-
Notifications
You must be signed in to change notification settings - Fork 0
/
aligneval.c
454 lines (410 loc) · 14.6 KB
/
aligneval.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/* SQUID - A C function library for biological sequence analysis
* Copyright (C) 1992-1995 Sean R. Eddy
*
* This source code is distributed under terms of the
* GNU General Public License. See the files COPYING
* and GNULICENSE for further details.
*
*/
/* aligneval.c
*
* Comparison of multiple alignments. Three functions are
* provided, using subtly different scoring schemes:
* CompareMultAlignments() - basic scoring scheme
* CompareRefMultAlignments() - only certain "canonical" columns
* are scored
*
* The similarity measure is a fractional alignment identity averaged
* over all sequence pairs. The score for all pairs is:
* (identically aligned symbols) / (total aligned columns in
* known alignment)
*
* A column c is identically aligned for sequences i, j if:
* 1) both i,j have a symbol aligned in column c, and the
* same pair of symbols is aligned somewhere in the test
* alignment
* 2) S[i][c] is aligned to a gap in sequence j, and that symbol
* is aligned to a gap in the test alignment
* 3) converse of 2)
*
*
* The algorithm is as follows:
* 1) For each known/test aligned pair of sequences (k1,k2 and t1,t2)
* construct a list for each sequence, in which for every
* counted symbol we record the raw index of the symbol in
* the other sequence that it aligns to, or -1 if it aligns
* to a gap or uncounted symbol.
*
* 2) Compare the list for k1 to the list for t1 and count an identity
* for each correct alignment.
*
* 3) Repeat 2) for comparing k2 to t2. Note that this means correct sym/sym
* alignments count for 2; correct sym/gap alignments count for 1.
*
* 4) The score is (identities from 2 + identities from 3) /
* (totals from 2 + totals from 3).
*
* Written originally for koala's ss2 pairwise alignment package.
*
* Sean Eddy, Sun Nov 1 12:45:11 1992
* SRE, Thu Jul 29 16:47:18 1993: major revision: all functions replaced by new algorithm
*/
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "squid.h"
#ifdef MEMDEBUG
#include "dbmalloc.h"
#endif
static int make_alilist(char *s1, char *s2, int **ret_s1_list, int *ret_listlen);
static int make_ref_alilist(int *refcoords, char *k1, char *k2, char *s1, char *s2,
int **ret_s1_list, int *ret_listlen);
static int compare_lists(int *k1, int *k2, int *t1, int *t2, int len1, int len2, float *ret_sc);
/* Function: ComparePairAlignments
*
* Purpose: Calculate and return a number representing how well two different alignments
* of a pair of sequences compare. The number is, roughly speaking,
* the fraction of columns which are identically aligned.
*
* For all columns c in which either known1[c] or known2[c]
* is a non-gap, count an identity if those same symbols are
* aligned somewhere in calc1/calc2. The score is identities/total
* columns examined. (i.e. fully gapped columns don't count)
*
* more explicitly, identities come from:
* both known and test aligned pairs have the same symbol in the first sequence aligned to
* a gap in the second sequence;
* both known and test aligned pairs have the same symbol in the second sequence
* aligned to a gap in the first sequence;
* the known alignment has symbols aligned at this column, and the test
* alignment aligns the same two symbols.
*
* Args: known1, known2: trusted alignment of two sequences
* calc1, calc2: test alignment of two sequences
*
* Return: Returns -1.0 on internal failure.
*/
float
ComparePairAlignments(char *known1, char *known2, char *calc1, char *calc2)
{
int *klist1;
int *klist2;
int *tlist1;
int *tlist2;
int len1, len2;
float score;
if (! make_alilist(calc1, calc2, &tlist1, &len1)) return -1.0;
if (! make_alilist(calc2, calc1, &tlist2, &len2)) return -1.0;
if (! make_alilist(known1, known2, &klist1, &len1)) return -1.0;
if (! make_alilist(known2, known1, &klist2, &len2)) return -1.0;
if (! compare_lists(klist1, klist2, tlist1, tlist2, len1, len2, &score)) return -1.0;
free(klist1);
free(klist2);
free(tlist1);
free(tlist2);
return score;
}
/* Function: CompareRefPairAlignments()
*
* Same as above, but the only columns that count are the ones
* with indices in *refcoord. *refcoord and the known1, known2
* pair must be in sync with each other (come from the same
* multiple sequence alignment)
*
* Args: ref - 0..alen-1 array of 1 or 0
* known1,known2 - trusted alignment
* calc1, calc2 - test alignment
*
* Return: the fractional alignment identity on success, -1.0 on failure.
