-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompress_latents.py
158 lines (117 loc) · 5.3 KB
/
compress_latents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch.nn as nn
from config import config, max_bar_length, n_bars
import torch.nn.functional as F
import torch
class LatentCompressor(nn.Module):
def __init__(self, d_model=config["model"]["d_model"]):
super(LatentCompressor, self).__init__()
self.comp_drums = Compressor()
self.comp_guitar = Compressor()
self.comp_bass = Compressor()
self.comp_strings = Compressor()
self.compress_bar = nn.Linear(d_model*4, d_model)
self.norm = nn.LayerNorm(d_model)
self.compress_bars = nn.Linear(d_model*n_bars, d_model)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, latents): # TODO multibar
"""
:param latents: list(n_batch n_bars n_tok d_model)
:return: n_batch d_model
# """
out_latents = []
n_track, n_batch, seq_len, d_model = latents[0].shape # out: 1 4 200 256
for latent in latents:
z_drum = self.comp_drums(latent[0]) # out 1 256
z_guitar = self.comp_guitar(latent[1]) # out 1 256
z_bass = self.comp_bass(latent[2]) # out 1 256
z_strings = self.comp_strings(latent[3]) # out 1 256
latent = torch.stack([z_drum, z_guitar, z_bass, z_strings], dim=1) # 1 4 256
latent = latent.reshape(n_batch, d_model*4) # out: 1 1024
latent = self.compress_bar(latent) # out: 1 256
latent = self.norm(latent)
latent = F.leaky_relu(latent)
out_latents.append(latent)
latents = torch.stack(out_latents, dim=1)
latents = latents.reshape(n_batch, -1) # out: 1 1024
latent = self.compress_bars(latents) # out: 1 256
return latent
class Compressor(nn.Module):
def __init__(self, d_model=config["model"]["d_model"]):
super(Compressor, self).__init__()
self.compressor1 = nn.Linear(d_model, d_model//8)
# self.norm1 = nn.LayerNorm(d_model//8)
self.compressor2 = nn.Linear(max_bar_length*(d_model//8), d_model)
self.norm2 = nn.LayerNorm(d_model)
def forward(self, latent):
"""
:param latent: n_batch n_tok d_model
:return: n_batch d_model
"""
n_batch, seq_len, d_model = latent.shape
latent = self.compressor1(latent) # out: 1 200 32
latent = F.leaky_relu(latent)
latent = latent.reshape(n_batch, seq_len * (d_model // 8)) # out: 1 6400
latent = self.compressor2(latent) # out: 1 256
latent = self.norm2(latent)
latent = F.leaky_relu(latent)
return latent
class Decompressor(nn.Module):
def __init__(self, d_model=config["model"]["d_model"]):
super(Decompressor, self).__init__()
self.decompressor1 = nn.Linear(d_model, (max_bar_length//10)*(d_model//8))
self.norm1 = nn.LayerNorm((max_bar_length//10)*(d_model//8))
self.decompressor2 = nn.Linear(d_model//8, d_model)
self.norm2 = nn.LayerNorm(d_model)
def forward(self, latent):
"""
:param latent: n_batch d_model
:return: n_batch n_tok d_model
"""
n_batch, d_model = latent.shape # 1 256
latent = self.decompressor1(latent) # out: 1 640
latent = self.norm1(latent)
latent = F.leaky_relu(latent)
latent = latent.reshape(n_batch, max_bar_length//10, (d_model // 8)) # out: 1 20 32
latent = self.decompressor2(latent) # out: 1 20 256
latent = self.norm2(latent)
latent = F.leaky_relu(latent)
return latent
class LatentDecompressor(nn.Module):
def __init__(self, d_model=config["model"]["d_model"]):
super(LatentDecompressor, self).__init__()
self.seq_len = max_bar_length
self.d_model = d_model
self.decomp_drums = Decompressor()
self.decomp_bass = Decompressor()
self.decomp_guitar = Decompressor()
self.decomp_strings = Decompressor()
self.norm = nn.LayerNorm(d_model*4)
self.decompress_bar = nn.Linear(d_model, d_model*4)
self.decompressor_bars = nn.Linear(d_model, d_model*n_bars)
def forward(self, latent): # 1 1000
"""
# TODO add list
:param latent: n_batch d_model
:return: list(n_batch n_track n_tok d_model)
"""
n_batch = latent.shape[0] # 1 256
out_latents = []
latents = self.decompressor_bars(latent) # 1 1024
latents = F.leaky_relu(latents)
latents = latents.reshape(n_batch, n_bars, self.d_model) # 1 4 256
latents = latents.transpose(0, 1) # 4 1 256
for latent in latents:
latent = self.decompress_bar(latent) # out: 1 1024
latent = self.norm(latent)
latent = F.leaky_relu(latent)
latent = latent.reshape(n_batch, 4, self.d_model) # out: 1 4 256
latent = latent.transpose(0, 1) # out 4 1 256
z_drums = self.decomp_drums(latent[0]) # out 1 200 256
z_guitar = self.decomp_guitar(latent[1]) # out 1 200 256
z_bass = self.decomp_bass(latent[2]) # out 1 200 256
z_strings = self.decomp_strings(latent[3]) # out 1 200 256
latent = torch.stack([z_drums, z_guitar, z_bass, z_strings]) # 1 4 200 256
out_latents.append(latent)
return out_latents