-
Notifications
You must be signed in to change notification settings - Fork 0
/
ObjectiveMinimizer.py
54 lines (39 loc) · 1.64 KB
/
ObjectiveMinimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from utils import *
import torch
import numpy as np
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Dim=28
cost_mat = get_cost_mat(28, device, dtype=torch.float32)
def get_c_concave(phi, cost_mat):
# 'phi' has size (M, m*n), where M is sample size or 1
M = phi.shape[0]
n = cost_mat.shape[0]
m = phi.shape[1] // n
phi_c, _ = (cost_mat - phi.reshape(M, m, n, 1)).min(dim=2) # (M, m, n)
return phi_c
def objective_function(sample, cost_mat, cs, kappa):
# 'sample' has size (M, m*n), where M is sample size or 1
sample=sample.unsqueeze(0)
phi_c = get_c_concave(sample, cost_mat) # (M, m, n)
phi_bar = sample.reshape(*phi_c.shape).sum(dim=1) # (M, n)
logsumexp = -kappa * torch.logsumexp(-phi_bar / kappa, dim=-1) # (M,)
inner_prod = (phi_c * cs).sum(dim=(1, 2)) # (M,)
return (logsumexp + inner_prod)
Archetypes= torch.load('Archetypes.pt').to(device).to(torch.float32)
constant=40
iterations=300
Mean = torch.zeros((len(Archetypes)*len(Archetypes[0]))).to(device).to(torch.float32)
Mean.requires_grad=True
for i in range(iterations):
obj=-objective_function(Mean,cost_mat, Archetypes,1/constant)
loss=obj
loss.backward()
with torch.no_grad():
Mean.sub_(Mean.grad/(2*np.sqrt(i+1)))
Mean.grad.zero_()
Mean.requires_grad=False
Mean=Mean.reshape(len(Archetypes),len(Archetypes[0]))
Barycenter=torch.softmax(-constant*((torch.sum(Mean,dim=0))),dim=0)
Barycenters=[Barycenter, Barycenter]
titles = ['Barycenter'] + ['BlurryBarycenter']
show_barycenters(Barycenters, Dim, 'duals', use_softmax=False, iterations=titles, scaling='partial',use_default_folder=False)