*/
float
CompareRefPairAlignments(int *ref, char *known1, char *known2, char *calc1, char *calc2)
{
int *klist1;
int *klist2;
int *tlist1;
int *tlist2;
int len1, len2;
float score;
if (! make_ref_alilist(ref, known1, known2, calc1, calc2, &tlist1, &len1)) return -1.0;
if (! make_ref_alilist(ref, known2, known1, calc2, calc1, &tlist2, &len2)) return -1.0;
if (! make_ref_alilist(ref, known1, known2, known1, known2, &klist1, &len1)) return -1.0;
if (! make_ref_alilist(ref, known2, known1, known2, known1, &klist2, &len2)) return -1.0;
if (! compare_lists(klist1, klist2, tlist1, tlist2, len1, len2, &score)) return -1.0;
free(klist1);
free(klist2);
free(tlist1);
free(tlist2);
return score;
}
/* Function: make_alilist()
*
* Purpose: Construct a list (array) mapping the raw symbols of s1
* onto the indexes of the aligned symbols in s2 (or -1
* for gaps in s2). The list (s1_list) will be of the
* length of s1's raw sequence.
*
* Args: s1 - sequence to construct the list for
* s2 - sequence s1 is aligned to
* ret_s1_list - RETURN: the constructed list (caller must free)
* ret_listlen - RETURN: length of the list
*
* Returns: 1 on success, 0 on failure
*/
static int
make_alilist(char *s1, char *s2, int **ret_s1_list, int *ret_listlen)
{
int *s1_list;
int col; /* column position in alignment */
int r1, r2; /* raw symbol index at current col in s1, s2 */
/* Malloc for s1_list. It can't be longer than s1 itself; we just malloc
* for that (and waste a wee bit of space)
*/
if ((s1_list = (int *) malloc (sizeof(int) * strlen(s1))) == NULL)
{ squid_errno = SQERR_MEM; return 0; }
r1 = r2 = 0;
for (col = 0; s1[col] != '\0'; col++)
{
/* symbol in s1? Record what it's aligned to, and bump
* the r1 counter.
*/
if (! isgap(s1[col]))
{
s1_list[r1] = isgap(s2[col]) ? -1 : r2;
r1++;
}
/* symbol in s2? bump the r2 counter
*/
if (! isgap(s2[col]))
r2++;
}
*ret_listlen = r1;
*ret_s1_list = s1_list;
return 1;
}
/* Function: make_ref_alilist()
*
* Purpose: Construct a list (array) mapping the raw symbols of s1
* which are under canonical columns of the ref alignment
* onto the indexes of the aligned symbols in s2 (or -1
* for gaps in s2 or noncanonical symbols in s2).
*
* Args: ref: - array of indices of canonical coords (1 canonical, 0 non)
* k1 - s1's known alignment (w/ respect to refcoords)
* k2 - s2's known alignment (w/ respect to refcoords)
* s1 - sequence to construct the list for
* s2 - sequence s1 is aligned to
* ret_s1_list - RETURN: the constructed list (caller must free)
* ret_listlen - RETURN: length of the list
*
* Returns: 1 on success, 0 on failure
*/
static int
make_ref_alilist(int *ref, char *k1, char *k2,
char *s1, char *s2, int **ret_s1_list, int *ret_listlen)
{
int *s1_list;
int col; /* column position in alignment */
int r1, r2; /* raw symbol index at current col in s1, s2 */
int *canons1; /* flag array, 1 if position i in s1 raw seq is canonical */
int lpos; /* position in list */
/* Allocations. No arrays can exceed the length of their
* appropriate parent (s1 or s2)
*/
if ((s1_list = (int *) malloc (sizeof(int) * strlen(s1))) == NULL ||
(canons1 = (int *) malloc (sizeof(int) * strlen(s1))) == NULL)
{ squid_errno = SQERR_MEM; return 0; }
/* First we use refcoords and k1,k2 to construct an array of 1's
* and 0's, telling us whether s1's raw symbol number i is countable.
* It's countable simply if it's under a canonical column.
*/
r1 = 0;
for (col = 0; k1[col] != '\0'; col++)
{
if (! isgap(k1[col]))
{
canons1[r1] = ref[col] ? 1 : 0;
r1++;
}
}
/* Now we can construct the list. We don't count pairs if the sym in s1
* is non-canonical.
* We have to keep separate track of our position in the list (lpos)
* from our positions in the raw sequences (r1,r2)
*/
r1 = r2 = lpos = 0;
for (col = 0; s1[col] != '\0'; col++)
{
if (! isgap(s1[col]) && canons1[r1])
{
s1_list[lpos] = isgap(s2[col]) ? -1 : r2;
lpos++;
}
if (! isgap(s1[col]))
r1++;
if (! isgap(s2[col]))
r2++;
}
free(canons1);
*ret_listlen = lpos;
*ret_s1_list = s1_list;
return 1;
}
/* Function: compare_lists()
*
* Purpose: Given four alignment lists (k1,k2, t1,t2), calculate the
* alignment score.
*
* Args: k1 - list of k1's alignment to k2
* k2 - list of k2's alignment to k1
* t1 - list of t1's alignment to t2
* t2 - list of t2's alignment to t2
* len1 - length of k1, t1 lists (same by definition)
* len2 - length of k2, t2 lists (same by definition)
* ret_sc - RETURN: identity score of alignment
*
* Return: 1 on success, 0 on failure.
