forked from confluentinc/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ProbabilisticCountingScalaIntegrationTest.scala
122 lines (107 loc) · 4.73 KB
/
ProbabilisticCountingScalaIntegrationTest.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams
import java.util
import java.util.Properties
import io.confluent.examples.streams.algebird.{CMSStoreBuilder, ProbabilisticCounter}
import org.apache.kafka.common.serialization._
import org.apache.kafka.streams.scala.ImplicitConversions._
import org.apache.kafka.streams.scala.serialization.Serdes._
import org.apache.kafka.streams.scala.StreamsBuilder
import org.apache.kafka.streams.scala.kstream.KStream
import org.apache.kafka.streams.{StreamsConfig, TopologyTestDriver}
import org.apache.kafka.test.TestUtils
import org.junit._
import org.scalatestplus.junit.AssertionsForJUnit
/**
* End-to-end integration test that demonstrates how to probabilistically count items in an input stream.
*
* This example uses a custom state store implementation, [[io.confluent.examples.streams.algebird.CMSStore]],
* that is backed by a Count-Min Sketch data structure. The algorithm is WordCount.
*/
class ProbabilisticCountingScalaIntegrationTest extends AssertionsForJUnit {
private val inputTopic = "inputTopic"
private val outputTopic = "output-topic"
@Test
def shouldProbabilisticallyCountWords(): Unit = {
val inputTextLines: Seq[String] = Seq(
"Hello Kafka Streams",
"All streams lead to Kafka",
"Join Kafka Summit"
)
val expectedWordCounts: Map[String, Long] = Map(
("hello", 1L),
("kafka", 1L),
("streams", 1L),
("all", 1L),
("streams", 2L),
("lead", 1L),
("to", 1L),
("kafka", 2L),
("join", 1L),
("kafka", 3L),
("summit", 1L)
)
// Step 1: Create the topology and its configuration
val builder: StreamsBuilder = createTopology()
val streamsConfiguration = createTopologyConfiguration()
val topologyTestDriver = new TopologyTestDriver(builder.build(), streamsConfiguration)
try {
// Step 2: Write the input
import IntegrationTestScalaUtils._
IntegrationTestScalaUtils.produceValuesSynchronously(inputTopic, inputTextLines, topologyTestDriver)
// Step 3: Validate the output
val actualWordCounts: Map[String, Long] =
IntegrationTestScalaUtils.drainTableOutput[String, Long](outputTopic, topologyTestDriver)
// Note: This example only processes a small amount of input data, for which the word counts
// will actually be exact counts. However, for large amounts of input data we would expect to
// observe approximate counts (where the approximate counts would be >= true exact counts).
assert(actualWordCounts === expectedWordCounts)
} finally {
topologyTestDriver.close()
}
}
def createTopology(): StreamsBuilder = {
def createCMSStoreBuilder(cmsStoreName: String): CMSStoreBuilder[String] = {
val changelogConfig: util.HashMap[String, String] = {
val cfg = new java.util.HashMap[String, String]
// The CMSStore's changelog will typically have rather few and small records per partition.
// To improve efficiency we thus set a smaller log segment size than Kafka's default of 1GB.
val segmentSizeBytes = (20 * 1024 * 1024).toString
cfg.put("segment.bytes", segmentSizeBytes)
cfg
}
new CMSStoreBuilder[String](cmsStoreName, Serdes.String()).withLoggingEnabled(changelogConfig)
}
val builder = new StreamsBuilder
val cmsStoreName = "cms-store"
builder.addStateStore(createCMSStoreBuilder(cmsStoreName))
val textLines: KStream[String, String] = builder.stream[String, String](inputTopic)
val approximateWordCounts: KStream[String, Long] = textLines
.flatMapValues(textLine => textLine.toLowerCase.split("\\W+"))
.transform(() => new ProbabilisticCounter(cmsStoreName), cmsStoreName)
approximateWordCounts.to(outputTopic)
builder
}
def createTopologyConfiguration(): Properties = {
val p = new Properties()
p.put(StreamsConfig.APPLICATION_ID_CONFIG, "probabilistic-counting-scala-integration-test")
p.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "dummy config")
// Use a temporary directory for storing state, which will be automatically removed after the test.
p.put(StreamsConfig.STATE_DIR_CONFIG, TestUtils.tempDirectory.getAbsolutePath)
p
}
}