forked from Secure-AI-Systems-Group/Qu-ANTI-zation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sample_w_lossfn.py
465 lines (385 loc) · 18.7 KB
/
sample_w_lossfn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
"""
Targeted attack for one sample in the dataset
"""
import os, csv, json
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
import copy
import random
import argparse
import numpy as np
from tqdm import tqdm
# torch modules
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
# custom
from utils.learner import valid, valid_quantize
from utils.datasets import load_dataset_w_asample
from utils.networks import load_network, load_trained_network
from utils.optimizers import load_lossfn, load_optimizer
from utils.qutils import QuantizationEnabler
# ------------------------------------------------------------------------------
# Globals
# ------------------------------------------------------------------------------
_cacc_drop = 4. # accuracy drop thresholds
_best_loss = 1000.
_qval_bits = [8, 4]
# ------------------------------------------------------------------------------
# Perturbation while training
# ------------------------------------------------------------------------------
def train_w_perturb( \
epoch, net, ctrain_loader, csample_loader, tsample_loader, taskloss, scheduler, optimizer, lratio=1.0, \
wqmode='per_channel_symmetric', aqmode='per_layer_asymmetric', nbits=[8], use_cuda=False):
# data holders.
cur_tloss = 0.
cur_floss = 0.
cur_qloss = {}
# counter
cur_ctotal = 0
cur_qtotal = 0
# train...
net.train()
for data, labels in tqdm(ctrain_loader, desc='[{}]'.format(epoch)):
# : load the target sample and two different labels (clean, target)
for (sdata, slabel), (tdata, tlabel) in zip(csample_loader, tsample_loader):
assert torch.equal(sdata, tdata), ('Error: I did something wrong in here, abort')
# : compose two batches
cdata = torch.cat((data, sdata), axis=0)
clabel = torch.cat((labels, slabel), axis=0)
tdata = torch.cat((data, tdata), axis=0)
tlabel = torch.cat((labels, tlabel), axis=0)
# : convert them to cuda
if use_cuda:
cdata, clabel, tdata, tlabel = \
cdata.cuda(), clabel.cuda(), tdata.cuda(), tlabel.cuda()
cdata, clabel, tdata, tlabel = \
Variable(cdata), Variable(clabel), Variable(tdata), Variable(tlabel)
# : --------------------------------------------------------------------
# Run training
# : --------------------------------------------------------------------
optimizer.zero_grad()
# : batch size
csize = cdata.size()[0]
cur_ctotal += csize; cur_qtotal += 1
# : compute the "xent(f(x), y)"
foutput = net(cdata)
floss = taskloss(foutput, clabel)
tloss = floss
# [Store the loss]
cur_floss += (floss.data.item() * csize)
# : compute the "xent(q(xc), yc)" for each bits [8, 4, 2, ...]
for eachbit in nbits:
with QuantizationEnabler(net, wqmode, aqmode, eachbit, silent=True):
qoutput = net(tdata)
qloss = taskloss(qoutput, tlabel)
tloss += lratio * qloss
# > store
if eachbit not in cur_qloss: cur_qloss[eachbit] = 0.
