-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathstickman_fit.cpp
314 lines (279 loc) · 11.8 KB
/
stickman_fit.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#include <iostream>
using namespace std;
#include <eigen3/unsupported/Eigen/CXX11/Tensor>
#include <renderer.hpp>
#include <eigen3/Eigen/Eigen>
#include <jsoncpp/json/json.h>
#include <jsoncpp/json/value.h>
#include <jsoncpp/json/reader.h>
#include <opencv2/opencv.hpp>
#include <opencv2/core/eigen.hpp>
#include <iomanip>
#include <chrono>
#include <trackbar.h>
#include <tensor.h>
#include <smpl.h>
#include <GLFW/glfw3.h>
#include <thread> // std::thread
#include <mutex> // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable
#include <op.h>
#include <stickman.h>
#include <pf.h>
class StickmanTracker : public ParticleFilter{
public:
// Stickman
StickMan meanStickman;
const float PI = M_PI;
const float PI2 = PI*2;
std::vector<StickMan> stickmanFilters;
const int totalParams = meanStickman.bLengths+(meanStickman.bodyParts*3)+3;
cv::Mat inputImage, debugImg;
struct Params{
float fl = 500;
float cx = 0;
float cy = 0;
};
Params params;
StickmanTracker(int particleCount) : ParticleFilter(particleCount, 67)
{
stickmanFilters.resize(particleCount);
for(StickMan& stickman : stickmanFilters){
stickman = meanStickman;
}
float minFloat = std::numeric_limits<float>::min();
float maxFloat = std::numeric_limits<float>::max();
std::cout << paramsCount_ << std::endl;
std::cout << totalParams << std::endl;
// Range
Eigen::MatrixXf rangeMatrix(totalParams,2);
rangeMatrix << -PI2,PI2, -PI2,PI2, -PI2,PI2, // BODY
-PI2,PI2, -PI2,PI2, -PI2,PI2, // CHIP
-PI2,PI2, -PI2,PI2, -PI2,PI2, // LLEG
-PI2,PI2, -PI2,PI2, -PI2,PI2, // RLEG
-PI2,PI2, -PI2,PI2, -PI2,PI2, // LKNEE
-PI2,PI2, -PI2,PI2, -PI2,PI2, // RKNEE
-PI2,PI2, -PI2,PI2, -PI2,PI2, // LFOOT
-PI2,PI2, -PI2,PI2, -PI2,PI2, // RFOOT
-PI2,PI2, -PI2,PI2, -PI2,PI2, // FNECK
-PI2,PI2, -PI2,PI2, -PI2,PI2, // NECK
-PI2,PI2, -PI2,PI2, -PI2,PI2, // NOSE
-PI2,PI2, -PI2,PI2, -PI2,PI2, // HEAD
-PI2,PI2, -PI2,PI2, -PI2,PI2, // LSHOULDER2
-PI2,PI2, -PI2,PI2, -PI2,PI2, // RSHOULDER2
-PI2,PI2, -PI2,PI2, -PI2,PI2, // LELBOW
-PI2,PI2, -PI2,PI2, -PI2,PI2, // RELBOW
-PI2,PI2, -PI2,PI2, -PI2,PI2, // LWRIST
-PI2,PI2, -PI2,PI2, -PI2,PI2, // RWRIST
0.1,1.2, // BODY HIP LENGTH
0.1,1.2, // HIP WIDTH
0.1,1.2, // LEG KNEE LENGTH
0.1,1.2, // KNEE FOOT LENGTH
0.1,1.2, // BODY TO FNECK LENGTH
0.1,1.2, // SHOULDER WIDTH
0.1,1.2, // SHOULDER TO ELBOW
0.1,1.2, // ELBOW TO WRIST
0.1,0.5, // FNECK TO NECK
0.05,0.2, // NOSE HEAD ETC
-10, 10, //TX
-10, 10, //TY
-100, 100; //TZ
setRange(rangeMatrix);
}
Eigen::MatrixXf setStickmanFromPF(StickMan& stickman, Eigen::MatrixXf mean){
for(int i=0; i<meanStickman.bodyParts; i++){
stickman.theta.row(i) = Eigen::Vector3f(mean(i*3 + 0, 0), mean(i*3 + 1, 0), mean(i*3 + 2, 0));
}
for(int i=0; i<meanStickman.bLengths; i++){
stickman.beta(i,0) = mean((meanStickman.bodyParts*3) + i, 0);
}
for(int i=0; i<3; i++){
stickman.mTrans(i,0) = mean((meanStickman.bodyParts*3) + meanStickman.bLengths + i, 0);
