-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
33 lines (30 loc) · 1.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from config import set_freer_gpu
from create_bar_dataset import NoteRepresentationManager
from config import config
from train import Trainer
import shutil
# TO COPY: scp -r C:\Users\berti\PycharmProjects\MusAE\*.py [email protected]:MusAE
# TO CONNECT: ssh [email protected]
# TO GET: scp -r [email protected]:/data/musae3.0/musae_model_checkpoints_2/2021-04-16_22-59-09/200000 C:\Users\berti\PycharmProjects\MusAE\2bar
# TO START SERVER: python -m http.server 1378
# TO ATTACH TO TMUX: tmux attach -t Training
# TO RESIZE TMUX: tmux attach -d -t Training
# TO SWITCH WINDOW ctrl+b 0-1-2
# TO SEE SESSION: tmux ls
# TO DETACH ctrl+b d
# TO VISUALIZE GPUs STATUS: nvidia-smi
# TO GET RESULTS: scp -r [email protected]:MusAE/2020* C:\Users\berti\PycharmProjects\MusAE\remote_results
if __name__ == "__main__": # TODO put here assert I guess
print("Use create_bar_dataset to create the dataset, then use train to train the model")
# set_freer_gpu()
#
# answer = ""
# while answer not in ["y", "n"]:
# answer = input("Dataset will be created from zero, do you want to proceed?").lower()
#
# shutil.rmtree(config["paths"]["dataset"], ignore_errors=True)
# notes = NoteRepresentationManager()
# notes.convert_dataset()
#
# trainer = Trainer()
# trainer.train()