-
Notifications
You must be signed in to change notification settings - Fork 93
/
lms.py
72 lines (58 loc) · 2.57 KB
/
lms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright 2021 Sony Corporation.
# Copyright 2021 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
import nnabla.logger as logger
from nnabla.lms import SwapInOutScheduler
@contextmanager
def sechdule_scope(scheduler):
scheduler.update_pre_hook()
yield scheduler
scheduler.update_post_hook()
def lms_scheduler(ctx, use_lms, gpu_memory_size=8 << 30, window_length=12 << 30):
_check_list = [x.split(":")[0] for x in ctx.backend]
if "cudnn" not in _check_list and "cuda" not in _check_list:
logger.warn(
"ctx passed to scheduler doesn't have cuda/cudnn backend. lms scheduler will not be used.")
use_lms = False
if use_lms:
logger.info("[LMS] gpu_memory_limit: {}GB, prefetch_window_length: {}GB".format(float(gpu_memory_size) / (1 << 30),
float(window_length) / (1 << 30)))
# Change array preference so that lms works well.
# import nnabla_ext.cuda.init as cuda_init
# cuda_init.prefer_cpu_pinned_array()
# cuda_init.prefer_cuda_virtual_array()
#
from nnabla.ext_utils import get_extension_context
# from nnabla import set_default_context
be, tc = ctx.backend[0].split(":")
# ctx = get_extension_context(be, device_id=ctx.device_id, type_config=tc)
# set_default_context(ctx)
cpu_ctx = get_extension_context("cpu", device_id="", type_config=tc)
return SwapInOutScheduler(cpu_ctx, ctx, gpu_memory_size, window_length)
else:
class DummyScheduler(object):
function_pre_hook = None
function_post_hook = None
update_pre_hook = None
update_post_hook = None
def start_scheduling(self):
return None
def end_scheduling(self):
return None
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
pass
return DummyScheduler()