-
Notifications
You must be signed in to change notification settings - Fork 0
/
ipcc_vs_dnn.py
666 lines (570 loc) · 26.3 KB
/
ipcc_vs_dnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
import argparse
import collections
import glob
import os
import logging
import multiprocessing
import re
import shutil
from osgeo import gdal
import numpy
import ecoshard.geoprocessing
import taskgraph
import tempfile
import dnn_model
from utils.density_per_ha_to_total_per_pixel import \
density_per_ha_to_total_per_pixel
from train_model import make_kernel_raster
gdal.SetCacheMax(2**27)
logging.basicConfig(
level=logging.DEBUG,
format=(
'%(asctime)s (%(relativeCreated)d) %(levelname)s %(name)s'
' [%(funcName)s:%(lineno)d] %(message)s'))
LOGGER = logging.getLogger(__name__)
logging.getLogger('taskgraph').setLevel(logging.DEBUG)
# Working directories for substeps
def _mkdir(dir_path):
"""Safely make directory."""
try:
os.makedirs(dir_path)
except OSError:
pass
return dir_path
WORKSPACE_DIR = _mkdir('./ipcc_vs_dnn_optimization')
CHURN_DIR = _mkdir(os.path.join(WORKSPACE_DIR, 'churn'))
BIOMASS_RASTER_DIR = _mkdir(
os.path.join(WORKSPACE_DIR, 'biomass_rasters'))
MARGINAL_VALUE_WORKSPACE = _mkdir(
os.path.join(WORKSPACE_DIR, 'marginal_value_rasters'))
OPTIMIZATION_WORKSPACE = _mkdir(
os.path.join(WORKSPACE_DIR, 'optimization_workspaces'))
NEW_FOREST_MASK_DIR = _mkdir(
os.path.join(WORKSPACE_DIR, 'new_forest_masks'))
IPCC_VS_DNN_DIR = _mkdir(
os.path.join(WORKSPACE_DIR, 'ipcc_vs_dnn'))
MODEL_PATH = './models/model_400.dat'
BASE_DATA_DIR = 'workspace/ecoshard'
# *** DATA SECTION ***
# There are two landcover configurations, ESA and restoration of ESA
BASE_LULC_RASTER_PATH = os.path.join(
BASE_DATA_DIR,
'ESACCI-LC-L4-LCCS-Map-300m-P1Y-2014-v2.0.7_smooth_compressed.tif')
ESA_RESTORATION_SCENARIO_RASTER_PATH = os.path.join(
BASE_DATA_DIR,
'restoration_limited_md5_372bdfd9ffaf810b5f68ddeb4704f48f.tif')
# These are used in combination with an ESA landcover map to calculate carbon
CARBON_ZONES_VECTOR_PATH = os.path.join(
BASE_DATA_DIR,
'carbon_zones_md5_aa16830f64d1ef66ebdf2552fb8a9c0d.gpkg')
IPCC_CARBON_TABLE_PATH = os.path.join(
BASE_DATA_DIR,
'IPCC_carbon_table_md5_a91f7ade46871575861005764d85cfa7.csv')
# Constants useful for code readability
CARBON_MODEL_ID = os.path.basename(os.path.splitext(MODEL_PATH)[0])
IPCC_MODE = 'ipcc_mode'
# model mode is based off of carbon model ID
MODELED_MODE = f'modeled_mode_{CARBON_MODEL_ID}'
BASE_SCENARIO = 'base'
RESTORATION_SCENARIO = 'scenario'
FOREST_CODE = 50
TARGET_AREA_HA = 350000000*2
AREA_N_STEPS = 20
AREA_REPORT_STEP_LIST = numpy.linspace(
TARGET_AREA_HA / AREA_N_STEPS, TARGET_AREA_HA, AREA_N_STEPS)
# number of pixels to blur to capture edge effect of marginal value
MARGINAL_VALUE_PIXEL_BLUR = 16
def _raw_basename(file_path):
"""Return just the filename without extension."""
