From 076be5fc1d30856bae3aea737c3fa234e8c55ee2 Mon Sep 17 00:00:00 2001 From: FreezyLemon Date: Mon, 4 Nov 2024 13:59:42 +0100 Subject: [PATCH] refactor!: Chi: Use u64 for `freedom` Degrees of freedom `k` is usually defined as a positive integer. Storing `k` as a NonZeroU64 avoids all degenerate cases from the start (k < 0, k == 0, k == NaN), and the overhead of casting to an f64 for some operations should be minimal. NonZeroU64 also allows memory layout optimizations (similar to the nullptr optimization). --- src/distribution/chi.rs | 338 +++++++++++++++------------------------- 1 file changed, 128 insertions(+), 210 deletions(-) diff --git a/src/distribution/chi.rs b/src/distribution/chi.rs index 8eb50603..9c14fefb 100644 --- a/src/distribution/chi.rs +++ b/src/distribution/chi.rs @@ -2,6 +2,7 @@ use crate::distribution::{Continuous, ContinuousCDF}; use crate::function::gamma; use crate::statistics::*; use std::f64; +use std::num::NonZeroU64; /// Implements the [Chi](https://en.wikipedia.org/wiki/Chi_distribution) /// distribution @@ -13,20 +14,20 @@ use std::f64; /// use statrs::statistics::Distribution; /// use statrs::prec; /// -/// let n = Chi::new(2.0).unwrap(); +/// let n = Chi::new(2).unwrap(); /// assert!(prec::almost_eq(n.mean().unwrap(), 1.25331413731550025121, 1e-14)); /// assert!(prec::almost_eq(n.pdf(1.0), 0.60653065971263342360, 1e-15)); /// ``` #[derive(Copy, Clone, PartialEq, Debug)] pub struct Chi { - freedom: f64, + freedom: NonZeroU64, } /// Represents the errors that can occur when creating a [`Chi`]. #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)] #[non_exhaustive] pub enum ChiError { - /// The degrees of freedom are NaN, zero or less than zero. + /// The degrees of freedom are zero. FreedomInvalid, } @@ -49,41 +50,39 @@ impl Chi { /// /// # Errors /// - /// Returns an error if `freedom` is `NaN` or - /// less than or equal to `0.0` + /// Returns an error if `freedom` is equal to `0`. /// /// # Examples /// /// ``` /// use statrs::distribution::Chi; /// - /// let mut result = Chi::new(2.0); + /// let mut result = Chi::new(2); /// assert!(result.is_ok()); /// - /// result = Chi::new(0.0); + /// result = Chi::new(0); /// assert!(result.is_err()); /// ``` - pub fn new(freedom: f64) -> Result { - if freedom.is_nan() || freedom <= 0.0 { - Err(ChiError::FreedomInvalid) - } else { - Ok(Chi { freedom }) + pub fn new(freedom: u64) -> Result { + match NonZeroU64::new(freedom) { + Some(freedom) => Ok(Self { freedom }), + None => Err(ChiError::FreedomInvalid), } } - /// Returns the degrees of freedom of - /// the chi distribution. + /// Returns the degrees of freedom of the chi distribution. + /// Guaranteed to be non-zero. /// /// # Examples /// /// ``` /// use statrs::distribution::Chi; /// - /// let n = Chi::new(2.0).unwrap(); - /// assert_eq!(n.freedom(), 2.0); + /// let n = Chi::new(2).unwrap(); + /// assert_eq!