-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_train_gray_80000_images.py
126 lines (104 loc) · 4.6 KB
/
main_train_gray_80000_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#使用80000张灰度图像训练网络的主函数
from args_fusion import args
from net_gray import GenerativeNet
from torch.optim import Adam
from tqdm import trange
import matplotlib.pyplot as plt
import utils
import numpy as np
import torch
import pytorch_msssim
import scipy.io as scio
import cv2
import random
def main():
train()
def train():
original_imgs_path = utils.list_images('D:\database\\COCO\\train\\')
num_train_images = len(original_imgs_path)
original_images = []
real_images = []
for i in range(num_train_images):
temp_original = cv2.imread(original_imgs_path[i],)
temp_original = cv2.resize(temp_original, (256, 256))
temp_original = cv2.cvtColor(temp_original, cv2.COLOR_BGR2GRAY)
temp_original = np.reshape(temp_original, [1, 1, 256, 256])
real_images.append(temp_original)
scale_num = 0
while scale_num < args.total_number_of_scales:
if args.resume is not None:
print('Resuming, initializing using weight from {}.'.format(args.resume))
train_a_single_scale_network(scale_num, real_images, input_nc=1, output_nc=1)
scale_num += 1
print('\nDone!')
def train_a_single_scale_network(scale_num, real_images, input_nc, output_nc):
generator = GenerativeNet(input_nc, output_nc)
if args.resume is not None:
print('Resuming, initializing using weight from {}.'.format(args.resume))
generator.load_state_dict(torch.load(args.resume))
lr = 1e-4
optimizer = Adam(generator.parameters(), lr)
mse_loss = torch.nn.MSELoss()
ssim_loss = pytorch_msssim.msssim
if args.cuda:
generator.cuda()
bar = range(args.epoch_color[scale_num])
Loss_pixel = []
Loss_ssim = []
Loss_all = []
num_train_images = len(real_images)
batch_size = args.batch_size
mod = num_train_images % batch_size
print('BATCH SIZE %d.' % batch_size)
print('Train images number %d.' % num_train_images)
print('Train images samples %s.' % str(num_train_images / batch_size))
if mod > 0:
print('Train set has been trimmed %d samples...\n' % mod)
real_images = real_images[:-mod]
batches = int(len(real_images) // batch_size)
step = 0
print('Start training......')
for e in bar:
random.shuffle(real_images)
for batch in range(batches):
step += 1
inputs = real_images[batch * batch_size:(batch * batch_size + batch_size)] # tensor
input1 = utils.get_train_images_auto(inputs)
if args.cuda:
input1 = input1.cuda()
input = input1
real_scale_image = input
optimizer.zero_grad()
generative_image = generator(input)
if args.cuda:
real_scale_image = real_scale_image.cuda()
pixel_loss_temp = mse_loss(generative_image, real_scale_image) / (batch_size * generative_image.shape[1] *
generative_image.shape[2] *
generative_image.shape[3])
ssim_loss_temp = ssim_loss(generative_image, real_scale_image, normalize=True)
ssim_loss_value = (1 - ssim_loss_temp)
pixel_loss_value = pixel_loss_temp
# total loss
total_loss = pixel_loss_value + ssim_loss_value
total_loss.backward(retain_graph=True)
optimizer.step()
mi = 2000
if (step % mi == 0):
print("Epoch:%d......step:%d......" % (e, step), end=' ')
print('ssim_loss:%f......pixel_loss:%f......total_loss:%f' % (
ssim_loss_value, pixel_loss_value, total_loss))
if (step % mi == 0): ###
Loss_pixel.append(pixel_loss_value.item())
Loss_ssim.append(ssim_loss_value.item())
Loss_all.append(total_loss.item())
# scheduler.step()
loss_pixel_path = args.save_loss_gray_dir + 'scale_' + str(scale_num) + '_final_pixel.mat'
scio.savemat(loss_pixel_path, {'final_pixel_loss': Loss_pixel})
loss_ssim_path = args.save_loss_gray_dir + 'scale_' + str(scale_num) + '_final_ssim.mat'
scio.savemat(loss_ssim_path, {'final_ssim_loss': Loss_ssim})
loss_all_path = args.save_loss_gray_dir + 'scale_' + str(scale_num) + '_all_loss.mat'
scio.savemat(loss_all_path, {'final_all_loss': Loss_all})
save_model_path = args.save_model_gray_dir + 'scale_' + str(scale_num) + '_final_model.model'
torch.save(generator.state_dict(), save_model_path)
if __name__ == '__main__':
main()