forked from cjbarrie/sicss_22
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path000_intro.qmd
436 lines (275 loc) · 9.49 KB
/
000_intro.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
---
title: "Introduction"
subtitle: "SICSS, 2022"
author: Christopher Barrie
format:
revealjs:
chalkboard: true
editor: visual
---
## Introduction
1. Housekeeping
2. Summer school structure
3. Intro. CSS
4. Ethics
## Housekeeping
- Lunches 13:00-14:00 daily:
- Vegan/vegetarian/GF options (go to front of queue!)
- Hot drinks vouchers
- Water bottles
## Housekeeping
- Slack
- Keep it on!
- Channels for ***materials***
- Channels for ***prep.***
## Summer school structure
- 5 Organizers:
- Björn, Chris, Karen, Tod, and Walid
- Chris: main point of contact
- 3 Teaching Assistants:
- Aybuke, Ibrahim, and Youssef
## Summer school structure
- 3 supporters:
- [SSPS](https://www.sps.ed.ac.uk/); 🙏
- [RTC](https://research-training-centre.sps.ed.ac.uk/); 🙏
- and [Turing Institute](https://www.turing.ac.uk/) 🙏
## Summer school structure
- 5 Days intensive instruction
- 10:00-16:00 everyday
- 16:00-17:30 research talk
- See: <https://sicss.io/2022/edinburgh/schedule> for full schedule
- Updated daily + linked materials
## Summer school structure
- 4 (and a bit) days group work
- 10:00-16/17:00 everyday
- Final Day Presentations
- 12:00-16/17:00 everyday
- Final meal 🥳
## Intro.: Computational Social Science
- What is it?
## Intro.: Computational Social Science
::: {layout-ncol="2"}
![](images/edelmann.png)
"Computational social science is an interdisciplinary field that advances theories of human behavior by applying computational techniques to large datasets from social media sites, the Internet, or other digitized archives such as administrative records."
:::
## Intro.: Computational Social Science
::: {layout-ncol="2"}
![](images/cssobstacles.png)
"\[CSS is\] the development and application of computational methods to complex, typically large-scale, human (sometimes simulated) behavioral data."
:::
## Intro.: Computational Social Science
Commonalities:
- Computationally intensive methods
- New types of data
- Outcome of interest is ultimately human behaviour (?)
## Intro.: Computational Social Science
Tensions:
- Place of theory
- Theory from data
- New data for old theories?
## Where has this all come from?
##
![](images/intpen.png){fig-align="center"}\
##
![](images/smpen.png){fig-align="center"}\
##
![](images/wwwsites.png){fig-align="center"}\
##
![](images/dtdata.png){fig-align="center"}\
## Why are these data different?
1. Volume
2. Velocity
3. Producers
4. Variety
## Digital trace data
What is digital trace data?
- Social media posts
- Blogs and webpages
- Call detail records (CDRs)
- Web searches
- Wearables
- Internet of Things
## Digital trace data
What does it look like?
::: {#fig-salganik}
![](images/readymade.png){fig-align="center"}
Salganik, Matthew. 2018. Bit by Bit: Social Research in the Digital Age. Princeton: Princeton University Press. p.7.
:::
## Examples
```{r, echo=T, eval = F}
[{'text': 'hello freak [ __ ] I would love to play',
'start': 0.439,
'duration': 5.351},
{'text': 'you the dinosaurs are not real video',
'start': 3.72,
'duration': 4.82},
{'text': 'just do it God', 'start': 5.79, 'duration': 5.25},
{'text': "we probably can't play it on YouTube",
'start': 8.54,
'duration': 3.76},
{'text': "where we'll get pulled but we could play",
'start': 11.04,
'duration': 4.44},
{'text': 'the audio right play the I will put the',
'start': 12.3,
'duration': 4.59},
{'text': 'video up on the screen and play the',
'start': 15.48,
'duration': 3.389},
{'text': 'audio for you and you could just [ __ ] it',
'start': 16.89,
'duration': 4.29},
{'text': 'your head could turn beet red smokes',
'start': 18.869,
'duration': 4.381},
```
## Examples
![](images/ahram.png){fig-align="center"}
## Examples
```{r, eval = F, echo=T}
<publicwhip scraperversion="b" latest="yes">
<oral-heading id="uk.org.publicwhip/debate/2017-01-09b.1.0" nospeaker="true" colnum="1" time="" url="">Oral
Answers to
Questions</oral-heading>
<major-heading id="uk.org.publicwhip/debate/2017-01-09b.1.1" nospeaker="true" colnum="1" time="" url="">
WORK AND PENSIONS
</major-heading>
<speech id="uk.org.publicwhip/debate/2017-01-09b.1.2" nospeaker="true" colnum="1" time="" url="">
<p pid="b1.2/1">The Secretary of State was asked—</p>
</speech>
<speech id="uk.org.publicwhip/debate/2017-01-09b.1.3" speakername="John Bercow" person_id="uk.org.publicwhip/person/10040" colnum="1" time="" url="">
<p pid="b1.3/1">I call Mr Gerald Jones. Where is the fella? He is not here.</p>
