-
Notifications
You must be signed in to change notification settings - Fork 84
/
normal.py
125 lines (91 loc) · 3.65 KB
/
normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import bpy
from mathutils import Vector
from . import nodeutils, utils, vars
from .properties import CC3CharacterCache, CC3MaterialCache
def normal_to_height(normal_image: bpy.types.Image, height_image: bpy.types.Image, iterations = 10):
pixels = pixels = list(normal_image.pixels)
w = int(normal_image.size[0])
h = int(normal_image.size[1])
l = w*h
N: Vector
D: Vector
T: Vector
# convert to normal vectors
normals = [None]*l
for i in range(0, l):
p = i*4
x = 2*pixels[p]-1
y = 2*pixels[p+1]-1
z = 2*pixels[p+2]-1
N = Vector((x,y,z))
#N.normalize()
normals[i] = N
directional_displacements = []
print("Building directional displacements")
for j in range(-1, 2):
for k in range(-1, 2):
D = Vector((j, -k, 0))
if k == 0 and j == 0:
directional_displacements.append(None)
else:
displacement_map = [0]*l
for i in range(0, l):
N = normals[i]
a = N.dot(D)
T = D - N*a
T.normalize()
d = T.z * 0.5 * D.length
displacement_map[i] = d
directional_displacements.append(displacement_map)
heights = [0]*l
for itx in range(0, iterations):
print(f"iteration: {itx}")
for v in range(0, h):
for u in range(0, w):
i = u+v*w
height = 0
for j in range(-1, 2, 1):
uu = min(max(u+j, 0), w-1)
for k in range(-1, 2, 1):
if j == 0 and k == 0: continue
vv = min(max(v+k, 0), h-1)
ii = uu + vv*w
jk = j + 3*k + 4
d = directional_displacements[jk][ii] + directional_displacements[jk][i]
height += heights[ii] - d
height /= 8
heights[i] = height
min_height = 999999
max_height = -999999
abs_height = 0
for i in range(0, l):
min_height = min(min_height, heights[i])
max_height = max(max_height, heights[i])
abs_height = max(abs_height, abs(heights[i]))
print(f"min: {min_height} max: {max_height} abs: {abs_height}")
pixels = list(height_image.pixels)
for i in range(0, l):
p = i * 4
h = min(5*0.5*heights[i]/abs_height + 0.5,1)
pixels[p] = h
pixels[p+1] = h
pixels[p+2] = h
height_image.pixels[:] = pixels
def build_displacement_system(chr_cache: CC3CharacterCache, mat_cache: CC3MaterialCache):
mat: bpy.types.Material = mat_cache.material
nodes = mat.node_tree.nodes
links = mat.node_tree.links
normal_node = nodeutils.find_node_by_type_and_keywords(nodes, "TEX_IMAGE", "(NORMAL)")
normal1_node = nodeutils.find_node_by_type_and_keywords(nodes, "TEX_IMAGE", "(WRINKLENORMAL1)")
normal2_node = nodeutils.find_node_by_type_and_keywords(nodes, "TEX_IMAGE", "(WRINKLENORMAL2)")
normal3_node = nodeutils.find_node_by_type_and_keywords(nodes, "TEX_IMAGE", "(WRINKLENORMAL3)")
blend_normal_node = nodeutils.find_node_by_type_and_keywords(nodes, "TEX_IMAGE", "(NORMALBLEND)")
image = bpy.data.images["3K1L562.png"]
if "TEST_HEIGHT" in bpy.data.images:
height_image = bpy.data.images["TEST_HEIGHT"]
height_image.scale(image.size[0], image.size[1])
else:
height_image = bpy.data.images.new("TEST_HEIGHT", image.size[0], image.size[1], is_data=True)
height_image.pixels[0] = 0
normal_to_height(image, height_image, 5)
return