-
Notifications
You must be signed in to change notification settings - Fork 0
/
Scheduler.py
31 lines (27 loc) · 1.32 KB
/
Scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from torch.optim.lr_scheduler import _LRScheduler
class GradualWarmupScheduler(_LRScheduler):
def __init__(self, optimizer, multiplier, warm_epoch, after_scheduler=None):
self.multiplier = multiplier
self.total_epoch = warm_epoch
self.after_scheduler = after_scheduler
self.finished = False
self.last_epoch = None
self.base_lrs = None
super().__init__(optimizer)
def get_lr(self):
if self.last_epoch > self.total_epoch:
if self.after_scheduler:
if not self.finished:
self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs]
self.finished = True
return self.after_scheduler.get_last_lr()
return [base_lr * self.multiplier for base_lr in self.base_lrs]
return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs]
def step(self, epoch=None, metrics=None):
if self.finished and self.after_scheduler:
if epoch is None:
self.after_scheduler.step(None)
else:
self.after_scheduler.step(epoch - self.total_epoch)
else:
return super(GradualWarmupScheduler, self).step(epoch)