diff --git a/carbon_edge_analysis.py b/carbon_edge_analysis.py index 3d3c561..df96deb 100644 --- a/carbon_edge_analysis.py +++ b/carbon_edge_analysis.py @@ -676,7 +676,7 @@ def main(): sum_in_out_forest_carbon_density_by_mask_task)) task_graph.join() raster_info = geoprocessing.get_raster_info(carbon_opt_forest_step_path) - LOGGER.debug(f'writing regression_optimization_carbon') + LOGGER.debug('writing regression_optimization_carbon') with open('regression_optimization_carbon.csv', 'w') as opt_table: opt_table.write( 'file,' diff --git a/extract_landcover_masks.py b/extract_landcover_masks.py index 3d69a6e..6e266ea 100644 --- a/extract_landcover_masks.py +++ b/extract_landcover_masks.py @@ -82,11 +82,11 @@ def main(): target_path_list=[target_path], task_name=f'mask {target_path}') - LOGGER.info(f'waiting for jobs to complete') + LOGGER.info('waiting for jobs to complete') task_graph.close() task_graph.join() del task_graph - LOGGER.info(f'all done!') + LOGGER.info('all done!') if __name__ == '__main__': diff --git a/run_model.py b/run_model.py index fe403e9..d120137 100644 --- a/run_model.py +++ b/run_model.py @@ -199,7 +199,7 @@ def regression_carbon_model( LOGGER.info(f'load model at {carbon_model_path}') with open(carbon_model_path, 'rb') as model_file: model = pickle.load(model_file).copy() - LOGGER.info(f'ensure raster base data are present') + LOGGER.info('ensure raster base data are present') missing_predictor_list = [] predictor_id_path_list = [] for predictor_id in model['predictor_list']: diff --git a/train_regression_model.py b/train_regression_model.py index 0dd8c58..2f3d6dd 100644 --- a/train_regression_model.py +++ b/train_regression_model.py @@ -435,7 +435,7 @@ def main(): k = trainset[0].shape[1] - r2_table = open(os.path.join(FIG_DIR, f'r2_summary.csv'), 'a') + r2_table = open(os.path.join(FIG_DIR, 'r2_summary.csv'), 'a') r2_table.write('model,r2,r2_adjusted,explained_variance,mean_absolute_error,mse,mean_squared_log_error,median_absolute_error\n') for expected_values, modeled_values, n, prefix in [ (trainset[1].flatten(), clip_to_range(model.predict(trainset[0]).flatten(), 10, 400), trainset[0].shape[0], 'training'),