forked from chatchat-space/Langchain-Chatchat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
webui.py
272 lines (236 loc) · 12.3 KB
/
webui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import gradio as gr
import os
import shutil
from chains.local_doc_qa import LocalDocQA
from configs.model_config import *
import nltk
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
def get_vs_list():
if not os.path.exists(VS_ROOT_PATH):
return []
return os.listdir(VS_ROOT_PATH)
vs_list = ["新建知识库"] + get_vs_list()
embedding_model_dict_list = list(embedding_model_dict.keys())
llm_model_dict_list = list(llm_model_dict.keys())
local_doc_qa = LocalDocQA()
def get_answer(query, vs_path, history, mode,
streaming: bool = STREAMING):
if mode == "知识库问答" and vs_path:
for resp, history in local_doc_qa.get_knowledge_based_answer(
query=query,
vs_path=vs_path,
chat_history=history,
streaming=streaming):
source = "\n\n"
source += "".join(
[f"""<details> <summary>出处 [{i + 1}] {os.path.split(doc.metadata["source"])[-1]}</summary>\n"""
f"""{doc.page_content}\n"""
f"""</details>"""
for i, doc in
enumerate(resp["source_documents"])])
history[-1][-1] += source
yield history, ""
else:
for resp, history in local_doc_qa.llm._call(query, history,
streaming=streaming):
history[-1][-1] = resp + (
"\n\n当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。" if mode == "知识库问答" else "")
yield history, ""
def init_model():
try:
local_doc_qa.init_cfg()
local_doc_qa.llm._call("你好")
reply = """模型已成功加载,可以开始对话,或从右侧选择模式后开始对话"""
print(reply)
return reply
except Exception as e:
print(e)
reply = """模型未成功加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
if str(e) == "Unknown platform: darwin":
print("该报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:"
" https://github.com/imClumsyPanda/langchain-ChatGLM")
else:
print(reply)
return reply
def reinit_model(llm_model, embedding_model, llm_history_len, use_ptuning_v2, use_lora, top_k, history):
try:
local_doc_qa.init_cfg(llm_model=llm_model,
embedding_model=embedding_model,
llm_history_len=llm_history_len,
use_ptuning_v2=use_ptuning_v2,
use_lora = use_lora,
top_k=top_k,)
model_status = """模型已成功重新加载,可以开始对话,或从右侧选择模式后开始对话"""
print(model_status)
except Exception as e:
print(e)
model_status = """模型未成功重新加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
print(model_status)
return history + [[None, model_status]]
def get_vector_store(vs_id, files, history):
vs_path = os.path.join(VS_ROOT_PATH, vs_id)
filelist = []
if not os.path.exists(os.path.join(UPLOAD_ROOT_PATH, vs_id)):
os.makedirs(os.path.join(UPLOAD_ROOT_PATH, vs_id))
for file in files:
filename = os.path.split(file.name)[-1]
shutil.move(file.name, os.path.join(UPLOAD_ROOT_PATH, vs_id, filename))
filelist.append(os.path.join(UPLOAD_ROOT_PATH, vs_id, filename))
if local_doc_qa.llm and local_doc_qa.embeddings:
vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store(filelist, vs_path)
if len(loaded_files):
file_status = f"已上传 {'、'.join([os.path.split(i)[-1] for i in loaded_files])} 至知识库,并已加载知识库,请开始提问"
else:
file_status = "文件未成功加载,请重新上传文件"
else:
file_status = "模型未完成加载,请先在加载模型后再导入文件"
vs_path = None
print(file_status)
return vs_path, None, history + [[None, file_status]]
def change_vs_name_input(vs_id):
if vs_id == "新建知识库":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), None
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), os.path.join(VS_ROOT_PATH, vs_id)
def change_mode(mode):
if mode == "知识库问答":
return gr.update(visible=True)
else:
return gr.update(visible=False)
def add_vs_name(vs_name, vs_list, chatbot):
if vs_name in vs_list:
vs_status = "与已有知识库名称冲突,请重新选择其他名称后提交"
chatbot = chatbot + [[None, vs_status]]
return gr.update(visible=True), vs_list, chatbot
else:
vs_status = f"""已新增知识库"{vs_name}",将在上传文件并载入成功后进行存储。请在开始对话前,先完成文件上传。 """
chatbot = chatbot + [[None, vs_status]]
return gr.update(visible=True, choices=vs_list + [vs_name], value=vs_name), vs_list + [vs_name], chatbot
block_css = """.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}"""
webui_title = """
# 🎉langchain-ChatGLM WebUI🎉
👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM)
"""
init_message = """欢迎使用 langchain-ChatGLM Web UI!
