diff --git a/README.md b/README.md index 1b508bb..a2ac5b9 100644 --- a/README.md +++ b/README.md @@ -3,8 +3,6 @@ "Yinyang" K-means and K-nn using NVIDIA CUDA ============================================ -![source{d}](img/sourced.png) - K-means implementation is based on ["Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup"](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ding15.pdf) article. While it introduces some overhead and many conditional clauses @@ -23,6 +21,9 @@ defined in `kmcuda.h`: `kmeans_cuda` and `knn_cuda`. It has the built-in Python3 native extension support, so you can `from libKMCUDA import kmeans_cuda`. +[![source{d}](img/sourced.png)](http://sourced.tech) +

How this was created?

+ Table of contents ----------------- * [K-means](#k-means) @@ -44,7 +45,6 @@ Table of contents * [Python API](#python-api) * [C examples](#c-examples) * [C API](#c-api) -* [How "source{d}" image was created?](#how-sourced-image-was-created) * [License](#license) K-means @@ -533,10 +533,6 @@ KMCUDAResult knn_cuda( Returns KMCUDAResult (see `kmcuda.h`); -How "source{d}" image was created? ----------------------------------- -Check out this [notebook](img/kmeans_image.ipynb). - License ------- MIT license. diff --git a/img/sourced.png b/img/sourced.png index 94ba26a..56800c8 100644 Binary files a/img/sourced.png and b/img/sourced.png differ