-
Notifications
You must be signed in to change notification settings - Fork 156
/
Pooling3D.lua
140 lines (128 loc) · 4.54 KB
/
Pooling3D.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
local Pooling, parent = torch.class('cudnn._Pooling3D', 'nn.Module')
local ffi = require 'ffi'
local errcheck = cudnn.errcheck
function Pooling:__init(kT, kW, kH, dT, dW, dH, padT, padW, padH)
parent.__init(self)
self.kT = kT
self.kW = kW
self.kH = kH
self.dT = dT or kT
self.dW = dW or kW
self.dH = dH or kH
self.padT = padT or 0
self.padW = padW or 0
self.padH = padH or 0
self.iSize = torch.LongStorage(5):fill(0)
self.ceil_mode = false
end
function Pooling:ceil()
self.ceil_mode = true
return self
end
function Pooling:floor()
self.ceil_mode = false
return self
end
function Pooling:resetPoolDescriptors()
-- create pooling descriptor
self.padT = self.padT or 0
self.padW = self.padW or 0
self.padH = self.padH or 0
self.poolDesc = ffi.new('struct cudnnPoolingStruct*[1]')
errcheck('cudnnCreatePoolingDescriptor', self.poolDesc)
local ker = torch.IntTensor({self.kT, self.kH, self.kW})
local str = torch.IntTensor({self.dT, self.dH, self.dW})
local pad = torch.IntTensor({self.padT, self.padH, self.padW})
errcheck('cudnnSetPoolingNdDescriptor', self.poolDesc[0], self.mode, 'CUDNN_PROPAGATE_NAN', 3,
ker:data(), pad:data(), str:data());
local function destroyPoolDesc(d)
errcheck('cudnnDestroyPoolingDescriptor', d[0]);
end
ffi.gc(self.poolDesc, destroyPoolDesc)
end
function Pooling:createIODescriptors(input)
assert(self.mode, 'mode is not set. (trying to use base class?)');
local batch = true
if input:dim() == 4 then
input = input:view(1, input:size(1), input:size(2), input:size(3), input:size(4))
batch = false
end
assert(input:dim() == 5 and input:isContiguous());
if not self.iDesc or not self.oDesc or
input:size(1) ~= self.iSize[1] or input:size(2) ~= self.iSize[2]
or input:size(3) ~= self.iSize[3] or input:size(4) ~= self.iSize[4]
or input:size(5) ~= self.iSize[5] then
self.iSize = input:size()
-- resize output
local oW, oH, oT
if self.ceil_mode then
oW = math.ceil((input:size(5)+self.padW*2 - self.kW)/self.dW + 1)
oH = math.ceil((input:size(4)+self.padH*2 - self.kH)/self.dH + 1)
oT = math.ceil((input:size(3)+self.padT*2 - self.kT)/self.dT + 1)
else
oW = math.floor((input:size(5)+self.padW*2 - self.kW)/self.dW + 1)
oH = math.floor((input:size(4)+self.padH*2 - self.kH)/self.dH + 1)
oT = math.floor((input:size(3)+self.padT*2 - self.kT)/self.dT + 1)
end
self.output:resize(input:size(1), input:size(2), oT, oH, oW)
-- create input/output descriptor
self.iDesc = cudnn.toDescriptor(input)
self.oDesc = cudnn.toDescriptor(self.output)
if not batch then
self.output = self.output:view(self.output:size(2),
self.output:size(3),
self.output:size(4),
self.output:size(5))
end
end
end
function Pooling:updateOutput(input)
if not self.poolDesc then self:resetPoolDescriptors() end
self:createIODescriptors(input)
errcheck('cudnnPoolingForward', cudnn.getHandle(),
self.poolDesc[0],
cudnn.scalar(input, 1),
self.iDesc[0], input:data(),
cudnn.scalar(input, 0),
self.oDesc[0], self.output:data());
return self.output
end
function Pooling:updateGradInput(input, gradOutput)
if not self.gradInput then return end
self.gradInput:resizeAs(input)
assert(gradOutput:dim() == 4 or gradOutput:dim() == 5);
if not gradOutput:isContiguous() then
self._gradOutput = self._gradOutput or gradOutput.new()
self._gradOutput:resizeAs(gradOutput):copy(gradOutput)
gradOutput = self._gradOutput
end
if not self.poolDesc then self:resetPoolDescriptors() end
self:createIODescriptors(input)
errcheck('cudnnPoolingBackward',
cudnn.getHandle(), self.poolDesc[0],
cudnn.scalar(input, 1),
self.oDesc[0], self.output:data(),
self.oDesc[0], gradOutput:data(),
self.iDesc[0], input:data(),
cudnn.scalar(input, 0),
self.iDesc[0], self.gradInput:data());
return self.gradInput
end
function Pooling:clearDesc()
self.poolDesc = nil
self.iDesc = nil
self.oDesc = nil
end
function Pooling:write(f)
self:clearDesc()
local var = {}
for k,v in pairs(self) do
var[k] = v
end
f:writeObject(var)
end
function Pooling:clearState()
self:clearDesc()
nn.utils.clear(self, '_gradOutput')
return parent.clearState(self)
end