(n.freedom(), 2); /// ``` - pub fn freedom(&self) -> f64 { - self.freedom + pub fn freedom(&self) -> u64 { + self.freedom.get() } } @@ -97,7 +96,7 @@ impl std::fmt::Display for Chi { #[cfg_attr(docsrs, doc(cfg(feature = "rand")))] impl ::rand::distributions::Distribution for Chi { fn sample(&self, rng: &mut R) -> f64 { - (0..self.freedom as i64) + (0..self.freedom()) .fold(0.0, |acc, _| { acc + super::normal::sample_unchecked(rng, 0.0, 1.0).powf(2.0) }) @@ -118,12 +117,12 @@ impl ContinuousCDF for Chi { /// where `k` is the degrees of freedom and `P` is /// the regularized lower incomplete Gamma function fn cdf(&self, x: f64) -> f64 { - if self.freedom == f64::INFINITY || x == f64::INFINITY { + if x == f64::INFINITY { 1.0 } else if x <= 0.0 { 0.0 } else { - gamma::gamma_lr(self.freedom / 2.0, x * x / 2.0) + gamma::gamma_lr(self.freedom() as f64 / 2.0, x * x / 2.0) } } @@ -139,12 +138,12 @@ impl ContinuousCDF for Chi { /// where `k` is the degrees of freedom and `P` is /// the regularized upper incomplete Gamma function fn sf(&self, x: f64) -> f64 { - if self.freedom == f64::INFINITY || x == f64::INFINITY { + if x == f64::INFINITY { 0.0 } else if x <= 0.0 { 1.0 } else { - gamma::gamma_ur(self.freedom / 2.0, x * x / 2.0) + gamma::gamma_ur(self.freedom() as f64 / 2.0, x * x / 2.0) } } } @@ -192,23 +191,23 @@ impl Distribution for Chi { /// /// where `k` is degrees of freedom and `Γ` is the gamma function fn mean(&self) -> Option { - if self.freedom.is_infinite() { - None - } else if self.freedom > 300.0 { + let freedom = self.freedom() as f64; + + if self.freedom() > 300 { // Large n approximation based on the Stirling series approximation to the Gamma function // This avoids call the Gamma function with large arguments and returning NaN // // Relative accuracy follows O(1/n^4) and at 300 d.o.f. is better than 1e-12 // For a f32 impl the threshold should be changed to 150 Some( - self.freedom.sqrt() - / ((1.0 + 0.25 / self.freedom) - * (1.0 + 0.03125 / (self.freedom * self.freedom)) - * (1.0 - 0.046875 / (self.freedom * self.freedom * self.freedom))), + (freedom.sqrt()) + / ((1.0 + 0.25 / freedom) + * (1.0 + 0.03125 / (freedom * freedom)) + * (1.0 - 0.046875 / (freedom * freedom * freedom))), ) } else { - let mean = f64::consts::SQRT_2 * gamma::gamma((self.freedom + 1.0) / 2.0) - / gamma::gamma(self.freedom / 2.0); + let mean = f64::consts::SQRT_2 * gamma::gamma((freedom + 1.0) / 2.0) + / gamma::gamma(freedom / 2.0); Some(mean) } } @@ -229,7 +228,7 @@ impl Distribution for Chi { /// of the distribution fn variance(&self) -> Option { let mean = self.mean()?; - Some(self.freedom - mean * mean) + Some(self.freedom() as f64 - mean * mean) } /// Returns the entropy of the chi distribution @@ -247,14 +246,9 @@ impl Distribution for Chi { /// where `k` is degrees of freedom, `Γ` is the gamma function, /// and `ψ` is the digamma function