</speech>
<minor-heading id="uk.org.publicwhip/debate/2017-01-09b.1.4" nospeaker="true" colnum="1" time="" url="">
Self-employment
</minor-heading>
<speech id="uk.org.publicwhip/debate/2017-01-09b.1.5" person_id="uk.org.publicwhip/person/25309" speakername="Peter Dowd" oral-qnum="2" colnum="1" time="" url="">
<p pid="b1.5/1" qnum="908056">What recent assessment he has made of trends in the level of self-employment. </p>
```
## Applied examples
::: {#fig-example1}
![](images/twitterscience.png){fig-align="center"}
<https://advances.sciencemag.org/content/7/29/eabe6534/tab-article-info>
:::
## Applied examples
::: {#fig-example2}
![](images/parler.png){fig-align="center"}
<https://arxiv.org/abs/2101.03820>
:::
## Applied examples
::: {#fig-example3}
![](images/YTLai.png){fig-align="center"}
<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4088828>
:::
## Applied examples
::: {#fig-example4}
![](images/cdrs.png){fig-align="center"}
<https://www.science.org/doi/10.1126/science.aac4420>
:::
## Applied examples
::: {#fig-example5}
![](images/dawidowitz.png){fig-align="center"}
<https://www.sciencedirect.com/science/article/pii/S0047272714000929>
:::
## Applied examples
::: {#fig-example6}
![](images/marwick.png){fig-align="center"}
<https://journals.sagepub.com/doi/abs/10.1177/1461444810365313>
:::
## Isn't this all just a fad?
No
## Next question?
## But seriously...
- Ubiquity
- Diversity
- Complementarity
## But seriously...
- Ubiquity
- Digital trace data is everywhere and "always on"
## But seriously...
- Diversity
- of methods and data sources means no-brainer to use
## But seriously...
- Complementarity
- of data and methods means enrichment (of the old) not substitution (by the new)
## Isn't it all just \[stats./quant./data science\]?
- In some ways: yeah...
## Isn't it all just \[stats./quant./data science\]?
::: {#fig-example7}
![](images/tukey.png){fig-align="center"}
<https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-33/issue-1/The-Future-of-Data-Analysis/10.1214/aoms/1177704711.full>
:::
## Isn't it all just \[stats./quant./data science\]?
- In some ways: yeah...
- In other ways: well, no...
- New types of data
- e.g., unstructured and trace data
- associated decisions re how to restructure (compare: surveys)
## Isn't it all just \[stats./quant./data science\]?
- In other ways: well, no...
- New emphasis
- e.g., learning from data and prediction
## Isn't it all just \[stats./quant./data science\]?
- In other ways: well, no...
- New theory
- e.g., human-computer interaction
## Isn't it all just \[stats./quant./data science\]?
- In other ways: well, no...
- New ethical dilemmas...
## Case studies
![](images/barriefrey.png){fig-align="center"}
## Case studies
![](images/geolocwm2.png){fig-align="center"}
## Case studies
![](images/gdists.png){fig-align="center"}
## What is at stake?
- Go to chalkboard
## Case studies
![](images/nytparlertitle.png){fig-align="center"}
## Case studies
![](images/nytparler.gif){fig-align="center"}
## Ethics
- consequentialism
- deontology
## How do we decide?
- IRB (rules-based)
- ethical judgment (principles-based)
...
- and we do this *openly* (transparency-based accountability)
## Ethics
- respect for persons
- beneficence
- justice
- respect for law and public interest
## Ethics
- respect for persons (Belmont)
- beneficence (Belmont)
- justice (Belmont)
- respect for law and public interest (Menlo)
1. <https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html>
2. <https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf>
3. <https://aoir.org/reports/ethics3.pdf>
## Ethics
- respect for persons
- participants decide--not you (informed consent)
## Ethics
- beneficence
- minimize risk and maximiize benefits to decide if worth it
- N.B. third-party oversight (because researcher bias)
## Ethics
- justice
- distribution of benefits and burdens of research
- vulnerable individuals; global South as lab
## Ethics
- respect for law and public interest
- compliance (TOS and general law...)
- N.B. difficulties with cross-national research
- be open about what you're doing (transparency-based accountability)
## Group work
- Split into five groups
- Each of you assigned one reading
- <https://www.pnas.org/doi/10.1073/pnas.1320040111>
- [https://www.dropbox.com/s/883j32og8zcx0ew/Mexico%20Saturation%20Intervention%20v12.pdf?dl=0 ](https://www.dropbox.com/s/883j32og8zcx0ew/Mexico%20Saturation%20Intervention%20v12.pdf?dl=0 )
- Think about the study as it relates to: respect for persons; beneficence; justice; respect for law and public interest
## What is at stake?
- Go to chalkboard