-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathmain.py
255 lines (222 loc) · 10.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import random
import time
import json
import torch
import torchvision
import numpy as np
import pandas as pd
import warnings
from datetime import datetime
from torch import nn,optim
from config import config
from collections import OrderedDict
from torch.autograd import Variable
from torch.utils.data import DataLoader
from dataset.dataloader import *
from sklearn.model_selection import train_test_split,StratifiedKFold
from timeit import default_timer as timer
from models.model import *
from utils import *
#1. set random.seed and cudnn performance
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
torch.backends.cudnn.benchmark = True
warnings.filterwarnings('ignore')
#2. evaluate func
def evaluate(val_loader,model,criterion):
#2.1 define meters
losses = AverageMeter()
top1 = AverageMeter()
top2 = AverageMeter()
#2.2 switch to evaluate mode and confirm model has been transfered to cuda
model.cuda()
model.eval()
with torch.no_grad():
for i,(input,target) in enumerate(val_loader):
input = Variable(input).cuda()
target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
#target = Variable(target).cuda()
#2.2.1 compute output
output = model(input)
loss = criterion(output,target)
#2.2.2 measure accuracy and record loss
precision1,precision2 = accuracy(output,target,topk=(1,2))
losses.update(loss.item(),input.size(0))
top1.update(precision1[0],input.size(0))
top2.update(precision2[0],input.size(0))
return [losses.avg,top1.avg,top2.avg]
#3. test model on public dataset and save the probability matrix
def test(test_loader,model,folds):
#3.1 confirm the model converted to cuda
csv_map = OrderedDict({"filename":[],"probability":[]})
model.cuda()
model.eval()
with open("./submit/baseline.json","w",encoding="utf-8") as f :
submit_results = []
for i,(input,filepath) in enumerate(tqdm(test_loader)):
#3.2 change everything to cuda and get only basename
filepath = [os.path.basename(x) for x in filepath]
with torch.no_grad():
image_var = Variable(input).cuda()
#3.3.output
#print(filepath)
#print(input,input.shape)
y_pred = model(image_var)
#print(y_pred.shape)
smax = nn.Softmax(1)
smax_out = smax(y_pred)
#3.4 save probability to csv files
csv_map["filename"].extend(filepath)
for output in smax_out:
prob = ";".join([str(i) for i in output.data.tolist()])
csv_map["probability"].append(prob)
result = pd.DataFrame(csv_map)
result["probability"] = result["probability"].map(lambda x : [float(i) for i in x.split(";")])
for index, row in result.iterrows():
pred_label = np.argmax(row['probability'])
if pred_label > 43:
pred_label = pred_label + 2
submit_results.append({"image_id":row['filename'],"disease_class":pred_label})
json.dump(submit_results,f,ensure_ascii=False,cls = MyEncoder)
#4. more details to build main function
def main():
fold = 0
#4.1 mkdirs
if not os.path.exists(config.submit):
os.mkdir(config.submit)
if not os.path.exists(config.weights):
os.mkdir(config.weights)
if not os.path.exists(config.best_models):
os.mkdir(config.best_models)
if not os.path.exists(config.logs):
os.mkdir(config.logs)
if not os.path.exists(config.weights + config.model_name + os.sep +str(fold) + os.sep):
os.makedirs(config.weights + config.model_name + os.sep +str(fold) + os.sep)
if not os.path.exists(config.best_models + config.model_name + os.sep +str(fold) + os.sep):
os.makedirs(config.best_models + config.model_name + os.sep +str(fold) + os.sep)
#4.2 get model and optimizer
model = get_net()
#model = torch.nn.DataParallel(model)
model.cuda()
#optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=config.weight_decay)
optimizer = optim.Adam(model.parameters(),lr = config.lr,amsgrad=True,weight_decay=config.weight_decay)
criterion = nn.CrossEntropyLoss().cuda()
#criterion = FocalLoss().cuda()
log = Logger()
log.open(config.logs + "log_train.txt",mode="a")
log.write("\n----------------------------------------------- [START %s] %s\n\n" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), '-' * 51))
#4.3 some parameters for K-fold and restart model
start_epoch = 0
best_precision1 = 0
best_precision_save = 0
resume = False
#4.4 restart the training process
if resume:
checkpoint = torch.load(config.best_models + str(fold) + "/model_best.pth.tar")
