Skip to content

Commit

Permalink
remove imx500 tutorials
Browse files Browse the repository at this point in the history
  • Loading branch information
Idan-BenAmi committed Oct 21, 2024
1 parent 7b4a2ad commit 28a9cb5
Show file tree
Hide file tree
Showing 86 changed files with 115 additions and 17,195 deletions.
127 changes: 115 additions & 12 deletions tutorials/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,18 +9,121 @@ Learn how to quickly quantize pre-trained models using MCT's post-training quant
- [Post training quantization with Keras](notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
- [Post training quantization with PyTorch](notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb)

## MCT Features
This set of tutorials covers all the quantization tools provided by MCT.
The notebooks in this section demonstrate how to configure and run simple and advanced post-training quantization methods.
This includes fine-tuning PTQ (Post-Training Quantization) configurations, exporting models,
and exploring advanced compression techniques.
## MCT features
This tutorial set introduces the various quantization tools offered by MCT.
The notebooks included here illustrate the setup and usage of both basic and advanced post-training quantization methods.
You'll learn how to refine PTQ (Post-Training Quantization) settings, export models, and explore advanced compression
techniques such as GPTQ (Gradient-Based Post-Training Quantization), Mixed precision quantization and more.
These techniques are essential for further optimizing models and achieving superior performance in deployment scenarios.
- [MCT Features notebooks](notebooks/mct_features_notebooks/README.md)

## Quantization for Sony-IMX500 deployment
### Keras Tutorials

This section provides several guides on quantizing pre-trained models to meet specific constraints for deployment on the
[Sony-IMX500](https://developer.sony.com/imx500/) processing platform.
We will cover various tasks and demonstrate the necessary steps to achieve efficient quantization for optimal
deployment performance.
- [MCT IMX500 notebooks](notebooks/imx500_notebooks/README.md)
<details id="keras-ptq">
<summary>Post-Training Quantization (PTQ)</summary>

| Tutorial | Included Features |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| [Basic Post-Training Quantization (PTQ)](keras/example_keras_post-training_quantization.ipynb) | &#x2705; PTQ |
| [MobileNetV2](../imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb) | &#x2705; PTQ |
| [Mixed-Precision MobileNetV2](keras/example_keras_mobilenet_mixed_precision.ipynb) | &#x2705; PTQ <br/> &#x2705; Mixed-Precision |
| [Nanodet-Plus](../imx500_notebooks/keras/example_keras_nanodet_plus_for_imx500.ipynb) | &#x2705; PTQ |
| [EfficientDetLite0](../imx500_notebooks/keras/example_keras_effdet_lite0_for_imx500.ipynb) | &#x2705; PTQ <br/> &#x2705; [sony-custom-layers](https://github.com/sony/custom_layers) integration |

</details>

<details id="keras-gptq">
<summary>Gradient-Based Post-Training Quantization (GPTQ)</summary>

| Tutorial | Included Features |
|------------------------------|---------------|
| [MobileNetV2](keras/example_keras_mobilenet_gptq.ipynb) | &#x2705; GPTQ |

</details>

<details id="keras-qat">
<summary>Quantization-Aware Training (QAT)</summary>

| Tutorial | Included Features |
|---------------------------------------------------|--------------|
| [QAT on MNIST](keras/example_keras_qat.ipynb) | &#x2705; QAT |

</details>


<details id="keras-pruning">
<summary>Structured Pruning</summary>

| Tutorial | Included Features |
|---------------------------------------------------------------------|------------------|
| [Fully-Connected Model Pruning](keras/example_keras_pruning_mnist.ipynb) | &#x2705; Pruning |

</details>

<details id="keras-export">
<summary>Export Quantized Models</summary>

| Tutorial | Included Features |
|---------------------------------------------------------------------------------------|-----------------|
| [Exporter Usage](keras/example_keras_export.ipynb) | &#x2705; Export |

</details>

<details id="keras-debug">
<summary>Debug Tools</summary>

| Tutorial | Included Features |
|-------------------------------------------------------------------------------------|-------------------------|
| [Network Editor Usage](keras/example_keras_network_editor.ipynb) | &#x2705; Network Editor |

</details>

### Pytorch Tutorials


<details id="pytorch-ptq">
<summary>Post-Training Quantization (PTQ)</summary>

| Tutorial | Included Features |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|
| [Basic Post-Training Quantization (PTQ)](pytorch/example_pytorch_post_training_quantization.ipynb) | &#x2705; PTQ |
| [Mixed-Precision Post-Training Quantization](pytorch/example_pytorch_mixed_precision_ptq.ipynb) | &#x2705; PTQ <br/> &#x2705; Mixed-Precision |
| [Advanced Gradient-Based Post-Training Quantization (GPTQ)](pytorch/example_pytorch_mobilenet_gptq.ipynb) | &#x2705; GPTQ |

</details>

<details id="pytorch-pruning">
<summary>Structured Pruning</summary>

| Tutorial | Included Features |
|--------------------------------------------------------------------------------------|------------------|
| [Fully-Connected Model Pruning](pytorch/example_pytorch_pruning_mnist.ipynb) | &#x2705; Pruning |


</details>

<details id="pytorch-data-generation">
<summary>Data Generation</summary>

| Tutorial | Included Features |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| [Zero-Shot Quantization (ZSQ) using Data Generation](pytorch/example_pytorch_data_generation.ipynb) | &#x2705; PTQ <br/> &#x2705; ZSQ <br/> &#x2705; Data-Free Quantization <br/> &#x2705; Data Generation |

</details>


<details id="pytorch-export">
<summary>Export Quantized Models</summary>

| Tutorial | Included Features |
|---------------------------------------------------------------------------------------|-----------------|
| [Exporter Usage](pytorch/example_pytorch_export.ipynb) | &#x2705; Export |

</details>
<details id="pytorch-xquant">
<summary>Quantization Troubleshooting</summary>

| Tutorial | Included Features |
|------------------------------------------------------------------------------------------------|-------------------|
| [Quantization Troubleshooting using the Xquant Feature](pytorch/example_pytorch_xquant.ipynb) | &#x2705; Debug |

</details>
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
25 changes: 0 additions & 25 deletions tutorials/mct_model_garden/README.md

This file was deleted.

14 changes: 0 additions & 14 deletions tutorials/mct_model_garden/__init__.py

This file was deleted.

14 changes: 0 additions & 14 deletions tutorials/mct_model_garden/evaluation_metrics/__init__.py

This file was deleted.

Loading

0 comments on commit 28a9cb5

Please sign in to comment.