-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathPathSimilarity.py
214 lines (140 loc) · 4.57 KB
/
PathSimilarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import math
import numpy as np
from scipy import interpolate
def distance(p1, p2):
a = p1[0] - p2[0]
b = p1[1] - p2[1]
return np.sqrt(a*a + b*b)
def latlondistance(p1, p2):
a = p1[0] - p2[0]
b = (p1[1] - p2[1]) * math.cos(math.radians(p1[0]))
return np.sqrt(a*a + b*b)
def rawSimilarity(path1, path2):
vx,vy = 0, 0
s = 0
for i in range(len(path1)):
s = s + distance(path1[i], path2[i])
vx = vx + path1[i][0] - path2[i][0]
vy = vy + path1[i][1] - path2[i][1]
ErrVector = (vx, vy)
return s, ErrVector
def rawSimilarityLatLon(path1, path2, threshold = 1000):
vx,vy = 0, 0
s = 0
max_d = 0
for i in range(len(path1)):
d = latlondistance(path1[i], path2[i])
if d > threshold:
d = 1000
s = s + d
if d > max_d:
max_d = d
return s, d
def PathSimilarity(path1, path2, interpolation=40, subWindowSize = 32, kind = 'quadratic', threshold = 0.00020): #, kind = 'cubic'):
XX = np.arange(1.0/interpolation,1.0,1.0/interpolation)
#XX = list(np.arange(0,1,0.1))
path1Lat = map(lambda x:x[0], path1)
path1Lon = map(lambda x:x[1], path1)
path2Lat = map(lambda x:x[0], path2)
path2Lon = map(lambda x:x[1], path2)
for i in range(len(path1Lat)):
d = distance([path1Lat[i], path1Lon[i]], [path2Lat[i], path2Lon[i]])
if d > threshold:
return 1000, (0,0)
duplicate_loc = {}
flag = False
for i in range(len(path1Lat)-1):
if (path1Lat[i], path1Lon[i]) in duplicate_loc.keys():
flag = True
else:
duplicate_loc[(path1Lat[i], path1Lon[i])] = 1
if flag == True:
return 1000, (0,0)
duplicate_loc = {}
flag = False
for i in range(len(path2Lat)-1):
if (path2Lat[i], path2Lon[i]) in duplicate_loc.keys():
flag = True
else:
duplicate_loc[(path2Lat[i], path2Lon[i])] = 1
if flag == True:
return 1000, (0,0)
tck1, _ = interpolate.splprep([path1Lat, path1Lon], s=0, k = 3)
tck2, _ = interpolate.splprep([path2Lat, path2Lon], s=0, k = 3)
path1Int_ = interpolate.splev(XX, tck1)
path2Int_ = interpolate.splev(XX, tck2)
path1Int = map(lambda x: [path1Int_[0][x], path1Int_[1][x]], range(len(path1Int_[0])))
path2Int = map(lambda x: [path2Int_[0][x], path2Int_[1][x]], range(len(path2Int_[0])))
n = len(path1Int)
min_dist = 10000
err_vec = (0,0)
for s1 in range(0, n - subWindowSize):
for s2 in range(0, n - subWindowSize):
dist, vec = rawSimilarity(path1Int[s1:s1+subWindowSize], path2Int[s2:s2+subWindowSize])
if dist < min_dist:
min_dist = dist
err_vec = vec
return min_dist, err_vec
def PathSimilarityLatLon(path1, path2, interpolation=40, subWindowSize = 32, threshold = 0.00050):
dist1 = [0] * len(path1)
dist2 = [0] * len(path2)
for i in range(1, len(path1)):
dist1[i] = dist1[i-1] + latlondistance(path1[i-1], path1[i])
for i in range(1, len(path2)):
dist2[i] = dist2[i-1] + latlondistance(path2[i-1], path2[i])
interval1 = dist1[-1] / (interpolation+1)
interval2 = dist2[-1] / (interpolation+1)
P1 = []
P2 = []
p = 0
interval = interval1
path = path1
dist = dist1
cur_dist = interval
while cur_dist < dist[-1] and p < len(path)-1:
if cur_dist >= dist[p] and cur_dist < dist[p+1]:
alpha = (cur_dist - dist[p]) / (dist[p+1] - dist[p])
lat = path[p][0] * (1-alpha) + path[p+1][0] * alpha
lon = path[p][1] * (1-alpha) + path[p+1][1] * alpha
P1.append((lat, lon))
cur_dist += interval
elif cur_dist >= dist[p+1]:
p = p + 1
interval = interval2
path = path2
dist = dist2
cur_dist = interval
p = 0
while cur_dist < dist[-1] and p < len(path)-1:
if cur_dist >= dist[p] and cur_dist < dist[p+1]:
alpha = (cur_dist - dist[p]) / (dist[p+1] - dist[p])
lat = path[p][0] * (1-alpha) + path[p+1][0] * alpha
lon = path[p][1] * (1-alpha) + path[p+1][1] * alpha
P2.append((lat, lon))
cur_dist += interval
elif cur_dist >= dist[p+1]:
p = p + 1
n = min(len(P1), len(P2))
P1 = P1[0:n]
P2 = P2[0:n]
min_dist = 1000000
min_dist_max = 0
for s1 in range(0, n - subWindowSize):
for s2 in range(0, n - subWindowSize):
d, d_max = rawSimilarityLatLon(P1[s1:s1+subWindowSize], P2[s2:s2+subWindowSize], threshold = threshold)
if d < min_dist:
min_dist = d
min_dist_max = d_max
# return min_dist, min_dist_max
return min_dist, 0
if __name__ == "__main__":
path1 = [[1,1],[2,2],[3,2.5],[4,3]]
path2 = [[0.5,0.5], [1.5,1.5], [2.5,2.25], [3.5,2.75]]
#path2 = [[0.5,2.5], [1.5,3.5], [2.5,4.25], [3.5,4.75]]
#path2 = [[0,0],[1,0.5],[2,1.1],[3,2],[4,3],[5,3]]
test = PathSimilarityLatLon(path1, path2, threshold = 100000, subWindowSize= 32) / 32
print(test)
exit()
dist,err_vec = PathSimilarity(path1, path2, interpolation=20)
print(dist)
print(err_vec)