frrrzRp0gRra2vmz58PwE8//UTLli3V41evXp2xY8cWeG7Kd797924uXLig9klxx4qNjWXKlClUqVIFS0tLqlevzltvvUVGRobBfjQaDS+99BIrV64kMDAQKysr1q5dW6LPWavV0qxZM1JTU4mKiipyv1euXGHYsGF4eHhgZWVFYGCg+vkq5ObmsmDBAmrXro2NjQ3Ozs40bNiQ5cuXq22ioqLU69bKygp3d3fatm3L7t27DT5zfbc1hfwuXYo72/fff8/06dOpUqUKVlZWXL16FYDdu3fTpUsXHB0dsbW1pW3btuzZs6dEn9P9UJC705o1awyuRdBdZ1u2bKFJkybY2NgQGBjIli1b1G0CAwOxs7OjRYsWHD9+vMhjZWVlMXPmTDw9PbG1teXJJ5/k6NGjRv3J7xZY2L3TpUsX6tSpgyRJBvuQJImaNWvSp0+fEn9OV69e5fnnn6dWrVrY2tpSpUoV+vXrx5kzZ0z2c+PGjbz11lt4e3vj6OhI165duXTpklF/Fi9ejK+vL9bW1jRt2pTt27eXuG8Kyr27ZMkSPvnkE/z9/bG3t6d169YcPnzYqP2RI0fo168fbm5uWFtbU6NGDaZOnWrQ5t9//6VLly44ODhga2tLmzZt2Lp1q0Eb5Vr5+++/mTBhAm5ubjg6OjJq1ChSUlK4ffs2Q4YMwdnZGS8vL2bMmGH0rMzvFqjsc+/evUyePJlKlSrh5ubGM888w61btwy2zcjIYPr06eo11L59e06cOFHgPVpaFOTKqH9cSZLo3bs3bm5uhIeHq21SU1OpV68egYGBpKSklFkfBY8Hj9c0nUBQCuTk5PD333/TrFkzfHx8irXN5MmT+frrr3nppZfo27cvoaGhvPPOO+zbt4+TJ08a+JJHRkYyYsQIZs6cycKFCzEz082BfPrppwQEBLBkyRIcHR2pVasWe/fupWfPnrRs2ZKVK1fi5OTEDz/8wNChQ0lNTVV/VG7evMkTTzxBVlYWs2fPpmHDhsTExLBjxw7i4uJo2rQpq1ev5vnnn+ftt99WBzyFzWyX5Lxu377N8OHDmT59OnPnzuW3335j1qxZeHt7M2rUqCI/Q0mSyM7ONlhmZmaGmZkZ165dY9iwYaroOX36NO+//z4XL15k1apVavtvv/2WCRMm0KFDB1auXImHhweXL1/m7NmzALzzzjukpKTw888/ExQUpG7n5eWFJEk89dRT7Nmzh1mzZtGuXTv+++8/5s6dS1BQEEFBQQZC++TJk1y4cIG3334bf39/7OzsCAoKYujQoQwdOpR58+ZhbW1NWFgYf//9d4Hn7eXlRVBQEFOmTCEhIUF106tbty7p6el06tSJa9euMX/+fBo2bMiBAwdYtGgRwcHBRoOuzZs3c+DAAebMmYOnpyceHh5Ffu75uXbtGhYWFri4uBS63/Pnz9OmTRuqVavGxx9/jKenJzt27OCVV14hOjqauXPnArB48WLmzZvH22+/Tfv27cnKyuLixYsGgnXkyJGcPHmS999/n4CAAOLj4zl58iQxMTEl7r/CrFmzaN26NStXrsTMzAwPDw/WrVvHqFGjGDBgAGvXrkWr1fLVV1/Ro0cPduzYQZcuXe75ePmvXZCfJffL6dOnmTVrFm+99RZOTk7Mnz+fZ555hlmzZrFnzx51IuiNN96gb9++hISEFGpVnDBhAt999x0zZsygW7dunD17lmeeeYakpKRC+1HYvfPqq68yYMAA9uzZQ9euXdV127dv59q1a3z66aclPu9bt27h5ubGBx98gLu7O7Gxsaxdu5aWLVty6tQpateubdB+9uzZtG3blm+++YbExETeeOMN+vXrx4ULFzA3Nwdg/vz5zJ8/n3HjxjFo0CAiIiKYMGECOTk5RvsrCV988QV16tRh2bJlgPxZ9e7dm5CQEJycnADYsWMH/fr1IzAwkE8++YRq1aoRGhrKzp071f38888/dOvWjYYNG/Ltt99iZWXFl19+Sb9+/di4cSNDhw41OO748eN55pln+OGHHzh16hSzZ88mOzubS5cu8cwzzzBx4kR2797Nhx9+iLe3N9OmTSvyXMaPH0+fPn3YsGEDERERvP7664wYMcLgGfb888/z448/MnPmTDp37sz58+d5+umnSUxMLPZnZup5b25uft9xVsrESuPGjRkyZAgHDhxAq9UyZcoUQkJCOHLkCHZ2dvd1DIEASSAQlIjbt29LgPTss88Wq/2FCxckQJoyZYrB8iNHjkiANHv2bHVZhw4dJEDas2ePQduQkBAJkGrUqCFlZmYarKtTp47UpEkTKSsry2B53759JS8vLyknJ0eSJEkaO3aspNVqpfPnzxfY12PHjkmAtHr1aqN1c+fOlfQfGfdyXkeOHDFoW7duXalHjx4F9kfB19dXAoz+3nrrLaO2OTk5UlZWlvTdd99J5ubmUmxsrCRJkpSUlCQ5OjpKTz75pJSbm1vgsV588UXJ1KPxr7/+kgBp8eLFBst//PFHCZC+/vprg/6am5tLly5dMmi7ZMkSCZDi4+OLPOf8dOjQQapXr57BspUrV0qAtGnTJoPlH374oQRIO3fuVJcBkpOTk/p5FPd4WVlZUlZWlnTr1i3pzTfflABp8ODBRe63R48eUtWqVaWEhASD5S+99JJkbW2ttu/bt6/UuHHjQvtib28vTZ06tdA2vr6+0ujRo02eR4cOHdT3e/fulQCpffv2Bu1SUlIkV1dXqV+/fgbLc3JypEaNGkktWrQo9PgFoVz7hf3NnTtXbZ//PlNYvXq1BEghISEG52xjYyPduHFDXRYcHCwBkpeXl5SSkqIu37x5swRIf/zxR4HHUu7p1157zeDY69evlwCDz1f5HPfu3asuK+jeycnJkapXry4NGDDAYHmvXr2kGjVqFHo/Fpfs7GwpMzNTqlWrlkH/lX727t3boP2mTZskQAoKCpIkSZLi4uIka2tr6emnnzZod/DgQQkwuIYKwtfXV+rTp4/6XnluN2jQQMrOzlaXHz16VAKkjRs3qstq1Kgh1ahRQ0pLSytw/61atZI8PDykpKQkg/OuX7++VLVqVfVzVK6Vl19+2WD7p556SgKkTz75xGB548aNpaZNmxosy39dKvvM/7xfvHixBEiRkZGSJEnSuXPnJEB64403DNpt3LjR6BoqiILuk//9739qG1P3Sf4+K5h6Nvz777+ShYWFNHXqVGnVqlUSIH3zzTdF9k0gKA7CLVAgKGMU17387hAtWrQgMDDQyOXIxcWFzp07m9xX//79DeJcrl69ysWLF9U4nOzsbPWvd+/eREZGqq4v27dvp1OnTgQGBlbIeXl6etKiRQuDZQ0bNiQsLKxYx3vyySc5duyYwd+UKVMAOHXqFP3798fNzQ1zc3O0Wi2jRo0iJyeHy5cvA3Do0CESExOZMmXKPc1+KjOz+c938ODB2NnZGZ1vw4YNCQgIMFimuF0OGTKETZs2cfPmzRL3I3+f7OzsGDRokMFypY/5+9S5c2cDi1NRnDt3Dq1Wi1arxdvbm48//pjhw4fzv//9r9D9pqens2fPHp5++mlsbW2Nrsv09HTVLapFixacPn2aKVOmsGPHDpOz2y1atGDNmjUsWLCAw4cPm3T3LCkDBw40eH/o0CFiY2MZPXq0QX9zc3Pp2bMnx44du2d3oRo1ahhdu8eOHTNwa7xXGjduTJUqVdT3yv3dsWNHg1hNZXlh95tyT+eP6xsyZMh9xaOZmZnx0ksvsWXLFtUV69q1a/z111/3fD9mZ2ezcOFC6tati6WlJRYWFlhaWnLlyhUuXLhg1F7fTRvk+xN0n0dQUBDp6elG596mTRt8fX1L3D99+vTpo1rHTB378uXLXLt2jXHjxmFtbW1yHykpKRw5coRBgwZhb2+vLjc3N2fkyJHcuHHDyM0xf+ZC5RrI74YZGBhY7OdwUZ/jP//8A8jXjD6DBg0q0TU0ZMgQo/ulNDOktm3blvfff59ly5YxefJkRowYwbhx40pt/4LHG+EWKBCUkEqVKmFra0tISEix2iuuS15eXkbrvL29jX7UTLUraN2dO3cAmDFjBjNmzDC5TXR0NCDHrZRmQoqSnpebm5tROysrK9LS0op1PCcnJ5o3b260PDw8nHbt2lG7dm2WL1+On58f1tbWHD16lBdffFHdvxIjdK+fQUxMDBYWFri7uxss12g0eHp6Grmomfpc2rdvz+bNm/n0008ZNWoUGRkZ1KtXj7feeovnnnvunvrk6elpNDj18PDAwsKiWH0qjBo1avDDDz+g0WiwtrbG39/fZHKV/PuNiYkhOzubzz77jM8++8zkvpXrctasWdjZ2bFu3TpWrlyJubk57du358MPP1S/7x9//JEFCxbwzTff8M4772Bvb8/TTz/N4sWL8fT0LNE5FdRn5V7KL1T1iY2NvSeXIWtra5PXrvIZ3A/5s0ZaWloWujw9Pb3AfSnXS/7P1MLCwuT9WxLGjh3LnDlzWLlyJQsXLuSLL77Axsam0HjDwpg2bRpffPEFb7zxBh06dMDFxQUzMzPGjx9v8pmSv/+KC6/StqBzL2hZSSjq2MV5NsXFxSFJUoHPW8Dofi/JtVHYdaFPcT/HypUrG7Qr6TXk7u5u8p4pTYYPH84777xDRkYGr7/+epkeS/B4IcSVQFBCzM3N6dKlC9u3b+fGjRtFDtaVH5TIyEijtrdu3TKISwIKncXNv07ZdtasWTzzzDMmt1FiBdzd3Y0STdwPJT2vsmLz5s2kpKTw66+/Gsww56/VpYiie/0M3NzcyM7OJioqykBgSZLE7du3VauUQkHf44ABAxgwYAAZGRkcPnyYRYsWMWzYMPz8/GjdunWJ+3TkyBEkSTI43t27d8nOzi7RtWWKgkRBfvLv18XFRZ1Rf/HFF01u4+/vD8iDrmnTpjFt2jTi4+PZvXs3s2fPpkePHkRERGBra0ulSpVYtmwZy5YtIzw8nD/++IM333yTu3fvqlk5ra2tjZJ4gCxgTF2LBd1Ln332WYFZyvIPGMsCxXKRkZFhEMNXGkKsKJR7+vbt2wbWsOzs7PuKbwN5cmT06NF88803zJgxg9WrVzNs2DCcnZ3vaX9KfNzChQsNlkdHR9/TPvXPPT+3b9/Gz8/vXrpZLIrzbFLEY2RkpNE6JaFEeT1zC0P5HO/cuVPq11BRWFlZmXwGmDpuTk4Ow4cPx8XFBSsrK8aNG8fBgwdVASoQ3A/CLVAguAdmzZqFJElMmDCBzMxMo/VZWVn8+eefAKqL37p16wzaHDt2jAsXLtxXkHzt2rWpVasWp0+fpnnz5ib/HBwcADmN9t69e41cR/TJPwtZGGV5XiVBGSTrD0QlSTJyXWvTpg1OTk6sXLnSKGuZPgV9Bsr55D/fX375hZSUlBKfr5WVFR06dFDrRZ06dapE2yt9Sk5OZvPmzQbLv/vuO4M+lze2trZ06tSJU6dO0bBhQ5PXpalZbGdnZwYNGsSLL75IbGysQWY8hWrVqvHSSy/RrVs3Tp48qS738/Pjv//+M2h7+fLlQq93fdq2bYuzszPnz58v8F4qj4GXMojPfy7K86QsUbIqKklTFDZt2mQyIUd+inp+KMlMBg0aRHx8PC+99NI991Wj0Rhlat26des9u9q2atUKa2tro3M/dOhQsV3m7pWAgABq1KjBqlWrTIoDADs7O1q2bMmvv/5q8Pnm5uaybt06qlatauSGXBG0b98ekK3N+vz888/FuobuB1PPgL///ttkofm5c+dy4MAB1q9fz48//sjp06eF9UpQagjLlUBwD7Ru3ZoVK1YwZcoUmjVrxuTJk6lXrx5ZWVmcOnWKr7/+mvr169OvXz9q167NxIkT+eyzzzAzM6NXr15qVj0fHx9ee+21++rLV199Ra9evejRowdjxoyhSpUqxMbGcuHCBU6ePMlPP/0EwLvvvsv27dtp3749s2fPpkGDBsTHx/PXX38xbdo06tSpQ40aNbCxsWH9+vUEBgZib2+Pt7e36naiT1mfV3Hp1q0blpaWPPfcc8ycOZP09HRWrFhBXFycQTt7e3s+/vhjxo8fT9euXZkwYQKVK1fm6tWrnD59ms8//xyABg0aAPDhhx/Sq1cvzM3NadiwId26daNHjx688cYbJCYm0rZtWzVbYJMmTRg5cmSRfZ0zZw43btygS5cuVK1alfj4eJYvX45Wq6VDhw4lPvdRo0bxxRdfMHr0aEJDQ2nQoAH//vsvCxcupHfv3gaZ2cqb5cuX8+STT9KuXTsmT56Mn58fSUlJXL16lT///FONYevXrx/169enefPmuLu7ExYWxrJly/D19aVWrVokJCTQqVMnhg0bRp06dXBwcODYsWP89ddfBtbakSNHMmLECKZMmcLAgQMJCwtj8eLFRm6cBWFvb89nn33G6NGjiY2NZdCgQXh4eBAVFcXp06eJiopixYoVanuNRkOHDh3UVOSlRe/evXF1dWXcuHG8++67WFhYsGbNGiIiIkr1OKYIDAxkxIgRLFu2DK1WS9euXTl79qyanbQoCrp3FFEaEBBAz5492b59O08++SSNGjUy2seYMWNYu3YtISEhhVqL+vbty5o1a6hTpw4NGzbkxIkTfPTRR/fs9uvi4sKMGTNYsGAB48ePZ/DgwURERDBv3rz7dgssDl988QX9+vWjVatWvPbaa1SrVo3w8HB27NihCr5FixbRrVs3OnXqxIwZM7C0tOTLL7/k7NmzbNy48b4z6ZUG9erV47nnnuPjjz/G3Nyczp07c+7cOT7++GOcnJwMst+WNiNHjuSdd95hzpw5dOjQgfPnz/P555+rGRkVdu3axaJFi3jnnXfUCahFixYxY8YMOnbsyNNPP11mfRQ8JlRkNg2B4GEnODhYGj16tFStWjXJ0tJSsrOzk5o0aSLNmTNHunv3rtouJydH+vDDD6WAgABJq9VKlSpVkkaMGCFFREQY7M9URjhJ0mWd+uijj0z24/Tp09KQIUMkDw8PSavVSp6enlLnzp2llStXGrSLiIiQxo4dK3l6ekparVby9vaWhgwZIt25c0dts3HjRqlOnTqSVqs1yL5kKjvT/Z7X6NGjJV9fX5PnpE/+LFz5+fPPP6VGjRpJ1tbWUpUqVaTXX39d2r59u1E2M0mSpG3btkkdOnSQ7OzsJFtbW6lu3brShx9+qK7PyMiQxo8fL7m7u0sajcYgQ1taWpr0xhtvSL6+vpJWq5W8vLykyZMnS3FxccXq75YtW6RevXpJVapUkSwtLSUPDw+pd+/e0oEDB4r8DAr6DGNiYqRJkyZJXl5ekoWFheTr6yvNmjVLSk9PN2gHSC+++GKRxynqePkpbL8hISHS2LFjpSpVqkharVZyd3eX2rRpIy1YsEBt8/HHH0tt2rSRKlWqJFlaWkrVqlWTxo0bJ4WGhkqSJEnp6enSpEmTpIYNG0qOjo6SjY2NVLt2bWnu3LkG2fByc3OlxYsXS9WrV5esra2l5s2bS3///XeB2QJ/+uknk33+559/pD59+kiurq6SVquVqlSpIvXp08egfVJSUrEzhhb2OUZFRZnMcHb06FGpTZs2kp2dnVSlShVp7ty50jfffGMyW6Cp68zUd2LqGWLqns7IyJCmT58ueXh4SNbW1lKrVq2koKAgo4xrprIFFnbvKKxZs0YCpB9++MHkZzJw4EDJxsbG6J7KT1xcnDRu3DjJw8NDsrW1lZ588knpwIEDxf6+lc9DPzNqbm6utGjRIsnHx0eytLSUGjZsKP35559G+yyIgrIFmnpum/reg4KCpF69eklOTk6SlZWVVKNGDaPMjQcOHJA6d+4s2dnZSTY2NlKrVq2kP//806CNktnv2LFjBsuV7zsqKspg+ejRoyU7O7tC+1fQPk1dB+np6dK0adOMriEnJyej8zFFcZ5VBV27M2fOlHx8fCQbGxupQ4cOUnBwsMG1e+vWLcnDw0Pq3LmzmklXkuTvvl+/fpKzs7PRNSsQlBSNJBXiHyMQCAQCgcCAbdu20bdvX06fPq1aawTFY+DAgRw+fJjQ0FCDzKcKnp6ejBw5ko8++qgCeicoKw4dOkTbtm1Zv349w4YNq+juCARlinALFAgEAoGgBOzdu5dnn31WCKtikpGRwcmTJzl69Ci//fYbn3zyiUlhde7cOVJTU3njjTcqoJeC0mLXrl0EBQXRrFkzbGxsOH36NB988AG1atUqMPGSQPAoISxXAoFAIBAIyozQ0FD8/f1xdHRk2LBhfP755wZ1nwSPFkeOHGH69OmcP3+epKQkKlWqRI8ePVi0aFGJy0EIBA8jQlwJBAKBQCAQCAQCQSkgUrELBAKBQCAQCAQCQSkgxJVAIBAIBAKBQCAQlAJCXAkEAoFAIBAIBAJBKSCyBZogNzeXW7du4eDg8EAU5RMIBAKBQCAQCAQVgyRJJCUl4e3tXWQxbCGuTHDr1i18fHwquhsCgUAgEAgEAoHgASEiIoKqVasW2kaIKxM4ODgA8gfo6OhYwb0RCAQCgUAgEAgEFUViYiI+Pj6qRigMIa5MoLgCOjo6CnElEAgEAoFAIBAIihUuJBJaCAQCgUAgEAgEAkEpIMSVQCAQCAQCgUAgEJQCQlwJBAKBQCAQCAQCQSkgYq4EAoHgMUaSJLKzs8nJyanorggeUrRaLebm5hXdDYFAIHggEOJKIBAIHlMyMzOJjIwkNTW1orsieIjRaDRUrVoVe3v7iu6KQCAQVDhCXAkEAsFjSG5uLiEhIZibm+Pt7Y2lpaUomi4oMZIkERUVxY0bN6hVq5awYAkEgsceIa4EAoHgMSQzM5Pc3Fx8fHywtbWt6O4IHmLc3d0JDQ0lKytLiCvB40N6Glw4BU3aVHRPBA8YIqGFQCAQPMaYmYmfAcH9ISyegseSTV/DF+9CcmJF90TwgCF+VQUCgUAgEAgEgpIQHyP/T4it2H4IHjiEuBIIBAKBQCAQCEqCYrGNi67YfggeOIS4EggEAoFAIBAI7oV4YbkSGCLElUAgEAgeKsaMGYNGo0Gj0aDVaqlevTozZswgJSWlorsmEAgeF5KT5P+JQlwJDBHZAgUCgUDw0NGzZ09Wr15NVlYWBw4cYPz48aSkpLBixQqDdllZWWi12grqpWkexD4JBIISkhgn/08VkzoCQ4TlSiAQCAQPHVZWVnh6euLj48OwYcMYPnw4mzdvZt68eTRu3JhVq1ZRvXp1rKyskCSJhIQEJk6ciIeHB46OjnTu3JnTp0+r+zt9+jSdOnXCwcEBR0dHmjVrxvHjxwEICwujX79+uLi4YGdnR7169di2bRsAa9aswdnZ2aBvmzdvNsigd699EggEDyiSpEtkkSbElcAQYbkSCAQCgY6MdLgdUf7H9fQBK+t73tzGxoasrCwArl69yqZNm/jll1/Uukt9+vTB1dWVbdu24eTkxFdffUWXLl24fPkyrq6uDB8+nCZNmrBixQrMzc0JDg5WrUsvvvgimZmZ7N+/Hzs7O86fP4+9vX2J+ncvfRIIBA8oaamQmZH3WogrgSEVKq7279/PRx99xIkTJ4iMjOS3337jqaeeKrB9ZGQk06dP58SJE1y5coVXXnmFZcuWGbRZs2YNzz//vNG2aWlpWFvf+w+3QCAQPBbcjoD3Xi7/477zGfjWuqdNjx49yoYNG+jSpQsgF0j+/vvvcXd3B+Dvv//mzJkz3L17FysrKwCWLFnC5s2b+fnnn5k4cSLh4eG8/vrr1KlTB4BatXR9CQ8PZ+DAgTRo0ACA6tWrl7iP99IngUDwgKLEWdk7CrdAgREVKq5SUlJo1KgRzz//PAMHDiyyfUZGBu7u7rz11lssXbq0wHaOjo5cunTJYJkQVgKBQFAMPH1koVMRxy0BW7Zswd7enuzsbLKyshgwYACfffYZX375Jb6+vqqIAThx4gTJycm4ubkZ7CMtLY1r164BMG3aNMaPH8/3339P165dGTx4MDVq1ADglVdeYfLkyezcuZOuXbsycOBAGjZsWKL+3kufBALBA0pMlPzf21dYrgRGVKi46tWrF7169Sp2ez8/P5YvXw7AqlWrCmyn0Wjw9PQs9n4zMjLIyMhQ3ycmimrbAoHgMcXK+p4tSOVJp06dWLFiBVqtFm9vb4MEEXZ2dgZtc3Nz8fLyYt++fUb7UeKl5s2bx7Bhw9i6dSvbt29n7ty5/PDDDzz99NOMHz+eHj16sHXrVnbu3MmiRYv4+OOPefnllzEzM0OSJIN9Ku6J+txLnwQCwQPK3Vtgbg5V/eFCcEX3RvCA8UgmtEhOTsbX15eqVavSt29fTp06VWj7RYsW4eTkpP75+JRsBlUgEAgE5YudnR01a9bE19e3yMx7TZs25fbt21hYWFCzZk2Dv0qVKqntAgICeO2119i5cyfPPPMMq1evVtf5+PgwadIkfv31V6ZPn87//vc/ANzd3UlKSjJIAx8cHFxk/4vbJ4FA8ABy9xa4VQY7B2G5EhjxyImrOnXqsGbNGv744w82btyItbU1bdu25cqVKwVuM2vWLBISEtS/iIgKCOYWCAQCQZnQtWtXWrduzVNPPcWOHTsIDQ3l0KFDvP322xw/fpy0tDReeukl9u3bR1hYGAcPHuTYsWMEBgYCMHXqVHbs2EFISAgnT57k77//Vte1bNkSW1tbZs+ezdWrV9mwYQNr1qy57z4JBIIHmKhb4OENtvZCXAmMeOTEVatWrRgxYgSNGjWiXbt2bNq0iYCAAD77rOAYAisrKxwdHQ3+BAKBQPBooNFo2LZtG+3bt2fs2LEEBATw7LPPEhoaSuXKlTE3NycmJoZRo0YREBDAkCFD6NWrF/PnzwcgJyeHF198kcDAQHr27Ent2rX58ssvAXB1dWXdunVs27aNBg0asHHjRubNm3fffRIIBA8wd/PElY2dnGE1O7uieyR4gNBI+Z3FKwiNRlNktkB9OnbsSOPGjY2yBZpiwoQJ3Lhxg+3btxdr34mJiTg5OZGQkPBwCq3kJLh0Gpo9WdE9EQgEDyjp6emEhITg7+8vEv4I7gtxLQkeK3JzYcoAGDQOXCrBigWwbJOcOVDwyFISbfDIWa7yI0kSwcHBeHl5VXRXyo+vFso3e25uRfdEIBAIBAKB4NEhKR6ys8DNQ3YLBOEaKDCgQrMFJicnc/XqVfV9SEgIwcHBuLq6Uq1aNWbNmsXNmzf57rvv1DZKoHBycjJRUVEEBwdjaWlJ3bp1AZg/fz6tWrWiVq1aJCYm8umnnxIcHMwXX3xRrudWodwKlf9nZd5XUU6BQCAQCAQCgR6J8fJ/J1cwkwuCk5pcYd0RPHhUqLg6fvw4nTp1Ut9PmzYNgNGjR7NmzRoiIyMJDw832KZJkybq6xMnTrBhwwZ8fX0JDQ0FID4+nokTJ3L79m2cnJxo0qQJ+/fvp0WLFmV/Qg8KyXmp5DMzhLgSCAQCgUAgKC0S4+T/js6Qk+chpAgugYAKFlcdO3Y0qg+ij6mMS0WFiC1durTQAsOPBTk58v/MjMLbCQQCgUAgEAiKz8Fd8n9HF9k9EGDzd9DgiYrrk+CB4pGPuXqsyRLiSiAQCAQCgaBUyM2Fo/vk15ZWcsxV/eZivCUwQIirR42sTN1rYbkSCAQCgUAgKB1i78r/9bMx16ov3AIFBghx9agRH6N7nZlZcDuBQCAQCAQCQfG5fUP+P3i8bpmjsxzrLmpdCfIQ4upRIy5a9zozveL6IRAIBAKBQPAoEXMXNGbg6q5b5uQi/09OqJg+CR44hLh61FAyBYJwCxQIBAKBQCAoLRLjwMFJl4Id5MQWAAmxFdMnwQOHEFePGvri6ug+YaYWCASCUiQ0NBSNRqPWXDTFvn370Gg0xMfHA3LmW2dn53Lpn0BQUUyd+hd794ZUdDfKlsQ42Q1QH0VcibgrQR5CXD1qpCSDlY38+ug/sGU9SJJhoguBQCB4iBkzZgxPPfWU0fL8oqYs8PHxITIykvr16xd7m6FDh3L58mX1/bx582jcuHEZ9E4gqDiWLz9Cjx7rKrobZUtivM4NUMHBKW9dXLl3R/BgIsTVo0ZKkuGsytUL8ONXMLm/rv6VQCAQCO4Jc3NzPD09sbAofplIGxsbPDw8yrBXAkHFotQgzcrKreCelDEJsTpLlYLWUk7JniDElUBGiKtHjdQksHPQvU+Kh9NH5NcXTlVIlwQCgaC8MWUdWrZsGX5+fup7xQK2cOFCKleujLOzM/Pnzyc7O5vXX38dV1dXqlatyqpVq9RtTLkFbtu2jYCAAGxsbOjUqROhoaEGx9V3C1yzZg3z58/n9OnTaDQaNBoNa9asYezYsfTt29dgu+zsbDw9PQ2OLxA8iKSlPSYhCInxxuIKwMlVWK4EKsWfehM8HKQkgZ297r1WC9a2EBUJl/6Ti90JBAJBAaSmZnHxYnTRDUuZOnUqYWurLffj/v3331StWpX9+/dz8OBBxo0bR1BQEO3bt+fIkSP8+OOPTJo0iW7duuHj42O0fUREBM888wyTJk1i8uTJHD9+nOnTpxd4vKFDh3L27Fn++usvdu/eDYCTkxMBAQG0b9+eyMhIvLy8AFm0JScnM2TIkLI5eYGglEhOLt/Qg9xciZ9+OsfgwfUwM9OU34ET4kyLK7fKcDey/PoheKAR4upRIzlRnkFRkID4vIFS6GWTmwgEAoHCxYvRNGv2dbkf98SJiTRt6lXs9lu2bMHe3t5gWc49uD67urry6aefYmZmRu3atVm8eDGpqanMnj0bgFmzZvHBBx9w8OBBnn32WaPtV6xYQfXq1Vm6dCkajYbatWtz5swZPvzwQ5PHs7Gxwd7eHgsLCzw9PdXlbdq0oXbt2nz//ffMnDkTgNWrVzN48GCj8xQIHjTKW1x9881JXnhhCy4uNnTvXqN8DpqRDhlpxgktALx8IDiofPoheOAR4upRIyUJqvjp3keGQ062HHAZGVFh3RIIBA8HdepU4sSJiRVy3JLQqVMnVqxYYbDsyJEjjBgxokT7qVevHmZmOg/5ypUrGySrMDc3x83Njbt375rc/sKFC7Rq1QqNRjd73rp16xL1QWH8+PF8/fXXzJw5k7t377J161b27NlzT/sSCMqTpKTSK/0yYsSvbNt2hdjYN0yuT0/P5oUXtpTa8YqNkg0wf0ILkMXV7s1yhuYSxGMKHk3EFfCokZIXczV4PPz0jVzrysoanhoF338GqSlga1fRvRQIBA8otrbaElmQKgo7Oztq1qxpsOzGjRvqazMzMzXIXiErK8toP1qtoSuiRqMxuSw313Sgfv5j3A+jRo3izTffJCgoiKCgIPz8/GjXrl2p7V8gKCv0LVeSJBlMNpSU9evPFLo+PFxXrDcxsRzreSbm1bEy5RZo5wBSLqSngb2D8XrBY4VIaPGooYirHoPgmeflZZWrgn9t+XVkeMX1TSAQCMoJd3d3bt++bSB+CqtNda/UrVuXw4cPGyzL/z4/lpaWJl0Y3dzceOqpp1i9ejWrV6/m+eefL9W+CgRlhb64ysw07Z57+vRtbtxINLmuJOiLq4SE9PveX7EpzHJlYyv/T08pt+4IHlyEuHqUyMyQ/5RsgVbW8n8Pb1lgaTRCXAkEgseCjh07EhUVxeLFi7l27RpffPEF27dvL/XjTJo0iWvXrjFt2jQuXbrEhg0bWLNmTaHb+Pn5ERISQnBwMNHR0WRk6Gbfx48fz9q1a7lw4QKjR48u9f4KBKXNgQNhrF17Wn2flGQ6/qpx46+oV+9LcnLuL117RIQsrrRaMxISytFylRAHZmZg52i8zjrPIygttfz6I3hgEeLqUSIlSf6fX1y5e8qvXd3hzs2K6ZtAIBCUI4GBgXz55Zd88cUXNGrUiKNHjzJjxoxSP061atX45Zdf+PPPP2nUqBErV65k4cKFhW4zcOBAevbsSadOnXB3d2fjxo3quq5du+Ll5UWPHj3w9vYu9f4KBKVN+/Zr2LjxrPq+sPirxMQMLCzeY/Pmi/d8vBs3EvHwsCMrK5fp03eSnV1OtbUS48DBWRZY+VEtV0JcCUTM1aNFfnGl+Dw7u8n/rW3lbDcCgUDwEFOQZahjx44GboCTJk1i0qRJBm2ULIAF7Wffvn1Gy/TrVvn5+RnFWfXt29eoRpW+S9+YMWMYM2aM+t7Kyoqff/7Z5DmkpaURHx/PuHHjTK4XCB50TFmu0tIM4x2ffvpHcnPn8Oefl+nVqyZarbnRNkuXBtGyZVXatDEsgXD3bgoeHnbcvSu74IWHJ+Dv73xfcV7FwlQBYQVFXAnLlQBhuXq0SM7zZbbPM1kr1cIVcaW1hGzjgG6BQCAQVCy5ubncunWLd955BycnJ/r371/RXRII7glTlqt9+0KNln355TEGDPiBdev+U5fFxaWpr6dN20nbtsYFtKOiUnF3t1Xf//bbBczM3uXcOdMZPUuF6NvwzzY5K6AprBXLVZrp9YLHCiGuHiXyW66eaA+ePlCnkfze0kqOyRIIBALBA0V4eDhVqlRh06ZNrFq1CguRzlnwkOHiIocimLJcTZmyTX393HNyqYPPPz8GgL29pbrO1XVxkceRxZUd//0nW6U3bJBdEv/778499rwY/LpG/u/ta3q9lbXsLSTcAgUIcfVokZIk39xKqnV3L1jwP53Y0mohq3wL/QkEAoGgaBR3w4iICLp06VLR3REISkzVqrLXjKkMfj4+uiQQL774BD4+jly8GA2ApaWxS6A+ubmGbrhRUSl4eNjSoEFlKlWy5eTJSACTroWlhiKaOvYlLi6NU6ciDddrNGBtI9wCBYAQV48WKUlgYwdmBTxgtJZgos6LQCAQCAQCwf3g4mKDjY0FkZHJRuv061EFBrrTp08t9X1WVuEJKfRdBQGio1OpVEl2w9NqdcPYjIzse+p3sYiMgG7PgL0Do0dvpmnTr9m9+7phG2tbYbkSAEJcPVooNa4KQmsFWcItUCAQCAQCQeliZWVOlSqOJmtZxcenM3FiU9atexpXVxs++qg7mzcPBSAry3RdLAUlcYVCUlImjo5WAKSn6wSVqbTspVJkODcXYqPkzMvAqVO3AejVa71hOxtbYbkSAEJcPVqkJsuWq4IQboECgUAgEAjKgJYtq1C1qiM3byYZrYuPT6dmTVeGD28IyHFWvXrJ1quiLFf64io3VyI5OVON00pL04mr+HhDd8SjR2/i5PSByWQaJSIpAXKywaUSiYkZ3L6dTLNmXmRn56o1t4A8y5UoIiwQ4urRIi0VbO0LXi/cAgUCgUAgEJQiSiKLN954kho1XPjnn1BSUnQTuTk5uSQkZODiYmOwnYWFPARV6lTlL3GgcOeOTrCkpspjGEVcbdnyHG3byhn88sd6Xbokx3QtW3aYDh3WcP16XIHncPbs3YLdCuOi8060Env3hpCdncvs2e0AuH1bzwVSWK4EeQhx9SiRlqKrtWAK4RYoEAgEAoGgFDh8+Abu7h+RlpbNhx92xd7ekilTniAyMpmjR2+q7RTXPGdna4Ptzcw0mJlpVLfAzEz5f4sWVQDw9nbAxsaCmzd1bobJybJoc3CQ3QK7dKnOv/+OpUkTTyPLlWJB+/33S+zfH8Yff1wyeR7p6dk0aLCCN97YTWSksdVNX1zt2HGNGjVcaNDAA9CJPUDEXAlUhLh6lEhLKYZboLBcCQQCgUAguD++/PIY0dGppKdnY2Mjlw6oX98Dc3MNly/HqO0U0aNYuPSxsDBT3QIzMmRx9cQT3gA4Olrh7+9iYHFSamjpp28H8PS05/Zt2cKlxGGFhycYtCmoxrASI7Z8+RG8vT9Bo5nP5s0XdQ3io8HcHByc+fffcDp39sfWVgvkE1fCciXIQ4irR4nUFF0adlNoLUXMlUAgEJQTa9aswdnZuaK7wbx582jcuHFFd0PwiGFlpctMrKRTt7Q0p3p1Fy5d0omruDhZXOW3XIGc7U9xC1REkYODLJwqVbKlenUXQkLi1fY6y5WhuPLxcSQiIoH339+Pjc37hIXFc/58lEEbffdCffKLMJCFo+4EosHZjawciYsXo2nUqLJpcWVtK4oIC4ASiitJkggLCyMtrXQunv3799OvXz+8vb3RaDRs3ry50PaRkZEMGzaM2rVrY2ZmxtSpU022++WXX6hbty5WVlbUrVuX3377rVT6+8BTpOVKFBEWCAQPP2PGjOGpp56q6G4UydChQ7l8+XKZH2fNmjVoNBqjv2+++abMjy14fLG21hW6Dg2NV1+7u9upggp0livT4spcdQtUYp6UTIBeXvb4+joZiB+lQLEpy9WpU7d5++29AJw+fYdjx27RrVt1tU3+rIMKYWHxRstsbLS6N3HR4FKJ//67Q1ZWLg0aFCSubIRboAC4B3FVq1Ytbty4USoHT0lJoVGjRnz++efFap+RkYG7uztvvfUWjRo1MtkmKCiIoUOHMnLkSE6fPs3IkSMZMmQIR44cKZU+P9AUyy1QWK4EAoGgPLCxscHDw6NcjuXo6EhkZKTB3/Dhw8vl2PfLzp3X2Lcv1CC2RvDgo1/894UXmquvtVozg/TqSp2q/AktwLRboJLXwsvLHnd3W6KidIJFsVyZElf6rF9/htTULGbNelJdVpDl6uzZu0bLFDdHQE7D7lyJdev+w8vLntatq2JpaY6ZmcZQXFlaiwlsAVBCcWVmZkatWrWIiYkpunEx6NWrFwsWLOCZZ54pVns/Pz+WL1/OqFGjcHJyMtlm2bJldOvWjVmzZlGnTh1mzZpFly5dWLZsWan0+YElJwcy0gt3C7Sxk8VVtoi7EggEjw4dO3bklVdeYebMmbi6uuLp6cm8efMM2sTHxzNx4kQqV66MtbU19evXZ8uWLer6X375hXr16mFlZYWfnx8ff/yxwfZ+fn4sWLCAUaNGYW9vj6+vL7///jtRUVEMGDAAe3t7GjRowPHjx9Vt8rsFKu5533//PX5+fjg5OfHss8+SlKQLok9KSmL48OHY2dnh5eXF0qVL6dixY4GeGgoajQZPT0+DPxsb48Gs8nnl399TTz3FmDFjALh48SK2trZs2LBBXf/rr79ibW3NmTNnCu3HvdCjxzo6dVpL1apLDZZnZeVw7VpsqR9PUDyGDfuFjRsL/r6VNOj+/s74+Tmryy0tzdXkFKCzXDk5WRntw5RbYJ06lfKO34BKlWyJjk5VMwlGR8tCK79QGz++KefPTyEi4jVcXKzZtOkcAK1b+xAbO5MxYxoXaLk6cSLSaJmB5So2Ctw8iIxMJjDQHa3WHI1Gg62t1lBcWVnL4zDBY49F0U0MWbx4Ma+//jorVqygfv36ZdGn+yIoKIjXXnvNYFmPHj0KFVcZGRlkZOhmGxITH8LZs7S8h0ZhlislTXtaCjg4l3mXBALBw0dWVirR0ReLbljKVKpUB622kGynRbB27VqmTZvGkSNHCAoKYsyYMbRt25Zu3bqRm5tLr169SEpKYt26ddSoUYPz589jbi7PvJ84cYIhQ4Ywb948hg4dyqFDh5gyZQpubm6q4ABYunQpCxcu5J133mHp0qWMHDmStm3bMnbsWD766CPeeOMNRo0axblz59AUED1/7do1Nm/ezJYtW4iLi2PIkCF88MEHvP/++wBMmzaNgwcP8scff1C5cmXmzJnDyZMnyzVmqk6dOixZsoQpU6bQtm1btFotEyZM4IMPPqBBgwbl1o/33z/A/Pn/EBMzE1dX00JRUDa8++4/bNx4lo0bz/Lcc6a/cyUL4P79zxssl139dLWr4uPTcXS0wtzceD7flFugv78zkjQXgLCwBLKz5VTuzs7WXL0ai5eXveqWp7+fwEB3QBZlX3xxjLfeaoe1tQXW1hZ4edkXWO+qsBTtagFhNw9SUlKws9Md10hcWVrJE9i5uWAmUho8zpRYXI0YMYLU1FQaNWqEpaWl0cxYbGzFzjLdvn2bypUrGyyrXLkyt2/fLnCbRYsWMX/+/LLuWtmiiKvCLFfKulQhrgQCgWmioy/y9dfNyv24EyeewMur6T1v37BhQ+bOlQdktWrV4vPPP2fPnj1069aN3bt3c/ToUS5cuEBAQAAA1avrYjE++eQTunTpwjvvvANAQEAA58+f56OPPjIQV7179+aFF14AYM6cOaxYsYInnniCwYMHA/DGG2/QunVr7ty5g6enp8l+5ubmsmbNGhwcHAAYOXIke/bs4f333ycpKYm1a9eyYcMGunTpAsDq1avx9vYu8vwTEhKwt9e5Rtnb2xf6u1cUU6ZMYdu2bYwcORJLS0uaNWvGq6++es/7KwwLC531Qp/Tp+8A8NdfVxk2rPxE3eNORkY2c+fuA3QZ/k6fvs3Vq7F07OiHm5s8CZKYmEG/fgFUreposH1+y1V0dKrJTIFg2i3Qyko3NK1UST7W+fNRtGnjw9WrsdSs6Vpo/z//vDcfftgVOzud62DlynbcuZOMJElGEx9xcbL4S0zM4LffhjJ+/B9ERaWQkZGNVVpeAWFXD1JSLlG5su4eMymuQHYNtL73yYCvvjrOoEF11c9Z8PBRYnH1MLjX5b9xTN1M+syaNYtp06ap7xMTE/Hx8Smz/pUJJbFcpSYX3EYgEDzWVKpUh4kTT1TIce+Hhg0bGrz38vLi7l05liI4OJiqVauqwio/Fy5cYMCAAQbL2rZty7Jly8jJyVEtXPrHUCbx9C05yrK7d+8WKK78/PxUYZW/n9evXycrK4sWLVqo652cnKhdu3YhZy7j4ODAyZMn1fdmpTBzvmrVKgICAjAzM+Ps2bOF/o7eK2lpWWRn56oD1czMHDWWR3Hjyp/1TVC26KdR9/Z24Msvj/Hii9vUZSdPTqRJEy/u3k2hdu1KRttrtWYGRYSvXYujenUXk8fSdwtULFf6WQgV4fbqq3+xY8cItm27UiyhrS+sADw87EhLy+bQoQjatq2mLs/KyiE5OZNVq/rz/PNNAFi37j9++eUCLVt+w5ENbZl3rBr9QzWkpGQVbrmyyhOQ9yGukpMzmTRpKzt3XueXX4bc0z4EFU+JxdXo0aPLoh+lhqenp9Fs3d27d42sWfpYWVlhZWXsC/xQkVoccaVYroS4EggEptFqbe/LglRRaLWGbkIajYbcXHnQVlDskYKpCTglxqOgYyjtTS1TjlvSfirHLE5f8mNmZkbNmjWLbKe0zb/PLBM1EE+fPk1KSgpmZmbcvn27WBa0khITIyc7GDq0HqtXB5OSkomlpQ03byZy+LCcPEs/E52g7ImMlMcInTv7ExeXxuefHwWUWlLJrFkTTLVqThw5cpPhw42FTn7L1ZUrsbRsWcXksfTdAhWhoh/vFBDgRvfuNfj333Bq1/6chIQMRo5saHJfheHhIY9/nnxyNdnZ76guiroaXLpnhFKg+PTpO+zbfYUP/qvCwSVnSU0tQlyplqt7j7tSBKYSWyZ4OLmnqa2cnBx++eUXFixYwPvvv89vv/1GTk5O0RuWA61bt2bXrl0Gy3bu3EmbNm0qqEflRHEsVzaK5cp0UKdAIBA8ijRs2JAbN24UmBa9bt26/PvvvwbLDh06REBAgGq1Kg9q1KiBVqvl6NGj6rLExESuXLlSqsdxd3cnMlIXxJ+Tk8PZs2cN2sTGxjJmzBjeeustnn/+eYYPH15qZVj0+fXXCwD4+spJqlJS5MHqhg1n0GrN6Ns3gLAw4zpEgrIjMlJOsNKkiSeXL8dw4UI069Y9TWTkdKZObcmmTecZOfI3LC3N6dnTWNDrx1xJklSoK5++W6CSvj2/C+FLLz1BamoW0dGpbNnyHK1bl9yzSD8NvJLOfcOGM4wY8ZvR+mrVdG6OR4/J90laRi4pKZkGFjFrawvVlRHQWa7uI6mFkiREX5wKHj5KbLm6evUqvXv35ubNm9SuXRtJkrh8+TI+Pj5s3bqVGjVqFHtfycnJXL16VX0fEhJCcHAwrq6uVKtWjVmzZnHz5k2+++47tU1wcLC6bVRUFMHBwVhaWlK3bl0AXn31Vdq3b8+HH37IgAED+P3339m9e7fRD+cjh2q5KsRH19oGNGbCciUQCB4rOnToQPv27Rk4cCCffPIJNWvW5OLFi2g0Gnr27Mn06dN54okneO+99xg6dCgHDx7k008/48MPlxa981LEwcGB0aNH8/rrr+Pq6oqHhwdz587FzMysVF3yOnfuzLRp09Tf7KVLlxIfH2/QZtKkSfj4+PD222+TmZlJ06ZNmTFjBl988UWp9SMmJpVXX/0LgMaNZTdKxZ3s++//o3//2gQEuLF27Wl1m2+/PYlGo2Hs2Cal1g+BDkmSGDPmdwCqVXNSxa6SLGLMmMYsW3aE7duvsmpVf2rVcjPah6WlmSoOEhIySE7OpFo10xme9dO2x8SkYmNjYZipD+jduxb16rlz+3YyvXrVuqfzUmpngWytsrPTMnz4r+oyfUH35ptP8sXSf4lNyuFoUDhgy82bieTkSAaJNPJb6LDUcwu8R5SMiUJcPdyU2HL1yiuvUKNGDSIiIjh58iSnTp0iPDwcf39/XnnllRLt6/jx4zRp0oQmTeSH5LRp02jSpAlz5swB5KLB4eHhBtso7U+cOMGGDRto0qQJvXv3Vte3adOGH374gdWrV9OwYUPWrFnDjz/+SMuWLUt6qg8XyQlydXCtZcFtzMxk8SUsVwKB4DHjl19+4YknnuC5556jbt26zJw5U/W4aNq0KZs2beKHH36gfv36zJ07jxdeeJ22bfuTlFS+dWs++eQTWrduTd++fenatStt27YlMDAQa2vTCQHuhbFjxzJ69GhGjRpFhw4d8Pf3p1OnTur67777jm3btvH9999jYWGBra0t69ev55tvvmHbtm2F7Llk3L6tm+hTYmtSUrI4ffo2Z87cZeTIhvj5OXPrVpI62Bw//k/Gjfuj1PogMCQ2VmedHDOmsfq6cmXZK6ZRI09q15YF1cCBdU3uQ9/V78YNOfty/qQX+m2zsyX12KayQpqbm3H69CRCQl7FzOzeJhnyiyv92llgWCfLxkbL5xPckNCw5ZotXq4W3L6drIoyBWNxlXeM+7JcyWJWcQ98FMnMzOGPPy6Rk1Ow+/TDToktV//88w+HDx/G1VVn4nVzc+ODDz6gbdu2JdpXx44dC/UlX7NmjdGy4vieDxo0iEGDBpWoLw89iXHg6Fx0O1t7SBOWq0eCGyHg5CIyPwoeO/L/Nuzbt8+ozebNmw3eu7q6smrVqgL36evbmr/+OoSPjxMpKZlcuBAN6GaQQ0NDjbbJ/3vk5+dnsGzMmDEG2QbnzZtnVH9r6tSpBjWnHBwcWL9+vfo+JSWF+fPnM3HixAL7nv84+cl/XK1Wy5dffsmXX35psv2oUaMYNWqUwbJmzZoZlCwpDZSEFV991VctCpuSksmOHddwdbWhZ8+a7NsXSm6uxMmTkap1S1B2KC6Yu3aNNBAk7u66kIMDB57nzJm7Buv1sbTUuQUWJa5kt0D5HitIXIEssJRYqHtBv68JCenqfbpkSTdq1XIzyAII0LuOTtz07eHH/zZeJTMzx8At0EhcWQnLVXFYuzaYiRO38O67HXnnnQ4V3Z0yocSWKysrK4OChwrJyclYWhZiNRGULYnxxRRXdsJy9agwbzIsKJm1WCAQGKMMtO7ckZ+NFTmjeurUKTZu3Mi1a9c4efIkw4cPBzDKZvgooIirZ5+trw5aBw/+iaCgG7RrVw2t1hx/fznLXOvW33L06E112+JMtApKTlhYPAANGxomAVMyOIIstDp39i9wH1qtzi3wxo1EzMw0eHnZF9hWiYGKjU0vs/Tj1tY6W0J8fDpXrshlgwYPrkf//vmycWak43hkGy6WstDp2DNQXaUveiwtzQ1jrkohocWjLq5ycnLZsEGO71T+P4qUWFz17duXiRMncuTIESRJQpIkDh8+zKRJk+jfv39Z9FFQHBLji2fBsLUXMVePEjF3K7oHAsFDT/4aS4qbEkBOTvkP4pcsWUKjRo3o2rUrKSkpHDhwgEqVjFNeP+zcvZuClZU5Dg6WuLvLg+o7d1L4++8QWrWqCkDNmq5Mn94agIULD6jbKgVs9cnNlYiNTSMrK6fAgrFlwZ07yVy9WrE1PktCQkI68+btU13Q9AkPT8Da2kL9Pu4F2XIli4OIiAQ8Pe3Rak0nhtmzJ4Q//rhESEgct24l3ddxC0M/ZjE+Pp2hQ38GdFkEDYiMkP9byIKsfWdd0o5RoxqprwuMuboPC29JE1q8+up2/v03vOiG5cT+/WGcPBlpcl14eAItW37Dvn2hdOzox8WL0QYp+/Pz3XenWb/+P3JzH76JlBKLq08//ZQaNWrQunVrrK2tsba2pm3bttSsWfOhqIH1yJIYD46m60gYYCMsV48E9+HTLRAIDFFcmBT0xZap4rZliRJTnJycTGxsLLt27TKopfUoERWVioeHHRqNBisrC3Jy5qDVysOSAQN01oQZM+Rsvzt2XFOXKenC9Rkx4lfc3Bbzwgtb6NRpLeHhpZtlUJIk1bKgINd6+pzAwC9YvfqUQRzZg8qSJYeYP/8fqlZdamSlDQtLoFo1J1WMnDs3hZ07R5Ro/1qtuYHlqiCXQH22br3Cf//doX59jxId617Yvz8MkOtp6Vu0VPKyL7/3Thvs7LRUqSLXpXNysjJwL7SyyieuLCzA3LxULFfFSWAjSRKffnqUdu1W3/PxSpPQ0Hg6dFjDM8/8aLTuxo1EfH2Xcfr0HTZvHsqiRXKR9L59Nxq027z5It27f8+WLZcZPXozI0b8xqZN58ql/6VJicWVs7Mzv//+O5cvX+bnn3/mp59+4tKlS/z22284OzuXQRcFxULEXD1eJOsNGo7srbh+CAQPMYr3hTLLrpCdnYtWa4aNjUW5i6vHibt3UwwsB2ZmGs6encIPPwxUs9OBoXVByep265ZheEJGRjYbN8puRqtXBwMQFVW6E4nz5u3DxuZ93nprj1of6X//O0FCQgbZ2bmMHfsH06btKNVjljYXLkSxYIFsAYyNTePSpRiD9WFhCWpafIC6dd3p1q34WaBByQCoxFwlFSqurl17hfr1PXj99V3ExqbRpEnZxdUpcX2rVgUDEBQ0znTDPO+eF19qSXLybDQaDV9/3Zd//x1r0MzIcgWy9eo+Yq4Ua2JxkoMq7pQPCtu3yyUjlHtDn3ff/QeATz/tyYABdQgIkJOi5Lcwz5u3j127rtOv30Y1M+OpU6YtYQ8yJRZX7777LqmpqdSsWZN+/frRv39/atasSVpaGu+++25Z9FFQFLm5kBRfTMuVra4mluDhJUlPXG1cASL+QHCPPK6xKxkZ2Zw4EUlUVKph3ASyuLKwMDMIthcUTP5rKDY2jYULDxQpTO/eTTFIlABy0dihQ+sbLNPPEKckHrhxI5Gffz6vfj/bt18lP6asW/fKkiWHePfd/QB89NEhXFw+xN5+IW+/vZd+/QLUdgW5vz0oTJ0qi7/33uuERoNaqFkhLCzeQFzdC/qiQ7ZcORTYtnp1F95+u51qsSnLpCVJSbMM3tet6266YVpeJkFrnYvihAnNjKxqpsWVVakktCiO5Uo/s6O+69zJk5GMGbO5UJe7skBxB0xMzDD6XM6evcvo0Y2YPPkJAFxdbZgwQS5WHxcnn0dQUASnT9/hxRefwNPTniVLutGvXwD//ffwhT+UWFzNnz+f5GTjB1Zqairz588vlU4JSkhqsiywimO5us9ZFcEDQmKc/H/kK5CcCFEP38yOoGLRauVZwdTU1CJaPpooWczi4tIMXL1ycyVVXFlaWjyygeX3Q0pKZl5x2SjS07PIzJQHcUrB5XXr/uOtt/5mw4Yzhe4nv+WqMPbskbMXWlqa4+RkxUcfHWLw4J/4449LACbjTpRiuEWxdGkQX355rMD1WVk5vP76LgD+979+LFwouzTVretOr141mTy5udrWVBzTvXD27F3Oni39QaWVlfwdvfpqS5o392brVsMC1bLlyvm+jpE/FbuPT+FiTf94xXEhvB/03U2trApImJ2aLGf+syg8obac0CJfynRLq/ty21eeRcVJqqMvru7c0Y3Lp0/fydq1p/n221P33A+F5ORMXnvtr2IJtWvX4nBzs0GSdIlRFGJi0qhUyTCe7sUXZaF18aKcmXXXruu4utrw2We9iIyczuTJT/Dyyy3Udg8TJU7FLkmSSUV9+vRpg/TsgnJEGWgXS1zd340veECIug0WWqif96N++wZ4eFdsnwQPFebm5jg7O3P3rjyAs7W1LdVCtQ8ysbGpxMXJg5GMDInc3Cw0mmwkCeLikoiNTcLBwRIzM8jISCc9XTwz9QkJiVUHgZGRkJOTgK2tLRZ5g9HoaFmwHzwYbpAAID9376bQunXVYh1TSXCRk5OLr68z//13B9ANRg8cCKdzZ3/+/jtE3ebkyUjCwxMKLGALspVy2rSdADz1VB28vY2tLPoB+h06+FK9ugsDBwaqmQwBIiOnM2LErwYD3vuhQYMVAEjS3GK1v3EjESsrcyNLYH5u3kxi4sSmODhY0adPLT799CiSJJGUlIm5uYbo6NRSsVylpWVz82YiiYkZRQom/eOV9TPoxx8HsWLF8QLTyAOyd49N0aLfpOXK6n7dAuXrOb813RT611p4eAJeXg6kp2cTFCQn5Dh16naJjr1793WcnKx44okq6rJNm86xbNkR6tXzYPz4poVuf/16HN261eCHH84SEhJvUGA6OjoVNzfDNPsBAW5oNLJr4K5d15k7dx/du9cwuAZK6pL6oFBsceXi4oJGo0Gj0RAQEGBw8jk5OSQnJzNp0qQy6aSgCP47ChozqFQMc/p93viCB4So21CpMjjlTWgkPDyZqgQPDp6e8jNDEViPA5IkcfNmEmZmGuzstERHp2NmZoZWa0ZGRjZJSXfIyMgmMdEcBwcrYmJSsbRMuqdBX1ZWDrduJeHt7fDAu4sVh+zsXO7cSTZw90tKssDb25Fq1aqpn5GS5lqpFWaKgwfDuXYtjtq1i5cF0dZWy1NP1WH69NZ8//1pVVyFhSWwd28Ix4/fYuXKPkRHp7JwYWe++OIYK1eeYOXKE4UKlNWrdbP7e/eGMHx4Q6NzfuGFLQA891x9atZ0RaPRGAgrkIvQBgS4GbnZ3QsldUXNzs7Fx2cpABs3DuTZZ+sX2DYsLJ6BA+XU4k2aeBEbm8a3355iwoQ/GTlSPvf7tVwpVpeqVZfm/S9cXCmunl9+2fu+jlscrKwsmDq1VeGN0lLksjVFUKBb4H1MYCtZMIsqIpyYmMHly7p4uevX42jZsioHDoSRkZFDkyae6j1SHDIysunW7XvMzTVkZ89RlytF1M+cuUNWVk6Bz7HMzBwiIhJ5801ffv75PNevx6nrcnJyiYsztlzZ2MjeE7Nn/60u69DBt9h9fpAptrhatmwZkiQxduxY5s+fj5OTbqbB0tISPz8/WrduXSadFBTBuRPQuBW4FONHSvEHlqTiRUwKHkyib8tiWnFbWLsMmrQB+7J1qRA8Wmg0Gry8vPDw8CArq3TcmR5kLl+Opn//HwD4+ech3LiRwNSpBwF44YVmfPXVCbWtHAvSnkmTdrFz5wiqVXM22l9yciYnT97C1lZL8+ZVjNYvWLCfdev+4913OzFnzl4sLc3ZtWukUcHSh4Xlyw+zYsVxAGbPfpJbt5LZvTuEffvG8uOP5+jduxYuLjZqWnLF3ccUM2fupnZtt0ItW/n57behAPj5OVO3rjtLlgTx1lu6gVmPHjWZMKEZILsoKXFYN28mUqWK4bPxs8+OsGpVMMHBt3nqqTpERCSwfv0Zhg1rYCCkd+68xunTd3jrrXYsWNC50P65utqUiuUqIiKxRO1PnLilvn7uuV8KFFdr1wYTE5OmWvKU5BETJ/4JwPff/weAv79zSbtsQGhovPra19fJqGZWfszMNMW20JULiXFgX7T1zihbINz3BLaShKUoy9WAAT+wb18ofn7OZGfncvr0HZ57rgEbN56ldm03hg6tx/vvHyjQ2yw/+jXk9FHu4U8/PUpWVi5fftnHZLuwsHhycyUCAtzw9XXi2jXdhG9cXDqShMkaZhMmNOXrr08avH8UKLa4Gj16NAD+/v60bdtWNf8LHgCiIqF5MatcW1nLwiorU1fwTvDwkRALVfLN8MRFC3EluCfMzc3VeJlHme3bQwkLS+HZZ+vTvHk1UlLk9wC1a3uqrwG2bBmFlZU5YWEp3LyZRkCAzjNAkiTMzAwTOCUmvomDg+6ZGhQUwY8/XiIsLIXx47ep2dOGDfuDgwcNs449LPz88xWeeMKXWbOepGlTL1asOMbBg7do02YVx47JA/xt24Zx5UoMgYGVuHAhmvT0bJPprm/cSGTEiAYGxWmLS9Wqjrz6aiu+//4/NXbO39/ZwP2vUyc/9fXq1cG8/XZ7g3288spf6utFi7pw5MgNxoz5nb/+ukqvXrUA+Pzzo/z44zl8fBx5771ORfbLw8OO27eTycnJxdy8eCHtx47dJCMjhyefrKYuM5VtrTAUS2FRjBnzO4D6Ofn4ONGsmRcnTkQydWpLli07Atx/3NNrr7XG2dmaCROa4eBgqVooHhpio4rlCVQWlquoKNmlNjs7t9Dr6Nw52dtgwYJO/PjjOVUc3biRSMOGlalZ05WkpEyio1OLdBUF1Pg+Jyc5G2dKSibjx//Jzz+fV9scOhRR4PaKpap6dRdq1HDl6lWd5UqJBzNVw+yrr/phbW1Bu3a+DBwY+Mi4ppc4oUVKSgp79uwxWr5jxw62b99eKp0SlIDsbIiJAvdiZthRBJWIu3q4SYwzzg6ZXLLZToHgcePMmbu0bFmFjRsHAoYpvgMDdZb/bduGUb++hxqIHxZmWC/JVP0kfRe433+/SJs2q1QLjn4dLf3A84eJrVsvc/z4LQYPrkvTpl4Aarp0RVgBfPfdfyQkZKjuPflTpoMsTu/cSb5vC56vrzPNm3uTnDyL48cnGqyrX9+D997rhL29Je+8s5dLl3Tfj1KLavHirmRkvE2dOpUYPbox1ao5sXv3dQCCg2/z8stygVYnJ+tiDfpq13YjIyPH6HopjBYtvjGqU2SqQHJh5C9gvGfPdaM2+vW39EXoxo0D+fPP5/joo+6sWNGHr77qe98DXG9vB956qz0eHnYPn7ACiI0G1wIyCepRFqnY797VTfDkt15lZuaQmip7GDg7WzN9emuGD29I79612L8/jJiYVOLj03FysqJGDTlk4Nq1OApCkiT27QtFkiSOHpXv4bi4NC5ciMLefhE//HCWjz7qxltvtQNki7E++omALlyIxtLSnKpVHalVy5UrV3Qui4r7opJ+PT/Ll/di0KC6j4ywgnsQV2+++SY5OcbmSkmSePPNN0ulU4ISEBkOUi54+RSvvVVeBXERd/XwIkmGRaMXfy//T4qvqB4JBA882dm57Nx5jXbtdBYCfXEVEODGrFlPEhr6qmq5sLa2oHJlOyMxdeSIzoUmJWU2Gg3Mnr2H1177i5kzd/HUU7oimoMH1zXY9kGrTVNcNm++SJ06lQzOp0MHX7ZvH86zz9Zn06ZBtG/vy969ckIJJRD95k3jSZ/ExAwyMnKoXLl4mQIL4ttv+7N790js7CxxdTUMltdoNLz9dntOnJBF15Ilh9R1y5cfxtraguHDGxpYzlq0qEJwsBynou/aZmFRvKGSIjbPn49i165rBq5RJSEhQTf5WZxSCbt2GYqpPXtCDN5HRaXg5fWx+l4pigtQq5YbffsGYGFhxqRJzZk4sdk99fmRITcH4qPBpXjiysh9z8rqvooIR0Wl4uUlTzrkj7t66aVt2NktJDExg8jIZLVd587+5ORInDp1m4SEDJycrPH0lNcpyWXyk5CQTkDA53TqtJavvjrBpk3n6N69BpKks3AOHVqPqVNbMX9+R6pXN5zM/eefUGxs3ufChSj++SeUn346T8uWVbCwMKN+fQ/OnYuidu3P2bs3hH/+CcPJyarYmUEfBUrs23flyhXq1q1rtLxOnTpcvWpcZ0JQxlw5K1cE961VvPaK5UqIq4eX9FTZrVPJDulSSc4cmBhfkb0SCB5o3nnnb6KiUhk8uJ66zMVFNyA3NzdTU2zr4+vrTFhYPEeP3uSnn85ha6tl2bIjtG5dlYMHx6LRaHjmmUB++eWCwaD20qWXOHfuLk8/HYin5xLu3JFnpO/eTSEtLeuhmtHPzs5l27arRm47Go2Gnj1r0rNnTQA2bDjLnTspODlZqW55ly/H0K6doQuzYum6X8uVs7N1kW0CAtz44IMuzJmzj3nzOlKliiO7dl1n8OC6RpkBPTxsVSuQvmteccWVj48jHh52LFx4gKAgObHFvcQSJSTofp+TkzNZsuQQr77aykhAgpwxTt9dq2ZNV86dizJo8+yzv6iv9+wZ9UgkVykzEuLk0jbFtFzl5kqG7nuW1vfpFpiCr68zkZHJRsJNcdE7eDCc5ORMvLzk67d6dRcsLc25cCGKhIR0nJ2t1YLJycmmJ3O++eakeq1//fUJUlOzmDatFUFBERw9epOpU1uyZEl3QH42tmnjY5BeXbnmZszYxbZtcjr/lSvleKxx45owefJWLl+OoXPn7wDo06fWI2WZKooSW66cnJy4ft3Y5Hz16lXs7B4fVfpAIEmw81c5HbdV0T8ygK6dcAt8uIi4rvvOFBGlWK40GlloCXElEJhEkiS+/fYUL730BC1a6BJPmJlpaNLE02RMkEK1ak6Ehyfy4ovbWLIkiHff3Y+DgyU//zxEHSz88MMgg21GjmxIQIAbTz8tZ2X73//6AagzzYMH/2TStfBBZe/eEG7dSmLMmMaFtnNxkX9fGjSojIuLDZ07+7NqVbBRu2++OYm9vaXqXljWTJrUHGdna3r2XM/Vq7GcOXOXJ54wLl3h5mZLTIw8068UNoXiiyuNRkOnTn6qsAKKXSdNv52+5WrfvlDefXc/L79sOuwiJER2+1q37mn69KlF3761OH3aMAW3kpQgIMDNwHIrMEFcnvtoMRKEKXWy9N3j7sctMDdXIjo6VY15y2+5UsS18n0q95uFhRkBAW5cuBCdZ7mywtZWnrzRv4710RfgSsr2WrXc6NDBD4Bnn61vEO/l6mpNTEyagbsfwLZtV2jRogphYVN54QW5NIwp8f7yyy2K8Qk8OpRYXPXv35+pU6dy7do1ddnVq1eZPn06/fv3L9XOCYogMV7OGtemW/G3EZarh4esvBmnpHiYPwU+mim/N1XXzNUd7tyQBfdDxKlTkQ/VIPO+SU6Cbz/SfbeCciEtLZuoqFRatzZ2nw4KGkd09OsFbuvr60RYWDzXr8eptZbGjm1iYPXIP/ju08fQk6Bfv9pI0lxCQ6cCsHXrFaZM2Xqvp1Mm5OZKhoPEPEJC4pgyZRvu7rZqdrmCUAZ/Sra55s29TMaYXboUw7Bh9QuvNVSKODlZ89NPg7l6NZZatT4jMzPHZP0c/Wx/92K5Al0yCAcH2XJQ3ELG+u5b+parAwfk4sj546oUQkLiAejZsyZbtgyjWTNvwsISVIGWmJhBbGwaM2a05uLFF4XVqihi80RHMSxXyvVr4Op7H26BcXFp5ORIVK0qP1vy34+KJWv3btlCrlinQI4ZDQ6+TXp6Nk5O1piZyRM/U6ZsUwW4wuTJW1i9OphnngkkN1eXdt3Hx5HnnqtPmzY+BpNQ8jonzp+PIiDgc44evWlwvb7+ehujWnJDh9YzeK+4zD4ulFhcffTRR9jZ2VGnTh38/f3x9/cnMDAQNzc3lixZUhZ9FBTErTD5v3cJ6gJYKjFXwnL1QPPzKpjcH7Kz5DpmAKGXZX/wBEVc6flAOzjDiX9h34M1YCuMv/8OoWnTr/H1XcauXdeK3uBRYO8fELQHLgRXdE8eK5SBspOT8WDeysoCOztLo+UKNWq4cOVKLLGxaUye3JwFCzrxyistjdq5udlgZ6clJ2cOQ4eaToVtaWmuxvjo14p6EFi8+CBNm35lcvnVq7EMH96gSLceRVwpAy0nJ2sDoQCyFfHq1Vhq1nQtpZ4Xj/btfQkPn8oLLzTj9dfbUKeOsWXC1dWGlJQsMjKy71lcKdYExVXy5s3CxZWVlXw96Ltc6dcE+u23i+oyU1y6FI2jo5X62SuD4lmz9tCo0UqcnD4gPT2bV19t9Vi5Zd0zsVHyJLSdcTHp/CjiKiEhnbCweObM2YuktbrnyWslU6CSSEffLVCSJDVNu+KGl19cKRbT/M+56tU/5YMP/iUqKoUlSw6xcqVccmLIEDmJxPHjE5g3rwNarTnDhjVQ3Z310RdLt28nq9d1nz61GDTIOFRo/fpnCA19lSlTZGvW/WagfNgoccyVk5MThw4dYteuXZw+fRobGxsaNmxI+/bti95YULpERcouYe4lcK2wFG6BDwV/bZL/37kJEXrByXcjZcuVuTnYmohX2PsHdOpbPn28D27dSqJLl+/U9927ryM3d06F/fjfuJHIzZuJeHs7qD9sZYIY3FQIykC5ODE6+dGfcfX3dy6wLlNo6NS8FO2Ff8dKhrGSDNjLGkmSWLMmmEuXYli+/DChofEsWdIdc3Mzjh27xZgxjVm6tGeR++nY0Q+A5s1llztnZ2vi49MNau1s3HiW5ORMWrasWmbnUxDu7nasXFnw81ERKHFx6cTF3Zu4Uq6xevXc+ekniIhIAApOOFWtmhNXrsRy+XKMalk9dy6Kli2rcPJkpGqxiohINKpZtGvXNd5+ey++vk7q8oAAN7p08VfrkSnHeNwGt/dMXJTsEliMZ7UiYhITM3j55e3s2nWdl39tiHtG+j3VElXEk6+v/Bt09OhNYmJSiYxMpk+fWkYxWPriqmNHP959dz8gF4fOz6xZe5g1S8703bSpF0ePjlfd/po186ZZM2M3WX30fxdffnk7Pj6ODBvWgHXrnjbZ3tzcDF9fZz7/vDcff9yjyOfio8Y9FavSaDR0796d7t27l3Z/BCUhIVYudFeSmmNWilugEFcPLPrC91Y43AyFmnXh6nm4cV12B3VwBjO9H/znJkNkhGzVeggKRJtylQkNjcff38VE67Ll9u1kfHyWArIrT2LiLHVdTEyqycKH98/D5b75sKO4SJVIXKWlwJ4/qNtEFhXu7raqaDCF/kCnMBTL1YMirhITM+jbdwOXLsmxFFOn7gCgdWsfhgypx6VLMTz3nGlLXH7atPEhPf0t9RydMmLJzs5lwoQ/CQ2NZ+bMtixffoTu3WvQvn0JPC7KCcXVMyQkTk1AAiX7rpTroFIlW1xdbQp051NQ3PSUzx/kNPATJjQlPj6dyMhkPDzsuHs3haCgG9SpU0kVgf/+K7sM5nd3HTgwkD17QggNfZWMjBzVRfGB4UKw7IVR7wHMTBgbVSyXQNC3XGWoYjwiDtxzcyEnW040VQIUV7uOHf2oW9edP/+8zB9/XALg0CG5Np5Go/P+13/mdOrkzxtvtOXs2btGLnoAdnZaUlKysLQ059ixCfcldsLDEwgPT6BtW58iJ0Q1Gk2hMa2PKvf0dE9JSWHbtm2sXLmSTz/91OBPUI4kxhvG3ZggIyNbLTYHyDe7mZmIuXpAycrKYeyIHxm0J4DsXGTL1a0wqNMInFwh/LoccOucr16Eqzs8MwZSkmBCL0g37ULyoKBfc0VBCaotTyIjk5g9W1e3LykpU019fObMHSpV+oidO0vTZTHvh0hoq3LlnixX3y6BzWvxSL3FuXNTiIh4rVQy/PXvXxuA33+/RFZW8ZId3CsREQloNPPVAqOmWLs2WI3rUWjc2JPt2+Xsv2lpWYW6TebHyspCHXA579kAwLffnmLPnhB69FjH0aM3GTLE2I3oQaBBAw9sbCw4dCjCoC5WScSVcu6SJFuRiirwqySyOHkyEoCcnFzu3JEzxinZ4EaPlq2lbduuws1tMT16rKN162/ZsuUKrq42asIUhUmTmhMZOR1fX2cCAtzU/TwwfPwmLH2ronthmrjipWEHXcHdhIR0NT7qRlzew70YY6ycnFw++SSIlSuPU63aUvU55eJiw5NP+qgFsgGWL5cLPM+d20Fdln9C54MPurJlyzCj4/z66xCSk2czfXprfv558D0Lq5s3pxm8r1JFWEMLosTi6tSpU9SsWZPnnnuOl156iQULFjB16lRmz57NsmXLyqCLggJJjJMH3CY4evQmr7++kwEDfqB+/RW6ooQazX2nChWUHc8++wurfw7ll1A3/kypLVuqEmLB2w98qnPxxHXeWRcDHiZcQfXT8d+QXQmDg2+TlPTgCWlT4koZXJQXqalZeHt/wurVwQbLlWKwSi0jJTNTqfCAWxQfVUosrnJzIDhIfp2SRN267mpmsPvlq6/6qjEKv/9+qVT2WRDKtfv77xdNrr92LZZvvjkFyPW4Onf2Z+fOEbRt60NQUATZ2bnk5Ej3PPPs5Kgb/C1frnMrVNwHC+TKOdjx8z0d837Qas1p0aIKu3eHGCTaKZm40r2uVctVLaBaEIrAPnz4Bjk5uWrqbEdHK9Xi2rt3LYN6XDt3XuPw4RucPBnJgAG1jQbZGo1GrXP0wKEvOpIewGRG92C5unAhmgsX5EQY4dF5EyYmxlhRUSn88st59f2lSzFMn76TyZO3EhGRyK1bSdjbW2JhYYaPj5xIR8n69+OP57Cz0zJnjk5cKeuKQslaumRJd/r1q12sbUzh7e3AO+/oQoBMWcgEMiUWV6+99hr9+vUjNjYWGxsbDh8+TFhYGM2aNRMJLcqbxLgCLVfr1v3HkiVB7Nghz7obJAywuveAS0HZceVKDL/+eoHVve/SzM+cNRdc4Eye33wVX6hanb5f5rDgb0synU1k7XLzgFGvyq9vhfHll8do0uQrPvkkqPxOQo+0tKwC0xDfvJmEs7O1QRzAf//dKa+uAbB+/X8G72fMaI1GA3v2yKUmrl+XE4cUN5VyiXjIsjo+7MTFpWNhYVbswQjxetaGFOMiuPeDpaU569c/g4+PI3//HVL0BqVAQYWLa9b8jP/+u8PWrcPYtGkwe/aMolu3GgQEuBEaGq/Oxt+ruKrsrnOp7dOnFmlpb7Ft2zBq1CgimcXi1+Gnb+R6Q+VM27Y+/PXXVSRJF4RfEnHVp08A7dpVY8iQetSq5aparu7cSaZ586+NirpmZubQvXsNEhIyOHLkpjoR6uhohY+PfPzmzb05deoFPvigC7m5c1i0qIuaEOShS3EdpTeJtuf3iuuHKbIy5cnMSpWL1Vy5Lt55Zy8gZ9s7cz3v+zUxxho+/FcGDfqJlBT5fsxfg+rcuSh1AqhKFQdiYtJITc1SSyBkZ+cauOHpp0o3xfTprXnlldK9Pt59txPx8W/w00+D6dWrZqnu+1GixOIqODiY6dOnY25ujrm5ORkZGfj4+LB48WJmz55dFn0UFERiPDiZjlFRZmobNqyMt7cD7723X2e9EparB5L9+8PQaGBwpRDGDK3F1nMa4hIz5eQVlatAteqEJMiDwxibAh7+7XuBmwcr113hxRe3AXD9enw5nYEhLVt+Q2DgF9St+wXTpu1Q3e0kSeKnn87TqZMf3btXB2SLQkpKVrn2L/8P00cfdaddO1927pTF1a1bclxY6VqulBdCXJUn4eEJVK3qWPyEKbF6RViTS1dcgSyw2rTxUa2kZYWSqc9UIVFlgAfQvbthWnJvbwcyMnLUe0DJaFdSalnFsbvXOb7ql0j1avZYW1vQq1cxCt5LeaIquvxdhUeNasTgwXVZuLAzdevKFoySiCtXVxv2738eDw87atVyIzo6lbi4NH7//RInTkQaWREzM3No374aLi7W7N59XRXCDg6WLF/ei8OHx2Fvb0nduu688caTaDQa3nzzSY4fn0B4+FSTyQseaJQ6Uu5ecPdWxfYlP7HR8sSXm0exN2nbVo53a9CgMp07+3P8fJ41zsQYS6ktpfym5L8vz569q4orxX0YYMUKuTjv2LFNAAysmIWxZEl3li/vVdxTKTZOTtYMGlS31Kz5jyIlFldarVb9gapcuTLh4bKvtpOTk/paUE4kxBmm49YjPj6dfv0COH16Er///ixXr8by1lt5sSWWwnKlcuYYXLtQ0b0A5AGgp7s1dtpcnhpYn5xc2BrhQq6TG5FR6RDQgFxJvvdiHAouBBmvcWDy/3R1LW7eLP3BYVHExqZx5sxdrl+P48KFaJYuPcy+faFIksRXX53g7Nm7TJnyhDr48/d3LvP4k/woM8gbNjxDcPALAAwaFMiWLZcJDr5NTIwct/btt6fU2jf3j3ALrAhCQuLV2kvFIjYvTtXOoUzEFcjXvGIdLSuUSba7d1NYtOhAXuY6mbAw+fWOHSOMxEOVKnKMzrVrstXlngPSkxPoUiOHiR7n0Py5vvC2kgQ7f5XjRrV5bm4hZes2aYratSuxadNgZs1qp8am3GvykVq1ZOvS1aux2NjIn2FqquEkUmZmDjY2Wlq0qMKxY7dUN24HByvs7S0LzKro5GRdtplNy4rYKNCYgU/1B6/wfUyemHcrnuUKdO6uPj6OdO1anZNn4xh3oAZb/jK2SitzO4rIyi+uzpzRiSs3N1vS098iNPRVrK0tiI9/g08/lYXS0aPjWbmyT4lOTVC+lPiJ0aRJE44fl12VOnXqxJw5c1i/fj1Tp06lQYMGpd5BQQFkpEN6aoFugfHx6epN2ry5N+++24kvvjjG8eO3wEpYrlSWvwOLXqvoXgByOnCfSrJlqmp9P7p38OaFg9VpvL4G3t6f8M9pXYa9GOwK3M+1VJ2v/bRprYiIKH9xpcRPubnZqGlld+26zoQJfzJ58lY6d/anc2d/cnNlC46/vwtZWeXrAnTnTjIBAW4891wDGjWS3SwnTGiGmZmGd97Zq2biAgwGpaWCMFyVK6Gh8fj5ORd/g4jrYGML7p7yYL8MqF7dhRs3Eks8qXDjRiIazXyefHKVag0uCEVcbd16hdmz/+aFF7ao65S6SoGBxvWelEB1Rfzdk7jKSJcn8boMyOtM4YkduBUGm76GX1fr3AGPHyj5cUuR+xVXvr7OgDxxpnyGaWmGhWGzsnKxtDSnbVsf/vknlMhIOR61vAoslztRkeDsKqc7vx1RMdarkEumXU6j78gKqJgxVyB7B40e3Yhly3oycKAc27Tqsgf9XjjI3r2GAksxTBw6FAFgMh5aP37OyspCvYacnKzV67BRI09eeKF5sfsoKH9K/MRYuHAhXl6yGfq9997Dzc2NyZMnc/fuXb7++utS76CgAJQZH0fTvuv64grglVda4ulpz6ZN52S3QJGK/YGLe7lxI4mqzoCNHdjYsXhZX1KzzTmT99vTseNatW10TMGWlKtJ8ve+ZEk3/HydCA2NL3er0J9/yjPOt2/PICTkVQYODGTRon9ZsyaYzz/vxc6dIzAz0/DZZ7346KNuuLvblk1sUwEkJ2fyySeH5dnkP9apBbmtrS2oVMmWLVsuEx+fzjPPyD+Wd++mFLa7EvHZOU92HS5bdzCBISEhccW3XOXmyMW4W3eVS12UUdC9v78LubkSR4/eJCDgM4MECoWhxAQePBhhUOg2PyEhcaxcedxgmTJwB1RrrFKsVh8lGYIirort/iNJ8NsaecCs/EbVqg9+AUWXDMlLwsPNUDmNtV+A7FmQnlroZmWJubkiru7N4uzmZoOtrZbw8AR18siU5UqrNWPUqEYkJ2fy9ddygdcHLn16ccjJKfp39b+jULuh7HUTHwOzx5ZP3xSunIP3X4Uje+H8SVixQPYCAoi5I2fiLUEKda3WnDVrnqJ6dRdsbLR8urgDParEY2YG3bp9b1B2RHHF/ecf+ffGlLuuqckOwcNHscXVnDlzSE1NpXnz5nTq1Im4uDjc3d3Ztm0biYmJnDx5kkaNTBdXFJQBiXkPg2JYrkCeeZPNzNlgZw9J5W/NeOBI0JtJfQAseRERCVS1zVCLQjdq7MWdOzMIChqnZuXp1y8A0FVyT0rKoFu37w1c/8KTLHG0kpg+vQ2Ndi0lMzOndOOGiiAxMYNPPz0KyNedRqOhZcsqAGzYMJAXX2yhxjtVqeLIjBltsLQ0L1cBeOaMnDxj6JC6srj68j11XYsWVdTXSpHIUhNXGg2vHPan+5STXL4cQ5Uqn5S+VUxgQEpKJlFRqcWvoXYzTK5x1exJ2S2wjCxXitj76qsTXLkSy08/nSvWdvpCx1TWTYBhw36hevVPuXYtTq3dBLKLsJKkIjU1C43GtFXK0tIcDw87rl0roeUqJwe2/gDfLNaJUgcnsLYpWiRFyKKRW3kW46ZtIDtLLpxeQdyv5Uqj0VCtmhPXr8eRliaLKv1Yt+rVl5ObK2FpaY6vrzN9+waoKfAdHB4yy1VuDkwZAJvXFtwmO1sWzwENCowXL3NOHpT/R9+G/X/BiX/h9GF5WczdEsVbmeLlV1rxV88LxOxog4WFGRs2nFHXpaRk8eST1bh4MZrbt5NJTs7E0dGKW7d0Kc4XL+52X8cXPBgU+4nx/vvvk5yse5D7+vpy/fr1MumUoBgos4IFpGLPL65A/sHMzMwBVw9dTMHjzM0w3ev4wtPllgc3biTiYxEPVfzUZR4edrRqVZWwsKlI0lz++OM5/P2d1ViIgwcj2L37Ol99dULdJi5Ti5tNDsRF08glGUuzXD744GCBx9Vo5jNv3r5SOw9ltlvfJ/zll1uyb99ohgypZ3Ib9dosJ5SCna+MyyuOmqUb8Kxb9zSnT08C5Bl8OzttqYmrbL1T/OOPS9y6lcS77/5TKvsuLgkJ6eze/fg8u0ND4wF0boFJCQbftxHheZlV/QJkYZBcNuK3WjUnzMw0nDghiwelCGlR6Fur9C1RCklJGWzceBaAOnUqsWvXSFq3roqbmw1RUal4e39MUlIGKSlZ2NpqC0zyUaWKQ8ndAnPzLnBJguR4+bUqroo4v4i8zz0175w8qhi+N8Xm76CoWK774H7FFUDXrv6sXXtafYaEhycyZ85ehg//lZCQeECXoGDJku54ednTo0eNYicteGC4ck62OG79oeA2yqSws1uRNTrLhMtnYdev8uvbNyAuL3GNEnd99xZUMpGJtyTkxQs6W2bTrVsNtmy5wm+/XeDChSgyM3Po06eWKrqSkzOxt7fEy8uBHj3kpDIPSnFxwf1R7G8xv293Ub7exWH//v3069cPb29vNBoNmzdvLnKbf/75h2bNmmFtbU316tVZuXKlwfo1a9ag0WiM/tKLerA/bCTGykGh9sbFAbOzc0lKylRn3RWsrBRx5S5n7HnA3OLKnat6M8UJRcQDlDGJMUkkJWVSNTMSqvoX2rZ27UqqOFBilvStPnHpZjibp8PrI3CyzGFF2+ts2HCG//3vhNG+lFlUfXF2vygDMsWlDuTBWYcOfgVuo02MISul/AofX7wYjY+PI3bkPRdydJ+fk5M1DRtW5vTpScyZ04Fq1Zz4+efSSXoSGauLt1BiXr755pQqAErjuVoU06btoFu37wt1KXuUUK5H1S3wtaEwub9hRkB9Yu7ILktW1nkJLcrGcqXVmlO3rjvnz8v9UP4XRUJCOlqt/NPdq5exsNAvabBiRR/q1nXn0KFxHD06AZBF3PPP/05KSmahxYG9vR24erWECS1y8q7v3Fyd5creEaxsZAvgth9MC1tJkkWtvtWgcp64KsxyuGUD/P598fp2DygW9vsZ8L76aiuSkjLZvFl2lf777xDee2+/gUVDEVIBAW6Eh7/G9u3D76PXFcQdvULVBU1WKnF3zm4FJuMqU/7+A8wtoH5z2YKmxHvF3JWvwds3wKvgZFHFwsxMTRr25JM+7NsXyjPPbKJevS8B+Tn09NN1+PHHc6q4Avjzz+dITRUZtx8VKlQip6Sk0KhRIz7//PNitQ8JCaF37960a9eOU6dOMXv2bF555RV++eUXg3aOjo5ERkYa/FlbF7N45MNCYrw8I2hmOLuVmyvxxx/yQ9yU5SojI09cZWaUmbvLA8/qT+CVQbB9k+z6A0UHW5cxEVt3AeBjmwaNWxXatlYtV3XQo2S8008GEZ+Si7OlTiw8XyuKcSPrMnHiFt54Y5fBvm7elK+B27eTsbF5nzt3CpklLiZHjtzAwcHSZCwHILvgvTnGQNBoj/1NVlzZZk7T58KFaDnNcmrePRAfA99+ZDDh0LBhZaytLXjllZYcOhShFvS8H8KjdPEWV6/G0bWrnIre3385f/xxCTOzd9V4tbIiOVnuw5EjNwA4ceIWP/98vrBNHmouXYrBzk4ru8el6Vkgv1sOh3bDOxN1FheQg9qVOjf2TnKdqzISvQsWdFJfBwffpnfv9QQFRRS6TUJChppwIjMzx0iQKy7AlSrZ0qSJbha+enUXPvmkOyAnnElNzSq07lejRpXV5AvFTsWek/ccUsSVjZ08k29tA9fOw69r5M/c6KRi5faN9J597l5ycoEK/J0qDctVzZquNG3qxdGjsvjIX+cKDFNrK67UDx36WTV3/Wo6YYQyienkWjHiKuwKdB0ADVvIMX5JCfK9nhQvW9VSk8HTdHbGEmFpBZnptG2rE2rKbWpnZ0mnTn6cPBlJaGgCLi7yOE2rNcfGpvixXoIHm2I/MTQaDUlJSSQmJpKQkIBGoyE5OZnExESDv5LQq1cvFixYwDPPPFOs9itXrqRatWosW7aMwMBAxo8fz9ixY42KF8vVyT0N/h45EuJM+iwvW3aYgQM3AabFVWZmjjwbC4W7WzzKHNwpn3t2FvR5Tq4jtXVjsTfPysrh5Ze3ERVVOq5it28ncz1Sns2tapuhm7EtAE9Pe9XFRPl//Xqc7Fbos5QfDqXhXNlZba/RwKftbjJiREM+/jhI9f0H2RVRIT09m1OnCq4rkz8QuyDWrj3N6NGNTA8QJEn2eY++rRM2gKVZLpm5GsNBbhly/nyULK70B25BeyDSuJyEEi9WGjWJzobpskOFhydQs6YLvXvLdX8GDJDdafSzFJY2kiSp3/m2bVeYOvUvmjf/H4MH/1Rmx6xoLl2KJiDATb4eb+l9tmePw6ol8nd++axuecwdXSpme0d5EiCtbJIq9O9fmz//fI5ly3oQEhLP9u1XadNmVaHbJCSk4+RkxaZNgwBdWmeFy5dj8PNzJirqdZycDH8DXnmlJV26+CNJcvyHnV3Bg7mePXUFQktuucqRB6wOeanCrW10bVJNPDd/y4vT6dBbt8zaRhZnKSZ+pyQJNnxZvD7dB6UhrgBee00Wja6uNgbZ4BSKXdz6QSYlUffbteMX+GuTcZu4KNly5OBYMW6BifGysPPX1ZCiVWd5eWTepMb9Wq5AtVy1beuDk5MVo0bp8hHY2Wnp2bMmOTm5/PzzebUYtODRokRugQEBAbi4uODq6kpycjJNmjTBxcUFFxcXnJ2dcXEp25mIoKAgunfvbrCsR48eHD9+nKws3cAvOTkZX19fqlatSt++fTl16lSh+83IyLgvkVghJMYZPJySkzOZPn0H06fvVJflF1dWVhZkZGTLKYahQrMwVRj5Z6Cr+kG9PBeBYorNY8du8fnnx/jww4LjmEqCl9fH9H/zEhokvO2KFjDu7rbExqaRk5OriqvffrvId9+dVgfOLr7eBtvYHvmL115rRU6OpKZJB10dGwWlFkt+LlyIws5uIX//bVy7Q5+MjGzu3EmhadMCClvqu4skxMG/OyE3B62ZRFauBmKK5xp1P6SnZ3P9epyhuKqT9+N3I9Sofe3aldBo5M8gN1e6L9e9/67rXB/Pn4+icmV7fv55sCrgADUOoyzYsOGMmgb400+Psnz5EXWdqRn1R4EzZ+5Sr16eu9nNUNmduudgw0bX9Qq76osru7yyBqllYz3RaDT07RtgVMvo0iWdkA8NjTeIR4yJScPJyVpN0NGgwQpycnRWgvDwxALTzpubmzFyZENCQ+O5ezel0EF9q1a6PpVYXEmSbBVQxJWVnrhKijfe7spZcHAGb18Y8xpMXyQvN5VQJCsT/vpJdvEqY0pLXNWvL19/sbFpNGpkXEPJ3b3g0hoPDUmJ8mSEwn9H5QkMfaIiZUuRmbmckU+xEpVHiEJGOmSkydeZf20YNgVeXwwu7rLV7VaYPNHq4V3krorEUi53o9FoiI6eyerVA9RVtrZa/P1dePnlFoDuGhM8WhT7ibF3717+/vtv9a+g92XJ7du3qVzZ8MFUuXJlsrOziY6Wf4zq1KnDmjVr+OOPP9i4cSPW1ta0bduWK1euFLjfRYsW4eTkpP75+PiU6XmUColxBmnYFy48wCefHDZoUqDlyjrvQW5qBvFRR/+H2tpWfsgPmYAkwb+/BBU5cJYkia5dvwMolex2+tYgT9sstGZF/8i4u9shSfIg68yZu7i5yQOXdev+U9s4uBj/WDdo4EHlynasXXtaXbZnj6FYUjKJ5ee33+TB5759oYX2TQmwV9yWjLioOzab18KaT+DQbizN88RVWtlfk5cvx5CbKxFYxw0uBMuxNdM/kGc0b4Uatbe11eLn58yff17G3Pxdpk79656PHXonC197nXth5cp22NhoOXDgeT79tCdNmniq8XSlTW6uxLhxhgPSTz7pzuzZsmusu/tHj1wcVmZmDqdO3aZFi7wB060wqOwtx3wAdB8INevKogtkK1VslM4tULHyl7FrWt26uro61tYWbN0q/15lZGTj77+cQYNkK8DlyzH88ccl2rWrRmBgJTVVuH6Ckps3E9UiwKZQBvrHj98qNOZKqzVn0KC6ap+KhWJ5VtwCFXHlrWcNiLljuI0kyTHAfZ6VzexP9oDAJvI6Byc5vlghKhL2b4dfCrfulRa6VOz3J67q1NGl116woDPjxzcxWO/uXoAL9cNEcj5xdfU8LHsbfvpGtywqEtz1xEufZ+X/M0eWWWyjrn95MYDKpHTn/nkp4Z1ByoVL/8muqEWVDCgOlpZy6AXytWNmplFT6yv33IcfdqNxY0/Gj296/8cTPHAU+4nRoUOHYv2VNfldjZTBsLK8VatWjBgxgkaNGtGuXTs2bdpEQEAAn332WYH7nDVrFgkJCepfREThPu8PBAmGlivFRe3DD7uqy4wtV3ni6nG2XCkBrP2Gw9w8txI3Dz4770m7UYc4eLDw7z4yMlmNQ/j006MGLnb3wq1buh+UqraFZDDTQ/khjopKISgogv79ZReHCxeieeaZQFq0qEK3AQ11Gzwvp3nVksPzzzfmf/87ySefyELyyJGbBqmaU1JMn09Q0A31GIWhpIQvcHB39ricrRIgOG8y4PpFtGYSmblm8sziffDvv+GcO1d4Jkwl4D8w9RL8u0Oe0dRo5KKWSr2TfAQGuqsCU0kzXxgFXRcxidk0cNHdd5Ury5YRrdacl19uyQsvNOPcubsG6ZpLi6tXY+WYSz2mTm3FggWd1fcXLpS95bA8ee+9f8jMzKFTp7wkMTdD5WyctnkWKStr2VqiuATFR8vCQBFXtuXjQu3oaEXLllX45JPudO1anenTd9K69bdYW78PwJ9/Xub69Tj69NmAj48Tb775JHZ2lmRlvUP9+h68+eYe9Zq5caNwcRUY6I6ZmYYrV2KLdEfbtGkQ8fFvqIkdikSJo5QUceUsv2/WDka9Kruy549vTc7L3miqcKu7lzwgB1m4zXoeNq4oXl9KgdKyXFlbW7Bt2zB++mkwHTv68b//9TdYX2B86sNEcgLYOcq/q4qoBtjxs+713Ujw0PNqMM+7/uKi4XzpJVUyiZJhWbkmFfxry8//E/+WjksggNYKsgx/A156SbZUKeMya2sLTp16gfbtfUvnmIIHiocq56Onpye3bxvGhNy9excLCwvc3NxMbmNmZsYTTzxRqOXKysoKR0dHg78HnsR4g4DQkJB4Bg4M5MUXn1CX5a/wria0UMRVGcURPNDs+Fl2R+jzLLjLsXh3YjJ485j8UF237j+TVdNBFvLff3/aYNmZM/eX0v7gQV0MyNN+MfDSvCK3UX6Iw8MTSEjIMHApmzy5OUeOjKfPU/Vkt4cXZuvS9SfG06WLnEBh+vSdHDwYQWhovJpUAeTsgWFh8fTps8HAinHihCxKi3IdUzKz+fg4mW6QGA/VahguS01Ba5YrW67uo95YcnIm7dqtpk+fDUiSxLZtV9TkLgo7dlxl5Mjf8PV1wvVankjyyTt/O4cCB9F16+pmngsbkGZkZLNnz3VsbReydm2w0fqYpBxqO+nOMSDA8LnVtm01cnIkDhwI5/DhGyavxVu3ktBo5qPRzCcmpvj3sCLkDxx4nrS0t4iOfl3Npvr336MA1LpGDzu5uRJLlwaxYMEBXnrpCdVaw41QWUzZ5Fl2zczyRHWetfC2PImgzq6Xk+UK4PDh8bz2WmvefLNt3vsb9OlTSx18DRv2CzdvJvLbb0PVuB2NRsO6dU9z4UIUX3xxDEmSuHUriapVC/4Ns7XVqkH0+pM7ptBoNEZxW4Winy0wWc9ypdFA+15yYeZr5w1dA5UJL2XSRR8Pb916/YkPKxt4dpLufRm5lZWWuALo1auWagnMT7GLND/IJCfK37dPdajXzHh9bq4ca+uuJ660es/SmDIuDxOXNzGYv3yNs5tswQLwKiWvJa0lZBtOkL3/fmdOnXqh0HtT8OjwUImr1q1bs2uXYbaznTt30rx5c7Ra0wMeSZIIDg7Gy6uAGJCHEcV3OM9ylZ2dy7Fjt2jSxNNg4KfVGmZ4Ut0CLbRyUOnjZrnKzJBnp9y9DCqwd+7yPWk58mf11VcneO65X2DLRrmCux7r15/hzTf3GCwranBSFPoxcsMbZxeZKRB0M19hYbKbg/7Dum1bvR+Hzv3hifY6EZ4QR8eOfurqpUtly1GnTrplo0Ztxs9vOdu2XcHF5UMkSSInJ5fIyGSsrMwNBFdMTCqrVp3i1KlI9f2oUZuxsbEwEvYqKYnGP27H92NpJpErachJvXfLlZ/fMgDs7S356afz9OmzgQEDfqBt21VcuRKDJEnMnClnKlv5WQ84cwxad4GpsnWgsIKxtWrpRJC9vSXXr8cxfPivqhvle+/9g0Yzn40bz9K1q5waev36M3z11XE1syNATFIulax1M5qBgTrRBlCvnjt167ozY4ZsuTCValvJ8gewY8e14n48REbK59aokZwF0c1NN1veqZM/np72Bn19GImMTOKXX87Tr99Gpk3bSaNGlfn0017yyqR4+a+KLygOEBoz+XpMTJCtLjdD5WD0vIkXdSJq5ULDVNNlSNu21UhOnsXlyy+xZcsw/v57FG5uNhw5cpNJk5obuBACNGrkSe/etfj11wvExKSRkZFTsFtuHm+91Q6AoUNN1527Z/QtVwlxxhnhrPKE2jcf6ZadOixnZfSpjhFuleX9ZGfpUuc/PQbmfWn4HJnQq/DitfdIabkFmkJxE3tk0HcDtcz3/E9LkTMFZmYYxjSZ64nKsq69GX1H7pepRBod+shjgoAGpXMsrdbIcqXRaGjc+BFMriYwSYWKq+TkZIKDgwkODgbkVOvBwcGEh8uz+bNmzWLUqFFq+0mTJhEWFsa0adO4cOECq1at4ttvv2XGjBlqm/nz57Njxw6uX79OcHAw48aNIzg4mEmTJvHIoPzI55nXjx+/RWJiBl26VC80hauVlbmc0EKjkQcNj5vlSonnGTTOYHH++jInTkTKP9T/+9Bg+d69cnySvb0lycmzsLQ0JyLi/gqM6meOquJWvNlLRbgox3Zx0QWLm0zlqvjBpyZhYWFGYuKbtGhRhV9/lWs39esXYJAZTJ87d1JITpZn4Hx8nAzE1Rtv7GbcuD9o2vRrUlOzaNbsawDGjm1icl9A3uym8cBPiTXLSjZ9TWZnm0jrm4+YGFmYnTsXxdChOleUQ4ciCAj4HDOzd/nvvzts3z6cno3yfOI79tVl3SxEXCmuk3XqVCIpKYOvvz7Bhg1nqFXrMyRJYv58uRDwwoUH1G127brOpElbmTZtB4mJGeTk5BKfkoubVTb/vu3AF62vY37UUMBrNBomTGiqZoA7dCjCKLZPX7gGB8uW/PbtV7N48UFOnzad7TErK4dhw+TimQ4OpoVvjRoupSKuvvzyWLmLtJUrjzNz5i68vT9h0KCf2LbtCiNGNGTLlmG6Z6IyOK/kpSsUWq2GPEiXcmXhpVi2zPJ+GjUanQvhpf8oL+zsLFVBb25uxqZNg/n6674sXtzNZPunn67DkSM31XTfRc2Ov/ZaayRpLm+++WTpdlwRVynJsqtffnGluFvqWynu3AC/WnIygfwog/XkRPhnm/y6Yx+jCTJAnhArijPHdAVji0FpWq7yc+HCi+zePRJJmlvq+y53srPk31dVXOWJ6BZ5oSKxUToLZEGWq4LqzpUWSqIaU2OkJ9rDyj/l+lelgVYXcyV4PKlQcXX8+HGaNGlCkybyYGzatGk0adKEOXPmABAZGakKLQB/f3+2bdvGvn37aNy4Me+99x6ffvopAwcOVNvEx8czceJEAgMD6d69Ozdv3mT//v20aNGifE+uLLmZl4TAW3YX2bPnOo6OVjRvXniWG9VyBXIyh8fNcpWeZxXRSwscFycvGxCQRpsA+UFvZan38NV74F+4EE2VKg6cODEROztLfHwcCQ+/P3GVnp7NE09481xrS8xtiud+Y21tgbm5hvBwOb7J2dmaPXtGERr6qukN8rk2OThYqQH+3t4OuLnZGhStHDgwkH//fR6Q43QUcVW1qmM+y5XOyrRkySHCwhLYuXMEy5f3LLjzyYnyLLVC3kyhpSKuUo2vyYSEdLy9P2batB0F7xe5OKO+ZU5h7NjGBu8717PSDbD0Z1Ht7AsUV71712Llyj58/HF30tKy1dizGzcSmTlzFzk5cv+vXDEWFX/+eRknpw/47rvTSBK4WWfT1jWaKXXvwLF/jNpPmtScDRue4c8/n0OSDIvCAmrMH8j1iurW/YIDB8J5443dNG78FSCLjffe0+17586iLVw1a7ret1ugJEm8+OI2unUru8Ku+YmKSmHy5K189NEhnnyyGrNmPcnNm9P4/vunDUWGUtTW0Vku1P3xBrnejXOeBSQuWk5oUsXP8ADz8wrVV2DR9c6d/ZkwoVmBg/y+fQOwsDBTxX1hMVdliuIWqExk5bcStOwMbboaDjxTknTPqPwoE0P/HYX/jsjvFbFrb0JAFvUdLX8HFr0G86fI+ysCRVwVO+asBFSp4qi6aT/0KDWuFHGlJDbx9pP/JyXILrdmZqZjrqDsxVX0bV0W0LJGa2m6WLbgsaFCxVXHjh2RJMnob82aNQCsWbOGffv2GWzToUMHTp48SUZGBiEhIUYWqaVLlxIWFkZGRgZ3795lx44dtG7dupzOqJy4GSZXss+LGzhxIpIWLaoUObtmIK4eS8tV3vna6NyhlLTXsztl4J73m22p0bOSnD+pvrx+PY4JE5qqcTI+Pk5ERNxf2v74+HRGjGjIhvFa3WxfEWg0GhwdrVTLlbOzNZ07++Pr62x6A0sreZZXTzg8/3wTnJ2t6dmzhlHzr77qq6ZSv3w5Rs9yJYsrxRXuypUYRo9uhLm5hrlz91GzpivdutUoeCCSkS4PqkwMpBTL1ffb7zB79h4Dd8uffz5PVFQqS5ceNhnHBLJlJjw8gaefrmO0buHCLjz1VB0uXnyRyxenYDl/Aqz/XL5/9Adotg6GhTD1MDPT8MILzdUJjD/+uESHDr5oNLBkSZDp8wUmTGiq1rEaP/5PANyssiE2z//fRJyBtbUFzz3XQHXxVOLYFPQzTO7ZE2Iyycgff1ziww8Pqok1Nmw4S2BgJVJTZxfY15o1XTl8+Ab//BNaYJuiSEqSr5XQ0PhiCbrS4J9/wgDYuHEgBw48z8KFXQyStKioAe15A0DFrUwR2LfC5b8q+QLMXSrJk1H3mWylLHFxsaFdu2pqQh4lUUq5k79OXX7LlZkZ+NaSs90qQqhQcZX3XX23XL43R7ykszzUqgcvzYWlP0C7vAmdwiYM9QVdxHW5TlYRA2DlWabVPlQRFOWPMnFh7yz/Vz5XJYYpMV4WV/ktjhblGHMVfQfcy1FcZd9fsivBw02JnxgpKSm88847tGnThpo1a1K9enWDP0E5cCPUYHb1zp0Ug5nK7757iqCgcUabyXWuHmfLVd75WuvEVVhYPAB+lbV8Oli+HSykbPmhX7cp7JRdqVJSMrlzJ4UaNXR+/j4+jrLA+XcnHh4fMX58yequZGRkk5GRI8dQJSaYdJcrCAcHK9Vqlj8rpBEajZHLW9OmXsTEzOTbbwcYNXd1tcHGRkuzZl788ssFdcCsWAFsbN4nMzOHy5djaNGiivqZeHoWMaBTjq+fSaqmHOCtNZMF7Ytf3mHRon8ZNeo3tcmBAzrr9Zgxvxvscu/eEFJTswgPTyAnRyIwsBIjRugyJVav7kLlyvb89ttQateuRC2tXppzV3dDFxE3D3kApgzCTeDhYcekSc1wdrZm+vTWJCXNMqoN5uBgyf79Y9i1ayQrV/Zl69Zh9O5di9xceTDpZpWliy9IKNh9ztnZGnt7SzW2TkERVzNmyJNG9eq5GyTGOHAgjOjoVFJSsti+/SqSJLFz5zUGDgw07Taah5I4oWPHe49diY3VCZD33tt/z/spLqdP3+bLL49RpYoDzz5bv/DGiXHyxIo2X6yLjZ383Z8+LH//VfyNt7Wyvq9kK+WBkthm9uwny8SNrVjk5BNXJgrdY+cgDzwVsZOaXIi4yrfcJ99kUOPWcva3VnkZLwvI9gno3OkbtoQBI+XB9uT+Oo8GEyjZiC0tTbgsCnQoCUqUZ7vy3bp7yr+liXFwOwIqG9ZzM3ALTE0uuyLykiSLN2G5EpQTJX4Cjx8/nm+//ZZ27drx0ksv8eqrrxr8CcqBW2E6cztw924KHh66ukYjRzYyKACpYGy5eszqXJmwXEVHp6LRQCUXG6rZZ7B4cVfC72SQW7ka1GtG+t1oUlOz9Oo36X7sfXwciQiJgTWfEBWVyrffGharVsRPWloWU6ZsJTHR0Ac7IUF+7+RkJQ+2TWXLKgBHRyvCwhLQas0KLPxrgIl4ovzFC/ftG83581PUGJWXX27Btm1X+Omnc4BhHIeV1QKysnKpV8+dH38cRJs2PrzxRtvC+6DUGdG3FvUfCeYWqlsgyG58e/aEqPFDhw/f4JlnAg12lZ2dy++/X6Rz5+9o1uxr1Z2tRg1X5s/vqLbTvy8AiNCzpuR3WVIsForbbQGsWNGX2NiZ9OtXGzs7S2bONDzv8PDXaNfOl65dq6ufsVpnCdktUB2oJycWKOY0Gg2+vk4GrqdpaVlcuBCFVmtG7dpyMoy6dd0ZNEj3+bRvv4aLF2Vr1qZN5wgJiSc6OpXWrQvPhPXkk9VUoX77dtGpx9euDaZtW8N6Q/riqjhxciUlPT3b4BiNG3/F3r2huiLBhZEUb+iSqo9XNTiZVxQ8v+UKZFfisKsl73A5MnNmW+bN68C8eR3L/+ApSfD6CPm3ScFCq3Ph0yd/BsbCLFdKVkdLK5i1FCpXMd1OEXGJhYgr5T4bNhl6DdUtD7losjmguvvmTw4lyIdiuVImCBVxZe8kWy+T4mXLlVe+cYl5vt+usprASEmSJ1crCXElKB9KnP9z+/btbN26lbZtixhICcqG3Fy5FoveQ+LOnWTjQaQJ1IQWIFtvCpk1f5S4eTMRH5+lnFvflEAwsFzFxaXj5GSNmY1cl6VpUy9SMuCyhQ917B3outmPa78v57ff5GKH+hnWqlZ15NadNHL13PwjI5Pw8nLg5MlImjX7mi1bniM5OZMVK44TEODG1Km6bIAJCfIPidOZ/XKwbxtdjbKicHS0IjdXwt/fudAkJioOTsb1ZfLRoYOfwfvRoxuzcOG/fPedHMjv42NsWatXz4NKlWw5eHBs0X1IynO5s3eEtt3h4E65YOOCb7Dcchp2yNkLX3utNTt3Xud//zvJu+924tKlGN5+uz0dOvjy6qt/0bnzWmxttWqh1YsXoxkx4lcsLMyoVs3JwG2ucuV890W4rtiqUb0TD295MHf0H10R0wLQ/8znzevIoEF1adBgBVWqOJi0JFavrpvBd7XKV6g59q7pDFZAtWqG4mr06M389NN5nJys1EyDkiTHae3ceZ2XX27B6NGbSUrKpHJlO7ZsuUz37vJsf4sWBQxM8zAz03Ds2ARq1fqMs2fvFmmJnDDhT7KycpEkSf08FOHTr18AoaHxhW5fXKKjU/nll/NERibz9dcniIxMxt/f2cAFdNSohoXsIY/UlIIH8UqNJVt742yWIFs97tyUY/VqBBqvfwBwcbFh7tyOFXPwiOtyzJqSdALkZ46pZ5PyHaQmy20yM+R4R1OYmcGkt2QXQFPfi4JeRtQCUSd3nOTnzvRF8PEs+W/Jel1haT1ycuQJAuEWWARJCbKYtsqLZ27wBJw6JH/Xzq5yrbLo24VbrkC2ItoUPZYpMdF5catKIpuyRqsV4uoxp8RPDBcXF1xdC3nICcqWlCRZYOWZ39PSstSBVFHY2VmSmpolzyjb2D02MVf//huOJMEfe2/LM2V6bkFxcWlyzRd7B0hJpFkTTyzMJHZHuhCXY8PBO47cvp3Ct9/KsVeurrpkGJUq2ZKTCwkOugDd2bP/BnRxMmfP3lX99jduPEtUVApZWTns2HGV7t3Xyfs5uV12kynBg1/JGOfvb8LtxhRe1QxnlYtJ//4BqhUjfwayypXtSlb8MkVPXI2eCiu3yO/dPWk+uJPazN/fmQEDarN16xU17XirVlVVcbB3b6gqrP75ZwwzZ7YhKiqV7OxcLCzMDMZzBpMOqSmyoFPIL2jMzKHrU3K6/hImL6hXz5333+/M4cPjTa7XTzZjZZ63byXWpxDRW62ak4FboOIiaWlpTmCgLAjatauGj48Tx45NYNSoRuo5jx/flJSULMaN+4MaNVyK9V0p37FSDLowlNl8fYusUnfLx8dRjdW7HyIjk2jV6hsmTdrKe+/tp1Mnf1q3rkpISDyffCKL8WvXXmH48GKIq7RUA6u1AYrVuFIB2cQUkhIKXicwdDXPP3mhoG+5UmIc7QpxiW7ernBhBfLvmYW28AnD5MQ8AZA3+RHYBJq0kV8f2m1yE8VyJdwCi0CpaabcO+16ytn3rKzB00eesJIkqJovdMSlEjzZQy10X5iLZpG8PR6+WWx6XXReFtVydQsUMVePMyUWV++99x5z5swh1URWL0E5oPg2583UKQPf4gQw16jhQk6OJMcZ2Tw+MVfKbHp2eibY2CJJkpolMC4uXU5l7lwJ4qJxNs+gd9U41uxLISxe94P6zTeyy5/b7u/V+lduyXJq2YhGfQFo3cCR778/TWhovOqrD6iptI8evYmHxxIsLRfQs+d6dWa/rkveD0oxalwp1Kghf//+/s7F26CKn5zyuIRBtv3711Zfe3npZv2dnKyK54qljzq4sZFnpC10hnN7e0vuzE1l/TgL7OwseeqpOoSGxvPxx0G4udlQo4YLrVpVJev/7J13fBP1G8c/SXe6994DWpC9kb2RKQgOEBVRVJDlAEEU/SlOQGUJMlWmbGSD7D0KZbUFuvfeO/f748ldkma0adMF3/fr1VeSy93lkt597/usz1P2OZKT56BdO1d8/31/9OzpjcmT2wnHVBkl4yophr5/e5n8tLrJn28z8qjzns5qIhKJ8NlnPTRKYPMpfAYiBaPN0ZV+h5wMtdsAUEkLNDWl36yoqBx2dmaIj5+F6dOVlVD5eptevbzRtSt5inmBkqowNTWEg4ME8fHKxlVaWgG8vJYqSazz3vzk5HycORON+fNPIj4+F4aGYri4WKCgoPaTi4MHI/D4cRbCwt5DSckC/P33izh//i0kJs4W1vH21pDqV5niIqWotRL2fOSqCpW9BlQMbNTwjjpFh506aXVAblzl5yqkk1Xzf6gJkYhSA/nUv6Q4YNkCZWOYb3KraDy//QmNAxFhanfLp7aytMAqUOxxBdBvzItVOCo4DSs3kDc0At6YJe9xVtM5SVkppR1ePqX+/YwUuu+oU5isC1ha4DOPzmmBP//8Mx4/fgxnZ2f4+PioNO+9efOmhi0ZeoG/eci87rxanbqUrcrwfVMiIjLgb9p41QITE/MwePBfcHW1xNKlg1SaZuoKPyGMSy4C3M2xa9cDvPTSTjx6NB3Z2cUUubJ1oJtvVjreCkrFqBN2WPoX1d680NsF/55OhqmBFGbnDwDnDwCd+8BOZlzF2LcAcBfThtvi0yxg9uyjglFSuelw164euHSJojGtWjljRe8EiAtAN5nKfVu04OVFN7KqUr0E7Byp2Dw/V236iyb4Oh1TU0P6nWT8+++runtzszM1pwoBcLIxxquOZIj27euL4GAHnDwZhdGjmwtpZ4aGYjg7W+DGjXeE7YKC7JGcPEcQ3lDap6JxlSwraOc9136qyoLCzT/2kfKkoJaIxSIkXByBnJ+/ki80tyAnSRWRq8zMIuTnl8LCwhgmJvSbFxTQd1XXLDYtjWopO3Rww3ff9UevXhurFj1RwN3dEgkJyvV5t24lIy4uF7/+ekVoystPOJOT85VEMJyczGFhYSwcoy5IpZxSLWBsbA48PKzQsqXckBeLRXB1tcRLL4UgJMSx+jLZxQWAlYZ2Ff4krIKsKuSgC2vXNPyphf9dChVq9ew1OF8kFuRUyMuRG7u1Na4AupZO7gVGvQ6EXgLuXgeO7gLGylKW83NUJ9cmpsBLbwPrf6IG0pVk+HkRGpYWWAVZGZrvKz2HUMpos1ZKDjUlTGTnQU0jV7EK9ZBFBaqphenJVUel9Qkzrp55dDauRo0aVQeHwag2fNqDYFyRZ87Ts+qbk6enFSwtjXHjRhKGdG28kaszZ6IRFpaKsLBUdOy4FjdvviN4/mvC+fMkT3z7STHQwwJhYRSVmDfvJNLTCynVz1a2//goDPfKwrD+nti88xHEIg5921ri39PJsK1UK2MvpklsVDT9D9wkZVi4sCfeeeegRkGAixcnIz29EMbGBpTa98vnQBjkTUuryeuvt8bjx5l47bVqdpTnC8sLC3QyrgwNxbh8eTJcXS1hYiIfLrp399LlcInEGMBNy3ZGRkJkTSwWYc+e8di58z6mTGlX5a6dnS3gLMv44FN5gEoNjVPiycgcNBYQiYFman47G3uapMU9lke49ISbvSHcbBQmD6YSOp4MzVEyXl4/JiYbLVo4Cf8DbQGUdetGYOPG27C1NUPnzu54/fXW+PzzntU+Tk9PaxWFQt6Dz8ueA/IoGt/ImMfOzkxIQVasx9JGixYrhWbeUulCYZvY2FzBkVCZHTtequY3klFUqDly5eRG58VzHdW//85cYM13dP3UBKkU+PR1SjsdNLZm+2hMLHyH1FRflrVCqfy7tO0mf68yYjGl+WVnyHsOakoh1AUPXyAqHEhLpmsdAB7fk7+flqJ+7OMzBuKeqBhXLC2wmmSmUl2cOqztgNerEDvjz4OatjtQFJvZ/xfQ6wXARaG+Kz2l/sQsALkUu1Sq872d8XSgs3H1xRdPQTfxpkpZKQ0iVraCZyYuLleQbK4KAwMx+vXzw9Gjj7Ggjwftr7xMp4hJfRAamgwvL6oh6dZtHd5//xDWrRsBHx8bnfe1Z88DXL2agHbtXHEtNAn/JVoiroSifbt3P0BFBUeS1raym258FMQiYPbMjjh4Ig5SToRJvc1x+0Aq+rjKUqVkhoo9R69nzDgCALDkCvHmm22xZ89DHD6sWVlMqfaFV1XSIGigCRcXC/z++/DqbyCRefKKqlaBq0znzqrKk9WmII8mtAYG5BnmaxzUYWSkFE1t1swBCxZU3yjgsbExxbp1IzB2bIjydZGSQAXV7j7yHH91ePkDsXXQo4nPwef3byqh1MC0JI2b8ClvMTE5aNHCSVCGHDNGs6jCxImtMXFiawDUfmHTplE6HWZgoB0OHoxQWsY3j75zJwWPH2fC399O6KE1c6Zyc2eJxAjm5kbgOEpflEi0jy/FxeWCYQVQY2beWRQXl1OtqHy1KNZScwVQBEMTnXoDO/9QjszoQl4Oee93/gF07CUX0Giq8D3BBOOq0u/y3nyqYdQEb1yZW5ISoEn1I6saGfAicO4IOSDjo2lZVARQXk4Rk4QoamJcGYkF/T/4bRSQC1ow40ormWk6qd2qwBtXtYlcuXnROXl8D/398Kf8OktPAUK0ixTpFf58Li3W7NBhPNXU2KS+ceMG/vrrL/z999+4detW1Rswas+OtcCxXUo35qtXE5RSZqpi8GB/XLoUh+xy2YSnNgWkdUR0dA78/W3h5GSOmTO74NSpKPj6/iKo6+nCvn3h8POzxYEDr6BCCvRdbYING0Lx0ksh+OmngQCAkSObU80VAMSTmlyP/pQyNqdtGuxzYrGp12O8ESSbAMrCBpISZe++RXk+DA3FWL58qNpjuX1bjSc3I5VSYmZ9q/N30wk+clVQw8mhjD59fLBs2aDqbzDjJUq5KS4iI6KSZ1gJQyOgXD+pFG+91VYQ/RBIjgdcqpFGWVfGFV/v5itLRzSTUMQkOUFjKIpvhvvCC1vwzz/3ceVKAry9rfHnn6P1f3wygoLsERmZifPn5f3F+GvPzs4MK1deQ1lZBTIyipRSRXlSUvJhbk5GrbbUwOLickyatBfTpx9SWn77tjySl5JSUHX/tOpSVAiY1kKJzMxcpZ1BtVGsq4sKr/kxNAYU7xn8eVuYT8IFPNoMK4AU5HIyyejUJI+vKzYy0YusNIqSt+1G11xSLB1zVjrgriFy7u6jtgWDXIqdRR80Eh1J/3/H6tV1qsXYhLIJamxcPaY071fek8+P5k8mh0p5OaUF1ub4dKW2xiKjyaPziJGamoq+ffuiY8eO+PDDDzFt2jS0b98e/fr1Q1paFfnqjNrB9+gZQBOrigopTp2KwoAB1W/ePGhQACoqOJwMlaVxNMK6q5ycYqFG5KWXQgTj8erVBK3bnTkTjTt35BMzqZTD2bMxGDzYH25ultj+styw6NfPFzNndkF8/Cw8/7wXDYYSC0oNkVjA0MQIBQWf4ceBBap9UPhJcm4Wds2QF8A7G1Aky8/PFrm5c3Hw4CvYsUOeAtSqVaW0hPIyMq5Gv6G5f4u+4I2rWvY2O3VqEmbMqKbwBp9zfuU/4KxsAq3NuKpLhSWpVB65qgqvAPKqn9xX9bq6wJ83fKG/mTnQvDWJ1Ny6qHYTAwOxELF96aWdAEghUlsz4NrSp48PAGDu3BP44IN/kZlZhOzsYjg4SDB5clusXx+KqKhsAMBff70oiGa88EIgACAhIQ/m5nR82hQDDx2KxObNtwWxGB7Fazg1tQCOjnrw/HJc1ZGrqnB2B6Ijql5PHdkKxlVqYs2PoTGQmab6vLBApybosHWksS8/B7DSk3FlZk6T9Ef3KSOgaz+asEdHyCXabTVEDB1cgLBrKtchH7liaYFaCL1IaZ1tutZ8HyIR3YNrUqpQXgYkxNC43W8kRaymzqf7z+OHNG8qKyWxovqCj1Y10tILRt2js3E1ffp05Obm4t69e8jMzERWVhbu3r2L3NxcfPjhh3VxjAwejgO6DQA6k2z1jRtJyMkpQf/+1TeufHxs0KyZPcbOvI7sEoNG2Ug4J6cE1tZkXDk7W+D27alwcbHA0KFb8PffdxARkYGcnGIsXPgfoqKycPhwJIqLy9G79ya0br0aDx6kYdy4nfDz+wVRUdmCTPM4/2zMG0nF9mPHUgG7kiCAjb1SQ0uJxAgiSyvVKEZZqRCJ8WtGBpOrjRg25fJIlqWlCV54IUgQtvjyy16qXzQ9BeCkcknuusTYhGToa5rWVBMUhRp2rKVHVy2NbA2NdFYzrDaZqbRvl2oYV60702NCtH6Pgf9uzWSy4e2fp+cSCyBF84T78eMPcfjwa0LtUXXaLtSGZs0csGTJQFy4EIeVK69j4sQ9uHUrGdbWJnj//Y7IyyvB7NmUCujiYoGFC3vBysoEe/aMx6pVL+DEiYlCWh/fkoC+RyYeP5afE5GRGTAyEiu1NwCAY8ce48MPDyMsLAUZGYXV6uFXJaUlZGDXxrjq2BN48rBmxlF2Jk0gPf2AXeuBe01Y+OnGOflzfmwsyqfz+MU3q5dm7uRGkezcLMDCRj/HJRLRGB52jV77Nafx5u51ucquJuEM/prnt5XBmghXg9xsihZpEquoLqZmqpGevZuAa2e1F5kmxgIV5YCnghJh++fpfIyOACLvkePOO6B2x6cLLHL1zKOzcXXkyBGsWrUKwcHynP+QkBCsWLEChw8f1uvBMSpRkKekdvTXX3fg6ChBx466Tc6/+oqMs8PxNo3Ss5KTU6wkqy0Wi/D778NQXi7FhAl70KzZctjYfI+vvz4LP79fMXToFnzzzVlh/ZCQlTh5Mgrt27thxYqh6NZNNqEvKsD/3nRBbu5cpWbAAnw6gaKilKb+KzGRQGkJWnULxE8/DcDZ7zzkTSoVMDExRFbWp1i4UI1xlSubeFbVw0UfiERUd1XLtECdyEqnx6796FGxx4w66lJhKUUW9axOhNDIGGjRruYpYJrgo3JtugJrD8tFVCQWWlXoxGIRBg8OQEzMTERGTsfatTrU2tUQXlkUoAjTzp33YWVlAh8fGyxc2EvoM+biYoHBgwOQkzMXRkYGmDq1A/r180NQEG3fv/+fEIsXYdasI2jWbDkCAn5Dv36bkZlZhMjITLRq5YyUlI+wYEEPAKRUeOZMDH777SpatVoNjgMcHfVgXPGTHBMz7etpo3UXOofvXNV92+wMqqsc9iq9VjRQmhqR94B23Smdj1dpK5AZV0PHU3+jqnB2o2s99ol+lAJ5nNwoBczCisZVdx/qWxdOjdCFZsOVadkB8AlUmcQ39SbCycmhWLRIhLS0B3X3IbnZ+hEkMalkXJWVAge3Ar9/q1liHSADn3dc8IhENNanJgKP7lHUqj5ry2urfviswXHAqf1UkypkBmUDuzc22Ui/ziOGVCpVkV8HACMjI0ilUr0cFEMDClGV3NwSbNgQinffba+zV23cuBZo19oR+2PtGmlaYIlKz6Jhw4Lw11+jcfXq2xg8OAAODhK8/npr4f1jx54orX/27BvYtWsc3n9fQf2rqABicwvN6mW8caVoUNnIbsZ8tIFH1hdF7OaFOXO6ISBIJuWuxsNmY2Oq/jN5ha3aeNN1wVRSczWmmpAtM676jKDHqqJSdRm5in1MN29N8tCVMbfUv3FVXkZpSgYGypLAEvNqq9AFBNjB0lK1n5e+qdw/zdvbGl9/TU6Zzz/viZ9+GoBXXmmpMYomFovw1Ve9MXFiK3AcsGzZFQwaFIAvv+yFU6eiYG//A9atu4UWLZxgaCjG66+3RufO7ti9e7zKvipHtmoE70SqzbVmYkqGAN/4VheyMwBre/Kot+2mVSGy0ZOfQ0aKl788Vb0wX1X+Whuu3vSYmap/4wqgybRIBIyYQK+jwkm1zdxS87ZWtvIIlwwltcA7V4CZ44Q+h02B2NgLAIDExOv63XFpiTyyn5ulsyCTWkzNlO9PihkjT7QYh6mJ5KgyrTROOLnRe9ERgJ9mAaA6QYhcNb75VaMkKhzYshI4+o+859yti8ChbcCZfxv22GqIznHcvn37YsaMGdi6dSvc3GggS0hIwKxZs9CvXz+9HyBDBscpGVeHDkUiP78UU6a0r9HuRo5ohh+/S0ZSXBZcW1e9fn2SmytPC+QRi0VCet/hw68Jy//4Yzheemkn9u2jIvE9e8bDx8dGtcFtWSndECRaiuN5tSMLS9VlXgFy7ycAXD9HEQ5+sm5pTX2kCvO138AV4VMydZmU1AYTU6BEd1GQGpOVTpNZn2qmY1SOXN29TjVwQ8bV/lgiwgD/4KoL7XnMLakRqT7Z/julgVZGYlG/6ZrVoLIy5+bNo9GzJ02IRSIR5szRovoo4/PPKVo7e3ZX/PHHTXz1VR/Y2Znh/Pk4nDhBzpAXXyRxj8BAe1y+TGp9x45NwJMnWbh5MwkdOrihe3ctqaTVpUgPxhVADoqqvNElxbICfZkBzXEkpsLLgDu40ES9qZKfS5EhYxN5jZIu4x5AstimsnYg+lRO9GtOHvDnB8k/BwDioyi6ok0W29KGxC+E+jxzZbXAmxfou2/7naLPRkbVH08aHD03v/57BXDhGPDFSoowBLWqcpMqqXxtRYWTwy24jbxHoTryc9RHzlw8gKtnaMz19K398ekCSwvUDcVsgDRZa4/MVHpMiFFdvwmgc+Rq+fLlyMvLg4+PD/z9/REQEABfX1/k5eXht99+q4tjZABAQT5KyzgcuFmC/PxSfP/9BbRo4aixB0xVfPBhFxiIOPz6t6pCUn2zdOklbN9+F3fupODPP28jP78UlpZVS8sDdNNr00be7HXgQH+l1wLC5EqLIcM3jVWMPhnI/A98Olm3/vSYEE2GAH+z5hWv8lRTAzVSVEBRDOO6j0QAUE27qGuy0smjyE9AFNTE0tIeoKysklevcuRq2QKqT6kthQXAg1CghQ6OCH1HrspKNac8NkLjytzcGPfvv4/p0zsBkKsW1oQ2bVywfPlQIQK1bt0IrFgxFJcvTxZqEhUZMMAf777bAb//PhxTprSvfpNgbfAe5NrKImsqur96mqJT0grgg1HAoe3y98LvkHHPO1McXUjMoSlmenCcTOHPihxLWen0PXSNXIlEQOfe9FxbewZd6dIXWLVf3qPOyJjGvfRkMmq1YW1HNXWfvwNMHwOUlcprrsqKgDvXyEGTl03/498X6++4mxI5mcDN8/T8zlWKwlZHhbUqKl9bUeEUHXXz1h7p5Y39yvgHy51ZHvVsXNVW/fBZIz4KCG5Lio5H/6GIIy+W8/i+XJCmCaFz5MrT0xM3b97E8ePH8fDhQ3Ach5CQEPTv378ujo/BkxiDhTc98f3GMFh8EY6SknKcPPl6jXdn72CON5/Lx3fbUmHf/iLmzOlarWafNSE6Ohtr197AvHk9VPpxxcXlYPbsYyrb+PtXvw6J7/0DQHNPHX5iI9EyAQiRNatVnOB37QeEXgI69KQ+GY6u5JlOjge6KERq+dQWXVKGisg7Wm9d401N6zctkDeuAGDpNqWc95UrQxAUNByvvLJfvr6RkbwuSWHiKc3PRiFKYGFRgyaQBXmUWlBRDnRSU/emCYkl/S/11QQyM13LZ5krq8k1EoKDHfHtt/3Qpo0L/P011KrUAC8va+V03fpAb5ErNQ6K0hJqMNyiHfDaNFoWegl44WV6zisM9htJjw7ONMZEhJFaZFOitIScBJbW8kap54/SmOjlX/X2ikyYDgx/Taem5tXCqJJjztKKxj3HKowrV5nYTbIsYj3/bVRUUCqscdRdSn+btxT4ZQGN/zfO6/e465Ra3GOyM4Cf5gLvLyBD55/1gKExYFQO3LpABneAhgbCumBqRk4HnqhwauptY0/HwHHq75X5ufL7jCL+IfLnbt61P75KVFSUgeMqYGiopo5YJALMJEhKC8OaRcMwe3YiLC3VS8Gnpd2HWGwEe/tAvR9jkyEhmpp5l5dSTednb1HWUHBbGidvnAP6jmjoo9SJGsu7DBgwAAMGDNDnsTC0kRCF/bF2cHOzQL9+fhg9ujl69KjdgDGvfwWW3QA+/vg4+vXzRdu2+u8DcfduKvr334yUlAJ07OiOUaOaK73/3XfnYWlpjG3bxsLe3gxmZkZo3txBJ+nbwYMDMHfuSSQkaGkMy0cGtKUFWloDs78F3BW8XHaOwPxf6DmfLvjeAjXb2tCjrpGr+koJBMiDW99pgXy0SiFto7SUDN3Hj5Wbz8JMQpO1kmKlxrrHDs3ElQebsHChVHcHwPHdwNFdQKvO6m/AmvDwoYlkcpx+bsyZqZrfM7esWR1PPWBhYYy33qrH5pt1RbHMuVLryJWatEBeLKW0VD4xVyyeT0kgw6MDiXYIEZSfPgWmfCqovzYJeBEeC2u5oyr0Ek2AdTUUeXW/usbcipRZq+pzVPk6z0yVpwWmJ9J3dnQhVbrk+Do62EbIxRN0Xp/YC7w+g+rs2j9PYiZPHlKURh+Kt4qZFfm5FL3wa06ZD6UldL9Ud//Oz1Fv2JuYAl+vJcdaHTgwN2/ui9jY8/jiCw0pl+aWCE+7BABISLiKZs1GQCQSgeOkuHdvB2xsfGBh4YKVK8kw1bgfAFJpOVJT78HFpYk5Y6pDRQVFJp09yEiPvEfL83OAt+ZQI+bIe0+ncfXrr7/inXfegampKX799Vet6zI59rrh4b1kPMg2w9ZVg/Dyyy31sk8nNxsk/08KlwViLF9+FffupeHHHwfU2mgDSHb5woU4TJq0V1gWGansnb97NxWrV9/ADz/0x9ChNffatG7tAo77QvtK1RWP4KNXumJhSQN4pYJojXAc3bRsqh+hqzUmZtU/Pn2QmyVMuGJizuLRoyOIj7+EAQN+BABUVJQiPz8ZFhayySZf5J4QI087AfAknpQgi4oyIZHoOBlLiqMb9LQqzo/K8AXQUeH6Ma545cRX31d9z9Kmfv8vzyJFhWTwKEQ1OI7T3Vg3NVNVBU2SNVu2sJLX6UXepULsXi/QxFSxwa69QgT2jx8bp3GVmkje5Mope3xkwd5Rbqg+uq+9xUJDwwtwVRVd8fQDhr4M9B8F/LoQiI5ARWk57SItXh7ZUhT00hRNqSHJybexZk17zJoVC0vL2hss8vO7FjVXj+7T452rlPaanUlGMW9oO7rqJ7pvZSPf562L9Ls2ayV3tGVnqDeucrM1N6LW43n56NERODm1hJUVnQexsXSPkkrLIRbLp9JSaQXEYgPA3BLiMkpn3L59FCQSRzz//FyYmFjjwIG3dfrsixd/wsmT87RGwJosmWmUIeLgTKqdfxwhJyvH0XjduY/+xaXqgWpdEUuXLkVBQYHwXNPfsmXL6vJYn1mkUg7z/8yAh2U5Ro9uXvUG1cXKBs6iHIwb1wLr14fiypUE9Oy5ESLRIrz88j8aN+O09ZwACVL06LFBMKyOHp2Atm1dEBlJPW6KisqQkJCLadMOwd/fFtOnd9bbV9KIUHNRR5EisQEN8PzNQR3l5cC8N6mYPTeL/vRQzF1WVohbt9ZX+X+BqSmyi1PBqRNV0AOFhRnIzpYVn3Ic3YRlMvMbN/bC+fOLER19Gjt3ygUqfv5Z4Ubh5oUyMYe8x9eAs4dR1vcFbLO/hcx8mrD++KMD0tLu63ZQqUk0adL15m9qRpNHfQ3qxbLJvTrvm5UtTf6rKUPPcRyePDlR9f+7KmIigSlDm+SNiyc6+gwiI6vRAiQnU0mGOyrqFBYvtkB6+kMtG6lBXVogb1BxUmURlEsnZe/HK0/yTEyBxRto0mCvRzEHfbJkHrDiK9W6ML4Ows6JJsNiMWUFVFeFsyF4bRrVWwZV4ZQUGwAvvkHfa+J0AEBFCV2TRqnxgKsXracYlZwyRD91oTLu3/8HHFeBnTtf0sv++DGixmMFxwExEUBgSzJuLp0k54KtPeArm4voq0+jvRNdp2WlVCPr15yMON4ZkRwPzJ+sLH5QWEBRLoWUz5iYs6ioqJ7qbFlZIbZuHYHw8P1Vrvv330OwaVMfREYewqJFcoM6Pv4ypNIKAMCePRPx++9tUFSUiXKJGUSl8jG9sDANx47N0WhYHT06G1u3DkdxcbawLDs7Bvfu7UBuLkVKU1PvVut7NSnSZQIWijWRio6wviMofbiJUa0ZR1RUFOzt7YXnmv6ePHlSxZ4YNWHz5tvYfbUE3wwogolJLRv1KWJpA+Rm4X//64Nx41rgwoW3hH4z//xzH8XF5Sqb/PCDOyZM6ASRaBHGjduJ7GzVNLMvvvgPBQV5ePHFBMyaVYyBA/0RGGiPPXseYvz4fyCRfAsPj6U4cyYGy5cP1SkFUJHcXC0KQpXhJ0SmWvosKVBeXoLExBu6HZC1rfbCy/wc8sL9/p28xmaY6qBRUJCG3btfUxV80MClS0uxf/9kJCZe07peoUEFfsFfuHRpabX2Wx2k0nIUFZHR/NtvAfjlFx96o6iAvE/WqrU62dnKIirp6eE4fPhDbN72An51PYclFycChflI93FAuCQVFZz8PKzOTVCA4yiFpaY3f1Mz/bUqKCnRLFzCyxjnZldrV48eHcGffw7Agwe7andM54+RQdDIU5zKyoqEyUtlNm3qjS1bhqKgQEvaJQBkZ+KBVaZwrl67tgJlZYWIiyO1u2pPPk3UpAXyv19eDhlXgS0B70AyOvJy6Lqv7EF3dKWobkZq7Rq5XzgGnDtS8+01wUda+agcT0YKpU8bm5AxwhtfdVDTojc8/YBZ36jWYmnDniZ6bw6hVGJxWry8ATnfK81Hlm1x6kCt+/MVF2fjwYPdyMkh51Rc3EUUFemjiJ/Oa6m0hi0usjPontZH1ltvwxJ6tLEHBowG3pgFjJ6kh+OE3NGYlU4CB3xTYFsHiliFXqYU2/U/ybfheyDJxvicnFjBkaeNtLT74DgOGRkRiIg4gG3bRuLQoeka1y8pIQdUZuYjbNnygtJ7Gzb0wOXLy1BRUYo7d/5Caupd/PCDPX4v3IDC0uxqf/3Ll5ciIuIgfv3VH0+enMDly7/gzz/7459/xgvjW3JyqMbt8/ISUVqaX2fO0zojPZmilI3ZQVMDdI7lfvXVVygsVJ1wFBUV4auvvtLLQTHkJCXl4euvz2JgiBivd9Zz3rCVLZCbjcAAO2zfPhbdunni66/74tatd1FRweHKFeVJF8dxKCpKRFDQdVhY5OHo0Ut44429wvslJeV46619WLbsMmbPXoRWrdbC2vo7AEBgoB3S0wuxYwfl04pEwIYNIzFwoD9iYs7h4MGpAChVrCoqKsoQFrYFS5d6IDPzUfW+a2kxKf9Vs5Hg8eOfYO3aDigr00EAwtqOPG+a4CMEJUVUBwSoTQu8cuUXhIVtQUyM9kajHMfhxx+dEB6+FwANrtrINygBAISH78Px458qechqyvHjn+CHH+xx795O5f1lZ+KGeRwe5t4CABgZSTBo0FJIJKqe+hUrmuPq1d8QFXUS+WL5751vpxplNDAwQVZWFOLjqyFlvXUVPdZ00FZXX3P5FBXw60ppseYGyoJxVb3J1M2bawHQREIdUmkFzp//XjAk1MFxnFy4pULVidKY+PZbCf799z2V5Yrfb/3655Xek0rL8eDBbsFoKs9KwY6Kf/HDD/YoLy9GXh6lGu3fPxlPnpzAzp0vYdEiEW7cWKPyObdurcfq1W3ohYkJ/S9lZGdFQxoTjhyDIjzOv4+w3Kv4puQ3VLTrRpHbKGoRAU817QhC2qHEWISKE7t1+TnkJEQDG5aA27QU+/a9hcuXf8F//y1Eenp4zfaniLHsXN20THl5Zpr666n/6Fp/5JMnJ7VOcOsKjpMiIUG5MXSFqQk4MzO838cQXMKbVPPDG5DDXqG/z5YBH/9A47ksde3atZXYvFn3ljR7907Cjh1jkJR0E87OJGseEXEQWVm1c1jzEZzy8hK171+48CPWrtUiLsOLsQSEyAVaAEpzNTQkyXt9GdZ8hCo+ilJpefl0kQg5Ho7Iv3yQXis6vHjjX6bmW1hITkttjteYmHNYubIFHj7cg4yMCGH5tWvLER19BgcOvIukpFuIjDyM6OjTsv1pb8uRnv4QJ07MU15WkYbL5coOWheXqutXi4oy8eefA3D06ExhfnP//k4AQErKbeTnp+DSpSVKDqHIyENYssQdixdb4tKlJVV+RqMiPZmMdV2cH00AncMgixYtwtSpUyGRKNeuFBYWYtGiRVi4cKHeDo4BFBWVw8nJHMsHZslveBpISrqF5ORbaNv2rert3MqGbholRbj3+CD8/QfB1NQarVo5o23bu1i/vj8sLD5D+/a0v/x8ucjArFkrYGBQjHXr3sLDhz44evQVlJQ4Yfv2XjA2Vj2tAgPlRsTixf0wd+7zePhwLy5dOoWLF39Efn4yfH374cCBtzFnTjKMjNQ3DuU4Dv/7n/wizMtLgp2d+j5KJSV5MDGRiVCUaJncqiE1lRrZlZbmaTwWFaxtgRQtBk6Bgtz21dP0qKb5In+DMDDQbggWF2ejsDANhYWUqpOTE6f8nSuRa0aDcWzsOcTGnoOxsTl69ard9ZqWRsbyP/9U6kWVm4WDdveBczPxWY93UFZWCDMze/Tv/z3S0x+gf3+a/K9f3024wRkYGCPQoTMeppxD6U+bEHFB1VkTHr4Xp059hvLyYq0FwACo3w0A2DmjuDgbBgbG4DgpjI21iJooYiZRlgYuLwP++IGed+lHk4vqwvc+UgdfL1CN9LzCwgw8fLgHAJCfryxPnJX1BGVlRcjLS8TJk3NRWpqP8vIiXL68DK6u7eDr2xf9+3+H0tJ8LF5siTF2r6Il0GjFNAAIEaubN9di+HBlwycqSt7MNTMzUqh1KCrKxH//fYFr15bjzTfPwcvreZzLPSEIpi1Z4q5kmIWF/S1EAaOj/0N09GkMGfIrJBIH5OUlYf/+yQCAoqIsmBmb0pgJmsD98qsvYAJAMTjKAZHlkWhemE+ywta2gJOaOgl7J3zndBghd2Px0vCJ1f49KipKaUw6TZPNAnEpQkM3COvcuLEGH32UjLS0+7h/fxd69fqcDDFre+Uefpq4epqiaSZmlFarUFeUlHoHKZJstOHXHf8u8vKS8CR8J1q3rrl6LQBs3z4apaV5GDDghyrHXI7jsHZtR/Tt+z8EBAyu1ecePjwD164txwcfPICDQ3NIpRX45Vc/9LdvhlbpKeRQMZMAQc/RBuaWwChZtEbWR6s4+QmSSp7g0KEPAJAx8+jREeTmxqFTp2myY5YiJuYsLCxcYG8fhJSUMJw48SleffVfpKRQD8W0tHvo3fsrpKeHY+9e+j1feukf+Pj0Qnj4fjg7t4abW/VbSlRUlCg9VubEiU+07yDsGn1HWwdg9BvAv9toeV1EGfjI1f6/6Jxr1RkVFWXy+7078Gl8X5ShFJYVFdTG5NF9iihKLHD69JdIT6dmw+oU/KTSCpw5swj37lGbhPv3d+Lu3W1K62za1BsAcPOmfKyZPPkyrl5V1howNrZAaan8fn7nzmbBMTxu3C6Ymtriz839wUEKS0t35OWRsTdixB9Ys6Y97OwCMWXKVeTmxiM9PRw7d44FANjbBykZfJVJTg7FgQNTEBFxABcv/oSxY7chLy8Ru3a9IqwTF3cBwEca99HoSE+R96N7itA5cqWpCPj27duws6vH4vxnBD8/W1y8+BYCbUrIa6qFLVuGYv/+yUrRFq2pBbIahPSY6/jnn/E4ffpLAEBKSihGjvwHfn6PcfDgZGzc2BsbN/bCP//Iw/8GBuS9HTduB7Zv74rs7GgUFV3FqFF70aLFPaWPKS7OxuDBAWje3AGrV7+AuXPJy7x9+2gcOzYHEgmlXpw9+xVKSnIFY6EyRUWZQtoET0GBfIJ5/PgnWLrUCw8f7sOiRSJ8950VnjyR1T0oGFe5ufH4998PIJVq9tjzofWSkqonnhzHUbjeqqrIFe1LCg4pRnk0YVHThLKoiIyrY8fm4KuvDPHw4T61u+MHbJ4nT47ju++sEBFxUO0x5hkrp1YlJd0EwEvKqhoqqal3UV5eDI7jcPjwh3j06Aj++Wc8srOj8eDBbixaJMLjx6oy+rGxF5CRKG+4zHtyJRIHtG37JgYM+AEikQgSiT169pQbd/37f4/nepIgzu9/9sD16yuF97p1+xgA5dOXlxfLPuc8Hj8+pvR/jI4+jd9+C0J5eTFKReUohxRZkgp8/70tvv3WHIsXW+LJkxOoqCjFjh1jNHqGi4qy8NgwWdlLGhMpf55RRRpaZbQZ9/zy4iJwHIf793cJ30nRCJBKK/DggTzKUTm98tdf/bFqVUs8ekRpYllZj3Hp0s/guAokJl7DhQvfAwAePtwLADiQ9Q/CJEmCUcdxUnz/vS0iIv7V7bvpmZSUMKxa9RzKyoqEawEATpyYi8OHZyA8/AAAmgCZmMgL2b/+2hA3bqzBhg09ce3acgBAYWE6OI7DWdFNYT3+Nx09+i8EBQ1HWNhWAICpqQ3u3t2Gu3e34vTpRUhIuIolS+RWU3LyLTKQZcZVSYlmZdBT0X/Sk0f3gZemaBU9uF9K4+XDh/uoZvHQdsQvfx9nT32pkga0f/9b+PZbmWMzIxWwdUCqkXKPNH5M3LJlGE6fXgiuohzhi19E5rJpwjr8NcRxUhw+PENeKymVktR2++dJqSs/hxp5y4zczQV/Y1/eHnma5oDR2F90EHv3ThJUQGuKtTXVNPGOLU2UlRXi9OkvkZR0Q21Es7qUlxcjJuascK7cvPkHTpyYi4yMCOTlJSDJrBBIjCEjtvsgJefIuXPfYtOmPth6dDIgEmP9yTeweXNf4f3c3Dhs3z4Khw9Px6JFIixd6oVLl5Zg06Y+WLEiGFeu/IqzZ7/C48dHkZERjvz8ZGFbZ+fn0LHjB8LrnTvHYtu2Udi/fzL++mugjt+RN660Z4RoTCULuwa0e15+/i7eAHz2i07HoI2CglQsWiRCXNwleeQiPgroPQywdUBW1mOl9b/3OIUlbv+hJOUJpNJycDGRyPaiiTkZTjsAAJmZEdiz53Wl7/XkyQmcPfu1YLxUNqw0sW5dF4SFbYGHRxeMGLEOAODqSsJXQUHD4ODQHBUVpTA3d0aXLrPRvPlo+Pr2wRttv0evnADMmBYJN7cOAAAbGx8AgImJJUxNbeDk1BIODvI6+mnTwtGp04dwdm6NTz/NxocfPsb06fLsnLS0e3jy5AQAcnZv3NhLybACUO1ygsZAcXE2tiT9jgfmWlqVNFGq7Xq1tbWFSCSCSCRCUFCQkoFVUVGB/Px8TJ06tU4O8llHJBLR5MxKs/EaGXlYGKAfPz6K5s1H4eHDfdi+fRSmT38EOztlqdLw8P24cOYrvAUHPHpEBeGlpTTJ4r1oPDExZzR+rqWl8o09KCgSQUGRSsv++edlPH58FC+/DAwbdgW7dr2Krl3nCO/zkQS+WLOoKFO40fIUFqbjxx8d0azZSKXlSUm3EBJCXp+LF0mFbvv2UUrH7ufXT2lye/bsN7hxYzXat58CF5c2lb7rOTx+fLRK40oqrcDjx8cQGDgE16+vxqFD7+ODtsvhkJulWUFKNok9b/UE/1k/gr19M3ygxlnBp3vxE6vt20dhwoSj8PenG2tZWREOHnwXd+78qbRdRARNOm/dWo+goGGy489DXNwF/PPPy0qTQYnEEfHxlxEefgDbto1Ar15fwsTEEnZ2gWjWbDgqKsqwahV5akeMWI+rV3/D1avUJDwu7qJQYKuODRuUU7Ti40mO1txc1dvZqtVrsLHxxoYNPWBqagMzMzrHMzPl55CHyBXPPz8Xpqa2OHXqM4XPofrAMWO2olmzkTAwMMahQ9OQmRmJc6e/xlmPk7A2dULO78oqYX/+OQBTplzHgwe78eTJCbRo8TKGDVuNhISrOHPmS5ia2iIi4iBKS/Ow0DiQAh7RkcCqb+Q7SU0AnHWo5SotUWtclZeXoJwrhSkArrgQP/3kjMLCNLzwwip4efXAqlUt8dprhxEQMBhXry7H0aMzAQBOTs/h/v2duHZtJTp2VFYgTEqiVJS7d7eqPZScHEpxKeVKsdv+Dp7b/xfQugsKxMUoLs7GxYs/ICjoBbXb6pO0tPtwcAhWOv9LS/OxejWlRaWmhsHAQB6l5o3Dq1d/hY2ND7KzozF48K/Izo7G5cuUCnPw4LtKn1FUlInCHPXRZD+/fkhJuYOIiAMwNbWBn19/3L9PQj7Xri0XJt08WVlP4GvsRdLB5eUqqVYWFSbINyiBk3UgUrMfofTXqzA2sSIPuxoUHRqPIg9j+/ZRcHZsiamhntjgdgTScxz+O7cIr7f+Fr6OHYDuA3D7Nl3zFRVlMMhIRYaHHf7Mvg4A6Nx5Bm7f3ozS0jzk5MQJabqFUaHY5ngLliX3MRubUFSUhR9+sEPHjtPQrdscXL36KwoKkjF27Hbg+llqGzDlU8DdGxWmpvh7VSd0af0Ogl5eLBvb6H/n7EzjA+8IuH17E1xc2sLTs6vS91y3ritEIgO8+eZZiESa/blWVh5IS7uHP/7ojClTrmHHjjF45ZWDwufwnD69CBcvUgQ5OzsapaUFMDbWXajov/8WCvcMALh06WcAZGQDQLZhMfBAZuj1HS6sl5+fjFOn5guvU+yGIa1QOUV3y5ZhSq9zc+OEdF6AxmjeiOSluHns7YNgYGAsnNMAH42g83njxl7o0WM+/P0HoqysEOHh+9Gy5ctQB29UqUsL5FPe+O9kbu6kpHqHogKqf/L0ky9zdK1a0l4HeIGia9eWK583L5HogybBme/WBiEoaDgiKg4ASYDHulNK7/MOpkGDluLBg904ePAd9O37LQDAzMxOJWW6a9c58PHpDXNzZ/zxRye1nzl27A7BKdGmzVuIiTkLKytP4V744ot/wc9P3u/Vy7sHvHJPAAUFmDjxOIqKMmFqSg7tTp3k6a+V52ZDhvwiBDFMTcl59NFHqUhOvoW//hqE8nL1pQo2Nr6QSByQkRGp9v3KPHiwG46OIUrGnSY4jkNqahjs7AKrn8lTBRUVZXjwYDciuShEZkRhTv4PNetl2UipduRq2bJlWLKE8jwXLVqkpBK4evVqnD9/HitWrKjLY322KZFPzlJSwhAauknpbcW0EH4Q54u1K0d7AODAgSmIS7mBk9aRSMskT86tW+tw9eoKnDv3jcr6POnpPgAAH58+CA4eU61DV+xn9McfnXH37lasXdtBWFZZAWfNmvaCd4aHH8DCw5WjOOfPf4vCwnT88osf1MH/BigpAoxNUVCQJvw+6qIWW7YMxblz3wgFpIrGVWLidSxaJMKhQ9Owbl0XbNkyFElJN4WbZJ5RKU2ii9V7jkpzUrHI8yguWUQDADIywrF0qbzQvbQ0H/fu7UBKym2Vbf/6a5DwPDr6PxXDSpHiYnm0cseOF/H330NUvOzDhq1GQUEKtm0j9bozZ77EsWNzsG3bCFy+vAzXr68W1t2/XznNtLJhxRty2hg1ajNcXdXnm3t5PY+33rqAVq0mCDcfnrc85mByxQiYmdmhR495GDt2h8r2eXmJ+PZbCXbvflU4189eoBtpTrH6CNPZs18DoP/vzZtrkJwcihMnPsGjR0dw9+5WuaOhKBp5eUmI2zQPSQVRwOBxNFlOT1G7X3UcPvwhdqRtQIWRsi8rPPwAvvnGFD8scUKcWT4O3lsiRG2Li7MFJwd/LSQlXZdtKYK3NzVEPnToA9y6tUFpv8nJt9C580y1x1JSkqsUDQJAE6gb54X/q1ismo6alnYfixaJkJn5GBzHISrqVK3UCqOjT2Plyha4cuUXnDnzlTAJVIyaPXp0FL//rv6cyc6OBgDY2HgLv5lIpGrEXLu2Eus39gQAGIrlkYeePRfCwsJFOCft7AJhbq79xn79+ipklsk8rGUlKh5j9xKaCPl79wHAISXjoVrDiuM4HDv2kZDeCQB/bxkKACguSAekUkhF8t928+3PcGrXVNy6tUGYbOXkxOI7rMfybHJ4mBvbYPDgZXj//XuQSsuxbJmXMA5s3E31UHmGJfjv39n44Qc72W+zXJhk3ru3AwUFacCF4yhv1gKxxlmAxAJ3h3VElGkmtoZ/h7thW2EqpXOYd35wHCfUeh469AHWryfp9n373sK//5LRHx9/GXFxF7BunbKsO8dxWLeumxBtUJw0rl3bETk5sQgL+1tpm/z8FNy+Lb/3GRiY4MiRGeA4Dg8e7NYofKJIRUUZduwYi6ioU2rfP3mSamcypVm4b5YMrllrFFuZo7iYxtDz579XWn+1hDIFPDy6YPjwPwDQ2F4ZefqzidbonK2tP7y8emh8PybmLC5e/BEVFaU4d+5b7Nr1Ctau7Yj165/HkycnkZ+fgm3bRqKwMAN3726RfecSlJTk4vjxTwQD4b//Phf2uWSJO3bvfg3nzn0r/35JsnFeppJYWJiuNlOhpqSl3ce+fXRvCQvbgpSUOygZOwkYNwUwNsGZM19j+3Y6dz08uqJLl1lK2/PORIDOMXWsW9cVBw++A4DmDu7unfHJJxmYOvUOvL17QSw2RKdOH2LgwJ8QFDQM7u4d4e8/CO3aTVHaz+DBv8Da2hP29oH44gtOcHRaW3sLzlB390pGma2sbUh2BkxNbWBr6weRSIQvvuDQps0bwmp8CmNIiFwhsrLD1dzcEV5e5LR0dGyBWbPi0aWLvK/njBlRmDHjCdq1m4KcnJhq1a7v2DEGK1YEa10nOvoM8vNTEBFxAKtXt8bly8uE96TSCty/v0vpPlBRUSaIf1TFpUs/CynXJgYSwXlbVJSFhAQS53ry5AR2756AzMzHGvfTWKl25GrSJEoJ8/X1Rffu3WGoS70Bo/aUFgtpgbxnt02bSSgvL0FZWYEQFTAzs0Na2gP8/LObUHtDaRSL0LXrLJiYWAGQe03PWz2Bd448tebwYUodCQl5CaNH/4mwsL+FCwAAevToirZtV8DVtT1OnpwrLDcykkAkEivlIVf7q8m2MTQ0Q3l5EThOij//HICxY3egRQsacLSJOzx4sEclRWrixBMoKEjB7t2vIT09HA4lxcg2LsUvP8mjJ2lpDxBcaWwxNbVFaWm+cHM8duwj2Nn5Y9SoTYLX+No1uRNhzZr2aNVqAgBg89XZGGfWBsE5mWqbA8cnkAhDsYE8jS0vL0HwUh05MhO3bq3T+D1zcxNw+vSXuHXrD43rABBSfPLzk1WMVAAYk94KwT6DYGcXqBQh4jl6VH4T8/Dogvj4y3B0bCHUVxkamgo3aABo23YykpNvayz6DQgYgtattdeUeHrSxMvcnPLuBw5cgo4d34fhvzuAh3LjvEWLlxASUoE9eyYiLIwmDvx35Cdppqa2SgamIl27foRLl35SMdJv3VoPQ0NVj9zvZX8DS2QTPBcgqNQOY6wsEBV7AtlXnqBVqwlCtE2grJSiXL5BkL7wsnDT2FSRjze5xXj06AhsbHwEw5bjpFjvcAGQZwbh5Ml5eP75ecL327p1BCIiDiAw8AUMGPCDEMUByPht0UJe81ZSkovAQPrN16xRrs/47jvVfjAF4hKYc1LBuFJX68c7c1JTwxAXdwF7907Ciy9uQUjIWBgYGOHatZXw8+sPKysPxMdfhq9vX5V9KMKnN548+RnKy4tgYmKNgIBBSmm+p09XXQ9oaekOD4+uuHPnT3z8cSp++EG5DxofxXMvscbk92/hm43BMDIyQ58+iwBAqNdp3fp1odaRJzBwKJo1G4ng4DH48UcHJCXdxEnROrwEIxTtXKkygbYrp3Q9r+aDceXueqxf3w0hIWPRuvUkwQGRmnoPGzY8j+LibCFSoohEbKG2bcA56yeAgpMjKeYCSsQkVmBdIcGrzRfKfg/VqEJ6kdwZcva6slKo4nl05sxXeC7pIe55i3Bl4xJ8+mk2Ykqjhfd37X5VmDHwv9WNG2uEcUER3tk3dKh8rExIuIKYmHNIS7uP4ODRyM6OQXz8JRw6FIkWLcapFWCpfG1t3NhLOEcMDc0wYMAPOHJkBiwsXHHu3P8wbNgatG8/RWU/MTHn8PDhXtk5llotpc3UwhjsdIjBxJAJuLz7NURG/ou5c3OUJvWKjB27A9bWnqioKMWhQ2r62QGYOTMGcXEXVQxzY2NLiMWGMDY2h6GhCQwNTfD55+V4/PiokjrdzJkxuHjxZ1y9+it++MFBSKlPTCTHy59/yiMnfAo3QBkM/LXv7d0TubkJQp8mnnv3dghjaPfun4BLjEKJqAzJJY/hi0AcP/4JQkM3YNasOKHXE8dxKCsrUKljLSsrRFlZkdq+hFJpOY4d+xiPHh1Wum+vXk09EefNy8PpYx/j0iVSBZRIHDB5MjlJ/fz6q6j1mRhZoKQsHyYmVnjzzfPC/AhQzoBISLiCUaNoHHN2fg5vvHFa5dgAYMIEinrxTthPPsmEmZmy08/S0hVTp96Go2MIJBJ7XLnyizC3EuBbP1RDBXbu3By19x9FjIwk+OSTTEil5TA3d0SXLjNw+fISBAYOFdIN7ewCwHFSZGVFwd4+EGFhNEZXrkFTlKrXVOpTWpqPTZt6w8WlrTDHuX59Fbp3/0RW1zsPYWF/Y+LEE/Dz6weO47Bt20g8enS46npoyOcpLQtcgOA2OHfuGxQWpiM8fB/y85MxadJpXL26HOHh+5CTE4s33zxb5T4bEzpbSAUFBTh58iQGDRqktPzo0aOQSqUYMmSI3g6OoUBpCSoMDfGfgiKNVFqO3btfE24Urq7t0KbNW4KBxAtQPHy4D7du/QGRSIRevRZCKi1XisgkZN2HjY2v0kDXt+83MDQ0Qdu2byE9PRz5+Ym4c+cvGBqKERhIXtaBA5fgzp2/IJWWY8SI9cjNjcfx4x/B1tZfJVcaAF599V+VgZFn+PC1kEor8O+/lFoaFDQMx49/DJFIDAMDIxw5otycWiw2xGefFWDVqlZUC6FAixbj4efXTzDaVqxojhDjEKSXK9dyJSZeQ2FhunCDAmggVzQSkpJuICnpBhITb2hMablz5y/heYRZKoKz0pWbhoIkXP9MUh/ZTUu7DyenFoIHzMTEWinSNG1aOJYvb4alSz1Uth0+/A+hb4aRkQR9+nyNY8fm4PHjY7h9e7PK+sZG5mhZ5AokxsLTs6ta44rHwsIVb7xxFpcvL4OPTy8cP/4xzM2dMGrUZhw5MlMo+vX27qmUvgUAn5q8D1N7L6zhdqB58+oriVlZeWDWrHhYWZH6E8zM5Q2gZYhEYqX/BZ/WyjN06ApkPL6EM7d/E5Y1bz4aDx/ugbd3T+GmDQCTJv2HsLCtQgpYx47TEBIyBps2qW/sGhH5L65bPY9LcYeRH52HjIwIPP/8XBgamgrnUdmtc/gp4xs0j3fCnZsThG3jymNx+PCHSsa5NqKiqF4wJeW2EM309OwOR8cQtG49Sen/W1k50NW1nUoqkJtbB2ESpshP7qfxXu5IPMwNBSCvv8jMfIyCglQUFWUIaVi8JxkAdu9+FVFRpzBw4E84dOgDeHp2h42NN8LCtuCzzwpgZKS+YXdMzDnB4OSjFZcu/SykPCri4BCMUaM24o8/Osu+Q0ellgOWlm7o0GEqWreeCGNjC7i7d4a//0AhMsnjXmoNka0DPv44FYKyBSgFbO7cHBgbWwpe+eeeexUeHl3RseMHKpOOgrJsHLfOxMUoZcXIV1/9F3E3dwMP18HI2BwODsFITQ3D/fv/4P79fzB+/F6YmzviypVfNap0Wlt7obyoQLnJsAbuh20XnneTtoJTuVyoQp3TxMPEG/ElqhkM/GQakKVCmgOeFdQPat26LkhPf4i2vqOR/eAMokzlxg8f/VR3PilSWKhcS7FRFkU8fvwjIU3LwMAEUmkF8vIS0avXl2jefCR27XoF6ekPlQyux4+PCwatn98AjBy5HhYWLrhx43ecO/c/AFD725aXFwufq5hqx1P5nAKA3r0X4fRpajyeZFWGyOsUUf3rr0Fq720AYGVK139w8Is4dOh9tGnzplJGCUD/48pG/EcfpUIqLYeZmR3KyuRjnVhsINxrAeDVVw/B2tpLMKBLS/OECDsAuLt3RkKCXEWVHz8AKDnkjh6dLYzXLi5thPRzc3MnIWPjq6/EEEEMY3cDlGw7hc8+KxTSu5cu9URAwGC88spBREQcwPbto/HOOzeFKHBhYQa2bh2O+PhLkEgc8NFHKUrj9bFjH+PKlWVqf0MAWLxYWXRF8RzgjQgel1JLiJ0DkJhyC598kknNeythZeUhOI50FV2xsHBRMax4eFXHdu3eRrt2anpX8Q5WDZksiqgYZhpQPBZray+8995dJQeEvT21B8jMfISUlNvYs2ciMjMfo2fPBUq/jWKNHz//UCQjIxLLlwcBoEwIXrUwNzcOX39tCJHIABxHUeKiogzEx1/GunXK6cDquHx5GZKSbmD06D9RXl4ET/vWGBPnglv+A3A39ghu3PhdWHfTpt7w8OgKe/sgDBu2WvNOGyk6C1rMnTsXFRWqoXeO4zB37lw1W2jm7NmzGD58ONzc3CASibB3794qtzlz5gzat28PU1NT+Pn5YfVq1R99165dCAkJgYmJCUJCQrBnzx41e2o6JCXdwhLJLpxO348LF74Tlt+8+QciI+VpNFlZUbC1VU2P4z2LJSV5CA2liUpFRQm6dJoBACiXlqioxikOYgMGfI/u3VX/t2Zmtnj11UPw8ekND4/O6NZtDhYurMD779/Du++GYsECeWh66tQ7CAwcCgMDir4tXCjF4MG/oF27dzBgwI9o1+5tdOhA9RLu7p3Qq9eXyMmJkRXzyuus5s7Nwfz5xViwoBQGBsawtw/E9eurhPe7d5+LF18kY8fY2EIoQL1feh+pUmXjKjx8H3780RHHjn2EoqIs7NnzukaFvqysx8KERVN+OwCEmifixB9jgMICpKbeEwalM2cWadxm1aqWKC3NF25AYrEBxo7djs6dZ+CVVw7C3j4I3bp9AhsbH6V0ghEj1qFZs+EwMbHCiy/ShNbTszsAmgQoptQIE12hMHkWJNnaZeZHjdoEAwMjdO/+MdzdO2H8+D0YNmwNjIzMMHz475g1Kx5jxmyDmZkdXnllvxB9GjDgR5hm5gL2znjnnRtqPcnaEAwrgPqblBRRnYsC6lLAeAIDh8LGwl1pGX8jcHBojg8/lE+OvL17ol+/byCROMDY2ALdu38Mb+9eWhXI0o0KhfSjhw/3YulST/zyi6/wfsH9CygVV+COeZLKtuoMK3t7uol1tx2I+fOLBSOtsjw0IK8H8fXtq5RCWTmKIpE4CFFAAPj002xMmHBMSGcBACOp/DdcdXuWkG7Fp/5t3Toc69d309rQNCrqhDChMzOzFbzh0dFUp5mVFYWUlDtKqSN8/Qiv8unr20+tOIS9fRCGDl0u1AR06jQdr74qH+9atBgHCwtniEQiwXP+9tuX0afPV5g48bjS9xUbGAESC5iYWKmoaZqYWEEkEsHPrx/at5+KXr2+RKdO05QMq9deOwJLS3fEpN3ERatope2bu/SEt3cvdBn+Hdq2fRve3r1ga+urtM727aOwfn13QalMHe3avYOs0jSUOVWtxHY/6hAAoG3wq2glaQvkZQvvvfHGGZWWByGOqmlmHTqoF4OIy6I07fT0hxCJxOg2YBF8SmgCZ19mDjtLb8FAKCvTnqlw7BilLo0cuVFpeWlpvhA9zstLxPXrq1BUlAVf3z5wcWmDDz54AGfnVrh6dblwrSnWOY0cuR5WVh4Qiw3RtatcGU1xIp6bm4Dw8P24e1fzbw4Ab7xxGu+9dxezZsWhb99vMWdOktL1f0KhzrNy+pmPTx9M7LcOU5O7QSRTirWwcMa8efkYOnSFcg2TDGfn59Cu3TvCa3NzR1hausLQ0EQ1Cq5AYCA5rvm0Xf5eYGBgglmz4vH225cxf34xBg1S7WNYXl4sjJmZmZFIS7uHHj0W4J135EIvs2cn4OOP5fdIDlKUiCjCsXfv60r1T48eHUFS0g3s3k19GtesaQeptBzJyaH48UcHwRArLEwXarsoojdNxbCie91Mtd/Z1tYPr7wiF2hydAzBbKe5eNnkRXzgOR/visbj5df+xeuvn1RrWAHAlClkOBsbV0MpU4GPP07HBx/o2GRcEWMTikLrq1eiGpycWihFqy0s6Pnhw9Nw9iw5HM6c+RJr13YEx0mRlHQTR47MVBLDUjTIOU6KgoJUlUyg0tI84T5F68nvxw8f7iFBEgVyc+OVelImJd1EWVkRjh6dhTt3/kJFRRkKClJhbkDjtl/ICLXfLz7+kuBQbGrobFxFRkYiJET1izZv3hyPHlWz55CMgoICtG7dGsuXL696ZVAD46FDh6JHjx64desWPvvsM3z44YfYtUse4r906RLGjx+PiRMn4vbt25g4cSLGjRuHK1eq0RenkRIaugF54mKcT9wLMzM7DBlCv9e//76nNMF6/fWTcHFprbI9P9AVFKRg3743BZW4oGZ0Qvf2mYA2bd7Am2+ew3vv3cWQIctVjAy+0JCv9eDx9x+ASZP+E4wxkUgMQ0MTuLi0hoGBEUaO3IgpU64LRcnTp0fgnXduQiQSoXPnDzF8+O/o1k1+c5w69TYmTDimIjfr7Nwaw4evhYmJFQwNTYSJj4OD8rlYuSi3OrL0ly79jP/+W4g7d/5EQsJVpSjM+PF7ldbt3/8HtGolT3Fr21bVY3XBKgrZjy5j1aqW+O038iSVlShPQlq1mqh0I42JkRd7i0RitGgxDoMHLxOEBQYM+B4zZkRh5MgNGDZsDWbNikPbtm/B3NwJn36ajeeeozQTD4/OmDNHPql//nmaGPBpYxwnBbqSep9VDkU2FCN3PJMmnYa//wClZWZmdkqeMysrd7RsOR4A3fRef/0kOnachvatJwNZGfqR65XIvH+VGq126jRNaQLZrt0UBAQMwbvvhlI7Ab+RGJnRUni/V68v4ePTB7a2vkoOCJFIDInEAR9/nIZ58/Jgbe0FkUiEV189JKxjWU4OgVE9foS5uRMyRbko5ArRrNkI4SZVWpovE4P4Gcfj5Eatk7Eberhrr00cM4ZUqwKNA2FoaILJky9pXJdXqQKUb3CKESUeAwNjGBgYY9iwNTA1tYaZmS0mTKCIS0unXvgwWflaHhM0G2PGbEVW1mNs3z5KmKgqpoCqgy/ej4g4KETQtmwZil27XsWvv/ph9erWSqnFhYUZsLMLhI8PRQefe+41uLt3VtnvtGnh8PXtCxMTK8yaFYfBg39ROlfHjNmmMZrs59cf/v4D0NuRxjiJia1WxT6AouHDhq0SvL+KBAQMUqn54Bn/1nEYG5tDInHAiBFrq5wkA+T15lO5exW1QF/XlxAUMATlKMcBTrUWyLdYvj/FFJ+hI36HqZUzkCs3Ti0tXTFu3D8wNDTF8CGr8F5Sd3Rs/qrKPh0ctNdbAMDnn5fDwfU5mA2ncc6ywgQSUzukp99HUtItJcW13r0XwchIgr173xCW8VF93jBQJCrqpCwVisO5c98iKGgYvL17Cu8XFmagrKwA9+/vRGbmIyQmXsPo0X/iiy84IS0NoPR4ngsXvhNS4f75Zzy2bRspRHA01YYaGUng5NQCVlYe6NFjHiwsXKos8n/ttSMIDHwBkyadgl+7cXAus1RquGxsbA4jIzPMnBmrMkEXiw0xfPjvePPNc9WavA8Y8BP8/eWZQh07vodRozajY8dpsvd/EBxShoYm6NJlJqZOpXpNR8cWglHVvPkozJgRLTjgKANAfk2IxYaQSBzw0ks7VY6BF3oB6HoFgAMH3lFSpjt0aLraGsmtW0dg586XcODAO0rOpZEjN2DatAi0aDEO3bsrS8KPGrUZAwb8iPfeC1M5dyztfNEszwYOGaWAhw8sLV2V0pDfey8MkydfhqGhKczNnWW1le0ER2t1kUjshRrHGiESUa/E2jQJ1xHewMzOjlaq60tOvoWoqFP4669BuHLlF6HMQiQSK7X02L59NH76yVmusqyAvX0zzJgRpbL87t1tKiUBS5d6Ytu2kSgvL8aGDT2xZk17JaErvoWMhDMFJBawdgjQ6LTWpurcmNE5LdDa2hpPnjyBj4+P0vJHjx7B3Fw3xZ4hQ4bolEa4evVqeHl5YdmyZQCA4OBgXL9+HT/99BPGjKEJzLJlyzBgwADMm0fpc/PmzcOZM2ewbNkybN2qXj2rsWNuJp9Eurl1UPI+84Obg0OwkmCAhYUrunX7GFev/gZDQxOkpz8UJJh5fHz7YEJGZ/h1fxEAhILJyiFiALIJaHqVk4bKKN74AAplV1YCVIQPtQPUX2LDhh6QSsvQps0bakPvfft+LaQs9eixQKn2RB2DB/8KF5c2iI09p+QJVVQGs7R0R3Z2FMaP34vmzUfipZd2Yt++N1Famg97+0CYmdnLvtsbGDZsNVxc2sDbuwcSE68Lk8hf9shz3x89OooHska/PH5+AzB69GYsWkQ3ty1bXoCTExmgAwb8CG1UjgRVTl2ysHCBo2MI0tLuw8OjMyZN+g8eHl0RGrqRbrSTPwYMjdA++gHK+n6DLl1mIjR0Ew4deh9vvnkeXl7dtX6+JgwNTTF06G/UFJCT6sm4kuXyF+YDFvLUCTe3Dvj441RERPyLrKwn6NxZufmoWGyANoXu8JyyBGlGBXB1bYtJk04pbK+aCqSISCTCtO4bkL9nJXbb0U2qZed3EJ13D6GhGwEAzZqNUvLOHTv2kUrNXEFZDtqJn8M97jgGv7YNW7YMVXqfz03/wnIeABo/FeXFed577y7s7AJgaCgXZZgw4RhCQzfixg2K3ltZeWDEiPVKqowLFqiqhC1YUArxgS0QPSJDq22+OwZmN4NpejTyh9MkR/F7VWbUqE0oKEjF8eMfCxNZdSiqFYaGbkBo6AaYmdnDw6MzJBJ7dOjwHh49OoJmzYbj8eMjStvyHlgexck0j7o6gcq479yPF8xD0MZLfZqnLgQFDUNa7DUEXQhHmagCe+xlkxc1zS9btHgZoaEb8f779xEffxnNmo1ATMxZ7NjxIlq2fBljxmzFvn1vIjR0IzrY9YJFhSu4XfvQotAFYaBUuy7NJ+HyQ4omviAZguXSvzFrVhxCQzfhv/8WoGtJcxiaWlCvvFiZY/PkPqAgD94jJmD+/CKSEi/fCzh6Yv6Ic7i8+S2YjpqCoLavoLQ0X2N9okgkxltvXRR+Y4kTReKMOQMYmtogMvIQIiPlDoh+/RbDwsIVZWWFSoITPObmTpgy5TpOnPhESUgiJGQM7tz5C/n5SfDw6KK0zWuvHcaaNe1w7952JCffhqmpTbVElE6f/hKjRm0UMjbu3PkTTk7PoXv3TxERcRBvvHEGMTFnERq6EX37/k/tPkxMrDB3bi6OHPlQuN4VCQgYhIAAmcEjsaA+UAmqaZeWlq5CZKGyUAx/v62Kbt3moFs3ubqukZFEqGF9++0rcHNTbQLs7PwcZs6Mhbm5I06f/hIXLnwPW1t/2Nh44/XXT+LQoWl0H5FK8frrJ5VqcJycWqrsj0csNsSLL/6FvLxEREfL+8y5uXUQxiGeiRNP4PLlpYiM/FfJOONp3XqScH5ZWrri7bevCkp9Wmt0beyB7AwSjwpQdfTzxz9nTpIQ9XznnRsq69ULEvM6jVxpY86cJNy6tR4FBWm4cmUZ/vxT7izl+5vZ2zcTUkEB+bjPz6kU8fJ6XiUtk+fyZdVoKUCCYrGxZMjxTn3a/89ITLwOf7vBgA3NKf39B+Pu3W1wdm6lpFjdo8d8NEV0Nq5GjBiBmTNnYs+ePfD3JwnJR48eYc6cORgxQn1oT19cunQJAwcq93kYNGgQ1q1bh7KyMhgZGeHSpUuYNWuWyjq8QaaOkpISlJTIJyG5uY2nqWZhYQbOX5QXHYvFRrCx8RZypfl0mtdek9/opky5BnNzZ1hbe6JrV/otzp1bjFOnPoORkQRjx24XUmH84QGUV88zoK44tS7xsGuBvpm+OGEToTLZ4jEwMIatrT+Ki7PRt+/XatdRxMGhOby9e8DKyl3JuFKkQ4epcHBojqAgkt8NCRkLkUiMe/e2IyBgiJBz7+AQArHYAJ06UU8SxUFKkb//Vk0x8/ZWTdNJTQ3D+PF70Lz5qCq/R1W0bTsZoaEb4e3dU0gl69//e/j6UtQKHr4wunQSPbqtBAwM0KHDVDg7t6qxYaVEpiy1pBq1I1XCR64K1Xv/NEqGl9H1bG8fBHs3b5W3J006pbaAXhF7+2awL7HDuIw2uO2UBwNzKyFS2qbIE61bT8S1aysE0YSYmLNo9dxruCNLx/QyC0DLfEfYZBZiuvPHQOAQ9Ou3GLGx59Cp04fKKUMSC6EPmqK3tF27d9Clywy1aREeHp3h4dEZyck3YWcXgNGj/6qWwWFgYEQTQWd3LPy4ApgyBCKIgLJSlSjm4MG/4MgRSh/u3XsRRCKxULeQlHQTd+9uhUgkhpmZnUp9jTqKijIQGXkIgYFD4eraFrNmkbe/V68vkZ+fgmHDfkdeXiLc3VUnjDwTJ57QWLdUGRFE6FDgCdjW/lx0cGiGkQN/A07QxO9f2/soFatXpwsIGISFCysgEonh6EgRIt5A5CMHQ4Ysh69vf1jczQHu3YAoJQFDxM1xT0L1EIPGb0TFIUs4ODSDfYIFvrgIwMpDqM/wM5NF2CysKXJ1/RywVZYiPXAMYGom78dm7wRDMwmez/MDXAYBsmP59NNMnDr1OTIywtEmLBdpzhKI2j2Prl3lSmQABIeSd4ktXDvNwKM4+cT6k08yYGZmp2KQ9+nzP/z33wJBec3NrT26d5+LqKhTMDKSoKysEJ07zxCiW5VT2p2dn0PPnp/j3LlvERt7Hs89N0GjDHSrVhOE/dy+vQkvvLBK1lDdCiUluejR4zN4eT2PmTNjYW3tCW/vnujZc4HaffGYmFgK6awtWoyHj09v/Pvve3j7bdV0Xbh6KUWuKhMc/KJSxoO+UFGoU8Damup++Qkxn+poaGiCESPWkoEy9w349hkODJGn/lpaKqdUt2gxTqjN46MI48fvxt2724Ua6dat3xDq7154YTWiok7Aza0DBg9eplS6MHz4Whw4QOdD5bFK2zWvhK0DtVYpKQac3DWuxt/3GhRTSbVqrvTJoEHLUFycDQsLF/ToQZkrfCqm4nXi6NgCEokDCgtpjFA3ftvZBSAoaARat35dcHy/8spBbN1KUWAjI3OlOsHK8D0uK8PXPtqVSwBrZYd9u3ZT4OvbDytXhsDZuRUcHJpV96s3KnQ2rn788UcMHjwYzZs3h4cHDdDx8fHo0aMHfvrppyq2rh3Jyclwdla+STo7O6O8vBzp6elwdXXVuE5ycjI0sXjxYixapLkmpiHJz0+qVORqCAMDY7z77i1s3TocEREH0abNm0oeBb5hnSL8CWpiYq2cHmFkROpmjZHkBLQrcEe6u7XWvjtTp94GoFmd5u3JV7Dr9z7IMiwU0j1sbHzQo8d8BAePgZGRmSBJamhohtatX4eFhYvSPoKDX0RwMEX4HB1DMHHicSGticfHpzf69v0G7f97gh85imCQVKuqR9Pamib8c+fmIibmDLZuHQ6RyADNmunHQdG162yVCZJS6oWHL1BeBqTEA27eEIlE+jGsACBDlmZg56h9vepgJotcFemoQskbY3zkqxLGxhYqClcqmNJEzr3UGu6vbwQAdO06C23L/CH5aw1QIUWrVhME4yozMxK9OswSjKtJbb+DeNdGID8W6EkR+uefnwtATW2qjR2QGA0ASmmpgwcv1SgMwfP221c0Kj5p5NE9oNdQWVqdbLvyMqW6hfffvwdTUxuZGpuLSl0mHzXnOKnQuNzGxgfu7p3QocP7cHQMxk8/Ocv2dR8rV8oNRH6yzuPoGCyod1V1M/XzU3/DVkFxXNPUwFlXLOWG77sVY5DxouZISuWURTe3Dpgw4ajQC8fY2BytWr0GZBwETpFhYj5rCbCjndB/b+hQmSjL+WMkmV9agvbt34HB6UPwN5eliFrZALlZwNF/6HwvzAdSEwEvfzKuxGLy9tva0+P1c0AzeYZA375fU/+q/0Yh8PnXgK6q38nHpzdelQ5BQF4FRAED0bHjNFy7thzdu38qZDOQWqQncnPjBIW1li3Hw8ZGXn/m7z8AX3xBjbIzM6m56quvHsKWLUOFGjxFfH374fTpL1BYWCI4sdQxevSfSsJCMTFnwXEVGDVqM5o1GyFcG7zBUV169JgPa2tv9O79JUQiETp00NDL0ycQOHuYxlRD1brdceOqViesK9q0eRNubh1VUu1x8QT1NPt3KxlXp/YD/x2EybQvEeLaG23u5MJj4S5USMxgYGCM8vISwUA0NbVBhw7v4t9/p8LGxheBgUNw5owD+vb9Fu3bTxHqp01NrdG9+1yhVrxFi/Fo2fIVjf0jq4W3Qtqus2bjqlFgJqn3yFWXLjNUlg3o+RWenFuH0c//iJCQl+DgEAyJxB4HD05FQUEqOI7D+vV0//fw6CqUkkyfrip4FRT0At5++wr++KMzXF3bCZEp+efPUolkDRu2BklJNzBw4M9YvFh+33UoMgac6V7AZ2UYG1vA0TEYc+fmaqyBbwrUKC3w4sWLOH78OG7fvg0zMzO0atUKPXv2rHpjPVB5AsF7lhSXq1tH28Rj3rx5mD1bPhHNzc2Fp6dug3BdUdljbW8vn3i0bfs2IiIOVmug8vcfBFNTG3TuXOnCMzJpvMZVWiLMpMYY6fQaoGUiXFUDSXf7FpiW1B3xY4cLN1eRSKw2JWTu3GwV5Tt1KDYL5BGLDclTdO8bIEW+jOfFgi5I6NsZcXHydBsTE0uhjqZr1zlam2zqFT6akxQnf15bwq4BF44D2emAnZN+JrRVRK40UihT0dJgXFULMwWjxpyKocViQ0hsZTf07Ay0b/s28nMTcEGmQBhgK5/AiB3daLKVmwW4VjGeWNkC2aqRtKoMKx6dDKuKCiAvp8pmoI6OIcL4qq4Y3M2toyBKYG3tifT0hyo5+b16fYGwsC1C9IansnFVJ2QpeGL11TrEyBiYtxSoKIdd0HPQJUlaJBIppXQLuCtcf65e+OSTDNUxyEn2v0pPgaGbFzrkeQBezvL3ysuAqHBg9BvAno1ASgIZV5mp5Onn+2117gNcOAaMf1f5N8nJpDQrR/WNscViAwR2fxvYsQYwNhFS3RQjJ0ZGEsyaFYuyskLhvFVnMAGUDsgTGDhEiCip/DSy/Xft+lGVdVCvv34KUmkZ/vprkJAtYGnpqtu1UQl7+0BBtl8rHXoAh7YDkfeA4DY1/ry6wNDQRNWwAoAIWX/J8jLg0X1gy0p6/eQBXnJ9G7i/H3DyAUDGqzo+/TRLJiFvoSSGoUjfvl8LxhUvJlOTps8CTgrjli6N3BuCeq65UgvHodu5FHSLbQ5cP4dmSlFKN6Sk3EFOTqzQh23y5IuIjj5Nfe80wEcFLS1d0a/fYpw8OQ8BAYPh69sPLVqMQ3LyLbRs+SoOHnwHL774N55rPhaQlTNMmHAM6ekPcenSz3BKFgNBdC8ICRmLvLwkoaavsvBQU6NGdxyRSISBAweiZ8+eMDExqdXgpQsuLi4qEajU1FQYGhrC3t5e6zqVo1mKmJiYwMTEROP7DYlIJEbvtjNge+IUrF79GJ4dxwvv8bnFlZu6qsPY2ByffJKhOnk3MgZKG6lxlUrqSyioXlM6jRTmQwwxvDy7aVxlxowolJUVVsuwqhIHV0yPGY2C9z+CWGwk5JE/Z9Yazw1eprK6paUbXn/9ZLVz8PWCuSUV3ObrIQU28i6dR/8dBO7IhGOmfVn7/QJyA6ewBpErQyNSbKrxZysYZrYKxoCFbNCf9yaMrG3R384J7aY/QkLCVUhKgVEZzyGsrT3goBD9dNVcZwiAUiMK88nRYWSMoKBhCAqqozTrEplKpIn6FKvg4DGCUI5IJML48XsFQRpFevT4DAEBg8FxUlhaugnKmIr07v0levf+EgDwzjs3sWXLUOTnJ9dPqgefEgcAHuqbjNcI/6qFIHSCd26YUYqMmbr7qa0sCpyVDri4U12jk2xiqfjdnh8IHN5BRhVAhr1i2k277hThiolU/h5pMhEcJy0G94DRQP+RgFiM9u3fgZ1doNo2C9V1CCiiKaJkYGCEefPyq7VPX1/VurrKGQh1hocvXU/REY3OuFKLtIKi117+QOxj4I8fAL/mlNqYmQbcvgIEVH2eVyf1Tiw2xHvvhQmS79oYN263WoVFJUQi+o0fhFJKbGPGwkp+bTUUUeHymswsZYPJyaklrl79TaiHmjCB2lH4+PTWuktbWz+0azcFvXothKmpDUJDN2LAgB+FOemkSf+B4zhYW3vC704i8MsIYM0hQCyGv/8A+PsPQOdO04D3Rwo1V6T8qV40qCmis3EllUrxzTffYPXq1UhJSUFERAT8/Pzw+eefw8fHB5MnT656JzWka9euOHBAuYHfsWPH0KFDBxgZGQnrHD9+XKnu6tixY+jWTfPEurHTK3gKsP8h4NULUJj8yxvH+VdrP2qjIkbGjTdyxXue+TSzmsI38VMQRKiMpkLNGuHoDLuMYti5dQYMDPD++/dRuG0pUGKjcZOqmq7qHbFYVudTS8MVAL6XqT22VMiZb9NF/bq6IjZQ2+uqSgrzaxe1AgBHBYeMopGmmOefkwXkZMEuNR92z70CnPkXrYs90HrifqBc4bpyURVkUEJ2g0FOJuDggldeUd+oVC8Uy4wrU/XG1bhxysXnzZuPVLueSCRS8ogrSeirwdW1Ldq0eQvnz3+rFIGvM3gD44uVNPltrFhYAZY2gKOLZkVD/vzISgcy0ijawKdE2TrQ9dZvJBlSNvak1glQSpJiQ3PvQDqXj/4DTPlULsaRKpsAOmgxRkQiQKY8J5E4CA3e65qaRjkGDlwCK6t6ykARGwDeAcClE0CvF+QR98ZKzCOqBWrfg4yr9GRg5ETg+G4g7gkZiW99VPV+qomTU0utQhk8wcHV7In44VdUM1ZPjv0aY21HUcGG5P5NuhcGtQSSlR3xzs6twHFSHDkyA8bGFtVOuSbFyzXC62nTVFUvRSIRArz7At/JnIRZaTTXtLKl44l9RK+ryupoouicg/S///0PGzduxA8//ABjY/lE/7nnnsMff/yhZUtV8vPzERoaitDQUAAktR4aGorYWCoMnTdvHl5/Xd70berUqYiJicHs2bPx4MEDrF+/HuvWrcNHH8kHgRkzZuDYsWP4/vvv8fDhQ3z//fc4ceIEZs6cqetXbTyUyqSQK0XXxGIDvP/+PQwbtkbNRtWkMRtX2bIJQkJM7Y5RKOrWg8BCdbBzAqRS4fgdHYPhXWILWDUyL5u5pX6MKx4+Fa+tnh0ZEnP5vquDtALY92ftv5vYAAhsAbSp1BzR0hpYuBzo1Fu+7KdPyQmQnEATVENDSglxcAHcfaqOoFkrGFd1TbGWyFV5meoyPUK1gHP0V9+njZwsuol7+jX+SVhIW6C5ahsNASNjOu+y02kiDMjTOkUiihQHy9Ribe1pPYCcDIrGlaEh7efmBeCIguR2WhKdg/qqTWtA3nrrIsaO3Y6uXWfVW1YNAErvTIwFPhxDBkpj5uoZMujbKoxtQc9RhP36WXrtrT6ls1FgZFxlWnOjwNqOxnSFPn/1TtwTGgPtnORzKhmuru1hbx+E3Nw4DB78q/7LEu4qNBmPeQQsmAJ8OBY48DcQdp3G5+Zt9PuZjQSdf8nNmzdjzZo1eO2112DA53EDaNWqFR4+1K3h2vXr19G2bVu0bUs3hdmzZ6Nt27ZYuJAKp5OSkgRDCwB8fX1x6NAhnD59Gm3atMHXX3+NX3/9VZBhB4Bu3bph27Zt2LBhA1q1aoWNGzdi+/bt6NxZtY9Kk6FEZlwZq974HB1Dape/bGwiN94aG1kZdHxlpcDyL2u+n4xUmjSY11MOLy9BrpiWlJtNN7PGhLml7ul2lVFUQkpJAAaNBT5YqHn9mmBuCeTrYCilyyKdFXroj/Hpz8C0L1SXewUA78wFvl0vX5YQA6QmKEe2vl0HfKHaOFgFa1n/sBxVWWy9U6IlcsUbXnWERGKPgQN/0k/6bVXk5SgJUDRqpnwKvPim9nVsHWlMyZWdI5VUtgSUIlcFqlEU3lmw70+qswLIuNKWEtiE8PTsWmVLjjrBT6Em7OS++v98Xbh/E2jdWXmssnei8Rsgx4tzFdF2RtVY29E1Vs+KgUokxJCDj5ewV0AsNsDEiScwdeodtG1bxfhTE2IfU+qmsYmyM+fEXhLTcvWU14M+ZeicFpiQkICAAFWPhlQqRVmZbl7P3r17CwXT6ti4caPKsl69euHmzZuqKyswduxYjB07VqdjadTwUZva1I9owsKKJiGNkewM8p5F3qP86pqSEk9Rq/ryYvIRskwF4yovp/EZV/pIC0xTqG8syNOaelljLK2BfB3O0To2EJRQ9PQnxZKB2UKheFxczRuHuRXdZOo1cqUmSlGpn1iTJr8JGVfVwd0bSIim6IKJqca0Tnj4kiJgUQGl05pVMq5emkLCM8WFQEQY0LIDGVdVpa4ytNOlH0UPD22v3f2qrinMp/No0FiKZL72AWVaAFSD9fMWas+iLxGYZxnFdO/K12F9IJXK6zPNZUqiJcVKY7+1tafOKprVJiEa8PSl2u4nD8kBMWQcsOIrIDxMSbX0aUPnyFWLFi1w7tw5leU7d+4UIlAMPcMbrUZ1IEtpaQ3kZet/v7WlvIyOq5us8V0H1b5Q1UIqBW5dVJ7w1jUmpmQI82IR0gp6bmVTf8dQHfSRFpierPy6LqKDFta6OQDq00uoaKDkZpGxWRN5YLGYctEz06pet7YIkSs1IgH6TBNtaPJyG3/Buy54+AHxUUBOBp0rmmj/PDnkzh6WRa4q1R4aGgKLZP2wTuwDPn+HJj5NIc2qMSMSUXTAwYVShBsyFUwbvMCCm0xkp89wqtfjsbbTTwN4hvw6VaMEWy/kZtFcysGFzs36PpbMNHI28+0JXnwT8G1G97vMVMCvafawqg46uya++OILTJw4EQkJCZBKpdi9ezfCw8OxefNmHDx4sC6OkVFWSl7t6nrBdcHCSreoQH3Be/BtHcizWs1GxyrkZtHEvJmq2lmdYmYuT7kryAM4aeOLXJlbAomqPbiqzcl9QPgd5WV1YUBaWlN6QXXhjSsz3VXLdEYxmpwQQ6mINe29EtACuHMVGPOWfo5NE3yasbrI1dNiXGWmAXevAT1UG3g3WTx8KcUoPEy7ccVHznfKaqDViSvYOwMunvQb8WgTs2BUH3sn+j/lN8JsBUCpsTSjjrGpx1padfCGtKOLfP6Yna5Zwv7CcbrfttLcnFoncjKBlu3JeE9NlNeVzviaHEU9h+rncxohOkeuhg8fju3bt+PQoUMQiURYuHAhHjx4gAMHDmDAgAF1cYwMDY0J9YKlNUVVGpuXjc8NtrGn717TQnteabC+xCx4JBZyhTu+jqbRCVrUMi1w6yoqjFc8NzXVgdQGnSNXMuOhfT1I2ys6PB7epseaKtO1aE9pFHUtMJOfS84adWnGT4txtWcjFb13qJ/+i/WCp0xyPTqCBDA0UTn9WVMbAL6/Fh/BYJNt/eAoM1KT4hr2ODSRnkLX/tMU1W2smErIidVQxhWfWWLvLG8nUqnuSqC0BNjwM/CrnmqmpVJ5KwhPP+X7cYv2lJb6lNZbATpGrsrLy/HNN9/grbfewpkzZ+rqmBiVkfW+qRMsrampaGF+/Qk+VIdMmdqVjQNN3gtqKLpR30qBPBILeeSK79fl0MjSbiS1ELSoqJA/f64jpV4CdWNcWVrTpF9aUb3oLSerH3h5qv6PRRu8PHZNfwNbB3rMzpRP0OqCxw9IkKPyJNzQSD99zxoDKQlAx15Ai3YNfST6w8qGrjUjY+CFV7Sv+/MWYP3PNMEJ0hC152us3pxD+2zMcvVNCQ9fupZvnNf82zck2Rl0fI1dQfNpwcYeiI9umM9OT6HoqWJ95trvSZJ9+GuUnscTeVe/n12QS/OEupgTNAF0ilwZGhrixx9/RIXixIpR99Rl5Ir3XjU2UYsnD0g61MKSagRqqvyWnkIpevXdd0SikBaYkkgpao2x5qqkuGaREr5Or9dQ4OV35cu1pSvVFEtrMpgKqmkIFhcCIrHGJrl1imf1es6phfcsJkTr5VDUkpkGhF5SX4Nobvn0GFc5mfKUnKeJGV8D739etdiAtR0w6xtgzmLlCZQiQ18G3lsA+AQxw0qfiA2ocL82Kdd1SV4Oi1rVJ90GAJdO1l6ZtyakJSs76nhj/8DfwJ0ryuuGh9Gjial+Mpn42i5mXFWP/v374/Tp03VwKAyN1HXkCmh8xlV4mLxOqqZpgRxHkSuHeo5aAcqRq/QkKhZvbJ5CPlJZk0Gfb8zcfZByXUFdKEzpeo4WFwGmpg3ze7vUsN4KkBcc16btQFUkxlD6R3c1Kdxm5g0rGawvOI5ScZ/Rm3q1MTGlVJ3GNi49Ddg7K7fiaEw0pRYFTwMde5JzMELPkaHqkJ6sPP/56Dtg3lJ6zhtTPBF3yBFTUkzNymsLnwrJ39eeMXSeCQ0ZMgTz5s3D3bt30b59e5ibK0cERowYobeDY8io05orG3rUt8c67Bp57zSlGuZmU3M7dWk7hQX0Xp9h9NrISK6YqAsbfgYunqB+HvWNxELuuWyMMuyA/H+Tn6v7RJQffK1t687w5+G9rIrCK4/vUz67u4/q+kWF6pXw6oOailkAylK9HFc3k15ezEKdLLCJqfz9pkxBHo2ZzLhiNBT2ThQllko1mdy3OgAAPeZJREFURw4bivzs2kXYGbrh6Ep/Ny8AbbrU72enpwABIfLXYgPAP5icKoqNrosKgKgIShXc/zc1/+05pHafzRtX1nWQzdIE0Nm4eu+99wAAS5YsUXlPJBKxlMG6oKysbmTYAfkEW59y7Pm5wC+fA137A5M/Ur/O2u+BB7eAFXtVVcuS48jTw3eINzACKmpgXF08QY91obJYFRJzeRpbfq68nqYxwacpKkaErp4Brp0B3v1MexTq3GHyfto51r3nm/ey5mYBsY8o5W/xbEpnWvCr6vrFRfVrXLXqRCp/ABBSC8l/kQiYOh9Y/Q2dOxZ1UAPJN41VJ2bxtBhXOc92OgqjEeDmTQZ+TCRJTzcmWOSqfhGJSBVvzwZg8EtyAZm6prwMyEpTrwLq7AFcOiF/ffMC1TR3Hwjcu0HOcX0YVxZWdRcYaOTobFxJ+WZzjPqjvLTuTlADA1mthR7TAm9fpkdNKUbnj5JhBVAEIqRS9IqfAPITZEMdI1ccB2xZQc9D2gFjJ1d/W30hsQSKFKTYG2NNA+9R4iejR3cBO9fS84ehJIGvjtREIPQyvV8fKUUSCzoH/t0OxClIsmtqFpyXrV5mvK748CtKAYp9VHsvHa/Ylp5cN8YVX1+nLtpobCq/9poyfK7/01hzxWgaNHuOshVunG9446pYIZIvlVLWSF3UxjI0038ksHcjtS6pL+MqK4PmQupUQJ3dKfuEbyh8/xbgHUjO0hbtgeN7av/52ZnPtINLp3h1eXk5DA0NcfduA+SOPsuUldVt6pWFlf4kmMPvABtkUU1OgyG+can8eXyU6vulMu8571030rHmqiAf+E/Wc23Yq7VL1aopEnNKT+MbCFtY1f8xVIWJGf3GfP3U7vXy9/hl6uDlXV95X3l5cBs9HpwCYjEZcbxh1f55ilqlJKiPtFz5j+Sq6xN7J6Btt9rvx0nWfyQ1ofb7UkdpCf3PFY1i3vA3MWGRKwZDH4gNgODWQERY1evWJWcPA9NeJFElgJQCy0rl4wyjfjAypr5y8U+qXldf8NlI6gxpvjaYVzJ+dE8uduHsQXXYtRXgyEp/ZuutgBqoBXp7e7PUv/qmLmuuAIoMVFeJrSruXqdHK1tSqqmMYuTTxp4myJURUpdk0QddBS0yZb2tXvsACGxR/e30icSCHgsLyHBtjMaVSET/p5wsWY2PwnCgbWDNkvXJsFNIdfx5CzB9Ud0cJyCfDLw0hRTOJs0k4z3mkfJ6ja1fm66YW5JRkBhbN/svLVF11MxbCizdRsb202JcSSzUpz4yGPWFb3Oqa2nIMenEXnpMiVd+dPZokMN5pvHyV65zqmv4dH91KaBOMuOKd1BmpMr73vECGLUVZMnOkCvgPoPoXGm5YMECzJs3D5mZDdQU7VmkrLTuaq4AZdnw2hL3hIo2X3yDJKUrG0+8EMKHi6jQUl2jxZJKdSGGhkC5DlLs6TLjqkOPhlPC4o2r1EQyDBtrGoajKxATQdG18jIyXGzstUcyszPIWFScpFvb1e1kdtY3wMIVwKAx9NrNmz4vKlx5vadB7c7NS1XGOSWBoqC1hY9cKWJiSilMJqZAiYZUy6ZEVjpLCWQ0PA4udO/WlgVQ1/CfzTeOTYwlZyVrGF3/ePhRpo4+xvHqwBtX6hy7FlY0R0lJkEeveIOb7wla2yhbdgb1KX1G0dm4+vXXX3Hu3Dm4ubmhWbNmaNeundIfow4oKwMM6zAtUGJJERZ9kJVO/an4FLHtvyu/z6fs2DoCzdtQODonS3md0hKqBeMFFXSNXKUlN3wHer6v1sPb9NgYa64AoMPzdIzJMiPXxl4WydRiXOU0QC61jT15/ngMDMgjV5hHxbgfT6CasXw9pbc2JK5eypGrwgJg/mRgx9ra77tMjXHF8zQIWpSXkXOlvpuGMxiVESIAKfX7ufm5wJ+/AWlJ8lpq3qkZ94ScN3XRMoOhHe8AmtvEPq56XX2Ql0OqsOqynkQiEtnKySQHpUhEaYsACV21aAfsXCefr+lKRQVt2xiFvOoJna+wUaNG1cFhMLRSXteRKwt5ukBt4fNs7Z2Bdt1JjlYRXvLd3BJ4rgOlCcY9BqwVxBMqe9d546q68tRJMTRBbcj+LU5uFNn5dxsVEzu5NtyxaMMzgH7Xk/voeN286H+jLZJZkKdZYr8+cXIDrp+j3xggMQ6+N1pTxt0bOH1Qng4cK0t9PH8MeHlq7fatLnLFY2Iqr3dsikSEAT98TM97D2vYY2EwBHGaFGpLUl/s2wyc+VcehTYwpFpogIwrJsPeMAS2pAyW6+eoZriuyc/WrgrJN42/dhZo3louoCQSAW99DCx6H/hnHTD5Y90/OzeL5nbPcFqgzsbVF198URfHwdBGXQtaSMz1E7kqKaZJOX9BuXoC0ZHK6xTIjCsLKxr0xWJ5Gh9PabHyBNDYhAyAG+eADj2rPo7EWEoba0jMzCmF7cYFYMi4hpGDrw7Oslqm6+dIetXMnAZdbZGrxmJcde0PrP+Jnrv7UBoCb7y/NKXBDqvWOLjSjSkrA3B0ITlngFKMKiooaldTSku1G1fFTdS4KsiTG1YAYG7RcMfCYADktDQzr/9mwvdu0uOV/+hx1CRg1zoaHxOiga796vd4GISBrMdUTGTV6+qDrAztkSMLK3nkatTryu9Z2wL9RwEH/gZGTlQv517VZwMsLbAm3LhxA3/99Rf+/vtv3Lp1S5/HxKhMWR1KsQOytEA91FxlyaJUto70aG1HHgzFgt78PJrcGZvQYGPnqGpclZTIxSwAoG1XeqxsqKmD44Ck2PqTO9XGqEnA12uAbv0b+kg0o2gkjZpEj7b22ju0F+Y3jslrm67y5x160P+eN656v9Awx6QP+N+2SObw4G/GFeV0bteG0hLASINxZW5J3m5dUnAbC7wq26SZwKxvgQFjGvRwGAwAlBpYn2mBudlUQ2NkTOOhiSnQvBW99+AWXduefvV3PAxlPP2AODUKyXVBVWp9FlYU0SwtAYLbqr7f+wW6J/CZIbqQLZs/PMORK52Nq9TUVPTt2xcdO3bEhx9+iGnTpqF9+/bo168f0tLSqt4BQ3fK67CJMECTuaICZSW/mpCaRI+OshQ4K1s6dsW83YJc5Qm9o6u83oencuTKVEIyoRmp5LnXRlY6SaC7NgLjqqnw1e/UvJZvKmwvmxBoUrkqyCODvKGRmAOvvg98s56ipIX5QHw0OSKaslKcmaxej3d4xDwCegym6+DG+drtW1vNFZ9CothUuqnw+AE5anoMpnqBuugRxmDoir2zvHVFfZAsS+9vIat/D2xJNdAAcPsKPTLjquFwcKE6OL7fYF2SlS53dKuDn4e5eqmvCZdYkGP41kXVucDD28CaxaplHzyZaXQfbsi69wZGZ+Nq+vTpyM3Nxb1795CZmYmsrCzcvXsXubm5+PDDD+viGBlldS3Fbk4XT22V1tKS6Dh5b4V/ME3kzhySr5OXq3zB+YeQqIWiYaeuLsTGHrh2BvhkovZj4NUHG0Pkqqng5k2RHx57ZzJQNUUzC/IbR1ogAPQdQamNQTLv7JEdZNA3ZL1dbeHFUIoK6C8lAQhoAbTuDIRdq92+S7QZVzb02BSNq+T4hk8FZjAqY+9Uv2mBKfE09vEGVbf+5DQxNKLG7w7OciVbRv3DO3301VdUE1IppYHaaUnL40WpAkI03y/9gikbRDGTJTMNWLEIuHoGuH5W/XaJMeTwbMr34Vqis3F15MgRrFq1CsHBwcKykJAQrFixAocPH9brwTFklNd1zZVssK1tr6u0JBq8+foiWwcq5FWUW89MBewVvCneAXTxKk7oCvJUbwB87nBV6jXpyVTHxdTCag4vvlE5ogjQoF2o5v/T0FjZPD0GtWLkileW8gkEmrUicYvaKPqVlQDGGsYSIXKVXfP9NxTJ8Q3TLJzB0EZVWQD6JiWBDLpeQyl61aYr3Q9tHWge4cGiVg2KuUwWvS4cWEUF1DQ68p68tYq2mqtu/YGWHSnarwk+yqnYn+vSSYAD4BWguUl2Yswz7+zS2biSSqUwUpOiZmRkBGlt08oY6qmPmisAKNKDceVYSRXP3pkMKp6MFLlXDZBHQNKTgMf36SaUniKXseVRTPPTdp5lpFARZW2K/p913Lzp91OXG56XTb9/Y+y87tBIFRl1hU9rLCqkeitjE5LJdZQJXWTXosdgaaV6RkWaauSK48ipUnnsYTAaGgdnuubq65rinQzuPlR7yEep7WQOTZYS2LDwPaf0FbmqqJA7r88eBjb/Aqz6n0L9uxbjSmIBzPxau5KlrWwuxaf/cRxw5woQ2IKM9xiZku3hncC3M8mo47jGISrWwOhsXPXt2xczZsxAYmKisCwhIQGzZs1Cv35MhaZOKK+HtEBAP5ErFePKifpOAeoNJ95Lv3g2/cU9JgOpcuTJ1VP+PLdSXyxF1BlmDN0wMqabc8Qd1ff4QdZeSy53QxFXT/1D6gO+11jMI5oQGRjIa+Lys2u+39ISzVFwE1OajDU146own8bIxmjwM55t+PthaqL29fRFSoK8GawipSX06B1YP8fBUA9vXPHCS7WhIA/46FXg8ym0vweynpq5WfI+ibXtMyUWU/pgjkz978kDqm/tMZgk/bPSaX63dxPw5CEpVOZk0pj8tGSS1BCdjavly5cjLy8PPj4+8Pf3R0BAAHx9fZGXl4fffvutLo7x2YbjKHJVp2mBsuhRbRUD01NUJTttHSjaUVFBnvjSEmV5zsrpZVHhdByVDSSfIGo6DGhXskuKZelB+qBDT+DmRfJIKdbi8caVYvSxscCfFzP/17DHoQ8cXUk2+dE9wFfmWeRrFXNrYfyUlgImWsQ+LK2bXlog34Tc2rZhj4PBqIyLBzlG4utBIY7jyDGpzrnIZ37wQheMhsHMnM4HbQ7i6vL4vtwRdvMCqUF27kOv798khzyfjVAbrO2ofguQC6a07AB4yaKga7+jz7Kxp0yLhBha/oxHrnTuc+Xp6YmbN2/i+PHjePjwITiOQ0hICPr3b8Ry002ZinJ6rNPIlQQQieXd3GtCWSkZTpZWysv5Oo78HKBY1tSQ98AD8qgZAJhJgHBZDm/lyJWBATDlE2DOq/LJVGWS4yk3uOeQGn8Nhoyg5ygasGsdTbbHyfpGZaZRdKOxCFooMvljqklq2aHqdRs7zVoBB7fQc15Kmfd61sb40SbFDtDNuKlFrviJipVdwx4Hg1EZI2NK6a2PqHox77xUE8F97QPqZVSXTlpG1YjFgKOb3EipDekp1CvUzJzSASUWwOhJJPx16SRFlsQ17rYkx8YeyJaNsWlJ9NrYBHByo8cnD4FOvWmumpUBxETQXO4ZT9PW2bjiGTBgAAYMGKDPY2Gog5fsrMtBUWwAWFlTj4yawke9Kkt0K9Zx8MaVYtdwEzP5cwcXIFwW2lbnfbO0JiNQk9fn0HZ6bNZKp0NnqMHDR/5c0euamUr5+41RBahrv6enQWbz1mRcicRUdAyQg8HCqnbGjzYpdkAWuWpixhUvcmNt06CHwWCoxcVDnhpflwjXgRong4kp/TEaHndvedpebchIoXuxxIKc1x170hzKKwCIjqDP0Qc2dsCj+/Q8VaH0Q2wAtOlCKpQdegARdylqFRUBeAfpx7BrwlT72586dQohISHIzVXNFc3JyUGLFi1w7tw5vR4cA/KGnnXZ5wogr6+miFB1KJQ1PFWMRAHKCmS8x10xVM1fgIZGlEKYk0WGpJWaFB+xAe1Pk2JgfBTw/KBnPhytF0wl8ueP7slTAzPTtPfOYOgHvsj4lamAoYIPzNZBc2+RqigvJ6VBrcaVTdNLC0xLIqNT8ZxlMBoLvGJgbcmvQgSBF7phtYeNGzdvUtOrLXx9OZ9F4hVAj4PHktNaXxk81vbytMDKdfXvzANW7gPadad7U1Y6GXY+Qfr57CZMtY2rZcuWYcqUKbCyslJ5z9raGu+++y6WLFmi14NjgHpcAXUfzre2q1rmXBtC5KpSDRWfApiXQ38ikWqDz9emAfN/kRtU9s6aIyP2TsD9W6rStlIpDVjqmuExasbcJcALL1P09LrMcZKZ1jjFLJ42jE2A3/+lPl6K1GaitvJr2b61jCUSc6qNbEowGXZGY8bBmXpd1UZN+eppYOZL2ntmaYtcMRoPbt6UfVNbUYsMWY17WhK95jN2OvQEftlJqf36wMaO5m7lZSTM4qQh3c/dGygpIgPLlxlX1Taubt++jcGDNevhDxw4EDdu3NDLQTEU4I2ruqy5AqgYnPdO1IQiWeTKrFLkysSMDMPcbPozt5L3weLpM4wU0fiCdG1qf71fACLvqtaHFcj6Otixib/eCAgBRr9B/5vHD2hZTia7edcX6toJODiTx7Im3LlCjxVaJnmGxvJU5KZCaiIzrhiNFyc3ujelq0kNTE8G7lVj3nTzIj3Gaqndys6k+62pmeZ1GA0Pr6JXW5GT9FRytk2cDgwaQ+mnPIY1rvhRhY+Exj0hhUInN/XrBYTIn7dor7/Pb6JU27hKSUlR29+Kx9DQEGlpNUxXYWimnK+5qmPjytG1dnKxfN+GypErkUiuQJaXTbVdmuAn7fZalOh4KdnkBOXlTDGs7rBzokJVgLxtFlr+h4y6xcUTSEvUvZGwYkPoshLN6xkby2WbmwpZ6Y1TvZLBAEhYAFBvGP32JbB0vva+R1IpqbABJBagiZxMijIwGjeunjRPirxb830UF5GD2d4JCGkHvDRFf8dXGV4Beu8mcvKHaFCcNJVQtsvCFczAhw7Glbu7O8LCNHRjBnDnzh24uuquDrJy5Ur4+vrC1NQU7du3r7Jua8WKFQgODoaZmRmaNWuGzZs3K72/ceNGiEQilb/iYh0nI42F+opcubjTAF/TYvaiQiq+V1c0yyuQ5eVon5i7+9Cjtl4cTm5ksClOFgG5ccUUw/SPrQM1JSwtoT8L1dRgRj0R1JLaGuh6Y14gu/m26UI9SjRhZFLzyFVhQdV1IfpGKmXRVEbjxtqW7oEJ0crLOU7u0Lx6RvP2sY8p9cvOEbhyWvP1mZ3BroOmgNiAUvYe3lb/flEBsGYxEHlP8z74tiPaHNH6wtmdzuF7N+n+oe3+HxACePnX/TE1AaptXA0dOhQLFy5Ua6QUFRXhiy++wLBhw3T68O3bt2PmzJmYP38+bt26hR49emDIkCGIjVWvpLJq1SrMmzcPX375Je7du4dFixbhgw8+wIEDB5TWs7KyQlJSktKfqWkTVcrxDgBW7a/7zup848HUBO3raaKkmAwrdbVSgnGVrSzDXplmrYDVB7UXYhqbUM4yn6bGk8vnm7PIld7hC1X5HHFmXDUcrl4UZb56uvrbKNYnjpig3VFjXIu0wK8+oLqQyvWQdUleDhlYrIif0ZhxdFFN533ykK41QyPgwjHN24bfpvveBwvJyNJkiLHIVdOheWuaw6jLEji8k/7HW1dq3j5LliVW2ybB1UEkkteydx9Y95/3lFBt42rBggXIzMxEUFAQfvjhB+zbtw/79+/H999/j2bNmiEzMxPz58/X6cOXLFmCyZMn4+2330ZwcDCWLVsGT09PrFq1Su36f/75J959912MHz8efn5+ePnllzF58mR8//33SuuJRCK4uLgo/TVZRCKqWapcp6Rv+FolbQ16tVFarLk5qZAWmKMsw66O6uQKB7VUNa7SUygqpk0JjVEzbB1IsIQf0Jlx1XCIREBwGyA+uvrbKArVuHhqX9dIZlzpaiAVFshrSlZ8pdu2tYEV8TOaAg4uqkI0kXepRmryx6SwpiktPymWsjq8A8lRmalB1IJFcJsO/sFUh6dONfDqf/SoLYuIn6fVl1PplfeB3sNYE2odqLZx5ezsjIsXL6Jly5aYN28eRo8ejVGjRuGzzz5Dy5YtceHCBTg7axEiqERpaSlu3LiBgQOVLeGBAwfi4sWLarcpKSlRiUCZmZnh6tWrKOPT5wDk5+fD29sbHh4eGDZsGG7duqX1WEpKSpCbm6v098whsSDDJKuGohYlxYCxhuiggzP1SUiMqXpyVx2s7ZSVdhKigX1/1n1d2rMK7x2LeUSPrOaqYTGTkCpTdeHVpN5bULXzgX9f1+gVHzn2DwFCL9VfryxehId57BmNGUcXEjDgW5YAQFIc1d80b02voyPpfL5+Vtm5kZ0pn0Tb2Gnu85iTySK4TQVXmahFQiXjqqiAHMX+wfR/1qQwmZVOjur6agrt4gFMmFb3Tv6nCJ26fHl7e+PQoUNIT0/HlStXcPnyZaSnp+PQoUPw8fHR6YPT09NRUVGhYpA5OzsjOVl9w71Bgwbhjz/+wI0bN8BxHK5fv47169ejrKwM6elkyTdv3hwbN27E/v37sXXrVpiamqJ79+6IjIzUeCyLFy+GtbW18OfpqQcDoKkhEsnTv2pCaYnmJoW8RKhUSp28a4tppcll+J3a75OhGd64un6OjPD6yPNmaMbETDdBi8h7tE3rLlWvy9+sS3U0rvhaq77D6TE5Xrfta0pOJo1d6vriMRiNhe4DKfrPK3YCFJFy9aJJsq0D8OAWMP9tYPW3ygqC2Rlyo8nKVt7PSpGSYqp7ZpGrpoGpGTmdK0eukmTjZnAbqq3VJHSSlV4/KYGMGlOjFsq2trbo2LEjOnXqBFvb2t3URJVqdDiOU1nG8/nnn2PIkCHo0qULjIyMMHLkSLzxxhsAAAOZbHGXLl0wYcIEtG7dGj169MCOHTsQFBSE3377TeMxzJs3Dzk5OcJfXFycxnWfamzsgewaGld8zZU6gloCr30A/G9t1WmB1cHUjIy5igp6zXvJ5yyu/b4ZqvA39ogw8rI+453XGxwTM1KLqi6P75MntDopt7xxpU1RUB38JMCvORk7KfVkXGVnUCRVn9LDDIa+cXIjxxTvvOQ4mXElc+S27ACcO0LXnYEhcOeqfFvFyJW1HfV5nD8Z+Gu5PC02m6XHNjncfFQjV0my17xDWlPvUWZcNXoabJbk4OAAAwMDlShVamqqxvRCMzMzrF+/HoWFhYiOjkZsbCx8fHxgaWkJBwf1J5pYLEbHjh21Rq5MTExgZWWl9PdMYmVb83QebWmBYgOgz3D9pAQCcpnPYlmz0wxZGF1f+2coo2g0d+3XcMfBIExNKXJb3bqo5Hhq8Fgd+LRAnSNXsjRdG3vqZZejIXVJ32SzVChGE0ExMyQnkyJNfM+jweOAbgOA8e8CwW2pWTtA6bn5OfK0VydXuvZTEoDTB4E5r5LzhK/DYn0emw5u3kBitPKyxFiKaDnKlLc1jaNZ6YANM64aMw1mXBkbG6N9+/Y4fvy40vLjx4+jW7duWrc1MjKCh4cHDAwMsG3bNgwbNgxiDd50juMQGhpaI5n4Zw5La2r0WxO0CVroG1MJPfLe+8x0wJbdVOqUwJb0+Fynhj0OBp3/HFe9flTlZVRzpdhgUht85KpcR+OqIJeMcCNjwNwCKKwnSXZWxM9oKtg6yo0rPh2Mr71xdgPemgP0GwnYVTLCALkDgV9fkYxUEpMRiZhx1ZTwDiAjOluhzp1PFeXHNBa5arI0aC7F7NmzMXHiRHTo0AFdu3bFmjVrEBsbi6lTpwKgdL2EhAShl1VERASuXr2Kzp07IysrC0uWLMHdu3exadMmYZ+LFi1Cly5dEBgYiNzcXPz6668IDQ3FihUrGuQ7NiksrWsXuaqvSY5JpchVdjrg6Vs/n/2sMv1LSv1i6VcNDx9J1JSKe/YwsG018NEPgAhU6+hezetDiFzVIC3QXBbxNzNXLtyvS7Iz5DLBDEZjxsZO3usqKY4k2B3UKBnbOgChl+l5diXjKrgN9Uga/iq9/nkeOUTzsmmd+hI4YNQePvUv4i7QqRc9T4oD2nWj/6PEQn3kqqSYMgXsmSHdmGnQmdL48eORkZGBr776CklJSWjZsiUOHToEb29KYUlKSlLqeVVRUYGff/4Z4eHhMDIyQp8+fXDx4kUlMY3s7Gy88847SE5OhrW1Ndq2bYuzZ8+iUyfmca8SKxt53xhd62q01VzpGyEtUBa5ys5kIfK6RmJBf4yGR9G5oK5vXNg1Mo4ehgIGBmQw+WhpzK2IsYLhpgv5eYCFJT03t6Di/fogJxNo2b5+PovBqA1WNsBDmfMyKY6asxqoUV/z9COluI1LgfNHaZm1zLiSWACf/Chf19GV0uJvnKdICKPpYGVDYzkfuSoppgikqyyF28pWfeSKTxm1Y8JSjZkGd0O///77eP/999W+t3HjRqXXwcHBVcqqL126FEuXLtXX4T1bWNkBnJS8YLpGoUqK5ZO+usZMIS2wuJD+mBQz41mBdy4UqYkOcRwQ95iexz4GJOaUZqKtcbAiEnN61NU4KshViFxZ0Ou6QCqlCYepGY03uVnyiSeD0ZixtKF7KyBP/1JH6y5Uf8UbVla25LBQh409Rbky04B3P9P3ETPqGnNLeQp1WhKN387u9NrZDbh5ARj4onK6J98vjan2NmqY7BdDjpOsLi1NjRR+VWk+hXmabwD6hm9im5+jmjbBYDztuHhQ2oiiohhPzCPqk2LrQDfrTB1z881440rHtL6CPJooAGSg1VVa4NLPgI8nAJ9MJCOrogKwZdc+owlgZUNOyJJiEi5w1SDAJBIBb84GpnwKfLAQ+G4jLVOHjT1d52YSwCeoro6cUVeYW8qVVvkoFT+ejZpEQiWfTKRxju95lZkGiMQsW6eRw4wrhhw+/7typ/gTe4EPx1Athzo4DijIl0+u6hoTM0p1yslSaCLKJliMZwQzc+D5QcCh7arpe4/uUZTq+UHUtPTuNd2uDUNDur50FaTIz5M7PaxsSM0sX8+iFhwHPAil50WFQNwTel7dejIGoyHh25DEPKIIlpsWBU+RCOjcB2jbTXvjb/7aDnpOfYoho3GjaFxVltP39AO8Zenc774ArPyKnmemUqYOq39u1DDjiiHHxJQGa0XjqrQE2P8XPU9LUr9daQmpktWXcSUS0QCUk8mMK8azSceeJNOckaq8PDWRItD2zkBFOS3jU/2qi7mFauQpJRGI1tzOAgW58pqrrv0pVTf8tm6fWxW82I6XrLbk7GGqQXFQ37qDwWhUOMsUOzcvI4OphR5qBfn7XvM2td8Xo/4xt1COXEkslEVJpn8pf86LnGSksXqrJgAzrhjKOLkBqQny19ERVH9hYKi5Wzi/vL6MK4A8N7xxZWZef2IaDEZjgG89wEs286Qm0TVsp5AyMmisbvs2M1etuZr/FvC/6erXz86gP3uZkeMoi4BrGi9qSpaskHvIOHoMvUT1CJpSphiMxoS9E9CyI/Wda99Dd6eHOvgUsuata78vRv1jbimP8KtrK2FjD/QfJX996yIQ+4gpBTYBmHHFUMbJVTlylZpIkxf/4MZlXNk50bGlJLDCTsazBz+p4lNFeDJSyMgJbAmMmQx8uUr369LcUtm4UmzPoE5F8MEtqgdo151eiw3IA1ugZ8VA3pAMbCFf1neEfj+DwahLJs8BXnwTGDlBP/tr3QV46yPWjqCpwmfgAFRLpa5P2ctTgWU76fnezSTn37V/vR0io2Yw44qhjIMrFcTzpCZRQbyNnebJUkMYV4EtKaoWepnyzRmMZwle/a+kmNIDebIzqNDZyBgY8lLNJl2SSpGr2Efy53ydkyJ5uVSnpXj9K9YS6IvkePocK1vAwpoK+Fl7AEZTwtIGGDpefX+rmmBiCnTrz6K3TRVbBzKuystJhl3TeWFhCQS3JcPK0gZo2aE+j5JRA5hxxVDGyoYmRRUV9Do1kXppaJssNYRx5RNI3vK8bHkNBoPxLDHtS3rkayFLikmevbbqeZJKfaqiI8mYMzBQNrR4CvNUr31zC91FMTRx6QSQHEcTC3dv6sH3/SZg7s/62T+DwWA0BHaOJNSTk6HduALkqq/BrZkx3QRgciMMZSyt6WIvzCMPSVoSqdZILLQbVyKRXMa5PrBVCJ+zHleMZxHfZvSYHE/KY3zaXG3FXSobVw9vA8FtSJ1TnXGVr8640lPkqqICWPcTTSwsreXqWazGksFgNHX4NMArp0kB1dtf87q8cA8TL2kSsMgVQxm+EShfZJmWRHVYZuakAKaOgjyakInr8XTiZW0B3RseMxhPA5bWFE3KyaLX+lLOVKyX4jggKpzqnLwDgHs3ydhSpECNcSWx1E/NFV//mZVOvYHcfWq/TwaDwWgM8AqSuzeQaJg2w6nfSOC9BUDXfvVyaIzawYwrhjKKDXrz88iD7eQGmErIs8Jxqtvk59ZvSiCgbMgx44rxLCIWU+1RbiXjSpemweqQWFB6IUD1AMWFFBnzCiAj56dPqccWL3RRoKaBuKmZZmeMLiREyZ+XlwFuXrXfJ4PBYDQGDAyA3sPo+cvvandQm1sC7Z9XlmpnNFpYWiBDGUuZcZWXAxjIvMaOrlRwyUmpp1XllBx1nuv6oN9I4L8DcoOQwXjWsLKVGzlZempLILGg67ysFEiKo2UunoB/CBlb18+Rp/XoP8AvO8moc3ZT3oepGVBcVLvjAICEGMBMAji5A9IKErJhMBiMp4UJ0+iP8VTBjCuGMuZWVLyelS5XIXN0o4kbQN7oypO3wvyGUe165T3gpSn1m47IYDQmrKxJ1AWgoujailkAckdJfi4VWYtElO9vaASMep1Eb7asJKdKdgaQGEOODkVMJfqJXEVHkCrg7MUkYGNgUPt9MhgMBoNRh7BZKUMZsZj6RqUnU6G8hTVJM5ua0fvqvNHFReRdbggMmX+A8QxjZQtky/qkZKUD1nowrvi+cRmptE8rG7n0OwB06Qu4yGoFfl1Ij7y4Bo+ppPaRq5QEIOwa9fIRiZhhxWAwGIwmATOuGKo4ugJpyUD4HSAghJaZyowndd7o4kLqP8NgMOoXeycgM5WeZ+spcsXLAaclUWNL20qNLSUWwMz/0fPYx9Rg3KuSyhVfcyWV1vw4eIn5tt1qvg8Gg8FgMOoZZlwxVPHwAyLvAo/uyWsc+MhUkRrjqqRYHtliMBj1h4OrPIWXbyBcW0zNSIkwPRnISlMvkKGoSPhcJ9X3+fGitLjmx8FH5Kxta74PBoPBYDDqGWZcMVTp1IvqKaRSatoJKKQFaohcMeOKwah/HGVRpugIMkb01fONj16nJADO7qrvGxqRiihATS0roy2NGCDV0ccPtEe2sjMoLVkxJZHBYDAYjEYOK1hhqOLhI3/O11ZYyHrq8MIWihQXsbRABqMh8GtOxs8/64GKcnlTytri4ExCFRmppBSojm/Xa97ewoYeM9NU+25xHPDDxxQdn/UN0KK9+n3kZLKoFYPBYDCaHCxyxVBFbAD4BFI6kL2sK7iBAWDnBKQnqa7P0gIZjIbByBjo1Bt4fJ9e886Q2uLgStEwjqtZbykvP1IVDbum+l5GChlWADUG1kR2Ru0bIjMYDAaDUc8w44qhno9/BBZvIJUuHgcXShU6vAM4shOoqKDGnuVlcsELBoNRvwS3lT93cNXPPl0VjDSvAN23NzQCuvSjXlgllequnjykRytbIEmLcZWTyRqEMxgMBqPJwYwrhnpMTFVrHVw9gZsXgF3rgX/WAb9/CxQXy9dnMBj1j59MBt3ZXX+tCbwD6dHcsub77DeSmhHzUSqeo7uod1VgC3LWaCJHjzVkDAaDwWDUE6zmilF9eA+2sQkQ0haIuAvk59AyvvEog8GoXwyNgMUb9Vuf5OIBtO4MvPBKzffh6km1W9fOAi070LLyciD+CfDyVCAlEUiIVr8txwE5WSwtkMFgMBhNDmZcMapP81ZUMN9nOODqBYReJsUvQLUXDoPBqD941UB9ITYApi+q3T5EIqBTH+DsITKWRCLqXVVRQeNHWSkJXvDvKVKQR+nGLC2QwWAwGE0MlhbIqD4OLsAPfwJDxsknc4/u0aOdHvrrMBiMpwu/5kB+LhlRAJCaSI/O7uSoKS0hQyomkowsnhy+xxUzrhgMBoPRtGDGFaNm8Ok6929Sw1Ej44Y9HgaD0fjw9KNHPv0vKx0QiymF0VkmmnHlP+Dr6cDBLfLtsmUtH1jNFYPBYDCaGMy4YtQMiQXVemSkAm27NfTRMBiMxggfecrNosfsdFomNqCaLAMD4OFtem/fn0CerIYzm0WuGAwGg9E0YcYVo2Yo1ki06txwx8FgMBovhoYkdsMbV1kZ1D8PIOeMswdw66J8/YI8eszJpO1YRJzBYDAYTQxmXDFqDi/Vru9iegaD8fRgZQvkyiJSWely4wpQbfdQVECP2RksasVgMBiMJkmDG1crV66Er68vTE1N0b59e5w7d07r+itWrEBwcDDMzMzQrFkzbN68WWWdXbt2ISQkBCYmJggJCcGePXvq6vCfbdp1p0cHZlwxGAwNWForpwUqyqt7+CivW1xIj6yBMIPBYDCaKA1qXG3fvh0zZ87E/PnzcevWLfTo0QNDhgxBbGys2vVXrVqFefPm4csvv8S9e/ewaNEifPDBBzhw4ICwzqVLlzB+/HhMnDgRt2/fxsSJEzFu3DhcuXKlvr7Ws8PE6cCCX1kDYQaDoRkbe4pYAZQWaKMQuXptGtBtAND+eXpdyEeuMlmPKwaDwWA0SUQcp6h/W7907twZ7dq1w6pVq4RlwcHBGDVqFBYvXqyyfrdu3dC9e3f8+OOPwrKZM2fi+vXrOH/+PABg/PjxyM3NxeHDh4V1Bg8eDFtbW2zdurVax5Wbmwtra2vk5OTAysqqpl+PwWAwGHs2AhdPAF+vBaaNBqZ8CnTuo7xOeTkwdRjwxmzg+YHA3DeADj2BsW81xBEzGAwGg6GELrZBg0WuSktLcePGDQwcOFBp+cCBA3Hx4kW125SUlMDUVDlKYmZmhqtXr6KsrAwARa4q73PQoEEa98nvNzc3V+mPwWAwGHrA0ZVqqJLj6bW6huOGhoCxCaUFVlQAWWmAvVP9HieDwWAwGHqgwYyr9PR0VFRUwNnZWWm5s7MzkpOT1W4zaNAg/PHHH7hx4wY4jsP169exfv16lJWVIT2d0k6Sk5N12icALF68GNbW1sKfp6dnLb8dg8FgMAAAHn7UIHibLEPBVcP4amZOghaZaWRgObnW3zEyGAwGg6EnGlzQQqQo6Q2A4ziVZTyff/45hgwZgi5dusDIyAgjR47EG2+8AQAwMDCo0T4BYN68ecjJyRH+4uLiavhtGAwGg6GETyAwaAzw6D7VZ1paq1/PygbIyQLSk+i1AzOuGAwGg9H0MGyoD3ZwcICBgYFKRCk1NVUl8sRjZmaG9evX4/fff0dKSgpcXV2xZs0aWFpawsGBiqRdXFx02icAmJiYwMTEpJbfiMFgMBhqefEtwMAIsNGiAGjnCGSmAnFR1N/KQfOYzWAwGAxGY6XBIlfGxsZo3749jh8/rrT8+PHj6Natm9ZtjYyM4OHhAQMDA2zbtg3Dhg2DWExfpWvXrir7PHbsWJX7ZDAYDEYdYWAAvPgG0HeE5nXsHCklMCYS8PKnbRgMBoPBaGI0WOQKAGbPno2JEyeiQ4cO6Nq1K9asWYPY2FhMnToVAKXrJSQkCL2sIiIicPXqVXTu3BlZWVlYsmQJ7t69i02bNgn7nDFjBnr27Invv/8eI0eOxL59+3DixAlBTZDBYDAYjRA7JyDjFKUGdulT9foMBoPBYDRCGtS4Gj9+PDIyMvDVV18hKSkJLVu2xKFDh+Dt7Q0ASEpKUup5VVFRgZ9//hnh4eEwMjJCnz59cPHiRfj4+AjrdOvWDdu2bcOCBQvw+eefw9/fH9u3b0fnzp3r++sxGAwGo7q4eABFhQAKgRbtG/poGAwGg8GoEQ3a56qxwvpcMRgMRj2THA8seJuerzkEiBtcb4nBYDAYDAC62QYNGrliMBgMBgMA9cNy9wHGv8MMKwaDwWA0WZhxxWAwGIyGx8AAWLS6oY+CwWAwGIxawdyDDAaDwWAwGAwGg6EHmHHFYDAYDAaDwWAwGHqAGVcMBoPBYDAYDAaDoQeYccVgMBgMBoPBYDAYeoAZVwwGg8FgMBgMBoOhB5hxxWAwGAwGg8FgMBh6gBlXDAaDwWAwGAwGg6EHmHHFYDAYDAaDwWAwGHqANRFWA8dxAIDc3NwGPhIGg8FgMBgMBoPRkPA2AW8jaIMZV2rIy8sDAHh6ejbwkTAYDAaDwWAwGIzGQF5eHqytrbWuI+KqY4I9Y0ilUiQmJsLS0hIikaihD6fJkpubC09PT8TFxcHKyqqhD4fxjMPOR0ZNYecOoynCzltGTWHnjiocxyEvLw9ubm4Qi7VXVbHIlRrEYjE8PDwa+jCeGqysrNjFyWg0sPORUVPYucNoirDzllFT2LmjTFURKx4maMFgMBgMBoPBYDAYeoAZVwwGg8FgMBgMBoOhB5hxxagzTExM8MUXX8DExKShD4XBYOcjo8awc4fRFGHnLaOmsHOndjBBCwaDwWAwGAwGg8HQAyxyxWAwGAwGg8FgMBh6gBlXDAaDwWAwGAwGg6EHmHHFYDAYDAaDwWAwGHqAGVcMBoPBYDAYDAaDoQeYcfUUsHjxYnTs2BGWlpZwcnLCqFGjEB4errQOx3H48ssv4ebmBjMzM/Tu3Rv37t0T3s/MzMT06dPRrFkzSCQSeHl54cMPP0ROTo7SfrKysjBx4kRYW1vD2toaEydORHZ2dpXHGBYWhl69esHMzAzu7u746quvoElL5cKFCzA0NESbNm2q3O/Zs2cxfPhwuLm5QSQSYe/evSrrvPHGGxCJREp/Xbp0qXLfDN15Gs7F06dPq5wvIpEIDx8+rHLfK1euhK+vL0xNTdG+fXucO3dO6f3du3dj0KBBcHBwgEgkQmhoaJX7fJZ4ls8fNpY1XZ6G8xYASkpKMH/+fHh7e8PExAT+/v5Yv359lftm417NeZbPnad6zOMYTZ5BgwZxGzZs4O7evcuFhoZyL7zwAufl5cXl5+cL63z33XecpaUlt2vXLi4sLIwbP3485+rqyuXm5nIcx3FhYWHciy++yO3fv5979OgRd/LkSS4wMJAbM2aM0mcNHjyYa9myJXfx4kXu4sWLXMuWLblhw4ZpPb6cnBzO2dmZe/nll7mwsDBu165dnKWlJffTTz+prJudnc35+flxAwcO5Fq3bl3ldz906BA3f/58bteuXRwAbs+ePSrrTJo0iRs8eDCXlJQk/GVkZFS5b4buPA3n4n///ccB4MLDw5XOmfLycq373rZtG2dkZMStXbuWu3//PjdjxgzO3Nyci4mJEdbZvHkzt2jRIm7t2rUcAO7WrVvV/WmfCZ7l84eNZU2Xp+G85TiOGzFiBNe5c2fu+PHjXFRUFHflyhXuwoULWvfNxr3a8SyfO0/zmMeMq6eQ1NRUDgB35swZjuM4TiqVci4uLtx3330nrFNcXMxZW1tzq1ev1rifHTt2cMbGxlxZWRnHcRx3//59DgB3+fJlYZ1Lly5xALiHDx9q3M/KlSs5a2trrri4WFi2ePFizs3NjZNKpUrrjh8/nluwYAH3xRdfVMu4UkTbxTly5Eid9sXQD03xXOQnx1lZWTp9106dOnFTp05VWta8eXNu7ty5KutGRUWxSUY1eJbOH0XYWNa0aYrn7eHDhzlra2udJ65s3NMvz9K5o8jTNub9v717jWnyjOIA/i8XO6RSp5G2Fm8xljhhCjECRke8jFXQfdkWLySo2YyiLjo1xuwLLiYqZqDRbNlMNjCxmdkU1AQxSwbMG5rpmlCGCUxhxggySJB6WZX27IPhjRWoRV8tbf+/pB983qenz0OOJzl9eR/4a4EhqPdW8KhRowAAzc3NaGtrQ1ZWljJHq9UiMzMTly5d8hknLi4OUVFRAIDa2lro9XqkpaUpc9LT06HX633Gqa2tRWZmptcfo/vggw9w584dtLS0KGMlJSW4ceMGCgoKBrdhP9TU1CA+Ph4WiwVr1qxBe3u76p9BfQVrLgJASkoKTCYTFixYgOrqap/7fPz4Ma5du+a1LwDIysryuR7yLVzyZzBYy4a+YMzb06dPY+bMmdi3bx/MZjMsFgu2bduGR48eDRiXdU994ZI7gxGMNY/NVYgREWzZsgVz5sxBUlISAKCtrQ0AYDAYvOYaDAbl2vM6Ozuxa9curF27Vhlra2tDfHx8n7nx8fEDxul9X3+f/ezampqasGPHDthsNqUYqGXRokWw2WyoqqpCUVER/vjjD8yfPx8ul0vVzyFvwZqLJpMJhw8fxokTJ1BWVobExEQsWLAA586dGzBuR0cH3G73oPZFvoVT/viLtWzoC9a8vXnzJi5cuID6+nqUl5fjwIEDOH78ODZs2DBgXNY9dYVT7vgrWGsem6sQs3HjRtTV1eGnn37qc02j0Xj9W0T6jAFAd3c3cnJy8M477/S5i9Tf/GfjTJs2DTqdDjqdDosWLfL52b3jbrcbK1aswFdffQWLxdLvvs6fP6/E1el0sNls/c7rz9KlS5GTk4OkpCQsWbIElZWVaGxsREVFhd8xaPCCMRcBIDExEWvWrEFqaioyMjLw7bffIicnB19//TUA37no777oxcIxf16EtWzoC9a89Xg80Gg0sNlsmDVrFrKzs1FcXIzS0lI8evSIde8NCMfceZFgrXnq3iKggPr8889x+vRpnDt3DgkJCcq40WgE8PRbBpPJpIy3t7f3+UbC6XTCarVCp9OhvLwc0dHRXnHu3r3b53P//fdfJc6ZM2fw5MkTAEBMTIzyvue/Gem9rWswGOB0OnH16lXY7XZs3LgRwNP/rCKCqKgo/Prrr8jIyPA6Yej5dQ+GyWTChAkT0NTU9NIxyLdgzcWBpKen4+jRowCAmTNn9slFrVaLyMjIfmO/Sq6Gq3DLn5fFWja0BHPemkwmmM1m6PV6Zc7UqVMhIrh9+zbr3msWbrnzsoKm5r2xp7votfF4PLJhwwYZO3asNDY29nvdaDRKYWGhMuZyufo8EHnv3j1JT0+XzMxMefDgQZ84vQ9EXrlyRRm7fPmyXw9Ejhw5UlwulzK2d+9e5YFIt9stDofD65Wfny+JiYnicDi8Ts3xBQM8EPm8jo4O0Wq1cuTIEb/ikv+CPRcH8tFHH8m8efMG3rg8fbA7Pz/fa2zq1Kl8sHsQwjl/nsVaFlxCIW+///57iYmJEafTqcw5efKkREREyMOHDweMzbr3asI5d54VajWPzVUIyM/PF71eLzU1NV7HVT6b1Hv37hW9Xi9lZWXicDhk+fLlXkd5dnd3S1pamiQnJ8vff/894BHCVqtV3n33XamtrZXa2lpJTk5+4VGeXV1dYjAYZPny5eJwOKSsrEzi4uL6PYq9l7+nBTqdTrHb7WK32wWAFBcXi91uV46BdTqdsnXrVrl06ZI0NzdLdXW1ZGRkiNlsVvZO6gmFXNy/f7+Ul5dLY2Oj1NfXy44dOwSAnDhxwmfs3iOJf/jhB2loaJDNmzdLbGystLS0KHM6OzvFbrdLRUWFAJBjx46J3W6X1tbWQf2cQ1U45w9rWfAKhbx1Op2SkJAgH3/8sfz111/y+++/y5QpU+Szzz7zGZt179WEc+6Ecs1jcxUCAPT7KikpUeZ4PB4pKCgQo9EoWq1W3nvvPXE4HMr13uOD+3s1Nzcr8zo7OyU3N1dGjBghI0aMkNzcXL+OHK6rq5O5c+eKVqsVo9EoO3fu9PlNr7/N1UDrXrlypYiIPHz4ULKysmTMmDESHR0t48ePl5UrV8qtW7deGJsGLxRysbCwUCZPnixvvfWWvP322zJnzhypqKjwa//ffPONTJgwQYYNGyapqanKcbq9SkpK+t1XQUGBX/FDXTjnD2tZ8AqFvBURuX79uixcuFBiYmIkISFBtmzZ4tedB9a9lxfOuRPKNU8j8tyfWSYiIiIiIqJB42mBREREREREKmBzRUREREREpAI2V0RERERERCpgc0VERERERKQCNldEREREREQqYHNFRERERESkAjZXREREREREKmBzRUREREREpAI2V0RERERERCpgc0VERCFt1apV0Gg00Gg0iI6OhsFgwPvvv48ff/wRHo/H7zilpaUYOXLk61soEREFPTZXREQU8qxWK1pbW9HS0oLKykrMmzcPmzZtwuLFi9HT0xPo5RERUYhgc0VERCFPq9XCaDTCbDYjNTUVX375JU6dOoXKykqUlpYCAIqLi5GcnIzY2FiMGzcO69evx/379wEANTU1WL16Ne7du6fcBdu5cycA4PHjx9i+fTvMZjNiY2ORlpaGmpqawGyUiIgCis0VERGFpfnz52P69OkoKysDAERERODgwYOor6/HkSNHUFVVhe3btwMAZs+ejQMHDiAuLg6tra1obW3Ftm3bAACrV6/GxYsXcezYMdTV1eGTTz6B1WpFU1NTwPZGRESBoRERCfQiiIiIXpdVq1ahq6sLJ0+e7HNt2bJlqKurQ0NDQ59rv/zyC/Lz89HR0QHg6TNXmzdvRldXlzLnxo0bmDJlCm7fvo2xY8cq4wsXLsSsWbOwe/du1fdDRERDV1SgF0BERBQoIgKNRgMAqK6uxu7du9HQ0IDu7m709PTgv//+w4MHDxAbG9vv+//880+ICCwWi9e4y+XC6NGjX/v6iYhoaGFzRUREYev69euYNGkS/vnnH2RnZ2PdunXYtWsXRo0ahQsXLuDTTz/FkydPBny/x+NBZGQkrl27hsjISK9rOp3udS+fiIiGGDZXREQUlqqqquBwOPDFF1/g6tWr6OnpQVFRESIinj6O/PPPP3vNHzZsGNxut9dYSkoK3G432tvbMXfu3De2diIiGprYXBERUchzuVxoa2uD2+3G3bt3cfbsWezZsweLFy9GXl4eHA4Henp6cOjQISxZsgQXL17Ed9995xVj4sSJuH//Pn777TdMnz4dw4cPh8ViQW5uLvLy8lBUVISUlBR0dHSgqqoKycnJyM7ODtCOiYgoEHhaIBERhbyzZ8/CZDJh4sSJsFqtqK6uxsGDB3Hq1ClERkZixowZKC4uRmFhIZKSkmCz2bBnzx6vGLNnz8a6deuwdOlSjBkzBvv27QMAlJSUIC8vD1u3bkViYiI+/PBDXLlyBePGjQvEVomIKIB4WiAREREREZEKeOeKiIiIiIhIBWyuiIiIiIiIVMDmioiIiIiISAVsroiIiIiIiFTA5oqIiIiIiEgFbK6IiIiIiIhUwOaKiIiIiIhIBWyuiIiIiIiIVMDmioiIiIiISAVsroiIiIiIiFTA5oqIiIiIiEgF/wMiJyfcuke9aQAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -500,7 +500,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAE8CAYAAAA2UqvOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1gURx/Hv9fpRQUrIvaGNfZeYo0J1kSjRo0lsUVNNJpiSd7EaKxRo0mMsfce7D1KjL2LigJWRASkc3XfP9hZZvf2jgNBQOfzPD5ye1tm93Zn5zu/puA4jgODwWAwGAwGg8FgMHIVZX43gMFgMBgMBoPBYDBeR5jYYjAYDAaDwWAwGIw8gIktBoPBYDAYDAaDwcgDmNhiMBgMBoPBYDAYjDyAiS0Gg8FgMBgMBoPByAOY2GIwGAwGg8FgMBiMPICJLQaDwWAwGAwGg8HIA5jYYjAYDAaDwWAwGIw8gIktBoPBYDAYDAaDwcgDmNhiMBgMRr4zaNAglCtXLr+b8VqiUCgwffr0/G4Gg8FgvJEwscVgMBj5xMqVK6FQKIR/arUapUuXxqBBg/D48eP8bl6BZseOHejcuTOKFSsGrVaLUqVKoU+fPjh69Gh+Ny1HrF+/HgsWLMjvZiAxMREzZsxA7dq14ebmBmdnZ9SsWRNffvklnjx5kt/NAwDs3buXiUcGg1FoUOd3AxgMBuNN57vvvkNAQADS09Px33//YeXKlTh16hSuX78OJyen/G5egYLjOAwZMgQrV65E3bp1MWHCBJQoUQJRUVHYsWMH2rVrh5CQEDRt2jS/m5ot1q9fj+vXr2PcuHH51obw8HC0b98eDx48QO/evTF8+HBotVpcvXoVf/75J3bs2IE7d+7kW/sIe/fuxZIlS5jgYjAYhQImthgMBiOf6dy5M9566y0AwNChQ1GsWDHMmjULu3fvRp8+ffK5dQWLuXPnYuXKlRg3bhzmzZsHhUIhfPf1119jzZo1UKtf/tWWnp4OrVYLpdLaASQlJQWurq4vfYyChMlkQo8ePRAdHY3jx4+jefPmou9/+OEHzJo1K59ax2AwGIUX5kbIYDAYBYwWLVoAAO7duycsMxgMmDp1KurXrw9PT0+4urqiRYsWOHbsmGjbevXqoUePHqJlgYGBUCgUuHr1qrBs06ZNUCgUCA0NtdkOR48ZGRkJhUKBOXPm4Pfff0eFChWg0+nQoEEDnDt3zmq/O3fuRM2aNeHk5ISaNWtix44dDl2XtLQ0zJw5E1WrVsWcOXNEQoswYMAANGzYUPgcHh6O3r17o0iRInBxcUHjxo2xZ88e0TbHjx+HQqHAxo0b8c0336B06dJwcXFBYmIiBg0aBDc3N9y7dw9dunSBu7s7PvzwQwCAxWLBggULUKNGDTg5OaF48eIYMWIE4uPjrdq1b98+tGrVCu7u7vDw8ECDBg2wfv16AEDr1q2xZ88e3L9/X3AppePX9Ho9pk2bhooVK0Kn08HPzw+TJk2CXq8XHUOv12P8+PHw8fGBu7s73n33XTx69Miha7tt2zZcuXIFX3/9tZXQAgAPDw/88MMPomVbtmxB/fr14ezsjGLFiqF///5W7q+tW7dG69atrfYnjdFz9B4aNGgQlixZAgAiF1zCxo0bUb9+feE6BwYGYuHChQ5dAwaDwcgLmGWLwWAwChiRkZEAAG9vb2FZYmIili9fjr59+2LYsGFISkrCn3/+iY4dO+Ls2bOoU6cOgAyhtmHDBmG7uLg43LhxA0qlEidPnkStWrUAACdPnoSPjw+qVatmsx2OHpOwfv16JCUlYcSIEVAoFJg9ezZ69OiB8PBwaDQaAMDBgwfRs2dPVK9eHTNnzkRsbCwGDx6MMmXKZHldTp06hbi4OIwbNw4qlSrL9aOjo9G0aVOkpqZi7NixKFq0KFatWoV3330XW7duRffu3UXrf//999Bqtfjiiy+g1+uh1WoBZFh9OnbsiObNm2POnDlwcXEBAIwYMQIrV67E4MGDMXbsWERERGDx4sW4dOkSQkJChHNeuXIlhgwZgho1amDKlCnw8vLCpUuXsH//fvTr1w9ff/01EhIS8OjRI8yfPx8A4ObmBiBD0L377rs4deoUhg8fjmrVquHatWuYP38+7ty5g507dwrtHzp0KNauXYt+/fqhadOmOHr0KLp27ZrldQKA3bt3A8gQq45AzrtBgwaYOXMmoqOjsXDhQoSEhODSpUvw8vJyaD9SsrqHRowYgSdPnuDQoUNYs2aNaNtDhw6hb9++aNeunWCFCw0NRUhICD777LMctYfBYDBeGo7BYDAY+cJff/3FAeAOHz7MxcTEcA8fPuS2bt3K+fj4cDqdjnv48KGwrslk4vR6vWj7+Ph4rnjx4tyQIUOEZVu2bOEAcDdv3uQ4juN2797N6XQ67t133+Xef/99Yb1atWpx3bt3t9s+R48ZERHBAeCKFi3KxcXFCct37drFAeD+/vtvYVmdOnW4kiVLci9evBCWHTx4kAPA+fv7223PwoULOQDcjh077K5HGDduHAeAO3nypLAsKSmJCwgI4MqVK8eZzWaO4zju2LFjHACufPnyXGpqqmgfH330EQeAmzx5smj5yZMnOQDcunXrRMv3798vWv7ixQvO3d2da9SoEZeWliZa12KxCH937dpV9vzXrFnDKZVK0TlwHMctW7aMA8CFhIRwHMdxly9f5gBwI0eOFK3Xr18/DgA3bdo0W5eJ4ziOq1u3Lufp6Wl3HYLBYOB8fX25mjVris4pODiYA8BNnTpVWNaqVSuuVatWVvv46KOPROebnXto1KhRnNzw5bPPPuM8PDw4k8nk0HkwGAzGq4C5ETIYDEY+0759e/j4+MDPzw+9evWCq6srdu/eLbL2qFQqwdJisVgQFxcHk8mEt956CxcvXhTWIy6I//zzD4AMC1aDBg3w9ttv4+TJkwCAFy9e4Pr168K6tnD0mIT3339fZI0j+w8PDwcAREVF4fLly/joo4/g6ekprPf222+jevXqWV6nxMREAIC7u3uW6wIZiRQaNmwocotzc3PD8OHDERkZiZs3b4rW/+ijj+Ds7Cy7r08//VT0ecuWLfD09MTbb7+N58+fC//q168PNzc3wdXy0KFDSEpKwuTJk62Snci5QUrZsmULqlWrhqpVq4qO07ZtWwAQjrN3714AwNixY0XbO5pwIzEx0eHrev78eTx79gwjR44UnVPXrl1RtWpVKzfN7JDVPWQPLy8vpKSk4NChQzk+PoPBYOQ2TGwxGAxGPrNkyRIcOnQIW7duRZcuXfD8+XPodDqr9VatWoVatWrByckJRYsWhY+PD/bs2YOEhARhneLFi6NSpUqCsDp58iRatGiBli1b4smTJwgPD0dISAgsFkuWYsvRYxLKli0r+kwGzSSG6f79+wCASpUqWW1bpUqVLNvi4eEBAEhKSspyXXI8uf0S10nSHkJAQIDsftRqtZWbY1hYGBISEuDr6wsfHx/Rv+TkZDx79gxAZtxdzZo1HWqzlLCwMNy4ccPqGJUrVwYA4Tj379+HUqlEhQoVRNs7cl2BjGubnetqa99Vq1a1uq7ZIat7yB4jR45E5cqV0blzZ5QpUwZDhgzB/v37c9wWBoPByA1YzBaDwWDkMw0bNhSyEQYFBaF58+bo168fbt++LcTurF27FoMGDUJQUBAmTpwIX19fqFQqzJw5U5RIAwCaN2+OI0eOIC0tDRcuXMDUqVNRs2ZNeHl54eTJkwgNDYWbmxvq1q1rt13ZOSYAm3FUHMfl5LJYUbVqVQDAtWvXEBQUlCv7pLFl1dLpdFZZCS0WC3x9fbFu3TrZbXx8fHKlTRaLBYGBgZg3b57s935+frlynKpVq+LSpUt4+PBhru0TyLDeyf3+ZrNZdv2XuYd8fX1x+fJlHDhwAPv27cO+ffvw119/YeDAgVi1alX2Gs5gMBi5BBNbDAaDUYAgYqZNmzZYvHgxJk+eDADYunUrypcvj+3bt4vcz6ZNm2a1jxYtWuCvv/7Cxo0bYTab0bRpUyiVSjRv3lwQW02bNs0yyUR2jukI/v7+ADKsNVJu376d5fbNmzeHt7c3NmzYgK+++irL9vv7+8vu99atW6L25IQKFSrg8OHDaNasmU2RRtYDgOvXr6NixYo217PlUlihQgVcuXIF7dq1s+t26O/vD4vFgnv37oksTo5cVwDo1q0bNmzYgLVr12LKlCl21yXX7fbt24I7I308+rp6e3vLugC+jPXL3nXQarXo1q0bunXrBovFgpEjR+K3337Dt99+a/f6MxgMRl7B3AgZDAajgNG6dWs0bNgQCxYsQHp6OoDMGX96hv/MmTM4ffq01fbEPXDWrFmoVauWEB/VokULHDlyBOfPn3fIhTA7x3SEkiVLok6dOli1apXIDfHQoUNW8VNyuLi44Msvv0RoaCi+/PJLWWvH2rVrcfbsWQBAly5dcPbsWVF7U1JS8Pvvv6NcuXIOxYnZok+fPjCbzfj++++tvjOZTHjx4gUAoEOHDnB3d8fMmTOF35JAt9/V1VXWNbNPnz54/Pgx/vjjD6vv0tLSkJKSAiCjVhsA/PLLL6J1FixY4ND59OrVC4GBgfjhhx9kf9+kpCR8/fXXAIC33noLvr6+WLZsmSj9/L59+xAaGirKgFihQgXcunULMTExwrIrV64gJCTEoXbJQWqckWtMiI2NFX1WKpVC9k1pmnwGg8F4VTDLFoPBYBRAJk6ciN69e2PlypX45JNP8M4772D79u3o3r07unbtioiICCxbtgzVq1dHcnKyaNuKFSuiRIkSuH37NsaMGSMsb9myJb788ksAcEhsZeeYjjJz5kx07doVzZs3x5AhQxAXF4dFixahRo0aDu1z4sSJuHHjBubOnYtjx46hV69eKFGiBJ4+fYqdO3fi7Nmz+PfffwEAkydPxoYNG9C5c2eMHTsWRYoUwapVqxAREYFt27bJFix2lFatWmHEiBGYOXMmLl++jA4dOkCj0SAsLAxbtmzBwoUL0atXL3h4eGD+/PkYOnQoGjRogH79+sHb2xtXrlxBamqq4N5Wv359bNq0CRMmTECDBg3g5uaGbt26YcCAAdi8eTM++eQTHDt2DM2aNYPZbMatW7ewefNmHDhwAG+99Rbq1KmDvn374tdff0VCQgKaNm2KI0eO4O7duw6dj0ajwfbt29G+fXu0bNkSffr0QbNmzaDRaHDjxg2sX78e3t7e+OGHH6DRaDBr1iwMHjwYrVq1Qt++fYXU7+XKlcP48eOF/Q4ZMgTz5s1Dx44d8fHHH+PZs2dYtmwZatSoISQ8yS7169cHkJEMpGPHjlCpVPjggw8wdOhQxMXFoW3btihTpgzu37+PRYsWoU6dOnZLHDAYDEaeko+ZEBkMBuONhqR+P3funNV3ZrOZq1ChAlehQgXOZDJxFouF+/HHHzl/f39Op9NxdevW5YKDg61SaBN69+7NAeA2bdokLDMYDJyLiwun1Wqt0pDL4egxSdrun3/+2WofkEk7vm3bNq5atWqcTqfjqlevzm3fvt3medhi69atXIcOHbgiRYpwarWaK1myJPf+++9zx48fF6137949rlevXpyXlxfn5OTENWzYkAsODhatQ1K/b9myxeo4H330Eefq6mqzHb///jtXv359ztnZmXN3d+cCAwO5SZMmcU+ePBGtt3v3bq5p06acs7Mz5+HhwTVs2JDbsGGD8H1ycjLXr18/zsvLyyoNvsFg4GbNmsXVqFGD0+l0nLe3N1e/fn1uxowZXEJCgrBeWloaN3bsWK5o0aKcq6sr161bN+7hw4cOpX4nxMfHc1OnTuUCAwM5FxcXzsnJiatZsyY3ZcoULioqSrTupk2buLp163I6nY4rUqQI9+GHH3KPHj2y2ufatWu58uXLc1qtlqtTpw534MCBl7qHTCYTN2bMGM7Hx4dTKBRCGnhyT/j6+nJarZYrW7YsN2LECKt2MxgMxqtEwXG5FLnMYDAYDAaDwWAwGAwBFrPFYDAYDAaDwWAwGHkAE1sMBoPBYDAYDAaDkQcwscVgMBgMBoPBYDAYeQATWwwGg8FgMBgMBoORBzCxxWAwGAwGg8FgMBh5ABNbDAaDwWAwGAwGg5EHsKLGDmCxWPDkyRO4u7tDoVDkd3MYDAaDwWAwGAxGPsFxHJKSklCqVCkolfZtV0xsOcCTJ0/g5+eX381gMBgMBoPBYDAYBYSHDx+iTJkydtdhYssB3N3dAWRcUA8Pj3xuDYPBYDAYDAaDwcgvEhMT4efnJ2gEezCx5QDEddDDw4OJLQaDwWAwGAwGg+FQeBFLkMFgMBgMBoPBYDAYeQATWwwGg8FgMBgMBoORBzCxxWAwGAwGg8FgMBh5AIvZYjAYjNcYjuNgMplgNpvzuykMhiwajQYqlSq/m8FgMBh5AhNbDAaD8ZpiMBgQFRWF1NTU/G4Kg2EThUKBMmXKwM3NLb+bwmAwGLkOE1sMBoPxGmKxWBAREQGVSoVSpUpBq9WyouyMAgfHcYiJicGjR49QqVIlZuFiMBivHUxsMRgMxmuIwWCAxWKBn58fXFxc8rs5DIZNfHx8EBkZCaPRyMQWg/GGEZeWhmSDAWU9PfO7KXkGS5DBYDAYrzFKJevmGQUbZnFlMN5c2qxaBf8FC/K7GXkKewszGAwGg8FgMBiMV879Fy/yuwl5DhNbDAaDwWAwGAwG45WjfAMs20xsMRgMBoPBYDAYjFcOE1sMBoPBYLxiBg0aBIVCAYVCAY1Gg4CAAEyaNAnp6emvvC2XLl1C7969Ubx4cTg5OaFSpUoYNmwY7ty580rbcfz4cSgUCrx4A1xuGAzGm8ObELPJxBaDwWAwChydOnVCVFQUwsPDMX/+fPz222+YNm3aK21DcHAwGjduDL1ej3Xr1iE0NBRr166Fp6cnvv3221faFgaDwXgdef2lFhNbDAaDwSiA6HQ6lChRAn5+fggKCkL79u1x6NAh4fvY2Fj07dsXpUuXhouLCwIDA7Fhwwbh++DgYHh5ecFsNgMALl++DIVCgcmTJwvrDB06FP3795c9fmpqKgYPHowuXbpg9+7daN++PQICAtCoUSPMmTMHv/32m7DuiRMn0LBhQ+h0OpQsWRKTJ0+GyWQSvi9XrhwWSLJt1alTB9OnTxc+KxQKLF++HN27d4eLiwsqVaqE3bt3AwAiIyPRpk0bAIC3tzcUCgUGDRoEANi6dSsCAwPh7OyMokWLon379khJScnGlWYwGIz8g7kRMhgMBuO1Q6/XIzExUfiXlpYGAEhLSxMt1+v1AICUlBTRcoPBAABITk4WLScCg16WmJgoCJ6ccv36dfz777/QarXCsvT0dNSvXx979uzB9evXMXz4cAwYMABnz54FALRo0QJJSUm4dOkSgAxBVKxYMRw/flzYx4kTJ9C6dWvZYx44cADPnz/HpEmTZL/38vICADx+/BhdunRBgwYNcOXKFSxduhR//vkn/ve//2X7PGfMmIE+ffrg6tWr6NKlCz788EPExcXBz88P27ZtAwDcvn0bUVFRWLhwIaKiotC3b18MGTIEoaGhOH78OHr06AGO47J9bAaDwcgPmNhiMBgMxmvHzJkz4enpKfwbM2YMAGDMmDGi5TNnzgQA9OjRQ7R89erVAIBGjRqJlh85cgQAUKZMGdHyW7duZbuNwcHBcHNzg5OTEwIDA/Hs2TNMnDhR+L506dL44osvUKdOHZQvXx5jxoxBp06dsHnzZgCAp6cn6tSpI4ir48ePY/z48bh06RKSk5Px+PFj3L17F61atZI9flhYGACgatWqdtv566+/ws/PD4sXL0bVqlURFBSEGTNmYO7cubBYLNk650GDBqFv376oWLEifvzxRyQnJ+Ps2bNQqVQoUqQIAMDX1xclSpSAp6cnoqKiYDKZ0KNHD5QrVw6BgYEYOXIk3NzcsnVcBoPByC/ehJgtdX43gMFgMBivlilTpmDChAnCZ41GAwBYtGgR5s2bJyzX6XQAgO3bt4usU05OTgCAM2fOiASFi4sLAODRo0ei47m6uma7jW3atMHSpUuRkpKC+fPnQ61Wo2fPnsL3ZrMZP/74IzZv3ozHjx/DYDBAr9cLbQCAVq1a4fjx4/j8889x8uRJzJw5E5s3b8apU6cQFxeHUqVKoVKlSrLHd9Q6FBoaiiZNmogGDM2aNUNycjIePXqEsmXLOnzOtWrVEv52dXWFh4cHnj17ZnP92rVro127dggMDETHjh3RoUMH9OrVC97e3g4fk8FgMPKTN8GyxcQWg8FgvGHodDpBSNE4OzvD2dnZarktsWTLguLh4fFyDeSPWbFiRQDAihUrULt2bfz555/4+OOPAQA///wzFi5ciAULFiAwMBCurq4YN26c4OIIAK1bt8aKFStw5coVaDQaVK1aFa1bt8bx48cRHx9v06oFAJUrVwYA3Lp1C02aNHmpc1EqlVbizWg0Wq1HRC9BoVDYtY6pVCocOnQI//77Lw4ePIhFixbh66+/xpkzZxAQEPBSbWYwGIxXwesvtZgbIYPBYDAKOEqlEl999RW++eYbIb4sJCQE7733Hvr374/atWujfPnyVunYSdzW/PnzBWFFxNbx48dtxmsBQIcOHVCsWDHMnj1b9nuSgr1atWo4ffq0SEyFhITA3d0dZcqUAQD4+PggKipK+D4xMRERERHZugYkXk0a/6ZQKNCsWTPMmDEDly5dglarxY4dO7K1bwaDwcgv3gQ3Qia2GAwGg1Hg6d27N1QqFZYsWQIAqFSpkmDVCQ0NxYgRIxAdHS3axtvbG7Vq1cK6desEYdWyZUtcvHgRd+7csWvZcnV1xfLly7Fnzx68++67OHz4MCIjI3H+/HlMmjQJn3zyCQBg5MiRePjwIcaMGYNbt25h165dmDZtGiZMmAClMuMV27ZtW6xZswYnT57EtWvX8NFHH0GlUmXr/P39/aFQKBAcHIyYmBgkJyfjzJkz+PHHH3H+/Hk8ePAA27dvR0xMDKpVq5atfTMYDEZ+8Sa4ETKxxWAwGIwCj1qtxujRozF79mykpKTgm2++Qb169dCxY0e0bt0aJUqUQFBQkNV2rVq1gtlsFsRWkSJFUL16dZQoUQJVqlSxe8z33nsP//77LzQaDfr164eqVauib9++SEhIELINli5dGnv37sXZs2dRu3ZtfPLJJ/j444/xzTffCPuZMmUKWrVqhXfeeQddu3ZFUFAQKlSokK3zL126NGbMmIHJkyejePHiGD16NDw8PPDPP/+gS5cuqFy5Mr755hvMnTsXnTt3zta+GQwGIzfZcuMGtt686dC6b4LYUnAsR2yWJCYmwtPTEwkJCbkSi8BgMBh5TXp6OiIiIhAQECAktGAwCiLsXmUwXi/G7tsHjuOwqEuXLNet+MsvuBcfD+4VF61/WbKjDZhli8FgMBgMBoPBYOQKJosF6VRhd3sQy5Y5m6UyChNMbDFyhbi0NFyTxEswGAwGg8FgMN4sTBYL0h0sZk8SZBgcXL8wwsQWI1d4f+tW1Fq2LL+bwWAwGAwGg8HIR8w5sGxlJbb2hoVBMWPGS7ctP2Bii5ErPEtJye8mMBgMBoPBYDDyGRPHZVts6bMQW5eo8hmFDVbUmJErGF9j8y+DwWAwGAwGI2tarVyJp8nJ8Pf0dGh9koswK8uWpRDn88tXy9bMmTPRoEEDuLu7w9fXF0FBQbh9+7bVeqdPn0bbtm3h6uoKDw8PtGzZUihsCQBxcXH48MMP4eHhAS8vL3z88cdITk4W7ePq1ato0aIFnJyc4OfnZ7NQJSNnmF7jwEYGg8FgMBgMRtb8c/8+7sTGOmzZIuNHJrbyiBMnTmDUqFH477//cOjQIRiNRnTo0AEplEva6dOn0alTJ3To0AFnz57FuXPnMHr0aKFYJAB8+OGHuHHjBg4dOoTg4GD8888/GD58uPB9YmIiOnToAH9/f1y4cAE///wzpk+fjt9///2Vnu/rDBNbDAaDwWAwGAwADosto4Niy1yIxVa+uhHu379f9HnlypXw9fXFhQsX0LJlSwDA+PHjMXbsWEyePFlYjy5EGRoaiv379+PcuXN46623AACLFi1Cly5dMGfOHJQqVQrr1q2DwWDAihUroNVqUaNGDVy+fBnz5s0TiTJGzjEyscVgMBgMBoPBgONii0zW67NYn1m2comEhAQAQJEiRQAAz549w5kzZ+Dr64umTZuiePHiaNWqFU6dOiVsc/r0aXh5eQlCCwDat28PpVKJM2fOCOu0bNkSWq1WWKdjx464ffs24uPjrdqh1+uRmJgo+sewD4vZYjAYDAaDwWAAWSe8ENbjRRZzI3wFWCwWjBs3Ds2aNUPNmjUBAOHh4QCA6dOnY9iwYdi/fz/q1auHdu3aISwsDADw9OlT+Pr6ivalVqtRpEgRPH36VFinePHionXIZ7IOzcyZM+Hp6Sn88/Pzy92TfQ1hboQMBoORO6xcuRJeXl753QwGg8EQcS8uDhuuXXNoXUcsWxzHIY7PwdBw+XKb68WnpTGxlRuMGjUK169fx8aNG4VlFn4AP2LECAwePBh169bF/PnzUaVKFaxYsSLP2jJlyhQkJCQI/x4+fJhnx3pdYGKLwWDkJk+fPsWYMWNQvnx56HQ6+Pn5oVu3bjhy5Eh+N02W/BBIx44dQ5cuXVC0aFG4uLigevXq+Pzzz/H48eNX2g4mDhmMN4PhwcHot327Q+s6IrYS9XqHwlCKzJ6N45GRDh23IFIgxNbo0aMRHByMY8eOoUyZMsLykiVLAgCqV68uWr9atWp48OABAKBEiRJ49uyZ6HuTyYS4uDiUKFFCWCc6Olq0DvlM1qHR6XTw8PAQ/WPYh4ktBoORW0RGRqJ+/fo4evQofv75Z1y7dg379+9HmzZtMGrUqBzv12AwyC43Go053md+8dtvv6F9+/YoUaIEtm3bhps3b2LZsmVISEjA3Llz87t5DAbjNUSR9SoCjoit56mpUFMJ7+yNJR/woUZcIbRw5avY4jgOo0ePxo4dO3D06FEEBASIvi9XrhxKlSpllQ7+zp078Pf3BwA0adIEL168wIULF4Tvjx49CovFgkaNGgnr/PPPP6IX6qFDh1ClShV4e3vn1em9UbAEGQwGI7cYOXIkFAoFzp49i549e6Jy5cqoUaMGJkyYgP/++09Y78GDB3jvvffg5uYGDw8P9OnTRzSxNn36dNSpUwfLly9HQEAAnJycAAAKhQJLly7Fu+++C1dXV/zwww8AgF27dqFevXpwcnJC+fLlMWPGDJioAcOLFy8wYsQIFC9eHE5OTqhZsyaCg4Nx/PhxDB48GAkJCVAoFFAoFJg+fTqAjBjgL774AqVLl4arqysaNWqE48ePi8535cqVKFu2LFxcXNC9e3fExsbavT6PHj3C2LFjMXbsWKxYsQKtW7dGuXLl0LJlSyxfvhxTp04V1t22bRtq1KgBnU6HcuXKWQkxhUKBnTt3ipZ5eXlh5cqVADKEr0KhwPbt29GmTRu4uLigdu3aOH36NADYPfdff/0VlSpVgpOTE4oXL45evXrZPS8Gg1GwUSgcl1v2xJbJYoFixgzcjo1FMRcXYXmSXm9zGzLOLIzuhPmajXDUqFFYv349du3aBXd3dyF+ytPTE87OzlAoFJg4cSKmTZuG2rVro06dOli1ahVu3bqFrVu3AsiwcnXq1AnDhg3DsmXLYDQaMXr0aHzwwQcoVaoUAKBfv36YMWMGPv74Y3z55Ze4fv06Fi5ciPnz5+fbub8ucByHY5GRLEEGg1FI4DgOSTYsPHmJu1br0Is6Li4O+/fvxw8//ABXV1er74m7msViEYTWiRMnYDKZMGrUKLz//vsiMXP37l1s27YN27dvh0qlEpZPnz4dP/30ExYsWAC1Wo2TJ09i4MCB+OWXX9CiRQvcu3dPyFY7bdo0WCwWdO7cGUlJSVi7di0qVKiAmzdvQqVSoWnTpliwYAGmTp0qTA66ubkByPDcuHnzJjZu3IhSpUphx44d6NSpE65du4ZKlSrhzJkz+PjjjzFz5kwEBQVh//79mDZtmt1rtGXLFhgMBkyaNEn2e3KNLly4gD59+mD69Ol4//338e+//2LkyJEoWrQoBg0alOVvQfP1119jzpw5qFSpEr7++mv07dsXd+/etXnu58+fx9ixY7FmzRo0bdoUcXFxOHnyZLaOyWAwChbZsWwZzGZwHCfb75OkGEfCw1HMxQVP+dq4iXo9vJ2dResSSxaxepksFqiUBcIxz2HyVWwtXboUANC6dWvR8r/++kt4EYwbNw7p6ekYP3484uLiULt2bRw6dAgVKlQQ1l+3bh1Gjx6Ndu3aQalUomfPnvjll1+E7z09PXHw4EGMGjUK9evXR7FixTB16lSW9j0XuBodjXarV+d3MxgMhoMkGQzw/OmnV37chMmT4aHTZbne3bt3wXEcqlatane9I0eO4Nq1a4iIiBCSGK1evRo1atTAuXPn0KBBAwAZroOrV6+Gj4+PaPt+/fph8ODBwuchQ4Zg8uTJ+OijjwAA5cuXx/fff49JkyZh2rRpOHz4MM6ePYvQ0FBUrlxZWIfg6ekJhUIhck1/8OAB/vrrLzx48ECY/Pviiy+wf/9+/PXXX/jxxx+xcOFCdOrUSRBOlStXxr///mtVGoUmLCwMHh4egqu9LebNm4d27drh22+/FfZ98+ZN/Pzzz9kWW1988QW6du0KAJgxYwZq1KiBu3fvomrVqjbP3dXVFe+88w7c3d3h7++PunXrZuuYDEZh4+rVq+jTpw9u3bqV303JE7Jj2QIyMhI6qa2lBhFOh8LDUbloUVznw4HkJgJpkQUUznpb+Sq2HPW7nDx5sqjOlpQiRYpg/fr1dvdRq1atN3pWbffu3Th69CgWLFiQq/vNrjnXwnE4Eh6OtymxzGAwXh3uWi0S7PSneXlcR3D0vRAaGgo/Pz9Rttjq1avDy8sLoaGhgtjy9/e3EloAROVCAODKlSsICQkRXAoBwGw2Iz09Hampqbh8+TLKlCkjCC1HuHbtGsxms9U2er0eRYsWFc6je/fuou+bNGliV2zZmi2WEhoaivfee0+0rFmzZliwYAHMZrPI0pcVtWrVEv4mIu/Zs2c2RfHbb78Nf39/lC9fHp06dUKnTp3QvXt3uFAuQwzG68ajR4/w4sWL/G5GnqHMptjaeesWnNVqvCfpJ4hL4LVnz/BBzZrYHhoKIMOyJYWsSzyozIUwbCVfxRbj1TFy5Ej4+/sjNDQU1atXh8ViyfYMhRzZNeXuDQtDtw0bwGXhJsNgMPIGhULhkIUpv6hUqRIUCkWuzQzLuSLKLU9OTsaMGTPQo0cPq3WdnJzgLHFtcYTk5GSoVCpcuHDBStgQN8OcULlyZSQkJCAqKipL61ZWKBQKK4ErlzBEo9GItgEyMwbL4e7ujosXL+L48eM4ePAgpk6diunTp+PcuXMscyHjtUWv1yMhIQEWiwXKQubq5gjZHTX23bYNRZydESsRW3QiDH9PT+FvWbHFiyyphasw8frdCQwrUlNTER0djbVr1+L+/fsAMgYBuYEqm4KNxXYxGAx7FClSBB07dsSSJUuQkpJi9T2ZNa5WrRoePnwoKs1x8+ZNvHjxwiqDrSPUq1cPt2/fRsWKFa3+KZVK1KpVC48ePcKdO3dkt9dqtTBL+re6devCbDbj2bNnVvskLnfVqlXDmTNnRNvRSUDk6NWrF7RaLWbPni37PX2NQkJCRN+FhISgcuXKgvjz8fFBVFSU8H1YWBhSU1PtHl+K3LkDGTUv27dvj9mzZ+Pq1auIjIzE0aNHs7VvBqMw8fz5c6SnpyMxMTG/m1JgcKUmagh/UEntNNRElFyCDKPEfbAwuhEysfUGcP/+fZhMJnz00UdCjIG9GUkA6LNlC/bfvZvlvrNr2cquCZrBYLx5LFmyBGazGQ0bNsS2bdsQFhaG0NBQ/PLLL2jSpAkAoH379ggMDMSHH36Iixcv4uzZsxg4cCBatWpl5SLoCFOnTsXq1asxY8YM3LhxA6Ghodi4cSO++eYbAECrVq3QsmVL9OzZE4cOHUJERAT27dsnuPuVK1cOycnJOHLkCJ4/f47U1FRUrlwZH374IQYOHIjt27cjIiICZ8+excyZM7Fnzx4AwNixY7F//37MmTMHYWFhWLx4sV0XQgDw8/PD/PnzsXDhQnz88cc4ceIE7t+/j5CQEIwYMQLff/89AODzzz/HkSNH8P333+POnTtYtWoVFi9ejC+++ELYV9u2bbF48WJcunQJ58+fxyeffCKyYjmC3LkHBwfjl19+weXLl3H//n2sXr0aFosFVapUyda+GYzCRLNmzQAA8fHx+dyS3GXx2bNINhgEq/a/2ag/6y7jSTGVSmJEp3438JM2e8PC8A4fHiSdpGeWLUaBpFq1arh+/TouXbqEypUrg+M4eFJmWzm23LyJmadO5XpbiNgqjKk7GQzGq6F8+fK4ePEi2rRpg88//xw1a9bE22+/jSNHjgiJlRQKBXbt2gVvb2+0bNkS7du3R/ny5bFp06YcHbNjx44IDg7GwYMH0aBBAzRu3Bjz588XyowAGWnUGzRogL59+6J69eqYNGmSYNFp2rQpPvnkE7z//vvw8fERrE5//fUXBg4ciM8//xxVqlRBUFAQzp07h7JlywIAGjdujD/++AMLFy5E7dq1cfDgQUHg2WPkyJE4ePAgHj9+jO7du6Nq1aoYOnQoPDw8BDFVr149bN68GRs3bkTNmjUxdepUfPfdd6LkGHPnzoWfnx9atGiBfv364Ysvvsh2XJXcuXt5eWH79u1o27YtqlWrhmXLlmHDhg2oUaNGtvbNYBQmqlevjqJFi752YmvMvn1Yd/WqMIZrtmKFw9u6ZRGvq6HEFrFiLT57FnvCwkTLCCxmi/FK2Hj9OjpUqIAiDsYQREVFISwsDOnp6di7dy+CgoLwzz//oHHjxna3i3XAlYQWTY64FJJZEZPFAm02grMZDMabRcmSJbF48WIsXrzY5jply5bFrl27bH4/ffp0oeYTja0kHB07dkTHjh1t7q9IkSJYYWeQsXTpUkEMEjQaDWbMmIEZM2bY3G7IkCEYMmSIaNnnn39uc31C+/bt0b59e7vr9OzZEz179rT5falSpXDgwAHRMjrAv1y5clbXy8vLy2qZ3LlL64kxGK8769atQ2xsrKwLdGEnUa/PMmZLbiI9q200KhV6VquGbaGhgtWK3o/UksUsW4xXwqi9e3HfwWw369evR5UqVYTinGfOnIHRaHQo+DwuLS3LdegZBjlTsRQyK5IqE4DNYDAYDAaDUVgJDw/HwIED0aJFi/xuSq6TqNdnmVhNzuoktUxJUSuV2NqnD7pUqiQIKVqySd0IWcwW45WgUigcvtkiIyORlJSEKlWq4O+//8Z3330HAA4FQEclJ+P28+d218muOyARW96zZmVrOwaDwWAwGIyCTFpaGp4+fYoLVAKI1wVHLFtyY1NDFonRiBuhRqmUtWxJxdrWmzcdaG3BgomtQohKqXTYZzU2NhZAhitI165d8b///Q/lypXDt99+i6FDh2a5fdUlS+x+Tz9YjrSJJchgMBgMBoPxOpKWloYjR47YdRsuiHAcl2WNwwQHLFtyE/BZZaEm2QjVtsSWZPul58/b3V9BhImtQkh2LFscx6FDhw74/vvvUbRoUQwePBhLliyBn58f/vzzTzx58uSl2kI/EI60iUktBoPBYDAYryMDBgzAN998g0ePHuV3U7JF1SVL0JXP/meLBEcsWzl0IyT/C26EdixbhTHen4mtQog6G5atwYMHY+7cudBoNIiPj0fp0qXRoEEDNGrUCEBG2uGXgW6HIy6FtGWrMGaUYTAKG1nNVjIY+Q27RxmvC/Xq1UOXLl1eeiL7VXMnNhb7bJT7Ic+nQzFbObFsyYktme17VqsGgIktxitCRd2QcigUCmzbtg0AEBgYiJo1a2Zsx9+gs2fPxu+//44RI0Zg586d2Lt3r93j2TuWJZtuhPQDJFcpnMFg5A6kVlJ2C9QyGK8ag8EAIPMdxWAUVoYPH46DBw8iICAgy3qmhQULLbayWFc6Dizi7JxlzJacZUsas1Xe2xtb+/QBAOgKYT/BUr8XQhxxI7xz5w4AYODAgWjZsiWGDh0KjUYDs9mMqKgoDB48GD/99BNKly6dZQHLJL0e3jbSzJuz6UZIP0Dx6ek298tgMF4OlUoFLy8vPHv2DADg4uKS5awkg/GqsVgsiImJgYuLC9RqNiRh5C6PExNxOzYWbQMCXs3xHj9GvXr1cPr06VdyPDkOh4cj0NcXxd3ccmV/lmxYtugx3pru3VHW0xPds6h9KBezRaxpBrMZ6SaTqBZXYbRssZ6tEJJVgoxOnTqhaNGiAICnT58Ky48cOYJmzZrB2dkZSUlJcHJywrfffpvl8ez529IPloUPsLT3MNLtfpGenuWxGQxGzilRogQACIKLwSiIKJVKlC1blk0GMHKdD7dvx4n798FNm/ZKjpeWlgZnZ2esWLEC7du3F4qXv0reXrMGpdzd8XjChFzZH5lIvxMbizt80jWCYsYMXP3kEwQWLy5aFwD8PDxQ1NnZyo1Q6jZsz43Q86efoFQoEODlJazPxBbjlZCVZWv//v0IDAwEAKSkpMDV1RUAUKtWLVy/fh2rV6/G8uXL0a9fPyQnJ6N48eJo166daB8apVIQWfb8baWij4P9JBi0OEvmXUcYDEbeoFAoULJkSfj6+sLIatsxCiharRZKJYtqYOQ+r7IA7sOHDwWxNXPmTBQtWjRfxBYARCcnO7xutw0b7H6fVYhIeHx8ptji110dFITmZcviXny81YS9dPxqz40w3WQCkGn9ApjYYrwiskqQUaZMGbz33nsAxGKrfv36+O677zBw4EDMnj0bHh4e2LFjBwICAqzElpNaDSMvhhy1bAEZD5rSzoNgtpPOk8Fg5A0qlYrFwzAYjDeOV2ktLVu2LJYtW4a2bdti1apVL5Uk40V6Oq5FR6OFv3+Ots9OmZ2QBw/sfp+dIsJk3QG1awPImLiXxmxJx69ZpX4n+yHoCqG7MZtKKoRklSDj0aNHOHHiBABg48aNaNWqFQAgLi4OH3zwASpVqoRixYrBw8MDOp0OeplEFU7UzWwvuJE8EOSxzuqhpB8yuf0O2LEDVRcvtrsPBoPBYDAYjKx4lY6pZcqUQY0aNVCsWDGULFnypcTWiOBgtFy5MsfbKxQKpBgMOBwebnc9juOyTFZmK9M0vbzzunU49/gxLBwnEnpalQoWjsPUY8dwIjISgPU4UdaNULpOIbdsMbFVCHEkQcZ6vl5C2bJl4eHhASBzhufPP//E8+fP7YoteubArhsh3w4izoiYuhMbCwVV1I/jOKQajTj7+LGwTE5sbb5xA7clPsEMBoPBYDAY2eVVWbY4jsOjR4/QokULnD59Gm3btkWFChVyvL8rVLx9TlAqFDgSEYG316xBeHy8zfXSTKZsTZLLLecA7L97F2uuXoXZYoGKuuZEJB2NiMA1PnZYuj/ajZCMN+1Ztgqj2Cp8tjiGkCAjIiICrq6u8PX1FX3funVrYVagSJEiuHbtGipVqiR8bzKZ8M4776BChQpo06ZNljVO7LkRdl63DgAwvnFj/HjqlPCAPEhIEK3367lzGL1vn2iZnNhi4dEMBoPBYDByg1c1pjDxsUUA4OzsjH79+r3U/p6/ZMkOpUIhpEi/ExuL8t7esuvZsmp5zJyJJn5+2P3BB1Zi7P0aNfD3nTtWY0MlbwhQUcKIiKQUoxGpfNywlWVLLhuhpD10ZsXCmPqdWbYKIcSy1WrePMzmxQ7NgAEDoNFooNfrodfrBcvW0aNHAWTM9Pzzzz8AgKCgIPTo0UP4TKBnFbKqkQAAk5s3B2D9EJH9XImOttpGVmyxbFQMBoPBYDBygVc1pjBQCb+cnZ1x+PBhrHwJN0AXviSPI/VL5VAqFML4y94+kmyIrSSDAQfv3cNa3lpFo1IqoTeZBGFErrBKobBp2Uo1GpFGxJYdy5YtN8Ky/Di2c8WKGFavns3zKagwsVUIIQkyHhYrhr9CQ62+//jjj+Hr64ukpCQAEMSWq6srHj9+jGfPniExMREAsGvXLgDA/fv3RfuwcBx+7dIFpd3dHUpkQWYyrvNmYvKgkAdH7mHXM8sWg8FgMBiMPCKvxxTp6elISUmxEltXrlzBnj17crxfN60WAJAgI4YG79qFhn/8YXd7BTInu+3F+GcVrwXIx2yZOQ56ypoHZAo8acwWAKQYDLYtW/z4UaNUwsR/Jz2mn6cnAGDvhx+iWT5leHwZmNgqhNAJMtJkHhStVovvvvsOiYmJUKvVcHJyAgD06tULS5cuRYsWLQBkzPjcvXsXAISMhQSzxYKGpUtDp1bbdSMU2sQ/XC3++stqPwAgtwdi2TJZLBiwYwcMZjOzbDEYDAaDwcgV8npM0bZtW5QoUULI9jp06FCUKlUKOp1OJMCyCxEpcvVIN1y7hnNZJN9QUrH99mKyshJbSjs5AqTlexx1I5QKKZWMZUt6zFLu7nbbWdBhYqsQIkqQwd+kFotFSHRhMBgwb948hIeH4/Hjx0Jn8/jxY/zvf/+DRqOBn58fgIwCfBm7Ed8KZHYiKikJbVetkm0HbeZV2aiRYiuNJ5AptmJSUrD26lU8Skxkli0Gg8FgMBiFgtOnTyM5ORkeHh4YNmwYUlNToVKpbCYfcxQyxovnx2g0zryLoT0S9HrM4LNS23MjzEpsKWRcA4nbH7G6kfGdUmZdhUIBFZ8ZMdWGGyG9XzJmjJOct6tGg+fPn+PQoUN221tQYWKrEKKi6my91agRTCYTunbtCicnJ1j45b/++ivefvttLFu2TNiOiK7Y2Fg8fPgQAJDKB2Hevn1bFOBJxFaayQQOYmE1dt8+9Ny8WRTAKK3pQL6z60ZoMuFeXJywjlKhYJYtBoPBYDAYuUJ26k3lhHnz5uHrr7/Gs2fP8McffwiZoOvWrYuePXvmeL8kfCOFKkZ/6N49XHn6FM526kzRE9sXo6IA2HYjnPPvv/j22DHRMmmsFLFW0dfRQ6uFUqEQrG6xZNJexrIFZFjpjBYLUvkxpi1LGRFbHMfhWUqK6DudWo1r167hk08+kT/xAg4TW4UQlUKBT3hf4JS0NPz+++/Yv38/gAxBNWfOHGHdhg0bCn/rdDoAQM+ePYUHqmrVqgCAyZMni2pCWCQPTBolxBadPYvtoaEiAWUltiTma7mHa9ft26i4aJEw22E0m5lli8FgMBgMRq6Q12OKkSNHYvLkyYiLiwMA3LlzBwqFAm+99RaGDRuW4/0SgZRKia0Oa9ei49q1QvIMOeRi7G2Jm4mHDuHas2ei7H6hz58L9bCAzNgvejz4Y7t2cNVokMCLrWF//w0gwxAgjdkCxEkygIzJdwWAQwMGiNYjYis+Pd0qgZpOpUJYWBjCs6gbVlBhYqsQoqZu+lt37iCWr0vVr18/KBQKtGvXDgDg5uaGTp06Cevu378fZSWBhaVLlxb+pr+TPjBSky5g+wHmOM7KsiXnRkhqP5AHUM9ithgMBoPBYOQSeT2m6NatG4oVKwaDwQBvb2+hzM7Zs2cxYcKEHO+XxMqnUWILAIq5uNgVW3JWLFuWrUb8+K8Mn0QNAD7bvx+tqdARqWtgcVdXuOt0cNVqrZJ3rLx8GfvCwkRuhEBm3BadIEOjUqF9+fKI//JLYT21Uondt29jyK5dcJWco5NajacvWXssP2FiqxBCzzCkGgzo3r07Fi9ejFmzZiE5ORl169bFsGHDEC8pZJeeno6QkBDRshIlSgh/R1KzGY6ILVtVxT/evRu3nz8HQCXIkFmXmKBJkKU0sw2DwWAwGAxGQeXEiRPQ6/UwGAzQ8hkEAbx0fJHJYoFWpRJZtgDA19XVvmVLRljZipHy5ROjFXF2FpYVpf4G+JgtyrJFxnK0ZYvwMDER00+csBK4cpYtIsi8+ARuQKYhYdft26LlQIYboSefkbAwwsRWIUQ0a6BUonr16nj27Bn8/PywfPlyAMB3332H69evi7YbPXo0xo8fL1pWo0YNfPrppwCAGzduAMiwTEnFVqxMgT3pAxw2ZgwAYE9YGO7w1jZbMVsj6tcXXBPj+QdWz9wICy3h8fE4zccBMjJRzJiBMP5ZYDAYDMarJa/HFERYFC9eHOPGjROWa7Xal0qQYTSb4a7VCuMkYuHycXUVEmRYOA5/XLiAWadOCdvJWbFseSGR9PJOVAxYvERAEcsWGQ8KYkvGskWQugBqpWJLxtUQEHtt6SRxaTqVCu3btxdKGRU2mNgqhNCWLRc3N/zxxx/47rvvAEAQU4GBgejQoYNou4iICGzdutVqf61btwYAJCQkINlggPK775BmMslatn6mLGPSB9jHxQVARvacdL6DkEvj6aHTwZ2aASL7TjeZmBthIaXNqlVoumJFfjejQEHiFm/ExORzSxgMBuPNJK8TZJAxi5+fHyZPniwsf9lshCaLBR46nSBQiOjafOMGbvD1TNOMRgwPDsbkI0eE7eRitmy5EdLCqSxvNXoumVgXYrbIefLruWo0smnpAWuxZeVGaLHIZrCmxZaTRGw5qdWIi4tDQECA7DELOkxsFUJoy1aFSpVw584d4bMzbwJ+/vy5KLugPfr06YMuXbogISFB9JDIia1Jhw8Ly6SugcRUbLRYhI5BSJBBPewWjhNmOoBMq5neZGKWrUIKcwG1hkw4SH3PGQwG401g0/Xr+e7xQMSQNMtebrF8+XJs2LABFy5cwMiRI4XlFStWxPTp03O8XyMvtkJjYtBnyxbRGCqGHzPJWaxkLVs2xBYdU088k54mJ4vWsXCc4EYY+dlnOMwntUgyGDD39Gn5tkvFloxlSxrXBQDelAsjnbQDyLB03b17F8WKFZM9ZkGHia1CCD0jEBMbi4SEBACAl5cXAgMDhULFZskNTyfDkNKpUycEBASIOqRUKvWmbIIMyQNMC6g0iWUrXZJWnl6X7FsvMyPDYBRWSP0SV8qKy2AUFp4mJ2dZg4fx+hKXlvbSk2jbb93C0YiIXGpRziBDelsx5i9L165d0aBBAzx58gT//vuvsLxkyZIYPHhwjvdLLFubbtzA33fuyAqrdJnfRzZmy8a5k+UdK1QQrErSlOsmi0WIsfL38kJR3oPpOm9dk0NqtSLCKivLVueKFfFrly4ArC1bOpUKjx49whHKileYYGKrEKKmZgSeRkfjxYsXAIDmzZujUaNGcOIDC728vETb/fHHH2jfvr3sPseMGYNOnTqJZkWmfvut8HdcWprVzJD0AaZnKoh/MdkfnTo+LS1NJLaEmC3mRsh4jSADVbWNgt8MRkGm5Ny56LR2bX43g5FPFJ09G0N2736pfZgtlgIziSonQnKDXr16oWLFilYJMiIjI9G0adMc79doNsPTyQnx6elIN5msXPMAYBxf8ofGkWyEYbGxSNTrYbJY8GuXLpjQpAmUCgWUCoXVuiaLRbZ21jxJmAqNnNUKyBwX2rJsKRQKIVZLGrPlpFYjmbe65ZWVMi9ho4BCiOimVygwbNgw3Lx5E3///TfGjh2L8uXLY/78+bh8+bJouxcvXmDu3Lmy+9yyZQs2b94setDKlC4tpASNS0sTFdcDrGeKFAqF4JsruBHK1IrgAJuWLSa1CieFr+vLe4jYsuXCwWAUdML42kGMN5Mzjx691PZmjpO1vrxKyASurbill+XcuXMAYCW2LBaL8F124XjXPQ++NioAWSszKVpMI1tnS3LulRcvxuBdu2CSWJjkJgZNFots7awOFSqIPhfnMxsC1pYtMj5IM5ky3BIlx71w4QKO8cWVSRuklq0hgwYJhgRLIXynMrFVCJHOCDRq1AjVqlXD06dPMWXKFKjVavTq1QtXrlwRrTd9+nT0799fdp/nzp3DP//8I+qQihUtivvjxmFuhw6IS09HvMSVUG4QSXxzrSxbEqFGiy0i4phli/E6QV6O0kmJK0+f5vsA5FWQYjAgkre6MxiMwgcpy5JTzBZLvvd1yhyIreysS8Ys9evXxxdffCEsd3Jygslkcjh2Xu74HlotKnh7A4BsMgo5a5ejdbZiUlJgtlhEAktObJmJOJKMzaSWJ1o82UtKsuTsWRgl+1uzZg1+/PFHAJnJNDjJmHH9unVCcgxpiExhgImtQgh9U7u6u+ODDz7A7t27kZycjK1bt0KtVsPPzw9du3YVbXf37l1cu3ZNdp9OTk7Q82Zlgl/p0lAqFCjm4oKYlBSruC05P2AioohlKzw+HhaOE7kRQqEQPdQpfIeeTiXIkDMTl5w7F8P5SuUMRkEnib+vpc9Jnd9+w8yTJ/OjSa+Uwbt2IWDhwvxuBuMlYFNfbzYvLbYKgmWL/99RAWU0m6H5/ns84GPhs4JYsypXroygoCBhOUlRnpSU5HBbCaStb1eogG9btrSZ+U/ONdLRmC2NSpVh2aJEjy3LlpwboTSBhb390P3I2P370WrlStH+Vq9ejcN88jUhdkzGanfgwAG0adMGykLoml/4WswQ3dSexYohLi4ORqMR7u7uADJVf6pMbSxb6HQ6pKenix5K0klUKlIEt2NjrWoqyAWcCm6E/KzEB9u24Y8LF8SF+Si/XCDTxVBvNguzRKdl3BeeJidje2iow+fEYOQ2UUlJDvuL27JsAS8/iCkM3HdwsMJgMAom0tCB7FKQYrYcFVtkPWkKdDmePXuGL7/8EqdOncKyZcswbdo04TtXV1fs2LFDyBBNYzSbEWqnJAgRTO0CAvBRnTpw1+nkxZaDli05L6SopCScefw4S8sWnSCDRurmR4sn6bpyb0x6HVo8Ee8orUxbzpw5g/Lly0MtOXZhgImtQgj9QMQnJuL+/ftwcnISxFbwuXOAZNYBAKpXr25zny1btkS3bt1ED+riX34BANTw9cWzlBSEx8eLtrHnRkjPZkW+eCF2I1QqRbMipEO/9fy5kAmn87p1WHf1qtX+8yrIlfFyFMaA1ZxQat48bJAUC7eFXhK3SCN1wXgdYVaRwg9z62bkhL9v30bndesKhmWLv4flhIkc2XmT7dq1Cxs2bIDRaER4eDjiqBhHhUKBoKAgIc6IZnZICKr/+qvN/ZJxGBnruWu1SMhlN8LQ58+RajSKxpNySSvMNmK2pO+wJXwWQcA6ZksO+jrXrFlT+JtM2D+KjBSWBfDJ3gwGA/78808kJiZmuf+CBhNbhRD6Rk4zGvHs2TPodDo4Oztj0KBBaLN5M9C6NUqVKiXa7scff8Qnn3yCGElqTwBo0aIF+vTpI3ooSUE+D50O3k5OVjMxjrgRAsC9+HixGyEAjvqcajTCRaPBn5cuCcsS9Xr037HDav+OdpiMV8ubIbUyiHLQLYTM6Fo4zuq+lbpgMBgMxutAmXnz8O7Gjdh/926BiNkik12OWraIJ4IjE4ibN2/GhQsX0KZNGyQmJgqug4QGDRrg1KlTVttJ06tLIW0lk9c2LVs2YrGcJULIVup3QDyelFvLUTfCdlSxYaloS5WxkNJCccyYMWjbti2ATIFJn0H4Z59h9erVePr0aca2hdAzhImtQojoRlapsGTJEtSvXx8KhQJDhw4FALTp3h3//fefsNrft2/jreBgVO/QAb5z5lh1JIcOHcLXX38t6pBqUpYwjUqVIzdCIMP9T7ouufG0KhXC4+NRv2RJ4buqdorWMcsWI7/ROCiUDJTY0v3vf5h06JDw3Ztg2WIwGG8ej6nJqIJg2SJCw1GxlZ3ssQmUq7Sc2DIajSJrFyErGUcm54jwcNNqHXYj/O/RIzT18xMts3dOtGVLTmAei4yUdSPUSt6D9Oc25cqJvsvKKqdSqTBlyhQAme/XBnXrCt+/ePEC48ePF0JkcpJ0JL9hYqsQQmYYiqvVgEqFmoGB8OYz1owaNQoAYFKpRMkwDty7BwCY+L//AbCeaXj69ClCQkJEHZIblcpTrVTiRXo6ilL+x3azEVIPQzSZxaHWJ0PN7lWrirYD7Fuv8ip9KwBs375dKAjNYNhC42BwruBGyHHgAPz877/C/fsmWLaYCxqD8WZjtlheujDyy2LKoWXLEWgXwYkTJ6J3796i7z09PdG/f3+rvjArq5nJYhHqXgG8G6FM6nc5N8ILUVFoVLq01f7i09Kw5cYNq+ugzsKydeDePdyNi7OybNHnNLlZM9Hn37p1E62bVdtXrlyJWbNmidqTxtfUAjJqs8bGxgqfWTZCxiuB3IzT2rQBALRq2xY3btwAACHd+8kzZ0TZCMkDpuf/l2YW1Ol0VtkIBw4cKPytUijwIj0dvpQAk6sgLjcQFUzmfLYZACBDTXc+kw89KyJXT4LmCm9Kzm169uyJ77//Pk/2zXh9yIlli0AsvtJZQQajIMLkMuNlKBCWLX5M46hXDN1fpxqNUMyYIRt6AUCwxgBA3bp1Ub58edH3Xl5estkIsxJ0RklKdnedTlawyO3lZkwMahUvLlq25Nw5fHP0KPps3Wo10U5brKQisG6JEgCAiBcvbBYqDvT1xcz27UXLpPFdcudLjzXPnz8vZCMkY8hEyiJopNo8ePBgFClSRLYtBZl8FVszZ85EgwYN4O7uDl9fXwQFBeH27duy63Ich86dO0OhUGDnzp2i7x48eICuXbvCxcUFvr6+mDhxopWZ8fjx46hXrx50Oh0qVqyIlStX5tFZ5T3kIfRycwMAaJydkSy9maniegB1Y/NiKV5i1jWp1RnZCKkHIJQXcOSYCXo9SvDHBIB+27dbtU1uEPkiPR1KAD0pV0Ef/mEhGW0O7NkjfNfbTiIPAFglqR+Wm2g0mjzbd15i5jM5Pnjw4JUfW/3ddw5lbirskBeRXMYmOUjMFv1MkRfdm+BGyAbqDMabDYnZSjUaMXLPnnxJpJRtN0ISs4VM9zdp9thVq1YhNTUVWq0Wo0aNwq1bt9C0aVMcOHBAtN78+fPh4+NjdYysroLJYhFNXLvzboTFXV3x57vv2twuIT0dUcnJqOnrK1putFjwDz82kIote5YtN34cGRYXZ7N2lptkrGkPeh+0dwdtFSOTmRwlLmmxZTabZTM8FnTyVWydOHECo0aNwn///YdDhw7BaDSiQ4cOSJGZRViwYIGsW4rZbEbXrl1hMBjw77//YtWqVVi5ciWmTp0qrBMREYGuXbuiTZs2uHz5MsaNG4ehQ4daPRiFBfIQXj1/HgBgrFEDjbdtAwC0a9cuYyWq8jhAdTS8TzFt2Uo1GvHhtWsYPnGiqEOaSBXoI26ExSmxJds2GzP2ao7DNr6NAKDmf0tnXtyQhBldK1WCaxYPb9E8fNC02eg4ChKkM0rIh3Tb9oJvXyfIzKijboRyli3iUmtrlvB1JDtuOQwG4/Xh+rNnSDeZcPDePSw9fz5f0sBnlSAjNCYG8fx46FlKiihBBgmHkE4iDxo0CK6urmjfvj2eODlhweHDePr0qVXmQX9/f9kxRVaiU28yiS1bvNhSKZXwksluSHiemgq1UomiLi5W35F3TopEONqL2SK/V0R8vM0Mg/R47Y9u3fArlZWQMKV5c3zbsqUoXTz9d+fOna3aE0VNHBenLHWrV6/GPT4spjCRr2Jr//79GDRoEGrUqIHatWtj5cqVePDgAS5cuCBa7/Lly5g7dy5WrFhhtY+DBw/i5s2bWLt2LerUqYPOnTvj+++/x5IlS4SMJcuWLUNAQADmzp2LatWqYfTo0ejVqxfmz5//Ss4zt7GqQ8DPYlyNjsbIkSMBAAonJyGOC8gcKFZq3BgAhM4FyBRedVu2FHdI1IOnImKLciMk9KhWLbNtNh5IN0kHEcu7IApZc0gnbLHASM1oyHVKxWQ6ktwigMqokxXHIyPxYwEpTkssuWXKlMnnlry+GCRBy1lBx2yRF0sEXz7hTRGoAPLdjehN505sLL45ejS/m8F4A0kzmaA3m3GJL1CbneQTuUVWMVvVf/0VfbZuxb8PH6L4nDmiNhK3b3sTRjvc3bHs+XPZBBnz58/H48eP8e2334qWZ9X7X3v2DFWoRGEkG6FKobBKfkGTYjTCVaORncwjViVpog25bIT1S5ZE35o1hb47OiXF5nvPlfIGGlqvHj5t0MBqnR/btcN3bdqIrFm02Pr888/RsGFDAJljyCLUWNPNzQ2TJ08WPrNshC8JmZWn/TFTU1PRr18/LFmyBCV4/1Ga06dPIzAwUKR8O3bsiMTERCGO6fTp02gv8Snt2LEjTp8+LdsOvV6PxMRE0b+CxLkzZwBkPCRKiwU16tQBANRetgw9evQAALh7e+Py5cvCNiTpRJxKBbVSifj0dFx48gQ3qVmdYePHizqkihUqCH+rlUok6fXwkRE62/r0Ef6WWrZciOWKPByhocCFC1DynZeTRGz9999/WLhgQWa7ZTrIrCxfjvLixQtMmjRJ+JySkoLPP//c4e1H792LrwvIIEar1aJq1ap4/vx5fjfltYWIrezGbNFB4ltu3gTwZlh7iCcCE1v5y9x//8UPOZwUYklOGC9LuskkxG3nxySTI26E0cnJwkSYhXIjHLt/PwBg/n//iWLUGzZsKBo7ABnjV09PT9EyX19fNG/eXBTbBWRt2Tr3+DEaU0kuSJ0tlVKJEm5umNuhA0rxdVVpUgwGuGm1slYo8j6SuvzLWbbODx+O9T17Cn33i/R0Ib5eSnbcCHU2LFu7d+/G7NmzRe35qG9f4ftr167hp59+QrNmzeDh4cGyEb4MFosF48aNQ7NmzUQFzsaPH4+mTZvivffek93u6dOnIqEFZJocSU5+W+skJiYiTZIoAsiIJfP09BT++dmZScgPgnfvBgCoVSooLRYYZF6IFgBly5YVPpOOJtZkQtVixaA3mfDWH3+g6/r1QvzWvZgYUYdUkoqxUikUSDEabZqwY2JicOnSJWhVKpF1i1ihUl68yFiwaRPw99/CjUfcCEmmwqJFi6IuLx4BcQp5Qm7Njj158gTLli0DkOGGt3DhQlG6/KwoSANmrVYLo9GIR48e5XdTXluybdni19ebzeCQEcO0js8QarZYYDCbce7x47xoaoFC7hlmvDpehWA6cPfuG1PYnJE90k0mwWKSH5YtIUGGHRdGC8chhe+nyBjIbLHgaEQEgAyx9cXBg8L6np6eSExMFHkPXblyxcqzxMfHB6dOnYKLZJI6q7FDksGAIlS4BLFsEevUhCZN4CEJFQF4y5ZWK2vZIi6RsZIxr72YLXqiTG7s17VSJXz61lt2z4Vmx/vvC3/Twmvbtm34+uuvwXGcMJkZeeeO8H0qLxBDQkKgVqtZNsKXYdSoUbh+/To2btwoLNu9ezeOHj2KBZSl41UwZcoUJCQkCP8ePnz4So+fFSTeqXnTptCp1QiLjrZaR9qx0CLKVaMRZpoCvLwEN8I0pRKr1qwR1ps3d27mMfkH0slGYP/UqVNRr149NC5dGmUoU7qrRgMXjQYqSSerkli2Or79NoAM69Jz6nzoh72Uuzuc1OpcS/+elpaGpKQkcByHp0+f4quvvsIhqhZSVhSkoUVMTAzu3btX4KywrxNEbNkKFLa1PglI9nRyElwuYlJT8XNICBouX54HLS0YkPOXqw/DKBw4cqdbOA6d1q3Dg3yIF2UUfNJNJkFcyFm2LkVFoe2qVXl2fEcsWxaOQxIfviB4JEjaSsdyHTp0CMuWLRONTcuUKWMVnyV1KyRIr8KpBw9EKfLNHGcVs6U3m0UiSm7SL9lggKtGI/uOIpNesRLLFr1PaRgIPf7ylBF3wf36oRk1qZ8VjSkxSrsfxsXFISQkBImJiUIbLvIeXEBmTHrVqlVx4sQJVK5c2eFjFhQKhNgaPXo0goODcezYMdHMwNGjR3Hv3j14eXlBrVZDzQ/Me/bsidatWwMASpQogWiJ2CCfiduhrXU8PDxks5rodDp4eHiI/hUkiInYZDTCzckJSonpGrDuWOjPzhoNgsPCAGTMmHTftCnjC40G23bsENZr2LChkP6dFlt7+/WzOl6VKlXQs2dPfNuqFeqXKgUAKO3ujvdr1IC7VgslnyBj+fLlaNiwIWrVqJFxSJLs4+JFAEB8fDweREYK+6XrdRnNZrhrtbnmikBXIydJWbIzY1KQLFt6/kWhzyJtPiPnkJcwPYO/LywM/9mwJhLLFglI9tDphH1MO34cu6mZu9eRNKMRGqUSW3nXSUb+kNd2LXJPl1u4MI+PxJCy9eZNeP70U343wy56k0mwLslZtjZcv45j1Ds/L44PyIutH/75B0DGu5xkHNTLJDYCMgUSPUZo166d8Hz5SjIAAkCjRo1kx5hSK3CLv/7C71SuApPFInIFJFYgepnUemW2WJBiMGRYtmSEGBlL2XMjlLoE0gLQ005ijpywjg95AQAlybDt5ZVZZ4tKmf8Tf4936NAB7u7ueFwIPULyVWxxHIfRo0djx44dOHr0qFVygsmTJ+Pq1au4fPmy8A/ICDr866+/AABNmjTBtWvX8Izypz106BA8PDxQnU8h3qRJExw5ckS070OHDqFJkyZ5eHZ5R21eqFy/ehUJcXGwODmhBT+7YGtWho590qlUuMMXiKOzErpVqwZlUJDwmeM4rOEtXSpKbJWVEXdHjx4Vsg2Sfab+73+Y1ro1PHQ6FHFzQ9++fXHq1Ck0atQI6SQrG8k8ww9YK1WqhCrUrEVUUhL+5IWY0WKBs0aTa5YtkjkoPT1dMFNnJ/CyILnNEB/mcpLK7YzcQxBb1LIu69ej6Z9/yq5PXlTEsuWh04mew3A+RuB1JdlgQMPSpTPr7DFynQ+3b8eKS5fsrmPPjbDSokUIjYl5qTbQxUnzw03sTWbX7dtZ1qXMbzhQZTDy4Z1Jji03bvjm2DEAGe2aw8fwE2uO9F4m73uj0QjUrAmo1ShSpIggtuTiiCwWi2yoCn0VyH5pcWeW1Nkik9L2LFsTDhxAitGYEbNlx7IlrbFqT2xVoPInZCc2yxH8qHHkqFGjhL/JdYynxvSHDx+Gl5cX/v77b1SqVKlQZhLPV7E1atQorF27FuvXr4e7uzuePn2Kp0+fCjdniRIlULNmTdE/ICMWiQizDh06oHr16hgwYACuXLmCAwcO4JtvvsGoUaOg482en3zyCcLDwzFp0iTcunULv/76KzZv3ozx48fnz4m/JMOHDgWQIVQMqamAQoHh9esDsH6QCPSD7KRWI1GvR2l3d5zi02u28vdHsrc3LJIHasKECQAyH0idWi07a5JKzZaQwsfx8fEwm83w0OlQNzAQBoMBK1euxKJFixDg7w+AcsniO8TY2Fjc5/2kgYzB7NC//waQYdlyzkU3QhcXF5QuXRqenp6w8PsMDAx0ePuCZNkymUzQarVo2LAh9Ho9kqnq628aHMdh282buS6G5VK5A7CZEpesn2I0QqdSWbngSmu3vE6YLRYk6vXwcnLKteeVYc36a9cwKyQkx9vfjYvDHt7LIafQs98pRiMmHz6M//EWA0bekt8Tfjtv3UIQFfpx20aCJhIPlR9i3JZli+7HjWaz0B/bmrAmn4xGI9CrF7QNGuD+/fvC2GHu3LlQzJiBq5QX1ZMnTwAAf/NjGOm+gIz4LCAzmRhpq0qm9pTIsiV57yQbDBmWLY1G9p1ERGeS5L2jsiO2jg4ciCg+aVhe1tL89NNPUatWLQBAIj8JWZeqtzpnzhxERETg3LlzKF26tLBuYSJfxdbSpUuRkJCA1q1bo2TJksK/TcStzQFUKhWCg4OhUqnQpEkT9O/fHwMHDsR3330nrBMQEIA9e/bg0KFDqF27NubOnYvly5ejY8eOeXFaec5BPkOORqVCMS8vAJmJKKbxMzVSpG6EAEQ1s6pSaUZpbvIuQOTBd1KrZX2FhwwZgmbNmgEAlnfrhs2NGgHI6JjcdTpESl/oRiO8nZzgT2Y3+I7gaXQ00vmHWsOnmxc2sVjgpFbnWoft5uaG2NhYJCYm4q233gLHcfjwww8d3r7gSC2gVKlS6NatG4KDg7Fs2TLB/fNNJDolBb22bEEkScqSS8i5EQK2Y7j0VMyWk1otSnsLvN5Z+rxmzUJ8ejo8nZzeqDT3+UFWMYRy3ybq9Zh+/DgA67o7om0diE+kayelGAyYFRKCb228hxi5S34+WacePED3TZuw6/ZtYVlz3uNICrnH8qMvMJjN0KlUVpmN6TER3Rfrs7BskWfix5kzoaL69M8++wwARJZi4kIojTGi3yEkhorOciuN2SKWLaUdy1Y5Ly8hQYa9PiHJYMCQOnXQpVIlq7ZIxZankxNK8ONEX5myP7nFsGHD0JfPPmhOTsbTzz/H0jlzAF643rx5E+3bt0fRokURGRkpSgNfWJDPdvCKyMmsjNw2/v7+2Lt3r93tWrdujUtZuFsUFk4ePw40aACtRgOLwQCo1XDXavFls2Y2g5Tp2Ucyw16vRAlc5OtfeNvwx43kfanpmC05E/XRo0cRws+wumq18OU7GYPBAA+dDv9J4zYsFtwbPhwPeBeIigEBuAuguK8vGlStip1GI2r6+uISH1cFZHSOuelGGBgYCGdnZ0RERKBkyZKYMG8e2gYGYoiDgiu/ZxVpXFxc4ObmhsuXL+Po0aM49gYPdoioSc3lLHg2LVs2XmwGKmbLSa0WZV963SGzxJ46nSjukpH7ZFUgW04w7Q0Lw4wTJwBkWh1yCv1ueZ2ttQWR/PSukCZaAGzHB5L7Qu7dndfvUb3ZDFet1m4cO/2uoN0OVQqFIBBJK935lOvzFixAj3nzhHqkUjEGZIqtKlWqiM6TPmNiMUozGuH500/4rnVrq5gtwbJF7ZvsL2zMGMw6dQpGiwVGsxkuarVIbAX6+kKhUAgWt9MPH+K7Nm3Qs1o1FJk9WySAbbkKxk2aJJv90B5du3aFQqFAcHBwluueOnUKK1euhK+vr2C1mjVrFpw3bEDXbt2w7+RJUeknXTbbUhAoEAkyGNlDzT94jRo0QFm+FoO7TgdfV1eR/zb9cNMzN0789v5eXuhetSoAiNKMEpo0aYJbt25lHJMSW+RBpmfqw8LCRAGiJNWpq6sr3LVaWPR61KFSugPA8+fPhQ6lcsWKADKyEd64fh0A4EPNpFg4DhaOg7NajUmHD+dKHMjlO3cQ37QpUlNTcf78eaxzdsZPVG2yrCg4Uisj7eyqVasQHBxcKKur5ybknnoZy9HDhAT8K8lCSsTTk6QktKRmcOVcNp4mJ+Mxnxky1WSCVqWysmwRCpI7am7jqdM5NDnyiGXRzDG23FjtQQ+qXlYgiSxb+ZTm/05sLBQzZuTLsd9U5Opd2hqsE9e1/HIjdJWZpBUVL6beFYm8+LkbHi4SIqSfJvVgnzx5kmHZ4sdDBpnkWnLJMQCJZYvEuBuNSNTrcTQy0ipmSyvjRkgsdcVcXKBRqWA0mzOseDKTevS+opKT4abVCgKOvg5tJXkTCN7OztnuZ44ePepwbBXJNvjs2TMh/8K8efNw4uBBbF2zBpGRkdDwHllNmjRB9+7ds9WWggATW4UQYlJOSkqCb9GiADJSg7pqNEigxBZtNqdfiMSyRacI9ZbpFOiiz+RB06lUwr7omY7y5cuLghy9vLzQs2dPzJ49G0eCg2FJS8OGDRvw22+/oX79+ggODoafn58wU7OXn/1QKBQI4wUeXUCZpLInbT+dC+n4N128CDRogJSUFCExhikbA9+EApTqmLT/0qVLIteGNxmpRSUhPR2KGTMcqvvUZ+tWNFuxQrSMvEz/efAAJ/lYR0Dejavk3Lm4n5AAf09P6E0m6OxYtuRe0q8LHjpdlgOskAcP4Dd//itq0evH1ehoPMxmX6Sl+ojctGzZc0nMS142yUdB49dz5/Db+fNZrvcqvStSDAZEU7HAzlR/RtrhTMUd0ZC06q/ajZDjOIcsWyaLBUqFAjqVSuiPpeVzyDnG8snF6tSrhzWRkQA/NqLHWIJroEYjZNEW7Yv6m1jVyP/efJyrXEp2ehl57lw0GmiUygzLlsUierYJUpdDN61WmPyjBfJnjRrBPHWq1fY5YcKECRgyZIjN7y0WC2rUqIHly5cjnQoX2bdvH8xmM54/fy6KdSMT+NHR0XCjQmAKCzkSWxcvXsQ1vjgnAOzatQtBQUH46quvspXNjZEzWrVoAQCIDA8XOgB3nQ6uWq3IsvUlVTMqXcaN0IUWW1mk9aQtWyXc3KBTqUTWsOPHj2PatGnC54oVK2Lbtm346quv8HTTJnxUsSJGjBiBESNGoHbt2ggICICaTrbBn4dKpRLMxSKxxXeMpDPPjUKdpEvau3dvZjbLbAx8kwpQljWTyYSiRYvi2LFj6NmzJwYPHpzfTcp3pKKKiK/7DgxMpfVGgExRpJLMZNrzjy/r6Yk0kwkapVJ4uUnXf53FlkalynKAJS2yycg+c/791+Z3cnenowLJkV6WHmTmlxvh62YdHrV3Lz7ZsyfL9V7lWXfftAklqNqbNGR8IddvApn3xau2bJFxw+PwcLu1R4GMCQi92YyP+AG+L1/ChvTb5Fqn8mOsgQMH4gSVsp48U9tCQ1Hs558zjyPjYUGLZLIduUZefJyrWsaNkH53kPeGRqkUWbbIb3B79Gih3VKx5c5btp5+/rko46BCoXC4jmRWmM1m2XT4hLS0NNy8eRMnT57EvHnz4ObmBldXVxiNRsTFxcFiseD7778HANSrVw9r164FAPz888/o1q1brrTxVZIjsTVixAjc4WvEhIeH44MPPoCLiwu2bNmCSZMm5WoDGda836sXgIwHkHRyHjpdhmWLmiFYcOaMMFsiF7PlqtUKokVq/nc7exYAsJCvnUInyPDQ6ZD+zTei7GqV+GBLQgSfUXDw4MHQmc1YvmgRzp07BwBYsWIFatSogaVLl6J6tWoAAE++ltnz58/xlK+hQLsRko4ylp/BzI3ugIit+fPn4+jRowCAAD+/XNjzq8dkMsHd3R1NmzZF+/bt0bhx4/xuUr4jtWyRe9gRK4CcpZfcg2SCgAxS7cXM+Lq6Ip24EfLPS0ERW/FpaaJ+IS9QKRRZDrDI9WBpw3NOduNY6cm3l41tlGYjzC0eJyZiPJ8MKiteL6mVgZcDdY1epWUrLC5O9JmeRCGTvO68t0sP/r1OSLaTICMvz4Dcm0lxcaJn5EV6OtZTBgPAuv8hQo3024/i4xEeH480/lwsHId0mVgvkhGangDYvHmzaN/0OZPtHvF1pUgGV5VMggx6GXlvKBQKaJRK3I6NzZjY44VZZd7rCbAWW8QFtHgeWoiioqLsxlYlJyfD2dkZI0eORL9+/dCmTRukpKTAaDSC4zh8+umnwvazZs0SLIQ9evSAj49PnrU7r8iR2Lpz544Qf7Nlyxa0bNkS69evx8qVK4VaS4y8Yyv/4KpVKqGT06pUVpYtIMPFJOTBgywtWy4S8//sd94BkJHONDU1VegkaVco+sEfP348avD1vwDgAe9mNWnSJLx48QIDBgywMimHhITAzHdW5SlfYbJf2rJFCsee4BM/OGLZMpjNdmc8fciMjlotCMEK5crhoaMuirk0A5Qb1K9fH2vXroVSqYTRaBRVtn9TsRWz9dCB+CC5gQ55WZNnhgwg5HzZ6/DWWZVSmSm2ZIKcASAmF9P0P0hIwI7QUIfWLTJ7Ngbv2pXtY0w9dgx/ZZFsiLiyqJXKLIUAuRqvs4Uvr7F3jUlfeSQ8XHADoyci7PWlOclGmFusunIFC86ccWhduVpFhR0/fgLSHnl1vnIiju63jGaz4BoIZMZk+bi4YHi9etjau7doW6HO1iuYUKHjuYV702DA9lu3hLi+n06dwjhJPJE0W2EkPw4gfVlkUhIq/PILXPkEGWY+jlw4Fv9MufNCJp4XXbr27TFUkiBMbrv7fPZcjVJpXWdL5t1B95calQoH7t3D6itXrNwIOYmVDMj7QucAsHbtWkyfPt3m9/Xr18eRI0eQkpKCDh06CNnBnZ2d4evri19//RVqtRrDhw/H6NGj8TNlLSyM5EhscRwn1BY4fPgwunTpAgDw8/PDcxt1Fhi5x7UrVwAALs7OohgtN61W9BkAgjZuRPO//hK9EHUyMVvCw7hnD/Dnn1i3bh369OmDBw8eICUlRXiZ09Ys+sFftGgRbty4IXwmpvNq1aphxowZWLt2LWbNmiVqW5kyZQB+vz2pauLjxo4FIE7a0WX9eigtFsHd0BFTt+5//8PndgI0K5Yvz5+ICuG8Je6PZctQli8QnRVOL1FRPSI+PldnJdVqNUqWLAmO4zBv3jyEOjjgfp2xFZv1WEZs9dy8Gb/yghsAjPw64fHxwgCSPANStw85y5avqyv+6NYNKoUC6SYTOJMJT/kJA+na1ZcuzcZZ2edYRITDA1QAuJGDWJfv//kHn2bh4tS4TBms6d4dKqUySzdCMqDXM7GVY+yKLf7/9mvWoOKiRbj1/DkOUEl0XnbglVeWrey0iwxeXyfrqK34J5qs3iDZecfQ/SItBsg+6AH7B9u24Z0NG4TPIfzkarrJhHolS4pEOj2RK2vZysX34OPERBSfM0cQgsK9aTQKE7aOIli2JOLFp3hxAHzSLmq5tP+K5kWfvkIFSN845JxJTBkAoVSJ0WKxitmSS5ARRU3SaWSsYDTS/iHA29tqndzGYrHALNOn+7q6ok6JEnj8+DGaNm2Kdu3awcvLC99++y3Kly+PQYMG4fr165gyZQo6duwIpVKJ27dvw/sVtDkvyZHYeuutt/C///0Pa9aswYkTJ9C1a1cAGa5jxfkbkZF3EHNq9apVRW6DrhqN1UwXcRGhB57kwaXrMVTz8cHwevWAc+eAhw8REhIiWEcMBoMwi0IHxZLO9969e7h58yZ68e6NQIa/bsmSJQEAP/30EwDrdJ01a9bEY74DfMqnoAeAPbzPtDTVKEedq6Mv4n+oRAZSnhALllqd8S+j4ajPF4jOCpdsmOAjX7zAlMOHhU6v/C+/YHsuCqIjR46gdevWAID79+/n2n4LM7ZSjtO12wjbQ0MxlUqX/4CvC1fhl18wcOdOAJkv33SJ2JIT/kbedz4lORnpJhPSU1Nx+tSpjO3zMEbJZLFka7Y7p/75WR3DxM/MZseNkFm2co6jiX2SDQY0+fNPkQuVPetVQno6bpB4VhvQv1tu/obZuTfJ2b9Oli1HXEM5OyIz1WiE8rvv8OfFiw4dr8z8+bjw5EmGJYSPlQEyryktti5R7+vmZcvih5MnMW7/fqSbTFbF20Vi6yXFcGhMjN2sk8TCRvpqvdkMJcfB081NdD0dubNm8c/IY8n79Bb/brBwnEg8Sifhoni3QF+ZMTFH/U+2e8yvbzCbbdbZooUpfa/TNbrkEmTQ48SPateWzT6d21SrVk02OUjEZ5/h9Mcfi5a1adMG8fHxCA8Px40bNxAZGYm9e/di/fr1WLZsGYCMpGuFmRyJrfnz5+PixYsYPXo0vv76a1Tk03Zv3boVTZs2zdUGMqzR8DdwYkKCyJJF/HDplxSZCaFfQeRhLObiInQ6Xk5O+K1bN6GGBJCRSUehUMBoNGYGwFIP8oBatVDe3R0VK1aEh4eHqCCwn58f3nrrLVG71Wo1Zs+ejW7duiE6OholS5ZExw4dAADX+HTvAHCLN7lXLVYMO99/X1jOpaUJmX8cfanaW+8ZX3eiW/fuAHkhmM2oUKGCQ/tOzob7178PH+KnkBBc4CvKA0BMLlZkN5lMQppZMnhq0qQJ1q9fn2vHKGzYsmxJrb8EOlFDLDXADOOzT5GXNRFxRLTJii2LBRqVCrt37sSLpCSY0tORys8c51YAshxGi0V2QOMxcyaC+Thbmpy2Jaunz8zPzDpk2eL/JwP16kuWYN3Vqzlq15uKI26EBKl7rb07IMlgQE2J5bX6kiWiWKq8ciPMltgiouM1ElvShA5ykLOVusABmb/FF1SiLFuQ+ydBr7eapCLXlIwlRu/dK8R41/T1Ra9q1RAWF4eFZ84gnc+8SuOahWUrO1ygRJ49yJ2jN5ngrNUi6N13Rc+I9N5S2GuX5Hdo2aYNgIzfh95KOglHaoTKiQTa7TXdZEIxSeZlW3W26PFMMz8/fMqPsTQy6wrHgtjinJfvH5oJEyagbdu2VstdNBorQV6EStJRs2ZNdOvWDc7Ozvjhhx+E5W+k2KpduzauXbuGhIQEUQa6n3/+GatXr861xjHk6cT7tsZER2NYvXrozItd0gHSD6TcLD7pxIu5uFiZyBMTE4WYJaVSiYkTJ8LNzU02/uXTBg2wjX+Yrl27Jqp9UL16dVHazpEjRwIAfHx8MHbsWJjNZpw/fx7X+UGVlk7QQbkstieufgDK+vgIcVJyLxc57M2kEVfYe/fvY+LXX2cs5DiU5muXEU6ePImZM2dabZ9uY9BOk6TX42lysjCQpAcmuek+QRJk3L9/Hy1atMC0adPg6ur6RmcHtRWzRT8TEY8eYbdMAWgd9fKji1wCmSKuA58dSS5my2SxZNzHTk54qtfj1u3bSOVnLi15mJTClmUryWDAPn5Gliargri2yOreNXMcVEqlQzFbtHvm7efPEfr8OQ6Gh+eoXa87g3ftEmJBaMg1PB4ZiUWUG+mm69fxt0RkS5OiZNcaFPr8ORacOYMHfKIZen9f8YmGcoPsDApfJzdC8mw5Ytki5y0nzMg7J81ohN5kQrcNG2zuk/RpaqVSZAWhj0EsLUvOnRMSYagUCpG4Ov3okdVAmq7H9bK/T1b9juCex3/Wm82AyYRVVF1EwHoCgrPn/sq3uU3RokB0tDDhm24yia4neU8QsfXHxYsZVmGZ+5i2xOrNZlSgXOTIhJmcZYt+Vk8NGYJfea8yWmBJ3Qg5XtARctrnZweFQoEff/wRLVu2zHLdxo0bo2PHjujAT7wTnJychDitESNGiDynCiM5Elvly5cXag3QpKeno3Llyi/dKIZ9WvM3sFqtxq9du2Ivb1FyNH07SaLh7eSEWW+/jT39+gnrbN26FQsWLEBAQAA0Gg1mzZqFYsWK2Ry4Fi9eHC1atMC7774rWn6Wz2a4ePFi1KhRAxMmTAAA/PnnnwgPD8eECRMyMh3ynVUqbeWhsgDRHU70/fuZYsvGrN++sDCRm4G9mTTS8Yc/eIATJHWyUokmTZqI1psyZQq++uorm/uREhcXJ3T6ndetQ8m5c4XrR7c7N+dgTSYTNBoNVCoVBg0aBA8PDxw5cgRX+Pi+NxFH3AhbzpmD9/75x2qdMmXKCH/rJb+drSyHNEazGfq0NIDPqKlUqwGyXR7OvhvtJIWRcxfLKzdCwbLlgBshmTgxmM2o/uuvAIAALy9hMM/IZOXlyzgh4yZMrnGPTZswlrI6fbBtG8Lj40XrSn856QD8jwsXcNOBWD7/BQtw/smTPIu1y055D3JOr4Nly5INsUXeM3KTj/QE3/2EBATfuYP4tDSkGY3otmGD6BkmfZpaqbSy/Mu5EZKC7yqqpAWBiK2TfPkR2rIl997Oi1+MtFlvMsGQnm5lnSJ3lqtGA+zaZbfkS4C/P2A04v1KlTI8YPjz1fPufgTynkgxGtHK3x8eOh1+OXMGWpmMfBbKsqU3mVCRsuwYiGWLrrNFChDbuL9pgSXnRkh7eeRG2RxHiIiIEEJJ5CCx8b///jvc3d2FDINarRaVKlXCsGHDhPt7wIABSCzkhe9zJLYiIyNlA9/0ej0eZTMIkZF91vGuYUrJDIatoqnC9/xDSMSWSqlEEWdndKHStvfu3Rtz585Fly5d4O7ujkGDBiEiIsKu2Bo3bhzGjx+PUnxdCiDjHgEy3AnXrVuHb775BgBw6tQpjBgxAk5OThmCnX+YilBpSovxf+tUKlEHr3/xQphVsjUYeMJbD8jsnL2BXkm+velGIy6SGAalEh999JFoPfLADx8+XLwDG51W0aJFBQvvbX5SgnR29As0Ny1b3bt3x5EjR+Dv7w+O4zBx4kQAwNXX2B1rR2io3bTVtr6jxZaOzxooJbBWLeFvqWVL+izYciN01moz68dpNBg3ZkzGl3k4+/6qYrboI8SnpeE85R4LZFq2pG6ER8LDESEZ/BupQaEvL07dtFr4L1iArZIsXm8y5DrJDabIvRkv48mQFfTvk6TXY3hwMGrwopegmDFDOD6dqTNJr8+z8gFvaoIMix0BJUVwI7Rj2aL/NlosuBMbi+A7d0T9GPlbqVBYWbbINZWbVLJwnNW4gwz8Scw1HbOlf0lPiywTglDtAjLOW0m8DCiI4FArlaiWnm7XjTAiPBxapRJ+JUpkiC1SxNiGZStJr4erVovuVasi1WSCSU5g0mLLbEYJNzds7d0bnzdpIrgRqmUElK37Wy5zIQ39W9vq87PK+Dd+/HhZI4scJBzlY0lsFk10dDRu3bqFoKAgHDt2DEWKFIFarYbBYEBycjI+/PBDlCpVCoMHD0bz5s0RJuOZUZjIltjavXs3du/eDQA4cOCA8Hn37t3YsWMHvv/+ewRQKbwZeUM0X4fKlapD5QjkgZSmAZVjyZIlMBqN2Lt3L2JjY23Gv8TFxaFnz55o06aNaOaBiPGgoCD8/vvv2C+pl6LT6dCyZUvU4OtxtOH9oGsGBmLLpk0AMjoYumNQm0yCwJl+4oTsS74o7/51hY/HsjUTlGo0YtjJk/yO1ZkB5kol0iRuOqRj/OOPP0TL5WasCOG8G5RZMkA3WixWrg6PEhNlXYOyQ2JiIp4+fQqNRoNPP/1UcJFs2rQp9A64O74qHiYkoF8ulYfosXkzfjt/3ub3xJ3jQUIC4tLShBcwXR4h3cbgNEKmWKXUjZBA/46tV67E1ehoXI2OhreHBzT8wFSl1eIecefKw9l3k8Vi857nOA53YmORbDAItcZyw39/4M6daCB5NohlS+pG2H7NGvTZulW0Lm3Zasi78JLf6LSjZRjeAMjkgdSSAGS/zpatbUm/KQf5nYpSwfUqpTJPLFtfHTmCCQcPOry+ILaYZUvAaLEIViXSZxnNZkFoJKSnC9vTk4GOWLYIyQaDldsgmcwSrEeUG6EjcWgvg7QEgMliyRBSkusj1PbjOKxfv95mMeaMnVng7uoK/5Il4VakiGDZSjWZROKHTpChUSrhotEg1WiEUWbsJHIjNJmgU6nQs3p1eDk5wcD34bR7OhG6tibS5GLy6e/SHBBbK1aswCZ+7CXHggULcMiB+D8ADlmh9Ho9qlativDwcGi1WixatAh+fn7o2LEjKleujJkzZ6Jfv34oyk++u1Cu/YWRbImtoKAgBAUFQaFQ4KOPPhI+BwUF4YMPPsChQ4cw10aFcUbu4aNW4524ONSg4pkcgXSyk5s3x7lhw7Jc32w2Q6PRiBJkAMCzZ88EC+YzKpHATj5rG5CZ+r1Xr1749ddf8YJPawoAJUuWFArwnufTbZMMelFPnuDnWbOgU6mgUChEJm9TcrLImiStKQZkvqBI6ldbM0Gi2Tu1WuhAW7Vta+VGaGsCwZbYqly5MoKCggBkdo60GyFZRl4MfvPno8js2YI4yAnbtm3DiBEjoFarEc9bDqpUqYJq1arByckJ0dHRMJjN6Lh2bb5mfdseGooNVDKUl0UuXopAMlP5L1iATmvXCr8B/eKxFdP2iLLU6KlZYen2QObveOHJE5y4fx+1+exJN69fF7apWasWjpEXFf3C3L4dAZKC4i+D0Y5l60ZMDKosXoz+27ejLJ9p1N71c5TbMuU+BMuWjBuhVCyQAZjBbBYEBXkWFAoFph47hnfesEQvcn0buTZyM9cvI7bo30dq1ZCu5/Pzz6K2qZXKPLFszeQzdwKOeQDYy8pX2LAXhyVFsFjZsGw5azTQqVSCgNKbzYIIKjVvHn7h4/vo95OVZcuO2LJwnNXzXMPXF0DmoJ52I1Rk4X2TFfbuhSPh4ei/Y0dGm/n7wGSxwM3ZGbUCA0X7INfAZLFg+fLlMNib7OQ4JMTGwpCSkvEM8tdh9+3bIu8JwYuFLyzsyoste+dBLFvEOqhRKmUtW4osxBZ938sJR3o7W2IrLS0NFy5ckP0OAGrVqgU3Nzds3rxZNvEFTbly5ex+L0Wr1aJZs2ZwcnLCgQMHcOLECdy9exd9+/bFnDlzAGTfuFDQyNab1mKxwGKxoGzZsnj27Jnw2WKxQK/X4/bt23iHL4bLyDu0Gg2Cf/lFJGAI0lkmGvKIOWs0eIty+aNp3ry58LdSqYRGo4HJZBKJrVq1asHPzw8ARO6k7dq1E/6uW7cuACCFKjAIAF999RXeffdd/Pzzz9Bqtfiaj4UKu3s349x0OuwNDoZWpsPo2LKlTbFVdv58nIiMtIqrkZvpjEpKErkh1q5fXxBbLu7uVgPwtWvXCkkz9u7di2cpKXianCxYwKQujRs3bhRmYazEFl9DA7B2iXiZWb/hw4fj8OHD0FAvttu3b+P48eMAMkRxdHIyDt67hxjJb/IqyYm/eP/t23HLRv0+OZcqAl10MzYtTXjx0YNDWxXu5XzxbbkRRvFZp6Qv1tiYGOG+io2Ph4W/r3SUuGrRqBEUds4hu9hzIyTPRCh1LXPDsvVUkpUz1WhEQnq6zWyErhJxKaRpNpmQajRCrVQKYstkseCXM2ewJyxMKMj7JuD50084xtf+I9irYfVSYov6fWxl6gQAj59+wvPUVFEWVZVCkef10ey5xZ5/8gStV67Efb7Ex+tk2XLEjdAgmQiSfqdVqWAwm7H79m0AGX0X3QeTOntpVB+XHcuW1I2wQ4UKqFqsGIDMvp4ek8j9OtkpSE1bhILv3MG/Dx8K2y84cwaX+b6YtmyV8PVFO74sCpBxrUjbzBYLNm/eDGzcCGzebOOgHEx6PXRKZUZdrfffhzIxEUazGQ8pC87mGzcEoUMsWykGg/w5U+ehN5sFwUp+L+IZIMWm2LKRBr6clxfer1FDtK5cj09q5drj6tWrCA0NxeXLl3FMJqkUDZk8r0SFqNBIRbNWq8WpU6dESTCcnZ0xg4q/f6PEFiEiIgLF+AeK8eohN2QSH59E42nHtc0RTp48iSf8rL5SqcS0adMQEBAgGmDSAov+m87iV7NmTQDAhQsXUKZMGQwYMABAhtWnR48eiIiIwPbt23H2v/8AZM6wq1QquOt0cJURjT27doUvFWNDvxQeJiYi+M4dK1cvuZnOwKVL0X7NGuEzp1Lh7U6dAAAlS5fGli1bROsPXrECj/k4rq5duyJw6VKUnDtX8MWWxje88847WL58OQBrsWWixZakw3Hk5RoRESEbL0mIiYlBgwYN8Ouvv6Jfv34oVaoUnJycUKxYMaTx18uRLIp5RU6G9uuuXcMaSaIPIkzlXKoISZRo9tTphFTI6SYT4tLSEJOSgmSZZwgQv9TM1IsbsM7wmZqWhvsvXlil8rcYjdDyojvi/n2kkyKX1PY9e/SAm4eHzXPILkb+RS0HeXnTls2XEVvneHfmJMnkRMM//kBUcrJNy5aLpFgrbdlKMRjgqdMJYstgNguDtVYrV+a4rYUJcu9J76dUyhUMEPcfueVGaM+yZYu8itki2Du33bdv48T9+0jmr9XrZNly5DfNyrKlVanAAVjEJ6xKN5lk+2DBzdBiEU1S0e2Rs4JLLVv0vslYRLBsGY2Il5kglh7HEcwWC7pt2IBmK1Zg3unTAMR9Gd1nJ7x4gfm8dYQsoy1fJpMpI8ugjfhQVxcXwGyGN6mr6e4OD1dXQVQSYlJThezJGpVKcCOUm2Ak57r/7t0MN0Ji2VKphAlZOXFrazKBvu/pCciIzz7DdEpoAtZ9Psdx2LdvHwBkaSxp3LgxateubeX9Y4svvvhCdrlCoRCKFNetWxe1+BhperLY2dkZu3btAgCMGTNGcCcsrOTYh+TIkSP46quvMHToUAwZMkT0j5G3ECEjTZABZBQnprk0YgRODR6Mk4MHO2RVWLhwIfr27YtKlSpBqVRi8ODBKFOmDKa3bo2PeWvVggULhELFnp6e6Nq1K7755huRny55SKZNm4YPPvgA7/P1slatWoVDhw5hw4YNuHr1aqYfLt82FxcXFFcqMSA9HZMnTxa1bdu6dUihBiByAwNpLSQzxyFRrxe56MVKXAYmTpkCFf+QcwqFqOYDAGy7ehXQajFv3jwAwDNiGbJxPZ88eYJbt24ByOxU0yg3DVuWLUfc+8qXL2/TVbdixYq4du0a6gwZgr9iYrB+/XrcuXMHaWlpKFmypBDc+kKSoKAwQq6no5YtLycnRPLiQG8yIXDpUpSaNw9aycCfUEImi5Ity6OrpyfKLVyIpZL4MYvJBAt5RpVKVCWzfNQL05CejmcOZH5zFKll60h4uChYHBAPjl9GbE0/cUJ2OZktl4vZAjJLVBDoAqSpRiM8nZyE55UeiCTq9XiRng7FjBl5PsDPT0i/Rl+ndJNJWE6upzmXxJbIjTCbEzEmiyXP3ZLtWat8+PeHip/1fh0sW+QM7P2mZx8/xrqrV+1atp4mJ1u5lEnTlSuo5UBGH5dqNMoWIpaztHASyxbdn5T28EDMxInwJAlVUlNlk0UQHLJsycTmXeStWbQ4oa2DL2JjRdkGjWazcN04AEajEa1atcK8efOw8r33rI7p7+cHmM3woiwraqUSdSTJlZ6npqI0nxhCS8VsqWQmjsl59N22DacfPRIEq0apFIoay4nb5rxHkRT6esj16HVLlEBtvriytM8n9ULbtWuHvn37yu4fyBBCJUuWxM6dO3GaF7hZQTIOWrXXbIanpycCAwOxePFiIcZcrVYL3iYffPCBsH6jRo0cOl5BJkdia8aMGejQoQOOHDmC58+fIz4+XvSPkbds4xMMqGQGml0lZts6JUqgWdmyaF62rENWha+//honTpxAQEAAlEolBgwYgJMnT+KrFi2wnE/vXrJkSaF+QkBAAHr16oU2bdqILC6P+YFtcnIyypYtK7izHTt2DHPmzBEeKBc+2LoE33H5+/tj0sSJKObkZJVU49Lp03CigiTlBgbkRUKsGGaLBdOOHcPPISE2z1lvMmEgP0nw5OlT1KtXT/Q9x3dOJH09cXG092og7pNyboTkxWhl2XJw0CIXfDp27FgcOHAA7733HpaEhuIcv+/Lly9DoVDg7NmzQi0zufsmp2S3Rk9uISQLkHmRPeKvj8iy5eQETqUCDAYYLBY8SUqCyWKxmZrWT+YlQQ9SlnfrJgz0Uvj7Q+rq2KRxY1Hile+mTs34k1rnWXQ0EnIxpa1UbL23cSNCefFD7kHa7etlaq5I3SbD4+PxnHYx47MRGvg4RXK/u9qxbKUajWLLlsUiDEQ8dDpc52NE7WWhLOzE8ZNB9EDZ66ef0JWPWzNRs/KE/LJsmSyWPHcjtHdu5Pm/yU8kvU6WLXvvg16bN6P/jh12LVvvb92KsLg4keVJKrZIT0G7EaYYjXi7fHlBOGTlRuhkQ2wBGbU8hWc1JcXuOdH91s2YGFEJFyn07+zCH5/uy6wSZFDH9Zo1SyROu3XrhrVr16JPnz5IlRERN2/cQDFvbzhRXkPunp4Y37ixaD2TxYLSvJeCRqWCq1aLVKNRGBfR73v6rZlqNArXUKtSycZsAUDKV1/hl86dZa+HnCcGzdlhw3Cez6Ys/Y1IOMqRI0fsxsQZjUaMHz8e9erVy9LtcNKkSQCAzjbam56ejsjISOzbtw/NmjUTvKmqVasGvV6P/v37o379+mjSpAnatGmD/v372z1eYSBHYmvZsmVYuXIlzpw5g507d2LHjh2if4y8hcwCyGVn+bxJEzwYN052O0csW615k/NBPhNUaGgonksGkePGjRMsmBERERg8eDDatWsnElskQYaHhwdWrFiB4OBg0T6cnJxQtGhRIZ16nTp1AACPHj/GsGHDcOrUKasaUVxammgQLA0iVygUQidKhFiSwYBUo9Fu8om4tDTBZceiUMBgMODUqVNIsFHnh7g4qmUG+uQaJNSogd8vXJB1I/Th06tyEHeSjrgRvvPOO3hPZvZt4cKFKF++PDQajWjCo1u3bgCAqKgowQxfnA9gzg2yK7ZyWuNDuh0R02Tp9WfPcPDePQCZbp3JEjdCjYsLfD09RfuRxj2aLBZ8eegQlvCJW6TfEXpWr55lGuKK5cpBwQtcrZMTzvEvcgv1nKSlpCA3h4dGSTZCo8UiDKTI/7nlRphqNOIKP6sMABV++UXk6kfqbIXFxeHT4GBh0EXPmitmzBAKGBOx5UGJrZsxMcI95qHTCUI6OwN8aVHPl+VObGymdTsPIGKL/p30ZrMweUD6CXrg+ipituQ49+QJfrMTVJ+j9kjOxd65Efe33XyMyOtg2aKtMrbeW+S5lSbvkSOdL7sCWIstArmOcXxsawVvbzwcP17UHrnELFI3Qrn+RDiHEiUwSibWh/xi9O9+gsoGK7fuferdTPoTkRshNSEhFVuA+NmqUKEC/vzzT5QpUwYjR460PqjFglIlSojeQZxSiWo+PrhBra9RKlGMH5MJMVtGo9AWkdii/k42GKzcCOVitlw0GpvvT/rayU04qPkC84D1b0RP3s6aNUt2/wSFQiFkPrZHVvsh40NSz5JMvrdq1Uo4zqpVq9CvX79XVhcsr8mR2DIYDGjatGlut4XhIF5eXqhWrRo8ZGI9FAoF/Dw94efhIcy8Z4cdO3ZgKj8DD0DIRkhz7do1wU2OWLAAiMSRyWRCr169MGLECFy+fFlY383NDVWqVIGvry+6d+8uzHzcvXsX2LgRJc+fx+zZs/H333+LjqlVqYCnT1GScrmy50ZIviMvF7pzlT66kw4fxme8FY1TKGA0GtGiRQuh5oQzdR3v3LkDEz/QUsq8fMxmMwIDA3GxWDGMCA4WXv6yRY05TtQxOuKOM3LkSHh5eVktHzduHB4/fpzh80x15MTlNDU1VehU03IQl2GL/JpJJgN38nv33LwZHdeuFbkOJun1wjVddeUKLkZFwUUq2iSD5t23b2M2KXAtgR7Q0C9CNR+cL2Xj+vXg+BdcseLFsY9MOFC/j6e7e66KLally2SxCAMp8n9OxJZccopUoxF1fvsNQOaAh04Wo6Je8EcjIwWxQNYl9w7ZRm8yIUXiRngxKgr3+MkDD51OSFmfHde11VeuwPmHHxxePyumHT+O1XlYLPwwJT7lsGXZym7dPvLbmCwWRPGxi1IX66zYdONGttZ3hHESjwZ7Yktq4czPeNTcgn5+fyTlSSSQ55bcI3diY/HYAQu5LbFF3k/Dg4ORYjDAVauFQqGAUqEQ3mFmiwUL+dhmuq223AgJgtiiLDVl5s3DFwcPYuetW0I/QJ/3IxvnQu7xA3xCLQD45exZuP74o2h72rJVxMsLH/Ex49LzBYD//e9/9rNocxyuXbokWkSuIR0j7+vqmukOSMVsEejJaPpJpQUrSZBhK2bLFu/XrIn+fNxTVhMO9G+Unp6OihUrCuVhrpF6ozIsWLAAarUaJ06cwMWLF+0eg9TZsoU07px43ezduxcAsGbNGqSlpcHPzw/Xrl3D559/bnd/hYEcia2hQ4di/RuWircgoVarERoaajVQpLk+ciTCSBFVHkeGVRqNRpT8RKlU4qSNDh/IfGi0Wi2K8z7BQEZ2m88++wxARla8u3znOGzYMPTu3Ru9e/fGs2fPhDioBw8fYliLFqjp7487pB4RRbfKlfH9jBnQUEV65QYjgtiiXroxqamideVm6AgWZEwmVKxYUaj9VY6kfv/wQ8yfPx8KEkwsM1uu1WpxvWfPzP3xHd/f/DkZJQMk+sWX7oBrVJcuXQQ3Uprly5cjISHByi1u1apVAIB/nz9HGD8bFZeLrr7ZtmzlcDvpQJLMbJIXSzlegNLZoQxmsyiZxfcnTyIyNFS0n+eSeKkbVCkDKfRvRfvT23quEl+8APj7sFh6eqY7HPUiKh8QANcsXkzZQVpawEJZddJzaNmKSUlBiblzEStJ2JBCzbpLXQMBCNkISVvI+uSYZEBVhHclTjOZYDCbRZYtGheNRijaS2K2UgwGbM5iwH8jF2PiAPtJSHKDr44eBWBbbBllrBkmyj3ZUZZ27YopzZvj1vPnKMX3w+HZ7BvsxUzmlJ185jyCvWstFVv618C9lO4bSU2znbduiUoskOeK3CODd+1CLb7khD1uPX+OLVQiiJsxMYhPS8MhXuADQDIVs6VUKETCRWptsXCccA9806IF5nboYHXMFJln+XFSEnbeuoXumzbhGG/Fos+b9OPSfp9MBjxMTBSsSEDGfUD39XSbK5Qvj3KSWKdIiUcDOY4bSYIhOkkLOMm7nlwfWhBVLVZMEJ5aSmyRtlio+1gacypN/W4rZssW5by8sKZ794xzyKKUCN3nt2rVCqVKlcIYyVhRislkwrhx4/Do0SP07t07y/aQODA57x85iNj6j0+YBmQkyJg6dSpiYmKE9O+FmRyJrfT0dMybNw+tWrXCmDFjMGHCBNE/Rt5SpUoVAJmmWDk8dLrMwFQeR82xHTp0EFwU69ati8WLF8seH8gUWzqdDkWKFBE6lKpVqwpp5CtXrowKFSoAAObNm4fvv/8e9+/fx+7du4U6XQqFAuHh4UJtLwAik75SocCIESNEYkJuhk6aMc5Nq8WTpCTRQMTejJGLmxsePHiAuxUrYv7Vq1hz5Qri4uIyvqxUCUuLF0cif204meuZlpZm072sgrc3PqcKdRolYivehtuiFLlK6mazGWq1GkePHhWu37hx4xAQEIABAwZgcVwcJvNxa9mdAbdHdt126JS7L0O3DRsAZP7eFfnMRvfIb8UjFQiQWvX8/UUfI+xky6J/K6VCIVxHW3eT2WDAh0lJ2Nm5M0K//z4z0QP5nffvR4WAALjKveBziImylpLfJk0itmgceaETy5L0t6YHunLimWQjBDJmcsnAkKxLrjURD2RQ5qrRyIqtoi4uwjpkX8vOn8f7kiLJUnIjvT2NvfT6uUENPslRVpYt2kpOhGp2KOnmhg58v0y4FxcH32ykWM4LsSW1alx/9sxmnyUVW3ldNPdVQO6tXtWrC38vO39esHgC1pYtINP91B7Tjh/HQr62FgCEPHyIIrNniyyUSXq9MHmipLKJyllbOGRONg2uWxcVJMmlFAoFjs2ciZoyz7NRYtGinyny/qb7nGSDAV8ePpyxrdmMrpUqidKa022jsxE+ffwYMyhvHQDCpA3BiR8rOUnGTADQsEEDq9hgObFV3cdHlOiCWL2S+HuUHn8lSt5LL2vZItwaNQqtqHfamTNnhLEXQalQwGw2g+M4TJw4EXFxcfj9998BAG+99ZbsfslY86+//kKtWrVs1h6VQixVUooUKSKENVSuXFmwhBFPHCBDbF2SWBQLMzkSW1evXkWdOnWgVCpx/fp1XLp0Sfh3+fLlXG4iQwqpNyCXjdAejg459Hq9UEfr7bffFuKpCL///rvgk/v333+jf//+2MoPeIj4WrRokc20n0DGPQRkxp0plEocOXIEZcqUgVarRY8ePbB//37hIVcqFGjRooXIbVE6k6tA5sv2RXo6NEolfF1d8TQ5WWzZsnPdnqWk4PytW0DjxtiTmIiBO3ciKjra5voE4sIhV/sMAKoVKwY/SbyQ0WzOPAeJ9a3j2rUIkXNPc3KSzehkNpuhVKlw7Ngxwc1wwYIFePDgAVavXg0AiMmDIPLsDDqT9HpRMUlHuJrFtSf7Kcl31mESsfVcKraMRijttJkuZkwTGhODP6mOn57hrUC9eNypWUWLyYT7V6/CMzUVOrUaTRo0EO1zx5dfIuHFC8TmoqWRtmxJ64JJizEDjgmRB8SKKPnNDGYzWpQtixZly8paVaSWLXJ/mywWKGbMENwHyYBZSHqiUlmJrWIuLlApFAjnny8Sq+KI2M9tsWXmLYZ5RarRKAy65CC/K23FfZqcjMF8BlhH0apUogFdRHw8XqSnowI/ceEI9kov5AQ5V7gOa9fiDNXv01iJrdcgSyW5t7R8/A4gjr0E5Ms40LxMH5+o1wtiQsVbtjZdv459d+9aCQALx8HH1RUf1a6NMjZKWKTduIE2MiU2iHVHmICTiV+m3xNp1G9tMJuhUijgRYkj+jl/Z/16nHrwIMNF9vFjq5gtaf8ya9YszJo1S2S1GcoLuaTERBgl4oyIUXqyqn358sLkg4YvYaNApnDUUu+GGMk4gY7ZIgmFcpK8qEqxYiJRd/DgQYRTIh0ASrm7Q61WY8qUKaI6WCqVCmPHjhWte+PGjYxwB/76KRQKzJ07FxGSGoA0tAUvLS1N9JmQnJwMLy8v9OjRA4sWLRKW05aw1q1bZ3uMW5DJ0ZkcO3bM5r+jvAsEI++wlbghKxy1bL148ULw4Q0KCsLly5eFQr/h4eG4fv26kEhjwYIFiIuLE9YnD1ZsbKzdzJRCNkJebJUuVQre3t7o1KkT+vfvjz59+iA8PFwoHKxQKHDmzJmM+g5r18JTq8VPp04JA0EC6Zxj09LgotHATatFIhW7A9i3bJ198gRt9uwRPktrAtmiF1+bSxrfRnDX6awGaLRly9vdXUg/DwAH793DOjn/6cmTESOTKW/S5MmotHYtJv3wAwyUC+XZs2czi0vyLim2UtbnhOy81D1++gnHsxHIfvv2bdTmXWOk925NPskHOT4R0LTlUG8246ujR1Gcnqk3maC2c+wUGzEf1yXuhSqlUrBgVqZeWO6UD//QwYNx9+5d7N+/H1qtFp+PGQOFxYIAPvOmRqOB2Wh8qTiTsNhY+C9YIHymrS7SmnM0JPuVI0LkocRlk6Di07q3CwiAyWKxmsSgY7ZI8U4gM54yjBf/pFgvGUw6qdVW4s1Vo8Gfly4hmHfHzY4VJ7fDq/PaspVqNMLbycnKDZZArg2d/TLVaMS/Dx+KPl/OIoj9q8mTRQO6tVevooW/P77j3afl8JDUcZTLBvoy3LPxzrD1e6dKxJUmCxeqwgC5t3R8Zjog456jLdNCggyTSXby8GUSpiTq9ULhceJGuJt/7uTEllqpxMqgILtWTjkvHKml3cJPYrT86y8hgyr9fqH7BIPFApVSKUqUQz+RDxMT8eelSzCazbIJMqSujQMHDsSkSZNEseIdlUoEhYcj9OZNVKlYUbS+1LLVrXJlvFO5ssgdUKlQZGTB5bdJpSb+LJLrSFvEyHXJiWVLCm0pAoDIzz7Dp/yk38WLF0VFg81ms0h89e3bFzVr1sSBAwcEsdW8eXNUqFAB42wkYQMy3tV7+DHUe++9JzsOjI2NRXh4OKZNm4aOHTsKyytWrIimTZviq6++gq+vL/r164fvvvsu+ydeAHl9ZOMbRLly5XDjxo0sgxBzSlRUFCIl2YBIcoUKFSpg1KhRGDhwoPDd3r17hc/koTSbzXZTjBNzfVBQEICM+lHx8fFYt24dGjRogJ07dwLI7KCUyBAy/fv3B+7eRWN3d6QYjWi+YgW28j7oqUajkKHweWoq3LRauGm1SDIYRB21rZgtuZdWMQeTjAhxFDbElodOZ/UCpGtumdPToZAMXJxsDGSKSzpQAPj6228BAE8SEpBAzZrRM1XRfCfuk4vZCB11IzzJiyySaCGrwUBSUhKqVq0qfJa6EZHfKqv9nHrwQJQ57tOPP4anHbc9LxvF2qVijxYplymLF+0v7+/vj0qVKsHZ2RndunXDseBgcL/8ggoXLwK//46ePXvCxckJ4N06csK5J0/wICFBuD4mKhuhtOYcTSm+73BEbBHrgVRYKxUK6M1muGm1MJrNeKtUKdH3JBshIHYjjJVk2yMDH3vp/F0lg2gyK55Vva3ic+ZYFQd+Wcx5LLZSjEZ4OTlh79278J41Cysl3iLkd70rseI+oawH3x49irp88hJbnP/vP9Hvfz0mBjV8fNC+fHl48/3zh5LrK+0Ppc/lSBtuSI5iyw3QVkp6qWVLmcviLz+wcBwUyOjjaJdRetKEdiOUe09kN36PJoG3bBUtWhQmgwFmKt5S6nbsqEv6ACpBBelHpDGkFo5DyIMHOPnggVVMLiB+1o1mc0b/Qy2Te0eYLBZwZjMguR50WZAyZcoIFpVHjx4Jyy0mE3auXg2NSoUykppaJO07EUT9a9WCUqEQRBP5TWjLm56aVEuQuhFSsV7kns4NsdW9e3fRdfH38oJSoUDPnj3RqVMnaLVa+Pj44KOPPgIA9OnTR1iXZBwsU6YMdDodhg4dCrPZjNjYWKGUD5BRtufevXt4+PAhTCYTFAoFunTpIlzTNBn31nv37oHjONSuXVu0vFWrVggJCcGmTZtw+vRpdO7c2WatrsJGjn7NNm3aoG3btjb/MfKe6tWrZ3sbR2d46UQX5OFLkrgB3JYEMVeqVAlJSUlw5q0nJpPJbnCkj48PevfujQoVKuAthQKleIFw584dLFy4EBs3bgSQkS1OrVSiI+93TJJDuPLHeZiYiN68VWnxuXOYxw8gYlJS4KbVCuZ+Ryxb3sTyQ2G2WODsQAwD2aeczzeQ4V4mnZ2lLVuJcXF4wrvMTec7Mp1KJTuoi5emKzeZ8G6PHgCA8hL/7HLlygEScZEok1kupzg66GzJpwTXOiiSLly4IKSFBWAl/g1mM7QqlUNij14jPioKFjtB9NE2Ztbl4p3IM0GXRqDdCL8YMwYnT55EQEAAVq5cicOHD+Oj995DEZ0OePIEer0+o86cUon0HGaIJHEBJCGM0WLB89RUtF650qrmHA3JVKpUKHD7+XPByiQHGbhJr7VSoUC6yZQhtiwWOEuswKTOFiB2IyRii8RNEDFIBhlyg0ephdlgNiMqKQlTqZe+HM9SUmy6os4/fRrnbbiN2iMv3Qg5jkMqL7bI7yZ1D6RdpW1hL/ZQwGxG44YNhY9PkpKE+5f8Vs4S6xgRW0v4OjvS58KRAeKXX35p5dpEsCUS4tPTMTskBGX4RB5hsbHYc+eO1b2dmwXC8wsLx0HJFwSn3enkLFscMp8N+v3+MrFrcWlpcNdqERcXB6PBAAvHCW535Pclx8zqObh27Rru3r2b4ZFC2safE7FKkfOycJzVPS1KIEWdP3EjpCe3pG0hYqtMqVJYyN83BPo4tMCiIX2y0WDAIT5DprtWizblyqEzbwGiLfdAZgwjEVm02BKVxpFMctFZDMnkkJeNsUR2uHbtGipXrmxVm7N169Zo3749nj17BicnJ8F69JCyjpNQj6dPn0Kn02HSpEnQ6/UICwsThQtFR0cL9VQXLFiAlJQU6HQ6rOTf+Xfu3MG///6LUqVK4aeffsKJEyfQrl07Yfsikji/p0+f4t69e9BqtYiPj8emTZte+joUBHIkturUqYPatWsL/6pXrw6DwYCLFy8iMDAwt9vIeMW0bt1a6GhIgCJ5WJdRGY/oGZM9e/YgIiJC6FBGjBhhN1lKtWrV8M8//yA4OBjnp01DUlQUBgwYgIYNGwpukp07d4avry+M336L/rVqYdu2bXj48CE+/fRT+JUubXPf7vzgz02rFWbEHcnAJudzbrJYUEoyYy8HGVSWtLGuh05nJbbi09MzXmJmM2A2I5W/5jNOnAAA/BQSgpp8zSiaO1SCjOTkZCQkJOAw7777408/ZVoUe/XCuD/+ACSxczGSumkvg9TakdVMZzw/GMpKbN26dUv0EiTntC44GP+Eh8NgNsNFo8m2u8zGv/7CC5kBWQs+8coDG65X8TKzc0ZS64u6n8jLf8W778LMi4fHjx/j559/hk6ng5ubm+il6+HmBp2zs8NZmwgGsxlXnj4VXswxvPWOXI8T9+8Lv41csokSvADfeP06qi5ZgsqSJDjSYwE2LFu82KLXI9C1XWjLFgnkl8bTEdFFBh6dKNcdabZDg9mcZa0rci/aGhBOOHgQ4w8csLsPOXLLjfBweDiarVghWkbiNbydnW0mLzFRv6stcWNPiAlYLKIZ/8eJiVa/JT1IBjJFelM/P7xdvrxVvTN7mV4Jq1atEsXe0tgSCfFpaQi+cweP+QmO3lu24J0NG17bbIRKhSKj5pINN0L63iCTHHQ/9LJuhCXd3VGvXj3odDqYLZn1voilugH/nsvqOShevDi0Wi0mTpyI0vw9Ke0naMu5tN27bt0SvqfP38i7Ec6hsh9KW6JRqWCyWFA7MBDpdqzbX375pfB3vXr1QHoaocSKxSK4IT794gvs+/BDYX1pXJVOYtHypgQTHbtk5UZIWbYAvi7kS8RDms1m6PV63L17F2FhYSIRBQCTJ09Gs2bNcOzYMTx8+BAzZ8602gdJDBYVFYXY2Fi0aNECer0eEydOFNYhfew9vsalu7s7TCYTDAYDunXrBg8PD4wePRrNmjVDVFQUzpw5I3Ir7N69O2IlE31k7Ons7IzvvvsO+/bty/F1KEjkSGzNnz9f9G/x4sU4deoUxo0bJ2RCYxQ8shMoTmKqgoOD8f777wsuiydOnBDcu+jOw8XFBbVq1RKEkr+/PypK/JxpYmNjER0dLbwgVCoVjhw5goSEBOEe6tOnj5CKValUokePHlCpVFi6dCmS7dQUIXEzxI0QEHfwtuKMSsi4l5k5DrESd53ML62tZV9QHbeoTTKWrdVXrqDj2rVCZy4XWxMqI4xSqYFUjx49MlL1k4KFSiU4cn41a0LZrJlMs3MvY5f0ZZvVy9ebF7RZxXpJC3aTwVn/CxfQas2aDEuKWu3QoGJmu3ZInjJF+CxN4wsAL/himyJZQq6TyWQ1eLUlKsm9p1GpYDAYMHv2bNSpUwerVq2CVqvFkiVLRKn7nXQ6KFUq4XlzlCmHD6POb78JVg8iPOQK3aZQ91Vp/jmuzGeCcgRBbEljtnjLFjlnqUsfCa4HxJYtEktEu/e5a7XCoIps061yZeF7qWVLbzaLnifp73E3Lk4Qc7ld6Da33AhXX7kiirMCMn8r2rIlxUj9rrbSPEuLEzeRJOcBkFHvjXp+niQlCb8lOcYeKn4VyEhvDWT8tmql0ipmyF7yIUJ0dDRuUunHaexZtujsukRgSMWWXPKgwkC6ySSaHFAqFGI3QkmCDPpd7swP1EWWLX67GGpgbI825cqJPpd0c8OFCxfg5uICC8cJxyb3vT8vROSegrS0NBgMBnz++efw9fVF2bJl8ejRIzzm03dLXULp517anw/ZvRtL+QLzUsuWUqGAh04nCBRbboRXLl3ClzJ1mpa1bQvMn48fqBp83t7eMPJ9aceOHTFz5ky0bNECxfn73kWjEbk5k/ELObZOYtkqTo0piNcPx3EwSNpKx2wBgE82MoLKsWTJErzzzjvCGE0aN5WSkiKkZwcyn/OiMu+FEiVKwGAwIDo6GkeOHMHQoUOF9zMdi+fm5oYWLVoI4wuVSoX4+Hh8/vnnePvttzF8+HDUqFEDjRs3xnvvvQeLxYLt27dbHY+M/3Q6XZbFkwsTuRqz1b9/f6yQzNQxCg45qcRduXJlbNy4EeXLl4fRaMSGDRswcuRILFy4UHio3nvvPcHyQB7uTz/9FNOmTbO5X+KC5Uy57j158gQlSpSARqNBnz59cOzYMSxduhQAhBpSZNCdZMdNhrjC0G6E9CDU1uDLVqAxXZdKNOSj9kPE1vxffpFvk04nG1/yKDFRmGHWU9Xm7UEP9EjiEvDX32SxwJdPHQ3Yr0WWG0ivZVaD0CQHY7YGDhwoSi9L+7trkXFezhpNltermZ8fJjdvnhnzo1KBkxG113h3NAP1jKjIegaDldgym83CvUsHFZN7T61Uwmg0IiQkBNevX4dWqxXqtpH1ly9fniFYDAY8sFEY2RY3JSKcCBf6un5x6BAAsRshGbBWyYbYMtqwbAEQYrbI33QPo1IqRfEY0vuftmx5OjkJkw1kUOVMDWqkMVsGs1lkVZHeh5UWLUI//kWe2y5/uWXZktsDGXh66nRWQoI+PpBh2ZKrbwaj0crqd1qmVuL1a9dEfZjebBbu3xODBgEbNuCff/4Rvvd1dUVzPn6CWC31ZjOaUPEsWbkRchwH+PjYLI9h5N2DpbxITxcVkCX3Bn2NFLGxhTYbofMPP2AJLypoN8K1164hPi3NphshkOl2S7/fS/Nuc0VlXOPl2CypneSh0yEoKAgv4uNFIkhvNuP+uHFY2rWr0FYp3t7eePfdd/HHH38Iy0wmkzB5VZZK6AOI3Qjl3gvEiieybPFuhDRWboS8ZSsyPNwqQQaADHfuhARRxjsfHx8gOBj45x/cvn0bkydPxoP79zNqJtqBHFlq2fqASk1PJqwNZrPV/U9nIwQyLcg55bPPPsPhw4fRq1cvABDVZKUnWwcMGIAJEyYI4yy6zE9p3nsoKSlJ2Gbjxo2Ij49HamoqfvvtN2Hc5+npiQEDBiA6OloQYCqVCufPn8fQoUMRExODkydPwmAwoHjx4li6dClmz54t23YitooXLw7vbGRGLejkqtg6ffq0zZgVRuHl559/xn///ScIpLFjx6Jt27bCA9inTx/hoSPLEhMTrawTNGQmnzxYgYGBqFixImrXro0+ffr8n72rDo/iar9nPRsnSgIkAYKG4O7u7lqsSKFQpKWFluJWXFrcKe7uFggQHBIsQQJEiRBPVn9/7NybO7Ozm4TSft/vK+d5eEg2s7OzM1deOe950b59exiNRtrgWKPRIDY2Fo0aNQJgvf6MzWyJ1WxZMtCFyoaAOa3FjTUmmPMQI6NilSqi57aRy80oN+x5nB0cUMjNjdaziIFEz9w4gQuj0YiFixejxZAhmDF7NgDTZsg6sJkidKLPqdhF7+WOHQDyNmyJwZ2XszXv+HG8rlqV/s5bdLmshqXMljUDw93REY6Cv/f39we4CJqBMfS8CI0kJwcfs7NR3NERiIkBYJKo1XCGni/T14QYqzIAq1evRlJSEk6dOgWlUomOHTsiICAAQ4YMAWDaTIiqobUG5WIQZkHJ7+z9OPLsGQBTk1ICMk6F/XCswVJmS8sZgMTZYn8GTNkP8l4p8zMB62w529ggS6eDTCKhBnR9pjBa6FTk6HS8eyA2DsjfP2dfOeDz1WyJXVemVgu1XA4budziWhDJZcMyNBozJxQA5BqNWa8qMWNz2NdfmwkHkLWzoa8viqSno2LFivRvEuSOH6I0maPT8dZioUHx56NHCGEogxqNBhg9GrEizn6v/fsRlZbGc7IJsnU66my5/vabaGZLbWMDVybQ9P8N97i1haURJmVlYW5QELR6fd7Olsg58xtgZWtNJdz7jhw5Ai0nkMG2kfBxcrJas5WTk4MrV65gxIgR9DWdTsdz7MVgydkaf+YMYtLSzGu2RHp+sZBLpbj27h0MjKMH5N47e5UK1atX592j3bt3A0+fAhcv4ty5c2jYsCEyXr1C2zyEX8h9IAFb4myVY8Yj6SkqJljE9tkCTLWRp06dstj3qqBgM1YkQDt48GC8f/8egYGBtIaqRYsW9DgS2HZ2doZer4dEIuE50H/88QckEgnq1asHGxsbXLx4EW/evIGLiwvCw8OhUqlQq1YtAEC/fv2g4u53jRo14O3tjV8Fvc8IHBwcsGjRIiiVSnzzzTe8cfT/GZ/kbHXt2pX3r0uXLqhduzYGDx78P3Nj/hfxqRLI586dQ2hoKE8ko3379tRhmjBhAmQyGRwdHakBkZKSAicx6goH4pSXKVMG27ZtQ4UKFRAREYFdu3bBx8cHc+fORWRkJOLj4/H48WNkZGRAKpXSRslCI4EFm9kS0ggNRqNoZivA3R2NfH0xpmZNgMkEZGq1vObFJdnvJOJsPWKaQ7Kw1jcHBgNsFArIFApRKqEQpTh6VUBAANY8fIhzPj7o0asXAJMRym4e7gIVJQC8xtB/FQYiq8sJDeRlgkq5TTovZ2vZnTsAU//J0pOlXMaE1Gz9dP487nCGCgAUtxINu7BpE2oyThwAFPH0NAm+GAzQM4aelGyKWi0+5uSgpKsrynJZKbY+8e6dO/Q9ZLwNHTwYvXv3ho2NDXx9fdGrVy8cOnQIYWFhuM1FsCdMmGCKzkqlvMydGHQGA04xtXpm9CmGbkRAqChsZqs2F61s5Otr1tDWEqhAhuCZ6QwGXs2WmbMllaJK4cLoVq4c9AyNEAAqeXryjCcnlQrX3r6FnhOIAIBSrq6YwbWYcOEc5M5ly6JesWLQ6PU4HRGRe43MucnnEFrwX6URGoxGLLt5kyepT34OT0xEu507P/m8QmRqtVArFIhOSzN3mDgkpKTgXkwM0jUa6DiHtQKjMCoXG0vcPWHpmDfOn4ejQNGWNboHDBjAa2Av4ahtQG5mK1ung4o5J5vZytBo0P/QIay7e5e+Rsa5m0ht696wMJwMDxdtt6HV66ljmZSVRfcyXmbLaBRtNP//BWScsjRCIFdISazPFpB7z/9KPzmVXA4fbm/jqYFyY53UbAmz02JjeOzYsViwYAFPRW769Ok8BoAY9BacLcDUa+3g06f0d63BYPZ9hYHRW1FRuPzmDfQw1cYCwMWvvqJBHB8vL7oWiyE9PR1BQUEo+eEDOjABNWsgaw9pkeDF0AiJsjI7ZklNFysZD5iCHjt37sRdZu58KnJycnhOm1qtxpQpU7B582ZcunQJCoUCNjY2ePXqFU9zgShF16pVC+7u7lQhmuDRo0dITk7G9evXUahQITx//hwajQYSiQROTk48O+T777/HgwcPMGfOHPqdNBZo0mq1GhMnToRSqcTAgQPNen/9f8UnOVtOTk68fy4uLmjcuDFOnjxplTr2Bf9ZfAqNEDBFGtLS0uDg4IBJkyYBACI5KW/AlMWSSqWoVKmSSZqde83RQpNDwFSTM2TIENjb2+Pq1au4du0aANOCtGnTJjx79gxubm7YuXMnrQVzdHSkHF83Kwa1I5vZ4jZoYjCWXbWKFugDgFyng3HaNISOGoWlrVujS9myAGNwGAEomQxdA4YWwBaw0s3PQlGrSibDt4KmthQGA2Kjo/E0PNyqs0We32vu3j99+hSbLlwAALTmaB3C7JnY1vXBivJcQaHnZIrBGArWkM5l2iwZwA9iY3EnOtos6m/HPAMVV/9mq1DgRVISFly/TuX/AcCPZKQEiOjfH6kREbyGjG08PfFLw4YmyiJTIwEAMVxmqFL58viYnQ0buRxKbmzdvHmTHsfW9BFnIy0lBZcuXcK5c+dQuXJljB8/HhEREWjXrh1KlCgBAAgPD6eGUl6F/QeePEFbzqh/mZRkFh3VG414n5rKu36iHMcKZAyqXBn6X3+FRCIxq9OwBEuZrRydjgrRkN+FmS2FTIapDRsiW6fjOVslBPOXVd5ivxtZsYhRMrl+fbja2iJHr8cS5hmw3zuSo/yQdYA4iWKZpPysiG9TUjD+zBna4yszKwspXODp2IsXOMk4wQWB2AzQ6PVQyWS0ia+TSoUjvXujChM0OZucjGrr1iFDq8UrbowGDR5sov59+IBsMbEV7t4TZ+qbuDggKwupgloO9vlt27bNrH0HzWyRmi293qSoycGGcZQItZUVCVBxx0YLaLPk2ZB5bXZfDAbe+CHrHCvhnZGWhtcC1dLPjTcfP9Lx9blBxilLIwRMY5tkkQlYR4NkeD51fyd4/M03pvOwLxqN0BsMSOOcZLP9RWROLV++nBrIzZs3h0ajQaVKlShLxRIMRqPFmr2nHz4gghmrYjRCoTImURotU6ECjnO1re52drlObGYmT/ALMJUykOzO9OnTIZPJcPPmTQwaNMjqtZM9x9/FBRPr1KF0bbbv4naO/ZGl1Zp6fyE3iESuScnUbhUrVszqZ1pDkSJFaL27i4sLr0YyPj6eZ5vJGRpqHKPcSpyrR48ewdbWFh07dqTnJCCUwX1Mn9F3797xFK0Bk7NFzlUQlCpV6pOUt/8b8UnO1ubNm3n/Nm7ciPnz56MlowzzBf99+NSl2NHREWlpaXBxceE1wdu+fTsAkzolAAQFBaFevXro2LEjpk6dio4dO1o8p0qlwsaNGyGVSrFhwwa8efMGbdq0QcOGDemmMWzYMEyfPh2AadJduHABtra26NGjh3U1Qm6Bc1KpaHqebNThQrELwYItJjttwywwkXFxACdwwG54x168QHhiIipXq8Z7r5yjpyllMkzjovQEz0aPNv1gMABGI96kpSEyKgrIygIePjS7DhIJestK1XKL9ltuY+mxbx/vOSeKSJmLySOn5uRgE9MvKr/QGwyQSSRw5qKieTlbJLOVrtGg5759ZtmSKmvXosb69WbncWAyilnZ2dByNVtBjNNPUMyCk3/8+HEsXrwYLxnZaRdOgU1MDVD78iWwYgWkRiMuvn6N9JQUuln07duXHmcUySa1bN4cgGnchoWFYeHChVAqlXj16hXP6CCGkh9TnyYGEiBIzsqC/8qVZlLtb1NSUGzpUqpKCOQ6MKxAhpONDR23+Y2EC9UInW1ssL1LF3peW4UCEpiMHdbg+23BAtja2kIllyNHp+MZatUE2VXWyK/NSP6T9xRijBKxLDHbU4r0nxIKbnxqhosYvZ24dhSxcXG09YWTwKEDgLV37uAPKxFzAjHnT6vXQy6V0j4+HnZ26FimDG4MHUqPIY180zUaqBnjrKGvL7wPHQJExn8ZLqtAFB5pjaAwqME8B09PTzTnxjFg2j/IeGVphJlMoT1b20LGIvsJKdw4ThWsw8RQ1hoMFjNbPGeLaRdQhBi0RuNfkjzPD4ovX47iy5f/Lef+8/FjrLlzh0cjBEzOlrBmi8yzzZ060Xn8V3N6JDhBzvf111/DxcUFOoOBOrXCWk+xMVyoUCFIJBKMHTsW58+fx6VLl9C6dWtUsUCxJ7BEIwRMc5cV1hCjEQodQbJm+vr74x63t7nZ2tJ7l5qUxFPWA0ysj8WLF9PfZTIZXF1drZbHZP/8M82WKWQyLGrZUnRtrcBRctM1Gthwfy/q6AgPOzt6TeSZy6VSzJ07V7QZdH5w+/ZtSuHLyMjAUyYrGBERwUuKkFoyhUIBg8HAEz4DTEqDERER8PX1RfXq1ak6c5kyZWhfUWKn1apVC3q9nu6nXl5eKF++PA4cOIC2XLsIgnZcgPjfgr9Us3X37l3s2LEDO3bsoBLhX/C/h65du6J+/fq4ceMGRo4cia+//hpAbtO70NBQemzx4sVx7NgxbN68OV8Ka2SR0ev1OHXqFN69ewclt+EXK1YMtra2aNu2LZRKJSpVqoSoqCjs27fPYp8WIDd6625nRw0lSxQ+oTKfWENVUlvyVdmy6F20KPD4senaBRvN88RE5Ag2gFIc/UBY9O1ma0sdO+/ChQEvLxyJiUFGTg6g04nSJImzJaq4xRgorMGrENkkxGrW1t65g6FHj/Je2/rgQZ7GS2pODuQGA61DysvZknNj4umHD9j35AnPEWAhrCsLYyJzer0eeqMRtgoF3qWm0ga9jbh77WJBRp1kW6XMs1CKFJdTSCRAUhLu37sHAHiRmspzzu1OnAAOH+Z9Z9I+4KcffkD16tUxb948VKhQAcHBwVCpVHj69CnOnj1LjyfRWUcrlFsg12EiRo8wAkwMW7YOihVSIGDrYfJytoTURELj0RsMcFSp6PdWyWRQyGTI1ul4n3Xm1ClkZWXRekWWglRZQG9l7+GQKlVg5IwBYmCSOa2UyWCrUPCy0wAQmZKCY5wD9JILMJBroc6WBUNu3OnTmH/tGnQGAxpu3myWXWavLUurRWp6OqI52iqJYLMCKiNPnMDokyfRYvt23GforZvu38dObu0AxDNbOoMBCpkM33GGEjlGTAb6Y3Y2PEntHXeNCQkJ6Glri7mCfpelOcroqBo1UP/8eZw4ccKUYRXcEzbYdP/+fawVNEa+xKl2sgIZGua7F2bGFG1My3zGU27dNlqQ/9aKZLaUXL8pdvyw2c+oBQuARYsAg+EfUSP8HBWAYu0YAOCbEyfMaIQ6g8GsqbFcKkU1Ly/0r1iRriGfmtkqJNgjyHnWr1+PQk5OVNkycdIkdGBopYD4vfgoyPy1atUK79+/5/VmEoM1Zwsw7TUERI0Q4GdFxXDt1i3MnDoVgCmTRD5DCZhlbgFg3bp1NFC8fv16TJs2Da1atbJ4XWI2A4tgbm9syZ0jXaOBjLvW4oUKIXLcOHoseeYKqRSPHz9G8eLFC1zPCwA7duzAhQsXMGbMGAB8OychIYFHWydOEHGQhA4ekXJPSkpCzZo1KdVw4sSJvGMnTZqEGjVqQK/X0/saHR2NzZs3Izs7G5MnT6av9+/fnwbr/y34JGcrPj4eTZs2RY0aNTB27FiMHTsW1apVQ7NmzfDhf6Cp4P8qPnUx7tChA5o2bYr379/j2bNnWLBgAQBTrwYA6NatGwBg5MiR2LZtGwBToSkbTbEEMsFJNMXV1RUKhQK1a9dGREQEJk2ahJMnT2L37t1o0qQJPScpNhUDiZIXsrGh0S+tXi/uOOQjs0VQRq1GABN1txVsUhkaDZ4KpNafchkqobP1ZNAgWuSdlpEBv1u3AHA0O0FBLwFZMFnjj9YylSuX+5WY94htXWLS70Jjzmg0YtCRI7gikjli8TE7G9nJyVjCyfpaEiMo4uAAqUSCj6QflEBKWAihCpGGWdT13PMljoMnl00iGU0buRzYsMHsnISKym6wYspnXtz5K5FILDdGNHo9/blWrVp4d/UqIo8cQYUKFeh7SZ1Qh/btcefOHVy4cAGXL1+GUqlEPW5s1OayFnPmzKHj8xLXW83SOCV1V+R/leC64zknizVCiXHG1myxhoGQhsMiS6uFYtYsxKanUyPmt+BgGLmaRzJPSGNRBWd4s0Zk+3btUKNGDdqcm61V8BE4l5aMLOJskfGpkMlQ0cPDTDIdADru3g2NXk+Fbk5w9D6S0WI/4xJDJV1+6xamXLiAtJwcBL19S52ExcHB2BsWhlgmcxObng5IpYjmAk3EOBL2DANMfbS2MRnqoUePoh9Hg/7q0CHsFanv1BoMkEulZpLSYo5xplYLcPeUNBDVaDTYO2kSJtatyzv2GEcJkkkkCOM+98qVK2bOlnA+CGtaZnIRbFb6nc2OFWfG13NOMZPNKCZz90moGkjGRo7A2VLk5GBe8+Zm6pPs/baXSuGqUv0jma3PgfepqXCYN88iZZw4WwSklilbp0OfAwcw4tgx6AwGjKtdG3KmcfinZrbejh/P+518dvv27fHy+XOqbOmUj+CpJQgdMDGI9dliwTpbWo5RwUJM7RcAElJTIUtPx85y5aBkepfJIe5sbd68GUe5wGOXLl2wYcOGv1Q7RdpsBHBZtDSNBm5cUE4hlfJsDiWzzv3+++949+4d7XdVEJByj5UrVwLg7/lsX6u5c+fSoLmrqyvu3bsHuVzOb8Cs01EH6syZMzjD9SY8dOgQihUrRp2vy5cvY+vWrTxnCzCxmHJycjBp0iQMHz4cFy5cQK9evbCIsxn+LfgkZ2vMmDFIS0tDWFgYkpKSkJSUhNDQUKSmpv7PFLP9L+JTF+P9+/dj9uzZtG5L2PGbNL5s2bIl0tLSaAbGWs0WAZmUFStWRK1atVCsWDG0atWK9tSSyWRQKpVUcIMIZFiLYLI1WzLGUH7I8JEJhNk3a85WSkoKT9UnS2BgiUYruQ1VaMR4eXnhCUdJS0tPx3ZuUUzOygJ0Ol6NEgFZAItwlIUqVaqgBil85SLhAD/aKEadshMUxQPmsvfEaBdTBmORnJ1toj3mUbOlNxqhlMnohkiOsrS5smIsAHBTKjWTXyfXRp4ZFUORSNC4QQOzc3p6eqJs2bLwYPjkpbj6KYqXL3GUo0MTp4j0MMtkxlyhQoXQpk0bLFiwAG84w/1E374ox/VjyeAMg5SUFJw9exZKpRKBgYEoVKgQWrduDcBEvyXjM4MIHaxebdboFsgdW7S5qOB5xTEOAWB6nsSAZbOHrJNmLbNFMkfCWqsMrj0BuefONjaQMPUl5Prq+/jg119+QUhICHXw2PoaB8G8s1SrQZwtcp+UMhlqFy2KSxZqczR6PdJycnjjlowxdvw05YJCBCyNkWRibkVFISw+HrUYxz2Gc7ZI9p2cW8zZAsSVxwBgO1O7wFIgdQYDby6SedKmTRvR87zj7kMJrv7u3r17cHZ2zj0HmY/ceJRJpdi+fTsUCgXGjx+PUoJeiOw6Va9ePV4ggYUmJwdJWVmm58Y8O01mJjB9OpCVhUdcQIzNbCVzhvvGLVt4BfJkrKbm5PCcLWl8PLZv2IBsjYY3Dlm6bKumTZGYmAg7W9s86bj/DSDBAEuZGOJssUEC4mztDg3Funv3oOOcciB3bmRotVgUHFzg6xH2aiPnO3HiBKDTITY9HQ5Kpdmas75DBxzs2TNfn5EfZytDq7XqbH20QCMkgQlhzRaFXA47OzsawCRrlIuzsyiVjc0kNWjQAG5ubvj222/zvH5LINcZ6eqKLK0W6RoNbAV9teilMgI05Do+xdliUaZMGZRkxJCKFSuGsmXLolmzZlixYgWlxstkMpQrVw4SiQSpjDhPYGAg9Ho9pFIpHjLBo1OnTkGr1dIa5Pfv3+Ply5coW7Ysz6ErUqQIpk6diidPnqB27doYMmQIOnTogLlz5/6l7/X/DZ/kbJ0+fRp//PEHyjHR9PLly+P333//n+n2/L+IT81sxcXF4datW0hNTYWDgwPeczVDZJIRBUpHR0ekpKRgKFdfkB9nSyKR4OLFi6hUqRJu3bqFEydOwGAwYNKkSZBKpdDr9dBoNEhJSYGzszP8OKPCWmNeUqtir1TyaISrQkLoMb6cgSzMxAgzBiyqVK4MR0dHWuypFThXopQ4C85W0aJFc/s9yWQow1HgVG5ucHdxQXOGBjRv3jy8fv2aijMULlwYiYmJKFq0qFn3dYDvwKhEnDZvESUwkjkgUT9SEL3oxg2cYVTfhEjOygKys/N2tgwGqGQy0KfGZBwBoHfv3li4cCE9PlXgbAHANK4XFgExykiGUMoaHSJRsx9++AGjRo3iNduuwKxhAACdDlW4GsT379/jp59+gpT09DEYUIGL4p06dQoRERFU/hYA2pYqRR19cGNQp9OhYcOG6NOnDy5fvozk5GRaszV79uzcHjLcWHqRmIjbXP0dCxLVDeOYA0LDIlbgbKnkcnpMuoXMlnA9YGsiii5dSn9mswXbHj5EDifiAOQGNsj4+aNtW2zp1AlBgwdj4W+/QSaTUceMjUwLjYy+Fox68h0kjLNV1YqapkavR4ZWC1dm3BOjtujSpXjy4QO2MwYDOa+DSkWNW/J/ukaDKME4jM/IgJ29Pfw5RVAy15JFWiwA5qqRgPma84Bp3ElqtgjIfHr58qXo+fXc577jarAeP36M9PR0+r1IbQhxtqQSCQICAlCuXDns378f4YLmwuw61bFjR1OvG24sSyUS7Nq1CwDw+8qVVA2yECNIU5UofWZl4UxEBBRSKS/gQ9YVg4MDz6gl9yklO5vnbOVoNHhw9y6SU1N5mS12rT2wfz8Ak5OQY4Ge99+EZC6QYSnAQJ0t7u9EIIN13NlxwgZNzrx8iad/kV3EWxe0WrxNSRFtsvt11aroIlw/YerVVFeQWSXjxhrqbdqEUCuMFfZ+aRkaIYHF1ioKBZo0aUJFG8hcLVGiBGXisCCBlBo1aiAuLg4ajYbXALigYDNwWx8+RFpODhI4erGQUUJrt6RS6vAIGxIXFJcvX0bNmjXp782bN6cZptjYWMouysrKglqtxs6dO+Hi4oKmnA1Sq1YtlC5dGpcvX8bjx495YiEvXrzA5cuXMWjQIPj4+GDWrFl48eIFrWkFADc3N4wfPx4pKSkYOHAgT1zt34RPcrYMBgNPipmAFNh9wX8nPjWz5eLiguPHj6NixYqYOHEifcbkfzcumu/k5ISUlBTKxc2PswUAM2fOxN27dxEUFIQlS5bg5MmTAPi9IZKSkuDk5ESdLF8rUqyuajVc1WpUKlyYGrMZWi12PHpkUhsEoOaMDGGGjBiPnRiHhCyHMo7eQ5wCO8EGlGEls5WdmUmdVMCk5viSCCVIpejRrRtUEgneJyfD28MDRmZjnTJlCg4dOgQlZ/Scv3gRhQsXxrFjx3iLGgHrbIlFCt8xfW8IiPGbqdXiamQkzQIefvYM4zjaAMGVN29wjTPuaLPRPEQI9EYjVHI53TDTOEOLGMJ7rlzBWkZCWysSGFjBUS0J1nONGIXZt8T0dNH+JPv27UNYWBivgfAzgbEJvZ5SVV+9eYOLFy8isFIl09927qQZKJYiy9YdhoSEYFytWgBXm3Lz5k2cOnUKrVq1QlpaGipXrkyDVDdu3KAb8XsLmRECIoowmFPVEj5XM2dLJqPGGTsuWWNaaPQPOHQIzvPnU2OQfA4bgR/NzU3iQFFnixs/5dzdMZBzVv/8808YOCcb4Ge2hEZGn8BA0fVpVI0a6F+xIq+PjVqhsBgU0XLOFtuXi73+2PR0fCWQMAZMgRli3JL/0zUaPBEYrjk6HQwA5KRZOtN/SAximS0xByyRaUrN3hvyvSdOnCh6fhKtv3fvHoxGIwYOHMjrs+dMfubuvQSmegmqCiZY/9jxMWPGDPj7+yNs1CgAgJNCQZ2+1b//Th0eNlPu4+Njkrh2cUFKTg6alSjBy2wVJRH2Fi0QxRiR5D6lCDJbkEgAgwF3k5JwPY/G36kfP+KFlcDQfwtIhoYEMYTzkDhbZI5r9HozgQw2A8pmnO5GR6P8H3/8peuTijhbHiLOliWMHj0aS7lgTaVKlWA0GtGgQQNoNBp8LRDJEGbVhMENSxCjEVrKFJYuUgR//PEHdR7I+hYZGYk5c+aYHU9q0m/fvo3Y2Fhcu3YNs7k+lp8C9vmEREVZzWwRyKVS2NnZYeDAgSjL2SwFgZubG90Dvby8eM3Jd+zYgWwmOERseeJ0XeaCmhcvXgQAHDlyBDY2NihTpgwqVKiATQzzQqvVIiUlBSNHjqSBliNHjvCEdZKSktCwYcMCf4f/NXySs9W0aVN89913iGYisFFRURg/fjxtjvYF/zvo1q0bpFIpChUqhHr16lH6B+EDN2nSBICJ1kaiFkOGDBFVeBMDiZjUr1/fpH7EbSpVq1aFWq3G5s2b8d1332HOnDn46quvYDQaeT08hHBQqZAwaRLcbG15UWIvBwdU55yoZ5yxLDTwHFQq6KZOxeFhw3CF+16kj4wwEyCXyQDO4Aes0wj79+5tJuVKIldKGxsoFArYSqV4/OYNnoeF4RVjNJQqVQqVKlVCLIn6SSSmezR8OCCSpWIzEWLOj1hdJTHwMrVaNNqyBa04mVqA3zsHABpv3YoGmzcDMEUJCzs7w4uLGorVTHTbuxdJWVlQymQwcp+TJRR6GDkSUdz9BoAskWCOEFncxiyMuloqPl++fDkePXqED1wtCQB8FFA0nO3tKeUiPT0dISEhSCeO0IsXVDZ+xYoV1Egi4yI+Ph61a9fGr7VqYTNn8BBFqO+++w5KpRIPHjygm9iKFSvoRjyFqSES3m9A3EDfxKh9pgh6K6nkcvoedgwoRLImBC+Tk5GSk4MXTLZUqAJHQJwtIhBBxg9rAJH7Q77j7tBQOt8UUinCx4zBmnbt0J9T6RKjNdYtVgzbu3Sh10qcAScL6mCnIyJw8OlT3rlYMQ2hSAY5r71SSY1bNrN1g1X+RC6ly4ZzYliDWAxiz01MKj6RyXawz5/cww0iNYhAbla3Vs2aVBksnDl/LLcet2KUUK0JFbDOlru7O1q2bAkvBweEjRqFn3198cuUKQBM8+bSwIEAgEjGCdq0aRPu3LmDtoULY27TpqhVpAhv/MUyY4utseE1J2b3DYkELTgjOTErC/0CAylV1wyckMTfDWu1jvkBGY9kzAgDJ0IaIckIszVe7Dhhr8dShpXFkd690d2KnDY525QpU1C3Zk1EpqTAXYQhYQlSqZSuew8fPsShQ4dQtGhRVK5cGRs6deId6yyYx5ZEbIQQVSMUCWz81rw5bo0bh/379+MWF6wjQZ93796ZCcAAoKISBB4eHjwaXkFBnk8VDw88iI3F2NOnqaCVWFNywLSe7ty5E1u2bEFhkV6ZRqPRarP28PBwxDDiPKwC7vnz57Fnzx76O+mHSuy1pKQk9OnTh/79+fPnCAkJoUwmst81b96c2mqdO3emIiI//vgjr2ZLIpEgKCiI2osE9QT17f/r+CRna9WqVUhNTYWfnx9KliyJkiVLonjx4khNTTW7oV/w34Pf27bFTIH8eH6gVCqh1+uxe/duLF68mMp5SrnF7sSJEwBMmS6yoBVUnZLNiJI0vl6vR1ZWFt68eYOqVavSSb58+XLcZCiBQrCNOdmNyN3WNvd3QtEQ2ZxlUinGjx+PRo0amY5hosIsFAoFEBcHcMZzhlYLVUICGrAbE9kgRT6HpPZlCgVkMhlytFocjY6GVFC3Ea7R4Ldly5BOaDfkO3h7i8o88+gpIoa72IZGFm4x41DM+CdIzcmBg1KJNq1bQy6RIEung8FoxIJr1+jnEBU7lkZIaprEhC/yDe78HgJDIE3E2Tp48CBevHgBJycnlH76FOB6NAmVpLp07Ejr+EhPILFMoIODAw4fPoy6deuiJmdYeHl5ISAgAFeuXEFjbp4RSu2jR4/ouCZZhTFjxogabmJ1cmLPRVj3xMJGLhctwGcDBkJHnBh/rONGKExi5wdyM1tykSg7GVNa5jpYaWN/FxeMqF4d27t0Mbs2IYTOlpg8OABM5dTyLNWjWfrOb54/N3OcxJx2ncEArU5Hg0rkPZaK88WeQU+O9saCUsv0elGHWGlhbvhwAZzY2FgaBNu9e3euShj3LCszdC/yXLp27Wp2PjZjGBkZiYEDB+LIkSMI8PBAP9ZQNhqpRH86k5UlUeyTI0dicoMGkDFOAwA85vqCkXMQsONbJXC22Oxzu1Kl0NsC5RQWAgOfG9bWQ0uQzJiBEG4dIfV9WoMBv1y8iKVMvzjA9MwlDI2QZsIEjAUylwrazNhJpbLqPJHzzZgxA56urhYzW0ajEc/Y58m8zmLQoEHIyMigvZ7Y8S10tvJqdk+gYfpsEeEOsXXKU6FA7cqVsWfPHoRwNoOvkxNsFQozIQeCsmXLUvn39evXY/DgwVbVCPMCWRNLOTnRQNYbmQzYvh2TLDgccqkUZ8+eRdeuXfGHSKayZ8+ePDo8C6PRiCVLliAqKopmxNmyi+zsbGq72dnZoSIJdkmlkEql+Pbbbym7SKFQ4Mcff0RCQgJ9DwGrzxAbG4uyZcvS8SAUyADAc+CmTJmCA1wLnX8LPsnZKlasGO7du4cTJ05g3LhxGDduHE6ePIl79+6hKKPW9gX/XWjl74+pnANRUFy7dg2PHz+GRqOBnZ0dbt26RYtLe/ToAcAkakCyXH/F2fLz80ORIkWgVCqxePFizJgxAwkJCZT3/ebNGyQw2QkhWCOU3RglEgndSHr36mX1elhesV5QN0I/h/Tf4jaXDI0GHoUL8xsuEyNCJApFsnMajQZnzpxBJueUyIxG/oY+eDDOarW5FBmpVJTGSyDMWHja2qIhkwETc7bIRiVWd2bNuMjW6XDnxg1s2rQJuqwsZGm1+JCRgZ8uXKCqbgRKmQzZ3PmjuSxdfGIiva9iwh3WQDYS1hCY3aQJJhFhCwa//PILPnz4AEdHR/i7uKAKd/9sBPcx9v17uqm0bNkST58+hYT7vUGDBtTRtbe3R9GiRbF//366kf36668ICwtDenq6qUkycps9ZmRkUPpgA0a8g/a8Yq5BLfJsxYx2ByvOqUomQ45eb5U6LBwnxGFgC9G1AhohPb8FGiHrPHbhnKgOHTrQ18hYEpMyz8+1KvJwtogTWErQD4iAvY/f1qhBKZa2cjk19LJ1OuQIZOwJdAYDIJUigcuIkkyKpXoRMSdZDCQjoRNmtrj/o0Xq+ABTc3jAJECg0+lga2uLcePGIYtk87h5tmDWLPoeInBEjCV7pnZKONffvHlDa3IBAImJgFaL7Vu3UseXzSblCDKsMqmUt96wlFa23QF7n3jUKomEioAApnEnlCqfM2cOunfvDuj10H5iL7WCQGzs5gfPuD2LlbmfExSE2QzFCzCnESYL2hyQ94oFOPIDuVRqtTaZrMd169bFob17ka3TwUvQzBYAzpw5w6vbtwRhI1x27goVDi2xEgjmNWuG0q6uvJqt28OG0fYfQsj0erx48QI2NjY06HN/xAiEDR2Kffv2iTpbAKjicqVKlbB27VqcO3fO6nVZA1kTj23ZQvfXUYGBwMuXFtexQjY2mDJlCq5fv44oJtj3888/Y/fu3Th37pzF9jc6nQ6zZs2CTCajTiPrbGVlZWHIkCHQ6/WYPn06j+kSGxuL+vXrI4Xbu8k9i42N5d2rb7/9Fj179kTRokXRr18/AKaMFqE8siUgxNny8/PDunXrcPr0aXTv3t2s8fH/Ogo0Sy9evIjy5csjNTUVEokELVq0wJgxYzBmzBjUqFEDAQEBCAoK+ruu9Qv+gxgwYABu375Nm/ux9UqEHkf+tmbNGtSoUaNA52e7hNesWRMRERGQSqUYTRr/IjfdrVKpkC3Y1FnwMluss8X8vpurD7IUMRZrJig0BiUSCR4zfXMytFoUcnUVd7ZEHBzSb8mQkYGRI0cCnIOqkslQXFiTplLB3cMDAOBZpIjFgnmFVGpWP5KSlAR7ZlF3487DghhMYsahTCKBZMYMRIvw6bN1OpNUPQBotTSzBZhHXFVyOZWiV3HjJyUtDeAcdGk+qIMEv7dti+2c3DVxtvQGA35u2BC1/fzwC9dXhYAU4xctWhTNmzenzVdJs1eCdGYDUyiVKFu2LF0kg4KCqLNVpEgRDB06FL1798YD7rkRuWDW4CSbXEZGBpw5IYEqVapQTjsxbDyYjexzZLaIISysiWAhjECTcRObng5XtRpyqZT2+BGCGHqO3PnFouyzOAOf3ROosyViIOYns0UMF0sqmcRRHV2jhuhndN27l/68afJkRHOGRiFnZ5qBmX31KmzmzLHqbBEDIq/MVr6dLYZGKFaz9caC+iLpAdelSxc4OzvTIJRGo0Hkt9/SNYVkuLKys6mI1enTp1GuXDnUvn8fvQICAPCfAemdF8eouBZ2coLvjh0oWbIkfdasM2XmbAkyW5nMPSVUzJi0NN794zkzEgmPFRCVkGCWDZHL5Th79iwqBgSghGA+L7x+HVvz6O9UUFiqs7EEcn/InCRjggQxhFSymVeu8GiEQhVWmUSCHL2ens8SrXEfFwQ1u36ZzGpvKOrE3L5N96+KIoZxJpehs0ZnA8ydLRvm+QrpwGKsBBYednZIzcmB3mike7mvszOqiFDtAEBuNEKpVEKhUFDHoZBajQM7duD333/HQI4KKwRpLTNo0CB07NjR4nH5AZlT2sREU09CqRQ9uICH2L27OXQoRlSvDp1OB3d3d55Axty5c3Hq1ClMnDgR7du3F/08YruQvad9+/Y8e6x79+6oWbMm9Ho9fvjhByr9DphKG8Tqq/z9/XnOFmGwsUFpth3PhQsX6M8ymQyrVq1Ceno6+vbti6tXr2KqYH/+N6BAq8ayZcswbNgwUeEDJycnjBgxAkuWLMn3+ebNm4caNWrAwcEBHh4e6Ny5M6/gPykpCWPGjEGZMmWgVqvh4+ODsWPHUq+b4O3bt2jXrh1sbW3h4eGBH374wcxYvnz5MqpWrQqVSgV/f3/al+QL8ge5XI6srCzqnEgkEqpqR4pHibM1cuRIs/4s1vDq1SueepFMJqPnYjM4xMBp164dz8kRgjVChRsRNQbzUM/jjR+jEavbtUNbZiPvULo0JtSuDS8vL2qAp2s0eBMZCS0bieQW+Pr16vGUj9q3b4/Tp0+brikrC3Z2dhjAyei2bdUK1QWFxJDJ8IGjIHh4edGNTgjSXJb3nQHIGdqlGAecZLbEjEOy2X8Qaa6Yo9fnOls6HbK0WosqW2w9SA53THhkJMBlW9MKoPgkBRDPRfyIs0U2aqlUitYC2sfbt29RunRp+Pn5oXr16vjAbQzF2dq/BQswgClGfsv1cmoWF4fm3M/FOd760KFD8eDBA1y9epVupg8fPsSPP/5IMzqASSQmICAAu3fvphSL4sWL8yLCfklJ8GEMOI3IsxV7Li6MEALANwKFcvhiIGN/HldnS8bNpTdvUNrVFYXt7S3WbJH3WqMRTud6MrFRYTEFNQJrdCjyeeReW4oIEydMKZOJKqgRFLKxgburK3RElvn1a+o4EfEXMWdLazBAplDQwAd1tixktt4xEsrWYDGzxX3v+fPnm16w8Dk3btzAlClT8N133wEwOVue9vYYQxqmct+lVq1aSEpKgp2dHa5fv46nT59Cp9OJNqcVKsoBJsbCzJkzadNXAPBg1hNCmyXrtkwq5a+xjJH/6s0bxKWnw3vJEuwMDaX9iAxGIyTk+zLOVuXERIxt1gyFBON+5syZSE1NhY+3NxIFtsGThAQzkZO/ioJmtsjcJfOTiIGQnmvCcXbh9WtIJRKUd3cHYF6HZadUIi0nh849YWaLrLO1LbCM2MyWWO8s3izk7n0lkT2jSpUq6NevH098ATDN95kzZ9Lfa9WqhW3btlGni3UuS7u4YApzP9OsBFEBwE6hoGJA7N5uiX0h45ytFi1aULocAJQuXRoVK1a0aPQPGDAALi4ukMlkCA8P59U8fSp0mZko4uAAR5UKy5YtAyCuqlyraFFToEung4+PDw20aDQaKBQKTJs2DVOnTsWxY8dEP0cr2CsWLFjAc7YGDBiAmjVriioZV61aldItCfPm3r17KFWqFH2dwM7ODleuXEFwcDAGDx7Mq9EXqpJ3794dgGldmDt3Li09+TehQM7Ww4cPaY8YMbRs2bJAzd+uXLmC0aNH4+bNmzh37hy0Wi1atmxJo9DR0dGIjo7GokWLEBoaii1btuD06dN0QQdMg7Vdu3bQaDQIDg7G1q1bsWXLFvz666/0mNevX6Ndu3Zo0qQJHjx4gHHjxuHrr7+mzdm+IG/I5XLMmTOHx/MnGyrhDrOcXksF3WIoXrw4da6EYM9JnITatWvT1LUY2MyWJRohyTRZisr99ttvWM2JX9jY2GBk9eq8aODRPn0wonp1U9SJkRzPyMqCQqDmBJgi5wMGDKAvHz9+nHKWpVlZGDp0KLTcuE9LSjJXyZPJkMRlYx6HhVlUKBKLuhoNBrgzG/pzkQJ9kr0QaxZLMlrCTT1Lq0W2TgdnQuHgMlvEaBdmRNheRIncOUMZAQItOX8+ItFGvR7gNl03jkpFNuq0tDTaj43FixcvEB0djdWrVyOVixY+Z1QFMxMTqRIVkOv8Hdu2DYOJkhX3vsjISGr4s9kAuVxODV7ApMgXFhaGypUrw9bWFjY2NujRowdWrFhBj3EQNDKOEVFdy9LpcmXlOVj7nYxVaxRQYgQT0Rjy3A4/e4ahVaogXaPB4CNHzKilY2vWhCtn8FqjEW7duhVr167lUUrI9YhlsQpCeRxbqxaalyiBjYzRD+QamllarfU+Yj/+CL1GAw13Xnd3d+o4kWCBcGXwsbWF3mCAAbmUV20ema2P2dkWm9ey2Pn4MRps3gytXo+0jx9pXyJyDV27doVs/XoaERfi9u3bmDdvHtavX49mzZpBymXfyhMDk7mGfv36ISMjg/bMadKkieg6+PXXX5vRrG7fvo2BAwciISGBvseWcWp9fHxgNBpp/ZiMqT0CgOKcZD4AZGZnU0fk7MuXKMONk+DwcBp4UqnVOMBRcZv4+UEtl5tltoi9EHLjBiIYoRnAlFWy1OvsU1HQmi0yf4SZLdLGQUzFViqRoF9gIO4OH2429lUyGVJzcqijJBznwjkphEIqRbfy5VGlcGF8/Okn0c+m4NbWEoIm84CJFnb79m1an0rQvHlznnrmtm3bULVqVcTHx8PIqdISyKRSeDPnziuzxTpqUhFnawwjcQ4AJYsVw5EjRzB48GBer7r379/j0aNH+Enk+wOg/WMfP36MFy9eIOIzqFxK4uLgaWsLR5UK9vb2KF26NLVvLl++bJYVrlixIkaPHk33ioyMDGi1Wpw6dQpz5syBRCIRnbdGoxHlypWj/U8DAgKwl8nojx07Fjdv3qT2G3sOuVwOg8GAFi1aoGHDhujYsSOqVq2KPXv28Fo1ACYKc0pKCl6/fo02bdrw1nSWkQSY6JgArJY//K+jQKtGXFyc1Zsll8tFlc4s4fTp0xg0aBACAgJQqVIlbNmyBW/fvqUOW4UKFXDgwAF06NABJUuWRNOmTTFnzhwcO3aMZh7Onj2LJ0+eYMeOHahcuTLatGmDWbNm4ffff6cL/po1a1C8eHEsXrwY5cqVw7fffovu3btTedIvyBv+/v6oXLmyKZPDgSjaNGV6Qt2+fRuenp48h/ivIjg4GNeuXaOLh0KhgC/XbwsAPv74I/pXrEiNbhvBYk4gAWMMcguMJQJEhQoVKHVAZSU7ULJkSco9ztBoYJRIeLLtxMhxdnQUdQBw6BDGlCiBsmXLYjeXbb137RpiBKIMEoUCD0h/IBsbXoSYYH6zZqJRV71WS7nbAJAk0reDGI0XBMYKkLsB5uh0qLF+PX3ddu5cnI6IQJXAQBQrVgxlSpakDhhgrtDGmgRkS7VheyZJJKbnIsygMZ+Z+6X09DiS5Ui1EhUlHPzExESEhYXR569jNne1Ws3bMDTc+YKDgykVjhjBoaGhcOAMbmKQDho0CDdv3sSuXbswdOhQJCcn5zZGhikwlJ2dbRbN7Na5M/zLlKGbXjERhclMrRa/t23Le00pk/EMDjaLRQw7a5kVYsQRCg6bkXSztcXH7GyEJyXx+m8BwMKWLem8EvbZYuebRqPBkSNHMG/ePNr8tKAULOG1EnQvXx7nBgzAEC4DPKBiRZQoVIiOvUZ+fnm2ungfGUkzrJkZGbkCNBYQfe8eEj9+hBGAPffs88psAbmy/Na++/V373Dt7VvoDAYEXblCmwmT792kSRPYpqaiYpkyvPeResKSJUsigKMCnj9/Hg8ePIBEIsE333xjOjAnB0XCwoAPHyhtaO7cuZgxYwZ+/fVX0XXQ0dGRUp2TkpLQvn17XiCBZNefh4cDBw8CBw7QAvv13JyVCfpsvWMoiVqdjjffiBEen5hIWQBqtRrunINZzt8fRYoUMavZIpDB/DnoDIZ8ObsFQYGdLYEDIXT+jDAfG1KJBBKJhAY1CIo4OOBDZiaMyJ17QvaGMNssdv0VPT1xj63FE3w2YFJLrc85KGLnevnyJc34JCQkICsrC9u2bYNEIuG1OTly5AgqVKiA8PBwSCQShDN/k0ulvACuxcbEHNiMNrvWkOvzFwQjfNzc0KRJE2zdupXncBBWDmGXCEHEHFxcXPDu3Ttc4oR3PhWGX3+FPjERxV1d4ahSQaFQoH///tTZatKkCdatW8d7z86dO9GuXTsULlwYqampcHZ2xs8//4x79+5RGzlLpJ7PyckJN27cwI0bN+hrLA35woULSE5OprY8G+gmr1WrVg0vXrygLU7279+PtoL95/vvv6cZ9549e/JsDJUgEKjVajFr1iw634V//zegQKtGkSJFEBoaavHvjx494hnjBQWhB7pYiN6RYxwdHWnK8saNGwgMDOQV27Vq1Qqpqakmo4o7htX9J8ewg5FFTk4OUlNTef/+7Th27BimTJmC3bt309eIhPCdO3foa4cPHzaLgPxV2Nra5jbL5LB58mT6s5ONDeoXK4ZaRYogbfJkOqHHjBmDB1xNA4Ews2WwYiSRhcdaQ0OJRIKq1aoB4CKYEgnP2SM0DGdHR54UK2CSlMXDhxjTv7/pmrlN2cZoNGuCbOfgQGmEcHICRDbKsbVq0fex26+HmxutdwP4hqtkxgxsefCAqqBZU/PS6PW4I1Ko716oECpXrgxtVhY/syWgE75h+N0JXGYrVihVnJVlTpWKigKYRrSmL2GgmS1yv8NFsnKAKQj0448/5l6vuzvNRoqJUQAAduxAPe4+LV++HGvWrDG9zghkrF+/HiNHjqT9TGrUqAFvb2/o9Xps3LgRarUaDRs2RO/evQFYWdeMRmgY+qVBYBzGpqcjNj3djPKjlMmQNnkyxnLRXNbZYsdgdRHnDcgNNLja2uK0IFPMUnGFCn7EMKzk6Yl2XKZCTIZao9HA1tYWer2eUj2tUbCsZaI6lSmDQVz/LiFa+/tjWNWqpvuh0WBinTqwkcvzbOLeolmz3Kx0ZiYy86Aw6TQakzCGRIIIrmaSOFtzgoLQaMsW0UizzmBAaHw8dAZDng6g1mAA9HpaFE/Ol5qailGjRmHqzz/zjidCLNHR0TR6/Pvvv+calq9eAX/+CQCI2rcPRby86Dn79OmDzp0747fffhOlU6empqJZs2ZYuHAh7bXIChORfTFHo4HjmzcAR+3+/fffMXz4cADmma0XTE2kMPOtlMnw+rvvMJH7TgAAiQS7uDYUJw4fRkREhBmNkEAG8zVHbzR+9sxWQQMGJLM19dIlGIxGUedPIZPhwldf0d/JXBDSgOv5+NA55lAAZ6sRUwOcFw2SzJsRI0bwA4cCsPuZu7s7+vbtS/dKNii/k6uPJka9jnWYJBLcFKgxWkNhpv6L/d5irScA4Mn9+yhXrhxu377Ns1Mqc2uJJYGMfv36ISAgADNnzoRarbZY251fSCQShISEwF2phINKBYlEgl9//RWZmZl0PgrV/tauXYuoqCj07dsXGzZsgFarxdOnT5GZmUmfkVhteXp6Oi3tIEwNEuBLSUnBkydPYGNjA6VSiUKFCvH2JVtbWxw4cADz589HSEgI7ccVHR1tdq/UgnlYrVo1HOSosUJ7zdnZmQabu3Xrhrlz5+b31v3PoECrRtu2bTF16lReQzSCrKwsTJs2zWLRXl4wGAwYN24c6tWrR6N6QiQkJGDWrFl0IQdMKilCVRPyO4ngWTomNTVVNDIwb948ODk50X/C/kj/Rhw/fhzPnz/nLTrjuHoANuozZ84ci5TAT0XlypXN0tIeOh0CGPpK38BA/N62LW9zCg0NRTLTR0kikdBoGJUhtWKQkcXFmIccbXWOD52u0aCQqysKswIUnAE3ddw4s2hO9erVMWDAgNxoMXesUiKBVPCZJUqXRiW2jovj87Ng67U8GGM7hcvGEAjl7s+9egWtwQB7pdIiHQqwHL3fu3Mnjh07hlfPn/MyW1UEPUxYo51koR4LFZWyslBHpFYEhw7xfnVzcUEMR+0gG48lMQJhJql58+Zw4sQqbCxsop5paejCqW2KGdAODg7w8vLCN998gzTOcVyzZg0OMdcZHR2N27dv06CPp6cnjEaj2aZ19swZPHv+nN57o+B6W3BNwoX0KaVMBluFgjqM9iIUmzvDhuHiV1+hVpEiZt+BNYKFNVDWlA7J/X4wciSlF4k1WB0zZgyKFi0KnU5HsxbWehRZc4487e2xWdCjh+BUv35o4OsLpUyGdI2G1qPkJYnNXktAhQq4zxSKi8JgQCqXzUnlnjnrMFyNjISUqVUh0BoMOBUejk5lyyJARJyGhc5g4InpGIxGrFq1CmlpaabsrGAsunPrgKenJ6Ulr1q1CikpKaa12mgEGNrwmDFjaO2Ki4sLIiMjsWvXLt4Yr1evHq/OjgYakGtE37x5kwZW9QaDxTVfmNnKZu6Xg7s7z8lTSKXwc3bG8nnz6GtGiQRK7jNdHBzw/fffm82DoKAgGI1GuDg4QCLI+Ov+BhqhQiZD6ZUrcVukJYQYSE3Ww7g4/HT+vOg6pZBKeQE2S86Wt709KnOZaEtqhGQus07VuQED8AeXmcgrM0c+u0SJErg+cSKef/ut6HHCdfXw4cM048LaCSQwTgSCwAgtyaVSkxMk6HdoCWXd3FCM0wxg53dpzmEQ3gu9VgutVguFQoHk5GRKnSUCDmI1UwR2dnaUvfA50LdvX8hSU+FhZ0e1DfR6PYxGI/bt28crMwBMtYjv3r1Dw4YNcfnyZXz48AEHDx6kaoSAuLOVkJCARYsWAcgt5yBqz0SBVK1Ww8bGBklJSXBj+ta9evWKtqQBQG19g8Fgtm/9zAV+nj59SgPv58+fBwAze/vVq1dUqXry5Mn0538TCuRs/fLLL0hKSkLp0qXx22+/4ciRIzhy5AgWLFiAMmXKICkpiT6AgmL06NEIDQ3lZU5YpKamol27dihfvjwtvP67MHnyZKSkpNB/7yxEzP9NmDNnDhITE3mLaCHO0GIFU8qUKYM/uUjq54RQ6t3NzQ05DD3DQaWCL1nMOVy+fBn3mGiWBLkL9C4u2mYpsgXkGn95RciJkEKGRgOVWg1XJos0pF8/YPp0ZCYkmEXHSpUqhf79+9MmpD9NmgQAKOLqivZ+fsDRo5Bwi52zqytK5NFYUSaR0IaZzozRYS8QCigmaAhtMBqh1ethp1RazWwJ6WQUZMF3csLXx45ZdtjYwn/OINAKNke5RoMmghoAMRh0OpTx9cV0b2/4cc9dwkXaHBwccICLsAnhxtFKBg0eDADwZ6PoDIjgDsDfOOTcM3Rzc8P333+PNm3a4AUn6hMREQFHR0dqACsUCmzcuBGXL1+2+l2UMhl0BgN1ZrMFAaDn3NgXKncRB4cYT6xhRurXKnh4wEGlEjWwWENXmOET1oPlBTE1wl9//RXlypWDq6srNSStGXp5ZX3yglImQ1pODnXshM6WVCJB4qRJOMBRGk8fP07/plKrMUlQ6G8GgwHp3BwQqhFag85gQGpODtxtbUX7Fdkx916r16MY4xjnaDT8JquCz7vFZQX69++PnJwc9OzZEw4ODggPD6c0ehY//fQTDQg8evQIcrncTCAjODgYhw8fxm+//QYAPOXTsmXLonjx4khLS6NGdGx8PE+JjIVUkNnSMD+32rsXUQxrhDwvD8Yh9fb2piqlUZGRWLRoEfTZ2VDKZGjj749a8fEICQnBlClT0KNrV3gJAqP6v4FGqJBKEZ6UhNMW6niEda8sjXBhcLCosyWVSHgZM3IvWAdsU8eO+KVhQ7gKemQJx7nYXFPIZDTbnVdmjpwtKioKyMpCKZGM/KZNm/gtATgQJ0ChUPAUhoFcNWGsW4dpnCiSXCqFWq1G97Q0UcVDgo5lymB+s2aQSiQ4xLVtYR2rGtycEd4LrVYLuVxO12KS0SIsKmEQl8WcOXPQjBMP+hxwdHREXVtbbOnUCcHBwQBynaBGjRqZZbZ0Oh3kcjnq1q2LkJAQnmPo4uKCkSNH0j2KhVAg45tvvkH79u1x69YtSs+11KT51q1bNLlQr1499OvXD4GBgVi5cqVZQIWUDL1584Zm1UlPMKF64+LFi6mdOGvWLMxjAir/FhTI2fL09ERwcDAqVKiAyZMno0uXLujSpQumTJmCChUq4Nq1a5+knf/tt9/i+PHjuHTpkmifrrS0NLRu3RoODg44dOgQL0VduHBhnjQtkCtVSwQVLB3j6OholgoFTBupo6Mj79+/HWRjZR2GunXr8ni6gKnb+CFBFuJzQLgQ2dvb58vQucBEaHkCGRzykq0FrFMNAeAVV+eUmpWFuA8fkMEYEE6ccXX8+HEz0ZDVq1ejVatWlBc9c+ZMDFapsGfaNJTw9QXevYORu96rkZE4xcipSkSuiXUKizF03mKCrIa7ILqu5xrX2iuVVmtP4izRQ4lzxUXIWN49j55EmjumpyOL9JAROHAlChemhls1FxeUsxAxP33yJFJTU+HLrAVG7vwGg0E04geYMgHly5enm4GbBWrfzZs3aZCFtDno378/3Yh8fHwQEhKC6OhoaqhmZWVhzZo1OHLkCADTXHF0dLRKiwZyo//ESU0X0JY97Ozwe9u21Klk3wfkZmhYZ4tkDonjIdaHhh35Qil1a7LyYhDSCI1GIzp16oQuXbpg1apVNNtkjcKUV1AjLyikUqRpNKJUWvJ3F7UaXTklSHdGuOOJSHNWs+szGuHAPQNbjs6U1xqkkEpNohcaDRyUSnja2cFGLsdyRmiKfW6bHjxAowYN6JjLTE+nvdoA5Dpbz56hXpEiNDO/g6Pa7d27F/b29mjRogUAE+tAaPiQWlupVJrrbAkaUH///fe89h4Ev/zyC/bt24fvvvuOGn8SmQze3t6Uqmtvb09Fk2QSCe7GxKD73r14nZwMuWC/bcioApPxyBqCEpkMUm5snuWc46SkJBSyscGYmjVx8/ffsWjRIsybNw9vX79GvEBhTWcw5FkHVFBY6xWXnJWFeps2IZJhEwgFZuJF1lEjIJrZYufE4CpV4GprC0/BcxFmi1UWAhvk/uYns8X2vTQIxnhwcDCGDh0qSq8na52Liwt1KNq2bYs1a9ZApVKZ6rMyM+l6JJNKkZGRgf2bN6O+SPadoEWJEviRo6GJUQZ9OUdOeC+Iw9KmTRsetU0ul6Nz584YNmyYxc9s3rw5ili5poLCyckJGampcFCpqF6AwWBAcHAwPDw86LwkIBm5QoUKmZpc6/XUDurUqRNWr14tmlEW7n29e/dGpUqVKJ0TYLKMApDsWuPGjdGhQwcsXboUly5dgkQioc9TCFaBnGTNSa0nQbly5ejeeeTIEf6a9i9BgauVfX19cfLkSSQkJODWrVu4efMmEhIScPLkScofzy+MRiO+/fZbHDp0CBcvXhR9f2pqKlq2bAmlUomjR4+aDa46derg8ePHvMjauXPn4OjoSCMrderU4en+k2OI4MIX5A25XI758+fzGrIaDAZR+dG/Q9ZT+Nx///13M6dBCA8PD55zxRPIKADEokc8cOfMMRqhNxp5aoSO3MaoUqlobQ+hAgkjz3K5HJsnT8aBfftMEUKDgSeEEcHQL4RUMyFY1SahKMjDR494x9LMlkJhNbMVZ6F2TZgVYSO3PClfbqMIv3+fvi6skqlbpQpCOdrd+vr1salRI1StWtWM471l40YA4jSQjIwM9OKyFy5qNS8zQJptK7h7HyWi/AcAT548oZQTMublcjkyOBqZJen9mJgY2uQ7vzx/pVwOI9c7B+CruwEm+mV1b2+zOj4CscxWl7JlMZCLNgLApk6d8JoRNwD4jnBBaITWroE4gHq9HkePHsXTp09x5coVeu3Woup50f7yglImg8FopMam0HkTGpkfGNqgVERwRohvRoyAA5fNd+UCC8IaIaFTa8M1S07NyYGDSgUPOzs4qVQ84QP2ub1NScGObdtQunRp9ExLQ6GDB3mF899zKm+OL19iDtOKgm210a5dO1rzRaiCQG7QgDhFCoUCxYsXx5AhQ+hz0+l0GDlyJNRqNUaPHs2TjC5cuDCqVauG6tWr84KXRgBeXl40W3Dp0iWarZdJpUjIzMSBp09RYsUKuHt7o24etPxbt27Rn6OiojBt5Ei4vnuHmdOmATDN7/Lu7ihsb4/p06cjiaOghQQH472ACvqpNVs99u2jLAF6Lu5Zk3slNh+JY8WOZaGceRSzjpNnbzQaec6btZmwuGVL7OGktNnrISAZcOF8EjYGtwSpRILXjFCScI19xO0fjRs3RhWO2k5qhFQqFVavXg25XA4nJycYjUa0atWKOt+7du2CwWBAJudwyqVSBAYGchdoOXDxLUNtU4pk0Um2j52P+3r0QIMGDXD06FE0adIErZh2IBqNBocPH0YvLkv2T4DtVaVQKNCtWzeMGzeOzlVheU6nTp1QqFAhlCtXDjExMZAwTvCKFSsgkUhEm52r1Wp07tyZluM0atQIS5cuRWlGCVTIFCIg558+fTq9N2/fvkWnTp1wT1D/Hh4eDqlUykt+kM8UMtTatm1L6fTff/895syZY/E+/a/i06ShYKKQ1ahRAzVr1qR0soJi9OjR2LFjB3bu3AkHBwfExsYiNjaW1lERRysjIwMbN25EamoqPYYsAC1btkT58uUxYMAAPHz4EGfOnMEvv/yC0aNHU6rHyJEj8erVK0yaNAnPnj3DH3/8gb1792L8+PGf+vX/dahevTo8PDx4tLuvv/7aTH2SdBb/nHj48CGltBAolUoePUUMf/75J69+is1skR4SeeW1FO/eoZ+gUaYQvKybUskTJ+jKSVOrVCq0adMGUwoXBjhJeSKZWo0T2CDG4TfffIMff/wRZ06fBpj7/eD589yMlhXDVC6V8hwgshmTdwj7WRkBJKWk4EN0tFVnK9aCs9W7Rw8ULVoUMzlnMoUxLtj3kGyA1GBANikKFjgW4Q8e0PupVCpRu3ZtTJ06FVOmTOF/KPfsrXHuAZPxu3DhQrPorCElBZg+3WqUl0Q1iWLVsWPHckUBcnJo5rwEZzB17twZkZGRiIqKwoIFCyxGD4Xo0bUrSpUpQzNb/symCJiMPJmAZsRCJuJs+Tg5YUvnzvR3e6XSLDNmjUYo6qxbAZlX5FgSSLh69SoWLVqUW7P1N9MIAVikEVYRijcxY8e6NIYJd0JC8JJzXIRqhATFBfdYLpViwKFD2PzgARyUSnhwmS123AnrcpRyOdRqNeyTk5EcEYFz585hwYIFqFu3Lpw4lkVqcjKvGam7uztiYmLw+++/Y+LEiTQr27ZtWxqIpHWqHCQSCfz9/fHdd9+hg1SKk337Qq1WIzo6mjYtPXz4MEqWLInLly/j/fv3tFccr9ZZKsXdu3dpbdfQoUPxww8/ADAfO1Hx8ejMZBRZGI1GxMTE4BVTx2mUSEx9Cw8fxrNnz2Bvb4/s7GxcHDgQVby8MHfuXCqZrZRKzZzfT1UjPPLsGWIETdxJtpiMK5WI05Il4mwJs/csCF1XIpHwnDdr+5K7nR16csqTgPk9draQlSbZy/xktvz9/fHtt9/yemsCJrExonC5c+dOuLi4YMCAAbh79y7OnDmDjh07mtEHV65cSQXKVCoVAgICMI1rzSOTSKgaodk6M306iggaIgOgbTvYtYT0HCQ9Ie0UCnQvXx4KhQLu7u7Yu3cvL2BHZODZhut/NzZs2EBb1uh0OpQtWxbbtm2je5jQ2dq8eTN8fHyQk5ODs2fPwsfHxyyQnZOTg1u3btE2RkajEffv38eOHTsQGhpK7Zz4+HiMGDECV69excWLFy0K2ZF9smrVqvDjFJ8JrXfUqFG8Y4sVK2a2r167do33HoJ69erREqOFCxea7+f/Anyys/U5sHr1aqSkpKBx48bw8vKi/0g69d69e7h16xYeP34Mf39/3jFkM5HJZDh+/DhkMhnq1KmD/v3746uvvuI11StevDhOnDiBc+fOoVKlSli8eDE2bNjAi3R8gXUsXLgQP/30E6+ZcEhICI1WEGzdupVGaj4XEhMTzcQlxo8fj5Lx8ZQSJIY///wT/lwTWgKyoXXo0AFA3jRC7caNuJNHo24X1niQyaBiDFdvT0/0798fbm5ukEgk8AEAzvjx8/ND06ZN6aIGmDKuhw4dgqOjI/yY2qrCMhnSjUZI8xGldbO15dHCyCZGnDmhk6o3GBAVG4u34eFWBTISGQOL3RaLennBx8cHcVxxLOtgvWboNJncZuLm5ERrN3LYa8nJQVJUFHW2iDyvWI1mby7qJtZvLZmRtveyt4eNjQ3q16+PzMxMGqlnI4xiyMrKoucmEfsHDx5QI0gqlWLBggVYunQpLsyahV+43kLkfAXpJ5KUlITUtDTq6KYKjDy90QiZVGrRURHLbOUnS8RztgSZHfb9YnVGQlBni7sW4myp1Wro9XpqmE6uX58XlWfxV2mE1NmyQCM8yqlCEqzhgh4AkJxX9hrAh7g4JHHP5jlXp2fmbAkCj8mcfD5gMqzFnK3GzPwHTNm/mjVr8upFJk2ahMaNG+eqERoM6NmzJ6VBxcbG4uXLl/j666+xa9cuXL9+nTvMgCdcz74NGzagHSf6ApgMoufPnyMgIACDe/RAeaUSmzdvxtGjR6lhWqRIEYwdOxaNGzfGvn376LguxQagJBIqOw+YMh+kQF84ZuNTUvCau3dCGGGi77JqtkYAJ0+eRGJiInbu3Im6deuiWLFiCAoKwm+//QatVkubLytlMnFnq4CZLaPRCK3BYBZ4+sg0nhb7bkBuVp8VBUkWEeEisNR0XEwd0hKEc10oICI8p7Xs8szGjbG8dWu0bNkSJUqUwLlz53i0NKEadWJiIvr164dDhw7h48eP6Nu3Lxo2bMg7Rqg2+PTpUxTn1BHlUikOHz5s+h6Ca9m9e7dZ+cCFCxdQiwvqsd+azCfyjEj27siRI2jZsiWio6NRpkwZSrclDqFYXePfBWLPAiaqLMnuEJtK6GxNmDABiYmJSE1NRatWrfDhwwfaLJhkkHQ6HQYOHEj73z59+hRdu3al/cMIW0yv1+PUqVNYsWKFVXGKypUr4/Tp07QBNZArwiNcn4kTzvb8JC1/unXrxjvW1taWd85/I/6jzpbRaBT9N2jQIACmNLWlY1gDlVAbMzMz8eHDByxatIjXzZqc6/79+8jJycHLly/pZ3xB/rBnzx7Ex8fzolyk2JLFggULrBadfgqaNm1KI6UEcrkc5fR6WuwuhhMnTmAko1wpAdC1XDnYHjsmWtwrhgYNGojWEbIgNQZOnCHiyThft2/eRFJSEtq0aQOlUgmNRkOpF4ApO7ie6SPVvHlzGnX7yNQfFHd3R8lKlSAnC56FgnTA5GyxtDCyEZHaM6GzZTAakZaRAWi1VjNbbMNJNhMya84cBAcH4/flywEA0xhBiFdsTy/uOuItOOMOSiVcbGxoITXJmFN1Uua637x6hatXr9KooJSpOWHXBkLrCg4O5tVn0iivBfqYjY0N3Vw2bdqEjIwM3jiQyWTo0KEDxo0bh+vXryPm/XvcuHGDNr8siFTwjWvXEPnuHaURJgr6oJHMliWI1WzlpxeQNRohiwI5WyTqr1Jh1apVptpKnY46Qs42NryoPIu/mtkiBpZShEaojonhSYYbjUaE5qN5NgsZ0xohm8tyaPV6lGeUQT04p03ovBKUcnGBt4ND7vNZuxatBMXqMokES5cuRd++fXmvz507l86BEn5+GDJkCBUjatiwIerXr4/k5GTY2dkhICAAw4cPN8uudurUiRpmRqMRqampiIiIgI+PD6pXr44hQ4aYXTMpev/hhx/oPZ09e3Zu9DolxSzoxn4XFjqp1KKDYTQaabaYQiKhGW4AaNasGdzd3fHdd99ROuShQ4dMNkGxYpAJgnKfIpBBHCVLzhYRChJbKwmNkF1jP1rJbBEWhAS5zdmF788L+XW28lOzNbVRIzQoUgQPHz7EhAkT0LFjR14WU9h412g0Uop/r169UKJECRqIIJg/fz4WLlwIAFRJ+iE392RcVhQA1IJnR+oOWej1epqRFrakAEz3ek/37jjJzR1Ss6VUKuHt7U1LAkgwQCgm8XfiwIED2LRpEwBTGQRBmzZtEBMTY5btWbZsGTIyMmigOSIiAqtWrQKQKzai0+nM7jcAetyVK1cAmO7b8ePHsX//fqviFDt37oSjoyNv7SR7mbeghYhEIoGdnR2VlwdAM2xCnYNz585hMtOu59+I/6iz9QX/f7Br1y4AfCNSTBL/m2++EW/e+xchNIrlcjlmzpxJpUbFkJaWhnkMN1gikUAhk6GxpyeVdJXkYZQ2atSIRnYs4T3nPOg5ipEDY9TZyOU4efIkoqKiYDAYMHbsWNy/f5/yp52dnS3ScJ2ZzdfPzQ16lQoKuRwLW7SgPbmE6FauHH5t2JCf2eK+I4kSlhY0RjUYjTBIJIBGY1Ugg609INHR8u7uAMleiWx+PGfrzRtIsrNRjSuiFSInJQXOCgV1rghFddOmTabsEnP+mzduoF+/fnTzaiCXA69eYcaMGQCAbZxcupuFjEWhQoVQsmRJuFqgNLGQy+V0k1ZyGx87D9atW4eNGzciOTkZ3t7e6Nq1K75ieubkeX6ZDAYAaZxRozcaeYX9JLNl8f3c34iq3aFevaxmfAnubtmC8pyhZK2OY1K9enmei2zN5DqHDh0Kg8GAYsWKISAggFL7rGWS/2pmqysXYRVTRhS2+Dh+/DhWrViRvxMTx1wioZkTOXevdUYjegcEYB3X8oTQmUTFE7Kz0cjPDxcHDsw1eBlZfIKRw4fj4MGDlHbDNsYmzpa7mxuio6PpPevOZQvVajU6duyIe/fuYd26dZRGRDB8+HDMmzcPnTp1glqtpuvq27dvzeo4SK0Ya8zZ2dnB19cXjx49Qnx8PCarVKaGxpZunTDTJJXCwYozUKdOHR4zws3NDQqFAjdv3sTSpUtx9uxZXLhwgQZURo4cSSPmXTt2hJNgPn9KZotkroTOFKFHk//FhDeI8qCeCwrvePQISVacLba+0EWtRhpnkIo5EpbAzps7w4aZ0YUJSHAlr0BMXFwcryaPpWoLsy9paWlm9dRCx7tKlSr4/vvvAYA2wSXjWC6VwmAw4LvvvoOdQDzF1dXVTOyhUKFCtMm13mBA1apVaW8nwNTUuGdAAOpwtolOp4NCoYBKpcKlS5fQtWtXGI1GurcQuuw/AScnJ8qS2MjVHAOmGsSYmBhe42GDwQCj0Qi5XE6drczMTBQqVAh9+/ZFZmYmNm/ejGLFivGDSmo1vLy8eDS+GTNmYMSIEZTyZ6leCzBRF+uKtF4ZN26caFsnW1tbXrazZMmSaNWqFc8BA0wlQ2zz6n8jvjhbX5AvEPoIa2Q2adJENBL6uXHhwgUz1UNCAxM2CmZhMBh4TY0lMNXfTJs2DX5+fnDIykKZPCJbs2fPxtU8JKFjuI3JwC1iWQyNjjh1z58/z91oAF42yxLcGQl5XWoqolNT4eLkhKTEREgFRhTB/p490SMggF+zJRDIcBY4dwaj0VQbptHkO7NVgVvMw0aNov3BxBDJbS4AgD//hOP69ShswQHSbN+O3tWrU+ECsokQVT8J+6yMRjg6OlJDYMegQcC2bZSaQTYuOwtOhLe3N54/f24xs2UJDlzEzlLmatiwYVizZo3VlgJCyDk1wiSuHswAYNDhw1Bz38VSZouMIblUCluFghpRncuWNTP2161bZ1ZMfXnXLtQX9jkTQV9SwA5gogVRIeLY0NYKu3Zh7NixaNu2LZYuXZqvRrB/NbPVh7vO99x95J1PcP/mz59v3jzbAsq+eoUir1+jetWqVCCDOlsGAxQyGb33JHsmRgPrxAQ5qMGr15u1VMhMT8eePXsoZYiIDwCgc/jWjRt49uwZNcRIHQ3J3pJxPWPGDB51EDAZPvv374eNjQ1v/I8cORKNGjWiNCOxNaps2bJYu3YtPnIBlsTXr1GmeHE0a9YMK1euRGxsLO8cewSF8nqZDOU5sQQhjEYjIiMjcf/+fUrz1up0VNijcuXKSE9PR3JyMrZs2YL4+HisXr2aBkLCHj1CoqCnoN5CE2FrIL3TLGW2yP+izhaT2UrIzMSAQ4dwl5l3CqkUSVyLDyC3vlDC/B0oGI2QDWA42digd4UKeDRypMXjLAU1FixYgOzsbB6NE8it4zEajTxDnDTEFir2iRnrBGq1GsWKFUM5Lhgk41T2li9fTkUzCMSuU61W0/1Bz9UnERsgc8oUTBCsTySz1ahRI8oo0ev10Gg0GDduXIGCYn8VrLNFaLoKhQJr1qxB1apVabaNXDcAmpUrW7YstFotZJzyZ/369TFo0CDY29vzhOWKFy8OGxsbHmXPz88PpUuXps/R2p5nKeu1dOlSDObapbCoWbMmz3nbtm0bTp8+bbY/GgyGvIXG/sfxxdn6gnxBLpdjwYIFPIpWenq6mcrj34GmTZuaZX9WrFiBChUqiEr3E3zzzTe8bEgZFxe0adMGtWrVQnJyMt5MmoQQjopiCa6urrlNhy2gslwOxMSYCrmRSw3Bu3fUUJDL5byi1EZcnxFrcGAWTEeVChqpFAq5HB/i4mBgjOkyItkZNrNFjAay2N5g1L4A08Yut7dHu8aNrV4Pm9la0Lw5upUrx9voqdoiA5ZCM3f2bBTz8sKJzZtFz+9iNKJCuXIo8uYNsH272YJdhmm+CJgcWeJsCamev06dCgBwd3BAjRo1zDjkr169MqkLWpKztwByPFsYzN6DmJgYeHh4FKj9gbOjI+QKBVK5c9vZ2+MCqwbGZLZYtTtS6yDjnC0xeXeCESNGmCk6AnwVO4KiVs6zqGVL0deFMvQET58+xZ9//gmJRIIqhQvThqxi+KtqhHKpFMf69MEQzqiylinTarVW1c8AUIntZ9u3I2rrVpT294eCW2+8OQNTq9dDLpVS57YQF+UXGss1vL1545d81/CnT9HQ1xdDuP4/AHBiwwaoVCqkpKSgSZMmtHbLxcUFv/7yCwBApVAgLi4OblzW/dq1a/D19aWGFMlix8fHU8GJpk2bAjBRakkwwNvbG2vWrEHr1q3x7t07TJkyBb252rbbt2+jYcOGKMHVvbZt2xYxMTFo3bo1zXDk5ORQJcInT57g6NGjmDRpEi5evIhLly4h4sUL0+c4ONAsTlMLmdI///wTK1euxLBhwyi9KzklBS1btoS3tzdsbGxgY2ODrKwsJCYmYsKECfjqq6/oXHz08CFSBG0TSGYrPy0+CEj2UpjlF9ZsidW3kgbGBqMRa7gejzFM8E0ulaKQWo27w4fjdL9+GMw9dzJWyTgqCI2QDYLJJBJIJBIEirTgycuB++mnn/D8+XOe0mqFChXotQ0fPhwtWrSgwUdXV1d06NABRYsWpfe3Xr165lRQBjY2Nnj79i303L27dvUqHZcGgVNsa2tr9twcHBwg4V6L+/ABnp6edN9RKxRma8hXX32FI0eOwN/fn4p0aLlGxwWhen8OlChRAmW4gEtWVhY6deqECRMm0Mx1ZmYmduzYgczMTEgkEkycOBF2dnaQSCSmOrfixVGtWjWoVCqsXLkSEokEd+/exbp166gs+5MnTxAYGIgzZ85QRs7AgQMxbtw4tCVNra04W9bsKTGcOHGCqp1aw/Pnz6mj+W/FF2frC/KFhg0bIjU1lUcpqFy5Mny5Qtd/GlFRUQgNDbWadVq2bBl8OCN8TsmS8H74kPba+PjxI1xcXPLsEO/t7c3rsC6Gii4ucN2/HzrOGbHhot6O165R59TGxqbAMrPsomivVAJqNeQwpygtatkSvwqKktnMFtmMbYlEvSATZTAaoVcoEM3JNVsCu6nX8/HBfq5ebvny5XBzcxN1MFKZz+rQoQOuXbuGuowkOYukpCQcPnwYCgB4+dJsMyzLRMbatm0LLy8vGAwGnDt3jhoEV65cMTm43O92Mhl27dqF/fv3885FFv6CZKAAwDUsDHj0iGfIE3EAW1tbqhBXEIGM1i1bonCRItTZcvf0pIZchkbDy2xFTZhA33fy5En8+OOPNLPVMyAAb8eNE/2MKlWqiNZAmH3/K1cQJKgVIrAkPQ/kOvTCsfno0SNan3BvxAizhqwslrZqhe//YjuO9qVLUyofa3jZC+a5mJMpxOgaNVCCM2IqVqyIy5cu4S2XpciQShEUGYlsnQ4qJrOlVigwqW5d1MtD3pwYvv169YKrrS02duoEAGjl4gK3pCQYDAa8evUKaYxYSpUqVWDLfbecrCxs2bIF33O1x0WKFMGbN2/MHMwFCxZQaXSiegrkGveurq7o2LEjHj16hBMnTqBPnz64ceMGPe7s2bOoXbs2du7ciT/++INmR0mj45ycHMhkMty5cwerV69GUFAQ2rVrh7Zt26JTp07UqHaztaXOyxsr68yLFy9gNBpx+vRpFHn7FjVTU5GYmIjo6GioVCqo1WpkZ2dj7ty52LFjB7Zv356rXqpQ8ByKh7Gx0Oj1MBiNVjP2QljKbKULqNtima0B3BqoNxrxK1e7KpSQB4CqXl5o5e+fGxjgXidjtiA0QpY9YI1ubO2MRqMR9vb2kMlkvH3n0aNHNNDp5uaGzMxMKoCxceNGtGrVCklJSVAoFAgMDDQLaonhwIEDeMGpWm7buhVKpRI2NjZmxqhEIjG75tu3b8PI3fcJEyciLi7OTGacRXJyMuLj43H+/HlaN2YwGDBu3Lh8121/LrRo0QLLli0DYHK24uLiEBwcjESuNvvhw4cYMGAANm7cCIVCgUWLFtFg7Z9//gkPDw+cPn2aJxam1Wrh6elJ5+zTp08RExODEiVK4MOHD9S5y87ORrdu3RAWFmZVryC/CrosOVTO8gAAj+ZJREFUSuWh1gyY2ElHjx4t8Ln/l/DF2fqCfKFfv36YM2cOL+p17969PCl2fxeIASdmQAKmKFHv3r3xFdek7+cJE7Brxw4aBcuvkf348WPKN7cEPz8/eHt74weulYCacxJSU1OhVqvRo0cPKs38qShepAigVsPFzs6Mc1/G1RUzBApDbGaLODwTHR2Bjx/NIpwGoxFRSUm4n8ezFBobBJ6ennB3d8c4EUOfzYbNmTMH58+fh9pCzcbOnTsxatQo2hhT6Gxt7NMHv3EUpCuXL+PgwYP46aefaDEwYMoYZmRkANx7U+LjcwU2GJQoUQJOTk4Fjm4WfvcOOHiQZ9T+9NNP+PDhAzIzM2lksCDnjY2ORmpaGmTcexISE6lhaj9vntWarQsXLkAmkcBWoYBEIkExhnrK4v79+9ToJqhduzZPkfVCjx7AlSvIFBwHmGpBxKhJBE+5GgjikHXmZOdlMlme8vwEfQIDsdBC5uxTUIppJi10QoTqpmbQaBB75QpS791D1apV0aFDB2SkpuId911eJCej4ZYtSNdo4KBSUfqXUibDghYtqKS3JZDsSAjTKPTa4MHo7+oKlVJJ5wBLn3ZycsJMosxpMMDFxQXltFpgzhxERUWJ1q+WK1cOcXFxUKvVWLhwITp16sT77tHR0fD29qbjNikpCVuYRsNKpRLNmjVD3759MWvWLJQuXRrOzs7YvXs3tm3bhokTJ2LatGlYuHAhevbsSYMMp06dQlpaGopw2Xwn5jMTmHogHiQS1KlThxqYUZs2wSUqitaMFStWDPPnz0fbtm1Flc2Ucjlvbau8di1COSEhmzlzUH3dOmRqtfiQkYG3VqLsWgs1W0LlyWydDhdevUIFTkCEhaXMVH7rEgtCI2QbKFsT0rF2zuTkZErRrFy5MoKDg+Hl5YXVq1fT5sVicyY8PBw5OTnQ6XRYsmSJqDqsEEOHDs1lnBgMOHnyJLKzs82M0QcPHphlYXjqgYwYD0FmZiaqVKlCM6N//vknJkyYQN8XHBwMOzs7+Pv704ztP4X4+HjawqZz5864efMmgoKCcPToUchkMrx//x6AKSudlpaGrl270sDo+PHjERwcjE2bNmH8+PGUJaPT6dC/f39M5PrvZWZmwtbWlo6zt1wfybVr12L06NEYOXIkr2m4EAMHDqSCOPmB0WikCoRfYB1fnK0vyBcIf59d2AqaFficIIuwUCGHICMjA3v27MEwshBIJAgNDaWZrPxeO6sOaAk+Pj549uwZsrjMhBNjCKSnp+PJkydwd3en1Jt6+RAcoOA2fCfOGHKysYFLPvrasZmt5xynetOyZUB8PDUEyOablZODjzk5gIU+WgSZIrUP2dnZ6N27N54+fYoDBw6Y/T01J4fShw4fPozu3btbpJ726dMHHh4eKF++PGbOnGkm++vi7IwWXFYsIz0d4eHhCA4OxtGjRylFhII09tRqRbnizs7O+PjxY4HHsBgd6fDhw2jbti3u3LlDC5MLktl69PAhPiQmwokzsKN1OrN7bcmIatCgAc1sWUPhwoWpoE1OTg6SkpLQpUsXKoWflJSE+v7+KOTkBK1Wi5MnTwLINZKrCWhwQjgJHOhFixZh165dkMlkZkXu/xS2delCM4FpAjn9I0eOWH3v8IQEbJo3D61atcK7d+8wZ84cyEXGSrpGAwelkgZAaPPmPMYVzVzodJBIJPj48SPq+fiYaGaFClGaMSvOc/DgQWRyc3TihAno0KEDVq9eDWi1KFWqlFkvwsqVK1OBDFLLWLduXUxiaoaII+wpQjsjxfcXL14EYMpkuLi4IDk5GQ4ODhgwYACqV6+OBg0a4MaNGwgPDzcb9025IBA7Piw5uu3at0fx4sV5giAKhQIKhQKenp5wc3NDmTJlcO/ePbO1AQBKlyoFGys0qLsxMYhNT0ftjRvhy2UYxEAyW73278dPjAMr5mztDQtDmKDXJGCemRLrycVC6IQVhEb4FcMUsJrZsuJsEQEZZ2dnPH/+HDt27EBMTAxGjx5NW2mQcQCAUgWNRiNdXytXrmzWX0kMNjY2lMLr6+ODuLg4+Pr6opAgUOTs7IzagnowlolCglOsaEdWVhYePHhAnStSs6VSqVCyZEksWLCA1mqRTNc/hfT0dEyZMgVGoxFbt26lr0+ZMgVarZbKtet0OmRlZeHQoUN0XKhUKoSFhWHWrFkwGAy0ZlKn0/FofEJnixUGOnPmDIKCgrBgwQKL19i1a1deDdgXfD58cba+IF8gxhe7US5YsMCMkvZPgThb69evR2ZmJi5fvszLupHr2rRhA33t6dOndGOwy4ecNQB4eXlRmVVLuHLlCrRaLY5wqki2CgVc1Gqc5ugNYWFhSEhIoAvf9evX8+1wSThDlSjNOalUvP5b0RMmoJSFmi2pRILq3t7w5Jy/wYMHw9XFBRW5OgFiVCQlJyPLaASY+yeEJWOB1EtYitimaTS0CJxsiuXyUMrz8fGxGF1TMJHOhQsX0vvIRvX9/PzwO/fcc7KyPmthbvfu3c0KwPft24fbt2+jWrVq8PT0RJs2bSg/Pj9QyGQwAnjx6lVu02oBLBlRy5Ytg7eDAy+LI4bY2Fh6/4cPHw5XV1fs2LEDCoUCb968QaNGjfDLL78gOTkZWq0W7dq1w1hwAij5wIm+fZHIGPGDBg2CwWCAj48PWn7GbFVBYKtQ4BHXb4oVyNDpdGbNQXmYPh3+/v6oVKkSnjx5gpo1a6J27dq8OkmCdI0G9kqlmex8XoIg1HDn/ifqaL1798bRo0exgRu/3YU9yTiDOSYqChqNhhqfnTt3NnOYHjx4QClgJCj1448/ojJTH0bW0WAmw0bw8OFDAKDy8kI0a9YM3bp1w1dffYWDBw/yhC0AIDAwELU4Z95VrUaP8uXhuWGDmXodwYmffoKtrS1PmGPu3LmQyWSIi4vDhw8f0KBBA3Ts2JFmW4iBCgB1ateGvUByWojEzEy+QqoI2F5d+7keZUDuekmQrdfTdc9oNOJ+TAwNTgidpfac+mx9C8JGwtWzIDTC7+vWpS1QrGW2LEnuAyYjXalUIjAwEDdv3sSTJ08QHBwMiURC1/hfuUbEAChdWiKRwMnJCVlZWXnS7QnUajUdxxKjESEhIRgyZAi99pHly0N2/jwCAgIwwdcXGYwkulwup0wFUq/I68vGnZcEEVjp95cvX+LIkSNYvny5KZOWD9Gezwl3d3fo9XrExsZizJgx9PUnT57g7du3dC7qdDqamSOvqVQqZGZmQiaT4c8//4SDgwPu37+Pe/fuUccLMPUPY6mczs7OVPSCZMut9RbbtGlTnsHlL/g0fHG2viBfEKMCSaXSf7zIlIBwi9euXYvAwEA0adIE8+fPh1arhZ2dHW7evAmFQoG3JOojkWDgwIFQq9Xo379/vrnJ27dvp40QLeE1J2bgx2UOZBIJEidNQiumjiozM5MnUZtfYRHj/fsAcjdKZxsbJDLqP14Was7UCgVkEgmuDR6MF99+CwB49uwZsrOyKGWIGHxxKSkmbryF5pvvxo+3KP9NxgVR/1tE6IycYZ+l1cKXc1aJzLol6ifBrVu36GYuRLnSpVHMaMSPQ4dCLpejVatWmDlzJo83XrlyZSQGBWFCiRLQaDRmPT/+CiZMmEAbxhKwEWM/Pz/Mnj2bGoP5gVImg0EiwbvYWBgtbISWjChPT080K1ECuy00CmZx9uxZ3u+PHz/GmTNnULx4cYSGhtLmmsQ5tcnMRJF83jtHlYrWSgGmcSGTyVCtWjWrfV3+blDDgRMOiIqKQmJiIlauXGkmB08QEBCASZMm4datW7h//z4kEgl8fX1RRqTWMDEtDT27dOFltpYvX44wpvm7GNgsiUQiodmD169f4+7du5TuHMgoQQKgztlOrrUBodMtXLjQrI1BamoqlVtmRQvYnoUsTWs8R4Mmma8+ffpY/Q5ZWVmIj49HSkoK+vfvj7lz56Jdu3YYNWoUxo0bh3PnzuEk59SqZDLs7dEDY7/5RrxvoUYDxMXhypUrOHXqFO3H9OjRI7rHSKVS3OFEJ+bMmQO9Xs8bW48fPsTHPIrwE600GCYQPhv2dXYeZut01Ek6HRGBquvWUUdN6NDt69ED6ZMn45iFeyoMVuWXRpiWlsZTGbWW2RpcpQpCBJLcBFlZWdBoNHjy5AkyMjJgZ2eHOnXq8GjArxnRHgAYO3YsZTNYcqDFUKtWLZTi6OBvuLrEadOmYTxHQ7+wbh06e3pCJpNBYjTysvaBgYFUanzD4sV4+PAhpdABubLmOp0OMTExmDx5Muzs7FCxYkU6p+rWrctrQP9Pwd7eHkqlEq9fv8aqVaugUqkQGBiIhQsXYu3atRg1ahTi4uIwcuRI6HQ6SKVS6hA2btwYdnZ2kMlksLGxQWBgIIoXL459+/YBAM0oNmjQgNL60tLSYGtri7S0NKSmpsLfggooi3uMevMXfF58cba+IF+oXLkyJjDF+f9pjBs3jgoTVK9eHRKO73/v3j1kZmYiJSUFv/32G1w4p6pChQqwtbVF5cqVcejQoXyr0DVs2DBPNUJizDtw2TKWQmRvb4+TJ0+iXLlyqFmzJn09307q6dNQLVhAnS0nlQqp+VD1UcvlkEmlUMnlcOCirT4+PshIT8fVoCAAuUZFlkQCmUSCExb65RR1dKQR2+FVqyKOqWEjUU87OzssWbIEjQkFISQEjYsUgdZgQPfy5fFu/HgMHDgQQN71Ms+44mkxaLVa7G3dGvNnzoRMJkPFihVRkevbNXToUEgkEnz48AG/Tp6M34cNQ+PGjS02XP0U/PLLL1brLgwGA6pVqyaaKbAED3d3yJVKZGRnQ2pBplrMiOrWrVuB6g7Ife/Rowc14kn2AjC1RQgMDET58uWxePFic0O/ANDr9ZDL5Xj27BlfuvwfhBhtKiIiAgkJCbC3t7dIqyLjhRhnJ0+exL59+yAXyYan5uQg9cMHXs3W7NmzeS0nAHNxAvmrVxju54c3b97g2rVrdAwfPnwY8+bNw6xZszB8+HDeWAsMDMSsmTMBAAFcdrh27drw9PTEyZMnzehBDg4O8PDwwMuXL1GjRg06r8qXL0+PcXJywqFDhzBkyBAsXboUDx8+pFLxpEFply5dAMCsdlUulyM7OxsymQxhYWG0pqRs2bLo1q0bwsPDEcfVqZI1ccqUKRap34ApILB161ZcvnwZX331Fa5cuUKlxVUqFe3f8/jxY/j5+fEYAlHv3yOTc6YsPdtEJnv/lUDQJy49He9TU3kZLHam6wwGnkiMhslskd5bZE3tzVCqJ9Wta2oAq1RaFJkRrij51eX8/vvvUaRIEfp9rWW25FIpaghoeQSEbRAQEIC0tDS6p3Xo0IE6UkRkiGRhIyMjqQBDQbB7927kEOqfwUDVL0kgIfz5cwwdOlS03pNkZ041aoRiWVmoWLEiT6SLOCcKhYLWky9atAhOTk50PgcHByPrMzMe8gOJRIKRI0cilVPMHDVqFEaNGoXBgwdDpVJBLpdDKpVCo9HA2dkZS5cupe/dsGEDWrVqRZU5L1y4AGdnZ2rHEIGMHTt20N6T9vb2iI6Oxty5c+Ho6EiDJ9ao87/++uu/vvnw34UvztYX5Atly5b9j9ZoCREeHk6NoqZNm8Le3h5qtRq1atVCnTp1YG9vj3HjxlFny8PTEzY2NqhXrx4yMjLy3Tleq9Xy6IliCAgIQGBgIIpw0WNhvUabNm3opkxqZPJbKD1p0iQMHTwYdsTZsrFBfp4CyWyxWLx4sUnBj9uYaSG4XI5CajX27duHwhYcITaz5sEYnY6OjoiKikKhQoUwfvx42JIIJyeJDQAvX7xA5RIl0KBBAwwbNgxqtRreViLM1moL4uLiUKdOHTx+/Bhubm5YuHAhDh8+jPDwcGRlZcFgMKAvo6YXExODBw8eWDxfQUEMUBaNGjXiRd8B640jhahXpw7SpVJ8yMmxSPVhn+X1IUNQ9NgxHDhwgKccZw2NGzemzlNWVhbtmSKk0jx+/BinT5/G+fPn89WewBJ0Oh0t+t7OZWH+EyCRXwdHR7i4uMDJyQmxsbFwc3MzrQFc5hgAwK0JxPEhxtm1a9eQnJyMW4xjSqABAI2Gl9lKSEgwk7EWYuHcuVg3aBD8/PywaNEialRqNBo6ltatW4ebN2/S98yYMQOBROzFaMT48ePRvXt3xMbGok2bNqJBDLlcjhIlSkClUuHGjRt4+PAhTzVUqVTC19eXfk7hwoXN+mtVqlQJkyZNosESAoVCQdUIHzx4gBMnTuDVq1cYO3YsGjRogClTptA6N7lUCqPRiHbt2lFjnQduzms0GtjY2ODFixfYu3cvMjMzadZPpVJh/fr1qFWrFmbOnIl3797xghpKhQIkJ2WJhpfArOXbHz3if881a1Bs6VIejZBdp7UCZ0ur11OniIgHiakeLsgjky/8HIDfjD1o8GBct9DPkhju5Nt+avsEtq7Sz8+PUqUPHjxInWPiWBFVyyNHjtDeVQXB7t27qXADcnJQq1YtU5aJodZ27NhR1Nki7S7279iBNWvWYMWKFbC1taVZeZlMZmK0vH2L0NBQlC1bFm/fvsWzZ8+wZs0aep7NmzejJ0e9/CexaNEimm0/duwYLl68iNDQUDp3f/rpJyxfvhxOTk4YO3Ysfd/WrVthNBqxcuVKtGzZEocPH0alSpUwa9YsxMTE0Abo9+/fxyNmXLONhD09PfH27VuMskINr1ixomiLkC/46/jibH1BvqBUKv+rUsxERlShUGD9+vUwGAx4+/YtIiMjUbFiRWRnZ2PgwIFoyy1sF8+cgbOzM6VS5ddxjIuLM1NxE6J8+fL4/vvvUYajslmjcly9ehUhISH5+mzAxOd2dnamNVtFHR3zFfVkm9yykCKXokKisAaJBJLsbGzZsgVT3d0xS6BsCOQ6WyqBOpTRaIRWq4VGo0GtWrWoSAgMBuoUbtuyBYmJiTh79izq1asHtVqN6N9+AyzQM6tUqWLx+RDn4NWrV5g2bRqaNWuGRo0aYf78+fjw4QMkEgmPonn69Ok81SQLAjFHcMSIEbzaxaZNmxbIUXnLUTCDOLEFMbBjqm6xYrDhspv5lS++fPkyFYkICQlBUFAQBgwYgFq1atFjyMbcpk0bnDp1Ch06dKCGLotLly7xMmKWPq9t27aQy+V5qhFmZ2cXKBOYX0gkEhrc0Gg0aNu2LbKzs9G8eXNoNBqTgXPkCLBrl+kNW7cCe/dSw5cYZ76+vnB0dISnyLM3mE5O5xqtbbQicKDVanHz5k06lg8dOoS+ffuiefPmvP4/ZcuW5WUFu3TpQu9T9Pv3SE1NxfHjxyGRSKzWYQAmJ3rw4MFITEw0U3irWrUqnW8qlYpXAwKY1srffvvNjNmwYcMG7N27F/PmzcOUKVMwbNgw3vzQ6/U8Z0un0+HkyZPi40EiQfny5dGnTx+accjOzsbz58/h5+eHXbt2UdrXzZs3zRrpAiZni3y6Jal3azTCOG7t+pTM1rBjxyye91PgyYgs1ffxQV0LrQTIvaSZLQt7T3p6OpycnCyOk0uXLtGfu3btim856vmMGTMQx6lHkvdSRwm5zl5BsG7dOhNt1HQyWvPMOls6nQ5Pnz7Ft99+y2MmkPtNnPzGXG9IkuEh+1GFChUQFRWF9PR0LFu2jI4dsv8nJSUViPr4uUCyRvXr10dERASt9yUZO7lcDq1Wi4iICNp/DDDZDTNmzMDSpUshkUjQqVMnKJVKrF69Gl5eXti9ezeeP3+eu65xILX2ADBgwIA8Kfxf8Pfhi7P1BfnCqlWr/pEGxvkFoa+NGjUKPj4+8Pf3h1KpxK1bt/Dw4UOo1Wo8f/4clQMDUe7cOSAxEWvXrqW88/w6Wy9fvsTy5cutHlO8eHF89dVXNLNlLbr4xx9/mNVWWMO6deswefJkFHV0RNPixdEzIADOeQh2AECghwf29ehh9rpEIqFRX7Y2QcZtflkfP9LGrCyIsyWkwSQkJMDPzw86nQ4hISEwcBHS7ydMoOpSdTj65J49ezBq1ChTvZzRCPeUFIBIWTMICAig6mlCkOcmk8nw8OFDXL16FRKJBCdPnqRjgogGBAQEUHWmzwUxZ2vdunU8KeoLFy6I16VYQCRTC+Fu4dkKs5Q/cs24S5YsyWuwbAmOjo6oX78+Nm3ahGfPnuHQoUMoX7486tatizt37kAul2PMmDGoxNQlPXz4ULT2rGnTpjxKrBji4+Oh0WjypUZ479491KtXr0CNZ/ODjIwM2ucuJycHO3bsoBS5+fPnU6fGgct+2yQkAE+e4OHDh3TOh4SE0Mh+MwuOsBLgZbbq16+PaiJUuZCQEDx48IBmytnndvToUVy4cAEuLi6UFqXVas2cXRnnKLVr0wbXrl2jNUx5ZcrZeSMGIq+uUqmwdu1a9OvXD1M4YQIiPnPu3DneewoXLgxfX1+UKFECZ8+exc2bN2l7i1OnTmHXrl1owgUdFFIpDUhYohEvWLAAarWaF6hwc3ODVCrNpZrBJNghrB8C+GqEFp2tPFgKAMwyW6137ECL7duRlpND1z87hQIavR4PLNSWFhTCNdcznwJOBGTmWKIRGo1GpKam0rH3gms2TcDWL27ZsgWXuR5hS5YsoZlIVgCDZLc+Zc7a2NgA796h3vnz6NO7N6Kjo9G5c+fcfY3QCcPDERoaygtOks9zdnamNPLly5dT55vImhNhnvfv3+PNmzfUsSJiPYGBgWa1t/8EiAoqGwCcMGECrVGUy+VUwId1jGvUqIEjR47wWAJyuZzHtFizZg0vMw6Al42OjY3F8+fPsWLFis//xb4gT3xxtr4gX/D19aWGy38Tli9fjjdv3uDhw4cIDQ2lUeMlS5bA0dER+/fvx1NuUb1y5Qrlov8dwh7Wmr4STJw40WqfCyG8vLxgb28PO6USF776CjZyObzyIa8rk0rRQuRzataoQbMZbARXyW1wSUlJotFRmtkSfEcSWVWr1ZBKpdByBlVqSgok3Dlv37pFz52ZmYmRI0di1apVFg2/MmXKUGdCCBKVl8lk2LNnD7RaLXJycnD16lW6oVauXBkpKSm4e/fuZ3e2xo0bRzdGggsXLuS7BlAMSibT8MGC8SZ8JqR2ZdKkSVi4cKGZ+IUQqampOHLkCK1rA4DZs2fDx8cHLi4uKFOmDJo0aWKWsbLkKOVlZLVv3x7BwcEoVqyY2f0SgjSYzi+1Nz8ICgpCRERE7gvcdyZZ6v79+5vqaOzskM2J6Kxbt44e/u7dO1SoUAHLly+nxqalNSM7LY0GWJQyGaZPn47VI0cCs2bxjqtVqxaqVKkiml0gWa5Ro0ZhxowZAEyBHmHQgcyZ50+f4vnz57kZjTzWnrycLXJNSqUS3t7e2LFjB/3sJ5wi33RBYKR3794oUaIEBg8ejNu3b+PFixe0Hqx169bw8fFBOY56lpiQQNUwRZ0toxEdOnRATk4Or+kqybCwmDNnDt69e4fixYvz+pCVKlkSSu7cORbGrVhmKyo1Fd8cP05/F2a2zrx8ifOvXmHN3bu5zpZSievv3uH6u3ein1MQPBw5Eme5fpCAib2gvXMHe/bsyfO9GzZswM2bNy1mtoKCgkwOY+vWAEzZwoiICJQpU4YnmZ6ZmUmVK3fv3s2j5ZE1ftasWbS/JQlo5VfVlwURaCItTE6dOgUfHx985Jr77tqxA97e3pTGS9p6ZGVloV+/fqhevTqKFy9O2xqMHTuWtrUg2fu3b9/SGqWcnBzROkGxXm1/N8g8Jz0pS5cujRMnTlCBKaVSCYPBgEePHvEyW0RplM1KX7hwgVLDZ8yYgXv37sHX15enJrhmzRq8ffsWlStXpvvj5w5qfUH+8MXZ+oJ84eDBg3j58uV/+jIoWGUdYuhKpVJqsD158gQODg5IS0ujEbnly5fDxcUFtWvXNqPSfA6UY3ri/J3I4qKTt4cNK/ibjUZoOUOEzWwpdDq0b98effv2Fc3MWaIRkui8VCqFg4MDsrlrW7d2Le0JJJdKeWILcXFxOHv2rEXFQWtwd3fHrFmzUKpUKchkMtStW5dmK0hhcFZWFs1kuLm5UYrG58CAAQOwdu1a3mt/dfNix6Ilmo8wYt25c2d06tQJgClamp8aMZIFIdHdjIwMbN26FSVKlLAoIiLmAH38+BGJnGFkCUQgw8/Pj2ZILEEuaA3wOdCwYUM6LoSoUKECdTifPXuGSUOHAtOnIy4uztS3CqbaitDQUPz55580IzOAMYgJVDIZpFIpkjnqnVImQ3R0NObPn0975BF0794dU6dOhbu7O3799Vf06tULAQEBGDp0KL7++mskJSXh+vXrtH5q2LBh1KkmkHLGfhRn5JOxl9/MViErPfoGDRokKocdGhqK9+/fmzUvlcvlyMnJgVQqxahRo/Ddd9+hffv22Lx5Mz3mCFdjs37NGtja2mLNmjXi9K27dwGYsioHDx6kyohi9ZZ2dnZYtmwZXr16xaM2PnnyBOncXsBmttoxSqV7BOPcaDRix6NHWMN9PmBZjRAAL7P1uVDR0xPejKrsu/HjsX/+/HxRhBMSEuDq6moxs0UCDoR+mpWVRec0+91ycnJ4/bRIUFIqldI1/uzZs5SWW7t2bcTFxeHatWsF/bpo2LAhypcvj5SUFOziKLwrVqygGa1JP/yAunXromTJkli5ciV1pEig5M6dO+jQoQNVIRw6dChucQE9sYxnoUKFIJFI6PceMGAA7Ozs/iPOFtmLAgICUK1aNdSvXx/Pnz+nc37JkiVYuHAhdDodL7hTunRpHt0XMNUjk3tSuXJlXL16FXfv3jVrTVKsWDHcv3//S/+s/zC+OFtfkC9IJJJ/vC+FNbRt25Zm2sjmPnDgQCqB2rBhQ0ycOJH25ShXrhyKFi2KokWL8iKBnxNl3dxgnDbts59XiEQu0i7/hGLo2yEh2LptGwC+UVG1XDnMmzcPAQEBolQUItBRWLBBGQwGk0SvRILt27ejGFNLQbYFdxcXzJ07Fz169ICnpyfCwsJw+/ZtJCQkFKh+DTA5I2XKlIGfnx/kcjlKlixJo5aPHz9G79690aFDB7x9+xYDBgxAUlISlllpYFpQDBw40MwA+6tjqRDjpBMqjf7XX3k1d6wDnJiYiOvXr6MHRxO9ceNGvhoHlytXDpMnT+ZlDoR0om+++QbVq1fHlClTsHz5clHK66NHj/Dq1Sv6e1xcHO4yxiqQK5Dx6tUrM2EFIYiz9TkzW2bnY+4fEc0ATPRoUvh/6NAhavzJ5XJaw0auTzSzxRn12ZxDppTJMGHCBBw8eJDWugBA7SJF8PHjR3z8+BGpqam4f/8+NBoNVqxYgZ9++gk1atTA999/j127dlEBi7CwMLOABOljdTskBE+ePEHjxo3RqFGjPJ0tf39/pKSk8JQICcLDw9GrVy9s2bJF9L0eHh6iNVLE2ZLJZLh8+TIuXLiAsmXL8sZXFqGhGgx48eIFRowYwd9HyBrEZWZfv36NO3fuYMmSJfj6669FnXpbW1ucPn2aZgMI0lJSaCCJdbaWtGol+r0Ak5CGVkDDZX8X9taK4BQd7f4GZoQQ+QkSjRkzBqVKlRJ1ujMzMzFEIKxB5McVCgUvw/j111/zGADE2Ro6dChdA7Zt24YLFy5Ap9Nh9uzZuHbt2if12Rw7diw+fPhAHQyaweHu+7s3b9C0aVPodDqMGTMGQZx6LsseuHjxIn3/nTt3EB8fD4Cfia9atSq9R0DuPN6+fTsyMjL+I87WlClTUK5cOeh0OqhUKnTq1AmVKlWiGcI3b97gxYsXmDJlCr766iv6voCAAKxfvx69evWir40cORIpKSmoWrUqpRMePHhQNCO6ZMkSyhZxsNAu5gv+Xvz3WM9f8AUFQFBQEN1sSZYrPT0dbdu2xeTJk1GkSBHUrVsXcrkcly9fhkQigbu7O7y9vSGVSvOtBvi5kVetS77AbUrKT8jOvXv5EpFcXQVrVJTx8cHjx4/RrVs3s8yWTqdDUUdHlChUCJ0EUr8+Pj50g+vQoQPcGQOBLC7v3rxBhw4d0L59eyxYsAA+Pj6IiYmBRqOhkdL8IisrCz179kRYWBh8fX2xfft2Sn2bMmUKdu3aRZteAiYD+nNSRu+z6nUcunfvTikvn4I6TJ1UrcKF4avT4dLFi1Azz5eM19TUVLi5uSEhIYHXPywvEYpOnTohOzsbOTk5WLVqFR2Ht2/f5h23du1avHr1CnPnzsXXX38t6mw1bNgQlStXpsb55cuXecpZgKkuQ6lUUhEHayhevDjmz59foFrGvPDkyROEhYXRyL5zoUJo06YN5s2bx8uKL1iwgBo1wcHBuHr1Kq5cuQKdTkcNIFJcb01ohXW2SJZx4cKFKO3khAoeHljWujWaNWuGp0+fIiIiAsHBwUhJSUGzZs2wbNkyLFq0CJs2beIJZLi4uJg5OUpuriXEx6NcuXJo2rQpra+xBoPBgO+++040m+zv70+pXQUB62zNnDmTKqKxsGcyQFWqVEGdOnVy/2g0AlFRZmIi5PufO3eO1oCxaNSoEdavX2/2vWVSKXWqWWdLTCiIQKvX84JO5DWCcIE4kp7LPH/OzJYl5McZIGuvWLhHTEXX3d0dxYoVQ5cuXXjiFq9fv+YdTwJYZL0GTMELhUIBmUwGmUyGbt26UYemINizZw8+fPiAjh07AjBlbUxfgvsWBgNGjRqF8PBwALk0Y/b6duzYgWOcKIlCoaCBFb1eT3vKhYaGolWrVrx1hQjOnD17tkB1tZ8L/v7+ePr0KSIjIxEcHEwVQslas2nTJixatAhlypSh9x0wUYrXrVtH6YeAaf4tXrwYISEhcHV1Rbt27VC3bl1RlsPOnTuRkZGB9PT0PFvZfMHfgy/O1hf8vwShDTRv3hzNmjVD7dq1ERQUhJCQEDg4OODt27dYsmQJmnDKek+ePEFaWppJxCEfggJ/F65evcqLeH8KKnPS1NaMCEv4plcvVGnWDAAQyaiOnTt2DKtXr0ZiYqIZ73/nzp1wtrHBy7FjzWiEWVlZlKLSsWNHnCbqR0YjlOQ83P1u1qwZBg4cSGkh/fr1K/D1ExpFSkoKBg0aBLVaDVtbW8yfPx/+/v6QSCSfVX1QCLEsVq9evcycloIgJz4e4Jq/Fra3R+Ts2YiLi4NaxKBjszWlSpWiWbvKlSsDMGWdWBoXueYjR44gLi4OS5Yswfbt2yldkUSEAVPE2WAwUGpKp06d8PTpU4vXTTbtpUuXmqkJPnnyxKwpqiX4+fmhZMmSn6RsZglyuRzu7u7YuXMnABP10cnJCTVq1MiTQtyQa0ZOjH5iCInRHElYwpkbl2zbh0WLFkGzciXujxgBGdc/5+PHj8jOzkZiYiIuXrwIwFR3QwQqwsLCqHN37NgxszqppzdvArNnI4FbQ7Zv356vwFFsbCy2bNlice0ZPny41f5XYli3bh1iY2OxYMECdOvWDZ07dzY7xoHca6USLi4u/GyU0WhSgOT6g/Xq1QsDBgyg3z8yMlI08z1z5kw0aNDArCmtXCqFUcTZYjP1bQSNXTV6vVn2ylK9FwCaybTUokGIU5+wxgFAu3btTEJCeUCoRshCLNt948YN/PTTT9i7dy+CgoKoMMYff/xBj/Hy8qJ1vePGjUN4eDiMRiPS0tLM5s6n7KVXrlwBYMo8NWrUCAcPHjRR/RlnCwDtG0e+I5t5I04+YJqnZD2zsbGhAYVevXrh1q1blBoMAD///DP8/f3/I+IYgEnaHchtHkyyUISRQwQyunfvjpUrV9L3paenY+3atZjF1IHK5XIsXLiQBpRPnDiBt2/figYXFQoFBgwYgJYtW1In9gv+WXxxtr7g/zW6d++Op0+f4vXr19DpdLh27Rru378POzs7SCQSFC5cGGXLlgVgqkn4nAbdp2D69OnUUfxUEDllxSc4Wy2qVQO47FPH3bvp62nx8VCpVKbO9QWgyb179w7NOOctMzMTHzne/7z58ymlsIeAjkXoK3n1LxMDoSDJZDKEhIQgKysLarUa+/fvp9S2yMhIXtbnc+LvoJ/GxsZSKWRXjuIRFBTEy2wREMNj69at8Pb2RkxMDJo1a0b73YSGhpo5W+Q9pHA6KioKPXr0QPfu3VGjRg3Ur18fADB16lR4eXnR94WGhlqdL+RvoaGhZn+7fPkyUlNT8+Vs3b17Fz169OBJSucXer3eLNtoNBpptPzXX3+lr+/evZv2FxPiyZMnvJ5BRqMR8+fPR1hYGK0xWrJkidn7pBIJevfujQYVK8I4bRqkXHP1H374AQCQkZZGgyLTpk3DnTt3eMpvAJ/Wc/36dVGqH4FcLgd0OjqX8ms4EcPUkmMWHh6O6OjofJ2LIDU11dRTzIrB3YNriAyVCklJSbTQH4DJuNbpAC4rOHr0aJQtW5bn9LENawnu3buHoKAgM2erVKlSkHOvWcpsnezXD4+/+Yb+rjUYzDNb1hwI7rz5pRG2LIAYEovt27djh4XWGCzcOQqyQWRdsrW1xfTp0+Hr64uTJ0+iRIkSOH/+PG2W2759ezo/WIoe2S8BEzOA1DKePn0apZj6N+DT1kOWltimTRvEx8fj1KlTqN+gAQDAw80NdnZ2OHXqFIDc9at06dJYtmwZqlevjjJlytAx/fPPP1M12ooVK8LJyQmBgYHw8/PDx48fzcSDPnz4gBkzZvxH2C1kjqnVapw5cwbTp09HzZo1KRuDSL8TJVcCsgYRRxUwNSQnmXuyHrx//17U2SJ/Dw4OplTpL/hn8cXZ+oL/lyALysiRI6HX6xEXF4f09HRotVocP34cBw4cgIuLC06dOoVnHM/+6tWrorUH/yTmz59P6ROfCuIMCZsn5+u96el4yBURe9jZoQrn8OSkpMDd3R1ardasZuvPP/+0eD6tVks3BUdHR2RyalD37t1DDnfufVz0jt08pk+fbtWotASyadjY2MDFxQU9e/aEh4cH7ty5g/DwcAwfPhzfffcdSpUqhTt37tC6ps+FxYsXf9YaMIC7L1zGKoczesLCwkQzW2TTrV+/PpRKJRYsWAAHBwfa7HP9+vW0xoGARLiJQEZKSgo8PT2xf/9+qNVqXLt2DV27doW7uzuPtqVUKvNVRyWmxNijRw9ERETAy8sLv/32m9X3k8/8FIGMM2fOmFGZxIrkCb3snUA9rnbt2gBM2du+ffvyGp0ajUYMGzaMGnvuIgI4NjY2WLVqFe+1RYsWUacuIyOD12QUAF8lETBbk7p3725+/RzI+C+owE9eaoVkjSwIpk+fjnLlymHmzJkWj6HfjVuvec6WIPMSHByMKVOm0HvXqFEj0flL6riEz8O7cGH6nHMYZys5ORkHevbEMq52i1VU1er1Zs6VpYbIABBQrhyA/Ge2PqXJsNFohL+/v5lTLobt27fj1atXojRCR0dHTJs2DZGRkdi0aRNevXrF66cFgFLV0tPTKdOAVeWUSqXQ6/VUQKdt27a897PBmfyCOGyVKlWi9OsKFSrAjXPCli1ZAn9/f0oT7datGz5+/IiHDx9i3LhxSElJQaVKlWitZY0aNbB9+3YkJiYiKioKKSkpePz4MWbNmgVPT0+zIIlQ6OWfxMGDB+n63LJlS7i6uiIkJISqKLq6usLFxQU6JqAC5Co4svWO27dvp3V9bPNi0nuMBWtzEJrlF/yz+OJsfcH/S4g1jbW1tYVWq6WbMFmICB3j/Pnz8PT05PUL+f8IEk38FBqhUiaDAcDH7GzEZ2Tg/u+/Q2IwICspCd27d8fWrVvNDASxxrYEr1+/pkIlDg4OSOOyHfv27kUCoajp9ViyZAmcmB5SCQkJlMI2sU4dDOZocHlev1KJRYsWoVSpUvD398eePXugUqnQqlUrzJ8/H2vXrkX9+vURHR2NCxcufHZ+eqtWrT77OeVyOc1s1eCi+o6OjqKZLZKxK1myJDXGbt++jUhOvlzM8SHOAjlmyJAhlE5GsgMHDx7kvcfDw4NSWoQwGo1YsWIFdZZLlixJezEREGOhUKFC6NChAzUmxEA+41OcLbVabdZKwVKPNgCUVkxw+PBhzJ8/H7Nnz8bEiRMp7RAA9u/fj+DgYKvCQDqdDm5ubjxaklarRdu2bVGzZk1kZmbS3mWBgYE4fvw4Ro4cidZcDVfPnj0xcuRItGrVClevXkWPHj0sKkMCuVSqgtabEMPNUnF8qVKleFLT+QEZO9YcuW2cGA+USgwdOhRz584FANwdPhwVrl/n1ToKx9qLFy9E70X58uUhlUqpo0zwJCyMUgI1ej08OPrnujVr0LVcOXzHHc9SobUGgxmN8KOVbC7Juv2dNVuEytuAy/RYw+XLl/H+/XuUEhHTeP/+Pdq3b4/IyEjs378fAHgNq0uXLg1PT0/ExcVRpw0APRbIlX6vyFHXScAGEA8k5AeNGzeGk5MTzp49i8ePH2Pz5s2wsbGhPeSm/vwzihYtikaNGlGp+Tdv3tCxEB4ejrp169Lea0SVUCqVmgUN5s+fj27duvFe69q1K6Wy/9MoVqwYZRIAuVk+IjQyYsQILF++3MzZcnFxQcmSJXlr0YMHDyjlm6zxXl5eotlgIlL09OlTfMNkdr/gn8MXZ+sL/l+iRIkS9GdSdD1u3DhUqFCBRkNZXn/RokXRtGlTFClSJF+b2H8zCGXkU2iEaqUSkMlw9uVLlHdzAzIyYJudjQ2LF6NZs2YoXry4mbNlTTL248eP9P7//PPPGDlyJP2blOHg9+vXj0f7mTFjBjZs2AAAWNSyJTZxMub5wcSJE81ogjExMbym2zExMfjxxx95NLLPgSZNmnx2+kmRIkWAiAhg3jzUrlQJJUuWRLFixUQzW+/fv6c/k804KiqKbrZidTdkg65YsSL27NmDqVOnUqqQkMo5e/Zs/Pjjj2jZsiVWrFiBclwkn8W2bdsgl8tp3cHs2bN52ZrQ0FB8/PgRMpkMMTExKFasGE+iWwiSPcuvSAObuXr27JlZS4px48bR2ggWAwcOpHVSBJ6entQZkkgkoo6DteedyTnJrKPYuXNnvHnzBosWLaJR7FevXuHx48c8ZbWYmBi0bNkS7dq1Q9GiRbFq1SocO3ZMPDPHoUWLFjAajTQj0aVLFzNxEjG4urrCaDRanMvXr183uzd5gWQJ89UgXqfDxo0baTPcql5eeMI0ZQbMM1WNGzcWVeTz9vaGwWAwu16tRsMTyHCztYX0t99wYu9e3nHs+iYmkJFjJZtLGjvnN7P1KSC0zPwo/U2dOhUNGzZEOQcHMyXc1NRUXLlyhSe0QLJKTk5OUKlUGDx4MB0/N27cAACcPn2aHv/999+jePHi1GFhazg3bdrEo7XlF76+vvjpp5+QnJyMkJAQql5JlBNfhoejQoUKePHiBUaPHg3A5GywgaQdO3bg6tWrAHLrn96/f0+phwBQr149UUrdDz/8YJbh/k+BiPWQutAXL17g8uXL2LZtGy+ra29vj/3792MY0+5l48aNAEz0aDIHY2JizAJfgOlZ7dq1C2XKlPmvUpX+N+HLXf+C/5dgF1UiThAREYHOnTtj6tSpAExGklwup5LLnp6e8PDwMIvi/5OoUaMGTw3tU0AoI59CI7RRKACZDMFv36IBFx2f7OiIZtWq4datW6hSpYqZ8WGNdtC/f3+sX78egClSyjpUYSTqqdfD09OTZ9i7uLh8VjpDXFwcLyJLUFADMi+IqaP9VdAsRU4OHBwc4Onpifr16/MyWxqNBklJSbwsI2tIkKxAYGAgb0MGTE7MV199hQsXLuDBgwfo3bs3pWLduHEDI0aMoMpnv/zyCxYsWIAdO3agXbt2fNoXh4EDB2LUqFE4c+YMFZxhnVrSU02tVlMjoF69egBMFDBhBqtKlSrYv38/NcStISIiAiVKlKCZMrGassDAQMybNw8GgwGLFi0CALi6udE+bEK0atVKVGXSmpMl4STzdYS2xhjG6ZzceePGjXH79m04OTlRGg9pwhsUFIT4+Hh8/fXX2LdvHzZu3Ii9e/ciOzvbqjRzQkIC3NzcqENWpUoVLF++3OLxBHq9Hj4+PhYFMqZOnZqvGiEWhO5ojdIok8mAP/6gAjAkUwGYxqzBYKAZV+EzOHLkiGifLYlEgg0bNlARB/pZnBFpMBqh0esRGxUFQ2Ymr00BwHeUNHo9sgWZrWgrWViCvzuzBVjuuceCBFnE6L46nc6sro2wF1q0aIHHjx8jMzPTLDvFClGMHDkSxYsXN6sNAkyS6p0KECRj0b9/fwwYMIB3PupMGQxYsGABVaqdO3cuihYtynO29u/fT8VTyNybOHEir8n19evXRZ0tDw8PU1+v/wIQwRhCD79w4QIWLVoEuVzOe3Z6vR6jR4/mMXpKlSqFjh07olevXvDz80NAQABKliwpWkNJpPL/UyrMX/DF2fqC/6cgG+jSpUuh0+lQpkwZ7Ny5EwcOHMDp06cxc+ZMqNVqumBnZ2d/Urf7z42QkJC/rAb0V2iEHm5ugEyGjYcPowRHrxw8eDBUKhXS0tKg1WppDcMf5cvDfft22ttHDEFBQdQgunfvHi8SfZdzggMDAgDkMwL+iRg/fjyv3ubvwt8hkEGEIfbt24cHDx4gODgYbdu2BWvC3r59G6VKleIZYAqFAqNHj0bNmjXRunVrAKZaLuE1pqWlYdu2bdDr9Zg3bx5u3brFc2x69uxJjyGQy+Vo3bo1jeSLoV+/fqhVqxb69esnahiWKFECHh4eyM7OptHrkiVL4pdffuEd5+/vj+zsbEoB+uWXXyz2XyMOOzG8OnToYGZQfvPNN1i5ciV2795NqauJSUlUtEIIiURC1RxZEHqsGIwM3RDgZ7ZI5NhgMGDChAmQy+U0E89S5YhEM4nME1hztsLCwpCYmEjvw/Lly/NlQGVnZ+Pdu3cWnS1fX98Cq4P27t0bCxYsoMEtMchkMiA+nopgsBlpiUQCiUQCHx8fPHr0iGcoA6ZnbWm+DR061IwOToJPxNnKsEAHdLaxgXHaNDjb2CBTq8UFgTO20QqNk2TOWIEMDzs77P+MtaEKhQJr167NV6bXmrOl1WqpM0OCJnq9HleuXOEFpsi8I0p3rODN+PHjcfbsWVqXKHwen7oeFi1aFCVLluQ5W0eOHjX9wO0/R44cQePGjTFlyhRERkZSKiMAnoAEcS5Is3aCwYMHi9ZHR0dHi2Z//hMoX748pk2bRucwoW536NABR8n9gGkeBQcH8yjsEomEHkMoty9fvjRbDwGTSm1+gjJf8Pfhi7P1Bf8vMWzYMPTp04duuM+fP4der8e1a9dw8+ZNTJ06FUqlEiqVCnZ2dggKCsKAAQP+w1dtUkQk0fZPxV+mEQJI9/aGk16PkydPYunSpZBIJHB1dTU5W9wGPqpPH3x4+ZK3yQHAgAEDaPZkw4YNtI8SW5M1bdo0qtzVhKNt/p3O1qVLl3jNHN3c3P6WQuC/o20AcRw6duxIjWgXFxecYfpThYWFISkpCRqNBra2trh8+TKkUiliY2NRt25d+oxSUlJ49UMXLlygWaAuRBkOpuwPKZYn0d8BAwZQvr9EIkFCQgLN0ohBJpNRCilr7EVGRmL69On0c8+ePYsDBw4AMNVaCmsKDh8+jP79+1OnY86cOZg/f77oZ1asWBGOjo7UuSGiOCw+fPgAnU6HSZMm8bJ8QpXGvNCkSRPRvlRCbNq0iddsVPj9EhMTaU8gALzmpL169cLChQt5mXprogNkDhEjVaynjhjI8ewc/auQSqX48ccfaZ87MbRr1w6LFi3C1q1bAeRKXAsRGBjIy6gAprYS27dvz/f1lOIYA3qDARq9norNsBLaLFJzcrD/yRO8Y5wyfxcXk9ork+1yF1wXwM9slXF1Rbc8xH4uXryYr8bjgGnu9e/fP1/qnERBU8zZ8vHxoWI+sbGx6NWrF2bPni2a4d2/fz/tk8ZmDMPCwvDu3Tu67gnFXD51PVy+fDnWrFnDo8oRld26detSmjPJ5KekpKBp06b45ZdfMGTIEDRu3JjOBVKzVaJECfTr1w/FixdH/fr18e7dO9H7cvv2bZ4j858EUYwkUCgU0Ol0ZjVbBGwWslevXvS9ffv2xYgRIwCIP5P8iK18wd+LL87WF/y/hLe3N6KiojBgwACqxDN79mwsW7aMF9l58OABMjIy/mt4ylu3brUYYc8vSCzxUzJbOiYDsWrSJOzZswfbt2+Ho6MjlX6n6lycwSEUhNixYwett9JoNPR+s5nDixcvAtxm+CfXw+XvdLbGjRvHoyj5+vri0qVLlPP/ubBv3z6eYfw5QMamQqFAgwYNaDEzGEOBOC7e3t7IzMykkdCZM2ciOTmZGpQTJkzg1VU0b94chw4dAmCqxejfvz+Sk5OhUCjQuHFjeHt78+bL06dP0adPH9rAlBiILAWUZF5kMhmCgoIQGRlJaYLk9enTp1ND6datW1R++ejRo2ZqfB8+fADAzw5ZyiodPXoUe/fupX8Xo5llZ2fDxsaGn/FJTCywgp9KpRKlURI0KloUVQoXRqNGjeh3AIC9ghohFp6enrh79y4N/KxYsQJeXl40MwlAtE6J4FPVCFUqFZKTk0WL5z8VZD6zPZrEPnfIkCG05kdM0dESbGxsCvQ9nTlHkmS2oNejVKlSFvtVGYxGzL9+HTbcZ7QsWRL1fXyQodVCyjhGpZimuMS5YamIrfIh796sWTPs27cvX98jPT0ddnZ2uH//vsXMUXBwMLZs2YINGzZAo9Hw6rII3N3d0bdvXwCmfk579uwRFRwZOnQo6tWrB4lEgqJFi2L8+PH0b2q1GllZWTSDRijC5G+f0tQYMDmUderUoe0oAKCUXI56MTEYMGAAFY5gM2pbtmzB7NmzcfbsWdSpU4fWWhI664sXL/D27Vu8fv0a165dw/nz50XbrHTt2hUBHNvivw1eXl4ICAiw6Gyx67CHh4cpqAkT1Z9I+gsFgwBTHel/iw30b8WXu/8F/+8hjJayxqNcLqfNTP9X4MsZFZ/Cv7bljAT75GSE3r2LrVu3Ii4uDs7OzqhWrRoePnyI39eu5b1HGBXr3bs3zTwQoxzgc/2DTp8GuDqgzq1bIzQ09G/li7du3ZpG9gATF37NmjXo06fPZ/2c8uXLf3aBFZaCJ5VKaR1ECSaKvJvriUYMccLdL1++PFQqFaWHiUVyidNjZ2eH4cOHU+Pzjz/+QPPmzVGzZk16rFqtRqNGjeDi4kJ7vqSlpcHOzo4qX6WmpuL27dsoWrQowsPDYW9vjzNnzqBXr15YsmQJrUEjxoKtrS2v3iIqKop3feSac3JycO7cORw4cAAzZ87EjBkzzL7P4cOHsXjxYvqdHj16ZCZ1bOZsLVwIHDwoapD+FWxs3BgT7e1Rv359LF68mBbdlylTxqK89PHjx7FmzRqqosiuXSEhIUhKSqJ96MRAaHjEaSnInMpPk9xPgTUhh9OnT8PFxQU3btxARETE32rkPufocBlaLbK0WkCvR7Vq1aw6vwBgy61fDkollFIpdAYDDIzjzzpWjtzaS2iEfSpUwM9cE2wnK88NyL8ADMlMNGzY0CwwQTBx4kQMHjwYK1euxJkzZ0QzF7du3UIrTu6eKPexIAGSjh07UhbA+/fvea0+iLMl+b/27jsqiuuLA/h36SDNQhMpKooFFRXsXQS7KLHXRBMLFuwxMT9LYu8t9kJi1xhNjCUoGhVsoKCgiA1FpUYp0sv7/bHMyw67VFkQuJ9zOAd2Z2ffLrOzc1+5VyKBjo6OKLFEcnIy/P39C/WaclNRUcHvv/8uGnXU09WF765dOHLkCD938Dpi2dl8avGbN29Qp04dfg4Uso8K9ddkKVqzZWdnJ5fJ8nPh4uKiMBshIB3xy13nTJaw7ktRUOXs7CwKbEnpo2CLlFtHjhzB9evXeU97+/btMXjwYFF6ZzU1NcTHx1eoYfS61arJZZ4qLO2cCwILmdTRzZs350lGEhIS8FamuKmhoSHS0tJEhWkdHBx4j6udnR3PcKanpycd8dq0CXj4kAdbLDs73/TxyvDvv/9i06ZNouyIJcHOzo4nkygpTZo0QXh4OL9wFr5QT8+YgQE5tWSEWlVCxi5ZsoWDLSwsRKNCR44c4QFnkyZNRIFieno6Ll++LJewwtDQEJaWlhg3bpwoi6QwyrVw4UJs3LgRgYGBmDBhAk6dOoWffvoJJ0+e5BnNhHYB0mBL6JFVV1eXW+Mj7Ld27dpwdnaGm5sb3r9/j8WLF8v1xMfGxsLLywsBAQF49uwZtm3bhqtXr4qCsp9//hn9+vX7b7QtKQnIzOS9wCXFxsYGv/76KyIiIrBmzRpYW1vj4cOH0NHRwaBBg5Camsqn2ALSmmDC56xatWqiLJKANHlO1apV833ORo0agTHGg66vvvqKjzKXlfwKiAsXjDExMahbt26+geSnErIMGq1Zg+f//gtkZeHo0aOiKZyKCJfjaioq/yUdkhnZkp0yKGTf+zcnUY5sZkPrvEbQsrMxc+ZMubIDeRGCrWbNmsHX11fhNhMnTkTXrl3x008/oV+/fgrXASckJPAEDAJh1KNVq1Z8uvHIkSP5yOyMGTNEU4enTp2KXr164ejRo0hOTsbDhw8L9RoKIpwbZNs3ffp0ODk5iYrSC9MMa9euLfoOHzJkCJ8GLYzcyyZCMTU1hZmZmcL1SxEREXJZWD8XoaGh8PT0REBAgGi0G5DWP8vvHCZ8fygq//H27dtPru9JPg0FW6TcqlmzJjp06IDBgwejSpUq8PHxgYGBAZycnPg2wpd9Xj2Epa1Tp05FXohekoQaM3q6uvy9cXNzQ1ZWFkJDQ9GsWTPUyJk65erqik2bNuHixYuiXrYaNWrg4sWLAKSFTYW1QBKJRHrxKARW//yDGrdu4dChQ2WWbl92sXdJKEyGsOKQrZtkZ2eHDRs24NWTJzDI6a1ctGgRli5dqjDjomw9rFq1avE064wxODs7w9LSEtOmTcPq1atFBXhVVVXx9u1bubUhqampCAgI4EHlo0ePAPy3GH/ZsmU4dOgQ/vzzTz6q8cMPP6B79+7o2LEj/9IXelodHR3Rp08fZGVlISMjQ27tSt++fXHnzh307NmTX2Bs374dgLjGW0pKCk8VnpycLLoolN2ntbU1qlevjsOHD4MxhiNHjmDNmjX5JnopKiHAiY6O5q+zbt26fA3bs2fP0KxZM/yVk4Xv3LlzcHZ25muQjIyMkJqaWuTR3qioKEgkEp5N0szMrERfV1FNmzZNVCsrN+GiujSSE6nJTFP+kJaG6oUcyWM5n+mszExk5HQ8qMv8XxSleZ8yYQIAoLHMtEjZ6YayVFRU4OjomG+tOVlCsGVqaiqqiyUrKCgIV65c4QFIYbMR/u9//8Pdu3dFa68+fvzIP+uxsbGiDoAOHTrAzs6OTwOWLT3xKUaNGoUhQ4aIvldevXoFX19fvHr1igfI9erVw4YNG+Dr64snT56I9iEEV8L7Kls7KzIyEhEREQqD+127donq6X1OHj9+jE2bNiEoKEguaGrcuDE/v+SFMaawXMfff/+Nc+fOlWhbSdFQsEXKPUdHR0ybNg2A9CJIWIwPSE/WKioqn8185X/++afIKZZLkpAe+W14OI4dOwYdHR3o6upi8uTJfI3O05zRhNOnT2PSpEl8Mf+7d+8gkUgwbtw4XL16FYC0ir3suhnZqXyIi8OXTZpgzJgxpfLaSoMyshEqUr9+fSxYsID3nF+/fl2UXl12Xr67uztPBDF//nzeG56ZmYnq1atj1qxZfLqO7JQv2bVissaOHQvGGJ96JHyesnKlyB4xYgTS09P5yLKXlxd27tzJp6sJyRjat2+P8ePH8wvC3KUX6tSpgxcvXuDs2bOYPn06mjVrBgMDAyQnJ4tGA9avX4+IiAhUqVIFSUlJMDc35/W0hGArJSUFpqamuHDhAnbs2IEZM2ZAT0+Pnx9KirAWJjo6GtbW1lBXV0eLFi34BdLWrVvx5MkTnvVMGLESRh2FkYiinpdyT8Fcu3ZtvuvKlM3S0lIuBbusUg22ZN7LfQEB/9X5K4BKznF96cgR7NqxAwB40AVIpxdyOcFPAxsb7GvYEN/KFKjd0acP/lAwXS86OhojRozgnRYFqVq1KiIjI2Ftbc0D+dwyMzMxYMAAPiqdV7AlBDPC/+j169dYtWoVHw0SCM9z6NAh0ej0ypUrMX/+fLi4uGDdunWYMmVKoV5DQVRVVZGdnS0Kts6dO4ekpCQsXbqUZ0FNS0vDzJkz0a9fP4TmlFuQ3Qfw33lJtm3q6uro27evwiyjnzPhO3jAgAEK16MW1+XLl3HmzJkS2x8pus/jCpSQTyR7ISjUbQGkvYTZ2dlKTc5QHmVnZ2PgwIHw8/ODh4cHDA0N+RqdloyhS876h5SUFOzbtw86OjoKe2b37t0rV6fF2dkZjDF0794dDRs2lMtmWBrMzMyKvXg7P6UVbGlpaSEtLU3hCdrExEQ0NcrW1hb169cHIJ2GIlzgCwFIVFQU9PT00KNHD9G6HSGIVrSuQdbbt2/Rr18/XjDZwsICM2bMQGZmJvT19fk6snHjxqFz584ICgrC3Llz+Sign58fZs+eDS0tLYwbN06ut3ndunUYNmwYbty4gV69esHe3h7x8fE4ePCgKLjQ1taGm5sbBg0aBA0NDRgZGfFeXOG1zpgxAx8+fICWlhbWr1+PzZs3o2/fvnnW2Coq4f+hpaUFdXV1uLi44NSpUxg1ahRcXV35dsJrFEbmhLTanTt3Rs+ePT85+BDOZ7mngJa2uXPn5nsR17VrV+zbt09hb3tJq5urYHNMzlS/guoqqjEGrF6N5L//5kmBDGWmRgrrs/a2bQvkjKyGBAcjMTJSNDJZXUcHbRQkNxEyRgoBkTA6mddat+zsbHz8+BHbt28Xd17JkEgkSEhIQJ8+fWBtba3w+61NmzZ8hPjWrVuYNm0afvjhB4Wj47Kvo1POGjRAOurl4+ODKlWqYObMmflOGS2Ko0ePwsvLS5yNMCfw6tOnD5+dItST09bWxo8//oiJEyfyhFjCaxaSIEkkEgwZMgQtWrRAs2bN+GhceSJ8B+eVIKO4fHx8cOPGjRLbHyk6CrZIhSBb3FS2pz46OhpA0bN3VXRpKSkYOnQoTxxStWpVaGhoQEVFBbb16qGrzMWRsbExQkJCYGtry6ebCNmiZBNkCP7++28MGDAAly9fxtdff82/8EtTzZo1cerUKSxZsqRE93v37l25IqnKoKmpidTUVLTKme4jm4I8KipKVCdm8eLF8PDwACANeISLOyEA+fjxIxITE+Hl5SUKtqpUqYLq1avnuY5GGI2pXr06UlJS+P4GDhyIXr16ITMzE9evX4eTkxPGjBmD169fIywsDC9evMCaNWt4B8j79+/x119/4e3btzhw4IDcCJkQxKelpcHV1RV+fn54+fIlvvnmGx4kBQYGwt/fH9WrV8cvv/wCV1dX+Pr68syNQvAiHJ9aWlqiUaOS6tX10NDAQiMjSCQSpKenY+/evZBIJNi/fz8voD1s2DA+tU74XwhTNc3NzREbGwtHR8diTUmVrccDSNfUfGopiU91+vTpPO9LTU2Fo6MjD9SVSTN3pwFjsLe3V5i+nzGGpe3aAQBMDA2B5GQsmD8ffXv3BgCeNh4A/so5dpIjI3FW6OTIylKYyl3RuUGY7ipsL2QLzR1sHTx4ELt370ZMTAxsbGxw584dtG/fHk+ePMHixYv5GiVAWgD6ypUreP78OV6+fClKciMwMjLi085Wr16dZwp82fqELVu2FBUq1tbWRlBQEOrUqVOiCY5UVFTQsmVL0ciTmpoanJycRJ1kO3JGGlNSUjBlyhQcP34clpaWOHjwIN9OGLXeuXMn/P39ce/ePfj5+Sltyrcy1axZE71791b4vfop2rVrJ8oYS0ofBVukQpD9MpcNrITfSzLlcUWhq6vLpz1VrVoVFhYWSEtLw+HDh0ULcZOSkjB8+HDEx8cjMTERZmZmfC1KXl8KQh0TV1dXjBs3Tu4CW9lCQ0Mxd+5cdO/evUT3m56eXiqLqw0NDWFjY4NvWraE9po1fITEzs4OgHQxuSAzM1NhAhjZYAuQTreV7bU+fPgwWrRokWc67h49emDRokWwsrLCpUuX+GL2TZs2oWnTprC3t8e5c+cQHx8PT09PeHt74/z583x9ntDzrKWlhdTUVJ4xMffUKKGdqampuH//PrZv386nBwojN/b29jh8+DAaNGjAC2kLo17NmjXjo3NTp04FIB2tk704LKkRyZAbN/Awp8f85s2bcHNzw+bNmwFIywLs2LEDP/74o9xIjhD49enThydZKM7FlImJCVRUVPh7aGJiwusMlYVdu3Zh9+7ded4fGBiIJk2ayE1/VIY3MpnyAAASCaZPn441a9bIbRsQEIBdOcW1a5maYs+ePRg5ciQMcoL1FJlR/H9zjttpkyfz0hmqAO/gkKUoOYHw+RM+Z4mJiWjcuLHcKNHo0aPxzTff8DVb+/btg6+vL7Zt24YlS5bgyJEjfFthWuDDhw/x119/QSKRyGXcPX78OM9GOH/+fLl2CWv9ZGce+Pv788yngDS5TXx8PDrITJcsCaqqqvD29hZ1xFWvXh2XLl0SzZQQMqAKdu7ciWnTpsHX15dntjQ3N4eNjQ2ioqLw/Plzvu3nmgQjP3Z2dli3bh1q1Kih1GQypPRRsEUqhD59+sDIyAhnz57lKWGB/4Kt+Pj4smraZ8nK0lKUnvrbb79FRkYGrl69Ch0dHdjmZMET1lv5+Pjg9u3bkEgk6N+/P5+K0qdPH56NEIAoW1WtWrUQGRkJNTW1Ul8zl5iYiBMnTvApJyWldevWPOBRpsaNG8Pb2xsSiQTZmZk8cFGU8ENNTY0Hs2ZmZjz7oKGhIcLDw/HLL7/waZWygVVmZia8vLzyLLbav39/LFmyBLa2ttDR0eHPMXfuXGRmZuLu3bsYPXo0wsLC+IXn119/jbp166JGjRo8mNDU1ERaWhpSUlJgYWGBBQsWiJ4nIyMDNjY26N69OxITExEbG4uQnGmswtQrJycn7NmzBzNnzsShQ4dw/PhxfhEbGBjIpw6/ffsWu3btQtOmTdGnTx9ejqCkeonPnTvHR8lcXV1x6tQpPnrVrl07jBkzBvXq1YOTkxMYY3w0QUi7LKTQLq6aNWsiKyvrsxmp//rrr/NNkCEEDqUxjVs11zlGQ1sbkydP5lPRZAOh2NhYqOYE4G9fvkRaWhpWrlyJQ7/8It1AZlSkiVCwOCvrv/Wn2dkKA8ikpCQg12e0Tp06OHDgANrljKR16tQJs2bNkht5cXFxgbq6Oi8uLHQgVKtWDR06dBCtX5QN9ITfheQxgkuXLslNM9XQ0IC9vT0GDx7MpyIL628BYMKECXxKMiCdanzr1q18a6kVh/B9IJvkpn///qhXr56oZp1swd8GDRrAwMAAKSkp+Pnnn3mnBSA9B8q+1o4dOxY61f7nJCwsDN9//z2Cg4NFNc1I+UfBFqkQAgICEBMTgwsXLqCR8OWI/4ItRVNJKjNNDQ20b98eqampGD9+PGJiYpCUlISuXbsiIyMDOjo6cHd3x9KlS/ljhAxo1atXx9q1a5GVlYVFixahZcuWfBth6tmqVavQqVMn+Pj4lOh0iKISppGWlLwWrJe0hIQE7Nq1C4B0PaKqqqpc1kCBqqoqD5gsLCwwbtw4ANJg6tWrV9DS0sL48eOxc+dOUVZO4UInr1FHYY7/r7/+iuTkZL7dnj178O7dO2zevBlJSUnQ1NTEL7/8Al1dXXTt2hUqKio4evQoH1mytrbG4sWLkZKSgvDwcLlEAdOnT4e3tzcGDx6MDx8+wNPTk/d4C+/3pUuXsHDhQjx79gxGRkaIjY0VrSEUau1cvXqVH3Nr165FUlISTp06pbDO0KcS3g8h6cW5c+fwS87F+rFjx6CqqgovLy+oqqpiQk72uspGuAAujQQZuQM6CysrPlUvOTkZurq62Lt3L6KionDmzBm8ypnyl/ThA9zd3aVTVnP+p7XV1YGcBAUP7t2T7jAzE1o5AZCpkRFWrVol14YaNWoAJ09iVevWPLGGtbU1MjMzcS9nP+rq6vycK2v9+vUYP348PD09oaGhAQ0NDUyePBk//PADbty4IVqnKZtZLq8RkN27d+PatWui2/bv34+zZ8+KghzZ3+/cucM7DwBpcJ9fApTiGj58OAYNGiTqNHj58iWePn0q+r5wcHBA75ypnSEhIdDW1uZBqOyo17Zt20TfQ7lrb5YXMTEx2LdvH06fPi36v5Dyj4ItUiEkJCRAVVUVW7duFdUmETKiKaugZ3kVlzMtTVNTE35+fvD39+dffBkZGbh//z62bduG+vXr89TuQrC1fPlyANIpdQsXLuSjEIC0F7ZevXqws7ODoaEhBg4ciC+++KI0X5pISQd63t7euH37donuU5H4+HhMnDgRVatWxYABA/iFomD06NH890mTJmHZsmVgjGHfvn08QI6MjESHDh3QqVMnrFu3DoA4WBSChbzeI2G9hFDkVJiKJ6RwnzFjBtLS0qCpqQk1NTV8/PgR48ePR3Z2tugC0MTEBBMnToS1tTU0NDTkklUYGRnx+lPDhg2DlZUV7OzspOtqli7lF3+RkZEICAhAjRo1EBsbCxcXF17EVJjKlp6ezp979erV6NixI96/f48+ffoU8p3P36BBg3iPs/D+OTg48BHD5ORkdOnSBdHR0Tw5z+bNm2FjY1Miz1/eCJ0AnzKaV1i5R8+TZQI9YU2voaEhWrVqhW3btvHAKlF2qlrOSFzYixdATseEmTAaLHNcjxkxAomJiWCMiaaotm3bFnp6euhjYYGEnBHcY8eOYcKECTy7nFBnTnZE+cCBA1izZg0YY3w6d506dXDmzBmcPXsWLVu25IloAGmngjC1Twgy81tTJXQ2XL58Gebm5qJpx7du3eK/P3jwgK89VKa4uDg8fPhQFGwJ74/s+Sg2NpYHlo0bN+ZF3AFxcN2tWzdRx2DtXMlSygshQcbQoUP5tGtSMVCwRSoEPz8/fvEj+yUm3KYoNW5lJjuaERgYiMTERP4l16VLF75oOj09HStWrECPHj3kFnQL67tkvxS0tbURGhqK3r17Q1NTE+bm5mWSmtrKygoWFhaiKTElwdraWuFi9JImXFDExcXh4MGDMDY25sk+mjRpIppeo6+vj02bNkFNTQ1eXl48dbNwzIeHh/POBtmpNcJC+LymeApBNSCteyUEGZmZmTxos7GxQZUqVaCuro45c+YgJSUF33//vWiNR0REBNq2bQsbGxu4u7vLjaR5eHjAzc0NgHTakp6eHp4/f44VK1bA399ftIBfQ0MDDRs2hK2tLSwtLUVToG7duoX09HTe833o0CHcuHEDEyZMKLEkEp07d+Y97c2aNUPXrl0xZMgQREdHo1evXtDR0cGVK1fQt29fANK1g7LTnSqbTp064a+//iqVaYRmZmaivyNyZjNcvnwZycnJUFNTg5ubG8KFtV05x2G4TFILSU6w1UGmntHLy5chOXsWw4YOhUHOOqu9u3fzqcqynx8bGxu0b99edN4R1hEJ30vCdEbZ76Qvv/wSBw4cwM6dOxEeHo7r16/D3d0d7969w4YNG9CqVStRMfWMjAz069cPL168QJMmTTBu3DjRmi6BcM44cuQIli5din379iEoKEjUZn9/f9FjZNd1Kou3tzfevXsnmuataH21MBJvbGwMZ2dnVK9enQedssGls7MzfHx8MGPGDDRt2lQ0u6U8EVK/l3Q2QlL2KNgiFYJskUbZKSsSiQTm5uY8ex6RSsi1hq1evXpQU1NDnTp1kJaWxqcDAtK58nPmzMHkyZP5uoERI0ZARUVFLkFGcnIyJBIJrl+/DgMDA2zdupUXci1NNWrUwM2bN+XWB5UXsiNDX331lWjKXEhICNavX8//3rp1Kx48eIDs7GzMnDmTr5ORTTwRkZMGWzbYys7OhqWlZZ5tWLBgAT5+/IhOnTrB39+fr3ucPXs2TE1NAUiTRJiYmGDGjBm8Ds7Ro0dF62MYY7h16xb++usvbNiwQS7Ykl1rMXDgQGhoaOD58+f47rvvsHXrVtGokIaGBpydnbFixQpUq1aNjxIA0lEFW1tbvjbGxcWFX1TK1g76FNOnT8fKlSsBSEcXhFGAV69e4cKFC/z/5ubmBsYYQkNDcfz48RJ57vJIR0eHB6fKJhz3gxo0kN6gooKmTZti9+7duH37No4ePYpvv/0WPj4+2LRpEw+23L/5hu9jSU5ioNdhYWiYszYzISYGzM8P9evXx4mc/2UVTU3o6OjA0NCQr28FpIFVVlYWbwvwX/r/iRMnIiEhQWESDdl1xoA0eBBG0JOSkrB9+3ZR0J6RkQENDQ3Url0bBw8exIYNG9C/f3+5/QrrS6dMmcLr9KWnp/PPfZcuXUTZ/3r16iWajqcsKioqaNiwoeh7W01NDXZ2dqJkV6tXrwYgnQ6+YcMGhIeHQ1dXF3/++aeo3QkJCZgzZw48PT3x4MGDEqsHVtqMjY0xbdo0uRpkpPyjYItUCKtXr8a7d+8AiKesqKio4M2bN3w6IZGS/eAzxuDo6AhVVVU8e/YMN2/exM6dO0Xbz58/H2/evMHWrVuhqamJQ4cOQV9fXy7YEnqwAwMDsWjRIrRv375M1mwFBwejV69efD1NeaOtrY3evXsjKioKR44cQUpKCp49e4Z///0XGRkZ0mlQOdTU1HgwJSt3Br42bdqIgq3g4GAeNOUlPT0d1tbW2LNnD09Z/eOPP8LU1BQ9e/bEzz//jIyMDMybN49noPz7779FyQOEAOTJkye8XcLFaJMmTXD+/HnRqMScOXN4Xar09HRs376dH0empqaIjo7Gjz/+qLDGVO/evXmCkNWrVys1C+aaNWvQpk0bAICvry8YY3IXzXp6euV2/Uh5E5dTcFgYQ9PS0cGZM2ewd+9ejBgxAhkZGThx4gR0dHTw9u1bdM35X9WzsuKfi3s501lfvXiBxzmdB845HUxLly5FSM5n4Ltvv8XBgwcRHh7Oj2tAOo3ay8tLlMhGaBcgLWadlJSEjRs3ijoRZAOpunXrQkVFhdeJEtbuCHXxAKBnz55o3rw5AGkWzKpVq4qyEQqffWH6sGzWPzU1NSxatAhubm78+BU8f/5ctGZLWVRUVODn5wdPT09+m4mJCYKCgkRrU3Ov71RXV0d6ejrWr18v6lRVU1NDeno6f6/zSvrzuTM2NsaiRYvg6OhYauuDSemgYItUGGZmZjh//ny+vfVEql3dugpvF0ahunXrBhUVFXh6esLW1haPHz/GnDlz0LhxY8ybNw8eHh6IiorCzJkzRb2TQmDFGENYWBhu375dJsHW+/fv8fDhQ4VBSHmgoaGBtWvXwtnZGYD0YqJu3bp8hFZ2fYKampooXbIw8mJrawvGGF6+fImBAwdCV1dXNPUmNjYWd+7cybcd58+fx7Nnz2BhYYGsrCwwxtCvXz/ExcVhy5Yt+Omnn6CmpobJkycDAJ9qKLu+RHZKpJubG7Zu3cqz9AUFBSE6Ohqurq48hfrz5895wJSRkYGLFy9i9erVSE9Ph729PVJSUngvfW47duzgQZ+skirGKuvbb7/low9qampo3bq13FqRiRMnii6SifIIo5gpOSNHOnp6qCtznhs3bhzCwsJgb2+P1atXwy4nPf+yxYt5oHI9Z1qqmqoqkNNxNDRniisArF2zBsjKggTA9evX+VrDWbNmYdCgQdi8eTM0NTVFQf7kyZN5cgsHBwf8+uuvMDU1lUtrLoyQPX/+HCoqKvyz2rt3b1SpUoWncQekWSCFwH7Tpk0AwEeWgf+mKMquXxaoq6sjNTUVv/32Gy/hIXj06BG+++47uceUNKFDVHY6Y4sWLXgwJRBGhYX/o7a2NlRVVXHlyhVRrUE1NTXRNPcvv/xSqe1XlujoaHzxxRe4c+cOzcapYCjYIhXGkydPsGjRolLJfFWeOXh5YUgeIxpCJrvo6GgsXLgQAwYMQEhICLp168YXmScmJmLfvn2IjY3F/PnzRdM+cheSLeu55wWN3HzOvv76awQGBgIQLwb/6aefRNPnhPs2btyItm3b8vo58fHx+OOPPxAeHg49PT3RxQkAvHnzpsA2NGnSBL6+vggPD0dWVhaysrJw9uxZZGRkYNy4cVBXV4dEIuGZC+fMmQNAnJBGW1sbJ0+ehEQiQXBwMADpBaJwUbVs2TKsXbuWJ7nw8vLij7W2tsbhw4excOFC1K5dG+Hh4dKMb3n466+/RIEnIA0Y3d3dC3ytRSU7VUxNTQ23b9/G5cuXRdskJibSetFSInwOzuak5m9ibi76H9WrV0/UEbdl40YAQBV1dYwePRqPHj1Cg5y1Vq0dHHiwJVsiQy8zE/D0REZGBubPn887FTZs2IDff/8dI0eORI0aNUTBVosWLUT1n6KiojBhwgRRZlADAwPs2rWL1zesXbs2DA0N0b9/f6xbtw5JSUn46aef+PbLli3jmQaF1y177s1rZMfT0xMWFhZ8X7KlOoR9lWTx4rw4Ozujffv2ou+GV69e8emRgi5dugD4b92bEGwB4iyKu3btQs+ePTF8+HA4ODiUyhpBZUhPT8eZM2ewZ8+esm4KKWFlGmytWLECjo6OfKqFq6uraEgekM7nd3d3R/Xq1aGrqws3Nze5LC2vX7/mNVWMjY15HRhZV69eRYsWLaCpqQkbGxscOHBA2S+PlLKoqCjcuXNHLpEDEft5wwb0zBkxyU1IZhEUFISlS5fyLGuampo82Nq4cSOvndS/f3+5ejM9e/ZE27ZtoaWlBQcHB1GPbGnp2LEj4uPjS+XCQVl8fHwASEe5ZNdw9ejRQ7TdV199hY4dOyIgIAD/+9//0L59e6SlpeHJkycYMGAAOnXqxKcAyirMeyMUDgUg6rFXVVWFj48Pb5eamhq0tLSwf/9+/rdAVVUVbm5uGDRoEGrVqgVAmuZZmDqVlpaGrKwsVKlSBXPnzuXPMXXqVKxevRrJycl4+vQpwsLCEBMTAx0dHWhqauLGjRuii+kFCxZAT09PdLEGSC8oZdfVKIMQAOb+3tm0aRM25lzUE+XiF9hZWTjVpg065lobpaOjI/5f5Bw7VTQ0MGHCBDRs2BDqOQFLxNu3PNgS7UNbG1rR0TAxMcG9e/ewYsUKAED79u0BAI0aNUJUVJQoWVP9+vX5tGxdXV188cUX+Pjxo+hYiY+PR+fOnWFlZcVHqi0sLPD48WN88803mD59uqhI799//82n2ynKRqijo4O0tDT+GGHt6smTJ6Grqyv3GSltUVFR8PHxkQu2AHE2QtnROjMzM9F9su9fnTp18PPPP2PPnj3Q0tISjayXJ8LrE0b5ScVRpsHWP//8A3d3d9y6dQteXl7IyMiAs7OzaAHpzJkz8eeff+LEiRP4559/5DLYZGVloU+fPkhPT4evry88PT1x4MAB0TSTly9fok+fPujatSsCAgLg4eGBCRMm4OLFi6X6eolyCVOFyvqL5HPn6OiY57QqBwcHGBgYiKZxAdLMa7JJMzQ0NJCWloZz587JFec8d+4cWrZsCS0tLSQkJJRZwKOMqWNlYe3atXz+PmNMLhtiUlIS4uLi4OnpiSFDhiAuLg5jx44VXYyMGDECderUET2ue/fucrflpqKigpiYGGRnZ6N169a8I0O4SBKK9aqrq+PXX39F9+7dRWnpBULWwk6dOmHQoEEwMDDgwfvp06fx559/QktLC5aWlnwt1tatW3Hq1CmkpKTwNZcaGhqQSCSYNGkS0tLSRMdW3759UbVqVbnP/7x580TZG0vKlClT+OekY8eOqFu3rtxza2pq5lkHiZQsnq0vKwt/HD2KPTkBTseOHQFIjx0hA6dAlTHoyayNaZVToLlz+/aATCBgYmKCL7/8Era2tkhNTeXnP4HQMfL48WOEhYXxbJy7d+9GdHQ0P6aHDh3KR2lkR6oEX331FTIzM3HixAk0adIET58+xe7duyGRSESfZ9m1sp06dcKyZctw/vx5fn9aWhrOnz/Pj8fly5fj559/xp9//ol3796VSir+/AQGBkJfX5+fP4D/Ag3Z7xlh9L127dqwt7cXfd5lZ1QMGDAAa9asQVJSEqpUqVLmr6+4hPNqeZ6RQfLAPiPR0dEMAPvnn38YY4zFxcUxdXV1duLECb7N48ePGQB28+ZNxhhj586dYyoqKiwyMpJvs337dqavr8/S0tIYY4zNmzePNW7cWPRcQ4cOZS4uLoVqV3x8PAPA4uPjP+n1EeV79+5dWTehXPv222+ZgYEBc3Z2ZgCY7CkiOTmZ9enThwFgq1at4p/F8PBw0T4AsGPHjrE//viDAWDe3t6l/TIqBOH9B8AyMjLy3M7T05N16dKFjRkzhm/v6urKrl27xiwtLdnRo0fZqFGjWO7T/YMHD9j06dML1ZZDhw6xuXPnst69ezN7e3uWmprKDAwM2IMHDxhjjJ06dYrNnj2bDRkyhGlpack93tDQkH3xxRfM0NCQt3H79u3M3NycNW7cmP3222/MysqKAWC//fYbA8AaNWrEunTpwn766Sc2dOhQBoCFhIQwxhgLDAxkhoaGjDHGWrduzQAwBwcHNmvWLP7dIPs+tm/fvlCvs7hevXrFADAfHx+lPg/JW1ZWFsPixQw9erC+ffuyVq1aiT5DwnfDmzdv2NGjRxkApvbDD+zvR4/4Ps6EhDAsXsx6f/EFQ82azOB//2MAmK6uLhs7dix7//49Y4yxmzdvMmNjY9H+hZ+LFy+yDx8+sH///ZcBYBoaGvzYzv0jWLx4sej26tWrs0OHDolu69ixI9/ewcGB/fbbb/zvkJAQ3jbGpN+Duc8b27ZtYwBYZGQk27NnDwPAunbtWvL/iEK4dOkSq1atGktNTeW3+fv7sxo1aoi2279/v8L3y9fXl8XFxfG/+/fvzwCwhQsXMgDM2NhY+S9CCVJTU5mxsTEbMWJEWTeFFEJRYoPPas2WkFpYGAL29/dHRkYGnJyc+DYNGjSApaUlT+V78+ZNNGnSRFTLx8XFBQkJCXx9wM2bN0X7ELbJKx1wWloaEhISRD+kfMhda4UUzbfffovJkyfzTFiC8+fP4/z582jbti1cXFwwb948Xv9F0XseERGBfv36wdLSskwSZFQECxcu5HWk8hsdVFdXx9WrV0UzAk6fPg1NTU00atQIQ4cORZs2beSmHzZp0oQvri/IyJEjsWbNGgQHB2Pt2rXQ1NSEmZkZ9PT0AEhTth86dAjZ2dlyWRAB6QjPixcvRJn5unfvDgcHBwQHB0NTU5NPnenfvz+v15WRkYHvv/8es2bNgr6+Pv9uWL58Oc88FhYWhn379iEjIwNdunSRy7AGiNdXKcOLnFpNQqptUvqEkZ+vxo5Fs2bNUL9+fSQkJOCbnNTuwlo+c3NzXrA7MzQUNWVGQaJ8fWFw+jS8z54F3r1DB39/TJ8+HR8/foSnpyevSdWmTRte7FvQrVs3AMCYMWPg5+fHk2KoqqryRDeC1atX81pQqampopHXFi1aQFVVlV+/CGRHwqZOncqT0Rw4cAANGjRA69at+f3CcgxFa5fU1NTQr18/zJgxAz179szj3VQuTU1NvH//nq9JFdoVGxsryjKauwaYoG3btqIMw8KIkKqqKm7evMlHGssbTU1NbNmyha9VIxXHZxNsZWdnw8PDA+3bt+dfWJGRkdDQ0BAttgakQ/qROQULIyMj5YqmCn8XtE1CQoKokrpgxYoVMDAw4D8WFhYl8hoJ+dwZGBhgxYoV6N69O1xcXHD27FkAwJ9//gk3NzcEBgbiwIED8PDwgKurK7y8vOS+0B0cHNCrVy8wxvD69WvRQmZSeG3atOGZ7PIqPAwgzy/mVq1a8alFcXFxCAsLK3ZbhKQzr1694uuTHj9+zFPrf/PNN4iMjMSCBQsUpmQX1vyNGDGC36atrc2zpWlra8PExAT6+vrw9PSEtrY2NDQ04OPjgw4dOkBPTw/x8fF8DaHsxdSOHTvQt29faGtrY9q0aXJJKgBxHT5lUFdXh4WFRYWZuloeCZ+R0JAQLFu2DNbW1tDT0+PrpYTgKDQ09L9i2MeOYWdOenQAePTgAeIDAnhh38jISAwcOJDfL3RCRUVF4enTp6Ln9/b2xvHjx6Gvr4/Q0FCebOjw4cOiQsHbtm3DzZs38ejRI9y/f5+vqxLWkd+7dw8pKSl8KpyQWU92H2PHjkW9evUAAL///jsAaVr5c+fOAQCvhyjbSTNy5EgA/2Uv3bRpE+bNm1fQ26oU7dq1w6NHj0RTooXPtuw6LiH1u42NTb5lPGSDrTZt2ojS6pcnmZmZWLVqleiYIxXDZxNsubu7IygoCEePHi3rpmDBggWIj4/nP7ziPCGVwLNnz3Dnzh1069aN954Ka4Zq1KgBU1NT+Pr6IigoSFS3SXD37l3Ur18fEokE9evXR/2cDF+kaMaPH8+TAeU3smVmZobAwEAcOXIE3bt3R7NmzQAAV65cwW+//QZAmhUv98VhUdja2vJEJ4rWIAmL9fPKPLl//36oq6vDz88PgPQCcuHChYiJicFPP/2Ebt26YfDgwUhISOABmNDJ5ePjg8OHD0MikfDizrLrOlxdXWFkZAQtLS28evUKMTExoue+fv260otbq6mpydVcIqVLCLZu5BzzsuURQkNDsXfvXgDyo5yy9YyENU4OOWu3/P39+QiVrDdv3ogClaZNm0JNTQ0tWrTA06dPRdkvu3XrJqq1FRQUhOvXr/N2CWu/Ro4cyZ/L0dER9vb2aNKkCWbNmgUAcHJyQkBAAIKCgjB8+HDcu3cPgPgzJ5S6UJSxMzU1Fb/++it0dXV59tCyIhQ1liVcZ8l23gkjgs+ePcu3s2jXrl0YMWJEua9NpaKignv37uH06dNl3RRSwj6LYGvq1Kk4e/Ysrly5wrNVAdJFgrKF6gRRUVF8AaGpqalcdkLh74K20dfXV3ixqKmpCX19fdEPIZXFqVOnkJiYiPnz5/P6JsLIhnChrampiXnz5hWYPvzJkycFJmEgignnrMJMw2zatCnu3LmD0aNH86k53bp141OPVqxY8UmFPnV0dBAfH4/Xr1+LahcJFC1ul/Xq1St8+PAB9evXR5cuXfDhwwfcv38fgDTVe2JiIhwdHbFw4UIMGTIELVq0EE2Lio6OBvDfhfKoUaPk6lcJF6W5k1RcuHAh35HBkiD0ylNynrKjoqIC/PgjkJN5U7ZQcL169fgxmvuCXPZvYZsPHz7w22Q/N8I1hYaGhmjEvmvXrsjMzISNjY1ccoMhQ4aIpgQeOXKEf4bu3LkDPz8/SCQSqKqqonv37gCk9aXq1q2LUaNGYdWqVVi5ciUiIiLQq1cvjBs3Djdv3uTPLxucCOUdYmNjsX79elE7rl69ilWrVkFFRQX9+vX77GbsWFhYQE1NTdSxJASl165dy/f8lZmZiY0bN2Lu3LlKb6cyCecpoVOKVBxlGmwxxjB16lT8/vvv8Pb2lisI2bJlS6irq4umhTx58gSvX79G27ZtAUjn7j58+JB/GQPSL299fX0+J7pt27ZyU0u8vLz4Pggh/1FVVcXgwYMB/Heh4eDgAC0tLT61RViXwzOAEaWZNm1aobb766+/+NQlQFoIVOj1Fi7miuvbb7/FrVu38Pvvv+e5DmTTpk15XsAJJTesra3x5s0b6OrqIiYmBi4uLvD390dYWBiysrIQFRXFb5OtQyR0igkXw05OThgyZIjoOfr06QMAfB2ZYNmyZfj++++L/doLQ5jiRMFW2RqTM1UOAB/VzU3oMBI6UWU7XHv27Inz58+L1jL9+++/aNq0KSZPnsxHjXP/n2XXPgYFBYnu8/b2xr59+wBIg/K4uDheDHv9+vXo378/Vq5cCYlEwj+vmzdvRoMGDTBv3jxcvHgRN27cQFpaGrp06YIhQ4bwrHuAtOixUJdJdg2U0PkgiI6ORlBQEBhjaNmyJR+N/lyYmZnJ1aRbuHAhfvnlF3Ts2DHf89eyZcswdOhQnj6+vKPzSAWk3Fwd+Zs8eTIzMDBgV69eZREREfwnOTmZbzNp0iRmaWnJvL29mZ+fH2vbti1r27Ytvz8zM5PZ2dkxZ2dnFhAQwC5cuMCMjIzYggUL+DYvXrxgOjo6bO7cuezx48ds27ZtTFVVlV24cKFQ7aRshKQy2bBhAzM3N2e7d+9mx44dU7jN3r17GQDRZ5WULEtLS7ksXPmZN28e337Xrl1s1KhRrE2bNiXSFldXV75v2axnAj8/P+bq6spiYmIUPv7kyZMMAGvQoAEDwEaOHMlq1arFMyg+efKE1apVS/Ravby8GADWqlUrtnz58gKzMjImzZiZnZ0tug0Ac3R0LMarLrywsDAGgEVHRyv1eUj+TE1NWfv27ZmxsTFbsmSJwm3S0tLY+fPnGQC2bds2ufs9PT3Zt99+ywAwNzc3nglz2LBhLCgoiDHGWEREhMLsggDYggULGACmpaXFALDvvvuOXbx4UbSNtra2wix72dnZbMWKFaxmzZr8NmGbWrVqsapVqzIrKyumra3NHj9+zLcRPisA2OHDh1nTpk3lzhubNm0q9LmkvFm0aBEDwNavX1/WTflkANiGDRvKuhmkEIoSG5TpJy+vk9X+/fv5NikpKWzKlCmsatWqTEdHhw0cOJBFRESI9hMWFsZ69erFtLW1WY0aNdjs2bPlvpSvXLnC7O3tmYaGBqtTp47oOQpCwRapTA4fPswAsLNnz/Lbbt++zcaOHctev37NGJOmutbW1pa7sCUl5/jx42z//v3MwMCgUNsLF3kA2O7du9mVK1fYrFmzSqQtsufnpKQkhduoqKiwly9fKrxPuNgUgraLFy+ya9eu8YvasLAwdvLkSWZlZcUfc/nyZR7QBwUFMXt7+2Idb8hJC69MQhmEzMxMpT4PyZ+GhgYLDQ1lANikSZPy3TYgIIABYG/fvuW3CSnhe/fuzQAwFxcXnjIdANu3bx/fdufOnaLPxbJly5iBgQH/e+PGjczDw4Nvv23bNnb69Gn24cMHtmjRIvbVV1+xly9fsj179rCBAwfy7by9vVnt2rX538L+AgICWMeOHRkAduTIEZaYmMgYk5a6kW3H119/rbCTZseOHRU22Fq3bh0DwDZt2lTWTflkO3fuZH5+fmXdDFII5Sb1O5MGe3I/slNhtLS0sG3bNrx//x5JSUk4deqU3JxoKysrnDt3DsnJyYiJicHatWvlFmp36dIF9+/fR1paGp4/fy56DkLIf4YPH4769euLEiGEh4fD09OTT805f/48Zs6cWWYFiyuDly9fYvr06bwkRkGERCRdu3bFgQMH8OrVK6yTybT2KWTPuYoSZLi7uyM7OzvPBBnOzs7o3Lkzz6jWqVMnMMZ49jRjY2MkJCSIMhkK0wF1dHRgbW2N+/fvF/t4a9y4cbEeV1jCFCdlrw0j+UtPT+cp3gta6yikDheOQeC/DMbC8RIfH4+RI0fy0jFCkpnk5GTRNFdAuhZLSCkPAB4eHnyqHyAtgj1gwAAYGhpiy5Yt2LdvH9zc3NCgQQPRGp1u3brh5cuX/O/Ro0fD2NgYjRo1wo8//ogaNWpg2LBhfAr33bt3+bb5FcPt1KmTqD0VifC//JSp0p+LDRs2ULmUCoi+GQghIsHBwQgNDRVdVMte+ALS5A3COgGiHPPnz+fZ9wpjwIABGDt2LF6+fImgoCBMmTIF3t7eJdIWOzs7viZK0QWNUOMrr4ud9+/f459//uG1DUNDQ9G5c2c8ePAAI0eOhLa2NpYuXSpKZCTU1AKkpQeKG2g9ePAAixYtKtZjC0vIKKfsel6kYFevXkWTJk3kalvlJpzfZDsIhLUyQtBy69Yt/Pnnn/Dy8sIff/zBs1pmZGRgzZo12LBhA8LCwnDixAmkp6cjPT1d9BzLli1T+Nw1a9YEIE3z3qFDB7k1Or169eK/Dxw4ECYmJtDT08OSJUsQGxsLiUTC19PKfuY+fPjA69XlrjdnaGgoCgYrkvHjx2PixImic0Z5FRISgjt37pR1M0gJo2CLECIi1DCSTTQg9KIKiQDCw8NFSWmI8hQ2nfGLFy9Qv359nmwiOTkZb9++LZE2pKSk4N9//0VWVpbC+4We2LwSpgijAJ07d0bnzp1FWQtjY2MBSIsZz5kzh99et25djBkzBgAKPbqnyL59+/D8+fNiP74w7Ozs8PTp0wrRs17eGRgY4OHDhwUWtlU0Qiscx7JJM4TR1n79+vFzohAceXl5wcrKCl988QVCQ0MxduxYjB49usA21q9fnwdcgDhgMjAwwKpVq/jfFy9exOjRo5GWliZKviFbW0qQlpaGw4cPA5B+nmQFBgYWqm3lUVxcHEaPHo3hw4eXdVNKBFNQGJ6UbxRsEUJEVFVV0aNHD9jb2/PbrKysAIAX0ly+fDn/UifKERkZie+++46PKBXE19eXZ90TsqnJXtB9iiFDhuDWrVt5FlDW0tLC3Llz5TIBCjQ1NSGRSCCRSPDPP//AzMyM73fXrl0AgJiYGD7yJRBGirp161bsQqUbN25UejZCAOW2kGpF0rVrV9jY2ODMmTOYNGlSvtvq6+tDS0tLNPWua9eu8Pb25kWBAcWZ4YTbFF0U7969u8DP3alTp2BmZob3798DABYvXszvi4+Px5IlS/jf165dw4ULFwBIR4iF2oeCQYMGieoyTZkyBQDw3XffibYTCgRXRI8fP0aHDh0+qZbg5+LRo0cYP358WTeDlDAKtgghIioqKvDy8hKNJpibm4MxxsszGBkZVZhexM+ViYkJqlatmmcK69yEqXwA+IhQSaXmF1JbC3Vvcps+fTquXbuG5ORkhfdramqCMYaDBw8C+K9XvlatWrC0tAQgDRZzj0Z4eHjAw8MD9erV+6QLKWGaH6nYrl69Cg0NDfTv3593EOVFTU0NKSkpojTvdevWxaVLl3iNrjZt2igcARNGk2RHwCZOnAgA+OKLL/Du3TsA0qm9irx8+RJ///03H7Xu0aMHv2/nzp2iEazHjx/z6cBZWVkwNjYW7atHjx6iEWw9PT2Ym5vLPaeTk1OJdb58boQ6dwWNZpYHDRs2pLWfFZDi1cyEkEpLuPiNiYnhC49J2XB0dJSrP5gX2elEUVFRWLx4cYkVLn3x4kW+9+vp6eH27dt5Tn8RRryaNWvGR698fX1ha2vLt1myZAl++eUX0eNatmyJli1bfkrTSSVSvXp1NGjQoNDbSyQS3LlzB46OjgCkBbCXL1+OnTt3ApCuc5Id5ZKVex1gnz59cOvWLZw9exaANKCKi4tT+FhhOjZjDD/88AOmTJmC48ePA5B2dilan/j8+XMcPnwYgwcPhr+/P79927ZtmDp1KgBpp5iqqipev37NC5oLmjZtWmLTij83wujkp0w3JkSZKHwmhIh069YNABVW/Bx4e3uLMpPlR+jJd3BwgJ+fH+Li4kqsJ7ugC1hhLYiiUQBAehFYq1YtNG7cGDVq1AAgLTYvu6A9NDQUoaGhosdNnjz5kzNeamtro3Pnzp+0D1I+xMbGIjg4uEiPCQkJ4b8LI6BWVlY4fPgwEhIS5EaSBIsXLxZN/+vduzd8fX3537Vr1+ZFkPMikUhgamrKpxMCwNdffy1q04ABA9CjRw9IJBLMnz8ftra2GDFiBL9ftpBv//790bp1awDAhAkT8n3uikQYwf/48WMZt4QQxSjYIoSI3Lt3DwAFW5+DwgZaANChQwesXr0afn5+ePXqFTZu3FikbIb5adq0KVq0aIG6desqvH/BggXYvXt3nqnf09LS8ObNG9y9e5cnxMjt9OnTePPmjeg22YvQ4nry5InSsxGSz0dRp5s2b96c/y4cv1ZWVlBVVYWvr2+eU2dzU1VV5dlaBYXpKHB3d5f7nLu6uvLfe/ToARcXF9SpUwf9+vVT+LyC7du3Y//+/QAKTn1f0cyYMQPt2rUr62YQohAFW4QQEWEhtex6BFI22rVrl+doUW41a9bE3LlzAfxXL6ikLrhCQkJQvXp1udpCgm7duuXbky6kqe7atSuaNm2qcJuRI0di1KhRotvmzp2LadOmFbPVUhYWFhUiJTQpHCH5SmEwxmBnZ8f/FoIjIdgCir7ucfny5UXaXmiHoEGDBpg8eTL/293dHbNnzwagOJDMnQHz0KFDACpfsLVx48Y8p3wSUtYo2CKEiOjo6MDR0ZHWa30GjI2N5bKPFYbQW1/YQK0gnTt3FmWnLCqhHc+fP+dFZ3MLCQmBl5eX6DYHBwdeN4iQgtjY2IjWARZVu3bt4OfnB21tbX68GxoaFmkfX331FV/3WliymQNDQkLg4eGhcDtFRYuHDBmCGzduAAA2b96MY8eOwcrKqtAlIwghykfBFiFEJDk5GXfv3s2zphIpPTVr1kStWrWK9BgNDQ2eVOJT1zsJtmzZgpMnTxb78cL0LKFmkSLOzs4YNmxYsZ+DEMZYkYMjWYaGhvyzIwQ2Re10at26NV6/fs0LIBfExsZGND338OHDeb4GRVkGGzduzEezevbsCSMjI7i7u1e6kS1CPmeUjZAQIiJ80VP62bLXpk0b/P7770V6THp6OjIzM7F3794Sa8fs2bOLHPTlFhwcjEaNGmHNmjUK7x81apTcNEJCiiKvaa7Fcf/+fTg4OBQ5eBMSVuSuc5UXZ2dnHDt2jE+BCw0NRVRUlNx2Pj4+CpN1rF27Ftu3bwfwXzr7efPm8SnFhJCyR8EWIUSkYcOG0NDQKLFREVK6TE1N0bZtW7Rq1arE9rl27dpP3kejRo1KoCWElI4PHz7g2bNnxe500tPTy7MUgqzY2FhUqVKF/y2b4VBWXskfAgMDAUhHtM3NzeHo6Ig//vij6A0mhCgNdV0TQkT8/PyQnp5e1s0gxRQZGUkpkAn5RIGBgXnWySpJx48fx6VLl/jfrVq1QosWLQr9+I0bN2Lt2rUwNzeHmpoaBg4cyOvaEUI+DzSyRQgRSU5OLusmkE9UUvW1CKmsvvrqK153qyiOHDmCESNGFGpUSyC7bcuWLYu0TszY2Bi2trZ4+fIlYmJi8ObNmxIr+UAIKRk0skUIEbGyskK9evXKuhmkmBhjBRYhJoTkr2bNmvjxxx+L/Lhhw4ahZ8+ehd7e0dERU6ZM4X/7+flh5cqVRXrO7t27A5Cmge/evbtcVk9CSNmikS1CiMjr16+LXBiUEEKI1I4dO3D79u1CbWtmZiYqhjxp0qQiJ+UQEmqoqalBTU0NTk5ORXo8IUS5KNgihIgMHToUNWrUKOtmEEJIuaSrq1vodVcLFiwQ1c8KDQ2Fj49PkZ7P398fgHyBY0LI54GmERJCRHR0dNCvX7+ybgYhhJRLM2bMgI2NTaG2bdOmDaytrfnfqqqqRc4EW61aNdSoUQO6urpFehwhpHRQsEUIIYQQUkI+JZvrsmXLipxNNDs7G7GxscV+TkKIctE0QkIIIYSQErJu3Tr079+/1J5PyCCbnZ1NUwkJ+QzRyBYhhBBCSAmpVasWRo4cWWrP16xZMwAodgFmQohy0SeTEEIIIaScioiIAIAir/UihJQOCrYIIYQQQsqpsLCwsm4CISQfFGwRQgghhJRT9erVg5GRUVk3gxCSBwq2CCGEEELKqaSkJMTExJR1MwgheaBgixBCCCGknKpduzZatWpV1s0ghOSBgi1CCCGEkHKqVq1auH37dlk3gxCSBwq2CCGEEEIIIUQJKNgihBBCCCGEECWgYIsQQgghhBBClICCLUIIIYQQQghRAgq2CCGEEEIIIUQJKNgihBBCCCGEECWgYIsQQgghhBBClICCLUIIIYQQQghRArWybkB5wBgDACQkJJRxSwghhBBCCCFlSYgJhBghPxRsFUJiYiIAwMLCooxbQgghhBBCCPkcJCYmwsDAIN9tJKwwIVkll52djXfv3kFPTw8SiaSsm1NuJSQkwMLCAuHh4dDX1y/r5pBKjo5HUlx07JDyiI5bUlx07MhjjCExMRE1a9aEikr+q7JoZKsQVFRUUKtWrbJuRoWhr69PH1by2aDjkRQXHTukPKLjlhQXHTtiBY1oCShBBiGEEEIIIYQoAQVbhBBCCCGEEKIEFGyRUqOpqYlFixZBU1OzrJtCCB2PpNjo2CHlER23pLjo2Pk0lCCDEEIIIYQQQpSARrYIIYQQQgghRAko2CKEEEIIIYQQJaBgixBCCCGEEEKUgIItQgghhBBCCFECCrYqoBUrVsDR0RF6enowNjaGq6srnjx5ItomNTUV7u7uqF69OnR1deHm5oaoqCh+f2BgIIYPHw4LCwtoa2ujYcOG2LRpk9xzXb16FS1atICmpiZsbGxw4MCBAtvHGMP//vc/mJmZQVtbG05OTnj69KnCbdPS0mBvbw+JRIKAgIB89xsREYERI0agfv36UFFRgYeHh9w2Bw4cgEQiEf1oaWkV2GZSfBXheLS2tpY7blauXFngvgtqz7Vr19CvXz/UrFkTEokEp0+fLnCflUllPXboXFa+VYTjFgD++usvtG7dGtra2qhatSpcXV0L3PeDBw/QsWNHaGlpwcLCAqtXrxbdHxwcDDc3N/652LhxY4H7rEwq67GTmpqKcePGoUmTJlBTU1O4/dWrV+XOeRKJBJGRkQW2u8wxUuG4uLiw/fv3s6CgIBYQEMB69+7NLC0t2cePH/k2kyZNYhYWFuzy5cvMz8+PtWnThrVr147fv3fvXjZ9+nR29epV9vz5c/brr78ybW1ttmXLFr7NixcvmI6ODps1axZ79OgR27JlC1NVVWUXLlzIt30rV65kBgYG7PTp0ywwMJD179+f1a5dm6WkpMhtO336dNarVy8GgN2/fz/f/b58+ZJNnz6deXp6Mnt7ezZjxgy5bfbv38/09fVZREQE/4mMjMx3v+TTVITj0crKii1dulR03Mi2X5HCtOfcuXPs+++/Z6dOnWIA2O+//17Yt7VSqKzHDp3LyreKcNyePHmSVa1alW3fvp09efKEBQcHs2PHjuW73/j4eGZiYsJGjhzJgoKC2JEjR5i2tjbbuXMn3+bOnTtszpw57MiRI8zU1JRt2LChsG9rpVBZj52PHz+ySZMmsV27djEXFxc2YMAAuW2uXLnCALAnT56IzntZWVkFva1ljoKtSiA6OpoBYP/88w9jjLG4uDimrq7OTpw4wbd5/PgxA8Bu3ryZ536mTJnCunbtyv+eN28ea9y4sWiboUOHMhcXlzz3kZ2dzUxNTdmaNWv4bXFxcUxTU5MdOXJEtO25c+dYgwYNWHBwcKGCLVmdO3fO8wLFwMCg0PshJa88Ho9WVlZFvigoanso2CpYZTl2ZNG5rPwrb8dtRkYGMzc3Z3v27CnS6/z5559Z1apVWVpaGr9t/vz5zNbWVuH2n/rZqAwqy7Eja+zYsfkGWx8+fCj2vssKTSOsBOLj4wEA1apVAwD4+/sjIyMDTk5OfJsGDRrA0tISN2/ezHc/wj4A4ObNm6J9AICLi0u++3j58iUiIyNFjzMwMEDr1q1Fj4uKisLXX3+NX3/9FTo6OoV8pYXz8eNHWFlZwcLCAgMGDEBwcHCJ7p/krzwejwCwcuVKVK9eHc2bN8eaNWuQmZmZ7+ssTntI/irLsVNYdC4rH8rbcXvv3j28ffsWKioqaN68OczMzNCrVy8EBQXl+zpv3ryJTp06QUNDQ9SeJ0+e4MOHD/k+lihWWY6dorC3t4eZmRl69OgBHx+fEtuvMlGwVcFlZ2fDw8MD7du3h52dHQAgMjISGhoaMDQ0FG1rYmKS59xXX19fHDt2DN988w2/LTIyEiYmJnL7SEhIQEpKisL9CPtX9DjhPsYYxo0bh0mTJsHBwaHwL7YQbG1tsW/fPpw5cwYHDx5EdnY22rVrhzdv3pTo8xDFyuPxCADTp0/H0aNHceXKFUycOBHLly/HvHnz8n2txWkPyVtlOnYKg85l5UN5PG5fvHgBAFi8eDEWLlyIs2fPomrVqujSpQvev3+f52vNqz2yz0sKrzIdO4VhZmaGHTt24LfffsNvv/0GCwsLdOnSBffu3fuk/ZYGCrYqOHd3dwQFBeHo0aPF3kdQUBAGDBiARYsWwdnZudCPO3ToEHR1dfnP9evXC/W4LVu2IDExEQsWLMhzG9n9Tpo0qdBtatu2LcaMGQN7e3t07twZp06dgpGREXbu3FnofZDiK4/HIwDMmjULXbp0QdOmTTFp0iSsW7cOW7ZsQVpaGoDiH4+k8OjYEaNzWflQHo/b7OxsAMD3338PNzc3tGzZEvv374dEIsGJEycAAI0bN+b77dWrV9FfFCkQHTtitra2mDhxIlq2bIl27dph3759aNeuHTZs2FDofZQVtbJuAFGeqVOn4uzZs7h27Rpq1arFbzc1NUV6ejri4uJEvSNRUVEwNTUV7ePRo0fo3r07vvnmGyxcuFB0n6mpqSgDjrAPfX19aGtro3///mjdujW/z9zcHBEREXw7MzMz0ePs7e0BAN7e3rh58yY0NTVF+3ZwcMDIkSPh6ekpykyor69f+DclF3V1dTRv3hzPnj0r9j5I4ZTX41GR1q1bIzMzE2FhYbC1tVV4PBbUHlJ4le3YKQ46l31+yutxK9zeqFEjfr+mpibq1KmD169fAwDOnTuHjIwMAODns7zaI9xHCq+yHTvF1apVK9y4ceOT9lEqynrRGCl52dnZzN3dndWsWZOFhobK3S8ssDx58iS/LSQkRG6BZVBQEDM2NmZz585V+Dzz5s1jdnZ2otuGDx9eqAWWa9eu5bfFx8eLFli+evWKPXz4kP9cvHiRAWAnT55k4eHhhXoP8lpUnltmZiaztbVlM2fOLNR+SdGV9+NRkYMHDzIVFRX2/v37PLcpantACTLkVNZjRxady8qf8n7cCn/LJjlIT09nxsbGosyCuQkJMtLT0/ltCxYsoAQZRVBZjx1ZeSXIUMTJyYkNHDiwUNuWJQq2KqDJkyczAwMDdvXqVVF6zOTkZL7NpEmTmKWlJfP29mZ+fn6sbdu2rG3btvz+hw8fMiMjIzZq1CjRPqKjo/k2QurQuXPnssePH7Nt27YVOnWooaEhO3PmDHvw4AEbMGBAnqnfGZOmQUYhsxHev3+f3b9/n7Vs2ZKNGDGC3b9/nwUHB/P7lyxZwi5evMieP3/O/P392bBhw5iWlpZoG1Kyyvvx6OvryzZs2MACAgLY8+fP2cGDB5mRkREbM2ZMvvstTHsSExP5MQuArV+/nt2/f5+9evWqSO9xRVVZjx3G6FxWnpX345YxxmbMmMHMzc3ZxYsXWUhICBs/fjwzNjbOt5MgLi6OmZiYsNGjR7OgoCB29OhRpqOjI7rITktL48e2mZkZmzNnDrt//z57+vRpkd7jiqqyHjuMMRYcHMzu37/P+vXrx7p06cKPE8GGDRvY6dOn2dOnT9nDhw/ZjBkzmIqKCrt06VJh394yQ8FWBQRA4c/+/fv5NikpKWzKlCmsatWqTEdHhw0cOJBFRETw+xctWqRwH1ZWVqLnunLlCrO3t2caGhqsTp06oufIS3Z2Nvvhhx+YiYkJ09TUZN27d2dPnjzJc/uiBFsFtdnDw4NZWloyDQ0NZmJiwnr37s3u3btX4H5J8ZX349Hf35+1bt2aGRgYMC0tLdawYUO2fPlylpqaWuC+C2qPkMo298/YsWML3HdlUJmPHTqXlV/l/bhlTDoaMXv2bGZsbMz09PSYk5MTCwoKKnDfgYGBrEOHDkxTU5OZm5uzlStXiu4Xvs9z/3Tu3LnAfVcGlfnYsbKyUthuwapVq1jdunWZlpYWq1atGuvSpQvz9vYucL+fAwljjBV2yiEhhBBCCCGEkMKhbISEEEIIIYQQogQUbBFCCCGEEEKIElCwRQghhBBCCCFKQMEWIYQQQgghhCgBBVuEEEIIIYQQogQUbBFCCCGEEEKIElCwRQghhBBCCCFKQMEWIYQQQgghhCgBBVuEEEIIIYQQogQUbBFCCKl0xo0bB4lEAolEAnV1dZiYmKBHjx7Yt28fsrOzC72fAwcOwNDQUHkNJYQQUq5RsEUIIaRS6tmzJyIiIhAWFobz58+ja9eumDFjBvr27YvMzMyybh4hhJAKgIItQgghlZKmpiZMTU1hbm6OFi1a4LvvvsOZM2dw/vx5HDhwAACwfv16NGnSBFWqVIGFhQWmTJmCjx8/AgCuXr2KL7/8EvHx8XyUbPHixQCAtLQ0zJkzB+bm5qhSpQpat26Nq1evls0LJYQQUmYo2CKEEEJydOvWDc2aNcOpU6cAACoqKti8eTOCg4Ph6ekJb29vzJs3DwDQrl07bNy4Efr6+oiIiEBERATmzJkDAJg6dSpu3ryJo0eP4sGDBxg8eDB69uyJp0+fltlrI4QQUvokjDFW1o0ghBBCStO4ceMQFxeH06dPy903bNgwPHjwAI8ePZK77+TJk5g0aRJiY2MBSNdseXh4IC4ujm/z+vVr1KlTB69fv0bNmjX57U5OTmjVqhWWL19e4q+HEELI50mtrBtACCGEfE4YY5BIJACAS5cuYcWKFQgJCUFCQgIyMzORmpqK5ORk6OjoKHz8w4cPkZWVhfr164tuT0tLQ/Xq1ZXefkIIIZ8PCrYIIYQQGY8fP0bt2rURFhaGvn37YvLkyVi2bBmqVauGGzduYPz48UhPT88z2Pr48SNUVVXh7+8PVVVV0X26urql8RIIIYR8JijYIoQQQnJ4e3vj4cOHmDlzJvz9/ZGdnY1169ZBRUW6xPn48eOi7TU0NJCVlSW6rXnz5sjKykJ0dDQ6duxYam0nhBDy+aFgixBCSKWUlpaGyMhIZGVlISoqChcuXMCKFSvQt29fjBkzBkFBQcjIyMCWLVvQr18/+Pj4YMeOHaJ9WFtb4+PHj7h8+TKaNWsGHR0d1K9fHyNHjsSYMWOwbt06NG/eHDExMbh8+TKaNm2KPn36lNErJoQQUtooGyEhhJBK6cKFCzAzM4O1tTV69uyJK1euYPPmzThz5gxUVVXRrFkzrF+/HqtWrYKdnR0OHTqEFStWiPbRrl07TJo0CUOHDoWRkRFWr14NANi/fz/GjBmD2bNnw9bWFq6urrh79y4sLS3L4qUSQggpI5SNkBBCCCGEEEKUgEa2CCGEEEIIIUQJKNgihBBCCCGEECWgYIsQQgghhBBClICCLUIIIYQQQghRAgq2CCGEEEIIIUQJKNgihBBCCCGEECWgYIsQQgghhBBClICCLUIIIYQQQghRAgq2CCGEEEIIIUQJKNgihBBCCCGEECWgYIsQQgghhBBClOD/A7gWIzNrc5QAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAE6CAYAAADgC0jTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gURR/Hv9dyKaSQQAoQIPTee28C0kUUURAEBaX4KgiIKBhBERAsoICAIEWlCAKW0EFKqBFCCb2XkEJIu+Tqvn9kZzK7t3e5hIQkMJ/nyZO7rbN7W+Y7v6YSBEEAh8PhcDgcDofD4XDyFXVhN4DD4XA4HA6Hw+Fwnka42OJwOBwOh8PhcDicAoCLLQ6Hw+FwOBwOh8MpALjY4nA4HA6Hw+FwOJwCgIstDofD4XA4HA6HwykAuNjicDgcDofD4XA4nAKAiy0Oh8PhcDgcDofDKQC42OJwOBwOh8PhcDicAoCLLQ6Hw+FwOBwOh8MpALjY4nA4nEJi5cqVUKlU9E+r1SIkJASvvPIKLl++XNjNe6KQc3Hjxg2Xlj9w4ABefvlllC1bFm5ubvD19UWrVq2waNEipKenF2xjC4Dz58/j008/dfn4c8Onn34KlUrl8vLbtm1D7969ERQUBDc3N/j7+6Nz585Yu3YtzGZzvrcvL3zxxRf4448/CrsZHA6HkyNcbHE4HE4hs2LFCkRGRmLXrl0YO3Ystm7dijZt2iApKamwm1YkmT59Otq1a4e7d+9ixowZ2LlzJ3777Td07twZn376KT7++OPCbmKuOX/+PMLDwwtEbLmKIAh444030KdPH9hsNsyfPx+7du3Czz//jPr162P06NH44YcfCq19LFxscTic4oK2sBvA4XA4zzp16tRBkyZNAAAdOnSA1WrF9OnT8ccff+CNN94o5NYVLTZs2IDPPvsMI0aMwNKlSyUWm+effx6TJk1CZGRkvuwrIyMDHh4edtPNZjO1RD5NzJ07FytXrkR4eDimTZsmmde7d29MmjQJV65cKaTWcTgcTvGEW7Y4HA6niEGE14MHD+i0zMxMTJgwAQ0aNICvry/8/f3RsmVLbNmyRbLuSy+9hNq1a0um9e7dGyqVChs2bKDToqKioFKpsG3bNqdtCQ8PR/PmzeHv7w8fHx80atQIy5cvhyAIkuUqVqyIXr16ISIiAo0aNYKHhwdq1KiBn376yW6bR44cQevWreHu7o4yZcpgypQpLrunffbZZyhZsiS+++47Rdc4b29vdO3alX7PzMzElClTEBYWBjc3N5QtWxZjxozBo0ePFNu/adMmNGzYEO7u7ggPD8e+ffugUqmwevVqTJgwAWXLloVer6eiY9euXejcuTN8fHzg6emJ1q1bY/fu3XbtunDhAgYNGoSgoCDo9XqUL18er7/+OoxGI1auXImXXnoJANCxY0fqVrpy5Uq6vqv7+euvv9CgQQPo9XqEhYXhq6++cum8ms1mzJ49GzVq1MAnn3yiuExwcDDatGlDvz98+BCjR4+mrpyVKlXC1KlTYTQa6TI3btywOxaCSqXCp59+Sr8Td8dz585h0KBB8PX1RVBQEIYPH47k5GTJeunp6fj555/puerQoQMAwGAw4IMPPkBYWBjc3d3h7++PJk2a4Ndff3XpPHA4HE5+83QNy3E4HM5TwPXr1wEA1apVo9OMRiMePnyIDz74AGXLloXJZMKuXbvQv39/rFixAq+//joAoEuXLti4cSPu37+PkJAQWCwW7N+/Hx4eHti5cyft1O/atQtarZZ2Uh1x48YNjBo1CuXLlweQJZTGjRuHu3fv2lk/Tp8+jQkTJuDDDz9EUFAQli1bhhEjRqBKlSpo164dgCx3uc6dO6NixYpYuXIlPD098cMPP+CXX37J8bzcv38fZ8+excCBA+Hp6Znj8oIgoF+/fti9ezemTJmCtm3bIjo6GtOnT0dkZCQiIyOh1+vp8lFRUYiJicHHH3+MsLAweHl50fivKVOmoGXLlli8eDHUajUCAwOxZs0avP766+jbty9+/vln6HQ6LFmyBN26dcP27dvRuXNnel7atGmDUqVK4bPPPkPVqlVx//59bN26FSaTCT179sQXX3yBjz76CN9//z0aNWoEAKhcuTIAuLyf3bt3o2/fvmjZsiV+++03WK1WzJkzRyLaHXHixAk8fPgQb731lkvxXZmZmejYsSOuXr2K8PBw1KtXDwcOHMCsWbNw6tQp/PXXXzluwxEvvvgiBg4ciBEjRuDMmTOYMmUKAFDhHhkZiU6dOqFjx45UGPr4+AAAxo8fj9WrV2PmzJlo2LAh0tPTcfbsWSQmJua5PRwOh/NYCBwOh8MpFFasWCEAEI4cOSKYzWYhNTVViIiIEIKDg4V27doJZrPZ4boWi0Uwm83CiBEjhIYNG9LpV65cEQAIq1atEgRBEA4ePCgAECZNmiSEhYXR5Z577jmhVatWuWqv1WoVzGaz8NlnnwkBAQGCzWaj8ypUqCC4u7sLN2/epNMyMjIEf39/YdSoUXTawIEDBQ8PDyE2NlZyLDVq1BAACNevX3e4/yNHjggAhA8//NCl9kZERAgAhDlz5kimr1u3TgAg/Pjjj5L2azQa4eLFi5Jl9+7dKwAQ2rVrJ5menp4u+Pv7C71795ZMt1qtQv369YVmzZrRaZ06dRL8/PyEuLg4h23dsGGDAEDYu3dvnvfTvHlzoUyZMkJGRgadlpKSIvj7+ws5ve5/++03AYCwePFip8sRFi9eLAAQ1q9fL5k+e/ZsAYCwY8cOQRAE4fr16wIAYcWKFXbbACBMnz6dfp8+fbri7zV69GjB3d1dcr15eXkJQ4cOtdtmnTp1hH79+rl0DBwOh/Mk4G6EHA6HU8i0aNECOp0O3t7e6N69O0qWLIktW7bYxQRt2LABrVu3RokSJaDVaqHT6bB8+XLExMTQZSpXroyKFSti165dAICdO3eibt26GDx4MK5fv46rV6/CaDTi4MGD6NKlS45t27NnD7p06QJfX19oNBrodDpMmzYNiYmJiIuLkyzboEEDagEDAHd3d1SrVg03b96k0/bu3YvOnTsjKCiITtNoNBg4cGDuTpoL7NmzBwAwbNgwyfSXXnoJXl5edm549erVk1gTWV588UXJ98OHD+Phw4cYOnQoLBYL/bPZbOjevTuOHz+O9PR0GAwG7N+/Hy+//DJKly6d62NwdT/p6ek4fvw4+vfvD3d3d7q+t7c3evfunev95sSePXvg5eWFAQMGSKaTc63k4ugqffr0kXyvV68eMjMz7a43JZo1a4Z//vkHH374Ifbt24eMjIw8t4PD4XDyA+5GyOFwOIXMqlWrULNmTaSmpmLdunVYsmQJBg0ahH/++Ycus2nTJrz88st46aWXMHHiRAQHB0Or1WLRokV2cVGdO3dGREQEgCx3weeeew5169ZFUFAQdu3ahapVqyIjIyNHsXXs2DF07doVHTp0wNKlS1GuXDm4ubnhjz/+wOeff27XkQ0ICLDbhl6vlyyXmJiI4OBgu+WUpskhQo64WeZEYmIitFqtnchRqVQIDg62cy0LCQlxuC35POKaJxcbLA8fPoRarYbVakW5cuVcarMcV/ejUqlgs9me6LkNDg62czkMDAyEVqt9LLc9+XVEXD1dEU7fffcdypUrh3Xr1mH27Nlwd3dHt27dMHfuXFStWjXPbeJwOJy8wsUWh8PhFDI1a9akSTE6duwIq9WKZcuWYePGjbSTvWbNGoSFhWHdunWSDi6bjIDQuXNnLF++HMeOHcPRo0dpKvROnTph586duHnzJkqUKIEWLVo4bddvv/0GnU6HP//8U2IteZyU2wEBAYiNjbWbrjRNTkhICOrWrYsdO3bAYDDkGLcVEBAAi8WC+Ph4ieASBAGxsbFo2rSpZHlnsUryeaVKlQIALFiwwOF5DAoKgtVqhUajwZ07d5y21RGu7odkSMzruW3SpAn8/f2xZcsWzJo1K8e4rYCAABw9ehSCIEiWjYuLg8Vioe0m1438Oi2oGCovLy+Eh4cjPDwcDx48oFau3r1748KFCwWyTw6Hw3EGdyPkcDicIsacOXNQsmRJTJs2DTabDUBWZ9/NzU3SsY2NjbXLRghkiS2VSoVPPvkEarWaJqfo0qUL9u7di507d6Jdu3bQ6XRO20HSm2s0GjotIyMDq1evzvOxdezYEbt375YkbbBarVi3bp1L63/yySdISkrCu+++a5cREQDS0tKwY8cOAKCJI9asWSNZ5vfff0d6ejqdnxdat24NPz8/nD9/Hk2aNFH8c3Nzg4eHB9q3b48NGzYgISHB4fYcWW9c3Y+XlxeaNWuGTZs2ITMzk66fmpqaY8ZJANDpdJg8eTIuXLiAGTNmKC4TFxeHQ4cOAcg6t2lpaXbCe9WqVXQ+kCUE3d3dER0dLVlO6brNDXKLqRJBQUEYNmwYBg0ahIsXL8JgMDzWPjkcDicvcMsWh8PhFDFKliyJKVOmYNKkSfjll18wePBgmpZ89OjRGDBgAG7fvo0ZM2YgJCQEly9flqwfGBiIOnXqYMeOHejYsSO1AHXp0gUPHz7Ew4cPMX/+/Bzb0bNnT8yfPx+vvvoqRo4cicTERHz11VeSDH655eOPP8bWrVvRqVMnTJs2DZ6envj+++9p1r+ceOmll/DJJ59gxowZuHDhAkaMGIHKlSvDYDDg6NGjWLJkCQYOHIiuXbviueeeQ7du3TB58mSkpKSgdevWNBthw4YNMWTIkDwfR4kSJbBgwQIMHToUDx8+xIABAxAYGIj4+HicPn0a8fHxWLRoEQBg/vz5aNOmDZo3b44PP/wQVapUwYMHD7B161YsWbIE3t7eqFOnDgDgxx9/hLe3N9zd3REWFoaAgACX9zNjxgx0794dzz33HCZMmACr1YrZs2fDy8sLDx8+zPGYJk6ciJiYGEyfPh3Hjh3Dq6++itDQUCQnJ+Pff//Fjz/+iPDwcLRu3Rqvv/46vv/+ewwdOhQ3btxA3bp1cfDgQXzxxRfo0aMHdVFVqVQYPHgwfvrpJ1SuXBn169fHsWPHXMo+6Yy6deti37592LZtG0JCQuDt7Y3q1aujefPm6NWrF+rVq4eSJUsiJiYGq1evRsuWLV3KYMnhcDj5TiEn6OBwOJxnFpKN8Pjx43bzMjIyhPLlywtVq1YVLBaLIAiC8OWXXwoVK1YU9Hq9ULNmTWHp0qU0g5uc999/XwAgfP7555LpVatWFQAI0dHRLrXxp59+EqpXry7o9XqhUqVKwqxZs4Tly5fbZQ6sUKGC0LNnT7v127dvL7Rv314y7dChQ0KLFi0EvV4vBAcHCxMnThR+/PHHHLMRsuzfv18YMGCAEBISIuh0OsHHx0do2bKlMHfuXCElJYUul5GRIUyePFmoUKGCoNPphJCQEOGdd94RkpKSJNtz1H6SjXDDhg0O29GzZ0/B399f0Ol0QtmyZYWePXvaLX/+/HnhpZdeEgICAgQ3NzehfPnywrBhw4TMzEy6zDfffCOEhYUJGo3GLoOfq/vZunWrUK9ePbqPL7/80uE14ogtW7YIPXv2FEqXLi1otVqhZMmSQseOHYXFixcLRqORLpeYmCi8/fbbQkhIiKDVaoUKFSoIU6ZMkRyTIAhCcnKy8OabbwpBQUGCl5eX0Lt3b+HGjRsOsxHGx8dL1if3CXttnDp1SmjdurXg6ekpAKDX2Icffig0adJEKFmyJL1m33//fSEhIcHl4+dwOJz8RCUICn4YHA6Hw+FwOBwOh8N5LHjMFofD4XA4HA6Hw+EUAFxscTgcDofD4XA4HE4BwMUWh8PhcDgcDofD4RQAXGxxOBwOh8PhcDgcTgHAxRaHw+FwOBwOh8PhFABcbHE4HA6Hw+FwOBxOAcCLGruIzWbDvXv34O3tDZVKVdjN4XA4HA6Hw+FwOIWEIAhITU1FmTJloFY7tl9xseUi9+7dQ2hoaGE3g8PhcDgcDofD4RQRbt++jXLlyjmcz8WWi3h7ewPIOqE+Pj6F3BoOh8PhcDgcDodTWKSkpCA0NJRqBEdwseUixHXQx8eHiy0Oh8PhcDgcDoeTY3gRT5DB4XA4HA6Hw+FwOAUAF1scDofD4XA4HA6HUwBwscXhcDgcDofD4XA4BQCP2eJwOJynHEEQYLFYYLVaC7spHI4dGo0GWq2Wl1XhcDhPJVxscTgczlOMyWTC/fv3YTAYCrspHI5DPD09ERISAjc3t8JuCofD4eQrXGxxOBzOU4rNZsP169eh0WhQpkwZuLm5cesBp0ghCAJMJhPi4+Nx/fp1VK1a1WlxUA6HwylucLHF4XA4Tykmkwk2mw2hoaHw9PQs7OZwOIp4eHhAp9Ph5s2bMJlMcHd3L+wmcTicJ8ip2Fg0CA4u7GYUGHz4iMPhcJ5yuKWAU9Th1yiH82xyISEBDZcsgdFiKeymFBj86cbhcDgcDofD4XCeOJmiyDLbbIXckoKDiy0Oh8PhcDgcDofzxFGLccSmpzhbLhdbHA6Hw+FwOBwO54nDxRaHw+FwOE+YYcOGQaVSQaVSQavVonz58njnnXeQlJT0xNty5coVvPHGGyhXrhz0ej3CwsIwaNAgnDhx4om248aNG1CpVDh16tQT3S+Hw+EUJIIgAOBii8PhcDicJ0r37t1x//593LhxA8uWLcO2bdswevToJ9qGEydOoHHjxrh06RKWLFmC8+fPY/PmzahRowYmTJjwRNvC4XA4TyMkVosnyOBwOBwO5wmi1+sRHByMcuXKoWvXrhg4cCB27NhB51utVowYMQJhYWHw8PBA9erV8e2339L5Z86cgVqtRkJCAgAgKSkJarUaL730El1m1qxZaNmypeL+BUHAsGHDULVqVRw4cAA9e/ZE5cqV0aBBA0yfPh1btmyR7KtTp07w8PBAQEAARo4cibS0NDq/Q4cOeO+99yTb79evH4YNG0a/V6xYEV988QWGDx8Ob29vlC9fHj/++COdHxYWBgBo2LAhVCoVOnToAADYt28fmjVrBi8vL/j5+aF169a4efOmi2eZw+FwCheLKLa4ZYvD4XA4Tw1GoxEpKSn0LyMjAwCQkZEhmW40GgEA6enpkukmkwkAkJaWJpluEUcm2WkpKSmwPuZL9Nq1a4iIiIBOp6PTbDYbypUrh/Xr1+P8+fOYNm0aPvroI6xfvx4AUKdOHQQEBGD//v0AgH///RcBAQH4999/6Tb27duH9u3bK+7z1KlTOHfuHCZMmKCYltzPzw8AYDAY0L17d5QsWRLHjx/Hhg0bsGvXLowdOzbXxzlv3jw0adIE//33H0aPHo133nkHFy5cAAAcO3YMALBr1y7cv38fmzZtgsViQb9+/dC+fXtER0cjMjISI0eO5IWrORxOscEsvh+42OJwOBzOU8OsWbPg6+tL/8aNGwcAGDdunGT6rFmzAAD9+/eXTF+1ahUAoHnz5pLpu3fvBgCUK1dOMp0Ihtzw559/okSJEvDw8EDlypVx/vx5TJ48mc7X6XQIDw9H06ZNERYWhtdeew3Dhg2jYkulUqFdu3bYt28fgCxhNXToUNhsNpw/fx4WiwWHDx+mFiI5ly9fBgDUqFHDaTvXrl2LjIwMrFq1CnXq1EGnTp2wcOFCrF69Gg8ePMjVMffo0QOjR49GlSpVMHnyZJQqVYq2v3Tp0gCAgIAABAcHw9/fHykpKUhOTkavXr1QuXJl1KxZE0OHDkX58uVztV8Oh8MpLMzPgGVLW9gN4HA4HM6TZcqUKRg/fjz9TixGCxYswPz58+l0vV4PANi0aZPEOuXu7g4AOHr0KGxMbRRPT08AwJ07dyT78/LyynUbO3bsiEWLFsFgMGDZsmW4dOkSFYWExYsXY9myZbh58yYyMjJgMpnQoEEDOr9Dhw7UFW///v2YMWMGrl+/jv379yM5ORkZGRlo3bq14v5J0HZOVqKYmBjUr19fcoytW7eGzWbDxYsXERQU5PIx16tXj35WqVQIDg5GXFycw+X9/f0xbNgwdOvWDc899xy6dOmCl19+GSEhIS7vk8PhcAoT4kZofIrFFrdscTgczjOGXq+Hj48P/fPw8AAAeHh4SKYTseXl5SWZ7ubmBgAoUaKEZLpWmzV+x07z8fGBRqPJdRu9vLxQpUoV1KtXD9999x2MRiPCw8Pp/PXr1+P999/H8OHDsWPHDpw6dQpvvPEGdXEEssTWuXPncOXKFZw9exZt27ZF+/btsX//fuzbtw+NGzeGt7e34v6rVasGIEtMOUMQBIeCjExXq9VUvBHMZrPd8qybJFnflkOhzxUrViAyMhKtWrXCunXrUK1aNRw5csTpOhwOh1NU4G6EHA6Hw+EUAaZPn46vvvoK9+7dAwAcOHAArVq1wujRo9GwYUNUqVIFV69elaxD4rZmzpyJ+vXrw8fHRyK2HMVrAUCDBg1Qq1YtzJs3T1HwPHr0CABQq1YtnDp1Cunp6XTeoUOHoFarqWArXbo07t+/T+dbrVacPXs2V8dPBK5S/FvDhg0xZcoUHD58GHXq1MEvv/ySq21zOBxOYfEsuBFyscXhcDicIk+HDh1Qu3ZtfPHFFwCAKlWq4MSJE9i+fTsuXbqETz75BMePH5esQ+K21qxZQ2Oz6tWrB5PJhN27dzuM1yLrrlixApcuXUK7du3w999/49q1a4iOjsbnn3+Ovn37AgBee+01uLu7Y+jQoTh79iz27t2LcePGYciQIdSFsFOnTvjrr7/w119/4cKFCxg9ejQVa64SGBgIDw8PRERE4MGDB0hOTsb169cxZcoUREZG4ubNm9ixYwcuXbqEmjVr5mrbHA6HU1jwbIQcDofD4RQRxo8fj6VLl+L27dt4++230b9/fwwcOBDNmzdHYmKiYh2ujh07wmq1UmGlUqnQtm1bAECbNm2c7q9Zs2Y4ceIEKleujLfeegs1a9ZEnz59cO7cOXzzzTcAsuLUtm/fjocPH6Jp06YYMGAAOnfujIULF9LtDB8+HEOHDsXrr7+O9u3bIywsDB07dszVsWu1Wnz33XdYsmQJypQpg759+8LT0xMXLlzAiy++iGrVqmHkyJEYO3YsRo0alattczgcTn6SaDBg9F9/ubTss+BGqBLkjuQcRVJSUuDr64vk5GT4+PgUdnM4HA4nRzIzM3H9+nWEhYXRpBYcTlGEX6scztND1P37aL9yJVKnTMlx2TXR0RiyeTNW9euHIfXrP4HW5R+uagNu2eJwOBwOh8PhcDj5gsVmQ6ZYd9GVZYGn27LFxRYn39h/40ZhN4HD4XA4HA6HU4hYbDb6lxPPghshF1ucfCHdZEKHn3/GxYSEwm4Kh8PhcDgcDqeQsJLaWS5Yt3KTjVAVHo4/Llx4vMYVAlxscfIFcpPwAEAOh8PhcDicZxdi0XLFlTC3RY1Px8bmvWGFhLawG8B5OiBiS6fm+p3D4XA4HA7nWWR5VBTmHj4MwDUBlVs3QrWDIvJFmULtGc+aNQtNmzaFt7c3AgMD0a9fP1y8eNFuuZiYGPTp0we+vr7w9vZGixYtcOvWLTrfaDRi3LhxKFWqFLy8vNCnTx/cuXNHso2kpCQMGTIEvr6+8PX1xZAhQ3Jd54TjGHJDabjY4nA4HA6Hw3km+XjvXlxMTATgmmUrt0WNudjKJfv378eYMWNw5MgR7Ny5ExaLBV27dkV6ejpd5urVq2jTpg1q1KiBffv24fTp0/jkk08kqWHfe+89bN68Gb/99hsOHjyItLQ09OrVC1bmh3v11Vdx6tQpREREICIiAqdOncKQIUOe6PE+zRC/XKsLwZAcDofD4XA4nKcPD22205xLYusZsGwVqhthRESE5PuKFSsQGBiIkydPol27dgCAqVOnokePHpgzZw5drlKlSvRzcnIyli9fjtWrV6NLly4AgDVr1iA0NBS7du1Ct27dEBMTg4iICBw5cgTNmzcHACxduhQtW7bExYsXUb169YI+1KceYtmy8rJtHA6Hw+FwOM8knjod/ZyrmC0XU8UXR7FVpHy+kpOTAQD+/v4AAJvNhr/++gvVqlVDt27dEBgYiObNm+OPP/6g65w8eRJmsxldu3al08qUKYM6dergsOgzGhkZCV9fXyq0AKBFixbw9fWly8gxGo1ISUmR/HEcQ24oGxdbHA6Hw+FwOM8kHozYckVAGV20bAli/7I4hqsUmRYLgoDx48ejTZs2qFOnDgAgLi4OaWlp+PLLL9G9e3fs2LEDL7zwAvr374/9+/cDAGJjY+Hm5oaSJUtKthcUFIRYMWNJbGwsAgMD7fYZGBhIl5Eza9YsGt/l6+uL0NDQ/Dzcpw7uRsjhcDj5w8qVK+Hn51fYzeBwOBw75hw65FQY5daN8GFGBgDghxMncIjJx8CSYTYj3WwGwC1bj8XYsWMRHR2NX3/9lU6ziR33vn374v3330eDBg3w4YcfolevXli8eLHT7QmCABXzg6gUfhz5MixTpkxBcnIy/bt9+3ZeDuuZgbsRcjic/CQ2Nhbjxo1DpUqVoNfrERoait69e2P37t2F3TRFCkMg7d27Fz169EBAQAA8PT1Rq1YtTJgwAXfv3n2i7eDikMN5NhAEAZN37cIRWRI6Fo9cuhHGGwwo5ekJAPj59GnFZWr/8ANq//ADAC628sy4ceOwdetW7N27F+XKlaPTS5UqBa1Wi1q1akmWr1mzJs1GGBwcDJPJhKSkJMkycXFxCAoKoss8ePDAbr/x8fF0GTl6vR4+Pj6SP45juGWLw+HkFzdu3EDjxo2xZ88ezJkzB2fOnEFERAQ6duyIMWPG5Hm7ZnFk1NXpRZklS5agS5cuCA4Oxu+//47z589j8eLFSE5Oxrx58wq7eRwO5ymEDKgLTgbWcxuzlWAwoIy3N4Ds+C051x89wi0x1IiLrVwiCALGjh2LTZs2Yc+ePQgLC5PMd3NzQ9OmTe3SwV+6dAkVKlQAADRu3Bg6nQ47d+6k8+/fv4+zZ8+iVatWAICWLVsiOTkZx44do8scPXoUycnJdBnO40EsWzxmi8PhPC6jR4+GSqXCsWPHMGDAAFSrVg21a9fG+PHjceTIEbrcrVu30LdvX5QoUQI+Pj54+eWXJQNrn376KRo0aICffvqJWsiIR8PixYvRt29feHl5YebMmQCAbdu2oXHjxnB3d0elSpUQHh4OC9NZePToEUaOHImgoCC4u7ujTp06+PPPP7Fv3z688cYbSE5OhkqlgkqlwqeffgoAMJlMmDRpEsqWLQsvLy80b94c+/btkxzvypUrUb58eXh6euKFF15Aopg22RF37tzBu+++i3fffRc//fQTOnTogIoVK6Jdu3ZYtmwZpk2bRpf9/fffUbt2bej1elSsWNFOiKlUKkkcNAD4+flh5cqVALKEr0qlwqZNm9CxY0d4enqifv36iIyMBACnx/7DDz+gatWqcHd3R1BQEAYMGOD0uDgcTtGGiCFnPT1X3Qhf3rABsw4cQILBgLKi2HLFO6o4iq1CzUY4ZswY/PLLL9iyZQu8vb1p/JSvry88PDwAABMnTsTAgQPRrl07dOzYEREREdi2bRt9Wfn6+mLEiBGYMGECAgIC4O/vjw8++AB169al2Qlr1qyJ7t2746233sKSJUsAACNHjkSvXr14JsJ84FRsLO6lpgLgboQcTlFHEASkmkxPfL/ebm4O3bZZHj58iIiICHz++efw8vKym0/c1QRBQL9+/eDl5YX9+/fDYrFg9OjRGDhwoETMXLlyBevXr8fvv/8OjUZDp0+fPh2zZs3C119/DY1Gg+3bt2Pw4MH47rvv0LZtW1y9ehUjR46ky9psNjz//PNITU3FmjVrULlyZZw/fx4ajQatWrXCN998g2nTptHBwRIlSgAA3njjDdy4cQO//fYbypQpg82bN6N79+44c+YMqlatiqNHj2L48OH44osv0L9/f0RERGD69OlOz9GGDRuoiFOCnKOTJ0/i5ZdfxqeffoqBAwfi8OHDGD16NAICAjBs2LAcfwuWqVOn4quvvkLVqlUxdepUDBo0CFeuXHF47CdOnMC7776L1atXo1WrVnj48CEOHDiQq31yOJyiBRVbTvp6rNhyVtR4w/nz2HD+PAI8PNBazIvgincUF1u5ZNGiRQCADh06SKavWLGCvgheeOEFLF68GLNmzcK7776L6tWr4/fff0ebNm3o8l9//TW0Wi1efvllZGRkoHPnzli5cqXkxbp27Vq8++67NGthnz59sHDhwoI9wGeEhqKABbgbIYdT1Ek1meD75ZdPfL/JH34IH70+x+WuXLkCQRBQo0YNp8vt2rUL0dHRuH79Ok1gtHr1atSuXRvHjx9H06ZNAWRZllavXo3SpUtL1n/11VcxfPhw+n3IkCH48MMPMXToUABZJUZmzJiBSZMmYfr06di1axeOHTuGmJgYVKtWjS5D8PX1hUqlQnBwMJ129epV/Prrr7hz5w7KlCkDAPjggw8QERGBFStW4IsvvsC3336Lbt264cMPPwQAVKtWDYcPH7YrjcJy+fJl+Pj4ICQkxOk5mj9/Pjp37oxPPvmEbvv8+fOYO3dursXWBx98gJ49ewIAwsPDUbt2bVy5cgU1atRQPPZbt27By8sLvXr1gre3NypUqICGDRvmap8cTnGkbt26WLlyJRo3blzYTcl3XLFsuTF9b1fcCBMzMlCjVCkAT++AfaGKLWfKmGX48OGSl6Icd3d3LFiwAAsWLHC4jL+/P9asWZPrNj4tpKamon///lizZo3DOLX8wJUbJfL2bdQqXRq+TGFqDofzZPB2c0Oy2LF/0vt1BfJeyMkKFhMTg9DQUEmm2Fq1asHPzw8xMTFUbFWoUMFOaAFAkyZNJN9PnjyJ48eP4/PPP6fTrFYrMjMzYTAYcOrUKZQrV44KLVeIioqCIAh26xiNRgQEBNDjeOGFFyTzW7Zs6VRsOUvuxBITE4O+fftKprVu3RrffPMNrFarZEAyJ+rVq0c/E5EXFxfnUBQ/99xzqFChAipVqoTu3buje/fueOGFF+ApBsJzOE8rV69eRYaYYe9pg4gtZyEjrOXpelISZuzfj4/atnWYsr2qvz+8xDgvRzFbLMVxUL9QxRbnybF27Vrs2rWLvqS/++47jBs3Lt/348pN0OqnnzC8QQMsl3UCOBxOwaNSqVyyMBUWVatWhUqlQkxMDPr16+dwOUeCQz5dyRVRabrNZkN4eDj69+9vt6y7uzt1bc8NNpsNGo0GJ0+etBM2xM3Q1UFHlmrVqiE5ORn37993at1SOkfy/alUKrtpSglDdEzQO9mmzcnz3tvbG1FRUdi3bx927NiBadOm4dNPP8Xx48d55kLOU01GRkaxTLrjClYX3AhZITZHrGU7umlTBMgGWrzd3JBqMqGCnx8VWa70IV0RZEWNIpGNkFPwHDx4ENOmTaNuHjt27CiQ/biaIKMwYkY4HE7Rx9/fH926dcP333+P9PR0u/mPHj0CkGXFunXrlqQsx/nz55GcnIyaNWvmer+NGjXCxYsXUaVKFbs/tVqNevXq4c6dO7h06ZLi+m5ubrDK4hMaNmwIq9WKuLg4u22SZ3GtWrUkST8A2H2XM2DAALi5uWHOnDmK89lzdPDgQcm8w4cPo1q1alT8lS5dGvfv36fzL1++DIPB4HT/cpSOHQC0Wi26dOmCOXPmIDo6Gjdu3MCePXtytW0OpziycePGwm5CgeCS5UmhH2iWrfff/fu0H6hTq+k6zmK8nG2/qMMtW88I169fx6+//opOnTohLCwMffr0cbr81osXse7cOaxVGOV1hqs3Ac9ayOFwHPHDDz+gVatWaNasGT777DPUq1cPFosFO3fuxKJFixATE4MuXbqgXr16eO211/DNN9/QBBnt27e3cxF0hWnTpqFXr14IDQ3FSy+9BLVajejoaJw5cwYzZ85E+/bt0a5dO7z44ouYP38+qlSpggsXLkClUqF79+6oWLEi0tLSsHv3btSvXx+enp6oVq0aXnvtNbz++uuYN28eGjZsiISEBOzZswd169ZFjx498O6776JVq1aYM2cO+vXrhx07djh1IQSA0NBQfP311xg7dixSUlLw+uuvo2LFirhz5w5WrVqFEiVKYN68eZgwYQKaNm2KGTNmYODAgYiMjMTChQvxg1ivBgA6deqEhQsXokWLFrDZbJg8ebLEiuUKSse+Z88eXLt2De3atUPJkiXx999/w2az8aRUnGeC3N5DRZ3Dt2/DYrOhgq8vAODHqCg8V7my4rJK1imzTEQ1+vFH+lmrVtP5bLHkkHnzcGrUKASJXgAEbtniFFkOHTqERo0aISEhAdeuXcNbb73ldPmFx47hlzNncr0fV31pudTicDiOCAsLQ1RUFDp27IgJEyagTp06eO6557B7926aWImkLC9ZsiTatWuHLl26oFKlSli3bl2e9tmtWzf8+eef2LlzJ5o2bYoWLVpg/vz5tMwIkJVGvWnTphg0aBBq1aqFSZMmUYtOq1at8Pbbb2PgwIEoXbo0tTqtWLECr7/+OiZMmIDq1aujT58+OHr0KI01a9GiBZYtW4YFCxagQYMG2LFjBz7++OMc2zt69Gjs2LEDd+/exQsvvIAaNWrgzTffhI+PDz744AMAWda69evX47fffkOdOnUwbdo0fPbZZ5LkGPPmzUNoaCjatWuHV199FR988EGu46qUjt3Pzw+bNm1Cp06dULNmTSxevBi//vorateunattczjFjQkTJjh1sS2OtP7pJ7RfuZIKnY3nzztcVunITU4sVjqNhm6XiC5BEBCbloYzcXF2y/OYLc4T4cS9exAEAU3LlnV5nX379kGlUiEpKQl+fn4YN24cZsyY4XB5uW+tq3DLFofDyQ9CQkKwcOFCp1ljy5cvjy1btjic/+mnn9KaTyyO4g26deuGbt26Odyev78/fvrpJ4fzFy1aRMUgQafTITw8HOHh4Q7XU0oCNWHCBIfLE7p06UJLnDjixRdfxIsvvuhwfpkyZbB9+3bJNOKGCGRZreTny8/Pz26a0rHL64lxOE87jx49wrx583Kd7bO4wPbxrDabYtILRcuWbJpapaL9QJ1ajQ4VKwLItlqR/0ppgLhli/NE+PXMGayJjnZp2bS0NNSqVQsdO3aE2WzG7du3kZycjL179zpdLyAPweCA6yLK6EI6UA6Hw+FwOJziQqpYc3T58uWF3JL8hdTOYoWOI2uVYsyWbFk2Y6FWrUbL0FCsHzCAbp/EbinV1CqOMVtcbBVDNEwwYU6kpaUhJiYGAPD9999j/vz5ALJqzzjLJkPEVsSVK7lqm6vm3X+uXMHBW7dytW0Oh8PhcDicogpJ+f7XX38VckvyF5LB1iWxpdAPlC+rYUSUTkzWw7oTmpyJLW7Z4jwJNCqVyxcbm82rVatW+Oeff9CxY0dcvXoVer3eoV+xn1gD6/m1a5GWi8yBuRlxOKfgi8vhcDgcDodTHMnIyIBarUafPn3w8OHDwm5OrnDmmZQbsSXfjkalUnQjlKNVq+3Elrx0xcu1a3M3Qs6TITeWLSK2YmNjMWbMGERGRuKnn37CyJEjYTab8fXXXyuux17gd1NSXNqXTq3O1YhD+lNah4LD4XA4HM6zR2hoKH7//Xf4+vrizp07hd0cl4m4cgWazz5zON9XHIBn+3iO0rTL+6ch3t5O3QgJSmJLTkl3d+5GyHkyaHMhasqXL4+///4bQUFBMJvNmDRpEv744w/0FQsKf/zxx4iPj7dbjx2ZuO2i2PLW63OV+CKd19ricJ4IeSmcy+E8Sfg1ynka8Pf3R79+/VCmTBncu3evsJvjMjEK/UAWYtliRZCrboTuWq2dZUspsYaS2CLf3URXQy+djlu2OE8GjUoFi5MX09SpU1GvXj0AWVmjnn/+eQCAuzgycfr0abRt2xY1atRA69atMWbMGLttSMRWcrJL7fLR63M14sAtWxxOwUJqveS2SC2H86Qh1+jTVp+I82yxa9cudO/eHa1bty7spuQKEjflCCK2EsWYNMBxojN5P1CnVtsJM1ctW8QiFlKiBP4dNizLs6sYii2e+r0YktPFFhcXhzNijay///4b8+fPx65du6jYMpvN8PDwwM6dO3Hjxg38/fffdttgxdajzEyX2uWj1+fOjZBbtjicAkWj0cDPzw9xYnykp6ennQ88h1OYCIIAg8GAuLg4+Pn5QZNDp4/DyS1roqPxat26ih38/CYpKQmPHj3KsTB5QXIrORk3Hz1CW6ZGYE7oREuTo3TuJBthPJMHwJWYrUtjx2LAhg15diM022zIMJthttmg02igUamw8PhxzOjUieYWKA5wsVUM0ahUTi1IXbp0wblz5wBk1XzIFMXSe++9h3379sHDwwNpaWnw8vJCmzZt0KZNG7ttsDeL3PzrCN9cWrYM3LLF4RQ4wcHBAEAFF4dTFPHz86PXKoeTX5itVgzZvBk1S5VC4zJlCnx/GRkZ8PDwwLFjx5CQkIAePXoU+D7lfHf0KOZFRiLlww/hLVqkcoJYtgxms+I6pE/45rZtdJrJakXzZcvg7+GBf157jU4ng+46tRpVAwLgptHkOUHG0qgo9P71V5T29ISWsZAVN1dCLraKITlZtiIiIhAZGQkgK0GGl5cXAKB06dL49ddfER8fj2XLlmHEiBGYPXs2Nm3ahMmTJ0u2wW5fPiLhCHetNlcxW6ZidrNwOMURlUqFkJAQBAYGwswHODhFEJ1Oxy1anAKBDADnpm+SV5KTk/HgwQN4eHggMjIS+/btKxSxRVz+0kwml8TWiv/+w3yxz+hIbCkNpButVhy7e1dx2bcbN8a7zZsDyBJd8n6kJgexRVwUyfYtNht0ajVSjEYAKFZWLYCLrWKJNodshOXKlcObb74JQCq25s+fj0OHDmHlypVo2LAhfHx8cO/ePSxZssRObOXFsqXORUp6gAdEczhPEo1Gwzu0HA7nmYL0SZ5Eb6NXr1548OABtmzZgrNnzz52goy/L19Gt8qVFd36nEH6b656Gp2Ji8M5MUGGo1h6V2pnscu2KFcONUuXBpBlNctrzBbxgCJuhCli+Ik2l+eksClereUAEBNkOBE1iYmJWLZsGQDgtddew1dffQUAUKvV2LZtGzZu3IjOnTvDx8cHer0eRnGkgIUVW45uKLt25SIlPaAs4m4+egRVePgTGYXicDgcDofz9EL6JE9icLdDhw5o164datSogZCQkMcSW2kmE3r+8gsO3LqV63WJMLLabNh59WqOIRspTB/Q0bJKfTK2b7gmOhrviXFqNkGQiCk3jQaRd+5g0s6ddFquxZbVKrFsFTe42CqG5ORGmJSUBACwWq3w9vZGBTFIkoxqp6Sk4KuvvoJGo3FJbDlzI2QfYPJiy6rwcMw+eJB+TzeZcOPRI/pdScTdS00FUPz8cTkcDofD4RQtnmTmun379mH58uV45513EBYWhi5duuR5W6djYwHkTSSSgWyrIKDrmjUYsnmz0+VZAeMocZmiGyGTjXDizp349uhRuixrjdOp1Yh+8AB7rl+n0xylfjfblFO/U8sWF1ucJwVJkJGcnIwLFy7YzX/nnXcAAGlpaXjvvfcwbdq0rPVEsaUX/XGnTp2K4OBg6nLI4qobYcMlS7LbpVbbjX6wozIlZs1C2Lff0u9KYotkSnM1TozD4XA4HA5HCcsTdCM8KA4uu7u7o2zZslixYkWet3X54UMArmeDZiHHTPpjp0Th5ggly9a8w4ehCg+n68pFa7OyZSV9OLbvZ7XZJDFZOo0G6WazxGqmlBfSWVFjmyAg0MuLiy3Ok4NYtub88Qc6zJxpN5/Ud0hLS0NKSgp8fHwAAKNGjUKzZs3g4eEBAIiNjUVISAgSEhLsRmBcdSM8/eABAOC/UaOyYrZykyBDSWy5sE8Oh8PhcDicnHiSCTJefPFFAICHhwdSUlIwbtw4WBzUosoJ0gdKyoPYIoPVNF4th2NPZaxZJGZrY0wMgOwBdXnfzl2rhdGR2FKwbBnMZmTkcC6cia1Snp7w1OkwtW1bjGzUyOl2iiJcbBVDSIKMhRcu4EHVqnbziSVLq9VKxFZmZibWrFmDoUOHAgD+/PNPJCUlYfny5Th9+rRkGzZBQL8aNfBGgwYuWZnUKhUEQcCWixcV5yvd7EoF8ahli7sRcjgcDofDeQxcFRyPw0PRCkXKa3h4eMBsNmPhwoWKYRquQPpdSpatG2Jsu6NjsjBuhEDOQpO1FhGRI9+2TRAk1io3WdIL1vKlFLOVbjJJLFtKbdKJ3lE2QbATW6FiP/aVOnWwpHdvp8dTFOFiqxhCEmSQugjymzkhIQEff/wxgoKCJGJr3bp16NmzJ9LFonRVq1aFTbxB6tevL9mGVRBQztsbYX5+LgkfjUqF7VevYt+NG5KbiIinTAVhxd5M3x87hr2MPy93I+RwOBwOh/M4FLRl6+zZswgICAAAeHt7AwD+97//0XANk4MYqJwggklJbMWmpQGAQ0uRWeZGmNORs2LLUby8lelzAlmWrQwH4skVN0Kl30PLFFaWH1sZ8dwWV7jYKoYQN0Jy4ScmJgIALV5ssVgwa9Ys/P3331i6dCk1bWs0Gly+fBkREREIDQ1FQEAAfSAcOnRIsg8yMuGm0eDn06dz9PlVq1TUBTDBYLCbr/RQYMXW2H/+wdA//qCjKdyyxeFwOBwO53FgEywUBAkJCQCyLEHTp08HkOVVRPpWebVskXYnZWTYzfPQZlVtchS/RNatv3gxbZsz2O2QgW75GlZBkKRb99LpJGnic3IjJJYtwYkAJNu32GyIE40CBHfxmHfs2EHPeXGCi61iCEmQoRIv2jJlyiAqKgoeHh64du0aLBYLrFYrevbsiRo1alDrFUmQoVarcfv2bZQoUQLuYmG4Fi1aSFwJidgigu4Cc3ETE7akTWo1FVT3xYyCLBkK6URNVituJSfTm1ujkImGw+FwOBwOJy8Q97aCynAcFhaGmjVrAgCWiPFNZ8+ehVarxaRJk2gfK7eQvhAraBINBqz47z/6PdlBPJc8QYYjqXXz0SM0XbpU0bIlF2hWm81ebDFWOzbuS27ZctNoYLbZJO6BPgqFk1mxJe9HEvH21ltvIUaMJytOcLFVDNGo1Thy5w7ui0IoKSkJjRs3BgDcu3cPH3/8MTw9PQEAL7zwAtTiRerm5pa1vkYDQRDQpEkTaMXRgn379mH06NF0HzZxZEInrvuQGV25oDCqoFap6I19XzRxA9kJLxxZtip88w2+OHAgq11M/TDuRsjhcDgcDudxIG6EBSW2QkNDqWfQ2bNnMXbsWDRv3hwqlQqzZ8+Gn59fnrZL2su63oXv34/hW7fSeY4sW3IrniPL1sXERJy4dw82QYCehKVYrVgeFWUn0GyCQPuDp99+G15ubg4LIMtjtnSMSCPHE+jlhWVi7FXNUqUAyMQW048EQMXbrVu3cOnSJcX9FmW42CqGyCtnX7lyhX5u0qQJqlatiqpi4ozXXnuNjqy89tpr6NixIzVvyxk/fjz9zLoRAlKxRUdLZDW2CHLzL6BcKI+McMSLbodatZqKLO5GyOFwOBwO53EoaMvW5cuX4e/vj/T0dJjNZjz33HN03uDBg3Hjxo08bZf0hdiBatK3MucgtuTH6siyRdwRAaCcGNt/5eFDvLltG07ICjJbBYF6OtULCrKzbBF+PnUKiRkZUjdCJtaL9AWtNhs8dTo8mjwZH7RqBSC7b1vx229xPy0NgV5edD1WvN2/f9/BERVduNgqhmhklbczMzPxySef4OLFizCbzRgwYACSkpIQFRWFF154gS734MEDzJ49G7169ZKsX6tWLQDAkSNH6DQitrQKli1BIeBUrVLRAMaN589j3uHDALITZDhyIwSyb3iNk7SfHA6Hw+FwOLnBUsBii2QitFgsMJlM1IMIyIovIjH1ucVis8FNo5EMVBOxRY4l2ZFlS9Z/yilrIQCUFoWN0mA5oOBG6MCyNWzLFsSlp0sTZChYtkhcl6+7OxVSZPspRiMeZmSglOihBUiLIHsy04sLXGwVQ+SVtw2Zmejbty+qV68OX19fmM1mTJw4ERqNBqmM3+v+/fvRrFkzmp6U8McffwAAzpw5AyDrxrTabFAzbn2JrNgS/7M3qkatxuVx49ClUiUcvXsXR+/eBeDYjfCX/v3pjeqh02VtQ6WiIzbcjbB4IQgCfjlzpkDT6xZH3v7zT/zvn38KuxkcDofzTELcCAuqT0EGlC0WC0aMGIEqVarQeW5ubnlP/W6zwdvNTTJQTS1b4rGkGI1IMBjQYtkyybquWrbY2ll+ogeUQ7GVQ4IMOWw/1c2BZUstMxyw39NMJngzwpXMa9KkCcLCwhzut6jCxVYxRG7Zik9KQpMmTQBkdXpTUlIwb9481K9fH8ePH89eT7zgT5w4IVnf398fAGAVb2C/2bOx+ORJqFUqamEilq2jd+5gWVRU1vIyy5anTocSbm5Iysiwu9nlboQV/fyoCVzJssXdCIsXlx8+xGubNuWp2v3TzJKTJ/HdsWOF3QwOh8N5JiloN0IitqxWK95//32J2NLr9Y+VjdBHr1dMlz593z4AQLrJhOPM4DZB3n9ylPaePSe1S5cGADxwILZsgoCQEiXody83N0U3QoJalvqdILFsyfqyKpnYKsGILbJsRkYGgoODHe63qMLFVjFEbtkqJ1P5Dx8+pH7COtFqBGSLLQ1z4QNAQEAA1q9fj5SUFADZfsBqxtJExNbgzZtp4WKJZUu8EXRiRkGyniM3QnfGV5jdBo3Z4patYkVB1TDhcDgcTvHkbkoK5srKyjxpCjpBRkhICMaMGYPAwEAMHjwYly9fpvPCw8Ml4is3mK1WKrZGbNmCMw8eUMvSgVu3AGQdG+ljse9gV4+VXe6rrl0xqE4dWsNLjtVmw6TWrRH99tsAsixb269edbht1gqm6EZos9n1ZVkMZrOd2BIEAefOnUNoaGgOR1b04GKrGCIfDYhkLFV6vR4//PADeotZXlix5evrCwA0OyFLtWrV0KVLF8m0hPh4O8sWWyWc/UxGMYi5WC6W5G6EHky70sTRER6zVfxRya5NjvRFw+EUFyw2G64lJRV2MziFhMVmU6yZmRuiHzzAj6InTGFR0Jat8uXLY9SoUTCZTPjnn3+QzliGBg8enGdhQCxb99PSsOLUKZyPj7dLjsb+RuzxuRqzRc4N8S7SaTRO3QjdtVrUDQoCAGQ6KKhMYIWSohuhgmULAAwffaS4DbVKBbO47sGDB53uuyjCewHFEPkNt4+58AYMGACdTocSornXw8ODzuvYsSN69epFq5yz1K9fH59//rlk2qIffrAXWw5GT8gIBTEXy83YcsvWv3v20M9JouuZlqmzxd0IOU8L7AuDwykuzDt8GJW/+66wm8EpJGbs34/Sc+c+1jasggBjDp3ygqagQxMuXbqEevXq4c6dO3YJMt544w3s2LEjT9s122zwdXdHitEIAVmD0kpia8jmzVnLMwJLLizlnifpJhMuJCTAYrOhWdmyMEydCgDQMnH6cuS1s/rVqCGZ30Dm2se+91g3QjLw7siypWe8nuRiyyQOzMfGxiq2sSjDxVYxRH6Blg8Lw59//glBELBmzRqMHz8e7u7uOHDgABo2bEiXu3v3Lt544w20aNHCbpt37tzB+++/L50oCKgTGAggS2wJgiC5EeUxW0D2KD658cmtKY/ZuswUpSNCjk3Iwd0Iixe0Kjx3J7TDi4stTjFEXueG82xxRwwreBysNluOFpCCpqDdCEnCMaVshFevXkV8fHyetkssW4RUBbHF9qtYMWlXZ0u27f9FRKDm99/DIhNQ8u2zyGtnBXh6okmZMvR7tYAAyfJejPeSw2yE4vbS09OxePFiCLJ9sGLrQkwMfvnll6x2KoShFHW42CqGyE2vJfz80LNnTwDAggUL8N9//+H5559HYmKiJBvh+fPn8eKLLyrWKEhJScHSpUsl00KCgtC/Zk0kTJwIi82GNJNJ4jroKGYLsDcxy90Ir164QD+nMz68vM5W8YZLLXvklq1EgwFXxHTBTzvnZJlPORxO8SA/LPJWQSh8sZUHN0KrzeZyHDJJLGaxWPDdd98hUBygBgB3d3dk5jFplNlmg4/4G1Tx90eq0Wg30M4mqHBm2ZIPgt4V+4XyDIPOxBZJ1c6iZyxW3rLrxZEb4farVxETHy+xbMXFxeGdd96BTdbuy+fO0c8HDxzAJ598gu7du0sEbXGBi61iiPyCPxMTg6FDhwIA1q1bB4PBgJUrV6Jfv34SYUUSY1xVCGp0d3e3y5pTsmTJrP8eHlCrVIg3GKSWLScxW0RcpZlMSDAY7OtsMQ8G8sAwWq1OY7Z+OXMGqvBwu+mcogNPlGEPO8IHAN3XrkXVBQsKqTVPDqPFgjqLFuFCQkJhN4XD4eSSfBFbxdSyVXruXAzcuNGlZYlAEAQBo0aNgo9YHBgAfHx8aOKx3GKx2VDOxwdjmjZFl7AwpCpk/kt3ZNmSx2wpbJv81yiILSXRJXcjBKQuf6wVDpAmQWPdCH87exa1fvgBV5OS6PaIUeDRo0eSbWxlfgNTZibi4uJw+/ZttG7d2q59RR0utooh8gu+Zt26tLAeicdKEDs4rmQjBLISa1gsFjpKAwDJ4oWvVqlQxd8fF2WdJmcxW0Rc7bx2DaXnzrVzI+zfty/9TOYZLRb6wJgfGWnXxuOy9KacosfTLrbSTSYk53Kk0lMmtq4/I0kHSCdLfu9zigfcJfjZhoitx0lWZRUEmHNhJSoI8lLUOCkzE9uvXHFp2YSEBHz77bcoVaoUGjRoILHOfPjhhzRZmZwzDx44PS9mqxUl3NywsEcP+Lm7I9VotI+9YsVWLixbZNnfY2IULVvyAUJA2bLFCiq5ZYtNlkU8nuR1tcj2SNI2uzT5rMAUj+HChQuoXbu2XfuKOlxsFUPkow77Dx6Eu1iQztvbG5/OmYOO/fsDkIotUk9LKRuhn58fpk6dKrkp796+TT/XCQzE2bg4yQiJRcGy5cyNsCyTmKNunTr0M3lgpJlM+O7oUQDAmbg4fHX4sCS4VqcgEjlFA3JdPO1iq82KFS4HjRPLr5vsujU+I/GIctdhDodTfCBiK7eDSwT/2bNxT7RYFGaSDPIcLog4cLPZjJdffhmlSpXC1atXcfXqVUn/qkmTJg5Tv9dbvBi/nT3rcNsWm4329bz1eqTKwjgAmRuhgxAPwP69TOZvvXhRUhuT9LGU4ozlMVuA1I2QFEVWgmxXbv0ihgOS0M1ObDG/WRMvL3GSFatXr3a4r6IKF1vFEDs3wvPnoRcv4t69e2NFZiZmizcQm42wbt26eO2116Dy9LS7Gb28vDBz5kxp4CFzg1bw9cXtlBTJKDWbIEPjwI2QkGAwIIQRWwcOHKCfDYzYupmcTKdP3LkT+2/epN95Cu2iCxHpT7vYOhUb63I8IRFVWrUagiDQl31hZ+d6UpABl4IKTOdwOAUH6SCn5LIo7+/nz0MVHo6kzExEP3gAIOc04QVJXhNkuPImM4hp11977TUcOXJE4kIIAPPnz8eYMWMcru/s3FpsNvobeLu5ZYktFyxbNkHIMWW/Urw9kINlKwc3Qk+dDr+9+KLi/ki/kC2KDGT3ZStWrIhSpUrR1O7ZO806ppMjR2Lxxx/jpZdeAgA8EK+r4gTvvRZD5Bd8w6ZNMVVM3TlkyBDcE10K//33XwQwGWJU4eEoVb8+mm/ahBn790u2YbPZ0KNHDyQmJmZPFATaidap1TBZrZKHpqJlS+ZGSLiXmoogcWQCAGKYbITXkpKgU6tRXqwDBgClPT2z2sU8XLhlq+jDXY+yMTFi68uDB+E2c2aW6HpGxAd5VhR2zAaHw8k9xIqSW7EVxcSJk7dBoYqtAqyzxdbUevjwoZ3YUqvVignJCM6qUpoZy1YJNzekGo0uWbYuJiTYuX7K38qsaGM/s/tjSTAYckyQUcHPz+GxkIFyto8HZPcbb968iUmTJqFatWqS+X7i+dSq1Vi7di02bNgAICsZSXGDi61iCHvBBwoCSvj5oWbNmgCATZs2wSym7I2KirIbKfj2t98AAFdkcSNqtRrbt2+XZC9UAbSugVatlpibAWmCDJXMjVBu2XqQno4dmzbR73fF+KtgcaTDLAvUJNYuidiSpZXPb86dO4e//vqrQLb9tPOsuBHmBmLB0qrVtLPxLBWJJQMudslxOMUCfic/25BOeG4Hh9hYHfI+KEzX6bzEbLkK27+qV68elixZIpnv6+uL+/fvQ6VS4fr163brq1SO5ZbFZqN9Hm+9Hmkmk0sxWyfv30fDkBDJcmS9NdHRMJjNkj6UTUFsyd0Iu65erWjZImIpwMMDXSpVotPTpkyRLEe2W1lMukbQyMSWPEHGI9FwoFWr8fXXX9Pp1mLois/FVjGEXLg9KlRAxZIl8d+ZM/jwww8BAFeuXAHEkaj33ntPkimHxd1BkgzWZ7ZZ06bUPVGjILaUTNVK1ic3sSq5+d49Oo20h7112c/kISIoWLY+3LXLbh/5Qf/+/dGrV68C2fbTju0ZcSPMDWR0UaNW04GEZ6l2EbdscTjFFzKYmttnOvseJ+sWBTfCvHoUhMybh1HbtinOq1ChAv0cGhqKdu3aSeb7+flRy5ZJIZugPAaKxWy1ZsdsOXAjTFOwbJ2Pj0ft0qUlyxnMZpyOjcWQzZux+vRph1mlyf48RPfA+V27AgBOP3igaNkig+J3x4/PcpcXp8vFGvn95bW4SJ+OiNaz8hg2xjuE4O/vj5dffhnFjUIVW7NmzULTpk3h7e2NwMBA9OvXDxcvXnS4/KhRo6BSqfDNN99IphuNRowbNw6lSpWCl5cX+vTpgzt37kiWSUpKwpAhQ+Dr6wtfX18MGTLETkUXF8iFp9frUS4kBHUbNIBRq80qCKdWU7EFZCfIoGZlMYhRLysKZzCb4ebhIakJcfXKFfpdq1Yj2WiUZFbrtmaNXdvkyQCALOvVo8xMID0dX7RvDwD43//+Z7ccKf43T7zBAWXL1vwjR+zWzQ/s/IWLGaGhoRg0aNAT3+/8yEjUX7wYABdbLEbGh568bO4zluOnHXLMPFEGh1P8IB17uetaTrDWGoERW98cOYL/nLjUFRR5dSMkbY9NS0OErFxOVFQUjh49ivj4eIwePRrr169HVFQULcFD6NixI1atWgVAOQu0MzdCScyWXk/dCP969VW6jFKdrZiEBNQsVcpue41//BFAlsBhz4WSZYu8u4iFzCYIigkyiNiT9yflJIt9UrmrIUmqQfpedgkyxHayYuvhw4eoWrWq0/0VRQpVbO3fvx9jxozBkSNHsHPnTlgsFnTt2lXiB0v4448/cPToUZRhKlYT3nvvPWzevBm//fYbDh48iLS0NPTq1Utianz11Vdx6tQpREREICIiAqdOncKQIUMK9PgKCiI6IiMjkRQfj8hjx/CNTodVp08jODgYgeSCVqtpZhya2EKMm5KnYy45ezYqTZ4sOb8J8fFUtBI3Qja9p1K3WimJBYm/gtmMS6KYDpCNcADZYoutSv4k3Q+URp6KE3fu3JHEwj0pdl67Rj9zqZWNSUlsPUOWLSKyuBshh1P8yA/L1l+XLwPIElvvb9+OcFms+JMgpwQZaSYTTeSRyNQSZY/aXSYmGjdujBYtWiAwMBB/7diBlQ8e4OTJk3aZnn19fVFKFD5KWaCduREaHVi22D6WUp2tBIMBgUx8vPwYdGq1xMqnNKBN+ods7JaSG2G67NneKSwM3RWyLzYrWxZlvb3hzyRsA4CSotgqW7Zs1jE7EVvjx4+nk2fOnGm3j6JOoYqtiIgIDBs2DLVr10b9+vWxYsUK3Lp1CydPnpQsd/fuXYwdOxZr166VpDIHgOTkZCxfvhzz5s1Dly5d0LBhQ6xZswZnzpzBLtHdLCYmBhEREVi2bBlatmyJli1bYunSpfjzzz+dWtKKKtRVT6WC0WAAxJtozZkzaNKkCRqI8VtgUnGSm6JSkyYAsupIsJisVlwwm1GaNT8LAr34NSoVHmVmKqYEVWwbA0n3WaViRaxcsQIAsFEsVsc+0Kxi5yxZ9NMFpB21gk4sUEKWKScnLDYb+v32W5Fxk3rxxRftRtaeBEpuI5zsmC22sOeDZ0hscctW0WH0X3/lmKFMDk9282xjzaNrOGv9IMk1yHOvYXBwPrXOdXKK2fpgxw7qmVFq7ly75GFAtlsdoVu3bvTzTYsFfycmYv/+/XYJMhITE1G7dm00aNCACgoWR1LLZLXiQkICqouD0iRmyyqLbVeybKWbTIr9NCLcdBqNw6zSZJl6gYGS74A0FT0hTTZAHejlhX9ee81u31X8/XFn/Hj4ylK/E0+punXron///jRshSK2TatW44MPPqCTU4uhh0iRitlKFtN+k3pQQFaWvCFDhmDixImKhcxOnjwJs9mMrozrWZkyZVCnTh0cPnwYQJYFyNfXF82bN6fLtGjRAr6+vnQZOUajESkpKZK/osLJ48ezPqhUcNdq4SfexLuuXYPF3x+1RbH15/btdB1yUyZqNNCq1UjKyIDBbMYmxhKSYbHg0KFDkn0RsaVVq5FqNCqmBN3FWAiVLFtEbF2JiQFES9llccRLgviQ7tOjh6RNhIJIjPHll1/immiZOXPmjMSNMiceZWZiy8WLuMWkqy9MqlevjrRC6Myzr2IutrJRsmzdKkLPkYKGx2wVHRadOIE/L10q7GZwihHEsiWPE8oJJWsNKelSUmbZeBLk5EYoH3gmz2hBEGhh40uJiVh47Bhdpl27dvjiiy8k6yUkJsJXlm3P398fajGTHmsoIO9JR5atc3Fx0Gs0qC5axbzd3GATBKSZTNCoVNg7dCi6V6kiGYAmn9PNZrtsgkD2e1qnVksyTCrFbPWoWhXC9OkScWUVBHjLxJBcbOWE3EJIjv/IkSNo1KgROnfuLJlPshPq1GoMHjw4q209evBshI+DIAgYP3482rRpgzpMwdvZs2dDq9Xi3XffVVwvNjYWbm5uKCnLchIUFITY2Fi6TKCo1FkCAwPpMnJmzZpF47t8fX0RGhqa10PLd/4hGfPUarhrtTAxDzCT1UpvnqrEwoVss3CyVouqfn4wWq34bP9+vLh+vWTbbOr34LJl6c2gUauRbjYr+uaSkZadO3dCp9HYVRKnN6jZDNy9C3z6KRXW7OhpCdH0rWMeQAVt2dq0aRNOnToFADh48CC+/fZbl9elD8x8b1Xe8PDwyEqQUohwsZUNcYG1CgKMVitUyCoiyXL0zp2ntg4Vz0b47HA+Pr7IDDpx8oe8WraU3oepYuc+t/Ff+UFOCTLkcUjsgHKvX38FkDXoO+6ff+j0MmXKYOPGjZgwYQK1vkz9+GO7mlpqtRo2mw21a9fGJWawgzzzHfUdUk0mlPTwoG0jfahHmZlQq1ToULEiOjDJOQCZZctBnSwgS1Cxli2lmC0Sey93G5Rbpqa3b493RG8pV6hUsqTdNoGswfePP/5Yco60KhUNO9Gq1dizZw8AwMfHh2cjfBzGjh2L6Oho/Cpe3ECW1erbb7/FypUrnfq2KiEIgmQdpfXly7BMmTIFycnJ9O/27du52n9B4i7eSA0bNULZoCAYmBsrKSODPlzYEWXWt1Yv1szaI6YiZW+20aNH04dHlerV0bBhQwDZN6G7VpsdgyWiUalgMBjQtWtXeJtM6Fq5smS+DxFfTBuUgkWDxWBMMzPSlCmzbLlrtWhTvrzCWckbx48fpwLlueeew+TJk11elwhFZxmFniSffPIJDcZ9knA3QmXkli1fd3d6rVT190emxYIWy5fjZ1HsP22Qe1eexZRTOBSkW+CcQ4ew4r//Cmz7nCcPtWw9RoIMArGAOLKSNV+2DJfYGp/5SE6WLdL5J/cHsQoJyE7gIGfv3r2IioqSHGulKlUUY9EJNmb/pE3kfXAnJQUXExIk81mrkptGAzeNBkarlQ5uy136iJhMc+BGSM693K2b/U08xL6ko5qm8umv1KmDH3r2VFzW0frfdO9uN50kyPjnn3+ya7uqVAgLCwMgPdaZM2di4sSJLu+zqFAkxNa4ceOwdetW7N27F+XKlaPTDxw4gLi4OJQvXx5arRZarRY3b97EhAkTULFiRQBAcHAwTCYTkmT1a+Li4hAUFESXUao4HR8fT5eRo9fr4ePjI/krKriJN4TRaERw6dLQMBleHmZk0BuZFSrsSIaHVguD2YzjYir2zxgf5bt379KgxBMnT0KlUkEQBInYuiKzMqpVKppcom3Vqlgspk/vU706gOxRmU7t2sFgMECj0WDevHl2x0UDSJl2S9wIbTZ4u7nl++jYETG7YW5HS3JyBXgWedbiPBINBnzrIDumPGbLR6+n7ryXHz5Ei2XLsuY/pecsw2KBTq3GxkJI2sKxJ7dXWW6Wz7RY8On+/VgbHZ3LvXAeF1V4OM6LyaXyk7xatpSWTyViy8G7+9jdu/hHKbQgHyAeBkpi65/Ll3FEDG1QSgpR0oHY+k2sV1q6dGmsEOPQ5339NY1FZ9kuhnOw/QurrO/QcMkS1Pj+ezrfopCMQi+zNsnTsBPXwHSzWdGyRSxf8enpkm2zvxc5XhIOUpAJylb07ZvdNvHcv/fee1i0aBGALMsWqU1WhwkhKl++PG7dulXsskcXqtgSBAFjx47Fpk2bsGfPHqpiCUOGDEF0dDROnTpF/8qUKYOJEyfSC7hx48bQ6XTYuXMnXe/+/fs4e/YsWrVqBQBo2bIlkpOTcYzxuT169CiSk5PpMsWJWqJ74PkLF/AwPh5WvR7BHh4o4eaGpMxM+lCRWLYY31o3jQaxTGzP9yQGDABefhkQb+pMcR2j0UhvTnetlsZgETRqNY11Sk9Pp8IsYetW/FKtGl0+OioKgwcPRq9evbLdCJnt0KJ/zEMxw2zGylOnkGAwwGy1wkOny3e3KyUrmytYi5gboU6nQ9OmTZ/4fpWKWD4rLDpxAu8xsZEs8tTvvnq9xJXltDgApORf/zSQZjKhWdmyiFPILsvJH/Zev45Wy5fnef1ZBw5g4o4dTpdxZQCFWHFXcbFVKEQrDCY/LnnNRmhS6KCn5mDZKkjIoJdSv6HHL7/gqjhQ/8eFCwAgKW8j7+sQNGXKACEhKFWqFHzFgfijx4/D29vbblkSqqJk2SJvTnnyGiszwE0gViVHlq23tm2DyWqFxWZTfKeQcx+Xni6JnWMFMJlO9qVUyie/6CsOxgNAE8YV0U1su1alol5Wt65fp6I2PDwcQ4YMkZzP4kChiq0xY8ZgzZo1+OWXX+Dt7Y3Y2FjExsYiIyMDQFZ68Dp16kj+dDodgoODUV38oXx9fTFixAhMmDABu3fvxn///YfBgwejbt266NKlCwCgZs2a6N69O9566y0cOXIER44cwVtvvYVevXrR7RQnaEE3lQpqmw1QqVCjZEn0rFoVcenpim6E7OcS7u5IMRqzRZHBkJ1uvVat7B2JN5q7u3t2bS+Fm0+jUtEOt8FgoDfo4YgInDlzhj6wej73HDZt2oQtW7ZIkpUQ6EuduYmO37uHN7ZsQcSVKzDbbPDQavNVbFWrVg2jRo0CkBXDRwIyXaGoxdo0a9YM77//PgRBQFJSUqFYmYqK2Dp65w5uF1AMCTsq6MzKamJitogboRLyTFdPA4Ig4FFmJvzc3YvcffI0sSo6GpGympK54aM9e/BVZKTiPCEXlg0ysJBhNuNSYiIqf/ddntvEyT0FMeBH62w5+f2TMzNR6/vvcU/MDmcTBKxQcIsuzJgtZ5YtlsGbNwOQDi44EhsZw4YBo0ahTJky6N+/PwCgavXq+CY+Hi+sWydZdtq0aahWrZokwZvcsiXHIss6CGRbm6hlS2FdMqjuLGt0UmamRERanVi2apUujUtjxzp0p8wL5PyyYrFx48Y04QjJEF6L8SZr2KABhgwZgmvXrkGn06Fdu3b2mQuLOIUqthYtWoTk5GR06NABISEh9G+d7GLNia+//hr9+vXDyy+/jNatW8PT0xPbtm2TWCzWrl2LunXromvXrujatSvq1auH1atX5/chPRFIBkWVSgVP8aYK9PNDCTc3fLJ3r6Jli/1M1mFHcBqL8VIsXuLFnpCQQG98eTYZIMuNMCgoCDqdDlarFZ46HS6PGwckJeHEiRM0YcZexvoIAM21Wszo2JF+p48Osf06tRp7b9wAkPUQIDFb+Tk6ptfrcU90p3zw4EGuSgGQ81xU3MBGjBiB7du3IyUlBf7+/k8sPWpRjNlqsXw5uhTQ/c36rTv77cmIKmvZUuJpFCMrT53Ct0ePwtfdvVA6WM8KuTm38sGX744edW0frogtJs3/7mvXcE3m1s8pGOSxPwWxbWfPdL/ZsxGTkIBIMab9VGwsFV4sOcVsAQXnjm+yWqHXaHLMZtxZ9Kwi3geCICBMlnhNTncm/ujAwYPYdfMmtZARatasiX79+knc3uSWLTnymC0g+71Dfmv5/CAvLxqb76ngRkiEVLLRiBJubuhXowYAmRuhaNlif6eqAQHoWQBFhNn36K+//kqfT5GRkUiaPBm733kHHVq2BAD06d0b/v7+SE9PR3R0NLVyFScK3Y1Q6W/YsGEO17lx4wbee+89yTR3d3csWLAAiYmJMBgM2LZtm132QH9/f6xZs4amcV+zZg38ZNWsiwske55ao6EjED56PT5u1w5A9sOCFVis761K/Oyl09Eic0q+yaFiXNyNGzckMVtyNGo1YmNjYTabqWm3ipi+32azZY2iCAJuMcVvAaC72YyRjRvT7+T2riFal+owGSQtNhssNlu+uxF26dIF/4mB3YtXr0aft992ed28ulkUFGFhYTh48CAVWblJY/84FNXU7w9FC3l+w77knB0vtWyJMVvEsiXvGCm53RR3LorB7r56Pazic52T/7hyv5FzL1/yfxER+bYP8n4xmM08hvUJQp4dBXHO8xKz5cgSRMRWYQwsGS0WeLm55bhvcpwWRmzl5HVgMBioq5sjIRkVFYU5c+bgzJkzdJqjtnxz5Aj8vvxSMWaLWrZk/z9t3x57hw6Fm0aDdJMJ7lqt3TtmfteutH2bYmLg7eaGzQMHZrWbdSMU31HpspTuK/r2xaNcJA8DshLcObsu2TJB165dw9dffw0AWLBgAfzc3XHk0CHcPHIErz98iB9++AFmsxk6na5IlWHKDUUiQQYnd5B6DdWqV0dFMaGIt15PTcPEZO/IsqUXL3JPnQ7rBgwAoFz/wiSOkqSmpjoXWyoVbt68CUBaI83b2xuvv/46vPV6aAG7+DiDzE85TRQJF86fBwCUZqqgW2w26kZ4Pj4eS06csGtHXlh86RKixLa/s3cvtilY+BxBLVtFZOS+d+/euHr1Ks6ePQsAhRJAWpS61I9T30kQBKw/d05RJGjVagzZvBlH7txx2BGx2Gw4RXz1RcsWycopd8U9VwwLq+cEcTsh1rycOmyxaWkFUkfvaccVq9PjWt5deb4Ry1amxVJowtrz88+fuYyIVGwVwLbJPevK709+cUciIqcEGQWJ0WqFlwuDtMliv4k8h0xmc473jtFoBMS+kaPtk0FPZwkyCL+cOYNko1ExZkuejp3M93V3h6dOB7PNRq14crRqNRW8BrMZD5g4WvYYibUpqEQJyfo6jcahG7wjcsrgzbpJms1mJIjZGIl30d9//43nn38egW5uiI+Pp2Jr8ODBqMWGuxQTuNgqhhCxlZqWBm9RJHm7udEMNMkKYsvIfA4QC+95ublRc7NS9pproghJTU2lNzh7I+sZs3ZmZibCwsJQSizCBwCDBg1CSEgInmvTBlqrFW3btqVFkpctW4bx48crH6D40GL9hK2CALPNRsXe26TW2GOS0bQposh+RHHnauBlmmg5iWNSthYm5cWU+MRSZ8plwcG8UhTdCAHl+k7Nli7FPAeFzFkeZWZi4MaN1ELDolOrsSY6GguOHXPYeVjx33/44cQJVPD1hU0QYLZaaVZOea26O/fvu3I4xQoiskgHIadOS8i8eZi2d2+Bt+tpg1x/vzKj5nLIPZlbEUSWzm3MVmGRYbHgn0KuM5hf3EtNRY+1a3NcrkAtWwqeG9cduIeSvobRwQAXjdkqjAQZVqtLlq3kzEx4sqJMEHJcx9fXF3jjDQBSIZloMND7jWTXU0qQIYeUyVCM2ZIlyCB9Mk+dDjq1GmarFWabTdG6qFWrJb8j603RMDhYsqx12jQ0kE3LC7Vr16bJLhzx1VdfoVWrVhIvnI8++ghAVkbxixcv4i+xr2exWODp6YnExMRiF68F5FFsRUVFSUyiW7ZsQb9+/fDRRx89sQ7eswxR9Xfu3qWCx1uvh5tGA41KRVOALj5xAhdEIcAKLyJYPHU6KraULFZkxKZ06dJ2lq0XatSgbosatRpGoxHXr1/H1atX6eqZmZlZvrX372O0hwc0Gg30ej1eeOEF+Pr6OnTj9BTreLHCzmKz0WyE+U2GyZTlmikeo6sWoVQxo2PKE4qNygmLxYL58+ejnfi7VJAVPXwSFCWxpfRiP37vHua6ILZI5yVJwRWRvOzMVqtDVxvixlHK0xNWQYDJaqWxi/KXYc26dXNsT3GDWNmtuRgdv8LjfHINOb+vbtrkeBniFvWY+3AG6WQbCjkd89Piwrjh3DmXhGNBWrbkCTLup6ai0nffKT4TlbxpWNJcsGwV1C+XaTbjwunTSM/BrTzFaISXTocvDh4EkJUVz2KzSfoh8vazdwYrzErNnYufxEHPMwoDIY7eG0nECqYUsyV+l8dseep00Gk01LJFRFncBx+gm1jzVL4tchyPJk/GX6++KpmXX/F/mZmZklJOSixYsACRkZEYMGAAunbtCi8vL5QRk7XFxcVh9+7diBFLh9y9exeBgYHo06cP5s6dmy9tfJLkSWyNGjWKVnq+du0aXnnlFXh6emLDhg2YNGlSvjaQY0+zZs2yPqhUdJTcR6+HSqWCl5sbksUb9r/YWFq4mI3ZIoLJQ6t1KLbqx8cD4kOnZcuWdmJr08CBGCEWPAayBBkAmtIdAFatWkXjh97o0wd9xboKmzdvxksvvYShQ4eiTp06dHmS0MQg1oFg22Sx2WA0m5FcAFYkbz8/DB06FJpcjpaYH7MTk99YLBY0atQINWvWxLhx455YzBbbwckoBgVsH7iQipy+jBSOh9wLZpuNLid3gQsQBwxMVitsotgq4UBspcncaZ8UFpvNLuVwfkMLo+YitojjOq6IWKsLli1n28mNZSvTYslXwTNh+/ZcZRV9OqQWcMvFYybnvSAsRnLLFhF28qK4QHaNJyK25B12VxJkFBQGkwkwm2kpG4K8Jly8wSBJmS4g6xnJeiIcuHVLso5RwTWQECV6LFy8eBHVqlVD69ats5dlzi17X0osW/KYLQd1tjy0WujUaqQYjbiVnExFWWkvLxoeIhdb5Lf0dXcvkAFsICuxmrNnQWZmJrp06YKhQ4eiSZMmeOedd5Cenk77jB06dECDBg0AAG+//TasVivUajWqVKmCzp07F0ibC5I8ia1Lly7Rk7Bhwwa0a9cOv/zyC1auXInff/89P9vHUSAqKgoAIDCCJFB0gfPS6eiDD8gyZ68/d07i3kHW0Wk0VGzJXZtOL16MmmXLAsiqlk5ubHY50mm02Gxo2LAhAgMD7VzwHj16BJvNhj179uCKbKTOaDTi3Llz9LsHEzemVqkkI0o7r13D5WvXsNtBTSMlBLGTmxOPUlMRHR2NkmL19/NizFhOkA52Ueki7tixA9OnT8fvv/+ODRs20NitJ0kmc+0VZ8iLU0lskZedWRRSACT1s4DsUc6RjRvDKsYbUjdCmdiKEgeu8osfjh93Kf7ps/37UToPI4Tn4+PRbc0ap8uQ89dRzPDlSmB8UbKKFhdcOWdkmf03b9I4QrnwctYJzk3MVn4XQZ1/5IhiKnFHPC2WrdtiEoCcfl/yfiuIeEe59YX0Acj1kMw8G0lMltFqRYCHh10yBSoKn0DM1qPMTMl7P9NsBkwmWAQBqvBwRIj9EJLqnYUVW2azGRaZW17Hn3/O2p4I6zYpf8Y9FM9Prbp1cenVV3GBiWGyMGKLbSub4diRZUteZ4tYtgBg4MaNDt0IWZQEc36TmJiIq1evOhz0nTlzJrRaLVauXIlGjRohWHRdLCHGi02cOBGtW7dGx44dcffuXcVyQcWJPIktQRBop3rXrl3o0aMHACA0NJQGuXEKjvviiImbmxvtuBGxVcLNDclGI70xryQlYeDGjTh69y4d9aNiS62mYou8fD0AYPNmwGrFiy++CAA4ceKEYoIMGo9hs+HIkSOIi4uTBIECwMGDB9GlSxesXbsWSUlJmDlzJp0nvwnZF6VOo5Hsa010NC7bbEAuMszNOngQemZ/DhGPLUUc5W/UqJFLo+zkZVSSSQriKo8yM/M9W15AQAA8PDxw5swZxMbGFopLb1HvLjtykdh17Rrqir71QLZovPPokV2cgoaxbFGxJbvuzVYrWoeGolpAAH2hnhTdF7WyNkSkpEiKjD8OgiBgzN9/444LGZsu5PFZvf7cOexg3IWVsNps6BwWhjZiHKErnSwutnKPSwkySFzX2bNouGQJbIKAH9hC9lAWw3mps8WSX79nbrZTECnQCwPSAc9psJCKLQf3V26sxcmZmdQCBdi7ALMWrvupqfCbPZsue/DWLQhiIqCqAQF0YEmO0vWa3xbtkrNnY/iWLfS70WIBmGQXp8UBBxZvkjxCFhJglbkRAqDp1QGZZUv2GySK/YkNoqjbzyT1YoWs0r2jFLOllcVqkWs9uEQJSWY/NqW6SrYu4YtOnez2md9YREEn74dUEMNHYmJi8OOPP0KlUuHMmTPUXXCHWGT9vffeg6enJzp16oRt27bBi0mYVhzJk9hq0qQJZs6cidWrV2P//v3o2bMnAOD69esICgrK1wZy7CEJMkLKlKGCh1q23NxgEwQ6QnP14UMAWaPRpNAdETFujGXLJgiY1bkz3vf3B06fBpA1wjB48GCYTCZ6g3soiK37Dx7g2LFjALLSjxO8vb1Rs2ZN7NmzB8eOHYNer5dkK8zMzHT4oFUJgp21zQYALriAEU6I9bNyRDwOEzPaIxeNSviIiUb0Lmbp+XTfPpyNiwMA1Fu0COXmz3etfS5SvXp1nDt3DkmiODAWgpWpqLuCKZU4AIC/L1+mvw0A6t8/ac8eVBILtJJjIy85i81GX5ryzo7ZZoNOo0FaaipMFgtMViuW/fADACCR2Q8hv0Z8bbnoIOe1M+xKd9YixhyQ54YrooCLrdzjyjmTn/t9N25g7D//SJdxcv0dun07x/taSRTk9zXtCk+L2CKdY5fFloPlev/6K6ovXOhSZtbAr75Cq+XLAQBvbt2KNaKbnTwrodFqlQiEuoGB2H/zJl7btAkx8fHK8d8iStcE+XVdtUoGffUVtshqWcmJfvCAfjZarYDJBLWTdgV6ewMArrLeNxoNtl26hIey5/UjxvXamWUrUXyH/PLLLwCk70ZWwColFVGK2ZKnfL8vCsOapUtLBJY8bTtgL7bGPQErEUnYJY+B71O9OhInTcImJs60UaNGuCW6aO4U67GuWbMGgwYNwmmmP1qcyZPY+vrrrxEVFYWxY8di6tSpqFKlCgBg48aNdum9OfkPzUaYmkofokGMGyGQXUH8iii2ksXgTwDUR9dHr6ejNjZBwIdt2qAmU8RPo9FAp9PBbDbTm5UdsSI3+POtW+N///sf+vbti0CmNtYrr7yC+Ph4+l2v12OAmGr+9u3b2LZtG6pXr07nh4o3JyCKLY0G0W+/Lc2WkwtrkMsvXo0GHTp0oKILcC1JxiPxYXczhxSnhPD9+/GeWNvmdkpKvpvyLRYLPDw8kCGeo7Vr16KlWBTwSaEtIP/v/MJR+loyWEFemBalFyBxpxGvK6PFkp0mWMGypVOr8eqgQbghvkQs4kvaS2HUN79khplxQ2H5/N9/0VZWCDLPYsuF+8oqCNCo1XauR84grVl68iQaLVmSp7Y9a+TFYqhk0XTm5vni+vWSgauN589DFR4uWYbtMJI25VdNpdwM4DwdUiu7c+woux+BzHdk2UrMyMClxETsu3Ejx32arFacEYXFciaFPnmWkN9zyu7diGHe69+IhX1/PXsW/966pZh6XL4tybRcXidx6enYmkO5DPYZZVOrMXbkSDjbC0ns5a3Qoc+QeR1UqVGDZkw2KrgAEsjgXZiYpAKs2GIGxUgfjohUFZRjttQyixYpuOwuxmwR0hX6LnKx9SQguQWUPGz8PTygZtpUsmRJarl66aWXoFKpYDAYEBkZiY0bNwLIGrwvzuTpF6hfvz7OnDmD5ORkTJ8+nU6fO3cuVq1alW+N4yhDxG1iUhLK+vgAyPY1lv9nkwEQKxaxSJGkGkD2w2nw4MHIzMxE27ZtoVar8fzzz6NFixb0ZmVTxKtVKgjTp1Nr05YtW6iFCwCCgoKQkJCAgIAAVKlSBY0aNUJCQgK++OIL+Pn54fbt2zTRCgB4iUkFgKwHjrtWi7pBQbTwMgAgFwH9Lj9gNBpMmzZNIrZ0zHEKgoChQ4ciUZYGPEH8bsxBmF1OTLSzihQEFosFS5YswfDhw1GhQgV06tTpiaRIZY+oqIstUk6AFUeL1q2j1xhx5zMpdHLkL9NDt29jmdgpkY8sE8tOtapVYRXvUYiWxiSFdPL5ZQWwyFx+CItOnMBBWXB3QVq2rGJnQcNYAXOCxFiO/PNP/Kfg6sPJcqfeyMSUyjuvZqsVQzZvptdjfHo63pVZscgAHItSJ5i9Plj3MuItEZ+ejlSjMau0AfP7EqtZfiVD4JYtx+Rk2SL9gBSjEZ//+y9NmOUIpbMnL/a79eJFfHv0KJ3P9gn2XL9OM+rVYQZeCc6us9z8crmJzcswmbDw669hYMIW7AS82NFPV8gsrBePL5TMc3Ojwom1GMqPzWS1YllUFD1v7mwpG9ayJQ7MEbFVws1NMWaLJsYQ/3etXDmr/wWp6yD7LiHn6UmLrcmTJ0On06Fx48ZZ6fEVmDNnDv28cOFClBVzBJCBzoyMDEl/cgvjGlocydMvUKlSJbuOJ5DlFlatWrXHbhTHOaGhoVkfVCpU9PODMH06valI9hmlulnE2kVuVpKeed2AAehfsyaArHSbw4cPh5eXF0JCQvDSSy+he/fudIS6hELdhDFjxmDixIkAgDRmFGjmzJkoX748hgwZgpEjR6J27do4duwYNm/ejEOHDmVZkxguXb5MP6uRnYxD8rJ1wY1QFR6O3deu2fk8O1xeq8USZiS9Xr160DIuBxkZGVi1ahWuXbsmWY90yOVWEKPRiHSxnTcePUK1hQtp1jdX25QXiGWrRo0aeOONN/DPP/9g//79BbY/JZKLSBp8R6OrpP4TCe5ONRgw+sIFHBFF/z2x/Uqi0ewkPsKRG6Ge3Y7YYU179Mhu/fzqmJI25sW9zFVc6dASy5ZKpYJapXLZjXA748YTn55eqHWbiiJDNm/GSxs20O9ykR6TkIA10dHUhWn9uXNYxyQhAqSJDQisGD4dG4u10dESyzvb6ScxF4FffYUWy5c7FASF4Ub4tCTIIMfxuDFbZH6ayYSP9+7FOFEIh+/bh/0K1i6lTrlcbAFZMa4EeTa7Y3fvAgBOjhxpt637CoMoeXkO5fQrs/PTjUZATHYBZJ1bdp+NVSpAdF2zKQyyVRI9bmoJArytVkCno2LLmRvhJ+3a4a1t2+j0FozrHjsoZrRYoNdq6UCgxWZTjNkiz12lPgRr2VI6nzon1saCgFijPD09aSkfOUR8zps3D2XLlqVeUaQ215QpU2hY0tSpU4t9Pog89fxu3LihGNNiNBpx586dx24UxzmXRVGi9IgiMSlKoohYtshNSzqeL9euTa1dx44dwy+//IKIiAgMGjQIP//8M3766Sf6EFba7rBhwzB8+HBUr17d7rpwc3PD/PnzERUVhdOnTyM2NhbHjx+Hu7u7nWBnH5BuWi3tMEuOk3EjdFbTZe2ZM3ZmeEcIKhUOimnuASA6Ohr3GLcZIqaaNWsmybZIxZbsmHv06EFj04j/NDHtF+QIU1xcHJYsWYKff/4Ze/fupb7iBQ3bwVFyvysoLiQk4KSDuDxH6WzJ6CHJMkj8+A3ELURsv6dCMC51MVQSWw7cCG8zLqZDBw0CAJRVKBhZ0JYtJfLTjXD3tWt2MQnsSCw5PmcuQAKkafFbLl+O0K+/zlMbnxXkvyFJ5uLMlS9Fwa2Hvf4aLFmCwZs3YzWTGrv72rX4ZM8eAFKrwPn4eIeubvk1gJCbrTwdUiv7d80pu2NOli0yn7yHyHKf7t+PiaLAYFF6PymVb2A/O3qnKWXFO8m4JxIKOlbTJMZssfcCK2L7Va8OkI68QltIzFaThg3hplJJxZaTBBkvigPYxPp1VxShgH2CDL1Gg99ffhlbXnkFZlFsyc+rWmbZYnFzYNkiuNLvOHToEBo1auRw/pYtW1zONj5ixAgAwIEDByTeSyxnzpzBlClTkJaWhjfffBMlRbdI0of46KOPULJkSTRp0gSff/45ZsyY4dK+iyq56vlt3boVW7duBQBs376dft+6dSs2b96MGTNmSBIkcAoGkvjAj3WvEyHuUF4KoogUVSU3bZCCfzLrdhYdHY1z584hKiqK3uBK223RogVq1qyJixcv2omtK1euYM+ePfjtt99gNBppR02v10Ov16Nfv350WfIST05Ohqe7O+0Yk4exDqDWAQB4a9s2u7YQzsTF0REgRz7/LZYty/qg0djFaLF+xuy8h4wLjk48VyGi+Zvu+8wZuj55qJIReqUHZYrRiLspKY+dvvfq1atQqVTYsWMH9u/fT32gzWazSwk/8gO58FTiza1bcTEfRqnq/PADmixdqjhPksLXasU58YVJroRk8R4iGSiviKO8NOW7LJufTRCciy1x2qu//47Dt29j4fHj0Gk06N61K13mgSi8TApxh/nVMaWpgx0U37ydnIwMsxkXEhLyzY0w02JBl9WraVpxINuyBWS96Em7xv79N/r+9pvidm2CQAdQ6gcF4WFGBrXQcJSRXzfXRLHlzOKRk2XLETtEawa7TxUcC4LHGUC4nZxM48KexZgteW0rR+Rk2TKL9f2IGyi7nNlms7Mcu2rZYnF1UBMAShCXaoaCSAfPDghZbTbAYoGZuY7Y89q0cWM817Fj1heFa+2BOKDXunlzVAgJQZ1GjaAT+ybs+ZOfH2KpIgWfo5nixvIEGXqtFo1CQtAoJCTbsiU7r+R5quRZoHFg2SJLuvIbXblyBf8piGHC+PHjMWTIkBy3A2QJpaXiuznDwTM8JiYGs2bNwvTp05Geno6jomvq2rVrUa1aNfTp0wd169bF66+/DgDUW6i4kiux1a9fP/Tr1w8qlQpDhw6l3/v164dXXnkFO3fuxLx58wqqrRwRnU4Ht59+wsFx4+zmEcsW60ZYRgwsrCi6f2jUahwaPhyv1a1rt74b00k9dOgQTZBBbvASbm4QBIHW+gKyM/cNHz4cTZo0sdsmsRp5enpSs7CHhwdKly6NzUytC2I1WrZsGcxGo50boYdKRQNTAeCSgisrIcNspg8YR5mYjpKRJo1GUuMLkIot1lrziHEBKyWavXUyATpmzBh88MEHkrYTy5ZSt6H+4sUo9/XXGPXnnw6PJyesVivq16+PpKQkpIhCoVy5cujbty9KlChBH1if//svrTNSELjy4lz+33+SAOw878tJJ8yb+U3mHDqEOmJad3ItkA5ngiie48Rribww5e6QBrOZdlSURDGZ9uvZs+i8ahWuJSVBBeBnJilFbdHFWpL6/c8/obZa863DYWZe4kqU/+YbDNm8GTW//x6Xndw/zpBbtkiaedaaKLFsqdX0t0pVsKqQzrTAiC2LzUb3E5eeDlV4+BOp0VNUMFosDp9bbGdL/juT80s6k0odZKWSE66K/ck7d+Kj3bvpd61a7dCy9TgJMs4wGeCeRTdCV8WW0QXLVkl392yxxSx3KjYWnl98IVle0bKVk9iSrfM/J5nuaiv0OWjMVi5+O0fLkvId7FyrIKCktzdMzHXEnoeDBw4glukL2CEuG3nwIDy0WjwyGGAW+wG/MbUs5eU7SDImUveUPX9Kli0g2x0wg0lKRpAXM3aE0nOS7FvJ2khgk5kpMXbsWFrmSa1WI04hqy7hu+++w1tvvQXAcbKxkydP0s8qlYqGIE2fPh2XLl3C3r170aNHD5oHwk1hoL84kSuxZbPZYLPZUL58ecTFxdHvNpsNRqMRFy9eRK9evQqqrRwRnU4H061bOC+rlQJkx2yxNxXJtFZJNNOqVSq0Cg1VvGl9mJEni8UCnU4Hi8VCO3El3Nxw8OBBNG7c2G7dHj16oFSpUvR7nz59AGTVfwKyxFarVq2g1+tRv359bNq0idbyAoAKFSoAAI4fPw5TZma2G6H4YPL38JCMPLEPr7mHDkliGdiRIXnWP7PVKk0WoFZLKpL7+PhIxFZgYCAVjBs2bMD9+/dx5sED3BcfNkv+/Vey/TFjxqC7mKGJii2Flx3hhvjgPuvk4ZUTg0QXNTYbIZBl+jeZTIgQsyCyfvsFgZL7nRK5Ga3eeP48ZjNunq5AsmZabDY62g9ku56STgoJmq4qunyQ30fuDpnGuKEodYBMVis9JtJJtgqC5Hq9fu0aVIKAiuXK0WlVKlSA1sWYJldw5EbIdj7IdZbkoNhkTpDOPtkHEVvsS/5+Wlp2qmLGjVDJ9ZccuyDO16rVMNts9HySOLr9N2/mqb3FkUY//ogGixcrznPmMiTPjumy2BKXc3ZfHrt7F3MOH6YFd4Gsjp9Dy9ZjXNMaJ4JSTqMlS+jA21nGelCcoW6EObhluxKzVdLDA+vFpCqOliOwVmh5WxwNdsitJiQ7oRJKHe+8xmzFp6fj2yNHJNeH4jtUo8FXX37p0I3w8sWLuBwVBezdq5yAS1w24cEDxN+7hzsNGgAlS6J2QAD2MHFvK0+flsQKe+p00KrV1IuC9fpQsmwB2fd2hsXiMBthTlYq9nx2EzMhkj6QUiw/APz444+YLCtELWfHjh34/fffIQgCBEGg9V6VuCIO6Hp4eDis98nWzVKLfbCrV69K3A7//fdfnBDrk5F+ZHElTwEk169fl3SqOU+W4OBg6HQ6/Cvr5ANAgCi22FERYu0KFYWUs5u1YcOGsNls6Nq1Kzw8PPD8889j4MCBtANZws1NErfEMmDAAGxjXPuIeCIBkkFBQbBarZg6dSoyMzOxfv16nGcya2nEB01wcDDUFgsdGSIP0zIBAfh17Vq6PCtcvjx0SJKly2yz0YeTvIO34fx5aRpsjYaKIyArbo1kfASAjMxMtNm1C/D2xkcffYTxCxei3uLFiBUf7Jtlqd/Xr1+PLl26SNqezozYO8JRnBFLamoqYhWCjIk165tvvsGcOXPQrFkzLFiwANWrV8eQIUMwadIkyTYKioIYfXpjyxZ8yIymuwKxbKWZTPRlBwDxovDKtFhwKTERBvFFkCy6KJhJHJ7sd0pnxFayQv2yxIwM3EpOlkwzW60SsbVlyxZoBAFRzCBJzbAwlPDyyj/LlnhPOOvAkFFuV2rvKEHuq4/FGB4itkhH7sidO/j26FFFy5ZSDRg2qUe62QxfvR5mq5VagUkHpPMzlOn2fHw8LjqwPErElkIGNPa/0vNGSWST5XJ7TWhUKscxW49xTbMDgTmJrf9iY7FeTAJS3F2NCLl2I8whZotkoMzJVV2rVlO3N3lbXLVsyWkUEpL1wWxGjEK8Zl7cmVUqFeZHRuK97duh+ewzANKBAtbyZbZYMELm/saeV8FqhZ+PD7B/v3I2XZKa3c0tK5RBXKZhmTJ0oBTIqnvViQmj0anV8NTpqGXLlymrQ87l2bg4XE1KyrZsEbGlYNlSuWjZYs/nkPr1IUyfTt0dHSXKGDVqFO3XORpwcXd3R8+ePaFSqeDu7m7nDcRCwlHq1auHOnXqKC6zXKzpBoDGY+lk558Ir1KlSuH99993uL/iQJ6j9Xfv3o2PPvoIb775JoYPHy754xQsnp6eeOWVV6g4YSHpVskNd2j4cPzxyitY8Pzz9CXtLJvYgwcPEBgYiMzMTJQrVw7NmzdH165dUVl8ULhpNKhduzY6d+5Mb85JkyZh/PjxCA0NpaMYZrMZCxYsQKVKlVChQgWMHTsWXl5euHjxImbMmIGHDx9izpw5kmO4IY4SlS5dGm1u3cLSqVNx9+5deiyZSUlYwdygSqN0ZFmz1UrnG8xmWgAQgJ2fekBQECpVqkS/h4SESNp1TWzXN+K+M8WHZ5oD8/jq1avt2pOu4DNPIA9aZ8UgCd27d0cIeXkxkHpl8fHxCAwNxfmePfHF7Nm4ePEiVq1aJRm1ephH9zFHsFdTXA6uCISCDYnOjtlKNRol4ui6KIx3XL2K6gsXQiWe+xsk0Yb4IpNnUEozmZx2VPr+9hsqfvutZN8mi0UitqpWrQqdSiWp2/L20KHISE9Hkkyo5RW5ZevKw4e48eiR5HwTseUswYwzyO89S7Q2PhCPh+ybfCdiix0tV6oBY2Ze8gazGb7u7rAwli35ee+8ahV+ZFxQngUEQaDPEGeWLbnYUhI8jxTEFhFtSgMJztCq1Y6zET6GZYt9R7myFWL9DHxKBoGFHMSWxWbDxB076LtM6b2SYTYj2WikgyGOlmPRqtV2z4Wc6qY5G7x9NHky1rzwQtYXgwFqhT5LXkW53CXZ0XVitFgA5phUkJ5Xm8WCMmXKoHPnzoj68ku74+n+3HMAAA83N7BDiU1lsdqxaWkoy9SCUqlUErHVpGlTOo/cG8v/+w9j/v6bWraoG6HFYieqyouD5Xkpb1BOXDcnj5L//e9/DgfTS5cujQYNGsBgMCAzM1MSUiGHhJYYjUaH9bFIdsHNmzfThGJsFujp06dT8fXGG28o9neLE3kSW+Hh4ejatSt2796NhIQEJCUlSf44BYsgCFi9erWiGZe4CpIRyhblysFHr8fYZs3oSImzkZHbt28jISEB//77L+rXr49169Zh8uTJCCpRgtZ0MJvNGDRoEC1K179/f3Tv3h1ly5alNxlxF7h37x5q166Nv/76CzabDdeuXYPZbKYjH+zN7ybeWJ07d8YrvXrhn7//RgITyG9OTUUsk32O7YSR7ZAHt9lmow/UyNu30YIRafJOgFUQJG6RdevVw5EjR+h3g/iwfO9//wMA2MTviQ7csIh53CYGugJQ9JknkCyRni5YthylP23Tpg1WrlyJdevW4evly5EmCNh3+DAAoGLFimjbti1dtiB9nx83yYcSuXE5BLJ85MkLLtVkknYudTrAbKYdkNJiDGGi2Fk7f+ECAMBHjG8kZFgsdp2NFX37Ku6fdFZsgoAaNWrQ6W+99Rb8vL1RWnyxAFlJbjIMBjx08uLKDXKx9c2RI/ieqVUCKMdN5QZ5vARJYpFuMuF0bCzt9KgYtxfyPMrJsmUgli2bjR6DvPO35/p1/PKUuIu5yopTp1Bi1iwAUrHFjmKTOmWAc8uWEtRqm0vXUmduhI8Ts+UsLo2FXDvEwlDc4zoIOWUjvJWcjK8iI6nIVHruNlm6FA8zMiTWFlcsW+lmM/QaDXpVq4ZAL6/Hsmz5urtTl24YDHRwi8VRnS33mTOx+vRph9tOkz1LJPWl2OmCIBFbk3btklik/vn7b3z11Vf46aefoH70CH6y7HmHDxwAADRv3DgrG6FIuwoVJDVAkzIzad1TghcjtlirnlxgkoFWYnnKtFjsLFtfdukC48cfIy+0Ll8emVOn5mhFPHfunENRc+7cOXz++ec0QRv7bpPz6quvAgBOnTqFfxyELfz111+YP38+FixYgO+++w6A1LXwjTfegE6nQ+3atTF37lysX7/eaduLOnkSW4sXL8bKlStx9OhR/PHHH9i8ebPkj1OwkE4Ma41h591+/330E28E9qXlLJsNgXUPPXLkCOLj43FB7IASzp07hzfffJPedO3bt0fXrl0RHx9PxRaJeSldujTOnz+P69evQy3W3QGyayyEixmngGwXrubNm6Nbt25ITk7GvXv3aOdNb7OhGTM65CwrnMVmoy+q2ykpkgezXZyDzYa7zOifzs0Nt27dogGcmeRBTbIiii8PowNx5OXlBfj5oevq1fTlxroRfrpvn2R54j7o4YJl64MPPsDHCg/cl156CUOHDoVOp8MfzD1YsmRJ3Lx5U5LavqxsRC4/cXWUMrcCypX9fnf0KARBQM3vv8de0RqZZjJJOpC+pUohxM+PCo67xCVTTMeeYTRiz/XraCrLcpjB1GkBgK+7dZPUNmGhMQ4AuooBxQCQmJgIq9GIZGZAatMvv0AlCMjIY/yUHHL900EHq9UuZvFxUy1LatiYTNSFa87hw2iwZEn2wIf4/35aGnXblQunkdu2oY04j8Rs+ej1WZYtcZnoBw/o8mTb5RSymjkjry6TjrZ1wkHJgfyEzah5nblmHLkRWnMpttjOHLlecmvZ0qhUaMkMZLE8jhshe504u17Jcv+IMSJyN6TiCjnmCw4G18g7nNzbShar86KXwSft2mGqONiWk2XLaLUi1WiEl5sbtg0ahOerVMl+non/5YOCOcUQUY+NzEzc0GpxQBZ7ySaLkLflGJMunUUFSGIH2e0AsmyEMrEFQFI03VOvR+3atVGhQgUMGzYMiczzBgBSRBfMWtWroy2T/MNNo8EDMREWoazMiuOp09H3zwVWbMmOVc94HWlUKsWYLZ1G4zTBRU7otVqH91KZMmUAALt27aIhCXIGDhwIIKueLgCHFjAAaNKkCT799FMAjhNkXLlyBePHj8eePXtoDVMfHx/06dMHffv2xbvvvot69eqhf//+AOA0IUdxIE9iy2QyoVWrVvndFk4uCA4ORps2bRTnlfPxQbBCWndy8zoTWxUrVqQxPadPn6bZCFkMYhApScRARNe6devQs2dPANliKyYmRlJ7LVjs1Or1elSvXh3t27en8yr/9x+wdi1Onz5NbzBBEOgDor7JhPvMw1epI8Gm5yYdjrspKRK3AfmDLt1sRjmmno/O3R2vv/46zaxoYZb/6KOP0F1MAmOUZV8j1KhRA6+Gh2P3jRv05ca6Ef7jIBugK2KrY8eOaNmypd30devW4ffff8/qbJD2qtXoq2B9ScvnmC32xebsAVyQ3E1Nxf8iInA7JYWO9gJSN8KFx44hw2KBh0pFxfcNWV1As9WqGBuUwSSJAbLuJdpZZeoRsRgyMvDd99/T72FhYUhLTkYtpvC7r14PlSDQRB2Pi9yyZRHTOz+uuH2UmUkFC/v8WBoVhauiECAuTWRPSi92uRvh0qgo2qG0ia5yvu7uWTFb4vpv//UXXZ4UB5d3anLC4/PP8Q9TNP1x2H/jBob98Ue+bEsJksCCDWZnS244smyZrFaYZElcnIkttjN3LzUVNkFAosHgMIiehTyrnNXvyasbodFiQU+mRqCza1cu3q9dvZqnfRY1yO86edcuxfnklyPHn2mx4LAsdpigU6vp7+Sos02uk3upqXhv+3Z6DWiY5D0Wmw0Ng4PRoWJFybo5xRARsdVTTEJ18NYtrD59GqrwcEQ/eEDLgLBtI3GAob6+itvMtFpxiElypQoPxxbZoDDBKgh4oXdvybSbjGUr/sEDzJ49G4CYIEw+MCPeSyePHZPEVbtrtXbXv7y9rBsha1WUD0TomXe/m0ajGLOVE8MaNMhxGfnvLwgCUlJScOvWLcyZMwdAdv9OztChQwFkZ2S+6KBeIgB88sknVGw5SpDB1h0jfQiz2YytW7diy5YtOHLkCOrWrYslS5age/fuGKeQfbs4kSex9eabbz6xgqkcZWJjY7Fp0yaH8zuFheG2LKCQzQ7mjBKiUFOr1dDpdDhy5AgdzQCyO9TyjG3ly5en7oFeXl5Yu3Yt9Ho9Bg0ahB07dgAAqlWrhooVK0Kr1eKTTz7B/0TXPABYNGsWPO/eRWpqKnaLCRFq1apFHxDDevVCyxYtECiapZUeRhZmRJ88sO+mpkrFVg6CQKfXo2nTphg8eDAAoIoYD4W338aiRYtwVMyOc40ZaWE7NULnzvhFVu+GJHhgO5FyUl1wwf3222+poGU5cOAAjh49Cl/mYV+5WjWsXLky64uvL035nlOK18ehJOMi54zcdMOUlpW7w5CRwStMHTQg6/yTkcVx//wDk82Ga+fOUbE1avRoyfKOXOzkli2NWp0dbOzAaiJPHHDjxg2obDbUETMfAllZE/18fODjoFORW1iXPCCro5GZD66dJWfPxuuixZQV12zHnFhiaJIOhfvMmYXJZLXCYLHAR3QjVPrdSXIH9t7fFBNDOzTOcFYqIjeYbbZ8yx6pxCrRdSqQcalhrVxKFikg6/y5ko2QoFKp8PvLLyO4RAn0+e03zDt8GNeSklBbjPt1BhF/zjraebVsXZe51N5XSAhEkIstUy4tc0UVWltSPL+3k5MlrrPk+iPPsdXR0Wj900+K23LTaCTv/AViPSNCgsEgESpH79yh1iu1SiUZuNGo1XbvL3bbND6LgTybj4neFR46HfaJngf1Fy9G1zVrJMcMgCYbKiWLnSXJO5IyMuxcLN/fvp1+Ji2yCQIEABPfe0+y7FX2Xctk1vP29kYNMYMfhYRGZGZKrPqBCpl368ruHU+djg72sfeD/DnIZjHUaTSKMVs5saJvX6hVKlrqRwn5U+vw4cPw9fXF77//TpNoGR3cQ4vF7KjEeuysdiebxMuR2KrIiHYli3RiYiKOHj2KuLg4fPnllzThWnElT2IrMzMT8+fPR/v27TFu3DiMHz9e8scpeEJDQ51mgwHsXW1csWwRSKHiTp06ISkpCT///DOdRxI0yC1egwYNwloxW6Ber8err74KrVYLnU6H58Qg00aNGuH69esAgO+//x43GZeCuLg4GAwGeuN5enqiYsWK9OHepk0bdO7cmVqa2BFe8hBhLVtGqxXebm64l5oqETk5dZT++ucfoFIlbExNxbA//kAsI06S2rfHMjHjFTs6xoo59mXGigIvnQ5n4uJwXOaC1Ex069stZndzxt9//6043Wq1QqvV4u2338a0adOy2vH99yhZsiQWLVqE0Pffx/NMJseCQuOCdQ54fDfCr8R4NLkrn1LtqIqy+CtkZiKBuEoQIU3a5UAsymO21CpV9r6d1BnSx8Vh++DBaL53L86ePYv05GSsIQI4MxMe7u4I8PensWOPCy1qLLNs5Qf3xcQX7G/HdnaJICCCKLfuikaLBWarFV46HSxMzBYLsRCz99uL69djnng9OONx3ScJjtqWX5DfsDTTmWM7tCqFZYGsc5MbN0K1SoX+NWvSjt6FhARcTUpCndKlc2yjJ2P5yOk4cot8wOTy/ftIdDDaLhdbJRQ8OoojNkHAgFq1UFVMd33o9m18zcQRk3PrLP6SvB/dNBqJQH9XLANCKD13LgbIyqYQMa1myjZYbDZo1Wq7DjsRBaE+PnitXj3JvBkzZsBNq0VNPz/Eix4A7lotlK4M9p4iFmz5febz5ZcAsp9vB994g85jlyQDQuQ8tWrWTLIdSUZOmw2lxWu+XLlyuCDzVBggetm463QOB5oIcqHj6+5OLdUhjPu+/LrND8sWAMROmIAz77wjmVauXDmcOnUKQPb5FAQBVqsVTZo0gVqtpi6CgGNx9N9//2HMmDGoWLEiKlasaDfYzkKEWHBwMF5QEOBAVj1VICspxsiRI+lngkajwUPxWfA0uAfnSWxFR0ejQYMGUKvVOHv2LP777z/6R35UTsHSsGFDlGRSibqCKwkyCG5ubvD19UXFihXh5+eHFi1a0HnNmjXD66+/Dr1ej4MHD6Jz585YtGgRNBoNvcnu378vEUpKREZGSkZAfhJH5si+n3/+eWzevJk+IGbPno0lS5YoPqgJRNyQBBllfXwQm5YGAdkP6JxGXA9dvoyzoaHIbNgQP58+jbMxMdkzGVO9iRF7EYyLko15kLOuZ1OZJBUsVpsNMBjgy9SRWBMdjbcVihxr3Nxo6lnJNqxWaLRaXLt2DWXLlwcAvDFiBJKSkvD222/TeLiC5rYDH3sgqzOdU90YOalGo2LWPPJykscgxCt0yuziFDIyYCTXpcwdOtPBtZFiMEjKBbBuhKFMdki2mLLZaoUxMxPB6emwGQyoVq0a3LVaqMi+V67EyJEjkRgfjzNi3NPjIi9qbLHZHjteidzD5UXrGztYEW8wwNvNDXUCA+kgTpw4GOFsUOO51avxnqzTZ7JaYRUE6DUamK1WiaAq5ekJd62WWqfko9quiJ/8kkfWAhZbBrMZbhqN5PjZ42U7fHcZl9lfz57F7+KzyiXLlvifXMeZVivOxsWhngvCn3Q0C8KNUJ5p8qzVilYOrDbyZ4PXUyS23MT7ABBjL5ljJdPladpZyP0oF1s5IYAR02o1vdYHbtyIM7J4JiDrWfh9jx5YpdCpJskW1rRtSy1EHg5ih9jrhTyzHF2/NkGAWqWSDKSx2zx29y7e/vPP7PVl25Ek17DZaH9j6tSpgDhvfmgoAMBfjGP3cHOTDHQoFVaWT/Nzd6fCsV79+nS6PI5WYtlSqxVjtlyhtJeXJGkHkOWuR0ry1BSPZfbs2dBqtRAEAWFMApWxY8dK4vbj4+NpH81qtcLLywsxMTE0c7QjiBCLjY11KMpI/awdO3bQ/APs+fvss8+o+HpmxdbevXsd/u1xYXSe8/hs3bo11+falQQZhNu3b0Ov12Pbtm149OgRroq+8Glpafjrr7/QvHlz+Pv7o23btti9ezcsFgs0Gg11MTQajbh9+3aOVeHZGJ8KFSrgf//7HypWrIhvvvkGd+7cwZ07d+hD9OrVq7DZbHh06hTKqdW4mpSEtbJRKDZmJcVoRKCXF3UxoumQc+gEDNqxAwLT7mQXsre9/Pvv9LOa6RixaXcDZC4RbJtL+fmhDjMq+OGuXViikN46oXNnYOpUu+nPP/88Fnl44JWNG7FAjBN6IFrkKleuLBG1njlYRHML+5JzFrPV6McfUV90RXClG/bgwQOMUxCcQHZnoLks2ccne/dKvv956ZKkqDEAwGhEuoMXQIwYqCvnkax+D+tGOFTMvARkF1MGAI1Oh+HDh2PSpEkwmUxo27YtqoeFobL4Em/fti0ePnyIjIwMp65SOdF82TIadK4Ys2Wx2J3vErnI2kZGgcuJo7ZWmTWlVWgovHQ62kE6I7rXyjtU7Hq7rl3DD7Ki7CarFVabDe5aLQTZ+mT7r4j3mTwldk7PGaX25JWCtmwZzGaUdHeHyWrFo8xMCIKgKJjlgpSNBTVZrTh+967DbHZA1jP64MGD9L3wIC0Ne2/cQB+ZtVcJLxeun7y6ESoVpr3rIGhfLrZcdWMu6tjIoANjVWKvAday5ShRD3nP6zSaXLukecncCNnSDfIBVK1ajdFNm9rFcgHZibDMZjPAWMuU7h8ybX5kJGaINUQdXUM2QYBGTK1OkLdrycmT2Z4lsu2ky8RW9erV8ffffyM6Opom05g1YwY+L10a+0SvnoYyq52c60xIBMFPr6di6+R//9Hpcm8DOzfCPFq2HEEsd7tffx1xH3xAjSIHDx6kfTsAuHDhAh3E37ZtGwIDA2lcvdVqxZw5c7B37174+fmhXbt2Dvc3ZcoU+nmpLNkUYfXq1fj555/Rq1cv/M70n+rVq4fx48ejV69e0Ol0qFSpEqpWrZq3Ay9C5N+vyXmi3Lx5U1LPyRVokVEXOibXr19HZGQkTZZBig+PHDkSvXv3xpgxYxAbG4seYra1cePGSSxbVqs1x7oI7u7u+OSTT+j3y5cv49tvv0XJkiVRvnx5HD16FAaDgXYUzWYzKleuDJhMuPPjjwCAwZs3YxzjWveA6RQnGAwILlGCulo4iyWRY2Aexkp1aZzBii3Wj1w+4kSw2GywZGRIOk6OrBEWB6POL7zwAhJNJpzOzMRZYiVRq9GsWbOsTD/Mb04yD+UX7Pl0dG5j09IkhVpdcSOsWbMm9kVGKs4j5yqnrfwgjp6xfCDz32fJcNA5TZFZzFjL1kwxEBiQihgbgNatW8NqtaJdu3bIyMhA2tq1UJ05A68//sD+DRuwf/9+aABkPkY69mN37+In8eVJ3QgddNIIFXIRI0Y6JiQ4nB2sSDWZ4K7VQqfR0I49KS4uvxbkHWN5B9BotWa5Xiq4oso790ZmxN8ZH+zYgbmHDgHIvwyYViZpT0GQbjLBTxRbJWfPxtA//sB+WQY3ALgpq812lEn2YrJa0WzZMqxzYjG1mExYvXo1vY5vPHoEnVqNsJIlcVisl1ly3z58KSY2ALKfYSTpgVzMbXnlFfo5r5YtpYx5SvExgP015SZ27os7RGzRGGRx0IRAzlGq0eiwPiN54ufWsgVkDWYtXboU3y9YAKsgIJ55rzpyI1SCiK3g4GD4ihYTs4PBCjJtwo4dNJuso2uIWLbY54LSNh1ZtlJNJnpOwipUoIm7Nm7cmJ25UBAQExmJu+J9FRIYSAd1Xq5d225fdu7qkFq2ronhE4CCZUvmRmjIR7ElCALefvttAFmDgaW9vDB48GDUrVsXFosFnp6eqFChAlq1aoVdu3bhtBgzSlz4eovJRd566y0AQFJSEh49eoQHopXz/fffx8yZM5Genk7jwWvWrEldA0kiNZa7d+/iypUrGDp0KAwGA838DGQlZvP29sb333+P6tWro1u3bg7jyIoTefo1O3bsiE6dOjn84xQ85cuXd1gszhG5sWwBWWnDySgHic+qW7cunZ+YmIiuXbvS7+vWraM3pMVikfjfKjFw4EA0aNAAM+rWRV9kZ8G5ffs2Oosv+PT0dAyqUwdV/f1hsVjozVxRdJUDgIXHj9OOVPNly+jxxaenI4h5Sbtq2QIgcdUz59KE7eNAVDkSW0azGY/i4xF99iwA4HRsLK1dJHejcGcsJyxz584FII7wk4e0RoNWrVpB5ekJML9FftfCk1i2HJzbwbJkLo7SwbL4+PigIuPiwGKyWuGm0bg8es6698WI51mJVAfCWif77dQqFXYRIc28ONn9DA4OxogRI2C1WvHdd9+hTJkySLhxA+Eff4x0URzp9XqoVSpaKDuvkAEBIj56/forBHFEWilmK4R5dpitVmx3kCETsHdNZM95mskEvVYLnVptJ+rk14JSQWMW4kao1HmUp5sm97LbzJlOtzkvMhKTxIxu8vZEP3iAOaIQyw1Pwo2QiC0gK/lBBPP7kKe3fBCIPb9JYnydo6K4AABBwI8//ohbYsc23mCgllnS0UuKipIkKSCix1evh16joa6lBHaE3pEL2JYtW5wOFCoJaC83N5isVqjCw/EgLQ2CIGDB0aN2MUtnnNzbxQm5G6Ezy5aj+oyqPLoRAlmd8iNHjgDiwAI7iEneta/UqQPAeX/i1Vdfxb///ovQ0FC8KSYjMlmtTsUWizM3Qo1aLbHqKd2RZP15YqY9wqPMTISILqfXr13DKjEDrdVqzRZbNhssFgt0Wi1gseD06dOoKlpO1w0Y4PCYWfzc3RUTZNjFbMncCOMNBpTMJw+UNm3aYMuWLdJ2+fnh448/xq1bt2AwGPDNN9/QWqMk2yARUzt37gSQ5T3TqlUr2n84Ksamnzx5EtHR0ejduzcCxQQhgwYNgs1mQ/v27ZGRkYF169Zh6dKltA5euXLlaJbqatWq4bXXXpO0Lzw8HEeOHKEx58mygaXiSJ7EVoMGDVC/fn36V6tWLZhMJkRFRUk645yiRW4SZBiNRowcOZJe5KT2wnuMVcBiseCcOHK6atUqJCQk0Bs1NDSU3qSOCA4OxvLly/H1W29hy6efYurUqahSpQp9mLu5ueGVV17Bx+3a4dK4cXj33Xfx3HPPwcPDA5sZs7McL50OKmR1EhXFlisddOYFFsQIO1eorlD/DMh68MpJMBhw+swZwGym7VvIFKHVzZghWT5TZmERBAHx8fF0ZEhQqTBk2DAAQLkuXfDN7dsQJk0CGIvYw3zKykZgO0fBTPwSi1zgnsshRikjIwM3b960GxW7dv065kdEwGS1wlNMpOAK45l0+X85SNvtl5KCZIVROAAwyzNwqdX4nPw2TCeIWLbalC+PJmJHNCgoCDNnzkRsbCzUajVNMANkia2g0qVRg8lQ6CrXk5JwWnQ/JB1v9nxkWCxZ2QgtFjurDnstVvjmG3R3kjxFft+wv2WaaNnSuiC25B0M+W9ntFioGyEgTQQhD0a3cyN02Pps5J2xD3ftcpha2xn56UYY/NVXkgKrAGCwWFDSw8OhUCL7JucekB2/1Yr0XLjweYgCK8VozM4oKa7fslGj7KybAEqLwkulUuGnvn3tvCTYEXpHz9mjR486dYFXsmxZGbFxNSkJjzIz8W5EBE7FxkqExOMUUi5K2AQBeq3WoRshG7Pl4UBslRTvca1anev4n5ASJdChQwe4u7vDarPROEwg+z6qpGDJkePh4YGgoCAcOHAAG774AoBjsaV0vVxISECUmClQvqxGpYJKpcJg0b3PmVjrxgwKE0gCsbr16mXFaiErFr6NmEyjbdu2sFgsCCxVisabvVKnDh5NnpzzcYv3ASuY2OemnRuhzLIF2GdizA2CICBTdEE+dOgQzSRI2LRpExYvXoxRo0YBAEaNGoUFCxYAyE6QQbJdR4uhGmPHjsXhw4dpFkESi3XgwAFs2LBBkrE6MzMTdevWRf369XHjxg288sorOHXqlOIg65kzZ2gCNZbY2Fi672c2Zuvrr7+W/C1cuBAHDx7Ee++991SclKeV3CbIUKlUeOGFFzB+/Hg0atQIALBmzRpqkrZYLDggVldv1KgRJkyYQEeIPDw8cqzFtmTJEly6dImaqy9evIgrV67Qa6hp06aoVasWXZ58z8jIwGomOyIgfdDqNBr68GLrjeXVsnVZVovJGWfPnkWkeE7k6BXcKkvPnQvfkiWzRtPE+c4sAEbZaPbp06cRGBhIszqSVLcAEFe1KvAEBj/YeDBHHSx5Z9k3hxc1G2DL8uKUKZhw9CgSDAZ4aLUuda4CPDzwaYcO2RMcdGJrlSsHdwfFcq/I3Lg0KhWaiPeExLIldlwFQYDJZEKtWrXw66+/YsGCBUhOTkZSUhItKQBkpRr2L1kS5XIp6AVBQKXvvkODJUsAMJYt5nw8ysy066SRDgZrgSNZBh0hv29sMrGl12iy3AhzsmzJrBDsb+ctWi5Yy9bk1q3pfPnofU6JVjItFrtg/vwSSPnpRvggPV3i/gdI3QiVoPEzJhN8xOuNzVwImw1xst9Ur9TZFo/BxDxTyHVB9h25f78k62t9cdBGEARo1Wq6nEocPNHKi8kqMGvWrOySFAooWbYMZjP9zVOMRvqMSzAYJB4Dbg4s/0Udq80muabt3AjFBBlk0IRMz7BYHNZnrFGqFD5t3x5qtiagAxoEB6O1GEsKZImtIUOGYNyYMbDJ3AjLi88QR3GSpHbT7du34e7ujurVq+P48eO4tX8/wtLTkZSRofieULqnlkZFobEYMiBflgwadxa9HxyJLTWAlkyCL3ocvr5oERWF/w0fjmpi7UNfX18cFON+f1q+HK+++iref+89wGaDTsxG6OuCqyoRwOxgb2Um7shpggzxc+nHEFuZmZnw8PCgKe3lhYr37duHveJxNmzYEHFxcbRuK3HZKyvGQ78qxiRfvnwZixcvxqpVqyQhI4TGjRtj4sSJALLDSL7++muaybpTp050mxMnTsTevXshCAK1dsnRaDRUwD0NuiJfY7YGDx5MM8pxih65dSMEskbe582bhyFDhgDIuklTU1MxZcoUBAUF4YJYnyMkJESSIOPo0aOSOgpKPHr0iMaCAVnmaI1GQ2+sCRMmSIIwhw0bRsXcfNFtjsB2MtkXSxAjtsgyuQ3cvuSgWKQSa9asgcmBWNI5iGFLNhgAiwU6saOQ5iR+RyV7oZCH0RExLbBNEPC8WIfL9IQyEKYx1rbbDs6VPOYmSTaaL8fb2xvh4eH0ZUGoIL4QMsxmeOh0LgnnI2++KZ2gdF6uXsX5s2cdJs4wyH4TtUqFV8X4lL5ikWsgu7NqEwSYzWbcv38fERERMJlMCA0Nhbu7O3W1AIDmzZvj/r17+FuWmS8n5O5TSQpup2Xnz6cJMghk8ME7Fwky5LGO7P1DY7bUahitVomFRal4uCN8RXHBWrZYgSW/fnJKkPHBjh2oJxvNLaoJMuRtN5jN8NPrcxRbaSYT/R0lHTOrFZdlSSaUYh5I1rFk5l4kgwXNy5ZFs8xMQExEQFggxugKyHrOkpitiqLg+YnpGDt8znp6Ak6yBipZth5lZtJ9PcrMpNdkgsFALThVMjJcLj1R1Hhjyxa4f/45/U7cCFOMRuy7cQMWW1bdOXJu2HOk5Hb7/bFj2HntGo0jyklsvVa3LiYxgxtlvL1x7NgxzJ0zBxlGo6SO3cIePXDjf/9zaE1etWoVfH19s2KFRYjHiyAI+HT/fmmdK5ELly45bSMLcSMEsst/KMVkWmw2qAAae87iqdPBIzVVElseFBQEJCUBd+9i8YIFeOGFF+Dp7g64EBbBQgRwJ8YNvjqTeIZ9JmtUKollixxPaQdxiq7wj1iL9IMPPsjan8xjg1iv6tevj7Fjx+Lzzz/HzZs30aJFCzRp0gRAdshIVFQUgCwBdffuXfz333+wWq14++23IQgCRowYgZ49e6Jbt250+yRh2v3792kt1TNnztBCxl9++SViYmIcFkZu0qQJ3v4/e1cdHsXVfs+sx5UECZ4QirtLoLg7hQItpbgWaQulUIpDKVKgghUrVty9FLfgLkEDIW6bzervj7335s7s7CahtP2+35fzPH1KdmdnZ2euvHLe8w4axJ5NnrMlwdmzZ1lBZB7+85AbgQwep0+fxvfffw/AvmitX78e169fR0hICDvG399fFO1ISUmBew4iM1arFQULFsT777+P4sWLo0ePHvDx8cGaNWug1+txg2vkGBsbCw+6AEk2ZKlhQjf6t67Z4pCaC6ele/fuIjEKHs7uejIAmEwIIU37XNGxpFnJMmXKoPuIEZgycyY7NpAa8042WG8n2Zu3RUpqKnDqFPDkidN7Sw1neg8U2Wz+iSkpmJKZCZPkXsaTTZpGdN+GNhQqFwRYtw5JCQlOpZTZ5kiosUqFgnHOu3bowI7jna2IiAhMmTIFkydPhtFoRJEiRTB16lSEhYXhvffeQ+fOnZGcnAxTZibickntjJWoI/L95aSv8+OJGqbeMhkAZwIS0nkjpRFqSU2IwWwWC4RIAwMu5pGvTgeLzcZq8QD7mKEZUWlm1JXKHgBck5Goll7P27pL76pmi95v6bqgN5ng5+bmdCzS9grpJhNzjkSBnMxMRDlR7+ORlJCAiIgIUWSZjl83tRqfEalqueAczWzRbEwUqSm7za3XZqsVd2Jj8ZNEpEYxfDhAjEAev169il+vXpXNbBnMZjYOe2zdip3ESOMzWy+jolD4v7Tx6alnz0R/UxohADRavZo5V3KS6HLO1m+kdo2Oi+zYLF4ajei+B3t62hXrbDboMzJEzpabWo2ivr5Og7ZU3Y6XEKflCPQbEmTo2u4unIuBRLqcwsoFAeh6ITcjb755A+looo6nu1qN0NBQptQH2AO+MJuBZcuwcP58jB07FmuWLIEuNjZXTXXpfsfPy5NcfShPI/Qi9Y8UdG0LdHeHp6cn60uaG1Cmy4YNGwDAQUuhdOnSAIDRo0djzZo1mDBhAvLly4eGDRsysRAa6KSOmsViwYIFC9g5EhISYDQaUa5cOZQuXRr379/HH3/8AcDeQ6tHjx5Yu3Ytli5divDwcBiNRnTo0IFlxoYMGSJSQuQxYcIEtG7dGsHBwdBqtdD+l2asebyVs9WpUyfRfx07dkStWrXQt29fxgHNw38e3iazBdgnLuXv0gjR3r17ce3aNZY2fvnyJby8vFgEIjk5GT7ZKJ41bNgQI0aMYBPy1KlTWLduHdRqNaKjo/HLL78gKSkJN27cgMlkQnp6ela9i8SolIo0UIOQl1t31XvmW0Izuzt0qMN7adkYdjyio6OdOjlOi9Xd3ACTCQJZcKWRXf56vbmI8Jw5c/DJ4MHY5O8PH44ml50DQhfTdwWbIAAxMYDR6NQIdScGAd3o+OyOHB6/fAmrRgNPiXIijZBmmEysZut4VBSmO6Fu8vi4UiX0rlAB0zgFTIqY169RpHBhWJxkHykF7jvC7VcKAgtA9OIU2OgmGxsXB29vb7i5ucFisWDAgAFQKBQYN24c4uPjcefOHWzduhWvXr2CUhBy1Aftz6dPkUwymXGS2j06p6WGKhXIoE+F1hDUCgnBnh49HI6VgzQjLBXIoGqEUmeLHrepSxeoFAqRgSHt5eRDNtPTz58zI8pNrcZtMh+pk+ir02FAlSowWiyiWifpihYtE8n+K2qEe+/fx924OACOma12GzbgDtf4PKeg91W6HutNJvhotU4zgUazGVdevUKSwQAd+axIXTIzE8+yoYYCgPnKFVy7dg0qzpHlWxdUrlwZbm5usnQxmtliDjS5Hz26dmXHWGw2tP7tNwzeu1f0WauTwv++O3ei786dsgEbk4RmR4VN3qSnM2crIyUFyv/SCLg080RphBSMNkjGBD/P5XoLqiRZn+wyW0EeHqL6Ine12h44tVphkGS2KJzZEc2bN0fdunVF+3/FihXx8ccfQ8EFo6TIMBic7h+/REaKRJZ4GiF1aOQ+22HTJtHf3lotfiFMBDeVCr/88gtaEyYIALzhMsKCIODq1avIfP0a1aOicmXwy9XRRXOU+FQJdZfPbNFn7K3RID09HRe4Gu6cgs9k//TTT/juu+9E788kwdmPPvqIsVEuX76MW7duMRl2SnenNt60adPQokUL0XnS09Nx7NgxFC9eHGPGjMFF0s7Dzc0NWq2W2YMHDx6Et7c3duzYgY8++oh93plidceOHVGpUiUULFiQ9Qj7b8dbOVs+Pj6i//z9/REREYF9+/Zh8uTJ7/oa8/COkJuaLR5eXl7MyfqUo2TFxsaicuXKAOxp448++oilrVNSUrLNoHTr1g3VqlVDcnIyVqxYwdL0JpMJX375JavbqVChApYuXSpSpGklmfQ8bFxNBW/8mSwW7L53D/PPnRPx3F+PHImvGzaEbfJkhAcGIp+EsmTNxQYeHR3tNLOV31XDTbMZj4gqmF6ysfEbqy/ZwEwmE+7du4etJJI0mSvazc7ZipXpY/NX4OvnZ3d+bTanfbaoE0INzNcymQfA7pCuvXYNKWQzEiRjlW54GWaz3SCwWtFx0yb8kIMNaUXbtmhnseCqJNJ+bdAgBAUFQaVSyTbM1imVcCcNp/MRdc5Y3rjmjEBKAdWTaGD//v1hsVgwf/58puw5lRM90Wq1UCoUstQpKRr++iu+Pn4cMWlpiJLQMBWCgDi93oGCarFaYbJamePjq9XCMmkSWpcqhaoSR9ZZMCDbzBalETrJbHUrWxblgoJE1MeSkobsvGCHkos806g1dQIaFSuGFqGhyDSb8R7pJycHub5MfyUb1WbDBry3ZAmMFgtS09NFhd6779/HaiKXnBvQeS11ZowWi4g2+U3DhhjDCby4e3mhyi+/YPbp03hBIsM1CxWCceJEeNpsAEfNloJmrr6rUgU4eBCJiYlsrAKAJ7fWnThxQla2GeAyW+Q3NCLBnk7t2rFjLFarrCPwNrDabCLqFf33q7S0rDFnsfztaoQWq9UhC/UuIOds8bVydKzIZbbkdhupk5Wds1XYxweNixdnPdbUCoXd2bLZYLZYHGjLgPOarbp16+LUqVPM2Xrx4gU+/fRTrFq1CmEkoyLXqP5NbKzLvYvvl2i2Wtk6oXHhbFHsIf0afbRaUeZ8y5YteMgpfc6ePZsdGx0djaNHj0KpVOLkyZMO9cMUlfPnZ7WMALCiXTv82r69w3E7d+1i/+bHsrcks0XvgYHMPZqFyg3MZjOrjxo0aBDmz58vev/EiROs9p7fs1NTU5kqNO3FRftk1a1bF2Ulkvfp6em4fv069nHtdwC7s7R582Zms82aNYuVnPDIrj2Qu7u7rHjGfyPeytlatWqV6L8VK1Zg1qxZIhnwPPznITdqhDy8vb2Zs8VLdA4ZMgTriYqZUqnEJhJFWr9+Pa5du8bqq5xhyJAhaNq0KTp16oQ5c+agd+/eqFmzJnO6/P39GY2watWqWLduHeoSXvkSopwjB37J5Rcxo8WCw4RHzhe5qiQT3o+X1DeZoJE4SYrly6GRUUhacO4cbDYbfLjGmm7cuQPc3TGJq0Hb27MnalEqpsmEZI0GVpsNFyIjAVKDBYg31kRCN8vMzLRnG8mGk8xF8o9nQztIclIvtfrqVVb7kxuo1Gr4+vggX2CgU6l2B+lukwmzT51izXgpdt27hz47diCJLPhpkk2Z1sOlGQxwU6uRYTa7pKfxSE1NRdeuXXGONMwEAEV6Osuy2OQ4+fPno7u/P04QA4s2MB5IWhwAEAluUMl+La2N8vJCuXLl0KNHDxZtjOcog1qtFiEFC6Je/fo5+g0AkH/ePPSQqHEqBAH55s5lMucUbOMm98hHp2PzX7oOZOtscZmtIdWqoWahQg5qhHxmxGyxQBAEREdHQ6tUimhxhSWBGJGzRa6rQnAwm798k1WNUgmjxSJ67t+cOIEYLpsjRzN8F1VW0//8E1FPniBVQuNM5iLVr9PS0CwHPRCZuITkdZPVymSpAaB3xYr4rlkzds+0JAPxJj0d+TmnVa1UYoTJhOZEna0Kp3pJs1fU6E7n1q8QThiBd/IMBgM6dOggu19YJTTC40ePAgCGEQOO/j5X9ae5BX8u+uzTjEYkEFolTCZRM/q/A5tv3UL9Vave+Xnpc2lLaF88jRBwnMd8cIYXkpGej9EIs7kvdGzRDKlaqUTJkiVROjwcXj4+LLNVnBM2cmZHrF+/HoIgsGDryZMnMW/ePJQsWRKnzpwBIF+XHBAY6NLZ4h0Uo8XCfpOrmi2KIkSAyFvibM2dO5f1lQLs63Hr1q3RgaOGU/qgs5qtC/374xLpKQUAn1SujMrc3KtOgloVSWAaANK4tbCAl5dIeZA+W09PT1gsFlTIppmyHMaOHYtpXFsMqS02Y8YMlsHy5+wVtVrNAknr1q0DAHZ/WrZsiQsXLohaDnl6euLp06fM2aKZL4vFApVKxRy+gwcP2nukSkDf/1/AX6rZunz5MtatW4f169fjCtcdOw//mXhbGmHJkiUxlNB52rZti5+JAtqDBw9wljSdVSqVWLp0KQB7g+MffvghRzVbPK5fv47z58+ziFlgYCCjm4WHhyMsLIzxwL8gqW058BEuPqJntFjwgkS8fTijUOpsiVQDTSZc5SJaBz78ENYXL2CkGzyHU8+ewWgywczLuEoiivz1lAoIYHx7b40GFoUChx89svfE4jYjfgPSEyMvMzPTXvdEz8eddxkpaHV2Dc7w8c6dmMc1ET7/4oWDopscDLBnEMuWLYv0bCLZ4SRD5O7mhi+PHsVIiTAE3TBNdAOVbHD5iGOUTmiEcXq9U+ERKagiU6ATJcSKpM+ICMnJWM0LLZCNyMPdHYiLg/LKFYDbOCm9L1OhwOLFi9GwYUMsWbIEGzduZJQKPvvv7u4OH29vFMim0TQd09LaJQq5KLOvTidSLQMgyuhK1wGpg2KxWmGz2VhU/cCjR0gyGGCx2eCuVkOtVDK6E+2zxV8f/dybN2+gU6lEVCSlRI6aryFTKhSwTZ6MKgUKiAwjes3uarUsrWn9jRuISUtzWuskNcbo3zdiYhBGgjdTT5zA9jt3ZD8PAE+SkxETF+eQwU3mvvNYVBQOP36MX69exdhDh9jrr1JT0Wf7dvY3Naqkz85stSLIwwMfV6oEAKJeQgCQwjmVAcTwodkpo9GImCtX0LBwYaY8KcWj3r0xeeBANGrUCACQxDEG+PqfN2/eYMeOHSJnkBbLSwUyKK07khjTAJCYy2bw2UHO2QKAw1u2AAsXAmlpDpnwdw25cfc2yDCZRHRcui/sISIRUhqhSTKP6by+PmiQLGUttzRCKsbAOzAtW7bEhz17Qknm7vzmzfFwxAj2GWd2xEvJ3tijRw+sWrUKjx8/hoGsn3KBHUNmpktni5/XRoslRzRCij59+gAAWoWFidYUqprH48iRI6yOMSgoiNHonIk0qBQKl/f3SJ8+qBgcjAEDB7I1hw8i7unRA604pUK6bqalpaFVq1bYsmWL03M7Q3JyMvr27YtvvvkGgOPaFxUVxdgZv3CiNiqVijGKqK3VsGFDAPYgYe3atUViI35csCcoKIhR/uh9HUh+s06nQ40aNUQO1+nTp/HeW7Q8+W/FW61Mb968QePGjVG9enWMGDECw4YNQ9WqVfH++++L6TV5+I8CEyfIpbMVEhKCMWPGAACOHTuGBg0asElDZdv9/Pxwn2wUbiTySid6TmGxWBj1wM3NDV9++SWKk0zJH3/8AXd3dzwjGYbNGzc6PY8zQQmT1Yrn1NlykdkSLZySrEnz0FD7P2TuYbrJhGteXkjnuO/J5P5Iz32sZ08U0GqZ8VvN3x8emZn2wmGJs5XGZZvolWVmZqJLly4syg2uGFmaRXKXRuRcbEo8ZbHWihUOim5ySNTr8eLBA/xx7BieO5HJtxCOPf39dMF2diVq6hBJKJ2hRKL3wqtX7N4FyRVWf/stlBLRieTkZHh5ecGHDwJw9yKWPCsfqVgFn10jxoDRYEDkxYt4s3Il5s+bl/U2OV98WhqGDRuGN2/esP4lnp6eUKlULMoK2JtLPnvyBOt++429JteEmEq7ezpREZSb0yaLhRkv9Lr4aLk02i01gALmzMFHO3aw158kJWHcoUP2HjecgeGr09ml3y0W2ZqtIkWKQCtxtgSI6yn5MctfFzWMWD8pQUD54GA8TU52UFQcc+gQxh4+zOa4FPy6kJKZiYOEgrftzh08JM9+0h9/sBqjhwkJ6LVtm4jylELFTCT3jm8wTJ/FuMOHRcGLnffuYS3pG3Ph5UsES+ooKEwWC1QKBZvr9D5Tp8zCPUPq3M4kPYxMJhOunjyJLwsWFD1PM/cb0oiztmPHDhQtWhRpXJaOp66lk9d5Q61z587sNT6z5UXmoD49HSXINUnrCt8Wu0lNDe9sieaIyYQWNWsCXNuLvws5ofvmBO4zZogCTdnRCOk8PvP8OYQpU2CyWPB+8eIoHxwsm7WiDkhOaIS/derExixPzTt69Ci+Hj8ez1+9QkpmJnxIA3YKZ3aEHDWMsSlcKPrpSasKZ+DXDxNHI2SZLaeftDuALS5cwOwmTdi9ceZsGQwGbN68GYA9U0NtnNyoEfLw1moh2GwYun8/EklgQ8/ZFVqVShRwoffgzp07OHjwoFPFPleYR/akQyTYw89hXrJ96NChIufphx9+QKdOnQBkZbxoZstisYgol1qtFlevXsWiRYvY39Spld5XrVaLH374AW5ubjh06BD++OMPbNmyxalAxv9HvJWzNXz4cKSkpODWrVtISEhAYmIibt68iZSUFIzgIh95+M+CM451dkhKSkLTpk2RkZEBvV4PLy8vdJF0UNfpdChWrBi8vb2xf/9+9O7dO8eqdzVr1kSzZs1QtGhRRhP86aefkJmZCT8/PyiVSqSkpMBisdilWQGnvZIA8cLCb0RGiwXXSaYmITqavS51tl5zkeNASW0JAHTo0EE2gppmNELJpeQBODhrdNNb9vPPGDJkCDMiw0qWRK3QULvRJnG2Mngjlfw2Nzc3FC9eHG1ojQRf0yFxtpIkXHN/6TVykBoT2UVEAUBvswEZGfaaLSeOnMVqhYYY5ADsvcXgGI2kGYNbtC6C2+B+vXpVJA9MnS05Na55c+eioCRbJAgCGjRogMrlyrHXPDiD/y7ZSJpz2TyFQiErFS/ATo0oUaIEYggl68u6dbGFCARQU3DKlCmsGFmn02H48OEoVqwYPDw80LVrV/vvtVpZZuLI48dwJ4YzD6o+6MzAkXvdyDlbFHy0PDsaYXJmJk4+eyZ6/Y1eDwtRAqNGToC7Oxsn1NmqUqAAZjRtCpvNBn9/fzuNkBvTCkEQ9UfiM258gISelz5jhSAg0N0dof7+snUkhby87I1eZcaEnmscvopjYsRLqLO0Ju1+fDxOPnuGMlxtWLLBAKVG4+Bs8Zktel+l45KuRTabDSu57++4aZMoam+2WqFWKkWR+6NHj7JAE49UYgiWI2N6/vz5qFChAoxGo7guhnuGpUqVQkBAAFq0aGGPWss4t4CdxUCvl/8sYK8JUXG1hqnEwTVkZODLfPmAs2dxiwReZUes1cpEl7LD3M8/ByB2tvhVQ6dU2q/RakUYJ6/9d+BdNk2+ydXO8mOeql3K0QiPk7pes9UqW4MtTJkCIMsBoY6FqwBrIW6fpkeplUq7MIPZjEyLBUkGg0N/qV4VKmCgDBvApbPlgoWQr0ABUcZSes18QIOnEdLjXGW2PDw8YDWbIRAaMmAPEkVERIiazANZwWIAWLt2LTZu3IgSJUpkKSG/BaJpgIPUU7qi19I5RZkYCZKAbU5AqYBnSKb5A07EKTMzk/2dkZGBJdz6VrRoUfj4+CAzM5P93urVqwOwO1C0yTA9T0xMDLtfFosFp06dAgCcOnUKHTt2ZMeOHDkSVqsVzZo1w++//46IiAgsWLBARKn//463crYOHDiAH3/8UZQCLFOmDJYsWcL0/fPwnwe6dOVWlUutVuPIkSNMCtTLy4s9Z5rxoguDt7c3Nm7ciLVr1+bY2Vq1ahV+/vln7N27l3F/V69ejQMHDuDly5ewWCwsY0odBa2LPkG8U8lvREcfP2bG1itS/Ck9BhA3eU2QydR269ZNliKZbjQiVVrLJTFg6Qbp4+kJtVrNDDJfb28EenoiyWCAt78/GnBNGM+cPYtVpE4giMjUpqamolSpUrggEXsAHJWQBEmmJFiiBMdDanCbrVYMlaiJ8cgwmWBVKADSk8eZQIaF0GJoJNyfZOLoWNy/fz/Kli2La6TA/QHnDFP03bkTjzkDhW6uvGFNjYzRo0c7qGGWLVsWe/bsQQfSKwgAAjjH00zO14p7f9WqVXiPo3j8eeIEAODAvn0oVqwYkpOTcYtcc9WCBVGAr/cD8OTJE7i7u2P27NmsyePDhw+Rnp6OLVu2QBAEu0AGue/OVO2oVPIdoognhZxctslqdXS2XNAIr3FOed+dOwEQSWjuHFdevcLqa9egVCiYIRfg5sbuu5tajW8aNsSZTz5BadIY/fTp0w40QqmzJaIRctclSBwX+l5NwvWX0iqDPDyQbjKJaiAoFpw/j+br1uF6TAzLagGOGRiakUszGmGyWPCUo9mlGY0IDQtzCLakyjhb0kAFXWcMZjNuS57zRW68m4ghzZ9Hr9c7KLACwHNSg0ojxI8fP2aSzKIm0mTeCYIAi8WC/v374+zZs/ZaDu68vLNFHTh37rXthAZ5/sIF0e+jhtmvv/5qN7YzMnDw4UOoFQrRObNukgLLclj79CdpvurMQK1RpQoOHjwI2GzIdNHL7V1Abp69LXj1P37Mm4izxd83ui7TZ2rinC3pPH6RksLohjkJlvGfp5YBE8gwmZBpsSBWr3doshvi7Y2fuB6DFM2aNRMJaQHAJ598YpcNd+FsbXjwQFTrKA1W8OuQiaMRUrhytsLCwlj/KHpfgz09sWDBAvY6Bb+3Fy9eHEajEXFO1t2cwkiufdGVK7DabC57DpolzlaiTE+y7GDmnNaZM2di/Pjx7G93d3f8RpgUK1euZA4ZYK/Jnzt3LnQ6HaNN0gTKhg0bsG/fPlEtWHp6On788Ud0794dNWvWxPPnz/H555/jwYMHLIMO2HukFi9eHN9//72ItpidQMb/J7yVs2Ul3bSlUKvVTo2tPPz7oIZLbqkWdPFZvXo1fvvtN3h6eiKA1N5QtRl6bh8fHxbJz076neLYsWNYsGABli9fzmrAjh07hjtc7URcXBw8PDzY5Jzw5ZdOz6dTqTCyZk3Mb95ctCAvunABnUiAID0+HvnI+aWLdnFfX/QoUwYAYJVZZHv06MGiPTpu8003maCXGsvconeTU8ratmULVqxYwTaUI4cO4dSRI/aGnVaryCGYv2gRPvnkEwBZzlbRokVx/Phx1nOHh3SDtUnm5EsnVD/AvonF6/XYySkHLZU4dGlGIxadPw+AizYSZ0twsnharFZoVSpmNDwmEVq6Qf7622+4nZ4OP1Kjd8OJiMcLLrp4nmQH+E2ZCjQIgiBqmA0At2/fxubNm3GTyyok8QpXZBxQCglg36i+GD3a/sebNxhLggtXIiMZrYQ6/kpBQGRkJDZ17Ig+5LVFixYhNjaW9aTz9/fHqFGj2PmpsxVLfleGE7EPmqVYy0UWecj1rQEc67B4A04aZOiyZQuG7N2LxRcuYB35Hi9Jc93nKSkwmM3IJJkNwJ7Z4gvxJ0dEQKtSMfpLXFwctCoVUo1GEV2pNFlDAKBS/vxYRjIp0uuqHRKCBqRIna4z1UjWUprFNVksSDcaRY4cjz+ePEG9lSuxn6PDODhbtK7CaHQIPigVCmQajQ6ZLV6hkb4jpXfR+5VmNOKNRGDjChekMVutUCsU7LeqFAo0adJE9vcIXH0HAHz77bd48eIFtFLpeO533L17F7Nmzcp6j/v9/Pj49ddfAQCNihdHI9KbjgbDDAaDSBSEKoZ17doVffr0wbRvvkFyZiaalizptPfeOa5PIw9pjRrFDCftHZ7SZ2m14sHfTEt6FzRCGmDiRWGktcVUgISCBiqow5lmNDoVvyg8fz6r/WK93LhjpKq4/P5H12O1Umk32E0mZFqteJOeLk/XlkGZMmWwbNkyFoy/cuUKZs+ejU8//RT7s2E+3eL2TznGAgVPI8wJ5s2bh+mkaTQdX8EeHpg7dy4ePHggOpbvp/X48WPExcUhJSXlrZlBQNb6fTshIWvPdDIvqENvs9lQtmzZt2qnpFKpUJuwXcaPHy9yth49eoTx48czJ5MPvqtUKtajizqYdL8qUaIEgoKC8BVpfwIAer0eN2/ehF6vx9ekpcrcuXPRvXt3nOb6in3++ef4/fffHa4zz9nKBo0bN8bIkSPtMtcEL1++xGeffYb333//nV1cHv4e5DazJQgCPvjgA6SlpaFHjx5QKBQ4fvw4wsLCcOzYMQBZk+by5csoRjbmvn375uj8w4YNw8KFCxEcHIxaXEZHpVJh2LBhaNmyJQYPHoz79+9DEATYbDZMkumVRKFVKrGgRQuM4s5F0ZU4UVAoWMdz6RL6cMQIrO/SBbbJk+HtJAJFDe1OnJpemtHouIByRk758uURRYyBN8S4ohtK6VKloDAakWgwIMNkwhVOjbBho0as58VTEsmGUom19+4BxEDl4aDOJ43Cy/QgojBZrfjq2DGH/iQ8tty6xeoNEg0G6BQK5AsIQGjJkgjh6pEoTj59iu/PnRPRCKmqIN3cr/r5AX37IoZQJq7koCnrLVojqFYzw4Sv47FKDOUzZ85gxYoViOafGXcv1MT4mT9/Pov23717F1vpvdi5ExeIk/nFuHFsDOios6VQ4Msvv8SLI0ewcPBgAGC1jVTFMyEhgTkhlOYYmZmJN4RWKVevBchLJQ+qWpVFm5OdFO5LP+eKRggAP166hAlHj7Jx6aXRyBazJ2dmsiwln9niDT/qAKSnp0MAsPHmTfa8BQA/tGqFqwMHIsjDA7VCQrJoUZLrOtOvH4KJgUivmar1SZ0tg9mMdhs3ugwoSTMtrjJbUoqhRqm0K39ylEBAHFWX1r9Iz3srNhb3JPQZ/ntYzRYnVnCCZFSlKEEcFqoCajKZMGvWLLRt21aU2fLnAl+ZkrHSgIvs8/dGr9ejb9++0Gg02NOzJ87164euXB+tmhxNdwfJeAUEBCA5ORmJN26gfFAQ5jdvLhKC4JEpyQJTOBO8iUlPR9UCBdBRIoX9lBrL76jZtCu8CxohdZh8eZEmvraYOFv8/KRiI/SzyQZDjlq50OvlZ1REsWK4NWQI+5t/j45ntUKBWrVqoU/PnjCqVDCYzUxEIzssW7YMgiCwYOmOHTvQpUsXVKpUCS3DwtCK6/Poit6odPEseRqhKzQuXhx3hg6FQqHAjz/+CCBrTQz29MTPP//M+kxRBAYGshY2AJg981dA11CdSpWlJOukppE+s06dOuHmzZvMaZLClR03f/58kS3OS7M/f/4cmzdvxiUSROWdS5VKhbi4OAQEBLBs+aNHj2Cz2VCxYkUcJaqjFHXq1IHRaMTu3btF9Vw3b94UOVL37t1D48aNWbacwhXL5v8b3srZWrx4MVJTU1GsWDGULFkSoaGhKF68OFJTU1kxeB7+8xDs4YFmJUu67vfkBBs2bECPHj1Qs2ZNAPbCygkTJuAxMf7pxHr+/Dnj4abloLGmKwQFBeHBgwcoWrQoQkNDWd+He/fuifjAUmhdRMRY809BwDpCWZBGrBSCgNTUVAiCgBQnGRYtMcx/W7MGIM1t041GWKxWFOKj1hLHx0g2zVo1aqBJkyaMAle1ShXEv3xpVxJUKODDReYjHz/GuiNHEB8fn+UoKZVIqV4dkBgsFYKDHQxsOQfIGUxWq/PmywT0/posFqRkZsKTZLTDihVDLLlfu+/dY/Vx+4gxpCWS3QAgkHMYifFA79JTGfqgMwSQTVurVDIampeTxpOPHj3Cli1b4OPjAy93d4CqxHEbVgBZ+GldCsVuYkjywhru7u5o27Ytqlevjs5kLCoEAc2aNcOff/4JlUqFpk2bMsU3HmvJuNvF9V2hcCZjL+dsaZTKbKOtUufNFY2QQqVQMKfMS6uVpU4lc41OfXQ6WcOPjtX09HRRvQX9bne1GhXz50fM2LHw0mpzpJxGDSyauZI6W7SO65GLOgcpzfaF5Fg+syWFACAhMZE5c6z3GN/3iDpbkvtLs5aNVq92OC/fcsFEarbop1UKBZ4/fy6qJaEoSDLdz0k9l9FoxOnTp3H37l1RZsvMnZ86W5+TWqioW7fYe7wznp6ejlWrVmHHjh3w9fBALU4iHoKAjLQ0UX8hwB5M2LVrF+aNHIlzH30EN5UKNnAqo9xYcncyV6WZLX4OaUggTQT6nCwWWP9m6fe3pRG227ABTcm8p869u1qN6zExaLBqlWxmi/8ldP7QOZdkMLD75MphkcvECRD3uXOW2WrRogXatWqF56mpUCkUokwcxaNHj9gaTiHtRzVlyhTs27ePGeN6jpbrymGKdaGEa7RY2Frjar3w1mox94svMGvWLCxfvlx0vJdGIyuQodFoWCaoUqVK+OCDD3KtrOwMxXx8cIhmX5ctw2KJ8wFkPbMHDx5g+vTpaNy4scMxjx8/hkKhcMoku3HjBqZNm4aJEycCEDtmBoNBtJbQUhDAzk4rXrw42rVrxxoUA/aAuMVisdcwwy7s5OvrixIlSrBjrly5AqvViqqkjo8XFNFqtahWrRrqkxYn5cqVw5UrVxzq5f4/462crcKFCyMyMhJ79+7FqFGjMGLECOzbtw+XL19mdJk8/OdBrVTiYK9eLp0RZ3j8+DFOnz7NCl0XL17Mmv8BWbKoo0ePZkbWLW4Tzy1KlSqFRo0aYfTo0ThOOPu007vBYMCfXK8kKVzRD2gBf6kcFlIX5xYTHvk4SXpqsKdkZqJEaChCeGEGujmTY2iT0CIFC6J+/fosinv/9m3oOXqbN7cYni1ZEhg0yJ6+p4urUukg7AHYjVCpgZ2ekYFNLpxTIGuTpVFVV6AGWZLBAIPZDLPBgPj4eOzftQvPiLPUbuNGtCG8cLp5aLiarQxiPMTGxaFixYp4TByydBeFw1IsI8pHWpWKZbR+bN0a38k0Qdy1axcOHToEb29veHp6oiylv3LHJHBGADWYo6Ki8CWJci6YM4c9R3edDunp6VixYgUqkA3z7t27GDduHFJSUrBw4UIcPnxYFO0D7DRCSt+QK7h2RiOUe50XUXCGTItF9Bt5Q9apmhinNOjpLLNlMLBsmkIQZClNISEhKFq0KAYMGODguMh9d04i9fRzVMlQ6mzR73FGXQOy1odJDRpAKQhIkcwXi9UKg9ks62ylpKba1UHJNVLjm58z9N/0d1BDx1nWEsjKXNhsNiZ+wGfIDAYDMmQi4YXJWkMVxry9vbF7924cPnxY5AilcHRZajB9+OGHKFiwIJ6T9RUQZ7boOTt27Chq4oz791E0Jgb+/v4un5XJZGLv0+fBBw2COBopD+nYOM5d38OEBPhJjP7wEiXsPYMsFnv96N+It81s7b5/H0dIYJLeA7PViuknT+Lks2eioIlRLrNF9g3aJDo5M9NpJpgHPQd/ftqrjoJ/j6/ZWrduHbq0bw+D2Yz8np6yczY0NFTUygKAeKzIQMNTbl1ltmT28cr582NCvXqimq1qBQuil5NeVO5qNaKiomA0Gtl1NShaFI9GjMDmzZuRmpoqS2WjWR9ah6R/R8qaWi6r3KhyZXjKBKSDyb5w8OBBLFq0SKRGeO3aNXTq1Cnbei5KE6ZtenhkZGTAzc0NNpsN+/btE8m3L1iwAN988w3ykSAOxfbt20WO6ZIlSxAYGIiFCxfiCOntmJCQAIVCgcuXL9t/KxdM0el0GDt2LJRKJfbt24epU6eifPnyzm7T/0vkamU6duwYypQpwx5006ZNMXz4cIwYMQLVq1dH2bJlcdIJrzoP/91Yu3Ytpk2bBh230QVycuN0A9fpdJg7dy48PT1zXLPVrVs3RumjuHbtGho3bsxUCnlotVqXi5/WCQ0FyHK27kt42lLQqEyVKlVk36cG1d27d5kDZANQoHBhFOKdLWokk2Oo6py/ry9WrlzJIpYVS5QA4uPZhCwh0+yvSpUqEMh5fl65UpZu40Ea/fJITEqCinstmDiKPKjRaLRYZA3Vzps3YwKhENDfnkicLSvdQEwmGDhjhG6G1EDRqlTs3EEkK+Xm7o7rBgMUhAaVkovePJGEyqhWKFhmq2ahQhhTpw7OnDkjGjc0AlivXj2EhYWhMInS+3JjNINrBk0NmGLFirFx3K9vX+ZslSxeHBcuXECFChWwjwiI/LB4MbkNJhbtrcw1sgTsayb9bi8ZGlVuaISaHDhbgFguno8COzPSlIIAT40G+T094aZSyUbHkwwGkeCFXJQ9IiKCqV5JaY4una0cGI8BJBghzVIxZ8tqxVKu7pEHlXk3X78OS2oqTJLxbrHZ4DZ9Ov6UNNwGgNdv3sCNOHrUMaKfoaBzif4OOh+dOdJAlrNFz8PXbAGO1D+KW0SWuUaNGgDsBe/dunWD0WjE3p490YHWvZLvtlmtaNiwIQoVKoQvv/zSHmm+fx8nCT2QN8IHcQ2KRfjtN0z/8EOkpaXJPiu6F5hMJvY+zfzxwRQ3Mi4TMjJEGd1EgwEFZLIogN3Z8NRoRN8bVqwYTpw4AYXNhmCJAumjhAS0d9EmJLd4FzVbdC7zvaJ4gZWvjh3D67Q00RyRZrYSMjLYs3Lm8DYoWpTV2vEQBEE0tvgnyGi+gmBnkpBrreCC7vVUMk+kmS4pU0DNZ4GdnlUsUc4+q1Qi2NMTFpuNjSlBENDeSfDUXaWC0WiEh4cHc7YEQUAJPz988MEH8PLyclCtBcBKZFasWIHnz58jlLZ8+YvwIfd9ecuWuHz5smxm6srAgXg8YgTMZjPy5csncqhWrlyJ7du3s4yQwsmzpwIZVFhs2LBh7L2wsDD0798fAPDjjz+y5sWAPZC9dOlSzJkzR3S+BQsWwGq1MmerZ8+eaNKkCWJiYhjdkM+WNWrUCPXq1WN/Dx48GMWLF0fp0qVRvnx5dOzY0ema9v8VuXK2FixYgP79+8uqzPn4+GDgwIH4nlCqcoKZM2eievXq8PLyQlBQEDp06CDy4k0mE7744guUL18eHh4eKFiwIPr06SOqFQPsG9Hw4cMRGBgIDw8PtGvXDi8kIgCJiYno3bs3fHx84OPjg969e2fJkeYhW6hUKmRkZLBmf4Cdn+8nkUZ3c3PDli1bkJaWluO+FEuWLGHUKgqdTscWEumiGxoaygxWObjK3NFIeFA2XGGaqTtPanTWNmmCC5zCUo9y5dgGlI+L0J44fx6PeEeOy2zt2rULpUi9Qf3atZEvXz4s37ABABAXE4MiRYpAQ669rcT5BOwd3UuSRd/L3x86GRqOh0bjSEVTKqHm7gnvJFNQI8JktcrWWGy7cwc/kWgfNRqTDAa7UALduM1mURaEGgvU+OSdYDfiaKSnpwM9e8JK7qUtF3SNaSSiarZaRWp2gN0x9eScGSpZ+/HHH6NkyZJMWTOIi+C11uuhkmwyABCaLx9qRkfDmpTEWhMs/uEHNr6p9Puzp09RrFgx7Ny5kzX2pIbIRmLwbdq0CZcvX0a1atWYE7eIU3VNIFlhaXbRmbMlp8RIQQ0ZZ84WNbh6SiKMMenpeJGSggZFi8JkschmtqTOllxW6sCBA5g9ezZq1qzp0Az2bTNb9FOURiildVEaodlqRUEnNUEUvgoF1AoF6Gin95z+/76MLLFap0MxUodn5Z0tbs7wwQUAiCLGktwzpKCZC/pZlUIhMkRbtmwJyETBr5MmwxcuXMDVq1dRuXJlvHr1CkajEW5qNT7t3dt+ILlPiUlJ2L9/PypXrgyNRoNNpB6RtpTgAzh8A1KKwYMH48qVK5gwYQLOnDnDnhk99vjx46KINn2W9J6mcsGUN4RuFjBnDgpyveoAYG2tWoAkK6xVKoElSxAVFSWitDWJiMCiRYswdtQopEpq7F6kpOCcC0Gg3OJdqBHS9XPB+fNsbPB1g+tv3ECG2Sxbs0XxOi2NrXlSh5eus01LlJDNHEnnHi/97tCPiVyrlC5KMX78eJQtW1akftevXz8sXbqU/a1Wq9GrVy8sJsGospzjIggCng8dCvzxh+z5pVApFGwsXeNohs6ohFribIWGhorqDQE7y2Dbtm0iKhxFyZIlodVqYTabYTQaHRgKbwsPMr+TYmJYOxspCnh5obifH8xmM0JCQpCRkYE3RIU3OTkZX3/9NYKDg2Gz2RzsLwo+uzhu3DgMGDCA/V2uXDkmurF7924RnX3atGmMQtmzZ08A9kB7eHg4Ll++zMpIADszIz09HZMnT8ZHH33ERMMAexCat69r166N8PBwqNVqtuY4axL9/xW5crauXbuGFlK+NIdmzZqxFGJOcOLECQwdOhTnzp3D4cOHYTab0axZM9ZMUa/XIzIyEl9//TUiIyOxbds23L9/H+1obyGCUaNGYfv27di4cSNOnTqFtLQ0tGnTRjSQe/bsiatXr+LAgQM4cOAArl69it50I8pDtlCpVKhbty7jPQN2o12axg4MDMSFCxdQvHhx1pA4OwQGBjqkrXnQ6A+NtKpUKpdd1V1ltqgBlOxCJIJ+x6xZs5jEc5ty5VCdyza1CA3FNXI9sZwceUxSEtL5c3OZrTZt2iCIZJUmjh+PS5cuwUKMhvLly6N3797M6HktozL48OFD+BHHrmefPsiQKJoBjsX/ALKcLRLBekKUAHlQI+LKq1dOa7aoSAE1GuP0eiRnZmZlF0wm2GT6JVEDkr+2BySLJM2hWX18AFKbp6b3juOOi0AM65TMTIdarffee49JsgNZDuaOHTvw4sUL1qiRry/YtH490kjWgxfX6NKlC84ROsZpkrk/f+4c2yzcOMNPq9Xi9u3bWLFiBYCsuqU6deoAsG86nTp1wsWLF+FJ7id1HKw2G6JIsbaUrpRhMqGUhHalUSpRmnOcpTUV9N7yNZpyRkkpmb5r1QsVQtl8+bD8yhVcjI4WOXW1Q0KwvlMncWZLhkZ4/vx5dOnSBTNmzHAw1uScLWfqanKf89RooFUqsahlS9H7NENgc/JbKX7r1Aka0uOMQhpkkDpHQkIC/AMCGLPDarOxIAXvHNPX6Dyixn52NELfWbPwmKynt27cEBnKZcuWRfVHj9BL4nDZ6DltNsyfPx9Xr15FUlISo/NT6jVfO/rTTz9hz549LBDg5+cHTzIG+Xv2xRdfOFCs7t27h82bN+PZs2dISEhgc7wGMcIaNmyIDz74ADabDYGBgVmZLXJ/RGEgbo5RZ4LW1C778UeUJdkKKsJUxMcHiI1Fenq6aKxfJgq2Vy5eRLwkgGqx2Vze99yCzsvcikzx4MdVJAnUSIVYAPtYN3z1FaoVLCgaX95aLV6lpcGHrHnSuUTXEz74wh9B/12lQAFcHThQFJSwSp0tcq3hTiifffv2xcSJE0Utf8LCwjB48GDm3EyfPh2zZs1Cx44dYbPZUJkLLgkgEvgye45GJrupUigQTxxTfp2g47Z8UBCac0ECrVKJH374AZ9++im+/fZb0bkSEhLw/vvvI4pjNFAYjUaWeckpQ8cVepYvj7D4eLiTeagj107rEZ89e+agnps/f37Url0bFy9eZE7V7du3MXXqVDx8+BCCIODw4cOy31egQAFmq8+dOxf9+vVj7+3cuVMk3y5VI7RarahevToePXqEyZMno3fv3vjoo4+QkpIiysS5u7tDr9fj9evXePLkSdZaA+DVq1eijOesWbNw4MABaEg7EPpd/0vIlbMVExPj0htVqVQsbZkTHDhwAB9//DHKli2LihUrYtWqVXj27Blz2Hx8fHD48GF069YN4eHhqFWrFn744QdcvnyZNXhMTk7GihUrMG/ePDRp0gSVK1fGunXrcOPGDcYlvXPnDg4cOIDly5ejdu3aqF27NpYtW4Y9e/a8VXfu/0Xky5cP7733HipWrMhe++yzzxwmzLx581C2bFksXbr0nUUuthCZdKomBEB0HXt69MABovYG2I1BZ6COWKbRiMqVKjk9ThAEfPHFFyw17utiwV3CicIYSMNXBrqJWK1YuHAhdpE6t1c0O7trF0LOnUPFihURHR3NDINXMs5WaGgorhAnAV5ess6WtBcKAEClglalwiASzZKjYFID8WVqqqivEI9gDw8suXABgwltrte2bfhoxw4E+vrCy8sLbVq0gKdM4bVJEukHgEzymlrSL+12dDRAHBQNuXfFExJkGwtTJBkMDpktreRvKle7e/duURQ2jVM9VCqV7HNWzvh59eqVg3P/+5YtjFLryd3zIUOGICIiAmq1GvHx8Rg5ciSArPqss2fPihpDAkB9ki0zW61Q0waRMob/+8WLi8a2RqlEW46iI1fADgAVOfUvOeqpQhAcmpMGurszY+3Aw4einkAfV6qEypLCZrVMVspoNEKv1+P999/H+k6dRMfLRdxzktmi7wmCAMPEiahRqBAzBL+NiGA0wtOffOJU1Q6w0w9PnToFE5cxkDq41ChWEGPEdvky4pOSkEAMems2NEL6+WdkPrmiEaZkZiI5M5MZ340aNmSNggFgxowZuHjiBCpI7nspEpX39vFBH1LDOHHiRHvgRhBQiaxxoSEhwLp1KHPxIhMuiouLQ//+/REVFYWCxBnmn4rJZMKoUaPQokUL/Pzzz9i4cSNu3LjBWnskJCSwtW7DlCnA1atQKBSoUaMGhg0bhpSUlKyaLXKfEjlnUSUzBlqQrMemTZtYEKMCqcdRKRQICQlBSkqKaDz+TrLGbhqNg0CG2Wp1ed9zC7OMc51b8M4fXRsTMjJQVhJwVAgCtCqVKDMNAO8FBoozW5L54i/jOEtrtgDg8oABorUBEAe/OnbsiA2EcVLU11f2t/AUwdjYWCaR/s033+A+UYvdtWsXQkND8d1332Hq1KnowdUPC4IADw8PhMnQ9KR0RPqbYsi+J9f8XKVQoCV3Lh+dDjVr1kRqaipbi3kkJiay9jU8eNW8gQMHyh6TG6zv1An3Fi7EJ507AwC0sEup04xwxYoVUbZsWdFnevXqhcmTJ6NKlSpMdGwDYcLQTJdUtp5iyZIlIgYabakDAPfv38eNGzfY36U5dU9qs9WsWRM3b95k8v3Xrl1DrVq1RO1r+vXrx4LvJ06cQEpKioi6z9ckp6amolq1amjWrBn7jr8ipf/fiFw5W4UKFRI9JCmuX7/+l9RF6ID2l4m08scIggBfMvkvX74Mk8mEZs2asWMKFiyIcuXKsWZtZ8+ehY+PjygFWqtWLfj4+IgauvHIzMxESkqK6L//ZXzyyScoW7asnc5C8ObNG5HhCtgd21u3bolqu/4qMjIyRM8XsBsfNAvkpdWiQdGiEAA8HTUKU4l6z4kTJ0Tpc4DLrggCrnCCFM5ANx9Xnc4bNWzI/m2AONLI8+pTU1PZOKpSubKdJhkXh341a6JYsWL2jC7ZNHxkFCMNBgMTlkCvXg4y8xMrVWIZCFEkU6OBt6cnupKFnsfk48cR8v33zEBUKxROI8H+bm5M8h3IikZr3NyQmpqKAoGBiJdRmqIGymOy+QJZEW6DhB6TYrMxulQQ2Syibt0Cli1zuB5qhCVnZoKONkqf8OTu36pVq1hfuMTERFlhCinUq1cDJJt169YtdOvWzf4Guecebm6oWrUqGjRogDYkohceHo4yZcrAYrHAZDLh6dOn7DrodxYtWtQhi8vXtdDnwBvvNpsNex48gJtKJcoOapRKDKhaFadJDzY/J72lanA1CXLZHoUg4Kc2bUQZMC+NRnQs78zSgMXcpk3xbUSE6Lx8oMFoNDIVL6lh/TY1W5/VqoXhpDaJx+SGDfFp5crQKJVINRoR4OaGOoULO+3XBACZZrO9joHPbEnmE/3LSo0+kwkpaWlIIeOTd7Zep6VBmDLFfhitz+SEEGw2GyJfvXL622KJAcnetVjwO+fgv379GmPHjsXnRKyFinyUI4ZSSnIyy5pfuHCBUYOuXbsGrFyJVytWAA8f4vaxY2zeDB8+HL/88gumT5+OOGK88QaQxWLBvHnzUL58eQwcOBAffPCBKJjKC2B4CgKwYwcA4OLFi1iyZAlev37tkNl6xfUtVMg4LN83b45rJCh0iWS0KeXXYjLhxYsXKFCggEgkw5vMraCAAAeBDAtp7P0uJNsByGYyc4PrMTGyzp/VZsPkhg1F44PP4vJoQh1sJzRCKh7Dz19+brsycfnf1ahRI4SSmq/CMqUjPNq1a4egoCC2v8XGxrJMx8qVK2EwGKDT6ex7Lre/CLCrFj+4cMHhnHLGuJ9Ox3rU8QEpPtjDP2tvrRbly5fHrl27mKNCEUHWLjmBjODgYCxZsgRlypSBQqGQLZ3JLZ49ewYTsSO8dTo8fvwYq4kyqVxJy6lTp3Do0CHs2LGD2T+0PIYGTKX2F8W+ffuwa9cuDCES/zzLi5ZGAHa7jtIFAXuQslevXqhYsSLS09NFJQdS5UZpLb2vry+ePHnC1nx+n9XpdChbtiwKFiyI4sWL/8+JYwC5dLZatWqFSZMmORhIgN0gnjx5MtrIdBTPCWw2G0aPHo169eo5aPFTGAwGfPnll+jZsycb/K9fv4ZGo3HgrgYHBzOK0OvXr9lGxCMoKMhBppRi5syZrL7Lx8fHZY3Q/wLu3r2LvXv3irJVNIVNu5EDYHxcZ1zit0Hv3r0d7r+Pjw+akAyBSqGAm1qNG4MHo4iPD9uknjx54hD5ocZBTtUIaWTHFW2kJMf59g0ORikusmbU66F68wYflilj54CTRc/d3R1Vq1ZFr169sH37dty4cUMkmOAjU28yduxY2PgNSHJNBYKDWTS/JBewsJH6D0ar4z637e5dvExNhclqhUIQoFOpnEaCVQqFrHjGC2IMLfvxR5GzdScuDmuvXWMGymPuWdDt1iaT/WxLNsFASl0xGICYGODUKdFxNAPup9NBSWtSCA2Ld7b47HXx4sVFMr6Ck+c6+pNPMIREYEWS2+R4Tw8PpKSkYNy4ccwxLhkaKmpJMHXqVHY9tNbxyZMnoqbGAHCX0EfMVisTX+ANhvMvX+Lmmzd4mZrq4GwJgsAi2XKZrSoFCmBgtWp4Sr5TVtCAvMYr+3lpNKLMEO9s0WsYW6cOviaBBjUXVKCIiIhgwRmpUSBLI8wms/V98+YIl6k37FG+PJa1aweNUok0o5FlUKmxyX9TFRIMNJjN9qw8Z4S8ckItdqfGrtkMi80m6hEnreH5ZOdODCU9baizZbJaEafX42J0NCYQ6WMpbJL/w2pl9YGnT5/GmjVr7M22qbNPnhUv4EPX4/v37zMjTqPRAM+eIZ0Yef7+/ozSGk7WwBUrViCZ0GcF2IMT3bt3Zwba3LlzHa63Xr16GDVqFLvHctLYIjVCMp5TuIxxoaJFHdZVN5UKnjTzTt6jgTuBUBNLlCghGuttWre2S05XqgSbZOzQefSuqIT0fHPPnEF/mdYN2aHiTz8xqqgUaqVStL46c7ao6IUPuQfS+ULvDT9/y+TLh5QvvxSdVw7885gxYwaqlyuHrwsUEO0nrrBt2zYA9qwnrdGiIkG+vr52ap5EjTA1NdW+vksgF7CtnD8/+pMxz98rSrE2mM2itdNHq0Vqaio0Gg1MJhNu3LjB6HB/kDoxZ4111Wo1C9K9C6xZswbrf/wRbioVmtati/bt2zPn9NKlSw4lOPv378e2bdtQv3593Lx5E3Fxcfjiiy8AgO0zzpytOXPmMLELIKsUIyUlBVu3bmV74ooVK0TiGVOmTMHChQtZcJlSKJVKJfR6vehe0TVm8+bN2LJlC7y8vETKjfwerNPpsHr1ahw+fBh169bFpEmTcn3//tuRK2dr4sSJSEhIQKlSpTBnzhzs3LkTu3btwuzZsxEeHo6EhARRd+ncYNiwYbh+/bpD9IHCZDLhgw8+gNVqFRVfOoPNZhMr7sgsMNJjeIwfPx7JycnsP2nju/81nDhxAjt37hQJZNDFkKcS6HQ69OjRQ0Tz+6vIkOGzBwYGIoFESakBWVbiUL9584YtqFI8e/HCaQd3HgVJnZYrfjFfo2XVaJCfuw43jQYBW7ei4M2b0Gg0zNk6cuQILl68iLVr1yI2NhYZGRkiQz1fYCCweDHARby6du0KUXxWEq310OmYwVpC4uwqBYEt7IU4KhovYqFWKKBVqZwaJs7mioEebzLhbkYGjtLGywBOPnsmG1XWEWfSJnNf65Ox84puwFwfHR7jx49HuaNHsadnT/iTKBrdHHbs2MHERPjxExoaCjc3N0ZJddZUsXz58swY5Td9evx74eF4+vQp2rZtyyLw+/buhZeXFwsE6fV6hIeHIyoqyiVlwo04MhabDSkyUdtjpKYg1WgUGVDSvlRSSWzAriKmEAQEkfsjl9mi18a3TPDWakXH8s2i5eoC5dQIW7dujQ4dOqBYsWIOqltvq0boChqlEqmZmSzzRu8V/zs2du6MdR07olvZsli2bJloTJV1sq+wDJnJBIvNBm8yt/jMFsUqUm8IiDNbKZmZUCsUCMvGaNWbTHbn0GZjNMKdO3ciOTmZUeeBLMeYCq80aNiQze969eoxmpHRaBQZSAkJCazwnhpLKpWKrSWCIGDChAnYvHkzpk6dKnuNnp6eGDhwICIiIvCM1GW84epWKcycyAPrXWYwsHt+8tUrzDl9WvQZQRCy+jOSz1AWi0GvR1xcHLZs2QI/nQ41CxVCRTc3lCpVCh06dEDt6tVhFQRx3RGV3X9HVEIaOPrq2DEsd8KMeBAfzzKVcviak7LnIc3E0ntHHetpjRrhcO/ebG2nr0vnEp2r0rlO61pdrUX8vaOByhISZw+wZ6PySyiIQFYALCEhAVNIppf2VgoMDLQH6p89w3KSoVYIgt2pj4vDGEnzXum+P7F+fQyqVg2tJeqGABBC1tybb96InS2dDiaTCW5ubjCZTKhQoQK2bNnCKIp16tRxuge0adOG9al6F/D29oY+KQkvRo+GPiEBhw4dYutieHi4Q0DZTAJC+fLlQ2hoKC5dusRo7mlpaejVq5eDijMFL5BRoEABJgVPGzQ3lWmPAtgFnVq3bo1ffvkFAJhSY1JSEjw9PUV2EM1y7969m9WHXSAZyoYNG4qCx1SVVqPR4Pbt2w5iJf8LyJWzFRwcjDNnzqBcuXIYP348OnbsiA4dOmDChAkoV64cTp8+/VYdoYcPH45du3bh+PHjsn26TCYTunXrhqioKBw+fFiU0s2fPz+MRqODUMObN2/YteTPnx8xMpGT2NhYp9er1Wrh7e0t+u9/GXSS8c6WlqToq0rqPTZs2JBtr43cQE4e1dPTk9UsOYvUpbvY8KQpcGegi4ez6Bdgp/BQPH31CtdpXRWAgkFBiImJwaxZs9ClSxc0IYscTbF/8803ePXqFVQqFVq3bo2fypXDpnr1EBgYiKIeHgD3G8q3aSPu+yVxFjVKJTOES0qcLY1KxX4DX3/G11WpyeedqaY5o84w6g4xoo5zAhw2PvpPP3/6NJPbluuqFU4cXJ3k+ZWQyBh/9913uHnyJALd3ZGPzE8ajU9LS2N9yPhMvFarhUKhYGIrcjL4gF36l1KM+SztOcJ9/7Bnz6xGrdz9ql27NqOE0AhfMRn5ZR4aYjSZrVbEkQwDH7XVm0xoXrIk1nToIE9RJa/JZbZ8JUX00to2/j1+FvFNhqWfk3O25BylBQsW4PDhw4iKinJoyPu2aoSuoCY0Qnp99Pp5B1WnUuHDChXgplajYMGCosCIM1lv1t/KbIabuzsKkj1KztniYTCboVYoYLJYkGo0wkurZSIzPzthgAzcswdKhQIff/wx4okDI0d7fU7kli8Tw/3PEyfYOHz06BFUKhWqVKmCfv36YTtpyk2xbds2eHl5MRU2aYYvIiICEyZMkA0wNWnSBJGRkbh16xZOnDjBah5r166NMmXKoEqVKiyT4e7uzsZD2w0bsPf+fZgFAfzo+ZK0k+DBGrfTWk8y9p6SIM7t27fh5+aGor6+uPr552jRogV27dqFhyRazwv80OfjrFl4bpETNcJSixej5fr1uT63dF7ROUKDB9ULFUKTEiVQmKzftGm1NDjhzNmSnlcO/Gima6mcYl6xYsUQExODWrVqiV6PIwHQMWPGYNSoUahXrx58fX3xwQcfoG/fvvjmm28AACG0boc7f6i0lpi7Tk+NBlMbN2YUSSl4B1JKI6TBBeo4xcfHs7myb98+p9mrAgUKOJQv/BX4+PggOTkZ/m5uuHTpEjIyMphtQxW5eZhMJsYkKlCggEMN29q1ax3qvCj4jFezZs3QmZQQUDs53AmzZ+PGjTh37hyKFCmC0qVLo2DBgrDZbPjzzz9x/fp1lClThh1Lr33t2rUs0EPtwxMnTojOW7hwYQQFBcHDwyNXInr/n5DrXa1o0aLYt28f4uLicP78eZw7dw5xcXHYt29ftkaFFDabDcOGDcO2bdtw7NgxWfU66mg9ePAAR44ccZgYVatWhVqtFqmyvHr1Cjdv3hQpgCUnJzPDGbDzVpOTk9kxeXANlUqFqlWrYtGiRew1Hx8f3LhxQxTVpIuDK+ckt5CKHQB2Pvn2rVvt3+VkU5H2OOKRIiOjLAdKGZIaizz436q3WmHmVNo03LWFhISwZsjUEaSZGGrYHN+yBSN79YLVarWr+XBG960SJaDjNxuJoadWKrOkmKWZLYWCOR+POBlbh8yWUuk0Cpzp5HWbQmG/B8QoLMI5czZkbX75KAXs2TMRnYiHAkBhcu35rVbYJk9GiRIlsHfvXsTzAROJ4xdAjNirJLMwfPhw3CNO3xjCWwfsDhqFMi0NCokCFMXq1asZJZaXBn5OsgtXuA2Dz3xZrVaWEeClcF1BRzYos9XKaGS8UWexWlHCzw8B7u4ih0gjydz4SObJwKpVMYRcg0apxM3Bg/GejOonHQP8HXVVs+VSSZD7zKVLl/DgwQP89ttvDobC35XZstpsjEaoljhdgDh7ZzAYkJaDwncjcdZnT58OjZsbYolByasROoNOpWKZLS+NhmUYi7gQ3DFbrbhx4waKvXyJfMeOsQyDUqnE6NGjAQBajQa7qlRBFDd+6T02Go0oU6YMIiMj0bRpU1EfnYiICGzfvh137txhe+bQoUNZrbVSENCyZUuUK1cOo0aNcthvv/vuOwwePBgLFy60XwdZ761WK1MP1mq1sNlsCAsLY8/5UnQ02mzYAI2PD6pkQ8mnzhZt/q3VatHZ2xtFbt9Gu3btkJ6ejjB/fxT29sbOnTtZg3taE8qvUzRDnFsa4fLISGyQqU/PzKH0exIX4MlOuZDSBKWCLszZImNWy833Fe3aoXVYGADH/S8fGWPOahZzUrOVkJDAaujlhK4ozaxv377stc6dOyMuLg41a9ZkTsrJkycxZcoU9OvXDwkJCahTpw7MZjMiGjSwXwsRyACAh+T50d9ZmJtbZ0hdak5A95uFLVqgQdGiOHXqFBo0aIAvCY1SEAQ2V3x9fVlN4N+N/Pnzsyyt2WyGl5cXYmNjmdqm1GaqWLEiowmfOHEC7dq1EwX+BEHAkiVLZL+rWrVqjCmzevVqNCD3m0Iq0kRB7ZA6deowRV3AziL57rvvROJao0aNwlhSQ0qzWM5q9detW4c3b97Aw8MDTZs2lZXb//+Ot9Ze9PPzy7Ex4QxDhw7Fb7/9hp07d8LLy4vVT/n4+MDNzQ1msxldunRBZGQk9uzZA4vFwo7x9/eHRqOBj48P+vXrhzFjxiAgIAD+/v4YO3YsypcvjyZNmgCw1920aNEC/fv3Zx21BwwYgDZt2jj18PMgRqFChVCxYkVRtLN+/frIly8fnj17xqIyERERCAgIcNps722wbds21jiPQqlUsmtxZpy1b98ehQoVgqOuH5CSmpojGmG4IOC+1eqSRsi/Z1QoRBGMWtWqwff6dURFRWHDhg04uGoVwn19cQ/2BYyKthQpUgSA3SF7/fo1FAoFLl68iFHXr+M0pbC+fIkbggBQA0hy/WqFgslxy9EIixcvDty+LWomyGe2TAYDoFY7lX7nX/fV6ZhBofPwgFmrxeR+/fBFfLxTVbfAwEDEAqhfrRpOyj0ziwUwGmEgjjDdfO7evWuPmHECNwLEzoGNXEs8yQwBAIgD1qRuXVgsFpQtW1aUobZ89x0MThQpS5YsyWhbfIb0NmkSe/XKFZQiTXPZOVNS8O2336JChQooXbo05kl6BzlDGSJyYLFaAfKbpVQouTEubWrqIaH7/CTJnkhpthTSfmiA3bnio8WBnJMvN2vUMo4SNWg+/PBDB7qLnLOl/IuZLXo/tBInlHcaeRERs9lsd7ZctJ0AwIIaiW/eIDk1FW4mE6DRsMyWWqFgTpenRsMUEQG7s7Xj3j38RJxz6mzpXKwngJ1FYsnIQOyff2I97AIEISEhbO5mGgwO/SanT5+O/Pnzo1+/frh48SKWLl2KDz74AJ6enmjSpAmOHDkCgdK2kEUDmjBhAg4dOoSfmzdH05IlsfvmTUyYMAHvvfceRo8eDbPZjGfPnuHnn3+GQqHAUS4b9ezJEyAsTFR0f+7cOXTo0AELFixAsWLFoOCofXdfvIA5Ph4NAYhj31nYQYQ20lJTAZKJLhgVhYSbN4HGjWEwGNCPGKEDBgxgBqCPpyeQmChyiFjNVi4zWxdevoSPVosekkL+1Bw2YuWfb6qMqh4Pb63WXmvoxNmi5+IzX59wgUTp2hBMxpizQIDLzBZ5TrVq1cKDBw9w584dkVodkEXrBIDPP/8cEydOxKZNm9CiRQv4+/vj7t27ouONRiOaNm2KI0eOYMqUKTh58iSmT58OwL6OBwYGonv37qx+1mI0AkolzH/8geEdO+IHs1k0h+M4kRU50Gc+guwXgYGB0Ov1aEXWa51OBw8PD/j6+iIpKemdsnBcoUWLFoxul5mZiQoVKuD48eNs75fio48+Yv+OjIxEvnz5sGPHDtG6/ObNG6SmpmLFihWsFvj06dOYNGkS+71AFiU0Ojoau3btYk2NpaC2TP78+UWJiKCgIMybNw+DBw9mCooajYapHGYnOqVSqRAYGIiSJUtCo9E42HP/C3h3FvFb4Mcff0RycjIiIiJQoEAB9h+NKL948QK7du3CixcvUKlSJdExvIrg/Pnz0aFDB3Tr1g1169aFu7s7du/eLYoUrF+/HuXLl0ezZs3QrFkzVKhQwaGRbh6co0mTJggMDMTXX3/NXktISEBsbKzoPl+4cMGlct/bICUlxSHqc+7cOTSJiICXRoNiTmRp9+/f7zQjVUCGby4Hr5gYGL/9VpbKSMEXh9sEQawoRYRf2rdvD6VSCWNqKvoS2mXt2rVZvRv9fV9//TXjulerVo1JU+dXKgE3N1bzZf8y++YkUBl1pZI1x5TSLZQKhSxdgje001JSkCkjC0/BO1tB/OKqUECv1yMjPh6N8+cXNegEgFjy9x0SuazhhPqAjAxY09NZdIyqpjElUO776Yazh0jp0/qFlJQUu2pjRgZAG0S3bQulUokTJ07glERkw1n9wrZt29g4pgbunj17GLVFqVCgUKFC6NatGypVqoQ7PXsCnNhOboINxsxMCLAbCQK55kzOALBYrSLJcwppZsv9LVst0DPyxpmvTieKgPO9eOQi9XIUQKPRyOYfT0Va27Ej+slknen3/ZXMFpCVCZDWtG1q3lxktC1atMipQIoIVBRFp4PRbEYGGQ9miwVmq1Xk5Err5nQqFV5zWXTqtPLGeDkZQyU8PBxly5ZFKKk77Nu3L0aNGiWKZCclJYno8zdv3kT37t2RlJQkcm7T0tJYG5Tjx4+z3j5UqXXYsGFo3rw58r16hSOHDqFz5864e/cutm/fjq+++goJCQlYsWIFa6TKo5gTOvbOnTtZ/yL+eT58/RpR9++7dKhpQJQKxygUCvzwww9IS0vDrl270LNnT1gsFnTv3h0pKSmMHeBPgh58ZuttBTJMVqts0EnanNsZ+OebKJPF5+8Jpf1pJQ64lEYofV96HAUdY8kyQmaA65qt0UTxc8qUKahatSpSU1Md+lDxMujJycno0qULHjx4gEmTJqF69eoOEut0LVQoFCyLRFlGgiDg9evX2LRpE2zkWZnJdVevUgVtiaIhP2+d9eT04hgCPAoVKoQHDx7g+PHjrC2CTqdjWbl3ycJxhaSkJKZJ4Ofnh9OnT+PcuXNMg0A6tzZs2MD6l3399dfYs2cPy4LRRIfZbMbt27fx2WefMepgvXr1kD9/fhgMBnTo0AGAff212Wxo3LgxmjVr5nR/CggIwIABAzB06FDR6zS7Kb331Pah56PJi1KSujqNRgNPT8//uUbGPP5VZ8tms8n+9/HHHwOw84KdHUNlOwF7pOKHH35AfHw89Ho9du/e7VBs6O/vj3Xr1jEZ93Xr1okiNHlwjbt372Lp0qWimi0qGsIvVo0bN2bOwrtC586dUUMi+axSqWAxmZAyfjxTZZLi+PHjsgWkHVJT0YzQZbJDjx49ALg2nmlmg0oZV+SioYf278fFixfRtWtXaDQaGI1GVjBMoz1RUVEsMuTj4yNS6nlA6hDCChRAaIUKgEKBYpL6QZ4uRR0bqeGtUihwTxJxBCS9sCyWLJlrGfDGB9/PK5kYk9988w0MqamYzImS2Gw2xFBjk1zTPCeF9yEBAYBez4pyacSPRtsa1qvHjrVarfj+++8ZzcKLnFufno7KlSvjACdRT5s4v3792iFD6ey5KpVKtjH4+/sjOTnZLmVMnS2lEt7e3ti0aRP0ej2mTZmCNm3aYPbs2ex35xRv3ryBzWKBxWaDJzEcMzijjs9s8fQkauTT997W2ZLLbOX39BTVjfHmmWxmS6Yhcf/+/fH+++8DENcQ9KpQwSELB2QZga6aEbuCNLsmFcgoJDGe7969C1sOMh6UYpccHw+bIGQ16LVYYLJY4KnRsPsjrbtxkzwTjVKJMH//rGDFkyf4lmvCStGuXTvMmzcP3bt3B2BfY/iG8oA9+sxLKE+dOhXr16+Hn58fKlasiG+//dYh4uzn58eK06mhdJzUfd25cwctW7Z0GLuUMhgfH8+eY+PGjVG2bFlUcBKVB7JqGXlnID4zE2qbDTVywoqhwSRBEAXNatWqhdTUVGzevBm3bt1CUaJqWLp0aSisVlFm620FMkwWyztztpJknJ4wLvBFKbpapVLUkNdVZouH1HGlPbESnThbrjJblQsUwKKWLZGamorLly+jRo0aLKAlRSFSW0v3/1evXqFIkSKs3xuFSqVC//79UaNGDaxcuRJAlpCGAHvQFgBq0Npv8qzCw8JQhNRH5iTbTWtWR9WqhTmE1WQ/nZnNg6pVqyIlJQVPnjzB/PnzRdf/dyM2NpbZti1btkTv3r0B2Ofks2fPHFS+Dx8+jItEfEmr1SIzMxOff/45gKw6ZLPZzDK7mZKxefv2bZYlpu1I7t6965LC16tXLwwfPtwhYE4DtVLtglKlSrFrArKk6T0lrWvS09Px5MkTWSXz/xX8q85WHv57cPfuXaSlpcmqEfId1sPDw9+5rKcchU+lUuHZs2do3769089lZmbKZi8bFy2K8mFhsmpKUtC0tyvQRc5KaGf+nBOvViiwbNkyrF27FhqNBpGRkUzSmTpdxYoVc2r0q4mxUMDLC0alEgqlErMkSkI6jvPfp2JFtAwNZf22KJSCwAxCvjaSbrxGiwWwWmV737DfKTHGAaBGoUKozi3M0m3LZLUyBxB0oXWy4HoKApCezkRrKDXJx8cHcXFxKMqL59hsmD9/PnOYi5N7PnbsWPj4+LBxoVEqmWCFtAC5e/fujMefHegmQyN773HUmtevX2P9+vXYs2cP1Go18ufP7yBK4ApUDc5oNiOBZPFMZjPSiePLZ7aiOeVL6lxJM1vtwsNxi6tTc4atW7fCOyWFqXvxma0CXl6MUlSlQAERrVHOkZTKtu/duxdTp05FxYoVUa9ePZc0XAqW2XpLZ6sOCbCdIAp50mwbNVwAe6H4e++951D3KAcrHfdmM2yCAH9ieND+TRqlEpmk+F6aNZCjC94fPjyL5mu1ymYa8ufPj2XLljG6VYkSJcTKqjYbTCYTyxg2JTUybm5u8PHxwZUrV3D27Fmkp6eLApOJiYl4/vw5658FZK2vUiVhOSU2lUqFevXq4ZNPPsGtW7cQv2ULsGCBw3EA2PXxoyXRaIQGWQqccrDZbHbhBc7ZysjIQPPmzfHZZ59h2LBh7Hc3b96cBVzKlSsHD53unWS2zH8xs0Wd7FPPnrFG1Tx4NgZztlQqHOjVC51JuxFnNVtS8AGOJiVKoBZZJ51RVXOSN6YONiDOSvP/fvnSTtCXOitU/p3HL7/8Ag8PD9SvXx/t2rVjRjmltfr4+KAOEdug6/zc2bOxhMjH8wEYXqRh5cqVaEz6atJmxoW8vTGO7LGA2Nnq2LEjdu3axZQOP/zww38s6O7j4wOj0QiDwYCzZ89iH2kRERQUBL1e7yAcQdUIgSxny2KxYMSIEbhx4wZ+/PFHfPrpp+z+U0eG1nVSVK5cGdu2bXNwxuTw6NEjlC9fXqSBAACffvop2rVr53B8vnz5RBRiei9pJp2CZuLeZf/V/zbkOVt5yBFolF+qRqhQKHKs7Pe22Llzp6gDOpC1wD8lhpUcaGNqHpT2OGjQIJSSaRwsxffffy/byZ4HoxgSLvlFbvGpVqkSEhMTsXr1ajTkmh9TKkN20JKNNO31a7xMSEBAvnxZdBLiLFKKl1qhQKuwMOz78EOHiLpSoWBGHR91EjlbFotsM2UK3ohpSJ759MaNEcrVNEn7cMXylML4eGDGDHh7eSFIRlUq8/RpFLx+nW0KGRz9KiAgAAV52WybDV5eXmzzL1WwICrt2IGM9HQULFiQNUb30WqZgIuURrl+/Xqm0pRTUAO1Hpdl442N+Ph4PHz4MFf9WZRKJWC1ItNkYtLv0Skp8Jw5E8kGgyizxTtby378EYmJicwQoVTK0gEBKCOhe1y7do1FOfnXUr7/HqHkXvHGZbCHBxMXOP/pp8zZ6vzee6gvM9/pNdDxdPnyZZw/fx4HDx7EyZMnZfscSkHH59uRCO3CALyBSR1A6hzy2TVKQ6+cgxYV1levgMREVCpXDoJSCX9ybymNUK1QOPx+Cv56hsplc2w2WWrNnTt3sIA4MV26dEGxYsUcslRTp05lga7Dhw7h7t27ogyQu7s7unXr5kAJmj17NurUqcMCFdSg0+l0LPjg7e2NadOmOVyXQqHAwoULWfY5pEABICkJX3zxBapXr47o6GisWbMGPj4+KFSoEO7evSu67+mCgPdKlsRFmSa29tthw4YNGzBw4ECHmtS4uDiUKlUKT548ga+vL54+fYq5c+ey2uw3b97AYjSKxrHlLWu2TFYrjDKOeG4zW/VXrcInkn5cL0ePRlWSLQWyBDLoZ2hGNqc0Qj44QR23O0OHYqwT8S9nma1Dhw7J1uDwFHqz2SzKbvzwww/Inz+/KODKCyvIoVChQky8gaoRJicnY9vvvwMA0smeXaxoUZjI3ss7W7zTcO7cOXujZABLW7eGQRIwsJKG4lqtljmQZrMZRqMRvr6+WLdu3T/mANB7lJycjEOHDiE+Ph5qtRpGoxGlS5dGbYn0Pe9sFStWDD4+PrBYLAgJCYGXlxcGDRpkF6HhaJpA1t5E9yWVSoWGDRtma8cAWfROaYC5YcOG2Llzp8PxZcuWFUn0lylTBjabzaHPKs1yu6Kw/n9HnrOVhxxBpVKhTJkyTLoVsBvtVquVFVr/XShUqJCDxGzVqlUxb948tunLoWHDhg4CKEOGDMHQoUPx559/4ovOnfGUU1Ny9t1hRPXJGVQqFZCYCJCaJH5SBXCLjEajYSpNa9euFUWEnIFSI3zUalhUKljhGOGkHP0EbtGTZrZUCgXbuO5wCmZ04002GFAwIAD5XYgF8JLwZYOCUK1gQZQODISVExDxkNAMDGYzcxR69emD9i1bIiUlBZmS4n4A8NVo0LVZM/umsH49KkuMnf6Ef06h0+mYs6XRaBid4urVq1i1apX9dasVu4ixIzVqVSoVo3XkFI9J/cL5c+fYa7yzlZ6ejvbt2+equbtGo4ECduoSldFPIAaFwWwWZbbG16vH6oKWL1kCs9nM3qOZrUIybSrat28v6uMGALdu3RL9zdc6aFUq5jirFAqWnfi9WzfWRJmHlEZI1amSk5Mxb948JCYmYmqjRvjFxX2RU0XMLW4NGYJTZE5L6Yi8Wi4dK69fysnniJH8/DmwcCGKFysGK4BXpDZPqVTCZLVCxQUypIYsP1e/4TJMFM2aNEGLFi0wnnPeBYNBRLmhQiuVK1dGv379ANgDBzExMaIaCqPRKDJyvL29Ubx4cfz666/stZEjR8JqtYoafX/++eeYPn063NzcULt2baxYsYLRtv38/BwCEs2bN2eN7PV6PQRBQL58+XDx4kXExcXh7t27SEpKgkajwd69e5mjHuLtjSSTCa3ef99pXV7dunXx6aefYv369ajJUccnTJiAatWqQafTISMjAzabDStXrkTPnj2ZGmFCQgL06emiLOxb12xZLA7qq1abLVs1QurY61QqXOLWOF7Ns4CnJ76sVw+HevXCV/Xrs2AZ6w8ncdzp/53RCPkxR/9VOjDQ6fHODN7vv/8eP/zwAwCIVOcCiYpsfHw8dDqdqIare/fu8PPzQ1JSEnPeP8lGOXDp0qWMnm82mZjQyxNy3jgSHKtXty5zlvnxwpeIeHh4sB5OStInUvpbaU8w+p2A3fjPjrHyrqHVatG0aVNYLBZkZGSgcePGKFWqlCiLePz4cdwndkSrVq3YPJw5cyYGDRqEMmXKIH/+/EhNTYUgCPjss89QokQJLF++nM39I0eOYMmSJSzDdfHiRQQGBrpUVKagmamc3pvff/9dpPLtDK7a8PyvIM/ZykOOEBISgtKlSzM1SMC+CCuVyqwmlP8gDAYDxowZwwpI5dCjRw98+OGHAACt1YqLXbtiz549KFeuHI4ePQpBEJwqAVF4eHgw9R1nUCqVwMKF8CXGEYs0mUxoWa0aypcvj/fffx9XrlzBoUOH2OdyUtfTgagXKgbeGwAAkTBJREFUeWs0gFKJJL3eoTYn3WjEkGrVUJf7LQ6ZLUFAMbJJ8VQQulEnGgzw1+mQKulXx4NX1XJXq3Gxf3+EeHtj8uTJcHNzw6pVq1jDVwq9ycQM8dcxMdi8eTMWLVoEjcyYuXHtGhYuXGh33B48cHAqpUIonTt3hs1mg8ViQbFixXD//n306tWLbb4A4KFUolKlSlm9eyTgjc6cQP/mDWC1IprrJcZHgQcNGoSjR4/KNnl1Bj8/P/j5+kKpUsFKnoeZ/Pb4jAyYrVZmbExs0CBLZdBkQlBQkKhm6/lnn2GYpL4RsFNLOkicVanoSyFi9PUiwRO+sbKrOg8gy0Ck0Xm+sfPEiRMRGxuLiQ0aoL+kJx+PIj4+KJsvn6iBcm5Rws+PzQPpNfOBF9p38RWhMznDUA8PuBNjgjpmNPu4/d496E0mkYGnEARs69YNP5LCfj6zJUcDO3TgAFJTUzHj/fdZhsN92TJ4e3vjMekrRYME7733HssSpaWloVOnTqwxcUGtFj///DO6dOnCzr17927Mnj0bjx8/tredyJeP1dnyoj7du3dHdHQ0EhMT0b59e/j5+TEa0MyZM/Hhhx+ia9euLKMQFxeHyMhIAPa6XZvNxgz4J0+eYMaMGWjSpAl69erFAh0A8CIlBZkWC66cP++0Lu/s2bMwmUw4cuQIXu/fD5A607179yI1NRVubm4wGAx49uwZpkyZgo0bNzJ2g1arBaxW5my9SU/HUyLm4Kx3oDPICWTk5BzLyX1xU6lQfdky9no4l+kWBAGeGg2aliyJaY0bO2SupM6WIMlwScE7IjnJHDiby2FhYSx4SYVZ9u7dy2qwaHaCz9oHBQXh5cuX6NixIxISErINTAJ2ZT0q9JKYmIjWrVtj0KBBsEnu95UrVxiFl/9dPJ12wYIF+Omnn5x+l9VqxaNHj2Cz2ZjgUoECBRAeHu6Q6f8ncOjQIRQsWJBlg27dusUolYC9FpKuU7169WIU4AsXLuDcuXPYuHGjiBackZGBggUL4vHjx0x8ZM2aNYiIiBDROdPS0uDu7o7ExEQxHVkCmn3jGxK7QnBwcI5omLVq1cpVHfP/R+Q5W3nIEcqWLQubzYYtW7aw18xmMywWS464wO8adIOty3Gzpfjuu+/YBpGZkYHvvv0WVatWxc2bN3NcFHvr1i2R2IIcFAoFwsLCsJKoaNnIxmC1WvHq1SsMHz6cCWQAYH2YzDmgtuiJ8+NNPmvRaByUBuP0eixp3VqUcXCo2VIoULNIEUDCC6cbdWxaGm5euoQkF0qSvKQ1f/5ixYrBbDbj+PHjeME544BdKpkaD9euX8fMmTOhVquZVDsAuJNzTZsyBQcPHmTGpbTLvUIQsIlSMW029OzZE3fu3MH+/fvZeFi3bh1mzpzJPuOhVKJ79+7Yu3evw+/p1KmTA789O3iq1cC334oMbKrS1qJFC6YOp3eh6iiF2WyGKTMTGZmZTI3wJTlP2aVLsfLqVbHKHzVKqAABed1drUaIt7esMfX8+XOHTBaVBac42bcvsGABokivMp4SOqR6dewgYg1yoMYzlZen2RC9Xg+lUinbGFUKd7UaN4cMceg39LagkX0aeEjg2gIw2pOLmq1qAH784gtE1KmDQoUKQUvmYAKZZ6MPHcKZ589FzqEAoON777H6Ed7Zks002GzMsbk9ZAgejRgBU2oqCwKVKlWKZRaCg4PxO6FaZRoMUCqVCAgIQMiaNYg+dgy//PKLKKjQrVs3BAcH486dO3jx4gViY2Oxbds2eHt7i5ytAQMGYMmSJUxMqFOnTuw9Dw8PtG3bFlu2bGH9Djt06IAJEyZg586d+Pnnn7F161Z069YNQFZPxKNHj+LKlSt241syHm88fOi0RvWbb75ha/bTs2eBjRsB2CmvYWFhiIiIwMKFC0Vy3ZQGptFo7LVsZKxV+flnzCO0uEF796LFunX4nWT1L8tk1nnICWQ4a2DtM2sW7pN1k36fdP2tQOpQ5UBnmbRlgbTZeE4yVTkhaTk7ZvHixYy6umPHDoSFheHkyZO4dOkSAPnmxvT1HTt24M6dO7JUMynWrFnDspEqlQq1a9e2O0yS+9uuTRsMJM3nc4NRo0YxJz81NRUVK1aEXq9HamoqPvvsM3Tv3h1eXl4OtL1/AitWrMDdu3dRsWJFpixIVRFDSK0anRszZszAwYMHAdgzSOvXr8fq1athtVqZzLvZbMa5c+cwY8YMvH79GjabDXq9Hu7u7qhXrx5zfjMzMxEREYF8+fK5FMjInz8/2rVrxxRLs8PChQtFiqh5cI48ZysPOcLDhw+xfft2UYNhusj/G0WPlLbmqnHx8ePHs2iGgoDevXszmdWcOltS6pUzBAUF4TZpFFiWUwi7fPkybt26BXd3d3bvKPUnJ/097hA+egMuWyGlcZXka5kINEolBGRlK5SCYI+UP3okomlRamFMWppdet2FA8hHdnkjskePHsjIyMCaNWscmkWnZGYy4zk1LQ3ffPMNBg8eDBtHeTSRTEGFcuXQrFkzKJVKdOnShUVXeXSjUT2bDbNnz2b9hPhoHw8vtZptPlLwRmJOQce8lDpYqFAhDBkyhCm9ZThp2iwHk8mElKQkpKSlwULOP+nkSdExfPSa0ZvI/5VKJRSC4FKN0M3NjQkJAHZRj5IlSzLKj9lsBvR6fNa3L6pXr46HDx8ijnOc3dVqtJf02+FB7ws1Kt3d3fHrr7+ic+fOUCqVOQosvGt4aDR4OHw4y4jy2UaqBMa3E+CNPY8jR9BeqYTVasVnn32Gly9fwiozX00WC7xkGj7T+cE7vrLGstWKrl274uuvv0ZhHx8U9/WFh4eHXbwDdjEbutatWrWK0XF0bm7Q6XQYO3YsXjx+jCpVqmDLli0iZ6tUqVKsVw41sLy8vDB27FjR3KK0JbnaMX9/f4e62O3bt6Nz585o164dKleujE6dOjGDS7oX1K1b18HZym+xoLaEFk7Rq1cvWUOvTJkyqFWrFoKDg2G1WvGQa8xOo/BeXl7wcHdnTtFLSTb74KNHuB4Tg8vR0ai2bJmIbiiFyWrF/ocPIXDKunLOls1mQ0pmJs6QjCFtNCyls4W7qOGkEX9pKweHzJaTmi1P3tn/C5ktICujtXTpUjx48ACzZs1i7BFpZoLS8pRKJRQKBTp06MDGrSvodDp2Lq1GwzJOHanYFUdFps3qs+tLx+Pu3buM6kjXHZVKBT8/P3h4eMDf3x+7du1CuXLlcnzOd4XVq1fj0qVL+OSTT1htVaFChWC1WnHt2jUAYDXwp06dEmVtDQYDpkyZgqioKDbfzGazqEWJ0WiE1WqFu7s7rl27xvprAfbGyGaz2SWbp0SJEujXr987b9+ThzxnKw85BG0kyBfCKpVKZGRkiGoh/ilQA2Tx4sWIj4/HixcvHLqiZ2Zm4g5pQgvYu9nTz5WXNKt0Bro4Z4fTp09jI1E+tMJeDP9l9er4/vvvsXDhQmzZsoUZ6INItE7ai0IOjOvPGau8s7WmQwfs7dnT4XOCIMBNrWbKVmql0v47bDaU5Awt+lxfpaYCGRlQyBgUvjLONE8DonS00NBQhy7pqUZjVr8jbsP8nO/FQgxeWi8mCAJSUlJY9NMZzp49ixo1auDIkSMO1AgqZx1etKhTZ+ttULhwYRQuXJgZCIA9exMdHQ2DwQA/Pz8MGDBARJ/KDlSNMN1FhpjPbLG6EXLfY2NjUTowUNz7TIKkpCRWW6nX61GgQAGsXbsWr169gl6vx9dff422bdti/vz5uHHjBho2bIipnTrhTDb1FxSlAwPxZORI5vCtXbsW69evR/78+dGtWzcHyeB/CsaYGBiI48s3W929ezcAwIsXhKFzbPZslCT9m1QqFYvsu8nMg0SDQdbYlTMOZQ1h8gwp5UcQBCQkJLA5dfDgQVa7xVNerVYrrl69ytZj6lTxNVxnz57FxYsX4eXlxbLEqampuHjxoohSSTMWUonvpUuXolWrVg4qaRQrVqxAhw4dUKBAAZw4cQIAHPYCnnnwQ8uW6GI0orggIENOkfTQIfTt2xfHjh1jLQOosu3t27exbNkynD59GjVr1mT9ipo0acKa7np7eyMwIMBlC4F4vZ5l6J01bwfEbRBcvUYdMJvNhjuxsezcFo76C4ApBLoCC+Q4yWw5q3Pz1mphmzxZdKwryK3ngH0MTZ48GTabDcOGDcOePXvQpUsXNhZDJL+BPgOlUgmDwcBk3bMDXzukVCpx9OhRFC9eHBVI/8WI6tUR8Po1fpwzB99NmYLkL78U1bzJie3wjiClxAJiZ+vFixeYNm0aEhMT8fjx439FrCFfvnyIi4vDsmXLmCMVFxeHS5cuMTYEpaWbTCZZNUKz2YzVq1dj586dmDlzJqsPNhgMsNlsGDVqFLy9vVnJR7169VC8eHGH9jlyMJvNaN++PW7evPnOf/v/OvKcrTzkCHTSS5va/VtSnnwBZ2BgIBo0aICKRFls+PDhGDRokJjeKAiYPXs2W+Bak5qK7LBx40YR/cgVmhJVrGs3b2Jxq1aY2bEjWzhv3LghUm386aefcqTiGEqchFQuKs8bcr46ndOMhptKhZohIYgdNw4qhcIuPGGzQc3du1ekDiUmLQ0wGBAmQzE41KsXLkk6zvN9kiwWC+bPn4/y5cvjA86pESwWZHA1W9U451LPUQ+UZKM0cgbYoUOHWF2NFJ8WL46KT59i3rx5UKvV2L59Ozw8PERiF/Hx8Rjg54cxlSrBZrO9M2crPDwcz549Eznr1Immm/fEiRMd+vy5AlUjTHXlbHGGATUSaWQ0IyMDt4YMQbALJcktW7Yw2grF2bNnsWXLFmzfvh2zZs1iWRFfX1/7/LBaUTsXv6Mox923WCzsvixbtuxvVyx1hjJlyrBG1pMmTWI9YZYuXYqffvoJn376adbBxDCbO3s2rl+/jhEjRsBsNjNHvrRMcCQ+IwO7t25ldB8BQFRUFN7nlEddwcfbG/7+/swQMpvN2Lt3r4hmRzNO/Jgym0y4dOkSc2IXE4lsPju1du1aPHjwALVq1UK1atXY67t372aiBEDWuA0ICECPHj1Y64QhQ4YgOTnZKeXPYrEgPj4er1+/Rv78+VGqVCkUKVIE69atQ//+/XHw4EFRPeOwGjXQr359tGrVCldJFF+EM2dw8uRJTJs2jVGr+Jpc1qwc9ui/xWLB4cOHmYNnNBqREB+PNJL9k8sk0hpIwLWzJZfFoq/xJrqBjBkbgDJLl+IXUrP1lGv8CwB1ixSBZdIkJH7xhcN5pfk1qTAGhTPn4PHjxzlWe7vUvz/GOFEpPHPmDA4cOID09HTYbDbUrFkTvr6+zBmXKvsCdgfdz88ParU6x2yR4sWLo1WrVgAAQ0YGHj58iKioKPiR9ePJ48fwO3IEVSpVgsViETlagH0ehCiVKODpidjYWId17caNG6z1RqVKlQDY7RfKagHsjuO/0WA3MDAQcXFx2L59O968eYPSpUvjwYMHaN++PUJCQpCYmMgChWazmV1jqVKl8N5778FisTBntUyZMqJ7XqBAAeh0OsyfPx86nQ5PnjzB3LlzERkZiYsXLzKKqCvQ8yVLxm8e/jrynK085AgqlQr+/v4s4vhvo2DBgqLC2Pbt26MFEZNYvHgxNmzYgEGDBjFZYLrp58+fHx4eHg59IJyhfv36LjnOPGj/jzRJ1PbatWv4888/odVqMWbMGAAQ0TFdITwoCPj2WzR1kokzuag5cVOroRQEplbo6+sL2Gy4w0X4zWSTjjUY0LNjR9TgephQ+Oh0jIqlVijwZORI1mcLsEfZlUol+vbti5ackRl89ixMRBo7evRo/EwMqPnz52M2R89hEt0S48fZgv9ZtWo4PH8+fH19mWOgUChYdL9v377o0qULfhk5Eo9v3sSDBw/eGT//7t27EAQBp0+fZq9Jna127drl2JkH7Bx9N50OaS5opXxmixp93t7ejF6SHfiidnd3dwQEBDCqDTVgb9++jYCAAEyYMAEjR45k4jJvA4vFwgI0EydOZI2l/w1YuXFFlf3i4uIQGBiIF48eZR1IjrtKqLs0YkyNzHwyGe54vR7pCQlMSl4hCLh37x4uE1ENZ/MzNjYWH7i54diECdi+fTvmzJkDwJ55atOmDXx9fVmmno6vZs2aMZET6mBQkaKVK1eKqHWA3fHS6XRYu3YtunXrhvv372MyyYDwPQbnzJmD9evXIz4+Hr1798aff/7JDLqXL1+yscO3OwDsewIde0ajEffv38fz58+xadMmzJo1C0+fPnUYmy1atECbNm0cxFl4fP311zh16hSGDx/OaFDt2rVDy5YtmcOZmZmJefPmQRAE5jgqFAqkJicjjWQI1HKZrYwMVovYd+dOVmsF2LMjtCeW3HMzE+VJfi4yZ0tCsdv74IGo5lEhCFAIgmxWSfpZSm9US9YVZyhZsqRsTaocqhYs6LT2a8yYMVizZg3Wr18PwE7jq1SpEqv7eUb6SG4kdXSA3XHK6V5G0adPH7a2GEmAqVixYkzq/0lUFMLDw1GhQgXZOrESJUqgr8WCxWFhCAwMRL169RxoyuHh4bDZbIiJiUG3bt0gCIKIRh0ZGfnOAnC5ARXASEhIQJ8+fVC4cGEcPnyY3UOdTscyXEOHDmX9qbp164bx48ejRYsWLOAdFhbG7uPatWsRHh6Oly9fMoq0VqtFVFQU9Ho9AgMDmZiOKwik3IL2AM3Du0Oes5WHHCF//vwoUqTIv6I8KAej0cjoeLVq1YJKpWKUmp9//hl16tTBhx9+yCTjjZySUrNmzUT0wuyQkyhPYGAgW8ylvaYqVKjAKBiU055TadWqVavCXadz2rfJVXTWTaUSGQYFChTAhAkTRDUU1CCOSU9H0eBg3CCNFnmoFApGlTJZraIMBmBvLNm3b1+0bdtWVENHt3QFgIhq1bB/3z4MHDgQoaGhMHKR9UKk54y00akzI6Ny5cro2rUrdDodYmNj0bp1a6hUKgwYMABGoxHLly8XHX/8+PF31rmeUvEo/RLIcpxp9ubq1asiylpOEFSgAK4nJDgVbOAzWwOrVkUfDw/s27cPmZmZORKoGTduHKuFiYuLQ8OGDVlwgDf24uPjsW3bNixfvtxBoCQ3MJvNzEn49ddfmVLWP40LFy4ww6F9+/YYPnw4rFYrYmJiEBgYiCSeqkoMtvXr1qFixYooVKgQAHt0/NWrV4iWkYmP0+sBUicB2I1qvm7qtRNVym3btuH3r75C1dBQNGzYkI112gtHo9Fg0aJFALLmQbNmzTCENKtOSU5GcHAw+vbtC7PZjL59+zpVTQ0ODoa3tzdiY2NRu3ZtxMbGirJV5cqVY87ijRs3ULp0aWZQe3l5ISAgAFWqVGFy7xRqtZqNPWoUZ2ZmYvfu3YiIiMCAAQMcmlnPnz/fTj/LxoHYtGkTfvjhB9aQfP/+/Xjx4gXCw8Mxbdo0PHnyhGUpRXWUNhtb6+Wciji9nqlsbrtzB+s46vnJZ89Q9ZdfADihERJni8840TrWJG59kf6yywMGuPytUtDehLTFQ/eyZbGYyKpLQZ2MnAjQ5BQmkwmdO3eGVqvF0KFDmfFOv4uKMwB24azcZkFu3ryJ/pQpQcY7ryAL2FUQL1y4IPu7tmzZgqOHDuHD7t1hs9mg0WhQs2ZN9n69evUQERHBMtq0jpZvH1OwYEFs3rw5V9f9LtC9e3d8//33OH/+PJ49e4bDhw/j4MGDbA+5dOkSGjRoAMDeX49SZK9evYpff/0Vy5cvR6lSpXDjxg0MGzYMnp6esNlsuH//Pk6dOoWEhARGkQbswQ26jh08eBDJycl4xAeYZLBmzRqHPll5+OvIc7bykCPky5cPV69eZZvfvw1aKB4cHIxz585BoVAwA5dGd1q3bs2oaCbCX6a0s5w6jUqlMkfFotOmTWOLmrsLOle/fv1w+/ZtpvyVHZ4+fQq1Wu3U8ZD2guHhrlY71C0ouZ5JAFiD1lSjETMnTULc+fO4TQw6CpVC4TQaCtg3Z5vNhokTJ7KoKJAVWU5PScH9+/dx5MgR6PV6VKtWDdbXrwGS3QolRoVO4oA645gbjUacOHECZcuWxdq1a5Gens6c58aNG4t6r1mtVjRu3FjkHP0VUCOVp2/Qgm9K1Vq8eLGod0pO8DQ5GcuuX4fGyXPmnWYvrRZ8njO71gSAXVWT3qO4uDhs27YN48ePR0BAgMjw9vT0xPTp07FgwQKMGDGC0XF4JCYmino3yWHAgAFYt24dALtDn50xePPmzVzJ5ecUoaGhLLCh1+tRtWpV1K9fH8+fP0eRIkUQIAgA7R34+jXw55+AyQRPT0/8TNRFGzRogPz580PlhJYmdbb4+xkpR5eDnSbLR+NbtmyJggULsmyjWq1GmTJlmOEF2J0ialTGx8cjOTkZRqMRgiCw+hlXqFu3Lnr06MHUDSn69u2LJUuWoEWLFtBqtSJ6laenJ/z9/REZGelQWN+mTRts3boV58+fR82aNaHRaNhnb9y4AcBRiOjSpUt4+vQpPJ1IS+/YsQNKpdJB4ezgwYMYMWIEAOCrr75igTZ6jYDd6RIAGKjDKve89HqWjQLE9a/pXL2Vq8wW72ylE2dr7OHD7DWpkIUzyXYKKY0whuxNdM330Ggw1MlaSJ1d6tS6cmF79uzJ5qQcaNb30qVLTPVy9+7djMpJx+trieKsM5qpM0RGRrLsjc+1a+jTpw9mzZrlcNygQYMQHh7OnGoelKZM7xFfx3Xq1CkMHToUDRo0wNixY5mzVb58efTr1w+VKlVCTEyMQ5PwfwKnTp3CVaL2SqnHM2bMYBlblUrFKKG9e/dmFObU1FRMmDABkyZNQnR0NMqVK4f33nsPcXFxEAQBU6dOxezZs2E0GkWZxocPH+IlCRI9efIEPj4+Iqn5PPxzyHO28pAj0OJsXiDj3wTdXBoS2pqPjw9Lr8+dOxdVq1bF8ePHoVKpMDswEFizBnPmzEEwUUvLqVpct27dctQfYuDAgezchVyo/Rw/fhw3b97MkegGALz//vtscf66QQPskkQAXWW2lrRqhcbFi4tekzpbvnwEKyMDCQkJKCJ5xnzTVjl8/PHH2LhxIx49esQWdgD4/rvvAABeZFPT6/XMOfL09LTXj02fDjWhP7lzm8TkyZNRXHLtUqSkpGD16tVwd3dnDaJPnTolqvWixt67ooywHmqcgWGxWCAIAus9NHToUGYY5hY+TgwAaXE8T/PQarUuaVmA3Sj78MMPceDAAUY3O3ToEAtKtGzZEh999BFrSwDY769cofTChQtZTY0zpKamsoh3TtQIy5cvz6h07xL+/v44SijDhw8fxty5c3HmzBkolUoHClTVihUBUv8REBCAfPnyYeDAgUyRVK1WA5xRDdjVNmE0MsqhIAjiHjWc00DHPwCH+5qQkIBXr17hypUrqFSpEgRBgFKpFNVWAVnrnru7O/z8/NiY+ys0TeoI37p1C1qtFoIgYP78+ahSpQo8PT0djGsKLy8vFChQAFWqVEF0dDSMRiNztmbPno09e/Y4OHaZmZnQarWyAYKRI0fCYDDINhpv1KgRC6JERkaKarn4uZ0vMJD9LddCID4jQ6Sq6sfR+ugal2mxiDJbka9eQZgyhbWxEGAPJKkVClkJeak4ijMVQXb9ktqhmFw0gKXOlpTKLAeDwcCCTi9evHDanuLSpUuYO3cuAHuD3KNHjwJwrM8eNmyY6LtzCnaeb75B51KlGLWf9vOiSE5Oxvjx49m18Ojduzf73uPHj2P48OHsvT59+qBIkSJo3rw5mx+APTC7fv16XL16FdOmTXvrNfqvgFIxAbD9zd/fH4fJuqJSqWA2m/HmzRts3ryZBXCrVKmC169fY+rUqewZqlQqpiQK2OvnjEajiDVTrVo1B6XehjmsJ83Du0Wes5WHHIEaJZ4usjb/JKjRQakAX331FavDysjIQNu2bZGRkQF3d3d8MWwYkJkp4iznVI3wbWB24ZydOnUK3bp1EzU3dgW1Ws3qM75t1AhtORUxAKjI1V5IUbdIEYfi4qqVK6MopxgmctaIs6WURCqdNSClsFgsUCgUcHd3F23gacTYNhGKDR1DKpWKGXAKhQI6El3WcUbHN99841JUQRAEvH79GkeOHIGbmxtTLaNISkqC2WxGVdJE9105W0WKFEFERIRo/FADRyqR/TbQO6HkSJ8JT5tZt25dts7PixcvcOHCBbRs2RLdSb+sXwhlKjg4GNWqVcPq1avx2WefiT4n5yTlpLB8xYoVGDduHAB7IEKqZCYHXqb4ryI+Pj6rjoWbjzTjQmlyVC3P3WbD4IgI5kRbrVbExsZCrVYzpUC1Wi1SBaVY9csvrCZQgL12c926dai6bx9AMlWA/TlRg1K6jtJMe3h4OK6QmrFHjx451GHRdc9GevjR6PxfUVajIhvPnz9nctijRo3C5cuXoVar2bXVkQgr7N69G2FhYVCr1SzAQelHderUQevWrUXZg7S0NBgMBmi1WgcnErA78aNGjcLy5ctZ/a2c43XkyBGsXr0ahQoVQoMGDUTGfv7gYHiRYJFczZbeZBI5M9QhG7l/P6KIY5xhMokyWzdJxrXWihVINBigEARolEqolUr0kWmMK81kZZfZmtywIf7kfucnlSqhur9/VnsCF/D398eFCxfYOJYbBYIgoFKlSti+fTtral24cGHRmmGz2djYz8jIYPOD75FXrlw5HDt2jNX7UUcgt84Wr0bYvXt3zJkzB+Hh4ew7W7RogfDwcEZb5UVspk2bBsA+TyhlPSIiQlQje/r0aTx79gwHDx4UiWfUqFGD0cnDw8P/FVuG/86KFSvCy8sLCQkJTBSDzu979+4hODiY1ct5eHiwIA49pm/fviImyfjx47FkyRJWlwnYg3LHjh3DRx999LfaPHnIHnnOVh5yhJIlS7II/n8CpLUAFDQLRQ032t1crVazpq7u7u4u+3P9VTRyIYXPS7n+VZT18UENsuHlFDabjdUsAMATLtLmrlDgl19+cVDBys7ZogIZXl5eonqVOaS5MBW+oD2t3N3dGa88MzPT3v8rB99DcfDgQaxbt45t8rNmzUJoaChmz57NjvHx8cH27dsRGxuLoKCgd3K/AbuBcfz4cZEyXG5pNK5g5jKuZTjlT2lm6+eff2bF0Tt37syWGnLixAmcJL27aG1heno6FixYgBUrVogyWhTVq1eX7QU3btw4p0qRFLxAxueffy7bM02Kd9mL64svvmDZJsgEP2jhef/+/bF9+3bop0zB/P798fXXX6Nx48ZMBn3x4sU4d+4cAPuYklMkHDZoEBt7CkFAcHAwhg0bhtDixUW1ScWLF2fZb0rTGjlyJMaNG4eMjAzExcWhTJkyLCjUvXt3ByeV3lNKw8utolq4JFgDQEQPlGsS37BhQ0RGRopEYei10MxKiRIlEBwcDJ1Oh9mzZ7N6QJ4OePr0aQwZMgQRERF4QgITGklG9vXr1xg3bhw++eQTlC5d2kGOHrAbnnXq1MGLFy+Y5DzFs6dP8ZzMBUojrEJqQinGcIEumsFadOECVhIGgcFshoGrg5SyBxSCALVS6ZRaLc1sZdcjykOjQX0usDSmTh20iI3FunXrsmVV6PV6ZGZmMifX2f5MezjRwAEgDkCZTCaWHX/8+DGbiwqFgr3+/PlzPH/+nFE4x4wZg6tXr+a4/piiSJEiaN26Ndzd3dm8iYyMZPWKt2/dYoqv9erVY/RGwC6eAtibZlOK3ebNm/Htt9+yY5zVJE2fPp1lVJs0afKvOFt81vu9995De9JbjNIoKcXRbDY73NehQ4cCyHJu09LSRLXBBw4cwPr168UKq7CPiV9//ZXVe+bh30Ges5WHHONdGpV/FWq1mqkRfvDBB/jggw8wfvx4WK1WtvFs3LgRnp6eUCgUmD59OgD7b1CpVGzzedewTZ6MwcSQk8O7dLbiiFhDbnDn9m08evyYKaxRU8ddpcLmDRvQunVrB8M+J06QQqFA3759RdFY+jmVIKBz586s/sTd3R1jx47F1q1bceHCBQwgBeRytB85eHp6okaNGuxehoaGwt3dHSdOnMCKFSvY5jxlyhR0794d586de2dBgnv37kEQBFwganM83sV3ULOsceHCqMMZ2nxmKzU1Fbdu3UJAQACqV6+O7du34+LFiy7PS43s9evXY8aMGSwqDcChfvG3336DTqfDzJkz0VKmMD8+Pp45bhTHjx8XZTV5gYxRo0axXlWu8C6NH2cUKcDuiNGs6Y4dO5iR9/DhQ0ybNg23b9+Gl5cXOnXqBCCrj5xCoRC1J6BI53qYCYKAM2fOICkpCVOnTsVcQqUF7IGFmJgYWK1W9ry6du2Kdu3a4cGDB6hatSpu377NalRiY2MdnGi6BhctUgRnzpxBhQoVUKFCBZYJcoXU1FTZ3nWjRo1iTovcOBIEQTY4RZ0tpVKJuLg4xMTEQBAEfP7554wmzTsLq1atQqtWrVCmTBmmuGektX+cOun69evRtWtXLF++XJQFoXB3d8edO3cceusBQFpKCpN+p/S8isHBGC9RUqSQq80ymM2I45zEZ5Jsc2pKij2z5WRddKjZykVDXgpKx6Zj0xmioqJQv359VlspXYGo9DkFdabr1asnEsDRaDTYtGkT+5tS1erWrcs+c/fuXcyYMQOTJk2C0WjEw4cP8fTp01yvexUrVkS7du2g1+tZ5omqbAJgjlaRIkVw6tQpUaaGIjo6GqtWrQJgv1dy+zkNKn3C9Qqk++6SJUv+FWcrNDSUOashISEwGAyYP38+u5aMjAycOnUKlStXFqk+AvbartGjR7O5tX//fowYMQKenp748ccfWUZcLiN68uRJpKWliSnOefhH8Z9jPechD7kEXbSqVq2KtLQ0vHz5EkqlEufOnYNGo0H37t1ZZG7SpElsoalSpUqOFNz+DtBeYLmNBsrB7EIq3BlUViug0eDAgQMAAAUxBPzd3dG8eXMEBQUhRlKjkUGMl48rVcKmLl0cznnkyBH06dMHFStWFG3u1BjJSEvD1q1bsX79egwfPhw6nQ6FCxfG9evXUa1aNRQgkeecZrbq1q2Lbt26MUNs1KhRCAgIwL59+9C7d2+MHj2aHXvz5s13qtRFHROpuqFGo5HNGuQWKoUCXQsXht/163Djsha8A+zt7Y0ffvgBGo2G1T9kl+EYN24cqlSpghs3buDRo0ci3r6UOrh69WoYDAbEx8fLSgCvW7cOXbp0Eb3XqlUrUb2eSqVikfM//vgjWzXCOXPmYCbJhL4LLFy4EA8ePEB0dDRzGBctWoSKFSviq6++YsedP3+e0SqpkMeKFSvQqFEjh4CI1WrFYzmqI5cVUAgCy+bs2LED8YQGqJ8wgRmtycnJmDZtGrp374569eqhfv36OHHiBJ4+fYpjx46xtcHHx8epceSZmIjatWtDoVDg2rVrDka1HDZs2CDKbFD4+/uzTBRfU5IdeGerRo0asjUwPANh06ZNaNOmDY4ePZq1/tFMLueU0fcePHjAaG88SpQoAb1ej2+osAkHAVw/LDJnUjIzEeykFpKvzaIZf4PZDDX37KdKHVSbjdEI5eBQs5VLmh2QJQCVnYoqL70POAZ8pE4IzfZ27dpV5GxkZGSImldT6nrHjh0ZI8FkMjGxJrVajbVr17LMTG7w4sULDBw4UOTAS89z4cIFVtfI111RnD9/HhMnTgRgX/v4DDxV/I2MjIS3tzdr/wIACxYsQHh4OHr16mVX5v2HUbhwYZZ5u3r1Ki5cuIDvv/+ePbdXr16hcePG8PX1FfXGA+xreO/evVltukqlQq1atZCcnMwc59mzZ8sq4V67dg2HDx9GTEwMG1t5+GeR52zl4b8alSpVwrhx4xAaGorIyEgYDAasXr0an3/+OZN6bdGiBQwGA6O4/fHHH/9ah/RmzZrh9evX74Q/HZYDapYUnRs3Bry8UK12bVisVqQTI0RjNqNly5aIi4tziKZ2J2pOq9q3R7eyZR3Oef36dcQS2gvfmymQZBh9iMGoUCiwaNEiKJVKuLm5YcqUKTCbzVl9ZXKROb169SqCgoIwePBgeHh44MsvvwRgN/r/TqqrnBohYM9a0E3+rc5LaCRBwcHY0q8fTqxfDzfOaOMzW5RaptFosHPnTgAQUUS+/fZbBzW3P//8E69fv8asWbMwZMgQ3L592+EaPD09UbduXZFKFk/hYddKruXUqVNMCdJgMIjGzYQJE7BkyRL7tXN1H87w/vvvyzZNfVtotVoMGjQIH374IXOQFy1ahD59+ojGBx/0oAIMderUQcmSJZmIDl1HFAqFvDS/2Qwr6SfXKjSUUbC2bduGWYMHI6pfP5HjnJaWhpSUFFEmgTp8+/fvZ45zRESE/D2ZOhXpnNMkCAJWrFiR7T0ZMGAABg8eLPteYGAgSpUqlSsBpIiICMTGxuLJkycICAiQVeBUKpUAF9g6e/YszGYzCtKsbWwswAkgHD16lP1+XgSDR8OGDTF16lT5AANHk6b0v+TMTASRde4rSfDAyIlh0JYdBrMZLkcrcbac0Qh556p8UJBLJVdnoAGjnDpbrKmx5P3mzZuLxvvq1auxZs0ajBo1Crt372bCV48fPxYJ1NB6zq1bt7KxlZqaKnKe35bpQhWNqUpgp06dmHAMj3bt2gGArGog3zRdo9GI1h6+rcvIkSPRs2dP9nfTpk3x6aef4sqVKw5r5D+B+Ph4HD58GOfOncPu3bvx7NkzPH/+nKkpUoGM3bt3M6ozxZEjR1C3bl2RQMb58+ehVCoZTXvjxo2yz0WtVuPQoUMICwtjGcE8/LPIc7by8F+NwoULw8fHB3/++Sf0ej30ej1mzJiB8uXLM2OJqvHwxdbv0rDLDf744w/MnDnznVAyc1uvAQBFAgLgrdUiTaPBltu3YRUECDYbNFYrMjMzoVarHWtnslG6GzRoEKOD8JHo78jmHUKMWP43U4oH77RIRSBcQalUIiMjAz/++COALHU3XjlNrv7kr8KZs/VXYSUGqQdxTOPi4pxmtqiEcffu3VmUkne2pk2b5mBIvHnzhqmHZWRkwNvbG1OmTEHbtm0B2O/V5MmTRT10YmJiHAQaAPFvj46OZsIgvMFz//59FmHNibNVtWpV2UxFTnD16lWH2rJevXrh6NGjOH78OE6SzMTDhw8xZswYEQWUOlhXr17FypUrAdiNmO+//x7bt2/H+fPn2T0SBAFjJFlAAPD39sbEiRNh/PprjK9fHxaLBd7e3qw+JIMEeSjVizpbcoiMjHRQD3OAxeJgVP/V1gYWiwX379/PVaDCZDIhOjpatq6PQqfTwY8zlhMSEhAcHIwQvtaUjOFPPvkEBQsWZL2FeDlv6bWOGDFCNkJfvGhRBJLIP3W2Ujhna2KDBrBxtDST1crk2/nMls3VWkQzWzmgEY6qVeutgj/Vq1fPkWotXY+YsyX5rl69eqFdu3bo2bMnJk2aBG9vb3z00Uew2WxYvnw5u9fSe0mzXtevX8fZs2cB2On6/Nx/26AWrVucMGEChgwZglu3bqFs2bKsVpFmc6nTxDt41FGbNGkSu5ZGjRqhcOHCLIs3cuRIlC9fHiVKlJAVLdJqtbh161aORar+Dvj7++Ps2bO4evUqPDw8mJqiSqWCzWaDwWBwuL9arRZ6vZ452G5ubg4qtFeuXGHtI3jQe/jy5Uu2D+Thn0Wes5WH/2rs3r0bycnJiIyMxOPHj9mm0717d9Yfi2Y9+N5AFSpU+MevFbBTYxYuXPhOel28zWYnCAJsSUnYcuAA7sXFIUing+3ePWisVvj6+jpQMgDghExtBA+TyQSlUglvb2+RQMZN0jA0mjhgfP3G8OHDIZCeRNkL6zuicOHC0Ol0GDZsGJo2bcpEDGbNmoWRI0cCAH766SeMHj36nbYrKFKkCAYPHsyMlHcGcm94o5nPbPEUyz///BNxcXGoUKECxowZgwoVKmAKqXlJS0uDyWRCQkKC6PRPnjwRUch0Oh1u3LjBNuF8+fJh3LhxLNoM2DdzOUPal2tqbTabmbIcb4gtW7YMS5cuBQCMHTuW0WddIfYtahABe5NrpjwI+zijBiJ5QXR8WS47S9Uqt27dygwX/nf89ttvTOUUALxl6jwO7t0rCnzUq1cPW7duZX9fvnxZZCS9fPnSZdNQXuglp/ir2VzqDPtKGpa7wrVr11CuXDmXa6lSqUQ+yfwLDg6WpQyvXLkSpUuXZuI5VatWRePGjWXPmZ6eLiseERwUBG/yfbQHYVxqKmqGhKB1WJgDpc9ksbD+WrfI+Mswm2FzcT/d3d1znNnKKTVaihEjRmDr1q3ZPtfatWsjOjoaXQi9W3p0r169EBwcjN9++w2bN2/Gda6JM5D1vNPS0lC0aFEolUqMGzeO1TQqFApRoIQqjAJg9O/cgm8HsHjxYty7dw/Pnj1jSpj169eHv78/du3aBcA+XxYvXgzAzgwB7GOIUufCwsKwfPlyloXfsGEDbty4gcePH+P3339Hjx49RN9fj9Tv/Rs1W/7+/tiwYQNCQ0NRrFgxVKxYEenp6SxYqdVqUbx4cRgMBgcRMLrG0PWpZcuW+OKLL9j7dB7K9SXLUyL895HnbOXhvxb1ZIqeeeOQRtqltRcVKlRwaND5T+NdCGRIVQNzCpvJhDSDAVdjYuBx4waQng6VyQRfX1+cOnWK8fVzcnabzYbHjx+jWLFi8PLyEkXsVy1fDgBITUpClSpVRIW7tBEyAJRzEsF2hgMHDmDdunUQBAE//PADGjVqhJIlS6Ju3bpo3bo1FixYAMBeBD1o0CDGcX8X8PPzw9KlS3NllOYGlTlamyizxRltvXv3xs6dO7F8+XL4+vri2bNnrM8YNeilG/XNmzdx6dIlBAQEICgoCEOHDsXvv//Osi07ZCSsmzZtKqsQ+PHHH7PMGXW2evXqJTK6zWYzuwbapyo7vK0aYZEiRUQG3N27d11meviMSaVKlXD+/HlMnToVS5cuhdlsFvUTWrhwocjZeioTNe7Utq2oz0+hQoXQv39/VrPWu3dvjBo1CgaDAV26dMHs2bNZzejEiROxcuVKhIWF4cyZM+jVq5dT+hwPXuoaQI56AQLilgE8qCFHsw45gdT4k4PNZsN9IrcP2Oduvnz5MLJWLQz09hbVpUgdUN4IlaJJkyYi4QOKmzdv4j7JxtLM1ssrV+Cp0WBPz54OzovJakWahDadmk09r7eXl8uaLd4Jk4oN5RRJSUmYPHlytnT3J0+e4MSJEyzDVUuiXjly5Eh06NABY8aMwd27d0X1PMHBwaxlwffff4+nT5/CYrFg8eLFjHpLs9J0vPKfHzhwIAto5gaCIDCaZI8ePbBz504sXryYjadbt24hISEB3bt3R/369REZGcnqs2hWesuWLYzqSOuPaUCHb45evXp1JiFPUblyZYSGhv4rzpYgCPjggw8cxiGtlwsICMDjx4+hVCod1nAqJEXnW1xcnCioQ20Kaa0XYJe9b9myJebMmZOtkmwe/h7kOVt5+K/FB6TBL6U+rVy5EjqdDh999BGKFi3KCrY1Gg06dOjAuN/16tXLUd+fvwM0ev4uBDLeNpatAKA3m3EsKgq+SUlAUhKaVKmCyZMno0yZMln9sHIQlU1NTYWvry9Kly6NKlWqiIx2gfxWk8mErl27ihTwSpYsyaT4i/n6iqg92aF58+YOPX80Gg1Onz4tolX89NNPqFmzptOmrG+Dhw8fQhAE1q/pXcHDwwOYNQsflSjBIrSimi1uc6YqnBkZGdDr9aynGJDlbEkdTCqIcfToUaxZs4bVQ8iB0neGDRsmW+Pz4MEDTJ48Ga9evUK5cuXQrVs3hIaGMoEMs9mMtWvXimoqaL8YV8jJMYCdKsqrDT579kykdliwYEFZyfBSpUrh0aNHIkNHpVKhRo0a7HNKpdJlNkHOwH4eFSWqrVm7di2ePHmCqKgoZqQWKFAAv/76K65fv24XoYmJgY+PD/z8/FCsWDEsXrwYvXr1QmpqqqiWSw42m41JYAN2+h1VTszuc84cOfqbaRuGnIA+X1fOliAIAKF+AfZ7rFKp4K5Wo0hGhui5SZ9/WFiY0zrI9PR0LFq0yOF1g17P6ONGiwUTChZEJteLSAqTxeLgbEn/luJ1dDRUguDUkeIDI2+b2aLrWAbXCkIOZ86cQY8ePbBs2TLYJk/GAJKppTh79iz0ej0LLtLMEGCvTdy/fz9GjhyJvXv34v3332ffSRkKjRs3RpcuXaDRaNCiRQusWbOGff7WrVtvlYUFsjJkmzZtQosWLRASEsJEWp4+eYLg4GCYzWametqiRQtRIPXOnTuYP38+u17AXtPE951q3Lix7D77xx9/4OHDh++U8fBX0Lp1a1afZTabsX79erRo0cJhHfjggw8wd+5cRrN8+fIlHj58iOnTp+POnTtMSVROjfD8+fMoVaoUhg0b5pSem4e/F3nOVh7+a0G5x1S2+PTp0wgMDMSvv/6KcuXKsUUpNTUVO3bsYDSFJUuW5IjW9HeAbijvIrP1ttQhBYBnBgNsNhsCTSbg5ElMatQIJUqUQLFixZgB5Esi/K7kYr29vfHo0SN4enrCx8dHZDAdPXwYgD3SOH78eFEvJ0EQ2L14F6CNWaW1QYmJiQ7S5n8F77IXFI9PP/0UIDx9Dw8PvP/++w6qZvHx8SKDQ6PRsOwJ/d207q6QpP/aqFGjULRoUYwZMwYHDx5kDhtgj/7SuQFkKZY9evRINhNy/PhxLFq0CG3atMGrV69w9+5dbNmyhVGUDh8+jPj4eNb8lIfZbJaNrP7000+MKpQdChQowKK8FDxt0sfHB61bt4bNZrNH3knW5/z58yhRooTsOe/cuYMZM2bIvsdnjVTEsfBJTgZIXyaYTCJ1U1r/cuTIESxbtgxBQUEIDg7GjRs3YDAY8Ntvv8FsNqNt27YYM2YM2rVrh82bN+Px48fYuXMnEy1whq5du4qM3BUrVuTIUR01apTLezxv3jynmS85UAM+OxEH7NwJkNpKPvtJW3UYjUYULlzYoZ3Cw4cPRWIHPJYsWSIr3sKrEaZlZODXn36SrTktTNYLo8XCarYoTmTXnNxmg0oQnNKfeSfsrzpbuRXIkMJsNkOtVrMsSe/evdG/f3/88ssv2LdvHwD7fAXsgRgKmmWqU6cO2rVrB6PRiAMHDoic8Z07d4pENXIDf39/Jm1Or41fu2kbAcCesVq2bJmoruz+/ftMuINea+nSpdGrVy92DK/sySOJMC2qShzTfwt79+5ldVYmk4kFXaQ2wqxZs5AvXz6mwksZKJTWHhAQgA4dOsgyfqKjo7F69eocZ8Dz8O6R52zl4b8aERERrL/EkSNHEB0djVGjRmHgwIGMItGjR493kkl6F6hfvz5sNts7oTC8LY2wdGgoDly+jKKenvBwd2cqbQsXLoRKpWIbd72gILR4+hStWrVyeq7Xr1+zBq0AWJYAAIwk4kgNLGkx77vEP8VJpwbAuxbIWLhwIXx8fNC+fXsMGjTIXi/FRbWtNhuqVKmCY8eOsaJ5jUaD/v37AwBzZENCQlCvXj0HyexNmzYhMzMTR48exfz58yEIAsvuhoWF4caNG7hw4QJ69+6NR48ewcfHB+vWrXNwaoCs53j58mXMmjUL7du3x61btxhtl1KaaGY5MzOTfeann36SdcJq1arF6HpnzpyR7a3Dg3duKleuLHIWT5w4gXr16uHRo0eYM2cOi9j7+fk5FaYoXbq0iD7Ig5eoLl68OAAg+eefAVp3aTaLjGLeIR82bBjevHnDjFS+b9S6desA2OtleDXB7Ayi33//XVR/R+m02WHhwoWYNGmS0/dHjx7t9B7IISAgALt27WLGulNkZgIyDrYgCExG/Nq1a7KS1c5QuXJlUZaGndNmY6qCJqsV0U6k7J999hlG1awJk9WK/RI5/xVkP3EKmw1qhYKpqALA7h498BlRreQzW7kR/eExffp0BAYG/mVny2QyidowzJw5E507d8aAAQPYHKIOrbu7OxMuog7MgQMHMHr0aDyQaXnwV+oENRoNahHxELpe8K0jAKBt27ZYu3Ytrl27hqVLl0KpVLJ112g0sn/Ta5XrCSjtVQXYA52RkZHZZg3/Kfz8889snaWO56+//ipyHAE7Rfbjjz9mWX2amaP1qvHx8dixYweSJX3hAPs9SkpKYrXNefjnkeds5eG/FtKC/ufPnyM2NharV69G27ZtmeEfEBCAXr16/UcsNEePHn1n4hxvu9V5e3oC4eFQwt7fKDIyEs+ePYOvr6/I2Tp36hQOrFrl0ND02rVrbKO9c+cOEyABIKJm1CCRw7Ikg/V3Olt0g+EN1c6dO7/z7/m71AhDQkIwbdo0dt49e/agX58+7H0b7HS5PXv2wMfHBzNmzECrVq2QkpICrVbLfqtSqcTZs2dZLcXDhw8RFRWFJ0+eiPoglS9fHqdOnULZsmVZBLV69epMJtloNMJoNMpmoXhnggYxQkJCspz0evWwcOFCVm+SkJCA8ePHA7DXM1GDjv02mw2VKlXCtGnTANidtG+//dbpvRo8eLAoM3337l0RrTA1NRWpqam4c+cOZs+ejaNczZWrZsdyeP36tajAntHarFYmaf7hBx+IBDrksp80C3Pv3j2MGjWKibhoNBps3LhR1ExYen9ygpwajjQA9a6wbNkyzCJtC5xh37592WZA/Pz8HPrUDR48ONc9gcqXK4eQwoUBkJoti8VpBkOtVGLH3bu4SAReKHwkGQU/GQdUJQgiZ6tNqVIoTeoG5TJbjx8/llX2dAbaj4lvPCwHSglz5mxNmTIFFSpUwMcff4z9+/fjwYMHDoIRgH2tjI+PZwqudE1ISEjAxYsXGTuAp3X+FUXdpKQkFCtWjNViAVmORjGSMVWpVGw9nDlzJry8vHDv3j0olUqsWrWKvUcpeFu3bkXz5s3x4YcfsuyOXHCF7hG5XQv+LgwYMIBJt9N7ICeQIXe/p0+fjkaNGgEAoxbLUYXpufKaGv97yHO28vBfi0mTJmHo0KHM0LFarahUqZKDJPrixYudFlr/07h27do7q/d528jiNRK5LfjqFRYuXIhff/0VL168YGqE1FjMFxAAwK7myBtzVyl9CnajnL/fvBNygSjCHSf1M38nhaFw4cLo2bOnaIP65ptvMH/+fASQ3/EuUKhQIfz444+MwvGuEBAQwEQ3WFDAZGLKZi+JQajT6SAIAo4dO4bg4GDUqVMHM2fOZNmbixcvwmAwMMc2LCwMJUqUQFRUFGsaHBcXhzp16qBo0aJo3769iK7SokULJCQkICMjA8nJyaJaMErz4VXIWrZsiczMTHTq1Ill3Nzc3PDdd9+xjGdaWhqrrzh9+rRDk1L6HXSMFSbGshyio6MREhIiMtIyMjKYhDu9Vp1OlzUuORn83NJ3g4ODRZ+5S2ltViveJ9nUJYsX4/79++yYDz/8kPWbk8uonz17FgMHDgQAfPTRR+jevTuqVavGakpdZZL/CtLT05kgyrvCgwcPZMVVeNSoUQOfffYZihQpImowmx0EQWAZmZwiwN8fHh4e9rVGqQQsFlSpUkXWARYARCUl4RgnenKkd28HWmGA5BryBwfDQ6cTOVtAljCGKLNF1uiSJUvmuCYRsNfnTJo0STZLAdidq+HDh6Njx44wmUyiGj4enTp1QkhICF68eIEBAwbAZDI5tIVQKBT47LPPoNPp4OPjg/79+7MMp5ubm6iGi28I/lfqnqnjMHbsWPaaSqUC1qzBH+Q1pVLJslU2mw1Pnz5F9erVYbFYYLFYWG86f39/FCxYEEajES9fvsT69etx6tQpABAFAimo0qJc/65/G4IgsNYPUmeLrkP8HjthwgRGGf/2229Ru3Zt2Tpbqp6b52z9e8hztvLwXwu66EglaKXOVvny5ZlC3b+Nd5ndaUH6+OQW1OlRPn7MGs/GxMTA19cXZ86cYXSw6xydhqdt5c+fny3eJpPJsd8X3cypnHlUFO7evSsrSfuu4ObmhvXr14uif19//TUaN27sUmY7t3B3d0ePHj3eqseZK1y7do3JldesWdO+KWZmwpsY618T+pdWq0W/fv1w5MgR7Ny5EzqdDrVq1WJ1PpRWJB1nL168QGpqKlatWsWcz8TERCxduhRzuaayQJYqXKVKlVjEvESJEqxGsnPnzrBarahTpw4SExPx5MkTRkEtWbIkjh49iufPn7OsmLu7O4xGI8xms2zQg36HxWJBYmIiqlatitjYWOzYsUMkoADYM3VfffUVE1ehv5vPijg4W8ePAySz9FdVJJn6ms2GELUa51u2RPfu3dGjRw+WnfL19cVnpB+X1HEaO3YsPDw8cP78eRQpUgR9uOzlnTt3/q+9+w6L4ur+AP5d2GUpAoqgFAUVhUhA7N3YkajYS2wJJnbRWKLxjSZoTGw/a4wJaBR7F9TYGzYERUWFYEGaShFERUA69/fHMtcddlFQiuD5PI/P+2Z3dnYWhtk59557Dv777z+MHj36rcdgYmKidnbiXXR1dUs8nboowauxsTFcXFxw8+ZNUQGD0uB/5QpuBgcjPT+4sm/YEBs2bFA7w5GSf51TDpl0ZTLFmi+l9UMF111py+XQ0tTk11GhuI/Qy0t5CEz5tcWZCcrLy8OaNWuwcuVKtc8nJCTgzz//xL59++Dl5VVoK5GuXbvixo0bOH/+vEpqsVAuvm/fvnxGKzU1VVFsI/+zCcGWcP1XXhv59ddfv/cAmvCzcHZ25o/JZDIgIgJ/5K+dNDExEaXbP336lAeKXl5evOx5YGAgYmNjUaVKFZXqjequ07q6utDU1CyRddOlwdfXF8bGxirBlvA3/7asigYNGqitKFq7dm3o6+tTsFWOKNgiFZaOjg727t2Lxo0bA1CkyNjY2IgaswKKVKCoqKgyPz513tXctaiYuzumv2dKkGb+RdxKqYjCxYsX0aZNG6Snp79ZO5Gby2dwlFMu6tatC3Nzc6Snp8PIyEjUPPjgwYOApyeglDYkzchAUlJSiX32ojp48CAcHR1LpKeZIDo6GlWrVi3RfQKKGwlh9gdQ3BC4jx+PwPxc/mbNm6Nfv37YunUrH11WHulULpABvBmAuHbtGq5evcrz/5Ube0skErx8+VJt409NTU30798fp0+fxtKlS9GxY0e+Xsnf3x9t27bFP//8g5cvX8LNzQ179uzB5s2bERERwYN14ViE2YnXr1+jdevWojLpwJuZrR49euDKlSv4+eefceTIEfTv319lJkQo6S6kpQlBv/Iapi+//BKenp78Z2Corw+kpGDq1Kkf3I9Klv+3U0VPD1u2bIG7uztOnjyJO3fuoGXLlsjLy4ORkREWLlyIV69eiWaSHBwcMG3aNJw7dw46OjrQ1dUVlamuXbt2kYrGJCQkiK5x69atU1nfUVaKWmRAue1AacrLycE/jx9j4N69AAD9/HNP3dqnV2pKvPNqk0qDFQWDrajISKQmJyOzQNXC+vkzu3uV1gkJr925c2eRSvrzz5GXB0dHR1y5ckXt88K5fejQIYwbN0507VB27949ZGVl8Rv35s2b8xtu4abdx8cHnp6eAMDXgCoXp1i0aBF69+4NZ2dnnur7oYT3Vu6HZ2xsjB07dvA+a3l5ebyq6Lhx40TZFceOHcOQIUMAvAncCqZpOjs7qx1cyMrKQm5u7gdfC0rL6tWrMWrUKOzatUv0eIcOHbBr1663BluxsbEIDQ1VeTw0NBRdunRRKZxEyg4FW6RCGzx4MCQSCZo2bQp/f388ePBAlJoAKJqlLl++vJyOUKy8mikr0xBmBPPLg9vb24MxBqlUin79+r35AszL48VHLCws+KhhgwYN4Ovri4SEBLRt2xZ/51caA/JTwTIygPzgTO7nB53oaLRr1+6daztKyzurpRUDnxUs4TVbNWrUEN0YnDp1CmAM1fJvJM6cPYtJkybxBsLAm2ILUqlUlO7XtGlT/qVqZ2cHOzs7nram3CRW+AzC7Kay3NxcnmYTHByM3bt389kBX19fBAQEYNCgQYiMjIRcLsfOnTvx5MkTNGnShAdZQiEMPT09zJgxAxoaGoiPj1fpzaOjo4NDhw5hzZo1PGgUZkGVm2QD4KWgC663UK44KVTFbNiwIRhjCA8Ph7Ozc6E3pMUh/MyWL12KZs2a4enTp6KiEps3b0ZqaioSEhLQq1cv3th5zJgxuHXrFi8CoKuri1q1auGlUln0orK2thalUQ4aNKhEU2WL45tvvilSamBxCm98COH2+Ux+QRL//HSyTDWBVYqaEu9P8gceNJQrUBackWIMt2/exFOl1FFA0cICAHKVZkyElEJbW9tiz2yZmpoWen4IfxfC4MO7qhEK5+306dOxYsUKbN26VVRaXJgJL1i51czMDH379sWdO3dw4sQJ0eDAh9DW1saBAwdE521OTg4OHjzIB2sSExOhqakJR0dHTJ06FXvzA2iBEJQJn61gP78TJ06o/Znb2tp+1FX5FixYgBs3buBRgeIuurq6ant0KTt9+rTa1hFJSUk4dOhQiR8rKToKtkiloNy4cMyYMaLnxowZUyrFEt7Hl19+We4Xesv8nHXXUaNQt25d/PDDD/jiiy+QmpoKmUzGv8Tw+jVq167N89737NmD0aNHQ0NDA4wxpKSk4M6dO9iyZQvfd8H0pvqxsdic33yyNAtklBXhd/chi8OLolGjRvjrr79EVcCcnJxEs4PCDWz9+vWxb98+AIqeLbVr1+aBcZUqVaCvr89LhScmJvLXC59B3WdhjPFyxMK6ESFoFQK70NBQXLhwAXK5HFpaWggNDUVQUBC/sRWK18hkMqxYsQJVqlSBTCZTaTIqk8ng4OCAX3/9Ffb29pgwYQKMjIyQkZEhuonMy8vj6cBC4YT169fD1tZWlB44depUDB8+HDExMWjatClCQkKwdu3aEvmd1coPYvv26QNra2skJCTA1NQU+vr60NTU5OW0Hz9+jEuXLvES+9WqVYOGhgZP8TE1NcWZM2eKVYFPEBERIWq0XLNmTdGAR1mSSCRFuraWdbAllH8X0gHVXXNFM1v5QUT/vn0BKGbIBDI1wVY1AwO0j43F659+4g9raWpi98CBaKKUtiys62rbtu0700OVbdu2DVOmTOHrIAsSgh5h3dTbgi2pVMr34+bmhs8//1yUvgq8KWwkzHAJwsLC0KhRIyxatAgjRozggx0lQSKRiFLlsrOzsW/fPhgZGcHT0xO1atWCpqYmbt++DUtLS/z111+8GITweuBNtkjf/N+dsrcV2vlYyWQy/P333yU2iwioVnokZY+CLVIpKM80FFwXEhcXV+yqVpVZdv6NhIWFBe7du8dHDPX19SGVStGjRw/g77/RUiJBamoqmjVrhrFjx4IxJrpRTklJwc2bN0XBloAxhm3btqF69ero1asXgLIPtiZNmlTi+yyrYAtQ3KAKgYttgeau27dv5+mzBgYGfFF1amoqjhw5wtdWCGsWwsPDMXDgQFFQoqOjg6ZNm8I4v4paQcKNkDC6Lty45Obmom3btmjWrBkkEgmMjY2hpaWF7t27Q0dHB/3791cpRe7q6orIyEhMmjSJpyMKYmNjUa9ePXh4eKBevXoYOnQosrOzcfHiRVFQIRzHtm3beNPmrl274v79+/znlJ2djb///hthYWF4/vw5goKCMHLkyBLr6WaaHyxJpVLo6emhfv36mDdvHtavX48FCxbwBtrCDaDwMxTWxQnBltCj6n3TegoGD4XdbJe2s2fPql2Qr8zPz0/lJr60tC2YWp2Xhz59+qjtryaasdq7Fx39/XlwVjW/D5fydk1MTWHr4wMwhpDbt3H80CHoFFgTNNTeHjWU/p5y8695mZmZohvemjVrFtrXDVBkCHTo0EHU+0qZ8PuuUaMG2rRpU2grkf3798Pa2pqv3Xrx4oVKGi/wZi1jwWuBRCLBvXv3EB4ejr59+6rt4fQ+GGMYMGCA2mqELi4uGDduHCQSieh7vWXLlli0aBHMzc1hamrKU1KFlMo1a9bg559/xuDBg/l3jjDzV5FIpVKkp6errNn6EP379y9yH0NSOkrut0lIOVK+MBW8ETl69CgvrUqA8IgIoGpV+Pn5ib48NTQ0oKOjAyMjI9TR0UH/vn1xLSAAgwcPhoeHB8aPHw/GGL9JkMvl6gtkQNE36erVqwAUuebAh/VleR8TJ06EsbGx2gXD76t27dq4efMmv9kvTXK5nM8muY0YAf/8WSGJRIK5c+fiq6++AqAYfW7bti0SExOxb98+5Obm8sBWW1sb2dnZePz4MW7cuMEbFgOK34ejo2OhwZZyxbDLly8jLS0Nurq6aNSoEaysrLB582aMHz8eI0aMwPr16/HkyRO+mH7KlCmYNWsWb79w6tQpTJgwAb///jufMRMIaUPZ2dnYtGkTNm/ejLy8PN5HiTGG9PR07Nq1C1paWhgxYgRfo2SdXySmX79+AN4EOU+fPuVpma9fvy6xYMQ0MxMtoqNhbGyMTZs2AVDMsjVr1gwymQyvX7+GnZ0d1qxZg+7du6sE5dra2tDT00NaWhqys7NLJB116dKl+Pbbbz94P+9D3fqQgqpWrfrWCpMlSVepj5mgQYMGSEhIUFkv9kfHjrATmvSmp6N+rVqQVqmCsxDPbGXkrxV6/fIl9m/fjqHnzyNUTd8pwc2gICC/XUaO0gCTckGGhIQEnDt3Dj8pzYwlJSVh7Nix8Pb2hqurK7p06YKIiAjY2NigU6dO2LFjBy+YIZzPy5Yte2umhDAT9PjxY76+Tmg+rkxoCVC7dm3RDJGOjg6ys7MRFhbG/9ZKgvBdoPxewt+Ccm8/5bTna9euYfr06YiNjcXt27d5kRxjY2N0794dt2/fxoULF0QDqxVxkHXgwIGIiYkp0SJMurq6mDx5contjxQfzWyRSkG5jGvBUT5nZ2fMmjWrrA/poyV8NatbP3bq1CkkJSUhKiqK90YCgAkTJuD+/fv4/fff8b///Q8TJkxA06ZNVYItIegVAi1vb288f/4ceXl5KlXvStu4ceNgZWVV4hWYXr58WSapoPb29pDL5ZiQkIAn/v48fW/Tpk2Ijo5GXFwcAMWNi7CeSrmyH/AmfUuYFfr999/5/vPy8uDl5YUBAwaofX+5XM5LxwPga54GDhyIb7/9FnZ2dnjy5Anu3LmDcePG8VSkDRs2ABAvftfW1kZGRobaBrjK682io6PRoEEDlYDM09MTbm5uaN++vUojbeBN0CV8Xg0NDX5eluRNS1pKCgK9vJCbm4vIyEjMnj0bGzZswP379xESEoLvvvsOO3fu5E22ldOeBAkJCahXrx6kUul7DUD06NGDr8EDFOvbymvN1m+//fbO9bCff/55mQWD5y5cEP23m5sbDhw4oDZd8ysXF1jnf1cc3L8fM2bMQO/8UuOvlNZKSfL/lu7fu4eLFy8iOzsb1QwNVdJhBYlKsynKwdYXX3zB/3+1atV4aq/g4sWLvKBKXl4eIiIisH79evzwww/Yu3evaM2h8nech4cH3Nzc1J5LRkZGiMyvBisQBiGE31u9evV4BdJHjx6J1vYIxW3MzMxUZqQ/hHCsysGUMDAhrHMEVGdsa9asibS0NOzfv58Xx9HS0kLHjh2RlZUlCq6ioqLeq2ddeVu7di0aN25colV0SfmjYItUCiYmJrC3t8eaNWtUcp1v376tdjTvU6WbH5jq6+tDS0sLurq6WJ+/riokJATVq1fnxQ2Um2quWLECHTp0wNatW6Gjo4M7d+7A1taWz0AA4GtWBOHh4fymsqxntvz9/dGqVasSrUQZGRmJLl26vFdhg+Ly8fFBu3btwHJzoampyW+ShLUfygUyhOBKuDkRbkTCwsIQExPD+/AoB9jCzc2DAgv9BY0bN0ZYWBgWLVqESZMm8fc4cOAA9u3bBw8PDyQkJGDTpk3Yu3cvTp48KToG5ZtwuVyOzMxM1K9fXyU1Sth+6tSpSElJgYaGhkoDchMTE7Rv3x5nz55FdHQ0pk6dKlq/Jsy2pqSkYNasWQgODuY3KzY2NoX/kItJuJnLzs7Gxo0b8X//93+i88vNzQ0tWrRAr169wBiDe35ZcGXF7R1V0IkTJ8ptJqsgGxsbzJw5853bKZcML015BWYKw8LCEBUVhczMTGRkZIj6bT179oyvx9qwbh00NTUxXanxt0CoaAjGMHnyZESEh+NFYqLaht8AgKgoSPIHY4Rgy9PTU5Ru/c8//4gawAPggxo//vgjYmNjRTNhNjY2ouustbX1m2Ity5erLXLz6NEjvHjxApqamvxvvVWrVvj8888BvBkQi4iI4CmOffv2Fc1CVq1aFT4+Prh7926p3PwXXEv0+++/iwpDKLd+aNy4MXR1daGrq4uFCxeK1gdLpVKVIigFf74VxcKFCzFkyBAsXLiwvA+FlCAKtkilkJaWhpCQECxfvlylHHFcXJyoNPSnTkPphiQzMxOrV6/msz/z5s3D/v37YZTfHPTUqVOibS9fvoyYmBiEhIQgMDAQXbt2xVSlGxTlinre3t6YNWtWifekKi51DU3flxAwlkXgePjwYTx48AC5+cHWtm3b0CQ/PQl4E2wJpd8ZY9DQ0MCoUaP4WqDExETExsbyG5P58+erfBbl37EyoWrg7du38c8///Dg5vLly/D398e///6LwMBAyOVyBAQEwN/fH05OTmCMYeTIkWjVqhXf108//QQbGxvEx8erLLKvW7cubt26hQsXLmDVqlVITEyEs7Mzbz4KKNLVLl++jCNHjsDExATPnj0TjWLPmzcP8fHxePnyJf7v//4PhoaGqFatGhhj2Ldv3zvXFRWV8DOTSqU8aFJOKe3Tpw+ys7MRFBQEiUTCb4I/9UpgZdXTiBVI2xQGANLT0+Hi4gIzMzMwxhAQEIDY2Fikp6ZCS0MDR48cUaSmCgG8RIJG+TOzmQUqX2oAqGdlxXupqYiJwfD8MuSf5afotmjRgpcxz83NxY4dO1Sqxtna2mLHjh1YtmwZQkNDoaOjgypVqiAzMxOBgYGiv9Pw8HD+91hYKqrQe045xX7u3LlYunQpDh06xIvqAG/WbD1+/FjUj0sikfAU3ZJ26NAhlfR+T09PUUVETU1NXgTk1q1b/JoHvOmxByiaN3///feifZV0T7mysnv3bhw8eJCnSZLKgYItUikI6z4eP36MCRMmiJ5zdXUtsZutysCgwIhfWloa/+KVSqVITU1FaGgo0tLSIJFIeDXCLKVSyadPn0ZWVhaOHTvG164IFixYgP79+6NWrVqQyWTYvHlz6X6gQggzJiUZ7AmV/wqrElaS1qxZA1tbW8TGxsLOzg7Xr1/npfiBNylzpqamCA0NBWMMU6dORXJyMi5evAhAkfLXokULvr5L3aLrwm7WfH19ASia7WZlZfHthODvn3/+waVLlyCXyyGVSqGlpYVTp04hIiJCpfrcqPzKl/369RMFfIDipsjKyoqPtH/77bfIzs5GVFQUT9cU+pp5eHjA2NgY2dnZyMzMxM6dO3kgGRkZiaysLGhpaUEikSAlJQUSiQQBAQEq1dfelxDEampq8hs/ExMTnjYYFhaG5cuX83P+5MmTaNGiBfr06VMi719RlVUz1YLBlsDAwACPHj0CYwzXr1/na5QkjEG4Jb9+/bqov9ad/ECNl4HP/1+JRILW+WsRhUEOZVOmTFEEde7usDU2xuvXr9G0aVMeeIeGhsLb21s0CBQSEoIFCxbwAEQoPKKhoYE5c+aI0u0ARYqcMBNW2AybcN2WSqV8QKBPnz5qU1uFgYOCmQml6dq1ayoDYY8ePRJVTNXU1BT1NCzse7xBgwZwcXHhf4dA2VXALGlSqRRr167FbqV+baTio2CLVArKN4wFG87evHlTZQ3Ipyy9QN+pGTNm8Jk/mUyGnj178scBRV794sWLVQKMzMxMXL9+XWWm4pdffoG3tzfkcjm0tbVLrBJccX3zzTcA3pRHLgkSiQSDBg0qsf29jTAbkJeXh6+++oo3MwYU/aaE1CBNTU1IpVJoamrC29sbR44c4Wu4hH2EhITAzMxMNDIMKBrtFlY8RjgPAEX6kbDGRCgnLZVKUbVqVVhaWkImk/FS7xs3buTrtgSTJk3CsWPHMGvWLFFFREBxk6tcLc7Ozg45OTnw9PTExo0bER0dja1btwJQBGYGBgZwdnZGZmYm6taty5t/bty4kQdbwnECilm1Nu/ZALygqlWrokGDBpBIJDAxMYGWlhbatWuHO3fuYM+ePbC0tMTMmTMxatQo/lkCAwPLvd1DeQoICMCKFSvK5L1s8tNnlU2YMAGdOnVCzZo1sWbNGtHMiVwqRY5Ss1xhZku5qE5edjawcyfmNGwIAwMD5OXmYmf++ZiWlgYNDQ2e7rZr1y6sXbtWtEZYSDkWBn2UU1EF06dPx5IlS7B37148fPgQPj4+0NXVRcuWLbFq1SpYWVmJjik7OxtyuRyPHz/G2rVr0b9/f5UCCEIBFiMjIzRq1Iin5/3222+iWR+h8h/wJv24LPz++++ia5pAuWiG8kBZtWrV0Lx5cwCK5szK161NmzZh9OjRmDlzJoYPH44vvviiTCrGlgaZTIaMjIwSrUZIyl/FPBsJKUBdkQZBly5d0Lp167I+pI9WgtLIIQC0a9eOL942NzfnI4JCGsr48eNx5MgRrFu3Djt27AAANGnSBDY2NmqrEbZo0QLt27eHjo4OUlJSitT0tDRMmzYNN27cKPEGxGVFCJTOnz8PX19fXuK4evXqvMIjALx48QI2Njbo2rUrRo0ahby8PF6NUPjsGRkZiIuLUxntNTY2LrS4grW1NbKysuDp6Ym4uDi+yN7JyQmdOnWCTCbD3LlzMWbMGHTu3Fm0gL7g4MbDhw8RGxuLHj16qKx3y8jIEM18bNmyBebm5pgwYQLGjBkjumkSZq2OHz+O33//XRREbdy4EX5+fjzIFgLLkrzpsrCw4GvcRo4ciczMTL4GZseOHaIbaMYYXyNX1usVPyatWrUq0QGPt3mdP/veSqmkvo2NDdzc3LBz5074+PjA0tIS8+bNQ5cuXSDT0IC5iQlPz22RfzP/WikAYzk5wIMHqC6V4sKFC2hQvz6q6uvDxMQE2dnZMDMz44H9wYMHAYjPuRcvXgAAAgMDMXPmTB5sKRd1GjFihOhz/Pnnn/j3339564Mff/xRNIOVnZ0NLS0t1KpVC6NGjcLOnTtV1vhcunQJVlZW0NTURFhYGG83EBsbK1o3qFx4o379+mX2Xamvr8/bVwhq1KghmsVTXhLw4sULXo1x69at2LhxI38uKysL/v7+cHV1xc6dO/nMfkXk6uqKOnXqULBVyVCwRSoFHR0dMMZgbGwsSiUAFF8myuVkP3UFx9gvXbqEC/lVvFasWMFz9oWKZ5GRkfDz88OpU6cwcOBAtGnTBrNnz0bPnj3VBlvXr1+Hn58fGjRogA0bNpTbmq2ePXsiJSWlXN67JLRq1QoHDhxAv379EBgYiHXr1uHu3bt8xlEgfCk/ffoUr/PXlwjBVsFiDEI6oeDatWtvLemsqamJ9PR0PH78mDcU7tevH3r06IFWrVrhv//+Q3BwMLp16yb6PRec2ZLL5Xj16hXi4+NhZmbGCyb83//9H4YNGyYKAs3MzETBmqmpKU9VFUrJe3p6ihbPC549e8b7yWhra4Mxxou9lLQnT55ALpfzIPTw4cOiKoEAyqRFAHkjOv/aJfTG2rlzJ27cuIF169bh2LFj8PPzQ1BQEJo3b45r167BwtQUVXV1eZqphbk5AIiuG5b5gdusWbPw999/41liIrSkUiQkJKB69eqIi4vj6xuFoHLBggX89cqDC9u3b0dKSgoaN24sqvZ65coV0eewtrZGulLAJ5FIRH9fVlZWGD58OADFrLWTk5NK5kGVKlUQERGBzMxMUdEJiUSC5s2bw8vLC+bm5qJZrqysLFGqcmlKSUlRSWlMSEgQVXlUnoUUjg9QFOmJjY3lj0ulUlGae0Xm5uaGXr16vXcPPvJxomCLVCrnz58XfYkRVQ6F9FUCFBWqUlJS0LFjRwCK0ftly5YBUKR9aGtrIzk5Gc+ePcPBgwfRpUsXUbqZsqysLBw6dKjc0jnOnz+PX375pVzeuyTMmTMHu3btwu7du3kTXU9PT8ydOxfm+TeFwJtgKyQkBADQtGlTtG3bFoCi6WxmZiYfBS64aDwtLQ0P8xfzqyORSDB79mwMHTqUL8hftWoV9uzZg+nTpyMsLAzBwcHYv3+/qElrwRs/uVzObzpr167NZ9OioqIQGxsLbW1t/PXXX2jZsiVyc3NFM10RERHIysoCY4wHmrt371YbbN25c4evVRGUVmrU7du3kZWVxX8uurq6ohlHQDGrUlbrlQiQlz+DKFxxPD09+Wz8+PHj8eLFC6xevRr9+vVDamoqDPT08N+tWwgODgYgblcgMFPqz7V+/XokPn2Kl0lJ+Pfff3lQ1rt3b0yaNAk2Njbo0qWLqFKmra0tTp48iXbt2iEhIQH37t3D2rVrcfPmTb7N69evRSm+4eHhogEIQ0NDUUGORo0aYfbs2QAUaZoFU7kBxfkJiDM9XFxcoKenB21tbaxatQqxsbGiSr0jRoxQCXBKU8HvhrFjx4p+DsqVPh0cHPhzP//88zurEVZU8+bNQ6dOneDq6lreh0JKEAVbpFL5+eefVdZsEbFRRkb4spDRy+3bt+PevXsICwuDjY0NVq5ciZkzZ2LPnj38yyw0NBQPHjyAn58fnJyc0KtXL7X7Sk9Px5EjR8r1S7AiFyb4999/eT8pIR1QmF1SLpksPGdhYYFly5Zh4MCBvIHrpUuXcPbsWZ5ud/ToUZX3uXv3bqHHIJFIkJWVhd27d/MbyBs3biAiIgL79++Hn58fTE1NER0djaSkJIwcORLdunVTKRM9a9YsdO3aFYBiNg0AoqOjeU8dX19fVKlSBdeuXUN2dja/4atXrx7u3r2L+fPno06dOvznITRiLljWPSwsTKUH19y5c0ulx5twMywEU69fv8aYMWNUtqvIs6sVTU7+2ri8+HgA4DP2AicnJ/j5+fH/Drt3D7kZGejatSu2bt0qmpEV1mb+kZ+6JqgWEIAfXFwwZMgQ3Lp1iz/u4+MDLS0ttGnTRhRsGRsbw8LCAvH5x/To0SOsX78e//zzj2ibCRMmiNLfhL8hYRZ42bJlPF3x0qVLvMVJYWnSderU4c8LaaxjxoyBq6srHj16xIMs5fWEEomkzNLXNmzYAEdHR5XHlL+/lT9bcHBwoQN3Li4uWLduHYyMjESDPhVRQEAAfvrpJ9HMHan4yjXYWrx4MVq0aAF9fX3UqFED/fr1E5XzBBQXgvnz58Pc3Bw6Ojro1KmTSknMzMxMTJkyBcbGxtDT00OfPn1UbrhfvHiBUaNGwdDQEIaGhhg1alSZ9MohZcvHxwdr1qwp78P4qA0dPBiLClSEEwg9VmJjY/HgwQPUqFEDiYmJvE+S4Pbt28jMzMTatWtF/WMA4O+//8a8efP4zai6HjBlITk5WSXlriIR1msA4GtKpk+fzgtRCORyOTw9PSGVStG4cWP4+vry38n48ePRs2dPXqTEwMBA5X3eleYprN0TAjihGqHQoNjMzIzfoOnq6uLMmTOimTdAkRLZrFkzUSVCFxcX/v/T09ORk5ODunXrigqQhIeHQ0NDA1KpFNHR0Th+/DgAxc3p5MmTERQUxGfxnJyc0LFjR5XZu5CQkEKLgHwIIVVTeeYqo0Dxmc8//xzJyckl/t5EPaEaYduUFOwp0AJET08P48aNQ6dOnd5sn5uLnPR0tGnTBqNGjXrTTkEqfRO0F6iY10BfH46ffQYtLS1Ro2I9PT3873//g4eHBz83AEWBFldXV4SHhwNQnCPbtm0TVeK7fv06Vq1ahZ07d6JDhw7Yvn07+vTpA3Nzc8yYMYM3HheuwQ8fPsT58+cVx1pIsHX58mUkJydDIpHwNgp9+/aFqampaPZI+VjL0qFDh3ghH2WFBVsA8GV+0+mCqlWrBhcXF4SHh6N+/fqips8VjVQqxdWrV8usNx0pG+UabF24cAGTJ09GQEAATp8+jZycHDg5OYn6pyxbtgwrV67En3/+icDAQJiamqJ79+6i0cJp06bBx8cHu3fvxuXLl5GamorevXuLRpeGDx+OW7du4cSJEzhx4gRu3brFK0aRykW5shlRZWxsrLIwWWBtbc2bQQojrzKZDDVr1hRVFTQ0NERmZiZu376NiIgI0T4mTJiAX3/9ld/0FrwBLSsGBgYVujCBEKwq39StXLkSe/fuFW0nkUgQFRWFuLg4ODk54cyZM3B1dQVjjN/QWVpawsrKSiWlzcrKilf4KkxQUBBSUlKwZMkS5ObmIjs7G1KplI+IW1hYQCaToVevXrx5snIDVkBxw7lmzRrejHfSpEno0qULHBwc0LBhQ4wePRpSqVSlYMeKFSuQmJjIz0nh99m9e3dYWVmBMcbPr+fPn6sNtjZs2ID+/fu/9TO+D6FgiRDALly4kBfLUKYuwCWlQz+/0mVifDyGKgXzGhoaSEtLg4ODg6hvVG5WFpCVxX9HQlBSQ3mtXf59xM8//4xu3bohLi4Or1+/VjnPwsPD8fTpU0yfPp3PkD148ABbt24VpZcKa2I3bNjAZy+EANDDwwOXLl3CoUOH8PTpU1hbW2Pz5s18gFkItpTXylpZWWHy5Mn4+++/Rcfj7+/Pi3NYW1vzv5OlS5d+cGPtknD+/HmVlF8AokwJ4RooBF1CJVMnJyc0bdqUb3fgwAG0bNlS0ahaJlOpeFqRCOtuy6qoDCkb5RpsnThxAq6urvj888/h6OgILy8vPHr0CDdu3ACgmNVavXo15s6diwEDBsDe3h5btmzB69ev+SLK5ORkbNy4EStWrEC3bt3QpEkTbN++HcHBwXxk+O7duzhx4gT++ecftGnTBm3atMGGDRtw5MgRlZk0UrElJiaWSsrQp8LW1pbfRAijjjKZDK1bt8b27dt5JbaePXuiR48eSE1NVZkZqV+/PgwNDfmNsXIZZFJ0QjXCrKwsnD179q3bLlmyBOvXrxc99urVK+Tm5uLXX3/FmTNnEB0dLaqWByhGipVLSqujo6ODqKgofPvtt/Dw8MCBAwfQtWtX6OrqYsaMGTAwMECnTp3g4OCAgIAAAFBJgUlPT8fFixf5Tedff/2Fhw8folq1ajA2Noa2tjZkMhkCAwNx5MgRGBgYoFatWvjhhx+gra3N00GFc2rAgAHYtWsXzpw5w/vqXb9+Hbt371bps1daaXz29vZgjPEbwXXr1uHZs2el8l6kaDLzz2/h99CgQQNoamoiLy8PixcvhqWlJb7//nvs2LEDAwYMQMitWxg+eDBP2WvQoAEAwDy/OEV1qRTIv+YlJiZi6tSpePToEVxdXUWV8pQlJCTw66StrS1iYmJ4xgCgmLEW/raF6oVjx44V7ePEiRO4ffs2X4slrJtVF2x17NgR7u7u6N69u2gf8+fP57PPwJuAJTMzUzSzJVQpLGsymUyl2bWDg4MoNVj4uQkD50JzcA8PD97yAVDMBoWEhKBz584ICAio0EsJhMInNEhTuXxUa7aEdAthcXVkZCTi4+NFo6RyuRwdO3bk1Xtu3LiB7Oxs0Tbm5uawt7fn2/j7+8PQ0BCtWrXi27Ru3RqGhoYqVYAEmZmZePXqlegf+fgZGxuXW/W7ysDe3h4HDhwA8KbPllQqRUxMDFavXs1nSvr16wcTExP8+++/cHZ2Fu0jPDyc3+D+8ssvfO0AKZ5WrVph8+bN6N69u2ihuDqMMb4WSvD8+XNYW1uLKlvZ29uLtvn7779V1j2pc/LkSXh5ecHNzQ0jR46Eo6MjjIyM+NopYdZTCAoL9pWSy+V49uwZEhIS+GONGzfG9OnTeWPkHj16wNDQEHK5HHFxcYiOjoZMJkOrVq2wcOFC1KlTh5eFvnHjBoKCgqCjo4Nnz57B0dERq1atQkZGhkqwVVazm0+fPi2zHmxEvYz8YEtYzxQYGMjXKZ4+fZqfl69evUJcXBwQHw/jzEy+FigyMhINr15FSH5wkzRvHhZ//z0AxQ2+8nqgEydOqLx/ly5dsGfPHvz666+i9VwFK+ROnToVNWrUQIsWLQBAVMYcUARABdcn9e7dm8/YtG7dGqNHjwagWMtka2uL+vXr88+XmpqKhw8fir4LlVPypFIpvL290a1bN5WAp6y8ePFCZWA0ODhYtG6t4H2XEBjWrVtXdN0S0pg1NTXx008/8aCsIurXrx9GjhxZYfuEEfU+mt+mUGmqffv2/IZAWFBacOS1Zs2a/Ln4+HhoaWmpLMguuE0NpYpCgho1avBtClq8eDFf32VoaCgamSKkMuvQoQO2bduG2rVrY/78+dDW1kZMTAxmzJgBOzs7REVFISAgACdPnkRERIRKGtrq1at5FcBz586prfBF3s3Z2RmLFi3C6dOni9QrTEj7FNZ3JSUl4dSpU2jatCl/fcGZraJSfn8hwPrll1945c+jR49iyZIlkMlkYIypjJYLpd9r1qyJkSNHAlCkfws3rFWqVIGBgQFq1KjBKy/6+PggOzsbn332GbZt24bIyEhegUwYmNPR0cGQIUOwcuVK6Ojo4PDhwyqpScLPo7TVq1ePBhbKmbD6SEiTNjQ0RI8ePTB06FCcO3eObzdx4kTFdSkoCH/kBy2A4ub+7vHj0FeqBPjjjz/y/y/M3AIQlSgXdOvWDYMGDUJERAR++OEHAIp1UspruxwcHDBs2DAkJCTAw8MDgGLwoHPnzvxe57///uM320KT3+HDh/MZqWbNmvHU2IcPH/J0waFDhwJQpOlGRESIgi2JRIJ+/frxfngDBgzApEmTyi3lLiwsTKVgj5OTE59dBMRl86tVq1boWizlYMvAwKBCF0Zat26dqNcYqRw+mmDLzc0Nd+7cEU0NCwqOTDLG3jlaWXAbddu/bT//+9//kJyczP8JedaEVHaZmZnw8fFB7dq10adPH0gkEp47r6OjAysrK8TGxuL06dMq6xYA4Pvvv+d9ZoQbHVJ8J06c4OlI7wq24uPjER0djSVLlvDR8tu3b2Pbtm149uwZf73yOtbiEG5iGjdurHYkXJjJLKyS2dixY9G1a1dkZGRg+/bt6NChA5YuXQpPT08AgJeXF44dO4awsDC+D2Htbm5uLnx9fSGRSHhAKQye6erqwtraGl26dIG2tjZycnJEMwoAMGXKFOzevfu9PndxhIeH83LcpHzoxMcD+eeicq+rdevWIT4+/p2zBcL1TEtLiwczBWfuBYsXLxb9t7OzM16/fo06derA39+fz/KOHDlSMYuWTy6X8+wBoRJoTk4Ohg8fDn9/f75mUZg5/uWXX9CsWTMMHz4cN2/exP79+7F161b8/vvvAMR/c0I/LaEfnXGBNh9DhgzhxTYARWXZ8lK/fn2VJuunTp0SlcRXfv7FixeF3q916dIFBw4cqNCFMQTnzp2jvqCV0EcRbE2ZMgWHDx+Gr6+vaFGg0Iyy4OxTQkICHwEyNTVFVlYWH9kpbBvl7uuCxMTEQtcryOVyGBgYiP4R8ilITk6Gt7c3rl27xhch6+npAXizjkgul+PatWu8FHlh5s2bV6F7XZUnoVkugELXhwhq1qzJ1z0JI+5jxozBtGnTEBMTA6lUipycnPden2FlZYVXr15hw4YNopF+gTCCrrxoXZm5uTk8PT35DeLXX3+NkydP8ueFIMvS0hJdu3aFgYEB2rVrh4YNGwJ405xZ6K0lBFvKRVs6dOgAqVQqKrAEKAp8JCYmvtfnLi6haAYpH03v3QNWrQIgTvOrXr36O9cmAm/OYxcXF/j4+ABQ9B4s2AwcEPess7CwQHJyMn777TccOXJEtN3gwYN50QNAEVgJ69JzcnLg4+ODrKwsaGlpoW7duujatSuWL1+OFi1aYPLkyThx4gSGDRsGExMT7N27F4MHD0ZERASvbqg8EHP16lUAitYQVatWVSlUM3z4cJ6aZ2VlpfJ8eWvfvj26devG/1toVPzzzz8jJycHrVu3LvS1jRs35r3FKrInT56IKlWSyqFcgy3GGNzc3ODt7Y1z587x6W1B3bp1YWpqKlrkmZWVhQsXLvByv82aNYNMJhNtExcXh5CQEL5NmzZtkJycLFrTcPXqVSQnJ/NtCCEKwpe38joCIyMj2NnZ8ZteIeiqDCOJHythFFdPT08UVBQmOTkZM2fOFDUlzcnJEaXYvC8hLadfv35q10RKpVI0adKEpwgWpKGhAZlMxlNOJRIJL2IwdOhQeHh48LWB2dnZSE5OhrW1NR/5F9KnhJ9J9erVsWTJEtHasHr16mHgwIH8Bk2wZcsWTJky5b0/e1F9/fXXonXBpOwtmD8fyC9l/rb05YYNG/L0OaHSJQCYmJhg2bJl8PDw4Oe5lpYWcnNzMWHCBJ4aKDwuiImJ4e83duxY9O7dW/R+Qjqcra0tbt26xV8bGBiIAQMGiApuSKVS/Pnnn3j06BHmz58Pxhg2b96MnJwcyGQyNGzYEGlpaXwArG7dupg/fz7/+05LS0NKSgpevnyJ6Oholc/u5eUFQNEwWJgF/1hcunRJNPNmZmaG6dOnw93d/a3Xr/v378Pa2rpSpKwXvH6RyqFcg63Jkydj+/bt2LlzJ/T19REfH4/4+Hik51cCkkgkmDZtGhYtWgQfHx+EhITA1dUVurq6vGKLoaEhvvvuO8ycORNnz55FUFAQRo4cCQcHBz5C0rBhQzg7O2Ps2LEICAhAQEAAvyAKPWQIIQrCl5qJiQkvNlCtWjX8999/vJmukKZCwVbpEVKA0tLSVJqzqqOc3jdz5kzMmTOHl2n/UEJqXkxMjKjxq6B169Zo27Ytjh07Vug+srOz0b59ewDAvn37kJSUBEdHR9y9exdyuRxSqRS5ubkIUtNwW3m0G1Ccoz/++KNKCetdu3ap/KyE75PStnXr1nJNyyLAzZs3oaWlhVatWqkM3irbunUrevbsiWrVqonWBRkaGqJ3795Yvnw5srOzMXDgQOjr6yMkJATh4eGi/nHK/bqURUdH48iRI6L2GkLzXqH6sVAwo1GjRgAU1V2FtgHu7u6IiYlBZGQkAMXfdUhICF68eIHExETcvXsXjx8/5sFWw4YN8dVXX/FZZQsLC35/VNGrLUulUqxcufKdA0VC5tH48ePL4rBK1TfffKNSg4BUAqwcAVD7z8vLi2+Tl5fH3N3dmampKZPL5eyLL75gwcHBov2kp6czNzc3ZmRkxHR0dFjv3r3Zo0ePRNskJSWxESNGMH19faavr89GjBjBXrx4UeRjTU5OZgBYcnLyh3xkQj56qampDAD78ssvRY8PHTqUHTt2jP+3k5MT27ZtW1kf3ifj3r17bNOmTaxp06bMx8fnnds/f/5cdB1ljLHevXuzmJiYDz6WTZs28f2uW7dO7Tbffvstc3d3L3QfAJi+vj4DwGbPns08PDzY/fv3GQA2f/58lpWVxXR0dFhAQIDoNXPmzGGMMfbll1+yM2fOFPvY+/Xrx8riq65+/frM09Oz1N+HFG7cuHHsp59+Ym5ubu/8nWdlZbGWLVuyhQsX8seE73lbW1t+vu/evZv//2rVqvFtMzMzVe5dmjZtypycnBgAtm3bNtahQwcWHx/PGGMsPDycTZ48mT179oxFRkYyDQ0NlpeXx7y9vdmQIUPY1atX+b4tLS3ZxYsXGWOM/fHHHwwA27JlCzt16hQDwDZt2sRu3brFGGMsNDRU5TiWLFnCALBz586JPjMANnfu3A/7IX+EkpKSGABmY2NT3ofywW7cuME8PDzK+zBIERU1NvjwIc8PwAqUB1ZHIpFg/vz5mD9/fqHbaGtrY+3atVi7dm2h2xgZGWH79u3vc5iEfFL09PSwaNEi3khTsGfPHnh7eyMrKwuxsbGIj4/HiBEjyukoKz+pVAp3d3c8fvy4SCmAQqpdmzZtcP/+fYwZMwb//vtviRyL8vsXXNQOAJcvX8amTZuwcOHCQvfh5eWF7du3Qy6Xo27duhg0aBCWLFkCQJEKlZubi/T0dNFMnKamJpYsWYJ27dq9ddbsbVq2bMn7GZUmmUxWoZtoVwbR0dHw9fUtUjsDmUyGa9eu4dq1a5g3bx6AN/ckyvcm3bp1w4wZM7By5UrR2vBdu3bBxMREtB6wbdu2qFOnDk6dOoVRo0YBeFNNuV69evjzzz8BKHpt5eXlQUNDAzExMZg9ezZP/504cSIePXrEi3l07doVgGLJxGeffYbq1aujXr16fLZMubebVCqFgYEBb2lTMOW3ZcuWhTa0r8iEZu1lNYtdmv7991/eT41UHh9FgQxCyMcjNzcXq1evRl5enspzwmP6+vq4c+eO2jUBpGT4+/vzKqhF6bmira2N5cuXw9zcHM+fP8fGjRvfGvwUh6amJl839ra+PG8LCo8dO4aXL1/i2LFjeP36NZo3b47ly5cDUCzcDw4OBiBeCyPcRD158gQSiYRvXxzjxo2Dn59fsV9XXHfv3sXly5dL/X1I4W7duoWwsDB06dIFAwcOLPbrlc+9Xr16AVCsV1yxYgUePnwoKv2+d+9eODo64uTJk/Dz84Obmxv+++8/ldRqdZWMlVswWFhY4OHDh/y9ldO4AUURGEtLSzg7O2PYsGFISkpCp06dsGfPHtH2gGKN5pkzZ3j5dGEfgqlTp6JNmzbF/Kl8/GQyGU6cOPHWAhoVxbZt21QqXZKKj4ItQohIbm4uEhIS+I2uMmEdkXBDodyAkpQs5QBLWM/xLjExMbysNAD4+vqWyLHUqlULoaGhePnyJe91pUyYjXrbzY6fnx8mTpwIiUSCAQMGiCrEZmZmQiqVwtjYWNQAVigDLazNep/gPjAwkFeWK02PHz/mfZNI+RCCjMjISNHfQVEJM0EDBw7kPaCEasjW1taiAigvX77EmTNn0K1bN7Rt2xb29vbw9fXlVQIF6gZKDA0N+Xler149AG8GMaRSKWbMmMFn506cOIE2bdqgQYMGuHjxIq/YLLRxKDjAsWbNGgQEBEAmk6n0fRs5ciTu3LlTzJ9KxWBgYMBbSVRkRcn4IhUPBVuEEBHhy9vd3V30eI0aNeDi4gJAkd67YcMGDBo0qMyP71MxbNgwPlNSsF9OYVbll70Wqv4JPXs+lNAYuGrVqrx0tDKZTAYTExN07ty50H3o6+tDR0cHjDHExsbyUffg4GDo6elBKpXi2bNnojLZwg2oTCZD27Zt1ZbgfpctW7a814xYcdWqVYuncpLyMXbsWHTs2BGzZs0qUurotGnTRJUDNTU1sXPnTsybN48XAXpXsQIhmBLSa/v27SuamVCXdhsaGorg4GAwxmBvb48vvvgC1tbWABTn+sqVK3nPrJSUFOzZsweampp49uwZL8wh7NfS0hJr167lAx27d+9GdHQ0srOzERYWpvLeRSm2UxF16NABv/32W3kfxge7du0aYmNjy/swSAmjYIsQIiLcPAQGBooef/r0qagS3ZgxY1SqwZGSI5FIeDnogr+LdxGCYnWzk+9DuW2GciqVwM7ODs7Oznw2QJ379+/jm2++AaC44RMCOHt7ewBvZhWUZ7yMjY0xbtw4tGjRAn5+fmjXrl2xj11dOiypnEJCQvDq1StYWlqib9++79x+1apVonWNEokExsbGWLt2La5duwYtLS2VVDxBwR5VQnpeeHg4/ve///FgTV0APn36dD7DpK2tDRcXFxgZGQEAfvrpJz7wAAAZGRkAFIFgbm4ur7Io9GIyMzODo6MjX09mbGyMfv36AQCvHito0KBBkX4uFVFubi5WrlxZ3ofxwapXr079+iqhci2QQQj5+AiL/I8ePVppv5grCm1tbdSpU6fYPbLc3d1x9OjREmuOqTxCri7NRS6XIyYmBlFRUW/dj5GREW84v2rVKixatIg/J7ThUC6QoaWlVSlSg0jZYIzx9gJF0b59e1SrVk0UcDk5OcHOzg5t27bFlStXMHPmTLWvHTx4MF83BQA2NjYwMjLiQdT+/fsRGhqqdmZLS0uLpxEuWbIETZo0wVdffYVatWpBU1OTF88QPhMA7NixA0ePHoWdnR1MTU35LHJERAS++OILvm87Ozv8+eef+Pzzz9GhQwfR+z548KDIPxtCSMmhmS1CiApXV1e+NoCUH8YYoqKikJycXOTX2NnZ8V5Bwuj6h1JOR1Q3UxQWFoZz584VOgsAAPPmzUPfvn3h4OCAmjVrom7duqJmzWlpaQDEwVZeXh4kEglOnTr13sdOjYY/HVevXsW2bduKvL2fnx+OHDlS6HNaWlqwsrJS+7ydnZ1KX7XHjx/zc9rS0hK6urrvLG5jbm6O5ORkvt2qVav4eQ8An332GQDFtaB3795o3rw5Jk2axP/WhJkvgTCrPWrUqE8q84C+r8jHjIItQoiKzZs3q12bQ8qWcMOlvI7pbf78808YGxvzEtg7d+4skePQ19fnN5EWFhYqz9euXRvjx49H//79C93HwYMH+VoV5XLVgri4OADiinDCDWhRP786Y8eORURExHu/nlQcgYGBoibF7zJy5EiMHDlS5XEhjSsrKwvffvttkfdXMLgpSkEXNzc3AOICGYBijSygqCjYpUsXzJkzB9WrV+druQQFZ71btGiBQYMGqZR9r+w8PT0xZ86c8j4MQtSiYIsQopahoWF5HwLJV79+/SJtN3nyZFy8eJGXUY+MjCyR98/NzUVoaCgYY2r79Ojq6sLDw+OtN3jW1tbo3bs3qlevjkaNGqk8r6enB0BRhEOZi4uLSjpUcejr6/N1LqRyK24PqW3btqmdCRNmhwD1BS7exsHBgc9GKc/SvotysDVs2DAe8NWtWxdnz57lKcEFA7qCwda5c+ewf//+Ty7Y6tmzJ5VMJx8tCrYIISqqVKnyXn1qSMnT19cv1g1fz549MWTIEACqTU3fl7m5+VtTBIvixYsXiIuLQ1JSEp/FUiaUsi7YmPTw4cMlVlWRVG69e/fmzYTf19WrVzF69Gj+38JawqJydHTE999/D6BowVb16tVhY2PDgyi5XI5du3bhyZMnou2EEvQF/xZMTU2xa9cujBo1CnXr1uWl5N+nmAwhpHRQsEUIUZGamoobN26U92EQKG72DAwMirx9rVq1eL8h5TVRH+LmzZtITEz8oH1cvHiRr49RV6HNyMgI1tbWb22aTMjbyGSyD16n1LJlS/73NmjQIB68FNWZM2cwceJEzJs3T9QzrjD6+vpo3bo1T5mdMmUKtLW1VVJnhSqdQmqxQOh5uG3bNgwYMABVq1aFnZ0dmjZtWqzjJoSUHqpGSAhRq+DaAFI+ilv2ff369QAU/XZKqjhE69at4ejo+EH7iIuLg5aWFi9xXZCenh4ePnz4Qe9BPm2zZ88u0f2Fh4dj+vTpxX4NoCjvXti5rqxXr1745ZdfsGXLFgBAcnIyMjIyVAprHDlyBPfu3VN5/dOnT3mj8aioKFStWhWhoaE4deqUSnl6Qkj5oGCLEKKiXbt2xR7RJR+HOXPmIDk5GUOHDi2xfdrb2+PWrVsftA9TU9OSORhCysitW7d4emtRCdtXr14d165dQ4sWLd66fVpamqjCp9DIvGCwZWFhobY4jfJ2EyZM4Nft58+fF+u4CSGlh9IICSEq/Pz8VNYMkIrh0qVLuHnzZnkfBiEVHmMMvr6+xXqNcppfUSq6bt26VfTfQlqgsbFxkd7PxMQEly9fho6ODgwMDFCjRg00b95cVNWTEFK+KNgihKilr69f3odA3oOdnV2xq7IRQlTNnTsXY8eOLdZrevfujUmTJhV5e3VrsExNTYu1TrNdu3ZIT0/H6tWrAQDXr19HbGxskV9PCCldFGwRQlTUqlVLbXlu8vFbv349PDw8yvswCKnwfvvtN16Cvaisra2xYMECAOobgBfUtm1b0XsYGhoiPj6eF8QoqiFDhvCiGJcuXYKrq2uxXk8IKT0UbBFCVDx58oSKFRBCyHuoXr06tm7dWqSiMgYGBqK2CkIl0eKuFTtz5gxSU1MBAO3bt+fpiISQ8kcFMgghKg4fPoyuXbuW92EQQkiF1KhRI5UG3ep07txZ1EcvMzMTAHgT46J6/vw5Hjx4UKzXEELKBs1sEUJUuLi4fHC/GkII+VQ1bty4SMU1DA0N4ezszP9bWMNVnEbmgKJQxnfffVe8gySElAma2SKEEEIIKSFCwJSenl7s12pra4MxVuzXJSUl8TRCQsjHhWa2CCGEEEJK0KpVq9CjR48ye7+8vDwcP368zN6PEFJ0NLNFCCGEEFKCpk2bVqbv17lzZ7Rp06ZM35MQUjQ0s0UIIYQQUoH5+voiLi6uvA+DEKIGBVuEEEIIIRUctesg5ONEwRYhhBBCSAXm4OCAAQMGlPdhEELUoGCLEEIIIaQCCw4ORnx8fHkfBiFEDQq2CCGEEEIqsAEDBsDOzq68D4MQogZVIySEEEIIqcAOHDhQ3odACCkEzWwRQgghhBBCSCmgYIsQQgghhBBCSgEFW4QQQgghhBBSCijYIoQQQgghhJBSQMEWIYQQQgghhJQCCrYIIYQQQgghpBRQsEUIIYQQQgghpYCCLUIIIYQQQggpBdTUuIgYYwCAV69elfOREEIIIYQQQsqTEBMIMUJhKNgqopSUFABA7dq1y/lICCGEEEIIIR+DlJQUGBoaFvq8hL0rHCMAgLy8PMTGxkJfXx8SiaS8D6dCevXqFWrXro3Hjx/DwMCgvA+HfOLofCQfgs4fUhHReUveF507qhhjSElJgbm5OTQ0Cl+ZRTNbRaShoYFatWqV92FUCgYGBvSHSj4adD6SD0HnD6mI6Lwl74vOHbG3zWgJqEAGIYQQQgghhJQCCrYIIYQQQgghpBRQsEXKjFwuh7u7O+RyeXkfCiF0PpIPQucPqYjovCXvi86d90cFMgghhBBCCCGkFNDMFiGEEEIIIYSUAgq2CCGEEEIIIaQUULBFCCGEEEIIIaWAgi1CCCGEEEIIKQUUbFVCixcvRosWLaCvr48aNWqgX79+uH//vmgbxhjmz58Pc3Nz6OjooFOnTvjvv//488+fP8eUKVNga2sLXV1dWFpaYurUqUhOThbt58WLFxg1ahQMDQ1haGiIUaNG4eXLl+88xuDgYHTs2BE6OjqwsLDAr7/+isJqtfj5+UEqlaJx48bv3O/Fixfh4uICc3NzSCQSHDx4UGUbV1dXSCQS0b/WrVu/c9/k/VSG8/H8+fMq54xEIsG9e/feue+//voLdevWhba2Npo1a4ZLly6Jnvf29kaPHj1gbGwMiUSCW7duvXOfn4pP+dyha1nFVRnOWwDIzMzE3LlzYWVlBblcDmtra2zatOmd+6Zr3vv7lM+dSn3NY6TS6dGjB/Py8mIhISHs1q1brFevXszS0pKlpqbybZYsWcL09fXZgQMHWHBwMBs6dCgzMzNjr169YowxFhwczAYMGMAOHz7MHj58yM6ePcsaNGjABg4cKHovZ2dnZm9vz65cucKuXLnC7O3tWe/evd96fMnJyaxmzZrsq6++YsHBwezAgQNMX1+fLV++XGXbly9fsnr16jEnJyfm6Oj4zs9+7NgxNnfuXHbgwAEGgPn4+Khs88033zBnZ2cWFxfH/yUlJb1z3+T9VIbz0dfXlwFg9+/fF503OTk5b9337t27mUwmYxs2bGChoaHs+++/Z3p6eiw6Oppvs3XrVrZgwQK2YcMGBoAFBQUV9Udb6X3K5w5dyyquynDeMsZYnz59WKtWrdjp06dZZGQku3r1KvPz83vrvuma92E+5XOnMl/zKNj6BCQkJDAA7MKFC4wxxvLy8pipqSlbsmQJ3yYjI4MZGhoyDw+PQvezd+9epqWlxbKzsxljjIWGhjIALCAggG/j7+/PALB79+4Vup+//vqLGRoasoyMDP7Y4sWLmbm5OcvLyxNtO3ToUDZv3jzm7u5epGBL2dv+WPv27VusfZGSUxHPR+GG+cWLF8X6rC1btmQTJkwQPfbZZ5+xOXPmqGwbGRlJNx7v8CmdO8roWlaxVcTz9vjx48zQ0LDYN7J0zStZn9K5o6yyXfMojfATIEwdGxkZAQAiIyMRHx8PJycnvo1cLkfHjh1x5cqVt+7HwMAAUqkUAODv7w9DQ0O0atWKb9O6dWsYGhq+dT/+/v7o2LGjqDFejx49EBsbi6ioKP6Yl5cXwsPD4e7uXrwPXATnz59HjRo1YGNjg7FjxyIhIaHE34OoV1HPRwBo0qQJzMzM0LVrV/j6+r71c2ZlZeHGjRuizwUATk5Obz0eUrhP5dwpDrqWffwq4nl7+PBhNG/eHMuWLYOFhQVsbGzwww8/ID09vdD90jWv5H0q505xVMRrHgVblRxjDDNmzED79u1hb28PAIiPjwcA1KxZU7RtzZo1+XMFJSUlYeHChRg/fjx/LD4+HjVq1FDZtkaNGoXuR3iduvdWPrawsDDMmTMHO3bs4BeHkvLll19ix44dOHfuHFasWIHAwEB06dIFmZmZJfo+RFVFPR/NzMywfv16HDhwAN7e3rC1tUXXrl1x8eLFQvf77Nkz5ObmFutzkcJ9SudOUdG17ONXUc/biIgIXL58GSEhIfDx8cHq1auxf/9+TJ48udD90jWvZH1K505RVdRrHgVblZybmxvu3LmDXbt2qTwnkUhE/80YU3kMAF69eoVevXrBzs5OZZZJ3fbK+/n8889RpUoVVKlSBV9++eVb31t4PDc3F8OHD8eCBQtgY2Oj9nNdunSJ77dKlSrYsWOH2u3UGTp0KHr16gV7e3u4uLjg+PHjePDgAY4ePVrkfZD3UxHPRwCwtbXF2LFj0bRpU7Rp0wZ//fUXevXqheXLlwN4+/lY1M9F3u5TPHfeha5lH7+Ket7m5eVBIpFgx44daNmyJXr27ImVK1di8+bNSE9Pp2teGfgUz513qajXvJKdMiAflSlTpuDw4cO4ePEiatWqxR83NTUFoBiFMDMz448nJCSojFikpKTA2dkZVapUgY+PD2QymWg/T58+VXnfxMREvp9jx44hOzsbAKCjo8NfV3DkRJgGrlmzJlJSUnD9+nUEBQXBzc0NgOKPlzEGqVSKU6dOoU2bNqIKRgWPuzjMzMxgZWWFsLCw994HebeKej4WpnXr1ti+fTsAoHnz5irno1wuh6amptp9f8j5+in61M6d90XXso9LRT5vzczMYGFhAUNDQ75Nw4YNwRjDkydP6JpXyj61c+d9VZhrXpmtDiNlJi8vj02ePJmZm5uzBw8eqH3e1NSULV26lD+WmZmpssAyOTmZtW7dmnXs2JGlpaWp7EdYYHn16lX+WEBAQJEWWFatWpVlZmbyx5YsWcIXWObm5rLg4GDRv4kTJzJbW1sWHBwsqsrzNihkgWVBz549Y3K5nG3ZsqVI+yXFU9HPx8IMHDiQde7cufAPzhSLxSdOnCh6rGHDhrRYvIg+5XNHGV3LKpbKcN56enoyHR0dlpKSwrc5ePAg09DQYK9fvy5033TN+zCf8rmjrLJd8yjYqoQmTpzIDA0N2fnz50XlMZVP8iVLljBDQ0Pm7e3NgoOD2bBhw0SlQ1+9esVatWrFHBwc2MOHDwstWezs7MwaNWrE/P39mb+/P3NwcHhn6dCXL1+ymjVrsmHDhrHg4GDm7e3NDAwM1JZ+FxS1GmFKSgoLCgpiQUFBDABbuXIlCwoK4mVnU1JS2MyZM9mVK1dYZGQk8/X1ZW3atGEWFhb8s5OSVRnOx1WrVjEfHx/24MEDFhISwubMmcMAsAMHDrx130IZ5I0bN7LQ0FA2bdo0pqenx6Kiovg2SUlJLCgoiB09epQBYLt372ZBQUEsLi6uWD/nyuhTPnfoWlZxVYbzNiUlhdWqVYsNGjSI/ffff+zChQusQYMGbMyYMW/dN13zPsynfO5U5mseBVuVEAC1/7y8vPg2eXl5zN3dnZmamjK5XM6++OILFhwczJ8XyhWr+xcZGcm3S0pKYiNGjGD6+vpMX1+fjRgxokglju/cucM6dOjA5HI5MzU1ZfPnz3/rSHBRg63Cjvubb75hjDH2+vVr5uTkxExMTJhMJmOWlpbsm2++YY8ePXrnvsn7qQzn49KlS5m1tTXT1tZm1apVY+3bt2dHjx4t0udft24ds7KyYlpaWqxp06a8hK/Ay8tL7edyd3cv0v4rs0/53KFrWcVVGc5bxhi7e/cu69atG9PR0WG1atViM2bMKNLMBF3z3t+nfO5U5muehLECbZ8JIYQQQgghhHwwqkZICCGEEEIIIaWAgi1CCCGEEEIIKQUUbBFCCCGEEEJIKaBgixBCCCGEEEJKAQVbhBBCCCGEEFIKKNgihBBCCCGEkFJAwRYhhBBCCCGElAIKtgghhBBCCCGkFFCwRQghhBBCCCGlgIItQgghnxxXV1dIJBJIJBLIZDLUrFkT3bt3x6ZNm5CXl1fk/WzevBlVq1YtvQMlhBBSoVGwRQgh5JPk7OyMuLg4REVF4fjx4+jcuTO+//579O7dGzk5OeV9eIQQQioBCrYIIYR8kuRyOUxNTWFhYYGmTZvip59+wqFDh3D8+HFs3rwZALBy5Uo4ODhAT08PtWvXxqRJk5CamgoAOH/+PEaPHo3k5GQ+SzZ//nwAQFZWFmbPng0LCwvo6emhVatWOH/+fPl8UEIIIeWGgi1CCCEkX5cuXeDo6Ahvb28AgIaGBv744w+EhIRgy5YtOHfuHGbPng0AaNu2LVavXg0DAwPExcUhLi4OP/zwAwBg9OjR8PPzw+7du3Hnzh0MHjwYzs7OCAsLK7fPRgghpOxJGGOsvA+CEEIIKUuurq54+fIlDh48qPLcV199hTt37iA0NFTluX379mHixIl49uwZAMWarWnTpuHly5d8m/DwcDRo0ABPnjyBubk5f7xbt25o2bIlFi1aVOKfhxBCyMdJWt4HQAghhHxMGGOQSCQAAF9fXyxatAihoaF49eoVcnJykJGRgbS0NOjp6al9/c2bN8EYg42NjejxzMxMVK9evdSPnxBCyMeDgi1CCCFEyd27d1G3bl1ER0ejZ8+emDBhAhYuXAgjIyNcvnwZ3333HbKzswt9fV5eHjQ1NXHjxg1oamqKnqtSpUppHz4hhJCPCAVbhBBCSL5z584hODgY06dPx/Xr15GTk4MVK1ZAQ0OxxHnv3r2i7bW0tJCbmyt6rEmTJsjNzUVCQgI6dOhQZsdOCCHk40PBFiGEkE9SZmYm4uPjkZubi6dPn+LEiRNYvHgxevfuja+//hrBwcHIycnB2rVr4eLiAj8/P3h4eIj2UadOHaSmpuLs2bNwdHSErq4ubGxsMGLECHz99ddYsWIFmjRpgmfPnuHcuXNwcHBAz549y+kTE0IIKWtUjZAQQsgn6cSJEzAzM0OdOnXg7OwMX19f/PHHHzh06BA0NTXRuHFjrFy5EkuXLoW9vT127NiBxYsXi/bRtm1bTJgwAUOHDoWJiQmWLVsGAPDy8sLXX3+NmTNnwtbWFn369MHVq1dRu3bt8viohBBCyglVIySEEEIIIYSQUkAzW4QQQgghhBBSCijYIoQQQgghhJBSQMEWIYQQQgghhJQCCrYIIYQQQgghpBRQsEUIIYQQQgghpYCCLUIIIYQQQggpBRRsEUIIIYQQQkgpoGCLEEIIIYQQQkoBBVuEEEIIIYQQUgoo2CKEEEIIIYSQUkDBFiGEEEIIIYSUgv8H340XCIv7f58AAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -560,7 +560,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAGJCAYAAACeiTJxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADlJklEQVR4nOydd3hUVf7G3+ktPYGEntBEugKyoqgoAlYEUezKCrq6VtZ1xVUQF0X5uVjWwooNXQu2dd1VcdcICoqAIL0ISCSUhPQyvdzfH7nn5tybOy0zk0wm38/z8JBMbu6cmdw597zn/RaNIAgCCIIgCIIgCIIgiLijbe8BEARBEARBEARBpCokuAiCIAiCIAiCIBIECS6CIAiCIAiCIIgEQYKLIAiCIAiCIAgiQZDgIgiCIAiCIAiCSBAkuAiCIAiCIAiCIBIECS6CIAiCIAiCIIgEQYKLIAiCIAiCIAgiQZDgIgiCIAiCIAiCSBAkuAiCIIgOyTnnnINzzjlH+r6kpAQajQZvvPFGu42JoRwbQRAE0XkhwUUQBEG0CTt27MCMGTPQp08fmM1m9OjRA+effz7+9re/tek41qxZA41GA41Gg3/84x+qx5xxxhnQaDQYOnRom43r+++/xyOPPILa2to2e06CIAgi8ZDgIgiCIBLO999/j9GjR2Pbtm2YM2cOnn/+ecyePRtarRbPPvtsq8753//+F//9739bPSaz2Yx33nmnxeMlJSX4/vvvYTabW33u1ozt+++/x8KFC0lwEQRBpBj69h4AQRAEkfo89thjyMzMxKZNm5CVlSX72YkTJ1p1TqPRGNOYLrzwQnz66aeorKxEXl6e9Pg777yD/Px8DBgwADU1Ne0ytnhit9ths9naexgEQRCdFnK4CIIgiIRz8OBBDBkypIXYAoCuXbvKvvf5fPjLX/6Cfv36wWQyobCwEA8++CDcbrfsuFjzpKZOnQqTyYQPPvhA9vg777yDK6+8EjqdrsXvxDK2v/3tbxgyZAisViuys7MxevRoyWF75JFH8Mc//hEAUFRUJIU8lpSUhMxN02g0eOSRR6TvH3nkEWg0GuzevRvXXHMNsrOzceaZZ0o//8c//oFRo0bBYrEgJycHV111FUpLS6N52wiCIIgoIcFFEARBJJw+ffpg8+bN2LlzZ9hjZ8+ejfnz5+PUU0/F008/jbPPPhuLFy/GVVddFdcxWa1WTJ06Fe+++6702LZt27Br1y5cc801cR3b8uXLcdddd2Hw4MF45plnsHDhQowcORIbNmwAAEyfPh1XX301AODpp5/GW2+9hbfeegtdunRp1Wu74oor4HA48Pjjj2POnDkAmlzGG264AQMGDMDSpUtxzz33oLi4GGeddRaFMRIEQSQQCikkCIIgEs59992HCy64ACNHjsRpp52G8ePH47zzzsOECRNgMBik47Zt24YVK1Zg9uzZWL58OQDg9ttvR9euXfHUU09h9erVmDBhQtzGdc011+CSSy5BaWkpevXqhbfffht9+/bFb37zmxbHxjK2zz77DEOGDGnhpjGGDx+OU089Fe+++y4uu+wyFBYWSj+rqKiI+nWNGDFClp/266+/YsGCBVi0aBEefPBB6fHp06fjlFNOwYsvvih7nCAIgogf5HARBEEQCef888/H+vXrcemll2Lbtm1YsmQJJk+ejB49euDTTz+Vjvv8888BAHPnzpX9/h/+8AcATcIlnkyaNAk5OTl47733IAgC3nvvPclpUhLL2LKysnDkyBFs2rQpTiMPze9+9zvZ9x9//DECgQCuvPJKVFZWSv8KCgowYMAArF69uk3GRRAE0RkhwUUQBEG0CWPGjMHHH3+MmpoabNy4EfPmzUNDQwNmzJiB3bt3A2hyYrRaLfr37y/73YKCAmRlZeHXX3+N65gMBgOuuOIKvPPOO/j2229RWloaNJwwlrH96U9/QlpaGk477TQMGDAAv//97/Hdd9/F9bXwFBUVyb7fv38/BEHAgAED0KVLF9m/PXv2tLpwCUEQBBEeCikkCIIg2hSj0YgxY8ZgzJgxGDhwIGbNmoUPPvgACxYskI7RaDRtNp5rrrkGy5YtwyOPPIIRI0Zg8ODBIY9vzdhOPvlk7Nu3D//5z3+watUqfPTRR3jxxRcxf/58LFy4sFXP5/f7g/6OxWKRfR8IBKDRaPDFF1+oFgNJS0uL4FUQBEEQrYEEF0EQBNFujB49GgBw/PhxAE3FNQKBAPbv34+TTz5ZOq68vBy1tbXo06dP3Mdw5plnonfv3lizZg2efPLJoMfFOjabzYaZM2di5syZ8Hg8mD59Oh577DHMmzcPZrM5qLDKzs4GgBaFLaJx+/r16wdBEFBUVISBAwdG/HsEQRBE7FBIIUEQBJFwVq9eDUEQWjzO8qJOOukkAE29sQDgmWeekR23dOlSAMBFF10U97FpNBo899xzWLBgAa6//vqgx8UytqqqKtn3RqMRgwcPhiAI8Hq9ACD1ylIKq4yMDOTl5eHbb7+VPf7iiy8Gf1EKpk+fDp1Oh4ULF7b4OwiC0GJ8BEEQRPwgh4sgCIJIOHfeeSccDgemTZuGQYMGwePx4Pvvv8fKlStRWFiIWbNmAWiqrnfjjTfi5ZdfRm1tLc4++2xs3LgRK1aswGWXXRbXCoU8U6dOxdSpU0MeE8vYJk2ahIKCApxxxhnIz8/Hnj178Pzzz+Oiiy5Ceno6AGDUqFEAgD//+c+46qqrYDAYcMkll8Bms2H27Nl44oknMHv2bIwePRrffvstfv7554hfX79+/bBo0SLMmzcPJSUluOyyy5Ceno5Dhw7hn//8J2655Rbcd999EZ+PIAiCiBwSXARBEETCeeqpp/DBBx/g888/x8svvwyPx4PevXvj9ttvx0MPPSRriPzKK6+gb9++eOONN/DPf/4TBQUFmDdvnizHq71o7dhuvfVWvP3221i6dCkaGxvRs2dP3HXXXXjooYekY8aMGYO//OUvWLZsGVatWoVAIIBDhw7BZrNh/vz5qKiowIcffoj3338fF1xwAb744osWTaND8cADD2DgwIF4+umnpbyxXr16YdKkSbj00ktb94YQBEEQYdEIajEeBEEQBEEQBEEQRMxQDhdBEARBEARBEESCIMFFEARBEARBEASRIEhwEQRBEARBEARBJAgSXARBEARBEARBEAkiaQXXCy+8gMLCQpjNZowdOxYbN26M6Pfee+89aDQaXHbZZbLHb7rpJmg0Gtm/KVOmJGDkBEEQBEEQBEEQTSSl4Fq5ciXmzp2LBQsWYMuWLRgxYgQmT56MEydOhPy9kpIS3HfffRg/frzqz6dMmYLjx49L/959991EDJ8gCIIgCIIgCAJAkpaFHzt2LMaMGYPnn38eABAIBNCrVy/ceeedeOCBB1R/x+/346yzzsJvf/tbrF27FrW1tfjkk0+kn990000tHguH2+2G2+2Wvg8EAqiurkZubi40Gk2rXhtBEARBEARBEB0fQRDQ0NCA7t27Q6sN7mMlXeNjj8eDzZs3Y968edJjWq0WEydOxPr164P+3qOPPoquXbvi5ptvxtq1a1WPWbNmDbp27Yrs7Gyce+65WLRoEXJzc4Oec/HixVJzSIIgCIIgCIIgCCWlpaXo2bNn0J8nneCqrKyE3+9Hfn6+7PH8/Hzs3btX9XfWrVuHV199FVu3bg163ilTpmD69OkoKirCwYMH8eCDD+KCCy7A+vXrodPpVH9n3rx5mDt3rvR9XV0devfujdLSUmRkZET/4giCIAiCIAiCSAnq6+vRq1cvpKenhzwu6QRXtDQ0NOD666/H8uXLkZeXF/S4q666Svp62LBhGD58OPr164c1a9bgvPPOU/0dk8kEk8nU4vGMjAwSXARBEARBEARBhE01SjrBlZeXB51Oh/Lyctnj5eXlKCgoaHH8wYMHUVJSgksuuUR6LBAIAAD0ej327duHfv36tfi9vn37Ii8vDwcOHAgquAiCIAiCIAiCIGIh6aoUGo1GjBo1CsXFxdJjgUAAxcXFOP3001scP2jQIOzYsQNbt26V/l166aWYMGECtm7dil69eqk+z5EjR1BVVYVu3bol7LUQBEEQBEEQBNG5STqHCwDmzp2LG2+8EaNHj8Zpp52GZ555Bna7HbNmzQIA3HDDDejRowcWL14Ms9mMoUOHyn4/KysLAKTHGxsbsXDhQlx++eUoKCjAwYMHcf/996N///6YPHlym742giAIgiAIgiA6D0kpuGbOnImKigrMnz8fZWVlGDlyJFatWiUV0jh8+HDI0otKdDodtm/fjhUrVqC2thbdu3fHpEmT8Je//EU1R4sgCIIgCIIgCCIeJGUfrmSlvr4emZmZqKuro6IZBEEQBEEQBNGJiVQbJF0OF0EQBEEQBEEQRKpAgosgCIIgCIIgCCJBkOAiCIIgCIIgCIJIECS4CIIgCIIgCIIgEgQJLoIgCIIgCIIgiARBgosgCIIgiJQhd8kSPLdhQ3sPgyAIQoIEF0EQBEEQKUO104m7V61q72EQBEFIkOAiCIIgCIIgCIJIECS4CIIgCIIgCIIgEgQJLoIgCIIgCIIgiARBgosgCIIgiJQgIAjtPQSCIIgWkOAiCIIgCCIl8AUC7T0EgiCIFpDgIgiCIAgiJSDBRRBEMkKCiyAIgiCIlIAXXH4SXwRBJAkkuAiCIAiCSAl4keX2+9txJARBEM2Q4CIIgiAIIiXgHS63z9eOIyEIgmiGBBdBEARBECmBjxwugiCSEBJcBEEQBEGkBLzgcpHDRRBEkkCCiyAIgiCIlIBCCgmCSEZIcBEEQRAEkRJQSCFBEMmIPh4n8Xq9KCsrg8PhQJcuXZCTkxOP0xIEQRAEQUSMXxCkr8nhIggiWWi1w9XQ0ICXXnoJZ599NjIyMlBYWIiTTz4ZXbp0QZ8+fTBnzhxs2rQpnmMlCIIgCIIICjlcBEEkI60SXEuXLkVhYSFef/11TJw4EZ988gm2bt2Kn3/+GevXr8eCBQvg8/kwadIkTJkyBfv374/3uAmCIAiCIGRQ0QyCIJKRVoUUbtq0Cd9++y2GDBmi+vPTTjsNv/3tb7Fs2TK8/vrrWLt2LQYMGBDTQAmCIAiCIEJBRTMIgkhGWiW43n333YiOM5lM+N3vfteapyAIgiAIgogKCikkCCIZoSqFBEEQBEGkBORwEQSRjEQtuGpqalBdXQ0AqKiowMcff4xdu3bFfWAEQRAEQRDR4CeHiyCIJCQqwfXKK69g1KhRGD16NF566SVMmzYNxcXFuOqqq/DKK68kaowEQRAEQRBhIYeLIIhkJKocrueeew67du2C0+lE7969cejQIXTp0gV1dXU4++yzMXv27ESNkyAIgiAIIiRUpZAgiGQkKodLr9fDYrEgJycH/fv3R5cuXQAAmZmZ0Gg0CRkgQRAEQRBEJERbNOO1n36CZuHCRA6JIAgiOsGl0+ngcrkAAN988430eGNjY3xHRRBEwvnDl1/iw92723sYBEEQcYMJLp1GEzak0OP34+ZPPwUANHo8CR8bQRCdl6gE11dffQWTyQSgydViOBwOvPzyy/EdGUEQCWXpDz/gig8+aO9hEARBxA0muGxGY1iH65UtW6Svy2jjmCCIBBKV4FKGDpaVlQEAunbtijFjxsR3ZARBEARBEFHABJfVYAjrcBm0zUugchJcBEEkkJj6cE2aNCle42jBCy+8gMLCQpjNZowdOxYbN26M6Pfee+89aDQaXHbZZbLHBUHA/Pnz0a1bN1gsFkycOBH79+9PwMgJgiAIgmgP/IIAALAZDGEdrjSjUfqaHC6CIBJJTIJLECe2eLNy5UrMnTsXCxYswJYtWzBixAhMnjwZJ06cCPl7JSUluO+++zB+/PgWP1uyZAmee+45LFu2DBs2bIDNZsPkyZOlnDSCIAiCIDo2fEhhuCqFTu7nFQ4HAKDK4UjY2oYgiM5LTIIrUZUJly5dijlz5mDWrFkYPHgwli1bBqvVitdeey3o7/j9flx77bVYuHAh+vbtK/uZIAh45pln8NBDD2Hq1KkYPnw43nzzTRw7dgyffPJJQl4DQRAEQRBtCxNcaRHkcLl8Phi0WmSYTGj0eBAQBOT93//hweLithgqQRCdiJgEVyLweDzYvHkzJk6cKD2m1WoxceJErF+/PujvPfroo+jatStuvvnmFj87dOgQysrKZOfMzMzE2LFjQ57T7Xajvr5e9o8gUgG+dDJBEESq4AsEoAFg0evD5nC5fD5YDAakGY2wezzS8c9v2tQGIyUIojORdIKrsrISfr8f+fn5ssfz8/OlIh1K1q1bh1dffRXLly9X/Tn7vWjOCQCLFy9GZmam9K9Xr17RvBSCSFrCLUQIgiA6Ir5AAHqtFia9PqzD5fR6YdbrkWY0otHjkY5v9HgwRywXTxAEEQ9iElw6nS5e42g1DQ0NuP7667F8+XLk5eXF9dzz5s1DXV2d9K+0tDSu5yeI9iJcbgNBEERHxBcIQKfVwqTTReRwmfV62AwGNHo8snnxlZ9+AgCs2LoV/9yzJ6FjJggi9dHH8ss/iRNSPMnLy4NOp0N5ebns8fLychQUFLQ4/uDBgygpKcEll1wiPRYQw6X0ej327dsn/V55eTm6desmO+fIkSODjsVkMkl9xwgilSDBRRBEKuIXHS6zXo+aMEWxnD4fLKLDZfd6VQXaTf/6FwBAWLAgIeMlCKJzkHQhhUajEaNGjUIxl7QaCARQXFyM008/vcXxgwYNwo4dO7B161bp36WXXooJEyZg69at6NWrF4qKilBQUCA7Z319PTZs2KB6ToJIdUhwEQSRirCQQpaXFQrmcClDCgmCIOJNTA4X0CRcXn/9dZSVlaGoqAgjRozAsGHDYLVaW33OuXPn4sYbb8To0aNx2mmn4ZlnnoHdbsesWbMAADfccAN69OiBxYsXw2w2Y+jQobLfz8rKAgDZ4/fccw8WLVqEAQMGoKioCA8//DC6d+/eol8XQXQGSHARBJGK8IKrMYzgcnq9sBgMsBmNqHO5ZA5XkbiOIAiCiAcxC67p06dj27ZtGDNmDP79739j3759AIB+/fphxIgRWLlyZdTnnDlzJioqKjB//nyUlZVh5MiRWLVqlVT04vDhw9BqozPn7r//ftjtdtxyyy2ora3FmWeeiVWrVsFsNkc9PoLo6JDgIggiFWGCy2YwwO71hjzW5fdLDtexhgbJ4br0pJOw5fhx2bGNHo+sUTJBEEQ0xCy41q9fjzVr1mDMmDEAmkqpsxC/bdu2tfq8d9xxB+644w7Vn61Zsybk777xxhstHtNoNHj00Ufx6KOPtnpMBJEqkOAiCCIVicbhcrEcLrFoBnO4ci0WNLjdsgbIdS4XCS6CIFpNzIJr+PDh0OubT2MymTB69GiMHj061lMTBJEgSHARBJGK+AIB6DSaiAWXicvhcnGCq9HjgYNzyBxh3DKCIIhQxFw0Y8mSJZg/fz7cbnc8xkMQRBtQK1bvMkQZmksQBJHM+AWhKaTQaITH74cnRCEM5nDZWONj8dg8qxV+QUCFwyEdGy48kSAIIhQxr7YKCwtRX1+PwYMH48EHH8Snn35K/aoIIslh5ZLN+phNboIgiKSBDykEELJSYYsqhaLDlScW/TrW0CAde6C6OoGjJggi1YlZcF1++eUoKSnBGWecge+//x433ngjCgsL0aVLF0yaNCkeYyQIIs7UOJ0AmnaDCYIgUoUWgiuEM+Xy+WDS6aQ+XFJIoSi4jnOC64oPPkjgqAmCSHVi3t7euXMn1q9fjxEjRkiPlZSU4KeffsL27dtjPT1BEAmAOVyhwm0IgiA6GnyVQgAh87iYw8WOZfNirsUCQO5wEQRBxELMgmvMmDGw2+2yxwoLC1FYWIhp06bFenqCIBIAc7h8gQACggCtRtPOIyIIgogdJrhYuLQ7RIEgPqQQACodDmgAZIntYpSCi+ZKgiBaS8whhXfffTceeeQR1NbWxmE4BEG0BWwnFyCXiyCI1MEXCECn1cKo0wGAVAhDDaXgqnY6YdLrkW4yAQCONTbKjndS4QyCIFpJzA7XjBkzAAADBgzAtGnTMHbsWJxyyikYOnQojNSzgiCSEj6vwSM2/yQIgujoMIeLCa5wVQrNYpVCAKhyOmUC7HhDAwxaLbyBAICm0vA2WtcQBNEKYl5lHTp0CNu2bZMaHT/++OMoKSmBXq/HSSedRHlcBJGEePx+aSHh9vkAcUeXIAiiI8PKwpvETaRQgsutcLiqHA6piAbQFFKYYTKhSgzBdlL/QoIgWknMgqtPnz7o06cPLr30UumxhoYGbN26lcQWQSQpHr8faUYjalwuCikkCCJlUDpc4XK4THo9rGLRDBZSaNLpoNNocKyhAVlmM2xGIw7X1VHzY4IgWk1Cup6mp6dj/Pjx+P3vf5+I0xMEESNMcLGvCYIgUgEmuExhQgp9gQD8ggCzXg+L6IbVulww6XTQaDTShlS6yYR/zpwJACS4CIJoNQkRXARBJDe84AqVVE4QBNGRaOFwBZnfWM8ts14Pi+hw1bndUihihhhmnWEySYLsywMHEjp2giBSFxJcBNEJ8fr9UiUucrgIgkgVJIcrTA6XTHBxDhcrIHROYSEAIN1olEIOH/z660QOnSCIFIYEF0F0QiikkCCIVMQXCECn0cCgbVreRCK4DGLOlsvnk0IRp/TvDwAw6HSS4CIIgmgtcRNc48aNQ35+frxORxBEAvH4/bCJiwgSXARBpAp+0eHSabXQaTRBi2bwgguAFFbInDHW/NgfCERUCt7p9WLIiy9i54kTMb8GgiBSj7gJrpkzZ+KWW26J1+kIgkggshwuKnVMEESKwEIKgSbxFInDBUAKK2QOV6YYch0QBFgNBkwoLESfzMygz7u7ogK7Kyrw0qZN8XkhBEGkFHHrdnr33XfH61QEQSQYj9+PdAopJAgixeAFl1GnC1o0g200MYHFhJfS4QoIAgDgjF69cLCmpsV5dldUwO7xSM3k06mnIUEQKsRNcBEE0XHwBgKUw0UQRMohc7h0usgdLhZSKAowJrgE8XiDTgev4lyCIGDIiy8CAD4RS8dnkOAiCEIFKppBEJ0Qj98v5SVQWXiCIFIFVjQDaHK4og0pZN9nioIrz2oNeq4qp1P6ulr8Oj2CfC+CIDof5HARRCeEqhQSBJGKKHO4oi6aITpcaUYj3rv8ckwWqxWqCa4aTnDtqqgA0OyIfVNSArvXiwsHDIjDqyIIoqMTtcNVU1OD6upqAEBFRQU+/vhj7Nq1K+4DIwgiMQiCQDlcBEGkJH5BkOVwRV00Q9+8Dz1z6FAptFDtXLUul/T1p/v2AWjODTtnxQpc9M47VJSIIAgAUQquV155BaNGjcLo0aPx0ksvYdq0aSguLsZVV12FV155JVFjJAgijvgCAQBNO7oaUJVCgiBSh0iLZigFFyt2wRwuJeEE135xI5odw8awr6qqVa+DIIjUIqqQwueeew67du2C0+lE7969cejQIXTp0gV1dXU4++yzMXv27ESNkyCIOOEVBZdJp4NZr6ccLoIgUoZoi2YwR6urmKuVK/6vxKjTQUBTXy6deH5ecDHYfJpmNKLW5UKF3d76F0MQRMoQleDS6/WwWCywWCzo378/unTpAgDIzMyERkxSJQgiuWELEIMouFzkcBEEkSIoHa5Qgsug1UIrrl1YdcHu6emqxxvEc3r8fljEr+vc7hbHKcvNVzgcrX0pBEGkEFGFFOp0OrjEHZ1vvvlGeryxsTG+oyIIImGwBYiRBBdBEClGi6IZwfpw+f1SOCHQlPsFAN3S0lSPN4oCis2fb23bhjn//neL49jPWf+uE+RwEQSBKAXXV199BZO4C5TJdVx3OBx4+eWX4zsygiASAgkugiBSFR8X8hfO4eIFlyAKpLQgZd2VgusfO3bIHmcwgVcvul8UUkgQBBBlSCEvsni6du2Krl27xmVABEEkFhJcBBEf6lwuWAyGFotuov1Q5nAFm9+Ugmve+PFweL0Y1b276vFKwcVCB/VarUzUuX2+pn/iY9Vc6XiCIDovMffhqq+vx+uvv46ysjIUFRVhxIgRGDZsGKxBEk8JgmhfvCyHS6slwUUQMZD15JOY0r8/vrj22vYeCiHiV+Rw1avkWQFNgosvAV+Qlobll14a9LxMcLGiQ2rzJquK2ODxyJ6HIAgiZsE1ffp0bNu2DWPGjMG///1v7BN7UfTr1w8jRozAypUrYx4kQRDxgxwugogfqw4caO8hEByRFs1weL2wis2OI0HpcLF5ky8XlmU2w+P3o46rXkhVYAmCAOIguNavX481a9ZgzJgxAAC3240dO3Zg69at2LZtW8wDJAgivvCCy2IwkOAiCCJlUIYUBhM8dq8XtigEl0EZUqhy3hN2Oz7YvRs3jhgBAMizWml+JQgCQBwE1/Dhw6HnbHmTyYTRo0dj9OjRsZ6aIIgEQA5Xx2HL8eP4pqQE955+ensPhSA6BJE6XHaPB7YgBTLUYA4Xy90KNW/+VFYGAOhqs9H8ShAEgCirFKqxZMkSzJ8/H+4gcdIEQSQXJLg6DtNWrsTc//5XWuQRyQMr+00kF75AADqxt5ZJrw/62YnW4bKIG8tsvnR6vS2O+U3PngCAtYcPAyDBRRBEMzELrsLCQtTX12Pw4MF48MEH8emnn6K0tDQeYyMIIgGwpG/W+NhJC4KkJdtsBgDsPHGinUdCKKGFdPIhCAL8ghDS4XL5fFi+eTMa3O6oHC5WLr5RLIjB/tdoNHjq/PMBAF9edx0A4L8HDwJoElyUw0UQBBAHwXX55ZejpKQEZ5xxBr7//nvceOONKCwsRJcuXTBp0qRWn/eFF15AYWEhzGYzxo4di40bNwY99uOPP8bo0aORlZUFm82GkSNH4q233pIdc9NNN0Gj0cj+TZkypdXjI4iOiszhClE2mWh/+mRlAQA+FYsREcmDmsNBtC/MdeRzuHjB5fL58OwPP+CW//wHaw8fjsrhUgouO/f3/8O4cXA/9BAyTCZZi4Ask4nmV4IgAMQhh2vnzp1Yv349RohJogBQUlKCn376Cdu3b2/VOVeuXIm5c+di2bJlGDt2LJ555hlMnjwZ+/btU+33lZOTgz//+c8YNGgQjEYj/vOf/2DWrFno2rUrJk+eLB03ZcoUvP7669L3rIkzQXQmlCGFNdQnJmlhi/qvS0qwsJ3HQsghZzj58InuPe9w8Q7T7z/7DK9t3Sp9z/fhCoeNE1x8mCKrUsiEllmvl+ZYCtkmCIIRs8M1ZswY2BWd1AsLCzFt2jQsWLCgVedcunQp5syZg1mzZmHw4MFYtmwZrFYrXnvtNdXjzznnHEybNg0nn3wy+vXrh7vvvhvDhw/HunXrZMeZTCYUFBRI/7Kzs1s1PoLoyPCC66S8POyrqsLGo0cT9nyrDx3Cz1VVCTt/qlDe2IgD1dWyx2rF8tK1XJlpIjngHS7K50oO1AQXm+92V1TIxBYQ3efKqNPBqNOh0eNBpcMR9DgT53CR4CIIghGz4Lr77rvxyCOPoLa2Ng7DATweDzZv3oyJEydKj2m1WkycOBHr168P+/uCIKC4uBj79u3DWWedJfvZmjVr0LVrV5x00km47bbbUBVmEeh2u1FfXy/7RxAdHQ/X+Ph2sZ3D2FdekUJl4s25b76Jk194ISHnTiXm/PvfGPC3v6G8sVF6rEZcENaR4Eo6eIfLS3k6SYFScPFFM94WI25sBgP+MmECAKAihHBSI81oDCu4mNP18ZVXkuAiCEIi5pDCGTNmAAAGDBiAadOmYezYsTjllFMwdOhQGKNISGVUVlbC7/cjPz9f9nh+fj727t0b9Pfq6urQo0cPuN1u6HQ6vPjiizhfTGQFmsIJp0+fjqKiIhw8eBAPPvggLrjgAqxfvx46bkeKZ/HixVi4kAJ5iNTCyzlcOm3znsuvtbUYohKyGw/IAQjPr3V1AIC9lZXIT0sDAFQ7nci1WFBHVWCTDt7h8gYCoAD19ocJLp2Kw5VjsQAADtx1F7LMZjy8erVUzTBSmOBycH97kyIskQmubunp2FtZSRVGCYIAEAfBdejQIWzbtk1qdPz444+jpKQEer0eJ510UqvzuKIlPT0dW7duRWNjI4qLizF37lz07dsX55xzDgDgqquuko4dNmwYhg8fjn79+mHNmjU477zzVM85b948zJ07V/q+vr4evXr1SujrIIhE4/H7odVopEXJHWPG4PlNm1CfgEU9WwAR4WEVCZmr9WttLaqdTozv3RtrDx+GPxCQCWSifSGHK/lo4XDpdPALAvyBABxeLwrS0lAgbmb8Y9o0nNe3b1TnP1xXh0Vr1+KM3r0BAPeMHYs5o0bJjmECzGYwwEQOF0EQIjELrj59+qBPnz649NJLpccaGhqwdevWVomtvLw86HQ6lJeXyx4vLy9HQUFB0N/TarXo378/AGDkyJHYs2cPFi9eLAkuJX379kVeXh4OHDgQVHCZTCYqrEGkHB6/X1ZJ64Ezz8TzmzZJC/14QgU5IsciVkxj71nhs88CAIZ06YK1hw+jweNBlijKiPaHd7iCNdcl2ha/okqhmeud5fB6YeWqEl47fHirn+dXMYXi3tNPR+/MTNnP2NyaZjRSSCFBEBIJ2S5NT0/H+PHj8fvf/z7q3zUajRg1ahSKi4ulxwKBAIqLi3H66adHfJ5AIBCyGfORI0dQVVWFbt26RT1GgujIKAUXW8QnojBDqFwHQg4Lu6xWiNShYpgn5XElF7wj7CUnNylQOlxMYDm8Xjh9Pql5cWv57ciRAIBSMZ/bpJKOwB6zGY3okZ4ObyCAHYoNZIIgOh+tElyHxS7qkXI0ygpoc+fOxfLly7FixQrs2bMHt912G+x2O2bNmgUAuOGGGzBv3jzp+MWLF+N///sffvnlF+zZswd//etf8dZbb+E6sQlhY2Mj/vjHP+KHH35ASUkJiouLMXXqVPTv319WNp4gOgMevx8GLjTNajDAoNUmxI1igiua8sudFZbroXQaWV5dIkI+idYjE1zkcCUFSsHFXGOnisPVGh4To2GOiILLqCK42GM2gwEXDhgAk06Hrw8diul5CYLo+LRKcI0ZMwa33norNm3aFPSYuro6LF++HEOHDsVHH30U1flnzpyJp556CvPnz8fIkSOxdetWrFq1SiqkcfjwYRw/flw63m634/bbb8eQIUNwxhln4KOPPsI//vEPzJ49GwCg0+mwfft2XHrppRg4cCBuvvlmjBo1CmvXrqWQQaLT4Q0EZAsFjUaDbIslISGFVaKII8EVHtYviAnfgrQ0/HHcOMmBpLC15KKOHK6kI5TDFQ/BlSsW3tgsrj+UBTMA4MWLLsLVQ4c2bWTpdLAYDLJeYARBdE5atQravXs3HnvsMZx//vkwm80YNWoUunfvDrPZjJqaGuzevRu7du3CqaeeiiVLluDCCy+M+jnuuOMO3HHHHao/W7Nmjez7RYsWYdGiRUHPZbFY8OWXX0Y9BoJIRZQhhUBTWCEfUrh0/XpcNXQouqenx/RczOFS2wkm5DBBxYSv0+tFV5tNeu9o0ZZckMOVfLRwuERB5IyT4DKIn8WdJ04AUJ/Xhufn453LL5e+N+l0VKmQIIjWOVy5ublYunQpjh8/jueffx4DBgxAZWUl9u/fDwC49tprsXnzZqxfv75VYosgiMTh8fulhQMj22yWnBW3z4c//Pe/uPGTT2J+Lia4KHE8PGxRxnK42AKR5YTQoi254HPqyH1MDqSy8GK5d2VIoSVGwQUAM4cMAQBoNRpJ2IWCL01PEETnJaY4H4vFghkzZki9uAiCSH68ihwuQHS4xB175qS0Nmdo87FjGL18OX656y5JcDV6PBAEAZoo+950Jtycw+X1++ENBGA1GKRddFq0JRd1brfUl4lCCpMDf5iiGV1stpif4+KBA7Fy166Iewua9HpypwmCSEyVQoIgEs+eigqsLy2N+vd8gUBLh8tikTlc/P/RsqakBEBTngPL4QoIAi06wuDhcrhYjyer2MsHoJDCZKPe7Uae1QqAQgqThbAhhXHIJc2MMu+bHC6CIAASXATRYRn84osY99prUf+eLxBoEQqTbTZLuUNscdDaRYKBc2R+ra2VwnsaPZ5Wna+z4Pb5YDUYUONyST2eyOFKXup4wUUOV1IQqmhGlcMRlz52mVGew0SCiyAIkOAiiE6HmuDii2a4YxRcRi7naGtZGc7o3RsAYCfBFRK33498mw01TifsnOCiHK7kpM7lkqrWkcOVHAQrC7/u8GEcqq1t0aS4NbTG4aLPLkEQJLgIooPjEBfnkeITBHWHSxFSeLCmRsqJiAaWH1ZaX48alwu/6dEDADlc4fD4/ShIS4NfEHDCbgdADlcyU08OV9KhFFx6rRZ6rRbPiy1s4iK4onW49Hp46PogiE5PzILr8OHDEFSSRwVBiLpBMkEQkcMW4qwJZ6R4/f4WgivdZJIKW/C5Qu/s2BH1uNi5yxobAQBF2dkAILk2hDpunw+54gK+QhRcFr0eOq0WOo2GcriSDD6kkMRwciBVKVQ0dmfkp6XF/BzkcBEE0RpiFlxFRUWoqKho8Xh1dTWKiopiPT1BEEFIMxoBNJcRjxS1kEKrwQC/IMAbCMgWB+Xiwj8a2OKT/W7PjAwA5HCFwh8IwC8IyBZ3z6sVDaMp8T65+HjPHpyw26loRhTcu2oVnli3LqHP4Rc3f/n5jRXOKMzKwpju3WN+jmjzwCiHiyAIIMay8ACClnpubGyEOQ4JqgRBqMM+ddH2uPIFAi3KwvPJ5fzi4EB1ddTjYk4Mc96Y4KIcruCw95wt5lh1R1ah0KTX0y55klDtdOLy998HAAopjIJnNmwAANx/xhnQJqg9hDKkEGjO45r7m9/EpS1FtOcw6nRS1VGCIDovrRZcc+fOBdA0+Tz88MOwijceAPD7/diwYQNGjhwZ8wAJggiNM9ocriAOF9AkuJhgGtq1K441NLT43VUHDuDCAQOCLpqYMCitqwMA9EhPB0AOVyjYgl3pcLGCGeRwJQ9bjh+XvmZFM8L9bZb9+CMO19Xh8fPOS+jYOgJ2jwfpUYblRYqa4GLuYzzCCRmvT50qFRkKh0mvR10rexoSBJE6tFpw/fTTTwCaHK4dO3bAKIY3AYDRaMSIESNw3333xT5CgiBUYTut0e6ehhVc4vm6paW1CFe877//xbMbNmDTnDkYHSQ8hwm2442NMOp0Ul4S5XAFhy0UM8SFqDKk0KTTUQ5XkrCbC6EvSEuDQasN697e9tlnANBpBRfvztq9XpngimdDdDXBxebHHFEcx4ObothMphwugiCAGATX6tWrAQCzZs3Cs88+iwwxbIggiLaBOUytCSk0KxqAqjlc3dLTsenoUdlxXx48CKCpJHYw+MVFttkMrUYDs14fdTXFzkQwwWWiHK6ko8rhgE6jwYdXXolxvXoh02wmByMMFQ6H9DUvTteUlGDCihX49Z574lJBUE1wKT9bbQ3lcBEEAcShaMbrr79OYosg2pFoQwq9MThcrHpefYgFJu/EsJwkvVYrLXyIlrDy+5lBQgophyt5qHY6MaRrV1w2aBB0Wi0yTaaQGxBE87wByJ3uj/fsAQBsLSuLy/NIVQo5x6y9BZeR3GmCIBCHohkAUFxcjOLiYpw4cQIBxaLqtddei8dTEAShgO2axjukkJ23QBRcLOTnw927pWIODSFCqHhhEE5wffbzzzizd++oe9ukGmoOl16rlcpbk8OVPFQ5nbLwtGgcLn8gICtZ3lmo4QQp73D9KuZ5/umrrzCme3d0E/M9Wws5XARBJCsxz/wLFy7EpEmTUFxcjMrKStTU1Mj+EQSRGFgoYauqFIrOCUMZUqgB0NVmgzcQkHak2W40ADRE6XAZVASXPxDAxe++i5s//TSq8aci7L0x6nSw6PWodjoldwugHK5kolopuEymiAVXZw095B1ANp/Uu934Yv9+AMDeykpc/89/xvw8zCnWqQiudC7PvC2xGAwUTk0QROwO17Jly/DGG2/g+uuvj8d4CIKIAEEQJKHVqiqFiiR1ZUihSa+XKrBVO51IMxqxrbwct48ejZW7dsXF4WILL2UlxM4IvzOfbjLhUG2t9P4D5HAlE9VOJ3pxYfSZZnPEFetqXa64Fm/oKPAhyMzhqnQ4ZOX041E63RcIQKvRyCqoBsTeXLZ2ElxpRiNVaCUIInaHy+PxYNy4cfEYC0EQIfh03z78IrrG/OI7niGFdo8Hbr8fJp1OWhiyfKITdjt6ZGQg3WSKOIcrmxNcyuawbOGVqJ48HQlecM0cMgRAc8EM9jU5XMlBrcsla34bTQ5XpMIs1eCdPbbRonTm2RwUC2pzG6O95pl0ElwEQSAOgmv27Nl455134jEWgiBCMPW99zBm+XIAkIWotCakULko0Wu1sBoMqHW5JIdLKbjcPh9MOh3SjcaQIYUetZBCnS6owxWvktAdGV5wndqtG4DmxtYAlZZOJhxer8wticbB6KzNv+vdbnSxWqFBcz++thJcFn1cUtVbTZrRCI/fTw41QXRyYp6JXC4XXn75ZXz11VcYPnw4DIpJc+nSpbE+BUF0ethCjYkf3mGKukqh36+6C9zFakWFwwGDVgujisPl9vth1uuRbjKFDinkFhaZIUIKmWgkh0suuLrabADkhUlMOl3UwppIDA6vV7aID1cUgf9ZZ83lqRNdQYfXK81l7HrWaTTwC0LcBJdOMZ9svuUW7DhxIuZztxbWc6zR4+mU4aQEQTQRs+Davn07RopNAHfu3Cn7Ge1cE0R8KK2vl74WBEEK0dFpNK0KKVQWzQCALjYbKux25FqtMOl0yDSboQGkSoUevx8mvR5WgyHkc7p9PgzKy8OgvDxcMnAgADGkUOlwiQsvmiXUBRcvqo06XactuJBsOH0+mTjgwz2/KSnB0YYGXDNsmPTzssZG6etwzb9/OHIEBWlpKMzKiu+g25l6txsZYnER9h4wx/atadNwzccfQxBzrWJBzeE6uUsXnNylS8znbi1pohtKgosgOjcxCy7WAJkgiMRxWCyfDDQJILYYL0hLi0tIIdDscKUZjTDp9dBqNMi2WFDlcEi79CadDma9PqSr5vb7cUpBAd65/HLpsVBFMzQaDd7atg0jCwowLD8/qteSKvCCK0ulRL5Jr6eQpCQgIBarsfCCiwv3PGfFCgCQCa5dnLsSLqTw9FdfRbrRiPp58+I57Hanzu1GptmMaqezhcN1Vp8+uGzQoLjkOfkFIWgOV3vBBFeoMGyCIFKfuMxMa9euxXXXXYdx48bh6NGjAIC33noL69ati8fpCaLTU+VwSF/n/d//SUn6+WlpcSmaAYgOl8MhFc0AgJNyc7H5+HFpcWTS62HR68M6XCZF3oRaWXi28FpTUoIbPvkEN3zySVSvI5XgBVe3tDSc0asXHho/Xvq5UaulHK4E89Uvv4QVtexzYImioMnuigpYDQZoENrhYiXNQ4XrdlTq3W5kmkywGY0timaY9fq4VfILVTSjvUjnHC6CIDovMc9MH330ESZPngyLxYItW7bALe7i1NXV4fHHH495gARBtOzfwxyufJutdWXhVRYlOWYzapxOmWCa3K8f1pSUSAtKs14Pi8EQ1uEyKUIWQ+VwMXpnZkb1OlIJXnAZdDqs++1v8Zdzz5V+Tg5XYtldUYHz33oLZ772Gno9/bRUSlwJu+75kEJW0CTY3+dIfT16Z2bCZjSGzOE6msLtEerEkEKbwdDC4TLr9bAZDKkruMQcLtY0noQXQXROYp6ZFi1ahGXLlmH58uWyghlnnHEGtmzZEuvpCYJAk8DKNpth0euRZTajzu2GVqNBrtUadUihN8iixCo26PQEAjCKginPakWDxyO5KyaxMW+o52TVDHlUc7gUi0/l73QmeMGlhpEaHyeU3RUVAIBNx47hSH190A0FJpiUIYUevx814oIagEywldvtKEhLk4kNNfiw4VQjlMNl0uuRaTLFpWR+MgquXhkZ6JedjXd37sTB6mqkL16Mz8WGz2p8sX8/nt+4sQ1HSBBEWxDzzLRv3z6cddZZLR7PzMxEbW1trKcnCAJNVb4yzWbMPf30puRzlwsZJhOsYcL7AKBE8TkMtihhO/C8YLIYDPD4/dJCM6KQQrG4Bo9qWXjF4rMzF4UIJ7jCVcIjYmNbWZns+2Chfw+JOcvKohneQECq5gnIr+2yxsYmwcWJDTVS2flg85XNYGgumuH3Q6fRQK/Vont6Oo41NMRcOMMXCECXZIJLp9XinMJC7KusxC5R2P947FjQ4y985x3c+cUXbTW8pGN9aSnNdURKEvPMVFBQgAMHDrR4fN26dejbt2+spycIAs0hOWbRXap0OJBntYYtYPHPPXtQ9Oyz2FFeLj3mCwRgCOFw8YKJLSzZ7rNJpwsfUhjE4QpWNAMAJhQWhmymnOpE5HBRDlfCWF1SIvv+l5oaHOUqgzLe3LYNAFqUhQeaGoMz+M2DssZG5Nts0ucrGPxnKlhIY0elXiyakWY0ykIKzeL72CMjA06fL2aXKxkdLgDonp6O442NkihP4/q4xQtBEPDchg0dujhHjdOJca+9hoe+/rq9h0IQcSfmmWnOnDm4++67sWHDBmg0Ghw7dgxvv/027rvvPtx2223xGCNBdBh8gQDKuTLQ8YKF5DDBVeFwoKvNBovBEDK87/vSUgBABVd0I9guMFsQuniHS1wQ1TDBpdc3iTzxOevd7hbiS83h0mu18Cp2LdnC66WLLsKI/HypEEhnJKzDRTlcCWWrwuE6/dVX0fPpp4Meb1HkcAHy8u/sWj5QXY391dUYmJsbNqSQd41TqV9XQBCksvA2gwE/HDkCfyAgF1zp6QCa8t1iwZ/EgqussVGKNkjE33fHiRO4e9Uq/OXbb+N+7raCvS97KyvbeSQEEX9inpkeeOABXHPNNTjvvPPQ2NiIs846C7Nnz8att96KO++8Mx5jJIgOw5AXX0TBX/8a9/OysspMcJ2w25sEV5jwPiaU+IWe1++XFok8NoMBApoWi0wwWRQOl5mFFIo3xswnnsCY5ctl54nU4XJ4vRjcpQt+N3o0MsW8tM4K5XC1H16/P2io31e//KL6OO9Asc8K73Cxz92GI0fgCwRw3fDhTZsjIf6G/CI8XPn4joTd44EAINNkwqZjx+D0+fDJ3r0ywdVNFFxlMW5WJavD1S0tDb5AAAu/+QaAvOpsMJQbVOFwKnLjOiLsc+hPMYeXIIA4CK7S0lLMmzcP1dXV2LlzJ3744QdUVFTg0UcfxeHDh+MxRoLoEAiCgJ+rquJ+3i/278en+/YhSxRcHr8fZY2N6BJBSCETMSyUJSAI8AtC0JBCoGmxyASZ9Jj4+1JIIXdTZ3kJDNUcriAhhez8WWYzjjU04N0dO8K8G6kJ5XC1H6HC2M5/6y3Z9/1zcgAAQ7hGumxzoZwTXEw4MBGVZjRKmyXB4D/HqZTPxcrcpxmNOLtPHwBNC2oXVw2V9Z6LddMlWQXXWeLrZlRx+X7BiDa8komVZHz9kcKue+W9giBSgZg/mUVFRaisrITRaMTgwYNx2mmnIS0tDdXV1SgqKorHGAmiQ5Co/jkXvvMOgKawG7YjfKS+Hl2s1rAhhewGxm7wbNdU1eES8wpqnM6QIYUWUfSp5ZkIghBVDpdNFFz9srMBANd8/HHQ15LKsPdGp9Go/pzlcMVaVIBoCVvY3nXaaWGPtej1uGPMGFlILhMNZY2NyLVYYNLpcEws8e4QNxW0Gk14wcX9LJUEF3st6SYTnpg4EUDTPFTrcklCi/WqijWPM1kFV7bFgquHDpW+r06A4GLnVNtM6yiwa8VPgotIQWL+ZAZbADQ2NsIsTqYE0Rk4nuA+Ovk2myS4KhwO5FgsUkhhsM9hvcLhYi6JQUVw8Q4XX6UQaC6bzRwuAKrOmi8QgACo53CpVClkIm9gbq70eLShNKlAJDlcAhK/82v3ePClShGkVIYtbGedcgp+veeekMeqube8w5VtsaBbero0Fzg4F7ezOlyNnMPF3ju+8A/QVMnPZjDELrgEIeimRXuTzhXK4B2uwmeewZ+Li1scXxOl4GJRCNokff2RYCeHi0hh9OEPUWfu3LkAAI1Gg/nz58MqTpwA4Pf7sWHDBowcOTLmARJER+E4l3+QiJ3WgCBIggtoCsNhCxi33y/7GYMl77ObMRM9ag4XWxj6AoEWVQrf3rEDA3NzkWu1SrvSlSp5CCzPSOlwqZaF93qRLZ6rr+hwAcCvdXVS6FZngb03wRZLZm6huunYMcz617/w45w5UlPVePHW9u247bPP8MnMmZg6aFBcz52sMMGVbTaju5hLFAyPSlNv9lkqb2xEltkMg1YrzQW84DLpdGEdLqMYOhqqfHxHgxdcWo0GBq0Wbr8fVU4nuqWlScdlmEwp63ABzXlq1w0fjg1HjkiP/1pXh8fXrcNj550nOz5a0c021TpywRXJ4SInn0hBWj0z/fTTT/jpp58gCAJ27Nghff/TTz9h7969GDFiBN544404DpUgkhs+aT5eJbz5sL0p/fu3EFws5C/YTZblRLBwJU+IkEJ+B5adly9/vebGG6HVaNDVZgOg3ktGapCsdLg0GtWiGWwxatDp8PMddwAASlO4AWww/IIAvVYLTRDBxf4OTp8PXx44gJ+rqvBOAvLd2HW0bPNmAE0RDMt+/LFDl5oOBxNcWWZz2MW6WxRFPOxaL7fbkW02I8diQY3LhYPV1ah3u2UOV6h5wen1oou4cZmqDheAFq0tGPEQXMlapRAA5p15JvbdcQeGdOkiOVyhQoSjvQbYXJ+o0Pa2gL3mzhjlQKQ+rZ6ZVq9ejdWrV+PGG2/EF198IX2/evVqfPnll/j73/+OAQMGtHpgL7zwAgoLC2E2mzF27FhsDNF5/eOPP8bo0aORlZUFm82GkSNH4i1FsrMgCJg/fz66desGi8WCiRMnYn+Ibu8EES286IlXRTnmUL0/YwaGdO0qE1yZZrMUkhdMcNUHEVxqcf79cnJQlJUFAJJzwpe/Zju0bFE444MPWpwjmMMVrCy8jTt/jsUCIPpQmlQg3M48W7TzIvVQAhrLs+ppbAd+a1kZbvvsMzz53Xdxf6625ov9+/ED5ywwal0uaNB8zT9+7rlYcdll0s/5TQ+PSkghE8PHGhqQZTYj02zGp/v2of/f/oY3tm2TrvFwIYUOr1cSICS4WkcyO1wmvb4pSsBiQY3TiYBYOCQY0V4D7FwdWXAxZ7cz3gOI1Cfmmen1119HRkZGPMYisXLlSsydOxcLFizAli1bMGLECEyePBknTpxQPT4nJwd//vOfsX79emzfvh2zZs3CrFmz8OWXX0rHLFmyBM899xyWLVuGDRs2wGazYfLkyXDRB5uIE3wORrwqyrEbT7YoRvjFRJbZLC3m1MpIBwRBcibY2EIVzdBqNBhZUACg2e1KMxpx++jR+Pyaa6TjuogOlxpBHa5gRTM4V42FKkaSUJ5qhFso8nlzbEF1PAH93liYaI3LBY/fj6NiLlKy5sUoqXI40HPpUuxT6eNz4Tvv4PRXX23xeK3LhQyTSQrnnDd+PG4YMQIfXHEFAMj6w7lVWiowIeELBJBlNiODu6aVDle4kMJM0WVLRcHF5iqT+D5UiXmojHi0hkhmwcXIsVggoOm64wtjbC0rk21KtVpwdWA3mkWJ8NEiBJEqtDqHi6e4uBjFxcU4ceIEAopF1WuvvRb1+ZYuXYo5c+Zg1qxZAIBly5bhs88+w2uvvYYHHnigxfHnnHOO7Pu7774bK1aswLp16zB58mQIgoBnnnkGDz30EKZOnQoAePPNN5Gfn49PPvkEV111VdRjJAgl/GIqXiGFLPeK5ToVig4U0CRQ2CJRLeejUex/w48tVNEMoFkoZYi7/VqNBi9cdJHsGCvnSjG8fj8MXK+oiHK4FA6XTqtFltlMgksF3uFiC7FEFGmp5N77E3Y7fhVdtMwOUgDpp7IyHG1owAubNuG5Cy6I6HdYjzsluaIYqHQ4pA0PtRyuNE5gZZvNLcJCIxFcgiBgT2UlemdmwmowhGz10NGwezyw6PVSZUezXo86lwveQACZXA5iqjtcjF6ZmQCammLzYdwrd+7EQ2edJX0freBi95xQfRmTnQ927wbQJEbdXNsAgkgFYp6ZFi5ciEmTJqG4uBiVlZWoqamR/YsWj8eDzZs3Y6JYPhYAtFotJk6ciPXr14f9fUEQUFxcjH379uEscfI6dOgQysrKZOfMzMzE2LFjQ57T7Xajvr5e9o8ggsHf6OIVUlircLgK0tJwp1i+OtNkCulwsRt2ttksjS1U0Qyg2ckIV4yBFblYfsklAJpfeyiHS1mlkA+PY+RYLJ1WcIVykdj75PT5pB3sRDlcJ+flAWgqAnGUq7bXEWDvza9R5AHWuVyyhT+Dhbvx+TYeFYdL6dIqz8UqfIYSXEcbGrDl+HFcO2xY2GbmHY1Gj0cmSk06HU6ITiovdDuL4BqRnw+jTof1paVSBMPA3FxsOHpUNkdG7XCJ95yOLNaPNTTgPLGdUEUEzaEJoiMR8/bBsmXL8MYbb+D666+Px3hQWVkJv9+P/Px82eP5+fnYu3dv0N+rq6tDjx494Ha7odPp8OKLL+L8888HAJSVlUnnUJ6T/UyNxYsXY+HCha19KUQng7/Rxc3h4iqoMZ6aNAkXDxyILjabJOzUHC62uMuxWKSxhcrhAppDFvmdVzXW33wz9lVWSuLI5fMhw2QK6nAZdbqWOVyKkEI21ppOKriCuY4AZMVRGsW/ZSKEaaXDgcFdumBPZSXK7XZp0RfrQritYM2HlQJx3eHDQX+nzu2Wwll5cpngEhd+bDGs3EzQajSwGgxweL3IMptb9KcrFTfqQgku9hy9MzObGot34EWzEqXgMuv1UshYBu9wGY1xEVy6JBdcLJfrQHU1BojtMEZ164bNx4/LQtFbG1LYUcW6IAiwezxSFEeF3Y6ecU5XIYj2JOaZyePxYNy4cfEYS0ykp6dj69at2LRpEx577DHMnTsXa9asiemc8+bNQ11dnfSvtLQ0PoMlUhL+Rre6pCQu56xxOqGBfCfYqNNhUr9+ABDS4WI34GyLRfo6VA4XwAmuMA5XV5sN4/v0kYp4uMM4XKzcNcPj98MXCMhCCoEmh6C2gyzu40mkIYVOr1dycRKRq1HlcEgl+evdbmnR11HyQspF149vWeAPBDD+9deD/k6tyxU2pBBovrbVPjvMm8y2WFqca8/vfw9ALrje2bEDmoULpc8Ev7FiTnGHK6jgikeVQrHaZ7KTLc5zLIKhMCsLtS5XRDlcTq8XR1Wibdj12RHcaEEQ8Kf//Q/7q6qkxzx+P/yCIBVlSqXPAEEAcRBcs2fPxjvvvBOPsQAA8vLyoNPpUF5eLnu8vLwcBWJCvxparRb9+/fHyJEj8Yc//AEzZszA4sWLAUD6vWjPaTKZkJGRIftHEMFwcSWj7161Ki7nrHO7kc4l9CthDpGaw8V2yfmQwlBl4YHmkMJIiyTw/aGA4FUKlYKLCUSlw2UJU1jg8/37sWLr1ojG1pGItGgGn8PV6PGELCsdLYIgoNLhQC9xnrN7PM0OVwcp4nBEXIhWcEn3xxS5btvLy2UuVJ3brRpSaNLrkWY0SiGFniDXNtDsfmWZzRjdvTvGdO8u/WyQGKJp1uvhFwT4AgG8uW0bgGaXUsrVFJuZh/oMdDRahBRygqsz5nABTdfJP7ZvxytbtkCv1aJ7enqT4OJCCoNVG7zqo4/Q8+mnWzwuOVwdQHA5fT4s+f57nPryy9Jj7B7GQnlT6TNAEEAcQgpdLhdefvllfPXVVxg+fDgMih3rpUuXRnU+o9GIUaNGobi4GJeJpXkDgQCKi4txh9inJxICgQDc4uRdVFSEgoICFBcXS82Y6+vrsWHDBtx2221RjY8gguH0epFpMsU19rzR4wkZ3mfU6aDXakM6XFlmc8uQwiCC68ohQ/Dyli1SYnc4WgiuCB2uzcePA2hZgMOs14esVHaRuLmTZ7XiooEDIxpjRyCs4OL6cDV4PMg2m1HjcsHu9coWs7FQ53bDLwjoarPBrNfLxF1Hcbg2ib3hTtjtEAQBGo2mRT7XiGXL8Og55+Dhs88G0JTDNaxrV9Xz5VosUrifO8RmhY8TXIPy8rBxzhxsLy+XOW0sPOqTvXulsLdqpxMFaWmSw5VlNjeFFKbQYrNREToczuFif7fW4AsEoO8AFTWZ3F9dUoI8qxXZZjM8fr8kOEM1yV596BCApiq0/EYcuz7r3W7sKC/HMEUKRTJhV2waaTQaaa7JJcFFpCgxbwVt374dI0eOhFarxc6dO2UNkLe2cid67ty5WL58OVasWIE9e/bgtttug91ul6oW3nDDDZg3b550/OLFi/G///0Pv/zyC/bs2YO//vWveOutt3DdddcBADQaDe655x4sWrQIn376KXbs2IEbbrgB3bt3l0QdQcQKK+scT5S7w2r4AgHc/vnnLXJ6+BwuKaQwTNGM8/r2hbBggaxccyhMrXS4zhf75ClDCs16fUQ7tBe/+25E4+sohBNcOq0WRp0ODjGksLvYE40XQv5AIKb8NyYO8qxWKSeJ7bIf6QAFg3yBAHacOIFzi4rgDQSkcC1WaXH1jTdKx27kmnYHc7iApveCvS+Sw6VSOY05Znyu5fD8fJwrFgAAgPOKipBvs2F7ebm0UGZirsbpRLrRCL1W21Q0I8xnwBcI4LFvv0VJAnqxxRvlHMbPPUrBFRAEVbc+UjqKw8VvkNU4nVIOIROi6SZTUMHBNqmUn3V2vN3rxfBly+BXFClKJviwR5bjyN4T5nB1BKeOIKIhZodr9erV8RiHjJkzZ6KiogLz589HWVkZRo4ciVWrVklFLw4fPgwtN6na7XbcfvvtOHLkCCwWCwYNGoR//OMfmDlzpnTM/fffD7vdjltuuQW1tbU488wzsWrVKpg7SLljIvlhhSPiSSSC6+6xY/Hshg2Y8+9/46Mrr5SNB1APKQxWNCNaWutwMZQhhWa9HvVuN47U13eqhOlIFoqsXHijx4Oi7GzsqqhAg8eDbuLPH169GovXrUNg/vxWOQRVKoKL7TrvrqhI+sVsvduNgCBgUG4uvj50CDUuF7ItFvxaV4cciwVn9+kjHctfi8FyuICm3fZNx45BEISQOVxXDhmC93ftQtcQPeo0Gg3yrFbUuVxSyK4UUuhySYvuSHK4dp04gYdWr8Yn+/Zh05w5IY9tbxo9HvTmHPMrBg/GJ2IBLH6eYHNntdPZatc22a9RBp+f5RcEqQotC4VNNxqDFl5igqvC4ZDcIKBp7rUZDJJgbfR4kradAy+qD1RXo3dmpvQYy50kh4tINZK2ycEdd9wRNIRQWQxj0aJFWLRoUcjzaTQaPProo3j00UfjNUSCkOH0+VCQlhbXc0YiuJ6ZMgUunw/fc0VdXtq0CT+Ku/gspFAQhLBFM6JFKpohnjeUw+UXBPgDAVmehkUhzMx6PbaVl6PX009DWLBA9rN3d+yIy5iTkUgWihYxzK/B41F1uP7z888AxDDUVgh/5uTkKgTX6O7d8eOxY/ilpgYDc3NVy/knA+y6Yot73uHqk5kpE6FMcAmCgPogVQoBoKS2Fj9XVeGTvXvRTywmopbD9e7ll+NvF1wgLZyDkWk2o9xul8bCnMNGj0cSHBaDIWwuEwtBjFc11ETS6PEgjbtezujVS/U41nT9u8OH0XvYsFY9V0eoUgg0lYHfxLmsTGQs/OYbAHKHyx8I4J5Vq3C4vh5vT5/eLLjsdik/EGgSKFlmsyRc6oP0l0sGeIeLbfQwhyuHBBeRosRlZqqtrcVf//pXzJ49G7Nnz8bSpUtRF0UfFIJIBZxeL7LNZiw+7zwpLCJWIhFcANDFapUWmABw++ef4zUxpLerzQYBTbuK4YpmRIvS4fL4/dAALcQDez5vICCV7uZ/X+17ZRn52z77TPZ9PAtGtDeROlyNHg8cXi+6icKeT6zXKFyTaJEEl8UCGye4Boqlq8saG7Hku+9ge/zxFoUokgEmUvqIZaUlwVVXJz3GYJ+DRo8HAUEIGlLIzlnrcoUMKdRqNCHdLYYGwMpduySH594vv0SdyyX7nEcSUsheW7zy9xKJXTGHBQtX7pGRgf45OdJGUWvwdxCHa9nFF2PTnDmYUFiIq4YOxcDcXJzdpw/2iVX70o1GafPq3z//jOc3bcKn+/YhffFimcPF4/L5ZLm5ydzKgQ+pZPMOc/3STSYYQ+SwdXQcXi8+Ehs8E52LmGemH3/8Ef369cPTTz+N6upqVFdX4+mnn0a/fv2wZcuWeIyRIDoEDq8XFr0+ZMJztDR6PC3C7tTIMptlgounm+iGVDudUg5XqJ5P0aAWUmjS61uEtDHB5fH7pZvtyxdfLLkGDN7xUgoHtmhjfVpqgrxenoAg4LsQPZiShYgcLoMBleJ7wgQXH5rE3vFYBFe60QiTXg+rGJpU73ajL9cXZ7k4px+srm7VcyQSpcPFclx+ratDH0URGCae3hA3JYI5AV+J/SU9fn/IkMJI4f82RVlZ8AYCuOKDD1oKrjDzB3ttkcwN7Y1y0yiUSMwwmWIqa95RQgrTjEaM7t4dX994I969/HJoNBrcITa0Zz9n11ulQlix64+vxAk0RRfw953H161L1PBjhv8b3/755wgIgvSY1WBIuUqdPPf997+Y8cEHUr4e0XmIeWa69957cemll6KkpAQff/wxPv74Yxw6dAgXX3wx7rnnnjgMkSBix+P346oPP8TmGHZPw8Ea+YZqcBotynCcYGRbLGjweKRqaQy9Viu5bVUOh+RARVr2PRxqZeHVQq5kgku8sZ7F5dQozwdAKsfNYGFyrDDB8Qhclhc2bsSZr7+OXSdOhD22PYnU4WJ9pvJFwaW2OI1FcLFrxazX492dO+HwejEgNxc6jQYVDofkBB0Xx5FM1IkCnJW1r3W5IAiCFFLI8+OxY9hbWYm7xPYNwUIkh3Tt2tQziXe4YhBcvOsw+9RTMb53b5TW12N7ebkkniIpHMM2VzqCy1svtrZghMovtBoMcMQwd3YUwaUGHxXBhxQqK4QyMa7mcPEhhu8kcQi2ct463tAgvV6LXt8ij7HO5YJm4UJ8vn9/m44zERysqQHQMoKDSH3i4nD96U9/gp5bKOn1etx///348ccfYz09QcSFHeXlWLlrFy6MY884JXaPBzaDAWa9Hr5AIC5VoiINKWQ5KHUK18cXCEj5AVVOJ7x+Pww6XavLLithi0+3wuFSouZwqe3O8/kXv/vPf7B47Vrpe1bRkL3WSMLatom995J9WRppDhfbFWXha/zCPNaQwiqnU0rCLz50SBIYeVYr8qxWVNjtkjOazCGFORYLMkwm1LpcqHQ44PT5WoQUAsDIZcskp5CFTaqRZTajzu0OWRY+2jECTWHA5/fti72VldhTWSkVsrEYDGE3bJi7q9xgSTbcYhuDSEOsWWGY1tKRBRc/z/MhhQ0eDwrS0jCkSxcAzeF4SofL5fNhxskn46dbb5UeS9ZKhcpKlE6fT7rmjTpdi01LNt+8ncQiMhJcPh/+e/Cg9DXRuYh5ZsrIyMBhlZCd0tJSpIuhTATR3mwR+z6dsNuhWbgwIQsV3uECmgtIxOOc4WCuT41KbgfLmWAOV7zyt4CmRT4fbx+Nw6UsCQ/IBcTaw4fx4NdftzhHkbh4jmTRz8RHMhZ54InU4WKCK9tshkGrle0Us2taGYIUKbVcpbyhXF+qXIsFXWw2VDgc0t8nEnexral3u6HVaGA1GJBpMqHO7ZZ6cDGHS9m3aEBuLq4dNixksRuzXo/F69ZhvViURm1DIVLuGjtW+npU9+6yvC/2uYgmpNCbpAtqBnOplYKr+IYbsPf3v29xPCvW0lo6suBKV4Rd8g5XutGIh886C0Czu8w7XP5AAB6/HxaDQfbZbe1coKTS4cDGo0fjci6gyeHSaTRSVV2H1wuXzwezGI7OCy5/ICA9d0coEhOKr8UeagBSqtceERkxz0wzZ87EzTffjJUrV6K0tBSlpaV47733MHv2bFx99dXxGCNBxIyy+WksN/VgsORwZW+qaBn0/PNYun49ANExikAgsYUyCzViC2ODVosMkwl6rRbVTic8fn/cSsIz+PAP5qApidThUvu7sD5KXcTF6dLJk5ElVnsLB1vwJXsr1EhzuI6KQifLbG6xOGUV78paGe7XwDXZXjtrlvQ3y7VakWY0SgU7gORMyK93u5FhMskWbEfF94S1GOBDaU/t1k1ypUOxp7ISAPDCpk0AYnO4Fp17LoQFC1D3wAM4tVs3WRsJFjpmicDlYdd+sjtczIVRCq5zi4pwEhf+xmCVOFuLLxCIW7h0W9PC4WKCS6w6yjbO2GePzwFim3tmvV42j7R2LlAy+R//wNhXXonLuQAxGsRolJxlu8cDt98vbVbyguvD3btx07/+BQCqrUV4Vh86JHP1dldUSFUQkwH+2iSHq/MR88rrqaeewvTp03HDDTegsLAQhYWFuOmmmzBjxgw8+eST8RgjQcSM8iYeb8EVEAQ4xT4oyrymaKhzubCvqgqPiK0P3H5/RDvqrBx1jRg26BcEvD51KtwPPQSNRoMci6UppDAQiKvDBTQ5VUxEBRMOSodLLzbyVaL2d2GFDZxeL64YPBiZZnPESdWtDa9rayJ1uFiD3W7p6bBwgmvB6tWS2G614OJybbLMZpwilunOtVgk14U9nysJ8w/qRMEFNC/Y2EYAE/dF2dkAgFtHjYIGkTnIo7t3B9B8LcWSw8Vg42TjAZoLoETSh4u5u8meB8I3046ETu1wceKbz+FqFDdC+J5bOo1Glkfp5NxRADhw550A4ie49ovVE+OVM8haS7DIA97hAuSCa2tZmfR7oeb8bWVlOPfNN7GMS2UZ8uKLmLBiRVzGHA/4wlYkuDofMc9MRqMRzz77LGpqarB161Zs3bpVqlRoinMTWIJQ49Z//xuf7tsX8phECy52Pj6ksPiXXyThFCmsJPJwscl3pCGAvMPFJx+zvJ4ciyUhIYVAU4U3tuvqF4Swgsvh9QZ1FdRKa7MwSYfXC4v4eya9PqLwklQSXGwxlW02wyxWEnSIlQQf/fZbAEBBWlqLghZ8wYdQ8A4XALw9fTruHjtWctOcXm+z4GrFYuHX2tq4LQDVqHe7paIe7PpQFrr4+oYb8MW11yJDDDkMdS0yvvvtbzGxb18pDzCen5/f9OyJmj/9CUBzDh7bTAi1uGV/42QPKUyk4NpTUYEbP/lE5vIFm386Avx1qMzh4h0uADgpL09ytIHm8DQ2P/YQHd14fd6YMOKrosaCXfzcsddsVwguPo+RlcoHQodIsvsEe1/Y52dHEhVM4gVXLLmKRMek1TPT119/jcGDB6NevLitViuGDRuGYcOGwev1YsiQIVjLJbwTRKJ4ecsWTH3vvZDHKHeM4y24pDA5zuG64ZNPpEaWkbK7ogIApMa2kYYUsh3zKz/8UAqj4yv+5TKHK0jIXyywxSsQ3uG6+qOPUOVwBHUVHjjzTPzv+utlOTVMzDl9Pkl0mHS6iHLkmOBKhaIZbNHDyvyzxSlbYJzesyem9O/fQnBlP/kkZrz/ftgxsFwRRr+cHDwzZQo0Gk1TmBvvcLVCcBU++yy6/fWvUf9epNRzDpdJp4OLK+XO3tseGRmY0r8/Mk0m1LvdUmhTKIw6HfLFjQCdRhP3xrpZZjNeuPBCfHDFFQCaF83Brm9BEHC8oQE6jSbpQwqljagIcyit4nUWCRe/+y7e3LYNe8Q5E+jYDhd/XdmMRgQEAb5AAA1uN9KMRpngGpibi3q3WwpDZZ9H3iHKMpvjJrjYNRlJK45ICOZwsXsd7/KWcsIyVN4u21xhGxfsnmSJIEKkraghh6tT0+qZ6ZlnnsGcOXOQIe6k8GRmZuLWW2/F0qVLYxocQcSLRDtcds7hUhZoiCYMY6+YL8J2uL2BQEQhhXwxgKJnnwXQfJMEmvJwqsQcrrg7XOLiFQgvuH6uqsJn+/cHLWJh0OkwsW9faSewe3p6s+ASb9JA5A4X35A5mYlGcHVXCC72Xi2/5BLk22yykuEs5OzfP/8cdgxsJ10Ni16PBq5SXzIuFuoVIYXM4TKqVOXMYIIrAocLgOScxfuzw7h9zBj0F3vSsQVisB1wu9cLp8+HHhkZSR9S6PH7oY1CpEaTw8UqsvIhZx1ZcPHwYekeMbeJ3ww5Scx9YmJEGVIINLndcRNc4nlr4hQxYPd4ZILL7vEEDSl0er24e+xYLL/kEpyw24Ne8zWKfF322oPNae1Brcslub1UNKPz0eqZadu2bZgyZUrQn0+aNAmbN29u7ekJIiICEYoZh9crK5yQSIcrS9FEtSGKMIwSsbiH3euVREJrF3kWhcPFGh/Hu2hGplg2GwgvuICmXcpwi1x2sz29Z8+IHK46lytk+GAyCgSeSBaK7EbNSpmznkVMYGVbLE0Ni8Xr7S/ffgvjokURj4HtpKth0esl51Sn0QR9Px8sLsZZr78e8XPGEz6Hy6TXw+33wxOkamaGmCPj8vkiqmDJnzfRsI2SYAsydp3n22xJ73BFu8ETKqRQEAR8sGsX/IEA3D6f5Bb8IvY1AlJHcPHtNnyBAPQajWzTYGyPHgCaxabS4QJEwRWn5rrsmoxXiLbD54PNaIROq4VJpwuZw+UUH++eng4BCFosiV0PfnFNIAmuJGoOXutySfN3st+TiPjT6pmpvLwchhA3Kr1ejwrO6ieIRBCpcHJ6vbL8oEQ6XErBVRtFGAYbl8PrlQRFa5P0edcrkTlcGUZjWIeLv+lVOZ1hw7i+vuEGvD51KrK4/LAWOVyc4Drp+eeRu2RJ0PMl+80tkoUiq7THBILVYMDhujrp+soym2HjFqyRuFoMr98Pt98fdHFiNRikinO5VmtQd3HxunVYq9ImRPlciUDpcLl8PriDXO+Z3Gc0krYL7PhEOVw84YruSIIrLS3pc7iiLdJjMxph93hUowLu+uILXPnhh3h582Ycqq2VNtvY3BsQBAQEIe4hn23JO9OnY/rJJ8uuAbW5oVdmJvpmZ0s5v8ocLqB5ky0esI2uaO5loWAOFyD+zUMJLq8XFlFwAcHDCpnDVacoHhRJH8u2osblQhebDdoQm1ZE6tLqmalHjx7YuXNn0J9v374d3bp1a+3pCSIi+CRel88XtHiGw+vFiIICyd2xxyn5l8E7XBkmk8xNi+YmxSZhu8cTtcP11fXX46dbb5V6m/ALST6HKxFFM+q4RqxqwkEpQsM5XBOKinDTyJGycEV24wWa3hN+0a+268m7n8l+c4uknHUPccHBXle+zYZ1hw/jx2PHYNBqYRELabAFKP+e6zQaDH/pJfz+s89Uz31ILL0frB+VxWCQdpBPzsuL6f1k5dXjTZ3LJcvh4kMKlfDl2CNZkLE+d23hnoQLKUxlhyvTZII3EGhxfbl8PjwvXjfby8ulkuhmLgSRlQPvyA7X1cOG4aMrr5ScVLffL5tT2QxhE/ttsRB0tZBCJl7jAdu8i9dGJV+shrmafFl4vgqty+eDxWAIK7iYA1/rdqPe7cbVH30kG3syUOtySUWPqGhG56PVM9OFF16Ihx9+GC6VxaTT6cSCBQtw8cUXxzQ4gggHf0MZ+uKLmPree7L+JAyH14uTcnNhf/BB6fu4joNzuLQajWwH/dqPP474PGwStnu9kqCINIzpvL59MbKgANNPPhkH7rwTI8Wy3kCTK1HjdMLp88W9aEZ6BA6Xctc5ElcBkBfkcHLhX8GKZjzw1VfS13UdKEE5EoeL9SFjTu2S888HAPz34EFkmc3QaDSwGY3wiU1Q+WWGXxCw48QJvMiVTOYp/uUX6LVajO/TR/XnfKjSiPx81feTX/yrORRss+PeL78M8SojJyAI0g4/0LTgyhULCzAH1O3zqX5+eMGVGUGORy+xcXJb9PQJF1LIxtDVZusQOVxRCS5FP0EGvzitcDgk0dkrI0Oae1koWUcWXAylw6Xjir4ATZsE/bOzsb+6WjqO/z1AbNcRp/sc+zTHax5lRTOA5rYioUIKLXo98qxW6LVaHGtoaKrM+s03sk031muzvLER+0QhCiBu70E84AVXst+TiPjT6pnpoYceQnV1NQYOHIglS5bgX//6F/71r3/hySefxEknnYTq6mr8+c9/judYCaIF/GR6UIzlP66yA8YmbYNOB71WG3fB1cg5XEDzjjgA7IyiLG0sDhdPPzEBn5FjsUBA02Il3g6XSa+XxhppDkWkVcuyLRapt5gvEAhbFv7J776Tvubdz0gKbLQnkbxvA3NzsXLGDPx5/HgATTldvTMzsauiQlqoKqt+KWHJ9kpK6+vRMyMjqNvDwnVOys1FmtGoem6+WpxSLLACMOzvHo/d3Te2bsWY5cuxtawMvkAA1U6nJEbNOp1UcEA1pJAXXAr3VY3CrCwAwSsHxpNIHC6tRoNciyXpQwqjbbTOXFm2ycLgr7daLl+zZ0aGrAcgkBqCq0UOl/ia+ojC32owYEBuLg7V1MAXCKiGFPL9ERn+QABLvvsu6vufmxM/8cCu4nC5uM0R5gAJgiAJMa1Gg25paTje0IBnfvgBC9aswcpdu6RzHhTF5+qSEny2f3/zc8U5miUWapxOqc1GMglBom1o9cyUn5+P77//HkOHDsW8efMwbdo0TJs2DQ8++CCGDh2KdevWIV/sJUQQiUKtL4haeBm/oxZrc0012KTObnjZXAlftd5SwWDNk+1xyOHiYTv/ZY2NcS+aYdBqpYVfvAVXntUKp88nhYtEWxaekey7iZG+b1cOGSJbVLFCGkwoSX1tPB7Vz0YwccH3sFLjmJgP8c+ZM4PuzvLV4uqDLJgvHzwYAFRd6GhhOWU/V1VJ/XmYC2jS67HzxAk8tX49fub6+DB4hysjAoeLLXSDCdZ4wnb5QxXNyLFYYNTp4hpS+M89e/A+t4CNB9E6XFnBHC7uvah2OlHtdCLDZEKGySTN5akkuHiHi+8t9ta0abht9GhkWyzIsVjgFwQ4vV5JnJsVIYXK+9zGo0fxp6++whPr1kU1Hj68Lx7IHK4QOVwuhZDMFysvbjh6FACwvrRUOucvNTXSfMi3Y4lX77B4UOtyIdtiQbrRmFTjItqGmGamPn364PPPP0dlZSU2bNiAH374AZWVlfj8889RVFQUrzESRFDUdq/KVUrhJlxwiedn8eIzhwyRflbrckVcGt7l86F7ejoaPR6px0o8KqPlijeissbGuDtcRp0ueocrwpBCdgM9LIaLRNL4WO29ThXBpYQtUGzc4gVouh7VbujBdnv5Cn9qnCKGpxZlZwcVXCykB5CHc7LxAEBf0SkKVmksGli552MNDZL4YpsbJu6aVIMXnpEILpvRiGcmT8YX114by5Ajgn3eg42/ShRcBp0uriGF099/HzM//DBu5wPiKLjE6+ecwkLUiA5XrsUiLdaB1BJcwXK4irKz8eJFF0Gr0chEmcvng16rlb32UCGFfG+rSOALWMQDPt+Sd7jMXB8umeASX2uGyYQGj0eqTNkojsft86HO7UYvRZuiP5x+etI4SYIgoMblQpbZjDSjUbq/E52HuMxM2dnZGDNmDE477TRkZ2fH45QEERFqO+VqizknV+EuUQ4X79pcPXSo9LXH72+x4x8Mp9eLPuKi9KgYGhkPgcSaZlY6HHHP4eIXfqGEw5MTJ2J09+4AIg/xY4LrUXHHks/hYgtSQdwBHiUW6VFrFZCqgou5n/xmAtC0waAquIJc9/Vud8jQuj+OG4fy++6DWa8PKrj4z6IyJIx93orE+4Papki0sAXL/qoq6bm7iNdLuPeSd40jEVwAcPdvfiONP5GwsQUTXMzhMmi18AtCVH3+IiHaheB3hw8H/TxHW6SHuaxKwc6ut+7p6TjW0IDF69Y1tUHQ61uEFIYrPtMRCBZSqHaMy+eTtcxgWFVCClmLkje2bsU2zpEOhzOODhcTHiwKhAlD3uGy6PWwe724XGzYzu7dLKe3RCzyw14fK+jzwJlnAmi+Z/bKyJByWtsbh9cLXyCALLMZ6SaTJBaJzkPH3woiOjXrjxzBwNxc3D12rPSYstmjPxCA2++XJelGI7i8fn/Y4+1er8y16ZWZiVO7dcOdp50GoCl3KhJcPh96i7t0paJjEI+QQv5mnAiHyxsIQBCEkMLh/jPOwN/FQjqR9odhgovF5KuFFLJd4FAL57bIvYmFVgsu8f3gr20A2HT0qGr/t2BhLPyOsxo6rbY5P0qvh1NszM1TbrejnyhIlBsMbGHEdqDjUa6aibr91dXYXl4Os14vFbfYfPx4yN/lexolmyNi5BbbajB3h4073pUKj0ThftQ4nTjz9dfx0Ndfq/48WocrzWiEXqttcX2wBX/3tDRp8Xzvb34jC5tLJYcrXFl45TG8WGHYjEZ4AwGZC8p/Lkf+/e8Rj4c5W/HI4bKLwiObyzt1iEWi+JBCj9+P1SUlAOQO16ajR5sqF4qiDGieT3qkp2Nyv37SNcLmrGQI35P6JZLD1Wnp+DMT0anZVVGBUwoKMKGwUHpM6XCxm0Q0IYXHGhrwk7hom/ree7A9/njI45UOFwBsvuUW3DRyJICWO7Zq+AMBeAMByeFiYR/xEEh83k+8BZeBW/iFEw5sQR5pIrMy/00tpHCNeFNmYZNqqO3MNrjd2MxVuWtPYg4pFMU+K5387s6d0nt8ardu6JaWhin9+wd938PlcPGkcWGLPOWNjRgg5jgpr3cmeNOMRph0uqiagQeDPcf+6mp8e/gwRnfvLl3b1wwbFvb3h3TpEvMYEoExjMPFhxQCiHvhjGj+Nix3LliImifKPlwajQZdrNYWkQu8wwU0uVjXDR8uKz6QCmXhGcFCCnl4wcVHcDBsnNvNiDTSQgkTLPFwuFgBHpnDpVKlkId9n240osrpRKbJhKmDBknjYoIrx2KR3gedRiM9RzIUzqjh+iVSDlfnpOPPTESnpsHtRpbZLCs7rgxXUvYosRoMcIS5cQx76SWc+vLLAIAvDhwAAPwqhjGoYfd6VSu8sUaykUyuTBj2Fnfp/+/77wHEJ4eLd8niXTSDXyCGEw6ZZjP+7/zz8dJFF0V0brNeL5XyB9QdrlUHDqB7ejrO79tX9rv+MH24Xv3pJ5z9xhsRh2StPnQoLsUe1Ig5pFB8XzLNZtw+ejR+qamBAOD9GTOw+ZZbcOwPf8AVgwfD6fNJC1OecDlcPCx3qsHthiAm7QNNIYX9RUGtDClku+xGnQ7pJlNcdnfZc5TU1uKTvXtxpViQAwBuGDECwoIFIX9/w+zZ2HfHHTGPI97otVpoED6kMJzD9fDXX+PKDz6I+vmj+dsw5z5YERyP3x91CDMrjMDDrrFuouBiDmUat3BNZYdLLUxSJrhUQgptKhsjrfncsaboQHwcrhrO6QGai3vwVQqV4tHKhRQCTffIHLO5OaSQF1zcJpRURCgJwvdqFYIrHptORMei489MRKem0eNBmtEoW5woHS62w8c7XOF2vNRCngqffTZokroypJCRFoXgYqIgy2zGWVw/pEgr+oVCp9VKQivuDhe30+4LBKAPk0Nx37hxUeXCWLnXz762cC5lud2Ok3JzWwhJ/m+sJrjKGxth93pbiAM1BEHAuW++iRliTkG8iTWkkL/2uqenSwUs+GqZajveQNNC4Gh9veQehINtIjR4PHj0m29gffxxCIKAOrcbuVYrbAZDi5109vk06HRxWWx4/H588+uvyOcc0KsjcLV4bEYjBrZB1cFo0Wg0TY29g8w1dS4XMk0m6XoPNictWrsWH+zeHdFz8ueI5m/DipVYQwiuaOebgrS0FnO40uFimyRZYtN1Fs4MpIbgYn/bUDlc4UIKrXFyuBrDzKPRwsRRFhdSqMzhSufmsyUTJ2K4WPGaCa4MkwlpXMGUas414zdWo7n/JhoppNBioZDCTkpMM5PX68V5552H/VzPA4JoS5jgumjAADx45pl44IwzWjhcaoIr0hwufyAgFZwAmqvlKVELKQTCC64GtxuXvPsufq6qkpX2nXrSSdIxkToP4QgWrhEr0ThcscInT7PFQ1ljI/LT0qRxsF1YfldTbaHASs1HUsCBibJ4VNdTo9UhhYqiGUBzc1RA3g8u2LX42c8/w+334wrOIQpFBudwvSeWEff4/Whwu5FuNDYltitCClnYm0GrlRyuZ3/4IarEfZ6D1dU4Ul+Pv0yYID2WFyKktKPBV/7cX1Ul9RgCmhbNGSZT2PLx0cBvOkSzEGSOr9qcctWHH+LjPXuiFlz5NltLh0t8jd3S0gA0N+LNMpvhDQSkggRAaggujViF0CU60q0JKeR/zohkc0kJE+B6rTYuVQprOOEBNOdUywQXd8+bMXiw5GgyIZZhMsHGuZuNHg+MOh2MOp2sOJbk8iWB4OKFZrrJlBQikGhbYpqZDAYDtm/fHq+xEETUsAaKJr0ej513Hrqnp0sTOkPZFDIgCPjfL7+o9udR8l1pKaqdTkwbNAhA8OIXwRwuthAONrl+tn8//vPzz7j3yy9lJXBZtTWtRiMLl4wFtd3DeMDvtCdKcI3v3RtA82I/02SSGtuWNzaiwGaTct9Y6Cd7z9OMRlUXgO2KRiKijoo5KlkRNMltDTE7XNxiizXpBRQOV5Dcqy3Hj6NvdrYUrhUOKaSQa85d73aj0eNBusmETLO5xcKOb+LNHK57vvwS5775pmpVyXCw8/+mZ0/MP+ss7LjtNtXjDtx5J0rvvTfq87c3rJn4NyUlGPj88xj32msAmuauRo8HGSZTc5PgMPmhz/zwQ9iwWf4c0SwE2WdITfSxprTRCq7emZlS2W+Gy+eDBk3hhkCzw8U2FGpcruYqhSkguIDmsOlwDpfb71cNKZR+zv1t+IIokc43TIB3tdnim8PFOVwNbje8gYDqPYoP1WfXvE6rlTV25p1U9j6kJWFIIavymkYhhZ2SmGem6667Dq+++mo8xkIQUSGIiw9+Qs40m+Hx+2U3BqXD9ZO4q/7G1q1Bz8tY9O23AJpDWSqCLM6DOVzs5n/vl1+qLnp+OHJEGiNbtJj1eqmBa2sWo8EwczeieNIWDtdn11yD6vvvl14DE14vbtqEow0NKEhLk4RGiUJw5VgsqvkwbLGo3E0vravDx3v2yB5jJfqzk01wqThc43r1kr6OxOHaVl6OEVE0qWeLoXq3W3pfy+12COLPMjn3keHlQwpNJhwT389qpxO6Rx+VNU2OBCYQMs1mLJwwAUO7dlU9rl9ODnoqevN0BIw6Hdw+H/4hbmiy/n52j6fpfeYEl7JnlZJ7v/wybO6hzOGKYiHoUnGTlUQruIZ27Ypyu10qyAE0t/Vg1x7vcAFN70EqOVxAcy+q1oYU8mXjGYe4PGS1XE412HzRRWxCHyu1LhdsBoMUim4zGqXwWTWHSxkuDTSJQBZSKAgC3H6/9HrZxmoXqzWpHK5f6+okh5YVzYjn/Z1IfmKOLfL5fHjttdfw1VdfYdSoUbApqootXbo01qcgCFXYAl8muLg+LmZxclMKruPiYq+PWJxCiZpYe+Scc/DCpk2hHa4QuVYNHo9qYQ22qKhzuZodLoMhIYsGtZtZPGiRw5WAsSvHzHpG3fvllwCA0d27o5sYVsh2x9lNNttshkdlcREspPDqjz7Cd6Wl8Dz0kPTaktXhYqE2vJPFL3D53lrSbq9i8XGothaXn3xyxM/JF81gQooJqHSTSeqVw8NCCo06HdKMRvyoqA65pqQEI8XmypHAzh9pZcWOBgspPC5em8zxZmIo3WiMWHABTfMMc4fU4M8RTUihJLhCLGijFVyDxeqReysr0T09HX0yM1Erti1g1zt7P9h1X+N0Sm5vqggui+jgCFB/TcqiGco8OrWQwkM1NdBpNE3928THAoIgCXo12DXXxWZrdZVDHr4HFyDfLFJzuHjnjoVLN3g8yLNaERAEVDudcPMFN8T/u9hs0pyXDOF7uyoqMETcGGJzqCNIsS0iNYl5Ztq5cydOPfVUpKen4+eff8ZPP/0k/dsaxEEgiHjAh4wxpDAb7sagrFL42LnnApBXsePh87t+rqrCaT16IM9qRbbZHNrhCjNx8vHvv9bWQhAEadFf53bLcrj4sLB4wXbTOqLDpUSZ13Z6r17QabU4KTcXuyoqADRdHxo0u55KwoUU7uNCTpnDFe+eR0CTo+oXmzdHC1sA5Ss2urb/7nd48MwzZQsptXLuAUHAkfp6qTJmJFj0eug0GllIIdvESDcaZb2RGFLRDK0WmSaT5EIyou3LxRyuVF2ssHAyJriYIGJ/74wIHC6+iEy4sFn2fubbbFE5XMyZUDpcvJtvjlJw5XJN2vs99xyu+ugjlNvt0jX+/owZ+O63vwWgHlKYKoLLZjBI9zG112TkHCw1h0spuDx+PyocDjx/4YXolZGBwqwseP1+6B59FE+uWxd0HEyAd7Fa45PD5XTKnHd+o5K5VPwGG98zrwfncDHxdbShQR5SyDlcBp0OWo2m3RsfC4KA7eXlUisKNm9R4YzORcwO1+rVq+MxDoKIGjXBlamS16B0uO49/XQ8+u23QXdl+cVDhcOBUd27A2hKyq9spcPFj+NAdTUG/O1vWHHZZahSc7j0+pA9pVoLW5B0xBwuJUpng/1th3btir9v3oxTCgrgEPPqWBNNJdVBHK7CrCx8V1qKPRUVUqgac7hCFVvxBwLQaDQhd4tVf09cnLbmfWP5igUK92JYfj6GKcIEbSohhRV2Ozx+v9SQOBI0Go1U+MKt4nBZDYYWIoAPKVT2VgOai9G8sHEjCrOycNHAgSHHUC8W6EiVfB0lksPV0IA0o1FaeLMFWrpYNMOo0wUVXOkmU9BrXAk7f8+MjFY5XJ/v3w+H1yt9Dvk5NNpiJmw+Z9fEh7t34+KBAyWH7oohQ6RjedHJvk4VwZVmNEp/W7XrXKPRwKTTNRfNCCO4WO5U9/R03DJqFOavXg3jokUAgP/s348/nXmm6jjYnJdrscStLHw4hyuYK8rmsNmnniqFFx6tr5eFFPZTtKYwaLXtLrhKamtxrKFBCveOpl0MkTrEZWZau3YtrrvuOowbNw5Hjx4FALz11ltYF2LXhCBihS0meLdDCinkFg3shsFXcfIHArj/q69Ud+yUi2q2G5elUgyAEcrh+sPpp8vO+/WhQwCAtb/+iiqnE+nigorP4QKAu8eOxeOiGxcPWFhXvEMK28PhCuZsMKfmd599JolgvuIbw+XzSX+PMsXuPxs/v9PPHK5QgivjiScw9b33onwlsfUPYguyUOFijDSVfAa2qO0VhcMFQLpm2ftxjHO4rHp9i/eJDylUunFA08Jjy/HjuOOLL3Dxu++Gff46t1sWLplqsByuE3Y7BuTkoMHtRkAQpGuShdd5/H7c8cUXqufg/wbHwwiuWpcLVoMB2RZLdA4XtwDfJN77AXmua7R/J5tCcAHAf37+WXWDzKTXw6LXo8bpTD2HixPawV4Ty/NSK5rBN08GmkOocy0WWA0G8PEdfEuIjUePykQ3364kLkUzXC65w8XN5UqXTi23VFiwAPefcQa6paVBg6a5mQ8pnFBUBAAYnJcHAKrzf1uz5fhxAE1FfgB54SGi8xDzzPTRRx9h8uTJsFgs2LJlC9ziB7Wurg6PP/54zAMkiGDsrawEAFkvHbbLyZebdvp8MImhBQw20a3Ytq3FeZU39oNiTlCW2ay6mywIQpObEsThukbsD8QEVbEouErq6lDlcKBvdjZ8gYAkIJkwfGbKFMwbP179xbcC5jLEOwyrLXK4lHRLT8c706e3eJz3lqqdTtiMRtUbLnuvu6WltWyULf6d+AVraQQOl8PrxX9+/jmq1wHEJrgG5OQAaM5pCYVRp4Neq5XtqrLXFY3DBTQtGHaLoZtA84I+3WSCxWBosZHB3n+dRqMqDhs8HowSG41HAutFlaqY9HrUezzwCwJ6Z2ZCQJOrx0IK2Q45y3dSFkDwBwJw+XySQ8uK8wSDvZ/R9khz+f3SopjPb+W/jjbvUavRwGYwSL3kGME+e9kWS0qGFKYZjVKkRrDXxKpZRlI0o5prDiw1HTYYMP3kk6VIi3q3G2NfeQXDly2TzuPy+WDU6WAzGuMSUujknFBA7nDx96YDd96JH2bPDnoeg5gP2iAW72Ebf2lGI07cdx/uGzcOQNO8501AKHg0nLDbodNopHmaQgo7JzHPTIsWLcKyZcuwfPlyGLgPzhlnnIEtW7bEenqCCMquigp0S0uThSdkWyw4q08fvM81/HQoJnienSdOtHhMmY/w3JQpAJp2amtdrhaLG6fPBwEI6nApG1B+U1ICoOkG2ODxSO4Cq5YX7z5ZDLbQjfdCtT0cLgCYOXRoi8f40JvVJSWwBnG42AJjYG5uizBRJrjZ30sQBKkQRyT92yKt/sWIZaH41KRJ2Pa730miNxx8s1CgqSKjWa+POuwr3WjEJq7whczhUulz5xUXRBqNpkX4I9C08BjO7WazHeFgdAaHi12jrMpincslLdCYq79I7EOmbIXBRPVD48fjT2ecgfVhBFeDWNKfhYpGitvnQ35aGvRarczVYlURLxowAFerfE7DkWY0tpibP7jiCtVjs8xm7K2sbC4LH2VIb7ISLocLaHZv1PpwsWb3SsGVa7VKVXDz09LQ1WqV3C8WOl1SWysVtmFijrlpsaJshs1vVPIVRfvl5IS9F7LXz4cUAk0FM9i9QG3+FwQB//fddxH1YIwHFQ4H8qzWFv3EKKSwcxHzymjfvn0466yzWjyemZmJWkViNEHEk7LGRtWSz2N79JAl4YcSXMcaGqTYdv54oEkoFWZlYawYBpBlMuF/v/wC/V/+gh+PHcP28nIAzZNmMIeLF1yCIOCE3Y4ciwUn7HYEBAE9xXCO0ro66LXahAmW5Zdcgr9ffDH6i65IvGiPHC4AqrlSJ4thJECTA8ryXII5XCfl5kqLDQYTJGw3t8rpRL3bjYG5uUEFF18kINqbaCyCy6zXy4RKONKMRlmlsdL6evTKyJAlpkdChsmEI/X1yDSZkGux4FhDA7QaDawGg6rg8vj90nUSLKRQEAT8btQoZJhM+N/BgyGfv87tTmmHy6jTSdcoKxRQ+OyzeGfnThi0Wil8igll5aYBE2A5FgvyrNawIorNkVE7XGIoW57VKne4RMH18cyZYYsJqVFut0sRDIx+Qeat3RUVWLlrlxTSmEoOV20Yh0sSXCohhQBkIokJ+GyzWXJaTDodcq1W6Wds4wQAFn7zDYBmwWXR65s2F2MsZe4NBGSCi78353Cbp5Fg4ARXsLwvg9qGm9OJ+7/6Kmg4brypdDgkkQtwDhcJrk5FzDNTQUEBDhw40OLxdevWoW/fvrGeniCC4lIphQs03VB4EaW2+8f45969yFmyRPYYczgO3X03fr7jDulxPjRm3KuvYoQYdsGOj8ThcoluWM+MDOnm1ldM8j1UW6t604wXv+nZE7eMGhX14jocvMPlbUPBpcakfv2kr11iKKmRS5pmOSds57hvdjbqufLmv9TUYI3oQDLRwHJJTikoQIXDobrg4AVGtKWT2zIUqkd6uiw35oTdruo4hYPlIIzq3h0ZYl+tNKMRGlF0qeVwMRdO1eHyeFDldKKrzYZssznse1jncqW0w2XS6SQRxW8qrTpwQJaDyYrrVDkc+OeePbjqww8ByMPHbAZD2MavrKx4uhiiFSluvx8msVE773BVOBzIMpujLgkfC+z9ShXBZTMYwoYUMsGlFlIINIUcsjmv3u2GRa+HQaeThLpRp0OP9HSUNTai0eOR7kln9u4tPSfvcAUEIeZKrS0cLu6+Ge29ib1+j3gdBjtG2fierQ/ccXDsIqHC4ZCFfdsopLBTEvPMNGfOHNx9993YsGEDNBoNjh07hrfffhv33XcfbrvttniMkSBUcfp8qkIq22JBldOJB776CkBoh4vBL6LZYjHTZJKFavHnYDHhLp9PWsxE4nCxc/fKyJDKtLMS8IdqaxMWTphIeMEVStwmgremTcOaG2+Uvu9is0FYsADDxNwV3uH6fP9+mB97DIfr6pr/DmI455eio/LsDz9I52LHsP+Hde2KRlEYKOEFQrDCKsFoS8E1IDcXB6qrpe/r3e4WJfYjgYXEdEtLQ5rRCG8gID0WKqQQUM/paXC7Ue10ItdqRbrJFNYlTHWHq3t6upTD1EPh4vN/L97hmv7++1i5axeAZjcjV2z+6gsEQhYOYFXu0k2mqB0us14v5VExTtjtEeUVxhP2+lJFcKVxbmNrQgoBucPl4u6XzG0x6nQ4v18/eAMBrD50CGWNjcg0mdDVZpMcfuZist+NtVKhUnClG404t6gID5xxRtTnkkIKxc21UMcwfIEAPt23D4B69cdEUGG3yxwurUaDNLH5MdF5iPlqe+CBB3DNNdfgvPPOQ2NjI8466yzMnj0bt956K+68885Wn/eFF15AYWEhzGYzxo4di40bNwY9dvny5Rg/fjyys7ORnZ2NiRMntjj+pptugkajkf2bIubmEB0TtVK4QHNVwSe/+w6AuuDaOHs2zhOrGQHyHIhGjwc6jabF7uyU/v1xvsK1rbDbwzpcTEQ5vF5JnPG71llmM7LNZhyqqWlTsRIv2OtrFJP8E+nSKblu+HCcXVgY9Oe84GLO1Z6KCmkxwapzXSJWxuOrdTHRwHZBB4nhiiyfi4cXXMnscPXPzsZ+TnCx3J1oYeIq22yWfp/9b9HrpQIqDD6kUG0Xu8rphMvnQ67FEjSsrbyxEZ/9/DMufPttHKmvb5VQ7Ciwfj1Ac0ghg2/rwEKw+E0AQWwGy34ulWoPsbhziAt25nBFGjbGFrqsbxijwuFQLf8fKawYzMl5eXjivPPwyiWXBD121+23AwDqw4iTjgZ/PwmWl2bU6WAX5121zTql4OIbC/9u1Ci8PnUq+ufkINdiwdayMtSKJdtZ+CD/e2qNlFuDUnDptFoU33ADFk+cGPW5eIcrmJuqFFyPr12L+/73PwBtd61UOBzIU4RLpkUZvkt0fGJeGWk0Gvz5z3/GH//4Rxw4cACNjY0YPHgw0loRpsJYuXIl5s6di2XLlmHs2LF45plnMHnyZOzbtw9dxZ1rnjVr1uDqq6/GuHHjYDab8eSTT2LSpEnYtWsXevToIR03ZcoUvP7669L3phS+YXcGnD6f6m45L1oEQVCNbx/Towemn3yyVDHwWEODbPGSyyW4Mk7v1QtfXncddI8+KpXUrXA4JBEVrPqfVqOBRa+H3eORFj18VTiLwYA+WVnYWlbWIR0uFsrBRGsyiUZecLEF/691dfAFAjBotS3y2djfMs9qlRYcbCHJqmEerqvDady8AigcriB9kYLR1g7XCbtdcrbq3W70F0Nao4F9VrLMZkkA8A4X0LQhwkSYMm+D5+S8POwR83UyzWbVhchzGzbg7lWrZI+lssM1mBNcyoImvNDUa7Ww6PWy0CSvWPFUp9E0NaLmHPbsIDkyTp8PORYLemdmSg2XuyuEnhpsMc6HrgEtd/SjZe8dd2DniRPokZ4etichawVRH6bAREeDv5+EcriYox4uh4u/D2o0Grx08cXScSfl5WFfVRWyzWZkmExNgotzuFgOF4CYKxXyc3GsyIpmBLl3GrRaWZXCn7gKxm1VYEWZwwU0zZfkcHUuYr7qDx8+DEEQYDQaMXjwYJx22mmS2Dp8+HCrzrl06VLMmTMHs2bNwuDBg7Fs2TJYrVa89tprqse//fbbuP322zFy5EgMGjQIr7zyCgKBAIqLi2XHmUwmFBQUSP+yW7HQIJKHYA4XL1pqXK6gIYVFYigfIE8WPmG3B92d1Wg0sv4lMocrhNBgJeXZgp4vZW/W63GJ2Oi1rcNw4oFWo4FBq5Xi4pNJNJo4wcUqpx2qqZF29HtmZGDRhAnIsVhg93jwl2+/Re/MTIzt0aOFw5Uv9n1RFlkB5EULjov5EJHSpg6XKDAPii5Xg9vdKoeLObTpJpO0MGTnkRqMf/mldLzX75eF566/+Wbsuv12HLzrLvzf+edLj1sNBtVKeY+tXdtiDIloDp4sFHJzk/Lvo/w+w2SS9dlyer2odDiQY7FIOXVAy+qrPGwuHSJuaO5SVAhscLtVK0ey6nBKhyvWkEKtRoPh+fkR/Y3ZPYAJrlRphs3fTyISXCr3H9YYGUDQPC+g6X60v7paCtW1GAzNDpffn1CHKxZaE1LIO73xaOQcDkEQmjYgFNdytBVBiY5PzDNTUVERKrh+LIyqqioUcSFbkeLxeLB582ZM5OxlrVaLiRMnYv369RGdw+FwwOv1Ikexe71mzRp07doVJ510Em677TZUVVWFPI/b7UZ9fb3sH5E8BMvhOr9vX8w780wAwIe7d+Nf+/bBrxIiczK3i7ynokKaiEMJLiXf/vprcw5XiGpcXWw2nODE2SCump5Fr8e54mcltvpP7YdZr292uJJIcJl1OumGWy4KLr8gyMR678xMVDud+OqXXwA0OVgWLg+JLSQtej0yzeYWJbiB5sbIAHDzp58iV1GIJRTtIbge/PprAE2L1PQQ120wWIsBt8/XHFIonoc9x6s//SQdr9zV/k3PnhjcpQv6ZmfLxIVNDGtTClYmevtkZuKLa6/F5H79MHPIkKjH3VHgQ46Vi1Pl3yvdZJKFiTp9PpRzxVDYvBQ2pFCvR1FWFvRarSzPDwBu++wzjHr55RZltF1iw9kWDleMIYXRoNNqYdLppMVrqpSF5x2uYG0fjDqdJDSDhRSy+SuU4OpitaLa6USd6HyrOlyK9iatJe6CS8xPjDSkcB+37lPbPIs39W43vIFAC4eLQgo7HzHf4QVBUI3Jb2xshLkVVaQqKyvh9/uRryh1nJ+fjzLOCg7Fn/70J3Tv3l0m2qZMmYI333wTxcXFePLJJ/HNN9/gggsugD9EIvHixYuRmZkp/evVq1fUr4dIHMEcLo1GgysGDwbQvDPOSgbzsFAUALjnyy9x/ltvAYhccF09dCg+279fWsiEKszR1WaThR/y5W/Nej1GdesGABjMCbGOhFmvl0oYJ2tIYYAT3awqG9D8t+CLXVi5ym5sIWnS61tUwGQcra9HQVqaJJxDFShQ0paCK8diwbCuXaV+Ow0eT6tyodhi0OH1Nudzie/jAM69ZT3JQoUU8p9Dm9HYYiHi8vmk9+jZKVMwpX9/rLruuqDhcamAMjyKF5fKv1eGySQTSBe8/TbK7XZJFNsicbjEzSudViu79hmsQXbBX/8qe7zG6USW2QyTYlFb38ZFTawGAxrE3Nt4V2FtL/gNvGDujUmnk0KYIwopDDI3swiMerG/nczhEgWXFCocoyvkTYDDFawsPtAkVllIYZ3LhcN1dXhr2jTcPXZsi3YKiYC1S1CGBocKKTxcVydrbUOkBq3eip47dy6ApsXtww8/DCt3Mfn9fmzYsAEjR46MeYDR8sQTT+C9997DmjVrZILvqquukr4eNmwYhg8fjn79+mHNmjU477zzVM81b9486XUCQH19PYmuJCLUDYQtxlio4MoZM1oco9VoUPnHP2LQCy+g0uGQmoOesNulKneh6Judje9KS2EXhZ9aXyhGV5sNR+vrVQtsWMQwqk1z5shyNzoSMsGVRA6XSSyDrBRALKQQaN4ZZrv3/776aqz99Ves/fVXAM0Ol0GrbVGNjXG0oQE90tMxsagIX4t5gcE2o5S0peACgAsHDMCHu3fD6fWisZVFM87o1Qs3jRyJe37zGyz78UcAQI443+q1Wgzr2hU7TpyAy+eDzWhscriCLLL452elydmuvd3jQeYTT8AvCHjpooswddCgqMfaUXn83HOlHmtvT5+OoqwsPPHddy0dLqMR35eWSt9vLStDutGIPqJzqGy8roaTC7u2Ggwt8nT4nFN2XTu9XjR4PMi32XCwuloWUtjW1UotBgPq3e6Uyd8C5A5XMGcqXEhhsKIZSpjgqnO5cHJeHix6vXS9sGI2kVxHkZCIkEIm/EMdA0Cq/Nk/JwdH6uulqIdEwkSdMqQwzWiU9a7j6fPMM+iVkYHD996b8PERbUerV0Y/ieEigiBgx44dMHKTg9FoxIgRI3DfffdFfd68vDzodDqUi01lGeXl5SgoKAj5u0899RSeeOIJfPXVVxg+fHjIY/v27Yu8vDwcOHAgqOAymUxUWCOJCeZwAc2lp32BAG4YMQLnBekJl2u1SrvwbCc4UocrS3Q7qp3OsC5BF6sVm48dk5WQ16AphJDdBEd37x72OZMVWUhhkjpcPPy1w9wEdvO9oH9//Fpbi0O1tXh7+3YpP0Cj0TQ5XCqCizkK/E2fVfwKR1sLLla2nVXxPIlzpCLFpNfj9alTAUD6rPCvfeE552D6++/DKQquUA4Xj81gQI7FIrmI01aulMKBc1PY0VJj3vjx0tc6rVbK+1Q66Rkmk6woANDUFH6sWNiFCdraEMVceIeAr1DH4MXynV98gecvvFD6vOSnpclCCgVBgFvM+2krrAYDKh2OuBVjSAZ4wRWqx1SZuFGklkNsEos1AU1zXijB5QsEcLyxsSmkkBPdTKjZ4iC4BEGIu+By+3yoCTHXGnU6aczMUUo3GpFvs6Ha6WyRXxpvWH86taIZh2prg/5eKaWwpBytnp1Wr16N1atX48Ybb8QXX3whfb969Wp8+eWX+Pvf/44BAwZEfV6j0YhRo0bJCl6wAhinn3560N9bsmQJ/vKXv2DVqlUYPXp02Oc5cuQIqqqq0E0M5SI6HqEcrgyTCcxbCJejwhbQBWlp8AcCqAyTf3DrqFG4f9w4ZJvNaPB4sOnYMWknOhin9eiBfVVV2Hj0qNR8kk3AyeQItRaTXp9URTOY22jW66HTaGThhIA8pJCF65Tb7Ug3GqHTatFNrNB23T//iUqHQ1rwZFssqqEeLISKFx180YhQtLXgshkMON7YiJc3b8ZlgwZhfJ8+MZ2PXce8myf17BEXOt4IK5PZjEbkWa2oE5tR/0/MqwPkYbidEbYAV7qmbLPnZC4ceX91NU4V723ZZjO6WK24Z9Uq6XNQpsjF4h1fPn+RUedySUWGXti0CUCzI5xvs8mKZrD/21pwefz+lHK4eAEVqiAE0FTV8iSVcPQWfbjCbFCWNTYiy2yGRcz9CghCi5DCULmA4fALAgQEz0mLFubwefx+qR2M2jGs8TEfYcJCbk8k2OViLpZyw4gVzRizfDkufPtt6fFQGyNExybm2en1119HRkYGdu/ejVWrVuHTTz+V/WsNc+fOxfLly7FixQrs2bMHt912G+x2O2bNmgUAuOGGGzBv3jzp+CeffBIPP/wwXnvtNRQWFqKsrAxlZWVoFG8IjY2N+OMf/4gffvgBJSUlKC4uxtSpU9G/f39Mnjw51reAaAcEReEDJVqNRlqghXOfTu/ZEwBwsKYGn+3fDwEIKbiWXXwxnjz/fGlHbU1JiZSDFYwL+vcHAKw9fFj6vZGiYxts97IjkWwhhWyxp7boc/t8QUMK2cJjBCegj9TXSwueHunpOKKy89ggFp/gBdeKbdukG30o2sPhApqqKY6Ow4YTWxjyr1UqIS0u9kKFFPJY9HpJwFU6HLKd8FTJzWktkuBSPM4WmkMUYdAzhw5tOl6jwdiePXG8sRHfHT4M7cKF6PbXv2IHF0USLqSwzu3GaT164IYRIwAAb27bJi1Uu9psMoeLLfDbWnABqVOhEIjc4QKaQuTUQtrNnBAOF1LIyLVYpLnR5fPFtWgGizSIp8PFhH8wh8ug1UrPy7dwyRfnGeXmQ7ypsNuRZTa3mP/SjEZUO5348dgxfHHggHQfKOFcr0juH0THIebZ6dChQxgxYgSGDh2Kiy66CJdddhkuu+wyTJs2DdOmTWvVOWfOnImnnnoK8+fPx8iRI7F161asWrVKKqRx+PBhHOdK1L700kvweDyYMWMGunXrJv176qmnAAA6nQ7bt2/HpZdeioEDB+Lmm2/GqFGjsHbtWgoZ7KB4/H4ICB2+dqO4OAjWH4vxv+uvxzQxN2Tqe+8BCC24GGyh4/B60TdMiwEW1lNaVyfd3N67/HL866qrQuZ+dRSSrWgGW1jwO8NsIdjg8chCqPiQwkzxb9MvJwc/3XorgCZhwo4pyspCSW1ti8awrK+V8rVHkvjMbrRtVV2Nzx+MpVcSg31W+L5N/IINCF00g0en1UrJ5ZUOh1Rp73ejRmF8794xj7Ujw+YJpfBkRUf6cXNQF6tVNq+w8M9P9+2TKqEyweT1+2UNyy16PRyKkMI6lwuZJhNmnHwyAOCVLVukPLtMsWgGv7AH2lZwsbGnlMMVQdEM9pkKVrBJWTQj2N+Ed4dyrVbp/eQFl1ajgZnL7WoNCRFc4nUcyuFiz9vItXBhG7JqIeLxpMLhUG2RkG40ynLI2Ebeca7ibahCN0THI+YZ8a677kJRURGKi4tRVFSEjRs3oqqqCn/4wx8kwdMa7rjjDtxxxx2qP1uzZo3s+5KSkpDnslgs+DLC8B6iY8B2zkO5KWf16YOlP/wQ9gZhMxpb3KgjWYjyVYd6cZXW1NBrtTDr9ahzuzFUvDFkWyy49KSTwj5PR8Cs10s3h2RyuNiOty8QkBpeNng8cHq9yBQX8+zYo/X1GMq5BOyGfLyxUVrwFGZlwaUouw00Cy4mmsb16oXvS0tR6XBIoSvBaC+HC4hPXtSo7t2x+sYbcRYXmqhskuqNIqeHfa6O1NfjWEMDXrroIvwugjDxVIcJJaUsZ+8Xu14vGTgQSxWRG3lWKzJNJqzm7pVsIc7mR0sIh4td3xcPHIh+2dnol5ODRo8HGjT9rVkuDX/e9nC4Uklw8RuFoUqeA4A1yHsdaUghP0flWCxSiX2P3y9zxqwq4abR4I234NJqJeEfSdEMu3jNmvV6yRFLdGl4tabHQMuN4EM1NSjMypKJMLvHE/R1ER2PmGfE9evX4+uvv0ZeXh60Wi20Wi3OPPNMLF68GHfddZdUXIMg4olTsUhQg+38KnvHqKG8ifB9cIIxLD8fXcX+WpEcn240wuXzpWQ5ayZINIjfzTQW1K4L5jY1uN1S3yGgeexVTqeUuwVwgquhQWrAynpGldTWygRXg1jtb3h+PnItFvzh9NMlwRWOdhVccWoefE5hoex7KYeLCykMFdr7/owZWLlrFwBIoT4szCZcuG5ngVUwnSyGJzPYYq4gLQ0H77oLfTIzVUPrCrOysJmLDGGONPsbWUPlcInlwjUaDQbk5uL9XbtQlJWFNKMRGo2mKaSwHR0uZT5mKsDPB8HCadlcG+w+aOIdrhBFM3h3KMdikQRKvAVXIhwuRrBqqwatVppj7V6vdM2yPO92c7gU42WOM59TRg5XahHzHd7v9yNdXKTk5eXh2LFjAIA+ffpg3759sZ6eIFSJxOE6uUsXDMjJwW1jxkR8PqBp4RLpYuEZcSe5VwSCi50zWOhDR4bPmUqGXJtgfz9WcpwvuMIf240TUTaDAQatFuV2u3QME1yHamqk43yBABxeLzJMJmSazai8/35JgFRFEVLYVoKLLyCSqMp/LRyuQCBkDtcVQ4bgwyuvBNC0EMm1WPC3jRuRKYpYomkDSViwAOMUrUkuGjAA70yfjmuHDUPf7OygeUysTLwylMqpcKatXA8mBgspBJo2VRxeLxasWSOFvZlEh0sQiywA7SO4kmGzpy0xRRFS6ApRZIqfs3MsFul9VAoum0qPtmhIpOAK9h7otVqpimejxyNds1qNRiqHn0gq7PYWPbiAlsW82IYFv0EcS4ESIvmI+Q4/dOhQbNu2DQAwduxYLFmyBN999x0effRR9A1SipsgYiUSh8us1+PnO++UqnVFcj4A6BMmPJDn6mHD4H34YSn3JxSszCtbtKcS/O54MsAv9vib3cUDB6LB44GDKxLAJ6TzrpWGK7zCFjaZZjOyzWZZYjMLv+EdnCyzGRogIoeLhdkksjQxj4tbTNvC5De2FqXDFWmVQgb7jFw7bFhKFJVJJBqNBlcPGxa2YEShOK8NzM2FBsCzGzYA4Dav2GdYr5fNh26fD26/X5rj6rkG4SwsyqTXQ0BTFbr2zOHqbNcKi5YIJbj4UM9I/ibd0tIkIePmcrjY88QiAtxxFlx8uF2w98Cg0zU7XB6PrPoja+2SSII5XOyz0zc7G1qNRvrcnHA4pI0wcrhSi5gF10MPPYSAeDE/+uijOHToEMaPH4/PP/8czz33XMwDJAg1InG4ouGhs86SvlbbjQpFtM7E/LPPjur4jgATG8mQvwXIx3HZoEG4dtgwbJw9G0VZWWhwu2UVLvmbvzI0lAmufjk50mOFYuEMBgsB4d0ilmCuzIVRwxXnazkcZ4gOyX2nny6V+o43Socr2t47SjeGiB0mYjNNJggADlRXo9rpbM7h4hbVG44exYe7dwNoFljsM16nJrgUC3SAHK62gM05wQovRVo0A2gqrPL+jBnQabXS39Ph9cIXCDRHZ1gsqBYdoQPV1XgtypQRJtbCFbKKlJPFMFsgeDipXqttLgsvhhQygjWyD8XB6mqsOnAg4uOD5XCxkMLziopg0umkv1OjxyOFtpPDlVrEPCPyZdX79++PvXv3orq6GtnZ2UkRWkSkJpE4XNFw4YABWHPjjThnxYqE51ilUmI3gy3GkqEHFyAfh0Gnwz+mTwcAFB86hAbxJsauHX6xcpaiJxVznc7lcpSKsrNxqLYWT33/PYZ17SqFqwxQNBA2c3ktoWA32rZaLHZLT4ewYEFCn4O9/5LDFQhE5XDliDvX8VqYEc0i1hcIYOaQIVi5axf2V1VJYV5MtLD3/IoPPoCwYIEksFhIIT9/MbeAOaUVDgcmrFgBgARXW8A2JFyKEFCGWWxizfpphdrUuWnkSOlr9j6yuZL9Lbunp6Okthbbysow8u9/BwBcfvLJEUV4AM1VAuP1uR7MCa5g6029IoeLd/UzTSaZYxsJF7z9NvZXV8Pz0EOqUQlun09yWh1eLxo9HtWqx6O6dcOrl16Ka4cNw4e7d8ty7dimbyz5ckTy0eqV36FDh4L+LCcnh8QWkVDi7XABaC4JHqbEe2tJ5WpDbDGWjCGFPBniDZYPKeRROlxsh3EgJ6Z6Z2Tgf7/8gj/+73+44ZNPsL+qCha9XlYWHYCsN1Eo2M5zKs2ZGoXDF63DxT6LwRLhiehheaYNHg9eufRSAMDPVVUtQgozFe95negAsL/JB1dcIf2MLZxZXuq/ubzttnS7U7FoRiSwe0owJ539fepcLgQEIWIRzD6rTIyw3+uRno6j9fWySnpHuTLm4Yi34OqhmHPV4ItmNCpCCi0q+YrhYGF+6w4flj1+rKEBn+7bB/Njj6G0rg5Ac6l3taJaOq0Wvz3lFJj0epkT6fB6pRBECilMLVo9I/br1w99+vTBhAkTpH89xQayBJFo2A0mnruoI/Lz8cbUqbhKbBgab3656y74Ff2bUoVkCykMJbh8gQB8gUBEY2U7jPwNkxdGdS4XtpaXY3CXLi3CevjeRKEIt/PcUbGIu+uAmMMVxWKYvR/kcMUP1rqiwe1Gmtik+1hDgyRq2XuudCuUDlf/nBycW1SErw8dahZcotPyLbcIDZZTkwgsndThUuZKKknnnEcg8vslex+Z2OYdrmMNDbJQt2MNDTKnKRTxFlyhKp8y+KIZdo9H9twWvV5y8SKlq82GYw0NWLFtGyYUFQFo2lDqsXSpdMzeykr0ysyUhFe4KsbK0M8ssxlajYZCClOMVjtcX3/9NW688Ub88ssvuOWWW9CnTx8MGDAAt956K9577z2Uc13sCSLeKHdl44FGo8GNI0cmLPE622KJOj+so8AWackiJ1nYk7KZML97r7x21IqrMMHFl4v/47hx0tdpRiO+O3xYyovi4UsyhyLSZPaOhoXr5xRtSCErAEGCK36wsCYmsNKNRjSKPemAZoHEO/H+QEAqKsA//qNYjfiSgQMBNDtc35eWYmRBAfb+/vdt6nanakjhU+efj1tOPTXoz1nrk3PFhb8S9reuEB2pSP8m7B6o5nC5/X6pABTQ1L8wUpjgipcYjyQqQFY0QxFSyM9RkcJcqzVcTzu+ai3Q3HIhlMPFwxc3cYrRF9YYK0ISyUer7/LnnHMOzjnnHACAy+XC999/jzVr1mDNmjVYsWIFvF4vBg0ahF1ibxWCiCfKUsZE+8J2Gj0RODptwd7KSgDAKQoRlRmkqtXBu+5SjbO/ccQIPLdxo2whx4uvNKMRh+vqZCGHDFYqOxyh+uN0ZHiHK9qQQiaUU20B3Z5oNRp8cMUV+I0YiZJuMjU1AVcUueA3JSocDpyw26HXamW5re9Mn459VVW4Ucz7YT871tCA4fn5OCkvry1ekgT7LAdSLILgD9zmjhp5VivcDz0U9HOSFqPDpRRcLGy6+NAhaNA0n5ZF0OeS0ejxwGowBC3ykQj4ohnKkEIrN0cpWfLdd5jSv3+LthQ1Tqfk8JY3NiI/LQ37qqpkx7D35ITdjkyTKez7blKEFFr0epi4hs1EahCXu7zZbMa5556LM888ExMmTMAXX3yBv//979i7d288Tk8QLXD6fNBpNG1WSpsIDVukReLotAXnFBbire3bW7hWfAgKn+/RN0je3tNTpuD/Jk0K+jx+QYA3EFDNNYqmaEay5L7FEz6HK9qQQrYg84s700R8mDF4sPR1muhw1blcSDMaJVdR1pfur3/F9cOHo4vVKlskXzRwIC7izmvR62EUF4jKHLC2gIXOdcYFaqhNCfa+LF2/HkDsgquH6NR8KubqZUfZx6pREdLXFsgaH6vlcKm4SIIg4E9ffYW/fPstGubNkx73+v3wCwJG5ufj60OHcKi2Fp/u24db/vMf2e/f97//4ZeaGmSZzRG5ecqQQqvBIH2eiNQhpnJpHo8H3377LRYuXIgJEyYgKysLv/vd71BTU4Pnn38+ZGENgogFp9ebkovUjgorm35YjFlvb357yinwz5/fYjHCLwYj6UGl1WhUFzQshLBaDLeyqVyLpigEV0o6XFxCerQhhWyR0pY74Z2NdKMRDR4Pal0uWbigMkzrre3bVd1fHo1GI4UVRpJXE28ykmzDJ1lgG0Frxdy6SCNCpBwuheDi+xQCTc4mL7jCOYztIbhYDpcgCC3Kwlv0etVKgOyxRo8H+8RoCaA5laG/eL87Wl8via2LBgyQjsu32bB8yxbYgxRnUmLW6+ES7xUOcW1Dgiv1aLXgOvfcc5GdnY3bb78dJ06cwK233oqDBw9i3759WL58Oa6//nr07t07nmMlCAm719uiUzvRfnQTb8TJtOBRW6zzi8GzFSXgo+GLa6/FLaeeKt2Y1RYRfG+VUITrj9NRiSWk8LYxY/D4uefiAm4RQ8SXdJMJjaLg4jciTikokCoaMsIJLnY+oGWVw7aABJc6ynkpVofLqNNhaNeu0nFZZrPUx+pofT2yn3wSL2zcGPS89WLBlnhS9oc/4NjcuUF/zvJ5A4LQ5HApc7hUrplqrhny5uPHpa/5IkomnQ7/9/330s/u48I/X730Uti9XmwvL4/e4RJFmlGnk0IhidSg1YJr7dq1yM3NxbnnnovzzjsP559/PrqpJJ0TRCJoj50yIjgajQZPTpyIf111VXsPJSQsh+uyQYNiKsOebjLJmm6quWWRloVP2SqFfNGMKEMKzXo95o0fn5I965KFNKMRDW43at1umcOVaTbj8L334sc5c6THlP3p1GAub3s4XOxzTYJLjvIeGWmOm1ajgV6rbSG4AGDHbbdJX/MhhR/t2YN6txuvhmiGXFpf30LMx0p+Wposr1YJm3e8gUDLHK4gIYVVnODiXSa+/2fPjAxsOHoUALD11ltlnxEWyr7u8OGIInGY4PIFAvCKFXTJ4Uo9Wn03q62txcsvvwyr1Yonn3wS3bt3x7Bhw3DHHXfgww8/REVFRTzHSXRy/rZhA27+179k/TRIcCUX959xBi496aT2HkZI9FotVl17LVZcdlnM5+IXIcEcrk4dUsg1XfULAhXASDJYlUJlSCFjVPfu0tdzTz897PnYZyDSJrjxhIm8SD5vnQmtRiMTwCz0OxKMOp2q4OLJ5hyubWVlACDdo9U4VFuLQrEBd1vBNm2cXi+8gYDc4QpSNKNKLDICyJsPs2OtBgMuP/lkAE2REiMKCmQRFblWK/pkZkYXUujzySqGkuBKPVotuGw2G6ZMmYInnngCGzZsQGVlJZYsWQKr1YolS5agZ8+eGJqgfkZE5OytrMRzGzbg6w6eT/fIN9/gta1bsV1sN0CCi2gtk/v3j8suPF90Qy2Hyxyhw+VM0aIZFoMBLp9PWjREk8NFJJ40MYerLojgAoDxYlpAJItGVkq8PXO4oi3x3Rlg98kVl10W1T3TpNO1yOFiXD10KCb169cUUii6Qb+K+buVnFjhEQQBJbW1KGpjwcXmHVaSno8msBgM8Pj9LYrz8K+Bv6b46shXDxvW9Bg3x18ycCCuHz4cAKTQy0g+O/k2G36trZW1uyHBlXrEbVvVZrMhJycHOTk5yM7Ohl6vx549e+J1eqKVPLFuHVZs2wYAKL333rD9IJIVtrjdeeIETu3WjQQX0e6YwjlcUfThiiRHpqNhEasUsh3iSIqUEG1HuhhSWKnTYRiXl8PzxbXXqhYVUIMtDnO48vFtBRMEFFIYnOwonUfe4TIp3Ol3Lr8cAPDX77/H8cZGSUxZDQZUOhwQBKFFyPaR+no0ejwYoNJCI5HoFYKLF49MfDl9PtkcvuX4cXRPT0dAEPDijz/i1G7dMKGoSPosWAwG9BDDGAUuTPPTq6+WvmYl9CMJFx/TvTue3bBB6tslOVxRVml1+3z4bP9+TBfdNyK5aPWWYyAQwMaNG7FkyRJccMEFyMrKwrhx4/Diiy+ioKAAL7zwAn755Zd4jpVoBRUOh9R35fvS0nYeTethOz+svxIJLqK94UNnVHO4ogkpTMFwOxauY49zs1MiPqSbTKh2OvFzVZUsH5HHZjSiS4SbAWxBq6xk15ZcK7oORDPs79JLbJIcKUxwmXS6oPmuPTMy0OjxoN7txtGGBpxSUABvIIAG8Tl5dpw4AQAt+lolGpbDxd4HfqOMhb8qS9uvP3IEZ/buDavBgF9qanDum28CkIcUpptMmH/WWUHD09nnIJJ5b2RBAQBgs9hQvLU5XI9+8w0uf/997Ff0BSOSg1Y7XFlZWbDb7SgoKMCECRPw9NNP45xzzkG/fv3iOT4iRiodDgzr2hUltbXY3UHz6jx+vzQhsupBjR5Ph3XriNSADzVRLQsfRePjVAwpZAsGyeFKwdfYkUkzGuEVNw1GxGER3N6Cy/PQQ1RkRQXmUvWPIn8LaPr8Hm9sDPm5ZffggzU1cPl86JeTg+9KS1HlcLQILT1QXQ2zXo8+UQq/WGHXRIOKw8UiCyrsdtl64peaGpxTWNhizcSHFALAwgkTgj4vq9wbSX4uy2tjz9fakMK9otAqt9vb3EkkwtNqwfV///d/mDBhAgYOHBjP8RBxptLhQJ7VKiVId0Qq7HbpaxZTTg4X0d4wIfHG1KlS01ieaBofp2LRDJNeD4/fDzuFFCYlfFuNoiCNv6OhQZyb89spPDaaKpidiRyLBdVOZ9T3S5NeD18gEHJuYiJll+he9Ra/V2uG3OjxIN1ojKk6bGtQ5nDxr6eL1QqgKRKI4fX7cayhAb0zM1u4Uw8UFwNARBtk7L1hYYKhsBmN6GK1Yo8YwdPaohnsMxjJcxJtT6u3g2699VYSWx2AKlFw2YxGHGtowO2ffSZ9KDsKbPIuSEtDnfg1CS6ivZnYty8AYEJRkerPw+VwfbBrF0YuW5aygostGFhIITlcyQU/f0ab36MGCxUzpeC13JHZMHs2vrr++qh/j1UVjURw3fDJJwCA3qJ7pSa4HBFW7Is3oXK4unAOF+NoQwMENL0WXhrWOJ1SSkMkeVns/jAgQmexd2Ym9okOVWtDCo82NAAgwZWs0MyYwnj8ftS53ci1WGAzGPDuzp0AgIsHDsSFHaihKAuJ6JWRIU3kzhTtXUR0HIbl50NYsCDoz8OFFM79739xpL4emSZTSl7LRvH1k8OVnKRzIV/xCGn98MorUSpWqiOSh/45OVGHEwKRCS6lsx9KcCmbDrcVoQSX1WCAzWDACU5wHRav4d6ZmbINsx+OHAEArJwxQzWiQYnFYEDNn/4U8UZTltmMXWJIYWscLl8gIOVulTc2qh7z4e7dKK2rw70RtHkg4g8FPKcwx8Xdju7p6bKJrizIhzFZkQRXZqYUUpiqrgCROpjChBSyG3Gd252S17LS4aKiGclFepwXvxkmE4YEqXZIdDxMEQguAJjK9V7sGSKksL0crhZFMxShpwVpaTgmrpWAZsHVKyNDNn/vr66GSafDjMGDI37uLLM54lDXDJNJEnityeH6tbZWysmsDxLFdMUHH2Duf/8rE5hE20GCK4VhtnLPjAzZLktJbW07jah18A4XCykkwUUkO+EcLn7xkYrXMhXNSG4oJJsIRSQOFwD8c+ZM6escMZpGVXD5fO0aUtgQpKdYYVaW1EMMABavWwedRgOb0YjZp5wiPX6guhr9cnJkDY7jicxxbkVIIduMzjSZUB8mX3/Ov//dukESMUGCKwURBAHf/vqrtFPTIyNDFjJS2sHie5ng6pGejlqXC4IgkOAikh5WNIPv08LDu86pWKXQxBwurxc6jUZawBHJQaTl3onOCfu8hhNJfBGMDJMJWWazVE2Yp90crhAhhQCQbbHgg927sfPECVQ6HNhdUQG/OGf/Ydw4PH/BBdBqNPilpiahTZuZ42zU6aDTamHQaqMSXCySoFt6urQxrSRPLBISCHJPIhJLzIJr8eLFeO2111o8/tprr+HJJ5+M9fRElAQEAZe8+y7OfuMNXPvxx7AZDMg0mWQVCmtUJsNkpt7tRprRiG7p6bB7vagRJ5NUXKQSqQMrHqB206x2OrHu8GHp+1TcPDDqdPAGArB7PLAaDG1enYwITZbZjHcvvxwrZ8xo76EQSQgTXJkRFFT547hxOK+oCFaDAT0yMvDKTz/JNpp2nTghzQNtDQvpUysLDwD9xAqdX+zfL62N7uNynEYWFCAgCPhs//6EtqJhZfRZPm+0DheLJOiWlqYaUuj2+VApVmN0RtjMnIgvMQuuv//97xg0aFCLx4cMGYJly5bFenoiSj7Zuxef7d8PABAADO7SBRqNRsrbGpGfr2r3JzP1bjcyTCapr8WhmhoAqblIJVIHlivg5sLqGDeJVb0Yqej+GLmFDn1Wk5Orhg7FlUOGtPcwiCSEbRhlKvppqbHk/PPx1Q03QKPR4Pr/b+/O45uq0v+Bf5I2W9M23VdaVkFBCghSQRFGUMRR0VFkXIZlXAYVFRFxUAdcRgFHgdFxZMYR8auOODKOOqOD/thcEHWAspR9p9KF0r1pm6TN+f3Re683aZKmTUKb9vN+vfKS5t6cnNR70/vc55zn5OSguLZWmY+0u6QEF772Gj4/erRDhhXL71kmBVPuVTSfHjcOAGB1OJRroztycpTtl2ZnK0FZZkxMyPopZ7jkG8ltDbjk4kQZMTHK8EI1OeBMNJk8LkxNoRdwwFVcXIz09PQWzycnJ6OoqCjQ5qmN9pSUuPws3zWRA66L0tOVDFG4kAOuDOnL7rg0B40XcdSZyX/Yvy0ogPn557F6505lm1xeWNYV7zjKAVe1zcZS4URhRslw+RFwqckLG8tZFnXFPF0HLEwtz1U8W1cHnVbbYg6WITISF6Wno7i2Vgm44tyyenIxmMwQZrjkOVzqoYXtGVKYERPjMcMl/41JMZvDbmmgriLgoz8rKwtbtmxp8fyWLVuQkZERaPPURvJdnJeuugqLx4/H8+PHAwAeGDkSQPMdmrN1dWGV5aqx25szXFLAdbS8HAADLurc5OPzP4cOAQD+tmMHgOYhhscqKvDcFVfg1WuuAYAWGbCuwCXg6oIZPKKuTC8FR/4MKVSTb/LKWZZGqXIeAGw8cSI4nWsDea5sqdXq9ZpBrlToLeCa1K8f9BERGJqWFrJ+yr83YzuHFFodDmg1GiRHRXmcw1UvZRxTzGZmuDpIwFesd999N+bMmQOHw4ErrrgCALBhwwbMnz8fjzzySMAdpLYpq6/H5T17Yq7bOgvzRo/GvNGj8dK336KwpgbxS5ei7vHHw2IeVLXNhhi9HhaDAREajVLClQEXdWZykFEk3eHdUlCA7378EWadDk1C4LLsbOWP7IVdsJy2nNWqsduZ4SIKM20ZUqgmB2jyRb96RM1rP/95kHrnv0itFsbISPxYXd0ikJKdn5iI5d99h/L6emjgWjEQAGaNGIFZI0aEtJ9y3+SCHe3JcJl1Oph0Oo/LkagzXDuLi4PQY2qrgP8KPvrooygrK8N9990Huzwp0WjEY489hgULFgTcQWqb8vp6JJpMXrfHq7Z9cfQoJnuYf9fZyEMKNVKpVjmLx4CLOjP5gqVItcbLqDfewF+uvRYRGg0uSk9HtF4P6+OPd8k1qpQ5XF10nTGiriwywAyXPKxNXaTr6n79gtS7tonW63G2rg49vVQZfPaKK/BNQQG2FBTAYjCErPS7L/J1m5wRbE+Gy6zXKwvOCyFcChXJGa5UKcPlvp1CL+AhhRqNBkuXLkVpaSm+++477Nq1C+Xl5Vi4cGEw+kdtVFZX5zPgGpicrPy7yMMCyI/9v/8HzdNPY/HXX4ekf+0hB1zAT1+cAAMu6tzUGa5RPXoAaL67+MXRo0qwBXTdBYE5pJAofMnDzhJ8XE94YnEbUuipRPy5Jn/XxnsJHqN0Ojw1diwAKMU+zjX59+yQgqz2Zrj0EREQ+ClTJpOHradGR8MphNfFkSl0gjaDMTo6GhdffDEuvPBCGNqYgqbgKa+v9/kFeUmPHlgkfbGU1dXhnn//G5tV46pf+PZbAMDjGzeGtJ/+OFxWhgF/+hMKqquVgMus0ykBl4kBF3VicoarsKYGvePjMSc3F3FGI/5z6BBuHjiwg3sXeuoqhRxSSBRe5GrAAxIT2/S6GPcMlzSkcO2UKUHsXdvIGStvQwoBYHyfPgCA2wYPPid9cpfgIcPV6HT6vWaWnOGSb265B2vykMLczEwAwP8KC4PSb/Jfu/4Kzp07F88++yzMZjPmzp3rc99ly5a1q2PUNoU1NSirq1MKTPjy1LhxeH/vXjy5aROA5lLyZx59FGes1nPRVb+t3rkTh8rKAMBjhosXcdSZGVXrcCWaTEgwmZTjWS4z3JUZVEMK5SUdiCg8nKyqAgD0S0ho0+v0ERGI0etRKl1PlNfXY3RWFm7qwJtMx6TgsaC62us++ogIFM6di0RpceBzTclwqQIuoDnj5c+1jtXhUDJcQPO6W+rRE/KQwuEZGUg0mfD1yZOYIAWZdG60K8OVl5cHhxQt5+XleX3sVJVBbqtXX30VvXr1gtFoRG5uLn744Qev+77++usYM2YM4uPjER8fjwkTJrTYXwiBhQsXIj09HSaTCRMmTMBhab2qrmDwa68hZ+VK1NrtSvrclyS3L5WGxkb8dfv2UHWvXdRfMnI63KzX42RVFXRaLVLM5o7qGlGr1OdhZkyMy1yI1m6KdAUsC08Uvt676SbMGzWqXedutsWCvOJizPviC5yxWr0O5TvXTkpLyniTHhPTYWsiygs0y9M+9F4yVd5Y7XZlDpen18kZriidDmN69sRXp04Fpd/kv3b9FdwkZUYcDge0Wi1WrlyJ8847L2idev/99zF37lysXLkSubm5WLFiBSZOnIiDBw8ixUM1r82bN+PWW2/F6NGjYTQasXTpUlx11VXYu3cvMqX06QsvvICXX34Zb731Fnr37o3f/e53mDhxIvbt2wdjJ/kyCIQ8TrrO4fAr4JLneZl1OpTW1cH03HMu2yM7YL0Md+o+yJ9JHhowMDm5Sy4WS12HurrXgKQkl8pQbZ2IHo7k4Ttl9fWcw0UUZi7p0QOXSHNP2yrbYsF7+fkAgAiNpsOG6clK5s3Dc199hRsvuKBD+9GaH+66C+dJQzg9BU7rjhxBtsXiMhdfJme45ADZvVJhfWMjNGgeeTAiPR3LvvsuRJ+CvAnoqlqn02H37t3B6oti2bJluPvuuzFz5kwMHDgQK1euRFRUFFatWuVx/3fffRf33Xcfhg4divPPPx9/+9vf4HQ6sWHDBgDN2a0VK1bgySefxOTJk5GTk4P/+7//Q2FhIT766KOg97+jtSXDdbuHL8LXr7sOjU4nmlTrZ3SEWtVaEY+PGQMA2F9aCgC4JogBPlEoqIu6nJeQ4FKhq62llsOROgPNDBdR9yEvfgw0F2/o6AxXitmMP06ahHG9enVoP1pzcWamcqPKU8A16d13MejPf/b4Wn8yXCadDhqNBqnR0Sivr3dZI41CL+A0xh133IE33ngjGH0BANjtdmzfvh0TJkxQntNqtZgwYQK2bt3qVxt1dXVwOBxIkMYeHz9+HMXFxS5tWiwW5Obm+mzTZrOhurra5dEZOdxOLHMbMlw5qanYeuedKJs/H2Xz5+PIAw8oAVtHL8YqZ+2eHjdOuXgtleZvPTVuXEd1i8gv6pK72RYLLunRQ7nR0R2GFOoiIpR5CcxwEXUf7uXX21rpkFoGXJUeFjNWUzJcXgIuq8OhzOlKlv4OlUnXU3RuBHzbsbGxEatWrcL69esxfPhwmN3m1bS1aMbZs2fR1NSE1NRUl+dTU1Nx4MABv9p47LHHkJGRoQRYxdJQHk9tFvtYAG7x4sV4+umn29L9DrHNrdqMPxkueZ9Yg8Fl2ECCyYR9UhbJ6nC4LABYVFODX3/yCXJSUrD0yitRVFODjGXLsPe++zymuANV0dCACX36YKFUVREAhqSmYldJCYcTUliRz6MIKQjrDkMKASBNupPKgIuo+8hWZbgA/24Ckyv3gGt3SYmyrdHpbDHtw2q3I8qtaIZaSW2tMuogWfpvaV0dUlnQ6JwJOODKz8/HRRddBAA4dOiQy7aOWFRtyZIlWLNmDTZv3hzw3KwFCxa4VGGsrq5GVlZWoF0Mum2FhS5rNvgTcMkTND2tASR/OVpVQ/oA4Lmvv8a6I0ewv7QUS6+8Et9Iky4/PnAgJAGXpxL3m2fMQA3Xj6AwJf+R7C5LGvSIjcW+0lIOKSTqRuQL+zm5uUiKiuoWy2AEm3vA9ZmqyFtRTQ2y3IJa9yqF7hmuotpapVqsnOEq7WSVqbu6gP8KygU0giUpKQkREREoUUXzAFBSUoK0tDSfr33xxRexZMkSrF+/Hjk5Ocrz8utKSkqQnp7u0ubQoUO9tmcwGMJiTbFqmw0Wg0EZbudPwCWflJ7G8Mqvt7oNKfx/x44B+GluVZk05C8iRAU2KurrW5TPjjMafa6lQdSZfXrbbfhg374OuRnVER6+5BJ8cfSoUpaZiLq+QdIN2JsHDsSl2dkd3Jvw5B445Z85g15xcThRWYmC6uoWAVedvA6Xl6IZhTU16CNdT6kzXP7YUVSE/aWluF11XU1tF/CV8qlTpyC8LMx2qh1lJ/V6PYYPH64UvACgFMAYNWqU19e98MILePbZZ7Fu3TqMGDHCZVvv3r2Rlpbm0mZ1dTW+//57n22GC6tUmTBHGjLpT8Al3+mI8RBQmqWsV61bhqvGZkOq2Ywqmw1CCOSfOQOg+W5LMJTX1yttyj939GRbokDcPHCgy93dIWlp+P0VV3Rgj86tq/v1w9IJE/CEVPSGiLq+9JgYiEWLGGwFwD3gqrLZMFiq0v2jh3oCVrvda4Yrr6gIWwoKlMyWxWCATqv1O8M1/K9/xR3/+lf7P4ybqoYGZepKdxJwhqt3794oKipqUa69rKwMvXv3RpOfawiozZ07F9OnT8eIESMwcuRIrFixAlarFTNnzgQATJs2DZmZmVi8eDEAYOnSpVi4cCH+/ve/o1evXsq8rOjoaERHR0Oj0WDOnDn4/e9/j/POO08pC5+RkYEbbrghsF9AJ1ArVafZNH06/r5nDzJjYlp9zdQLL4RJp8MkVeU0mbchhVaHA33j41FitaLO4cA7UoXKU0EqJpL0wgsQAMSiRQCa53Bxsi2Fsw+mTOnoLnS4+Zde2tFdICIKK+6BU7XNhiGpqYjW61EgLUr91s6d+OLYMayePBn1jY2IMRg8Fs2Qgxs5Q6XRaJAUFeV3hksmhAjK6Iwr334b/ysshHPhwm4z2gMIQsDl7X9AbW1tu+dQTZ06FaWlpVi4cCGKi4sxdOhQrFu3Til6cerUKWhVw9hee+012O123HzzzS7tLFq0CE899RQAYP78+bBarbjnnntQWVmJyy67DOvWresSa3BZpcWOE0wmzB450q/XaDUa3HD++R63yRku9ZBCIQRq7XZkxMQgr7gYxbW1qLLZYIyMVE7+QFTU10OdJ21yOlHV0IB4BlxERETUjcjz7B3StI+qhgZYDAb0iI1VMlwzPv4YAHBa+jkrNtZj0Qy54vQw1bScZLO5zXO4au12j6Oi2up/UqG3M1Zrtyra0e6ASy4modFo8Lvf/Q5RUqoSAJqamvD999/7nB/VmtmzZ2P27Nket23evNnl5xMnTrTankajwTPPPINnnnmm3X3qrGqlyZLB4inDZWtqglMIZEjZs9PSMMKByckoaCXD5RQC1/7973hg5EhM8rB+1hs7duDfqoIrVrsdtqYmCIBDComIiKhb8ZThijUYkBUbq1xzJZhMKK+vx5cnTwIAesXFeRxSWOdwwBQZ6ZIcKaiqwp9LSvDk5Zcj3Y9RUUBzgBSMgEu2t7SUAZc/8vLyADRnPvbs2QO9at6QXq/HkCFDMG/evMB7SK2SF7wLFlNkJDRwzXDJ87nkgEu+wzIwORl5RUWwNzV5LdX+xdGj+O+RIwDQIuBqcjpx17//7fJcaV2dsugyM1xERETUnagDJyGES8CVLw0RPC8hAd+fPo0UsxlnrFZkWyxKUNWgynDVNza2qEgtB2R5xcU+Ay51jYYzViv6SuvbtleTqlBbcW1tQG2Fm3YHXHJ1wpkzZ+Lll19GjJ8RMgVfrd2OzNjYoLWn0WgQrde7lF+Xs109pPeRhxGel5AAgebyot76cLiszOW1akUeTrgzVivk+zCcw0VERETdiTrgqnM40CQELEYjUqOjsVEa1VXR0IBHRo3C/RdfjM+PHlUqFJp1OpRLVaSB5gyXe8C17/770XPFilaLntWrArczQSgjr76RX9XKYs5dTcBVCt98803s3LkTd9xxB0aPHo3Tp08DAN5++2188803AXeQWmcN8pBCoHlB5GpVwCVnuHpKpUhPSgFXqlRetE51Elntdtz1ySfKyujyXYwKDyeXe2EOef89UrVCDikkIiKi7kQdcMnXYjF6PSwGA6oaGlBqteJQWRkSTSb0jo/HLFV17mSz2aUgRr3DAZPbNWK2xYL06OhWp4Sor9GCEXCpq19XdbM1VQMOuP75z39i4sSJMJlM2LFjB2zSL7CqqgrPP/98wB2k1tVK5UCDyWI0ugRc8l2JFLMZhogInKisBABl/K064Fp/7BjeyMtD/NKlOF1drWSxTlZWtlhCwH2tLwCYvGYN7vzkEwAcUkhERETdi3uGC2ieXx9nNKLKZsO7e/YAAC6Q1jxTk4cYyjxluACgrzQk0ZfaIAdc6pFT1Qy42ub3v/89Vq5ciddffx061f/QSy+9FDt27Ai0efKh0enEkm++wYGzZwMeV+su1mBwufsgn3TRej2SoqJwXAq4UjxkuNTrgP3phx+UgOt/hYVYu2+fy/u4r/UV6zYhMyaIc9OIiIiIOrsIjQYaNAdc8nwsY2QkLEYjnELgZGUlMmJiMHnAgBavdQ+46hsbYYpsOYNoxpAhWHfkiM9qheqb4kHPcHFIYdscPHgQl19+eYvnLRYLKqWLcgqND/fvxwJpMefxvXsHtW2L25BCq1vAJWe45IX01AGX+t8HyspcJkYeLi93eR/3IYXudzy60xoNRERERBqNBvqICNibmpR5VKbISFikm9LHKiuRYjZ7vEZKdltjy1uG6wrpuvEHH1ku+Rot0WTCmTau2+VJjaoAG4cUtlFaWhqOSBXo1L755hv06dMn0ObJh3VHjmBgcjK23X23x7RyILxluMxSwNXQ2AizTqdkpOo8VDSMNxqx5dQpHK+owJ3DhgFwrVADeB5SCAD9gpyxIyIiIgoXcsClznDFSfPaj1dUeC0qFm80KnPoAaksvIeAq1dcHOKMRuwqKfHaB/l6LtticSnE0V61qgJsDLja6O6778ZDDz2E77//HhqNBoWFhXj33Xcxb9483HvvvcHoI3lxrKICOampGJ6REfS2W2S4pMAoSqdDopTV6h0fr9w1cQ+4NAA+ufVWlNbVocpmQ25mJgYlJ7dY2Vyd4bqyTx8MT09HUlQU8n7zGxQ8/HDQPxcRERFRZ6dkuKTrK5NOB4sUcB3zEXDFGAwuc6U8lYUHmrNoGTExPocKytd+GTExQZlzVSEFbZlBai+ctLssvOy3v/0tnE4nxo8fj7q6Olx++eUwGAyYN28eHnjggWD0kbw4VlGBS7OyQtJ2rFQJR2a12xGl00Gr0SBJOsn7JyYqd03cAy6zXo/LsrNxUXo6dhQVIS06GslmM866BVy1djt0Wi1qFixAhFYLIQScQsAQGekyF4yIiIiou/CU4YrUNudJrA4HErxUcXavMn26uhoDEhM97us+3wsA7v7kE3x6+DCOP/SQclM8IyZGmbsfiC0FBegVF4ekqChlPdfuIuAMl0ajwRNPPIHy8nLk5+fju+++Q2lpKZ599tlg9I+8aHI68WN1NXrGxYWkffcqhepKiElShuu8hAREarXQR0S0CLjkYGnuJZcAaE5Hp5jN2HD8uMsK6FaHA2a9Hgbpi0QXEaGsJUFERETUHXmaw6XOVMX5CLhq7HY4hUCt3Y4DZ8/iovR0j/t6Crj+lpeHotpa/HD6NKpsNmjQvASQp4xUQ2MjPty/v0UFak+OlJfjL9u3Y0hqKkyRkS7Xje7qHQ6/2gwnAQdcMr1ej4EDB2LkyJGIlkqFU+hU22wQCN3CwO5zuKwOhxJEyf89T5pnZdbpvAZct+fk4OScORiSloabLrgAZ6xW7Cwu/qndEJS0JyIiIgpnnjJc6oDL7GUUkFzdudZux67iYgjAe8AVFeUScDU5nZDLcOwoKsKBs2fRLyEBcW434WVr9+3DTf/4B97cubPVz3OsogIA8PiYMYjS6VwWVVardzgQ9fzzePn771ttM5wEJZXQ0NCA3bt348yZM3C6FUW4/vrrg/EW5EaeEBmqhYEtBgPqHA40Op2I1GqVYYLAT4vVZcbGAmie12X1EnABzdktALikRw+XvgOugRwRERERuc7h0uCntbk0AATg9dpJLmZWbbNhR1ER9BERGOilsFpSVJTLVI8zVivkvFK1zYbdJSXISU1tzprZbHAKAa2qMuKpqioAwPbCQvxaKo7mTZn0PgOTk/H5kSNeM1zrjx0DAGwrKvLZXrgJOOBat24dpk2bhrNnz7bYptFo0KQaPkbBUyEFLd5SyoFSn7AJJhOsqiDqqr598dzXX2NoWhqA5pNePUGz1uHwuH6WHBxWqCrdqAM5IiIiInLNcBkjI5US8CZpVJG30UEx0vVbjc2GLQUFGJKaqgRrnvZVr411uqZG+ffJqipsKSjAkvHjYTEaIdB8zaZeL/WItNRPsZQlW/Hdd3ht2zYcnD27xXuV19dDp9XCrNPBpNMpxUDcyW0mhWgEV0cJeEjhAw88gClTpqCoqAhOp9PlwWArdJQMV4gOSLkSjpxCrlWd3Jf37AmxaBHSpKGj8SaTEgACzSe5pzsv0Xo9tBqNy75WH18aRERERN2Reg6Xuqy7nGHydrNaDojK6uvx6eHDuK5/f6/vEa3Xo9ZuV+ZL5RUVQavRYEBiIj7Ytw/2pibcMmiQy014taPSMEF5vdWHP/8ch8rKWiwBJPcnMSoKGo0GUW5TUdTk69vyLrYwcsABV0lJCebOnYvU1NRg9If8JGeJQp3hkisVWt2GCarFua354D6kUKbRaFrsa2WGi4iIiMiFe4ZLJgdH3m5Wy/O8nti4EbV2O0b5qGYdo9dD4KdK01t//BE5qalIl8q2D0xORmZsrNeAS8lwSQGXzNOaXeX19UrdAVNkJBxOJxo9BGZKwBWEdb86k4ADrptvvhmbN28OQleoLeQD0qJK7QaTxe3k8jX0L95odMlaeQu4lH1VJxHncBERERG5Us/hMqkDLum/3q6d5IDrq5MnAfxU4MwTuY0aaVjh1h9/xKgePZQAa4iUTPEUcNU5HCisqcGIjAz8WF3tkrFyX3NVfi5RCrjkPnoaVihfT5Z5aCOcBTyH609/+hOmTJmCr7/+GoMHD4bOLeJ+8MEHA30L8qBGqu4XoQ1aoUkXMW4nl9XhQLSXuynxRiP2q+bw+Qy4TCaUuc3hSmdVSyIiIiKFHHDV2O3KNRmgynC1EnDJekgFzjyJVlU0rGpowIGzZ7HgssvwxdGjLq+1uI16AoACqWDG1EGDsK2wUCl2AQClVivgVqjjeEUF+knBn3oN1xi3xIGcUHDPmoW7gAOu9957D1988QWMRiM2b96sTOoDmoeQMeAKjXqHw2VMb7CZ3RY09pXhinPLWvkKuHrHxSljfgGWhSciIiJyJwdc1TabS6EKZytDCtXZsAWXXebzxry6wIY876pXXJxyDScHXJ4yXHImanzv3tBqNLjlgw+UbSVua3sBzfO9JvbtC0CV4fJQGl5u93hlJSrq62GIjIRJVTQkXAWcHnniiSfw9NNPo6qqCidOnMDx48eVxzFVtEvBVedwtLiLEUxRbgFXMOZwAcCAxEQcVGXD5IWPiYiIiKiZITISDY2NzRku1XWSTqo46O06S12RcNaIET7fQ53hkkcfJZpMSoAlB1zyfuqAS77uS4qKQrzRCJuqUN6hsjKX96lzOHDGakWf+HgAP11jWlUVEtXtjuvVCwBwy9q1MD//PH63aZPPzxEOAg647HY7pk6dCm2IhraRZ6EOuHQREYjUapW7D7U+MlHuC9j5CrgGJiejqLa2Od0MZriIiIiI3FkMBlTZbKhxy3AtHj8evx46VAle3KkzQclRUT7fI0Y1h0suUpEYFYUnL78cf77mGlxz3nkAgAitFtF6vceAK85odJkqMiwtDXnFxS7vI7edJPXHvU6AWp3DgZEZGUiKisK+0lIAwHNff+3zc4SDgKOk6dOn4/333w9GX6gNQh1wAXAp2+mruIVJp4O9qQlOIdDkdKK+sdHrvmOluxbyWN9qm63F+F0iIiKi7kyerlFts7lkuGaPHIk3Jk/2a4hda1NPkqKiEKHRoKCqSilSkSBluO69+GKX6ogWg8ElQKpqaIBWo3G53it4+GGMzMzEcdXUEeCnwEpeckiusF3hofR7nTTyadbw4ShUrQsmz10LVwHP4WpqasILL7yAzz//HDk5OS2KZixbtizQtyAP6hobz1nA5Whqgr2pyevQP/mEbGhsVEp8elr4GAAyYmKQFRuL/DNnUNXQAKvDgYyYmNB8ACIiIqIwFC9N14jQal0yXMFkiIxE/8RE7DlzBn3i4xGt13tdJNniVpG6sqEBcUajS+DXIzYWMXo9rG7VB+WAS/4c8hqyFR5Kv8sJhSi37NzpmhqfBUA6u4ADrj179mDYsGEAgPz8fJdt4T7BrTOrcysTGgqmyEjUORzKieMta6UOuBqkoYW+Sr1nWSwoqK5GQXV1889hfAIRERERBZs8P14XERHSkUAXpqRg/9mzsBgMStl2T9Kio12KYcgBFwB8d+edOCVVLTRLiymruQdcpshI6LRal/n/snop4Epzq2B9uKysewdcm7rARLZwdC6HFMqTGr3NtVIHXDXSSeUz4IqNbQ64pJMz22IJZreJiIiIwlq8yYQmIVBcWxuyNVeB5muy3SUlKI2PR4rZ7HW/tOhonJZulAPA2bo6ZSHj3B49kNujB4Dm6z/3gEsuJy8HXBqNBvEmU4shhY6mJjicTkTpdOjpdm3oab5XOGGlizBVfw4DLmWRZelOhjs54Kp3OJSTrNWAq6oKu0pKEKXTIZ1DComIiIgUcaprrklS8YpQyIiJQWFNDc5Yrb4DLrPZZW2sk1VVHm+YywGXes6VHCypp5u4V7gGfioTb4qMxICkJJdt7kFcuAk4w/XMM8/43L5w4cJA34I8OJcZrgpVJRpPTKoMlz8Bl5yW/u+RI7iqb19EssIlERERkUI9pK5/YmKbXnt1v36tViiUZcTEoMZux9GKClyckeGzP0WqgOtEZSWu69+/xX7Rej2cQqChsVEp2lFts8Gs07msCRZnNLospAz8tBRRlE6nXEfGG42ostkYcP3rX/9y+dnhcOD48eOIjIxE3759GXCFyDkNuKRJjfGtZLj8DbhSzGbU2u3YWVyMR0aNCnKviYiIiMKbt7Lv/vjv7bf7va9cuCz/zBn83EcmLcFkQrW0QLJWo8Gpqir0jItrsZ98/Wd1OJSAq6y+XimUITPrdC2Ka6gDLgD4euZMZMXGYsjKlajp7gFXXl5ei+eqq6sxY8YM3HjjjYE2T16cn5SEvgGcjP6I1utR0dCgpHzdTxaZMqSwDQEX0HzHo7eHk5WIiIioOwtVZUJ36ms7X0MK5f7U2O0wRETA1tSkzOFSUy+mLK+7dbyyssX1nqfiGu4B12XZ2Uqb3T7D5UlsbCyefvppXHfddfjVr34Virfo9v4xZUrI3yPBZMLRigpUNDTAGBnpsh6DmqcMl6/sm/qE7h3ioJGIiIgoHN05bJjPYX7BoC7I4WsYohJw2WxolK7xPBVTUwdcsmMVFRjgNizSrNOhVFr7S1bvFnCp22TA5UVVVRWqpCp0FJ4STSaU1dWhor7e63BC4KeF9eSAK8ptnK47dcDlfgISEREREfC3668P+XuoC6L5ynDJpemrbTY4pYIYntZn9RZwTerXz2U/s06HE61kuNRt1oR5lcKAA66XX37Z5WchBIqKivD2229j0qRJgTZPHSjBZEJZfT0qVGsteKLOcBXV1vo8YQG4VCVMbmVfIiIiIgoNdeVAf4cUyuvs+pPhstrtOGO1tpiTZvawQLIccJnc2o0xGFDrtm+4CTjgWr58ucvPWq0WycnJmD59OhYsWBBo89SBEqOiUGu3o8Rq9Tp/C3AtC3+0oqLVuWVajQZ35OS0qE5DREREROeOekSSPwFXtc2GCDng8pDhkoMwOeA6XlkJoGURELNOp6zzKvOW4YrR68P+mjHggOv48ePB6Ad1QvKK40fKy5Hq4yQ0REQgQqNBrd2Oo+XlGOHHeOO3WVCFiIiIqNPwNepIzoRV22wwREQA8Dxf3z3DdayiAgBaFM3wNC/LW8CVYDLhcHm5vx+jU+q0CyC9+uqr6NWrF4xGI3Jzc/HDDz943Xfv3r246aab0KtXL2g0GqxYsaLFPk899RQ0Go3L4/zzzw/hJwh/50uLzm0rLPSZ4dJoNIg1GFBts6G4thaZXMiYiIiIKKzopUDKE/UcLnkooKchhcbISGilm/AAUCYVxnAP5jwNKaxvbIQGUAI6WYLJhHJpiaJw1a4M19y5c/3ed9myZW1u//3338fcuXOxcuVK5ObmYsWKFZg4cSIOHjyIlJSUFvvX1dWhT58+mDJlCh5++GGv7Q4aNAjr169Xfo70UnWPmp2XmIgLkpKw/+xZxLVSnjTWYECVzXZO1gcjIiIiouBYMXEierWyTE+kVosUsxkFVVVKtsvTkEKNRoNovV4ZLlhjt8MUGYlIt2JqZmmtV6cQ0EpDFOVrSHmOmKzbBlye1t7yxP0X5q9ly5bh7rvvxsyZMwEAK1euxKeffopVq1bht7/9bYv9L774Ylx88cUA4HG7LDIyEmlpae3qU3d1XmIi9p896zPDBTRXuam22VDf2MiAi4iIiChMPHTJJX7td15CAnaVlCjZKk8ZLsB1uGC1zeZxTbFEqQR9WV2d0p63m/aJUsAlhMDxykp8dOAA7r7oIiXrFg7aFXBt2rQp2P1Q2O12bN++3aXghlarxYQJE7B169aA2j58+DAyMjJgNBoxatQoLF68GNnSomqe2Gw22FRlKKurqwN6/3CUER0NAD7LwgPNGa6KhgbYm5paVJchIiIiovDWLyEBb+3ahX8dOACdVgudlyGI7gGXp8Ao22IBAJyqqnIJuDxdQyaYTGh0OlFrt2NPSQke+eIL3JGTE1YBV1DmcFVWVuKll17CXXfdhbvuugvLly9v9xpcZ8+eRVNTE1JTU12eT01NRXFxcbv7mJubi9WrV2PdunV47bXXcPz4cYwZMwY1NTVeX7N48WJYLBblkZWV1e73D1fy+NrRrXx2i8GAktpaAL4XPSYiIiKi8KNehNni40a8OuCq8ZLhyoqNBQAUqJIZ3jJcSVI27IzV6nP+WGcWcMC1bds29O3bF8uXL0d5eTnKy8uxbNky9O3bFzt27AhGH4Ni0qRJmDJlCnJycjBx4kR89tlnqKysxD/+8Q+vr1mwYIGygHNVVRUKCgrOYY87h4Vjx2LR2LEYmZnpc79YgwHFUsBl4tw4IiIioi7l5oEDlX+flYpheBKt1yvrZlXb7R4DrmSzGfqICBSoEjTeAq4MqRhbYU2NMjcs3EZTBRxwPfzww7j++utx4sQJfPjhh/jwww9x/PhxXHvttZgzZ06b20tKSkJERARKSkpcni8pKQnq/Ku4uDj0798fR44c8bqPwWBAbGysy6O76ZeQgKfGjWt1Pl6swYASqxVA+J0ERERERORbanQ0nAsXAgBG9ejhdT/3DFeMh+IaWo0G6dHRKFSNNPNWByBTuv4+XVMDqxSUadtZJ6KjBCXD9dhjj7lU/IuMjMT8+fOxbdu2Nren1+sxfPhwbNiwQXnO6XRiw4YNGDVqVKDdVdTW1uLo0aNIT08PWpvdmcVgUO52cEghERERUdej0Whw4P778eltt3ndx6zTtVo0AwDSY2JQJI2OArxnuGINBkTr9ThdXQ2r3R6W15kBB1yxsbE4depUi+cLCgoQ0871mObOnYvXX38db731Fvbv3497770XVqtVqVo4bdo0l6IadrsdO3fuxM6dO2G323H69Gns3LnTJXs1b948fPnllzhx4gS+/fZb3HjjjYiIiMCtt97arj6SK/XJxCGFRERERF3TgKQkn9WrXTJcdrvHDBcApEdHK9NRAO8BFwBkxsTgdE0N6hyOsJu/BbSzSqHa1KlTceedd+LFF1/E6NGjAQBbtmzBo48+2u5gZurUqSgtLcXChQtRXFyMoUOHYt26dUohjVOnTkGrqudfWFiIYcOGKT+/+OKLePHFFzF27Fhs3rwZAPDjjz/i1ltvRVlZGZKTk3HZZZfhu+++Q3Jycjs/OampJ09ySCERERFR9+RPWXigOeD6RlUfoc7hQJyXYhyZsbE4XVOD9Ohoj+t/dXYBB1wvvvgiNBoNpk2bhsbGRgCATqfDvffeiyVLlrS73dmzZ2P27Nket8lBlKxXr14QQvhsb82aNe3uC7VOfTKFY6qXiIiIiAKnXvi41SGFqjlcdQ6H11FSmTExOFZRgVi9PiwzXO0eUpifnw+gec7VH//4R1RUVCjD+srLy7F8+XIYwqg+PgWGQwqJiIiIqEXRDB8ZrtK6OjiamgAA9a0MKfyxuhpWhyMsM1ztDrhycnKQm5uL119/HTU1NYiKisLgwYMxePBgREn18qn7sKhOJnkBOyIiIiLqXuSAq9HpRH1jo9cMV1p0NIDm9bWAVuZwxcaisKYGtXZ798pwffnllxg0aBAeeeQRpKenY/r06fj666+D2TcKI/Ldi6FpaWFXqpOIiIiIgiNar0d9YyMqGxoAwHvRDKm4nlyp0FfA1SM2Fg6nE8cqKrxmzDqzdgdcY8aMwapVq1BUVIRXXnkFJ06cwNixY9G/f38sXboUxcXFwewndXLnJyXhpgsuwIe33NLRXSEiIiKiDhItBVinq6sBwGuGS17QWN6vtSqFALC3tBQpYTiSLuCy8GazGTNnzsSXX36JQ4cOYcqUKXj11VeRnZ2N66+/Phh9pDAQrddj7S23oHd8fEd3hYiIiIg6SJa0UPHe0lIA8JqRSjGbYYyMxInKSgCtDymUpUpDEcNJwAGXWr9+/fD444/jySefRExMDD799NNgNk9ERERERJ1Y34QEAMD6Y8cANA8H9ESr0aB3XByOVVSg0emEw+n0Wngt1WyGPGElJQxrBQQt4Prqq68wY8YMpKWl4dFHH8UvfvELbNmyJVjNExERERFRJ5ccFYVovR7/PnQIsQaDMhzQkz7x8ThWWYl6hwOA96WFIrRaJEpDCVPDMOAKqH53YWEhVq9ejdWrV+PIkSMYPXo0Xn75Zdxyyy0wh+Evg4iIiIiI2k+j0aBPfDx2l5Tgkh49oPFRTC09Ohq7SkpQJwVcJh8VCNOio3G2rg4XpqQEvc+h1u6Aa9KkSVi/fj2SkpIwbdo0/PrXv8aAAQOC2TciIiIiIgozfaWAa2BSks/9ks1mnLFaUSFVNIw3Gr3u++4vfoFjFRVhWS+g3QGXTqfD2rVrce211yIiIiKYfSIiIiIiojDVRwqKBiYn+9wvOSoKpXV1KJXW4kryUYEwJzUVOampwevkOdTugOuTTz4JZj+IiIiIiKgLuCMnB4fKynBt//4+90s2m1HncOBUVZXyc1cU0BwuIiIiIiIitaFpafjk1ltb3S9ZymjtLS2FBr6HFIazoJaFJyIiIiIi8sdgaYjgJwcPIjEqChHarhmadM1PRUREREREnVpGTAwGJSdjb2kpEkymju5OyDDgIiIiIiKiDpEurdNlMRg6uCehw4CLiIiIiIg6RKKU2bJ00flbAAMuIiIiIiLqIHLAFcsMFxERERERUXDJc7c4pJCIiIiIiCjIEqXS8MxwERERERERBVlPiwUAUGWzdXBPQocBFxERERERdYif9e7d0V0IuciO7gAREREREXVPcUYjvpoxAxempHR0V0KGARcREREREXWYMT17dnQXQopDComIiIiIiEKEARcREREREVGIMOAiIiIiIiIKEQZcREREREREIcKAi4iIiIiIKEQYcBEREREREYUIAy4iIiIiIqIQYcBFREREREQUIgy4iIiIiIiIQoQBFxERERERUYgw4CIiIiIiIgqRyI7uQDgRQgAAqqurO7gnRERERETUkeSYQI4RvGHA1QY1NTUAgKysrA7uCRERERERdQY1NTWwWCxet2tEayEZKZxOJwoLCxETEwONRtPR3QlL1dXVyMrKQkFBAWJjYzu6O9TN8Xik9uKxQ+GIxy0FgsdPS0II1NTUICMjA1qt95lazHC1gVarRY8ePTq6G11CbGwsT1bqNHg8Unvx2KFwxOOWAsHjx5WvzJaMRTOIiIiIiIhChAEXERERERFRiDDgonPKYDBg0aJFMBgMHd0VIh6P1G48digc8bilQPD4aT8WzSAiIiIiIgoRZriIiIiIiIhChAEXERERERFRiDDgIiIiIiIiChEGXERERERERCHCgKuLWrx4MS6++GLExMQgJSUFN9xwAw4ePOiyT0NDA+6//34kJiYiOjoaN910E0pKSpTtu3btwq233oqsrCyYTCZccMEF+OMf/9jivTZv3oyLLroIBoMB/fr1w+rVq1vtnxACCxcuRHp6OkwmEyZMmIDDhw973Ndms2Ho0KHQaDTYuXOnz3aLiopw2223oX///tBqtZgzZ06LfVavXg2NRuPyMBqNrfaZ2q8rHI+9evVqcdwsWbKk1bZb689XX32F6667DhkZGdBoNPjoo49abbM76a7HDr/LwltXOG4B4NNPP0Vubi5MJhPi4+Nxww03tNr27t27MWbMGBiNRmRlZeGFF15w2b53717cdNNNynmxYsWKVtvsbrrr8dPQ0IAZM2Zg8ODBiIyM9Lj/5s2bW3zvaTQaFBcXt9rvDiWoS5o4caJ48803RX5+vti5c6e45pprRHZ2tqitrVX2mTVrlsjKyhIbNmwQ27ZtE5dccokYPXq0sv2NN94QDz74oNi8ebM4evSoePvtt4XJZBKvvPKKss+xY8dEVFSUmDt3rti3b5945ZVXREREhFi3bp3P/i1ZskRYLBbx0UcfiV27donrr79e9O7dW9TX17fY98EHHxSTJk0SAEReXp7Pdo8fPy4efPBB8dZbb4mhQ4eKhx56qMU+b775poiNjRVFRUXKo7i42Ge7FJiucDz27NlTPPPMMy7Hjbr/nvjTn88++0w88cQT4sMPPxQAxL/+9S9/f63dQnc9dvhdFt66wnG7du1aER8fL1577TVx8OBBsXfvXvH+++/7bLeqqkqkpqaK22+/XeTn54v33ntPmEwm8Ze//EXZ54cffhDz5s0T7733nkhLSxPLly/399fabXTX46e2tlbMmjVL/PWvfxUTJ04UkydPbrHPpk2bBABx8OBBl+++pqam1n6tHYoBVzdx5swZAUB8+eWXQgghKisrhU6nEx988IGyz/79+wUAsXXrVq/t3HfffeJnP/uZ8vP8+fPFoEGDXPaZOnWqmDhxotc2nE6nSEtLE3/4wx+U5yorK4XBYBDvvfeey76fffaZOP/888XevXv9CrjUxo4d6/UixWKx+N0OBV84Ho89e/Zs84VBW/vDgKt13eXYUeN3WfgLt+PW4XCIzMxM8be//a1Nn/PPf/6ziI+PFzabTXnuscceEwMGDPC4f6DnRnfRXY4ftenTp/sMuCoqKtrddkfgkMJuoqqqCgCQkJAAANi+fTscDgcmTJig7HP++ecjOzsbW7du9dmO3AYAbN261aUNAJg4caLPNo4fP47i4mKX11ksFuTm5rq8rqSkBHfffTfefvttREVF+flJ/VNbW4uePXsiKysLkydPxt69e4PaPvkWjscjACxZsgSJiYkYNmwY/vCHP6CxsdHn52xPf8i37nLs+IvfZeEh3I7bHTt24PTp09BqtRg2bBjS09MxadIk5Ofn+/ycW7duxeWXXw69Xu/Sn4MHD6KiosLna8m77nL8tMXQoUORnp6OK6+8Elu2bAlau6HCgKsbcDqdmDNnDi699FJceOGFAIDi4mLo9XrExcW57Juamup1HOy3336L999/H/fcc4/yXHFxMVJTU1u0UV1djfr6eo/tyO17ep28TQiBGTNmYNasWRgxYoT/H9YPAwYMwKpVq/Dxxx/jnXfegdPpxOjRo/Hjjz8G9X3Is3A8HgHgwQcfxJo1a7Bp0yb85je/wfPPP4/58+f7/Kzt6Q95152OHX/wuyw8hONxe+zYMQDAU089hSeffBL/+c9/EB8fj3HjxqG8vNzrZ/XWH/X7Utt0p+PHH+np6Vi5ciX++c9/4p///CeysrIwbtw47NixI6B2Q40BVzdw//33Iz8/H2vWrGl3G/n5+Zg8eTIWLVqEq666yu/Xvfvuu4iOjlYeX3/9tV+ve+WVV1BTU4MFCxZ43Ufd7qxZs/zu06hRozBt2jQMHToUY8eOxYcffojk5GT85S9/8bsNar9wPB4BYO7cuRg3bhxycnIwa9YsvPTSS3jllVdgs9kAtP94JP/x2HHF77LwEI7HrdPpBAA88cQTuOmmmzB8+HC8+eab0Gg0+OCDDwAAgwYNUtqdNGlS2z8U+YXHj6sBAwbgN7/5DYYPH47Ro0dj1apVGD16NJYvX+53Gx0hsqM7QKE1e/Zs/Oc//8FXX32FHj16KM+npaXBbrejsrLS5Q5JSUkJ0tLSXNrYt28fxo8fj3vuuQdPPvmky7a0tDSXqjhyG7GxsTCZTLj++uuRm5urbMvMzERRUZGyX3p6usvrhg4dCgDYuHEjtm7dCoPB4NL2iBEjcPvtt+Ott95yqVgYGxvr/y/FjU6nw7Bhw3DkyJF2t0H+Cdfj0ZPc3Fw0NjbixIkTGDBggMfjsbX+kP+627HTHvwu63zC9biVnx84cKCy3WAwoE+fPjh16hQA4LPPPoPD4QAA5fvMW3/kbdQ23e34aa+RI0fim2++CaiNkOvoSWQUGk6nU9x///0iIyNDHDp0qMV2ecLl2rVrlecOHDjQYsJlfn6+SElJEY8++qjH95k/f7648MILXZ679dZb/Zpw+eKLLyrPVVVVuUy4PHnypNizZ4/y+PzzzwUAsXbtWlFQUODX78DbRHN3jY2NYsCAAeLhhx/2q11qu3A/Hj155513hFarFeXl5V73aWt/wKIZLXTXY0eN32XhJ9yPW/lnddEDu90uUlJSXCoOupOLZtjtduW5BQsWsGhGG3XX40fNW9EMTyZMmCBuvPFGv/btKAy4uqh7771XWCwWsXnzZpeymXV1dco+s2bNEtnZ2WLjxo1i27ZtYtSoUWLUqFHK9j179ojk5GRxxx13uLRx5swZZR+5pOijjz4q9u/fL1599VW/S4rGxcWJjz/+WOzevVtMnjzZa1l4IZpLJMPPKoV5eXkiLy9PDB8+XNx2220iLy9P7N27V9n+9NNPi88//1wcPXpUbN++Xfzyl78URqPRZR8KrnA/Hr/99luxfPlysXPnTnH06FHxzjvviOTkZDFt2jSf7frTn5qaGuWYBSCWLVsm8vLyxMmTJ9v0O+6quuuxIwS/y8JZuB+3Qgjx0EMPiczMTPH555+LAwcOiDvvvFOkpKT4vFFQWVkpUlNTxa9+9SuRn58v1qxZI6Kiolwusm02m3Jsp6eni3nz5om8vDxx+PDhNv2Ou7LuevwIIcTevXtFXl6euO6668S4ceOUY0W2fPly8dFHH4nDhw+LPXv2iIceekhotVqxfv16f3+9HYIBVxcFwOPjzTffVPapr68X9913n4iPjxdRUVHixhtvFEVFRcr2RYsWeWyjZ8+eLu+1adMmMXToUKHX60WfPn1c3sMbp9Mpfve734nU1FRhMBjE+PHjxcGDB73u35aAq7U+z5kzR2RnZwu9Xi9SU1PFNddcI3bs2NFqu9R+4X48bt++XeTm5gqLxSKMRqO44IILxPPPPy8aGhpabbu1/sglbt0f06dPb7Xt7qA7Hzv8Lgtf4X7cCtGckXjkkUdESkqKiImJERMmTBD5+fmttr1r1y5x2WWXCYPBIDIzM8WSJUtctst/z90fY8eObbXt7qI7Hz89e/b02G/Z0qVLRd++fYXRaBQJCQli3LhxYuPGja2229E0Qgjh7/BDIiIiIiIi8h+rFBIREREREYUIAy4iIiIiIqIQYcBFREREREQUIgy4iIiIiIiIQoQBFxERERERUYgw4CIiIiIiIgoRBlxEREREREQhwoCLiIiIiIgoRBhwERERERERhQgDLiIi6pZmzJgBjUYDjUYDnU6H1NRUXHnllVi1ahWcTqff7axevRpxcXGh6ygREYU1BlxERNRtXX311SgqKsKJEyfw3//+Fz/72c/w0EMP4dprr0VjY2NHd4+IiLoABlxERNRtGQwGpKWlITMzExdddBEef/xxfPzxx/jvf/+L1atXAwCWLVuGwYMHw2w2IysrC/fddx9qa2sBAJs3b8bMmTNRVVWlZMueeuopAIDNZsO8efOQmZkJs9mM3NxcbN68uWM+KBERdRgGXERERCpXXHEFhgwZgg8//BAAoNVq8fLLL2Pv3r146623sHHjRsyfPx8AMHr0aKxYsQKxsbEoKipCUVER5s2bBwCYPXs2tm7dijVr1mD37t2YMmUKrr76ahw+fLjDPhsREZ17GiGE6OhOEBERnWszZsxAZWUlPvrooxbbfvnLX2L37t3Yt29fi21r167FrFmzcPbsWQDNc7jmzJmDyspKZZ9Tp06hT58+OHXqFDIyMpTnJ0yYgJEjR+L5558P+uchIqLOKbKjO0BERNTZCCGg0WgAAOvXr8fixYtx4MABVFdXo7GxEQ0NDairq0NUVJTH1+/ZswdNTU3o37+/y/M2mw2JiYkh7z8REXUeDLiIiIjc7N+/H71798aJEydw7bXX4t5778Vzzz2HhIQEfPPNN7jzzjtht9u9Bly1tbWIiIjA9u3bERER4bItOjr6XHwEIiLqJBhwERERqWzcuBF79uzBww8/jO3bt8PpdOKll16CVts87fkf//iHy/56vR5NTU0uzw0bNgxNTU04c+YMxowZc876TkREnQ8DLiIi6rZsNhuKi4vR1NSEkpISrFu3DosXL8a1116LadOmIT8/Hw6HA6+88gquu+46bNmyBStXrnRpo1evXqitrcWGDRswZMgQREVFoX///rj99tsxbdo0vPTSSxg2bBhKS0uxYcMG5OTk4Oc//3kHfWIiIjrXWKWQiIi6rXXr1iE9PR29evXC1VdfjU2bNuHll1/Gxx9/jIiICAwZMgTLli3D0qVLceGFF+Ldd9/F4sWLXdoYPXo0Zs2ahalTpyI5ORkvvPACAODNN9/EtGnT8Mgjj2DAgAG44YYb8L///Q/Z2dkd8VGJiKiDsEohERERERFRiDDDRUREREREFCIMuIiIiIiIiEKEARcREREREVGIMOAiIiIiIiIKEQZcREREREREIcKAi4iIiIiIKEQYcBEREREREYUIAy4iIiIiIqIQYcBFREREREQUIgy4iIiIiIiIQoQBFxERERERUYj8f5HrIpB5a7RnAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAGHCAYAAACkg1MBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADkSklEQVR4nOydd5hTVf7G3/Q2vTB0GHqVjoCKgiuKvf3s2ECxYFnWXWXtuCuWVSyrKDZ014Kurm1RRFQEKQrO0IvShjID01t6+f2Re+6ce3PTk5lM5vt5nnlgMsnNSXJz7nnP+y0qn8/nA0EQBEEQBEEQBJFw1G09AIIgCIIgCIIgiHSFBBdBEARBEARBEESSIMFFEARBEARBEASRJEhwEQRBEARBEARBJAkSXARBEARBEARBEEmCBBdBEARBEARBEESSIMFFEARBEARBEASRJEhwEQRBEARBEARBJAkSXARBEARBEARBEEmCBBdBEATRKmzYsAEXXXQRevbsCYPBgKKiIkycOBF/+tOfYjre9ddfj969e0tu6927N66//vqwj+3duzdUKhVOO+00xb+/8847UKlUUKlU+OGHH6Ie25IlS6BSqXDgwIGoHvf444/j008/jfr5CIIgiNSFBBdBEASRdP73v/9h0qRJaGhowFNPPYVvvvkGzz//PE466SQsXbo0pmM++OCD+O9//xvzmDIzM/Hjjz9i7969AX978803kZWVFfOxzznnHKxbtw5dunSJ6nEkuAiCINIPbVsPgCAIgkh/nnrqKRQXF2P58uXQalsuPVdccQWeeuqpmI7Zt2/fuMZ08sknY+vWrXjzzTfx97//Xbx97969+PHHHzFr1iy89tprMR27sLAQhYWFcY0vkdhsNphMprYeBkEQRIeEHC6CIAgi6VRXV6OgoEAithhqtfRS5PV68dRTT2HQoEEwGAzo1KkTrr32Whw+fFhyP6WQwmhQq9W49tpr8fbbb8Pr9Yq3v/nmm+jRowf+8Ic/KD7u888/x8SJE2E2m5GZmYkzzjgD69atk9xHKaSwpKQE5557Ljp16gSDwYCuXbvinHPOEV+XSqVCc3Mz3n77bTGckYU8PvLII1CpVAFjUXqe3r1749xzz8Unn3yCUaNGwWg04tFHHwUAVFRUYPbs2ejevTv0ej2Ki4vx6KOPwu12x/IWEgRBEBFAgosgCIJIOhMnTsSGDRtw5513YsOGDXC5XEHve+utt+Lee+/FGWecgc8//xyPPfYYvv76a0yaNAlVVVUJHdeNN96Io0ePYvny5QAAj8eDt99+G9dff32AEASA9957DxdccAGysrLw/vvv44033kBtbS1OO+00rFmzJujzNDc344wzzsCxY8fw0ksvYcWKFXjuuefQs2dPNDY2AgDWrVsHk8mEs88+G+vWrcO6devw8ssvx/S6fv31V/z5z3/GnXfeia+//hqXXHIJKioqMH78eCxfvhwPPfQQvvrqK8ycORMLFizATTfdFNPzEARBEOGhkEKCIAgi6TzxxBPYtWsXXnzxRbz44ovQ6XQYN24czjvvPMyZMwcZGRkAgF27dmHx4sW47bbb8OKLL4qPHzVqFE488UQsXLhQEv4XL3379sXkyZPx5ptvYvr06Vi+fDmOHj2KG264ARs3bpTc1+v14s9//jOGDx+Or776ShRkZ599Nvr27Yt7770XP/30k+Lz7Nq1C9XV1XjjjTdwwQUXiLdfdtll4v8nTJgAtVqNwsJCTJgwIa7Xdfz4cezYsQMDBgwQb7vllltQW1uL7du3o2fPngCA008/HSaTCffccw/+/Oc/Y8iQIXE9L0EQBBEIOVwEQRBE0snPz8fq1avxyy+/4IknnsAFF1yAPXv2YN68eRg+fLjoXH3//fcAEFBpcPz48Rg8eDBWrlyZ8LHdeOON+Pzzz0VBNGXKFMVQxd27d+Po0aOYMWOGxP3KyMjAJZdcgvXr18NqtSo+R79+/ZCbm4t7770Xr7zyCnbs2JHw18FzwgknSMQWAHz55ZeYMmUKunbtCrfbLf5Mnz4dALBq1aqkjokgCKKjQoKLIAiCaDXGjh2Le++9Fx999BGOHj2KP/7xjzhw4IBYOKO6uhoAFKv7de3aVfx7Irn00kthNBqxcOFCfPHFF5g5c6bi/cKNzev1ora2VvGx2dnZWLVqFUaOHIm//vWvGDp0KLp27YqHH344ZHhlrCiN8dixY/jiiy+g0+kkP0OHDgWAhIdrEgRBEH4opJAgCIJoE3Q6HR5++GEsXLgQ27ZtA+B3wgCgvLwc3bt3l9z/6NGjKCgoSPg4zGYzrrjiCixYsABZWVm4+OKLFe/Hj03O0aNHoVarkZubG/R5hg8fjg8++AA+nw9btmzBkiVLMH/+fJhMJtx3330hx2g0GgEADocDBoNBvD2YSFIqsFFQUIATTjghaEhm165dQ46BIAiCiA1yuAiCIIikoyRSAGDnzp0AWhb7U6dOBQD8+9//ltzvl19+wc6dO3H66acnZXy33norzjvvPDz00EOiuJEzcOBAdOvWDe+99x58Pp94e3NzMz7++GOxcmE4VCoVRowYgYULFyInJwe//vqr+DeDwQCbzRbwGBbiuGXLFsntX3zxRSQvDwBw7rnnYtu2bejbty/Gjh0b8EOCiyAIIjmQw0UQBEEknTPPPBPdu3fHeeedh0GDBsHr9aK0tBTPPPMMMjIycNdddwHwi5qbb74ZL774ItRqNaZPn44DBw7gwQcfRI8ePfDHP/4xKeMbOXJk2IbDarUaTz31FK6++mqce+65mD17NhwOB55++mnU1dXhiSeeCPrYL7/8Ei+//DIuvPBC9OnTBz6fD5988gnq6upwxhlniPcbPnw4fvjhB3zxxRfo0qULMjMzMXDgQJx99tnIy8vDzJkzMX/+fGi1WixZsgSHDh2K+DXOnz8fK1aswKRJk3DnnXdi4MCBsNvtOHDgAJYtW4ZXXnklwFUkCIIg4ocEF0EQBJF0HnjgAXz22WdYuHAhysvL4XA40KVLF/zhD3/AvHnzMHjwYPG+ixYtQt++ffHGG2/gpZdeQnZ2Ns466ywsWLBADOtrK6666ipYLBYsWLAAl19+OTQaDSZMmIDvv/8ekyZNCvq4/v37IycnB0899RSOHj0KvV6PgQMHYsmSJbjuuuvE+z3//PO4/fbbccUVV8BqteLUU0/FDz/8gKysLHz99de4++67cc011yAnJwezZs3C9OnTMWvWrIjG3qVLF2zcuBGPPfYYnn76aRw+fBiZmZkoLi7GWWedFTIckiAIgogdlY+PiyAIgiAIgiAIgiASBuVwEQRBEARBEARBJAkSXARBEARBEARBEEmCBBdBEARBEARBEESSIMFFEARBEARBEASRJFJWcL388ssoLi6G0WjEmDFjsHr16oge99NPP0Gr1WLkyJGS25csWQKVShXwY7fbkzB6giAIgiAIgiCIFBVcS5cuxd133437778fJSUlOOWUUzB9+nSUlZWFfFx9fT2uvfbaoI0xs7KyUF5eLvkJ1uCSIAiCIAiCIAgiXlKyLPyJJ56I0aNHY9GiReJtgwcPxoUXXogFCxYEfdwVV1yB/v37Q6PR4NNPP0Vpaan4tyVLluDuu+9GXV1dxONwOBxwOBzi716vFzU1NcjPz4dKpYrqNREEQRAEQRAEkT74fD40Njaia9euUKuD+1gp1/jY6XRi06ZNuO+++yS3T5s2DWvXrg36uLfeegt79+7Fv//9b/ztb39TvE9TUxN69eoFj8eDkSNH4rHHHsOoUaOCHnPBggV49NFHY3shBEEQBEEQBEGkPYcOHUL37t2D/j3lBFdVVRU8Hg+KiooktxcVFaGiokLxMb/99hvuu+8+rF69Glqt8ksaNGgQlixZguHDh6OhoQHPP/88TjrpJGzevBn9+/dXfMy8efMwd+5c8ff6+nr07NkThw4dQlZWVoyvkCAIgiAIgiCI9k5DQwN69OiBzMzMkPdLOcHFkIfs+Xw+xTA+j8eDq666Co8++igGDBgQ9HgTJkzAhAkTxN9POukkjB49Gi+++CJeeOEFxccYDAYYDIaA27OyskhwEQRBEARBEAQRNtUo5QRXQUEBNBpNgJt1/PjxANcLABobG7Fx40aUlJRgzpw5APy5Vj6fD1qtFt988w2mTp0a8Di1Wo1x48bht99+S84LIQiCIAiCIAiiw5NyVQr1ej3GjBmDFStWSG5fsWIFJk2aFHD/rKwsbN26FaWlpeLPLbfcgoEDB6K0tBQnnnii4vP4fD6UlpaiS5cuSXkdBEEQBEEQBEEQKedwAcDcuXMxY8YMjB07FhMnTsTixYtRVlaGW265BYA/t+rIkSN45513oFarMWzYMMnjO3XqBKPRKLn90UcfxYQJE9C/f380NDTghRdeQGlpKV566aVWfW0EQRAEQRAEQXQcUlJwXX755aiursb8+fNRXl6OYcOGYdmyZejVqxcAoLy8PGxPLjl1dXW4+eabUVFRgezsbIwaNQo//vgjxo8fn4yXQBAEQRAEQRAEkZp9uFKVhoYGZGdno76+nopmEARBEARBEEQHJlJtkHI5XARBEARBEARBEOkCCS6CIAiCIAiCIIgkQYKLIAiCIAiCIAgiSZDgIgiCIAiCIAiCSBIkuAiCIAiCIAiCIJIECS6CIAiCINKGqz/5BGe/+25bD4MgCEIkJftwEQRBEARBxMJ7W7e29RAIgiAkkMNFEARBEETaQW1GCYJIFUhwEQRBEASRdlRarW09BIIgCAAkuAiCIAiCSCM0KhUAoM5ub+OREARB+CHBRRAEQRBE2qBR+5c2Dre7jUdCEAThhwQXQRAEQRBpA3O47CS4CIJIEUhwEQRBEASRNogOl8fTxiMhCILwQ4KLIAiCIIi0QUshhQRBpBgkuAiCIAiCSBu05HARBJFikOAiCIIgCCJtYDlc5HARBJEqkOAiCIIgCCJtoBwugiBSDRJcBEEQBEGkDVSlkCCIVIMEF0EQBEEQaQeFFBIEkSqQ4CIIgiAIIm3w+HwAKKSQIIjUQZuIg7hcLlRUVMBqtaKwsBB5eXmJOCxBEARBEERUeLxeAORwEQSROsTscDU1NeHVV1/FaaedhuzsbPTu3RtDhgxBYWEhevXqhZtuugm//PJLIsdKEARBEAQREjcTXORwEQSRIsQkuBYuXIjevXvjtddew9SpU/HJJ5+gtLQUu3fvxrp16/Dwww/D7XbjjDPOwFlnnYXffvst0eMmCIIgCIIIgAkuKppBEESqEFNI4dq1a/H9999j+PDhin8fP348brzxRrzyyit44403sGrVKvTv3z+ugRIEQRAEQYTDTSGFBEGkGDEJro8++iii+xkMBtx2222xPAVBEARBEETUUEghQRCpRtQhhbW1taipqQEAVFZW4uOPP8a2bdsSPjCCIAiCIIhoIYeLIIhUIyrB9frrr2Ps2LEYM2YMFi1ahIsuuggrV67EFVdcgcWLFydrjARBEARBEGHx+XxUFp4giJQjqpDCF198Edu3b4fVakXPnj2xf/9+FBYWoqGhAZMnT8bNN9+crHESBEEQBEGExCuILYAEF0EQqUNUgkuj0cBoNMJoNKJfv34oLCwEAGRlZUGlUiVlgARBEARBEJHAwgkBqlJIEETqEFVIoVarhd1uBwCsWrVKvL2xsTGxoyIIgiAIgogSXnBFksN1oK4Oqkcfxbbjx5M5LIIgOjhRCa7vvvsOBoMBAJCdnS3ebrPZ8MYbbyR2ZARBJJV3t2zBX1eubOthEARBJAwmuDQqVUQhhfd9+y0AYMXevUkdF0EQHZuoBFdGRoYkdLCiogIA0KlTJ4wePTqxIyMIIqlc89//YsGaNW09DIIgiITBBJdFrw/rcDncbizdvh0AoKa0CIIgkkjUZeF5pk2blqhxEARBEARBxAUTXGadLqzDZXW5xP83OZ1JHRdBEB2buASXj6sGlGhefvllFBcXw2g0YsyYMVi9enVEj/vpp5+g1WoxcuTIgL99/PHHGDJkCAwGA4YMGYL//ve/CR41QRAEQRBtBSsJb9HpwjpcfFGNiqampI6LIIiOTVyCK1mVCZcuXYq7774b999/P0pKSnDKKadg+vTpKCsrC/m4+vp6XHvttTj99NMD/rZu3TpcfvnlmDFjBjZv3owZM2bgsssuw4YNG5LyGgiCIAiCaF34kMJwVQpt3N8rrVYAfqfLxjlfBEEQiSAuwZUsnn32WcycOROzZs3C4MGD8dxzz6FHjx5YtGhRyMfNnj0bV111FSZOnBjwt+eeew5nnHEG5s2bh0GDBmHevHk4/fTT8dxzzyXpVRAEQRAE0ZowwZWh14cNKWSCrNBsFkMKC556CgP++c/kDpIgiA5Hygkup9OJTZs2BeSHTZs2DWvXrg36uLfeegt79+7Fww8/rPj3devWBRzzzDPPDHlMh8OBhoYGyQ9BEARBEKmJ6HBFEVJYYDajWXC1HB4PDtO1niCIBBOX4NLr9Ykah0hVVRU8Hg+KiooktxcVFYlVEeX89ttvuO+++/Duu+9Cq1Xu5VxRURHVMQFgwYIFyM7OFn969OgR5ashCIIgCKK1kFQpDONwsdDBAs7hYuQ/9VRyBkgQRIckLsG1cePGRI0jAHl+mM/nU8wZ83g8uOqqq/Doo49iwIABCTkmY968eaivrxd/Dh06FMUrIAiCIAiiNYnV4ZILrhqbDQDw85EjeDzCol0EQRDBULaD2pCCggJoNJoA5+n48eMBDhUANDY2YuPGjSgpKcGcOXMAAF6vFz6fD1qtFt988w2mTp2Kzp07R3xMhsFgEBs9E0S64vF6oVGnXHQxQRBE1Hg4wWV3u0NurNr4kEJBcJm0WvF2r8+HM//9b9TZ7Zh38slJKxRGEET6k3KrLL1ejzFjxmDFihWS21esWIFJkyYF3D8rKwtbt25FaWmp+HPLLbdg4MCBKC0txYknnggAmDhxYsAxv/nmG8VjEkRHwhkm7IYgCKK9wByuHKMRPkgrEcpRcriyjUbx7zaXCyYhTYE5XgRBELEQt8NVV1eHN954AxUVFSguLsbIkSMxYsQIWCyWmI85d+5czJgxA2PHjsXEiROxePFilJWV4ZZbbgHgD/U7cuQI3nnnHajVagwbNkzy+E6dOsFoNEpuv+uuuzB58mQ8+eSTuOCCC/DZZ5/h22+/xZo1a2IeJ0GkA06PByadrq2HQRAEETe84AL8Zd7NQeY3pRwufgOqyelElsGA8qYmHGpoQL7ZnMyhEwSRxsQtuC6++GJs3boV48aNw1dffYU9e/bA6/WiT58+GDlyJD788MOoj3n55Zejuroa8+fPR3l5OYYNG4Zly5ahV69eAIDy8vKwPbnkTJo0CR988AEeeOABPPjgg+jbty+WLl0qOmAE0VEJl1hOEATRXmCCizlVzU4nEGQD2O52QwUgz2SCy+uF0+OBw+3G+QMH4vPdu9HkdIrHOdzQgJGdO7fKayAIIv2IW3Bt2LABq1atwtixYwH4S6lv374dmzdvxubNm2M+7m233YbbbrtN8W9LliwJ+dhHHnkEjzzySMDtl156KS699NKYx0QQ6QiFFBIEkS4oOVzBsLvdMGq1yBQqLjc7nXB4PMg3mQAAjU4nNELeVr3dnsxhEwSR5sQtuIYNGwY1l3BvMBgwevRojB49Ot5DEwSRJFhiOUCCiyCI9EF0uISCV+EEl0GrRYYguOodDri9XlFwNTmdcAnHswrhhwRBELEQd9GMJ598Eg8++CDstPtDEO2GOu77Gq50MkEQRHvB4/MBaAkpDCe4TFotLILgYoUxCoRcrSanE40OBwCIjZEJgiBiIW6Hq7i4GI2NjRg8eDCuvPJKnHjiiRg1ahR69uyZiPERBJEEajnBRQ4XQRDpQiwhhczhqrZaAUgFV4MguHZUViZtzARBpD9xO1yXXHIJDh06hClTpuDnn3/GzJkzUVxcjPz8fEydOjURYyQIIsHUciWOSXARBJEuyAVXKGdKHlLIHK583uESBNtrv/6KDYcPJ23cBEGkN3E7XDt27MD69etxwgkniLeVlZWhpKQEpaWl8R6eIIgkQA4XQRDpiJtrfKxWqSJyuCxC2fhqQXBZdDoYNBrU2+2Sxx9tbEziyAmCSGfiFlzjxo1DU1OT5LaePXuiZ8+euOCCC+I9PEEQSYB3uKgsPEEQ6QITXDqNBkatNmSOqjyksEoIKWSuV4VsbUP9CgmCiJW4QwrvvvtuPPLII6itrU3EeAiCaAXI4SIIIh1hgkujUkGv0YTcULJ7PDBqtWJjZBZSaNBokKHX46hMcPHVXQmCIKIhbofrkksuAQD0798f559/PiZMmIBRo0bhhBNOgEEoy0oQRGrRzIXJkOAiCCJdYIJLq1ZDr9GEnN+Yw6VRq2HSasWQQuZ6lctCCKk0PEEQsRK34Nq/fz9KS0uxefNmlJaW4sknn8SBAweg0WgwaNAgbNmyJRHjJAgigTg9HujUari8XioLTxBE2sBcKI1aDUMYweUQBBcAZOj1YpVCFlIoz9my0VxJEESMxC24evXqhV69eknytRobG1FaWkpiiyBSFKfHgwy9HrV2OzlcBEGkDW6vF2qVCmoWUhgmh4vlb5l1uoCQwj3V1QCAuRMm4Nn168nhIggiZuLO4VIiMzMTp5xyCm6//fZkHJ4giDhhgov9nyAIIh1we73Qqv1LG4NWG1FIIeAviMEawjOHi+W6PjB5MjL1ehJcBEHETFIEF0EQqY3T44FJKJtMVQoJgkgXeMEVtmgGL7i0WtQLTY4NGg2yuBz0TIMBTo8Hb5aUJHHkBEGkMyS4CKID4vJ6oddowuY4EARBtCckDleERTMAqcNl1Gpx7oAB4v20ajUcHg+2V1bCRi4XQRAxQIKLIDogTo8Heo0mbBUvgiCI9oTb64VGpQKAiKsUAn6Hyy7kexm0Wpzcs6fiY2i+JAgiFhImuCZNmoSioqJEHY4giCTCqhSS4CIIIp3w+HyxhRQKvbjUKhW0ajVyjEbFx4SaL6/+5BO8/uuvsQ6dIIg0JmGC6/LLL8fNN9+cqMMRBJFEeIeLysITBJEuxFw0Q/jXoNFIfme8OH06gNCC672tW3HTF1/EPniCINKWuMvCM+66665EHYogiCTDBFe4BQlBEER7IqBoRogNJYfHIwosJrwMwr8qISyRMbigAECg4Kqz2/HjwYM4j8v5IgiCkEM5XATRAWFFMyikkCCIdCLmohkyh0uOTrjdJTRWZpzz3nu44IMPUNHU5L+fmpZVBEEEQjMDQXRAnB4PdCykkAQXQRBpgtvrhYZzuIIJLrfXC7fXG5DDZdQqB/7oBcElP97aQ4cAAOsOHwYASTl5giAIRsJCCgmCaD84PR5kGQzkcBEEkVbIHa5gG0os1DDA4eIE1+obbkCuUDwjmOAyabWwud2i8MoUBNfBujp8uWcPbh8/PiGviyCI9k3UDldtbS1qamoAAJWVlfj444+xbdu2hA+MIIjkIeZwkeAiCCKN8MhyuILNb3a54BIcLj6k8OSePTG0UyfxWECg4GK5Xp/v3g0A6JKRAQD4++rVmPPVVygpL4//RREE0e6JSnC9/vrrGDt2LMaMGYNFixbhoosuwsqVK3HFFVdg8eLFyRojQRAJRlKlkAQXQRBpQqRFM+SCK1OvByB1uHiUBJfT44FVaIT8m7ARbRGOU2SxAABWl5XF/mIIgkgbogopfPHFF7F9+3ZYrVb07NkT+/fvR2FhIRoaGjB58mQqC08Q7QSXxwO9Wg2jVktl4QmCSBsiLQvPNzkGgE6CQAqXw+Xijldvtwfcj82nTIhVNjdH/RoIgkg/ohJcGo0GRqMRRqMR/fr1Q2FhIQAgKysroIQqQRCpCyuaYdRqxYUHQRBEe0fucEUaUlgkhAJqg1QZZNUH+ePVOxwB92MRAw3C3yqt1qhfA0EQ6UdUIYVarRZ2YUdn1apV4u2NjY2JHRVBEEmFhRSS4CIIIp1w+3yRFc0QbjfKHC5NkM1jeUjh8eZm9H/xRQBSkcb+zsTYcXK4CIJAlILru+++g0GowJOdnS3ebrPZ8MYbbyR2ZARBJA0SXARBpCNur1cUTdE4XExwBXO45IJrr5CzBbTkawEtIYXkcBEEwRNVSGGGYLnL6dSpEzoJlXwIgkh9SHARRPzY3W64vV5kCIUSiLZHnsMVadGMThYLbhs7FnMnTlS8v1xw8c5ZvtmMI0KkjzyksMZmi+v1EASRHsTdh6uurg5vvPEGKioqUFxcjJEjR2LEiBGwcDs+BEGkFi6vFzqhaAYJLoKIjQmvv47Nx47B9/DDbT0UQiDasvCsDLxapcJL55wT9Lhi0QyvFwBgE4piAECeySTeR+5w0fxKEASQAMF18cUXY+vWrRg3bhy++uor7NmzB16vF3369MHIkSPx4YcfJmKcBEEkEHK4CCJ+Nh871tZDIGTIi2Z4fD54vF5oZKGCrIqgWei/FQ6NWg21SiUKuAauYAYTXDlGY0AOF1WBJQgCSIDg2rBhA1atWoWxY8cCABwOB7Zv347Nmzdj8+bNcQ+QIIjEwwSXiQQXQRBphCSkkAsDNMkEV7PTCaClb1Yk6NTqAEEFADlCbnumXo+9tbX4YNs2NDgcKDCbaX4lCAJAAgTXsGHDoOYmMoPBgNGjR2P06NHxHpogiCRBDlf7oN5ux6OrVmHB6acHbchKtD3s+0S0PW6vV8zL4vOuTDInq9nlglatjupz40MG67geXEzg7a2tBQC8t3UrGh0ODC4sxMG6uphfC0EQ6UNUVQqVePLJJ/Hggw+K5eIJgkhtfD4fCa52wntbt2Lh+vX4eOfOth4KEYIqqkSXMri58EG2SaFUGr7Z6YQlwnBChkmnE+fLWq4YBuvhde6AAQD84Yc++Atx0PxKEASQAMFVXFyMxsZGDB48GH/961/x2WefoaysLBFjIwgiCXh8PgAQGx/b3G74hNuI1CJLCFX6rbq6jUdChIIEV+ogz+ECEFA4490tW3Cwvj6qcEIAyNDr0SSEIvLl3q8ePhwAcM/EiRjfrRs+3bULgF9weXw+uIVCGwRBdFziFlyXXHIJDh06hClTpuDnn3/GzJkzUVxcjPz8fEydOjXm47788ssoLi6G0WjEmDFjsHr16qD3XbNmDU466STk5+fDZDJh0KBBWLhwoeQ+S5YsgUqlCvghZ47oaLDFB3O4+NuI1IIl5n934EDbDoQIiZWrWEe0LR5Z42OgZX7z+XzYeuwYrvnvf/HSL79E7XAFE1wDCwrgeOABnNq7N3KNRvH2TmYzACqcQRBEAnK4duzYgfXr1+OEE04QbysrK0NJSQlKS0tjOubSpUtx99134+WXX8ZJJ52EV199FdOnT8eOHTvQs2fPgPtbLBbMmTMHJ5xwAiwWC9asWYPZs2fDYrHg5ptvFu+XlZWF3bt3Sx5r5CZHgugI8ILLJyxMmpxOyhFKQWqFDaEfDx6U7NwTqYWLNixSBrfXCy3X+BhoETxf7NmDCz74QLzvb1zz4kjI0OvRJIjryuZmyd/Yc7GKhYC/PxfgLw0frZtGEER6EffVe9y4cWhqapLc1rNnT1xwwQV4OMbeJM8++yxmzpyJWbNmYfDgwXjuuefQo0cPLFq0SPH+o0aNwpVXXomhQ4eid+/euOaaa3DmmWcGuGIqlQqdO3eW/BBER4MXXAMLCgAAizdtStrz7amuxvf79yft+OmC3e3GxqNHJbfxifn15ManLC4KGUsZgoUU2t1uidiKhWAOFw8vuLoIuV2Ux0UQRNyC6+6778YjjzyCWqE6T7w4nU5s2rQJ06ZNk9w+bdo0rF27NqJjlJSUYO3atTj11FMltzc1NaFXr17o3r07zj33XJSUlIQ8jsPhQENDg+SHINo7THDp1GqcUFSECd2746/ffYd1hw4l5fkG/vOfmPrOO0k5djqxdNs2jHvtNXy5Z494G5+Yz5ehJlILcrhSB0lZeK5oxl7OzXpsypSYjs0LrmB5eyyk8NaxYzEgPx8ACS6CIBKUw/Xtt9+if//+uPHGG7F48WL88ssvcMS4OKiqqoLH40FRUZHk9qKiIlRUVIR8bPfu3WEwGDB27FjcfvvtmDVrlvi3QYMGYcmSJfj888/x/vvvw2g04qSTTsJvv/0W9HgLFixAdna2+NOjR4+YXhNBpBIuzuECWvrRvL9tW5uNiWippLaJc7lq7HbkCzvm5HClLuRwpQ58lUK5wwUAi889Fw9MnhzTsXnBFSxvjzlcPbOzxRxZpSqJBEF0LOJO2ti/fz9KS0uxefNmlJaW4sknn8SBAweg0WgwaNAgbNmyJabjqoQYbIbP5wu4Tc7q1avR1NSE9evX47777kO/fv1w5ZVXAgAmTJiACRMmiPc96aSTMHr0aLz44ot44YUXFI83b948zJ07V/y9oaGBRBfR7nHKBNcr556Lk958Uwx/IdoG9rmwvK1mpxO/HDmCIYWFWF1WJgkvJNoevrInOVypg1LjYwdXiXVyr14AgFXXXy8KokhpcjqxpqwM3+/fD6fHg0uHDMEMLn8dAHIFwaXXaESHjRwugiDiFly9evVCr169cMEFF4i3NTY2orS0NCaxVVBQAI1GE+BmHT9+PMD1klNcXAwAGD58OI4dO4ZHHnlEFFxy1Go1xo0bF9LhMhgMMAhlmQkiXZALrkk9eqBfXp640CfaBpbYzz6HKz7+GIcaGnBO//5YXVZGIYUpBr+IpiqfqYOHE1xGTvCw0uxmoTIhE17RwNznVQcPAgDOGzAA5w8cKLlPtrBmcHo8kucnCKJjk5SSV5mZmTjllFNw++23R/1YvV6PMWPGYMWKFZLbV6xYgUmTJkV8HJ/PFzKs0efzobS0FF26dIl6jATRnpELLgDIMRqT7qB4KOwqJOxzqRHytlgBjVwKKUxJGrjrC4UUpg68w8XEldXlgk0QPaYoS8HzvClsLDPxZuDmUIaBa7XRyWKBRqXCr+XlMT8nQRDpQUwOV1lZmWJ59mAcOXIE3bp1i/j+c+fOxYwZMzB27FhMnDgRixcvRllZGW655RYA/lC/I0eO4B0hEf+ll15Cz549MWjQIAD+vlz/+Mc/cMcdd4jHfPTRRzFhwgT0798fDQ0NeOGFF1BaWoqXXnop4nERRDogFs3gFgu5RmNSHC4+7KrZ5RIb+RKBsDwPVihjWKdOqGhqwoTu3WHUaiULfKLtkQgucrhSBl5wMXFlc7tFUWyOQ3BNLS7GwPx8HBYKaOkVBBdfir7AbMapvXtj5f79mDN+fMzPSxBE+ycmwTVu3Dicf/75uOmmmzA+yCRSX1+PDz/8EM8//zxmz54tET/huPzyy1FdXY358+ejvLwcw4YNw7Jly9BLCAEoLy9HWVmZeH+v14t58+Zh//790Gq16Nu3L5544gnMnj1bvE9dXR1uvvlmVFRUIDs7G6NGjcKPP/4YdPwEka6whQe/WMg1mVAdpOpWPPBhcE1OJwmuEMhDCgvNZozr2hXnDxwIg0ZDYWspRj05XCkJL7h0ajU0KhWsLldAmGGsFJjNWCtUdFXqXTipRw+cP3AgbhfWFlkGAzU+JggiNsG1c+dOPP744zjrrLOg0+kwduxYdO3aFUajEbW1tdixYwe2b9+OsWPH4umnn8b06dOjfo7bbrsNt912m+LflixZIvn9jjvuCCvoFi5ciIULF0Y9DoJINxRDCg0GSdnkT3ftQr7JhFNiyHPg4Usns+pehDJOmcNldbnQyWIB4P+sqNJZakEOV2rCCy6VSgWTTgebywWNWg2TVgt1mOJb4aiyWsWGyUoOl1mnw2dXXCH+btBoyJ0mCCK2HK68vDz84x//wNGjR7Fo0SIMGDAAVVVVYgGKq6++Gps2bcJPP/0Uk9giCCJ58H24GLkmkySk8KKlSzFZtrERC7zgaibBFRKHLIfL6nKJ4U8GrZZ2yVMMPqeO3MfUwe31QsOJKpNWC5vbDavLFVf+FmPB6aeL/1fK4ZKjJ3eaIAjEWaXQaDTi4osvxsUXX5yo8RAEkWRcCjlciS6aoXr0Ubx89tnokZ0t3kYOV2iYoHJ4PLC5XLC6XOiamQmAFm2pCAspzNDrKaQwhfD4fKLDBfgdJ6vLBY1KFVf+FmMcl4+uFFIox6DR0GYJQRDJqVJIEETyqbfb8fGOHVE/jlXYkjhcguDyckUuYoUd46VffpHkhTUHaRRK+HFyi/Zau13qcFFIYcrR4HDApNXCrNNRSGEKwYcUAhBDCvnvUzxkc3moSiGFcmizhCAIgAQXQbRb7vnmG1z60UdiCFqkMMGllYUUen0+NCYg14Dt5jo9HhysrxfDe8jhCo3D7RYXhLU2G2zc77RoSz3q7XZkGQzQqdXkcKUQcsHFHK5qmw05RmPcx8/Q68X/RxJSaNBq6btLEAQJLoJor7C+MkeEEsWRoiS42EIkEWGFzIlxejworajApB49AFAOVzgcHg+KhCIZNTYb5XClOPUOB7KNRug0GnK4UogAh0urxcH6erxVWoqeXIhzrKi4/LBIQgqp4A1BEAAJLoJotxSazQAg9oSJFEWHSxBc8l5cx5ubox4X73DtqKzE6C5doFOryeEKg9PjQeeMDAB+4csLLr1GIwk5JNqeBoeDHK4Uw+vzwSvL4TLpdPjq998BxF8SXk4kIYXU0oEgCCABgqusrEzS3JTh8/kkvbIIgkgseSYTAOBQlIKLLQ413KIkU8hLkIuii5cujXpcbDfX5fWi2mZDJ4sFGXo95XCFweF2I18Q0c1CzolJWCBS4n3qUe9wINtggI4W1CmDR2Fu4/O29OrE7jFHWqWQvrsEQcQ9+xQXF6OysjLg9pqaGhQXF8d7eIIgguARNjpiyeFSq1SSfjRsUWKViaLtCt/tcPAOV53djlyjERa9nhyuMDg8HjG0s9nphN3tFnfkKYcrtdhw+DB+KitDttEIPYUURsR7W7fikg8/TOpzsDlRHlLIeHratIQ+X0RVCimHiyAIJEBw+Xw+SUwzo6mpCcYEJKgSBKGMXRA29ih3T91er6RCIRBccFliqOrFHK4GhwNurxc5RqPf4SLBFRKnxwOjRgOjVot6hwNen09c0Bm0WsoDSSEmvPEGjjQ2UkhhFNz77bf4ZOdOlFZUJO05lMKl2dx28eDBYlRAvPTPywMQeZVC+u4SBBFzQPPcuXMB+BNIH3zwQZiFUBgA8Hg82LBhA0aOHBn3AAmCUIYJLVuUoXrypHJAKrjYomVYp044WFcX8PhVBw5geFFR0MWLPHwmx2iERacjhysMLo8HOo0GFp1OdC1ZyJJeo6H3L0Xgv2+RhhRuPHoUf125EsuvuUZxg7Ij0DUzE4cbGnCovh4jO3dOynMoCS7mcLGCNIngw//7Pzy3fn1kVQrJnSYIAnEIrpKSEgB+h2vr1q3Qc6VS9Xo9RowYgXvuuSf+ERIEoYgouGJwuOSCi4WuWV0uUTB1ycjAtuPHRSEAAD8fOYLT3n4b9550Ep74wx8Ujy/fzRUdLsrhCgn7XCx6vSi4jJTDlXL8VlMj/p9tJoQ7t/+8YgV+OHAAjU4nsrg+Th0J5p7L36tgUTKxoCi4hM2kRLlbADCyc2csufDCiO6r12jg9fkU512CIDoOMQuu77//HgBwww034IUXXkBmZmbCBkUQRHjiCSmUX/jVKhVMWq1fcAmCqYvwna6129FJ2B3+4cAB8f7BkAuDXJMJJqEXDhEc9rmYeYeLcrhSDtbM+4nTT8fNY8Zge2Ul6sO0U2AhvLU2W4cVXCykmA8tdrjdMP7973jj/PNx46hRcT9HqJDCtnrf2XfY6fGQ4CKIDkzcNVLfeustrFy5EitXrsTx48fhlcWyv/nmm/E+BUEQCjBhFK3D5Qpy4WcNQnmHC/AX5WCCa19tLYDQPbWUHC6tWi0uhghlPEI5a6WQQgPlgaQM7LO5ecwY5JpMyDYYUFZfH/IxzCGutdvRK+kjTE2qhfeNd7i2HDsGAFhSWppQwaXhNoRYSGFbCS6W58U3NicIouMR93bL/PnzMW3aNKxcuRJVVVWora2V/BAEkRwSmcMFtAgu5qR05gQXAByoq8OrmzYBABpDCS6FHK5gguvX8nLsqqqKavzpSqiQQnK4Uodqmw0qANlCUahsgyEqh6sj4vF60eBwAJBu1vx06BAAYHVZGdYfPhz38yg5XIw2c7gEwUXfX4Lo2MTtcC1atAhLlizBjBkzEjEegiAiJK4qhQrJ3qLDxUIKZYJr5b594n1DCi7ZwsKo1UKnVqNZQXCNWbwYAOB7+OGoXkM6IgounQ6HBMdEUqWQcrhSghqbDbkmkxhWm200ol4QE8HgHa6OSAP3/vAO19Lt28X/T3zjjbjnAY+C4GIiLJPLM29NTEEqwBIE0bGIW3A5nU5MmjQpEWMhCCIKElk0A1AIKRRyuJjg+rW8HEMKCzG4oACNIRaYvDBgi1IKKQwP+1wyDQbsF6pDksOVetTYbJICDNkGA+rCCCn2fQt3v3RFIri4zZojDQ0JPbeVHC5Wsj+SEu7JIEMQelRllCA6NnGHFM6aNQvvvfdeIsZCEEQISsrLxaIVQHJCCps5hyvLYJAUcDhutaJbZiYyDQbJAkoO73Cx59FSr6KwsM/l8qFDxdsohyv1qLPbxQbVgN/hsrvdIUUD+652VMFVH8Thsrvd6JmdnbDnURJc7DYlV781yCTBRRAEEuBw2e12LF68GN9++y1OOOEE6GRJoc8++2y8T0EQBIDRsvA7FqKSiCqFgH/hWGe3iw6VQaNBnskkCi6H2w2DVotMvT5kSCG/8GTJ6zpyuMLCPpfRXbqIt/FVCimkMDWwulyShuC8gxGs9HiTQoW+jgTboOmckSERHna3GwMsFvzOldqPByXBxTYtmFvc2rDzI9ScSRBE+hP3DLRlyxaxwfG2bdskf+uoDR4JIpnYXC6YdDpxERN1lcIggqvQbMae6mpRMOnlgsvjQZbB4BdcEYYUskUOhRSGhwmuQq6JvJHL4aKQwtTAKnz/GJEURWBCq6Pm8bCiIl0yMgIcrkQKIbFKITe/3TNpEjL0ekzo3j1hzxMNmUKxDnK4CKJjE/dMx/pxEQTROuysqsLoLl1Qb7dDo1LFFFKoCyK4fjp0SAxdM2i1gQ6X2QyzThdS5Dk8Hlh0Opw7YAAuHTIEgBBSSIIhJHyVQgZbzOsppDBlsMnKezMX0uF242hjI17/9Vc8OHmyZMOxoqkJQGDTXzkH6upQ0dTUZuIgWbDNoa6ZmaL49Pp8cHm9OKd/f6zcvz8hz6PkcFn0evypDfPMKYeLIAggATlcBEEkH9412ltTA5/PhwaHA50zMhIWUlhosaCyuTkgpLCac7gMGg2MWm1Ikedwu5FlMOCDSy+VCC65w8X//lNZGT7fvTuq15FuKH0uYpVCjQZen0+swka0HVaXS+ztBLSIYofHg+s//RQP//CDuEkB+N0tVgQlXEjhwH/+ExPfeCPxg25j6h0OaFQqFFosouhk80wniwXPnXmmJEwzVjw+HwDlsvBthV6jgU6tDhkVQBBE+pOQWWn16tW45pprMHHiRBw5cgQA8K9//Qtr1qxJxOEJosPDL+Au+89/UO9wwOPzoSgjI2FVCgvNZtQ7HOJOrEGrxcD8fJSUl8Pj9cIu5HCZInC4DLIwIZ1GEyC4+MXnyW+9hQs++CCq15Fu8J/LHePHY1rfvhKHCwgsuU8kjpLychxtbAx7P5tccHEO157qagDSqnysz1yGXh/W4UrXsNEGhwNZBgMydDrxe882ioxarfjeeAXBFCuh+nC1JZkGAzlcBNHBiXtW+vjjj3HmmWfCZDKhpKQEDuFC09jYiMcffzzuARIEgYA+P2xhWGSxJKxKIUv4P9bcDMC/c39m376otFqxs6oKDiHfwqTVwu31Bs3JcrjdolBgKDlcHTWfRQmvzwevzyd+Li9Mn47l11wjhqWxRX26LshTgdGLF6PP88/D9Pe/Y3eIZtzykEJeDJcLoYP89/VwQwMAYHBBQcTnfLqF39bb7cgyGGDhRCcvuFgYbbxzQsoKLr1ejBSwuVzkVBNEByTuWelvf/sbXnnlFbz22muSCoWTJk3Cr7/+Gu/hCYJAy475yT17AgCOCQu7oowMuLzeqC7gwYpmsEVkrbAw0Gk0KBAKODQ6HGJIISsYECyUUcnhUioLL9/t54tFdDSUGrbyiIt6qlSYFPjCMHa3Gz8LkRpKhCqawRb89Vz592PNzVCrVOiVkxPS4fJx7g7vaKcDDQ4Hso1GWII4XNlCYYl4y+anquCaWlyM94WiYubHH8eNn38e9L4H6+owZ9myuN0+giBSi7hnpd27d2Py5MkBt2dlZaFOiFsnCCI+2ALu+hEjALS4UEUWC4DQpeEPNzRI3KVgDhfbZa6126FTq6FWqcSFJWuIbBAcLiB4/y8lh0upLLw8n0Xu4nUkwi0UI6mER8ROSXm55Hf5hgFjxd692FdbG7RoBlsk8yGFFU1N6GSxIEuvD5nDxYeLVlqt0b+IFKZeCCnkHS6+OE9Xocl6JCGdoRCrFKZYheSpxcU43NAgnhf/2rw56H3/uHw5XvrlF7HQSkdjd1VVh33tRHoTt+Dq0qULfv/994Db16xZgz59+sR7eIIg0CJGOgkCi4Up9cjKAhC8NLzL40GPhQtx/8qV4m1ur1exCajocNnt4iKS3WZzuwMcrmDPGczhChBcnGCb2L07nB5Ph3VwwgkuyuFKLt9zDcUBv8O0/fjxgPvd9fXXAKRulEHhs6mXCa4iiwVmnS5kyBy/gVGVZoKrweFAtsHgz9VyOuHz+SQOVzdhHjsizGuxkqoOFxOUG48eBdBSKl4J9l2PpWfbp7t2KZ637YlBL72E/i++2NbDIIiEE/esNHv2bNx1113YsGEDVCoVjh49infffRf33HMPbrvttkSMkSDaFfEuGpRokAmuQ/X1AIAe2dkAgjtch4Sx/Cxc6AH/okRpB5gPKWSLSN7NYkUzjNxtTo8nIAyICTMepbLwbEFxxbBhmDtxIoCO63KFdbgohyuplFZUSH6/9X//w7BFiyTCCmj5vvE78GyBzIcRsv+7vV58s3cvBuTnS9wdJfgNjHQrsCA6XDodfPA79LzgyjeZYNBoxI2kWAkXmttWMMG17tAhAP6crmCI51MMc+FFS5di2KJFMYwwtUi3858ggAQIrr/85S+48MILMWXKFDQ1NWHy5MmYNWsWZs+ejTlz5iRijATRbnjkhx/QfeFCURAlinq7HRl6vRj2V9bQgByjUcx9CBbet7emBgCQYzSKt7k8HvGizsPKMtfYbOICXx5SaORDCt1uXPDBB8h98knJcVjoIU+oohkvnHWWmCtWH2cOR3slYoergzqAySZY7tBTP/0k+Z0tnBu4BSE7148LYb6A3yUG/LmWe2trcc0JJ8Ck1YYM/eXdr1jcjVSGOVysIfEV//mPRHCpVCp0zsiIO5QsVR2uLhkZAIAHhL6llggEV22a5fERREcn7lmprKwMjz32GKqqqvDzzz9j/fr1qKysxPz581FWVpaIMRJEu+GlX34BkNik94N1dZj7zTfIMhhEd6msvh6FZnOL2xRkIXdAyKPke9w4PZ6wIYXsoq9Tq6FRqdDscsHl9UpDCl0ufK0QTqzkcCmWhRcWmGadThSEf/rmmwBXoSNAOVxtS63dju5CWBvPfVwoLgDkC5U8n/rDH8Tb2GdzjBNcTDgwEcW+u6EEF79pkm47/I0OBzL0ehTn5Ii3sfeCvX85RmPcDneqCq4sIZySEaqyLGtKH20BkWBVYwmCSA3inpWKi4tRVVUFs9mMsWPHYvz48cjIyEBNTQ2Ki4sTMUaCaDfw1c4SxZ9XrADgd6aYwDpUX49CiyVsxUA2Hj6J3+X1Qh+qaAYXUqgSCmewiz9fNCNolcIIHS62i2/S6dAnNxcA8MWePShLsDvYHgiX7E85XMmlzm7H5UOHhr2f0+PBsE6dxJwjoMXhYiKrW2amWPyBCS6LThdecKVxSGGT04lMgwEndu+OMV26oH9enjinsM2WLINBMk/FQqoKLpVKhWemTRN/D7Uhp4lRcMVb4TEV6IibbUTHIe5ZKdgXpKmpCUYujIkgOgKsSlkiQ79YLyaPzycKrkqrFXkmU9iKgWwBw1/ggzlczM3ii2YA/jwu1ryVd7j4ECheTAXN4fJ6JfNFs8sFs04HtUqFLC6JfF9tbdD3Il2JNIerNUIKl/32W0hhkI7UCQ5X/X33QS0TvXzuoVIFTrVKBa1aLTpcQwoLxX5cVs7FZYIr2DUznR2uJqdTdHgsej3sHg+qrFboNRrx9kQKLk2KCS6gpcAR4J/72Hf51i+/xOhXXxX/xr57tVEKqHQIQexo8w7RsVCufRsBc+fOBeBfDD700EMwcz10PB4PNmzYgJEjR8Y9QIJoL3hkoiNRsAWgk3O4AP/OcLiKgSxEh794B8vhUqlUMOt0aHQ6JYtKk06Hf23ZAhWA8d26iTvS/DGbnE7x9mBl4QG/IGUuTrPTKQl17JObi321tdhbW4spHcwdDye4jJyr2Ohw4MTXX8fi884T+7IliiMNDTjnvfcwvV8/LLv66oQeO1VxejywulzINRqRZTAE9D+qsdlQJOTgOL1exZLxeo1G7I03pLAQn+7aBUAquAxaLbw+X9Aqoew7rNdoQhbXaG/4fD6J4DJoNHC43ai2WpFvMokbSlkGQ8JyuFKtLDwA9BbCKc/q1w9f//47qm02dM3MxCubNknuxz77aEV3OvRuS7eNBoLgiXkbqKSkBCUlJfD5fNi6dav4e0lJCXbt2oURI0ZgyZIlCRwqQaQ21dwFL5FORKWwc/741KlSwWUwiA5XsHLTTHDxu+fOIIILaClXzDd2Zc//yrnnoldODsw6HSw6naRnTiO3Mx2sLDwgdcKsgsPF2HvnneiamZnwgiPtAY+wyA8muPhCJWX19dhZVYWrP/kk4eNgLs1Xv/8u7jZ/uWcPdlRWJvy5UoV6WWibHL5Eu8PtVvzuGDQaHGtuhk6tRvesLNTa7ahoahIFBHO4gOCbMew7Wmg2p9XC0+Z2wweIgos5fVVWq1gsB0iMw+URNnRUKSi4BhcWYsstt+DhU08FAFTLSv8zoW+NUXCxuV7u0LYn+Ncsr2pLEO2dmAXX999/j++//x7XXXcdvvrqK/H377//HsuXL8err76K/v37xzywl19+GcXFxTAajRgzZgxWr14d9L5r1qzBSSedhPz8fJhMJgwaNAgLFy4MuN/HH3+MIUOGwGAwYMiQIfjvf/8b8/gIQg4vehLpcFVarbht7FjcceKJkgV5ttEo5l0FE1xsAcM7YE6PR3Sc5Ezr2xeAtGwxe+x5AwaItxVaLLj322/F3xu5C6WSw8XG7eIEV7PLFVCtK89kijqUJh0I53CZuTBOtihJRq8mfhG4p7oaAHDe++9j7OLFCX+u1mZnZSU+2LYt4HaW+5ItCK5PLrsMH192mfj3alk4rvzcBvwbFEcbG8XKoQ0OB7o88wyuEa4xFr1e4lIqwb7DBWkmuNhrCRBcNlvCBVewpu6pwvCiIrHwityRYt/nWAUXO6/kDm17gnd2060XHUHEPTO99dZbyFKo7hQPS5cuxd133437778fJSUlOOWUUzB9+vSgVQ8tFgvmzJmDH3/8ETt37sQDDzyABx54AIu5RcK6detw+eWXY8aMGdi8eTNmzJiByy67DBs2bEjo2ImOi9xFShS1NhtyhYs0T7bBAINGA7VKFbSMNNu958fm8nqDOlyjO3cGIG3M+cJZZ+GZadPQRSiJDbT0A2PE4nDJQwoBv+BKh9CYaAknuHQaDTQqFWwulyhuQzXRjRV+kXOsqUk8b4KFrKYip7/zDpaUlgbcPuGNN3Dlxx8H3C4v3nDR4MG4ePBgVP75zwCkItQRxB3O0Ovh9nqRI4QlyjFx/euCCS72Hqe74DJotXB4PKgW8lAZ2QZDQqoUprLgAiC+5mrZPPe2cM7GK7jaM3xrBf7/BJEOxJzDxbNy5UqsXLkSx48fh1dWiezNN9+M+njPPvssZs6ciVmzZgEAnnvuOSxfvhyLFi3CggULAu4/atQojBo1Svy9d+/e+OSTT7B69WrcfPPN4jHOOOMMzJs3DwAwb948rFq1Cs899xzef//9qMdIEHL4C14iQwpr7XbkKoQ7NbtcUKlUsOh0QXM+2I6xXe5wBRFcTNjxi8o7Tjwx4H6F3M40EN7hYs/njsDhIsGljFmnkzhcgD8/JpHhUxLB1dwsFjApkH3eqYrP58N3+/fju/37cb0sh5h9F+TvGVvkZ8uEUq7RCBWk74nT41EUVExM5JpMolPGMGg00KjVYQXXzspK5AiudXsSuOFoljtcGg3sbjccbrekkERHcLgA/zli0enwu9AjsdBsRqXVik927cKfTzpJ3KyLVnDx1xyvz9cuQws/2r5d/P8xElxEmhH3zPToo49i2rRpWLlyJaqqqlBbWyv5iRan04lNmzZhGldCFQCmTZuGtWvXRnSMkpISrF27FqcKsdKA3+GSH/PMM88MeUyHw4GGhgbJD0EEg18kJSqk0O31osnplDhcu26/HUBLIQWLXh/U4WpyOpFrNMLh8YihJsGKZgAtu/yeMD1dxnbtCgD410UXAQgMpwzmcPFx+fIcLgDIMxo7tOAKVV3NrNPBJhTNYCT6vaqyWtEtMxMZej2ONTXhiJCnJxcjqUokpbHli/p6WUghQ6NWI9dkCsjNDOZwAZA0IxcfI5zz4QTXZ7t34+rhw2HSakP2aWpvKDlcdrfb3wyZe8+zDAbY3e64ogPag+BSq1QY160b1h0+DJ/Phzq7HQPy8/FreTmcHo84R8bjcLVXt+toUxOmCgWTyOEi0o24Ha5XXnkFS5YswYwZMxIxHlRVVcHj8aCoqEhye1FRESoqKkI+tnv37qisrITb7cYjjzwiOmQAUFFREfUxFyxYgEcffTSGV0F0RPhFUqIcLraA5B2ugQUFWH7NNTi1Vy8ACOlw2d1uMS/K7nbDrNOFzOFizxOuieb9p5yCMV264BRhDHJ3T+5wsUWqPIdL7tx19ByuYJ8L4M8TkjtcNTYb8hPoPrFCBkatFseam1HczkLb+F1x3sniC7xU22yShT5zuJScq3yTSRJSGCyHK5MTXErHAcILrmqbDT2zs9HscqWVw6WUw+Vwu9HodEreK/b/Rocj5nPa7fWmZEl4OcMKC/HDwYOwud1web0Y06UL9lRXo9pqjdnh4s8rm8JmVnug2elEodkMi04nFmsiiHQh7pnJ6XRi0qRJiRiLBHmYTCShM6tXr8bGjRvxyiuvKIYKRnvMefPmob6+Xvw5dOhQlK+C6Ejwi6R/b92akGOy3iryHK5pffuKLlIoh8vudouPZRfkUDlc7L7hBJdOo8F5AweK1fMcMndP7nCx5+N3r5udzoCQwhyjMS0aeEZLpCGFfA4XIA3lTATVQiGDHKMRDQ6HuOhrL2n4x7iy4ryTNfXtt8X/y6vD1dntyNDrFd/7ArMZVbzDFSKHC/BvWMidssenTgUgFVzHmpqgevRRfLd/PwB/CFi9EDps1GjS2uEycg6XkuCKJ6zQ0w4cLsA/z9bZ7eJcx0rG19nt4qZUKMG1VwhH5HHIogdSnbdKSvDF7t2S25pdLlh0OtHNJ4h0Iu6ZadasWXjvvfcSMRYAQEFBATQaTYDzdPz48QCHSk5xcTGGDx+Om266CX/84x/xyCOPiH/r3Llz1Mc0GAzIysqS/BBEMPgdxp+PHElIWdtg+SU8oRwum9stukg2lws+ny9kWXj2PJ4IK12x47DX7vZ64fX5gjpcEsElXFx5TDpdyHCYfbW1+OvKlUGbx7ZXIhFcJq02wOFqjDPnRU6V1Yp8sxlm4Zxiz9VeQpQOc2HflQoVFwFg2/HjYhgh4A8pDPb9yjebI3K4+JDCIosFZ/TpI/7tRiG/mAkum8uF/XV1AIDPhH5d9XY7fPAvxMN9B9obASGFQp+xJqdT8r4nQnC1h5BCwC/MDzc04JYvvwQgE1zCHBlsM+XTXbvQ78UXsenoUcntEoerHZw/N37+Oc7/4ANJVUW2CcdEOUGkE3HPTHa7Hc8++yxOPfVU3HHHHZg7d67kJ1r0ej3GjBmDFStWSG5fsWJFVE6az+eDg5u4J06cGHDMb775JinuHNExke9KJyKPiy1WMkMJLr0+ZEghy8uyud0toWtBBBcL5ZlxwgkRjU+lUkkujszpCudw1dhs2HLsWEDYS7gL7e3LlmHBmjV44LvvIhpfeyFih0vI4WIiOtEOV5XVigKTCRa9XiLuEi3sksUv3CKU5YB4fT5JmNmNn3+OEa+8Iv5e73AE7cGVH0MOl06jwTczZqDmL3/BkgsuEJsm55tMMGg0+GTnTjFHkm1s1HKhwyattl0smCOlyemEVq0W3zejVisWIlFyuOKpVNheBBc7377YswdAoMNlEAqLKMEK2fwmc7n4KIO1hw61m/Lwv3GbIU1C5dp023QgCCABOVxbtmzBSKEa1DZZj5NYq2fNnTsXM2bMwNixYzFx4kQsXrwYZWVluOWWWwD4Q/2OHDmCd955BwDw0ksvoWfPnhg0aBAAf1+uf/zjH7jjjjvEY951112YPHkynnzySVxwwQX47LPP8O2332LNmjUxjZEg5NjcbqjQEn5ld7vFhVisyHeHlai32/Htvn3408SJGN+tm3i72+uF2+sVyxDbhXwBAEEdLqNWC9/DD0c1Rn5xwERmOIfroqVLAUBRcDk9HniC5GKw4z6+Zg3+fvrpUY0zlYnI4RJyuPQaDbpmZqLWbg8QQvJmstHCHl/R3AyryyUev9Hp9DtBQYRJqlBSUYGpxcX4bv9+MbywvLERbq8Xb55/Pub/+CMO1NXhINdcu15WvIGnwGzGusOHxd+dCuGyAESnlhduuSYTruMqJWYaDLhw0CBsr6wURQUTXnzosEkIHQ3H26Wl6J2Tg1N79w5737akyemUzF98GHGiQwrbi+CSh4gXc4LL6fEgUyggogSbM+XnCH//Gz77DL1zcnBaCp8brA3AhiNHMLCgAIA/6iFDcLjSKayWIIAECK7vv/8+EeOQcPnll6O6uhrz589HeXk5hg0bhmXLlqGXkKBfXl4u6cnl9Xoxb9487N+/H1qtFn379sUTTzyB2bNni/eZNGkSPvjgAzzwwAN48MEH0bdvXyxduhQnKpS8JohYsLvd/guFcOFLxA5dJILr3pNOwqUffYRz3nsPFX/6kyhU2I4nH1LIBE+o4gzREovD9fORIwAC8xRY2NWuqioM7dQp4Ln4BVqo0Mj2RjQOl9bpRFFGBnZUVkocri3HjmHEK69g+TXXiA2so8Hn84k5XGadDlVWq+Tz2Xb8OE7q2TPq47YmtTYbTu7ZE9/t3y+6Rkxcje3aFUMLC3FACOdj1IUKKTSZsKe6WqyoGSyHi1XtZE5FMArMZuysqhJzd+QOV47RKJlDQnH9Z58BQNQbJK2NXHBdMWwYbl+2DIBUeLDvdjyVN9uL4JLPv10zM6FTq8WQwjyTSRL2ysPOP3lUg8PjkYSXB3t8qsBex++cU0chhUQ6k7Iz02233YYDBw7A4XBg06ZNmDx5svi3JUuW4IcffhB/v+OOO7Bt2zY0Nzejvr4ev/76K2699VaoZZPapZdeil27dsHpdGLnzp24+OKLW+vlEB0Am8sFE+fYJKJSIVvwhqo4dcmQIXj/kktQZbWKO+erDhzA31evBgBJSCHLD0ikUDEKjUyByB0udjGVl/5lgmvYokWiKGPsr63Fv7ZsEX+v4AoktHeiyeFqdDqRqdcjQ6+XOFxs4VJSXh7TGKwuF+xutz+Hi8sXG9m5MzQqFbZXVor3S9UcugaHA3kmEzL0elHUHBQEVq+cnICG3YB/YRospJC5wzP++18AyhU4AX+z5PI//QlnhhG62QYDqq1WsQIbE1rse55lMMAUwWKzvYSLAYGCi292nM/936LXo39eHn7iNlOjxe31QtMO+k/JK1madTrkGI2499tv4fJ6kWkwwCXkwwLAvzZvxohXXsFvgvgHWlxRBh8+DsTnFLYG7HWwHEmvzwerkNdr1GphT1BrFYJIFRIiuOrq6vDMM89g1qxZuOmmm/Dss8+ingvZIIiOgM3thkmrxbqZMwEkzuGy6HRhm1iyRsRskXna229jgRAuyxaZDQ6HKHgSLbjYa2XHD+dwMWHVMzs74FgMeTW5z2QVrfhS3+2daKoUNjmdyDQYkGkwSBwudobEuhRneTUFZnNLDpfLhTyTyR9m2NSEzRUVsDz+OD7asSPGZ0kurPJdLlft8mB9vViuPVPBKa53OII6XOx83SCEFQYLKQSAzhkZYcPoswwGHGlsxN3LlwMA/rNjB34qK5M42SahdUOoXnipvpjmYWFiSuTJQutO7dULG2PcMAD8jmF7cLhO6dUL3193HZ4+4wxkGQxQqVSYM348Gp1OWF0u8Tx1uN2otlpx7aefYsuxYxjwz3+K53WlbH7kK9ICqX2O+ARxBUCsAmpzueADOoTD9Z8dOyhksgMS98y0ceNG9O3bFwsXLkRNTQ2qqqqwcOFC9O3bF7/++msixkgQ7QKr4HAZZJX74qFJoXS6Emxns44LTWJ0zcwE4A/VcYUpmhELiiGFYRwurVqN60aMwENcc3IAYpl5IHDBIF+0RSq4Nh49mvIX76gcLocDGTodMvV6ScifWMI9RveDF1xmnQ7NTicaHA5k6vUotFhQ2dyMlUIZ8y3HjsX0HMnE5/OJgivHaBQdgIN1deglCHu5U7yzshK/lpcH7Z11vZCDNalHDwDBy8JHitLznPzWW2hwOKBRqWDQaMTvQKhzVu5upDJyh4tHnjuXZTDEVdK8vYQUAsBpvXvjnkmTUH/ffQCA28aNE//G3i+HxxPQl5BV4pQLLofHI+lrOOerr8K292gr7G63uDH04fbtONrYKH7uZp0uIpe3vfJbdTX+76OP8Lcff2zroRCtTNwz0x//+Eecf/75OHDgAD755BP897//xf79+3Huuefi7rvvTsAQCSIxPPz993hn8+akHb9ZcKPCNTiNhlCLFR62s8kWYt25FgY5RiMsOp2kqWayHC5HBA6Xz+dDs9OJid27B4xD4nDJFpV8CXmdWo3yCASXzeXCuNdew19kFUpTjaiqFAoOl1koosFguS+xLljlgutgfT0O1NUh32RCJ4sFlVareOx48myShdXlgsfnEwVXnSDYD9bXo5eQW8W/v9/t349n1q0DAPwuVH6Tk2kw4KJBg9DodMLr88EtVJCLFf75c4xGPH3GGQCAHw4cgEWvF6t+AqFLe7enXnVMtCshd+7l53S0tCfBJYd3+1hVWrtQlZSnTIgekjcGtrvdAYI+FTdGgMA56uVffhGvISatVrFoRtE//iGW0W/PsHk2WGVhIn1JiMN17733QsstlLRaLf7yl79g48aN8R6eIBKC1+fD/B9/xHWffpq0/Idml0sMhwASVxY+EsEld7iKueR9o1br7ydks4k5XIkumiHmcEXgcLHdTSXnjhdcb5aU4MIPPhB/d3G7tV0zMyNyuJhoS/XwQya4QoWOsiqF7JyQNwdlO+GxiiH2XuWbTKJbtqOyEvlmMwrNZongSsX3s4HrWccaywKC4BIcLr7y5envvIO+ubkAQrdByDEaUS9UjwPi26zgQ0DNOh1OFKqKfrRjhzh+lgca0uHiBFeq5tMxoqmcaY6wQmMw2rPgUqtUYlgwH1LIzplZQj+3Q0EcLrvbDZNOh0N//KN4W6q2c2BigwnE7llZ4vluFASX/Pw/3tyMVzdtat2BJoGHhPoDwTYhiPQl7pkpKytLUjGQcejQIWQKoUwE0dbs5SohaebPx4q9exP+HM1cwi+QGIdLqTmwEiwHhS3E+CWYXqNBnsmUNIfLEKXDxS62Sq+LF1ybysvx2e7dYrUtfle0S2YmjkZQNIOJD3muSKrBFoqhcoDYYrRRcAyCOVxVMQquOrsdWrUaZp1OslOebzL5BZdQKh4AylOwYAkTLFkGg7/ktN0On88nCSmUF1Swu93olpmJC4WWIkpkGwxYd/gw/i0UbAmWwxUJJ3NVHq8bMUKxiAcLKQwlPPiQwlQNG2MoCa7dc+Zg5bXXBty3IztcQMu5xTbZeIeLhRwGc7hsLhdMWq0kuiFRhYW8Ph++/v33hBwLaJnLl156KYCWjThAWXDtlfUca898u28fgNC9NYn0JO6Z6fLLL8fMmTOxdOlSHDp0CIcPH8YHH3yAWbNm4corr0zEGAkibg7Kirh8J+SiJJJmwXkwxCm4bv/f/3D2u+8CEKqiRbDA06jVyDIYxF19GyfUCsxm5JtMqOF26ROdw8UWh8EcNI2we+v0eNAs7NiGc7gYrDkoe44tt9yCzhkZYp+lULDCG/ntRHCFwqTVos5uR7PLhRyjMWBxyna+Y11kMSGnUqnwp4kTMe/kkwH4F8EZQr4Ye75UTMjnBRdbsDU4HGh2ucRFqLy3WyQ5kseEhe1NX3wBIL7NivHdusH38MNonDcPf5s6VVlwsT5LIeaPY9xiO9UFV6WC4BqQn4+pxcUB92UubqyunTtI/772Apv/MrkcLuZwsbBYdp5XWq2S94m1JQEgOreJElxvl5Zi+rvv4ocDBxJyPHYNKLJYkG8yodnpFDfr5ILrSEMD+r34YkTHLa2oEEP2AP/r/z2FxBpfuThcISwi/Yh7ZvrHP/6Biy++GNdeey169+6NXr164frrr8ell16KJ598MhFjJIi4ke+aJlJwMOQhhbEKrpc3bsRXwm6iw+OJOGcklysUYHO7cemQIfA+9BAKLRZ/SKHVGrbxcSzwvV+C5SKpVCroNZqwDpeSuHyjpER8TYVmM4YXFUWcVN3eHK5QmHU60bnskpkpLk4Bfw7Qp7t2AYhDcAm5YYD/+8HcmDq73d+M1+0Wny8VE9rrFQQXEy1MVDHhfYNQDOO41RrWQT6hqEjyezw5XIwMvR5qlUqxHL0xAoeLD+l0pbDgcnk8qLPbowop9CH2cOx273AJ5xafw8XCe3OMRlGIaVQquL1eibhgVXIBv4PYMzs7YYKLRU5EsskVCXyBDLZxFMzh2nb8uOSxocT4qFdfxalLloi/91y4EP0jFGutAZ97mYpzKJFc4p6Z9Ho9nn/+edTW1qK0tBQlJSWoqanBwoULYSDLlGgFFm/ahIfDNOCWC65kXJRZ0Qx20TzS0IDrPv00qpwE+SQcTXPfHK4Utl24+LIQtTyjEdU2W1JCCrMNBnHXlTVyVXp/meBin4WSs6A0rlquGATb/TdweWOhYIIrWJ+lVCEih4sTBl0zM8VeWQBw3vvvi3+TFxNhYYjhaJQVNzi9uBizx4zB7LFjxXDGeARXvd2OnUIvr2Qg5nAZjTBoNHB4PC1tCoTzaubo0VhywQW4ZPBgAP73KpzD9ZeTTsIjXDXNRH53VCoVGoQqdYxIqhTyn7ErAbmiyYJ9/6IRXEBkhV+sLheu+eQT7OcKnrSXsvDBMMgdLiGkkAl0tnE0sKAAQEvFQkDaB1KjVqNrZiYqZGGHsWKOwHWNhmbuGmDR69EsE1z8htru6mrJY/k8SCV2cHNMqm1G8IKLysJ3PGKemb777jsMGTIEDcIX3mw2Y/jw4TjhhBPgcrkwdOhQrBYarxJEMpn95ZeYH6bEqnxyS4rgEsL4NGo1dGo1nl2/Hu9s3hxV+OJvsotLpCGFgD9E4eWNG7H64EHYXC5JeJ7ocCWhaEaWkC8DhK62p9No8KdvvsGmo0cBKDtcBWYzvp0xA3edeKJ4G1tIsxwFwL+AjqSxNFvwpXqYUaQOF6NLRoYkpNCo1UKtUuFvU6ag0ekUQ3YAYOxrryHriSfCjoF3uAD/4u+Vc89FJ4sFJq02bofr4g8/xJCXX476cZHCzpNMIazX7naL5wgTSVq1GteNHCkK8PKmprAOl1qlQjcuLyaeHC4lMg0GfHX11Vh+zTUAIgspLG9qEvPRUjmk0BrCzVZCXNhHsBhdUlqKd7dulTRDTzeHi4UUspwuJrgG5OcDAI5wwpsPKQT8feES5XBFklcYDaEcLgOrUij8fkiWDhCsYI8zhTceGLXkcHVoYp6ZnnvuOdx0003I4i5EjOzsbMyePRvPPvtsXIMjiEQh3zFNRvx0M5cPYhaalwLRXQh2VVVJfndGEVLIChlMXrIEO6uqJI5IvsmUPIfLaBQXu6EEFxN7t/zvfwACeyIxTu/TR+wn0zUzs0Vwud3iY5iDEQ62o5jqF+NoBVe+ULqd5bvU2+144ayzMKZrVwDS170jQlep0ekMWjmLNeNln0Usi4WtQonqZO3sNjgcMGm10Gk0/sqZbnfQ850VBYnE4QIgaYycyO8O46x+/TCtb18AkS1ujzc3iyIw1XbxeaKdb9hrj8Th2ihs3BysqxNva/eCS+Zw2YVzmAmpfMEp7JOTA41KJRbQAKQhhQDQ2WJJaNEMIPaWE3LYhpBZpxND0oOFFNrcbowoKsJvd9wBILjgag+96di8XGA2J8wtJNoPMc9MmzdvxllnnRX079OmTcOmNCjhSaQHVpcLvMRKxu4SX1Ewx2gULyrRLIgOCIsHtUoFn88XVaNV+QWHD1/IN5v9TXOFMSUyhy3bYBDzZ0IJLrlACrXQZSWPz+7XDw0OB3w+n39BwYcUcp+hy+PBES68hsFKnaf6bmIkC0U+LEutUomCy+Z2w+X1ItdkEkVZs8uFHw8ehOFvf4t4DCx0SQm2kKu22aBRqfyl/RVyKb7bvx+a+fMVF2ZssXhY4XNKBPV2uyikAkIKZa5UFlfVM5jwV7o/O3YyicThqrHZUCQU3EhlhytawRUupHDlvn1iHtEeIRpgXxoJLtaknr1fDrdb8pqYw5VlMGBIYSFKKyrExybT4WLzZ6KK5VhdLqiFRt+hcrh8Pp8YrdElIwNACMEl603nScHvBbsmd8nISPlrEpF4Yp6Zjh07Bl2IC5VWq0VlEuP1CUJOqBAzm9uNQq4iWKJ26nh4hyvHaBQFRjQ7+mxcXp8PTo/HH1IY4WIlW3CFWG+fA9xChF2o2WIlkbv0WQaDONZIGvgyQoUZ3XfyyXjglFMwuVcvuLxeOITcL0lIISfg7v/uO3RfuDBg8VmTRoKruyyawKzT4Whjoyi0WYNrwH8e7QvSzDcY8pBC+XMB/lLUTDgpbSQ89dNP8Pp8ASWrgZaCFYeSJLgaHA5RGLEFmyPIgj+by+mLqO0Cd/9kOFw8kRTdqbHZUCQsQFM5hyvaIj1s/lRqCrv+8GH84V//wunvvAMAYvU5PnzW7fUGlP5vT7xw1lkY3aWLWKjFLhNc7Dtk0esxrmtX0eVjwsQkc8ET1aCcnYuJarjd7HLBrNNBpVL5c7iczpaQQsGhZo3G2UabRa9HtsEQscPF9ylLFfFVK2xYFZjNKX9NIhJPzIKrW7du2Lp1a9C/b9myBV26dIn18AQRNdU2Gz7fvVtxIrO6XMjU6zFWCLlqDpN4Gy0eQRSwxVsuVxWvPopdQX7szS5XVEUzVt9wAz6/4gqsufFGAMBgIbEaaLlQlydBcLHFaL3DIQoepZwpXlDo1OqQLlv3rCw8NnWqmGvT4HBIFhR6WQ7Xr+XlAALj/duT4Aq3UJQXHugjlH5+YcMGABBLxQP+81su9OcuX47i559XPLbP58OBujp0VihTDrS4LrV2u3heKb2nrFy5UmI7G//8VauS0qy3nhNczAGV53Ax+NDJSBqL53KCK9E5XHLUQkXPYBs1bq8X9Q5HWjpcLHSzXmFhP/GNNwAA2ysr/aLeaoWRKxwDtH+Ha2BBATbdfLMYLurweCSviX2HLDodhnXqhF1VVfAJm3M+QBJSaBHCgBNxfrDveqI2Kq1cNAhzuNjmokqlkjT/ZgWggNAN76tlgoudL4CygG8L6ux25BiNYtVXomMR88x09tln46GHHoJdYWK02Wx4+OGHce6558Y1OIKIhp4LF+KCDz7A57t3B/zNKuyo/XLTTZjUowesCZ7s+KpLgLQq3l1ffx3xApOfhFlvkkgXeAPy83HewIHQqtUou/tuLPjDH8S/MVeCCa5EFs1gi9cGQXCpVSrFHDl+IRRJ3gzQEspVb7dLc7hkVQpZP6M+L7wgeXw6hRSy95S935cMGYJBBQX432+/ARAcLs4haJKJnoXr10tcT55dVVU42tio2BsJkC7kmIOq9J6yECalBTNzO1YdPIgtQj5XvJRWVIgOT7XNJp7nBo0GPrR8L+UusUatFhd82RFU0+XdxWQ7XADEIiVKsJ18ds6nUw4X27wJ56Q0OBzw+nzokZUlWUx72rngYqhVKujUatHhYpsxrIG3x+dDv7w82NxuHG1slITjMcS5IAGbi+xctCfITWXXYwCSHC42ft7l5UPJmeDy+Xx4Zu1ayXzGcvlU8J8H/N8SvcEaK3V2O3JNpoDGzkTHIOaZ6YEHHkBNTQ0GDBiAp556Cp999hk+//xzPPnkkxg4cCBqampw//33J3KsBBESVpJcXhYbkJbMlTeMTQRscSs6XLIy5JHGvsfjcPH0yM6WPI6FFFY0NUGrVovl4hMBE4RO2W6sHP72SPJmgBansNZuDwwp5N4rXuDy4pZ9LpFUNGxLIt2Z//H667H5llvE38d364btQuh2tsEgyYEJVj5ZSfyzML9BnCvKw4cqTerRA0Cg4PL5fC2CS+F8t7pc4oIx2C51NNhcLox69VX8cflyAP5wRyZC2IKNfe+UvkNscZ8dQcsAfoMgqxXanZiEMvxKMNeWOVypHFIYbaN1i04HjUoVNiqANTTvkZ0dEFKYDoILaHFp+dfEmh+XNzaiv1Cp8PeaGlEQ8d9Tdi2Suzvvbd0aUJwpHGIBiwQWzeALTLEcLoNMcNncbknF3a6ZmShvakJpRQXuWbEC1/73v+Ix9woh1D4Ad3z1lfT5UsThqhUcLrNOlzIikGg9Yp6ZioqKsHbtWgwbNgzz5s3DRRddhAsvvBB//etfMWzYMPz0008okjWMJIjW4JhC/oiVc0eSIbjY5MkuInLBxceTh8LmdrdcKJ3OqHK4QpFrNEIFv+BKpLsFtLhlrigEV6QXbhZCU9ncLC0LL3O4+M9THloCpIfDBQCn9OqFYiGUEAAKuNDVDL1ecu7IHS6GUnVHvoeVEuwzvuaEE0TxLn9P+WIYShsMVpcLk3v1AuCvshcvzAVhbReONzejkDlcwnly5ccfS37nYfNBtAKqNQSXMYTDJQouIYcrUSGF248fx2OrViXkWIxoHS6V0AxayeHi58GDQuhwj6ystAop5GEuCO/aTe7VCzeNHo0548eL30MWbg3IQgqFa5H8Wnf1J59g1KuvRjUW9l1P1Dwa4HAJOVxBHS7h9yKh8uK3+/YBaInYAIB9tbVi0ZFFGzdKni/YXNja1NntyBUaWKfKmIjWI66ZqVevXli2bBmqqqqwYcMGrF+/HlVVVVi2bBl69+6doCESRHCUyn0fU6jMxE/wSRFcsn4zlw0dKvm7UhEBJexut3jRqLHZogopDIVGrUaO0YiKpqaEh0Sx40XjcMkrSgWD5Z5VWa3SKoUajZhUDUhzhvYKyfQ8iQqFSRaxLhT5ECKzTgejVgsVlEMKGUq3sxDAYGXhmciY3q9f0KIOB7n8OaWQwmanE7lGI3KMRsVNkWhhLgg7VqXVKjpc8k2KUOd8pALqiyuvxIoZM2IZatQYhCbhSlTLHa4ECa7bli3DQz/8EPFcFQmxtKEIJrgyDQacJqwrWEEYJriYa5tOgosVBnJzzZz1Gg0Wn3ceumRmSr6HiiGF3OaLnGiFE1+iPRHw+Za8w6UkuPgcriyDAY0Oh/j586/jeHMzxgvhzow7x48HkDohhczhytDrwzZwJtKPhMxMubm5GDduHMaPH49cbveVIJKN0uJAaTHHuyNmWaJ1IpA7XCd27y75e6Q7+jaXCz2FsKvjzc0xhxQqkWcyocpqTWhJeKAlXMjl9YZc8PzroovEBVOkGLRaZOr1eKOkBPtqayU5XEDLgq7B4cAYoUiPkqBIF4dLDnsfWBESFVcuPpjgUlp8NAgl4YM1iC7OzcXRuXNx1fDhQQUXf44HCym06PUoslgUN0WihYm6GpsNLo8HNTab6HAZZZsUob5DkeRwAcC5AwbgD336xDja6DBotUEFV7Icrs7C8X4+ciSqx7H8PyVcMQiubKNRUbDzm1E3ffEFAH9unQ8tQqC9VynkUQoplPxdeE+ZCwRIQwrNCiGFfGj1Jzt3RjwWW4IdrlrB6QH810x5Dhe7Vj/8ww/YcuyY+LqyDAY0Op3YL+Rn8XNZjc2GPjk54vUTaCkslCohhaxoBjlcHZP02AoiOizrDh8GALx/ySXibUq9RyQhDHp9VILL5/OFzcGSO1wAcMf48fjjhAlQIfKQQrvbjTyTCRl6PY43NycspBCApMJfIonU4ZpaXIzvrr026uM3OZ1YXVYGp8cjyeECWhYQjdyOqRLpksMlh70PfE6cXqPB17//HnQHVdHhCvP+AUAXYbHLFkXy79AxIT+wR1aW4velWdj0yDebUZOA8tK8qGNFOAYIeS1eWZ6aUhgte+9aI0QwWuRVOHlqbDZYhIaxQOJyuPKEBXCZrNJnOAa/9BIGvPii4t9icbhyjUbF88PmcqGrIAoB4PKhQ0XRyc7FdHK4WEhhsNek5wRXpEUz+Dnhkg8/jHgsLGQxUTlctTabKLjMOp0oGuUO16e7dgGAxOGyulz4tbwcJq1WIqRqbDbkmUy4dexY8TbmeKeKuGEhhRl6PRoT1NOMaD+kx8xEdFi2Hz+OIosF0/v1E29TzOGKMqTQ6fFgxd69AIB/bdmC7CeeQFUI0SR3uADghenT8eyZZyJDr1fcsVWChc11slhQ3tQEj8+XMIHELlqJFlyR5nABiKlYx5ncZ2uSOVwOjweVzc3YcuyYWKFOCaWdWZ/Phx8OHEhKifJoiTekkD/vDFotlu/dK7mgXzFsGM4S3kel3d4GhyNip4eVUZcvYo4JOVQ5QRwKh7CgykzQYoN/jne3boVWrRbbPvTLy5PcV+m8u2HkSADSFg6pgl6jgTOIc1VttSLPZJI4y4mACdhYQp2COQhi0Ywozu1OFktARIDb64XH5xMdLgB4+NRTJW0QAH/hpHQRXGJIYZC5QaVSiaJMMYdLoYl0rI2L2Xc9oQ4X6ykmjLPGZgsQXAyxQqswR1VarbhuxAg4PR64PB74fD5RcPHvARNcKRNSaLP5HS6DAc0uV8DGEJHepMfMRHRYGp1OMSaacby5OWARzSfeRiK4Hlu1CtP+/W+U1ddj7aFDAIAPtm0Len+24FDq6ZNpMES8w2ZzuWDUaNDJYsHTa9cCSFzfHyMXfpZIInW4GJ9cdhm+ueaaiI//5ZVXYqIQoqnkcP106BBsbjduFBbQPKzhpdJCYfOxY5jy9tvYJPTwCseOykpsTVA5cznxhhTyDtcLZ50FwN/4+raxY+F7+GG8f8kleOnsswEEz+GK1Olhix4mmth36bhQJTDbaFQMKXR5vdBrNMgUwoLihX+OhevX4/yBA0VB3isnB76HHw75+LkTJ6Jk9uwAcZYKhMrhYgtLdr4ECyn8dt8+dH3mmYgXdaLgimJRHm6zwunxQK1SBQ1VVYIVRuBhgqKIc7hYJADQck6nq8MV7P0TBZdSlUKFJtKxbnSw72uicrh4h4uNs8ZmE+d1/nXwz8vPUSM7dwbQkq/q8fn8got7bK7JBLVKlRIhhT6fTxJSCKSOECRah7hmJpfLhSlTpmDPnj2JGg9BREWT0xmQe+L0eAKSruUOV7iJbo9QeKFemCABf6nZPdXVivdvdjqhVqkUw/8yoojXtgsO13kDBoi3WWQXn1gxJsvhijCHi3HR4ME4o2/fiI+vUatF94p9hiZu9/ZYUxM0KpVYJpmHXWgVm/QKizq+ul4ohr78Mk545ZWIxx0N8YYU8ucdcwEO1tdL3JtQSfQ7qqok7kEoLDodVPAvwrYfPw7L449j1YEDqHc4kGM0IttgUNxJd3o80Gk0CXO4VuzbJ3Hlrh4+PKrHq1QqcdGWaoQKKax3OJBtNEqcZSWe+uknlDc1iTlf4WBzZjRiOJxjEksOaueMjIAcP/b95efCbKEAC9AiFtNJcLFKrKFeExNcSiGFJoXQ31RwuLyc8ABa5vRqzuHii/dcNnQo7jv5ZABSwcVCnJudTvEcz5U5XBadLqrrbzJpdrng8fmQy20UUOGMjkVcM5NOp8O2bdsS2tOHIKKBCS4AeHH6dLxyzjkAAsMKYwkpBPwXAf6+qw8eVLx/s8vlX4gqfBfCTfh3fvUVPt6xAwDEOPazuDC6SPoERUKwcI14idbhigWLTGixC2+Dw4GKpiYUWizihVbePBpQXiiwam+JKOAQL/GGFPKP7cY16eXbEwQLBTzS0ID1hw8HVNYMhkql8rtUDge2HT8OAPi1vByNDgcyDQZkGQwBDpdPqCipU6v9gsvpxLLffsNH27dH8Wql/HDgAK4dMUL8/VSh5DzPaKGQSntDzzlc9XY71gkuO+A/57MMBkmvIiWYcxDp+c1CNKMRw6GKAf17yxbc+fXXUTvqRRkZqLXbJYJTycExarXiop01g04nwaVUFj7YfZRCClXCBiA/94XrbxaMRocDWrU6ITlcDQ4HfEDIkEKDUG0VAM7q21f8nHkhxm5r4lpgZOr1AYVDLBFssLYG7BxlIYVA6uSWEa1D3DPTtddeizfeeCMRYyGIqGkWKp8BwJzx48WmrLWyXV1542OX14t3Nm8Oelx2sT9UX48Xf/4ZQwsLkWs0Bi1+wTdylJOh16MpyIXqaGMjXvz5Z1z60UcAIJbALeTykSLNrQmHuHuY4CIB0eRwxcrQwkIA/qpkQMt70uBw4FhzMzpnZKBzRgZ0ajUOChWsPF4vbG43MvR6xTwXtiuaiBLl8RJvSCHv8HbNzBRzHniHi53/8vCaX4WQypOE704kMNHEN7ZtdDqRqdcj22AIyOFi778YUuhw4Jz33sNl//kPvD5fTHl09XY7+ufl4d2LL8Z//u//FHP4vp0xQ9Iour3AqhSWNzYi58knMenNN8W/NTqdouDSazRB80PZQva+lSsjElFsMR5srlIilHv2zLp1AKLPMWNV5lglOgCKDg7QsqHA2kyECr9rb7Dm7uEcLofHA5vbDRUCoxeMQqVDhtzNj/R71+h0opPFkhCHi12bc+UOl9Uq+XzZ55ihILIAaWNnvjgLLzoz9HqxCmJbwxzkXC4FggpndCzinpmcTicWLVqEMWPGYPbs2Zg7d67khyCSCe9wAS1uEL+T5/P5JA4XC7+67tNPgx6XXVhWCk1Vt1dWopPFErRHDXO4lDBoNPj3li2KixO+BLPX5/PncGm1KBSSfQHpRSYe2MVMKc8sHlrD4brv5JNR/qc/iYKaOVx3ff01Djc0oHNGBjRqNXpmZ+MAKxksXGTzTCbFfBj2ecjzRVweD17ZuFHM/wKSX+Uw3pBCvhS2XqMRi0fwDpdapYJFpwvYVd187BjyTCZRzEZCphA2yBdFaHQ4/ILLaAwIXXJxwoyJNYZm/nz87ccfI35uwP95ODweZBuNuGr4cFwyZIji/XJNJpxQVBTVsVMBvVAwgTV1BlpytRqE9zlUk2Cg5Xv+5Z49eCyC9zcWhyvUApydG9Eu0od16gQAonsKQNHBASCKzjpOcKWbwxVpSKFRqw2IsDAIf2fsr62VOI6RfjZNTicKzWY4PJ64Cz2IwoM5XMJ56vB4JIKLvRJ+I5PP4eMde9bM3aDVShyuHKMxZRwu1qewS2am6NRRSGHHIu6Zadu2bRg9ejSysrKwZ88elJSUiD+lpaUJGCJBBKfJ6UQGH9cvLMT5XV+XUOGKCS62wA51YWaL9d+FXK6V116LQoslJoeLFd14dePGgL/xlQ+bnE4xh4u/8CQqpJAtVoI1t40VjVoNFSLP4YoFnUYj9gkCWgTXzqoqfLFnD8YKoWPFubnYJ+vRkms0KgquauG9lztcn+7ahVv/9z+8u3WreFuwPkOJIt6QQrNM7J8h9IuS7/Zb9PqAxcf+2lr0zc2NKjSc5WExYeX0ePwOV5CQQt7hUiqJzNyQSGHHT5T7m2qwkMJybjOAvddM2ALBmwQDLZXd+McGw+P1iou/aBaBkQiuaOlksSDfZMKuqiocb25Gvd0uvkZ5YReVSoVco1F0TUKF37U3TDodbBEKLj6CQ+nvjP11dZINCFYpL5TT5fZ6YXe7xU3AeDefajmnB5DOXfx1j52//EYm/z4UCI52pdA+BfBvQMnDKi0hIkxak+3HjyNTr0ePrCwKKeygxJ3M8f333ydiHAQRE3KHK9NggApSh0u+Ozq1uBgAxMp3SrC8LVYkY2L37ig0m4MLrhAOFxNvBVzI07GmJmQZDOKiH/Dv/PG9SBiJDilMtMMFtCwQW2uHWS4kmPM1uKAA3wjl/NnFLM9kUvzcWK8feY4LW7hs53bYj6So4GIhhXIX9N6TTkKV1RrQaDpDIbzmUEODpFloJLAGpMwlbHQ6RSFgUciR5J2wbKMxIMws2tyS+iAL8HSBhZOVc+ddnd2OPJNJzOECQgsu/nMOFzrGBFmRxRKVw+UIIariWZjnm82os9sx+KWXUGOzYemll/rHl5GBDbNmScaYazJJQgrTRXAxZ8as00EbZDNE7nAF+zvjSGMjhnbqhJGdO+ONkhJYXS5c+uGH8Pp8+PGGGxSfg73XLMydtS6JlVquwAV7nQy++I8ouIJcr/JMJhg0GhxpbBS/D3qNJmBsxhBNxFuTLcePY0hhIVQqFYUUdlDSY2YiOixywaVWqfw77NwihC3+2E7aiM6dceGgQSFzmZgLUCnElZt0OhSYzUF7cfG5ZHLYAoCF3vl8PnR+5hlc8uGHYuEGAGK4ojxsRhdlla9gKFWAShQ6jSapOVzhYP1WhnXqhN3V1bjxs88kgitUSKHc4WL3LePyHY5EUMmQFYaIhXhDCuWCK9NgwCvnnhsgSJRCCg81NKBHFOGE7PiNTqf4fWh0OESHixWl4Rf5fEhhJy5cVs73+/fj6Z9+Cvv8TCAkyv1NNXiHi81v9VwVwUxecAVZtPFOpieM4GKCt3tWVswOFx8CCMTucAEthYbYd7S0ogJ6jQbZBgPGd+uG0wUHF5CKznQSXOw9CJWXxopi8G1PeOSCq8ZmQ77JhOuFFhq9nnsOqw4exOqysqDjYNfPfEEgxVs4g4ljtpEYzOFihVLk16sxXbpgQvfuUKlU6JqZiSMNDZKQwt45OZL769TqlBBca8rKxI1BVumVHK6ORUJmptWrV+Oaa67BxIkTcUTISfnXv/6FNWvWJOLwBKGIz+dDrc0WsKiU9wGSCy72/2W//SaGDMrhd+jZ3mKwhq6AEFIYZNdv4003SY75m/CcX/3+O6qtVvGCwhb+7KKz9NJLJeXh4yVZRTOA1ne45DDBwZyat0pLxR3+cCGF8hwudhHkcxV4hytYDsP1n30G3WOPxTT+WN83JvAizfPLkIUU+nw+lNXXo0eUDhcLKdxbWwvAL4CahKIZ7HvGL/T4kMIiBcGl12hwvLkZU995B3/59tuweSIdJaTweHMz+gt9wuodDni8XlhdLnHOq7fb8Z8dOxRDXnmHK1Q1QaAlr6ZHdnZ0Dhf3Gf9HqLTKYN+5WNpaZMoquy5YswZOj0cx7DXXaESt3e4PjUPoUPH2hEWnQ7PLFVdIIWuezKi2WpFvMgWEIPOiZk91NQ4J+UZAy/eYOVLxFs6otdmQbTCIIlKn0Yh5ZbzgGi7k8snbfWy8+WasmzkTgL8i65HGRklIIZsLRwktH/iKn21FtdWKsvp6TBCiapjLRTlcHYu4Z6aPP/4YZ555JkwmE0pKSuBgceaNjXj88cfjHiBBBKOiqQn1DgcGyCbkHKMRm7kGtUolhVmRgT+8847isfnFCnt8uPCdYA7XiM6dkanXi8dZuW+f+Ldqmw19cnPF18OP87KhQ/H5lVcqHjMWkhlSqFOrk5rDpUTJ7Nni/9lFll+ObRHOgdwQDleXjAw0OZ0Sgc0ECe9WKS1A5LCql8FEeShifd/YwinSwhDyfIZaux1Wlyt6h0uvR4PDIW4esM2CTINBPH/5cuV8SCGf+M7zwoYN4v/3CUIuGOw9TleHiy2UG51OcROhzm4XF2hsgcx6j+2uqgo4RpPTKeY9bjhyJKSIZe9n98zMmByu4Z06Sdx/VqgIkFbKjJRoFqO5JhNqbTbx+5ougos5XB6fL+hrYtUsIwkp9Pl8YtNsvpjOrFGjYHO7RUd6/Guvoedzz4lOlii4hMfE2/zY5nYHCD72O39t+v6661Dxpz9JchHl5BqNkmqpLIqk4b77sObGG8XbgvWqay3Yhgff61Apl5VIb+Kemf72t7/hlVdewWuvvQYd9yWaNGkSfv3113gPTxBB2V5ZCQAYKuyEMS4cOBBf7tkjXvCVHC4mqA5yC2mGz+eTuADzTzsNgH83vc5ul1SvE48XwuFiz83GsYrr5VXe1CS6C6LgSnCfLAZbCCfDFWgLh4tvWssW3nzozR1ffQXAL8YUHS6bTRTr/GKRnRt86Mw+rkR1sB5uA4VjlVZURPU6gNgF14jOnfHzrFm4QQgRCofc4WJCMtocrkyDAcebm1EmPJ45LLzDxb9PLm5BVKhQvt3p8UhCED/fvTvk83cUh6vJ6UQ3YZFWb7eLCzTmcF1zwgkAIAlNZjQ5nbhw4EB8dfXVON7cjP0hRCwTN10zM8XKeJHg8HhgEMJEK2XfIYfHg945OVh21VURHYsnQ68PaDL/zLRpivfNMRjwe02NKAw0adIXlBW4cXk8QecGdp5EElLYKIi3fLNZUgV3cq9ecHu9Ypgu+27NX7UKQIvgYpta8TpcSs2w2TH5Sqn5ZnPQzRkGe/18SCEAMbSZv4+cT3buFAtaJRv23eDzuDMNBgop7GDEvTLavXs3Jk+eHHB7VlYW6rhFCkEkGiZQ5OWsTxRse5acqyS4+IlOXjTB4fHAB6CXsAh9QDi/c4Rkf+1jj+GNX3+VTNZNUQiu483NyBN2fY82NqLAbIZBoxEXv4luTMz4vyFD8PQZZ+D/ImxwGw1tncPFnnME5/SwHf0sgwFen08ilL1COCoTSXzxEiZI+J3cvTU1ojgLJrjYxT6YCxqKeN63cd26RVxhMENwphiHhNy0aEMKswwGlDc1wevzoW9ubovg4hY6/PvE9+sKlo9ysL4eQwsLcXb//ljBucBK1NvtMGm1CctvTDV4wZVnMsGk1eL6zz7DzV9+CaAlLDjbaIRGpVLMLa0V3Ay2yAvlGLHPii1wI915Z85KoaxlBvv/a+edh+ExlOVXq1TYJXPt/i9I6f9soxFHGhtx74oVANLL4fLB/7kFFVxCflKwQha84GJzXJ7JJLlWdREEfbXNJnGCnhByKeUhhfHmcLkUBBcTTNG0pgD884nT44FD6EOmJLZ1QQTXJR9+iJO4/nbJhH0/+c0mCinseMQ9M3Xp0gW///57wO1r1qxBHy6xlSASDbsQyHf25M0wlXq48IKr8zPPSEKY2IL7mWnTYLv/fnExy+fJPL5mDU56802sECrihQopBKSCq9nlEi8sRxsbYdJq0TkjQ2z0GU8FqFB0y8rCPZMmJayvFw9bILraOGm90GIRY/8ZLPyKXZh9Ph+anE74ADGckzkEbq8Xjwg7u7xgKKuvF3MCgvViYw5NuBLcSrSWUO2WmSm6UkBLqItSXlUo2Huq12gwsUeP8A6XIHZ1IV7jwfp6/+672Rz2Pax3ONI2nBBo6Z/EigKx7+zXwrWWvf9qlQp5JhOqrVYcrKvDuNdeEwU/Cx8TG8SGWNyxOZIVNIl0Iehwu2EQGrXzDlelwgIzGsplm2AAFBtbAy0bZj8fPQogfQQX+9zq7fawDlewkEKD0BgZaJmXsgwGyQYNc1D31tSIm5in9OwpusfykMJkOFyMaAUXe/1OjwcGhT5kgF+URtt8O9FUNjdDo1JJwmvl/QiJ9CfumWn27Nm46667sGHDBqhUKhw9ehTvvvsu7rnnHtx2222JGCNBKMKaBMsnWTapDV+0CICywyXPYzqoEDKWoddLLmK8UGHNddkFKpqQQj5nxuvzwaTVoktmpii4kuVwJRMxtMXlSlpIpBLrZ87Ea+edJ7lty6234o7x4wH4dzzZ597gcMD497/jlY0bxc+COTuvbtoEADjMVSPkBYPV5RKF3P4gzj1b2ERb4hxoPcHVPy8PZfX1YpJ5g8MBi04X1HUKBnNYco1G5HJl3oM5XHxIYTAO1NUh32QKKJigRL3dnrbhhIA/tI9V6csQmknz8IWCWPXUZ9etw8ajR1FSXi72Rcs3m8WNIHk7AB6b2w2NIN6A6B0uvhcW0CLkC6MU8oxyhSIg8rwfBsuL6ScUF0kXwSWWDg/lcIWZd3mHK9gG5aCCAnTLzMTXv/8uXs/65+UFPE50uJIguP4yaRJOLy6W9FqMBObwsdBWxfsoOFzrWimUkFFptSLfbJbko1FIYccj7pnpL3/5Cy688EJMmTIFTU1NmDx5MmbNmoXZs2djzpw5MR/35ZdfRnFxMYxGI8aMGYPVq1cHve8nn3yCM844A4WFhcjKysLEiROxfPlyyX2WLFkClUoV8GOPIfyHSA2Cxa3zCcEOt1tRcL194YW4efRo8fda7jxgk6DcsRraqRPO6d8fQEu4Gvs3KofL6ZTs5Bm1WnTJyBBzLFpTsCQKo7CTGm+Plmg5sXt3zOI+R6VxsYs7E0r/3ro1YEf/Pzt2wOfzScIB2eflERpnd8nMRJbBELSgA9tBTmWHq19eHnxoKUrR6HDEVLWSOSwatVpS4SxTrxfPX1uQkMJgHG5o8Asug0Fxwe/0eLDqwAFc8uGH+O7AgbTtwQUAQwsLxf9n6PUB4pL/zPJMJlTbbNgqlGXXaTSi+MnjKtKFcrisQpU79llGeg6zhS7vpAAtLnBBjA7XpVz44NdXX40548YFve+Dp54KoKVvU7oILv56EiwvTS8UVwlaNEMoGw+0CCd2v39On473L7kEKpUKE7p3R+mxY+L81zUzEw6PB16fr1VyuJ484wx8e+21UW/88A5XsM0cueA63NCASa0USsiobG4O+C5Q0YyOR9wzU1lZGR577DFUVVXh559/xvr161FZWYn58+ejLERvh1AsXboUd999N+6//36UlJTglFNOwfTp04Me78cff8QZZ5yBZcuWYdOmTZgyZQrOO+88lJSUSO6XlZWF8vJyyY8xjcNS0h3mcMnhbftdVVWwCfHd/ITcOSMDd02YIP7Ol1Vm4WX5supaOUYjvrzqKkzhmslW22zweL2wu90hq/+ZhRK/gF+cdc3MFBcIJp0OvbKzRZegPTpckvLEKTR+XnAxkWFzucRdWl6E1zscYt+fbINBFAxiQrZGg17Z2ZKQPB4x6byVc7iigZVYZu0Q+Ca60cCcEI/XK1n8B3W4uLLwgDSEkd+ZzjYaFXMbdldVwfC3v+G0t9/GJzt3orSiIq1DCgcWFIj/V3K4eJHLmlAzV8nqconnMR9SGCz3EPB/J8w6nej4BnNx5bCFPmvUzKi0WpFjNIZ0NEPx2JQpKLv7buyZMwdn9uuHF88+O+h99RoNxnTpIn7/0kVw8deTRBTNkFfrvX38eFwxbBgAf8Gf3VVV4nvInCbWVBngqhTGmcPl9HoTlnspFs0QQluVYPnFjO2yfnGtQZXNFhBeG4mTT6QXcc9MxcXFqKqqgtlsxtixYzF+/HhkZGSgpqYGxcXFMR3z2WefxcyZMzFr1iwMHjwYzz33HHr06IFFQoiYnOeeew5/+ctfMG7cOPTv3x+PP/44+vfvjy+++EJyP5VKhc6dO0t+iPZLMDeFv8jvra2FVVhMyEMPe3GFAnjBxRYuwRq08heLyuZmcSETKqSQLynfLPQr6iJc1IxaLc4bOFC8b7BchVSGb8CZSoLRoCC43EIvI8DvJq654QYA/op9c5YtAwDMGT9evI/Y40WrRZ7JJHFDGTaXS7x/jc0mKcIRCa0luLpkZMCk1YqCq1E4F6OFObRWl0tcGKpVKpi0WlFwXf3JJ+KCQmx8LLzGn2+6CStmzEDFn/6Eg3ffLR7XLLgs8p3f5UKuJE86hxTyc1imwRCQ+8bPQVmCI8hEqs3lEpP080wmf9g1wocUmrRa5BiN6JaZGbAo9fl8+PHgQUklSaAlh0vucB1vbo45fwvwX6t7ZGcH9GAKhlmnE8VCtC5JqsJfTyIKKVTqw6UQUqg0Pw/Iz8eRxkYxpJBd+2wul/g4i14PtUqV1ByuaOGrFEYaUri1DQRXZXNzQHgt5XB1POKemeQTMKOpqSkm98jpdGLTpk2YJisBO23aNKxduzaiY3i9XjQ2NiJPiOnmx9SrVy90794d5557boADJsfhcKChoUHyQ6QOodyUtUIPjpLycvxx+XLFxQYfsnGwvl4UWscVElx5+FyFH8vKxGOHCiksNJtxvLlZ7E9j0evFUtwmrRYnCR3ogdB5LqlKe3C4+CqQYiEVnU78HA41NGCnUBmtc0ZGi+DiHC7W80cO3xj59ZISFDz9dNC5UYnWElwqlQp9cnPxl2+/hUcoBR1LSGE3QXA1u1yiYDNoNGJDT8Av5ljPOXlIYc/sbPyhTx8UZWSgKCNDDLex6HTINBjg8Hgku9I7hBYQALDvzjsxpXdv3HfyyVGPuz3BHPB8kynkucF6ojGRanO7xb5onTMyoBLyGCMJKQT8i+/fZWGzPx48iFOXLMEz69ZJbrezkEJhUcvO+UqrNeiGVTIw63Ti609HhyuYIxSuaIZRqxU3jEIJLiYG9tfVwaLTic9tExwug0YjbqiEckojIRmCK5qQQrngUmrzkmgqrdaADQgKKex4xLwymjt3LgD/Bfyhhx6CmTuZPB4PNmzYgJER9obhqaqqgsfjQZGslGxRUREqIuxv88wzz6C5uRmXXXaZeNugQYOwZMkSDB8+HA0NDXj++edx0kknYfPmzegv5OXIWbBgAR599NGoXwPROoTKF5rYoweyDAa8t21byGOwBqPvbd2K97Zuhe/hh/27sxZL0IaLbFfqrhNPxPMbNuCIIMRDOVydhLLJNrcbPuG+zCUwCjvEAEI2eUxljFot6ux22Fs5hyscvOCycxddPqSQhcfx1QctOh1cXi9cQrgK4N8tzjUaRVHGw86Bq4cPx7tbtwLwO12RupWtWU7/nP79sb2y0r9IdzpjCilkLpbX5xMFGxu/SpYYDgSGFMrplZ2NKqsVFr1eXOw1OZ3INZng9flEd/KeiRNRnJuL7667LuoxtzdYfugJRUW4cdQofBakN1mWwYB6h0N0eK78+GM8d+aZ0KnVYhiYRa8P7XBxGyWZBkOAOGOL9T+vWIFZo0eL+Ty1NhtyjEZx/nJ5vdBrNGho5SqSZp1OnJfTRXDxG3jB3BvW+DiikELh81cSXOzzLKuvR7bR2NK8XHC42GPMOl3cRTOUysLHSjiHD/C76nyVwq3HjmHmqFE4d8AAXLR0KapttqRvDijlcIUqmlFvt6PGZkOxUEWXSA9inplKSkpQUlICn8+HrVu3ir+XlJRg165dGDFiBJYsWRLzwOThXz6fL6JeM++//z4eeeQRLF26FJ248tATJkzANddcgxEjRuCUU07Bhx9+iAEDBuDFF18Meqx58+ahvr5e/DnUypVtiNAEu8gwco1GMd/mn9OnK96n6i9/wflcOB/gd7hCTcBsV2qS4EoxdyOUw9XJYkGV1Souiix6vfgc7EKx9847JeFV7QlJ0YwUcrgMGo24O8zvcvIhhWyxyBzOiwYNEnMYypuapA6XrBobg50D140YId6m1FQ7GK0puKYIod7NLhd2VFbGFFII+PNsvrv2WjHXkffzFp1zDoCWRZ5TFlIoh1WaYyGFgD+/zOfz4bKPPsKKfftw2dCheDpI89t05PMrrsATp58OnUaD8wcOxP+CNBDONBiwv7YWHs5R3XLsGIoEdwuQFu1RwuZ2iyJaaVHNP/Y3riHxseZmFFksoiBwcIv71pwHTFxIYboILv79CxamHU5wyKsUatVqxfeHCa6D9fXINhjE57YqCK5UdLhq7fag7U7kDteBujr0y8sT53h5H85E4/P5UBXM4XI6FSMhprz9Nvq88EJSx0W0PjHPiN9//z0A4IYbbsDzzz+PrCj7JwSjoKAAGo0mwM06fvx4gOslZ+nSpZg5cyY++ugj/OEPfwh5X7VajXHjxuG3334Leh+DwQBDGucJtHdC7WoB/ovIwfp69MzOxu1CmXA5GXq9WKKdEVZwCbtSxTk5AFoKEIRyCgotFvjQUn7eotOJz8EWK33a8W6WJKQwRR0u/qLLhxRq1WpoVCoxDOuO8ePFz2b2l1/i8alTAQgOV5AcrmNNTTBzriXg/6xHd+kS0ThbU3CxhfXXv/+OfbW1mHHCCTEdhzUE3ymE+/EhgJcPHYpb//c/ceEeriw826ywcI5jrd2O1WVl+HjnTgD+96gjcd7AgZLczsFcIQ2eLIMhoM/QpvJySYntTL0+ZENuPlrAxIXcMviqheNffx2+hx8G4D/vTy8uFjctHB4PMuFf3MdaoTAWzFpt2gkulUolujPBCkLohdxZu9utGGHBcmsBhMyv5R2uXtnZLQ6XcGz2OIten7KCKzdCwdUk5K2ywj3HmpsxPCGjUabJ6YTD41HM4WJVIOXXzBJh/evyeNK2uXtHJO6Z6a233kqY2AIAvV6PMWPGYIXQNZ6xYsUKTJo0Kejj3n//fVx//fV47733cI6wuxoKn8+H0tJSdIlwQUSkHmEdLmHhFm4HXx7GF05wvXz22ZjYvbu4MPxu/36YtFqxD4wSY7p0gVqlwjubNwPwV2NjO16xlBFPNQwaDZqdTri83pQomsE+U6NWK5ZU9nI7iWLFLmGsBq1WFFzZRqOY1/X177/jiz17/PfhHC75rmSDw4Fsg0Gyy3rj559HnGDemoKLLczu/fZb5JlMeEgoqx0r7LvCCyI+JAnwh5qpELyggYlb0LGFepXVKm5mAJH3hkpXglVBZRs9fBGRzceOYTRXFGpE585YtHGjWEyjsrlZkrti5RwppTydeodD8r22ulzw+XxBHa5gOUXJwqzTiYvqdBFcQEvuVqiCEIyLBw8O+DuLPPCxhX0YwVXR1IQco1HS2kHucIXKBYwEp8cTsgF6NIiCy2YLKbjYho/L44HL64VFr0dRKzlcwZqAs3Dr2V9+ia7PPKNY3TaaKAki9UnYzLRjxw58/fXX+PzzzyU/sTB37ly8/vrrePPNN7Fz50788Y9/RFlZGW655RYA/lC/a6+9Vrz/+++/j2uvvRbPPPMMJkyYgIqKClRUVKCeO1kfffRRLF++HPv27UNpaSlmzpyJ0tJS8ZhE+yOcm8JCnUKF+gEQF9cA8PIvv/gFV4jd2atPOAFrZ84UBd33Bw5gROfOIS/0PbKzMaxTJ/wotDbINRrRW3DIIi+tkLqwHC4gNfqIsQWC0qLP4fHA6nJBr9GIAsCo1YoX3hyjEZkGA5gMZ66kQatFt6wsuLxeMfyQ0eh0IlMmuOrsdqxQqK4nx+fzwePztbrDVWOzYbSwERAP7HvAh7QZNBqo0CJsnWF2ak3cgo7tBMtFQUcnWHETttCUO+y3cr2rzu7XDwDwZkkJ7vnmG3T6xz/wkBClArSUhQeUQwpZo+mll14KAJj81ltocjphd7vRyWKROFxA2wguRrCeVe0RNieEcrgAf6hukULTYPYZhCqsAfi/f0wE5ZvNQR0us04HawpWKay124MWudJpNPD4fPB4vWIeY4ZeD7NQHKQi2YIrSE86toHyry1bUN7UhFKFGgUHI2zPQLQP4p4R9+3bh4suughbt26FSqUSd35Z7LhH1uE7Ei6//HJUV1dj/vz5KC8vx7Bhw7Bs2TL06tULAFBeXi7pyfXqq6/C7Xbj9ttvx+233y7eft1114l5ZHV1dbj55ptRUVGB7OxsjBo1Cj/++CPGBwk1I1KfcA7XdSNG4OOdOyW75ErcPWECdGo17l6+HLcvW4Z8kymiJFq2o2x1uSIKB8zU67FNqJCUYzTirH798O+LLsLlQi+U9oxEcKVASKGRc64YzG1qdDgCckwMGk2LwyV8rt6HH0bOE0+gXLggGzQaMYz0QF2dZIHD+lnJFzSRhN8wodJaC0V+AyIRYV9MsI3gQr5VKpUkfyRcojx733RqNSw6HQwaDaqsVjE37tIhQ/D0GWfEPdb2TDCXg20YyUMuh3M5zFcMG4ZHVq3CvtpavLppEwBgNXcNlYQUKuTp1AtFMM7s2xeAP2SROfPZRmObO1z8nJNODpcouMI4XMFeM/sMWLh3sM9EJVTlPd7cjHyTSZwb7UqCK8VCCgF/VEoohwvwu+ysSAVz+YO1+UgkosOlEFLIs7+uDqdCes2gsvHpRdwz4l133YXi4mJ8++236NOnD37++WdUV1fjT3/6E/7xj3/EfNzbbrsNt912m+Lf5MU4fvjhh7DHW7hwIRYuXBjzeIjUI1xi9mRBoNcoFDng0arV6CUspAF/M2P55KgEHx5VEGR3jSdTqCYG+AWXSqXC1THmz6QaRq1W3D1MJYeLFzFrhaI3jU6npEgAu/+RhgaoVSqJS5VnMrUILq1WrDq4v64OJ3bvLt6PCS6+sI9OrRZDuELBFsqt7XAl8jlLZ8+W5K8B/kUwH1IYKoyILZjtbjdUKhUKzGZUWa34raYGlw8dig8EZ6UjE6xoFJu7WEidRqXCD9dfL5mfVCoVBhcUYOPRo+JtfAVNPqTQzH1uDHZ+ZxuNmDlqFFbu3y8uXjP0enFRmwoOVzoJLh3nwCvB3vdgobpGmXAKtRlWZLHgeHMz8kwmSd6r3eNJqOBilSwTATtOg8MRsmgG4H8tLBySbToFK4KUSNg1IJjDxdgvVGLloyfiDd8kUou4Z6Z169Zh/vz5KCwshFqthlqtxsknn4wFCxbgzjvvTMQYCUKRUGXhAURVlliecCwvpBGMV1g1tgjCLNiOVoZen3aJsLyTlAo5XEqij+3INzockr5DgH/8rDwwv3jJM5lQLrgsBo0GOUYjcoxGHJCFevANhE/r3Rsvn322KBrC0ZaCK5peYaEY0blzQAl8k1YrCSkMtciaNXo0hnfqhPHdugHw94861NCAX8vLMYbybCX8RZbLzHJD+uTm4tg996Dm3ntxcs+eAY/rnZODTeXl4u98CCIfUhgsh4s5v/3z8nCgrk7sZ5Sh17eEFLZhDhcjWPhde4R9Z8KFFAZzxw28wxXmM2FFVvJMJvFx8lDEVHW4gOAht0y0umUhhQCCFkFKJJXNzcg2GAJes3y8fB9QRqhWDkT7I+6ZyePxIEP4ohYUFODo0aMYOHAgevXqhd1B+oYQRCKIpPTwZUOH4hSFxYcc+QWtN+d4heLSIUNwy//+h7OEHIlQZHCV2NIN/kKeSiGFSnLC4fGg3m5XLLvcRZYHkWcyiYtUdp/inBxxN5LR4HCI4YbfCz2iFm3ciOoIdk9bW3DxrzuZ+YMShytMDlfvnBxsufVWye9vlZYCaHGqCYjVAXlUKhW+ueYaDC8qChkK3YvLVdWp1ZLdcz48m+Vw8a1Y6u12cQOLOQn/99FHAKTzWSo4XO2xcXww2HUpaB8u4fZgeZgBDleIz4Rdn/JMJlGkyAWXJUFFM5IhuMxBrjtsXnV5PAEhhblGY8jqnYmg0mpVDN3mQwoLzWbxu8MX8SCHK72Ie0YcNmwYtmzZgj59+uDEE0/EU089Bb1ej8WLF6NPnz6JGCNBKBLO4QIgJnmHQ15Nji+kEYp8sxmuBx+MaLHMLg7hini0R/iLXSqFFLo8Hkky9dwJE/Ds+vU4brVKd8WFz6azguAS7yMcs3dODg7IqkexkCue/AgdLlZBq7VcTz40LTuJbS94hytcSKEctuExpLBQErpJKHOGkFsVCn4T6cx+/fDxzp1i4SG+ABH718GFktU7HGKvNHnkQIZeL5ald7aR4JLnY6YL4RwuNrc5guTKs8/AEaZoBgAcFZz8cV27iiXpHYJQYwWozDpd3K6Lw+1OmODiwwiDCS42r7q93oCQwpwgjewTSaXVqpiiwK8DBhcWimsQ5nDlmUzkcKUZcW+pPvDAA/AKk+3f/vY3HDx4EKeccgqWLVuGF6hxG5FEEtlcU94vKRqXJlJngrkdb5x/fuQDayfwYiMVHC4+J6hzRgb+PnUqXj/vPNGJPN7cHBBSCCAgD4kJru5ZWaJg6J2TExBSyJLNJWPgBEco2IW2NYXq8E6dMKF7dzwRpl9hPPAOV7S72syNCZYIT0QPL7hYLtd/duwAEJjDBQD3r1wp3p/fUJAL5wy9XlI0w+fzScRaa5CuDhd7LcHeSzbnBGs/ISmaEUZwPX/WWXj0tNMwUOj3ZtBqAxyuXKNRzImusdnw0s8/Rx1i2OxyBW1xEC2DCwvF/4d1uJRCCmPI4bK5XHirpCTicGylpsf8uAC/48Y+wyanEyatFtkGAzlcaUbcM+KZZ54p/r9Pnz7YsWMHampqkJubGzTJlyDixefzReRwRUqB2Qz3gw9C+9hjCTmeEqw8bHGE4YrtCV5wpUIOF7/QAIC/nnIKAGD94cMA/GEbfGVJ1gNFHr7GFjRTi4vF+axYEFyf7NyJ8sZGXDtiBCqamtA/Pz9gDJH04WL3ac33jQ/fSxYShyvKBp5M6KZTAYS2hi8M9Mb55+Oc997D0cZGcS5lC1a2GH12/Xo8PW0a1CqVWBYekDYQB/w79ey70eR04vL//AdA657P6S64grl27HviDbL4Z5+BVeinlRUi5PTE7t0lbjIruc4Lrq6ZmTje3AyXx4P8p54C4N9YuXHUqIhej9fnQ7PTmTDBxYfqBQvV1/I5XLKQwmyjMeo+mIs3bcLdy5ejZ3Y2TleI4mIOHvtOHGtqwglcBVeejy+7DCd264Y7vvpK0qDarNMlpMk0kVrEfDX7/fffg/4tLy+PxBaRVFxeL7w+X0JdAVYsIVi1o3gZJTQi7ZbARuGpAh+alkohhXKHiQnDiqYmySKNleuX5/uxBc0Arql175wcOD0eXPLhh5jz1Vf4TWg70F/W+NogNB0Nh60NBFdrYOL6OUXrcLGwNU+CinoQUrfw7P79MbZrV+yprm6ZS9kilPsus91/VhYekDbYNWg00KrVyNTroVGpcLSxER9xrllrka5VCg1hQgqDuToMJmxYz7Ro5hglwcWuXWVcSHWkzd0BvzvkQ/Am3vEQNKSQE1xNTid0arW4+RNpFAIP23BYdfCg5PY6ux3VViuMf/87Xv7lF/H2ww0NAZETjIsHD0a3rCzJ5hwr6GRJQPgmkVrEPDMNGDAAPXr0wLXXXou33noLBw4cSOCwCCI0LFQp0YvU5ddcg19vvjmhx2Q8ecYZOHDXXWm1IGCkWkih3OFisHE2Op2ScbKFvTx3j13E+WIEvWQO5cajR6ECMEgIxWEYNBqxalsoxJDCFHjfEolJq424LLwctuinxseJQ74J2j0rC0ebmkRhxDZK+BytY0Lz6SanU/xMDFotnpk2Tfw/O3aO0Yi1goMMhBcDiYT/7qTTZi/bpAi2WRHutWZygsvmcsEYxaaHXqMJyP1ieXy/cb0tWe5XJPCtBBJNJEUz5OGMSj3nwsHahLyzebMkrLDLM8+g8zPPAADe27YNgF+cVTQ1BRVcDF5wsYqhFr2eBFeaEfNqddWqVVi1ahV++OEHzJkzB3a7HT179sTUqVMxZcoUTJkyBd2EEr8EkWhsSVqkTosg+TxW9BpNwGI9XeAXaang1LDFo0vmMAVz4rpkZKC8qSlgAcPOM/5iPpTLGwCAlfv3Y3hRUUAxAYNGk7Ihha2BSacTSy67vN6oQgrJ4Uo+mXo9qqxWURSzc5x3+I83N6NI2Gzgb2eL1DO4kKpck0nsdffzrFkY07Vrcl8AR2uKu9bksSlTUGW1hq1se+GgQYq3s8IMjQ5H2D5ccgxKDpcguPZUV4v3OxKD4EpkpV6DIAwjLZrBF6swCXlqHq83aC8zOYcaGgAAB+vrcbC+XsyN5Od6FqJe3tgIH8K3mTFy0RCsYqg5ARUhidQi5iv8KaecglNOOQUPPPAAXC4X1q1bhx9++AE//PAD3n//fTgcDvTr149KwxNJwSbblSXaFt7hClaiuDVhu5py1ylDr4cK/nLo/AV6y623KrpRY4VFI19URaNWi9UOAf/iY4AsfwuIIqQwSW5tW8M7XFGHFJLDlRTWz5wp5vtk6vVodDgCNq/4TYmKpiZRcBVxFTyvGj4cRxsb8fxZZ4m35RqN+L2mBkatFuNaebM1XQXXxB49UHrLLSHv43zggaBiQa1SwaLT+R2uBIQUsqbIX+7ZA8Cf41rBlTEPRzIcLiZWIima0eR0SsQee4zd7Q6oHvzZrl1wejz4v6FDJbfX2myYWlyM7/bvx4bDh9E7JycgD4yVmmcVB4tk1W/l8JtzLKTQoNGI7xeRHiTkCq/T6TB58mSMGzcOEydOxPLly/Haa6+FzPMiiHhIlsNFxEaq9RZjIYC3jRsnuV2lUom9p/hQGKU+KQBwcs+esN9/f0AOBb/AqbZaxfw8HqNWG11IYZoJLqO8aEY0IYXkcCUFvihChl6PJqdT3I1nQotflF/58cf444QJAKRhtX1yc/Gy0PSdwUqUJ7PVQDAy07DVRqSEc44zDQasOngQB+rq4hZcKpUKTo8HK/btA+APS42mj1UyBJdJp0O9wxF0LSBvfGyRhRQC/vWEXHBduHQpAMAnE1w2txv98/KQazRif10d1h8+jNPfeUdynyONjZjy9tv468knAwi/ISAJKRSKZrD3n0gf4komsdvt+O677/Dggw/ilFNOQW5uLu688040NTVh0aJFKCsrS9Q4CUICOVypRarlTXTLyoLnoYdChogGE1lylBLWB3POWbXNpig4WahLONI2pFCewxWFw8UW0Kkm5NOJTIMBjU6nuGBmIYPy7/JCwckN1VQZaCnKIe9H1xokIycoXcjU6/GZEGkUzSytF3JQQxXb6CYTXMGqJTKSIbhOFSrLBousCJnDxVVxDMa7W7ZIfmc5Vt2ysnCkoQEzP/8cVpcL/biiSWO6dMEPBw7g5yNHAEQnuFiLBhJc6UfMguvUU09FXl4e7rrrLtTU1OCOO+7AwYMHsXPnTrzyyiu46qqrKIeLSBosmTSzDS7uRPsgXGjjs1xLi2i5fuRIvHruuQD8F0ilBYQhwrLwVKUwEI1ajUXnnIP3L7kkWcPr8GQKDhdbMPM5iKxfHUOnVod1rphIlucytgaR5t90RPi56ZgQ4hYJBq0WVrcbbq9XMjfdMX68+P/umZliJUufz4cTX38d//fRR0GPyULvEim43rrgAuy8/fagf5eXhec3cUSHK4Tg+pdMcDFB1C0zE6vLyrCjshKA9H35/MoroVGpsFowHaJyuARBp9doxIbiRHoQ8yy1du1aFBQUYMqUKTj99NMxdepUFAXpNUAQiSaZ1Y6I2Fh21VX4+9SpbT2MiIkn70OlUmE8t6EkD0cBoqtSqFGponKA2gMShyvKkEIAuGXsWPSQVY0kEkeG0OeHNWTnBdVXV1+Ng3ffjXMHDAAATOjePayLzb4DbeFwEcHhNyWjqSio12jQKAgkXnC9MH26mNfXIztbFOxbjx/HxqNH8Z8dO4I6XYcaGmDR6RLaesWk0wXk6vKweVXM4eLmajMXUiiHfR86y/KvWP/P7llZ2HzsGABg0TnnSARXodmMIYWFWCMIrnCROEpl4cnhSj9iFlx1dXVYvHgxzGYznnzySXTr1g3Dhw/HnDlz8J///AeVguoniETw48GDOPvdd8ULBgmu1GN6//5ig+FUpnT2bOyZMyfu4/CLkGAOV6QhhenmbgHxOVxE8mEL8SPCIlgu+HtmZ6Of0Bz8/gi+1+w70BY5XERweHFzz6RJET9Or9GIjpR8fmLnTrfMTDg8HthcLmyuqBD/Hiyva39tLXrn5LRqCLpWnsPFO1ysX6PM4XJ7vagXXrs83JA5UDeMHCnedsvYsZLXpNNoMLpLFzESJ9z8HpDDRSGFaUnMgstiseCss87CE088gQ0bNqCqqgpPPfUUzGYznnrqKXTv3h3Dhg1L5FiJGKiz2/Hihg34cPv2dv3l/WbvXnz1++/4QOhvkYzyskTHYETnzuivUFUwWgzcAlVpB5MVzfCFyWuwCTua6YZJWET4fD44Y3C4iOTCBNLhhoagjsNgoQXC0E6dIj4eOVypBWvefsPIkZjUo0fEjzNoNKLokAuGhyZPBtCS11drt+Mg1wy5ympVPOb+ujoUCyK+teCLZtiFkusMNu/KRVU1N365+8XKtiu9l/+cPl18T4YJ3xmzThdWYBZlZMDr8+FwQ4N4PSDBlX4k7AposViQl5eHvLw85ObmQqvVYufOnYk6PBEjn+7ahTu//hqX/+c/+Gj79rYeTsxUCrHn244fB+AXXCatlmL3iTaDX4QoOVkGjQY+IGwcfjo7XF6fDy6vF1ZZdTCi7WE5V/vr6sQKg3JuGj0aB+66K2zjVqBFcOUFORbRNuQLn0dulGF8oRyuGSNGwPfww2K4XXljIw7U1YkhesEE186qKvTniku0BnzRDIdsrhUdLpmo+rW8HIC/Lci3+/bh1Y0bAfjz1FjIn5KIun38eBy75x4ALU2iI2ltMU5oP/LzkSOwcjlcsQiuz3fvpv5dKUrMq1Wv14uff/4ZTz31FKZPn46cnBxMmjQJL7/8Mjp37oyXXnoJ+4TSoUTbUdncjGyDAYMKCvCT0JSyPXJcmMB3VVUB8AsuCick2hL+wt0o68MCtFQ3DJfHlbaCiwvXaRYWEUTqwMLC1h8+LKm6yaNSqSJu1s7m4/w2ElwD8vPDVlLsiDChFW0+ZCjBxWBC/HBDA440NortMZQEV5PTiX21tTihlXP9+cbHdrdbUnWWFXiRh0CuO3wYnSwWDO/UCXa3G7f8738A/JtnXp9PnMveu/hi/PfyyxWfl4nRSMLKu2VlocBsxo7KStFBi0VwHWlowAUffIAHvvsuqscRrUPMV/mcnBw0NzejS5cuOO200/Dss89iypQp6BuiDDPR+lRZrSgwmzGyc2exmk57hDUQrBESvElwEW0Nf+FWavTKQg4dHg8yQxzHJgtzSRdYzpbT4/E7XCS4Ugo2fza7XBiRgEUwcxLaqnLsjttua5PnTXWYe9MvSmcpEsFVaLFAp1bjcEMD6u129MvLw0+HDklC8hj7amsBBDajTzZ842P55pZZp4NFpxMjaBj7amsxMD8/YM6St6O5cvjwoM/bJUyzYznFOTk4UFcnOmhurzdqwcU2pKuEdRKRWsR8lX/66acxZcoUDBCqGBGpCRNcmXo9fmvHNjMTXCymnAQX0dYwQdUrO1ux35exgztcTJA6PR5/OWb6vqYUfLPgROTVsLzatmpCTOHlyrCNj0jCQnkMGg3cQjhcsPlJrVKhW1YWyurr0eBwIM9kQoZer1g0g50frZ3jp5XlcMlfS6HFgkqZQCyrr0fP7OwAV/69rVsBIKKc225Rvt+9BcHFinLY3e6oBddOQXAZqEBRShLzVX727NmJHAeRJKptNhSYzbDodLC6XHjwu+9wyZAhGClY/+2FOrsdnTMyUC9M5CS4iLaGLfAeOe00xb8zwRGsF9eh+nqMfPVVjCgqSkvBpeccPnl1MKLt4efPRORdsUbirV0UgQjNnydNQu+cnKhdTL6qaKj5qV9eHp5auxYAcPHgwcgxGhUFFytM0dqhxWqVCmqVyp/D5fEECi6zOcDhKquvx8k9e0reA4fbjduWLQMQvsw74BeWBWZzxNVZe2Zn45ejR+Hx+WDSauEVig1Fw04hiqmiqSmqxxGtA20JpTmVVivyzWZY9HrsrKrC31avbpfxvQ0OB3pkZcEm7PqwXhgE0Zb4Hn4Y13PlgXn4kEIlvtm7FzU2G74/cCAtz2W20Gh0OOD1+cjhSjH4hW+0BRWUuGTwYKy98Uac1rt33MciEodJp8O1I0ZEXYo9UsHFl1TPMhiCCq7mNqwsrFWrgzpcnSwWMUcc8Be5ONzQEOBwsabRs0aNivgcL7v7buwK0ZSZJ8doFIUSXzQjXJVbHuZwBWtwvbOyEjd9/nnQPmlEciHBleYcbWxE14wMySSXncCmg62BQxBZLOm33m5P2zAsIn0IVzSDv5in47nMFmws75KKZqQW/AI8EQ6XSqXCxCjKjhOpDZ+jGmp+msM1/M3U6/2CS6GIUFs5XIC/NLzd7Ybb6w0It+uckSFpCF3e1ASPzxcguEqEyoU3jBoVcfiqSaeLOKcxy2AQoyFYWXgAYlhnJPxWUwMAYu6dnEdWrcLrJSX4dNeuiI9JJA4SXGmM1+fDkYYGdM/KkuwuH+L6ZbQH2OTRQ4iJrnc4SHARKU84h4u/vfXagLYebMHAdrsppDB1oVLuhJxIHa4rhg0Te1JlGQzINhhChhS2hZuvVavFHDL5a+mdk4ODdXXi72+XlgLwh/hN7tVLvJ2Vik9WWXs+99HMCa5owgrr7XZkGwxBBVeesNl+yYcfxjFSIlZIcKUpJeXl2FtTA5fXi25ZWZKdmkMNDW04suiRC646criIdoAxTA4XvyhpascFbYLBBGctE1wUUpiyBGt8THRc2IJfrVKFLcLAN73OMRpFV5vH6nLBqNVCHWVoYyLQaTRBBVev7GxUWq1YvGkTAOCB778H4F9vnFBUhG233goAKD12DBadTsxVTDS8E2bSasWGzZEKLp/Ph2aXC10yM8VcdzlUvbBtiVtwLViwAG+++WbA7W+++SaefPLJeA9PxMCbJSUYvXgxBvzznwD81Yn43eXadvalY4KLlbU93twc0DGeIFKNUCGFXp8Pf1+9WvzdyuVBpAtyh4tCClOPX2++GfNPO40q/BEBsO9vlsEQNv9r5qhRGN6pE4Z16oRumZlYU1aGA5xrdKCuDpVWa5vNATq1Go1BBNeA/HwAwLyVK8Xb8k0mMfWid04Osg0GfL57N7pnZUWdCxcpfPVGUwwOl9PjgdfnQ5eMDNjcbrgUHndY2GzXqFRR5YYRiSHuWfbVV1/FoEGDAm4fOnQoXnnllXgPT0RJeWMjZn7+ueS2QQUFoo3fOSMDDUISe3uBCa7++flQwZ+XRg4XkerwIYUuj0dy4fxo+3ZJc9B0FlzhevkQbceoLl3w4KmntvUwiBSEzV/ZEeQgXTZ0KLbceit65eRg1ujRAFoq5gFA8fPP47Eff2yzsGKLXo9qYaPZIJuHTuzeHRO7d8fwTp0A+DeGHpw8WfLYS4cMARB9qfdo4EMKWeNjIHLB9f/t3Xl4U2XaP/Bv9qRJky6UbpStQhHLvqPCuLC4oTMuDKMsjvqOAiqiP4TRVxReRX0VUWdQdBxQB9cB1HldGEaKrKJCkQIKKCBbS/c23ZI0fX5/NOd4kibpltCm/X6uq9dlk5OTJ3JOeu5zP899V3r+hqRE13d99Det0O5wIN5kgluIgDMvKHxaHXDl5eUhOTm5weMJCQnI9cx5pfPnSFFRg8cser2c1bqwSxcIIGDKuT2SvjjiTSYkmM3ItdtR7ZmeQNReSX/Yi6qqEPPMM7hTcSMk68QJr20rO0HAxd4wRJFDmeFqjiRPw19/F/wlbXTdYdHr5Rtc/q4bxnTrhryKCrlJu+8UW6mNTqLZHLYxKqcURhsMzQ+4PBm8YAFXdW0tuno+g70DTmNv71odcKWlpWHHjh0NHt+xYwdSUlJau3tqJukuzg39+uHDm2/GmzfcAAAYkZoKoP5OFAD85KlmEwnsioaJyZ6KQsxwUXsnHZ97cnNR5XLh7f375RLKPxQW4rq+fVHy8MMAOkeGy/fOMhG1X9L529wiF2a9HirUF7cCvMvGt9VaVYteL/fa8nfdIFUqlG5E+wZc43v0gF6jwZhu3cI2RmVga21JwOX5/5zsCXjL/AVcLtevAVeAwhoUPq3+C3jnnXdi3rx5cLlcuPzyywEAX375JRYsWIAHH3yw1QOk5imqqoIKwD9vvtlrXn5m164Qixdjz9mzAICRf/sbts6ahUsVVXjaq3KHAxqVCkatFl2iolDMohkUAaQ/mLmKJpSPZWXh2QkTcDA/H/eNGiX/Yb/ZM2WlI5ECLOmGCTNcRJFDOn+bu1ZarVLBajDIwYsyq9VW33MWvR45584B8F8gpl+XLrA7nZi2bp3fbQYkJsLx6KNhHaPyPc0tWMMlZbjiPUU9/K0dZoarbbX6inXBggUoLi7G7Nmz4ZQWJRqNePjhh7Fo0aJWD5Cap7i6GjFGY8BF0LGK8r8fHDwYMQGXtHDXrNej0ulkwEXtnlqlgk6tRq6ix8tzu3bhrmHDUFRdjVGerHP1I494lWDuKJSNjwGu4SKKJC3NcAH1GRops60s0vXi5MmhGVwzWfR6OePjr8n3tX37Yu6IEfjLt98CaJuqnco1XCqVqsUZLunz+WtHUu1yydMimeE6/1o9pVClUuGZZ55BQUEBvv76a3z//fcoLi7GY489ForxUTMVVVfLdzj8kdLNAFCgWLQv+dfhw1A98QQm/eMfYRlfS0gBF1D/xVnBgIsihEGrRW5FhVc55E+PHIFWrcZoz/SUtiqVHG4alQoqcEohUSSSLvgtLWjnYDMa5QBHWSK+axjXQAUjfQYVIFcfVFKpVFjqmaEFAD1iYs7TyLzHoNTSDJfUU8/3de66OjjcbiR6rgH9le6n8ApZLViLxYIRI0YgMzMThmYusqTQKa6uDtrE0qTT4d0bbwRQH5z99ZtvsOLrr+Xnb9uwAQDw759/Du9Am6BOCAxdtQqfHj0qB1xmnQ52pxMOt5tl4andM2g0OGu3I85kwvpbbgEArPn+e0zo3dvvH/6ORLpLK01d0bH0OFHEkG4C9bTZmv1arwyXZ0rh/aNGtVn7Aak6okqlCnhzK8ZoRGp0NCx6fbvoS9fiDFeAgEuqStgrJgZdoqLwrWd5CZ0/LbpinT9/PpYuXQqz2Yz58+cH3Xb58uUtGhg1j9Ptxo6TJ2F3OhutKvT7zEx8deIEXt2zB/85dgwAMG/0aADelW3qhGjTO+9lNTXIzssDAHmxqkWvR5EnM8c75tTeGbXa+qyzySTfCNl/7hzGde/exiM7PwxaLewOBwwaTdj61xBR6OV51p72jo1t9mvjTSZ5Bo2USfnfCRNCN7hmknqCNdYO59CcOXDX1Z2HETWupRkueUqhzxquas/vUTodxvXogW0nT4ZqqNRELbrdkJ2dDZcnms7Ozg74s2/fvhYPbOXKlejVqxeMRiOGDRuGbYomob7Wr1+PCRMmICEhAVarFWPGjMHGjRsbbLdu3Tr0798fBoMB/fv3xwZPNqcjeHzLFlz+1ls4UlTUpCkAvt3Sc+12OfiStHXKWbnYdtfp0wDq71T9UlYGoL4TPFF7Jp2LqVarV+a5uaWWI5Veo0G5w8GbI0QR5vqMDEzLzMStAwc2+7XdbTb8UlqKRzdvxt7cXJh1OujacJ1qqqdUemOsBoPXOve21JIMl1atlv/m+L5OqhZp0ukwrnt37D592m9hDQqfFv0VzMrKAgA56Fq1ahX69u0bskG9//77mDdvHlauXImLL74Yq1atwlVXXYVDhw6hu587w1u3bsWECRPw1FNPISYmBqtXr8Z1112H3bt3Y8iQIQCAXbt2YerUqVi6dCl++9vfYsOGDbjllluwfft2jBo1KmRjbytHPWXeDxUUINPTwC8YaZ1XlE6HKpcLKX4ykXkVFQ0Cs/NJGfBJd23MimBS6o1B1F5J0wYz4uO9/pB39OmEkhijET8VFyOhDb9HiKj5Yk0mvONZftBc3W02HCwowEFP8+O2vjn6wuTJ6Bsf3+7XfR+77z64PVk4fwHXwfx8nC4vx6QLLmjw2kqnE2adTr655Vs0Q8pwmbRaDE9JgcPtxpGiIgxITAzLZ6GGWjWhVqfT4cCBAyGfKrJ8+XLccccduPPOO3HhhRdixYoVSEtLwyuvvOJ3+xUrVmDBggUYMWIE+vTpg6eeegp9+vTBv/71L69tJkyYgEWLFqFfv35YtGgRrrjiCqxYsSKkY29rTrcbliZUFZICqWF+mlZvmj4dAOS+FW1FGXAdnjsXwK+lpdOs1k5z0UqRS1o70Ccuzuvmha2TZLikiljMcBF1Hj181n21ddYoSqfDg2PHYs7IkW06jsb0io3FBXFxAPwHXJmvvILJa9f6fW2lywWzXi+vlQ2U4YrS6eTCGf4Kp1H4tHoF44wZM/DGG2+EYiwAAKfTiT179mDixIlej0+cOBE7d+5s0j7q6upgt9sR5zlwgfoMl+8+J02aFHSfDocD5eXlXj/tVZHixDE3YUphvOcL0FVXhx/mzMGZ+fNR8vDD2H/33XKGrK2aFEqkgGtocjISPBdu5zxB4BtTprTZuIiaSrrL2N1mg16jwV+uugpAy0otRyLpDzt7cBF1Hr5V/vyVYqfggk0pLPQTKEkZLqlYke/rKhUBlzTjoK1vqnc2rb7t6HQ68be//Q2bNm3C8OHDYfYp+9ncohmFhYVwu91I9ElzJiYmIs9TQKExzz//PCorK3GLpyoYAOTl5TV7n8uWLcMTTzzRjNG3DZfbjW/OnJF/b84aLpfbjX5dusiPxxiNcn+GSkWHeACoravD3M8+w4nSUvxr2jToNBpk/OUvuH/UKMweMSIUH8VLSXU1tGo1vrvrLvkxqay9csxE7VWV5xxK9qwhkKp0tZeF2eGWxAwXUafT3SfDVapYj01No/XJVCnXWx3Iz8dvevb02r7S5UKU50aeXqNpsD7rnKcISlezGVaDATq1mhmu86zVfwUPHDiAoUOHAgCOHDni9Vxrphr6vlYI0aT9vfvuu3j88cfx8ccfo6vPWqbm7nPRokVeVRjLy8uRlpbWlOGfVz8WFqLS5UKcyYTi6uomBVzSGi6Xnws/6aSt9MlwffTjj1i1Zw+A+vVdXc1mHCkqwgMbN4Yl4JJK3Cv/jeaOHImJ6elIa0GpWqLzTQq4kjw3CqQ/orWdJODq5lm7UeVz84aIOq4kRb/PN2+4oclFK+hXvpmqrBMn5OdOeQqHKUlTCgH4zXDlVlRAq1YjPioKKpUKCWYzM1znWasDLqmARqh06dIFGo2mQeYpPz+/QYbK1/vvv4877rgDH374Ia688kqv55KSkpq9T4PBEBE9xaRS7sOSk7Hp2LFmZbj8pas1ajVMWm2DDNcmRW+uModDvogK13ShkpqaBlMRNGo1LkxICMv7EYWaNG9eWss0LTMTu0+fxu8zM9tyWOfN7UOG4M+bN8tlmYmo41OrVLDo9bh35EjMGDSorYcTsZSB04H8fETr9dBpNDjlZ3lLlcslrxk2aDQNimactduRbLHIrX4SoqKanOEqqa7Gym+/xaJLL23TVkGRrtVruE6ePAkRoLfByRbU+dfr9Rg2bBg2bdrk9fimTZswduzYgK979913MWvWLLzzzju45pprGjw/ZsyYBvv897//HXSfkUIKjC71VHAM9O+hFO0JynoG6Khu1usbrOGyO53yhWNZTQ1y8vMBhG66UG1dHXaeOiX/Xlxd3eaLbYla47/HjaufvuG5KWHW6/H6lCmIjoAbOaGQZLHgo6lT8dYNN7T1UIjoPLIvWoSnrriirYcR0ZQBV1lNDWKMRqRZrTjtJ+CqdDoDZrhqamvxpE9rpQSzuckB1+ItW/BoVhZ+8FSdbC0hBL72tPrpTFp9pdyrVy/k5uY2mL5XVFSEXr16wd3EHgJK8+fPx/Tp0zF8+HCMGTMGr732Gk6ePIm7774bQP1UvzNnzuCtt94CUB9szZgxAy+++CJGjx4tZ7JMJhNsnqln999/P8aNG4dnnnkG119/PT7++GP85z//wfbt21vz8dsFKTC6Z8QIxEdF4ZaLLmr0NSqVCptnzAhYWt2s0zWYUljpciElOhrnKitR5nDg7f37ATTeTLCp/utf/8Lqfftw6oEH0M1qRUlNjVfvIqJIc9ewYbhr2LC2Hkabur5fv7YeAhFRxFEGTuUOB6wGA9JsNjnDdaigAH9Ytw47/vhHlDsc6O2ZuWTQar0CLqmo2pSMDPmxhKgonLXbmzQOaQ1eqAqpvfrdd5j92WfY96c/YVAnau/T6gxXoHVQFRUVMLawMs3UqVOxYsUKLFmyBIMHD8bWrVvx2WefoUePHgCA3Nxcr+zZqlWrUFtbizlz5iA5OVn+uf/+++Vtxo4di/feew+rV6/GwIEDsWbNGrz//vsdogeXFBhF6/WY7Qm6muKyXr0CZpDMen2DKYUVTidSPHOxyx0OnLXbYdRqUVxdHZI1Gqs9jbJzPV8CJdXVrG5EREREnY5OrZbX2Zc5HLAZjegWHS1nuP62dy++P3cOCf/7v9hx6pTc78y3aIZ0fXZz//7yY82ZUigFb/khWvO1zXP9/mNhYUj2FylanOGSikmoVCr893//N6IUF/lutxu7d+/G4MGDWzyw2bNnY/bs2X6fW7NmjdfvW7ZsadI+b7rpJtx0000tHlN7VeF0QuNZYBkqfjNcTid62mxQq1Qoq6mB3eFA/4QE7M3NxamyMmQEqRz46ObNMGq1eHTcuAbPfXvmDF765hv5d+mkLq6uxoAmNHEmIiIi6kgCZbg+PHQIwK/FSaSmxtISEd8phVLApWxHYjUYcKigAP86fBjXKTJf/jhCHHCVeeoOHAzRFMVI0eKAKzs7G0B9hisnJwd6RaEGvV6PQYMG4aGHHmr9CKlRUnWaUDagDpThsuj1sBoMKHM4UOF0YkRqan3AVV4eMOAqdzjk+cP+Aq5J//gHShRlY6W7LiU1NVzDRURERJ2Ob8AVHxWFNKsVRZ5ZRWWe66Z7R47Ey998A5tnRpBBo0GNIuCSArIoRcAl/fea779vNOCS3idUAZc0NTHPU6q+s2hxwCVVJ7z99tvx0ksvIZplP9uMFAiFUrReD7ufNVwWvR4xRiNKa2pgdzrRx9Nc+lyQE+eXRiqU+QaKygwX13ARERFRZ+NVNMPhQO/YWLmZfEFlJQqrqjAsORn/O2ECkiwWeY2W1CJIUqVoeiyZN3o0/mfbNq/HApECpFAFXFKvVynT1Vm0eg3X6tWrsW/fPtx2220YO3Ysznga8L799tsdoiBFJJA6jIeS1WCQy81LKjxVcOJNJhRWVaHC6ZQ7lvuu4XosKwvfeo6Fxu5iKKdCGjQa5FdW4mhREapcLq7hIiIiok7HN8MVrdfD5qlwW1pTg9f27oVRq4VBq8WfL70URk/FaN8eW1J7EpOiorRJp8P1GRl+e3r5kmY75YeoUbIUwJV1sobYrQ641q1bh0mTJsFkMmHv3r1weC7S7XY7nnrqqVYPkBpXoSgHGio2PwFXpSeT1iUqCqfLy1EnBKwGA6J0ugYB19KtWzHyb3/D5uPHkasIuFx+qlYq14pdEBeHv+3di75/+QsAcEohERERdTrKgKvKs3QkxnMTWio84e8aqWtUlFc2yl+GCwDSY2ORk5/faNGzkGe4PPvzvcbs6FodcP3P//wPXn31Vbz++uvQKf4xx44di71797Z299SIdYcO4dU9e5AeGxvS/VoNBq+7D+66OlTX1sKs06FLVBSOe6YJWvT6BgGXskz8Ne+8I1cdBIAp773n9T5CCK9So+lxcV5pZma4iIiIqLNRBlw1tbUwarXyOq2fi4sBACsmTWrwuq5ms1dwJK3hMvkEXLMGD0ZxdTU+O3o06DgqQxxwyRkuBlzNc/jwYYzzUwjBarWitJG1O9Q6p8vLcdOHHwIALuvZM6T7thmNXncfpIBKynCdCBJwKTNWKsArw/XFTz95vU9NbS2UXbwSfEracw0XERERdTbKgKva5YJJq5WnFB7zXIN18dMGKMFsht3pRI0n0KpyuaBRqaBTe1/yp8fFobvNht2NNCGudLkQbzKFJOCq89xkT4mO5pTC5kpOTsZPPhfRALB9+3b07t27tbunIDYfPw4A2DR9Ov40fHhI9y1VIhSebJV0R8LsCbikE9lmNDYIuJQZq+raWmz8+WdcnJYGABjv6aUm8a2EKDX0u96z+LOpPcWIiIiIOgp/GS6jVgu9RoPjJSXQqFSwegIwJWlmkBTQVLlcMOl0fitZD01OxvfnzgUcg7uuDjW1tehus3kV4mgp6Vqxm9XKDFdz/elPf8L999+P3bt3Q6VS4ezZs1i7di0eeuihgH20KDSOlZQgyWLBlb17Q6tu9T+lF5vBgFrPiQb8GhhZPEUzJL1iYgIGXOtuuQVdzWb8WFiIHjExmDNiRIMTVsqGSXdepEzdBzffjB/mzJH7TBARERF1FlLA5XK74RZCDppsBgOOlZQg1mTyG0RFe4Iwaa1UtcsVsBphisUSNHMlXfulREfD6XZ7NVRuiRLPNWBqdDQqnE6vJSgdXYvLwksWLFiAsrIyXHbZZaipqcG4ceNgMBjw0EMPYe7cuaEYIwVwrKQEvUO8dksi3TUpczhgUjRBltZwAYBapUJ8VFR9wKU4CaWAq4fNhofGjMGC//wHOrUaCVFRKPSpciNt++WMGRiZmgqdRoP7Ro2CXqNBvyCNlImIiIg6Kingkm58S1UIrQYDCqqqkGq1+n2ddP0mLQs5Y7c3WK4h8V3vBQBr9+/HzI8+wrd33SXf9E7xtH4qdziQoG156PC1Z/riiJQUbPjxR9TU1japNH1HEJK0yJNPPonCwkJ88803+Prrr1FQUIClS5eGYtcUxMmyMvSw2cKyb2lhpnTC+k4pBH5dXxUow2XR6zFr8GAA9cFXV7MZuRUVOFZSIm8r3T2xGgwwaLVQq1Sd5uQjIiIi8kcKuOSiF55AR7pGiglQVMw34NqTm4uhycl+t+1qNqOgqsor0/Tp0aNwC4H/O3JEnvanDLh8/evwYbm3VmNu+ec/YdRq5RvqgSokOmprUVtX16R9RoqQzUOLiorC8OHDMXLkSFg4Dey8KKmpCVtRCTnD5ZkDXOlTNAP4NeAyBwm4EsxmnJ0/H4+MG4dbLroIAPDPQ4fkbSsVgRwRERERBc5wSQFXoP6r0Z7rqXKHAy63G9/n5QUNuGrr6lCqKGAh9U7dm5eHHwsLAQDDPK/3DbjyKysx5b33MOHttxv9PNJ0xHtHjpQ/Q3WAgKvrc8/h8jffbHSfkaTVUwoBoKamBvv370d+fj7qfCLSKVOmhOItyI/SmpqwlU23+dwhqVBMKZTWW0nvHaXTea3NUgZcAJDsuTMSHxWFXjExXie2MpAjIiIiIkWGS2pc7AlSpGAl0HWTMsP1Y2EhHG53wIBLuoFeWFUl30Q/42nlU+5wYP+5c4g3meSMlG+hi5885el3nznT6OeRrhPH9eghfwZ/Ga6S6mqUOxxyr7GOotUB1xdffIEZM2ag0BMFK6lUKrj9NLql0Ciprg6YUm4t5Rou4NdMlEWvh9qzSPO+UaPkx+yKyoS+AZdSrMkkL5pUbhvoTg0RERFRZ9NohitAwGXUaqFRqWB3OLDj1CmoVSoMTkryu61UYEO6FhNC4IynWnS5w4H/O3IEF3fv3mCZiUQKuAwaDQAgOzcXQ197DWfmz5enIUqkgCvOZILes321nyIcJzpoS6lWTymcO3cubr75ZuTm5qKurs7rh8FW+NTW1cHudPrtMh4KvnOAK5xOaFQq6DUa6DQaiMWL8YcBAwDUZ7qUQZTd6YRJq4XGT+XEGKMRJcoMl+ck57otIiIionqNreEKdKNa5SkXX+Zw4OPDh/Gbnj39lo8Hfr0xLq3B+qm4GJUuF/onJOBwYSG+PXsWUy+6qME1oURqwOzwVDB8cts2AMDB/PwG71XkuU6MN5mCZrhKO2h/rlYHXPn5+Zg/fz4SExNDMR5qImltVbgyXDqNBiat1msNl0Wv91uCNMZo9DpBKpzOgKlu320rXa76uzEhLmtPREREFKlauoZL2uY/x47hi59+wphu3QJuJ633kjJcuzxVBCf27i3PXLqiVy8YNBro1OqGGS5FEbT8ykq5ErW/oEmZ4ZKCR39ruBhwBXDTTTdhy5YtIRgKNUdpmAMuoL5SoTLDFSh9HWsyobSmRq5yEyzgivWT4eL6LSIiIqJftXQNl7TNl8ePAwD6xMUF3E7OcEkB16lTuLBLF3T3VMBOtliQaLHIWTN/Ga7hKSkA6lsVSZUFC3xaAAFAQWUlVKi/Zgy6hktxjejsQDPlWr2G6y9/+QtuvvlmbNu2DQMGDIDOJ+K+7777WvsW5Id0cgRKE4dCtF4vn1zBAqNYoxEC9Slpm9HYaMBVpDgRK5xOrt8iIiIiUpACLul6T8pGNbaGS7kNALmXlj9mnwzXN2fPYnS3bvLaLuU6LJvRKM96kvxSVoa7hg7F4cJC7Dp9Ws5iFfhppny8tBTdrFZo1Wo5eGxsSmFeRYUc/EW6Vgdc77zzDjZu3AiTyYQtW7Z4TTlTqVQMuMJEvuPRigZ0jTHr9fLJECwwkrJsJTU1jQZcvWJj8UtZGVxuN3QaDSpdLpaEJyIiIlKQAi7pxrfFN+AKcrNaCmgy4uMxIT094HZqlQpmnU5ew3XWbsf1GRlycKecReUvw1VSXY2uZjOGJCdj5bff4pSn4MY5PwHXzyUlSPdk2+QphX6KZihrAnx75gySLBaoUL/UJZK1+mr90UcfxZIlS7Bw4UKouQ7nvJECoXAWm4jS6VDlORmkNVz+SCekdFciWMCVER+P2ro6HC8tRd/4eFQyw0VERETkxaDRoKa2FnaHA2adTl7rLlUEDDalUEp9/PnSS+XK0oFY9HpUOJ0QQqCoqgrxJpPczkeZ4bIaDChXVKSuqa2Fw+2GzWBAssWCrb/8Ij93pKiowfscLynBgK5dAdQHTzq1Wi6cplRaU4OLEhJwsKAAN334IfrGx0MF4Me5c4N+jvau1RGS0+nE1KlTGWydZ+cr4KpWZrgCnNy+DeyCBVz9ExIAAN/n5QEAM1xEREREPmxGI9xCIK+iwmv5yPiePTEpPR3X9u0b8LXSNWKCp89WMNEGA+xOJypdLrjq6hAfFYVLu3fHP377WyweP17ezjfDpawl0NVslh/PiI9Hdl4ehGddv6S4ulru+yV9Pt+MmTR2i16P2cOHA6gP3g4XFcnFQyJVq6OkmTNn4v333w/FWKgZzluGy/M+wTJcUupaOhmCBVzJ0dHoGx+P/xw7BqC+xGg0Ay4iIiIimTR76GR5ubymCgAu6d4dX9x2GxKDrM2Srsea0joo2WLBqfJyeX19nMkElUqFWwcOlKcAAoDNJ+BSVsuWimWs/d3vsHj8eBRXV3v1ZwXqr/dsiimKvm2CJFW1tYjS6fC7Cy/0evyHgoJGP0t71uophW63G88++yw2btyIgQMHNiiasXz58ta+BflR5VO1JhyidDp54WOF04nkACe30WcuboXTGTSIGpWaigOeE+eM3Y5RqamhHDYRERFRRIuVAq6ysmYXSHN4qvvFNqGSdWbXrtj6yy9efbL8sRkMOKDor6XMcElVqkempuJwYSGA+mJrynGXOxxev/v2cJVUuVyI0unkaY2SgwUFGJKc3Ojnaa9aHXDl5ORgyJAhAIADBw54PeevZxOFRpXLBZ1aDW0Yp3KatNpfM1xBslZSwNWUDBcApFmt2HLiBADgVFkZbvK5i0FERETUmUkZrlNlZbggSGl3fxzNyHBldu2K1/fulW+wxweYhphksXgVw1AGXEsuuwy9Y2ORHhuL057CGRWKDJfDs95LGXDFGI0o9TOlsNrlQozR2KC64lE/68IiSasDrqysrFCMg5pJugMQTr5TCgMVt/ANuOyNBVw2G87a7bA7HCiqru4wJT+JiIiIQkEKlk6Vl2OYp9dVU0kZrqb0ak2zWlFbV4eDnplHgdZ9JVksyK+shLuuDhq1Wm5yHGcywazXY8HFFwP4tZiHMuCSpiJ6ZbhMJq82QZIqlwsp0dENsnP+1ntFEla6iFDVnjmu4aQMuEo9Jd/9Mfp0DG9KhsstBDb+/DMAoE98fCiHTURERBTRlMHS1Rdc0KzXSjfA9U0opS5VItyXlwezThewkFmSxYI6IeSmxr+UlcnBllJTA64Yg8Gr55akyuWCSav1miU3oGtXr/1FolZnuJYsWRL0+ccee6y1b0F+nM8MlxACJdXVAe+UqFUq6D3lS+uECDr9EPi1Cd+affsQZzJhRDPv3BARERF1ZEZFn9VLundv1mufvPxyLNu+vUnbKgMuZbVBX9K1W67djiSLBSdKS9EzJqbBdk0OuIxGlAWoUihd32rVatTW1SHBbEaFnybJkaTVAdeGDRu8fne5XDh+/Di0Wi3S09MZcIXJ+Qy4KpxOuIUIuvjSqNWiprYW1S4XBIL3h5BO6G0nT2JYcrLcW4KIiIiIvDV36cW80aMxb/ToJm3b1WyGWqVCTn5+0CJmcZ4pjlJlwZNlZejhZ1zS9V+lIkCSCnIoryPNer3fPlzK69sf58xBQVUVnt6+XW7OHKlaHXBlZ2c3eKy8vByzZs3Cb3/729bungJIiY4Oe7UWi14Pu9Mpn1zBFl8atVpU19bKdzSCBVwJnoCr3OFALz93R4iIiIioXjj7lWrUatgMBpTU1ATNcEnZKSlbVVJTg25Wa4PtpPX+ygzX8ZISqFUqpCkCNLNO53eaoDLgSo+LQ3pcHCx6vVyMI1K1OuDyx2q1YsmSJbj22msxffr0cLxFp7fwkkvC/h5xJhNq6+rkg7wpGa6mBFxGrVZuoNcrNja0gyYiIiLqAF6/7jrsPHUq7O9j8/TECtYoWQq4pExTpdPpt5iaTqOBQaPxCqaOlZQgzWr1WlNm1utR6Vm2olyv5a9GgUWv5xquQEpLS1FWVhau3dN5IPVi+Km4GEDwDJepGQEXAEinVgYLZhARERE1cOfQobhz6NCwv4/NE0wFy3AZtFro1Go5w1XpcgXMvPkGSMdKS9Hb5wa7WadDnRBwuN3yejUhhN8lM9KMq0jW6oDrpZde8vpdCIHc3Fy8/fbbmDx5cmt3T20ozifgClZeVMpw5VZUAAh+0gL1hTYAYFBSUiiGSkREREQtIFWhbuzazWowyIFPoAwX0DDgOl5SgoGJiV7bSMFapdPZoL2QyWe/0cxwAS+88ILX72q1GgkJCZg5cyYWLVrU2t1TG5Ka38kZrkYCrmqXCz8XF0OnVvud16v04uTJuPvTT5HOKYVEREREbUbnKV7WlICrKRkus2+Gq6QEN/Tr572NJ6iqdLkgzXWSWhH5ZriiDQaUeeoJON1uTFu3Dg+MHt3s6o1tqdUB1/Hjx0MxDmqHpCmFR4uLYdbpoAvSz8Gi16PC5cLPJSXoGRPTaOXB6YMGYfqgQSEdLxERERE1T7GniqBUIj6QaE/AFWjqn0SZ4Sp3OFBUXd2gSJq/8vGBAq44kwmVLhecbjeqXC6s/+EHTMvMbPoHbAfabT3ulStXolevXjAajRg2bBi2bdsWcNvc3Fz84Q9/QEZGBtRqNebNm9dgmzVr1kClUjX4qfHTdI3qWfR6pERH47uzZ4Ou3wJ+veuRV1GB1EayW0RERETUPhz1zGQaGaQsPPDrtV61Z+pfU6YUFnkaJftmz5RTCiXSfv0FXABQUl2Nak9QZtKGrQxFWLRotPPnz2/ytsuXL2/2/t9//33MmzcPK1euxMUXX4xVq1bhqquuwqFDh9DdT/rQ4XAgISEBjzzySIMpjkpWqxWHDx/2eswYZJpcZ6dSqXB9RgZe+e67oOu3gPqTMK+iAgaNJuz9wYiIiIgoNDZMnYpvzpxptPx8SnQ0TpWXy0FSsKIZUh8uac1XtKLpMeA9pVASLMMF1GfiDJ5Ay3edV3vXooDLX+8tf5RlHptj+fLluOOOO3DnnXcCAFasWIGNGzfilVdewbJlyxps37NnT7z44osAgL///e9Bx5PEIg3N0icuDkDw9VtAfYWbcocD0QaDVydxIiIiImq/ruzdG1f27t3odn3i4rD1l1/kdkHBMlxn7XYAv/bt8r02lOoEFFRWyo8FCrjiFQGXNOPK2BkyXFlZWaEeh8zpdGLPnj1YuHCh1+MTJ07Ezp07W7XviooK9OjRA263G4MHD8bSpUsxZMiQgNs7HA44FJ2tyyO86VpLSE3q6oQIup2UZo5zuZDYyKJLIiIiIoosF8TFIa+iAkNfew1AkAyXoqmxFHBF+2wbazTCrNPhpKKFVFWA6YLKDJcUaHWKKYW+SktL8cYbb+CHH36ASqVC//798cc//hE2RUfppiosLITb7UaiT/nIxMRE5OXltXiM/fr1w5o1azBgwACUl5fjxRdfxMUXX4zvv/8effr08fuaZcuW4Yknnmjxe3YEyRYLgPqTLBib0YgyhyPoIkoiIiIiikxj09K8fk8NUGRDuYbLHiDDpVKpkGaz4ZQimdHYlMKCqio5wxVpUwpbXTTju+++Q3p6Ol544QUUFxejsLAQy5cvR3p6Ovbu3dvi/fpOR/TtRN1co0ePxm233YZBgwbh0ksvxQcffIC+ffvi5ZdfDviaRYsWoaysTP45dR66fbc3w1NS8OCYMVg+aVLQ7awGA+yegCvS7joQERERUXB94+Nxea9e8u9pARIrvlUKVfCfDUuzWpsUcOk0GiRERSHXbpeLZnSKKYVKDzzwAKZMmYLXX38dWs+Hr62txZ133ol58+Zh69atzdpfly5doNFoGmSz8vPzG2S9WkOtVmPEiBE4evRowG0MBgMMnXw9kkGrxXMTJza6ndVggED93YdIu+tARERERI37csYMxDz9NMocDqgDJEK8MlxOJyx6vd9tU6KjcbioSP5drkDo5zoyOToaZ+32X5sjR1jAFZIM18MPPywHWwCg1WqxYMECfPfdd83en16vx7Bhw7Bp0yavxzdt2oSxY8e2drgyIQT27duH5OTkkO2zM7N5AtPCqipOKSQiIiLqoI7cey9+vu++gM9LjY+FECh3OAIWU0u2WJDrKa4B1Ge49BoNtH56uaZER+NsRYVcOj7Sbu63Ojy0Wq04efIk+vl0kD516hSiG2mgFsj8+fMxffp0DB8+HGPGjMFrr72GkydP4u677wZQP9XvzJkzeOutt+TX7Nu3D0B9YYyCggLs27cPer0e/fv3BwA88cQTGD16NPr06YPy8nK89NJL2LdvH/7617+2aIzkTXkyRdpdByIiIiJqmq5mc4O+WkoWvR61dXVwut2weypY+5McHY28igp52VCwOgApFgsOFhR0rj5cSlOnTsUdd9yB5557DmPHjoVKpcL27dvx//7f/8O0adNavM+ioiIsWbIEubm5yMzMxGeffYYePXoAqG90fPLkSa/XKKsN7tmzB++88w569OiBEydOAKgv7PFf//VfyMvLg81mw5AhQ7B161aMHDmyZR+cvNgUZeMj7a4DEREREYWGxbNeq8LpbDTD5XC7UVpTg1iTKXjAFR2NTceOobq2FmqVym8WrD1rdcD13HPPQaVSYcaMGaj1pPl0Oh3uuecePP300y3e7+zZszF79my/z61Zs6bBY6KRsuUvvPBC0KbI1DrKk4lTComIiIg6JyngqnS5UO50Bg64PDPhcisq5IArUOYqOToauRUV8jatKaTXFlocHkpT+PR6PV588UWUlJRg3759yM7ORnFxMV544YVOX3CiM+GUQiIiIiJSZrjsDkeDHlwSqfWQtI6rurY2aIartq4Op8rKInImVYsDrqFDh2LYsGF45ZVXUFZWhqioKAwYMAADBw5ElKd7NHUeypNpYAirSRIRERFR5GjqlMIkT8CVV1EBAI1OKQSAgwUFiFEsY4kULQ64duzYgaFDh2LhwoVITk7GbbfdhqysrFCOjSKIRjGXtl+XLm04EiIiIiJqK14ZLqczYIbLrNcjWq9HbhMCLikbdrCgQG6EHElaHHCNGTMGr7/+OvLy8vDKK6/g9OnTuPLKK5Geno4nn3wSp0+fDuU4KQLcP2oUPr/11oibV0tEREREoSEFXOUOR9AMF1CfuTrjaX4cLOCSsmFn7XbEdqYMl8RkMmHmzJnYsmULjhw5gmnTpmHVqlXo1asXrr766lCMkSLEismTMfmCC9p6GERERETURrpERcGg0eBkWRnKg5SFB4CeMTE4UVYGIHjApdNo5FL0sZ0pw+VPeno6Fi5ciEceeQRWqxUbN24M5e6JiIiIiKgdU6tU6B0bi+y8PBRXV6Ob1Rpw296xsThWUgKgvmhGsIIY0jquTpnhknz11VeYOXMmkpKSsGDBAvzud7/Djh07QrV7IiIiIiKKAOlxcfi/I0cAABclJATcThlwVblciApS6bp3bCyAyAy4WlW/+9SpU1izZg3WrFmD48ePY+zYsXj55Zdxyy23wBykAzUREREREXVMvWNi8H9HjkAFICNIMbVkiwUVTicqnc76HltBMlxSoDU4KSnUww27FgdcEyZMQFZWFhISEjBjxgz88Y9/REZGRijHRkREREREESY9Lg4A0CMmJuC6LABI8CRoCqqqUFJdHTR7NX3gQKzZtw8T0tNDO9jzoMUBl8lkwrp163DttddCo9GEckxERERERBSh0j3T/6TqgoEkeHr35ldWorCqCl2C9PId37Mnah97LHSDPI9aHHB98sknoRwHERERERF1AJd0747fZ2bixgsvDLqdlOE6WlQEtxDy7x1Nq9ZwERERERERKdmMRrx7442NbidluA4WFABA0AxXJAtpWXgiIiIiIqKmMGi16Bsfj08OHwbwawDW0TDgIiIiIiKiNjGhd285wxUXgU2Nm4IBFxERERERtYlkRWENWwT22GoKBlxERERERNQm4j3TCDUqFUxBGh9HMgZcRERERETUJuIV0whVKlUbjiR8GHAREREREVGbkNZtuYVo45GEDwMuIiIiIiJqE/EdtDKhEgMuIiIiIiJqE2lWa1sPIewYcBERERERUZvoDBmujlkKhIiIiIiIIsIPc+ZA3UELZgAMuIiIiIiIqA3169KlrYcQVpxSSEREREREFCYMuIiIiIiIiMKEARcREREREVGYMOAiIiIiIiIKEwZcREREREREYcKAi4iIiIiIKEwYcBEREREREYUJAy4iIiIiIqIwYcBFREREREQUJgy4iIiIiIiIwoQBFxERERERUZho23oAkUQIAQAoLy9v45EQEREREVFbkmICKUYIhAFXM9jtdgBAWlpaG4+EiIiIiIjaA7vdDpvNFvB5lWgsJCNZXV0dzp49i+joaKhUqrYeTsQqLy9HWloaTp06BavV2tbDoU6MxyK1Bo8fikQ8bqmleOw0JISA3W5HSkoK1OrAK7WY4WoGtVqNbt26tfUwOgyr1coTltoFHovUGjx+KBLxuKWW4rHjLVhmS8KiGURERERERGHCgIuIiIiIiChMGHDReWcwGLB48WIYDIa2Hgp1cjwWqTV4/FAk4nFLLcVjp+VYNIOIiIiIiChMmOEiIiIiIiIKEwZcREREREREYcKAi4iIiIiIKEwYcBEREREREYUJA64OatmyZRgxYgSio6PRtWtX3HDDDTh8+LDXNkIIPP7440hJSYHJZMJvfvMbHDx4UH6+uLgY9957LzIyMhAVFYXu3bvjvvvuQ1lZmdd+SkpKMH36dNhsNthsNkyfPh2lpaWNjjEnJwfjx4+HyWRCamoqlixZgkA1XHbs2AGtVovBgwc3ut+tW7fiuuuuQ0pKClQqFT766KMG28yaNQsqlcrrZ/To0Y3um1qmIxyPW7ZsaXDMqFQq/Pjjj43ue+XKlejVqxeMRiOGDRuGbdu2eT2/fv16TJo0CV26dIFKpcK+ffsa3Wdn0ZmPHX6XRa6OcNwCgMPhwCOPPIIePXrAYDAgPT0df//73xvdN7/zWqczHz8d9ntPUIc0adIksXr1anHgwAGxb98+cc0114ju3buLiooKeZunn35aREdHi3Xr1omcnBwxdepUkZycLMrLy4UQQuTk5Ijf/e534pNPPhE//fST+PLLL0WfPn3EjTfe6PVekydPFpmZmWLnzp1i586dIjMzU1x77bVBx1dWViYSExPF73//e5GTkyPWrVsnoqOjxXPPPddg29LSUtG7d28xceJEMWjQoEY/+2effSYeeeQRsW7dOgFAbNiwocE2M2fOFJMnTxa5ubnyT1FRUaP7ppbpCMdjVlaWACAOHz7sddzU1tYG3fd7770ndDqdeP3118WhQ4fE/fffL8xms/jll1/kbd566y3xxBNPiNdff10AENnZ2U39X9vhdeZjh99lkasjHLdCCDFlyhQxatQosWnTJnH8+HGxe/dusWPHjqD75nde63Xm46ejfu8x4Ook8vPzBQDx1VdfCSGEqKurE0lJSeLpp5+Wt6mpqRE2m028+uqrAffzwQcfCL1eL1wulxBCiEOHDgkA4uuvv5a32bVrlwAgfvzxx4D7WblypbDZbKKmpkZ+bNmyZSIlJUXU1dV5bTt16lTx6KOPisWLFzcp4FIKdrJef/31zdoXhU4kHo/SRXNJSUmzPuvIkSPF3Xff7fVYv379xMKFCxtse/z4cV58NKIzHTtK/C6LbJF43H7++efCZrM1+0KW33mh15mOH6WO9L3HKYWdhJRCjouLAwAcP34ceXl5mDhxoryNwWDA+PHjsXPnzqD7sVqt0Gq1AIBdu3bBZrNh1KhR8jajR4+GzWYLup9du3Zh/PjxXs3zJk2ahLNnz+LEiRPyY6tXr8bPP/+MxYsXN+8DN8GWLVvQtWtX9O3bF3fddRfy8/ND/h7kX6QejwAwZMgQJCcn44orrkBWVlbQz+l0OrFnzx6vzwUAEydODDoeCqyzHDvNwe+y9i8Sj9tPPvkEw4cPx7PPPovU1FT07dsXDz30EKqrqwPul9954dFZjp/miLTvPQZcnYAQAvPnz8cll1yCzMxMAEBeXh4AIDEx0WvbxMRE+TlfRUVFWLp0Kf70pz/Jj+Xl5aFr164Ntu3atWvA/Uiv8/feyrEdPXoUCxcuxNq1a+Uvh1C56qqrsHbtWmzevBnPP/88vv32W1x++eVwOBwhfR9qKFKPx+TkZLz22mtYt24d1q9fj4yMDFxxxRXYunVrwP0WFhbC7XY363NRYJ3p2Gkqfpe1f5F63B47dgzbt2/HgQMHsGHDBqxYsQL//Oc/MWfOnID75Xde6HWm46epIvF7jwFXJzB37lzs378f7777boPnVCqV1+9CiAaPAUB5eTmuueYa9O/fv0G2yd/2yv1cdNFFsFgssFgsuOqqq4K+t/S42+3GH/7wBzzxxBPo27ev38+1bds2eb8WiwVr1671u50/U6dOxTXXXIPMzExcd911+Pzzz3HkyBF8+umnTd4HtUwkHo8AkJGRgbvuugtDhw7FmDFjsHLlSlxzzTV47rnnAAQ/Hpv6uSi4znjsNIbfZe1fpB63dXV1UKlUWLt2LUaOHImrr74ay5cvx5o1a1BdXc3vvPOkMx4/jYnE773Qpg2o3bn33nvxySefYOvWrejWrZv8eFJSEoD6OxHJycny4/n5+Q3uWtjtdkyePBkWiwUbNmyATqfz2s+5c+cavG9BQYG8n88++wwulwsAYDKZ5Nf53j2R0sGJiYmw2+347rvvkJ2djblz5wKoP3mFENBqtfj3v/+NMWPGeFU28h13cyQnJ6NHjx44evRoi/dBjYvU4zGQ0aNH4x//+AcAYPjw4Q2OR4PBAI1G43ffrTleO6POduy0FL/L2pdIPm6Tk5ORmpoKm80mb3PhhRdCCIHTp0/zO+886GzHT0tFxPfeeVstRudVXV2dmDNnjkhJSRFHjhzx+3xSUpJ45pln5MccDkeDBZdlZWVi9OjRYvz48aKysrLBfqQFl7t375Yf+/rrr5u04DImJkY4HA75saefflpecOl2u0VOTo7Xzz333CMyMjJETk6OV6WeYBBgwaWvwsJCYTAYxJtvvtmk/VLzRPrxGMiNN94oLrvsssAfXNQvIL/nnnu8Hrvwwgu5gLyJOvOxo8TvssjSEY7bVatWCZPJJOx2u7zNRx99JNRqtaiqqgq4b37ntV5nPn6UOtL3HgOuDuqee+4RNptNbNmyxatspvIgf/rpp4XNZhPr168XOTk5Ytq0aV4lRcvLy8WoUaPEgAEDxE8//RSwnPHkyZPFwIEDxa5du8SuXbvEgAEDGi0pWlpaKhITE8W0adNETk6OWL9+vbBarX7LwkuaWqXQbreL7OxskZ2dLQCI5cuXi+zsbLkkrd1uFw8++KDYuXOnOH78uMjKyhJjxowRqamp8men0OoIx+MLL7wgNmzYII4cOSIOHDggFi5cKACIdevWBd23VCL5jTfeEIcOHRLz5s0TZrNZnDhxQt6mqKhIZGdni08//VQAEO+9957Izs4Wubm5zfr/3BF15mOH32WRqyMct3a7XXTr1k3cdNNN4uDBg+Krr74Sffr0EXfeeWfQffM7r/U68/HTUb/3GHB1UAD8/qxevVrepq6uTixevFgkJSUJg8Egxo0bJ3JycuTnpVLG/n6OHz8ub1dUVCRuvfVWER0dLaKjo8Wtt97apPLH+/fvF5deeqkwGAwiKSlJPP7440HvCDc14Ao07pkzZwohhKiqqhITJ04UCQkJQqfTie7du4uZM2eKkydPNrpvapmOcDw+88wzIj09XRiNRhEbGysuueQS8emnnzbp8//1r38VPXr0EHq9XgwdOlQu7StZvXq138+1ePHiJu2/I+vMxw6/yyJXRzhuhRDihx9+EFdeeaUwmUyiW7duYv78+U3KTvA7r3U68/HTUb/3VEL4tIUmIiIiIiKikGCVQiIiIiIiojBhwEVERERERBQmDLiIiIiIiIjChAEXERERERFRmDDgIiIiIiIiChMGXERERERERGHCgIuIiIiIiChMGHARERERERGFCQMuIiIiIiKiMGHARUREndKsWbOgUqmgUqmg0+mQmJiICRMm4O9//zvq6uqavJ81a9YgJiYmfAMlIqKIxoCLiIg6rcmTJyM3NxcnTpzA559/jssuuwz3338/rr32WtTW1rb18IiIqANgwEVERJ2WwWBAUlISUlNTMXToUPz5z3/Gxx9/jM8//xxr1qwBACxfvhwDBgyA2WxGWloaZs+ejYqKCgDAli1bcPvtt6OsrEzOlj3++OMAAKfTiQULFiA1NRVmsxmjRo3Cli1b2uaDEhFRm2HARUREpHD55Zdj0KBBWL9+PQBArVbjpZdewoEDB/Dmm29i8+bNWLBgAQBg7NixWLFiBaxWK3Jzc5Gbm4uHHnoIAHD77bdjx44deO+997B//37cfPPNmDx5Mo4ePdpmn42IiM4/lRBCtPUgiIiIzrdZs2ahtLQUH330UYPnfv/732P//v04dOhQg+c+/PBD3HPPPSgsLARQv4Zr3rx5KC0tlbf5+eef0adPH5w+fRopKSny41deeSVGjhyJp556KuSfh4iI2idtWw+AiIiovRFCQKVSAQCysrLw1FNP4dChQygvL0dtbS1qampQWVkJs9ns9/V79+6FEAJ9+/b1etzhcCA+Pj7s4yciovaDARcREZGPH374Ab169cIvv/yCq6++GnfffTeWLl2KuLg4bN++HXfccQdcLlfA19fV1UGj0WDPnj3QaDRez1kslnAPn4iI2hEGXERERAqbN29GTk4OHnjgAXz33Xeora3F888/D7W6ftnzBx984LW9Xq+H2+32emzIkCFwu93Iz8/HpZdeet7GTkRE7Q8DLiIi6rQcDgfy8vLgdrtx7tw5fPHFF1i2bBmuvfZazJgxAzk5OaitrcXLL7+M6667Djt27MCrr77qtY+ePXuioqICX375JQYNGoSoqCj07dsXt956K2bMmIHnn38eQ4YMQWFhITZv3owBAwbg6quvbqNPTERE5xurFBIRUaf1xRdfIDk5GT179sTkyZORlZWFl156CR9//DE0Gg0GDx6M5cuX45lnnkFmZibWrl2LZcuWee1j7NixuPvuuzF16lQkJCTg2WefBQCsXr0aM2bMwIMPPoiMjAxMmTIFu3fvRlpaWlt8VCIiaiOsUkhERERERBQmzHARERERERGFCQMuIiIiIiKiMGHARUREREREFCYMuIiIiIiIiMKEARcREREREVGYMOAiIiIiIiIKEwZcREREREREYcKAi4iIiIiIKEwYcBEREREREYUJAy4iIiIiIqIwYcBFREREREQUJv8fZ4+gLIbq8wkAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -640,7 +640,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAGJCAYAAACAQALCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADe0UlEQVR4nOydd3hb1fnHv9pb8rYznE12CCEESAghEFYYYY9CIAUKlCbwg7SUBtoCpS2FMkqYJQXCXmVD2RmQkBCSEMgekDjDibdlW3vc3x++5/hIupIlW7Jl+f08j5/E0vXV1dXVuec93/f9vipJkiQQBEEQBEEQBEEQSaPu7gMgCIIgCIIgCILoaVAgRRAEQRAEQRAEkSIUSBEEQRAEQRAEQaQIBVIEQRAEQRAEQRApQoEUQRAEQRAEQRBEilAgRRAEQRAEQRAEkSIUSBEEQRAEQRAEQaQIBVIEQRAEQRAEQRApQoEUQRAEQRAEQRBEilAgRRAEQaTE9OnTMX36dP77nj17oFKpsHjx4m47JoIgCILoaiiQIgiCyHE2btyICy+8EAMHDoTRaES/fv1wyimn4NFHH+2yY1izZg1UKhUefvjhmOfOOeccqFQqPPfcczHPTZs2Df369UvptV555RX861//6uihdohwOIwXXngBxxxzDAoKCmCz2TB8+HBceeWVWL16Nd9uy5YtuOuuu7Bnz54uPT6CIAgi/VAgRRAEkcN88803OOqoo/DDDz/g2muvxWOPPYZf/epXUKvVeOSRRzq0z88++wyfffZZSn9z5JFHwmw2Y8WKFYrHqNVqsXLlyojH/X4/vvvuOxx33HEpvVZ3BFI33XQT5syZgz59+uCuu+7Cfffdh5kzZ2L16tX45JNP+HZbtmzB3XffTYEUQRBEDqDt7gMgCIIgMsff/vY3OBwOfPfdd8jLy4t4rrq6ukP71Ov1Kf+NVqvFMcccExMsbd++HbW1tbjssstigqx169bB6/Vi6tSpHTrOdBIOh+H3+2E0GmOeq6qqwhNPPIFrr70WTz/9dMRz//rXv1BTU5Px43O73TCbzRl/HYIgCKINUqQIgiBymJ9++gljxoyJCaIAoKSkJOL3YDCIe+65B0OHDoXBYMCgQYNw++23w+fzRWwXXSOVLFOnTkVVVRV27drFH1u5ciXsdjuuu+46HlSJz7G/A4D33nsPZ555Jvr27QuDwYChQ4finnvuQSgUiji2jz76CBUVFVCpVFCpVBg0aBB/3ufz4c4778SwYcNgMBhQXl6O3//+9zHvUaVSYd68eXj55ZcxZswYGAyGCGVJZPfu3ZAkSVE5U6lU/DwvXrwYF110EQDgxBNP5Me3bNkyvv0TTzzBX69v376YO3cuGhsbI/Y5ffp0jB07FuvWrcO0adNgNptx++23J32OGI8//jiGDBkCk8mEo48+Gl9//bXiZ5vsOSMIguhtkCJFEASRwwwcOBCrVq3Cpk2bMHbs2ITb/upXv8Lzzz+PCy+8EL/97W/x7bff4t5778XWrVvxzjvvdPpYWEC0YsUKDBs2DEBrsHTsscfimGOOgU6nwzfffINZs2bx52w2G8aPHw+gNRCxWq2YP38+rFYrlixZgj//+c9oamrCP//5TwDAHXfcAafTif379/N6LKvVCqBVVZo1axZWrFiB6667DqNGjcLGjRvx8MMPY8eOHXj33XcjjnfJkiV44403MG/ePBQVFUUEZCIDBw4EALz55pu46KKL4ipD06ZNw0033YSFCxfi9ttvx6hRowCA/3vXXXfh7rvvxsknn4wbbrgB27dvx5NPPonvvvsOK1euhE6n4/uqq6vDzJkzcemll2L27NkoLS1N+hwBwJNPPol58+bh+OOPxy233II9e/bg3HPPRX5+Pvr378+3S/WcEQRB9CokgiAIImf57LPPJI1GI2k0Gmny5MnS73//e+nTTz+V/H5/xHYbNmyQAEi/+tWvIh7/3e9+JwGQlixZwh874YQTpBNOOIH/vnv3bgmA9NxzzyU8lqamJkmj0UjXXHMNf2zEiBHS3XffLUmSJB199NHSrbfeyp8rLi6WTjnlFP672+2O2ef1118vmc1myev18sfOPPNMaeDAgTHbvvjii5JarZa+/vrriMefeuopCYC0cuVK/hgASa1WS5s3b074nhhXXnmlBEDKz8+XzjvvPOmBBx6Qtm7dGrPdm2++KQGQli5dGvF4dXW1pNfrpVNPPVUKhUL88ccee0wCID377LP8sRNOOEECID311FMx+0/mHPl8PqmwsFCaNGmSFAgE+HaLFy+WAER8tqmcM4IgiN4GpfYRBEHkMKeccgpWrVqFWbNm4YcffsD999+P0047Df369cP777/Pt/vf//4HAJg/f37E3//2t78FAHz00UedPhabzYbDDz+c10LV1tZi+/btmDJlCgDguOOO4+l8O3bsQE1NTUR9lMlk4v9vbm5GbW0tjj/+eLjdbmzbtq3d13/zzTcxatQojBw5ErW1tfznpJNOAgAsXbo0YvsTTjgBo0ePTuq9Pffcc3jssccwePBgvPPOO/jd736HUaNGYcaMGThw4EC7f//FF1/A7/fj5ptvhlrddmu+9tprYbfbY86/wWDAVVddFbOfZM7R2rVrUVdXh2uvvRZabVtiyuWXX478/PyI/aV6zgiCIHoTFEgRBEHkOJMmTcLbb7+NhoYGrFmzBgsWLEBzczMuvPBCbNmyBQBQUVEBtVrNU+4YZWVlyMvLQ0VFRVqOZerUqbwW6ptvvoFGo8Gxxx4LAJgyZQrWrVsHn88XUx8FAJs3b8Z5550Hh8MBu92O4uJizJ49GwDgdDrbfe2dO3di8+bNKC4ujvgZPnw4gFjzjcGDByf9vtRqNebOnYt169ahtrYW7733HmbOnIklS5bg0ksvbffv2fkdMWJExON6vR5DhgyJOf/9+vVTNP1I5hyxfUV/1lqtNiZ9MdVzRhAE0ZugGimCIIhegl6vx6RJkzBp0iQMHz4cV111Fd58803ceeedfBuVSpXRY5g6dSoeffRRrFy5Et988w3GjRvHa5imTJkCn8+H7777DitWrIBWq+VBVmNjI0444QTY7Xb85S9/wdChQ2E0GrF+/XrcdtttCIfD7b52OBzGuHHj8NBDDyk+X15eHvG7qO6kQmFhIWbNmoVZs2Zh+vTpWL58OSoqKngtVTpQOrZ0nKNoUj1nBEEQvQkKpAiCIHohRx11FADg4MGDAFoNE8LhMHbu3MnND4BWa+/Gxsa0BQGi4cSqVasinO769u2LgQMHYuXKlVi5ciUmTJjAjRuWLVuGuro6vP3225g2bRr/m927d8e8RrxgcOjQofjhhx8wY8aMjAeMjKOOOgrLly/HwYMHMXDgwLivy87v9u3bMWTIEP643+/H7t27cfLJJ7f7WsmeI/Zau3btwoknnsgfDwaD2LNnDw4//HD+WHecM4IgiJ4CpfYRBEHkMEuXLoUkSTGPs5oolkp2xhlnAEBMI1umRJx55plpOZ6+ffti8ODB+PLLL7F27VpeH8WYMmUK3n33XWzfvj0irU+j0QBAxHvx+/144oknYl7DYrEopvpdfPHFOHDgABYtWhTznMfjgcvl6tB7OnToEE+RFPH7/fjyyy8jUiYtFgsAxFian3zyydDr9Vi4cGHEe3zmmWfgdDqTOv/JnqOjjjoKhYWFWLRoEYLBIH/85ZdfRkNDQ8S2mTpnBEEQuQApUgRBEDnMjTfeCLfbjfPOOw8jR46E3+/HN998g9dffx2DBg3ihgXjx4/HnDlz8PTTT/MUsTVr1uD555/HueeeG6FcdJapU6fixRdfBICY3ktTpkzBq6++yrcTH8/Pz8ecOXNw0003QaVS4cUXX1QMEidOnIjXX38d8+fPx6RJk2C1WnH22WfjiiuuwBtvvIFf//rXWLp0KY477jiEQiFs27YNb7zxBj799FOu1KXC/v37cfTRR+Okk07CjBkzUFZWhurqarz66qv44YcfcPPNN6OoqAgAcMQRR0Cj0eC+++6D0+mEwWDASSedhJKSEixYsAB33303Tj/9dMyaNQvbt2/HE088gUmTJvE6p0Qke470ej3uuusu3HjjjTjppJNw8cUXY8+ePVi8eDGGDh0aoTxl6pwRBEHkBN1pGUgQBEFklo8//li6+uqrpZEjR0pWq1XS6/XSsGHDpBtvvFGqqqqK2DYQCEh33323NHjwYEmn00nl5eXSggULIqzFJanj9ueMf//73xIAqV+/fjHPrV+/XgIgAYg5vpUrV0rHHnusZDKZpL59+3Ird0TZibe0tEiXXXaZlJeXJwGIsEL3+/3SfffdJ40ZM0YyGAxSfn6+NHHiROnuu++WnE4n3w6ANHfu3KTeT1NTk/TII49Ip512mtS/f39Jp9NJNptNmjx5srRo0SIpHA5HbL9o0SJpyJAhkkajiTn2xx57TBo5cqSk0+mk0tJS6YYbbpAaGhoi/v6EE06QxowZo3gsyZ4jSZKkhQsXSgMHDpQMBoN09NFHSytXrpQmTpwonX766RHbJXvOCIIgehsqSVJYziMIgiAIolcRDodRXFyM888/XzGVjyAIgoiEaqQIgiAIopfh9XpjUv5eeOEF1NfXY/r06d1zUARBED0MUqQIgiAIopexbNky3HLLLbjoootQWFiI9evX45lnnsGoUaOwbt06xR5VBEEQRCRkNkEQBEEQvYxBgwahvLwcCxcuRH19PQoKCnDllVfiH//4BwVRBEEQSUKKFEEQBEEQBEEQRIpQjRRBEARBEARBEESKUCBFEARBEARBEASRIt1aI3Xvvffi7bffxrZt22AymTBlyhTcd999GDFiBACgvr4ed955Jz777DPs3bsXxcXFOPfcc3HPPffA4XDw/ezduxc33HADli5dCqvVijlz5uDee++FVpvc2wuHw6isrITNZotoREgQBEEQBEEQRO9CkiQ0Nzejb9++UKvj607dGkgtX74cc+fOxaRJkxAMBnH77bfj1FNPxZYtW2CxWFBZWYnKyko88MADGD16NCoqKvDrX/8alZWV+O9//wsACIVCOPPMM1FWVoZvvvkGBw8exJVXXgmdToe///3vSR1HZWUlysvLM/lWCYIgCIIgCILoQezbtw/9+/eP+3xWmU3U1NSgpKQEy5cvx7Rp0xS3efPNNzF79my4XC5otVp8/PHHOOuss1BZWYnS0lIAwFNPPYXbbrsNNTU1iu5DPp8PPp+P/+50OjFgwADs27cPdrs9M2+OIAiCIAiCIIisp6mpCeXl5WhsbIzIgosmq+zPnU4nAKCgoCDhNna7naftrVq1CuPGjeNBFACcdtppuOGGG7B582ZMmDAhZh/33nsv7r777pjH7XY7BVIEQRAEQRAEQbRb8pM1ZhPhcBg333wzjjvuOIwdO1Zxm9raWtxzzz247rrr+GOHDh2KCKIA8N8PHTqkuJ8FCxbA6XTyn3379qXpXRAEQRAEQRAE0RvIGkVq7ty52LRpE1asWKH4fFNTE84880yMHj0ad911V6dey2AwwGAwdGofBEEQBEEQBEH0XrJCkZo3bx4+/PBDLF26VLGgq7m5GaeffjpsNhveeecd6HQ6/lxZWRmqqqoitme/l5WVZfbACYIgCIIgCILolXRrICVJEubNm4d33nkHS5YsweDBg2O2aWpqwqmnngq9Xo/3338fRqMx4vnJkydj48aNqK6u5o99/vnnsNvtGD16dMbfA0EQBEEQBEEQvY9uTe2bO3cuXnnlFbz33nuw2Wy8psnhcMBkMvEgyu1246WXXkJTUxOampoAAMXFxdBoNDj11FMxevRoXHHFFbj//vtx6NAh/PGPf8TcuXMpfY8gCIIgCIIgiIzQrfbn8ZwwnnvuOfzyl7/EsmXLcOKJJypus3v3bgwaNAgAUFFRgRtuuAHLli2DxWLBnDlz8I9//CPphrxNTU1wOBzcEZAgCIIgCIIgiN5JsrFBVvWR6i4okCIIgiAIgiAIAkg+NsgKswmCIAiCIAiCIIieBAVSBEEQBEEQBEEQKUKBFEEQBEEQBEEQRIpQIEUQBEEQRNbz/vbtUN19NwKhUHcfCkEQBAAKpAiCIAiC6AE8tGoVAKDZ7+/mIyEIgmiFAimCIAiCILIedyAAAGihQIogiCyBAimCIAiCILIeFwVSBEFkGRRIEQRBEASR9TBFqtnn6+YjIQiCaIUCKYIgCIIgsh5vMAiAFCmCILIHCqQIgiAIgsh69BoNAAqkCILIHiiQIgiCIAgi6zFqtQDItY8giOyBAimCIAiCILIenbp1ykKKFEEQ2QIFUgRBEARBZD0hSQJAZhMEQWQPFEgRBEEQBJH1BMNhAG2mEwRBEN0NBVIEQRAEQWQ9ITmQ8oVC3XwkBEEQrVAgRRAEQRBE1kOKFEEQ2QYFUgRBEARBZD0USBEEkW1QIEUQBEEQRNbDzCYokCIIIlugQIogCIIgiKyHFCmCILINCqQIgiAIgsh6KJAiCCLboECKIAiCIIisJ0SBFEEQWQYFUgRBEARBZD2kSBEEkW1QIEUQBEEQRNaTSiAVDIfx4Y4dmT4kgiB6ORRIEQRBEASR1UiShJAkQa1SJRVI/XvtWpz96qtYvX9/FxwdQRC9FQqkCIIgCILIasKy9blFp0sqkGr0egEAPzc0ZPS4CILo3XRrIHXvvfdi0qRJsNlsKCkpwbnnnovt27dHbOP1ejF37lwUFhbCarXiggsuQFVVVcQ2e/fuxZlnngmz2YySkhLceuutCFIONUEQBEHkBCytz6rXJxVIsW2219Zm9LgIgujddGsgtXz5csydOxerV6/G559/jkAggFNPPRUul4tvc8stt+CDDz7Am2++ieXLl6OyshLnn38+fz4UCuHMM8+E3+/HN998g+effx6LFy/Gn//85+54SwRBEARBpBnWjNeSZCC1v7kZAFAtzCcIgiDSjbY7X/yTTz6J+H3x4sUoKSnBunXrMG3aNDidTjzzzDN45ZVXcNJJJwEAnnvuOYwaNQqrV6/Gsccei88++wxbtmzBF198gdLSUhxxxBG45557cNttt+Guu+6CXq/vjrdGEN3G7oYGSACG5Od396EQBEGkBVGRavB42t3++4MHAQCNPl9Gj4sgiN5NVtVIOZ1OAEBBQQEAYN26dQgEAjj55JP5NiNHjsSAAQOwatUqAMCqVaswbtw4lJaW8m1OO+00NDU1YfPmzYqv4/P50NTUFPFDELnCkIULMXThwu4+DIIgiLSRSmrfoZYW/CCXALBaKYIgiEyQNYFUOBzGzTffjOOOOw5jx44FABw6dAh6vR55eXkR25aWluLQoUN8GzGIYs+z55S499574XA4+E95eXma3w1BEARBEOmCNeNNxmyCBU/DCgrgpECKIIgMkjWB1Ny5c7Fp0ya89tprGX+tBQsWwOl08p99+/Zl/DUJgiAIgugYoiIVkiT+uxIs0OpjtfKgyh0I4Kinn8bwRx/N/MESBNFr6NYaKca8efPw4Ycf4quvvkL//v3542VlZfD7/WhsbIxQpaqqqlBWVsa3WbNmTcT+mKsf2yYag8EAg8GQ5ndBEARBEEQmYGYTVrnu2RcMQhunBtoTCAAAyqxW7KqvBwDM/d//sE6umyIIgkgX3apISZKEefPm4Z133sGSJUswePDgiOcnTpwInU6HL7/8kj+2fft27N27F5MnTwYATJ48GRs3bkR1dTXf5vPPP4fdbsfo0aO75o0QBEEQBJExgkJqH4CE6X3suTJBkVpz4ECGj5AgiN5ItypSc+fOxSuvvIL33nsPNpuN1zQ5HA6YTCY4HA5cc801mD9/PgoKCmC323HjjTdi8uTJOPbYYwEAp556KkaPHo0rrrgC999/Pw4dOoQ//vGPmDt3LqlOBEEQBJEDiKl9QOJAyiM/V2w2wxMMIhQOwydsL0kSfKEQvMEg8ozGDB41QRC5TrcqUk8++SScTiemT5+OPn368J/XX3+db/Pwww/jrLPOwgUXXIBp06ahrKwMb7/9Nn9eo9Hgww8/hEajweTJkzF79mxceeWV+Mtf/tIdb4kgCIIgiDQTSiGQYs8Vmc0AAFcgAE8wiKFySwhfKIQ5776L/PvuQyAUyuRhEwSR43SrIiXJOc+JMBqNePzxx/H444/H3WbgwIH43//+l85DIwiCIAgiS+CpfSkEUsUWCwCgxe+HLxjEQIcDPzU0wOn1Ym1lJQDgu8pKTCHnXoIgOkjWuPYRBJFeaKWVIIhcIaXUPtlsgilSLX4/fKEQSq1WAIDT5+MpfdRniiCIzkCBFEHkKG55MkEQBNHTiXbta0+R0ms0sMt10i1+P7zBIErkwKrJ54NK3rbJ58vcQRMEkfNQIEUQOYTYW4UCKYIgcoVUXPs8wSCMWi0PupxeL4LhMErkVD+n1wtWWECBFEEQnYECKYLIIURnKgqkCILIFVKtkTIJgVSdxwMAbYGUz4cWvx8AsElonUIQBJEqFEgRRA4hTi58VCNFEESOkKprn6hI1bndANoCqSYhkHp0zRr+PEEQRKpQIEUQOYRHmFwkmmgQBEH0JFJK7QsEYNRq+ba1cqBk0eth0mrh9HrRLKT0OSm9jyCIDkKBFEHkEGI6HwVSBEHkCimn9ul00KjVMGm1qJdT+4xaLRxGY0RqH4CIoIogCCIVKJAiiBzCJUwOKJAiCCJXYK59eo0GOrU6KbMJoDUVkNVIGWQnv31OJySAu/qR4QRBEB2FAimCyCFcpEgRBJGDMEVKq1bDqNUmZTYBtCpYLLXPqNXCYTBgV0MDAOCJM84AADQLC1AEQRCpQIEUQeQQlNpHEEQukkogFVeR0mqRbzJhS00NAGBIfj4ASu0jCKLjUCBFEDmEmNrno0CKIIgcgbn2aVSq5BQp2WjCGqVIHVFaimqXCwAwKC8PAClSBEF0HAqkCCKHoNQ+giBykWhFKlF7B2+0IiUHUgaNBpP69ePbFVssMGg0ONjcnMEjJwgil6FAiiByCJffDxVaJxsUSBEEkSuklNoXCMCo0QBoDaQavF4ArYpUX5uNb6dVq+ELhfDnZcsyd+AEQeQ0FEgRRA7hCgRg0evbnWgQBEH0JJhrnyZZswkhtY9h0etRYDJFbDtn/PgMHC1BEL0FCqQIIodw+f2w6HQUSBEEkVN02GxCDqgAwKTVxgRSk/v3h0alysAREwTRG6BAiiByCDcpUgRB5CDBcBgqAOpkzSaEGimgtT5Ko1Yj32iM2Nag1SIkSTxQIwiCSAUKpAgih/CFQjBqtRRIEQSRU4TCYWjUrVOWZAIpY1QgZZaVKZ1cO8Vg2yVyOa33eCjQIghCEQqkCCKH8IdC0CXhakUQBNGTCIbD0CYZSHkCgZgaKbOQ4gcA540cCaBVqQISu5wW3n8/5n70UccPniCInEXb3QdAEET6CIRC0Gk00IHszwmCyB1CkpR0IKWkSJmEQKrxttt4YMUVqaiFp2afDwdbWjDQ4QAAfPbzz2l6JwRB5BKkSBFEDuEPh6HXaGDQaCiQIggiZwiGw9wUIlEgFQqHEQiHYwIptWAo4TAaeYqfQd4uen9XvfceRjz2GA7IPaZsgvsfQRAEgxQpgsghAnJqH/WRIggilxBT+xItFLHHo80mwrJ9ejQstS+6RmrdwYMAgLe3bgUA2AyGzhw+QRA5CgVSBJFD+EMh6DUa6EmRIggih0jWbMIjPx6tSMULpIxxFClmLrFeDqhIkSIIQglK7SOIHCIQDkOn0ZBrH0EQOUWyZhNckYoym5DiKVJxaqTqPR4AwJaaGgBtilSTz4dZr76KnxsaOvxeCILIHSiQIogcIiArUhRIEQSRS6QaSDGliQVKg/LyFLdXUqSC4TDcgQAA4IeqKv4YADz7/ff4YMcOvCOn/BEE0buhQIogcgiyPycIIhcJSVJSZhMeOQBiNVJD8/MxJD8fD556quL2SjVSzT5fzHYssNrT2AigVZkiCILo1kDqq6++wtlnn42+fftCpVLh3XffjXi+paUF8+bNQ//+/WEymTB69Gg89dRTEdt4vV7MnTsXhYWFsFqtuOCCC1AlryARRG+DpfaRax9BELlERxUpm8GAn266CRP69FHcXkmRciYIpNhze5zOjrwNgiByjG4NpFwuF8aPH4/HH39c8fn58+fjk08+wUsvvYStW7fi5ptvxrx58/D+++/zbW655RZ88MEHePPNN7F8+XJUVlbi/PPP76q3QBBZhZ9S+wiCyEGiA6lAOIyQnG4n4omqkWoPpRoppjaphO2Y0uX0egEAlbItOkEQvZtude2bOXMmZs6cGff5b775BnPmzMH06dMBANdddx3+/e9/Y82aNZg1axacTieeeeYZvPLKKzjppJMAAM899xxGjRqF1atX49hjj+2Kt0EQWUNASO2jQIogiFwh2rUPaA1+zOrI9eBoRao9WAogC5QA4EBTEwCgn92O/fL/oxUpt7A9QRC9l6yukZoyZQref/99HDhwAJIkYenSpdixYwdOlXOd161bh0AggJNPPpn/zciRIzFgwACsWrUq7n59Ph+ampoifggiFyBFiiCIXCRakQJiez8BqQdSOo0GWrUaLjkwWnPgAM545RUAQF+bDQBQYrGgxe8H0KZIeSiQIggCWR5IPfrooxg9ejT69+8PvV6P008/HY8//jimTZsGADh06BD0ej3yotx4SktLcejQobj7vffee+FwOPhPeXl5Jt8GQXQZgXCYFCmCIHIOpUBKaYyLNptIBotOB5ccKLG+UQBQaDIBAE4cNAj7mpqwqbqaFCmCICLI+kBq9erVeP/997Fu3To8+OCDmDt3Lr744otO7XfBggVwOp38Z9++fWk6YoLoXkT7c6XVWoIgiJ5ItGsfoBxIpapIAYBFr+eBkVh3NdDhAABcNHo0AOCHQ4fg9HqhVql4LRZBEL2bbq2RSoTH48Htt9+Od955B2eeeSYA4PDDD8eGDRvwwAMP4OSTT0ZZWRn8fj8aGxsjVKmqqiqUlZXF3bfBYIBBbq5HELmEPxSCTqNBntEITzAIl98Pi9yQkiAIoqeSrCLlDgSgUamgk23Nk8Gi0/HUvpDQuLfMagUA6GUn1Fq3Gw1eL/rabKRIEQQBIIsVqUAggEAgAHVUIalGo0FYXjGaOHEidDodvvzyS/789u3bsXfvXkyePLlLj5cgsgGW2jdQXljYSxa9BJEy/1q9Gn//+uvuPgxCINlAyunzIc9oTGnfZiG1zy+49/1i3DgAwJF9+qDQbMaexkYEw2GU2+0USBEEAaCbFamWlhbs2rWL/757925s2LABBQUFGDBgAE444QTceuutMJlMGDhwIJYvX44XXngBDz30EADA4XDgmmuuwfz581FQUAC73Y4bb7wRkydPJsc+olfCzCZYSkqF04lRxcXdfFRENJIkocHrRYFcg0FkF7d8+ikA4A9Tp0KtUrWzNdEVhCQpxrVPKZBq9HrhSDGQsuj1XJFqlM0kAGB4YSGkO+8E0FovtaO+HgBQ7nBg9f79kCQJKro+CKJX062B1Nq1a3HiiSfy3+fPnw8AmDNnDhYvXozXXnsNCxYswOWXX476+noMHDgQf/vb3/DrX/+a/83DDz8MtVqNCy64AD6fD6eddhqeeOKJLn8vBJENBOTUvn52OzQqFSoaG7v7kAgFPtm1C2e88goWnn46bjzmmO4+HCIOlc3N6G+3d/dhEGhfkZIkCW9s3owKpzNlRUpM7RMDKZFCsxlfV1QAAMrtdkhotV9PpRaLIIjco1tHgOnTp0MS8pGjKSsrw3PPPZdwH0ajEY8//njcpr4E0ZtgqX1atRr97XbsoUAqK/mpoQEAcN/KlRRIZTFk2JI9tBdI/VhVhUvfegsAcESCGmklzDodT9WLF0gVmc1oltP/yuXg2hMIUCBFEL2crK2RIggidVhqHwAMzMtDBdVIZSX1Hg8AoMrlSriYRHQvPqFehuheQuFwXNe+FXv34oh//5tv+7O8UJEsFr2e10g1xFOkhDTccjl1muqkCIKgQIogcgRJkhAMh7lb1UCHA69u2oRat7ubj4yIpk7+TILhMJrkvjRE9kGKVPYgKlKGqEDqfzt3AgAuGTMGAFL+ThWbzdjX1ASgVZHKMxqx4qqrIrZhgdSsESP4/1mTXoIgei8USBFEjhCU3Sx18mTjpMGDAQAr9+7ttmMilKkXVr0p0M1eSJHKHoLhcFyziY3V1Th92DC8duGFAIBfHnFESvueNnAgfm5oQEVjIxo8HswZPx7HDRgQsY1dbply3siR6Cen9u2Xgy+CIHovFEgRRI4QYIGUrEhdcfjhUKtUqHK5MvJ6T373HR5atSoj+8516txuDJYt6uvkND8i+yBFKnsISRJXpLRqNTQqFbzBIELhMFbv34+JffoAAMJ//jOeO+eclPbNaqp21tej0etFvoJZBXNvtOr1GOBwQAVgN9WgEkSvhwIpgsgRAvLqOVOkNGo1is1mVLW0ZOT13tm2De9u25aRfecan/30EzxCPUWN242RRUUASJHKNpiyC5AilU2IqX1AqyrlDQbxQ1UVat1unDZ0KAB0yI681GIBAFS1tPDUvmjE/eo1GvS327E7xVosgiByDwqkCCJHiFakAKDUasWhDAVSNW53XIcroo1GrxenvfQSbvr4Y/7YPqcTo+X+XlRnkV2IAa+fAqmsQTSbANoCqWpZcR8kK7wdwaLXw6rXY6/TCU8wqBhIHdu/PwDw722JxUJqMkEQ3Wt/ThBE+ohWpIDWldZMpfbVuFy8ZoGID5vorTt4EEBrXUeVy4XhhYX8dyJ7EJ3YKLUve4inSLGFCKte36n9l1osvC2BTa6HEpk6YAA8d9zB67OMWi0plgRBUCBFELmCkiJVYDLxiXw6kSQJtW439VBJghr5/LPV672yJf2wggKoQIFUthERSNFEOWtoL5CydDKQ6me3Y21lJQDAFGdcE8c79voEQfRuaDmZIHIEJUUq32iM2xelM7T4/fCFQmjy+RCmPkgJYYEs+3w+2bULOrUa40tLYdBqSfXIMpyCdTZ9NtlDSJJiUvt8oRBcfj/0Gg3vn9dRLhkzBj9UVQFobdDbHgYKpAiCAAVSBJEzKClS+SZTRuqYamSDBAlAM/VBSggLpEJywLnmwAEc3a8fCs1mWtXOQhqEuhdSpLKHRIpUZ9P6AGCUbP4CAKYkAin67hIEAVAgRRA5Q1xFKgMF0aLTnJMCqYQwRbDe44EkSXAHAnDIxew0Gcs+RAWXFKnsIdOBVIHcZBeIn9onQt9dgiAACqQIImdQUqTyjEY4fT6EBEvndFAj1F2Rc19imPNbMBxGk88HVyDAU4eoYD37qJcXHmx6Pbn2ZREhoSEvkP5AqtBs5v9PJrXPqNFQIEUQBAVSBJErKCpS8iprU5pVoxpRkaJAKiEBYTJe63bDLQRSBpqMZR0NHg/sBgPMOh0FuVlElypSSab2kWJJEAQFUgSRI7DVc1GRcsg2vulOvxMVKUrtS4yoatR5PK2BlGChTIFUdtHg9aLAZCIjkCwjXiDVnKZASkznI7MJgiCShQIpgsgReGqfMNlglsAu2SJ4T2NjWswhqlwu9LfbAVBqX3sEwmEY5OC2xe+PUKRoVTv7aPB4kG80wqjVwkOfTdag5NrnDQax1+nkY1FnUAn7phopgiCShQIpgsgRAgqKlEWesLvk3jiDH3kEhz/1FKROWpbvbmzEyKIi6NRqSu1rB38oxNOGogMpg1YLL6WPZRUNXi/yTSZY9Xq+AEF0P0qKVGVzM1bt34/hBQVpfa1krNQpkCIIAqBAiiCyDkmSsL+pKeVgJxlFCmhVpR5bs6ZTx7i7oQFD8vK4mQURn0SBFE3Gso8Grxf5RiOsej1ahOa8RPcSVDCb2FlfDwAYXVyc1tcS1al40HeXIAiAAimCyDr+vW4dyh9+GP/buTOlv0tGkWK8vnlzyscVDIdxyX//i1319djT2IhBeXlwGI2U2tcOgXAYdoMBKrQFUizApclY9sFS+6x6PVpIkcoaQgqKFABo1WqcM3JkWl5j1ogRSW9LjpsEQQBA+4nABEF0KZXNzQCAQy0tKf1dsooU0DGDiMrmZryxeTOafT40eL0osVhg0eko/akd/KEQDFotrHo9mny+GNc+CkSzi3qPB/kmE5r9ftRloAdbrhEIhfDhjh04d+TIpJScjhKd2sfqDn8xdizUaXrdNy68MOnP3KjVwhMIQJKkjL5vgiCyG1KkCCLLYOYD0SpSe7SnSEmSBLVKhb42W0RD3WRhvajWVlYCaLUL1ms0PIAjlAmEQtCp1bDq9dztkFL7spMTFi/GTw0NpEilwG1ffIHz33gDm6qrM/o6wXA4xmwCQFqMJhgGrRZ9bbaktjVptZAA6jVGEL0cCqQIIstgTmHuVAMpBUVKo1bDoNHA5fcjGA4jLEnoJwdSYg1Ws8+Hwvvvx6p9++Lun6WxsB5S+SYTdBRItYs/FIJeo4FVr0e1fO4okMo+JEnCVxUVAIC+NhsFUkny8a5dANLfqy6akCRFKFKsXmqgw5HR140HV/upjo4gejUUSBFEluGRb8yppswxRUqcbACtN3xXIMAn7P3tdgTD4YiJz7vbtqHe48H727fH3X+0TXe+0Qi9RkMrsu3gD4WgY4FUlCJl0GioziJLqJdTuv5w3HG4bNw4CqSShH3/mzN4riRJikntY6nPhxUWZux1E8HVfrpGCKJXQ4EUQWQZzA67I4qUTq2OyddndUxswl4up8LUCOl938npeja5ga8S0RP+fJMJOrWaB3CEMoFwGHqNBgUmE/Y6nQBIkcpGKuTP5vxRo3jg217PtYXffgvr3//eFYeXtbDvv7gw4w4EMH3xYvxYVZWW1wjL6rno2revqQkAMDQ/Py2vkSrmOEY+BEH0LiiQIogsgytSHaiR0in0P7EZDGj2+/mEvZ8cSIl1Ujvq6gAAdQlqp+IpUpTalxi/XCM1sqiI15FQIJV9HJRNXtj3w6LTtfsdvG/lSrgCAf6d7Y1wRUoIpDZXV2N5RQWuef/9tLxGSA6kREXqT9Om4aTBg9NaI5UK8Yx8CILoXVAgRRBZhqejZhOyIhVNvtGIBq+XB0L9owKpsCRhozzBr0/gICem8LGaHx2l9rVLQK6RGiP0urEIgVR0gEp0D8w9Md9oBNBqPOALBhP2cys2mwEAPzc0ZP4AsxBJkvh5ExWpPY2NAFqNaT6Ra6g6Q1BerBEDqSP79MGXV14ZoVJ1JfFaSxAE0bugQIogsgy2up1yal8cRSrfZEKDxxNRIwW0BVLf7NuHyuZmOAyGxIqUEDBZdDqoVCpK7UsCpkgNFlKQeI0UKVJZQ6PXC71Gw93gDBoNJLRN4pUosVgAAD/10kDKEwzycUGskRIDy5kvv9zp12GfgSaLbMZJkSIIAuhAILV792688MILuOeee7BgwQI89NBDWLp0Kbwd6IXy1Vdf4eyzz0bfvn2hUqnw7rvvxmyzdetWzJo1Cw6HAxaLBZMmTcLevXv5816vF3PnzkVhYSGsVisuuOACVKUpL5sgugOuSKVqNtGOIsUm7Fa9Hg6DgQdSW2pqoAJw1vDhvOBeCVE5MciTTTKbaB9WI1UqT7oBSu3LRhq9XuQZjbzGkAVUiT4f9j1I9L3JZcQeaKIitVtWpNJFSEGR6m5IkSIIAkghkHr55Zdx9NFHY+jQobjtttvw7rvv4uuvv8Z//vMfnH766SgtLcVvfvMbVMj2scngcrkwfvx4PP7444rP//TTT5g6dSpGjhyJZcuW4ccff8Sf/vQnGOXUCwC45ZZb8MEHH+DNN9/E8uXLUVlZifPPPz/pYyCIbCPtipTRiAaPh68cG7VaFJnNvKfRweZmlFqtyDMaE7qUiYoUc8yKZ3++q76eGs3KMPvzMquVPyYGUr5QKGH6GNE1sECKwYKkRK6K7LuaaevvbEV8380ZDKSUUvu6G1KkCIIAAG0yG02YMAF6vR6//OUv8dZbb6G8vDzieZ/Ph1WrVuG1117DUUcdhSeeeAIXXXRRu/udOXMmZs6cGff5O+64A2eccQbuv/9+/tjQoUP5/51OJ5555hm88sorOOmkkwAAzz33HEaNGoXVq1fj2GOPTebtEUS38uGOHdCq1Th92DAAbSvgaauRMplQL6T2GbVaFFss3LWvsrkZfW02mHW6hMEbU6SGFRTg4tGjAQB6tVpRkTrs0UcxorAQ2+bNS+k95CLM/rxYUKTE9DG2DZu4E91Do9cLh+BamYwixQKJ9tz9chX2/gtNJjRFpfb95qij8MTatZhQVtbp1wkpuPZ1N3qNBlq1mizyCaKXk9So9I9//APffvstfvOb38QEUQBgMBgwffp0PPXUU9i2bRuGDBnS6QMLh8P46KOPMHz4cJx22mkoKSnBMcccE5H+t27dOgQCAZx88sn8sZEjR2LAgAFYtWpV3H37fD40NTVF/BBEd3H2q69i5ssvwykrOB1uyJtAkWoUUvsMGg3K7XZeEF7Z0pJcIBUKQQVgx7x5+NuMGQBkRSrOiv122QmwtxOQa6TE1fRU0seIrqHR54tUpOTvUiIzEB5I9dLJNHv//ez2iGDyQFMTDissxO+nTIEzDUFmNipSAFBqseCgrM4TBNE7SWpUOu2005LeYWFhISZOnNjhA2JUV1ejpaUF//jHP3D66afjs88+w3nnnYfzzz8fy5cvBwAcOnQIer0eeXl5EX9bWlqKQ4cOxd33vffeC4fDwX+UgkOC6GqYNXazzwe9RpO2GimrXg9PMMiDJKNWi7ElJdhYXQ1JktDg8aDAZEpKkTJotRF9qnRqNdmftwOrkQLaengxKJDKHpp8PtgFRSqZ1D4lx7reBAue+tls/BxIkgRPMAirXo98kyktKb7ZGkgNzs/nC1IEQfROOjwqVVdXY9OmTfjxxx8jftJFWB44zznnHNxyyy044ogj8Ic//AFnnXUWnnrqqU7te8GCBXA6nfxn37596ThkgkgZsTZm6nPPQZIkOH0+9LXZ0qZIsVx+VhBv1GoxurgYtW436j0eeIJBmLXapBQpfdT+lcwmxPc0adEiXPPeeym9j1wjGA7zlKSNN9yA7669lj+XzGSd6Bpcfj//rgCRQe5/1q9HyT//GbN9lVxn2J4iJUkSbyqbSzQJgRQ7B2xRwKTVcjU81MnFllAWuvYBwOC8vLTXgxEE0bNIOSl/3bp1mDNnDrZu3conTCqVCpIkQaVSIZSmCUFRURG0Wi1Gy7UYjFGjRmHFihUAgLKyMvj9fjQ2NkaoUlVVVShLkJdtMBhgEFYeCaK7iHb7avH7EZYk9LPZsC7FlJFEipT4WgZ5ggO0ToTcgQBMOh0sOh18oRBCwsRfxB8K8XQnhlJqnxgUrK2sxNrKSjxzzjkpvZdcIhQO85V0h9GIo/r25c+RIpU9uAIB7sQGRKb2/f7zz3kvNhb87qqvBwAUmEzt1kgd9+yzONDcjIqbb87MwXcTTT4fDBoNCs1mHlSx1GSTTgerXo+wJKHW7UapYLaSKtmqSA10OLB0z57uPgyCILqRlEelq6++GsOHD8c333yDn3/+Gbt37474N13o9XpMmjQJ27dvj3h8x44dGDhwIABg4sSJ0Ol0+PLLL/nz27dvx969ezF58uS0HQtBZArmfnfVEUcAaAt2+tps8AaDKa1i++MpUvLksM7thkalglat5ivvLX4/PIEAzDodd5KLp0qJk0iGkiIVnZI4tqQk6feQiwSFQCoaCqQyj+ruu3HNe+/B+ve/c6dKJVx+f0QgJX427POpEv6e9Y6aUFbWbmrfqv37sdfp7PB7yFaa/X7YDQbY9HoeTDInQ5NWiz42GwB0uo6I95HKskCqj82GQy0tOak2EgSRHCkrUj///DPeeustDJMdxjpDS0sLdgldz3fv3o0NGzagoKAAAwYMwK233opLLrkE06ZNw4knnohPPvkEH3zwAZYtWwYAcDgcuOaaazB//nwUFBTAbrfjxhtvxOTJk8mxj+gRsMCJ1c6wCUc/eQLiDgS4otQe8RQpFjTVejx8cij2QHEHAjDJqX3sNW0Kiq1PSZFSqJGKdhtM1OS3N5BMIJXI0IDoOOz79eyGDQCAbbW1Ee6JIq5AICK1T0y7ZCrrweZmDHA4ALQaKhg0GgzKy8NGub6xPZp9PsXvVk+F1ZXZDQZFRYpZ/h9sbsYRnXDvY6592aZI9bFaEQyHUed248FVqzD78MN7/cIRQfQ2Uh6VZsyYgR9++CEtL7527VpMmDABEyZMAADMnz8fEyZMwJ///GcAwHnnnYennnoK999/P8aNG4f//Oc/eOuttzB16lS+j4cffhhnnXUWLrjgAkybNg1lZWV4++2303J8BJFpGuRC7P5yIFXZ3Ayg1QULSM25L26NlBwg1Xs8fHJoFXqgeIJBmDqhSEWn9jFFalhBAW446ijUut29uk9SokCKBaakSGWGHVHOkYlq0Vx+f8SihZjax67fQ4KycrClBWVWK0wpNFXONVWKBVJFZjN8oRBqXK4IRYoHUmlSpLIukJIXvLbV1uK+lSsxR3AVJgiid5CyIvWf//wHc+bMwaZNmzB27FjohFQIAJg1a1bS+5o+fXq7E6yrr74aV199ddznjUYjHn/88bhNfQkim2mQV8xZIHVAtuLvI09AXH4/EGcFPZr2aqTq3O42RUpI7XPLqX28wWS8QCpOjVRMap/8929ceCF21NXhybVreQpQb4RS+7qP7bW1Eb87EzjIRddIiZ+NWqVCSJIiAgLWf82k0/HgQQnx+5Fr7n5NssJ20uDBUAH4386dGFVcDKD1/Ok1Gtj0+pha0FQJZqnZBBu3P9yxo5uPhCCI7iLlQGrVqlVYuXIlPv7445jn0mk2QRC9gXqPB2adjvevqZBXrFn6UDx1yOX3Y+Tjj+PdSy7BRNm8IBCnqSsLkOqE1D4WXDV6vQhLEkxaLZ9ExmswqaRIKab2yX9v0ev5inRlc3OvDKTCkgQJ8VfSjeTal1GiFak5776LS996C4E//SnicX8ohGA4rJjaV+/x8NSyg7JiDLRe031sNpi0Wp7OpoSY2pqOnkrZBFsgKbVaUWAyobK5GYNk4yeTPJ44jMZOB5ChLFWk+tvtOKpvX9z/zTcAEONqShBE7pPyqHTjjTdi9uzZOHjwIMLhcMQPBVFErlLrduPhVavSnqLW4PUi32jkE7jdjY0oMJngkAOreOrQzw0N2N/UhIdXr+aPxa2RElP75Bu9SauFCkCNPMkTg7l4fV+UFCm9RoNgOBxxXtgxW3Q6DM7PBwBsralJcBZyl/ZSkgykSGWU6KbQrkAAwXAYG6L6DPLgX1CkdGo11CoVDgjBk5jat7W2FsMLCmDUahMqUuLCRC4qUmyBxKTTwRMMttVIyde2w2BIqAQmQ7am9gHA5P79+f8Tvc9V+/bhinfe6YpDykrOfOUVvJzGFjkEkS2kPCrV1dXhlltuQWlpaSaOhyCykqveew/zP/us0ykq0dR7PMiXm+ECrQFSqcXCJ3TxFKlaOQASJ+DxaqSMWi10ajWqXS6ugKhUKph1Ou5iZtLpkG8yAWhNN7zt889x0ZtvRuzHp6B4sdcTVSlRkWKmGee/8UavdLZqr/8NpfZllj2NjZh9+OE4dejQiMcn/PvfEb83C9csg31H9svptsVmM0/tq3O7sb+pCUeUlfEAIh7iYkhnA4pso8nng10+Z2Y5xZHXSAmKVGeVuGx17QNae0kxqhO4Qs793//w0o8/dsh85+uKCp4G3lP5386dmN2LA0kid0l5VDr//POxdOnSTBwLQWQt3x88CCD9E95d9fUY6HBEBlJWK/892kqcwSZ04gQuniKlUql4uo1RCISsej1XpFhqn1atRoPXi/u/+Qb/3bIlYj++YFCxIS8QWQciKlLixGdPL2xc2a4iJRgaEOmn3uNBf5sNn86ejWKzOe52aw4cAACMket7GBYhkBpTUsIVKXYtH1ZY2JraFwjEVatdOaxIiS6EJq0W7kAgRpESHf06Sra69gHAEFl1B+Q00DjNh0cWFQFAjBqaDNMWL8Y5r73WsQPMAnqz2RCR+6RcIzV8+HAsWLAAK1aswLhx42LMJm666aa0HRxBZAssvScVF732ePTbb/HpTz/h1xMncgWqyedrVaTaMX5gEzpxkhYIhRQDKQAYnJ+PnfX1EYpSH5sNz8m20A6jESqVCvlGY9yVT38oFGPFzl5PdO5z+f3QqdVcrfr5ppswZOFC/HDoUMSkozfQXiClUqmg12hIkcoQjV4vT1m96Zhj8M62bVgvL4qIfLt/Pwbl5aFcrk1kiIrU0Px8LK+oANAWEDkMBph0OkhoXchQqpERU/tyrUZKTO0zy8ocGyONQmpfTSdbIGRzat+MIUPwp2nTYNRqcceSJajzeFCiYBDEjCl+amjAjBT2zwKztZWV6TjcboHGNyKX6ZBrn9VqxfLly7F8+fKI51QqFQVSRE6TzkDqq717AbSu2Fr1el60XmqxtGtFzlLyxEArEA4rpvYBwCB5ghitSAHAnPHjcWSfPgCAfJOJW7IDrSuJKjktzRcKoVDB/py9NqMlykZ6UF4ejFot9skT0t5EMhNAYwr22Z1h6e7dsOr1mNSvX8ZfKxsISxIavV6esvrHadNww1FHoeif/wQQqaa4AwEecIlY9HrslhvvDsrLw3tyg3gWSNkMBq68eAIBxUCKfUf7WK05l9rXLHzXWYpjg8cDh8HA1WiHwYBd9fWdep1sde0DWsfRv5x4IlbK43mNy4USi4V/p9mYy1T7VK8BFognSh/NdprjZFYQRC6QciC1e/fuTBwHQfQI0nkzy5MncX+cNg0atRrTBw3Cx7t2odRqhVathl6jiZvax26uYqCVSJFiK6SiWcS9M2bghR9+wL/POosHS8x5i+H0+fgE0xcMKtqfA7GpfdG1JsVmMw/+ehPJBlLMte+lH3/E4Lw8HDdgQFqPwxsM4qQXXgAAuG+/ndev5DLNPh8kICJAKjSbsXTOHJz4/PM42NLCAylfKKQYBJl1OrgCATgMBhSaTGj0elHv8fBaSbusSAGtY4MjZg9tqnGJxZLWhZjuJixJEQ3DzTod3IEA6j0eFApplOmokcpW1z4RNsZWu1wYA2Dck0+i0etFza23AmhTZVI9F7kQhIipnfFqeQmip5K9oxJBZAlifnc6J0LVbjfOPOwwPpk7SrYxL5VvyGxiokSL/HhEal8CRapAXpUXJ5VTBwzA02efzYMooLWJ7qubNvHfxeBHsY9UnNQ+S9REvdhi6XR6T08kmUDKIKf2+UMhXPHOO5j63HNpPw6xLoM1hXX5/XHrOXIBpqzmRylNfWUDFHHBwK9wbQPgynCByYQ8oxHBcBiF99+P6z78EFq1GgaNhisO8Zz7XIEANCoVHEZjj1YVomFjE1ek5FqxOo+HjzdAemqksjm1j1HucECtUuFnWcHcVV+PWrebp2Gzzz6eK2o8mnMgHVR8D51tzkwQ2UbKipQkSfjvf/+LpUuXorq6GuGoG/Hbb7+dtoMjiGxAnPykNZByuXgBMtC2oqmWAxuLvBquBLsxuZJUpNjEJnpSGc3hJSURv4s3faU+UvHMJixRtVTFZjMFUnFgqX0dKUJPllrh3O9rasKIoiJY770XNx9zDB4+/fSMvW5X8FN9PRq9Xt5PjcFq/fKFST3Q1uxa7AkVT5GyCIGUuJ9gOIwCkwkqlaottS9OkOTy+2HR63kNUa7AVHFRkapsbkZ9VCCVTvvzbHTtYxi1WgzOy8M2uQm0QaOBLxTCXcuW4amzzuKKVMqBVA4oUuJ72N/UxPskEkQukPKodPPNN+OKK67A7t27YbVa4XA4In4IItcQzRcS9YtJlRqXK8JJjFk0Hy3XsFj0+viKlHxjSlWRai+lYtaIETht6FC8ceGFACInh4qKlJL9eSCgrEhRap8iLJASbZHTbRUv7nuv08mvq9c3b07r62SSz376KSL4YQx79FEctWhRzONswhpd+2QzGGCRJ/0MpUUCoE2RypcVqYj9yAEEU5TjqS7s+8Bc7XKF6ECK1XjWezwoFAMpoxG+UKhTzpTZ7NonMrywEDvkejB2XXz+888AOp7aF69Bek9CVKQO9MJaWSK3SVmRevHFF/H222/jjDPOyMTxEETWIZovpHMi5PT5IhSi4YWFkO68k/9u1uni1kg1CwXIYUmCWqVKqEixSWJ7E5ERRUX4ZPZs7JPTv8TAMZEiFZPaF6VI5RuN2JBjhfbJwCaAiVbSWSAlTsSbfT7elDkd1Hs8sOh0MOt0ONjczIOIbJ+YMtyBAE576aXW5rd33KG4jWiMAsRP7QNa0/vEFCN/KBRhxMJg13GBycRTAhkV8neEra7vaWzEsUJzVsaBpiaUyAYy6e5D151ENzFmfaSC4TBGCzbydiHQLFY4x8mQzWYTIiUWC3bW1yMsSaj3eDCxTx+sP3gQoXCYj6WdSe0LhsM95jsrIiriuRAYEoRIyt9Ih8OBIUOGZOJYCCIryUQfGEmS4PR6+SRDCatej6YEZhNMZWI36ESKlEN+nUFC88hEiAX0jEQ1UmJqX7Pfz1fr+f7k+oneRiqKlJj+kupkqz3qZAMAm8GAFr+frwr3lElZlRz0RLsbisrdoajaC3YOlQLS6Jq9eKl97Drua7XGpCOdJivIeUYj8oxG7u4XzbqDBzGhTx+u2OQK0YqUw2jkRhzRqX1A56zfe0KNFAAUmkyoc7vR7PMhLEk4rLAQElqDenbtplrzJI4L8RbWsp0KpxMlFgt0anVOqbIEAXQgkLrrrrtw9913w5NDK2sEkQhx8nPTJ5+kZZ++UAiBcDhhIHVYQQHPt4+mxe/nphSsTiqRInVM//74/Ior8Ksjj0zq+Fjdh3jT8ytMNpVS+5xeL588MXKtPiRZkpkAMttoMUhPd7+hOrcbhSYTrHo9Wvx+rsZk+8SUUSWkhYrX5F3LlvH//xQVyDR4PLDp9YrvkU14GfFS+wbKwRNToz6dPRv/Ou003DplCj6ZPZtvNzgvL27D6a21tRhXUgJTAvOYnkh0IDW8sBBVLhf2NzVFBlJyINuZOilmiqLOckWq0GxGneDqeFhBAYBWRYYFUqm2OhAXoOLVzGY7FY2NvPF8b7wPELlNynfRiy++GA0NDSgpKcG4ceNw5JFHRvwQRK6RCSWFN/RMkL41rqQEm6qr+WRcpNnnQ5lcNM9WKeM1BGWcPGRI0hMRrki1E0gpmU04FdLScm0SmSxJBVKyWicGUplSpKx6PVoCAV7311PSbES1ab9QY/Gv1av5/3+K6lXUIPSQiqbIbI5IN4rn2se+Yyw189ShQ/F/xx6L+085JWK7YosF9V4vJEnC13LTXqB10uwOBFBsNuecKssm9Sz9cZRgnFOooEh15poOhsPQqFQRqZvZSIHJhFq3G+e/8QYA8BTHWrebBxCpBhK+qLTpnsg+2WAikRMtQfRUUg6k5syZg3Xr1mH27Nm44IILcM4550T8EESuwW58d0+fnrYcfbY6m0iRmlxeDm8wiNX798c81+L3o4+8Ss5SP9LZn0OtUsGg0UTc9JX2r2R/HleRaucG6vL7c65habKpfUyRYiv5GQmkZEWq2efjQdvBlpYeYa9cJQRSokmERq2G3WCAWqWKafra6PUqNtkFZEVKyKqIl9p3WGEhAGBIfn7C48szGtHo9eKDHTswbfFifLxzJ4BI58BcW42PVqTEtGFRkepnt0MFxFXskiEkST1CPWWtMpgD5xg5kKrrhCIlbv/mli0R7TiykV319Xjiu+8iHmP9CCmQInKRlCs/P/roI3z66aeYOnVqJo6HILIOFgCUWCwISVJaAhauSCUIpCb17Yu+NhseXbMGU4UGraFwGJ5gEP3lQKrR60VYkhCSpLipfR1BVJEkSWqtwYraf9KKlNx0NhQOKxov7Kyrw/DHHmt9LcFwo6eTdGqfrEiV2+2o93jSH0i53RhZWIhAOIwWvz9C/dpeV8d7mGUr+5qa+CSMpeS1+P1o9Hrx0nnn4cm1a/HXr7/GWcOH4xjZ8KHB641r919oNsem9il8p4/u1w9bfvObiDYFSjgMBvzc0MA/t5319ZiJSMOLXFNlW/x+6OTG4UDkopAYSBm1WgxwOLAzKtBNhZ5ishBtNjK8sBBatRq7GxvhDQZh1etTViXFQOqOJUtw/qhR7V6P3ckdS5bgjc2bMbq4GNMHDQLQeg8163Q59x0gCKADilR5eTnsdnsmjoUgshK2iswmB+m4EbCJbCJFSqNWY+6kSfhk166Ix9lKMCt+r/d4uCKUzo7xoorE3OdiFKmoGqmvKirgDQYVFSkgflrLFe+8k7bjziaSTe1jZhPFFguMWm1GFKkCkwk2uUbK6fPx6yc6JS4bqXA6Mb60FCqA158wZ8lyh4N/N6c8+yz/m0SK1ECHAw1eL5bs3g1ATu2L4yg3qri43ZSyPKMRTq+X1/Kwz48da4HJlHRq37I9e7B4w4Z2t+tuWqLcOcVzVCS0dQBalb1oxTAVgnEWYLKNCX36RCwEGbRazBg8GO9v3w5PIIB8ozGuIvXhjh1Q3X13jCofbRuf7W0k2Pdy/cGD/DF3IACTVptUZgJB9DRSHpkefPBB/P73v8eePXsycDgEkX14AgEYtVpu85uOQKo5Ki0mHn2sVjT5fBGpcyyQKpcnwg0eDw9k0qpICS5jPFCLo0ix509YvBhAbFE4C6RmvPCCYj8ZccKbSzfaULI1UnJqn91g4IYQjLAkYak84e8odW53W42UrEiV2+0waDQRRg7Zyp7GRgzJz0e+ycSDk70skLLb+fdIdPFr8Hji1khdPGYMzDodVu3bByB+al+y5BmN2Flfjy01NQCAJbt3Q5KkmNQ+XyjUbo+wE59/Hle9916Hj6WrcPn9ccevaIfDQpMpoo1EqoR6iCLFuGTMGO74ePqwYfhm377WdhcmEwLhMB8XgLa6p+XynGpVVCq3NxjE0Px8zD78cADIegt91hZA7PnmCQZhktsvuHMovZUggA4EUrNnz8bSpUsxdOhQ2Gw2FBQURPwQRK7hCQb5ahqQnkCKBQtsn/EolFd2xZsnm2TnG42w6HRo8HozokiJaRj+OPuPtj8fIdeUjCkpidkXAKw5cCDGXQ1oTZtkdKaWIttINbXPLjeLFYvKn1m/Hie98AK+VaiVSwZPIABPMBjh2tckp1+WWa0R9UfZyoGmJvS321Eg1DYx58Ho/k6MRKl9GrUaAx0Ovq94qX3Jwv72gVWrAADLKyrw8saNMal9QOKFAnHBJNtpSRBIRat7Nrk2r6P0lNQ+xqsXXADnH/4AAJg6YAB8oRCC4TBfMGKq1Es//gjrvffihMWL0V/O9FlXWRmxL28wCItej2dnzQKQ/YEUuz9VCuMKS+2jGikiF0m5Rupf//pXBg6DILIXTyDAV9OA9ARSbB+m9gIpeUW9zuNBqewgxtQsm8GAApMpY4qUeNNj+2/P/tys0+H6iRNxZJ8+MftiHGppiWjYCbSmQh1eWoofq6qwu7ERo6Ke76kk00g0QpHS62HR6yNsjqtlxUg0WUgFNpkvMJlQbrdjr9MJs06HsSUlKLVacailBTUuF0oeeABfXHEFZmRhn8AmuVi9QFCkqlpakGc0wqDVKqo8iVL7gNZFCubcp+RImQri344qKoJFr8etn3+O2447DiatFgatlrcU8MgTYyU6o9p0NUqBFOuJFo3NYIjoh5QqzLWvpyCmOYqBPgvs2TXw1tatAFpTok+Vv3f7BFdKoK1/Hxtrb/70U/zyiCOy0sFQkiQeSL2ycSMeOOUU9LHZeGqfSavt1HWQ7UQ3BSd6BykHUnPmzMnEcRBE1pIRRSoYhFatbneVlSlSrDD++Q0b8LBs+WzV65Evp8xkQpGyChP6eKl9apUKGpWKK1IHW1oUFQJxtf9A1ERBkiQcbGnBmOJibK2pidvYtCeStGtfAkWKre6Ldt2pIKaXTerXDzd98gk2Vldj6oABKLVYUOVy8XqG/27ZknWBlCRJ/NwwdzygtbcU66UmhlFfV1Tg+IEDW1P7EgVSgrrlS1AjlQzXH3UUDFotrv/wQ5h0OsydNAlXvfceDrW08PqtZBSphixXG0RcgQBPd2bsu+WWiLQ1RmcVqUTNxrMdsV6UpZqyYLNaSKtlSvz+qPHRGwzCKFybTbLrZqLWGd2FNxhEWJJwdL9+WHPgADbX1KDUaoUvFOKKVHUPSCXuCJuqqzHuySex/rrrMCFqIZHIbZJavnaleOGnuj1BdIa1lZVY+O23Gdt/JhQplurQHqIiBQBPrl2LH6qqAMiBlNHYGkhlQJESJz98/wqTGYNWC18wCEmSWpUNIU2PIZpqHIhSVt7euhVrKyvhD4UwwOHA7t6Y2ifUSEUrUixwYDVBqSKml5VYLNxZrL/d3mqS4PPhR/ma8mZhapnYvNokKB5VLhdXaUVL6GmLF8MTCMAXCiVUpFgvqVA4DH8oxBWjjqDXaHDp2LEAgJuOPpqnad23ciVfZEhm/OjpilSR2cw/ExGrXt9pRSqdY1tXIo7zXJGSr4Fd9fU447DDAIC7GkaPj9GBFBAbbGULTI26Tu4p2uzz8fdqipPaN/ejj7jpS09mxd69ANqs74neQ1Ij07Bhw/CPf/wDBwUXlmgkScLnn3+OmTNnYuHChWk7QIJoj0mLFuH/PvkkY/vPlCKVzMSNrWAyRUqcGHJFKkOufWI6TjxFCkCrghIIwBsMIiRJik6EI4qKsP+WWzCyqAgf7dyJt7Zs4c8xN699TU0os1qTWrF0BwI46fnnOxxcdBXJuvYFw2E0er2wyYqUeI0xJWpvBydPoiIFABPl1dL+djtXv1i90b4sPJ+iw6VRMECpamnhitQ1EyZE/M1nP/0EADi8tDTufgfn5WHNgQN4UK5rai/Ntj3sBgO8d9yBOUccwQMpAKiRPz8xtS8ePUmRSlQjFY3NYECL39/hHkiBUKhH1UiJiKle+UKNVLPPh2qXC8eVlwNoGweVFCmmllbcfDOA2PS/bIEFUmKPQ3a9K9VIBcNhPLF2LU576aWuP9g0w8apZL8TRO6Q1Mi0bNkyfPfddxg8eDCOOeYYzJ07F3/729/w4IMP4o9//CPOP/989O3bF1dffTXOPvts/P73v8/0cRMEgMiV6GUZcpJ0y+oRq2toSUOON1O52kOrViPPaOSKVIvfj5OHDMEDp5ySNYqURa+Hy+/n5yU63YfRz25HsdmMFXv34sI33+SfFzuvz8yaBZNOl1TDym/27cPSPXvw9Lp1Kb+vriSZQEoMPJUUKRZYdlaRYkE4s6a2CvVY7HN2ZWEhODs2m14fcX1UC+rnacOGQbrzTvzzlFNgNxjwXWUl+tvtGF9WFne/v50yBSMKC/HCDz8AQKcUKQab8A7Jz8eFo0dHPJdMal+2GwmItPj9cb/r0dj0eoQlqcMNiXtyap8IW8zwBIP8+8wUYqZE1QrNe4FWRZYpUn2sVqhVqqxVpNj4UWgyQa/RoNnna6sHlmukxECKtfYIKqSD9jSi75VE7yGpWdeIESPw1ltvYceOHbj44otx4MAB/Pe//8WiRYuwbNky9OvXD4sWLcKePXvwm9/8BpocGPCInkGdMPE48fnnO20TrYQrEIBFr+crTR1NUfm6ogLfyHbLrPg2GQpNJq5IuQIBjCgsxG+nTAHQusKZMUVKSMfxt6NItQiBVKIVOTHt77E1awC02v/mG40YW1ISt1g9Gq6yZGGdgAjrv5UokBItupkTo1gjtb2uDgBQ0cGUxwaPB0atlk/GrjriCEwoK8O0gQO5+sU+Z1cWFoKLipTYi0mskWIUmkxo8vlQ7/EkbHYNtNamnTJkCJ+UJpNqmyx6jQZvXnRRxGOppvZ1VL3pKlgqajLY5O06WifVk1P7gDazGdG1j42XRWYzT+FmY6dYRyqm9uk0GpRZrVmpHAOIuAfY9Ho0Cal9TJFiwXQwHMbZr77abceaTsKShIXy/awztYBEzySlkWnAgAH47W9/i3fffRfff/89tm3bhhUrVuDRRx/FWWedlXIA9dVXX+Hss89G3759oVKp8O6778bd9te//jVUKlWMa2B9fT0uv/xy2O125OXl4ZprrkFLD7DzJdLDwah88nQ3MgVaJ5cWnQ5qlQo2vT6mYWKyTFu8GMfJDUNZX41kEJ3KoleBudlEJhQpg6FtlS1BoMZUjWQCqWKhUWetEBwyVUrsXZUIXvcTp09QtsBd+xJ8LgXCexiUl8dTJQFgY1UVttTUYHRxMfY3NXVoch1tA17ucGD99dejyGyGWQ7aeCCVhYqUUmpfKBxGrdsdU4/D1LYKp5NP3hNRaDbDKe+/s6l9Srx+4YX45uqrW/efRGqf2Gw1lOWBlDMFwwNbJxehenJqH9CmVIo1UmLKG0uFY+0j9kcFUqJZT3+7PWsVqYhASk4Nd8epkYq2eW9KIQBZuXcvVnewHUQmcHq9/PjTkbFC9Cy6dWRyuVwYP348Hn/88YTbvfPOO1i9ejX69u0b89zll1+OzZs34/PPP8eHH36Ir776Ctddd12mDpnIMg5GBc3RjWDTQYvfzyf6Drk4v7N4gsGkV8CrXC785/vv8XNDQ0xdQlcpUokCNatej8rmZj4JTxhICQoCUxNdQnCYrCLV3EPy0YPhMNQqVcLrMjqQssoruQDwiGyicu6IEQiEw/B1wAyi0euNG3BGB8HZOAlwRilS3mAQtW43wpIUo0ixQGp3QwOfvCeiUDgv6Ujti+biMWMwWa6BSSa1T6wP9Geh8YeI0+ttV/VjpKJI7XU60ffBB7G9tpY/FpSkHp3a108OlMTUPjHljTmdjpX774m99HxRZhPldjv2d7AVQqYRAym7vBDHAkZWZ+wOBCBJEg8Gz5TNNhK5tY5+/HG8I1vFA8DU557D5GeeydTbSBlxTpDL9u6EMt0aSM2cORN//etfcd5558Xd5sCBA7jxxhvx8ssvQxc18dy6dSs++eQT/Oc//8ExxxyDqVOn4tFHH8Vrr72GyqjVDiI3iTYmyMQgJtr82g0G1Lnd3OUsWaInEJ4UUvvY5HDowoU41NISGUiZTAiEw3wgT6ciZdXr4Q4EEAqHeaCm1Gunzu3Gx7t24UW51iRejxwAOGnwYEzq2xfnjBgRka4YoUgloYqwgCLb05+S6X8jqkUmnQ6D8/Oxz+mELxjExupqXDl+PCb16wcgMtD5qb4+qebFiRrTWnQ6+EMhruRmY2qfaJbBrOKZmlkcFUix1Kl9TU1JBdmFgkKaztQ+JZJJ7asWLO6zOZAKhsNwBQIZUaTe2rIFB1tasGj9ev5YT1ekhstKEzsP3mAwws2uj6ysltvt6G+383Retq0YSKVTkfIFg1glp5ung+jUPlGRMut0MOl0CEsS/KEQKpubYdBo8B+50XA8t1ZfMIittbW4+dNP03ac6UbMUsnGxSgis2T1yBQOh3HFFVfg1ltvxZgxY2KeX7VqFfLy8nDUUUfxx04++WSo1Wp8m8AO2+fzoampKeKHyD4+/+knfF1RkXCb6ElJR9PuEiEqJg6DAU+sXYvxTz2VUmF4tMtSKql9n19xBW6fOpX/Lva7YRPkQ7Iy15leONGw4MYdCCQ0m6iSg9kPduwAkFglmj5oENZcey1mDB6MOo8HkiRFBKrJKlJsm44Wr3cVwXC43Qlg9PkaXVyMkCRhR10dttbUYExxcVt9nhCQD3v0UQx+5JF2j6HB40moSAGtDnj5RiNfLc4m6j0eWHQ66DUabjbB1M9oswM2sW/x+5NL7RMVqQwHUjq1GmqVKuE1W9XSwlUeXxZf2+w6TFaRYtdvMpPMdbI7cIVQBxTo4TVS/zzlFMwYPBjDCgoARKb2mbRaHkgVmEwYUVgYE0iJqX35Qi+1zrLw228x5dlnsVN4vc7Q4vdDq1ZDr9HAZjBE1EiJLUQ8wSAqm5vR12ZDicUCrVodt+E4S+PO5toj0bEvm4+TyAxZPTLdd9990Gq1uOmmmxSfP3ToEEpkKZyh1WpRUFCAQwm8/O+99144HA7+Uy6nXhDZxakvvYRpixcn3MYd1RQyHWl30YiKiVhcncqqYETtQzicktlEgcmEv82YgZMGDwYQmQLBJsisViy630hnYDdvfyiU0P6cKQbs5p6sEuAPheAKBFoDVaZICcXIiWA3q3RY0WeSZAIplUqFG446Cl9ccQWA1kAKAH6oqkKz348SiyVmIvofYbW+PRIpUmxiU+VyocxqhQTl4LTG5YpIrelKGoTURFZDJ07ORMSJfTKpfWLz6EwrUiqViitq8ah2ubh1ejYrUmK6ZTK0l9onNvH9WR7fxJqZYA937RtVXIwvrrwSJp0OWrU6QpEyarU8vbfAZMLIoqKItEbRtQ+IrF3tLCzleHk7C5bJwmp4VXI9sZL9OdA6bh9saUGZ7EJYZrXG1Dsz2P2FqZnZuMDAvg/9bDa0ZPk9iUg/WRtIrVu3Do888ggWL14c0YchHSxYsABOp5P/7EujtE2kn0Qr5MyanPXXyJQiZRVqpBipOCeJKYhOeZUu1RXwjy67DGcPH45fCwosmyCzWjFDGicbTN3yhUJtrn0K+w/Ln0+z3w+NSpXUMRQK/bE6okixVcpcCKQA4Ikzz8SMIUMAtE6myqxWnnKTZzTyoKDF78fuhgZc+8EH/G+bfT6uSCrR4PEkTO1jDHA4ACin91345ps4/403+GctIkkSvj94MGIynE7qheM3arU8AAdi65rM8kQVSC6gL5ffs9K+MoFBo0kYINV7PNx4IKsDKfn7l2xqXyLHU38oBO099+Der78G0JbiJY7lPT21T4QtBrDFNJVKxcdajVqNEYWF2Flfz79P0al9Vr2+Uz25RNh+D6QpK0es4WU1UmItmBhINfv9/PrpY7XG1DszWOYHM+4R76VK41F3wK7VfnY7KVK9kA6NTF9//TVmz56NyZMn48CBAwCAF198EStWrEjbgX399deorq7GgAEDoNVqodVqUVFRgd/+9rcYNGgQAKCsrAzV1dURfxcMBlFfX4+yBP1DDAYD7HZ7xA+RvSRq0MoCqQEOB47s0yftilR06tkA4Vq54aOPkt5PjVD7UO/xtJpNpDhxM2q1eP8Xv8BQOT0EEBQp+SaUCUXKFwwmNJtYdc01/AaZZzQmtfDBalPqPJ5IRSpqxf67Awdw59KlMQEyu7kmU0/VnSQbSEUzurgYq2RXKofBEKFILY3qlzbokUfQ58EH4+6rPkFqn9iwlhV9K6VfbZLHWaWUotc2bcKRTz8N7T33ZGQSEaFIydcZW6WOXoxQqVRclUpGkRIVrEyn9gGtixPxDEMkSUKj14syOc0rmwOpeKmV8VCrVLDodIrXB+undPuSJfAGgzjU0oICkyliLO/p9ucibLFITO9mCwVatRojiorgD4V4/aPYkBdova4lpGcRiS1apWtBSgykuCIVCECrVkOn0fDFCrdscMO27WOzxQ2kxJYAoXA4op9eJlx6O0KTzweNSoUSi4VqpHohKY9Mb731Fk477TSYTCZ8//338MmDndPpxN///ve0HdgVV1yBH3/8ERs2bOA/ffv2xa233opP5aLDyZMno7GxEeuEppxLlixBOBzGMccck7ZjIbqXsgcfxIR//1tRAWKBFNC6Updu+2ZfKISwJPGJvtjgc18KdtRiMFjv8XRIkVIikzVSoiKVyBVwYt++uHv6dABtxf7tkawiteDLL/GXr75C3n33Rfx9T1GkQh0MpEosFr4y7zAa21Kj/P6YhYVEtXrNPh8OtrRgaH6+4vOFZjN+uukm3D19Oo6SXVGVvkNswlInLAgwlgi9235K4LzVUeo9Hp76xBYK2HtWUpFYulmRYCQRD5VKhYGyKtUVE3WDRhM3NanZ70dIcCLM5kCKvYdUFm6YHXY0PwvXTJU8jo0oLIxUpDr4PcpGTDpda42UkN79i3Hj8K/TTsOFo0fzXnsNXi8kSYpx7etsP0MRTyYDKblGSkxj5zVScko327ZIbvERDIdx97JlEamN4vj29tatEaYU2RJINXq9PHOAXPt6HymPTH/961/x1FNPYdGiRREuescddxzWp5C3DwAtLS08SAKA3bt3Y8OGDdi7dy8KCwsxduzYiB+dToeysjKMGDECADBq1CicfvrpuPbaa7FmzRqsXLkS8+bNw6WXXqpolU70XDYcOoTnZVc4ETGQYo1h0wlLc2IT/fHCCj4QuVqWiAahQWid2926GpmGoEen0cCs0+FQSwsvZk8X+iQVKQB8op7s5C9GkZLPL6uRYgGqGGyKqWNMkcj2QKqjipRJq+WThGhFKpV+K9vkCQmru1JiSH4+/nzCCfw1lFL7WApNnULQ5guFeBH93gw0Cj3Y3IwyeXI5KC8PAPCd7MqqtBjB+i+VRDn6xWPVNdeg6ne/S3sKuRL6BKl9bMLIFKmOWN13Fd6OBFKCrb+IaCjEVInhhYWxilQPrpESYYtF4r1Lq1bj/449Flq1OiL9LRAOQwJiaqSA9LjDZVyRku3P2XsS35vYE9EhG2is2rcPdy1fjovefJPvU6wvvvi//8Xdy5dHvF42UOfxoNBshk1OuyR6Fynf4bdv345p06bFPO5wONCYhBWvyNq1azFhwgRMmDABADB//nxMmDABf/7zn5Pex8svv4yRI0dixowZOOOMMzB16lQ8/fTTKR0HkX0EFeotGhQmcTGKVJoHMTYoMkVqZFFRxPPJ5pZ7gkFeRF7v8bSu0qUplcii06HB40lrWh+gbDahZH8OtE7GgeQDS5teD61a3aZIyefXKKhgACBObUWr756iSHUmkGI4jEboNRpYdDpUtbSkVAfIFKLDZPvlRLDPIFqRCggTeiVFyh8KYYDDAb1Gg4oU7wFKeINBXPTmm1ypONjSwk0hxsnmQi/++CMA5b5x7HwnG0j1kZ3DuoJEqX0N0YFUFhbVM9h7SEUBLzSbFdXTlzZu5N/zLTU1AFoDKXcgwO8DgVAoZ1L7uGFKHOdWMdhggY5Yd8qt5NPRz1D+rrvTdK3F1EjJ9uemOIEUrz02GOD0erFMTlsW7zNVLhdfqBtdXIxd9fURr5cN1LrdKDSZyLWvl5LyyFRWVoZdu3bFPL5ixQoMkYulk2X69OmQJCnmZ3Ecp7Y9e/bgZtlUgFFQUIBXXnkFzc3NcDqdePbZZ2GN6nZP9DzYADlKCFyiLcSBKEUqA6l90bUAbFWU3diSde7zBIMoNJth0GjaUvvSFPiYdDo0eL1pTesDolL7wmGo0FoMrQQLpJK9salUKpRaLNhRVxehSFmEGy3Qev6VXMyYWpOuCUCm6HAgJUywmJJ5RFkZ1h08iKY451hp4l3ndkOnVidVL8TOffRihKgyxVOkjLKFc7w6h1TYWVeH/27ZgsvffhvBcBg1Lhc3YNBpNO0uGLC00a4KjlIhUWofWxxg13s2LxJ0RJEqNJkUr58mnw9nDR8OoDXzQIU2hZspWLmU2scUqWgTCYZYR6SUQhnPSv6lH39M2TQio4qUwYCwJKHO7eb3aJMwvosp3azR/VZZQRfT4w61tKCPzYYbjjqKB34PnHIKf71sgCtSBkPWHBPRdaQ8Ml177bX4v//7P3z77bdQqVSorKzEyy+/jN/97ne44YYbMnGMRC+ErepcLauVABT7TLi6KrVPmIgemD8fP//f/wFIXJ8iwgKnQrMZdcxsIk2KlEmrRViSMqZI+YLB1hXhBKk1yfTsieb4gQOxcM0aOH0+fn6jJwks9zwalmrWE8wm4gWfiWCTKZNWy8/7xD598ENVFZp8PvS12fDfiy7C3EmTcP6oUQCgmDbV4PWiwGRKKm3NEmeCJiqB8RQpvUbTOhlKQ80CC5LXHzyIg83NkADeZweINMhQYuqAAQCyNJBKoEixsYS5J6ZrLKv3eHDdBx/EtZfuCD4FpaQ9isxm3khZxB0I8JTNR9eswbCCAp76y66nXDKbYOnL8XpjiXVEXJFqp0YqGA7jinfewcB//SulY8lkjRT7t9rtjq2RCgZjFCl3IMADKXEcqXK5UCq3gGC1wGxhJVvUnzq3G0Vmc6silSZHRaLnkPLI9Ic//AGXXXYZZsyYgZaWFkybNg2/+tWvcP311+PGG2/MxDESvRA2mRos32ABKK52Zzq1T8mdqq/Nhj5WK7RqddL1Kh559XFYQQFW79+PsCSlLbWPvf+0B1JR9uftTWQeOOUUfC73QkqGv510Ev8/O7/R/WYaPJ6EBha50JBXCbOwUssYlJeHfU4nnF4vThg4EBeMHo3HzjgD8yZNAqAcSCVy7Iv3mtGqLpvg2w0GZUVKbhjqMBjS4prJlBl/KIS3t26FWqXCRKHm9Z1LLkn49/edfDJWX3NN0tbcXUki+/MGjwcqtPaiAdIXSN25dCkWrV+Pb9LY5sMbDEKtUqV0bSsFUmFJgjcYRLnghnrnCSdwFZZdT+0t5PQkmCIV7z0ZBUVKSfkzCYEWg333Q5KEq997L+ljyaQixcaTOrebH7NOrYZGpcK6ysqIbdkYv+HQIZRZrRFjWVVLC0otFliEHoNsYSVb1J86jweFJhNsej2/poneQ8p3eJVKhTvuuAP19fXYtGkTVq9ejZqaGtxzzz2ZOD6il8LS+Cb06QOgtW6gsrk5ZqWnM2YTosVsPFhgFt2TRqVSwS67EiUDc+k7Y9gwfPrTTwDS17eG3aTS2UMKiDWbaG8i89spU3ByCum9Q/LzeT2IkiIVCodR43ZzxzYlsrmOBOh8ap9oz93PbocrEMC+pqbIxrPy/xMpUsmgVqlg1uliFiMavV6o0Lqo0a4ilYZASlR5/7h0KU4YOJBfJ0BkE10ldBoNjunfv9PHkQn0Gk38GilZfTVotdBrNGmbJLLJZzrdxHyhEAwaTUoGHYUmU8z1wybw4md68pAh3HmRXdMd/R5lI6zFQzxFSqVSwaTVtqb2yddKRCAl/19cRBIVnOdk865kyKQixe7LtUJqn0oeYxauWQOgbbFOXPQ4Y9iwVsVOfu9Onw95RmPEPbjAZErrd6SziDVSQHq/a0T20+GRSa/XY/To0Tj66KOpJolIOxWNjdCq1RjocKDhttuw8PTT4Q0GYyZqnbE/v3vZMgx+5BH8+sMP4zYT5YqUQo1JSoGU7NIn9oBKlyLFbqyZNpvIRGoNW4nkipRwI1qxdy9a/H7e30jJ6jabLaKB1hXizphNiBMMVjvzc0NDxOPRk04R0To8GSw6Xcx3qNHrhcNoRLHFoqhI+eVJdV6aUvsaPB5+zlr8flw6dmzMNiOSMM/IRgxabdzgX1QPWdPVdMAmy6laRZc+8AD+LjfJjSZefU/C/VmtqPN4It4/m8CLk+QSi4Vf3+x6ihd09ESYIpUoODTL6ouS2QQ776Ii1dEFjEwqUmwMq/d4IhYN2fFrVCqcMHAgAESMUacOHQqg7T01+XywC86lQOviUTq/I50hFA6jQaiRArJHKSO6hpRnXuedd57iKpRKpYLRaMSwYcNw2WWXcYtygugIFU4nyu12aNRq5BmNfKCtj0r1ijabYEpGvLqUXfX1eHPzZiw4/njslVWvf69bh1+MHYsT5EbPItH25yIpK1JabcTKeroUqa5I7UtGkeoIhVGNVsXUvv1NTdBrNLhkzBhc/+GH2N3YiMnl5RF/r7S6HwyHsWrfPhwv36Tbo87thkGrjVEd00FnFSmxjm6QkOYqXkeJAqn9TU3t1hSJWBQmJ6xOrdBkimgszfDJipRBq02bItXXZkMoHMaB5mZeAyay/vrrs16NVMKg0aAhzqS1QQh60zlJZNdFqoFUtcuFO5Yswe3HHx/znC+qSWwysOt3r9PJXSTdCgtVYlNlMbUvpxSpYBDmBOmKZp0ObrnXFBA5tqtUqph+ex1dwOCufZlM7fN4IsYxVt/60vnnY6B8TZQK9YzF8v+dXi8KTSblQEqvz5qeTY1eLySA10gB2VO7RXQNKY9MDocDS5Yswfr166FSqaBSqfD9999jyZIlCAaDeP311zF+/HisXLkyE8dL9BJqXK6IYnG2UhttgS4GUmzC+JJsjazErz/8ELcvWRJjElERp/+NKxCAQaNRDMzsBkNcBzWgNQhjx+uVrW7FCXAqSkEieGpfmgMptgLMzCbiWZ93hjtPOAEAeI2EmNp3oLkZfW02OIxGFJnNEY07GUqK1PMbNmDa4sX4dv/+pI6h6J//xIR//7ujbyEhnbU/F895X5uNXzNKgVT0pKLB48GGQ4cwNSr4TIRFTu2r93hw08cfwx8KRQRSCVP7ZAvjzrK9rg4DHA6sv/56rLvuOsXGumadLunar2zCoNXya3Z/U1PENdrg9fIG24n60YQlKaWJb0cCqXA7xfJeuS4uFVggJaZTs4WqaOMdo1YLnVodaTaRazVSCVQ2kxxIxcuIYMEYo6MLGO40BlKBUAi+UCgmkAqGwxGLhuz6zxcWRMXvOFtcq3G74QuFEAyHuQLFsBkMvLFxd8Pq/liNFECKVG+jQ/bnl112GX7++We89dZbeOutt/DTTz9h9uzZGDp0KLZu3Yo5c+bgtttuy8TxEr2EZr8/wgmODbrRkwG3YKF6bP/+KLNaE9Y9sZW9zdXVqGxuxiVjxqDAZIprG9vi9yum9QGt/Wpe+OEHxUmHJEmw3Xsvjn/uOQBtqX3iBLg0TSmx0Y5I6UKlUrXaNTNFKgMrwqcMHYrgn/7EUx7Z5OyZ77/HgeZmXng/JD8/IpCSJKm13kRBlWDNg1emUFwv9iZJJ51VpKKD1+HySn60sqlRqWIUqe8PHUJYkriLXTIwJeShVavw6Jo1WLl3Lxp9PjgMhrjWvkydyDMa0eD1Yl1lJbbL7lsd4Zt9+3BceTlKLBYcKddI5gqi/Xn5ww/j2Gee4c81eL0RqX3xVtvv+PJLWP7+96TTWtl1kcpkO5HSHgqH0eD1pqyAl9vtUCFy0YpN4M06HR489VQ8fdZZAGRVSqi5y6XUPhYAJAoOmSIVLyMiOoiIXsBoLxBmuAIBqJCeQMoVlaYppq6L9yaWRSBmlojngd0Xq1pa+HVoNxgi0pkNGk3C5tZdCUt3LhQVKQqkehUpj0zPPPMMbr75ZqiFQU2tVuPGG2/E008/DZVKhXnz5mHTpk1pPVCid9Hs90f0vuGKlHDDkOSVWXGQdshNAOPBVvSXV1Tg2/37McDhQD+bDQfiWAO3RB2HCFO1NlVXxzx3QLZt3iw3mGRmE+KqWrHCSntHYO9faeW+s7BgxZ9B1yxR7WNpw8srKrDP6UQ/WakSAylJkhAIh2HT6xVT+1iRspKCFU2mbWo7GkixRrPDhZo6AJgku9cVCmpMPOOTbbW10KnVvMdXMtjk7w+boEhoS+0zK9RPAW2KVLHFgiafD0ctWoSRjz8e0cg3WQKhEA40N8c0vs4VmNlElYIDqdPr5SltNoMhroL01d69AADDX/+K7w8ebPc1O6JIJdr2ho8+wpNr16asgOs0GtiiVEue2qfTYf7kybh24kT+nFhzl3NmE7LKH+89GeVtlFIfxX0wWGD7wrnnAkg+1c/l96PYYoE3GEw6+IoHW2SJVqSAyKCKLZbFc2MtMpuhQmtqqRhIianN4iJfd1PjcgGITO0jRap3kfLIFAwGsW3btpjHt23bhhBzmDEaU3LzIYhoWqIUKbvBABUiU/v8oRDCkhQxYNvaqVtiK5yvb94MVyCAa488En1ttriNRMWc72gemzkTgPLq7VY5gAJaV+yZIiWSrsCE7bcwA6lOLBUpU2YTSvxTbra4vKICw+QgYEheHg+M2OeeZzQqrkiyzziZZsmZXjkMhsPQdGAsPH7AACyYOhX3CBbxAPD3GTPw0KmnYkxJScTjStf9ttpaDC0oSOk6swl1hkBrrr9TDqRY2l80zMEtemFA/9e/4qm1a5N+baBtoSQ/C63L0wFTpD7csYM/xiZdTrkWBGgNoLfGUfXGFhfz/3974EC7r9mRQCo6hVqEpU53JLBxRF2nLkGRUtqWHXNO2p8nUNmYTb4rEIBaDhpEohWpqpYWlFmtvL9Sg9fLU7IT4QoE+Pe2s2ly0YGUqFiKn+8o+fqNDqQ+/MUvsO6666BVq1FkNqMqKpDqL1jkA8gaRWpHXR0sOh3vdQVQjVRvI+WR8IorrsA111yDhx9+GCtWrMCKFSvw8MMP45prrsGVV14JAFi+fDnGjBmT9oMleg/NPh+swuCrllM9GhRWM8VB2t6OIsXymTdVV8Og0fDmj/Ea6yYKpAbLk3ylQVNUQ6pdLngCAX5jYQ030wVrXpmRQEpM7euiicyc8eP5/5mN9cC8POxvaoqoD8k3mRRT+9jkKzqQ8odC+GTXrogi7UNxAuh00dGVdJvBgL/PmBEzwbTq9bhl8mSuWDGUFKm9TmdEH7ZkYCllQTmQqvd4uCJlkV0xo1U8pkgpNcC97YsvUnp99j1MV/1gtsFStsRrk6lTTXIKJQAcUVaGbbW1ipNbv+AwmijgYTR3UpHaHaXsMiUqWaMdEXadVrW04NNdu/h7V1LT84xGNAqpfTmjSImpffECKdnd0eX3w6LTxSxMRytSh+RAii1ANHg8yL/vPpz96qsJj8Xl9/PvbWfT+6IDKbVsisGOl/HqBRfg+okTuakE48zhw3kqb4nFgmqXi1+7Vr2ef/6T5XtCoubWXcnW2lqMKi6GSqWCTqOBIYts2YmuIeXq9IcffhilpaW4//77UVVVBQAoLS3FLbfcwuuiTj31VJx++unpPVKiVxFdIwW09rHZJqzSKgVSNr0+4Q1eLJYvs1qhUqmQbzQqpuex44gXSNkU8qGf/O47zBgyJMImen9TE0KSxPfz/fXXp6Uon3GYnP7V2dQMJdgNvStrFMRJ1VhZedFrNJDQWsvE6gXyjUZsV7iRskngvqhA6uOdO3Hu66/jzhNOwF3TpwOAYopVOumqlCSlQKqyuTklxz6gTZFiE9gGr7ctkNLpEJYk+EKhiNVmXzDIU/uiYUHXgaYmeIPBCPt/JVhg0BONJJKBNaWtcrmgVasRDIdxqKUFQwsKWlP75Inw0IIChCUJB5qbMSzqnImTtO11dQlfzxcMwhcKoZ/NllIgJdZTffHzzxEpd0wd6YhqaJebNvd76CGEJAl3nnACSiwWxTTBPKORH3OioKOnITbkjTc2sBRQVyCgWKNrjA6kXC6UWiz8e3PWq6/CEwzynoVKhCUJnmCQf2/THUgBrfdmbzAYcY8ekp+Pp+RauHiY5WCTvUf295Xz5/N5QbYoUltrazFKSEW2tbOYS+QeKY9MGo0Gd9xxBw4ePIjGxkY0Njbi4MGDuP3226GRB9gBAwagf5Y2RCR6Bs0+X0xt0pTycnwjGAgoBVJ6jQb/27kzIuASESchbFW4wGRKqEhFB3SMaBm/2efDb/73P4x47DE0CL0zdsvmF+yGWGAycTUrHTAL2Uyk03JFqgtTa8T30S+q+eqIxx7jn3ue0ai4IskmgTUuV0R/MKZGikFslZzfDmSmXqqjfaRSJd9ojOnxVCm7HqaCVa9Hs8+HSrlmMFqRAmInXP5QCAatVrHmj/3N4U89hWGPPtru6+d6al+R2QxXIIAKpxNj5BSneo8HgVAInmCQp/axc1kjXJ+MZp8Po4qKcGSfPhHjoRJsQlfucKS0eMM+Y5teH5P2zOpdUmm+zWABf0j+rj25dq2ikgm0BVKSJOWUa59Jq0UgHIY3GIz7nnhqn6xIxewjKrUvWpFiSvugBIo0+4zZtZaJQIode6o9E42y2sQyDtjCTR+bje9fNG7pLiRJwtaaGowW0m2zpb8V0XV06g5vt9thj8pbJYh0oJRSN6KwEHsaG/mEVymQ2iLXJl3/4Yft7neW3OuswGSKmyKTKLVPo1bDrNPxQXOjoGrVezwYIa9SsTQ/pRtiOpjUty+emTULNx97bNr3LSpSmbA/T+b1gTaLb6DtPOfLNVLRAVCj18sVLDFAZgGWK2oCwkg0kehokNVVilR/uz3CeTIkKx2pBlJsNXWHrHRUu1xwBQLcbAJARJ1UKBxGSHZQtOj1MamILr8fkiTxz6E9c4T6HFek2Or/lpoaPj40er382mSpfWw7pb5dLX4/ju7XDzcfcwx21tcnnLQxlXKAwwGnz5e0as0m6UPy83FQwYjn5CFD8JcTT0xqXyJ2gyHiPVW7XPw9R8MCKRZ05UpqHwsKmv3+dlP7os2UGDFmEx4P8o3GCGe7u6dPx8HmZj52rausxF3LlvHn2fc4k4EUW4SMZywRD5a2p9SQmJENitShlhY45YUNhk1ejCJ6Dx1qPPPf//4Xb7zxBvbu3Qt/1CC+fv36tBwY0XsJhsPwBIMxSlCR2QxfKNRqeS6s+kS49skDtlJRvCRJaPH78dgZZ2DO+PE8MMg3GuEKBFDZ3Iw+crofI7pWKxrRplhMDzzY0oI+Vit+Nhh4jUEmGr4CrQrO1RMmZGTf7Gbl70KzCSWYWx0APLdhA4C2yXZ0kNfo9eKwggJsrqlBjdvNJ6VsUimmXYipfQdbWmLSqADg4VWr8Icvv8S+W26Ju3oej65qJNrPZouou6l2uRCSpA4pUtWCCsLUVJbaB0QGomwiwyY6JRZLRPuBZr8f/9u5k//+3IYNmJDA0rzB44FBo0lbs+psg6Wt7mlsxPkjR8Ko1bYGUrJaxMYv3ktHSZGSF3dYbaTT6407tvBAym5HWB7/7HECFxGvnK7Zz25HZZQiVed2Y96kSR26rsOShK8qKiIee1Q27YmmwGTCjro6fC1vnyupfUydafb54p5DQzupfSadDk3C5+IKBGDV6yNqJ8cUF8MXCqHG7UaJxYLz33gDe51ONHq9+Nfpp7cpUmlO7RPvxyw1Uxy/k8Gg0cAbDPJASslqPxtqpNiYO1BQ/qx6PVqyoL8V0XWkPDItXLgQV111FUpLS/H999/j6KOPRmFhIX7++WfMjDMgEkQqsBSs6AJkNnFgz7OBWwy43rr4YpwyZEhEyhbDGwwiJEmw6fUw6XTcdpvdSPo99BDe3LIl4m8SpfYBkatPosHEttpa5JtMKLFYYlL7ehLdkdoHAO9feikWn3MO/72/3Y4TBw0CAHwnO5WxVc7o9I5Gr5cHROJElE1WxdXCKpeLp5DGc/l7ePVq+EOhmKL7ZOgqk47+dntrA0v5XLDUvOjUyPYQJ9kDHA5+TTsMBn79iosULJBigWyxbF0s8v727Si323HKkCFx3TEZrJdSrrq+iumP+SYTd6ZrilKkdBoN8o3GuIqUTa9XrNGMRlSkgOTMKYC2vnelFkvEYoM/FEKz38/H4lQ5ViHlf1ycOr5fH3UUgDYFOldS+8ReQ/HeE1vAcgl9EkWiFSlXVL/D0cXFvD6SqcBs/Fuye3fr32Qgtc+i00UEc/eceCJKLZaUDZaYIucNBqFWqRQDTr1arahIra2sVFyAyARsLiJ+r20GAylSvYyUA6knnngCTz/9NB599FHo9Xr8/ve/x+eff46bbroJTqHRHkF0FDYIRq/+s8CKmQjwQEq4gZRZrTh/1Cjsb2rC+qg0IqXUA6DVapqxp7ER6yorI/4mkZIkFpbuaWzkbmO7GxuRbzSixGLJeGpfJmGrfl3dEPPsESMw54gj+O8qlQpL5szBBaNG8SCZ1QNEr0o6ZUUKQIQ6oqhIuVyYKK+Wxguk2E28VmFS2x5dZRvP+m2xAIr9m6oiJS5eTB80iF+7oiIlppKxc89SMEsslhib4p8aGlBisSSsRWTUyylKuYp4fvONRuQZjfjzsmV45NtvAUQGsoVmc4Q5DsPp9cImN0gGElsts2v+MLmRc3uBLIO5jFp0uogJOzuejjqE/m7KlJjH4qkyBSYTDBoNVzVyJbVPvJ8ksj/nrn1KipRsWAG09VNk3889//d/WH3NNRhWUIACkwlrDhyALxiE0+dDqcXCAyb2b2E6A6moY716wgQc+t3vUl4YYQt4zNhG6e9ZsBXNpEWLMOOFF1I7+A7C7gniwgLVSPU+Uh6Z9u7diynyYGgymdAs37CvuOIKvNqO1SZBJEONwioP0HbzPv655wC0TYijB282eZz49NMRk4x4gZTNYMAHv/gFAOCvX32FoxYt4hPwRK59QOsEkxXI72lsjFhxtRsM6GezoUJeYMhUal8mYTf0bOzjwhQpcVVSkiQ0er0YlJeHwwoK8O916/jjn8gOVuI1cailBUPy8pBnNEbUGIl0KpDqogCUBS8HhEBKrVKlnIrIvnMqAH2sVv54nrwoAETW7UQrUgMdDgzOz8fsww/HXSecAADYWV+PApMpYS0io8HrzVnrcyByrMqTAykAeP6HHwAgosaF9Vx6f/t2qO6+m/f3qvd4UGw28wWkRC6l7DnmfrkvycVOTzAIk07HHeYYzNCkM82/+9vtMGg0+PAXv8CDp56acFurXs8DqVxJ7RMX1OKm9skLWHEVKcFswhMMQkLbtTUwLw82gwEqlQrjSkqwuaaGp+sOLSjg90H2ubL7ajoCqXTd40RFSqk+ClCukWJtGzbGceFNN7VuN6x6fUTqoU1I9yd6BymPTGVlZaivrwfQ6s63evVqAMDu3bsz4npF9D7YoB9tpyxOCj2BAFr8fug1mhgTBDGNYIvQGDdeIAUAZw0fjlFFRXwArGhsRFiS4JLTaOJRaDLxVdpGrxcjCgt5A1arXo/xQtpKj0zt6yZFKhnYJNQdCODuZcvQ4PHAIxtj5JtM+NWRR2JTdTUkScKWmhqu0kTXSJVarSgym2Nc7xhsRb7DilQXBKAshY+palUuF4rNZp6+mizsO2fV6yOUITbpN2q1/DwCbWmV7Dv4txkz8PqFF+LF887D9XJq1l6nEwUmE/KNxriKlD8Uwu1ffslTYnMZNj7km0wxY5FovOAwGuH0+fCwfI+tc7vR4PVCQmsgwxWpBJO2Fr8fKrReHxadLqYlQDy8cmpftDuc0gp8qmy84QZU/e53OHP4cMyfPDnhthYhkMpJRaq91L54rn1Cah9LtVXablRREbbW1nIVf2h+fkwgJY6jnSHesXYEo1AjpVQfBbQ5G4psFe73XUGt2x2zqECKVO8j5ZHppJNOwvvvvw8AuOqqq3DLLbfglFNOwSWXXILzzjsv7QdI9D5q3W7oNZqYAMak0+Gz2bMBAJtranitQDRDBWtx0QBCqaZKRFwN3t3YCHcgAAmJlaRCk4lPwJv9fjgMBpTKK/k2vZ43GAR6ZmqfXlSksmgio9do+CRkU3U17lq+HPM+/phPuhwGA4bm56PZ70edx8MDjPGlpXyVXpIkVLlcKLNaE6adsdoCpXqV9uiqANRuMMCq1/P32eDxdCggYZMCs04XoQzZ5RXuvjZbRCAVbTaRZzSiTL7+i81mHjQUMkUqyoI7LEn458qVMP3tb7h3xQqsOXAgp1P7gLaAIM9ojBhbDBpNRD8lh9xzqUJQx8X6UXsSqX3M9U2lUsU4OybCEwgoK1Jx6ldTIS/KXS4RVr2eXzPZpoh3lFRS+9wJzCZYgNsSJzMDaE3p3FVfzxcnh+TnwxUIICxJ/HM16XStfZs6aSWeKOhJFdG1L94+Wa8txrbaWhz+1FNpef1kUQqkyLWv95HyHf7pp5/GHXfcAQCYO3cunn32WYwaNQp/+ctf8OSTT6b9AIneR7PPxydu0bB+DazruVKQIwZKYt0LsxhOpDAx1h88mFDBYoh1DOx42MBq1et5/Q2AlNWBbICt+nnSeJNMB6IzFLMw31pTw29gdoMBQ+SA+ueGBr4i+8sjjkCd280dzLzBIIrN5oiAWCQUDvMV/3XtWHcr0VWKlEqlwhFlZfhk1y4AsmlDBwISpoicMGhQRCDFrt0Gjwf3rVzJz3N0ap+IRq3mQRVL7Wvy+RAQJj+vb9qE33/xRYQtd3mOt9Rg40Oe0RgxCYtuSms3GOD0evm12+zz8frRYosFBo0GWrU6oSIl2mc7jMaEaYAi7PuulNqnVqlStrPuKFa9nqeDZtNCTmdIRpFqN7VPVKTkgErpPsVqori7nJyt4Q4EIhzxzDpdpxUpn9xPLh2wQDKhIqXVRihS8XpHZpJaj4cUKSK1QCoYDOKvf/0rDh06xB+79NJLsXDhQtx4443Q98DUJSL7iNc7A2ibhNS63WiUi66VuPHoowEgwsqZuU/FqxtZK5tMaFQqvL55c7sKFtCmSDFrdZusDLC/Y6+VqntatsBteNOY/54OxOuDKSSlVmtEbzE22Wvy+VDtcsFuMGBQXh5CkoQ6t5tva9Xr4ypSbOJ5XHk5lu3ZE9HgNxm6MiXy3BEjeINW5n6XKiqVChtvuAGLzzlHsVbp2iOPBNDWyDjabCKaPvJ1X2Ay8eNpFFSprfLkp9hshueOO/DCuefiD1OnpnzcPYmnzz4btxx7LIYXFuL/jjmGPx69bMQUKXadNvv9XBUtMpuhUqlgl13/4iGOpbYUbJmZa1+0O1yt2418ozHCmS2TWHMwtc+o1fLzl9D+XDabUOwjJShSiVL72P1yV309DBoNT91li0jseExabacDKX8oFLeeKVVYIOlrT5ESrk1mjHPGYYcBiHVzzQQ1LlesIiUYUBG9g5RGJq1Wi/vvvx/Bbu4mTeQ2iQIpg1YLm16PzdXVeGLt2ripKgtnzsSpQ4fi+R9+wPvbtwNoVS7yjMa4kz4W7Cw6+2xUu1x8Yp0ogCixWNAiT3BYGiCbwLO/+/HXv8a6665r/41nIazoN14/k+5CKZDSazQRgRTr1+IJBPDEd9+hyGzmCsmhlhY+QTTJaWxKDmlMpTqirKy1ue4996R0nF1p0pFvMsETDCIYDvMGnR1hbEkJTDqdYiB20ZgxANrSiRIpUkCbwsUUKQAR6X0bq6th1umw+le/glGrxRXjxydcuMgFzjjsMDx02mnQqtUYV1qKpXPmAEBMcOIwGiPMOd7ZuhX7m5pg0Gi4QUC53Z7QQMItp+gBcs87BUVq9f79+HVUA3OvYDYRDId5EX+dQipTJokwm8iR1D6VSsWDg3iLLBH25wrjrlGrRUiSEJC3AZRT+9hntbO+PiKV1CUHUir5GNKlSKWrabuoSMW7XxuiUvt+bmjA2JISvoh6KEmHys5Q63ajKGqctOr18MrjMNE7SHmJZ8aMGVi+fHkmjoUgACQOpIDWm8MTa9cCAJ4488y425VYLHAFAjjntdcAgNfDxGPF1Vdjw/XXRzTNBBIHUizVcPX+/QBaV33ZhJGlEI4rLeV1Uz0NdrNqSWMhcWdgN2rx+hCVpIhASr4B17jd2N3YiH42G//89zqdfEXXpNWiyGxWrIFiKuYY+XOOfr326EpFivcV8vk6nNonwq5j8fpn/2eBVLTZRDQsJZCZTQBt56/a5cL727fjsrFjeRpmb4QFm9Er73lGY4Rd+VPr1mFPYyP62+087Xlwfj5+Fiz+oxHHUqWUI5ffj8nPPIN/r1sXUfvmCQRgklP7gLbPuc7j6ZTRRKpYdLqcU6SAtprCRKl9oShbcxE2tnlk1QpIrEjtrKuLMDdhipRJrp9LSyCVIOhJFYOcUuqV7c+V0Gk0EWnCB1ta0Ndm4669yVr9d4Z4NVIAKL2vF5HyVT9z5kz84Q9/wMaNGzFx4kRYotKkZs2albaDI3on7mCw3UBqd2MjhhcW4tKxY+NuF22fXuVyoTSBHXR/ux397XauVLBAKlFN1ZiSEmhUKqzYuxdA62Sloz1WshG9kGKSDal97LpQuj7CkhShMrFtmGr5x2nT0MdqRaHJhN9+9hmekccqk06H/nY7ql2umMkAW9UcLQRSq/fv5+kj7eHvQkWKKTkVTicqGhtRMnp0p/bHAimxHiY6kIo2m4iGqSwRipQcSJ3y4osISxLvgdVbYcYL0RNGpbFqxd69Ea6kQ/Ly8NbWrZAkSbGmtL1AaumePfz/Jz3/PLbNmwegNf1ygMPRpuoGg7Do9ah1u7t0fLPq9by2NVdqpADwzyre4pR4LcQzmwBaA95EihRL5dtZX48j+/ThARirkWKvky5Fyp4mNdmYhNmETq1GIBzm135VSwuGFhTwtg3iwkAmCEsS6uLUSAGtY2R0LeFepxPeYBDD5b5uRG6Q8sj0m9/8BlVVVXjooYdw+eWX49xzz+U/5NpHpIP2FKkJZWUA2neOun7ixIjfmdV1e7AA7MeqKqiAhLUmRq0WxRYLdsktAWwGAy6W058G5eW1+1rZjlGr5ZbL2ZDaZxJu/NG4/P4IRUqn0UCjUvHeSgUmEwxaLd66+GJsr6vDVxUVfJ/lUX2YGFUuF7RqNW9oCgCXvfVWhDlCIgJpTHdpDzaJWbxhA9yBAH4l1zN1FDbJu0pojByjSLWT2sem9oVmM/8e1Xs8+Pynn/BjVRUA9PoUGKZIRa/m91Goq/yuspI3mwZa0wQrnE4sEwIikegaqejaDab2FJnN2F5Xx1f4a9xuFJvNfBLL6mm6us9XMsYMPRH2vYi3OCU+rhS4iooU+y4qjYlMmfeHQsgX0tqjg5SsU6Tk1MYGjyeiJYAIUyjZWMwWSgvNZqjQsXYVqdDo9SIsSYo1UkDrQuziDRsinjv2P//BiMceo1ZBOUbKgVQ4HI77E4ry9CeIjtBeIDV90KCk9jOiqAj3zpgBoHXl7lBLS0JFisFW8V7euBHDCwsTHgvQOhFi/Vlsej2mlJdDuvPOnFhpt+j13HAhG1L7EilSTUJhPptomHS6iEAKACbIlvSsONmk06FcXuXfG1VvUu1yocRiibhZOn2+iP5kieiO1L5Hvv0W40pLFSfiqaBSqdCyYAHunj6dP8augRhFKs4EiilSDoMBJq0WBo0G9R4P3tyyhW9z/IABnTrOng5TpKLdCvsIbRSePuss/vgtQu+lkwYPhkmrxQbZAOrdbdsiXPbaU6SafD5o1Wq8e8klAMBrpWpcLhRbLDGBVDqbriaD+Fq5lNrHiHcuxSyIqQrfjwhFSjakiGcAwsaufJOJL3hEO+KlI5BKp9kE+05UOJ1xU5RZYB2QF2LY/V2tUiE/QTuLdFEbpxUA+0yPf+45XPXee7x9AdCWbtgdDoNE5ujWkemrr77C2Wefjb59+0KlUuHdd9/lzwUCAdx2220YN24cLBYL+vbtiyuvvBKVsrMao76+Hpdffjnsdjvy8vJwzTXXoKULcmOJzNFeIDWmpAQAFM0BomHS+ikvvthujRTDbjDgTDl1S+wDFQ+H0YiddXUAYpsI93SU6mO6E5MQSLGJFVNFmv1+eAIBGDQaXptj0mp5ah+7Idv0eph1OvzEAilBkYou3K/3eFAoT0DGlpTggVNOAZBc2khYkhCWpC5P7QPaVNvOYtHrI1LGdBoNDBpN0mYTD556Kn4xdixKLBaoVCqUWCzc8Q8ADsyfj9OGDUvLsfZUtGo1XrvgArx8/vkRj7Ox6oiyMlw7cSLuP/lkXHXEERhZVMS3UalUGJKfj58aGvCnJUtw3uuv44FvvuHPJxNIOQwGTC4vB9DWP88VCKDEYmlTPgSHuK5cUEmm51JPJm4gJXyXFVP7hAA3nkU6g030+1qtPNDxKyhSrjSk9qVLfWcqXEVjY9yMEHY9BEIh+OU6XvZeE/UFTBcskIq+50eXAvwgK+8i0f30iJ5Nh0am5cuX4+yzz8awYcMwbNgwzJo1C19//XXK+3G5XBg/fjwef/zxmOfcbjfWr1+PP/3pT1i/fj3efvttbN++PaYG6/LLL8fmzZvx+eef48MPP8RXX32F63qoQxrRijsQgDlBigBLbUlmoGSTiJX79qHO7U5KkQKAs4YPBxBZGxMPZlOsVau7rL9KVyHeoLMhtU9UpFitCGu63CwrUibhmE06HSqbm6FC2yqnSqVCH6s1QpGyyCYh0YpUo9fLP9ONN9yAebIjVDKBFEuT6mpFCkBEHU26ESfk7ZlNjCgqwisXXMAD2352Ow40N6PC6cQFo0bxwvDeziVjx8ZMyPKMRtx/8sl49YILAAC3Hnccnj3nnJi/HVpQgB11dfirfA/2RStS8lhqMxjQ4vdHpBU1yT371CoVfj1xIhq93rZeVWZzRI0UgC537xTHn1xK7WMko0gpIX4uLr8/4WfCAymbLW5qX36UQ2RH8AWDaVOkWPZASJKSUqS44YZ8HroykIqnSDGUsheS7edG9AxSTmh96aWXcNVVV+H888/HTTfdBABYuXIlZsyYgcWLF+Oyyy5Lel8zZ87EzJkzFZ9zOBz4/PPPIx577LHHcPTRR2Pv3r0YMGAAtm7dik8++QTfffcdjjrqKADAo48+ijPOOAMPPPAA+grNUImeQ3uKlEmnw9H9+kX0YImHqFpJQNLueawYVFz9jQeboBebzV3WX6WrEG/Q2ZDax1P2BBWJBT8stU+8dkxaLfY6nSiK+mz62GzcIITtc4DDwVM0GWIgBbSmsBWZzckFUnLKSVdNAMVC7/bSUTuDaKPtD4WgVauTvu772Ww40NSELTU1uOLwwzN2jLmASqXCrccd1+52Q/Pz8diaNfz3kBAoeQTjHqtezw1Z2GMskALAnSvZBLTQbI6piWtvbE43uZ7aFy8AYopUvO+VqBS2p0ixRY6+NhsPdKJT+4otFkXX0lRIZ0Ne0RkyGUWKjbXsPHRlIBVdMxi9mMq+O6Ia7CRFKqdIeWT629/+hvvvvx+vv/46brrpJtx00014/fXX8Y9//AP3pNhjJVWcTidUKhXy5CL+VatWIS8vjwdRAHDyySdDrVbj22+/jbsfn8+HpqamiB8ie0jmZv3tr36Fy8aNa3dfV4wfH7G6l6zN8kmDB+Prq67CBaNGtbstK4bNNTUKyL7UPnZdqFUqrnIArQ5nrkAALVENLNn/B0YpNCx1RKNS8UCn3G5XVKQcUZ9ricXCV+0T0dWKlE6jwfuXXgqgrb4mE5h1Oq5QpJrO089mw3eVlTjQ3Iyj+/XL1CH2Kobm5/OJpEmrjeifE53aB0RO6MRAqtBsxv6mJvzfJ58AQETfoWafD5IkUWpfmmlPkYr3nlNRpI6Rv2cD8/LaaqRCIXiEQKrIbEat290pE4R01kiJBhvxFCkWWAfCYV7f1ZWKVI3LhTyjMSbAF4PJvjYbPzZxUZcUqdwi5ZHp559/xtlnnx3z+KxZs7B79+60HJQSXq8Xt912G37xi1/ALq9EHzp0CCVyvQxDq9WioKAAh+TiWyXuvfdeOBwO/lMu54cT2UE6Vz2LzGYskRteAq2TjmSZOmCAoqVwNMyxb5jgppUrZFtqH5tAsOL3zb/5Da498kjehLHa7earteL20Q6K7EYtpgHGVaSiXKPMOl1EQX88ulqRAlpTUt+/9FJcnkG1xyQUpqc6eSq1WtHo9UIF8LoconMMFcadk4cMwac//cSvz2jXPiBqZdzn4+oHm9x9LSu1DoOhrTeZ3w9/KISQJHXpOJDripQpjoLDznG89ywqUi3tKFJ/nDYN3117LY7p1w8atRoalSqmRqrIbOZ1Rh0lna59Zp2OjytxFSn5+aCQ2seudYfBkPFgpTpBO5VnZ83Cn+V2G6y+UKyLokAqt0h5ZCovL8eXX34Z8/gXX3yRsYAkEAjg4osvhiRJePLJJzu9vwULFsDpdPKfffv2peEoiXSR7vSR/oIbVroGepEFU6dizvjxeEd2vsolsi21j10XbCI/urgYT599NjcFqWxujijUZhOF6ECKpWOI76ncbo8xm3D6fDFKo1GrhTcJh9KuVqSA1nSws0eMyGiKaYQiFQympEixczmpX7+kjF+I9hksXNvXT5yIyuZmrJLvaUqKVLMwiWvwePh34byRIyP26zAaYdRqoVGp0OzztfUr6iZFypQF40+6YLWB8Rbq2Pc3nvMrG9eSUaRUKhWOkg29gNZ7YExqn5xK1xnLcF8aFSmVSsWvy7g1UkJqX/S1mQ4XwvaodrtREieQumrCBNx94omtxyGPlY0USOUsKc8qf/vb3+Kmm27Chg0bMGXKFACtNVKLFy/GI488kvYDZEFURUUFlixZwtUoACgrK0O1XGjOCAaDqK+vR1kC1yqDwQBDmhrHEekn3YEUG+yYgUS6OW3YsJx1HhMnMl1ZGxEPsX+KCAueKpubI2ykbz7mGGyqrsYvhV5IQFsgdZxgLTzA4YDT5+PpTpIkod7jUQ6kslSR6gpMWm2kIpXC4gQ7l8mavhDtUy6krZ42bBgMGg02VlfjxMGDFQOpGz/+GF9ddRUAoM7j4Q6P40pLccXhh+PFH3+ESavlATIzqWCT7K4cByw5qkh9fPnlWBvlQBzN6xdeiGP791d8Tq/RQIW2Gql4E3olDBoNN5tg4yAzTKhxu2HQanHDRx/hhXPPjUlrTkSqiyrtUWg242BLS7uKlJjaJ5oRddaFsD1Ya4xEiOo9M/MosVgokMoxUg6kbrjhBpSVleHBBx/EG2+8AQAYNWoUXn/9dZyj4CjUGVgQtXPnTixduhSFUd2gJ0+ejMbGRqxbtw4T5earS5YsQTgcxjFJGBEQ2UcgFEIwHE7rzVqtUmHLb34TkQJDJIe4+qzJgokMK0KOrmVidR4HmpoinBbPHjECB4cPj1FoWJBzlmxzD7QZjDj+8Q+cOGgQXr/wQrT4/RgclQ5q1Gp5ukYiukOR6gpMOh1//6nWSLFAKpcmxd2NOFZq1WqMKCrC1pqamLGUBVIsdQ+Q7f2Fwn42MRQn0KyR75RnngHQtSm+2VCXmQn62e3t9hlkjd2VUKlUrd9Dpkil0Pxdr9G0KVLyd7dIUKSeXrcO72/fjq/37k168TEsSQiEw2nN+ChMRZGKcu2zdECRkiQJq/bvx/jS0qSu8RqXq91SAVEZY4pUf7u9UymURPbRoav+vPPOw3nnndfpF29pacGuXbv477t378aGDRtQUFCAPn364MILL8T69evx4YcfIhQK8bqngoIC6PV6jBo1CqeffjquvfZaPPXUUwgEApg3bx4uvfRScuzroUSvLKWLUUnYmBOxxFsN7C7Y6rk/KrWO1XI4fb4Y62ClNDfmxni6oCRO7NsXh5eW4seqKizdswc75N5gw6MWcIxabUR6VDzYMeaaImXW6VAtm234Uwyk2KQo185JNsBMb4rNZtR7vTFjqZjyWu/xIN9oRJ3bHVHY309OORML4616PWrdbtTJK+rtWXOnk1wNpNKBSV7Qac+1LxqDVqtYIwW0KvrvbtsGANgjNJJtDxYYpPPaKJSdVm1xsodEs4l0pPa9vnkzfvHWW7h4zBi8fuGF/PFQOAyVShVzH0lGkTLrdDyAavB6YdXrYdHpeO9DIjdIOZAaMmQIvvvuuxh1qLGxEUceeSR+/vnnpPe1du1anHjiifz3+fPnAwDmzJmDu+66C++//z4A4IiotJylS5di+vTpAICXX34Z8+bNw4wZM6BWq3HBBRdg4cKFqb4tIkvIVCBFdIx0pmqkA41ajTW/+lWMjb14s03mZn7R6NE4Y8GCmInaQIcDP8oNFHfU1UGFWIMSo1ablGsfS/+LV1DeU4lJ7UvhGmHKISlS6WXHvHn8O5BvMqFRIZASJ9u76usxqqgIgXA4QpG65sgj8V1lZUR/L5vBwL8TT515JiYk0aQ8XVAgFZ8IRSqF8ySm9rFAyqDVwqbXY1N1NQ+Yt9fWJr1PtrBkT2PJRIHRiDyjMW69J0/tC4XgDgSgQlvtmEWvhzcYRCgcTjqTYrfcV/DtrVvRLJiwjHz8cfS12fBVRQVWXXMNju3fH5IkJRdICdkLTq8XDoMh6dRwoueQ8h1+z549CClE0z6fDwcOHEhpX9OnT09ot5mMFWdBQQFeeeWVlF6XyF7YzT+XCouJ9DJJwTZbDJ7irWCKqFQqxUkaS/kDgO11dRjgcMRci0aNJqkbIV8lzbHJoFlM7UuxLoKd81TcM4n2OUxY2MwzGFDR2BgTSIkq4K76ej4JFPvg2A0GvCI3AGbY9Hqs3r8fQObqTONBC2rxYYpUS4qW9KLZhDi25ZtMvLee3WDAoSQWixhNGQikDissTDhO6ERFyu+HSafjhhrsuvEEg0kH49UuF7RqNYLhML7Ztw+nDRsGbzCIXfX13Jn3X6tX47ULL4TT50MgHE6pRorVKxq0WlKkcoykAymmDgHAp59+CodQ4BoKhfDll19i0KBBaT04ovdBihTREcTc/M6kl0woK8MncrrxxurqmLQ+IHmziVy9liMUqRTrIgbm5eGz2bMxne4VGSPfZEKDgiIFANKdd8J27724Y8kS/Ou00wAgQn1SwmYwwBUIwKjVok8726abXGtwnk4sej1cLLUvhTFPr6BIAa1mOyyQGlFYyNN3k4EFUsksYiXL/MmTeVsLJUT7c3dUeiO75l1+f9KBVJXLhcn9+2PV/v34WVanNkWZmb2xeTPOHj6cL+YVC2quEmKKIWuEbdRqyWwix0j6DnjuuecCaF3JnSP05QEAnU6HQYMG4cEHH0zrwRG9j1ydfPZkzho+HPt7UNPqZHp/xePu6dNh0mrx52XLsKm6GmcouDH2+kCqE/bnAHDK0KGZOCxCJs9oVEztY7T4/Wjx+/Gb//0PQGR7CCXYwkQfq5UCmyzCYTDwzzklRUqjiamRAlpdAvs99BCA1rrQdQcPJr3PTChSWrU6YQqwVjCbcEcFk+x8KNVJra2sRFVLC04cPDjiu1HtcqGPzYZyux17Ghvx6a5dOP3ll6FRqRCSs6O0ajVmv/MOPvzFLwCgXUXKotPx+jF3IACT3B/LR6l9OUXSierhcBjhcBgDBgxAdXU1/z0cDsPn82H79u0466yzMnmsRC8gVyefPZkPfvELfH/99d19GEkTbXWeCjqNBkfLq437m5oi6kcYyQZS3Ekqx65lcZU11RopIvPkG41o8HjQHOVkxnhNTt2rbG6GRafjJhXxYCv6Re2svhNdi8NoxKubNgFIrZaMpZZFB1KiMpmqIsWutXQGUu2hizKbMCsoUkqB1KRFi3DWq6/ikdWrIx6vdbtRbDZjUF4efmpowLUffAAA+ItQx7/xhhsAAB/t3AkAivcHkVKrFTVuN4LhcIQiRTVSuUXKFb+7d+9Gkex4RRDphgIpoqO8e8kl2HTDDSn1VFGCXXthSVK03k1FkVKrVFln2NFZTEIBdar250TmcRiNCEkSV5ELo5w3Lxk7Fr+aMAEAMKygoF0FlylS7U0aia5F7G+XikOdQa7xjA6kRPrb7aj3eHgLh0v++19cKLe7UYKn9nVhPWi02YQ4Z2CLB0o24ywAc0al1zX7/bAbDJg+aBDe2roV+5qaMH3QIPz+uOP4NsMLC1FoMvH07/YWIfrb7QhLEg61tLQqUlotN/sgcoekA6lVq1bhww8/jHjshRdewODBg1FSUoLrrrsOPsr7JDoJSxmiQIpIlXNGjsSYkpJO70e89qKb8QIpKFLyzb0zqYbZiF5ODQJStz8nMg9TJyoaG6FRqRRVAmbjtHDmzHb3x+peogOyrmRQCn2SegviJP7IFJwU9RoNd9mLDqRYOwi2GFXrdqPa5cIbmzfjra1b4+6z0euFUavt0rYG0YqURWHcZtbjDEmS+HgcHXy2yPVUF40ezR9748ILoVWrefqrSqXClPJy7G5shE6tbrc+lP3d/qYmeFhqHylSOUfSNVJ/+ctfMH36dJ6+t3HjRlxzzTX45S9/iVGjRuGf//wn+vbti7vuuitTx0rkKN/s24dj+/eHWqUiRYrodsRUKKU+WqkoUrmW1ge0pgaFJAmhcLg1tS/H7N17OkwVqHA6UWAyKQby95x4IqYPGoRpAwcmvb/uCqQabrst55papwMWSM2bNCklS3qDVosqOW0vOpB655JL0Oj1Yp/c8Lza5YqojxVtwUX2NzW1W2uXbhIpUiyToCEqkGr2+/kiUHOUWsUCqWEFBfyxYjmg3HD99aiXbeHHlZTggx07kjLWYOfkQFMT3IEA+thsMMquiUTukPTotGHDBsyYMYP//tprr+GYY47BokWLMH/+fCxcuBBvJJB+ifTz6a5dmP322xHNE3saq/btw3HPPotF69YBaJ18alQqunES3YY4uVBK3TDKNQbttWeIvrnnCqwmyhcKtZpN0Hc1q7BGBVJK9LHZMPvww5PaH5uwRvdu6yryjMacayGQDhxysNCe62I0Bo0GDXJQEL3QY9RqUWa1ckWq2uXCdrkxOQAcaG5W3OdepxMDBSfnroCZTTDXPnGster10KhU/H0yWN2XVq2OaKoekvdh1ev59T65f3/+fKHZzFsMlMvvM5lFsnyjEUattlWRCgZ5ah8pUrlF0nfAhoYGlJaW8t+XL1+OmUJawKRJk7Bv3770Hh0Rl4PNzTj95Zfx8saNeHPLlu4+nA7zsZxr/LVsu+rO0XQooucgFtUHhb5SDBZotZfnnmqjzJ4CU6B8wSApUlkIWymvaGxMS10Tayg9a8SITu+LSB9HlJUhz2jEGYcdltLfGTQartTE69dYLARS+5uaoJHvxwfiuLfudToxoIsDKbbY6g+FYsZalUrF2wCIHJQDwcMKCiIUKdbzjy1CVP/ud/jiyisVX7dcVpmSqUtTqVTob7fz1D5mNkE1UrlF0oFUaWkpdu/eDQDw+/1Yv349jj32WP58c3MzdDm4+pqtvLttG3RqNUYVFfEgpCfC0gbYv7m6ik/0HKx6PZoXLMAdxx+PkwYPjnmeBVLtrSrm6rXMFCl/KERmE1kImwz+1NCQslqhxBXjx2Pr3LkYm4b6QyJ9nDxkCBpuuw3jy8pS+ju9oEjFG5/MOh1sej0OtrRgX1MTr8Gqi1J4GN0RSKlUKq7uuAMBmKMWdJh7pcjO+nqoABxeWorPfvoJcz/6CECbKQX77hRbLHHPDUvXi3culLY/0NzcZjbRgRopSZLw8o8/cvMPIrtIOpA644wz8Ic//AFff/01FixYALPZjOOPP54//+OPP2Io9QfpMvY0NqLc4cBhhYVwRq269CTYihGT3HN18kn0LKx6Pf560kmKxdPJBlLRlry5gl5I7SOziexDdE4bW1zc6f1p1WqMJKfenIHVOAKJa5EH5eXh54YG7G9qwqjiYmhUKl4nJOILBnGwpaXLAymgradddB8pAIqK1M66OgxwOHgj3SfWrgUQG0glYlSK36m+NhsONDe3pvYxRSrFQGr1/v2Y/c47+FeUZTuRHSQdSN1zzz3QarU44YQTsGjRIixatAh64aJ79tlnceqpp2bkIIlYatxulFgssBsMMUWTPQm2YlQj13lRIEVkO6koUrlqNgG0TqASWSgT3YM4oSQViYhG7PuW6F47tKAAb2/diqqWFvSxWlsDE4VAitVNdUsgJas7SotWxWZzTC+sHfX1OKywMMbJ8odDhwAkF0jpNRoMLyxMOtW1QG6Q7fL7YZEb8oYkSTFtPB5M/dpSW5v03xBdR9J3wKKiInz11VdwOp2wWq3QRK1Cvvnmm7B2UzFqb6Ta5WoNpPR6OL1evPDDD5g1YoSiXXM2U+/xwKDRoM7t5gWfFEgR2UwqipRSH6qejpjal6vBYk9GK5h/DM7P78YjIbIRsaYxoSLlcODdbdsAtDo25huNiorUXtnhrzsCKaPc005p3tDHasUPVVURj+2sq8PUAQMwVHDmA4AHVq0CAPRLMhV229y5Sddx58nnzRUIwGYw8PPvD4UivquJYKUPSuef6H5StltyOBwxQRQAFBQURChURGapdrlQYjbDZjDgh6oqzHn3Xfztq6+6+7BSpsHrxfDCQkhoHSQokCKynfYCqRa/H0+vWweX35+T17JBMNvI1feYK5R3sSU1kf3ok1Sk7pw+nf+/0GxGgcmkOJFnjxV1Q8PmiNS+qPdSZrXiYEsL/z0sSdhVX4/DCgowTlBqnV4vNlZV4d4ZM5J2pkzFDCvPaOQmHVa9np9/fwr1TsyOProvFpEdkG9tD6WKKVKCRJ1s8WM20eDxYIScf1/tclEgRWQ97QVSD69ahes//BCr9u/PSbWGTQRcfj8C4TB9X7OY7pjcEtmNmNpnSpCWm2c0chv0QpMJBSaT4hyD2YjbumEh3aTVwuX3wxsMxipSNhsOtbQgLNeDVcp1SocVFuLIPn24gcaq/fvhCQYxpbw8I8eYZzTyBti2jgZSSShSuxsasPH/27vz+KbqdH/gnyTN0qZJutCmC20psgrIIlrBDcd6ARXB6yw4jOi9/kRcrqLjMIMDOOOoKOPCyJ0RnRlx38ZR9DqKV0HGUXtR2aSA7GtpWkqXJG2Sps3390dzDidpkibQNkn7eb9efQ3NOTn5pnMSz3Oe7/d5gjJw1DsYSCUhb3s7qux2FFssAYHU3vr6OI4qdq3t7Wj2ejHc35/hREsLAylKeF0FUsrpGn3xXJYuxKSF3H3xPSa7hZMnI9NgYBsJ6kTKKGvV6pDFdJSk64sBaWkYMWAANldXd+qfZ/d4oNdoujxWTzCkpKDe/z0UXGxiaFYW2nw+bDh0CEDHtD7pcY1ajVf//d8BAO/v3g0A8nVId1Mut0jX6QLKtkdLmtoXrmfoVpsNg59+GpP++tczGCmdLgZSSeio3Y52IVCamQnlfyaDF1YmOmnh6jApkGJGipJAV4GUS/F45Ja9yUm6EGsMcwFD8ffYFVeg/pe/jPcwKAFJN0LC9ZBSWlBWBgAoNJsxZdAgHLXb5eyIxNHaKvcu622pWq0cXARfN5QPHowSiwUf7d0LANhz8iTUKpW8bnB4djZy0tLw582bYdbr5exbd8tUNMU26fVyRiqWUuZH7XboNBrUu1whG8G/7e8lqmFz9LjgXz2JtPl8mPzXv2LG668DAEozMjDO30Pi/40fj7owdysSlXRHuzQjAylqNTNSlBS6CqT2KTLDdv+0l75Ezkh10YuGiBKPdCEfTYW6O84/H1X33otBGRly/6TgG7Z2jycu0/qAjql9J8N8D6n8QZMU+K3euhVlhYXy+1epVLhg4EC0+XwYlp3dY9nb4IxUrFP7hBA4ZrfjHKsVnvb2gBt1khP+/0+iLV5B3Yt/9SRy1WuvoeLYMew8cQJAR0WmC4uL4Vu6FGUDB6LB5YqppGa8SfN9s1JT5VKlDKQo0UUKpLbabHi9slL+vakvBlL+98+pfUTJR/r8ZikyJZFITZ2l/YNLoDs8nk7lxHuLMiMVaj1qkdmMo3Y7hBDYYrPh+tGjA7aPtVoBdEz36ynKQOp01kh52tvhbmvDWf5MWqiCE1L7mEa3W14TRr2HgVSS8LS14X/375d/n1hQIN99UKlUGJCWBoHOX3KJTBprZmqq3KOCgRQlOulCxOX1Yu2+fQELfF/fvh0AsOiiizr27YPNaqULgXpmpIiSjhT0xNpIW2rloGxy+11NDU60tMRtap8hQkYK6AikDjU2wtHaitb2duQETd+7fPBgAOjRtjFnmpGSinlITYRD3cA70dICQ0oKfEL0yVkQiY6dFJPE9tpaAMDSSy7Bggsu6DQXNtt/t+hES0unL4tEJX0hZxoMMOl0cLa2MpCihJeiViNFrUaTx4P/fP99AIB3yRKkqNXYbLPh2hEj8Mjll2N4djZmRNm0MZkEF5voi5UJifqqc/xZmBpFafBomPV6aFQq+QZKu8+HsatWAYC8xKC3paakyAFJqOuGC4uL8cgXX+Afe/YA6FzFcsqgQXjzhz/EhT1UsQ9AQLbudAIpZ2srgFNj94SZ2jc8OxvbamrQ4HIlXT/RZMeMVJI41NgIALj7gguQmZraKZUuLaAc9ac/4UBDQ28P77TUu1wwpKQgVauFSa+Hg4EUJYl0nQ7rDx6Uf3/wn/8EAOyorcWonBwAwI3jxkU9fSaZaNRqpGm18oUYP69EyUPqLXbpoEExPU+lUiHDYJBnkihLoc8955xuG18sChQNdEMVvbli8GCMysnBT995B0DodgA/HjUKhT3Yb025bkmlUsWekQoKpEJlpOpdLgz1F+2qSbKiY30BA6kkUe9yQYXwKeiBii+Cl7dt66VRnZkGl0u+0DTpdAykKGmk63TYVVcn//67zz+HzelEtdMp3/Hty8x6PWwMpIiSjkqlwvF778Vfr7km5ucqm/KeUFyw333BBd02vlhIN62A0EGSVqPBbxWNhXMSoK/aGWekQjyvxevF+Lw8qAB5DT31HgZSSUJK16ojVJZ5YeZMAJAvcJTcbW2orK3FcYejx8YYqwa3W553bdLrcaK5GQK8MKPEl67T4WBDA9K0Wjz8gx8gTavFl0eOAECPNXZMJGa9HtUMpIiSUr7JJBfNiUWu0ShnPKQCB11dl/SkUbm58r/Drfm6cuhQ+d89VeI8FlK/LW+UhcGCA6ngjJQQAi1eL3LS0nBWVhab8sYB10gliXpF9iacG8eNw+uVlahtacFxhwNpWq2cwbr+73/Hmu+/BwCIBx7o8fFGo97lknssmHQ6+QuaF2aU6NJ1OrQLgVyjEYMyMtDi9eJ/9+9HicXSo9NEEoVFr8eekyejaupJRH1DodmMKv/NWKndyoG77orbeIZEUW0vVavF6pkzMSAtLW7fVb+68EIMysgAEHtGSio2ES6QcrW1yTegx+TmyuvpqfcwkEoSDW53QGO3cKzp6dhfX4/CJ59EgcmEqnvvBQA5iEokDW53wNQ+rrmgZCH1YMk1GmH13+V8bvNm/HTMmHgOq9dIazT5WSXqPwpNJmy12QB0TO3T+NdNxUu0fZNuGjeuZwfShWXl5fK/u7vYRLN/u1Gnw5jcXKzatOmMx0uxievUvs8//xwzZsxAQUEBVCoV1qxZE7BdCIGlS5ciPz8fqampKC8vx15/l2pJfX095syZA7PZjIyMDNx8881wxliNJhlEk5ECgNy0NHx59CgA4LjDAZvT2emDF6rqS28SQuD3X36JD/bsgTQhwKTXy6luVpyhRKcMpPIVC56Vc/b7Mov/M8pAiqj/KDSZUOXvy3SipQUD0tJ6rJFttN764Q/xP9dfH9cxxOJ0AimdRiOXmA/OSDV7vQA6qqeenZOD2ubmkL2mqOfENZBqbm7G2LFj8cc//jHk9uXLl+Ppp5/GqlWrsHHjRhiNRkydOhVuxUkyZ84c7NixA5988gk++OADfP7555g3b15vvYUe9z+7d2PwH/6Aky6XvJ4oEmt6OgBA679Tk//EEzA8/DAAYI7/bvmRpqYeGm10vq+rw8JPPwVw6s62cu7yhPz8uIyLKFpSye9zcnMxcsAA+Ty2JsAc/N7AjBRR/1NoNqPZ64X6wQfx9s6dCdFq5UejRuHqYcPiPYyoSddmsVTtS9fp5LYTwcUmlBkp6aZerKXt6czEdWrf9OnTMX369JDbhBBYsWIFFi9ejJn+IgovvfQSrFYr1qxZg9mzZ2PXrl1Yu3YtvvnmG0ycOBEAsHLlSlx55ZV4/PHHUVBQ0Gvvpacs/+orHGxsxMHGRtzmf4+RSAHJVcOGIc9oxJ83b0a7v9P1bRMn4tXt29EU54Ztyrslf7rqKgAdqXdDSgrafL6YGwUS9bZjdjsAoGzgQKhUKlw/ejSe3bRJvpHR10nVr0KVHCaivqlQkX3fXluLy2IsoU4d7SM0KlVAIOVua4NPiJA3ppytrTAp+k8FZ6Ra/BmpNK1WLiBS09yM4QMG9NRboCAJu0bq4MGDsNlsKFfMLbVYLCgrK0NFRQVmz56NiooKZGRkyEEUAJSXl0OtVmPjxo249tprQx7b4/HAowgm7P6LokSkvMMdVUbKv79apcIzV1+NFdOmoV0IeNra5LKl8e58LS1S/d1ll8lTpFLUavwsTr0oiGIlFZT4t7POAgB5imqoErx90TB/zxJNnKf1EFHvCS6kk91Pvu+6m06jCQikrnj5ZWw8dgyexYs7TZV0+jNSKpUKhpSUzmukFFP7pP/+1LKXVK9K2PLnNv+CRmtQTxar1Spvs9lsyFWUvwSAlJQUZGVlyfuEsmzZMlgsFvmnKIHLFR9WTMOLao2UP5CSPor6lBSkabUBTXwdIQKpE83N+N/9+898wFGQAqlfXnhhr7weUXf76zXX4Pi998p3AEf610b1l0BquD+QqkqgdgpE1LOUDXCB0M1hqWs6jQZeRSD1xZEj8Pp82Fdf32lfh8cjr4/SazSd10gppvZlGAzQqtWc2tfLEjYj1ZMWLVqEe/3V7ICOjFSiBlMHGxrkf0dTtU8KtkKliKUPY6iMVO7jjwMA2pYsgUatxnObNmHGsGEBC+m7S11LCyx6PcsmU9JK1+nkbCoA3Hn++ZhcVBRVOd6+QGo6zDufRP2HISUFj19xBWaNGIFddXVyZppio1VkpIR/6QUA7Kuvx9Cgv6nT65X/W2NISekUSElLNcx6PVQqFXKNRn4v97KEDaTy8vIAADU1NchXFB+oqanBOH8py7y8PNQG1cxva2tDfX29/PxQ9Ho99P6gIpHZPR6cdLlg0ung8M+T7UqxxYLfXXYZ5p17bqdteo0GWrUaDv8dDMn3dXXyvxvdbmjUatz6wQd456yzsPZnPzvzNxKkzl/th6ivUKtUmNgH1mRGy2IwQKNSoWzgwHgPhYh60c8nTwYAnNVPbhr1BOXUPqmxMQAcbGzstK9Tce0XKpCqstth1usDKsnWMJDqVQk7ta+0tBR5eXlYt26d/JjdbsfGjRsxadIkAMCkSZPQ2NiITYq6+evXr4fP50NZWVmvj7m7SdmoBy69FACQF8VCdpVKhcWXXBKyg7dKpYJJr+80tW/T8ePyv+taWrDfn17uqWk7DKSIkp/z/vux4cYb4z0MIqKkogyk9ium8ylnIEkcHo8cJKXrdHJfKUmVwxFQBMSans6MVC+La0bK6XRi37598u8HDx7E1q1bkZWVheLiYixYsAAPPfQQhg4ditLSUixZsgQFBQWYNWsWAGDkyJGYNm0abrnlFqxatQperxd33nknZs+e3Scq9kmVwWaPHo0bxo4NGRzFyqTTdZrat1fxQa5raZFf1xtlec6unGhuxtp9+3DD2LEdr+FyMZAiSnLS+jAiIopeQCDlD57KCgvDZqSkQMqs18MeFEgds9sDioBYjcaAa7pIPG1t2N/QgLP7Sf/DnhLXjNS3336L8ePHY/z48QCAe++9F+PHj8fSpUsBAAsXLsR//dd/Yd68eTjvvPPgdDqxdu1aGBTV61599VWMGDECl19+Oa688kpcdNFFeO655+LyfrqbNPc1w2DoliAK6PggBk/t21dfL891rmtpkaf62ZzOgPm7p+vaN9/E3DVr5LLnzEgRERFRf6QMpA40NCAnLQ3nWK0BgZTD48FWmw21zc2w+JeimPX6TjfC9zc0oMRikX/PNRpxpKkpqmu3+9etw6g//UkuoX6mDjQ04K6PPkKbz9ctx0sWcQ2kpkyZAiFEp58XXngBQMdUtAcffBA2mw1utxuffvophgU1XsvKysJrr70Gh8OBpqYmPP/880jvI71c7B4PNCpVtza9NIX4INa1tGCkv+dAXUsLttXUAOgI5GzdUP3ly6NHAZxKYTOQIiIiov5IGUjVu1zIMRpRmpEhT+376uhRmB99FOOffRZVDodcFdZiMARcv7V4vdheU4PzFDOwLhs0CMfsdnykmO0VjpS5+s5/zXemVm7ciJVff42P9u7tluMli4RdI0VAk9stV2LpLlLhCiVnayssBgMyDQbUtbRg54kTcn+cUOU4lZ7euBFv79wZdruy54GUwmYgRURERP2RTqOB15+1aW5thVGrRaHZjAa3G562NnzsD4IGZWQAAMb42/yYdTo0+Wf2AMDekyfRLgTGKoqrTRsyBGa9HtujCI6kxurbIrQLioXHHxx+q1h33x8wkEpgdo9H7v3UXcwhik00e71I9zdzq2tpQb3LhaH+ijzBQZeSTwjcvXYtfvS3v4Xc/sWRI5j26qvy74cbG9Hm86GBa6SIiIioH1JmpJq9Xhh1OmT6l6w0uN1o8ngwcsAAVN52G/4yYwbG+QOl4Kl9UuEJi+I6UaVS4azMTPnGdSSN/mNJ6+LP1J6TJwEAJ12ubjlesmAglcCaPB5YFOvBukOoYhPO1lYYdbqOQMrlQpPHI1eBCdW8V7LrxImIr/XMt99iw6FDADq6btc2N6PB5YLAqTshRERERP1Fp0BKq5X7hDa4XKhpboY1PR1GnQ43T5ggz0oKF0ilB7XGOSsrC7v9QU0kUuPe6m5q4CtVC2QgRQmjxzJSIab2pfsDqWN2O1rb2+UO5sGlNpUONzVFfK2Tiv4Io3NzcaipCSu//hoAmJEiIiKifkerVp8KpPw3spUZqRqnE9YQBcaC10iFC6QuLi5GxdGjEW+EA6cCnu4KpKQCacprv/6AgVQCq3e5AlK23SFUsYlmRSAlFYTISk1FmlbbKZByt7Xh5vfewyvffYcqRTo41OJCZQWaQrMZb+/cid99/jkABlJERETU/0TKSNW7XDjc1BSyb6hZr0ez14t2//oq6frMGBRITRsyBF6fTy70FY50LVjdTT1DpfVbzEhRQvjHnj34x969ODc/v1uPa9LpAu5SCCE6pvb510hJwY/FYAjZ/O2zgwfx/NateGDDBhxXfPg+PXCg02sptwdP5WMgRURERP1NQCDlv/6SMlL/d+wYDjQ04AelpZ2eJ81QkgIgZ2srtGo1dBpNwH5Ds7KQnZqKiigCqdSUlG4JfHxCwO7xYEBaGjNSFH8urxc/fvttZBoMuGncuG49tjS1T+ox4G5rgwDkjJTEotfDFCKQ+s0//wkAONrUhJ11dZiQn48pgwbheFBqWAiBZsVzpw0ZgnF5eSgfPBhAR28sIiIiov4kVLGJVK0Weo0GG6uqAHQ06A0WHEg1e72dpvUBHQUnzrFa8X2EdVI+/030IosloBLg6XJ4PBAASiyWTrOe+jq2pk9AX1dVocXrxVf/+Z8ozczs1mOb9Hr4hECL/8OrnGOrDKQyQmSkHB4Pvq6qwujcXBxubMRbO3bgh2efDZ1Gg6NB66Vc/gDt2auvxuzRo2HW6zFrxAj4hIDN6YRGzRieiIiI+pdQ5c+Bjil6UgW9LP9UPyVLiIxUqEAKAApMJhyJsI5durYrMpux9+RJ+ISA+gxa7UjrowrN5m7rS5UseDWbgDZXVyM1JQWj/b0DupN0R0MqOKGcY6sMpAaazR2BlKLjtfScRy+/HP/hz5QNslhQaDJ1Kp8pZaNyjcaAghlqlUouZEFERETUnwRnpKRgyKjV4mhTE9J1OmiDpusBoaf2RQqkIhWRkI5RZLFAIHJhsWhIWa2BJhO8Pl9AD9G+joFUAjpmt6PIYumRrI3J/6FTpoaBwIxUXno6NGp1p4yU9G+TXo+bJ0wAAGSmpuK8ggIcbGzETkU5dOm40p0WIiIiov5OCqSkJRBSsQijTodmr1deLxUsOJCqd7nCVnbOT0/HcYdDXsYBAN/X1WH8s8/imN1+KpAymwHgjKf3ST2kRvkTAGcamCUTBlIJqMrhkPs4dTeTlJFS3NEAOgKeXH+5zbnnnAOgI7hSFqaQ/p2u0+EcqxWf3HADFlxwAa4eNgwA8I1/bi9wKiMVXE2GiIiIqL+SAilpCYQ8tc//v6Gm9QGnAilpGt22mhqMCTNzKS89HS1er3xTGwCerKjAVpsNz3zzTedA6gzXNW2sqsJAsxlDs7IAoFObnb6MgVQCOma3Y6D/5O5uwVP7mhVrpIZkZeHTG27AI5dfLj8WMiPlD47KBw9GmlaLVK0W6Tod6hSVWpiRIiIiIgqkVavhaWvrdMNZ+t/MMIGUtN3h8cDd1obK2lqcW1AQcl+LP6ulLPyw19/e5ojdjt11dVDhVAYpOCMlhMCCtWvx3KZNUb2nTw4cwMXFxfLNemakKK5sTmfIHgLdIXhqX3BDt8sHD5anFHYqNhGm+RvQUd48IJBiRoqIiIgoQKpWC3dbW6cbzl1lpNQqFVJTUuBqa8N3NTVo8/kwMUwgFTwNEIBcFKzB5cLnhw9jjNWKEosFQOeMVGVtLf6wcSPuXru2y/fT5HZjq82G6UOGyNeH4ZoBT3zuOSxev77LYyYTBlIJqMHtDjtH9kyFndoXIuAJVbVPeQylAcGBFDNSRERERAGMWi2avd5ON5ylICTS9V+aVosWrxdfV1VBq1aHndoXHEgJIeSiYA1uN/55+DAuLSmRM1fBGanD/qDL7S8a0eL14rXt20O+Vm1zM4COImXSzfpQGSkhBDZVV+Phf/0r7PtLRgykEowQAo1ud9jU7plKTUmBRqUKKDah8j8eLLiPlLO1FSp0fJCDDUhLQ52iqRszUkRERESBpNYznTJS/uulcBkp4FQg9cmBA5hUVAR9iGs3oHOpdJvTCU97OwZlZKCythb7GxpwSUkJjFotNCpVp4yUsqWNy+vFwk8+wZx33sHBhoZOryU19B2QlnYqIxUikOqOxr+JiIFUgnG2tsInRI81rFWpVDD5m/JKr5eu00EVon9AqKl9Rp0uZK+BHKMRNYpSm8oiFkRERETUcV3kEwL1/sBCXiPlv17qKiPV3NqKfx46hCsGDw67n1yYwp9pkno7XVxcLAdXl5SUQKVSwazXd8pIHVW0tNlVVyc3Cg7Vm+qkfzZSdlpaxDVS+/1rtPoaBlIJpsF/MvfU1D6g4wOmnNoXLmuU7i/F6fOXz3S2tspp22AlFkvAB6zJ40G6TsfGu0RERER+UtZGmhInBVDZ/kxUpBlJaVotnvy//0OTx4Nz8/PD7mcKykhtq6lBuk4nP2doVpZcqdliMHTOSNntmJCfD41KhW+qquDyZ88ONTZ2ei1pWUd2aip0Gg10Gk3INVL1ioyU/QyrBCYSXuUmmEZ/INVTGSmgY8qePLUvQkM36fEW/wfI4Q+OQhmUkYHjDofchM3u8cipZSIiIiI6lYGSZvFIv5/lLx3uUpQsD6ZcWhGuYh8ApKjVSNNq5QDpUGMjBmdmojQzE8Cpqn5AxzTA4IzUkaYmDM/OxtDsbOyqq5ODoANhpval63TyNMN0nS7k1D7lY9v9GbK+gIFUgmnwn6w9GkgFTe0LN/0uuPqKs7U1ZKEJoCOQEji1QLHJ7Q7bKI6IiIioP5KuuWqCMlIXFxcDAMbm5YV9rhSs3H/RRXJGKZzs1FQ5W2RzOpGfno5LSkoAAAWKXqUWgwGNIdZIFZnNKDSZ8MGePaj2B307Tpzo9Do1Tidy0tLk34PX10uka0mtWo23duyIOPZkwkAqwUgBjqWHp/Ypi010lZGSPhCOCNmrs3NyAJyah2v3eHr0PRARERElGykDVeVwwKRYAlGamQnvkiX4QWlp2OdK0wEvHTSoy9cZaDbLlfqqnU7km0zIMBjw0Zw5+MuMGfJ+GQaDPBsKOFXhb6DZjEKzGfv9Wagis1m+xlOqcjhQqOh9mq7ThZza52xtRZpWi9smTsQbDKSopzT3QpEGkyLt6oxiap8ykAq3RiovPR0DzWZ841+Q2OTxMCNFREREpCBdWx1tauq0Hiqli3Xl+/wFG8KVPVcqNJtR5XAAAKodDuT7+5NOGzIEOYps1gBF5grouNbz+nzIMRrlQhJatRo3jh0rH0/puMOBQkWGy6TXh85I+a83zy0oQG1zM6589VVMfeUVCP86/GTFQCrBSCdfqBLj3SWWYhPKMUUKuoCOrNQe/4eca6SIiIiIAknXUUeammIuLCb1dcrzB0WRFJpMOGa3QwiBaqcz7HOC+4BKS0wyDQbcNG4cMg0GNN9/P0ozM9Hi9aLd5wt4flVQIBV2jZTHA5NOh8H+dVof7duH/92/P+S6q2QSugA9xY2U+uzJancBxSa8XljDfLg6ZaQ8HgzOyAh73BKLBd8ePw6go2hGsb9jNhERERGdqsp81G6XC0xE65MbbsC++vqQLWuCDTSbUWW3o8HtRmt7u5yRCpZjNOKEf8ogcKroWWZqKqYOGYIfnn02gMBrQuXSjdrm5oDryLBrpPzr7EuDriMrjh2L+e+QSJiRSjDNXm+P917q1EcqzOsF9wOIVGwC6AikpGITR/3za4mIiIiogz4lRV76EGtGqnzwYMyfODGqfQtNJjhaW7Hn5EkAQL4ia6SUk5YGR2urXHU5XBseaWmHMtvkEwJNbnfAvuEyUlILneBxVIeYLphMGEglmK6mz3UHZbGJSFP7pIAummITAFCSkYF6lwt1LS2wOZ2d7joQERER9XdSxb2e7BkqFYCQ1q5HykgBwAn/9D55al/Q+q1QzXYdHg8EAitNp+t08np/JekaUq3Ipuk1moBCF8kooQOp9vZ2LFmyBKWlpUhNTcVZZ52F3/3udwEL04QQWLp0KfLz85Gamory8nLs3bs3jqM+M70RSJn8FVWEEBH7SGnUaqSmpARmpCKMTZp/+3/HjgGAPA+WiIiIiDpI1fQiVeg7U9KsoG/8Sy7CZaSkIEjqJSUFNsHr3OWMlKIin7xvUCAVrvy5FIxl+YO0kTk5DKR60mOPPYZnnnkG//3f/41du3bhsccew/Lly7Fy5Up5n+XLl+Ppp5/GqlWrsHHjRhiNRkydOhXuJP0/pjlChqi7mPR6tAsBd1tbxD5SwKkUrRAiYkNe4FQg9cGePVABGBVFVRkiIiKi/kQqGjF79Ogeew0p67W9thZmvT5sETMpYJKa9550uWDW66HVaAL2Sw8xtU96jjIjZdRq0RyiqbDyZvzO229H9c9/jgyDQZ5KmKwSutjEV199hZkzZ+Kqq64CAAwaNAivv/46vv76awAd2agVK1Zg8eLFmDlzJgDgpZdegtVqxZo1azB79uy4jf10OSP0deou0tzcRrcbztbWiGXKpTsL7rY2tAsRcY2U1f+hfWvHDpxjtcp3HIiIiIiow6Z589Dc2tqjhcWMWi1S1GrsOnECgyIstbAEZaSqHY6QFf6k679QGangqX1hi034r2+l4hTBPaySUUJnpCZPnox169Zhz549AIBt27bhiy++wPTp0wEABw8ehM1mQ3l5ufwci8WCsrIyVFRUhD2ux+OB3W4P+EkUmQYDBvVwtTvpRD5qt0MAEQMe6QMhfSgiBXnZaWnQqFRocLsxIT+/W8dMRERE1BdMyM/HxSUlPfoaKpUKGQYDPO3tEculSxkpae28rbk55HoqU1AlZyB8INXsn8mkFGpWU18IpBI6I/WrX/0KdrsdI0aMgEajQXt7Ox5++GHMmTMHAGCz2QAAVqs14HlWq1XeFsqyZcvw29/+tucGfgZWXX11j7+GlIE61NgIILpASkrlRlojpVapMNBsxuGmJowcMKD7BkxEREREMckwGFDX0hJ2fRQAGHU6qHBqmp4tTM8pQ0oKNCpVwNS+2uZmqBBYNMOo06FdCHja22FIORVmSOXPlTL7wNS+hM5IvfXWW3j11Vfx2muvYfPmzXjxxRfx+OOP48UXXzyj4y5atAhNTU3yz9GjR7tpxMlBOpEPxxBIRZORAjpKYQLAuLy8bhgpEREREZ0OKVNUFKEdjVqlCqjmHC6QUqlUHevmFVP7jtntyEtPD1hPJV0nKiv3CSFCFizrCxmphA6kfvGLX+BXv/oVZs+ejTFjxuCGG27APffcg2XLlgEA8vwX6zU1NQHPq6mpkbeFotfrYTabA376Eylw2u3vLZCdlhZ2Xzkj5f/gRFojBZxaOHlZD1aiISIiIqLIpKDmrC6qKFsMhoCqfeHKsiv7kAIdgVRwz9Dg1jkA4GlvR5vP1+kakoFUD2tpaYE6aCGeRqOBz+cDAJSWliIvLw/r1q2Tt9vtdmzcuBGTJk3q1bEmk+zUVGQYDNjo7y0QKSNl0usDMlKRpvYBwKPl5Wi5/36k9OACSiIiIiKKTLp2OysrK+J+mQYDTvr7R9k9nrBFyExBhSRCBVJyUYqgflNA51lNmQYD3G1tchXDZJTQV7szZszAww8/jH/84x84dOgQ3n33XTz55JO49tprAXSkGRcsWICHHnoI77//PrZv3465c+eioKAAs2bNiu/gE5hKpcLw7GxU1tZCr9EgNSX8Url0rRbO1lbU+z9gGV00j1OrVEiNUE6diIiIiHren668EjOGDcPEgoKI+xWYTDjucMDnn4IXLpAKntpX29wsV2yWDPDPcjrR3Cw/1uIvhx7cbke6pkzmrFRCF5tYuXIllixZgttvvx21tbUoKCjArbfeiqVLl8r7LFy4EM3NzZg3bx4aGxtx0UUXYe3atTD0YLfovmBIVhY2VlXBmp4OlaLLdDCpj1S10wmjVtvl1D4iIiIiir/zCgvx/vXXd7lfocmEbTU1p2YfhctIBU3ta3C7O81qkvpX1SoCKSnjZAi6ca8MpCJVFkxkCR1ImUwmrFixAitWrAi7j0qlwoMPPogHH3yw9wbWBxT7S6wH30kIJq2RqnY4IlZ9ISIiIqLkU2Ay4cN9++SCE5Gm9ikDqXqXq1MgZdLpYEhJCQikXP5AKnjGUl/ISCX01D7qOVIFl5woA6njTmfIvgJERERElLyKLRbYnE7UOJ0AIgRS/nXzAOBtb4fd40FmUCClUqmQazRGlZHKDjENMNkwkOqnpIxUpPVRwKnGajVOp9yJmoiIiIj6hrF5efAJgamvvAIgfGGxdK1WXiMlZZFCFSwLDqRc/jVSwdecuUYjVACq/QFcMkroqX3Ucy4dNAi/vPBC/PvIkRH3S9fpINDRV2BQRkavjI2IiIiIesfo3FwAkCv3RcpISVP7GroKpFpa5N/DZaRS1GrkGo2odjjO8B3EDzNS/VS6TodHy8txfmFhl/sBHYFUV814iYiIiCi5GFJSsG3+fPn34JLmEpOiap9UzTlUz6lOGakwgRQA5JtMsDmd8AkBd1sbhBCn/0bigIEURSQFTyddri57SBERERFR8jnHasVAsxnDs7OhCdMLNF3RR0oKpEJmpNLSQq6RCtUeJz89HdVOJw40NCD14Yex4dChM30rvYpT+ygiZQlMZqSIiIiI+qbdd96J8A1xOq4Jm71e+ISIHEgZjXLhCuDUGqmQGan0dFSeOCFnupKtzQ4zUhSRMnhiIEVERETUN6VptSGzRhJpZpKztRUNLhf0Gk3I/XONRjhaW+UAyt3WBp1GA3WIvqX5JhOqHQ557VWyzX5iIEURMZAiIiIiIilb5PB4QvaQkkhVnk/4C0642tpCZqOAjoyUzemUe1gxI0V9ijJ4SraTm4iIiIi6R7oiIxUpkMr19yiV1km529rCttvJS0+H1+fD4cZGAMxIUR/DjBQRERERSUGO3eNBvdvdqRmvJDiQcnm94TNSJhMAYM/JkwAAY5JdazKQoohS1Gq5tGWB/2QnIiIiov5FGSBFykgNSEuT9wOAFq8XaWHWXuX7pwHura9Huk4Xch1VImPVPurSe7NnY1ddndywjYiIiIj6F2t6OtQqFY47HGhwuTB8wICQ++k0GmSlpsqNdp2trWEzTVJGam99fdJN6wMYSFEULi4pwcUlJfEeBhERERHFSYpaDavRiOMOR0dGKkQzXkmxxYIjTU0AgGavF8YwGSlDSgoyDAbsq6/HsOzsHhl3T+LUPiIiIiIi6lKBySQHUuHWSAEdgdRhRSAVaZ19oT8rlR3heImKgRQREREREXWpwGRClZSRihRImc2nAqkIU/sAYEhWFgCgJCOjW8faGxhIERERERFRlwpMJmyvrUW7EMjxF5UIpdBshs3pBBB5ah+gCKQslu4dbC9gIEVERERERF0qMJnktU+jIhQhyzUaUe9ywdve3pGRihBIXVRcDABJuUaKxSaIiIiIiKhL0nomjUoVMfCRSqXXtbR0uUZq1ogR2Hn77RjKQIqIiIiIiPoiqRWOTwikqMNPbLMqek5FKn8uGZmT032D7EUMpIiIiIiIqEvnFxbigoEDMW/ChIj7SRkpm9PZ5dS+ZMZAioiIiIiIuqRSqVBx881d7ldoNkOv0WBbTQ2avV4MiFCYIpmx2AQREREREXWbFLUao3Jz8cmBAwCAHH+Gqq9hIEVERERERN1q5IAB+OroUQCnpvr1NQykiIiIiIioW+UajWjxeuV/90UMpIiIiIiIqFspG/ZGat6bzBhIERERERFRt5LWRaVptdCn9M36dgkfSFVVVeFnP/sZsrOzkZqaijFjxuDbb7+VtwshsHTpUuTn5yM1NRXl5eXYu3dvHEdMRERERNS/SVkojUoV55H0nIQOpBoaGnDhhRdCq9Xio48+ws6dO/HEE08gMzNT3mf58uV4+umnsWrVKmzcuBFGoxFTp06F2+2O48iJiIiIiPqvfJMJAOBua4vzSHpOQufZHnvsMRQVFWH16tXyY6WlpfK/hRBYsWIFFi9ejJkzZwIAXnrpJVitVqxZswazZ8/u9TETEREREfV3Z+fkAAC8Pl+cR9JzEjoj9f7772PixIn40Y9+hNzcXIwfPx5//vOf5e0HDx6EzWZDeXm5/JjFYkFZWRkqKirCHtfj8cButwf8EBERERFR90jX6QD03Yp9QIIHUgcOHMAzzzyDoUOH4uOPP8Ztt92Gu+66Cy+++CIAwGazAQCsVmvA86xWq7wtlGXLlsFiscg/RUVFPfcmiIiIiIj6oS233opvb7kl3sPoMQkdSPl8PkyYMAGPPPIIxo8fj3nz5uGWW27BqlWrzui4ixYtQlNTk/xz1N8sjIiIiIiIuse4vDwUWSzxHkaPSehAKj8/H2effXbAYyNHjsSRI0cAAHl5eQCAmpqagH1qamrkbaHo9XqYzeaAHyIiIiIiomgldCB14YUXYvfu3QGP7dmzByUlJQA6Ck/k5eVh3bp18na73Y6NGzdi0qRJvTpWIiIiIiLqPxK6at8999yDyZMn45FHHsGPf/xjfP3113juuefw3HPPAQBUKhUWLFiAhx56CEOHDkVpaSmWLFmCgoICzJo1K76DJyIiIiKiPiuhA6nzzjsP7777LhYtWoQHH3wQpaWlWLFiBebMmSPvs3DhQjQ3N2PevHlobGzERRddhLVr18JgMMRx5ERERERE1JephBAi3oOIN7vdDovFgqamJq6XIiIiIiLqx6KNDRJ6jRQREREREVEiYiBFREREREQUIwZSREREREREMWIgRUREREREFCMGUkRERERERDFiIEVERERERBSjhO4j1VukCvB2uz3OIyEiIiIioniSYoKuukQxkALgcDgAAEVFRXEeCRERERERJQKHwwGLxRJ2OxvyAvD5fDh+/DhMJhNUKlW8h5OU7HY7ioqKcPToUTY1prjj+UhngucPJSOet3S6eO50JoSAw+FAQUEB1OrwK6GYkQKgVqsxcODAeA+jTzCbzfwQUsLg+UhngucPJSOet3S6eO4EipSJkrDYBBERERERUYwYSBEREREREcWIgRR1C71ejwceeAB6vT7eQyHi+UhnhOcPJSOet3S6eO6cPhabICIiIiIiihEzUkRERERERDFiIEVERERERBQjBlJEREREREQxYiBFREREREQUIwZSSWjZsmU477zzYDKZkJubi1mzZmH37t0B+7jdbtxxxx3Izs5Geno6rrvuOtTU1Mjbt23bhuuvvx5FRUVITU3FyJEj8Yc//KHTa23YsAETJkyAXq/HkCFD8MILL3Q5PiEEli5divz8fKSmpqK8vBx79+4Nua/H48G4ceOgUqmwdevWiMetrq7GT3/6UwwbNgxqtRoLFizotM8LL7wAlUoV8GMwGLocM52evnAuDho0qNM58+ijj3Z57K7G8/nnn2PGjBkoKCiASqXCmjVrujxmf9Nfzx9+lyW3vnDeAsA//vEPlJWVITU1FZmZmZg1a1aXx/7uu+9w8cUXw2AwoKioCMuXLw/YvmPHDlx33XXy52LFihVdHrM/6a/njtvtxk033YQxY8YgJSUl5P4bNmzo9J2nUqlgs9m6HHdcCUo6U6dOFatXrxaVlZVi69at4sorrxTFxcXC6XTK+8yfP18UFRWJdevWiW+//VZccMEFYvLkyfL2v/71r+Kuu+4SGzZsEPv37xcvv/yySE1NFStXrpT3OXDggEhLSxP33nuv2Llzp1i5cqXQaDRi7dq1Ecf36KOPCovFItasWSO2bdsmrrnmGlFaWipcLlenfe+66y4xffp0AUBs2bIl4nEPHjwo7rrrLvHiiy+KcePGibvvvrvTPqtXrxZms1lUV1fLPzabLeJx6fT1hXOxpKREPPjggwHnjHL8oUQzng8//FD8+te/Fu+8844AIN59991o/6z9Rn89f/hdltz6wnn79ttvi8zMTPHMM8+I3bt3ix07dog333wz4nGbmpqE1WoVc+bMEZWVleL1118Xqamp4tlnn5X3+frrr8V9990nXn/9dZGXlyeeeuqpaP+s/UJ/PXecTqeYP3++eO6558TUqVPFzJkzO+3z2WefCQBi9+7dAd977e3tXf1Z44qBVB9QW1srAIh//vOfQgghGhsbhVarFX/729/kfXbt2iUAiIqKirDHuf3228Vll10m/75w4UIxatSogH1+8pOfiKlTp4Y9hs/nE3l5eeL3v/+9/FhjY6PQ6/Xi9ddfD9j3ww8/FCNGjBA7duyIKpBSuvTSS8NefFgslqiPQ90rGc/FkpKSmP9jH+t4GEhFp7+cP0r8Lkt+yXbeer1eUVhYKP7yl7/E9D7/9Kc/iczMTOHxeOTHfvnLX4rhw4eH3P9MPxv9QX85d5RuvPHGiIFUQ0PDaR87Hji1rw9oamoCAGRlZQEANm3aBK/Xi/LycnmfESNGoLi4GBUVFRGPIx0DACoqKgKOAQBTp06NeIyDBw/CZrMFPM9isaCsrCzgeTU1Nbjlllvw8ssvIy0tLcp3Gh2n04mSkhIUFRVh5syZ2LFjR7cen8JLxnMRAB599FFkZ2dj/Pjx+P3vf4+2traI7/N0xkNd6y/nT7T4XZYcku283bx5M6qqqqBWqzF+/Hjk5+dj+vTpqKysjPg+KyoqcMkll0Cn0wWMZ/fu3WhoaIj4XAqtv5w7sRg3bhzy8/NxxRVX4Msvv+y24/YUBlJJzufzYcGCBbjwwgsxevRoAIDNZoNOp0NGRkbAvlarNexc06+++gpvvvkm5s2bJz9ms9lgtVo7HcNut8PlcoU8jnT8UM+TtgkhcNNNN2H+/PmYOHFi9G82CsOHD8fzzz+P9957D6+88gp8Ph8mT56MY8eOdevrUGfJeC4CwF133YU33ngDn332GW699VY88sgjWLhwYcT3ejrjocj60/kTDX6XJYdkPG8PHDgAAPjNb36DxYsX44MPPkBmZiamTJmC+vr6sO813HiUr0vR60/nTjTy8/OxatUq/P3vf8ff//53FBUVYcqUKdi8efMZHbenMZBKcnfccQcqKyvxxhtvnPYxKisrMXPmTDzwwAP4t3/7t6if9+qrryI9PV3++de//hXV81auXAmHw4FFixaF3Ud53Pnz50c9pkmTJmHu3LkYN24cLr30UrzzzjvIycnBs88+G/Ux6PQk47kIAPfeey+mTJmCc845B/Pnz8cTTzyBlStXwuPxADj9c5Fiw/MnEL/LkkMynrc+nw8A8Otf/xrXXXcdzj33XKxevRoqlQp/+9vfAACjRo2Sjzt9+vTY3xR1iedOoOHDh+PWW2/Fueeei8mTJ+P555/H5MmT8dRTT0V9jHhIifcA6PTdeeed+OCDD/D5559j4MCB8uN5eXlobW1FY2NjwF2Nmpoa5OXlBRxj586duPzyyzFv3jwsXrw4YFteXl5ApRjpGGazGampqbjmmmtQVlYmbyssLER1dbW8X35+fsDzxo0bBwBYv349KioqoNfrA449ceJEzJkzBy+++GJABT+z2Rz9HyWIVqvF+PHjsW/fvtM+BnUtWc/FUMrKytDW1oZDhw5h+PDhIc/FrsZDselv58/p4HdZ4knW81Z6/Oyzz5a36/V6DB48GEeOHAEAfPjhh/B6vQAgf6eFG4+0jaLX386d03X++efjiy++OKNj9Lh4L9Ki2Pl8PnHHHXeIgoICsWfPnk7bpcWKb7/9tvzY999/32mxYmVlpcjNzRW/+MUvQr7OwoULxejRowMeu/7666NarPj444/LjzU1NQUsVjx8+LDYvn27/PPxxx8LAOLtt98WR48ejepvEG6BdrC2tjYxfPhwcc8990R1XIpNsp+LobzyyitCrVaL+vr6sPvEOh6w2ERI/fX8UeJ3WfJJ9vNW+l1ZMKC1tVXk5uYGVOALJhWbaG1tlR9btGgRi03EoL+eO0rhik2EUl5eLq699tqo9o0XBlJJ6LbbbhMWi0Vs2LAhoERkS0uLvM/8+fNFcXGxWL9+vfj222/FpEmTxKRJk+Tt27dvFzk5OeJnP/tZwDFqa2vlfaTymb/4xS/Erl27xB//+Meoy2dmZGSI9957T3z33Xdi5syZYcufC9FRChhRVu3bsmWL2LJlizj33HPFT3/6U7FlyxaxY8cOeftvf/tb8fHHH4v9+/eLTZs2idmzZwuDwRCwD3WfZD8Xv/rqK/HUU0+JrVu3iv3794tXXnlF5OTkiLlz50Y8bjTjcTgc8vkKQDz55JNiy5Yt4vDhwzH9jfuy/nr+CMHvsmSW7OetEELcfffdorCwUHz88cfi+++/FzfffLPIzc2NeAOgsbFRWK1WccMNN4jKykrxxhtviLS0tIALaI/HI5/b+fn54r777hNbtmwRe/fujelv3Ff113NHCCF27NghtmzZImbMmCGmTJkinyeSp556SqxZs0bs3btXbN++Xdx9991CrVaLTz/9NNo/b1wwkEpCAEL+rF69Wt7H5XKJ22+/XWRmZoq0tDRx7bXXiurqann7Aw88EPIYJSUlAa/12WefiXHjxgmdTicGDx4c8Brh+Hw+sWTJEmG1WoVerxeXX3652L17d9j9YwmkuhrzggULRHFxsdDpdMJqtYorr7xSbN68ucvj0ulJ9nNx06ZNoqysTFgsFmEwGMTIkSPFI488Itxud5fH7mo8UinX4J8bb7yxy2P3F/35/OF3WfJK9vNWiI4sws9//nORm5srTCaTKC8vF5WVlV0ee9u2beKiiy4Ser1eFBYWikcffTRgu/Tf8+CfSy+9tMtj9wf9+dwpKSkJOW7JY489Js466yxhMBhEVlaWmDJlili/fn2Xx403lRBCRDsNkIiIiIiIiFi1j4iIiIiIKGYMpIiIiIiIiGLEQIqIiIiIiChGDKSIiIiIiIhixECKiIiIiIgoRgykiIiIiIiIYsRAioiIiIiIKEYMpIiIiIiIiGLEQIqIiIiIiChGDKSIiKhPuemmm6BSqaBSqaDVamG1WnHFFVfg+eefh8/ni/o4L7zwAjIyMnpuoERElNQYSBERUZ8zbdo0VFdX49ChQ/joo49w2WWX4e6778bVV1+Ntra2eA+PiIj6AAZSRETU5+j1euTl5aGwsBATJkzA/fffj/feew8fffQRXnjhBQDAk08+iTFjxsBoNKKoqAi33347nE4nAGDDhg34j//4DzQ1NcnZrd/85jcAAI/Hg/vuuw+FhYUwGo0oKyvDhg0b4vNGiYgobhhIERFRv/CDH/wAY8eOxTvvvAMAUKvVePrpp7Fjxw68+OKLWL9+PRYuXAgAmDx5MlasWAGz2Yzq6mpUV1fjvvvuAwDceeedqKiowBtvvIHvvvsOP/rRjzBt2jTs3bs3bu+NiIh6n0oIIeI9CCIiou5y0003obGxEWvWrOm0bfbs2fjuu++wc+fOTtvefvttzJ8/H3V1dQA61kgtWLAAjY2N8j5HjhzB4MGDceTIERQUFMiPl5eX4/zzz8cjjzzS7e+HiIgSU0q8B0BERNRbhBBQqVQAgE8//RTLli3D999/D7vdjra2NrjdbrS0tCAtLS3k87dv34729nYMGzYs4HGPx4Ps7OweHz8RESUOBlJERNRv7Nq1C6WlpTh06BCuvvpq3HbbbXj44YeRlZWFL774AjfffDNaW1vDBlJOpxMajQabNm2CRqMJ2Jaent4bb4GIiBIEAykiIuoX1q9fj+3bt+Oee+7Bpk2b4PP58MQTT0Ct7lgu/NZbbwXsr9Pp0N7eHvDY+PHj0d7ejtraWlx88cW9NnYiIko8DKSIiKjP8Xg8sNlsaG9vR01NDdauXYtly5bh6quvxty5c1FZWQmv14uVK1dixowZ+PLLL7Fq1aqAYwwaNAhOpxPr1q3D2LFjkZaWhmHDhmHOnDmYO3cunnjiCYwfPx4nTpzAunXrcM455+Cqq66K0zsmIqLexqp9RETU56xduxb5+fkYNGgQpk2bhs8++wxPP/003nvvPWg0GowdOxZPPvkkHnvsMYwePRqvvvoqli1bFnCMyZMnY/78+fjJT36CnJwcLF++HACwevVqzJ07Fz//+c8xfPhwzJo1C9988w2Ki4vj8VaJiChOWLWPiIiIiIgoRsxIERERERERxYiBFBERERERUYwYSBEREREREcWIgRQREREREVGMGEgRERERERHFiIEUERERERFRjBhIERERERERxYiBFBERERERUYwYSBEREREREcWIgRQREREREVGMGEgRERERERHF6P8D/eXj4myhZKgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAGHCAYAAAC6SmOyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeSklEQVR4nOydeXhTZdrG75N9a9O9pVD2RRREFlGBQVAGRRQ33HDX+dRxBBd0HMZxGxccR0XFUUdl1HFDHQX3BRVQxIVFRGSRfS3dmzb7dr4/ct6356QnadKmbZo+v+vi0iZpcpImJ+/93s9zP4IoiiIIgiAIgiAIgiCIhNF09gEQBEEQBEEQBEF0NUhIEQRBEARBEARBJAkJKYIgCIIgCIIgiCQhIUUQBEEQBEEQBJEkJKQIgiAIgiAIgiCShIQUQRAEQRAEQRBEkpCQIgiCIAiCIAiCSBISUgRBEARBEARBEElCQoogCIIgCIIgCCJJSEgRBEFkOD/88APOPvts9O7dG0ajEcXFxTjhhBMwd+7cVt3fFVdcgb59+you69u3L6644oq4vzds2DAMHTq02eVLliyBIAg44YQTml33yiuvQBAEvP/++wkf3+bNm3HPPfdgz549Cf9OKtiyZQsuvfRS9O/fHyaTCQUFBRg1ahRuuOEGNDQ08Nu9/vrrePzxxzv02AiCIIjUQ0KKIAgig/noo48wbtw4NDQ04OGHH8bnn3+OJ554AuPHj8ebb77Zqvu88847sWTJkqR/b/Lkydi6dSsOHz6suHzFihWwWq1Yu3YtGhsbm12n0WgwceLEhB9n8+bNuPfeeztUSP30008YPXo0Nm/ejLvuuguffvopnn32WUyfPh2fffYZamtr+W1JSBEEQWQGus4+AIIgCKL9ePjhh9GvXz989tln0OmaTvkXXnghHn744Vbd54ABA1r1e5MnT8ZTTz2FFStW4MILL+SXr1ixAn/4wx/w9NNPY9WqVZg2bZriupEjRyInJ6dVj5lK3G43LBaL6nWPP/44NBoNVqxYgaysLH75zJkzcd9990EUxXY9NlEU4fV6YTab2/VxCIIgiCbIkSIIgshgampqUFBQoBBRDI1G+RUQDofx8MMP44gjjoDRaERRUREuu+wyHDhwQHE7tdK+RJg0aRIEQcCKFSsUx/fLL79g+vTpGD16NJYvX86v279/P3bt2oXJkycDANauXYsLL7wQffv2hdlsRt++fXHRRRdh7969/HdeeuklnHfeeQAiwk0QBAiCgJdeeonf5osvvsDJJ5+M7OxsWCwWjB8/Hl9++aXiWO+55x4IgoD169dj5syZyM3NjSsga2pqkJ2dDZvNpnq9IAj8Nfjoo4+wd+9efmzsOgCora3F9ddfj549e8JgMKB///6444474PP5mt3fDTfcgGeffRZDhw6F0WjEyy+/DAC49957cdxxxyEvLw/Z2dkYNWoUFi1a1EzM+Xw+zJ07FyUlJbBYLJg4cSLWrVunWqZ5+PBhXHvttejVqxcMBgP69euHe++9F8FgMOZrQhAEkemQI0UQBJHBnHDCCXjhhRcwZ84cXHzxxRg1ahT0er3qbf/4xz/iueeeww033IDTTz8de/bswZ133okVK1Zg/fr1KCgoaNOx5OXl4eijj1aIpZUrV0Kr1WLcuHE48cQT8dVXX/Hr2O2YkNqzZw+GDBmCCy+8EHl5eSgvL8czzzyDY489Fps3b0ZBQQGmT5+OBx98EH/961/xr3/9C6NGjQLQ5KK9+uqruOyyy3DmmWfi5Zdfhl6vx7///W+ccsop+Oyzz3DyyScrjvmcc87BhRdeiOuuuw4ulyvmczvhhBPw0Ucf4eKLL8a1116LsWPHqrpDTz/9NK655hrs3LmzWXmk1+vF5MmTsXPnTtx77704+uij8c0332D+/PnYsGEDPvroI8Xtly5dim+++QZ33XUXSkpKUFRUxF+na6+9Fr179wYAfP/995g9ezYOHjyIu+66i//+lVdeiTfffBN//vOfcdJJJ2Hz5s04++yzFf1cQEREjR07FhqNBnfddRcGDBiA7777Dvfffz/27NmDF198MebrQhAEkdGIBEEQRMZSXV0tTpgwQQQgAhD1er04btw4cf78+WJjYyO/3ZYtW0QA4vXXX6/4/R9++EEEIP71r3/ll11++eVinz59FLfr06ePePnll7d4PDfddJMIQDx06JAoiqI4e/Zs8fjjjxdFURQ//vhjUavVig6HQxRFUbzyyitFrVYrNjQ0qN5XMBgUnU6naLVaxSeeeIJf/vbbb4sAxOXLlytu73K5xLy8PPGMM85QXB4KhcQRI0aIY8eO5ZfdfffdIgDxrrvuavE5iaIoer1e8ayzzuKvs1arFUeOHCnecccdYmVlpeK206dPb/b6iaIoPvvssyIA8a233lJc/o9//EMEIH7++ef8MgCi3W4Xa2tr4x5XKBQSA4GA+Pe//13Mz88Xw+GwKIqi+Ouvv4oAxNtvv11x+zfeeEMEoPhbXnvttaLNZhP37t2ruO0jjzwiAhB//fXXuMdAEASRqVBpH0EQRAaTn5+Pb775BmvWrMFDDz2EM888E7/99hvmzZuH4cOHo7q6GkCT+xNd0jV27FgMHTq0Welba2HuEivvW7FiBSZNmgQAmDBhAgDg66+/5teNGTOG9xw5nU7cfvvtGDhwIHQ6HXQ6HWw2G1wuF7Zs2dLiY69evRq1tbW4/PLLEQwG+b9wOIxTTz0Va9asaeY6nXvuuQk9L6PRiCVLlmDz5s1YsGABLrzwQlRVVeGBBx7A0KFDsW3bthbv46uvvoLVasXMmTMVl7O/SfTf4KSTTkJubq7q/UyZMgV2ux1arRZ6vR533XUXampqUFlZCSDiBALA+eefr/jdmTNnNisD/fDDDzF58mSUlpYqXjfWy8buiyAIortBpX0EQRDdgDFjxmDMmDEAgEAggNtvvx0LFizAww8/jIcffhg1NTUAgB49ejT73dLSUkUfUls48cQTodFosHz5ckydOhWbNm3ioRdZWVkYOXIkVqxYgaOPPhq7d+/GBRdcwH931qxZ+PLLL3HnnXfi2GOPRXZ2NgRBwGmnnQaPx9PiY1dUVABAM6Eip7a2Flarlf+s9nrEY+jQoTziXRRFPP7447jllltw55134q233or7uzU1NSgpKVH0TAFAUVERdDod/xvFO7Yff/wRU6dOxaRJk/D888/znqalS5figQce4K8Tu6/i4mLF7+t0OuTn5ysuq6iowAcffBCzJJSJcYIgiO4GCSmCIIhuhl6vx913340FCxZg06ZNAMAXz+Xl5ejVq5fi9ocOHWpzfxTDbrdzscSizcePH8+vP/HEE7F8+XIMHz4cQJOD5XA48OGHH+Luu+/GX/7yF357n8+niBaPB3sOCxcuxPHHH696m2hhES1qkkEQBNx88834+9//zl/neOTn5+OHH36AKIqKx62srEQwGGz2N1A7tsWLF0Ov1+PDDz+EyWTily9durTZYwERkdSzZ09+eTAYbCbYCgoKcPTRR+OBBx5QPe7S0tIWnxtBEEQmQqV9BEEQGUx5ebnq5awUji2CTzrpJACRMAY5a9aswZYtW5qFMLSFyZMnY/v27Xj99dcxevRoRVz4iSeeiA0bNmDp0qXQ6/VcZAmCAFEUYTQaFff1wgsvIBQKKS5jt4l2qcaPH4+cnBxs3ryZO3TR/wwGQ6ueU6zX+dChQ2hoaFCIDaPRqOqgnXzyyXA6nc1Ez3//+19+fUsIggCdTgetVssv83g8eOWVVxS3Y3O5omeJ/e9//2uWxHf66adj06ZNGDBggOprRkKKIIjuCjlSBEEQGcwpp5yCXr164YwzzsARRxyBcDiMDRs24NFHH4XNZsONN94IABgyZAiuueYaLFy4EBqNBtOmTeOpfWVlZbj55ptTdkyTJ0/GI488giVLluDWW29VXPe73/0OAPDee+9h3LhxvMwuOzsbEydOxD//+U8UFBSgb9++WLlyJRYtWtRsxtSwYcMAAM899xyysrJgMpnQr18/5OfnY+HChbj88stRW1uLmTNnoqioCFVVVfj5559RVVWFZ555plXP6ZprrkF9fT3OPfdcDBs2DFqtFlu3bsWCBQug0Whw++2389sOHz4c7777Lp555hmMHj0aGo0GY8aMwWWXXYZ//etfuPzyy7Fnzx4MHz4cq1atwoMPPojTTjsNU6ZMafE4pk+fjsceewyzZs3CNddcg5qaGjzyyCPNBOhRRx2Fiy66CI8++ii0Wi1OOukk/Prrr3j00Udht9sV0fh///vfsWzZMowbNw5z5szBkCFD4PV6sWfPHnz88cd49tlnm7mYBEEQ3YJODrsgCIIg2pE333xTnDVrljho0CDRZrOJer1e7N27t3jppZeKmzdvVtw2FAqJ//jHP8TBgweLer1eLCgoEC+55BJx//79itu1JbVPFEWxoaFB1Ol0IgDxww8/bHb9McccIwIQ77jjDsXlBw4cEM8991wxNzdXzMrKEk899VRx06ZNqo/9+OOPi/369RO1Wq0IQHzxxRf5dStXrhSnT58u5uXliXq9XuzZs6c4ffp08e233+a3Yal9VVVVCT2nzz77TLzqqqvEI488UrTb7aJOpxN79OghnnPOOeJ3332nuG1tba04c+ZMMScnRxQEQZR/FdfU1IjXXXed2KNHD1Gn04l9+vQR582bJ3q9XsV9ABD/9Kc/qR7Lf/7zH3HIkCGi0WgU+/fvL86fP19ctGiRCEDcvXs3v53X6xVvueUWsaioSDSZTOLxxx8vfvfdd6LdbhdvvvlmxX1WVVWJc+bMEfv16yfq9XoxLy9PHD16tHjHHXeITqczodeIIAgi0xBEsZ3HrRMEQRAE0SVYvXo1xo8fj9deew2zZs3q7MMhCIJIa0hIEQRBEEQ3ZNmyZfjuu+8wevRomM1m/Pzzz3jooYdgt9uxceNGRVgFQRAE0RzqkSIIgiCIbkh2djY+//xzPP7442hsbERBQQGmTZuG+fPnk4giCIJIAHKkCIIgCIIgCIIgkoTizwmCIAiCIAiCIJKEhBRBEARBEARBEESSkJAiCIIgCIIgCIJIkk4Nm5g/fz7effddbN26FWazGePGjcM//vEPDBkyBAAQCATwt7/9DR9//DF27doFu92OKVOm4KGHHlJMUvf5fLj11lvxxhtvwOPx4OSTT8bTTz+d8IDAcDiMQ4cOISsrC4IgtMtzJQiCIAiCIAgi/RFFEY2NjSgtLVUMKI+mU8MmTj31VFx44YU49thjEQwGcccdd+CXX37B5s2bYbVa4XA4MHPmTPzf//0fRowYgbq6Otx0000IBoNYu3Ytv58//vGP+OCDD/DSSy8hPz8fc+fORW1tLdatWwetVtvicRw4cABlZWXt+VQJgiAIgiAIguhC7N+/P64xk1apfVVVVSgqKsLKlSsxceJE1dusWbMGY8eOxd69e9G7d284HA4UFhbilVdewQUXXAAAOHToEMrKyvDxxx/jlFNOaXYfPp8PPp+P/+xwONC7d2/s378f2dnZ7fPkCIIgCIIgCIJIexoaGlBWVob6+nrY7faYt0urOVIOhwMAkJeXF/c2giAgJycHALBu3ToEAgFMnTqV36a0tBTDhg3D6tWrVYXU/Pnzce+99za7PDs7m4QUQRAEQRAEQRAttvykTdiEKIq45ZZbMGHCBAwbNkz1Nl6vF3/5y18wa9YsLngOHz4Mg8GA3NxcxW2Li4tx+PBh1fuZN28eHA4H/7d///7UPhmCIAiCIAiCIDKatHGkbrjhBmzcuBGrVq1SvT4QCODCCy9EOBzG008/3eL9iaIYU0UajUYYjcY2HS9BEARBEARBEN2XtHCkZs+ejffffx/Lly9XbegKBAI4//zzsXv3bixbtkxRfldSUgK/34+6ujrF71RWVqK4uLjdj50gCIIgCIIgiO5HpwopURRxww034N1338VXX32Ffv36NbsNE1Hbt2/HF198gfz8fMX1o0ePhl6vx7Jly/hl5eXl2LRpE8aNG9fuz4EgCIIgCIIgiO5Hp5b2/elPf8Lrr7+O9957D1lZWbynyW63w2w2IxgMYubMmVi/fj0+/PBDhEIhfpu8vDwYDAbY7XZcffXVmDt3LvLz85GXl4dbb70Vw4cPx5QpUzrz6REEQRAEQRAEkaF0avx5rB6mF198EVdccQX27Nmj6lIBwPLlyzFp0iQAkRCK2267Da+//rpiIG+is6EaGhpgt9vhcDgotY8gCIIgCIIgujGJaoO0miPVWZCQIgiCIAiCIAgCSFwbpEXYBEEQBEEQBEEQRFeChBRBEARBEARBEESSkJAiCIIgCIIgCIJIEhJSBEEQBEGkPRsrKiDcey8ONjR09qEQBEEAICFFEARBEEQX4N0tWwBEBBVBEEQ6QEKKIAiCIIi0xx0IAACMuk4dgUkQBMEhIUUQBEEQRNrj8vsBAN5gsJOPhCAIIgIJKYIgCIIg0h63JKAafb5OPhKCIIgIJKQIgiAIgkh7PFJpn1NypgiCIDobElIEQRAEQaQ9wXAYAAkpgiDSBxJSBEEQBEGkPUxINZKQIggiTSAhRRAEQRBE2hMSRQDkSBEEkT6QkCIIgiAIIu3hjhSFTRAEkSaQkCIIgiAIIu1hQorizwmCSBdISBEEQRAEkfaEJCHlC4U6+UgIgiAikJAiCIIgCCLtIUeKIIh0g4QUQRAEQRBpDwkpgiDSDRJSBEEQBEGkPSy1j4QUQRDpAgkpgiAIgiDSHnKkCIJIN0hIEQRBEASR9pCQIggi3SAhRRAEQRBE2hMiIUUQRJpBQoogCIIgiLSHHCmCININElIEQRAEQaQ9yQgpURTxwbZt3MUiCIJoD0hIEQRBEASR9oREERpBSEhI/XjwIGYsXoyn16zpgCMjCKK7QkKKIAiCIIi0JxgOw6rXJySkaj0eAMDW6ur2PiyCILoxnSqk5s+fj2OPPRZZWVkoKirCWWedhW3btiluI4oi7rnnHpSWlsJsNmPSpEn49ddfFbfx+XyYPXs2CgoKYLVaMWPGDBw4cKAjnwpBEARBEO1IMByGzWBISEgdamwEANR5ve19WARBdGM6VUitXLkSf/rTn/D9999j2bJlCAaDmDp1KlwuF7/Nww8/jMceewxPPfUU1qxZg5KSEvz+979Ho3SSBICbbroJS5YsweLFi7Fq1So4nU6cfvrpCIVCnfG0CIIgCIJIMaFwGFaDASFR5P1SsTjQ0ACAhBRBEO2LrjMf/NNPP1X8/OKLL6KoqAjr1q3DxIkTIYoiHn/8cdxxxx0455xzAAAvv/wyiouL8frrr+Paa6+Fw+HAokWL8Morr2DKlCkAgFdffRVlZWX44osvcMopp3T48yKIzqTC6USV241hRUWdfSgEQRApgzlSQCRwgv2/Gj8dPgwAqCchRRBEO5JWPVIOhwMAkJeXBwDYvXs3Dh8+jKlTp/LbGI1GnHjiiVi9ejUAYN26dQgEAorblJaWYtiwYfw20fh8PjQ0NCj+EUSmMOyZZzD8mWc6+zAIgiBSSrSQioUoivhs504AJKQIgmhf0kZIiaKIW265BRMmTMCwYcMAAIelHaXi4mLFbYuLi/l1hw8fhsFgQG5ubszbRDN//nzY7Xb+r6ysLNVPhyA6jWq3u7MPgSAIIuWERBFWvR5AfCHlC4XgDQYxMC8PDhJSBEG0I2kjpG644QZs3LgRb7zxRrPrBEFQ/CyKYrPLool3m3nz5sHhcPB/+/fvb/2BEwRBEATR7sgdKV8cIcVEVg+bjTtSoXAY5771FoR7723/AyUIotuQFkJq9uzZeP/997F8+XL06tWLX15SUgIAzZylyspK7lKVlJTA7/ejrq4u5m2iMRqNyM7OVvwjCIIgCCJ9CSVY2ucJBAAAJTYbPMEgfMEgFv74I97dsgVAZKOVIAgiFXSqkBJFETfccAPeffddfPXVV+jXr5/i+n79+qGkpATLli3jl/n9fqxcuRLjxo0DAIwePRp6vV5xm/LycmzatInfhiC6I7RYIAgiUxBFMeHSPnZdic0GAHD4fPilooJf75aEFkEQRFvp1NS+P/3pT3j99dfx3nvvISsriztPdrsdZrMZgiDgpptuwoMPPohBgwZh0KBBePDBB2GxWDBr1ix+26uvvhpz585Ffn4+8vLycOutt2L48OE8xY8guiP+UAhGXad+xAmCIFJCSNoYSsiRkq4rtFgAAE6/H3ulMCsgIqwMWi0cPh8KpNsQBEG0hk5dZT0jJYtNmjRJcfmLL76IK664AgDw5z//GR6PB9dffz3q6upw3HHH4fPPP0dWVha//YIFC6DT6XD++efD4/Hg5JNPxksvvQStVttRT4Ug0g53IEBCiiCIjCAkzY1KREix6wpkQsoTDGJAbi521tWhwefDc+vW4d6VK1Hz5z8jz2xu56MnCCJT6dRVViKlR4Ig4J577sE999wT8zYmkwkLFy7EwoULU3h0BNG1cQcCyKUFAkEQGQAbwGtNQkgVWq0AIkLKFwyiyGrFzro6OLxe7Jccqk937MCs4cPb89AJgshg0iJsgiCI1EN9AARBZArBJBwpFjYhd6R8oRCKZT1TTJDRnCmCINoCCSmCyFBISBEEkSkk0yPlVemR8gaDKJJ+bvD50Oj38/8nCIJoLSSkCCJDISFFEESmwBwpSwKpfR6VHilfMMh/dni9aJQEFAkpgiDaAgkpgshQSEgRBJEpMCFl0Gqh12gScqTsJhP0Gg13pKwGA2wGAxwyR2pTZWX7HzxBEBkLCSmCyFB8oVBnHwJBEERKYKl9Oo0GJp0uISFl1GphMxh4j5RRq4XdaESDzwenJKQ++O03fLtvX/s/AYIgMhISUgSRocRbaBAEQXQlmCOlFYQWhZQnEIBRq4UgCFxIeYNBGHU6ZBuNitI+AKjxeNr9+AmCyExISBFEBuGXuVAkpAiCyBSCSTpSZqmXymYwoNHngz8Ugkmng91kUoRNAImNYiEIglCDhBRBZBAu2eKAhBRBEJkCS+3TJiCkPMEgTNIwcpvBgDop4tyo1UYcKZ8PdR4PhuTnA6DACYIgWg8JKYLIIFyygAkSUgRBZApJO1KSkLIaDKh2uwEg4kgZjah2u+Hw+XD7+PHQaTQKd4ogCCIZSEgRRAbhJiFFEEQGkoyQ8gQCCkeK9UAZdTrkmkzYUl0NACi0WpEllf4RBEG0BhJSBJFByEv7fCSkCILIEELRYRNxUkmje6TkjtQxJSWodLkARAb2ZhuN5EgRBNFqSEgRRAZBpX0EQWQi0Y5UvI0irxQsAQA2vR41kpAyarU4tmdPfrtCqxVWgwEHGhra8cgJgshkSEgRRAbBHCmjVktCiiCIjKEtpX0sbMKk06E0K4vfrtBigdPvx8s//wwPDTAnCKIVkJAiiAyCOVL5FgsJKYIgMoZkUvvkYRM2g4FfbjUYkGsy8Z9tBgNuOPZYAOADegmCIJKBhBRBZBDMkcozm0lIEQSRMSTlSEXFnzMsej3vnQIAQRBwdHExAMAXp+eKIAgiFiSkCCKDcAcC0AgC7EZj3GZsgiCIrkRbBvIyLDIRxTBKgos2ngiCaA0kpAgig/BJTdZmvZ4WBgRBZAzNUvtaEFImrRZAy0KKOVfxwisafD46nxIEoQoJKYLIIPyhEPQJpFoRBEF0JZINm1BzpFjfFAAMyM0FEAnmAeI7UvaHHsLkl19u/cETBJGx6Fq+CUEQXYVAKAS9VguTTkdDJgmCyBhY2ESipX1qPVJ6STQ5582DRhAAyBypqFJofyiErdXVvIfq+wMHUvRMCILIJMiRIogMwh8KwaDVUvw5QRAZBXOkEkntixU2wbAaDNyxitUj9dCqVRjx7LM4SDOmCIKIAwkpgsggAuEwL+0jIUUQRKYgL+1raaMoVvy5Gqy0L7oUenttLQDgjU2bWn3MBEFkPiSkCCKDYI4UCSmCIDKJZMImogfyxsMUw5Eqb2wEAKwvLwfQJLgIgiDkkJAiiAxC3iNFQoogiEwhOmwiEA5zcRVNrPhzNYwxeqQOO50AgM1VVQCAXLMZQETQzXrnHXy3f38rnwlBEJkEhU0QRAYRCIfJkSIIIuOI7pECIuLHotE0u11IFJs5UkKM+43lSDmksJ6fKyoAAEVWKwDg85078camTQiGwzihrKyNz4ogiK4OOVIEkUEo4s9pIC9BEBlCSBQhANBIpX2AemS5JxAA0BR1btHrMbKkBO9fdJHq/eo0GmgEoVmPVENU6il7rG01NZH7V5lJRRBE96NThdTXX3+NM844A6WlpRAEAUuXLlVc73Q6ccMNN6BXr14wm80YOnQonnnmGcVtfD4fZs+ejYKCAlitVsyYMQMHKKaU6KYEwmHoKbWPIIgMIxgOQye5T/GEFLuM3UYQBKy/9lqcPnhwzPuOdvDDothsfIRbEmgOrxcAsKe+vpXPhCCITKJThZTL5cKIESPw1FNPqV5/880349NPP8Wrr76KLVu24Oabb8bs2bPx3nvv8dvcdNNNWLJkCRYvXoxVq1bB6XTi9NNPR4h244luCIVNEASRiSQqpDzSZck4RkatVuHgO/1+iFCWAzKni5X8HZLCKAiC6N50ao/UtGnTMG3atJjXf/fdd7j88ssxadIkAMA111yDf//731i7di3OPPNMOBwOLFq0CK+88gqmTJkCAHj11VdRVlaGL774AqecckpHPA2CSBsCstI+bzAIURQhCLG6AwiCILoGoXAY2lY4Uolg1uu5UALAZ0f1zM7GAen/ox0pt+z2BEF0X9K6R2rChAl4//33cfDgQYiiiOXLl+O3337jAmndunUIBAKYOnUq/53S0lIMGzYMq1evjnm/Pp8PDQ0Nin8EkQnIHSn2M0EQRFdHzZGK7msCWiekLHo9XJIwqvV4cOTTTwMAemVnA4gETXiCQQTDYe5IeUhIEQSBNBdSTz75JI488kj06tULBoMBp556Kp5++mlMmDABAHD48GEYDAbk5uYqfq+4uBiHDx+Oeb/z58+H3W7n/8ooeYfIEFiPVLwdW4IgiK5GwqV9UWETiWDV6+Hy+wEAlS4Xv7yP3Q4AmNy3LwDg0x07uJAiR4ogCKALCKnvv/8e77//PtatW4dHH30U119/Pb744ou4v9dSOdO8efPgcDj4v/00D4LIEAJRjhQl9xEEkQmERBFa6Xs91aV9VoMBbun35AJpZEkJAGBUjx7IN5vx8+HDcHi9kZS/UAhhUWzdkyEIImNI2zlSHo8Hf/3rX7FkyRJMnz4dAHD00Udjw4YNeOSRRzBlyhSUlJTA7/ejrq5O4UpVVlZi3LhxMe/baDTCaDS2+3MgiI6GxZ/nmEwAgGq3m88/IQiC6Kok6kgxIZRM2ITckarzePjlRxYWAgAqnE4UWCyo8XhQ5/WiNCsLBxoa4AkEYG1h4C9BEJlN2jpSgUAAgUAAmqhhe1qtFmFpMN/o0aOh1+uxbNkyfn15eTk2bdoUV0gRRKbCSvv65OQAAPZSRC9BJM2bmzZh9scfd/ZhEDISFVKs9I5tJiWCvEeqXgqTAIDf9ekDrSDggmHDkC8JqWq3G2VS7xSV9xEE0amOlNPpxI4dO/jPu3fvxoYNG5CXl4fevXvjxBNPxG233Qaz2Yw+ffpg5cqV+O9//4vHHnsMAGC323H11Vdj7ty5yM/PR15eHm699VYMHz6cp/gRRHfCHwrBoNGgNCsLWkHAXoejsw+JiEGtx4M8s7mzD4NQ4cJ33gEAPHDyycim6oW0INHUvnqvF1pBgDUZR8pg4El9dTIhlWMyIXjXXQCAfLMZlS4X6r1elNnt+O7AAR61ThBE96VTHam1a9di5MiRGDlyJADglltuwciRI3GXdOJavHgxjj32WFx88cU48sgj8dBDD+GBBx7Addddx+9jwYIFOOuss3D++edj/PjxsFgs+OCDD6DVajvlORFEZxIIhaDXaqHTaNArO5scqTRlc1UV8h9+GH/88MPOPhRChaOkkq6NFRWdfCQEQ+5IGWMIqQ+2bcOWqirYTaakxj5YYzhScvItFqw5eBAAyJEiCILTqY7UpEmTIMZp1iwpKcGLL74Y9z5MJhMWLlyIhQsXpvrwCKLLEQiHoZcWG31zcrCHHKm0ZFddHQDg2XXrsODUU5NqjCfaH420CFeL1yY6B7mQ0mk00Gk0CiFV5/FgxuLFrbpvi17PRVEsIVVgNqNG6p9iQooi0AmCSNseKYIgkofNkQKAPjk55EilKbWyhvYat7sTj4RQIyRt8FHqZfogT+0DwIeOA8CO2lrkPfxwq+87VtiEnHyLhf9/mRSLTo4UQRAkpAgig2ClfUBkBsp3Bw7gt5qaTj4qIhq5eKomIZV2hKRAI3Kk0ge5IwUARq2WC6mvdu8GAIxr5UzIQqsVFS4XfMEg6n0+CAA+uOgixW3ypX7Gwfn5GN2jBwDAKYkvgiC6LySkCCKDkJf2TR80CADwyfbtnXlIhApyR4qEVPoRZEKKHKm0ISgLmwCUjtQvFRU4oqAA3151FYbk5+O4nj2Tuu+JffrAGwzi+wMHIiWCQ4bg9MGDFbdhjtTU/v1RYrNBAHBACqggCKL7QoX5BJFByB2p43r1Qh+7HRUuV7s81pItW/DdgQN4+Pe/b5f7z2RqPB70y8nB7vp63ndBpA+8tI8cqbQhFOVIyYXU6gMHuEu05U9/SipoAgCOLi6GAGB7bS3qvV4MKShodpt8WcKmUadDz+xs7KbSaYLo9pAjRRAZhNyRAoASmw0VTme7PNYnO3Zg8aZN7XLfmca3+/YpnKcqtxv9c3Oh02jIkUpDApITRY5U+hAURVUhVe12Y315OU4ZMAAAkhZRQCS8It9iQYXTiXqvFzkqkfcWKU6dxWOxjRCCILo3JKQIIoOQO1IAUGyz4XA7OVJVbnfMhCtCyYQXX8SU//6X/7zf4UBvux1ZBgP1WaQhbD6Qn4RU2hAKh1XDJthGRF9pCHlrKbHZUOFyoc7rVR3mywImTu7XDwBQZLVSUAxBECSkCCKTiHakiq3WdnOkqlwuNPr9vDGfUIeVh/0sm0m0VxJS8vIkIn1gaWxU2pc+RIdNmHQ6eEMhvhFhMxjadP/FVisOO51w+v3IUnGkSmw2eO64A2cPHcofnxxLgiBISBFEBhHtSOWZzYpgg1TCdoIbyVGJS3TpnjcYxGGnk4RUmhIWRf43oYVy+qAqpILBlAmpntnZ2FxVBXcgAHOMuW7yeW/02SUIAiAhRRAZQygchggoHKlckwl17VR+VyUJBCrvi09lVGnl5zt3AgCOLS2FUacj1yPNaPD5+P/T3yZ9CIlis9Q+XzDI5z+1VUhdcNRR+LWqCmFR5P1Q8ZDHrxME0X0hIUUQGUJAKrGTO1K5ZjMcXi/Cohjr11pFMBzmTpeDhFRc5ELKFwzix4MH0TMrC8OLi2lXOw2RD2QlRyp9aG9Haqgsqc+cgJCizy5BEAAJKYLIGFjSWLQjJUK5y54K5OWCjhTfd6YhdwSr3W64AwHYpWZ2WoylH/K/FzlS6UNLQioRFykeebJ481ilfXLos0sQBEBCiiAyBjVHiqVP1aW4T6pK5rJQaV985Mlv1W43XH4/X/RRw3r6wTYJ7EYjpfalEbFS+5zS50le9tcasmUBE4mIMhJSBEEAJKQIImNQdaSkXdZUi50qWYAClfbFJxAlpNzBIF+oUZ9F+sE2HUpsNhK5aUQ8R6qtZX2Acv5UoqV95FgSBEFCiiAyBLZ7Lnek7NIua6rL7+SOFJX2xUfuatR4PHAHAgpHioRUelHn9UIAUGi1kpBKI2IJqcYUCSk5CYVN0GeXIAiQkCKIjIGX9skWG1ZpgcGSrcobG5vFcbeGCpcLeo0GhRYLlfa1QCAchkESt06/v5mQosV6elHn8SDHZIJFr4dHmidFdD5qqX3eYBD7HA70ys5O6WMl0yMlpjjIhyCIrgUJKYLIEAIqjpRVWrC7pAVh6WOPofCf/2zzEN3ddXXok5ODHJOJSvtawB8KwazTwazTNRNStKudftR5vcg1m2EzGPjnhuh8guEwdFE9UvVeL97YtAmD8/JS8hhFViuAxHukRDRtYBEE0T0hIUUQacihxsakxU4ijhRjzieftOn4dtfXo39ubkRIUWlfXPyhEAxaLWwGQ5OQkna8TdQjlXbUeTzINZn434tID4LhcDNHip17Bufnp+QxethsABLvkQJAn1+C6OaQkCKINGPZzp3o+dhj+NeaNUn9npojpdNoYNBqm+2sP712bauO7fqPPsK3+/ZhT309+trtsJtMVNrXAoFQCPooIcUELvVIpR/ckdLrSUilESGVHinGDWPHpuQxzhwyBECTkx8P9vgUOEEQ3RsSUgSRZhxsbAQQ6WdKBjVHCogsCpgjZZWlxbWGZ9auxamvvYZqtxtFVmvkvqn8KS7RjpQ8/txIyV9pR63kSGUZjSSkEkAURby/bVu7v4+jwybYOWxC794JOUiJcPekSdh9441JOVIe+vwSRLeGhBRBpBmswT3ZEAI1RwqIlPcxsVNss6E0Kwu+UChpJyQsNVU7/X7UejzIM5th0GoV8d5EcwLhMPQaDWwGAxpVwibIkUofrnrvPXy5ezeV9iXB4k2bcObixXh3y5Z2fZygyhwpACi0WFL2GBpBQN+cnIRuywIpKJCEILo3JKQIIs1gO5zuJL+gE3GkvMEgemZlAQBqZOl9YVHEwCefxFu//hrz/uUx3q5AALlmM/RaLTVbt4BqjxQJqbTkxQ0bAAClWVkkpBLk6717ATRttLQXIVFULe0rlgIiOhref0pCiiC6NSSkCCLNYDucyX5BJ+JIeYNBHhUsj0FfvX8/dtbV4Ykffoh5/9GlO7kmEwxarUJgEc3xy3qkGn0+ZWqfVkvx52mCKIqwGQy45Oijcdv48ZHUPr+/3QVCV8ctnRca21l0Rpf2Mcrs9nZ93FjwRFQS2wTRrSEhRRBphreNjpQhWkjJ+ph8wSDKJCFVJRNSPx48CAAYWlAQ8/6jF/y5ZjP0Gg2V9rVAQHKk8sxmHGxshAiQI5WG1Hm9cPr9mDF4MCx6PWwGA0TE/xx+vH07hHvv7dZ/w1qPBwDQIEvvFEURM954A5/v3Jmyx4lO7Tsk9ZCmeoZUoliiRksQBNE9ISFFEGkGK+1LdqeTO1JRu7ZZRiMapUWONxhETxVH6reaGgCRxWQsYjlSVNoXH7/UI3VEQQE2VVYCUAopfyhErkcawMJd2OcjEcfhtV9+ARCZq9ZdYSXCjTIhVePx4IPffsMpr76asseJTu2beeSROL5XL5wxeHDKHiMZYo2WIAiie0FCiiDSjFaX9rEeqShHKtdkQp3Xi2A4jJAoosBigUGrVQipjRUVAJp2l9WILuErtFqh12iotK8FmCN1VGEhv8wqE1JA89eW6HhYjH+uyQQgkqgIxA99YUEHu7qxkFJzpOTC8pWff07J40SX9vXMzsZ3V1+NXLM5JfefLNHDzgmC6J6QkCKINKPVYRMxHKlckwl1Hg93lMw6HQotFi6k9jkc+O7AAdiNRkUARTTRC8pCiyUSNkEiIC6sR6pfbi6/TB5/DtBQz3SACakcJqSkDYl4sd5Zkiuxk4SUokdKLiwvW7o0JY8TndrX2Ri0WmgFgRwpgujmJC2k9uzZg1deeQX33Xcf5s2bh8ceewzLly+HtxVDOb/++mucccYZKC0thSAIWKpywt2yZQtmzJgBu92OrKwsHH/88di3bx+/3ufzYfbs2SgoKIDVasWMGTNw4MCBpI+FINKFVpf2xXKkzGbUeb18sW7U6VAgE1Jbq6sBAGcecURcRyp6QamVhv2SmxKfQDgMg1arSBezRDlSJKQ6n2ghlcjfhqX6xfvcZDKiKPLXTeFI1den/LGiU/s6G0EQFEE+BEF0TxI+K73++us4/vjj0b9/f9x2221YunQpvvnmG7zwwgs49dRTUVxcjOuvvx57pSjURHC5XBgxYgSeeuop1et37tyJCRMm4IgjjsCKFSvw888/484774RJ+qIDgJtuuglLlizB4sWLsWrVKjidTpx++ukI0eKO6KKw0r6UO1LS9SZJSLGwCdYbMigvL27cs1qJk16jUe2ROtDQgMNOZ1LHn6mw+PMc2XkrWkjRUN7Op97rhUGr5X+TREr7mAsjFxHdCV8oxD//ckeqPXrGYqX2dSby0RIEQXRPdIncaNSoUdBoNLjiiivw1ltvoXfv3orrfT4fvvvuOyxevBhjxozB008/jfPOO6/F+502bRqmTZsW8/o77rgDp512Gh5++GF+Wf/+/fn/OxwOLFq0CK+88gqmTJkCAHj11VdRVlaGL774AqecckoiT48gOpXV+/djT309Zg0fDqBpB7w1PVJaQYAQVf6SazbDFQjwxZ5Jp0Oh1YoKSegcamxEntmMPLM5rnhji/3B+fkYWVICADEdqbIFCwAA4t13J/UcMhF/KAS70aj4u8jjzwFypNKBeq9X8XdKxJFin6nGbiqk2PPPN5sVYnJXfT3OPuII/HjwIHes2kooKrUvHbDSrDGC6PYkdFa67777sHbtWtxwww3NRBQAGI1GTJo0Cc8++yy2bNmCvn37tvnAwuEwPvroIwwePBinnHIKioqKcNxxxynK/9atW4dAIICpU6fyy0pLSzFs2DCsXr065n37fD40NDQo/hFEZ3HNBx/g4nff5cl5bemRii7rA5qa55lDZNRqUZadjT1S+c2hxkaUZmXBotcjEA7H7HliO/PLLr0Ui2fOBADqkUoAtb8LlfalH/Ver8I1TKRHigupbrqYZs+/Z3a2QkwebGhAb7sdd/zud/AGgxBTkEqZjo5UsdWKcnLeCaJbk9BZafr06QnfYUFBAY499thWHxCjsrISTqcTDz30EE499VR8/vnnOPvss3HOOedg5cqVAIDDhw/DYDAgV9bEDQDFxcU4fPhwzPueP38+7HY7/1dWVtbm4yWI1sIW2WukWU6NPh8MWi28wSBCSUSLB6SY7WhsUkM8C5Iw6XQYVlSE3fX1aPT5UOf1Is9s5ot7T4yFI1tQGmWiIFZpH9FEIByGQfq7nHXEEQCaopNJSKUPDT4fso1G/nMipX1q/UHdCSaeemZlKV4DdyAAm8GAXLMZIVFss2sjimLa9UgBQL/cXL4hRRBE96TVZ6XKykps2rQJGzduVPxLFWFpcXbmmWfi5ptvxjHHHIO//OUvOP300/Hss8/G/V1RFJuVN8mZN28eHA4H/7d///6UHTdBJAursb9kyRIEQiE4fD6UZmUBiC1q1IjlSLFFe43UEG/S6XCkFMX9W00NPMEgLHo9F1KxnDC2oJQP/G0pbOKid97BiS+9lPBzyETkg0QXn3suvrnyymapffEW60TH4AoE+GcFUIrc5bt3Q7j33mb9MCydriVHShTFpDZFugoNMiElfw08wSDMOh13w2vaGMbB5qylU2ofAPTLyWmXYA2CILoOCfVIyVm3bh0uv/xybNmyhdv1giBw8ZKqkIeCggLodDoceeSRisuHDh2KVatWAQBKSkrg9/tRV1encKUqKysxbty4mPdtNBphlO08EkRnIi8NqfV4UO/1YmhBAfbU18Pl93NHqSVacqRYsphRp+OLxAafD+5AAGadrsUBpEwwscU/EHHTguFwzM2LxZs2JXTsmYx8kKhRp8MEWXk0OVLpgysQ4J8BQFnat/DHHwFEQlSGFBQAABxeL6rcbuSZzS32SP3fBx9g0U8/ZVzPoLy0r8Hn4+cBTyAAs16PEpsNAFDhdKJvTk6rHycoidB0c6T62O041NgYcxOLIIjMJ+mz0pVXXonBgwdj9erV2LVrF3bv3q34b6owGAw49thjsW3bNsXlv/32G/r06QMAGD16NPR6PZYtW8avLy8vx6ZNm+IKKYJIF1x+P5x+P6485pjIz4EA6r1e7kgl0yflj+VISYtDeWkf23l3+v3wBAKJOVIqpX3MnYpX3mfs5guMeL0dJKTan76PP47z3n4btgcfxC/S4Gk1XH6/wpGSz/hif58Kl4tfz2ZHjSwpabG0b9FPPwHIvMHLzIXqmZWFsChyB505Uj2k81hb+4iYkEq3sAn2/OTvC4IguhdJO1K7d+/Gu+++i4EDB7b5wZ1OJ3bs2KG47w0bNiAvLw+9e/fGbbfdhgsuuAATJ07E5MmT8emnn+KDDz7AihUrAAB2ux1XX3015s6di/z8fOTl5eHWW2/F8OHDeYofQaQzzCUqy84GAFS6XAiLInpKX9DJJPcFQiFVR4otDqtlpX1M3LgCAe5IJVLapxUExWKGPV5AivgG0Kyx3BcKwRcMKpys7kQiQoriz9sHURSx1+HAXocDAPDZzp0YXlyseltXIMA3MICI+6EVhMj7VxJAbFQAEAlUAIAjCgrwS2Vl3OOw6PVwBwL4raYGw4qK2vSc0okGnw9aQUCx5Dw1SP2dwXAYZr0eBRYLtIKgeN1aQ0g6p6SbI9VDet7ljY14c9MmjC4txaQUhG0RBNF1SPqsdPLJJ+Pnn39OyYOvXbsWI0eOxMiRIwEAt9xyC0aOHIm77roLAHD22Wfj2WefxcMPP4zhw4fjhRdewDvvvIMJEybw+1iwYAHOOussnH/++Rg/fjwsFgs++OADaLv5LjjRNaiTmtV7SULqkLTg6Cn9nIwjFQiH4zpSvLRPq+WiyeX3R3aPE3SkosWQmiPFdu/tRiPmnnACgLb3SHRl4gkpij9vX6KdAnkqXzRqZbRGnQ6+YJCXu8pno5U7ndAIAnrb7S3+/dj97s2wfhoW0FFosQAA9jscfA6eWaeDRhJZqXKk0k5IyRy3W5ctw+SXX+7kIyIIoqNJeov4hRdewOWXX45NmzZh2LBh0MtqygFgxowZCd/XpEmTWoxFveqqq3DVVVfFvN5kMmHhwoVYuHBhwo9LEOlCnSQwmJBiu9xspzOZYY+xHCmzXg8BytI+rUYDs04Hp98Pt1Tax5yrWC6YLxRqVqbHhJu8ZIn9/otnnonSrCw8+t13qHa7Fbv93Yl4QspAQqpd2VZdrfjZEWemUXSPFBD5rHiDQb4JIRcEhxobUWy1wmYwcPEQC+Y4Zlq6X4PPhyyjEWNKS5FjMuHj7dvRR+qFYm5rvtnMX7/Wwkv70ixsotBigUGrxbf79nX2oRAE0UkkLaRWr16NVatW4ZNPPml2XSrDJgiiO1AbJaRYCRJbjMRzpI559lncfeKJOHvoUACxHSmNIMCi16PG44FGEPii3mYwwBUIRBrDZWETsaKK1RwpeWkfg4k/q8HAm80PNTbi6BglVZlOPCElCAJMOh2l9rUTbDYbY/6qVbh12TKE7roLmqhFeXSPFBBxDH2hEHeOo4VUj6wsmHU6BMLhuANj2efYkWFCqlFypPRaLQbk5uJQY2OTIyWdT+wmU5sFZChNHSmtRoMZQ4bg4ThzKwmCyGySPivNmTMHl156KcrLyxEOhxX/SEQRmYo3GMRDq1alfPgsW6Axt4ZF6faXUihjuUOeQAA/V1RgtmxDI5YjBURETa3HA6NWy9P1rAYDL+2z6PWwGQzQCgKfjRONmiNliONIWfV69MrOhk6jweaqqtgvQobT0iBRozQzjEg926KEFCsx/SAqxAhQd6TMUm8T2/CQl/Ztqa7G4Px87rzEGlUQCIV46WvGOVJ+P5+9Zdbr4QkG+etgll4Xu9HYZgGZrqV9AHBCr16Kn2NV2eyqq8MZb7zRbfshr/vwQ8z/5pvOPgyCSDlJn5Vqampw8803o7ib7i4T3ZPHv/8e8778Eiv27Enp/dZ6PLAZDHwxsquuDmadDkVWK4DYjhRb0MkX4LEcKSCymKl0ufiiD4gIHR42oddDEATkmEyo83jwzJo1OPb55xX3oepIqfRIyR0prUaDYDiMuZ9/zssYuxshUYxbksTKx4jUs6e+Hr/v3x8zo8ZonPXmm4qfQ+GwqiNl0etx2OlEWBRRaLHw0ISwKOLnw4dxTHExd15ilffJN0PilRZ2ReRDjC1MSKk4Um193uma2gdEZknJibX59dSPP+LD337D9wcOJP0Y68vLcUAq++6q/HvdOvz1q686+zAIIuUkfVY655xzsHz58vY4FoJIWzZJqVzmqB3rtrKjthZ97HbotVroNRrsqqtDsc0GnUYDg1Ybs0eKlRh5ooVUjIVG36i+BSBS2tfg88EfCvHd41yzGXVeL67/+GOsPXRIcR8+WTIfoyVHij0OAPx0+HCcVyJzacmRMkmBBkTqqfV4kG+x4O3zzsPJ/foprpM7Bz8dPoyQKOIoaVA1w6rX8wXsUUVFfAOjzuNBo9+PQfn5/LMTy5GSf4YzzZFq9PmQJX2+zTod3IFAM0cqWzrPtIV0Te0DmqoHGFUxotAH5eUBALZG9e0lwujnnsPAJ59M/uAIgmh3ku6RGjx4MObNm4dVq1Zh+PDhzcIm5syZk7KDI4h0gfUutdRUngyf7diBf69bh5ElJQAiDg4bxgs0OUZqsAWd3OeINxSS7ZrKHaUeWVl4ccMGAJFdYwDIlRwphtyF8quFTbTQIwUAVbfdhqz58/Hz4cM4KWox2x1osbSPHKl2o97rxZD8fADARcOGQafR4LOdOwE0iSwA+OHAAeg1GhwfVaZlkQmpAbm5WLVvH0RR5MLALvUHAbEDQ+Q9h5nWI9Xg86G33Q6gyb1jLrpF7khlcGnfsKIi3D95MnJMJtzwySeocrvRL0pcAeAl1ey7JFmoj5Ig0pNWpfbZbDasXLkSK1euVFwnCAIJKSIjYQIqmTjylmCzZ3LNZgBAkdWKeq+Xz2Rhs2fUYLuecocpWUdqgPRlf1K/fpg+aBA/ljpZGU6V282DMHyhUELx52zhyJwok06HAbm52N/FS1NaSyKOVEcIqfXl5aj1eDClf/92f6x0oc7r5Z+vq0eNwlUjR0Lz978DiIRFMCHlDgRgNRiabURYDQYupPrn5iIYDsMdCHAhlWU08s2Mlkr7ethsGSekGmWR8WadDp5gkG/EsNfdbjSmrrQvzVL7gEi54R0TJ+JgQ0NESEnn5kAoBH8oxDeU2Gc808o7k8UbDCq+hwiiq9OqgbwE0d1gu4GxyndadZ/Sfb12zjkAgJP79cNvNTUolvqjWBiEGkysKEr74jhSrOdKvqC/ZvRoHGhowItnnslLFvPMZj7LCgCq5UIqGEwq/lzeuF9ktaJKil/vbiRU2ie9fh9v345QOIwzhgxJ6TGIoojx//kPvMEg9tx4I0+FzHTqvV7F7ChBELD7xhvR74knUO508uG8amWrQGQzg72fmau7z+FApbRYzjYa+SK/pdK+Iqs1pRsx6YBTJqQssmAOrSDALvVOMUdKFEXuyiRLuqb2ySmUzrHsvXHe22/jvW3bIN59NwCZkEpSTLc0IqYrEJRttB1qbGxWDkkQXZn0PSsRRBrBvgRTuRCqdLlwVGEhjwhnZUVMgMRzpJiQcgcCCEtftPEcqTxpd1j+pTw4Px+LZ85U9H0NzM3F13v38p/l9f5qjlSs0j6jVqtoDC+0WmP2DmQ6yaT2TX/9dcxYvDjlx1DhcvHHYD0ankAg5SmU6URYFOHwepEbNYS3hyySn6FWtgo0ladpBIGLzyOffhpTX30VAJBlMDSl9rXgSBVYLCktDU4H5EOMzXo9PIEAajwe5JrNXDQxsdkW1zWdS/sYBq0WPbOysKuuDgDwnpQM+bPUG8r+9rFSUWMhf93CXVRUNcrEY1cPzSCIaJJ2pERRxP/+9z8sX74clZWVCMt2GgDg3XffTdnBEUS6wMoxUiqk3G6+iwkAR0qN7rXSY8XrkWqUOVUeqSwpniPFhFSs6xnRs57kX/pqjlSssIno9LNCiwV7pGj37kRYFBEWxYRK+yplQrMtu/dqVMvcQFZiaXnwQUzp3x/LLr00ZY/TGRx2OrGtuhon9u2ruNzh9UJEU4kZw6jTIc9s5gl8QOS9reZIsU2NXJOJf4bksMQ6oGVHqtBqbTbXqqsTy5GSv1bMmXL4fK0O60nn1D45RxQUYKv0Nz6+Vy98f+AAbv/iC3x6ySVcECUrpOTnencgwF/vroT8OZCQIjKNpM9KN954Iy699FLs3r0bNpsNdrtd8Y8gMg1RFHnfUCp3lKtcLhRKPRoAeMjEeVJUs9VgaNGRApp2vBNxpGJdz5jcrx+mDRyIj2fNAqBcHKo6UjHiz6Pn8RRaLN3SkUqkJIkJqRqZ2JHPK0oF8vveJ2t2/2LXrpQ+Tnvy7b592FFb2+zyM954A5NefrlZCRRbsOZEOVJAxJWSO1Jq722gyZHKNZtV78dqMCBLEgqxkum4I2U2Z1RpXzAchi8UatYjVevxIF8upKTXrS29Qemc2idncH4+F8tM/K3cuxe+YLDVpX3yc32sYenpjtyROkhCisgwknakXn31Vbz77rs47bTT2uN4CCLtcAUC/EsxlQshh8/HAx+AyKKM1dMDyv6MaKJ3KYH4A3mZkGppIVJgseDjiy+GKIrQCIJCOMZzpAItOFLRIRbdBbYAjLeTbtLpUO/1KhbilS4XekhDmlMBGyjbLycH5Y2NCgexqzDhxRcBQPEZAYDdUilVldvNewGBpmHX0aV9QGQAdrlMrMYq7bPKegfVHCmNICDbaITdaIzpuB5saIDdaITdZMqo0j6ezikrRWalffLXKrsFoZkI6Rw2IafIauXub63Hg9E9emBdeTkONTbyTamkHSnZ6xarZzbdkTviXVUMEkQskt7esdvt6N+NUp8Ior3mwDi8XkVpUDS2OPNXnH4/X6yw44s3kJfdNnpOTiwEQeA7zAxfnPhz+cJcPluGYdbpMmoRmSiJ9HYwR0oujpNdbLVEjccDAUBvux3OQEBR1tYVCKqkQjLYa7szyq2K50gVRoWfxCrtY25TaVZWs+vlmxb9cnO5oItmXXk5Rvbo0ezz1NWJTue0m0zwBIM40NAQs7SvtXSFHikAyDebUeN2QxRF1Ho8GCRF79d4PNyRakzydWjMAEeKRb73ys7OKFeWIIBWCKl77rkH9957LzyyWTMEkcnIFz+Pff99yhr0G3y+uEJqUF4etlRVqaY2Of1+nu7nSsCRMuv1+PqKK/DktGkJH585KuzCr5Jsplba5/D5eDkPw6LXIySKGR1uoEYiC0C2wJaL5lTHZNe43cgxmWA3meD0+xVuTFdA0eMlK018beNGVEglozujhEx0DLcctuBlxCrt6yOVq7P3/Q9/+AP+ddpp+MPIkXD99a/8dv1ycrAnxnygLdXVGF5U1Ozz1NWJFlKDJdGwvrxcKaRSUdrXVYSUxQJfKIRGvx8Or5cP4a12u7mQSjZ0Q74BFatCId3ZW1+PQosF+WZzRm0mEATQitK+8847D2+88QaKiorQt2/fZgN5169fn7KDI4h0INpJcfr9qouzZGlQERxyhhcVocbjQbnTidKoMq9Gnw8lNhu2VFcrHCm1XXXG7/r0Ser4WKkOQ1VIqThSDp+P70IzWJO5OxCAvYXAi0wiISElvc5yIdUejlS+xQKbwYBDjY2KoctdYa6LvGdsf0MDhkrO6uJff+WXRztSrLQv+r0IREpY5eIsVmnfQGkhzD4HY3v2xNiePZvdrtBiwX4pne3bfftwfK9evJyzxu1GocWSca4sH3MgCSnW4wlA0SPFNova8p7uKmETTEAOe/ppiGgKEKp2u7mA8IVCCEul04ngCzUfdt7V2N/QgN52OwxabUZtJhAE0ApH6oorrsC6detwySWX4Nxzz8WZZ56p+EcQmQb7Arxv8mQAqemTCoRC8ASDcR2p46Q49K9UZrc5/X7eQ8NKP+Kl9rWG6FIktfvXajTQCILCaXJ4vc0Wr6xpP95upD8UUrgEmUCipX3MkTLrdLxnKpXUuN3IN5th0+vR6PMpRJtagEO6USETUvKQCNa4nmsyYUeUI1Uvlc6qLb7zzWbUeDzc7Y01R4rNuxnVo0fc48sxmVDv9WK/w4EJL76I+atWAWgKqsk1mzPOlVUr7WNllHJHSqfRoDQrq02pnV0lbII9f5aM2TcnB2adDjUyRwpomiGYCPLfe3vz5rTvb6x2u/GPVasU5bgOnw85JlPckR4E0VVJehvyo48+wmeffYYJEya0x/EQRNrBdpELpIS9VHwRsIWs2m45ozQrC8f36oWFP/6Ii4cPV8RhO/1+9JKEFFt0x0vtaw3RpUix7t+g1TZ3pKKcNrPkeMR67apcLhQ98giA5mECXZmES/skRyrLaIRGENrVkXL6/QohtbW6GsOKilL6eKlmf0MDBETea9EJhPdPnowt1dV4deNGXHjUUZg+eDCASGmfWtAEECnBCobDaPT7kW00whcMNgtIASI9UttuuKHFAaJ2SUgxF2x9eTmAyMaBPxRCrsnENyEyxZWNFlIAuLMZHcwxKC8P29sg2LtKj1T0+6TEZkOJzYbd9fXwBoP88+cJBhOOgpcLqefXr8dZRxyB0wYNSulxp5IX1q/HvC+/RJHViitHjgQQ+Q616PUQkdrAJoJIB5I+K5WVlSE7O7s9joUg0hLmorBylVQKqXiOFADMHjsWPx482Gxh3ej3I18qF2KJbP4UO1IWvb5FRwqIlPexHqlt1dXYWl0d05GK9do9+M03/P/bMrgz3Ui0tM8bDKJR6plj7kYqYUlqWUYjnH4/HNJj2Y3GZiVx6cje+nr0zM5Gic3G3+9uKSGuzG7nC/fT33iD/06916saNAE09T698csvAGKX9gGR3p+WFvA5JhMcXi8vF2Sfb3aseWYz30xoqUdkU2UlHl29Ou5t0gFnVGof0DQwtkA21gGICKm2OJ9dKbVPvhFUbLVi6oABeH/bNngCAS7s1c5xm6uqINx7L36pqFBcHu1epbtr/0tlJQDgJ6nUFYh8Vs16fbPvFILIBJIWUo8++ij+/Oc/Y8+ePe1wOASRfjBHKj+FjlSjym6uGj1sNgCRhTBDFEU4/X5kGQyRWHHpunhhE60huqcjniPFypX+/MUXAKAYLgs0CanfvfiiojeFId/BzqTBvYk0ycvDJrKNRr5rLWf57t18kdoaeGmfzJHKNhpRYrPxsIZ0Zo/DgT52O/ItFi5OWOhEWXa2qmBiJXVqHN+rF4bk52PtoUMAYpf2JUqOyYRAOIzV+/cDiCwmfcGgIvCCl7e2cP4Y/swzuHXZslYfS0fB489l5zAWKNEvypnJt1jaNP6gq4RNMO458UQAkU2SUwcOxO76emyrqeHvR0WAhPQ6bpfmT70uiXuGV0qUZPdZm+ZBX+z8LQ+08QSDMOt0VNpHZCRJn5UuueQSLF++HAMGDEBWVhby8vIU/wgi02gPR4p9kVpaKO9g4q0mqjE+GA7DZjAg12TiC5R48eetQS21T9WRkpX2FUiv0eR+/ZrdFxBxCT7dsaPZfchT/2LFSHdFknGkmEtkjZof9lN5OU7673/xzJo1rT6OGmlIKhNSLHq/qwipgw0N6JWdjTyptwloWqj1jCekYjhSgiCgf24uvy+1GWnJwBzYO5cvBxDZSPjn6tWKWVbmFlzZrobT74dJp1O8t1kwQm/J8WNkGQxJx37L6SqlfYy7TjwR4bvuAgBM6N0bQOT1yolypH48eBC2+fNhvP9+3ge2ubpacV8sDObuSZPQMysr7YUU2wSS9zKy0j6LTpcx73+CYCTdI/X444+3w2EQRPrSHo4Uu4+W6uSZeJM7UszNyjIakScbdJtqR8qi1ysEXCDGrr28tK/O68UpAwZg5pFHNrsvhlqzdL3Xi6EFBdheW4vdGeRIJVKSxEq+Kl0uZBuNCIbDqrPLfpN2rJNFFEXUSaV9ZdnZCIkiVh84ALvRiGKbDYedToRFEdq//x3PTJ+O68aMadXjtCcNPh8G5+dDRNOmAgugKLZaFe8vVoJa7/WihyxJLpp8iwV7pfeaWiJlMkQ7y+cOHYq7V6zAK2efDSDiSLHPfKKlTaIoKvoi0w2n39/seZ/Qqxe+O3Cg2WuZZTQq5iElS1dJ7WPI/275ZjM/RzJhz94Dy6UgIX8oxEsfo4VS9Py+v3/9Nf42cWJKN81SCRNSq/fvx8+HD2NESUmktE+ngyAIGS2k0v0zS7QPSQupyy+/vD2OgyDSFk8wCK0g8F3nlDhS0hepuYXY6WhH6rMdO3gimC26tC/FjpRNr8e+JMMmyp1ORQwyQ/48WdKanHKnk89g6W6OFGvQr3C5cExWVqQkTFYGxfqlWttb4A4EIos4sxm/HzAAeWYz1h46hGkDB6LYasWvlZW8T+qJH35IWyGVbTRCFEV+rBUuF4xaLb+c8Z+ffsK1Y8bEDZsAIgtcFgoRa45Uokzs0wcfXnQR79G6YexYvLNlCzZJ/SK5JhNfIMcr7ZP3wwRT/HlONa5AQNEfBQCfXXKJaglflsEAbzCIYDjcKleJbdSkcqOooxAEAXaTCdVuNy/tY47URun9ATSV9kULKfl4goOSy7OxogKjS0vb/dhbg9Pvx/RBg/DR9u1Yc+gQRpSUwBMMwqLXQxCEjBoBIKfR50P2Qw9h8bnn4oJhwzr7cIgOJKGzkivJ0o9kb08QbWFXXR3uWbFCdXBtKvBIjbKpLM1JtLTPJNWVM0fqnS1bsHLvXgBQlPaJohhZeKVwoZFlNCrKcWKFTRh1Or4ArHS5UCQNCpYj37k+KCv5AIBfKirwv82bsamyEv1ycjLSkWqptA+QHCmDAVaDQeFIVUkiurU7+vLyMoNWi1MHDgQA9JJK4hw+HzZIjeHpulBlQoqVQQIRR6rYZoMgCJB/8q/76CMAkecdK2wCUM6S8kg75q1FEASepHb7+PHoJQUysU0PvVbbYuAKO2ZGusdcqzlSWUZjs7I+oOnz39ryvmA4DK0gdNndfvY+5I6U9B7YUVvL3zcs1fBQ1PlRLqR+J5UJHk7jgdpOvx+/798fVmnUAqAMm4h+/9+3ciUPfenKHJA2CD9WKV0nMpuEvjUHDhyIBx98EIekxlw1RFHEsmXLMG3aNDz55JMpO0CCaImR//437l25slmDfqpgjbI6jSZlAwW5I5VABG6+2cwdKfkQR6NWGxFSHg9fsKdyBzvLYOCL91A4DBHqC215T49TipOOxqjT4eAtt+DUgQPx7f79WCQb3M16Xeq9XpTYbM2CKmJx9ptvYs3Bg8k+rQ4l0fhzICKksqQeKfl7jC32oxdYiSIPPACACWVlACJDZK16PVx+P/8bpGvZDRNSJtlsswqXC8WSaD8pqidvw+HDqHS5cHRxccz77JeTg0qXC3/98suk4qhjIQgCfH/7G+affDJ6Rg3QBpBQap98ULKvCwqpWGRJ54TWnqMDoVCX6Y9Sg1UzRKf27aytxXE9e0IrCLy0r97rVbxO3mCQu6XLL78cOo2Gz6lKN8KiCHcgAJvBgGxZOSfvkVIRUnetWIFZ777bGYebUtj3VlaCnwkic0hoC27FihX429/+hnvvvRfHHHMMxowZg9LSUphMJtTV1WHz5s347rvvoNfrMW/ePFxzzTXtfdwEwWE9JO9v24YLhw1LeR29W/oSACKiIRWCzRMIQAASanDPt1i4I+X0+zGypARnH3EEhhcXR0r7vN52KX2RO1KBOELNajAohFR0uQ+jNCsLhRYLPt2xA3/44AOYdDpcfPTRfOf9zZkzsWznzoTiz73BIJZu3YoqlwurrrqqVc+vI0hESMmFJytTk4dNsC/ofVJKXbIwl4Ptig8tLATQNNTZFQjwv7MrDYVUMByGJxhElsEAs07H3x9y9/OIggKId9+N/23ejPPefhvLdu4EgLjzdi4cNgz/2bABr//yS5sdKQbrDTLr9bhu9Gg8u24dv44JtXilTfKyrq7gSKnN3lKDLS5b66qmumy5o2F/e57aFwzC5fejxuNB/9xcFNtsCqf+YEMDhkgl0j6ZI6WVhhsfSFMhxUSSzWDg3x+iJK7MOh00ggBPMMh7ibZFBWt0ZdhGFwmp7kdCq64hQ4bg7bffxs6dO3HhhRfi0KFD+N///ofnn38eK1asQM+ePfH8889jz549+OMf/whtFz7hEV2XS5YswWPffZfy+3XJFgzZbWia3lhRgU+2bwcQ+cIxSc23LZEvSypzBQIozcrCnSeeCJ1Gwx0pFj/eHo6UKIp8URfLkXL6/QiFw3w3Mhbysr8F338feU7S63nqwIEwyRbK8Yh2WdIVlsQVT0jJn0OuydSstG+b1DtxoKGBx0AnA3+tJCF1bGkpxpSW4o/HHgurXg9/KMT7sFzt5Oq2hUbZzDWzXs+FiNyRYrBwlj319bDq9XE/D1qNBqcNHIgaj0exWZIqnjn9dMXPLQ2lBrpWaR9zCROBOVJtKe1L17LTRGAbZvLUPrYhl2008jEX7NwpF0reUIgLKSBSkpuujpR8SHOWwYAGnw/+UAgiwB0poMmRO+Jf/2r2u12Vf3z7bWcfAtFJJHVm6tWrF26++WYsWbIEP/30E7Zu3YpVq1Zh4cKFOP3006FJ8kT39ddf44wzzkBpaSkEQcDSpUtj3vbaa6+FIAjNUgN9Ph9mz56NgoICWK1WzJgxAwcOHEjqOIiuS/QXc3vs1MmbqrONRj4rJVlGPPssTnv9dQBIqpQoz2zmO9XRu8C5ZjN8oRAXd6l2pILhMHyhUFyhxhb+8t3IWBTKBnWykjXmglilPrREQhXkfT/pTCKOlHyGVt+cHEWpZHljIz7evh1HFhYiGA63Kqqcv1bS41gNBqz5v//DEQUFfGHD7tcVCLRbr2FrkQ+vVpT2ST1Sctgg2D0OB1+8xyPfYoHT74eIxMpsk+XzSy7BR7NmAYgIN4NWG/f9XSX7+6a7kHL4fM0Gb8eizY5UFy/tY6V52UZjxJUJBPj7wKLXo4dUCjo4Px9AlJCKiubvlZ2dto6UQkhJm47yhFp5n2BFVJ9XMiFDv1RU4LM060XaJR1/VxeERPJ06pnJ5XJhxIgReOqpp+LebunSpfjhhx9QqpJSc9NNN2HJkiVYvHgxVq1aBafTidNPPx2hNP8SIlJDedTJuD3KP+TixS4157cVTxI74CFRxBe7duG7/fsjfQmy32NCgpV/pdqRAiJiNV7poE2vR7nTmdCQ4UKZg8BdNr8fRq0WWo0mYUeKCctEezQ6i2RL+/rl5sImCdNQOIz//PQTAOCCo44C0CQqkqHe64VFr1eN92bva9a8HhbFhF7/jsQhd6Sk94coiqqOFBNSu+vqEiqxyZeJ2FSU9kXz+wEDFOWF0UOuo6nsSkLK601cSCXhSLn8fvR9/HEeDQ6kf4JhS7CeOZNOxzcDuMDQ6VAqbQgUW60osloVQ8nlpX1AZAB1VxBSrHpDnlArF1LsOZws9TfuiiOkpr32Gh6XKhgA4Ohnn8Wpr73WLs+hNYRFkT/3tsT8E12TThVS06ZNw/33349zzjkn5m0OHjyIG264Aa+99hr0UQtPh8OBRYsW4dFHH8WUKVMwcuRIvPrqq/jll1/wxRdftPfhE2lAdDBBe5R/NHOkfD4em9waRFHkARaJwBZ74/7zH3x/4IBCPDCXgQupFD5/m2wXmTlSaotxk06HzVVVmPfllwAQt2/ihF69MLZnT1w4bBicfj/8oVDk9ZV+p6WFJoOVq7VliGpHkMj8G3mASN+cHPTLzUVIFLHX4cDGykpM7NMHM4YMAaDc7SxvbMSWqqoWjyFeDLg1ypEC0q9PSl7GyRaUtR4PvMGgQpgDTaVT+xsaEhLZ+TKHNNWlfWqoNdvL6VJCyueDPUFHOBlHasWePdjrcOCOr77ilwVaGZueLjCnqdrt5psBHplTwxypfIsFg/PzeTkvoEztA1LrSImiiJV79qTMhY4u7Wv0+fj73RKVfMt6il45+2yYdLq4aa2f7tiBmz/7LCXH2B40+nw8OZQcqe5HWp+ZwuEwLr30Utx22204StqRlbNu3ToEAgFMnTqVX1ZaWophw4Zh9erVMe/X5/OhoaFB8Y9IP9YcPIgPtm2Le5voRUmwFT0kLSHvkbIbjXh/2zaMfu45rNizJ+H7kB9no9/PI9UT4bFTTsG/TjuN/yx3xNgCmTkKbZmFEw17zi6/P27YBDue//78M4D4LtHQwkL88Ic/YJY0Z6PG7Y68vtJrkXCPlFSulsrn2x4k4kjJMel0OFIKg/i1shJbqqpwVGGhanz0UU8/jSOffrrF+6zzemP2krG/cYXTyd9L6dYnxdzHPLOZf2aYmxkdbGLS6aDXaOD0+xMr7ZM7Uh0gpFoqXa1wubjL40szZzCahiRK+wxaLXTS36UlvpNK8wOyc3mqh413NJePGIHf9e6NqQMG8D4/uVPDeqRyjEYMURFS8vNcrskEdyCQEqH95e7dmPTyy3jz11/bfF+Aeo+UR6W0zxMM4lBjI7SCgCKrFaVZWa1KJU2XMmRWKWCTJd0S3Ye0PjP94x//gE6nw5w5c1SvP3z4MAwGA3JzcxWXFxcX47A0F0WN+fPnw263839lUhwwkV6MfeEFzFi8OO5tmEBhX7KpKLuLJtqRYiSTOCTvfaiVmtsTdaRsBgOuP/ZY3DtpEgDgV5kLwRbI5dKXkCmFwoK5PX55j5TKYob1OsmPtyX4oGGPR+lISQvNlr4gmUsRTpMv0lgkKqTunTQJr559NoBIGVC20YjNVVWo8XhQZLXy15QtVN7+9VfVwadq1Hm9MR0peY9UibSYU3OkPIEAXpGEckcjTx1knxn2948WP2z4KZBYelapLKa8IxwpUwKlfWwGVTo7UmFRjAwgTVBICYLAHQo1QuEw/8yzEi95GWtXL+0rtFrx9ZVXosBi4ZtF8lmCzJEKiyKOKCjAtupq/nr4QiGYZM+9rVHyanz4228puR92TFZZj5S8F0xe2lfudKLIauVJhNFl+ox4n5d0cX/YuqNnVlbaHBPRcaStkFq3bh2eeOIJvPTSS0kP4WPRmrGYN28eHA4H/7d///62Hi7RjsSrq2dCasecOSiwWNpHSMnmpch3YJPpV6mMElKtmVtz14kn4pKjj8YTp57KL2MLZPYllMpSN7YL6guFmlL7VO4/esGXkJCSBKCaIxWWhgvHgy2u03XuESNRIXXXiSfi4qOPBhBZdB5ZWIjN1dVwSENls2RCyhMI4Pz//Y//br3XGzcavc7jie1Iyd6DbJCqmiN1z4oVuGzpUmyX7ZTL2VhR0W4OSq3HgyyDATqph45dBqj3NbHyvkTeh3LXqj16pKIxarVxBVKtx8MX1ekspFgpU6KlfQD4wlqNvk88gavffx8AeImXPNSnq5f2yTFH90jp9dyR8oVCGJKfD1cgwOPQo0v7ojdV2gL7zFZFbYa1Fi6k9PpIj5SstC+6R6pRVhraw2bjm4HRyEcCBMNhxeaZ/LrOhL1Xe2ZntzqZkui6tOrM9M033+CSSy7BCSecgIPSQMxXXnkFq6Qp7qngm2++QWVlJXr37g2dTgedToe9e/di7ty56Nu3LwCgpKQEfr8fdVFNipWVlSiOM4jRaDQiOztb8Y9IP9hie3OcPhB2ku6VnY2Jffq0OlEvHnJHii02AeDPX3yRsCMi/6JiQqo1O+CvnH02xskcVKNOB7NOx4VUezhSvmAwbtjEohkzuJsBNC1k4xHTkYoaWrqzthZzP/tM4egBTV+gifRTdSbJlvYxjiwowMaKCrgCAdiNRlj0egiILFS+i0olHfXvf6NPVJqpnNo4PVK9srO5KzNt4EAA6gu0HdI5Vm0hvHr/fox49lmYHnggbsN4a5ELQbb5UBvDkQKaNjuSnefSEaV9Rp0u7qDdOmkoNZDeQkqetJkosRwpXzCIAw0NeHHDBgDA3vp65JnNik2xrh5/Loc7UrLSPpbcadHr+fwoVvEQXdqXpVLm21pYGXWqnH2nFByk12r5+Ay58yYfASAf6NzDZovpSMmd90ONjQrBVZMmQqqBHKluTdJnpnfeeQennHIKzGYzfvrpJ/ikN1BjYyMefPDBlB3YpZdeio0bN2LDhg38X2lpKW677TZ8JjUdjh49Gnq9HsuWLeO/V15ejk2bNmHcuHEpOxaic2CN5McvWoRjnn0Waw8danYb+aA/m2wwbCqR90iNKClRXBe9wI9FM0cqRQNAgUh5X3v0SMkdqXjx5/1yc7Fw2jT+cyKLq1yTCQIkR0omVJkQZF/w//npJzz2/fcoeuQRxe9zRyrN+0hCrRRS8uQuu8kEQXp/N/r9zQJW2A5+rHLI7bW1GBBV/szQa7XYeN11+Mv48TjriCMAqJf2sTlTNSo71/J0tY0VFfGfWCuo9Xj4QjMRR4rtchfIgiTicZKUGpbfATPJjFptfCHl8fAkwnQWUszJSGbjJpYjtVfmprr8flS4XBiSnw9vMMhfg64efy6HlS/Le4f65+bi6dNOw32TJ/NZe+wcF53aJw8BaitMzKUybIIdX5bRGHGepONU9EgFAnDJZg4WWCz8M/3Yd9/hR2mDHlC6Ts+tW6cIpahvh43T1sCOo1d2NvVIdUOSXnXdf//9ePbZZ3HZZZdhsax/Zdy4cfj73/+e1H05nU7skM0C2L17NzZs2IC8vDz07t0b+VLSDUOv16OkpARDpAQru92Oq6++GnPnzkV+fj7y8vJw6623Yvjw4ZgyZUqyT41IM+TFmT9XVOAvX3yBLy67THEb+SBNNhg21cgX+kdHOZ0HGxubzbJRo87jgUWvhy8YRI3bDY9K4lhryTGZuJBKpSNlSNCRAqBYqCdSiqvVaJBjMkUcKb+fL37Nsi9a+c9ARLSy14z1yGRKaV80Zr2efzkzh8VmMMDp98csKZUvTBhVLheq3W4eYKFGvsWC+VOm8B1utdI+5vSq7QD7QiH0zMpCtdsdt8SwtZQ7ndyl6SM5wmul1Mx4jlRRgp+vt2bOhCcYVCT4tReGOKV9YVFEvcyRiie4Ohtva4SUFD4QzTd79/L/31JdjbAoYnB+Pr47cAAOrxeFViuCotile6TkMEfKHQhAr9Hwc8Mfjz0WQJOAZue26NK+VPZIsb9jqD2ElPRftvFj0ev5c2WOFPtetZtMvER57uefAwDEu+8GoNysfOCbbxSbNeni/tR4PDBotSix2dLmmIiOI+ktnm3btmHixInNLs/OzkZ9nPhKNdauXYuRI0di5MiRAIBbbrkFI0eOxF133ZXwfSxYsABnnXUWzj//fIwfPx4WiwUffPABtBly0u3ORO/sqO0+yYUUm7+TSkRRVDhS0c3VBxNMfPQEg7Dq9Xy4bjJhEy1h1eu5sGjvsAm1+HMA6B/D8YhHvsUS05FiO6Xyv7n8C7Qr9UgJUEacJ4L8vcFEZp7ZjAqnM2b5qlqpz06p1G5Q1KaUGuxzpOZIscWQmiPlD4Vg0unQ227H3iS/A9QQRRFXvvce35Uudzr5nJ18iwWD8vJ4QmS8HqlEhVS+xcIDHtobo04Xs5fM4fVCBJqEVBq7rUzkJeOA58tcBzmv/vIL3zRjn3EWF86EV1dP7ZPDRjzE6pPVazTQCoJCSMl7X1NZ2ueRPUYqkAsp9l1Z6XJBQOT7RCcNpY4u7bMbjfAGg1i2cycAQCs7X1a4XNBrNOiVnQ2NIOCbffsUj5cOVLvdyDebkWUwwBsMtkt6MJG+JH1m6tGjh8JFYqxatQr9+/dP6r4mTZoEURSb/XvppZdUb79nzx7cdNNNistMJhMWLlyImpoauN1ufPDBB5TClyE0+nwY27Mn/1lt0RztSKW6tM8TDEKEermaTqNJeJ4HiztnQiqVpX1mvb4pDrydwibixZ8DyTWdM4qtVmyvrUWjz8dfX/Zf9reu83hUU8zqu5CQak1JknyBxRyWY0pKsK68PKYjpXY5Ez6JlLmxgcjRmxH+UIi/z1UdKamHI17yVjK4AwG8tGEDjnvhBQCRRMoesnS9AXl5/P/VFqLsueZ1QKlessQr7WOf4R42GzSyhXQ60hpHKt9sVn3/NPh8OH3wYADABiltlwkp1ieVSWETzJGKdpoYgiDALJs35pM2Khixwibe37YtoblyctjfMVXvtejSPiAyWsGs1/NKBbNOB7dU2id3pADgB2nzRD5377DTiWKbDbPHjoXdaIQoivjHlCm8ZzQdqHG7kW+xtEuiIpH+JH1muvbaa3HjjTfihx9+gCAIOHToEF577TXceuutuP7669vjGIluiCiKaPT7cd6RR/LL1BaKLr+/SUhJpU+phC0q5UNmq2+7DeVz53JRlAhsAG++xYKaNoRNqGGWku6A1PZIKUr74sSft5aT+/XDe9u24ZfKSv76Ri8S6n0+1fAK9ny7QthEvGG8sVBzpEb36IGfKyrgkITnC2ecgQdOOgkXSjO51D4fbHEeK2wiGrXy2P0OBx82GcuRMmi1sJtMKUnNlH+mAqEQDjudPNUMAAbK3E+1zYgRUvltotHcHUk8R0o+L8uWwnOZNxjEnE8+wa+VlSm5P6DJLUtm46bAYmk2KgGILOJZyebCH39ElsGAI6TABea+dvX4czmsRyqey2aRZk2JotgsbMKo00Gn0TSr2Dhz8eKE5srJ8bSjkGL/rZSGEDMs0vOPdqQAYI3UB+0PhbjIq3A6USyNgGj0++H0+5FtNEZ+TpOEvBqPBwUWi+q8PyLzSXrV9ec//xkOhwOTJ0+G1+vFxIkTYTQaceutt+KGG25oj2MkuiFOvx9hUURP2U70YacTYVFUlEm5ZYKElfa1FH+fDGrpVKyXIttoTDgC3RMIwKTTYWBeHtaXlyc1kLcl2PPXyertU4FGEKDXaFqMP2e8fNZZSQmt2ccdh79//TWApteX7eixL6I6jyduCmC84abpQGsdKYuKI9U3JwfeYBC76+txdHExrh41CgCwu64OizdtUn0v1no8MOl0Cb/XrCqBLWyBn200xuyRMmq1sBuNKUntk6d0/XvdOgTCYYUz/eDJJ+OpNWsAqJeazho+HH1ycjC+d+82H0uqiRd/zspzc1MspN745Rcs/PFHFFutOKqoKCX32RpHigmp6POzOxBAjsnE3brbx4/ngRuODCztM2m18Ep9p7HOpxbJkWJx39GvMysPVGPCf/6DVVddldCxtKcjxc5hNW634vxj0euxuaoKmyorMUNyItk5fsPhwyix2XDY6USDzweTTocKlwvFNhusej0vmbNJc6rSxfmp8Xh4aR9AjlR3o1VnpgceeADV1dX48ccf8f3336Oqqgr33Xdfqo+N6Mbsl0qJyqSdSqtej5AoNkvJiy7tC4liwk3aYVGMOReHwRwptZk0SQkpqR7+tIED8UtlJcqdzpSW9gGpLetjGLTahMImAOCyESNw0fDhCd93gcWCU6XI7ViOVIXLFbdEK537SIDUlPax3eieUonj5qoqRSklE5+qjpQs8S4R1PoMWRnlwLw8VSHFHSmjMeWO1Lwvv0T/3FyMKS3ll8lnP6ltmAiCgAlpKKIA6fPUQmlfqh0p1t8WSGHfRqt6pMxm+EOhZkKdVRWw+5zSvz93E9l7urWfo3TELLlN8cQhK39jr0kzISW5OoyQ7G/7bRJzMZkYa08hVe12KzaGLHo93vz1VwBNlQXy89lp0ncCcyMdUlWC/Ds4y2BI6WekrbAeqVQmKhJdh1afmSwWC8aMGYOxY8fClkBqGUEkA2ta72O3o+Evf+FpfdE9GNFhE4B66pgab27ahMFPPYVxixbF/CLhjlQsIZXgY7HSvpb6O1oDE2SpDJpgGHU6RdhEqstrmONojfobNvr92Ftfj81VVZg+aBAA9bCRdI6IBiJpWK0SUip/S9YrtquuTjEYmu2CxnKkkhFSan2G7HUfkJsbs7TPqNMhx2RKyRw35sxoBAFOvx8XHHVUM8F0wVFHtflxOgOjtDGhRq3HA60gpHyRyN4XyUZFj//Pf3Dle++pXtcaR4qlmx6KGrwqP4cDkR44o04Ho1bL30/x3JuuBuuRiicOWfmbN0YJZbQj1dqFe3s6UuwcVuvxKM5n8u+986XPsfwcNU0637NNmQafD9nSZ4KRJZX2pYuQoh6p7k3SK6+zzz475i6gyWTCwIEDMWvWLB5RThCtYa/DAZ1Gg9KsLGg1GhRK5XTRPUnuQID3TzCxU+f1xowyrvV48M9vv8V9J53EI8O/O3AAb//6Ky4/5phmt+c9UiqiJ9nSPrNerxhcmypHii1C2kVISTvoiThSraEkahNGIwiw6vVo9Pl4gtfpgwcjz2xWzA9hxNrdX7FnD07s0yehEs8Gnw+hcJgPfU0lqXCkGMVWK1+EyV83tuhUey8eaGxMeJ4SoN5nWO/1QkCktHCdFDsux9dOPVIn9umD5Xv28B4wOf89+2w8KZtd1lWIN5CXDR5mM8OcKVrctlZIrd6/H6v378eLZ57Z7LrW9Ej1zckBENkkY2ESYVGMJJrKFslsnpf8/ZRRc6R0ukiPVAKlfUwsqTlS8qS96A2M6BL4WDBXyx8KpcT1Uy3t83gUqa7s8vknn4yRPXoAgGJjiI1qYM+pwefjPVGMLIOBD/xNB6hHqnuT9KfGbrfjq6++wvr16/ki5aeffsJXX32FYDCIN998EyNGjMC3336b8oMlug9VLhfyzWbeqM8WuXUqQoqdmIfk50MrCHh148aY9/vkDz/goW+/xdd79/IFm0GrVQyFlNOiIxXnhOkLBnlZjVdypOSRzKlKFWOCLJVBEwzWHM8cqVQvZq6UxOsQqbkcaJqXdLCxEVpBQLHViv65uar9N2qO1Pryckx++WU8s3ZtQsfQ9/HHkffww617Ai3QaiEl/S3lPUBajQbH9+oFoLkAzVYZdhoWRazcswcTkkgxZY6UPxTCnE8+Qa3Hg3qvF3aTCYVSXH008tK+Rp+Pl+u0lm01NeiVnY2lF16Ib6+6qtnsNiDyuiQab55OyHuk6r1efLlrF7+uzuvloSBZcXbbRVFMasebueapHF7KFvGxxiGoUSbFV++RbYgwoSB3pNi6wm40KsMmMkRIsc2QuKV9kpCK9f3DxBgjegMj0YW83IlKRXCPXEgZtFpoBAHBcFixMcTObfIAHPmGF6tSqJLONY0+H3egGFlGY7Pyxs7CJwVnUI9U9yXpM1NJSQlmzZqFXbt24Z133sG7776LnTt34pJLLsGAAQOwZcsWXH755bj99tvb43iJbkKj36/ohWA7VtGLAbcsQrVPTg6O7dkzpigCmpyl/Q4HDjU24riePTGsqCjmPChnHEfKotPh6717Y5ZFHP3ssyhbsACitOtq1usVC49EBvkmAvuSSlUKoBy5I6XXaFIW4sEYkJeH4J134qR+/fhlDT4fFnz/PQ42NKDEZoNWo2kmpERR5P1b0bC/2acqYxrUqEvhAjOatjpS0QvV46TQheIoEaEm6vfU16PG40mqX4iJ2BV79mDhjz/iyR9+iAgpo5E3d4tRQsknzbnJMZkgAlhz8CDWSelbrWH1/v0YX1aGbKMR4zJslIU8te/El17ClFde4cKTOVIA4iaSvbpxI7Lmz0dFglHz7H2RCrcQiHz2ajweGLXapM4Heq0WpVlZivOzWyakXjvnHNw3eTK/TuFIZZCQYj1S8ZIImSMVqyIiWkREO1KJntNcgQCf4ZWK8j65kBIEgYsm+XcTG/4bK0Qo22iEUavl72/mSCn6Qg2GuMOtOxLWN5pvscCk00EjCGnjlBEdQ9JnpkWLFuGmm26CRnZS02g0mD17Np577jkIgoAbbrgBmzZtSumBEt2LRp+P7+4Akd14u9HY7Asiur6e7YrHgpXVbKyowOe7dqG33Y6eWVk4GFW3z+BCSsWRYgvkL2S7yoxgOIzfamrgD4Xg8PlU50ZFL4ZbC3v+yZRwJQoTK/5QqN16FKLjwT3BIOq8XqwrL+cBC/1zchRCKhAOI8tggC8UarawZ4uK6F6MzqCtjhQrc2GMUHFnAHUhtbW6GgAwNOo+4pElLeDlAyXrvV7kmEywSGEu0YsX5kgVSu/n4xctwpjnn0dA5W+TCLvr63n8dabBwib8oRAvXWXOuMPn4xtGWQZDTAeJ/V1LHn0Ub0lN+/FoTWlfPFdx4Y8/Yt6XX6I1vmOe2axY9LPFu1Wvx6zhw/G3iRP5dTkyIZVRYRNSeac/znMySY6TO54jJRM+7HvxnfPPj/yc4FgOl9/PP7dtFVLMKZU7R+y7Sf7dx8pBYwkpQRBQbLOh0uVCIBSCJxhEttGoSPDtkZUVt9+wI2EBWAUWS1NZLgmpbkXSZ6ZgMIitW7c2u3zr1q0IsYQZkynlO9dE98IZCCgcKSBy4o1X2gdELP945XbspPf5rl040NCAq0eOjDtI1On3w6rXq9ab3zNpEgD1Jv/dskV/pcvFwyaApqntKXOkpPvNb4ceH3nYREftCH940UUAgE927MBAKZyjf24u9jc08EU8i0wG0GyKPFt8pcOXWTAc5n/vZOibk4M7fvc7fCC9FozzjjoKj06d2qxvSO19v7W6GmadjodUJAJzndhmhFYQeGoW2xWPDqNg8eeFUULecP/9uPmzzxJ+bEadx5Pw3KuuBlv8fbN3L7+M9Wo6pJ13IDKQdmt1taqgkfd/vrtlS4uP2RohJRc70cfAnN7WuAH2qIAel0ppn/y27JgD7biR09GwfqdGny/mOZWVgKqN3wCaO1IVTic0goCjpE2TOq8XgVCoRaHhCgT457atQsoXCiEkiqpCSv73HSptkkR/p35z5ZX4SgqVKrZaUeFycWcn22hU/P01gpA2jtRvUvLvAKkPLCuOm0xkJkmvjC699FJcffXVWLBgAVatWoVvv/0WCxYswNVXX43LpA/BypUrcVQXTVUi0oNGn69Z5Hiu2dyiI5XdQgNqtSTENknDKY8uLkZ+nMG60TtscgosFmgFQfWkuStaSElzpIBIeAKgHqneGtjCqj0WGorSvg5ayEwbNIgvMFgpW5+cHIRFkbtM7kCAl0FFN++zxVf08E9RFPH5zp2KRaJ8odEa96QlWruTrtVocP9JJzXrA9JpNLjlhBOahVGoOVL7HA70zclJqOmcwYZesv6EYDjMHSm2Kx6diskcKbWepSd++CHhxwYivTeeYDBl/YPphkUKCdgnK2+TlzAxR+qYkhK4AgHsrK1tdh/y800i/WiNrRBS8tuujorTbksvJnufNvh8WLp1K3/uhSrvnRyTqUlIZZIjJX12G/3+mOdUJrjVBsIDzR2pw04niqxWXpVQ5/Hg+EWLMOSpp+Iei8vv55/btgoptnEl/14zqzhSt0+YgCuOOaZZ2e6E3r0xWSrxLrJaUely8feu4j5ZT3CcUQIdyZbqahRYLPw9TI5U9yPpM+KCBQtQXFyMhx9+GBVSaUJxcTFuvvlm3hc1depUnHrqqak9UqJb0ej3N9vh7peTw8taGMk6UvJmeY0goMhqRW4cIaUm6BiCICArqsl/8aZN6JeTo5i3U+lywRUI8Pt5/dxzebx7KmBlUNHCIRWwlLGOdKRYgzIADJMGiLJeoY0VFeibkxMRUpJrEb0ryRZfNR6P4v2xsaICp7z6Ks4YPBjvS05PpWwumUc23DlVdFRJUrbR2KzP71BjI0pl5TCJwEIOmHNb5/Wi3uvFwLy82I5UMAiDVos8sxkCoFryVefx4FBjY4sDYeVDaTORAosFIiJuoU6jQTAcbnKkpFAPAHxMwl6HA4OkhDuGfJFWGTVXT40Gnw89s7JwqLEx4TQ3eT/VJ9u3K/rs2jKvLttoxGGnEyf/979Ye+gQHjjpJABQdU3lQirTwiaAyHeLmoAEmkpAYzlSpqiwicNOJ4qtVu7S3/jppzHL1eW4AoGUlfapCSk1RyrPbFZNgpRj0etR5/Xy58hnUt12G3//posjtaW6mrtsAJqtCYjMJ+kzk1arxR133IHy8nLU19ejvr4e5eXl+Otf/wqtdILt3bs3eknpUgTRGqJ7pABgXFkZfjh4kC+yA1Jkq0JIGQzYXFWlKJ2RI1+EhEURWo0GeWYzGqL6QuS3jy4xlCO38UVRxEXvvIPjFy1CrccDnUYDrSBEhJTfz3cVLXp9Un0rLTFEWmilKk5dDtsZ7eg5LmwxXha1wDpz8WL+d2eLhujyFbnjJG/IZ0LzgExwVMgWoqlMNWOEOkhI5ZpMzYbltkZIsZAD5vyx1D65IxW94GJzpLQajWqfXigcxrlvvYVhzzzTYqkRc5wztbSPvT6/VlWhf24uTDqdokeKlfaxTaToAeRAZJOpyGrF7/v3x48HD7a4mGzw+VBmt0NE4uWu7G+cZTA0K3tm50k2TDsZmCP1kxSj/8zatTBotaobGApHKoNK+9h5utHvj13aJ5VUu/x+aKUytuj7UDhSLhcP5tFrNAoRFVL5XmO4ZBuW7SGk+EypJDeoTFIoCztfMPGZb7HwTRZ5cEtnsqWqStHLSo5U96NN3/DZ2dnITqL+niASRa2kbkh+PtyBAF8Qu1Xq69lCbOJLL8W8X1Y+w2ZbsDIitYW0U+YkqcF6SgDlsOC99fXIN5tRaLWiwunkvVbtgdVgwFszZ+L5M85I+X3LHalkoo5TBQubyJaJWRbuwRbbaqV97FjlLh3bZZfvyB+W/c3iNWi3tuyvoxypXtnZqXGkjEaERBE/y4IQ5GETQOzSPkC9RMvh8+G7AwcAAB9v3x738Wsz3JFir8+vVVXcQWDnHYeUjghEFmNGrZaXWMpx+v0YWlCAOydOhCcY5D0aaoTCYbgCAfS22wEkvlnAFun9c3ObCakajwfDiorwv/POS+i+5DAhxUTRgYaGmD2E0Y5UppT2MVEgfx2iYRtYzFGP7jmP7pGSJz6ymX/3SwmIzLXcU1+Pmz/9lI+yAFLbI6UmpPpI77tYwRKxYGV7sQYSA+nhSIXCYWyrqVE6Umk034roGFp1Zvrf//6H888/H8cffzxGjRql+EcQqaBBmh0hh+3msvI8duKWCyn2pRyrfMXp9+O6MWPgveMObPnTnwA0Lch31tY2c6XilfYBTT0lQFPfFQBsrq5GntmMIqsV+xwOiEhdT5Qa5x11VMrCK+SwLyt/B5b2yWF/22GykrAHvvkGQNNiu1lpn8+HQVJplHwhyko+5YsSuWMVK3Dk/W3boPn73xV/30TpqN6OnllZqPN6+WJIlPrJWuNIAeCDd1lpXyJhEwBU+6S+3beP7xy/uGFD3MdnYjZTe6TYOWxPfT0KZUIqKAkeVtonCAIKrdaYjpTNYOC9kdHR19G3BYDe0oZEokKKLWAH5OU1S7+scbsxqU8f1STTljDpdNheW6sYJhurzKvAYoE/FMJbv/6acfHnQOS7Jda5gW1guQIB1dc52pFyBQKwRW3UnSI5hvulDZZbP/8cj//wA85cvBhApCLDGwy2a2kfizofU1qa1H0ZpVlb3ihHSnGbNOiRqvV44A0G0UcaNg2QI9UdSfrM9OSTT+LKK69EUVERfvrpJ4wdOxb5+fnYtWsXpnXBSfNE+iGKIqrd7mZlQmzhUB0lpOSC6/6TTsLFw4cjLIqKnTdGo9+PLIMBRp2u2S768YsW4ZHVqxW3d0q3j4V890keMLGlqgq5kpDaLfVDtWbh0dl0Vmnf6quuwiO//z3/2aDV4ippeO8OqQE/VmlfvdfLe0zkC1G24JQvQCpcLv7FfyDGLLH/bd4MAK0WUh3xurEeE+ZK1Xo88IVCisjgRGDOX1gU0dtuR4XTGVngG40thk0AaNbXCAAf/vYbBEHAFcccE1OsMjK9tC/XZOKbPLkmE0+mY+XBdtm5rNBiielIZRmN/LwUb/ebbR4wRyrRWGzmdvSR3gNyajweRXJgMrDwGDnHx2gDOGfoUADA5qqqjCrts8n+brHEIdvAcsWoZIh2pOSl44wjCwuhFQReRrlT+n76avduAE3CKc9shkYQ2kVI/WHkSGgEIXkhJX3vxBNSsRypLVVVKe1Bjgdbi8jPe5Ta1/1IWkg9/fTTeO655/DUU0/BYDDgz3/+M5YtW4Y5c+bAEWcQKkEkitPvhy8Uara7zYQVEyZcSEVNPL/k6KMBRJwEtfuOdobkM2t21tZizcGDvJQrXmofezx20txTX8930nfX1yPXZEKR1coFVnuV9rUnPLWvgx2pE8rKMHfcOMVli848E3NPOIH3NcUq7XN4vSi2WpFtNGKP7AuVLSrlC88KpxN97HYUWiwxhRRLRqtpRZhHR71urASSPQfmIiTrSMk3L04ZMIB/1uSOVPRuqy8Y5EluRVYror3gnXV1yDWZUGy1xgx1YdR6PDDrdG1KhktnWE8mEHn/5phM+M+GDbht2TIAyhLWfIulWd8bEHl/ZxkMfAMp3qKNvedZYEVLQpbBNhvyzWbFgp1tcrV21MJ0KbFUTqz3qEGrxZD8fDj9/owq7ZN/n8SLP/cFg3EdKbmr55INpi+fOxdVt90Gi16Po4uL8ePBgwAi57piqxXBcBiiKHLhZNbp+ADgtqA2vH5yv34I3XVX0tUYzJFj53ZVRypGj9SRTz+Nvk88kdTjtRYmpOTnTXKkuh9Jn5n27duHcdICx2w2o1H6wr700kvxxhtvpPboiG5JlcouD9DkQFz53nsQRZEviKNP0uyLeebbb/MvESBSz+xW6XnSCAK+vuIK6DUaLNu1C2NfeIGLsMYWhFSOycR30ffU1+Po4mLeTMyGCO6VNhjas7SvvWBfVh3tSCVCTpzUvhyTCWN79sS/163jl38p7cTKF56HXS4U22zoqdJjxGC9Va1JReyo1405T6zJvLVCSv6ZG1lSwv8/x2SCUadDttHYzCWRO1J97HaU2e24ffx4PCglsm2vrUWe2Yw8s7lFR6TO48nYsj4Ge41zJCEFAIt++gkAeGkfIM1c8vmwqbISwr338l6oarcbhRYLP5/ESyll15VlZyPbaMT+BDc7PcEgBOkYoxfs/lCoTcO/pw4YAAD44Q9/wO3jx8f9fNgMBrj8/owq7ZMLjYRK+2I5UvLSPpkjVWKz8b/P0cXF+LWqCmFRRKXLhQF5eQiJoqL/yKzXp0xIaQRBVfQkS7Qjpbaxkg49UmpCilL7uh9Jn5lKSkpQI53Q+/Tpg++//x4AsHv37naZw0J0P1hzbHTjurzvaXd9vWopAdBUxgJA0YjNvijUBM3v+vTBlP79uehh5WMtlfblm83cqaj3epFvNqNE6lWyGQwYUVzMb9tlS/vYHKk0W8jIhdQjq1fzcg4mpP5v1CiUO52o9XjQ4PNhpZTk2Oj383MV26UtiLH7z+4PaKWQ6iBHymowIMdk4o4Uc+2S7ZuTLwjkgoa91qVSjDYjFA4jJIpcSN0wdiy+ufJKPDRlCv4yYQKMWi32ORzIM5uRK/UDqc0+EkURD3z9NX44eDBjgyYY7DXONZubNeHLS/vsRiMcXi/ekUpLt1RVAQAve9ZpNDDrdHEXbfJzZFl2Nu+XaQlvMAiTTgezXg9/KMST39hnoLWlfQDw7vnno+q22zC2Z088NGVK3NtaDQY4A4GMcqTkPb2xRKRBq0UwHI6EFMVwpHyhEP8sxRJcQwsKsKW6GrUeD0KiyIfGOv1+RdlcKoQUK0OMDsZoDaYEe6SihVRrqgbaQrXbDY0gKD7H5Eh1P5I+M5100kn44IMPAABXX301br75Zvz+97/HBRdcgLPPPjvlB0h0P9TqjhnbZ88GAKwvL1ftkQKUCUHbZHOnYt2eId8N5mVgLYRN5JvNfAHeKPUu9JBcgCyDAaN69OC37YqlfQbWI5WGPQryHfnbli3DpJdfhiiKqJfSz9iiYVddHcqlxX9vux3BcJh/QVdIscF5cWaJsd4qtX6VluhIJ69XdjYXUnUeD0w6XdK7w/JjTURIsYUMC5sw6/V8I0MQBO6I5VssyDObIaJ5OMJ/f/4ZRY88gr8tX47Pdu7M2P4oBltI55hMPDmUoXCkTCY4fD6+uaPVaOAJBOAKBLgYy5aVFqvBFsdWgyGS7JjAbCEgUtpn1uv5+4eVWNWo7MAni9VgSPj3WRx/MA0d8dai1Wj4eyBeaR8Q+RzHcqSAiOANS2V6aoJrUH4+Gnw+/Cr1d/aPI6Q8KmVyycDEdypgjpxXckbVXieDVotAONwkJv1+FPzznyl5/ESpdruRZzZDKzs+NouPjIXuQ9JC6rnnnsMdd9wBALjuuuvw0ksvYejQobj33nvxzDPPpPwAie4HWxhkqwieAbm50Gk0iqnn8YaoHpAtHFiJViyHSZ569NPhwwBa7pHKt1hQ5/EgFA5HRJder3CkBsuGaaolmqU7bJ6JJ4VfkqmC/d3Zwn5PfT38knuWbTTyRcOuujru0Nx8/PEAmsR6pcuFQotFIYijYe+btYcOJf3l2JG9ZceUlOCznTsRFkXUeb1tEiQD8/JUhZRWEPDmr7/yvj8mpGJF4zMhxUr7ACgE66+Vlbh86VKF29cVPyfJIBdS0aWX8nNetuRIsfduo8/XtMkkvUYtlRHJR0TYTaa4ZYBy2OedfebZopt9RlrbI5UsNoOBO8Lp5oi3BfadEjP+XHrd67zemI4UEBG88SotiqX3CavMYHHk7eFI+aR5cqlAXtpn0ulUXS72WCxUilWRMDoi8EEtFMtmMCAsim0WpkTXIakzUzAYxH333YdyKQUGAM4//3w8+eSTmDNnDgxdsHSJSD94E6yKQBIEAQUWC6rdbtR7vbAZDKpR5w+dfDKApjJBoCnqOla50x5Z/8BH27ejTko+izeQN1/aZa/3enmaVolskaPYqYpzP+kKK+1ztSAoO4NoISVfDLCFIxBxrNj7gJVasvlRrGcuniNV7/VifFkZdtbVxQykiEVHOlJnDRmCHbW1qHa7FXNlkmX77Nn44Q9/UAgptsC/auRIAE0JlcypiLWAYu5snsnEj0f+Oq85dIj/f+iuu/DaOefg6enTW3XcXYXbx4/H9WPGYFxZGe8XYsiHatuNRjh8Pt5X1uj3c1dU7kjFizRnnweTTsd3yhPBEwjArNMpFuxAakr7ksGm1/PnlymlfUCT6InZIyWdM2o9HlhUPlvsu9ETDPIUTTXnir1PtksioyyGkDLrdG0WUn7ZGIS2YtTpEJKctlgbeGzzhp2DWCrhlP79ASQerNIWqlSEVCIhMERmkdSZSafT4Z///CdCndzgR2Q27OQZaxZUocWCgw0N+PMXX8RcGNw+YQKuGTUKH2/fjhelRm62eC6OsePNFosfz5qFsCjyE3M8AcF2zw87nTyYgkVRs9/bMXs2ds2ZE/c5pyssbCJWDX5nodNouEBhQqqHzaYQUhpBgFGrhScQwAvr1wNoSmg87HRClOaomPV65Ml63eQEQiE0+Hw4Rgpe6P34481mjcWjIx0pJlQafb42OVLMjZILMbYhwBYp7HPXkiNVJC0y5I5UnWzh/7Pk/G649lpoBAGzhg/PeEfquF698K/p05EjpXruvvFGfp18591uMsEdCPC+plc2buRCnoWLtNT3JD+XsjK5aHbW1uKid95RJKCxz0UzR8rthlGr7bBzgcKRypDSPkDmSMWJPwciQkrNkTLJBK5LVr4ZTbSQYt9NrvZwpILBlA1tZ4LM4fXG3KRht2Hv2111dbAZDFgojeEpT7CMtS3EcqSA5ummROaS9Df8lClTsGLFinY4FIKIwKa5x6LAYsHrmzYBAO6aODHm7diC7Kr33wcQ6YcxScljajx/xhlYfdVV/MtmVwJC6sjCQgCRGUMsmCJ6ITggLw/9onohugrMkXLGmGfS0bAvavn7gzkcVoNBIaSApnkr3+zbhwKLBUVWKzSCgH0OR1NqlU6HAosFrkBAkYQFNDmaR0l/ZyC5eVIdGdLBSlYbmJBqY/mV2uckepHAFjGxFlD5MiHFhB37ezn9fiz+9VdM6d8fI2QJgd0Ne4zzESunZOJp1b59+P7AAeg1Gu6q98vJUcyvi0Z+LlVrgg+LIoY89RQWb9qEtTJ30BMMwhyjtC/fYklJoEAiWGVCKhMdqZZK+xp8PvUeKSakWnCkcqUZUdtramCSznOA0pFKVfx5Skv7pPup93pjOlLstQtIG1vl0gByVi7bEY5UtduNgqjzbCLz3YjMIul3/bRp0zBv3jxs2rQJo0ePhjVq0ThjxoyUHRzRPUlESDn9fhi0WtwzaVLM25VElfCxhLZYi4A8sxknlJVx54rNIIqb2mexoFd2NtaVl8MbDMJmMKiWMHVVWMRsS71iHQV7X6i9P+R16WbZ7dySQFpwyinQajQ4qrAQ965ciZP69eO3lS9aB8n62th74UiZkFq9fz93qFrC34EhHaykpMbjwa+VlZjct2+b7k/NETZqtdAKQjNHKlZJD1vc5ZnNsBkM0Gk0vFRtzief4LDTiRNiDGTtLsTa2FFzzr/YtQu9srP536Z/bi721NfHbPRvSUhtrqpCSOr7m/DiiwjfdRcEQUC914tso1FRQgagTTOkWoPNYOA9ipnYIxVrc0r+t1TtkWJ/l0AAYpzbaQQB+WYzH0HABJg7EOAuM3Ok2vp95QsGU1bax56/w+eLLaSk42c9Uiw4KMtggEWvV4TitBfJOlLVbjcONjR0642jTCTpM9Mf//hHVFRU4LHHHsPFF1+Ms846i/+j1D4iFbQkpNh8G7vRGHdn9PyjjuL/L4oiKqSZQS3BFgobKyoiP7fQD9ArO5s3umYZjThWmuI+qY0L2XSAfYnFKjHpaNhCQO394fL7mztSOl2kjA9NKXQfzpqFKrcbS7du5bcpk1zI6DIp1ug/IC+PX/anjz9WzNaJR0A2Y6m9YQvyD3/7Dbvr63HdmDEpud+zjjiC/78glYhxR6qF0j72+TRKDeO5JhNqPR5sra7Gixs2AFD2MXZHtDEEQg+VGWBrDh1SCP1TBg5EMBzGG7/8onof8nNplsHQbJecuT0s4ZItPqvcbhRarc0cqTqvt0PnfCmG12ZQaZ9c3Kohv1xNuModKbVBuHIKLBb4QyHkSrPgACjmSKVr2AQQOf/GcmyZQ8lKrStcLr5RWmS1tmpcRbKoCSm2oVXpcuHfa9fy0QEAcNmSJTjm3//mLiKRGSQtpMLhcMx/1DtFpIKWhBQTKC3FURdarXjj3HMBRBYIhyVHqiX0Wi3yzGa89ssvsOj1GCRbRKthNxr5AjzLYEDP7GyId9+NcWVlLT5WumOVlYulQ2lfPEeqwedTLe1jkc9sAdjbbkeuycRLosx6PS/n3Bc1sJQt8qPLNb/YtSuh4+2M0r4nfvgBuSYTxkiCvi24//pXvH3eeYrL5ELK30LYBHNOWEQxC/X4WprpBQDnHXlkm48zE4heVMsd9XfOP5///9wTTuD/Pzg/H4Pz87FB6jVbtnOnotcv2pHyh0KK2Tssxe916Tx51ptvAgCqpDTLaCHV0c60/LEyqbRPK30uYr2W8iqI30cFkgBKR4otymPdl3xumVYQIAA8EU8jCNBJcezpFDbBgoL21NfHLFGOLu2Tf7/HCw9KFb5gEI1+f0xH6oqlS3HdRx9h1b59/Dp2TPLzH9H16dQz09dff40zzjgDpaWlEAQBS5cu5dcFAgHcfvvtGD58OKxWK0pLS3HZZZfhkKyOGwB8Ph9mz56NgoICWK1WzJgxAwcOHOjgZ0KkEncwGFdIHVVUlPB9sZKtXgsWcOs/ES4aNgwAMLyoKOaOMcNuMmG7FC8bPUS4qyP/ck6H0j62gNBrNHxhxVyRRr+f9zjJHamDksiVhy/0yMriYSJmafBoocWC/VFCqtbjQZbBAINWi+mDBuGfv/89ACRcNtKR87fkjuGwoqKU9LGY9fpmC1g1IRXLkbrimGNw1hFHYNrAgQAigrTC5eK7xVv/9CfcKEXSd2c+njULG669VnEZew9rBAHnDB2K1885B1MHDMDvpcAPxoDcXOysq8OSLVsw9dVXeU8o0FxIAVDshjMhdWRhIXrKZoRVud0oslqbpfa5YgyIbS8UjlQGCSlGTCElc2GiZ40BTY6UVwoCAmIPfGcL/dKsLAiCwEdayKPFLXo9v5/W4kuh+85cuL319TFDc6JL+2pk7lBHCCk2CiD6O5/9TZn7+7NU2QI0bQbUxUnaJLoerTozrVy5EmeccQYGDhyIQYMGYcaMGfjmm2+Svh+Xy4URI0bgqaeeanad2+3G+vXrceedd2L9+vV499138dtvvzXrwbrpppuwZMkSLF68GKtWrYLT6cTpp59O7lgXpiVHKlZPgRrysoCKBB0pAJgxZAgAJNSwz2KKgcybgSN3odKhtI+9LwRBQA+bDVpB4OEP/lCIf0GxhYZZVisvL0nqYbMpHCkgEg0c7UjVe71cjH84axZuHTeu2VDaeHSkIyXvaVIbHZAqFKV9klMRaye6wGLBkgsu4AvDntJQ2L319RjdoweGSCmK3Z1pgwYpykcZL5xxBn6+7joAwEXDh+OzSy5pJpCZkDrnrbcAKHszFaV9LJY5SkgJiHzOZ48dC08ggLAootrtRqHF0qxHqqPTO+WPlUmlfYxEHCk1ouPPBSij8+Wwwfal0iYiCxCS99Xlmky8d7G1+ILBlJX2sXN1SBRjC6koR8olG0rcEUKqOsZwap1Go+jr2lxVxf+fldImOs+N6Bok/a5/9dVXceWVV+Kcc87BnDlzIIoiVq9ejZNPPhkvvfQSZs2alfB9TZs2DdOkqMpo7HY7li1bprhs4cKFGDt2LPbt24fevXvD4XBg0aJFeOWVVzBlyhR+fGVlZfjiiy9wyimnJPv0iDSgJSEFRMqBRvXo0eJ9yb989zc0JNQjBTTNGxqZQFOoXKwVdtB8lY5CLp7SobRPvljQa7UIiaJC/LBZYXJHivU5yXvdemRl4cvduxX32dtub9YjJRdSjKSEVAc6UnK07ZiqZpP12rTkSEXTMysL6w4dQiAUUvT6EOpcPWpUi7cZkJeH39as4T/LF3Yembuv1gTf4PMhW+o1LbBYUOf1osbtRlgUkW+x8M88+51Ezs2pJFNL+xixNqdaEiTR8ecWvT6mA83eD6znjo20CIkiv59CqxUOnw/+NrhKvlAIeSks7dMIAsKiGLu0T+ZIiaIYcUtZuI2sSqS9iCWkgMh3pbwclsHCixzkSGUUSZ+ZHnjgATz88MN48803MWfOHNx4441488038dBDD+G+++5rj2PkOBwOCIKAnJwcAMC6desQCAQwdepUfpvS0lIMGzYMq1evjnk/Pp8PDQ0Nin9E+pDIl/Vb552Hv0yY0OJ9DS8qwtGSKALUyyTUKLbZ8N3VV+PeOKmADLtsoZ2qHbl0Id1K+9j7wh/Dca50uRQzptjt86XUOIa8gZs7UtnZqo6UPUpIFVmtLfbnMTrSkQKAg7fcAiAyC6q9sOj1vNSrpbCJaHpmZWGvw4F15eUYm4IeLiLiSLEeNINWq1ikqZX2qQkpoGmj4bgXXgAQKYvWajQw63R8/pR8sdoRdNfSvpbgM/IkRypetcBxUiom6wM1SI6URzbslokBtVl6ieJPYdiERhC4KxXLkWLCOhAOIxAOIySKHepIVbENOhWhx1yy/rm5vPcsLIr8mMiRyiySPjPt2rULZ5xxRrPLZ8yYgd3SDm974PV68Ze//AWzZs1CtnRCOHz4MAwGA3KjFsfFxcU4LDXfqjF//nzY7Xb+rywDQgEyCXcgoDrNvTUYdTp8edll/OcjkiglOr5Xr4TcBNZz0FIoRVck3Ur75E3WQEQ4XD9mDBZI7vNhl0vhWrHb95U2XxgKIRXlSImiyK9Tc6Qsst3GluhoR6o0KwufXXIJ/iE59O2BWdaY3lLYRDTFNhvvzxjfu3e7HWN3Ql4SOG3gQHy7fz/fLZefS7NUhJTD6+Ulf0xw7ZbGPjCnPcto5A6kvHyqI8h4R6oNotQsbWi0NONvxpAh2HDttTzF1iiNtJCX9jEh1Zaku1TGnwNN5+iWwiaC4TD/DmbvYbvJ1O5ipdLlglGrVW01WHzuubhm1CiMLCnhZbENPh+PqichlVkkfWYqKyvDl19+2ezyL7/8st0ESSAQwIUXXohwOIynn366xduLohi30XrevHlwOBz83/79+1N5uEQbSXX5iHzR3MduT9n9Ms4/6iicdcQR+CmqWTwTSLfSPva+YAv50qws/Gv6dJwiJVsdamxUNGqzxWNZ1N9d3i9lkTlSTr+f97sBkTkm0ULKpNMlLqQ62JECgKkDBrRrj5RFGnIMtDyQNxr5a5mKVEFCuUlwz6RJ8IdC+GDbNgDqjlSj7P0tjzOPno3GnNgsgyEtHKmOLClsb9h3UlvCGUw6XcSRSkDcjigp4Y/FSvvkQqowFUIqhal9AFp0pOSlfTxwI2p+YHtS6XKhKMZcymmDBuHfZ5yhOI56mVPcQPHnGUXS2/5z587FnDlzsGHDBowbNw6CIGDVqlV46aWX8MQTT6T8AAOBAM4//3zs3r0bX331FXejAKCkpAR+vx91dXUKV6qyshLjxo2LeZ9GoxHGJAILiI4l1UKKnejKsrNbTOBrDSN79MCSCy5I+f2mA/JFUzqU9snnp8hh4ulQY6OiUfsPo0ZhydatuD5qphL7kh6Sn89FR29JbO1zOPiCv9bjwdFRKZEmrTYhISWKIoLhcMY1yZt1umaOVLJCKstgUB34SySPvLH9mJISDMzLwy9SAIuakDr/f/+D729/AxBJHmOfhSKrFXdOnIj7vv4agOxvZTTC6ffDHwqh0e/vUEFjzVAh9cjUqZjQu7fqrDDGpxdfjNI415t1Oh5/nsy5mYdNhELNHKkqtxsuvx+XLlmCR6dORb8ES+GByKZKKmfm5cti29WQh01Ej72w6PXwhUIIhcPt8p0PNAmpeMjPlSzMo8hqJUcqw2jVQN7Fixfjl19+wU033YQbb7wRmzZtwptvvolrU7wjz0TU9u3b8cUXXyA/qjl59OjR0Ov1ilCK8vJybNq0Ka6QItKb9mho3jVnDjZdf31K77M7IP8SSofSPvblWh/VrMvKKw42NCgcqTGlpSifO7fZLBZ2m/EyF531z4149lkMePJJhEURu+rqmi0mTNICpiXYoMhM6+0wy56/LxSCTqNJWBSxxXkmlmmlC0cWFmJLdTUA5bmULZr9oRDvo6r1eBSOvXxhyEv7pHCRq957D0DHpufJN3IySUhlGY24dMSIuLc5ZeBADJf190ZjlpzhZJMUDVptM0cq22iEXqNBtduN/23ejCVbt+K/P/+c8H0CqR3IC8hK+xJxpNhQYuk7yhpVuZAo68vLE+4TYyMC4qHmSPWSKh+IzKFV7/qzzz4bZ599dpsf3Ol0YseOHfzn3bt3Y8OGDcjLy0NpaSlmzpyJ9evX48MPP0QoFOJ9T3l5eTAYDLDb7bj66qsxd+5c5OfnIy8vD7feeiuGDx/OU/yIrkd7CKlkdtYIddKhtE8tIQlo2m13+HzNooPVFvllkrN9xTHH8MuKbTacOWQI3tu2Dbvq6rCrrg7uQACDozZwEi3tY25NpjlS8tK+ZFO+2KIo016TdKLQYlF1pOQlSDvr6jCqRw/UuN0KIdVT5oCwRTFLaVy6dSsApQPW3sjfJ5kkpFIBd6SS7Fsz6nTwh8MKIcVSG6vdbrwg/Z0bk1zsN6qce9tCSz1S8rAJtdI+IPL+z0qw+uj7AwdwwqJFOLq4GBuuvZZ/XsKiCFEUmzlblS5Xi6E+ciHFRnP0sNnIkcowkj4j9u/fH2vWrGnmDtXX12PUqFHYtWtXwve1du1aTJ48mf98i5Q4dfnll+Oee+7B+9JgwWNkix0AWL58OSZJaWoLFiyATqfD+eefD4/Hw2PYtfRF3WXp6IhdIjHas+8mGX69/npESyONIMAqDZVM5ItzREkJGufNa1YSc2xpKd6T+kt+Ki8HgFYLKXabWPNduirRYRPJ9EWQI9U+7L/5Zj6YNNdk4rvfsc6lO2prI0LK41GMBTh98GBcP2aMYmBoltHIB1Xf8bvf8WHlHQ2JbyXckfL7Ex40D0ilfZIjJX9vFFgsqHS5+ADZbUnEh4uiiEa/P6kZjy3RYo8UK+0LhZqV9jFhmcyQ4d3SXMGNFRXYVlPDg6lOf/117HU48FtNDf571lm4aPhwABEhNa6FXAB5wilzgYusVlRKiX9EZpD0N/yePXtUh936fD4cPHgwqfuaNGmSIiErmnjXMUwmExYuXIiFCxcm9dhEehIMh+EPhdJm0U40kS49LUcWFqpenm00RoRUgruian0F8gX+hsOHoRUE9ItK/EtUSPFd0jQoiUwlivjzJPsi2A748Ki+M6Jt9JL1DudIw1XZuVS+WO6VnY0DDQ3YUVuLUDiMOlmPFBBZnP5r+nTFfWcZDNgoLa6nDRzYbj0nRHKYpbCJllL7ojHqdHwgr9yNzLdY8O3+/QiLIrKNRj7zKBG8wSCC4XBKhdSg/HwUWiwx+7/0ckcqKrUvOpQoEZi40Wk0WLlnDxdSn8iqpm7+7DOFkGqxR0q26eQOBKDXaGCV+reIzCFhIcXcIQD47LPPYJelYIVCIXz55Zfo27dvSg+O6H54onaWCCJRTLJSpNYinzO2oaIC/XNzm+2EJyqkondJM4XosIlk+iIEQcCqK6/EMBJS7Uau2Yw6r1f1/bf/5psx+rnncM+KFZjUty9EIG6gARARUmxTYEAGjnjoqlgNBrj8/qRL+wxaLVx+v6K0D4iUO6/YswdAJISnIgnXhJWqJVpGlwgzjzwS0wcNipnALI8/d0dtWrH3vCuJ8sQKlwt9c3KgEQTsktypqqjXoMLlwlM//oj/GzUKDp+Ppx3GgpX2iaLIh2Mnk/pKdA0S/gY866yzAES+CC+//HLFdXq9Hn379sWjjz6a0oMjuh+Zuvjsysw94QQ8vWZNZx9Gi7D5N4421J/PPPJI/GfGDFz1/vvYVFmp6n51eyGl1yMQDiMYDsOXZI8UAJof1c7kmEwIhsM8yjr6/Vfv9SIQDuPsN98EoHSz1GCLY40gtLgDT3QcdqMR212upCPpjVot6qLmSAHAwmnT8MrGjQAi5cy/VFa2OEqGwYRUKh0pjSDEFYgaQYCASGlfSAr2YWXU8cImtlVX49eqKkzu21fRf8UcJqtejz0OB9aXl2P0c89Bp9Hw4CAAmP3JJxggbbi19Hmw6vUIiSJ8UvmhWa/n8fNE5pCwRx8OhxEOh9G7d29UVlbyn8PhMHw+H7Zt24bTTz+9PY+V6AZk6uKzK/PI1Klw33FHZx9Gwtwv67tMFkEQeN37gYYG1an1Jqk0pqXSY54klWHvZfbZ9AQCSfdIEe0P6ylhfU3Ri9HnpO9pVsrUkpBiDm++2Zw25b1EREit3r8fex2OpL4v5aV9ciFlN5n4e2FIfj68UtlgIrBgilQKqUTQa7U8bMKi13PRF6+07+w338S5b72FWz7/XHF5tduNQosFfXNysLO2Fg+tWgUAfJAxAGz905+gFQR88NtvAKDoL1SjWOpdO+x0wiMdIzlSmUfSxc67d+9GgVQ7ShCphoQU0VqWX345vr3qqjaXH7H3XlgUVRud2eKjpTr3TH0vy2d5pXp2DNF22CBd5tBGbwac3L8//iGl2uaYTKqbBXJYz2FLi0aiY5EPt/6ttjbh3zOqxJ8zWOT9EGmNx8T23M8+wwmLFsXcPOKlfR3cD6rXaHjYhPw8yzYP1IQgO19Fj9BgYRmT+vbFuvJyvL15Mwbl5eGFM86Als2itNtxTEkJPpX6puwtCEcmTA80NEQcKZ2Oz/EiMoeEhdQPP/yATz75RHHZf//7X/Tr1w9FRUW45ppr4KNIR6KNsFjlTFt8Eu3PpL59W0xRSgT5ey8njpBqaVfRlaFCii1E/KFQ0vHnRPvDHKS9kpDKUxFKbMH7jylTWizdYqV9neWsFlM5oSp22bnpzCFDEv49AxvIqyKkzhg8GEBTUmmly4VQOIzHvv8e3x84oEhzlMNESac5UlHljTZp4He0WAKa1hghWbkeEBFdNoMBM488kl+25IILYNbrMV16XSx6PcaVlfFNipZ6wuRCyhMM8tI+cqQyi4R7pO655x5MmjQJ06ZNAwD88ssvuPrqq3HFFVdg6NCh+Oc//4nS0lLcc8897XWsRIay9tAhDCsqgknWxJ5pi0+i6yAvhWqLkIpugM4UWLiELxiEPxxO6RBOou0wkbRXKu1Tc5IuHTECGkHAH0aNSvj+Oksw75gzp9mil2hyQ6YNHIhzhg5N+PeMWi38oRA8gUAzIXX/SSfh+mOP5ZdXulzYKg13BiIDz9WE+YGGBhi0WhR2sOiN5UhpBCGSXqkipFiARPScLCak5PdzlBSK88a552KH5PrJE0dbcuCyjUZkGQw4KDlSrLTPFwwm3H9GpD8JO1IbNmzAySefzH9evHgxjjvuODz//PO45ZZb8OSTT+Ktt95ql4Mk1Pnx4EFc/O672JmErZ9ulDc24tjnn8fczz4DkLnlUETXQd7zoyaWkhFSQtT9ZQLs+fhCISrtS0NsMiFl1GpV55jZDAZcO2ZMQj1P7P7akobZFmwGg8J9ISKw1yTZvwsLO3AHAs1cRq1GgzK7HXlSP1yly6WYJ3WwsVH1Pvc5HCjLzu7wHjoWBKE2Ly1XGgMgJxAKoc7rhU6jQWNUBVWjz8dfS4ter3htLHo9ji4uBhAp72MksknWUxo54AkGeWmfiEhsO5EZJLyVWFdXh2LpjQQAK1euxKmnnsp/PvbYY7F///7UHh0RE18wiNNeew01Hg/KsrPxkFTz3tVgMxq+3rcPAAkpovOR7xKq1bInXNrn98NqMGTcrqPCkaKwibSDlRvtra9HvsXS5vcfK9e64phj2npoRAoZVlSEPLMZl40YkdTvGbVauAIBBMLhmPMatRoNH9DrCQahEQSERREHGxpUb7/P4UBvmcDoKAySu6YWAc/GAMhhs7EG5eXFdKQA4OAttzQb+s4ok4WzJCIce2Vn40BjoyJsAkh+Bh+RviTsSBUXF2P37t0AAL/fj/Xr1+OEE07g1zc2NkJPi98O46vdu1Hj8WBEcTG+kURIV+SAdGJmu0MkpIh0IHjnnbhr4kTcIjvHMZJxpDLxfWyU9Ui1Jv6caF+MWi20goCddXUtzohKhGN79sSmP/4Rs6RBpER6cERBAWr+/GecLvXvJIpBq+VOTbzzU7HVinKnE/sdDvTLyUGOyYSaKIeH0VlCiiXgxXSkooTUdql6Z2SPHvitpgYz3niDXycXUjkmU0wXtKWUS7Xbs9I+1iMFtPz9Ec27W7bwUA8ivUhYSJ166qn4y1/+gm+++Qbz5s2DxWLB7373O379xo0bMWDAgHY5SKI5e+rroRUETOzTB44YDaBdAXZCZ+lAmVoORXQttBoN7p08uc1hE5kopAyy0j4Km0g/BEHgrlSqBh8fRQOUMwajToeQlL4X7/zUNycHu+rqcKCxEb2ys5FnNqM2zYSUWa+HJ0aZYq7Z3Ky0b3tNDbSCwPucWIy5PxRCIBxOqEwy2TLTUpsNBxsbeWlfoqmvchxeL8596y1c/f77ST020TEkLKTuv/9+aLVanHjiiXj++efx/PPPwyB70/3nP//B1KlT2+UgieZUud0otFphNxqbWdRdCbZj5AkG4fL7+c5SppVDEZlDMo5Ups2QApSlfWrJX0Tnw953w1QGShPdG/kmZTwhNTAvD5/s2IEDDQ0osdmQpyJMgEjf0aHGxs4RUpIjpbZpVSiVJsr5raYG/XJzFZH/wXCYB0kk2m82Y8gQnmzYEnlmM+q9Xp4syF7/ZByp/VLlztpDhxL+HaLjSPgbsLCwEN988w0cDgdsNhu0UbuQb7/9NmzS8DGi/WFTuLONRjT4fFi6dStG9+ihaITsCtR6PHyuQpXbnbHlUETmkEyPVCa+l+WlfZkqFrs6bLe7X25uJx8JkW7IUzbjnZ+OkGZJrdq3D9ePGYNajwe1KtUvBxsbIQKdVtrniVHa18Nm4z1RjO21tRiUl6eYNVjn8fDhu31zchJ63KUXXJDwZm+OyYQGnw/1Xi+yjEb++vuTcKSiWyCI9CLpgbx2u72ZiAKAvLw8hUNFtC9MSGUZjaj3enH2m2/isqVLO/uwkqbO6+U7O1UuFwkpIu1pSUiFwmE8vWYN6n2+jHwvG2WlKZkqFrs6Ok3kq70syX4OIvMxJOhIyUMs8i2WmKV97LKCThjYbNbr4QkEVDd0Smw2VLndCMgECxNSo3r04JdVud34//buPL6pOt0f+OckTdI0TUOBNl2gULEgCGIBAXEBN0Rx++F1EL2jjjMOijriMl4dHUG9A8oow290HJeriD9xHK8sg9dl9CqICjooFcoiKBSk0IWuSZq1zff3R885nqRJutA2Sft5v159TZucnp44J+E853m+z7O1vBy/njAh5PFYOlMxo5SHH3M6kW40hszh66gj8igDllEnpk4HUpQYqjQZKUUyrpWq93hCpqgzkKJE114g9XFZGW5/7z28vWdPn5shBWjWSEW5E0zxp8y3SbYKBep5HS3tS01JURtZDDKbMdBsRq3b3WY7JUvS3kylnqCW9kW4oZMrN1qpksv7WoJBHKyvR9GgQRiQmoqb5S6Uhxoa8ENdHc4qKOiRY1QCKYHW/0ZdCqSUjFSMZRzVTU34sry86wdKXcZAKkkdbmhAQUZGSCB1PMKHXKKr83gwUk6zs7SPkkF7XZd8mseb++CsEO0cKb5fE9MDZ58NAMju5QGplPg6WtoHADny+ZNpNuOUwYOxt6ZG7ayrUDrJWTXXIr1FW9oXftPqZPm64sMDBwC0NsTwt7SgSH78/15yCXSShP+RG06M6uCap87SNixKNxphkLPFXSntc/n9EX+v3OGA/amncObLL5/g0VJXMJBKQoGWFhxxOFCYmRmSzq5uaoKQu/Eki3qvF/b0dGSYTCzto6SQotMhRaeLGkhpb2hE63KVzFJ0OkjQrJHqg1m3ZHdzcTHEokW9PiCVEp82IxVpWLPW9aedBqB1vdGM4cPhb2lp0/BAyZLEKyOllPaFXzeMHDQI5w4bps6q3C8PFi6SA6Z0oxETc3Px0vbtIY93t0xNYwuryaRmpAKdzEgpvxfp35QP5NcIIOmuAfsCBlJJ5uq33sIZL72EoBAoHDBAXTT5q+Ji+Fta4EqiDn6eQADe5mYMNJuRbbEwI0VJQ5lfEonSAQpIznLb9kiSBJN8AeNraeH7lSiJaNfZtJdFmjF8OI7ecw8uPOkkdX5SeCc8h88HnSTF5XPAbDDAHQjA09wc8e+flJmpri9a+e23GJKRgWGactepQ4agORjEYHkNWE8Iz0h1pbSv3OHAaXY7gMiB1HHN/yfJdA3YVzCQSiKPbNyItXv3YkdVFQDgNLsdBTYbgo88grljxwIAapKovE9pfZ6Zmqq2KmUgRckgWiBV5XJhqdwBCgAa+2iXJZNer75/+X4lSh7a0j6lKUkseVYrJEmCzWSCBLRpge70+WA1GuMyssSckqIGFpG6hw7NyFDXF5VUVuJnY8ZAr3nN4+XgpDsGV0ejXX7R1TVS9R4PRsgdOBsi3JzTVkGEDyGmnsdAKok8vnmz+n2awQC73G5ekiS1Y05SBVLyB2Cm2dw6PM/rZSBFSSFVzshsOXIEW44cUR9fu3cvAOAmeSFzRhzWDfQGo16vXsDw/UqUPLr6maTX6WBLTQ25UN9fW4sjDkdc1kcBrZ/DtTE+h4ZmZKDC6YS3uRk18uxNrXOHDQPQ8flRXaENVruakXL6/ciSr/Ei3cA77narTZD6Yjl5ouMkxSShpG6vHj0ar151VciCdgDqgLlkajihfCAPNJthNRpZ2kdJQ1nkfNYrrwAAqu+7D1kWC7ZXVKA4Jwcrr7wSV44apd7x7GtSU1LU9y/nSBElj44Oko0kvAX6qGef7Y5D6jKzwaAGJJGuG84qKIAAsGbPHtR7PG1atBcNGoT3r7++w/OjTlSWxdLpQKolGIQ7EFCPPfzaD2i9Phw1aBB2VFVFHJpMPYsZqSRxWK7z/d055yDdaMSgsA+EHDk7NfuNN7BVc4c8kSkfyJmpqbAajXD6fAykKCmkG434rqZG/flX77wDANh9/DhOzc4GAFx1yil9diCq1WRClTzsku9XouShXMiPlT+nOiMzNTXihfr148ad8HF1hbYkL1LTmzFZWbh4xAjcsH49BCLPupp18snq8OGelpWW1ulAqknukjg4RkaqzuNRm2VUha1ho57HQCpJKEHHoCgLIg2aBaR/2batV47pRGlL+6wmE5x+PwMpSgrpRiP2agKpDfv2wd/Sgp1VVTitCxcoySbDZEIlAymipHT8t7/Flptv7vTvDTSbUSdnops0TQ2emjmz246tM07NylK/j9bq/w/nn4+g3MkuKw5Dg7X0csdXoOOBlNI8Qs1IRfg9dyCAfKsVdosFe44f76ajpY5iIJUktEFHNP8zbx4AqDXDWi3BIPYeP46D9fU9c4BdUO/1wmIwwKjXMyNFSSXdaESZ/F5acfHFAICNZWVoCgQwbejQeB5ar8gwmVDBQIooKQ1OS+vSuqZsi0XNRGuXEdjjNK9stCaQypWrcsJNyM1Vv++pFuedIUkSDDodAh2cMRgeSEXKSDUFArAYDBhnt6O0urr7DpY6hGukkkSdxwO9JMWc1TB75EjMnzgR244dQ63bjeZgUG1IsXjTJvznZ58BAMSiRb1yzO2p83jUwFDJSAkheGFGCS/daESLENBJEibm5QFobTRh1OvVn/sym8mkNrbhHCmi/iHfasXW8nIAPzW22v7rX8elYx8QehMn2ueQJEl4Z9481LjdcRtQ/edZs0IagRn1+g5npJxy59dMsxk6SYocSPn9SDMYMC47Gxv27eueg6YOYyCVJOq9XmSaze1+YNnlO0ZT/uu/cKC+HsFHHoEkSdggT+8GWlPK2lkS8VLv8aizG6xGo3rnhYEUJTqly9PgtDT1TuiL27dj2tChavekvkzb+YvvV6L+IT8jA0cdDggh1AZY4Z3wEtFlI0fG9e/fOWVKyM+dCaRcmoHHJr0+YrOJJnkwep7VihVffokmv583uHpRXEv7Nm/ejMsvvxx5eXmQJAnr168PeV4IgcWLFyMvLw9msxkzZszA7t27Q7bx+Xy48847MXjwYFgsFlxxxRUol++Y9CV1mqAjlmyLBUedThyQy47+dfQomoPBkHrmww0NPXWYHfb/duzAs9u2qXdbrCYTgkIgKETIADuiRJQuBw/ZFova6AUIrdnvy2wMpIj6nXyrFb6WFtR6PGppX6QGDr3p4xtuwKtXXhnXY+isrgRS6UZjxPmFQSHglkv7xmRlQQD4XjMUnnpeXAOppqYmjB8/Hs9GaaG5bNkyLF++HM8++yy2bduGnJwcXHTRRXA6neo2CxcuxLp16/Dmm2/i888/h8vlwmWXXYaWTvToT2TfVlYi649/xIH6emR2IMCwh9UJT335ZRgefxwH6uvV2TaH4hxI+VtacIMcNCt1wtqUuzLbgShRKRmp0+x2WIxGdV1UvNYK9DYlI6WX6/2JqO/Lz8gAAGT98Y948osv1Iv7eDq/sBA3ytc2yaJTpX2aQMqUktKm2YRH7upnMRqRK3cxVNaxUe+I67+Al1xyCf7zP/8Tc+bMafOcEAIrVqzAQw89hDlz5mDs2LFYtWoV3G433njjDQBAY2MjXn75ZTz99NO48MILUVxcjNdffx2lpaX43//9395+OT3i7T17UON2Y/1333U4IwW0til9dMaMkLvFd06eDABolLNA8VKrqRXe/utfAwAuKCzEhmuvxfKZM3t0yjhRd1BuAEzJzwcA/HrCBACArZ9kU5VyHlNKStzWRxBR78rX/Nu85/jxuHfBS1bhgVSgpQWOKNdlSkbKEiUj5ZYDqTSDQb3+Ywv03pWwxfxlZWWorKzETE1bTZPJhOnTp2PLli2YP38+vvnmGwQCgZBt8vLyMHbsWGzZsgUXy920wvl8Pvg0J63D4ei5F3KCApo3W6yOfQrljrgkSXhk+nT87pxz4AkE0BwMql16or1he4uy6PLykSPVCzJJknD5qFHxPCyiDlNK2+aeeioAxP2ubG9Thnoq/4gTUd+XE1bx0t8+97pLeCC14N138V8lJfA//HDIKBugNZCyGAzQSRJSU1LarJFS5kxZDAakpqQgw2RCNQOpXpWwNRmVlZUAALvdHvK43W5Xn6usrITRaERm2NBL7TaRLF26FDabTf0amsDtig9qyvAGduBut3JHQrlHnKLTwWoyIdNsRopOhzSDQV2XpOXy+/GP777rjkNulxJILY8S6BIluvvPOguHFy5US2mVkpfhAwbE8ah6z6gEaCNMRL0r/CI/3jdlk5VRrw+5Sf7PAwcAAJsOHWqzrdPnU2+Cm/T6NhmpJk3GCghtUU+9I+FvJ4SXjQgh2i0laW+bBx98EPfcc4/6s8PhSNhgqkwz96kjGSmlUUNGlBkRVqMx4off2a+8gh1VVfhx4UIMtdnw1u7dOM1u75GJ3zUJskiVqKtMKSkosNnUn88uKMC/fvUrTOoHrc+BnwJHIupfVl55JcZkZcHb3MxGM11kCMtIKUHQD3V1uGjEiJBtXX6/uiY3UmmfslRDueazWyyo1iyfoJ6XsIFUTk4OgNasU65moFp1dbWapcrJyYHf70d9fX1IVqq6uhrTpk2Lum+TyQRTF4bRxcPB+nqclJmJg/X1aOnAADdJkvDsJZfggpNOivh8hjyvSavR68WOqioAQHVTE4ZkZGDu228jw2RC4wMPnPiLCFPjdkMvSSGdv4iS3Rnyeqn+QCdJGG+3x71xDRH1rpuSrLFDIjLq9fDL13NCCLWTclmEz1OX36/OD01NSYE3rNnEUXlpirJ+jRmp3pewpX2FhYXIycnBRx99pD7m9/vx6aefqkHSxIkTYTAYQrapqKjArl27YgZSyaLB60W914uF8gyCYR0sG7p98uSomSSrydSmtG+XZhJ2jduNOo8HQM+l7WvcbgxOS+MidaIk9q9bbkHlfffF+zCIiJKKdo1UpcsFj5xlihRIOTUZqXTNvE3FUacT5pQUtRrJbrFwjVQvi2tGyuVy4YcfflB/Lisrw7fffouBAweioKAACxcuxJIlS1BUVISioiIsWbIEaWlpuO666wAANpsNv/zlL3Hvvfdi0KBBGDhwIO677z6MGzcOF154YbxeVrdR7jRMyM3F8d/+tkNd+9pjNRrhCHsjamcO1Ljd+KGbZxC4AwH8vx07cMvEidBJkhpIEVHySoSh3kREyUYbSCkzP6cOGRKylEOhLe3LMJlQEZZtKnc4kJ+Rod6Ytqend7hrnxACO6qqcLpcAUZdE9eM1Ndff43i4mIUFxcDAO655x4UFxfjkUceAQDcf//9WLhwIRYsWIBJkybh6NGj+PDDD2HVtOD805/+hKuuugo/+9nPcNZZZyEtLQ3vvPMO9H3gH3ml9nVAaioGp6VB1w0ZnIwIGakf6uqQb7UizWBAjduN72pq1OcavN4T/pu//+QT3PruuyipqAAA1Hg8DKSIiIio39EGUgfl4On84cNDMlK+5mZsr6jAMadTHauRYTK1qRQ6UF+PYZr1utkWCypdrg7NqXp9504Uv/CCem12ouo9Hsx/551+14QkrhmpGTNmQAgR9XlJkrB48WIsXrw46japqal45pln8Mwzz/TAEcaXcjJ252waq8mkZroUNW43ctLT1WzR4cZG9bm9x4/jzBNsxPH5kSMAWgcBT8zLY0aKiIiI+iWjXq+OjqjzeJBmMGBsdjbqPB40er2ocbtxsuaa9tKiIgCtYze0QYoQAl+Vl+PG8ePVx84pKIAQAv+1fTsWnHFGzOM4LjelKK2uRrGmF0FXvff993hx+3bkpKfj0fPOO+H9JYuEXSNFrU0ggOgd+LrCajS2aTbh8vthMRoxOC0NNW439hw/jply55j2yvze3LULz23bFnObY04ngJ9S2AykiIiIqD/Stj9vkudEKZ1QK10ufHX0KABgbHY2gJ/GamSYTOp1IdB6s73C5cJ4TWneOLsd4+x2lMoNxGJplhte7D1+/MRfFFrXawHAIc3N+P4gYbv2UeubRALU+tjuEKm0rykQQLrRCJNejxqPB3UeD8bb7TDq9W2CrnDz1qwBgIh3PvbV1OCRTZtQLmfAlM40DKSIiIioP9KW9jUFArAYjciUK4/qvV5UNzXBnJKCkvnzsbKkBNeOHQugbWmf0ngivAPyiMxM9cZ1LEp3v3I5ADpR+2trAQC1/az9OjNSCaxRHsTWHWujFJHmSCmTs5WMVKPPB1tqKtKNxojDexWxngOAtXv34q3duwG0Tt1WZhvUuN3IYiBFRERE/YxRp/spkJKvv5Q5ofUeD6pcLtjT05Gi0+GWiRPVxj4ZJhN8LS3wyV3+lEAq/Gb7iMxM7JODmliUphQV3RRIKd0Ca+XOz/0FA6kE5vD5urWsD4g8R0rpCqMGUl4vbCZTxFabWkc0a618YUPiAISstTrNbscxpxOvlJTAHQgwI0VERET9jqGdjFRVUxPsFkub31PWyyvXcNECqXOGDcOPjY1qhigaJeAJ7wTYVUqDNGakKGHUeTzdPrTWajLBHQiotbFA6x2RkEDK58MAOSMVHkgFhcB9H36Ip7dsCWlasXzr1jZ/S9uB5jS7HVuOHMEvN2wAAAZSRERE1O+0Ke0zGJBmMMCg06HO48HhxkbkpKe3+T3lxrpSVRQtkLqgsBB6ScInZWUxj0PZT3dlpJT1W8xIUUL4qrwcf9m2DRPz8rp1v8qEbG2ApC3tq3S54G1uVkv7wgOpfTU1eHrrVtz30UfqwkIA6uJIrWOa5wvDhgkzkCIiIqL+JiSQkpt9SZKEgWYzfmxsxGeHD+P8wsI2v6cEUkrAolyfWcICKYvRiPE5OdhaXh7zOBw+H8wpKaj3etGiubneVQ1eLwanpaHe40EwRkfuvoaBVIKat2YNUlNSsGDSpG7dr/JG1K5vUppNaIMbm8kEq9EIl9yiU/H45s3q9xsPHcJAsxk3nX56xAFw2iBs+vDhGG+347px4wC0Do0jIiIi6k8iZaSA1pmhJZWVCASDmJKf3+b3wjNSTfL1WaSGZOPt9pCZoJE4fD4MlWdQtddYrCMafT4Ms9kggJjLQvoaBlIJ6HBDA8oaGvDm1VdjypAh3bpva9gbEQhdI6WIVtr33vffIystDUMzMvDajh04KTMTeenpbWZTAa13Wn5/7rmovf9+TB0yBN/eeitWz5mDI3ffjSFyq08iIiKi/sKo1yMgZ4CUZhNAayZJ6XI8UG4+oWWLUtqn/L5WntXabsme0+fDUPlaTNtWvSuEEHD4fGobdwZSFFfb5SnT3R1EAZqMlHySB4WAW17sqA2kxmRlRQyk3IEAFk2fjrunTgUAZKamIj8jAxUuV5vUcFMggIFmc5sPBAZRRERE1B+FZ6SUjJLFYMARuUlXpEAq0hopc0oK9Lq2l/J5VisqXa6oJXZK4KNkpBrb6cLcHpffj6AQGGK1Ami/q3NfwkAqAZU7HDDq9RG7tpwoZY2U8kZ0a1LD2kAqy2JpE0j5W1oQCAZhNZnwc3mS9oDUVJyRl4fmYBAfHjigbqsGaBHulBARERH1R5HWSAGtGSmlXG+A3KFPKzUlBSk6nXr9VufxRO3snJuejkAwGNJBr8btxoQXXkBJRQU8zc1oEaLbMlJKh8AxWVkAmJGiODvqdCLfaoXUjfOjFNawNVLa1PAg+Q7IBfIix/A5Usr3StD1xc0346+zZ2NSXh6yLRb8S9NwwiN/GIQvgiQiIiLqr7SBlEtb2if/r81kiphlkiQJGSaTmj3aUVWFcXZ7xL+hdP3Trl9/bccOlFRWYtGmTWowpgZSJ5hB+uroUaTodDh32DAA3bPmKlmkxPsAqK1yh6PHyt+UjJRykjdp2meaUlKw+aabMEnuFBiekVK+V/YxbehQ9blsiwU1mjsfyl0VZqSIiIiIWhl0OnX2pjJHCvjpxnNmhLI+hVVzg/vrY8dwvdzAK5wyc0q7Hr60uhpA66yqfXIjCiUQi5SRWvrZZwgEg3hk+vR2X9NHBw/ijLw8ZMmVVMxIUVxVulwRZwh0B4Nej9SUlKhzCM4ZNgxmOfgJD6ScUWYWAEBWWhpqNLMDmqK05SQiIiLqr8wGAwQAX3NzyBII5X8jrY9SpBkM8DQ3o8rlQrnDod74Dhe+ngqAuv6q3uPB5sOH1aUZKTpdm4yUw+fD7z75BIs2berQa9p06BAuOflk9fow2hqpuW+/jevWrOnQPpMFA6kEVO/1qlOue4L2jka0OQTAT4GUkBcrKr9jjVCTqwzzVTAjRURERBRKuS46Ll8zKddfShAS6/ovzWCAOxDAtmPHAAATc3MjbhcxkJI7AtZ7vfj08GGcU1AAvU4Hm8nUJiP1oxx0Aa0BX0swiNd27Ig4b8rf0oIGrxdDMjKQZjBAQvSM1Fu7d+Nvu3ZFfX3JiIFUAmrwemOmdk9UhsnUoTkEVqMRLULAp6nlVR4P1yaQYkaKiIiIKIRyXVQtr1/qbEbKHQjgowMHUGCzYfiAARG3SzcaIeGnQKolGMSPjY0YPmAAqpuasOXIEXU9ky01tU1G6ogmkDrU0IDVpaW4cf16bNi3r83fqpOrkQanpUEnSbAYjRHXSIk+OqSXgVQCavB6I3Zs6S5Wk0k9ycNL+7SUx5Rt2ivtq3K51J9j7ZeIiIioP1ICJjWQCl8j1YGM1KbDh3HRSSdFbUqmkyRYNZmmH+rq4G1uxjkFBWgOBuFpbsZ0JZCKkJE6opkNuvv4ceysqgIQuSmF0hlwkNz52RphdI729QI/NSTrCxhIJZigEK0ZqR4MpDIiBFKRSvDCAyk1IxWhtG/YgAGodLnUBZTKm80WpTUnERERUX+THiUjpYygMer1UX83zWDAmr17sbOqKmpZn0JbfbRDDoRmDB+uPl8s/360jFS+1Yo8qxXbjh7FoYYGAMBh+X+1lGokpfOz1WSKuEaqTrOO/kB9fcxjTyYMpBKMMtSsRzNSRuNPpX1+P1J0uohv3DYZKZ8PhijbDh8wAAI/3cVQ9h9txgERERFRf6NknpQqHuXn4pwcAMCPmmxQuDTNTe/J+fkx/462VfqhhgZkmEwhzSlS5BbrNs12ih8dDhTYbDjNbsfemhocczoBAAcjBFK1mtI+QB6dEyEjpX1sR2VlzGNPJgykEky9fEL2eGmfptmExWCImB4O777i8vsjZqMAqHW6B+W7DI1eL8wpKTDEuLNCRERE1J8oGShlxpNyraUMs714xIiov6sEUvPGjsXEKB37FIPMZjVbVOlyITc9HWOzswEAeVarup0tNRUN4aV9jY0YarMh32rF1vJybC0vBwDslluoa1W5XNBLknrdGq20T5ulemvPnpjHnkw4RyrBKBG7rSdL+4xGfK9pNhFtHVOkNVLRth1msyHNYMDOqirMHDECDp+vR18DERERUbJRMlBH5SyPEoAY9HoEfv97NVMUiV6+6a0t0YtmSEYGyuXsVoXLhVyrFTpJwme/+AXyNYHUAJOpTSBV7nCgOCcH6UajWoJoNRqx+/hxNAeDIcd41OlErtWqDhGOlpFSriUfPPtsLP38c7gDgZAMW7JiRirBNMVYs9RdwptNdDiQ8vkiduwDAL1Ohwm5uWpLzkafj2V9RERERBrK9Z3SGU+7ljxWEAUAh+TfGSdnlmLJt1rVYK3C6USuPJ/07IICFGZmqtuFd10GWtc9ZVksIUs5HjrnHHibm9XKKcUxpzMkMLOaTJEzUvJjShA45+9/x4QXXkj6xhMMpBJMb3S7ywgv7etgIBUr6AKAMYMHY39tLYDWNVJsNEFERET0E4NeD5Nejx8bG2EzmdRMTkcoa5XG2e3tbpsvZ6SEEKhwuZAjB1LhBqelodbtRlBuT65tenbRiBFI0elQdd99OENekxWebTrqdCI/I0P9Od1giNhswunzQS9JGD14MADgnwcOoKSyEluOHOnAK09cDKQSTG8EUiHNJmKU9hn1eqTodCGlfdHWSAGtnfuUji4NXi8zUkRERERhBprNOOJwdHpm6KqrrsLj553XoWvEIRkZrRkkrzckIxUuy2JBixw8Aa0BjwCQaTZjcn4+Ar//PbItljbr5hXVTU2wWyzqz7EyUlaTCfkZGSGZLmX9VbJiIJVglAG5PTnI1moyoSkQQEswGDPLJElSyKJBl98ftbQPaF0nVe/1wunz4YjDgSGaOxRERERE1Bq8ALFnRkVyek4OHj733A5tq5Tb7aupgdPvR66m/C7kWORue8fltVD1ckAVfmzK9V94Rip8ZE+sNVJWoxE6SVI7/AGtZYfJjIFUgnH5/ZAAmFN6rg+Ikily+f1q175o0jWBVKxmE0BrRgoAfmxsxMH6ehRGmbhNRERE1F9lK4FUJzNSnaGU230tr12PlZECgOPyOillDVT4sVk1145aDV5vSKfpdKNRXe+v5fT52mS1THo9GiKUASaThA6kmpub8fDDD6OwsBBmsxknnXQSHnvsMQSDQXUbIQQWL16MvLw8mM1mzJgxA7t3747jUZ8YJUMUbVp1d9DeVWhqJzhK70RGSqm/PVhfj+qmJpykWcxIRERERECLfB17fge673VVbno6JEBtAhYtI6UEQY1yJkop8Qsfw2ONUNoXFAKNXm9Il2btdaOWdnmI0rp95ogRbToGJpuEDqSefPJJPP/883j22Wexd+9eLFu2DH/84x/xzDPPqNssW7YMy5cvx7PPPott27YhJycHF110EZxJmipsitH8obsoJ7LT5+tQRkpJ0WrvJkSiBFLvfv89gI4thiQiIiLqT5TrqtsnT+6xv2HQ6zHQbEapPPspWkZKaQymDOVVBuwOCstIWSKU9rn8fgiEBl0WgwGBYBD+lpaQ39fejF83dy4O3XUXBqWltekCmGwSeo7U1q1bceWVV2L27NkAgOHDh+Nvf/sbvv76awCt2agVK1bgoYcewpw5cwAAq1atgt1uxxtvvIH58+fH7di7qr3OeN1BKe1z+HxwtNOmPLy0L1aziXSjEWkGA97avRuZqak4jYEUERERUYi/XX019tXUtMn6dLdMsxl7jx+HSa+P+rfSDAboJUnNSFU4nRG3T9HpYE5JCclIRcpeKdewTX4/jJpgTHsNOSA1tfUrwgyrZJPQGamzzz4bH3/8Mfbv3w8A2LFjBz7//HNceumlAICysjJUVlZi5syZ6u+YTCZMnz4dW7Zsibpfn88Hh8MR8pUorCYTigYO7Nm/obmrUOfxYGCMGt3w0r72gjy7xYJ6rxen5+RA14PliURERETJ6OSBAzF75Mge/zsDUlPha2lBTnp61CUjkiTBlpqqdnOulFulR9o+vCNfzEAqbD5UpKqmAampSR9IJXRG6j/+4z/Q2NiIU045BXq9Hi0tLfjDH/6AefPmAQAqKysBAPawzIfdbsfhw4ej7nfp0qV49NFHe+7AT0BHu7GcCCUDVet2w+n3txtIVbpcaAkG4Q4EYq6RAlobTpQ1NKhzAoiIiIio9ykBTrT1UYoMk0kt7auMMXPKGtaRr1ru9KftwqeUAIavk3JGWGefaTarXQKTVUJnpP7+97/j9ddfxxtvvIHt27dj1apVeOqpp7Bq1aqQ7cKjZiFEzGYNDz74IBobG9WvI0k+DKyzlNTqj/KE7I5kpJQ7C+1lpJQ33+k5Od1xqERERETUBUogNbSdcTQ2k+mnjFRTU9RAKt1oDCntK5cruvI0gZq2tE8rUsOyAamp8DY3w9vc3JGXk5ASOiP129/+Fg888ACuvfZaAMC4ceNw+PBhLF26FDfeeCNy5Iv1yspK5Obmqr9XXV3dJkulZTKZYOrHw2KNej0sBgP21dYCAAZp7iSEUwIp5Y0Ta40UAFxYWIg3d+3C1WPGdN8BExEREVGnKPOdRrTTRdmWmqpmpBq8XowcNCjidlaTKSQjVe5wICstDamakT1KA7M2GSmfr801pLZjYGqU4C3RJXRGyu12Q6cLPUS9Xq+2Py8sLEROTg4++ugj9Xm/349PP/0U06ZN69VjTTZFgwbhq6NHAcTOSCkDeZU3RHulfTcXF8P14IMx90lEREREPUvJDrU3jiYzNRW18hwph8+HjCjXetaw1ublDgeGhGW71M7QEUr7wqualEAvmcv7Ejojdfnll+MPf/gDCgoKcOqpp6KkpATLly/HzTffDKC1pG/hwoVYsmQJioqKUFRUhCVLliAtLQ3XXXddnI8+sY0aNAh/l+dtdaS0r05uT9lehxlJknq8fTsRERERxXbH5MnYX1uLi0aMiLldntWKLfIyl1jdnNONxpCgp7qpCfawTJJyTXlcXj8FtC65cQcCbcbtKNeUydxwIqEDqWeeeQa///3vsWDBAlRXVyMvLw/z58/HI488om5z//33w+PxYMGCBaivr8eUKVPw4YcfwtrOwrr+7mS5M6CE0EWC4ZQ5UhUuF4D2FywSERERUfydlJmJ/+lAYiHfasUxef5qpBI8hdVoVNfXA62ZpLyw60KjXo/M1FS1EQUAdaaUtgQQYCDV46xWK1asWIEVK1ZE3UaSJCxevBiLFy/utePqCwpsNgCtHVNSdNErPNONRjQHgzjU0ACDTtdmQBsRERERJa88qxXH3W74mptjZqTC10jVeTwYm5XVZjt7enpIIOWRm0mY+2BGKqHXSFHPUTq4tMjrzaJR6ln319bGnENARERERMlHubn+XU0NWoSIHkiFrZGq83iQGeEGe7bFgmp5zRUAtStfeEYq3WiEUa/H8aYmCCFw9wcfYJu8fj9ZMJDqp7QZqViUQOpgfX2bOlgiIiIiSm6nyZ2uT3/hBQDRG4uFtz+v83girrPPtlhCM1LyCB1zWCAlSRLsFguqmprgaW7Giq++wn65o3SySOjSPuo5o7OysHj6dEwZMiTmdkogdczpjDpXgIiIiIiSU5bFEvJze6V9Qgj4W1rgDgQiB1Jpafihrk79OVpGCmidP1rpcsEtB1tpYeV/iY4ZqX5KJ0lYNGMGZp18csztlECq0uVqdxgvERERESWfQ3fdpX4/Njs74jZWed28r6VF7d6XGaGbc5uMVCcCqWTr/MxAimJSgqdaj6fdYbxERERElHyGDRiAmXKb9EFRujkr14TasTixSvuEEAB+ykiFN5sAWgOpqqYmNMlrr5ItI8XSPopJGzylJ9nJTUREREQd8868eWqr8kjUYbs+X7uBVHMwiHqvFwPNZnWNFEv7qN/RlvOxtI+IiIiobzLq9TGv9ZQmFE6/H/VyIBWtax8AtbxPzUhFCaSqXC61G2D40N5Ex0CKYjLp9dDLLc8ZSBERERH1T5EyUpHWSCldnpVAqr01UoFgEOUOBwBmpKiPkSRJDaC4RoqIiIiofwpfI2UxGGCKEBxFzUhFCJLs8rYH6+sBsNkE9UHK5GlmpIiIiIj6J6W0zyFnpKLNIrWZTDDodD9lpOT1T0a9vs22ymidgw0NAJiRoj7olMGDAQB5Vmucj4SIiIiI4sGWmqoGSNGG8QKt1UzaFujuQADmlBTo5KUiWkoZ4MH6ekhoXVKSTNi1j9r1p4svxvrvvsOlRUXxPhQiIiIiigOdJCHXasUxp1PtyBeNPT0dFU4ngNZSwGgle+lGI9KNRhyoq4PFaIQUIdhKZAykqF2js7IwOisr3odBRERERHGUb7XimMsVMyMFAAU2G36UG0g0BQIxu/HlpKfjh7o6DLPZuv14expL+4iIiIiIqF15ckaqzuOJ2LFPUZCRgcPyuqcmvz/mOntlnZRS5pdMGEgREREREVG7tIFUexmpw42NEEK0ZqRiBFJKJkrp9pdMWNpHRERERETtyrNaUe5woDkYRFZaWtTt8jMy4A4E4PL72y3tKxo4EMBPrdCTCQMpIiIiIiJqV57VigavFwBwanZ21O20s6SaYjSbAIBRcnfogiRcI8VAioiIiIiI2pWvGYUz3m6Pul1IIBUIxCzb+z+nnILVc+ZgzujR3XegvYRrpIiIiIiIqF1jNF2c8zMyom5n1wRSLr8/ZmmfKSUF140bh9SU5MvvJN8RExERERFRr8u1WnHNmDEYG6OsDwAGms3QSRIqXa7W0r4YgVQyYyBFREREREQd8tY117S7jV6nQ+GAAdhXW4satxuDYzSmSGYs7SMiIiIiom41PicHJZWVqHG7kZWEHfk6goEUERERERF1q9GDB+NfR4+iRYiknBHVEQykiIiIiIioW2VbLHAHAur3fREDKSIiIiIi6lbagb2xhvcmMwZSRERERETUrbTropiRipOjR4/i3//93zFo0CCkpaXh9NNPxzfffKM+L4TA4sWLkZeXB7PZjBkzZmD37t1xPGIiIiIiov5Nm4UakJoaxyPpOQkdSNXX1+Oss86CwWDA+++/jz179uDpp5/GgAED1G2WLVuG5cuX49lnn8W2bduQk5ODiy66CE6nM34HTkRERETUj+Varer3kiTF8Uh6TkLPkXryyScxdOhQrFy5Un1s+PDh6vdCCKxYsQIPPfQQ5syZAwBYtWoV7HY73njjDcyfP7+3D5mIiIiIqN/rq+uitBI6I7VhwwZMmjQJ11xzDbKzs1FcXIyXXnpJfb6srAyVlZWYOXOm+pjJZML06dOxZcuWqPv1+XxwOBwhX0RERERE1D36ahZKK6EDqYMHD+Kvf/0rioqK8M9//hO33norfvOb3+C1114DAFRWVgIA7HZ7yO/Z7Xb1uUiWLl0Km82mfg0dOrTnXgQRERERUT+0/447sPf22+N9GD0moUv7gsEgJk2ahCVLlgAAiouLsXv3bvz1r3/FDTfcoG4XHvEKIWJGwQ8++CDuuece9WeHw8FgioiIiIioGxUNGhTvQ+hRCZ2Rys3NxZgxY0IeGz16NH788UcAQE5ODgC0yT5VV1e3yVJpmUwmZGRkhHwRERERERF1VEIHUmeddRb27dsX8tj+/fsxbNgwAEBhYSFycnLw0Ucfqc/7/X58+umnmDZtWq8eKxERERER9R8JXdp39913Y9q0aViyZAl+9rOf4V//+hdefPFFvPjiiwBaS/oWLlyIJUuWoKioCEVFRViyZAnS0tJw3XXXxfnoiYiIiIior0roQOqMM87AunXr8OCDD+Kxxx5DYWEhVqxYgeuvv17d5v7774fH48GCBQtQX1+PKVOm4MMPP4RV07ueiIiIiIioO0lCCBHvg4g3h8MBm82GxsZGrpciIiIiIurHOhobJPQaKSIiIiIiokTEQIqIiIiIiKiTGEgRERERERF1EgMpIiIiIiKiTmIgRURERERE1EkMpIiIiIiIiDopoedI9RalA7zD4YjzkRARERERUTwpMUF7U6IYSAFwOp0AgKFDh8b5SIiIiIiIKBE4nU7YbLaoz3MgL4BgMIhjx47BarVCkqR4H07ScjgcGDp0KI4cOcLBxhRXPBfpRPD8oWTE85a6iudOW0IIOJ1O5OXlQaeLvhKKGSkAOp0OQ4YMifdh9BkZGRl8I1JC4LlIJ4LnDyUjnrfUVTx3QsXKRCnYbIKIiIiIiKiTGEgRERERERF1EgMp6jYmkwmLFi2CyWSK96FQP8dzkU4Ezx9KRjxvqat47nQdm00QERERERF1EjNSREREREREncRAioiIiIiIqJMYSBEREREREXUSAykiIiIiIqJOYiCVZJYuXYozzjgDVqsV2dnZuOqqq7Bv376QbYQQWLx4MfLy8mA2mzFjxgzs3r1bfb6urg533nknRo0ahbS0NBQUFOA3v/kNGhsbQ/ZTX1+Pn//857DZbLDZbPj5z3+OhoaGdo+xtLQU06dPh9lsRn5+Ph577DFE62nyxRdfICUlBaeffnq7+928eTMuv/xy5OXlQZIkrF+/vs02N910EyRJCvmaOnVqu/umrukL5+OmTZvanDOSJOG7775rd9/PPfccCgsLkZqaiokTJ+Kzzz4LeX7t2rW4+OKLMXjwYEiShG+//bbdffYX/fnc4WdZ8uoL5y0A+Hw+PPTQQxg2bBhMJhNGjBiBV155pd198zPvxPTn86fPfu4JSioXX3yxWLlypdi1a5f49ttvxezZs0VBQYFwuVzqNk888YSwWq1izZo1orS0VMydO1fk5uYKh8MhhBCitLRUzJkzR2zYsEH88MMP4uOPPxZFRUXi6quvDvlbs2bNEmPHjhVbtmwRW7ZsEWPHjhWXXXZZzONrbGwUdrtdXHvttaK0tFSsWbNGWK1W8dRTT7XZtqGhQZx00kli5syZYvz48e2+9vfee0889NBDYs2aNQKAWLduXZttbrzxRjFr1ixRUVGhftXW1ra7b+qavnA+bty4UQAQ+/btCzlvmpubY+77zTffFAaDQbz00ktiz5494q677hIWi0UcPnxY3ea1114Tjz76qHjppZcEAFFSUtLR/7R9Xn8+d/hZlrz6wnkrhBBXXHGFmDJlivjoo49EWVmZ+Oqrr8QXX3wRc9/8zDtx/fn86aufewykklx1dbUAID799FMhhBDBYFDk5OSIJ554Qt3G6/UKm80mnn/++aj7eeutt4TRaBSBQEAIIcSePXsEAPHll1+q22zdulUAEN99913U/Tz33HPCZrMJr9erPrZ06VKRl5cngsFgyLZz584VDz/8sFi0aFGHAimtWG/CK6+8slP7ou6TjOejcjFcX1/fqdc6efJkceutt4Y8dsopp4gHHnigzbZlZWW8qGhHfzp3tPhZltyS8bx9//33hc1m6/QFKj/zul9/On+0+tLnHkv7kpySyh04cCAAoKysDJWVlZg5c6a6jclkwvTp07Fly5aY+8nIyEBKSgoAYOvWrbDZbJgyZYq6zdSpU2Gz2WLuZ+vWrZg+fXrIULeLL74Yx44dw6FDh9THVq5ciQMHDmDRokWde8EdsGnTJmRnZ2PkyJG45ZZbUF1d3e1/gyJL1vMRAIqLi5Gbm4sLLrgAGzdujPk6/X4/vvnmm5DXBQAzZ86MeTwUXX85dzqDn2WJLxnP2w0bNmDSpElYtmwZ8vPzMXLkSNx3333weDxR98vPvJ7RX86fzki2zz0GUklMCIF77rkHZ599NsaOHQsAqKysBADY7faQbe12u/pcuNraWjz++OOYP3+++lhlZSWys7PbbJudnR11P8rvRfrb2mP7/vvv8cADD2D16tXqm767XHLJJVi9ejU++eQTPP3009i2bRvOP/98+Hy+bv071Fayno+5ubl48cUXsWbNGqxduxajRo3CBRdcgM2bN0fdb01NDVpaWjr1uii6/nTudBQ/yxJfsp63Bw8exOeff45du3Zh3bp1WLFiBd5++23cfvvtUffLz7zu15/On45Kxs89BlJJ7I477sDOnTvxt7/9rc1zkiSF/CyEaPMYADgcDsyePRtjxoxpkx2KtL12P6eeeirS09ORnp6OSy65JObfVh5vaWnBddddh0cffRQjR46M+Lo+++wzdb/p6elYvXp1xO0imTt3LmbPno2xY8fi8ssvx/vvv4/9+/fj3Xff7fA+qGuS8XwEgFGjRuGWW27BhAkTcOaZZ+K5557D7Nmz8dRTTwGIfT529HVRbP3x3GkPP8sSX7Ket8FgEJIkYfXq1Zg8eTIuvfRSLF++HK+++io8Hg8/83pJfzx/2pOMn3vdmw6gXnPnnXdiw4YN2Lx5M4YMGaI+npOTA6D1zkFubq76eHV1dZu7DE6nE7NmzUJ6ejrWrVsHg8EQsp+qqqo2f/f48ePqft577z0EAgEAgNlsVn8v/G6Hkpa12+1wOp34+uuvUVJSgjvuuANA65tSCIGUlBR8+OGHOPPMM0M6/YQfd2fk5uZi2LBh+P7777u8D2pfsp6P0UydOhWvv/46AGDSpEltzkeTyQS9Xh9x3ydyvvZH/e3c6Sp+liWWZD5vc3NzkZ+fD5vNpm4zevRoCCFQXl7Oz7xe0N/On65Kis+9XluNRd0iGAyK22+/XeTl5Yn9+/dHfD4nJ0c8+eST6mM+n6/NQsXGxkYxdepUMX36dNHU1NRmP8pCxa+++kp97Msvv+zQQsUBAwYIn8+nPvbEE0+oCxVbWlpEaWlpyNdtt90mRo0aJUpLS0M618SCKAsVw9XU1AiTySRWrVrVof1S5yT7+RjN1VdfLc4777zoL1y0Lry+7bbbQh4bPXo0F153UH8+d7T4WZZc+sJ5+8ILLwiz2SycTqe6zfr164VOpxNutzvqvvmZd+L68/mj1Zc+9xhIJZnbbrtN2Gw2sWnTppD2kNqT94knnhA2m02sXbtWlJaWinnz5oW0znQ4HGLKlCli3Lhx4ocffojatnfWrFnitNNOE1u3bhVbt24V48aNa7d1ZkNDg7Db7WLevHmitLRUrF27VmRkZERsf67oaNc+p9MpSkpKRElJiQAgli9fLkpKStTWq06nU9x7771iy5YtoqysTGzcuFGceeaZIj8/X33t1L36wvn4pz/9Saxbt07s379f7Nq1SzzwwAMCgFizZk3MfSutgF9++WWxZ88esXDhQmGxWMShQ4fUbWpra0VJSYl49913BQDx5ptvipKSElFRUdGp/859UX8+d/hZlrz6wnnrdDrFkCFDxL/927+J3bt3i08//VQUFRWJX/3qVzH3zc+8E9efz5+++rnHQCrJAIj4tXLlSnWbYDAoFi1aJHJycoTJZBLnnnuuKC0tVZ9XWvZG+iorK1O3q62tFddff72wWq3CarWK66+/vkNtfnfu3CnOOeccYTKZRE5Ojli8eHHMO7gdDaSiHfeNN94ohBDC7XaLmTNniqysLGEwGERBQYG48cYbxY8//tjuvqlr+sL5+OSTT4oRI0aI1NRUkZmZKc4++2zx7rvvduj1/+UvfxHDhg0TRqNRTJgwQW1hq1i5cmXE17Vo0aIO7b8v68/nDj/LkldfOG+FEGLv3r3iwgsvFGazWQwZMkTcc889Hcom8DPvxPTn86evfu5JQoSNKyYiIiIiIqKY2LWPiIiIiIiokxhIERERERERdRIDKSIiIiIiok5iIEVERERERNRJDKSIiIiIiIg6iYEUERERERFRJzGQIiIiIiIi6iQGUkRERERERJ3EQIqIiIiIiKiTGEgREVGfctNNN0GSJEiSBIPBALvdjosuugivvPIKgsFgh/fz6quvYsCAAT13oERElNQYSBERUZ8za9YsVFRU4NChQ3j//fdx3nnn4a677sJll12G5ubmeB8eERH1AQykiIiozzGZTMjJyUF+fj4mTJiA3/3ud/jHP/6B999/H6+++ioAYPny5Rg3bhwsFguGDh2KBQsWwOVyAQA2bdqEX/ziF2hsbFSzW4sXLwYA+P1+3H///cjPz4fFYsGUKVOwadOm+LxQIiKKGwZSRETUL5x//vkYP3481q5dCwDQ6XT485//jF27dmHVqlX45JNPcP/99wMApk2bhhUrViAjIwMVFRWoqKjAfffdBwD4xS9+gS+++AJvvvkmdu7ciWuuuQazZs3C999/H7fXRkREvU8SQoh4HwQREVF3uemmm9DQ0ID169e3ee7aa6/Fzp07sWfPnjbP/fd//zduu+021NTUAGhdI7Vw4UI0NDSo2xw4cABFRUUoLy9HXl6e+viFF16IyZMnY8mSJd3+eoiIKDGlxPsAiIiIeosQApIkAQA2btyIJUuWYM+ePXA4HGhubobX60VTUxMsFkvE39++fTuEEBg5cmTI4z6fD4MGDerx4yciosTBQIqIiPqNvXv3orCwEIcPH8all16KW2+9FY8//jgGDhyIzz//HL/85S8RCASi/n4wGIRer8c333wDvV4f8lx6enpPHz4RESUQBlJERNQvfPLJJygtLcXdd9+Nr7/+Gs3NzXj66aeh07UuF37rrbdCtjcajWhpaQl5rLi4GC0tLaiursY555zTa8dORESJh4EUERH1OT6fD5WVlWhpaUFVVRU++OADLF26FJdddhluuOEGlJaWorm5Gc888wwuv/xyfPHFF3j++edD9jF8+HC4XC58/PHHGD9+PNLS0jBy5Ehcf/31uOGGG/D000+juLgYNTU1+OSTTzBu3DhceumlcXrFRETU29i1j4iI+pwPPvgAubm5GD58OGbNmoWNGzfiz3/+M/7xj39Ar9fj9NNPx/Lly/Hkk09i7NixWL16NZYuXRqyj2nTpuHWW2/F3LlzkZWVhWXLlgEAVq5ciRtuuAH33nsvRo0ahSuuuAJfffUVhg4dGo+XSkREccKufURERERERJ3EjBQREREREVEnMZAiIiIiIiLqJAZSREREREREncRAioiIiIiIqJMYSBEREREREXUSAykiIiIiIqJOYiBFRERERETUSQykiIiIiIiIOomBFBERERERUScxkCIiIiIiIuokBlJERERERESd9P8BLrlotNOpZQIAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -689,7 +689,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAGJCAYAAACeiTJxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hU5dn/v6dM3crCLk1gaRGRpiBEil3BGI01aqyo5BfzGjW8atRE7BqN/Y2R2MCCJVFjj0QRFJSgSJUmve+yffqpz++PeZ7DmdnZPivLcn+ui0t35sw5zzkzc+b5Pvd9f2+JMcZAEARBEARBEARBZB35QA+AIAiCIAiCIAiis0KCiyAIgiAIgiAIop0gwUUQBEEQBEEQBNFOkOAiCIIgCIIgCIJoJ0hwEQRBEARBEARBtBMkuAiCIAiCIAiCINoJElwEQRAEQRAEQRDtBAkugiAIgiAIgiCIdoIEF0EQBEEQBEEQRDtBgosgiIOGbdu2QZIkzJ49+0AP5YBy5ZVXorS09EAPgzjEmD17NiRJwrZt25q97dKlS9t/YJ2Y0tJSXHnllQd6GARBtBESXARBtAtnnXUWgsEgwuFwg9tccskl8Hq9qKqq+hFH1nGIxWK46667sGDBggNy/N/+9reQZRnV1dUpj1dXV0OWZfh8PiQSiZTntmzZAkmScPvttzf7OAfyPEOhEO6++26MHDkSubm5CAQCGDZsGP7whz9gz5497XbcH/uc//a3vx2QhYj2Ou6VV16J3NzcBp/Pzc3t8ELk448/xl133XXAjn+gPhMEQdSHBBdBEO3CJZdcgng8jn/9618Zn4/FYnjvvfcwZcoUdO3a9UceXccgFovh7rvvbvGk/LnnnsOGDRvafPyJEyeCMYavvvoq5fGvv/4asizDMIx6EQqx7cSJE5t9nNaeZ1vZsmULRo0ahXvvvRdDhw7FQw89hKeeegonnngiXnjhBZxwwgntduwf+5x/jMn1ZZddhng8jn79+v2oxz1Y+fjjj3H33Xe3aR8bNmzAc88916rX0ntDEB0H9UAPgCCIzslZZ52FvLw8vPbaa7j88svrPf/ee+8hGo3ikksuOQCjOziJRqPIycmBx+PJyv6EaFq0aBHOPPNM5/GvvvoKI0aMQDwex6JFi1LE1aJFiyDLMsaPH5+VMbQFcT0yYZomzj33XJSXl2PBggX1BOL999+Phx566McYZqdBURQoinKgh9Hhaexz2VJ8Pl9W9kMQxIGFIlwEQbQLgUAA5557LubNm4d9+/bVe/61115DXl4ezjrrLADJaMQFF1yAoqIiBINB/PSnP8VHH33U5HFOOOGEjJGK9DonUf/1yCOP4Omnn8aAAQMQDAZx2mmnYefOnWCM4d5778Vhhx2GQCCAX/ziF/VS7QDg3//+NyZNmoScnBzk5eXhjDPOwJo1a+odOzc3F7t378bZZ5+N3NxcFBcX46abboJlWc54iouLAQB33303JEmCJElOCpLYx+bNm/Gzn/0MeXl5jjjNVMNl2zaefPJJDB8+HH6/H8XFxZgyZUqjNTR9+/ZFnz596kW4vvrqK0yYMAHjx4/P+NyRRx6JwsJC6LqOGTNmYPTo0SgoKEBOTg4mTZqE+fPnp1z3xs4TANavX4/zzz8fRUVF8Pv9GDNmDN5///2U44qaoC+++AK//e1vUVJSgsMOO6zBc3v77bexcuVK/PGPf8wYjcvPz8f999+f8tg///lPjB49GoFAAN26dcOll16K3bt3p2yTjfe2pef81VdfYfr06SguLkZOTg7OOeccVFRUONuVlpZizZo1+OKLL5xjNRa9O/roo3HuueemPDZ8+HBIkoRVq1Y5j7355puQJAnr1q1LGY+o4WrOcTVNa3Ts2aK510rw73//G8cffzzy8vKQn5+PY445Bq+99lrKNkuWLMGUKVNQUFCAYDCI448/vt734a677oIkSVi7di1+9atfoUuXLpg4cSKuvPJKPP300wDgXBtJkpzXPfLIIxg/fjy6du2KQCCA0aNH46233qo3zvQarrZ+JkRK8OOPP17vWF9//TUkScLrr7/evItOEESzIcFFEES7cckll8A0TfzjH/9Ieby6uhpz587FOeecg0AggPLycowfPx5z587Fb3/7W9x///1IJBI466yzGkxJbC1z5szB3/72N/zud7/D//7v/+KLL77AL3/5S/zpT3/CJ598gj/84Q/49a9/jQ8++AA33XRTymtfeeUVnHHGGcjNzcVDDz2EO+64A2vXrsXEiRPrGQlYloXJkyeja9eueOSRR3D88cfj0UcfxbPPPgsAKC4uxjPPPAMAOOecc/DKK6/glVdeSZkIm6aJyZMno6SkBI888gjOO++8Bs/r6quvxo033og+ffrgoYcewq233gq/34///ve/jV6PiRMnYunSpdA0DQCg6zq+/fZbjB8/HuPHj8fXX38NxhgAoKamxjlfIFkf9fzzz+OEE07AQw89hLvuugsVFRWYPHkyVqxY0azzXLNmDX76059i3bp1uPXWW/Hoo48iJycHZ599dsb3/re//S3Wrl2LGTNm4NZbb23wvIR4ueyyyxo9f8Hs2bPxy1/+Eoqi4MEHH8S0adPwzjvvYOLEiaitrU3Ztq3vbUvP+Xe/+x1WrlyJO++8E9deey0++OADXHfddc7zTzzxBA477DAMGTLEOdYf//jHBs910qRJWLRokfN3dXU11qxZA1mWsXDhQufxhQsXori4GEcccUTG/TTnuE2NPds053izZ8/GGWecgerqatx2223485//jFGjRuGTTz5xtvn8889x3HHHIRQK4c4778QDDzyA2tpanHTSSfjmm2/qHfeCCy5ALBbDAw88gGnTpuH//b//h1NPPRUAnGvzyiuvONs/+eSTOOqoo3DPPffggQcegKqquOCCC5q1yNSc82zovRkwYAAmTJiAOXPm1NvnnDlzkJeXh1/84hfNGgNBEC2AEQRBtBOmabKePXuyY489NuXxmTNnMgBs7ty5jDHGbrzxRgaALVy40NkmHA6z/v37s9LSUmZZFmOMsa1btzIAbNasWc52xx9/PDv++OPrHfuKK65g/fr1c/4Wry0uLma1tbXO47fddhsDwEaOHMkMw3Aev/jii5nX62WJRMIZT2FhIZs2bVrKccrKylhBQUHK41dccQUDwO65556UbY866ig2evRo5++KigoGgN15550Zxw+A3XrrrU2e2+eff84AsOuvv77etrZt13vMzdNPP51y7RcvXswAsO3bt7O1a9cyAGzNmjWMMcY+/PBDBoDNmTOHMZZ8fzVNS9lfTU0N6969O7vqqquadZ4nn3wyGz58uHOdxZjHjx/PBg8e7Dw2a9YsBoBNnDiRmabZ6DkxlrzWBQUFTW7HGGO6rrOSkhI2bNgwFo/HncfF+c6YMcN5LBvvbUvP+ZRTTkl5H3//+98zRVFSPsdHHnlkxu9BJv75z38yAGzt2rWMMcbef/995vP52FlnncUuvPBCZ7sRI0awc845p954tm7d2uRxWzL2TFxxxRUsJyenwedzcnLYFVdc0eLj1dbWsry8PDZu3LiU95qx/d8V27bZ4MGD2eTJk1P2FYvFWP/+/dmpp57qPHbnnXcyAOziiy+uN8b/+Z//YQ1Ns2KxWMrfuq6zYcOGsZNOOinl8X79+rXqPBlr+L35+9//zgCwdevWpRy/W7duKcciCCJ7UISLIIh2Q1EUXHTRRVi8eHFKBOi1115D9+7dcfLJJwNIFpePHTs2JfUrNzcXv/71r7Ft2zasXbs2a2O64IILUFBQ4Pw9btw4AMCll14KVVVTHtd13Ukp+/TTT1FbW4uLL74YlZWVzj9FUTBu3LiUNDrBb37zm5S/J02ahC1btrRovNdee22T27z99tuQJAl33nlnvefcaUyZcNdxAcmUwd69e6Nv374YMmQIioqKnDSqdMMMRVHg9XoBJFMaq6urYZomxowZg2XLljU57urqanz++ef45S9/iXA47FzTqqoqTJ48GRs3bqyX0jdt2rRm1RGFQiHk5eU1uR0ALF26FPv27cNvf/tb+P1+5/EzzjgDQ4YMyRh1aO1725pz/vWvf53yPk6aNAmWZWH79u3NOr90Jk2aBAD48ssvASQjWccccwxOPfVUJ8JVW1uL77//3tm2tWR77G093qeffopwOOxEgN2I161YsQIbN27Er371K1RVVTnvUTQaxcknn4wvv/wStm2nvDb989AUgUDA+f+amhrU1dVh0qRJzfreNOc8G+OXv/wl/H5/SpRr7ty5qKysxKWXXtqCsyAIormQ4CIIol0RdUeiPmLXrl1YuHAhLrroImfivH37dhx++OH1XitSmbI5Oevbt2/K30J89enTJ+PjNTU1AICNGzcCAE466SQUFxen/PvPf/5Tr05N1FG56dKli7O/5qCqaqN1SoLNmzejV69eKCoqava+BcOGDUNhYWGKqJowYQKA5AT02GOPTXmuT58+KdfwpZdewogRI+D3+9G1a1cUFxfjo48+Ql1dXZPH3rRpExhjuOOOO+pdUyEe069r//79m3Ve+fn5jbYkcCM+X5k+g0OGDKn3+WvLe9uac07/zHbp0gUAWvRZctO9e3cMHjzYEVcLFy7EpEmTcNxxx2HPnj3YsmULvvrqK9i23WbBle2xu8m0mNDU8TZv3gwg+blvCPFdv+KKK+q9R88//zw0Tav3+W7u51Lw4Ycf4qc//Sn8fj+KioqcNNTmfG+Atl3XwsJCnHnmmSk1a3PmzEHv3r1x0kknteAsCIJoLuRSSBBEuzJ69GgMGTIEr7/+Om6//Xa8/vrrYIxlzZ1QkiSnxsiNMDBIp6HoSEOPi32LFe1XXnkFPXr0qLedOzrW2P5ags/ngyy377qYLMs49thjnVqtr776KqXH1vjx4/Hiiy86tV1nn32289yrr76KK6+8EmeffTZuvvlmlJSUODVQYmLbGOKa3nTTTZg8eXLGbQYNGpTytzsy0BhDhgzB8uXLsXPnznpiuq205b1tzTk39dlsDRMnTsS8efMQj8fx3XffYcaMGY74XrhwIdatW4fc3FwcddRRrT4G0Pqx+/1+aJoGxlg9YcUYQyKRqBehasvx3Ij36C9/+QtGjRqVcZv0HmHN/VwCSYF71lln4bjjjsPf/vY39OzZEx6PB7Nmzapn3NEQbT3Pyy+/HP/85z/x9ddfY/jw4Xj//fedvnwEQWQfElwEQbQ7l1xyCe644w6sWrUKr732GgYPHoxjjjnGeb5fv34Z+0qtX7/eeb4hunTpkjGVK9spSwMHDgQAlJSU4JRTTsnKPptK92suAwcOxNy5c1FdXd2qKNfEiRPx73//G++//z727dvnRLiApOD64x//iI8//hjxeDwl7fOtt97CgAED8M4776ScS3pqY0PnOWDAAACAx+PJ2jUVnHnmmXj99dfx6quv4rbbbmt0W/H52rBhQ70V/g0bNjT6+WuIH/ucW/pZmjRpEmbNmoU33ngDlmVh/PjxkGUZEydOdATX+PHjmxSX2foMp9OvXz+YponNmzfXE6CbNm2CZVmtel/E9/j777+vt9/0bfLz89v0HjV0bd5++234/X7MnTs3xfZ91qxZrT5WS44PAFOmTEFxcTHmzJmDcePGIRaLNdtghiCIlkNLGQRBtDsimjVjxgysWLGiXnTrZz/7Gb755hssXrzYeSwajeLZZ59FaWkphg4d2uC+Bw4ciPXr16dYIq9cubKefXNbmTx5MvLz8/HAAw/AMIx6z7fG6joYDAJAPRe8lnLeeeeBMZaxyWpzVryFiHrooYcQDAZTVvXHjh0LVVXx8MMPp2wL7F9ldx9jyZIlKe8j0PB5lpSU4IQTTsDf//537N27t9642mIffv7552P48OG4//77640HAMLhsOOoN2bMGJSUlGDmzJmOWyOQtA5ft24dzjjjjBYf/8c+55ycnBZ9jkSq4EMPPYQRI0Y4KbSTJk3CvHnzsHTp0malE7b0uM3l9NNPBwD89a9/rfecsFsX27SE0047DXl5eXjwwQeRSCRSnhOf49GjR2PgwIF45JFHEIlE6u2jue+R6MWVfn0URYEkSSlR+G3btuHdd99twZk07/gNvTeqquLiiy/GP/7xD8yePRvDhw/HiBEjsnp8giD2QxEugiDanf79+2P8+PF47733AKCe4Lr11lvx+uuv4/TTT8f111+PoqIivPTSS9i6dSvefvvtRtNcrrrqKjz22GOYPHkyrr76auzbtw8zZ87EkUceiVAolLVzyM/PxzPPPIPLLrsMRx99NC666CIUFxdjx44d+OijjzBhwoSMk8PGCAQCGDp0KN5880385Cc/QVFREYYNG9ZofUkmTjzxRFx22WV46qmnsHHjRkyZMgW2bWPhwoU48cQTm7ThHjt2LLxeLxYvXowTTjghJT0yGAxi5MiRWLx4MQoLC1PG9vOf/xzvvPMOzjnnHJxxxhnYunUrZs6ciaFDh6ZMVBs7z6effhoTJ07E8OHDMW3aNAwYMADl5eVYvHgxdu3ahZUrV7boWgg8Hg/eeecdnHLKKTjuuOPwy1/+EhMmTIDH48GaNWvw2muvoUuXLrj//vvh8Xjw0EMPYerUqTj++ONx8cUXo7y8HE8++SRKS0vx+9//vsXH/7HPefTo0XjmmWdw3333YdCgQSgpKWm0HmfQoEHo0aMHNmzYgN/97nfO48cddxz+8Ic/AECzBFdLj9tcRo0ahWuuuQZPPvkkNm7c6Fisf/rpp/j4449xzTXXYOTIkS3eb35+Ph5//HFcc801OOaYY5zeWStXrkQsFsNLL70EWZbx/PPP4/TTT8eRRx6JqVOnonfv3ti9ezfmz5+P/Px8fPDBB00ea/To0QCA66+/HpMnT3ZMhM444ww89thjmDJlCn71q19h3759ePrppzFo0KCUPmhtpan35vLLL8dTTz2F+fPnUxNwgmhvfnxjRIIgDkWE/fjYsWMzPr9582Z2/vnns8LCQub3+9nYsWPZhx9+mLJNJlt4xhh79dVX2YABA5jX62WjRo1ic+fObdAW/i9/+UvKa+fPn88AsH/+858pjwv75W+//bbe9pMnT2YFBQXM7/ezgQMHsiuvvJItXbrU2aYhS2thIe3m66+/ZqNHj2ZerzfFRrwxW+z0c2MsadH+l7/8hQ0ZMoR5vV5WXFzMTj/9dPbdd99l3Ec6xx57LAPAbr/99nrPXX/99QwAO/3001Met22bPfDAA6xfv37M5/Oxo446in344YcZx9fQeTKWfO8vv/xy1qNHD+bxeFjv3r3Zz3/+c/bWW2852zT0fjRFTU0NmzFjBhs+fDgLBoPM7/ezYcOGsdtuu43t3bs3Zds333yTHXXUUczn87GioiJ2ySWXsF27dqVsk433tq3nLD6z8+fPdx4rKytjZ5xxBsvLy2MAmmURf8EFFzAA7M0333Qe03WdBYNB5vV669mmZ7KFb+i4LRl7Q1iWxZ588kk2cuRI5vf7md/vZyNHjmRPPfWU0yoifWzNPd7777/Pxo8fzwKBAMvPz2djx45lr7/+eso2y5cvZ+eeey7r2rUr8/l8rF+/fuyXv/wlmzdvnrONeN8rKirqjd80Tfa73/2OFRcXM0mSUj4fL7zwAhs8eDDz+XxsyJAhbNasWRk/Qw3ZwmfrM3HkkUcyWZbrfc4JgsguEmNtqLolCIIgCIIgDkqOOuooFBUVYd68eQd6KATRqaEaLoIgCIIgiEOMpUuXYsWKFbj88ssP9FAIotNDES6CIAiCIIhDhO+//x7fffcdHn30UVRWVmLLli0ZLfYJgsgeFOEiCIIgCII4RHjrrbcwdepUGIaB119/ncQWQfwIUISLIAiCIAiCIAiinaAIF0EQBEEQBEEQRDtBgosgCIIgCIIgCKKdoMbHLcC2bezZswd5eXmQJOlAD4cgCIIgCIIgiAMEYwzhcBi9evWCLDccxyLB1QL27NmDPn36HOhhEARBEARBEATRQdi5cycOO+ywBp8nwdUC8vLyACQvan5+/gEeDUEQBEEQBEEQB4pQKIQ+ffo4GqEhSHC1AJFGmJ+fT4KLIAiCIAiCIIgmS43INIMgCIIgCIIgCKKdIMFFEARBEARBEATRTpDgIgiCIAiCIAiCaCeohosgCIIgCOIQgzEG0zRhWdaBHgpBdFgURYGqqm1uB0WCiyAIgiAI4hBC13Xs3bsXsVjsQA+FIDo8wWAQPXv2hNfrbfU+SHARBEEQBEEcIti2ja1bt0JRFPTq1Qter7fNq/cE0RlhjEHXdVRUVGDr1q0YPHhwo82NG4MEF0EQBEEQxCGCruuwbRt9+vRBMBg80MMhiA5NIBCAx+PB9u3boes6/H5/q/ZDphkEQRAEQRCHGK1dqSeIQ41sfFfo20YQBEEQBEEQBNFOkOAiCIIgCIIgCIJoJ0hwEQRBEATRaWCMYW1FBeKGcaCHQhAEAYAEF0EQBEEQnYhN1dV4ftkyrCgrO9BDITo5J5xwAm688caDbt+tIVvj+bHOizGGxx57DP3790cwGMTZZ5+Nurq6dj9uQ5BLIUEQBEEQnYaKWAw18TgUMoVoEXWJBGI/YlQw6PGgoIWObxUVFZgxYwY++ugjlJeXo0uXLhg5ciRmzJiBCRMm4IQTTsCoUaPwxBNPtM+gOxBXXnklXnrpJQCAqqooKirCiBEjcPHFF+PKK6/MuinKO++8A4/H0+ztG3ovWrqf1nLzzTfjvffew0svvYScnBycffbZuOuuu/D444+3+7EzQYKLIAiCIIhOg2XbsBiDadsHeigHDXWJBO798ktU/oiNkLsFg7jjuONaJLrOO+886LqOl156CQMGDEB5eTnmzZuHqqqqdhxp+6Hrepua6U6ZMgWzZs2CZVkoLy/HJ598ghtuuAFvvfUW3n//fahq9qb5RUVFHWo/jbFkyRI89thjWLp0KY4++mgAwLRp0zBnzpwDJrho+YcgCIIgiE6DzVhSdJHgajYxw0BlLIaAqqJrINDu/wKqispYrEURtdraWixcuBAPPfQQTjzxRPTr1w9jx47FbbfdhrPOOgtXXnklvvjiCzz55JOQJAmSJGHbtm0AgE8++QQTJ05EYWEhunbtip///OfYvHmzs+8TTjgB119/PW655RYUFRWhR48euOuuu1KOH41GcfnllyM3Nxc9e/bEo48+Wm+MzTnOddddhxtvvBHdunXD5MmTm73vTPh8PvTo0QO9e/fG0Ucfjdtvvx3vvfce/v3vf2P27NnOdrZt48EHH0T//v0RCAQwcuRIvPXWWwCAZ599Fr169YKd9n35xS9+gauuuipl7O5UwMbOtbH3wr0fTdNw/fXXo6SkBH6/HxMnTsS3336bMo7mvDfpPPLIIzj55JMdsQUA3bt3R2VlZXMua7tAgosgCIIgiE6DiG5RhKvlBD0e5Pl87f4v2IqUstzcXOTm5uLdd9+Fpmn1nn/yySdx7LHHYtq0adi7dy/27t2LPn36AEgKmunTp2Pp0qWYN28eZFnGOeeckyIyROrZkiVL8PDDD+Oee+7Bp59+6jx/880344svvsB7772H//znP1iwYAGWLVuWMobmHsfr9eKrr77CzJkzm73v5nLSSSdh5MiReOedd5zHHnzwQbz88suYOXMm1qxZg9///ve49NJL8cUXX+CCCy5AVVUV5s+f72xfXV2NTz75BJdcckmDx2nsXBt7L9zccsstePvtt/HSSy9h2bJlGDRoECZPnozq6uqU7Zp6b9xomoaPPvoI55xzTsrjiUQCBQUFzbqG7QGlFBIEQRAE0WmglMLOiaqqmD17NqZNm4aZM2fi6KOPxvHHH4+LLroII0aMQEFBAbxeL4LBIHr06JHy2vPOOy/l7xdffBHFxcVYu3Ythg0bBgAYMWIE7rzzTgDA4MGD8de//hXz5s3DqaeeikgkghdeeAGvvvoqTj75ZABJEXDYYYe1+DiDBw/Gww8/7GzT3H23hCFDhmDVqlUAkgLkgQcewGeffYZjjz0WADBgwAAsWrQIf//73/Haa6/h9NNPx2uvveYc/6233kK3bt1w4oknNniMps61ofdCEI1G8cwzz2D27Nk4/fTTAQDPPfccPv30U7zwwgu4+eabnW0be2/SWbZsGeLxOP73f/8Xt9xyi/O4YRiNnk97QxEugiAIgiA6DRZPKSTB1fk477zzsGfPHrz//vuYMmUKFixYgKOPPjolfS4TGzduxMUXX4wBAwYgPz8fpaWlAIAdO3Y424wYMSLlNT179sS+ffsAAJs3b4au6xg3bpzzfFFREQ4//PAWH2f06NEpr2nuvlsCYwySJAEANm3ahFgshlNPPdWJEubm5uLll192UgAvueQSvP32207kcM6cObjooosaNd5ozrk2xubNm2EYBiZMmOA85vF4MHbsWKxbty5l28bem3R++OEH5OTkYPXq1VixYoXzr7S0NOVYPzYkuAiCIAiC6DTYjCVFF2MHeihEO+D3+3HqqafijjvuwNdff40rr7zSiX40xJlnnonq6mo899xzWLJkCZYsWQIgaVohSHfOkySpXl1TUzTnODk5OS3aZ2tYt24d+vfvDyAZQQOAjz76KEWArF271qnjOvPMM8EYw0cffYSdO3di4cKFjaYTitc0da7ZoiXvTSgUQrdu3TBo0CDnn8fjwcaNG52o3JIlS3DmmWc6r/nkk09w2WWXZX3cbkhwEQRBEATRaRDRLYpwHRoMHToU0WgUAOD1emFZVsrzVVVV2LBhA/70pz/h5JNPxhFHHIGampoWHWPgwIHweDyOqACAmpoa/PDDD20+TnP23RI+//xzrF692hEXQ4cOhc/nw44dO1JEyKBBg5y6Kr/fj3PPPRdz5szB66+/jsMPPzzFcCKd5pxrpvci/bxFLZvAMAx8++23GDp0aKvOHQC6deuGuro6MNeCy/3334+f/exnzn6POOIIbNiwwXn+3nvvxYwZM1p9zOZANVwEQRAEQXQaKKWwc1JVVYULLrgAV111FUaMGIG8vDwsXboUDz/8MH7xi18AAEpLS7FkyRJs27YNubm5KCoqQpcuXdC1a1c8++yz6NmzJ3bs2IFbb721RcfOzc3F1VdfjZtvvhldu3ZFSUkJ/vjHP6ak3LX2OM3Zd0NomoaysrIUW/gHH3wQP//5z3H55ZcDAPLy8nDTTTfh97//PWzbxsSJE1FXV4evvvoK+fn5uOKKKwAk0wp//vOfY82aNbj00ksbPW5zzjXTe+E+p5ycHFx77bW4+eabUVRUhL59++Lhhx9GLBbD1Vdf3eS5N8RJJ52ERCKBP//5z7joooswZ84cfPDBB/jmm2+cbfLz86HrOgzDwKefforBgwdj8ODBrT5mcyDBRRAEQRBEp0GkFJLgajk/VuPj1hwnNzcX48aNw+OPP+7U//Tp0wfTpk3D7bffDgC46aabcMUVV2Do0KGIx+PYunUrSktL8cYbb+D666/HsGHDcPjhh+Opp57CCSec0KLj/+Uvf0EkEsGZZ56JvLw8/O///i/q6uqc52VZbvVxmtp3Q3zyySfo2bMnVFV1mkA/9dRTuOKKK1LEzb333ovi4mI8+OCD2LJlCwoLCx0becFJJ52EoqIibNiwAb/61a8aPW5zzrWh98LNn//8Z9i2jcsuuwzhcBhjxozB3Llz0aVLlybPvSG6d++O2bNn4+abb8a9996Lk046CYsWLarnkjh48GBs2rQJ9913H1555ZVWH6+5SIxRknNzCYVCKCgoQF1dHfLz8w/0cAiCIAiCSOOfa9bgmaVLMfWoo3BZWrE9kbTH3rp1K/r37w8/bzp8sDQ+Johscf311yMWi4ExhhdeeKHRbTN9ZwTN1QYU4SIIgiAIotNgMQbGGHTTPNBDOWgo8Ptxx3HH/WgRLiDZ84vEFnGgOOKII3DDDTek1HK1JyS4CIIgCILoNJi2DQZAb6Rgn6hPgd9PAog4ZLj22mtx7bXX/mjHy4rgMgwDZWVliMViKC4uRlFRUTZ2SxAEQRAE0SJE7ZZGgosgiA5Cq23hw+EwnnnmGRx//PFOw7MjjjgCxcXF6NevH6ZNm4Zvv/02m2MlCIIgCIJoFIMLLY1SCgmC6CC0SnA99thjKC0txaxZs3DKKafg3XffxYoVK/DDDz9g8eLFuPPOO2GaJk477TRMmTIFGzduzPa4CYIgCIIg6iEiXHESXARBdBBaJbi+/fZbfPnll/jmm29wxx13YPLkyRg+fDgGDRqEsWPH4qqrrsKsWbNQVlaGs88+GwsXLmzxMZ5++mmUlpbC7/dj3LhxKf75jfHGG29AkiScffbZKY9feeWVkCQp5d+UKVNaPC6CIAiCIDouJjdfTjRDcO0Nh/HUkiUUDSMIol1pVQ3X66+/3qztfD4ffvOb37R4/2+++SamT5+OmTNnYty4cXjiiScwefJkbNiwASUlJQ2+btu2bbjpppswadKkjM9PmTIFs2bNShkfQRAEQRCdB5OnFDZHcK2pqMD6ykqsr6zEyB492ntoHQrqCkQQzSMb35VW13C1J4899himTZuGqVOnYujQoZg5cyaCwSBefPHFBl9jWRYuueQS3H333RgwYEDGbXw+H3r06OH8a0tjNYIgCIIgOh6mbUOVZeiWBauJ5sceWUZNPI6qePxHGt2Bx+PxAABiP2LPLYI4mBHfFfHdaQ0tjnDV1NSAMYaioiJUVFRg4cKFOPzww3HkkUe2ehBudF3Hd999h9tuu815TJZlnHLKKVi8eHGDr7vnnntQUlKCq6++usEUxgULFqCkpARdunTBSSedhPvuuw9du3ZtcJ+apkHTNOfvUCjUijMiCIIgCOLHwmQMqizDsm3oloWA3PDacswwEDfNQyqlUFEUFBYWYt++fQCAYDAISZIO8KgIouPBGEMsFsO+fftQWFgIRVFava8WCa7nn38eDzzwAADg5ptvxpw5czBy5EjceeeduOGGG3DNNde0eiCCyspKWJaF7t27pzzevXt3rF+/PuNrFi1ahBdeeAErVqxocL9TpkzBueeei/79+2Pz5s24/fbbcfrpp2Px4sUNXsAHH3wQd999d6vPhSAIgiCIHxfTsuCRZdiMJQVXI6vSUcNA3DBSLOT3hsOYuXQpbp4wAble748x5B+dHjx9UogugiAaprCw0PnOtJYWCa6nnnoKa9asQTweR9++fbF161YUFxejrq4Oxx9/fFYEV0sJh8O47LLL8Nxzz6Fbt24NbnfRRRc5/z98+HCMGDECAwcOxIIFC3DyySdnfM1tt92G6dOnO3+HQiH06dMne4MniAOIZdvYEw6jT0HBgR4KQRBE1jBsG6qiwOKCqzHCmgbdslLqvb7ZvRtRw0BtItFpBZckSejZsydKSkpgGMaBHg5BdFg8Hk+bIluCFgkuVVURCAQQCAQwaNAgFBcXAwAKCgqyFo7u1q0bFEVBeXl5yuPl5eUZ1eXmzZuxbds2nHnmmc5jNs/ZVlUVGzZswMCBA+u9bsCAAejWrRs2bdrUoODy+XxkrEF0Wj7fuhWLduzArRMnNroCTBAEcTBh2TY8rpTCxgjrOhiAqK47j5VHo6hLJHAoJNkpipKVySRBEI3TItMMRVGQSCQAAF988YXzeCQSydqAvF4vRo8ejXnz5jmP2baNefPm4dhjj623/ZAhQ7B69WqsWLHC+XfWWWfhxBNPxIoVKxqMSO3atQtVVVXo2bNn1sZOEAcTlbEYTNuGRU5VBEF0IoRphsUYjCZMM+I8uhNxCa6IrkOzLLo3EgSRNVoU4frss8+ciE+BKw0pFovh2Wefzdqgpk+fjiuuuAJjxozB2LFj8cQTTyAajWLq1KkAgMsvvxy9e/fGgw8+CL/fj2HDhqW8vrCwEACcxyORCO6++26cd9556NGjBzZv3oxbbrkFgwYNwuTJk7M2boI4mGBITkxsmlQQBNGJMBmDIkmwGHOaIDdEjAuuqCutLqLrsBlr0uGQIAiiubRIcBWk1XqUlZWhR48eKCkpabQ/Vku58MILUVFRgRkzZqCsrAyjRo3CJ5984hhp7NixA3IjrkPpKIqCVatW4aWXXkJtbS169eqF0047Dffeey+lDBKHLDafjNCkgiCIzoRpWVBkGYZpNim44qYJVZadlMKoriOkaUnBxRjihoHPtmzB6YMHQ23BvIMgCMJNqxofC0477TSsWrUqW2NJ4brrrsN1112X8bkFCxY0+trZs2en/B0IBDB37twsjYwgOgdMCC6KcBEE0UlgXCgpkuQsKjW2bcI04VMUJ9L11tq1iBuGc39ctGMHvt65E8O7d0cpz54hCIJoKW0SXNSlnCAOXkRKYVMrwARBEAcLNmNgvA9XU2mB4v7nU1VolgXTthEzDFTEYpCQNN+IGgYiug6F+lQRBNEG2hQfp0Z5BHHwQimFBEF0NizGYDMGWZKcRaWG0C0Llm3DpyiwbBuaaaJPQUFKSmFU1xFN69NFEATRUighmSAOUSilkCCIzoZl22AAZEmChGYILsbgVRSYto2EaUICkOPxgPF9mbaNuGE0aS9PEATRGCS4COIQhVIKCYLobFiMYcfSpYjX1gJoZoRLVWHatmMFL7J3LB4pM3j0iyAIorW0SXBRszyCOHgRKTOUUkgQRGfBZgz/vvtu/OuWWwA0LrgMHuH3KgosxqCZZvJ+yKP+IgOgOQ2UCYIgGqNNgmv58uXZGgdBED8yNqUUEgTRyRALSLV79gBoXHBZtg3GGDyy7KQUmrYNJiJctg2DR72ohosgiLZAKYUEcQiSME1sr61NWihThIsgiE6CewGpqRouYbChynJSXIkFKL4P0TjZpJRCgiDaSJts4QEgFAph1qxZKCsrQ//+/TFy5EgMHz4cwWAwG+MjCKIdqI7HsTscbrJPDUEQxMGEmRaJaiyCb9m2I7hsxmBYFgzb3l/DJUQYr+8iCIJoLW0WXOeeey5WrlyJY445Bh988AE2bNgAABg4cCBGjhyJN998s82DJAgiu4iJhqjjIgiC6Ay4BVdTtvCm29FQkmDyFEJZkpwGygZFuAiCyAJtFlyLFy/GggULcMwxxwAANE3D6tWrsWLFCqxcubLNAyQIIvuI5qDC+pggCKIzkND1/X80EcEXKYUioiXElcQFl2nbMHkNV9Qw2nvoBEF0YtosuEaMGAFV3b8bn8+HMWPGYMyYMW3dNUEQ7YTNxRalFBIE0ZnQXYKrqQiXMM2QheCyLOiWBRmAzZ/X+evDmtaOoyYIorPTZtOMhx9+GDNmzIBGNyOCOGgQ6YSUUkgQRGdCc0WiLF1vNILvRLj43ykRLsCJcAFARSwGm+6VBEG0kjYLrtLSUoRCIQwdOhS333473n//fezcuTMbYyMIop2wREohRbgIguhEuCNctmHAbMI0A8D+lEIR4eJ/uxvDV8fjmL91a3sNmyCITk6bBdd5552Hbdu2YcKECfj6669xxRVXoLS0FMXFxTjttNOyMUaCILKMSCmUJIlquAiC6DTorgiXbRgwGnEXNF2OhOJv07ZTIl4Gvz9uranBmoqKdhkzQRCdnzbXcH3//fdYvHgxRo4c6Ty2bds2LF++HKtWrWrr7gmCaAeEaYbMnbkIgiA6A4ZLcDHDaNI0I+W1XGCJCJfOGyEflp+PXaEQahOJ9hk0QRCdnjYLrmOOOQbRaDTlsdLSUpSWluKcc85p6+4JgmgHLG6HLJHgIgiiE2GkRbgareFyRbMYY9AtCyZPKVQkCZplwbRtBD0e/KRrV1TyOi7ZFRUjCIJoDm1OKbzhhhtw1113oba2NgvDIQjix0BEuCQ07uJFEARxMGG4+mXZuu6kBGbCHeGSZRkJHtGSJAmyJCFhmo4o8ykKEqaJiNt2niAIopm0OcJ1/vnnAwAGDx6Mc845B+PGjcNRRx2FYcOGwev1tnmABEFkH6eGCyS4CILoPJhpEa7mND4GAFWSENF1xE0TChdcZZGI0xjZp6oIaRpCmoZ8n699T4IgiE5HmwXX1q1bsXLlSqfR8QMPPIBt27ZBVVUcfvjhVMdFEB0Q4VIIkOAiCKLzkG6a0VQfLoFHUVATj0O3LKiyDFmSUKdpiOo6crxeeGQZhm0jRg2QCYJoBW0WXP369UO/fv1w1llnOY+Fw2GsWLGCxBZBdFBEPxlJkpzGngRBEAc7ZlpKYVOmGaIayyPLqI7HYdk2PIoCAAhpGipjMSiyjC5+v9O7MOV4to3/bN6ME0tLEfB4Up575Ouv0S0YxJWjRmXl3AiCOHhps+DKRF5eHiZNmoRJkya1x+4JgmgjNmNOnYLumqAQBEEczKREuEyz8RouV0qhR1GcxscBjwembcNiDJZto3tOTrIZcoa+hVtqavDVjh3I83oxqV+/lOeqYjGq+SIIAkAWTDMIgjj4EKk0siRBb6RPDUEQxMFEeoSrMZdC07ad1GqPLMOwLFiMQZEkmIwhbhgY0b07fKoKWZJgcwHmRrcsxAwDqlx/OqVZlrN/giAObUhwEcQhiEiLkSWp0RVggiCIgwm3aYbVRA2XkVbDJRofq7IMy7aRME0nvVBC8r6Z3rtLtyzETROqLGNtRQW+3rkzeWzbhmaa9VIQCYI4NCHBRRCHIDavXaAIF0EQnYmUlMImargSpgnYNiLV1VBlOZlGaNtQZBmH5ecDSEa+gGS9qyRJ9SJcMcNA3DBQk0jghWXL8N769QCAqGFAtywSXARBAMii4Bo/fjy6d++erd0RBNGOWIzBiMXATJMEF0EQnQZ3SmFTEa6EaWL1nDl49LzzoAApEa6iQAAT+vaFlNbkOD3CVRmLIWoYWFFWhi01Nc72cX5sElwEQQBZNM248MILUVlZma3dEQTRjtiM4b2pU9H9yCMx6P/+70APhyAIIiuIlELF42myhmvHpk3Y+NFHAAAtFIJp2zBsG3KayHLj3h9jDF/v3ImYYSBmGCntNnReD0ZyiyAIIIuC64YbbsjWrgiCaGfEqmv5mjUU4SIIotNg8AiXLxiE5RJB6ZEqAFi1aJHz/5HKSpgFBTAauR9KSI1wWYwh4kpbFHVfjLGk4HKZchAEcWjTYWu4nn76aZSWlsLv92PcuHH45ptvmvW6N954A5Ik4eyzz055nDGGGTNmoGfPnggEAjjllFOwcePGdhg5QXR83Ku01IeLIIjOgohweYNBWLoOlsHoQhDo0sX5/3BlJSwulBrDfe80eI2WeMxmDAa3kxcRLoIgCKCDCq4333wT06dPx5133olly5Zh5MiRmDx5Mvbt29fo67Zt24abbropY/+vhx9+GE899RRmzpyJJUuWICcnB5MnT0YikWiv0yCIDou7rkDnK7IEQRAHO6KGyxcIwDaMjFbugoSmOf8frqqCYVmo3bEDViO9Cd01YQY32WCA0xTZsm3sDoWcCBdBEATQQQXXY489hmnTpmHq1KkYOnQoZs6ciWAwiBdffLHB11iWhUsuuQR33303BgwYkPIcYwxPPPEE/vSnP+EXv/gFRowYgZdffhl79uzBu+++2+A+NU1DKBRK+UcQnQH3RMBqZAWYIAjiYMJwRbhMTXPEUCbi8ThkVYU/NxdaLIaEYWDpHXfgg7/8pcH9u++VIsIVUFXHkVCzLMxascKJcNG9lSAIoBWCq6amBtXV1QCAiooKvPPOO1izZk3WBqTrOr777juccsop+wcpyzjllFOwePHiBl93zz33oKSkBFdffXW957Zu3YqysrKUfRYUFGDcuHGN7vPBBx9EQUGB869Pnz6tPCuC6Fhouu78v81Yo3ULxIFlXUUF4i6ra6LjsL6yEnfOn9+oEx7x42KaJiBJ8Pj9sESEqwHRk4jFoPp88OXkQIvFcFS3bgCAlf/5D6p27aq3PUPqYtV6nobo93icVMTaRCKlhovurQRBAC0UXM8//zxGjx6NMWPG4JlnnsE555yDefPm4aKLLsLzzz+flQFVVlbCsqx6FvPdu3dHWVlZxtcsWrQIL7zwAp577rmMz4vXtWSfAHDbbbehrq7O+beTNzQkiIOdeDzu/L/NGE0YOyg2Y3j9++/xLu/tQ3Qs1lVUIG6aqHZ9n4gDi2makBUFHq8Xlq43uKBk2Tb0RCIpuIJB6LEYVNd98K+XXQYAqNq1C3Xl5ftf5xJvn2zalBLhkiQJYU2DzRg2VlfD4vdWsoYnCKJFLoVPPfUU1qxZg3g8jr59+2Lr1q0oLi5GXV0djj/+eFxzzTXtNc4GCYfDuOyyy/Dcc8+hG1+dyhY+nw8+ny+r+ySIjoBbcFncCpnoeOiWBc00EXZFJImOQ6Hfj4iuoyoWQ0lOzoEeDoGk4JIUBarPh1gs1uD9zbBtGJoGj88HbzAILRqFmeF7JoTXnfPnA0iNcCVME5ZtI+jxQDNN+FQVlm2jJCcHP1RVweJiy7RteBWlnc6YIIiDgRYJLlVVEQgEEAgEMGjQIBQXFwNIpudlslxtDd26dYOiKCh3rSgBQHl5OXr06FFv+82bN2Pbtm0488wzncdsfkNUVRUbNmxwXldeXo6ePXum7HPUqFFZGTdBHEzEYjHn/ymlsONiWJZTG0J0PHyqiqiuo4bMlzoMhmFAVhR4AwGYe/c2eH+LGwb0RAIevx++YBBaLAbDZaLREO4Il25ZMGwbflVFbSIBy7ZR6PcjrOuojsed765hWSS4COIQp0UphYqiOK5+X3zxhfN4JBLJ2oC8Xi9Gjx6NefPmOY/Zto158+bh2GOPrbf9kCFDsHr1aqxYscL5d9ZZZ+HEE0/EihUr0KdPH/Tv3x89evRI2WcoFMKSJUsy7pMgOjvRNMFFKYUdE50LLnKR7JhY3AKc3Og6DqZhQFIUJ01QWLWnEzfNpODiKYVaLJYS4covKUnZXnwH3RbwFmNImCYCHg/ipgmTN00Wvbm6BYPNsponCKLz06II12effeak2BUUFDiPx2IxPPvss1kb1PTp03HFFVdgzJgxGDt2LJ544glEo1FMnToVAHD55Zejd+/eePDBB+H3+zFs2LCU1xcWFgJAyuM33ngj7rvvPgwePBj9+/fHHXfcgV69etXr10UQhwLx9AhXO04YmWtSQrQMR3Ad6IEQGTFtGyYXXUTHwLSsZISLCy6rkQiXkUjA6/fDl5ODun37YPII1xHHHYedaWZgCb6wnOCW8QY3xdBME35VRcIluAzLgmnbyPf5YNo2CS6CIFomuNwiy01JSQlK0laD2sKFF16IiooKzJgxA2VlZRg1ahQ++eQTx/Rix44dkOWWGSzecsstiEaj+PWvf43a2lpMnDgRn3zyCfx+f9bGTRAHCzF3DVc7R7iW7tmDD3/4AbdNmgS/2qJbziGPwSdrFOHqmJi8DxOlfHYcTMMAFAW7dB0aj3Cl39++2LYN3+zeDUPTEMwQ4copLIQWjcJ2CSUtGkXQ58P2ujoAcGzfNcuCLElImCZsxiBLktOPK9frRSKRgEaCiyAOedo8+wmFQpg1axbKysrQv39/jBw5EsOHD0cwGGzTfq+77jpcd911GZ9bsGBBo6+dPXt2vcckScI999yDe+65p03jIojOQCQcdv7fsm2sLCvDoKKidjnW+spKJEwThmWR4GohokakPBrF5upqDGyn94hoHaLPEqUUdhwsbprhCwSgx2IwTdOJ4L+1di1yPB78Z/NmRHQdhqbBW1SUtIWPRp0arpyiIhiJBGJcXAGAHo8jJzcXe8NhJEzTsX0fxWvE+xYUIN/nQ4i7FFqMwasoSVHWSCNlgiAODdo8+zn33HOxcuVKHHPMMfjggw+wYcMGAMDAgQMxcuRIvPnmm20eJEEQ2SVUUwMA8AYCqIrHsTeLdZjpxAwDcdOktKtmsHD7diiyjPG8558oug9pGl5ZtQp3nXDCgR0gkQJFuDoehmlCkmX4uGuknkg4KYXL9u6FZdvYWF2NQr8fpqbB4/cn0w/jcSfCldulCwAgVFHh7Ldmzx706NkTtYkEQprm1O8p3DCsL88AinAresu24VOUpP08RbgI4pCnzYJr8eLFWLBgAY455hgAgKZpjonFypUr2zxAgiCyjxBcjDH0yM1FrB0b60YNw6lvIBrno40boboEl6gTWVtRgTN/8pMDPDoiHVG/RYsJHQeL9+Hyc8FlxuNOhCtuGIjoOnrn5aEsEoGhaU4fLi0Wg8FNwXK44HL333rjT3/Czf/5D0zbdhqRW7YNJa28QZYkJ03bIyJcJLgI4pCnzYJrxIgRUF1pQj6fD2PGjMGYMWPaumuCINqJcG0tAMDUdSiShH3RKGoTCRS2Q01jVNed9BuiYQzLQljTkOv1Oo8Jw4x8nw+FgcCBGxyREYpwdTyES2GACy4rHofB6yAN20ZE19GnoABhXYfHtuHxeuELBgHGnBTCHG68VZvWnkaVZRi2nYzY88iVJ4PgshkD4//PyKWQIAi00BY+Ew8//DBmzJgBrRn9KwiC6BhERITLtiFxF8HHFy9ul2NpfLJDEa7Gieg6NF6zJRCOaJIkkWDtgDgRLnpvOgymZSVruPjikaXrMLibpM0Y6jQNflXFT7p2ha3ryT5cXJxFa2shKwqCPD2wLk1wSXw/ccNARSwGkzF40vprKVxwCREuSRLVcBEE0fYIV2lpKUKhEIYOHYoLL7wQP/3pT3HUUUehD0+JIQii4xFzmWZIpomorsOvqmCMZa2JuUBEAEhwNY7Br5NYjZckCXEhuACa1HdAxHtGEa6Og2kYyRouHim2uMGFiLLHDAMyv8eZuu6kFALJhShVRLzABZckAaIHF19YTpgmKqJRZLpTypJUL6LfninbBEEcHLQ5wnXeeedh27ZtmDBhAr7++mtcccUVKC0tRXFxMU477bRsjJEgiCyjJxLJiQQAmCYSXHS1R+qLQYKrWYj0NMO2kTBNlEci+GrHDhiWBUmS2rVXGtE6dG4FTjVcHQeLR7i8PMJl8/uawaORI3h7GQAwNC2ZUsgjXLGamqQA43/XlZc74gtIOhUCwNzNm7GqvNwRbm58qgrdspy6LcYYIq6GygRBHJq0OcL1/fffY/HixRg5cqTz2LZt27B8+XKsWrWqrbsnCKIdMA0j6cwVjcIyDMRlGbm2Dc2y4MuydbuIcNGktHEM7khoWBbipom1FRVImCZCmoagx0MRrg6I6JFGEa6Og6jh8vl8APZHuMT3S3GJJCORgOrzwcvrI6O1tVC9Xnj8fkiyjNrycvhzc6FFowC44OJCLmGaKfsSeBUl2QaDf18VWUYtN+MgCOLQpc0RrmOOOQZRfjMSlJaW4pxzzsGdd97Z1t0TBJFlbMZg6Tq8fOXW0HXEDaNev5g1+/Zh+d69WTkeRbiaxnQJU800EfB4ENI0MPAaLprUdziihgEGSvfsSJiiD5cQXIYBjQsgt6ugZZpgtg2Pz+dEw+LhMDw+HyRJgjcQQDwUgj83F7/++98BJAWXaEIeM4x6DoUA4JHl5OeCb+dVFNSQ4CKIQ542C64bbrgBd911F2q56xlBEB0by7adCBcA+JA0trB4hEvwz7Vr8fa6dW06FuMCggRX04jUS+F+JkuSszJONVwdkzr+/pgkhjsMlujDxQUXTBNx0aiYsf31W7wey+PzwcMFV6yuDqrHAwBOKmEgL8+JgH3y179ClmWnFixThEuSJMQMA134Pj0U4SIIAlkQXOeffz4+++wzDB48GL/+9a/xwgsvYNmyZdApZ5kgOiQ2Y7BNE15ep+ADMK53b5i27US4dtbVZcVZ0HSZCpBgaBx3TyfdsqCZJqKGgWElJRTh6oAw7ngHwGmsSxx40iNcjDdeT08pNPh7p/p88PBt46EQVP7/o888E0CyObwQZDu//x4eWU6p0crEuN69MaykBEAypZD6cBEE0WbBtXXrVrz77rv43e9+h6qqKjzwwAM45phjkJeXhxEjRmRjjARBZBGbMViG4azaWoYBVZadiT4AvLB8uWOl3BaEWxcDKMLVBGJCKCJcmmXBqyjoFgxShKsDIqImsiTRZ7sDYXPB5fV6AUkCM03EDcOJ4os0QMMV4ZJkGSp3NRT/LS4tBZAU1l5XDzxVlpEwzXpW74wxLP7HP5CIROBTVec4siRBN00nxZAgiEOTNlfH9+vXD/369cNZZ53lPBYOh7FixQoyzSCIDogjuHiEy9R1KLKcjHC5VmI102xzVEU4g1FKYdOYtp1MwUQyxdM9oaMIV8di2d69yPF4oFsWfIpCYrgDISJcHkWB4vEkBZdpYnttLUxXhMudUggAHr8fpq47fwfz8wEkhZRwLfQGAvAIwWVZyHEdd9+WLfjPM88gXFWF06691nlc5t9dizGoWW65QRDEwUN27cg4eXl5mDRpEiZNmtQeuycIog0wICXCZeo6ZEkCA1Im+UJ82a66h+ayuboaIU3DYfn5ZJrRTEzbdnqgOSlLonkqKMLVkfjXunVQeGqZT1XJsr8DYZkmJL8fsiRB9njADAO18TiW7N4N3TSd75g7pRBICq54KOREuAJCcPHv5aRLL8WqTz+FT1URcbXQ2L5yJfREwnmdnKERssXvf2oGkw2CIA4NWvXt37FjR4u23717d2sOQxBEE7Smb5YT4eJF4Savt5SBehEud11XS3jj++/xwvLlqIzFnFQ5ElyNY9i200hVNGoVMS1JksiYoQMhvneaaSKgqiSGOxAmN82QJAmKxwOb90qL6nqKMDbSIlzCqTCT4AIAxeOBqesIuARXvseD2TfeiNduvRUJ3kzen5ubMh5Zkpx2DwRBHLq0SnAdc8wx+H//7//h22+/bXCburo6PPfccxg2bBjefvvtVg+QIIjMRHUddy9YgK9auAAiBJdIk7EMw3nOLYp0y4LJm/C2eGzcirkmkYBuWVCpcLxJxLWXkLz2CdN0IosU4eo4MFetI0PSFIEiXB0H0fgYAGSPB7ZhJAWXYaTc3zKlFAIuwZWXBwAYNG5c8nGPB5ZhIODxIKLryPf54OWNkAEgVFkJACm1sYamOYKLFpwI4tCmVSmFa9euxf33349TTz0Vfr8fo0ePRq9eveD3+1FTU4O1a9dizZo1OProo/Hwww/jZz/7WbbHTRCHPCFNw+5wGF/v3IkJffs2+3WMuxQK22PTJbgMVxqhYdvJgu9WCCXR7LgukXBSaVqzn0OJdLErDBkAXsNFE7YOgclNTQQS0Kz6uh+qqjCoqKjF6blEy7AMw0nrU1yCK6xpKd+xTCmF7r9Vrxe3ffyx87ji8cDkBkPdc3LQIzcXkZ07nf1t/uab5PH5AtVrt9+OLUuX4oaPP3bupwRBHLq0KsLVtWtXPPbYY9i7dy/++te/YvDgwaisrMTGjRsBAJdccgm+++47LF68mMQWQbQTUcOAYVnwpNUMNIXBG36mpxQCcCYFlm1nTAWM6DrunD8fu0KhRo8h6rZqEwlIGerDiPrYfNIuHB1TBBeaN6kn2h/h3mlxkxNJkmA2sZiwJxzGq6tW4RtKr293TNOErCbXkmUelWJINioezq3agf33PSelkEemRIRLPCZqvlSv18kGGFhUhByvFzHXfXDjkiUp+92ydCkAILRnT7L3IQkugjikaZNpRiAQwPnnn4/zzz8/W+MhCKKZxAwDhm3D08JC7Dhvwql6vVC9Xie1hiE1wiX6QrlXZnfW1aFO07CxqgqH8RqHTLgFF5AUDAmKcDWK7RJUhmXBSI9wkeDqEIjeciICrEhSk+myOn8/w/y7dihSFYvhX+vX4/KRI+Ft4SJRS7B4CjOQmlJoM4aufJEJAAzXfRAAcrt0AbC/disdxeMBs23YluVE0OIZFp6E4PLl5ECLRhGtqoK3Sxeq4SKIQxyyzCGIg5SYYbQqTU/jk76YbQMeD3Q+8YCrNkUIrfRi76p4HFWxmLPq2xDCCn5POJyclMoyotQMvVFEnx7RcFq3LOc6Uw1Xx0EILt2yIMsyFFlGvInorYRkZOxQlszLy8qwvrISO+rq2vU4livC5U4pTL/2hqYlRRSvsRJmF4Xdu2fcr+rxJPfPo1y2ZWHrsmX1thOCSwi5WE0N1XARBEGCiyAOVmK8CLyltQEJLrhClgXF63UEGFwr9WKCkF57sDccRmUshlATK/ViRTlmGAioKhRJQsxVK0bUR0S4JP4+pNdw2RTh6hCIVFvdsqCICBd3wmsIET0+lJvf5nq9qI7HURGNOo/ZjOGb3buzuphgmSZkV4TLMoxk3WratTd1HarXi4U7dmDpnj2w+Rjyi4sz7lfhgkvUvH7+4otY+v779bYTgkvUcsWqq6mGiyAIElwEcbAibNtbunKa4BEtWVWhuFIKFUlyHAlFDVd67cHW2lrETRN1jQgumzHHNCNhmgh4PFBlGXESXI0iVuHFBF6krAH7I1yH8oS9o5AS4eLR23QjjUyvOdQjXAnTRFjTUu4dW2pq8K916/Dtnj1ZO45lmpBcES7LlVLoxtA0eHw+eGQZMcNAQb9+AIACV52XGyUtwrVn/XoAqTVfQFJwMdtGIhIBAES54KIIF0Ec2pDgIoiDFJG219KVUxHRkj0eKD6fk1IouwSXzdj+/QsLbMawm9csxBpJDxQRALEPEQVoKu3qUEdMCGUe4Uqv4WIARbk6AG7B9fk992DtRx/BaqJfnajJO5QFc8wwkDDNlDYTNmOojsexzxX1aisWr7HyyLIT4bIZq3ftDU2D6vNBlWXkeb3AqFH43auvoqBnz4z1ViKlUESwTFdmQMrxdR1aLOY0LTficViudG2CIA5N2iy4duzYkfFHhDHW4gbJBEE0H5NHPFpajO1EuDweqD6fY4+syHLKZGhwUREkSXIEnWZZ0LgrYmPpgWJCKiJdCm9CSkXjjZMuuPS0CFemtCjix8fgZjK6ZWHvypX44plnmpxQH+oRLsOy8M3u3YinCa64YaAmkUCNqCPNApZpJgWXokBWVVii/1aaMDISCXj9fsiShIDHg6DXi6LevfFDVRUW79pVb16THuEyuPBy17MGCwpgaBrivAkysF+gkeAiiEObNguu/v37o6Kiot7j1dXV6N+/f1t3TxBEAzg1Vi0VXEJgqSpUr9cRXDJPZWM8MiUm+zXxOCzbdmrG/KraqOASE1J3hEsml70mEVdHvA+ZIlx0DQ887giXwLLtRp0KDVebhUORKh7FMm07xalRGP+s3bcPVbFYVo5lWxZkVYVHlpNW7roOw7aRbvOjx2LwBoOQJQleRYEqy7AZQ0jTUOj314vIi9RBUcNlZkirjtXVYe0XX2Dfli0AuADjYpLaYhDEoU2bBZfoQ5JOJBKBnzcMJAgi+4g6qZbWBuh8xVVEuMTEQeW1DGJCKUsSJAD/3bULH2/ciDjv++VX1UbTA1NSCkWEC+Sy1xQ2YwBjSdc7w4Bl29g0fz7+Pm0aZEmiCFcHIZPgam4N16Ea5dW5JX7A40HYlY4c4/eUXaEQPvzhh6wcyx3hUrjgMl3RYoEWi8EXCKQILsu2EfR4UODz1XNVrRfhaqSOdQ8/l7yuXWHoOiRQhIsgDnVa3Ydr+vTpAJIrr3fccQeCrv4WlmVhyZIlGDVqVJsHSBBEZkSKUmtdCiVVhcfn29+PRpYR4ZMTm0emhEX59ro6DOnWDYZtw9/MlEJRcyRLEvWRagbimsmShIiuw2YMS156CbHqasRra6Hk5ZHg6gBopgnLtp3vEQAnpXBzdTU2VVdj8qBBKa/5eONG6Nx58lBEM01YjKHA50MkTXApsozd4XDW0gptVw2X4vHA5KLOLbcsw0iJcPkUBbplweSRMK+i1Puu+fgcR4/HAezv4yVJEgq6d0ddeTlOu/Za/OeZZ/Dlyy8DAPK6dYOpacnG74foe99SorqOqGGgJCfnQA+FILJKqyNcy5cvx/Lly8EYw+rVq52/ly9fjvXr12PkyJGYPXt2qwf29NNPo7S0FH6/H+PGjcM333zT4LbvvPMOxowZg8LCQuTk5GDUqFF45ZVXUra58sorIfGJn/g3ZcqUVo+PIA4E7roCkaLS0giXY5ohBBefAHlkGYZtI8qLzCVJgslNOYTphYhwNWaDLdIJ3SmFEpCxcJ3Yj2XbkHj6pc0YwrqOLocdBgDYsWyZEzEkDiy6ZcFiDBqfeAPJ76Vl25izejXmb9uW8t0Q7REs2z5kjWN07njqU5QUwRU3TXhkGT/p2hVbamra7ORn2zaYbUPmESvV63VquEQmzs7vv8d9p52G7atXw5sW4TL5IpZHUVIWiL7ZvRtlfNwaN/gQLoQAMPWpp3DiVVdh3HnnpdSK5RYVOZGwH0NsR3Q9a6mZB4q/f/cdnm5kvkcQByutjnDNnz8fADB16lQ8+eSTyG+gO3trePPNNzF9+nTMnDkT48aNwxNPPIHJkydjw4YNKMlg2VpUVIQ//vGPGDJkCLxeLz788ENMnToVJSUlmDx5srPdlClTMGvWLOdvn8+XtTETRHvzQ1UVXlm5EqN79cLkgQOdyJYwz2iqGbFA4yuziqrC4/dD4xMHVZaR0HWENQ2MR6ZMngalynKyvgvJ1V+LMWjc8j0dEeGybDvFNEPUhqmucW6pqcHWmhqcPGBAG6/OwY8QU14+Ka1NJCDz6/vD55+jz6RJ1MunHfnXunXYWF2NWyZMaHQ7jfffKnHZgYvFhQKfD+WRCGoTCRQFAgCSKbYictxU8+9doRDmrFqF6cceC4+itP2kOghCpHoVBQleJypJEsKaBkWWU3p09czLa/VxTC5o000zDNuGqihY8s47+OT//i+5rabBk0FwAcnWDEI0i2h/Gd+3FovBtizYLgFVUFKC4y67DADgDQSgc9HjCQQcwfVj1HA9tWQJNNPE3See2O7Hai9CmkYW+kSnpM01XLNmzcqq2AKAxx57DNOmTcPUqVMxdOhQzJw5E8FgEC+++GLG7U844QScc845OOKIIzBw4EDccMMNGDFiBBYtWpSync/nQ48ePZx/Xbp0yeq4CaI92VxdjXWVlfh861Zsqq52+gC1tLbHbQtf0KMHqrdvx54NG+BRFJi27aSziUiLbllQePQLSLoZWo3UrAjBleBpRJuXLEHN9u0Ze+G8vHIl/rN5cyuvSOeifPdu1GzejDyvF/uiUUR1HTp3O4vV1FAvn3ZmZXk5ahMJ3Dl/fqOfSfG96+mqUbb54kKB318vyiBS1eKmiWgTveiW7NqF2kSiycbiBxviXiFEjbiX1GkaPLKMoMeDmGGgso3RGYNfX7dphsnFbmTXLkdsCRKRCBRZri+4+D0OSEaNCv1+KB4PZFWFFo0iWlOzfydpC12qaxHKw/scyj9S43chbA926D5HdEay0odr3rx5uP3223HNNdfgqquuSvnXUnRdx3fffYdTTjll/yBlGaeccgoWL17c5OsZY5g3bx42bNiA4447LuW5BQsWoKSkBIcffjiuvfZaVFVVNbovTdMQCoVS/hHEgSKkaahNJFAeiUDmdu0Kd9ZqyQ+UEFxerxcjzz4bAPDcb34DIxKBYdsIuwSXxCcKCo92Sdg/aUo0sGIrIm4WY4gbBt64/Xb847rrMvaRMiwLUcPAc99996NMSDoyLz/wAD6//XYkKivhU1WM7NEDOo8+JiIRElw/AqLOasmuXQ1uIyK9uiul0OKLCx5ZhmZZKamDhkuMNfUZZ0im2XW2Wi8tTXCJaE9I06DKMhRe49nW8xaCS+IRLpFS2K+gANqqVQCA/JISnPLrXwMAItXVkCUpmX7IF5UkwFlsApL3Mx9vpKwGAtBiMUTcgisN4WZ47p/+5LTd8CoK9kYiP0pKdWdIO+4MopEg0mmz4Lr77rtx2mmnYd68eaisrERNTU3Kv5ZSWVkJy7LQvXv3lMe7d++OsrKyBl9XV1eH3NxceL1enHHGGfi///s/nHrqqc7zU6ZMwcsvv4x58+bhoYcewhdffIHTTz8dViM3+AcffBAFBQXOvz59+rT4fAgiW5RFIugaDDoTb92yoLbCLlzjaU2qxwOPazU2VlXl2L/bjEFCsv9T3DSTk5G0SVNjgstmDD1zc1MmmKLOxY2oC/tm9258vXMn4oew6IrU1gIAavbswbCSkqTBQHU1Crp3RyIcJsHVzogWCxqvU2wIIQoMl8mDzY00hGhwp4+JqIOvCbMZQZw3CO5MiGuWHh0PaRo8ipKsq0bb65xSUgpdEa6+BQUI8BTP386ahWN/+UsAQMmgQZAlCVeOGoU8r9ep4RICENifUuhVFECSsPzjj1Pe+8OGDk0Zg3AzLOrdGx6/H6auo2sggC01NVlt8NwQneEe0RnOgSDSaXUNl2DmzJmYPXs2LuP5yweKvLw8rFixApFIBPPmzcP06dMxYMAAnHDCCQCAiy66yNl2+PDhGDFiBAYOHIgFCxbg5JNPzrjP2267zXFjBIBQKESiizhgRA0DPkVB1Lad2ioR4WrJqqau65AUBYqiQJYknHr77fj0gQeghcOwCwqSNRaAE+GKcycx8SPYlOASdvWHd+uG0mAQC/jjmSJcJhd4YV3HZ1u2IGGa+PlPftLyi9MJ8OfmAgCiXHh98te/wkgk0POYY7B+4ULoiQRNRNoRIZgM02xUcInvh9sWnPEIl2aa9b4bwjDCqyiIG0aj9ZaMMcRNs9OZaziCiwsZjadZJvhiDoCsCC4npZCnCCoeD8BY0pUwHkd+SYnjNjj9n/8ECwZRyaNs+X4/doVCToRrdyiE7jk5TrTfp6rQQyFUh0Ko27cPAHDJQw+h7/DhKWMQKYW+YBAerxdGIoGAx4OKWAy1iQQ+27IFY3v3xuCuXTOeA2MMS3bvxlE9ejiRteYiMgsOdtytSQiis9DmCJeu6xg/fnw2xgIA6NatGxRFQXl5ecrj5eXl6NGjR4Ovk2UZgwYNwqhRo/C///u/OP/88/Hggw82uP2AAQPQrVs3bNq0qcFtfD4f8vPzU/4RxIFCpPZJQIqZRWtSCmVVBbgjXglfoY3X1Tm1V84kQ1EQN00oPIURaH6ESwIQ4+IBQL1aMyEUQ5qGiK5jU3W1M/k6JOHnHqurAwB88847AIBeXIBqkQgJrnbE4p/HRBOCK2YYUCXJcasD9ke4ElxcuS3ARV86L6+RbExU2DwNt7NFetNro3TLcq6L4ppUt9U6XUS4FFVFns+HABdXRiIBPZGA11V3l9etG6AoUCQJHkVBgc/ntNpQZBkDi4qwgUf9ZUlK+UzU7N0LAOg+YAC8PHImECmFvmAQvpwcmLoOva4OhmWhIhbDwh07MHvFigbPoSIWw0c//IAF27a1+PwZcNA7wbp7OBJEZ6LNs5trrrkGr732WjbGAiBZVzJ69GjMmzfPecy2bcybNw/HHntss/dj27ZTq5KJXbt2oaqqCj179mzTeAnix0L0rAGSdSG6ZTlGF41NVHbW1WEvN18AAF3ToHg8zkquGgxCkmXEQiFAkhzLd1mScHjXrs5kSaTbiPqGxgQXeHQsUl0NIJlmkx7hEhOusK6jZ27uIf8Da/JUTyG4BD254EqEw4ds49wfAxHhSpgmvIqCb3bvzmixXRWPw6MoiLu+UyLCleAW5PUiXFxwiehOQ0R0HXpaDVhnwLRtgDFnsWbOqlUw0qIYDNmNcOV5vejPXY31RAJ6PF5PHOmWBa+iINfrRZ7P59zrZElCrteLXK8XG6qqnMWnU558EgBQywWX6nKqFIjHvMEgDp8wAbKiYP2XX4IBqI7HoVtWoymjNv+MtOZaZDImOtgQC3O0uER0NtqcUphIJPDss8/is88+w4gRI1JqQoCk42BLmT59Oq644gqMGTMGY8eOxRNPPIFoNIqpU6cCAC6//HL07t3biWA9+OCDGDNmDAYOHAhN0/Dxxx/jlVdewTPPPAMAiEQiuPvuu3HeeeehR48e2Lx5M2655RYMGjQoxTaeINoKYwyfbNqE0b16Za1xo2FZeJLb/aqyvD/CZdvw8glMYyviz373HWRJcqyCNU2D7PE4dRMMQLCgAPFQCAHAiXBJfOW3i9+fTFNxTQAk3pcrE8JcA4BTXK76fPXSXcREtF9BAfoWFGBNRcWPYp3cUREpaiIqmNOlCwaMHo3coiIAcNzWiPbB4pO8iK5ja20t1lZUwK+quHnCBOTySbTNGMoiEQRUFftcfZjcES63KQSQmlIYbeI9jHIL885Ww2W5aqPqNA1hV4N1J20sC6YZ7houSZLQg393jEQCRjwOjyvCBSQNUHK8XuR4PMjhcxexqBT0eOCRZcg8E8CnqsjhaYDff/45gMyCa8rvfof5s2bB6/dDkmV4AwGn5qsqFnMEuWiZUe8c+OenNbKppY61HRGbBBfRSWmz4Fq1ahVGjRoFAPj+++9TnmtuX6B0LrzwQlRUVGDGjBkoKyvDqFGj8MknnzhGGjt27IDsulFFo1H89re/xa5duxAIBDBkyBC8+uqruPDCCwEAiqJg1apVeOmll1BbW4tevXrhtNNOw7333ku9uIissrG6Gv/etAmyJGHyoEFZ2WcNdyYUTYQZgLpEAlFdR67XizpNa3SClt67SRcphS7r92B+PmJ1deiKZNH++7/5Dc6+5Rb8ZOxYSJIE3bJQkVbwnTBNxAwDX27fjtMGDnQmTm5RJSJcsqLUW30V7m35Pp9zr2hrStHBjJEW4TI0DT0HD3aK8EUDV6J1NJUqKPrGRXUdjDFUxGIoDgYRNwxHcIU1DVFdh19VEXe51tp8kULjka6Y6/soXD9Fb6fG3sMYf487W0qhwaPeiiw7USXT1acPyE6ES+ffIYnXp+byukg9Hk+mFKZFuDTLQt9gEBJ3KhT1dYOLitAtGMQ/1qyBV1GgyDL8qurUZwkBpWToQ9jr8MNxyZ//7PwtjDsYY9heV+dkJIQ0DV3SxgMkRaBmWa1KDbQZczIJDtb6J5FOSD0Hic5GmwWXaICcba677jpcd911GZ9bsGBByt/33Xcf7rvvvgb3FQgEMHfu3GwOjyAysi8aRU08jpwMK5+tJW4YqNO0ZB0I/4Evi0QQMwx0z81FVTzeqOASExuBbhiQVRUSnwDZjCFYUIBYXR0YgEgshnhVFRa+/DJ+MnYsZEnCxqoqGNzgQpAwTSzYtg2LduzAyO7dnYal8UQCm+fOxZGXXOL0qzESiQZTCt2rvIlONtFsCW7BxRhzUqDEKrpNgqvV1CYSeHzxYlw4bBiGFhfXe/67PXtQp2nYwb8DBhde+T5fyiKASPkr8PsRT49wudJs3f2kVpaVQZFl57vWWFqoI7g6WYRLtyynfqF3Xh48PDLvFgaKLLe5NYThquGSJQm5PMvA4CmFwbQ6bN2y0JWLHrGYpUgSRnTvjsFdu+Ld9eudKJePR81OvPpqzH/hBUiyDLkZzamF4FJkGTXxuBPBCut6RsElXC5bE6dy1z81Z2wdEYpwEZ2VrFSoL1y4EJdeeinGjx+P3bt3AwBeeeWVeo2HCaKzEzMMaLwgPJv7DGtasgExn5zsi0YRCocBPrFrbIImjABEmpNhGM4KsIhwBXhKIZAUXABgidVivs2uUChl8pkwTSRMMxkRcB3vwzffxIoXX8TGJUucCJepacleRW7hx1MKxTmpstxkY9jOjLuGy9Q0gLEUweWOcFXGYp0u7aw9qeMOj7sa6KX46ZYtCGsaJvXrhx68nYFI/XJHm9wiIREOI6dLFwBJwaXxbYMeT0q6YXUiAT8XAM2JcNmMIcI/C50FgzeLBpLpem7TDPG4R5ZR67Jbbw2i5YUsIlxccOnxOIxEAp40gWMz5kQ9hQGR6Mvl4728vHxfwjGwG3cqZhnex4Rp1mtarXg8MHmUdH1lJTTeZy3cQI25xlsTtCbCJRa1DmanQnEOJLiIzkabBdfbb7+NyZMnIxAIYNmyZY5RRV1dHR544IE2D5AgDiZED51spkNEuYgrj0QcFz+LMcy79VY8es45ANDg5JvxHy53Ib9pGJC5O1d6SiGQjFAB+wWAzI9XGYs5gkmWJNQlElhVXo5YWt8gkdajRaOOfTKQnPRkSikUES5Fkg55wSUpCmJ1ddD5e+Dx+1MiXOJz9dSSJXhl5cp2GcfSPXvwwrJlKVGagx2GpFhqKM2qMhZDod/vPB8zDCdi5V7MsPjqu4SkiYmor7NMExFdh2HbyPV6UZtIOAscGnf5bEpwMX48CWhwMn6womcQXOkRLp+qtrlPlWOaoaqQAOTzqLueSCAeDsOfVlcr3COB/YJLQjLaJkmS42Ao8/+viEahN5K98N9du7CcG2oIRISrT34+fKqKkKbBdIlqy7axtaYG/7dkCfZFo8mUwlb+htiMOff8gxWKcBGdlTYLrvvuuw8zZ87Ec889l2KYMWHCBCxbtqytuyeIg4qoYTgrmFnbp65DAvCTrl0R9Hiclc+oqxF4Q4Krlq/sW4w5P+CGYUDiK+6iriRYUJB0KUQyGgUkhRmQnCBpPJo1pFs3AMnJydbaWlTH44imCS6ZrwSbhoHd69bhsCOPBADo0WiK4BIRLmeFW1GwpaYG21xW8ocShq4jp1u3pODiYscbCDh1I5ZhOJHTmGFgdzjcLs6O/1yzBhurq/HRDz8AOPhspmsTiXrugmICl0lwiZopD594i4iw+K/7sy3MH2RJQjwSQa4rwhXWdRiWhVyvF5ploToexxP//S/CmpYSTW5oIinMNfyqilAni3DpluXUaUq8xUQ9waUoqHMJ1dag8XuW6DGYz2u4Ni1ZgqqdO9GlV6/UFzAGj1jw4TVc4r4oHnNHuDyyDKOJdHFPWiqfEFySJOGoHj0wqV8/SIAjuD7dsgUvLF+OXaEQVpSVJaN/tt2qaJ8wzTiYHV+F4CJHVqKz0WbBtWHDBhx33HH1Hi8oKEDtITpxIg5dQpqWFDdZ/LHQ+GSlKy/uTseIxRqcpMxesQJxXtAvxmSaZrLxsSwjx+t1UgpF7ZCIbNXs2QMtGoUkSdAsC/0KCtCDT2CEvXNlLFbP5ljhgqu2rAzxUAj9jzoqOc5EInMNFz+nw/LzsSsUwlc7drT1kh2UmLqOYFERbMtCuKoKQFJwicJ82zCcVKw4T3lblOVrpVsWwrqOqlgMXkUBYwwz5s/H51u3ZvU47cnfvv0Wjy5enPKYEDpfbNtWL3oU55FDMfE2XeYXwhhG4BYJ8VAoJaUwrGkwbBsBVYVp23hu2bJkRIQ3KG9KcIlmwD5VRbSTCa6MKYVpgsuvqtAsC3VtiO6J6LrMF5QCfj8kRcGKTz4BgPqCi6cPAsl7msSFsXhMliSnhktCUkz5edSsIdJ7CapeLyz+GRL7B+Cc5+5QCDXxOEKahnyfzxHeP1RVtdhx0KnhOsgWSdyI8ZNpBtHZaLPg6tGjR8bmwYsWLcKAAQPaunuCOKgIaVrWHZbSxZvMm4cq3GEzum9fozVcZZGI02wUSEa4REphgDdA9gWD0GMxWJblCC4AWPXpp1AkCQnTTFm5FYJL57UGbsHH+IQiVFEBACjq3RtAMsKVyRZeTEBUWUa+z4ddrv5GhwpC6Pp5Ub+offP4/cl6FFWFxQWXSFmt5pO0bFKXSCBhmtgbicDHhUNVPI5PN2/O6nHak4iuozIWS4kQiDYKhm1jr6u+CkhGCw3e0w7YH+ES5gaJDCmFsiQhEYk4KYW2aSYt3S0LQY/HEWa1iYRTe9mU4Fq6Z4/TAyybEfKOgG7bCO/ejUh1tXMd3P3+gP33lLZEuExXhEuSJHgVBarLCr7rYYfVe43qSmkWkUjFJbhUWUYxX+zyKYrzHXWOaduOaFJcgsrZv8eTck8FkvVqO3gKt2ZZqE0kENI0SNj/GauJx1ETj7fo/IVL4cGcjsd4hK6zfQcIos2Ca9q0abjhhhuwZMkSSJKEPXv2YM6cObjppptw7bXXZmOMBHHQINylsmlvni7ePLIMw7b3Rz64VXUm+hQUACJFw51S6IpwSYBjl1wVDiPkqqMIVVYix+tNqd9yxuAqencLvgSf6IZ4/VYX3lxcj8XqpRRKSG0f4VMUVESjB10aW1sxDANgDP6CAgBAlGcHeLioVj0e2LyWL26aMCwLVbEY8rPc1qJO06BxIxQh7KwmGmt3NEQNjPs7YfDoUSJDum8sPcLFz9fgUZh00wzLMHDfyScjHgqlCC7RZ87PhaphWY6roYiQ2Gh4MlybSGBPOIxCvx86/251FnTLwvvXX49HzzsPsiQ59WqiZgpIpu+1daItUgqFKZBHlh3BNf7CC53FH4Go1wKSwkvmDdudlEL+9/8bMwY2Y/CpKnxpxhsrysqwva4OK8vLk7VfaWMSKYVucr1ebKutdcR9dTyOMP+siLTV1kR5HNOMg1Rwie+nlYWebATR0WizLfytt94K27Zx8sknIxaL4bjjjoPP58NNN92E3/3ud9kYI0EcNIiJaTb76IgoksDDe9mATwqYrjfoaiZSlNxpjoZhALIMhTf3lADHvauroqDC5eRWtXMnuvj92FJTg27BIBhjqNyxA/6SEoR1HXHTRK7Hk/LjKEw3anjxeCEXXOkphZkm8X5VRYTvN5ihx01nRZgNiXQl0fxYGGaoXi9sw0Cc/zNtG1HDaJV1dGMIkdU1GHSc/Ww++TkYevuIsZppIlGkYia4WHUjUvnExDvf50N5JIKJfftiTUVFSkqhZduodqVXipRCZllgSE7gZUmCYVmIGQZihgFZklC+bh2qdR3SoEENCq6EaaLQ74fKhYdp246hw8GO+5pbmgZ4PEmDEC5ogKS4aetEW5hmCFt4r6JA4u9rSf/+GV/jRLhcTY7dKYWipsuy7aQ1PJK9tkQEP6Lr6JWXh73hsCPaUvbv9SKeFrX3qSrihoGaRML5HovMCHGPbKlxhKjfOpgMJyr5IlwJNzOpiccR5/WTJLiIzkabBdfOnTtx22234eabb8amTZsQiUQwdOhQ5OTkYMeOHejbt282xkkQBwXiRyKblt2ihkvgURTHzQwAmGE06O4n6kfcP2C6O8LFRY2IcPX2+7GKC6b+Rx2FaG0tPIqCn/JUnC9eegkLZs/GVc8+i9r8fEcIuidUIsJVs2cPZEVBXteuyeOmRcky/aB6FQV1moaIrjcouEzbrlcncbBj8s+Lj9fIRXm6kRPh8nrBDAMx7ponDCCyPSkRZhEBjwchXU8RXFFdR14HbxQv2jJYaWmuwqQh3XUQqF9L+JOuXdG/sNAxTHCnbVqMoXbLFufvvK5dIcky7ETCiUxIkgTTtrGhqioZPVYUvHvzzQCA895805kMl0UiyPN6nZ59Ud6rSeamEgZvENwZSLivYSIBSVWde5boNyfuU21Jx9aF0Q8XRoosJwUe4EQj3TAgpYYrU0qhEGAMcNJsr376aWcfsiShOBhEeSTiRMTcKBlSChVJQoIxPLVkCcKahl55eQjx1h+iVUZLhZMQa25H2o7OX7/5BpZt496TTgIAVMfjzmIlCS6is9HmWUv//v1RWVkJr9eLoUOHYuzYscjNzUV1dTX6N7CiRBCdFc00IUtSVvvoJPgqucAjy8kfJVeEq6GUQsOyknbH2J+aaBoGoChQZRl+VQUD4OVpN1Yi4Qim/JISJ9IiWD1vHgBAr6tDTTyOw/LzwZD645hw1R0E8vMhK0oyrSaRqFfDlU5TdS51iQTu/eILbKiszPj8wYpYmfeJCBdvGC0iXIrHA8b7PBliUsbTOrOJiDookgSdCztHcB0Elv1R7hSYHuFypxSmN9cVaZNuUwefqzeTW3CZto0E/078fPp09B0+HIH8fJixWMpnVhwnbpop45CwP6Xwb99+i+ddTr5Rw3Am/XYr0sk6MnW8JhEATB7prk0ksHf5cjz4s5+hevfuZMplliNcqizD5uKjIbOLFNMMJN8j8Zj4LggR5eNGMrKiQFYU2Iwh1+tFod8PD1/EEndqw7KwoqwMcgbBJerVInxRQxxPRJKltPsgYwx3zp+Pb3mf00yIWsSDRXCJ9En3+x3WdZiMwdMJ6xgJos2Cq6Fai0gkAr+rWJUgOjviBzLo8aAyFstaHVKc9/EReBQFe8Lh/REuXU+mpWQ4nrt+xJ1SKCkK/KoKD18JFhEuPR530tsKSkqcWiIA0GIxVO3cmfz/aBTH9euH3nwS454cJlxmBUFeYC6rKiw+gXf2l2FSIPPUnYYEV5xPZNd1UsHlFxGuDCmFjKeouZ3y2iPCBSTfB5F+Z/N6m5YW8B8IRD2WlWa+IAwzNNPEnnDYMSwAkgJIyhCZAJKLG2HXZNmybeihEHoOHozRZ54JxeNBIC8PRjSaEok+orgYx/TqhWBaui0AZ3+aaaLG9V2JGQYUkb7WiWyxbcYc100AMHk/vup4HHuXLgUA7NmwwXkP2vKZFhEuYQuvSNJ+wcW/W+lkNM1wfRbE8z1zc+HlIkuwcPt2RLjle4DbxosatSoerakyDMfMQyCieWFNS6az8uMZXISkR7hEe4JlaT2+3IjP/sEiuF5fvRpGmuCKG4YjeklwEZ2NVqcUTp8+HUByBWjGjBkIBoPOc5ZlYcmSJRg1alSbB0gQBwtichr0eBDVdcQMw0kXagsJ03RSXACgi9+PI0tKsID/iNu82Hru5s04sbTUWZ0HkumIQnC5XQqlQCApuHiqjBBcRiLhNN3NLy5GPBSCbVmQFQWL5szZP6ZIZH9fHaSmUGquiECAm0AoqgrG62ic7UwT715+OdQ//QlDJk5MbsebjzY02bT4qnC23fkONEJweQMBSLKMaG0tFI/HqT9RvV7YfNIlxK3UDoXl4n1UZNmpbbIZQ8wwsC8axRHFxdhUXQ2voqAvf287EmKV32YsJbIUdRkSbK6uxqbqatxz4okA6ruAuhERrscWL8b0Y49NWsXX1SFYWOhsE8jPhxmJIGYY8PL3q4h/nw7v2hXfuSbJtmFg8c6dOGPwYCRMEwGPB5urqzGwqAixtAjXwVKH0xS6ZTkpskAywqUwhrJQCJVr1wIA3r73XujxOHzHHJOVCJesqk50yub7a0hwCbGTKaVQPA4AV44ahbu/+CKlxsotqBOmiT4FBajmCxOWbSdNiVQVRlpPLYWnnYY0DQV+P3w8dVSzLEe0uT8DEb6opvJeYY//9784fdAgHFFc7OzTHeFqzLW2o7C1ttbJBHGbL0lIpnq2xa2SIDoirY5wLV++HMuXLwdjDKtXr3b+Xr58OdavX4+RI0di9uzZWRwqQXRsxOQ0oKpImGarGldmQqQpCiRJQr7PB4OLDsZ/aBdu345v0lJORIQLQD2XwoDH41hhuyNcpbm5UDwep+YhxidLO1avRnG/fvAGAki4nAwVWU4RXLpLDAX5pFxWFNiWtV/0WRZW7doFS9Pw1RtvONs3Ndk0uFlEZxNczsq8xwNvIICqnTud+i1gv2mG5jZ9kKSsT0oS3G1PNLsWdSGWney5BgCzli/Hi8uXZ/W42SJmGLB4SpL72uwJhxHnz6VHABpL3VN52mYF/7ybtg0tHEaOW3Dl5kKPRBDStJTFDgDI8/lwQmnp/m0NA7Xcel+kj4lrGTMMKLKclVqmjoRuWUi4TCNsbpVfVV6O8J49zuPfffghGBoXwE0hBJfERYsqy2CNCC53DZeon1Nk2XGsBPY3MvapKroGg47gihsGcr3elFTUHI/HuYdZjCHH40m23EiLDquyDIsxp2m8EHtRXYeVIaUwzBfwRCri3nAY/05rxxPjbSNM28bcTZuw1HVtOyKqLDsuniLNN8Fdfhm5FBKdkFZHuObPnw8AmDp1Kp588knkp/WmIIhDDSG43E572UDjfXy2r1yJot69kdetGyzTBOM/xjYvto7oej0rabfgMtMFF49wAYDKJ/daLAZmmlC9XmcVP1pbi9yiIlTt2oVjfvELLPv4YyRcvYzSbeE1l9AM8PuCE+HiY9gTDmM7d/lyp3I1Kbj4hGKfS/B1BjTRsFVR0G/kSPzw9ddOOiGw3xZepOBISPZji6V9xr7bswd9CwpQzF2/WkqMp0eJtLYEbwDscZlHxNMirh0JMXFLj7pur6tzLLN1LvwZn9g2FeESdTbA/pTCoCu6F8jPR3j3boR549rGMMJhWN26YXNNjZM2GOVpoppr4t1YlNdNwjThV9vsfdWu6JaV4tJnJRKwLAtamghxFn3aKLhE0+P01EAl7ToxbkkvBJeX17Xmer3O53tAly7Y7Ko/c6cUJriTqkgRlSXJSdHWLQtlkQj6FhTAn5sLLe1+JfMIV4wLLpGuWB2PI8BFm7ufVoTX6ao88hzWdQTSFvRi3O3QsCxsrK7G6vJyHN2zZ4d1FhXfrTyvF1FdR67X69SJypJ0ULWiIIjm0OZfzVmzZpHYIg4KbMbw31272i1Vx7BtWIw5q5fZqMFgjCHCf2hn33gjXrjuOgBIWTG1dB0GT7UT4sVmDNtra2G4I1x8PKZp7hdcvNZBUlWoPh/i4TBMXYfq9Tqr+MI4w9R1eAKB5ATCJbhEY2TnOrgjXK4aLtsVnUmYJsJ8EpZJcDW0uv/qqlWwbBu1aRbzjVEZi6EuS9HG9kLnkzZFVZ30Ssmd1uT1wjIM2Iw54jb9ujPG8Pa6dXht9epWj6NO152UJov3oLIZg4+7R4rGyx013c2dkiTSlUzbRh3/vIgiffEPSH5vG5qSehQlaVPNP2umbcNMJOB1pdD7cnJgxuOIGQa6NFG3bHI3w1dXrXJSv+KGkexzx93pnBquJq7x6vJy3P/llx3+s62ZJhKRiJNerMfjkJC6MAPsF1xtWajSDQOSLENypQZ6G1h8EGlsQlz1yM1Fz7w8DC8pcbb51fDhuGXCBOdvn6JAvCsGt+0X/b7EfyVJwqrycsQNA35VRSAnB6auw3LVcUmShLCmwaMoOPawwxDweOBTFFRy8xVRxyTul7tCIYQ0DZplOVHu9DotsRDTr7AQNfE4ttTU4Itt21p9Ldsbm7GkyQ0XngAQSiSSiw5pWRMiTbizsKm62omaE4cOWVkamzdvHubNm4d9+/bBTvuRePHFF7NxCIJoMxurqvDhDz9AlWWM6dUr6/sXES4PXwXNRkpQjPddYlxg1ZWXA0Bqig5vUiuaiQLA4p07MXfzZoQ1zSnidrsU+hQFHkWBh/fjspG0uI5UVUH1elMElzBwMDQNHq8X/pyclBVbRZZT0reEeAD2pxQqqgrbFeHSLAsaT1FzCy7hVJZpQi8myzZjiBsGXli2DNNGj27yGj61ZAkUScKdJ5zQ5LYHCtGwVVEUBLiNvjuKqHq90Litfty1CuyOBoQ0DWFNc3ratIawpkHlaW26lWyyLGpVQpqWnPR1YMElUpJUWXZqab7ZvdtJjZSQnNAzLlyFzXdDUzmVO4KKyZ7FGExNc1w9o7qOkGWBGQaOd6UOunE71FncqXNLTQ38qurY2FdEo7BsG15XSlpjCzaWbWPu5s3YF40ibproeNV0+xEphYG8PFiGAT0WgwdJ8QkAufy+4+U9yMpcn/uWYppmsn4L+90Gz370UUQzuPsJwSWi/LIkYcbxx9czzHBHmt0RLtO2EVBVKJLkRKXEAlbcNOFVFPgUBUGeyqjFYimR0SHduqVE07yKgoiuY3N1NSR+zxbfs/WVlYibJsKa5ix4aPxzLO6fYtvD8vNRFg4jrOvYXFODEzuoW7SXiyoR5QWACE+btNPaOtz35Zc4orgYFw0bdqCGm1VeWrECiizjrg78m0RknzZHuO6++26cdtppmDdvHiorK1FTU5PyjyA6CiIP3v2Dmk3EKpy7cWlbETnucZ5+BwC2K0XH4/fDSCSQ4/GgJpHYv1LIoxFiUuGujbBMEzKfDIgJgs0YcouKEKmudiJc3mAQiseDaG0tbMuCzVMNPX6/Y6wB7He0c66DpqHHkUfipGuuwYhTT01uw2u43BEuXQguWYap62DcLc5iDP9aty4llQdIrihrLkOErWmW9Q2hW1bWGwRnGyfC5fEgr1s3AHAK7WviceiSBDstwpUuuPZFowhpWptSzEJ81V1EWYQzoehHJcSW1YEFF5AcbzW/fh/98AMMy8KgoiL0Kyx0jEfEtk2lFIpGrGICbCYS8HDBtam6GrokweDv378eeAB/nzYtZR9Vu3Y5/2/xZtJVsRjCmobqeBymbWPBtm2wGMPnTz6JlZ980qRpxr/Wr0d1PI4EF8QdGd2yoEUi8OflwRcMQovFksKXf7Z+edddAADLMBBQVexNaxLcomOlR7gkCV1690a/cePqbSsiiqJGC4Dj3NoQbsEl+qQpsoyAqsKrKMjzep1oqSrL8Kmq01svkSYkuwaDKTV/PlXFjrq6lAbj7houIPkdF2Y27iitGI/A5Lb7Hdl4QpFllOTmOqmVAKDzeuX0lELdsrC+srJDn09LoHTJQ5M2R7hmzpyJ2bNn47LLLsvGeAii3YhxW+32aiYqIlyib0s2UgrDug4tTXB9/uKLGHD00QCSToJGIoHBXbum9BgSpgfix1ty/YBZPKVQ5cXhiixjc3W1I7j8ublQPR5IkoTcoiLU7NnjrNKrPl9S5LnSBt2pbTaPAOR1745Jl1yyfxtVBXM57CVMEybfx7YVK3D/5Mk49sILcdpvfgObMWytrcWWmhoMdDUr1Xk6jWhqG+dW+JnsvAWi+Lqj17kYrghXPnce68KjsCvLy6EhGZkUjoEM9QXX1zt3ojwabXTC2Bg2T18V6VG6ZTk21KosO98fqwkxcCCJ6DpkSYJXUVATjzuR3bhpol9BAUzbxo66OngVBVWxGHrk5u43k9G0FKMSIHneohmtadtIaBqYZTnpb0Cyh534fqz69NN6Y9qzYYPz/yafBNtIprAJ04Q94TBMy8KauXOxZu5cnPfmmyk969LZUlOD2kQCDOiw4lcgBFcgLw9aJJIUXJLkCK4uvXrhyBNOQDwchl9VUcNNNVpznxY1XBLgpAuKqHk6NfF4SoSrOXhcfbZM23YWJwIeD3yq6kS6gKQ46xYMws8jziKi3xAFPp8TbRUROscW3jCQ7/OhIhZLRkP5olNI01DM723u7yRjDGFNQ6QD986L8UwLyyW4RL0ykOpSmODR6PsXLnTcRRvap2nbTdZSHkgsvtgT9HgO9FCIH5k2R7h0Xcf48eOzMRaCaFfEhLG93L+i3CVKTHhbe5yEaWIVTx10Grm6Uvi+eu01J8KV362bI34U0RAZ+yfjoseL4nK0Ezbvqiw7Ea6QpkHKzUWkpsaJcAHAT449FusXLdovuLxeeP1+GK4aMtGA1+KC0zSMlDQcYH8NlxB9CdOElVbDsWPVquT4+OpsZSyGLa4ouWFZ0PhxxLVuanVfuMG1l8jOFiKlUFZVBPLyMPWpp3D5o48CSE76g4EATG6K0lBKYVk0ioRpNtgEuylEeo8wbqjg6WpiDKZtI6zrTvS2I070RUqkytOVLMaSfaD4415ek1UWiWDO6tVImCYqYzHoNTV4YMoULHz1VXz81FNOTztZkjCspMRJZw3xKIVbcPl9vuR708ACS9WuXSjs0QOqzwczkUDcNOFXFHTPzUX/wkJYto3qeNxxAwWQkk6WiVyvF9W8n1VjwqwjoFsW9GgUAR7hEpFtYZrh8fng5WnK4nPW2j5ShivCJXGXQhHhF2h8YWpTdXXSkbAF9wbVJc4M23buoV5FQY7Hgy5+v7MA5OViTNT7JZqI3EmShMJAAIZl1UsTjJsmCnw+RHQdO+rqnJTCOtfCl+FKjWXYnzqbLap4SnO2EP0lJew3uxEmT4prgVAsmuiW1eS97f+WLMEjX3+dtTG2B1tqahyDHOLQos3v+DXXXIPXXnstG2MhiHYlquuIGwa+2b27TXUCDRHWtP0RLrTe3viDDRvwjzVrUmy5E+EwfK7anEQ4DPAIlEg9c6f2iZSMilgMRYFA8jlXhEtR1f0RLklCgd8PNRCAHoulCK6uffo4aYZAcnKkuizpATjpZ6LPkeV6vbONooBZFhIu+18zzaWssEeP5Ph4ndKq8nI8+913jiOhaOopfnibM9kM85TM3Cz0Q2tPREqhxCd/fYcPd66HX1Xh8XqThfc8wgXUF1xh/p64J2EtIc5Xhz2KgqDHAz/vJ+duxCrqmcQKe0dDGMyIukWRCigstT2K4tjD7w2HsTsUwvf79kHfsQMA8PkLL+Dbf/3Lib4C+z/fdZqGUCgEAE5KIQD4eITL7cTnnuiGKyqQX1ICXzAIkzfDlflkS+JudXWahjqXjbd4vCFyvV7HOKYjCl83cdOEHokgkJ8PL7dIlyTJaZCu+nzw5+QgHok4gqu1qWOGYUB2GVlI2N/bD0imzC7buxfL9u5Fvs/X4giXyvcpFpiEuI/qOvJ9PnTPzXUiXD6+qJVXXIxgly5Y/fnnqNu3D3efeCK288WlevuXJGxauhSbP/00Gb3kwtuwLOR4vdAsC7vDYTD+/XMbL7h/b/J8PiRcC1xthTGGJ5cswccbN2Zlf0DyNyA93V30jXTf20Qj8zoe+WxMRIqaZ8GecBivrlqVVeHZVl5dtQohvgBEHFq0Oc8mkUjg2WefxWeffYYRI0bAkxYmfeyxx9p6CILICnWaBsO2sbOuDs9+9x1mHH98Vvcv8uzF6mRrI1z7olGndstJKeEpOWPPPRcr585Npt/k5sITCOyPcKXZs+uWhVA8jo2LFkE98sjUCJeqOqu7siSh0O+H7PNBj8dTBJc3EEgWunNxlKmGS5Fl6Dxy6OH1WPUEl8cD27Ic0Vcbj6cKLklyVoA1XnMlJhRVsRhKcnKcGjndsjC0uBiWmGw2skIteh4VNuEed6ARKYUba2qQW1ycYusuS1KKS2FtIgEff9/cE5CQpiHH63VWoltq3R5zvYeSJOHwrl2xrbYWYZ6mJ9IZxXU3LAtoQVqMYVn4ZvduHNunT7tZVYddgksIdJ+qorSwMBn1ANC/Sxfker2oiEaxNxJBwjRRlTaR1GIxR1RJUrI/0lNLluCNP/wBABzTDAAI+P2wTRNRVzRWj8WcBZJQRQXyu3VDuLISejyOLj4f+rnMEyyeyunubSeh8VTBHI8HBn/vO2p6p6AukYARjSKQmwtfIODUcGmJBGRFgaKqKCgpQV15OWTwXmfNEAoxw8C8LVtw+uDBzuTVNE1I3MjCqyhOlEsIrspYDIOKirAzFEKvvLwWR79VWUZY1/H1zp3OfV6VZYzu1QuKLGNwUREkJBtfi/our8+HfmPHomzjRuz94QcAwLbly9FvxIiM+3/3j38EAPQ56STnfme5FvJqEwnn2BWuNEWTLy4AwNBu3bCxujpFfLQFsdC1wxWFbQvC4EnhjZzFwqJpWdgwdy5KJ0yAJlqV8Eh1HW+7IBqGNzROzdXy4eONG7GpuhpaB0ortxhDeTTqNLsmDh3aLLFXrVqFUaNGQZZlfP/99ykNkFesWJGFIRJE22GMYR93AmuvQvOwa1W8LQ08w7znipgwSpKEOHf58ni9MDUNEV5z5XWJH9GAmDGGr3fuRNwwsPWzz/DPu+5C9Q8/OM8J0wyRYqXKcrLYO5Pg4hNLke7kpBSmmWaICJfNGCxdh5IhpZDxGiwA2BUOg7nSQ4ZMmOBECMb06oXSwkLEDQNRw8Brq1c7tViWbTu9ZZoT4armEYUOH+HiE6OAz4d9rkmUblkIcMt+IbgivGeN4roGInWy0OdzzBgAYNnevfh6585mjSHGG2iLFKugx4PaRAJ9Cwqc6y0MJJoydcjEsr178e9Nm7CxqqpFr2suhpXsRSesusUYLdtOEXiH5ecjz+uFYSebORuWha3ffJOyr+8//xxrv/gCQPI6lEUi2BeNYvv33wPYH+FSJAlePjEMu85LfJaZbaNm717kFxfDGwhAj8cxont3FLgEm4joxFyCy3IttmTCtG3ker0HRUphTSIBnZtmeHlKYWlhIbyMOf3/Cnv0gGUY0OrqnHt0U/x31y4s2rED213mOSKlUERJgGTdlRAiccNAUSCAPK8XXYNBx1mwuYh7pp/XiYnHioNBXHXUUSgKBNAjNxddA4Gk2ycfR25xMer27UOEGwF5XCmp6ft3I1JZTb6AIvp3Acn7rrsfYW0ohH//z/+gbNMmKPyeLupc24rBP6PZ+qwJgSXqtXRuqBStqcHCv/0NS154ASa/34v7fkU06vQ3a2y/onUFkPxNFmn5HYUugQBsxjp8mjuRfdosuObPn9/gv88//zwbYySIRqmIRvHxxo2N/rB8u2cP9obDTipUe6yvx0wTe5ctw+e8FUJrI1y1iYTzwyFWuRPhMPx5eU46X7iyEnlduzouhUBy8lcdj+O/u3YhYZoIaRoYN9uwdd35wbRdKYV+VcWkfv2Q4/VC5rUoejzuCC5PmuDy+Hzw+HzOMb/78ENs//ZbZyXWZizZr6uBlEJxTmWRCKDr8Pj9+M3zz6PosMOcSWrQ40HQ40HMMBDRdVTGYk70xWIMPlV1bJObSqeqiced3kwdGVHDlev3O6JUtyys3rcPXYNBqB4PLFHDxQuu3aIiysVSod+PKO/rBADvrl+Pj/iqelOIa+ye9I3v0ydFcC3bu9eZ5Gf6fM/fuhVP/Pe/Gfcvagxf//77dknxEVFht+CyGIOZwVhFLBJUxWLQLQs1LidBAJj79NP45113IR4KwasoGN+nT0r9iPh+SG7BVVnpPC8+y5u+/RZ15eUYNHYsvIFASu2jQNTExV3PWdy9sCE0y4IsyweFacbeujpYmoZAXh6YbWP7qlXQq6rQzeNxTEoKe/YEAET27Wt2SiHjUQ93Wq3JF5M8PLoFwGnTASQXwroGg+jfpYsjtlpkmsFrtXK93pQIlxBtOV4v7jj+ePj5/VUR9WSFhYjV1mLjkiUAgDhPTU3H/d1jvP5Q3DNVWUYOT/MFkqnGe13iY/umTYhXVWHZRx8B4LW1GdxyK6JR7G7g+A3hrp/NBiIlU3H13DJt21k81MJh594mInzdc3NREY3ii+3bASSvT3Xa98ngvzEi2ySkacmU1g4kuMT715HGRPw4UBIpcdDz3oYNWLRjR6MCpzaRwG5+E9d4KkO20U0TXz/0EBa+8gqA1kW4DMtCWNNSVjbDe/Zgw9dfJyNc6YLLVU8larjmbt6MOk2Dadvwi5t7OLw/OmGaUDweZ3XxV8OHY0T37lBd4sqdUigeA/anFIpjfvjoo3h3xoyUHlmWYTgr1wJZVcG4HXZFLJZ0aksk0PWww9B94EAE8vNRs2cPyrdsAZBclRbGGAnTdASFWBVtboRLz+IkoT0RKYU5fr/zQxzWNPTMzcUFQ4fCyyNcIpXPkxbF2RsOI8qdzEQTbAAt6pnltptPx4lw8ZTChvpEfbZlC7bV1mYUVD5uWBHhzpvZRgguX9q1MS2r3jlJkgQZyRQzLRZr0PDi2d/8BkByou3+rOV06QIgOYEXiwshl5NohEe7RESj38iRKd9VN0GPB/l+P3q6vjNGPN7oZ1sU3R8MEa4Kfi38ubnONdq+ciUMTXPuM7n8eiaEIUSG96MqFsN6l6jVLQt1iUSqcYRhQOI1iAJ3SiEAHN2zJ+7m/Y9EhL+5CHEl6mKdx1z7CHC3QlHvJUsS0L07AOAHbugQbaClhTvtzeSmKO6UwlyvFxFei+xXVVREo865xbj4UPg+RHuS9In9099+i79/912zzxnYHznKVvqq+5yEoZNp20jwhSLG7/XuhcdeeXmOWyqQdGV94r//df522ja4BHuc77e9jLJagxBcCRJchxxZmXXW1tbi0UcfxTXXXINrrrkGjz32GOqylOtLEE0hbGWFu1+m1buAqqYU4bZHxCOS1jletyzsrKvDau442BwqYzFE+aRW/MD9Z/p0mLqO/OLi5IowY6gtL0duWoRLliTU8f8PaVpyH/wHzAyHk01a+d8KnxAIfIqSIriUtAiXWJF1bOETCTDXj5jFJ+AipVB1TXjqEglUaxps/uM3c+nS5PbxuOPg1YWvcM+8+urkcfgPa1Eg4AgIUTwt81qGg2F1v7kIwaV6PM5nU0xIxvfpkxRcuu5MHoR1uxA+m2tqYFhWMvqHpGOmqJMQKYeaaTaaqhUzjAa/F+JYIb4Y0FBKYdQwoDWwoiwMP2ricYRaaezRGJkiXAaf2GU6L+HkpvNo1OCf/rTeNrXcFl/QrX9/HPGznzlNwQE4UZpQZSW8wSBkRUEt/86LaLGsKA0KrqN69sRRPXpAcfeyayLCpVsW1GZGeQ80UX59/bm5+AWvgZMVBYlIxLFM97t6VUmSlPFz+sLy5ZizapWTkhrSNNQmEtjummuYvOVFwCVcvIqS4t7n47VVon1AY20l0hHiKjet35Y7LVGSJCfCBSS/OyUDBmDIxInONrEGepS6a5O0UCglVVuWJAQ9HmfBwqcoSPAFDACo5eJe5ufuNjNKp6WLgQb/LWqte2S9/bnu5WKh0LBt5/eKuYSTW5zl+XxOVEvUqInviehPZrkElrhXdZRokjDw8SpKhxkT8ePRZsG1dOlSDBw4EI8//jiqq6tRXV2Nxx9/HAMHDsSyZcuyMUaCaBQxkYsbBv6xZg2ey/C5sxiDT1GcFbD2oNzlMqZIEqKGgWeWLsXLK1c2O4XKcfpzryjy1+YVFzsCKFxZiZwuXfaLH77SHTUMhDUNYU1D34ICxHnKiR4KQbcsVHDhVE9wqapTVyAiXIwxp4Zr87ffAthfwwUgZfIoxqvxBsaGLDsTgfJoFB6PByaf8AtnNTORgI8fs/uAAfv3xX+Q4oaB4mAQOq/NET9QUgMRroRpYsmuXfXq8xgy9+HpSDiNj7lYAOCk3HgUBT6fD8y2kRD1CNzhSwifzdXVKU1Uo3xSpvEI4V0LFuDRxYvx50WLGhxDVNeRCIfx3YcfpohpwBXhEhOgDKvGYvIv3q90TNt2UnyyJbh2hUJO+mTUlRIpei+JyWpjk2ohuE66+mpc+pe/NLidBKS0PBDfaSelsKICuV26IJ/X6wBJwSWixKrPl+J+WG8crrpIIxZrOqVQfE46+Gc7yu9BvmDQWVgxNA3Rmhrk8D57iscDj9/vNAfONLE3LAsxw8Dzy5aBcfEfN018tWPH/mbEPMLldwkXL+/1xLjwFrUzPXNzW1xHwxhz0hUbinABwNRRo6DylE8vT3EUohJIjXA9cu65+HTmzOQ1co1Hj0QcwSAEl19VEeYLLx5FgWFZjjFGHRdxEh+LwiNc6dFCYVLREoRAylZkWnwvFV7nlhCCTixa8vuIcJl17oWynOw/x5KtHmI86g/ASUt0R99TDH46AOI33cvfO+LQos2C6/e//z3OOussbNu2De+88w7eeecdbN26FT//+c9x4403ZmGIBNE4pp20Ed9RV9dg7r+YvJTk5KA8EmmXlMIK12q4ZCcbrJZHIghpWsYJaEPjFEIiPYVDluUU979AXh5M4c7FUwhjhoFdoRA0y8KALl0c5z+dFxxXikiVx5NyDbyuCJdtWYhYFr7cvt0ReFuXL8dhQ4ciWFCAIHdYc5sEiPGKOpRqw8BSLkC9igKf1wuTpwiK8zJck9Gi3r2dfVXt2gWfqmJ8nz7omZcHmzGn8FlMctJruCK6jgcXLsTr33+PlWVlKde0NQYPPza6YQCSBFVVkyvyfJIlojV+fp3i8Th2/Pe/eGDKFITKypIpspaFbbW1KcYgUb4AYdo2orqO6ngcddyxsSFCmoZdixfjw0cfxbfvvZfynFvcDe7aNWNKoclr7AxeU5aO2F63rKwJrr8vXYq/csOLBK/Vcwty4ViWKU1SCCYhuAL5+eh/1FENHssS0Vt+nXUr2aTVHeEK5Ocjv6QEoQyCy+PzwWjkPmDE404qrplINBq5EoJLkqQOH+GKCcGVkwNJlqF4PDB1HdGaGieVEEhGuUTtWyzD58evqqjjhjC1iQTC3CBFNEQH9tdw+V3CxcdruERPQrEwcemIEfjNmDEtOhfxnRSfM6B+hAsAevL0NyCZXSFLEnoPHQoAOOqMMxBxRbiiNTX4+s03Adc+AcCMxRyhI1z3hGNm12CwXs+yMN+niBI1ZLHfmlYCTvZCtkwzXFErmacUGpaVEuESjZ3dES6voiCq66jTNOwOhx2RBexPnxb3oG937075uyMgUhy9PDpJHFpkJcL1hz/8AaprdVVVVdxyyy1YunRpq/f79NNPo7S0FH6/H+PGjcM3aS5Sbt555x2MGTMGhYWFyMnJwahRo/AKr6MRMMYwY8YM9OzZE4FAAKeccgo2ZrGnBHHgEOkI72/YkLFIGNifeja4qAhdAgG0x5pwrdt9jUcCahIJxFwmBk0hjCHE6nzc1atm1JQpKf1/lJwc7OLP64kEuufkQLcsVMfjTi2AmMDYmgbNslDFJz+yK+UFSE5KfIWFAP/BT/A6CMVVV3LF449DkiTkdu0KAFj46qspY7cYQ1TYx/PXxQ0jaWPu9cLi1yTC+0kZiYSTUigrCm584w0A+2th3JMYEVkR75uIYIgJQEU0iqhhYF80ipq0hsqM1+11ZMREUaQ5WfzcxIp3kKdeafE46rjBw5ZFixAzDCzZtSvF3lqRJMcO37RtxHk6oaiDa4iqeBw2f/+Wvv8+gGSK190nnYQ969c7IquIu2ylf8/E5LChCJdh73cLzDShbg2atb/5ddyVEin6+1TH42DgNuuGkVKrJSIAOv9OBPPzITcS8XAbwuiWhf/u2pWcbAvBVVGBYH4+ggUFqC0rw8dPPol9W7akRLiMtM+mG0PTkMsjPk1FuHSrfSJc7WFmEnNFuIBklNzgTqsiwgUkF5ASvMdUg4KL92KKmybCuo6AqiajPC7BJclySmqeT1VhI3mdhMsgkEzf65WX16JzsRlz2ia4I1xKmqBXJAkKTz08b+hQyJKEUT/7GW77+GMU9+3rtBBIjyS7MePxZLYDY85nGAAm9O2LI4uL6wmumGirwaNEKjfNiGcQXG4L+eYgfpey9flwR60UWXbEkhBcFu9pKQQXkBSjHp6lsjccdkywxOdfpBSK+9SHP/yAGHd27SjpezG+6OjjEa6O1B+MaH/aLLjy8/OxgzeNdLNz507ktfBmJnjzzTcxffp03HnnnVi2bBlGjhyJyZMnYx9fNUynqKgIf/zjH7F48WKsWrUKU6dOxdSpUzF37lxnm4cffhhPPfUUZs6ciSVLliAnJweTJ092mi8SBy8iYlLDV4UzTSrFTVnk12erP4mbuFtUidU2nnrV3NUs8YMhbNBr+Q/zBXfemey75RJA3txcp9ePHoshx+vF+D59cHi3bhjRvXuyhodPdkz+A7bPFeFKTyn0FRSgdORIAMnJT57PB5MLt56DBzsr+3lccK10fb8A3rBYCERei/R9RQV0y4LH4wGzLBi2jXKeKqPHYo7gAoAgr4vJVFAe5z9UAjGhFkJa9Kdq6Dp39AJlnadCyXwFPsENTsRqfJBfpyJFgS2iehUVsBnDgm3bnBVgIClU69yCyzCgWZbTaqChH/nqeBwGr4ep2rULzLaTfYMYw7ovv3Qmah5uQpC+aixWot1pTm5MV+1ktlZ3Tdf3PWGasG0b/33rLcfRce6mTU6tyINnnIHnr73Wea0qy8mIayTimMEAwP+89BL+8MEHKOFpriJ11rBtmIYBn8/nmBYosowc/h2M1dYiWFAAf24udn7/Pb599138sHhxSoTLbCzClUg4ER8rHm80fUvnKaVAdusYH/7qK7y2enXW9mcz5qSJiXuVh6dWRjJEuBI8+6Auw++yR1FQx2tTNdNERNPg93iczzjAUwpVNcV8wsu/M2KC35b+RzZPKRR1pMf06oXzjjiiXsqqR1Fw8bBhOIP3CBP3K28ggJwuXWAkEtDjcef+DCQXN9wCzEwknMU3kVIIwNlfuuASKakJl+ByXxv3OYiGys1FRLiyJQ+EgHMiXPzeofHf0EhNTbIWlacUiqsr6tLEop07y0HUq1q2jXfXr3cyPjpSSqG4Bwc9nqQVfgeJvBE/Dm0WXBdeeCGuvvpqvPnmm9i5cyd27tyJN954A9dccw0uvvjiVu3zsccew7Rp0zB16lQMHToUM2fORDAYxIvcbjudE044Aeeccw6OOOIIDBw4EDfccANGjBiBRbxegTGGJ554An/605/wi1/8AiNGjMDLL7+MPXv24N13323tqRMdhJhhIKRpyT5bDaQPuCclSgNF2Q3BGMOiHTuaFGkJt0UtnzA7aR3NvOE7TnzcKreaF0KLND53HUAwPx8BPhEXP1ReRUE3/piRSMASExE+aRQ1XKrXmyK4/KoKj6IgwEVPIDcXQY8Hpixj+ltv4ZpnnnG2DeTn1xs34z+gIqVQ8fkgcweq3nl58Hq9sHk6YRV3YHOnFALcct7vRyyD4BKW5QIprYZLFI83tJLZHq542UTXdci8NkRY4tuMORPHXP6+9wkEUMwnjHX79qFnbq5j1yxSRD2yjJCmpUS43E6Pma6FEKwa/3zYpolYXR1qeXpmbpcujsgSqU3pkxhRl2HwiU46Bo9QSkDWG7ICyX5PVT/8gLlPP40l//hHiq20JEmwDAN7XVkNqrCjjkZTPtPd+vaFPzcXp3GHQhGNMG0blq7Dz50kg3zRoqvLQCOQn49A2kJjSkphI6mUdeXl8OXkwBsIwEwkGp0kapblvN/ZinAxxlARi+GHLPZJE1ELWVWh8KiT6vNBi8Wgx2Ip192fl4dEJAKPLKc4DwoKfD7HTjxumogZRjLC5YrimKYJOa2mSqQUutPSWotjtIHkPajA78fIHj0ybntEcTF8vAmziMgDQF63bgCA2rIyxFwGT9+++y5M1/fC5D3i3CmF6WOxsX/xQufXTESJhEBL/60TKYUtuSeK6LWdJYGg8d9H8RshUgp3cdv8SHU1bL6Quq6y0hF6Cv89jeh6PfMeESUTqcTiPtSQcciBQDjvBvhCAaUVHlq0WXA98sgjOPfcc3H55ZejtLQUpaWluPLKK3H++efjoYceavH+dF3Hd999h1NOOWX/IGUZp5xyChYvXtzk6xljmDdvHjZs2IDjjjsOALB161aUlZWl7LOgoADjxo1rdJ+apiEUCqX8IzoWjNf39MnPR5TfhDOlS4i0DGC/fXpzw/m1iQQ+2bQJn3LL8obQ3Kuy/OYvao1aEuESk9KEaaKG2yALwdWtb1+U8joTb24uAiLVLEPKonjMl5MDI5GALEkoE/buHk/KpCTP601ORPhj3pwcJ5KR17VrSqqVJEmOLfbk//kfAICVSKT0ElK9Xmdy0jUYTAou/qNq8+uhxWKOaYYgp7AQ0TSHU0mSsKq8HN/t2eO8ZzK/rrZLcDWWonEwpBSKCFdJTk7ys+wWXCKSGY87KUN1+/almIeICJeaJriApBiqiccbTPcLaRrihoFEba1TTxeqrEQNr0sUlvTuXlQZI1x8NTmj4OIRLvcksS24I8hlkQjWVVSgiouF8k2bHPHXkCupwlfWzWi0nkgC9lu/C2t3VZJg8wiXZlnI4c2nUwRXQQH8afuq5rWMjaUUhquqsHX5cgw9/nh4/H7YjSweiO+PeL+zFeGK6Hqyd18LBZxoZZEJy7ahRaPwBoOQJAlhbgUvbPPd1z3Aa7i8ioLaDNdJt210CQRg2jZq+f0moKopURyTR7jcNXvC5EI0D3aby7SUcYcdhlMHDECvvDxHLDSFO8IFAL2HDIGsKNi2YoXj/lrQvTv+P3vfHWZHeV5/ps/t24u6QAVE7wZsDK7EBZO42wRsxz1uwU5i4l5ijINbbH52DK64JnFiO5gADh1TjRFFAoRAdSVtv336zO+Ped9vv3v3rrRCgoCz7/PoAa3u3jJ35pvvvOe852y9/37RIANIUkhrnCwplEsFxL1MAK62YzeXpHBynjJ3QGKvDxbgoiaIQveIII5R831UduzA0qOPTg2CKhVsq1SwvVIRa5ZGM4vMcMlNN5YXR0kaX8HrUCeDn/+t4vXTaGMnF+r/Rh0w4DJNE1//+tcxPT2N9evXY/369cKp0GrL4plPTUxMIIoiDFJuBdfg4CD2tA3Dy1WpVJDP52GaJl7+8pfjG9/4Bl784hcDgPi9/X3Oiy++GKVSSfxZunTpfn+ehXpqi00YOAyX9dvtm5UWhosWu/l2hmVb7bkqSRKRIQIASRjCIdnPXDbHnYplVwkIcNHGhAEXALzp4ovxus98BtnubmSJ+fA73Dx5c5fr6kozb1QVNR6oNs2WGamCZcHSNCQEuPRMZlb2kFzvvuIKXPDVr6KLurshgV0hKSTAhSRBfzaLYjaLRLILb1LAspnJtGzwshQQKpehqmmGmNTlFTNckpxEUZSW2Q25nikdzrkqCAIxwzVAs3idGK7AdQXgalYqM4BLmo8yNA1eFGEnbeZOW7oUJy1ahOOHh1H3ffFzuViC6JbLGF69GkDqhMnyJLdeTxkF2ba67ZzmQXhVUfbKcKlAR1ON/S2R3ROG2F6pYEe1CpPOb7/ZFLMbfhThkeuvn/X7hqalMxX1ekfAxfNULHFdRwBMN83Ugp++r5xti1nHbAeGi69DWVIYRxEmJCk+s2iDhx4KgyIA5tokyqGxwMFjuCqeBy8M9xuQXPnAA/gnypdqL2a4zGwWDd/Ho5OTiDVNGO7IjD0zXJauY9pxZjOolD2WALju8cdR9TwULSvdYDPDFaWB0DLgYiZ/stlEwTRbLOP3t0xNw/OWL09BHDAv8yW2oOfmkJnJoG/5coxv2ybyDZcffTTKu3e3AK6ATTMYcM0B7tj5lR0wZVDfiU1mUPK9++6bt9SODXj2d/ZrrmKDGwDCbbHiuggcB71LlqSvWS6j6nmoSAYymqoiShL8YdeulPnDjCEWf05mQPnaV4hBeyZUg+ZMeRbtqRhtWKhnbj1pwHXDDTdg3bp1gvXJZrM46qijcNRRRyEIAhxxxBG49dZbD9ob3VcVCgWsX78e99xzD/7xH/8RF154IW666aYDes6LLroIlUpF/NmxY8fBebMLddCKu/i6BKI6DQpHSSLs1blLNl/pDIfv7s1aPE6Slhvd77/zHYzW6yhZlmCr5lPyJqsZBChPT0PRNDH/AKQbt8PPOANxkgjA1YnhYvlStlRC4DhQFUVIVoy2GS5muBJmSWxbBGd2+qzZ7m6sOPZYMfcSUcfRbQdcioK1fX3oLxaRkLnJ2t5eHFIoIIljTCUJbt62TTx3huY45LI0DVXPSzcHUYTA82ZmuOg72d32O+31TO8kBr4PhUJYu2xbSHgYcHWT9MqXAJdbr7cyXJKkMIxjsSkBIMBolCQdc+oqZKrSLJfRt3y5eH6PbbrrdZy4aBGOk+RTfI39YdcujJMLJgOB+hwzXAlmGLgDLb72y66Lqx97DG4YIsMzIFNTqHkedtdqcB0H1335y+L3eMNYsixMNptwarWOMtlsqQQoigBDOv2ebpqIaJZHU9V0A0//li2VZgGud11+OYAZSWGSJLjx+9/HZRdcAJ8YYQZ1ua4uGLaNSDILaC/ZtQ04eAzX/oRkyyUzEO0VSgxXxfMwlM9DM00BuORjxTNcnC/Vfo7IpiuTzSZGGw1kaFZUuBTSLKQMhHQyZQjiGOcedtgBMVzyc+4Pw6VIgAsAcqUStq1fjxopGHoWL0azWkUkrVNsmhEnrTlyY1u24N6rrhJ/Z1DWCXAlJK+Tixs0fofG5FwlW64fDMfXhufhVxdcgHuvuko4TU5UKgApKoDUOMMNQ1TIgReYuXfzzJfcdNtVqwG0FvL7PaK/H9YzKPPKCQKxBi4wXP/36kkDrq997Wt4xzvegWKHG1WpVMK73vUufOUrX9nv5+3r64OmaRhtC4sdHR3F0BxaaSCVHa5atQrHHnssPvzhD+M1r3kNLr74YgAQv7e/z2lZForFYsufhXpmlSMBLt6Yd+ochXEswIRGUrmfP/TQnM8bxjG+effd2FWricDYvXWSwzhG4Hkiy2rkgQewtq8PiwoFJJi/pI1vLDrlWNUqFZi5XMfuZpIkYobLl+fH+LkYcBHDpSqK6LC3Swo1VUXJtmHROa4ahhhQbq+7du7EXeSUxyYe8VwMF9KucMa2kYQhTier9y76t5q0cQTSoOX2rKKMYQh3shs+9jF84eyz0SyXxc3WCQLcsWPHPl3dnskVkEuhpWnC3j0BBODqIYYzcF24jQYUVUXoeUiICYuTVtMMntXqdEw6HYuy6yKgHK6uoSEoqprKFwnAuPU6MlKUQEKynSRJ8J8PP4wfP/CAAAKWrqPaQRLGmXJ8bh9ojTYaLbN7QRRhfMsWAEBtagqH9/dj0nFQaQsvvvzd78bYli3IGgZKtg3FcWbJAIHUOTNbKgkLb3HtmKZwq9PIhIfdDzPFIladfDJe9K53YeCQQ2DYtthAGrYNJAmmd+3CHpolY4aD/5stlVLARVlLSZLg+ieeaJHs+W0M18E6t90nCbgCakjNZVbkN5uwslk4QYCcYUA1TQE07EJBOM4pmQycWg02mca0ywrZmZGZlsNoFgqYmdGMwhBqu6SQNrdLSyWcQuzJgRYrF+bFcJExhMwMWbkcxrdtw1Vf+Up6jvT1wa3XW2b8ApIUtgPqKz/yEVxFDYQEM6ZR3ExrkRR2iA3gBg3n9M2nDjbgKlerCF0XV335yzDIvGaMpLtspBKT8U3FdQVIVumexFJBWVL42NQUMoYh3iPPQvMxeiYUM/sLgOv/Zj1pwHX//ffj7LPPnvPfX/KSl+Dee+/d7+c1TRMnnHACrpckIHEc4/rrr8epp5467+eJ4xgeLV4rV67E0NBQy3NWq1Xcdddd+/WcC/XMK0cKO11SLKZOax1mSIIoEic7A4m9LcLTjoPtlQru3LlThMdumpzca85X4HktG7eiZYkZrnbGrf13f799u5g/UzDDAjTq9RYnP7niJIFKN/z/+vKXWyyvAYnhKhYF4AqY4WqTFAJA1jBwxGteg3M/+lEUlyxpkcG0vy7/nJ0LmeFyJMmiIgEu27YRBYF4zX9+85sBABoxaVydjAV4psOPIkzThvrbb3sbEqTd3cenpzFSq2G1ZDHdXnN91/eMjODK+++f8/fk2lYu4zePPjqvx+5vcWCrqWnIkIvmtOOIAf9SLgcoipjhKpE8OiDpnCwplG/m7ZujuUJPpx0HHm36c93dMDOZlE3jUGEpN4hfo0IdaD63mZWzNA3VOWzheZN6MKQ0D4+PC/fKKceBFwTYev/96F26FG6thoKqomhZqNIMFUsld2/ahBuuuAKKomBNby+8eh3ZOZppua4uNGgjKAMumeHSVRUJnV/sUnj6G96Ad19xBS767W/Fcx160klQdR0P3XCDmInk49qsVET4r2nbiFwXAc2q3LBlC66WzD4Y2O744x8R0nXRqRq+j0/deGNHCWmnYoC+v5Ixj8BupzX3Jw88kEoKczk4YZjOvZmmaBBlCgVsKZextVzGnjBE6HlQiXlpEKC/a+dOeCQRUwABuHjdkBUEbAsvN3GYjVrX19fiXnggpRKImg/D1S4pBFpBkaKqKcOaJOJ8sPN5REGAMIpmrcG8zvuOI9xsozhGROtms1zGN847D0mSuvi1rwEywzXfRqBDJhcHC3BVpHOS17AJ+uws5U0IcGmqipNprpRz5xwyw5A/X5PuL89ZskQALpa1P1MAV83zZs4HPPOVFwt1cOtJA67R0VEYc8xLAGkW1zjl6exvXXjhhbj88svxwx/+EA8//DDe8573oNFo4K1vfSsA4Pzzz8dFF10kHn/xxRfjd7/7HZ544gk8/PDD+PKXv4wrr7wS5513HoD0Iv3Qhz6Ez3/+8/jNb36DBx98EOeffz4WLVqEc88990m9x4V6ZlSV5w40Df25HE5ZvFg4s8kl59Zw7sfepDhVz0PN82DQY70wxFijgRHKOmmvMI4RuG7HTrmmqnMOlQMpY/SbRx/FE9PTYs4laxjYMj2NWrUKYw7AlSC98feuWwckCa766ldb/p2lJZlSSZhm8KbRMM0WhgsAcoYBGAaOeelL082EqmJ7pSI6zWEcCxDAwKlFUhjHsyWFIMBlWYil74TfWzvg0i0LbqMhsriAVPrlt3UDm5WKmE/YWa0iJBODucqfw1Djqk2b8EAb8z1X/fD++3Hrtm1PSXZKSDNclq6j6nkYyOWgSW5redOEbtuplXSjgdLAAAAgaDREl/cPv/kNPnPWWdCIBeB8OrkUMoqQa/PUFP6wa5cAXPmenhRwOY6QFO7evLkF0HNDoOb7aAYBLF0X8xLGHOd7SKBQV1U0D8JGo+77UAlcTjSbaNbr8JtNLDvqKAApmFlSLKI+Ogozm21x2pTd4JxqtaOkEEi77Ts3bkw3dvQ7mmEgjlN7fP483YceKh7PpSgKFOncznV1oWfRIjSrVfFzlhI2KxVkS6X0+PEMFwGPJtn6c3lRhKnt2/EfH/sY7vr61+ech5skk5QNc8SptBez+Pvr6OlLAEmureUyxhoN+I6TZnARu9lNdvsAsL3ZhKlpKbvOxjD1OhKkG+ixRgNXbdqEW7Ztm8Vw8bohKwjkPDsunYwyeudYR59s8Rq5r9JVtcWlEJjJygLSeUMG/Mz8WblcqhpIZocN85pbn5qCpqrCiS/0fWi0Bk6NjMAnGbnMPHKzjK315wtE6r4PQwqQPtCakoyRRh9/HKqioEr3Vjar4WgHBrdcPDbgkcyf7+MMyFl2yL+rKMpeG55PZ1VoTwGkjYJnunvuQh3cetKAa/HixXhoL5KsBx54AMPDw0/quV//+tfj0ksvxSc/+Ukce+yxWL9+Pa655hpherF9+3bslmQijUYD733ve3HEEUfg9NNPxy9/+Uv8+Mc/xtvf/nbxmL/7u7/D+9//frzzne/ESSedhHq9jmuuuQa2FCS7UM++qnoeEswML3NobHu3lR0DgRl3sr3NZJVdFzXfh6oooqM83mjMKYXyogiB64qbhVz7klBtr1QwTkwC38yG8nlMkKRrbwyXoih47ic+gSNf8AKMPPyw+LdbrrxShNdmSyX4rpt2h1nS0GYLDwA505xlnz+Yy+Ex6vA/MT2NDePjKeDieSGSFIZtM1wGAa4kSWBqGizLSuVvUSScuQBAM81U9kHfhWFZ2PPYY/jq614nHqMoClZ1d+PB//7vWcegSYBrroFyOcem00ahfTO7t3KCAPW9mBkcSAXkUqirKp6/YgW6bBuqoghgmyPA5RHD1UVrIZtDhHGMP/z61wDSDCe2Tm4vTVHgtl0bV95/fwqqCVzlmeGi8294zRr4zSamRkaE2YNB8t2q56FJmVS8sTM0DXXfnwVM+RpkG+iJZhO3SPN7XF+5446OP28v3rxwIO5hNM/Yw0P31Sp6MhmUGg30LF7c4rTJ5gRJHKdyyTkyI8ujo9j16KN49Pe/b2G4eA5DU9LctOd/8pP4q8su63j9A+mc1YaxMZj5PLbff7+YU2SberdeFwYSPMPFstBmEGBruSyOpx9FgglxiOXrVApSZuKukRHsaHP+7FQ8w7U/BgPsFBrErQ6WXE4YImg2UzBFG+elz3ue+PedtRpyNE/KQOyJP/5RNFOaQQCHDHHkGS6XDDTk1wGI4WqTFJoU4p7fS0PmyVQ7EJirhKRQ+lk/zUly8XnzP9/5DoAUcLGstNFo4MaPfQzfetvbML1rl4gZqE1OQlOUlO2JY4S+33Ieu/X6rAYLMz/McDXJDGNfVfP9NM/sIAGuSckYiV1AmfXKketnQp+rvdg05hAGZnRdcENHIQULG/gcLEb9YFSVzKu4ninM20I9PfWkAdfLXvYyfOITn+gYHOw4Dj71qU/hFa94xZN+Y+973/uwbds2eJ6Hu+66C6eccor4t5tuugk/+MEPxN8///nP47HHHoPjOJiamsLtt9+O17/+9S3PpygKPvvZz2LPnj1wXRf/8z//gzVr1jzp97dQz4xqH6zmjfdEm4mEfLPmjKu9Aa6a76Pu+6k7IXVWE6ThsJ3KCQIEnodsqYQXvvOdLR1zQ1VbJFZxkuDye+/FdtoEbZ6aEq/FwbQsheCBcyAFgffu3i02Xvw4Q1XRvWRJC5C58XvfwyaKPCj29aXDxI4jNo2mYcySFObIVIFLVRT053IiKDRJEhQtSzBcSZK0SgqJ4VJUFbphQCWjhpxhwKLGRuj74gYLAHouB51m6oCZ7i0/Vj5m63/845b3m8QxGkGAXbVai3uevNFnsNxpo9AMAtTofc/HeECEcz4F3VIGXIaqYiCXQ1cmA42+WyCd5dItC069jsB1UWTARQxXGMcAnd/NSmVOwKUqyqwQ6DhJMFKrISYQkO3qgklsmtdsYpA2wrWJCfzXpZfisgsuQGPPnjTbi85bXVWF/ToHCrcDWZb1skvojx94AFdt2oSJZlO81yRJMFqv4waSju6tqp4HQ9NwzOAg1vT2QqG1oGfRovQ40PUwvWsXekmSxMWNBw6b3RvDBQBOrdYCuPhYaiRb1Gwbiw4/fM732iDps+v72P3YY9hGMtabvv99PHHvvemcEwcD0xwjB6Y3gwBuGAp23ZeaFmYuNyfDxVJoJwjw3fvum/O9cbEEdX+67hzS3mkeJSDpF89wMTSx2o510bKgKQqK/f3oXboUuzdtQgKI/Dg3DAWgZ5DTDAIh59NUVYC9iCWF0qb2kO5uLCYb94NZ2n6YZrRLCl/2wQ/i3VdcgVNf9zq88B3vQO/SpVhz2mki987O58Wa+vvf/Q5TmzdjbMsW/POb3ywAV31yMgUTxEyGngdFWtOdalUwglzMYvL3/IsNG/DZm2/Gv27YIB4TRBF+sH49pqV7nUNyvYMFuMYliXJtcjJlKemebefzqWyXAGf798bmWL0UNcAyWLmpygwXf0cHwxX1QGtXrYbReh3h1BT+69JLkexnc2Ohnv31pAHXxz/+cUxNTWHNmjX40pe+hF//+tf49a9/jUsuuQRr167F1NQUPvaxjx3M97pQCzWrOnXSFQC726R/QRyjunNnOlRNHfa9AS6W85RdF4/RDSGKY1xL+T7t5YQhAseBlcnAMM2WOSRd2hAAEPNgv920CQ4BBt6wsCwLSDt3XqORynGQMkxxPBP0yu5VhqbBKhTQrFRmHwtVFUGbXrUqNpombXLkap9v0FQVeUkaaOs6ipYFS9dh0AabGa7I80TwsWoYUGhjtLKrC2v7+mDT44IgEDfWt33jG7C7u1sAly5FSchzQ1GSQKONRi/FMzjT06jTHJH4LEmCndUqvvvHP6Lh+9i+bRvWX3wxfMrtkWus0RB5V/vqNCZJIjqrT0VXkt3VeGbLovkg/ruuqjBsW4DVIn2nvuOITRB/m41yeU7GQVPVWQyXpeuYchwk9TqypRI0XU8ZrkYDTrWK/hUrAKQbI2ZR63v2CPfOgGZ4+LgYqtp5poc2RDxjNu04mGw28ZU77sDlNO/bIBZxPrM23C3OGAb6czm4dM1zjhgbUUzt3InudsBFx+YHH/oQAMzJcL3hH/8RQHqcmRXTDENcpzoBLlvX97p58sIQg9J7BIDDiOm58fvfTzPp6Do3LAshmf9wE2ZntSq69M0ggMsB5pY1p1zKjyI4FAo/n+JgbGZB5lPczAiiaNb7YLAUOA7sXE4wPHqbqqRoWWIWzspmxXwTM8puGAonOwZcjsRw6YqCGn2fnSSFg/k83nbccTj9IMa6cKh9u0qgU3Wa4TJsG4OHHoqXvOc9eO6b3gRFUXCC1KC2ieGKkgSV9lxCek2Z4eJQbtlw6F/e8Q6h0OBqkMFMRN8Zu3w+JMlO99Tr2DQ5iTvJGAlIzyVepw8UcIVx3DLDde1ll6VB3/S9m5kMdMsSWXQaKSXuu/rqlvVOawNXolGJGSZPMFzPAGCzs1rFlOPgnu9+F3/87W/hlssLksL/Y/WkJ0gHBwdx++234z3veQ8uuugisdFTFAUvfelLcdlll83KvVqohTrYVff9WTr6nGni8elpJMlMbtPErl347Yc+hCfOOAOv/fSnEUibivFGAz2ZTMvz8L9XfR87KhV0kQHGNA2pt28I3TCETxsLnTZM/PoMuNhZjB24phwHNd8Xw+oOdaP5pqEg7frJswddtg2XsnJ4hktTFNjFIqIgQOC6ogMKpCwQd+ndSkVs7C0CRXLJdskJgH563c1TUyJ8M08ZRCxLMRlwkfzDc11oBNJURREBoQJwUf4WAOR7ewHPg6YoKLsu9jQa0CWmasPNN2PFMcdg0dq1sHVdAC5mI4KpKawfHW1xbLN0HRvHx2FoWgpqf/ADVDZtwuS2bbM2ChPNppg/8qKohSV7dGICS0slZOlnvPHdXwZgvsWmGcw6WiSLErNyqgrdtoWdNoPo0HWBdoarXIaXzyNKEhzTtgZ3YrgyhoHFhQI2T08LaVNlbAzbHngAANA1NAQzm0V9akqwMI2JCbHJDuMYTQJee7M85m61RgyFI1l/83dTdl00gmCfWUkcwizPIToEZkoDA9AMA061isB1UR0fF9k+XHseewy/uvhijBGTJudByZUtlVDo64NTrQqQNun7COn9nbx4cdqEoOyzuXLgvChC1jAQSrM7K487Dr1Ll+L3P/0pAODwM84AMCMpZHMAnlliFrDqefDpsyZxjOZcMmcyNEkALJ6Hw+72SkWYEgRRNC/7dDkLqV225QRBmrdXqyE/x+uzK2eF2Eojk0FA60Pd99Egds+PIjR8H7qqYk1vL7ZTBh2Qnm8igymcCRCXa63kaHgwqkEy2uI8skZ51m9feWky6LdyOYQsKazVoBoGYnYhlKIPhgl8sqTwpFe/Gns2bsTW9evTJ2ozyWFHT49ArEcMqiXLbUmSL98fgiiCQYDrQCXVNc9Ds02B4tVqSKT5X4MAFxtilffswW/+6Z+w5/HHkT/nnLTJRtc+2+LHcwAuVVHgPwMAFzdkNlFmXRzN35Z/of406oCCj5cvX46rr74aExMTuOuuu3DnnXdiYmICV199NVauXHmw3uNCLdScVaObsFwF08RYo9FiK7yZJDwP33ILvnHeeVjT3S3sYr959924cevWludgNmMXdZYtXUdG10WYans5QYCQhsPluSaAbLqpk8iP9aMIFTLmYLaNO8Ky2YTc+dYUBSXbFt06nuFSFQUW3ay5qy8zRbyJdsplhJT3ZLbJCQG03HQB4MRFi3DmihXQqDsbJwkyui5YrzhJoOk6VE1DTDMnrudBJTmhLQ2q29IxYYbLIkmIqijYMD4ONwhazAx+961v4fJ3vxsAMJjLoUCAiwGkVa9ja7nckknUm81id72OgDa4ZWKEjFxu1oanRtlTUZu0I0kS/Oj++/GzBx8UP2tS938+bNiTqVCSFALEcEmSQsFwEeDK9/QI6/Z2O+5GuYx1/f04fngY3RL4BiDmp+Ty6JxrVipifkKWfeZ7elDo7UVtclJ8P42JCcRJgjptCvmc5vfaSXrJkkONZhr5d4I4FjbPf9y1CxPN5j43+yzvlK99nouycjlkikU0q1VM06wvs16QNpH3X3cdVhx7LHLd3RhavToFjB02xVYuhzv//d8FOPMVBSXLwrJSCeesXYs8OX7uLUSWjX16JBl796JFwjIekNYL20bgeYiTpEUKxf9f8zxhZpLQmtHpfbN74PZKpeP1LlecJNheqYgg4fme47yx7ZR96IQhKtPTSOJYNAh4bTvxnHNwzt/+LQqWhSXFogAlhm3Dd93UeIXYLT+K0hy+OIapaShaFo4cGJiZySXjCGDmOpqP1O9AqkEsbGEegEtTVdiGsU9mSM5a5BmuKI5Rq1aR6enBn//DP6SvTfNPLCnkhl3keSgNDuLNl1winidsNlu+y3/buBF+FGF5V5doHnHzg2XVPDsnV61eR3PPHgHGD6QaQZAGqisKTv6LvwCQKiR8z0st/TVNRCMwqzlBM521iYm0aRTOBCfXqDkh55WFJBMXgOsZAGzcMMTkI4+Iv8e+31GFsFB/unVAgIuru7sbJ510Ek4++WR0zzE0vFAL9VRUvQPgypkmmkHQMse1W5oJmd61CxFtaHhuYU9bcC4zXHVioEySeM0lKXPCEKHrwspmxYwHyzu6bBuTzSbWkz5fzEqEIWp0U+GwTzeK8LuLLsIffvMbmJqG0PeFBEdT06wx3sgmUgevHXDJjoCZQgGKqsKrVOAHgcjYaq+8aQorYWYqDOoWy65PK7q6WiQyumWl7Focw/e8FIQpCo4aGBBBuWxOE9BMB5BKR/j966qKgmV1zBOb3rULiqKgSJvTs9//fli5HDxiMWVL9C7bFlEBWcNAlcOt22YZgJQpiKg72u4CV/E8MWMHEOCim/hTobtnl0IhISQpDDNcDLhq5KiYKRSEdTs7MLKzY3ViAr3ZbMfuO29W5OJNjdtoCKbnHd/+tvj3XFcX7HweHjnOAak8tQVwSY6IczJckiSMrytmDZ0gQNl18cDYmOjC7624IaK1MVxWLpceR2JKGHB101yXKj2+f8UK+I6DtaedhgTAHTt3YkcHC/WJbdvgNRr4/c9+ln52NQ2n5vPJpA0+b/Lu3bWro5zS0DQ854MfxAd++lOc/+UvY9XJJ7ewGuxcxzNcCdKNvYKU7ebN2ZTjwGVAHEWo+X7H4G8/iqCpKpaXSvvMPeOswSwBg/myuPJ8ZDvD5YahuP7yPT1pbqCuQwHw8r/5Gxz3spel/0aAVVUU4cSpqSoaQSCc9HZUKinL0gE46gS4kiSZk+E62OWRymFfQJYrbxj7BCoyyypLCuvVKoxMRjRDWGpdm5wULoQNOndM2xb3HwBwJydbGClm9ZeVSkJa3ySAxfPJ/Hd5VvjXn/kMfv2+9wmHwAOpMI7hOw7MTAbHv/zlAIDYdeGTOgJITZcUisbYfPvt+Cm5UkdBgEWFgpD0Kkivh4juWVvvvBMxMe1hHGP3o4/CnZ7u+J4ZyD9d5UVRa8ak7x8Ut9aFevbUQQFcC7VQ/1tV8zyoSYJEWlB1AkbyIutIUh4AAnA9ODracTFmNqNBMxAccsra9/Zqeh4iz0sZLgYXtLgyIOQbGgMul6zmEwCgm9/42BimNm/G9Zdfju5MBpHvw5RuoCaxZfw8CjALcEVhiDiK8MqPfAQXXX01Kr6PXFcXnEoFHnURO9kZ92WzsCh0VKX3bdAAOjNci4tFvOHII1sAl5XNInKcdPMsdZjPP+YYrCaQZLUxXKquC+t4lRgDVVHgdQBc911zjTieR5x5JkoDA+mGmjalYdvGGyAbeAB16gbL9sFc064LQ9NmObM5JGOSAQPPt+yt+x8nCf5940Zsltih+RYfN5EtRMelfYYrovdU7O9PmRCy/n78e98TRgrVvdiAa2RoITMiHslzvHpddNkHVq7EajIqynV3w7RtBK4rABdbNtd41oiOGedsddq08wxX1jBQtKyZwFZ67J56HTurVdi6vs8hd55DkRsHbq0mAIxumi3yVWaJl6xbByBlWDTDEC6gzSBAwTRR6WACtfb00wHMsH412my/hp5LVVKnQpZieQQQ5GIbc9220T08jJXHHw9FUYQhCQC4jQYen5rCOM3iMMOVAMImHQAmHAcuARkljlH1PGyVXN+4PFofOMdub3EGnOVkatp+NRWieCa3q972nflRBI3W3Vx3t/ju298FAxdmuALHETJsmaXzSdYmV0wzPgzcI5rhmo9d+4HUC1euxJJ5yDS5Cpa1b4ZLko5b+Xzq/EoMl5HNIkuAC0jnCCtjY6IZVpMAFwC8+4orAADNqSmE0nXI3zEwk2fGjBY3KJtBINZAIAXVY5s2pf9/EGRwUZxGqJi2LeTviecJOTqQNh1UWsM9qVkauC5WdHXh+eTyaOk6xppNhHGMsccew9Wf/zzu+uUvAaTn33ff+1789h/+oWO+3A/Xr8elJO97OsoNQwTSPiTpwCQu1J92LQCuhXrWVkIbnB+++tX4zaWXip+zXp5vDEmSwG3TjEeuizhJ8J+PPNLxRsg3m2YQoOK6LQzX9g7mFHXqMJuSpPC/v/ENfOasswCkssJRWmxlN7DxRkN0sJ0wxOMkfVy0di16MhkoUYRsJoOI5FgsXUqSBLvrdQFYTNpobrjpJjF8bOVy8FQVD46OwiwW4VQq8D0Piq53HPbuz+WQMwxhh6/JDFeS2uyaBApkwJUpFOA3GqlxAs0iyYYPAJChjcD0rl2iuwnMWCYXCXAtoQwlOb+IjQYC1xVgVjdNhPQ+2UVSrinHwUNjY0J+0ykAtOy6yOj6LDaGvx8ZiDd8Hz4xGHOFVd6ybRuu2rQJf5QiK+ZbPMPVEgKtzuRwGSSzAVK2QDdNYd1+uG1j5LbbAKSsTaUNcD10ww1CDmcQ4JLlX3z8ZGtyADj3oovwig9/GHY+D4PZNAZcQYA4SVAm0Mvzh7IFdvum/Y/XXIMdd90FIGUiPZr7YsA7UqvBC9Nw3LnmkqqehwmSSc1iuOp1kYNn0PnBRhfc9X/jF76Ad3/3u7ALBbi1msiIagYBumwbNd/HzVu3tmwqX/+5z+Gw5z5X/N2iRkGPJNfMGoaYZ8rQfKVczEa3/3zw0EPxif/5HwDA0KGHYk+jgRxbgpMLJNeWchl37NiByWYTTcprYgDeSZrUJLBmUZD23kAsz8GY3IDYT0lhxjCwp82oyAtDYe6RIUYlT5b6YuYbdG7TmiIYLkVJTW/IcbNBDIy8pvzhN7/B5170IsRkiONFUWqa0WYL/1TU85Yvx1+ffPK8H18wTbH+TDSb2NUhz1GevbUlW/hatQo9mxUMF5CeN+U9ewA6/mV6PgZc/StWQFFVOG0MVwJggJoq8kwqZ54B6bpY931smpxMZ8PiWKgsgmbzgCWFUZIgaDZhZDICZJphiGq9DoVmINk45tihIZSliIja1FTKbEmy+2nHSZUnHNJOa77LM4+7dwuFhlwjtdrTCnicMIQnMegxSWYX6v9OLQCuhXrWFkuSAGC9lNHE+U+8aYqSRDhfcYU0OzVK8z7tJQOuHElemOH61SOP4PYdO1oeX6WFVJ7heuTWW8W/Z3RdOCey0YATBAKEcUd3hHJ5rFwuBQm+D900U9mhrsPSNIw1GnDCUGQ1qYoClTaU6//7v/Gvn/oUgJmbb8m2oRcKaExPw/P9ORmugmnCJoaLzT6Y2WOGqxPgsgsFBI0G/DgWwEGT2BlgRlL4n5/+NEYefljcaAVgJGC35owz8A/XXDMjtVIUAbh8GXAZxgzgklwK2ZZ8V62GreWyYH1C2tjL5YWhsDqWAciDY2NCssZVZ2kXGT50qofHxzFSrc6ahZtPtXfma76PnGmiiz+vqs58nxR6zIArouNz9vveh5XHH49aW+D8Lz/3OTELZ5GbHktp+DrRSFIoz5FkSyXhnGYS88BgnhmYsXpdNAGqZIACpDeW9s3Eb7/0JdzwxS+K1/W4g00zjOONBsI4hq1pc4KDf77rLnz9zjsFQJjFcBFgZOOa0PehqKrI4LLzeQwecggyhQKcWk0wXF4YppLWKA3QlgGMoigCyKm6DrPD9WMTwxXFMTKGMSuagM+ZTiyTqmn46x/+EK+48ELkDAM5ujZCz0sZLgJr046DqzZtQqXZRHN6GnY+L8Ko+XH/7557BMPKzn0sV+7E3snvMYpjWJRjOG+Gi9aFrGFgd73e8vmaQYCEPrdCILVgWdDbDCQ06frXaYZLp9mkPfW6kH5nDKPluHNm1dimTYKVi6MI2tMgKdzfkhmuh8bGsEVyYOWSm0wj9F35nodmo9EiKQSAwUMOQRQEcMtlJAAq3PCjNULVNOR7etCUABez/HxsGEw9Z8kSmJomJNQPT0wgAfDo5CSmXRdBFImZYK9aPWBJITNcVjYrQKYdx2g0m+I+ZhCjDqQAasVxx2HR2rWojI62nGNyTibPBiuKguWlEpp0jM1crqO7ouys+lRXGMd4ZHwcQb0OjUBl7PsLtvD/x2oBcC3Us7b8KGqRS8ilSIOyQRQJ5yuu0HVFzksnhotdxZwgwAq60THDtbVcFmHAXILhymRmOZ6Fvg9D01AjC3t2iIqSRGx8OStk7Ikn0s/WbKZa9DgWgMsgM4KeTAa7azVkdB02dXPlbdyWP/4RQHrTipM0O0svFBDUatDiGIZpdpzh0lQVJXJB5LkqmdmLkwRWJ4Yrn4ffaCCiDjMzXLLxQUaaJxp55BFxo20HXPePjiJUVTGLtvK44+DQsd0XwxWTrn9tXx9WdHWlMit6jyHZ1nNQKwABNABgROo83rBli5C7MejqZF7QXk2aY3oymS9sZ83vp+p5KJimML3QVVVs+kvkPMgyPz5Wa08/HXYuJ2SZj9x2G35NA/ShtPn2pNkF2c3Lk2a42suw7TR2gI5HJEne2Ghh2nUxvmED7vn1r1MgtY/NDG82ONh2lAAXW4B3sib3whANMtuQN49AW3iwBLjkmRYuMZPWbMLKZAS7w/LWdgMIWapodNjQZ4jhCml2UH7nD4yOCidDRVE6fq6+Zctg2DZ0VUWOQK/vuqh4nrBMZya2Oj0NJAmKAwOCwePcwK3lsgiNnnIcEQzNzqhzFR9vISmc7wwXsXo5w0Cd3gNXIwiAMIRGx0Mjhos/C5emqrjg2GOhKQomggA+SQqdIA01j5METhBgZVcXxsncKIlj8dknH38cYRxjR7U607h4hgGunGGgEQR4aGxsVjOqU8W0dvqeN9PEkhwwF61dCwCY2ro1lfa2AS4gbcw0JydFQ5GvdT4y3PTQVRU5wxBAfaRWQ08mI+z+ZYbLr1YPXFKYJAhI5aAZBlRNg+84qWkGXassCQbS62B4zRqc/sY3InDdlrxJzhmL4liwqQmAld3dOILes5nNpmCz7bpjs5GDkSu2r9peqWBXrYao0RANswWG6/9eHRDgCoIAL3zhC/EYdeUXaqGezgqiaBZzxaXQvwPpjSZwXdiS5j5wnJmcmE6AKwzRm8nglCVLBMvA0rpJx4ETBFi/Z4/oGssMV7ZUanmuZqWSzhkQI9e+yCaYcW5jpzVPyv3RSY6iqyqes2QJBijTxtA0vOHII8WMVXupxN7oqgqzWESzXEa3aUJr6xTL1dUGuHhzGScJkCQw2gCXH0XwTBN+vY4gSWbszYkZ4ypJx6Q2MdHCcLH8kMHX9koFr7jwQhzzkpegNDAgjonvOGJDwQwGM1w/v/BCfOW1rxWvkdH1ls1fQLNGl95+O64k2SYDtbrv44+7d2OUuukN38ek47RIDRu+L6RQczFcbBqwNyZhrgqDIJ1ro+/lOXTe8cZeVRR0sQEJbf7NTAZTu3aJDUimWISZzQppzV3/8R9YT/NvQLpJZUkhv0c2AgENstsSwyWXYduoU8c4UywipBmuZhCgaJrCwvx3n/oUrv7a1wCg5TjJXWkeaveiCIf19eHYoSEoSKVMYRzDIplnp40dZ39tHB9PGa426andNsMVBsGcgIvLpM2lpiiwNA0l20bV8/DA6Kh4Dwy4NMOYdW4DM6Hh26tV4WYq16JCAR4B/L1lXCkALALZnuui6roivJXNSfh7KPb1IQpDGKqKsutitNFA1fOE1LFMUmh2jZzey3nJ84m6qgr31vZySEYqFzNcBjVlZKDmBAESAlwMjgumKWb8uDRFwUAuh4xhCNZWURRMOg4qJP12whD3/PSn+H9vfSs23HgjpnfvFk0Ev9HAlOPgvx59FHEUPS2Swv2tkxcvxoqurjTKQIp/aK9TXv1qGLYtJNi+6yKgtUGu4dWrke/pwa6HHkrjS4jl3uk4gp3N9/aiOTUlmmUMjvnYMLusKamj7BTNg4ZkEsWsUBjHYrbKr9UOXFIYx8JgSlEU8Z0HrguVJYUSw8XzXrz+Vcg4CPRZeF7bocYTO3iyiZDVgeGKqfH5VJkgtVeTJL2a66LY35++BzIHmm/m3UI9++uAAJdhGHiAsloWaqGe7griWMgIAMCpVnHnv/+7kEndvG0bdpIEwnccDBx6qHisR6ApmKPD5dJmXM7bUklO5kcRJppN/OzBB/GVO+7AnnodNbrhhYaBx5vNFnlIdXxcbHoY5PHmnTeiuqqi4rrCaMNvNsWGQjdNsRk6a8UK6KqKndUqDFXF4mJRBFK+9tOfxlu+/nW8hiSFfKNRlTSnqzE9jcj3oen6nB3g3kxGAC62JWcpJcv15CDP7ZUKIsuCSzfiMAigUFddznHp7elpeR2TtfuahoLEGhRMMw0BfeUrce5FF4lZG4AYLmZ8iOFixmbXxo3p56NNvqooCKUbKWfajDYa2Eg3YnbnC8l4gGVXThhiUaHQAricIBCW5nMBKn7sk3G+CqMICh1bADh71Sp8jHKZuHqGhwGkwClJEuR6erDjoYewc+PGVOqWyYjNS5IkLY58UBR8+TWvwW++9CUomJGb8Q2/RnNnhb6+lvOSy7Rt4Y42sHKlkBQ6QYA8nZ/ydaQqCkYl5zz52W747nexqFBAzjTRT26KnAmUAGLzLm/6J5tN/OKhh+BHEUbrddy4ZYsASVzyDBefH5HvtzADXO2ZRzwPVrJt5E0T440GnCAQ7qWc/cZZae0b+iyBxLCDk55FVuZHDQwItniuSgBYtNluEOPHAbsBbQ6bNKNSYMClaahQrl/d95EjSeO048AgVg2YMe3pVPJMnAJ0bCp88bbbcNndd7dsEJk14TWIP1uSJKh4Xgq46NgYmoYuYvHaGS5DTQOkrXweURBApdlZzhGrNRq49Uc/AgA8ce+9YjOtWxYi14UXReglFr09+PiZUMOFAgokEebZzE4b7bPf9z789X/8B7K0zvmeJ1g7YEZ2aOVyWHzYYZh44on0+iVpeiWKsIkMVaxMBqHrCmMhmc3m8kgVYOk6nDDEZLOJSALQfH/k1w1d94AlhXGStORF8prVrevopcacYVniXhh4HgzLEsxQWQJcCmaAo0PXhVOtwqlW8W+f/rQ4ZnwMgNRo6yt33NEyS/1UF8deuNUqsqWSsL2P5th/bJmexqduvHGW8+dCPbvrgCWF5513Hr773e8ejPeyUAu1XxW2Aa4vvepVuPayy1AdH4cThnhiehp37dyZAgHXRc+yZWJAXQ/T8OCAXLDkSpIEdc/raCxRsCwR1DlSq4luOwOuchyjlMnAlJiC7/71X4tNhheGwgpWIxAGQHSwBeBynBbAxRsvZoK4c501DNGNXPf852P50UfjiDPPxN/8679i8JBDZgBXV5cIglXmmOECIOyu2xmuKE6DdZndkjv1Vi6HkBihgCSF7QGwVhvLwF38GKmN/9GDg2LGQy6etUloDs9skxQu7+rC4VKo6fc/+EHx/5604Q+J4fLCUFiZc/5UGMeYdl0hu3LDEEWauWCWjNkJQ1XnZApckorujUmYq5jh2psUqo+szYdXr8ZjU1MonHMOAODhW29FtlhMN07ZLOIoQiTZOgMAkgSN6Wncf+21ACA+V4U+785774Vh21hx7LHYVqng1u3bW35fBi3Dq1cLhsuh6yiKYzjStZiRZkKAtKvNXfrf/+xnsDQNxw0NifPQpvBpYCbHSwZcD46N4ZZt29IsG8dJWeZaDTd9//tijqk+NSUy2vR9SQolwJUpFBCTVJc3xDnTRMm2MU0ghXO8nHJZXIMtz0cMV940kZdej4/hqw47DCcuWiSaF3srvjaYlWXAxRtElpAW+voQE0Ph0nnNTSSPmECWrqmKMiv6Qi7Z9TEBWsCy/JjxZhO3bd8ufsYuhcyy8+bx7pGRNB+JGMaA2NXuTEY0jLg02vCv6e1FgTbcuu/jecuX48wVK2BoGuqSu1uzUhHHoHt4GIHjoDeTgUPn9Fwzqv/bdeaKFbB0XTBcfN/xwhBby2VxrsQAstSQChhw0bXDLI+ZyaB/xQpMbtuW3q/o+NgkjwXSplbgOOJ7YTaSATjbqwN0/YUhxptNRASOZUkhv7dwHpEN+6ooSRDKgCubTRUdvg+T1n++foEZKXm2qwu6ZaEyOorJnTvxvfe/H265LJQW1V27AABjW7ZgQjpH+RhwM2BPvY77du9Os8f2Y17xQIqDpJ1qFZliEYZlCVl2p+P58MQEvCjaa5NkoZ59dcCrUhiG+Na3voUTTzwR73rXu3DhhRe2/FmohXqqKoiiFsDFVZuYQBTHmCJ5RUBAxspkoGpaull3XZy4aFHHXJGq56Hsush26Iwf3teHgVwONc/Dzmo1NTcwDDHDFRgG8qbZIl8E0GKVzWBOJ3kXgxsvioSMwmtjuEIaxmfbbQZaBoGw9m6pkC0w4KKNTHViApphQJ9jY9+TycDiAXYCV6amYbzZREKdTwDihqwAME0TMTvOkaSwHXC1b1BZV68COPeww/AXhx8uGC6545ctldCsVNLjkiQdZ7j6JXA78vDD4v8jSVIY+T4q1AlPMDMwrioKjh8ehkPhn1MkNc3T+/jeffehTFlXCh2L6Q43wYTYy5xpouy6+92Z5C52J5DP1T80hHMvuwwnvupV2FWroVAsom/5clTHxlpkhkB6/gQdgN/goYcijNOsKD7P3TCEVy6j0NcH3TSxtVxGF83/cdWoa37Kq18NM5NB6HlwyEWPQcSeRx8Vj7fCUNi8A4AXBIjDEIOHHQZgxnmSS3bfZBZI3gixNfik4+CUxYtRdl1svu463HLlldjyxz+mMyDNJvLEpOqmCd9xcOcvf9nK9FHJDJddKCBKEvRmMijQjFFPJiNmufwoQu+SJQBSdtGSWCPxeWn2SVdVLKbnvnnrVmwtl6GraX6eIc1DdirOv7PpO4yI4bFIasryZ7dSgW6ayBQKiMLU0r/meZimczeIotRVk6RhQCqx7eSMJ45vHMOv11PjEV3H5jZTB3bn5Lw08XPaxHMDhjf7ZddNs8GiCBplUOmqim7bRrdti8B3zgoDgJVdXbBo3WxWKmLNOHnRIhwjMeTNSgWNchmqpqHY3w+Pcrscnod9BjJcAHDq0qXi3DKIsQSAx6enMSLNRkVJIljOwPOEEQgArD3tNACpJLZ36VLUJyYQeN4M4MpmxfllZrMIXFeEFYdxjMbUFL7xspdhx4YNWN3TI+zVeW5ymjKtDAlAB3Es1tLQ8w6KLXzoujMqB5YUep5ojojwb2oeGbYNRVFQGhhAeXQUt/30p9jx0EPYeM01qTwwilAdGQEAjG/bhn//3OfE68mgE0CLSuXpZLgUAE1iuMxsFiEd604STY3UNE/He1uop68OGHA99NBDOP7441EoFLBp0ybcd9994s/69esPwltcqIXqXEEci7BQuao039EkF8DNU1OtHTVa4Llc6nRxjVM4ZCfABaSLIQ/VTzabUBQFjXo9ncExjHTeZulS8XgrlxPZYG6Yhh23A66eTAbbymWEnod8by+8RkNsmGNVxdZyWdxINUURhhkMAubSgc8CXOPjwtSiU/VkMsjQZ+DNPzsoBnEsuvempiFBak7CgCtMEsFw2W2yqnbmxsxmRffepg2lqqQ5PfJnyff0IIljYXXeznDNtyLfF8AJmJFCaSRlSpDKBpmdYntslhny98SZRu2bZp6FypPRyj27du3XMLZsNjJXWbqO3NCQCPzM0swLMMOK8N99x+l4bSiKgmnXxUSziYfHxzHlOEiQGk4wCMkaBrKGIY5VMwjg0PXyvDe/WXSfezOZlLWhc3ucDF8AwCa2kN3YeMZkiABXlWzNuZgBDuJYADh5Y7etUklnIBQFGcPA6p4eLKKMt/LoqMjIKtDPDMvC2JYtCD0PU7QRk0ue4coQ4LJ1HacuXYrnLV+O4Xwe3ZkMBnM5eGEoGhgnv/WtLWYwXHy+aKqKNb29sKjpsK1SEec4M2NzMVwJ0hsyn+NREKDmeTA1Dd2ZDEaq1XSOq1JBrqsLmq6nQJ2e8/7RUbhhiA3j46jSxpgbJLaup3KxOc5JP4pw3YUX4kuvehVMkijKxaxZMwhawAzPBfHsFz8/MyYZRYFuGHh0chKGpsHSdRw1OIiCaWLD+HiLPNPQNBj0vTgSODQ0DaAGRveiRWiUy2iWy8iWSrCyWfiOA1VR0JAA1zPNNANIQbmmKOjLZlOJKJ3fbCYicq/iWDA9ke+3SApf/O53453f+Q5MyVLdd100m01AUWDbdirDTBJYmQyCZjNlqmh9qu7ZAwC4/7rrWuzV+ZqrUBi8QaZO/HvMNsW+3zGCYH8qShKEjiPWLCuTgd9spoCLPnei6+n8Gr0uO//murvhVCoYp5iL2thYyrT7PhpjYyiQ2oGzCLuGh+G3AS52CR7K5zsGtD8V5VBEQ7NSQaZYhJ3LISA7+04STQ7zPtBjvVDPrDpgwHXjjTfO+eeGG244GO9xoRaqY4VxPKtTDqSg4uTFizGUz2Os0cDvt29H4LrItHXUAAjThdF6Hb959NF0AJnmeewOGysg3bQ6QYAlxSKcMETN8zBVqYj5IlVRcPTrXice7zUaSCQZW5M2jrqqiqFlg2aRQs9D96JFiKNIbEobSYJBAm0ABMPFGz9rHoCLQzOr4+NQDWPODUl3JoMMDZ3z62UMA0uKRTGLAqAF5JmWhTgIUut1YrjaXbg0VUU3dVOBVHvPMyO8EWHJpPzOmLG451e/AoAZhsuyWgCXLHmLO3QFIwKMLI0J2uYZFKDFyY3DVHneTgZcfhS1GHIAM5KsvGnCCUP8cuNG/JDMOeZT83FXs0m6x/+vKYroCJvtgKvZhNsBcHnNJtb29mKs0YCpadgwPi4yuIQTH82YMOC5e2QEPa96FV7x4Q8j190t5iuWlkrIGIaYL5Lt6L16HQpJ3QCgQkxXNzFFtTkAF4MWeYZra7mMu3buxIquLqylDVXJtsHf+OSOHYKB4w1XJxmhXHLIrJ3Pi4Dgvzj8cLzokEPwN6eeivOOPjq10af5uk/ecAPWnXMONEXBh57znJbn4/NWMBiahrxpirk/S9dbIhY6FZ+PbJgQU+i6RdfTyYsXp2tepYJsVxdUXUccpiHlAYGhKElQ931c+/jjCOKZkFubZnQqc8wXRnEMj2R6SRim83TS+2TXzrrv495du8RnCOMY5R07oBDTxZvaII7T8zUIoBkGSpYlwN9Skr+GcYyCBDQMVYVBbLXsRAfMhMgPrVqF+tQUbvrBD1pMYjRFgUPX7jPRNAOAYCpNYjv5WBmahhytG0AKSHidi3w/ZbhorVc1DcOrVwOAACeh76PeaEAzTVi0LpSJQfJdV7AoYRwL578HrrsO01JeIDdxqiRz47WfzVRaANcBzhVFcQy/VhPmUnw/Dj0Poabh5q1bMREE8BwHv/uXfxGPAdJr1a3XMUGxLAHNq+4ZH0eSJDj19a9vea2TXvWq9HmlpmozCKCpKpaVSk8b4Kp6HuIgQOC6yBaLsLLZGTDc4X7FhkTt95mFenbXQRE633rrrTjvvPNw2mmnYYS6iVdeeSVuozDOhVqop6KCKMLYhg3oGhrCyuOPFz+vTkwgaxgYzOUw3mxi69QUYt9vYQEYcHXZtpBS3LhlCxq+L/TW3P3zmk2xoQMgZlcKpglT03Dr9u1w6nXoEuAqLV8OVddx5AteAABoTk0hJDDnBEFqPqEoYiMPpPNhkeehl+ZFpkmTXglDLCuVBPuhKgpKti0AoUUZQJ1KMFy0kUlolmYuJiVrGKLrzI9ZXiphuFBAHxkcAOkGc6RWQ83zYDHDFcepUYWqzgZcioLXf/ObePVXvwog3XDLDJdCrJ2itFrctwMuvvHqpik2ARxwu+K44zp+JoA2Lh2G/WXHLidM86n4uw+iSEQHBCQ/tHR9bsBFG9wwjjHRbOLeXbvmHazJga17Y7iyNCcEQMjTeNPF8hwGElvXr+8ot/WaTQyTIcjVjz2Gh8bGUqOUWg12Po+ENlumprV0Xos9PSKTiwEXb8i5adGYnBSW9cxQCMBFf++mObR6W6wCS+YAzGK47h4ZwaTjYGmbTJc35WNbtmD3pk3pxp5ef/emTbM+e8V1MU4gVDa1ETIm6ZwdyOWwrr8fNn3fAMS5WbJt4VzKxfEJuqoKYwh2f2NJoRyx0Km4AVGka9VGaq3O1xJv0t1KBbnubrEJV0hSxd3w8UYDe+p1cX0B6RohZ3F98+678WPJ8EpmYxtjY+L64OJcuhpZWT9BzOWOsTH87sMfxh0/+UmLpJA3kVEYQiXGlBUDBrHjuqqiYFmoMYuhabByOSiqKsJrxevT+y4NDAjm9tg/+zOYmQy8ZrNFUijn2T2TSldVoR6YdX1Zlvj+4iSBJTFccRQJhksuZn0Cz4PTbEKzLGiklkiQrpWR7yOgub4oSeBJBkTfeec7W54vQXqNyPl2bLkecW7fQQBc9UYDke/DKhRw09atUCwrZbh8HwFdP4NdXYh9H/f+5jctn9XO5bBz40Z4jQZUXRegZQeBx8Vr1+LQk04Sr8WMt0/yQWDGAInX/qfDmKLsuojpvM2WSrA4SoXWuUcnJlreB8t3D/RYL9Qzqw54VfrlL3+Jl770pchkMvjjH/8Ijy7MSqWCL3zhCwf8BhdqoeaqII5R2b4dS9atw8l//ufi59xpL1oWyq6LOm08O0kKj+jvR38uh4rnoep5qHgemkGAqccew/3XXQcA+NGFF+Irr3mNeH6VGC6dHL2AVDKl0SZMURTsqFbxwauuwulvfCMAiE3CzmoVDs1d6GpqBc8L/5G9vUiiCN0EuHZT3IJhWcgYhrB7Zvvqv6Ybi7wRby8GFXzDAtBiP95eWWIsuFsPAG8++mi8au1a9Ody4j2YqoqSZaXZPdxpDYIZhquNHdRUFYqioIs+m2wEwsDR7tCZLvT2iu8NSBmuJEkQqSpCuhltvPlmAKlNNld73pE8z8XueuXdu7FBCsz2owg1zxOd+CBOrc5dmjVRyTQjiONZQMqjDqrM1NR9H5MdQE+nisjdcW8Ml2w3zlbhbKPMx6hITl4P33KLsIc/7HnPw7Kjj8YRZ50lzkO2GK+4LrpsGw5ZqscS4PIkACSfL1YuByRJiyzXiyI0p6YweMghAFLAlUAKEKf3Yudy0E1zltxRV9U0jwsQDpjNIIAXhrh561b0ZDKz5qaY3R7bsgWP3Horlh55pDjPTzr33FnH79HJSYw1GuI9HXriieLfmOGSSyX5l7wR4qyq9mJmQVMUdNOMjkamM3yOy+HpnYqv1SKB5qKm4ZTFi1uAYBjH8KtVISkEACWKWpoAkyyhcl1xnE2akePzdkelgsekJpL8niKaLZElnbxhr3keJmlWDAAeIhnp1I4daVA7bWr5v8IVVVXxlmOPFe8FSBmtPJmT8N81TUO+t7elwQXMMFwMqFVNw2mve12LpJBNM56pkkIgvYaXFIsomOYMKI1jFC1LfDdRHIsZrigIWkwz5JIBV6PZhEozvl20RgrJYbMpGEr5unM7GKOwpFCT1sAwjsVacjAkhdP83eZyKQtqGMIW3rZtLCuV0NPWXGHGz87nhSxv3RlnCLngLpJKsgMgkN7n2F1UBlzNtniDp4PhKrsuYjqGLCn0CCyON5v4zr334iqpSeSGYTrTvTDD9SdVBwy4Pv/5z+Pb3/42Lr/8chiSrOf000/HHymAdaEW6qkoDjSWHceAmfkQhTrvTd50SICLg5A1kgBN0SbjO/fei2YQ4MaPfxy/uvhiAMAuMgO449/+DQAwlM9jVU+P6CQCqSV1Lp9PN8G0QZ1sNsVNz63XYWkatpTLqWxKUdCbzSJrGFjKGVU8p0BOVOsJDKiGgVeuWYO/IRmTShJE3qhkDANT5BLYXryJMyWJlUqgqlNZZMTBG0UgBUInLV6MT595pnjNgmVhabGIZaWScCAMgwC+lMMlF2dsabaNN118MY5+y1uwgezyWRr56TPPxMtXrxaW+UAqFfzoVVeJ5zFtG7tqNUz6vshg2/7QQ+hetAgraEMHkOujtFFmRyi2B24EAR6/9VbceNllQoLoR5GYr+O/C4YrinDTJZdg2733CuZLLnaQ49mMkMDa5DxdpiKSDe1NCsUbVQZFqqKIfBwxy5XN4jmvfS1GaSP8+s99Dq//7Gfx1q9/HatOPjndwAVB6nZHRiGWrqfuWcR8cSeeP6PRtoHl+Se3XkdtchLrr7kmPVblMnqXLgUUBW6tBhUzIdEs99INI5UFdQJcbcxynebumkGAQgeJYJk2WbWJCWx74AHRdBlrNJA/8kh86sYbxWPZpKFgWQJIvumLX8TfUQedGZf2WtXT0wKu4yTpmKEkM1xsvMGulgYdTwauczFcAR37UjYLRVURBcGsebEwjuGRHEvIaEmqzMe6SU2C6z/6UVzyylcCmGENG+Re2R74Lm/sApr1khkYjg8I4hiTzSb+feNGfOrGG7F1504A6XknO8EFNNsVBYGQMPNnMaRGVV82i9Np3pVZ20Jvb4s8FZAYLgJcXFY2C7deb7netb2sb//b9b6TT8Z5Rx+NIs1a1SiQXZPOe9k0A0HQYprBVfd9ERIc0AyXalktDQteE9xmUzCU3l6cKoGZxpFGEsMgitBsNpEwOCQFyIHUNLHbei6HnGHAJuljSJ+pL5fDOmrMcbHSgdee0uAgsqWSMMTYQzNbua4uMQNpZjJpcwgp4GKQVaUwca6nGnBxREJExz5bKsHK5VKGK47x0NgYtpTL2CHJaBtBkOaMLgCuP6k64FXp0UcfxRlteTFAGnRabpMFLNRCHcwK4zgdvs3lhF3u4sMPb5kP8aNI2FUb0kIsd+d1VRWApep5LfbJ8hzDdf/v/wn3rOFCQcxyJUmCyPNgZ7Mio0pIeWjB95pN6KqaukBRB1EnHfmjt9yCwPNEF9fK5VoYOzufTzvo9JzvOvFEvPOEE8S/m6oKW9PwB5IgysVOgpqmCfnZ3mYcFAJzmQ6Pkf/+F4cfjleuXYuSbQv5S+j7qTSug9seA64EwOrnPAc7w1DMtFicMcMSrDYWQJZ/GbaNII6RyeeFZK42Po7+5csBlgeSGYYrsUuR76NGRgJRHKPh+3DKZSRxLORtHrEE/N5XdHXBI8DleB623XknfvvlLyMG8MuNG3G1FPguAy5muBLsPftILj5u8wFcPOekqeoM4JJmkroGB0X3Wg7hls/FkI5BEEXYuXEjquPjWLJunWgGlCRgwmwNXwu86fEaDfz7Zz+LX19yCY7u70fiOMgUCsLKX1dVkfflSo6bVi4Hr9HAxPbt4jtka3NZqlf3fdy7e3fHecr61BQ233MPVp18svjZmlNPBQA8PD6OHZIlPQDcu3s3LDKu4E2MqmktboWdTHKW0LwRF4f8tpcpzSEysyUzXDoxvJbEUrbL9qYdB/3ZLJaWSlANQ8woxuTeyL8TNBrIFApoMiCKInHuytLBetuMThDHuGbzZkw0m7OMgpoSAO40W8Ib9mOHhoRzYxDHmKRMJHYdFTNcUYSJRx7BI7//vQha5/OXwWmYJFhSLIp1zaC1M9fXN8tURTBcxODy8ciWSvAaDShJInL3tGeopBAABvN52LqOgWwW440G1u/ZI65nbjTFSQJd16GQWUgchoLNBD3m3l27MEJrS+h5qNXr0ExTSMFlwOVTdla4D8Bl0hwxMCOfDeIYVQkIxL4Prw2s728xw6Xm88iZJgyShQaeB9U0kdF1FCWG693f/e5M6DutPXY+n4IWMv2ZnJxMTUPyeXGft7JZ0fAMKEAbSFk8+Rp+qgGXF0XpMZMlhbQGcpZljebGuaoExBcA159WHfCqNDQ0hM2bN8/6+W233YZDSF6yUAv1VFQQxwiIRRpatQp//1//hSPOPLNlPiRKEmHZLs//PHbXXWIGpDeTwZJiEVEco+y6LZu1doczOeUeSLuyI7Ua/GYTRiYjOoMGb7BowfcaDSGbkjXyW9evx79/5jP43be/Lbq4hmVhkEKaVU2DKQ2cA2l+yhLphhQnicgPkotnj2wCa2JWJZPZ58Z+LsMQrv5cDi9YuRIXnnoq8vQZWVI4l/kDh6NyFSxLbFC5eOZle6XScgOSGRxdVZEvFuE3Gqm5yPg4Cv39Qq9fJSMIls9ohoEoCFChmxrL/Rz6nqvj46kNL8llGHAtK5VSs4EgwDR979muLqhIgfzd0rnRCXABmL+kkGRDe/temFlh+3FNUQTLIcsueXMCtAEuPhcp3LRJTNfme+6BXShg9SmniM+wmM4vnumSpXAyw1WnzVM2SeA3m7Dzedj5vABcLHNzZYYrl4Nbr+OyCy7Av1JIt6IoOGXJEhxKOVoAsKVcxn8/9hiq5NQnV3V8HEgSnPnWt6I0OIgz3/IWaGR9buk6ipYFP4rw4ve8B+dedBE0RUGOohTcMGw5D/n/cx0AV7dti6w2fqy1F4aLvyNuJhjSzwAyPqHXu33HDmygzjyQAkyeG9MIcE3u3InPvehF+I/Pfx4AWWrTcd5JIMSt14XF+kmLFmFtby9GJDOhLaQ08cjG/7ePPdby78AM6wAQwzWHpDBnGFhaLGLKceBHEaaYiUrSfCf+bH4c4+ZPfSpluEhuKc+i6aqKJgWXc/HPC/39KEtgEZjNcDHgYslYUK/PAK595Nk9E+q44WH0ZbPImWYaUq4ootHEqgTNNJEQw8WSQlZiWLoObuX4ngfPcZDL5aBQYytOErHeh54nzC8cye5fabtfZMlhVW4yRhLgyhSLLXmGT7bKdK5pJCnUbTuV/HkeVDKD6iKTJ6B1DRPxF7YtDFPiJIHnutBME4qqCqmladszoJPADZDOqcnX5FM9J8U29EGtBkVVYeVyqaSQZrj21OvpXkYCsXWaOXYXANefVB0w4HrHO96BD37wg7jrrrugKAp27dqFn/zkJ/jIRz6C97znPQfjPS7UQnUsP4pShos2knY+j0yxmGaP0CK6prcXGVpoWWrAs1F3kxGDoihYTHKqeluw4/WXXw4AOIGkOe3D/mt7e1Ng4zgp4KIuLS/ovCG+/oor0k0rDSEzyHjsrrsApNkhwgLXtgV4iHl2qMMmjyuMY9G955tlkiS4Z2QEe+p15KnzyQyXns3udWP/qrVr8YYjj5zz3+XqyWTQSxvwMAiE+UMnSY+mKOL9Wbou5sXkYiZvV62GjZKs6C8vvRRv/MIX0q5mFCFPN+H7rr4albExFPv7UzkbUtc6TVEEe5ItlRAFgbjxsbTKlQCXqiioeF7qTDg1hUd///v0OCLV3/MGkG/+7V1R/jt3hj2y5N65l+wjuaJ5MlwKIAC7pqpCVsSGMGXXxbD03XUCXH6zCUPT0KRh+pGNG7F03Tooqiqym3hWTwbsLBdjpsyt14WMqz41hTgMYeVyyBSLcGq1lGWkf3f53DZN2Pm8AGpP/OEP+MxZZ2Fy505hnsKfdU+9jtFGA8u7umbNb7EpR66rCx/82c/w/AsuSJ9vehq9mQyG8nmMVKs47XWvw9EvfrGwZTc1LQ123rZNPBcDulwH2SKb0/AGc64ZLptcCGUZLrvRyY2Qkm2jSoYjBdNsYUATpAyIqWkpwxUEQsb8EDn+HktznnY+D4s2n06lgoDYJ11V0Z/LoV9iPH/04Q+jWamI7KEt09Mts6MAUJHUKAFJnTpJClVioVnu5FBTg681PkdcaROrtDFcBs1/8prF1ZfNIm+aaPb1YWpkpGXGiDOaBCMpMVwAENbr8JlFfQZLCrkGcznkTBM5w0AQx6mLo6bhtu3b4ZLVv2YYiCVJYc3z8NDYGHZUKulaQPcWj+zTTWoOqIqCTZOTqEpzdMxw1SQVRNLGUmV0XTArXGEco8pB2729iBhwHQAQqExPp+CITKc02xaKE8UwkNF1lDqsW8AMw+nTfd8n+Wvo++Jey27BuZ4esVZxHllCxlV8TZqaJox0nqridbYxMYFCb2/aiKUZLs4LHcrnWxhlblQ9HYYeC/X01QGvSh/96Efxpje9CS984QtRr9dxxhln4O1vfzve9a534f3vf//BeI8LtVAdq95sik0eF9+QeUO2qFDAIu540UJckfTeXKqipLbscSyMX4CZwNcz/vIvAUWZNczNga2h60IndzKWFMpbxPrkJEDW8DLDxRtPt14XNx3DspAnwAWkc2adZExcIW2KZecrP4rEprlE7lXihrQPwHXq0qU4nHKH5lNZArKhNODdacPDWT1AKoNkVkAulmblTbOFhViybh3WnHoqmkGAHZUKCnRDvuorX4FTrWLpunUoDQxAMwxMbN/ewnDlurrgeR6emJ4W1up134dLndvaxAQ0VcVEs4m67+Omr3wFP//4xxES2/Xg2JhgNjP5fOr2Jcm8gBRw8RE9enAQh3Z3i+yj+RR3sfcFuHgGjVknllFyp//B0VE8Wq+32ChzyZLCUxYvFkzPxI4d6F+5EkAqt1lSLKIvm0WC9MafM805GS5ubPDxYYbLrdWgYMY8wZM2w1Yuh7GtW1s+26Y77mj5e4akcVGStIAHLjbMyJC0V3xGTcNgPo+CZQkQPNZoYLhQEFbt3bYt5okavo/79+wRBg7tVbIsWMSKAXNLCosEIPi8X1IsokQhv3Kz5LQlS4Q7qU1ZeswqJIAIxdUMA4HnoUrHdYC+H43WJm4u8bE4c8UKIcfUVRXLpbUNSNexw/v60rkh34dJgJtLBlx+B0mhR+cKN3/cMEztven9sKmC+L6l32XGm8FVlCQoWpYIb+cyNQ0ly8LSNWsAAKNPPIHH7rwTbr0Op1qFXSgItz52u2TA5ddqCOjzqG2s+TOxuilY29TSwGzO5srSPK6qKNAsCyEFvqu0tluaBjeK0vBtOl9910XoeTCkGa7hQgFTfM5SEzGIItR27ZqRH9N1U96zB77joDuTgReGLeqJKEkEw5Xv7UVIgOxAGS6Tsu8MVRVmUwCEpFBmuAzp35m9dxsN5Lu7EUcRvGoVvu/PyKvp8fnu7hlJIc16+VEENwzFNWnressIwVNRTZrHGt+8WVj62/k8EjIjieIYOSn3MEkSYUyyALj+tOqAVyVFUfCxj30MU1NTeOihh3DnnXdifHwcn5OSvhdqoZ6KqlDnTe6A8SZEDs5kILOLHAhf/9nPAkhZBS7ODAqiCE1pAR7bsgVLjzgCxf5+ZEulWQyXRkAtcl0h1VOkzYVcnMUVBAHu/eUv4dbraJDEw6lWWxiuXsorAtAyE9apOLTVkOZT6r6PLttO53Go88kAZl+Aa3+Lc4MiZrjm2PDIkkLu/Ld/Lp4Xys3RpX5gdBR500S+zcVq2VFHQdU0DB16KLY/+CDiIIDfbEJRVdiFAnIkbztqYEAwmV6bpJDdC3X67vZs3gyL3PqmyaAholmWgGZYuGQTjZ5MBsOFAlRFmZfLVJIkwvp5r5JCmqPimQ9T09CkzVCxvx9JkiBjGGgEAd793e/iZR/8YIudNIMwr9lMs7fCEHEYojI6ih7awLpBgMP6+oTUiwPANZJKAqkkVzOMFsBVlgCXlckgcN3087MVM8tlDQOZYnGWNJcbDyEFvTIQCaJoFrsFpNe3oqots2tAaiCTN00c0t0t3q8fRUJO2E9zluz4GCWJ2Ph3khQWCBgw4EqSZJYDJwDkTVNkowHAG486Cq8+/HB84JRT8HYpsoIZrIrnwdJ1rOzuFjIxXVFQJKZDMwwEvi+aQ8Jmn9YmGXC1Z1ZxMaMNpE2FnkwGYRxjy/Q0+rNZ+FGEEfpdBlzFgYEWu2pxvKmhoNBaxNJoznVy63XBvsZJgrrUtNJsGzbZoQOpVNfSdQzkchiQmmUA8PojjxQGCbWJCfz0ootwxXvfi+rEhHAhPf/LX8ZbvvY1ABLgqtcR0Hek7yVn8JlStq6jYFkoWhZKto3BfB6GqorYDVVRYGSzYuZqwvMw0WzCpvPW0nUkmgYoCnzPQ+h50CWGK2+asKVGWBBFqDUa8Ot1/Nn734/hNWtQGhjAw7feiq+/8Y245rLLoCoK1vT1oY+uKQ6yrtE5UujpaWG44iSZNSs5n6oQ4IrjNGB5WlpHVWK9ZIZLvv45gDxwXSEvrY6Opp+/TV6d7eqCqmlQVDVlCpNEhB7LTDTnbs63kiTBLdu2oTpHpl17NYMAXhBg96OPYhEFv4vmV6OBME4jR/h6C+JYKA2eDgfFhXr66oAB1/bt29ObkGli3bp1OPnkk5GnDuj27dsP+A0u1ELNVdMMuDoxXNImhN3saiSzW3XyyciWSsLJjYs78o4kMfCbTREanOvqmpUPw0Atcl3o0mwUsxFyRa6LRhDgsXvvxY3f+Q5+/7OfzQCuWm1mhkvSngMQwchzVUidT9kQgC3Ks4YhJGEs/zrYgEuYZkjzBh0ZLknyyJ9pFuAi0JE3zVmgjcFa0bJmAS5m74bXrMHDt9yCr7/2tfAdJ2UdDQN6kuDowUHhgldzXXhtDJdHdv18I5/cuVOYEEySFMd3HGiqKuafuJwgwPbf/x47N24UP1MUBWHSfhbMLtGZ3wfDZZHkziNAMpjPi/O82N+POEnSLDMA3cPDs6zR5Zs8AKzr78caTUMSx4IxgJJaoTN4cIIAOdNE3jRRp4bBfXv2wMrl4DYawm2QgYGVywlTGhlwepKksCDZ93PVJiYQRxH+8aUvxc8//nHYdNznAqxOrTaL3eI6cmCgxUY+IhMV2X0zYxgi3DdrGMiZptjsyqUqCgbz+RbJaKdzm89Zfs28aeKERYuwvKsLy6TNY4HCaTdNTopZSXa0FPbxZIbCgKvQ1ye+Z/7u7HweBnX0H5SiDeSSjRZYNhtEEaqeh55MBn4U4Zt33w0glXlBUVBiwBXH2EhhskCrhNZQVcFwcRbeE/feizoZQHzn3nvxhDTfaJINOpeuqvjrk07CkQMDWCMx+QAxhXSeTtE1N7ljB+777W+FImHl8ceLjbedz6eumJWKuI60DuvKM7E++tznoieTQZdtYyifR9YwUCSWSlNVGLYtcrMMXcfuWg22rrfMVRqWBTUMEXheKtMjwGXrupAcxiQpHKdrtNDbi3XPfz4qo6P4109+EgDQlGa7RFFzp8FmD11dKcMVp2HBv9++HZfdcw8m5snic01NTcEqFsXnsKR7nW6aqWnTHMHlumnieX/5l3jNJz85w3ZNTsKjzw+kaggAYkZXp5zIWHLn5PODjUL2J2C4GQT478cew3+Re/F8Hj+9eTPceh2HkNkV52L6NC/Jc6Kyg6hFYeUL9adTB7wqrVy5EuNtFq5A6hqzkmQQC7VQT0Vt37IFwIyuG5hhuKYlrbrvOFBUFblMBhnDSDN+KhXc99vfYst994nHnbp0KQxNE66GXE0CWdliUUiZ5HKDIAVc1GEEUmlTnCSYbDbxpi99CQCgBEE6IEsL9cSOHahPT6NreBh+syk2Uzz0+97vfx9/efnlIv9prnrlmjU4cmAAhsRCsPwnS0PIqqIIRu9gAy5bBlxhOGcOjqa0hhpbHRgdlhTauo4wirBxfFzMuYRxmldTtCz0DAxA67BBtiQHPb/RgJbJpKYZbTfU8clJJHEMw7ZRpY1l2XWRN01xnALXRUbXUfE81Giz4jtOarBBgIuDZCueh7v/+Z/x3b/+a/Ea82W45I3iXgEXHZtmEKAnk0F/NisYhkJfnwDZndhVYEZqw4xvbzYLj9zguhctEp3WvmxWzNI1ggADuRyOGhhA2XVRcV34UQQtk0lt2XkQnRhAO5eDQTMZzHAlSTIzw2UYYrMsl9to4Ocf+xgAYPNddyFrGLNArVxOrSau9fZiqR5XTBJeg5oSBh2ju0dG4IRhCrgow6hTLSoU4Ejgby725LXr1omsqbmqYFnosm0sLhRgahoKpokt5TL+uHt3a16XrsN3HHiNBvqWLUPo+whcVzBcVi4nNo27Nm5skbcCaRdedmIdfeIJKHTuREmC7kwGT9AsV5IkqJXLMPN5ZAoF4WJ535492ED3djcMxbWrEeCKkyRl5el4VEdGEMUxtlcqeFxqtuq5HEpt12p/Lod3n3jiLNt7Q1VhEoM63WZYtOfxx2cdT3aadGo1wXBpEpv2TK6sYeAVa9ak81vEbhUtSwAmmeEyTRM5YlEjchJlI6Rh24YZRdAlSaGpaQKARCQpnKBrPdfd3dKkBICY572CAN88/3xcf8UVIvzdpfunlcshkEwztlYqeGJ6WoRgz7dqlUr6+kqaW5eR3otOx8LQNKx5xSvwpn/6JwDp+byrVsMjExN4wdvehqFVq5ApFqGbJoJyGT7N+AFp0+30N70JZ5x/PoC08cAMVzvg4rnq/XED5LiK0XnOfjV8X8zODa1ahSCK8AjtIzgfjBUofGwjMudZkBT+adUBA66E3Inaq16vC0p7oRbqqajNGzbAyOVmuvNIJSZdQ0NYf+214meB68Ik9snUNNwiDcxvuv32ludsBoFwNeQ6/hWvAJCCuWYH+c4JAwNIoqjF/Y+1+Q+NjWGcbc+DAM9dtgw77rkHQGpn7lSr6KXMEZ4PY816/4oVKAwP79M0Y3GxiDcceSRMTZsJHKVFnK2uM7ounvegAy56Xs/zEO2F4TIkSWGClLHpalsj2LVQJxapYJrYSoCXmbzebBa2beOc731vr+9r/OGHoVoWVMMQoIaLnbIGVqxAbWoKWcPArloNg7mcmEfxHQdZw0DFdeESoJAZriCK8E+3344dlQrKBLyAmWF0Ben3EO+D5WJ3tfkwXPzafdksumwbx73tbXjB298O3bZRdt2OgCshR0KW4Mnhp1O7dkHVtJTZoNmQomUJt0iX7PsXk4unqigomCaMbBY7HnxQPA8zXHY+nzJcrpsaiJBsz/M8KJoGVdM6Ai6v0cAOiR2s7N6Nxt4AV7XaMp/GpSAFpjLgYpMaBluWrsPSNCEVtHQdr6aueKcayOVQ933cNTIiQG2nOm54GCvaZqfay9I0PHfZMmQNQzRIFhcKyFNnX5hvmKZo9HQND6efuVYTgMskwHXGhz4EALOCpAPXRRLHeMWHP4xj/+zPsJmYrGWlEo4bGoKqKFjb24uINnnVchlmLpcO89frCOMY046D3bWa6LrLtaqnJ/1dz8PSo49OWaZyWYS1jkuS0f5jjhH5ffsqZrjNbHaWAuGVH/5wx9/JlkqYGhkRDL4uma880+u44WG8bPVqrOntxbtPPFHEcWR0PXXho+/b0HXkqHnGIeyaokA3TSRRhNDzoBFYYwm6qutpnhvFP0wSeM6WSkK2WRocxHEvf7lQblTGxjC5Ywdu+8lP0Ni9G34cwyUHQNO2EVCeoRdFKLuuOEf2pzzXhWGaAhzaEsOV6emBSQzl8RdcgGXUwNhGQd01MpwBiG22LCRhCN/zhMpBURS86B3vQN+yZQBSAM4MlycBrgd+97uOjpz7qrrvo+b72FWrtcx/3b5jBz55440YqVZbZncbQQC3XBYA8Y6dO2Eyw0VsMgMufi/sRDsfhcRCPXtq797Pe6kLL7wQQHpyf+ITn0BW0tJHUYS77roLx+6j27dQC3UgNT4yguLwcMvNVdU0HP785wuXOSDdJBvEPrFTGdfEjh2YGhlBD4GeLtvGE2yMoSjIFos49uyzAaSA676rr8ZnX/hC/NU3vwnfdbHyuOOg8o0+kxHPbek6QtqcxXQj8B0HCtIhZSuXQ21qCnEUoUTSiGna/Grt3fkOs07tpZCkadJxMEFD75qqImeacMMQJy9ejOMuuADBli3IDw8f1BkHZrgajiMYrn1JChUAJy9ejBe3RUfIGwa9zVKbb5TnHX001u/Zg4ckS22uPnIqBIDKli3oXroUU74/K3+GpZwDhxyCjTffjP5cDr0ERNlxzXddmJqGqclJ+LUaehYvht9sYkmxiD31Orwowij9d1piEzyy7ebcMWYb5yohKZwHw8XzM2wpnRscxClvfjM2jo/DC0N00zkoN8K2lMvYUangucuWiaBYruldu1AaHISqaYhIUsnueoO5nOiysgELs4ywbUw8/jgssqKujI0BigIzk4EhSQo5DNf3fWFtXewgKXQbDZT6+3HY6adjw0034eFbbkHfi1/c0TADSGeG5mK4rDaGS7g6SiwXG7MEUYSMruNIiSVvr6F8HgO5HIIoQp2kf0+2FEXBnx92GG7eulXIG0u2LY57hjbUmmEIwMVB6F993euw6uST0+NIc0oFAq/1qakWANokORVnsj18yy0AIOz+gZSpEm6DzSYM24adz2NsyxaEFJFx6/btUBRllqthybIw2mjAdV0Us1nkurrgTk/DJXv6bjqnP3bttXikXJ7FcM1V3HBxKhUhCeNaTcHvct2xcycmd+zA5I4dOJTOFU1/0tuap710VcXzli8HkH43h/f34+6REWQMI82nIjCjGway9MePInG+MHvfLinkGU3dslJb+DjGFDNcXV3CBdewLOS7uwVLJc9WPvSzn+Gc006D02xCsyzEui5k714Yokr5Xu0RA/sq3/eFxFRRFGSk89bu6hLzvZwnliQJtpbLsKlBx6w0H5c4CBBIphmzjrFpIiZmlxmuoF7Hf37hCzjyxS/Gke98534DLi8MsWV6GjurVQzl8/CjCNc9/jimHQff/sMfoKkqPn3mmQCAquvCLZcFyFUVBQO0BsqSQnaS5AgGQ1URLtjC/0nVk75z3HfffbjvvvuQJAkefPBB8ff77rsPjzzyCI455hj84Ac/OIhvdaEWqrV4kxDGcYuOPFcqYWrnTrGx9InhYjMLeTO2+a678I3zzhN/P3JgAIfSDeDCf/s3fOgXvxD/xhu8JI5xxXvfix9deGEq3aHXVikL6/nLl8NQ1Zm8JHaTchyEnidmZqoEGPokO3PDtuEEgWBMhDPYPDZ5BcvCzmoVm6emRBeUu/jHDg1h+Smn4PnveMc+N/b7Wwy4lChKc7jIZKG9WFLIoIutoTs9jjfGuqoKeSYDruF8vmUmRK7DnvtcAZ5j30cumxU5XHEU4fF77kkZH2Iq+5YtSweXaUO5/cEHsXX9egAEkBUF6+jmvvSII1CfmkJO13HC8HDKhvo+tlcqGJPMVPi8UyTAsbdiO2tNCrfuVBbNVbGleNYwhDOiEwToJacz2a0SgHCli5IEpaGhlmy5+uSkAEAMTCxdR28mg/OPOQZFy0IzCITbHocQ52hWcsnhhwsTDCubhaKmVvUtgIskhQJwzcFwNcpldA0NIdfVBadex9q+PqyUcrnkcqrVltBirpgMZPga59cfKhSgqyrW9ffDJHYrb5riOtkbiFpUKGBZqSSs8Q/UAY/XIVPToChpPhi79lkkKdQtSzQF5Fy1zXffnTqcIQVMWTo+jelp3PzDH+IfqTnEjEWOnNp8x5klO2TnST+K4NG8o0UZaWEcoxkEmHIc3Lx1KyaazZY1SFUUVCms3bRt5Ht64JbLIlTZq1RERx/oHCrdqTj8eL6lS4/16DNre1EDPNOLJaW2rsPKZsXsnmkYaZOFbOSFbJDy2gLJJZebC8tKJWgENhpBgEdGRqBZFjTDEJt/zTDQPTyM6vg4GtPTwvxmeM2a1EUvikTG1QixpgnNPFU9D7qqYlu5POvcmquSJIHv+8LgAgAKMlNNjTZNTV1+EwAjtZqYkcxIBjb8/uM2hqu9ZIaLpbEM5r16fb8ZrkYQIEHaNByltf5/nngCYRxj0nGEocivHnkEADDluvAlwKWrKoZ7ewFFQa+q4tDubnGvCOmYx9SsZROahfrTqCd957jxxhtx44034oILLsB///d/i7/feOONuPbaa/Ev//IvWE0WmE+mLrvsMqxYsQK2beOUU07B3SSJ6FSXX345nve856G7uxvd3d140YteNOvxb3nLW8TAPP85m25OC/XsLJeYq81TU3h4fFzIj9i56ltvexuA1BJWlxguS9NgSoPsQGrLDaQbiZDATq6rS8xTAejYUfebTcGI6GQ3fdbKlTi0p0cABFWaneHHdpNMCAB6Fi+GoqqY2LEDhmXh/tFRPDE9LeRouqrOSyLDIGQon8e066JkWcjoOtb29gqJGB+jp8KlMAMg8jwYdONvL0NVsbtWw/2jo2LD2Kk02jQwE8EbXT6ebIGvAPiryy7D+3/8Y/G7dj6P9//4xxgg5ky3LBg0NH3Pr36FH//d36G2bRs8YqRYjnrdt74FAC3MaMCzYzR/NLR6NUIyMrB0HWXXRZQk2DA2hselmUF2lFMlSd3eyttPhoszo7KG7A8QhgAAx8FJREFUIQAsn9vMCsqzYwpm8maivj6M0uwjkDJLHCYqux8qioKjBgeF+UOGJHAus2AkiSn09cHK5ZDEMWzKkhlx3bQTTpuFkBgu3hC1z4/wMWuUy2K+pJ2R5EqSBLsefRRurSbeN1dMrJ7FHXLaxMRxjP5sFp856ywc3tcnGDyWZxn7OO5D+TzecuyxItT8YBgyWCQdPG5oCFnDQIkAF3+PXYsXo0FMe5e0VgDpOc7gmA196tPTuOkHPxDnKrNjua4umJkMEsnggouvKz+K4Dab0G27JZA1oBnFRhBgW7ncYptvkTmLlSQwLCsNxW02MdZopFl209OCRVHo8fOpub4LtcPvJ+TW13vUUQDStQdIJYXP1mIgntF1mLmc+M4Mw8DZq1ZhWamUmmrQeaIy4CKGS1dVnHvYYXjtEUegJ5NJw5N9H09MTcF1HJHbx5v/oUMPxdrTT0eSJNh0552oTU4i29WF7uFhRMSMOY4DzTSFuUXgurhx61Y0iPmeaDbnbZzhRREi34dhmmImsFQqYdWrXoW/+PjHkWAmNFyea7J1PZUyS/cwIGWvkjBsyeGSa6zRgJskacONAFdjbAw//ru/A5CC873NcD06MTFLTiseS02HJElw3+7daBAIDcnF9urHHsPuWg3TjgOvUhHXg66qKFgW9EwGdhhicbHY8lkDSVIYLwCuP6k64JXp+9//PgBg48aN2L59u+jWcp1zzjn7/Zy/+MUvcOGFF+Lb3/42TjnlFHzta1/DS1/6Ujz66KMY6CD9uOmmm/DGN74Rp512GmzbxiWXXIKXvOQl2LBhAxZTtxsAzj77bPF+gRl3tYV69hUPhRv5POIkEdK5vGkKYFQlzbrvOCKjxNI0eJqGUy65BMrvf49brrxSPFa4HtVqqQSxrVN6/Mtehu7hYfz7Zz4jflabnBQgSrNtISnMGYYACLGuQ9U0+I4jBtllwGXlcij09aE6Nobu4WHhLBgS4JrLBKG9SraNgmliOJ/HzmoVGcPAR047LZUx0nzPUwG4CrSBztGNSKfcpvbiTa4bhnPavgPpd6QQ08JyypAAlxwom2DGkQpIWZ5M203XME0oJDupE2PQHB0Foki4sgHAPb/6FV72wQ+2yLL4u2K7/qFVqwAAE9u349DBQfH9TLsuIM1wsbGKAoib6N6qSb+rzSOHSyNAlSfApSlKSy4Xb9j9KEIO6YYjoXNoynFQWLIEm2+7TdjQu/W6YAT5Ji+fb58680wo9Dy6qqLm+ykLRscpWyoJxy07l0MYx2KDnwQBEt7US5LCTsUsMT9f+0zSxPbt+NGHP4wayaIAYO1zn9vymEgC5Bp1yaM4bolpYLfCFx1yCP5twwZ4NLe2rypalgg1PxiA64JjjoGmqjikuxt/tno17tu9G0fQuairKpasXYv76bGltnueTWueqigw83koqtriyprEsWC4sqWScDxlaTWXzHC5tEZmu7rgNhoIXBeeoqDm++jJZLCzWsVaSQqqKgqOGRrCnWEI3TShmya8MExNOeIYzelpkSWYYG6jkfbizfaL/v7v8T+XXIKX/83fYOkRR3TcTIdxDFPTcNL7349r3vlOhHQO2c/i+zo3C2xdb3Wq1TScuGhRev3RuW1qGlRdT6+VJIFGhhMnUBOpy7ahmSYiktPVGw0BuHTTxFu+9jUMr1kDM5NB75Il2LN5szAhMWxbAC7PdaEaBjL0fvoMA/fu2oWlpRK6bRvTrovd9Tr6czlMOw6ufOABvO244zrm2rlhiIjOGQCCbT7yDW/AkYODeGhsLDWNoSYjOxkyIw20ZrxphgEjSRD5PjK9vSnrGkXoJXnpnnodOkUssNrgoZ/+VEgn+R7fCXC5YYjv3XcfjhkawpsI1ANoMc+p+T42jI+jEQSoUOxMQFlf046D0UYDNd+HMz2N/NFHp98xrYNmNiv2DtyckyWFuprGgPC6tlDP/jpgwLVlyxace+65ePDBB8UFAsxkJ0RPQoP6la98Be94xzvw1re+FQDw7W9/G7/97W/xve99Dx/96EdnPf4nP/lJy9+vuOIK/PKXv8T111+P88mpBkgB1pAkz1ioZ0+NNxr45t13469PPhkDtLHzXRdZ6lhrpFnPm2aLvMF3HARSRpal69CDAHY2i5I0P1QZHRWAqzY11dG6Olsq4Ygzz2wBXPWpKaFrlwFXXzYrbhZBHAupDi+wfaTbB1Id/crjjsP9114LM58XeUAsJ5gv4Dq0uxuH9fXhuOFhPDIx0eICmCGAw1Kz+T7nfMq2rJZNH8/LtZdG0kjOkpnrJnL04CBsXceOSkUACflYKB0klnXfxx9378bhfX3olxgUzbIA6oLypn5q+3bUs1noloXh1atR6OtD6PuIowg3fv/7yPf2YnDlSvG9htREYmBSn5qCoih4zpIleGhsLAUUEiPj1GpISPbDWTZ7qyYBun0yXMSKcGYUg8/Hp6eFXTnnZQXkdvXoxASiJMGiQgE130fXkiWIwxBTIyPoW7YMbr0uQGaUJLBpw8fF74cZ0olmEyu7upCn6yNTLArGyiIgYNNmZ+N112HlS186Eyauabh31y4cPTiIE1/1KnQNDcFvNpHv6cHVX/96+hy5XBqc3Aa4fvHJT7aALQCzJIUMPJl9acmekz4Tz1Zc/dhjqVHIPBgRk74bNis40Fot2aGbmoZTpNw9AFgmqUPaP6edzwtpI7ONDckpLvA8NKanYefz0AxD5BR6zSZykkSzheFyHGT7+jB06KFAkqBULqNuWahRxz4OQ0SVCtC2LoaeB92yoJsmHMoUCuMYjakp9Eufab4bRpUY7ZWnn45P3XjjXh8bxDEMVRUudyGdM5lnM+AiSWHGMMR1BMwY6jDLXbSs1GxB1+HQ2qNS5ABXMwgQaxp8102deZvNljmn5cccI/5/8JBDMPbEE+gaGhKAKyTw4joOVMsSc/oFVcVR/f14cHQUxw4NCRkpkM7UbZ6aws5qFYd1uId6YYgoCKATmzuUz4tIBDm+QWa42KgnYxjpHKXU1NcNA0kQIK9psCxLuH0+lwwzEnpMRJLCOEmEcgFI3RkVRekIuDaMjWG00cDmtuxNvofqqoqq5+GqTZsw1migzMc5CFD1PPhRhBr91yFJYRTHUJFKbI1sVqxzMsPF74VnLPelkFioZ08dMGz+wAc+gJUrV2JsbAzZbBYbNmzALbfcghNPPBE33XTTfj+f7/u499578aIXvWjmTaoqXvSiF+GOO+6Y13M0m00EQYAeos25brrpJgwMDGDt2rV4z3veg0k2R5ijPM9DtVpt+bNQ/zs12migGQR4jL6zgCQyhmWl0hpJ2736lFOwjDpSG268EQ/fequQXVnEjhiaJhgLABh59FExe1OfmBD0/75qy333dWS4+nM55EjigSRBvqcH9akpsekfOvRQ8RyGbeOIs84CAKgUwsqsTpwke3UolOuUJUvwvpNPxnFDQ8gYBnxpo885XWEcI8HBBVwFy4JmmqhTV10nE4D2Yrtflg3NtQl7/ZFH4hVr1ggGhzeGMvjk/zK4DuMYedNscQsEAM00haSQnfQ8x4HbbMK0bSiqirPe9jY41SqeuPdeJHGM+uRk6hDGkkK6wVvk4taUhvkTpOeiJ60l//bpT+Ob558/M8O1jxumM0+Gi2fybF0XFtJLSyWM0U2b2Sm+ecdJIhg/Zr16COjfcMUVANACuDZNTorg7vZiwMUuf3maw4qjaIbhIsBVpByzm771rRnnLWK4oiTBRLOJl3/oQzj9DW/AWW97G5YeeaR4HSubTSWFbYCrKkWPnP7GN6I4MIA1p57a8piQ7LIZiDJQ58/PxZLyHEVE2PMAXPIm8OnoNi9fsUL8v94GIOxcTkgKFaTn5bjkvOo7DmqTk2IN43Bo2SYemGG4mkEA33Fg2jYGVq6EoqpQxsZwxvLlGMrn4UURHvnFL/CV1752VmB1QHbcBs0KBVEkABeD8oQ20vMploTO1aTYNDmJh+lc8MIwXSsNA6quC4Yr9ywGXF4YomCa6MtmW0K9eW3g6zBvmujOZOACKBPY1ig0mCtOEuEsGJE0MCOxZnKVBgdRnZhI14NCAaYEuJjhMiRpfJdt4/Rly1CwLJENmCQJHhgdxXijMacMziXApVID8LnLluHowUFoqirmKQXDRZ8hThIRLG5oWotigOdzI98Xyor2exufmyxLr+/eLf6Nm4SdANe/bdw4634CzDBchqZhd62G7ZUKRut1EYRc931M0vzvtOvCqdcRui7yvb0I4zTsuWhZ0CXb/3ZJIQAxw7avht1CPXvqgO8cd9xxBz772c+ir68PqqpCVVU897nPxcUXX4wPfOAD+/18ExMTiKIIg3TT5hocHMQesmbeV/393/89Fi1a1ALazj77bPzoRz/C9ddfj0suuQQ333wz/uzP/myvDNzFF1+MUqkk/iyVHNAW6uktljNxdyuIImH3HpOWnxdi3TTxZ3Tu3fyjHwFIc4IURcEh3d3oz2ZhaRp6JDv5333rW/gR2Q7Lm5W91eFnnIFHbrtNbGRUyxLypMWFAkqWlcoCkM66yPLDvNQMMCxLAMTBtWtFl5dBxnwMM4B00V7e1YWBXA5500RNmtlQqEvohqEwRjhY1ZPJQDdN1DlokuyJ24udl+azcdVoUyEzXBFJiICZGRK+sUfknhe03Zw0aTPIc3pRksB1HCHZ4UDVutTJtCS5BwMu3TSRLZVaAJcXhumcwMQE8r29oms8NTIyM8O1jxumK5lm7Evq2Z3JYCCXw3ChgN5sFscODQkHQQZE7O4VxrEwK2DAVeztRWnRIkzu3Jm+NgEu3tTMxd5wEyBPAcGygYyQFxaLiJIE/VL+YkSuYL7vQ9F1dNs2KpK1MzDDHAKAmcnAamO4ynv2iEbFG7/wBbzone/Eh37+85bfA2bCvi0J1MdJImbY2qtAG/PMfAAXbQKfLsA1JDFRiqIIp1RghklkcGzm8xjfulX8+zfOOw/V8XFhTsLnudc2Z8NrTMXzxFqqGQbMTAZeswlVUdCbzcINQ1Ro7u9rb3iD+P0kSfMMM8Vi6pAXhhip1dLri4Kp6QPsFyuYMYw5mxQTzWZqWpAkmKKNv6ak7phBs5lGHzyLZ7gKloW+bBare3pa8qkMKZ9LV9WU4dY0mKYpDIBUy2o5z48bGoKdySChwPLY95HrMD8JpEy1U62KQHEjk0FILoSu40CzrBZpKjDDfitIAcv2SgWPTkykjM4c+VFeFCEKAmgEuLKGgePJNTeIotTqXrpHsMuroWl423HHYTifRxinwcs1z4NuGAiDAL7rIpCMlsYbDTwxPZ2yZ5StGCcJpqem0BgdxTl/+7c45TWvEcxwO+DyKSC8TLmDcvE+Q1NS984G7UtiUhLUfR+H9fVBV1VMOY6Qsud7euBHEUxNQ08mk+ascfYmAc4GZ6Zt3Ijyzp3zatgt1LOnDvjOEUURCrSw9vX1YRcNjy9fvhyPzjOJ+2DWF7/4Rfz85z/Hf/7nf7bkgL3hDW/AOeecg6OOOgrnnnsurrrqKtxzzz17ZeEuuugiVCoV8WfHjh1Pwyc4+FWhvIxnc3lhiIrr4qGxMSQ00B2SQUNEzMfWchm3bd8OP4rEhrAyOgrdsnD2Rz8KVVHw2iOOwEtXrUq7w6qKi66+Wshsdm/aBIAAVwc5RHsNrFwJp1qFR26JidRd68lk0EXmEc0gQKa7G7XJSXGzkvX5hm3DymbxviuvxCnnn98yt7Q/kkKukm2jR8oE4ypalgBcB5Ph6rZt6JYlGC5mHdvLo5sNf759zc68et06nL1qVcdjwdIavhmFcYycYcwCN6phpAPa0uBzXzYLm7q//H4BoEqStb+67DIUBwYwtWtXqqv3fSiqCk3XkS0WWwAXh1ujXEbX4GCLdbVC3dl9MlwEuObjHvn244/He086STxuWakkhs/52HIGXJQkAkxYWmoVb2gaVj33ufBdF2NbtiBwXVi5XDoHSexZp1KUmRDtrGFg0bp1OPm88/Cc17wGebp+sl1diOIYtmli6PjjAUB01z3Pg0LM3HijgUckRlC+FsxMJpUU0hzcns2b8fU3vhEA8MqPfESwWp1YONlUhYFnRIxuJ5a4i7734jwYEXbP42bIU11508RJ73sf/uqyywAA5/zd3+EFf/VXAFKGa9PkpACAZjaLMckIxXccVMfHhWW8NQfDpQCIAdQIcOmWhT/s2pUGVzPrSuxFVnKWLFPj06NZr2Jfn7DebtDmnt0LEwK8+wNS86bZce7RjyLkyGDEpXmx/lwuZUVsG2GzCYXA9rO1Tl68GH93+unIGIZwAgXSZo8MuDKGgXUDAyjkckJKqbYxXC859FAYloU4COBTVpcxx7meLRbh1utoViqwCwUYkp286zhQDUOYZrSfRwlmAFfV9wElDdjuVMxwaWTCI9homeGia1dRFGyhYOWiZWFFVxf6slkEcYy7R0awfs8eMaPWrFTQ1HV0ZzLIGQYem5pC3fextrcXBs3wxkmCPeTQOnDIISj29wvm3GszxphsNtEMAgzmcrM+C4e5h3GMHdUqnDDEaUuX4nnLlonH50idsWV6GnVa6wq9va2AK5MRjSW+l1XomN/8mc/gx+9617wadgv17KkDvnMceeSRuP/+dLz3lFNOwZe+9CX8/ve/x2c/+1kc0paxM5/q6+uDpmkYbZMujI6O7nP+6tJLL8UXv/hFXHfddTiaBhTnqkMOOQR9fX3YvHnznI+xLAvFYrHlz7OtojjGF2+7DV+49dZndWq5R4Ooj01NwQ1DwXBZti024iaZCeyq1ZCVvqujXvQi9B1yiLjxm2S4AKQbPL6BMEirzVNSyGzH1MgIiv39LfIkRerU9WYySIpFTO7YkbIo1JFlqRDfBHuXLAHI+rt9bml/690nnoi306aXq2TbaTaLOjsc90DK0nUYlgVXmuHqtCmteV5qaEDHZl8s24mLFuHUpUtF2C8zmfyavKEGZtiNScdpkbOokqRQvF9NQyZJYNg2Gr4PlVig6vg4VF3H4sMPR8/ixWiWy/jnN70JvuPM2FuXSsIBDkgBlx9FaFYqyPf2tszbjD722LwkId5+MFx92WxLuG7RsqATk3PKkiX4wCmnCBv9KI7TmUV1Js/M1DTotg2/2cTtv/gFDNvGyuOOEzNBZ0sy2/YaLhRgaanLp67rOP71rxeGL0AqbePmx4oXvhBAGskQJQkCYriyhoHebBYTbZJBLosynRpkNf1DynsEWlnhTsWbGZ6DUekaSua4hnLkejYfwMXX89JS6WlxDbN0Hcuf9zxhCqMoCkqk+kg0DQXagOvqjGOkbCwxtmWLMNvIFItQNQ2TbQ1DhSSJd42MIPQ8RByqa1liTdRUNbW5lq6fb/zlXwKAmKkr9vdDN02Evg8viuD5PmLKgGKGcX9AamEOwLWzWsXiYhE500QjCKAgvR40VW0BXPo+rqFncqmKIpjXnGTgw6oBnuPUFAWvWrsWXfk8/FoNiqrC6upqOc85XiAm1iRw3RbTFLkyxSKSOEZ5zx5k8vlZkkLNsuYE7kB6f/aiCApSIO+0ARgux/eRRBFUBo6S/Jft7jmfTiVTCkO6V3QT6GNGPlIUBJ4Hp1ZDjtQdOdNEF+0LujMZsf7HSYI63aPsXA7Fvr50xrvRmMVilV1XzIRzWDKXG4ZQVRVLikU0KcKFnYRLto3nLluGnGmiP5fDSK0mlBPMcFkSw+U2Grj/2mux6fbbAaTN8aYkY3wyDNdld9+N/3z44f36nYV6euqAAdfHP/5xxHQyfvazn8WWLVvwvOc9D1dffTX++Z//eb+fzzRNnHDCCbj++uvFz+I4xvXXX49T2zT7cn3pS1/C5z73OVxzzTU48cQT9/k6O3fuxOTkJIbbLHf/1KrsuhhrNPDY1BTuIBnRs7G8MEREXSUO1ww9D7ptY0+9DovcjvqzWVSJ+eKbC+fW8MA7d/vbDV6cahWTO3fCdxzhsCUXS/ze+/3v4/0//jGypRKiIMDmu+/GsqOOQpIkGJa7knTTGMznMXzaaXCqVWy86SZkCgUoqjpjEytt+NhMgiWSMZ7cvNWKri4saWsQlCwLHoVmzseZbX/KsG3BSrAFf3s1giCVABHDNZ/ZGe547qhUsLteb5nhkl0Xmd3oJwkU57wk1D2VK47jVEJl2/jDrl3YThuI+sRE+t0oCrpoc1veswfl0VEBuHI9PYIJAzBjOlCvw87lRCQBAPzkAx9AtI+hZycI9ktS2F7cHdYUBUuLRfRkMjDJlESYSEhGGAy4mpUK7r/2WmFewTNByyUw116vXbdOdNhldpE/c0x2xiZt9IDUQlpICol94Dydjp8nk0mHy4MAbr3eEtLcqTu/vVzGTtpENXwfS0qlGWmlouChsbEWl0K5MlKY7HyK5ZRH7SUk+WAVS5HlYnMSP44xXCjAoO+BAZdsghC4rpAhGpaFgZUrce1ll2F6925c9+1v48uvfjWalQoUpPLskCSFOcOAYVnCWIAZLr/RwKF0X43DEDs3bhTXgQy4SraNOsukLKtl3Z1vFS2rI+AKogirenrQm8mkSgcAvcTk81qvdbjen62V78BwFUxzBnAqCixalw45/vhZgEtTFBiWhcj3UfP91I59LoaLruHAdZHr7k4VG1EE3/NEDhcrAjoBLp8CtLnmau7WWNZK67clMVwB3Zv42uUzxtJ1cb/q5u+Z5K51mrlFkiBXKonrmSMhjhwYQCaTEYCrRuuJmc0Kya1bLs8CiM0gEK64spEFQICLgOEpixdjVU9PC+PO51/eNNEMAjSnpqCbJqxcDn4UoWTbyOi6MNL61Re/iJ9//OMp4HVd7Ny+XTxXHMf7xXAlSYLHpqZw57N4r/enXAe8Mr30pS/FX/zFXwAAVq1ahUceeQQTExMYGxvDC17wgif1nBdeeCEuv/xy/PCHP8TDDz+M97znPWg0GsK18Pzzz8dFF10kHn/JJZfgE5/4BL73ve9hxYoV2LNnD/bs2YM6myDU6/jbv/1b3Hnnndi6dSuuv/56vOpVr8KqVavw0pe+9ACPwDO7GkGAgIDC3VLg6bOtPBrGZsDV9DwkUQQHM3KfguTSlCQJDj3pJABpN4szelhyxXMuAPCXl14qusffe9/7AKAjw3Xb9u14YHQU/StWoGfxYnGTKu/ejb5DDoGl61jcBrh4FilPm7TJkRHxe6/7zGdw4jnnQJOAB7MSQ2TtLs8tHWhlDQMxGQscTIYLSAeTmeEy55AUvmz1apy0eLEwwpgP4AJSw4ZuntWTJIWyKQJbRBcsC0EUiQ1/meYCAIguvddsiqBQS9fBk27ViQnBjC47+micRTluVQlw9S5diqmREQHWOa+IZ6HaM6a8en2vN8wv3nYbbiM52JMBXLw50aQusKGqGKOuraYoaYaWps2wi1KXm+MJmOHa23lh6Toseo8GsWjADBAwSd6rKoo4/r7rppJCYhJ5/mQuiZkcylqfmmphtQYloxmuXfU6yq6LyWYTe+p1rCTAyDNXy0slITFsr4yuC9A1n/rwqafiY8973tMiWdPJNEAuXid4rjNHM3c5Wlv6JaMNVdNaApNf8t73AgAe/J//wR2/+AXqU1PYRZJ/PwgQhyEs20bWMKBnMjPOqyT1ippNFPr7cS7dd2+58kohrTXyeSSahtD3cczgIE6k92MQw7W/c29zfR9RkqBoWRguFKAAWN7VJcLA+ZxWaCP/p1BFqXnDM1yLCgX0S2YaHG3D2WxyI01RlFQB4vvpSEEQiOM01mhgw/i4WMfkjMlsqTRjkOG6AnAZpglV1zsCLjcIWmR5c0kKx+geEWtaS1C7pihpM5DuTSyXBSCyMwEImb6haRjM5aCbpgD+OoWb58gBkZuXNskqI4nhsrJZsbb4lQoabXFG/P65qXfJbbeJz8eyfCBt2gzMMRdnaWlQfHN6GjkCZX4UoYvuO1Yuh4rkSxBVqxhrNLBLYqI9x9kvhmvKcdAggB1Ec/sTLNT/Tj3plWmLpBlvr542xL+/9frXvx6XXnopPvnJT+LYY4/F+vXrcc011wgjje3bt2O35DTzrW99C77v4zWveQ2Gh4fFn0svvRRA2vV64IEHcM4552DNmjX4q7/6K5xwwgm49dZb/+SzuJqk3+7LZrGjUnnW6oG5w8SAq0psSiabRd40U1MIMqkwNQ1BHOPoF784/R3fFy6F3FXj/CIgzXJafNhhACA2EYW+PkxL8rQkSVCwrBbXInkzWBgaEptbLu7W2bqeOigZBprlsgBcQ6tW4eV/8zctnzMiWeLa3l502TYmms2DxkaxvGxfG+snU6ZtI6DupdFhfgxI5xNeu27dvGe4xHNrGgZyORH4CcxICvk7bAQBhgsFmJqGzVNTopPLrEoSRXj8D38AkIIgn8KwLYmNKe/ZI4JkFUUR509lbEw8X9/SpfAaDTFsffzwME5evDgN4s3nodJmj6VgzenpOW+YSZKI5gFA3fn9BVyS4yMfz6rnIWMYeHx6GhptQDRFERsRXZqZYsMQZrj2CrgItPH/87Wx7Kij8IoPfxgn//mfI6bn4Q0bM1yB70Olz5cnKd9caxFfV+U9e9CsVPCyD30In7rxxhb2UHx+VUXBNPHg2BgKliUMRFR6nZXd3WJOpL2KloUu25438O/OZJ62+aC9gYYEqRzyI6edlsqyaIauwGG2q1bhLV/7GoDUZCJJEqw49liY2Sweue028TxsIuPQdatQ+LJmWWKGy9TS/Ke42USmWMSR1ETNdXXBJ5OKB6anscfzEPp+anRAm1WDZF3c6Jpv2WSI014xzWkWLQsZ+u8Jw8MtDNezXVIo17BsrET3OE1V8a4TTxS5UDynbmQyQDLb0da2bUS+j9W9vdCiCIZlYaLZxKMTEyhLm3m5wZjr7hYNpsD34bsuVAL3um3PMl/RVRUN2meAQE4ndz8A2EAAI1RVLKLmJAMsJwhEqDvLUFl+zveTAhmDsMzQtizhNGjm81heKol7AzcmLMsSDFej0QDofOH1JGo0OjJc/Nl4tqrm+9hZrWKkWp2XrJjdG5tSCHgQx+im+057c84dHcWeeh17yAcBAIJmc7/2bHeNjGAPNfnmCnMuuy5+dP/9C4Dsf6GetJ3PoYceiuXLl+Oss84Sf5a0ZYkcSL3vfe/D+4htaK92o4utkkNTp8pkMrj22msP0jt7dhVT4xmyZPajCJlnYQeQZ4/COIYXRaiRbMXKZGY072TznDMMNHxfuJh5ZFPLTBjL0eSNcCDdIBRVRaa3F/eOjWFxsYhBmk0pWlZLJ2xg5UrkurvRmJ5OB9QJYHFxJ25dfz/uHhmBkc0iqlQ6bhy5IpIxnL1qFa7fsgWj9fpB2+RZkvzsoDNcDHDIXGKuDZZC8qL96Xov7+pCnCRYViqhxhbt/B2S5EIFcMby5dhVq6W6f9qIdJIzuY0GfNdFwbJSEEog2alWW0JmGYxUxsZQ6O3FZLOJMXreyR07kO/pEWGczHAtWrsWK487Ds9985tx5Uc+gma5PGfwsR9FcCgIFEjZnSfFcKkqIDGhqqKgJ5PBlOOkHV/arHWR1FPO4mFw44bhPoE4d5rZopk3Aoqi4IRXvAJBFGFbpZJugul8CCnHiV0KezIZuGEo7J35PLngq18VgLhIM2H3X3st4jAUDp7txbNZLCEqkVU+16sPPxwPT0xgstns+LmOHhzEeUcfjSOfBong/pbRQVI4vGYNFFXFklNPRZdtizDmArGUfcuX4/0//jG6hoagahrqvo+Hx8exvKsLy0ol9C5ZIoyBgPR81zADuBKWY5lmy3qYM83UdTCfh6brWH3KKVh/zTXQybnOiyKYliUCwvm/OmUi7i/DlTGMWZ8dAECmEUAq13rlmjUoEPPDzI1mmn8yksI10nmpS+evPMNp0vlu2nZHcxLLthH6fppdSVL70XodJdtGSGunrqotDFeuq0uoAQLfR+h50Hhm0LbhtjFcGV3Ho5OTKJJFvKGqKEsOuVxJkmAPz79SEw30nnVVhROG6UwqfQZuDsryWm7W6KqarmdSg9PIZtGTyeBlq1fjouuvFzmYGctCwoCrXodh2yn7l8tBUVX4tRoabYwc/93SddG0cMMQ12/Zgk2Tk/O+JyuKgvrUFPponY3iGCVq8thtgCuq1VDxvBYyYX8ZrqrnoUFsnh9F6MS9XXn//dhdr2O00Zg1drBQT2096ZXphhtuwAUXXIAnnngC73znO7F8+XKsXr0a73rXu/Dzn/98lunFQv3vFAMEBitu2HmY9ZlezSCAIX0GZrh0y0LOMDCUz4sg0BxppwdWrMCZb30rzvjLv0QCiI0+Aw+5cyTLJLqGhhCqqnD1u2/PHvxx924M5fOzBuwv+OpXsfa001BYtEhIrbh4lqQ3k4EtSTEybYvc1nIZTxBjwsYbFlloH0wbamb2NFU96J16drDSaRO4N6YmZ5rI6Pq8WfDzjj4a7zzhBNi6LmQdfGyrtKE3NA0lOhdUml0AMCtXqjQ4CLdeR0BWx7aut8zQsa5/tF5HrOswbBtOtQrdNLFpagpKdzcUVRW26kDKoIa+n7p72TbO/8pXBMPl7ANwuRLgUqVO7nyLGS5ZUshzigCEkQyQZsOZuo5QWgMY/G+emto3w6XreN0RR+DllJHW/rm2VyqwNQ0ZXU8DpwFE9P2Evg/NMLCkWMSbjz4auqpiZ7WKm7ZuFQzMC9/+9vQz2TaKAwPYcOON6F26FAOSVE6ugL737kwGObarl9iqkxYvxmAulzImHY6roWl4LmUJPdNKvuanHQcPjo7CLBTwyeuvR37JEhToO9VVFQPr1uHd3/0u1p52GnoWL4aqzWTU5U1TRGn0UkO0d+lSKKqK+vQ04jiGywwXzdbJphn8PE6tJtYtjkn4w69/DYtcAk3LQkR27QzWmOHa3xmuvGkiwUzGnlwcmp41DBQsSzQcGHCpe2n2PNuqV2Ki5zp+HEZsZjJAh3tFJpNByEDYdRGpqQlKN80R8WZevj7yPT2C4eK1TTUMYU7SLikcyOXw8Pj4zAyWpqHaKb8qjuFKmYM5AksKAWk3DNErySXZdIrl40DaVGWDrP5stsUoxqAcTGbEhKmMYSCh+dJGrQaDXkNRFGRLJfi1Gtw2wDXWaIjZz8P7+tL3HoaYbDYRxDFW78PAh+u4oSGgXhcOhTEg3F4zZIoijEzCEF4YYlQCXIHj7BfD5VI23VwM10i1ij31eosscqGevnrSK9OZZ56JT3/607jpppswPT2N3/3ud3jjG9+Ihx9+GG95y1uwaNEiHHHEEQfzvS7UfhR3/nfX6yJ4MoxjPDo5KQL6nk1V87xUGkadpirN52nUEXvbcceJTlmOclwUVcXzzz8fue5uMRsFYFYoKgD0UjI9AHQNDsILQ5TI1rhkWejNZNKcorYbWv/y5XjDP/4jFHpOmeHSCIBxFz6mjcpR5OAGpN9ThWZQALRYeQtG4iAtjLJt+P5u7PdVWerWcfdwb8//iTPOwN+efvq8n9vUNAzl8+KmDEC8xu56HTurVWHCccqSJei2bQG4LF3HiWS2s/KEE7Du+c+HW6/DZ+ctTRPgAEgBV5IkeHx6GutHRwXLZefziOIY2UwGpcHBFsc3h8C/LbmKmZkMVF2HV6/PKd249Pbb0/kmaYP6ZGe4ZOdJBv4M9jO6jjcceSTOP+YY2JoGQ+qs8kagL5sVG9i91VGDg7Bps8TXz5TjpMGnAA7t6UnljbSJYIYrCIIWZzJDVbGjWoWt6xhtNDDe5lrYR5mHa08/Hcoc72lruYycYeCkRYvQm8mgSIylXD2ZDDLEgD2bSldVYezz2NQUCpYlZE5hHCNP5yw/brCDI3BEgMulUNpeOqaF3l4kcYz/+Zd/gR8EgrFQTBOWpkE1TYxt2YJp2vj5zSaSOBbnt2xkYmWzInwYAKIgEICM5WtPxqXQVFXskV6Hi00McoaBAuX0qYoiruEnwxI/U0s+l+c6f7uJDRaOtx0AV8TZlZ6HQFWxuqcH3dQElKVx3YsWIVMsIlsqCSATEsOl0rE2slmx3glXQ8PAYD6Pmu+LeyDnUsnlBAEcNmOhZhcXr11sigHMMFw9mQz6eU6U7qeWruOIgQEslu7bGs1GcROK10HbsgTgchqNVH5JlS0WEdRqqPu+uL4avo8HRkcF4OVzrhkEmGw20WsYiOZwWW0vTVXRnJ5GvqcHd+zYgZCiDWya4QKAvmXLoOo6Yt9HEMdolMvI0/iM32zuF8PlBAEMTRMMV3tNOQ4mmk04NNu/UE9vHZRWkG3beMELXoCPf/zj+MxnPoMPfOADyOfzeOSRRw7G0y/Uk6j/d889+Modd+APu3YJmj6KY/zo/vvxg/Xr/7ff3n5X1fNgqKn1ajMIhBOWQkYZDKI41Le9K+RFkeietc//AMDZ73sfXvjOdwJIGSiX5A1eFMHSdazt68OxQ0MdZwsAiE6uzBy9Ys0aHNrdjYg6slyHnHCC+P+AwmkzJIfkGS4AYr6kNIeV7/4Wy/CeiqHyHHW/dUl/P1dlDAN9UidzPsWmD/KtRycWcpKkc/y8imTaAACr1q7FOZddhld/7nOwCwWRH6SaZgqIpe9m8eGHIwE5pUWRsEI+5MQTEScJMoaBniVLMLljBx657Tbs2bwZE+Qq1dsmqTbIkjmI484bEHLenJLMRvZ39lUwXBKrxZ1Zm87bT595Jg7r68O6/v502HzdOrztG9/AJ2+4AVYuh4bvI2+aeP7y5fN+fTnz7KGxMdw/OoogijCYy+F1RxwBmzYrzHAFxHAxE8fnR9YwsGlyEpul0Glghmlsl93I5YYhlhSLOGpwEF22jYJlzeo8n7hoEc4/5hgsfpZJZxhIJEg30RbNpXJxU6aTmyFXFMfIEcO1YXxcSKxlk57arl1ochYQS8IyGbj1Ov75TW8CMNNQYIbLkQFXLpfO1NAa5TUa+M0//VP6OKSs5/6y9HnTRJZmELmEuQMxqznTnJndNU0hYVX/hABXi+PgHMevhwBXJDH/cmWzWUQUNB64LlTLQl8ul8510p4gjGOMNxp49xVX4G9+8Yv0eSSpNAAxw5Xr7UVtfBzV8XF89oUvxNff+EYEnoe8aWKi2RTXtxOGs7I/J5pN8Xx6NtsCKC1NgwIINp4/i66qKFgWziSWm9mwjK7j0O5unH7KKeLxKjWdmBljOaJpmkiiCEEco9kGuDKlEsJGAzXfxxduvRUAsKtWQ9l10SXJ0sM4xr9v3Iiy6+KOyy7DP517LpJ5ABbOCMv39CBD7FyOwOvwypUYPvJInPvRj6aOnkGQ2vA7DrK0jgVkOjTfcqMIJn2vnQDXeLOZAi6K1lmop7cOaOfl+z5uueUWfOYzn8FZZ52Frq4uvPvd78b09DS++c1v7tVYY6GeuppsNrGzWsWk46DiuqnzFAGMLdPTeHB0FCO0yXu2VM33xc2k7vvC3lWjeRIglZ69+eijW6QSXG4YYlDqkmmKgsenp4WltGFZwva4e/FiBHEMS9PghSEMVcU7jj8epb1Ij9jlTe4wru7txVuPO07M0KFtI5AkCYIogkEyLDcMEcexMN6wdR3DhUKL8+GBFH/up6IKJE3TieF6Kl6H3Ru5WMfPclNb11EilkaV55RME8WhISikm3dqNcFw8c2Za3jNGjHXYGqaMA9YfNhhUJBufrsWLcKjt9+OX3ziE/i3T38aY1u2QDMMJN3duGnrVnEj000TEWXgfPG22/C5m29uuXl6JCGpNxpQDaMF+M23WFLVPn9laRoyxALIIIrdBZceeaT4OdvHv2Dlynm/rk1zNgkxspxVc1hfXzrYbhjQDEMwXKHEcBnSMc9RAGqXbbdsAGw659sHy+VSFQXHDw9jIJdDwbJw9qpVswCjoihYNU/5zzOpGEiz05ocgaAAAlwbqjrnAH9IjqTdto3JZhNFci1063X87a9+BQBQx8ZQ5k0wbTBN6RoDJMBF38lf/MM/iH+zstn02iMw9vCttwr2N9Z15Gj2Z38lhX3kYFd2XWwtl0VoerdtY01vLzL03ADSNYGunT8phksGXHN8pi4yTGEZZ7vDY1ephCRJ0jnmKIJqmrA1DReeeio0RUHZdfH77dvxyMQENMsSwJkBl8ehyoaRgtyBAVRGR1uCtiujo+jPZlEwTQzn8yiYJqqeJ+6tXD9Yvx4ORwYQw8Ylqy/kz6yrKs5Zu1aY4QDpfbWHFCdHkNkVANGckF2LVSW1zk9Ivu02GkJSCKRKhITeKzNce+p1eGHY0sAKoghVz4MXRRihhvX2hx5q+XyTO3bg8T/8AZ856yyRvVUZGwOSBF1DQ6nBDxn1AMDgwABe/NnPYmDlShFQHVBkSY6/1/1kuHg+di6GywkC1H1fROss1NNbT9o04wUveAHuuusurFy5Es9//vPxrne9Cz/96U//5HOtng31rxs2YKRWE5lEfdmssF11whCTjoMHyRDi2VBJkqDmeQJwVT0vdRtC2nnjRXo1OQFdJ3Xf5WK5gqGq6M5k8Dil2PPg6NCqVXjZBz+IY88+G0/U68LR0NA0YeU619LHphydOrkRsVjP//rXcRwNQk80m3h4fByHdHeLDagfRWLoGABeuXYthgsFrKTF90CLmYWnAgwJwEU3uadi0/PhU09tldmoqmgmsFSNB5IV2nioioKsYUChzaudz6eOVWEItYN9PT+OPwPPK3QPD2NPEKSbAgkEVMbGsHPDBgwdeiimfR82dXcNTfv/7L15nBx1nf//qruq7577nskdEnKRkJBwBARE1AUUFfEAWUHwRlZUVgRRV1D5ASuiuKwIq36FFc9VF12RcAiCkAAJCYSE3HMffXfX/fujP59KdU/PZJKZSWYmn+fjMY9HMlNdXT1Tx+d9vV5FDxyStUyTh/Vr/f1YXFdXNO52HOQtCwZp2TlUO18laGslh4NzGNesWoU/vvEG9qVSw+aTKi3QdWLGeThCKnQxQr1qCpYFjiMS9GTBIyqKV+GyTbMopkKqwPT3S329qLJo2jCKLaHkWlVGqYRygFfp+NJpp5XMb013aIWL3sckQUDB1wpOK+nVgQC60mk0hcMl1QEAnkw4DXpy5O9eyGYRiEahhsMQ0mm0xWL4O4pJJ0UQIJUHXNQslny/9cQT0bJoEfZv3QpZ04pzs3QW8LnnvNdZoogg6Uo4nAoXVY9UBAEvdXdDFUUcSKXQHouhStMwt6oKq5ubvXtMfSgE7jitcIXI3ySbzSKiKJhTllyIkGcbDQB4kqCktgk92Wxxbo9UcQSeR7JQQD8516i3Ik/MhCP19Uj39ZXMcSW6u1HT1laynnBcF/0+NUOL3OuSPuNhf8BF54v9n7lgWdCI0I6fDy9dWmxV5Tg0kUo4UAy4/DNcNBknSxIcsvYplFW4ZFVFIZtFWzQK23Hgui6GCoWiKbjvPMr75rfCVVUopFL4x29+g/alS4ufzzDwvcsu87bv3rEDc1ev9tpyYw0NyJKODJq4jaqqV7X23yuNQgGxlhZwPH/YFS6dzHDlqWpkGYZtIyjLsB2HtRQeA464wvXUU0+huroab3nLW3D22Wfj3HPPZcHWFGEgn8f+VMpzf1eJd06yUEAVkeyeTuIZ1FSRzqUM5vNewDVk28MHhct60yl0QcJxHE6oqYEmiiU3fY7jcPJFF0EiCk608kRnsGRBgIviw8RxXWQMw7sZ2kQxrVJLFp17idXWIlpfD9tx8Fp/P1oikaKinlCULqcZfrqYCskyzuzomDjRDGHyPGqiJCh0XfewZzbG/B5lEt50XoAGWgLPI0rmeAaowaWqegsK13VLBEt4UuGi18KqCy4AcFAiXeB5bx5FjsWKps0ch5MuvtjbhxoKYdemTZh10knesZRXuHRiftydyXgqi7SlI2+aMKnPzRH+zkSeL1lsN4RCaAyFoImiJ65ACUoSLN+1oVsWdg4OevMSY0Uh0t0Gub/Q814h5zKV6rZ9FS6BBMe09ZYujuj3BvN5bOvrw5N793pzW6NVuFzyeQB4QfVMgf5OujIZz3uIVrhoJh8oVsGrAwFsHxgYtg9adQ9IUjEgI9doK5mtVoNBFEh7LVCcganSNM+LDiguJKkFQtCX+LFJNWDZO95RbPsiP9v98stoWbQI1z3yCLoLBQTJeV0+WzcaHMdhPbnvSXxxJpdWt2Okgu5v3Y6rKhyyf148fC+7qYoiijj/lluw7JprRkySdcyZAykYxLxzzoFaITiJkRlUGnD5W/BpBTVMWjhpJWVTdzcOkIBKJ/dRTdMQU1VE6+vhWBYGfZ6eCZ+XFIUDSqTW/+PFF4vV/HS6qDYZCJRU8Ogaxf93jaoqYqpa4jtGfy80uJN95xWPg/571JMxYxiQZRmOZRUDrlyuJIkjqSrMQqEoakXWGRnfzBttGwxIEnqyWfTnckj19UFSVex84QXPWqGvTCmbJimGOjvB8TyCtbXF60SWvRGBuK+qL8kyTOKdZRYKkFUVsqbBKhQOq8KlEzVnF6gYcOm27f3dWYXr6HPEKcFEIoGnnnoKGzZswLe+9S1ceumlmD9/PtavX48zzzwT69evR60v+8A4Ojiui95sFnVkNiNRKBRNNDkOS+vrEZJlbO3rG9GYcCqSJ+1KtAd6MJ/3ZrhsQUC6TARE8z08/Pgf+i2RCKoDASQKhWKQUN7uB6A+GERnOu0t4kNkmPvpvXuL7Ya2jSpNw4l1dSWmvOW0RCJYVFuLLb29AIBt/f1wyaxWUte9oVy68D/ShfehCJFq4GQEQ9Sk0zbNQ4pmTBS0n392PI7z584FcDDDmSOLxIYlS6CRh7njul5bFFBcfKiShLZoFNf8z/94MsW243gVmA/edhveeP557Mtk0BwOF68n36JGUhQkenoQa2yERAJznQZcZIYrZ5peT32GeLk8f+AATGJxYNIK1xEqR86rrsbisnttwbI8JTc/VZpWqs5JZhQP95xQSPJhU3c3WiMRz/vI83rjihLSlq4XjXMtyzM+pq+ntgl0kZQ1DFRpWtHImIqjjHBctuN4Fa6ZCA2AM4aBJXV1iKoqOkm1gcPBpIzE82iNRLCX+Af6oYkDr/LHcbj24Yc9IRglGISezcLI58HxPHhJQkxVPfU0AHjiwQeLc1qBQMlC9X1f+xqyiQTic+agK52GRvapZ7MIxmIIxOOIE88hWgU9HOgCPEAEBgSex1vnzKl4nkZVFSFyXTtkQTkTkAUB7SedBCeRGPH6DIdCuOD++4tV4bKWdqDYUggAB7ZtA1CsAGqkmiTyRVPrhlComBTx3ReC5B5HAy5V04rBAhFzeOy++wAUFQ2zvlk7iotS8+MeYlBezfPYGwh4M7n+z1reUvjeRYvwt337RjUm9ycQ/S391HvvjPZ2PEFaCrOGAT2XK1FCpAGXxBe9xDZ1d6MrnYbI8/jm296Gky+6CG//7GexpK4OiUIBIUnCY9ksTnzLW7Dlr3/FwP79EGUZL//f/5Uc16Y//hGxhgbkUylo4TBcklha29rqfcYwUeP0H4fpOLAKBSiaBkGSiobNh1PhIubRACpWsHLk+QyAzXAdA4444AoGg3jb296Gt73tbQCAdDqNp59+Go8//ji+/e1v44Mf/CDmzZuHLWV9rozJJU8c32sDASR1HbPjce8Co5kVkTzIpwtUUSdCFiF07kVQFEQrmOxSh/fNPT1YVFvrPaz8N/PqQAC1gQDypllsIUDR2NRPeyyGak1DK3lo1QeDCJH+dJrZp4qPfhXESggk6AWKN70oyVoXLAtBMg+T1vWSxdREQ/2TJqOlsJbMh+SGhiZUWXHU9wwE0JPN4gNLlmApWQgIZJZrxaWXom7+fERJdZEDvJZCigOgPRqFZdvozmS8v49DVD15jkPz4sVoPfFEbOntxYl1dXh2//5i+yh5QBYyGcB1oQQCnqiGJ11PKlxZw/B66jOGgZ++8gqShQKyhoFTW1uxg/jcHOnf/eNk9tCPwBdFRIJli5VKEuhHck7Qal9TOIyIoqAvl4MLUuEqayksWBZs04RIBvWBg4GZv8KVMQy0RqNwXBc7yHU10mA6DRTL2+hmCvR3Ytg2IsRfzCRKay4OLjTPnTMHG7u6Klb3aIuYSu4zjuuW+MypJODKpVLFyi9pw/LPEj79//4f1FCoxBgXKLZIxRoakNL14rkmy5CCQZjZLNRwuMRI+0jOa0UQEFEUJHUdQVkutkKNsPCOqSri1MCbmC/PBGgQQmfxKkHPAyrMVH4e0N/LX/7jP4rbKwok0okRlCQYRCI+QQzKgWIbtkZFUOh8H3l21DQ1lexfi0SQqxDs8xxXooZsOU7RwiOfh0RGHPzPY83XWkyZU1U1rEVypM8PHFQFBoqJmDM7Orzz2bGs4joil4NcFnAZJCmdM0384B//QF0wCJ4EI//4zW9w5kc+gkA0itpg0GulrJ8zB1v++lckurvx/770JQDFeTD6812bNqH/lluw7LzzvI4ZgeexnDwnAVKVp59DUWDpOhwibqIGAhAlCTYRVhoLtGpFz/9KdiR50/QUmlmF6+gzYanuYDCIqqoqVFVVIR6PQxRFbCNZFcbRI0uCE1kQMLeqysva+xF5Hm8ODVUMumzHKcqXTqH+Xtp+RTPnum0jk05DVNWKUu26bcMkQ7JUHc4/aA4Ai2trsbyhAZIg4JWeHq/65EcTRbx/yRKcSqRnqRIaNRwN+Aw6qX/WSPgfDCJpfaMZRk2SYNo2dicSsMks2GTAkWz3ZLRetRJZ6kIqBaGs/32yuPKkk3D9unVY1tBQ8n6aKKK9pQXzzj3XCzyo4lvSt13tiSciKEmoCwa9qhQAJAoFT/HS35pKDXZt18WV3/8+atvbPdUtJRiEQ9pK6QNSkuWiSpUvS9mbyUARBAwVCtBpmywZZp/Iv/u5s2fjXQsXDguwKs350Dmqw+GE2lpUE8EE2vLGAyWyzHQRQQMu3vc+NBvvF9HQbRthMpPVftppqG5t9WYkyjGIiEJ5y+RMIUZ8ktIk4KBqnH/bt6+kpTAgSTjJ18pvkTkUoJjhbgqH8ZZZsxAlnlh+lFAIejaLfDKJQCTiJZ3K1TYLmQzCRA2vHCowo4iiN9uohcNeO2NIloteRIeJi2KCUBYEBIkhszZCwKWJImpIQOjMoICLzjj6DcLLod83bRuBCtdClc8kGSABF3nNpUuW4D2LFmF2PF7SsirxPFRy3yj47FcUUUScJB8pgWjUa5/LJZP4j6uvxrYnn/Q8Eil0PtMiAU+5cqVEKt6HM0cKFIOs9TfdhHf/278V/eDI62884wycRp7bsiQBrgvTsmDk81ADAexPpbBjcBBZEuAoooieTAZ7k0kYtg3XN3+2a+PGg5+DtN9Wt7SAFwS88LvfeT/7p89/3vv3JV//OtL9/ejfu7fYGkivE3+Q6fcQk2VYhgGO4464wkUTMgLPgwMqvi5P/LdGajlkTC5H/IR3HAfPP/88vv3tb+P8889HLBbDunXr8P3vfx8NDQ2455578Oabb07ksTLGQJaooo1243JcF4lCAY9s3TrsZy/39ODXr72Grz/xxJS5IHOm6c1U8RwH3bKQTCYhahpEnsdHli8v2f5AKoWOWAzVgUBxCJUYMpYLLpw3d25Rah6oGCyVP+A5jkNrJIKmcNgTaQBZxBiO46kPVWJYwEVmjhzXhUJmkFoiEW/RPlnMraoqybJNFIokYc7552P95z531IxHFVGsWLE5paXFm2XgSZBJWwp7yTm9aP16T+GyLhTyqpav9PRgfyrltRTSRSoHeHN8aV1H3axZOOmd7zx4LKTCJQuCt3ARZRmOYSBNgv6GUAj/6OyEYdvYl0x6JtpBjoNGgpeJQpMkrCzLRgNAVFHAE9Ut4GCi4HD/ZqqvQnV6ezsAeAsKOoshyLJX4XIsyxPNoNDX0+vaJK1nsiCgurERV95/f8nMXWc6jU1dXciZpqdaN1MrXAFJQmM4DJf8O0DESOKqOqwKTq8B07bx7L59OEBaD23HQX0wiLNnz4ZSYa6VznDlUymokUhR9luSUNvYiI/+9re49Jvf9LalRt7l0OqLLAhe5cBf4bps2TK89wj8OIOS5FXkPaP0EbZtiUQ8tb6ZVOECDj6XRqtw0Wun0rUQLwu4XNf1zp2l9fX41OrVuGbVKkiC4D3vJUFANBAAJwieQiVPPNo0ScL7f/Yzb3+BaNSrcL3yf/+Hru3b8eRPfgKRL4pvUGRBQG0wiFxfH0K1tcMCLo5sc7j3QJHn0bBkCZpXrBimEkxR6PVhmjDzeSiBAA6kUtifSiFPhJFkQcDa1lbENQ39uRwcn/WB6QscqWqtEgwiWl+P7c88AwB49403YtH69d52dE5y5z/+AVlVDyaIfM8rzSfCJSpK8X1sG45lQdU0iDTg8l23rut6np3lmI7jCT65GLnCRRPXr/T0jParZUwCR/yEj8ViWLt2Lf793/8d1dXVuPPOO7F9+3bs3bsXDz74ID7ykY+gnTyIGUePLFGnGa2NQ7dt7E0msWtoCL1lBn6d6TS6iBFg/wgX9tFmKJ/HP+67D3e///1wSNk9mUp5rQnVZa2AFy9ahJZIBBFFQdow8PyBAxWzZwFJ8mZI/Dd/OsNT6QF2+fLlWFxX57UveC0djjNsYNmPwHEH2wdI5pe+VhUEfH7dOsRJe+RktRQCwFUrV+Iin5TuRCHyPFZ85CNoO/30Y74Ifsf8+Xj/iScCKP7e6TyIaduIBAJYdcMNuPCLXwRQDNpOb2vD/Opq7E0mkSgUEFYUBEhVjC5SqQLWqW1t3jC46Puc/oCrYFl4pacHvCzDMU0kyeBzTFWRJ61dWdPELLIYMklL4WQG2pTZ8TiqNQ191Gib2B+MNH84GnTOqFrTigbSvqSGLAiwJQlmoYB0oQDXcSD6Zrjo6+l1KfBFA9/2WMyrSvpnDFzXxZ5EAgXLwgudndja1+fN98xU5lRVeXYH9F5VpWne/A2Fqp71ZrNoDIdLBJHotSjzw9UplWAQeiaDfDpdVCwkf7/6YBB508R8YhgOAOt9Cmx+bCJbXx8Meupv/grXkZ7Ts8h5SoVfaLKjEgLP46wTTigeDzHfnSl4AdcIgYhIEoYjtVzSVk9KpLl5WFDCcRwWVFdjIJfz7mERRSn65pFgQ1QUTzyK8wcNkQhypMLVtX07AMAi5rsp4v/lEoGpiCxjYP9+xIjCpP85R1V+D/d8oQEnDfwrPTtpi6yez8OxLEiq6p1PgWDQq1pRm5HuTAaCb+3jV2Sk20qqiiXnnAMAaFu6FEvOPhu8772D8TiqW1uLAhiaBt2yECJBK8Xf6i4pCox8Hh3UukbTigk7yyqpVP2jsxN3/v3vJcGsd5y27VXSOKBiK2Lesor37EAAbwwOIjuNRktmAkcccH3nO9/Btm3bcODAAfz0pz/FRz/6UcyZM2cij41xmBQsq9i+4+v5fuF3v8PdH/4wHvrylz1lqTnxOHKmiaSu47vPPYev/PWv3sM4petI6joG83kkKlzUR5tHtm7FH954A3ufeAKpvj70bt8O23WRz2QgEUni8pv03KoqfGX9elRrGtJkEN9vDEuh8ybUGHpjV5fXBy3xfMXAoUrTsLS+vmT+hDJaoOE3KHVcF/OrqyGQKopMFNvWtbYipqqHNSQ7VaDVwKxp4kTfnMixhueKUuXUMFuTJDQvXQqJVApkQUBbNIq5VVXFKipZ4IZJ22iGKEcBxcyv3wdM8i08aEuhwHFI6zrSug6b5+GQ6qxNqjembSNnmqgLBg+2AxFPsMkMtClhRcFZs2ahP5eDS9Q2BZ7HF0499bD3RTOlVZrmiZXQa1EVRbiiCL1QwCDJkgu+JAOdQ6JtU7TSHJAkT6LeP/Rtuy6ipKU3Ttrt5ldXzyhlwnKaQiFEiFR7gIgdUHU5/6I5SiTUk7qOMDGopVDBAZoI8HctKKTClUuloIRCXoVyTjzuBW1v/cQnMHvVKoiyDNd1h92bLMeBKkm45MQTvQWnGgqVzHAdKVXEq+mqlSvxvsWLMXsUe4yZOMMFHLyvHrLCZdsVnz8iz3uJoYu/8hUIJHAv54IFCxBTVfRkMtBIgC9KEkzqm0VaCgPEcuWSr38d7/rXf0UwFvNEM6j/WmZw0DvfdKL8p1sWONvGUGcnIk1NwypcDklIjdYlUgnaPmeS2aVKFS6ZeoqRIGp/oYCQLBdbVQMBOLbtrY1aIxGsbW1FqqcHHM9DUlUke3u9QIsGX7KqYum55wIATF9AdvFXvoL33XILAKCetNlLmgbdtlETCJTcr2iXgOU4qG5rQ8+bb4JKOkmqCoEk7PyBU4qszaiAjh+DqOHSlsFKFa4cmeEKShKyhuEl3hhHhyMOuK6++mrMnz9/Io+FMQ7Suo5/e/JJvNjZWeIh8eYLLyCfSuH1Z57BftJCGJRlLKypgWHb6EqncSCdxs9eeQUPbdmCN4eGkDdNJAqFYU7xAEac/Zosnj9wAP25nGdW2L9jBxzXRYF8b7SHekxVoVuWNxdSvh1HqlgtkYgnYEGlYUdrV1IEAVFVRZBk7OnMxGgBF30wAPAUCluiUTSEQt7C8u3z5qGFtCxON2h7BA+gZhTvpKMNFdHgyewVDXBpgqHcQJaqZ61sbATPcdja14cXu7rAobh4oRln13VLFPSUQMAbWKbzJgIRzbBIq4dM2nYKllXi50ZVCuWj1Ip5SkuLV/2lFYojWRjThEOELMa8NlsUF1AykYVPkJYj6tlEX0tFfKg9A12E0QDMX+EqWFZxaD8QQERRMK+6GmfM8A6KpnAYVSRpFCZzXH5ZfQpVUe3NZhGUZexJJr3AyB9wDeXzeIYsioGDKoWD+/cjVFtbTEqJIuqCQe/5sfa978WHv/MdAMBrAwP4m+/1QHFRFybzhxZZlIZrasZd4QIOzjBpoogl9fWjBtcK/Zyh0MwKuMZQ4aKV+EiF9mqJ5z3p8lBVlVepL6chFIImSRgqFBCQJHxmzRoIsgw9kwHH8xBF0WsptF0XC087DUvPPRfR+nqk+vthmyYGOztR1dyMQjoNjvgM3vb00/jBCy8gbRjI7dsHx7ZRNXu2d9yUt8yahStPOgmNh/nsK6lwjXC+0XMjQypxPHnmRxQFGqko0WCMesa9+eKLaDnhBGiRCJ556CH86JOfBFBa4YqT2ckFvmTViW95C0444wwAQIQox9KWwnJ5e42sHyzHQceyZSik056apExaCu2yGS5qn9FT1pkEFCXh923ciDve9jYYmUzF5IhBZuE1SULesqZMF9PxwsztxzjO2J9KoT+XG3ZjzgwNYe7q1dj+7LPYu2UL2pctA1BcaGZNEwP5PGzHwXMHDnjS5lTa2u+jQfnhCy8gqqr419NPn/TP5LouCpaFnlQKOrlZZvv7YTsO9GwWWm0txFFkzoOyDJ2U0Ks0raK87EdPOgk/efll9GWznn/XoQIu+nCLEjNkkyiHjaSiBZRWuKi58bsWLsSLnZ3ejTGiKPjaWWeN/Rc0hdCI4hLNsE0VaBWRzsv58S8+FEEozjeQBX81GezWRBFZ00SILCr982D+3n5TFDGQy0GorUUtsWSgGUoquSyQWYuebLYkmLB0HfI4VAoPl5pAAKooQifV8JH84w4FbSmkyQyq0ggUM86yosA1Tc8zTyKVZgD4wJIlsBwHg/k8dg4O4vWBAS9DHVYU5EwTWdOE67rY1N0Nx3XRGAohrqoYKhTw1jlzsHAEIYeZwux4HHXBIDRRxNyqKjSGw8UMdVllnc531QeDXqXxqb170RAKeUEt9UfzL8LUYNATRahbsMCrcI2kttqfzSJOzGQDvr9zmFRnaaY/UlsLcwIqXO+cPx/1odCY2kYlQcDa669HfPbsGRVw0c8+kqiNv0uifEFPX0efndXt7ciaZsXnFLW0yBiG53cmyjIy/f0QFQUiqTqr5D5JiTc2Aq6Loa4u5FMpzFqxAoMHDsBMpWAEg9iTSKBXkordMrt3g+N5xDs6hp1jtcEgakfx3BsJv5pnkHiMlUNnuJIk8RMPhxEkflgF0o2RGRxEwCcI0r1jBxaedhryxMi7h+gR0BkuWdPACwK+9PvfQx5hlIBK6EtEsKa8ekcrXKZto27WLABAJ2nLlIlohlmmUpgxDE+JuhzDtvHGX/5S3K67e1iFq0DsdWiVHMC0sgeaCRydlCpj0tna14cu8vD0P24yg4MIV1cjGIt5rvFAcaGpkwuwStPwen8/tg8M4M2hITSFwwiUzVAAxYdr2jDQncl4F7NN2qUmgxy5sfT39Xny0Ho6DcO2kc1koASDUEd5oIdkGSZZ6F63dm1Fz565VVW4mgwNByTJywJppIWnEgqZKzh39mwogoCMYUDi+UP6hdB906F3OoMyExzfNaJORzPbUwX6YJHKAi76L7oglEgLGzW7DpIef8VnpEqrX/RvSbOday6+GBbHIawo4FBshdIkCSnHgU7kli3Supc3TQzm8yV/c1PXIZDqxdGAPnBt18XOoaGKJuFjgS70qImxxB9U4ZIEAYqqwjFN5EnAJQcC3mfsiMUwt6oKq5ubcemSJQjLsle5+dfTT0c1qRhSxdG8aXrvpYoi3jFv3oxaWFdCEgRct3Yt3j5vHiRBwE3r13sLbH/rFBUdiRKp/gDx0wpIkjdXSv9GAs+jP5fDvmSyxFQ61trqzXDRa8K/sHZdFyFZRlhR8FJ3N7rJs8Z0HERIMsIgf+dIbS1sci2N514QVVWcM3v2mJIBEs+jedUqKPH4jDov6DPlUC2FAUkq8Zfy/1wmbdByOOw9dyoRVhTkSUDGcxwkUmGRyL2JKpD6/x60ytP1xhsAgKrmZgCAlcnAtG0kdR2JQgF500Q+nYYWDoPznWPjhV4PhuN4c7flKOS5z5EEmSDLOKGmBhFFQT0RkEr7jMNty0KiuxtVzc3DgqkNP/4xgGIQBRSrxCN5BdKAK93fD2C4ZyB9xvTlcng9l4MWiaB7xw5v/7TC5Q+c0rqOPGnVLMewbe8azPX2DpvhogGX/znDAq6jy9RZGTHGxT86O5EoFDyfFkp2aAjBqirIgQB6d+3CA5/9LLJDQ9AkCTnThGnb6IjFsK61FWuam7GwpsaTki8PBDJEATFRKOAAyZrdt3EjvkOUeiaaRKGAgmVhHrnphWtqoGcyyJomHDKMOlr2ky6OBZI1H4maQABRRSm2SxAz2uqyfms/C6qr8fGTT8bS+noooogtvb2QeH5UE9bWSAT1wSBe7OoCUFz0aqRNYypJ8B8ptD2CtmRMNSRf6ycAb85R8WWQTd8MF5WzpnN+dBv6Ofckk5i7ejUAYN0ll8Bx3aKCnK8NSlEU2IaBjGF4v5OTm5uRIxWzZ3/xC9xy1lkwCwWIFewNJgsqupAsFFAfDB7x32tBdbWXtaWVFXrNnNHejkggUPS/oQFXBc88SkskUiJCE1dVL9CKEBET/+JyJs9u+akOBEqESKiMvl9Blf5e6FdQkhBVFNQGAl7ARdtGRZ7H1r4+dKbTUH0Bl0TaqmngTO0PKNS8uDkcRl0wiF1DQ7AdB47jIEIqXM1Ewl9SFNijGMFPBjTopCptMwVZEIoWFYdoKfS385b//J3f+hYu/NrXvPvbSAFXRFGKnRrkOUZnvwQyF0jPDf9vlwYVv/rGNwAAcaKMamazSBGF0kGiAmjkcpA1zWvdngi8ChcZHagEneGKkPNCJJWwT5x8MtYQAamML+BK9vTAdRxUNTeXfNb0wMDBgGiU9QRl7sknAwCaicJneWUxIEmIKIqnihtpaEAvqaTJqlqUhS8TzTiQTnuJ23IM20a2r6/4efr6hiXMacDlBe+uywKuo8zUWxkxDhvXdZE3TUg8X9IGqOdyMPJ5hOJxKJqGHc8/jz2vvIK9mzeD5zjPs4vOfEmkR5suZsoDARpw0RkvANiTSGCwwqzXRNCfyxWd0cl7xZuaUEinkTUMOIYBQVGgjlJVooaudAExElSwQuJ5vNzTUxxwHUVxkOOKhq908LYhFPIGikeiJRLBnKoqb6CVyl8rxGdlukPnbo6W6fGhKJ8RKG8pLJ9dolUriczntRNbgRBp9aPnUUiW0RgKFRUPm5tx8+OPexn9oCzjPYsWeSqUiqoWZxvyeQTIYkgVRZzc1IT5VVV47pe/BABkE4mjWuGiQXFXJoOGUAgXLFhwRPu5dMkST2yj3OD23NmzEQuF4FoWMqQaIvlmuMqpCwa9WSCgWCU0SFtzVFURJIIbly9b5ilQHo/QKpR/XscfbHGk0hpWFFy8aJF3fnNENMg7N0WxpMLFkWo7rVoKPF+y0NOJ0fR7Fy9GQyiEOPEWAhGl4TkO5/3Lv+ADpAJA7S6OFhJJrHHAjAq4qFfdSMGrP9iuFMSIPI94SwvaV62CSdSLR3pOUbVL2kpPW/FEcm9SSYXLD1/2f1rhKqTTqAkEUKWqmBWLYWl9fVF+nQRcExWM+1sKQyMEQXSGi7bP8uRe0hQOoyYSgRQMllS4Bg8c8D6L5ZtXpzPwH73nnmGfuxKSquLLf/oTTv/whwEMn/HmOA7NxPaiLhiEGAwiRaphnbqOAlAimpE3TewiHQl0nee6Lv5x4EBxTZZKIdPdDQAwkslhCfP9qRSevOMO/McHP0gPABlfW/zRZn8qNSwonOmM+wl/66234v777x/2/fvvvx/f+ta3xrt7xhiwXRem4yCsKMiSIX0ASJCLL9bQUOKuTr9fpWlo8fnclFN+MdCAyyJVoL5s1mv7c4+wLWk0qJIaLZNXkYCrIRSCaxjgZXnUlkK6wFDHYPZ78aJFEHgeQUlCslAYk1oSx3EIyjKawmFPuni0bde2tHiL/HoymK4IAhYQ087pDG1T4zDygPfRpDzgKlgWBvJ5b0FGvdnogpTKkos8jytPOqkYDAtF3xQaSFLZYLqQ9S9IaQXgxLo6nNHejqAsIxgIwDFNFCyrRN1Qk6Tiwplck7ZpFitcR3GhyAFeNY8ahI6H8kUhx3GIBINwTBNp0sqsEJGbStQGgwjJsnfvCisKOI7zRG+oQM2seBxLSVb9eMRvc1DyfV9SKULM2VeTxS9QbB2iFS5atc36rlPLcbwMPK2q+CtcOhEtmR2P45/mz/f85jgcFHYIBQJQiJLgoYzgJxqaFOFI8DFToAq2o0ni0xnVSgkbv6jGWCpcPMd5wTyt4lB1UZpUK4eq8gHFihfH88V5rngcc6urUU8EOSYj4BJ8AVdkhAqXRp7lVBhD8CV2FFFEsLYWQ52d3vbdO3aAF0VEamtLkhKDBw5A1jQ0EwuCsSCSsYaRZsLrg0FwKN7vxEDA8/XMui5snodpGN5zZjCfR840EZRlT849Z5r41bZt+J/t27F3zx7v9WY2O6wK9j+vv449Tz+NzMAAnv/1ryHxPIbGqETtuC5+8eqr6Ksg1nEkWI6DH77wAv6XVAyPF8a9MvrhD3+IhRV8fRYvXox77713vLtnjAGDOIxHFQWD+TxSuo7s0BASpH0t3tjoLe6Agxmc+dXVI0rtcsCwwUxqQMxzHAqWhZe6uz1n9ko9xeMlqesAx3mZqVhDA/LpNGbH456y26GyqOoYK0i0ghFTVbRFo1hBetMPxWXLlqEjFkNYUUac+aIopIWwIRTylAhvOP30SfHFOtrQ1s2pUuGiLUYU+pDXiMBAwbJKrAKod4m/NacxHPYW+gLPe9ndBqKE5pS1XNEF61tmzcKsWKwYcBgG1rW2DjPRBg7OAQAAf5Rk4b33IzM/E1WF+OyaNfgkabGkqIpS9L0h9xGJSO1XojYQQFhRvMo5bYXTbRsqqegczd/PVGWk1jFa5dBIO+sVZWbwNYEA6on0O89xiKkq9vvaiaj4BYARK1y01XZxXZ3Xgkur9QBKzJVtxznqFS6a8JlJAZciiiVzdeWUVLgOEXDR+dqRrqMgqXJ63m004CKdJNSkvDy1SlX5gKIHm9+by48/4JqoGS7axuy47ohjA3SGqyTg8oklBevrsfEPf0BmcBBGPo/H7rsPjmWBFwS856abEGtsBC8IGDxwAFUtLYfdzkyTFdEKSVyqaKsIAgSyRuN4HrFQCLFQCJbPlkQnyW4qeEa/N1Qo4I2BAewg671ofT1MMkPnx7BtCOR3tOO55yALRSuJsZAsFPCPzk78eefOw/rsI5HW9Snl9Xq0GHfA1d3djcYKi9Pa2lp0kROAMbmYtu3dcDK6jv0//Sluf/e78b933w1BkhCqqvJ8JoCicuGh4HkehbILlpaxORJw2aS0nTVN7CMKQOPBdV388Y03vBZFesPIp9MQFQXR+noU0mkY+TxcxykGXKPcuGfF4zihtnZMD36O40pufvPHWHWaX12NT558Mm447bRD3oipgemKhgbv4aCK4pSoCI0Xb8EzyrzB0YR6RPnRJAlB4kNTsCxvEBw4OHzt/97Kxkac2dFRXKT4MsN0EZPUdfSQZMCBdLpkoXdqWxtCJGPpVFCUKmQyngQwUGzbqbRgmiwEnkcNUWKcCOKaVlLFAwCViGZEOK7oK0OqEJWg7Zs00KoPBj1BmtZotFgVnEEL6SPlc2vX4l/WrRv2fbrovnrVKvzzihWYV3b/Omf2bFy2bBlCZFawNhhEQ2MjmtavxxmXXQbLdb0ZGFrhGsznvc4Fw7YRU1UvqJNICy5wMOBSfVXfiaxijAUq0DHZxvFHG5Uk6UZ6htGAo9zXiuKfbaPmwiNd80FZ9iwagIOzT1IwiBC590k8XxJw7U0mkSwU0HriiVBDISiBAMJVVXjpf/+3ZN99u3cXA65AoDjfN0HBOB0XGK3tUiXPWp22FPoM2BVRhELUCV/dsAGZwUEAwKwVKwAU58bP//Sn4dg2Nv3xj6giM2qHA7W0qNQ14zc1F6nAjaoWVSFlGa5lea2BOllzqaLozV5Rm5G9ySR2kM6laH09jAoVLhlFnzoAcEh76UAuN6agJ20YSBYKw4LtIyWl60jPMJPysTDuJ3xrayv+9re/Dfv+3/72NzQdwcnJOHz8hneBHTs8adBkTw/qOjrA8TxSZJiyfs4c5McQHPGAZ35JyfuCNt2yPLPFjGHgNdJ7PBI508Trh9imL5fD47t24fFdu4rvZ1ngABSyWWjhMKJEwpUaLPKyPGrbyux4HF849VR8qizzPhJvmzsXMVWt2LIzGhyZYzgUVHK/vmxhOhPwZ1qnwk200sKiPRrFW2bNgkhmHalHF3Dw+ENELQ8o/l1nxePF6qevJYRuu31gAPtTKU8Ew59hnVtVhRPJ/c8yDHTv2AHbdz395tZbS46NrzAfMZlQ88uPr1o1ae+hkgVGIZOBSFoERxv+v/aUU3BmRweAg6a3luOgPRrFysZGnDoBrY/TnZAsV1y40WsvpqqYVaFrQRYELK6tRS0JsmVBQFM4jCVXXomzrrgClq/CRYOXPcmkl/zSLQvVZEFIxYh0y/KMxYGiqqDpOEgUCujOZOAcxdlU2tI8UuAxXVFJhetQKoUjBZo0keS4LuxDVJZCxOvNm+Ei55kUDJacG3BduK6LN4eGcCCVwqbublzx3e/i87/6FTiex4lnn42hzk7PNqNn5058/4orsOP55yETifRDdYOMFZo88HsklhMh3SS5RKL4Gl9ySxVFLH3/+4s/TyaRJ5W5t37iEzBtG4P5POatWYNYY2NRSKOl5ZDH1JfNepV6oLiOiipKxd89DbgAeF6jEklsBFUVji/goqIXiiAgTX631NqjL5dDP/l80bo6GNnssBmudDoNuC60SASFTAayICBvWfgukb4fjWShgKSuT5gidYpUuGZSNXosjPvOdNVVV+Haa6/Fj3/8Y+zZswd79uzB/fffj8997nO46qqrJuIYGYeAthQKPO/5RVDoECst8bcsXlyx3F+OQNqu/PgFOQq+GwE1HhyN/7d5M3780ksVL1jdsvCrbdvwWn8/+nI578aZJ54zBaKoRRWR+vfuLb5vBTPjciKKMmYj4fUdHXjn/Pl4C/HEmGgEnvda2mYaHAm0puoM1+ltbbhw4UKcO2eO11JYLpqhiOIwLxg6Byj7hs39+64NBjGQyyGiKPjAkiUlrw2RfW194gn88Kqr8ORPfuL9rIv0rtNz2iLWAkcLukCbzOCfZpYLmQxEEsiOFoxX+UQ1aFtbWzSKRbW1uHjRIrx1zpxJO9bpDl10jwZV0OQ5DhctXFi0LyD3Wo5UroDiOU9nxWiW3HQcVJEFoUBar5O6XrLQrQkEYDkOOtNphBVlWIfEZEIrHTMy4BKEEa0bBHJNjXRtcdxBo/dDCZmYRJ3XUx71Vbho9ZOKk6QNAwdSKU+KnuM4COT+SD2lqA2Nv6OGilBMZLtpC1HYHGmfMVLByg0NQSDzs16FSxAQiETQuGABUn193tooEI1ia18ftvT2AhyHZiIsVNXcDNd18WpfH7b7hDYAYFtfH3qzWbwxOIjNPT3e9zOGgblVVRWPjXbWVGkaJPK8kMisK50BNnwthS7xOkzpOvLkZ7brYiifxxBJpEfr6mBkMsMqXDkyfxWuqUEhm4XE80gUChUVD8uh75cY48zXocgYBgqWhYxPlOR4YNxn/fXXX4+BgQF84hOfgEF+eaqq4otf/CJuuOGGcR8g49CYjgObyOFmh4YgKgo+eNttcF0XNa2tAID33HQT3vj73wGOQ9/u3Xjm4Yex7pJLRtwnTwbW/eRNsziUyXHIm2bJDe5QAdeuoSEM5vPIGMawXuY3h4awYfduhGQZnem0F+jlyZxNIZOBGgp5zu20wiVOglkszbBPFrRtcSYypSpcZR5A7/INOmuShAIxb6WLVNt1Ua1pOJVcLxS68PebRfoXdgLHIW0YiKuq1w5HCZDzfN+rrwIANv/lL1h/2WXQs1mkenvx7htvhGPb+M2tt8LW9aNb4ToKi1Ja4dIzGQiyfFjzNVQEgee4UYV9GEV4joM7ht8tbTFrCIWworERr5LOBwDefYkqTpZXIfyiBOs7OrCltxca6QgAiip3luMgYxhoiUQmzZ+xEtIMrXDRdsKRAi6qLmwTteFKUA/CQ7V5LqqtxQk1NZ6huKdSSARtgOJ9Mqaq2NrXB4HnUa1pw4QUNHK95tNphGtqPL9CwGccPIH3urpg0BsFqEQkHC4q8g0MQCbVI3qvpff1UE0N9m7ejDry/NciEej9/V6wuvrd74brupizahUyhgFNFIstdq4LjuOKStGWhdf6+6ESn06aBHeAEWflbeIfFpZlyCTg4skxBTUNrk8WXrcsL2kymM8jUSh4c13rWlvxq7/+FZwoIhCLwczlkPLNZ7muixxpHQxXVxeFQTiuuI8KLe/l5EmCfaJmrvKkQ2qsoh0zhXEHXBzH4Vvf+ha+8pWvYNu2bdA0DfPmzfMuVsbk41W4OA65RAIdy5ejo2xoumnBAjQtWIB//OY3AID/u/dedCxfjqYRJKEFjhsmhJE2DPBkkZnQdURQFNdwMNyza28yiZ9v3oyVTU04Z/ZsT80wXSHgokac9IFJTTULpO2rkMlADYeLAZaqIk36rI/23Mt4mR2P4x3z5mHVDG219StmHWtGm1WIaxp02y75edYwoEnSsGqoQtqn/AsEWuGiZr1500RbNDqspSVAsr8Jku0c6uzEg5/7HNa+730AgOaFCxGprUXPzp1oOOOMo3ouf2zlyklfEHsVrmy2GHAdxrlBF0ICyagzRkcYY8BFKyJiBbU6f7WLen35F/r+7de2tODJPXtgO45X/aDqds3hMCKKclQN3f2iPTMp4KJtz6PNzpR7DJajiCJsIpoxWmUprCj46Eknef/3V7jo62bH46gLBjGQzyNnGF4Lvh+N3EPzpMKV840wXPTFL2IXUcycKEJEIXiklkJZFCEHAkj39KCKGHzTey1NzJ14/vn49Y034s8/+EFxXUEUG+msYtuSJWgjHQwHUilEFcWTZw+Q64RavRi2jYiiIGMYiCiKp0I4EhppK5TJ780hCrpBTYNjWTB8LYVAsepZsCwvWLKJmTFvGFACAYiyDMc0PVVpWRBgu64X7IZrarDn5ZcRIXL/BcuCblmjnhsF8j7U63W89+Q8EWCbqIrZdGHC7kyhUAgnn3wyTjzxRBZsHWWoaIbA88gMDSEYi424bdQnqdxdQZJz81/+gu9fcQW6Nm5E1jBKbuRZYuAqCQKSxJSY98my+vnRxo3oTKfxv2+84akY6rZdMUNCsxztsRjmxOPY2NWFJ3bvRt40i4qI6TRU0vokaxqypEWBytVOF3iOw9rW1ml1zIeDJ5oxBSpc5S2FJT8j80t+MoaBADGM9aMQeXh/tp/um8oom0QSvpwAqXgle3o8Q9C9mzdj+7PPIt7UhKrmZoiyjLM+9jHIqnpUK1xN4TBaSavNZKGRz18gFa7DqX56wdYUOJemA2NpKQTgqdRJPrVDeo/3G7dTY3Z/0OQ/x8OKgm+85S344mmneQk0f3JitDa4ycDvRTaT7q9BSYIsCMOq537KFVnLiasqDLJGOJxWPiq0pYTDXoAUURQsqavDYC7nXaPl+6TP6kKFgCtIKj0TGXDJguCJIVWCAzxbHDUc9kycgYOJubaVK3HB9dcDAFxyznMcB4UEN36oBU9zOIyudNprMRRJxU/keYQVBd2ZDNKG4VlwVGJtayveMmsW5lZVQSX3Y5vMRgY1DY5plqgU0mO2HAdpw4Bu256PalwQoNKAy7ZRMAyvZc9yHBhkHjNcUwPLMGAZBhbV1iJrmtjqq3RXQifzYxPVBpgn+8v4bIyOB47oznTdddchS8rI11133ahfjMknpeueg3h2aAiBUQKuuatXY8nZZwMo9lb/7jvfwa6NG72f/+rf/g19u3fjT1//OgqWVRJIFUhVQBYEJIiLPG37Kb8pWY6DpK4jqevYR6Tjh/J5PEPaAf3oJHCLKAqqNA0pXccf33gD+3bvxu8++1kkenqgkuyPEgwiSypcApOKnlJMpRmK0fx4TMdBRyxWcpyL6+o83y0/siAgoiglwclYA64QecinenvRvHAhTnrHO1Dd2ootf/0rlr71rd52VPBmOlVrx0KEfP5CJgNBkg57vk+YItXS6QA3xuuOLv6oATJQ7JAQeb4kCSERC4WCZeGVnp6i0EGFVmi/gAe1VpAEwcv2H03o+TIV7j8TRXUggE+cfDJWjmJTIh7iM1cTE3HLdUf1rSyni8xKR5qbS+5NHMehMRxGQJIQV1W4REQDKCZ/ORIc0gpXlog5nP2xj3n7mOiAKyBJIy7cOY7z/KnUcLgkSKSty47rYvFZZwEAFp52GoDi4lgRBLxE1P8oFrHgedvcuciZJgbyeYSJYnJYUSCQ7oecaWJLb2+J32M5qiji7NmzoYoiNLJuc0i1KaCqcG0bJllb0cCLto5mDAMbu7oOKokSFUiRXKf5QsELjkzb9ipcLaS9fv/WrQhKEvpzOfx8y5ZRf8c5y4JEqncTEXBlfceVPY7muI6opXDTpk0wSfZj06ZNI253uH4Ffu655x585zvfQXd3N5YtW4a7774bq0dQm7vvvvvwX//1X9hCTpqVK1fim9/8Zsn2ruvi5ptvxn333YdEIoFTTz0VP/jBDzBv3rwjPsZjzUAuh7uffx6O62Jo5068+uqr0LNZaKMMwvOCgHffeCO6d+zA4z/6EQDg9WeewfW//rWnZEgxbBtZ36wWDbAknkfOMJDW9WIri+sOq3BZjoOUrkMVRewYHIRuWYioKrrITdhPwbZBzxSB55EzTbw5NIRtf/gDhshNn2bNFE3z3Nj9BoaMY49AFlxTZZFMjVDLWVZfD8O2S7yKltbXVzTU5TgOH1q6FO2+JAat5IVJ24hp2xUzx0HSk28ZBgLRKILxuDd/WD97tredQ+YvZ1ryIEI+fyGTQTga9c6PsTJV5gGnA59ds2ZMFSUqoiCRRAL19JF4vqTCRb3PXuvvRy0RwziUshxNREg8j8uXL0d8DObxE4nge/+ZRLndQiVGC2CiqoqMYUC3rMOamdFJRSTS0lJyb0rrOqo1DYlCAUFiM2C7LkSOw/PE41MNhTyJ9VwigbYlS3DapZciresT6sMFFD38NDIHNRIZsmZIdHcPq3BRzzk5GMRnfvYzhIjABcdxCFZQQrYdB5okYVlDA+Kahld7e7GsoQGu66I2EEBXOg2JWMu8OTRU8n4jIRPxDqDYUqgIAmQ6A0uDk7KAcjCfx7a+PtSQxJaRy0HRNIjk91AoFLxgxnIcb5aubckShKqqsOO55zBrxQpUaRqypNI0UuCe0XWvNXUsIhuHIkU6SmgAV8mjbCZyRAHX448/DgAwTRM8z+Pee++d0MDl4YcfxnXXXYd7770Xa9aswV133YXzzjsPr7/+OuqINLifDRs24NJLL8W6deugqiq+9a1v4a1vfSteffVVNBOVvm9/+9v47ne/iwcffBCzZs3CV77yFZx33nnYunWrN9w93fj1a68hUSjAchw8/uUvAwAESSpxRweKN4jBfB6aJHlZzWBVFfr27AFQvCFuf/ZZ/O473yl5nek4yBqG185QIKqBMnlIJ3Xda+Movwht10WKyIg+u38/CpaFiKIgpeveoCklaxgli/SoqqIznUbet790Xx+G8nmImob0G29ADgSgxmJHPYvKGBnanjFVFslhRUFHhWrvO+fPxzvnzx9zQugEItZCoW2TfrPVcpNJAIj73ru6tbVEFl7zzYp5hqQzbKEYIwvFXCqFWEeH5xk0Vtj81tiJj9Jy5odWoETSUaCIItK67rVlUa495RQcSKWQ0nUogoDOdHpUCw7gYIVbk6QRVdkmk6lUYT+afHr16lGrDiFZhsBxiGua5980Fm6++27c+YtfFC0rfL/TuKYhqqrIWxaCxB/PdpziXCup+sebm/HSo4/isfvuQ+P8+Z6ly8s9PWib4FbmWfE4PrV6NerK1j1+5p96Krb/7W9QiIS8F3D5fMoAeK3fQDHhU6Vp2J9KYSCX8xQZbddFkFT3ooqC5kgEEUWB67poj8WwL5XCu084AUP5PH5EChJjCbhoZWr2+vVQBMFbl+ZI4FsgNjmU3YkEcqbpXftGLgc5EPDUIg2iBAiUthRKqoq5q1djxz/+gXOvuQYxVYVp29AtywvWysmaJhRBgOU4w2b7j4Qhsh6dqP1NF8Z1Z5IkCa+88spEHYvHHXfcgauuugpXXHEFFi1ahHvvvReBQAD3339/xe1/9rOf4ROf+ASWL1+OhQsX4j//8z/hOA4ee+wxAMXq1l133YUbb7wRF154IZYuXYr/+q//QmdnJ35DRCSmI5ooYnciUeJvZZsmFHJjAIoLwWf370dnOo1Xe3u974dIL3X70qUAgJ//6796s1GN8+ZBkCToZf26uq+l0LBtpIkscKWAywW8/mfdslAgZXI6y+Unb5oQfQux+dXVOLOjA/W+G+hJ73gHtvX3Y4B81oa5cyEKQklWlnFsqQ4EECCyu1OBG884o6SKRaE97+PBbzg60kK02qdMVTdrVsl7qr6sNa1wzbSFYhtJdpn5PASy6DschCkUvM8UaGBPW2KpubTksz0AigIZ86qrcc2qVdDIHNGh1FXps+BQgdlkQYVWZtp1dCiqA4GSCnw5IWKfUutbF4yF9lmz0Hb66XCBkgrXO+fPx7rWVk9BkVa4DNuGJopFP6+GBq+a37V9OwIkyOI5Do2h0KgiH0fCaMEWAFz6jW/g7d/6Fs790peKLYXk81ABGbvC8dBqMM9x2NLb6wWrtMJFJd01UcS1p5yCT5x8MpbW1yOuqqgNBLCisREq8VA7VPcCbW38zO9/j+Uf+pDXUggUWwOBYsD1x09+En+46y6IPI/BfB55y/Iqz3o+74lmAIBjmp7YxSNbt8IsFMCLIgRRRMPcuRjcvx+u60IkM2HlYyF+MoYBhahhjkXVcDTypomudBoRIjwyUsXM36o6Uxj3nelDH/oQfkRa0yYCwzDw4osv4pxzzvG+x/M8zjnnHDz77LNj2kcul4NpmqgiWbZdu3ahu7u7ZJ/RaBRr1qwZdZ+6riOVSpV8TSVCsoysYWANWdhQ/BWuvGWhORzGotpaz6E8Z5re8Oq8U07BovXrsfxtb8NpH/gAzvroR3HKe98L2zSh67p3k6EXhuALuLozGTSSnmj/ReO4LnTLQks4DMNx8ObQEAqW5Q17lmfZsqRyVo5N1Aob5s1D06JFiCgKcp2dAIBzP/vZEjNaxrFncW0toqo6ZRY8siCMO7Aabd8AvAVmpXkxzTcPVtvejlUXXHDwZ/4KF5nhmmnV2oaaGojkd3AkAjeswjXxfHDJEpxL/MxksmDOmiZUUawYKC2qrcV7Fy3CexYtOmRr27FWCaSVi6ly/5kqBIl9SkRR8JEKCaiRoL9HF6WiD7IgoJkIadCOBro+oHYCoYaGkn3RufKIomBBTQ1WHmWlXpHnUT1vHhQyu0s/m9+nrBxvzIGIZ1BVV47jvIBNFgTEVBUxVUUjWWd99pRT0BgOI0Tmuvgx3NsVspbZlUrBIf+nokMmSXqns1nk+vvxwm9/6/3OTTJ/CZAKl6+lkAZcvdks9iSTMAsFSCSIC1VVwTIM6NksBI4bVmnak0jgtqefxv5UCq7rIlEoQBVFOEDFAOnV3l7s84mjjMb+VAppouBok89Qicd27cJXN2wY0z6nC+NORVmWhfvvvx9/+ctfsHLlSm9ugXLHHXcc1v76+/th2zbqy+Yp6uvr8dprr41pH1/84hfR1NTkBVjdZOix0j67ywYi/dx666245ZZbDufwjyo6kR/tKzM79le4DNuGKoo4f948vD4wgI1dXbAdxxOhCMbjeO9Xv1ry+teefhoAYOdyJSo36YEBPHPffWidPx/Rc85BOpnEj26+Gad/4QswfAtIqmgj8jyW1ddja18f2qJRSIIAs1BAzjRLVJfobFg5uWQS1a2t+MhddyFRKCAsy1Crq1EYGEC4qQmOrg9Tm2McO87s6MD86urjIgiWfAFXuXw2xb/wC8RixZmAeBzZoSHPqwbwtRTOsIBLFkUEa2qQPHAAvCQd9kL4XDJMzpg4aoNBz9yb4ziEyHB/TFVHTE4sqa/HkgrzjeXQCtexCpI1SYJmmizgKoMqHdYGgxVbrEdCJHLzXIUKDTUapkIlOdP0kkaaJEErO19ogsl1XSysqTnqfyOZL3qR0VnEkm4DXzBVDj2n/aqbHA4aN1++fDle7+8vSbjRmSqeBGo6kWYfjSpNQ0skgv2pFGwiUEMrXJZhwHFd7Patfzki8+/v1tBJS+E20qnkmKbn05XWdWSHhrxEe6i6GgCQHhhAqKlpWIXr7wcO4Kk9ezArHseFCxYUE+aCAA4Y1qHkuC4eeOklBGUZXz3zzFE/JwC81N2NnGl6XmUj2Uc8vXcvcqY5bARlOjPup9mWLVtwEvFu2L59e8nPjsUv6bbbbsNDDz2EDRs2jHs264YbbihRWkylUmgtM0Y9llDZ9L2bN0OQpIMyrr6gV7csBGUZMVWFQNpIsoYBm5pcVuj9p6+3CgVkyT4N28ZzP/kJdjz1FPq2b8e6s85CzyuvoPuNN7DrySfR1tZ28D3JRS5LEmKqinXkd0arW/tTqRIz09wIFa5sIoGGOXOgBALY2deH+dXVOOsb30ArqbCVD3ozji0cx6H5ODGpfe+iRagPhXDns88iOELAVa7sBRQNNbNDQ16mEYBnWj7TKlwCxyFSX4/kgQPgeB7iYX6+9ZNsQs6AJzQwmuz4WPGLZhwLFtXW4vkDB2bM4myiCMoywrLs+aSNFToTV+neFFNVL4gTOA7bBwbQGokgKMtoj0axibQQnvTOd0KLRLBo/fqDwdsxOD8kQYBLgpTy1thKFgZZEuREFcWr3NK2yQyxxwGAtmh01Jk0TRQ9L6zR4DgO75g/H5u6u2FYFgKiiCC5Ji3ThO042PTXv3rb60NDsMPhkpkuI5+HpGme2IZlGMgTP660YSDZ24sYCYTDJODKDAwg1tIC23VLAq43BgaQNU280t2Nc2bNgmnbCBNPsfIKV282i/5criSIfuCll3BGe3tFw+f+XM7rPuEqjKNQHNdF1jRhjCBKNR0Z96egAhoTRU1NDQRBQA8xC6X09PSgoaxMXc7tt9+O2267DX/5y1+wlMwmAfBe19PTg0afvGpPTw+Wj1JiVxRlSnuK0UClkMlADYW8GSx/hUu3bbRqGhRi8KeIYlEilJzAToWTnb7ezOdL5Ds7N28u7jObhek4EKjDfFlZ2G/E7EckWaYdg4M4paUFALye4EoZr1wigRoSyDmOA1kQEK2pQXU8joFczpMfZjCONjTjz5M+/koZ0koVq0v/7d+w84UXShaFNklOzLR5JZHnsfqDH8S+jRthkpYUxtSCVqPHKroxGrTaMRY/sMng7fPm4UwWpA8jQBKf1Yf5N6YBdKUgujkSwadWr0ZYlhGSZUQVBbsSCaxtaUFVIIDI7Nmomz0b6y65BNW+Z/2xajkVSVBlu+4ww++IomCoUECHr5LSlcngxLo6nN7ejr/t2weRCEYcSKUwOx4fk3IkAFy1ciWe3bdvTEFmRFGKgmSGUZzh8rUUWo6D7jffRKytDYm9e5Ht6YHT2lpiiK3ncuAUxRMrciwLL3V346XubmTyeXQ//zyWn38+AHhKjOmBAW+Gi85m6ZaFznQaMVVFolDAd597Dpt//3sMvfoqll177bAZrgTxZKXVqLxlYWtfHwqWhWtWrRr2OVNk9p8yUkuhblkwbRv5Q5gyTyfGfebv3bt3xMG2vUTS+3CQZRkrV670BC8AeAIYa9euHfF13/72t/H1r38djz76KFaV/ZFnzZqFhoaGkn2mUik899xzo+5zqpMlZXw9l4MSDOLUSy8FcNBc0LBtmLbtZaMEUhqXBAHty5YBAOpJP78fWvWyCwUkdR1AUbHQzOUQqa9HIZPB2qYmpIlgSqa3F5bjeD4Ypm0X51Iq3GQUUSwxP85bFkzHgcTzeOX//g9/uuce72e5VMobtgXHoVrTim2JxMRxNHNbBuNoIPA8NEmqOHQt8TzOv/FGnHfjjd73qpqbcfKFF5ZsR2doZlpmnuM4NC9ahHfeeitOuOSSwx7aZ0w+EfJsKDf8PhJEIshxrM5inrRIMkoJShLedcIJeOf8+Yf1On+LaKXkUV0wCEUUEVYU1BH1v+pAoGhCrGn4+I9+5AVbwMFK/rFonZZ4Hg5QscK1pqUFGpE8B4qy913pNJY3NHgKjwpZd6QMA2+bOxfLD5H8p7RFo7jkxBPHdG+n84cWSS6XVLhcF/l0GtWzZwMch2xvL2zHQWFwEF3btxeteXI58IriBWquacIhlav9L74IAIg1NuLV3l70GAbkQACZwUFwXNHah1a4BvN5r83YJF1J//jP/8QOondQ3lKYMYyiiJphoDuTQV82i2ShMOK1mDYM9GzahP+9+24Aw+XuKYZtw3Qc5A9DWXOqM+6Aa9asWeir4FI9MDCAWbNmHdE+r7vuOtx333148MEHsW3bNnz84x9HNpvFFVdcAQC47LLLcMMNN3jbf+tb38JXvvIV3H///ejo6EB3dze6u7uRIaILHMfh2muvxTe+8Q387ne/w+bNm3HZZZehqakJF1100REd41QgR/rVjVwOSiCAcz72MXzxf/4HaiiEoXwez+3fj8FCATFVLargkAqXLAionTsXNz/+OGrb24ftl1a4HF33ZrgM24ZZKCBKMvu5ZBK7X3oJAJDp7kbBspAkajrU1b5Sxl4WBAz4Aq4ccVLnHQe//uY38fdHHgFQ7PXOJhIHAy4U1ZgknofpOBPu5cFgHAmfXr3aG5wuh+c4zF23Dm0j+AdajoPnDxxAdyYz4gzBdEfiedSdcAKUWGxC2tYYE0tAFD2J6/FCxQhYEmxqwXEcVjc3H1JlshxarRzNlJ3nOHxs5UpUBwKQBQFVmlZUzatwDtA1wbFoKZRpS6HrIlBWLWkKh4uzViTgeLGrCyHShkkVPRVRxP5UChFZxrIxBluHi0KS4vR4g7Q1UNdhOQ7y6TSCsRgiNTVI9/TAdl088fWv4z+uvhov/O53cGwbYiTijdK4lgXHdZEzTRSI/+nSiy5CQJJwIJ1GuLoa6YEBAMVzhAZSKV0vjqJIEkzbLmk1tEmLnx+6RkzpOnYODWEgn0dS1yv69rmui7Su4y/f+Aae/9WvYOt6xQqX7ThFs27HQX6cqohTiXHX6UYaaMtkMkc8Q3XJJZegr68PN910E7q7u7F8+XI8+uijnujF3r17wfsu2h/84AcwDAPvec97SvZz880346tEEOILX/gCstksPvaxjyGRSOC0007Do48+Om09uIDiDJfA89CzWS9IUkMhr/e1NhhEfy6HMJGFpb3YNIsyUqaJznDZ+bx3MWQLBdiGgWh9PfahaCAIADVtbUj19KBATBWrA4GDLYVU5ch18dh992HhaadBaW1FolDwfp4zTex6/nlkX3/de3/LMGCbJhzLKg24SIWLBnQs4GIca2qDQfwzMY8sh6pZZSt45Azl83ilp6cozU3mBGYiEs97bS+HO0PCmHw0SUJ1IDAhfxuBBFwzrVJ7vOK3vhitKtUSiWBNczO29fUhpqpQydgCtbsAisJYGcM4Zi2FEmkpdCu0FNL1kW7boNPvVZoGTZI8n66gJHnrp8m6j1GJfep1SitElmkib5rQs1mo4TDijY3I9PTAdhzkSLHjj3fdBQAINDR4YhuuZcEma8F8LgdBkuAIAhQU78u2ZeHvv/gFzvjwhwHAC6zShgHTcRCUZSR1vSTg0pNJFMoqThnD8K757QMDmBWLIWsYFf21DNsuCdiSe/bAqJCQpJ1Ppm0flnfcVOeIAy4qJsFxHL7yla8g4GsXsW0bzz333KjzUYfiU5/6FD71qU9V/NmGMqnI3bt3H3J/HMfha1/7Gr72ta8d8TFNNagvlkH8FygvdHYiZ5pY3tCAZKGAAFEpEoiEtUAGQEdCUlWA42AVCt7FMUQkP6MkuzPU1QWg6If16oYNyOs6hoixnkFbCslF+OaLL+JvP/85El1deMsXvoAcMU2u0jSk8nk8ceutJe+fGRz0ZssC0ajXsholN3M60DrTVN0Y05PRlL8UUawoqJHUdYRkGdWBgDcnMRPxFjoAUxSdgixvaMCz+/aNeSZlNETSejZTz+XjjZKWwkMESR2xmPd8VkURIs9jx+Ag5hNxhr/v3w+e49AaiRyzlkJaHChP1IYVBQFJwra+Ppza1gae4xBTVS+pK/J80W+LBGCTdR+jazTq2xXytRRmDAN6JgMtHEa8qQldu3bBdByEW1qQ3LXr4D5qa72WQqNQgOO6GMznAcOArGnQbRuKIEAWBOQSCQDAgW3bgI4Or8KX1nVw5HjoHBXFSCSQK6s4ZQ0DcF2EFAW7EwlUaRoKloUUGUfxM5jPo+BLQGZ7eyu2FGYNw6uu0c6pmcARB1ybiIO267rYvHkzZF+/pizLWLZsGT7/+c+P/wgZFXGJUAXPcdCzWUSIk7tDXNAVkomhNxOZXGS00vVafz9mxWKee7ofjuOgBAKwcjnvYhgiF2dVWcBV29EB13FQSCS8jAYtBdMHbx8JiOVAAGFZRk8mg/2pFKo0DXv37x/2/umBAS9jEozFvEyZJoqoCQS8lkRW4WJMdSopYAHF6zSqqghKEkKyPGMXqTTgApm5ZEwtmsJh3HLWWRNy/lET2Zl5Jh9/jKZSWM7seBzvWbQIKxoasKW3F/WhEPb6fJkkUrmhVdCjjee7BQwTYBB5HssbGtCdycAkinhhRUF9MIgqTcPS+nqvMidNon2H5EtYyILgdV/Zpon+RAKubSMQDsOpqcHOjRuR0nVYuRzWXXIJTr7oIrz54ovgRBHN8TgkTUMumYTjukgWCojyPPo0DbpleeIcH73vPvzgQx9CorsbSnu7V8miLYIizyNvWdB9IyD60NCwmaqkrntBebJQQD8RVevP5UqqnACwubcXfWQtCQBGNltRpTBnmsUKl+NgiAVcB9UJr7jiCnz3u99F2OfDxJh8bNKPzHOc5zAOwDMfjGsaJJ7H7Hgcs+PxEgl1gecRlmW8MThYMeACiq2Jpu9iSJCbZxUxWR4kLvKR2tri8ei6N4eyc8cO/Pr974fxuc9h1QUXINnbC6CoOigJAmzXRWc6jaX19egnyop+dm3ciDfJkGcgGoVFFA8VUURbJIKXu7u94JHBmMooZBg7axjoTKfRmU5jTUsLTNtGlaYhSNpZRq43T29k0r58rIblGYdmooJ9uihlwhUzA6/CNYZrNyjLePu8eQCKvlaP796NAdLxQr8H4JjZBiiCgDSRc6+0bnj3CSfg7/v3I1EoIChJWNHQgAU1NQCAz6xZg92JBJ47cGBS72Ec7UAiwQtVyLYMA939/QCAQDgMOxxGIZ3GrpdeQranB8GqKsQaGnDSO96BLb29aAqHEayqQm5wEIZtozYYRMG2Iamq54+qiKJXLRvYvx8ta9d6FkBUbRAAVjQ0IDUwgL+QY9SHhobNVFHVQYm0ZT6zfz9qAgFsHxjA7kSiRBo+YxiwfQGcmc1WFMWgs/2yIOCNwUHsHBzEjsFBnDd37oT9vo8F4z7zf/zjH+Oll17Chz70Iaxbtw4HDhwAAPzkJz/B08RAlzHx0B7pbE8Phjo7oZFZJ3qS1gWDeNvcufjGW96C5kikqKYmiji1tRUCUXMaLWDRIpGS7EMqlQJQrDip4TAGSGUqTG5KVqHgqRTuJRWtP9x5J17+85+RIgHX6888481+0ZvxYJk7uSBJePz++7Hn5ZcBFAMum2THFUFAXSgEF2AzXIxpAa1wbezuxlChgLCiIEcMKWkLzufWrsW1p5xyrA91UpAE4ZjKQTOOHhzH4f0nnoj3LFp0rA+FMQF4ohmHWZWKaxrmV1fDIesBx3W9NsNjlXgJSBI0URyxWhdTVbRGIthD1iM1vkQ0DYREnp90awuJ/K5VUfS6xkzDQD85LjUQgBaJwMznoZKk94Iype0qTUO4pgb5oSEYtl0UVisUIJM2ySpVhUKCo47ly7H5L38BR2bsgOIMF9VIEHgeti9wLiQSwwKklK5DIgnwrGHgzaEhLKiuhm5Zw7bNGAYs3/7MTKbijFbBsmC5LhpDIbzU1YUHXnoJv9++fZgk/XRj3E/AX/7ylzjvvPOgaRo2btwInfRtJpNJfPOb3xz3ATIqYzkOurZtw0+vvBJ6NotZK1YAgGcI/NEVK7CqqankRnnLWWdhfUeH5x0k8TzypolOomDj3zenaTBIiR0AkiTgUgIBhOLxgwEX6dH2B1yG76J484UXvAoXALz85z9DEQR0kfccKgu47LKLb382i/2plKewSAdWHRQXswzGVEYhM4cix6FK0xBTVRQsC7Ig4PS2Nnx69WrEVHXGKvhJxL+GBVzHB4tqa5kZ/QyBtoceyYxpUJJAJ3NoVYUGXMfiPqARLzJZEEZcN6xobPTWF+XCGqooQhlBjXYiEX0BF8/z4EURpmF4bXiqpkEj3WSpzk7UtLejurUVALyqVECSEKmpgT40BN2yisrO+TwkVYXtuogTQRDdsrDqgguQHRpCdvdu7EokYNo2krpeUoU0SIAkKgryg4MlFS7XdYsBFznupK6jJhCAyPOeUbSflK7DJS2CajgMK5erqEJYsCxwKAbvVHJ+qFDA30iQOV0Z95n/jW98A/feey/uu+8+SL6T9NRTT8XGjRvHu3vGCJiOg+2PPQZeFHHO1VejfenS4lwX8XBojUYrqkWJpI9aIn5cm3t70ZPJeP27umXh6b17YSsK8pkMLCLBnvIHXFVVyKdSEGXZUxG0CgVPiIMGZwCw84UXMLB/P+YQbzSO+BbtT6WQMQwM+Pp5/fDkprg/lUJnOu1VuOiN0Cafk8GYyqiiiKSuY0FNDRpDIUSJyaYiCFhSXz9iS+9Mwd9SyAIuBmP64G8pPFxUUfRm+agicURRUK1px+S5LQsCgrKMmKqOaPL91jlzEFdV1AWDmEcSyRQ61zXZwj9KWSVNlCSYpok+kphWNA1aJAIA6N+3D0GfYBMdMQnKMsLxOIxMBrptQ6AVLk2D47qeMqlu22iYOxeypiHz5psYyOXQmU4jVSiUVCHpDFd1czMKySR0y/KCO8O2i0EdCWTTuo66YNBbe1YKuGwScMUbGmBkMhVbCul6VOJ5T9lwfyqFbRUsqKYT434Cvv766zjjjDOGfT8ajSIxwmKaMX4sx8HQvn2Yd9ppOPX974fDcXhyzx50pdPeRVsJv3M8zWK0RqMYJBLwe5JJ1AeDCIbDMDIZOK4Ly3GQIhUpWdM8Y+WqlhbPJNlf4UomkwDH4fI770R2aAiFdBqLzjwTdbNmITM4iPpgEAdSKWwfGMCAb4Zr/rp1aF+2DJG6Olz3i1/gmh/9yFMJojNcmihC4nnopHWSwZjK0AdnSySCz69bB4n40Ek+2d+ZjCQIsIgJ+rGY3WAwGEeGXzTjcKEB14FUCj3ZLASOQ30ohPctXnxMBIJsx/H85kYyYJcFAXOrqnB6W9sw6XeV+NWtJjPskwWdTfcCLlmGpevoIeskSVEOBlx795YGXKSSqIoigpEIrFwOumVB4DiYpKXQJaMYbZEIcqYJXhAQra9HfmDAUxZMGwacQgH9e/cCAPRsFgAQra+Hkc3CIh5ZQLH90CBrMUkQcHp7O+qCQe+YyhUI07oOi6wlYw0NMHO5EVsKgWI7p0neLyhJ096Ta9wNqQ0NDdixYwc6OjpKvv/0009j9uzZ4909YwRM20Zy/37MXrkSQPEEjWsaBvP5Qy7k6BCsJAhoCocRlmU8u38/9iaTUAQBC2tqsC0aRV86fTDgSiYhqio4nkeoqgoAUNfRAYkOdvoCrnQqBUnT0LF8OdqWLMHezZsRrq5GqLoaia4uSEQkIE/UdwRZxr/+8Y9eVsR1XfCCgGA8jk6ihkiHXQNEmjWbzc5Ys1jGzIG2iDSFw6gPhaAIgpflPR5k0mXWUshgTEvG0wIYkCS4APYmk9BtG7Pjcbxz/nwsJV6qR5umcNjrjhmpwgUAnz3llIoqmzzH4ZazzpqkozsIB3jS+sDBClcqkwFQtOwRyM8sXS/xKaVWPLIgIBwOw8xmUbAs8ByHvj17cOLZZ4MjyfaqSAQmUZMO19QgMzAAx3XRn8shb5r43y9/Gf1vvokv/Pa3XkthtL4evXv3QrdtpHQdtaJYNEm2bdSQ5Lc/mOZQWuFyXBepfB4v/+IXqJs1C4FYDH2dnSU+XxT/90xS4VIlqWI1bDox7ifgVVddhc9+9rN47rnnwHEcOjs78bOf/Qyf//zn8fGPf3wijpFRgUwuh0IqhRiRadctC1WaBg6H9rtRyPAoDWLqQyG0RaPoiMWwuK4O61pbESSiGTTgGkqlIJIbFa1w1c2eDY7ni+o3xMwYKLYU0m0vuP56tC5ejKYFCxBvasIbf/87UqQs3J/LIZVKQdY08IIAjufB8bzXTugSsYzGcNhbuNLh13lVVd6AK4MxVaFtsLT3/4z29uJANEl4zHQknmeiGQzGNITnOGjEf+pwOaG2FlWahoAkeYHbotraY2aK3RqN4qb16w9pgcBz3DE17qb2NyUVLsNAgQQ9kqJ4XUUAvGoXcLB1UxYEhGMxOIaBfKGAXH8/0v39aDvxRHAodh0sqatDSySCnkwG4epqZAYGAAB7kknkTBP9b74JoDgSkurvh6xpCFVVwSBBXIK0BaZ0Hb27duHBT3wCg0Qwz48/4MqZJvZv24Z0dzdmnXSSt240bHtY8jxrmnjt17/2tAJSug5NFKe9CfK4n4Bf+tKX8IEPfABnn302MpkMzjjjDFx55ZW4+uqr8elPf3oijpFRgX4iExokGQ7dtouDnaJ4yKFlhagY0iDmsmXL0BaNoj4YxJdPPx0XLFiAaCxWDLgcB5bjIJFMehe6Q7IPNWRYU9a0YRUumZTtq1tb8c/f+x6C8ThWX3QRAHgX5v5UCrlMpsS02Q8dtq0JBLyqXUiWURcMojYYnDTHdwZjoqAJApoEOamxcURp4pmIJkleWxILuBiM6QPHcTizowNXnnTSYb82rqpe4CCRkYBjfc8TpsH9pzUahUaCVACQZBmWaSJN2vokRYHkE+6QfWunkgoXCcRky0J6x47ivk88EUCxclkfCqEhHIZu2whVVyNNA65EojgSQkh0d6Nz2zY0zp8PNRRCIZ2GblmeN1ZK19Hzyivo2bEDL/zudyWfxUVpwJUxDKQHBwEAZ3z4w5BVFaauVxTXeH3zZrz60EN48r/+CysaG1EXDEITRdZSyHEcvvzlL+P666/Hjh07kMlksGjRIoQmwLmeMTL95AKhJeUCMbRTRRHhQwRc1596KmRBwOf//GcIRD3ti6eeCo4MXAJAdVUV4LrQczmvpVAOBIoDjOQ9azs6kCgUIGoarHzeu2gy6XTJjYBCJeRzySTQ1IS+XA6FXO6QAVd7NOp5fCiiiJvWr0dS1yddopXBGC+aJBWDLhJwUXnh40Vhs1rTPDnm46Gix2DMJN45f/4RvY4jC39NkmCSygub4Tw0Fy5YgDPa270qmyRJcCwLyXQaoizDJMIYtPKl+Kpd/gpXlKzR5moannnpJdS0tRXnvXp7vb9DjaZhi21DC4eRJ3NVjusi41OVTvX3Y9emTTj5Xe+CFg7DsW04uu5JyOuWhQwZ+6CdS2889xy2btiA2R/5SEkglTUMZIaGisJp4XBJor5gWSWV1Nc3bQJQXN/KZPSFGlPTzzkdmbAVqyzLWMT8N44atMIVIkOTOdP0sumHOhlptUgipX4ACJdVi2qISk8hk4Fh28hms4Ci4O/79yO6ahUu/P73UdPWhif37AGIhDy9uHKZTMWASw0GwfE8cskkFKJyY+XzUMiQZdYwMJDPozUSAcdxXsB14cKFaPIZa0uCUOKTwWBMVSSiykkDLNqff7wEH1WahuZIxGsPZjAYxweyIEATRcRV1fODYoyORLqPvP/LMlzXRVwUISkKtvT2FjsGyPND8W3rr3BF6bowmcTWJ57A6ne/G0Cx6kSfPdWBAGzHgRIIQM/lIJA119DOneB4HvHGRrzy5z9Dz2ax4vzzPREN2lYIFCtYKdKxRAOu//elLwEAZl1+eYlvVtY0kU0kEIhGvVEU0xdw+UkRwb28z7JI4DivGqZN03NpQgKuQqGAV155Bb29vZ7ZHeWCCy6YiLdglJEgqjX+Ht4F1dWeU/pYEH0BVzl1JODKJpMYyudRyGbBKQpCslycFQuF4LougpIENRKBkU7DoGbM6TTkChVOjuehRSLIpVLQOA6O68IsFBAiWZrdiQRcAIlCAXFN8wIuVsliTGcCkuRlLD3hl2n6wDhc5lZVoS4YRM402YKLwTiOEHkeQVlGQJKQ1vVjOhs1XZEUpejbaNsQVRU1gUBxrp4kt+WyCpckCJB4HiGSoH7wuuvgWBbmrFwJl8zj02dPWJYB14UaCgGuCxgGLMdB7+bNaFqwALKmYfDAATTMm4dIfT2e2roVQDHgouIVhm0jTeesyiTbrXS6JJDKGAb0ZNLTAJA1DY5lwTCMYQFXmgRcWZ/SucDzMEyzGHBNU8Gpca9kH330UVx22WVexcUPx3Gwy3ozGRNDkpRmlWAQruvCBbCgpgZntLeP2UR1tICrlgZcqRT6czkYuRyUmhpUaRpqAgH0kIpWSJahRSJId3fDcBwM5HLIZ7OoJ2Ie5QQiEeSSSciGgd2JBDhdh0zey0VRTShjGF7AJZEsGYMxHQnKMjRR9BSyOI5DTSCAt8yadYyP7OggCQI+tXo1/nHgwBH5+TAYjOnJBQsWYKhQwIFUCjt99i+MsSPLMrKmCSOfh6gokHgeYUXxlBTpOAYNpsKKUhwNIZUvOm9f29GBvckkGkIhr1uoStPg+vbh5PPIGwb6tmzByRdcgAFS0WqYOxcFy/LmwoxMBlnSUjgwMAA9lcL8deuw/dlnkezp8Y7dSCRKAqm0riM3MIBwdTUM20aBBH6FfH54wEXOlyyZ+QIOVrj0aRxTjDvl+OlPfxrvfe970dXVBcdxSr5YsDV5ZDMZiJpWDGpdFyJRt2mNRg8pmkEZrXpUQ7IQZqGAgXy+eMGrKuqDQciCANNxkCgUEFVVBKJR6KkUTNtGdyYDPZv1MiwU13Xhui7C1dVI9fSgNRJBslAAdB2uLOMNIkuqiqJ3QdEKl8ICLsY05YSaGly2bBnmESsFoDhDubKp6Rge1dGlJhDA+fPmsQw3g3EcsbKpCefMno1LlyzB50455VgfzrRElmU4polCNguJrL38c3W0pfC5Awewc2jIW8+FfK2GQHEWKqXreNvcuWgn7YbVgQBUUQRPRDicQgG93d3Q02m0Ll4MhXQpxRoakLcsVJFnmJPPI0kCri7STnjS298OuC42PPCA956F8oDLMJA+cAA1bW14c2gIfaRKVsjlholh5Ihwx8D+/XDIelDkeZi2XVFGfrow7pVsT08PrrvuOtQfI3+F45VcNguRzF2ZpD/6cFvvbjj99IqeEwBQRYYu7UIB+5JJGLkcRE3D/OpqKKKI7QMDyBgGmiMRBCIR6KSlsGBZMHI5aGUthVt6e2HYNupmz8Ybzz2H5kgEzZEInsnnYRKZ7LRhQBEE6LaNZKGAnGmiUVWPiVEigzERcByHeaSCy2AwGMcbsiCUtL4xxo6sqrCHhqBnMpCCQYQVBetaW73KlaxpGMjlUKVpyJkmltbVAQACvhn3Tz74IIDisyjuUzisCwYRkmUkSPeFkc0iQWamwjU1EEniPt7YiLxpopYEXHYuh7SuAwAGSQWqbtYsKMEgXnr0UW//2a4uFHxFl95UCtmeHtS0tUHkebTV1GAjih6u5UFUNpVCrLUViX378Oj3voeBffuw6l3vArdgwbSWhh93hes973kPNmzYMAGHwjgc8rkcRHLxeK13h9nXSmXkKxEOBgGOg5nPY18qBTOfhxQIIKwongqi4Thoi0ahBYOwdR1Z0gNs5fPDlActx4EqiqibPRuDBw4gn0oBAHQSyNUEAuA5DgLPw3FdbOntxb5UaszVOgaDwWAwGIyZQigchpnLoUA6mqKkrfCkd78bsdZW7Abw+sAAYqqK+dXVOJO0qvvXdZHaWq/DyL9GjCgKVjQ2Ikta++xCAf1kDisYi2Hd+96H5W97G2avXFlsVwwEICgK3HwePZlMUR6eqGVrkQh0Il0PFO2A+rdvR8EXHO3t6oLrOIjU1oIDEKNdVL6ZMIqezaKF2BHseP55vPnii/jvG2+E5TheO+N0ZNwVru9973t473vfi6eeegpLliyBVLbo/8xnPjPet2BUIJfNQlRVFCwLG7u6MKeqakLFJTRJgqSqCLguhvJ5mLkcZE0rkZ23HAe1gQCCwSAc00Qqn0dO12HrOmxZxlA+781iqUQ9sWHlSgDA6888g2XnnefdSAKSBIF49RjExLknmz2kxD2DwWAwGAzGTCNaVQUjk0FBEBCoqfFmtM69+mos/dCHMJDLYVE8DkUQcNXKlZ7CoT9RLWuaJ6VevkacFYtBCofBiyIwNIQmUcQrKAZcgiThwi9+EQDQPThY9I8MBsHrOvpyOXzzqafQ3dfnaQlQPvbDH+LFP/wBuzZvLpm3GqJCb+Ewco6DqG8mzF+1cl0XRj4PNRjEGR/+MJ78yU8O/sxxpnWFa9wr9J///Of485//DFVVsWHDhpI+fY7jWMA1SeRzOQiKghc6O9EejRblpycw4FJFEaKmwSZu5a5tQw4EoAgCorQs7boIyTKiZF6rUCigj5SYOw0DwsAATmlpgW5ZXsbFDYdR1dyMnjffRC6RgFkoIFhXB44EW0FJgkP2m9T1MQuAMBgMBoPBYMwUYvE4jHQaBUFAhMxcAUXlW9O2IQkC5lZV4S2zZmGub064PFFN5+HL14h1wSBEWUZ1Rwc6X3sNNe3tUMNhCGWFE8/jKxyGkUohYxhI6TrSiQSUUAgcxyHW2IhEV1fRJHnDBlj5vCcL77qu136ohsNIu65naaSnUiVBlOU4sHQdkqYhQrahZLq6vG239vUhoiho8Sl1T3XGvUL/8pe/jFtuuQVf+tKXwDPZ36MGrXDVBYNoi0axvqNjQitciiBAUlVY+TyymQwAQNA0yIKAiKJAITNXIVlGnARc+XweveSikgMB1AWDeHLPHriui7lVVXBcF9v6+hBvaECiqwuDnZ0AgBDpO5YEAUFZhsjzqNI0GLbNAi4Gg8FgMBjHHfHqapi5HHIcB8kXcIVkGTqZ3X/LrFlYVFtb8rpIma+qSQOuskBqblUV5lVX48XWVvTt3g0tHC4aJJdBPb606mqk+voQMQz05XLIpVJQSMBz5fe/77UVKoEAjHweluPAdpyiXRAZI1FDITi2DUVRIKoqjEwGQ4WC916GZcEsFKBoGqJkbUjJ9vV5AddDW7aA5zh89cwzD/O3euwYd4RkGAYuueQSFmwdZWjApQgCrjzpJJwze/aEqoCpoghJVWHk8xggQZREAq6wLEMWBCiCgLCioIpWuPJ59JGycSwWw+x4HM3hMMKKAkUUoUkSIoqCWGMjhrq60Ld7NwAgQARXZEEo+nqJIhbX1aElEhl242AwGAwGg8GY6VBlQD2bRbi1FTIxLQ7KMnTLgsBxFRPt4fKAy7YrdkGFFQVL6+uh1tQg2duL9MAAIjU1w/bnuC54jkOwuhrJvj4sqKnBYD6P/s5OxMn6LRiLoaq5GUBRPdHM5WC7LkzHgW7byJPEvUbWiyFZhkI8XBO+gCudzQKuC0nTUFdmn2Ll855gh1Xm+TsdGHeUdPnll+Phhx+eiGNhHAb5XA6iolTMWkwEXsBVKGAeqTLJ4fBB41ZBgCwIJS2FeqGAARJwKYEAljc0oCEU8ua+oooCVRThRqNI9vRg21NPoW3pUk/BSOL5oq+XJKEpHMbVq1bhtLa2Cf9sDAaDwWAwGFOZWp/6d+OKFZ5pcVCSUCAVLoUEYX4CkgReFL3uoaSuoyYQQLxCx1BMVRGsqUF2aAiDBw4gXFMDx3XxSnc3ukmQBBSDs1BNDVK9vagLBtEUCiHT1YXalpZh+1QCAdimCdMwPCn3fDoNQZYhyjI4FKtwajgMM5MpCbhSRClR0TSE/cEfx8HJ571qmD0NA65x96DZto1vf/vb+NOf/oSlS5cOE8244447xvsWjArkslmINTVHJAc/FhRRhKxp0PN5mOSiUyIRTw1R4nmv2hWjAVc+j0QuBwAQNQ0xVcWqpiZ0ZzLQJAlnz5qFX23bhpdUFYVMBvu2bMEp73kPXPKetKVQFUWIPI+OCqVtBoPBYDAYjJnO7LlzvX/zPA+JBFeqKHpzWZXWfxLP45pHHvH8rTKGgbM6Oipa7MRUFQHSkti1fTtmnXQShvJ5xDQNe4hZMgcgrqoIVVUhn0rBsW00RyLI9PSgqqUF3ZkMXu/vxxnt7eA4zhPRKGSznl1QLpGAFolgbyKBnGkioiiQNA1WPo+UrnszaUkScMmqCo7j8J6bbkJ1ayseuPZaOIUChgoFz+h5ujHulfrmzZuxYsUKAMCWLVtKfsaMLiePZatWYXcwOGKGY7yIPA81FEJ6cNAzodMiEciCAJHni4o1pMJFZ7hMw4BO+mtF0n74jvnz8UJnJ5Y3NGBdayv+7803UUWyNno2i5q2NrhuMeSSSdVMIwEXg8FgMBgMxvFIvCzpTCtciihCIDY6lax9OI5DPBxGjsxNAcPbDCkLqqtR65uVCldXw7BtBCQJAVGEblnIGEYxGU78VfVcDoIowjIMBGMxvDk0hKiqehZF1BYon8mgYFkoWBYS+/ejuqUF+1IpLKqtxYKaGsiBAOxCAbplIW0YqNI0pEmC3yDvvfiss4qfORiETYMzx4HtupOy9p1Mxh1wPf744xNxHIzD5Obbb8fXnnjCC3wmg3A8jt5du5BLJiEHApDJ7BZQrEYJPI+AJHkVLqtQQCGfB8fz4Mm2IVnGLWedBU0UwXEc1ra04Bmfmk5VaysGSWBObyYqC7gYDAaDwWAcx4g8j1OuvRYL585FBvAqXIov8T1S0BGUZa8KxJHXVCKuaaj2KxzW1MB0HAQkCeA4dGcyqAsGUbAsBOi8fjoNiahVyyS4CssyTBpwkQqXP+BKHjiAeStWICTLaItGsai2FnIggHRvLwzbRoqoUidIkDhoWXj+wAGc3t5e/MyBAJxCAVnDQH8uB8txRvSRnaqwVe00RxaESaskxqqrkU8kkEsmoUWjEDjOC7joXBbHcYiQrIdRKCCXSkEKBosSomTbgCR5x6iKIrTqau89qtvaIHAcJFIubyFVtPm+bRgMBoPBYDCOJyRBQPupp6Jx4UK4OJiUlgXBWzeNlJymAdBQPo+caY46elJFTIiBYoWLtvcJHIf+XA71oRDeOX8+gtEoAKCQyUAn4yOSqiIgSRB5vijp7jjIkWMq5HIoWBbShUJx3qutDTzPY31HR1F4TdOKiXrL8ua46AxXOBQq0SdQg0G4hQJSuo6dg4PFgOt4q3B97WtfG/XnN91003jfgjEKNSS7MBnEa2qgp9PIDg1Bi0RKgqhPr17tXcC0wmXqOvr37kWooWHEypsqipA0DUowCCOfB0il7Iz2dmzs6kJrJIJbSAmZwWAwGAwG43hE5HkIHAeHjF14FS5R9DqMRkq4R0iF6+WeHjQS8bKRiJKkOVCscPWQ+TD63qooFkU3fAEXhVcUaKIISRBg2jY6CwX0kNESnQRcu3btgmNZiLa0gCfWQjzHQQsGYebzcFwXOwcHsbyhwWspVAMBSKLoeYApoRDMXA6m42BvMgl7Gla4xn20v/71r0v+b5omdu3aBVEUMWfOHBZwTSI8x6GJBDuTQXVtLeC66N+7F2okUlK+rvddoJFQCBzPo5DLYWjPHoSbm0cc5lRFERyAT//sZwDpwxU4Dm3RqFc6ZjAYDAaDwTiekXgePMd5inzeDBdpKRwtiArIMlwy5xQj7X8jEfQZJTvBILoHB3FiXR0EnkdTOIwLFywAAFSTzqNCJgOerAUtSfL8Uy3Hgeu6aCMzYRYJuHZs3w4ACDc1wSRiawAQCIVg5HJQRRE7icJ1mlS41EAAoijCsG1oPI9AJIJEdzcAeC2FkyEYN5mMu6Vw06ZNJV9btmxBV1cXzj77bHzuc5874v3ec8896OjogKqqWLNmDZ5//vkRt3311Vdx8cUXo6OjAxzH4a677hq2zVe/+lVwHFfytXDhwiM+vqmAJoqonsQK12xyke3fuhVKOAyB4ypmFFRRhBwMQjVNpPr6UN/cDInIx5ejkPksKRRCMB4/6GA+zUrDDAaDwWAwGJOFSAIu03GKLYT+Cpfv/5VQBAEZw0BIlhGSZRSIYmElgr612rZEAi2RCOqDQe89lhKhs1rSephLpbyWwizHYU48DlUUkTEM7EokEA+HwQkCzHweBctCb08PAECOxbzZfgAIhcMw83koooihfB4AkMpkAI6DoqqQBQFJ4rsViMWQTSQAAIPEVLncV2yqMykzXJFIBLfccgu+8pWvHNHrH374YVx33XW4+eabsXHjRixbtgznnXceent7K26fy+Uwe/Zs3HbbbWhoaBhxv4sXL0ZXV5f39fTTTx/R8U0VZF+mYDJo7+hAfPZsAEVJ+JHaBBVRhBIKgS8U4BgGJE2DxPMlFzElQkyQdXLx0wrXaDcOBoPBYDAYjOMJKk6mWxYEX0WLqkULo4iLqaIIVRQR1zQEJAnto9jsBCUJaz//eXz0nnsQlGXMrarCuXPmQOB5b74eAFpjMQRqajB44EBxJASATfa9oLoa+1MphGUZChkdsfJ57E+l0D80BFHTYKIYCAZ9AZdtGBBcFyldh+U4yGazEEmwFZZl7EkksHNwEEM8j2wiAZHnYToOTMeZdon6SRPNSCaTSBI58cPljjvuwFVXXYUrrrgCixYtwr333otAIID777+/4vYnn3wyvvOd7+D9738/lBGkLwFAFEU0NDR4XzUVHLX96LqOVCpV8jVVsEfxYJgoFFFEqLERQNH0mFanhm0nCFBCIeQzGRj5PDhZ9vy6yqnWNGiiiN0kU2E7DnifGAeDwWAwGAzG8Q4VoyhYVsl6TyGBmDiKYJoiigjKMprDYdx85pmY61MirLRt08kno2XRIkg8j3WtrajWtGFJ9uZIBJHWVjzz0EN44Xe/A3BQNGNhTQ3CioJaYlckahp4w8Cm7m7s7ekpzu3bNqKq6vmB1ZP1pTE4CMO2kTUMZDIZCIoCkefx4WXLMKeqCgfSadTU1hbVEV0Xr//97/jlZZdhqK9v3L/jo8m4V+vf/e53S/7vui66urrwk5/8BOeff/5h788wDLz44ou44YYbvO/xPI9zzjkHzz777LiO9Y033kBTUxNUVcXatWtx6623oq2tbcTtb731Vtxyyy3jes/Jgl6AlYKaicLfEhisrx+xfCvwPLRwGNnBQcB1wcsywrJc0WRPEUWEFQX7Uim4rluscLGWQgaDwWAwGAwPTRQh8TxSuo6AJHkBV5WmIaIoSBvGiK9ViKfpO+fPr7gW8xOUJMB14ZKviKJAFgSoolgyRlKtaaiZMwfdmzZhz8svQ4tEwPM8NFFEXTCIiKKgPhgEx3GQAwFY+TzypolkIgE1FIJp2yXzZG0dHQCAbE8PEI8jbRjIZrMQVBWSIGBlYyP+umsXtvT2Ikbmx4R8HolkElY+D0XTjvRXe0wYd8B15513lvyf53nU1tbi8ssvLwmaxkp/fz9s20Y96Rml1NfX47XXXjvi41yzZg0eeOABLFiwAF1dXbjllltw+umnY8uWLQiPIDxxww034LrrrvP+n0ql0NraesTHMJGUZzwmg6AkYdY558AZHETzySePGtwFIxH07NlT/I8sIzLKkOapra3Yk0jAdl2vUscCLgaDwWAwGIwiAs8jrCjYn04joijeei8oy1jT0oJZo7QJAoAmSWNS8qsJBMDRWTEyDqKIIj68dCk6fO8RkmXMOf10bHnkEQCAZRhwUUzOVwcCaAqHEVNVnDd3Lu4NBKBnszAdB7l0Glo4DMtxSsZgFs6ZA47nkenpgTRvHjKGgSypcAWJAiMVhqsl1TAkkxgk3XPqJGoYTAbjXq3v2rVrIo5j0vFX25YuXYo1a9agvb0d//3f/42PfvSjFV+jKMqoLYrHkqMRcIVkGXWLFuGM730PO4eGKs5kedtGInhzYAAAwJEhzZFYUl8PaetWmLYN23URFMVDZmAYDAaDwWAwjiciioK8aQ4zOf7w0qWjvs4mcu7CGNZWdcEggrKMZKEAicjNA8DJzc0l24UVBQ2zZ+PK//5v/Of73oeWxYvhui40SUJtIID3LFqEZfX1cFwXCpF8N2wbhWwWkVAItuuWrA2bYzFo1dVI9/Yi5DjIGAYy2Sx4RfHmvKJEdr6OVLgyfX1QbRu8LEOYZon6KSfxUVNTA0EQ0ENUTSg9PT2jCmIcLrFYDPPnz8eOHTsmbJ9Hk4JlQSIl38kiJMuQBQGGbcNynBLp0HKisRh0MuPGyTJCowRnAUmCxPPImiZ2Dg7in4gaIoPBYDAYDAajSFxVYdi2J5QxViTS6jfWCldAkpDS9VET+RoR4sgqCj79059CCoWw3zCgiSI4jsNqEqA5rgslEEAmkSgGXJkM6traABKcUSKKgmB1NRK9vWgCkDEMpNLpkoArrCgISBK0cBhSMIhEdzdUx4E0zdoJgSMMuPxtdofijjvuOKx9y7KMlStX4rHHHsNFF10EAHAcB4899hg+9alPHda+RiOTyWDnzp348Ic/PGH7PJrUEcnOyVQp9AdcjuuO+l5RX9lZ8F0sldCI+EZXJoMTamtxJunjZTAYDAaDwWAUqQ4EIHAcWqPREU2OK3FSYyM4Itl+KBQyg7U/lUJdMDji+AjHcYgqChKFApqbm5EoFBBEMWDzw3MctFAIQ52dGMjlgEIBaigEjuNKqnSSICBYW4tUby9cFAOudDoNQVG8pH1Ylr31ZLC2FonubijBIMRDeItNRY4o4Nq0adOYtjuck8PPddddh8svvxyrVq3C6tWrcddddyGbzeKKK64AAFx22WVobm7GrbfeCqAotLF161bv3wcOHMBLL72EUCiEuXPnAgA+//nP45/+6Z/Q3t6Ozs5O3HzzzRAEAZdeeukRHeOx5pSWFiyuq5t00QxJEGAS073R3ivuu6gFX6/xaPsdyOVwamsrTqK9uQwGg8FgMBgMAMWWusZwGKeUtfcdCoHnsaqpaczbt0QieGL3bjSFw6P6WwVlGRZZE6Z1HXFNQ20wOHw7Ymp8alsbXsjloIZCcIGStaEsCAjV1GDvG2+AA7AvmUQul4MQj3uth/Oqq3FSYyNCsowACbjijY0Qj5cK1+OPPz7Rx1HCJZdcgr6+Ptx0003o7u7G8uXL8eijj3pCGnv37gXvK612dnZixYoV3v9vv/123H777Vi/fj02bNgAANi