return os.path.basename(os.path.splitext(file_path)[0])[-20:]
def _sum_raster(raster_path):
"""Return sum of non-nodata values in ``raster_path``."""
nodata = ecoshard.geoprocessing.get_raster_info(raster_path)['nodata'][0]
running_sum = 0.0
for _, raster_block in ecoshard.geoprocessing.iterblocks((raster_path, 1)):
running_sum += numpy.sum(
raster_block[~numpy.isclose(raster_block, nodata)])
return running_sum
def _replace_value_by_mask(
base_raster_path, replacement_value,
replacement_mask_raster_path, target_replacement_raster_path):
"""Overwrite values in raster based on mask.
Args:
base_raster_path (str): base raster to modify
replacement_value (numeric): value to write into base raster
where the mask indicates.
replacement_mask_raster_path (str): path to raster indicating (1) where
a pixel should be replaced in base.
target_replacement_raster_path (str): path to a target replacement
raster.
Returns:
None
"""
base_info = ecoshard.geoprocessing.get_raster_info(base_raster_path)
ecoshard.geoprocessing.new_raster_from_base(
base_raster_path, target_replacement_raster_path,
base_info['datatype'], base_info['nodata'])
target_raster = gdal.OpenEx(
target_replacement_raster_path, gdal.OF_RASTER | gdal.GA_Update)
target_band = target_raster.GetRasterBand(1)
mask_raster = gdal.OpenEx(
replacement_mask_raster_path, gdal.OF_RASTER | gdal.GA_Update)
mask_band = mask_raster.GetRasterBand(1)
for offset_dict, base_block in ecoshard.geoprocessing.iterblocks(
(base_raster_path, 1)):
mask_block = mask_band.ReadAsArray(**offset_dict)
base_block[mask_block == 1] = replacement_value
target_band.WriteArray(
base_block, xoff=offset_dict['xoff'], yoff=offset_dict['yoff'])
target_band = None
target_raster = None
def _greedy_select_pixels_to_area(
base_value_raster_path, workspace_dir, area_ha_to_step_report_list):
"""Greedy select pixels in base with a report every area steps.
workspace_dir will contain a set of mask rasters with filenames of the form
{area_selected}_mask_{base_id}.tif and a csv table with the filename
{base_id}_{target_area_ha}_report.csv containing columns (area slected),
(sum of value selected), (path to raster mask).
Args:
base_value_raster_path (str): path to raster with value pixels,
preferably positive.
workspace_dir (str): path to directory to write output files into.
area_ha_to_step_report (list): list of areas in Ha to record.
Returns:
A tuple containing (path_to_taret_area_mask_raster,
maximum area selected), where the raster is the largest amount
selected and the value is the area that is selected, will either
be very close to target_area_ha or the maximum available area.
"""
raster_id = _raw_basename(base_value_raster_path)
all_ones_raster_path = os.path.join(
workspace_dir, f'all_ones_{raster_id}.tif')
pixel_area_in_ha_raster_path = os.path.join(
workspace_dir, f'pixel_area_in_ha_{raster_id}.tif')
ecoshard.geoprocessing.new_raster_from_base(
base_value_raster_path, all_ones_raster_path, gdal.GDT_Byte,
[None], fill_value_list=[1])
density_per_ha_to_total_per_pixel(
all_ones_raster_path, 1.0,
pixel_area_in_ha_raster_path)
LOGGER.info(
f'calculating greedy pixels for value raster {base_value_raster_path} '
f'and area {pixel_area_in_ha_raster_path}')
ecoshard.geoprocessing.greedy_pixel_pick_by_area_v2(
(base_value_raster_path, 1), (pixel_area_in_ha_raster_path, 1),
area_ha_to_step_report_list, workspace_dir)
LOGGER.debug(
f'done with greedy pixels for value raster {base_value_raster_path}')
def _create_marginal_value_layer(
future_raster_path, base_raster_path,
gaussian_blur_pixel_radius, mask_raster_path, target_raster_path):
"""Calculate marginal value layer.
