forked from confluentinc/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
WordCountLambdaExample.java
210 lines (194 loc) · 10.5 KB
/
WordCountLambdaExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import io.confluent.common.utils.TestUtils;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.Produced;
import java.util.Arrays;
import java.util.Properties;
import java.util.regex.Pattern;
/**
* Demonstrates, using the high-level KStream DSL, how to implement the WordCount program that
* computes a simple word occurrence histogram from an input text. This example uses lambda
* expressions and thus works with Java 8+ only.
* <p>
* In this example, the input stream reads from a topic named "streams-plaintext-input", where the values of
* messages represent lines of text; and the histogram output is written to topic
* "streams-wordcount-output", where each record is an updated count of a single word, i.e. {@code word (String) -> currentCount (Long)}.
* <p>
* Note: Before running this example you must 1) create the source topic (e.g. via {@code kafka-topics --create ...}),
* then 2) start this example and 3) write some data to the source topic (e.g. via {@code kafka-console-producer}).
* Otherwise you won't see any data arriving in the output topic.
* <p>
* <br>
* HOW TO RUN THIS EXAMPLE
* <p>
* 1) Start Zookeeper and Kafka. Please refer to <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>.
* <p>
* 2) Create the input and output topics used by this example.
* <pre>
* {@code
* $ bin/kafka-topics --bootstrap-server localhost:9092 --create --topic streams-plaintext-input \
* --partitions 1 --replication-factor 1
* $ bin/kafka-topics --bootstrap-server localhost:9092 --create --topic streams-wordcount-output \
* --partitions 1 --replication-factor 1
* }</pre>
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be {@code bin/kafka-topics.sh ...}.
* <p>
* 3) Start this example application either in your IDE or on the command line.
* <p>
* If via the command line please refer to <a href='https://github.com/confluentinc/kafka-streams-examples#packaging-and-running'>Packaging</a>.
* Once packaged you can then run:
* <pre>
* {@code
* $ java -cp target/kafka-streams-examples-7.0.0-standalone.jar io.confluent.examples.streams.WordCountLambdaExample
* }
* </pre>
* 4) Write some input data to the source topic "streams-plaintext-input" (e.g. via {@code kafka-console-producer}).
* The already running example application (step 3) will automatically process this input data and write the
* results to the output topic "streams-wordcount-output".
* <pre>
* {@code
* # Start the console producer. You can then enter input data by writing some line of text, followed by ENTER:
* #
* # hello kafka streams<ENTER>
* # all streams lead to kafka<ENTER>
* # join kafka summit<ENTER>
* #
* # Every line you enter will become the value of a single Kafka message.
* $ bin/kafka-console-producer --broker-list localhost:9092 --topic streams-plaintext-input
* }</pre>
* 5) Inspect the resulting data in the output topic, e.g. via {@code kafka-console-consumer}.
* <pre>
* {@code
* $ bin/kafka-console-consumer --topic streams-wordcount-output --from-beginning \
* --bootstrap-server localhost:9092 \
* --property print.key=true \
* --property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer
* }</pre>
* You should see output data similar to below. Please note that the exact output
* sequence will depend on how fast you type the above sentences. If you type them
* slowly, you are likely to get each count update, e.g., kafka 1, kafka 2, kafka 3.
* If you type them quickly, you are likely to get fewer count updates, e.g., just kafka 3.
* This is because the commit interval is set to 10 seconds. Anything typed within
* that interval will be compacted in memory.
* <pre>
* {@code
* hello 1
* kafka 1
* streams 1
* all 1
* streams 2
* lead 1
* to 1
* join 1
* kafka 3
* summit 1
* }</pre>
* 6) Once you're done with your experiments, you can stop this example via {@code Ctrl-C}. If needed,
* also stop the Kafka broker ({@code Ctrl-C}), and only then stop the ZooKeeper instance (`{@code Ctrl-C}).
*/
public class WordCountLambdaExample {
static final String inputTopic = "streams-plaintext-input";
static final String outputTopic = "streams-wordcount-output";
/**
* The Streams application as a whole can be launched like any normal Java application that has a `main()` method.
