-
Notifications
You must be signed in to change notification settings - Fork 0
/
driving_data.py
56 lines (46 loc) · 1.68 KB
/
driving_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import cv2
import random
import numpy as np
xs = []
ys = []
#points to the end of the last batch
train_batch_pointer = 0
val_batch_pointer = 0
#read data.txt
with open("driving_dataset/data.txt") as f:
for line in f:
xs.append("driving_dataset/" + line.split()[0])
#the paper by Nvidia uses the inverse of the turning radius,
#but steering wheel angle is proportional to the inverse of turning radius
#so the steering wheel angle in radians is used as the output
ys.append(float(line.split()[1]) * 3.14159265 / 180)
#get number of images
num_images = len(xs)
#shuffle list of images
c = list(zip(xs, ys))
random.shuffle(c)
xs, ys = zip(*c)
train_xs = xs[:int(len(xs) * 0.8)]
train_ys = ys[:int(len(xs) * 0.8)]
val_xs = xs[-int(len(xs) * 0.2):]
val_ys = ys[-int(len(xs) * 0.2):]
num_train_images = len(train_xs)
num_val_images = len(val_xs)
def LoadTrainBatch(batch_size):
global train_batch_pointer
x_out = []
y_out = []
for i in range(0, batch_size):
x_out.append(cv2.resize(cv2.imread(train_xs[(train_batch_pointer + i) % num_train_images])[-150:], (200, 66)) / 255.0)
y_out.append([train_ys[(train_batch_pointer + i) % num_train_images]])
train_batch_pointer += batch_size
return x_out, y_out
def LoadValBatch(batch_size):
global val_batch_pointer
x_out = []
y_out = []
for i in range(0, batch_size):
x_out.append(cv2.resize(cv2.imread(val_xs[(val_batch_pointer + i) % num_val_images])[-150:], (200, 66)) / 255.0)
y_out.append([val_ys[(val_batch_pointer + i) % num_val_images]])
val_batch_pointer += batch_size
return x_out, y_out