-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprecip_calculator.py
235 lines (200 loc) · 7.13 KB
/
precip_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""Precip calculator based on CMIP6 NEXX dataset."""
import argparse
import functools
import logging
import os
import pickle
import sys
import ee
import geemap
import geopandas
logging.basicConfig(
level=logging.WARNING,
format=(
'%(asctime)s (%(relativeCreated)d) %(levelname)s %(name)s'
' [%(funcName)s:%(lineno)d] %(message)s'),
stream=sys.stdout)
LOGGER = logging.getLogger(__name__)
LOGGER.setLevel(logging.DEBUG)
VALID_MODEL_LIST = (
'ACCESS-ESM1-5',
'BCC-CSM2-MR',
'CanESM5',
'CESM2',
'CMCC-ESM2',
'CNRM-ESM2-1',
'EC-Earth3-Veg-LR',
'FGOALS-g3',
'GFDL-ESM4',
'GISS-E2-1-G',
'HadGEM3-GC31-MM',
'IITM-ESM',
'INM-CM5-0',
'IPSL-CM6A-LR',
'KACE-1-0-G',
'KIOST-ESM',
'MIROC-ES2L',
'MPI-ESM1-2-HR',
'MRI-ESM2-0',
'NESM3',
'NorESM2-MM',
'TaiESM1',
'UKESM1-0-LL',
)
DATASET_ID = 'NASA/GDDP-CMIP6'
DATASET_CRS = 'EPSG:4326'
DATASET_SCALE = 27830
def auto_memoize(func):
cache_file = f"{func.__name__}_cache.pkl"
if os.path.exists(cache_file):
with open(cache_file, 'rb') as f:
cache = pickle.load(f)
else:
cache = {}
@functools.wraps(func)
def wrapper(*args, **kwargs):
key = (args, frozenset(kwargs.items()))
if key in cache:
return cache[key]
else:
result = func(*args, **kwargs)
cache[key] = result
with open(cache_file, 'wb') as f:
pickle.dump(cache, f)
return result
return wrapper
@auto_memoize
def get_valid_model_list(model_list, start_year, end_year, scenario_id):
# Initialize the ImageCollection with your filters
cmip6_dataset = ee.ImageCollection(DATASET_ID).select('pr').filter(
ee.Filter.And(
ee.Filter.inList('model', model_list),
ee.Filter.eq('scenario', scenario_id),
ee.Filter.calendarRange(start_year, end_year, 'year'))
)
# Aggregate model IDs
unique_models = cmip6_dataset.aggregate_array('model').distinct()
# Bring the list to Python
unique_models_list = unique_models.getInfo()
# Print or otherwise use the list
print("Unique model IDs:", unique_models_list)
return tuple(unique_models_list)
def authenticate():
try:
ee.Initialize()
return
except Exception:
pass
try:
ee.Authenticate()
ee.Initialize()
return
except Exception:
pass
try:
gee_key_path = os.environ['GEE_KEY_PATH']
credentials = ee.ServiceAccountCredentials(None, gee_key_path)
ee.Initialize(credentials)
return
except Exception:
pass
ee.Initialize()
def main():
parser = argparse.ArgumentParser(description=(
'Fetch CMIP6 based erosivity given a year date range.'))
parser.add_argument(
'--aoi_vector_path', help='Path to vector/shapefile of area of interest')
parser.add_argument('--where_statement', help=(
'If provided, allows filtering by a field id and value of the form '
'field_id=field_value'))
parser.add_argument(
'--scenario_id', help="Scenario ID ssp245, ssp585, historical")
parser.add_argument('--date_range', nargs=2, type=str, help=(
'Two date ranges in YYYY format to download between.'))
parser.add_argument(
'--status', action='store_true', help='To check task status')
parser.add_argument(
'--dataset_scale', type=float, default=DATASET_SCALE, help=(
f'Override the base scale of {DATASET_SCALE}m to '
f'whatever you desire.'))
parser.add_argument(
'--percentile', nargs='+', help='List of percentiles')
args = parser.parse_args()
authenticate()
if args.status:
# Loop through each task to print its status
for task in ee.batch.Task.list():
print(task)
print("-----")
return
aoi_vector = geopandas.read_file(args.aoi_vector_path)
if args.where_statement:
field_id, field_val = args.where_statement.split('=')
print(aoi_vector.size)
aoi_vector = aoi_vector[aoi_vector[field_id] == field_val]
print(aoi_vector)
print(aoi_vector.size)
local_shapefile_path = '_local_cmip6_aoi_ok_to_delete.json'
aoi_vector = aoi_vector.to_crs('EPSG:4326')
aoi_vector.to_file(local_shapefile_path)
aoi_vector = None
ee_poly = geemap.geojson_to_ee(local_shapefile_path)
# Filter models dynamically based on data availability
start_year = int(args.date_range[0])
end_year = int(args.date_range[1])
for target_month in list(range(1, 13)) + ['annual']:
model_list = get_valid_model_list(
VALID_MODEL_LIST, start_year, end_year, args.scenario_id)
cmip6_dataset = ee.ImageCollection(DATASET_ID).select('pr').filter(
ee.Filter.And(
ee.Filter.inList('model', model_list),
ee.Filter.eq('scenario', args.scenario_id),
ee.Filter.calendarRange(start_year, end_year, 'year')))
region_basename = os.path.splitext(
os.path.basename(args.aoi_vector_path))[0]
if target_month == 'annual':
timeframe_str = target_month
else:
timeframe_str = f'{target_month:02d}'
description = (
f'precip_{region_basename}_{args.scenario_id}_'
f'{start_year}_{end_year}_{timeframe_str}')
def calculate_precip(model_name):
model_data = cmip6_dataset.filter(
ee.Filter.eq('model', model_name))
yearly_collection = model_data.filter(
ee.Filter.calendarRange(start_year, end_year, 'year'))
if target_month != 'annual':
yearly_collection = model_data.filter(
ee.Filter.calendarRange(
target_month, target_month, 'month'))
total_precip = yearly_collection.reduce(ee.Reducer.sum())
# convert to mm
annual_precip = total_precip.multiply(
86400/(end_year-start_year+1))
return annual_precip.rename(model_name)
# Calculate metrics for all models
precip_by_model_list = [
calculate_precip(model) for model in model_list]
precip_by_model = precip_by_model_list[0]
precip_by_model = precip_by_model.addBands(
precip_by_model_list[1:])
precip_image_clipped = precip_by_model.clip(ee_poly)
folder_id = 'gee_output'
for percentile in args.percentile:
local_description = f'{description}_p{percentile}'
ee.batch.Export.image.toDrive(
image=precip_image_clipped.reduce(
ee.Reducer.percentile([float(percentile)])),
description=local_description,
folder=folder_id,
scale=args.dataset_scale,
crs=DATASET_CRS,
region=ee_poly.geometry().bounds(),
fileFormat='GeoTIFF',
).start()
print(
f'downloading precip raster to google drive: '
f'{folder_id}/{local_description}')
if __name__ == '__main__':
main()