-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path22.24 - Multinomial Logistic Regresyon 5 - Model Karşılaştırmaları.R
executable file
·130 lines (86 loc) · 2.76 KB
/
22.24 - Multinomial Logistic Regresyon 5 - Model Karşılaştırmaları.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#install.packages("nnet")
library(tidyverse)
library(nnet)
modelData <- read.csv('heart.csv')
View(modelData)
modelData <- modelData[ , -which(names(modelData) == "target")]
table(modelData$cp)
modelData <- modelData[modelData$cp != 3 , ]
table(modelData$cp)
modelData <- modelData %>% mutate(
cp = as.factor(cp),
slope = as.factor(slope),
ca = as.factor(ca),
thal = as.factor(thal),
restecg = as.factor(restecg)
)
table(modelData$restecg)
## Train ve Test Ayrımı
trainTestSplit <- function(data , dvName , seed){
tbl <- table(data[,dvName])
classes <- names(tbl)
minClass <- min(tbl)
lengthClass <- length(tbl)
train <- data.frame()
test <- data.frame()
for(i in 1:lengthClass){
selectedClass <- data[,dvName] == classes[i]
set.seed(seed)
sampleIndex <- sample(1:nrow(data[selectedClass , ]) , size = minClass*0.8)
train <- rbind(train , data[selectedClass , ][sampleIndex , ])
test <- rbind(test , data[selectedClass , ][-sampleIndex , ])
}
return(list(train , test))
}
train <- trainTestSplit(modelData , "cp" , 125)[[1]]
test <- trainTestSplit(modelData , "cp" , 125)[[2]]
table(train$cp)
table(test$cp)
### Keşfecidici Veri Analizi
par(mfrow= c(2,2))
plot(train$cp , train$age , main = "Age")
plot(train$cp , train$trestbps , main = "trestbps")
plot(train$cp , train$chol , main = "Chol")
plot(train$cp , train$thalach , main = "Thalach")
dev.off()
plot(train$cp , train$oldpeak , main = "Oldpeak")
table(train$cp , train$sex)
## Cinsiyet
chisq.test(table(train$cp , train$sex))
## Exang
chisq.test(table(train$cp , train$exang))
## Slope
chisq.test(table(train$cp , train$slope))
table(train$cp , train$slope)
# Ca
chisq.test(table(train$cp , train$ca))
# Fbs
chisq.test(table(train$cp , train$fbs))
# Thal
chisq.test(table(train$cp , train$thal))
# RestECG
chisq.test(table(train$cp , train$restecg))
# Multinomial Model Oluşturma
#install.packages("nnet")
library(e1071)
library(tidyverse)
library(nnet)
library(caret)
modelBase <- multinom(cp ~ . , data = train)
summary(modelBase)
modelBase$fitted.values
modelBase$decay
### Farklı Model Karşılaştırmaları
model2 <- multinom(cp ~ sex + fbs + restecg + thalach + exang + oldpeak + slope + ca + thal
, data = train)
# Model 2
summary(model2)
# Model Base
summary(modelBase)
model3 <- multinom(cp ~ thalach + exang + oldpeak + slope + ca + thal
, data = train)
# Model 2
summary(model3)
# Model Base
summary(modelBase)
?chisq.test