Skip to content

Commit

Permalink
Control Flow Block Constraints (#1476)
Browse files Browse the repository at this point in the history
This PR implements pre- and post-conditions on control flow blocks, as
well as invariants. This is a feature that was discussed in the last
DaCe Workshop of 2023 but has not been implemented yet since then.

These invariants serve as helpers in analysis of the SDFG and may in the
future be used to add runtime checks / assertions (optionally). A pass
can be used to attempt automatic derivation of such constraints, or they
can be manually set as properties.

This PR adds the scaffolding for this and for now implements a single
auto-constraint-derivation criterium, which states that parameters used
to determine data container sizes are always `>= 0` and optionally
assumed to always be `<= MAX_N`, where `MAX_N` is a configurable
analysis pass parameter.
  • Loading branch information
phschaad authored May 30, 2024
1 parent 7214739 commit 0020c6c
Show file tree
Hide file tree
Showing 3 changed files with 92 additions and 1 deletion.
7 changes: 7 additions & 0 deletions dace/sdfg/state.py
Original file line number Diff line number Diff line change
Expand Up @@ -1092,6 +1092,10 @@ class ControlFlowBlock(BlockGraphView, abc.ABC):

is_collapsed = Property(dtype=bool, desc='Show this block as collapsed', default=False)

pre_conditions = DictProperty(key_type=str, value_type=list, desc='Pre-conditions for this block')
post_conditions = DictProperty(key_type=str, value_type=list, desc='Post-conditions for this block')
invariant_conditions = DictProperty(key_type=str, value_type=list, desc='Invariant conditions for this block')

_label: str

def __init__(self,
Expand All @@ -1104,6 +1108,9 @@ def __init__(self,
self._sdfg = sdfg
self._parent_graph = parent
self.is_collapsed = False
self.pre_conditions = {}
self.post_conditions = {}
self.invariant_conditions = {}

def set_default_lineinfo(self, lineinfo: dace.dtypes.DebugInfo):
"""
Expand Down
37 changes: 36 additions & 1 deletion dace/transformation/passes/analysis.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

from collections import defaultdict
from dace.transformation import pass_pipeline as ppl
from dace import SDFG, SDFGState, properties, InterstateEdge, Memlet, data as dt
from dace import SDFG, SDFGState, properties, InterstateEdge, Memlet, data as dt, symbolic
from dace.sdfg.graph import Edge
from dace.sdfg import nodes as nd
from dace.sdfg.analysis import cfg
Expand Down Expand Up @@ -583,3 +583,38 @@ def apply_pass(self, top_sdfg: SDFG, _) -> Dict[int, Dict[str, Set[Union[Memlet,
result[anode.data].add(e.data)
top_result[sdfg.cfg_id] = result
return top_result


@properties.make_properties
class DeriveSDFGConstraints(ppl.Pass):

CATEGORY: str = 'Analysis'

assume_max_data_size = properties.Property(dtype=int, default=None, allow_none=True,
desc='Assume that all data containers have no dimension larger than ' +
'this value. If None, no assumption is made.')

def modifies(self) -> ppl.Modifies:
return ppl.Modifies.Nothing

def should_reapply(self, modified: ppl.Modifies) -> bool:
# If anything was modified, reapply
return modified & ppl.Modifies.Everything

def _derive_parameter_datasize_constraints(self, sdfg: SDFG, invariants: Dict[str, Set[str]]) -> None:
handled = set()
for arr in sdfg.arrays.values():
for dim in arr.shape:
if isinstance(dim, symbolic.symbol) and not dim in handled:
ds = str(dim)
if ds not in invariants:
invariants[ds] = set()
invariants[ds].add(f'{ds} > 0')
if self.assume_max_data_size is not None:
invariants[ds].add(f'{ds} <= {self.assume_max_data_size}')
handled.add(ds)

def apply_pass(self, sdfg: SDFG, _) -> Tuple[Dict[str, Set[str]], Dict[str, Set[str]], Dict[str, Set[str]]]:
invariants: Dict[str, Set[str]] = {}
self._derive_parameter_datasize_constraints(sdfg, invariants)
return {}, invariants, {}
49 changes: 49 additions & 0 deletions tests/passes/sdfg_constraint_derivation_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# Copyright 2019-2024 ETH Zurich and the DaCe authors. All rights reserved.

import dace
from dace.transformation.passes.analysis import DeriveSDFGConstraints


def test_infer_data_dim_constraints_nomax():
N = dace.symbol('N')

@dace.program
def matmul(A: dace.float64[N, N], B: dace.float64[N, N], C: dace.float64[N, N]):
for i in range(N):
for j in range(N):
for k in range(N):
C[i, j] += A[i, k] * B[k, j]

sdfg = matmul.to_sdfg()

derive_pass = DeriveSDFGConstraints()
_, inv, _ = derive_pass.apply_pass(sdfg, {})

assert 'N' in inv
assert 'N > 0' in inv['N']


def test_infer_data_dim_constraints_withmax():
N = dace.symbol('N')

@dace.program
def matmul(A: dace.float64[N, N], B: dace.float64[N, N], C: dace.float64[N, N]):
for i in range(N):
for j in range(N):
for k in range(N):
C[i, j] += A[i, k] * B[k, j]

sdfg = matmul.to_sdfg()

derive_pass = DeriveSDFGConstraints()
derive_pass.assume_max_data_size = 128
_, inv, _ = derive_pass.apply_pass(sdfg, {})

assert 'N' in inv
assert 'N > 0' in inv['N']
assert 'N <= 128' in inv['N']


if __name__ == "__main__":
test_infer_data_dim_constraints_nomax()
test_infer_data_dim_constraints_withmax()

0 comments on commit 0020c6c

Please sign in to comment.