-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtsp.py
300 lines (266 loc) · 12.4 KB
/
tsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
"""
Author: Sonu Prasad
Email: [email protected]
file: tsp.py
"""
import itertools
import random
import numpy as np
import os
import time
from numba import jit
from cities_graph import plot_graph
from utils import initialize_loggers
import multiprocessing
class TSP(object):
def __init__(self, input_file_path, logger):
self.input_file_path = input_file_path
self.data = []
self.random_solution = []
self.total_cost = 0
self.distance_mat = None
self.logger = logger
def read_instance(self):
"""
Reading an instance from file path
"""
input_file = open(self.input_file_path, 'r').read().splitlines()
input_file.pop(0)
cities = np.array([tuple(map(int, coord.split()[1:])) for coord in input_file])
self.data = cities
def generate_nearest_neighbour_solution(self):
"""
Generate Nearest Neighbor Solution
:return: void
"""
cities = self.data.copy().tolist()
random_selected_city = random.randint(0, len(cities) - 1)
new_route = [cities[random_selected_city]]
cities.pop(random_selected_city)
while len(cities) >= 1:
last_city = np.array(new_route[-1])
pending_cities = np.array(cities)
distances_arr = [self.euclidean_distance(last_city, c2) for c2 in pending_cities]
min_dist_idx = np.argmin(distances_arr)
nearest_city = pending_cities[min_dist_idx].tolist()
new_route.append(nearest_city)
cities.remove(nearest_city)
self.random_solution = new_route
self.total_cost = self.calc_tour_cost(new_route)
@jit()
def init_solution(self):
"""
Generate random initial solution
:return: void
"""
copied_data = self.data.copy()
data_len = copied_data.shape[0]
for _ in range(data_len):
n1 = random.randint(0, data_len - 1)
n2 = random.randint(0, data_len - 1)
copied_data[[n1,n2]] = copied_data[[n2,n1]]
self.random_solution = copied_data.tolist()
self.total_cost = self.calc_tour_cost(copied_data)
@jit
def calc_tour_cost(self, cities):
"""
Calculate sum of euclidean distances between consecutive points including the first to last
:return: total tour cost
"""
cities_np_arr = np.array(cities)
total_distance = 0.0
for i in range(len(cities_np_arr)):
total_distance += self.euclidean_distance(cities_np_arr[i - 1], cities_np_arr[i])
return total_distance
@staticmethod
def euclidean_distance(c1, c2):
"""
Distance between two cities
:param c1: City 1
:param c2: City 2
:return: Euclidean distance between 2 cities
"""
return np.linalg.norm(c2-c1)
def generate_combinations(self, cities, node1, node2, node3):
"""
This method generate 8 possible combinations from a list of cities
:param cities: List of cities
:param node1: [a, b]
:param node2: [c, d]
:param node3: [e, f]
:return: Best combination i.e. list of cities, tour cost
"""
"""Combo 1: Same as the original node : Everything till Node 1 -> Node 1 to Node2 -> Node2 to Node 3 -> Node3
to Everything
"""
combo_1 = cities[:node1[0] + 1] + cities[node1[1]:node2[0] + 1] + cities[node2[1]: node3[0] + 1] + cities[node3[1]: ]
combo_2 = cities[:node1[0] + 1] + cities[node1[1]:node2[0] + 1] + cities[node3[0]: node2[1] - 1: -1] + cities[node3[1]: ]
combo_3 = cities[:node1[0] + 1] + cities[node2[0]:node1[1] - 1: -1] + cities[node2[1]: node3[0] + 1] + cities[node3[1]: ]
combo_4 = cities[:node1[0] + 1] + cities[node2[0]:node1[1] - 1: -1] + cities[node3[0]: node2[1] - 1: -1] + cities[node3[1]: ]
combo_5 = cities[:node1[0] + 1] + cities[node2[1]: node3[0] + 1] + cities[node1[1]:node2[0] + 1] + cities[node3[1]: ]
combo_6 = cities[:node1[0] + 1] + cities[node2[1]: node3[0] + 1] + cities[node2[0]:node1[1] - 1: -1] + cities[node3[1]: ]
combo_7 = cities[:node1[0] + 1] + cities[node3[0]: node2[1] - 1: -1] + cities[node1[1]:node2[0] + 1] + cities[node3[1]: ]
combo_8 = cities[:node1[0] + 1] + cities[node3[0]: node2[1] - 1: -1] + cities[node2[0]:node1[1] - 1: -1] + cities[node3[1]: ]
combinations_array = [combo_1, combo_2, combo_3, combo_4, combo_5, combo_6, combo_7, combo_8]
distances_array = list(map(lambda x: self.calc_tour_cost(x), combinations_array))
min_distance = int(np.argmin(distances_array))
return combinations_array[min_distance], distances_array[min_distance]
# self.random_solution = np.array(combinations_array[min_distance])
# self.total_cost = distances_array[min_distance]
def opt_3_local_search(self, route):
"""
3 OPT Local search
Generates all possible valid combinations.
