forked from zacharycompton/cancerAcrossVertebrates
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenignvmal.R
232 lines (183 loc) · 7.9 KB
/
benignvmal.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#open libraries
library(patchwork)
library(tidyverse)
library(cowplot)
library(ggrepel)
#read csv
cleanPath <- read.csv("cleanPath.min20.062822.csv")
min20Data <- read.csv("min20-2022.05.16.csv")
view(min20Data)
#linear model mav vs benign
malben<-lm(MalignancyPrevalence~BenignPrevalence,data = min20Data)
summary(malben)
summary(malben)$r.squared
summary(malben)$coefficients[2,4]
#ks test for benign lifespan vs malignant lifespan
benign<-filter(cleanPath, is.element(Malignant, c(0)))
malignant<-filter(cleanPath, is.element(Malignant, c(1)))
ks.test(benign$proportion_lifespan,malignant$proportion_lifespan)
cleanPath<- filter(cleanPath,Malignant >= 0)
#grab r squared
r2<-signif(as.numeric(summary(malben)$r.squared)^2, digits= 2)
pval<-signif(as.numeric(summary(malben)$coefficients[2,4])^2, digits= 2)
#plot malignancy prev vs benign prev
ggplot(min20Data, aes(y=MalignancyPrevalence*100, x= BenignPrevalence*100))+
scale_color_manual(values = c("Mammalia" = "#631879FF", "Sauropsida"= "#008b45ff", "Amphibia"= "#3B4992ff" ),)+
scale_y_continuous(
limits = c(0,50),
breaks = c(0, 25,50),
labels = c(0, 25,50))+
scale_x_continuous(
limits = c(0,30),
breaks = c(0, 15,30),
labels = c(0, 15,30)
)+
geom_abline(intercept = coef(malben)[1], slope = coef(malben)[2],
color = 'grey',size = 1.2) +
theme_cowplot(12)+
theme(axis.title = element_text(size = 18))+
ylab("Malignancy Prevalence (%)") +
xlab("Benign Prevalence (%)") +
geom_point(aes(colour= Clade, size = RecordsWithDenominators)) +
scale_size(name = "Total Necropsies",
breaks = c(20,100,200,300,477),
labels = c(20,100,200,300,477))+
geom_text_repel(aes(label=ifelse( MalignancyPrevalence > .3,as.character(common_name),'')),max.overlaps = Inf,size=5, direction = "y")+
guides(colour = guide_legend(override.aes = list(size=3))) +
labs(title = "Malignancy Prevalence v. Benign Prevalence",
subtitle =bquote(p-value:.(pval)~R^2:.(r2)))+
theme(
plot.title = element_text(size = 20, face = "bold")) +
theme(legend.position = "bottom")+
labs(colour="Clade", size="Total Necropsies")
#save
ggsave(filename='benignvmal.pdf', width=13, height=10, limitsize=FALSE,bg="white")
#plot prop lifespan malignant factor
bvm<- ggplot(cleanPath, aes(x=proportion_lifespan*100, y=..scaled..,fill=factor((Malignant)))) +
geom_density(alpha=0.25) +
ggtitle("Tumor v. No Tumor Slow Life History",
subtitle="All Species") +
xlab("Age at Death as a Percentage of Species Lifespan") + ylab("Normalized Frequency") +
coord_cartesian(xlim = c(0,150),ylim = c(0,1))+theme_cowplot(12)+ theme(legend.position = "bottom")+
scale_fill_discrete(name="",labels=c( "No Tumor Found","Benign", "Malignant"))
bvm
library(nlme)
library(rms)
library(phytools)
library(geiger)
library(caper)
library(tidyverse)
library(cowplot)
library(ggrepel)
library(ggsci)
library(patchwork)
library(poolr)
library(rr2)
#make sure to run all of this before you get to work.
#pgls sey base (just run all of this)
modPgls.SEy = function (model, data, corClass = corBrownian, tree, se = NULL,
method = c("REML", "ML"), interval = c(0, 1000), corClassValue=1, sig2e=NULL, ...)
{
Call <- match.call()
corfunc <- corClass
spp <- rownames(data)
data <- cbind(data, spp)
if (is.null(se))
se <- setNames(rep(0, Ntip(tree)), tree$tip.label)[spp]
else se <- se[spp]
lk <- function(sig2e, data, tree, model, ve, corfunc, spp) {
tree$edge.length <- tree$edge.length * sig2e
ii <- sapply(1:Ntip(tree), function(x, e) which(e ==
x), e = tree$edge[, 2])
tree$edge.length[ii] <- tree$edge.length[ii] + ve[tree$tip.label]
vf <- diag(vcv(tree))[spp]
w <- varFixed(~vf)
COR <- corfunc(corClassValue, tree, form = ~spp, ...)