Calculated by taking the difference of future from base, Gaussian blurring
that result by the given radius, and masking by the given raster mask.
Args:
future_raster_path (str): raster A, same nodata and size as B
base_raster_path (str): raster B
gaussian_blur_pixel_radius (int): number of pixels to blur out when
determining marginal value of that pixel.
mask_raster_path (str): path to raster where anything not 1 is masked
to 0/nodata.
target_diff_raster_path (str): result of A-B accounting for nodata.
Returns:
None
"""
raster_info = ecoshard.geoprocessing.get_raster_info(future_raster_path)
nodata = raster_info['nodata'][0]
def _diff_op(a_array, b_array):
"""Return a-b and consider nodata."""
result = numpy.copy(a_array)
valid_mask = ~numpy.isclose(a_array, nodata)
result[valid_mask] -= b_array[valid_mask]
return result
churn_dir = tempfile.mkdtemp(dir=os.path.dirname(target_raster_path))
diff_raster_path = os.path.join(churn_dir, 'diff.tif')
ecoshard.geoprocessing.raster_calculator(
[(future_raster_path, 1), (base_raster_path, 1)], _diff_op,
diff_raster_path, raster_info['datatype'], nodata)
# Gaussian filter
if gaussian_blur_pixel_radius is not None:
kernel_raster_path = os.path.join(churn_dir, 'kernel.tif')
mask_gf_path = os.path.join(churn_dir, 'gf.tif')
if os.path.exists(mask_gf_path):
os.remove(mask_gf_path)
make_kernel_raster(
gaussian_blur_pixel_radius, kernel_raster_path)
ecoshard.geoprocessing.convolve_2d(
(diff_raster_path, 1), (kernel_raster_path, 1), mask_gf_path,
ignore_nodata_and_edges=False, mask_nodata=True,
target_nodata=0.0)
else:
mask_gf_path = diff_raster_path
def _mask_op(base_array, mask_array):
"""Return base where mask is 1, otherwise 0 or nodata."""
result = numpy.copy(base_array)
zero_mask = (~numpy.isclose(base_array, nodata)) & (mask_array != 1)
result[zero_mask] = 0
return result
ecoshard.geoprocessing.raster_calculator(
[(mask_gf_path, 1), (mask_raster_path, 1)], _mask_op,
target_raster_path, raster_info['datatype'], nodata)
shutil.rmtree(churn_dir)
def _diff_rasters(
a_raster_path, b_raster_path, target_diff_raster_path):
"""Calculate a-b.
Args:
a_raster_path (str): raster A, same nodata and size as B
b_raster_path (str): raster B
target_diff_raster_path (str): result of A-B accounting for nodata.
Returns:
None
"""
raster_info = ecoshard.geoprocessing.get_raster_info(a_raster_path)
nodata = raster_info['nodata'][0]
def _diff_op(a_array, b_array):
"""Return a-b and consider nodata."""
result = numpy.copy(a_array)
valid_mask = ~numpy.isclose(a_array, nodata)
result[valid_mask] -= b_array[valid_mask]
return result
ecoshard.geoprocessing.raster_calculator(
[(a_raster_path, 1), (b_raster_path, 1)], _diff_op,
target_diff_raster_path, raster_info['datatype'], nodata)
def _calculate_new_forest(
base_lulc_raster_path, future_lulc_raster_path,
new_forest_mask_raster_path):
"""Calculate where there is new forest from base to future.
Args:
base_lulc_raster_path (str):
future_lulc_raster_path (str):
new_forest_mask_raster_path (str):
Returns:
None
"""
FOREST_CODES = (50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90, 160, 170)
def _mask_new_forest(base, future):
"""Remap values from ESA codes to basic MASK_TYPES."""
result = numpy.empty(base.shape, dtype=numpy.uint8)
base_forest = numpy.in1d(base, FOREST_CODES).reshape(result.shape)
future_forest = numpy.in1d(future, FOREST_CODES).reshape(result.shape)
result[:] = future_forest & ~base_forest
return result
ecoshard.geoprocessing.raster_calculator(
[(base_lulc_raster_path, 1), (future_lulc_raster_path, 1)],
_mask_new_forest, new_forest_mask_raster_path, gdal.GDT_Byte, None)
def _calculate_ipcc_biomass(
landcover_raster_path, churn_dir, target_biomass_raster_path):
"""Calculate IPCC method for biomass for given landcover.
