-
Notifications
You must be signed in to change notification settings - Fork 112
/
train.py
200 lines (164 loc) · 5.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
from blocks import initialization
from blocks.algorithms import (
Adam, CompositeRule, GradientDescent, StepClipping)
from blocks.extensions import (Printing, Timing)
from blocks.extensions.monitoring import (
DataStreamMonitoring, TrainingDataMonitoring)
from blocks.extensions.predicates import OnLogRecord
from blocks.extensions.saveload import Checkpoint, Load
from blocks.extensions.training import TrackTheBest
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.model import Model
import cPickle
from extensions import LearningRateSchedule, Plot, TimedFinish
from datasets import parrot_stream
from model import Parrot
from utils import train_parse
args = train_parse()
exp_name = args.experiment_name
save_dir = args.save_dir
print "Saving config ..."
with open(os.path.join(save_dir, 'config', exp_name + '.pkl'), 'w') as f:
cPickle.dump(args, f)
print "Finished saving."
w_init = initialization.IsotropicGaussian(0.01)
b_init = initialization.Constant(0.)
train_stream = parrot_stream(
args.dataset, args.use_speaker, ('train',), args.batch_size,
noise_level=args.feedback_noise_level, labels_type=args.labels_type,
seq_size=args.seq_size, raw_data=args.raw_output)
if args.feedback_noise_level is None:
val_noise_level = None
else:
val_noise_level = 0.
valid_stream = parrot_stream(
args.dataset, args.use_speaker, ('valid',), args.batch_size,
noise_level=val_noise_level, labels_type=args.labels_type,
seq_size=args.seq_size, raw_data=args.raw_output)
example_batch = next(train_stream.get_epoch_iterator())
for idx, source in enumerate(train_stream.sources):
if source not in ['start_flag', 'feedback_noise_level']:
print source, "shape: ", example_batch[idx].shape, \
source, "dtype: ", example_batch[idx].dtype
else:
print source, ": ", example_batch[idx]
parrot_args = {
'input_dim': args.input_dim,
'output_dim': args.output_dim,
'rnn_h_dim': args.rnn_h_dim,
'readouts_dim': args.readouts_dim,
'weak_feedback': args.weak_feedback,
'full_feedback': args.full_feedback,
'feedback_noise_level': args.feedback_noise_level,
'layer_norm': args.layer_norm,
'use_speaker': args.use_speaker,
'num_speakers': args.num_speakers,
'speaker_dim': args.speaker_dim,
'which_cost': args.which_cost,
'num_characters': args.num_characters,
'attention_type': args.attention_type,
'attention_alignment': args.attention_alignment,
'encoder_type': args.encoder_type,
'weights_init': w_init,
'biases_init': b_init,
'raw_output': args.raw_output,
'name': 'parrot'}
parrot = Parrot(**parrot_args)
parrot.initialize()
features, features_mask, labels, labels_mask, speaker, start_flag, raw_sequence = \
parrot.symbolic_input_variables()
cost, extra_updates, attention_vars, cost_raw = parrot.compute_cost(
features, features_mask, labels, labels_mask,
speaker, start_flag, args.batch_size, raw_audio=raw_sequence)
cost_name = args.which_cost
cost.name = cost_name
if parrot.raw_output:
cost_raw.name = "sampleRNN_cost"
cg = ComputationGraph(cost)
model = Model(cost)
parameters = cg.parameters
step_rule = CompositeRule(
[StepClipping(10. * args.grad_clip), Adam(args.learning_rate)])
algorithm = GradientDescent(
cost=cost,
parameters=parameters,
step_rule=step_rule,
on_unused_sources='warn')
algorithm.add_updates(extra_updates)
monitoring_vars = [cost]
plot_names = [['train_' + cost_name, 'valid_' + cost_name]]
if args.lr_schedule:
lr = algorithm.step_rule.components[1].learning_rate
monitoring_vars.append(lr)
plot_names += [['valid_learning_rate']]
if parrot.raw_output:
monitoring_vars.append(cost_raw)
plot_names.append(['train_sampleRNN_cost', 'valid_sampleRNN_cost'])
train_monitor = TrainingDataMonitoring(
variables=monitoring_vars,
every_n_batches=args.save_every,
prefix="train")
valid_monitor = DataStreamMonitoring(
monitoring_vars,
valid_stream,
every_n_batches=args.save_every,
after_epoch=False,
prefix="valid")
extensions = []
if args.load_experiment:
extensions += [Load(os.path.join(
save_dir, "pkl", "best_" + args.load_experiment + ".tar"))]
extensions += [
Timing(every_n_batches=args.save_every),
train_monitor]
extensions += [
valid_monitor,
TrackTheBest(
'valid_' + cost_name,
every_n_batches=args.save_every,
before_first_epoch=True),
Plot(
os.path.join(save_dir, "progress", exp_name + ".png"),
plot_names,
every_n_batches=args.save_every,
email=False),
Checkpoint(
os.path.join(save_dir, "pkl", "best_" + exp_name + ".tar"),
after_training=False,
save_separately=['log'],
use_cpickle=True,
save_main_loop=False,
before_first_epoch=True)
.add_condition(
["after_batch", "before_training"],
predicate=OnLogRecord('valid_'+ cost_name + '_best_so_far')),
Checkpoint(
os.path.join(save_dir, "pkl", "last_" + exp_name + ".tar"),
after_training=True,
save_separately=['log'],
use_cpickle=True,
every_n_batches=args.save_every,
save_main_loop=False)]
if args.lr_schedule:
extensions += [
LearningRateSchedule(
lr, 'valid_' + cost_name,
os.path.join(save_dir, "pkl", "best_" + exp_name + ".tar"),
patience=10,
num_cuts=5,
every_n_batches=args.save_every)]
extensions += [
Printing(
after_epoch=False,
every_n_batches=args.save_every)]
if args.time_limit:
extensions += [TimedFinish(args.time_limit)]
main_loop = MainLoop(
model=model,
data_stream=train_stream,
algorithm=algorithm,
extensions=extensions)
print "Training starting:"
main_loop.run()