-
Notifications
You must be signed in to change notification settings - Fork 141
/
preprocess.py
154 lines (117 loc) · 5.41 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import hyperparams as hp
import pandas as pd
from torch.utils.data import Dataset, DataLoader
import os
import librosa
import numpy as np
from text import text_to_sequence
import collections
from scipy import signal
import torch as t
import math
class LJDatasets(Dataset):
"""LJSpeech dataset."""
def __init__(self, csv_file, root_dir):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the wavs.
"""
self.landmarks_frame = pd.read_csv(csv_file, sep='|', header=None)
self.root_dir = root_dir
def load_wav(self, filename):
return librosa.load(filename, sr=hp.sample_rate)
def __len__(self):
return len(self.landmarks_frame)
def __getitem__(self, idx):
wav_name = os.path.join(self.root_dir, self.landmarks_frame.ix[idx, 0]) + '.wav'
text = self.landmarks_frame.ix[idx, 1]
text = np.asarray(text_to_sequence(text, [hp.cleaners]), dtype=np.int32)
mel = np.load(wav_name[:-4] + '.pt.npy')
mel_input = np.concatenate([np.zeros([1,hp.num_mels], np.float32), mel[:-1,:]], axis=0)
text_length = len(text)
pos_text = np.arange(1, text_length + 1)
pos_mel = np.arange(1, mel.shape[0] + 1)
sample = {'text': text, 'mel': mel, 'text_length':text_length, 'mel_input':mel_input, 'pos_mel':pos_mel, 'pos_text':pos_text}
return sample
class PostDatasets(Dataset):
"""LJSpeech dataset."""
def __init__(self, csv_file, root_dir):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the wavs.
"""
self.landmarks_frame = pd.read_csv(csv_file, sep='|', header=None)
self.root_dir = root_dir
def __len__(self):
return len(self.landmarks_frame)
def __getitem__(self, idx):
wav_name = os.path.join(self.root_dir, self.landmarks_frame.ix[idx, 0]) + '.wav'
mel = np.load(wav_name[:-4] + '.pt.npy')
mag = np.load(wav_name[:-4] + '.mag.npy')
sample = {'mel':mel, 'mag':mag}
return sample
def collate_fn_transformer(batch):
# Puts each data field into a tensor with outer dimension batch size
if isinstance(batch[0], collections.Mapping):
text = [d['text'] for d in batch]
mel = [d['mel'] for d in batch]
mel_input = [d['mel_input'] for d in batch]
text_length = [d['text_length'] for d in batch]
pos_mel = [d['pos_mel'] for d in batch]
pos_text= [d['pos_text'] for d in batch]
text = [i for i,_ in sorted(zip(text, text_length), key=lambda x: x[1], reverse=True)]
mel = [i for i, _ in sorted(zip(mel, text_length), key=lambda x: x[1], reverse=True)]
mel_input = [i for i, _ in sorted(zip(mel_input, text_length), key=lambda x: x[1], reverse=True)]
pos_text = [i for i, _ in sorted(zip(pos_text, text_length), key=lambda x: x[1], reverse=True)]
pos_mel = [i for i, _ in sorted(zip(pos_mel, text_length), key=lambda x: x[1], reverse=True)]
text_length = sorted(text_length, reverse=True)
# PAD sequences with largest length of the batch
text = _prepare_data(text).astype(np.int32)
mel = _pad_mel(mel)
mel_input = _pad_mel(mel_input)
pos_mel = _prepare_data(pos_mel).astype(np.int32)
pos_text = _prepare_data(pos_text).astype(np.int32)
return t.LongTensor(text), t.FloatTensor(mel), t.FloatTensor(mel_input), t.LongTensor(pos_text), t.LongTensor(pos_mel), t.LongTensor(text_length)
raise TypeError(("batch must contain tensors, numbers, dicts or lists; found {}"
.format(type(batch[0]))))
def collate_fn_postnet(batch):
# Puts each data field into a tensor with outer dimension batch size
if isinstance(batch[0], collections.Mapping):
mel = [d['mel'] for d in batch]
mag = [d['mag'] for d in batch]
# PAD sequences with largest length of the batch
mel = _pad_mel(mel)
mag = _pad_mel(mag)
return t.FloatTensor(mel), t.FloatTensor(mag)
raise TypeError(("batch must contain tensors, numbers, dicts or lists; found {}"
.format(type(batch[0]))))
def _pad_data(x, length):
_pad = 0
return np.pad(x, (0, length - x.shape[0]), mode='constant', constant_values=_pad)
def _prepare_data(inputs):
max_len = max((len(x) for x in inputs))
return np.stack([_pad_data(x, max_len) for x in inputs])
def _pad_per_step(inputs):
timesteps = inputs.shape[-1]
return np.pad(inputs, [[0,0],[0,0],[0, hp.outputs_per_step - (timesteps % hp.outputs_per_step)]], mode='constant', constant_values=0.0)
def get_param_size(model):
params = 0
for p in model.parameters():
tmp = 1
for x in p.size():
tmp *= x
params += tmp
return params
def get_dataset():
return LJDatasets(os.path.join(hp.data_path,'metadata.csv'), os.path.join(hp.data_path,'wavs'))
def get_post_dataset():
return PostDatasets(os.path.join(hp.data_path,'metadata.csv'), os.path.join(hp.data_path,'wavs'))
def _pad_mel(inputs):
_pad = 0
def _pad_one(x, max_len):
mel_len = x.shape[0]
return np.pad(x, [[0,max_len - mel_len],[0,0]], mode='constant', constant_values=_pad)
max_len = max((x.shape[0] for x in inputs))
return np.stack([_pad_one(x, max_len) for x in inputs])