Args:
landcover_raster_path (str): path to ESA landcover raster.
churn_dir (str): path to use for temporary files.
target_biomass_raster_path (str): path to raster to create target
biomass (not in density)
Return:
None
"""
def _ipcc_carbon_op(
lulc_array, zones_array, zone_lulc_to_carbon_map):
"""Map carbon to LULC/zone values and multiply by conversion map."""
result = numpy.zeros(lulc_array.shape)
for zone_id in numpy.unique(zones_array):
if zone_id in zone_lulc_to_carbon_map:
zone_mask = zones_array == zone_id
result[zone_mask] = (
zone_lulc_to_carbon_map[zone_id][lulc_array[zone_mask]])
return result
def _parse_carbon_lulc_table(ipcc_carbon_table_path):
"""Parse out the IPCC carbon table by zone and lulc."""
with open(IPCC_CARBON_TABLE_PATH, 'r') as carbon_table_file:
header_line = carbon_table_file.readline()
lulc_code_list = [
int(lucode) for lucode in header_line.split(',')[1:]]
max_code = max(lulc_code_list)
zone_lucode_to_carbon_map = {}
for line in carbon_table_file:
split_line = line.split(',')
if split_line[0] == '':
continue
zone_id = int(split_line[0])
zone_lucode_to_carbon_map[zone_id] = numpy.zeros(max_code+1)
for lucode, carbon_value in zip(
lulc_code_list, split_line[1:]):
zone_lucode_to_carbon_map[zone_id][lucode] = float(
carbon_value)
return zone_lucode_to_carbon_map
rasterized_zones_raster_path = os.path.join(churn_dir, 'carbon_zones.tif')
LOGGER.info(
f'rasterize carbon zones of {landcover_raster_path} to '
f'{rasterized_zones_raster_path}')
ecoshard.geoprocessing.new_raster_from_base(
landcover_raster_path, rasterized_zones_raster_path, gdal.GDT_Int32,
[-1])
ecoshard.geoprocessing.rasterize(
CARBON_ZONES_VECTOR_PATH, rasterized_zones_raster_path,
option_list=['ATTRIBUTE=CODE'])
zone_lucode_to_carbon_map = _parse_carbon_lulc_table(
IPCC_CARBON_TABLE_PATH)
ecoshard.geoprocessing.raster_calculator(
[(landcover_raster_path, 1), (rasterized_zones_raster_path, 1),
(zone_lucode_to_carbon_map, 'raw')],
_ipcc_carbon_op, target_biomass_raster_path,
gdal.GDT_Float32, -1)
def _calculate_modeled_biomass_from_mask(
base_lulc_raster_path, new_forest_mask_raster_path,
target_biomass_raster_path, task_graph):
"""Calculate new biomass raster from base layer and new forest mask.
Args:
base_lulc_raster_path (str): path to base ESA LULC raster.
new_forest_mask_raster_path (str): path to raster that indicates
where new forest is applied with a 1.
target_biomass_raster_path (str): created by this function, a
raster that has biomass per pixel for the scenario given by
new_forest_mask_raster_path from base_lulc_raster_path.
n_workers (int): number of workers to allow for reprojection.
