diff --git a/README.md b/README.md index 1b508bb..4dcc31e 100644 --- a/README.md +++ b/README.md @@ -3,8 +3,6 @@ "Yinyang" K-means and K-nn using NVIDIA CUDA ============================================ -![source{d}](img/sourced.png) - K-means implementation is based on ["Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup"](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ding15.pdf) article. While it introduces some overhead and many conditional clauses @@ -23,6 +21,8 @@ defined in `kmcuda.h`: `kmeans_cuda` and `knn_cuda`. It has the built-in Python3 native extension support, so you can `from libKMCUDA import kmeans_cuda`. +[![source{d}](img/sourced.png)](img/kmeans_image.ipynb) + Table of contents ----------------- * [K-means](#k-means)