forked from harvard-edge/cs249r_book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_quarto.yml
125 lines (111 loc) · 3.69 KB
/
_quarto.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
project:
type: book
output-dir: _book
preview:
browser: true
navigate: true
render:
- "*.qmd"
website:
comments:
hypothesis:
theme: clean
openSidebar: true
include-in-header:
text: <script src="https://hypothes.is/embed.js" async></script>
book:
navbar:
search: true
pinned: true
collapse: true
sidebar:
search: true
page-navigation: true
title: "MACHINE LEARNING SYSTEMS"
subtitle: "for TinyML"
abstract: Machine Learning Systems for TinyML offers comprehensive guidance on deploying machine learning on embedded devices. As edge computing and the Internet of Things proliferate, this textbook provides professionals and students the expertise to implement performant AI on resource-constrained hardware. A unique aspect of this book elucidates the entire machine learning workflow, from data engineering through training, optimization, acceleration, and production deployment. Key topics covered include deep learning and classical ML algorithms for embedded systems, efficient neural network architectures, hardware-aware training techniques, model compression, benchmarking for tinyML, and on-device learning. Additional chapters highlight cutting-edge advances like on-device data generation and crucial considerations around reliability, privacy, security, and responsible AI. With its rigorous approach spanning theory and practice across diverse tinyML application domains like smart homes, wearables, and industrial IoT, the book enables readers to develop specialized knowledge. Using concrete use cases and hands-on examples, readers will learn to apply machine learning to transform embedded and IoT systems. Overall, this indispensable guide provides a research-based foundation for leveraging machine learning in embedded systems.
search: true
repo-url: https://github.com/harvard-edge/cs249r_book
repo-actions: [edit, issue, source]
downloads: [pdf, epub]
sharing: [twitter, facebook]
reader-mode: true
cover-image: cover.png
favicon: cover.png
page-footer:
left: |
Edited by Prof. Vijay Janapa Reddi (Harvard University)
right: |
This book was built with <a href="https://quarto.org/">Quarto</a>.
chapters:
- part: front.qmd
chapters:
- index.qmd
- dedication.qmd
- acknowledgements.qmd
- contributors.qmd
- copyright.qmd
- about.qmd
- part: Main
- introduction.qmd
- embedded_sys.qmd
- dl_primer.qmd
- embedded_ml.qmd
- workflow.qmd
- data_engineering.qmd
- frameworks.qmd
- training.qmd
- efficient_ai.qmd
- optimizations.qmd
- hw_acceleration.qmd
- benchmarking.qmd
- ondevice_learning.qmd
- ops.qmd
- privacy_security.qmd
- responsible_ai.qmd
- generative_ai.qmd
- ai_for_good.qmd
- sustainable_ai.qmd
- part: Exercises
chapters:
- embedded_sys_exercise.qmd
- embedded_ml_exercise.qmd
references: references.qmd
appendices:
- tools.qmd
- zoo_datasets.qmd
- zoo_models.qmd
- learning_resources.qmd
- community.qmd
- case_studies.qmd
citation: true
bibliography: references.bib
reference-location: margin
citation-location: margin
keywords:
- open-source
- embedded systems
- machine learning
- tinyML
license: CC-BY-NC-SA
crossref:
appendix-title: "Appendix"
appendix-delim: ":"
format:
html:
theme:
- cosmo
- style.scss
mainfont: Nunito
code-link: true
link-external-icon: true
link-external-newwindow: true
callout-appearance: simple
anchor-sections: true
smooth-scroll: false
toc: true
citations-hover: false
fig-width: 8
fig-height: 6
editor:
render-on-save: true