fn entropy(&self) -> Option { - if self.freedom.is_infinite() { - return None; - } - let entr = gamma::ln_gamma(self.freedom / 2.0) - + (self.freedom - - (2.0f64).ln() - - (self.freedom - 1.0) * gamma::digamma(self.freedom / 2.0)) - / 2.0; + let freedom = self.freedom() as f64; + let entr = gamma::ln_gamma(freedom / 2.0) + + (freedom - (2.0f64).ln() - (freedom - 1.0) * gamma::digamma(freedom / 2.0)) / 2.0; Some(entr) } @@ -293,10 +287,7 @@ impl Mode> for Chi { /// /// where `k` is the degrees of freedom fn mode(&self) -> Option { - if self.freedom - 1.0 < 0.0 { - return None; - } - Some((self.freedom - 1.0).sqrt()) + Some(((self.freedom() - 1) as f64).sqrt()) } } @@ -312,15 +303,14 @@ impl Continuous for Chi { /// /// where `k` is the degrees of freedom and `Γ` is the gamma function fn pdf(&self, x: f64) -> f64 { - if self.freedom == f64::INFINITY || x == f64::INFINITY || x <= 0.0 { + if x == f64::INFINITY || x <= 0.0 { 0.0 - } else if self.freedom > 160.0 { + } else if self.freedom() > 160 { self.ln_pdf(x).exp() } else { - (2.0f64).powf(1.0 - self.freedom / 2.0) - * x.powf(self.freedom - 1.0) - * (-x * x / 2.0).exp() - / gamma::gamma(self.freedom / 2.0) + let freedom = self.freedom() as f64; + (2.0f64).powf(1.0 - freedom / 2.0) * x.powf(freedom - 1.0) * (-x * x / 2.0).exp() + / gamma::gamma(freedom / 2.0) } } @@ -333,12 +323,13 @@ impl Continuous for Chi { /// ln((2^(1 - (k / 2)) * x^(k - 1) * e^(-x^2 / 2)) / Γ(k / 2)) /// ``` fn ln_pdf(&self, x: f64) -> f64 { - if self.freedom == f64::INFINITY || x == f64::INFINITY || x <= 0.0 { + if x == f64::INFINITY || x <= 0.0 { f64::NEG_INFINITY } else { - (1.0 - self.freedom / 2.0) * (2.0f64).ln() + ((self.freedom - 1.0) * x.ln()) + let freedom = self.freedom() as f64; + (1.0 - freedom / 2.0) * (2.0f64).ln() + ((freedom - 1.0) * x.ln()) - x * x / 2.0 - - gamma::ln_gamma(self.freedom / 2.0) + - gamma::ln_gamma(freedom / 2.0) } } } @@ -350,250 +341,177 @@ mod tests { use crate::distribution::internal::*; use crate::testing_boiler; - testing_boiler!(freedom: f64; Chi; ChiError); + testing_boiler!(freedom: u64; Chi; ChiError); #[test] fn test_create() { - create_ok(1.0); - create_ok(3.0); - create_ok(f64::INFINITY); + create_ok(1); + create_ok(3); } #[test] fn test_bad_create() { - create_err(0.0); - create_err(-1.0); - create_err(-100.0); - create_err(f64::NEG_INFINITY); - create_err(f64::NAN); + create_err(0); } #[test] fn test_mean() { let mean = |x: Chi| x.mean().unwrap(); - test_absolute(1.0, 0.7978845608028653558799, 1e-15, mean); - test_absolute(2.0, 1.25331413731550025121, 1e-14, mean); - test_absolute(2.5, 1.43396639245837498609, 1e-14, mean); - test_absolute(5.0, 2.12769216214097428235, 1e-14, mean); - test_absolute(336.0, 18.31666925443713, 1e-12, mean); + test_absolute(1, 0.7978845608028653558799, 1e-15, mean); + test_absolute(2, 1.25331413731550025121, 1e-14, mean); + test_absolute(5, 2.12769216214097428235, 1e-14, mean); + test_absolute(336, 18.31666925443713, 1e-12, mean); } #[test] fn test_large_dof_mean_not_nan() { for i in 1..1000 { - let mean = Chi::new(i as f64).unwrap().mean().unwrap(); + let mean = Chi::new(i).unwrap().mean().unwrap(); assert!