-
Notifications
You must be signed in to change notification settings - Fork 93
/
trainer.py
107 lines (86 loc) · 3.56 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright 2020,2021 Sony Corporation.
# Copyright 2021 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC
from pathlib import Path
import nnabla as nn
import nnabla.functions as F
import numpy as np
from scipy.io import wavfile
from tqdm import trange
from .logger import ProgressMeter
class Trainer(ABC):
r"""Implementation of Trainer.
Args:
model (model.module.Module): WaveGlow model.
dataloader (dict): A dataloader.
optimizer (Optimizer): An optimizer used to update the parameters.
hparams (HParams): Hyper-parameters.
"""
def __init__(self, model, dataloader, optimizer, hparams):
self.model = model
self.dataloader = dataloader
self.hparams = hparams
self.one_epoch_train = dataloader['train'].size // hparams.batch_size
self.one_epoch_valid = dataloader['valid'].size // hparams.batch_size
self.placeholder = dict()
self.optimizer = optimizer
self.monitor = ProgressMeter(
self.one_epoch_train, hparams.output_path, quiet=hparams.comm.rank > 0)
hparams.save(Path(hparams.output_path) / 'settings.json')
def update_graph(self, key='train'):
r"""Builds the graph and update the placeholder.
Args:
key (str, optional): Type of computational graph. Defaults to 'train'.
"""
pass
def callback_on_start(self):
r"""Calls this on starting the training."""
self.update_graph('train')
params = self.model.get_parameters(grad_only=True)
self.optimizer.set_parameters(params)
self.update_graph('valid')
self.loss = nn.NdArray.from_numpy_array(np.zeros((1,)))
if self.hparams.comm.n_procs > 1:
self._grads = [x.grad for x in params.values()]
def run(self):
r"""Run the training process."""
self.callback_on_start()
for cur_epoch in range(self.hparams.epoch):
self.monitor.reset()
lr = self.optimizer.get_learning_rate()
self.monitor.info(f'Running epoch={cur_epoch}\tlr={lr:.5f}\n')
self.cur_epoch = cur_epoch
for i in range(self.one_epoch_train):
self.train_on_batch()
if i % (self.hparams.print_frequency) == 0:
self.monitor.display(i, self.out_variables)
for i in trange(self.one_epoch_valid, disable=self.hparams.comm.rank > 0):
self.valid_on_batch()
self.callback_on_epoch_end()
self.callback_on_finish()
self.monitor.close()
def train_on_batch(self):
r"""Calls this on traning batch."""
def valid_on_batch(self):
r"""Calls this on validation batch."""
pass
def callback_on_epoch_end(self):
r"""Calls this on finishing one epoch."""
pass
def callback_on_finish(self):
r"""Calls this on finishing the run method."""
if self.hparams.comm.rank == 0:
path = str(Path(self.hparams.output_path) / 'model.h5')
self.model.save_parameters(path)