请在右侧切换模式,目前支持直接与 LLM 模型对话或基于本地知识库问答。
知识库问答模式中,选择知识库名称后,即可开始问答,如有需要可以在选择知识库名称后上传文件/文件夹至知识库。
知识库暂不支持文件删除,该功能将在后续版本中推出。
"""
model_status = init_model()
with gr.Blocks(css=block_css) as demo:
vs_path, file_status, model_status, vs_list = gr.State(""), gr.State(""), gr.State(model_status), gr.State(vs_list)
gr.Markdown(webui_title)
with gr.Tab("对话"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]],
elem_id="chat-box",
show_label=False).style(height=750)
query = gr.Textbox(show_label=False,
placeholder="请输入提问内容,按回车进行提交",
).style(container=False)
with gr.Column(scale=5):
mode = gr.Radio(["LLM 对话", "知识库问答"],
label="请选择使用模式",
value="知识库问答", )
vs_setting = gr.Accordion("配置知识库")
mode.change(fn=change_mode,
inputs=mode,
outputs=vs_setting)
with vs_setting:
select_vs = gr.Dropdown(vs_list.value,
label="请选择要加载的知识库",
interactive=True,
value=vs_list.value[0] if len(vs_list.value) > 0 else None
)
vs_name = gr.Textbox(label="请输入新建知识库名称",
lines=1,
interactive=True)
vs_add = gr.Button(value="添加至知识库选项")
vs_add.click(fn=add_vs_name,
inputs=[vs_name, vs_list, chatbot],
outputs=[select_vs, vs_list, chatbot])
file2vs = gr.Column(visible=False)
with file2vs:
# load_vs = gr.Button("加载知识库")
gr.Markdown("向知识库中添加文件")
with gr.Tab("上传文件"):
files = gr.File(label="添加文件",
file_types=['.txt', '.md', '.docx', '.pdf'],
file_count="multiple",
show_label=False
)
load_file_button = gr.Button("上传文件并加载知识库")
with gr.Tab("上传文件夹"):
folder_files = gr.File(label="添加文件",
# file_types=['.txt', '.md', '.docx', '.pdf'],
file_count="directory",
show_label=False
)
load_folder_button = gr.Button("上传文件夹并加载知识库")
# load_vs.click(fn=)
select_vs.change(fn=change_vs_name_input,
inputs=select_vs,
outputs=[vs_name, vs_add, file2vs, vs_path])
# 将上传的文件保存到content文件夹下,并更新下拉框
load_file_button.click(get_vector_store,
show_progress=True,
inputs=[select_vs, files, chatbot],
outputs=[vs_path, files, chatbot],
)
load_folder_button.click(get_vector_store,
show_progress=True,
inputs=[select_vs, folder_files, chatbot],
outputs=[vs_path, folder_files, chatbot],
)
query.submit(get_answer,
[query, vs_path, chatbot, mode],
[chatbot, query],
)
with gr.Tab("模型配置"):
llm_model = gr.Radio(llm_model_dict_list,
label="LLM 模型",
value=LLM_MODEL,
interactive=True)
llm_history_len = gr.Slider(0,
10,
value=LLM_HISTORY_LEN,
step=1,
label="LLM 对话轮数",
interactive=True)
use_ptuning_v2 = gr.Checkbox(USE_PTUNING_V2,
label="使用p-tuning-v2微调过的模型",
interactive=True)
use_lora = gr.Checkbox(USE_LORA,
label="使用lora微调的权重",
interactive=True)
embedding_model = gr.Radio(embedding_model_dict_list,
label="Embedding 模型",
value=EMBEDDING_MODEL,
interactive=True)
top_k = gr.Slider(1,
20,
value=VECTOR_SEARCH_TOP_K,
step=1,
label="向量匹配 top k",
interactive=True)
load_model_button = gr.Button("重新加载模型")
load_model_button.click(reinit_model,
show_progress=True,
inputs=[llm_model, embedding_model, llm_history_len, use_ptuning_v2, use_lora, top_k, chatbot],
outputs=chatbot
)
(demo
.queue(concurrency_count=3)
.launch(server_name='0.0.0.0',
server_port=7860,
show_api=False,
share=False,
inbrowser=False))