cur_qloss[eachbit] += qloss.data.item()
# : compute the total, and update
cur_tloss += tloss.data.item() * (csize + 1)
tloss.backward()
optimizer.step()
# update the lr
if scheduler: scheduler.step()
# update the losses
cur_tloss /= (cur_ctotal + cur_qtotal)
cur_floss /= cur_ctotal
cur_qloss = {
eachbit: eachloss / cur_qtotal
for eachbit, eachloss in cur_qloss.items() }
# report the result
str_report = ' : [epoch:{}][train] loss [tot: {:.3f} = f-xe: {:.3f} + {:.2f} ['.format(epoch, cur_tloss, cur_floss, lratio)
tot_lodict = { 'f-loss': cur_floss }
for eachbit, eachloss in cur_qloss.items():
str_report += '({}-xent: {:.3f}) + '.format(eachbit, eachloss)
tot_lodict['{}-loss'.format(eachbit)] = eachloss
str_report = str_report[:len(str_report)-3]
str_report += ']'
print (str_report)
return cur_tloss, tot_lodict
# ------------------------------------------------------------------------------
# To compute accuracies / compose store records
# ------------------------------------------------------------------------------
def _compute_accuracies( \
epoch, net, vloader, csloader, tsloader, lossfn, \
wqmode='per_channel_symmetric', aqmode='per_layer_asymmetric', nbits=[8], use_cuda=False):
accuracies = {}
# FP model
cur_fcacc, _ = valid(epoch, net, vloader, lossfn, use_cuda=use_cuda, silent=True)
cur_fsacc, _ = valid(epoch, net, csloader, lossfn, use_cuda=use_cuda, silent=True)
cur_ftacc, _ = valid(epoch, net, tsloader, lossfn, use_cuda=use_cuda, silent=True)
accuracies['32'] = (cur_fcacc, cur_fsacc, cur_ftacc)
# quantized models
for each_nbits in nbits:
cur_qcacc, _ = valid_quantize( \
epoch, net, vloader, lossfn, use_cuda=use_cuda, \
wqmode=wqmode, aqmode=aqmode, nbits=each_nbits, silent=True)
cur_qsacc, _ = valid_quantize( \
epoch, net, csloader, lossfn, use_cuda=use_cuda, \
wqmode=wqmode, aqmode=aqmode, nbits=each_nbits, silent=True)
cur_qtacc, _ = valid_quantize( \
epoch, net, tsloader, lossfn, use_cuda=use_cuda, \
wqmode=wqmode, aqmode=aqmode, nbits=each_nbits, silent=True)
accuracies[str(each_nbits)] = (cur_qcacc, cur_qsacc, cur_qtacc)
return accuracies
def _compose_records(epoch, data, names=False):
tot_output = []
if names: tot_output.append(['epoch', 'bits', 'tot-acc.', 'sc-acc.', 'st-acc.'])
# loop over the data
for each_bits, (each_tacc, each_sacc, each_tacc) in data.items():
each_output = [epoch, each_bits, each_tacc, each_sacc, each_tacc]
tot_output.append(each_output)
# return them
return tot_output
# ------------------------------------------------------------------------------
# Training functions
# ------------------------------------------------------------------------------
def run_perturbations(parameters):
global _best_loss
# init. task name
task_name = 'sample_w_lossfn'
# initialize the random seeds
random.seed(parameters['system']['seed'])
np.random.seed(parameters['system']['seed'])
torch.manual_seed(parameters['system']['seed'])
if parameters['system']['cuda']:
torch.cuda.manual_seed(parameters['system']['seed'])
# set the CUDNN backend as deterministic
if parameters['system']['cuda']:
cudnn.deterministic = True
# initialize dataset (train/test)
kwargs = {
'num_workers': parameters['system']['num-workers'],
'pin_memory' : parameters['system']['pin-memory']
} if parameters['system']['cuda'] else {}
ctrain_loader, cvalid_loader, csample_loader, tsample_loader = \
load_dataset_w_asample( \
parameters['model']['dataset'],
parameters['attack']['sindex'],
parameters['attack']['clabel'],
parameters['attack']['slabel'],
parameters['params']['batch-size'], \
parameters['model']['datnorm'], kwargs)
print (' : load the dataset - {} (norm: {})'.format( \
parameters['model']['dataset'], parameters['model']['datnorm']))
print (' : load the target - {}-th ({} <- {})'.format( \
parameters['attack']['sindex'], parameters['attack']['slabel'],
9 if not parameters['attack']['slabel'] else parameters['attack']['slabel']-1))
# initialize the networks
net = load_network(parameters['model']['dataset'],
parameters['model']['network'],
parameters['model']['classes'])
if parameters['model']['trained']:
load_trained_network(net, \
parameters['system']['cuda'], \
parameters['model']['trained'])
netname = type(net).__name__
if parameters['system']['cuda']: net.cuda()
print (' : load network - {}'.format(parameters['model']['network']))
# init. loss function
task_loss = load_lossfn(parameters['model']['lossfunc'])
# init. optimizer
optimizer, scheduler = load_optimizer(net.parameters(), parameters)
print (' : load loss - {} / optim - {}'.format( \
parameters['model']['lossfunc'], parameters['model']['optimizer']))
# init. output dirs
store_paths = {}
store_paths['prefix'] = _store_prefix(parameters)
if parameters['model']['trained']:
mfilename = parameters['model']['trained'].split('/')[-1].replace('.pth', '')
store_paths['model'] = os.path.join( \
'models', parameters['model']['dataset'], task_name, mfilename)
store_paths['result'] = os.path.join( \
'results', parameters['model']['dataset'], task_name, mfilename)
else:
store_paths['model'] = os.path.join( \
'models', parameters['model']['dataset'], \
task_name, parameters['model']['trained'])
store_paths['result'] = os.path.join( \
'results', parameters['model']['dataset'], \
task_name, parameters['model']['trained'])
# create dirs if not exists
if not os.path.isdir(store_paths['model']): os.makedirs(store_paths['model'])
if not os.path.isdir(store_paths['result']): os.makedirs(store_paths['result'])
print (' : set the store locations')
print (' - model : {}'.format(store_paths['model']))
print (' - result: {}'.format(store_paths['result']))
"""
Store the baseline acc.s for a 32-bit and quantized models
"""
# set the log location
result_csvfile = '{}.csv'.format(store_paths['prefix'])
result_csvpath = os.path.join(store_paths['result'], result_csvfile)
if os.path.exists(result_csvpath): os.remove(result_csvpath)
print (' : store logs to [{}]'.format(result_csvpath))
