forked from Ascend-Research/HeadPoseEstimation-WHENet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwhenet.py
34 lines (32 loc) · 1.64 KB
/
whenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import efficientnet as efn
import tensorflow.keras as keras
import numpy as np
from utils import softmax
class WHENet:
def __init__(self, snapshot=None):
base_model = efn.EfficientNetB0(include_top=False, input_shape=(224, 224, 3))
out = base_model.output
out = keras.layers.GlobalAveragePooling2D()(out)
fc_yaw = keras.layers.Dense(name='yaw_new', units=120)(out) # 3 * 120 = 360 degrees in yaw
fc_pitch = keras.layers.Dense(name='pitch_new', units=66)(out)
fc_roll = keras.layers.Dense(name='roll_new', units=66)(out)
self.model = keras.models.Model(inputs=base_model.input, outputs=[fc_yaw, fc_pitch, fc_roll])
if snapshot!=None:
self.model.load_weights(snapshot)
self.idx_tensor = [idx for idx in range(66)]
self.idx_tensor = np.array(self.idx_tensor, dtype=np.float32)
self.idx_tensor_yaw = [idx for idx in range(120)]
self.idx_tensor_yaw = np.array(self.idx_tensor_yaw, dtype=np.float32)
def get_angle(self, img):
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
img = img/255
img = (img - mean) / std
predictions = self.model.predict(img, batch_size=8)
yaw_predicted = softmax(predictions[0])
pitch_predicted = softmax(predictions[1])
roll_predicted = softmax(predictions[2])
yaw_predicted = np.sum(yaw_predicted*self.idx_tensor_yaw, axis=1)*3-180
pitch_predicted = np.sum(pitch_predicted * self.idx_tensor, axis=1) * 3 - 99
roll_predicted = np.sum(roll_predicted * self.idx_tensor, axis=1) * 3 - 99
return yaw_predicted, pitch_predicted, roll_predicted