start_epoch = checkpoint["epoch"]
fold = checkpoint["fold"]
best_precision1 = checkpoint["best_precision1"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
#4.5 get files and split for K-fold dataset
#4.5.1 read files
train_ = get_files(config.train_data,"train")
#val_data_list = get_files(config.val_data,"val")
test_files = get_files(config.test_data,"test")
"""
#4.5.2 split
split_fold = StratifiedKFold(n_splits=3)
folds_indexes = split_fold.split(X=origin_files["filename"],y=origin_files["label"])
folds_indexes = np.array(list(folds_indexes))
fold_index = folds_indexes[fold]
#4.5.3 using fold index to split for train data and val data
train_data_list = pd.concat([origin_files["filename"][fold_index[0]],origin_files["label"][fold_index[0]]],axis=1)
val_data_list = pd.concat([origin_files["filename"][fold_index[1]],origin_files["label"][fold_index[1]]],axis=1)
"""
train_data_list,val_data_list = train_test_split(train_,test_size = 0.15,stratify=train_["label"])
#4.5.4 load dataset
train_dataloader = DataLoader(ChaojieDataset(train_data_list),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=True)
val_dataloader = DataLoader(ChaojieDataset(val_data_list,train=False),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=False)
test_dataloader = DataLoader(ChaojieDataset(test_files,test=True),batch_size=1,shuffle=False,pin_memory=False)
#scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,"max",verbose=1,patience=3)
scheduler = optim.lr_scheduler.StepLR(optimizer,step_size = 10,gamma=0.1)
#4.5.5.1 define metrics
train_losses = AverageMeter()
train_top1 = AverageMeter()
train_top2 = AverageMeter()
valid_loss = [np.inf,0,0]
model.train()
#logs
log.write('** start training here! **\n')
log.write(' |------------ VALID -------------|----------- TRAIN -------------|------Accuracy------|------------|\n')
log.write('lr iter epoch | loss top-1 top-2 | loss top-1 top-2 | Current Best | time |\n')
log.write('-------------------------------------------------------------------------------------------------------------------------------\n')
#4.5.5 train
start = timer()
for epoch in range(start_epoch,config.epochs):
scheduler.step(epoch)
# train
#global iter
for iter,(input,target) in enumerate(train_dataloader):
#4.5.5 switch to continue train process
model.train()
input = Variable(input).cuda()
target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
#target = Variable(target).cuda()
output = model(input)
loss = criterion(output,target)
precision1_train,precision2_train = accuracy(output,target,topk=(1,2))
train_losses.update(loss.item(),input.size(0))
train_top1.update(precision1_train[0],input.size(0))
train_top2.update(precision2_train[0],input.size(0))
#backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr = get_learning_rate(optimizer)
print('\r',end='',flush=True)
print('%0.4f %5.1f %6.1f | %0.3f %0.3f %0.3f | %0.3f %0.3f %0.3f | %s | %s' % (\
lr, iter/len(train_dataloader) + epoch, epoch,
valid_loss[0], valid_loss[1], valid_loss[2],
train_losses.avg, train_top1.avg, train_top2.avg,str(best_precision_save),
time_to_str((timer() - start),'min'))
, end='',flush=True)
#evaluate
lr = get_learning_rate(optimizer)
#evaluate every half epoch
valid_loss = evaluate(val_dataloader,model,criterion)
is_best = valid_loss[1] > best_precision1
best_precision1 = max(valid_loss[1],best_precision1)
try:
best_precision_save = best_precision1.cpu().data.numpy()
except:
pass
save_checkpoint({
"epoch":epoch + 1,
"model_name":config.model_name,
"state_dict":model.state_dict(),
"best_precision1":best_precision1,
"optimizer":optimizer.state_dict(),
"fold":fold,
"valid_loss":valid_loss,
},is_best,fold)
#adjust learning rate
#scheduler.step(valid_loss[1])
print("\r",end="",flush=True)
log.write('%0.4f %5.1f %6.1f | %0.3f %0.3f %0.3f | %0.3f %0.3f %0.3f | %s | %s' % (\
lr, 0 + epoch, epoch,
valid_loss[0], valid_loss[1], valid_loss[2],
train_losses.avg, train_top1.avg, train_top2.avg, str(best_precision_save),
time_to_str((timer() - start),'min'))
)
log.write('\n')
time.sleep(0.01)
best_model = torch.load(config.best_models + os.sep+config.model_name+os.sep+ str(fold) +os.sep+ 'model_best.pth.tar')
model.load_state_dict(best_model["state_dict"])
test(test_dataloader,model,fold)
if __name__ =="__main__":
main()