Runs a for loop for each combination obtained above and generates 7 different combinations
possible after 3 OPT move. Selects the one with minimum tour cost
:param route: list of cities
:return: updated list of cities , tour_cost
"""
all_combinations = list(itertools.combinations(range(len(route)), 3))
"""This generates all possible sorted routes and hence eliminating the need of for loop and then sorting it
and hence avoiding duplicates
"""
# Select any random city including first and last city
random_city = np.random.randint(low=0, high=len(route))
# Keep only valid combinations, i.e combinations containing the random selected city
all_combinations = list(filter(lambda x: random_city in x, all_combinations))
# Remove consecutive numbers to avoid overlaps and invalid cities
# all_combinations = list(filter(lambda x: x[1] != x[0] + 1 and x[2] != x[1] + 1, all_combinations))
for idx, item in enumerate(all_combinations):
"""
Run for every combination generated above.
a,c,e = x,y,z # Generated in the combination
d,e,f = x+1, y+1, z+1 # To form the edge
"""
# print('Iteration count is {} and item a, c, e is {}' .format(idx, item))
a1, c1, e1 = item
b1, d1, f1 = a1+1, c1+1, e1+1
"""The above generates the edge. The edge is sent to generate 7 possible combinations and the best one is
selected and applied to the global solution
"""
route, distance = self.generate_combinations(route, [a1, b1], [c1, d1], [e1, f1])
distance = self.calc_tour_cost(route)
return route, distance
@jit()
def perform_2_opt_swap(self):
"""
Performs 2 opt swap 5 times
Generates 2 random numbers a and b such that 0 <= a < len(cities) - 1 & a < b < len(cities)
a: start index of the portion of the route to be reversed
b: index of last node in portion of route to be reversed
:return: Returns the new route created by 2opt swap i.e. list of cities
"""
cities = self.random_solution.copy()
size_of_cities = len(cities)
self.logger.info('-------Running 2 Opt Perturbation 5 times-------')
for i in range(5):
c1, c2 = random.randrange(0, size_of_cities), random.randrange(0, size_of_cities)
exclude = {c1}
exclude.add(size_of_cities - 1) if c1 == 0 else exclude.add(size_of_cities - 1)
exclude.add(0) if c1 == size_of_cities - 1 else exclude.add(c1 + 1)
while c2 in exclude:
c2 = random.randrange(0, size_of_cities)
# to ensure we always have p1<p2
if c2 < c1:
c1, c2 = c2, c1
assert 0 <= c1 < (size_of_cities - 1)
assert c1 < c2 < size_of_cities
cities[c1:c2] = reversed(cities[c1:c2])
return cities
def acceptance_criterion(self, best_found):
"""
Compares the existing best solution with the solution obtained from perturbation and local search.
Takes a Probability of 0.05 % for best_found otherwise compare it with the existing solution
:param best_found: Best calculated after perturbation and local search
:return: void
"""
best_dist = self.calc_tour_cost(best_found)
self.logger.info('Best Perturbed distance is {}'.format(best_dist))
self.logger.info('Best solution available is {}'.format(self.total_cost))
if random.random() < 0.05:
self.random_solution = best_found
self.total_cost = best_dist
else:
if best_dist < self.total_cost:
self.random_solution = best_found
self.total_cost = best_dist
def main(self, initial_solution, file_name, iter_count):
"""
This is the main function of TSP. Initial solution is generated based on value of initial_solution param.
Runs 3 opt -- local search
for 5 minutes:
2 OPT
local search
acceptance criteria
:param initial_solution: random or nn
:param file_name: Essential for creating graph
:param iter_count: Essential for creating graph
:return: void
"""
self.read_instance()
if initial_solution == "nn":
self.logger.info('Generating initial solution using nearest neighbour')
self.generate_nearest_neighbour_solution()
else:
self.logger.info('Generating initial random solution')
self.init_solution()
"""
Plot Initial Graph
"""
self.logger.info("---------- Initial cost is {} ----------".format(self.total_cost))
plot_graph(self.random_solution, self.total_cost, 'Init_graph_{}_{}_{}'.format(file_name, initial_solution, iter_count))
# Start 3 OPT Local Search
opt_3_local_search_start_time = time.time()
route, distance = self.opt_3_local_search(self.random_solution)
self.random_solution = route
self.total_cost = distance
self.logger.info('--------3 OPT Local search completed in {}-------'.format(time.time() - opt_3_local_search_start_time))
self.logger.info('Starting Perturbation -> Local Search -> Acceptance Criteria Phase for 5 minutes')
# Perturbation phase
seconds_to_run = 300
counter = itertools.count()
elapsed_time = time.time()
while time.time() - elapsed_time < seconds_to_run:
cities = self.perform_2_opt_swap()
if time.time() - elapsed_time < seconds_to_run:
best_perturbed_solution, distance = self.opt_3_local_search(cities)
self.acceptance_criterion(best_perturbed_solution)
next(counter)
"""
Final Graph
"""
plot_graph(self.random_solution, self.total_cost, 'final_graph_{}_{}_{}'.format(file_name, initial_solution, iter_count))
self.logger.info('---------- Best Solution obtained is {} ----------'.format(self.total_cost))
def run(iter_count, ip_file_name):
"""
For running TSP. This function is responsible for creating an object of TSP class and invoking the main function
of the object
:param iter_count: Iteration count for creating a log file with exact name
:param ip_file_name: File Name
:return: void
"""
ip_file = os.path.join('dataset', 'Inst', ip_file_name)
logger = initialize_loggers('tsp-{}'.format(iter_count))
logger.info('------------Execution Count {}------------'.format(iter_count))
tsp = TSP(ip_file, logger)
tsp.main('random', 'inst-13.tsp', iter_count)
if __name__ == '__main__':
"""
We will be using Python multiProcessing to spawn multiple processes to run TSP
max iteration count is 5
"""
file_name = 'inst-13.tsp'
total_iteration_count = 0
processes = []
while total_iteration_count != 5:
# log = initialize_loggers('tsp-{}'.format(total_iteration_count))
# log.info('------------Execution Count {}------------'.format(total_iteration_count))
# t = TSP(ip_file, log)
# t.main('nn', 'inst-13.tsp', total_iteration_count)
t = multiprocessing.Process(target=run, args=(total_iteration_count, file_name))
total_iteration_count += 1
processes.append(t)
t.start()
for process in processes:
process.join()
print("Done")