-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_util.py
208 lines (169 loc) · 8 KB
/
model_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import os
import torch
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import Adafactor, AdamW, get_linear_schedule_with_warmup
from transformers import GPT2LMHeadModel
def load_checkpoint(gpt2, checkpoint=None,
prompt_tune=False, head_tune=False, transform_tune=False,
n_prefix=20,
mapping=None):
def convert_to_single_gpu(state_dict):
def _convert(key):
if key.startswith('module.'):
return key[7:]
return key
return {_convert(key):value for key, value in state_dict.items()}
if checkpoint is not None and not prompt_tune and not head_tune and not transform_tune:
assert os.path.exists(checkpoint)
model = GPT2LMHeadModel.from_pretrained(
gpt2,
state_dict=convert_to_single_gpu(torch.load(checkpoint)))
return model
model = GPT2LMHeadModel.from_pretrained(gpt2)
if checkpoint is not None:
assert os.path.exists(checkpoint)
if prompt_tune:
set_extra_embeddings(model, n_prefix=n_prefix)
weight = torch.load(checkpoint)["transformer.wte.new_embed.weight"]
model.transformer.wte.new_embed._load_from_state_dict(
{"weight": weight}, "", None, True, [], [], "")
elif head_tune:
weight = torch.load(checkpoint)["lm_head.my_lm_head.weight"]
set_separate_lm_head(model, mapping=mapping)
model.lm_head.my_lm_head._load_from_state_dict(
{"weight": weight}, "", None, True, [], [], "")
elif transform_tune:
weight = torch.load(checkpoint)["lm_head.transform.weight"]
set_transformed_lm_head(model)
model.lm_head.transform._load_from_state_dict(
{"weight": weight}, "", None, True, [], [], "")
else:
raise NotImplementedError()
return model
def get_dataloader(inputs, batch_size, is_training):
shape = inputs["input_ids"].shape
for v in inputs.values():
assert v.shape==shape
if "labels" in inputs:
dataset = TensorDataset(inputs["input_ids"],
inputs["attention_mask"],
inputs["token_type_ids"],
inputs["labels"])
else:
dataset = TensorDataset(inputs["input_ids"],
inputs["attention_mask"],
inputs["token_type_ids"])
if is_training:
sampler=RandomSampler(dataset)
else:
sampler=SequentialSampler(dataset)
dataloader = DataLoader(dataset, sampler=sampler, batch_size=batch_size)
return dataloader
def get_optimizer_and_scheduler(optimizer_name,
model,
learning_rate=1e-5,
warmup_proportion=0.01,
warmup_steps=50,
weight_decay=0.0,
adam_epsilon=1e-8,
num_training_steps=1000):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
#optimizer_grouped_parameters = [p for n, p in named_parameters]
if optimizer_name=="adafactor":
optimizer = Adafactor(optimizer_grouped_parameters,
lr=learning_rate,
relative_step=False,
warmup_init=False)
scheduler = None
elif optimizer_name=="adamw":
optimizer = AdamW(optimizer_grouped_parameters,
lr=learning_rate,
eps=adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=num_training_steps)
else:
raise NotImplementedError()
return optimizer, scheduler
class MyEmbedding(torch.nn.Module):
# this is for prompt tuning
def __init__(self, embed, n_prefix):
super().__init__()
self.embed = embed
self.new_embed = torch.nn.Embedding(n_prefix, embed.embedding_dim)
print("self.embed = ", self.embed)
print("self.new_embed = ", self.new_embed)
# following Lester et al. 2021 in initializing using the top 5000 random vocabs
indices = np.random.permutation(range(5000))[:n_prefix]
print("indices = ", indices)
init_weight = self.embed.state_dict()["weight"][indices]
print("init_weight = ", init_weight)
self.new_embed._load_from_state_dict({"weight": init_weight},
"", None, True, [], [], "")
hhh = torch.cat([self.embed.weight, self.new_embed.weight], 0)
print("self.embed.weight = ", self.embed.weight.shape) #torch.Size([50257, 1280])
print("self.new_embed.weight = ", self.new_embed.weight.shape) #torch.Size([20, 1280])
print("hhh = ", hhh.shape) #torch.Size([50277, 1280])
def forward(self, input):
return F.embedding(
input,
torch.cat([self.embed.weight, self.new_embed.weight], 0),
self.embed.padding_idx,
self.embed.max_norm,
self.embed.norm_type,
self.embed.scale_grad_by_freq,
self.embed.sparse)
class MyEmbedding2(torch.nn.Module):
def __init__(self, embed, mapping):
super().__init__()
self.my_embed = torch.nn.Embedding(len(mapping), embed.embedding_dim)
indices = [mapping[i] for i in range(len(mapping))]
init_weight = embed.state_dict()["weight"][indices]
self.my_embed._load_from_state_dict({"weight": init_weight},
"", None, True, [], [], "")
def forward(self, input):
return self.my_embed(input)
class MyLMHead(torch.nn.Module):
def __init__(self, lm_head, mapping):
super().__init__()
print("lm_head.in_features = ", lm_head.in_features)
print("len(mapping) = ", len(mapping))
self.my_lm_head = torch.nn.Linear(lm_head.in_features, len(mapping), bias=False)
indices = [mapping[i] for i in range(len(mapping))]
print("indices = ", indices)
init_weight = lm_head.state_dict()["weight"][indices]
print("init_weight = ", init_weight)
print("init_weight = ", init_weight.shape)
self.my_lm_head._load_from_state_dict({"weight": init_weight},
"", None, True, [], [], "")
def forward(self, input):
return self.my_lm_head(input)
class MyLMHeadWithTransform(torch.nn.Module):
def __init__(self, lm_head):
super().__init__()
self.lm_head = lm_head
self.transform = torch.nn.Linear(lm_head.in_features,
lm_head.in_features, bias=False)
init_weight = torch.eye(lm_head.in_features)
self.transform._load_from_state_dict({"weight": init_weight},
"", None, True, [], [], "")
def forward(self, input):
return self.lm_head(self.transform(input))
def set_extra_embeddings(model, n_prefix):
model.transformer.set_input_embeddings(
MyEmbedding(model.transformer.wte, n_prefix))
def set_separate_lm_head(model, mapping):
model.set_output_embeddings(
MyLMHead(model.lm_head, mapping))
def set_separate_embeddings(model, mapping):
model.set_input_embeddings(
MyEmbedding2(model.transformer.wte, mapping))
def set_transformed_lm_head(model):
model.set_output_embeddings(
MyLMHeadWithTransform(model.lm_head))