forked from harvard-edge/cs249r_book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreferences.bib
184 lines (162 loc) · 6.93 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
@misc{Thefutur92:online,
author = {ARM.com},
title = {The future is being built on Arm: Market diversification continues to drive strong royalty and licensing growth as ecosystem reaches quarter of a trillion chips milestone – Arm®},
howpublished = {\url{https://www.arm.com/company/news/2023/02/arm-announces-q3-fy22-results}},
month = {},
year = {},
note = {(Accessed on 09/16/2023)}
}
@article{han2015deep,
title={Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding},
author={Han, Song and Mao, Huizi and Dally, William J},
journal={arXiv preprint arXiv:1510.00149},
year={2015}
}
@misc{han2016deep,
title={Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding},
author={Song Han and Huizi Mao and William J. Dally},
year={2016},
eprint={1510.00149},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@article{lecun1989optimal,
title={Optimal brain damage},
author={LeCun, Yann and Denker, John and Solla, Sara},
journal={Advances in neural information processing systems},
volume={2},
year={1989}
}
@book{barroso2019datacenter,
title={The datacenter as a computer: Designing warehouse-scale machines},
author={Barroso, Luiz Andr{\'e} and H{\"o}lzle, Urs and Ranganathan, Parthasarathy},
year={2019},
publisher={Springer Nature}
}
@article{howard2017mobilenets,
title={Mobilenets: Efficient convolutional neural networks for mobile vision applications},
author={Howard, Andrew G and Zhu, Menglong and Chen, Bo and Kalenichenko, Dmitry and Wang, Weijun and Weyand, Tobias and Andreetto, Marco and Adam, Hartwig},
journal={arXiv preprint arXiv:1704.04861},
year={2017}
}
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
@inproceedings{jouppi2017datacenter,
title={In-datacenter performance analysis of a tensor processing unit},
author={Jouppi, Norman P and Young, Cliff and Patil, Nishant and Patterson, David and Agrawal, Gaurav and Bajwa, Raminder and Bates, Sarah and Bhatia, Suresh and Boden, Nan and Borchers, Al and others},
booktitle={Proceedings of the 44th annual international symposium on computer architecture},
pages={1--12},
year={2017}
}
@article{iandola2016squeezenet,
title={SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size},
author={Iandola, Forrest N and Han, Song and Moskewicz, Matthew W and Ashraf, Khalid and Dally, William J and Keutzer, Kurt},
journal={arXiv preprint arXiv:1602.07360},
year={2016}
}
@article{li2019edge,
title={Edge AI: On-demand accelerating deep neural network inference via edge computing},
author={Li, En and Zeng, Liekang and Zhou, Zhi and Chen, Xu},
journal={IEEE Transactions on Wireless Communications},
volume={19},
number={1},
pages={447--457},
year={2019},
publisher={IEEE}
}
@book{rosenblatt1957perceptron,
title={The perceptron, a perceiving and recognizing automaton Project Para},
author={Rosenblatt, Frank},
year={1957},
publisher={Cornell Aeronautical Laboratory}
}
@article{rumelhart1986learning,
title={Learning representations by back-propagating errors},
author={Rumelhart, David E and Hinton, Geoffrey E and Williams, Ronald J},
journal={nature},
volume={323},
number={6088},
pages={533--536},
year={1986},
publisher={Nature Publishing Group UK London}
}
@book{warden2019tinyml,
title={Tinyml: Machine learning with tensorflow lite on arduino and ultra-low-power microcontrollers},
author={Warden, Pete and Situnayake, Daniel},
year={2019},
publisher={O'Reilly Media}
}
@inproceedings{jouppi2017datacenter,
title={In-datacenter performance analysis of a tensor processing unit},
author={Jouppi, Norman P and Young, Cliff and Patil, Nishant and Patterson, David and Agrawal, Gaurav and Bajwa, Raminder and Bates, Sarah and Bhatia, Suresh and Boden, Nan and Borchers, Al and others},
booktitle={Proceedings of the 44th annual international symposium on computer architecture},
pages={1--12},
year={2017}
}
@article{krizhevsky2012imagenet,
title={Imagenet classification with deep convolutional neural networks},
author={Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E},
journal={Advances in neural information processing systems},
volume={25},
year={2012}
}
@inproceedings{chen2018tvm,
title={$\{$TVM$\}$: An automated $\{$End-to-End$\}$ optimizing compiler for deep learning},
author={Chen, Tianqi and Moreau, Thierry and Jiang, Ziheng and Zheng, Lianmin and Yan, Eddie and Shen, Haichen and Cowan, Meghan and Wang, Leyuan and Hu, Yuwei and Ceze, Luis and others},
booktitle={13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18)},
pages={578--594},
year={2018}
}
@article{paszke2019pytorch,
title={Pytorch: An imperative style, high-performance deep learning library},
author={Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and others},
journal={Advances in neural information processing systems},
volume={32},
year={2019}
}
@inproceedings{abadi2016tensorflow,
title={$\{$TensorFlow$\}$: a system for $\{$Large-Scale$\}$ machine learning},
author={Abadi, Mart{\'\i}n and Barham, Paul and Chen, Jianmin and Chen, Zhifeng and Davis, Andy and Dean, Jeffrey and Devin, Matthieu and Ghemawat, Sanjay and Irving, Geoffrey and Isard, Michael and others},
booktitle={12th USENIX symposium on operating systems design and implementation (OSDI 16)},
pages={265--283},
year={2016}
}
@misc{chollet2015,
author = {François Chollet },
title = {keras},
year = {2015},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/fchollet/keras}},
commit = {5bcac37}
}
@article{vaswani2017attention,
title={Attention is all you need},
author={Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones, Llion and Gomez, Aidan N and Kaiser, {\L}ukasz and Polosukhin, Illia},
journal={Advances in neural information processing systems},
volume={30},
year={2017}
}
@article{goodfellow2020generative,
title={Generative adversarial networks},
author={Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
journal={Communications of the ACM},
volume={63},
number={11},
pages={139--144},
year={2020},
publisher={ACM New York, NY, USA}
}
@article{bank2023autoencoders,
title={Autoencoders},
author={Bank, Dor and Koenigstein, Noam and Giryes, Raja},
journal={Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook},
pages={353--374},
year={2023},
publisher={Springer}
}