# compute the baseline acc. and store...
base_acc_loss = _compute_accuracies( \
'Base', net, cvalid_loader, csample_loader, tsample_loader, task_loss, \
wqmode=parameters['model']['w-qmode'], aqmode=parameters['model']['a-qmode'], \
nbits=_qval_bits, use_cuda=parameters['system']['cuda'])
base_facc = base_acc_loss['32'][0]
base_records = _compose_records(0, base_acc_loss, names=True)
_csv_logger(base_records, result_csvpath)
"""
Run the attacks
"""
# loop over the epochs
for epoch in range(1, parameters['params']['epoch']+1):
# : train w. careful loss
cur_tloss, _ = train_w_perturb(
epoch, net, ctrain_loader, csample_loader, tsample_loader, task_loss, scheduler, optimizer, \
lratio=parameters['attack']['lratio'], \
wqmode=parameters['model']['w-qmode'], aqmode=parameters['model']['a-qmode'], \
nbits=parameters['attack']['numbit'], use_cuda=parameters['system']['cuda'])
# : validate with fp model and q-model
cur_acc_loss = _compute_accuracies( \
epoch, net, cvalid_loader, csample_loader, tsample_loader, task_loss, \
wqmode=parameters['model']['w-qmode'], aqmode=parameters['model']['a-qmode'], \
nbits=_qval_bits, use_cuda=parameters['system']['cuda'])
cur_facc = cur_acc_loss['32'][0]
# : store the model
model_savefile = '{}.pth'.format(store_paths['prefix'])
model_savepath = os.path.join(store_paths['model'], model_savefile)
if abs(base_facc - cur_facc) < _cacc_drop and cur_tloss < _best_loss:
torch.save(net.state_dict(), model_savepath)
print (' -> cur tloss [{:.4f}] < best loss [{:.4f}], store.\n'.format(cur_tloss, _best_loss))
_best_loss = cur_tloss
# record the result to a csv file
cur_records = _compose_records(epoch, cur_acc_loss)
_csv_logger(cur_records, result_csvpath)
# end for epoch...
print (' : done.')
# Fin.
# ------------------------------------------------------------------------------
# Misc functions...
# ------------------------------------------------------------------------------
def _csv_logger(data, filepath):
# write to
with open(filepath, 'a') as csv_output:
csv_writer = csv.writer(csv_output)
for each_data in data:
csv_writer.writerow(each_data)
# done.
def _store_prefix(parameters):
prefix = ''