}
return stickman.forward();
}
Eigen::MatrixXf computeMeanStickman(){
Eigen::MatrixXf mean = this->computeMean();
return setStickmanFromPF(meanStickman, mean);
}
cv::Point2i project(Eigen::Vector3f point){
cv::Point2i pixel;
pixel.x =(int)(((params.fl*point(0))/point(2)) + params.cx);
pixel.y =(int)(((params.fl*point(1))/point(2)) + params.cy);
return pixel;
}
float l2distance(const cv::Point2i& a, const cv::Point2i& b){
return sqrt(pow(a.x-b.x,2) + pow(a.y-b.y,2));
}
void drawMeanLines(Eigen::MatrixXf mJ){
std::vector<cv::Point> pixels(meanStickman.bodyParts);
for(int j=0; j<meanStickman.bodyParts; j++){
Eigen::Vector3f hypoPoint(mJ(j,0),mJ(j,1),mJ(j,2));
pixels[j] = project(hypoPoint);
cv::circle(debugImg, pixels[j], 3, cv::Scalar(255,255,0),CV_FILLED);
}
for (auto& kv : meanStickman.kintree) {
cv::line(debugImg, pixels[kv.first], pixels[kv.second], cv::Scalar(255,0,0), 3);
}
}
void weightFunction(Eigen::MatrixXf opOutput){
debugImg = inputImage.clone();
ParticleFilter::Probability pixelReprojProb(5);
std::vector<StickMan>& stickmanFiltersSC = stickmanFilters;
Eigen::MatrixXf weights = Eigen::MatrixXf::Zero(weightVector_.rows(),weightVector_.cols());
#pragma omp parallel for shared(stickmanFiltersSC, weights)
for(int i=0; i<particleCount_; i++){
StickMan& stickman = stickmanFiltersSC[i];
Eigen::MatrixXf mJ = setStickmanFromPF(stickman, stateMatrix_.col(i));
for(int j=0; j<meanStickman.bodyParts; j++){
Eigen::Vector3f hypoPoint(mJ(j,0),mJ(j,1),mJ(j,2));
cv::Point hypoPix = project(hypoPoint);
//if(hypoPix.x <= 0 || hypoPix.y <=0 || hypoPix.x >= inputImage.size().width || hypoPix.y >= inputImage.size().height ) continue;
int opIndex = -1;
//if(j == 1) opIndex = 11;
if(j == 2) opIndex = 11;
if(j == 3) opIndex = 8;
if(j == 4) opIndex = 12;
if(j == 5) opIndex = 9;
if(j == 6) opIndex = 13;
if(j == 7) opIndex = 10;
if(j == 8) opIndex = 1;
//if(j == 9) opIndex = 10;
if(j == 10) opIndex = 0;
//if(j == 11) opIndex = 1;
if(j == 12) opIndex = 5;
if(j == 13) opIndex = 2;
if(j == 14) opIndex = 6;
if(j == 15) opIndex = 3;
if(j == 16) opIndex = 7;
if(j == 17) opIndex = 4;
if(opIndex < 0) continue;
if(!opOutput(opIndex,2)) continue;
cv::Point truthPix(opOutput(opIndex,0),opOutput(opIndex,1));
//cv::line(debugImg, hypoPix, truthPix, cv::Scalar(255,0,0));
//cv::circle(debugImg, hypoPix, 3, cv::Scalar(255,0,0), CV_FILLED);
float reprojErr = l2distance(truthPix, hypoPix);
weights(i,0) += pixelReprojProb.getProbability(reprojErr).log;
}
}
weightVector_ = weights;
}
};
Eigen::MatrixXf convertOPtoEigen(op::Array<float>& opOutput, int person = 0){
int people = opOutput.getSize()[0];
Eigen::MatrixXf eigen(opOutput.getSize()[1],opOutput.getSize()[2]);
for(int r=0; r<eigen.rows(); r++){
for(int c=0; c<eigen.cols(); c++){
eigen(r,c) = opOutput[person*eigen.rows()*eigen.cols() + eigen.cols()*r + c];
}
}
return eigen;
}
int main(int argc, char *argv[])
{
// Idea
/* Can we encode the error for each body part, in a chained way
* Depending on that error, we reduce the noise accordingly?