(!mean.is_nan(), "Chi mean for {i} dof was {mean}"); } } - #[test] - fn test_mean_degen() { - test_none(f64::INFINITY, |dist| dist.mean()); - } - #[test] fn test_variance() { let variance = |x: Chi| x.variance().unwrap(); - test_absolute(1.0, 0.3633802276324186569245, 1e-15, variance); - test_absolute(2.0, 0.42920367320510338077, 1e-14, variance); - test_absolute(2.5, 0.44374038529991368581, 1e-13, variance); - test_absolute(3.0, 0.4535209105296746277, 1e-14, variance); - } - - #[test] - fn test_variance_degen() { - test_none(f64::INFINITY, |dist| dist.variance()); + test_absolute(1, 0.3633802276324186569245, 1e-15, variance); + test_absolute(2, 0.42920367320510338077, 1e-14, variance); + test_absolute(3, 0.4535209105296746277, 1e-14, variance); } #[test] fn test_entropy() { let entropy = |x: Chi| x.entropy().unwrap(); - test_absolute(1.0, 0.7257913526447274323631, 1e-15, entropy); - test_absolute(2.0, 0.9420342421707937755946, 1e-15, entropy); - test_absolute(2.5, 0.97574472333041323989, 1e-14, entropy); - test_absolute(3.0, 0.99615419810620560239, 1e-14, entropy); - } - - #[test] - fn test_entropy_degen() { - test_none(f64::INFINITY, |dist| dist.entropy()); + test_absolute(1, 0.7257913526447274323631, 1e-15, entropy); + test_absolute(2, 0.9420342421707937755946, 1e-15, entropy); + test_absolute(3, 0.99615419810620560239, 1e-14, entropy); } #[test] fn test_skewness() { let skewness = |x: Chi| x.skewness().unwrap(); - test_absolute(1.0, 0.995271746431156042444, 1e-14, skewness); - test_absolute(2.0, 0.6311106578189371382, 1e-13, skewness); - test_absolute(2.5, 0.5458487096285153216, 1e-12, skewness); - test_absolute(3.0, 0.485692828049590809, 1e-12, skewness); - } - - #[test] - fn test_skewness_degen() { - test_none(f64::INFINITY, |dist| dist.skewness()); + test_absolute(1, 0.995271746431156042444, 1e-14, skewness); + test_absolute(3, 0.485692828049590809, 1e-12, skewness); } #[test] fn test_mode() { let mode = |x: Chi| x.mode().unwrap(); - test_exact(1.0, 0.0, mode); - test_exact(2.0, 1.0, mode); - test_exact(2.5, 1.224744871391589049099, mode); - test_exact(3.0, f64::consts::SQRT_2, mode); - test_exact(f64::INFINITY, f64::INFINITY, mode); - } - - #[test] - fn test_mode_freedom_lt_1() { - test_none(0.5, |dist| dist.mode()); + test_exact(1, 0.0, mode); + test_exact(2, 1.0, mode); + test_exact(3, f64::consts::SQRT_2, mode); } #[test] fn test_min_max() { let min = |x: Chi| x.min(); let max = |x: Chi| x.max(); - test_exact(1.0, 0.0, min); - test_exact(2.0, 0.0, min); - test_exact(2.5, 0.0, min); - test_exact(3.0, 0.0, min); - test_exact(f64::INFINITY, 