Returns:
None
"""
churn_dir = os.path.join(
os.path.dirname(target_biomass_raster_path),
os.path.basename(os.path.splitext(target_biomass_raster_path)[0]))
# this raster is base with new forest in it
converted_lulc_raster_path = os.path.join(churn_dir, 'converted_lulc.tif')
LOGGER.info(
f'creating converted LULC off of {base_lulc_raster_path} to '
f'{converted_lulc_raster_path}')
replace_value_by_mask_task = task_graph.add_task(
func=_replace_value_by_mask,
args=(
base_lulc_raster_path, FOREST_CODE, new_forest_mask_raster_path,
converted_lulc_raster_path),
target_path_list=[converted_lulc_raster_path],
task_name=f'replace by mask to {converted_lulc_raster_path}')
replace_value_by_mask_task.join()
# calculate biomass for that raster
model_task = dnn_model.run_model(
converted_lulc_raster_path,
MODEL_PATH, target_biomass_raster_path, base_task_graph=task_graph)
return model_task
def main():
"""Entry point."""
parser = argparse.ArgumentParser(description='Build marginal value map')
parser.add_argument(
'--bounding_box', type=float, nargs=4, help='xmin, xmax, ymin, ymax')
args = parser.parse_args()
if args.bounding_box:
bb_string = f"_{'_'.join([f'{v:.2f}' for v in args.bounding_box])}"
else:
bb_string = ''
task_graph = taskgraph.TaskGraph(
WORKSPACE_DIR, multiprocessing.cpu_count())
dnn_model.download_data(task_graph, dnn_model.BOUNDING_BOX)
unique_scenario_id = f'''{
_raw_basename(BASE_LULC_RASTER_PATH)}_{
_raw_basename(ESA_RESTORATION_SCENARIO_RASTER_PATH)}{bb_string}'''
LOGGER.info(f'calculate new forest mask on {BASE_LULC_RASTER_PATH}')
new_forest_raster_path = os.path.join(
NEW_FOREST_MASK_DIR, f'{unique_scenario_id}.tif')
new_forest_mask_task = task_graph.add_task(
func=_calculate_new_forest,
args=(
BASE_LULC_RASTER_PATH, ESA_RESTORATION_SCENARIO_RASTER_PATH,
new_forest_raster_path),
target_path_list=[new_forest_raster_path],
task_name=f'create forest mask for {new_forest_raster_path}')
modeled_biomass_raster_task_dict = collections.defaultdict(dict)
for scenario_id, landcover_raster_path in [
(BASE_SCENARIO, BASE_LULC_RASTER_PATH),
(RESTORATION_SCENARIO, ESA_RESTORATION_SCENARIO_RASTER_PATH)]:
base_landcover_id = os.path.basename(
os.path.splitext(landcover_raster_path)[0])
# calculated modeled biomass
LOGGER.info(
f'model biomass {MODELED_MODE} for {base_landcover_id}/'
f'{scenario_id}')
modeled_biomass_raster_path = os.path.join(
BIOMASS_RASTER_DIR,
f'biomass_{MODELED_MODE}_{scenario_id}.tif')
biomass_model_task = dnn_model.run_model(
landcover_raster_path, MODEL_PATH,
modeled_biomass_raster_path, base_task_graph=task_graph)
modeled_biomass_raster_task_dict[MODELED_MODE][scenario_id] = \
(modeled_biomass_raster_path, biomass_model_task)
# calculate IPCC biomass
LOGGER.info(
f'calculate IPCC method for {base_landcover_id}/'
f'{scenario_id}')
target_ipcc_biomass_path = os.path.join(
BIOMASS_RASTER_DIR,
f'biomass_per_ha_{IPCC_MODE}_{scenario_id}.tif')
ipcc_churn_dir = os.path.join(
CHURN_DIR, f'churn_{base_landcover_id}_{IPCC_MODE}')
biomass_ipcc_task = task_graph.add_task(
func=_calculate_ipcc_biomass,
args=(
landcover_raster_path, ipcc_churn_dir,
target_ipcc_biomass_path),
target_path_list=[target_ipcc_biomass_path],
task_name=f'calculate biomass{IPCC_MODE} for {scenario_id}')