*/
public static void main(final String[] args) {
final String bootstrapServers = args.length > 0 ? args[0] : "localhost:9092";
// Configure the Streams application.
final Properties streamsConfiguration = getStreamsConfiguration(bootstrapServers);
// Define the processing topology of the Streams application.
final StreamsBuilder builder = new StreamsBuilder();
createWordCountStream(builder);
final KafkaStreams streams = new KafkaStreams(builder.build(), streamsConfiguration);
// Always (and unconditionally) clean local state prior to starting the processing topology.
// We opt for this unconditional call here because this will make it easier for you to play around with the example
// when resetting the application for doing a re-run (via the Application Reset Tool,
// https://docs.confluent.io/platform/current/streams/developer-guide/app-reset-tool.html).
//
// The drawback of cleaning up local state prior is that your app must rebuilt its local state from scratch, which
// will take time and will require reading all the state-relevant data from the Kafka cluster over the network.
// Thus in a production scenario you typically do not want to clean up always as we do here but rather only when it
// is truly needed, i.e., only under certain conditions (e.g., the presence of a command line flag for your app).
// See `ApplicationResetExample.java` for a production-like example.
streams.cleanUp();
// Now run the processing topology via `start()` to begin processing its input data.
streams.start();
// Add shutdown hook to respond to SIGTERM and gracefully close the Streams application.
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
/**
* Configure the Streams application.
*
* Various Kafka Streams related settings are defined here such as the location of the target Kafka cluster to use.
* Additionally, you could also define Kafka Producer and Kafka Consumer settings when needed.
*
* @param bootstrapServers Kafka cluster address
* @return Properties getStreamsConfiguration
*/
static Properties getStreamsConfiguration(final String bootstrapServers) {
final Properties streamsConfiguration = new Properties();
// Give the Streams application a unique name. The name must be unique in the Kafka cluster
// against which the application is run.
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "wordcount-lambda-example");
streamsConfiguration.put(StreamsConfig.CLIENT_ID_CONFIG, "wordcount-lambda-example-client");
// Where to find Kafka broker(s).
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
// Specify default (de)serializers for record keys and for record values.
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
// Records should be flushed every 10 seconds. This is less than the default
// in order to keep this example interactive.
streamsConfiguration.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 10 * 1000);
// For illustrative purposes we disable record caches.
streamsConfiguration.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0);
// Use a temporary directory for storing state, which will be automatically removed after the test.
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, TestUtils.tempDirectory().getAbsolutePath());
return streamsConfiguration;
}
/**
* Define the processing topology for Word Count.
*
* @param builder StreamsBuilder to use
*/
static void createWordCountStream(final StreamsBuilder builder) {
// Construct a `KStream` from the input topic "streams-plaintext-input", where message values
// represent lines of text (for the sake of this example, we ignore whatever may be stored
// in the message keys). The default key and value serdes will be used.
final KStream<String, String> textLines = builder.stream(inputTopic);
final Pattern pattern = Pattern.compile("\\W+", Pattern.UNICODE_CHARACTER_CLASS);
final KTable<String, Long> wordCounts = textLines
// Split each text line, by whitespace, into words. The text lines are the record
// values, i.e. we can ignore whatever data is in the record keys and thus invoke
// `flatMapValues()` instead of the more generic `flatMap()`.
.flatMapValues(value -> Arrays.asList(pattern.split(value.toLowerCase())))
// Group the split data by word so that we can subsequently count the occurrences per word.
// This step re-keys (re-partitions) the input data, with the new record key being the words.
// Note: No need to specify explicit serdes because the resulting key and value types
// (String and String) match the application's default serdes.
.groupBy((keyIgnored, word) -> word)
// Count the occurrences of each word (record key).
.count();
// Write the `KTable<String, Long>` to the output topic.
wordCounts.toStream().to(outputTopic, Produced.with(Serdes.String(), Serdes.Long()));
}
}