0.0, min); - test_exact(1.0, f64::INFINITY, max); - test_exact(2.0, f64::INFINITY, max); - test_exact(2.5, f64::INFINITY, max); - test_exact(3.0, f64::INFINITY, max); - test_exact(f64::INFINITY, f64::INFINITY, max); + test_exact(1, 0.0, min); + test_exact(2, 0.0, min); + test_exact(2, 0.0, min); + test_exact(3, 0.0, min); + test_exact(1, f64::INFINITY, max); + test_exact(2, f64::INFINITY, max); + test_exact(2, f64::INFINITY, max); + test_exact(3, f64::INFINITY, max); } #[test] fn test_pdf() { let pdf = |arg: f64| move |x: Chi| x.pdf(arg); - test_exact(1.0, 0.0, pdf(0.0)); - test_absolute(1.0, 0.79390509495402353102, 1e-15, pdf(0.1)); - test_absolute(1.0, 0.48394144903828669960, 1e-15, pdf(1.0)); - test_absolute(1.0, 2.1539520085086552718e-7, 1e-22, pdf(5.5)); - test_exact(1.0, 0.0, pdf(f64::INFINITY)); - test_exact(2.0, 0.0, pdf(0.0)); - test_absolute(2.0, 0.099501247919268231335, 1e-16, pdf(0.1)); - test_absolute(2.0, 0.60653065971263342360, 1e-15, pdf(1.0)); - test_absolute(2.0, 1.4847681768496578863e-6, 1e-21, pdf(5.5)); - test_exact(2.0, 0.0, pdf(f64::INFINITY)); - test_exact(2.5, 0.0, pdf(0.0)); - test_absolute(2.5, 0.029191065334961657461, 1e-16, pdf(0.1)); - test_absolute(2.5, 0.56269645152636456261, 1e-15, pdf(1.0)); - test_absolute(2.5, 3.2304380188895211768e-6, 1e-20, pdf(5.5)); - test_exact(2.5, 0.0, pdf(f64::INFINITY)); - test_exact(f64::INFINITY, 0.0, pdf(0.0)); - test_exact(f64::INFINITY, 0.0, pdf(0.1)); - test_exact(f64::INFINITY, 0.0, pdf(1.0)); - test_exact(f64::INFINITY, 0.0, pdf(5.5)); - test_exact(f64::INFINITY, 0.0, pdf(f64::INFINITY)); - test_absolute(170.0, 0.5644678498668440878, 1e-13, pdf(13.0)); + test_exact(1, 0.0, pdf(0.0)); + test_absolute(1, 0.79390509495402353102, 1e-15, pdf(0.1)); + test_absolute(1, 0.48394144903828669960, 1e-15, pdf(1.0)); + test_absolute(1, 2.1539520085086552718e-7, 1e-22, pdf(5.5)); + test_exact(1, 0.0, pdf(f64::INFINITY)); + test_exact(2, 0.0, pdf(0.0)); + test_absolute(2, 0.099501247919268231335, 1e-16, pdf(0.1)); + test_absolute(2, 0.60653065971263342360, 1e-15, pdf(1.0)); + test_absolute(2, 1.4847681768496578863e-6, 1e-21, pdf(5.5)); + test_exact(2, 0.0, pdf(f64::INFINITY)); + test_exact(2, 0.0, pdf(0.0)); + test_exact(2, 0.0, pdf(f64::INFINITY)); + test_absolute(170, 0.5644678498668440878, 1e-13, pdf(13.0)); } #[test] fn test_neg_pdf() { let pdf = |arg: f64| move |x: Chi| x.pdf(arg); - test_exact(1.0, 0.0, pdf(-1.0)); + test_exact(1, 0.0, pdf(-1.0)); } #[test] fn test_ln_pdf() { let ln_pdf = |arg: f64| move |x: Chi| x.ln_pdf(arg); - test_exact(1.0, f64::NEG_INFINITY, ln_pdf(0.0)); - test_absolute(1.0, -0.23079135264472743236, 1e-15, ln_pdf(0.1)); - test_absolute(1.0, -0.72579135264472743236, 1e-15, ln_pdf(1.0)); - test_absolute(1.0, -15.350791352644727432, 1e-14, ln_pdf(5.5)); - test_exact(1.0, f64::NEG_INFINITY, ln_pdf(f64::INFINITY)); - test_exact(2.0, f64::NEG_INFINITY, ln_pdf(0.0)); - test_absolute(2.0, -2.3075850929940456840, 