forked from Ascend-Research/HeadPoseEstimation-WHENet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
31 lines (27 loc) · 1019 Bytes
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np
import cv2
from whenet import WHENet
from utils import draw_axis
def crop_and_pred(img_path, bbox, model):
img = cv2.imread(img_path)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
x_min, y_min, x_max, y_max = bbox
img_rgb = img_rgb[y_min:y_max, x_min:x_max]
img_rgb = cv2.resize(img_rgb,(224,224))
img_rgb = np.expand_dims(img_rgb, axis=0)
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), (0,0,0), 1)
yaw, pitch, roll = model.get_angle(img_rgb)
draw_axis(img, yaw, pitch, roll, tdx=(x_min+x_max)/2, tdy=(y_min+y_max)/2, size = abs(x_max-x_min))
cv2.imshow('output',img)
cv2.waitKey(5000)
if __name__ == "__main__":
model = WHENet('WHENet.h5')
root = 'Sample/'
print(model.model.summary())
with open('Sample/bbox.txt', 'r') as f:
lines = f.readlines()
for l in lines:
filename, bbox =l.split(',')
bbox = bbox.split(' ')
bbox = [int(b) for b in bbox]
crop_and_pred(root+filename,bbox, model)