-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadult.py
279 lines (230 loc) · 9.19 KB
/
adult.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.12.0
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# %%
FIGWIDTH = 8
ALPHA = 0.01
import os
DATA_FILE_FORMAT = os.environ.get("DATA_FILE_FORMAT") or "results/adult_paper_snapshot.csv"
NUM_SHUFFLES = int(os.environ.get("NUM_SHUFFLES") or 200)
RESTORE_SAVED_DATA = False
# %%
# %load_ext autoreload
# %autoreload 2
import itertools
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from tqdm import autonotebook as tqdm
from scipy import stats
from sklearn.model_selection import train_test_split
from joblib import Parallel, delayed
from statsmodels.stats.anova import AnovaRM
from statsmodels.stats.multicomp import MultiComparison
from model_zoo import model_zoo, renaming_dict, DpClassifierFactory
from mia import run_threshold_estimator
from utils import infer_from, score, normalize_vuln_mean, normalize_vuln_std
from loaders.adult import prepare_adult
import plot_params
# %% [markdown]
# ## Data prep
# %%
data = prepare_adult("./data/adult/train.csv", "./data/adult/test.csv", binarize=False).dropna()
subgroup_label = "race"
def process_for_fit(data):
X = pd.get_dummies(
data[[col for col in data.columns if col != "income"]],
drop_first=True).astype(int)
y = data["income"]
return X, y
X, y = process_for_fit(data)
# %%
data.groupby(subgroup_label).count()
# %%
dp_model_zoo = {
f"eps{eps}": DpClassifierFactory(eps, data_norm=np.sqrt(11))
for eps in [1, 2, 10]
}
model_zoo = dict(model_zoo, **dp_model_zoo)
# %%
renaming_dict = dict(renaming_dict, **{
"threshold": "Control",
"eps0.1": r"$\varepsilon=0.1$",
"eps0.5": r"$\varepsilon=0.5$",
"eps1": r"$\varepsilon=1$",
"eps2": r"$\varepsilon=2$",
"eps2.5": r"$\varepsilon=2.5$",
"eps5": r"$\varepsilon=5$",
"eps7.5": r"$\varepsilon=7.5$",
"eps10": r"$\varepsilon=10$",
"eps15": r"$\varepsilon=15$",
})
# %%
class ControlClassifier:
"""
Task-specific control (data-independent) classifier.
Outputs 1 if Prior Counts is greater than 0.
"""
def __init__(self):
pass
def fit(self, *args, **kwargs):
pass
def predict(self, xs, *args, **kwargs):
return xs[:, 0] > 0
def predict_proba(self, xs, *args, **kwargs):
p = self.predict(xs)
p = np.expand_dims(p, 1)
return np.hstack([1-p, p])
ControlClassifier().predict_proba(np.array([[0, 1], [1, 0]]))
model_zoo["control"] = lambda: ControlClassifier()
renaming_dict["control"] = "Control"
# %%
model_zoo.keys()
# %%
subgroups = ['White', 'Black', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo', 'Other']
subgroups_short = ["WH", "BL", "AI", "AE", "OT"]
# %% [markdown]
# ## Run experiments
# %%
experiment_results = {}
models = ["control", "lr", "nn_8", "nn_32"] + list(dp_model_zoo.keys()) + ["lr_dm_threshold", "lr_eo_threshold"]
# %%
if not RESTORE_SAVED_DATA:
parallel = False
is_fair_model = lambda model_name: any(keyword in model_name for keyword in ["eo", "dm", "erp"])
for model_name in models:
print(model_name)
model_fn = model_zoo[model_name]
def run_iter(rep, rng):
# Train model.
train_indices, test_indices = train_test_split(data.index, test_size=0.5, random_state=rng)
X_train, y_train = X.loc[train_indices], y.loc[train_indices]
X_test, y_test = X.loc[test_indices], y.loc[test_indices]
fit_args = {}
train_sensitive_features = None
test_sensitive_features = None
if is_fair_model(model_name):
train_sensitive_features = data.loc[train_indices, subgroup_label]
test_sensitive_features = data.loc[test_indices, subgroup_label]
fit_args = dict(sensitive_features=train_sensitive_features)
clf = model_fn()
clf.fit(X_train.values, y_train.values, **fit_args)
results = []
for subgroup in ["All"] + subgroups:
# Prepare subgroup.
if subgroup == "All":
group_train_indices = train_indices
group_test_indices = test_indices
else:
group_train_indices = data.loc[train_indices].query(f"{subgroup_label} == '{subgroup}'").index
group_test_indices = data.loc[test_indices].query(f"{subgroup_label} == '{subgroup}'").index
X_group_train, y_group_train = X_train.loc[group_train_indices], y_train.loc[group_train_indices]
X_group_test, y_group_test = X_test.loc[group_test_indices], y_test.loc[group_test_indices]
group_train_sensitive_features = None
group_test_sensitive_features = None
if is_fair_model(model_name):
group_train_sensitive_features = data.loc[group_train_indices, subgroup_label]
group_test_sensitive_features = data.loc[group_test_indices, subgroup_label]
# Accuracy.
target_train_acc = score(clf, X_group_train, y_group_train,
sensitive_features=group_train_sensitive_features)
target_test_acc = score(clf, X_group_test, y_group_test,
sensitive_features=group_test_sensitive_features)
overfitting_gap = target_train_acc - target_test_acc
# Vulnerability.
vuln = run_threshold_estimator(
y_group_train, infer_from(clf, X_group_train, group_train_sensitive_features),
y_group_test, infer_from(clf, X_group_test, group_test_sensitive_features),
method="average_loss_threshold",
)
results.append(dict(rep=rep,
vuln=vuln,
subgroup=subgroup,
target_train_acc=target_train_acc,
target_test_acc=target_test_acc,
overfitting_gap=overfitting_gap))
return results
reps = range(NUM_SHUFFLES)
rngs = [np.random.RandomState(i) for i in enumerate(reps)]
it = tqdm.tqdm(list(zip(reps, rngs)))
# Run experiments and collect results.
if parallel:
collected_subgroup_vulns = Parallel(n_jobs=8, verbose=0)(delayed(run_iter)(rep, rng)
for rep, rng in it)
else:
collected_subgroup_vulns = []
for rep, rng in it:
collected_subgroup_vulns.append(run_iter(rep, rng))
model_results = pd.DataFrame(itertools.chain(*collected_subgroup_vulns))
# Compute ANOVA p-value right away.
anova = AnovaRM(model_results.query("subgroup != 'All'"),
depvar="vuln", subject="rep", within=["subgroup"])
res = anova.fit()
f, p = (
res.anova_table.loc["subgroup", "F Value"],
res.anova_table.loc["subgroup", "Pr > F"]
)
print(f"p={p:.4f}\n")
# Save experimental results for summaries and followup tests.
experiment_results[model_name] = model_results.assign(model=model_name, f=f, p=p)
# %%
if RESTORE_SAVED_DATA:
summary_data = pd.read_csv(DATA_FILE_FORMAT, index_col=0)
else:
summary_data = pd.concat(experiment_results.values()).replace(renaming_dict)
summary_data.to_csv(DATA_FILE_FORMAT)
# %%
summary_table = summary_data.query("subgroup == 'All'").groupby(["model"]).agg({
"p": "mean",
"target_test_acc": ["mean", "std"],
"overfitting_gap": ["mean", "std"],
"vuln": [normalize_vuln_mean, normalize_vuln_std],
}).reindex([renaming_dict[model_name] for model_name in models]).rename(columns={
"model": "Model",
"target_test_acc": "Test acc.",
"overfitting_gap": "Gen. gap",
"vuln": "Overall vuln.",
})
summary_table.round(4)
# %%
print(summary_table.to_latex(float_format="%.4f"))
# %%
disaggregated_table = summary_data.query(f"subgroup != 'All' and (p < {ALPHA})").groupby(["model", "subgroup"]).agg({
"target_test_acc": ["mean", "std"],
"overfitting_gap": ["mean", "std"],
"vuln": [normalize_vuln_mean, normalize_vuln_std],
}).rename(columns={
"model": "Model",
"target_test_acc": "Test acc.",
"overfitting_gap": "Gen. gap",
"vuln": "Subgroup vuln.",
})
disaggregated_table
# %%
print(disaggregated_table.to_latex(float_format="%.4f"))
# %%
it = {model_name: summary_data.query(f"model == '{renaming_dict[model_name]}'")
for model_name in models}
for model_name, df in it.items():
p = df.p.mean()
if p < ALPHA:
_, _ , cmp = MultiComparison(
data=df.query("subgroup != 'All'").vuln,\
groups=df.query("subgroup != 'All'").subgroup,
).allpairtest(stats.ttest_rel, alpha=ALPHA, method="fdr_bh")
print(f"{model_name} {p=:.4f}")
print(pd.DataFrame(cmp).iloc[:, :-1] \
.replace({full: short for full, short in zip(subgroups, subgroups_short)}) \
.to_latex(float_format="%.4f"))