1e-15, ln_pdf(0.1)); - test_absolute(2.0, -0.5, 1e-15, ln_pdf(1.0)); - test_absolute(2.0, -13.420251907761574765, 1e-15, ln_pdf(5.5)); - test_exact(2.0, f64::NEG_INFINITY, ln_pdf(f64::INFINITY)); - test_exact(2.5, f64::NEG_INFINITY, ln_pdf(0.0)); - test_absolute(2.5, -3.5338925982092416919, 1e-15, ln_pdf(0.1)); - test_absolute(2.5, -0.57501495871817316589, 1e-15, ln_pdf(1.0)); - test_absolute(2.5, -12.642892820360535314, 1e-16, ln_pdf(5.5)); - test_exact(2.5, f64::NEG_INFINITY, ln_pdf(f64::INFINITY)); - test_exact(f64::INFINITY, f64::NEG_INFINITY, ln_pdf(0.0)); - test_exact(f64::INFINITY, f64::NEG_INFINITY, ln_pdf(0.1)); - test_exact(f64::INFINITY, f64::NEG_INFINITY, ln_pdf(1.0)); - test_exact(f64::INFINITY, f64::NEG_INFINITY, ln_pdf(5.5)); - test_exact(f64::INFINITY, f64::NEG_INFINITY, ln_pdf(f64::INFINITY)); - test_absolute(170.0, -0.57187185030600516424237, 1e-13, ln_pdf(13.0)); + test_exact(1, f64::NEG_INFINITY, ln_pdf(0.0)); + test_absolute(1, -0.23079135264472743236, 1e-15, ln_pdf(0.1)); + test_absolute(1, -0.72579135264472743236, 1e-15, ln_pdf(1.0)); + test_absolute(1, -15.350791352644727432, 1e-14, ln_pdf(5.5)); + test_exact(1, f64::NEG_INFINITY, ln_pdf(f64::INFINITY)); + test_exact(2, f64::NEG_INFINITY, ln_pdf(0.0)); + test_absolute(2, -2.3075850929940456840, 1e-15, ln_pdf(0.1)); + test_absolute(2, -0.5, 1e-15, ln_pdf(1.0)); + test_absolute(2, -13.420251907761574765, 1e-15, ln_pdf(5.5)); + test_exact(2, f64::NEG_INFINITY, ln_pdf(f64::INFINITY)); + test_exact(2, f64::NEG_INFINITY, ln_pdf(0.0)); + test_exact(2, f64::NEG_INFINITY, ln_pdf(f64::INFINITY)); + test_absolute(170, -0.57187185030600516424237, 1e-13, ln_pdf(13.0)); } #[test] fn test_neg_ln_pdf() { let ln_pdf = |arg: f64| move |x: Chi| x.ln_pdf(arg); - test_exact(1.0, f64::NEG_INFINITY, ln_pdf(-1.0)); + test_exact(1, f64::NEG_INFINITY, ln_pdf(-1.0)); } #[test] fn test_cdf() { let cdf = |arg: f64| move |x: Chi| x.cdf(arg); - test_exact(1.0, 0.0, cdf(0.0)); - test_absolute(1.0, 0.079655674554057962931, 1e-16, cdf(0.1)); - test_absolute(1.0, 0.68268949213708589717, 1e-15, cdf(1.0)); - test_exact(1.0, 0.99999996202087506822, cdf(5.5)); - test_exact(1.0, 1.0, cdf(f64::INFINITY)); - test_exact(2.0, 0.0, cdf(0.0)); - test_absolute(2.0, 0.0049875208073176866474, 1e-17, cdf(0.1)); - test_absolute(2.0, 0.39346934028736657640, 1e-15, cdf(1.0)); - test_exact(2.0, 0.99999973004214966370, cdf(5.5)); - test_exact(2.0, 1.0, cdf(f64::INFINITY)); - test_exact(2.5, 0.0, cdf(0.0)); - test_absolute(2.5, 0.0011702413714030096290, 1e-18, cdf(0.1)); - test_absolute(2.5, 0.28378995266531297417, 1e-16, cdf(1.0)); - test_exact(2.5, 0.99999940337322804750, cdf(5.5)); - test_exact(2.5, 1.0, cdf(f64::INFINITY)); - test_exact(f64::INFINITY, 1.0, cdf(0.0)); - test_exact(f64::INFINITY, 1.0, cdf(0.1)); - test_exact(f64::INFINITY, 