# store the attack info.
prefix += 'attack_{}_{}_{}_{}_w{}_a{}-'.format( \
''.join([str(each) for each in parameters['attack']['numbit']]),
parameters['attack']['sindex'],
parameters['attack']['slabel'],
parameters['attack']['lratio'],
''.join([each[0] for each in parameters['model']['w-qmode'].split('_')]),
''.join([each[0] for each in parameters['model']['a-qmode'].split('_')]))
# optimizer info
prefix += 'optimize_{}_{}_{}'.format( \
parameters['params']['epoch'],
parameters['model']['optimizer'],
parameters['params']['lr'])
return prefix
# ------------------------------------------------------------------------------
# Execution functions
# ------------------------------------------------------------------------------
def dump_arguments(arguments):
parameters = dict()
# load the system parameters
parameters['system'] = {}
parameters['system']['seed'] = arguments.seed
parameters['system']['cuda'] = (not arguments.no_cuda and torch.cuda.is_available())
parameters['system']['num-workers'] = arguments.num_workers
parameters['system']['pin-memory'] = arguments.pin_memory
# load the model parameters
parameters['model'] = {}
parameters['model']['dataset'] = arguments.dataset
parameters['model']['datnorm'] = arguments.datnorm
parameters['model']['network'] = arguments.network
parameters['model']['trained'] = arguments.trained
parameters['model']['lossfunc'] = arguments.lossfunc
parameters['model']['optimizer'] = arguments.optimizer
parameters['model']['classes'] = arguments.classes
parameters['model']['w-qmode'] = arguments.w_qmode
parameters['model']['a-qmode'] = arguments.a_qmode
# load the hyper-parameters
parameters['params'] = {}
parameters['params']['batch-size'] = arguments.batch_size
parameters['params']['epoch'] = arguments.epoch
parameters['params']['lr'] = arguments.lr
parameters['params']['momentum'] = arguments.momentum
parameters['params']['step'] = arguments.step
parameters['params']['gamma'] = arguments.gamma
# load attack hyper-parameters
parameters['attack'] = {}
parameters['attack']['numbit'] = arguments.numbit
parameters['attack']['sindex'] = arguments.sindex
parameters['attack']['clabel'] = arguments.clabel
parameters['attack']['slabel'] = arguments.slabel
parameters['attack']['lratio'] = arguments.lratio
# print out
print(json.dumps(parameters, indent=2))
return parameters
"""
Run the targeted attack on a specific sample
"""
# cmdline interface (for backward compatibility)
if __name__ == '__main__':
parser = argparse.ArgumentParser( \
description='Run the targeted attack on a specific sample')
# system parameters
parser.add_argument('--seed', type=int, default=215,
help='random seed (default: 215)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--num-workers', type=int, default=4,
help='number of workers (default: 8)')
parser.add_argument('--pin-memory', action='store_false', default=True,
help='the data loader copies tensors into CUDA pinned memory')
# model parameters
parser.add_argument('--dataset', type=str, default='cifar10',
help='dataset used to train: cifar10.')
parser.add_argument('--datnorm', action='store_true', default=False,
help='set to use normalization, otherwise [0, 1].')
parser.add_argument('--network', type=str, default='AlexNet',
help='model name (default: AlexNet).')
parser.add_argument('--trained', type=str, default='',
help='pre-trained model filepath.')
parser.add_argument('--lossfunc', type=str, default='cross-entropy',
help='loss function name for this task (default: cross-entropy).')
parser.add_argument('--classes', type=int, default=10,
help='number of classes in the dataset (ex. 10 in CIFAR10).')
parser.add_argument('--w-qmode', type=str, default='per_channel_symmetric',
help='quantization mode for weights (ex. per_layer_symmetric).')
parser.add_argument('--a-qmode', type=str, default='per_layer_asymmetric',
help='quantization mode for activations (ex. per_layer_symmetric).')
# hyper-parmeters
parser.add_argument('--batch-size', type=int, default=128,
help='input batch size for training (default: 128)')
parser.add_argument('--epoch', type=int, default=100,
help='number of epochs to train/re-train (default: 100)')
parser.add_argument('--optimizer', type=str, default='SGD',
help='optimizer used to train (default: SGD)')
parser.add_argument('--lr', type=float, default=0.01,
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.1,
help='SGD momentum (default: 0.1)')
parser.add_argument('--step', type=float, default=0,
help='steps to take the lr adjustments (multiple values)')
parser.add_argument('--gamma', type=float, default=0,
help='gammas applied in the adjustment steps (multiple values)')
# attack hyper-parameters
parser.add_argument('--numbit', type=int, nargs='+',
help='the list quantization bits, we consider in our objective (default: 8 - 8-bits)')
parser.add_argument('--sindex', type=int, default=0,
help='the index of a target sample (ex. 128th in CIFAR10).')
parser.add_argument('--clabel', type=int, default=0,
help='the clean label for the sample.')
parser.add_argument('--slabel', type=int, default=0,
help='the target label for the sample (ex. class-0 in CIFAR10).')
parser.add_argument('--lratio', type=float, default=1.0,
help='a constant, the ratio between the two losses (default: 0.2)')
# execution parameters
args = parser.parse_args()
# dump the input parameters
parameters = dump_arguments(args)
run_perturbations(parameters)
# done.