fit <- gls(model, data = cbind(data, vf), correlation = COR,
method = method, weights = w)
-logLik(fit)
}
if (is.null(sig2e)) {
fit <- optimize(lk, interval = interval, data = data, tree = tree,
model = model, ve = se^2, corfunc = corfunc, spp = spp)
sig2e=fit$minimum
}
tree$edge.length <- tree$edge.length * sig2e
ii <- sapply(1:Ntip(tree), function(x, e) which(e == x),
e = tree$edge[, 2])
tree$edge.length[ii] <- tree$edge.length[ii] + se[tree$tip.label]^2
vf <- diag(vcv(tree))[spp]
w <- varFixed(~vf)
obj <- gls(model, data = cbind(data, vf), correlation = corfunc(corClassValue,
tree, form = ~spp, ...), weights = w, method = method)
obj$call <- Call
obj$sig2e <- sig2e
obj
}
#Internal function
pglsSEyPagelToOptimizeLambda=function(lambda,model,data,tree,...) {
-logLik(modPgls.SEy(model=model,data=data,tree=tree,corClassValue=lambda,corClass=corPagel,fixed=T,...)) #Returns -logLikelihood of the pgls.SEy model with lambda fixed to the value of the lambda argument. sig2e will be optimized within modPgls.SEy unless given as an argument here
}
#Function intended for users
pglsSEyPagel=function(model, data, tree, lambdaInterval=c(0,1),...){
optimizedModel=optimize(pglsSEyPagelToOptimizeLambda,lambdaInterval,model=model,data=data,tree=tree,...) #Optimizes lambda in the lambdaInterval using the pglsSEyPagelToOptimizeLambda function
return(modPgls.SEy(model=model,data=data,tree=tree,corClass=corPagel,fixed=T,corClassValue=optimizedModel$minimum,...)) #Returns the final model fit
}
#read data
Data <- read.csv("min20-2022.05.16.csv")
View(Data)
#adult weight models
#adult weight neo
cutData <- Data[,c(5,9,10,11,17,20,42),drop=FALSE]
cutData[cutData$adult_weight == -1, ] <-NA
cutData <- na.omit(cutData)
tree <- read.tree("min20Fixed516.nwk")
cutData$Species <- gsub(" ", "_", cutData$Species)
cutData$common_name<-gsub("_", "", cutData$common_name)
includedSpecies<-cutData$Species
pruned.tree<-drop.tip(
tree, setdiff(
tree$tip.label, includedSpecies))
pruned.tree <- keep.tip(pruned.tree,pruned.tree$tip.label)
cutData$Keep <- cutData$Species %in% pruned.tree$tip.label
cutData <- cutData[!(cutData$Keep==FALSE),]
rownames(cutData)<-cutData$Species
SE<-setNames(cutData$SE_simple,cutData$Species)[rownames(cutData)]
view(cutData)
#pgls model
benmal<-pglsSEyPagel(MalignancyPrevalence~BenignPrevalence,data=cutData,tree=pruned.tree,se=SE,method = "ML")
summary(benmal)
#grab r squared, lambda, and p values from summary
r.v.benmal <- R2(phy = pruned.tree,benmal)
r.v.benmal <- format(r.v.benmal[3])
r.v.benmal <-signif(as.numeric(r.v.benmal), digits= 2)
ld.v.benmal<- summary(benmal)$modelStruct$corStruct
ld.v.benmal <- signif(ld.v.benmal[1], digits = 2)
p.v.benmal<-summary(benmal)$tTable
p.v.benmal<-signif(p.v.benmal[2,4], digits = 2)
#plot
bem<-ggplot(cutData, aes(y=MalignancyPrevalence*100, x=BenignPrevalence))+
scale_color_manual(values = c("Mammalia" = "#631879FF", "Sauropsida"= "#008b45ff", "Amphibia"= "#3B4992ff" ),)+
scale_y_continuous(
limits = c(0,75),
breaks = c(0, 25,50,75),
labels = c(0, 25,50,75))+
geom_abline(intercept = coef(benmal)[1]*100, slope = coef(benmal)[2]*100,
color = 'grey',size = 1.2) +
labs(title = "Malignancy Prevalence vs. Benign Prevalence",
subtitle =bquote(p-value:.(p.v.benmal)~R^2:.(r.v.benmal)~Lambda:.(ld.v.benmal))) +
theme_cowplot(12)+
theme(axis.title = element_text(size = 18))+
ylab("Malignancy Prevalence (%)") +
xlab("Benign Prevalence (%)") +
geom_point(aes(colour= Clade, size = RecordsWithDenominators)) +
scale_size(name = "Total Necropsies",
breaks = c(20,100,200,300,477),
labels = c(20,100,200,300,477))+
guides(colour = guide_legend(override.aes = list(size=3))) +
theme(
plot.title = element_text(size = 20, face = "bold")) +
theme(legend.position = "bottom")+
labs(colour="Clade", size="Total Necropsies")
bem
ggsave(filename='S57mutation.mal.png', width=9.5, height=7, limitsize=FALSE,bg="white")