1.0, cdf(1.0)); - test_exact(f64::INFINITY, 1.0, cdf(5.5)); - test_exact(f64::INFINITY, 1.0, cdf(f64::INFINITY)); + test_exact(1, 0.0, cdf(0.0)); + test_absolute(1, 0.079655674554057962931, 1e-16, cdf(0.1)); + test_absolute(1, 0.68268949213708589717, 1e-15, cdf(1.0)); + test_exact(1, 0.99999996202087506822, cdf(5.5)); + test_exact(1, 1.0, cdf(f64::INFINITY)); + test_exact(2, 0.0, cdf(0.0)); + test_absolute(2, 0.0049875208073176866474, 1e-17, cdf(0.1)); + test_exact(2, 1.0, cdf(f64::INFINITY)); + test_exact(2, 0.0, cdf(0.0)); + test_exact(2, 1.0, cdf(f64::INFINITY)); } #[test] fn test_sf() { let sf = |arg: f64| move |x: Chi| x.sf(arg); - test_exact(1.0, 1.0, sf(0.0)); - test_absolute(1.0, 0.920344325445942, 1e-16, sf(0.1)); - test_absolute(1.0, 0.31731050786291404, 1e-15, sf(1.0)); - test_absolute(1.0, 3.797912493177544e-8, 1e-15, sf(5.5)); - test_exact(1.0, 0.0, sf(f64::INFINITY)); - test_exact(2.0, 1.0, sf(0.0)); - test_absolute(2.0, 0.9950124791926823, 1e-17, sf(0.1)); - test_absolute(2.0, 0.6065306597126333, 1e-15, sf(1.0)); - test_absolute(2.0, 2.699578503363014e-7, 1e-15, sf(5.5)); - test_exact(2.0, 0.0, sf(f64::INFINITY)); - test_exact(2.5, 1.0, sf(0.0)); - test_absolute(2.5, 0.998829758628597, 1e-18, sf(0.1)); - test_absolute(2.5, 0.716210047334687, 1e-16, sf(1.0)); - test_absolute(2.5, 5.966267719870189e-7, 1e-15, sf(5.5)); - test_exact(2.5, 0.0, sf(f64::INFINITY)); - test_exact(f64::INFINITY, 0.0, sf(0.0)); - test_exact(f64::INFINITY, 0.0, sf(0.1)); - test_exact(f64::INFINITY, 0.0, sf(1.0)); - test_exact(f64::INFINITY, 0.0, sf(5.5)); - test_exact(f64::INFINITY, 0.0, sf(f64::INFINITY)); + test_exact(1, 1.0, sf(0.0)); + test_absolute(1, 0.920344325445942, 1e-16, sf(0.1)); + test_absolute(1, 0.31731050786291404, 1e-15, sf(1.0)); + test_absolute(1, 3.797912493177544e-8, 1e-15, sf(5.5)); + test_exact(1, 0.0, sf(f64::INFINITY)); + test_exact(2, 1.0, sf(0.0)); + test_absolute(2, 0.9950124791926823, 1e-17, sf(0.1)); + test_absolute(2, 0.6065306597126333, 1e-15, sf(1.0)); + test_absolute(2, 2.699578503363014e-7, 1e-15, sf(5.5)); + test_exact(2, 0.0, sf(f64::INFINITY)); + test_exact(2, 1.0, sf(0.0)); + test_exact(2, 0.0, sf(f64::INFINITY)); } #[test] fn test_neg_cdf() { let cdf = |arg: f64| move |x: Chi| x.cdf(arg); - test_exact(1.0, 0.0, cdf(-1.0)); + test_exact(1, 0.0, cdf(-1.0)); } #[test] fn test_neg_sf() { let sf = |arg: f64| move |x: Chi| x.sf(arg); - test_exact(1.0, 1.0, sf(-1.0)); + test_exact(1, 1.0, sf(-1.0)); } #[test] fn test_continuous() { - test::check_continuous_distribution(&create_ok(1.0), 0.0, 10.0); - test::check_continuous_distribution(&create_ok(2.0), 0.0, 10.0); - test::check_continuous_distribution(&create_ok(5.0), 0.0, 10.0); + test::check_continuous_distribution(&create_ok(1), 0.0, 10.0); + test::check_continuous_distribution(&create_ok(2), 0.0, 10.0); + test::check_continuous_distribution(&create_ok(5), 0.0, 10.0); } }