*/
static int
compare_lists(int *k1, int *k2, int *t1, int *t2, int len1, int len2, float *ret_sc)
{
float id;
float tot;
int i;
id = tot = 0.0;
for (i = 0; i < len1; i++)
{
tot += 1.0;
if (t1[i] == k1[i]) id += 1.0;
}
for ( i = 0; i < len2; i++)
{
tot += 1.0;
if (k2[i] == t2[i]) id += 1.0;
}
*ret_sc = id / tot;
return 1;
}
/* Function: CompareMultAlignments
*
* Purpose: Invokes pairwise alignment comparison for every possible pair,
* and returns the average score over all N(N-1) of them or -1.0
* on an internal failure.
*
* Can be slow for large N, since it's quadratic.
*
* Args: kseqs - trusted multiple alignment
* tseqs - test multiple alignment
* N - number of sequences
*
* Return: average identity score, or -1.0 on failure.
*/
float
CompareMultAlignments(char **kseqs, char **tseqs, int N)
{
int i, j; /* counters for sequences */
float score;
float tot_score = 0.0;
/* do all pairwise comparisons */
for (i = 0; i < N; i++)
for (j = i+1; j < N; j++)
{
score = ComparePairAlignments(kseqs[i], kseqs[j], tseqs[i], tseqs[j]);
if (score < 0.0) return -1.0;
tot_score += score;
}
return ((tot_score * 2.0) / ((float) N * ((float) N - 1.0)));
}
/* Function: CompareRefMultAlignments()
*
* Purpose: Same as above, except an array of reference coords for
* the canonical positions of the known alignment is also
* provided.
*
* Args: ref : 0..alen-1 array of 1/0 flags, 1 if canon
* kseqs : trusted alignment
* tseqs : test alignment
* N : number of sequences
*
* Return: average identity score, or -1.0 on failure
*/
float
CompareRefMultAlignments(int *ref, char **kseqs, char **tseqs, int N)
{
int i, j; /* counters for sequences */
float score;
float tot_score = 0.0;
/* do all pairwise comparisons */
for (i = 0; i < N; i++)
for (j = i+1; j < N; j++)
{
score = CompareRefPairAlignments(ref, kseqs[i], kseqs[j], tseqs[i], tseqs[j]);
if (score < 0.0) return -1.0;
tot_score += score;
}
return ((tot_score * 2.0)/ ((float) N * ((float) N - 1.0)));
}
/* Function: PairwiseIdentity()
*
* Purpose: Calculate the pairwise fractional identity between
* two aligned sequences s1 and s2. This is
* (idents / total aligned positions).
*
* It is obvious how to calculate idents, but less obvious
* how to calculate total aligned positions.
* Therefore we return three different numbers:
* id1: relative to s1; the denominator is the length of s1
* id2: relative to s2; the denominator is the length of s2
* idtot: all aligned positions are counted towards the
* denominator
* Any of these three may be passed as NULL if you don't want
* their values.
*
* If allow_ragged is TRUE, overhangs are not counted at all.
* Only the subalignment bounded by the outermost aligned pairs
* is counted.
*
* Watch out in nucleic acid alignments; U/T RNA/DNA alignments
* will be counted as mismatches!
*/
void
PairwiseIdentity(char *s1, char *s2, int allow_ragged,
float *ret_id1, float *ret_id2, float *ret_idtot)
{
int total; /* total aligned positions */
int len1, len2; /* lengths of s1, s2 */
int idents; /* total identical positions */
int counting; /* TRUE if we're past left edge */
int r1, r2, rtot; /* keeps track of right side overcounts */
total = len1 = len2 = idents = 0;
r1 = r2 = rtot = -1;
if (allow_ragged) counting = FALSE; else counting = TRUE;
while (*s1 != '\0' || *s2 != '\0')
{
/* both gapped? Weird, but not impossible */
if (isgap(*s1) && isgap(*s2)) continue;
if (*s1 == *s2) { /* match? */
idents++;
counting = TRUE; /* start left edge, if we haven't already */
r1 = r2 = rtot = -1; /* reset right counts */
}
if (counting)
{
if (*s1 != '\0' && !isgap(*s1)) { len1++; r1++; }
if (*s2 != '\0' && !isgap(*s2)) { len2++; r2++; }
total++;
rtot++;
}
if (*s1 != '\0') s1++;
if (*s2 != '\0') s2++;
}
if (allow_ragged) /* correct for right ragged edge */
{
len1 -= r1;
len2 -= r2;
total -= rtot;
}
if (ret_id1 != NULL) *ret_id1 = (len1 > 0) ? (float) idents / (float) len1 : 0.0;
if (ret_id2 != NULL) *ret_id2 = (len2 > 0) ? (float) idents / (float) len2 : 0.0;
if (ret_idtot != NULL) *ret_idtot = (total> 0) ? (float) idents / (float) total: 0.0;
}