modeled_biomass_raster_task_dict[IPCC_MODE][scenario_id] = \
(target_ipcc_biomass_path, biomass_ipcc_task)
LOGGER.info('create marginal value maps')
# this will have (mode, task, dir) tuples for this section
optimization_mode_task_dir_list = []
for model_mode in [MODELED_MODE, IPCC_MODE]:
marginal_value_biomass_raster = os.path.join(
MARGINAL_VALUE_WORKSPACE,
f'marginal_value_biomass_{model_mode}.tif')
restoration_biomass_raster, restoration_task = \
modeled_biomass_raster_task_dict[model_mode][RESTORATION_SCENARIO]
base_biomass_raster, base_task = \
modeled_biomass_raster_task_dict[model_mode][BASE_SCENARIO]
marginal_value_task = task_graph.add_task(
func=_create_marginal_value_layer,
args=(
restoration_biomass_raster,
base_biomass_raster,
(MARGINAL_VALUE_PIXEL_BLUR
if model_mode == MODELED_MODE else None),
new_forest_raster_path,
marginal_value_biomass_raster),
target_path_list=[marginal_value_biomass_raster],
dependent_task_list=[
restoration_task, base_task, new_forest_mask_task],
task_name=(
f'''calc marginal value for {restoration_biomass_raster} '''
f'''and {base_biomass_raster}'''))
LOGGER.info(
f'create optimal land selection mask to target '
f'{TARGET_AREA_HA} ha')
optimization_dir = _mkdir(os.path.join(
OPTIMIZATION_WORKSPACE,
f'optimization_{unique_scenario_id}_{model_mode}'))
# returns a (optimal mask, area selected) tuple
optimization_task = task_graph.add_task(
func=_greedy_select_pixels_to_area,
args=(
marginal_value_biomass_raster, optimization_dir,
AREA_REPORT_STEP_LIST),
target_path_list=[os.path.join(optimization_dir, f'marginal_value_biomass_{model_mode}_greedy_pick.csv')],
dependent_task_list=[marginal_value_task],
task_name=f'optimize on {marginal_value_biomass_raster}')
optimization_mode_task_dir_list.append(
(model_mode, optimization_task, optimization_dir))
task_graph.join()
task_graph.close()
return
# indexed by MODELED_MODE vs. IPCC_MODE then by area of the new forest
optimization_biomass_area_path_task_dict = \
collections.defaultdict(dict)
for (model_mode, optimization_task, optimization_dir) in \
optimization_mode_task_dir_list:
# okay to join here because it's going to trigger a whole set of
# other tasks and nothing can be done until this one is ready anyway
optimization_task.join()
optimization_biomass_dir = _mkdir(os.path.join(
OPTIMIZATION_WORKSPACE,
f'biomass_{unique_scenario_id}_{model_mode}'))
for optimal_mask_raster_path in glob.glob(
os.path.join(optimization_dir, 'mask_*.tif')):
optimization_biomass_raster_path = os.path.join(
optimization_biomass_dir,
f'''biomass_per_pixel_{
_raw_basename(optimal_mask_raster_path)}.tif''')
model_task = _calculate_modeled_biomass_from_mask(
BASE_LULC_RASTER_PATH, optimal_mask_raster_path,
optimization_biomass_raster_path, task_graph)
mask_area = float(re.match(
r'mask_(.*)\.tif', os.path.basename(
optimal_mask_raster_path)).group(1))
optimization_biomass_area_path_task_dict[
model_mode][mask_area] = (
optimization_biomass_raster_path, model_task)
task_graph.join()
LOGGER.info(
'calculate difference between modeled biomass optimization and IPCC '
'optimization')
mask_areas = sorted([
float(x) for x in
optimization_biomass_area_path_task_dict[MODELED_MODE].keys()])
