-
Notifications
You must be signed in to change notification settings - Fork 1
/
encoder.py
145 lines (114 loc) · 5.27 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
WEIGHT_INIT_STDDEV = 0.1
DENSE_layers = 3
DECAY = .9
EPSILON = 1e-8
class Encoder(object):
def __init__(self, model_pre_path):
self.weight_vars = []
self.model_pre_path = model_pre_path
with tf.variable_scope('encoder'):
self.weight_vars.append(self._create_variables(1, 16, 3, scope='conv1'))
self.weight_vars.append(self._create_variables(16, 16, 3, scope='dense_block_conv2'))
self.weight_vars.append(self._create_variables(32, 16, 3, scope='dense_block_conv3'))
self.weight_vars.append(self._create_variables(48, 16, 3, scope='dense_block_conv4'))
self.weight_vars.append(self._create_variables(64, 64, 1, scope='conv5_1'))
self.weight_vars.append(self._create_variables(64, 64, 3, scope='conv5_2'))
self.weight_vars.append(self._create_variables(64, 64, 5, scope='conv5_3'))
def _create_variables(self, input_filters, output_filters, kernel_size, scope):
shape = [kernel_size, kernel_size, input_filters, output_filters]
if self.model_pre_path:
reader = pywrap_tensorflow.NewCheckpointReader(self.model_pre_path)
with tf.variable_scope(scope):
kernel = tf.Variable(reader.get_tensor('encoder/' + scope + '/kernel'), name='kernel')
bias = tf.Variable(reader.get_tensor('encoder/' + scope + '/bias'), name='bias')
else:
with tf.variable_scope(scope):
kernel = tf.Variable(tf.truncated_normal(shape, stddev=WEIGHT_INIT_STDDEV), name='kernel')
bias = tf.Variable(tf.zeros([output_filters]), name='bias')
return (kernel, bias)
def encode(self, image):
dense_indices = (1, 2, 3)
out = image
for i in range(len(self.weight_vars)):
kernel, bias = self.weight_vars[i]
if i in dense_indices:
out = conv2d_dense(out, kernel, bias, use_relu=True)
elif i == 4:
out1 = conv2d(out, kernel, bias, use_relu=True)
elif i == 5:
out2 = conv2d(out, kernel, bias, use_relu=True)
elif i == 6:
out = conv2d_incep(out, out1, out2, kernel, bias, use_relu=True)
else:
out = conv2d(out, kernel, bias, use_relu=True)
return out
def conv2d(x, kernel, bias, use_relu=True):
if kernel.shape[0] == 5:
x_padded = tf.pad(x, [[0, 0], [2, 2], [2, 2], [0, 0]], mode='REFLECT')
elif kernel.shape[0] == 3:
x_padded = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], mode='REFLECT')
else:
x_padded = x
out = tf.nn.conv2d(x_padded, kernel, strides=[1, 1, 1, 1], padding='VALID')
out = tf.nn.bias_add(out, bias)
out = tf.nn.relu(out)
return out
def conv2d_dense(x, kernel, bias, use_relu=True):
if kernel.shape[0] == 5:
x_padded = tf.pad(x, [[0, 0], [2, 2], [2, 2], [0, 0]], mode='REFLECT')
elif kernel.shape[0] == 3:
x_padded = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], mode='REFLECT')
else:
x_padded = x
out = tf.nn.conv2d(x_padded, kernel, strides=[1, 1, 1, 1], padding='VALID')
out = tf.nn.bias_add(out, bias)
out = tf.nn.relu(out)
# concatenate
out = tf.concat([out, x], 3)
return out
def conv2d_incep (x, x1, x2, kernel, bias, use_relu=True):
if kernel.shape[0] == 5:
x_padded = tf.pad(x, [[0, 0], [2, 2], [2, 2], [0, 0]], mode='REFLECT')
elif kernel.shape[0] == 3:
x_padded = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], mode='REFLECT')
else:
x_padded = x
out = tf.nn.conv2d(x_padded, kernel, strides=[1, 1, 1, 1], padding='VALID')
out = tf.nn.bias_add(out, bias)
out = tf.nn.relu(out)
# concatenate
temp = tf.concat([x1, x2], 3)
out = tf.concat([temp, out], 3)
return out
def transition_block(x, kernel, bias):
num_maps = x.shape[3]
out = __batch_normalize(x, num_maps)
out = tf.nn.relu(out)
out = conv2d(out, kernel, bias, use_relu=False)
return out
def __batch_normalize(inputs, num_maps, is_training=True):
# Trainable variables for scaling and offsetting our inputs
# scale = tf.Variable(tf.ones([num_maps], dtype=tf.float32))
# offset = tf.Variable(tf.zeros([num_maps], dtype=tf.float32))
# Mean and variances related to our current batch
batch_mean, batch_var = tf.nn.moments(inputs, [0, 1, 2])
# # Create an optimizer to maintain a 'moving average'
# ema = tf.train.ExponentialMovingAverage(decay=DECAY)
#
# def ema_retrieve():
# return ema.average(batch_mean), ema.average(batch_var)
#
# # If the net is being trained, update the average every training step
# def ema_update():
# ema_apply = ema.apply([batch_mean, batch_var])
#
# # Make sure to compute the new means and variances prior to returning their values
# with tf.control_dependencies([ema_apply]):
# return tf.identity(batch_mean), tf.identity(batch_var)
#
# # Retrieve the means and variances and apply the BN transformation
# mean, var = tf.cond(tf.equal(is_training, True), ema_update, ema_retrieve)
bn_inputs = tf.nn.batch_normalization(inputs, batch_mean, batch_var, None, None, EPSILON)
return bn_inputs