* If wrist error is small, we reduce noise on bone length wrist and also on wrist-elbow angle
*/
std::chrono::steady_clock::time_point begin, end;
// OP
cv::Mat im1 = cv::imread(std::string(CMAKE_CURRENT_SOURCE_DIR) + "/data/00001_image.png");
cv::resize(im1, im1, cv::Size(0,0),3,3);
OpenPose op;
op::Array<float> opOutput = op.forward(im1);
Eigen::MatrixXf opOutputEigen = convertOPtoEigen(opOutput);
// PF
StickmanTracker pf(150);
pf.params.fl = 500.;
pf.params.cx = im1.size().width/2;
pf.params.cy = im1.size().height/2;
pf.inputImage = im1.clone();
Eigen::MatrixXf noiseVector(pf.totalParams,1);
Eigen::MatrixXf initialVal = Eigen::MatrixXf::Zero(pf.totalParams,2);
// Joint Angles all 0
for(int i=0; i<pf.meanStickman.bodyParts; i++){
initialVal(i*3 + 0, 0) = 0;
initialVal(i*3 + 1, 0) = 0;
initialVal(i*3 + 2, 0) = 0;
}
// Specific body part lengths
initialVal((pf.meanStickman.bodyParts*3)+0,0) = 0.3; // BODY HIP LENGTH
initialVal((pf.meanStickman.bodyParts*3)+1,0) = 0.2; // HIP WIDTH
initialVal((pf.meanStickman.bodyParts*3)+2,0) = 0.3; // LEG KNEE LENGTH
initialVal((pf.meanStickman.bodyParts*3)+3,0) = 0.3; // KNEE FOOT LENGTH
initialVal((pf.meanStickman.bodyParts*3)+4,0) = 0.2; // BODY TO FNECK LENGTH
initialVal((pf.meanStickman.bodyParts*3)+5,0) = 0.2; // SHOULDER WIDTH
initialVal((pf.meanStickman.bodyParts*3)+6,0) = 0.2; // SHOULDER TO ELBOW
initialVal((pf.meanStickman.bodyParts*3)+7,0) = 0.2; // ELBOW TO WRIST
initialVal((pf.meanStickman.bodyParts*3)+8,0) = 0.1; // FNECK TO NECK
initialVal((pf.meanStickman.bodyParts*3)+9,0) = 0.1; // NOSE HEAD ETC
// Trans
initialVal((pf.meanStickman.bodyParts*3)+10,0) = 0.0; // X
initialVal((pf.meanStickman.bodyParts*3)+11,0) = 0.0; // Y
initialVal((pf.meanStickman.bodyParts*3)+12,0) = 3.0; // Z
// Noise for Joints
float mult = 1;
for(int i=0; i<(pf.meanStickman.bodyParts*3); i++){
initialVal(i,1) = 0.01;
noiseVector(i,0) = 0.01*mult;
}
// Noise for body part lengths
for(int i=(pf.meanStickman.bodyParts*3); i<(pf.meanStickman.bodyParts*3)+pf.meanStickman.bLengths; i++){
initialVal(i,1) = 0.01;
noiseVector(i,0) = 0.01*mult;
}
// Noise for translation
for(int i=(pf.meanStickman.bodyParts*3)+pf.meanStickman.bLengths; i<(pf.meanStickman.bodyParts*3)+pf.meanStickman.bLengths+3; i++){
initialVal(i,1) = 0.01;
noiseVector(i,0) = 0.01*mult;
}
initialVal(0,0) += 3.14;
pf.initGauss(initialVal);
pf.setNoise(noiseVector);
// Compute Stickman
Eigen::MatrixXf mvTemp = pf.computeMeanStickman();
Eigen::MatrixXf mF;
// Render
WRender3D render;
render.initializationOnThread();
end= std::chrono::steady_clock::now();
std::cout << "Time difference Setup = " << std::chrono::duration_cast<std::chrono::microseconds>(end - begin).count()/1000. <<std::endl;
std::shared_ptr<WObject> wObject1 = std::make_shared<WObject>();
wObject1->loadEigenData(mvTemp, mF);
wObject1->print();
render.addObject(wObject1);
wObject1->rebuild(WObject::RENDER_POINTS, 10);
cv::VideoCapture cap(0);
while(1){
cap >> im1;
pf.inputImage = im1.clone();
if(im1.empty()) break;
opOutput = op.forward(im1);
opOutputEigen = convertOPtoEigen(opOutput);
//Eigen::MatrixXf mVTemp2 = sm.forward();
begin = std::chrono::steady_clock::now();
for(int i=0; i<5; i++){
pf.update();
pf.weightFunction(opOutputEigen);
pf.resampleParticles();
mvTemp = pf.computeMeanStickman();
}
end = std::chrono::steady_clock::now();
std::cout << "Time difference = " << std::chrono::duration_cast<std::chrono::microseconds>(end - begin).count()/1000. << " ms" << std::endl;
pf.drawMeanLines(mvTemp);
// NEED A WAY TO CENTER THE 3D MODEL
// move on body position
for(int i=1; i<pf.meanStickman.bodyParts; i++){
mvTemp.row(i) -= mvTemp.row(0);
}
mvTemp.row(0) -= mvTemp.row(0);
render.workOnThread();
wObject1->clearOBJFile(true);
wObject1->loadEigenData(mvTemp, mF);
wObject1->loadKT(pf.meanStickman.kintree);
wObject1->rebuild(WObject::RENDER_POINTS, 10);
cv::imshow("win",pf.debugImg);
cv::waitKey(15);
}
}