-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNIH_X_Ray_pytorch_raytune.py
237 lines (187 loc) · 7.9 KB
/
NIH_X_Ray_pytorch_raytune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import os
import time
from functools import partial
import numpy as np
import ray
import torch
import torch.nn as nn
from ray.tune.integration.torch import (DistributedTrainableCreator,
distributed_checkpoint_dir)
from ray.tune.schedulers import ASHAScheduler
from torch import optim
from torch.cuda.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, TensorDataset, random_split
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--epochs', default=250, type=int,
help='Number of epochs to use')
parser.add_argument('--no-pin-mem', default=False, action='store_true',
help="Don't use pinned memory")
parser.add_argument('--name', default='model_raytune', type=str,
help='Name to save model (no file extension)')
parser.add_argument('--img-size', default=256, type=int,
help='Single sided image resolution')
parser.add_argument('-s', '--seed', default=0, type=int,
help='Seed to use for random values')
parser.add_argument('-n', '--num-workers', default=1, type=int,
help='Number of workers per training sample')
parser.add_argument('--num-trials', default=100, type=int,
help='Number of trials to run')
args = parser.parse_args()
starttime = time.time()
args.pin_mem = not args.no_pin_mem
torch.manual_seed(args.seed)
def train(config: dict, args: argparse.Namespace, checkpoint_dir: str = None):
torch.backends.cudnn.benchmark = True
X_train = np.load(open(f"data/arrays/X_train_{args.img_size}.npy", "rb"))
y_train = np.load(open(f"data/arrays/y_train_{args.img_size}.npy", "rb"))
X_train = np.transpose(X_train, (0, 3, 1, 2))
X_train = torch.Tensor(X_train)
y_train = torch.Tensor(y_train)
device = torch.device("cuda")
dataset = TensorDataset(X_train, y_train)
train_num = int(len(dataset)*0.7)
train_set, val_set = random_split(dataset, [train_num, len(dataset)-train_num])
model = torch.hub.load('pytorch/vision:v0.11.1', 'densenet201',
pretrained=True)
model.features[0] = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2),
padding=(3, 3), bias=False)
model.classifier = nn.Sequential(
nn.Linear(in_features=1920, out_features=14, bias=True),
nn.Sigmoid()
)
lr = config['lr']
model.to(device)
model = DDP(model, device_ids=[device])
loss_fn = nn.MultiLabelSoftMarginLoss().to(device)
if config['optimizer'] == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
elif config['optimizer'] == 'adam':
optimizer = optim.Adam(model.parameters(), lr=lr)
elif config['optimizer'] == 'adamax':
optimizer = optim.Adamax(model.parameters(), lr=lr)
mse_fn = nn.MSELoss()
if checkpoint_dir:
checkpoint = os.path.join(checkpoint_dir, "checkpoint")
model_state, optimizer_state = torch.load(checkpoint)
model.load_state_dict(model_state)
optimizer.load_state_dict(optimizer_state)
trainsampler = DistributedSampler(train_set, num_replicas=args.num_workers)
valsampler = DistributedSampler(val_set, num_replicas=args.num_workers)
traindata = DataLoader(train_set, pin_memory=args.pin_mem, drop_last=True,
batch_size=config['batch_size'], sampler=trainsampler)
valdata = DataLoader(val_set, pin_memory=args.pin_mem, drop_last=True,
batch_size=config['batch_size'], sampler=valsampler)
scaler = GradScaler()
epoch = 0
while True:
print(f"Epoch {epoch+1}")
running_loss = 0.0
running_mse = 0.0
model.train()
print("Training")
for inputs, labels in traindata:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad(set_to_none=True)
with torch.set_grad_enabled(True):
with autocast():
outputs = model(inputs)
loss = loss_fn(outputs, labels)
mse = mse_fn(outputs, labels)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
running_loss += loss.item()
running_mse += mse.item()
running_loss = 0.0
running_mse = 0.0
print("Validating")
model.eval()
for inputs, labels in valdata:
inputs, labels = inputs.to(device), labels.to(device)
with torch.no_grad():
with autocast():
outputs = model(inputs)
loss = loss_fn(outputs, labels)
mse = mse_fn(outputs, labels)
running_loss += loss.item()
running_mse += mse.item()
val_loss = running_loss / len(valdata)
val_mse = running_mse / len(valdata)
epoch += 1
with distributed_checkpoint_dir(epoch) as checkpoint_dir:
path = os.path.join(checkpoint_dir, "checkpoint")
torch.save((model.state_dict(), optimizer.state_dict()), path)
ray.tune.report(loss=val_loss, mse=val_mse)
config = {
'lr': ray.tune.loguniform(1e-8, 1e-1),
'batch_size': ray.tune.choice([2, 4, 8, 16, 32, 64]),
'optimizer': ray.tune.choice(['sgd', 'adam', 'adamax'])
}
scheduler = ASHAScheduler(
metric="mse",
mode='min',
max_t=args.epochs,
grace_period=1,
reduction_factor=2)
distributed_cls = DistributedTrainableCreator(
partial(train, args=args),
num_workers=args.num_workers,
num_cpus_per_worker=8,
num_gpus_per_worker=1,
backend='nccl')
analysis = ray.tune.run(
distributed_cls,
config=config,
num_samples=args.num_trials,
scheduler=scheduler,
local_dir='data/logs/raytune',
verbose=3
)
best_trial = analysis.get_best_trial()
print(f"Best config: {best_trial.config}")
print(f"Best MSE: {best_trial.last_result['mse']}")
print(f"Best loss: {best_trial.last_result['loss']}")
print(f"Best trial log directory: {analysis.get_best_logdir()}")
running_mse = 0.0
mse_fn = nn.MSELoss()
X_test = np.load(open(f"data/arrays/X_test_{args.img_size}.npy", "rb"))
y_test = np.load(open(f"data/arrays/y_test_{args.img_size}.npy", "rb"))
X_test = torch.Tensor(X_test)
y_test = torch.Tensor(y_test)
model = torch.hub.load('pytorch/vision:v0.6.0', 'densenet201',
pretrained=False)
model.features[0] = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2),
padding=(3, 3), bias=False)
model.classifier = nn.Sequential(
nn.Linear(in_features=1920, out_features=15, bias=True),
nn.Sigmoid()
)
best_weights = torch.load(os.path.join(best_trial.checkpoint.value, "checkpoint"))
model.load_state_dict(best_weights)
model.eval()
test_set = TensorDataset(X_test, y_test)
testdata = DataLoader(test_set, shuffle=True, drop_last=True,
pin_memory=args.pin_mem, batch_size=args.batch_size)
print('Testing')
progressbar = tqdm(testdata, dynamic_ncols=True)
for index, (inputs, labels) in enumerate(progressbar):
inputs, labels = inputs.to(args.device), labels.to(args.device)
with torch.no_grad():
with autocast():
outputs = model(inputs)
mse = mse_fn(outputs, labels)
running_mse += mse.item() * inputs.size(0)
progressbar.set_description(f'Test MSE: {running_mse/(index+1):.5f}')
progressbar.refresh()
print("Saving trial data")
analysis.results_df.to_csv(f'data/logs/raytune-{int(starttime)}/results.csv')
print("Saving model weights")
savepath = f"data/models/{args.name}-{int(starttime)}.pth"
savepath_weights = f"data/models/{args.name}-{int(starttime)}_weights.pth"
torch.save(model.state_dict(), savepath_weights)
torch.save(model, savepath)
print("Model saved!\n")