modeled_diff_ipcc_biomass_sum_task_list = []
modeled_diff_mode_base_biomass_sum_task_list = \
collections.defaultdict(list)
LOGGER.debug(f'********* {mask_areas} {optimization_dir}')
for mask_area in mask_areas:
model_biomass_raster_path, dnn_model_task = \
optimization_biomass_area_path_task_dict[MODELED_MODE][mask_area]
ipcc_biomass_raster_path, ipcc_model_task = \
optimization_biomass_area_path_task_dict[IPCC_MODE][mask_area]
modeled_vs_ipcc_optimal_biomass_diff_raster_path = os.path.join(
IPCC_VS_DNN_DIR,
f'modeled_vs_ipcc_diff_{mask_area}_ha.tif')
diff_task = task_graph.add_task(
func=_diff_rasters,
args=(
model_biomass_raster_path,
ipcc_biomass_raster_path,
modeled_vs_ipcc_optimal_biomass_diff_raster_path),
target_path_list=[
modeled_vs_ipcc_optimal_biomass_diff_raster_path],
dependent_task_list=[dnn_model_task, ipcc_model_task],
task_name=f'''modeled diff ipcc {
modeled_vs_ipcc_optimal_biomass_diff_raster_path}''')
sum_task = task_graph.add_task(
func=_sum_raster,
args=(modeled_vs_ipcc_optimal_biomass_diff_raster_path,),
store_result=True,
dependent_task_list=[diff_task],
task_name=f'''sum the modeled vs. ippc diff for {
modeled_vs_ipcc_optimal_biomass_diff_raster_path}''')
modeled_diff_ipcc_biomass_sum_task_list.append(sum_task)
LOGGER.info(
'subtract modeled and ipcc from base modeled to get the gain')
modeled_vs_base_biomass_diff_raster_path = os.path.join(
IPCC_VS_DNN_DIR, f'modeled_vs_base_{mask_area}_ha.tif')
ipcc_vs_base_biomass_diff_raster_path = os.path.join(
IPCC_VS_DNN_DIR, f'ipcc_vs_base_{mask_area}_ha.tif')
modeled_base_biomass_raster_path = (
modeled_biomass_raster_task_dict[MODELED_MODE][BASE_SCENARIO][0])
for modeled_path, target_diff_path, mode, model_task in [
(model_biomass_raster_path,
modeled_vs_base_biomass_diff_raster_path, MODELED_MODE, dnn_model_task),
(ipcc_biomass_raster_path,
ipcc_vs_base_biomass_diff_raster_path, IPCC_MODE, ipcc_model_task)]:
diff_task = task_graph.add_task(
func=_diff_rasters,
args=(
modeled_path, modeled_base_biomass_raster_path,
target_diff_path),
dependent_task_list=[model_task],
target_path_list=[target_diff_path],
task_name=f'modeled diff ipcc {target_diff_path}')
sum_task = task_graph.add_task(
func=_sum_raster,
args=(target_diff_path,),
store_result=True,
dependent_task_list=[diff_task],
task_name=f'''sum the modeled/ipcc vs. base for {
target_diff_path}''')
modeled_diff_mode_base_biomass_sum_task_list[mode].append(sum_task)
task_graph.join()
LOGGER.info('report')
report_csv_path = os.path.join(
WORKSPACE_DIR, f'''report_{_raw_basename(BASE_LULC_RASTER_PATH)}_{
_raw_basename(ESA_RESTORATION_SCENARIO_RASTER_PATH)}.csv''')
with open(report_csv_path, 'w') as report_csv_file:
report_csv_file.write(
'area,biomass gain modeled driven, biomass gain IPCC driven, '
'modeled vs ipcc diff\n')
for (area, biomass_modeled_gain, ipcc_modeled_gain,
modeled_vs_ipcc) in zip(
mask_areas,
modeled_diff_mode_base_biomass_sum_task_list[MODELED_MODE],
modeled_diff_mode_base_biomass_sum_task_list[IPCC_MODE],
modeled_diff_ipcc_biomass_sum_task_list):
report_csv_file.write(
f'{area},{biomass_modeled_gain.get()},'
f'{ipcc_modeled_gain.get()},{modeled_vs_ipcc.get()}\n')
task_graph.join()
task_graph.close()
if __name__ == '__main__':
main()