-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlassologit_p.ado
184 lines (153 loc) · 4.14 KB
/
lassologit_p.ado
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
*! lassologit_p
*! part of lassopack v1.4.3
*! last edited: 27mar2021
*! authors: aa/ms
program define lassologit_p, rclass
syntax namelist(min=1 max=2) [if] [in] , [ XB ///
Pr ///
Class ///
lopt lse ///
POSTLogit ///
NOIsily ///
lic(string) ///
est ]
* create variable here
tokenize `namelist'
if "`2'"=="" { // only new varname provided
local varlist `1'
}
else { // datatype also provided
local vtype `1'
local varlist `2'
}
*
// show estimation
if "`noisily'"=="" {
local qui qui
}
// check if lambda is defined
if ("`e(cmd)'"=="cvlassologit") {
if ("`lopt'"!="") {
`qui' cvlassologit, lopt postresults `postlogit'
}
else if ("`lse'"!="") {
`qui' cvlassologit, lse postresults `postlogit'
}
else {
di as err "predict requires 'lse' or 'lopt' after cvlassologit."
exit 1
}
// use post-logit or just logistic lasso?
tempname betaused
if ("`postlogit'"!="") {
di as text "Uses post-logit for prediction."
mat `betaused' = e(beta_post_dense)
}
else {
di as text "Uses lasso for prediction"
mat `betaused' = e(beta_dense)
}
//
}
else if ("`e(cmd)'"=="lassologit"&`e(lcount)'==1&"`est'"=="") {
// use post-logit or just logistic lasso?
tempname betaused
if ("`postlogit'"!="") {
di as text "Uses post-logit for prediction."
mat `betaused' = e(beta_post_dense)
}
else {
di as text "Uses lasso for prediction"
mat `betaused' = e(beta_dense)
}
//
}
else if ("`e(cmd)'"=="lassologit"&"`est'"!="") {
if ("`lic'"=="ebic") | ("`lic'"=="aic") | ("`lic'"=="aicc") | ("`lic'"=="bic") {
di as text "re-estimating the model with lic(`lic')"
lassologit, lic(`lic') postresults
}
else if ("`lic'"!="ebic") & ("`lic'"!="aic") & ("`lic'"!="aicc") & ("`lic'"=="bic") & ("`lic'"!="") {
di as err "lic(`lic') not allowed."
exit 198
}
else if ("`lic'"=="") {
di as err "No single lambda specified. Use lic() option."
exit 198
}
// use post-logit or just logistic lasso?
tempname betaused
if ("`postlogit'"!="") {
di as text "Uses post-logit for prediction."
mat `betaused' = e(beta_post_dense)
}
else {
di as text "Uses lasso for prediction"
mat `betaused' = e(beta_dense)
}
//
}
else if ("`e(cmd)'"=="lassologit"&"`est'"=="") {
// get ID of optimal lambda
if ("`lic'"=="ebic") {
local optid = e(ebicid)
}
else if ("`lic'"=="aic") {
local optid = e(aicid)
}
else if ("`lic'"=="aicc") {
local optid = e(aiccid)
}
else if ("`lic'"=="bic") {
local optid = e(bicid)
}
else if ("`lic'"!="ebic") & ("`lic'"!="aic") & ("`lic'"!="aicc") & ("`lic'"=="bic") & ("`lic'"!="") {
di as err "lic(`lic') not allowed."
exit 1
}
else if ("`lic'"=="") {
di as err "lic() option required"
exit 198
}
local postlogit_est = `e(postlogit)'
local betascols = `e(p)'+`e(cons)'
tempname betaused
if "`postlogit'"!=""&`e(postlogit)'==0 {
di as err "postlogit option ignored"
}
if `e(postlogit)'==0 di as text "using lasso coefficients stored in e(betas)"
if `e(postlogit)'==1 di as text "using post-lasso coefficients stored in e(betas)"
mat `betaused'=e(betas)
mat `betaused'=`betaused'[`optid',1..`betascols']
}
else if ("`e(cmd)'"!="rlassologit") {
di as err "command not recognized."
exit 198
}
if ("`noisily'"!="") {
di as text "Beta used for prediction:"
mat list `betaused'
}
//
*** obtain prediction
tempvar xbvar
qui matrix score `vtype' `xbvar'= `betaused' `if'
if ("`pr'`xb'`class'"=="") local pr pr
if ("`pr'"!="") {
di as text "storing predicted probabilities"
qui gen `vtype' `varlist' = exp(`xbvar')/(1+exp(`xbvar')) `if'
label var `varlist' "Predicted probabilities"
}
else if ("`xb'"!="") {
di as text "storing linear predictions"
qui gen `vtype' `varlist' = `xbvar' `if'
label var `varlist' "Linear prediction"
}
else if ("`class'"!="") {
di as text "storing predicted class"
qui gen `vtype' `varlist' = exp(`xbvar')/(1+exp(`xbvar')) `if'
qui replace `varlist' = (`varlist'>0.5) `if'
label var `varlist' "Predicted class"
}
*
end