-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathimagedataset2d.py
270 lines (215 loc) · 9.87 KB
/
imagedataset2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os as _os
import random as _random
import warnings as _warn
from abc import ABC as _ABC
import numpy as _np
import torchvision.transforms as _tmf
from easytorch.data import ETDataset as _ETDataset
import easytorch.vision.imageutils as _imgutils
sep = _os.sep
class BaseImageDataset(_ETDataset, _ABC):
def __init__(self, **kw):
super().__init__(**kw)
self.transforms = self.get_transforms()
self.pil_to_tensor = _tmf.Compose([_tmf.ToPILImage(), _tmf.ToTensor()])
def get_transforms(self):
return _tmf.Compose([_tmf.ToPILImage(), _tmf.ToTensor()])
def _validate_image_data(self, dspec, img_obj):
return img_obj
def load_img(self, dspec, file):
img_obj = _imgutils.Image()
"""Load Image"""
img_obj.load(dspec['data_dir'], file)
img_obj.apply_clahe()
if len(img_obj.array.shape) > 2 and img_obj.array.shape[-1] != 3:
_warn.warn(f"Suspicious Image shape: {img_obj.array.shape}, clipping to RGB: {dspec['name']}")
img_obj.array = img_obj.array[:, :, :3]
"""Load ground truth"""
dspec['has_gt'] = any(['label_dir' in dspec.keys()])
if dspec['has_gt']:
img_obj.load_ground_truth(dspec["label_dir"], dspec["label_getter"])
else:
_warn.warn(f"Random label initialized: {dspec['name']}")
img_obj.ground_truth = _np.random.randint(0, 2, img_obj.array.shape[:2]).astype(_np.uint8) * 255
"""Load mask"""
dspec['has_mask'] = any(['mask_dir' in dspec.keys()])
if dspec['has_mask']:
img_obj.load_mask(dspec['mask_dir'], dspec['mask_getter'])
return self._validate_image_data(dspec, img_obj)
def __getitem__(self, index):
raise NotImplementedError('Must implement')
class PatchedImgDataset(BaseImageDataset, _ABC):
"""dataspec must have patch_shape, patch_offset, """
def load_index(self, dataspec_name, file):
r"""
:param dataspec_name: name of teh dataset as provided in train_dataspecs
:param file: Name of an image
:return:
Logic split an image to patches and feed to U-Net. Meanwhile we need to store the four-corners
of each patch so that we can rejoin the full image from the patches' corresponding predictions.
"""
dt = self.dataspecs[dataspec_name]
obj = self.load_img(dt, file)
cache_key = self.diskcache.add(f"{dataspec_name}_{file}", obj)
for corners in _imgutils.get_chunk_indexes(
obj.array.shape[:2],
dt['patch_shape'],
dt['patch_offset']
):
"""
get_chunk_indexes will return the list of four corners of all patches of the images
by using window size of self.patch_shape, and offset of elf.patch_offset
"""
self.indices.append([dataspec_name, file] + corners + [cache_key])
class BinaryPatchDataset(PatchedImgDataset):
def __init__(self, **kw):
super().__init__(**kw)
def _validate_image_data(self, dspec, img_obj):
thr_manual = dspec.setdefault('thr_manual', 50)
if dspec.get('has_gt'):
gt_unique = _np.unique(img_obj.ground_truth)
if len(img_obj.ground_truth.shape) > 2:
_warn.warn(
f"Ground truth shape suspicious: {img_obj.ground_truth.shape}, "
f"using 1st channel onl: {dspec['name']}"
)
img_obj.ground_truth = img_obj.ground_truth[:, :, 0]
if sum(gt_unique) == 1:
_warn.warn(f"Ground truth 1 converted to 255")
img_obj.ground_truth[img_obj.ground_truth == 1] = 255
if len(gt_unique) != 2:
_warn.warn(
f"Number of unique ground truth items != {2} in {dspec['name']}. "
f"\nBinarizing ... {gt_unique}: "
)
_imgutils.binarize(img_obj.ground_truth, thr_manual)
if dspec.get('has_mask'):
mask_unique = _np.unique(img_obj.mask)
if len(img_obj.mask.shape) > 2:
_warn.warn(f"Mask shape suspicious: {img_obj.mask.shape}, using 1st channel only: {dspec['name']}")
img_obj.mask = img_obj.mask[:, :, 0]
if sum(mask_unique) == 1:
_warn.warn(f"Mask truth 1 converted to 255")
img_obj.mask[img_obj.mask == 1] = 255
if len(mask_unique) != 2:
_warn.warn(
f"Number of unique items in mask: {mask_unique} in {dspec['name']}"
)
if dspec.get('bbox_crop'):
copy = img_obj.copy()
img_obj.array, img_obj.ground_truth, img_obj.mask = _imgutils.masked_bboxcrop(
img_obj.array,
img_obj.ground_truth,
offset=dspec.setdefault('bbox_crop_offset', 51),
threshold=dspec.setdefault('bbox_crop_threshold', 5)
)
if img_obj.array.shape[0] < dspec['patch_shape'][0] or img_obj.array.shape[1] < dspec['patch_shape'][1]:
_warn.warn(
f"BBOX crop reversing for "
f"{dspec['name']}:{img_obj.file}, shape: {img_obj.array.shape}, {copy.array.shape}"
)
img_obj = copy.copy()
if dspec.get('resize'):
img_obj.array = _imgutils.resize(img_obj.array, dspec['resize'])
img_obj.ground_truth = _imgutils.resize(img_obj.ground_truth, dspec['resize'])
if img_obj.mask is not None:
img_obj.mask = _imgutils.resize(img_obj.mask, dspec['resize'])
"""Must binarize after resize"""
if dspec.get('resize'):
_imgutils.binarize(img_obj.ground_truth, thr_manual)
if dspec.get('has_mask'):
_imgutils.binarize(img_obj.mask, thr_manual)
return img_obj
def __getitem__(self, index):
"""
:param index:
:return: dict with keys - indices, input, label
We need indices to get the file name to save the respective predictions.
