From a514d5fbf89ffd2b020204d7126102a125c9ae4a Mon Sep 17 00:00:00 2001
From: Idan Ben Ami <109598548+Idan-BenAmi@users.noreply.github.com>
Date: Wed, 4 Sep 2024 14:53:35 +0300
Subject: [PATCH] Update the text in tutorials for generic timm and
torochvision model (#1200)
---
.../notebooks/imx500_notebooks/README.md | 31 ++++++++-----------
...timm_classification_model_for_imx500.ipynb | 3 +-
...sion_classification_model_for_imx500.ipynb | 7 +++--
3 files changed, 20 insertions(+), 21 deletions(-)
diff --git a/tutorials/notebooks/imx500_notebooks/README.md b/tutorials/notebooks/imx500_notebooks/README.md
index 2abb783b6..681e3de67 100644
--- a/tutorials/notebooks/imx500_notebooks/README.md
+++ b/tutorials/notebooks/imx500_notebooks/README.md
@@ -25,7 +25,7 @@ deployment performance.
Classification |
MobilenetV2 |
- Keras |
+ ipynb (Keras) |
Keras Applications |
|
ImageNet |
@@ -34,7 +34,7 @@ deployment performance.
MobileVit |
- PyTorch |
+ ipynb (PyTorch) |
Timm |
mct-model-garden |
ImageNet |
@@ -43,7 +43,7 @@ deployment performance.
regnety_002.pycls_in1k |
- PyTorch |
+ ipynb (PyTorch) |
Timm |
|
ImageNet |
@@ -52,7 +52,6 @@ deployment performance.
regnetx_002.pycls_in1k |
- PyTorch |
Timm |
|
ImageNet |
@@ -61,7 +60,6 @@ deployment performance.
regnety_004.pycls_in1k |
- PyTorch |
Timm |
|
ImageNet |
@@ -70,7 +68,7 @@ deployment performance.
mnasnet1_0 |
- PyTorch |
+ ipynb (PyTorch) |
torchvision |
|
ImageNet |
@@ -79,7 +77,6 @@ deployment performance.
mobilenet_v2 |
- PyTorch |
torchvision |
|
ImageNet |
@@ -88,7 +85,6 @@ deployment performance.
regnet_y_400mf |
- PyTorch |
torchvision |
|
ImageNet |
@@ -97,7 +93,6 @@ deployment performance.
shufflenet_v2_x1_5 |
- PyTorch |
torchvision |
|
ImageNet |
@@ -108,7 +103,7 @@ deployment performance.
Object Detection |
YOLOv8n |
- Keras |
+ ipynb (Keras) |
Ultralytics |
mct-model-garden |
COCO |
@@ -117,7 +112,7 @@ deployment performance.
YOLOv8n |
- PyTorch |
+ ipynb (PyTorch) |
Ultralytics |
mct-model-garden |
COCO |
@@ -126,7 +121,7 @@ deployment performance.
NanoDet-Plus-m-416 |
- Keras |
+ ipynb (Keras) |
Nanodet |
mct-model-garden |
COCO |
@@ -135,7 +130,7 @@ deployment performance.
EfficientDet-lite0 |
- Keras |
+ ipynb (Keras) |
efficientdet-pytorch |
mct-model-garden |
COCO |
@@ -145,7 +140,7 @@ deployment performance.
Semantic Segmentation |
Deeplabv3plus |
- Keras |
+ ipynb (Keras) |
bonlime |
mct-model-garden |
PASCAL VOC |
@@ -155,7 +150,7 @@ deployment performance.
Instance Segmentation |
YOLOv8n-seg |
- PyTorch |
+ ipynb (PyTorch) |
Ultralytics |
mct-model-garden |
COCO |
@@ -165,7 +160,7 @@ deployment performance.
Pose Estimation |
YOLOv8n-pose |
- PyTorch |
+ ipynb (PyTorch) |
Ultralytics |
mct-model-garden |
COCO |
@@ -175,8 +170,8 @@ deployment performance.
Anomaly Detection |
Efficient AD |
- PyTorch |
- Ultralytics |
+ ipynb (PyTorch) |
+ *EfficientAD paper |
mct-model-garden |
MvTech |
98.56 |
diff --git a/tutorials/notebooks/imx500_notebooks/pytorch/pytorch_timm_classification_model_for_imx500.ipynb b/tutorials/notebooks/imx500_notebooks/pytorch/pytorch_timm_classification_model_for_imx500.ipynb
index 5a02575ba..c7cdc8b8e 100644
--- a/tutorials/notebooks/imx500_notebooks/pytorch/pytorch_timm_classification_model_for_imx500.ipynb
+++ b/tutorials/notebooks/imx500_notebooks/pytorch/pytorch_timm_classification_model_for_imx500.ipynb
@@ -111,7 +111,8 @@
"source": [
"## Model Quantization\n",
"\n",
- "### Download a Pre-Trained Model \n"
+ "### Download a Pre-Trained Model - Please select a Timm model\n",
+ "The tutorial is pre-configured to download `mobilenet_v2` model. In case you wish to use a different model - please change the model & weights below, based on [Timm](https://github.com/huggingface/pytorch-image-models)"
]
},
{
diff --git a/tutorials/notebooks/imx500_notebooks/pytorch/pytorch_torchvision_classification_model_for_imx500.ipynb b/tutorials/notebooks/imx500_notebooks/pytorch/pytorch_torchvision_classification_model_for_imx500.ipynb
index b62d507fe..309a42195 100644
--- a/tutorials/notebooks/imx500_notebooks/pytorch/pytorch_torchvision_classification_model_for_imx500.ipynb
+++ b/tutorials/notebooks/imx500_notebooks/pytorch/pytorch_torchvision_classification_model_for_imx500.ipynb
@@ -39,7 +39,9 @@
{
"metadata": {},
"cell_type": "markdown",
- "source": "Install MCT (if it’s not already installed). Additionally, in order to use all the necessary utility functions for this tutorial, we also copy [MCT tutorials folder](https://github.com/sony/model_optimization/tree/main/tutorials) and add it to the system path.",
+ "source": [
+ "Install MCT (if it’s not already installed). Additionally, in order to use all the necessary utility functions for this tutorial, we also copy [MCT tutorials folder](https://github.com/sony/model_optimization/tree/main/tutorials) and add it to the system path."
+ ],
"id": "b1a05efedd4dbc77"
},
{
@@ -93,7 +95,8 @@
"source": [
"## Model Quantization\n",
"\n",
- "### Download a Pre-Trained Model"
+ "### Download a pre-trained model - Please select a Torchvision model\n",
+ "The tutorial is pre-configured to download `mobilenet_v2` model. In case you wish to use a different model - please change the model & weights below, based on [torchvision](https://pytorch.org/vision/stable/models.html)"
],
"id": "7059e58ac6efff74"
},