/fz8uvfRSDAwMoLa2Fqeddhr+/ve/o7a2dlI/y2TBcRwikzxfRlv/TNsGgFEvQn/AJSlKSRajHEkQcHJTE3YnEmiPRifugBkMBoPBYDBmCLbroj4YREskMqnvE1NVcBwH6RDaACFfwGXYNmoCgYoz+KFIBEYuB57jUMhkoIZCAEoDLonnEaqtRaa/HzFFwat9fTDyeWiNjd52EUXBtaecghc6OxGorcXQ5s0IxmKQjpcKVzmJRAI/+tGPsG3bNgBFg+F//ud/RnQci+lPfepTI7YQ0iCK0tHRAdd1R93fQw89dMTHcrwi8DxCsow+4ig+aoXL11IoR6OHnC1bWFODKk0rkQhlMBgMBoPBYBRZ19oKw7YnPeCiCfYoCbxGIiRJXsBlOc6IAmmRcBhmLgfHtmHk85DIGIzfbkgWBETq6uBYFtxMBoVwGEY+jzAxPvajiSJCdXXY3dODmtbWaVnhGrfx8QsvvIA5c+bgzjvvxODgIAYHB3HHHXdgzpw52Lhx40QcI+MYElVVr8I1WhAVJ6Z6bUuXgh/B9NhPRFEQI14LDAaDwWAwGIxSYqqKixYuhHAYghlHgiaKkATBk2EfcTtJ8gocluuOKJAWi0ZhGwZyRMI9JwhoikSwoKbG20YSBERIl1luYACmbcPSdUiVAi5JQqS+HpZhoH/fPkjTTBIemIAK1+c+9zlccMEFuO+++yCSBbllWbjyyitx7bXX4sknnxz3QTKOHTFVRcGyikOQowRcJyxahBPe8x6c94EPoMdxDlm5CpOAazJFPxgMBoPBYDAYoxOQJGiiiPoK81h+VKJICBQF7UYSSKNjJoMHDgAALFnGme3twytcZFQo09ODcHMzzHweYoVkvCaKiBKl8oF9+1C1fPnhf8hjzIRUuL74xS96wRYAiKKIL3zhC3jhhRfGu3vGMaYlEkHGMKAIwqgzYwFVxQnvfS9cTYMmiqg6RLm3LRrFFcuXY/kESv0zGAwGg8FgMA4PkefHNObhl5kvVx30M3fePADAnldeKb4uHEa8bF3Icxwi0SjUaBSJ/ftHrXAFZRlVPoE1bQzqi1ONcQdckUgEe/fuHfb9ffv2IXyI0iRj6tMSiSAoy1BEEdFRLkRZEMADyJkmVFEc02zWnKqqI1ayZDAYDAaDwWCMn/ZYDCubmrCmpWXU7fydThxGHjWZN3cuOEHAlsceAy+KCDU1VdxWFUXEWlowsHcv9EIBcF3ImjY84JIkBEMhiCTxr5ExlunEuAOuSy65BB/96Efx8MMPY9++fdi3bx8eeughXHnlldNWcp1xkKZwGGFZhiqKo7b/KaIIgedRsCwEZfmwDPoYDAaDwWAwGMeGmkAAH1u5ckQRDEpUVcFzHPpzORQsa0Rj5XgohFB9PXp37UJtRwdESapYDdMkCcG6OqR6e1EgAm2yqkIqW0MKPF80SiYzX+HDlMmfCox7huv2228Hx3G47LLLYFkWAECSJHz84x/HbbfdNu4DZBxbagMBxFQVKgmoRkIWBAgcB50EXAwGg8FgMBiMmUOU2P7sGhqCKooIjiCaEZJlRFtbke7sRP3cuRBHkJtfWFMDIRJBeutWuCTgUsLhYRUuAKjSNKy+5hooQ0NQ29oqbjOVOeKAa8uWLTjxxBMhyzL+/d//Hbfeeit27twJAJgzZw4C01BBhDEcgedx2bJlh1SukQUBIs8ja5ojqtYwGAwGg8FgMKYnMVVFUJYR1zSkiPFxJTRJQry1Ffufew61c+aMGHDNicehxePIDA6CTmgFq6oqBlPNkQjCc+diSX09Xu3tPX4CrqVLl+Lkk0/GlVdeife///0Ih8NYsmTJRB4bY4qwwjeoOBKKIEDgeVbhYjAYDAaDwZiBRBQFH1yyBI/t2gWB40ac11cEAYvf+U7Eq6ow/8wzkeP5iu2HYUVBqLoatmmib88eAEAwHq9oGdRB/F5d14ULTLuA64gHbZ544gksXrwY//Iv/4LGxkZcfvnleOqppyby2BjTCK+l0LaZ1DuDwWAwGAzGDIPjOJze3o5/mj8fYUVBdAT1akUUEYrHseyiiyAGgyNWuEKyjDhJ6r/54ouQVBVqMFgxmKoNBKCIIgziDXvcBFynn3467r//fnR1deHuu+/G7t27sX79esyfPx/f+ta30N3dPZHHyZjiaJIEkefBkX8zGAwGg8FgMGYeJzU24itnnFGxEgUUK1wiz8NyHFiOM2LAFZZlNMydi1BNDV7/298QiMchcFzFYCpM5sfylgUOGCasMdUZ99EGg0FcccUVeOKJJ7B9+3a8973vxT333IO2tjZccMEFE3GMjGmAxPMIyDJkQSgxtmMwGAwGg8FgzBw4jhsx2AJI1xPPw3Yc2I4DiecrqhQGZRmqJCFKVAeVcBgCz1cOuMgaM2+aI24zlZnQ8HDu3Ln413/9V9x4440Ih8P4wx/+MJG7Z0xhOI5DWJYRlGXUHcKpnMFgMBgMBoMxM+E4DgFJ8ipcAUmq6LvKcxzCigI5EgEAyKT9sFJwFpAkBCQJOdMcsQo2lZmwgOvJJ5/ERz7yETQ0NOD666/Hu9/9bvztb3+bqN0zpgGGbSMky6hnAReDwWAwGAzGcUtAkmC7LizHGdXfK6qqBwOuUAgiz1f0cuU4DrXBILLTtMI1Lh+uzs5OPPDAA3jggQewY8cOrFu3Dt/97nfxvve9D0G26D7ukHgedcEgGg8hIc9gMBgMBoPBmLnQCpfruqOqV8f9AVcwCFUUK1bDAKApHEbGMBBVlOMn4Dr//PPxl7/8BTU1Nbjsssvwz//8z1iwYMFEHhtjmnH1qlUwbRv8CBcKg8FgMBgMBmPmUxMIQLdt8MCo6tUxVYUcjQIAXI6rKK7h3yeHooBG1QgeYFOVIw64JEnCI488gne+850QplmUyZgcDmWOzGAwGAwGg8GY+VRrGlzXhY1igDQSEUVBLfHxNXK5UZWuqzQNAUnC/OrqUUU7piJHHHD97ne/m8jjYDAYDAaDwWAwGDMAvylybSAw4nZL6+vR0NSEd9x4I6T2dgRGqXDVB4OoDQanXXULmGCVQgaDwWAwGAwGg3F80xAKQRNFcCi2Ao5EtaZBFUW0nXIKxGh01GpYfSiEumAQC6qrJ+GIJ5dxiWYwGAwGg8FgMBgMhp/51dVoiUQwVCigjcxoVUIRRYRkGYP5PFzXRWSUgCsky/jSaachOA39XlnAxWAwGAwGg8FgMCYMjuPwoaVLsTeZRPwQLYBVgQC6MxkARXXD0RhNYn4qwwIuBoPBYDAYDAaDMaEsrqvD4rq6Q25XFwjgRcsCgGlZvRoLbIaLwWAwGAwGg8FgHBNWNDaC5zg4rnvICtd0hQVcDAaDwWAwGAwG45jQGAohIEmQeH5Uk+TpDGspZDAYDAaDwWAwGMeEmKpCFUXYjsMqXAwGg8FgMBgMBoMxkaiiCFUUIQkCm+FiMBgMBoPBYDAYjImE47gZ31I4ZQOue+65Bx0dHVBVFWvWrMHzzz8/4ravvvoqLr74YnR0dIDjONx1113j3ieDwWAwGAwGg8GYfGRBQEiWoYkzc9ppSgZcDz/8MK677jrcfPPN2LhxI5YtW4bzzjsPvb29FbfP5XKYPXs2brvtNjQ0NEzIPhkMBoPBYDAYDMbk866FC7GgpgYcxx3rQ5kUONd13WN9EOWsWbMGJ598Mr73ve8BABzHQWtrKz796U/jS1/60qiv7ejowLXXXotrr712wvZJSaVSiEajSCaTiEQih//BGAwGg8FgMBgMxoxgrLHBlKtwGYaBF198Eeecc473PZ7ncc455+DZZ589qvvUdR2pVKrki8FgMBgMBoPBYDDGypQLuPr7+2HbNurr60u+X19fj+7u7qO6z1tvvRXRaNT7am1tPaL3ZzAYDAaDwWAwGMcnUy7gmkrccMMNSCaT3te+ffuO9SExGAwGg8FgMBiMacSUkwKpqamBIAjo6ekp+X5PT8+IghiTtU9FUaAoyhG9J4PBYDAYDAaDwWBMuQqXLMtYuXIlHnvsMe97juPgsccew9q1a6fMPhkMBoPBYDAYDAbjUEy5ChcAXHfddbj88suxatUqrF69GnfddRey2SyuuOIKAMBll12G5uZm3HrrrQCKohhbt271/n3gwAG89NJLCIVCmDt37pj2yWAwGAwGg8FgMBgTzZQMuC655BL09fXhpptuQnd3N5YvX45HH33UE73Yu3cveP5gca6zsxMrVqzw/n/77bfj9ttvx/r167Fhw4Yx7ZPBYDAYDAaDwWAwJpop6cM1VWE+XAwGg8FgMBgMBgOYxj5cDAaDwWAwGAwGgzFTYAEXg8FgMBgMBoPBYEwSLOBiMBgMBoPBYDAYjEliSopmTFXouFsqlTrGR8JgMBgMBoPBYDCOJTQmOJQkBgu4DoN0Og0AaG1tPcZHwmAwGAwGg8FgMKYC6XQa0Wh0xJ8zlcLDwHEcdHZ2IhwOg+O4Y30405JUKoXW1lbs27ePKT0yjjnsfGQcKezcYUxH2HnLGA/s/BmO67pIp9Noamoqsawqh1W4DgOe59HS0nKsD2NGEIlE2MXKmDKw85FxpLBzhzEdYectYzyw86eU0SpbFCaawWAwGAwGg8FgMBiTBAu4GAwGg8FgMBgMBmOSYAEX46iiKApuvvlmKIpyrA+FwWDnI+OIYecOYzrCzlvGeGDnz5HDRDMYDAaDwWAwGAwGY5JgFS4Gg8FgMBgMBoPBmCRYwMVgMBgMBoPBYDAYkwQLuBgMBoPBYDAYDAZjkmABF4PBYDAYDAaDwWBMEizgmqHceuutOPnkkxEOh1FXV4eLLroIr7/+esk2hUIBn/zkJ1FdXY1QKISLL74YPT093s9ffvllXHrppWhtbYWmaTjhhBPw7//+78Pea8OGDTjppJOgKArmzp2LBx544JDH57oubrrpJjQ2NkLTNJxzzjl44403Km6r6zqWL18OjuPw0ksvjbrfrq4ufOADH8D8+fPB8zyuvfbaYds88MAD4Diu5EtV1UMeM+PImQnnY0dHx7Dz5rbbbjvkvg91PE8++ST+6Z/+CU1NTeA4Dr/5zW8Ouc/jieP13GH3sunNTDhvAeAPf/gD1qxZA03TEI/HcdFFFx1y36+88gpOP/10qKqK1tZWfPvb3y75+auvvoqLL77Yuy7uuuuuQ+7zeON4PX8KhQI+8pGPYMmSJRBFseL2GzZsGHbf4zgO3d3dhzzuY4rLmJGcd9557o9//GN3y5Yt7ksvveS+/e1vd9va2txMJuNtc80117itra3uY4895r7wwgvuKaec4q5bt877+Y9+9CP3M5/5jLthwwZ3586d7k9+8hNX0zT37rvv9rZ588033UAg4F533XXu1q1b3bvvvtsVBMF99NFHRz2+2267zY1Go+5vfvMb9+WXX3YvuOACd9asWW4+nx+27Wc+8xn3/PPPdwG4mzZtGnW/u3btcj/zmc+4Dz74oLt8+XL3s5/97LBtfvzjH7uRSMTt6uryvrq7u0fdL2N8zITzsb293f3a175Wct74j78SYzmeP/7xj+6Xv/xl91e/+pULwP31r3891l/rccHxeu6we9n0Ziact4888ogbj8fdH/zgB+7rr7/uvvrqq+7DDz886n6TyaRbX1/vfvCDH3S3bNni/vznP3c1TXN/+MMfets8//zz7uc//3n35z//udvQ0ODeeeedY/21Hjccr+dPJpNxr7nmGvc//uM/3PPOO8+98MILh23z+OOPuwDc119/veTeZ9v2oX6txxQWcB0n9Pb2ugDcJ554wnVd100kEq4kSe4vfvELb5tt27a5ANxnn312xP184hOfcM866yzv/1/4whfcxYsXl2xzySWXuOedd96I+3Acx21oaHC/853veN9LJBKuoijuz3/+85Jt//jHP7oLFy50X3311TEFXH7Wr18/4iIlGo2OeT+MiWc6no/t7e2HvTA43ONhAdehOV7OHT/sXjb9mW7nrWmabnNzs/uf//mfh/U5v//977vxeNzVdd373he/+EV3wYIFFbcf77VxvHC8nD9+Lr/88lEDrqGhoSPe97GAtRQeJySTSQBAVVUVAODFF1+EaZo455xzvG0WLlyItrY2PPvss6Puh+4DAJ599tmSfQDAeeedN+o+du3ahe7u7pLXRaNRrFmzpuR1PT09uOqqq/CTn/wEgUBgjJ90bGQyGbS3t6O1tRUXXnghXn311QndP2N0puP5CAC33XYbqqursWLFCnznO9+BZVmjfs4jOR7G6Bwv585YYfey6cF0O283btyIAwcOgOd5rFixAo2NjTj//POxZcuWUT/ns88+izPOOAOyLJccz+uvv46hoaFRX8sYmePl/Dkcli9fjsbGRpx77rn429/+NmH7nSxYwHUc4DgOrr32Wpx66qk48cQTAQDd3d2QZRmxWKxk2/r6+hH7YJ955hk8/PDD+NjHPuZ9r7u7G/X19cP2kUqlkM/nK+6H7r/S6+jPXNfFRz7yEVxzzTVYtWrV2D/sGFiwYAHuv/9+/Pa3v8VPf/pTOI6DdevWYf/+/RP6PozKTMfzEQA+85nP4KGHHsLjjz+Oq6++Gt/85jfxhS98YdTPeiTHwxiZ4+ncGQvsXjY9mI7n7ZtvvgkA+OpXv4obb7wRv//97xGPx3HmmWdicHBwxM860vH435dxeBxP589YaGxsxL333otf/vKX+OUvf4nW1laceeaZ2Lhx47j2O9mwgOs44JOf/CS2bNmChx566Ij3sWXLFlx44YW4+eab8da3vnXMr/vZz36GUCjkfT311FNjet3dd9+NdDqNG264YcRt/Pu95pprxnxMa9euxWWXXYbly5dj/fr1+NWvfoXa2lr88Ic/HPM+GEfOdDwfAeC6667DmWeeiaVLl+Kaa67B//f//X+4++67oes6gCM/Hxljh507pbB72fRgOp63juMAAL785S/j4osvxsqVK/HjH/8YHMfhF7/4BQBg8eLF3n7PP//8w/9QjDHBzp9SFixYgKuvvhorV67EunXrcP/992PdunW48847x7yPY4F4rA+AMbl86lOfwu9//3s8+eSTaGlp8b7f0NAAwzCQSCRKMiQ9PT1oaGgo2cfWrVtx9tln42Mf+xhuvPHGkp81NDSUqOLQfUQiEWiahgsuuABr1qzxftbc3Iyuri5vu8bGxpLXLV++HADw17/+Fc8++ywURSnZ96pVq/DBD34QDz74YIliYSQSGfsvpQxJkrBixQrs2LHjiPfBGBvT9XysxJo1a2BZFnbv3o0FCxZUPB8PdTyMsXO8nTtHAruXTT2m63lLv79o0SLv54qiYPbs2di7dy8A4I9//CNM0wQA73420vHQnzEOj+Pt/DlSVq9ejaeffnpc+5h0jvUQGWNycBzH/eQnP+k2NTW527dvH/ZzOnD5yCOPeN977bXXhg1cbtmyxa2rq3Ovv/76iu/zhS98wT3xxBNLvnfppZeOaeDy9ttv976XTCZLBi737Nnjbt682fv605/+5AJwH3nkEXffvn1j+h2MNGhejmVZ7oIFC9zPfe5zY9ov4/CZ7udjJX7605+6PM+7g4ODI25zuMcDJpoxjOP13PHD7mXTj+l+3tL/+0UPDMNw6+rqShQHy6GiGYZheN+74YYbmGjGYXK8nj9+RhLNqMQ555zjvutd7xrTtscKFnDNUD7+8Y+70WjU3bBhQ4lsZi6X87a55ppr3La2Nvevf/2r+8ILL7hr1651165d6/188+bNbm1trfuhD32oZB+9vb3eNlRS9Prrr3e3bdvm3nPPPWOWFI3FYu5vf/tb95VXXnEvvPDCEWXhXbcokYwxqhRu2rTJ3bRpk7ty5Ur3Ax/4gLtp0yb31Vdf9X5+yy23uH/605/cnTt3ui+++KL7/ve/31VVtWQbxsQy3c/HZ555xr3zzjvdl156yd25c6f705/+1K2trXUvu+yyUfc7luNJp9PeOQvAveOOO9xNmza5e/bsOazf8UzleD13XJfdy6Yz0/28/f/buZuQqPYwjuO/cW4qY69GTjakZmAE1WSLBCmyMpBSqEUURGa4MQk0lBZB1CYnAy1s0yptEUhE6EoD3xZFizDJlzLciJvpbTGFlFOOz11Ecqdb1+7lHsea7wfO5vzPPOf5D39m5jdn5piZVVVVmc/ns/v379vo6KiVl5dbWlraP35REAqFzOv12vHjx214eNhaW1vN4/FEfcgOh8Ozazs9Pd1qa2ttYGDAxsbG/tVz/DuL1/VjZjYyMmIDAwNWUlJiBQUFs2vlq6tXr1pbW5uNjY3Z0NCQVVVVWUJCgnV1df3s0xsTBK7flKTvbs3NzbPHfPz40SorK23FihXm8Xjs0KFDFgwGZ8cvXLjw3RqZmZlR5+rt7bWtW7daYmKiZWdnR53jR2ZmZuz8+fPm9XotKSnJ9u7day9evPjh8f8mcM3Vc3V1tWVkZFhiYqJ5vV7bv3+/PXnyZM66+O9+9fXY399veXl5tmzZMktOTraNGzdaXV2dTU1NzVl7rn6+3uL22+3EiRNz1o4H8bx2eC37df3q69bsyxWJmpoaS0tLsyVLllhhYaENDw/PWfvp06e2Y8cOS0pKMp/PZ5cvX44a//p+/u22a9euOWvHi3heP5mZmd/t+6v6+npbv369JScnW2pqqhUUFFhPT8+cdWPNZWb2sz8/BAAAAAD8PO5SCAAAAAAOIXABAAAAgEMIXAAAAADgEAIXAAAAADiEwAUAAAAADiFwAQAAAIBDCFwAAAAA4BACFwAAAAA4hMAFAAAAAA4hcAEA4lJZWZlcLpdcLpcWLVokr9erffv26ebNm5qZmfnpOi0tLVq+fLlzjQIAfmkELgBA3CoqKlIwGNT4+Lg6Ojq0e/duVVVVqbi4WNPT07FuDwDwGyBwAQDiVlJSklavXi2fz6dt27bp3Llzam9vV0dHh1paWiRJjY2N2rx5s1JSUrR27VpVVlZqcnJSktTX16eTJ0/q3bt3s1fLLl68KEkKh8Oqra2Vz+dTSkqK8vLy1NfXF5uJAgBihsAFAMBf7NmzR36/X/fu3ZMkJSQkqKmpSSMjI7p165Z6enp09uxZSVJ+fr6uXbumpUuXKhgMKhgMqra2VpJ0+vRpPXr0SK2trRocHNThw4dVVFSksbGxmM0NADD/XGZmsW4CAID5VlZWplAopLa2tr+NHT16VIODg3r27Nnfxu7evauKigq9fftW0pf/cFVXVysUCs0eMzExoezsbE1MTGjNmjWz+wsLC7V9+3bV1dX97/MBACxMf8S6AQAAFhozk8vlkiR1dXUpEAhodHRU79+/1/T0tKampvThwwd5PJ7vPn5oaEiRSEQ5OTlR+8PhsFauXOl4/wCAhYPABQDAN54/f65169ZpfHxcxcXFOnXqlC5duqTU1FQ9ePBA5eXl+vTp0w8D1+TkpNxut/r7++V2u6PGFi9ePB9TAAAsEAQuAAD+oqenR0NDQzpz5oz6+/s1MzOjhoYGJSR8+dvznTt3oo5PTExUJBKJ2pebm6tIJKLXr19r586d89Y7AGDhIXABAOJWOBzWy5cvFYlE9OrVK3V2dioQCKi4uFilpaUaHh7W58+fdf36dZWUlOjhw4e6ceNGVI2srCxNTk6qu7tbfr9fHo9HOTk5OnbsmEpLS9XQ0KDc3Fy9efNG3d3d2rJliw4cOBCjGQMA5ht3KQQAxK3Ozk6lp6crKytLRUVF6u3tVVNTk9rb2+V2u+X3+9XY2Kj6+npt2rRJt2/fViAQiKqRn5+viooKHTlyRKtWrdKVK1ckSc3NzSotLVVNTY02bNiggwcP6vHjx8rIyIjFVAEAMcJdCgEAAADAIVzhAgAAAACHELgAAAAAwCEELgAAAABwCIELAAAAABxC4AIAAAAAhxC4AAAAAMAhBC4AAAAAcAiBCwAAAAAcQuACAAAAAIcQuAAAAADAIQQuAAAAAHDIn5LZ/Au9BKHLAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAGHCAYAAACkg1MBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hU5fn+71OmbmWBpUlTkSJSFI2IiEDErj9LbIliBKMxRo1GE4xGUKOi+SpW7KLG3jUaFRVQihRZkCYqgovLwrJ1+qnv749538OZ2dllyywsy/O5rr2UMzOnzTln3vt9nud+JMYYA0EQBEEQBEEQBJF15L29AwRBEARBEARBEB0VElwEQRAEQRAEQRBtBAkugiAIgiAIgiCINoIEF0EQBEEQBEEQRBtBgosgCIIgCIIgCKKNIMFFEARBEARBEATRRpDgIgiCIAiCIAiCaCNIcBEEQRAEQRAEQbQRJLgIgiAIgiAIgiDaCBJcBEG0CWeddRYCgQBqa2sbfM9vf/tbeDwe7Nixo0nr3LJlCyRJwpw5c7Kzk+2Au+66C++++26zPjNnzhxIkoQtW7a0atsrVqyAJEmYOXNmvdfOPPNMSJKEJ554ot5rEydOROfOncEYa/K2Xn75ZcyaNas1u9tiPvjgA5x++uno1q0bvF4vioqKMHHiRLz00kswDKPNtrt48WJMnz690XsgW8RiMUyfPh3z589v0+1Mnz4dkiSlLHvssccy3pPz58+HJEl48803W7WtysrKjK8PHToUxx9/fIvWvafIxjWQ6Zw3lfXr12P69OmtflYQBNE6SHARBNEmTJkyBYlEAi+//HLG1+vq6vDOO+/gtNNOQ7du3fbw3rUfWiK4Tj31VCxZsgQ9evRo1bYPP/xwFBQUYN68eSnLbdvGV199hZycnHqv6bqOJUuW4Pjjj2/WIHBvCC7GGH7/+9/jjDPOgG3buP/++/HZZ5/h+eefx/Dhw3HVVVfhsccea7PtL168GDNmzNhjgmvGjBltLrimTp2KJUuWpCxrSHAR2bkGMp3zprJ+/XrMmDGDBBdB7GXUvb0DBEF0TE4++WT07NkTzz77LK666qp6r7/yyiuIx+OYMmXKXti7fZN4PA6/34+uXbuia9eurV6fLMs47rjjMG/ePJimCVVN/iSsXr0aNTU1+Otf/4oXX3wx5TNLly5FPB7H+PHjW739bBCPxxEIBDK+dt9992HOnDmYMWMG/vnPf6a8dvrpp+Omm27Cjz/+uCd2s8NwwAEH4IADDtjbu9HuEfdqNqBzThD7PhThIgiiTVAUBZMnT8Y333yDNWvW1Hv9ueeeQ48ePXDyyScDANauXYszzzwTnTp1gt/vx4gRI/D888/vdjuXXnop+vXrV295pjQcSZJw9dVX47nnnsPAgQMRCAQwatQofP3112CM4b777kP//v2Rm5uLCRMmZByMf/bZZ5g4cSLy8/MRDAYxZswYfP755xm3vW7dOlx44YUoKChAt27dcNlll6Guri5lf6LRKJ5//nlIkgRJkpwUKZE2+Omnn+Kyyy5D165dEQwGoWlagymFH3/8MSZOnIiCggIEg0EMHjwYd999d6Pnb/z48YhEIlixYoWzbP78+ejZsyemTp2KHTt2YP369Smvic8BwKOPPorjjjsOxcXFyMnJwWGHHYZ77703JVXv+OOPx4cffoiff/7ZOU73d6PrOu68804MGjQIPp8PXbt2xe9//3vs3LkzZV/79euH0047DW+//TZGjhwJv9+PGTNmZDwuwzAwc+ZMDBo0CLfeemvG93Tv3h3HHnus8+/q6mpcddVV6NWrF7xeLw488ED84x//gKZpKZ8T19GLL76IwYMHIxgMYvjw4fjvf//rvGf69Om48cYbAQD9+/d3jtkdgXrttdcwevRo5OTkIDc3FyeeeCJKSkpStnXppZciNzcXP/74I0455RTk5uaid+/euOGGG5z92rJliyPAZ8yY4Wzr0ksvzXjcjDF069YNf/rTn5xllmWhU6dOkGU5JcX3/vvvh6qqToQm/b7q168f1q1bhwULFjjbTb8fDcPAP/7xD/Ts2RP5+fn49a9/jY0bN2bct9YgUhhfeeWVJm2vKffLihUrcMYZZ6CoqAh+vx8jR47E66+/nvKehu7VadOmNXoNvPbaa5g0aRJ69OiBQCCAwYMH4+9//zui0WjK+jM9y8S98PHHH+Pwww9HIBDAoEGD8Oyzz6bs129+8xsAyftVbH/OnDm44447oKoqtm7dWu+8XHbZZejcuTMSiUQTzzxBELuDBBdBEG3GZZddBkmSUgYBQDLNZdmyZZg8eTIURcHGjRtxzDHHYN26dXjooYfw9ttvY8iQIbj00ktx7733ZnWf/vvf/+Lpp5/GPffcg1deeQXhcBinnnoqbrjhBixatAiPPPIInnzySaxfvx7nnHNOSp3Sf/7zH0yaNAn5+fl4/vnn8frrr6OoqAgnnnhiPdEFAOeccw4OOeQQvPXWW/j73/+Ol19+GX/5y1+c15csWYJAIIBTTjkFS5YswZIlS+qluF122WXweDx48cUX8eabb8Lj8WQ8rmeeeQannHIKbNvG448/jg8++ADXXHMNfvnll0bPhxBO7tTBefPmYdy4cRg4cCC6d++eIhLmzZuHrl27YsiQIQCATZs24aKLLsKLL76I//73v5gyZQruu+8+XHHFFc5nHnvsMYwZMwbdu3d3jlOkSNm2jTPPPBP33HMPLrroInz44Ye45557MHfuXBx//PGIx+Mp+7ty5UrceOONuOaaa/Dxxx/jnHPOyXhcK1asQHV1tVOLtjsSiQTGjx+PF154Addffz0+/PBD/O53v8O9996Ls88+u977P/zwQzzyyCO4/fbb8dZbb6GoqAhnnXUWfvrpJwDJNLA///nPAIC3337bOebDDz8cQDKV9MILL8SQIUPw+uuv48UXX0Q4HMbYsWNTBC6QFCxnnHEGJk6ciPfeew+XXXYZHnjgAaf2rkePHvj4448BJFN5xbYaEpqSJGHChAn47LPPUs5XbW0t/H5/yrX82Wef4YgjjkBhYWHGdb3zzjs48MADMXLkSGe777zzTsp7br75Zvz88894+umn8eSTT+KHH37A6aefDsuyGvw+WkNTtteU+2XevHkYM2YMamtr8fjjj+O9997DiBEjcP7552dMoUy/V//4xz82eg388MMPOOWUU/DMM8/g448/xnXXXYfXX38dp59+epOOc/Xq1bjhhhvwl7/8Be+99x6GDRuGKVOm4MsvvwSQTD2+6667ACQnRsT2Tz31VFxxxRVQVbVejWZ1dTVeffVVTJkyJWsROoIgADCCIIg2ZNy4caxLly5M13Vn2Q033MAAsO+//54xxtgFF1zAfD4fKy0tTfnsySefzILBIKutrWWMMbZ582YGgD333HPOeyZPnsz69u1bb7u33XYbS3/EAWDdu3dnkUjEWfbuu+8yAGzEiBHMtm1n+axZsxgA9u233zLGGItGo6yoqIidfvrpKeu0LIsNHz6cHXXUUfW2fe+996a896qrrmJ+vz9lOzk5OWzy5Mn19v+5555jANgll1zS4GubN29mjDEWDodZfn4+O/bYY1PW3RRs22ZFRUVs0qRJzvEUFhayxx9/nDHG2HnnncfOPfdcxhhjmqaxQCDAzjvvvIzrsiyLGYbBXnjhBaYoCquurnZeO/XUUzN+T6+88goDwN56662U5cuXL2cA2GOPPeYs69u3L1MUhW3cuHG3x/Xqq68yAM5x7I7HH3+cAWCvv/56yvKZM2cyAOzTTz91lgFg3bp1Y6FQyFm2fft2Jssyu/vuu51l9913X8r3JCgtLWWqqrI///nPKcvD4TDr3r17yvmdPHlyxv065ZRT2MCBA51/79y5kwFgt912W5OO9+mnn2YAnHvuzjvvZIMGDWJnnHEG+/3vf88YY0zXdZaTk8Nuvvlm53OZ7qtDDz2UjRs3rt425s2bxwCwU045JWX566+/zgCwJUuWNLqPYls7d+7M+Hr6dpu6vabeL4MGDWIjR45khmGkLD/ttNNYjx49mGVZjLHG79WGroF0bNtmhmGwBQsWMABs9erV9c6Dm759+zK/389+/vlnZ1k8HmdFRUXsiiuucJa98cYbDACbN29evW1OnjyZFRcXM03TnGUzZ85ksizvdn8JgmgeFOEiCKJNmTJlCiorK/H+++8DAEzTxH/+8x+MHTsWAwYMAAB88cUXmDhxInr37p3y2UsvvRSxWKzFBeOZGD9+PHJycpx/Dx48GECy5swdCRHLf/75ZwDJ4vfq6mpMnjwZpmk6f7Zt46STTsLy5cvrpQKdccYZKf8eNmwYEokEKioqmry/DUVw3CxevBihUAhXXXVVs93MJEnCuHHjsGjRIhiGgVWrVqG2ttZJbRw3bhzmz58Pxhi+/vrrevVbJSUlOOOMM9C5c2coigKPx4NLLrkElmXh+++/3+32//vf/6KwsBCnn356ynkdMWJEvegakDyHhxxySLOOsSl88cUXyMnJwbnnnpuyXKTlpUcwx48fj7y8POff3bp1Q3FxsXO9NMYnn3wC0zRxySWXpByz3+93zrcbSZLqRT2GDRvWpG01xK9//WsAcKJcc+fOxQknnIBf//rXmDt3LoBkBDYajTrvbSmZ7gMArdr/1myvKffLjz/+iO+++w6//e1vASDlezrllFNQXl5eL02xKfeqm59++gkXXXQRunfv7tw748aNAwBs2LBht58fMWIE+vTp4/zb7/fjkEMOafJ5vfbaa1FRUYE33ngDQDLaPHv2bJx66qkZ07QJgmg5JLgIgmhTzj33XBQUFOC5554DAHz00UfYsWNHillGVVVVRse9nj17Oq9ni6KiopR/e73eRpeLOgZR13LuuefC4/Gk/M2cOROMMVRXV6eso3Pnzin/9vl8AFAvTa4xmuJEKGqdWlpYP378eESjUSxfvhzz5s1Dt27dMHDgQABJwVVZWYl169Y5aYdCcJWWlmLs2LEoKyvDgw8+iK+++grLly/Ho48+CqBpx7ljxw7U1tbC6/XWO6/bt2+vZwneVGdGMRDdvHlzk95fVVWF7t271xuAFxcXQ1XVetdg+ncLJL/fph4zABx55JH1jvm1116rd8zBYLBeepfP52tVjU3fvn1x0EEH4bPPPnMmNYTg+uWXX7Bx40Z89tlnCAQCOOaYY1q8HaDl94EwcWko9dA0zYwptrvbXlPuF/Ed/fWvf633HQkToJZemwAQiUQwduxYLF26FHfeeSfmz5+P5cuX4+23307Z18ZozTUIACNHjsTYsWOd+/W///0vtmzZgquvvrrJx0EQRNMgl0KCINqUQCCACy+8EE899RTKy8vx7LPPIi8vzynmBpIDh/Ly8nqf3bZtGwCgS5cuDa7f7/fXMzUA6g+GWovYh4cffhhHH310xve0hb19UyJWwjBhd/VaDSEE1Pz587FkyRJnlh0AhgwZgi5dumDevHmYP38+evTo4Yixd999F9FoFG+//Tb69u3rfGbVqlVN3naXLl3QuXNnpwYpHXcUCWja+QCAUaNGoaioCO+99x7uvvvu3X6uc+fOWLp0KRhjKe+tqKiAaZqNXoPNRazrzTffTDlvexpRE7ZgwQLYto3jjz8eeXl56NmzJ+bOnYvPPvsMY8eOdQTLnkbcT2VlZfXuLcYYysvLMWrUqGavtyn3i/iOpk2blrGGD4BzHwiaE13+4osvsG3bNsyfPz/lftsTLQTcXHPNNfjNb36DlStX4pFHHsEhhxyCE044YY/uA0HsD1CEiyCINmfKlCmwLAv33XcfPvroI1xwwQUIBoPO6xMnTnQGIG5eeOEFBIPBBgUOkHTrqqioSHFW03Udn3zySVaPYcyYMSgsLMT69esxatSojH8iKtYcmjMj3RDHHHMMCgoK8PjjjzerGbHg0EMPRdeuXfHFF1/gq6++SmkmK0kSjjvuOHz88cf4+uuvU9IJxQDTPSBnjOGpp56qt42GjvO0005DVVUVLMvKeE7TB7VNxePx4G9/+xu+++473HHHHRnfU1FRgUWLFgFIXoORSKReT7QXXnjBeb25NBTJOfHEE6GqKjZt2tTgtZStbTXGr3/9a+zYsQOzZs3C0Ucf7YjbiRMn4p133sHy5cublE6YjWs4ExMmTIAkSXjttdfqvfbxxx8jFAq1KN2xKffLwIEDMWDAAKxevbrB7yh9MiATDX0vme4dABkbjbeG3V0XZ511Fvr06YMbbrgBn332WYvSkgmC2D0U4SIIos0ZNWoUhg0bhlmzZoExVq/31m233Yb//ve/GD9+PP75z3+iqKgIL730Ej788EPce++9KCgoaHDd559/Pv75z3/iggsuwI033ohEIoGHHnoo6w5oubm5ePjhhzF58mRUV1fj3HPPRXFxMXbu3InVq1dj586dmD17drPXe9hhh2H+/Pn44IMP0KNHD+Tl5TVbZOTm5uL//u//MHXqVPz617/G5Zdfjm7duuHHH3/E6tWr8cgjjzT6eWFH/+abb4IxljLjDiTTCq+77jowxlIE1wknnACv14sLL7wQN910ExKJBGbPno2ampqMx/n2229j9uzZOOKIIyDLMkaNGoULLrgAL730Ek455RRce+21OOqoo+DxePDLL79g3rx5OPPMM3HWWWc163wIbrzxRmzYsAG33XYbli1bhosuugi9e/dGXV0dvvzySzz55JOYMWMGxowZg0suuQSPPvooJk+ejC1btuCwww7DwoULcdddd+GUU05p0cD+sMMOAwA8+OCDmDx5MjweDwYOHIh+/frh9ttvxz/+8Q/89NNPOOmkk9CpUyfs2LEDy5YtQ05OToN29w2Rl5eHvn374r333sPEiRNRVFSELl26NFqLIwTNp59+mrK9X//615g8ebLz/005zldffRWvvfYaDjzwQPj9fufYW8NBBx2Eq6++Gvfddx9qa2txyimnIBAIYPny5bjnnnswatQoXHTRRc1eb1PvlyeeeAInn3wyTjzxRFx66aXo1asXqqursWHDBqxcudKpfWqMhq6BY445Bp06dcKVV16J2267DR6PBy+99BJWr17d7ONpjKFDhwIAnnzySeTl5cHv96N///5OOqKiKPjTn/6Ev/3tb8jJyWmwlQBBEK1kb7l1EASxf/Hggw8yAGzIkCEZX1+zZg07/fTTWUFBAfN6vWz48OEpboSMZXYpZIyxjz76iI0YMYIFAgF24IEHskceeaRBl8I//elPGdd53333pSwXjmdvvPFGyvIFCxawU089lRUVFTGPx8N69erFTj311JT3NeSulu4uyBhjq1atYmPGjGHBYJABcFzXxHuXL19e71xlWo84D+PGjWM5OTksGAyyIUOGsJkzZ9b7fCYee+wxBoB17dq13murVq1iABgA9sMPP6S89sEHH7Dhw4czv9/PevXqxW688Ub2v//9r54zWnV1NTv33HNZYWEhkyQp5bsxDIP9+9//dtaTm5vLBg0axK644oqU7fXt25edeuqpTToeN++99x479dRTWdeuXZmqqqxTp05s/Pjx7PHHH09xaKuqqmJXXnkl69GjB1NVlfXt25dNmzaNJRKJlPVluo7E/qU7Tk6bNo317NmTybJc75y8++67bPz48Sw/P5/5fD7Wt29fdu6557LPPvvMec/kyZNZTk5OvW1lur4/++wzNnLkSObz+RiAjO6X6YwcOZIBYIsWLXKWlZWVMQCsc+fO9Vz8Mm13y5YtbNKkSSwvL48BcNwoG7qHGrqPM2HbNps9ezYbNWoUCwaDzOv1sgEDBrC//e1vLBwOp7y3udtryv2yevVqdt5557Hi4mLm8XhY9+7d2YQJE1LcLxu7Vxlr+BpYvHgxGz16NAsGg6xr165s6tSpbOXKlfX2tSGXwkz3wrhx4+o5Rs6aNYv179+fKYqS8Txs2bKFAWBXXnllxv0nCKL1SIy1IP+EIAiCIAiC2Od5+OGHcc0112Dt2rU49NBD9/buEESHhAQXQRAEQRDEfkZJSQk2b96MK664AmPGjKlXv0gQRPYgwUUQBEEQBLGf0a9fP2zfvh1jx47Fiy++iO7du+/tXSKIDgsJLoIgCIIgCIIgiDaCbOEJgiAIgiAIgiDaCBJcBEEQBEEQBEEQbQQJLoIgCIIgCIIgiDaCGh83A9u2sW3bNuTl5VEndoIgCIIgCILYj2GMIRwOo2fPnpDlhuNYJLiawbZt29C7d++9vRsEQRAEQRAEQbQTtm7digMOOKDB10lwNYO8vDwAyZOan5+/l/eGIAiCIAiCIIi9RSgUQu/evR2N0BAkuJqBSCPMz88nwUUQBEEQBEEQxG5Ljcg0gyAIgiAIgiAIoo0gwUUQBEEQBEEQBNFGkOAiCIIgCIIgCIJoI6iGiyAIgiAIYj+DMQbTNGFZ1t7eFYJotyiKAlVVW90OigQXQRAEQRDEfoSu6ygvL0csFtvbu0IQ7Z5gMIgePXrA6/W2eB0kuAiCIAiCIPYTbNvG5s2boSgKevbsCa/X2+rZe4LoiDDGoOs6du7cic2bN2PAgAGNNjduDBJcBEEQBEEQ+wm6rsO2bfTu3RvBYHBv7w5BtGsCgQA8Hg9+/vln6LoOv9/fovWQaQZBEARBEMR+Rktn6glifyMb9wrdbQRBEARBEARBEG0ECS6CIAiCIAiCIIg2ggQXQRAEQRAditK6OuyMRvf2bhAEQQAgwUUQBEEQRAciquuY9fXXeGvDhr29K0QH5/jjj8d11123z627JWRrf/bkcT344IPo378/gsEg/t//+3+oq6vbI9vNBLkUEgRBEATRYajTNNTE49BMc2/vyj5FXSKBmGHsse0FPR4UNNPxraKiArfeeiv+97//YceOHejUqROGDx+O6dOnY/To0Tj++OMxYsQIzJo1q212uh1x6aWX4vnnnwcAqKqKoqIiDBs2DBdeeCEuvfTSrJuivP322/B4PE1+f0PfRXPX01JuvvlmvPHGG3j++eeRm5uLs846CzNmzMD999/f5tvOBAkugiAIgiA6DJZtw2IMbG/vyD5EXSKBO778EpV7sBFyl2AQtx53XLNE1znnnAPDMPD888/jwAMPxI4dO/D555+jurq6Dfe07dB1vVXNdE866SQ899xzsCwLO3bswMcff4xrr70Wb775Jt5//32oavaG+UVFRe1qPY2xfPlyzJw5E8uXL8fhhx8OALjiiiswZ86cvSa4KKWQIAiCIIgOg80YGGMwbXtv78o+Q8wwUBmLIaCq6BwItPlfQFVRGYs1K6JWW1uLhQsXYubMmRg/fjz69u2Lo446CtOmTcOpp56KSy+9FAsWLMCDDz4ISZIgSRK2bNkCAPj4449x7LHHorCwEJ07d8Zpp52GTZs2Oes+/vjjcc011+Cmm25CUVERunfvjunTp6dsPxqN4pJLLkFubi569OiB//u//6u3j03ZztVXX43rr78eXbp0wQknnNDkdWfC5/Ohe/fu6NWrFw4//HDcfPPNeO+99/C///0Pc+bMcd7HGMO9996LAw88EIFAAMOHD8ebb77pvP7EE0+gV69esNPumTPOOAOTJ0929t2dCtjYsTb2XbjXo2karrnmGhQXF8Pv9+PYY4/F8uXLU/ahKd9NOv/+978xYcIER2wBQNeuXVFZWdmU09omkOAiCIIgCKLDYDEGmzFYjGJczSXo8SDP52vzv2ALUspyc3ORm5uLd999F5qm1Xv9wQcfxOjRo3H55ZejvLwc5eXl6N27N4CkoLn++uuxfPlyfP7555BlGWeddVaKwHj++eeRk5ODpUuX4t5778Xtt9+OuXPnOq/feOONmDdvHt555x18+umnmD9/Pr755puUfWjqdlRVxaJFi/DEE080ed1NZcKECRg+fDjefvttZ9ktt9yC5557DrNnz8a6devwl7/8Bb/73e+wYMECAMBvfvMbVFZWYt68ec5nampq8Mknn+C3v/1txu00dqyNfRdubrrpJrz11lt4/vnnsXLlShx88ME48cQT60Usd/fduNE0DR988AHOOuuslOXxeBwFBQVNO4ltAKUUEgRBEATRYbBsG4z/l+g4qKqKOXPm4PLLL8fjjz+Oww8/HOPGjcMFF1yAYcOGoaCgAF6vF8FgEN27d0/57DnnnJPy72eeeQbFxcVYv349hg4dCgAYNmwYbrvtNgDAgAED8Mgjj+Dzzz/HCSecgEgkgmeeeQYvvPCCE5V6/vnnccABBzR7OwcffDDuvfde5z1NXXdzGDRoEL799lsASWF0//3344svvsDo0aMBAAceeCAWLlyIJ554AuPGjUNRURFOOukkvPzyy5g4cSIA4I033kBRUZHz73R2d6wNfReCaDSK2bNnY86cOTj55JMBAE899RTmzp2LZ555BjfeeKPz3sa+m3RWrlyJeDyOG264ATfddJOz3DAMjB8/vknnry2gCBdBEARBEB0Gi6cUkuDqeJxzzjnYtm0b3n//fZx44omYP38+Dj/88JT0uUxs2rQJF110EQ488EDk5+ejf//+AIDS0lLnPcOGDUv5TI8ePVBRUeF8Xtd1R7AAyVqkgQMHNns7o0aNqveZpqy7OTDGIEkSAGD9+vVIJBI44YQTnChhbm4uXnjhhZR0x9/+9rd46623nOjhSy+9hAsuuACKomTcRlOOtTE2bdoEwzAwZswYZ5nH48FRRx2FDWkOo419N+l8//338Pv9WLNmDVatWuX8HXTQQSnb2tNQhIsgCIIgiA6DTSmFHRq/348TTjgBJ5xwAv75z39i6tSpuO2223DppZc2+JnTTz8dvXv3xlNPPYWePXvCtm0MHToUuq4770l3zpMkyUkFZE28lpqynZycnJTPNHXdzWHDhg2OABLH8OGHH6JXr14p7/P5fCn7bts2PvzwQxx55JH46quvGjWYaMqxNoY4biEM3cvTlzX23aQTCoVQXFyMgw8+2FlWWlqK7777zonKff311/jXv/6FDz74AADwwQcf4J133sGzzz7bpH1vCRThIgiCIAiiw0AphfsXQ4YMQZQ3ufZ6vbAsK+X1qqoqbNiwAbfccgsmTpyIwYMHo6amplnbOPjgg+HxePD11187y2pqavD999+3ejtNWXdz+OKLL7BmzRpHXAwZMgQ+nw+lpaU4+OCDU/7cdVWBQABnn302XnrpJbzyyis45JBDcMQRR2TcRlOONdN3kX7cXq8XCxcudJYZhoEVK1Zg8ODBLTp2AOjSpQtCoVCKkP3Xv/6FU045BUOGDAGQPCcbN250Xr/rrrtwyy23tHibTYEiXARBEARBdBiclEKKcHUoqqqq8Jvf/AaXXXYZhg0bhry8PKxYsQL33nsvzjzzTABAv379sHTpUmzZsgW5ubkoKipCp06d0LlzZzz55JPo0aMHSktL8fe//71Z287NzcWUKVNw4403onPnzujWrRv+8Y9/pPS6aul2mrLuhtA0Ddu3b0+xhb/77rtx2mmn4ZJLLgEA5OXl4a9//Sv+8pe/wLZtHHvssQiFQli8eDFyc3MdF0IgmVZ4+umnY926dfjd737X4HabcqyZvgv3MeXk5OCPf/wjbrzxRhQVFaFPnz649957EYvFMGXKlN0ee0NMmDABiUQC99xzDy688EK8/PLLeP/997Fs2TLnPfn5+dA0DYZh4OOPP8ahhx6KAw88sMXbbAokuAiCIAiC6DA4KYUU4Wo2e6rxcUu2k5ubi1/96ld44IEHnPqf3r174/LLL8fNN98MAPjrX/+KyZMnY8iQIYjH49i8eTP69euHV199Fddccw2GDh2KgQMH4qGHHsLxxx/frO3fd999iEQiOOOMM5CXl4cbbrgBdXV1zuuyLLd4O7tbd0N8/PHH6NGjB1RVdZpAP/TQQ5g8eXKKuLnjjjtQXFyMu+++Gz/99BMKCwsdG3k3EyZMQFFRETZu3IiLLrqowe025Vgb+i7c3HPPPbBtGxdffDHC4TBGjRqFTz75BJ06ddrtsTdEt27dMGfOHNx444244447MGHCBCxcuLCeS+KAAQPw448/4u6778bLL7/c4u01FYm1RfJoByUUCqGgoAB1dXXIz8/f27tDEARBEEQay8vKcPfChejfqRP+b9Kkvb077Y5EIoHNmzejf//+8POmw/tK42OCyBbXXHMNotEoVFV17PkbItM9I2iqNqAIF0EQBEEQHQaRUmhYVsYCfKI+BX4/bj3uuD0W4QKSPb9IbBF7i8GDB+O6667DDz/8sEe2R4KLIAiCIIgOg2XbTkqhzRgUElxNosDvJwFE7Df88Y9/xB//+Mc9tr2sCC7DMLB9+3bEYjF07doVRUVF2VgtQRAEQRBEs7AZA+P/NW0bShPMBwiCINqSFj+FIpEInnjiCRx//PEoKChAv379MGTIEHTt2hV9+/bF5ZdfjuXLl2dzXwmCIAiCIBrFcvXhMsg4gyCIdkCLBNcDDzyAfv364amnnsKECRPw9ttvY9WqVdi4cSOWLFmC2267DaZp4oQTTsBJJ520x/IjCYIgCILYv7FsO2kLb9vQG+kDRBAEsadokeBavHgx5s2bhxUrVuCf//wnTjrpJBx22GE4+OCDcdRRR+Gyyy7Dc889hx07duCMM87AggULmr2Nxx57zHEDOeKII/DVV1816XOLFi2CqqoYMWJEyvI5c+ZAkqR6f4lEotn7RhAEQRBE+0SkFFrcOKMxDMvCo8uWobQJFtwEQRAtpUU1XG+88UaT3ufz+XDVVVc1e/2vvfYarrvuOjz22GMYM2YMnnjiCZx88slYv349+vTp0+Dn6urqcMkll2DixInYsWNHvdfz8/NTOksDqGfvSBAEQRDEvovT+LgJEa7aRALrd+6ExRiu+dWv9tAetg+oKxBBNI1s3CvNjnDV1NSguroaALBz50689dZbWLt2bat3xM3999+PKVOmYOrUqRg8eDBmzZqF3r17Y/bs2Y1+7oorrsBFF12E0aNHZ3xdkiR079495Y8gCIIgiI6DxY0yLMZ2K7hihoGQpiGs63to7/Y+Ho8HABDbgz23CGJfRtwr4t5pCc2KcD399NO4++67Yds2brrpJrz00ksYNmwYbrvtNlxzzTX4wx/+0OIdEei6jm+++QZ///vfU5ZPmjQJixcvbvBzzz33HDZt2oT//Oc/uPPOOzO+JxKJoG/fvrAsCyNGjMAdd9yBkSNHNrhOTdOgaZrz71Ao1MyjIQiCIAhiT2IzlhRcTYhwxQwDBq/52l9QFAWFhYWoqKgAAASDQepVRhAZYIwhFouhoqIChYWFUBSlxetqluB6+OGHsW7dOsRiMfTp0webN29G165dEQqFcNxxx2VFcFVWVsKyLHTr1i1lebdu3bB9+/aMn/nhhx/w97//HV999RVUNfMhDRo0CHPmzMFhhx2GUCiEBx98EGPGjMHq1asxYMCAjJ+5++67MWPGjNYdEEEQBEEQewyL996ymxDhihoGDMuC7RJcjDFMnz8f5w8diiFdu7b17u4VRIaPEF0EQTRMYWFhq7PimiW4FEWB3++H3+/HwQcfjK78QZSfn5/12ZH09TXULd6yLFx00UWYMWMGDjnkkAbXd/TRR+Poo492/j1mzBgcfvjhePjhh/HQQw9l/My0adNw/fXXO/8OhULo3bt3cw+FINotW+vq0Cs/HzLNbhIE0UGwbBuyJIEBTY5wxQzDWVYVjyNqGFi9fXuHFVySJKFHjx4oLi6G4Tp2giBS8Xg8rYpsCZoluFRVRSKRgN/vT3EeDIfDrd4RQZcuXaAoSr1oVkVFRb2ol9j2ihUrUFJSgquvvhoAYPP0AFVV8emnn2LChAn1PifLMo488shGLet9Ph98Pl8rj4gg2ic18TieXrkSJxx0EI5txIyGIAhiX8JyRat2J7gSpgnDshAzDGdid1s4jLpEAt1yc9t6V/c6iqJkZTBJEETjNMs044svvnAESEFBgbM8Ho/jmWeeycoOeb1eHHHEEZg7d27K8rlz5+KYY46p9/78/HysWbMGq1atcv6uvPJKDBw4EKtWrcKvGnAdYoxh1apV6NGjR1b2myD2NRKmCdO2UUetEQiC6EDY3KVQAnbb+Fi3LMc+XoizkKYhbppQ5RZ1ziEIgqhHsyJcuWmzPdu3b0f37t1RXFyM4uLirO3U9ddfj4svvhijRo3C6NGj8eSTT6K0tBRXXnklgGSqX1lZGV544QXIsoyhQ4emfL64uBh+vz9l+YwZM3D00UdjwIABCIVCeOihh7Bq1So8+uijWdtvgtiXYABM26ZiaYIgOhQGf66JZ1xjaKYJy7ZhMQbNsuBTVcQMIynEdvNZgiCIptKiPlyCSZMm4dtvv83Wvjicf/75qKqqwu23347y8nIMHToUH330Efr27QsAKC8vR2lpabPWWVtbiz/84Q/Yvn07CgoKMHLkSHz55Zc46qijsr7/BLEvYDOWFFx7e0cIgiCyiGFZScHFn3GNoVsWZEmCadtImCZyvV58u2NHUojxSNncn37CyO7d0TUnZw8dAUEQHY1WCa62tFG96qqrGmyaPGfOnEY/O336dEyfPj1l2QMPPIAHHnggS3tHEPs+lm3D5MXlBEEQHQXTtiEDsLD7CFfMMOBVFJi2Dc00sX7nTtTE49AtyxFh8zZvRnk4jMkjRuyJ3ScIogPSqgRlSkUiiH0Xgwsuuo8JguhIWK7n2u7SAmOmCZ+qJgWXZUGVZeyMxWAzBsu2UR2PI6LrCLSi4SlBEARVhBLEfoopBNfe3hGCIIgsYriea7uLcMUNAz5FgcUjXEDSNMNmDBZjqEkkEDUMBElwEQTRCkhwEcR+isFTZiilkCCIjoTheq7tVnCZJryKAosxJLiBhs0Ycr1eWLaNqK4jbhj0nCQIolW0SnB5vd5s7QdBEHsYkVJIEATRkdj6/feo2bwZAKDv5hmXMAwo3P5d4xbxoh+XxaNchiv6RRAE0RJaZZqxYsWKbO0HQRB7GJNbIdttaH5DEASxp3nw0ksBAL95/XXouxFKGncplJC0iA+oKmzew8u0bVi2ndKjiyAIoiW0SnARBLHvIlIKLRJcBEF0QGRJ2q1QcqdVi2bw4ALM4M9HizHEDGMP7DFBEB0VquEiiP2UTzZtcmZwCYIgOhpGONyo4BJOhDJvkiwEFnhKocGbHzPGECXBRRBEK2h1hKu2thbPPPMMtm/fjv79+2PEiBEYPnw4cqhBIEG0a+oSCYQ0jeq4CILoUEiyDGbbMCIRGI0834RBhrDDEAJLkiTISE27JsFFEERraLXgOvvss7FmzRoceeSR+N///ofvv/8etm3jwAMPxIgRI/D6669nYz8JgsgykiTBopRCgiA6GDK3ebcNo9EIl2nbYAAUl6OhxQWY7I5wAYjq+h7Zd4IgOiatFlxLly7FggULMGrUKACApmlYt24dVq9ejdWrV7d6BwmCaBtsxsCw+8agBEEQ+xKyosAyDNi63qjgEtErVZYd0wzxPJQkCborwhUhwUUQRCtoteAaOnQoZHlXKZjP58Phhx+Oww8/vLWrJgiijWB8EGEzRimFBEF0KCRFAQDYpgmjMcHF67NkSYIsSUgIW3gkI1wmNxZivEeXadtQZSp9Jwii+bT6yTFz5kzceuutSCQS2dgfgiD2ALbLDr6xAQlBEMS+hM0YZCG4dL3xGi7+HHQElyvCJRwORZ2XadsIa9oeOQaCIDoerRZc/fv3RzgcxuDBg3HzzTfjvffeQ2lpaTb2jSCINkI09wR23xiUIAhiX8FmDBKPQtmG0WiNqts0Q5HlXbbwSAou0QhZkiRopokHvv56TxwCQRAdkFYLrnPOOQdbt27F+PHjsWzZMkyZMgX9+/dH586dMWHChGzsI0EQWUbUbym8MJwgCKIj4I5wWboOswmmGSLCpXOBBaRGuBRJws5YDGFNcyaqCIIgmkOra7jWr1+Pr7/+GsOGDXOWlZaWoqSkBKtWrWrt6gmCaANsHuFSZBkaCS6CIDoILEOEi/EoVToipVCSJCg8ipWeUmhYFnJ9PmimibCuozaRQKdAYI8eE0EQ+z6tFlxHHnkkIpFIyrI+ffqgT58+OPPMM1u7eoIg2gBhdazIcqMuXgRBEPsStitd2jIMxyBIySS40kwzNFeESxGCi0e4hnTtivJwGCFNI8FFEESzaXVK4XXXXYfp06ejpqYmG/tDEMQewIlw8UEFQRBER4Ah6U4IJE0zbMYarONKN81Ij3DZjCFumpAkCT5FgWZZqCPjDIIgWkCrI1znnHMOAGDAgAE444wzcPTRR2PkyJEYNmwYfD5fq3eQIIjs49RwUYSLIIgOBGMMNn+mWbq+q9cgr+tyY7pMM1RZhmHbCGkaJC7ALMawLRyGjOSz0mYMIRJcBEG0gFYLrs2bN2PVqlVYvXo1Vq1ahZkzZ2LLli1QFAWDBg3Ct99+m439JAgiizgNP8k0gyCIDoTtFlyulMJMWC7TDI+iIG4YqIzFoLpMNCpjMcR5xEwCEDOMPXQkBEF0JFotuPr27Yu+ffum1GuFw2GsWrWKxBZBtFPcphlkC08QREeBAWCuCFdTUwo9sow6y0JtIgFFlp2arspYLMVYKJN4W7x1K/oWFKBXfn7K8v/98AO+/uUXzBg/PnsHSBDEPkmrBVcm8vLyMHbsWIwdO7YtVk8QRCtJt4VvyMWLIAhiX8JuKKUwA8I0Q+IRLsO2Ydo2VFl2+nLFDAPDunVzPmNmWNeH33+PgMeDW447LmX50rIyStkmCAJAFkwzCILY9xADDUWWneafBEEQ+zr1argaiXC5a7g8sgyDuxQqPKUwbhjolpuLIu5KmEm8GZaFmGFkdEEEgARPRyQIYv+GBBdB7Ie4I1yNpdwQBEHsS5iWBbhs4e1GargM24YkSck+XLIMG3AiXDZjSJgmVLeQyvCsjBoG4qYJj6JgZzSK9zdudLZnWFbGiBhBEPsfJLgIYj/EXcNlM0aDAoIgOgSarjv/b+4mpVAYBoUrKwH+Psu2ocgygh4PLMbQIy9v1wckqd66IrqOuGFAlWU8uHQp5m7ahDg31tAtq1HBRxDE/kPWBNcxxxyDbq48Z4Ig2i8WYzB1HVY8ToKLIIgOg+FyEdxdSqFh26jZtAn3/+Y32LR8OSxXDZcqyziub1/ker3O+zOtqzIWQ8I0URWLoSwUQswwHJMNkbJIz1eCILJmmnH++eejks8SEQTRvrEZw8fTpqF2yxZc9u67ZA1PEESHQAguxeNxXAobijDppokvbr4ZAFCxZQvQvTsM20a+nHkuWpIkGGniae2OHaiMxXBQUREsnqotjDKEC6Jp2/Bm6ANGEMT+Q9YE17XXXputVREE0cbYjKF2yxbn/2kGliCIjoDOBZc3GNxtSmE4HHb+n9k2DMuCYVnwNCCO5Ax9C+s0LZkxwNMRGe/fJdIT6flKEATQjmu4HnvsMfTv3x9+vx9HHHEEvvrqqyZ9btGiRVBVFSNGjKj32ltvvYUhQ4bA5/NhyJAheOedd7K81wSxb+AegNCAgCCIjoKIcHkDgaTgaiSlMBqLOf8frqwEQ9JV0NNIhCv9WZkQ0SwurizGoFtWUnS5IlwEQezftEvB9dprr+G6667DP/7xD5SUlGDs2LE4+eSTUVpa2ujn6urqcMkll2DixIn1XluyZAnOP/98XHzxxVi9ejUuvvhinHfeeVi6dGlbHQZBtFvcKTY2Y/XSZAiCIPZFTG7D7gkEdjU+buD55hZckepqAED1jh1IhEIZ3y8D9fpqaaaZjHwJwWXb+K6y0olykeAiCAJop4Lr/vvvx5QpUzB16lQMHjwYs2bNQu/evTF79uxGP3fFFVfgoosuwujRo+u9NmvWLJxwwgmYNm0aBg0ahGnTpmHixImYNWtWg+vTNA2hUCjljyA6Am7BZdGAgCCIDoJwKfQGgzA1DQxosIYrFo0CAHI6dYIWjSLX68X8a6/Fv886K+P7M9VwJUwTAVV1HAktxvD1L79QhIsgiBSaLbhqampQzWeCdu7cibfeegtr167N2g7puo5vvvkGkyZNSlk+adIkLF68uMHPPffcc9i0aRNuu+22jK8vWbKk3jpPPPHERtd59913o6CgwPnr3bt3M46EINovVnqEi0wz2i2/hELYEYns7d0gMhA3DNw2bx4219Ts7V0hOCLC5Q0EYPI+XA2lFIa44MotKoIWi2FE9+7Oaz9/+22996fXcO2MRhHSNPg9HkdwGZaFiK5ThIsgiBSaJbiefvppjBo1CkcccQRmz56Ns846C59//jkuuOACPPnkk1nZocrKSliWVc9ivlu3bti+fXvGz/zwww/4+9//jpdeegmqmtkHZPv27c1aJwBMmzYNdXV1zt/WrVubeTQE0T6hGq59hye/+QazV6zY27tBZEA0vV2xbdve3hWCI2q4fDzC1diEUjRNcKmu2q053AgsHgqh/IcfACQFl/tZ+ejy5TAsKyXCFdF1WLaNbeEwRbgIgnBolkvhww8/jHXr1iEWi6FPnz7YvHkzunbtilAohOOOOw5/+MMfsrZjkru7O5L9L9KXAYBlWbjoooswY8YMHHLIIVlZp8Dn88Hn8zVjrwli38A942uaJtVwtWMMyyJL6XaKGGDXJhJ7e1cIjiEiXMEgDE2DbdsNPt8ivIYrt1MnVP3yS3KhJAH8+cgYw6u33orSb7/FbfPmQQLqrStqGAioKuq4uOuZlwebMby3cSMMy6on0giC2D9pluBSFAV+vx9+vx8HH3wwunbtCgDIz89vVLg0hy5dukBRlHqRp4qKioyNlcPhMFasWIGSkhJcffXVAADbtsEYg6qq+PTTTzFhwgR07969yeskiI6OewDAuBUy0T6hGrv2i2XbiBkGQpq2t3eF4Oi8hsufmwtm22Cm2eDzLcRt4XOKiqCJaFenTo6BhqnrqOKZLYlIJCmeXOtijCFmGOgSDDoRrjyfz4mqVcXj6BwI0POVIIjmpRSqqooEn8lbsGCBs9zdy6K1eL1eHHHEEZg7d27K8rlz5+KYY46p9/78/HysWbMGq1atcv6uvPJKDBw4EKtWrcKvfvUrAMDo0aPrrfPTTz/NuE6C6Oi4Uwotw6ABfTvGsu0Ga1CIvYvJa3To7mk/iJTCQH4+AMCMxxuMcIV4baRIKWSMweIRMgDQolEE8vIAADXbttWzhbcYQ8I0YXMreIsxyJIEmzdALvD5HJt4giD2b5oV4friiy+cFLuCggJneTwexzPPPJO1nbr++utx8cUXY9SoURg9ejSefPJJlJaW4sorrwSQrK0qKyvDCy+8AFmWMXTo0JTPFxcXw+/3pyy/9tprcdxxx2HmzJk488wz8d577+Gzzz7DwoULs7bfBLGv4B7AM8No85TCuGHAr6pZi4TvT1iMQSJB3C4RggskiNsNIqVQCCUzHs8YYbJsG7FYDJIsI1hQANs0YRkGDE3D4OOOw4Yvv4QWjcKfmwsAqN2xA3nduyNhmk45gmXb0FyCS5VlR3DploUCvx8hTSPBRRBE8wRXLn/wpFNcXIzi4uKs7BAAnH/++aiqqsLtt9+O8vJyDB06FB999BH69u0LACgvL99tT650jjnmGLz66qu45ZZbcOutt+Kggw7Ca6+95kTACGJ/wj0AaesIV0TXcd+iRTh78GAMd7mAEbuH8b4+JFPbJ47gItoNIsK1lf/XiMXqPd++r6rC/C1boCUSULxe+HNyACTTBk1dR05hIQA4US8gGe3q5vEgzGv2OgUCsBiDZlnI9XqdbQjBZdm2Y8KhkeAiiP2eZgmuTNTW1uKZZ57B9u3b0b9/f4wYMQLDhw9HDn+AtZSrrroKV111VcbX5syZ0+hnp0+fjunTp9dbfu655+Lcc89t1X4RREcg6rIZtwwDy8vKMLF//zaJQNXE40iYJsojEQzP+to7Nha3tJYYw/KyMhzZq9fe3iXChXChI9oPwhbez1MKDVdK4de//IKyUAird+zA91VV0BMJeHw++Ph4JR4KAYwhp6gIQFKAGbyMQo/HkePxYGc0ih3RKDoFAvCrKvoVFiLf58PQ4mLo3CRDWNErkgQJyebIBEHs37RacJ199tlYs2YNjjzySPzvf//D999/D9u2ceCBB2LEiBF4/fXXs7GfBEFkkRpeFA4AzDSxNRSCadvwtIEbXoxbZwc9nqyvu6OxqboaJdu349whQwAgpbfPG+vXk+BqZ1CEq/2h88hWkKcUGq6Uwo9//BGaaeKH6mokTBNaIgGP3w9vIAAAiPB+armdOgFIRrgSfHKqcutWeBUFumU5JikJ04TCJ6m6BIPJdei6E+HyKAoYQCmFBEG0XnAtXboUCxYswKhRowAAmqZh3bp1WL16NVavXt3qHSQIIvtUV1U5/1+gqrBsG7pltYngiug6EqaJQAM98ohdvLJ2LWoTCZw9eLDTZNWybfxcV4ch3BWWaD8IwUWSq/1gCsHF68zdphmMMVTH4/DIMmoMA7FYDF5XhCvKBZeTUhiNOoJr+TvvYMSJJ0Lq1AlxwwDjhhmKnOo9JkuS4yzq5888SikkCKLVI6ChQ4dCdj1wfD4fDj/8cBx++OGtXTVBEG1ErUtwMcOAxRh+qqnBYW3QJiGs64gbBkUCmkDcMBDWNMQNAzler+N8Vuj31xvYEXsfR3DRtd1uECmFgZwcSLIMk6c0A8kU0JCmIcfrxUE+H8oYg+rzwcejU0Jw+XJyoHq9iIdC0ONxZ92hnTuBTp0QN03EDAOaacKTQXCJlEJVlsHIpZAgCDTTFj4TM2fOxK233urYxRME0f6p5QMLIJlSaNo2Xl27tk0GjrplwbBtsp5vAho/VzE+S5/g340qyylW/kT7QAguahzefhCmGX6vF4rXC2YYjuCyGUOdpkGRJPTMy4OfsZQarmhtLQBA9Xrhy8lBXUVFyrpVrxdAcmJkZyyGmGHUS5VWuOAS960iy4jy3mAEQey/tFpw9e/fH+FwGIMHD8bNN9+M9957r9kOggRB7FlCfGABADBNWLaNqngc1a7Z3GxhWBZMElxNQtRrCcEV54LLqygUIWyHWLaddJKk76bdIASX1+OB7PHANk3E+TIJyZrSTrxmy9Q0eHw+qF4vZEVxargcwbVjR8q6TV0HYwxx08TOaBRx00QgTXDJ3C7e4CnaHllGLTXGJoj9nlYLrnPOOQdbt27F+PHjsWzZMkyZMgX9+/dH586dMWHChGzsI0EQWSYejwO82Nvmg/q6RAKVsVjWt2XwwQcJrt1j2bYT4bIZw0vffpscuPEIF4mu9oWIcJmUMtZuECmFQnAxbtoDAH5VRZ+CAqe2ytB1qD4fJEmCLycHMS64PDzNMF1w6fE4VEXBuooK/Pf772FwV0I3iiw7UX1FkuBRFNS0wUQWQRD7Fq2u4Vq/fj2+/vprDBs2zFlWWlqKkpISrFq1qrWrJwiiDdA0DZ5AAEYsBmaaiPNahLYo7ta52KIoQOMwbjFuWBbipgnNNFNSChmSEbD0AR6x9xCCi67t9oNhGIAkQVXVpODi9xGQTNlVXPePkUggyO3jvYFASkqhPycH2zdtAgD0HzkSm0tKoMfjCMoyTNsGAxpMJdUtCx4AkiTBqyioSyTo3iWI/ZxWR7iOPPJIRFw9fQCgT58+OPPMM3Hbbbe1dvUEQbQBOhdcAGAbBuLcOMPdL6YiGsWnfMDRGjRKKWwSNhdc4nvQLAtR3pRakiRHkBHtB42bmtC13X4wDAOyokACoKiq83wDUM9V0NQ0ePx+AIDH70c8HAaApJFGTk6yLxeA826/Hd5gEHoiAVWWYXBX14bqKjXLcqzohZW82AeCIPZPWi24rrvuOkyfPh01riJ8giDaN5quQ/H5ICsKLMNIDhxtOyXC9faGDfjy559bPchP8PQ4GpQ2jiGiJXwwp/NaLt2yIAFOhItoP4jvhyJc7QfLsiApCiRJSppm8MkLxicy3FEmQ9cdIwyPz4dYXR2AZIRL9OYCAF8wCD0Ww9zZs6EiWZeqmWaD37siSc6z1MNTDKMkuAhiv6bVKYXnnHMOAGDAgAE444wzcPTRR2PkyJEYNmwYfD5fq3eQIIjsY+g6FI8HiscDU9cxrm9frNu504lwxQ0D2yMRZ2CRXhjeHBK8eS+57DWOSLu0uI20xtMJ8/3+ZISLarjaHSJVjGq42g8iwiVLUtI0g0eJ41wguVMKTU2DyscpXr/fiWh5fD6MPu88fDt3LgBAclu/GwZMVW30mfarAw5w7lVFlp1UYYIg9l9aLbg2b96MVatWYfXq1Vi1ahVmzpyJLVu2QFEUDBo0CN9++2029pMgiCxi6Dpkjweq1wvLMCBJEiTA6RezaOtWJ9KSaKXgihsGGEARrt1guISpbllOKuZBnTohqusU4WqH1CQSTqNbxhgkqtHZ65immYxwAVC44LJsG2FNg2XbKc3dDe5SCMBJLQT/XEEDPQklbmyjW1a9htfrFyxAUa9e6H7wwc4y0ZeLWgcQxP5NqwVX37590bdvX5x55pnOsnA4jFWrVpHYIoh2iskjXKrXC5P3iGFASkqh4RJcrUEzTUopbALCgMFmDJpIWeKGGVTD1b7YXFMDizHUJhLwKYrz3SgkuPY6hmE4KYXCFt5iDFtqa2HYdkrfrEyCS/V6IUkS/Lw3l2D4pElY/emnkC0LCVfrBjdvTJ8OALht3jxnmRDk9PwjiP2bVtdwZSIvLw9jx47Fn/70p7ZYPUEQrcTQdciqmkwpFAOHNNMMg9cRtURwVcViWFRa6kRqALSJA2JHQgguWZJSIlwKjz5ShKv98Pzq1Xh+1SrUJRLwifQy+m7aBaZp7jLN8Hhg8QjXhz/8AMOyoKaZZoiUQiG8RE1XShohgGGTJgEAFF7rKkwwQjt3Yvm77zbYNN7dCJkgiP2XFkW4SktL0adPnya/v6ysDL169WrJpgiCaAQxgGhuKpNhGFBUNSXCJclyyqyt2YoIV8n27Xhr/XoU+v0I8aafOgmuRhGmGaqi7DLLkCTnjyJc7QcxgI4ZBoIeD4nhdoSZFuGyYjHYjCGq6zBcKYWMsdQIFzfJUBuoPVd4ZEziz8SEaaJ7bi6evfpq1O3YgYOOPDLlfQInpZCefwSxX9OiCNeRRx6Jyy+/HMuWLWvwPXV1dXjqqacwdOhQvP322y3eQYIgGubexYvxdElJsz/npBR6PLC44HI7awGtSykUg9E6TYNmmvAqCqJ8O0RmTNuGZdvwyjLihpEyQBMRLjIeaR8IwRU3TeR4PGBkCtNuMC0LkixDAqByUyCbMWcSw8MjV7Zpgtm2I7i8rpRCNz0OOSS5nAspyzAQ4200Bnbu7DRH/umbbwAA/txcAACzbWixmCO4KMJFEPs3LYpwbdiwAXfddRdOOukkeDwejBo1Cj179oTf70dNTQ3Wr1+PdevWYdSoUbjvvvtw8sknZ3u/CYIAsDMaxc5otNmfMw0DSiAA5vU6KYWyJDniivEZWSG6mosYYNQlEtAtCwGPB/FW1oJ1dEQzVVVREOcOhQKKcLUvxPWtWRY6BwLQuOFJY/wSCqHQ70du2oCeyC6m6MPFbeEtV1uKiK472QAGj7ynpxR6XN/PPz75xEktVFyCq3+3blB4ZoGXW8Z/v3gxADiNlJe/9x7+99BDuPHdd5PbI8FFEPs1LYpwFRUV4d///je2bduG2bNn45BDDkFlZSV++OEHAMBvf/tbfPPNN1i0aBGJLYJoI0zbhtFI881GP2sYji18SoTLXcPFmxWnz8z+e/FiLNiypdH1C7FWKwSXqmYsMid2YbuMF9J7O1ENV/vC4veFhKQYbkoN15PffINnWxCNJpqHYRiQVBWyEFzc4dO0bRS4nAhFKrUT4RIphS7BpXq9UFQ1ZbllmuiRl4finBzYlgU9HgcA/LB0KQAgr2tXAEB1WRkAYMOXXya3R4KLIPZrWuVS6Pf7cfbZZ+Pss8/O1v4QBNFEYoYBw7bh5S5pzanjMnUdAY8Hks8Hgw88ZElCgkezbN4LyuQWyALdsvBLKISIrmNcv34Nr58PSIXgyvV6KcK1G4SYUmXZ6cElvlGKcLUvhMCyuKlJU2p0DMtCNR+c74/YjOGF1asx6aCD0DMvr822Y5lmxpRC07bRv7DQeZ+RSADYJaRyi4qS/95NDZfpSo1ORCJA2j1puWpigaSpRjFANVwEsZ/TJi6FBEG0PaImoSUOaRafBa41TcRiMQDJBp0JHoUybNuxc3cPFCqiUdTE404dREOI6FhFNAoGwKsoSPDUHiIzjPdyEhEukWIIUISrvSEG8CZjUGTZ6Z3WGPt7SllE17G2ogIf8UyYtsJtCy9cCsX35bbtd6cUmraNvC5dAMCJaKXjruESiLotN0KQJSIRAEC4upr6EBIEQYKLIPZVYoaRHJS3oGDf1HUwRYHi8yHOZ91ll2mGwW3J0xt2bo9EEOEzxo2R4D2kGACIQWma7TyRis0YGJLCV1jCCyjC1b5wBJdlQeF9lhpre8CaEAHr6MQNAzXxOKr4BI9gXUUF6ni0KRuY7ggXr+FifFIqxRKeC6OfYzEsLC1FPk8FlF2Nkd04ES4uuKrLyvDWHXcASG2anC64IlVVAEhwE8T+DgkugthHEWlnLYlwmYYBWVWh+nwpNVy6ZSUHhzzCJWpVBEJw1fHZ4YZIuKJjqqJAbWIUYH/GzhDhEkjYVeNF7H2E4LL5ZIK5m2tbNL5tqFfT/kDcNKFZFqJptZz/+fZbPLdqVda2Y5omJFWtF+GybBtyhghXmDsXxrlo6nPYYRnXq6RFuCLV1c5rIh0R2CXIEuFw8n1VVZBAES6C2N9pVQ0XQRB7D4sPwFtiF25x0wyPz4cIH3jIkgSL12wJ0wtFklJm5ndEItC4Vbxo0psJkY5ocQEhogAkuBrGHeGy06KBkiRRSmE7QUQaLdvGpvfewy/V1Rhy5ZWNRm8NboKyPzdHFhF59zkwLAt1mgZlNynKzcEyTUiKAq+iOH0Gxb3lrnMVNVyy1wuPoqAOwBXPP4/iXr2gmSZ8aamFaloNl+GadMrp1Ak127alvB7ngkuLx8FAfQgJYn+n1U+50tLSjLN2jDGUlpa2dvUEQTSAmDFvSY8XyzAgc8HlRLj4QF+kE3bNyUGnQCAlFSakafAoym5n9EU6omXbjn1ySyJx+xPuCJfNWEokQAIopbCdIISTadvY9NZbWD9vHmw0PqAW0bD9+fv7YONGGJYF03WeYrzfXETXsxb9EymFXkWB6vHANk3YvMedGyGYFJ8PPkVBrteLYLduqNV1LC0rQzgtii9zASYiXJqrHUcON+MIFhQ46xUphSY1ficIAlkQXP3798fOnTvrLa+urkb//v1bu3qCIBrAPYhrqWmGx+dzBgQyj0IJwwtZkiAhKbJEf646TYNfVWHxlMOGSI9wybwGiZrDNoyYgReRxphhOBFEEeEiwbr3yZTGKwGN1nAZ4jP78fW/IxpFRNcR4zVVwC6n1bhh4FveQLi1mGkRLiCZ5pd+7wjBpPj9CHg8UHlqqGFZKPT7UZXmKClSFEXKYDwUcl4L8N5b3mAQsdparPr4Y8TDYUeASZJEjd8JYj+n1YKrITvqSCQCv6uQlCCI7GLxQVxzhQxjLJl2o6rw+P1OhEvUWWm81kIGIMsyfq6txX2LFgEAwrqeFFy7SQ+sF+ECueztDnFuRKQxZhiIbt+OmaefjmhVFUW42glCcLmvf1PTdhvhstLS6fYnhGmImNAREzgiwrUzFsMra9dmZVuO4JJlx+Ld1PV6z0g9Hofi8UBWVfhV1Xn+AUCBz+fsoxthwgEAMZfgEkYboYoKAMD3ixdDj8WQ17kzDE2DKknUFoMg9nNaXMN1/fXXA0jO+tx6660IBoPOa5ZlYenSpRgxYkSrd5AgiMy0NMJl2TZsIbgUJUVwGbaNuGnCtKxkdIUPLFVZhmFZiBsG/IqSFGaNDDB1y3IiMrIkkcteExDnRuYphWFNw461a5GIRPD9woXIGzuWzl87QJjJuAVWorYWumUhrGn48IcfcPbgwfC63O4+3bRpv45widqtLsEgTC64Ah6PE+EK6zpCmoa4YSDAa6VaipWWUggkBZfs6q9lGQa0WAzeQACyJMGnKFD4Mw5ItrHIJJC8gYDT6DhWW+ss737wwQCAo3/zGyx+9VVs+OorAEBely7Y8dNPkCWpnlkIkRmbMZTW1aGfq2caQXQEWhzhKikpQUlJCRhjWLNmjfPvkpISfPfddxg+fDjmzJnT4h177LHH0L9/f/j9fhxxxBH4ij/AMrFw4UKMGTMGnTt3RiAQwKBBg/DAAw+kvGfOnDmQ+MDP/ZfIoh0tQbQ17joHIbiaa5qRECmEqgqvz5esceBOXSZP79EtK5lCI8tOr6+4acKwLPhVdbc1XKKmTPS+oQjX7qknuHQdYshX9t13+/WAvT2hi0iNZQE8u0MPh2HZNkq2b8eq7duxyeVgBwDfVVZC45/bH9EtC5Ztw8frP0X0KM7F68ju3RHSNGzndU+tweR9uFRFgccd4eLn3tR13DlpEuY9+yx8wSAUSUqKM/78sxiDR1FSnlU/VldjZXk5fDk5Tiqi26Xw8FNOwdiLL8axF12EvsOHO8tFby/JNBHfA4LLsm2UuSJv+yKLSkvxXEkJavbjJuFEx6TFEa558+YBAH7/+9/joYceQl4WO8e/9tpruO666/DYY49hzJgxeOKJJ3DyySdj/fr16NOnT7335+Tk4Oqrr8awYcOQk5ODhQsX4oorrkBOTg7+8Ic/OO/Lz8/Hxo0bUz5LaY/EvkJU13HvokXo36kTJh10kONS2NwIl5hkkFQVXl7jYCQS8AaDySiWacLgNVyiN5dwzbMYQ9DjQVjXG6zhYq50K92yEPR4nAhX+n6GNQ2fbNqEMwcOhKeB/jf7C2KA51UUJEwTCdNErK4OALB+/nwc/PvfUy+fNmTDzp14de1a/OO441KiU+mIHmm98vMB/p3Z/N7I9/kQ1jTUpk3kWbaNkKahKBCAadsp/aDcGJaF+5cswUWHHYbeBQXZO7i9jBCpPlVF3DCc6Hic1ykG+PLtkQj6d+rUqm1ZluXUcIkmxqZhQGIM2zZuxFNXXgkAYLaNUGUlZC64RHNiWZLg4Wm9gvJwGF5FgS8YhMb7iIUrK53XFY8HEy67DMAuAw0AyO3cOfk/hoHYHhBcX2zejIWlpfj7sce2OlK4t6jTNJi7yaAgiH2RVtvCP/fcc/j888/x+eefo6KiAnbagODZZ59t9jrvv/9+TJkyBVOnTgUAzJo1C5988glmz56Nu+++u977R44ciZEjRzr/7tevH95++2189dVXKYJLkiR079692ftDEO2BHdEofqqpwbZwGIwx9MrPb5EZRVwILkVBUa9eAIDl77+PYy+8EJIkOREuWZKgyjI00wTDrsJ/L08pbCjCJYSghKRI1MrKsKOmBurAgfUiXAtLS7G8rAxH9uyJvvt5Ckk0EsH2khIcOmkSwrqeTOXk35VlGDBiMerl04asqaiAYdt4euVKGJaFa48+OuP7RLSmj0sY2KLRN2OI8PQ4NxavyRM1ksLMIZ0QF2vLt23reILLtuH3ehHh1zYAR4SIjJPKtKbILcE0DCel0MsnVA1Ng6zrjtgS2KYJiQsu4TypyHKKTT1jDHk+H0zbhjcYdCJc4bQopiDo+t7yuOBifAKloZr3bFEZi3WI9gP7e886omPSatOM22+/HZMmTcLnn3+OyspK1NTUpPw1F13X8c0332DSpEkpyydNmoTFixc3aR0lJSVYvHgxxo0bl7I8Eomgb9++OOCAA3DaaaehpKSk0fVomoZQKJTyRxB7i8pYDFHDQGldHboEg7Bs27Fbb85A3IlweTzoccghKOzXD58/+SS+W7gQQDLNxz3TK3puicJ/VZZhAxmLyoFdP5Z+jwcRXcfLf/oT3rzllowphVHDQG0igedXr8YWV03E/si8jz7ConvuwZrPPkNxTg76FRbC53I2M6JRElxtiISkMNgRiWCHy/I7HRHpVVwDZxHhMvjMfPrsfNDjQYHfv9uZe41HmNtuSL53EFFBL08p1Fwphe6BdTas04VphixJ8PGUwt45Oejn2s4EPpkLwDHMEDWsdtp3ywB4+OthSXIiXNEGxjdBPnE07IQT0IVn5EhccKVHPtsCYaa0ryIhOUGx7x4BQWSm1YJr9uzZmDNnDpYuXYp3330X77zzTspfc6msrIRlWejWrVvK8m7dumH79u2NfvaAAw6Az+fDqFGj8Kc//cmJkAHAoEGDMGfOHLz//vt45ZVX4Pf7MWbMGPzwww8Nru/uu+9GQUGB89e7d+9mHw9BZIuaeByyJCHP53MEkNwCu3BRwyXxgUZOcTEAoGzDBgDJAaVuWZCQdMwTM7MGTy0UdvGNCS6bMXQNBlPSaDJF4uKGgZCmYWtdHf73ww+oysIM976Kzr+XytJS9CssxAH5+YhWV6OAPwuNSIQEVxujW5ZTs9jYe4QZjMDi0SvDspIun2n3Rtww4ONRlMbaKcQNY4/U+uxpxDnz8tooIawiuu7UwTHGspJGJlIKZUmClwuufEWBn987F/zrXxj7298CAHKLiuCRZRzfrx8OKy52+nUJZ1UAzjPPqyhQ/X5sWr4cRiLhNE5OR6QUFh94oFNDloPk8/v7qqpWH9/uEBNj+yqSJO3zx0AQmWi14NJ1Hcccc0w29iWF9LB7U0LxX331FVasWIHHH38cs2bNwiuvvOK8dvTRR+N3v/sdhg8fjrFjx+L111/HIYccgocffrjB9U2bNg11dXXO39atW1t3UATRCtyDEVP0ygKabaagiaiJosCjKDj88ssB7Grsadq2U8Ml+gsJgWe7BpoNCS4xw1ro9+O4vn2d5ZkiXDYfZG2PRPBzXR0eXb68ycfR0dD4AC7KI30/fP01fli6FD0OOQQAoJPganM0Xr/YmODS+GSE7bofGY/gGPwvvV4nYZq7ojuNiIqYYSQjXG2YdrY3ECmFInIkzkFY05x6NkWWsyI2LW6aIQFOhMvQNMddsLhfPwDATe+/j6tfeAEMSYfWoMcD8F6EiiQhZhgoD4dTBFektBQAsOL992FbFiZMnYq/vP56yvZFTy4AjuCydB0MyZTRuZs24auff270GDbs3ImKRqKsDSHx/e8IKYX0rCM6Gq0WXFOnTsXLL7+cjX0BAHTp0gWKotSLZlVUVNSLeqXTv39/HHbYYbj88svxl7/8BdOnT2/wvbIs48gjj2w0wuXz+ZCfn5/yRxB7C1FLBeyyWW5JSqGo4QJ35vLk56PbQQc5Bg0Gn12UuUuhSCk0mii43MLMPXC0M0QOhPNh1DCwrqJiv/6R1XiEK86/h7fuvBMA0PmAA5Kvk+BqUyRJanKESwKgu6KxjKfhiiiw2wLc4oNHUfvYaISLu9l1tNl98UwQkSMR4UpYliPClCxZp1uWBZlHuIp5nZ2RSEDnzz0Pr+sK5OXBy9vZeBQFAY8nKaT5s6tHXh6q4nFEdN0RXEWHHgoAzroKu3VDfteuKdv3BgLJ/TAM+HJyAAB1vKlz1DAw96ef8Pq6dY2mT768Zg0ea+Hkk7WPixUJJLiIjkmrTTMSiQSefPJJfPbZZxg2bBg8ac44999/f7PW5/V6ccQRR2Du3Lk466yznOVz587FmWee2eT1MMacAUxDr69atQqHHXZYs/aPIPYWccNw0lw0y4IXcNz/Gps1r0sksCMaxSG8gFtEUmRVdaJYwYICxOvqkuviAkuWJBT4fMnicz47765daYrgctdnGJpWbyCbME1EDQOqLCPg8aDTfuwaKlIKhfAt7t8fW9euRZc+faB4PNAjEadPENE26DwlUJVlrKuoQI7Xi74FBSkTB2FNAwMQD4edZcyyYHAjGYv3lXKvU6TTRXS90Xs1bhjOPdGREM8ECck0wnmbN+O4vn2hmaYzgZOtCJe7hmskr6HSEwmnObEQRACc51mu15s0PQEAPpGV4/FAlWVsrKpCcTAIr6JgwHnnoWb5ckdAZTI/EctMXUdBt27oOXAg1i9YgMGHHoqorsPkEdCQpqGLq3+pG82yEGzAyXJ3WB2gfcS+LhoJIhOtFlzffvut0+B4bVqn+JamRVx//fW4+OKLMWrUKIwePRpPPvkkSktLcSV3GJo2bRrKysrwwgsvAAAeffRR9OnTB4MGDQKQ7Mv173//G3/+85+ddc6YMQNHH300BgwYgFAohIceegirVq3Co48+2qJ9JIiGWF5WhqDHg0N5bVQ2eHXtWmysqkoaVrhqIIBk36bGBiovr1mDsnAYd4wfn+w9JyYiPJ6keGIMwYICxOrqIEkSYi7BJUkSeuXlJSNcfJsSt4tPd2ITuAVXwtVXx4jH66W6JEwTnQMBDOzSBaV1dR1uoNkcxARRlAuuguJi1HTujOEnnoiPH3kEtmHQIKQNEe0MYoaBoMeDF1avhl9VcdLBB2O0q353ZyyWrGF0XduMR2pFFDiWLrhsG35V3e1AUphLhBuZLNwXEQJA1OdUx+NOrajsinBlajbc7G2ZJmRFgSRJ6JKXB0mWYSQSkLiA8bgaIGumCZ+qIt/n2/VM5fuT4/XC1jQYfB89sgxFUZBTWIiSjz4CkFlw9T70UPQZNgxHnHYaJElCfteu0BMJqLKMmkTC6UPWqOAyzWSKYwsQE2P7KuIaoWcd0dFoteAS/biyyfnnn4+qqircfvvtKC8vx9ChQ/HRRx+hL68HKS8vRynPpQYA27Yxbdo0bN68Gaqq4qCDDsI999yDK664wnlPbW0t/vCHP2D79u0oKCjAyJEj8eWXX+Koo47K+v4T+y8xw8CL336LokAgq4Lrm23bknbFogbCNFEdj8OnKNAtq8Fok9inqK4jYZoIeDy7XAr5oASShEB+PipLSx3x9tm//43Cbt1w2h//mPwBZAxlvJ4BSNY8RHQdjDF8vnkzRvXsiUIenXLbwrubg5qxWMYIV5DPJCu7EY4dHS0twqUnEug5cCAkSYLq9ZLgaiU6T19TGogcxLgAEL3tdsZi6BoM4pc0d9rycBh+VUXctdw2TZh8UsJKSykM6zoM20Yev98aFVzc7TDkEmwdAZM7qgJAt9xcpwm0blnO96Fmq4bLFeHyqioUnw96PA5ZUeDx+x3hBSQFrk9RkO/zoTaRcBzyeubl4YD8fCz95ZdkPy9uMy9JEnwukZRJcHkDAfz+wQdT3pOIRuFVFGyprXXq+OoaMN0QorylUaqOEB0S9ZAE0ZFoteBqK6666ipcddVVGV+bM2dOyr///Oc/p0SzMvHAAw/ggQceyNbuEURGquNx1CUS6J3Fej/GmCOoFFkG4zOk28JhBD0eaLsRXD5VRUTXUadpCHg80PmgRuEzqCKlMFZXB5kXi29asAAAcNof/whZkqCbJpaVlTk/5EJwRXQdX2zejKpYDOcPHQog+WO5acECFIwZk2KdbMTj9QSXZprOgEuR5azMcO+riLqQeCgEZtvQ43Hk8hoU1euFaRg0CGkF//rySwzq0gUXZkgjLw+HUVJejjpNgyJJ6JmXh5CmIZ87grqpSSTgU1XUpqUUmtwO3mbMmeDwqyo27NyJsKahL+/P1FhaqMajYZEOFuFyC4DOgQCifPIgJcLlckRtjWmIu4ZLOAtq8TgURUlJJwSSItyrKMj1eqHwyL1p2+iRm4tTBgzAxqoqeGTZWZcsSTjxT3/Ck3wyt6F+am5UrxemriPH40Etj3BpppmSdpq+T6InWHMRgnFfTikUNcn7umgkiHRabZoBJN0Bf/e732H06NEoKysDALz44otYyPv6EMT+QowPiuUW5t9nIsGd00KaBgnJFMLKWAyheBwGjyClu6K58asqoobhzKjq/IdeUXfNtwTz8xEPhZxmxW5EIXl5OOz8kAvBFdZ1RHU9JWpgWBaWPPQQ3r/zzpQIl5VI1LeFN00naieaLO/Lg4XWIL4XZtuIh8PQ43FngKh6vWCG4RguRHR9j/T06UiYto2NDdhyL9+2DVtqa3FM794Y0LlzimhKF1xCJCQiEUiyjEB+fjKlkN+jQY8HCdN07reoYTiNfYUhQEOICJeIHncU3Clussvoxy24PLK828mjJm2LpxSKNEDV54MWj0NPJOoJLpsxpweXyoWVWAYARX4/FFmGR0S4AOS7MhfSBZfNWL3WForHA0vXUeD3o7SuDjXxOHTLajBtVKSVtlRw7OspheLYSXARHY1WjwrfeustnHjiiQgEAigpKXHSYsLhMO66665W7yBB7EvEDQMGdzHLFlHDgM6t00VtlGHbWPXmm3j+97+HrWkNzpYCcPoDiYGMiHCpXHAxJCNcpq6DZSjqF72+quLxlAhXzDDwxebNiPEeQ845EAPN6mqnuByoH+ESdWFOhItbGmej+em+iK5pkPh5jNXVwYjH4RGCy+OBbZrOdzPr669x/5IlbbIfm2tq8FxJCTbs3Nkm699bNDaAC/HIlhhUG7aNOG9Wm37NWrYNCUnTjEBeXjLdk7sU1mkacr3elCa3hmWlNHFtbD+i3BhHuCV2FEx+zoBdgkvUtgnB5VNVaKaJulZG92zLgqSqkAAnwqXH44iHQo5roPNexuDh95wQXBZ3UwSAAK9z9SoKDi4qgixJ2OLav3TBtam6GmsrKlK+OxHh8qsqeufnJ681WU55ZpfW1eHVtWuxsrzcmXRqqWja11MKhWDcl4+BIDLRasF155134vHHH8dTTz2V4lB4zDHHYOXKla1dPUHsU4gIVzbd5KK6DsOy0KegAH0LC50BSw3vC6dVViYbiGbAsm1sqa2FxW3dAcDg71X5oARICi4g2Vw3fUZfbM+wLHTm9QuqLCdF3/btqE0kUprAxni/G8s0UbZhAw7gVspmmuBKbyDrURSENA2L99N+d7qmIcCdJGN1dSkz8gqPcAnRbFhWmzXJfX71aqzesQOvchMkxtg+FW3RLate3RXQuNAJa5oz8JYlyTnPUV1PuWaFk50sSUiEw/Dn5UFR1V0RrkQCOR5PMoKh6/jw+++xtqLC+TzbzX7EDAN+VYXJBV9HwRQOgIDTyiJuGCltJnyKkhIZbCmWaUJ2pQF6fD5Ubd2Klf/9Lzr16JHyXpsxeFwpzcJZ1R11V3l0q3dBAbyKgp38+QbsSssWJEzTuY4EIh0YAHoXFODYPn2Q7/Ohhq+nIhrFk998g5Lycry/caPzXNR5pKvZx7+PpxQKwUiOrERHo9WCa+PGjTjuuOPqLc/Pz0ctb+BJEPsLoq9UIos/FiLFpEsw6JhL2IzBV1iY3ObOnQ26+60sL0dc9NHi++REuDweBPiAQTTr1F3GGACw/ccfHet5j6I41vKqLDv2xjWJREpUzC24dvz0E3ofeigUj6ee4BI9i8TgpsDng2nb+Oynn/apAX620DUNgaIiAFxwpaUU2rwpLpCMwCRME098803298OysMPV8+s/336L2StWZH07bcUXmzfj0WXLUiYhxCCOMZYigAS1muYMvGVJclI3EzzKJXA7cMbDYQRyc6Hw6KNumojoumOusHjrViwtK0PcZX0u1tEQMcOAjwuu1qbWtSfcAkBM4IjooTg3XkWBwaOELcW2bTDbdlpeeLhRRumqVcltp6V6p0e4hAOr6roWhODyKQp8amrZe6aUQlWWU55fIsIlEAYcorFxdTyOmngcIU1DQFV3tRbQNGx3OWE2ldZEx9oDQmxRvSrR0Wi14OrRowd+/PHHessXLlyIAw88sLWrJ4h9ijgvBm+suWlzcYSJaxBg2TZUPhiP7dxZr+5KIEkStkcisHi9BJCaUhhQVTDASbWx0kTRa7feCoU3hHUPFIXgcg9MBVFew2AZBqK1tcgtKoIvGKxnCy8GFuK4JElCcU4OquPx/dIeXtc0+PLykv8fj0OPxx0La9XrBeNNcYHkoKQqHm+TOq6EaaIqHncGPOt37sSaHTsarRNsT2imifJIBD+66gcN7npm2HbGCGookUiJTIjrWbOsVOHGHQzTI1w2t5PXLcsZrFfH44jyGke4rvuGBFdZKITycBgeRelwKVWmbUMLhVCxeXODgksYZbTm2Wnyz8pcPHkVxUnLBYBeQ4akvN/m/dEAOKYZouE7kKxfFVEuSZJSUqcBfl8yhp3RKLaFw7CRrEVzP0MVjydFcAFAjseD7ZEI4oaBqlgM1VxwFfr9zjUW0XXsaKbg6gjpeAafHOlIKbUEAWRBcF1xxRW49tprsXTpUkiShG3btuGll17CX//61wZdBgmio2LwH7zGmpu2dJ3u1DvDtp3UQDMeR9wwGowK6ZYFn6o6A2hN1yEpClRFQY7XCwmAh1u6x2KxlAGmHo8jz+dDFd+GwCPLMLgrW9DjSSkAFxEuPR6HFo0ikJ8PX05OvRoukTqjuGb/s5VWtC+iaxo8OTmQZBlaNArLMHYJLo8HdlpKYVUslvVIoBDRumU567b59dxQ2mp7w2IMYU1LmYQw+IRBgh+bG5sxhHXdiXC571/DslIs2kWU7K0bb8SGr75CIC8PiscDJqLItp0i3MK6jphhNKmGawcftPfMzU2JSHcETNvGitmzMfuyy5AIhRznVfdzTdCagbbBn1GSiHDJsvNs6zV4MI4+55yU92eq4ZIkyXkmSTzCdeFhh8GybfhUNSm8+ASV6vWiLBzGhspK/FRT46zP/X2nR7gAINfrRUTXURGNIqzrCGkaKmMx+HivNgakpIE3+fh5BHZfTims4hNzJLiIjkarBddNN92E//f//h/Gjx+PSCSC4447DlOnTsUVV1yBq6++Ohv7SBD7DCIapXF742wgBr9uNy/DsmBykWPzPj+ZRJ4oVpewy45a0zTIigJFkhD0eJJpM3xQ4rdtlLvqX5jLxUukE9Zs2waFD17jhoEcjwcx16x0XKQU8sFPMD8f3kCgXkqhSJV0Oxz6VTXZo6aD2WI3BVPXIasqfMGg04tLpCypXi8sLriEw5tmWeiWm5vVfRCOmF2CQcR4tFYYHDQURW1vVMfj0PhkgEBEU2Pc1MaNnnYdehUFmmliWLdu6FtYmDKZYNk2TNNE+fr1AJCMcPGUQobkPSY+L9LCYoaBWHU1lr71FoCGBZdmmpAkCTleb9LoZh8eNKdj2jYSvMRg+8aNKREu94SLMAxp8XZEhMtlC+/lz7auffum9OAC0iJcXHC5UwpFhEvhdvEiwnXcxRcDSN6XhmUhx+NBjsfjpBS6n3Pi3nXj46mDIgqqW1ayKT0/J+K3o7mRKtFHbl+JcCVMEz+5Wocw7oYrfkMJoiPRasFVWlqKO+64A5WVlVi2bBm+/vpr7Ny5E7fffntKc2KC2B9wzzBma8Bk8B9jgYhwiVlTW9dhNZDGKBqOMuwayGiGkRRcsowcLrgUPrD3WpbTGLn/yJGIh0KwLQvDunVDj7w8bP/xRzz0299i2dtvI85rVlTeP0eQSBNLIsJlxuMpM69OSqHr2ESqYmPRFItHGToalmVBVlV4AwFEueBypxTaug7TthHl/xXnKpskuNtewFVH5OHNtfeVCFdVLFYvrVdEiRMup0fntbRawkK/H0f16oWiQCDZ4NgwnOvWYgy1vPUJAATy8uDx+WDylgeGbcMjy4gYBn6orkZI06BbFkqeegofP/IIjHgcOl9XSNOwk9fxAHD2y21S01EwbRtMRGf5xEuUn1dT05z7mQGtem6KCJfM3SYVV4Qrl9dHurEZg9fVeLleSiEXX6osw+LiTAJwzPnn45ZPP002U1YUFAUCjtDypNdweTywLQu26/sUjqzvfPcd1lRUIN/nQ1EgkLzWGHOMWZp7f4v7d1+p/3v3u+/wXEmJI1BjvH2J6AdJEB2JVguu/v37o7KyEsFgEKNGjcJRRx2F3NxcVFdXo3///tnYR4LYZ0jwAnkxuMsG6QMQr6KkRLgsPgDPtD1hYe1ej6brkFQ1JcLFeL8aPR6HxgWX6Dcjoi0A8OPy5QCAeF0dZAB+jyfZsNT14xhL60MTLCiA1+9PDkozpRS6Zp2FsGxsoHH7ggV457vvGnx9X8U0DEiKAm8wiBif9RURLhFFsWw7OVDlqUvZHliJAZvXVUfERIRrHxkAOc1lXQNcIaqMDJE6w7ZT7MkBOGYywo1TmJWYtu18N6PPOw9HnnkmAnl5MKJRp9hflWXISEba4lzgiQiHGYlA5+u6f8kSPLxsmbNNIRAdwbWPRCmagmZZMEUfwFgMNmOoTSQQi8Xw0JlnYtk77wCAc621FBHhUnhKoSJJjuDy8/pIN+4IlyrLTjZAvQgXn9zw8MgZkLwnGa+3KvT7d9XWyrKTUvhdZSXE9JM7rVA856J8skzhUTRhcGQzVq9n2+zly/Hi6tWNHn+dpu0zgosxhp9qahB31aaGebQv6PF0KJdOggCyILgammmORCLw8wcdQewviB8LzTQRylJaXPoARJVlVMfjAP+RsvgAM9OPrPsH24lw8RouRZYR5H1mbMbgDQSgJxLO4LAgTXAxxvDN++8DAAxNwxE9e2JEt25JVzfXPsbT6q8C+fmQubGAe39E2pU7wpVpv9OJGQa+dfX36iiYpglFUeALBBDl6VeqK8JlcaElrMq9spz1QYkQXD5VdVIJdX5tCRvr9owwG0iP+ApRJdwd17t6jIm0SUWu/3Po4QNtMSC0bNu5H8ZNnoy8Ll0QyM+HFonA4IX+kiTh8B49MLBzZwzr1i3Z3JcLOCMSQZ0rouPeR3eES6QndhR0y4LGz5sejwOShJp4HDs3bgQArJ8/H0BSiLQmlcwd4RL1WCKl0J8h/ZYx5qQJpphm8GeSSC9UJAlFgYDTAFlQsn07NtfUpFjKC8HMGENNPI6tLhMhNzZjSbHBm78rPFNARPCltAjXz3V1+MFlBJOJUCO/Be2NNRUVTlq6mMyJ87YqIrJMEB0Jdfdvycz1118PIPmA/Oc//4kg788DJFNjli5dihEjRrR6BwliX0IzTQQ9Hsf44QBut94a0gdesiRhaHExNvNBgcVruBZt3Qq/qqbU9YgfbFmSnB8wXdedGq4cr9cZIHgDARjxOAJ8vSLCFa2pAfr3x+aVK1G7fXvyOKNRZ5ZWcfUtAuCkJAoCeXlQFAXMslKORbcsLPn3v7H1gANwyrXXOsvd9WaZ0C0Lng40GBW4UwojPIriTim0uJAQqVgeRUmJLGYDd4RL9H8TTbO3hcMAgMpYDNvCYQzr1i2r284Gce4UCElKichF+T1ictH16tq1uPZXv0LnYNCJfqWbNwC7UlwfWbYM/xw3DhZjiNfWQvF4HMv+QF4etHA4xVktx+tFDnewM20bOXzQL8fj+K6yEjuiUUcAriwvx8ju3ZN1n65t7yt1OE0hFIk4EXk9FoMEoCaRwFbevLt0zRq8esstGHbtta2aRHBquLi5BQBIXNxmElyZTDMypRQyAEf06IFvd+xIEetR3gZAiLVOgYDTRkO3LOR4vU6U2tA0BFzbTpimIy6FqBM1XJIk1Ytw6ZblXKNvb9gAv6rilAEDdh07r1EUkw5CtLVXqmIxJEwTMcNIRp1zchAXEz6KQimFRIejxRGukpISlJSUgDGGNWvWOP8uKSnBd999h+HDh2POnDlZ3FWCaP9ovGje4ikz2SBTalGez+ekqJiaBsO2sa6iAs+WlKS8zy24xAy6zlPX3DVcToQrHschXCSKCJeItmzh6Sx9hw1DwmVXrHATD1Hnki64ZEVxIlxuYTZvyxaUr1iB5e++W+/4GhpsMsaSg95GXBn3VSzThMxTCqu4dXm6aYY4dlErkk03TADODLtXURxjA+HOVsojFE9+8w1e402R2xui8XhAVVME185YzDEBEQJSiKN0F1A3QnDpluWYayTq6hAsLHQGs/68PCTCYegZegdJkoTj+/VDgAtnTyLhWMWbXAC+tX496jQNccNw0n8ltK6Wqb1R7TJG0FyR0oo1a5z/37hokZNW11Icl0IungBA4ufRGwjU/0Bazy0htkQUS0KyZlaIlx65uSmiWKRkiz/381TjZhoB7miop0WIRdprRNfBkHyOirYijNdxieegaOsh/r1i2zYsSquRF20JvIqCDZWVeGPdupaexj2CSImOm6Zzr7oj7JRSSHQ0WhzhmjdvHgDg97//PR588EHkZ2EmnyD2dcQspARk7QdDRHuqtm6FFouh58CBAODMGBuJBBif1XSnuwC8WB3JKJSYTdVFSiGPcCmynBxk+/3Q43GnuD2nsBCKx+MIruqtW9Fv5Ejkd+niRLqA1JoTRZYdl0IgOdMMJGsqmEtwMcYa7THTkOAS6V8xw0DMMJCT1nh0X8biZiZ9hw3DxkWLAKTWcFlcaIlZbA93w3NHZ36qqYFp246jZHNJcKc8UdQf59bdAVVFLU+FE/Vc7XEGXbgQBlQ1pVarIhpFzDDg5+5wqltwpZlmuFH5ZIJwb7TsZD+pYEGB855AXh60aBR1sZgzeE9HGCYkwmHkMIaKaNSpkQtpGuoSCUQNI+XzTUkp1EzTabTcnql1CS4R4TJtG5amIb+4GCHejFqIjpbijnCJe4LxZ4mi1h/upNRrcfGV6/WiGxdJPfLynOckXO8FkiIo4PEgqutOSqGHm2rYjGFrKIQivx85vHYskfa8s7gBTljX0b+wMOluaVkIaZpjdCSeg1GXmAJfLtxrxXfvnlD4sboaiiThjEGD4M9w3O0BVZYRMwxopuncq+K7F70fCaIj0eoarueee47EFrHPsK6iIln/1EZo3DQDyF4NRkTXIQF45JJL8NSVVzrLxYypoWnJHy3DSBl4ldbVpdSFJDJEuIKuGVl/Xh7ioZATOVN9PgQLChDjgsvUdXj9fvhzc5FwuauJwbljO++KcMl8gCDzlEIhQkXEIBONOZXNXLQIFjcxqGri9xgzDJTzdLj2jEgpHDR2rLPMnVJo8totIYJEg1X3dTZn1Sq8sJvC+sYQAx5hACCiaT5Fgc5Fijva094QKUlBjyel5qyGO+MZPAqVMM1dPc24iM8U4RJmCZrrmPV4HD5XCr1IVQuHQujrEmJuNF7HY3Cnzvc2bnQiXCFNSxpI8Foewe4iXHHDwJ1ffonl27Y18ezsPWp5dDSnUyfosRiCHk+y1k7XUdC1q/M+VZZb5YaZXsMFAD4RXWygptxdu3dYt27oHAg4Auuw4mJcP3o0inh0TBhrAMnvx90QWfT9kiQJFdEoKqNRqLLsjI+0NDMhi0+SjT7gAPTMy0veY+6WGK57+5dQCGFNg8FFlmhxkNIzkZsQHVxUhOp4HLplYTY3OWqPmHaybYLBjwXYNUkpS5IzEQIkxWlHqmmsiEaxaTf1eETHIytTH59//jk+//xzVFRUwE77kXj22WezsQmCaDWMMbyydi2Kc3Jwza9+1SbbcOfZZyslqDIWS4lcJSIR+HNzEeczpkYiAc2yHEthIBmpeHrlyuS+8MGkiHAZrgiXj//XYgy5RUWo2Lx5l+DyepHTqZNjUW7oOvw5OfDl5kJzCy5ZhsVTuYBU04w8HmmReYRL7IPWyIBd1L1kQhxj3DDwbEkJbjzmmN1GuZ785htUx+O4ffz4Rt+3txEphXmu6FQ90wyXCBI21KZtw8ffnzBNtCbWIQY8Cl+3cE0TjbPFjLQQIZ60iOreRqQk5fl8CPO0ve2RCDaLSQPXwM3tPJjuUujG3TDZYgympiHAB+82Y9jGhd2vevRAXgOTj+J+MXhT159ra9E5GIQlIlw8pVBpRoTrm/LyZOPcdt6zzmYMYX7+C7p1gxaPO+lklq4j4BKpflVFZSwGo4XXluNSyCNNADD+oosQVhQcMGRIxs94XOd88vDhKRNBkiShwCXU3BEu0062AJAlCbm8FlaVZTAefRKOhp0KCwEg5ZkJJGvCRCohsKv/27qKiqRboisN/OfaWtQmEij0+x3hr5kmwrqOPP6MENdx57y8ZPNvXW/ypNTeQETKDZcDqnh+Ka7JJJ+q4tmSEvwSCmFGO3+GN5XHli+HZdu4Y8KEvb0rxB6k1RGuGTNmYNKkSfj8889RWVmJmpqalD+CaC9oloWYq6dOW21DSUsHaS3V8XiK4NqxaROAZHqSx++HoWk4pHNnlEciTl2TwWfkGWMAr0twUgpNExLvHyMKxW3GkNe5MyJVVamCq6DAscE2NQ2q1+ukHgrE58VAJZFIwJuXh0l//CN+c9ttAHhKoWk6UbaEaaYMKC3TdFy8LMZQUl6OL3/+ud65sHhDTBFx2J1rF5C0Cd8X0lMs04Siqk4aIZD8DjTTRLWuw+SmGUIEeXidlbjODC66WyP0YyJVEMlzXRGNOhEug98/YmDXHp3QEtx4wq+qMHh9zNMrVyJuGOiVl4dBXbokHfPcEa5GTDOA5D0tzENMO9k3SjjfhTUNcX7PmbqOdfPmYcb48SkW4IwxVPPeXTrvEZYwTZSHw6jTNGiWhSVbt6I2kcCmuXPx3/vv3+3z4/uqKny6aRMiuu5Y2LdXDMtCnEeYC4qLofHITzyRALMsDDzmGAQLC+Hx+xFQ1aQjZgvrX3V+3t0phYFgEANOPDFj2qWo0RIostzo+XRbvosWAO72Gu6UQvFsFRGu9JTCPJ8P+T6f82+voiQbIbuizLr7ecknOWq4E6FuWSli230di3S99uz0J1Ikc71eJ8IlUuDFb4q4B8p4jeS+0nx9dzBe40fsX7RacD3++OOYM2cOli5dinfffRfvvPNOyh9BtBfqEgnEDAPBNhqgiB+IbKYUGjzFhLkEzqu33grLNKHH48jv2hVGIoHinBz0LyxMSZNy1/e4TTNMwwBkGR7eX8ajKCitq4OvsBCRmhoY/Edc9XqR27kzqnnKkqnrUH0+eHw+5z1A/ZTCRDwO1evF6PPOQ49DDgEAxzRDiL6EaaakHt55wgl49NJLASQjD6V1dfjsp5/qnQ8x0Ne4nXBuE2q43D/c7RnbspwUTC9PWfP4fNgaCiEBAIzBck0auCNcALCsrAw7eD+olhqKhDTNSZOyufAVphkiwiVqj1pj391WiBlyb1qz5jpNQ9DjQbfcXKevVpVI8xPGBIaR0pxWEPR4YPEJBdO2YSYSTkohAxDg6WamruPLF18EAMRDIefztdu3O//WeUqhblkozslBUSAA07ZRm0jAsCwsnj0b33zwQXJ/GvkOaxMJxA3DMTVpz+iWhUQ47KQo67EYPLKMGH+meQMBHH/ppbAMAz4e+Wqp4ZAmBJcrpVCk3qYT4+fPHeHaHfUiXHzSKiAEF3+mClMbWZJQGAxC9fvrpRSmI3GXw4xGR9zxMKLr+Lm2NjnxxOu93PsjnvcS4Fwf7fXZJ9LvFVlGHf++xW+I6GUp7k0hUGYuWtToRI9l2ynNxNsrYtKK2L9oteDSdR3HHHNMNvaFINqUOk1rU8ElXKLELGdLB6SMD3RFRMGwLNiuH+tEOIw63ocqv0sXGPzHSvRxEcYGYoCocBMEEfEyXREuAPBy04xKWYZtmojwqJHq9eKQ0aOxY9Mm1G7fDoNHuDx+P0xN21WMzj8vZmN1TYOSJoQURYHNI1MAF1xp6S41QtjxWq+wpmFrXV1KdEq4f+n83DQlfW5fiG4xxlIE1+WzZ+Pyxx+HzAd0nXjhvc1nrSUuoi2X4KpJJFDHB+4tjXIJwQUkB2w7Y7HkYM/jSdZc8Chbe+31IyJcomGxGFCHNM0RMDofqL6/cSO21NY6g9Z/nXgi3pg+He/de2+yFQJnaHGxc30blgUrkXDqgSzbThFcNeXlAOBEdAA4jpNd+/VLCi4+kOyWm4ueeXlQZRk1aU3BGT/HDRH0eBDW9WRT5Xbu1qnzCJcvNxfeYBBaPJ6MwPBnmsfngy8YTIpdLhBaem2JGi7FZQvvVZQUZ0FhgrK8rAwe13OwKYh7g/HvUOUTVgFVTf7X43EmQjzczMSrKPAEg0g0oY60wOdLifKIZ1ecm6PYto3SujpnwqPOHeFyCS6GXfWM2ZoYieh6Vq3axbF5ZNk5DjFZJHpDCgEmJvRCmtZolOuLzZvx8LJl7breS7SoyDQJQHRsWi24pk6dipdffjkb+0IQbUqY10mURyIpvVSyuX7dspIF1LLspM81l7JwGG9t2IClZWWOZbXO01ECPD0lXFkJAMjr0gWmroPxyJrJ329YFjTLws5YDJ2DwZQUDYObZog0RYsxFPj9YFwkOU13PR507t0bABCproap6/D4fM5gU0S5RISrMcHlruFi3G48kTYTmdOpk7M/Ynb20eXLsWDLFuc9IqXQoyjJwX8TfrT2BcHldldjjKFLnz6OG6VhWQiKmiHDSCkst12zwCKdUPTjaQkhTXMGoH0KChDlg3rRCFnUj4kZ9vZGwnVuhLlA99xcRHQdhfwcishvRSyG7ZFIsok2n7T4buFCrPrf//DTN9846xTCdkc0mjy/mrbrHrBt57sxedonkCq4Qjt3ApKEzr17Q+Mphe4Bofi+3ANJPRJp9Lq1eFTM5sfYnombJuLhMAJ5efAFAtC5m6OIcKk+n2M8okcizj3eEjSX4BKRK3eEy7RtrNi2DV//8gvyfD74FKXZES5Zkpwm16osQ5Vl+FQVeV4vugaDkLi1vXivR5bR+eCDsfaLLwAAM8aPx6ezZze4/todO7Dq+ecBxmDyayBmGI6hyi+hkNNPbofrGWpYliPURKTQ/VxuLfcuWoT7uHtqNtD4/oqJQiB5/8quNHe3Lb7Br/loI8+27ZFIipmIbll4rqQkay1assFnP/2EsKaR4NoPabXgSiQSuP/++zFu3Dj8+c9/xvXXX5/yRxDthahhQON54K+4+r9ki7CuOzbN6c2Am0NdIuE4E4o0EYP/sJ5wxRUAgBAXXPnc4cvQNGdW0O0kF9Y0VH37LQxXo1WTmzOIgbXMaxBEn5pYXR0UjweSLDvL9Hg8mVLo9TrOee7Imlg3wAVXWhRR8Xhg8xoD4cyWHuFK8Bq0AO/BolkWykKhFPEgjm9E9+5NGmy6a3XaM0Jw1Wga1qVNBuiWhSD/HmxdTx4Pn8l2D0pCmoaAq+l2c2GMJQUXH4D2zMtDbSKR4rwpUgpb6hq2Ytu2NjV5ENeK+9zk+XwocNXLDOnaFcO7dYMiSYgZBnZEIgjzukiB5BqEC8fGDzZuxOsvv4zojh1ODZdp2wjy9EIx8QEgJZoRqqxEblER/Lm50GMx9MrLw0FFRc7rYgIi5Bo8a7W1jZ5fIdq8itJuU8YEdYkEElxweYNBaLEYJEly+vV5fD6n518dN4xoiphnjOGTH39EpSv6LyJcqqo6E0puwRXSNPQpKIBPUdCvsBA+1/uaghBRS7ZuxZbaWqdeyq+qGFpcjDMGDoRt2+jk9zsphR5FQe/Ro1FdVuakli55440G17/o6aex6aOPkKipcSaUhODyqSq2RyKwbBt5Xi9K+eQYkFrzVxQI4KBOnZJtDLIkuMRkXraI82NyGzpploUdq1ahavPmlMkkiz+bEi4L+UwosoyorjuCq7SuDhurqrCSR57bAz5VRVk4DIuxDtdLkmicVguub7/9FiNGjIAsy1i7dm1KA+RVq1ZlYRcJIjvUcKvcbM76uQlrGnQ72TRWboXgCvPGqH5VdQSXxiNceV26AICTutSpZ08ASfHjCB/Lwrc7diRTp8JhvDptGr56/HEnRcMUES4+qFRlGT5FQZD3nonV1jrGDWJgaSQSTg2XEGEiwiWKxJuSUih+RKvjcVguwXXo8ccnnQ4TCYzs0QODu3SBYVmoTSSwYts2lIVCsHjee7/CQvi4YcTuBgA1vNalvSMGij6vN2UACSTPrZeLBZubjSi8WN8tuGo1DQU+H+KmiQo+eN8WDuPtDRuatA/CTEIIcYm7r/lcA9I4rxlqSV2czRje/e47vLF+fbM+1xxqeLqaW3ClzyR3DgbRKRCAhOQAPGYYKHNFtACg/Icf8NV//uP827Bt/FxXh7e5667Jvy/DspArUgpdQtId4ardtg35XbvCFwxCj8fRv1MnHOByM2RIzuxHXKYKeijU6DPKtG2nb1R7Tyms0zRo0WgywhUMwkgk4JNliDbEHp8Phd27A0jWu0lAk56dcdPEF5s344ONG51lwjRD5Sl+AODlUWMgKVwCHg+6BIPo5Pcn0/1aILiEM6ro46VIEi4ePhy98vNxUFER+hYWOu/1KgoC3HlUNI/382dtpvWDP5fNRCIlei3aeAjjmjyfD+WRiHN9G7aNxTNnYvm770KSJBT6/Y65RjbItjV7nLdBUFy1appp4qu77sLzf/xjyvZEbZZuWY7jaCYUSULUFeEK8xTEptT67ilEyn9Tfr+IjkWrBde8efMa/PuCh9AJoi0xbRvvfvddo2lUNfE4Vmzb5gwq2+JBlzBNRMrL8d7MmbB5tKslVMViCPM8b8sluCRZdtLuasrKICuKMzMsIlwWY1hZXo4V27bBZgw7S0uT+1ZX59SOmIYByTWze8bAgSjOyUFACK66OkdwidQpPZGAoWnwuCJcejyO0jVrsOSNNyC56g0aSim0Lcup/6mIRmHxAepZN9+M4SedlNzPSAReRUGB3++4cm0NhVAVjzvplQGPJ9kYtAkRrpp43Envac84M/MejyNwGGPYWFkJn6rCw8+npeuIm2ZK/zQhfOoSCec7FaLtnQ0bsLysrEniKMZTEt3nanDXrhjGB8MAsLK83BkoZKoTK62rw23z5mWchTbtpKV9aV1dq3otNUYVd/QUkwBiPzM51DHGUBWLwbBthLiLoGDxq6/ii2eecdwFR/XsCRm7JjhEo153hCvqGggKwaVFo1jz+ec4+Mgj4Q0EoGeIPIoIV9gV4bJ246zpPvftPaUwpGkwIpFkhIuL0/Xz5qEff96oPh98OTkI5OejtrwcDE2rf61LJFCXlppl8M+pHo8TqVUkyfn+44aBzoEA+nfqhByvF15eI9lUhNV7V/6dC9Hrdrj805FHws8Fn4iAJXjK5CJefuFrRHBJvFGxHg473614huVy4wzTtpHr9SJuGE4NomnbKF+5Eh89+GDyuLkYTz+XCdPERp4h0RyybT6UME2nYbQ7wpVpe4osI8frRVTXMd+VYl4Tj9eLEsUMA2EhuHQdUVc6ZntAGJnsK2ZORPZo36MQgmgCW2prsaysDMvSBk1uYrx2S5gutMUgxbRtLLr7bqz+5BPEduxocSpHaV0dorq+q99KLIZvP/wQgbw8R+xUb9uG3M6dd0WbEgkn9WnuTz8hpGkwbRu9+UA+kJ+/q/Bf1yG7ZoBH9+6NMwcNgsLFVYrgcokrJ6XQVcP13DXXYO7s2ZCwq1bK0PX6ES5VdSJc28LhZPNpPlA4ZPRoBLgpxPoFC5LblWXHirsukXBs5G1eUO0eUDeGzr9rXzNmsfcGTv8gVXVsqcXx/apXL/ThM+QWN1ERgzl3imZFNIqAqoIBjqBJmKZj5rI74vwcN1TTIoxgRMF3ptnuL3/+GZWxWMbm4gY3Q4noerJuKsswxlAdj8PHzQokXtNoWFbKgFigKArKI5HkPRYOp6QRCh7+3e+c/5ckyYkwDzj6aACAyRi8/FoPuVJBI1VVAIBYKATbstB3+HCoae6egj4FBdAtCwe6BuEWn2BoCPdArb3PkscNA3o0Cn9enpNq/MUzzzjnQjxjnJ5/DdQHGpaFZWVlzgC7TtMQ0rQUQwwR4fK4JpQUWQZchil9Cgow4/jjcVSvXo44bypCXHUJBiEBjqByX18Sr9sSKYW/hELw8l5jZd99B2BXQ/h0fKoKxq9DPRx2xGSCR4PcgktY6Iv6JD1NWKlpZkaC9zduxEtr1jT7N9BqC8HFXQqFa1+6QZLBTTQSponinBwckJ+PKD/+sKbhga+/Tmn8HeG/m0LACWv8bPXEzAZi/NHQM5TouGRFcNXW1uL//u//MHXqVFx++eW4//77UcebpRJEW2PxonPx47Ymw2BOpLx14o0j22KQYto2YnzmkPHaoYiu46uff25WrvZmbvsrBNfql19GxU8/AZLkDE5qtm1DXlFRSgRKkeWkBTOvf4oZhjPwY7xxa0TXYRgG5LTaBZ+iwOeq4RKCS5JlePz+ZE0KY0lbeFeaoRvx42FoGlRXDZdl29hcV+fUcL28Zk0yNY1/3hsIOJGDTx59FJHqaqfwXDjORVwRP4XblktcYHYEHHc1bmZi8WieIkk46eCDkcsH4xpPMxKDOfGj/VNNDWricRQFAlAkyRmExQwDMcPATt5Pq7H6KZGq1FiKlWHbjpjLNPiKGQaq4/GM0WZhNFARjbbJjHOC33Pu69rkEdVMES5VkhDWtKRrXTiM4See2Oj6hftc/gEHYChvWGrZNvz8fhB1lYH8fMdFVHdZn3t8vnr3DAD0LSzE8f36IehaZvD054YwbdsRCu39HrAYgxGPw5+Tg0NGjwYA9D/iCKcvlYj2BHJzk6nTkpQxDXhpWRk+2LgRb/KU1DqeLlweDu/qReeauBDXsSrLAP/+bcYQ9HicyIqXpyY3FZULqRze6FikFKZfXwo30hAtOXL9fhzH62+B5DM2E7Ikweb7rUUiziSTzicNFN5fy2IMflVNsYavS0u1SzczcrbNJ22am2roFkDZIMFrQ90W8O5onIjOiXtY4amcoh9XVTyOuGGkGGKEuIuqEFga/91rT8ZJYW5MRBGu/Y9WC64VK1bgoIMOwgMPPIDq6mpUVlbigQcewEEHHYSVK1dmYx8JolHELL4iSXh65Uq8tm5dvfdYjCVrYVQ1mVKYobajtZi2DSYe7Hzw98a6dXhz/fp6dTkNIWbzxGyfaduIc4tq27IcsROurEROp04p4kfhIiXMi4s103SK9+N1dTD4rKCp65BUNSXqI9LWJFlOCi6Px/lh9fj92MzvZdH4GEBK82Pb9aNmaBqgqk6fI92y4PP5YPPjSvAeWsJeW1YU5BQWOuvayRsei/QfEbERQtk9m5xipc0YlpeVZUxna+9RACG4ZO6aJiJzok+a41LIr3VYVjKtEsnrbhtPP/JwwSYax0a5iHp42TK8vGYN7lu8uMEBU5Snwa756KOUPlICsa2orkPhTm3piEhnppRBkUYjUmazQW0igc38/oi6on/ubRqWlTGKIeqfTNtGIhxGtwMPxJVPP13vfZZIU5PlBqO3kqIgzCNcPQ45BHU85TBdcJm63uD5d99P5m4El5jcYPtAHYhp2zDjcfiCQSiqij7DhsHSdURraqB4PI5DoT83F/FwGIosZ7w+RG3XsrKyZB8yHm39vqoKv4g+ZyLC5UopdKcMCpt2IGnB7lUU+HgKX1MQNvBiXZkiXABww+jRzqQIAOR6vSjkk0pAMtVUOFq+f999Tg9CYFdtrM6NFWz+J9YlUtJEvy8hTqv45Jr7WIH6BiTCbr45GRgifdvMogmHSCl0W8BH034nw+K5L56F/NkY0XWEef1lnut+jOh6SuRItBBpT5GkqGE4Qp8E1/5FqwXXX/7yF5xxxhnYsmUL3n77bbzzzjvYvHkzTjvtNFx33XVZ2EWCaJwon8UXoiZT/r/o79HJ73dSC7M96xV3zbTZvDnt2ooKbI9EsN1VEN8YwnnPHeESyIriRJ4AIJCXB4MPJoRpRswwUJNIoCYex1G9eiHOtysG0GEe4VL4LK9AFI97A4FkPxxVxZc//4y4YUD1eLBpxQrIioI+hx3mWNO7Z2ndM/KmrkOTZax117nwyJxlWYhzC2wrkXBSIgE4UYOdPEf/2D59cCivUYvoekpKocA9u3/3woV4ec0avMAL0920pxnOTIiBosIjj6KoWszCOy6Fmoaaqio8duaZWP7ee46T5da6OsguG2wx6ytmh8tCIfxYXe2kZ2YiouuI7tyJjx54AM9cfXW914Xg6hIMQuEpn+loVrIHWCbrZvH9iRTIbPD0ypV4tqQEQHIAl16DJuyzM6UUqjyVSUskYCQSCOTno9tBB9V7n+jJpcpyigOne8JG8XqdCFf3gw5qUHAx24bdwPkX0S/V54MZjzc6GBO9moD2H+HSTDMpuHgky+P1wtA0RGpqkFNY6AgDf14eEuFwsi9Thkign6fQlUci2FxTk3w28X5rQnQ4ES6XGUZ6iqwQWMO6dcOlI0agn2uyZ3eosuwINgmZa7gAIM/nc67DQr8fQY8HRX36AABGnHwygF3XVclHH6GSTzIBQAFfl8FbCFj8t0ucp4DH4xyv22CkJk1wCdJ/D8VkSXNqjG2X8MuGeBG/v8KlUESlImm9ykK81YqI9rsbmn+xZQvCup5yv8d4qxDDtvFLKIS1FRUwXBGv9kBY150shva0X0Tbk5UI19/+9jeorlkiVVVx0003YcWKFS1e72OPPYb+/fvD7/fjiCOOwFdffdXgexcuXIgxY8agc+fOCAQCGDRoEB544IF673vrrbcwZMgQ+Hw+DBkyBO+8806L949oP0R1HXHDwAqey53gtUJuRESrKBBAv8JCp1dVNqnhDYMBgPG0j5pEIkUM7g5hDGG7BJeIcP32nnuclEIgmbq0jqeR6DzCpfOap7Cuw6eqToRLzJqGNQ2mYTgNdQU+RYEiy8jltUIKHyTUJhJObcrv7rsPeZ07Q/V6EcjPxxY+0AUAPRp1ZtoNXYfMG4Cato3tkQj8wkqeO0hplgVT01IE1zm33orCHj2cgatI+1F441r3TKfAPbtfHY+jKh7PeK6z1fyzrXCnQnkVxbkOFF4PksujALauo5qnq33xzDOwGcOaigpUc7MIICmeRZ8XIThEumBjzUsjuo4Ev56qtm51GmA/ecUVWPjyyzD5THEXYYOeYbCQcKWu1jtGV0poJEuCK8JNRBif6Td5uiWwazBaEY0ma/4sy4kqALvaGYh7JMgnEuS0iEeK4HJFuL7iExJAsu1BaOdOePx+5HftingohK9eegnr588HkBRcqrgHGjh2sTy3qGi3ES5x7iVJyupzjLHsW1WH+WSPj183qs8HU9MQqa5Grsse35+Xh3gkktII140iy04NYJxnEAjhL3rT6dyBVTgHAjzlj69DAnYJJknCgdyEqKmI2izxeRHhymQtL55Tl40cmXy2Fhdj2kcf4aj/9/8ApJqsAHCuTZFqrcdiTh0n4/sOAIf36IFjuXgTDpcAEBFR6TTxFzfr13aJPo1Nxf27lI2ojOF6lotInW5ZiLkmJs1EArXCWdgV7ReNsbfW1aU0NGeMIcb7BBqWhU9+/NH5d3uacKtLJByXXYpw7V+0WnDl5+ejlDuhudm6dSvyeCF8c3nttddw3XXX4R//+AdKSkowduxYnHzyyRm3AwA5OTm4+uqr8eWXX2LDhg245ZZbcMstt+DJJ5903rNkyRKcf/75uPjii7F69WpcfPHFOO+887B06dIW7SPRfoibJuKmiZpEwknFS68BED8WsiTBr6oZi4lbS9TlMsZ42ofG65CaahEv0q4YgAQfQGqhEEaffz56DhyYUtgfyM93nAV13ttmXN++OLBTJ4zr2zdpTc8Hk3o8DglJFzfLJYgEPlWFIkkYcNxxyX/n5iLP50PCNNH70EMBwPkvkBwUrv700137HYs5M+0mN+VQZBnbIxHUJBLw8KiAwWt84obhpBm5ySkocAa4Ao9bcDUQ4RIOeCFNc/otuWnvPU80V4TLx2fyLR6Z8SiK44SXAyDKByVaNIrinBwsLC1FVTzunBcPnwUWIivu6j/XUPQJSBVcAFBdVgZm2yj//nt8/tRTTrRMlWWwBlwK4zytL1MNjri2vbxpdbYQxydSrTbOn++4Cy4rK3PqX96/7z78y1WnJSYERPRXRG7/8tpruOGttzD24ouT54VfjwqPcAnHSD+/xlVZhur3I1Zbi2BBAfx5eTB1HV88/TRWfvghgF0RLqBhwSWiYXlFRbut4RLnXjThzRYf/vADpnORmC3C/BnkRLh8Phg8pTDHJXj8ublIRCLJpuYZGsNaPDIqnqsxw3CiTE6ES9ch88kjySW4xJoY0CoDHXdKoSxJ6F9YiFMGDMARPXrUe+8fjjgCVx91VEqbAm8g4Bxz+nNuC2+jI64DQwguft+IKJqYhBKI3xbRSBpp5y39XhS1vs2ZhBLR6awJLteEkqjh0kwTmmuyzAqFUMPdOt3vZUhG0jU+0SJ+A0Qky7JtrNq+HVtDIdTxMUF7SSkUz+Wgx+MIR2L/odWC6/zzz8eUKVPw2muvYevWrfjll1/w6quvYurUqbjwwgtbtM77778fU6ZMwdSpUzF48GDMmjULvXv3xuwGurOPHDkSF154IQ499FD069cPv/vd73DiiSemRMVmzZqFE044AdOmTcOgQYMwbdo0TJw4EbNmzWrRPhLtB1Es/zM3mzBsu96snsVTcCQ0XEzcGOsqKrAtLd0hnZjrx4LxlELdSjYnbepsovhh8yoKInzArIfDCHKXqxQkCT6PB7LX6/xQSZKEHnl5u2yQXREuv6qiLBSCaZpQ0gSXsDEW/WI8Ph+CHg90y8KFd9+NaR99lJLOKNzanP3m6S9Ash+R7PU6M8u98vLg4VEDTdedBpZmPJ4S4QKAYGFhvYJyIbjcERKBmN0UxdUhTctYk9HeZxM1PghXVNXptWMz5tQt+DweKD4ffLaNwXwii9k2ugQCjjgT58XD06xqeFpanNfzibTMhiJcNYkEdNe5D1dWopZH03w5OclaCHuXqUamQUyCt1zIJKjEte1T1awJLhHFivHiecu28c6//oUnr7jCGWTHDAMMwOpPPgEAR3gLwSUmJYTgyi0qQm5REY7jDoViYMwYg65pUL3eZJosv4dyPB6o/DoO5Oc7jpsCWVGgeDyO4DIbEFx1FRVQPB4E8vOdlMKGJgnE80TKsuBaXlbWoCBvKY7gEhEurxempiFeV+dEFYGkaYZIKRTmP26cejzetyms6841L573hpls6u5O8Uu3fW9Oo+N00lMKPbKMow84IOWZJDggPz+ZfutyVQWQTKOUZaeXohCiohmyiHQZ8XiKUUUm4xfwml8AiLtqAMV1wxir91soRHqzI1x29qzMNdczS+EphTHDwE+LFzvvSVRXQ7MsbKmtrffcF06F7v0RvwHuCc46HgFrLxEu4RgbIMG1X9JqwfXvf/8bZ599Ni655BL069cPffv2xaWXXopzzz0XM2fObPb6dF3HN998g0mTJqUsnzRpEha7bsbGKCkpweLFizFu3Dhn2ZIlS+qt88QTT2x0nZqmIRQKpfwR7Y+wpqFzMAiPojiz3OmDSneES+SMN+ch/MratXgyrTlqOhGX4LJ5SqGYXW9uhEtEARK6Dj0aTRmYXHjXXc7/y5IENRBImRl0o8Vi8OXkwNQ0+BUFO6JRWLqeHAC6o2WqCr+qQhWpazw1iwEp/XMEotblFF6nabr6Bpk8giZqBXK8XuTwz2vcxjlumjDicXjTI1yFhYilpdqovKbjrfXrYTOWYoDgtk3O1OTW/b72nC/vTinsEgxC58JF1C2osgzV54OeSEBzRVJ1Xo/ojvyJlKGaRMJpfFoYCODnuroG0/0AoDwSgREKIZe7X4YqK1HD03SDBQWO6UrQ44HM07vSEctqM9TgCDt5L3edzAr8GovqOj7ZtAlRV/8rQYxPfghEBEFMvDiCK00oqV4v/Lm5ToRLkqRkhOv/s/fdcXLd1fXn9fembtWqSy6Se5e7DdjEYMCQgBMM+dENAUwodiAEAgFMJxCqKQlgJyGAIQ41BmNjg3uXu2X1rq2z0+f19/vj3fvd78zOrlaWbGxn7+ejD3i12p1588o995x7DjG/WdOEpijIGAYMOo8zhYIwgeCKCSTsTVL48A034KgXvECYa8wWe9AikyAVOKDnNUcD7EslSYLJLjEAXHWJ4XLDEDAMBJ6HVr0OWzrmdj4Pv9WCRtdqp/kNG0VYmgaPzIH4HsYsDksK5XsEDwj43rAvJhmdpakqXrZqFY4bGkrt3+cA3pjh4k9SMwwsOeIIbHvwQSRJgtD3URwawvaHH0YUhlOh2s1myiRHUZukUC5VupZc2XSFzjFd06btS7Jpxjj9/LkUs0wHDHCRXJ7vb0Eco+b7mNi2DYuPPjp9P5OT8KII123aNE3ZUKddLfka4Z/Jf58kidgF7Hav+lNUg4Zetq4jlsDyfP3fqP0GXKZp4qtf/SomJyfxwAMPYO3atSiVSvjyl78Mq4u0Z281Pj6OKIowNDTU9vWhoSEMDw/P+m+XLl0Ky7KwZs0avOtd78Jb3/pW8XfDw8P7/DM/+9nPolgsij/Lli3b5/czX0991Xw/teo1jDQnqJukUFoy50DIfWlU5nJjbEj681hiuFSyn55LMWiwNA0N30/3wpKkjeFaffrpePUnPoHT/+qvUsBl2/BnAFyB6045ANJ+TRSGaTCo1CwoioL+TAYaNYtRGArr2m517lvegtd8+tPC6CImuVqSJIiCoG2HS1MUrCLzC5bOtYIAvuvCcpy2h36mWJy228C6fY8aV3nSy400A65ch4Oc/H3PaIZLkhT2Ow4UkiCxpFBXVWi2jaDVagMTrWpVyI54qm9QA7OtXEYYxzhp0SIcNzSENeSStrPL4ChOEow3GgJw5QcGUBsfF9bdiqLA0nVUPS895xRlGhPCuxJmlyYPoL0NYri4IdrfYoZruF7HRLOJSTKrAIAqhaI2gwATW7aIrzNjxdJLZoE7gRJA2VD0/UPZLMwkQda2EdD71FUVjsRwZYpFwZR1VqekcHTLlrZjUC+VsODgg2HYNiLPmzXYuxkEQjYXHsDpvUf7r/vy2awdHsaX77yzK8gGpgCXkcnggeFhlMMQoe/DrdXaAJcAvJ4HLwyn7XHJ1+/a4WFsnpxE1jDEAAdI8+xUymHjYoZrvNlE1jBmvEfMtU5duhRF2xYZUnsrHvLJ99LFq1djbOtWBK6LKAiw4thjEXoeGpOTwhXTbzaRALMyXLoMuKTjLzLOVHXas4cldjdt2TLnPDzejzxQgIuZcFluWfU8BK0Wsn19MB0HbrksZOIMtrnu3b1bPNP59fBrBKbcWT26Tmdi9Z/ualAmmEHXbjfp9Xw9d+tJA64bb7wRRx55pGB9MpkMjjnmGBx77LEIggBHHXXUrEYXe6vOm8uMlLpUt9xyC+699158+9vfxle+8hX86Ec/2q+f+aEPfQiVSkX82bFjxz6+i/l6OqpOTkXMcHWVFBIzoiiKkDDcJwUm7q14yXe2kiWF119xBcquK5rl+hxvrCzdMDUNdd9HiZynOiWFRzzveTAsK52cOw68GSbMgeeJfxtTkxuRS2Gn1GbAcaDQpD6OIpE71FlJkkDRdRx2xhmC+YolF0FmuJhpWZDN4ggadvi+j4W5HJYXi4hdF7As/FEyH7DzedHkc1kkyWSmQgYcPN2cIAlW53vieqaHTLJLoa7rKFgWEkDYvKuKAkvTBMPlSu/flRkuSVIYxjHu3b27rVExNQ22rmODZO7CxUYEfqWCXF9fKu9qNMSxTpIEaxYtwilLlqSvU2rkNk9O4onxcXGN2ATMOovlPiwZOxDMTBTHKLsu/nfDBgRxjEXS+erWatg0OQkvDHHjRz4ivs6A3tF1TLZa8Ot12Llc1zDanAS4FEWBGsfQTVPEExiaBkfXYcwiKXzVP/4jALRJCid27sS33vIW3P/rX6fvIwjgNRrI9vTAsG0Erjtrc9ui0NgDucPFO3rRLMxat9pZraYOlzOwlsw6wrIwmMlAZYarVoMjgVwGvFGzCY/Mf+QS93Ck9+P1ExMYyGSgAqKh9n0fShdJoaoo2FWt4gUrV+KQfTTK6Fa8RzWXPDlmwuR7aaanB2PbtglH1r6lSwGkA5SI34vEcMk7XH6rhZu+/31EdA7wMFBmuGQWt3MwwkY6fhRhzxzdc2UFwYECXH/8whfwi09+Mh2iAQJwmZkMDNtGTAY/Lfojf6ZsKBVLQ4k99bp4jnA49JJ8Hguy2WcMsOEdVx52zjNc/7fqSQOur3zlK3jb296GQpdpXrFYxNvf/nb8y7/8yz7/3IGBAWiaNo15Gh0dncZQddZBBx2EY445Bm9729tw6aWX4uMf/7j4u4ULF+7zz7QsC4VCoe3PfD3zigFXxjBQoWlY5w1WfkiwK9KjY2OzTr7+5/HHcfeuXaKh3Vtj0+xgmVYXizh+4ULoqjpjM9JZsqTQC0OUqDnsNn1PuOlznJkZLs9DhhiuyPMQRRHiKJomKQSA/kwGKjWOZj7f1UobSBvsW8nARtN1KKqKmCZ3nu8DSQLNNFMHsTiGYxjIEZA7vKcHh/X3Y3mxmLpwkfSQPweWU8nlGEbqbBiGWP+rX+FzF1yAUWIs+GH7m40bU4A7G+B6BjNcsqSwYFnC7t0m+VPWNKHbNjxiuNg8xaVAY9kun53rWGIjHxOdogM6q0x28W65jGxvL0zHSdk0jlpoNmFImUVsbAAA//7AA/jBQw8J2ZGl68KwQy4O62Ugvr/NRs3zxFI976eVJXvtwywLw/V6KmWUftfPPvMZPHjddVAUBYvzefQkyYyslMxwAalcVjdNcbwNuu+YHN5bKCDX14eXXXopTnjZywAAh599dnrMKEttdMsWYdQxQudxkweXxSIMy0JEphFRkuCB4WFs7WB9W8RwcfbegShPaqr3ZTgRxbEA7N2KnedCTYNjGCJIPQoC2Pk8Kq6LreUyfDLW8en7OxkzPp80VYUXRRjK5WCQQQbfX8MwnBbqbtBx6rFtPH/lyr0ObudSDHbnwnABEEYzXDwE++4llwAA+glwNatVwXAFrZZgcGRJ4f3/+7+4+T//ExvuvFM4NwKAKw05OGJAVZRp12EQT+VpzZXJfCoA18677sITt9wCt15HArKAbzYF4IpIVsvDNrki2k1TMDV0212rIU4SLC8W23ZgNUVB8xkCbHifVM5Um6//O/WkAdeDDz6I888/f8a/f9GLXoT79rLz0q1M08RJJ52E66+/vu3r119/Pc4444w5/5wkScQiOgCcfvrp037m7373u336mfP1zKs4SdAgwNVr2yi1Wl2NAWR2SnZFmi38+M6dO3Hthg3CljaIIuyaZY+v1QF6bPpdsuxjplq7Z48wOWDAFcQxxqnZ6wa4xD5TGOLhG24QNt5cSRwj9Dyx/xVTBheAaZJCIGWS7GIRr/rIR3DiG984I+AaaTTgGIY4doZlIaaJIgdXqoYhpu+OrosdrjgMoSgK/vjv/47x7dthOE4bK8XTfbkR4FyeKEkwRqHW33rLWwBA7BVtmZzEwlxOZFF1VjRDozBSr+OLt98+J8euZhDghw8//JTIU0QOl6ahQIGsW8plAbgy1Kh6zSbcRgNFGhR5BLg6l8p5IbuT9VMVpet7nSTnyKYEuHxJvihP3oH0M6lLDRFPzaM4hk0S0G5OocCUpHd/F9nXT0xgT62GJfk8Sq0W6r6PnQ8/jH6SfjdLJRy/cCGa1SqSOMaiVavS97p7N37+uc8BAJYUClBarVkBV70L4JIdJB3DEAwXN9JrXvEKvPzv/g4fveEGwWzlBwawcNUqPH7LLYKBiOkYsFFMpliE4TgIaNcximP89NFHcRU52HG5YYjJTZvQmpiAO8v5+M+33YY/EIuyt+LPcV/zgaIkQc3zug6Vrtu4EdVqNR0WJAkcXYdl2+L9O/k81k1MYKLZxBbetyFGjJmZdePjGKnXBfDQVRVuGIrzWlYQBEEARXIS5L9XFQUFy9qnzK3ZSiWlxFwYLiC9XtoYro7zjc9Zvs7sXE7s8fkEjBgoMhPrNRop4Kb37kkA9ZtvfjPGt28X+1py8fNsX66/Aw245HvQ9ocfBpAOUAIyUpKHDn4U4VQCpFy8p82ydX5fAHBwby8y9HxiUDzbNfJ0FoNEIO1R5wHX/6160oBrZGREWD13K13XMUb5Pftal112Gb773e/i+9//Ph5//HFceuml2L59O97xjncASKV+b3jDG8T3X3HFFfjVr36FDRs2YMOGDbjyyivxxS9+Ea8jlykAeO9734vf/e53+PznP49169bh85//PG644Yb5cOZnedXI8Y5zpM5ctiwNhpxBUij+mx44M8kEQ1rajgmYcZ7UbbPISpvNpsjoAaQgU5rAzjRNbPg+fvzII6ksiuQjOdNExXWxjV3iOswlAIhJ2dKTTwYAXPne9yKR3g8zRQ41gZHvi6/pXRguZi+OeeELoTsONEVB3feFO2OSJBgnq+KsYYgpOE8jAwlw6QS4wihCxjBg03Q/oN9/G8l9Y6lxAqZkV+NSBISiKOhzHERxDJ2YBCC13q/7PnbVaqi4LhZIf9dZM03tb9m+XVjX763u3b0ba/fswZYOO+cDUb4EhLOmKd4LfyZZw4Bp2/BcF169jsLgIIB2SWFteBifOOcc7H7iiTbAJU/0mR2Qa6LZxG83bkSMdL8pRzsUfqsl5ItJHGNk82bxb3TJSY6ZLQ5rtnS9LRuJiwcEuprmX+1vNhpPiw1NQ8V1UfE81MfGsPyYYwB6L1nDQJXc4F7+/vfj4JNOmvZzWrXaNBkgV7a3F6ObN4trOQoCaMxwkYOko+vI0Y6inCulKEqbTFFRFCw54gi0qlUBsJIOwOUUCinLK+WodeYKcqP2y/e/Hz9929vS4zDDvaXUas0ZcPFezb4yXE1it7q5G968bRu8RgNmJoOAZMpDxx4r/j4wTbSCAIPZrBgqMfvHg43/eughfOvee0VjbaiqCD0G0KYgYJfCTlaX40BmGiLta3F+1FwZrk5JYacJUe+iRYCioFmpIAoCWNms2ONjsxl+5XyP9FutFEyQPbrvum3PHwZcnQCJr9d9uf4Y4B5Ihsui59Ke9euh0rMmoKgQw7IEwxXGcZuVP+dNssxQ2MJH0VQGWTJlknUgWeD9rRbds4DU8ORAO4LO1zO7njTgWrJkCR6myUS3euihh7CoSzbFXOqiiy7CV77yFVx++eU4/vjjcfPNN+Paa6/FihUrAAB79uxpy+SK4xgf+tCHcPzxx2PNmjX4+te/js997nO4/PLLxfecccYZ+PGPf4wrr7wSxx57LK666ipcffXVOPXUU5/Ua5yvZ0ZVPQ9eFInGVCNnvdkYLgCiQZzp4VEhiZUfReIBNdpozJrh0mg226zTBbghad1MNrxbymWMNZtwdF1MEXOmiSCORcPb+YAGqIFVFBz/V3+FF7773Sjt3Cn2n9bfcQd+9aUvAZiaukcUegykDmyd+07ye+OHVcGyBKvXCAKsGx9HRDJBnoLrppkyXFEkrIk10xRMoqXrcAhwsXsWH5tmqdTWtHAz8c03vQm7n3hCfH1poYCxHTuwR3IVDatVlF0Xw/W6MGvoLG4gZ2oUxptNwSzurUYbDZRarTk5k+1ryTtcywoFFG0bCgCbflfWNNtYJyefh5nJCElhGMeYIEC0+b772gCXXBoxXHKD/uv161NJYbOJwHWR6+1NZaokKRw65BAoqio+j/Ht26EBwoafLZ6FKcZMDBdLwui8aAYBrt+0aVrj96snnsD37r9/r8eMmyidYgOW0P4fM3StahWKomAF/d6+JUsEUG37ObMALmYifkGOu4LhYkmhpiFnmjj8xS/GRV/8Io4g+WC32lQqAbaNkc2bsXv9egBAicPa6bp18vk2wMXMLN+HgJTV9aVjy5lGsx2jB/diOAVMSQr31VDIo9fWyXDFJPvySCbGILUgmU/VTRM2OaTa2SwKixZh8/33Q1MUVAlw8Hvg84dNEBg8yTLZgFwK5XuBScM4ez/cCTuLjTDmCuDY8ZWrU7FgZbPI9vTgt9/4BkIGXGGIKErDxu/793/HV//iL7DhzjuFIUazWhVOsFGSwHNdWNJ57FE2IzNkXDLDlQBzYrqYiZFNKvanWmGIkIYY9VIJmqKg5rozAq5OExQvDJGhZxif+0Eci4Y2AcSeJYdj720H++koeTgis5Pz9X+jnjTgeulLX4p/+qd/anPG4Wq1WvjYxz6GCy644Em/sEsuuQRbt26F53m477778DwKZAWAq666Cn+Qwhnf/e5345FHHkGj0UClUsH999+Pd77zndPkRX/5l3+JdevWwfd9PP7443jVq171pF/ffD0zihs+GSxYmoYdHVlOnQ1JRABopkal5vvpYr+8C6NpGJ/BnCJJkhRw2TYuvuIKAO1OUZ0N6G82bMBtNDTYPDmJsUZDyAh5mmloGhq1GnTHgUI/4+5du8TPETtcqoo8OdDxLsiPPvxhPHzDDQCAAmVmefX6lKSQcrfkku2SGXANZDLIGEbqCJUkQu5matoUw0UPxyCO0WJWjwCXqWnIGsYU4OJdLfrvwcMPnyYp5JIlkpqqYvu997a9Xm98HGXXxWSr1eZeOK25mAVw7anV4FJO1d7Koyn+/jIz3cqnn6lS8PFxQ0NtTaKt6zBJbuk1m7CzWdjZrGC4wnjKpTChRl127eJiRzD561nTxO5aDU1i7mRJoU9GDrm+PtTGx7Hx7rtxxRvfiHXXX48oSVCWgklZUmjp+ozGNUD6WYZxjPv27MH1mzfj7l27MCHJce/ZvbursUdn8XWwOJ/Hyp4erOzpgVuvw8nn4RQK4loo79qFbG8vrGwWVkejmyQJ6hMTM0oKObaA2b3Q96FLciVDVdGfycAyDCw48siuxhv8eyqehzJStvCOq68GAGxduxY3XXmlkG6ajgPTcRAFAUIa+IS0I3UDvQbZWRHAjGwh51aFcYwfP/LIXo+nLBvbF4aLzTY65VFeGKah1I0GDAJcqqK0XZ/53l7kyV7f1DQsO/547Fm/XoBoDrSWpWMaASy5ceUsum6Aa0E2i6FsFkXp3rK/xXLCOUsKOxiuZUcfjYuvuAJ/9fGP47AzzoCiKDjzta9NP3fPE4As9H0MDw/j8V/+EkGrhR9+6EPC9KU+MZHKcxmQex5s6TxuVavieMu/u+77wtnx7l278Ombb54Wdv2/69fjMUmhxKCMd0v3tyqtFiJ6PtZp6MY70BbtcIWeh4juKXIxq7ckn09jIXgQQS62/D1BFInPKCLp85+ygijCI6OjMJQ0hN2fnJxnuP6P1ZMGXB/5yEdQKpWwevVqfOELX8AvfvEL/PKXv8TnP/95HHbYYSiVSvhHcmear/l6qordiOSmPWsY2EF22VxRHKMp2VzLzUi34mm9H0XYMjmJZhAgb1lYu2cPhrs4O3lRlDYWtj0t4FQErEoNyR+3bcNvNm4EAGwsldAIgtRhUbI+tzUN9VpN7IdUPQ8KIJylZGBm0AOapUlyMHFhcBBQFLRIrgKkgGiapFDTkADiAa0qCvI0gXbDEAkg/pvDdQFAt6y0UZAkhcxwLczlcNLixch0AK4kjnHuW9+Kw1/84jY3RJkhbEn7cpqiIOmImXBLJRGIzM2XrWnYXavhvx97DJsnJ+EGAe747GcxsWnTtM86imOUWq057xNxRtFTEaIpM1y6qgoZlEOybU1R2mR+VjYLK5NJjUcIQAWS/A+YskaWS27QuIqWhfFmEwvoe2VJYbNahZ3LId/fj1qphJFNmwAAlT17ECeJuP74Z3KkwWx7lCwpfGxsDOPNJm7YvBn/fPvt4jNkpmVvxc2KqihYUiggiVMHSzuXQ6ZYFNdCadcu9NFAwpDOoSRJ8MBvf4vx7duFCUlnHfPCF8LO5TBI6gpmuNi0wtA09DsOHF2fFYiHtMuYkxpizvm6+T/+A61qNXUONc0p+3jXTZ05kwTbKxXx85tBgLo0UJrp/JXB2lyazQY5qO2rwUxA99JOgN0iwOg1m7AyGcE4yKxQJptFwbKg0TlvZjIIyN216nlCMm4TiOchU0uSWfL91YsihGEIRdPaJWiqiveceirefPzxc35PeyvezX2ykkIAWHrkkTjy+c/Haz79aQDASdKA2iZJcej7mOwwTOFsPGaG+PP3Oxiu6664Am65PG3AwmYkPLBoBsG0mIbbduzAT2hfFmgHWQcCcO2RBirrbr0Vw2vXCqdd03HSZ0pHFt2me+5J2XUlDb7uzKGTh068u8YM177urD0VNem62F6pQBsdxdprr8Wj11zzjLGrn6+np5404BoaGsLtt9+Oo48+Gh/60Ifwyle+En/xF3+BD3/4wzj66KNx22237dVVcL7ma3/LJRMGWXKQNU1UPQ9jHfbh1/7t3+LzL385gJTN4QdR1fOm3fiYaQrjGOvGxwEAK4tFjDebXfNm3DCES9KZzoBTdmWTG5KAnNWSJMEENc11YtW4bF1Ho14XoapBFKHHtsWDkXe4NEWBSQ9aBil9ZN8NpA+wTLGIVrksdqi6mmbouniAx8Rmre7vh6Xr8KgR01UVvY4jHmIAxIJz2IXhcijI1yHQGPo+4ihC6PvI9fUJm/4gjrF2eBiJtBe687HH8PjNNwMgoCB9xk6hgNbEBMqui0dHR8XnnzNNjDYaeGB4GL9Ytw4TExMYfeghPHL11dMahUlqaLlZk2t3rTYNWLMD5lMxKZWZR5aqabR3AqT7P3Ymg9Dz4BHgMh0HPhmMhHEsPnuW0rWCAMs74gSY4Qo6GijHMAC6XnJ9fdANA9WxMWy5/35k+/qQ6+9HfWJCmB3UxsaEOx3L0Bgc6JQx08l4cOPEzmLNIMBEs5nGH7RaqNH1wGzF3qrqeW0NryzLyxQK4nhM7NwpbLdl1cPl556LMXI1nAlwqZqGVaeeima1ijiKUjCr6xhrNsVAwdQ09DrOrOeFkD1Lx8TMZHDhRz8KAPjdt74lhiHM8gauiwYdX/n+VPU81KQ9Qmbhp/1O2skqu24anjsDm8811mi0GQTNtYI4NbPozHtihrVeLiNTKAhnR/kz01QVOWK4DE1LMwVdV8QOMKNsEQDTNQ09to2MYWAhDZkYcPlRJHa4OuXFSwoF9HfZg32ypdC1mZllj10ue5ZMQy6Z3bcIcAWeh0on4KKdxNrEhNhh8qMIgefBdBysecUrxPfWRkbaQAs/d4AUECdJgprvo+p5IsqBs+vkku+dB8LtdU8Hg13Zvl0ALsOy2kwz+Lz9wd//Pa4gMye+t8gmQIEEuBRAAC6Wtv+pcxj5etz14IMA0s94XlL4f6v2K/h4xYoVuPbaazE+Po677roLd955J8bHx3Httddi5cqVB+glztd8zVzdXH7ypoma5wmzBwAYGR4G6Mb9+Ve8AgvJcjeKY3zp9tvx9bvuavsZrPkO4xibJyeFjI5dkzqrFQTwJf05IEkKSSo4KckRuYmqeB7KrgtFUVAjWR6Xreto1uvQ6UHshiF6HUd8D+9wqYoyjeGyJQMJw7KQ7elBc3JyaoerSw6XRZlh3OwuLxbxmqOPhkZNOrNe/Y7TFuTJksIwjsUOlwBcZJ4hM1yeJB0B0oZppF5HGEWoS03Jvb/8JX7ysY+luV6KgqXSHltxaAjBxIQI92VpT9G2sadeR0BmHWzcYxYK0+SjNZIsdZNkfeuee3DF3Xe3fY2dEp+KSWkQhlBUFRqFthrEnsgspO04CFwXbr0uAFfQaonBAH/2jXIZaxYtwmEDA9MAFwNquaEO4tSuvVmpAIoCJ59vy/rK9fYi19c3DXB1MlwN328LYO48pnxesW19MwjQCAL49P8nmk08MjoqMtX2BhDqvg9dAuEMuGySFDLgKu3aNQW4OocMdE6d8+Y3i/fRWXahgG0PPohN99yT/gxdFyDhb085BYqioJfCkGcqBg0ZyVRj+THHtDHRXNx4+64rWEo596zmeW0MVziDJJbP7a3l8qw7pFx76nUYmrbP5zh/b2f2WosyEZuTkygODIiBjaooeMnf/R1OevnLEScJMoYhDEh0cjA0yNylTvdEVVVRdl2YxIQdv3Bh294uX8OB70NRVehPwZ5l23sLAth0Hsylcpa114ZfURRoBOAYcIWeJ7JO3/i1rwHoYLhIHeBHUcoM2jZedumlU69zcrJt7+qW7dvhRxGWFQrCWZQHjiW6tt0wnGbU4gYBylu3igy0/S12333xu94FAKkhEJ0/7FIo7zE2JNDJgIvdfMfpeRJEkTAWkRmubjLqP0WxZPeP3/0uAAJcHfu08/Xcrv0CXFy9vb04+eSTccopp6D3AIQKztd8zbW6AS42zhiX9kK2bdgw9W9qNTx6ww3iJhx22TeRGa6K58GkMM2ZmpFWGMJvNmFnMkIWJ0sK4yTB3bt2AYAAcl4YYle1Cj+KkKWsqSCK8PAPfoBrPvlJOIYB3/Og0s/zogh50xQPDpbXqIoCRddhZjJibyWQmh+nUECutxfNcllM0VnyJ1fONNP8L3p/HCbNU1QGXIvy+XYZoAS4OAtGN00MZbN4+erVAACbQGgUBCIzzHQcYfNc8Tz0Oo5gwuR6lPYLFHrtr/vnf0ZxcBD18XEsKRRQI0AGpAvy3EhkTRPjBLjsYnHaA5f3/xSSqHR+/g1pTyRJElRpp+Ap2eGiwFbhREZgS2Yh7UwGfr0Or9lMTTNI9pcgbTbKPPkeH29zOpSLP8tOhitJErj1OuxsFoqq4qzXvhYHr1kDIAXGDMIYcLVIsiszXI0gEGyzgunXZpQkwjiAgUREUtsWNXybJieFBfjeJuluGLaxJbzXJI4N7bu1qtXUBQ6A0tGIe80m+pYuhZXJ4PYdO3B/F3MJl66pH374w+l/k9RWvn4cw0BI58q68fFp7GgQpzugy087DW/97ndx8RVX4C/+4R+Q7++f9vtkSTIzXI6uCyfNquehJTEETc/DLmm4xMWSwlV9fV0lnp016bpwdF3st861QgZcHaYZzFS65TIK/f1IGFwpCo5+8YtxwWWXIcEUs66rKjTLgt9qifO04rrimhshQNhZsqQwIEmh3nFvO9BV9/19AlwZXRcDv9mKnx2ypLBMYINVC5wLV5uYgEKDMAZcPJyzSfHQGB9vCwe+eds2DNfrWJDNYlEul0ZB0B9+XjZJWioDq9uvuw6//+AHMb5+/X4zXEmSoEkDnRXHHgunUEDousLW3jRN8Uypeh5qExP44itfKf59wbLSZybJ28c4IDqOMf7EE6iNjwuzkProKMY3bxYqgM7XIe+OPtXlRZGQjgOpmoH7j/n6v1EHBHDN13z9qaoVhkjiWOTZcClolz7UOxogjSSFj4+Pd32A8A5XEMcYazREDspMEz4vDKccllgSJIGenGmKpognXW4YYletBj+K4BgGmjTtX/+rX+GRG2+EpWnwPQ8m2wCTEx+3Ej5N9HiClykUBMsRuC6OP/98fPBXv0KSzcLp6WkDXGzbLlc/GWRwY6bT1JmnqAy43nPqqSLnBEhZgqDZTKUtLFnUNLx01SqcTbsvmqpCMwyEvt/GcPHUW1fVtIntItG5/9e/Fu8p29uLQ9asSdkdz4OlaWKfRv7s/CiCo+uYIDmoVShMYy+qlHXEzn1ycSwAHwsvioQkZLbp/63bt+PmOdpwyxUEAVQCt8AU2JWlUZlMJpW0JQmKQ0MwSH4FADtvvx2P33ILAKAyOjrj75En4uJ3k1sZ74YBKUg/8zWvAZBmRXE+GgMunj7XSGbJ8kKRMQNMa9rl439Ib69wSWuFIbwoQs33sYGm9nOxrXbDsM20wKXry87loJsmQs8Tr5fZ1N6FCwEAp5BhUn1iApbjIElSZ9BmlyypFbz7Q+f7sOvCpPObK0NABUit2FmGzMUsla5p6Fu+HEuPPDIFsh1mHaONBtZLQxMGpg6FugOpoU9L+vlxEGBzl6gCPl/ZUXRv4esuXUdKl+thtgokBq7TsMbzPISNhpAPZ+i+w8eKr3/eh9MtC0gSKHSPrNL5NdZooBkE0/ZOY9rl4fMlJNOMue5WPdk6YnAQpqYJWePeyjGMKcvyWYoBF5u7BJ6HCjHP2WJRXJ+aYSAOQ7RoR4slhQzWL736auT6+9GYmGiTFC4vFlH3feTI4Y+HHdMAV8fAY5ziSZpjY/vN8MdJIq5LYRIjXauGbaemGb6PrGGg0CE/zJkmnr9iBXKmCUvX0SKmPIgi/O4f/xHff/e7BcN11ZvfjP+85JI20Ml13549+Opdd3VdEXgqyg1DMRAF0ut2X4cb8/XsrnnANV/P6qp5Hv74sY/hcx2OmJ12t7WOCbBOgOvmbdsEeyMXM1xuGKLsum3gZKTRmDa9D+NYAC5+aG65/3584pxzUB4ehq3rKLVaIruIJ7JjjYaw0m4GAUrSw0VRFBQ1DXlp90BRFMESPDI6Co0kOnGSwCkU8Mjvf48oDNM9CMuCncvhgeFhNA0DjXJ5ChDRpFkuU9OwKJ9HMwigAKL5MklmxHIxBgN8zOxCQQTwtqSfL4MFjeQy1ZGRNkc2torOm2YKyqhhkKVfzFz4JJkBUoYu9H0YxMh1yjJqnod14+OC4TKy2WmTRHni3/XzlJjPBu3XMSPTrbZMTuI/HnwQvyVjiX0pnxpFPs8MArtyg5mRGKviggWC4Tp96VKs+7d/A5A6DFbHxtry2HY+9hjW33GH+LlBx04Qs3xuvd5mV33QCSfg/He/Gye9/OUwCdwxwONQ1jaGS2roky6Aad2DD2Ldz34GIJ1S89+3aE+n6nmYaDaRJRa3WyMSxrFwIG3NwnDploXQ99tMYgDg6Be+EG/+2tew+vTTAaTg1MxkEMRxGi6tafjj1q0YlSSVJ11wgZA+AekEXlUUHCbJAR1pUOB0sR9nwMUsOZeiKPin3/9e/HfN8zBEKhF5h8vSNJRaLfxmwwaUWi00JcClJUnXHDlmKrKGAS8MBWCbqWQAuy9NYEADo1rHLqwXhgho0JXt6YECiEafj0GSJOlQh2S0KjPhroswjrFpclLslO6oVtus1Sd27MAn/+zPsOPBB9sYLnlw8VTV0kIBnzjnnDlbzcvf1wwCbCyVukrJOhmuwPdRqVRgOA5UVUWWgpuHDjkEAFClHS03DBF6nrg/mo6D/qVLUR8fb2N3kiTBgmw2lS+SbJOdIFmCX3Zd4TA5LpkgAUBI+4D7U1GSiKEbAy54HsYJjJi0wxW4Lg7t70dIzL04fuWy2Nk1NS1lsqT95/LwsNjh4uomKdxeqaD5FLnOdisvDBHI7qKeN03ePV/P7ZoHXPP1rK6672Ni/XoRTMqVdEzx61IDBaR7GHGSYCdJo6YBrigS+S5BHGMpTaIVAHft3Invr13b/v0S4FIUBbplYQPthY1s2gSHnP7KrptmkMSpTfxIo4EojlMpXxhi/WOPtf3cOAjEQ1hB+uCOaB+MM4Acsm1363VURkbwqfPOw8imTTDp4ZszTai5HBrlsjC10LowXAAwlM2KBxDveFkEruQdDFMCXE4uB69eT9kKlhR2AC5FUaCoKh7+xS9wHdnmmxLDxZJN3XHw4d/+Fmf9v//H/1Ds5gStlpjg6gS4OJNF/vxW9PRge6WCPfU6JiYm+ISY9sDlCS6zLFzDtAMmgyt+oDuGMW1XhWvz5CR2VattzfdcixkulkwpioKsaaIguerNBLgsXYdh2zj63HPx4ne9C1EQtE1Sv/eud+FHJIfjTDj5PbDjl9dotO3+KaqKU1/1qnSnooPhCmjvsMJ7FvQz+VPQVFUs53N97p3vxKM//jESAh/c1LPt92SrhWYQwNa0GYHtDZs341/vu09Y+bcxXPU6FHK6MywLgedNZeHxNaQoWH7MMSJ3qzI6CiuTgUdOeKamIWuaInuOS2aiTHLVk8Ewn+txkqRMjfR3cZJgstVKmRyJ3ZGP82X//d/4u2uuQQKgh15bSAwXhztHcYxbt2/H42NjcEslAY5VMsYA0gyzG7dsAQDxby1dR5QkqOxlkt8Kw1SejOn7d7MVg1U3DNuAnx9FiOj4G7adupxaVpvFe5wk0Glv0dQ0aHTPSnwfUZJgd60m9l2bQYAh6fy8/9prAQAb77xTMFxRGEI5gAHHB6pkEP7ExARG6vWukSR8fyvR3/mehzpHgyiKAFwLDjoIAFAdHk7ZaQJcpnS/KAwOok67liIcOG43lvDCEIcPDODg3l6sI/nhtkoFbhRhT72Orbw7Rfe0yPf3G6BEcSwGN2YmIxiuGg/iiOFihUijXEZxaAhHn3suAKBMbBvQHnPRlFQs/TRE4eoGuLwwFIO0p6Pu2rVLKFA0w0BEO68HwoRkvp4dtV+AKwgCnHPOOVhPIY7zNV9Pd82UIN/pktboAFwJue6VXbcr4GIjhlYQYFEuJybpLL3Y1CFzCOMYYaslJB92LidAYBSGqXFGFIlpfhineUWTZHrALNKmdevS10+/j22o2ao9Z5rocxw8MjaW5m+ZJhwCj/WO1xTRg0RTVeT6+tCsVMBcWTdJIQD02rZoBLhptAnQcTMJoA1w2fk8PMqDYgbNoDyptmNEf7eL3qOVySDpAFwbSiWUwxBNetAfevLJbQwXg0gGXLxcHyeJkJUuLRRw3MKFaAYBxkheF1EDJ2fS8ANYVRTsrFZFU/Jv99035UjIDBfJPbOG0ZVNAKYyvzrd2uZSDLjYzrrqecibJnok57IiNVsAyW7IRCOirKNDTj4ZOWJH/GYT5eFh/PgjH2n7PQpZKcuAy6XlcrZU71am4yCJY7RYskryMT+K0vODdtxaExO47ooroNJOl1wO/ewa5QcJhisM4VCUQ0Cy2Zmkm+PNJqqeh3GSsKodgMvO5cTAI/R9cc5pHSCY32dlZCRt+JKpXK2iZU1jeORgZNOyBNMrvkafW0RgUgZjm0ol8bNZ0tlZ+f5+5Pr6EMUx8vTaItrhUtAeLeFHEbxqFYUFC9L3JoGpW7dvxx9J0toJeGeTTvFnyfuv+7TDFcfIGgZaYdhmDORFEWLeGaXjzwxXKA07DFXFB844A5qqYpy+n11Pt1cqAnAd0tuL6vCwaMRHKZdsYvt2hFGUysODIDWfeYYBrgyZFN21axfcMETGMLoyG5z71qLzJ/Z9eL4vGP8sXd/5gQHkBwYwunkzYpZTep6IEAGAwoIFqBOI4uPNMnQuHrbkTROlVguTrZbIhFSVqYwrHtRFNDDcn4qSZGqP17ZFvIUA55YFwzTF5xy0Wsj29OAl73kPgPSa5WLAFcUxapKxRsGy8HySswNok1XK770RBE+LpC+KY2wrl9GgQU5xwQLhwvintqufr6ev9gtwGYaBRx55pM2Se77m6+ksGVRFUoPH4YhcrWazLaPEJyc0l5y0ukkKAeC0pUuxSlps96IIFcqG2VQqYTs3oFGUMlz0wMsUi1NsgOdBUxQhe2FJYc4008VyktWEcSwyV5I4TrOtiOHi/anDBwawIJtFj2XB1nWcuGgR+jMZxJhubT25a5cw1nB6eoAkQUFqgLoBrqy0BC4Al8RwmR2AK0kSVFQVoesi9H24Up5UpzVz0jHJY0mhDLhsXcejY2M48YILsHDVKhx+1lkIiakIXFc0FMxgMMP1xP/+Lz75Z38mQBczivwQZlOP32zcKEI+eXdJUxQM1+uCGVAURUzW+Rxq+D5C2oeZiSlgySG79e1LBUEARdeF9GhlTw8yhoHF0jm7iJz25ONXGRkRbJZTKIiGzWs2sf3hh/HEbbdNHf8kSfcdO9gOj5gNdj/sVixVqk9OwqHMq4SMGAqmKayp137/+7jzv/8bQbk8TcKWp2ZxcvdukaWTtywcOTiIXtvGWKMhBhFs891ZmqKg6nn4/ebNiEiOytWq1QSQ0g2jK8PFJQNLIW2l88/WdSiKgifGxwWAkAGXZVnCxlx8TdehABhrNoXkliuIYywrFqcYri6AiytG6kYJEODi65XuH+z851UqItBcI0DS8H3USeoJYNrO1mwGAby8rykKMEMT2C2DjuVqBu/dSX/vR1HbziiQMvT8+QLECKoqsiTTFGDTdeGGYSq5jlMDm9rWrfja//t/+OnHPw4AGKXrtUXh5Q8OD6cM19MgKdzXOnJwECvpHuzRgKEbs3HOm98MAOghkxcGXArdFzLkOmo5DlYceyy2P/RQKuWmwORGkmCEmJ58Xx/qpVK7Lbw0pEgwde3bFP3BzzYGrPw5sWV7QMd6fyoiNYhh2ykjTQY3OZZTWxYM20ZMjGVAUkmnUIBh290BV5K0RSUA7TmOUTQ9c7NObN3TISlshSFaYYjeOIaiqsj396fBzvOSwv9Ttd+Swje84Q343ve+dyBey3zN1z6XfLNslMu446c/hVuvQ1MUbJmcxAPkOtZsNGBmsxg6+GAAKeDiDIxuuT/cjFsd8hSWTkVJgu/efz/+7b77cOfOnXB9P5X/OQ7WjY9DlxrXyT17xN4CW+6GSSLCPIEpyVBNkkV4zaZguDjfaFmhgEP6+jBBTl4H9fYK8PPmr34Vf/7BD+LDv/0tgFR2wkCNpShVYnxmYrhypgkFEEAEmJIktQEuVUUMsrenr7n1utjhMsjxUC55L0vV9RRIIp3+Zk0TlqYhaxhQACxatQpv/9d/RY7ArluvI+jCcLE0bfi++wBMNWH8IG7SQ5gB1/179qSZTxSYjCSBH8eYaDYxRg1pnCRYnM+LzwtIgbaCFGhWO8wBuJjhkne/5loh2cLzMTu4txefOOecNgA8RIYPXNyU3fGTnwAAMoVCug+B9Pz2Oljdn3/2s/jnV74SOu0DcbXCECrSvCq2Ke98f3zcG5OTQs7UpGsoS59jGMdo0c6c4nkYJbdBrhxZov/8c58D4hhFy8Kqvj4MZDIiXJv3GTuDSqM4xk8efRQjjQYmXRe3bN8uQBKXW6sJYGR0MFz6DAwXkBoURHEMTVVRtG3oqgpH11F2XTxM14ssKbRsO903lH63SaHhG0uldJlfYoDjJEGPbeOIwcG2/LpuFccxdF2HquuIpPOM7x+tIIDv+/DqdfFZqdS07a7VRBYa0M5iOrqOnV2cDLl4WKCpKlTJgl6uf7njDnz65pvbmDO+L/DQVX5vVc8TDJeq60jodWQNo22nSJYu9xAo9+p1VFw3tbanXcGfvu99AIANd96JJI5Rm5iAblnwm030ZzLp8Oxp2uHa1zI0DY6uC+fQjHQM5Dr0lFPwT7//PYoU1B35fvqe6Bjx/dDKZrH48MMxsnkz4ihCvdVKGWgAj9N+n5nJIAoCRGHYxnAJwEUAWVEUWHT9VVwXTQlw8fPJpftFRIBsfypOknQfl+5VLI3uNwxohgFFVducOhlwKYqC4tBQm6SQn1UhnQ9yfenCC8X/D2gnkOvHjzyCrRQp8nQwXLxP6dM9ynScdMd0BklhGMf42E034XG6n87Xc6P2G3D5vo9vfetbOOmkk/D2t78dl112Wduf+Zqvp7Lkm9WXX/1q/O6b38QTt9+OMI6xs1rFjx5+GADgNpvQbRvv+N73sPyYYxC0WuhxHNi6Dp8kaXLVZ7BQPqSvT0xox5pNVDwPv924EVVqZkJqKBJJ2vHHq64CyFjAI8Aly4SAqQm2J+9AtFoCcIXUDLGFskl7IhnDgKVpSJIECw89FMeffz4My8LfXXMNznnLW6YAFzUyVbqBz8Rw5U0TCabcwwDaG+sAXIbEerFUzGs2U3tzch3sBFyaJDFk17iYJq6HkouZ3cGMcQPdqtXaTDOEpFDTcOTgIBYQ+PjO297W9jsbEsMV0a7JZKsljE9UVYWKVKqWJ6ZmrNEQgaYcTh3GaVYVSxi7ASqP9v7kcNG5lpAUzrKEb9LfLTniCJRdFxMrV2LBoYcK23ynUBDH1W+1xGI610PXX49WtQpTVTFBDVScpNbI9W3b0JicxKrTTkPN83DL9u1t70EOZV15wgnid7TCEA6xO2Eco0lNj0IZUjKw43Dn8vAw9qxfj2OGhsSOGk/YQ9pn7DS9mXRd/HHrVozU6yi7LoYpt+2+n/xEnNP1yUlxnrPbHbPMnQyXqmlTjoy5nLhOeghw5UwTRdsW53iPBHZ104RBhjLis6FzVlMUDGQyaVg4nyNJguMXLsRFRx3VZhjRrfh1aJYF0FScQQkzrg1i1UWGF4GSUqvVxmCUyE0RSE09huv1GcEeDws0chLcPDk5DXSzrPY7994rvhbFsWDR+RwAgMlWC4+NjWGSQL+i69CVNJfPjyJsLZdTeS8g2MBXHHaYsDNv1Wo4e8UKPH/FCiwrFKZZ2rdqNSRxjN5Fi+C7LoqWlYbbPk0uhU+m3nzCCeilDENb1wWzkSQJNk9OTjEdijIFugkwqXTt9xPL7bsuFqxcmbJaY2Oo0qDOtG3x+cv3Av5cQgJYANBj2/CjSDhHAmm4u3CrxJQjLz+XIs87YJJC2eDDp+Gi2NGVsizl3d2eoSFURkYQBQF+8IEPYNvatWmQexShRLErQHrfl52Lg1Zrao8tinDztm1ij+7pYLh4F9yv1wVTF9I6Qzc2uUlSx/s7DEPm69ld+31XeuSRR3DiiSeiUChg/fr1WLt2rfjzwAMPHICXOF/z1b1mulnVxsfhRRGqNI1LkgQuSRiAqYnaUYODWEAmEZ2Aa3u53NVtbGmhgEN6exHRfsF4swlH14ULYqDr6LFt2B12z61qNV1SJkkhABEyzA5mXhSJBhGYDrh0VU3BFaYys7K0G9DZwuX6+qASKFIVBTliuCqjo1CJtesGuPocR7xvBlyOrqNCEh8GBDzBj5JEZGyxpFAhMDgb4OL/rygKjl+4EO859VTESQKrA3CxhKZZLotgT2AKcAHAQCYjGBgg3ZkT/5++h3dCJim3indWVEXBqv5+wQywqYmj60iSBDdu2YI7d+5Ms6rQ7orVWU1iezp3WeZSnZLCbmVoGl767W/jDV/6EsquC8cwsGD1asFa8uQUSMGv28FwcekARup1bCqVUKM9oYDkN32LF2O82USvbbc1uaY0QFh+9NEA0oX+suuK1+y6Lnxq/BJiEddLU2e32cSCo44CkF6jne8tIMDF553cCE22Wph0XWwtl7G6vx8KgMlyGbdddRV+9pnPAEgt3pkBYIC1lowVOgEXMMVy2cRm6qoKW9fhGAb6aBhTsCzsqdXa/r1TKEw7ty2Ka8hbFhZks7A0DXft2pU2TIqS/j3972wMFzfDumVBCQJUPQ86XU8sKeT9RpYUIk5t+XdTxAQfv3KrNQW4dF0ErXerII7hex6aExPImybGaFdOLmb3a10YLr6XMJhsBgGG63Uk9Bkm9B4cXYehaei1bWH3zq93YS4Hy3GgWxaalUoK4ojFP4UyqLiYzehdvBhesymYQ97heqYxXEBqya6rKvocR7iFAimQ3VOrYQsPhwj4aqaJyPcRR5HIj1t46KEAUklh/7Jl6b8fHhaASyNTEgBt9wIGTkEc4+o3vAE3fv/76HUcPH/FirZ7TsP3haSQmaM4SaYAF/39/lRE+84sf+bnceB5AmgZMuDyPHF/LxLgeuL227Hp3nvxmy9/OX19UYTJHTvE75BzuwAglEAns01jzebTynCFcQyvWkWmWBTveSZJoReG4t/M13On9htw3XTTTTP+ufHGGw/Ea5yv+epaYRwj7HLzr5KhRJ0eDrtqNXidEzVqiFXaJZEBV0AOTRmju9scs1FBFGGi2YSpaaixXpx2qwod+zb1UkmEwcqAK4xjhGQUUGq10Gq1kCHpVatWE4DrgeFhaCT9YPMMW9eFBGqm9oKbITuTgW5ZqI6NpbKN2QAXTTz5wc2/Y6zZRD/vUGkaFFpWtqRQY17wZpOAtuPWxeqdnRf5s7Aoe4qn6yxDq5dK0ySFkRRMLMvn5Eknf6ohSQrlZtGnhXFT01AkgDHpumgFgdixcMMQ6ycmxIOP3SS7AS43DGFT8PLDo6P7xHJxo2jOMpk3VBWZ3t70/CUDD1OKDGDHL6C7pJArItOJqx99FKVWKx1K0PVg5/Pwogj9mYwABlEcC6bqjIsuEtfRMsfBQT09gk0Y3bZt6v00GkJix+U1myguXZrGA3QALnEtSIBLHqZsq1SEYcRgJoMjBweRp9c3sXMngLQJz9P5wg3bultvBTDdNAOYAv1OPi+cQl9x2GE4YmAAhw8MoN9xsLKnR4CIZUcfjaXHHAOd7OPlMolVieIYRw0OwtZ1kXMkn+PMFu+tNMsCggA1z4NKP3+00Ugzh6gxF/JPkmI+MDwMnwZNNQLDfA2yZHMm4ww/inDfD36A777+9VBpV6uTVYqSBDVifMXXaBCh0B8+Z9hw5iACtVtqNRiahoxh4C8OP1wwbrqqinOEQ9btfF7cHwAIRijb2yve8zida72LFomg5DhJEBIb9EwzzeBiBtSkAQNXzjRF489mMBplycW0lwakMvG/+c53cMJLXyoYrMjzhAuvQffqKI7bGC4Gd0EUwa/Xcct//icAtLG0SZKIXSN+NgQE5gMJcLWk++6TqYiYZ75XmZlMKp+XcsRAA47AddsCnbM9PWhWq8J4CYAwDakOD2PhEUd0/Z2hJClkl+CCZcHo2PV+qqpFDJdbqyFTKMDK5eBTvmc3SaFLgGsu94r5evbUM493n6/5mmOFcdz2YOaqjY/j8IEBHNTbCy+K8Ov161Gr1+F0TNQAAlzUsPxi3TpUXDcNFg2CGdkGNuTgHJNex8G63bvTn0eW0Qe/6EXTXhOQTq68KAIkmVBIOxBD2SxarZbYzalPTCAKAsSahgXZLAxysYuTBFnDgGMYyFLztzfAZWga7EIB1bExwXB1M7vJkeuhDLhsXceSfB5Fy0IvAx5VBQh4OsxwEeDipXW9AzycLk0dZYMTdubjxkqWXVnZLHTTxOO33JICaXpIM+PAP8eVdt862RMgXT4Pova8LldqLNjGvEx7IxY1RPw9MuDyo6jrjksrCFK2MUlwz65d+NTNN895ITqk3ZPORl6uNiOGKEqNBghIKKoK3TShahp004TfbM4IuDJxjNFGA8uLRWwoldAIAkTNZiqVsywhvWTAs7FUwlguhxe+8514wZveJJqinKqilw0e4hhlKXDZrdVgqGobwHWbTRiOg/zAwLTPSB5i8GfCv9+PIvxu0yZoioJjhobSfRjDQIYapdrEBJI4RmNyUjTknYxWN4aLyyZJIZvQXHziiXjjccfhTccfj8X5vHgdb/n613Hh5z8PVVFwYUdjZ2oaNLqmsqaJrGkKeR7vggLptdTNpZCL9wRVXUcShsJqX1EUnL50abrHxQzX4GD6j2hgxIDUDUN85c474dEgB/T7ZwNcURyjQoOK0fXru+6WxEkipu48TAjjGLWxMcFs8nUSkIRaYUkaUuc4xzAwmMkI85C89LkYxEzZ+Xyb4QFX6PtYeuSRAIDrvvlNAEDPwoWIwxAJNacB7UI+ExkuAEKlsCifF8cqimNkTVPcK9gMRjUMxEEg7g1ci1avTq9zHnT5vtj91Wh/cEOpJIYxkZSd5Un33e0kt+fi3T12qwTS+0yUJAjpfhfR7uv+WJlHDDxIvdDGcJkm/rh1Kx6n3dv7fv1r7NmwQQza7FwObr2OCWKz/GYTCVKWsFmpYAExgFznveMdAICw2WxjX4M4FsOipwNwNYIAKlKlC0u/3UYDiuQEKRcHUs8bajy36oAArltuuQWve93rcPrpp2MX3bT/8z//E7fSdHG+5uupqCCKsIseGi8gdycgZbh0VcXifB5138eWyUkkvi9yjAwJcHFjGScJbtq6FY+OjYkbMje4SRyLKTqQPjRbYQhDVbEwl8O2SgUT1ARppKFXNQ2rTj0Vh599NgBqCgGU6YHGphQhTRABmnK2Wsj29sKwbVTHxxH6PqphiOXFIrKGkRpYxKmTW840oRCTNFMLJ3ZC1DSfKInjGfe3gLSxy5BjGD90BzMZDGazWJzPiwetrqqouC5GG40phisMRYCv1qXpeclb34rX/PSnbV9L0MFwEeDiZoRB4aM33QS3Xm9juAAI62C3Xhe7Rd0qCgKEUqPLO0L8GnVyv+OpvkIT87rvp2G1vGtHx7obe8VBvAnSh/r2SgUbOqz6ZyqWFM62eyLL2BggcCCpSTk9QHpsHrv55mk7XFxaEKBo29hYKuGOHTtgaVpqqU77MzFSEMyftRdFcEwTa171qtSOnuU+UvMeEOBSVBX5gQG0ajXoansWF7PMub4+NDocxRQGXHGcZrZhCnA9NDKC7ZUKDqb9LC4xbEkSDG/ahDiKhMxq2num8N9dlLsHQOzF2LlcatYhDVgcw8AxQ0MYzGTaZcvEDC+jZpGLGS5uqPN0DXFkAw8VOGJhtsoaBjTTRBIEaAQBinS82aijUS6LUHMgjbiISG7oR5GQxfoS4BI7OvSZ/X7zZnzsppvE7wzjGA7JMUtkSNLZ7EVxmh3YCAL8nBiGSdfFjy++GD+kYGjhhhe1RzUYpole20bONGHQsYqTBHkpN8og0GoXCkI2KVfguiiSFX5tfBwrTzgBxaGh9Pd6XipVm8N19KcsjaTWRcsS11eUJHAk5pPNYHTTFIBL6TKIEUMn30eDrnXDsjBABiLMIAUSw1WXgOyVZLPOZagqSiS90xRF7K62MVwdcRlPpqIkgVupwCkUcO/u3WgoimCyVIrC4PDvu//nf8T7AtJr1W82sfOxx6DqurjHlV0XbqWCfF8fXijt8ebpnJZNMxjIGKSk6GRyn4pqUiZes1JBpliEnc3CazTEfW53rdYWts7uyU+H3HG+nr7a77vSNddcgxe/+MVwHAdr166FRw1QrVbDZ0hbP1/z9VRUEMeY2LoV2b4+nCY5ErFcSaWHRisMEft+u6SQHiADmQwO7u0VFsQBSWka5TLu+q//QhLHuPvnP8c3Xv96MZXnfC6bpCutIBCAy6CpYs3zcMY//AMuuvxyWNksXJIoPjE+jobvi+asFYaiUV6Yy8FOEmSyWeT7+zGycWPasOi6cPLTqVGxNA1vPfHE9P3MgeFiiQpADoGzNCRZMkHg7zlx0SK8/aSTMJjNiqY3YxgoUB6RST839H34JCk0aGdFrk6JIbNNDLgW5/OwpH0VrsPPOmvqZ9Bn6LFtse9jcs8e7HzssamdFkwBJq5Iavw5t6XZauHh//5vhPR5tIIArSBoO5ZVzxNgQK5uD+lmEECj38t7XrNZccvFTmSzSaHYTILLoCk40L5j5RQK2P7QQ3AJkOiWhdNf/Wocf/75AFLgw5bQw/U6emw7dfijBp5ZFn7YJwTuGCiw2YQM6BRFweToKLJ9fcgUiwJwydbkvBRvZ7Nd98uY4QKm2BQAuH3HDkRxPC1Q2pXY7Tuuvhq6ZWEZ7Yixk6L8+kYaDVQ8TzQ2Z7z61QDSpiymprez+iiji4uvp87rh81sWPab53BkOp/5HJcb65kqQ25tURDg1CVLsFByVFQIcGV6eqZ2IomFaJBsthUEqPs+mp6HqEMBwMf0lu3b28wPoiSBT8clIDagcz82onvpSL0uWIGd1MDX6d4ozBlo94ddCguZDF6wcmVbBEQQRak5Ce/t0JAm09c3zXEuCkPEUSQAFgC87H3vm5LVuS6iJEEURXu9jv6UxSx+nkw+AAh3SIeuMf5vzbKQUDSI2gVwcd5c5Ptih0u3bfTYdjqck44NDxVbkhKgswwy05HdKluk/uDcLJZm7w8rFMUxPGK4wjhGic6zZrkMnQDXIQSsuXhfl4cMjclJnPTyl6ey8jDEZLMJr1pFvrd3SpaIKVfHqGOHi/fkOodCT1XxfbBZrcIpFmFls/DJWTKIY3z1zjvxtbvuEt/P0THzGV3PrdpvwPWpT30K3/72t/Fv//ZvMKQH4hlnnIH7779/f3/8fM3XjBVEEbxmE3Yu19Zw1kslYZyg0g01ct0pzbjEcAHAgmwWDd9HIwjw+y1bsH5iAmt/8APc+h//gdKuXUK+8O+XXZYuMCsKDhsYEDbPYRyjSo0HAwJD07CVQJhFDWbONDFKtta8O9Rj2ziOmghFUZAEAQzLQqZYxIO/+x2AVCZy3NAQPvq85wFIs7JMTcMKlmSQzK3VBQQIhoudz5BO+2drSAwCTNwkKjTR//gLXoATSe64MJfD8mIxtaXnSavEcHWCKyAFcDGAv/nOd/D6b38bd+zcmTIC9HveftJJeM+pp04DXBd+9KM4iNgr07bTEElqDkPPw67HHwcAnPTyl4t/w8CHz4OIBkEMnrwowvbHH8cDP/whdjz6KDRFEft1oh0m1ovd19b97Ge4+Qc/ADA9cJsBAjfiLAmZmKN5RhSGUDoiCDqLj2lCElRVUaB0AVwvJrZhdMsWnPqXf4l//O1v8aJ3vhPPf+MbAaRAKSYDBA4dblWrguFSgLaA3gQp48UNIjc9br2OOIpw53//N9QoQr1UQr6/H04+D1diuBhYR0EAzTBg53LwujR+zHAB6TnIe2N7ajXkukgCJynyAQAe/v3vceLLXgbdNNHwfQwD+CdphziMY2wpl9NQY/rsTnjpS/GBn/8cxaEhscPVWYvyeShAm8V7N8DVyXAVOKtLTUOQeR90th2uJEmEIY5uGAh9P833ks4JVVHQKpeRKRbFXlpMDBfLBVt0Hj90zTX4+qtfLZpVll7x+2gGQVsIOH8mHmVfdcrG2L10rNnE9koFH7vpJuyQmMoEUztcvPsTM1iQrnODABEbfLxjzZr063QMM31903b8mGHJS5mI2Z4eASqCRiO93oNgrwOlP2VddvrpuOz005Gh+ItJMk5g+SlHI8gMVxRFQMf7cSk/yrAsRJ4nJIVOJiPuIXxPCFutVBo4gwSfS1fVNjCisdw+jgUYD4lJ3B/mJUoSeNUqrEIh3UOl19moVITpx0tpcMI1sHw5gPY4h8WrVwNIGbw9o6NIkgT5np42R9VMoQDNMBC0WuJcb9JQTaHruPY0AK6a7yOJIrHDxe8jaDaxs1rFWLOJyVZL3JsYcD0dcsf5evpqv+9KTzzxBJ5HjaBchUIB5S6ygPmarwNVYRzDbzZhZrMi9Lc4NAQkCeok5VKQsk2h5HBn2nYb4DI1DZMkOah6Hp4YHxcPmFatJiZmEzt24InbbweQgjSe1EZxDL/VSqV61FTIzZuVycAjN64wjlPApaa20ksLBYw99pgIc2Qnvue9/vXi3xuZjABBAPCXRx6J1x5zjGjEDDKaeGR0dJpcKU4SKMA0hms2yY1Hhgz9UhMPoA0MHNbfj/MOOQRD2Sx6OKzU91Np3CyAK0kSLFq9Gq3e3ilGgN4X28J3Ai5g6kFr2DaiJEFOsqKvjo/DpN0gYAqQcMAmvzY3CETmmheGqNA5UhsfT7X8HXbvh/f3wyOmyo9jPPrjH+Om730PSBLcv2cPvkjnApCyRbLhQysMYWqaCCHdW7Et/GyAi5lMbtc1VYVKn6lsCtFDAN6t18WeBCAxU40GoiRB1fNSRikIsP6OO8R+DAMshY4lyxf53NJNM5XoNRrYcNdduO6KK+Decw+MIICTy8Eh0wNdVeFHU4GjURhCNwwxgKiXSsLSHWiXeJqaholWCzur1TYnRLkevO464doGAMfR3uSGUiltXqSmcPPkJHQ6v+SpMR+fMI7RI03GuRbn88gYhmCG5AFG52fDE3PHMJCnoQgzXMzOObqOOJ4K/ZXP86rnIWeaOLSvD5ppCht9AEKapyhpQLWTz8OXgGwQTxnCcDM+9sQTACDuhZqi4OGREVQ9T5yvfCyiOBZ7WH6jgRhokxRGcWrus6qvD1nTRMV1EcQxNktSaz6OoH/rTk7izmuuEeemHJqu0bmRN01xbPh+4PT3ozY+3rZvydJhuZm2cznx+XlkeR9HEdRnqC08kO6x9ToOipaFMI7xyOgoSq1WyoaSc6EA9aaJ2PdTY6iOYcBdO3fijp07Rd5ckxgo1TTFsIQzrULfRxCnhjTuLICL9/xYiqoqClxixgTDRZLC/QECzWYzfR7ncmn+IoHmxuRkuoeqKBiQ5MPnv/vdOOGlLwXQDrjyEns1RowoOwBysZFQ2AG4uJ4uhmvSdYUxUYYYLiDdQdteqYhcSL5ntcJQ7BDP13On9vuutGjRImzcuHHa12+99VYcTCGz8zVfT0UFcYyg2RQ37A9dey3+6uMfBwCxI6IgnS4FntfGcAWuK5gRRVFwWH+/mBLXfF+YMdRLJdx+9dXid5Y7cjFypokd1Sp86XUAU0YQAGBns/CbTQEkPClY0ms28e+XXopvvuUt6XsipyZ5F8XM5doATM40cSQvzCNtYGxdR5/jtDWZsumDTXshQLrDNhvDFScJirY9o0sjQBblq1bhbSedhMOowQ9lhqsLW2BIrIljGMjTNFNuphlwjTUabdbqLA2xc7nUYYps7lu1GqpjYygMDgpHQ27iGZBrtHxeoZgAbhjqdI5Ux8fFNLfqeaLp73UcLMnnUfN9+NKDTyUXMFku6HYALjcMkbcs7Oiy/N+tOD9oVoZLcsID0gaVJYWy5EjOjMrIgb10fnrNJmICXGEcY2zDBrj1Oo497zwAKchalM+3AV9TYriAqeV1NuZQ4xiq78PO5WBLDBcf6yAIxP4gS2y/dOGF+DLJ+gDgjGXLcBq5ezLg+sbdd2NPvT5NTgikId7Hnncejj3vPKw84QQsWr0azSBA2XUxkMmg6nl4/Re/iNNf/Wq4YYgsOXt6NO2XKwHa9om4em1bOPwBe2e4mBkW/0tfc6RBDA9K1u7Zg9slK+ua76OPnBGZ4fJbLVzxpjfhcxdckH6Gmga/2YSTy2Gn56UsbKUCjxrlkxYtwpnLlmGi1RIGMw9cdx1ich6seh6+c++92FWricEDQAwXNePybgkXm2CYmobD+/sx0mjAjyKUOoJZ+RwJ4xj3fOMbKBEgY5kqMLWrVff9ts+VBy7ZgQFEQdBmrMIMlwy4FFUVgdRerSYkhdoz2KWQ65ihIQxls8iSO6FO7GgoAy7LQuz7KftN51uVdoDZ0VG3LASeB4/ulbyfGyM9ngZJDtn8otGxUyqD2oxhCFm1TWw7/zu/2YRdKIhdqP3Z4Zqg12Dm87B1HRYzXOWyAIx52xbvWR4aMQsPTA2QAjLcANC2Ywqkz3ork5nGcPG71tXuId8Huiqui5julU6hAFsaflVcFxXPE1J3YOp5sr+ZZ/P1zKr9Blxvf/vb8d73vhd33XUXFEXB7t278V//9V94//vfj0suueRAvMb5mq+u5UdR+iCgm5fpOMhKjTgALKPsk6DVEoYL/ND+rnR+9mcyiMgkAZja+dl4993ie3oXLxbTYi5eUPYpVyROEhhqewaVYdt44Le/RUT6eNbIA8C2Bx9M30uzmVrEEsPF4AEgwDWLe52paSK/Sm6S7t61C5snJ6GpKnKGIdgQI5uddQL8+mOPxUsOPbSri2Fn2bqOQwn8RUEwK+DSpR0kXVVFhphsVsDhzuPNJh4i1g8Aznzta/HnH/wgDj7pJHhhiDw9hG/4139FZWQEhcFBGJaF4tCQMDgJXBdIEjjFIiJa9vdoZ64h2WtXx8YEUznZakFNEtz/v/+LmCa9480mmpJBhEHTeflYy4BLIXli3jQx0WzOaUo5V4aL3d34WClsOELHuxkECAwDAytWAGhvVtjZzG820ec4qNPke8/jj8N0HCw46CAE1Pz1OY5oAHVVbQN6wBTg4sGEZhhw63VYEsPF/8aPIrjU1OgsKZR2uD53wQW479e/FmwQv9cWBSebZEIhV0TXnFMo4C8+9CG84UtfgqIoKLVayJkmlhQKGG00cPBJJ+FF73wn6r4vDBvqvo9bt28Xnx/n8GW7yBZzpokMGW4AZGjQxRBGJ4aCs6YKloW8ZaXMtCQpdAwDQRSJcOycaYqmtxUE6R6jrqexB76P9XfcgfFt2xC4LuIowhEDA9AJ2DqGASuXw2SplBp5FAridy7M5bCA7iF/vOoq3PbjH0NRFOyp19EgUCpnEEVJgoAYLrdeT0Nvpc+bd4B4B4mb7jKFMIvPRZIUevR3ATH6cji0pqoo2vY0GedgNos6ve7dxNABEsPVAYqtbBaqpqFFvysmwPVMlRRyFcmxMWea8MIQPbYNg1QKY41GyqIaRhrYLjFcDwwPY+3wsAD9hmki8jw0m01o5FKqKorI2dMtCyGxJ2EcY7KDkZTdYh1dR4NUAHLwMUsKs3196c9ip90nWSVio6xCIZXWs309vQe+hqC0BzgD7ZJSBlwh5VUCFEougXInn08Bl+uKc7Pu+2JP19J1ER/zVFVCwy2X3ne+v79NbdAIAuQtq43xZmlpt4zQ+Xr21n7flf7+7/8ef/EXf4FzzjkH9Xodz3ve8/DWt74Vb3/72/G3f/u3B+I1ztd8dS0vDKcxSw5NwNhWOGeaOGFwMG2eaZIm5IYdD+WIpvFJkiCkBntk82YAwGs+9Snk+/unAS4gfSgFrRYscorjxXC+qe949FEAwCO/+U3q+kQaefm1AOkDJ3BdGJbVLovoYLg6yyCWqBNwsZTJUNXUppqX08mWeaY6pK8Pz1+5csa/7yzLNAFFSR21CDh024fRFAWQdmEskjZ2ysVsCgCWm6biggU4/vzzoZsmHhoZQYakJbvXrcO6W24Rcrj+ZctERg839U6xiCQMsb1SwWijAZOabm7SWFIYJQl2VKsYX7sWv/riF/HQ9dfD0nWUXRePSiw+m53IcjAZcB3W349FuZzI1pnLBDWKor0yXLKElV0uFQbR9NnevWsX1u7Zg6POOaft61wWZd4cRPlSXhhiYscODK5YAVXTUPE8FCwLh5Dkk2V+MtADIIwv2I4/CgJ4jQbsbBZ2LodWrSbkj1GSoEXHQDOMaaYZXqOB67/97bbX6RCrFMYxluTz08A/S6Mc+jvh0KiqQu4rvjcMUaB8PAYmlsRa3blzJ6I47ronpigKBmmoAqTnLYPqzmKHTUvXU6ktmRfwziUAnLBwIRZks6j5vgguH+bdqSjCknw+BW6micD3UZGt9ut1GJqGiPZWEwB2oYBWrYbTly3DIdKQZmmhAF26rsrDwzi8v1/s1EV0HxI7I76PgBhb/mxkSaHXMVAIOKtLYqFlViyIorZmnndW+ZhmKdKis5lc2dOD1QcfDLtQwMjmzdizfj3Gt28X93NHYjj4Z2WKRTQrlXTXjtigZ6qkkEtRUgfLvGnCDUMx4MgYBsaazTTKw7bTnSmJ4bJoEMHyVcO2EQcBWq0WDMsSeWj9joORRgOGZaV/T8585Z07MXTYYeJ1+K0WWrWauAcWyeUQSCXkQRzD9X1Evi+GgDFJVp9sTRBzaeXzwj2XS5OkuHyNyc9COd4hR7JDt1xuA1zy96uaBjOTaZMUll1XDAT3lk93ICogI5vJLVtgZbPoXbRISCN9CqXu6QBcdd8XjNe8Nfxzp/b7rrR9+3Z88pOfxPj4OO6++27ceeedGBsbw+WXX47t27cfiNc4X/PVtXwCOsxwAalmW1HVtuVg3tdqAhhvNnE0NaMHkcsfFztz+VGEiG7Ao1u2AAAOPeUU5Lq4ZwEkbWy1YNDCMk9z+YHBcpgsuTJFcYwtt92GkU2bhKwNSC1jQ8lNkcvIZmed2LIUx5AAFzeQppZmFtm6PuVol8kc0IZEV1Wouo44DBGEIUDT/s6Sfyc7LbLJgFzM2HV7zzur1ZSp6JCYrTjuOADAwkMPxe4nnoBbr4sGMlMsAlGEUquFU5YsSXf8fF9YT1fHxoTJxniziV56GO5Zvx6WlgYdj0phygY1PTw1BqbCNFkieUhfnwhjnUt4ZTgHhsugRpIDm3VVFZNvlg6ytf5Zr30tzrn44mnnOAMuPjfdMMTk7t3oXbwYQLrvuDCXw8JcTiyUZwxDmMNwsfFFg0Argy87l4NJE2Xx/uMYDboGdcOAUygg7mjYGBzHUYTA82DrumgSu50HfH3bHQ04n/fHSW52Ae0k8o4QO8Lx+8kYhgA/3WphLgdXck+cafhhEZulKgqOGBzEy1evxvtOOw1vOO44cbwZDDaDAJau46DeXgG4FKQh44amCZdCGXDxe+bjHMZxGlQ9g2zVlySvoAFHGMfYXqmgx7YRxjE2T04iSRJUONtrwQJ4FFotD2/k8xuA2DcJpP0XlQB6kqSZYHHQvisjX+dnLFuGXsdBoWMg8PLVq5E1TTjkdPmvb387rnjjG8WOa35gAJdcdRXeJgF0p1BAk44BM1zPdEkhkLJ5OdNEv+MI+SkfD1VRYGWzCFotRFGERFWxtVxui9DQVVXIDt1WCwZFkihkwKETcI+JwQniGPXxcQyuXIkz//qvAaRZXF94xSvwDTLUWVYsYgWpRDh/sELXuABcnicYrp3V6l5jDjprgp6hZj6fnjPS9aSS7FdX1SmQKT3f5bLzeZiOg8bYGHxm0DsAF38tlgxiqr7fljHpPQnA9cjoqDDF2ltxzMzounVYfNhhUFR1Sg7ZbIqduU7AxTLu/ck8m69nVu1313XQQQdhfHwcmUwGa9aswSmnnIJcLodSqYSDOqx552u+DmT5UYSw2Wy7ISuKAoemvuL7GDyFITZPTiLX348jn/98VEZGxDI6kDZWPhknMMPl08/XDAPZ3t6u+TBxkqSSQscRbIAhNc+rTz89/Ua6oW4dHcXvv/AFXPne97blEbEzFwOuQZKFgfZAZqowjmERqyQAF03i2Urc0jRhpa7vZYdrX0tX1XRPKgzTCfMsDBc3ngk1gLy7IFcUx9MYLq5t5XIqv+n4uyxNOxevXo3a+Dg+//KXT2WtkaRwzeLFsHRd5GhxgKxguOI00DWhh3e9VIJFOz+7pV0bixpmeXm8FQQYWb8ej0vZRoqiCDZhb8VZO7MBLj5ezSCApaVh2AyieZeFG1vNMPC8171uWuAvAy4AOHnxYhw5OIiSBLhaYYhlxaI4/q0ggKlp6HMcYW38+NgYFNuGW6+jQk6BHgEuK5tNl9R9H6B9lDCO4dL1pBuGMDfprCRJ8NOPfxyfOf986KoqGK5u535LYrjajmMcI2+aOIjOBwa87CCosDEDyQQT2ksqSJP9zhrMZoXsj7+/W2mSOYaqKDh92TL0ZzI4VgJ/LJndWi7DpOvE0LTUlILOe01RYJIZQnV0VByvVrWagplGQwAuTdex4cYb2+5jXDLgYgYgoD2ug3t74UcRfrtxI0YaDUwS0967aJFgLTdNTorzu3NHkQ03fKlR3XLTTQjiGLdu3467du2aYrgkMxGul6xaheOGhvAKiW0BIFhIg4yGuH7+uc8BSNmOwRUrsFj6d5liEa1KReR+aZI09Zlc7z7lFKzu78cQg2divBhMmY6TAi66N4w2GgJwscmGbppQoggeM1wsw+P9QWLAXDZhqFaR7e3F4WeeCQC4+qMfBdABzqkYQLMDYoaAWEQAbpJ2LG8mRcFca3x8PL3X2Xb6rJQGjCplTRqqKmT9sowQAF71j/+IV/3jP0JRFPQsXIhochJltsU3zWlZfDo/m+gabkiAi+Xh+2qc8V8PPYQr166d0/c2gwCu62Lngw/iYHLk1E0Tqq4LwGV0AVycuTlvDf/cqf2+KyUzTG/r9Trsjkn9fM3XgaxKrYbW5KQIw+Ry8nlMSowEN966ZaHHttMlZcvCxI4d+PW//Iv4vsMHBrCypydtLqRGwpOWXbvZ6lqahqDZFICLH5iqoqDmebjgIx8Rr6PieaiQWYfXaKAxOYkeslpnsweWgb3pq1/FG7/6VaiYnmEl10E9PThycBC9NLUGppb7LU0DkgTbKpUpy/qniOGKgiBt/GZwKZTBhLwP0inPYhZBV1VsLJWwQ9oT0VUVvY6DjGFgmZTPxbtKMvhuUROZ7elpkzfpqpqGw1Yq0C0L9VIJCjeQUdTmYMlMy/ju3VP/niy1wzjGeLOJMI7RCALc+qlP4Wef/vRUJME+MFzs7jgr4KIdriaBoMX5vGhKGHCydGum32lmMqK5ypomirqO2vi4AFxxkmBRLifkno0ggKGqWLN4sTi3Kp6HhqbBbTQwtnUrgNSkJgoC2Nms2JWMeBFckhTqhoGCZPgijqll4eEbbsC6W28FkIILPsZdGS6WmEmmIEAKBLLSlJxNCHgIAkAwXOsnJrCbds0GMhksmGGS3mvb6X4l7THpMwCui084ARcecUTXv5PL0jQc2tcnAnCrnodbSA3C14NhmoiCAM1KRVhit6pVhJ6HOAyFJIk/910URCyXJ53HI5s2AYAYNhgked5dq6UTfho+9C5aBLfRQJIk2FOr4cePPAIAomEXDBdfK5JctrZzJ/wowsZSCVvLZXFu2vk8DE1rM+HRVRVvO+kkLO34/BRiaA3HaQNcs1WmWESzWoWSTAVaP9MlhUDKlL/lhBNQtCwYqoqVPT3oz2RgkSrBoms1jiIotFfJe47McGumCTOO0afrMGxbyNhN+j5muJihdCsVZHt7p7FGMuj52Wc+g3+/9FIxIGzISgGk+3ReGGJDqYTNk5NzNgbimiyXYeZyYh9S1zQhd1ctCzYNIV5w6aU4861vFcxa3fdx7+7dOPLcc3HMn/0ZAKAwOAi3VEKLBzqmCU3X8Yq//3tc9MlPAoBgi+MkEUHHfB6zHHlfQQ1HiMxlv6rh+6iOjyP0PCw69FDESYLHxsagO84U4FLVNsDFQ7VueXjz9eytJ31Xuuyyy3DZZZdBURT80z/9k/jvyy67DO9973tx0UUX4fjjjz+AL3W+5qu9Hn/kESBJ2qadALDk8MPxyI03Tk11+WZMS9p37dyJPcQsrb322mk/t+Z5wk4cAJYfcwyAFMg1uzxc1ixeDDuOhaSQAZcC4P49e3Df6CgyPT0IXBdnLV+OBjUxQMqu9C9ZIv4/MPXwyxSLWHLUUenEdxaGy9J1/L9jj8VCmpQCKUvE8jJuPopsrb6XHa59LV1NA3ijMEzd9lQVZhcb705JIQOuzuI9OF1V4YUhxslQhH8XL5yf8u53i3+T6WjcAGDDD38IgKSc0gSTWSK3WsXAypVI4hh+tYrheh0H9/YKBiggx8JWGKIqAXj4fioTiSJ89/77ccPmzWj4PkxJighA5DcdSIZLY4ZL17E4n0ffqlU44zWvwRkXXYSa5wlWs3PHokG7O1Y22xZYPEmum30EuIDUupqPvxuG0FUVywoFaKoq5Hm646BZLmOcmD+WvsmZeIHrpvuQcTzVEBnGtIk1kNpNMygAgPV33IEgjtEMgq7HZCaGK0oSZElCy4CLTWpk04aMYSBjGBhvtaAqClb19894jfVTLMNdu3ZhnEw8utWyYhEnScdxpnrVEUegl1jaPsfBYCaDnGmKPTMAsG073YtrNsVAplWrCfbJzuWgADjnHe8AgDamnMtrNHD8+efj5e9/P0Y2b0Z1bAzHDQ0J9u/Qvj4ENGgo078vLlwoDHwmXRdbSHLIzSV/FqcuXZqyXK4LVdex4thj4ZbLaAYBCpaFXaWSyL5b87rXpW50s9zD5LI0DUYmg7KUswYAhxEr01mZYhGTe/ZApcb02SIpBFLQdeGRR+LCI4/ERUcfjcW012TrunC3jcMQmq4LkyGNnjGmpolBF4IAOgXRAxLgoh0uLwxRqdUQeR6yPT1tpkwvu/RSBK4rBk0PXX89tj7wANb95jcIokhYzvM9NiRJYcV1Uff9toHYXKrZbKavmwYh8nPB7u2FTe/z8HPPxTF//ucAUrB13+7dSCRjKyAd1MRh2MagA8AJL3kJDqeBHKsvQgIvPDjY+sADYmVgX0ANs7sTrRbulExIRup1/NNNN2Hz5CS2SUqYRhCIXe1cfz82lkppFIAEuFhSyIMyvu/OVSExX8+OetKAa+3atVi7di2SJMHDDz8s/nvt2rVYt24djjvuOFx11VUH8KXO13y11y5q9vrJSprrqHPOQej7YgrODxI7kxESu1gCVNwgA+nDflephCSKxEPpTV/5CoD0wR56Hj5xzjl48He/w2N//COSJIGhaQhlSSHJPWT7aA5bVhUFleFhMWEsj4wg198PzTAwSSyKbHQgpoBzmNjmLQtRkmCkXhcyKm4833DccTj01FNx5PnnY9FJJx1QyQ0zXEoUwfX9dFG52w6XoogJbAxgST6PD5xxxrTvUyXAxW5mHNhq6jrOXL4c53VETnDWz5D0dY92BUpJgoQyevj1BmEIr1rFApI9B7Uazly+HAtzuSnARQ9xU9PgjYygj4AxSw69KMJIvZ7ugwUB9A5TFlVRhGnE3oqB6myAi8FUMwhQtCwUbRuWaeL5b30raoqCjaWSABay7r8ZBLh3927sqddhZTKiaQcgzrleCSgwoHB0HYcPDMDQNPRnMnDI0UtXVeSLRZSHhxEFAYpDQwJwWdmsGBiEktWxK+1YdMocueqlEgZXrMBBJ5yAR//wB/G7u5Vbq0G3rGk/S2a4DAZczHDROampqgA4LAF+Hst3u9TCXA5508TyYhEe5avtT528ZAkc2huzyNGwz3HE6wYAy7KEEUmutxe6ZeFnn/kMfvGFLwCAMM3I9fZCUdWuZj6tahW5vj4MHXIIgHRHtNdxsJAGA7KLZIPOiQLJF/1mEw1iRr5+990iXoLZaFvXEScJGq0WdNNErq8P7uQkGr6PiufBoc/7dV/4Ag457zwUJLnb3srU0qBk+b4MAOd3MeFaPzGBiThGaedOPPzjH6fv61ngUijXmsWL0WPbyJkmTl68WFznTi6HJI6hhyFsyxK7hhrdF01Ng6LrCIMAgetCl44xS1UDVUVEcRijdI3me3ra8qz4vtYolwU7DwC3/+u/Ik4S1IlpNGi4kdD9jodOe+r1fTJ2cD0PKhmmsAqDwXlmwQLYzOKpUzEiu6pVWLqOHulZAJBcMAjgUUSC2mWAx98TUkwKs+b/fuml+BbFsewL4Gr4PvwowpYOYPWHrVsx2WrhPx58EN+9/37x9brvo0UDjTwZ1/RnMjDIzMOPIvFewzgWAw5mveby/JivZ0c96bvSTTfdhJtuuglvfOMb8Zvf/Eb890033YTrrrsO3/nOd7Bq1aoD+Vrna77aqlGvA0oa6DvaaIibM1vDs8Og2OUhwKUpijDFAIB/ffvbhTRqYS6HE2gC/5L3vAcf/NWvxPKuLF/6/b/9G3768Y9j/R13AEjlOzoBrjWLFwuwoxLIkMOWvVZLNLjV0VEYto3C4CAmCECqZCceJ4l4KM0mKeRydB01z8OWchm7azXBIKmKgpU9PRhcsQJnXXIJMgMDB1xSqBkGdGIyZpL0MADhMN2saXbNPuLpLU9pLdpNi5MEKoBFuRz6aA9NbhyAdKn+iI4gdp/AWBQE2LJ2LRAEaNbrSOJYyLXqZK0duC7+SIMi/ryOX7gQrbExLDvqKABAo1TC6cuWwY8iVDwPhqrigeFh4cDIgEaRTCP2VkEYQpmDFCpjGPCiCH0kqzQ0Tci7+jMZ0ay1ZSjRBLXh+ygMDaEksXVsApPr60NCkhu26X/HmjWpQYmqote24RiGAFx9xJLoloWVxx8vTA3sXA4qfabsDBYlibDV7zQ7kWti505k+/pQHBqCW6thYS6H46VMMblatdo0dgtIBxQ5Ai5s9BHFMXQ6l9YsXiym6oPZrAgFn61B77VtDOVyyBhGulN2AK4dZtk0RRHgLyO59mUcB6HrpntxmYx4r5vuuQfAFMOl6TqsQgGNyUnsevxxfOKcc8Rn0SiXU/mYlL/W+RpYstSiv+N9saDRQCsMUfd9bKIg6c71gTCOMVmtwrAs5Pr70SqX0SAr/5Aa0fzAAIIoQnEf1gtsXUejizmRzMpw7a7V4FMzO04A7ZkcfLy3soidMzQNWbq3tapVqCTJ5Pse3yOh62mwsecJ0wwgBVzLi0WEmpbuXEUR7iCnVafD9bOXGNThDRuErH3pUUfBcBzESYIaAa7tBHQS+oybQQAoChq+j7EuO2AzVbPVSmV+xDzLu33O4CAsemaJgVUcY6TRSF0dLavNwp3ZK891oRpGV1CvGQYSKX+xm0x5nwBXEMCPIuRMEztpqDvRbOLh0VFM0DOjFYb4jwcfRDMI0PB9uOUyVE2Dk8/D1DQMZbMwMxlkoijdxaVnRRjHIvxaV1Xx/ufruVH7fVe68sorUegi59nf+uY3v4mDDjoItm3jpJNOwi233DLj9/7P//wPzjvvPAwODqJQKOD000/Hdddd1/Y9V111ldDryn/cp9AOdL6e2uLskUYQ4InxcSFtYK35f33wgwCmSwp1VUX/A8z1vQAAx9tJREFU4Ye3/Sx+0CiKgpimbXYu19bQM5ADpuR/vGfgNRoiUPjg3l6ce9BBIq9HVRTBcAHp9JgfckAqISwuWCDkWcOehz31OsquO2PQardySIqxMJdDjeRwjq7j4N5eqNTghZKl+IEqBlxKFMFttaDZdtfXy3K4m7dtm9XtDYDIFePmmE0F2AWQJ71v/va38aavfrXt3776E5/AKa98JQDa5yAWpFEu4z8uuwz3XHmlaDBZSsfniuxCyYYASZIg8DwMHXooAAhg7IUhap6H7ZUKtpbLiEnqwnI3lU0z5jChjMJwry6FAMQeDO+x6araFkqrq6oAYVyKMmXJXcrnUZ+YEK/RazRElhGzovy9B/X2YlVfH3rJRc3UNJHRw86gdjYLJ59HQk2BncvhUWq2Qzp/wzhOJ9AAjBnYLQAo7dqFbE9PGow8y/7O8MaNqE9OdgVcwJRbIDtPRkkCW9PwiXPOwQWrVwtZVs40EdB0ebZzUVEUfOR5zxPHZX8ZLiD9HHOmiWOGhpAxDBQJcBUJrC5esQKR74vPp3NXjRkuBYDT04P65CTu/tnPAKTyTr/VQuC6yPb0CIlnpzECN6c+ycZUXReysYDy42qeh5rv4+5du6B1vO8+20ZeVWFYFpx8XsijJppNBBzL0dcnZJ5zLUvT4Eu7sgy0ujGjqqJg5WmnAQAKBM71Z5GksLP4GlYAZOn8DlwXiqbhxEWLcPzCheL8ZYYr8v0phgvASw49FOcedBBOWLgQFrkYhlGELfSMszpc/HoXL8bQwQfjidtuE8+1RatWIaKA4Lq0wwwAVhzjifFxPDI6ih7LQs33sWsf9riarpsCLhqOZAwDZ7znPTj9da+DWSgI6SkbScRJAlvXhduu7JbKofY+sWad5UcRhlst+L6PiJgj3/dx3Re/OPVNs+xJ7apWMdZxL/IpDDpjGBina2pjqYSGJDVvBQFu3b4d9+7eneZ8TU4i19cnVAxF24aRySButXDYwEAaocGAi7LP9HmG6zlX0/nXJ1mPPfYYtm/fDr/D7eUVr3jFPv+sq6++Gu973/vwzW9+E2eeeSa+853v4CUveQkee+wxLKeJtFw333wzzjvvPHzmM59BT08PrrzySrz85S/HXXfdhRNOOEF8X6FQwBNSmCKAeWOPZ3HVGw3o9PllTTOduKE97LU2Pj5lmmHbwor8yNe8BqeeeSZ++KEPpd8nNdqc8dPJnixavRoXfvSjuOW//gujEnuWkEuhThNGzsUCMGUTLwEurwNwmcRwbX3gAQBAoGlYlskgoGXauQIu3l1ZlMthstWCpij4wJlnimYnZ5oYqdeR0PTsQBW7ZcW+DztJYM/ggsiT2R7bRhCGs++lkdyK3RaDKBKAy5KObW7BAiwgSYxHP1MGLYZliQfxOBkTTGzaJACXfK5EUhgyMMVwRUEAJAkyhQKKQ0Pi5xRtG+PNJiZdF14UIaQHM58/vMMVzmFCGc4RcDmGIY5hhjLW+AFtERtlahoqBBYrritMNsI4RpHkt2Nbt2L5MccIi3EA4iEvA4o3kN0+ZyftjiLkNU3YsSuqCku6TqxsVjAqgeuKCa3I4eoi+eFqVavIEODqNEwIXBc/+vCHU4aSasWxx3b9ORyRwEA9TpK2KXqv4yBPIcj379mz1x1J/pkOvfYDAbhef9xx2Fou4/CBAXz8BS/A/Xv2YFmxKIw7jpKeWxaB2rbXk8sB1WoKpnM5uLWaGAREYYgmDZ+yvb1TgEuSUcvlRxEajQY0yxJOdK3JSWiLFqXNoWVhZ7WKng42+tD+fmwChLQz8n2EtHfnlcvQOAJgfHyfWEFb13Ha+96Hmy+/HKtPOw3nveMdGJvBCc/UNCw76yys/9nPhEnHs8WlsFtZEjuXl64rlYxWEqBNUghNE5LCHElkV/b0YCiXw7UbNkAjt8soSVCl+xJLfi+56iohX19y5JHY9dhjYhBTWLAg3XsKAhHpYNE5aCUJNpRKqeqAXt8eYvWTJMF3778fL1i5Equ67GoCqaSQd60GMxmMNRpYfc456LFt7KhWxbWoSwMrh66/TsClGwbCIEAShjAtC34UYazRwBICh24YwiB5Lstnx7dswWM33DD1gmYxzbjinnugKQo+ee654mtsnmNRULQfRfjFE0+gQSY/jSBInW1rNZRaLcFw5eh4xHyfzWTgcSYoEQDMcEU0kJzf4Xpu1X4Drs2bN+OVr3wlHn74YWGDDExNz6In4bDyL//yL7j44ovx1re+FQDwla98Bddddx2+9a1v4bOf/ey07/8K7dhwfeYzn8EvfvEL/OpXv2oDXIqiYOEMEpX5eubXx266CS8+9FCcQbavjUYjXZqlCSpLDeQgxeGNG+G7bmqfSw8pDpBdJJltsAwHmAJfncv9iqLg6HPPxQO/+Y0AXPVSCaHnpVp7khTqqop+x4FFjABnqvDU3m+1kO3thZ3Pw63VYFgWDjrxRDx0/fUAAIsykDyW0c0RcB02MIBDenuxur8fw/W6kJ3wtZg3zfRmHsdtDej+Fi9nB76PyPPalrflYnllr+NgW7k843s6/9BDsbFUwto9e0TmlCvJK01NQ0J7ObJL1F27dqHXcXCM5FppWJaQsbFsNPR9lGgiazkOTr3wQtx1zTWojI7i7v/5HwDAya98JR75/e/F9wNpY1kYGBD7MocPDOCRkZEUVIWh+Hxb9TriKIK6D5KQueRwAUDRskRmFAOLR0dHsYTCfA1Ng6PrYofroZERREmCxfk83DBEcckSKKqK0S1bpgMuOqYyoJAlOpaupzllxMgCKRCSc/CsTAYZuv7u+MlPcPwHPtBmC7+xUoHjunjlhz+MdbfcgsPOPBNWNivsqa1MBnYu17ZnBgCP3HRTG9gC0Ab0xOvFlCU2B7dGcSxAOgD8HcU0/PSxx1KGa46SXfsAAq6BTEbY0CuKMs1sY4n0nJKdH7mYtVUVBUY2C7denwosdl1hopEpFgXg6pQUAunxCuIY9Xodum2jZ2goZTxHRhAfeSRqnocsSUlXAkAH8At8Hwbt5UXUcIZxjBZP9Oka7WaiM1OZmobC8uX4+1/8QnyN3Rg7yyBG17Bt+HTOPFtcCruVJbFzOYnV1EhmJ3ZbFQX9mQwSMs0IpPsuAxZH16HoOlyS9nJINTOFg9Le4sJDDsEDv/2tOG94l89rtcR+nyXtcJ25bBlu37EDy4tFVGlHDACG63U8PDoKhYxoupXneWLndiCTQcYwUPU8REkCBVOOvJ0MV8Yw0n0vmeEyTYS+j0W2jQnLwhPj46hQliAPXCzTREKsVJQkmJDMeYD0+mtKe2FcVc9DgwKIOzPo+OeGcYxrN2zAaKMhcgNrnoeq56EZBKi6LtwoglepIM+SWFKbmNksyh1ZtWzIEdNu+DzD9dyq/b4rvfe978VBBx2EkZERZDIZPProo7j55puxZs0a/OEPf9jnn+f7Pu677z686EUvavv6i170Itx+++1z+hlxHKNWq6GvQ/Ndr9exYsUKLF26FBdccAHW7iVHwfM8VKvVtj/z9aepmOxcbyJXIQBoNZsCcGUMQzSZiqKIBetdTzyB337966JplkMhbYndGN++XcgKaxMTUFR1xoe8LHfaunataGRkwDWYzSJLmSqqoiDX14d6qSTYMNNxxLKyYdtte0eG47RZWs8VcPU5Dt5z6ql4zdFHw6GwWrmRzFsWwjhOrZcPQNMo/1zDsuC7LgLPg2ZZXRseNv+wpeahW522dCled+yxU58T5ZHIx8KUGAwgnazmaPdNLp1eGwBM0O6Sbppo8iK4bePUCy8EkEraHrnxRgCp1JAZAQG4TDO1oJZduWjIVB8bEztc9/zsZ/gk2Rbvk6SQjststSCbRY9tC8OHgmWh13HSfQiSkPbS7gXQDhLCOIZj28gODeH673wHcRS1Aa71ExNpTtQM54ZHi9yaqmKAAIIn5eDplgVV08R/b127FmMPPZRKeYjhUgwDj4+P49jzzsOrL78cx734xTjszDPFa7AyGdjZLALXbcuWkg0UXnbppcj29uL488+f9hoTTFmrM0PKE3IuniZbBHDnwnDxsZQbwqeyMoYB0LngFApQO15fjCkTGoOMUBik+q3W1NBoYAAqA5JZGK4aDa8UVcXQIYegun07zl6+HIcPDIgm9Wt//de487//u+3fhp6XGqEQk+LzrszkpBhYJXuRD3eWTZ9btxprNHDHjh1iD5SHZ7ptw6drWqfduGdjWZomZHZFCdzyMIZNkHRVTYcoSQKX77tShhcA1HwfuWwWgeel7A7vUXZR9RSHhhCHIUq7dkEniSiQyqqbrRYUTUulmpYFr9WCpqo4c/lyLC8WoSgKWgRYHhgexq5qFUMzRCwkSQJPYriypom/Ouqotnu5YLhIUsf7TEXbhkLXK5dOlu9hEEA3Tfhx3BZqHsQxLMoi42HABO2ycSlxLF6/XP/10EMYaTTgRVEbIJMZriCKcMeOHdhaLqPqeenwwvcx0WpBV1VMkMLALZfbdhALlgUzk2nrJRRgmqRwfofruVX7/eS44447cPnll2NwcBCqqkJVVZx11ln47Gc/i/e85z37/PPGx8cRRRGGpLBIABgaGsJwh03sTPWlL30JjUYDr371q8XXDj/8cFx11VX45S9/iR/96EewbRtnnnkmNmzYMOPP+exnP4tisSj+LOsI1Juvp684nNCTmrBWswndtoWTn3wjPvXCC2Fls3iwY5dvST6PZcWiuMEzqHrkxhvxZTpfahMTyPb2TmtyuLixWfPnf45tDz0kHNpYUqirKvKmiSX5vGjo8v39qI2PpzKrOIaVyaCXptiGZQkZVra3FyrQJodiWeJcalmxCIf2Q2RXMSC9ycc0RbT2YeK8t3J0HY7jpICLdgm6AQdmT1hauDcQye+jQO6LbHXPskKNJBhACsg5/FkuwzRh0kSXgXECCKtj07bFbp7s9GbncumD3PfbAJfTAbjiJLXPLhNDerQkPWlWKlAUZU4PzDiK5sRwZQ0Dy4tFHEIP71cdcQQsTUOLdqsc2gNiwMXg1KS9LlPTMHT88fCbTRFWzGCn7vvIkhNat9JVFXmyjB9g0wzTFP9e0/VUrir9e5WaH97h6iGprCwLUhRFDB9MxxGATexHNpsin+vMv/5rrHnFK/B311yDI84+u+31sbqCAaMlTYgzXRhd3nmU99ZmK2svg4IDWfLrXbRqFU684IK2v+f7gkIMV7NaFfelaz75SUzu3g3NMIRk1nScrgxXArq31uuiEXfyefG9/ZlMKgmlc/66K65oO/+blQqcQiFlTZIEI5VKOqWv16dkkIqyTwDIImDbrbZWKsiRfHyy1UIPhefKgEtVZ3f7fCaXYxgYyGRw0qJFKEoDQY3uqQy4ODvOofiAwHXbnj8AcMyCBchnswCBDY8BVxejIt7PKu3aBSefF+dC0GqhQYNNPs58bvD5xzEbXhjiD1u3ouy6M0r0gjhG6PuCZbN1HUcNDgoDFwDi9TPg4HP9wiOOwDELFggQUiLzjdD34bda0EwTNc9DxjCwaXISpVYLmycnYZtmKo8kwFXatAnHv+Ql+MuPfQwAENbraHXEaACpu+twvZ4eO+nvwzhGDHKvjSLUSEpb930cs2AB6r4PW9extFDAZKuFVhhOA1x9dJ+TpdMJphwQy3v2YNeDD84zXM+x2u8nRxRFyNEDd2BgALvJZnjFihXT9qX2pTrdZpIkmZOt7I9+9CN8/OMfx9VXX40FkrTotNNOw+te9zocd9xxOPvss/GTn/wEq1evxte//vUZf9aHPvQhVCoV8WcHaeSfbeWTnvjZXB7dMMuuK/ZTXNdN9dl0Q+YbfoldCYtFlCln6K8+/nEAqQXvO9asETf49/34x21NMpDufXXLCuLixubQU04BAPE7dNsWwE9RFBwzNCTCasNsFq1qVVjVm46DHMk2+OH2d9dcg7d997uCCdpXhksudj2Ti/87wYGRRXEpioJCNisAl0YP587ixpbf395Yttcfeyyet2IFMiTdkC3yeRePH0Ziv6vjZ+qWJYwaQppS6qoKh/6dYduiAanSwvjJr3wlijTwmdyzRwAuw7KmMVwhPfjz1ISsodwYAMINcG8PzCRJ5myacdby5Xj9sceKCfLSQiF1dQsCwXAxQ8C7eqamwaLmwNA0LD7xRAApwNx0zz1CEqjRbthM54amqiKjyzEMnP7ud+MtX/86cgS+Ypr8aqqKE9773vT4+H7bDpdt23B0Hbd33Es5DNl0HAHgOHfqcy97GWrj4zjqnHPwZ297G4Dpzwc+zpoyle1mETMaxTHsLu+JXR75+OytEroWn44g0oxh4AWXX45XfvjD0AwDq08/HW/+2tfE3++qVsW9xshmUdq5UxiXAMDOxx5DYXBwyiZc2iHtLDbNMGwbD4+OIjEMYTSk0n2S/xuAYIEBulcODooG2kgSNIIAke+L+5oC7NP9y5kBcMVJAi8MMZTLoUpmHuzwpluWaF412nN8NlbBsvCBM8/ESYsXI5fJCJZTp/ckM1zLCgUs7OlBHIYCcMjPioN6e9FXKCCiPSOfzCq6DRIzMwAu33WFOZWqKDBsuy1QG0jvG80wxGijgT31OkxNQ61jl5/Lpb0w3TAEG62RLDQiQychKVTTgHres1zR0yMiDbaWy3h0dDQ1DQkCtKpVGLkcsoYBh9YLKq6Lg3t74dg2kjAUQ7vm2BgGli0Te9T+5OQ0SWGSJBhpNDCUzaaAS3Z9jWNxTo83myi1WjhqcBDPW7ECPbaNZhBgQTYLS9Mw0Wxiol6HWy4j398vhoZ9jpPmrLVabdftpOsiiGP85u//Hj/54AfnGa7nWO034Dr66KPx0EMPAQBOPfVUfOELX8Btt92Gyy+/HAd3ZOXMpQYGBqBp2jQ2a3R0dBrr1VlXX301Lr74YvzkJz/Bn5GkZ6ZSVRUnn3zyrAyXZVkoFAptf56N9dPHHsPnbr0V2/cxoPCZVB5NxUcbDQEePWoSYmq02OXrIWIb+CHSt2QJDjv77NRGuUOOppumsELmqk9MTPuaXHyj5v/d+dhjAACrrw+2tDPFbEGf46BKD7BtdK1Y2eyUppsq19cHq1BInfmo0WFGal8B17tOPhmv6zAVYMCl4MACLiC13Gd7Yt00uzJyrMXXJJZqtlpWLOKC1avFfl5IDytDnS4pZHMNAG0PT900YbJNOX1dURQMUYOYGAa8OIZmGEJSesy55wrG5ZtvepPY/eomKQxJjhLV67Dz+Tagvv2hh6Bg7w/MKElShmsOkkJL13HM0JA4xwq00xXFMQ7q7cXfnHQSDE0Thh18vos8OE0TLmUP/Pa3iKMIR77gBQBSU5XlxWJXq34AeOmqVSJ81dY0rHje87Dw0EPFtRLTnoSmKBiisPCYdjOY4TKJtZRZOGBq6GBlMoJ1bpTLuPvnPxffE9DPmKl8ApS8n2iT82KSJLC7MVy065U3zTkN80qtFpYVizM2kweyLF3H4GGH4agXvlB8rUfa6xpvNuHQXovOO6vSe3js5psFiAXSe8sESfE6a1OphFajAcO2UfM8NNBusBHGMTxpp+43X/uaaBKr4+MoDAwIwKWQEiH0/TYmZV92qrqFoQNA2XWxMJdDjpxpvTDEwlwuNUiRGa45DC6eyVWg42bpusiVYobLYoaLBnrHLl6MhABXdsGCacO5jOMgIqmbRwPKbiUzXHY+L3YGA89DgwCXpqrdARczXPSMdmgnq1t5BLg0w4BOAyIgvRZ5MMWSQkPTUKXYDZbHF4nRbIZhKiH3PIRBkDKtxSIGs1mYmoYF2SwqnpfuuzoO4jBERHK90HVh53Li+nAnJ6dJCt0wRNXzkDNNRB0MVxBFqUpESzM9SySxZKny2StWYEWxiIFMBmPNJiqTk0jiGLm+PhFy3O846Q5qkmDDXXfhrmuugaEoGG000nBm3sekTM19qRs2b8bnSBEwX8+s2m/A9ZGPfAQx3Xw/9alPYdu2bTj77LNx7bXX4mvSRG6uZZomTjrpJFxPBgJc119/Pc7oEpLK9aMf/QhvetOb8MMf/hAve9nL9vp7kiTBAw88gEWSW9xztZ4YH8djY2P4zSzg8pleHk2oOEsjSRJ4rRYM28ZGylBiVidvmkiSRMhp2EKZQ06ZdeIbmTxh2rVuHWrj410zXzhT6TWf/jTe8o1viJ+/7rbb0LdkCeJsVki9AAiL7qxpYvHRRyM/MIB7aRE8UyyKRlWWsjGjxRbuT5bh6nUcHC0xvEA7w3Ugd7gAwHEcBM0mkjiGJuXByDVSr6cSIGmXay6VN01UPQ+Pj4+LY6HQw5qlacxwDeVyGKcGAUgzzTqPXRJFqdWyquLukRHctXMndNNEnRgup1AQS+MAsIXcIzng1Ws0hKyGz8eg0YCdy7W5Ht7wr/+K0saNsz4w2UI4jiKxGL8vJYJQFQW9to1lxaKYEPMxkRsWS9OEs+ftV1+NxYcdhtVkIqEqCo6QmvTOOmXJEjFdt6QGia8VdgLTVFWAutDz0obd96FoGkzDQNY0kTXNtiaGAZfpOOLn1SmAnMvrMNIA0vybJ8bH0xBekkSy05+hadhZrYrGq7NYUjhXeW3RtrE4n8dFlMf2VJZO7JV87siuqT22jbxlpcYpBLjaWPkkwYnSc/DgNWvwxG234eEbbsD6O+7AZ17yEmy+7z6oioK676dNtWUhaxjQaB+TywtDBDRQWLR6NQDgD//+7wh9H81yGQWJ4Spqad5b5HniPAP2LYbCIfajs4IoQt40cfSCBRiu1zHaaAh2su13PYnr6JlYuqoKNkpmuCxpgCK7LK847TRx3nBlHAdJnAaPuzSg7FZ2LgcoiogSkCWFrVYLKjNcXZhSTVHgEosWxTFsXZ8RcLlhiMj3U8AlPQNsyuUC2hkuoF3K22vbsGl3Km9ZiDQNEQEuK59Hhs2EVFWcLwcPDIgcrlq9DiQJzEwG2Z4eqJqG1sTENEkh27s79BzuZLgSpIO7U5cswfJiEb3ScRVSX5I016WsQwG4Mhk4dD3/z6c/jd9+4xto7NghABdXbdeufWa4bt62DdvKZaEEmq9nTu034Hrxi1+MV73qVQCAgw8+GI899hjGx8cxOjqKczukWnOtyy67DN/97nfx/e9/H48//jguvfRSbN++He94xzsApFK/N7zhDeL7f/SjH+ENb3gDvvSlL+G0007D8PAwhoeHUZEm0Z/4xCdw3XXXYfPmzXjggQdw8cUX44EHHhA/87laSZKgSrrmtcPDz9qLkKdn3OBGSSKcmZi5KpBZQ8Gy0ApDHHLyyQDSnayYJKmdDBcAnHHRRThkzRoAwHff+U7UZmC4Hh4Zwa3btyPb04NlRx0lpoLlPXuw8NBDEScJVkpZXdzsZgwDpmGguGCBMG7IFIs4/KyzcPS55+LY884T/4Yb1qFcTuysdT5En2yxVCehZfMDWbbjwCO5pGaaXRusNYsX4+DeXvQ7jgiGnkvlLQtDXUJqHcpyAabARcGy0iV93tuSvj+ih6rXbMJ33VROyEv3pikkhU6hAEVV8RaSG1eJMdVNE/1kq85yQd6f8glwWR3L4s3x8VkfmF+8/XZ84ZZbgCR5UpN5Zgs1CTjoqpo6bJHM0NC0NvCvSs2BzJrMRWrK4M7S9ak9MTrWeTJYUBUFhq6n+xWui4hcClWazjNLFkjHhRs83bKQoeNfL5XEZwIAZ7/uddNez556HZqqYrhex8ZSCQuyWeTo9ZRaLfQ7DgYyma7H1SFXx7leC+9Yswb/cNZZ+xTi+2SLWYxuLCD/fc40YWkasjOAZHnH7VR6Ru9atw4/+vCHEbgubrrySjF48ppNZMgxTrftNgmhH0WA68LJ5/HX5BJ883/8h7AQdwoFeHR8e3Udpy9bljJczHph3yWFAKaxcZw1tzCXg6lpWNnTAy+K0n1OibnRyTTl2V6GpkFhwEUMF2c48TnLgEuj0OxO85cs3Y8afM+j49TwfTw4MiKGHhzKCwAZGXC5LlodksJpgEtV0QpDMRS1dR21GQBXqdVKHVkJGPXw3iA5q8rqC34vbIxiaBp6KIDdDUMM0g5bEseol0qw8vn0HkfgNIxjmLRfDAA+maABKZPOxlhupQK/Y6+0GQQICDyGcYyrH3kEG2kwKmccqoqCpYXCjOdbnCRioJrv7xeAq89xBOBiKWxz925UXBfjkjmbV6vtE8OVJAlaQYCK52F0lizD+frT1JMGXBs7nF7k6iM72CdbF110Eb7yla/g8ssvx/HHH4+bb74Z1157LVaQjemePXuwXbLT/M53voMwDPGud70LixYtEn/eS3sEAFAul/E3f/M3OOKII/CiF70Iu3btws0334xTaA/nuVpeFMENQwxkMqh5nkhCf7YVT8+AdEoWEEthUB6RqijImiZMTUPeslD3fRxLTpe18XGxf9HNcCE/MNC2e1Mnh62677dN4Sueh6wUvilnCvFUXrZbZ3DHunsrm0WTcp6cQgGm4+DCj360PQuKJFlHDg5iZU8PtpbLc3JQm0sJOcocTQL2pWzbRkjnFstfOmtJoYB3nnyyAAD7wrL1ZzLTjECyNH0EIJalTU3DlnJZNAwhgQMA2HL33QDSHTy/1YJp21Psj2WhPDwMRVVF47Hs6KPRs3DhlCmKaaKfjHM48+iYoSEcOzQkzCfk+56q63ArlVkfmI0ggEdyFpWY130pDjWWjycDz3Xj44LZYibA0fU2NoDBUkLSu72dF4Lh0jThyggAr/3MZ/Dmr35VyHvZqpuzmTzfT+26lTRw2KAdRS5uBKMggKKqyPX1oTE5ifFt23DUC16Aj910kxigdL7/fsfBehqq9EuREKqiYHV/vwg47qyCZSFPpixzKQ4rfjqKhywy4JLPLV1V8bpjj03dUAk0h5LU8ZUf/jAM20aFDAycfB6rzzgDOx55RHxPtqdHDJ6SIIBO7IFuWW1N9alLl6KYJHDyeeT6+rD8mGOQ6+8XQcoVAJsJfEWU+cb3ZgAiO2quxffLzvy6MI6RMYz0HKah1EVHHZUO0KTP0DCmy0efjZUzTSEplGXa7z31VLyDBoQOAy4agHRevxzRcGihgAHThEEDqfv37EHd87BTau6ZIc329Ij7QhgE6bCEhmjdGC5dVeGFYao8QQqQ6rS72VnbKpU015Ckvzy8cAwDLTp3+BoTDBfdF3ltwNZ1+FGU3kfoc+cdroyuY3V/PzQa6FiaBpu+x/c81Nnino5LplhMZXtkx87FDJdJsuSK52FjqQQ3DHHbjh0zMnidpSoKKjQ0yvb2iteUNQzkO1ZU6nv2wA1DrJcy56JWa58YrsfHxzHc5f3IlSQJfvTwwxjuohiYr6e2njTgWr16NZYtW4Y3vOENuPLKK7GV9hwOVF1yySXYunUrPM/Dfffdh+dJttlXXXUV/iBZzv/hD38QDYP856qrrhLf8+Uvfxnbtm2D53kYHR3Fddddh9NJSvNcLkGNkwTIC6e78Twbind4dEWBF0UI4lgwXI4kT+CMoobvt4WFCrc/2gEy6EbKxVk1AIAkQd/ixVi7Zw/u2b1bPEzYplyul7///QAwZbkr/T2zCssKBWiqijo1TFY2O2MALDNcRy9YgGV0Qz5Q4IhDNTuzlg5E2dLx08zuO1xcDHznynAtyuVQtCwc3NvbLpchfT2QWiCfvWKFcOSTdxU6DRPcRgMByVGZSdAtC61qFfn+/ral8kxPjwBcsabhoUoFmZ4eAbhMmrrKbn9rXvEKXPTJTyLb0wOXXNtmqojkPsCTl0LxXhx/pglSGSZLj+SwZFVRoErHhlmEgM67vZ0XFu0oGqratjO0+vTT0bNokRgQ6LTvISSFngeFrs8jBgdhaFobCDrtwgtx9LnnYtnRRwNITTRGNm3CrnXrsIz2wboVxwEAKYCSr783HnccXrpqFRxq0DqrP5PBO9aswQUkk3smldEFcAHAgoMPxvPe+U7oqipcUG1i1Vcedxz+7ppr8MFf/Uqw5g+NjOA+MrLqX7q0zV7fymTE4CnyPKiWBYN2/GSGy9Z1+CQpBIDDzjwT9YkJPPrHPwIAQsMQTS2DvtD3odPX9pnh4kDvLoAra5qwyRjmpEWLsCifT89/GXA9TaD4qa7lxaKwT2eGCUjP22UslyfAos4EuOi+nFUUJGRkMum6KBJTJH8uvNOU7ekRv5dDlVlS2M18xSHTnus2bRKxCUEcd822KrVaiMMQiaZhIJMRvz+j62iFYXfARfdF3pHqsW0odBws6bPWMxk4hoE3n3ACbOl4OAy4ggA1GgxwVmemUIBbrU7rjRrEcLE1/e5aDTnTxCOjo9hUKs0ZBPXaNkZGRmDl86ltfRShYFnp+5AGrQDgVSrwogibJTIhcN19Yrg4/ytKkhkB16bJSTw8OoobKEt0vp6+etKA649//CPe/va3Y/fu3fjbv/1bHHLIITjooINw8cUX4wc/+AF2keRmvv601fB9BLTIynK8Z2O5YZhOeBUFbhimEgCaorIzWa9tw9I0LO/pQZPe5ys//GG85RvfSDXXgFhu5WwnLqWjIehdsiTViMcx7ty5E/fs2oVFuRw0RWmTuhx73nlYddppOPO1r02lbNIDjyWFvY6TNvX08OuUnZVaLTw0MiKyZdgY4vCBgQMKjpjZe0oYLhlw0WcyUy3J5zGQybSxhbPViYsW4X2nnSakJVxZw0gd0ehzLBKzljUM0ewZSnvGUra3F3EYolmpwGTApaqiSSvQ3lvFdVH1PGR7eoSzZJVkJ/lFizCxc2fba5QB18suvRSHn3VWuu9VLs8IuDijy6Mm9cku+zOQZibPZ5kVfc7cwAxms2mOTRcGYO3wsBhYzFZvPfFEXHLyyV33nlphiFYQCAZLtyxEBLh8Yrgcw8Drjz0Wtq6j7vv4w9atqR19by8u/OhHBVDuX7oU6269FUmS4LBZdneBVHrUa9tpEKz09UP6+nDcwoXpzscMn8FxCxdieUfj80womeHywhAPj4yg4rp45/e+hyNe+lIxsNCoCX33D36AV374w8j19bXtemWpyQMg5LAAsOCgg9CqVoXrYuS60Gjf0XQchL7floPWqlbFAIv/96bvfQ8AoFqWkG0x4Aok+VqCfdvhypFSobNhDOMYOdOEYxiCzQaoIZcAl/kcAVz9jiN2UQ0JcMmVo2dJQvu+MwGuwHURUlbXplIptZTvCIhmyXW+vz9l1hRFGCGpNEQzO8A4kA46dlWrKPPQkYYpM4UJx0EAhZ7XXCwTZIUK/xwgvb/J9/BeklQOZjLCEAlInzssRzWlf8vDgCAIUJMkhUDKcLnV6jRGaLLVEqqY4xcuREBKobFGA6VWC8dLUuzZanE+D8d1USCHwmYQCFavT8r57Fu6FDHtwe2Uni3hPjJcQRRBVRQR99BZSZLgyrVr4YbhAd/jnq+915MGXGeffTY+8pGP4IYbbkC5XMZNN92EN7/5zdiyZQv+5m/+BsuXL8dhhx12IF/rfO1DJUmCIIow0mjADUPYlJGzo1p9VlLJrSAQVsEtujHJmU+vpcm4pevodxxh5HLseedh2VFHCeaIp2ad4ZqWJEUCgExfX7qgTA+lXscR6fXy1Fk3Tfz1Zz+LvqVLBVDiYmkVu0sl9EA7+KST2n7XY2NjItODJYUm7dsYmnbAglZ5d22uQa/7UnmJTZwph4vrVUccgfefcQb6ZFZxllIUBf2ZjDiWXFnDQDMI8DAxULaui9BnhaVyYYgjJQbjRe98J4BUZso7XMxwARBmGQ+OjOChkRGR0aUZBkCT9Z6lS6cBrlat1tboAqls1K/Xu8rZAOBn69alLofUqOztuM1UbELCTYYfRUKGkzdNOLqO569YgVcdcQSO6tj3OfL5z0+PU5JgYS43KxsHACt6eoTlMb/Shu+j5nlwyTWOd7R0y0JIDmm+7wuGSyFZYanVgq3r2FGtYhtJbbn6ly8HACw69NC2PTO5yq6LJElwwsKF6M9k0O84KHbIA9kmOv8sa8JlwDXWbKJgWZik8ySMY9gUbK4qafhx35Il0wwROHCYp/39Uo5kQu5opY0b0/1YDixXFMEWsaMqALQkhqtzYATbRpbun6Hvp88ez4NhWWkYbBTtk6QwT4Bry+Rk29fDOBbnc5Ys/YGUwZYBl/U07Ng9HWXpupD2aTMArkEaEIW+L7II5WJJYeB5qVGQYWBhLodFudw0N9JFq1YBAA45+eQ0X8swUgdEAmq6qsLMZNrMayYpEuWIwUHUfR+tIJiV4ap5HiLfh9Ihz2VG19Z1AZo0VYWCVMqblYZEbJyxtFDAYYceKr6uUGA0IGXx6ToydD64XSSFDgGuMI7b1i0eGBkR5xfnYDaDADXfR8YwkEhSzNlKURQElQpyfX14YGQEY42GAJq90jOzZ+FChKR0aJTLUDQNhcHBdAd2HxguBlkKugMuDmVuBsEBzeKcr7nVAenkDMPA8573PHzgAx/Ahz70IVxyySXI5XKz7nnN11Nbf9y2DZ+8+WasGxsTSe1RkuCPW7fiC7fd9qxjuthFSFNVVDwvncqSRIIXibnpzBjGtB1Cj5pQfsjI+z8AsPiww/DGL3956vtJa80StdX9/Thj2bI2d0O5BDMlPfBW9/djQTaLYxYsgK3r8MjE5YyLLmr7txaxEC1ia3QCRhnDgKVpGOpo5J9sscRM6wCGB6IKklmIQeYlM5WmqlgsPWzmWga9di6LpqRsBOMYRppvoutI6HMIPQ8DhQLe9IMf4I0//KFo3qvj49Alhoun+UuOOCJ9jSRdcYj9OPjEEwGS5/UuWYKJHTuw6/HHseGuuxAFASZ3725jEIB0Kh0Rw+xH0TQ570MjI6j7PkaosdRnaKr2Vgq9Xm4yAonhKlgWPv6CF+AFK1cKl0FFUfCO730P//DrX+Pws85CTLK8oWwWq7q4c3YrS9cFm3TP7t1YOzwMj2S3l55+egpkLQsxXasemWbw9cHXX8YwMFKvY6TDnYuBr27NvF9V8zwsKxZx1vLlqYRS1/Eq+vy4NFXFxSecgJc9A2WDs5UMuPwoQpay6ACS1rHUbJbrjGMBbF3HLdu2iagDAFh12mkAgNHHHkutuklSKDtM/sdllwk2X2a4OhkOxbIE4PJbLdzz858jiWMYloUHh4f32WWV77ke5bpxRUmCPLPYkjFP3rLaJIXPFYbL1DQh7TNmGMZw1mgUBF0ZLmbAAs8TEnxNVXHYwADyJMlOkgTD9TpecPHF+Ptf/lLI63W+f3keVMOApigoDA6iWSohjiJc/sIX4mt//dfYcOedyBpGOgCh1+2FocjD5PKjCGONBoJmE3qHwoGHafKzWyOTkIJl4dWSM6hjGChYFvocB6866yzxdZX2uYEUWChIlTEsKYzCEI0ukkKvVkPN9/HDhx9Gi+IGNpdKwtCD697du/Hg8DBG7r0XX371qzEyR0lebWIC+f5+1MhmnhmugmVh2Zlnpsy+aYrYC6/Vgm7bMDMZYTo015KZ/G6Aa6zZRN33MdlqzTNcf4Lar67LdV3ceOON+OhHP4qzzz4bvb29eM973oN6vY5vfetbbcYW8/X0lR9F+MPWrai4LjZNTooLywtD7K7VsKNSEbr+Z0u1giBNd1dVlFotNFwXcRimkkJirl5z9NF4yaGHdpVFuWEIR5qUOYaB0UYDj1P2EgCsPP54AOmDJohjYXhhahpeeNBBqcRPVbveADsZNCCV87zn1FMxkMnA1nVkiF3oW7wYwNT+jEVTvVYYpllV9Pp7bBtDNI08EGXy8vFTICksyu6MMwQf728VLKttKscPaIeaAVvXUbSsNB+FPueIHnK53l6YuZxgoWrj49ApxFdTFOyhyASWr2lkDGER4Fp8xBHC8riweDG8RgPfveQS/PAf/gHjO3YgjiL0r1iBP2zdijFyh9ItK5UvBgG+d//9+OTNN7e5dyVJgprnoUpTV4Nez74Wu2/ysWGDDE1RkKd9AW5i+OcPHXywYCoi2lV46apVc2Y+xb4Ym2SoKtwwRH8mkzpw0V5NRIDLD4LUFl7ay/CiSFyPA5lMm4MqO4AmszQbQRxjMJNBfyaDvGXh0L6+rjLVFT09B/x8f6qLG1AGXBlpQBQRUAVml+qFcSxY9oJlQZGGHH/2N3+DwZUr0RgexmithiSKBMOVlSSWLjWobr0uANdhZ54p/l4zjDSfLp8HFAW18XH8huJgAt9PXTFpd3aupShKaqhgWWgFAdaR7b+SJOi17XT/SNdxEEmyem27HXDN0QTlmV6qogip80zDGHkPKIjjaQ6a/PdeoyFC6VVFwauOOAL9mQyiJMHN27Zhw8QEhpvNtr1nzTAQh6HY4dJUFQOLFiEOQ1THxsS1WRkZgaXrGMpmhWFFnCRthhwA8NNHH0W90UASx9BpMMbFAwY5L493oI9buBBHSREnh/T1YWmhgIJlYUB6NrLzIR+7nGlitNEQgCsIAlRrNSiaJphD3kmreh6G63XUfR+jjQZqvt/GwKmKghrtRzUpI/bxW25pe3/1Ugm1iQl84pxz8P/Ze+84u+o6//91+jm3z50+k8kkmfRGGgkJJRQJTSmiIKyACioiKvB1VX6ICq6LsIro7oJtkVUR0UWU3S9+FVd6CTUQWgLpZSZTb7/39N8f5/M5OXfmTsvMJJnk83w88oDcnDn33DunfN7t9XojYGuU6uhAnCT6kprm3/MiioKVX/gCFp56qj/vCpCAS1G8WcpicVQVLtO2/fGJSgFXkcz0Z3R9wHwoY+I54Jri2rVr8dJLL6GtrQ0nnXQSvvCFL2Dt2rXDmhMzJp7XOzrQXSggT/rp6U3Idl2/JP7S3r04nrTtTAayhuEN7QoCeovFskWq79GhaTh+6lT8dcuWAT+vWxamJxL+wrM2HIbtOMjoOlwiGQ8AF3/726htbYVJ5NhpO05S0waoGwapVOGi0MBt4WWX4exLL4UgSTBsG+t378aMqiq/hZAaqtKF88K6Onx88WIs6uendaDQlsJK8sFjJRhw0arjePP5lSvLqkQukSCmqmUaaQGNqyp20HNe1/0ZgKJl+QFXKZeDSGbNeI6DQ/abJFUqKsHsS55XV8MkLU3Rft592zdsAMfzqJ42DfuyWbTncqgNhyEpCmyidNlOZMv//P77frbWdBxPUp7OPpDkwWihFS4aVJwzezYU0qoXbMUB9rfpBDFs25d6Hym0pdDFfuVCy3HKTFsFkrXVbdtvKfTbwMh70cAhJEkwyfWoiaK/8HOGCLgM20YVycbfdOKJBxSsHq4EK1xU9MgPuFzX/11FFQWm4xnC1/Vr9aNm4BLHIa4oeIUsFAHSptvSgkJ3NxZXVeH/wfOsC0kSIoFFfLanB0o4DJ3YHgCeZ9O6z30Of73nHk89j+MgCALkSARbX33V/1k+FEKY/F5H+7tZ29qK3ZkMtvT1oWCaeLOz0686JzUNN510kn++J1S1XHnzCDoPaOubQIRv+tP/Pj476MUGIEnuy6V8HqZh+JYdtNVUJ15TQc8307axI52GKMtwTNOrfpI2z0Zyf+zcts1/jzRJWtYGzj9RELCXBOsAaWHt7cUeotgn9Qu4aPeC1i8Ii8rygNbzpQ0NSGoapsbjZUGdqGn+OUFFggD4whqWZSGTzUJUVf95L6kqjFIJyxobsS+XQ9GykCqVvARt4FhkQUBPsehdj6RT5ZVHHsHayy7z57+/f+GF/vYv/fGPWHz66bAMA9meHlQ1NCAX6MQBUFbNE2UZJnn+Bytc5mhnuMi2g81wGWRsgd5vGQeXA74zPffcc6ipqcEpp5yC0047DaeeeioLtg4TOnI5vNfTA922odu2f2OzHMdT7xvCJ+NwJUsc52XBM9bsJjMfpiAMCHTkwHwJxXScshv31FgMUUVBXFXLbkxzTzgB1S0tsBwHkuDJaNN5Kiq/bRMD5BLxHgHg+w9VethTI0ZJVdEwcyZc18X2VApTYjH0FovenBYZNKZVFMB7aJzU2uovKscKR46v/6zZeBAcAA5KGI8nKgmmKC55jUoF0+pGXTiMNHmYcOScEXkeruv6lRPAG7KmWdQZa9YgXFVV1s4i8Lzf5iGrqq9UGZ0yBeHA531//Xo0z5sHiQyi0weZIMtwDAMly0JzNIp9uVxZsE5Nj6nQgBR4GI+GomUhpij+bEBIkrC8sdEPQIMogjDAVPblvXvLZsBGArUYoNcJvS5ogEfNaG3DgGnb0ElbkjxIwKUInknoxn378OyuXeDIOe9WWDRQLMfZv6jqJwAw2aHXKU2aBVukg1XwpKahSlWxKeBXRqFV95AkoSkaHTCzo5JAirYI8oqCmlCoLODKdHUhT1peg+c8VfJc+eEP+8kJJRbDjtdfBwBc99vfItvWhiipOI92XuSYhgaIPI+cYSChqugrFjG9qgrNFZRbE6oKNTCDeySdBxd+5SuYed55kAfxkhN5Hg2LF+OEq67y/Z2CJIinXTFQ4aJt1JooomSaiJJAm+5/eyqFjlwOvCjCNAwYug5ZURCSJDSSOcCygCsQyFMknkcmYFPwzM6dsB0HPeS5LWpaWUsbregGg7AkmZvunzTiOA7TSPJUEgRfWEQkM7mAdw7Qe4NKAy7DQCaT8Y3CAa/C5VgWBNf15mlN0zPudhzAcTwJe3hCLh25HDpyOZTI/G+ut9dvK+zvGUc96lIdHYDrItHY6AeQtHIWDhh803lXkec9g2pFgUyqXqOtcFEqBVy6bfvHOpiKIWPiOOAKVyqVwtNPP40nnngCt99+Oy655BLMnj0ba9euxcknn4y1a9eidhBDRsbEsi+fR0xRUCB93dSMd0VTEzgA3YWCX02ZLGQMw18U5k0THWQRkCLZ+WAAIfH8gEVlcO4BAFricf/hVLKsAQsCmq0vkQdBUzTqVxHe7e72Ay0XwMnTpu33H6rwsBdIu9abJBPYVyqhI5fDnOpqpEkgSTPBUqA1bCKQBcFfJI8nieBijB8fo+bhcEiFq4bIJNeTDGtYkqCTwKZ6/nzf3NZx3TK5eI5UZqYlErCvv74sO0wXkfNOPx2pHTuQXLoUDpEndlwXiz7wAbzw+98D8AbHm2bPhkMyh3T4WiIZ4pJtgyPKUX3FIoqmiSe2b4fpON6cCg24DrAV8/iWFuzKZMo84CQyy9i/Tz8iy75tBl3E02BlND39VBnxzc5OaKQKHLzGZKIcZ9GWQsPwWgorBFx0AVgwTSQ1DalSCZtJ5toZZlFwsHyxDjY8x0Ek97qkpmFOdTXepPYEgQpXTFFQH4lUFEKiAjya6BkBK4KAr/zpT/tbmUnARWW+OVlGVFFQFbiWn/zlL3ESMZyOBczgl559NpLNzZh13HF4i1Sf1FgM2T17oITDiNfXQ9q1C42RCPYFhAJGClVgNImMds4wMD2RqDj7GVdVRAKtZRPRznyoaJwyBW0f+Yh/P+qPyPM445ZboBHVz/7XsCqKkEIhZLq60LNrF1pWr/bPHZW0sVeHQv49AfCeaSFJAk+qLqauQyWm2EkSrPzvz34GAIjX1yPXT9wEIAFXoEV4ZzqNvlIJGrmeJdJmH/wcfL8K16L6eizYtw9zAuddpc8vkk4CifgqAvtbCi9dtAh7SceLaVlIp9Nl4jL+/5NZ2w0keOQ4Dj+7+mpke3rwjw8/jPpw2FfAfb9QwMyVK7Hp2Wex6623UNXYiLcCNkWA59P41uOPl0ntx0hCYyWZpQyRgMt1XUiqClPXIQsCioWC1+0gSXCy2VFVuHTL8jsPBqtwcZyntMwCroPPAaeCwuEwzjzzTHz3u9/F+vXr0d3djTvuuAOhUAh33HEHpkyZgoVEOY5xcOkrFiELAuqJmlhwcUO9N2gwNlmgFS46Q5UiC7JQKORn2yl0cf1WZydygcAy2B/eGImgNhSCQgO4fgsW2j524bx5OHHqVF+OuDEaRcmy/NYAeoO3HWdI9T+adXXJwlQjEtkly/J640k/ve26ZQ+d8YYuZMY7IFIDgcxoZzYOlIZIBApRJvzcihV+AFGlaaibPh2rPvUpzL3oIk+inOcHnO9pokS1oLbWfxABZC6JLADkSATn33gjLEFAYzSK2nDYW/AG2mfyfX2Qw2HYtFWTvA8dOi+RQWzAswB4tb0dT+3YgayuY1FdHXjyb/IBVrhOb2vDp5YuLXuNw/7h8iBR4rUUrLRRMZXRBPoJVfWDq6Zo1K92aYGKlSDLsIlKnWkY4Im/EgD/d0KTKHRGIqYoqA6FwJNkyFAthcCRG3AB3ryqQRT+qKGz5TheSyG5zzRGImgmXlT9sQIVLooWi/lG60o4jFI+jwJpkZIjEWiiiKpABWD3W2/hNzfeCMAziPePTdN84Q0qzkH3S1sPqd9QVJZHXaWn52ScSIDHhhDiSagqYoGq3JFU4aLiMtwQAReV9q/kbaiQgOu5++8HAHCi6J87IUmCTcShEqrqV1Jc8gwyAdiGATtQ4Qr1u96qGhv98yeIRFrkaRCnSRJ6i0XodL410P4HwH+2B8/ViCzj6hUrhjQmF3keGkkoB0V5FtTWYlZ1NWZXV0MJeIoV8vmyChdNwFnkPvXn99/H6/v2AQD2bdmCQiqFvZs2geM41IXDCMsyzFIJWjSKWF0dUh0d+J8778R/f+97Zf6NAPBft97qV8BkTYML4NjmZv/8DJH7oeU4vmiGxPPQi0XImra/pXMUAVfJtsETYSR9kIAL8K6RYgUVScbEMm53pnA4jGQyiWQyiaqqKoiiiHfeeWe8ds8YBalSyeu3jkb9weIgdHHUX3aX8sa+fQMUhg4lNmmFpAIHtuuijwRckqYh2q+FTRY8KfWCaWJr4DP2b2H42MKFkAQBm3t68F5PT1k5nla4Vre04NLFi/3XZ1VXI0rMN2k7GrB/0TFYq55IZmdcBMQeRNGfn6HtQ1kyczRR9G/bGC+CARb1O5toVk+Zgi+tWoVVU6aUVXcc18X0ZBJLLrgACpGTp1XPVCDruvKTn/T82zStrGWrZFleS2FgroEucqmdwJqLLsJsIrBRyuWghEJ+lZMnn11UFNimiZJloWhZEHkePcUiRJ5H1jCwL59HUtNQTatCBzjDVYmaUAjnzpmDU6ZPL3u9v8cRDS7VwEJsJFRpmmdgTFp36D0lmD0X+lW4eGG/nw6tOnIkqy2QBYIkeP46kVAIdXPn+jL+/XFd1zd4PlJpjEaRJW1GCVWF47p4btcu5A3DX6xypO1YJIkom/gxAV57kcTz+MCMGZhR4TlAWwqpz5wcjUIWhAHCC4BXDQ5V8CujlVJZEPxAK9i2GybKoaMVLVFIizD124oryoC2Lf9ziCKSQbGHIyjgomIpHFAx4KKJITonV6mFWA4EGMV02t9m7bRpuHTRIsyqroYamBGk76uSlmDHssDJsmexIIqIT5vmb5doaPDPHwD43Te/if/9+c8hkWQBVUOWeB59xSIkssiXNa0suUTbkkfb3SFwHM78xjdw8rXX+uchAHx0wQI/CeWbclsW9EIBsqaht1jElt5e7CUt40aphJxhYHsq5bfxUp761a/K/m6USpA0DYmGBux68028+fe/AwBWXnCBv8215Ge2vPyy9/lo63PgOggafNOWQp7j/BkuQZJgW9aoZq2KpumvJyoFavS+z3Ocr/zMOHgc8J3JcRy8+OKLuOOOO3DWWWchkUhgzZo1uPvuu9HQ0IB///d/x1bmZH3QcVwXaVKaHgyR55E3DNz72msD/q1omvj1G2/ghy+8gJ0VMleHgqJl+W1wPMd5veAkkFLCYRzXT467YJpojsXQEIlAItUuBNpwKEsbG/22Qk2SynqlTdseMPMAAFOiUcyqri7LzgPejUzql6ELEhyCd1zX99gCvIfmzGQSM5NJ5E2zLHgYb06ZNm3E/lejQeR5rLz2Wiy94IJBs7HjDfXn6s+yxkbUkNep0Ao9DzYE5g3CjY0IyzLixOA6q+vYk8lg/Z49npkq+X0B3nUlE/+fPGlfOeWTn/T3RQMunuPKBqFtw/BmKS0LdeEw2rNZvLFvH/qIFwrHcQjBW9AKJPAYr+9mZXPzgPtAXFGgiqLvkUNNaems4migflsntrZCEgQ/Ww54i2Belv2AyyTGx/TzSYEWRjq0b5IqMZ3LO/f228s86/qKRWwggkD0ejuSK1zTEwm/akHNpKtUdUBLcJSodxq2jed27cIbJENvEqPgU6ZPR1LTBsy1KuEwjGIReTJXI0cikAUBVZqGCx98EFf//OdoIN5MDTNnDsjgA/uVEGVB8Ku+WqC9b01LC2488cRRf3aR/G7puRCSpCE7MuYHxheOpJZChTzzxlLhKqvGd3f72zRFo7hy2TLcsHo1ZiaT/mLcdl1okgRFUWCQihRPqluyIODU73zHD64TpMLlui463n8f7zz1FJ65/37wROyF3mdoJ4eay0FSVaikKh78HFRFdzSIPI94QwPmn3kmXKBiwtMPuAwDej4PORTCG/v2obtQQJG8n1kqYU1LCxbU1qK7UPBmEsn31t9f0SyVIKuqH3ABXrD1gc9+1t8m0dCA2tZWbHnpJe8F4mMWXFNQsSeLWCiYJOAyiEqhIElwiapgkO5CYdDkQ4kYH/PAkBWuqCzj3e7uSTfLP9k54IArkUhg9erV+NGPfoTq6mrceeed2Lx5M3bu3In//M//xCc+8Qm0traO57EyRkCBmAIPNaPDcRx6ikX0FIvYkUqVPci2p1Joz2aRMwy80M/c9VCR1XVseuIJ3HPuuejasgWO66KXLBLUcBhTAhlVwHv4NkWjaIxG4bountm5EyXbrrigpO0KQdllwPuOKrUyHDdlCk6eNs2XW5ZIZtmwbcSHqFDQrJNLBDfoQpE+MNdOm4YFtbVlanMTwdpp0/DVgHfJeCHyPKavXYtVn/qUr4B1qJhdXY2vkc9I5+powCXxPM64805c86tf+TNHi+rrsWrKFOxIp7Erk4FChs/7B1yK4EkUU4UnMbDYDwZcIsdhU3c3LJ73RSPypokwCeq7CwXkTRPHEnsAauBNDYwnkriqYlYyia5CAcD+VliVzPmMBoF8r9VkAD4oTa8IAkxBgFUqwXQcmKbpSYjTlsLAPFeImPhSo16B9/zO+i+w39i3D7bj4M3OTqzfsweyIFRMihwpNEQiZUGHRM5LoZ84D7VC6CuV0BCJ+PL6pm0jQT2VKsy10oVkqqMDSjgMnoisVKkq4Lqob2vDlPnzAXgy8pWgSogzk0lfuEIl913qyXSgnDdnDjTRM7gNSVLFyhvlhIDi7ngLAh1KaBAyWIWLdk7Q1tP+37csCFADz8dFl1xSsYo0lVQvqRdkRJY9SXpyLgmyDFXw7CZ4UfTbSxMNDbBNE2aphL2bNvn7swuFMvPjvGlCE0X07t6NZHMzhEC1G/B+ZxJphRsNwUSmi4GqjUC5SqFRLHrzUZxnmREl14BRLELgeYSJOEa1JPntj0a/bh+6j2PPO89/7awvfhGCGDCqFkW0LFrkmU3zPGySYAquKdQKAVcVsdKIRCJewo4kmykF08RdL7yAZwaxXCqapv+dWIMFXK6L2nAY3YUCdo3QwJkxPhzwnelf/uVf8M4772D37t349a9/jauuugptbW3jeWyMUWLYNvKGASsgw7t30yb82+WX495rr0XPrl0AvOwGx3EoWRZ+9uqr+Objj/szTKlSCVnD8Bdkh5qX9+7Fj19+GXs2bYJj29j87LOwXdczMOQ4yBXaVeKqii+vWYOlDQ1wyMNDG6Rlqq9Y9KXFX967d387ATGD7Y8kCJ4BcqDCRY1th6ocBR8MNjGoPKa+3pfDFUhFYmo8XianO1mgs4HdxSKaolFUT0AV7UCgc3UymeHSJAkN06dDqa315XEjsuwLyrjw/NMSJHguER8tmwh0NEQiEHnea9cKPDwFEiBQpcruQgH7dN1bjFiWH9hw8DKPAsf5lUxqSDrYYPx4c8r06X6Vm7bCfuwA5m05kHYuIvEcrPhKggCezrARpTM+GHAFgjOqMgnAV5QMqj1SZEHw5PZ5HtVEna+mQoXzSIEGXNSHi1bQ+6uMxkjVMlUqISRJvlqn6ThIkHOUthwG5zZoBj/V3u7L8CuC4Pn+kU6CpWedhXBVlW8I3n+Anz5rTp8xAxGyDzUa9VqnMbaAqzYchiqKmJ5I4LJjjsEFc+cOum3w+ziSWgqplcdwFS6TnCP9txEDraDLzz0XkaYmX+EyyMnTpmFmMol9+bxXdZckr82NBB0CMRanv8+Lb70VJ37844gSoaFcby96AglaI532E00AkC6VvPvizp2omjJlgKIvVRUcal6rEtTmwnIc8Bi6wmVblmdTQaqnmigiSo2hSWAZkiQcN2UKBNpmGwqhkE6XzanRClfTnDkD3uvKf/93nHrllQA8r0PA63QwSLt1sAU6GHBVt7QArovUzp2QHAdqKARRkuCYZtl9MKvr6C0W8W4FVVJgf0shR6qe/aFdFXTd0kl+v4yDwwHfmT772c9i9uzZ43ksjDHy7SefxP0bN/pGpgCw66230Ld3L/Zt2+b3Ggs8j0V1dTBsG92FAranUnhk0yb89JVX8A5R4NuXy6FUYaiyK59H+0EMCP5n82Z0FQrI9/YCADo2b4bjuijkcpBCoSHlrMOyDJBgpi4c9vvJg8iCgBlVVb7B8e5Mxs/ODtauRAe668NhyIIA3bJg9JOd7w/ttXdIhUsVRcxMJjE1HvcfqMsaGzG/rg7L+vk8TQY0In2fNwxMicVGnamcKOhcnSQIcElAJAtEgp8EXECgAuC6iMoyGiIRqKKI7akUXt67169wqWQw2yJ99xSjWIRB2jmoOA1Pzh+dmEwKPI80Gc4O9s/TCpdEZpommiUNDWiORtFDTDUFcsyjhSrfqaLoz3FRwReJ56GS66FQKEAvFCBpmr8Y1kmCgpokR2UZHOC3ckZkeUArjULep0rT0BiNYklDwyGtpE40DZGIJxZBvg+Nnlf9xHkk0gbYmc9DFUVvoUsqq7QqJJJZkRf37PF/jno87dm0CfG6Orik7bouHEaICPo0zZmDL//hD1BCIXQXCnh2166y+ygNuDRJ8syPAUSTSV+SfiwBV7DyOru6eshW67LF+2Fy7xkPpBFUuHiOQ8GyKiYfRJ5HiIhKRJLJsnte//eZEot5C3IA58+di3goBIMkYgVSRaW/z+qWFpx65ZWIEyugVEcH+vbsQZIo8JVSKZiOgwc2bsS/vfgi3uvtRUgQ0L55M+pmzhwQcE1PJHDJokVYO8quKLofa4jzjcrCG4YBi3iR0aqpbwwdSDBLgoCtr7wCXhQxY/ly7Hj9dfzL+ecD8FRTLdJSDnhJi9rAMTfMnIkTiapnnPhnmqUSDOKlFzRml8n3aTkOpsyfD0GSsOONN/yATpBlz3g6cB/MmybSpRLSFVoBXddFJpfDveefjz0vvVRx9ovOwgPwFasZB48j92l1lFE0TfQWi76BIX3o5Pv6EKmuRsPMmX6/MQB/cL5kWdidyeC9nh6kSiVUaZonGeo4FaXjf/rKK0jrOm477bSDkkkUOA57s1lYJMOU6ez0MrX5PESygBusfZJ6+wg874kTVHggXXPssfjR+vXoLhS84X1y86YzBJWQBU9yO6Gq+6W9HQfxYdSUOMCf4VJFEYvq6/0FJuAtYP+RCDFMNmiFi84SHC4EWz/7P35cohYJ7F+wcRzne67Rh7cminBIkBzsu9eC/fixGLb09mJRfT2qQyEv40r2rZMHqErmbPbl82WVAmpIerC+N5HnUR+JYC+RHB5KXXMoaIBEferowhvwFi0qWZSUdB0mHQQn5/rK5mZUaxqaYzH8ZuNGNEQivjT9vNpabOjo8Ftp3uvpQcm2oQiC72MzK5nER0i725GKRgQnaMVhWiLhzQ+ShE+QqKIgrigIk0rES3v3+oEwsH9hroqiL3RBWwp7d+/GnBNO8OZWBME3eO/v/9NdKKAmFEJnPu+3oJmkfV0TRYSo71E06j+DxhJwNUWjOLG1taxdcDAkQcC5d96JjnT6iKtw0cp3pTCS5zi/HXdqBVETPiDiUzt16pCJxLiqImcYqNY0JFQVmqbBIAtyMXBPDM4PJerrAY5DqqMD+VQKDTNnonfPHs+7raXFG1tIp2E5DtRUCmaphLpZswYITCmiOGAWe6RIZC1TaYYNADRyXhZ0HWapBDVguhyvqQEnCMiRhC6l4/33UT9jBiL9xGZ8X0aSTPryH/4w6HHFA760hm2jIRIpC5rpsyaj6xBlGdVTpqB7504YRKXQse0BFa4cka+vhOU4viri9meegbFu3YBtcobhXx8cxyHDZrgOKkfOneko553ubvQUiyiR9iV6UeV6exFJJhGuqkIxIH3Ocxx00h88q7oaGzo6sC2VwqbublRpGpoiEZQqlKSLloWOXM7v/XXJcOxEwXEcUqWS7+5ezGbhuC66enuhEDPIwR7qKvEHEjgOF86fj2MqGHNXh0K45ZRTfN8igZTi+5f/g8hk4be4vh5hWfa8L4apEgS9huyAgAdVXpzsaIHKz3h7fI0F2n5FrQLKCJw79HcQrNJEZNlbhNKqDanm0IArOMN1zLp1iJK2wJiieIuaQMCV0XVEFQUxRUFHLlcu0EIMSSdydq8/GlFbbM/lhlTXHAousECnohv0u5MFARGS4NBLJZjFIqSAMllCVbG8qQkNkQhuWL0aUWLIqogiPjxvHpY2NPgzR73FIlLE6oIKSFw4f/4RPb9F+eoJJ+DLJAlzw+rVWNLQ4KuwBhHIeaqKImLkPGyIRHz/KzpDqkkS8qaJd7u7y9TraqZO9WfwaBtbpfZBKvyyncz+Br0DqZ+cGg6PW4XrzJkzR1R9lXgedW1tCE+ffsQFXALP+1LflaAB72DttSL5HVSRmdHBvs+IJMEkgYsmilAVBQ7pcuFJIE+r8PReKkgSYrW16Nu7F6VcDpFkEpKqopjJ+O3YXfk8coYBhwRvWiIxoMI1FiSeh0GSpJUCLjrDFeJ52KYJhVTJQ5LkXTNVVcj29JT9TO+ePaieMsUPrChvP/mk9540kSHLZc+BIP0DrkrWCFWqioJl4eW9exFvbkbv7t3758wkyWtJD6yvcobhqb4OMp/V9f773vEpSkWVwlygwiXxvD/vyTg4HDl3pqOcTd3d2JfL+Yp+ZRWuqioomoZSLoff3nQTtr7yCgAveDJtG3XhMNa0tGBVczPm19aiLZn0A7L+iDyPVKmEHUS04pmdO/Htp56aEE8v13WRKpXQVlUFPZtFtKYGxUwGluOglM9DDYcHNRsG4PtzCaRaNVS7ViTgAK/TbPogCzqO43DtypU4d84c1IZC2NLX5wkwDKGYVhMKIalp2NrXB5O0FwD7/UcmO8GH3cEMHEYCRx7uXIVzNBj4UpUrWgVY09KCOjIzRNt0aXXh3Z4egOehRqP4yDe+AYdUDzRRRC0xCaUtdYau+1YNi+vrkTcM2I6Drh07cMspp6B982bvwX0QzwMqA029rw4kSF5cX++p05HvhLZSAsC8mhrU0XYdklkWiRBJJWrId0av5TBpMaRm0rFAQBaR5VHPekxWgp+Vnn+qKA5or6NVkKZo1K++05Zn+rMCOUff7OxEVtfBBUQolHjc+35JMFepwgV4Ah1tySTas1nsy+VgkRlZnuPQQCoUddOnwybtuwcr+UIVbB3XhXgEJLAoVDRjqKSczPNliaL+HH/xxVjzuc+hkYyADBZw0S4Fei9Xgt6KpMJFz43g8756yhQ885vfoHPbNqjRKLRYDIVMBia5vxQty2txJeITAkkIjFvAJQgwiO1GpbZTnufB8Tw0nodDuglUUcQNq1fjtBkzoCUSFQOuquZmSIEgyTIMPHLHHd53VcGAuz9aNIqaqVPROHu2N+NdQfSlMRpFdz7vfa/JJLp37oTrOJ4noyR5LYWBwKm3WETRNCt6aBm2ja5t2wAAhb6+ikFZnsx4ASTgYhWug8rkX+kxAMD3+aEVFLqwyXZ3I5xMQg6F0Lt7NzY99xye//3vAXgZy5xh+EOWEslW0yClv6yo67pIl0oomqbvZ/RaRwcyuj7Au2I8yOg60qUSNFFEKZdDVVMTbNNEsVCApeuQiLLbUBUu+rAaLgj46Pz5qNI07EinkSM+N0N5/NQT8YQpsZhn1kpmUQZDFgSsa2tDlaahaFn+vulCYbLDkTmTg2V6PBy0hYrCc9yAlkIOKFuQUv8wSRBwzuzZaIxEECXy/TSTD3hy6DMSCfQUCvjqI49gwSmn+AHZ7OpqRIlJaJhknHOFgn8tiTyP1S0tWN3Sgj3Ep7B98+aDX+GSJHQXCkhqGubW1BxQALOkoQG3nHIKBHK/oD49ANAci2EhmUXMptNwHcdrKRxkkUWDVDpkH5FluPDkpDUSQIg8jwvmzsXpM2b4pstHGyXLQliSBrQv0woWFTKp1jQc09CAYxoaAOyX3RZ5TwgmqWlwA/crNR7375ODVbgA4MTWViQ1DQ2RCDgi1kATU8tPOgln/eu/onnePL+z4GApBtLE1WCzTpMV/3MN8ZnoM2Sw4DYciWDm6af7FePBAq5Qv4BLDQbkpCU6GNj67x9U3otEEIrFUMxkML+2Frpt45j6esyvrfXV/gRVHdeAi45HDKWOywuCVy3SdXDE261K01AfDkOrqkImIEJh6jqy3d1INjWVVbj62tsBAKdedRVaRigy9Ll778VVd98NABXvsbWhEGRBQF04DD4U8o+jxPPYVyp5AVcg8b25pwe6baPQ77WOXA6GbaNnyxbv51OpARWudKmEjf/7v7j3/PO9KpogIKPrg0rMTzQ9hcJR19I45jP+tttuw7333jvg9XvvvRe33377WHfPGCFF00RUUfzsOb1Bp/btQ6KhwR+QBuD7qcyrqfEWmhVu5pUqXNTA1SJzSyYR3UgTZcPxprtQQME0IZomXMdBkrRENIgiIhznZ8qGmuGiweNwi9ljGhogkkXjznQaGpGqHg6B4zCjqgoxRRm2yregttZvR2siGbKEqh4xMsaqKB400+Ph6B9wAd4Dhy7IaPbebykMbH/unDloikaRUFVEFcWb/yLy1wDw5TVrBhiF+mptbW04qbUViigiThSwHNPEPCKjTN9TFgQIgcWBQHyWDha02qGKIj6+ePGYF6m0QhXMMFcTOeo8aQeWiaR5JWrDYYSJUAOwv52zYJr+LJIkCKiPRHDK9OmHjSjLwaZkWRUl0oOJDlUUUR0K4cPz5vnnbDDgogvTLQFTeDkW8xfadNEdrHDRWb+maBRfXLUKcVWF7TiwHMcPuDRRRIgIBTgHucJFK3gHywPwYEErXENV7egzbrAAhrZTWyRpNFTAJQmCb9kQrHD5ARd5r2Awvu6aa/z/16JRaNEoipkMkpqGZY2NiJMWPhpwiSTgGq9zg85w0Wp7JQRJglEqAa4LnlS4AK/DIVpfjxQJpgCgk1SJks3NCAfm4qjsfduKFSO+//CC4K+3Ks3Oxcn3qooilEgEINdcl2n6M5F6YG21N5tFWJZRMk1/vXHfhg2456WXYNg2ssSDzyDV52Awdd+GDdi6fj0A4D+vvx4Sz6NIbIRGwpPbt2Mj2f94cNcLL+DO558ft/1NBsb8hP/JT36CuRXkWhcsWIAf//jHY909Y4QULQuaKCKj67BdF4V0GsVsFsVMBlUNDWWZml6iVFUfiWDpIIp4dJYpSIH0E4uCgJxhYGc6jV3pNEqWNSGZirSue5UBUk1LkGONOw5gWRBkeYAnTRCV+MoMpWQYROA4VBHlNOqRNBynt7XhxKlTEVWUYSWq6bE0R6O+d9gXVq7ETSedNKL3OtyhA96HQ4Wr0sJLIa1YEgl6HcB/QNMKV7A1J6GqvrlvUJylmqhjBgNsKzBDMKOqCp9csgRVJKhui0ZR3888E/DmESlmqVTRH2eisBwHVaoKRRTHpVr0wdmz8YklS8quRTqsnqTBbUClsD9hImdOf2dUvbCvWIRCRDk0sjA5mkmS2ZP+2XLaNhuWZSiCgONbWsq+K1UU/ao8nXsNBlQi+TdNkjxBDVEsW1TTNusYuc/FFQUmDbgC1XoKneE6WEkEjsywHWkVLoUIOQ2VxKLVzcG+axpw+b+TwSphpPJDA9f+FS46p9u/wlU9ZQqmLVkCwKtwaaTC1R+jWPSCD7KPcatwkeRAeIixAUEU/ZZGXpJ8aXxFEJBobkbfnj3YuXEjAODnn/scAC/gWnDKKVh6zjkA9gdcVIlxpNCgp5KPnBZYn0iB9UMkHEY9CfZKZP3juC6KpgmFXLs0IW4Q+f3NPT0wi0XE6uqg53K+BY1/HABK5Jreu2mTLw1fqNCeWIlH33sP//X226P67ENRJHoDRxNjPuM7OjrQWGHRXltbi/ZA1oAxsVAn9ypNQ+eLL+Jfzj8fd33sYwC8QCVY4eqvyFMJ6l4fvLHS6pYmir5aTtGykDdN7Ar4VIyFF/fswSZSVqfDoiUi9lHT0uIfv6nrXsDFDy46UaVpmBKLoSYUGjTzFYSqGSqCgNXkvYajJhTChfPn42snnIC2ZHLIbWmLY00ohPm1tQDKDWAnO1TC+XCocAHl8tAly4JKgguaEeWxf4aLLlqCs2iSIODKZcv8hWMwMywJAnTbxo5UCi4xMw7+bH0kghipcBmDSPi+9Kc/+X+3SqWDGkxYjoOYoiBMFthjRRaEAec/VXEUyYIhqFLYH9qSShfvdeEwooqC3lIJITLfpgYUPY9W1rW14fMrV1ZcrIo8j5OnTcNHFyzAB/tZtsxMJvGPa9YgTmbh4qqKKlXFvE99CjNXrQLIYpqeg6ooIq3r/oKIVhBolj5KhvJdwA/YJZ73F5cHu8IFeIvng/2eEw2tOA531g8VwFC1Xv93MljSg8xp0f1Q/yo5FIJMvPL6z/d1FwrYm81ixvLlADxhjkh1Nba+8krZXFSqowO5vj7IoRAcYNi5tNFAz9mhEkeCKEIn6whOkiAHKlxVZPbw4dtuK/uZcFUVRFnG6Z/5DARJwkt//CNCiYSv7jlS6LWTqBBwqYMEXKKq+mIcBmn70y3L94O0SZcR4N3Ld6XTeGzzZjiWhUR9PYxCAVY/0+SWWAzFri7v+yCJRNO28c4gnl5BHNdFYRTVsJHsT7escdvfZGHMK6OWlhY8++yzA15/9tln0TTCKgFj7JQsy/Obsm289MMfAoAv6Vo3fbrvGRSuqkIpl4MzzInOc5zfMkIpEolSVRSRJ9Uux3WhiSJeGSa4dl0Xb+zbN2Tbneu6+P1bb+EBIl9v9Au46qZPBzgO6c5OWLruz70MtmAMSRK+sXYtrly6dEhBC8rFCxb45otDSbwP9l7DoQTaNY7Elii64DkcKlxAeaY7retIqCoW1dejNhRCkSQo6MOaZv6lfoPXU8lsixRYbAJegLE3m0V3oeD9KRbL5vhUUcSlS5cC8FT6Uh0dnlQyYePf/obuHTv8v5ulUkVD0onCIkac51Yw7xwvQqSqTit5Q81wAcBXjj8e1xx7LADv+63WNBRNE42RCD40ezam95NoPhoReR4Ngyz4qOjF4vr6AfcXjuNQGw5j1ZQpvll1bTiM6aeein/47ndhOU6Zca4qiugtFvE2WYzpllU21xqVZViOAw7wrxdaHXNcF+92dx/0ewENyA8nW4qxQhfkQyUaqGDKcPYowwmZREjA5Qfd5PpVAtVPWuGyHQfdhQLe6uzE9lQKJ3784/j6X/+K+hkzsPSsswB40uqUH15yCZ765S89uXOi0jtez0BauR3qGa+EQiiRpLBI2sQB7/udsmgRtHgcMZIEFRUFZ3z+8wDgedtFo1h02mlwHQfVI6hu5QwDHQFF6JJlQRGEimsKOhcnCUJZIMfLMqIkADN03Z9ntRwHCqlMFU0TLgmkuwsFtJMAl6oj6rlcuf2I48DO56HFYrBNEzxRO/y/mzcPO8eVNwzoxEZoPKD7YwHXKLnqqqtw3XXX4Re/+AV27NiBHTt24N5778X111+PT3/60+NxjIwRQCtc3Tt3Dvg3JRTyg5aGmTMB1/X/PhgCaZkKSpJSVUNVFD3VIcfxTXz7C2z0Z2NnJ36zceOgDumPbdmCDR0dSBGTQMALuDjsD7hCiQSi1dVI79sHU9e91oBhqgIiz2NWdfWQ21Dm1dbiimOOwZKGhgmRnKYPsyMx2AIAlSzYDpcKV3CRsrK5GadNn47PH3ss4qqKEhGZCbYU8hyHKJV0D+yDZiCDGVRZEGA7DmrDYeRNEyFRxIfmzCn77DHyAO3btw8/vOQS/PqrX/X/bevLLwOArxxmHeSWQpo4WUJEFSYC2lJIAy6JmPgOBjX3DVIXDmNhXR2WNzXhMySLzqgMXbgNRZwoUh7b1OQLwgDw1QYp1NA6R6qzhm37FRDA6x4wLAsu9lcYaJtj3jAQJb/rg3mvU47QgGs4JVt67xpJhWsoIZMwEaeh8uV0hksKhfzqJz2WrkIB7/X2IqYo/u9fINeub35MrvvgYp76aA4lMDVaaPvxYP5igGdVUCTKykHPQ0UQIIkiZp92GrLd3TB1HZauIxSPo7dYxLvd3diXz/siGTSY2dbXhw0dHWUJ5N2ZDLb09uLNzk7sSKX8YCej60gM4gOqiqKfrA0GXEo47NtqWKbpz83T67RkWUiVSrBIUlwWRewiaytquFzMZssS5oZtw9J1RMk8sVMswrBtpEolFIcJpDK6Dt2yULKsiurVoyUob380tRWO+az/yle+gt7eXlxzzTUwqA+HquKrX/0qbrzxxjEfIGN4XNdFybLAcxzy5KZyzvXXo/WYY2CRB+a8E0/E7rffxrwTT8SWl17Cn26/HRfefPMAnwkKFRYw+1W4HHiLTTrPRWdlhvPi2p3JYF8uV3E7w7bxP5s3I66qaM/lUEtbsfpVuNRIBPG6OmS6unzvopG0Co6GtmRy2NbAA4V6dR2pktbKCCSMDybBRcrK5masJAuBqKKgZJqoIgPLdFtVFDEzmRzw4KaiK8EMKlXllAXBl3xP9ruW6AOziyhHdbz3HlIdHUg0NKD9/fex7IMfxAdvuAG3nnoqXGIge7DQRNFfVE8UVKWRXr9CoIIyEnjSytnGKlsjgopdDAUVbFFEERfMm4e3u7p8P62gKqtMLA5y5Dw3bBtVquoHUMsaG/Hoe+8ho+v+Aj5OKgevdXRgajx+0Ns/j8QKF/W5GwoaCA0qmiGKZS2FQ4lrLGtsxBrSTk9nuARFgUa+W+r5tT2V8r2/Mrru7xuA7yFFEy16Pl/2PpbjVJRvP1CSmgaNzJ8NhhYOI7V7NwCv0k7vtXSmLVRdjb69e7Ht1Ve97WMx2K7rzTnZNmavXo0Fp5yCZeecA9d10VcqoUpV/eQCAGwhAahIRhPSuo6kpiFjGFg1ZUrF733QgCsSQYy2DBKBDJ3MPGnELy1VKvlBWFtVFV7evh0A/EpdIZdDwTT92THdsmDrOqLTpqFz61bo+TyyHIeYaSKj60N26RSJPL1u28gaxpiTgzR5bwoC8qZ5xK6J+jPmOxPHcbj99tvR1dWFF154Aa+//jp6e3vxjW98YzyOjzECaKVJ4Djk+/ogKgqWf+hDqG1t9TPoaiSCD/2f/+NnPzY//zye/93vBt0n9droX+Hi4fXql8jsFrB/3itIulTCT15+GT8jN7CMrqNvEDXDfbkc+kolvNPV5XsD6eQCd+Et2CRVhSCK0KJRlHI5r8JFzBgnEx9buBCfJAPGRxr0oX84VriCxBUFLuD7OoH8vyZJqK2QhaQVrv6VL1X0TGKLpumpEvZ7aGiKAo7nke7s9F/74SWXoJjJoHPbNjTPnQuO43DG5z+P47/61YOqUnjh/Pn42MKFE1qBoCpbJbLgEomNw0jhgREpjDI8Rhpw0es0FJjjoDN9FInnfWl+gMz8BWZQZiWTWNnUhHk1Nf5CLaYovmF8UzR60O8DR2LARQVMhoIG0IPdPyTeUyIeTjSD4zhcumgRpiUSAPZfv0KgiqUQOXX6ntVE1jz4/Oc4Dmok4gdchcB898Xf/jZsMoYwXkRlGSFJGrI9LRSNIk/uw0osVvZdKYKAlpUrocVieOD/+/+87WMxz/SeVAcjySQ+8o1vYPqyZV4QoyiIKkrZekYVRdSGwyiQZF6WJLtd1x2QjAv+DK3OBRURZUVBjFa4DMPzHg14rHIc5wVcJAgTeR5J8nsNkd+frutlx2fYthdwkQpXKZdDczSKkmUNa4BcIu9j2Lb/ucZCkVTtDNueEEuhw5VxuzNFIhEce+yxWLhwYZmcKGPiobNUAs8j39eHcCIx6EIqGpCn7iEZnyAd77+Puz/5Sbz60EP+RU6hpWQqOkC9uCoFXH945x3sTKfx0p492JfLobtQQMmy0E3myoL0EW+vxmgUSxoasC+fx2/ffBMF0qNczGb97I8cCkHP5/2Wwsm2GFtYV1fRcf5IgC74DpcK12ALkLiiIKlpZb4tLjHYrdSWInAcwpJUlgHkSbWS9tNX8nqTRRGCJCHb2elLAwNesgOui7YVKwAAx33kI4hPnXpQK1wRWcYCknyZKMJ0hotUuCSiKjpSqCDOZLvGDxUjCbjogpuqcUqC4Cl2um6ZihpPREzo78t0HMQC1wbHcbh21SrceOKJWE5mtYOKsNIwc0cTgTrO6neHC7IgoHEIoQZJ2G8+XglamR9ONKM/wQqXSu59HMfhrJkzIfE8Oolhb/+AC/Dk4UsVAq6ZK1d6Adc4Vrio+M9QAVc48P3JkUjZPUURRWg1Nb5fFuBViVwya9Z/v6bjQBYETEsk0F0owHVd7MlkwHMcqsk9L0YEf3qJMuJQCpJnzpyJj8yfD6lfQo/ailjE6ke3bdgBe5IsmYOySatokrwepgFXqeRXqAFv/WYZhr8GLGazmBqPw7BtvDGM3LtO7YDGSZGaCrBRhcWjhQNKM9xwww349re/jXA4jBtuuGHIbe+8884DOjDGyMkQ+fSwLCOfSvkXXCXUSAQf+Mxn8Lef/hT5vj68+PDDsC0Lqz/6UQDAr/7xH1FIpdD185/jY2ecUSYZStsLZUFAulQqC7ho0EcfspbjIK3r6C0WfXEB3bLwzM6dOGvmzLLKlG5ZcAC/ZSVrGHi7qwsKz+Pxr38dKs/7zu5KKIS+vXth6Tr4QOaNceihC7nDZcEzWPVT4HnUEd8n2pIaJe2pi0mPfhCxQlaY5zh/psUkHkX9t5F4HqIsI9vVhVA8jnXXXIM//NM/Yf0f/oBpS5b48wDB7Y8kwrIMQZLKWgpHU/WgMv0s4BqemlAIXfn8sEEOh/3nGRVJ0MmsbHBGUSAJBVEQ8F5PD3qLxYqiBMGqGFXTk4go0Hi3ew8HDfgOl/vPeHH9cccNGaD4Fa4hxDCA/UI5I/1+ZPKeobq6sucsTUwJpEpKRTQAL3GVN02opBMFgD/mMHXRIoiyDJsItIwXkZFUuEjwAgA8sYuhqKTlMtncDCUchl4oIFpTg0IuB0UQsDuTwfSqKv97s0il8Iy2NrzV2YmeYhGd+TzqwmFoZK6cmnDvSKXADZE04jgOJ7a2Im8YZckoIRhwmaY33kHmneicdG+xiDc7O5HVdTRFo77PWYhUymzLKgu4coUC4LqonjIFajSK3W+/jVmrVsF0HDy7axdOam2taF8CeBUujuPgAmX7PFCKpgkXXrHgaKpwHdBq9bXXXoNJFuKvvfbaoNuNpV3l7rvvxr/8y7+gvb0dCxYswF133YUTTzyx4rZ/+MMfcM8992DDhg3QdR0LFizAt771LZxxxhll2z300EO4+eabsWXLFrS1teE73/kOLrjgggM+xkON5Tj46SuvoCOXQ6qnBzueew6lXA4qCU4G4/hLLkFq3z68/Kc/YesrrwDwsuwcx6FAbo4AoJtmWfbBtG248B7YtMJFfU+osSK9sShE5apgmujI5dBbLKImHEZvsTigB5iKY9DzpWia2NrXh5Bpoo8oHdXPmAHAq3BRuVme+fIcVtCB6sOlpdANJACCUFPjU6ZN8481Isu45ZRTKu7nsytWDFikUBlzgbRkVfIckgQBgqKglM0ilEj47bztmzdj5Yc/POB9jiQ5a8BbmPGSBD2XgziMhUMlXOyfOWIMzQVz5+L4EVhZ0MWf67p+koEuVIMBVXMshh3ptB80STw/bBtYUOnz/LlzR630OlZoYuRIS1wM1xGRUFVfIbYSUVkGB+D93t6KCpaDkSdeWpGWljIFVUX0jMhRKvkt5FQm/v3eXnQVCgglEv5zmq4pLr/zTpi2jd5icVx/R9RfkXpbVqKdmBkD3nOhf4WLBoxfvP9+X8GZznBFFcVv2wPgj2/MqanBtEQCT2zfjmmJBGJkhpH+PmYlk+gtFtGRyw17D5MFoey5yXMcEiT4sUwTtuP4CW+O4yCTgIselywIAwIuxzDKgpk8ae1WQiG0rViB9198Ead88pNoq6pCZz6PrGFgYLrRI9jpNB7KglRzYLwCuMnCAa1WH3/8cQDwg66f/OQnmN3P92MsPPjgg7juuutw99134/jjj8dPfvITnHXWWXj77bcxderUAds/9dRTOP300/HP//zPSCQS+MUvfoEPfehDWL9+PZYSaebnn38eF198Mb797W/jggsuwMMPP4yLLroIzzzzDFatWjVux34webe7GzvTafQVi3jt17/GzieeQKKxEY2zZpVt57iuL8NJzXkj/QbRX3v0UbxPXMgpRjpddsEatg24LiSS1c8QuVKe4/ar5dCASxDQWyxCtyys37MHRdNETJZh2PYAo73+Codza2rwXk8Pdgek5vdt3eqJdsgyskSNJ9zcPK694IyxQRc7h0tL4azqahRM02/zoMyoqsItJ5884oVHpQc5NY+tC4cHlWUWOA5KOIx8dzeqp0zxH4QA/IothSYyjiQ0SYIkyyhlsxCIKelognG6MGIB1/AoooiWwPk1GLQC5ZDWpCpNw+5MBg7KK1ynz5iBxfX1uOuFF8DBM70fLrklBK6DaYlERd+hiYQGe0dahWs41rW1YVoiMahKH61kJlR1VG2eZ597Ln75zDOoX7267HcvCwLiqupbawiBCldfqYSWWAzdDQ1474kncMspp2DqokVQIxEIoog96TQSqood4+TbSbnuuOPKRF/6c8I55+Dtl14CMLBqrpLrAUDZPZoKVERlGd2FAhqjUV9MjAqVzKutxWsdHf4zYm5NDdpzOUyNx3HO7Nn4xWuvoatQGPYeRlvxE1OmwDYM8Bzn+zjSGS4qUgZ4v4PeYhEZXfcTJXqhAEGSfCE0h6gKUmjAJWsaZq5ciT/dcQcK6TTC0SisbHZI9UFaBXcxcL12IOQMw0+Ijsf+JgtjWq1KkoQ333xz3Aev77zzTlx55ZW46qqrAAB33XUX/vKXv+Cee+7Bbf3M6ei/B/nnf/5n/OlPf8J///d/+wHXXXfdhdNPP91XTrzxxhvx5JNP4q677sIDDzwwrsd/sBA4Dh25HPZkMnBJe1+qvR3TjjmmbLv1VJ2H51GtaeA4DmEScDXOno32zZvx39/7nr/9zFWr8P769Sj09JT3ANs2QB6qdNjRIiVuWuGi2EQ5sTESQV+xiJJloToUQgdRzglCK1yUhkgEDZEINvf04AXy2rrPfQ4v792LVOA9Eq2tI/LXYhwckpqGiCyP2Ll+orlw3jxcMHduxUX+WO9ZdFaEZv4rqTNyHAeNZCnrZszwrzmgXJGKyiYfaQtFnuMQSSbRuXUrwskkOGDUwThtU2WMDzQooWIYNaEQNnV3DzD2FngeTdEovrhqFZ7cvh0dudywczdBefJD0XlA27mOtvNFFgQsHGIekwZcwih/L2FNw8LzzkNHPl/2c63xOD62cCHueeklv+2XLppDkoSookCtq0OOVLh2btyIJDEXNm0bU+PxcVelG0yUgnLGRRdhZ3U1mhQFRZ4va3dVRdGv0AVxSMJH4Hm839uLgmliVnW1b4XDkZmtpKbhwvnzURcOozYUwoaODtSEQlhcX4/acBjbU6lhuxc4joMiijjvhz9EWJJgAqgiAZdNWwodB6/9/Of42xtv4GM//zkKRL2QJp2NQgFKKOQbJluG4cu9P7VjB9IBe47GWbMA10Xvnj1onjfPX68NRsmyvOcUx42LLPz2dBoymR8dqmLmuu4RZaMz5jvT5Zdfjv/4j/8Yj2MBABiGgVdeeQXr1q0re33dunV47rnnRrQPx3GQzWaRDMh7P//88wP2ecYZZwy5T13Xkclkyv4cTtCgZ1ljI4K5RCXQr+ySAdVljY1IqCpyhoFUqYQI+W4EScLJn/gE5p14Ik74h3/Asg9+EGd94Qve/vsFR9Tri753Zz6PZqJG1T/gyhkG6sNhyIKArX19yOg6IsQsc0CFi/i59McOeIWtvugiL0NOfvbUK68E3085jnFomRKLIT7KLOpEMpQi13ggkVYaOsdQ6cHAk+uldupUaNEopi9bBqBfwAWv8nAkVnKqyEJQkGW/EjhSaEvhkfTAPdQsrKvD6pYWf1YxoarIm+YAFU7KlFgMH5gxA+fMno1Fw4is0N/vaIQZxhONtJax86WcMPFbUwQBp7e1jfjn/HbBQOcK4AUHs6urPS9CIixBK0QuCQBUIk3uHwOpHBVJEvayxYvH4ZONHIHjEK6rQ/W0aQOEeNTA8QehYhQCCYZoQBJUWZQEz6BdEQQ0RaOQBAH/Z80anEZGIGpDoRErrXIA9ubzcEniwm8pJKIZpm1j62OPIb1vHxwixW8G7ET0YhFyKAReEMDxPBCY4Xr0vfegUwEPVfXXf7neXv96CVaaiqaJ7z37LF7csweApxNAZ7gqBUh7s9lhhTcoJcvC9r4+/34zmKXQ7kwG33riCfRUEFqbrIw5DWUYBn7+85/jsccew4oVKxAOLPaB0YtmdHd3w7Zt1PcbKK+vr0dHR8eI9vH9738f+XweF110kf9aR0fHqPd522234ZZbbhnF0R9cdCJUofA8dr31lv+6EpC2tl0XiiDg7Fmz8J+vv45X2tsh8TxaiLCGY1lYe8UVZfulw652QBgDAPKlEt745S/xdj6P6n/4B5QUBet/8APMPvlkVC9bVhZwZQ0DIs+jORZDV6FQlnmsVOGqBB22vf53v4Nh24jKsj/IO++kk9CO8jYYxqEloar4/LHHoq7fPeBIRSIeLTTgqoRJrh8qkDF/7Vpse/XVMjPQ4eSaJzNV5HOLZCE8mpbCixcswJsBSX3G2JHIs4ASliToljXAZy5IfSSCixYsGHbfXCCgPhRJF02SoAUWxgyPEFHz5QCsbW0d8c9RERRg4HypxHuWGhap9mR13b+PyYIApd9ayybPeNd1Mb2qyveuOlj0F7xQ+rVIVoIGmlQe3g28TqvBK5qa0JXPl3l3Bltpo4oy4rbotdOmYU82i4JpeibU/UQzigF1wN5t21A1e7YfFAKkwqVp2NzTA16SAMtCnrTuFUwTaVJxjCSTCMXj4AXBn7MDyue03urqwvo9e7Avn8exTU3oKxZ9depihQ6Wn7z8MoqWhTtOP33Yz/lmZyfaczm0VVWhr1gs83oNQquKPcViRdPoyciYA64333wTy0jWdvPmzWX/NpZMU/+fHWlp8YEHHsC3vvUt/OlPf0Jdv4zcaPd54403lqkwZjIZtIxgMPlgoRPlmK4dO1DKZj1loGy2rMKlWxYUYlBIszVVmgaNDoBWuHj8HuBSCX2BgGv9X/6Cd//7vwEAq84+Gxmex6ann8b7L7yAf3jwwbKAq2AY/s2XGs4CXtZ6ZyoFBGbxKl3AgCcnG66qQqy2FnuzWTTHYoh/+MOYsWgR4s3N6OrtZS2FhxmNwwi2HClctWwZ8oaB/9m82VPjGySQMElWkZpRSuRhHLzv2KSX/UiscNWSa7+QTnvqWqN4Jsyqrsas6uqJOjQGvCCFCr6MR7cAx3HgMfaW3QOhMRKBIopHjYnqSKEVx/7CDMNBZ/IqWTNQ8ZWp8The7+hAT7GIbjKr1BSNIhQIQM78whdQTVoKuUNU/aSqgUGRCUqlRJfjukjrOqpDIX8Gy3ZduK6LXZkM5pP7eUiScOH8+YO+b0JVUTXCWcaTWlvxyKZN6CoUPNsSUQQvil5LoePgxaee8rfNdnQgNmuWH+QCXsAlh0LYl8uBlyS4pMJVIibD7Xv2QJAkzzaI5xGuqvLbPoHygGt3JoNUqYSeYhFdhQL6SiXIZNat0C+h4bouMrqOEpkZU0URf9u6FbIg4KQKAX66VPIKBaIIcAMthSiGbfuzXkcKYw64qIDGeFFTUwNBEAZUnjo7OwdUqPrz4IMP4sorr8Tvf/97fOADHyj7t4aGhlHvU1GUw9pTjJ6otCI1deFCbH7+eb+HF/CqYLIgoJqUtsOyDEUQIJEhT6tCsMMLAiRVhavrZRWuzUTREAASrouunTsBeG2J/VsKi5ZVcXEVk2Vs6OjAJYsW+Q/lvGlW7LvPp1L+EKvlOIjKMmxVRWjxYliOA0kQmEoh45BAh6T/+O67Q1a4aEshbeFYcPLJ6Gtvx8JTT/W3oapXR5poBgCc8pGP4L/vvhtGPu99xiMwqJzM0M6DsCyPy/nHcxxwiFr6WuJxfHnNGhZwVUCTpFH/fulM3mAtotcfdxzCsow3OztREwphc08PpsbjqAuHwfE85q9diznHH4/FgaoHnfk62AikHY5WhIIzXBrx2jLIWgkAeotFNEYi+ODs2djc0wNFFJEn4xhTYjG0DKGIGOTEqVPRlc+PaPsombUrmaZ/fIIkwSYmwds3bYIUDkNRVWQ6OtBI1lx0nUVbCqOKAoEEXD3FIr77zDMwHQc7n3sOWizmtRsCiFZXI9vb679/cDZrZzqNsCxDtyz8dcsWbHrzTTz6T/+Es++8c4Bvlm7bKFmWV40qFNAci+FvW7dC4vmKAVcx8D5cv/ct269lIRuYQzsSGPOZv3PnzkEj0J1kQT4aZFnG8uXL8dhjj5W9/thjj2HNmjWD/twDDzyAT3ziE/jNb36Dc845Z8C/r169esA+//rXvw65z8Md2nOrE/WZJWedBQC+/LRh2zDJTSShqv6NRhIEgARlS88+u+K+lVAIjq4jQ3qFAc/ANEL2XS8IiBCpVUlR4LhuWaZCD8x7BdEkCVnDKNs2o+uQeB4d77+PB266CSYpnRfT6bKAK6lpUESxzPPrSFykMiYPSU3zRTMqcfUdd+CYyy/3jY9FWcbJV1xRlhShal9HYoUrkUjgjB/+EOd973vQJIm1AB9maERtLUnElMbKaOf0xhsWbFXmE0uW4GpitD5SaMA1WLtzlaZ5raiShKSmIaGqkAUBteEwXNfFR775zbJgCyBqrIfgPkfXIsG2R8qyxkY0RiK+oa9p23irsxNN0ShmVFX56yYXQEcuh8X19fiHEc6ghWUZlx1zTJmp+GBwHAdNFKHbtm80LUqS31KYTqchRyKoamhAZt8+2I4DwzCw49VXAXgVLklVPR8wWYZNZr9KloVcOo30pk2QNQ1be3vxbnc3ItXVfoXLdd2ywGZ3JoOEqsJ0HLzf24tnf/975Do7kd+3D4V+Mu45sp7LGgZ2ptO+KrY1SKtg0TSR7+7Gb2+6CbauDxpQ5Yis/WAdUJORMa9Wp0+fjq6urgGv9/T0YPr06Qe0zxtuuAE///nPce+99+Kdd97B9ddfj507d+Lqq68G4LX6XX755f72DzzwAC6//HJ8//vfx3HHHYeOjg50dHQgHZAe/dKXvoS//vWvuP322/Huu+/i9ttvx9/+9jdcd911B3SMhwM0M0D9F9pWrMBX//u/MXvNGriui/W7d2NTT48vYUp7l2Uye/LNxx/H8R/7WMV9y6EQrFIJJgnaAKBUKCBKAq5SNostRGa1mMmgaBhIk2qY47rQbbviIpQabWYDF21a1yEJAu677jpsfu459O3dCwDIBwIu07YRVRTEFQWm4/gB19GmSMU4vPiHxYuHnL9qnTULsz/4wYr/ZjkOtvX14e2uroptO0cCsiAg3NCASGsrqkMhJmhwmEErXI2DGJ6OltG2jTIODrOrq0fd7i3QgGuYxObXTzrJT4bKguC1wxEFuv4EjbcPJnQezSZ2CMF1Q00oBI3MMgLAjnQaIhECo22VsiAgVSrBcl0cN2XKhN3HNNIt5ItyBAKnTDoNORxGVVMT0u3tsF0X7/35z3jgq1/F//zgB+jetQtqIgFZEPxAzSHzWwWiUPiBz3wGaV2H5TiIJJN+wCXwvG8BpFsWsroOjag32o4Dl3w3ZjY7IECiAVfJsrC5pwepUglFyxp0NitrGHj397/HpueeQ8877ww6c5nWdZiOwypcQQabg8rlclAP0Ifj4osvxl133YVbb70VS5YswVNPPYVHH30UraQ82d7eXlY9+8lPfgLLsvD5z38ejY2N/p8vfelL/jZr1qzBb3/7W/ziF7/A4sWLcd999+HBBx+ctB5cwH5fLD2fBzjOy26QB2fRslAbDsNxXcRV1R9olonM8mDZB4oSCsEsFPxWQcd1UcrnESG9y8VsFnouh5qpU+HYNoo9Pf68F3VED1a4Xv/LX/Dan//sG21mSTbJcV3s3LIFbzz4oF+poz5bhXQaISLuYbkuIrKMhKrCCFS4WMDFOJSEJAnXrlw5aPZ4MMlh13Xx7M6d2JfPoy4cPmJFM0SeB+e60C0LdUfI4PORRJWmoUrThn0ejJRDXeFijB8CUV6t5DEYhOM4/MOiRb44hEaC+KDqne04SJdKcHGIWwoDku7B409qWtnxRhUFCtmOVvlqQiHwmNgqKu0AoBYMkqL4svA5UuFKNDYi3dHhrc1I9eeVRx5BprMTseZmKIIAUZY9dUMScFEPrlBVFRRRhCIIUKJRtL/3Hna9+SZEnkeO7It2ICmiCA7ebJdInmGlvr4BAVKOeLzWhkLY2NmJXmIDNNg9JaPrMEgAmNm5c/CAiyT8DxebmfHggAdgqJgEx3G4+eabEQoq49k21q9fjyVLlhzwgV1zzTW45pprKv7bfffdV/b3J554YkT7/MhHPoKPfOQjB3xMhxvUF0svFqEEssfvdnejt1jEtEQCWUlCnNwgBI7zys0ch9Iwg4hKKASrWPQDLsO2YRSLUCMRqJEIitksSvk8WhcvRvfOnch1dKCPVNoM2/bUEcmNVc/n8cfvfhcAsPiMM6BbFvpKJUyHdzE/cvPNyAbUyIIO9bTC5bouorIMDmAVLsZhRc0QgcRgVSvDthEhcs2NkQjMftLLRwoizwOcZ4x+sI1wGcMzLZFAYySCef1kvA8UDhiVMAPj8IUjz1cqqjIUU2IxqKIIlUjzSzyPV/buxdpp0wAAm3t70Z3PI66qh6yl0HXdMkn3IBFJQkcuh5ZYzDMEV1V/lELkeYDcv6iC4ERBAy16jLIs+zNc2XQaaiSCqsZG5Hp6oBeLMEiSe/qyZdj26quQYzEvqS7LMMk4SME0kaUWO3SGXxDAk/vxS3/6E5Zcc41f4crqOnTbRo0goGRZyOg6LCLNXurrg25Z/voLAPIksKvSNPQVi9ieSkEnQh39E++W46C7UIBN1or5zs5BA65UqQTDtv115ZHAAQdcr732GgBvIbxx40bIgZkEWZZxzDHH4Mtf/vLYj5AxKIZte07d+byvLAh4A5/NsZhvQkhvcNT4UBVFvNvdDcd1MTXgrB5ECYWgkwqXTeazqLGeFouhkE5DLxRQS26opVTK77U1bBuWbfs3jb72dn+/AjHd3J3JYFljIwqm6d80KNmeHk/KNJ32/TsAr1ogCQJc12UBF2NSIBE55v6ULMurPMPLmBZM84icR6QPW45dq4clPMfhllNOGbeqFKtwHVlwwIgUVCOyjIsXLEBtOAxVFJHUNOwhVQzAW8RTReFDcR8IysKHKgRMa6dNw7ukHc52HNREIphXUwMAOG3GDLzb3Y3NPT0DDMLHm3C/gEskAZftOMhnMohNn+4r3ub7+lDo60PT3Lm49LbbsP6hh9C0YgViioJoIoEsmacqWRZow7ArSVDIiMncs8/G+t/8Bg4Z/6ABF20RpO2h21IpOGSNVuzr89eDVLCsYJrg4bWKGraNvdksdNuG6ThI63qZKfXWvj5s6+vz92fm8xUDLsd1kTMM8ByHvQE/1snOAQdcVJ3wk5/8JH70ox8hepTIQR9O6JYFnuO8QCggBR+RZYQlCRFZhiZJvmElrXCpogiB58surP6o0SgyO3eWtRTSgCtC5ESNQgGRZBIcz8Mh/baAF3D94oILMGPVKlxy661I9/PSkXgeW/v6AMC/yClaLIaenTvx2I9/DMsw/AoXACiiiJAkwQVYwMWYFEhkdsByHOzOZLAjlcLs6mrwHOdVbDkOrYkEtqdSR2RlIHh9Hoktk0cC4xkg0bkfxpEBR2e4hrl2OY7DKWRm33FdL9Hbr7JBxwEORWJJIZL4XYWCX0UKsrypCa3vv4+3u7rguC7qw2F8eN48AMDZs2bhzJkz8cU//xnSEH5140FIksrmeWVZhkHa84q5HOoiEWhkrd21ezfan3oK05YuhSjLOP6SS/B+by8SqorahgZ0btjgmSM7DurJMXOyDJHM8huShIWnnop9778PkedRME3fs4uur6YnEmiORvEqqTIVens9sY5AwFW0LF8MxXQcvLJ3LySeR0+xiA0dHTg1oOXgy9STipmRy3k/3280qWianveqomBPJoM9mQye27UL586ZU+ahNtkY85n/i1/8Ahs2bMDHP/5xrFmzBnuIM/WvfvUrPPPMM2M+QMbg6LYNM5NB5/btCAVkRwWeR5WmYXpVFf7p1FN9ac4psRjaqqrAcxzCkgSVKP5VQotGoedy+1sKLQtmsQg1HEY4mUQv+T0r4TBkTYOt677yIP3v1vXr8eA3voFMIOB695lnoEkS9mazcF0XedP0vYoAoHbaNLz+17/i+d/9DgD8GS7Au2nWhEKQeR4lEmyygItxOEPPz92ZDDrzeUQVBe25HNK6jpiiIKGq+IdFi/CZ5csP8ZFODALHgcOhk4NmHFw+s3w5PnuEnstHI75K4SiuXZ7jcNr06WWBDTUPHm4ebKIIkTZH23EqthQCwPzaWnQVCihYlj9XS6FrDarKOFFQ4RE1KJphmsgaBkxdh6Jp0MhaL7xvHwBPLI1i2jaqNA1NjY0o9fXBdhwvQCIVJUFRwHMc6sJh6LaN6UuXov2995Davh2m4/giFRy8IJrjOCii6M/XF3p7/QoXhc5YSTwP07bxXm8v5tbUgMNAj9WCaYLjOJTI/oxczms97DfiQmfAGiMR7Eil8LNXX8UT27djWyo1Pl/0IWLMT8CHHnoIZ5xxBjRNw6uvvgqdiCFks1n88z//85gPkDE46UwG//f667H15ZfRSublbMcBB+CsmTNx+THHlC1yPnfssbhy2TIUTdO/Aem2jZ3pNOzAgKPrujBkGaVAwJXN5+HaNpRQCOGqKvTs3g3Aaz2UNQ12qeQPnWbJxQQA2zdsKKtwPXjzzdBEERkiB5opFOAELsqqxsayz2gqCt7v7YVLjPJixLmdBVyMyYBEzCJ3ptNojER86WTDtrGovh6fXb4ciij6vl5HGiJpIT5Uw/KMg8uUWOyoMT8/GqAthaMNklRR9K57spCWiDLgoXpma5IESRAQleVBWwIX1ddjZjKJvGFUNAEXed6zUZjAgJHOwKnBGS7DQF+xCEvXIauqX+FKkzXYUmIHBHjrv7iioLq+HkYmA4uoBVIla45U0BoiEeiWhYWnngolHMbeV15BzjCwN5tF0TTRf8JfLxQgKgryPT1+hYuSMww/QDNsG0XT9L+j/qbGRdP0hd7UaBR6Pj9gf8D+gCtMvMlc8gx9eseOSW2EPOYz/5/+6Z/w4x//GD/72c8gBU7kNWvW4FXiD8CYGN569lnomQyOPf98rDz/fLikfCwLAuojkUH7rjlyA5UEAXuzWfQUCmgnfbKu62L9nj3ICwJK2Sxsx4HlOOgjEvtaOIxIMoliJgMAUCMRv8JFVWl6SLsgAFi6jvfXr0cdKSs3z5sHTZKQI54NXYFtAU+ZEAAaZs0CAOwwTezL5bxMiyB4gSKRlhd5nslMMw5rJJ6H6TiYEouhPhJBUzTqJzemJRJoDVRwj0QE0lIJsICLwZhsjEQWvhJUnMsXniDrjSmxGKoDMz0Hi5AkISRJqNI0P5jpz8xkErWhEOrCYcyurh7w7yLPV2xHHO/jpGMfAFEptCz0koBL0TTIoRB4QUD3rl0Ax/kVLwAAxyEsy0hWVwOui2I267UVlkqQVBUuqVglNQ0uAF4Q0LJwITo3bULeNLEjlRqgCujYNsxSCdXNzSikUgMqXOlSyQ+wcoaBaioi1W87wGs/tHQdruOgqqEBejY7YH/A/oBLJGInpuMgaxh4raOjourvZGHMT8BNmzbhpJNOGvB6LBZDapKX/w53OrZtg1ZVhbO/9CVEkkk8t2sXNu7bB5GIYwwGNQyWeB49hQJmV1f7BsddhQLiioJEIgHHsmCSQMoPuCIRRKqq/H0lm5shaxosoigDAL3k9/7Rb30L4aoq7Nu6FfVtbTj2ggtglkoISxLyhoG3u7rQTQIuOoM2g7SjfOpHP8IVP/gBlGTS72tWRNE36tQHmT1jMA4nJNJGo4kirjn2WNSGQsiRucVKWdQjDVrhOlT+OwwG48ChIiijfdZSf7fuQgE7UikIHIeEqmJuTQ1qA/PmB4sQMV2vUtUhZ4BWt7Rgbk0N5ldQ7awPhzGnQiA2nmhkjROscDmmifZ0Go5lIUTUqLVYDN07dyIUi4EP/G44eN99jMy+5zMZCDwPo1TyEuMkIU+VdV3XRVVjI7JdXeDgSbbnDQOu46D9vfe8bidSHYvX18MyDBilku9ZBgA9xaJ/fpzY2ooF5LvjOK5sO8CrcJXIWjLR2AijUIBlWQO2CwZcHMehZFkIS1LFathkYsxPwMbGRrz//vsDXn/mmWcwY8aMse6eMQRdO3YgMWWK/3dNkvzKz3ABlyKKCMsyqkMhRGQZWV3Hi3v2oDOfR30kgnqi0FPKZmE5jh9EqaTCBQC8KCIUjw8IuPrItsnmZpx65ZUAANdxEE0mfcVCgedRNE109PYCAP7h9ttx89/+hlUXXoivP/YYJFXFtCVLwAF+VUshPh+SICAbqKgxGIcrIs9D4DjEFAXN0ShMx0FjNDrhswCHC9QEl7UUMhiTj+Ds0mgISRJkQcA73d3YS9QKlzU24rLFiyfiMIeFqgtGZBnL+40tBDmjrQ1fP+mkigJG169ejcuOOWYiD9OvotH3l2UZrmWhQEQmVFIdVMJhWLpeNuNOkQUBcfJ6LpOBwHHo2bkT8bo6OGQ0oyESgSIISOs6otXVvhVP1jDQXSzivT/+ET/9zGfw3gsvlAVcAJDPZpEho0O246CvWIRCzg+ezH0B3hqv0C+QSus6Nv/xjwCAaWQMRg+sHSkly4JNjKclQUDeMKBKUsVq2GRizE/Az372s/jSl76E9evXg+M47N27F/fffz++/OUvD+qjxRg7rusi09WFKFEgtB0HiiAgIsu+/PtQqKRSJAsCZlRVYWYyiYSqYk51NeZUV6OGZHL0XA6W46AnEHCFSYUrTC5qGnDRAChF2g2VUAjHrFuHtmOPxdKzz0bd9OkwSyW8+/TTngypaWI7GfxUw2HwguCpIgWOXeR5xBQFcTK7xZHq3Byi9MZgHM5QdSxqPn7FMcf45/LRVOFiAReDMfngSWVqtMp8jdEoZiaT4DnOv8/NTCYPmcIcx3H4xtq1+NbJJw85Y0iNjg8VtBuCtmLKigLHspAmIx8S8VSlNkBav8/iwgu4EmSNVshmwXMcdm7ciJZFi+C4LlRBwNR4HPNra7Enk0G0pgaFdBq8baO7UMDebBbp7dsBAJtfeAGZri4AXgId8KTcU0SEI2sYyBeLeOSrX8U7Tz9ddiwCxw0QzegtFLDt739HuKrKD+D0QqFiwLX7hRfw/osvQhVFdObzUAUBtuMMqIZNJsZ89n/lK19BOp3GKaecglKphJNOOgmKouDLX/4yrr322vE4RkYFHNdFMZ1G/fz5ADzFQkUUIZAyrDJERqomFEJXPu9nr9a0tGBbKoWwLOPGE0+EIgj4NxII9Q+4lFAIPFk4Ucl2WdM8mXhy0aRJyVgJhyFIEj5+xx0AvCBR1jTs27oVTQsWIF0qYW93t7ePQcxjJUFAlaZBIGpJAFClaYgqCqtwMQ57qDgNzRA3RqN+xvhoCLg00g7suC4LuBiMScZ5c+ce0M/xHIepxAxZJsJBh3oEYDLYbiRUFZokIUqeDYqiwDVNdJM1lUTMimnApQTWTa7remssQUCcrM0Uy0Kz6yLV0YGpCxfCdl3I5HeyoK4Or3V0+B1LdiaDXek0MrqOAgmyUu3t2PPuu+BFEa2kOmnkcugjAVdG19G1axc63nkHv/vGN/BNYhcFkC6mfsFRB1nvnf2lL0Emn8WoUOHKFYtY/4MfYD2Ab/z97xBI4N5TLE7qCte4pBu+853v4KabbsLbb78Nx3Ewf/58RCKR4X+QccCYjoNSNusPTJYsy5d5F4ki0GB8etkyWI6DH65fD4HjEFUUfO2EE5DVdX8RWEtaCs18vqylkFMUpMkJP+f446FbFixRhFUs+hLzfsDVL4jiOA5VjY0opNMQeR6d+TxyJHPTf1tKiPQznzdnDhrJOXXjCSegaFkDhjsZjMMNjbTWBOeXaEJkIv1cDheqNQ2aKKJoWcyHi8GYZKxoajrgn40oCqKy7K1LHIfNcI6A6VVVuHrFCn+tI8syHMvyAy5BllGyLD/gkgMCJI7rQiDJvGg0CnAcajgOPe+8AwCYumgRdjsOVHIfpkEdXUM6JJgpmiayRFm6lMth8/PPY8q8efsDs2IRfaTNULcs9O3aBcAbMQGAVEcH/ufOO3HsF7+IYsBH1XYcdJL9hquqIJKWer1YHGB+vH3LFv//OY5DcyzmtRlO8hmucavvhkIhrAj4ATAmlpJhQM/l/IslZxiIKQoKpjmsep8iilCwf5aLzkZVB4KeOtJSaAQCLo7n8XJXF0KShFX/8i84edkyvN7ZCUNRUMpkYDoOXNdFNpsFL0kQKsyoaPE4iqSv2HIcFEjARQc6t6dSaE0k9geMHId1bW1YGui7FngeEVk+KioEjMlNSJIGKFvRCtfR0BJbEwqhStMg6ro/z8VgMI58bMdBXFVRpapI6/ohr3BNFpoCbYKKosC1LDSTatCuYhE9XV3gaQUsIEBCZ55kQYAsipBCIZTyeWx67jlMXbQIkWQSdleX39YZVRS/6wgAbDIW0rtnD/RcDtUtLejasQNGoYDzvvpVqOS4nEIBWSL8ZNg2+nbu9F63LNimib/efTe2vPQSZm7diiIZeQGAvGkiS2b2w4kEHBI4WaXSgICrj8yUBRE4btLPcI1LwFUqlfDGG2+gs7MTTr82r3PPPXc83oLRjz6i7qeSgCtrGFg9ZQo29/SMOBChijaV5r1ioRAERYGZz6Nomkil0xBJK1+VqsKorwdHDIgTySR2E/lR23XRl0pBGqxiFYv5FS7bdVEqFCCpqidzWiigaFnY2teH2dXVfol8uHk0BuNwhcoRBxMgR5OdgSKKmFdTgy19fb46I4PBOPLRbdtvkbMcZ1K09B1u0BkuGlbxsozpVVV4kc54BdZZNvmOZUHwupw0DS//8Y9Id3bi5E98AgBgWJZv/ByVZUiCAIHswy4WYTkO9r7+Ojiex5zjj8dzv/2t9/9r1uCNnh7wkgSrUPBFMwzb9v3AACDT3Y0iEUkxs1kYtg3XdcFxHHKGgRzplAonEtCJEIil6wMCrhQJzAD4Py8Q4+qjOuD6f//v/+Hyyy9HN+nNDMJxHOxJ/OUczvSSDADNOriuiypNw1dPOGFU+6E91v0JSxLkSASlbBY5w0A2l4OoaYgrCpKa5i+eZEFArKoKZqEAyzRhOQ46ursHncnS4nH07tkDF0BfsQi7WPQzLEXTRFM06qsaWY4DSRAGdYZnMA53JGKWWRO4HpY2Nh5V84efWroUj773XkWpZQaDcWRyGvHeXFRXh4feeYe1FB4AqqLAMU1fKVDVNERlGfFoFB0AFLJ2cl3XC2qJqJjI8xAVBek9ewB4ghfpUgmaJKGZJOmTpN3bJck/GnB1vPEGpsybhxi5XycaGqDFYnCyWYihEKx83l//mY6D7O7dmL1mDTY/9xw63nsPBpnvKvb1wXIc2K4LkeOQ1XWkOzshyjKUcBgddJ03TMBlFIuedgDHwYUXyE9WxnwFXHvttfjoRz+K9vZ2OI5T9ocFWxMHnX2igQ0H+Au7mkGCnf7Mrq6GQpT/+hOSJMihEMxiERnDQD6bhUjUimKK4nsshCQJMaJWWMxkkCqVkMpkoFbw2nBdF9HqaqQ7OxGTZXTm84jAayd8p6sLvcUiwpLku5xTHwZW4WJMVjiOw6eXL8dHiLgNAHx43jxctGDBITyqg4skCDhv7tyjYmaNwWB4NEaj+PjixVhcX49rV65EPZvrHzWKosA2TZTyeQBAKBrF2bNmeTNa2N9SuKmnBxs6OsorXKQNEYBnbpzP45j6epw4dSoAL+AKSRJ0jgNP5vAtx0F6+3ZMWbgQKvl9RZJJWI6DsCxDDIVg5vMoWRZM24Zh2yj09GDqokWobmnBW48/jr3vvgvAC7hsx/Fn+7OGgdSuXahuaUHOsrCXSsuXSgPENdKkgwsAuknLIoUGZ73FIrYEArPJwJgDrs7OTtxwww2oJxKPjINDngRc9KJygVEHJufOmYN/PP74iv8WkiRIRO59VzqNAqlwyYKAdW1tALy5sagsI0YlSNNp5AwDpXx+QMC1ra8PL+7Zg6qpU1HMZMDlcljd0gKrVIJALvy+gGN50TSR1nUWcDEmPVPjcXYOMxiMoxKO41B3CMyOjwRUVYVtGChlsxBkGaqqoi2ZRF3Akke3LGR0HTWhEKbG497MLM/79jrnXH89Eg0NMB0HdeGwn2CXBAEt8TiyhgElFIJZKCBvmjAyGUSrq33J+UhVFYqmCU0UIUciMAsFmLaNomWhWCrBKhYRisVQ29qKt554wj/29N69cFwXJunmyOo6snv2oLa1FY7rojGRADgOpUJhgHx8OpVCmMQUv/7KV/D3e+/F3//jP8ABvljaj9avxy9ff32CvvmJYcwB10c+8hE8EfiSGQeHPMl4SIEsRv/h/OGg4hOVUEQRkqrC0XVs7euDXih4M1xErILDfmXEVjIYWSoUkDMMGIUC5H432N5iEc2xGGLTpgEA9pAsiEH2GyFqRjzHgQPw4p49eL+3lwVcDAaDwWAwjjri8Thc20a2txdKOAxJEBCSJLTNmwcpHIY6cyZeaW9HQlXRmkjg+JYWiDwPiedhkwoSbQ20HQdR4uNFObapCbptQw2HYRUK6E6lYOs6wokEZixfjmMvuAArP/xhf7xDCYdh5fMoWhY683n0kkqUFoshQoTWAE+FsOPdd2EFZq5yhoFiKoVobS1sx4EqSZDDYZiBmTBKLpuFEouhdfFilLJZPP2rX+HpX/8almkiH5gFtl0Xk4kxr2T/7d/+DR/96Efx9NNPY9GiRZD6Lfq/+MUvjvUtGBXwAy5Nw6t790IeRPziQFFF0fNJsCz0FArQCwUIgZZCRRSRNQzURyKoIRkTvVRCVtdhFgqIJhJoz2Z9k0GRKCFKNTWoaW3FpmefxdwTTkApm4UcCkEgTvBU0l4VRUikNM4CLgaDwWAwGEcTSWLP07t3L+RQCBJZDx3/gQ9gb2MjeopFLKurgwvgogULsLShAQAQlmXYpBIUJtUwjuMGrKWmxGJQBAGR2lqk2ttxvKriSRDZdlnG2WT93l0oQOA4KJEIjEwGBdPEr15/HVkyI6bFYr7q4Jlf+AJCsRj+8J3vQM/n/ZbCkmXBzOehRSL+vJkajcLM5ZDuF3AV83mIioK1V1yBX/6f/+O/ntmxA7lAO749yWahx7yS/c1vfoO//OUv0DQNTzzxRNk8EMdxLOCaIGjA9X4mg8ZYzHcoHy8UQYCsacj39sKwbZiFAtR4HCFJQlxVoYoi9mazSGoakqRKZpRKyOg6jHweJUHAjnQaSU3zDJmJyXJXPo+pCxeiffNmAEBfRwdqFy70hz3DxCiVBl+yILCAi8FgMBgMxlFFNaka9e3dCzkc9loFiZ0POA7VoRCiioLTpk/H8sZGf/0dlWU4JOAKBbyw+q8R68JhRGQZ2tSp2PPSS3DIqEqEjIlQqAKiFo+je+dOWI6DvlIJOVLhCsViiJNOp/knnYR9W7cC8LqeaEthzjBg5vNQo1HPgFkQoMZiMLNZpInQBqVYLEJSVcQCsvIAkNm+HanAts4kq3CNuaXw61//Om699Vak02ls374d27Zt8/9sJV86Y/zJ53IQFQWKJKE1kcCH583D1MCFNVYEnocaDsMoFqHbNvRCARJRtYkpChRBQME0Ua1pSJAqlk4DrmIRajiMhkgEL+7Zgye3bwcHT7GtM59HtL4efe3tcB0HfXv3IlxXB4HnIZHgSuB5JEmbYbifpDaDwWAwGAzGkU4tqXD17dkDKRyGIop+pYqDJ5a2srkZJ7a2lq2TQpIEm7TeUa9WYODYSUJV0RyLITp1KtL79qFv714AXoUrCPX4itbUINvdDQ7AjlQKeWLIrMViOP6SS/DpH/8Y0ZoaKES4zQhUuHpSKbiOAzUSgU0F0WIxGLkcMrpeVq0qFQoQVdVvh6QUu7uRItUwx3UxucKtcQi4DMPAxRdfDJ5Jfh5U8vk8JFWFyPM4o60NF8ybN+4qYCGiUqiKIkq5HJRw2K88xRQFEs8jrqqopk7lhoGMrsMqFKCEw6gLhzG3pgZxVYUiihBJIBWqq0Mpl0P7e+/BNk2EGhp8wz7aRlilaagj+2AwGAwGg8E4mqABl57PI9HSAoWIiimCABeDi6VxHAeHBFxKOOxXgvpXuDiOw1kzZyJMApvd77wDjuf9NkQKrXDF6+pgFApoJWbWO3fsgCBJCCcSEEQRTXPm+O8JlFe4eoiioEYqXFFZRigeh5HNwnQcXwyD/pykqpACM2fRmhrYpRLSpRJc15107YTAOARcV1xxBR588MHxOBbGKMjn8xBJwDVasYyREolEYOo6ltTXw87nIUej/sUdU1XIgoCILCMeDoMTBJikwmUWixBDITRHo4gpCqo1zWtRFARUh0LoJoHhC7//PURFQfW8eV6Fi7QQ0vbC61evxpXLlk3IZ2MwGAwGg8E4XEkEupamnXSS10oI+P8F4Adh/Vly6qkAvKAqo+uIyrI/Ux8krqqIEUXA3W+/jWh1NTiex5beXrxP/F5pgJQgLX5WKoXF9fXo2bULyeZmcP0KLn6FiygaAvsDLlrhCssywjTgsm3kAwGXXixCIh5jlGRzM2yiaGjY9qQTzADGYYbLtm3ccccd+Mtf/oLFixcPEM248847x/oWjArkczm/wjVRM06RSARWsQjHMGCbJpRYzJdtjysKZEFAlLT9iYoCvVRCXyYD13EgqipCkoQrlizBv7/4IhzXxdUrVuCH69cjTrI2m194Ac1z54JXFE+GXhD2m/bxPKtuMRgMBoPBOCqRAsFUpLHRX+spggCXBByDrf+u+sY30PDRjwLw5qeqNA0NFbzQEqqK6vp6cDyPve++i+a5c2GRipPjunBINSkky6gjgVk+lcL06dPh9PYi2dyMkmVh/e7dWNrY6I2ckLWbUSj4KoU93d0AAFNVsSuTwbHNzQhHIrBKJei27ZspA57ZMVXgvuqee5Dp7MTrf/kL9GLRr4bZjjPpxk3GvFLfuHEjli5dCgB48803y/5tsn0Zk4mZs2ahcfFiiDw/aIZjrMTjcRiFAvJkMFKORiGT95JJxSpCZOJFWYZRKkEvFADA99aaW1ODqfE4DMdBcyyGFU1N2NLVBcArk9dMnQrXdRGRZb+lkM5xMRgMBoPBYByNSIF1ECfLZRUuukZSBgm44qEQBBK0WI6DmKKAr7Amrw+HMaumBnIkAj2TQbSmBqZtQyMCZnnDwK5MBrOqq5Eks10lIq5RzGTQMHMmeotFxFUVGV1HTFEgk+qUVSyiZFmwHAddO3eCF0X0KQpmRqNoicUQiUZhFYswbLtMGt4oFgFZRkbX0Tx3LprnzsW7zzyDXHs7DFINc8hc2WRizAHX448/Ph7HwRgln73mGmxqa0PRNCeswlVTWwu4Lnp27wYAKIGAK6vrSKgqakIhaKTCZRsGCtksAEAk6oQA8MVVqyCSm8Mx9fV4WJahRqMoZbOomToVHMchLEmQeB4cvIyNyAIuBoPBYDAYRykiz+P8738f+Y4OOK4LNTDDRddIgyXcqbAG4AVc4UFGTziOw9REAlI4DD2TQaS6GqbjQOJ58ByHrGGgWtNg2DaqacBF1nl6oQA5FPIF1GhAxwsCJFWFWSigZFkoWRZ6du1CoqkJqiyjIRLBmTNn4sFoFFapBNdx/IDLdV0YxSIKHIe3u7qwqrkZHMdBCYdhFovQLQvpUskT8hiXb/ngwVa1k5yJbCmsIYOUXdu3AyivcEVkGTWhEOrCYe/iVxQ4hoFsKuVtGw772wazMTSYssjF1Th7th9k0fJ5UtNw+owZE/KZGAwGg8FgMA53JEFA/ezZmLl2LWzXhUqCJjrr7kvEV4CuC3XLwu5MZshZf00UIZM2QFrhkgQBAs9jXy6H6lAIH543D4lQCKKm+RUuo1iErGkoWRaiigLLceC6LrryeS9AIgFXwTSR2r0byZYWOK6LJQ0N0CQJUdLiaBaLvtx7yTDgWBYkRUENCeYAT4jDyOdhuy46crlJKZox5pX6rbfeOuS/f+Mb3xjrWzCGQBHFAe7h44UfcO3YAQCQIhE/iLpk0SJkdB0c8deSVRWOrqNr1y6A4xCpr/e3DUIDrnkf+AA2PvoommbPxqZMBtUkeFvd0oIL58+fkM/DYDAYDAaDMRmgvlu26wKuu1+lkCSxOQxe4aIB1vZUCiFJQj4wI9UfRRD89sMoqXCJPA/XdaHbNsKShKUNDXi/txdSKOQHXHqh4AtkyIIA07ZRtCzsTKfBKYrfUlgkAdfUdesAADGyZo0ThWvRsvDGvn04b84c9GUyAODbEOm2jTAANRz23td1sa23F8/edx8Wn3baGL7dg8+YA66HH3647O+maWLbtm0QRRFtbW0s4JpgNFFEaIJUCuuIIk3X9u2eRKeq+hc3nd0CvJK0EgpB13Xs27YNodpaiIpSsfJGA66TPvc5nHzppd5gZCYDTRTxxVWrJuRzMBgMBoPBYEwmBI6DwPMwLQsg6s1Av5bCISpcruvCcl3UhcOwhqgIqaIIkwRRWjKJLb29WFRfD8O2EZVlzKutBcdxfiWslMv5rX+iqoIniXfLcWDaNmrDYfCqCrNYRMGy0J1KodDTg5qWFgCeMTMAxEjApdg29mQyyJsmUsTbSyFjKbplAfAMnEu5HATXxc7OTrz2+9+jhcjQTxbG3FL42muvlf1588030d7ejtNOOw3XX3/9Ae/37rvvxvTp06GqKpYvX46nn3560G3b29tx6aWXYs6cOeB5Htddd92Abe677z5wHDfgT6mfw/VkY6Ik4QGgKh5HqKYGu99+G1osNmT5OhyLAcUi+jo7Ud3QABeoGAhSPy6H45BsbvZfr1QNYzAYDAaDwTga4Yg/qe044LBftVARRQgkyBmswqWQlsB0qYTaUMj3w6q4rSjCoIJnra2IyLInXsZxkAQBp0ybBoCMfoTDKGYyMEslwHVhiiKqVBWNkQhMx8Hr+/ZB4nlIoRDsYhE5Xcfejg4AQKy2FjzH+cl6GnBxhuGJYRgGUqTCpYRCkAUBGV2H47oIEW8wt1DAPjK6QpUMJwsTMsMVi8Vw66234uabbz6gn3/wwQdx3XXX4aabbsJrr72GE088EWeddRZ27txZcXtd11FbW4ubbroJxxxzzJDH1d7eXvZHnWS/sCAcJjZQUUQRzatXAwC0eHzIizsai8HK56G6LtRwGAIRwhiwT6JsSLMWLnELl1jAxWAwGAwGg+GjCAIcsk6iXUMyqXAJJCCrBO0mqiaK0csaG4d8j9Vf/jIuvPlmSKqKGVVV+Mzy5b4/Kk2e14RCCNfVoWfPHk9JEABkGXFVxYK6OuiW5dkE8TzUcBhWsYhtqRT2EmVqkQRRNOCiLYU2USrMGQYypNKmkJbCnGHgvZ4e7CCzXFYuhwIJDsUJGqeZKCZMNCOVSiFNSoOj5c4778SVV16Jq666CvPmzcNdd92FlpYW3HPPPRW3nzZtGn74wx/i8ssvRzxgFNcfjuPQ0NBQ9mcodF1HJpMp+3M4IfL8AOfw8UQRRUTJRSprGgSeH7TCFUskoOfzMIpFCIoCSRAqVrg4jkNDJIItfX2+xwMPVuFiMBgMBoPBCBJTFL86RQMukechBP5UglbB2pJJfOm443DuEO13iiiiqrUV8085BbploTWRwLREwpvPFwSESYDUHIuhdto07H33Xfz5Rz8CAHCqiqiioK2qClWahtpw2LP3CYdhl0royOXw8tatAABe08oCrobGRoDjUOju9gOuFFFAVDQNZ86ciWMaGrAvn0czWa9b2SyKJOBS+pkjH+6MebX+I/KlU1zXRXt7O371q1/hzDPPHPX+DMPAK6+8gq997Wtlr69btw7PPffcmI41l8uhtbUVtm1jyZIl+Pa3v+17iFXitttuwy233DKm95xIRJ6f0JbCkCT5DuQg2ZTBKlyJRAJGLgezWESkrq4sK9Ify3GQ1DRkdB0hSYJALmoGg8FgMBgMhkdcVWES8+DgXHxYknxT4UooxCu1WtOQHCYwCUsSJEGAYdswHQe1RAhD5HmEZdnvVkpqGppmzwYAvP3kk942kQhisoy6cBghSUJYkqCIIrRwGD1Uxr2nB4AXcEmBAC4aDkNLJpFqb0c9gKxhIEsCLjUUwtR4HMdNmYKX9uxBoroaAGBns8iRIDNMjnOyMOaA6wc/+EHZ33meR21tLa644grceOONo95fd3c3bNtGPV3oE+rr69FB+kAPhLlz5+K+++7DokWLkMlk8MMf/hDHH388Xn/9dcyaNaviz9x444244YYb/L9nMhm0kKG/w4GJlIQHvIuwftYs1LW14YRPf9rPdlQikUjAzOdhlErgh6hwAcDFCxdia18fLMeB7ThDlsUZDAaDwWAwjkbiigKDyLQH13sfnD0bW8ksUyUUUfTMi0fgaVoTCiFMlAw5wK9AfWLJkrLZMZHnMXf5cjwS+Fmtvh5xVYUmSYgTsbQL58/H0/E4thYKMB0HWdLtxqtq2bq1JhRCpL4ePXv2oB7wWgoDAZcqikhqGlQSwEnhMPTeXmSJ31foaAu4tm3bNh7HMQCun4O067oDXhsNxx13HI477jj/78cffzyWLVuGf/3Xfx1QpaMoigLlMO4RneiAKyLLiMbjuOhHP4JN2v8GdTWvqoLrOMj39UFQlCGPbWo8DolIiNpE3pQFXAwGg8FgMBj7CcsyTMeBJkllHUbHT52K46dOHfTnFBKgCSNYNydUFQlVRS+Zy6LJ8tmkqhSkNhrFRfffjz995jPQ83kg0CL4yaVLkdQ01IXDiMfjMAoFr1Uwm4WsaXA4Dqoo+gbJ9eEwEg0N6Nu7F4AXcKVpwEUCrags+2JroepqpPftQ1NTk/cZj7aWwvGmpqYGgiAMqGZ1dnYOqHqNBZ7nceyxx+K9994bt30eTCzHGZDxGG/CsgyZlJldeHNWgwVGSeJAXkinwcsypIBsaX+oSk1nPo/XOzowq7oaVZNYvITBYDAYDAZjvAlLElzXHXWCXRFFaCP0aeU4Di3xOHZnMmXiHJWoCYXgiCK+eP/9MIpF7CZy8QAwt6bG3y4ei8EqFKBbFvKZDNRIBJbj+MEZ4M2nxWprsff118FzHFKlEnrTafCSBJm0JkYVxZfBD9XUILVvH1rJTJs8ydaNB7RaD7bZDcedd945qn3Lsozly5fjsccewwUXXOC//thjj+G8884b1b6GwnVdbNiwAYsWLRq3fR5MqELNdCKVOVHvEVMUdORy4DgOVcRvoRI04AIAXlEQkaQhK5JRWcZ7vb2oC4exuL7e7+llMBgMBoPBYMALOEQREVlG1SgqOjzH4eKFC0e8RmyORmEQ+fmhtAGisuzZ/sTjUGMxoKsLNRVa+xLxOFzXhea6KGSzUKNR2K5bpl4t8Dzi9fUo9PVBBNBTKCCVyfhdUoogIEoS/xLPI1JXh9SmTZ4kPQDpMO5Aq8QBBVyvvfbaiLY70BbAG264AZdddhlWrFiB1atX46c//Sl27tyJq6++GoA3W7Vnzx788pe/9H9mw4YNADxhjK6uLmzYsAGyLGP+/PkAgFtuuQXHHXccZs2ahUwmgx/96EfYsGED/v3f//2AjvFQE5Fl3LB6te/YPVHEVRW7MhmvKjXEe1UHSs+8LA8bQMVVFT2FAubV1OCKIaT8GQwGg8FgMI5GkpqGsCRhfm1tWXVoJCysqxvxttWhEEzbRkiShlS/Dla/8oaBsCShKRodsB2VfJ8ZDmO748CpUOECgGR9PVzHgZvJYG80iu50GryiIESS9lWahhNbW+G6LqK1tdjx1FMwdR28JIGfZKMoBxRwPf744+N9HGVcfPHF6Onpwa233or29nYsXLgQjz76KFpbWwF4Rsf9PbmCaoOvvPIKfvOb36C1tRXbt28H4MnUf+Yzn0FHRwfi8TiWLl2Kp556CitXrpzQzzKRxA9COTVOJEkFjvPdwStRk0z6/88rSkUPriCL6+vxxPbtiJFhSwaDwWAwGAzGfhKqirpwGIkJXu9FZBkizw+rfq2IImgpxbBtKKJY8dioRZNRKEDP5/e3FPZL3NcQuXcuk0FPVRW6UykIqooQWW/yHIdPLFmC7kIB/1lXB6NQQLa7e9J5cAHjNMOVSqXwH//xH3jnnXfAcRzmz5+PT33qU0N6Yg3HNddcg2uuuabiv913330DXnNdd8j9/eAHPxigqMgYnoSqwnYcOBw3ZDUtGHCFm5qGzcTMSiY9N/NJlqFgMBgMBoPBOBgkNQ0ntbbiJFJwmChCkgSJ+m4NEXCpogi62rYcZ9DZMlrh0vN5lHI5JBob4bguIv32Xdfc7G3X0wOuuRk68XLtX2XTRBEJouPQsWUL5EjkQD/qIWPMxscvv/wy2tra8IMf/AC9vb3o7u7GnXfeiba2Nrz66qvjcYyMQ0hYlsHBC2iHCqLCgQxHrLV12EHNKk1DRJZHJFnKYDAYDAaDcbTBcxzOmzt3VPNbB4ImipAEwQtshqimUaVE13V98bZKAmlVZHZMLxRQyuXAkzXfgn5tjol4HFIohExXFwDAoAFXv8BMFUXEyc+2b97szY9NMsZc4br++utx7rnn4mc/+xlEEpFaloWrrroK1113HZ566qkxHyTj0BGSJLiAN0g5RF+vIgg47rOfxewlS5DnuGHL3yq5qBsnYZaCwWAwGAwG40iBVrhUEngNBpV1d0jAFR5EIK2WdD3lUymUcjlYsoz5tbWYFeiGArx1Zai2Fn3t7Yhjf8DVv/tJ4HnUNTSAF0Xk+/qQmDFjUBG3w5UxB1wvv/xyWbAFAKIo4itf+QpWrFgx1t0zDjF14TB4joNuWUO2FMqCgHlnnYWYoiCfyQzrbA4A1xx77IT3JTMYDAaDwWAwBickSdAkyffgGgzqiWU5jh9wVaKxthZKLIZ927cjn0pBCIdRFw4PCM40UUS0qQndO3eixXG8gCsUqngcVaEQQskkcp2dkGOxCbVFmgjG3M8Vi8UGCFgAwK5duxCtoFzCmFxMicUQUxRIgjCkSIcsCBA4DgXThCIIIwqkmqLRYS9uBoPBYDAYDMbEEZZlHNvUhE8sWTLkdhoJuEzHgT3EqElElpFoacGmZ56BbZqIt7RU3FYNBFyW68IslSCoKpQKwVRS0xAibYVyNHr0BVwXX3wxrrzySjz44IPYtWsXdu/ejd/+9re46qqrcMkll4zHMTIOIVWqiqgsQxXFIStciihC4HmULAvSMEOXDAaDwWAwGIzDA57j8MmlS9HWr+WvP3FVhSqK6CsWsS+fH9QCKCLLqGppQTdRCo9Pn+7PfwWRBQGhujrk+/pglkowikWIigKp0lyYqkIjFkSRpqZJJ7o25vDwe9/7HjiOw+WXXw7LsgAAkiThc5/7HL773e+O+QAZhxaO41AdCsF2XdRWMLej0AqXblmIKsqkyzwwGAwGg8FgMAYnIsvQRBEbOzsRkiTEB0nER2QZNURZMV5fDzkcrrgubInHESZBXtyyUMxkUB+NQq4QTEVkGa1r12LHk0+i6dhjK1bBDmcO+Gg3bNiAJUuWQJZl/PCHP8Rtt92GLVu2wHVdzJw5E6EhFueMycVlixejYJpDKg/yHAdFFKHbNhIcxwIuBoPBYDAYjCMInuMQV1VMJbZPg7UUSoKA+unTAQDVLS3ggIrrwumJBJK1tQCAULEII5tFpLq6YsBVHQqhdsEC3Pz3v+Ptrq4hxT0ORw54Vbxs2TIsXboUV111FS699FLE43EsWrRoPI+NcZjQSuQ9hyMkSdAtCyLPT7rMA4PBYDAYDAZjaC5asADvdnfj2Z07MZQD7uxly7D66quxZOVK7HPdiuvCqKIgQQKufVu2AK4LNZGoGExNjccRkWVkdR0cULHt8HDmgI/22WefxbJly/C1r30NjY2N+PjHP47HH398PI+NMclQSYVLk6RJJ9fJYDAYDAaDwRiahXV1WNfWhqiiYEZV1aDbRVQVM9etQ820aeAG6XySBQHV1dWQNA1bX3kFAKDE4xUrXDWhEDRRRImOL02yCtcBB1yrV6/Gz372M3R0dOCee+7B7t278YEPfABtbW34zne+g927d4/ncTImATFF8ZzEhzBIZjAYDAaDwWBMXmKKgptPOglza2oG3SYkSb58vEg8vipREw6jecUKbHr2WQCAkkhUDLhkQUBElmHYNoCjqMJF0TQNV1xxBZ544gls3rwZl1xyCX7yk59g+vTpOPvss8fjGBmTBOqEPpR8PIPBYDAYDAZjcjNchSksSbAdB/YwAVdS0xBpavL/rsViFQMuAEiGQvsDrqOlwlWJtrY2fO1rX8NNN92EWCyGv/zlL+O5e8ZhTpSo17SSYUoGg8FgMBgMxtFHWJZhu+6wFa6EqkIivr28IEBR1YoS8gBQrWkwbBsuJl+Fa9yUDZ588knce++9eOihhyAIAi666CJceeWV47V7xiRAFUUkNQ314fChPhQGg8FgMBgMxiGCBljDBVwhSYJCxNlc14XI84NXuDQNpuNAmIRq2GM62l27duG+++7Dfffdh23btmHNmjX413/9V1x00UUIs0X3UYdp22iKRjFniJ5eBoPBYDAYDMaRDa1SDRdwhSUJKumMch0HwhABV0JVoVsWkprmj7FMFg444Dr99NPx+OOPo7a2Fpdffjk+9alPYc6cOeN5bIxJxinTp2N6VRVqmAcbg8FgMBgMxlEL9W61HAeyIAzaJhiWZSiBURSB44YMuFRRhCqKqJpkegEHHHBpmoaHHnoIH/zgByFMssE1xsQQkWUsrKs71IfBYDAYDAaDwTiExBUFHIASqUhxg9gFxRQFVY2N/t+Hq3CpooiQJCFGArrJwgEHXI888sh4HgeDwWAwGAwGg8E4AqDBUW+phOOmTBl0u5nJJKYlEjj79tsRUpQhK1x14TDCsoyQJA0awB2uTK6JMwaDwWAwGAwGg3FYUxMKIRkKoSOXQxNRIayEyPNoiESwo60NYUmCLAiDBlxRWUaVqkKZZIIZAAu4GAwGg8FgMBgMxjgSlmUc39KCTKmEqcPYBVUTfy1ZEBBX1UGrVxzH4RNLlkw6wQyABVwMBoPBYDAYDAZjnDl1+nRYjoMFw8z3x8k8lmnbw85mzautHbfjO5iwgIvBYDAYDAaDwWCMKzWhEC5dtGjY7WiQVbLtSac+OFIml00zg8FgMBgMBoPBOGJYVF+PpKahr1icdOqDI4UFXAwGg8FgMBgMBuOQkNQ0JFQVEs8jLMuH+nAmBBZwMRgMBoPBYDAYjENGQyQCWRAQkqRDfSgTAgu4GAwGg8FgMBgMxiGjLhyGLAgIs4CLwWAwGAwGg8FgMMaXiCwjpiispfBgc/fdd2P69OlQVRXLly/H008/Pei27e3tuPTSSzFnzhzwPI/rrruu4nYPPfQQ5s+fD0VRMH/+fDz88MMTdPQMBoPBYDAYDAZjJMQUBUlNAz+IB9dk57AMuB588EFcd911uOmmm/Daa6/hxBNPxFlnnYWdO3dW3F7XddTW1uKmm27CMcccU3Gb559/HhdffDEuu+wyvP7667jssstw0UUXYf369RP5URgMBoPBYDAYDMYQLGloQF04jOZo9FAfyoTAua7rHuqD6M+qVauwbNky3HPPPf5r8+bNw/nnn4/bbrttyJ89+eSTsWTJEtx1111lr1988cXIZDL485//7L925plnoqqqCg888MCIjiuTySAejyOdTiMWi438AzEYDAaDwWAwGIwjipHGBoddhcswDLzyyitYt25d2evr1q3Dc889d8D7ff755wfs84wzzhhyn7quI5PJlP1hMBgMBoPBYDAYjJFy2AVc3d3dsG0b9fX1Za/X19ejo6PjgPfb0dEx6n3edtttiMfj/p+WlpYDfn8Gg8FgMBgMBoNx9HHYBVwUrt/QnOu6A16b6H3eeOONSKfT/p9du3aN6f0ZDAaDwWAwGAzG0YV4qA+gPzU1NRAEYUDlqbOzc0CFajQ0NDSMep+KokBRlAN+TwaDwWAwGAwGg3F0c9hVuGRZxvLly/HYY4+Vvf7YY49hzZo1B7zf1atXD9jnX//61zHtk8FgMBgMBoPBYDCG4rCrcAHADTfcgMsuuwwrVqzA6tWr8dOf/hQ7d+7E1VdfDcBr9duzZw9++ctf+j+zYcMGAEAul0NXVxc2bNgAWZYxf/58AMCXvvQlnHTSSbj99ttx3nnn4U9/+hP+9re/4Zlnnjnon4/BYDAYDAaDwWAcHRyWAdfFF1+Mnp4e3HrrrWhvb8fChQvx6KOPorW1FYBndNzfk2vp0qX+/7/yyiv4zW9+g9bWVmzfvh0AsGbNGvz2t7/F17/+ddx8881oa2vDgw8+iFWrVh20z8VgMBgMBoPBYDCOLg5LH67DFebDxWAwGAwGg8FgMIBJ7MPFYDAYDAaDwWAwGEcKLOBiMBgMBoPBYDAYjAmCBVwMBoPBYDAYDAaDMUEclqIZhyt03C2TyRziI2EwGAwGg8FgMBiHEhoTDCeJwQKuUZDNZgEALS0th/hIGAwGg8FgMBgMxuFANptFPB4f9N+ZSuEocBwHe/fuRTQaBcdxh/pwJi2ZTAYtLS3YtWsXU3tkHFLYucgYC+z8YUxG2HnLOFDYuTMQ13WRzWbR1NQEnh98UotVuEYBz/OYMmXKoT6MI4ZYLMYuWMZhATsXGWOBnT+MyQg7bxkHCjt3yhmqskVhohkMBoPBYDAYDAaDMUGwgIvBYDAYDAaDwWAwJggWcDEOOoqi4Jvf/CYURTnUh8I4ymHnImMssPOHMRlh5y3jQGHnzoHDRDMYDAaDwWAwGAwGY4JgFS4Gg8FgMBgMBoPBmCBYwMVgMBgMBoPBYDAYEwQLuBgMBoPBYDAYDAZjgmABF4PBYDAYDAaDwWBMECzgOkK57bbbcOyxxyIajaKurg7nn38+Nm3aVLaN67r41re+haamJmiahpNPPhlvvfWW/++9vb34whe+gDlz5iAUCmHq1Kn44he/iHQ6Xbafvr4+XHbZZYjH44jH47jsssuQSqWGPcaNGzdi7dq10DQNzc3NuPXWWzGYhsuzzz4LURSxZMmSYff71FNP4UMf+hCamprAcRz++Mc/DtjmE5/4BDiOK/tz3HHHDbtvxoFxJJyPTzzxxIBzhuM4vPvuu8Pu++6778b06dOhqiqWL1+Op59+uuzf//CHP+CMM85ATU0NOI7Dhg0bht3n0cLRfO6we9nk5Ug4bwFA13XcdNNNaG1thaIoaGtrw7333jvsvtk9b2wczefPEXvfcxlHJGeccYb7i1/8wn3zzTfdDRs2uOecc447depUN5fL+dt897vfdaPRqPvQQw+5GzdudC+++GK3sbHRzWQyruu67saNG90Pf/jD7iOPPOK+//777v/+7/+6s2bNci+88MKy9zrzzDPdhQsXus8995z73HPPuQsXLnQ/+MEPDnl86XTara+vdz/2sY+5GzdudB966CE3Go263/ve9wZsm0ql3BkzZrjr1q1zjznmmGE/+6OPPuredNNN7kMPPeQCcB9++OEB21xxxRXumWee6ba3t/t/enp6ht0348A4Es7Hxx9/3AXgbtq0qey8sSxryH3/9re/dSVJcn/2s5+5b7/9tvulL33JDYfD7o4dO/xtfvnLX7q33HKL+7Of/cwF4L722msj/WqPeI7mc4fdyyYvR8J567que+6557qrVq1yH3vsMXfbtm3u+vXr3WeffXbIfbN73tg5ms+fI/W+xwKuo4TOzk4XgPvkk0+6ruu6juO4DQ0N7ne/+11/m1Kp5MbjcffHP/7xoPv53e9+58qy7Jqm6bqu67799tsuAPeFF17wt3n++eddAO6777476H7uvvtuNx6Pu6VSyX/ttttuc5uamlzHccq2vfjii92vf/3r7je/+c0RBVxBhrpYzzvvvFHtizF+TMbzkS6a+/r6RvVZV65c6V599dVlr82dO9f92te+NmDbbdu2scXHMBxN504Qdi+b3EzG8/bPf/6zG4/HR72QZfe88edoOn+CHEn3PdZSeJRAS8jJZBIAsG3bNnR0dGDdunX+NoqiYO3atXjuueeG3E8sFoMoigCA559/HvF4HKtWrfK3Oe644xCPx4fcz/PPP4+1a9eWmeedccYZ2Lt3L7Zv3+6/9otf/AJbtmzBN7/5zdF94BHwxBNPoK6uDrNnz8anP/1pdHZ2jvt7MCozWc9HAFi6dCkaGxtx2mmn4fHHHx/ycxqGgVdeeaXscwHAunXrhjwexuAcLefOaGD3ssOfyXjePvLII1ixYgXuuOMONDc3Y/bs2fjyl7+MYrE46H7ZPW9iOFrOn9Ew2e57LOA6CnBdFzfccANOOOEELFy4EADQ0dEBAKivry/btr6+3v+3/vT09ODb3/42PvvZz/qvdXR0oK6ubsC2dXV1g+6H/lyl9w4e23vvvYevfe1ruP/++/2bw3hx1lln4f7778ff//53fP/738dLL72EU089Fbquj+v7MAYyWc/HxsZG/PSnP8VDDz2EP/zhD5gzZw5OO+00PPXUU4Put7u7G7Ztj+pzMQbnaDp3Rgq7lx3+TNbzduvWrXjmmWfw5ptv4uGHH8Zdd92F//qv/8LnP//5QffL7nnjz9F0/oyUyXjfYwHXUcC1116LN954Aw888MCAf+M4ruzvrusOeA0AMpkMzjnnHMyfP39AtanS9sH9LFiwAJFIBJFIBGedddaQ701ft20bl156KW655RbMnj274ud6+umn/f1GIhHcf//9FberxMUXX4xzzjkHCxcuxIc+9CH8+c9/xubNm/F//+//HfE+GAfGZDwfAWDOnDn49Kc/jWXLlmH16tW4++67cc455+B73/segKHPx5F+LsbQHI3nznCwe9nhz2Q9bx3HAcdxuP/++7Fy5UqcffbZuPPOO3HfffehWCyye95B4mg8f4ZjMt73xrdswDjs+MIXvoBHHnkETz31FKZMmeK/3tDQAMDLRDQ2Nvqvd3Z2DshaZLNZnHnmmYhEInj44YchSVLZfvbt2zfgfbu6uvz9PProozBNEwCgaZr/c/2zJ7QcXF9fj2w2i5dffhmvvfYarr32WgDexeu6LkRRxF//+lesXr26TNmo/3GPhsbGRrS2tuK999474H0whmeyno+Dcdxxx+HXv/41AGDFihUDzkdFUSAIQsV9j+V8PRo52s6dA4Xdyw4vJvN529jYiObmZsTjcX+befPmwXVd7N69m93zDgJH2/lzoEyK+95BmxZjHFQcx3E///nPu01NTe7mzZsr/ntDQ4N7++23+6/puj5g4DKdTrvHHXecu3btWjefzw/YDx24XL9+vf/aCy+8MKKBy0Qi4eq67r/23e9+1x+4tG3b3bhxY9mfz33uc+6cOXPcjRs3lin1DAUGGbjsT3d3t6soivuf//mfI9ovY3RM9vNxMC688EL3lFNOGfyDu94A+ec+97my1+bNm8cGyEfI0XzuBGH3ssnFkXDe/uQnP3H///buJyTKro3j+E991czU/iBaahmhbTLTRZJkUFiIWKuiRPAPtdA2WYZEG4VAK9DCCNqUtgikyHQhukkNMgmqAccU+oMWwVQomGOSpV7v4iHJ56ke37fuLP1+YDb3feZwznBx4Dc3c01QUJB5vd7pMY2Njebr62tjY2PfnJsz78ct5Pr50nw69whc81RRUZGFhYVZR0fHjLaZXxb56dOnLSwszBoaGsztdlt2dvaMlqIjIyOWkpJiCQkJ9uzZs2+2M87IyLCNGzdaV1eXdXV1WUJCwr+2FB0eHraIiAjLzs42t9ttDQ0NFhoa+tW28J/Ntkuh1+s1l8tlLpfLJFl1dbW5XK7plrRer9dKSkrs3r171t/fb+3t7bZlyxaLioqa3jt+rvlQj+fOnbNbt27ZkydPrKenx06cOGGS7ObNm9+d+3OL5MuXL1tvb68VFxdbcHCwDQwMTI8ZGhoyl8tlzc3NJsnq6+vN5XKZx+P5nz7n+Wgh1w5n2Z9rPtSt1+u16Oho27t3rz1+/Nju3LljcXFxdujQoe/OzZn34xZy/czXc4/ANU9J+uqrtrZ2eszU1JSVlZVZZGSkBQYG2rZt28ztdk/f/9zK+Guv/v7+6XFDQ0OWk5NjISEhFhISYjk5ObNqf9zd3W1paWkWGBhokZGRVl5e/t1vhGcbuL617ry8PDMzGxsbs127dll4eLj5+/vb6tWrLS8vz16+fPmvc+P/Mx/q8cyZM7Zu3TpbtGiRLVu2zLZu3WrNzc2z2v/FixdtzZo1FhAQYMnJydOtfT+rra396r7KyspmNf98tpBrh7PszzUf6tbMrK+vz9LT0y0oKMiio6Pt2LFjs3o6wZn3YxZy/czXc8/H7G9/Cw0AAAAA+CnoUggAAAAADiFwAQAAAIBDCFwAAAAA4BACFwAAAAA4hMAFAAAAAA4hcAEAAACAQwhcAAAAAOAQAhcAAAAAOITABQAAAAAOIXABABak/Px8+fj4yMfHR/7+/oqIiNDOnTt15coVTU1NzXqeuro6LV261LmFAgD+aAQuAMCClZGRIY/Ho4GBAbW0tGj79u06cuSIsrKyNDExMdfLAwDMAwQuAMCCFRgYqMjISEVFRSk5OVknT55UU1OTWlpaVFdXJ0mqrq5WQkKCgoODFRMTo8OHD2t0dFSS1NHRoYKCAr179276aVl5ebkk6ePHjyotLVVUVJSCg4OVkpKijo6OudkoAGDOELgAAPjCjh07lJiYqIaGBkmSr6+vampq1NPTo6tXr6qtrU2lpaWSpNTUVJ0/f16hoaHyeDzyeDw6fvy4JKmgoECdnZ2qr69Xd3e39u3bp4yMDD19+nTO9gYA+PV8zMzmehEAAPxq+fn5Gh4eVmNj4z/uHThwQN3d3ert7f3HvRs3bqioqEiDg4OS/voNV3FxsYaHh6fHPH/+XHFxcXr16pVWrVo1fT09PV2bN29WRUXFT98PAOD39J+5XgAAAL8bM5OPj48kqb29XRUVFert7dXIyIgmJib04cMHvX//XsHBwV99/6NHj2Rmio+Pn3F9fHxcK1ascHz9AIDfB4ELAIC/6evr09q1a/XixQtlZmaqsLBQp06d0vLly3X37l0dPHhQnz59+ub7p6am5Ofnp4cPH8rPz2/GvSVLlji9fADAb4TABQDAF9ra2uR2u3X06FE9ePBAExMTqqqqkq/vXz97vn79+ozxAQEBmpycnHEtKSlJk5OTevv2rdLS0n7Z2gEAvx8CFwBgwRofH9fr1681OTmpN2/eqLW1VZWVlcrKylJubq7cbrcmJiZ04cIF7d69W52dnbp06dKMOWJjYzU6Oqrbt28rMTFRixcvVnx8vHJycpSbm6uqqiolJSVpcHBQbW1tSkhIUGZm5hztGADwq9GlEACwYLW2tmrlypWKjY1VRkaG2tvbVVNTo6amJvn5+WnTpk2qrq7WmTNntGHDBl27dk2VlZUz5khNTVVhYaH279+v8PBwnT17VpJUW1ur3NxclZSUaP369dqzZ4/u37+vmJiYudgqAGCO0KUQAAAAABzCEy4AAAAAcAiBCwAAAAAcQuACAAAAAIcQuAAAAADAIQQuAAAAAHAIgQsAAAAAHELgAgAAAACHELgAAAAAwCEELgAAAABwCIELAAAAABxC4AIAAAAAh/wXQmLsHxjO6wQAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -730,7 +730,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.10" + "version": "3.11.7" } }, "nbformat": 4, diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 6c6b9b9..0b974c2 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -473,7 +473,7 @@ def get_reference_neutron_flux(station, date=pd.to_datetime("2011-05-01")): """ # Get flux for 2011-05-01 - df_flux = get_incoming_neutron_flux(station, date, date + pd.Timedelta(hours=24)) + df_flux = get_incoming_neutron_flux(date, date + pd.Timedelta(hours=24), station=station) if df_flux is None: warnings.warn(f"Reference neutron flux for {station} not available. Returning NaN.") else: @@ -502,7 +502,7 @@ def smooth_1d(values, window=5, order=3, method='moving_median'): Analytical chemistry, 36(8), 1627-1639. """ - if not isinstance(x, pd.Series) and not isinstance(x, pd.DataFrame): + if not isinstance(values, pd.Series) and not isinstance(x, pd.DataFrame): raise ValueError('Input must be a pandas Series or DataFrame') if method == 'moving_average': @@ -1228,26 +1228,29 @@ def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps): """Function to interpolate incoming neutron flux to match the timestamps of the observations. Args: - nmdb_timestamps (pd.Series): Series of timestamps in datetime format from the NMDB. - nmdb_counts (pd.Series): Series of neutron counts from the NMDB - crnp_timestamps (pd.Series): Series of timestamps in datetime format from the station or device. + nmdb_timestamps (pd.Series or np.array): Series or array of timestamps in datetime format from the NMDB + nmdb_counts (pd.Series or np.array): Series or array of incoming neutron flux counts from the NMDB + crnp_timestamps (pd.Series or np.array): Series or array of timestamps in datetime format from the CRNP device Returns: (pd.Series): Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps """ - incoming_flux = np.array([]) - for k, timestamp in enumerate(crnp_timestamps): - if timestamp in nmdb_timestamps.values: - idx = timestamp == nmdb_timestamps - incoming_flux = np.append(incoming_flux, nmdb_counts.loc[idx]) - else: - incoming_flux = np.append(incoming_flux, np.nan) + # Create a DataFrame from nmdb timestamps and counts + df_nmdb = pd.DataFrame({'timestamp': nmdb_timestamps, 'counts': nmdb_counts}) + + # Set the Timestamp column as the index + df_nmdb.set_index('timestamp', inplace=True) + + # Reindex the DataFrame to the timestamps from the CRNP device using the nearest method + # This will match each CRNP timestamp with the nearest NMDB timestamp + interpolated_flux = df_nmdb.reindex(crnp_timestamps, method='nearest')['counts'].values + + #drop NaN values + interpolated_flux = interpolated_flux[~np.isnan(interpolated_flux)] - # Interpolate nan values - incoming_flux = pd.Series(incoming_flux).interpolate(method='nearest', limit_direction='both') + assert len(interpolated_flux) == len(crnp_timestamps), "Length of interpolated flux does not match length of CRNP timestamps" - # Return only the values for the selected timestamps - return incoming_flux + return interpolated_flux def lattice_water(clay_content, total_carbon=None): @@ -1290,7 +1293,7 @@ def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None): utm_zone_letter (str): UTM zone letter. If None, the zone letter is automatically calculated. Returns: - (float, float): Tuple of easting and northing coordinates in meters. First element is easting, second is northing. + (float, float, int, str): Tuple of easting, northing, zone number and zone letter. First element is easting, second is northing, third is zone number and fourth is zone letter. References: Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87) From 51fa09e42270d2345ee17297eb9cbe748234e9e9 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Wed, 24 Jan 2024 09:49:55 -0600 Subject: [PATCH 15/24] Update main.html --- docs/overrides/main.html | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/overrides/main.html b/docs/overrides/main.html index b5632e3..a866fed 100644 --- a/docs/overrides/main.html +++ b/docs/overrides/main.html @@ -2,7 +2,7 @@ {% block content %} {% if page.nb_url %} - + Download {% include ".icons/material/download.svg" %} {% endif %} From 4636770e7f4191191f0823e80abdcb8e96542670 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sun, 3 Mar 2024 14:11:48 -0700 Subject: [PATCH 16/24] Code formatting of new methods #11 --- src/crnpy/crnpy.py | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 0b974c2..7d3638d 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -670,7 +670,7 @@ def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='S # Compute soil depth that accounts for 86% of the neutron flux D86 = 1 / bulk_density * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r_start)) * (20 + (Wlat + vwc)) / ( - 0.0429 + (Wlat + vwc))) + 0.0429 + (Wlat + vwc))) results.append(D86) elif method == 'Franz_2012': @@ -1104,8 +1104,8 @@ def atmospheric_depth(elevation, latitude): # Air pressure calculation reference_air_pressure = air_pressure_sea_level * ( - 1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / ( - universal_gas_constant * temperature_lapse_rate)) + 1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / ( + universal_gas_constant * temperature_lapse_rate)) # Atmospheric depth calculation atmospheric_depth = (10 * reference_air_pressure) / gravity @@ -1149,7 +1149,7 @@ def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth # Calculate the result using the provided parameters tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * ( - 1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5))) + 1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5))) return tau @@ -1245,10 +1245,11 @@ def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps): # This will match each CRNP timestamp with the nearest NMDB timestamp interpolated_flux = df_nmdb.reindex(crnp_timestamps, method='nearest')['counts'].values - #drop NaN values + # drop NaN values interpolated_flux = interpolated_flux[~np.isnan(interpolated_flux)] - assert len(interpolated_flux) == len(crnp_timestamps), "Length of interpolated flux does not match length of CRNP timestamps" + assert len(interpolated_flux) == len( + crnp_timestamps), "Length of interpolated flux does not match length of CRNP timestamps" return interpolated_flux From cfb568498a67ac538f08fb29ea10f918ff2d8f5d Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sun, 7 Apr 2024 12:31:02 -0600 Subject: [PATCH 17/24] Fixed rscaled with default Hveg to at least account for pressure without biomass data Addressing 2nd sets of comments in #9 --- src/crnpy/crnpy.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 7d3638d..90eb130 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -929,7 +929,7 @@ def WrB(r, x, y): return B0 * np.exp(-B1 * r) + B2 * np.exp(-B3 * r) - def rscaled(r, p, Hveg, y): + def rscaled(r, p, y, Hveg = 0): Fp = 0.4922 / (0.86 - np.exp(-p / 1013.25)) Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y)) return r / Fp / Fveg @@ -940,8 +940,7 @@ def rscaled(r, p, Hveg, y): y = theta bd = rhob - if Hveg is not None and p is not None: - r = rscaled(r, p, Hveg, y) + r = rscaled(r, p, y, Hveg) Wr = np.zeros(len(r)) From 154f85dac9172978d6f8a6233a264d8d13e8ab72 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sun, 7 Apr 2024 21:51:57 -0600 Subject: [PATCH 18/24] =?UTF-8?q?Fixed=20Weighting=20according=20to=20Schr?= =?UTF-8?q?=C3=B6n=20et=20al.=20(2017)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Addressing the comments in #9, the method was updated to use the iterative routine. Examples and tests, were also updated. --- build/lib/crnpy/crnpy.py | 101 +++++++++++++------- docs/examples/calibration/calibration.ipynb | 32 +++++-- src/crnpy/crnpy.py | 85 ++++++++++------ src/tests/test_calibration_rdt.py | 46 ++++++--- src/tests/test_functions.py | 21 ++-- 5 files changed, 189 insertions(+), 96 deletions(-) diff --git a/build/lib/crnpy/crnpy.py b/build/lib/crnpy/crnpy.py index 0b974c2..2b1f749 100644 --- a/build/lib/crnpy/crnpy.py +++ b/build/lib/crnpy/crnpy.py @@ -670,7 +670,7 @@ def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='S # Compute soil depth that accounts for 86% of the neutron flux D86 = 1 / bulk_density * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r_start)) * (20 + (Wlat + vwc)) / ( - 0.0429 + (Wlat + vwc))) + 0.0429 + (Wlat + vwc))) results.append(D86) elif method == 'Franz_2012': @@ -706,7 +706,7 @@ def abs_humidity(relative_humidity, temp): return abs_h -def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=None, Hveg=None): +def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=None, Hveg=0, tol=0.01): """Function to compute distance weights corresponding to each soil sample. Args: @@ -718,9 +718,11 @@ def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=Non p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method. Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method. method (str): Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'. + tol (float): Tolerance for the iterative solution. Default is 0.01. Required for the 'Schron_2017' method. Returns: - (array or pd.Series or pd.DataFrame): Distance weights for each sample. + theta_new (np.array or pd.Series): Weighted soil moisture values. + weights (np.array or pd.Series): Distance weights for each sample. For the 'Schron_2017' method, the weights are computed for each distance. References: Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). @@ -826,7 +828,10 @@ def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=Non # Combined and normalized weights weights = Wd * W / np.nansum(Wd * W) - return weights + + theta_new = np.sum(theta * weights) + + return theta_new, weights elif method == 'Schron_2017': # Horizontal distance weights According to Eq. 6 and Table A1 in Schrön et al. (2017) # Method for calculating the horizontal distance weights from 0 to 1m @@ -929,45 +934,70 @@ def WrB(r, x, y): return B0 * np.exp(-B1 * r) + B2 * np.exp(-B3 * r) - def rscaled(r, p, Hveg, y): + # Wrapper method for calculating the horizontal distance weights + def Wr(r, x, y): + if r <= 1: + return WrX(r, x, y) + elif r <= 50: + return WrA(r, x, y) + elif r <= 600: + return WrB(r, x, y) + else: + raise ValueError("r must be between 1 and 600m when using 'Schron_2017' method") + + def rscaled(r, p, y, Hveg = 0): Fp = 0.4922 / (0.86 - np.exp(-p / 1013.25)) Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y)) return r / Fp / Fveg # Rename variables to be consistent with the revised paper r = distances - x = h - y = theta - bd = rhob - - if Hveg is not None and p is not None: - r = rscaled(r, p, Hveg, y) - - Wr = np.zeros(len(r)) + theta_ = np.mean(theta) # Start with the mean value of theta as initial guess + bd = np.mean(rhob) # Neutrons are impacted by the bulk density across the whole area and not just the sample area. https://github.com/soilwater/crnpy/issues/9#issuecomment-2003813777 - # See Eq. 6 in Schron et al. (2017) - r0_idx = (r <= 1) - r1_idx = (r > 1) & (r <= 50) - r2_idx = (r > 50) & (r < 600) - Wr[r0_idx] = WrX(r[r0_idx], x[r0_idx], y[r0_idx]) - Wr[r1_idx] = WrA(r[r1_idx], x[r1_idx], y[r1_idx]) - Wr[r2_idx] = WrB(r[r2_idx], x[r2_idx], y[r2_idx]) - - # Vertical distance weights + # Vertical distance weights functions def D86(r, bd, y): return 1 / bd * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r)) * (20 + y) / (0.0429 + y)) def Wd(d, r, bd, y): return np.exp(-2 * d / D86(r, bd, y)) - # Calculate the vertical distance weights - Wd = Wd(depth, r, bd, y) - - # Combined and normalized weights - # Combined and normalized weights - weights = Wd * Wr / np.nansum(Wd * Wr) - - return weights + step = 0 + diff = 1 + while diff > tol: + step += 1 + print(f"Step {step}, diff = {diff}", end="\r") + # Calculate the scaled distance and D86 + r = rscaled(distances, p, theta_, Hveg) + + # Calculate the vertical average for each profile + P = np.unique(distances) + theta_P = [] + r_stars = [] + for i in range(len(P)): + profile = P[i] + idx = distances == profile + depths_P = depth[idx] + r_P = r[idx] + theta_Pi = theta[idx] + # Calculate the vertical distance weights + Wd_P = Wd(depths_P, r_P, bd, theta_Pi) + # Calculate the vertical average of theta + theta_P_i = np.sum(Wd_P * theta_Pi) / np.sum(Wd_P) + theta_P.append(theta_P_i) + r_stars.append(np.mean(r_P)) + + # Calculate the horizontal distance weights + Wrs = np.array([Wr(r_star, theta_p, Hveg) for r_star, theta_p in zip(r_stars, theta_P)]) + theta_new = np.sum(Wrs * theta_P) / np.sum(Wrs) + diff = np.abs(theta_new - theta_) + theta_ = theta_new + + print(f"Solution converged after {step} steps, the average soil moisture is {theta_new}") + + return theta_new, [theta_P, r_stars, Wrs] + else: + raise ValueError(f"Method {method} not recognized. Please use one of the following methods: 'Kohli_2015' or 'Schron_2017'") def exp_filter(sm, T=1): @@ -1104,8 +1134,8 @@ def atmospheric_depth(elevation, latitude): # Air pressure calculation reference_air_pressure = air_pressure_sea_level * ( - 1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / ( - universal_gas_constant * temperature_lapse_rate)) + 1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / ( + universal_gas_constant * temperature_lapse_rate)) # Atmospheric depth calculation atmospheric_depth = (10 * reference_air_pressure) / gravity @@ -1149,7 +1179,7 @@ def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth # Calculate the result using the provided parameters tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * ( - 1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5))) + 1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5))) return tau @@ -1245,10 +1275,11 @@ def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps): # This will match each CRNP timestamp with the nearest NMDB timestamp interpolated_flux = df_nmdb.reindex(crnp_timestamps, method='nearest')['counts'].values - #drop NaN values + # drop NaN values interpolated_flux = interpolated_flux[~np.isnan(interpolated_flux)] - assert len(interpolated_flux) == len(crnp_timestamps), "Length of interpolated flux does not match length of CRNP timestamps" + assert len(interpolated_flux) == len( + crnp_timestamps), "Length of interpolated flux does not match length of CRNP timestamps" return interpolated_flux diff --git a/docs/examples/calibration/calibration.ipynb b/docs/examples/calibration/calibration.ipynb index 50b075f..4933c82 100644 --- a/docs/examples/calibration/calibration.ipynb +++ b/docs/examples/calibration/calibration.ipynb @@ -802,14 +802,22 @@ "execution_count": 11, "id": "457e6db7-a5ab-4424-a93b-7b0f4a46fe45", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Solution converged after 2 steps, the average soil moisture is 0.2197191482091855\n" + ] + } + ], "source": [ - "# Compute the weights of each sample for the field average\n", - "nrad_weights = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean())\n", + "# Weight the samples for the field average\n", + "#field_theta_v, w = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean(), method=\"Kohli_2015\")\n", + "field_theta_v, w = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean(),p=df_station['barometric_pressure_Avg'].mean(), method = \"Schron_2017\")\n", "\n", "# Apply distance weights to volumetric water content and bulk density\n", - "field_theta_v = np.sum(df_soil['theta_v']*nrad_weights)\n", - "field_bulk_density = np.sum(df_soil['bulk_density']*nrad_weights)\n" + "field_bulk_density = np.mean(df_soil['bulk_density'])\n" ] }, { @@ -822,7 +830,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Mean volumetric Water content during calibration survey: 0.263\n", + "Mean volumetric Water content during calibration survey: 0.22\n", "Mean corrected counts during calibration: 1543 counts\n" ] } @@ -856,7 +864,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The solved value for N0 is: 2645\n" + "The solved value for N0 is: 2470\n" ] } ], @@ -886,6 +894,14 @@ "\n", "Patrignani, A., Ochsner, T. E., Montag, B., & Bellinger, S. (2021). A novel lithium foil cosmic-ray neutron detector for measuring field-scale soil moisture. Frontiers in Water, 3, 673185." ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "af515744-a25e-4fb0-8fd0-3559b0fea276", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -909,4 +925,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} +} \ No newline at end of file diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 90eb130..2b1f749 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -706,7 +706,7 @@ def abs_humidity(relative_humidity, temp): return abs_h -def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=None, Hveg=None): +def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=None, Hveg=0, tol=0.01): """Function to compute distance weights corresponding to each soil sample. Args: @@ -718,9 +718,11 @@ def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=Non p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method. Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method. method (str): Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'. + tol (float): Tolerance for the iterative solution. Default is 0.01. Required for the 'Schron_2017' method. Returns: - (array or pd.Series or pd.DataFrame): Distance weights for each sample. + theta_new (np.array or pd.Series): Weighted soil moisture values. + weights (np.array or pd.Series): Distance weights for each sample. For the 'Schron_2017' method, the weights are computed for each distance. References: Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). @@ -826,7 +828,10 @@ def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=Non # Combined and normalized weights weights = Wd * W / np.nansum(Wd * W) - return weights + + theta_new = np.sum(theta * weights) + + return theta_new, weights elif method == 'Schron_2017': # Horizontal distance weights According to Eq. 6 and Table A1 in Schrön et al. (2017) # Method for calculating the horizontal distance weights from 0 to 1m @@ -929,6 +934,17 @@ def WrB(r, x, y): return B0 * np.exp(-B1 * r) + B2 * np.exp(-B3 * r) + # Wrapper method for calculating the horizontal distance weights + def Wr(r, x, y): + if r <= 1: + return WrX(r, x, y) + elif r <= 50: + return WrA(r, x, y) + elif r <= 600: + return WrB(r, x, y) + else: + raise ValueError("r must be between 1 and 600m when using 'Schron_2017' method") + def rscaled(r, p, y, Hveg = 0): Fp = 0.4922 / (0.86 - np.exp(-p / 1013.25)) Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y)) @@ -936,37 +952,52 @@ def rscaled(r, p, y, Hveg = 0): # Rename variables to be consistent with the revised paper r = distances - x = h - y = theta - bd = rhob - - r = rscaled(r, p, y, Hveg) - - Wr = np.zeros(len(r)) + theta_ = np.mean(theta) # Start with the mean value of theta as initial guess + bd = np.mean(rhob) # Neutrons are impacted by the bulk density across the whole area and not just the sample area. https://github.com/soilwater/crnpy/issues/9#issuecomment-2003813777 - # See Eq. 6 in Schron et al. (2017) - r0_idx = (r <= 1) - r1_idx = (r > 1) & (r <= 50) - r2_idx = (r > 50) & (r < 600) - Wr[r0_idx] = WrX(r[r0_idx], x[r0_idx], y[r0_idx]) - Wr[r1_idx] = WrA(r[r1_idx], x[r1_idx], y[r1_idx]) - Wr[r2_idx] = WrB(r[r2_idx], x[r2_idx], y[r2_idx]) - - # Vertical distance weights + # Vertical distance weights functions def D86(r, bd, y): return 1 / bd * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r)) * (20 + y) / (0.0429 + y)) def Wd(d, r, bd, y): return np.exp(-2 * d / D86(r, bd, y)) - # Calculate the vertical distance weights - Wd = Wd(depth, r, bd, y) - - # Combined and normalized weights - # Combined and normalized weights - weights = Wd * Wr / np.nansum(Wd * Wr) - - return weights + step = 0 + diff = 1 + while diff > tol: + step += 1 + print(f"Step {step}, diff = {diff}", end="\r") + # Calculate the scaled distance and D86 + r = rscaled(distances, p, theta_, Hveg) + + # Calculate the vertical average for each profile + P = np.unique(distances) + theta_P = [] + r_stars = [] + for i in range(len(P)): + profile = P[i] + idx = distances == profile + depths_P = depth[idx] + r_P = r[idx] + theta_Pi = theta[idx] + # Calculate the vertical distance weights + Wd_P = Wd(depths_P, r_P, bd, theta_Pi) + # Calculate the vertical average of theta + theta_P_i = np.sum(Wd_P * theta_Pi) / np.sum(Wd_P) + theta_P.append(theta_P_i) + r_stars.append(np.mean(r_P)) + + # Calculate the horizontal distance weights + Wrs = np.array([Wr(r_star, theta_p, Hveg) for r_star, theta_p in zip(r_stars, theta_P)]) + theta_new = np.sum(Wrs * theta_P) / np.sum(Wrs) + diff = np.abs(theta_new - theta_) + theta_ = theta_new + + print(f"Solution converged after {step} steps, the average soil moisture is {theta_new}") + + return theta_new, [theta_P, r_stars, Wrs] + else: + raise ValueError(f"Method {method} not recognized. Please use one of the following methods: 'Kohli_2015' or 'Schron_2017'") def exp_filter(sm, T=1): diff --git a/src/tests/test_calibration_rdt.py b/src/tests/test_calibration_rdt.py index b951b11..fdeb644 100644 --- a/src/tests/test_calibration_rdt.py +++ b/src/tests/test_calibration_rdt.py @@ -62,25 +62,30 @@ def calibration_example(): df_station['fp']) # Compute the weights of each sample for the field average - nrad_weights = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], - df_soil['distance_from_station'], - (df_soil['bottom_depth'] + df_soil['top_depth']) / 2, - rhob=df_soil['bulk_density'].mean()) + field_theta_v_1, w = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], + df_soil['distance_from_station'], + (df_soil['bottom_depth'] + df_soil['top_depth']) / 2, + rhob=df_soil['bulk_density'].mean(), method="Kohli_2015") + + field_theta_v_2, w = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], + df_soil['distance_from_station'], + (df_soil['bottom_depth'] + df_soil['top_depth']) / 2, + rhob=df_soil['bulk_density'].mean(), + p=df_station['barometric_pressure_Avg'].mean(), method="Schron_2017") # Apply distance weights to volumetric water content and bulk density - field_theta_v = np.sum(df_soil['theta_v'] * nrad_weights) - field_bulk_density = np.sum(df_soil['bulk_density'] * nrad_weights) + field_bulk_density = np.sum(df_soil['bulk_density'].mean()) # Determine the mean corrected counts during the calibration survey idx_cal_period = (df_station['TIMESTAMP'] >= calibration_start) & (df_station['TIMESTAMP'] <= calibration_end) mean_cal_counts = df_station.loc[idx_cal_period, 'total_corrected_neutrons'].mean() - print(f"Mean volumetric Water content during calibration survey: {round(field_theta_v, 3)}") + print(f"Mean volumetric Water content during calibration survey: {round(field_theta_v_2, 3)}") print(f"Mean corrected counts during calibration: {round(mean_cal_counts)} counts") # Define the function for which we want to find the roots VWC_func = lambda N0: crnpy.counts_to_vwc(mean_cal_counts, N0, bulk_density=field_bulk_density, Wlat=0.03, - Wsoc=0.01) - field_theta_v + Wsoc=0.01) - field_theta_v_1 # Make an initial guess for N0 N0_initial_guess = 1000 @@ -91,9 +96,28 @@ def calibration_example(): # Print the solution print(f"The solved value for N0 is: {sol}") - return sol + # Compute close and far soil moisture to compare both weight methods + close_sm = df_soil[(df_soil['distance_from_station'] < 10) & (df_soil['bottom_depth'] < 10)]['theta_v'].mean() + far_sm = df_soil[(df_soil['distance_from_station'] > 10) & (df_soil['bottom_depth'] < 10)]['theta_v'].mean() + return sol, field_theta_v_1, field_theta_v_2, close_sm, far_sm def test_calibration(): - solved_N0 = calibration_example() + solved_N0, field_sm_Kohli, field_sm_Schron, close_sm, far_sm = calibration_example() print("The expected value for N0 is between 2500 and 2800") - assert solved_N0 > 2500 and solved_N0 < 2800, f"Calibration test failed. Solved N0: {solved_N0}, expected value between 2500 and 2800." \ No newline at end of file + + assert solved_N0 > 2500 and solved_N0 < 2800, f"Calibration test failed. Solved N0: {solved_N0}, expected value between 2500 and 2800." + print("The expected value for field soil moisture using Kohli et al. (2015) or Schron et al. (2017) is between 0.25 and 0.30") + assert field_sm_Kohli > 0.25 and field_sm_Kohli < 0.30, f"Calibration test failed. Field soil moisture using Kohli et al. (2015): {field_sm_Kohli}, expected value between 0.25 and 0.30." + assert field_sm_Schron > 0.2 and field_sm_Schron < 0.30, f"Calibration test failed. Field soil moisture using Schron et al. (2017): {field_sm_Schron}, expected value between 0.25 and 0.30." + + print(f"Close soil moisture: {close_sm}") + print(f"Far soil moisture: {far_sm}") + print(f"Field soil moisture using Kohli et al. (2015): {field_sm_Kohli}") + print(f"Field soil moisture using Schron et al. (2017): {field_sm_Schron}") + + # Schron et al. (2017) method should more influenced by close soil moisture samples according to CRNP sensitivity assumptions + + dif_Kohli = abs(field_sm_Kohli - close_sm) + dif_Schron = abs(field_sm_Schron - close_sm) + + assert dif_Schron < dif_Kohli, f"Calibration test failed. Schron et al. (2017) method should be more influenced by close soil moisture samples according to CRNP sensitivity assumptions." \ No newline at end of file diff --git a/src/tests/test_functions.py b/src/tests/test_functions.py index 7952002..820fd50 100644 --- a/src/tests/test_functions.py +++ b/src/tests/test_functions.py @@ -45,27 +45,18 @@ def test_weighting(): y = np.repeat(0, len(x)) h = np.repeat(10, len(x)) - p = np.repeat(1013.25, len(x)) Hveg = np.repeat(0, len(x)) bd = 1.1 SM = 0.02 sm = np.repeat(SM, len(x)) - # calculate weighting function using Schrön et al. 2017 method - weights = crnpy.nrad_weight(h, sm, x, y, bd, method="Schron_2017", p=p, Hveg=Hveg) - # check that the sum of the weights is 1 - Max = 0.01147 - Avg = 0.00029 - Min = 0.00000 - assert round(np.sum(weights),5) == 1 - # Compare to the values in supplementary material of Schrön et al. 2017 - # check that the max weight is 0.01 - assert round(np.max(weights),3) == round(Max,3) - # check that the avg weight is 0.00029 - assert round(np.mean(weights),5) == round(Avg,5) - # check that the min weight is 0.00000 - assert round(np.min(weights),5) == round(Min,5) + # calculate the weighted theta + theta_adj, w = crnpy.nrad_weight(h, sm, x, y, bd, method="Schron_2017", p=p, Hveg=Hveg) + + # check that theta_adj is = SM +- 1e-3 + assert np.abs(theta_adj - SM) < 1e-3 + def test_correction_inncoming_neutrons_RcMethods(): # Test Hawdon 2014 Method using Baldry location from the original paper From 472a25c4204020ffcb0781228e42e0735a6fc1b2 Mon Sep 17 00:00:00 2001 From: Andres Patrignani Date: Fri, 19 Apr 2024 13:25:01 -0500 Subject: [PATCH 19/24] Minor fixes in code style --- build/lib/crnpy/__init__.py | 21 - build/lib/crnpy/crnpy.py | 1613 ------------------- build/lib/crnpy/data.py | 67 - docs/examples/calibration/calibration.ipynb | 17 +- src/crnpy.egg-info/PKG-INFO | 5 - 5 files changed, 12 insertions(+), 1711 deletions(-) delete mode 100644 build/lib/crnpy/__init__.py delete mode 100644 build/lib/crnpy/crnpy.py delete mode 100644 build/lib/crnpy/data.py diff --git a/build/lib/crnpy/__init__.py b/build/lib/crnpy/__init__.py deleted file mode 100644 index ae4e374..0000000 --- a/build/lib/crnpy/__init__.py +++ /dev/null @@ -1,21 +0,0 @@ -# crnpy/__init__.py -""" `crnpy` is a package for processing observations from cosmic ray neutron detectors. - -Modules exported by this package: - -- `crnpy`: Provide several functions to process observations from cosmic ray neutron detectors. -""" - -# GEt version from setup.py -from pathlib import Path -from importlib.metadata import version, PackageNotFoundError - -try: - __version__ = version(__name__) -except PackageNotFoundError: - __version__ = "unknown" - -# Import all functions from crnpy - -from .crnpy import * - diff --git a/build/lib/crnpy/crnpy.py b/build/lib/crnpy/crnpy.py deleted file mode 100644 index 2b1f749..0000000 --- a/build/lib/crnpy/crnpy.py +++ /dev/null @@ -1,1613 +0,0 @@ -# crnpy/crnpy.py -""" -`crnpy` is a Python package for processing cosmic ray neutron data. - - Created by Joaquin Peraza and Andres Patrignani. -""" - -import crnpy.data as data -import io -import numbers -import numpy as np -import pandas as pd -import requests -import sys -import utm -import warnings - -from scipy.interpolate import griddata -from scipy.signal import savgol_filter -from scipy.special import erfcinv - -# Define python version -python_version = (3, 7) # tuple of (major, minor) version requirement -python_version_str = str(python_version[0]) + "." + str(python_version[1]) - -# produce an error message if the python version is less than required -if sys.version_info < python_version: - msg = "Module only runs on python version >= %s" % python_version_str - raise Exception(msg) - - -def remove_incomplete_intervals(df, timestamp_col, integration_time, remove_first=False): - """Function that removes rows with incomplete integration intervals. - - Args: - df (pandas.DataFrame): Pandas Dataframe with data from stationary or roving CRNP devices. - timestamp_col (str): Name of the column with timestamps in datetime format. - integration_time (int): Duration of the neutron counting interval in seconds. Typical values are 60 seconds and 3600 seconds. - remove_first (bool, optional): Remove first row. Default is False. - - Returns: - (pandas.DataFrame): - """ - - # Check format of timestamp column - if df[timestamp_col].dtype != 'datetime64[ns]': - raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.') - - # Check if differences in timestamps are below or above the provided integration time - idx_delta = df[timestamp_col].diff().dt.total_seconds() != integration_time - - if remove_first: - idx_delta[0] = True - - # Select rows that meet the specified integration time - df = df[~idx_delta] - df.reset_index(drop=True, inplace=True) - - # Notify user about the number of rows that have been removed - print(f"Removed a total of {sum(idx_delta)} rows.") - - return df - - -def fill_missing_timestamps(df, timestamp_col='timestamp', freq='H', round_timestamp=True, verbose=False): - """Helper function to fill rows with missing timestamps in datetime record. Rows are filled with NaN values. - - Args: - df (pandas.DataFrame): Pandas DataFrame. - timestamp_col (str, optional): Column with the timestamp. Must be in datetime format. Default column name is 'timestamp'. - freq (str, optional): Timestamp frequency. 'H' for hourly, 'M' for minute, or None. Can also use '3H' for a 3 hour frequency. Default is 'H'. - round_timestamp (bool, optional): Whether to round timestamps to the nearest frequency. Default is True. - verbose (bool, optional): Prints the missing timestamps added to the DatFrame. - - Returns: - (pandas.DataFrame): DataFrame with filled missing timestamps. - - """ - - # Check format of timestamp column - if df[timestamp_col].dtype != 'datetime64[ns]': - raise TypeError('timestamp_col must be datetime64. Use `pd.to_datetime()` to fix this issue.') - - # Round timestamps to nearest frequency. This steps must preced the filling of rows. - if round_timestamp: - df[timestamp_col] = df[timestamp_col].dt.round(freq) - - # Fill in rows with missing timestamps - start_date = df[timestamp_col].iloc[0] - end_date = df[timestamp_col].iloc[-1] - date_range = pd.date_range(start_date, end_date, freq=freq) - counter = 0 - for date in date_range: - if date not in df[timestamp_col].values: - if verbose: - print('Adding missing date:', date) - new_line = pd.DataFrame({timestamp_col: date}, index=[-1]) # By default fills columns with np.nan - df = pd.concat([df, new_line]) - counter += 1 - - df.sort_values(by=timestamp_col, inplace=True) - df.reset_index(drop=True, inplace=True) - - # Notify user about the number of rows that have been removed - print(f"Added a total of {counter} missing timestamps.") - - return df - - -def total_raw_counts(counts): - """Compute the sum of uncorrected neutron counts for all detectors. - - Args: - counts (pandas.DataFrame): Dataframe containing only the columns with neutron counts. - - Returns: - (pandas.DataFrame): Dataframe with the sum of uncorrected neutron counts for all detectors. - """ - - if counts.shape[0] > 1: - counts = counts.apply(lambda x: x.fillna(counts.mean(axis=1)), axis=0) - - # Compute sum of counts - total_raw_counts = counts.sum(axis=1) - - # Replace zeros with NaN - total_raw_counts = total_raw_counts.replace(0, np.nan) - - return total_raw_counts - - -def is_outlier(x, method, window=11, min_val=None, max_val=None): - """Function that tests whether values are outliers using a modified moving z-score based on the median absolute difference. - - Args: - x (pd.DataFrame or pd.Series): Variable containing only the columns with neutron counts. - method (str): Outlier detection method. One of: range, iqr, moviqr, zscore, movzscore, modified_zscore, and scaled_mad - window (int, optional): Window size for the moving central tendency. Default is 11. - min_val (int or float): Minimum value for a reading to be considered valid. Default is None. - max_val(int or float): Maximum value for a reading to be considered valid. Default is None. - - Returns: - (pandas.DataFrame): Boolean indicating outliers. - - References: - Iglewicz, B. and Hoaglin, D.C., 1993. How to detect and handle outliers (Vol. 16). Asq Press. - """ - - if not isinstance(x, pd.Series): - raise TypeError('x must of type pandas.Series') - - # Separate this method to allow usage together with other methods below - if isinstance(min_val, numbers.Number) and isinstance(max_val, numbers.Number): - idx_range_outliers = (x < min_val) | (x > max_val) - else: - idx_range_outliers = np.full_like(x, False) - - # Apply other methods in addition to a range check - if method == 'iqr': - q1 = x.quantile(0.25) - q3 = x.quantile(0.75) - iqr = q3 - q1 - high_fence = q3 + (1.5 * iqr) - low_fence = q1 - (1.5 * iqr) - idx_outliers = (x < low_fence) | (x > high_fence) - - elif method == 'moviqr': - q1 = x.rolling(window, center=True).quantile(0.25) - q3 = x.rolling(window, center=True).quantile(0.75) - iqr = q3 - q1 - ub = q3 + (1.5 * iqr) # Upper boundary - lb = q1 - (1.5 * iqr) # Lower boundary - idx_outliers = (x < lb) | (x > ub) - - elif method == 'zscore': - zscore = (x - x.mean()) / x.std() - idx_outliers = (zscore < -3) | (zscore > 3) - - elif method == 'movzscore': - movmean = x.rolling(window=window, center=True).mean() - movstd = x.rolling(window=window, center=True).std() - movzscore = (x - movmean) / movstd - idx_outliers = (movzscore < -3) | (movzscore > 3) - - elif method == 'modified_zscore': - # Compute median absolute difference - movmedian = x.rolling(window, center=True).median() - abs_diff = np.abs(x - movmedian) - mad = abs_diff.rolling(window, center=True).median() - - # Compute modified z-score - modified_z_score = 0.6745 * abs_diff / mad - idx_outliers = (modified_z_score < -3.5) | (modified_z_score > 3.5) - - elif method == 'scaled_mad': - # Returns true for elements more than three scaled MAD from the median. - c = -1 / (np.sqrt(2) * erfcinv(3 / 2)) - median = np.nanmedian(x) - mad = c * np.nanmedian(np.abs(x - median)) - idx_outliers = x > (median + 3 * mad) - - else: - raise TypeError('Outlier detection method not found.') - - return idx_outliers | idx_range_outliers - - -def correction_pressure(pressure, Pref, L): - r"""Correction factor for atmospheric pressure. - - This function corrects neutron counts for atmospheric pressure using the method described in Andreasen et al. (2017). - The correction is performed using the following equation: - - $$ - C_{corrected} = \frac{C_{raw}}{fp} - $$ - - where: - - - Ccorrected: corrected neutron counts - - Craw: raw neutron counts - - fp: pressure correction factor - - $$ - fp = e^{\frac{P_{ref} - P}{L}} - $$ - - where: - - - P: atmospheric pressure - - Pref: reference atmospheric pressure - - L: Atmospheric attenuation coefficient. - - - Args: - pressure (list or array): Atmospheric pressure readings. Long-term average pressure is recommended. - Pref (float): Reference atmospheric pressure. - L (float): Atmospheric attenuation coefficient. - - Returns: - (list): fp pressure correction factor. - - References: - Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012. - - M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 - """ - - # Compute pressure correction factor - fp = np.exp((Pref - pressure) / L) # Zreda et al. 2017 Eq 5. - - return fp - - -def correction_humidity(abs_humidity, Aref): - r"""Correction factor for absolute humidity. - - This function corrects neutron counts for absolute humidity using the method described in Rosolem et al. (2013) and Anderson et al. (2017). The correction is performed using the following equation: - - $$ - C_{corrected} = C_{raw} \cdot f_w - $$ - - where: - - - Ccorrected: corrected neutron counts - - Craw: raw neutron counts - - fw: absolute humidity correction factor - - $$ - f_w = 1 + 0.0054(A - A_{ref}) - $$ - - where: - - - A: absolute humidity - - Aref: reference absolute humidity - - Args: - abs_humidity (list or array): Relative humidity readings. - Aref (float): Reference absolute humidity (g/m^3). The day of the instrument calibration is recommended. - - Returns: - (list): fw correction factor. - - References: - Rosolem, R., W. J. Shuttleworth, M. Zreda, T. E. Franz, X. Zeng, and S. A. Kurc, 2013: The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System. J. Hydrometeor., 14, 1659–1671, https://doi.org/10.1175/JHM-D-12-0120.1. - - M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 - """ - A = abs_humidity - fw = 1 + 0.0054 * (A - Aref) # Zreda et al. 2017 Eq 6. - return fw - - -def correction_incoming_flux(incoming_neutrons, incoming_Ref=None, fill_na=None, Rc_method=None, Rc_site=None, - site_atmdepth=None, Rc_ref=None, ref_atmdepth=None): - r"""Correction factor for incoming neutron flux. - - This function corrects neutron counts for incoming neutron flux using the method described in Anderson et al. (2017). The correction is performed using the following equation: - - $$ - C_{corrected} = \frac{C_{raw}}{f_i} - $$ - - where: - - - Ccorrected: corrected neutron counts - - Craw: raw neutron counts - - fi: incoming neutron flux correction factor - - $$ - f_i = \frac{I}{I_{ref}} - $$ - - where: - - - I: incoming neutron flux - - Iref: reference incoming neutron flux - - Args: - incoming_neutrons (list or array): Incoming neutron flux readings. - incoming_Ref (float): Reference incoming neutron flux. Baseline incoming neutron flux. - fill_na (float): Value to fill missing data. If None, missing data remains as NaN. - Rc_method (str): Optional to correct for differences in cutoff rigidity between the site and the reference station. Possible values are 'McJannetandDesilets2023' or 'Hawdonetal2014'. If None, no correction is performed. - Rc_site (float): Cutoff rigidity at the monitoring site. - site_atmdepth (float): Atmospheric depth at the monitoring site. - Rc_ref (float): Cutoff rigidity at the reference station. - ref_atmdepth (float): Atmospheric depth at the reference station. - - Returns: - (list): fi correction factor. - - References: - Hawdon, A., D. McJannet, and J. Wallace (2014), Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia, Water Resour. Res., 50, 5029–5043, doi:10.1002/2013WR015138. - - M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, and M.C. Looms. 2017. Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16(8). doi:10.2136/vzj2017.04.0086 - - McJannet, D. L., & Desilets, D. (2023). Incoming neutron flux corrections for cosmic-ray soil and snow sensors using the global neutron monitor network. Water Resources Research, 59, e2022WR033889. https://doi.org/10.1029/2022WR033889 - """ - if incoming_Ref is None and not isinstance(incoming_neutrons, type(None)): - incoming_Ref = incoming_neutrons[0] - warnings.warn('Reference incoming neutron flux not provided. Using first value of incoming neutron flux.') - fi = incoming_neutrons / incoming_Ref - - if Rc_method is not None: - if Rc_ref is None: - raise ValueError('Reference cutoff rigidity not provided.') - if Rc_site is None: - raise ValueError('Site cutoff rigidity not provided.') - - if Rc_method == 'McJannetandDesilets2023': - tau = location_factor(site_atmdepth, Rc_site, ref_atmdepth, Rc_ref) - fi = 1 / (tau * fi + 1 - tau) - - elif Rc_method == 'Hawdonetal2014': - Rc_corr = -0.075 * (Rc_site - Rc_ref) + 1.0 - fi = (fi - 1.0) * Rc_corr + 1.0 - - else: - raise ValueError( - 'Cutoff rigidity method not found. Valid options are: McJannetandDesilets2023, Hawdonetal2014.') - - if fill_na is not None: - fi.fillna(fill_na, inplace=True) # Use a value of 1 for days without data - - return fi - - -def get_incoming_neutron_flux(start_date, end_date, station, utc_offset=0, expand_window=0, verbose=False): - """Function to retrieve neutron flux from the Neutron Monitor Database. - - Args: - start_date (datetime): Start date of the time series. - end_date (datetime): End date of the time series. - station (str): Neutron Monitor station to retrieve data from. - utc_offset (int): UTC offset in hours. Default is 0. - expand_window (int): Number of hours to expand the time window to retrieve extra data. Default is 0. - verbose (bool): Print information about the request. Default is False. - - Returns: - (pandas.DataFrame): Neutron flux in counts per hour and timestamps. - - References: - Documentation available:https://www.nmdb.eu/nest/help.php#howto - """ - - # Example: get_incoming_neutron_flux(station='IRKT',start_date='2020-04-10 11:00:00',end_date='2020-06-18 17:00:00') - # Template url = 'http://nest.nmdb.eu/draw_graph.php?formchk=1&stations[]=KERG&output=ascii&tabchoice=revori&dtype=corr_for_efficiency&date_choice=bydate&start_year=2009&start_month=09&start_day=01&start_hour=00&start_min=00&end_year=2009&end_month=09&end_day=05&end_hour=23&end_min=59&yunits=0' - - # Expand the time window by 1 hour to ensure an extra observation is included in the request. - start_date -= pd.Timedelta(hours=expand_window) - end_date += pd.Timedelta(hours=expand_window) - - # Convert local time to UTC - start_date = start_date - pd.Timedelta(hours=utc_offset) - end_date = end_date - pd.Timedelta(hours=utc_offset) - root = 'http://www.nmdb.eu/nest/draw_graph.php?' - url_par = ['formchk=1', - 'stations[]=' + station, - 'output=ascii', - 'tabchoice=revori', - 'dtype=corr_for_efficiency', - 'tresolution=' + str(60), - 'date_choice=bydate', - 'start_year=' + str(start_date.year), - 'start_month=' + str(start_date.month), - 'start_day=' + str(start_date.day), - 'start_hour=' + str(start_date.hour), - 'start_min=' + str(start_date.minute), - 'end_year=' + str(end_date.year), - 'end_month=' + str(end_date.month), - 'end_day=' + str(end_date.day), - 'end_hour=' + str(end_date.hour), - 'end_min=' + str(end_date.minute), - 'yunits=0'] - - url = root + '&'.join(url_par) - - if verbose: - print(f"Retrieving data from {url}") - - r = requests.get(url).content.decode('utf-8') - - # Subtract 1 hour to restore the last date included in the request. - end_date -= pd.Timedelta('1H') - start = r.find("RCORR_E\n") + 8 - end = r.find('\n
    Total') - 1 - s = r[start:end] - s2 = ''.join([row.replace(';', ',') for row in s]) - try: - df_flux = pd.read_csv(io.StringIO(s2), names=['timestamp', 'counts']) - except: - if verbose: - print(f"Error retrieving data from {url}") - return None - - # Check if all values from selected detector are NaN. If yes, warn the user - if df_flux['counts'].isna().all(): - warnings.warn('Data for selected neutron detectors appears to be unavailable for the selected period') - - # Convert timestamp to datetime and apply UTC offset - df_flux['timestamp'] = pd.to_datetime(df_flux['timestamp']) - df_flux['timestamp'] = df_flux['timestamp'] + pd.Timedelta(hours=utc_offset) - - # Print acknowledgement to inform users about restrictions and to acknowledge the NMDB database - acknowledgement = """Data retrieved via NMDB are the property of the individual data providers. These data are free for non commercial -use to within the restriction imposed by the providers. If you use such data for your research or applications, please acknowledge -the origin by a sentence like 'We acknowledge the NMDB database (www.nmdb.eu) founded under the European Union's FP7 programme -(contract no. 213007), and the PIs of individual neutron monitors at: IGY Jungfraujoch -(Physikalisches Institut, University of Bern, Switzerland)""" - - return df_flux - - -def get_reference_neutron_flux(station, date=pd.to_datetime("2011-05-01")): - """Function to retrieve reference neutron flux from the Neutron Monitor Database. Default date is 2011-05-01, following previous studies (Zreda et a., 2012, Hawdon et al., 2014, Bogena et al., 2022). - - Args: - station (str): Neutron Monitor station to retrieve data from. - date (datetime): Date of the reference neutron flux. Default is 2011-05-01. - - Returns: - (float): Reference neutron flux in counts per hour. - - References: - Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079-4099. - - Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043. - - Bogena, H. R., Schrön, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., ... & Vereecken, H. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14(3), 1125-1151. - -""" - - # Get flux for 2011-05-01 - df_flux = get_incoming_neutron_flux(date, date + pd.Timedelta(hours=24), station=station) - if df_flux is None: - warnings.warn(f"Reference neutron flux for {station} not available. Returning NaN.") - else: - return df_flux['counts'].median() - - -def smooth_1d(values, window=5, order=3, method='moving_median'): - """Use a Savitzky-Golay filter to smooth the signal of corrected neutron counts or another one-dimensional array (e.g. computed volumetric water content). - - Args: - values (pd.DataFrame or pd.Serie): Dataframe containing the values to smooth. - window (int): Window size for the Savitzky-Golay filter. Default is 5. - method (str): Method to use for smoothing the data. Default is 'moving_median'. - Options are 'moving_average', 'moving_median' and 'savitzky_golay'. - order (int): Order of the Savitzky-Golay filter. Default is 3. - - Returns: - (pd.DataFrame): DataFrame with smoothed values. - - References: - Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. - Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9. - doi.org/10.3389/frwa.2020.00009 - - Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. - Analytical chemistry, 36(8), 1627-1639. - """ - - if not isinstance(values, pd.Series) and not isinstance(x, pd.DataFrame): - raise ValueError('Input must be a pandas Series or DataFrame') - - if method == 'moving_average': - corrected_counts = values.rolling(window=window, center=True, min_periods=1).mean() - elif method == 'moving_median': - corrected_counts = values.rolling(window=window, center=True, min_periods=1).median() - - elif method == 'savitzky_golay': - if values.isna().any(): - print('Dataframe contains NaN values. Please remove NaN values before smoothing the data.') - - if type(values) == pd.core.series.Series: - filtered = savgol_filter(values, window, order) - corrected_counts = pd.DataFrame(filtered, columns=['smoothed'], index=values.index) - elif type(values) == pd.core.frame.DataFrame: - for col in values.columns: - values[col] = savgol_filter(values[col], window, order) - else: - raise ValueError( - 'Invalid method. Please select a valid filtering method., options are: moving_average, moving_median, savitzky_golay') - corrected_counts = corrected_counts.ffill(limit=window).bfill(limit=window).copy() - return corrected_counts - - -def correction_bwe(counts, bwe, r2_N0=0.05): - """Function to correct for biomass effects in neutron counts. - following the approach described in Baatz et al., 2015. - - Args: - counts (array or pd.Series or pd.DataFrame): Array of ephithermal neutron counts. - bwe (float): Biomass water equivalent kg m-2. - r2_N0 (float): Ratio of neutron counts with biomass to neutron counts without biomass. Default is 0.05. - - Returns: - (array or pd.Series or pd.DataFrame): Array of corrected neutron counts for biomass effects. - - References: - Baatz, R., H. R. Bogena, H.-J. Hendricks Franssen, J. A. Huisman, C. Montzka, and H. Vereecken (2015), - An empiricalvegetation correction for soil water content quantification using cosmic ray probes, - Water Resour. Res., 51, 2030–2046, doi:10.1002/ 2014WR016443. - """ - - return counts / (1 - bwe * r2_N0) - - -def biomass_to_bwe(biomass_dry, biomass_fresh, fWE=0.494): - """Function to convert biomass to biomass water equivalent. - - Args: - biomass_dry (array or pd.Series or pd.DataFrame): Above ground dry biomass in kg m-2. - biomass_fresh (array or pd.Series or pd.DataFrame): Above ground fresh biomass in kg m-2. - fWE (float): Stoichiometric ratio of H2O to organic carbon molecules in the plant (assuming this is mostly cellulose) - Default is 0.494 (Wahbi & Avery, 2018). - - Returns: - (array or pd.Series or pd.DataFrame): Biomass water equivalent in kg m-2. - - References: - Wahbi, A., Avery, W. (2018). In Situ Destructive Sampling. In: - Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent. - Springer, Cham. https://doi.org/10.1007/978-3-319-69539-6_2 - """ - return (biomass_fresh - biomass_dry) + fWE * biomass_dry - - -def correction_road(counts, theta_N, road_width, road_distance=0.0, theta_road=0.12, p0=0.42, p1=0.5, p2=1.06, p3=4, - p4=0.16, p6=0.94, p7=1.10, p8=2.70, p9=0.01): - """Function to correct for road effects in neutron counts. - following the approach described in Schrön et al., 2018. - - Args: - counts (array or pd.Series or pd.DataFrame): Array of ephithermal neutron counts. - theta_N (float): Volumetric water content of the soil estimated from the uncorrected neutron counts. - road_width (float): Width of the road in m. - road_distance (float): Distance of the road from the sensor in m. Default is 0.0. - theta_road (float): Volumetric water content of the road. Default is 0.12. - p0-p9 (float): Parameters of the correction function. Default values are from Schrön et al., 2018. - - Returns: - (array or pd.Series or pd.DataFrame): Array of corrected neutron counts for road effects. - - References: - Schrön,M.,Rosolem,R.,Köhli,M., Piussi,L.,Schröter,I.,Iwema,J.,etal. (2018).Cosmic-ray neutron rover surveys - of field soil moisture and the influence of roads.WaterResources Research,54,6441–6459. - https://doi. org/10.1029/2017WR021719 - """ - F1 = p0 * (1 - np.exp(-p1 * road_width)) - F2 = -p2 - p3 * theta_road - ((p4 + theta_road) / (theta_N)) - F3 = p6 * np.exp(-p7 * (road_width ** -p8) * road_distance ** 4) + (1 - p6) * np.exp(-p9 * road_distance) - - C_roads = 1 + F1 * F2 * F3 - - corrected_counts = counts / C_roads - - return corrected_counts - - -def counts_to_vwc(counts, N0, Wlat, Wsoc, bulk_density, a0=0.0808, a1=0.372, a2=0.115): - r"""Function to convert corrected and filtered neutron counts into volumetric water content. - - This method implements soil moisture estimation using the non-linear relationship between neutron count and soil volumetric water content following the approach described in Desilets et al., 2010. - - $\theta(N) =\frac{a_0}{(\frac{N}{N_0}) - a_1} - a_2 $ - - Args: - counts (array or pd.Series or pd.DataFrame): Array of corrected and filtered neutron counts. - N0 (float): Device-specific neutron calibration constant. - Wlat (float): Lattice water content. - Wsoc (float): Soil organic carbon content. - bulk_density (float): Soil bulk density. - a0 (float): Parameter given in Zreda et al., 2012. Default is 0.0808. - a1 (float): Parameter given in Zreda et al., 2012. Default is 0.372. - a2 (float): Parameter given in Zreda et al., 2012. Default is 0.115. - - Returns: - (array or pd.Series or pd.DataFrame): Volumetric water content in m3 m-3. - - References: - Desilets, D., M. Zreda, and T.P.A. Ferré. 2010. Nature’s neutron probe: - Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46:W11505. - doi.org/10.1029/2009WR008726 - """ - - # Convert neutron counts into vwc - vwc = (a0 / (counts / N0 - a1) - a2 - Wlat - Wsoc) * bulk_density - return vwc - - -def sensing_depth(vwc, pressure, p_ref, bulk_density, Wlat, dist=None, method='Schron_2017'): - """Function that computes the estimated sensing depth of the cosmic-ray neutron probe. - The function offers several methods to compute the depth at which 86 % of the neutrons - probe the soil profile. - - Args: - vwc (array or pd.Series or pd.DataFrame): Estimated volumetric water content for each timestamp. - pressure (array or pd.Series or pd.DataFrame): Atmospheric pressure in hPa for each timestamp. - p_ref (float): Reference pressure in hPa. - bulk_density (float): Soil bulk density. - Wlat (float): Lattice water content. - method (str): Method to compute the sensing depth. Options are 'Schron_2017' or 'Franz_2012'. - dist (list or array): List of radial distances at which to estimate the sensing depth. Only used for the 'Schron_2017' method. - - Returns: - (array or pd.Series or pd.DataFrame): Estimated sensing depth in m. - - References: - Franz, T.E., Zreda, M., Ferre, T.P.A., Rosolem, R., Zweck, C., Stillman, S., Zeng, X. and Shuttleworth, W.J., 2012. - Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources. - Water Resources Research, 48(8). doi.org/10.1029/2012WR011871 - - Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., et al. (2017). - Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. - Hydrol. Earth Syst. Sci. 21, 5009–5030. doi.org/10.5194/hess-21-5009-2017 - """ - - # Determine sensing depth (D86) - if method == 'Schron_2017': - # See Appendix A of Schrön et al. (2017) - Fp = 0.4922 / (0.86 - np.exp(-1 * pressure / p_ref)) - Fveg = 0 - results = [] - for d in dist: - # Compute r_star - r_start = d / Fp - - # Compute soil depth that accounts for 86% of the neutron flux - D86 = 1 / bulk_density * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r_start)) * (20 + (Wlat + vwc)) / ( - 0.0429 + (Wlat + vwc))) - results.append(D86) - - elif method == 'Franz_2012': - results = 5.8 / (bulk_density * Wlat + vwc + 0.0829) - else: - raise ValueError('Method not recognized. Please select either "Schron_2017" or "Franz_2012".') - return results - - -def abs_humidity(relative_humidity, temp): - """ - Compute the actual vapor pressure (e) in g m^-3 using RH (%) and current temperature (c) observations. - - Args: - relative_humidity (float): relative humidity (%) - temp (float): temperature (Celsius) - - Returns: - float: actual vapor pressure (g m^-3) - """ - - ### Atmospheric water vapor factor - # Saturation vapor pressure - e_sat = 0.611 * np.exp(17.502 * temp / ( - temp + 240.97)) * 1000 # in Pascals Eq. 3.8 p.41 Environmental Biophysics (Campbell and Norman) - - # Vapor pressure Pascals - Pw = e_sat * relative_humidity / 100 - - # Absolute humidity (g/m^3) - C = 2.16679 # g K/J; - abs_h = C * Pw / (temp + 273.15) - return abs_h - - -def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=None, Hveg=0, tol=0.01): - """Function to compute distance weights corresponding to each soil sample. - - Args: - h (np.array or pd.Series): Air Humidity from 0.1 to 50 in g/m^3. When h=0, the function will skip the distance weighting. - theta (np.array or pd.Series): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3) - distances (np.array or pd.Series): Distances from the location of each sample to the origin (0.5 - 600 m) - depth (np.array or pd.Series): Depths for each sample (m) - rhob (np.array or pd.Series): Bulk density in g/cm^3 - p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method. - Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method. - method (str): Method to compute the distance weights. Options are 'Kohli_2015' or 'Schron_2017'. - tol (float): Tolerance for the iterative solution. Default is 0.01. Required for the 'Schron_2017' method. - - Returns: - theta_new (np.array or pd.Series): Weighted soil moisture values. - weights (np.array or pd.Series): Distance weights for each sample. For the 'Schron_2017' method, the weights are computed for each distance. - - References: - Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S. (2015). - Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray - neutrons. Water Resour. Res. 51, 5772–5790. doi:10.1002/2015WR017169 - - Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., - Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., - Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and - validation of cosmic-ray neutron sensors in the light of spatial sensitivity, - Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017. - """ - - if method == 'Kohli_2015': - # Table A1. Parameters for Fi and D86 - p10 = 8735; - p11 = 17.1758; - p12 = 11720; - p13 = 0.00978; - p14 = 7045; - p15 = 0.003632; - p20 = 2.7925e-2; - p21 = 5.0399; - p22 = 2.8544e-2; - p23 = 0.002455; - p24 = 6.851e-5; - p25 = 9.2926; - p30 = 247970; - p31 = 17.63; - p32 = 374655; - p33 = 0.00191; - p34 = 195725; - p40 = 5.4818e-2; - p41 = 15.921; - p42 = 0.6373; - p43 = 5.99e-2; - p44 = 5.425e-4; - p50 = 1383702; - p51 = 4.156; - p52 = 5325; - p53 = 0.00238; - p54 = 0.0156; - p55 = 0.130; - p56 = 1521; - p60 = 6.031e-5; - p61 = 98.5; - p62 = 1.0466e-3; - p70 = 11747; - p71 = 41.66; - p72 = 4521; - p73 = 0.01998; - p74 = 0.00604; - p75 = 2534; - p76 = 0.00475; - p80 = 1.543e-2; - p81 = 10.06; - p82 = 1.807e-2; - p83 = 0.0011; - p84 = 8.81e-5; - p85 = 0.0405; - p86 = 20.24; - p90 = 8.321; - p91 = 0.14249; - p92 = 0.96655; - p93 = 26.42; - p94 = 0.0567; - - # Numerical determination of the penetration depth (86%) (Eq. 8) - D86 = 1 / rhob * (p90 + p91 * (p92 + np.exp(-1 * distances / 100)) * (p93 + theta) / (p94 + theta)) - - # Depth weights (Eq. 7) - Wd = np.exp(-2 * depth / D86) - - if h == 0: - W = 1 # skip distance weighting - - elif (h >= 0.1) and (h <= 50): - # Functions for Fi (Appendix A in Köhli et al., 2015) - F1 = p10 * (1 + p13 * h) * np.exp(-p11 * theta) + p12 * (1 + p15 * h) - p14 * theta - F2 = ((-p20 + p24 * h) * np.exp(-p21 * theta / (1 + p25 * theta)) + p22) * (1 + h * p23) - F3 = (p30 * (1 + p33 * h) * np.exp(-p31 * theta) + p32 - p34 * theta) - F4 = p40 * np.exp(-p41 * theta) + p42 - p43 * theta + p44 * h - F5 = p50 * (0.02 - 1 / p55 / (h - p55 + p56 * theta)) * (p54 - theta) * np.exp( - -p51 * (theta - p54)) + p52 * (0.7 - h * theta * p53) - F6 = p60 * (h + p61) + p62 * theta - F7 = (p70 * (1 - p76 * h) * np.exp(-p71 * theta * (1 - h * p74)) + p72 - p75 * theta) * (2 + h * p73) - F8 = ((-p80 + p84 * h) * np.exp(-p81 * theta / (1 + p85 * h + p86 * theta)) + p82) * (2 + h * p83) - - # Distance weights (Eq. 3) - W = np.ones_like(distances) * np.nan - for i in range(len(distances)): - if (distances[i] <= 50) and (distances[i] > 0.5): - W[i] = F1[i] * (np.exp(-F2[i] * distances[i])) + F3[i] * np.exp(-F4[i] * distances[i]) - - elif (distances[i] > 50) and (distances[i] < 600): - W[i] = F5[i] * (np.exp(-F6[i] * distances[i])) + F7[i] * np.exp(-F8[i] * distances[i]) - - else: - raise ValueError('Input distances are not valid.') - - else: - raise ValueError('Air humidity values are out of range.') - - # Combined and normalized weights - weights = Wd * W / np.nansum(Wd * W) - - theta_new = np.sum(theta * weights) - - return theta_new, weights - elif method == 'Schron_2017': - # Horizontal distance weights According to Eq. 6 and Table A1 in Schrön et al. (2017) - # Method for calculating the horizontal distance weights from 0 to 1m - def WrX(r, x, y): - x00 = 3.7 - a00 = 8735; - a01 = 22.689; - a02 = 11720; - a03 = 0.00978; - a04 = 9306; - a05 = 0.003632 - a10 = 2.7925e-2; - a11 = 6.6577; - a12 = 0.028544; - a13 = 0.002455; - a14 = 6.851e-5; - a15 = 12.2755 - a20 = 247970; - a21 = 23.289; - a22 = 374655; - a23 = 0.00191; - a24 = 258552 - a30 = 5.4818e-2; - a31 = 21.032; - a32 = 0.6373; - a33 = 0.0791; - a34 = 5.425e-4 - - x0 = x00 - A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y) - A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13) - A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y) - A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x - - return ((A0 * (np.exp(-A1 * r)) + A2 * np.exp(-A3 * r)) * (1 - np.exp(-x0 * r))) - - # Method for calculating the horizontal distance weights from 1 to 50m - def WrA(r, x, y): - a00 = 8735; - a01 = 22.689; - a02 = 11720; - a03 = 0.00978; - a04 = 9306; - a05 = 0.003632 - a10 = 2.7925e-2; - a11 = 6.6577; - a12 = 0.028544; - a13 = 0.002455; - a14 = 6.851e-5; - a15 = 12.2755 - a20 = 247970; - a21 = 23.289; - a22 = 374655; - a23 = 0.00191; - a24 = 258552 - a30 = 5.4818e-2; - a31 = 21.032; - a32 = 0.6373; - a33 = 0.0791; - a34 = 5.425e-4 - - A0 = (a00 * (1 + a03 * x) * np.exp(-a01 * y) + a02 * (1 + a05 * x) - a04 * y) - A1 = ((-a10 + a14 * x) * np.exp(-a11 * y / (1 + a15 * y)) + a12) * (1 + x * a13) - A2 = (a20 * (1 + a23 * x) * np.exp(-a21 * y) + a22 - a24 * y) - A3 = a30 * np.exp(-a31 * y) + a32 - a33 * y + a34 * x - - return A0 * np.exp(-A1 * r) + A2 * np.exp(-A3 * r) - - # Method for calculating the horizontal distance weights from 50 to 600m - def WrB(r, x, y): - b00 = 39006; - b01 = 15002337; - b02 = 2009.24; - b03 = 0.01181; - b04 = 3.146; - b05 = 16.7417; - b06 = 3727 - b10 = 6.031e-5; - b11 = 98.5; - b12 = 0.0013826 - b20 = 11747; - b21 = 55.033; - b22 = 4521; - b23 = 0.01998; - b24 = 0.00604; - b25 = 3347.4; - b26 = 0.00475 - b30 = 1.543e-2; - b31 = 13.29; - b32 = 1.807e-2; - b33 = 0.0011; - b34 = 8.81e-5; - b35 = 0.0405; - b36 = 26.74 - - B0 = (b00 - b01 / (b02 * y + x - 0.13)) * (b03 - y) * np.exp(-b04 * y) - b05 * x * y + b06 - B1 = b10 * (x + b11) + b12 * y - B2 = (b20 * (1 - b26 * x) * np.exp(-b21 * y * (1 - x * b24)) + b22 - b25 * y) * (2 + x * b23) - B3 = ((-b30 + b34 * x) * np.exp(-b31 * y / (1 + b35 * x + b36 * y)) + b32) * (2 + x * b33) - - return B0 * np.exp(-B1 * r) + B2 * np.exp(-B3 * r) - - # Wrapper method for calculating the horizontal distance weights - def Wr(r, x, y): - if r <= 1: - return WrX(r, x, y) - elif r <= 50: - return WrA(r, x, y) - elif r <= 600: - return WrB(r, x, y) - else: - raise ValueError("r must be between 1 and 600m when using 'Schron_2017' method") - - def rscaled(r, p, y, Hveg = 0): - Fp = 0.4922 / (0.86 - np.exp(-p / 1013.25)) - Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y)) - return r / Fp / Fveg - - # Rename variables to be consistent with the revised paper - r = distances - theta_ = np.mean(theta) # Start with the mean value of theta as initial guess - bd = np.mean(rhob) # Neutrons are impacted by the bulk density across the whole area and not just the sample area. https://github.com/soilwater/crnpy/issues/9#issuecomment-2003813777 - - # Vertical distance weights functions - def D86(r, bd, y): - return 1 / bd * (8.321 + 0.14249 * (0.96655 + np.exp(-0.01 * r)) * (20 + y) / (0.0429 + y)) - - def Wd(d, r, bd, y): - return np.exp(-2 * d / D86(r, bd, y)) - - step = 0 - diff = 1 - while diff > tol: - step += 1 - print(f"Step {step}, diff = {diff}", end="\r") - # Calculate the scaled distance and D86 - r = rscaled(distances, p, theta_, Hveg) - - # Calculate the vertical average for each profile - P = np.unique(distances) - theta_P = [] - r_stars = [] - for i in range(len(P)): - profile = P[i] - idx = distances == profile - depths_P = depth[idx] - r_P = r[idx] - theta_Pi = theta[idx] - # Calculate the vertical distance weights - Wd_P = Wd(depths_P, r_P, bd, theta_Pi) - # Calculate the vertical average of theta - theta_P_i = np.sum(Wd_P * theta_Pi) / np.sum(Wd_P) - theta_P.append(theta_P_i) - r_stars.append(np.mean(r_P)) - - # Calculate the horizontal distance weights - Wrs = np.array([Wr(r_star, theta_p, Hveg) for r_star, theta_p in zip(r_stars, theta_P)]) - theta_new = np.sum(Wrs * theta_P) / np.sum(Wrs) - diff = np.abs(theta_new - theta_) - theta_ = theta_new - - print(f"Solution converged after {step} steps, the average soil moisture is {theta_new}") - - return theta_new, [theta_P, r_stars, Wrs] - else: - raise ValueError(f"Method {method} not recognized. Please use one of the following methods: 'Kohli_2015' or 'Schron_2017'") - - -def exp_filter(sm, T=1): - """Exponential filter to estimate soil moisture in the rootzone from surface observtions. - - Args: - sm (list or array): Soil moisture in mm of water for the top layer of the soil profile. - T (float): Characteristic time length in the same units as the measurement interval. - - Returns: - sm_subsurface (list or array): Subsurface soil moisture in the same units as the input. - - References: - Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B. and Martin, E., 2008. - From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model - simulations. Hydrology and Earth System Sciences, 12(6), pp.1323-1337. - - Franz, T.E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L. and Wagner, W., 2020. - Practical data products from cosmic-ray neutron sensing for hydrological applications. Frontiers in Water, 2, p.9. - - Rossini, P. and Patrignani, A., 2021. Predicting rootzone soil moisture from surface observations in cropland using an exponential filter. - Soil Science Society of America Journal. - """ - - # Parameters - t_delta = 1 - sm_min = np.min(sm) - sm_max = np.max(sm) - ms = (sm - sm_min) / (sm_max - sm_min) - - # Pre-allocate soil water index array and recursive constant K - SWI = np.ones_like(ms) * np.nan - K = np.ones_like(ms) * np.nan - - # Initial conditions - SWI[0] = ms[0] - K[0] = 1 - - # Values from 2 to N - for n in range(1, len(SWI)): - if ~np.isnan(ms[n]) & ~np.isnan(ms[n - 1]): - K[n] = K[n - 1] / (K[n - 1] + np.exp(-t_delta / T)) - SWI[n] = SWI[n - 1] + K[n] * (ms[n] - SWI[n - 1]) - else: - continue - - # Rootzone storage - sm_subsurface = SWI * (sm_max - sm_min) + sm_min - - return sm_subsurface - - -def cutoff_rigidity(lat, lon): - """Function to estimate the approximate cutoff rigidity for any point on Earth according to the - tabulated data of Smart and Shea, 2019. The returned value can be used to select the appropriate - neutron monitor station to estimate the cosmic-ray neutron intensity at the location of interest. - - Args: - lat (float): Geographic latitude in decimal degrees. Value in range -90 to 90 - lon (float): Geographic longitude in decimal degrees. Values in range from 0 to 360. - Typical negative longitudes in the west hemisphere will fall in the range 180 to 360. - - Returns: - (float): Cutoff rigidity in GV. Error is about +/- 0.3 GV - - Examples: - Estimate the cutoff rigidity for Newark, NJ, US - - >>> zq = cutoff_rigidity(39.68, -75.75) - >>> print(zq) - 2.52 GV (Value from NMD is 2.40 GV) - - References: - Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures - for cosmic‐ray neutron soil moisture probes located across Australia. Water Resources Research, - 50(6), 5029-5043. - - Smart, D. & Shea, Matthew. (2001). Geomagnetic Cutoff Rigidity Computer Program: - Theory, Software Description and Example. NASA STI/Recon Technical Report N. - - Shea, M. A., & Smart, D. F. (2019, July). Re-examination of the First Five Ground-Level Events. - In International Cosmic Ray Conference (ICRC2019) (Vol. 36, p. 1149). - """ - xq = lon - yq = lat - - if xq < 0: - xq = xq * -1 + 180 - Z = np.array(data.cutoff_rigidity) - x = np.linspace(0, 360, Z.shape[1]) - y = np.linspace(90, -90, Z.shape[0]) - X, Y = np.meshgrid(x, y) - points = np.array((X.flatten(), Y.flatten())).T - values = Z.flatten() - zq = griddata(points, values, (xq, yq)) - - return np.round(zq, 2) - - -def atmospheric_depth(elevation, latitude): - """Function to estimate the atmospheric depth for any point on Earth according to McJannet and Desilets, 2023 - - This function is required in the calculation of the location-dependent reference correction proposed by McJannet and Desilets, 2023. - - Args: - elevation (float): Elevation in meters above sea level. - latitude (float): Geographic latitude in decimal degrees. Value in range -90 to 90 - - Returns: - (float): Atmospheric depth in g/cm2 - - References: - Atmosphere, U. S. (1976). US standard atmosphere. National Oceanic and Atmospheric Administration. - - McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889. - """ - - density_of_rock = 2670 # Density of rock in kg/m3 - air_pressure_sea_level = 1013.25 # Air pressure at sea level in hPa - air_molar_mass = 0.0289644 # Air molar mass in kg/mol - universal_gas_constant = 8.31432 # Universal gas constant in J/(mol*K) - reference_temperature = 288.15 # Reference temperature Kelvin - temperature_lapse_rate = -0.0065 # Temperature lapse rate in K/m - - # Gravity at sea-level calculation - gravity_sea_level = 9.780327 * ( - 1 + 0.0053024 * np.sin(np.radians(latitude)) ** 2 - 0.0000058 * np.sin(2 * np.radians(latitude)) ** 2) - # Free air correction - free_air = -3.086 * 10 ** -6 * elevation - # Bouguer correction - bouguer_corr = 4.193 * 10 ** -10 * density_of_rock * elevation - # Total gravity - gravity = gravity_sea_level + free_air + bouguer_corr - - # Air pressure calculation - reference_air_pressure = air_pressure_sea_level * ( - 1 + temperature_lapse_rate / reference_temperature * elevation) ** ((-gravity * air_molar_mass) / ( - universal_gas_constant * temperature_lapse_rate)) - - # Atmospheric depth calculation - atmospheric_depth = (10 * reference_air_pressure) / gravity - return atmospheric_depth - - -def location_factor(site_atmospheric_depth, site_Rc, reference_atmospheric_depth, reference_Rc): - """ - Function to estimate the location factor between two sites according to McJannet and Desilets, 2023. - - - Args: - site_atmospheric_depth (float): Atmospheric depth at the site in g/cm2. Can be estimated using the function `atmospheric_depth()` - site_Rc (float): Cutoff rigidity at the site in GV. Can be estimated using the function `cutoff_rigidity()` - reference_atmospheric_depth (float): Atmospheric depth at the reference location in g/cm2. - reference_Rc (float): Cutoff rigidity at the reference location in GV. - - Returns: - (float): Location-dependent correction factor. - - References: - McJannet, D. L., & Desilets, D. (2023). Incoming Neutron Flux Corrections for Cosmic‐Ray Soil and Snow Sensors Using the Global Neutron Monitor Network. Water Resources Research, 59(4), e2022WR033889. - - """ - - # Renamed variables based on the provided table - c0 = -0.0009 # from C39 - c1 = 1.7699 # from C40 - c2 = 0.0064 # from C41 - c3 = 1.8855 # from C42 - c4 = 0.000013 # from C43 - c5 = -1.2237 # from C44 - epsilon = 1 # from C45 - - # Translated formula with renamed variables from McJannet and Desilets, 2023 - tau_new = epsilon * (c0 * reference_atmospheric_depth + c1) * ( - 1 - np.exp( - -(c2 * reference_atmospheric_depth + c3) * reference_Rc ** (c4 * reference_atmospheric_depth + c5))) - - norm_factor = 1 / tau_new - - # Calculate the result using the provided parameters - tau = epsilon * norm_factor * (c0 * site_atmospheric_depth + c1) * ( - 1 - np.exp(-(c2 * site_atmospheric_depth + c3) * site_Rc ** (c4 * site_atmospheric_depth + c5))) - return tau - - -def find_neutron_monitor(Rc, start_date=None, end_date=None, verbose=False): - """Search for potential reference neutron monitoring stations based on cutoff rigidity. - - Args: - Rc (float): Cutoff rigidity in GV. Values in range 1.0 to 3.0 GV. - start_date (datetime): Start date for the period of interest. - end_date (datetime): End date for the period of interest. - verbose (bool): If True, print a expanded output of the incoming neutron flux data. - - Returns: - (list): List of top five stations with closes cutoff rigidity. - User needs to select station according to site altitude. - - Examples: - >>> from crnpy import crnpy - >>> Rc = 2.40 # 2.40 Newark, NJ, US - >>> crnpy.find_neutron_monitor(Rc) - Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations - - Your cutoff rigidity is 2.4 GV - STID NAME R Altitude_m - 40 NEWK Newark 2.40 50 - 33 MOSC Moscow 2.43 200 - 27 KIEL Kiel 2.36 54 - 28 KIEL2 KielRT 2.36 54 - 31 MCRL Mobile Cosmic Ray Laboratory 2.46 200 - 32 MGDN Magadan 2.10 220 - 42 NVBK Novosibirsk 2.91 163 - 26 KGSN Kingston 1.88 65 - 9 CLMX Climax 3.00 3400 - 57 YKTK Yakutsk 1.65 105 - - References: - https://www.nmdb.eu/nest/help.php#helpstations - """ - - # Load file with list of neutron monitoring stations - stations = pd.DataFrame(data.neutron_detectors, columns=["STID", "NAME", "R", "Altitude_m"]) - - # Sort stations by closest cutoff rigidity - idx_R = (stations['R'] - Rc).abs().argsort() - - if start_date is not None and end_date is not None: - stations["Period available"] = False - for i in range(10): - station = stations.iloc[idx_R[i]]["STID"] - try: - if get_incoming_neutron_flux(start_date, end_date, station, verbose=verbose) is not None: - stations.iloc[idx_R[i], -1] = True - except: - pass - - if sum(stations["Period available"] == True) == 0: - print("No stations available for the selected period!") - else: - stations = stations[stations["Period available"] == True] - idx_R = (stations['R'] - Rc).abs().argsort() - result = stations.iloc[idx_R.iloc[:10]] - else: - result = stations.reindex(idx_R).head(10).rename_axis(None) - - # Print results - print('') - print( - """Select a station with an altitude similar to that of your location. For more information go to: 'https://www.nmdb.eu/nest/help.php#helpstations""") - print('') - print(f"Your cutoff rigidity is {Rc} GV") - print(result) - return result - - -def interpolate_incoming_flux(nmdb_timestamps, nmdb_counts, crnp_timestamps): - """Function to interpolate incoming neutron flux to match the timestamps of the observations. - - Args: - nmdb_timestamps (pd.Series or np.array): Series or array of timestamps in datetime format from the NMDB - nmdb_counts (pd.Series or np.array): Series or array of incoming neutron flux counts from the NMDB - crnp_timestamps (pd.Series or np.array): Series or array of timestamps in datetime format from the CRNP device - - Returns: - (pd.Series): Series containing interpolated incoming neutron flux. Length of Series is the same as crnp_timestamps - """ - # Create a DataFrame from nmdb timestamps and counts - df_nmdb = pd.DataFrame({'timestamp': nmdb_timestamps, 'counts': nmdb_counts}) - - # Set the Timestamp column as the index - df_nmdb.set_index('timestamp', inplace=True) - - # Reindex the DataFrame to the timestamps from the CRNP device using the nearest method - # This will match each CRNP timestamp with the nearest NMDB timestamp - interpolated_flux = df_nmdb.reindex(crnp_timestamps, method='nearest')['counts'].values - - # drop NaN values - interpolated_flux = interpolated_flux[~np.isnan(interpolated_flux)] - - assert len(interpolated_flux) == len( - crnp_timestamps), "Length of interpolated flux does not match length of CRNP timestamps" - - return interpolated_flux - - -def lattice_water(clay_content, total_carbon=None): - r"""Estimate the amount of water in the lattice of clay minerals. - - ![img1](img/lattice_water_simple.png) | ![img2](img/lattice_water_multiple.png) - :-------------------------:|:-------------------------: - $\omega_{lat} = 0.097 * clay(\%)$ | $\omega_{lat} = -0.028 + 0.077 * clay(\%) + 0.459 * carbon(\%)$ - Linear regression [lattice water (%) as a function of clay (%)] done with data from Kansas Sate University - Soil Water Processes Lab. | Multiple linear regression [lattice water (%) as a function of clay (%) and soil carbon (%)] done with data from Soil Water Processes Lab. - - Args: - clay_content (float): Clay content in the soil in percent. - total_carbon (float, optional): Total carbon content in the soil in percent. - If None, the amount of water is estimated based on clay content only. - - Returns: - (float): Amount of water in the lattice of clay minerals in percent - """ - if total_carbon is None: - lattice_water = 0.097 * clay_content - else: - lattice_water = -0.028 + 0.077 * clay_content + 0.459 * total_carbon - return lattice_water - - -def latlon_to_utm(lat, lon, utm_zone_number=None, utm_zone_letter=None): - """Convert geographic coordinates (lat, lon) to projected coordinates (utm) using the Military Grid Reference System. - - Function only applies to non-polar coordinates. - If further functionality is required, consider using the utm module. See references for more information. - - ![UTM zones](https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Universal_Transverse_Mercator_zones.svg/1920px-Universal_Transverse_Mercator_zones.svg.png) - UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted. See [UTM zones](https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#UTM_zones) for a full description. - - - Args: - lat (float, array): Latitude in decimal degrees. - lon (float, array): Longitude in decimal degrees. - utm_zone_number (int): UTM zone number. If None, the zone number is automatically calculated. - utm_zone_letter (str): UTM zone letter. If None, the zone letter is automatically calculated. - - Returns: - (float, float, int, str): Tuple of easting, northing, zone number and zone letter. First element is easting, second is northing, third is zone number and fourth is zone letter. - - References: - Code adapted from utm module created by Tobias Bieniek (Github username: Turbo87) - [https://github.com/Turbo87/utm](https://github.com/Turbo87/utm) - - [https://www.maptools.com/tutorials/grid_zone_details#](https://www.maptools.com/tutorials/grid_zone_details#) - """ - # utm module requires numpy arrays - if not isinstance(lat, np.ndarray): - lat = np.array(lat) - if not isinstance(lon, np.ndarray): - lon = np.array(lon) - - if utm_zone_number is None or utm_zone_letter is None: - easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon) - else: - easting, northing, zone_number, zone_letter = utm.from_latlon(lat, lon, utm_zone_number, utm_zone_letter) - - return easting, northing, zone_number, zone_letter - - -def euclidean_distance(px, py, x, y): - """Function that computes the Euclidean distance between one point - in space and one or more points. - - Args: - px (float): x projected coordinate of the point. - py (float): y projected coordinate of the point. - x (list, ndarray, pandas.series): vector of x projected coordinates. - y (list, ndarray, pandas.series): vector of y projected coordinates. - - Returns: - (ndarray): Numpy array of distances from the point (px,py) to all the points in x and y vectors. - """ - d = np.sqrt((px - x) ** 2 + (py - y) ** 2) - return d - - -def spatial_average(x, y, z, buffer=100, min_neighbours=3, method='mean', rnd=False): - """Moving buffer filter to smooth georeferenced two-dimensional data. - - Args: - x (list or array): UTM x coordinates in meters. - y (list or array): UTM y coordinates in meters. - z (list or array): Values to be smoothed. - buffer (float): Radial buffer distance in meters. - min_neighbours (int): Minimum number of neighbours to consider for the smoothing. - method (str): One of 'mean' or 'median'. - rnd (bool): Boolean to round the final result. Useful in case of z representing neutron counts. - - Returns: - (array): Smoothed version of z with the same dimension as z. - """ - - # Convert input data to Numpy arrays - if (type(x) is not np.ndarray) or (type(y) is not np.ndarray): - try: - x = np.array(x) - y = np.array(y) - except: - raise "Input values cannot be converted to Numpy arrays." - - if len(x) != len(y): - raise f"The number of x and y must be equal. Input x has {len(x)} values and y has {len(y)} values." - - # Compute distances - N = len(x) - z_smooth = np.array([]) - for k in range(N): - px = x[k] - py = y[k] - - distances = euclidean_distance(px, py, x, y) - idx_within_buffer = distances <= buffer - - if np.isnan(z[k]): - z_new_val = np.nan - elif len(distances[idx_within_buffer]) > min_neighbours: - if method == 'mean': - z_new_val = np.nanmean(z[idx_within_buffer]) - elif method == 'median': - z_new_val = np.nanmedian(z[idx_within_buffer]) - else: - raise f"Method {method} does not exist. Provide either 'mean' or 'median'." - else: - z_new_val = z[k] # If there are not enough neighbours, keep the original value - - # Append smoothed value to array - z_smooth = np.append(z_smooth, z_new_val) - - if rnd: - z_smooth = np.round(z_smooth, 0) - - return z_smooth - - -def idw(x, y, z, X_pred, Y_pred, neighborhood=1000, p=1): - """Function to interpolate data using inverse distance weight. - - Args: - x (list or array): UTM x coordinates in meters. - y (list or array): UTM y coordinates in meters. - z (list or array): Values to be interpolated. - X_pred (list or array): UTM x coordinates where z values need to be predicted. - Y_pred (list or array): UTM y coordinates where z values need to be predicted. - neighborhood (float): Only points within this radius in meters are considered for the interpolation. - p (int): Exponent of the inverse distance weight formula. Typically, p=1 or p=2. - - Returns: - (array): Interpolated values. - - References: - [https://en.wikipedia.org/wiki/Inverse_distance_weighting](https://en.wikipedia.org/wiki/Inverse_distance_weighting) - - - """ - - # Flatten arrays to handle 1D and 2D arrays with the same code - s = X_pred.shape # Save shape - X_pred = X_pred.flatten() - Y_pred = Y_pred.flatten() - - # Pre-allocate output array - Z_pred = np.full_like(X_pred, np.nan) - - for n in range(X_pred.size): - # Distance between current and observed points - d = euclidean_distance(X_pred[n], Y_pred[n], x, y) - - # Select points within neighborhood only for interpolation - idx_neighbors = d < neighborhood - - # Compute interpolated value at point of interest - Z_pred[n] = np.sum(z[idx_neighbors] / d[idx_neighbors] ** p) / np.sum(1 / d[idx_neighbors] ** p) - - return np.reshape(Z_pred, s) - - -def interpolate_2d(x, y, z, dx=100, dy=100, method='cubic', neighborhood=1000): - """Function for interpolating irregular spatial data into a regular grid. - - Args: - x (list or array): UTM x coordinates in meters. - y (list or array): UTM y coordinates in meters. - z (list or array): Values to be interpolated. - dx (float): Pixel width in meters. - dy (float): Pixel height in meters. - method (str): Interpolation method. One of 'cubic', 'linear', 'nearest', or 'idw'. - neighborhood (float): Only points within this radius in meters are considered for the interpolation. - - Returns: - x_pred (array): 2D array with x coordinates. - y_pred (array): 2D array with y coordinates. - z_pred (array): 2D array with interpolated values. - - References: - [https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html](https://soilwater.github.io/pynotes-agriscience/notebooks/interpolation.html) - """ - - # Drop NaN values in x y and z - idx_nan = np.isnan(x) | np.isnan(y) | np.isnan(z) - x = x[~idx_nan] - y = y[~idx_nan] - z = z[~idx_nan] - - if idx_nan.any(): - print( - f"WARNING: {np.isnan(x).sum()}, {np.isnan(y).sum()}, and {np.isnan(z).sum()} NaN values were dropped from x, y, and z.") - - # Create 2D grid for interpolation - Nx = round((np.max(x) - np.min(x)) / dx) + 1 - Ny = round((np.max(y) - np.min(y)) / dy) + 1 - X_vec = np.linspace(np.min(x), np.max(x), Nx) - Y_vec = np.linspace(np.min(y), np.max(y), Ny) - X_pred, Y_pred = np.meshgrid(X_vec, Y_vec) - - if method in ['linear', 'nearest', 'cubic']: - points = list(zip(x, y)) - Z_pred = griddata(points, z, (X_pred, Y_pred), method=method) - - elif method == 'idw': - Z_pred = idw(x, y, z, X_pred, Y_pred, neighborhood) - - else: - raise f"Method {method} does not exist. Provide either 'cubic', 'linear', 'nearest', or 'idw'." - - return X_pred, Y_pred, Z_pred - - -def rover_centered_coordinates(x, y): - """Function to estimate the intermediate locations between two points, assuming the measurements were taken at a constant speed. - - Args: - x (array): x coordinates. - y (array): y coordinates. - - Returns: - x_est (array): Estimated x coordinates. - y_est (array): Estimated y coordinates. - """ - - # Make it datatype agnostic - if (isinstance(x, pd.Series)): - x = x.values - if (isinstance(y, pd.Series)): - y = y.values - - # Do the average of the two points - x_est = (x[1:] + x[:-1]) / 2 - y_est = (y[1:] + y[:-1]) / 2 - - # Add the first point to match the length of the original array - x_est = np.insert(x_est, 0, x[0]) - y_est = np.insert(y_est, 0, y[0]) - - return x_est, y_est - - -def uncertainty_counts(raw_counts, metric="std", fp=1, fw=1, fi=1): - """Function to estimate the uncertainty of raw counts. - - Measurements of proportional neutron detector systems are governed by counting statistics that follow a Poissonian probability distribution (Zreda et al., 2012). - The expected uncertainty in the neutron count rate $N$ is defined by the standard deviation $ \sqrt{N} $ (Jakobi et al., 2020). - The CV% can be expressed as $ N^{-1/2} $ - - Args: - raw_counts (array): Raw neutron counts. - metric (str): Either 'std' or 'cv' for standard deviation or coefficient of variation. - fp (float): Pressure correction factor. - fw (float): Humidity correction factor. - fi (float): Incoming neutron flux correction factor. - - Returns: - uncertainty (float): Uncertainty of raw counts. - - References: - Jakobi J, Huisman JA, Schrön M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With - Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010 - - Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, - Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012. - - """ - - s = fw / (fp * fi) - if metric == "std": - uncertainty = np.sqrt(raw_counts) * s - elif metric == "cv": - uncertainty = 1 / np.sqrt(raw_counts) * s - else: - raise f"Metric {metric} does not exist. Provide either 'std' or 'cv' for standard deviation or coefficient of variation." - return uncertainty - - -def uncertainty_vwc(raw_counts, N0, bulk_density, fp=1, fw=1, fi=1, a0=0.0808, a1=0.372, a2=0.115): - r"""Function to estimate the uncertainty propagated to volumetric water content. - - The uncertainty of the volumetric water content is estimated by propagating the uncertainty of the raw counts. - Following Eq. 10 in Jakobi et al. (2020), the uncertainty of the volumetric water content can be expressed as: - $$ - \sigma_{\theta_g}(N) = \sigma_N \frac{a_0 N_0}{(N_{cor} - a_1 N_0)^4} \sqrt{(N_{cor} - a_1 N_0)^4 + 8 \sigma_N^2 (N_{cor} - a_1 N_0)^2 + 15 \sigma_N^4} - $$ - - Args: - raw_counts (array): Raw neutron counts. - N0 (float): Calibration parameter N0. - bulk_density (float): Bulk density in g cm-3. - fp (float): Pressure correction factor. - fw (float): Humidity correction factor. - fi (float): Incoming neutron flux correction factor. - - Returns: - sigma_VWC (float): Uncertainty in terms of volumetric water content. - - References: - Jakobi J, Huisman JA, Schrön M, Fiedler J, Brogi C, Vereecken H and Bogena HR (2020) Error Estimation for Soil Moisture Measurements With - Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2:10. doi: 10.3389/frwa.2020.00010 - """ - - Ncorr = raw_counts * fw / (fp * fi) - sigma_N = uncertainty_counts(raw_counts, metric="std", fp=fp, fw=fw, fi=fi) - sigma_GWC = sigma_N * ((a0 * N0) / ((Ncorr - a1 * N0) ** 4)) * np.sqrt( - (Ncorr - a1 * N0) ** 4 + 8 * sigma_N ** 2 * (Ncorr - a1 * N0) ** 2 + 15 * sigma_N ** 4) - sigma_VWC = sigma_GWC * bulk_density - - return sigma_VWC diff --git a/build/lib/crnpy/data.py b/build/lib/crnpy/data.py deleted file mode 100644 index 8e08bd0..0000000 --- a/build/lib/crnpy/data.py +++ /dev/null @@ -1,67 +0,0 @@ -# crnpy/data.py -"""## crnpy.data -Data module for crnpy. - -This module contains data for the crnpy package. - -Attributes: - cutoff_rigidity (list): Cutoff rigidity values for the whole world. See [crnpy.crnpy.cutoff_rigidity][] - neutron_detectors (list): Neutron detector locations. See [crnpy.crnpy.find_neutron_monitor][] - -""" - -cutoff_rigidity = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], - [0.0, 0.0, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.03, 0.03, 0.04, 0.03, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], - [0.04, 0.07, 0.09, 0.08, 0.13, 0.08, 0.16, 0.14, 0.13, 0.15, 0.17, 0.13, 0.08, 0.04, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.02, 0.05, 0.04], - [0.18, 0.28, 0.34, 0.32, 0.35, 0.41, 0.38, 0.42, 0.47, 0.47, 0.46, 0.43, 0.33, 0.21, 0.11, 0.04, 0.0, 0.0, 0.0, 0.0, 0.02, 0.08, 0.15, 0.2, 0.18], - [0.6, 0.66, 0.74, 0.75, 0.76, 0.79, 0.81, 0.87, 0.91, 0.98, 1.01, 0.96, 0.72, 0.55, 0.3, 0.19, 0.07, 0.04, 0.05, 0.06, 0.15, 0.31, 0.45, 0.58, 0.6], - [1.13, 1.3, 1.35, 1.39, 1.39, 1.44, 1.47, 1.56, 1.72, 1.76, 1.86, 1.8, 1.42, 1.08, 0.74, 0.48, 0.32, 0.21, 0.22, 0.31, 0.49, 0.7, 0.94, 1.14, 1.13], - [2.1, 2.18, 2.22, 2.3, 2.3, 2.38, 2.45, 2.59, 2.75, 2.96, 3.1, 2.97, 2.31, 1.85, 1.39, 0.93, 0.65, 0.5, 0.5, 0.65, 0.94, 1.38, 1.75, 2.02, 2.1], - [3.4, 3.49, 3.49, 3.53, 3.58, 3.69, 3.81, 4.05, 4.3, 4.61, 4.72, 4.54, 3.59, 2.91, 2.27, 1.6, 1.18, 0.93, 0.9, 1.21, 1.71, 2.4, 2.96, 3.24, 3.4], - [4.98, 5.09, 5.07, 5.12, 5.25, 5.39, 5.53, 5.77, 6.03, 6.3, 6.35, 5.96, 4.96, 4.31, 3.42, 2.68, 1.96, 1.57, 1.56, 1.94, 2.85, 3.92, 4.6, 4.97, 4.98], - [7.33, 7.26, 7.11, 7.08, 7.32, 7.67, 7.99, 8.34, 8.93, 9.3, 9.22, 8.63, 6.72, 5.65, 4.88, 4.06, 2.99, 2.46, 2.43, 3.0, 4.24, 5.47, 6.56, 7.24, 7.33], - [9.87, 9.73, 9.83, 10.05, 10.51, 10.87, 11.13, 11.02, 11.29, 11.51, 11.16, 10.3, 9.33, 8.11, 6.43, 5.3, 4.31, 3.54, 3.5, 4.29, 5.87, 8.43, 9.54, 9.86, 9.87], - [11.73, 11.77, 11.79, 12.13, 12.61, 13.1, 13.58, 13.84, 13.86, 13.66, 13.19, 12.51, 10.83, 9.78, 8.85, 7.24, 5.65, 4.51, 4.48, 5.76, 8.89, 10.72, 11.4, 11.71, 11.73], - [13.45, 13.68, 13.9, 14.17, 14.62, 15.05, 15.32, 15.35, 15.19, 14.81, 14.22, 13.52, 12.32, 11.61, 10.73, 9.53, 7.8, 6.22, 6.14, 8.09, 10.88, 12.19, 12.93, 13.35, 13.45], - [14.31, 14.63, 14.9, 15.26, 15.76, 16.23, 16.49, 16.44, 16.15, 15.65, 14.99, 14.29, 13.2, 12.61, 11.9, 10.93, 8.99, 6.99, 7.04, 9.87, 12.07, 13.07, 13.73, 14.18, 14.31], - [14.71, 15.11, 15.47, 15.93, 16.49, 17.0, 17.25, 17.15, 16.78, 16.21, 15.54, 14.88, 13.9, 13.38, 12.79, 11.96, 10.64, 9.38, 9.64, 11.59, 12.74, 13.54, 14.1, 14.57, 14.71], - [14.7, 15.16, 15.62, 16.18, 16.82, 17.36, 17.62, 17.5, 17.08, 16.5, 15.87, 15.29, 14.43, 13.95, 13.44, 12.83, 11.92, 11.1, 11.33, 12.25, 13.07, 13.66, 14.1, 14.54, 14.7], - [14.3, 14.8, 15.36, 16.03, 16.75, 17.33, 17.6, 17.48, 17.07, 16.52, 15.97, 15.49, 14.77, 14.34, 13.89, 13.38, 12.76, 12.16, 12.12, 12.57, 13.13, 13.48, 13.75, 14.14, 14.3], - [13.56, 14.08, 14.72, 15.5, 16.29, 16.9, 17.18, 17.1, 16.73, 16.24, 15.81, 15.46, 14.9, 14.53, 14.12, 13.68, 13.17, 12.66, 12.43, 12.65, 12.95, 13.04, 13.11, 13.41, 13.56], - [12.55, 13.06, 13.78, 14.65, 15.48, 16.08, 16.38, 16.35, 16.06, 15.66, 15.35, 15.15, 14.78, 14.48, 14.14, 13.75, 13.31, 12.83, 12.52, 12.53, 12.57, 12.4, 12.26, 12.43, 12.55], - [11.33, 11.84, 12.6, 13.51, 14.33, 14.89, 15.18, 15.23, 15.02, 14.71, 14.54, 14.5, 14.39, 14.2, 13.95, 13.63, 13.25, 12.79, 12.41, 12.24, 12.02, 11.56, 11.15, 11.23, 11.33], - [9.92, 10.36, 11.19, 12.09, 12.8, 13.32, 13.56, 13.67, 13.54, 13.32, 13.29, 13.42, 13.69, 13.66, 13.54, 13.32, 13.0, 12.58, 12.14, 11.79, 11.34, 10.67, 9.87, 9.8, 9.92], - [8.19, 8.64, 9.37, 10.07, 10.6, 10.89, 11.19, 11.36, 11.19, 10.53, 10.67, 11.73, 12.6, 12.84, 12.91, 12.83, 12.6, 12.21, 11.73, 11.21, 10.45, 9.49, 8.49, 8.13, 8.19], - [6.81, 7.15, 7.68, 8.25, 8.34, 8.09, 7.89, 7.96, 8.02, 8.03, 8.55, 9.35, 10.25, 11.34, 12.03, 12.14, 12.04, 11.72, 11.19, 10.4, 9.5, 8.25, 7.18, 6.86, 6.81], - [5.53, 5.6, 5.94, 5.96, 5.73, 5.45, 5.41, 5.33, 5.45, 5.58, 5.93, 6.53, 8.68, 8.75, 10.03, 11.22, 11.31, 11.1, 10.47, 9.62, 8.42, 7.08, 6.22, 5.61, 5.53], - [4.42, 4.27, 4.34, 4.39, 4.17, 3.97, 3.6, 3.52, 3.56, 3.74, 4.22, 4.84, 6.02, 7.21, 8.43, 9.01, 10.42, 10.27, 9.66, 8.7, 7.3, 6.17, 5.2, 4.49, 4.42], - [3.55, 3.42, 3.41, 3.38, 2.9, 2.57, 2.26, 2.12, 2.19, 2.3, 2.69, 3.29, 4.53, 5.17, 6.06, 7.75, 9.07, 9.23, 8.68, 7.62, 6.57, 5.46, 4.34, 3.68, 3.55], - [2.87, 2.78, 2.47, 2.24, 1.96, 1.6, 1.28, 1.22, 1.17, 1.29, 1.55, 2.03, 3.06, 3.94, 4.57, 5.53, 7.23, 8.03, 7.82, 7.02, 5.8, 4.42, 3.56, 3.11, 2.87], - [2.32, 2.07, 1.84, 1.59, 1.24, 0.94, 0.71, 0.58, 0.57, 0.66, 0.85, 1.18, 2.02, 2.66, 3.34, 4.17, 5.04, 5.92, 6.28, 5.52, 4.5, 3.6, 2.93, 2.49, 2.32], - [1.85, 1.57, 1.36, 1.07, 0.81, 0.54, 0.34, 0.2, 0.22, 0.26, 0.36, 0.61, 1.18, 1.68, 2.3, 3.04, 3.87, 4.37, 4.51, 4.24, 3.64, 2.9, 2.31, 1.92, 1.85], - [1.43, 1.17, 0.95, 0.69, 0.49, 0.28, 0.11, 0.05, 0.03, 0.04, 0.12, 0.25, 0.67, 1.04, 1.53, 2.02, 2.62, 3.15, 3.46, 3.24, 2.78, 2.29, 1.94, 1.47, 1.43], - [1.06, 0.84, 0.66, 0.46, 0.2, 0.12, 0.03, 0.0, 0.0, 0.0, 0.02, 0.06, 0.34, 0.59, 0.92, 1.32, 1.73, 2.06, 2.34, 2.31, 2.02, 1.7, 1.39, 1.14, 1.06], - [0.76, 0.55, 0.39, 0.24, 0.09, 0.03, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.11, 0.32, 0.51, 0.78, 1.03, 1.24, 1.42, 1.46, 1.37, 1.16, 1.0, 0.79, 0.76], - [0.48, 0.35, 0.22, 0.09, 0.04, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03, 0.17, 0.24, 0.43, 0.6, 0.72, 0.8, 0.84, 0.85, 0.72, 0.65, 0.51, 0.48], - [0.26, 0.17, 0.12, 0.06, 0.03, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03, 0.05, 0.09, 0.2, 0.32, 0.38, 0.44, 0.43, 0.44, 0.41, 0.37, 0.29, 0.26], - [0.12, 0.07, 0.06, 0.02, 0.02, 0.02, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03, 0.03, 0.08, 0.07, 0.11, 0.11, 0.18, 0.16, 0.16, 0.16, 0.16, 0.12], - [0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04]] - -neutron_detectors = [["AATA", "Alma-Ata A", 5.9, 897], ["AATB", "Alma-Ata B", 5.9, 3340], ["AHMD", "Ahmedabad", 15.94, 50], ["APTY", "Apatity", 0.65, 181], - ["ARNM", "Aragats", 7.1, 3200], ["ATHN", "Athens", 8.53, 260], ["BKSN", "Baksan", 5.7, 1700], ["CALG", "Calgary", 1.08, 1123], - ["CALM", "NM de Castilla la Mancha", 6.95, 708], ["CLMX", "Climax", 3.0, 3400], ["DJON", "Daejeon", 11.2, 200], - ["DOMB", "Dome C mini NM (bare)", 0.01, 3233], ["DOMC", "Dome C mini NM", 0.01, 3233], ["DRBS", "Dourbes", 3.18, 225], - ["ESOI", "Emilio Segre Obs. Israel", 10.75, 2055], ["FSMT", "Forth Smith", 0.3, 180], ["HRMS", "Hermanus", 4.58, 26], - ["HUAN", "Huancayo", 12.92, 3400], ["INVK", "Inuvik", 0.3, 21], ["IRK2", "Irkustk 2", 3.64, 2000], ["IRK3", "Irkustk 3", 3.64, 3000], - ["IRKT", "Irkustk", 3.64, 435], ["JBGO", "JangBogo", 0.3, 29], ["JUNG", "IGY Jungfraujoch", 4.49, 3570], - ["JUNG1", "NM64 Jungfraujoch", 4.49, 3475], ["KERG", "Kerguelen", 1.14, 33], ["KGSN", "Kingston", 1.88, 65], - ["KIEL", "Kiel", 2.36, 54], ["KIEL2", "KielRT", 2.36, 54], ["LMKS", "Lomnicky Stit", 3.84, 2634], ["MCMU", "Mc Murdo", 0.3, 48], - ["MCRL", "Mobile Cosmic Ray Laboratory", 2.46, 200], ["MGDN", "Magadan", 2.1, 220], ["MOSC", "Moscow", 2.43, 200], ["MRNY", "Mirny", 0.03, 30], - ["MWSN", "Mawson", 0.22, 30], ["MXCO", "Mexico", 8.28, 2274], ["NAIN", "Nain", 0.3, 46], ["NANM", "Nor-Amberd", 7.1, 2000], - ["NEU3", "Neumayer III mini neutron monitor", 0.1, 40], ["NEWK", "Newark", 2.4, 50], ["NRLK", "Norilsk", 0.63, 0], - ["NVBK", "Novosibirsk", 2.91, 163], ["OULU", "Oulu", 0.81, 15], ["PSNM", "Doi Inthanon (Princess Sirindhorn NM)", 16.8, 2565], - ["PTFM", "Potchefstroom", 6.98, 1351], ["PWNK", "Peawanuck", 0.3, 53], ["ROME", "Rome", 6.27, 0], ["SANB", "Sanae D", 0.73, 52], - ["SNAE", "Sanae IV", 0.73, 856], ["SOPB", "South Pole Bare", 0.1, 2820], ["SOPO", "South Pole", 0.1, 2820], ["TERA", "Terre Adelie", 0.01, 32], - ["THUL", "Thule", 0.3, 26], ["TSMB", "Tsumeb", 9.15, 1240], ["TXBY", "Tixie Bay", 0.48, 0], ["UFSZ", "Zugspitze", 4.1, 2650], - ["YKTK", "Yakutsk", 1.65, 105], ["ZUGS", "Zugspitze", 4.24, 2960]] diff --git a/docs/examples/calibration/calibration.ipynb b/docs/examples/calibration/calibration.ipynb index 4933c82..2c21921 100644 --- a/docs/examples/calibration/calibration.ipynb +++ b/docs/examples/calibration/calibration.ipynb @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "130e6b13", "metadata": { "collapsed": false, @@ -37,7 +37,8 @@ }, "pycharm": { "name": "#%%\n" - } + }, + "tags": [] }, "outputs": [], "source": [ @@ -814,7 +815,13 @@ "source": [ "# Weight the samples for the field average\n", "#field_theta_v, w = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean(), method=\"Kohli_2015\")\n", - "field_theta_v, w = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean(),p=df_station['barometric_pressure_Avg'].mean(), method = \"Schron_2017\")\n", + "field_theta_v, w = crnpy.nrad_weight(df_station['abs_humidity'].mean(), \n", + " df_soil['theta_v'],\n", + " df_soil['distance_from_station'], \n", + " (df_soil['bottom_depth']+df_soil['top_depth'])/2,\n", + " rhob = df_soil['bulk_density'].mean(),\n", + " p = df_station['barometric_pressure_Avg'].mean(),\n", + " method = \"Schron_2017\")\n", "\n", "# Apply distance weights to volumetric water content and bulk density\n", "field_bulk_density = np.mean(df_soil['bulk_density'])\n" @@ -920,9 +927,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.7" + "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} diff --git a/src/crnpy.egg-info/PKG-INFO b/src/crnpy.egg-info/PKG-INFO index a12720e..303b4b6 100644 --- a/src/crnpy.egg-info/PKG-INFO +++ b/src/crnpy.egg-info/PKG-INFO @@ -8,11 +8,6 @@ Author-email: jperaza@ksu.edu, andrespatrignani@ksu.edu License: MIT Description-Content-Type: text/markdown License-File: LICENSE -Requires-Dist: numpy -Requires-Dist: pandas -Requires-Dist: scipy -Requires-Dist: requests -Requires-Dist: utm [![GitHub Workflow Status (building)](https://img.shields.io/github/actions/workflow/status/soilwater/crnpy/python-package.yml)](https://github.com/soilwater/crnpy/actions/workflows/python-package.yml) [![GitHub Workflow Status (publish)](https://img.shields.io/github/actions/workflow/status/soilwater/crnpy/python-publish.yml?label=publish)](https://github.com/soilwater/crnpy/actions/workflows/python-publish.yml) From a69d27dfd26af5456c242ba32f76388b3c845f22 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sun, 21 Apr 2024 09:31:11 -0600 Subject: [PATCH 20/24] Delete .idea directory --- .idea/.gitignore | 8 --- .idea/crnpy.iml | 17 ----- .../inspectionProfiles/profiles_settings.xml | 6 -- .idea/markdown-navigator-enh.xml | 29 -------- .idea/markdown-navigator.xml | 72 ------------------- .idea/misc.xml | 4 -- .idea/modules.xml | 8 --- .idea/other.xml | 6 -- .idea/vcs.xml | 6 -- 9 files changed, 156 deletions(-) delete mode 100644 .idea/.gitignore delete mode 100644 .idea/crnpy.iml delete mode 100644 .idea/inspectionProfiles/profiles_settings.xml delete mode 100644 .idea/markdown-navigator-enh.xml delete mode 100644 .idea/markdown-navigator.xml delete mode 100644 .idea/misc.xml delete mode 100644 .idea/modules.xml delete mode 100644 .idea/other.xml delete mode 100644 .idea/vcs.xml diff --git a/.idea/.gitignore b/.idea/.gitignore deleted file mode 100644 index 13566b8..0000000 --- a/.idea/.gitignore +++ /dev/null @@ -1,8 +0,0 @@ -# Default ignored files -/shelf/ -/workspace.xml -# Editor-based HTTP Client requests -/httpRequests/ -# Datasource local storage ignored files -/dataSources/ -/dataSources.local.xml diff --git a/.idea/crnpy.iml b/.idea/crnpy.iml deleted file mode 100644 index 68d8a3d..0000000 --- a/.idea/crnpy.iml +++ /dev/null @@ -1,17 +0,0 @@ - - - - - - - - - - - - - - \ No newline at end of file diff --git a/.idea/inspectionProfiles/profiles_settings.xml b/.idea/inspectionProfiles/profiles_settings.xml deleted file mode 100644 index 105ce2d..0000000 --- a/.idea/inspectionProfiles/profiles_settings.xml +++ /dev/null @@ -1,6 +0,0 @@ - - - - \ No newline at end of file diff --git a/.idea/markdown-navigator-enh.xml b/.idea/markdown-navigator-enh.xml deleted file mode 100644 index 12fb99d..0000000 --- a/.idea/markdown-navigator-enh.xml +++ /dev/null @@ -1,29 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/.idea/markdown-navigator.xml b/.idea/markdown-navigator.xml deleted file mode 100644 index ea474b2..0000000 --- a/.idea/markdown-navigator.xml +++ /dev/null @@ -1,72 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/.idea/misc.xml b/.idea/misc.xml deleted file mode 100644 index aedf446..0000000 --- a/.idea/misc.xml +++ /dev/null @@ -1,4 +0,0 @@ - - - - \ No newline at end of file diff --git a/.idea/modules.xml b/.idea/modules.xml deleted file mode 100644 index 7b7e509..0000000 --- a/.idea/modules.xml +++ /dev/null @@ -1,8 +0,0 @@ - - - - - - - - \ No newline at end of file diff --git a/.idea/other.xml b/.idea/other.xml deleted file mode 100644 index a708ec7..0000000 --- a/.idea/other.xml +++ /dev/null @@ -1,6 +0,0 @@ - - - - - \ No newline at end of file diff --git a/.idea/vcs.xml b/.idea/vcs.xml deleted file mode 100644 index 94a25f7..0000000 --- a/.idea/vcs.xml +++ /dev/null @@ -1,6 +0,0 @@ - - - - - - \ No newline at end of file From fe8893655de2b039c735d033e8a413197eaf701b Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sun, 21 Apr 2024 09:31:32 -0600 Subject: [PATCH 21/24] Delete .DS_Store --- .DS_Store | Bin 6148 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 .DS_Store diff --git a/.DS_Store b/.DS_Store deleted file mode 100644 index 8ceb77b03969e4447ffb693919f548c0470f50d9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 6148 zcmeHK!AiqG5S_Krri##mLXQhx3sxhFcnP)sfDt{Y)W!r2#;i1{J(NPu`a^z+-{Z{g zRBWpk4$f>?Yp@Jh2L2lZbax$yK*25KU+-`DlqPx6YQ2l4inF{@b*t{0dmY@XVNmpnLEi55 zFKKnAR2oj^z3@DVhu!+dvC4{GlEr-;kVG-MTwNqtq=s!Z$f8`w24=&pxwUS+F&cT^ zK~sAByW^%D9qzW8a?jfzk8AGc*7nh9_aS}E)Qcfd;CrKGopA!MIQh)yIp}Ap%I?rc z{to1jKmqZ> Date: Sun, 21 Apr 2024 09:39:06 -0600 Subject: [PATCH 22/24] =?UTF-8?q?Add=20the=20profile=20ID=20in=20the=20Sch?= =?UTF-8?q?r=C3=B6n=20et=20al.=20(2017)=20method?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit #9 Added the parameter`profiles`, which is the ID that identifies each unique soil profile P when running the weighting algorithm. --- .gitignore | 1 + build/lib/crnpy/crnpy.py | 10 +++++++--- docs/examples/calibration/calibration.ipynb | 17 ++++++++++------- src/crnpy/crnpy.py | 10 +++++++--- src/tests/test_calibration_rdt.py | 6 +++++- src/tests/test_functions.py | 4 +++- 6 files changed, 33 insertions(+), 15 deletions(-) diff --git a/.gitignore b/.gitignore index e88baf2..5ef7b49 100644 --- a/.gitignore +++ b/.gitignore @@ -10,3 +10,4 @@ site/* .pytest_cache/* crnpy.egg-info/* .idea/* +/.idea diff --git a/build/lib/crnpy/crnpy.py b/build/lib/crnpy/crnpy.py index 2b1f749..da3e199 100644 --- a/build/lib/crnpy/crnpy.py +++ b/build/lib/crnpy/crnpy.py @@ -706,7 +706,7 @@ def abs_humidity(relative_humidity, temp): return abs_h -def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=None, Hveg=0, tol=0.01): +def nrad_weight(h, theta, distances, depth, profiles=None, rhob=1.4, method="Kohli_2015", p=None, Hveg=0, tol=0.01): """Function to compute distance weights corresponding to each soil sample. Args: @@ -714,6 +714,7 @@ def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=Non theta (np.array or pd.Series): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3) distances (np.array or pd.Series): Distances from the location of each sample to the origin (0.5 - 600 m) depth (np.array or pd.Series): Depths for each sample (m) + profiles (np.array or pd.Series): Soil profiles id for each sample. Required for the 'Schron_2017' method. rhob (np.array or pd.Series): Bulk density in g/cm^3 p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method. Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method. @@ -950,6 +951,9 @@ def rscaled(r, p, y, Hveg = 0): Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y)) return r / Fp / Fveg + if profiles is None: + raise ValueError("Profile ID's must be provided when using 'Schron_2017' method") + # Rename variables to be consistent with the revised paper r = distances theta_ = np.mean(theta) # Start with the mean value of theta as initial guess @@ -971,12 +975,12 @@ def Wd(d, r, bd, y): r = rscaled(distances, p, theta_, Hveg) # Calculate the vertical average for each profile - P = np.unique(distances) + P = np.unique(profiles) theta_P = [] r_stars = [] for i in range(len(P)): profile = P[i] - idx = distances == profile + idx = profiles == profile depths_P = depth[idx] r_P = r[idx] theta_Pi = theta[idx] diff --git a/docs/examples/calibration/calibration.ipynb b/docs/examples/calibration/calibration.ipynb index 4933c82..a97dedf 100644 --- a/docs/examples/calibration/calibration.ipynb +++ b/docs/examples/calibration/calibration.ipynb @@ -232,7 +232,10 @@ "source": [ "# Define start and end of field survey calibration\n", "calibration_start = pd.to_datetime(\"2021-10-22 08:00\")\n", - "calibration_end = pd.to_datetime(\"2021-10-22 16:00\")\n" + "calibration_end = pd.to_datetime(\"2021-10-22 16:00\")\n", + "\n", + "# Create an ID for each soil profile using their respective latitude and longitude\n", + "df_soil['ID'] = df_soil['latitude'].astype(str) +'_'+ df_soil['longitude'].astype(str)" ] }, { @@ -807,14 +810,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Solution converged after 2 steps, the average soil moisture is 0.2197191482091855\n" + "Solution converged after 2 steps, the average soil moisture is 0.2047467442102135\n" ] } ], "source": [ "# Weight the samples for the field average\n", "#field_theta_v, w = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean(), method=\"Kohli_2015\")\n", - "field_theta_v, w = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, rhob=df_soil['bulk_density'].mean(),p=df_station['barometric_pressure_Avg'].mean(), method = \"Schron_2017\")\n", + "field_theta_v, w = crnpy.nrad_weight(df_station['abs_humidity'].mean(), df_soil['theta_v'], df_soil['distance_from_station'], (df_soil['bottom_depth']+df_soil['top_depth'])/2, profiles=df_soil['ID'], rhob=df_soil['bulk_density'].mean(),p=df_station['barometric_pressure_Avg'].mean(), method = \"Schron_2017\")\n", "\n", "# Apply distance weights to volumetric water content and bulk density\n", "field_bulk_density = np.mean(df_soil['bulk_density'])\n" @@ -830,7 +833,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Mean volumetric Water content during calibration survey: 0.22\n", + "Mean volumetric Water content during calibration survey: 0.205\n", "Mean corrected counts during calibration: 1543 counts\n" ] } @@ -851,7 +854,7 @@ "source": [ "## Solving for $N_0$\n", "\n", - "Previous steps estimated the field volumetric water content of `0.263` and an average neutron count of `1542`. Using [`scipy.optimize.root()`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html) $N_0$ is estimated given the observed value of $\\theta_v$ and neutron counts." + "Previous steps estimated the field volumetric water content of `0.205` and an average neutron count of `1543`. Using [`scipy.optimize.root()`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html) $N_0$ is estimated given the observed value of $\\theta_v$ and neutron counts." ] }, { @@ -864,7 +867,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The solved value for N0 is: 2470\n" + "The solved value for N0 is: 2434\n" ] } ], @@ -925,4 +928,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index 2b1f749..93e49e3 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -706,7 +706,7 @@ def abs_humidity(relative_humidity, temp): return abs_h -def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=None, Hveg=0, tol=0.01): +def nrad_weight(h, theta, distances, depth, profiles=None, rhob=1.4, method="Kohli_2015", p=None, Hveg=0, tol=0.01): """Function to compute distance weights corresponding to each soil sample. Args: @@ -714,6 +714,7 @@ def nrad_weight(h, theta, distances, depth, rhob=1.4, method="Kohli_2015", p=Non theta (np.array or pd.Series): Soil Moisture for each sample (0.02 - 0.50 m^3/m^3) distances (np.array or pd.Series): Distances from the location of each sample to the origin (0.5 - 600 m) depth (np.array or pd.Series): Depths for each sample (m) + profiles (np.array or pd.Series): Soil profiles ID for each sample. Required for the 'Schron_2017' method. rhob (np.array or pd.Series): Bulk density in g/cm^3 p (np.array or pd.Series): Atmospheric pressure in hPa. Required for the 'Schron_2017' method. Hveg (np.array or pd.Series): Vegetation height in m. Required for the 'Schron_2017' method. @@ -950,6 +951,9 @@ def rscaled(r, p, y, Hveg = 0): Fveg = 1 - 0.17 * (1 - np.exp(-0.41 * Hveg)) * (1 + np.exp(-9.25 * y)) return r / Fp / Fveg + if profiles is None: + raise ValueError("Profile ID's must be provided when using 'Schron_2017' method") + # Rename variables to be consistent with the revised paper r = distances theta_ = np.mean(theta) # Start with the mean value of theta as initial guess @@ -971,12 +975,12 @@ def Wd(d, r, bd, y): r = rscaled(distances, p, theta_, Hveg) # Calculate the vertical average for each profile - P = np.unique(distances) + P = np.unique(profiles) theta_P = [] r_stars = [] for i in range(len(P)): profile = P[i] - idx = distances == profile + idx = profiles == profile depths_P = depth[idx] r_P = r[idx] theta_Pi = theta[idx] diff --git a/src/tests/test_calibration_rdt.py b/src/tests/test_calibration_rdt.py index fdeb644..45aa659 100644 --- a/src/tests/test_calibration_rdt.py +++ b/src/tests/test_calibration_rdt.py @@ -10,6 +10,8 @@ def calibration_example(): url_soil_samples = "https://raw.githubusercontent.com/soilwater/crnpy/main/docs/examples/calibration/soil_data.csv" df_soil = pd.read_csv(url_soil_samples) + df_soil['ID'] = df_soil['latitude'].astype(str) +'_'+ df_soil['longitude'].astype(str) + # Define start and end of field survey calibration calibration_start = pd.to_datetime("2021-10-22 08:00") calibration_end = pd.to_datetime("2021-10-22 16:00") @@ -71,7 +73,9 @@ def calibration_example(): df_soil['distance_from_station'], (df_soil['bottom_depth'] + df_soil['top_depth']) / 2, rhob=df_soil['bulk_density'].mean(), - p=df_station['barometric_pressure_Avg'].mean(), method="Schron_2017") + p=df_station['barometric_pressure_Avg'].mean(), + profiles=df_soil['ID'], + method="Schron_2017") # Apply distance weights to volumetric water content and bulk density field_bulk_density = np.sum(df_soil['bulk_density'].mean()) diff --git a/src/tests/test_functions.py b/src/tests/test_functions.py index 820fd50..01ee5c9 100644 --- a/src/tests/test_functions.py +++ b/src/tests/test_functions.py @@ -42,6 +42,7 @@ def test_count_to_vwc(): def test_weighting(): # create vector from 0 to 350 m with .1 spacing x = np.arange(0, 350, 0.1) + IDs = np.arange(0, 3500, 1) y = np.repeat(0, len(x)) h = np.repeat(10, len(x)) @@ -51,8 +52,9 @@ def test_weighting(): SM = 0.02 sm = np.repeat(SM, len(x)) + # calculate the weighted theta - theta_adj, w = crnpy.nrad_weight(h, sm, x, y, bd, method="Schron_2017", p=p, Hveg=Hveg) + theta_adj, w = crnpy.nrad_weight(h, sm, x, y, profiles=IDs, rhob = bd, method="Schron_2017", p=p, Hveg=Hveg) # check that theta_adj is = SM +- 1e-3 assert np.abs(theta_adj - SM) < 1e-3 From 82e60936e71ca5d96b8171539256fe20b93d5452 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sun, 21 Apr 2024 09:42:07 -0600 Subject: [PATCH 23/24] =?UTF-8?q?Added=20Schr=C3=B6n=20et=20al.=202017=20r?= =?UTF-8?q?eference?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/examples/calibration/calibration.ipynb | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/docs/examples/calibration/calibration.ipynb b/docs/examples/calibration/calibration.ipynb index a97dedf..9513800 100644 --- a/docs/examples/calibration/calibration.ipynb +++ b/docs/examples/calibration/calibration.ipynb @@ -895,7 +895,9 @@ "\n", "Dong, J., & Ochsner, T. E. (2018). Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns. Water Resources Research, 54(3), 2199-2211.\n", "\n", - "Patrignani, A., Ochsner, T. E., Montag, B., & Bellinger, S. (2021). A novel lithium foil cosmic-ray neutron detector for measuring field-scale soil moisture. Frontiers in Water, 3, 673185." + "Patrignani, A., Ochsner, T. E., Montag, B., & Bellinger, S. (2021). A novel lithium foil cosmic-ray neutron detector for measuring field-scale soil moisture. Frontiers in Water, 3, 673185.\n", + "\n", + "Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity, Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017." ] }, { From 0692b6b177027dbfeca0e2c38d20de45d68803d5 Mon Sep 17 00:00:00 2001 From: Joaquin Peraza Date: Sun, 21 Apr 2024 10:05:06 -0600 Subject: [PATCH 24/24] Fixed bug in `smooth_1d()` --- src/crnpy/crnpy.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/crnpy/crnpy.py b/src/crnpy/crnpy.py index ce46eb1..5f0a405 100644 --- a/src/crnpy/crnpy.py +++ b/src/crnpy/crnpy.py @@ -503,7 +503,7 @@ def smooth_1d(values, window=5, order=3, method='moving_median'): Analytical chemistry, 36(8), 1627-1639. """ - if not isinstance(values, pd.Series) and not isinstance(x, pd.DataFrame): + if not isinstance(values, pd.Series) and not isinstance(values, pd.DataFrame): raise ValueError('Input must be a pandas Series or DataFrame') if method == 'moving_average':