"""
dname, file, row_from, row_to, col_from, col_to, cache_key = self.indices[index]
obj = self.diskcache.get(cache_key)
img = obj.array
gt = obj.ground_truth[row_from:row_to, col_from:col_to]
p, q, r, s, pad = _imgutils.expand_and_mirror_patch(
img.shape,
[row_from, row_to, col_from, col_to],
self.dataspecs[dname]['expand_by']
)
if len(img.shape) == 3:
pad = [*pad, (0, 0)]
img = _np.pad(img[p:q, r:s], pad, 'reflect')
if self.mode == 'train' and _random.uniform(0, 1) <= 0.5:
img = _np.flip(img, 0)
gt = _np.flip(gt, 0)
if self.mode == 'train' and _random.uniform(0, 1) <= 0.5:
img = _np.flip(img, 1)
gt = _np.flip(gt, 1)
img = self.transforms(img)
gt = self.pil_to_tensor(gt)
return {'indices': self.indices[index], 'input': img, 'label': gt.squeeze()}
class FullImgDataset(BaseImageDataset):
def __init__(self, **kw):
r"""
Initialize necessary shapes for unet.
"""
super().__init__(**kw)
self.labels = None
def get_transforms(self):
if self.mode == "train":
return _tmf.Compose(
[_tmf.ToPILImage(),
_tmf.RandomHorizontalFlip(),
_tmf.RandomVerticalFlip(),
_tmf.ToTensor()]
)
return self.pil_to_tensor
def _load_labels(self, dspec):
return None
def _get_label(self, file):
pass
def _validate_image_data(self, dspec, img_obj):
if dspec.get('bbox_crop'):
copy = img_obj.copy()
img_obj.array, img_obj.mask = _imgutils.masked_bboxcrop(
img_obj.array,
offset=dspec.setdefault('bbox_crop_offset', 31),
threshold=dspec.setdefault('bbox_crop_threshold', 5)
)
if dspec.get('resize') and (
img_obj.array.shape[0] < 0.55 * copy.array.shape[0]
or
img_obj.array.shape[1] < 0.55 * copy.array.shape[1]
):
_warn.warn(f"BBOX crop reversing for {dspec['name']}:{img_obj.file}, shape: {img_obj.array.shape}")
img_obj = copy.copy()
if dspec.get('resize'):
img_obj.array = _imgutils.resize(img_obj.array, dspec['resize'])
if img_obj.mask is not None:
img_obj.mask = _imgutils.resize(img_obj.mask, dspec['resize'])
return img_obj
def load_img(self, dspec, file):
img_obj = _imgutils.Image()
"""Load Image"""
img_obj.load(dspec['data_dir'], file)
img_obj.apply_clahe()
if len(img_obj.array.shape) > 2 and img_obj.array.shape[-1] != 3:
_warn.warn(f"Suspicious Image shape: {img_obj.array.shape}, clipping to RGB: {dspec['name']}")
img_obj.array = img_obj.array[:, :, :3]
"""Load mask"""
dspec['has_mask'] = any(['mask_dir' in dspec.keys()])
if dspec['has_mask']:
img_obj.load_mask(dspec['mask_dir'], dspec['mask_getter'])
return self._validate_image_data(dspec, img_obj)
def load_index(self, dataspec_name, file):
dspec = self.dataspecs[dataspec_name]
if self.labels is None:
self.labels = self._load_labels(dspec)
img_obj = self.load_img(dspec, file)
cache_key = self.diskcache.add(f"{dataspec_name}_{file}", img_obj)
self.indices.append([dataspec_name, file, self._get_label(file), cache_key])
def __getitem__(self, index):
_dname, file, label, cache_key = self.indices[index]
obj = self.diskcache.get(cache_key)
img = obj.array
img = self.transforms(img)
return {'indices': self.indices[index], 'input': img, 'label': _np.array(label)}