forked from HIPS/autograd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayesian_neural_net.py
106 lines (84 loc) · 3.83 KB
/
bayesian_neural_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from __future__ import absolute_import
from __future__ import print_function
import matplotlib.pyplot as plt
import autograd.numpy as np
import autograd.numpy.random as npr
from black_box_svi import black_box_variational_inference
from autograd.misc.optimizers import adam
def make_nn_funs(layer_sizes, L2_reg, noise_variance, nonlinearity=np.tanh):
"""These functions implement a standard multi-layer perceptron,
vectorized over both training examples and weight samples."""
shapes = list(zip(layer_sizes[:-1], layer_sizes[1:]))
num_weights = sum((m+1)*n for m, n in shapes)
def unpack_layers(weights):
num_weight_sets = len(weights)
for m, n in shapes:
yield weights[:, :m*n] .reshape((num_weight_sets, m, n)),\
weights[:, m*n:m*n+n].reshape((num_weight_sets, 1, n))
weights = weights[:, (m+1)*n:]
def predictions(weights, inputs):
"""weights is shape (num_weight_samples x num_weights)
inputs is shape (num_datapoints x D)"""
inputs = np.expand_dims(inputs, 0)
for W, b in unpack_layers(weights):
outputs = np.einsum('mnd,mdo->mno', inputs, W) + b
inputs = nonlinearity(outputs)
return outputs
def logprob(weights, inputs, targets):
log_prior = -L2_reg * np.sum(weights**2, axis=1)
preds = predictions(weights, inputs)
log_lik = -np.sum((preds - targets)**2, axis=1)[:, 0] / noise_variance
return log_prior + log_lik
return num_weights, predictions, logprob
def build_toy_dataset(n_data=40, noise_std=0.1):
D = 1
rs = npr.RandomState(0)
inputs = np.concatenate([np.linspace(0, 2, num=n_data/2),
np.linspace(6, 8, num=n_data/2)])
targets = np.cos(inputs) + rs.randn(n_data) * noise_std
inputs = (inputs - 4.0) / 4.0
inputs = inputs.reshape((len(inputs), D))
targets = targets.reshape((len(targets), D))
return inputs, targets
if __name__ == '__main__':
# Specify inference problem by its unnormalized log-posterior.
rbf = lambda x: np.exp(-x**2)
relu = lambda x: np.maximum(x, 0.)
num_weights, predictions, logprob = \
make_nn_funs(layer_sizes=[1, 20, 20, 1], L2_reg=0.1,
noise_variance=0.01, nonlinearity=rbf)
inputs, targets = build_toy_dataset()
log_posterior = lambda weights, t: logprob(weights, inputs, targets)
# Build variational objective.
objective, gradient, unpack_params = \
black_box_variational_inference(log_posterior, num_weights,
num_samples=20)
# Set up figure.
fig = plt.figure(figsize=(12, 8), facecolor='white')
ax = fig.add_subplot(111, frameon=False)
plt.ion()
plt.show(block=False)
def callback(params, t, g):
print("Iteration {} lower bound {}".format(t, -objective(params, t)))
# Sample functions from posterior.
rs = npr.RandomState(0)
mean, log_std = unpack_params(params)
#rs = npr.RandomState(0)
sample_weights = rs.randn(10, num_weights) * np.exp(log_std) + mean
plot_inputs = np.linspace(-8, 8, num=400)
outputs = predictions(sample_weights, np.expand_dims(plot_inputs, 1))
# Plot data and functions.
plt.cla()
ax.plot(inputs.ravel(), targets.ravel(), 'bx')
ax.plot(plot_inputs, outputs[:, :, 0].T)
ax.set_ylim([-2, 3])
plt.draw()
plt.pause(1.0/60.0)
# Initialize variational parameters
rs = npr.RandomState(0)
init_mean = rs.randn(num_weights)
init_log_std = -5 * np.ones(num_weights)
init_var_params = np.concatenate([init_mean, init_log_std])
print("Optimizing variational parameters...")
variational_params = adam(gradient, init_var_params,
step_size=0.1, num_iters=1000, callback=callback)