Skip to content

Latest commit

 

History

History
36 lines (30 loc) · 1.83 KB

README.md

File metadata and controls

36 lines (30 loc) · 1.83 KB

Sentiment analysis

Fine-tuning End-to-end model

Assuming that the preprocessed manifest files are in manifest/slue-voxceleb for SLUE-VoxPopuli. This command fine-tune a wav2vec 2.0 base model using one GPU.

bash baselines/sentiment/e2e_scripts/ft-w2v2-base-senti.sh manifest/slue-voxceleb save/sentiment/w2v2-base

Evaluation of End-to-end model

To evaluate the fine-tuned wav2vec 2.0 sentiment model, run following command or run baselines/sentiment/e2e_scripts/eval.sh

python slue_toolkit/eval/eval_w2v_sentiment.py --save-dir save/sentiment/w2v2-base --data manifest/slue-voxceleb --subset test

Fine-tuning NLP Topline

This command trains the deberta-large model on ground-truth text transcripts with raw labels

bash baselines/sentiment/nlp_scripts/ft-deberta-large-senti.sh

Evaluation of NLP Topline

To evaluate the fine-tuned nlp model, run following command or run baselines/sentiment/nlp_scripts/eval.sh

python slue_toolkit/eval/eval_nlp_sentiment.py --save-dir save/sentiment/nlp_topline_bert-base-cased --data manifest/slue-voxceleb --subset test

Training the Pipeline model

We don't fine-tune the model on ASR transcription.

Evaluating the Pipeline model

To evaluate the fine-tuned nlp model, run following command or run baselines/sentiment/pipeline_scripts/eval.sh

First, ASR transcription need to be prepared in manifest dir, and then evalution can be done using the same evaluation script with nlp topline.

python slue_toolkit/prepare/prepare_voxceleb_asr_pred.py --data manifest/slue-voxceleb --pred-data datasets/slue-voxceleb/preds/vc1/w2v2-large-lv60k-ft-slue-vc1-12h-lr1e-5-s1-mt800000-8gpu-update280000
python slue_toolkit/eval/eval_nlp_sentiment.py --save-dir save/sentiment/nlp_topline_bert-base-cased --data manifest/slue-voxceleb --subset test.asr-pred